Open Collections

UBC Undergraduate Research

Examining waste cooking oil supply for campus biodiesel production and implementation Chan, David; Gomes, Cheryl; Howatson, Fraser; Hudkins, Jesse; Laesecke, Jan; Salvatore, Danielle Apr 30, 2014

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
18861-Chan_D_et_al_SEEDS_2014.pdf [ 230.11kB ]
Metadata
JSON: 18861-1.0108833.json
JSON-LD: 18861-1.0108833-ld.json
RDF/XML (Pretty): 18861-1.0108833-rdf.xml
RDF/JSON: 18861-1.0108833-rdf.json
Turtle: 18861-1.0108833-turtle.txt
N-Triples: 18861-1.0108833-rdf-ntriples.txt
Original Record: 18861-1.0108833-source.json
Full Text
18861-1.0108833-fulltext.txt
Citation
18861-1.0108833.ris

Full Text

 UBC Social Ecological Economic Development Studies (SEEDS) Student ReportCheryl Gomes, Danielle Salvatore, David Chan, Fraser Howatson, Jan Laesecke, Jesse HudkinsExamining Waste Cooking Oil Supply for Campus Biodiesel Production and Implementation April 30, 201411051559University of British Columbia Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report”.  	  	  	  	  	  	  Examining	  Waste	  Cooking	  Oil	  Supply	  	  for	  Campus	  Biodiesel	  Production	  and	  Implementation	  David	  Chan	  Cheryl	  Gomes	  Fraser	  Howatson	  Jesse	  Hudkins	  Jan	  Laesecke	  Danielle	  Salvatore	  	   	  Introduction	  	  	  This	   study	   investigates	   the	   feasibility	   of	   already-­‐existing	   supply	   and	   demand	   of	  biodiesel	   at	   the	  University	  of	  British	  Columbia.	  A	   student-­‐led	  project	   operating	  under	   an	  Engineers	  for	  a	  Sustainable	  World	  chapter	  manages	  a	  batch	  biodiesel	  processing	  operation	  in	  conjunction	  with	  the	  department	  of	  Chemical	  and	  Biological	  Engineering.	  Currently,	  the	  group	  produces	  60	  Liter	  batches	   for	  distribution	  to	  housing	  and	  dining	  and	  services.	  The	  fuel	   is	   currently	   dispensed	   through	   a	   blend-­‐on-­‐demand	   station,	   which	   mixes	   petroleum	  diesel	  and	  biodiesel	  in	  concentrations	  set	  by	  the	  user.	  	  While	  current	  fuel	  demand	  is	  being	  met,	  there	  exists	  the	  potential	  to	  produce	  more	  fuel	  for	  the	  AMS.	  	  The	   project	   background	   derives	   from	   an	   introductory	   meeting	   of	   two	   managers	  from	   the	   AMS	   seeking	   a	   new	   catering	   vehicle	   for	   on	   campus	   use.	   As	   sustainability	   is	   a	  primary	  concern	  for	  the	  University,	  alternative	  energy	  vehicles	  were	  primarily	  considered.	  Through	  mutual	  contacts	  at	   the	  University,	   the	  biodiesel	  group	  was	  contacted	   for	   further	  information	  for	  a	  potential	  collaboration.	  	  	  This	   investigation	  covered	   three	  primary	  sections,	   the	   implications	  of	  biodiesel	  on	  vehicle	   systems	  and	   in	  particular	  on	   the	  vehicle	  of	   choice,	   the	  economic	   feasibility	  of	   the	  production	  and	  sale	  of	  the	  biodiesel	  that	  would	  be	  sold	  to	  the	  AMS,	  and	  the	  environmental	  benefits	  associated	  with	  using	  biodiesel	  for	  a	  catering	  vehicle	  on	  campus.	  The	  implications	  of	  biodiesel	  on	  vehicle	  systems	  	   Biodiesel	   is	   manufactured	   from	   plant	   oils,	   animal	   fats,	   and	   in	   this	   case,	   recycled	  cooking	   oils.	   It	   is	   renewable,	   energy-­‐efficient	   and	   can	   displace	   petroleum-­‐derived	   diesel	  fuel.	   