UBC Undergraduate Research

The effect of freight trains on noise pollution in the British Columbia Lower Mainland Giacchetto, Maruska; Jiang, Vivian (XiuXiu); McDougall, Kelsey; Phaisaltantiwongs, Mina Apr 30, 2015

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
52966-Giacchetto_M_et_al_Noise_ENVR_400_2015.pdf [ 7.33MB ]
Metadata
JSON: 52966-1.0074567.json
JSON-LD: 52966-1.0074567-ld.json
RDF/XML (Pretty): 52966-1.0074567-rdf.xml
RDF/JSON: 52966-1.0074567-rdf.json
Turtle: 52966-1.0074567-turtle.txt
N-Triples: 52966-1.0074567-rdf-ntriples.txt
Original Record: 52966-1.0074567-source.json
Full Text
52966-1.0074567-fulltext.txt
Citation
52966-1.0074567.ris

Full Text

    Abstract	  	  On	  August	  21st	  2014,	  Port	  Metro	  Vancouver	  approved	  an	  increase	  of	  US	  thermal	  coal	  train	  traffic	  along	  the	  BNSF	  rail	  line	  enroute	  to	  Fraser	  Surrey	  Docks.	  As	  a	  result	  of	  the	  anticipated	  increase	  in	  U.S.	  thermal	  coal	  trains,	  health	  concerns	  have	  been	  expressed	  by	  our	  community	  partner,	  Communities	  and	  Coal,	  a	  group	  of	  citizens	  in	  the	  communities	  surrounding	  the	  BNSF	  rail	  line	  (Delta,	  White	  Rock,	  Crescent	  Beach	  and	  Surrey).	  In	  order	  to	  address	  these	  concerns,	  current	  noise	  pollution	  data	  was	  collected	  at	  four	  different	  sites	  along	  the	  BNSF	  rail	  line	  in	  24-­‐hour	  time	  intervals	  from	  the	  time	  period	  of	  November	  2014	  to	  March	  2015	  using	  an	  EXTECH	  Sound	  Level	  Data	  Logger.	  Each	  site	  was	  monitored	  twice.	  The	  observed	  equivalent	  continuous	  sound	  levels	  	  	  	  	  	  (Leq-­‐16	  and	  Leq-­‐24	  )	  for	  all	  sites	  and	  trials	  are	  seen	  to	  exceed	  the	  55	  dBA	  noise	  guidelines	  (Canada	  Mortgage	  and	  Housing,	  1981).	  Thus,	  it	  is	  likely	  that	  increases	  in	  train	  traffic	  will	  further	  escalate	  the	  sound	  levels	  beyond	  the	  current	  guidelines.	  	   The	  Effect	  of	  Freight	  Trains	  on	  Noise	  Pollution	  in	  the	  British	  Columbia	  Lower	  Mainland	  April	  30,	  2015	   Maruska	  Giacchetto	  Vivian	  (XiuXiu)	  Jiang	  Kelsey	  McDougall	  Mina	  Phaisaltantiwongs	  	  Course:	  ENVR	  400	  Instructor:	  Tara	  Ivanochko	  	   	    	  	   2	  Table	  of	  Contents	  Abstract	  .......................................................................................................................................................................................	  1	  Table	  of	  Contents	  ....................................................................................................................................................................	  2	  Author	  Biographies	  ................................................................................................................................................................	  3	  Introduction	  ..............................................................................................................................................................................	  4	  Methods	  .......................................................................................................................................................................................	  4	  Background	  Information:	  Noise	  .......................................................................................................................................	  5	  Results	  ..........................................................................................................................................................................................	  7	  Monitoring	  Results	  ...............................................................................................................................................................................	  7	  Noise	  Attenuation	  Results	  ................................................................................................................................................................	  9	  Present	  Implications	  ...........................................................................................................................................................	  10	  Future	  Implications	  .............................................................................................................................................................	  13	  Limitations	  ..............................................................................................................................................................................	  15	  Conclusion	  and	  Future	  Recommendations	  ...............................................................................................................	  15	  Acknowledgments	  ...............................................................................................................................................................	  16	  Bibliography	  ...........................................................................................................................................................................	  17	  Appendix	  ..................................................................................................................................................................................	  19	  Appendix	  A:	  Site	  Selection	  Criteria	  ............................................................................................................................................	  19	  Appendix	  B:	  Noise	  Pollution	  Data	  Analysis	  Methods	  .........................................................................................................	  21	  Appendix	  C:	  Survey	  Questionnaire	  and	  Results	  ...................................................................................................................	  30	  	  	  	   	   	  	   3	  Author	  Biographies	  	  Maruska	  Giacchetto	  Maruska,	  an	  effective	  communicator	  and	  listener,	  brought	  fieldwork	  experience	  to	  the	  team.	  She	  acquired	  this	  from	  coursework	  as	  well	  as	  her	  NSERC	  experience	  working	  on	  a	  Greenhouse	  Gas	  analysis	  project,	  involving	  water	  sample	  collection.	  She	  is	  excellent	  with	  time-­‐management,	  is	  goal-­‐oriented,	  and	  has	  experience	  with	  several	  computer	  programs	  such	  as	  Excel,	  R,	  and	  GIS.	  	  Vivian	  (XiuXiu)	  Jiang	  Vivian	  brought	  critical	  thinking	  and	  research	  skills	  to	  the	  project.	  Her	  experience	  doing	  a	  co-­‐op	  in	  China	  working	  with	  environmental	  impact	  assessments,	  has	  given	  her	  a	  great	  deal	  of	  knowledge	  on	  air	  pollution	  (with	  a	  focus	  on	  total	  volatile	  organic	  compounds	  -­‐	  TVOCs),	  chemical	  industrial	  production,	  real	  estate	  development,	  agricultural	  reclamation,	  and	  municipal	  infrastructure	  projects.	  Vivian’s	  wide	  range	  of	  knowledge	  is	  also	  supplemented	  by	  the	  following	  skills:	  basic	  graphic	  design,	  research,	  and	  basic	  MATLAB	  and	  Excel	  skills.	  	  	  Kelsey	  McDougall	  Kelsey	  is	  a	  goal-­‐oriented,	  organized,	  and	  responsible	  individual	  with	  an	  interest	  in	  how	  environmental	  factors	  affect	  human	  health.	  She	  brought	  her	  knowledge	  of	  atmospheric	  science,	  meteorology,	  and	  social	  based	  geography	  to	  this	  project,	  as	  well	  as	  her	  experience	  with	  fieldwork.	  	  Mina	  Phaisaltantiwongs	  Mina	  brought	  a	  positive	  attitude	  and	  strong	  work	  ethic,	  as	  well	  as	  knowledge	  from	  various	  coursework	  such	  as	  air	  pollution	  meteorology	  and	  atmospheric	  science	  to	  the	  project.	  In	  addition,	  she	  was	  capable	  of	  analyzing	  and	  visually	  representing	  environmental	  data	  and	  brought	  experience	  in	  project	  management	  and	  project	  presentation	  to	  the	  team.	  	   	   	  	   4	  Introduction	  	   Port	  Metro	  Vancouver	  in	  2014	  approved	  the	  development	  of	  a	  Direct	  Transfer	  Coal	  Facility	  at	  Fraser	  Surrey	  Docks	  to	  handle	  up	  to	  four	  million	  metric	  tonnes	  of	  coal,	  implying	  an	  anticipated	  increase	  in	  freight	  train	  traffic	  along	  the	  Burlington	  Northern	  Santé	  Fe	  (BNSF)	  rail	  line	  (Port	  Metro	  Vancouver,	  2014).	  The	  project	  was	  approved	  despite	  over	  1,700	  people	  signing	  a	  petition	  against	  the	  expansion	  of	  US	  Thermal	  coal	  traffic	  (Port	  Metro	  Vancouver,	  2014).	  	  	  Consequently,	  a	  group	  of	  citizens	  in	  the	  communities	  surrounding	  the	  BNSF	  railway	  has	  expressed	  concerns	  over	  health,	  property	  damage	  and	  environmental	  effects	  that	  could	  be	  caused	  by	  an	  increased	  in	  air,	  noise,	  and	  water	  pollution.	  These	  citizens	  formed	  a	  group	  called	  Communities	  and	  Coal	  and	  approached	  UBC	  Environmental	  Science	  400	  students	  for	  an	  assessment	  on	  current	  noise	  pollution	  from	  train	  traffic	  in	  the	  affected	  communities:	  White	  Rock,	  Surrey,	  and	  Delta.	  This	  research	  project	  will	  aid	  our	  community	  partner	  by	  gathering	  data	  that	  can	  be	  used	  for	  future	  comparisons	  after	  the	  construction	  of	  the	  Direct	  Transfer	  Coal	  Facility.	  	  The	  impacts	  of	  trains	  travelling	  through	  residential	  areas	  can	  have	  significant	  health	  impacts	  on	  the	  surrounding	  communities	  (Babisch,	  2005)	  and	  thus,	  is	  the	  main	  focus	  of	  our	  project	  for	  the	  Communities	  and	  Coal	  society.	  Noise	  pollution	  can	  be	  the	  cause	  of	  various	  health	  problems	  such	  as:	  headaches,	  insomnia,	  irritation,	  displaced	  aggression,	  discomfort,	  and	  raised	  blood	  pressure	  and	  heart	  rate	  due	  to	  arousal	  from	  sleep	  as	  trains	  pass	  (Zannin	  and	  Bunn,	  2014;	  Dzhambov	  and	  Dimitrova,	  2014;	  Sforza	  et	  al.,	  2004).	  Growth	  in	  train	  traffic	  has	  lead	  to	  increased	  noise	  pollution	  affecting	  residents	  in	  nearby	  homes	  and	  thus,	  increased	  concerns	  over	  these	  health	  issues	  (Port	  Metro	  Vancouver,	  2014).	  	   This	  project	  aims	  to	  investigate	  current	  noise	  pollution	  in	  several	  lower	  BC	  mainland	  communities	  (Delta,	  White	  Rock,	  and	  Crescent	  Beach/Surrey)	  from	  train	  traffic	  along	  the	  BNSF	  railway	  in	  the	  anticipation	  of	  increased	  train	  traffic	  by:	  1)	  Comparing	  collected	  noise	  pollution	  data	  with	  existing	  noise	  guidelines;	  2)	  Predicting	  the	  impact	  on	  noise	  levels	  as	  the	  number	  of	  trains	  per	  day	  increases;	  and	  3)	  Determining	  the	  areas	  affected	  by	  the	  train	  traffic	  noise	  attenuation	  with	  distance	  and	  land	  use	  type.	  	  Methods	  	   Current	  noise	  pollution	  data	  was	  collected	  at	  four	  different	  sites	  along	  the	  BNSF	  railway	  (White	  Rock,	  Burns	  Bog,	  and	  two	  Crescent	  Beach	  sites,	  see	  Table	  1)	  for	  two	  trials	  each,	  both	  of	  a	  24-­‐hour	  duration.	  The	  noise	  pollution	  monitoring	  occurred	  during	  various	  days	  of	  the	  week	  between	  November	  2014	  and	  March	  2015.	  An	  EXTECH	  Sound	  Level	  USB	  Datalogger	  (Model	  407760)	  with	  a	  basic	  accuracy	  of	  ±	  1.4	  dBA	  was	  used	  in	  order	  to	  collect	  the	  noise	  pollution	  data.	  The	  instrument	  was	  set	  up	  within	  approximately	  40m	  of	  the	  train	  tracks.	  Monitoring	  only	  occurred	  on	  days	  without	  precipitation,	  for	  equipment	  protection,	  and	  to	  ensure	  that	  noise	  from	  precipitation	  events	  was	  not	  included	  in	  the	  results.	  	  	   	   	  	   5	  Table	  1:	  A	  Summary	  of	  the	  noise	  pollution	  monitoring	  sites,	  dates	  monitored,	  and	  approximate	  distance	  from	  the	  tracks.	  See	  Appendix	  A	  for	  site	  selection	  criteria.	  Site	   Trial	   Date	  Monitored	   Approximate	  Horizontal	  Distance	  From	  Tracks	  (m)	   Description	  of	  Factors	  Between	  the	  Tracks	  and	  Equipment	  Crescent	  Beach	  #1	   1	   November	  15,	  2014	   39.06	   Road,	  Trees	  2	   December	  14,	  2014	  White	  Rock	   1	   November	  14,	  2014	   	   16.21	   Nothing	  2	   December	  13,	  2014	  Burns	  Bog	   1	   January	  13,	  2015	   37.65	   Pathway,	  Trees	  2	   January	  20,	  2015	  Crescent	  Beach	  #2	   1	   January	  30,	  2015	   30.29	   Pathway,	  Trees	  2	   March	  1,	  2015	  	  The	  approximate	  horizontal	  distance	  from	  the	  tracks	  was	  estimated	  using	  the	  ruler	  function	  in	  Google	  Earth.	  	   In	  addition	  to	  monitoring	  the	  noise	  pollution,	  a	  trail	  camera	  was	  set	  up	  nearby	  so	  that	  photos	  could	  be	  taken	  for	  identifying	  the	  types	  of	  trains	  passing	  by.	  In	  particular,	  this	  was	  useful	  for	  distinguishing	  between	  freight	  trains	  and	  passenger	  trains.	  	  Background	  Information:	  Noise	  	   Sound	  is	  a	  succession	  of	  vibrating	  waves	  or	  oscillations	  of	  pressure	  energy	  transmitted	  in	  a	  fluid	  medium,	  such	  as	  air.	  The	  decibel	  (dB)	  is	  a	  logarithmic	  ratio	  of	  an	  actual	  sound	  pressure	  to	  a	  reference	  pressure	  level	  (P0)	  of	  20	  μPa,	  which	  is	  the	  lowest	  sound	  pressure	  level	  that	  can	  be	  detected	  by	  an	  average	  person	  (see	  Appendix	  B,	  Equation	  1)	  (Alberta	  Energy	  and	  Utilities	  Board,	  2007).	  