Open Collections

UBC Undergraduate Research

Heating the patio at the Perch restaurant : a triple bottom line assessment of patio heating technologies Cockcroft, Meghan; White, Brian; Dolinsky, Erik; Abualsaud, Ayaat Nov 27, 2014

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
18861-Cockcroft_M_et_al_SEEDS_2014.pdf [ 2.37MB ]
Metadata
JSON: 18861-1.0108855.json
JSON-LD: 18861-1.0108855-ld.json
RDF/XML (Pretty): 18861-1.0108855-rdf.xml
RDF/JSON: 18861-1.0108855-rdf.json
Turtle: 18861-1.0108855-turtle.txt
N-Triples: 18861-1.0108855-rdf-ntriples.txt
Original Record: 18861-1.0108855-source.json
Full Text
18861-1.0108855-fulltext.txt
Citation
18861-1.0108855.ris

Full Text

 UBC Social Ecological Economic Development Studies (SEEDS) Student ReportAyaat Abualsaud, Brian White, Erik Dolinsky, Meghan CockcroftHeating the Patio at The Perch Restaurant:A Triple Bottom Line Assessment of Patio Heating TechnologiesAPSC 261November 27, 201411661718University of British Columbia Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report”.  UBC  Social  Ecological  Economic  Development  Studies  (SEEDS)  Student  Report           Heating  the  Patio  at  The  Perch  Restaurant:  A  Triple  Bottom  Line  Assessment  of  Patio  Heating  Technologies   Submitted  by:  Meghan  Cockcroft  Brian  White  Erik  Dolinsky  Ayaat  Abualsaud                University  of  Brit ish  Columbia  Applied  Science  261-­‐101  Technology  and  Society  I   27  November  2014  	  Disclaimer:  UBC  SEEDS  provides  students  with  the  opportunity  to  share  the  findings  of  their  studies,  as  well  as  their  opinions,  conclusions  and  recommendations  with  the  UBC  community.  The  reader  should  bear  in  mind  that  this  is  a  student  project/report  and  is  not  an  official  document  of  UBC.  Furthermore  readers  should  bear  in  mind  that  these  reports  may  not  reflect  the  current  status  of  activities  at  UBC.  We  urge  you  to  contact  the  research  persons  mentioned  in  a  report  or  the  SEEDS  Coordinator  about  the  current  status  of  the  subject  matter  of  a  project/reportExecutive  Summary  The	  Alma	  Mater	  Society	  (AMS)	  of	  the	  University	  of	  British	  Columbia	  has	  nearly	  completed	  the	  construction	  of	  the	  new	  Student	  Union	  Building	  (SUB),	  located	  on	  UBC’s	  Vancouver	  campus.	  The	  Perch	  restaurant,	  located	  in	  the	  new	  SUB,	  will	  provide	  students	  and	  visitors	  with	  healthy	  and	  environmentally	  responsible	  fare.	  Keeping	  with	  UBC’s	  image	  as	  a	  leader	  in	  sustainability,	  the	  AMS	  requested	  that	  select	  students	   research	   into	   sustainable	   heating	   solutions	   for	   the	   Perch	   restaurant’s	   rooftop	   patio,	  which	  would	  allow	  the	  Perch	  to	  expand	  patio	  sales	  periods,	  both	  daily	  and	  seasonal.	  	  Given	   various	   restraints,	   including	   structural	   and	   power	   access	   limitations,	   our	   team	   has	  proposed	   two	  alternatives	   to	   traditional	   freestanding	  propane	  heaters:	   freestanding	  electric	  heaters,	  and	   a	   radiant	   floor	   heating	   system.	   Each	   of	   the	   three	   options	   is	   assessed	   according	   to	   their	   triple	  bottom	  line	  attributes:	  economic	  feasibility,	  environmental	   impact,	  and	  social	   reception.	  Net	  present	  worth	  of	  each	  option	  is	  calculated,	  from	  calculating	  cost	  and	  predicted	  revenue,	   in	  order	  to	  measure	  each	   option’s	   economic	   feasibility.	   End-­‐use	   and	  Upstream	  emissions	   of	   each	   product	   is	   analyzed,	   in	  order	   to	   calculate	   each	   option’s	   environmental	   impact.	   Product	   performance	   from	   a	   customer	  satisfaction	   standpoint	   and	   general	   public	   reception	   of	   each	   option	   forms	   a	   basis	   of	   the	   social	  reception	  of	  each	  product.	  After	  careful	  consideration	  of	  each	  product’s	  merits	  and	  shortcomings,	  the	  two	  electric	  options	  seem	   to	   be	   the	   most	   sustainable.	   The	   use	   of	   electricity	   as	   a	   fuel	   source	   provides	   a	   much	   cleaner	  upstream	  emission	  levels,	  especially	  after	  BC’s	  hydroelectric	  dam	  system	  is	  taken	  into	  consideration.	  In	  financial	   terms,	   all	   three	   options	   are	   similar,	   but	   with	   little	   adoption	   cost	   and	   low	   fuel	   price,	  freestanding	  electric	  heaters	  prove	  to	  be	  the	  most	  economically	  feasible	  option.	  In	  terms	  of	  customer	  experience,	   restaurant-­‐goers	   tend	   to	   favor	   higher	   heat	   concentration	   provided	   by	   freestanding	  heaters;	   however,	   debate	   over	   the	   use	   of	   patio	   heaters	   has	   grown,	   giving	   patio	   heaters	   a	   bad	  reputation	  for	  heating	  the	  open	  air.	  Although	   there	   is	   one	   clear	   option	   for	   the	   Perch	   restaurant	   patio,	   given	   the	   brevity	   and	   low	  frequency	  of	   intended	  use	   (due	   to	  Vancouver’s	  weather	  patterns),	   relatively	  high	   cost	  of	  purchasing	  and	   operating,	   and	   purely	   negative	   environmental	   impact,	   it	   is	   recommended	   that	   the	   AMS	   forego	  purchasing	  an	  outdoor	  heating	  solution	  for	  the	  Perch	  restaurant	  patio.	  ii    iii Table  of  Contents  Executive	  Summary	  ............................................................................................................................	  ii	  Table	  of	  Contents	  ..............................................................................................................................	  iii	  List	  of	  Illustrations	  .............................................................................................................................	  iv	  1.0	  Introduction	  .................................................................................................................................	  1	  2.0	  Economic	  Analysis	  ........................................................................................................................	  3	  2.1	  Analysis	  Methodology	  ............................................................................................................................	  3	  2.2	  Estimating	  Revenue	  ................................................................................................................................	  5	  Table	  2.1:	  Patio	  Heater	  Usage	  ..........................................................................................................................	  5	  Table	  2.2:	  The	  Perch	  Hours	  of	  Operation	  .........................................................................................................	  6	  Table	  2.3:	  Patio	  Heater	  Revenue	  ......................................................................................................................	  6	  2.3	  Estimating	  Costs	  .....................................................................................................................................	  7	  Table	  2.4:	  Annual	  and	  Initial	  Cost	  Data	  .............................................................................................................	  7	  2.4	  Profit	  and	  Net	  Present	  Worth	  .................................................................................................................	  8	  Figure	  2.1:	  Present	  worth	  vs.	  time	  for	  each	  of	  the	  three	  patio	  heater	  technologies.	  ....................................	  10	  3.0	  Environmental	  Analysis	  ..............................................................................................................	  11	  3.1	  Propane	  Toxicity,	  Contaminations	  and	  Spills	  ........................................................................................	  11	  3.2	  Hydroelectricity	  ....................................................................................................................................	  11	  3.3	  Upstream	  vs.	  End-­‐Use	  Emissions	  ..........................................................................................................	  11	  3.4	  Upstream	  Emissions	  Analysis	  (propane	  vs.	  electricity)	  ..........................................................................	  11	  Table	  3.1:	  GREET	  model	  Used	  to	  calculate	  greenhouse	  emissions	  ................................................................	  12	  Table	  3.2:	  Upstream	  emissions	  factors	  (grams	  per	  million	  Btu)	  .....................................................................	  12	  Graph	  3.1:	  Greenhouse	  gas	  emissions	  intensity	  and	  water	  supply	  for	  electricity	  sold	  by	  BC	  Hydro.	  .............	  13	  3.5	  End-­‐Use	  Emissions	  Analysis	  ..................................................................................................................	  13	  Graph	  3.2:	  Heat	  delivered	  vs.	  Heat	  Lost	  .........................................................................................................	  14	  4.0	  Social	  Analysis	  ............................................................................................................................	  15	  4.1	  Customer	  Satisfaction	  ..........................................................................................................................	  15	  Graph	  4.1:	  Heating	  Technology	  Performance	  ................................................................................................	  15	  4.2	  Public	  Reception	  ...................................................................................................................................	  16	  Conclusion	  and	  Recommendations	  ...................................................................................................	  17	  References	  .......................................................................................................................................	  19	  Appendix	  A	  ......................................................................................................................................	  21	         List  of  Illustrations   Table	  2.1:	  Patio	  Heater	  Usage	  Table	  2.2:	  The	  Perch	  Hours	  of	  Operation	  	  Table	  2.3:	  Patio	  Heater	  Revenue	  Table	  2.4:	  Annual	  and	  Initial	  Cost	  Data	  Figure	  2.1:	  Present	  worth	  vs.	  time	  for	  each	  of	  the	  three	  patio	  heater	  technologies	  Table	  3.1:	  GREET	  model	  Table	  3.2:	  Upstream	  emissions	  Graph	  3.1:	  Greenhouse	  gas	  emissions	  intensity	  and	  water	  supply	  for	  electricity	  sold	  by	  BC	  Hydro	  Graph	  3.2:	  Heat	  Delivered	  vs.	  Heat	  Lost	  Graph	  4.1:	  Heating	  Technology	  Performance	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	     iv    1 1.0  Introduction  The	  Perch	  restaurant,	  part	  of	  UBC’s	  new	  SUB	  on	  the	  Vancouver	  campus,	  wishes	  to	  extend	  its	  patio	  season	   by	   purchasing	   and	   using	   patio	   heaters	   for	   its	   rooftop	   patio.	   The	   AMS,	   staying	   true	   to	  UBC’s	  image	  as	  a	  sustainable	   leader,	  wanted	  to	  find	  a	  sustainable	  heating	  solution	  for	  the	  Perch	  restaurant	  patio.	  Student	  teams	  were	  asked	  to	  research	  outdoor	  heating	  solutions	  as	  alternatives	  to	  the	  industry	  standard	  freestanding	  propane	  heaters.	  The	  new	  SUB,	  however,	  was	  in	  its	  final	  stage	  of	  construction	  at	  this	   time,	   and	   therefore	   proposed	   heating	   solutions	   could	   not	  modify	   the	   building	   in	   any	  way.	   The	  heating	   solutions	   were	   to	   be	   portable,	   in	   order	   to	   accommodate	   multiple	   floor	   layouts,	   as	   well	   as	  aesthetically	  pleasing.	  The	  patio	  would	  not	  have	  any	  structural	  elements	  for	  which	  to	  mount	  heaters	  on,	  as	  the	  patio	  walls	  are	  made	  of	  glass.	  The	  patio	   itself	  would	  only	  have	  two	  electrical	  outlets,	  with	  another	  just	  inside	  the	  patio	  door.	  Structural	  constraints	  quickly	  ousted	  large-­‐scale	  project	  options,	  such	  as	  porting	  waste	  heat	  from	  the	  kitchen	   to	  heat	   the	  patio.	  The	   limited	  number	  of	  electrical	  outlets	  would	  cause	   tripping	  and	   fire	  hazards	   if	  wired	   improperly,	  or	   if	   individual	   table	  or	   seat	  heaters	  were	  used.	  The	  use	  of	  batteries	   in	  heaters	   would	   result	   in	   very	   short	   run-­‐times	   and	   a	   large	   amount	   of	   waste.	   Using	   biofuel	   was	  considered,	   as	   UBC	   has	   its	   own	   club	   which	   produces	   biodiesel,	   but	   biodiesel	   patio	   heaters	   are	   not	  commercially	   available,	   and	   combustion	   of	   biodiesel	   gives	   off	   an	   aroma	   which	   varies	   with	   the	   fuel	  source,	  making	   it	   a	   poor	   option	   for	   a	   restaurant	   patio.	   Any	   heating	   element	   on	   or	   below	   the	   table	  poses	  significant	  health	  hazards.	  The	  pool	  of	  options	  quickly	  dwindled,	  finally	  giving	  two	  alternatives	  to	  freestanding	  propane	  heaters:	  freestanding	  electric	  heaters,	  and	  radiant	  floor	  heating.	  Freestanding	  electric	  heaters	  operate	  very	  much	  like	  propane	  heaters,	  but	  convert	  electricity	  into	  heat,	  instead	  of	  burning	  fuel	  to	  create	  heat.	  Radiant	  floor	  heating	  uses	  a	  system	  of	  electrical	  wires	  laid	  down	  under	  a	  protective	  layer	  of	  flooring.	  Both	  are	  compared	  to	  freestanding	  propane	  heaters	  using	  a	  Triple	  Bottom	  Line	  (TBL)	  assessment.	  The	  Triple	  Bottom	  Line	  assessment	  is	  a	  holistic	  accounting	  framework,	  which	  evaluates	  products	  on	  three	  aspects:	  economic	  feasibility,	  environmental	  impact,	  and	  social	  reception.	  These	  aspects	  are	  often	  referred	  to	  as	  the	  three	  ‘P’s	  —	  people,	  planet,	  and	  profit.	  Propane	  heaters,	  electric	  freestanding	  heaters,	  and	  radiant	  floor	  heating	  options	  will	  be	  assessed	  according	  to	  indicators	  of	  the	  three	  aspects	     2 of	  the	  triple	  bottom	  line,	  which	  will	  provide	  conclusive	  data	  that	  one	  of	  the	  three	  options	  is	  indeed	  the	  most	  sustainable.	                                      3 2.0  Economic  Analysis	  2.1  Analysis  Methodology  In	  order	  to	  effectively	  analyze	  the	  economic	  feasibility	  of	  each	  of	  the	  three	  patio	  heater	  technologies,	  revenue,	  costs	  and	  profit	  were	  estimated	  as	  follows:	  1. Revenue	  Estimation	  Methodology	  and	  Assumptions:	  	  To	  estimate	  the	  revenue	  generated	  from	  heating	  the	  patio,	  it	  is	  required	  to	  estimate	  the	  overall	  increase	   in	   sales	   that	   result	   from	   extending	   the	   patio	   season.	   This	   sales	   increase	   is	   the	  most	  difficult	   variable	  of	   all	   to	  predict.	   To	   simplify	  our	   calculations	  dramatically,	  we	  will	   assume	   the	  patio	  heaters	  will	  provide	  a	  10%	  increase	  in	  sales	  for	  every	  hour	  they	  are	  in	  operation,	  (not	  10%	  of	  total	  revenue).	  Although	  this	  factor	  of	  sales	  contribution	  is	  merely	  a	  guess,	  it	  is	  easy	  to	  adjust	  this	  value	  later	  when	  more	  data	  has	  been	  included.	  Note	  that	  changing	  this	  value	  will	  result	   in	  very	   different	   revenue	   estimates	   and	   profit	   estimates.	   For	   this	   reason,	  we	  have	  attached	   the	  Excel	  files	  used	  for	  the	  economic	  analysis	  section	  in	  Appendix	  A.	  	  	  Furthermore,	  to	  estimate	  the	  time	  that	  the	  patio	  heaters	  will	  be	  in	  use,	  we	  have	  gathered	  data	  from	  Environment	   Canada	   regarding	  mean	  monthly	   temperatures	   in	   the	  Vancouver	   area	   from	  October	  2013,	   to	  September	  2014.	  To	  simplify	  calculations	  we	  have	  made	  the	  assumption	  that	  for	  months	   averaging	   in	   the	   range	   of	   0	   to	   5	   degrees	   Celsius,	   the	   patio	   heaters	  will	   be	   used	   2	  hours	   each	   day	   (on	   average).	   For	  months	  with	   average	   temperatures	   in	   the	   range	   of	   5	   to	   10	  degrees	  Celsius,	   a	   time	  of	  use	  of	  1	  hour	  per	  day	   is	   assumed.	   It	   is	   also	  expected	   that	   the	  patio	  heaters	  are	  only	  used	  when	  the	  temperature	  is	  in	  the	  range	  of	  0,	  to	  +10	  degrees	  Celsius.	  	  One	   final	   assumption	   we	   have	   made	   to	   produce	   an	   estimate	   of	   patio	   heater	   revenue	  contribution,	   is	   the	  average	  daily	   revenue	  generated	  at	  The	  Perch.	  Based	  on	   the	  average	  meal	  price	   and	   a	   moderate	   rate	   of	   customers,	   we	   estimated	   $1000	   per	   day	   to	   incorporate	   in	   our	  analysis.	   As	   with	   our	   assumed	   sales	   contribution	   factor	   of	   10%,	   this	   value	   also	   can	   be	   easily	  adjusted	  in	  the	  Excel	  spreadsheet.	  	  	     4 2. Costs	  Estimation	  Methodology:	  The	   total	   costs	   for	   each	   project	   have	   been	   estimated	   by	   calculating	   initial	   costs	   and	   annual	  recurring	  costs	  associated	  with	  each	  type	  of	  patio	  heating	  technology.	  	  	  The	   purchase	   costs	   have	   been	   estimated	   by	   averaging	   cost	   data	   found	   on	   patio	   heater	  manufacturer	  websites.	  We	  have	   ignored	   the	   installation	  costs	  associated	  with	   in-­‐floor	  electric	  heaters	  as	  this	   is	  a	  case	  sensitive	  cost	  depending	  on	  floor	  materials	  and	  building	  structure,	  etc.	  (References	  are	  included	  at	  the	  end	  of	  report	  and	  in	  text	  citations	  are	  included	  as	  well).	  	  Annual	   costs	   are	   estimated	   by	   obtaining	   energy	   consumption	   data	   for	   each	   heater	   type,	   and	  determining	  the	  cost	  for	  each	  unit	  of	  energy	  by	  consulting	  BC	  Hydro	  and	  the	  current	  market	  price	  of	   propane.	   Finally,	   these	   values	   are	   multiplied	   by	   the	   time	   we	   expect	   to	   be	   using	   the	   patio	  heaters	  for	  to	  generate	  our	  annual	  cost	  estimates.	  	  3. Profit	  Estimation	  Methodology:	  Ultimately,	   to	   estimate	   profit	   associated	   with	   each	   project	   we	   perform	   a	   net	   present	   worth	  analysis	  on	  each	  project.	  This	  net	  present	  worth	  expresses	  the	  sum	  of	  the	  total	  project	  costs	  and	  total	   project	   benefits	   in	   present	   day	   dollars.	   