Furthermore,	   it	   is	   nontoxic,	   biodegradable	   and	   suitable	   for	   sensitive	   environments	  and	  can	  reduce	  the	  effects	  of	  greenhouse	  gas	  emissions	  and	  therefore	  climate	  change	  as	  a	  whole.	  Biodiesel	  has	  a	  higher	  cetane	  number	  (a	  measure	  of	  the	  ignition	  value	  of	  diesel	  fuel)	  and	  lubricity	  (capability	   of	   reducing	   friction)	   than	   petroleum	   diesel.	   One	   drawback	   of	  biodiesel	  is	  that	  not	  all	  diesel	  engine	  manufacturers	  cover	  biodiesel	  use	  in	  their	  warranties	  and	  there	  are	  slight	  maintenance	  modifications	  required	  (further	  details	  will	  be	  described	  below).	  Biodiesel	   is	  most	   commonly	  used	  as	   a	  blend	  with	  petroleum	  diesel	   in	  B20	   (20%	  biodiesel,	  80%	  petroleum	  diesel).	  However	  biodiesel	  in	  its	  pure	  form,	  known	  as	  B100,	  still	  demonstrates	  capability	  of	  usage	  as	  a	  fuel	  if	  proper	  precautions	  are	  taken.	  	  	  B20	  has	  gained	  prevalence	  due	  to	  its	  favored	  balance	  of	  cost,	  emissions	  and	  ability	  to	   act	   as	   a	   solvent	   (and	   therefore	   clean	   the	   fuel	   system).	   Furthermore,	  B20	  avoids	  many	  cold-­‐weather	   performance	   and	   materials	   compatibility	   concerns	   associated	   with	   B100.	  Implementing	  B20	  as	  a	   fuel	  source	  does	  not	  demand	  engine	  outfitting	  due	   to	  similar	   fuel	  consumption,	  horsepower,	  and	  torque	  as	  petroleum	  diesel.	  	  	  While	   B100	   would	   have	   a	   fivefold	   positive	   impact	   on	   greenhouse	   gas	   emission	  reduction	  in	  comparison	  to	  B20,	  it	  is	  less	  often	  used	  due	  to	  its	  higher	  cost	  and	  cold	  weather	  issues.	  Low	  temperature	  gelling	  of	  higher	  biodiesel	  blends	  occur	  during	  cold	  seasons,	  due	  to	   molecular	   aggregation	   and	   crystallization.	   Since	   biodiesel	   has	   a	   solvent	   effect	  proportionate	   to	   the	   amount	   of	   biodiesel	   in	   the	   fuel,	   the	   solvent	   effect	   of	   B100	   is	  much	  more	   significant	   than	   B20.	   While	   it	   can	   clean	   a	   vehicle's	   fuel	   system,	   B100	   would	   also	  release	  the	  deposits	  accumulated	  from	  previous	  petroleum	  diesel	  use	  that	  may	  initially	  clog	  filters	   and	   require	   filter	   replacement	   in	   the	   first	   few	   tanks	   of	   B100	   usage.	   Also,	   B100	  contains	  approximately	  8%	  less	  energy	  per	  gallon	  than	  petroleum	  diesel.	  B20	  results	  in	  1%	  to	  2%	  reduction	  in	  energy	  per	  gallon,	  which	  is	  typically	  unnoticed	  in	  terms	  of	  performance	  or	   fuel	   economy.	   Lastly,	   B100	   requires	   special	   handling	   and	   storage,	   since	   it	   freezes	   at	  higher	  temperatures,	  and	  is	  incompatible	  with	  some	  hoses,	  gaskets,	  metals	  and	  plastics	  due	  to	  degradation	  effects.	  	  	   The	  proposed	  vehicle,	  the	  2014	  Mercedes-­‐Benz	  Sprinter	  Cargo	  Van,	  would	  not	  need	  any	  modifications	   in	  order	   to	   run	  on	  biodiesel	   fuels	  up	   to	  B20.	   If	   it	  were	   to	   run	  on	   fuels	  greater	   than	  B20,	   the	   fuel	   line	   should	  be	  changed	   to	  an	  SAE	   J30R9	   fluoroelastomer	   lined	  3/8”	  hose	  due	  to	  the	  solvent	  properties	  of	  blends	  above	  B20.	  