The	  A-­‐weighted	  decibel	  (dBA)	  is	  the	  most	  common	  sound	  level	  used,	  as	  it	  does	  not	  capture	  low	  frequency	  sounds	  that	  cannot	  be	  detected	  by	  the	  human	  ear	  (Canadian	  Transportation	  Agency,	  2011).	  In	  this	  experiment,	  all	  noise	  levels	  are	  presented	  in	  A-­‐weighted	  decibels	  (dBA).	  	   Equivalent	  continuous	  sound	  levels	  (Leq)	  describe	  how	  sound	  varies	  over	  time.	  Leq	  is	  presented	  as	  a	  single	  decibel	  value	  that	  takes	  into	  account	  the	  total	  sound	  energy	  over	  the	  period	  of	  time	  of	  interest	  (see	  Appendix	  B,	  Equation	  1).	  Of	  particular	  importance	  to	  this	  paper	  are	  the	  Leq-­‐24,	  the	  sound	  exposure	  level	  over	  24-­‐hours,	  and	  Leq-­‐16,	  the	  sound	  exposure	  level	  over	  the	  daytime	   	  	   6	  hours	  (07:00	  to	  23:00)	  (SS	  Wilson	  Associates,	  2006).	  This	  paper	  also	  presents	  Leq	  values	  where	  train	  noises	  have	  been	  removed	  from	  the	  data	  (i.e.	  Leq-­‐24-­‐no	  trains	  and	  Leq-­‐16-­‐no	  trains).	  	   Ldn	  is	  the	  day-­‐night	  average	  sound	  level,	  which	  is	  the	  average	  of	  hourly	  Leq	  values	  for	  15	  daytime	  hours	  (07:00	  and	  22:00)	  and	  the	  9	  nighttime	  hours	  (22:00	  to	  07:00).	  The	  nighttime	  hours	  are	  given	  an	  additional	  10	  dBA	  penalty.	  This	  penalty	  is	  added	  to	  account	  for	  the	  fact	  that	  noise	  is	  more	  disturbing	  at	  residential	  locations	  during	  these	  hours	  (Miedema,	  H.,	  &	  Oudshoorn,	  C.,	  2001).	  	   Three	  levels	  of	  government	  are	  responsible	  for	  different	  types	  of	  noise	  abatement.	  The	  federal	  government	  is	  responsible	  for	  aircraft	  and	  manufacturing	  noise.	  The	  federal	  government	  has	  been	  responsible	  to	  assess	  and	  create	  standards	  for	  those	  industries.	  Provincial	  governments	  are	  responsible	  for	  highway	  noise	  abatement.	  Provincial	  and	  federal	  governments	  are	  both	  responsible	  for	  industrial	  noise.	  Finally,	  municipality	  governments,	  under	  the	  supervision	  of	  the	  provincial	  government,	  are	  authorized	  to	  create	  noise	  by-­‐laws.	  However,	  municipal	  by-­‐laws	  are	  harder	  to	  enforce.	  Obtaining	  measurements	  is	  not	  an	  easy	  task	  and	  therefore	  most	  municipalities	  have	  suggestive	  regulations	  on	  noise	  levels	  (Canada	  Mortgage	  and	  Housing	  Corporation,	  1981).	  For	  instance,	  the	  maximum	  recommended	  acceptable	  level	  of	  rail	  traffic	  noise	  in	  dwellings	  and	  in	  outdoor	  recreation	  areas	  in	  British	  Columbia	  is	  55	  dBA,	  as	  seen	  in	  Table	  2	  (Canada	  Mortgage	  and	  Housing	  Corporation,	  1981).	  This	  corresponds	  to	  an	  indoor	  noise	  level	  of	  40	  dBA.	  Therefore,	  it	  is	  recommended	  to	  have	  nighttime	  outside	  average	  noise	  level	  lower	  than	  the	  recommended	  acceptable	  level.	  This	  55	  dBA	  recommended	  is	  confirmed	  in	  other	  locations	  across	  Canada	  as	  seen	  in	  the	  Federation	  of	  Canadian	  Municipalities	  and	  the	  Railway	  Association	  of	  Canada	  Noise	  Control	  Guideline	  (2013).	  	  	   	   	  	   7	  Table	  2:	  Noise	  level	  and	  typical	  reactions	  from	  regular	  sound	  sources:	  Canada	  Mortgage	  and	  Housing	  Corporation	  (1981).	  Sound	  Source	   Noise	  Level	  (dBA)	   Typical	  Reaction	   CMHC	  Requirements	  Categories	   dBA	   Maximum	  in	  Specific	  Area	  Maximum	  Acceptable	   135	   Painful	   Unacceptable	   	   	  Military	  Jet	   130	   Limit	  amplified	  speech	   Unacceptable	   	   	  Jet	  Takeoff	  at	  50m	   120	   Maximum	  vocal	  effort	   Unacceptable	  Freight	  train	  at	  15m	   95	   Very	  annoying/	  hearing	  damage	  if	  continuous	  for	  8hours	   Unacceptable	  Heavy	  truck	  /	  busy	  city	  street	   90	   Annoying	   Unacceptable	  Heavy	  traffic	  at	  15m	   80-­‐70	   Telephone	  use	  difficult	   Unacceptable	  without	  adequate	  insulation	   -­‐75-­‐	  Light	  traffic	  at	  15m	   60-­‐50	   Intrusive	   Normally	  acceptable	   -­‐55-­‐	   Outdoor	  park	  (55	  dBA)	  	  Results	  Monitoring	  Results	  	   Table	  3	  shows	  a	  summary	  of	  the	  data	  collected	  over	  the	  different	  trials.	  Our	  results	  show	  that	  both	  Leq-­‐16	  and	  the	  Leq-­‐24	  levels	  exceed	  the	  guideline	  limit	  for	  all	  sites	  and	  trials	  (Figure	  2).	  The	  Leq-­‐16	  sound	  levels	  are	  in	  the	  range	  of	  7	  to	  20	  dBA	  above	  the	  standard.	  The	  Leq-­‐24	  sound	  levels	  are	  5	  to	  14	  dBA	  above	  the	  guideline.	  As	  observed	  in	  figure	  2A	  at	  Crescent	  Beach	  1	  trial	  1	  the	  Leq-­‐16-­‐no	  train	  is	  lower	  than	  the	  guideline,	  and	  all	  other	  trials	  exceed	  the	  suggested	  noise	  guideline.	  The	  Leq-­‐24-­‐no	  train	  	  (figure	  2B)	  has	  two	  trial	  days	  that	  are	  slightly	  lower	  than	  the	  suggested	  guideline	  level	  (Crescent	  Beach	  1	  Trial	  1,	  and	  Crescent	  Beach	  2	  Trial	  2).	  	   	   	  	   8	  Table	  3:	  Summary	  of	  the	  data	  collected	  over	  the	  different	  trials.	  All	  data	  is	  reported	  in	  dBA.	  Sites	   Trial	  Number	   Leq-­‐16	  	   Leq-­‐24	   Min	  	   Max	  	   No	  Trains	  Leq-­‐16	   No	  Trains	  	  Leq-­‐24	  White	  Rock	   1	   68.4	   64.9	   19.1	   101.1	   61.1	   57.2	  2	   69.9	   67.6	   15.0	   109.0	   63.0	   58.7	  Crescent	  Beach	  1	   1	   74.6	   70.0	   20.3	   111.4	   53.5	   50.5	  2	   74.4	   68.2	   27.9	   109.5	   60.6	   57.0	  Burns	  Bog	   1	   62.8	   60.4	   28.2	   91.6	   60.6	   56.6	  2	   62.1	   59.1	   19.8	   89.0	   59.7	   56.5	  Crescent	  Beach	  2	   1	   75.3	   70.6	   40.1	   111.6	   67.4	   63.1	  2	   72.6	   69.5	   19.3	   109.7	   58.2	   53.9	  	  	  	  Figure	  2:	  Equivalent	  Continuous	  Sound	  Levels	  for:	  a)	  for	  a	  time	  period	  of	  16	  hours	  (07:00-­‐23:00),	  Leq-­‐16	  h	  (dBA);	  b)	  a	  time	  period	  of	  24	  hours,	  Leq	  –	  24	  h	  (dBA),	  for	  each	  monitoring	  trial	  at	  each	  site	  (White	  Rock,	  Crescent	  Beach	  1,	  Burns	  Bog,	  and	  Crescent	  Beach	  2).	  This	  graph	  includes	  Leq	  calculations	  for	  both	  trains	  and	  no	  trains.	  Also	  shown	  is	  the	  noise	  guideline	  of	  55	  dBA	  as	  outlined	  in	  the	  Canada	  Mortgage	  and	  Housing	  Corporation	  (1981).	  	  	  	  