UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Structural characterization of DNA binding and autoinhibition by the Ets1 transcription factor Desjardins, Geneviève

Abstract

Ets1 belongs to the ETS transcription factor family and plays key roles in regulating eukaryotic gene expression. The affinity of the Ets1 for its cognate DNA sites is autoinhibited by an intrinsically disordered serine-rich region (SRR) and an appended helical inhibitory module (IM). Through transient interactions, the SRR both sterically blocks the ETS domain and allosterically stabilizes the IM to modulate DNA-binding affinity. Calmodulin-dependent kinase II phosphorylation of five serines within the SRR progressively reinforces autoinhibition in response to calcium signaling. Using mutagenesis and quantitative DNA-binding measurements, we demonstrate that phosphorylation-enhanced autoinhibition requires the presence of phenylalanine/tyrosine (ϕ) residues adjacent to the SRR phosphoacceptor serines. The introduction of additional phosphorylated Ser-ϕ-Asp, but not Ser-Ala-Asp, repeats within the SRR dramatically reinforces autoinhibition. NMR spectroscopic studies of phosphorylated and mutated SRR variants, both within their native context and as separate trans-acting peptides, confirmed that the aromatic residues and phosphoserines contribute to the formation of a dynamic complex with the ETS domain. Complementary NMR studies also identified the SRR-interacting surface of the ETS domain, which encompasses its positively-charged DNA recognition interface and an adjacent region of neutral polar and nonpolar residues. Collectively, these studies highlight the role of aromatic residues and their synergy with phosphoserines in an intrinsically disordered regulatory sequence that integrates cellular signaling and gene expression. We also investigated by NMR spectroscopy the interaction of Ets1 with specific and nonspecific oligonucleotides. Upon binding DNA, helices HI-1 and HI-2 of the IM unfold. Thus, autoinibition does not impart DNA-binding specificity. Using amide chemical shift perturbation mapping, we also show that Ets1 binds both specific and non-specific oligonucleotides through its canonical ETS domain interface. However, the non-specific complex is formed by weak and dynamic electrostatic interactions, whereas the specific complex involves well-ordered hydrogen bonds and salt bridges. In support of this conclusion, five lysine sidechains are protected from rapid hydrogen exchange upon binding of specific DNA, whereas only one is stabilized in the non-specific complex. Overall, these data are consistent with Ets1 rapidly finding specific DNA sites within the genome via facilitated diffusion (sliding and hopping) within a vast background of non-specific sequences.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada