UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Role of tumour suppressor ING3 in melanoma pathogenesis Wang, Yemin

Abstract

The type II tumour suppressor ING3 has been shown to modulate transcription, cell cycle control, and apoptosis. To investigate the putative role of ING3 in melanoma development, we examined the expression of ING3 in 58 dysplastic nevi, 114 primary melanomas, and 50 metastatic melanomas with tissue microarray and immunohistochemistry. Overall ING3 was reduced in metastatic melanomas compared with dyslastic nevi and primary melanomas. Reduced nuclear ING3 staining also correlated with melanoma progression, increased cytoplasmic ING3 level, tumour location at sun-exposed sites, and a poorer disease-specific 5-year survival of patients with primary melanoma. Multivariate analysis revealed that nuclear ING3 staining can independently predict patient outcome in primary melanomas. In melanoma cells, ING3 expression was rapidly induced by UV irradiation. Using stable clones of melanoma cells overexpressing ING3, we showed that ING3 significantly promoted UV-induced apoptosis. Unlike its homologues ING1b and ING2, ING3-enhanced apoptosis upon UV irradiation was independent of functional p53. Furthermore, ING3 did not affect the expression of mitochondrial proteins but increased the cleavage of Bid and caspases. Moreover, ING3 upregulated Fas expression and ING3-mediated apoptosis was blocked by inhibiting caspase-8 or Fas activation. Knockdown of ING3 expression decreased UV-induced apoptosis remarkably, suggesting that ING3 plays a crucial role in cellular response to UV radiation. To explore how ING3 is deregulated in advanced melanomas, we examined ING3 expression in metastatic melanoma cells and found that ING3 was downregulated due to a rapid protein turnover in these cells. Further studies demonstrated that ING3 undergoes degradation via the ubiquitin-proteasome pathway. We also demonstrate that ING3 interacts with the SCF (Skp1/Cul1/Roc1/Skp2) E3 ligase complex. Knockdown of Cul1 or Skp2 significantly stabilized ING3 in melanoma cells. In addition, lysine residue 96 is essential for ING3 ubiquitination as its mutation to arginine completely abrogated ING3 turnover and enhanced ING3-stimulatd apoptosis upon UV irradiation. Taken together, ING3 is deregulated in melanomas as a result of both nucleus-to-cytoplasm shift and rapid degradation. The level of ING3 in the nucleus may be an important marker for human melanoma progression and prognosis. Restoration of ING3 expression significantly sensitizes melanoma cells to UV radiation through the activation of Fas/caspase-8 pathway.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International