0	  20	  40	  60	  80	  WR-­‐1	   WR-­‐2	   CB-­‐1	   CB-­‐2	   BB-­‐1	   BB-­‐2	   CB2-­‐1	   CB2-­‐2	  Noise	  Level	  (dBA)	  Site	  Locations	  and	  Trial	  Number	  A)	  Leq	  -­‐16	  	  Trains	  No	  Trains	  Suggested	  Noise	  Level	  0	  20	  40	  60	  80	  WR-­‐1	   WR-­‐2	   CB-­‐1	   CB-­‐2	   BB-­‐1	   BB-­‐2	   CB2-­‐1	   CB2-­‐2	  Noise	  Level	  (dBA)	  Site	  Locations	  and	  Trial	  Number	  B)	  Leq	  -­‐	  24	  	  	  Trains	  No	  trains	  Suggested	  Noise	  Level	   	  	   9	  Noise	  Attenuation	  Results	   The	  noise	  attenuation	  was	  calculated	  based	  on	  equations	  from	  Canada	  Mortgage	  and	  Housing	  (1981)	  and	  are	  dependent	  on	  whether	  the	  ground	  type	  is	  classified	  as	  soft	  or	  hard	  (see	  Appendix	  B).	  The	  maximum	  noise	  levels	  are	  associated	  with	  hard	  ground	  while	  the	  minimum	  noise	  levels	  are	  associated	  with	  soft	  ground	  (Canada	  Mortgage	  and	  Housing,	  1981).	  Based	  on	  the	  calculation	  method,	  the	  noise	  attenuation	  buffer	  is	  fixed	  at	  a	  450m	  distance	  from	  the	  train	  track.	  The	  minimum	  distance	  across	  all	  sites	  at	  which	  the	  noise	  attenuation	  is	  seen	  to	  be	  below	  the	  suggested	  guideline	  is	  found	  at	  90m	  from	  the	  track	  (Burns	  Bog)	  for	  the	  Leq-­‐24	  and	  112m	  from	  the	  track	  (Burns	  Bog)	  for	  the	  Leq-­‐16.	  At	  some	  sites	  the	  noise	  attenuation	  is	  higher	  than	  the	  guideline	  even	  at	  the	  end	  of	  the	  450m	  buffer.	  No	  barriers	  were	  accounted	  for	  in	  these	  calculations,	  thus,	  the	  attenuation	  graphs	  shown	  in	  Figure	  3	  and	  4	  are	  overestimates	  of	  the	  actual	  noise	  levels	  at	  these	  sites.	  	  	  Figure	  3:	  Leq-­‐16	  (dBA)	  noise	  attenuation	  at	  the	  four	  different	  sites	  along	  the	  BNSF	  rail	  line.	  The	  dotted	  lines	  represent	  the	  distance	  at	  which	  the	  suggested	  guideline	  is	  met.	  Map	  obtained	  from	  DMTI	  (2013).	  	   	  	   10	  	  	  Figure	  4:Leq-­‐24	  (dBA)	  noise	  attenuation	  at	  the	  four	  different	  sites	  along	  the	  BNSF	  rail	  line.	  The	  dotted	  lines	  represent	  the	  distance	  at	  which	  the	  suggested	  guideline	  is	  met.	  Map	  obtained	  from	  DMTI	  (2013).	  	  	  Present	  Implications	  	   Currently,	  all	  Leq-­‐16	  	  and	  Leq-­‐24	  exceeded	  the	  recommended	  55	  dBA.	  According	  to	  Canada	  Mortgage	  and	  Housing	  Corporation	  (1981),	  these	  levels	  of	  noise	  correspond	  to	  a	  category	  of	  unacceptable	  (refer	  Table	  2).	  Further	  investigation	  should	  be	  considered	  in	  these	  communities	  as	  a	  result	  of	  the	  anticipated	  increase	  in	  U.S.	  thermal	  coal	  trains.	  As	  Figure	  5	  shows	  the	  current	  noise	  levels	  are	  crucial	  to	  take	  into	  account	  because	  within	  450m	  of	  the	  track	  33%	  of	  land	  use	  area	  is	  found	  to	  be	  residential.	  Within	  these	  residential	  areas	  lie	  certain	  sensitive	  functions	  such	  as	  educational	  facilities	  and	  healthcare	  centers	  (Figure	  6).	  The	  analysis	  showed	  that	  Ocean	  Cliff	  Elementary	  School	  and	  Buena	  Vista	  Rest	  Home	  fall	  within	  450m	  of	  the	  track.	   	  	   11	  	  Figure	  5:	  Land	  use	  type	  falling	  within	  a	  450m	  noise	  attenuation	  buffer	  of	  the	  BNSF	  rail	  line.	  GIS	  data	  obtained	  from	  DMTI	  (2013).	  	   	  	   12	  	  Figure	  6:	  Educational	  facilities	  and	  healthcare	  centers	  in	  the	  lower	  BC	  mainland	  depicted	  with	  the	  BNSF	  rail	  line	  and	  a	  450m	  attenuation	  buffer.	  GIS	  data	  obtained	  from	  DMTI	  (2013).	  	  	   Specifically,	  the	  noise	  generated	  by	  train	  is	  associated	  with	  the	  engine,	  the	  whistle	  and	  the	  friction	  created	  by	  the	  wheel	  on	  the	  rail.	  Train	  whistles	  are	  required	  to	  sound	  as	  a	  warning	  400m	  before	  a	  target	  is	  reached	  (Canada	  Mortgage	  and	  Housing	  Corporation,	  1981).	  The	  propagation	  of	  the	  noise	  from	  those	  sources	  is	  very	  different	  and	  further	  investigation	  should	  be	  done	  in	  the	  lower	  Mainland	  in	  order	  to	  assess	  and	  evaluated	  the	  impact	  of	  each	  component	  separately.	  	   Health	  Canada	  (2010)	  suggests	  that	  studies	  undergo	  analyses	  on	  the	  percentage	  of	  a	  population	  that	  are	  annoyed	  when	  operational	  sounds	  are	  within	  the	  range	  of	  45-­‐75	  dBA.	  This	  project	  uses	  equations	  presented	  by	  Miedema	  and	  Oudshoorn	  (2001)	  to	  calculate	  the	  percentage	  of	  the	  population	  that	  would	  either	  be	  lightly	  annoyed,	  annoyed,	  or	  highly	  annoyed	  near	  railways	  from	  Ldn	  values.	  We	  used	  these	  equations	  to	  identify	  the	  annoyance	  impact	  on	  the	  surrounding	  populations	  in	  the	  affected	  communities.	  Annoyance	  can	  cause	  sleep	  interference,	  and	  overall	  impacts	  on	  health	  (Zannin	  and	  Bunn,	  2014).	  Sleep	  interference	  depends	  specifically	  on	  the	  rapid	  change	  in	  noise	  level,	  not	  on	  the	  exact	  sound	  level	  itself	  (i.e.	  from	  a	  background	  noise	  dBA	  level	  to	  a	  train	  passing	  by).	  Nighttime	  indoor	  maximum	  levels	  range	  from	  25-­‐35	  dBA	  (Canada	  Mortgage	  and	  Housing	  Corporation,	  1981).	  	   This	  project	  methodology	  does	  not	  allow	  for	  the	  comparison	  of	  annoyance	  levels	  to	  a	  baseline	  noise	  environment	  (i.e.	  a	  control	  area	  with	  no	  train	  traffic),	  therefore	  it	  is	  not	  possible	  to	   	  	   13	  adequately	  predict	  health	  effects	  through	  Health	  Canada’s	  method	  (2010).	  It	  is	  possible	  to	  predict	  health	  effects	  if,	  when	  compared	  to	  a	  baseline	  noise	  environment,	  there	  is	  a	  6.5%	  difference	  in	  percent	  of	  highly	  annoyed	  individuals.	  If	  this	  is	  observed,	  Health	  Canada	  (2010)	  suggests	  that	  mitigation	  measures	  to	  limit	  noise	  are	  implemented.	  The	  noise	  from	  railways	  may	  be	  reduced	  by	  the	  presence	  of	  a	  barrier.	  However	  trees	  are	  not	  considered	  as	  a	  significant	  protection	  as	  it	  provides	  no	  significant	  shielding.	  For	  instance,	  to	  obtain	  a	  reduction	  of	  10	  dBA,	  it	  is	  recommended	  to	  have	  a	  barrier	  of	  5	  kg/m2	  and	  10	  kg/m2	  for	  greater	  attenuation	  (Canada	  Mortgage	  and	  Housing	  Corporation,	  1981).	  	  	  Figure	  5:	  Percentage	  of	  the	  population	  that	  would	  be	  Lightly	  Annoyed,	  Annoyed,	  or	  Highly	  Annoyed	  for	  the	  different	  trial	  days	  at	  the	  specific	  distances	  of	  monitoring	  for	  each	  site.	  This	  calculation	  was	  off	  of	  the	  LdN	  values	  (see	  Appendix	  B).	  	   