To	   illustrate	   this	   present	  worth	   (profit)	   in	   a	   clear	  format,	  we	  have	  graphed	  how	  our	  results	  vary	  over	  time.	  We	  have	  incorporated	  interest	  into	  our	  calculations	  to	  account	  for	  the	  depreciation	  of	  money	  over	  time.	               5 2.2  Estimating  Revenue  This	   section	   contains	   various	   tables	   to	   illustrate	   the	   methodology	   used	   to	   estimate	   the	   revenue	  generated	  from	  heating	  the	  patio.	  	  Table  2.1:  Patio  Heater  Usage  The	  average	  time	  the	  patio	  heaters	  are	  expected	  to	  be	  in	  use	  throughout	  the	  year	  is	  shown	  below.	  (The	  revenue	   generated	   from	   heating	   the	   patio	   is	   assumed	   to	   be	   independent	   of	   which	   technology	   is	  chosen.)	  Month	  Average	  Daily	  Vancouver	  Temperatures	  Average	  	  Daily	  Usage	  	  (hours)	  Average	  	  Monthly	  Usage	  	  (hours)	  January	   4.4	   2	   62	  February	   2.5	   2	   58	  March	   6.9	   1	   31	  April	   10.0	   -­‐-­‐	   -­‐-­‐	  May	   14.2	   -­‐-­‐	   -­‐-­‐	  June	   15.7	   -­‐-­‐	   -­‐-­‐	  July	   19.0	   -­‐-­‐	   -­‐-­‐	  August	   19.2	   -­‐-­‐	   -­‐-­‐	  September	   15.9	   -­‐-­‐	   -­‐-­‐	  October	   9.2	   1	   31	  November	   6.2	   1	   30	  December	   2.2	   2	   62	  	   	   	   	  	  	   Average	  Annual	  Patio	  Heater	  Usage	  (hours)	  	  =	   274	  	   Average	  Daily	  Vancouver	  Temperatures	  data	  obtained	  from	  Environment	  Canada	  Website	  climate.weather.gc.ca.	  Data	  Collected	  at	  Vancouver	  Int.	  Airport	  Station	  from	  October	  2013	  to	  September	  2014.	             6 Table  2.2:  The  Perch  Hours  of  Operation  The	  table	  below	  shows	  The	  Perch	  hours	  of	  operation.	  From	  this	  data	  we	  can	  easily	  see	  that	  The	  Perch	  will	  be	  open	  on	  average	  78	  hours	  each	  week,	  or	  roughly	  11	  hours	  each	  day.	  	   Monday	   10:30am	  -­‐	  10:00pm	  Tuesday	   10:30am	  -­‐	  10:00pm	  Wednesday	   10:30am	  -­‐	  10:00pm	  Thursday	   10:30am	  -­‐	  10:00pm	  Friday	   10:30am	  -­‐	  12:00pm	  Saturday	   10:30am	  -­‐	  12:00pm	  Sunday	   11:00am	  -­‐	  4:00pm	  Holidays	   CLOSED	    Table  2.3:  Patio  Heater  Revenue  This	   table	  shows	  the	  monthly,	  and	  annual	  patio	  heater	  revenue	  produced	  following	  the	  assumptions	  stated	   in	   the	  methodology	   section	   of	   this	   report.	   Using	   the	   estimated	   income	   of	   $1000	   per	   day	   in	  combination	  with	  average	  monthly	  usage	  of	  heaters,	  we	  obtained	  the	  rightmost	  column	  below.	  Month	   Average	  Hourly	  Sales	  for	  Perch	  Average	  Monthly	  Usage	  of	  Heaters	  (hours)	   Monthly	  Patio	  Heater	  Revenue	  January	   $90.00	   62   $558.00	  February	   $90.00	   58   $522.00	  March	   $90.00	   31   $279.00	  April	   $90.00	   -­‐   -­‐	  May	   $90.00	   -­‐   -­‐	  June	   $90.00	   -­‐   -­‐	  July	   $90.00	   -­‐   -­‐	  August	   $90.00	   -­‐   -­‐	  September	   $90.00	   -­‐   -­‐	  October	   $90.00	   31   $279.00	  November	   $90.00	   30   $270.00	  December	   $90.00	   62   $558.00	  	       Annual	  Revenue	  From	  Patio	  Heaters:	   $2,466.00	         7 2.3  Estimating  Costs  As	   the	  purchase	  price	  varies	  greatly	  over	  a	   range	  of	  patio	  heaters,	  we	  have	  estimated	   that	  propane	  heaters	  will	  cost	  $330	  each,	  and	  electric	  free	  standing	  heaters	  will	  cost	  $230	  each,	  (homedepot.com).	  This	  purchase	  price	  may	  change	  depending	  on	  the	  preferences	  of	  stakeholders.	  We	  have	  chosen	  the	  higher	  bracket	  price	  patio	  heaters	  for	  this	  cost	  assessment.	  Energy	  consumption	  data	  has	  been	  listed	  below,	  as	  well	  as	  price	  per	  unit	  of	  power	  for	  electricity	  and	  propane.	   By	   combining	   these	   figures	   with	   the	   estimated	   annual	   time	   the	   patio	   heaters	   will	   be	   in	  operation,	  we	  are	  able	  to	  estimate	  the	  annual	  costs.	  “BC	  Hydro’s	  residential	  usage	  charge	  is	  a	  two-­‐tiered	  Conservation	  Rate.	  You	  pay	  7.52	  cents	  per	  kWh	  for	  the	  first	  1,350	  kWh	  you	  use	  over	  an	  average	  two-­‐month	  billing	  period.	  Above	  that	  amount,	  you	  pay	  11.27	  cents	  per	  kWh	  —	  what	  we	  call	  Step	  2	  —	  for	  the	  balance	  of	  the	  electricity	  used	  during	  the	  billing	  period.”	  (BC	  Hydro,	  see	  link	  in	  references).	  In	  our	  analysis,	  we	  will	  assume	  the	  perch	  is	  already	  consuming	  1350	  kWh	  in	  2	  months,	  so	  we	  will	  use	  a	  rate	  of	  11.27	  cents	  per	  kWh	  to	  calculate	  operating	  costs	  of	  electric	  technologies.	  	  Table  2.4:  Annual  and  Init ial   Cost  Data  This	   table	   contains	  data	   for	   typical	  products	   for	  each	  heating	  option,	   found	  at	  homedepot.ca.	  Other	  data	  in	  this	  table	  such	  as	  price	  of	  propane	  and	  propane	  consumption	  has	  been	  referenced	  from	  Natural	  Resources	  Canada,	   (see	   references	  page).	   To	   reach	  a	   similar	   value	  of	   kWh	  between	   the	   two	  electric	  heating	  options,	  we	  provided	  data	  for	  three	  free	  standing	  electric	  patio	  heaters	  rather	  than	  one.	  	   Propane	  Heaters	  Electric	  Free	  Standing	  Heaters	  (x3)	   Electric	  In-­‐floor	  Heaters	  Average	  energy	  rating	  	   30,000	  BTU/hour	   4500W	   220V	  *	  20Amps	  =	  4400W	  Average	  hours	  operating	  	  heater	  in	  2	  months	   274/6	  =	  45.67	  hours	   45.67	   45.67	  Average	  BTUs	  in	  2	  months	   1438605	   -­‐	   -­‐	  Average	  kWh	  in	  2	  months	   421.61	   205.5	   200.9	  Propane	  Price	   83	  cents/	  L	   -­‐	   -­‐	  Propane	  Use	  in	  2	  months	  (at	  1.2L	  /hour)	   54.8	  L	   -­‐	   -­‐	  Electricity	  Price	  above	  1350	  kWh	  in	  2	  months	   -­‐	   11.27	  cents/kWh	   11.27	  cents/kWh	  Total	  cost	  estimate	  in	  2	  months	   45.48	   23.16	   22.64	  Total	  Annual	  Operating	  Costs	   272.88	   138.96	   135.84	  Purchase	  Costs	   $330.00	   $690.00	   $749.00	     8 2.4  Profit   and  Net  Present  Worth  Profits	  are	  determined	  by	  calculating	  the	  present	  worth	  of	  each	  project	  option,	  where	  present	  worth	  expresses	  the	  sum	  of	  the	  total	  project	  costs	  and	  total	  project	  benefits	  in	  present	  day	  dollars	  over	  a	  ten	  year	   time	   period.	   