The	  UBC	  Student	  Housing	  and	  Hospitality	   Services	   at	   UBC	   currently	   runs	   B20	   biodiesel	   provided	   by	   the	   sustainability	  club.	  The	  only	  adjustments	  they	  have	  made	  to	  their	  truck	  is	  they	  change	  their	  fuel	  filters	  on	  a	  yearly	  basis,	  as	  opposed	  to	  a	  three	  year	  change	  cycle,	  for	  petroleum	  diesel.	  	  The	  Sprinter	  would	   also	   require	   yearly	   fuel	   filter	   changes.	   It	   is	   also	   recommended	   to	   check	   for	  contamination.	   	   Post	   2007	   diesels	   typically	   use	   an	   in-­‐cylinder	   post	   combustion	   squirt	   of	  fuel	  as	  part	  of	  their	  emissions	  system.	  This	  post-­‐combustion	  squirt	  vaporizes	  but	  does	  not	  combust,	  allowing	  the	  biodiesel	  to	  make	  its	  way	  past	  the	  piston	  rings	  and	  migrates	  into	  the	  crankcase,	  where	  it	  dilutes	  engine	  oil	  and	  can	  polymerize	  on	  the	  insides	  of	  the	  crankcase.	  This	   contamination	   can	   cause	  high	  wear	  on	   the	  engine,	   and	  oil	   sampling	  and	  monitoring	  would	  be	  recommended.	  	  Diesel	  fuel	  up	  to	  B5	  Biodiesel	  content	  according	  to	  ULSD	  specification	  ASTM	  D6751	  meets	   Mercedes-­‐Benz	   approved	   fuel	   standards	   and	   will	   not	   void	   coverage	   under	   the	  Mercedes-­‐Benz	  Limited	  Warranty.	  All	  diesel	  fuels	  containing	  greater	  than	  B5	  biodiesel	  (B6	  to	  B100)	  are	  not	  approved	  by	  Mercedes-­‐Benz	  as	   the	  risk	   for	  engine	  damage	   is	   increased.	  The	  MB	  sprinter	  warranty	  is	  as	  follows:	  	  Requires	   the	   use	   of	   ultra	   low	   sulfur	   diesel	   fuel.	   Mercedes-­‐Benz	   Sprinters	   are	  approved	  to	  use	  B5	  biodiesel	  (approved	  diesel	  fuel	  with	  a	  maximum	  5%	  biodiesel	  content)	   in	  all	  BlueTEC	  engines.	  The	  only	  approved	  biodiesel	   content	   is	  one	   that	  both	  meets	  ASTM	  D6751	  specifications	  and	  has	  the	  oxidation	  stability	  necessary	  to	  prevent	   deposit-­‐/corrosion-­‐related	   damages	   to	   the	   system	   (min.	   6h,	   proven	   by	  EN14112	  method).	  Please	   see	  your	   service	   station	   for	   further	   information.	   If	   the	  B5	   biodiesel	   blend	   does	   not	   clearly	   indicate	   that	   it	   meets	   the	   above	   standards,	  please	  do	  not	  use	   it.	  The	  Mercedes-­‐Benz	  Sprinter	  New	  Vehicle	  Limited	  Warranty	  does	   not	   cover	   damage	   caused	   by	   non-­‐Mercedes-­‐Benz	   approved	   fuel	   standards	  (SOURCE:	  Mercedes	  Benz	  Canada)	  	  The	   sprinter	   has	   a	   fuel	   efficiency	   of	   approximate	   9.7	   L/100km.	   Since	   the	   truck	  drives	  approximately	  10	  km/day	  it	  will	  use	  7	  L/week	  of	  fuel.	  The	  Sprinter	  tank	  is	  100	  L	  in	  size	  and	  will	  therefore	  need	  to	  be	  refilled	  approximately	  every	  3	  months.	  	  Economic	  Assessment	  	  Assumptions	  	   For	   this	   preliminary	   economic	   assessment,	   we	   have	   made	   the	   following	  assumptions	  regarding	  the	  operation	  and	  material	  inputs:	  1. Methanol	  will	  continued	  to	  be	  supplied	  free	  of	  charge	  by	  the	  U.B.C.	  