Based	  on	  our	  annoyance	  analysis,	  Figure	  5,	  at	  all	  sites	  over	  50%	  of	  the	  population	  would	  be	  lightly	  annoyed,	  over	  25%	  would	  be	  annoyed	  and	  over	  10%	  of	  the	  population	  would	  be	  highly	  annoyed	  with	  the	  current	  sound	  levels	  being	  emitted	  from	  the	  tracks.	  A	  survey	  was	  conducted	  in	  the	  different	  communities,	  out	  of	  the	  20	  individuals	  who	  responded	  the	  percentage	  of	  response	  that	  indicated	  that	  trains	  affect	  their	  lifestyle	  and	  sleep	  was	  approximately	  30%	  and	  20%	  respectively.	  These	  percentages	  are	  similar	  to	  that	  of	  the	  population	  that	  would	  be	  annoyed	  (see	  Appendix	  C).	  	  Future	  Implications	  	   Figure	  6	  shows	  the	  prediction	  of	  the	  impact	  of	  increasing	  number	  of	  freight	  trains	  on	  noise	  levels	  (see	  Appendix	  B	  for	  methods).	  It	  should	  be	  noted	  that	  our	  methodology	  assumed	  that	  passenger	  train	  traffic	  and	  average	  background	  noise	  levels	  stayed	  constant.	  Our	  results	  show	  that	  as	  the	  number	  of	  freight	  trains	  increases,	  the	  noise	  levels	  increased	  at	  a	  diminishing	  rate.	  With	  an	  increase	  in	  freight	  train	  traffic,	  we	  see	  that	  noise	  levels	  exhibit	  a	  larger	  difference	  from	  the	  suggested	  guidelines.	  This	  is	  of	  particular	  concern	  as	  the	  calculated	  Leq-­‐16	  and	  Leq-­‐24	  hours	  are	  already	  exceeding	  the	  55	  dBA	  guidelines.	  0	  10	  20	  30	  40	  50	  60	  70	  80	  WR-­‐1	   WR-­‐2	   CB-­‐1	   CB-­‐2	   BB-­‐1	   BB-­‐2	   CB2-­‐1	   CB2-­‐2	  Annoyed	  (%)	  Site	  Locations	  and	  Trial	  Number	  %Lightly	  Annoyed	  %Annoyed	  %Highly	  Annoyed	   	  	   14	  	  	  	  	  50	  55	  60	  65	  70	  75	  80	  0	   5	   10	   15	   20	   25	   30	  Noise	  Level	  (dBA)	  Number	  of	  Freight	  Trains	  A)	  White	  Rock	  50	  55	  60	  65	  70	  75	  80	  0	   5	   10	   15	   20	   25	   30	  Noise	  Level	  (dBA)	  Number	  of	  Freight	  Trains	  B)	  Crescent	  Beach	  50	  55	  60	  65	  70	  75	  80	  0	   5	   10	   15	   20	   25	   30	  Noise	  Level	  (dBA)	  Number	  of	  Freight	  Trains	  C)	  Burns	  Bog	   	  	   15	  	  Figure	  6:	  Predictions	  on	  the	  effect	  of	  increasing	  the	  number	  of	  freight	  trains	  at	  four	  different	  sites	  (A-­‐	  White	  Rock,	  B-­‐	  Crescent	  Beach,	  C-­‐	  Burns	  Bog,	  and	  D-­‐	  Crescent	  Beach	  Site	  2)	  on	  the	  overall	  noise	  level	  (either	  Leq-­‐16	  or	  Leq-­‐24).	  See	  Appendix	  B	  for	  the	  methods.	  	  	  Limitations	  	  	   This	  project	  has	  four	  main	  limitations	  associated	  with	  the	  methods	  and	  data.	  Firstly,	  the	  number	  of	  trial	  days	  and	  site	  locations	  is	  limited	  and	  do	  not	  extend	  into	  the	  summer	  months.	  Secondly,	  the	  railway	  companies	  do	  not	  provide	  information	  on	  train	  schedules	  or	  cargo	  contents	  of	  the	  freight	  trains,	  making	  predictions	  of	  future	  train	  traffic	  and	  noise	  level	  increases	  difficult	  to	  assess.	  Thirdly,	  there	  was	  difficulty	  in	  matching	  nighttime	  pictures	  with	  the	  type	  of	  train	  due	  to	  picture	  quality,	  however	  Burns	  Bog	  Trial	  1	  and	  Crescent	  Beach	  2	  Trial	  1	  do	  not	  have	  this	  difficulty	  due	  to	  volunteer	  train	  observers.	  Lastly,	  a	  complete	  assessment	  of	  the	  ground	  type	  and	  barriers	  at	  each	  location	  were	  not	  taken	  into	  account	  in	  our	  calculations	  of	  noise	  level.	  Therefore,	  the	  accurate	  attenuation	  cannot	  be	  provided.	  	  Conclusion	  and	  Future	  Recommendations	  	   Our	  project	  provides	  evidence	  to	  support	  the	  conclusion	  that	  at	  all	  of	  the	  sites,	  the	  equivalent	  continuous	  sound	  level	  (Leq)	  for	  16-­‐hour	  and	  24-­‐hour	  periods	  are	  exceeding	  the	  recommended	  standards	  of	  55	  dBA	  in	  British	  Columbia	  (1981).	  Therefore,	  an	  increase	  in	  U.S	  thermal	  coal	  is	  likely	  to	  further	  contribute	  to	  regulation	  exceedance.	  	  We	  suggest	  that	  future	  research	  include	  a	  longer	  time	  span	  of	  observation	  on	  noise	  pollution	  and	  more	  trials	  at	  each	  site	  in	  the	  BC	  Lower	  Mainland	  in	  order	  to	  ensure	  statistical	  significance.	  Also,	  we	  highly	  recommend	  further	  monitoring	  on	  the	  coal	  train	  traffic	  through	  the	  affected	  communities	  as	  the	  Direct	  Transfer	  Coal	  Station	  will	  be	  built	  at	  Fraser	  Surrey	  Docks.	  As	  well,	  we	  would	  also	  like	  to	  recommend	  that	  noise	  attenuation	  studies	  be	  performed	  and	  that	  sound	  levels	  be	  measured	  from	  different	  distances	  at	  the	  sites.	  This	  is	  recommended	  as	  the	  noise	  attenuation	  calculations	  in	  this	  report	  were	  overestimates	  that	  did	  not	  include	  for	  barriers.	  50	  55	  60	  65	  70	  75	  80	  0	   5	   10	   15	   20	   25	   30	  Noise	  Level	  (dBA)	  Number	  of	  Freight	  Trains	  D)	  Crescent	  Beach	  Site	  2	   	  	   16	  Furthermore,	  it	  would	  be	  beneficial	  to	  investigate	  the	  affects	  of	  acute	  exposure	  to	  the	  maximum	  sound	  levels	  versus	  the	  chronic	  exposures	  from	  long-­‐term	  average	  noise	  levels.	  	  In	  addition,	  it	  would	  be	  highly	  interesting	  to	  study	  and	  measure	  noise	  levels	  experienced	  by	  the	  individuals	  inside	  of	  their	  homes.	  This	  would	  provide	  further	  understanding	  of	  whether	  house	  infrastructure	  is	  an	  adequate	  barrier	  for	  the	  sound	  levels	  emitted	  from	  the	  train	  and	  to	  assess	  health	  impacts	  caused	  by	  the	  sound	  levels	  individuals	  experience	  within	  their	  homes.	  	  Finally,	  we	  recognize	  that	  our	  study	  focuses	  primarily	  on	  human	  health,	  thus	  we	  would	  like	  to	  suggest	  that	  an	  ecological	  impact	  health	  study	  be	  performed.	  The	  purpose	  of	  this	  would	  be	  to	  determine	  how	  increases	  in	  noise	  levels	  would	  affect	  the	  wildlife	  in	  the	  surrounding	  area.	  Of	  particular	  importance,	  attention	  should	  focus	  on	  birds	  specifically	  as	  there	  is	  a	  bird	  sanctuary	  located	  at	  Crescent	  Beach.	  This	  is	  an	  area	  of	  interest	  expressed	  by	  our	  community	  partner.	  	  	  Acknowledgments	  	   We	  would	  like	  to	  thank	  our	  professors	  and	  advisors,	  Tara	  Ivanochko	  and	  Sara	  Harris,	  for	  their	  expertise.	  To	  Murray	  Hodgson	  for	  his	  input	  into	  the	  analysis	  of	  our	  data.	  