UBC Undergraduate Research

Adapted endoscope for underwater exploration Strang, Andrew; Vanderhout, Russell Jan 7, 2012

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
52966-Strang_A_et_al_ENPH_479_2013.pdf [ 7.43MB ]
Metadata
JSON: 52966-1.0074485.json
JSON-LD: 52966-1.0074485-ld.json
RDF/XML (Pretty): 52966-1.0074485-rdf.xml
RDF/JSON: 52966-1.0074485-rdf.json
Turtle: 52966-1.0074485-turtle.txt
N-Triples: 52966-1.0074485-rdf-ntriples.txt
Original Record: 52966-1.0074485-source.json
Full Text
52966-1.0074485-fulltext.txt
Citation
52966-1.0074485.ris

Full Text

	 ? Adapted	 ?Endoscope	 ?for	 ?Underwater	 ?Exploration	 ?	 ?	 ?	 ?ENPH	 ?479	 ?January	 ?7,	 ?2012	 ?	 ?Andrew	 ?Strang	 ?Russell	 ?Vanderhout	 ?Group	 ?#1268	 ?	 ? Project	 ?Sponsor:	 ?Dr.	 ?Jeff	 ?Marliave,	 ?Vancouver	 ?Aquarium	 ?	 ?	 ? i	 ?	 ?Executive	 ?Summary	 ?	 ?This	 ?report	 ?describes	 ?the	 ?development	 ?of	 ?an	 ?endoscopic	 ?camera	 ?for	 ?the	 ?purpose	 ?of	 ?exploring	 ?small	 ?underwater	 ?caverns.	 ?The	 ?project	 ?sponsor,	 ?Dr.	 ?Jeff	 ?Marliave	 ?of	 ?the	 ?Vancouver	 ?Aquarium,	 ?has	 ?been	 ?pursuing	 ?research	 ?into	 ?the	 ?hibernal	 ?behavior	 ?of	 ?rockfish	 ?in	 ?the	 ?waters	 ?of	 ?Howe	 ?Sound,	 ?and	 ?he	 ?required	 ?a	 ?device	 ?capable	 ?of	 ?maneuvering	 ?into	 ?the	 ?hibernation	 ?caverns	 ?and	 ?rock	 ?piles	 ?for	 ?observation	 ?of	 ?the	 ?fish.	 ?	 ?After	 ?several	 ?initial	 ?solutions	 ?were	 ?analyzed	 ?and	 ?tested,	 ?it	 ?became	 ?apparent	 ?that	 ?the	 ?most	 ?feasible	 ?idea	 ?was	 ?to	 ?modify	 ?an	 ?existing	 ?endoscopic	 ?camera	 ?by	 ?attaching	 ?it	 ?to	 ?a	 ?flexible,	 ?controllable	 ?arm,	 ?which	 ?has	 ?been	 ?named	 ?the	 ?"mechanical	 ?spine".	 ?This	 ?device	 ?was	 ?developed	 ?as	 ?a	 ?purely	 ?mechanical	 ?solution	 ?which	 ?would	 ?be	 ?simple	 ?to	 ?control,	 ?simple	 ?to	 ?build,	 ?and	 ?robust.	 ?There	 ?were	 ?several	 ?challenges	 ?to	 ?overcome	 ?during	 ?development.	 ?The	 ?device's	 ?user	 ?interface	 ?was	 ?required	 ?to	 ?be	 ?simple,	 ?accurate	 ?and	 ?unobtrusive,	 ?and	 ?durability	 ?was	 ?a	 ?major	 ?concern	 ?considering	 ?the	 ?operating	 ?conditions.	 ?Maximizing	 ?the	 ?penetration	 ?distance	 ?of	 ?the	 ?camera	 ?into	 ?the	 ?caverns	 ?was	 ?also	 ?an	 ?important	 ?design	 ?consideration.	 ?After	 ?several	 ?iterations	 ?of	 ?the	 ?design	 ?and	 ?subsequent	 ?discussions	 ?with	 ?Dr.	 ?Marliave's	 ?team,	 ?it	 ?became	 ?apparent	 ?that	 ?the	 ?device	 ?could	 ?achieve	 ?the	 ?minimal	 ?requirements	 ?of	 ?the	 ?project,	 ?but	 ?would	 ?require	 ?further	 ?development	 ?to	 ?be	 ?proven	 ?reliable	 ?and	 ?effective	 ?for	 ?continued	 ?use.	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ? ii	 ?Table	 ?of	 ?Contents	 ?1.	 ?Introduction..........................................................................................................................1	 ?1.1	 ?Background	 ?and	 ?Motivation .................................................................................................. 1	 ?1.2	 ?Project	 ?Objectives...................................................................................................................... 3	 ?1.3	 ?Scope	 ?and	 ?Limitations.............................................................................................................. 4	 ?2.	 ?Discussion..............................................................................................................................5	 ?2.1	 ?Solutions	 ?Considered	 ?	 ?Stepper	 ?motor	 ?arm........................................................................ 5	 ?2.2	 ?Development	 ?of	 ?the	 ?Spine	 ?Model.......................................................................................... 8	 ?2.3	 ?Results .........................................................................................................................................12	 ?3.	 ?Conclusions ........................................................................................................................ 19	 ?4.	 ?Deliverables ....................................................................................................................... 19	 ?5.	 ?Recommendations ........................................................................................................... 19	 ?6.	 ?Appendix	 ??	 ?Costs	 ?and	 ?Materials .................................................................................. 21	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ? iii	 ?List	 ?of	 ?Figures	 ?Figure	 ?1	 ?-??	 ?A	 ?typical	 ?underwater	 ?cavern	 ?entrance........................................................................ 1	 ?Figure	 ?2	 ?-??	 ?Existing	 ?devices	 ?for	 ?cavern	 ?exploration ..................................................................... 2	 ?Figure	 ?3	 ?-??	 ?Depth	 ?pressure	 ?chart .......................................................................................................... 3	 ?Figure	 ?4	 ?-??	 ?Stepper	 ?motor	 ?arm	 ?concept ............................................................................................. 6	 ?Figure	 ?5	 ?-??	 ?An	 ??Explorer?	 ?RC	 ?micro-??submarine ............................................................................. 7	 ?Figure	 ?6	 ?-??	 ?Mechanical	 ?Spine	 ?device.................................................................................................... 8	 ?Figure	 ?7	 ?-??	 ?Drawings	 ?and	 ?dimensions	 ?of	 ?mechanical	 ?spine. ..................................................... 9	 ?Figure	 ?8	 ??	 ?The	 ?donut-??shaped	 ?acrylic	 ?plates	 ?that	 ?make	 ?up	 ?the	 ?"spine".............................10	 ?Figure	 ?9	 ??	 ?Initial	 ?mechanical	 ?spine	 ?testing...................................................................................12	 ?Figure	 ?10	 ?-??	 ?in	 ?a	 ?relaxed	 ?position,	 ?the	 ?spine	 ?bends	 ?the	 ?most	 ?nearest	 ?to	 ?the	 ?shaft. .......13	 ?Figure	 ?11	 ?-??	 ?Traces	 ?of	 ?the	 ?spine	 ?in	 ?various	 ?positions ................................................................14	 ?Figure	 ?12	 ?-??	 ?A	 ?circular	 ?fit	 ?of	 ?the	 ?maximum	 ?curvature. ..............................................................15	 ?Figure	 ?13	 ?-??	 ?Table	 ?of	 ?spine	 ?parameters	 ?and	 ?effects	 ?on	 ?behavior..........................................16	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ? 1	 ?1.	 ?Introduction	 ?	 ?1.1	 ?Background	 ?and	 ?Motivation	 ?	 ?Our	 ?sponsor,	 ?Dr.	 ?Jeff	 ?Marliave	 ?of	 ?the	 ?Vancouver	 ?aquarium,	 ?has	 ?been	 ?researching	 ?the	 ?behavior	 ?of	 ?rockfish	 ?in	 ?the	 ?waters	 ?of	 ?Howe	 ?Sound	 ?and	 ?elsewhere	 ?on	 ?the	 ?North	 ?Pacific	 ?coast.	 ?These	 ?fish	 ?go	 ?into	 ?a	 ?hibernation	 ?period	 ?in	 ?the	 ?late	 ?fall	 ?and	 ?winter,	 ?and	 ?this	 ?hibernation	 ?tends	 ?to	 ?take	 ?place	 ?within	 ?the	 ?caverns	 ?of	 ?rock	 ?piles	 ?and	 ?underwater	 ?formations.	 ?In	 ?order	 ?to	 ?observe	 ?them	 ?in	 ?their	 ?natural	 ?habitat	 ?during	 ?this	 ?time,	 ?Dr.	 ?Marliave?s	 ?research	 ?team	 ?required	 ?a	 ?mobile	 ?underwater	 ?camera	 ?capable	 ?of	 ?penetrating	 ?the	 ?caverns?	 ?depths,	 ?which	 ?can	 ?extend	 ?for	 ?several	 ?meters	 ?and	 ?are	 ?often	 ?a	 ?few	 ?inches	 ?in	 ?diameter.	 ?	 ?	 ?Figure	 ?1	 ?-?	 ?A	 ?typical	 ?underwater	 ?cavern	 ?entrance	 ?	 ?Previous	 ?attempts	 ?at	 ?a	 ?solution	 ?for	 ?this	 ?challenge	 ?proved	 ?inadequate	 ??	 ?typically,	 ?a	 ?diver	 ?would	 ?use	 ?an	 ?off-??the-??shelf	 ?endoscopic	 ?camera,	 ?of	 ?the	 ?type	 ?normally	 ?employed	 ?by	 ?plumbers.	 ?Other	 ?solutions	 ?have	 ?included	 ?small	 ?waterproof	 ?cameras	 ?affixed	 ?to	 ?bendable	 ?arms.	 ?In	 ?these	 ?cases,	 ?the	 ?camera	 ?would	 ?simply	 ?be	 ?inserted	 ?as	 ?far	 ?as	 ?	 ? 2	 ?possible	 ?into	 ?the	 ?cavern.	 ?This	 ?approach	 ?allowed	 ?only	 ?minimal	 ?maneuverability,	 ?as	 ?the	 ?arm	 ?would	 ?be	 ?set	 ?in	 ?a	 ?fixed	 ?position.	 ?Penetration	 ?depth	 ?was	 ?then	 ?extremely	 ?limited,	 ?and	 ?if	 ?the	 ?camera	 ?became	 ?snagged	 ?within	 ?the	 ?cavern	 ?there	 ?was	 ?no	 ?reliable	 ?method	 ?of	 ?retrieving	 ?it.	 ?	 ?	 ?	 ? Figure	 ?2	 ?-?	 ?Existing	 ?devices	 ?for	 ?cavern	 ?exploration	 ?	 ?Because	 ?the	 ?camera	 ?is	 ?deployed	 ?at	 ?depths	 ?up	 ?to	 ?10	 ?meters,	 ?water	 ?pressure	 ?is	 ?significant	 ?(approximately	 ?2.0	 ?atm	 ?at	 ?this	 ?depth;	 ?see	 ?figure	 ?3),	 ?and	 ?many	 ?off-??the-??shelf	 ?endoscopes	 ?would	 ?be	 ?subject	 ?to	 ?flooding	 ?due	 ?to	 ?pressure	 ?cracks	 ?or	 ?loose	 ?fittings	 ?as	 ?a	 ?result	 ?of	 ?material	 ?compression.	 ?There	 ?are	 ?numerous	 ?other	 ?concerns	 ?related	 ?to	 ?deploying	 ?the	 ?device:	 ?the	 ?diver	 ?operating	 ?the	 ?camera	 ?must	 ?be	 ?able	 ?to	 ?guide	 ?it	 ?while	 ?wearing	 ?thermally	 ?insulating	 ?gloves,	 ?and	 ?must	 ?be	 ?able	 ?to	 ?clearly	 ?identify	 ?the	 ?location	 ?of	 ?the	 ?camera	 ?head	 ?while	 ?underwater,	 ?either	 ?through	 ?a	 ?video	 ?monitor	 ?or	 ?by	 ?communication	 ?with	 ?a	 ?surface	 ?team	 ?employing	 ?their	 ?own	 ?monitor.	 ?Also,	 ?the	 ?device	 ?must	 ?be	 ?equipped	 ?with	 ?illumination	 ?suitable	 ?for	 ?the	 ?darkness	 ?of	 ?the	 ?cavern.	 ?	 ?	 ? 3	 ?	 ?	 ? Figure	 ?3	 ?-?	 ?Depth	 ?pressure	 ?chart	 ?	 ?The	 ?major	 ?challenge	 ?for	 ?Dr.	 ?Marliave?s	 ?team,	 ?however,	 ?has	 ?been	 ?the	 ?ability	 ?to	 ?extend	 ?their	 ?cameras	 ?several	 ?meters	 ?into	 ?the	 ?hibernal	 ?caverns	 ?without	 ?disturbing	 ?the	 ?surrounding	 ?environs.	 ?As	 ?mentioned,	 ?no	 ?existing	 ?solution	 ?was	 ?able	 ?to	 ?reliably	 ?penetrate	 ?more	 ?than	 ?a	 ?few	 ?tens	 ?of	 ?centimeters;	 ?in	 ?addition,	 ?the	 ?act	 ?of	 ?pushing	 ?an	 ?endoscopic	 ?camera	 ?into	 ?a	 ?passageway	 ?often	 ?caused	 ?algae,	 ?dirt	 ?and	 ?plant	 ?formations	 ?to	 ?become	 ?dislodged	 ?from	 ?the	 ?cavern	 ?walls,	 ?clouding	 ?the	 ?water	 ?and	 ?causing	 ?undesirable	 ?habitat	 ?destruction,	 ?as	 ?well	 ?as	 ?creating	 ?a	 ?snag	 ?risk	 ?for	 ?the	 ?camera.	 ?It	 ?was	 ?desired	 ?that	 ?a	 ?device	 ?be	 ?designed	 ?and	 ?constructed	 ?which	 ?would	 ?address	 ?these	 ?challenges,	 ?focusing	 ?particularly	 ?on	 ?the	 ?aspects	 ?of	 ?maneuverability	 ?and	 ?reach.	 ?	 ?1.2	 ?Project	 ?Objectives	 ?	 ?A	 ?summary	 ?of	 ?the	 ?basic	 ?requirements	 ?presented	 ?by	 ?Dr.	 ?Marliave	 ?is	 ?as	 ?follows:	 ?	 ??	 ?Reach	 ?of	 ?1.5m	 ?(minimum	 ?penetration	 ?depth	 ?into	 ?cavern)	 ??	 ?Can	 ?fit	 ?within	 ?a	 ?3?	 ?diameter	 ?cavern	 ??	 ?Capable	 ?of	 ?minimum	 ?90	 ?degree	 ?turns	 ??	 ?Can	 ?be	 ?operated	 ?by	 ?a	 ?diver	 ?wearing	 ?thick	 ?gloves	 ??	 ?Can	 ?accommodate	 ?wired	 ?endoscopic	 ?camera	 ?and	 ?LED	 ?illumination	 ??	 ?Can	 ?function	 ?within	 ?a	 ?1	 ?meter	 ?depth	 ?from	 ?surface	 ?	 ? 4	 ?	 ?There	 ?were	 ?some	 ?additional	 ?desired	 ?features	 ?that	 ?were	 ?not	 ?developed	 ?within	 ?the	 ?project	 ?time	 ?frame.	 ?These	 ?include:	 ??	 ?Resistant	 ?to	 ?depth	 ?pressure	 ?up	 ?to	 ?10	 ?meters	 ??	 ?Reach	 ?extended	 ?beyond	 ?1.5	 ?m	 ?(3	 ?m	 ?desirable)	 ??	 ?Monitor	 ?screen	 ?adapted	 ?for	 ?clear	 ?underwater	 ?visibility	 ?Possible	 ?improvements	 ?to	 ?the	 ?device	 ?that	 ?may	 ?address	 ?these	 ?additional	 ?concerns	 ?are	 ?discussed	 ?later	 ?in	 ?this	 ?document.	 ?	 ?1.3	 ?Scope	 ?and	 ?Limitations	 ?	 ?From	 ?the	 ?outset,	 ?the	 ?design	 ?was	 ?focused	 ?on	 ?the	 ?mechanism	 ?for	 ?supporting	 ?the	 ?camera;	 ?issues	 ?of	 ?image	 ?quality,	 ?depth	 ?pressure	 ?resistance	 ?and	 ?durability	 ?of	 ?the	 ?camera	 ?itself	 ?were	 ?intended	 ?to	 ?be	 ?addressed	 ?by	 ?purchasing	 ?an	 ?endoscopic	 ?camera	 ?with	 ?a	 ?high-??quality	 ?housing.	 ?Given	 ?a	 ?longer	 ?time	 ?frame,	 ?development	 ?of	 ?a	 ?camera	 ?specifically	 ?for	 ?this	 ?type	 ?of	 ?deployment	 ?could	 ?be	 ?attempted;	 ?for	 ?the	 ?purposes	 ?of	 ?this	 ?project,	 ?the	 ?camera	 ?will	 ?only	 ?be	 ?discussed	 ?in	 ?terms	 ?of	 ?experimental	 ?observations	 ?of	 ?the	 ?off-??the-??shelf	 ?device	 ?that	 ?was	 ?employed.	 ?Testing	 ?was	 ?to	 ?take	 ?place	 ?in	 ?two	 ?stages:	 ?an	 ?initial	 ?test	 ?in	 ?the	 ?Vancouver	 ?Aquarium's	 ?tanks,	 ?followed	 ?by	 ?open	 ?water	 ?testing	 ?in	 ?Howe	 ?Sound,	 ?at	 ?one	 ?of	 ?several	 ?sites	 ?where	 ?rockfish	 ?are	 ?known	 ?to	 ?hibernate.	 ?During	 ?the	 ?open	 ?water	 ?tests,	 ?the	 ?camera	 ?cable	 ?would	 ?be	 ?run	 ?from	 ?the	 ?dive	 ?boat	 ?to	 ?the	 ?test	 ?site,	 ?which	 ?could	 ?be	 ?several	 ?meters	 ?under	 ?water.	 ?The	 ?Aquarium's	 ?divers	 ?would	 ?employ	 ?the	 ?device	 ?without	 ?communication	 ?from	 ?the	 ?surface	 ?or	 ?visual	 ?feedback	 ?from	 ?the	 ?camera;	 ?this	 ?made	 ?intuitive	 ?control	 ?of	 ?the	 ?device's	 ?maneuverability	 ?a	 ?critical	 ?consideration.	 ?To	 ?accomplish	 ?the	 ?project	 ?goals,	 ?we	 ?proposed	 ?to	 ?design,	 ?fabricate	 ?and	 ?test	 ?a	 ?short-??list	 ?of	 ?possible	 ?solutions.	 ?Dr.	 ?Marliave	 ?considered	 ?it	 ?acceptable	 ?to	 ?design	 ?the	 ?device	 ?from	 ?scratch,	 ?as	 ?none	 ?of	 ?the	 ?previous	 ?devices	 ?had	 ?proven	 ?particularly	 ?durable,	 ?maneuverable	 ?or	 ?intuitive	 ?to	 ?use.	 ?Proceeding	 ?on	 ?this	 ?premise,	 ?three	 ?possible	 ?iterations	 ?emerged	 ?in	 ?the	 ?initial	 ?design	 ?process:	 ??	 ?Mechanical	 ?Spine	 ?model	 ??	 ?a	 ?flexible	 ?spine-??like	 ?arm,	 ?which	 ?consists	 ?of	 ?several	 ?moveable	 ?"vertebrae"	 ?and	 ?is	 ?maneuverable	 ?by	 ?mechanical	 ?controls.	 ?The	 ?camera	 ?would	 ?be	 ?attached	 ?to	 ?the	 ?end	 ?of	 ?the	 ?"spine".	 ??	 ?Miniature	 ?RC	 ?Submarine	 ??	 ?a	 ?small	 ?radio-??controlled	 ?submersible	 ?to	 ?which	 ?a	 ?camera	 ?could	 ?be	 ?attached.	 ??	 ?Stepper	 ?motor	 ?arm	 ??	 ?similar	 ?to	 ?the	 ?spine	 ?model,	 ?except	 ?that	 ?each	 ?"vertebrae"	 ?would	 ?be	 ?an	 ?independently	 ?controlled	 ?stepper	 ?motor.	 ?	 ? 5	 ?As	 ?will	 ?be	 ?discussed	 ?in	 ?this	 ?report,	 ?the	 ?mechanical	 ?spine	 ?was	 ?determined	 ?to	 ?be	 ?the	 ?most	 ?suitable	 ?solution	 ?for	 ?the	 ?purposes	 ?of	 ?our	 ?sponsor.	 ?	 ?2.	 ?Discussion	 ?	 ?2.1	 ?Solutions	 ?Considered	 ?	 ?Stepper	 ?motor	 ?arm	 ?	 ?This	 ?model	 ?was	 ?intended	 ?to	 ?consist	 ?of	 ?a	 ?chain	 ?of	 ?stepper	 ?motors	 ?connected	 ?by	 ?short	 ?sections	 ?of	 ?rigid	 ?tubing,	 ?allowing	 ?each	 ?section	 ?to	 ?move	 ?independently.	 ?To	 ?navigate	 ?through	 ?rock	 ?crevices,	 ?the	 ?user	 ?would	 ?control	 ?the	 ?stepper	 ?motor	 ?on	 ?the	 ?end	 ?(where	 ?the	 ?camera	 ?would	 ?be	 ?located),	 ?and	 ?as	 ?the	 ?chain	 ?slid	 ?into	 ?the	 ?crevice,	 ?the	 ?angle	 ?of	 ?each	 ?motor	 ?would	 ?be	 ?transferred	 ?to	 ?the	 ?previous	 ?motor.	 ?The	 ?state	 ?of	 ?the	 ?chain	 ?(angles	 ?and	 ?positions	 ?of	 ?each	 ?stepper	 ?motor)	 ?would	 ?then	 ?depend	 ?on	 ?how	 ?far	 ?it	 ?had	 ?been	 ?pushed	 ?in.	 ?This	 ?device	 ?would	 ?require	 ?a	 ?fixed	 ?point	 ?of	 ?reference	 ?and	 ?a	 ?method	 ?of	 ?recording	 ?how	 ?far	 ?it	 ?has	 ?been	 ?pushed	 ?in,	 ?as	 ?well	 ?as	 ?a	 ?microcontroller.	 ?	 ?	 ?Stepper	 ?motors	 ?have	 ?one	 ?axis	 ?of	 ?rotation,	 ?so	 ?to	 ?be	 ?able	 ?to	 ?move	 ?around	 ?in	 ?3D	 ?space,	 ?consecutive	 ?motors	 ?would	 ?need	 ?to	 ?alternate	 ?their	 ?rotational	 ?axes.	 ?As	 ?seen	 ?in	 ?figure	 ?4,	 ?a	 ?simple	 ?C++	 ?OpenGL	 ?model	 ?was	 ?created	 ?to	 ?visualize	 ?the	 ?chain	 ?of	 ?stepper	 ?motor	 ?rotations.	 ?Such	 ?a	 ?simulation	 ?would	 ?be	 ?useful	 ?if	 ?one	 ?were	 ?to	 ?design	 ?an	 ?algorithm	 ?modeling	 ?automated	 ?movement	 ?of	 ?the	 ?motors.	 ?	 ?The	 ?main	 ?advantage	 ?of	 ?this	 ?approach	 ?was	 ?that	 ?the	 ?chain	 ?could	 ?theoretically	 ?take	 ?any	 ?shape	 ?and	 ?one	 ?could	 ?avoid	 ?leaning	 ?on	 ?or	 ?scraping	 ?against	 ?rocks;	 ?with	 ?appropriate	 ?proximity	 ?sensing	 ?much	 ?of	 ?the	 ?maneuverability	 ?control	 ?could	 ?be	 ?automated,	 ?and	 ?depth	 ?of	 ?penetration	 ?into	 ?the	 ?caverns	 ?would	 ?be	 ?limited	 ?only	 ?by	 ?the	 ?length	 ?of	 ?the	 ?device.	 ?However,	 ?due	 ?to	 ?the	 ?large	 ?amount	 ?of	 ?circuitry	 ?required,	 ?the	 ?high	 ?complexity	 ?and	 ?the	 ?high	 ?cost	 ?of	 ?developing	 ?this	 ?idea,	 ?the	 ?stepper	 ?motor	 ?arm	 ?was	 ?not	 ?considered	 ?a	 ?viable	 ?concept	 ?for	 ?this	 ?project.	 ?	 ?	 ?	 ? 6	 ?	 ?	 ?Figure	 ?4	 ?-?	 ?Stepper	 ?motor	 ?arm	 ?concept	 ?	 ?	 ?Tethered	 ?micro-?submarine	 ?	 ?During	 ?initial	 ?discussions	 ?with	 ?the	 ?sponsor?s	 ?team,	 ?the	 ?idea	 ?was	 ?conceived	 ?of	 ?using	 ?a	 ?small	 ?remote-??control	 ?submarine,	 ?possibly	 ?an	 ?off-??the-??shelf	 ?device,	 ?which	 ?could	 ?navigate	 ?a	 ?small	 ?cavern	 ?with	 ?a	 ?camera	 ?and	 ?LED	 ?lights	 ?attached.	 ?This	 ?device	 ?could	 ?be	 ?tethered	 ?with	 ?the	 ?endoscopic	 ?camera	 ?cable,	 ?which	 ?would	 ?serve	 ?the	 ?dual	 ?purpose	 ?of	 ?powering	 ?the	 ?camera	 ?while	 ?allowing	 ?the	 ?sub	 ?to	 ?be	 ?pulled	 ?back	 ?to	 ?the	 ?open	 ?water	 ?after	 ?use	 ?or	 ?in	 ?case	 ?of	 ?navigation	 ?failure.	 ?	 ?An	 ??Explorer?	 ?RC	 ?sub,	 ?a	 ?4?	 ?long	 ?popular	 ?RC	 ?toy,	 ?was	 ?purchased	 ?for	 ?testing.	 ?	 ?	 ?	 ? 7	 ?	 ?	 ?Figure	 ?5	 ?-?	 ?An	 ??Explorer?	 ?RC	 ?micro-?submarine	 ?	 ?It	 ?became	 ?clear	 ?in	 ?the	 ?early	 ?testing	 ?stages	 ?at	 ?the	 ?Vancouver	 ?Aquarium	 ?that	 ?this	 ?option	 ?would	 ?not	 ?be	 ?viable.	 ?The	 ?main	 ?difficulties	 ?were	 ?the	 ?sub's	 ?radio	 ?control,	 ?which	 ?did	 ?not	 ?operate	 ?reliably	 ?underwater,	 ?and	 ?the	 ?precision	 ?to	 ?which	 ?the	 ?sub	 ?could	 ?be	 ?controlled.	 ?This	 ?device	 ?is	 ?designed	 ?to	 ?float	 ?near	 ?the	 ?surface	 ?of	 ?the	 ?water	 ?when	 ?not	 ?in	 ?use,	 ?and	 ?this	 ?buoyancy	 ?implies	 ?that	 ?control	 ?must	 ?constantly	 ?be	 ?applied	 ?in	 ?order	 ?to	 ?maintain	 ?its	 ?position	 ?under	 ?water.	 ?This	 ?proved	 ?to	 ?be	 ?unmanageable	 ?when	 ?attempting	 ?to	 ?explore	 ?caverns.	 ?It	 ?was	 ?considered	 ?that	 ?a	 ?custom-??built	 ?device	 ?of	 ?this	 ?type,	 ?with	 ?cabled	 ?control	 ?and	 ?using	 ?variable	 ?buoyancy	 ?through	 ?air	 ?chamber	 ?regulation,	 ?could	 ?be	 ?viable	 ?for	 ?this	 ?project.	 ?However,	 ?it	 ?was	 ?concluded	 ?by	 ?the	 ?project	 ?team	 ?in	 ?consultation	 ?with	 ?Dr.	 ?Marliave	 ?that	 ?completing	 ?such	 ?an	 ?undertaking	 ?in	 ?the	 ?short	 ?time	 ?frame	 ?of	 ?the	 ?project	 ?was	 ?not	 ?feasible.	 ?Efforts	 ?were	 ?instead	 ?directed	 ?toward	 ?a	 ?purely	 ?mechanical	 ?solution	 ?that	 ?would	 ?be	 ?simple	 ?to	 ?construct	 ?and	 ?test.	 ?	 ?A	 ?video	 ?of	 ?the	 ?submarine	 ?being	 ?tested	 ?can	 ?be	 ?seen	 ?at	 ?http://www.youtube.com/watch?v=O7k1wnuZRhM.	 ?	 ?	 ?Mechanical	 ?Spine	 ?	 ?The	 ?chosen	 ?design	 ?is	 ?a	 ?purely	 ?mechanical	 ?device,	 ?consisting	 ?of	 ?a	 ?series	 ?of	 ?connected	 ?acrylic	 ?plates,	 ?or	 ?"vertebrae",	 ?which	 ?can	 ?be	 ?manipulated	 ?in	 ?a	 ?puppet-??like	 ?fashion	 ?by	 ?pulling	 ?on	 ?cables	 ?attached	 ?to	 ?a	 ?handle.	 ?The	 ?figure	 ?below	 ?identifies	 ?the	 ?major	 ?components	 ?of	 ?this	 ?device.	 ?	 ?	 ? 8	 ?	 ?Figure	 ?6	 ?-?	 ?Mechanical	 ?Spine	 ?device	 ?	 ?2.2	 ?Development	 ?of	 ?the	 ?Spine	 ?Model	 ?	 ?The	 ?implemented	 ?device	 ?is	 ?a	 ?long	 ?shaft	 ?or	 ?"arm"	 ?with	 ?the	 ?flexible	 ?"spine"	 ?component	 ?attached	 ?to	 ?the	 ?end.	 ?As	 ?described	 ?in	 ?the	 ?project	 ?objectives,	 ?the	 ?device	 ?should	 ?reach	 ?1.5	 ?m	 ?and	 ?make	 ?90	 ?degree	 ?turns;	 ?as	 ?there	 ?are	 ?many	 ?appropriate	 ?testing	 ?environments	 ?in	 ?which	 ?the	 ?cavern	 ?crevice	 ?is	 ?mostly	 ?straight	 ?with	 ?only	 ?one	 ?corner	 ?to	 ?	 ? 9	 ?look	 ?around,	 ?this	 ?design	 ?has	 ?proven	 ?suitable	 ?to	 ?meet	 ?the	 ?objectives.	 ?The	 ?dimensions	 ?of	 ?the	 ?most	 ?recent	 ?prototype	 ?are	 ?shown	 ?in	 ?the	 ?figures	 ?below.	 ?	 ?Figure	 ?7	 ?-?	 ?Drawings	 ?and	 ?dimensions	 ?of	 ?mechanical	 ?spine.	 ?	 ?The	 ?spine	 ?contains	 ?a	 ?clear,	 ?flexible	 ?PVC	 ?tube	 ?passing	 ?through	 ?the	 ?centers	 ?of	 ?several	 ?donut-??shaped	 ?acrylic	 ?plates.	 ?The	 ?center	 ?holes	 ?of	 ?the	 ?acrylic	 ?plates	 ?fit	 ?snugly	 ?onto	 ?the	 ?PVC	 ?tube,	 ?and	 ?they	 ?have	 ?a	 ?few	 ?extra	 ?holes	 ?to	 ?reduce	 ?weight,	 ?as	 ?seen	 ?in	 ?fig.	 ?8.	 ?Acrylic	 ?was	 ?used	 ?since	 ?it	 ?is	 ?sturdy,	 ?light,	 ?readily	 ?available,	 ?and	 ?can	 ?be	 ?submerged	 ?in	 ?water.	 ?Each	 ?plate	 ?has	 ?four	 ?more	 ?small	 ?holes	 ?near	 ?the	 ?outer	 ?edge,	 ?spaced	 ?90	 ?degrees	 ?apart,	 ?through	 ?which	 ?steel	 ?control	 ?cables	 ?are	 ?inserted.	 ?These	 ?cables	 ?are	 ?routed	 ?through	 ?eye-??hooks	 ?near	 ?the	 ?mid-??point	 ?of	 ?the	 ?shaft,	 ?then	 ?angled	 ?off	 ?to	 ?the	 ?ends	 ?of	 ?the	 ?control	 ?arms,	 ?as	 ?seen	 ?in	 ?figure	 ?7.	 ?	 ? 10	 ?	 ?Figure	 ?8	 ??	 ?The	 ?donut-?shaped	 ?acrylic	 ?plates	 ?that	 ?make	 ?up	 ?the	 ?"spine"	 ?	 ?The	 ?shaft,	 ?a	 ?1"	 ?(ID)	 ?section	 ?of	 ?PVC	 ?pipe,	 ?(indicated	 ?in	 ?fig.	 ?	 ?6	 ?as	 ?the	 ?"PVC	 ?pipe	 ?arm")	 ?serves	 ?as	 ?a	 ?grip	 ?for	 ?maneuvering	 ?the	 ?device	 ?into	 ?deep	 ?caverns.	 ?A	 ?ball-??joint	 ?connects	 ?the	 ?control	 ?handles	 ?to	 ?the	 ?main	 ?shaft,	 ?allowing	 ?the	 ?control	 ?cables	 ?to	 ?be	 ?pulled	 ?by	 ?rotating	 ?the	 ?control	 ?handles	 ?about	 ?the	 ?joint,	 ?similar	 ?to	 ?controlling	 ?a	 ?marionette.	 ?When	 ?the	 ?handles	 ?are	 ?rotated	 ?in	 ?a	 ?plane	 ?parallel	 ?to	 ?the	 ?cable,	 ?the	 ?cables	 ?bend	 ?the	 ?spine	 ?in	 ?the	 ?direction	 ?of	 ?the	 ?pulled	 ?cable,	 ?directing	 ?the	 ?camera	 ?inside	 ?the	 ?center	 ?tube.	 ?	 ?This	 ?device	 ?alone	 ?may	 ?have	 ?multiple	 ?uses.	 ?For	 ?this	 ?project,	 ?it	 ?has	 ?an	 ?endoscopic	 ?camera	 ?attached	 ?to	 ?the	 ?tip	 ?of	 ?the	 ?spine	 ?and	 ?its	 ?USB	 ?cable	 ?extends	 ?through	 ?the	 ?length	 ?of	 ?the	 ?device.	 ?The	 ?tube	 ?was	 ?chosen	 ?to	 ?be	 ?flexible	 ?enough	 ?to	 ?turn,	 ?rigid	 ?to	 ?protect	 ?the	 ?camera	 ?cable,	 ?and	 ?just	 ?wide	 ?enough	 ?to	 ?slide	 ?the	 ?camera	 ?through.	 ?The	 ?camera	 ?is	 ?a	 ?waterproof	 ?endoscope	 ?camera	 ?with	 ?a	 ?diameter	 ?of	 ?10	 ?mm	 ?and	 ?USB	 ?cable	 ?length	 ?of	 ?10	 ?m.	 ?It	 ?has	 ?4	 ?LED	 ?lights	 ?with	 ?adjustable	 ?brightness	 ?and	 ?has	 ?a	 ?640	 ?by	 ?480	 ?resolution	 ?with	 ?30	 ?frames	 ?per	 ?second.	 ?	 ?Manipulation	 ?of	 ?the	 ?spine	 ?From	 ?the	 ?dimensions	 ?specified	 ?in	 ?figure	 ?7,	 ?the	 ?approximate	 ?distance	 ?D	 ?traveled	 ?by	 ?the	 ?cables	 ?in	 ?mm	 ?can	 ?be	 ?calculated	 ?as:	 ?D	 ?=	 ?|	 ?585	 ?-?	 ?[3202	 ?+	 ?4902	 ??	 ?2(320)(490)cos(?)]1/2	 ?|	 ?Where	 ?585	 ?mm	 ?is	 ?the	 ?length	 ?of	 ?the	 ?angled	 ?section	 ?of	 ?cable	 ?with	 ?the	 ?control	 ?handles	 ?positioned	 ?neutrally	 ?at	 ?90	 ?degrees	 ?to	 ?the	 ?shaft,	 ?and	 ??	 ?is	 ?the	 ?angle	 ?between	 ?the	 ?control	 ?arm's	 ?position	 ?and	 ?the	 ?shaft.	 ?The	 ?ball	 ?joint	 ?limits	 ?this	 ?angle	 ?to	 ?approximately	 ?	 ? 11	 ?20	 ?degrees	 ?past	 ?the	 ?neutral	 ?position,	 ?implying	 ?that	 ?the	 ?maximum	 ?cable	 ?distance	 ?traveled	 ?is	 ?approximately	 ?86	 ?mm.	 ?This	 ?distance	 ?is	 ?proportional	 ?to	 ?the	 ?length	 ?of	 ?the	 ?handles,	 ?implying	 ?that	 ?longer	 ?handles	 ?would	 ?allow	 ?a	 ?greater	 ?range	 ?of	 ?motion.	 ?In	 ?the	 ?ideal	 ?case,	 ?the	 ?camera	 ?would	 ?be	 ?able	 ?to	 ?be	 ?turned	 ?180	 ?degrees,	 ?implying	 ?that	 ?the	 ?spine	 ?would	 ?bend	 ?into	 ?a	 ?half-??circle	 ?of	 ?average	 ?radius	 ?(235mm	 ?/	 ??)	 ?=	 ?75mm.	 ?Since	 ?the	 ?spinal	 ?plates	 ?are	 ?25mm	 ?in	 ?radius,	 ?the	 ?inner	 ?radius	 ?of	 ?the	 ?half-??circle	 ?would	 ?be	 ?50mm,	 ?and	 ?the	 ?outer	 ?radius	 ?100mm.	 ?This	 ?means	 ?that	 ?the	 ?required	 ?length	 ?of	 ?the	 ?cable	 ?to	 ?achieve	 ?this	 ?degree	 ?of	 ?bending	 ?would	 ?be	 ?(100*?)	 ?=	 ?314mm.	 ?The	 ?required	 ?amount	 ?of	 ?cable	 ?travel	 ?would	 ?then	 ?be	 ?314-??235	 ?=	 ?79mm,	 ?indicating	 ?that	 ?the	 ?allowed	 ?travel	 ?is	 ?sufficient.	 ?In	 ?reality,	 ?the	 ?bending	 ?of	 ?the	 ?spine	 ?is	 ?non-??linear	 ?and	 ?does	 ?not	 ?form	 ?a	 ?precise	 ?radius.	 ?This	 ?behavior	 ?is	 ?characterized	 ?further	 ?in	 ?the	 ?results	 ?section	 ?of	 ?this	 ?report.	 ?	 ?Initial	 ?Prototype	 ?The	 ?first	 ?prototype	 ?consisted	 ?of	 ?23	 ?acrylic	 ?plates	 ?(5	 ?cm	 ?outer	 ?diameter	 ?1.4	 ?cm	 ?inner	 ?diameter,	 ?5	 ?mm	 ?thick),	 ?with	 ?two	 ?small	 ?acrylic	 ?rings	 ?(2	 ?cm	 ?outer	 ?diameter	 ?1.4	 ?cm	 ?inner	 ?diameter,	 ?5	 ?mm	 ?thick)	 ?in	 ?between	 ?each	 ?plate,	 ?all	 ?on	 ?a	 ?40	 ?cm	 ?plastic	 ?tube	 ?(~1.3	 ?cm	 ?outer	 ?diameter).	 ?Rubber	 ?stoppers	 ?were	 ?inserted	 ?into	 ?both	 ?ends	 ?of	 ?the	 ?tube	 ?to	 ?prevent	 ?plates	 ?from	 ?sliding	 ?off.	 ?	 ?Only	 ?rough	 ?calculations	 ?were	 ?used	 ?in	 ?designing	 ?it,	 ?since	 ?it	 ?was	 ?created	 ?to	 ?test	 ?basic	 ?motion	 ?and	 ?find	 ?out	 ?potential	 ?problems.	 ?A	 ?demonstration	 ?of	 ?its	 ?behavior	 ?can	 ?be	 ?seen	 ?at	 ?http://www.youtube.com/watch?v=CEqHElDlZNE.	 ?	 ?The	 ?initial	 ?prototype	 ?used	 ?string	 ?instead	 ?of	 ?steel	 ?cables.	 ?The	 ?slight	 ?elasticity	 ?of	 ?the	 ?string,	 ?along	 ?with	 ?its	 ?lack	 ?of	 ?stiffness,	 ?caused	 ?the	 ?plates	 ?to	 ?twist	 ?in	 ?response	 ?to	 ?control	 ?inputs,	 ?instead	 ?of	 ?the	 ?arm	 ?bending	 ?in	 ?the	 ?plane	 ?of	 ?the	 ?control	 ?handle.	 ?Also,	 ?there	 ?were	 ?no	 ?weight-??reducing	 ?holes	 ?in	 ?the	 ?plates,	 ?meaning	 ?that	 ?the	 ?weight	 ?of	 ?the	 ?spine	 ?tended	 ?to	 ?cause	 ?a	 ?large	 ?moment	 ?in	 ?the	 ?direction	 ?of	 ?control,	 ?leading	 ?to	 ?large	 ?and	 ?unmanageable	 ?overshoot.	 ?	 ?The	 ?main	 ?shaft	 ?initially	 ?consisted	 ?of	 ?4	 ?thin	 ?carbon-??fibre	 ?tubes	 ?which	 ?the	 ?strings	 ?passed	 ?through,	 ?and	 ?a	 ?larger	 ?carbon-??fibre	 ?tube	 ?attached	 ?to	 ?the	 ?first	 ?plate,	 ?held	 ?together	 ?with	 ?acrylic	 ?cut-??outs.	 ?The	 ?thinness	 ?of	 ?the	 ?strings	 ?tended	 ?to	 ?split	 ?open	 ?the	 ?ends	 ?of	 ?the	 ?tubes,	 ?causing	 ?snagging	 ?and	 ?tangling,	 ?and	 ?the	 ?positioning	 ?of	 ?the	 ?tubes	 ?on	 ?the	 ?outside	 ?of	 ?the	 ?main	 ?shaft	 ?made	 ?the	 ?shaft	 ?difficult	 ?to	 ?grip.	 ?A	 ?video	 ?of	 ?its	 ?first	 ?test	 ?in	 ?an	 ?aquatic	 ?environment	 ?can	 ?be	 ?seen	 ?at	 ?http://www.youtube.com/watch?v=yx98FdD-??o3s.	 ?	 ?It	 ?was	 ?also	 ?thought	 ?that	 ?the	 ?plates	 ?could	 ?become	 ?snagged	 ?on	 ?jagged	 ?rock	 ?edges,	 ?	 ? 12	 ?either	 ?causing	 ?the	 ?device	 ?to	 ?get	 ?stuck	 ?or	 ?scrape	 ?against	 ?the	 ?rocks	 ?and	 ?disturb	 ?the	 ?fish	 ?habitat.	 ?The	 ?current	 ?device	 ?still	 ?does	 ?not	 ?account	 ?for	 ?this	 ?potential	 ?issue	 ?as	 ?it	 ?was	 ?discussed	 ?that	 ?this	 ?would	 ?not	 ?be	 ?a	 ?major	 ?problem	 ?in	 ?current	 ?testing	 ?environments.	 ?However,	 ?a	 ?possible	 ?quick	 ?fix	 ?for	 ?this	 ?would	 ?be	 ?to	 ?give	 ?the	 ?device	 ?a	 ?smooth	 ?outer	 ?cover.	 ?	 ?Another	 ?initial	 ?difficulty	 ?with	 ?this	 ?design	 ?was	 ?that	 ?the	 ?path	 ?the	 ?device	 ?could	 ?travel	 ?was	 ?determined	 ?by	 ?the	 ?obstacles	 ??	 ?it	 ?would	 ?not	 ?be	 ?able	 ?to	 ?bend	 ?in	 ?more	 ?than	 ?one	 ?direction	 ?without	 ?having	 ?solid	 ?rocks	 ?to	 ?lean	 ?on.	 ?This	 ?issue	 ?carries	 ?over	 ?into	 ?the	 ?current	 ?design,	 ?but	 ?after	 ?consultation	 ?with	 ?Dr.	 ?Marliave	 ?it	 ?was	 ?decided	 ?that	 ?this	 ?aspect	 ?was	 ?acceptable,	 ?as	 ?the	 ?device	 ?will	 ?usually	 ?be	 ?able	 ?to	 ?lean	 ?against	 ?some	 ?wall	 ?or	 ?corner	 ?if	 ?it	 ?needs	 ?to	 ?make	 ?multiple	 ?turns.	 ?The	 ?objective	 ?of	 ?the	 ?design	 ?later	 ?evolved	 ?such	 ?that	 ?the	 ?ability	 ?to	 ?maneuver	 ?the	 ?camera	 ?head	 ?around	 ?a	 ?single	 ?sharp	 ?corner	 ?was	 ?the	 ?major	 ?priority,	 ?until	 ?further	 ?development	 ?was	 ?possible.	 ?	 ?	 ?	 ? Figure	 ?9	 ??	 ?Initial	 ?mechanical	 ?spine	 ?testing	 ?	 ?2.3	 ?Results	 ?	 ?Effect	 ?of	 ?buoyancy	 ?The	 ?neutral	 ?position	 ?of	 ?the	 ?control	 ?handles	 ?is	 ?the	 ?point	 ?where	 ?the	 ?spine	 ?should	 ?ideally	 ?be	 ?positioned	 ?completely	 ?parallel	 ?to	 ?the	 ?shaft.	 ?However,	 ?the	 ?prototype's	 ?control	 ?handles	 ?are	 ?not	 ?constrained	 ?such	 ?that	 ?this	 ?position	 ?can	 ?be	 ?maintained	 ?in	 ?air	 ?(i.e.	 ?the	 ?entire	 ?spine	 ?cannot	 ?be	 ?held	 ?straight	 ?horizontally).	 ?Underwater,	 ?however,	 ?the	 ?plates	 ?have	 ?a	 ?degree	 ?of	 ?buoyancy	 ?that	 ?relieves	 ?cable	 ?tension	 ?and	 ?allows	 ?the	 ?device	 ?to	 ?maintain	 ?the	 ?neutral	 ?position.	 ?The	 ?buoyancy	 ?of	 ?the	 ?device	 ?appears	 ?to	 ?be	 ?due	 ?to	 ?the	 ?clear	 ?PVC	 ?tubing,	 ?which	 ?when	 ?submerged	 ?retains	 ?a	 ?pocket	 ?of	 ?air	 ?inside	 ?its	 ?length.	 ?This	 ?proves	 ?to	 ?be	 ?beneficial	 ?for	 ?	 ? 13	 ?handling	 ?the	 ?device	 ?underwater,	 ?and	 ?may	 ?be	 ?optimized	 ?in	 ?later	 ?development	 ?by	 ?adding	 ?buoyant	 ?material	 ?to	 ?the	 ?spine.	 ?	 ?Bending	 ?characteristics	 ?The	 ?device	 ?can	 ?make	 ?turns	 ?of	 ?at	 ?least	 ?90	 ?degrees,	 ?which	 ?was	 ?one	 ?of	 ?the	 ?goals	 ?of	 ?this	 ?project;	 ?as	 ?shown,	 ?it	 ?is	 ?in	 ?fact	 ?capable	 ?of	 ?180	 ?degree	 ?motion.	 ?The	 ?turning	 ?radius	 ?is	 ?nonlinear,	 ?and	 ?it	 ?is	 ?observed	 ?that	 ?a	 ?large	 ?portion	 ?of	 ?the	 ?initial	 ?bending	 ?occurs	 ?at	 ?plates	 ?near	 ?the	 ?shaft,	 ?with	 ?the	 ?bend	 ?radius	 ?becoming	 ?larger	 ?