Solvent	  exchange	  even	  with	  an	  increase	  in	  methanol	  demand	  to	  cover	  the	  increased	  fuel	  production.	  	  2. 90	   batches	   of	   biodiesel	   will	   be	   produced	   annually.	   Each	   batch	   will	   produce	  approximately	  60	  L	  biodiesel	  resulting	  in	  roughly	  5400	  L	  of	  biodiesel	  produced	  per	  year.	  3. ASTM	   testing	   will	   be	   conducted	   on	   the	   first	   three	   batches	   of	   biodiesel	   produced.	  Provided	   there	   are	   no	   discrepancies	   between	   the	   results	   and	   the	   fuel	   meets	   the	  ASTM	  quality	  standards	  for	  biodiesel,	  no	  further	  third	  party	  testing	  will	  be	  done	  for	  one	  year	  unless	  there	  is	  significant	  alteration	  to	  the	  process.	  4. Diesel	   fuel	   for	  the	  purpose	  of	  blending	  will	  no	  bare	  and	  delivery	  cost	  as	  our	  order	  will	  be	  tacked	  on	  to	  the	  existing	  Clean	  Energy	  Research	  Centre	  (CERC)	  account.	  We	  assume	  diesel	  fuel	  price	  of	  $1.50	  per	  litre	  of	  diesel.	  	  	  	  Material	  Costs	  	  Material	  costs	  are	  based	  producing	  60	  L	  of	  biodiesel	  in	  an	  existing	  batch	  reaction.	  A	  list	  of	  reagents	  can	  their	  respective	  usages	  is	  displayed	  in	  Table	  1.	  	  Potassium	  Hydroxide	  is	  used	  as	  a	  catalyst	  in	  the	  transesterification	  reaction	  of	  the	  spent	  cooking	  oil	  and	  methanol.	  Currently,	  there	  is	  no	  procedure	  in	  place	  to	  recover	  the	  used	  catalyst	  for	  re-­‐use.	  Ion	  resin	  is	  used	  at	  a	  rate	  of	  roughly	  1	  L	  per	  annum.	  	   Table	  1	  Material	  Costs	  per	  60	  L	  Fuel	  Produced	  Product	   Price	   =Usage	  per	  Batch	   Cost	  per	  Batch	  Methanol	   -­‐	   14	  L	   $0.00	  Cooking	  Oil	   -­‐	   60	  L	   $0.00	  Potassium	  hydroxide	   $46.80	  /	  kg	   800	  g	   $37.44	  Amazon	   $30.00	   $0.33	   $0.33	  	   	   Total	   $37.77	  	  	  Labor	  Costs	  	   The	  estimation	  of	   labor	   costs	   is	   based	  on	  a	   fair	   living	  wage	  of	   $18.75	  per	  hour	   in	  Vancouver,	  British	  Columbia.	  The	  total	  number	  of	  man-­‐hours	  necessary	  to	  deliver	  a	  single	  60	   L	   batch	   of	   fuel	   is	   approximately	   20	  which	   include	   in-­‐house	   quality	   control	   testing	   as	  seen	  in	  Table	  2.	  However,	  from	  experience	  it	  is	  noted	  that	  a	  bulk	  of	  those	  20	  hours	  require	  only	   the	   presence	   of	   an	   operator	   in	   the	   event	   of	   an	   emergency.	   With	   this	   in	   mind,	   the	  authors	   propose	   that	   the	   20	   hours	   per	   batch	   be	   divided	   in	   half	   into	   “operating”	   and	  “standby”	  wage	  categories.	  The	  standby	  hours	  would	  be	  billed	  at	  minimum	  wage,	  $10.25	  per	  hour.	  This	  is	  a	  fair	  assessment	  given	  the	  position	  would	  be	  targeted	  at	  a	  CHBE	  student	  that	  would	  be	  presumably	  in	  the	  building	  anyways	  and	  could	  use	  the	  standby	  time	  for	  their	  own	  academic	  pursuits.	  	  	  	  	  	   Table	  2	  Labour	  Costs	  per	  60	  L	  Batch	  Procedure	   Time	  Waste	  oil	  Titration	   1	  Waste	  oil	  Filtration	   1	  Oil	  Transfer	   1	  Water	  Removal	   2	  Oil	  Transfer	   2	  Heating	  of	  R1	   2	  Transesterification	   2	  Methanol	  Removal	   6	  IX	  Column	   1	  Quality	  Control	   2	  Total	   20	  Labour	  Cost	   $290.00	  	  Testing	  Costs	  	   	   Biodiesel	   produced	   will	   be	   sent	   to	   Intertek	   for	   independent	   third	   party	  testing.	   