An	   interest	   rate	   of	   2.03%%	   is	   used	   to	   account	   for	   the	   depreciation	   of	   money	  throughout	  these	  calculations.	  (Newnan,	  2014).	  Calculating  Net  Present  Worth:  In	   the	   following	   calculations,	   ‘PW’	   represents	   present	   worth,	   ‘PWB’	   represents	   present	   worth	   of	  benefits,	   and	   ‘PWC’	   represents	   present	   worth	   of	   costs.	   An	   analysis	   period	   of	   10	   years	   is	   used	   to	  examine	  each	  project	  option.	  Also,	   it	  should	  be	  noted	  that	  the	   installation	  cost	  of	   floor	  heaters	  have	  not	   been	   included,	   which	   implies	   the	   initial	   costs	   would	   exceed	   the	   $749	   purchase	   price.	  We	   have	  ignored	   this	   cost	   completely	   in	   our	   calculations	   that	   follow.	   Note:	   The	   current	   rate	   of	   inflation	   in	  Canada	  is	  2.03%	  (www.inflation.eu).	  Project  Option  1:  Propane  Heaters  𝑃𝑊1   =   𝑃𝑊𝐵1−   𝑃𝑊𝐶1	  𝑃𝑊𝐵1   =   𝐴(𝑃/𝐴, 𝑖 =   2.03%, 𝑛 =   10  𝑦𝑒𝑎𝑟𝑠),	  where	  A	  =	  annual	  revenue	  =	  $2466	  =   𝐴 ??? ?–  ?? ??? ?   	  	  	  	  =	  	  $22,116	  𝑃𝑊𝐶1   =   $330   +     𝐴(𝑃/𝐴, 𝑖 =   2.03%, 𝑛 =   10  𝑦𝑒𝑎𝑟𝑠),	  	  where	  A	  =	  $272.88	  = $𝟑𝟑𝟎+   𝑨 𝟏?𝒊 𝒏–  𝟏𝒊 𝟏?𝒊 𝒏          	  =	  $2,777	  𝑃𝑊1 =  $19,338	  Project  Option  2:  Free  Standing  Electric  Heaters  (x  3)     𝑃𝑊2   =   𝑃𝑊𝐵2−   𝑃𝑊𝐶2	  𝑃𝑊𝐵2   =   𝐴(𝑃/𝐴, 𝑖 =   2.03%, 𝑛 =   10  𝑦𝑒𝑎𝑟𝑠),	  where	  A	  =	  annual	  revenue	  =	  $2466	  =   𝐴 ??? ?–  ?? ??? ?         =	  	  $22,116	  𝑃𝑊𝐶2   =   $690   +     𝐴(𝑃/𝐴, 𝑖 =   2.03%, 𝑛 =   10  𝑦𝑒𝑎𝑟𝑠),	  	  where	  A	  =	  $138.96	  = $690+   𝐴 ??? ?–  ?? ??? ? =	  $1,936	  PW2	  =	  $20,180	     9 Project  Option  3:  Electric  Floor  Heating  𝑃𝑊3   =   𝑃𝑊𝐵3−   𝑃𝑊𝐶3	  𝑃𝑊𝐵3   =   𝐴(𝑃/𝐴, 𝑖 =   2.03%, 𝑛 =   10  𝑦𝑒𝑎𝑟𝑠),	  where	  A	  =	  annual	  revenue	  =	  $2466	  =   𝐴 ??? ?–  ?? ??? ?   	  	  	  	  =	  	  $22,116	  𝑃𝑊𝐶3   =   $749   +     𝐴(𝑃/𝐴, 𝑖 =   2.03%, 𝑛 =   10  𝑦𝑒𝑎𝑟𝑠),	  	  where	  A	  =	  $135.84	  	  =   $749+   𝐴 ??? ?–  ?? ??? ?       	  	  =	  $1,967	  PW3	  =	  $20,148	    Within	  the	  10	  year	  time	  frame	  we	  can	  see	  that	  the	  3	  free	  standing	  electric	  heaters	  provide	  the	  highest	  net	  present	  worth.	  However,	  the	  profit	  for	  each	  project	  is	  dependent	  on	  time.	  The	  graph	  below	  shows	  how	  the	  profit	  for	  each	  option	  varies	  with	  time.	  Even	  over	  a	  5	  year	  period,	  we	  can	  see	  that	  the	  electric	  heating	  technologies	  generate	  the	  most	  profit	  over	  time,	  but	  it	  is	  very	  close	  among	  all	  three	  options.	  Not	  that	  the	  graph	  suggests	  that	  around	  3	  years	   is	  when	  every	  technology	   is	  approximately	  of	  equal	  worth.	     10 Figure  2.1:  Present  worth  vs.   t ime  for  each  of  the  three  patio  heater  technologies.   This	  figure	  illustrates	  how	  each	  heating	  technology	  provides	  profit	  over	  time.	  The	  excel	  workbook	  used	  for	   obtaining	   the	   data	   in	   this	   section	   has	   been	   attached	   as	   an	   appendix	   for	   a	   closer	   viewing.	  	  	                           -­‐2000	  0	  2000	  4000	  6000	  8000	  10000	  12000	  0	   1	   2	   3	   4	   5	  Present	  Worh	  Years	  Present	  worth	  vs	  Time	  	  Propane	   Electric	  	   Floor	     11 3.0  Environmental  Analysis  3.1  Propane  Toxicity,   Contaminations  and  Spil ls   Propane	  is	  not	  a	  toxic	  substance,	  and	  as	   long	  as	   it	  released	  as	  a	   liquid	  or	  vapor,	   it	  will	  not	  cause	  any	  direct	  environmental	   risk.	   It	   is	  however,	  a	  chemically	   reactive	  substance	  but	   is	  normally	   removed	  by	  natural	  oxidation	  in	  the	  presence	  of	  sunlight	  (Propane	  101,	  2011).	  Propane	  does	  not	  affect	  the	  global	  climate	  as	  it	  is	  removed	  from	  the	  air	  faster	  than	  it	  takes	  to	  react	  with	  other	  elements.	  	  3.2  Hydroelectricity  Hydroelectricity	  is	  electricity	  produced	  by	  hydropower;	  which	  is	  electrical	  power	  generated	  by	  the	  gravitational	  force	  of	  falling	  or	  flowing	  water.	  Hydroelectricity	  is	  the	  most	  commonly	  used	  type	  of	  renewable	  energy	  (BC	  Hydro,	  2014).	  	  3.3  Upstream  vs.   End-­‐Use  Emissions     There	   is	  a	  difference	  between	  emissions	  produced	  where	  the	  energy	   is	  consumed	  (end	  use)	  and	  the	  emissions	  produced	  where	  a	  refined	  and	  usable	  energy	  product	  is	  extracted	  and	  converted	  to	  energy	  (upstream).	  End-­‐use	  emissions	  are	  released	  where	  the	  energy	  is	  used,	  whereas	  upstream	  emissions	  are	  the	   total	   emissions	   from	   recovering,	   processing	   and	   transporting	   fuels	   from	   their	   source	   to	   the	   end	  user.	  	  This	   report	   shows	   the	   complete	   lifecycle	   of	   greenhouse	   gas	   emissions	   from	   propane	   and	  hydroelectricity	  use	  for	  a	  heater,	  a	  particular	  application.	  By	  analyzing	  upstream	  emissions	  and	  end-­‐use	  emissions	   individually,	   this	  report	  provides	  a	  better	  understanding	  and	  more	   informative	  statistics	  of	  the	  effects	  of	  propane	  and	  hydroelectric	  uses.	  	  3.4  Upstream  Emissions  Analysis  (propane  vs.   electricity)  Table	  3.1,	  below,	  shows	  a	  Greenhouse	  Gases,	  Regulated	  Emissions,	  and	  Energy	  Use	  in	  Transportation	  (GREET)	  model,	  the	  formula	  this	  report	  uses	  to	  calculate	  greenhouse	  emissions.	  This	  formula	  was	  taken	  from	  Propane	  Education	  &	  Research	  Council,	  2007.	  This	  model	  computes	  emission	  in	  grams	  per	  million	  Btu	  of	  multiple	  chemicals,	  mainly	  the	  three	  greenhouse	  gases	  calculated	  in	  this	  study:	  carbon	  dioxide	  (CO2),	  methane	  (CH4),	  and	  nitrous	  oxide	  (N2O).	  Table	  3.2	  shows	  these	  and	  other	  fuels,	  such	  as	  gasoline	  and	  natural	  gas,	  to	  give	  a	  better	  comparison	  of	  the	  effects	  of	  various	  fuels.	     