UBC Undergraduate Research

Ponderosa Commons energy conservation studies Arunan, Anushiya; Jefferies, Amy; Li, Marie; Ratcliffe, Christine May 4, 2012

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
18861-Arunan_A_et_al_SEEDS_2012.pdf [ 1001.23kB ]
Metadata
JSON: 18861-1.0108552.json
JSON-LD: 18861-1.0108552-ld.json
RDF/XML (Pretty): 18861-1.0108552-rdf.xml
RDF/JSON: 18861-1.0108552-rdf.json
Turtle: 18861-1.0108552-turtle.txt
N-Triples: 18861-1.0108552-rdf-ntriples.txt
Original Record: 18861-1.0108552-source.json
Full Text
18861-1.0108552-fulltext.txt
Citation
18861-1.0108552.ris

Full Text

UBC Social Ecological Economic Development Studies (SEEDS) Student Report          Ponderosa Commons Energy Conservation Studies Anushiya Arunan, Amy Jefferies, Marie Li, Christine Ratcliffe University of British Columbia APSC 364 May 4, 2012            Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report”. 	  	  	  	  	   	  	  Ponderosa	  Commons	  Energy	  Conservation	  Studies	  APSC	  364	  	  	  WINTER	  2011	  Instructor:	  Dr.	  Nicholas	  Coops	  University	  of	  British	  Columbia	  Anushiya	  Arunan	  Amy	  Jefferies	  Marie	  Li	  Christine	  Ratcliffe	  	  March	  27,	  2012	  	  Last	  Revised:	  May	  4,	  2012	  1  	  	  Executive	  Summary	  This	  report	  provides	  an	  analysis	  and	  evaluation	  of	  possible	  demand	  side	  management	  strategies	  for	  reducing	  energy	  demand	  in	  residences	  in	  the	  University	  of	  British	  Columbia	  with	  the	  design	  of	  the	  as-­‐yet	  un-­‐built	  Ponderosa	  Phase	  1,	  2	  and	  3	  student	  residences	  used	  as	  a	  case	  study.	  Four	  options	  had	  been	  initially	  proposed,	  analyzed	  and	  ranked	  through	  the	  means	  of	  a	  sustainability	  criteria	  matrix	  that	  had	  been	  developed	  for	  the	  purpose	  of	  this	  project.	  The	  four	  proposed	  options	  are	  the	  use	  of	  fabric	  curtains	  (as	  opposed	  to	  venetian	  blinds),	  ‘Nest’	  Programmable	  Thermostats,	  High-­‐resolution	  Real	  time	  Feedback	  Systems	  and	  Power	  Strips	  with	  attached	  ‘Universal	  Plugs’.	  While	  the	  first	  three	  options	  reduce	  heating	  loads	  in	  residential	  buildings,	  the	  fourth	  option	  of	  the	  use	  of	  Power	  Strips	  with	  attached	  ‘Universal	  Plugs’	  aims	  to	  reduce	  plug	  loads.	  	  The	  options,	  fabric	  curtains,	  ‘Nest’	  Programmable	  Thermostats	  and	  High-­‐resolution	  Real	  time	  Feedback	  Systems	  performed	  the	  best	  on	  the	  whole	  when	  assessed	  using	  the	  sustainability	  criteria	  matrix	  that	  had	  been	  generated	  based	  on	  the	  three	  defining	  pillars	  of	  sustainability:	  Environmental,	  Social	  and	  Economic.	  Consequently,	  the	  option	  of	  Power	  Strips	  with	  attached	  ‘Universal	  Plugs’	  has	  been	  excluded	  from	  the	  recommendations	  as	  it	  proved	  to	  be	  economically	  unfeasible	  at	  the	  moment.	  The	  sustainability	  criteria	  matrix	  consisted	  of	  indicators	  to	  measure	  energy	  usage	  reductions,	  occupant	  engagement,	  technical	  and	  economic	  feasibility	  and	  academic	  research	  potential	  among	  other	  things.	  Points	  had	  been	  assigned	  to	  each	  of	  the	  options	  depending	  on	  how	  well	  they	  fared	  against	  the	  indicators,	  with	  highest	  number	  of	  points	  given	  to	  the	  best	  performing	  option	  and	  so	  on.	  Certain	  indicators	  such	  as	  reduction	  in	  energy	  consumption	  were	  more	  quantifiable	  than	  others	  like	  those	  measuring	  occupant	  engagement.	  As	  such,	  a	  survey	  was	  carried	  out	  among	  students	  to	  gauge	  the	  less	  quantifiable	  indicators	  in	  a	  reliable	  manner.	  Subsequently,	  the	  total	  number	  of	  points	  was	  added	  to	  rank	  the	  options.	  	  	  