The	  biodiesel	  will	   be	   tested	   against	  ASTM	  BQ9000	   standards.	   The	   tests	  will	   cost	  approximately	  $300	  per	  testing	  event	  which	  will	  be	  carried	  out	  3	  times	  annually	  so	  long	  as	  test	  results	  are	  consistent	  with	  fuel	  quality	  standards	  and	  no	  significant	  process	  alterations	  take	  place.	  These	  3	  independent	  testing	  events,	  totalling	  $900	  per	  year,	  work	  out	  to	  $10	  per	  batch	   based	   on	   the	   production	   of	   90	   batches	   of	   biodiesel	   per	   year.	   Total	   material	   and	  operating	  costs	  as	  well	  as	  potential	  sale	  prices	  are	  shown	  below:	  	   Table	  3	  Material	  and	  Operating	  Costs	  	   $/Batch	   $/L	  Materials	   $37.77	   $0.63	  Labour	   $290.00	   $4.83	  Third	  Party	  Testing	   $10.00	   $0.17	  	   	  	  From	  the	  initial	  price	  breakdown,	  the	  fuel	  costs	  for	  pure	  and	  blended	  biodiesel	  are	  375%	   and	   150%	   the	   price	   of	   normal	   petroleum	   diesel,	   respectively.	  While	   the	   biodiesel	  fuel	   offers	   an	   incentive	   to	   reduce	   carbon	   emissions	   and	   using	   campus-­‐sourced	   waste	  products,	   this	   is	   a	   significant	   price	   to	   pay.	   Another	   option	   in	   considering	   the	   biodiesel	  production	  would	  be	  to	  increase	  the	  reactor	  sizing.	  	  	  Currently	   the	  batches	   are	   limited	   to	  60L	  of	  produced	  biodiesel	  due	   to	   the	  volume	  limitation	  of	   the	  heating	   tank	   in	   the	   laboratory.	  By	   replacing	   the	  heater	   to	   the	  next	  most	  feasible	   system	   size,	   the	   reactor	   would	   be	   able	   to	   produce	   100L	   per	   batch	   without	  significant	  changes	  to	  the	  net	  process	  time.	  Such	  an	  investment	  would	  require	  $350	  for	  the	  entire	  system	  upgrade,	  however	  the	  result	  would	  bring	  down	  production	  costs	  of	  biodiesel	  to	  $3.38	  per	  Liter.	  This	  would	  effectively	  pay	  for	  itself	  after	  the	  first	  150	  Litres	  of	  biodiesel	  sold,	  but	  a	  more	  thorough	  system	  analysis	  must	  be	  considered	  in	  order	  to	  ensure	  that	  the	  facilities	  can	  support	  larger	  heating	  vessels.	  	  	  Other	  potential	  options	  for	  the	  UBC	  Biodiesel	  program	  would	  be	  to	  engage	  a	  work-­‐learn	  position	  for	  biodiesel	  production	  through	  AMS	  sustainability	  funding.	  Positions	  such	  as	  this	  have	  been	  created	  for	  the	  biodiesel	  club	  in	  the	  past	  and	  would	  most	  likely	  be	  feasible	  in	   the	   future	  as	  well.	  This	  would	  effectively	   result	   in	   the	  AMS	  subsidizing	   their	  own	   fuel,	  however	  it	  would	  provide	  learning	  opportunities	  for	  students	  on	  campus	  and	  also	  mitigate	  existing	  waste	   streams	   currently	   generated	   by	   the	   University.	   	   This	   calculation	   assumed	  that	  half	  of	  the	  labour	  costs	  would	  be	  covered	  by	  Work	  Learn	  funding	  and	  	  	  Combining	   the	   proposed	   reactor	   heater	   upgrading	   and	   also	   assuming	   a	   student	  wage	   subsidy	   from	   the	   AMS	   Work-­‐Learn	   program,	   Biodiesel	   is	   priced	   somewhat	  competitively	   at	   $2.26	   per	   liter.	   	   