12 Table  3.1:  GREET  model  Used  to  calculate  greenhouse  emissions  Table  3.2:  Upstream  emissions  factors  (grams  per  mil l ion  Btu)  Energy	  Source	   CO2	   Ch4	   N2O	   Total	  CO2	  equivalent	  Liquid	  propane	  gas	   8,939	   115	   0.16	   11,855.00	  Natural	  gas	   12,207	   248	   0.19	   18,455.00	  Gasoline	   17,476	   108	   1.31	   20,595.00	  BC	  hydro	  electricity	  generation	  1,465.35	   0	   0	   1,465.35	  BC	  hydro	  fossil	  fuel	  electricity	  generation	   	  	  	  	  	  	  	  	  	  	  	  	  -­‐	   	  	  	  	  -­‐	   -­‐	   3,516.85	   Upstream	   emissions	   from	   propane	   production	   depend	   on	   its	   feedstock.	   According	   to	   e	   Propane	  Education	  &	  Research	  Council	  in	  2007,	  propane	  is	  usually	  produced	  from	  natural	  gas	  or	  crude	  oil,	  and	  therefore	   upstream	  emissions	   to	   produce	   liquid	   propane	   gas	   (LPG)	   depend	  on	   the	   relative	   effect	   of	  each	  method.	  In	  Table	  3.2,	  the	  feedstock	  shares	  are	  60%	  natural	  gas	  and	  40%	  crude	  oil.	  LPG	  produced	  from	  crude	  oil	  has	  slightly	  higher	  greenhouse	  emissions	  than	  from	  refining	  natural	  gas.	  	  Propane	  Education	  &	  Research	  Council	  in	  2009	  claims	  that	  hydroelectricity	  depends	  on	  the	  availability	  of	   water.	   Graph	   3.1	   shows	   that	   in	   a	   hydroelectric	   based	   power	   system,	   such	   as	   British	   Columbia’s,	  greenhouse	  emissions	  from	  electricity	  varied	  significantly	  from	  year	  to	  year	  according	  to	  water	  supplies	  and	   reservoir	   levels.	  During	  years	  with	   low	  stream	   flows	  and/or	   low	  reservoir	   levels,	  hydro	  power	   is	  supplied	  thermally	  using	  fossil	  fuels	  to	  generate	  electricity	  to	  users,	  which	  resulted	  in	  greenhouse	  gas	  Metric	  tons	  (GHG)	  =	  grams	  (GHG)/MMBtu	  (fuel)	  *	  MMBtu	  of	  fuel	  consumed	  /106	   Total	  metric	  tons	  of	  CO2	  equivalent	  =	  metric	  tons	  CO2*(1)	  +	  metric	  tons	  CH4*(25)	  +	  metric	  tons	  N2O*(298)	      13 emissions.	  However,	  98%	  of	   the	   time,	  electricity	   in	  BC	   is	  generated	   from	  hydropower,	  with	  very	   low	  emissions.	  Therefore,	  this	  report	  assumes	  that	  electricity	  produced	  always	  comes	  from	  hydro	  power.	  	  Graph  3.1:  Greenhouse  gas  emissions   intensity  and  water  supply  for  electricity  sold  by  BC  Hydro.    BC	  Hydro.	  (2003).	  Greenhouse	  Gas	  Report	  3.5  End-­‐Use  Emissions  Analysis  End-­‐use	  emissions	  are	  specific	  to	  the	  technology	   in	  each	  application.	  For	  propane	  heaters,	  total	  end-­‐use	   emissions	   were	   obtained	   in	   the	   same	   way	   as	   total	   upstream	   emissions,	   but	   unit	   is	   deferent	  because	   it	   depends	  on	   the	   application	  used.	   Studies	   from	  Propane	  Education	  &	  Research	  Council	   in	  2007	  have	  found	  that	  propane	  heaters	  can	  emit	  up	  to	  62	  kg	  CO2	  Equivalent/Million	  Btu.	  On	  the	  other	  hand,	  electric	  floor	  heaters	  and	  standing	  heaters,	  which	  depend	  on	  hydroelectric	  power,	  do	  not	  emit	  any	  CO2.	  	  Estimated	   useful	   heat	   delivered	   by	   a	   propane	   furnace	   was	   38	   million	   Btu	   based	   on	   an	   energy	  consumption	  of	   52.6	  million	  Btu	  per	   year	   of	   propane,	  which	   shows	  duct	   losses	   (15%).	  On	   the	  other	  hand,	   in	   term	   of	   usage,	   electric	   standing	   and	   in-­‐floor	   heaters	   can	   be	   100%	   efficient	   because	   all	   of	  electrical	   energy	   used	   is	   converted	   into	   heat	   and	   there	   is	   no	   combustion	   loss	   through	   the	   chimney	  (Propane	  Education	  &	  Research	  Council,	  2009).	  Graph	  3.2	  shows	  the	  rates	  of	  heat	  delivered	  to	  heat	  lost	  for	  propane	  vs.	  electrical	  heaters.	       14 Graph  3.2:  Heat  delivered  vs.   Heat  Lost       Although	  both	  electric	  standing	  and	  in-­‐floor	  heaters	  are	  equally	  efficient	  at	  converting	  energy,	  in	  floor	  heaters	   are	   better	   heat	   distribution	   systems	   because	   heat	   coming	   from	   in-­‐floor	   heaters	   directly	  transfers	  to	  the	  objects	  around	  them.	  	  Greenhouse	  gas	  emissions	  and	  energy	  losses	  also	  depend	  on	  what	  is	  being	  heated.	  For	  instance,	  on	  a	  patio	  with	  central	  heating,	  greenhouse	  gas	  emissions	  and	  energy	  losses	  are	  usually	  higher	  than	  running	  efficient	   space	  heating.	  This	   is	  because	  central	  heating	  systems	  usually	  heat	  a	  whole	  area	  and	  space	  heaters	   only	   heat	   the	   space	   near	   them	   (Australian	   Government,2013	   ).	   Therefore,	   in	   this	   project	  installing	   separate	   in	   floor	  heating	   that	   can	  be	  controlled	   in	  each	   room	  as	  needed	  saves	  energy	  and	  decreases	  greenhouse	  emissions.	  Overall,	   considering	   environmental	   friendly	   heaters	   involves	   a	  whole	   process,	   including	   upstream	   to	  the	  end	  use	  impacts.	  The	  analysis	  to	  calculate	  total	  emissions	  should	  consider	  how	  power	  is	  generated,	  the	  heating	  technology	  and	  the	  efficiency	  of	  the	  energy	  distribution.	    75%	  80%	  85%	  90%	  95%	  100%	  105%	  Propane	  heaters	   Electrical	  heaters	  Heat	  delivered	  vs.	  Heat	  lost	  Energy	  converted	   Energy	  lost	     15 4.0  Social  Analysis  Over	  the	  past	  few	  years,	  criticism	  towards	  the	  use	  of	  patio	  heaters	  has	  grown	  exponentially.	  To	  analyze	  the	   impact	  patio	  heaters	  will	  have,	   if	   implemented,	   the	  use	  of	  both	  primary	  sources	  and	  newspaper	  articles	   have	  been	  utilized.	   The	   sources	  were	  used	   to	   focus	  on:	   the	   estimated	   customer	   satisfaction	  from	  each	  technology,	  and	  the	  anticipated	  public	   reception	  of	   the	  patio	  heaters,	  based	  on	  prevalent	  social	  attitudes	  worldwide.	  	  4.1  Customer  Satisfaction 	     In	  order	  to	  gauge	  customer	  satisfaction	  from	  each	  of	  the	  devices,	  the	  investigation	  examined	  the	  heat	  output	   per	   square	   foot	   of	   each	   one.	   