Open Collections

UBC Undergraduate Research

Human-­robot interactive parts-­cart for automotive manufacturing : a final recommendation report Kutarna, Matthew; Reitmeier, Craig; Robson, Cody Mar 31, 2012

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
52966-Kutarna_K_et_al_ENPH_459_2012.pdf [ 7.47MB ]
Metadata
JSON: 52966-1.0074494.json
JSON-LD: 52966-1.0074494-ld.json
RDF/XML (Pretty): 52966-1.0074494-rdf.xml
RDF/JSON: 52966-1.0074494-rdf.json
Turtle: 52966-1.0074494-turtle.txt
N-Triples: 52966-1.0074494-rdf-ntriples.txt
Original Record: 52966-1.0074494-source.json
Full Text
52966-1.0074494-fulltext.txt
Citation
52966-1.0074494.ris

Full Text

	 ?	 ? Human-?Robot	 ?Interactive	 ?Parts-?Cart	 ?for	 ?Automotive	 ?Manufacturing	 ?	 ?A	 ?final	 ?recommendation	 ?report	 ?	 ?	 ?Report	 ?By:	 ?Matthew	 ?Kutarna	 ?Craig	 ?Reitmeier	 ?Cody	 ?Robson	 ?	 ?Project	 ?Sponsor	 ?Dr.	 ?Chris	 ?Parker	 ?	 ?	 ?	 ?Engineering	 ?Physics	 ?459	 ?University	 ?of	 ?British	 ?Columbia	 ?March	 ?85th,	 ?2012	 ?	 ?Group	 ?Number	 ?1210	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?Preface	 ?	 ? The	 ?automotive	 ?industry	 ?has	 ?many	 ?line	 ?workers	 ?that	 ?assemble	 ?the	 ?parts	 ?of	 ?a	 ?particular	 ?vehicle	 ?component	 ?at	 ?a	 ?station.	 ?The	 ?purpose	 ?of	 ?this	 ?report	 ?is	 ?to	 ?outline	 ?the	 ?design	 ?and	 ?recommended	 ?construction	 ?of	 ?a	 ?parts-??cart	 ?that	 ?is	 ?capable	 ?of	 ?mounting	 ?a	 ?robotic	 ?arm	 ?to	 ?assist	 ?with	 ?selection	 ?of	 ?the	 ?parts.	 ?The	 ?current	 ?state	 ?of	 ?the	 ?automotive	 ?line	 ?is	 ?such	 ?that	 ?each	 ?worker	 ?remains	 ?stationed	 ?for	 ?a	 ?full	 ?shift	 ?at	 ?a	 ?specific	 ?stage	 ?of	 ?production	 ?and	 ?has	 ?their	 ?own	 ?supply	 ?of	 ?the	 ?parts	 ?that	 ?they	 ?use	 ?for	 ?multiple	 ?cars.	 ?The	 ?focus	 ?of	 ?this	 ?project	 ?has	 ?been	 ?to	 ?develop	 ?a	 ?parts-??cart	 ?for	 ?use	 ?with	 ?the	 ?assembly	 ?of	 ?a	 ?car	 ?door	 ?as	 ?a	 ?proof	 ?of	 ?concept.	 ?	 ?	 ? Currently,	 ?a	 ?car	 ?door	 ?moves	 ?along	 ?the	 ?assembly	 ?line	 ?and	 ?multiple	 ?workers	 ?must	 ?configure	 ?their	 ?designated	 ?components	 ?quickly	 ?and	 ?accurately.	 ?This	 ?method	 ?puts	 ?stress	 ?on	 ?the	 ?workers	 ?who	 ?must	 ?find	 ?and	 ?assemble	 ?parts	 ?in	 ?as	 ?short	 ?a	 ?time	 ?as	 ?5	 ?seconds	 ?per	 ?part;	 ?this	 ?can	 ?lead	 ?to	 ?errors	 ?that	 ?slow	 ?the	 ?entire	 ?process	 ?down.	 ?Any	 ?errors	 ?that	 ?result	 ?in	 ?the	 ?particular	 ?component	 ?of	 ?the	 ?car	 ?get	 ?pulled	 ?off	 ?the	 ?production	 ?line.	 ?	 ?	 ?	 ? Another	 ?major	 ?issue	 ?with	 ?this	 ?style	 ?of	 ?production	 ?is	 ?that	 ?it	 ?limits	 ?production	 ?capacity	 ?at	 ?any	 ?manufacturing	 ?plant	 ?to	 ?just	 ?one	 ?car	 ?model.	 ?	 ?Workers	 ?only	 ?have	 ?the	 ?parts	 ?necessary	 ?for	 ?a	 ?single	 ?model	 ?and	 ?changing	 ?the	 ?production	 ?model	 ?requires	 ?retraining	 ?and	 ?restocking	 ?of	 ?new	 ?parts.	 ?	 ?	 ? 	 ?By	 ?having	 ?a	 ?parts-??cart	 ?capable	 ?of	 ?following	 ?the	 ?car	 ?door	 ?as	 ?it	 ?proceeds	 ?around	 ?the	 ?production	 ?line	 ?allows	 ?production	 ?workers	 ?to	 ?have	 ?access	 ?to	 ?only	 ?the	 ?parts	 ?necessary	 ?to	 ?that	 ?particular	 ?model.	 ?By	 ?reducing	 ?the	 ?responsibility	 ?of	 ?the	 ?worker	 ?to	 ?only	 ?receiving	 ?the	 ?necessary	 ?parts	 ?rather	 ?than	 ?handling	 ?and	 ?sorting,	 ?there	 ?is	 ?a	 ?reduced	 ?possibility	 ?for	 ?error.	 ?	 ?More	 ?importantly,	 ?since	 ?all	 ?of	 ?the	 ?parts	 ?sorting	 ?and	 ?managing	 ?occurs	 ?with	 ?the	 ?parts-??cart,	 ?changing	 ?the	 ?bins	 ?for	 ?one	 ?model	 ?of	 ?car	 ?to	 ?another	 ?becomes	 ?easier.	 ?	 ?	 ?	 ?	 ?	 ?	 ?Executive	 ?Summary	 ?	 ? The	 ?robotic/human	 ?interactive	 ?parts-??cart	 ?was	 ?designed	 ?and	 ?built	 ?as	 ?a	 ?proof	 ?of	 ?concept	 ?test	 ?bed	 ?for	 ?the	 ?CARIS	 ?Lab	 ?with	 ?application	 ?to	 ?the	 ?automotive	 ?industry.	 ?	 ?The	 ?purpose	 ?is	 ?to	 ?design	 ?a	 ?parts-??cart	 ?capable	 ?of	 ?testing	 ?and	 ?demonstrating	 ?the	 ?effective	 ?and	 ?efficient	 ?handling	 ?of	 ?parts	 ?by	 ?a	 ?robotic	 ?arm	 ?or	 ?human.	 ?	 ?While	 ?few	 ?solutions	 ?exist,	 ?they	 ?are	 ?expensive	 ?and	 ?require	 ?an	 ?overhaul	 ?of	 ?production	 ?processes	 ?in	 ?the	 ?automotive	 ?industry.	 ?	 ?	 ?	 ? The	 ?scope	 ?of	 ?this	 ?project	 ?is	 ?limited	 ?to	 ?the	 ?design	 ?and	 ?fabrication	 ?of	 ?the	 ?parts-??cart,	 ?while	 ?keeping	 ?in	 ?mind	 ?design	 ?requirements	 ?set	 ?forth	 ?by	 ?the	 ?robotic	 ?arm	 ?(WAM)	 ?and	 ?general	 ?safety	 ?for	 ?humans.	 ?	 ?The	 ?project	 ?design	 ?requirements	 ?are	 ?such	 ?that	 ?the	 ?fully	 ?configurable	 ?parts-??cart	 ?must	 ?be	 ?capable	 ?of	 ?mounting	 ?a	 ?robotic	 ?arm	 ?for	 ?accessing	 ?parts	 ?in	 ?bins	 ?or	 ?pallets.	 ?	 ?The	 ?bins	 ?must	 ?be	 ?strong	 ?enough	 ?to	 ?hold	 ?20	 ?LBS	 ?worth	 ?of	 ?various	 ?parts,	 ?and	 ?pallets	 ?must	 ?be	 ?simple	 ?and	 ?easy	 ?to	 ?maneuver	 ?by	 ?the	 ?robot.	 ?	 ?	 ?	 ? The	 ?structure	 ?of	 ?the	 ?cart	 ?was	 ?chosen	 ?to	 ?be	 ?made	 ?of	 ?CreForm	 ?piping	 ?and	 ?joints,	 ?as	 ?they	 ?offer	 ?high	 ?structural	 ?integrity	 ?and	 ?simple	 ?configurability.	 ?	 ?	 ?	 ?After	 ?the	 ?cart	 ?was	 ?built,	 ?several	 ?testing	 ?methods	 ?were	 ?used	 ?to	 ?determine	 ?the	 ?success	 ?of	 ?the	 ?objectives:	 ?Human/Robotic	 ?Accessibility,	 ?Configurability,	 ?Deflection	 ?Tests,	 ?Vibration	 ?Tests,	 ?and	 ?Maneuverability	 ?Tests.	 ?	 ?	 ?	 ? While	 ?accessibility	 ?and	 ?maneuverability	 ?tests	 ?are	 ?qualitative	 ?in	 ?nature,	 ?they	 ?successfully	 ?provide	 ?proof	 ?that	 ?the	 ?design	 ?choices	 ?are	 ?the	 ?correct	 ?ones.	 ?	 ?The	 ?Maneuverability	 ?Test	 ?showed	 ?that	 ?the	 ?cart	 ?was	 ?able	 ?to	 ?handle	 ?extreme	 ?cases	 ?where	 ?the	 ?cart	 ?was	 ?required	 ?to	 ?go	 ?over	 ?large	 ?bumps	 ?or	 ?turn	 ?on	 ?extreme	 ?angles.	 ?	 ?The	 ?cart	 ?was	 ?also	 ?noted	 ?to	 ?be	 ?easily	 ?customizable	 ?with	 ?regards	 ?to	 ?bin	 ?and	 ?pallet	 ?sizes,	 ?and	 ?even	 ?overall	 ?dimension	 ?sizes.	 ?	 ?Since	 ?the	 ?cart	 ?was	 ?required	 ?to	 ?fit	 ?through	 ?doorways,	 ?CreForm	 ?piping	 ?made	 ?it	 ?easy	 ?to	 ?alter	 ?the	 ?overall	 ?width.	 ?	 ?	 ?	 ? The	 ?Deflection	 ?and	 ?Vibration	 ?Tests	 ?offered	 ?quantitative	 ?results	 ?for	 ?the	 ?parts-??cart.	 ?	 ?Weight	 ?was	 ?applied	 ?to	 ?key	 ?stress	 ?points,	 ?and	 ?the	 ?maximum	 ?deflection	 ?was	 ?measured	 ?in	 ?the	 ?vertical	 ?and	 ?axial	 ?directions	 ?separately.	 ?	 ?It	 ?was	 ?determined	 ?that	 ?even	 ?with	 ?as	 ?much	 ?weight	 ?as	 ?95	 ?lbs;	 ?the	 ?vertical	 ?deflection	 ?was	 ?only	 ?4	 ?mm.	 ?	 ?The	 ?axial	 ?deflection,	 ?however,	 ?was	 ?noted	 ?to	 ?be	 ?much	 ?larger	 ?(5	 ?cm)	 ?due	 ?to	 ?the	 ?lack	 ?of	 ?structural	 ?support	 ?between	 ?the	 ?bin	 ?shelving	 ?and	 ?robotic	 ?arm	 ?mount.	 ?	 ?Vibration	 ?tests	 ?	 ?were	 ?also	 ?applied	 ?in	 ?SolidWorks	 ?and	 ?determined	 ?to	 ?be	 ?minimal	 ?for	 ?the	 ?small	 ?forces	 ?expected	 ?for	 ?the	 ?cart.	 ?	 ?In	 ?a	 ?0.5	 ?kN	 ?test	 ?with	 ?vibrations	 ?at	 ?resonance,	 ?the	 ?largest	 ?transverse	 ?axis	 ?deflection	 ?was	 ?20	 ?cm.	 ?	 ?	 ?	 ? In	 ?conclusion,	 ?the	 ?parts-??cart,	 ?designed	 ?and	 ?built,	 ?follows	 ?all	 ?project	 ?objectives	 ?accordingly.	 ?	 ?Overall,	 ?the	 ?design	 ?is	 ?effective	 ?and	 ?meets	 ?the	 ?design	 ?requirements	 ?for	 ?both	 ?human	 ?and	 ?robotic	 ?control.	 ?	 ?It	 ?is	 ?capable	 ?of	 ?being	 ?maneuvered	 ?by	 ?humans	 ?and	 ?robotics	 ?and	 ?can	 ?traverse	 ?ground	 ?obstacles	 ?that	 ?are	 ?2?	 ?(no	 ?more	 ?than	 ?3?)	 ?and	 ?under.	 ?	 ?It	 ?is	 ?recommended	 ?that	 ?an	 ?I-??beam	 ?support	 ?structure	 ?and	 ?aluminum	 ?(or	 ?metal)	 ?plate	 ?be	 ?added	 ?to	 ?the	 ?base	 ?of	 ?the	 ?cart	 ?to	 ?handle	 ?the	 ?axial	 ?deflection	 ?under	 ?load.	 ?	 ?It	 ?is	 ?also	 ?recommended	 ?that	 ?the	 ?length	 ?of	 ?the	 ?cart	 ?be	 ?shortened	 ?for	 ?the	 ?purposes	 ?of	 ?its	 ?applications	 ?in	 ?the	 ?CARIS	 ?Lab.	 ?	 ?	 ?	 ?	 ?Table	 ?of	 ?Contents	 ?Preface .......................................................................................................................................................i	 ?Executive	 ?Summary............................................................................................................................. ii	 ?List	 ?of	 ?Figures ....................................................................................................................................... iii	 ?List	 ?of	 ?Tables......................................................................................................................................... iv	 ?1.0	 ?Introduction.................................................................................................................................... 1	 ?1.1	 ?Background	 ?and	 ?Significance ...............................................................................................................1	 ?1.2	 ?Project	 ?Objectives.....................................................................................................................................1	 ?1.3	 ?Scope	 ?and	 ?Limitations.............................................................................................................................2	 ?1.4	 ?Report	 ?Organization ................................................................................................................................2	 ?2.0	 ?Discussion........................................................................................................................................ 3	 ?2.1	 ?Design	 ?Methods	 ?and	 ?Resources ...........................................................................................................3	 ?2.2	 ?Testing	 ?Considerations...........................................................................................................................3	 ?Human	 ?