Further	   potential	   cost	   reductions	  would	   be	  most	   easily	  achieved	  through	  further	  funding	  student	  wages	  from	  an	  AMS	  Sustainability	  grant.	  	  Below	  table	   4	   summarizes	   the	   potential	   options	   of	   biodiesel	   cost	   reduction	   strategies	   with	  comparison	   to	   the	   initial	   “as-­‐is”	   price	   estimates,	   and	   the	   current	   prices	   quoted	   from	   the	  Vancouver	  Biodiesel	  Co-­‐Op.	  	  	   Table	  4	  Potential	  Price	  Reduction	  Strategies	  	  	   B100	   B20	  Current	   $5.63	   $2.33	  Upgrade	  Reactor	  	   $3.38	   $1.88	  Work	  Learn	   $3.77	   $1.95	  WL+	  Upgrade	   $2.26	   $1.65	  Vancouver	  Co-­‐Op	   $1.70	   $1.54	  	  	  Environmental	  Benefits	  	  Emission	  Improvements	  	  	  	  Running	  AMS	  delivery	  vehicles	  with	  biodiesel	  converted	  from	  AMS	  catering	  company’s	  waste	  cooking	  oil	  provides	  a	  sustainable	  alternative	  for	  AMS	  delivery	  vehicles’	  fuel	  needs.	  Converting	  fleet	  vehicles	  to	  biodiesel	  will	  not	  only	  lower	  dependence	  on	  fossil	  fuels,	  but	  will	  additionally	  help	  reduce	  green	  house	  gas	  emissions	  and	  reduce	  air	  pollution	  and	  related	  public	  health	  risks.	  Biodiesel	  use	  has	  the	  potential	  to	  play	  an	  important	  role	  on	  reducing	  the	  levels	  of	  chief	  air	  pollutants	  afflicting	  urban	  areas	  targeted	  by	  the	  United	  States	  Environmental	  Protection	  Agency	  (USEPA):	  particulate	  matter	  (PM);	  carbon	  monoxide	  (CO);	  hydrocarbons	  (HC);	  sulfur	  oxides	  (SOx);	  and	  nitrogen	  oxides	  (NOx).	  	  Data	  compiled	  by	  the	  USEPA	  shows	  converting	  to	  biodiesel	  significantly	  decreases	  the	  most	  pertinent	  air	  pollutant	  emissions.	  NOx	  is	  the	  only	  emission	  that	  sees	  a	  slight	  increase.	  Additional	  measures	  to	  reduced	  NOx	  such	  as	  post-­‐combustion	  NOx	  removal	  technologies	  or	  pre-­‐combustion	  additives	  in	  fuel.	  	  	  (Source: USEPA)  	  Fuel	  Life-­‐Cycle	  Analysis	  	   	  To	  picture	  the	  full	  benefits	  of	  converting	  fleet	  vehicles	  to	  run	  off	  biodiesel,	  life	  cycle	  analysis	  is	  used	  to	  compare	  cradle-­‐to-­‐grave	  of	  fuel	  production	  compared	  to	  petroleum	  diesel.	  A	  life-­‐cycle	  analysis	  of	  energy	  requirements	  and	  CO2	  can	  be	  performed	  using	  a	  robust	  and	  reliable	  method.	  	  	   	  The	  benefit	  of	  using	  biodiesel	  during	  a	  vehicle’s	  lifetime	  was	  determined	  to	  be	  proportionate	  to	  the	  blend	  level.	  Substituting	  B100	  for	  petroleum	  diesel	  in	  vehicles	  reduces	  the	  lifetime	  consumption	  of	  petroleum	  by	  95%	  whereas	  substituting	  for	  B20	  will	  see	  a	  19%	  reduction.	  This	  further	  reduces	  the	  emissions	  of	  CO2	  shows	  further	  environmental	  benefits.	  B100	  use	  reduces	  net	  CO2	  emissions	  by	  78.45%	  and	  B20	  use	  reduces	  emissions	  by	  15.66%.	  	  	   	  Biodiesel’s	  production	  process	  reveals	  further	  environmental	  benefits.	  