It	   is	   anticipated	   that	   the	   higher	   the	   heat	   output,	   the	   more	  comfortable	  and	  satisfied	  the	  user	  will	  be.	  In	  order	  to	  get	  an	  accurate	  heat	  output	  per	  square	  foot,	  data	  from	  three	  devices,	  that	  use	  the	  same	  heating	  technology,	  but	  differ	  in	  their	  manufacturer,	  will	  be	  used	  in	  the	  comparison.	  The	  results	  are	  demonstrated	  in	  Graph	  4.1	  below.	  	  Graph  4.1:  Heating  Technology  Performance  From	   the	   graph,	   it	   can	   be	   seen	   that	   certain	   electric	   heaters	   will	   offer	   the	   greatest	   customer	  satisfaction.	  Propane	  heaters	  prove	  to	  be	  a	  good	  alternative,	   followed	  by	   in-­‐floor	  heating,	  which	  will	  provide	  the	  lowest	  anticipated	  customer	  satisfaction.	  	     0	  100	  200	  300	  400	  500	  600	  In-­‐Floor	  Radiant	  Hea?ng	   Electric	  Heaters	   Propane	  Heaters	  BTU	  Output	  per	  Square	  Foot	  Device	  Hea?ng	  Technology	  Performance	     16 4.2  Public  Reception  As	  mentioned	  above,	  public	   reception	  of	  patio	  heaters	  has	  become	   increasingly	  negative.	  Looking	  at	  the	   international	   level,	   multiple	   cities	   around	   the	   world	   have	   attempted	   to	   limit	   the	   use	   of	   patio	  heaters,	  while	  the	  city	  of	  Paris	  has	  attempted	  to	  rule	  them	  out	  completely.	  An	  article	  written	  about	  the	  attempt	  to	  ban	  them	  in	  Paris	  says,	  “[The	  city	  council]	  has	  declared	  war	  on	  the	  heaters,	  calling	  them	  an	  ecological	  disaster”	  (Samuel,	  2010).	  Although	  patio	  heaters	  remain	  popular,	  public	  opinion	   is	  starting	  to	  change	  as	  people	  recognize	  that	  ‘heating	  the	  open	  air’	  is	  a	  wasteful	  use	  of	  energy	  that	  can	  result	  in	  polluting	   the	  atmosphere.	  As	  worldwide	  attitudes	  become	   increasingly	  negative,	   if	  patio	  heaters	  are	  introduced	  in	  the	  AMS	  building,	  it	  will	  reflect	  poorly	  on	  UBC’s	  reputation	  as	  a	  leader	  in	  sustainability.	  	  In	   order	   to	   investigate	   what	   UBC	   students	   think	   about	   the	   implementation	   of	   patio	   heaters,	   an	  informal	  discussion	  was	  conducted	  with	  fellow	  classmates.	  It	  was	  determined	  that	  students	  do	  not	  feel	  that	  patio	  heaters	  fit	   in	  at	  UBC	  and	  the	  AMS.	  They	  acknowledged	  that	  UBC	   is	  known	  as	  a	  worldwide	  leader	  in	  sustainable	  practices,	  and	  AMS	  aims	  to	  be	  sustainable	  based	  on	  the	  support	  of	  the	  students,	  thus	  they	  felt	  patio	  heaters	  did	  not	  fit	  in	  with	  this	  ‘branding.’	  Although	  a	  public	  campaign	  at	  the	  Perch	  Restaurant	  would	  be	   able	   to	  point	   out	   that	   customers	   are	  using	   the	  most	   sustainable	  patio	   heaters	  commercially	   available,	   the	   technology	   at	   its	   core,	   is	   not	   sustainable.	   Due	   to	   these	   prevalent	   social	  attitudes,	   at	   UBC	   and	   worldwide,	   it	   is	   determined	   that	   public	   reception	   of	   patio	   heaters	   would	   be	  negative.	  	  	                                       17 Conclusion  and  Recommendations  The	  three-­‐pronged	  approach	  of	  the	  Triple	  Bottom	  Line	  assessment	  was	  used	  to	  compare	  three	  viable	   heating	   solutions	   for	   the	   Alma	   Mater	   Society’s	   Perch	   restaurant	   in	   the	   new	   Student	   Union	  Building.	  	  Through	   examination	   of	   each	   of	   the	   three	   heating	   solutions’	   potential	   revenue,	   costs,	   and	  profit,	   the	   net	   present	  worth	   of	   each	   project	   option	  was	   calculated.	   Although	   all	   three	   options	   are	  financially	   viable	   over	   a	   ten-­‐year	   period	   of	   use,	   the	   use	   of	   three	   freestanding	   electrical	   heaters	  provides	   the	   most	   economical	   solution,	   with	   a	   net	   present	   worth	   of	   $20,180	   over	   ten	   years.	   It	   is	  important	  to	  note	  that	  installation	  costs	  of	  radiant	  floor	  heating	  are	  highly	  variable,	  and	  therefore	  were	  not	  included	  in	  the	  economic	  analysis;	  if	  installation	  costs	  were	  included,	  it	  would	  detract	  from	  the	  net	  present	  value	  of	  the	  radiant	  floor	  heating	  option	  by	  the	  value	  of	  the	  installation	  cost.	  Each	  of	  the	  heating	  solutions	  were	  compared	  according	  to	  its	  ecological	  viability.	  Each	  option’s	  greenhouse	  emissions	  were	  calculated	  using	  a	  GREET	  model,	  considering	  both	  upstream	  and	  end-­‐use	  emissions.	  The	  GREET	  model	  allowed	   for	  each	  of	   the	  options’	  ecological	   impact	   to	  be	  measured	  and	  compared	   according	   to	   a	   single	   numerical	   indicator.	   Due	   to	   the	   low	   upstream	   emissions	   associated	  with	   British	   Columbia’s	   hydroelectric	   system,	   as	   well	   as	   the	   high	   end-­‐use	   efficiency	   of	   electrical	  heaters,	   the	   two	   electric	   heaters	   demonstrate	   greater	   ecological	   viability	   than	   propane	   heaters.	  Radiant	   floor	   heating,	   however,	   proves	   to	   be	   the	   most	   ecological	   option,	   as	   more	   heat	   is	   directly	  transferred	  to	  the	  objects	  in	  the	  surrounding	  area,	  as	  opposed	  to	  heating	  the	  surrounding	  air.	  In	   terms	  of	   social	   performance,	   the	   three	  options	  were	   compared	   according	   to	   their	   heating	  performance,	  as	  a	  measure	  of	  customer	  satisfaction.	  In	  order	  to	  account	  for	  variance	  in	  performance	  of	  different	   products	   on	   the	  market,	   three	   products	   of	   each	   technology	  were	   compared,	   according	   to	  their	  heating	  performance.	  Electric	  freestanding	  heaters	  provided	  the	  greatest	  BTU	  output	  per	  square	  foot,	   outperforming	   both	   propane	   heaters	   and	   radiant	   floor	   heating	   options.	   