This	  conclusions	  and	  recommendations	  proposed	  in	  this	  report	  have	  been	  made	  after	  considerable	  thought	  and	  analysis	  of	  the	  information	  that	  had	  been	  available	  at	  the	  time	  of	  writing.	  While	  the	  authors	  of	  this	  report	  stand	  by	  the	  conclusions	  and	  recommendations	  made	  in	  this	  report,	  certain	  limitations	  of	  the	  proposed	  options	  have	  to	  be	  also	  acknowledged.	  Certain	  foreseeable	  challenges	  in	  relation	  to	  the	  proposed	  options	  are	  also	  discussed	  in	  this	  report.	  	   	  2  	  	  Table	  of	  Contents	  Executive	  Summary	  ..................................................................................................................................	  1	  Table	  of	  Contents	  .....................................................................................................................................	  2	  List	  of	  Tables	  .............................................................................................................................................	  4	  List	  of	  Figures	  ............................................................................................................................................	  4	  Introduction	  ..............................................................................................................................................	  6	  Background	  ...............................................................................................................................................	  6	  Option	  Study	  .............................................................................................................................................	  7	  Option	  1	   Fabric	  Curtains	  ....................................................................................................................	  7	  Option	  2	   NEST	  Programmable	  Thermostats	  .....................................................................................	  7	  Option	  3	   High-­‐resolution	  Real-­‐time	  Feedback	  Systems	  ....................................................................	  7	  Option	  4	   Use	  of	  Power	  Strips	  with	  ‘Universal	  Plug’	  ..........................................................................	  7	  Evaluation	  .................................................................................................................................................	  8	  Methodology	  for	  Developing	  Indicators	  ...............................................................................................	  8	  Environmental	  ..................................................................................................................................	  8	  Social	  .................................................................................................................................................	  8	  Economic	  ..........................................................................................................................................	  9	  A	  Note	  on	  the	  Weighting	  of	  Indicators	  ...........................................................................................	  10	  Indicator	  Matrix	  ..................................................................................................................................	  11	  Options	  Evaluation	  Summary	  ..............................................................................................................	  12	  Evaluation	  Results	  ...............................................................................................................................	  13	  Recommendations	  ..................................................................................................................................	  14	  Fabric	  Curtains	  ....................................................................................................................................	  