To	  Rajiv	  Bhatia,	  Ian	  McKendry,	  and	  the	  UBC	  EOAS	  department	  for	  providing	  us	  with	  equipment.	  Last,	  but	  not	  least,	  to	  our	  community	  partner	  Stephanie	  Smith	  for	  her	  passion	  about	  the	  project,	  and	  to	  her	  group	  of	  volunteers	  for	  lending	  us	  the	  use	  of	  their	  backyards.	  	   	   	  	   17	  Bibliography	  	  Alberta	  Energy	  and	  Utilities	  Board(2007).	  Noise	  control	  (	  No.	  2009-­‐01376.;	  38.;	  38).	  Calgary,	  Alta:	  	  Alberta	  Energy	  and	  Utilities	  Board.	  	  Babisch,	  W.	  (2005).	  Noise	  and	  health.	  Environmental	  Health	  Perspectives,	  113(1),	  A14-­‐A15.	  Bhatia,	  R.	  (2014,	  May	  20).	  Noise	  pollution:	  Managing	  the	  challenge	  of	  urban	  sounds.	  Retrieved	  from	  http://earthjournalism.net/resources/noise-­‐pollution-­‐managing-­‐the-­‐challenge-­‐of-­‐urban-­‐sounds	  	  Canada	  Mortgage	  and	  Housing	  Corporation	  (1981).	  Road	  and	  Rail	  Noise:	  Effects	  on	  Housing.	  	  Technical	  Research	  Division	  of	  the	  Canada	  Mortgage	  and	  Housing	  Corporation.	  	  	  Canadian	  Transportation	  Agency	  (2011).	  Railway	  noise	  measurement	  and	  reporting	  methodology	  	  (Catalogue	  No.	  TT4-­‐20/2011E-­‐PDF).	  Ottawa,	  Ontario:	  Minister	  of	  Public	  Works	  and	  Government	  Services	  Canada.	  Retrieved	  from	  https://www.otc-­‐cta.gc.ca/eng/railway_noise_measurement	  	  	  DMTI	  Spatial,	  Inc.	  (2013).	  CanMap	  RouteLogistics,	  v2013.3.	  Canada	  	  Dzhambov,	  A.,	  and	  Dimitrova,	  D.	  (2014).	  Neighborhood	  noise	  pollution	  as	  a	  determinant	  of	  displaced	  aggression:	  A	  pilot	  study.	  Noise	  and	  Health,	  16(69),	  95.	  doi:10.4103/1463-­‐1741.132090	  	  Federation	  of	  Canadian	  Municipalities	  and	  the	  Railway	  Association	  of	  Canada	  Noise	  Control	  	  Guideline	  (2013).	  Guidelines	  for	  new	  development	  in	  proximity	  to	  railway	  operations.	  Ottawa,	  Ontario.	  	  	  Health	  Canada	  (2010).	  Useful	  information	  for	  environmental	  assessments.	  Health	  Canada	  	  Publications,	  Ottawa:	  Canada.	  Retrieved	  from	  	  http://www.hc-­‐sc.gc.ca/ewh-­‐semt/alt_formats/hecs-­‐sesc/pdf/pubs/eval/environ_assess-­‐eval/environ_assess-­‐eval-­‐eng.pdf	  	  Miedema,	  H.,	  &	  Oudshoorn,	  C.	  (2001).	  Annoyance	  from	  transportation	  noise:	  Relationships	  with	  exposure	  metrics	  DNL	  and	  DENL	  and	  their	  confidence	  intervals.	  Environmental	  Health	  Perspectives,	  109(4),	  409-­‐416.	  doi:10.1289/ehp.01109409	  	  Port	  Metro	  Vancouver	  (2014).	  Fraser	  Surrey	  Docks,	  Direct	  Transfer	  Coal	  Facility	  Project.	  Vancouver,	  BC.	  Retrieved	  from	  http://www.portmetrovancouver.com/en/projects/OngoingProjects/Tenant-­‐Led-­‐Projects/FraserSurreyDocks.aspx	  	  	  Sforza,	  E.,	  Chapotot,	  F.,	  Lavoie,	  S.,	  Roche,	  F.,	  Pigeau,	  R.,	  &	  Buguet,	  A.	  (2004).	  Heart	  rate	  activation	  during	  spontaneous	  arousals	  from	  sleep:	  Effect	  of	  sleep	  deprivation.	  Clinical	  Neurophysiology:	  Official	  Journal	  of	  the	  International	  Federation	  of	  Clinical	  Neurophysiology,	  115(11),	  2442-­‐2451.	  doi:10.1016/j.clinph.2004.06.002	   	  	   18	  SS	  Wilson	  Associates	  Consulting.	  (2006).	  City	  of	  Ottawa	  Environmental	  Noise	  Control	  Guidelines.	  Ottawa:	  Planning	  and	  growth	  management	  department	  	  Zannin,	  P.H.T.,	  &	  Bunn,	  F.	  (2014).	  Noise	  annoyance	  through	  railway	  traffic	  -­‐	  a	  case	  study.	  Iranian	  Journal	  of	  Environmental	  Health	  Science	  &	  Engineering,	  12,	  1-­‐12.	  	   	   	  	   19	  Appendix	   Appendix	  A:	  Site	  Selection	  Criteria	  	   	   	  	   20	  Site	  Selection	  Criteria:	  Four	  sites	  were	  selected	  during	  a	  site	  survey	  visit,	  based	  on	  the	  following	  criteria:	  	   • Land	  use	  considerations	  (i.e.	  is	  the	  land	  being	  used	  for	  sensitive	  functions	  such	  as	  residences,	  schools,	  parks	  and	  open	  spaces,	  churches,	  health	  care	  facilities,	  with	  an	  emphasis	  on	  residential	  areas)	  • Secure	  access	  to	  monitoring	  location	  • Proximity	  of	  monitoring	  site	  to	  the	  rail	  line	  (within	  ~1000	  feet	  or	  300	  meters)	  • Presence	  of	  noise	  sources	  that	  produce	  significant	  levels	  of	  background	  or	  intermittent	  noise	  (e.g.	  freeways;	  construction	  sites)	  • Consideration	  of	  community	  partner	  priority	  and	  preferences	  for	  locations	  	   	  	  	  	  	  	  	  	  	  	  	   	  	   21	  Appendix	  B:	  Noise	  Pollution	  Data	  Analysis	  Methods	  	   	   	  	   22	  Noise	  Pollution	  Data	  Analysis	  Methods	  The	  sound	  level	  data	  was	  collected	  in	  1	  second	  intervals	  during	  a	  24	  hour	  time	  period	  for	  8	  different	  days.	  We	  formatted	  all	  the	  raw	  data	  into	  excel	  files	  for	  each	  day,	  plotted	  them	  into	  graphs	  (see	  Figure	  B-­‐1),	  identified	  the	  time	  that	  sound	  peaks	  presented	  in	  each	  day,	  and	  we	  compared	  these	  time	  intervals	  with	  pictures	  taken	  by	  a	  trail	  camera	  to	  identify	  the	  passage	  time	  of	  all	  trains.	  We	  used	  the	  images	  to	  distinguish	  passenger	  trains	  and	  freight	  trains	  for	  each	  day.	  Then,	  we	  did	  statistical	  analysis	  on	  train	  durations	  (see	  Figure	  B-­‐2)	  	   For	  all	  noise	  pollution	  data	  when	  undergoing	  any	  calculations	  on	  the	  decibel	  level,	  a	  conversion	  to	  sound	  pressure	  level	  must	  first	  be	  calculated	  (see	  Equation	  1).	  	  	  Equation	  1:	  𝐿™ = 10 log ™ (????)  	  (Alberta	  Energy	  and	  Utilities	  Board,	  2007)	  	  	   	   	  	   23	  Raw	  Data	  A) White Rock – Trial 1 	  B) White Rock – Trial 2 	  C) Crescent Beach – Trial 1 	   	  	   24	  D) Crescent Beach – Trial 2 	  E) Burns Bog – Trial 1 	  F) Burns Bog – Trial 2 	  	   	  	   25	  G) Crescent Beach Site 2 – Trial 1 	  H) Crescent Beach Site 2 – Trial 2 	  Figure	  B-­‐1:	  Raw	  noise	  pollution	  data	  for	  each	  site	  and	  trial.	  	   	   	  	   26	  Duration	  	  Figure	  B-­‐2:	  Box	  plot	  for	  the	  train	  duration	  (minutes)	  for	  passenger	  and	  freight	  trains.	  The	  mean	  duration	  value	  for	  passenger	  trains	  was	  3.9	  minutes	  and	  7.9	  minutes	  for	  freight	  trains.	  The	  red	  x	  signifies	  an	  outlier.	  	   	  0	  5	  10	  15	  20	  25	  Passenger	   Freight	  Time	  (minutes)	  Train	  Type	   	  	   27	  Average	  Noise	  	  	  Figure	  B-­‐3:	  Box	  plot	  for	  the	  average	  noise	  emitted	  by	  freight	  trains	  calculated	  across	  all	  trials.	  The	  mean	  value	  was	  63.3	  dBA.	  	  