UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Comparing motor learning and mu suppression under short-term physical and observational practice in adults : a pilot study Alhajri, Najah

Abstract

Repeated physical practice is not always the optimal approach in rehabilitation, especially in individuals with severe motor-related problems. Research has shown the effectiveness of observational practice as a motor learning tool in various rehabilitation settings. However, little is known about the neurophysiological mechanisms underlying this mode of learning and whether similar behavioral and neurophysiological changes occur during physical and observational practice. The purpose of this study was to compare short-term physical and observational practice during the acquisition and retention of a novel motor task and to evaluate how each type of practice modulates EEG mu rhythm (8-13Hz). Thirty healthy individuals were randomly assigned to one of three groups: (1) physical practice (PP); (2) observational practice (OP); and (3) no practice (NP). The experiment consisted of three phases: training, testing (observing 10 minutes following training), and retention (performing 24 hours following training). Two behavioural measures (as indexed by total time and error) and brain responses (as indexed by mu suppression at the central regions) were examined. The results revealed: (1) that when comparing the PP group during their first exposure to the task to the OP group during their first exposure to the task, the OP group was significantly faster than the PP group, did not differ from the PP group in terms of error, (2) significant bilateral suppression of mu rhythm during PP and significant left lateralized mu suppression during OP, (3) significant bilateral mu suppression during observation after PP compared to that after OP and NP. Overall, the study demonstrates that OP induces neurophysiological (i.e., mu suppression) and behavioural (i.e., reduced total time) changes similar to that occur during PP. However, the different pattern of activation during the two types of practice suggests that OP does not activate the same brain areas activated during PP; rather, it triggers a subset of brain regions. Therefore, OP may be a good proxy for PP under conditions where PP is not possible. This is the first study to investigate changes in mu rhythm as a function of both PP and OP.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International