14	  Academic	  Research	  Potential	  .........................................................................................................	  15	  NEST	  Programmable	  Thermostats	  ......................................................................................................	  15	  High-­‐level	  Cost	  Implications	  ...........................................................................................................	  15	  Environmental	  Impacts	  ...................................................................................................................	  15	  Social	  Impacts	  .................................................................................................................................	  16	  Academic	  Research	  Potential	  .........................................................................................................	  16	  High-­‐resolution	  Real-­‐time	  Feedback	  Systems	  .....................................................................................	  16	  3  	  	  High-­‐level	  Cost	  implications	  ...........................................................................................................	  16	  Environmental	  Impacts	  ...................................................................................................................	  16	  Social	  Impacts	  .................................................................................................................................	  16	  Co-­‐Benefits	  .....................................................................................................................................	  17	  Academic	  Research	  Potential	  .........................................................................................................	  17	  Rationale	  for	  Exclusion	  of	  Option	  4:	  Use	  of	  Power	  Strips	  with	  Universal	  Plugs	  ..................................	  17	  Academic	  Research	  Potential	  .........................................................................................................	  17	  Challenges	  and	  Implicated	  Stakeholders	  ........................................................................................	  17	  Discussion	  ...............................................................................................................................................	  18	  Fabric	  Curtains	  ....................................................................................................................................	  18	  NEST	  Programmable	  Thermostat	  ........................................................................................................	  18	  High-­‐resolution	  Real-­‐time	  Feedback	  System	  ......................................................................................	  18	  Appendices	  .............................................................................................................................................	  19	  Appendix	  A	  ..........................................................................................................................................	  19	  Appendix	  B	  ..........................................................................................................................................	  20	  Appendix	  C	  ..........................................................................................................................................	  21	  Appendix	  D	  ..........................................................................................................................................	  21	  Appendix	  E	  ..........................................................................................................................................	  22	  Appendix	  F	  ..........................................................................................................................................	  