(i.e.	 ?the	 ?spine	 ?is	 ?straightening	 ?out)	 ?at	 ?plates	 ?closer	 ?to	 ?the	 ?tip,	 ?as	 ?illustrated	 ?in	 ?Figure	 ?10.	 ?The	 ?arm	 ?holds	 ?17	 ?acrylic	 ?plates	 ?(0.45	 ?cm	 ?thick)	 ?with	 ?two	 ?small	 ?acrylic	 ?rings	 ?(0.5	 ?cm	 ?thick)	 ?in	 ?between	 ?adjacent	 ?plates,	 ?resulting	 ?in	 ?a	 ?total	 ?minimum	 ?length	 ?of	 ?23.65	 ?cm.	 ?This	 ?length	 ?changes	 ?as	 ?the	 ?spine	 ?bends	 ?and	 ?the	 ?spacers	 ?begin	 ?to	 ?separate	 ?at	 ?the	 ?outer	 ?diameter	 ?in	 ?a	 ?spring-??like	 ?fashion.	 ?However,	 ?the	 ?first	 ?two	 ?plates	 ?(starting	 ?from	 ?the	 ?shaft)	 ?act	 ?more	 ?as	 ?spacers	 ?(the	 ?steel	 ?cables	 ?do	 ?not	 ?go	 ?through	 ?holes	 ?at	 ?the	 ?edge),	 ?so	 ?the	 ?arm	 ?can	 ?bend	 ?significantly	 ?more	 ?in	 ?this	 ?section.	 ?	 ?	 ?Figure	 ?10	 ?-?	 ?in	 ?a	 ?relaxed	 ?position,	 ?the	 ?spine	 ?bends	 ?the	 ?most	 ?nearest	 ?to	 ?the	 ?shaft.	 ?This	 ?construction	 ?creates	 ?the	 ?nonlinear	 ?bending	 ?characteristics	 ?and	 ?effectively	 ?makes	 ?the	 ?spine	 ?more	 ?compliant	 ?over	 ?small	 ?angles	 ?of	 ?manipulation.	 ?	 ?	 ? 14	 ?Limits	 ?of	 ?range	 ?of	 ?motion	 ?To	 ?examine	 ?the	 ?range	 ?of	 ?motion,	 ?the	 ?first	 ?plate	 ?was	 ?clamped	 ?down	 ?and	 ?a	 ?felt	 ?marker	 ?was	 ?used	 ?to	 ?trace	 ?out	 ?a	 ?point	 ?on	 ?the	 ?outer	 ?face	 ?of	 ?the	 ?last	 ?plate.	 ?Figure	 ?11	 ?shows	 ?how	 ?the	 ?device	 ?is	 ?able	 ?to	 ?turn	 ?past	 ?90	 ?degrees	 ?with	 ?respect	 ?to	 ?the	 ?shaft,	 ?assuming	 ?that	 ?it	 ?is	 ?only	 ?restricted	 ?at	 ?the	 ?first	 ?plate.	 ?The	 ?large	 ?arc	 ?is	 ?a	 ?trace	 ?of	 ?the	 ?outer	 ?edge	 ?of	 ?the	 ?last	 ?plate	 ?while	 ?the	 ?spine	 ?was	 ?turned	 ?between	 ?far	 ?left	 ?and	 ?far	 ?right.	 ?The	 ?first	 ?plate	 ?was	 ?clamped	 ?with	 ?its	 ?bottom	 ?edge	 ?along	 ?the	 ?horizontal	 ?line	 ?(near	 ?the	 ?bottom).	 ?The	 ?radial	 ?lines	 ?represent	 ?traces	 ?of	 ?some	 ?of	 ?the	 ?positions	 ?of	 ?the	 ?spine	 ?(black	 ?is	 ?the	 ?spine's	 ?left	 ?side,	 ?red	 ?is	 ?the	 ?right).	 ? 	 ?	 ?Figure	 ?11	 ?-?	 ?Traces	 ?of	 ?the	 ?spine	 ?in	 ?various	 ?positions	 ?A	 ?limit	 ?on	 ?the	 ?radius	 ?of	 ?curvature	 ?can	 ?easily	 ?be	 ?estimated	 ?based	 ?on	 ?the	 ?dimensions	 ?of	 ?the	 ?spine	 ?plates	 ?and	 ?rings.	 ?Suppose	 ?that	 ?the	 ?spine	 ?bends	 ?all	 ?the	 ?way	 ?in	 ?one	 ?direction,	 ?forming	 ?an	 ?arc.	 ?The	 ?outer	 ?edges	 ?of	 ?the	 ?plates	 ?would	 ?touch,	 ?and,	 ?ignoring	 ?the	 ?radial	 ?thickness	 ?of	 ?the	 ?rings,	 ?the	 ?inner	 ?edges	 ?of	 ?the	 ?plates	 ?would	 ?be	 ?separated	 ?by	 ?1	 ?cm.	 ?With	 ?a	 ?thickness	 ?of	 ?0.45	 ?cm,	 ?the	 ?plates	 ?would	 ?form	 ?an	 ?arc	 ?of	 ?radius	 ?3.27	 ?cm	 ?through	 ?the	 ?centers.	 ?The	 ?actual	 ?curvature	 ?is	 ?more	 ?limited	 ?by	 ?the	 ?length	 ?of	 ?the	 ?steel	 ?cables,	 ?and	 ?the	 ?short	 ?length	 ?of	 ?the	 ?tubing.	 ?If	 ?the	 ?spine	 ?were	 ?to	 ?make	 ?sharper	 ?turns,	 ?each	 ?cable	 ?would	 ?need	 ?to	 ?reach	 ?a	 ?smaller	 ?minimum	 ?length	 ?and	 ?larger	 ?maximum	 ?length,	 ?requiring	 ?a	 ?larger	 ?handle	 ?or	 ?perhaps	 ?a	 ?spool	 ?or	 ?pulley	 ?system.	 ?Past	 ?the	 ?first	 ?two	 ?plates,	 ?the	 ?arm	 ?bends	 ?more	 ?uniformly,	 ?with	 ?a	 ?radius	 ?of	 ?about	 ?9.74	 ?cm.	 ?This	 ?number	 ?was	 ?found	 ?by	 ?turning	 ?the	 ?handle	 ?to	 ?bend	 ?as	 ?far	 ?as	 ?possible	 ?in	 ?one	 ?direction,	 ?tracing	 ?the	 ?sides	 ?of	 ?this	 ?section	 ?of	 ?the	 ?arm	 ?onto	 ?paper,	 ?and	 ?measuring	 ?five	 ?points	 ?on	 ?each	 ?side	 ?with	 ?respect	 ?to	 ?some	 ?reference	 ?point.	 ?The	 ?two	 ?sets	 ?of	 ?points	 ?are	 ?estimated	 ?as	 ?two	 ?circles	 ?concentric	 ?at	 ?the	 ?reference	 ?point,	 ?which	 ?was	 ?chosen	 ?such	 ?	 ? 15	 ?that	 ?the	 ?sum	 ?of	 ?standard	 ?deviations	 ?of	 ?the	 ?inner	 ?and	 ?outer	 ?radii	 ?is	 ?minimized.	 ?As	 ?shown	 ?in	 ?Figure	 ?12,	 ?the	 ?reference	 ?point	 ?is	 ?at	 ?(-??0.29437,	 ?0.06918)	 ?cm	 ?and	 ?the	 ?radii	 ?are	 ?about	 ?7.17	 ?and	 ?12.31	 ?cm,	 ?averaged	 ?to	 ?get	 ?the	 ?center	 ?radius	 ?of	 ?9.74	 ?cm.	 ?	 ?Figure	 ?12	 ?-?	 ?A	 ?circular	 ?fit	 ?of	 ?the	 ?maximum	 ?curvature.	 ?	 ?Effect	 ?of	 ?spine	 ?parameters	 ?on	 ?operational	 ?behavior	 ?The	 ?bending	 ?characteristics	 ?and	 ?control	 ?behavior	 ?of	 ?the	 ?spine	 ?are	 ?due	 ?to	 ?several	 ?interrelated	 ?factors.	 ?The	 ?spine	 ?is	 ?somewhat	 ?analogous	 ?to	 ?a	 ?spring,	 ?and	 ?so	 ?these	 ?factors	 ?may	 ?be	 ?thought	 ?of	 ?as	 ?spring	 ?parameters,	 ?with	 ?their	 ?resulting	 ?effect	 ?on	 ?the	 ?spine's	 ?characteristics	 ?outlined	 ?in	 ?the	 ?following	 ?chart:	 ?	 ?	 ?	 ?	 ? 16	 ?	 ?           Result of changing parameter Parameter Affects Increase Decrease         Plate diameter Control cable position, moment applied to plates Less control force required, larger bend radius, smaller turn angle Greater control force required, smaller bend radius Spine length Weight, number of plates, spacer thickness, precision, penetration depth Larger bending moment, deeper penetration, more materials Smaller bending moment means easier control, less depth penetration Number of plates Precision, spacer thickness, length, weight Greater precision, larger bending moment means difficult control Less weight, less precise bending Spacer thickness Spine length and/or number of plates Less precision, less weight More weight, more precision Inner tube stiffness Bending tendency, control force  Spine stays straighter, less floppy control requires more force Floppier spine, smaller force to control Plate thickness Weight, strength Heavier, stronger Lighter, more brittle 	 ? Figure	 ?13	 ?-?	 ?Table	 ?of	 ?spine	 ?parameters	 ?and	 ?effects	 ?on	 ?behavior	 ?	 ?Further	 ?development	 ?of	 ?the	 ?device	 ?would	 ?require	 ?optimization	 ?of	 ?these	 ?parameters;	 ?the	 ?existing	 ?prototype	 ?represents	 ?an	 ?iteration	 ?wherein	 ?the	 ?penetration	 ?length	 ?of	 ?the	 ?spine	 ?was	 ?considered	 ?less	 ?important	 ?than	 ?ease	 ?of	 ?use	 ?and	 ?adaptability	 ?to	 ?testing	 ?conditions.	 ?To	 ?this	 ?end,	 ?the	 ?device	 ?was	 ?built	 ?to	 ?be	 ?relatively	 ?short,	 ?lightweight,	 ?and	 ?precise,	 ?with	 ?a	 ?large	 ?number	 ?of	 ?plates	 ?per	 ?unit	 ?length,	 ?a	 ?moderately	 ?stiff	 ?inner	 ?tube,	 ?and	 ?a	 ?"best-??guess"	 ?plate	 ?diameter	 ?of	 ?50mm.	 ?	 ?	 ?	 ?	 ? 17	 ?Interface	 ?The	 ?mechanical	 ?spine	 ?design	 ?was	 ?used	 ?in	 ?open	 ?water	 ?testing	 ?in	 ?Howe	 ?Sound.	 ?Some	 ?qualitative	 ?conclusions	 ?were	 ?drawn	 ?from	 ?these	 ?tests:	 ?	 ?The	 ?device	 ?was	 ?tested	 ?at	 ?depths	 ?of	 ?up	 ?to	 ?5	 ?meters,	 ?operated	 ?by	 ?an	 ?aquarium	 ?diver	 ?who	 ?was	 ?familiar	 ?with	 ?the	 ?rock	 ?piles	 ?that	 ?the	 ?device	 ?was	 ?designed	 ?for.	 ?	 ?The	 ?qualitative	 ?feedback	 ?on	 ?the	 ?interface	 ?was	 ?positive,	 ?indicating	 ?that	 ?it	 ?was	 ?easy	 ?to	 ?use	 ?and	 ?suitable	 ?for	 ?the	 ?conditions.	 ?Because	 ?communication	 ?with	 ?the	 ?diver	 ?was	 ?not	 ?possible	 ?during	 ?the	 ?tests,	 ?and	 ?because	 ?the	 ?camera	 ?monitor	 ?was	 ?required	 ?to	 ?be	 ?stationed	 ?on	 ?the	 ?dive	 ?boat,	 ?it	 ?became	 ?critical	 ?for	 ?the	 ?diver	 ?to	 ?have	 ?a	 ?tactile	 ?sense	 ?of	 ?where	 ?the	 ?camera	 ?head	 ?was	 ?pointed	 ?inside	 ?the	 ?cave.	 ?Subjective	 ?feedback	 ?from	 ?the	 ?diver	 ?indicated	 ?that	 ?the	 ?device	 ?felt	 ?"intuitive"	 ?after	 ?a	 ?short	 ?practise	 ?period,	 ?and	 ?that	 ?it	 ?was	 ?possible	 ?to	 ?predict	 ?the	 ?camera's	 ?behavior	 ?by	 ?the	 ?feel	 ?of	 ?the	 ?device,	 ?particularly	 ?in	 ?terms	 ?of	 ?forces	 ?caused	 ?by	 ?the	 ?moment	 ?of	 ?the	 ?spine.	 ?Alternate	 ?interface	 ?design	 ?To	 ?make	 ?the	 ?device	 ?more	 ?compact	 ?and	 ?improve	 ?the	 ?ease	 ?of	 ?use,	 ?a	 ?roller	 ?was	 ?implemented	 ?in	 ?an	 ?intermediate	 ?prototype,	 ?replacing	 ?the	 ?control	 ?handles.	 ?This	 ?allowed	 ?the	 ?cables	 ?to	 ?be	 ?wound	 ?on	 ?and	 ?off	 ?of	 ?a	 ?spool	 ?instead	 ?of	 ?being	 ?manipulated	 ?by	 ?long	 ?handles.	 ?Two	 ?cables	 ?on	 ?opposite	 ?sides	 ?of	 ?the	 ?device	 ?were	 ?wound	 ?on	 ?opposite	 ?sides	 ?of	 ?the	 ?spool,	 ?allowing	 ?the	 ?user	 ?to	 ?tension	 ?one	 ?side	 ?of	 ?the	 ?device	 ?while	 ?slackening	 ?the	 ?other.	 ?This	 ?interface	 ?meant	 ?that	 ?only	 ?two	 ?cables	 ?could	 ?be	 ?used,	 ?	 ?making	 ?the	 ?manipulation	 ?of	 ?the	 ?spine	 ?possible	 ?in	 ?only	 ?one	 ?plane.	 ?The	 ?possible	 ?advantage	 ?of	 ?this	 ?design	 ?is	 ?the	 ?simplification	 ?of	 ?the	 ?interface;	 ?the	 ?user	 ?would	 ?manipulate	 ?the	 ?camera	 ?head	 ?in	 ?one	 ?plane	 ?with	 ?one	 ?hand,	 ?and	 ?use	 ?the	 ?other	 ?hand	 ?to	 ?grip	 ?the	 ?shaft	 ?and	 ?rotate	 ?it	 ?as	 ?needed	 ?to	 ?navigate	 ?the	 ?cavern.	 ?This	 ?prototype	 ?interface	 ?did	 ?not	 ?function	 ?effectively	 ?with	 ?the	 ?steel	 ?cable.	 ?A	 ?1"	 ?diameter	 ?spool	 ?was	 ?used,	 ?and	 ?this	 ?diameter	 ?tended	 ?to	 ?cause	 ?the	 ?cables	 ?to	 ?plastically	 ?deform	 ?as	 ?they	 ?were	 ?rolled	 ?onto	 ?the	 ?spool	 ?under	 ?tension.	 ?This	 ?created	 ?snags	 ?and	 ?inconsistent	 ?control	 ?behavior.	 ?A	 ?suitable	 ?replacement	 ?for	 ?the	 ?steel	 ?cable	 ?has	 ?not	 ?been	 ?identified;	 ?this	 ?type	 ?of	 ?interface	 ?could	 ?be	 ?developed	 ?in	 ?future	 ?if	 ?a	 ?replacement	 ?could	 ?be	 ?found.	 ?It	 ?is	 ?not	 ?recommended	 ?to	 ?increase	 ?the	 ?spool	 ?diameter	 ?significantly	 ?as	 ?this	 ?makes	 ?the	 ?roller-??style	 ?interface	 ?less	 ?intuitive	 ?and	 ?comfortable.	 ?	 ?Camera	 ?The	 ?camera	 ?used	 ?was	 ?purchased	 ?from	 ?a	 ?Chinese	 ?supplier,	 ?and	 ?is	 ?identified	 ?as	 ?a	 ?"10	 ?meter	 ?Boroscope	 ?Endoscope	 ?LED	 ?Inspection	 ?Sewer	 ?Camera".	 ?It	 ?contains	 ?a	 ?10mm	 ?diameter	 ?digital	 ?camera	 ?and	 ?LED	 ?lighting	 ?at	 ?the	 ?tip,	 ?and	 ?a	 ?10	 ?meter	 ?USB	 ?cable	 ?to	 ?interface	 ?with	 ?a	 ?computer.	 ?	 ? 18	 ?The	 ?camera	 ?failed	 ?during	 ?open	 ?water	 ?testing,	 ?possibly	 ?due	 ?to	 ?stretching	 ?of	 ?the	 ?cable.	 ?This	 ?occurred	 ?most	 ?likely	 ?because	 ?the	 ?camera	 ?cable	 ?was	 ?not	 ?sufficiently	 ?long	 ?enough	 ?for	 ?the	 ?depth	 ?of	 ?the	 ?caverns,	 ?and	 ?was	 ?being	 ?operated	 ?at	 ?its	 ?length	 ?limit	 ?throughout	 ?the	 ?open	 ?water	 ?testing	 ?phase.	 ?It	 ?is	 ?unclear	 ?whether	 ?depth	 ?pressure	 ?or	 ?water	 ?ingress	 ?played	 ?a	 ?role	 ?as	 ?well.	 ?Sufficient	 ?durability	 ?testing	 ?of	 ?the	 ?camera	 ?was	 ?not	 ?possible	 ?due	 ?to	 ?cost	 ?and	 ?time	 ?considerations.	 ?In	 ?terms	 ?of	 ?future	 ?development,	 ?either	 ?in-??depth	 ?research	 ?of	 ?potential	 ?replacement	 ?cameras	 ?or	 ?development	 ?of	 ?a	 ?custom	 ?camera	 ?body	 ?and	 ?housing	 ?to	 ?attach	 ?to	 ?the	 ?mechanical	 ?spine	 ?device	 ?would	 ?be	 ?required.	 ?This	 ?was	 ?an	 ?anticipated	 ?problem	 ?in	 ?the	 ?early	 ?stages	 ?of	 ?the	 ?project,	 ?but	 ?it	 ?was	 ?also	 ?anticipated	 ?that	 ?there	 ?would	 ?be	 ?insufficient	 ?time	 ?to	 ?develop	 ?a	 ?camera	 ?in	 ?addition	 ?to	 ?the	 ?maneuvering	 ?device.	 ?	 ?Durability	 ?considerations	 ?The	 ?device	 ?is	 ?constructed	 ?from	 ?a	 ?variety	 ?of	 ?materials	 ??	 ?steel,	 ?aluminum,	 ?PVC,	 ?and	 ?acrylic	 ??	 ?and	 ?long-??term	 ?robustness	 ?is	 ?unknown.	 ?It	 ?is	 ?expected	 ?that	 ?the	 ?salt	 ?water	 ?operating	 ?environment	 ?will	 ?corrode	 ?fasteners	 ?and	 ?steel	 ?components	 ?over	 ?time,	 ?and	 ?the	 ?lifetime	 ?of	 ?the	 ?device	 ?will	 ?depend	 ?heavily	 ?on	 ?maintenance	 ??	 ?giving	 ?it	 ?a	 ?thorough	 ?rinsing	 ?with	 ?fresh	 ?water	 ?and	 ?allowing	 ?it	 ?to	 ?dry	 ?completely	 ?after	 ?use	 ?will	 ?most	 ?likely	 ?maximize	 ?its	 ?lifespan.	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ? 19	 ?3.	 ?Conclusions	 ?	 ?The	 ?mechanical	 ?spine	 ?prototype	 ?developed	 ?for	 ?this	 ?project	 ?has	 ?provided	 ?a	 ?starting	 ?point	 ?for	 ?further	 ?development.	 ?The	 ?device	 ?meets	 ?the	 ?basic	 ?requirements	 ?identified	 ?at	 ?the	 ?outset:	 ?it	 ?accommodates	 ?a	 ?USB	 ?endoscopic	 ?camera,	 ?and	 ?can	 ?penetrate	 ?3"	 ?caverns	 ?up	 ?to	 ?an	 ?acceptable	 ?depth.	 ?The	 ?interface	 ?is	 ?simple,	 ?suitable	 ?for	 ?underwater	 ?deployment,	 ?and	 ?the	 ?intended	 ?operators	 ?found	 ?that	 ?it	 ?became	 ?intuitive	 ?with	 ?practise.	 ?	 ?It	 ?was	 ?found	 ?that	 ?the	 ?spine	 ?can	 ?make	 ?up	 ?to	 ?a	 ?180	 ?degree	 ?turn	 ?over	 ?a	 ?9.74	 ?cm	 ?radius	 ?arc,	 ?which	 ?allows	 ?the	 ?attached	 ?camera	 ?to	 ?be	 ?manipulated	 ?beyond	 ?the	 ?requirements	 ?of	 ?the	 ?project.	 ?It	 ?has	 ?been	 ?established	 ?that	 ?the	 ?robustness	 ?of	 ?the	 ?off-??the-??shelf	 ?endoscopic	 ?camera,	 ?as	 ?well	 ?as	 ?its	 ?cable	 ?length,	 ?are	 ?insufficient	 ?for	 ?deep-??water	 ?use,	 ?an	 ?issue	 ?which	 ?will	 ?require	 ?attention	 ?should	 ?this	 ?project	 ?undergo	 ?further	 ?development.	 ?As	 ?will	 ?be	 ?discussed	 ?in	 ?the	 ?Recommendations	 ?section	 ?of	 ?this	 ?report,	 ?there	 ?are	 ?several	 ?identified	 ?improvements	 ?that	 ?could	 ?be	 ?developed	 ?at	 ?a	 ?later	 ?time.	 ?	 ?4.	 ?Deliverables	 ?	 ?The	 ?complete	 ?mechanical	 ?spine	 ?device	 ?with	 ?attached	 ?camera	 ?is	 ?to	 ?be	 ?delivered	 ?to	 ?the	 ?sponsor	 ?by	 ?mid-??January.	 ?The	 ?specific	 ?date	 ?is	 ?pending	 ?due	 ?to	 ?the	 ?sponsor's	 ?desire	 ?to	 ?test	 ?the	 ?device	 ?again	 ?in	 ?open	 ?water,	 ?which	 ?is	 ?a	 ?weather-??dependent	 ?event.	 ?	 ?In	 ?addition,	 ?Dr.	 ?Marliave	 ?will	 ?receive:	 ??	 ?The	 ?two	 ?"Explorer"	 ?mini-??submarines	 ?purchased	 ?for	 ?testing	 ??	 ?A	 ?copy	 ?of	 ?this	 ?report	 ?and	 ?the	 ?project	 ?completion	 ?report	 ?	 ?5.	 ?Recommendations	 ?	 ?There	 ?are	 ?several	 ?aspects	 ?of	 ?the	 ?final	 ?device	 ?which	 ?could	 ?be	 ?developed	 ?further:	 ?1. Develop	 ?a	 ?handle	 ?for	 ?longer	 ?cables	 ?If	 ?the	 ?spine	 ?were	 ?to	 ?be	 ?increased	 ?in	 ?length,	 ?the	 ?steel	 ?cables	 ?would	 ?need	 ?to	 ?be	 ?proportionally	 ?longer,	 ?and	 ?the	 ?difference	 ?between	 ?a	 ?cable?s	 ?longest	 ?length	 ?(when	 ?it	 ?is	 ?on	 ?the	 ?outside	 ?of	 ?a	 ?curve)	 ?and	 ?shortest	 ?length	 ?(when	 ?it	 ?is	 ?on	 ?the	 ?inside	 ?of	 ?a	 ?curve)	 ?would	 ?increase.	 ?In	 ?this	 ?case,	 ?a	 ?longer	 ?handle	 ?would	 ?increase	 ?	 ? 20	 ?the	 ?travel	 ?distance	 ?of	 ?the	 ?cable;	 ?alternately,	 ?the	 ?previously	 ?discussed	 ?roller-??style	 ?interface	 ?could	 ?be	 ?implemented.	 ?	 ?2. Make	 ?the	 ?device	 ?lighter	 ?or	 ?buoyant	 ?Should	 ?length	 ?be	 ?added	 ?to	 ?the	 ?spine,	 ?it	 ?may	 ?become	 ?too	 ?heavy	 ?to	 ?remain	 ?upright	 ?in	 ?its	 ?neutral	 ?position.	 ?One	 ?solution	 ?is	 ?to	 ?add	 ?foam	 ?spacers	 ?in	 ?place	 ?of	 ?the	 ?acrylic	 ?ones;	 ?it	 ?may	 ?also	 ?be	 ?possible	 ?to	 ?reduce	 ?the	 ?amount	 ?of	 ?material	 ?needed	 ?for	 ?each	 ?disc.	 ?	 ?	 ?3. Add	 ?a	 ?smooth	 ?outer	 ?cover	 ?The	 ?danger	 ?of	 ?the	 ?acrylic	 ?plates	 ?scraping	 ?against	 ?the	 ?cavern	 ?surface	 ?was	 ?concluded	 ?to	 ?not	 ?be	 ?a	 ?problem	 ?in	 ?testing,	 ?but	 ?if	 ?this	 ?problem	 ?emerges,	 ?adding	 ?a	 ?smooth,	 ?flexible	 ?outer	 ?cover	 ?should	 ?solve	 ?this.	 ?A	 ?variety	 ?of	 ?very	 ?malleable,	 ?soft	 ?plastic	 ?tubing	 ?could	 ?be	 ?used	 ?for	 ?this	 ?purpose.	 ?	 ?	 ?4. Avoid	 ?tension	 ?in	 ?the	 ?USB	 ?cable.	 ?	 ?While	 ?it	 ?is	 ?not	 ?known	 ?for	 ?sure	 ?if	 ?the	 ?camera	 ?damage	 ?sustained	 ?in	 ?testing	 ?was	 ?due	 ?to	 ?tension	 ?in	 ?the	 ?camera	 ?cable,	 ?it	 ?is	 ?not	 ?advisable	 ?to	 ?operate	 ?the	 ?device	 ?at	 ?the	 ?limits	 ?of	 ?the	 ?cable's	 ?length.	 ?One	 ?simple	 ?recommendation	 ?would	 ?be	 ?to	 ?connect	 ?the	 ?USB	 ?cable	 ?to	 ?a	 ?constraining	 ?rope	 ?to	 ?ensure	 ?it	 ?does	 ?not	 ?undergo	 ?tension;	 ?adding	 ?a	 ?USB	 ?extension	 ?cable	 ?is	 ?another	 ?option,	 ?though	 ?it	 ?has	 ?not	 ?been	 ?determined	 ?whether	 ?this	 ?would	 ?adversely	 ?affect	 ?the	 ?camera	 ?signal.	 ?Another	 ?solution	 ?would	 ?be	 ?to	 ?develop	 ?an	 ?underwater	 ?video	 ?interface	 ?for	 ?the	 ?diver,	 ?though	 ?this	 ?would	 ?broaden	 ?the	 ?project's	 ?scope	 ?considerably.	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ? 21	 ?6.	 ?Appendix	 ??	 ?Costs	 ?and	 ?Materials	 ?	 ?Project	 ?costs	 ?The	 ?below	 ?costs	 ?are	 ?for	 ?items	 ?purchased	 ?for	 ?the	 ?project.	 ?The	 ?parts	 ?and	 ?materials	 ?list	 ?includes	 ?all	 ?parts	 ?sourced	 ?from	 ?the	 ?Engineering	 ?Physics	 ?Project	 ?Lab.	 ?	 ?Item	 ? Quantity	 ? Cost	 ?      "Explorer"	 ?micro-??submarine	 ? 2	 ? 18.76	 ?10	 ?m	 ?endoscopic	 ?USB	 ?camera	 ? 2	 ? 109.99	 ?Item	 ?Shipping	 ?costs	 ? 	 ?	 ? 19.98	 ?	 ?	 ? 	 ?	 ? 	 ?	 ?Total	 ?(Canadian	 ?dollars)	 ? 	 ?	 ? 277.48	 ?	 ?	 ?Parts	 ?and	 ?materials	 ?	 ?Item	 ? Component	 ? Material	 ? Quantity	 ?	 ?	 ? 	 ?	 ? 	 ?	 ? 	 ?	 ?1"	 ?ID	 ?pipe	 ? Main	 ?shaft	 ? PVC	 ? 0.87	 ?m	 ?1/2"	 ?extruded	 ?rod	 ? Control	 ?handles	 ? aluminum	 ? 1.28	 ?m	 ?1/2"	 ?pipe	 ? Control	 ?handle	 ?brace	 ? aluminum	 ? 0.45	 ?m	 ?ball	 ?joint	 ? Handle-??shaft	 ?joint	 ? aluminum	 ? 1	 ?	 ? 22	 ?bicycle	 ?cable	 ? Control	 ?cables	 ? steel	 ? 5	 ?m	 ?1/4"	 ?eye	 ?hooks	 ? Cable	 ?guides	 ? steel	 ? 4	 ?clear	 ?flexible	 ?tubing	 ? Spine	 ?core	 ? PVC	 ? 0.3	 ?m	 ?3/4"	 ?carbon	 ?fiber	 ?rod	 ? Shaft-??tube	 ?connector	 ? carbon	 ?fiber	 ? 0.3	 ?m	 ?50	 ?mm	 ?discs	 ?(waterjet	 ?cut)	 ? Spine	 ?vertebrae	 ? 5mm	 ?acrylic	 ? 17	 ?spacers	 ?(waterjet	 ?cut)	 ? Spine	 ?disc	 ?spacers	 ? 5mm	 ?acrylic	 ? 32	 ?10-??32	 ?bolts	 ?and	 ?nuts	 ? Fasteners	 ? steel	 ? 8	 ?	 ?

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.52966.1-0074485/manifest

Comment

Related Items