UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Targeting tumour microenvironment : development of carbonic anhydrase IX nuclear imaging agents Lau, Joseph Cheong Chun

Abstract

Tumour hypoxia has long been recognized as an impediment to radiotherapy and chemotherapy. Cancers that are hypoxic tend to be aggressive, with high propensity for distant metastasis. As hypoxia is a salient feature of most solid cancers, targeting components of the hypoxia-induced signaling cascade has been proposed as a means for oncologic treatment. The key enzyme mediating hypoxia-induced stress response in cancers is carbonic anhydrase IX (CA-IX). Regulated by hypoxia-inducible factor 1α (HIF-1α), CA-IX catalyzes the reversible hydration of carbon dioxide to bicarbonate ion. CA-IX promotes cancer cell survival by transporting bicarbonate ions into the cell to maintain pH homeostasis during glycolysis. CA-IX is well-established as a surrogate marker for cellular hypoxia. Overexpression of CA-IX has been observed in a broad spectrum of cancers including: breast, cervix, ovarian, bladder, brain, colon, lung, kidney, head and neck cancers. In healthy individuals, CA-IX is expressed at low levels except in the gastrointestinal tract where it is involved in the process of cell differentiation. As CA-IX is pathologically expressed by cancer cells and located at the cell surface, it has emerged as a promising imaging/therapeutic target. In this thesis, we communicate the development of molecular antigen recognition molecules as potential radiotracers for CA-IX targeted nuclear imaging. We identified two classes of sulfonamide derivatives that successfully delineated CA-IX expression in tumour-bearing mice. Isoform selectivity, the major challenge for small molecule inhibitor-based imaging, was achieved via a multivalent approach or by conjugating pharmacophores to polyaminocarboxylate chelators. With good tumour-to-nontarget ratios and fast pharmacokinetics, some of these agents warrant further investigation as surrogate hypoxia imaging agents. Additionally we radiolabeled three novel monoclonal antibodies (mAbs) and one affibody for CA-IX imaging, with one mAb in particular showing significant accumulation in tumours. Collectively, this research provides a non-invasive platform to characterize and quantify expression of CA-IX in primary lesions and across metastatic sites. The diagnostic information can be readily integrated with emergent pharmaceuticals to increase effectiveness and safety of CA-IX or hypoxia-directed treatments for cancer patients.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International