23	  Appendix	  G	  ..........................................................................................................................................	  25	  References	  ..............................................................................................................................................	  26	  	  	   	  4  	  	  List	  of	  Tables	  Table	  1	  Occupant	  engagement	  evaluation	  criteria	  ...................................................................................	  8	  Table	  2	  Rationale	  and	  justification	  for	  chosen	  indicators	  .......................................................................	  11	  Table	  3	  Best	  performing	  options	  for	  each	  indicator	  ...............................................................................	  12	  Table	  4	  Evaluation	  results	  .......................................................................................................................	  13	  Table	  5	  High	  resolution	  feedback	  installation	  cost	  estimate	  ..................................................................	  21	  Table	  6	  Indicators	  matrix	  calculation	  for	  Option	  1	  and	  2	  .......................................................................	  22	  Table	  7	  Indicators	  matrix	  calculation	  for	  Option	  3	  and	  4	  .......................................................................	  24	  	  List	  of	  Figures	  Figure	  1	  High-­‐resolution	  Feedback	  versus	  low-­‐resolution	  feedback	  at	  Oberlin	  College	  ........................	  20	  Figure	  2	  Feedback	  System	  Design	  at	  University	  of	  Hawaii	  Manoa	  Campus	  	  ..........................................	  20	  Figure	  3	  Universal	  Plug’s	  circular	  cut-­‐out	  that	  allows	  people	  to	  pull	  out	  the	  plugs	  ...............................	  21	  Figure	  4	  The	  plug	  also	  has	  a	  built-­‐in	  reminder	  in	  the	  form	  of	  a	  glowing	  inner	  surface	  ..........................	  21	  	  	   	  5  	  	  DISCLAIMER	  The	  survey	  results	  presented	  in	  Appendix	  G	  are	  meant	  for	  internal	  use	  only	  by	  the	  staff	  at	  UBC	  Plant	  Operations.	  These	  results	  should	  not	  be	  published	  without	  BREB	  approval.	  The	  survey	  can	  be	  found	  in	  Appendix	  G.	  Questions	  and	  comments	  are	  welcomed.	  Please	  contact	  Marie	  at	  limarie90@gmail.com.	   	  6  	  	  Introduction	  The	  basis	  for	  the	  University	  of	  British	  Columbia’s	  Demand	  Side	  Management	  (DSM)	  Strategy	  for	  the	  Point	  Grey	  campus	  is	  the	  need	  for	  reducing	  the	  energy	  demand	  in	  buildings.	  In	  order	  to	  comply	  with	  its	  Climate	  Action	  Plan,	  UBC	  has	  adopted	  a	  series	  of	  initiatives	  including	  the	  Continuous	  Optimization	  program	  and	  mandatory	  LEED	  Gold	  Standards	  to	  ensure	  that	  both	  existing	  buildings	  and	  new	  constructions	  on	  campus	  are	  reducing	  their	  energy	  usage	  and	  carbon	  emissions	  quite	  substantially.	  While	  green	  building	  designs	  and	  energy-­‐efficiency	  technologies	  are	  well-­‐developed	  and	  researched,	  less	  is	  known	  about	  the	  role	  of	  occupant	  behaviour	  for	  energy	  demand	  management.	  However,	  studies	  showing	  that	  occupant	  behaviour	  can	  significantly	  amplify	  or	  dampen	  the	  effectiveness	  of	  energy-­‐efficiency	  technologies	  used	  on	  buildings	  are	  emerging	  in	  recent	  times.	  Therefore,	  the	  Student	  Housing	  and	  Hospitality	  Services	  (SHHS)	  and	  the	  UBC	  Campus	  Sustainability	  Office	  are	  keen	  on	  engaging	  and	  enabling	  the	  current	  and	  future	  building	  occupants	  to	  adopt	  energy	  efficient	  behaviour.	  