UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Integrating graphene and nanofibers with silicon to form Schottky junction solar cells Lin, Derek Yun Tsung

Abstract

Since the development of the world’s first practical solar cell in 1954 at Bell Laboratories, researches have been conducted to increase solar cell efficiencies and lower the fabrication cost. Traditional Schottky junction solar cells suffer from the low transparency of metal films and increasing cost of indium tin oxide. In this thesis, p-type and n-type silicon Schottky junction solar cells are fabricated by integrating novel materials with silicon in an attempt to overcome these limitations. The p-type solar cells integrate graphene and p-type silicon. Graphene is first synthesized using scotch tape exfoliation method, and then using chemical vapor deposition (CVD) of methane on copper foils to improve its quality. The CVD graphene growth system is custom built in our lab. Graphene films are optically and electrically characterized and solar cells are fabricated. Measured solar cell characteristics results are presented and reasons for the obtained parameters are discussed. Finally, methods for improving the solar cell performance are described. The n-type solar cells are fabricated by depositing gold coated Polyacrylonitrile (PAN) nanofiber mesh on top of n-type silicon. Schottky junctions are formed where the nanofibers are in contact with silicon surface, and each junction contributes to the total current. The nanofibers are economically produced by electrospinning and coated with gold by sputtering. The solar cells are characterized and the results suggest this structure can be a promising candidate for photovoltaic application. In addition to experimental work, we conduct numerical simulations of graphene based Schottky junction solar cells to identify possible future applications of graphene. Copper indium gallium diselenide, cadmium telluride, and amorphous silicon are chosen as the semiconductor bases because of their high absorption coefficient, high/tunable bandgap, and the possibility for economical fabrication as compared to single crystal silicon technology. The simulation is carried out using MATLAB with material properties obtained from textbooks and published literatures. The simulation results provide an estimate of the relevant photovoltaic parameters. It identifies graphene/p-type cadmium telluride as a potential Schottky junction solar cell that can achieve a conversion efficiency of 11.3%, if the graphene sheet resistance of 30 ohms/square and transmittance of 90% can be attained.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International