Leq	  Calculation	  Due	  to	  the	  large	  quantity	  of	  sound	  data	  and	  the	  complexity	  of	  calculations,	  we	  decided	  to	  use	  MATLAB	  to	  do	  the	  data	  analysis.	  First,	  we	  calculated	  Leq-­‐24	  and	  Leq-­‐16	  for	  all	  days	  (using	  Equation	  2,	  and	  the	  values	  f	  i=	  1/86400	  s	  and	  f	  i=	  1/57600s,	  respectively).	  Leq-­‐24	  was	  calculated	  for	  the	  entire	  day,	  while	  Leq-­‐16	  was	  calculated	  from	  07:00	  to	  23:00.	  For	  our	  data	  sets	  the	  hours	  in	  which	  data	  was	  collected	  is	  not	  constant,	  therefore	  for	  example	  for	  Trial	  1	  at	  the	  White	  Rock	  site	  in	  order	  to	  calculate	  the	  Leq-­‐16	  we	  used	  the	  hours	  from	  12:00	  to	  23:00	  from	  November	  14th	  and	  07:00	  to	  11:59	  on	  November	  15th.	  	  Next,	  we	  calculated	  the	  Leq-­‐	  24	  no	  trains	  and	  	  Leq	  -­‐16	  no	  trains	  for	  all	  days.	  This	  was	  done	  by	  	  averaging	  the	  data	  30	  minutes	  to	  2	  minutes	  before	  and	  after	  the	  passing	  of	  each	  train	  (identified	  via	  pictures	  or	  volunteers).	  These	  averages	  were	  then	  used	  to	  replace	  the	  original	  sound	  level	  (Li)	  recorded	  during	  the	  train	  passing.	  The	  Leq	  values	  were	  then	  determined	  using	  the	  same	  method	  as	  when	  calculating	  the	  Leq-­‐24	  and	  Leq-­‐16.	  	  Equation	  2:	  𝐿™ = 10log  ( 𝑓?×???? 10??/ ™ )	  	  (Alberta	  Energy	  and	  Utilities	  Board,	  2007)	  Li	  =	  the	  sound	  levels	  observed	  at	  any	  spaced	  times	  during	  the	  interval	  T	  Fi	  =	  fraction	  of	  total	  time	  in	  the	  constant	  level	  Li	  is	  present	  	  	  	  40	  45	  50	  55	  60	  65	  70	  75	  80	  Freight	  Average	  Noise	  (dBA)	  Train	  Type	   	  	   28	  Ldn	  Calculations	  Ldn	  was	  calculated	  based	  off	  the	  hourly	  Leq	  values	  (see	  Equation	  3).	  In	  order	  to	  calculate	  hourly	  Leq	  values	  Equation	  2	  was	  used,	  however	  instead	  of	  using	  a	  24-­‐hour	  period,	  1	  hour	  (fi	  =	  1/3600)	  was	  used.	  This	  was	  then	  repeated	  for	  every	  hour	  in	  the	  24-­‐hour	  period,	  and	  for	  every	  different	  trial	  day.	  An	  Lday	  value	  was	  then	  calculated	  to	  determine	  the	  day	  equivalent	  level,	  this	  was	  done	  by	  averaging	  the	  sound	  pressure	  levels	  from	  the	  hours	  from	  07:00	  to	  22:00,	  then	  converting	  back	  to	  dBA.	  Then	  the	  Lnight	  value	  was	  then	  calculated	  for	  the	  hours	  between	  22:00	  and	  07:00,	  using	  the	  same	  method.	  	  	  Equation	  3:	  𝐿™ = 10× log ™ ( ™™ ×10? ™?™ + ?™ ×10 ? ™? ??? ™™ )	  (Miedema	  and	  Oudshoorn,	  2001)	  	  %A,	  %LA,	  %HA	  Calculations	  Using	  the	  calculated	  Ldn	  values	  for	  each	  site	  the	  percentage	  a	  population	  that	  would	  be	  annoyed,	  lightly	  annoyed,	  or	  highly	  annoyed	  was	  calculated.	  These	  values	  were	  based	  off	  of	  equations	  presented	  by	  Miedema	  and	  Oudshoorn	  (2001)	  specifically	  for	  railway	  noise	  -­‐	  see	  Equations	  4,	  5	  and	  6.	  	  	  Equation	  4:	  %𝐿𝐴 = −3.343×10?? 𝐿™ − 32 ? + 4.918×10?? 𝐿™ − 32 ? + 0.175(𝐿™ − 32)  	  	  Equation	  5:  %𝐴 = 4.552×10?? 𝐿™ − 37 ? + 9.400×10?? 𝐿™ − 37 ? + 0.212(𝐿™ − 37)  	  	  Equation	  6:	  %𝐻𝐴 = 7.158×10?? 𝐿™ − 42 ? − 7.774×10?? 𝐿™ − 42 ? + 0.163(𝐿™ − 42)  	  	   (Miedema	  and	  Oudshoorn,	  2001)	  	  Noise	  Attenuation	  Noise	  attenuation	  for	  up	  to	  450m	  from	  the	  railway	  tracks	  was	  calculated	  based	  off	  of	  Canada	  Mortgage	  and	  Housing	  (1981),	  using	  Table	  B-­‐1.	  Effective	  heights	  were	  calculated	  by	  determining	  the	  source	  and	  receiver	  heights.	  The	  source	  height	  is	  the	  height	  of	  the	  train,	  which	  is	  assumed	  to	  be	  a	  constant	  4	  m	  (Canada	  Housing	  and	  Mortgage,	  1981).	  The	  receiver	  height	  was	  calculated	  by	  adding	  the	  elevation	  change	  and	  the	  height	  at	  which	  the	  microphone	  was	  set	  up.	  The	  elevation	  was	  calculated	  using	  Google	  Earth	  from	  the	  train	  track	  to	  where	  the	  microphone	  was	  set	  up.	  	  	  	   	   	  	   29	  Table	  B-­‐1:	  Noise	  attenuation	  (in	  dBA)	  for	  a	  horizontal	  distance	  from	  source	  to	  receiver	  at	  an	  effective	  height.	  Table	  obtained	  from	  Canada	  Mortgage	  and	  Housing	  (1981,	  p.45,	  Table	  4.4).	  	  	  Noise	  Projection	  Calculations	  For	  the	  projection	  calculations	  we	  used	  the	  average	  Leq-­‐total	  value	  (see	  equation	  2)	  that	  incorporates	  the	  background	  noise,	  the	  freight	  train	  noise	  and	  the	  passenger	  train	  noise,	  then	  subtracted	  the	  average	  Leq-­‐no	  freight	  which	  only	  incorporates	  the	  background	  noise	  and	  passenger	  train	  noise.	  To	  subtract	  these	  two	  Leq	  values	  from	  each	  other	  they	  must	  be	  first	  converted	  to	  sound	  pressure	  levels	  (i.e.	  10(Leq/10)).	  The	  average	  Leq	  values	  were	  calculated	  for	  each	  site	  by	  averaging	  the	  two	  different	  trial	  days.	  Next	  this	  difference	  was	  divided	  by	  the	  average	  amount	  of	  trains	  that	  passed	  by	  at	  each	  respective	  site	  over	  the	  two	  different	  trial	  days.	  This	  provides	  a	  value	  that	  is	  the	  overall	  impact	  on	  Leq	  due	  to	  the	  passing	  of	  one	  averaged	  freight	  train,	  respective	  for	  each	  site.	  Lastly,	  this	  value	  was	  multiplied	  by	  the	  number	  of	  predicted	  trains	  (0-­‐30)	  and	  added	  to	  the	  Leq-­‐no	  freight	  values. 	  	  	   	   	  	   30	  Appendix	  C:	  Survey	  Questionnaire	  and	  Results	  	   	   	  	   31	  THE	  UNIVERSITY	  OF	  BRITISH	  COLUMBIA	  	   Consent Form 	   The	  Effect	  of	  Coal	  Trains	  on	  Noise	  and	  Air	  Pollution	  in	  the	  British	  Columbia	  Lower	  Mainland:	  A	  Partnership	  with	  Communities	  and	  Coal	  	  Who	  is	  conducting	  the	  study?	  	  Principal	  Investigator:	  Sara	  Harris,	  Earth,	  Ocean	  and	  Atmospheric	  Sciences,	  Senior	  Instructor	  Phone:	  604-­‐822-­‐9651	  Co-­‐Investigators:	  Undergraduate	  students	  in	  the	  Faculty	  of	  Science	  at	  The	  University	  of	  British	  Columbia	  (UBC):	  Mina	  Phaisaltantiwongs,	  Kelsey	  McDougall,	  Xiuxiu	  Jiang,	  Maruska	  Giacchetto	  	  Phone:	  1-­‐778-­‐215-­‐5552	  The	  study	  is	  being	  conducted	  in	  conjunction	  with	  the	  Communities	  and	  Coal	  Society,	  a	  group	  of	  lower	  Mainland	  residents	  concerned	  about	  coal	  train	  traffic.	  	  	  Why	  are	  we	  doing	  this	  study?	  	  This	  study	  will	  help	  us	  evaluate	  the	  affect	  of	  noise	  pollution	  from	  Coal	  trains	  and	  how	  it	  affects	  citizens	  in	  the	  surrounding	  communities.	  