This	  report	  will	  discuss	  both	  passive	  and	  active	  (i.e.	  requires	  occupant	  engagement)	  strategies	  for	  energy-­‐efficient	  indoor	  comfort	  provision	  in	  buildings	  and	  put	  forward	  several	  recommendations	  to	  SHHS	  and	  the	  Campus	  Sustainability	  Office	  with	  regards	  to	  future	  residential	  buildings.	  This	  project	  used	  the	  design	  of	  the	  as-­‐yet	  un-­‐built	  Ponderosa	  Phase	  1,	  2	  and	  3	  student	  residences	  as	  a	  case	  study.	  Background	  The	  project	  was	  initiated	  through	  reviewing	  general	  energy	  infrastructures	  at	  residential	  buildings	  in	  UBC.	  The	  findings	  were	  that	  most	  of	  the	  energy	  and	  electricity	  needed	  for	  lighting,	  heating	  and	  ventilating	  the	  buildings	  came	  either	  in	  the	  form	  of	  hydroelectricity	  supplied	  by	  BC	  Hydro	  or	  from	  natural	  gas	  supplied	  by	  Terasen	  Gas.	  Heating	  was	  identified	  to	  be	  a	  major	  source	  of	  energy	  consumption	  in	  residential	  buildings	  on	  campus.	  	  Four	  strategies	  to	  engage	  and	  promote	  energy-­‐efficient	  occupant	  behaviour	  were	  proposed	  and	  analysed.	  The	  summarised	  descriptions	  of	  the	  four	  strategies	  are	  as	  follows.	  	   	  7  	  	  Option	  Study	  Option	  1	   Fabric	  Curtains	  Curtains	  are	  a	  popular	  household	  feature	  and	  an	  established	  one.	  Replacing	  the	  venetian	  blinds	  traditionally	  used	  at	  UBC	  would	  create	  warmer	  rooms,	  while	  still	  allowing	  for	  the	  movement	  of	  fresh	  air	  through	  the	  room.	  This	  is	  because	  curtains	  insulate	  cold	  windows	  due	  to	  their	  solid	  (not	  slatted)	  material.	  Blackout	  curtains	  have	  an	  R-­‐Value	  (insulation	  value)	  of	  3.8	  (Galt	  Home,	  2012),	  which	  is	  more	  insulation	  than	  wooden	  blinds	  (3.17	  –	  The	  Blind	  Spot,	  2012).	  This	  relative	  additional	  insulation	  will	  act	  in	  helping	  reduce	  energy	  consumption.	  Option	  2	   NEST	  Programmable	  Thermostats	  Heating	  (and	  cooling)	  in	  a	  home	  is	  one	  of	  the	  most	  energy	  consuming	  domestic	  processes	  –	  “In	  2005,	  49.1%	  of	  energy	  consumed	  by	  residential	  buildings	  was	  used	  for	  space	  heating	  and	  cooling…”	  (Moon	  &	  Han,	  2011)	  A	  programmable	  thermostat	  can	  help	  reduce	  consumption	  by	  automatically	  turning	  down	  the	  heating	  during	  time	  periods	  pre-­‐set	  by	  the	  owner,	  such	  as	  at	  night	  when	  occupants	  are	  asleep,	  or	  when	  occupants	  are	  away	  from	  home.	  In	  particular,	  the	  use	  of	  NEST	  (NEST	  Lab,	  2012)	  programmable	  thermostat	  is	  proposed.	  The	  added	  advantage	  of	  NEST	  is	  that	  it	  automatically	  programs	  itself	  as	  you	  teach	  it	  energy	  saving	  habits	  and	  thus,	  eliminating	  the	  need	  to	  adjust	  the	  thermostat	  yourself.	  Option	  3	   High-­‐resolution	  Real-­‐time	  Feedback	  Systems	  Energy	  feedback	  systems	  in	  general,	  inform	  the	  occupant	  how	  much	  energy	  is	  being	  consumed.	  A	  high-­‐resolution	  real-­‐time	  feedback	  system	  will	  involve	  installing	  separate	  meters	  that	  track	  energy	  consumption	  for	  a	  defined	  space,	  such	  as	  a	  suite	  or	  a	  floor.	  Students	  will	  then	  be	  able	  to	  view	  suite-­‐specific	  or	  floor-­‐specific	  energy	  consumption	  data	  from	  public	  displays	  or	  from	  a	  personal	  computer.	  Categories	  of	  feedback	  systems	  include	  direct	  and	  indirect	  feedback	  systems	  (Darby,	  2006;	  Appendix	  A);	  direct	  feedback	  systems	  are	  further	  categorised	  into	  low	  and	  high-­‐resolution	  systems.	  A	  low	  resolution	  system	  involves	  manual	  meter	  reading	  and	  data	  entry	  while	  a	  high	  resolution	  system	  automatically	  feeds	  meter	  readings	  into	  the	  database	  at	  much	  shorter	  time	  intervals	  (Appendix	  B).	  