/	 ?Robot	 ?Accessibility.......................................................................................................................................4	 ?Reconfigurability ..............................................................................................................................................................4	 ?Deflection	 ?Testing ............................................................................................................................................................5	 ?Vibration	 ?Testing..............................................................................................................................................................5	 ?Maneuverability	 ?testing.................................................................................................................................................6	 ?2.3	 ?Results ..........................................................................................................................................................7	 ?Deflection	 ?Test...................................................................................................................................................................7	 ?Maneuverability	 ?Tests....................................................................................................................................................8	 ?Stress	 ?Analysis	 ?Simulations .........................................................................................................................................8	 ?Vibration	 ?Simulations..................................................................................................................................................10	 ?2.4	 ?Discussion	 ?of	 ?Results ............................................................................................................................ 13	 ?Structural	 ?Integrity.......................................................................................................................................................13	 ?Stability	 ?and	 ?Control ....................................................................................................................................................14	 ?Vibration	 ?Testing...........................................................................................................................................................15	 ?Parts	 ?Accessibility .........................................................................................................................................................15	 ?2.5	 ?Alternative	 ?Considerations ................................................................................................................ 16	 ?Cable	 ?Driven	 ?Linear	 ?Actuation.................................................................................................................................16	 ?I-??Beam	 ?Frame	 ?Strengthening ...................................................................................................................................16	 ?Bin	 ?Identification	 ?System...........................................................................................................................................17	 ?Foam	 ?Parts	 ?Packaging .................................................................................................................................................17	 ?Unfixed	 ?Front	 ?Axle ........................................................................................................................................................17	 ?Sloped	 ?Bearing	 ?Rail	 ?Pallet	 ?System..........................................................................................................................18	 ?2.6	 ?Physical	 ?Model........................................................................................................................................ 19	 ?3.0	 ?Conclusions ...................................................................................................................................22	 ?4.0	 ?Project	 ?Deliverables...................................................................................................................23	 ?4.1	 ?Final	 ?Deliverables.................................................................................................................................. 23	 ?	 ?ii	 ?4.2	 ?Financial	 ?Summary ............................................................................................................................... 24	 ?4.3	 ?Ongoing	 ?Commitment .......................................................................................................................... 24	 ?5.0	 ?Recommendations......................................................................................................................25	 ?6.0	 ?Appendix	 ?A	 ??	 ?Drawing	 ?and	 ?Models .......................................................................................26	 ?7.0	 ?Appendix	 ?B	 ??	 ?Spec	 ?sheets .........................................................................................................30	 ?8.0	 ?References.....................................................................................................................................36	 ?	 ?	 ?	 ?iii	 ?List	 ?of	 ?Figures	 ?Figure	 ?1:	 ?Force	 ?vs	 ?Vertical	 ?Deflection	 ?Size......................................................................................................................7	 ?Figure	 ?2:	 ?Force	 ?vs	 ?Forward	 ?Deflection	 ?Size ....................................................................................................................8	 ?Figure	 ?3:	 ?Stress	 ?Simulation	 ?-??	 ?Deflection ...........................................................................................................................8	 ?Figure	 ?4:	 ?Stress	 ?Simulation	 ?-??	 ?Strain....................................................................................................................................9	 ?Figure	 ?5:	 ?Stress	 ?Simulation	 ?-??	 ?Von	 ?Mises	 ?Stress .............................................................................................................9	 ?Figure	 ?6:	 ?Resonant	 ?Vibration	 ?Simulation	 ?-??	 ?Frequency	 ?1	 ?(7.8082	 ?Hz)..............................................................10	 ?Figure	 ?7:	 ?Resonant	 ?Vibration	 ?Simulation	 ?-??	 ?Frequency	 ?2	 ?(14.205	 ?Hz)..............................................................10	 ?Figure	 ?8:	 ?Resonant	 ?Vibration	 ?Simulation	 ?-??	 ?Frequency	 ?3	 ?(16.825	 ?Hz)..............................................................11	 ?Figure	 ?9:	 ?Resonant	 ?Vibration	 ?Simulation	 ?-??	 ?Frequency	 ?4	 ?(20.191	 ?Hz)..............................................................11	 ?Figure	 ?10:	 ?Resonant	 ?Vibration	 ?Simulation	 ?-??	 ?Frequency	 ?5	 ?(48.14	 ?Hz)..............................................................12	 ?Figure	 ?11:	 ?Modified	 ?Resonant	 ?Vibration	 ?Simulation	 ?(with	 ?I-??beams)	 ?-??	 ?Frequency	 ?5	 ?(49.93	 ?Hz) ..........12	 ?Figure	 ?12:	 ?Final	 ?Frame	 ?of	 ?Cart...........................................................................................................................................19	 ?Figure	 ?13:	 ?Bins	 ?on	 ?Shelf	 ?with	 ?Loading ...........................................................................................................................19	 ?Figure	 ?14:	 ?Mounting	 ?Flange	 ?on	 ?Back	 ?of	 ?Bins...............................................................................................................20	 ?Figure	 ?15:	 ?Bottom	 ?of	 ?Bin	 ?Supported	 ?Above	 ?Shelf	 ?By	 ?Flange................................................................................20	 ?Figure	 ?17:	 ?PR2	 ?Pushing	 ?Cart ..............................................................................................................................................21	 ?Figure	 ?18:	 ?Original	 ?Cart	 ?Design	 ?Sketch..........................................................................................................................26	 ?Figure	 ?19:	 ?SolidWorks	 ?Cart	 ?Model...................................................................................................................................27	 ?Figure	 ?20:	 ?SolidWorks	 ?Cart	 ?Model	 ?-??	 ?Simplified	 ?Simulation ..................................................................................27	 ?Figure	 ?21:	 ?SolidWorks	 ?Cart	 ?Model	 ?-??	 ?Simplified	 ?Simulation	 ?with	 ?I-??beams......................................................28	 ?Figure	 ?22:	 ?SolidWorks	 ?Model	 ?of	 ?Conical	 ?Peg ..............................................................................................................28	 ?Figure	 ?23:	 ?Conical	 ?Peg	 ?Pallet	 ?Mounting	 ?Plate .............................................................................................................29	 ?	 ?	 ?	 ?iv	 ?List	 ?of	 ?Tables	 ?Table	 ?1:	 ?Pricing	 ?of	 ?CreForm	 ?Materials ...........................................................................................................................24	 ?	 ?	 ?1	 ?1.0	 ?Introduction	 ?1.1	 ?Background	 ?and	 ?Significance	 ?	 ? The	 ?recommendations	 ?described	 ?in	 ?this	 ?report	 ?have	 ?arisen	 ?for	 ?the	 ?project	 ?to	 ?build	 ?a	 ?proof	 ?of	 ?concept	 ?robotic	 ?parts-??cart.	 ?	 ?The	 ?project	 ?is	 ?part	 ?of	 ?a	 ?larger	 ?project	 ?to	 ?implement	 ?robotic	 ?parts	 ?control	 ?systems	 ? and	 ? robotic-??human	 ? interaction	 ? in	 ? automotive	 ? factories.	 ? 	 ? The	 ? design	 ? of	 ? the	 ? parts-??cart	 ? is	 ?intended	 ?to	 ?facilitate	 ?the	 ?interaction	 ?and	 ?decrease	 ?the	 ?number	 ?of	 ?errors	 ?that	 ?cost	 ?time	 ?on	 ?the	 ?line.	 ?	 ?Similar	 ? systems	 ? exist	 ? only	 ? in	 ? a	 ? few	 ? factories	 ? around	 ? the	 ?world	 ? and	 ? are	 ? usually	 ? only	 ? designed	 ? to	 ?deliver	 ?parts	 ?with	 ?the	 ?car	 ?but	 ?do	 ?not	 ?include	 ?robotic	 ?arms	 ?that	 ?can	 ?pass	 ?the	 ?parts	 ?to	 ?the	 ?worker	 ?in	 ?the	 ?proper	 ?order.	 ? 	 ?One	 ?similar	 ?system	 ?exists	 ?in	 ?the	 ??transparent	 ?factory?	 ?that	 ?Volkswagen	 ?operates	 ?in	 ?Dresden,	 ?Germany.	 ?	 ?The	 ?robots	 ?in	 ?this	 ?factory	 ?carry	 ?all	 ?of	 ?the	 ?parts	 ?necessary	 ?for	 ?a	 ?single	 ?vehicle	 ?along	 ? the	 ? line	 ?with	 ? that	 ?vehicle	 ? (Volkswagen	 ?Car	 ?Company,	 ?2012).	 ? 	 ?The	 ?main	 ?difference	 ?with	 ? this	 ?project	 ?is	 ?the	 ?reduction	 ?of	 ?the	 ?cost	 ?of	 ?the	 ?system	 ?through	 ?the	 ?use	 ?of	 ?smaller,	 ?modifiable	 ?designs	 ?with	 ?reduced	 ?robotic	 ?components,	 ?as	 ?well	 ?as	 ?the	 ?robotic	 ?arm	 ?that	 ?will	 ?simplify	 ?the	 ?access	 ?of	 ?parts.	 ?1.2	 ?Project	 ?Objectives	 ?	 ? The	 ? following	 ? is	 ? a	 ? brief	 ? summary	 ? of	 ? objectives	 ? outlined	 ? in	 ? the	 ? proposal,	 ? and	 ? applied	 ? as	 ? a	 ?guideline	 ? for	 ? the	 ? project.	 ? 	 ? The	 ? objectives	 ? have	 ? been	 ? chosen	 ? in	 ? order	 ? to	 ? conform	 ? to	 ? design	 ?specifications	 ?of	 ?the	 ?parts-??cart.	 ?	 ?	 ?	 ? 1)	 ?Deliver	 ?a	 ?cart	 ?structure	 ?that	 ?supports	 ?the	 ?robotic	 ?arm,	 ?even	 ?if	 ?it	 ?is	 ?moving	 ?through	 ?its	 ?full	 ?range	 ?of	 ?motion,	 ?without	 ?loss	 ?of	 ?stability.	 ?For	 ?this	 ?iteration,	 ?the	 ?arm	 ?will	 ?be	 ?the	 ?WAM	 ?robotic	 ?arm.	 ?[By	 ?April	 ?2012]	 ?2)	 ?Supply	 ?(source)	 ?bins	 ?that	 ?are	 ?strong	 ?enough	 ?to	 ?contain	 ?20	 ?lbs	 ?weights	 ?without	 ?distortion	 ?and	 ?come	 ?in	 ?standardized	 ?sizes	 ?that	 ?will	 ?fit	 ?on	 ?the	 ?cart.	 ?[By	 ?January	 ?2012]	 ?3)	 ? Supply	 ? (source)	 ? the	 ? structural	 ? piping,	 ? joints	 ? and	 ? base	 ? such	 ? that	 ? the	 ? construction	 ? is	 ?customizable,	 ?simple	 ?to	 ?build	 ?and	 ?scalable	 ?to	 ?larger	 ?designs	 ?if	 ?necessary.	 ?[By	 ?January	 ?2012]	 ?4)	 ?Establish	 ?whether	 ?pallets	 ?are	 ?the	 ?optimal	 ?solution	 ?for	 ?handling	 ?and	 ?hand-??off	 ?of	 ?parts	 ?of	 ?irregular	 ?shape	 ?/	 ? large	 ?size	 ?/	 ?consistency	 ?(i.e.	 ?window	 ?seals	 ?or	 ?door-??lock	 ?mechanism).	 ?[By	 ?April	 ?2012]	 ?	 ?2	 ?1.3	 ?Scope	 ?and	 ?Limitations	 ?	 ? The	 ?goal	 ?of	 ? the	 ?project	 ? is	 ? to	 ?design	 ?and	 ?build	 ?a	 ?parts-??cart	 ?as	 ?a	 ? test-??bed	 ? for	 ? the	 ?CARIS	 ?Lab.	 ?	 ?The	 ?purpose	 ?for	 ?this	 ?project	 ?is	 ?to	 ?provide	 ?a	 ?method	 ?of	 ?designing	 ?a	 ?practical	 ?interface	 ?for	 ?the	 ?WAM	 ?robotic	 ?arm	 ?in	 ?order	 ? to	 ?demonstrate	 ? the	 ?effectiveness	 ?of	 ?parts	 ?hand-??off	 ?and	 ?other	 ?human/robotic	 ?interactions.	 ?	 ?As	 ?such,	 ?the	 ?scope	 ?of	 ?this	 ?project	 ?is	 ?limited	 ?to	 ?building	 ?the	 ?parts-??cart.	 ?	 ?To	 ?be	 ?clear,	 ?the	 ?project	 ?only	 ?involves	 ?structural	 ?design	 ?while	 ?maintaining	 ?practicality,	 ?customizability,	 ?scalability	 ?as	 ?well	 ?as	 ?general	 ?safety.	 ?	 ?The	 ?project	 ?does	 ?not	 ?consider	 ?software	 ?or	 ?robotic	 ?design,	 ?but	 ?considers	 ?their	 ?limitations	 ?with	 ?real-??world	 ?application	 ?of	 ?the	 ?parts-??cart.	 ?	 ?	 ?1.4	 ?Report	 ?Organization	 ?	 ?	 ? The	 ?following	 ?recommendation	 ?report	 ?provides	 ?an	 ?analysis	 ?of	 ?the	 ?chosen	 ?parts-??cart	 ?design	 ?as	 ?well	 ?as	 ?the	 ?approach	 ?taken	 ?in	 ?building	 ?it.	 ? 	 ?The	 ?report	 ?describes	 ?the	 ?tests	 ?done	 ?to	 ?determine	 ?the	 ?limitations	 ?of	 ?the	 ?parts-??cart	 ?with	 ?regards	 ?to	 ?deflection,	 ?pipe	 ?bending,	 ?vibration	 ?and	 ?maneuverability	 ?and	 ?their	 ?corresponding	 ?results.	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?3	 ?2.0	 ?Discussion	 ?2.1	 ?Design	 ?Methods	 ?and	 ?Resources	 ?	 ?	 ? The	 ? designs	 ? for	 ? the	 ? parts-??cart	 ? were	 ? developed	 ? as	 ? a	 ? collaborative	 ? process	 ? with	 ? project	 ?sponsor,	 ?Dr.	 ?Chris	 ?Parker.	 ?	 ?There	 ?were	 ?multiple	 ?design	 ?iterations	 ?that	 ?were	 ?considered	 ?prior	 ?to	 ?the	 ?final	 ?proposed	 ?model	 ?but	 ?were	 ?filtered	 ?out	 ?due	 ?to	 ?various	 ?design	 ?considerations.	 ?	 ?Upon	 ?selecting	 ?the	 ?final	 ? design	 ? to	 ? use	 ? for	 ? production,	 ? the	 ? model	 ? was	 ? formed	 ? in	 ? SolidWorks	 ? to	 ? allow	 ? for	 ? simulated	 ?testing	 ?and	 ?analysis.	 ?	 ?	 ?	 ? The	 ?decision	 ?to	 ?purchase	 ?the	 ?CreForm	 ?was	 ?made	 ?because	 ?their	 ?products	 ?make	 ?altering	 ?the	 ?design	 ?easier	 ? to	 ?do	 ?on	 ?an	 ?as-??needed	 ?basis.	 ? 	 ?One	 ?added	 ?benefit	 ? is	 ? the	 ?years	 ?of	 ?experience	 ? that	 ? the	 ?associates	 ?at	 ?CreForm	 ?Ltd	 ?have	 ?in	 ?designing	 ?similar	 ?cart	 ?structure	 ?for	 ?other	 ?industries.	 ?	 ?These	 ?carts	 ?do	 ?not	 ?have	 ?the	 ?restrictions	 ?required	 ?for	 ?the	 ?inclusion	 ?of	 ?a	 ?robotic	 ?arm;	 ?however,	 ?consultation	 ?led	 ?to	 ?the	 ?addition	 ?of	 ?two	 ?casters	 ?in	 ?the	 ?middle	 ?of	 ?the	 ?frame	 ?that	 ?increased	 ?the	 ?stability	 ?and	 ?strength	 ?of	 ?the	 ?cart.	 ?	 ?	 ?	 ?	 ? Sourcing	 ?products	 ?from	 ?supply	 ?companies	 ?developed	 ?much	 ?of	 ?the	 ?design,	 ?even	 ?if	 ?they	 ?were	 ?not	 ?purchased	 ?in	 ?the	 ?end.	 ?	 ?Some	 ?of	 ?the	 ?components,	 ?such	 ?as	 ?parts	 ?bins,	 ?were	 ?readily	 ?available	 ?from	 ?many	 ? sources	 ? but	 ? were	 ? not	 ? purchased	 ? for	 ? the	 ? design	 ? model.	 ? 	 ? Instead,	 ? similar	 ? bins	 ? to	 ? the	 ? ones	 ?sourced	 ? were	 ? used	 ? due	 ? to	 ? their	 ? accessibility	 ? in	 ? the	 ? project	 ? lab.	 ? 	 ? The	 ? rail	 ? systems	 ? are	 ? also	 ?commercially	 ? available	 ? from	 ? multiple	 ? sources;	 ? however,	 ? due	 ? to	 ? timeline	 ? and	 ? cost	 ? constraints,	 ? a	 ?modified	 ?aluminum	 ?8020	 ?extrusion	 ?system	 ?was	 ?used	 ?as	 ?a	 ?substitute.	 ? 	 ? In	 ?an	 ?industrial	 ?setting,	 ? it	 ? is	 ?likely	 ?that	 ?the	 ?corporation	 ?would	 ?have	 ?dedicated	 ?suppliers	 ?that	 ?can	 ?provide	 ?the	 ?necessary	 ?materials	 ?at	 ?a	 ?discounted	 ?rate.	 ?	 ? Other	 ? useful	 ? resources	 ? in	 ? the	 ? design	 ? process	 ? include	 ? a	 ? collection	 ? of	 ? videos	 ? outlining	 ? the	 ?process	 ?of	 ?manufacturing	 ?a	 ?vehicle	 ?on	 ?an	 ?assembly	 ?line	 ?(Holden	 ?Automotive,	 ?2011).	 ? 	 ?This	 ?allowed	 ?the	 ?design	 ?to	 ?be	 ?properly	 ?tailored	 ?for	 ?the	 ?automotive	 ?industry	 ?without	 ?having	 ?to	 ?visit	 ?a	 ?production	 ?plant	 ?during	 ?the	 ?design	 ?period.	 ?2.2	 ?Testing	 ?Considerations	 ?	 ? 	 ?	 ? In	 ? producing	 ? the	 ? final	 ? cart	 ? design,	 ? it	 ? was	 ? necessary	 ? to	 ? come	 ? up	 ? with	 ? tests	 ? to	 ? gauge	 ? the	 ?relative	 ?success	 ?of	 ?a	 ?given	 ?model.	 ? 	 ?There	 ?were	 ? five	 ?main	 ?tests	 ?used	 ?to	 ?determine	 ? feasibility	 ?of	 ? the	 ?	 ?4	 ?design	 ?and	 ?only	 ?by	 ?passing	 ?all	 ?of	 ?the	 ?tests	 ?was	 ?the	 ?final	 ?design	 ?deemed	 ?fit	 ?as	 ?a	 ?parts-??cart.	 ?	 ?Below	 ?is	 ?a	 ?discussion	 ?of	 ?the	 ?tests	 ?and	 ?their	 ?implications;	 ?the	 ?results	 ?of	 ?the	 ?tests	 ?are	 ?discussed	 ?later	 ?in	 ?section	 ?2.3	 ?Results.	 ? 	 ?Human	 ?/	 ?Robot	 ?Accessibility	 ?	 ? The	 ?majority	 ?of	 ?the	 ?ideas	 ?that	 ?were	 ?discussed	 ?in	 ?the	 ?design	 ?process	 ?were	 ?discarded	 ?because	 ?of	 ?considerations	 ?due	 ?to	 ?the	 ?necessary	 ?accessibility	 ?restrictions.	 ? 	 ?Any	 ?parts	 ?on	 ?the	 ?cart	 ?must	 ?be	 ?available	 ?to	 ?the	 ?robot	 ?arm	 ?at	 ?all	 ?times,	 ?however	 ?they	 ?also	 ?need	 ?to	 ?be	 ?available	 ?to	 ? a	 ? human	 ? worker	 ? in	 ? the	 ? event	 ? of	 ? failure	 ? or	 ? shutdown	 ? of	 ? the	 ? robotic	 ? system.	 ? 	 ? The	 ?restrictions	 ?on	 ?the	 ?movement	 ?of	 ?the	 ?robotic	 ?arm,	 ?and	 ?the	 ?elbows	 ?and	 ?joints	 ?that	 ?are	 ?part	 ?of	 ?the	 ?arm,	 ?give	 ?a	 ?maximum	 ?and	 ?minimum	 ?range	 ?for	 ?the	 ?location	 ?of	 ?the	 ?parts.	 ?	 ?	 ?	 ? Accessibility	 ?also	 ?limits	 ?the	 ?style	 ?of	 ?parts	 ?container	 ?used	 ?on	 ?the	 ?cart.	 ?	 ?Bins	 ?with	 ?open	 ?tops	 ? are	 ? easily	 ? accessible	 ? to	 ? either	 ?humans	 ?or	 ? robots,	 ? however	 ?many	 ?of	 ? the	 ?parts	 ? that	 ? go	 ?into	 ? a	 ? car	 ? do	 ? not	 ? lend	 ? themselves	 ? to	 ? easy	 ?manipulation	 ? by	 ? robotic	 ?manipulators.	 ? 	 ? Pallets	 ?designed	 ? as	 ? a	 ? secondary	 ?parts	 ? container	 ? system	 ?allow	 ? for	 ? the	 ?handling	 ? of	 ? soft,	 ? flexible	 ? or	 ?awkwardly	 ?shaped	 ?parts.	 ?	 ?	 ?	 ? Robotic	 ?arms	 ?do	 ?not	 ?lift	 ?in	 ?the	 ?same	 ?manner	 ?as	 ?humans	 ?generally	 ?and	 ?the	 ?pallets	 ?are	 ?designed	 ?with	 ? this	 ?difference	 ? in	 ?mind.	 ? 	 ?A	 ?handle	 ?placed	 ?underneath	 ? the	 ?back	 ?of	 ? the	 ?pallet	 ?allows	 ?the	 ?arm	 ?to	 ?grab	 ?the	 ?pallet	 ?and	 ?lift,	 ?with	 ?most	 ?of	 ?the	 ?weight	 ?of	 ?the	 ?palette	 ?supported	 ?by	 ?the	 ?forearm	 ?of	 ?the	 ?robot.	 ?	 ?The	 ?feet	 ?of	 ?the	 ?pallet	 ?should,	 ?ideally,	 ?be	 ?self-??setting,	 ?to	 ?reduce	 ?the	 ?necessary	 ?accuracy	 ?of	 ?the	 ?robot	 ?in	 ?placing	 ?the	 ?pallet	 ?back	 ?into	 ?place.	 ?Three	 ?designs	 ?were	 ?conceived	 ?that	 ?would	 ?accomplish	 ?this	 ?goal;	 ?cone	 ?pegs,	 ?sloped	 ?bars	 ?and	 ?sloped	 ?bearing	 ?rails.	 ?	 ?The	 ?cone	 ?peg	 ?and	 ?the	 ?mounting	 ?plate	 ?designs	 ?can	 ?be	 ?seen	 ?in	 ?Appendix	 ?A	 ?and	 ?are	 ?functional	 ?on	 ?the	 ?cart.	 ?The	 ?sloped	 ?bearing	 ?rail	 ?pallets	 ?were	 ?not	 ?completed,	 ?as	 ?they	 ?required	 ?extra	 ?time	 ?to	 ? order	 ? in	 ? the	 ? necessary	 ? parts.	 ? 	 ? See	 ? section	 ? 2.5	 ? alternative	 ? considerations	 ? for	 ? a	 ? more	 ?detailed	 ?description	 ?of	 ?this	 ?alternate	 ?solution	 ?to	 ?a	 ?pallet	 ?system.	 ?	 ?	 ?Reconfigurability	 ?	 ? One	 ? of	 ? the	 ? major	 ? benefits	 ? of	 ? the	 ? parts-??cart	 ? system	 ? is	 ? the	 ? reconfigurability	 ? of	 ? the	 ?design	 ? to	 ?meet	 ? the	 ? current	 ?production	 ?needs.	 ? 	 ? Initially,	 ? reconfigurability	 ?was	 ? taken	 ?as	 ? the	 ?ability	 ?of	 ?the	 ?cart	 ?to	 ?be	 ?reshaped	 ?to	 ?match	 ?the	 ?quantity	 ?and	 ?size	 ?of	 ?parts	 ?that	 ?it	 ?would	 ?need	 ?to	 ? carry.	 ? 	 ? After	 ? further	 ? consultation,	 ? reconfiguring	 ?was	 ? reduced	 ? to	 ? changing	 ? the	 ? size	 ? and	 ?quantity	 ? of	 ? the	 ? bins	 ? and/or	 ? pallets	 ? that	 ?would	 ? be	 ? used	 ? on	 ? the	 ? cart	 ? frame.	 ? 	 ? The	 ? change	 ? in	 ?direction	 ?is	 ?due	 ?to	 ?the	 ?likelihood	 ?that	 ?companies	 ?will	 ?purchase	 ?welded	 ?steel	 ?frames	 ?rather	 ?	 ?5	 ?than	 ?modular	 ?tubing	 ?solutions	 ?for	 ?use	 ?in	 ?factory	 ?applications.	 ?	 ?Reconfigurability	 ?of	 ?the	 ?bins	 ?and/or	 ?pallets	 ?means	 ?that	 ?there	 ?should	 ?be	 ?no	 ?specifically	 ?constructed	 ?bins	 ?but	 ?rather	 ?a	 ?bin	 ?system	 ?that	 ?will	 ?withstand	 ?the	 ?strains	 ?of	 ?use	 ?and	 ?still	 ?be	 ?easily	 ?moved.	 ?Deflection	 ?Testing	 ?	 ? To	 ?ensure	 ?that	 ?the	 ?cart	 ? is	 ?structurally	 ?capable	 ?of	 ?sustaining	 ?the	 ?forces	 ?and	 ?torques	 ?placed	 ?on	 ?it	 ?by	 ?the	 ?parts	 ?and	 ?robot	 ?arm,	 ?the	 ?amount	 ?of	 ?deflection	 ?under	 ?loads	 ?needs	 ?to	 ?be	 ?quantified.	 ?	 ?In	 ?this	 ?testing,	 ?the	 ?constructed	 ?design	 ?was	 ?placed	 ?under	 ?a	 ??worst-??case?	 ?scenario	 ?for	 ?weight	 ?distribution	 ?and	 ?the	 ?amount	 ?of	 ?deflection	 ?was	 ?measured.	 ?The	 ?vertical	 ?deflection	 ?under	 ?load	 ?shows	 ?the	 ?strength	 ?of	 ?the	 ?design	 ?and	 ?tubing.	 ?	 ?For	 ?this	 ?test	 ?the	 ?maximum	 ?estimated	 ?loading	 ?of	 ?50	 ?lbs	 ?was	 ?assumed,	 ?based	 ?on	 ?discussions	 ?with	 ?sponsor	 ? and	 ? analysis	 ? of	 ? the	 ? components	 ? of	 ? car	 ? door	 ? available	 ? at	 ? the	 ? CARIS	 ? lab,	 ? and	 ?maximum	 ?load	 ?tested	 ?was	 ?95	 ?lbs	 ?at	 ?a	 ?single	 ?point	 ?that	 ?was	 ?the	 ?furthest	 ?point	 ?from	 ?support.	 ?	 ?The	 ? parts	 ? were	 ? loaded	 ? individually	 ? into	 ? one	 ? of	 ? the	 ? bins	 ? that	 ? would	 ? normally	 ? be	 ? used	 ? to	 ?house	 ?the	 ?parts	 ?and	 ?deflection	 ?from	 ?original	 ?position	 ?was	 ?measured.	 ? 	 ?The	 ? loading	 ?was	 ? left	 ?for	 ? a	 ? 24-??hour	 ? period	 ? after	 ? test	 ? completion	 ? to	 ? determine	 ? the	 ? amount	 ? of	 ? deformation	 ? over	 ?time	 ?as	 ?well.	 ?Angular	 ? deflection	 ? is	 ? also	 ? critical	 ? to	 ? the	 ? design	 ? and	 ? is	 ? used	 ? as	 ? a	 ? measure	 ? of	 ? the	 ?structure?s	 ?resistance	 ?to	 ? torque	 ?and	 ?bending	 ?moments.	 ? 	 ?The	 ?angular	 ?deflection	 ?was	 ?tested	 ?by	 ?applying	 ?force	 ?perpendicular	 ?to	 ?the	 ?support	 ?structure	 ?at	 ?the	 ?top	 ?of	 ?the	 ?shelf;	 ?the	 ?amount	 ?of	 ?deflection	 ?was	 ?measured	 ?from	 ?the	 ?original,	 ?vertical	 ?alignment	 ?of	 ?the	 ?bars.	 ?Vibration	 ?Testing	 ?	 ? Vibration	 ? studies	 ? are	 ? necessary	 ? for	 ? environments	 ?where	 ? there	 ? are	 ? periodic	 ? forces	 ?being	 ? applied.	 ? When	 ? forces	 ? are	 ? applied	 ? in	 ? a	 ? periodic	 ? fashion,	 ? structures	 ? may	 ? reach	 ?resonance	 ?at	 ?specific	 ?natural	 ?frequencies,	 ?leading	 ?to	 ?oscillations	 ?of	 ?a	 ?much	 ?larger	 ?magnitude	 ?than	 ?otherwise.	 ?At	 ?these	 ?frequencies,	 ?the	 ?transfer	 ?of	 ?energy	 ?from	 ?the	 ?external	 ?source	 ?occurs	 ?in	 ? phase	 ? with	 ? the	 ? exchange	 ? of	 ? energy	 ? from	 ? spring	 ? potential	 ? to	 ? kinetic.	 ? The	 ? motion	 ? is	 ?amplified	 ?and	 ? the	 ?energy	 ?received	 ?by	 ? the	 ?structure	 ? is	 ?converted	 ?directly	 ? to	 ?kinetic	 ?energy	 ?rather	 ?than	 ?spring	 ?potential	 ?energy;	 ?hence	 ?the	 ?significant	 ?displacements.	 ?This	 ?can	 ?be	 ?quite	 ?damaging	 ? to	 ? machinery	 ? and	 ? can	 ? lead	 ? to	 ? catastrophic	 ? failure	 ? of	 ? joints.	 ? One	 ? well-??known	 ?example	 ? of	 ? failure	 ? caused	 ? by	 ? resonant	 ? vibration	 ? is	 ? the	 ? Tacoma	 ? Narrows	 ? Bridge,	 ? which	 ?oscillated	 ?at	 ?its	 ?natural	 ?frequency	 ?because	 ?of	 ?the	 ?wind.	 ?Thus,	 ?designs	 ?with	 ?potential	 ?periodic	 ?vibrations	 ?should	 ?be	 ?tested	 ?to	 ?find	 ?their	 ?natural	 ?frequency	 ?and	 ?corresponding	 ?harmonics.	 ?	 ?6	 ?SolidWorks	 ?provides	 ?a	 ?simple	 ?method	 ?to	 ?analyze	 ?structures	 ?and	 ?solve	 ?for	 ?such	 ?information.	 ?The	 ? simulation	 ? provides	 ? a	 ? list	 ? of	 ? the	 ? 5	 ? most	 ? significant	 ? frequency	 ? responses,	 ? which	 ?correspond	 ? to	 ? the	 ? natural	 ? frequency	 ? and	 ?3	 ? harmonics.	 ? This	 ? information	 ? can	 ? be	 ? used	 ? in	 ? 3	 ?main	 ? ways.	 ? The	 ? first	 ? is	 ? to	 ? attempt	 ? to	 ? safeguard	 ? the	 ? design	 ? from	 ? vibrations	 ? of	 ? those	 ?frequencies.	 ? Changing	 ? motor	 ? RPMs	 ? or	 ? compressors	 ? rates	 ? can	 ? do	 ? this.	 ? The	 ? second	 ? is	 ? to	 ?change	 ?the	 ?natural	 ?frequency	 ?of	 ?the	 ?system	 ?by	 ?adding	 ?damping,	 ?such	 ?as	 ?isolators	 ?for	 ?motors	 ?or	 ?isolation	 ?mounts	 ?for	 ?floor-??mounted	 ?equipment.	 ?The	 ?third	 ?is	 ?to	 ?fundamentally	 ?change	 ?the	 ?system	 ? by	 ? modifying	 ? the	 ? mass	 ? of	 ? the	 ? design	 ? or	 ? changing	 ? the	 ? geometry.	 ?	 ? For	 ? this	 ? project,	 ? the	 ? resonant	 ? frequencies	 ? are	 ? in	 ? a	 ? range,	 ?which	 ?will	 ? not	 ? occur,	 ? in	 ?regular	 ?operation.	 ?When	 ?a	 ?motor	 ? is	 ?added	 ?to	 ?the	 ?robot	 ?drive-??axis,	 ?an	 ? isolation	 ?mount	 ?may	 ?be	 ?created	 ?if	 ? the	 ?motor	 ?must	 ?run	 ?at	 ?a	 ?resonant	 ? frequency.	 ?However,	 ? it	 ? is	 ?unlikely	 ?that	 ?this	 ?would	 ?be	 ?necessary.	 ?Maneuverability	 ?testing	 ?As	 ?the	 ?final	 ?design	 ?is	 ?intended	 ?for	 ?use	 ?in	 ?a	 ?factory	 ?setting,	 ?it	 ?is	 ?necessary	 ?that	 ?the	 ?cart	 ?be	 ? able	 ? to	 ? maneuver	 ? around/over	 ? obstacles	 ? as	 ? it	 ? follows	 ? the	 ? component	 ? around	 ? the	 ?assembly	 ?line.	 ?	 ?To	 ?this	 ?end,	 ?experiments	 ?were	 ?specially	 ?devised	 ?for	 ?determining	 ?the	 ?overall	 ?maneuverability	 ?of	 ?the	 ?cart	 ?and	 ?the	 ?ease	 ?with	 ?which	 ?it	 ?can	 ?be	 ?pulled	 ?around	 ?the	 ?factory.	 ?The	 ?first	 ?test	 ?is	 ?to	 ?have	 ?the	 ?parts-??cart	 ?pulled	 ?around	 ?by	 ?a	 ?human	 ?operator	 ?and	 ?sees	 ?what	 ?the	 ?smallest	 ?radius	 ?of	 ?turn	 ?the	 ?cart	 ?can	 ?maintain	 ?at	 ?a	 ?given	 ?speed.	 ?	 ?While	 ?turns	 ?on	 ?the	 ?assembly	 ?line	 ? are	 ? generally	 ? not	 ? sharp	 ? radius	 ? 90-??degree	 ? angles,	 ? ideally	 ? the	 ? cart	 ? should	 ? be	 ?maneuverable	 ?enough	 ?to	 ?avoid	 ?shelves	 ?and	 ?people	 ?in	 ?the	 ?stocking	 ?area.	 ?	 ?The	 ?analog	 ?used	 ?in	 ?this	 ?test	 ?was	 ?a	 ?straight	 ?hallway	 ?with	 ?multiple	 ?obstacles	 ?and	 ?people	 ?lining	 ?the	 ?sides	 ?as	 ?well	 ?as	 ?a	 ?90-??degree	 ?corner.	 ?	 ?The	 ?speed	 ?of	 ?the	 ?cart	 ?will	 ?also	 ?play	 ?a	 ?role	 ?in	 ?the	 ?effectiveness	 ?of	 ?this	 ?test	 ?and,	 ?since	 ?there	 ?is	 ?not	 ?enough	 ?data	 ?on	 ?the	 ?speed,	 ?this	 ?test	 ?is	 ?more	 ?qualitative	 ?in	 ?nature.	 ?Next,	 ? the	 ? cart	 ?was	 ? to	 ?be	 ?maneuvered	 ?by	 ? the	 ?PR2	 ?Human	 ?Analogue	 ?Robot	 ? available	 ? to	 ? the	 ?CARIS	 ?lab.	 ?	 ?	 ?While	 ? the	 ? initial	 ? intention	 ? is	 ? to	 ?have	 ? the	 ?cart	 ? towed	 ?by	 ? the	 ?overhead	 ?crane	 ?system	 ?available	 ?in	 ?an	 ?automotive	 ?factory,	 ?later	 ?iterations	 ?may	 ?need	 ?to	 ?be	 ?organized	 ?and	 ?stocked	 ?by	 ?humans	 ? and/or	 ? robots.	 ? 	 ? As	 ? such	 ? it	 ? is	 ? important	 ? that	 ? the	 ? cart	 ? is	 ? maneuverable	 ? by	 ? both	 ?humans	 ? and	 ? robots.	 ? 	 ? The	 ? PR2	 ? is	 ? an	 ? anthropomorphic	 ? robot	 ? capable	 ? of	 ? grasping	 ? handles	 ?similar	 ? to	 ? humans	 ? and	 ? applying	 ? forces	 ? and	 ? torques	 ? on	 ? the	 ? handle	 ?while	 ?moving	 ? (Willow	 ?Garage	 ?,	 ?2012).	 ?	 ?This	 ?test	 ?differs	 ?from	 ?the	 ?human	 ?only	 ?test	 ?because	 ?of	 ?the	 ?added	 ?challenge	 ?of	 ?simplifying	 ?movements	 ? that	 ? turn	 ? the	 ? cart	 ? such	 ? that	 ? there	 ? is	 ? less	 ? difficulty	 ? for	 ? a	 ? robot	 ? to	 ?	 ?7	 ?understand	 ? the	 ?necessary	 ?movements	 ? to	 ? produce	 ? the	 ? desired	 ?motion.	 ? 	 ? Caster	 ? choices	 ? are	 ?affected	 ?by	 ?this	 ?test	 ?because	 ?locked	 ?casters	 ?do	 ?not	 ?behave	 ?the	 ?same	 ?as	 ?swivel	 ?casters	 ?under	 ?torque	 ?motions.	 ?	 ?The	 ?cart	 ?must	 ?also	 ?not	 ?be	 ?completely	 ?uncontrolled	 ?as	 ?it	 ?is	 ?moved	 ?either,	 ?as	 ?this	 ?may	 ?be	 ?a	 ?safety	 ?risk	 ?or	 ?result	 ?in	 ?damage	 ?to	 ?the	 ?machinery	 ?and	 ?robots.	 ?In	 ?the	 ?factory	 ?setting,	 ?the	 ?cart	 ?will	 ?be	 ?towed	 ?around	 ?the	 ?floor	 ?by	 ?the	 ?same	 ?overhead	 ?crane	 ? system	 ? that	 ? is	 ? moving	 ? the	 ? component.	 ? 	 ? The	 ? overhead	 ? crane	 ? present	 ? in	 ? the	 ?extracurricular	 ? lab	 ? in	 ? Hennings	 ?will	 ? be	 ? used	 ? to	 ? simulate	 ? the	 ? towing	 ? crane	 ? that	 ?would	 ? be	 ?seen	 ? on	 ? the	 ? assembly	 ? line.	 ? 	 ? The	 ? outer	 ? radius	 ? of	 ? the	 ? corner	 ? that	 ? the	 ? cart	 ? sweeps	 ? out	 ? as	 ? it	 ?moves	 ?will	 ?be	 ?recorded	 ?and	 ?ideally	 ?will	 ?not	 ?exceed	 ?the	 ?furthest	 ?distance	 ?between	 ?two	 ?points	 ?on	 ?the	 ?cart	 ?by	 ?more	 ?than	 ?5%	 ?at	 ?any	 ?given	 ?point.	 ?	 ?If	 ?the	 ?outer	 ?radius	 ?is	 ?much	 ?more	 ?than	 ?this	 ?length,	 ? it	 ? is	 ? an	 ? indication	 ? that	 ? the	 ? parts-??cart	 ? is	 ? not	 ? under	 ? control	 ? throughout	 ? the	 ? entire	 ?motion	 ?and	 ?the	 ?caster	 ?system	 ?and/or	 ?towing	 ?system	 ?may	 ?need	 ?to	 ?be	 ?altered.	 ?The	 ?final	 ?test	 ?of	 ?the	 ?maneuverability	 ?of	 ?the	 ?parts-??cart	 ?is	 ?a	 ??Bump	 ?Test?.	 ?	 ?The	 ?idea	 ?of	 ?the	 ?Bump	 ?Test	 ?is	 ?designed	 ?to	 ?determine	 ?how	 ?well	 ?the	 ?cart	 ?can	 ?handle	 ?going	 ?over	 ?objects	 ?and	 ?cables	 ? that	 ?may	 ?be	 ?on	 ?the	 ? factory	 ? floor.	 ? 	 ? In	 ?a	 ?normal	 ?setting,	 ?cables	 ?are	 ?covered	 ?by	 ?sloped	 ?protective	 ? covers	 ? to	 ? reduce	 ? tripping	 ? hazards.	 ? 	 ? The	 ? parts-??cart	 ? needs	 ? to	 ? be	 ? able	 ? to	 ? go	 ? over	 ?these	 ?covers,	 ?as	 ?well	 ?as	 ?other	 ?small	 ?obstacles.	 ?2.3	 ?Results	 ?	 ? Deflection	 ?Test	 ?	 ?Figure	 ?1:	 ?Force	 ?vs	 ?Vertical	 ?Deflection	 ?Size	 ?	 ?8	 ?	 ?Figure	 ?2:	 ?Force	 ?vs	 ?Forward	 ?Deflection	 ?Size	 ?Maneuverability	 ?Tests	 ?	 ? The	 ?maneuverability	 ?tests	 ?were	 ?performed	 ?and	 ?recorded	 ?on	 ?video;	 ?the	 ?videos	 ?can	 ?be	 ?viewed	 ? online	 ? (Robson,	 ? 2012).	 ? 	 ? The	 ? cart	 ?was	 ? able	 ? to	 ? turn	 ? a	 ? full	 ? 360	 ? degrees	 ? around	 ? the	 ?central	 ?axis	 ?in	 ?a	 ?hallway	 ?of	 ?width	 ?2m.	 ?Stress	 ?Analysis	 ?Simulations	 ?	 ?Figure	 ?3:	 ?Stress	 ?Simulation	 ?-?	 ?Deflection	 ?	 ?9	 ?	 ?Figure	 ?4:	 ?Stress	 ?Simulation	 ?-?	 ?Strain	 ?	 ?Figure	 ?5:	 ?Stress	 ?Simulation	 ?-?	 ?Von	 ?Mises	 ?Stress	 ?	 ?	 ?	 ?10	 ?Vibration	 ?Simulations	 ?	 ?Figure	 ?6:	 ?Resonant	 ?Vibration	 ?Simulation	 ?-?	 ?Frequency	 ?1	 ?(7.8082	 ?Hz)	 ?	 ?Figure	 ?7:	 ?Resonant	 ?Vibration	 ?Simulation	 ?-?	 ?Frequency	 ?2	 ?(14.205	 ?Hz)	 ?	 ?11	 ?	 ?Figure	 ?8:	 ?Resonant	 ?Vibration	 ?Simulation	 ?-?	 ?Frequency	 ?3	 ?(16.825	 ?Hz)	 ?	 ?Figure	 ?9:	 ?Resonant	 ?Vibration	 ?Simulation	 ?-?	 ?Frequency	 ?4	 ?(20.191	 ?Hz)	 ?	 ?12	 ?	 ?Figure	 ?10:	 ?Resonant	 ?Vibration	 ?Simulation	 ?-?	 ?Frequency	 ?5	 ?(48.14	 ?Hz)	 ? Figure	 ?11:	 ?Modified	 ?Resonant	 ?Vibration	 ?Simulation	 ?(with	 ?I-?beams)	 ?-?	 ?Frequency	 ?5	 ?(49.93	 ?Hz)	 ?	 ?13	 ?2.4	 ?Discussion	 ?of	 ?Results	 ?	 ?	 ? The	 ? results	 ? of	 ? the	 ? testing	 ? procedures	 ? show	 ? the	 ? feasibility	 ? of	 ? the	 ? cart	 ? design	 ? for	 ? use	 ? in	 ? a	 ?factory	 ? setting.	 ? 	 ? Based	 ? on	 ? the	 ? vertical	 ? and	 ? angular	 ? deflection	 ? tests,	 ? the	 ? structural	 ? integrity	 ? of	 ? the	 ?frame	 ?can	 ?be	 ?determined	 ?under	 ?loadings	 ?exceeding	 ?the	 ?anticipated	 ?maximum.	 ?	 ?The	 ?maneuverability	 ?tests	 ? show	 ? the	 ? amount	 ? of	 ? stability	 ? and	 ? control	 ? that	 ? the	 ? loaded	 ? cart	 ?will	 ? have	 ?while	 ? traveling	 ? the	 ?assembly	 ?line.	 ?Vibration	 ?testing	 ?is	 ?necessary	 ?to	 ?avoid	 ?catastrophic	 ?failure	 ?due	 ?to	 ?resonant	 ?vibration.	 ?The	 ?human/robot	 ?accessibility	 ?is	 ?used	 ?to	 ?determine	 ?whether	 ?the	 ?cart	 ?will	 ?function	 ?as	 ?it	 ?is	 ?intended,	 ?the	 ?robotic	 ?arm	 ?needs	 ?to	 ?be	 ?able	 ?to	 ?access	 ?all	 ?parts	 ?and	 ?a	 ?human	 ?must	 ?also	 ?be	 ?able	 ?to	 ?do	 ?the	 ?same	 ?in	 ?the	 ?event	 ?of	 ?the	 ?robotic	 ?system	 ?failing.	 ?Structural	 ?Integrity	 ?	 ? Based	 ?on	 ?the	 ?plots	 ?of	 ?the	 ?vertical	 ?deflection	 ?test,	 ?the	 ?strength	 ?of	 ?the	 ?shelving	 ?system	 ?on	 ? the	 ? cart	 ? under	 ? loading	 ? is	 ? sufficient	 ? to	 ? support	 ? double	 ? the	 ? expected	 ? loading	 ?maximum.	 ?	 ?From	 ?this	 ?data,	 ?along	 ?with	 ?the	 ?50	 ?lbs	 ?loading	 ?capacity	 ?of	 ?10	 ???	 ?x	 ?11?	 ?Akro	 ?style	 ?bins	 ?(Akro	 ?Mils,	 ? 2011),	 ? the	 ? shelving	 ? unit	 ? will	 ? be	 ? capable	 ? of	 ? sustaining	 ? higher	 ? loads	 ? than	 ? the	 ? bins	 ?themselves	 ?can	 ?carry	 ?and	 ?the	 ?deflection	 ?in	 ?the	 ?shelf	 ?will	 ?still	 ?be	 ?small.	 ?	 ?	 ?	 ? The	 ?results	 ?of	 ?the	 ?angular	 ?deflection	 ?testing	 ?are	 ?not	 ?as	 ?favorable.	 ?	 ?The	 ?high	 ?amounts	 ?of	 ? deflection	 ? under	 ? relatively	 ? low	 ? amounts	 ? of	 ? loading	 ? led	 ? to	 ? stopping	 ? the	 ? testing	 ? before	 ?reaching	 ?the	 ?goal	 ?of	 ?100	 ?lbs.	 ? 	 ?A	 ?4.8	 ?cm	 ?deflection	 ?at	 ?the	 ?top	 ?of	 ?the	 ?cart	 ?when	 ?loaded	 ?with	 ?a	 ?horizontal	 ? force	 ? of	 ? 70	 ? lbs	 ? shows	 ? the	 ?weakness	 ? of	 ? the	 ? crossbeam,	 ?which	 ? support	 ? leads	 ? to	 ?deformation	 ?as	 ?the	 ?torque	 ?is	 ?added	 ?to	 ?the	 ?frame	 ?and	 ?this	 ?deformation	 ?has	 ?negative	 ?effects	 ?on	 ?the	 ?rest	 ?of	 ?the	 ?structure.	 ?	 ?The	 ?weight	 ?of	 ?parts	 ?in	 ?the	 ?bins	 ?and	 ?pallets	 ?will	 ?produce	 ?similar	 ?torque	 ?to	 ?the	 ?test	 ?values	 ?on	 ?a	 ?consistent	 ?basis	 ?and	 ?without	 ?a	 ?proper	 ?system	 ?to	 ?distribute	 ?the	 ?weight	 ?properly;	 ?the	 ?robotic	 ?arm	 ?will	 ? lose	 ?alignment.	 ? 	 ?As	 ?a	 ?result	 ?of	 ?the	 ?angular	 ?deflection	 ?testing,	 ? it	 ? is	 ? recommended	 ? that	 ? the	 ? I-??beam	 ? frame	 ? strengthening	 ? explained	 ? in	 ? section	 ? 2.5	 ?Alternative	 ?Considerations	 ?be	 ?added	 ?to	 ?the	 ?cart.	 ?	 ?	 ?	 ? One	 ?additional	 ?source	 ?of	 ?deflection	 ?that	 ?could	 ?not	 ?be	 ?tested	 ?in	 ?this	 ?iteration	 ?was	 ?the	 ?deflection	 ? in	 ? the	 ? rail	 ? and	 ? frame	 ? due	 ? to	 ? the	 ?motion	 ? of	 ? the	 ? robotic	 ? arm	 ?while	 ? extended	 ? or	 ?moving.	 ?	 ?As	 ?the	 ?arm	 ?reaches	 ?to	 ?grab	 ?a	 ?part	 ?and	 ?moves	 ?to	 ?the	 ?end	 ?of	 ?the	 ?cart	 ?for	 ?hand-??off,	 ?the	 ?weight	 ?of	 ? the	 ?arm	 ?will	 ? change	 ? from	 ?reaching	 ? towards	 ? the	 ?shelving	 ? to	 ? reaching	 ?away	 ? from	 ?the	 ?shelving	 ?and	 ?will	 ?travel	 ?down	 ?the	 ?length	 ?of	 ?the	 ?cart	 ?at	 ?the	 ?same	 ?time.	 ?	 ?The	 ?dynamics	 ?of	 ?this	 ? motion	 ? are	 ? hard	 ? to	 ? model	 ? and	 ? as	 ? the	 ? robotic	 ? arm	 ? is	 ? not	 ? available	 ? for	 ? testing	 ? at	 ?maximum	 ?speeds	 ?under	 ?its	 ?own	 ?control,	 ?it	 ?is	 ?not	 ?feasible	 ?to	 ?use	 ?a	 ?motion	 ?test.	 ?	 ?14	 ?Additionally,	 ?a	 ?software	 ?simulation	 ?of	 ?deflection	 ?was	 ?done	 ?to	 ?calculate	 ?for	 ?maximum	 ?operation	 ?loading.	 ?Stress,	 ?strain	 ?and	 ?deflection	 ?were	 ?analyzed	 ?with	 ?a	 ?30	 ?kg	 ?load	 ?from	 ?the	 ?robotic	 ?arm	 ?and	 ?a	 ?100	 ?kg	 ?load	 ?for	 ?parts.	 ?With	 ?the	 ?load	 ?distributed	 ?between	 ?the	 ?4	 ?shelves,	 ?deflections	 ?occurred	 ?on	 ?the	 ?order	 ?of	 ?1.14	 ?mm.	 ?These	 ?results	 ?are	 ?acceptable	 ?for	 ?direct	 ?loading	 ?of	 ?the	 ?cart;	 ?however,	 ?the	 ?model	 ?used	 ?for	 ?this	 ?simulation	 ?is	 ?a	 ?simplification	 ?of	 ?true	 ?model	 ?using	 ?square	 ?cross-??section	 ?pipe	 ?with	 ?the	 ?same	 ?area	 ?moment	 ?of	 ?inertia.	 ?The	 ?results	 ?also	 ?vary	 ?from	 ?the	 ?loading	 ?test	 ?done	 ?on	 ?the	 ?cart	 ?prototype,	 ?as	 ?the	 ?physical	 ?load	 ?was	 ?concentrated	 ?on	 ?one	 ?shelf,	 ?in	 ?a	 ?single	 ?bin.	 ?	 ?Stability	 ?and	 ?Control	 ?	 ? Maneuvering	 ? the	 ? cart	 ? through	 ? simple	 ? obstacles	 ? and	 ? around	 ? corners	 ? proved	 ? to	 ? be	 ?quite	 ?difficult	 ?during	 ?this	 ?testing	 ?phase;	 ?turning	 ?the	 ?cart	 ? is	 ?different	 ?than	 ?it	 ?would	 ?be	 ?for	 ?a	 ?standard	 ?wagon	 ?or	 ?cart	 ?design.	 ?	 ?When	 ?turning	 ?the	 ?cart,	 ?the	 ?entire	 ?structure	 ?rotates	 ?around	 ?a	 ?vertical	 ?axis	 ?centered	 ?between	 ?the	 ?two	 ?middle,	 ?fixed	 ?casters.	 ?	 ?This	 ?method	 ?of	 ?control	 ?means	 ?that	 ?the	 ?cart	 ?does	 ?not	 ?need	 ?a	 ?large	 ?region	 ?to	 ?turn	 ?a	 ?corner	 ?and	 ?can	 ?make	 ?a	 ?90	 ?degree	 ?turn	 ?between	 ? two	 ?hallways	 ? that	 ?are	 ?only	 ?approximately	 ?half	 ? the	 ? longest	 ?distance	 ?between	 ? two	 ?points	 ?on	 ?the	 ?base	 ?of	 ?the	 ?cart.	 ?	 ? Pulling	 ? the	 ? cart	 ? from	 ? an	 ? elevated	 ? position,	 ? such	 ? as	 ? an	 ? overhead	 ? crane,	 ? behaves	 ?similar	 ?to	 ?a	 ?human	 ?pulling	 ?the	 ?cart,	 ?provided	 ?the	 ?angle	 ?that	 ?the	 ?crane	 ?pulls	 ?the	 ?cart	 ?from	 ?is	 ?greater	 ?than	 ?45	 ?degrees	 ?from	 ?vertical.	 ? 	 ? In	 ?a	 ?factory	 ?setting	 ?the	 ?cart	 ?will	 ?be	 ?pulled	 ?from	 ?the	 ?same	 ?overhead	 ?crane	 ?system	 ?that	 ?carries	 ?the	 ?automobile	 ?component	 ?through	 ?the	 ?assembly	 ?line.	 ? 	 ?The	 ?presence	 ?of	 ? the	 ? component	 ? in	 ? front	 ?of	 ? the	 ? cart	 ? should	 ? require	 ? that	 ? the	 ? cart	 ? is	 ? a	 ?distance	 ?back	 ?from	 ?the	 ?crane	 ?point	 ?and	 ?this	 ?will	 ?work	 ?with	 ?the	 ?restrictions	 ?found	 ?in	 ?testing.	 ?	 ? The	 ? cart	 ? was	 ? able	 ? to	 ? manage	 ? obstacles	 ? up	 ? to	 ? 3?	 ? in	 ? height,	 ? having	 ? a	 ? sloped	 ? side,	 ?without	 ? getting	 ? stuck	 ? or	 ? experiencing	 ? large	 ? amounts	 ? of	 ? stress	 ? in	 ? the	 ? handle.	 ? 	 ? Obstacles	 ?larger	 ? than	 ?3?	 ?will	 ? cause	 ?more	 ? issues	 ?with	 ? the	 ?height	 ?of	 ? the	 ?base	 ?of	 ? the	 ? frame	 ?and	 ?would	 ?require	 ?a	 ?modification	 ?of	 ?the	 ?size	 ?of	 ?the	 ?casters.	 ?	 ?The	 ?biggest	 ?concerns	 ?in	 ?the	 ?factory	 ?setting	 ?are	 ?dropped	 ?parts,	 ?of	 ?variable	 ? size	 ?but	 ?generally	 ?bolts	 ?or	 ?equivalent	 ? size	 ?objects	 ?are	 ?most	 ?common,	 ?and	 ?cables.	 ?	 ?The	 ?cables	 ?and	 ?the	 ?protective	 ?covering	 ?that	 ?is	 ?generally	 ?laid	 ?over	 ?them	 ?are	 ? assumed	 ? to	 ? be	 ? smaller	 ? than	 ? 2?	 ? in	 ? height	 ? and	 ? will	 ? not	 ? cause	 ? issues	 ? with	 ? the	 ? current	 ?design.	 ?	 ?	 ?15	 ?Vibration	 ?Testing	 ?	 ? SolidWorks	 ?vibrations	 ?simulations	 ?determined	 ?that	 ?the	 ?current	 ?design	 ?has	 ?resonant	 ?frequencies	 ? at	 ? 7.8,	 ? 14.2,	 ? 16.8,	 ? 20.2	 ? and	 ? 48.1	 ?Hz	 ? along	 ? the	 ? transverse	 ? axis	 ? (parallel	 ? to	 ? the	 ?drive	 ?axis	 ?of	 ?the	 ?cart).	 ?The	 ?analysis	 ?was	 ?done	 ?at	 ?much	 ?higher	 ?forces	 ?than	 ?will	 ?be	 ?applied	 ?to	 ?the	 ? cart	 ? in	 ? operation,	 ? in	 ? order	 ? to	 ? increase	 ? the	 ? result	 ? resolution.	 ? For	 ? forces	 ? of	 ? 1	 ? kN	 ? at	 ? the	 ?above	 ?frequencies,	 ?deflections	 ?on	 ?the	 ?order	 ?of	 ?20	 ?cm	 ?occurred.	 ?The	 ?maximum	 ?displacement	 ?was	 ? found	 ?at	 ? the	 ? top	 ?of	 ? the	 ?shelf	 ? side	 ?of	 ? the	 ?cart.	 ?These	 ? frequencies	 ?do	 ?not	 ?correspond	 ? to	 ?probable	 ?operating	 ?conditions;	 ?there	 ?will	 ?no	 ?direct	 ?sources	 ?of	 ?vibrations	 ?at	 ?or	 ?above	 ?7.8	 ?Hz,	 ?other	 ? than	 ? robot	 ? malfunction.	 ? Should	 ? the	 ? WAM	 ? arm	 ? oscillate	 ? along	 ? the	 ? transverse	 ? axis,	 ?vibrations	 ?may	 ?cause	 ?deflections	 ?on	 ?the	 ?order	 ?of	 ?2	 ?cm	 ?from	 ?the	 ?norm.	 ?Possible	 ?indirect	 ?sources	 ?of	 ?vibrations	 ?include	 ?travel	 ?over	 ?a	 ?rough,	 ?surface	 ?with	 ?a	 ?pattern	 ?for	 ?which	 ? the	 ? velocity	 ? creates	 ? a	 ? periodic	 ? oscillation	 ? of	 ? the	 ? above	 ? frequencies.	 ? However,	 ? even	 ?this	 ?would	 ? not	 ? cause	 ? excessive	 ? vibration,	 ? as	 ? this	 ?motion	 ? is	 ? not	 ? along	 ? the	 ? primary	 ? axis	 ? of	 ?resonance.	 ?Additionally,	 ?further	 ?implementation	 ?of	 ?the	 ?robot	 ?drive-??axis	 ?should	 ?use	 ?this	 ?data	 ?to	 ?ensure	 ?the	 ?drive	 ?motor	 ?runs	 ?at	 ?a	 ?lower	 ?frequency	 ?(RPM	 ?<<	 ?468).	 ? Additional	 ? simulations	 ?were	 ? done	 ? to	 ? evaluate	 ? the	 ? effects	 ? of	 ? adding	 ? I-??beam	 ?supports	 ?to	 ?the	 ?cart	 ?base.	 ?The	 ?results	 ?show	 ?that	 ?the	 ?modified	 ?design	 ?deflects	 ?at	 ?a	 ?maximum	 ?on	 ?the	 ?order	 ?of	 ?1.5	 ?cm	 ?from	 ?the	 ?norm.	 ?Even	 ?significant	 ?structure	 ?added	 ?along	 ?the	 ?base	 ?does	 ?not	 ? counteract	 ? the	 ? main	 ? resonant	 ? vibration	 ? along	 ? the	 ? transverse	 ? axis.	 ? Should	 ? operation	 ?show	 ? that	 ? this	 ? is	 ? a	 ? concern,	 ? the	 ? cart	 ?will	 ? need	 ? additional	 ? cross	 ? bracing	 ?between	 ? the	 ? shelf	 ?side	 ?and	 ?the	 ?robot-??axis	 ?side	 ?at	 ?a	 ?higher	 ?point.	 ?Parts	 ?Accessibility	 ?	 ? Having	 ?the	 ?robot	 ?arm	 ?mounted	 ?on	 ?the	 ?rail	 ?system	 ?allows	 ?the	 ?arm	 ?to	 ?have	 ?horizontal	 ?access	 ?to	 ?the	 ?entire	 ?cart,	 ?regardless	 ?of	 ?length.	 ?	 ?The	 ?vertical	 ?range	 ?of	 ?the	 ?arm	 ?is	 ?dependent	 ?on	 ?the	 ?dimension	 ?of	 ? the	 ?arm,	 ? in	 ? this	 ? case	 ? the	 ?WAM	 ?robotic	 ? arm.	 ? 	 ?The	 ?dimensions	 ?of	 ? the	 ?arm	 ?Appendix	 ? B	 ? were	 ? used	 ? in	 ? the	 ? original	 ? design	 ? parameters	 ? and	 ? the	 ? accessibility	 ? testing	 ?confirmed	 ?that	 ?the	 ?sizing	 ?was	 ?correct	 ?for	 ?the	 ?given	 ?arm.	 ?	 ? In	 ? the	 ? event	 ? of	 ? power	 ? failure	 ? or	 ? robotic	 ? control	 ? failure,	 ? the	 ? cart	 ? needs	 ? to	 ? be	 ?accessible	 ? by	 ? humans.	 ? 	 ? The	 ? open	 ? design	 ? of	 ? the	 ? frame	 ? allows	 ? a	 ? worker	 ? to	 ? reach	 ? in	 ? from	 ?behind	 ? the	 ? shelves	 ? or	 ? across	 ? the	 ? rails	 ? and	 ? into	 ? bins	 ? from	 ? the	 ? front.	 ? 	 ? The	 ? ease	 ? of	 ? human	 ?access	 ? to	 ? the	 ?bins	 ?means	 ? that	 ? the	 ?possibility	 ?of	 ?human/robot	 ?collisions	 ? is	 ?quite	 ?high.	 ? 	 ?The	 ?result	 ?of	 ? this	 ? is	 ? that	 ? there	 ?needs	 ? to	 ?be	 ?a	 ?safety	 ?mechanism	 ? in	 ?place	 ? to	 ?prevent	 ? the	 ?worker	 ?	 ?16	 ?from	 ?being	 ?injured	 ?by	 ?contact	 ?with	 ?the	 ?robot	 ?moving	 ?at	 ?high	 ?speeds.	 ?	 ?At	 ?the	 ?time	 ?of	 ?project	 ?completion,	 ?no	 ?adequate	 ?safety	 ?mechanism	 ?has	 ?been	 ?devised.	 ?2.5	 ?Alternative	 ?Considerations	 ?	 ? 	 ?	 ? Throughout	 ?the	 ?design	 ?process	 ?there	 ?were	 ?multiple	 ?considerations	 ?that	 ?were	 ?not	 ?part	 ?of	 ?the	 ?final	 ?design	 ?for	 ?particular	 ?reasons.	 ?	 ?These	 ?considerations	 ?include	 ?methods	 ?for	 ?actuating	 ?the	 ?motion	 ?of	 ?the	 ?robotic	 ?arm	 ?mount	 ?along	 ?the	 ?rails,	 ?strengthening	 ?the	 ?overall	 ?structure,	 ?identifying	 ?markers	 ?on	 ?bins	 ?and	 ?pallets,	 ? foam	 ?structures	 ?for	 ?holding	 ?parts	 ?within	 ?bins	 ?and	 ?on	 ?pallets	 ?and	 ?a	 ?turnable	 ?front	 ?axle.	 ? 	 ?Cable	 ?Driven	 ?Linear	 ?Actuation	 ?	 ? The	 ? motion	 ? of	 ? the	 ? robotic	 ? arm	 ? along	 ? the	 ? length	 ? of	 ? the	 ? rail	 ? system	 ? needs	 ? to	 ? be	 ?governed	 ?by	 ?an	 ?accurate	 ?consistent	 ?method.	 ? 	 ?Several	 ?design	 ?options	 ?were	 ?researched	 ?as	 ?a	 ?means	 ?of	 ?actuation	 ?and	 ?each	 ?has	 ?its	 ?benefits	 ?and	 ?costs.	 ?	 ?Belt	 ?driven	 ?actuation	 ?would	 ?require	 ?timing	 ?belt	 ?precision	 ?and	 ?belts	 ?have	 ? the	 ? issue	 ?of	 ? stretching	 ?over	 ? time	 ?which	 ?will	 ?decrease	 ?the	 ? accuracy	 ? of	 ? the	 ? timing.	 ? 	 ? Lead	 ? screws	 ? are	 ? strong	 ? and	 ? should	 ? not	 ? deform	 ? over	 ? time;	 ?however	 ?a	 ? lead	 ? screw	 ?over	 ? the	 ?entire	 ? length	 ?of	 ? the	 ? rail	 ?would	 ?have	 ? flexure	 ?due	 ? to	 ? lack	 ?of	 ?support	 ?and	 ?this	 ?could	 ?lead	 ?to	 ?seizing	 ?in	 ?the	 ?system.	 ?	 ?Cables	 ?offer	 ?the	 ?benefits	 ?of	 ?each	 ?system	 ?without	 ? having	 ? the	 ? problems	 ? of	 ? stretching	 ? or	 ? flexure,	 ? provided	 ? the	 ? cables	 ? are	 ? of	 ? strong	 ?enough	 ?steel	 ?under	 ?high	 ?enough	 ?tension.	 ?	 ?The	 ?main	 ?drawback	 ?of	 ?the	 ?cable	 ?system	 ?is	 ?that	 ?it	 ?requires	 ?pulleys	 ?on	 ? the	 ?ends	 ?of	 ? the	 ? cart	 ? so	 ? that	 ? the	 ? cables	 ? to	 ?not	 ? rest	 ?directly	 ?on	 ? the	 ? cart	 ?frame,	 ?this	 ?adds	 ?to	 ?the	 ?length	 ?of	 ?the	 ?cart	 ?but	 ?only	 ?by	 ?the	 ?size	 ?of	 ?the	 ?pulleys.	 ?	 ?The	 ?final	 ?design	 ?does	 ?not	 ?include	 ?the	 ?cable	 ?system,	 ?as	 ?it	 ?would	 ?require	 ?much	 ?more	 ?planning	 ?and	 ?expertise	 ?to	 ?produce	 ?accurately.	 ?I-??Beam	 ?Frame	 ?Strengthening	 ?	 ? As	 ?mentioned	 ?in	 ?section	 ?2.4	 ?Discussion	 ?of	 ?Results,	 ?the	 ?amount	 ?of	 ?angular	 ?deflection	 ?in	 ?the	 ?cart	 ?is	 ?higher	 ?than	 ?the	 ?anticipated	 ?maximum.	 ? 	 ?The	 ?lack	 ?of	 ?structural	 ?strength	 ?across	 ?the	 ? frame	 ? is	 ? the	 ?main	 ? reason	 ? that	 ? the	 ? frame	 ? is	 ? able	 ? to	 ? bend	 ? so	 ?much	 ? under	 ? loading.	 ? 	 ? To	 ?reduce	 ?the	 ?effect	 ?of	 ?the	 ?loading	 ?on	 ?the	 ?frame,	 ?it	 ?is	 ?necessary	 ?to	 ?increase	 ?the	 ?strength	 ?of	 ?the	 ?crossbeams	 ? on	 ? the	 ? base	 ? of	 ? the	 ? frame.	 ? 	 ? Placing	 ? I-??beams	 ? across	 ? the	 ? base	 ? of	 ? the	 ? frame	 ?will	 ?increase	 ?the	 ?rigidity	 ?of	 ?the	 ?structure	 ?and	 ?reduce	 ?the	 ?amount	 ?of	 ?angular	 ?deflection	 ?present	 ?in	 ?the	 ? system.	 ? 	 ? Another	 ? possible	 ? way	 ? to	 ? shore	 ? up	 ? the	 ? strength	 ? of	 ? the	 ? base	 ? is	 ? to	 ? add	 ? a	 ? ??	 ?	 ?17	 ?aluminum	 ? base	 ? plate.	 ? 	 ? The	 ? combination	 ? of	 ? both	 ? base	 ? plate	 ? and	 ? beams	 ? is	 ? the	 ? optimum	 ?solution.	 ?	 ?The	 ?beams	 ?and	 ?base	 ?plate	 ?were	 ?not	 ?added	 ?to	 ?the	 ?cart	 ?due	 ?to	 ?cost	 ?and	 ?timeline.	 ?Bin	 ?Identification	 ?System	 ?Identifying	 ?which	 ?bin	 ?contains	 ? the	 ?needed	 ?parts	 ? is	 ?something	 ? that	 ? the	 ?robotic	 ?arm	 ?should	 ?be	 ?able	 ? to	 ?do	 ?while	 ? in	 ?operation.	 ? 	 ?Pre-??programmed	 ?coordinates	 ? for	 ? the	 ? location	 ?of	 ?the	 ? desired	 ? bin	 ? are	 ? not	 ? ideal	 ? because	 ? of	 ? the	 ? possibility	 ? that	 ? the	 ? arm	 ?may	 ? lose	 ? alignment	 ?while	 ?active.	 ?	 ?Radio	 ?frequency	 ?identifier	 ?(RFID)	 ?chips	 ?offer	 ?a	 ?simple	 ?method	 ?of	 ?determining	 ?which	 ? bin	 ? is	 ? near	 ? the	 ? arm	 ? but	 ? signal	 ? overlap	 ? could	 ? cause	 ? some	 ? difficulty	 ? in	 ? accurately	 ?finding	 ? the	 ? correct	 ? bin.	 ? 	 ? Barcode	 ? or	 ? quick	 ? response	 ? (QR)	 ? code	 ? along	 ? with	 ? a	 ? reflectivity	 ?detector	 ? system	 ?would	 ? reduce	 ? the	 ? number	 ? of	 ? signals	 ? down	 ? to	 ? one;	 ? however	 ? to	 ? properly	 ?read	 ?the	 ?code,	 ?the	 ?arm	 ?must	 ?first	 ?locate	 ?the	 ?identifier.	 ?	 ?	 ?Position	 ?locating	 ?is	 ?also	 ?necessary	 ?for	 ?ensuring	 ?that	 ?the	 ?arm	 ?is	 ?passing	 ?between	 ?the	 ?sides	 ?of	 ?the	 ?bin	 ?or	 ?legs	 ?of	 ?the	 ?pallet	 ?and	 ?not	 ?moving	 ?into	 ?the	 ?space	 ?between	 ?bins	 ?or	 ?pallets.	 ?	 ?By	 ? placing	 ? calibration	 ?markers,	 ? similar	 ? to	 ? those	 ? used	 ? on	 ? crash	 ? test	 ? dummies	 ? as	 ? position	 ?markers,	 ? the	 ? arm	 ? can	 ? center	 ? itself	 ? on	 ? the	 ? correct	 ? bin	 ? and	 ? read	 ? the	 ? identifier	 ? tag	 ? before	 ?reaching	 ?in	 ?the	 ?bin	 ?to	 ?collect	 ?the	 ?part.	 ? 	 ?Dealing	 ?with	 ?the	 ?robotic	 ?arm	 ?control	 ? is	 ?beyond	 ?the	 ?scope	 ? of	 ? this	 ? project	 ? but	 ? it	 ? is	 ? good	 ? to	 ? note	 ? that	 ? these	 ? identification	 ? systems	 ? have	 ? been	 ?considered	 ?in	 ?the	 ?design	 ?and	 ?selection	 ?of	 ?bins	 ?and	 ?pallets.	 ?Foam	 ?Parts	 ?Packaging	 ?	 ? Parts	 ?contained	 ?on	 ?the	 ?cart	 ?may	 ?come	 ?in	 ?many	 ?sizes	 ?and	 ?shapes	 ?and	 ?holding	 ?them	 ?in	 ?a	 ?way	 ?that	 ?allows	 ?them	 ?to	 ?be	 ?easily	 ?accessible	 ?to	 ?human	 ?and	 ?robot	 ?requires	 ?that	 ?the	 ?parts	 ?are	 ? clearly	 ? divided	 ? and	 ? ordered.	 ? 	 ? Some	 ? parts	 ? are	 ? flexible	 ? or	 ? unbalanced	 ? and	 ? will	 ? move	 ?around	 ? the	 ?bin	 ?or	 ?pallet	 ? as	 ? the	 ? cart	 ?moves	 ?around	 ? the	 ? factory	 ? floor.	 ? 	 ? If	 ? the	 ? robotic	 ? arm	 ? is	 ?required	 ? to	 ? search	 ? for	 ? each	 ? part	 ? and	 ? distinguish	 ? the	 ? parts	 ? contained	 ? in	 ? a	 ? single	 ? bin,	 ? the	 ?amount	 ?of	 ?time	 ?to	 ?gather	 ?the	 ?part	 ?for	 ?the	 ?worker	 ?will	 ?be	 ?increased.	 ?	 ?Placing	 ?the	 ?parts	 ?inside	 ?pre-??cut	 ? foam	 ? structures	 ? will	 ? prevent	 ? movement	 ? and	 ? simplify	 ? handling	 ? of	 ? the	 ? parts.	 ?	 ?Polyethylene	 ? foam	 ? can	 ? be	 ? cut	 ? into	 ? the	 ? desired	 ? shape	 ? and	 ? will	 ? resist	 ? impacts	 ? as	 ? well	 ? as	 ?organizing	 ?the	 ?parts	 ?(Thermal	 ?Foams	 ?Inc.,	 ?2012).	 ?	 ?Unfixed	 ?Front	 ?Axle	 ?	 ? The	 ? current	 ? cart	 ? has	 ? casters	 ? fixed	 ? at	 ? six	 ? points	 ? on	 ? the	 ? frame,	 ? two	 ? in	 ? front,	 ? two	 ?halfway	 ? down	 ? the	 ? length	 ? and	 ? two	 ? at	 ? the	 ? back.	 ? 	 ? The	 ? front	 ? casters	 ? are	 ? swivel	 ? casters,	 ? the	 ?	 ?18	 ?middle	 ?pair	 ?is	 ?fixed	 ?casters	 ?and	 ?the	 ?rear	 ?pair	 ?is	 ?swivel	 ?casters	 ?with	 ?brakes.	 ?	 ?Having	 ?the	 ?two	 ?fixed	 ?casters	 ?in	 ?the	 ?middle	 ?reduces	 ?the	 ?amount	 ?of	 ?excess	 ??slip?	 ?in	 ?turning	 ?and	 ?increases	 ?the	 ?amount	 ? of	 ? control	 ? in	 ? maneuvering	 ? the	 ? cart.	 ? 	 ? Attached	 ? to	 ? the	 ? front	 ? of	 ? the	 ? cart	 ? is	 ? a	 ? T-??bar	 ?handle	 ? that	 ? is	 ?meant	 ? to	 ?give	 ?control	 ? for	 ?pulling	 ? the	 ?cart	 ?around	 ?the	 ?assembly	 ? line	 ?but	 ? this	 ?would	 ?ideally	 ?be	 ?replaced	 ?by	 ?a	 ?better	 ?handle	 ?system.	 ?	 ?The	 ?current	 ?steering	 ?system	 ?does	 ?not	 ?lend	 ?itself	 ?to	 ?quick	 ?maneuverability	 ?but	 ?it	 ?does	 ?work	 ?as	 ?anticipated	 ?in	 ?most	 ?situations.	 ?	 ?As	 ?a	 ?means	 ? of	 ? increasing	 ? control	 ? and	 ? decreasing	 ? turning	 ? radius,	 ? the	 ? front	 ? of	 ? the	 ? cart	 ? could	 ? be	 ?modified	 ?to	 ?include	 ?an	 ?axle	 ?that	 ?is	 ?connected	 ?to	 ?the	 ?frame	 ?via	 ?a	 ?joint	 ?that	 ?allows	 ?for	 ?rotating	 ?the	 ?axle	 ?under	 ?the	 ?cart.	 ?	 ?The	 ?axle	 ?would	 ?also	 ?be	 ?connected	 ?to	 ?the	 ?handle	 ?by	 ?another	 ?joint	 ?so	 ?that	 ?the	 ?handle	 ?could	 ?adjust	 ?to	 ?being	 ?pulled	 ?at	 ?a	 ?higher	 ?or	 ?lower	 ?angle.	 ?	 ?	 ?	 ? Similar	 ? to	 ? the	 ? control	 ? system	 ? of	 ? a	 ? wagon,	 ? this	 ? axle-??handle	 ? configuration	 ? makes	 ?turning	 ? corners	 ? easier	 ? and	 ? it	 ? even	 ?makes	 ? it	 ? possible	 ? for	 ? the	 ? cart	 ? to	 ?maneuver	 ? is	 ? regions	 ?where	 ? the	 ? space	 ? between	 ? obstacles	 ? is	 ? on	 ? the	 ? same	 ? scale	 ? as	 ? the	 ? cart	 ? length.	 ? 	 ? The	 ? added	 ?complexity	 ? of	 ? designing	 ? the	 ? axle	 ? and	 ? its	 ? connection	 ? to	 ? the	 ? frame	 ? make	 ? this	 ? option	 ? not	 ?suitable	 ?to	 ?the	 ?current	 ?state	 ?of	 ?the	 ?project.	 ?	 ?The	 ?current	 ?swivel-??fixed	 ?caster	 ?configuration	 ?is	 ?sufficient	 ?for	 ?a	 ?proof-??of-??concept	 ?model	 ?but	 ?in	 ?later	 ?versions	 ?it	 ?may	 ?be	 ?worth	 ?considering	 ?the	 ?unfixed	 ?axle	 ?option	 ?again.	 ?Sloped	 ?Bearing	 ?Rail	 ?Pallet	 ?System	 ?	 ?	 ? An	 ?alternative	 ?design	 ?to	 ?the	 ?pallet	 ?system	 ?is	 ?to	 ?introduce	 ?a	 ?sloped	 ?tray	 ?for	 ?the	 ?pallet	 ?to	 ?slide	 ?down.	 ?	 ?Instead	 ?of	 ?the	 ?method	 ?of	 ?pegs,	 ?the	 ?pallet	 ?would	 ?slowly	 ?slide	 ?down	 ?a	 ?bearing	 ?track	 ?until	 ?it	 ?reaches	 ?the	 ?back	 ?of	 ?the	 ?cart,	 ?and	 ?is	 ?stopped	 ?by	 ?a	 ?back	 ?brace	 ?while	 ?the	 ?pallet?s	 ?horizontal	 ?motion	 ?is	 ?restricted	 ?by	 ?a	 ?wall	 ?or	 ?pipe	 ?on	 ?either	 ?side.	 ? 	 ?The	 ?front	 ?would	 ?be	 ?raised	 ?according	 ?to	 ?the	 ?design	 ?specifications	 ?set	 ?by	 ?the	 ?size	 ?of	 ?the	 ?robotic	 ?arm	 ?(ie.	 ?its	 ?ability	 ?to	 ?fit	 ?the	 ?hand	 ?underneath	 ?the	 ?pallet).	 ?	 ?The	 ?benefit	 ?of	 ?this	 ?potential	 ?design	 ?is	 ?that	 ?it	 ?requires	 ?little	 ?precision	 ?by	 ?the	 ?robotic	 ?arm	 ?(or	 ?human)	 ?in	 ?order	 ?to	 ?handle	 ?while	 ?offering	 ?a	 ?simpler	 ?overall	 ?pallet	 ?design.	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?19	 ?2.6	 ?Physical	 ?Model	 ?	 ?Figure	 ?12:	 ?Final	 ?Frame	 ?of	 ?Cart	 ?	 ?Figure	 ?13:	 ?Bins	 ?on	 ?Shelf	 ?with	 ?Loading	 ?	 ?20	 ?	 ?Figure	 ?14:	 ?Mounting	 ?Flange	 ?on	 ?Back	 ?of	 ?Bins	 ?	 ?Figure	 ?15:	 ?Bottom	 ?of	 ?Bin	 ?Supported	 ?Above	 ?Shelf	 ?By	 ?Flange	 ?	 ?21	 ?	 ?Figure	 ?16:	 ?PR2	 ?Pushing	 ?Cart	 ?	 ?	 ?	 ?	 ?	 ?22	 ?3.0	 ?Conclusions	 ?	 ? The	 ?stability	 ?and	 ?deflection	 ? tests	 ?show	 ?that	 ? the	 ?delivered	 ?cart	 ? is	 ?stable	 ?enough	 ?to	 ?support	 ?the	 ? robotic	 ? arm	 ? and	 ? parts	 ? loading	 ? in	 ? a	 ? stationary	 ? state	 ? and	 ? provided	 ? the	 ? crossbeam	 ? structure	 ? is	 ?added	 ? to	 ? the	 ? frame,	 ? it	 ? is	 ? inferred	 ? that	 ? the	 ? structure	 ?will	 ? also	 ? be	 ? able	 ? to	 ? handle	 ? the	 ? effects	 ? of	 ? the	 ?moving	 ?arm.	 ?	 ?The	 ?bin	 ?used	 ?in	 ?the	 ?vertical	 ?deflection	 ?test	 ?was	 ?capable	 ?of	 ?holding	 ?50	 ?lbs	 ?of	 ?the	 ?weight	 ?without	 ?any	 ?ill	 ?effects,	 ?showing	 ?that	 ?the	 ?Akro	 ?storage	 ?bin	 ?system	 ?is	 ?sufficient	 ?to	 ?hold	 ?the	 ?anticipated	 ?loading	 ?of	 ?parts.	 ?	 ?	 ?	 ? The	 ?reconfigurability	 ?of	 ?the	 ?CreForm	 ?system	 ?allows	 ?for	 ?redesigning	 ?the	 ?cart	 ?to	 ?better	 ?fit	 ?the	 ?needs	 ?of	 ?the	 ?situation.	 ?	 ?Based	 ?on	 ?the	 ?assumption	 ?that	 ?the	 ?cart	 ?will	 ?be	 ?used	 ?as	 ?a	 ?parts	 ?storage	 ?system	 ?to	 ? follow	 ?a	 ?door	 ?around	 ?an	 ?automotive	 ?assembly	 ? line,	 ? the	 ?CreForm	 ?system	 ?is	 ?utilized	 ? to	 ?build	 ? the	 ?design	 ?that	 ?would	 ?later	 ?be	 ?made	 ?from	 ?permanently	 ?welding	 ?steel	 ?tubing.	 ?	 ?	 ?	 ? The	 ? robot	 ? accessibility	 ? test	 ? shows	 ? that	 ? the	 ? robotic	 ? arm	 ? is	 ? capable	 ? of	 ? reaching,	 ? and	 ?theoretically	 ?lifting,	 ?the	 ?pallets	 ?regardless	 ?of	 ?whether	 ?the	 ?pallets	 ?employ	 ?a	 ?conical-??peg	 ?or	 ?sloped-??leg	 ?system	 ?of	 ?self-??alignment.	 ?	 ?The	 ?simple	 ?handling	 ?of	 ?the	 ?pallets	 ?will	 ?allow	 ?the	 ?arm	 ?to	 ?carry	 ?and	 ?hand-??off	 ?flexible	 ?and	 ?irregular	 ?parts	 ?that	 ?would	 ?be	 ?difficult	 ?to	 ?manipulate	 ?directly.	 ?	 ? The	 ? cart	 ? design	 ? is	 ? also	 ? capable	 ? of	 ? navigating	 ? obstacles	 ? that	 ? exist	 ? in	 ? a	 ? factory	 ? setting	 ? by	 ?avoiding	 ? or	 ? going	 ? over	 ? obstacles.	 ? 	 ? The	 ? steering	 ? allows	 ? the	 ? cart	 ? to	 ? have	 ? a	 ? small	 ? cornering	 ? radius	 ?while	 ?maintaining	 ?control	 ?when	 ?towed	 ?by	 ?an	 ?overhead	 ?crane.	 ?	 ?The	 ?casters	 ?and	 ?the	 ?flexibility	 ?along	 ?the	 ? length	 ? of	 ? the	 ? cart	 ? allow	 ? the	 ? cart	 ? to	 ? climb	 ?over	 ? obstacles,	 ? less	 ? than	 ?3?	 ? in	 ? height,	 ? that	 ? it	 ?would	 ?encounter	 ?in	 ?a	 ?factory	 ?setting.	 ?	 ?23	 ?4.0	 ?Project	 ?Deliverables	 ?4.1	 ?Final	 ?Deliverables	 ?1)	 ?Cart	 ?Frame	 ?-??	 ?The	 ?final	 ?cart	 ?frame	 ?delivered	 ?is	 ?designed	 ?as	 ?a	 ?shelving	 ?section	 ?connected	 ?to	 ?a	 ? rail	 ? support	 ? structure.	 ? 	 ?The	 ?design,	 ? as	 ? can	 ?be	 ? seen	 ? in	 ?Appendix	 ?A	 ? is	 ? consistent	 ?with	 ? the	 ?proposed	 ?design	 ?and	 ?the	 ?only	 ?changes	 ?in	 ?the	 ?completed	 ?frame	 ?are	 ?the	 ?addition	 ?of	 ?a	 ?central	 ?set	 ?of	 ?fixed	 ?casters	 ?to	 ?give	 ?added	 ?support	 ?to	 ?the	 ?structure	 ?and	 ?a	 ?handle	 ?to	 ?facilitate	 ?towing	 ?the	 ?cart.	 ?	 ?2)	 ?Robotic	 ?arm	 ?mount	 ?-??	 ?The	 ?cart	 ?contains	 ?a	 ?mounting	 ?plate	 ?to	 ?support	 ?the	 ?robotic	 ?arm	 ?on	 ?the	 ? rail	 ? system.	 ? 	 ? The	 ?mount	 ? is	 ? designed	 ? to	 ? hold	 ? only	 ? the	 ?WAM	 ? robotic	 ? arm	 ?model	 ? and	 ? is	 ?capable	 ?of	 ?being	 ?mounted	 ?on	 ?different	 ?bearing	 ?systems	 ?for	 ?a	 ?different	 ?rail	 ?system.	 ?	 ?	 ?	 ?3)	 ?Pallets	 ?-??	 ?Pallets	 ?designed	 ?to	 ?carry	 ?flexible	 ?or	 ?oddly	 ?shaped	 ?parts	 ?are	 ? included	 ?as	 ?part	 ?of	 ?the	 ?final	 ?design.	 ?	 ?Two	 ?alternate	 ?pallet	 ?designs	 ?have	 ?been	 ?produced	 ?as	 ?options	 ?for	 ?use	 ?in	 ?the	 ?proof	 ?of	 ?concept.	 ?	 ?The	 ?conical	 ?peg	 ?pallet	 ?is	 ?a	 ?two-??part	 ?system	 ?that	 ?includes	 ?a	 ?base	 ?structure	 ?that	 ?the	 ?pegs	 ?rest	 ?in.	 ?	 ?The	 ?base	 ?is	 ?to	 ?be	 ?secured	 ?on	 ?the	 ?frame	 ?of	 ?the	 ?cart	 ?by	 ?a	 ?secure	 ?method	 ?so	 ?that	 ?the	 ?pallets	 ?will	 ?not	 ?shift	 ?greatly	 ?during	 ?motion.	 ?	 ?The	 ?sloped	 ?leg	 ?pallet	 ?is	 ?designed	 ?to	 ?rest	 ?directly	 ?on	 ?the	 ?shelving	 ?unit	 ?and	 ?does	 ?not	 ?require	 ?additional	 ?components.	 ?	 ?4)	 ?Parts	 ?and	 ?Supplier	 ?List	 ?-??	 ?As	 ?a	 ?means	 ?of	 ?delivering	 ?the	 ?sources	 ?of	 ?the	 ?bins,	 ?frame	 ?structure	 ?and	 ?rail	 ?system,	 ?we	 ?have	 ?put	 ?together	 ?a	 ?parts	 ?and	 ?supplier	 ?list.	 ?This	 ?list	 ?contains	 ?links	 ?to	 ?the	 ?sources	 ?for	 ?each	 ?of	 ?these	 ?components	 ?so	 ?that	 ?any	 ?additional	 ?builds	 ?can	 ?reproduce	 ?the	 ?same	 ?cart.	 ? 	 ? In	 ? the	 ? case	 ? of	 ? the	 ?bins	 ? and	 ? rail	 ? systems,	 ?multiple	 ? sources	 ? are	 ? listed	 ? as	 ? some	 ?offer	 ? a	 ?better	 ?option	 ?for	 ?different	 ?situations.	 ?	 ?The	 ?situations	 ?that	 ?give	 ?rise	 ?to	 ?the	 ?use	 ?of	 ?a	 ?particular	 ?supplier	 ?are	 ?described	 ?in	 ?the	 ?comments	 ?section	 ?of	 ?the	 ?list.	 ?	 ?5)	 ?Alteration	 ?Directions	 ?-??	 ?Accompanying	 ?the	 ? final	 ?cart	 ?design	 ? is	 ?directions	 ?on	 ?how	 ?to	 ?alter	 ?the	 ?current	 ?cart	 ?so	 ? that	 ? it	 ?can	 ?be	 ?changed	 ? from	 ?a	 ? two-??meter	 ?version	 ?down	 ?to	 ?a	 ?one-??meter	 ?build.	 ? 	 ?These	 ?instructions	 ?give	 ?step-??by-??step	 ?directions	 ?such	 ?that	 ?the	 ?cart	 ?will	 ?not	 ?require	 ?a	 ?large	 ? amount	 ? of	 ? disassembly	 ? prior	 ? to	 ? alterations	 ? and	 ? will	 ? become	 ? modular	 ? so	 ? that	 ?reassembly	 ?into	 ?the	 ?two-??meter	 ?version	 ?can	 ?be	 ?done	 ?quickly	 ?and	 ?effectively.	 ?	 ?24	 ?	 ?4.2	 ?Financial	 ?Summary	 ?All	 ?pricing	 ?is	 ?in	 ?USD,	 ?$250	 ?was	 ?paid	 ?by	 ?the	 ?stipend	 ?from	 ?the	 ?project	 ?lab	 ?and	 ?the	 ?CARIS	 ?Lab	 ?as	 ?a	 ?part	 ?of	 ?their	 ?research	 ?grant	 ?covered	 ?the	 ?remainder.	 ?Table	 ?1:	 ?Pricing	 ?of	 ?CreForm	 ?Materials	 ?Part	 ?ID	 ? Description	 ? Qty	 ? Unit	 ?Cost	 ? Extended	 ?H-??4000GRY	 ? PLASTIC	 ?COVERED	 ?STEEL	 ?PIPE,	 ?4M	 ? 13	 ? $11.40	 ? $148.20	 ?HF-??4000GRY	 ? FLAT	 ?PIPE,	 ?PLASTIC	 ?COATED	 ?STEEL	 ?4M	 ? 2	 ? $22.81	 ? $45.62	 ?HJ-??1	 ? METAL	 ?JOINT	 ?SET	 ?FOR	 ?28	 ?MM	 ?PIPE	 ? 30	 ? $2.38	 ? $71.40	 ?HJ-??2	 ? METAL	 ?JOINT	 ?SET	 ?FOR	 ?28	 ?MM	 ?PIPE	 ? 30	 ? $4.53	 ? $135.90	 ?HJ-??3	 ? METAL	 ?JOINT	 ?SET	 ?FOR	 ?28	 ?MM	 ?PIPE	 ? 8	 ? $6.40	 ? $51.20	 ?HJ-??4	 ? METAL	 ?JOINT	 ?SET	 ?FOR	 ?28	 ?MM	 ?PIPE	 ? 4	 ? $3.70	 ? $14.80	 ?MF1-??1	 ? METAL	 ?JOINT	 ?SET	 ?FOR	 ?FLAT	 ?PIPE	 ? 4	 ? $2.90	 ? $11.60	 ?MF1-??2	 ? METAL	 ?JOINT	 ?SET	 ?FOR	 ?FLAT	 ?PIPE	 ? 2	 ? $4.33	 ? $8.66	 ?J-??110	 ? PLASTIC	 ?END	 ?CAP	 ?FOR	 ?28	 ?MM	 ?BLACK	 ? 20	 ? $0.11	 ? $2.20	 ?ESC-??100U-??28	 ? CASTER,	 ?28	 ?INSERT,	 ?URETHANE,	 ?SWVL	 ? 2	 ? $17.22	 ? $34.44	 ?ESC-??100SU-??28	 ? CASTER,	 ?28	 ?INSERT,	 ?URETH,	 ?SWV,	 ?BRK	 ? 2	 ? $19.97	 ? $39.94	 ?ESC-??100FU-??28	 ? CASTER,	 ?28	 ?INSERT,	 ?URETH,	 ?FIXED	 ? 2	 ? $16.99	 ? $33.98	 ?Total	 ?Weight:	 ? 120.56	 ?LBS	 ? 	 ? Total:	 ? $597.97	 ?4.3	 ?Ongoing	 ?Commitment	 ?Following	 ? the	 ? submission	 ? of	 ? this	 ? report,	 ? the	 ? commitment	 ? to	 ? produce	 ? the	 ? alteration	 ?directions	 ?will	 ?still	 ?remain	 ?to	 ?be	 ?dealt	 ?with.	 ?	 ?These	 ?instructions	 ?will	 ?be	 ?submitted	 ?within	 ?one	 ?week	 ?of	 ?the	 ?report	 ?submission	 ?date,	 ?April	 ?2nd.	 ?	 ?25	 ?5.0	 ?Recommendations	 ?	 ? 1)	 ? The	 ?results	 ?of	 ?the	 ?loading	 ?tests	 ?demonstrate	 ?that	 ?the	 ?delivered	 ?cart	 ?acceptably	 ?supports	 ?the	 ?desired	 ?loads	 ?in	 ?a	 ?static	 ?fashion.	 ?The	 ?vertical	 ?strength	 ?of	 ?the	 ?cart	 ?is	 ?more	 ?than	 ?sufficient	 ?for	 ?the	 ?requirements.	 ?However,	 ?transverse	 ?reinforcement	 ?is	 ?required	 ?to	 ?reduce	 ?the	 ?impact	 ?of	 ?periodic	 ?forcing	 ?at	 ?the	 ?resonant	 ?frequencies.	 ?Extra	 ?support	 ?along	 ?the	 ?base	 ?of	 ?the	 ?cart	 ?is	 ?not	 ?sufficient	 ?to	 ?significantly	 ?reduce	 ?the	 ?displacements	 ? from	 ?resonance;	 ? transverse	 ?cross	 ?bracing	 ?between	 ?the	 ?shelves	 ?and	 ?robot-??axis	 ?is	 ?a	 ?potential	 ?solution.	 ?	 ?2)	 ? It	 ? is	 ?determined,	 ?in	 ?conclusion,	 ?that	 ?the	 ?parts-??cart	 ?is	 ?fully	 ?capable	 ?of	 ?having	 ?reconfigurable	 ?options	 ? in	 ? regards	 ? to	 ? overall	 ? dimensions,	 ? as	 ?well	 ? as	 ? bin,	 ? pallet,	 ? and	 ? robotic	 ? arm	 ? sizes.	 ? 	 ?After	 ?testing	 ?the	 ?built	 ?parts-??cart,	 ?a	 ?few	 ?recommendations	 ?must	 ?be	 ?made.	 ?	 ?Firstly,	 ?it	 ?is	 ?recommended	 ?that	 ?the	 ?length	 ?of	 ?the	 ?parts-??cart	 ?be	 ?reduced	 ?for	 ?its	 ?purposes	 ?as	 ?a	 ?test-??bed	 ?in	 ?the	 ?CARIS	 ?Lab.	 ?	 ?By	 ?cutting	 ? down	 ? the	 ? pipe	 ? lengths	 ? the	 ? overall	 ? build	 ? phase	 ? becomes	 ? easier	 ? and	 ? overall	 ? cost	 ? is	 ?reduced;	 ?cart	 ?sections	 ?can	 ?be	 ?made	 ?to	 ?link	 ?together	 ?with	 ?appropriate	 ?joints	 ?if	 ?longer	 ?carts	 ?are	 ?necessary.	 ?	 ?	 ?	 ?3)	 ? As	 ?results	 ?show,	 ?the	 ?robotic	 ?arm	 ?of	 ?the	 ?parts-??cart	 ?is	 ?capable	 ?of	 ?handling	 ?either	 ?parts	 ?in	 ?bins	 ?or	 ?pallets.	 ? 	 ?It	 ? is	 ?recommended	 ?for	 ?testing	 ?purposes	 ?that	 ?a	 ?sloped	 ?self-??aligning	 ?track	 ?system	 ?be	 ?built	 ?to	 ?determine	 ?the	 ?level	 ?of	 ?simplicity	 ?relative	 ?to	 ?using	 ?the	 ?conical-??peg	 ?system.	 ?	 ?At	 ?the	 ?time	 ?of	 ?this	 ? report,	 ? it	 ? is	 ? unclear	 ? whether	 ? a	 ? sloped	 ? track	 ? pallet	 ? would	 ? be	 ? easier	 ? to	 ? maneuver	 ? for	 ? a	 ?robotic	 ?arm	 ?than	 ?the	 ?conical-??peg	 ?system.	 ?	 ?	 ?	 ?	 ?	 ?4)	 ? The	 ?conclusions	 ?show	 ?that	 ?the	 ?current	 ?caster	 ?size	 ?used	 ?allows	 ?the	 ?cart	 ?to	 ?roll	 ?over	 ?obstacles	 ?of	 ? up	 ? to	 ? 3?.	 ? 	 ?As	 ? such,	 ? it	 ? is	 ? recommended	 ? that,	 ? if	 ? the	 ? parts-??cart	 ? is	 ? required	 ? to	 ?maneuver	 ? over	 ?obstacles	 ?taller	 ?than	 ?3?,	 ?larger	 ?casters	 ?be	 ?used.	 ?	 ?Caster	 ?size	 ?will	 ?depend	 ?specifically	 ?on	 ?the	 ?size	 ?of	 ?the	 ?obstacles	 ?it	 ?must	 ?encounter	 ?in	 ?a	 ?factory	 ?setting.	 ?	 ?26	 ?6.0	 ?Appendix	 ?A	 ??	 ?Drawing	 ?and	 ?Models	 ?	 ?Figure	 ?17:	 ?Original	 ?Cart	 ?Design	 ?Sketch	 ?	 ?27	 ?	 ?Figure	 ?18:	 ?SolidWorks	 ?Cart	 ?Model	 ?	 ?Figure	 ?19:	 ?SolidWorks	 ?Cart	 ?Model	 ?-?	 ?Simplified	 ?Simulation	 ?	 ?28	 ?	 ?Figure	 ?20:	 ?SolidWorks	 ?Cart	 ?Model	 ?-?	 ?Simplified	 ?Simulation	 ?with	 ?I-?beams	 ?	 ?Figure	 ?21:	 ?SolidWorks	 ?Model	 ?of	 ?Conical	 ?Peg	 ?	 ?29	 ?	 ?Figure	 ?22:	 ?Conical	 ?Peg	 ?Pallet	 ?Mounting	 ?Plate	 ?	 ?30	 ?7.0	 ?Appendix	 ?B	 ??	 ?Spec	 ?sheets	 ?	 ?625 Mount Auburn StreetCambridge, Massachusetts02138-4555  USAT +617.252.9000F +617.252.9021www.barrett.comWAM-02.2011The Barrett WAM? has a generally spherical workspace approximately 2 meters in diameter.TECHNICAL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE ?2011 BARRETT TECHNOLOGY, INC. Workspace, Isometric ViewBarrett?s Gearless TransmissionsGo to www.barrett.com for complete specifications  ?   part #B2529	 ?31	 ?	 ?	 ? 	 ? 	 ?	 ?	 ?	 ? 	 ?	 ?	 ?8 0 0 - 8 3 9 - 8 8 2 3 w w w.c r e fo r m.c o mH- 2SECTIONHC REF O R MTE C H NIC AL S P E CIFIC ATIO N SCreform Standard PipeCreform Pipe is steel pipe with a plastic resin coated outer surface . An adhesive bonds the resin to the pipepreventing separation. The inner surface is treated with a non-corrosive coating.Typical ApplicationsPreCutting: We offer precut pipe and conveyor as a customer service . Cut to length with a +/-1mm tolerance andeach end deburred . A great time saver when assembling.Bent Pipe: We bend Creform 28mm round pipe as a customer service . Generally, we bend the pipe using a 150, 200,or 250 radius. Larger variable radii also available .Temperature: Creform is designed for use within the temperature range of 15? to 120?F (-10?C to 50?C ).Chemical Resistance: Please inquire with your specific requirement.Note: 28mm is the recommended pipe diameter for general applicationsbecause it is supported by most Creform components. 32mm isgenerally reserved for special purpose applications.Creform Pipe SpecificationsSteel pipe [Cold-rolled steel, SP C C-1 approx. 0.7mm Material (0.03 " ) thick, 28mm;  0.9mm (0.04 " ) thick, 32mm]  plastic resin coatingOutside Diameter 28mm (1.10 " ), nominal32mm (1.26 " ), nominal28mm, approx, 520g/mWeight (5.5ozs./ft.); 32mm approx.740g/m (7.8ozs./ft.)Length 2.5m (8'2 " ), 3.0m (10')4.0m (13'1 " )Gage 28mm No. 2332mm No. 21Plastic ResinAdhesive (to bond plasticresin to steel pipe)Steel PipeInterior CoatingSlide Pipe?  Steel pipe with lowfriction plastic coating?  Low cost conveyance option?  For secondarypresentation angle?  Use as a shelf surface?  Use as a side guide withskatewheel conveyor?  Strength comparable toregular 28mm pipeL Channel Slide Pipe?  Steel pipe with lowfriction plastic coating?  Low cost conveyance option?  For secondarypresentation angle?  Use as a shelf surface?  Use as a side guide withskatewheel conveyor?  Vertical lip for sideguidanceRibbed Pipe?  HPA and HPB interlock and glue together to create adouble pipe beam? Used to build reinforced cart base?  See Technical Section Hfor strength information?  Available pre-glued , please inquireFlat Pipe?  Holds clip-on plastichanging bins?  Use as a shelf surface?  Provides a flat surfacefor labeling?  Provides a flat surfaceto mount drawer slides?  Strength comparableto regular 28mm pipe	 ?32	 ?	 ?	 ? 	 ?8 0 0 - 8 3 9 - 8 8 2 3 w w w.c r e fo r m.c o mH- 3SECTIONHC REF O R MTE C H NIC AL S P E CIFIC ATIO N SCreform Standard 28mm Pipe Strength* Proportional Limit refers to the point where any further force wouldpermanently deform the pipe.?  The pipe rests freely at room temperature on two supports?  A force is applied at 1/2 A at a speed of 50mm/minA Dimension Proportional Limit450mm (1'5 " ) 140kg (308 lbs.)900mm (2'11 " ) 70kg (154 lbs.)1,000mm (3'3 " ) 58kg (128 lbs.)1,100mm (3'7 " ) 52kg (115 lbs.)1,300mm (4'3 " ) 46kg (101 lbs.)1,500mm (4'11 " ) 38kg (84 lbs.)1,800mm (5'10 " ) 32kg (70 lbs.)Experimental ConditionsDeflectionAssume a simply supported H- pipe(? = 28mm) centrally loaded with a30kg (66 lbs.) load . This deflectionwill be considered 100% . Thedeflection of other style pipes andcombinations of pipes and jointsunder the same loading conditionsas the H- pipe are shown below.Pipes Strength DeflectionH- pipe (28mm) 100% 100%H- pipe (28mm)w/ 3/4 "  conduit 180% 78%insideHB- pipe (32mm) 194% 60%H- pipes (28mm) 193% 76%w/ EF-1251H- pipes (28mm) 168% 67%w/ HJ-11HPA/HPB- pipe 392% 13%1000 mm333 mm 333 mm500 mm 500 mmH-H- w/conduitHB-H- w/EF-1251H- w/HPA / HPB-	 ?33	 ?	 ?8 0 0 - 8 3 9 - 8 8 2 3 w w w.c r e fo r m.c o mH- 4SECTIONHC REF O R MTE C H NIC AL S P E CIFIC ATIO N SDetermining Standard Pipe LengthsThe following is true for most Creform joints. Please check the catalog for exact dimensions of an individual joint.?28mm2. Plastic Joints 2. Plastic Joints?32mmPlastic JointPipePlastic JointPipe1. Metal JointsConversion Chart*1. Metal JointsMetal Joint Pipe OptionalJ-110OptionalJB-110Metal Joint Pipe900mm Outer Measurement A-33mm Joint Radius x 2-70mm Pipe Length Inside Joint (35mm x 2)797mm Pipe Length900mm Outer Measurement A-37mm Joint Radius x 2-80mm Pipe Length Inside Joint (40mm x 2)783mm Pipe Length900mm Outer Measurement A-34mm Joint Radius x 2-40mm Pipe Length Inside Joint (20mm x 2)826mm Pipe Length900mm Outer Measurement A-38mm Joint Radius x 2-40mm Pipe Length Inside Joint (20mm x 2)822mm Pipe LengthInches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches,mm Frac . mm Frac . mm Frac . mm Frac . mm Frac .Dec .Approx. Dec . Approx. Dec . Approx. Dec . Approx. Dec . Approx.4 0.1575 3/16 33 1.2992 1-5/16 37 1.4567 1-7/16 40 1.5748 1-9/16 80 3.1496 3-1/85 0.1969 3/16 34 1.3386 1-5/16 38 1.4961 1-1/2 70 2.7559 2-3/4 900 35.4331 35-7/16* Conversion factor is 25.4mm per inch.18.5 70?32?37863A=900mm30 402.518.518.518.519 60?38?32862A=900mm2040319204019	 ?34	 ?	 ?8 0 0 - 8 3 9 - 8 8 2 3 w w w.c r e fo r m.c o mH- 6SECTIONHC REF O R MTE C H NIC AL S P E CIFIC ATIO N SMetal Joint Strength for Standard 28mm PipeA. The holding strength of metal joints versus a horiz ontal or vertical pulling force is a b out 80kg (176 l b s.) These testswere performed at room temperature at a pulling rate of 5mm/min.B. The amount of force a pipe can withstand b efore y ielding, when attached b y  various metal joints, can b e seen b elow.C. The maximum force withstood b y  the shelf in thisexample was 200kg (440 l b s.) b efore slipping occurred .Note: The a b ove examples refer to metal joints whichhave b een attached at the recommended torq ueof 9.8 N m (100kg ? cm or 7-1/4 ft-l b ). These resultswill not b e duplicated with other torq ue values, orin cases where pipe other than Creform standardpipe is used . Also, the y  are actual test valueswithout any  safet y  factors added .At room temperature , a force was applied in the center ofa 1000mm (3' 3 " ) length pipe . The force rate was 1kg/min.E xperimental ConditionsA downward force was applied evenly  on a shelf at roomtemperature and at a rate of 3kg/min.E xperimental ConditionsH J-1 H J-2-3 H J-4 H J-5 H J-6 H J-7H J-180kg (176 l b s.) 80kg (176 l b s.)80kg (176 l b s.) 80kg (176 l b s.)80kg (176 l b s.)H J-2-3 H J-4H J-5 H J-6	 ?35	 ?	 ?8 0 0 - 8 3 9 - 8 8 2 3 w w w.c r e fo r m.c o mH- 7SECTIONHC REF O R MTE C H NIC AL S P E CIFIC ATIO N SSpecial plastic joints are used to assemble Creform roller pipesRoller Conveyors using HBG- or HBGA- 32mm PipePlastic JointsAdhesive Strength for Standard 28mm Pipes & Plastic JointsPlastic joint J-12B was set aside for one week after bondingwith Creform Adhesive . It resisted a maximum pulling force of800kg (1,762 lbs.)J-12BExpect similar results fromother plastic joints.W = PL + 60W = L + 55L = 200 - 15001712110kg (242 lbs.) 170kg (374 lbs.) 230kg (507 lbs.)PLJB-160-EBLJG-13-EBLJG-15B-EBLLike other materials such as steel, aluminum and wood , the strength ofCreform structures depends on design and assembly techniques. As withall structures, light loads require minimal bracing while heavier loads requirereinforced structures. Tests below done at room temperature with acentralized force of 2kg/min.Bearing bushings (JB-160-EBL) of roller pipes, bearingpivots (JG-15B-EBL), and holders (JG-13-EBL) are madefrom specially formulated plastic polymer. This uniquecombination assures lubrication and maintenance-freeconveyance of material under normal conditions as wellas in high humidity environments.This load test was done at 5mm/minute on the roller?scenter. The maximum loading is given at 1/10 thebreaking point for safety purposes.Experimental ConditionsRoller Length Max. Loadingmm Inch kg lbs.200 8 " 20 44300 1'0 " 14 30400 1'4 " 13 28500 1'8 " 11 24600 2'0 " 10.5 23700 2'4 " 10 22800 2'8 " 8.5 18900 2'11 " 7.5 161000 3'3 " 7 151200 3'11 " 6 131500 4'11 " 5.5 12?32	 ?36	 ?	 ?8.0	 ?References	 ?Akro	 ?Mils.	 ?(2011).	 ?Akro	 ?Mils	 ?Material	 ?Handling.	 ?Retrieved	 ?Jan	 ?18,	 ?2012,	 ?from	 ?Industrial	 ?Bins:	 ?http://www.akro-??mils.com/Products/Industrial/Standard-??Storage-??Bins/AkroBins.aspx	 ?	 ?	 ?Barrett	 ?Technology	 ?Inc.	 ?(2012,	 ?Jan	 ?1).	 ?WAM	 ?Robotic	 ?Arm.	 ?Retrieved	 ?Jan	 ?14,	 ?2012,	 ?from	 ?Barret	 ?Technologies:	 ?http://www.barrett.com/robot/DS_WAM.pdf	 ?	 ?CreForm	 ?Material	 ?Handling	 ?System.	 ?(2012).	 ?CreForm.	 ?Retrieved	 ?Nov	 ?26,	 ?2011,	 ?from	 ?Material	 ?Handling:	 ?http://www.creform.com/front_materials.html	 ?	 ?Holden	 ?Automotive.	 ?(2011,	 ?Jan	 ?24).	 ?Youtube.com.	 ?Retrieved	 ?Dec	 ?12,	 ?2011,	 ?from	 ?Holden	 ?Assembly	 ?Line	 ?Videos:	 ?http://www.youtube.com/watch?feature=endscreen&NR=1&v=pgSabtwLNho	 ?	 ?	 ?Robson,	 ?C.	 ?(2012,	 ?Apr	 ?1).	 ?Youtube.com.	 ?Retrieved	 ?Apr	 ?1,	 ?2012,	 ?from	 ?Maneuverability	 ?Tests:	 ?http://www.youtube.com/playlist?list=PL62ED5FE949E03337	 ?	 ?Thermal	 ?Foams	 ?Inc.	 ?(2012).	 ?Thermal	 ?Foam	 ?Packaging	 ?Products.	 ?Retrieved	 ?Feb	 ?23,	 ?2012,	 ?from	 ?http://www.thermalfoams.com/packaging/default.asp	 ?	 ?	 ?Volkswagen	 ?Car	 ?Company.	 ?(2012).	 ?Transparent	 ?Factory.	 ?Retrieved	 ?March	 ?11,	 ?2012,	 ?from	 ?Glass	 ?Manufacturing	 ?Plant:	 ?http://www.glaesernemanufaktur.de/	 ?	 ?	 ?Willow	 ?Garage	 ?.	 ?(2012).	 ?Willow	 ?Garage	 ?PR2	 ?Robot.	 ?Retrieved	 ?Nov	 ?17,	 ?2011,	 ?from	 ?Overview:	 ?http://www.willowgarage.com/pages/pr2/overview	 ?	 ?	 ?	 ?	 ?	 ?

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.52966.1-0074494/manifest

Comment

Related Items