Biodiesel	  and	  petroleum	  diesel	  production	  are	  essentially	  equal	  in	  efficiency	  for	  converting	  raw	  energy	  -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% B100	   B20	  Total Unburned Hydrocarbons Carbon Monoxide Particulate Matter NOx SOx Biodiesel Emissions Compared to Petroleum Diesel (% Reduction) resources	  into	  fuels.	  Biodiesel’s	  benefit	  its	  largest	  raw	  resource	  for	  production,	  soy	  oil,	  is	  renewable.	  For	  every	  unit	  of	  fossil	  fuel	  used	  in	  the	  life	  cycle,	  0.83	  units	  of	  petroleum	  diesel,	  0.98	  units	  of	  B20,	  or	  3.2	  units	  of	  B100	  could	  be	  produced.	  	  	  	  Based	  on	  the	  life-­‐cycle	  analysis	  of	  petroleum	  diesel,	  B100	  and	  B20,	  the	  environmental	  impacts	  are	  greatly	  reduced	  by	  using	  the	  biodiesel	  blends.	  Converting	  to	  biodiesel	  will	  reduce	  the	  dependence	  on	  fossil	  fuels,	  overall	  CO2	  emissions	  released	  and	  increase	  the	  energy	  output	  per	  units	  of	  fossil	  fuel	  consumed.	  Conclusion	  	  	   This	  report	  provides	  a	  preliminary	  investigation	  to	  the	  costs	  and	  environmental	  benefits	  associated	  with	  production	  of	  biodiesel	  from	  spent	  cooking	  oil	  for	  use	  in	  a	  proposed	  AMS	  food	  delivery	  truck.	  The	  use	  of	  biodiesel	  as	  a	  liquid	  transportation	  fuels	  provides	  significant	  environmental	  benefits	  in	  the	  forms	  of	  emission	  reductions	  and	  waste	  recycling	  as	  compared	  to	  conventional	  petro-­‐diesel.	  However,	  biodiesel	  produced	  at	  such	  a	  small	  scale	  predictably	  falls	  short	  of	  being	  cost	  competitive	  with	  conventional	  diesel.	  This	  report	  makes	  some	  suggestions	  into	  future	  work	  pertaining	  to	  process	  scaling	  and	  labor	  subsidies	  that	  could	  reduce	  the	  price	  gap	  between	  the	  two	  fuels.	  There	  are	  also	  considerations	  to	  be	  made	  regarding	  the	  warranty	  of	  the	  proposed	  delivery	  vehicle.	  Blends	  over	  5	  %	  biodiesel	  would	  result	  in	  voiding	  the	  factory	  warranty,	  giving	  rise	  to	  additional	  economic	  concerns.	  However,	  given	  the	  University’s	  aggressive	  stance	  on	  sustainability,	  it	  is	  seen	  that	  this	  project	  holds	  considerable	  potential	  to	  subsidize	  petro-­‐fuel	  requirements,	  reduce	  emissions,	  promote	  sustainability	  at	  the	  university,	  and	  provide	  excellent	  work	  /	  learning	  student	  opportunities.	  	   	  References	  	  Mandal,	  B:	  Environmental	  impact	  of	  using	  biodiesel	  as	  fuel	  in	  transportation:	  a	  review.	  International	  Journal	  of	  Global	  Warming	  3.3	  (2011):	  232-­‐256.	  	  Moser,	  B.	  R.,	  Biofuels:	  Global	  Impact	  on	  Renewable	  Energy,	  Production	  Agriculture,	  and	  Technological	  Advancements.	  Springer:	  2011.	  	  Pillay,	  A.	  E.	  Potential	  environmental	  effects	  linked	  to	  elemental	  toxicity	  of	  neem	  biodiesel	  and	  alternative	  fuels	  (B20/B100).	  Canadian	  Journal	  of	  Pure	  &	  Applied	  Sciences	  7.2	  (2013):	  2397-­‐2403.	  	  Sheehan,	  J.;	  Camobreco,	  V.;	  Duffield,	  K.;	  Graboski,	  M.;	  Shapouri,	  H.	  An	  Overview	  of	  Biodiesel	  and	  Petroleum	  Diesel	  Life	  Cycles;	  TP-­‐580-­‐24772;	  NREL:	  Golden,	  CO,	  1998.	  	  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.18861.1-0108833/manifest

Comment

Related Items