Compared	  to	  the	  other	  types	  of	  feedback	  systems,	  high-­‐resolution	  real-­‐time	  feedback	  systems	  achieved	  the	  highest	  reductions	  in	  energy	  consumption	  with	  an	  average	  of	  55%	  (Petersen,	  Shunturov,	  Janda,	  Platt,	  &	  Weinberger,	  2007).	  Thus,	  they	  were	  considered	  as	  a	  highly	  effective	  option	  for	  engaging	  occupants	  to	  adopt	  a	  more	  energy-­‐efficient	  behaviour.	  Option	  4	   Use	  of	  Power	  Strips	  with	  ‘Universal	  Plug’	  This	  option	  looked	  into	  making	  unplugging	  easier	  so	  as	  to	  incentivise	  occupants	  to	  unplug	  their	  appliances	  after	  use	  in	  order	  to	  reduce	  plug	  loads	  in	  residential	  buildings.	  It	  involves	  using	  power	  strips	  with	  plugs	  designed	  like	  the	  Universal	  Plug	  (a	  hollowed-­‐out	  plug)	  attached	  to	  them.	  The	  Universal	  Plug	  has	  a	  circular	  cut-­‐out	  that	  allows	  people	  to	  pull	  out	  the	  plugs	  easily	  with	  minimum	  effort.	  The	  plug	  also	  has	  a	  built-­‐in	  reminder	  in	  the	  form	  of	  a	  glowing	  inner	  surface	  that	  becomes	  more	  8  	  	  prominent	  when	  the	  room	  lights	  are	  switched	  off	  and	  the	  room	  gets	  dark.	  (Domestic	  Aid:	  Universal	  Plug,	  n.d.)	  The	  hollowed	  centre	  and	  the	  glowing	  halos	  intuitively	  remind	  users	  to	  yank	  out	  the	  plug	  after	  use.	  When	  attached	  to	  a	  single	  power	  strip,	  multiple	  appliances	  can	  be	  unplugged	  with	  ease	  with	  the	  universal	  plug	  (Appendix	  C).	  Evaluation	  Methodology	  for	  Developing	  Indicators	  In	  developing	  a	  framework	  to	  assess	  the	  options,	  criteria	  were	  generated	  based	  on	  the	  three	  categories	  that	  define	  sustainability:	  Environmental,	  Social	  and	  Economic.	  Environmental	  • Energy	  Conservation:	  	  Percentage	  reduction	  in	  electricity	  consumption	  is	  the	  indicator	  here.	  Most	  of	  the	  figures	  were	  either	  estimates	  provided	  by	  the	  manufacturer	  or	  actual	  results	  taken	  from	  precedents.	  The	  percentages	  and	  options	  were	  ranked;	  the	  option	  that	  conserves	  the	  most	  electricity	  was	  awarded	  four	  points	  and	  the	  option	  that	  conserves	  the	  least	  was	  awarded	  one	  point.	  • Additional	  Material	  Input	  Required:	  	  Resources	  consumed	  to	  implement	  these	  options	  is	  also	  important.	  The	  scope	  of	  this	  project	  did	  not	  allow	  for	  thorough	  life	  cycle	  assessment	  on	  each	  of	  the	  options.	  Instead,	  “likelihood	  of	  being	  recyclable”	  was	  incorporated	  into	  the	  criteria	  as	  a	  proxy	  to	  see	  how	  likely	  inputs	  can	  be	  reused.	  	  Options	  were	  rated	  using	  as	  scale	  of	  1-­‐3,	  1	  point	  for	  “Not	  Likely”	  and	  3	  points	  for	  “Recyclable”.	  	  Social	  • Occupant	  Engagement:	  Ideally,	  we	  hope	  to	  influence	  occupants’	  behaviour	  and	  lead	  them	  into	  permanently	  adopting	  energy	  conservation	  practices.	  This	  criterion	  is	  broken	  down	  into	  three	  indicators:	  awareness,	  attitude	  and	  action.	  Through	  a	  survey	  (Appendix	  D),	  students	  were	  asked	  to	  answer	  the	  following	  questions:	  	   Scale	  of	  1-­‐5	  Questions	   1	  Point	   5	  Points	  Awareness	  How	  will	  it	  affect	  your	  awareness	  for	  conserving	  energy?	   Significantly	  less	  aware	   Significantly	  more	  aware	  Attitude	  How	  will	  it	  affect	  your	  attitude	  towards	  energy	  conservation?	   Want	  to	  make	  an	  effort	  to	  waste	  energy	   Want	  to	  make	  an	  effort	  to	  conserve	  energy	  Action	  How	  likely	  do	  you	  think	  it	  will	  change	  your	  behaviour	  in	  the	  long-­‐term	  with	  regards	  to	  energy	  conservation?	  