This	  questionnaire	  will	  take	  about	  15	  minutes	  to	  complete.	  	  Metro	  Vancouver	  has	  approved	  the	  Fraser	  Surrey	  Docks	  project,	  involving	  the	  construction	  of	  a	  direct	  transfer	  coal	  facility	  in	  British	  Columbia,	  which	  will	  receive	  about	  8	  million	  metric	  tons	  of	  thermal	  coal.	  The	  coal	  is	  currently	  transported	  from	  the	  United	  States	  via	  trains	  passing	  through	  British	  Columbian	  communities	  such	  as	  White	  Rock,	  South	  and	  North	  Surrey	  and	  Delta.	  	  	  How	  is	  the	  study	  done?	  	  We	  will	  give	  you	  a	  questionnaire	  to	  answer.	  If	  the	  questionnaire	  is	  completed,	  it	  will	  be	  assumed	  that	  1)	  you	  have	  given	  consent	  to	  participate	  AND	  2)	  that	  you	  are	  19	  years	  of	  age	  or	  older.	  Some	  of	  the	  questions	  we	  ask	  may	  seem	  personal.	  You	  do	  not	  have	  to	  answer	  any	  question	  if	  you	  do	  not	  want	  to.	  There	  is	  no	  compensation	  for	  the	  completion	  of	  the	  survey.	  	  	  What	  will	  happen	  to	  the	  study	  results?	  	  The	  results	  of	  this	  study	  will	  be	  shared	  with	  the	  Communities	  and	  Coal	  Society.	  There	  are	  no	  immediate	  benefits	  to	  participating,	  but,	  in	  the	  future,	  others	  may	  benefit	  from	  what	  we	  learn.	  Participants’	  privacy	  is	  ensured	  by	  keeping	  the	  questionnaire	  anonymous.	  All	  completed	  questionnaires	  will	  be	  kept	  in	  a	  secure	  location.	  	  	  Questions?	  	  If	  you	  have	  any	  questions	  or	  concerns	  about	  what	  we	  are	  asking	  of	  you,	  please	  contact	  the	  principal	  investigator	  or	  the	  co-­‐investigators.	  The	  names	  and	  telephone	  numbers	  are	  listed	  above.	  If	  you	  have	  any	  concerns	  or	  complaints	  about	  your	  rights	  as	  a	  research	  participant	  and/or	  your	  experiences	  while	  participating	  in	  this	  study,	  contact	  the	  Research	  Participant	  Complaint	  Line	  in	  the	  UBC	  Office	  of	  Research	  Services	  at	  604-­‐822-­‐8598	  or	  if	  long	  distance	  e-­‐mail	  RSIL@ors.ubc.ca	  or	  call	  toll	  free	  1-­‐877-­‐822-­‐8598.	  	  	   	   	  	   32	  THE	  UNIVERSITY	  OF	  BRITISH	  COLUMBIA	   Questionnaire 	   The	  Effect	  of	  Coal	  Trains	  on	  Noise	  and	  Air	  Pollution	  in	  the	  British	  Columbia	  Lower	  Mainland:	  A	  Partnership	  with	  Communities	  and	  Coal	  	  If	  the	  questionnaire	  is	  completed,	  it	  will	  be	  assumed	  that	  consent	  has	  been	  given	  	  Questions:	  	  1) Do	  the	  trains	  affect	  your	  health	  in	  any	  way?	  	  	   2) Do	  the	  trains	  affect	  your	  or	  sleep	  schedule?	  	  	  	   3) Have	  you	  noticed	  any	  change	  in	  the	  frequency	  of	  the	  trains?	  	  	  4) Are	  you	  aware	  of	  the	  content	  transported	  by	  the	  freight	  train?	  If	  so,	  what	  do	  they	  contained?	  	  	   5) Do	  trains	  interfere	  with	  your	  lifestyle	  in	  any	  significant	  way?	  	  	   6) Have	  you	  noticed	  any	  changes	  on	  animal	  behaviours?	  	  	  Les	  effets	  de	  train	  de	  charbon	  sur	  la	  pollution	  sonore	  et	  qualité	  de	  l’air	  	  dans	  le	  Lower	  Mainland	  de	  la	  Colombie-­‐Britannique:	  En	  	  partenariat	  avec	  Communities	  and	  Coal	  	  Si	  le	  questionnaire	  est	  complété,	  consentement	  sera	  assumé	  	  	  Questions:	  1) Est-­‐ce	  que	  les	  trains	  affectent	  votre	  sante	  physique.	  SI	  oui,	  comment?	  	  	  2) Est-­‐ce	  que	  les	  trains	  dérangent	  votre	  sommeil?	  Si	  oui,	  expliquer	  	  	   	  3) Avez-­‐vous	  remarqué	  une	  différence	  dans	  la	  fréquence	  des	  trains?	  	  	  	   4) Savez-­‐vous	  ce	  que	  contiennent	  les	  trains	  de	  marchandises?	  SI	  oui,	  que	  contiennent-­‐ils?	  	  	  5) Est-­‐ce	  que	  les	  trains	  affectent	  votre	  vie	  d’une	  certaine	  façon?	  Si	  oui,	  expliquer	  	  	   	  6) Avez-­‐vous	  noté	  une	  différence	  dans	  l’agissement	  de	  la	  faune?	  	  	   	   	  	   33	  Survey	  Methods	  A	  survey	  was	  conducted	  to	  identify	  if	  current	  train	  traffic	  is	  affecting	  the	  health	  or	  lifestyle	  of	  citizens	  living	  in	  the	  surrounding	  communities.	  Twenty	  surveys	  were	  conducted	  in	  total:	  seven	  surveys	  were	  distributed	  at	  White	  Rock	  and	  Crescent	  Beach	  each	  and	  six	  surveys	  were	  distributed	  at	  Burns	  Bog.	  The	  surveys	  were	  approved	  by	  the	  UBC	  Behavioural	  Research	  Ethics	  Board	  (BREB).	  	  Survey	  Results	  and	  Implications	  The	  survey	  results	  (Figure	  C-­‐1)	  showed	  that	  while	  the	  majority	  of	  responses	  indicated	  that	  the	  trains	  were	  not	  affecting	  health,	  sleep	  schedule,	  or	  lifestyle,	  some	  individuals	  in	  these	  communities	  were	  concerned	  about	  these	  issues.	  The	  citizens	  who	  showed	  concern	  for	  the	  trains	  in	  the	  survey,	  indicated	  that	  they	  noticed	  an	  increase	  in	  the	  frequency	  of	  trains.	  When	  the	  citizens	  were	  asked	  if	  they	  were	  aware	  of	  the	  contents	  of	  the	  trains,	  it	  was	  interesting	  to	  note	  that	  one	  citizen	  had	  actually	  counted	  168	  railcars	  filled	  with	  coal	  and	  that	  another	  citizen	  felt	  that	  the	  communities	  should	  be	  informed	  about	  the	  contents	  of	  the	  rail	  cars.	  When	  asked	  if	  the	  trains	  interfere	  with	  their	  lifestyle	  in	  any	  way,	  it	  was	  shown	  that	  of	  the	  individuals	  who	  responded	  “yes”	  concerns	  included	  noise,	  safety,	  and	  access	  to	  recreational	  spaces	  (such	  as	  community	  gardens	  or	  beaches).	  	  	   	   	  	   34	  A)	  Individuals	  indicating	  that	  the	  trains	  currently	  affect	  their	  health	  	  	  	  B)	  Individuals	  indicating	  that	  the	  trains	  currently	  affect	  their	  sleep	  schedule	  	  C)	  Individuals	  indicating	  that	  they	  have	  noticed	  a	  change	  in	  the	  frequency	  of	  the	  trains	  	  	   	   	  D)	  Individuals	  indicating	  that	  they	  are	  aware	  of	  the	  content	  of	  the	  trains	  	   E)	  Individuals	  indicating	  that	  the	  trains	  affect	  their	  lifestyle	  	   F)	  Individuals	  indicating	  that	  they	  have	  noticed	  a	  change	  in	  animal	  behaviours	  due	  to	  current	  train	  traffic	  	  	   	   	  Figure	  C-­‐1:	  Summary	  table	  of	  survey	  responses.	  	  	  No	  90%	  Yes	  10%	  No	  80%	  Yes	  20%	  No	  65%	  Yes	  35%	  No	  45%	  Yes	  55%	  No	  70%	  Yes	  30%	   No	  45%	  Yes	  55%	  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.52966.1-0074567/manifest

Comment

Related Items