While	   electric	  freestanding	   heaters	  may	   provide	   the	  most	   customer	   satisfaction,	   general	   public	   reception	   of	   patio	  heaters	  places	  a	  negative	  connotation	  on	  the	  use	  of	  such	  technology	  to	  effectively	  heat	  the	  open	  air.	  The	  triple	  bottom	  line	  assessment	  of	  propane,	  freestanding	  electric,	  and	  radiant	  floor	  heating	  options	  has	  produced	  one	  clear	  victor.	  While	  radiant	  floor	  heating	  may	  be	  the	  most	  environmentally	     18 sustainable	   option,	   electric	   freestanding	   heaters	   are	   nearly	   as	   environmentally	   friendly,	   and	   are	   the	  most	  financially	  viable	  of	  the	  three	  options	  over	  ten	  years.	  However,	   exogenous	   variables	   have	   not	   yet	   been	   taken	   into	   account.	   The	   Perch	   Restaurant	  plans	   to	  keep	   the	  patio	   closed	  when	   the	   temperature	  drops	  below	  comfortable	   levels,	  or	  when	   it	   is	  raining.	  Given	  Vancouver’s	  mild	  temperatures	  and	  high	  frequency	  of	  precipitation,	  the	  patio	  is	  likely	  to	  be	  closed	  for	  the	  majority	  of	  the	  academic	  year,	  when	  the	  Perch	  is	  likely	  to	  see	  the	  highest	  customer	  traffic.	  In	  addition,	  in	  summer	  months,	  patio	  heaters	  are	  likely	  to	  be	  used	  only	  when	  the	  temperature	  is	  in	  the	  range	  of	  5-­‐15°	  —	  for	  example,	  on	  late	  summer	  evenings.	  Due	  to	  the	  brevity	  and	  low	  frequency	  of	  intended	   use,	   relatively	   high	   cost	   of	   purchasing	   and	   operating,	   and	   environmental	   stigma	   of	   patio	  heaters,	   we	   recommend	   that	   the	   Perch	   Restaurant	   forego	   the	   option	   of	   purchasing	   patio	   heaters	  altogether.	       19 References  Australian	  Government	  Department	  of	  Industry.	  (2013).	  Your	  Home:	  Australia’s	  guide	  to	  environmentally	  sustainable	  homes,	  5th	  edition.	  Retrieved	  from	  http://www.yourhome.gov.au/sites/prod.yourhome.gov.au/files/pdf/YOURHOME-­‐4-­‐Energy-­‐1-­‐HeatingCooling-­‐%284Dec13%29.pdf	  BC	  Hydro.	  (2014).	  Generation	  System.	  An	  efficient,	  low	  cost	  electricity	  system	  for	  B.C.	  Retrieved	  from	  http://www.bchydro.com/energy-­‐in-­‐bc/our_system/generation.html	  BC	  Hydro.	  (2003).	  Greenhouse	  Gas	  Report.	  Retrieved	  from	  www.csaregistries.ca/registry/out/C0626-­‐BCHYDRO-­‐04-­‐PDF.PDF	  BC	  Hydro.	  (2012).	  News.	  Retrieved	  from	  https://www.bchydro.com/news/conservation/2012/kilowatt-­‐hour-­‐explained.html	  Environment	  Canada:	  Daily	  Data	  Report	  Vancouver.	  (2013,	  January	  1).	  Retrieved	  from	  http://climate.weather.gc.ca/climateData/dailydata_e.html?StationID=51442&timeframe=2&cmdB1=Go&Year=2013&Month=12&cmdB2=Go&Day=1	  Further	  Comparison	  of	  Electric	  Floor	  Heating	  Systems	  with	  12W	  and	  15W	  output.	  (n.d.).	  Retrieved	  from	  http://www.heattechproducts.com/12w-­‐vs-­‐15w-­‐floor-­‐heating-­‐systems	  Home	  Depot.	  Patio	  Heaters	  .	  Retrieved	  from	  http://www.homedepot.com/b/Outdoors-­‐Outdoor-­‐Heating-­‐Patio-­‐Heaters/N-­‐5yc1vZc6nf?Nao=24	  Inflation	  Canada:	  current	  Canadian	  inflation.	  (n.d.).	  Retrieved	  November	  25,	  2014,	  from	  http://www.inflation.eu/inflation-­‐rates/canada/inflation-­‐canada.aspx	  Newnan,	  D.,	  &	  Eschenbach,	  T.	  (2009).	  Engineering	  economic	  analysis	  (10th	  ed.).	  New	  York:	  Oxford	  University	  Press.	  Nuheat	  as	  a	  Heat	  Source.	  (n.d.).	  Retrieved	  November	  10,	  2014,	  from	  http://www.nuheat.com/floor-­‐heating/nuheat-­‐as-­‐a-­‐heat-­‐source/	  Propane	  101.	  (2011).	  Environmentally	  Friendly	  Propane	  Gas.	  Web.	  Retrieved	  from	  www.propane101.com/propanegreenenergyfuel.htm	  Propane	  Education	  &	  Research	  Council.	  (2007).	  Propane’s	  Greenhouse	  Gas	  Emissions:	  A	  Comparative	  Analysis.	  Retrieved	  from	  http://www.propanefacts.ca/upload/reports/PropaneReducesGreenhouseGasEmissions.pdf	  Propane	  Education	  &	  Research	  Council.	  (2009).	  Propane	  Reduces	  Greenhouse	  Gas	  Emissions:	  A	  Comparative	  Analysis.	  Retrieved	  from	  www.propanecouncil.org/uploadedFiles/REP_15964%20Propane%20Reduces%20GHG%20Emissions%202009.pdf	  Patio	  Heater-­‐Outdoor	  Patio	  Heaters,	  Electric	  Patio	  Heaters,	  Propane	  Patio	  Heaters,	  Table	  Patio	  Heaters-­‐Woodlanddirect.com.	  (n.d.).	  Retrieved	  November	  18,	  2014,	  from	  http://www.woodlanddirect.com/Outdoor/Patio-­‐Heaters?gclid=CNbw45rNhMICFZeVfgodyw0Ajw	  Project	  Types.	  (n.d.).	  Retrieved	  November	  9,	  2014,	  from	  http://www.flextherm.com/en/getting-­‐started/project-­‐types	     20 Samuel,	  H.	  (2010,	  September	  23).	  Paris	  move	  to	  ban	  outdoor	  heaters	  at	  cafés	  in	  fresh	  blow	  to	  smokers.	  The	  Telegraph.	  Retrieved	  November	  8,	  2014,	  from	  http://www.telegraph.co.uk/news/worldnews/europe/france/8020630/Paris-­‐move-­‐to-­‐ban-­‐outdoor-­‐heaters-­‐at-­‐cafes-­‐in-­‐fresh-­‐blow-­‐to-­‐smokers.html	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	     21 Appendix  A   Time	   Propane	   Electric	   Floor	  0	   -­‐330	   -­‐690	   -­‐749	  1	   1819.485445	   1590.740959	   1534.798883	  2	   3926.204494	   3826.104046	   3773.159054	  3	   5991.008031	   6016.992107	   5966.984567	  4	   8014.730012	   8164.290019	   8117.161489	  5	   9998.1878	   10268.86506	   10224.55826	  6	   11942.18249	   12331.56724	   12290.02603	  7	   13847.49926	   14353.22968	   14314.39903	  8	   15714.90764	   16334.6689	   16298.49488	  9	   17545.16185	   18276.68519	   18243.11495	  10	   19339.00113	   20180.06292	   20149.04464	  11	   21097.14998	   22045.57083	   22017.05375	  12	   22820.31852	   23873.96239	   23847.89675	  13	   24509.2027	   25665.97608	   25642.31309	  14	   26164.48466	   27422.33566	   27401.02753	  15	   27786.83295	   29143.75053	   29124.7504	  16	   29376.90283	   30830.91593	   30814.17789	  17	   30935.3365	   32484.51331	   32469.99234	  18	   32462.7634	   34105.21054	   34092.86253	  19	   33959.80045	   35693.6622	   35683.44392	  20	   35427.05229	   37250.50985	   37242.37893	  	  	  -­‐2000	  0	  2000	  4000	  6000	  8000	  10000	  12000	  0	   1	   2	   3	   4	   5	  Present	  Worh	  Years	  Present	  worth	  vs	  Time	  	  Propane	   Electric	  	   Floor	  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.18861.1-0108855/manifest

Comment

Related Items