Not	  at	  all	  likely	  to	  change	  my	  behaviour	   Very	  likely	  to	  change	  my	  behaviour	  Table	  1	  Occupant	  engagement	  evaluation	  criteria	  The	  results	  computed	  in	  the	  relevant	  fields	  of	  Table	  3	  consist	  of	  weighted	  averages	  of	  the	  survey	  responses	  according	  to	  the	  rating	  scheme	  above.	  In	  addition,	  the	  options	  are	  classified	  as	  passive	  or	  active.	  Passive	  options	  are	  awarded	  1	  point	  whereas	  active	  options	  are	  awarded	  2	  points;	  preference	  9  	  	  is	  given	  to	  active	  options	  because	  they	  are	  more	  likely	  to	  induce	  occupants	  into	  adopting	  energy	  conservation	  practices.	  This	  is	  also	  in	  alignment	  with	  one	  of	  UBC’s	  goals	  for	  sustainability.	  • Comfort	  Level:	  A	  university	  residence	  must	  also	  provide	  a	  level	  of	  comfort	  to	  the	  students.	  Again	  through	  a	  survey,	  students	  were	  asked	  to	  evaluate	  each	  option	  (on	  scale	  of	  1-­‐5)	  with	  regards	  to	  the	  perceived	  change	  in	  comfort	  level.	  • Community	  Sustainability:	  Establishing	  local	  business	  partnerships	  is	  an	  essential	  part	  of	  maintaining	  local	  economic	  sustainability.	  This	  qualitative	  indicator	  seeks	  to	  examine	  the	  potential	  of	  setting	  up	  local	  partnerships	  or	  sourcing	  material	  from	  local	  supplier.	  	  Economic	  • Research	  Potential:	  In	  alignment	  with	  the	  objectives	  of	  UBC	  as	  a	  Living	  Lab,	  research	  potential	  is	  evaluated	  on	  scale	  of	  1-­‐3,	  with	  1	  point	  being	  no	  research	  potential	  and	  3	  points	  being	  “will	  advance	  university	  as	  an	  academic	  leader	  in	  this	  field”.	  Research	  potential	  includes:	  o Developing	  further	  applications	  for	  the	  technologies	  related	  to	  the	  options	  (e.g.	  extending	  high	  resolution	  feedback	  to	  mobile	  devices)	  o Providing	  a	  good	  basis	  to	  conduct	  new	  research	  projects	  (e.g.	  	  determining	  whether	  installing	  thermostats	  per	  floor	  or	  per	  suite	  will	  be	  most	  effective	  for	  changing	  occupants	  behaviour).	  • Economic	  Feasibility:	  Three	  factors	  are	  considered	  under	  economic	  feasibility	  –	  cost	  of	  the	  option,	  payback	  period,	  and	  %	  reduction	  in	  energy	  costs.	  o Cost	  of	  the	  option:	  each	  option	  is	  ranked;	  the	  least	  expensive	  option	  is	  given	  4	  points	  and	  the	  most	  expensive	  option	  is	  given	  1	  point.	  o Payback	  period:	  total	  cost	  is	  divided	  by	  the	  amount	  of	  annual	  energy	  cost	  savings	  to	  see	  how	  many	  years	  it	  would	  take	  to	  recover	  the	  entire	  cost.	  The	  option	  with	  the	  shortest	  payback	  period	  is	  given	  4	  points	  and	  the	  option	  with	  the	  longest	  period	  is	  given	  1	  point.	  	  o %	  reduction	  in	  energy	  costs:	  the	  figures	  are	  taken	  from	  manufacturer’s	  estimates	  or	  actual	  savings	  from	  precedents.	  The	  option	  with	  the	  most	  reduction	  in	  energy	  cost	  is	  given	  4	  points	  and	  the	  option	  with	  the	  least	  reduction	  in	  energy	  cost	  is	  given	  1	  point.	  • Technical	  Feasibility:	  Two	  dimensions	  were	  considered	  in	  evaluating	  technical	  feasibility:	  o Evidence	  of	  precedents:	  if	  other	  institutions	  have	  successfully	  implemented	  a	  particular	  option	  in	  the	  past,	  it	  will	  greatly	  increase	  feasibility.	  The	  option	  is	  awarded	  3	  points	  if	  there	  is	  evidence	  of	  precedents,	  and	  is	  awarded	  0	  points	  if	  otherwise.	  o Evidence	  of	  existing	  products:	  some	  energy	  conservation	  solutions	  may	  be	  theoretical	  and	  prototypes	  of	  the	  hardware	  may	  not	  exist	  yet.	  If	  prototypes	  or	  final	  products	  are	  available,	  feasibility	  will	  be	  greatly	  increased.	  The	  option	  is	  awarded	  3	  points	  if	  there	  is	  evidence	  of	  existing	  prototypes	  or	  commercial	  products	  on	  the	  market,	  and	  is	  awarded	  0	  points	  otherwise.	  10  	  	  A	  Note	  on	  the	  Weighting	  of	  Indicators	  The	  environmental,	  social	  and	  economic	  criteria	  are	  all	  equally	  important	  in	  defining	  sustainability.	  All	  indicators	  were	  given	  equal	  weights	  with	  the	  exception	  of	  technical	  feasibility.	  A	  technically	  unfeasible	  option	  will	  likely	  to	  incur	  more	  costs	  than	  to	  generate	  benefits.	  As	  mentioned	  above,	  each	  option	  deemed	  to	  be	  technically	  feasible	  will	  be	  awarded	  3	  points.11  	  	  Indicator	  Matrix	  Category	   Criteria	   Indicator(s)	   Objective(s)	   Justification	  Environmental	   Energy	  Conservation	   %	  reduction	  of	  electricity	  consumed	  by	  residential	  spaces	  in	  Ponderosa	  Commons	   To	  reduce	  absolute	  levels	  of	  electricity	  consumption	  in	  residential	  spaces	  in	  Ponderosa	   In	  line	  with	  UBC	  objectives	  to	  conserve	  resources	  and	  reduce	  non-­‐renewable	  energy	  consumption	  (Inspirations	  and	  Aspirations	  Final	  Report,	  2011)	  	  Additional	  Material	  Input	  Required	   Additional	  input	  and	  input	  material	  recyclability	  (3:	  Recyclable;	  2:	  Partially	  Recyclable;	  1:	  Not	  Likely	  recyclable)	   Minimize	  consumption	  of	  additional	  materials	  and	  resources.	  	   Aiming	  to	  minimize	  resource	  footprint	  (including	  embodied	  energy	  of	  implementing	  proposed	  solutions)	  by	  managing	  the	  kinds	  of	  materials	  i.e.	  local/recyclable.	  This	  fits	  with	  the	  goals	  for	  the	  Materials	  and	  Resources	  prerequisites	  for	  (LEED,	  2009)	  Social	   Occupant	  Engagement	   Perceived	  positive	  change	  in	  energy	  literacy	  (awareness)	   To	  cultivate	  positive	  energy-­‐related	  habits	  through	  active	  user	  engagement	   In	  line	  with	  UBC	  objective	  to	  "support	  and	  engage	  staff,	  faculty	  and	  students	  in	  sustainability	  learning,	  practice	  and	  leadership	  development".	  (UBC	  Annual	  	  Operational	  	  Sustainability	  	  Report	  	  Vancouver	  Campus,	  2011)	  Perceived	  positive	  change	  in	  energy	  conservation	  behaviour	  (attitude)	  Perceived	  positive	  change	  in	  energy	  conservation	  behaviour	  (action)	  Passive	  	  or	  Active	  (2:	  Active;	  1:	  Passive)	  Comfort	  Level	   Perceived	  level	  of	  comfort	   To	  provide	  optimal	  comfort	  levels	  to	  occupants	  while	  in	  residence	   In	  alignment	  with	  the	  UBC	  Department	  of	  Student	  Housing	  and	  Hospitality	  Services'	  goal	  of	  providing	  an	  environment	  that	  helps	  students	  succeed	  both	  academically	  and	  socially	  (UBC	  Student	  Housing,	  2012).	  In	  alignment	  with	  LEED's	  criteria	  of	  "[...	  to]	  promote	  [occupants']	  productivity,	  comfort	  and	  well-­‐being,"	  (LEED,	  2009)	  Community	  Sustainability	   Potential	  of	  setting	  up	  local	  business	  partnerships	  or	  sourcing	  from	  local	  supplier	  (3:	  High;	  2:	  Possible;	  1:	  Low)	   Aim	  to	  create	  sustainable	  community	  by	  supporting	  local	  businesses	   Local	  partnerships	  will	  create	  positive	  externalities	  for	  local	  community	  such	  as	  research	  and	  development	  partnerships,	  and	  opportunities	  to	  implement	  similar	  solutions	  at	  a	  city-­‐level	  Economic	   Research	  Potential	  (Educational	  and	  Economic	  Value)	   Research	  Potential	  	  (3:	  Will	  advance	  university	  as	  an	  academic	  leader	  in	  this	  field;	  	  2:	  Research	  connections	  exist	  or	  have	  a	  potential	  to	  be	  established,	  	  1:	  No	  foreseeable	  research	  potential)	  To	  evaluate	  the	  educational	  and	  instructive	  ability	  of	  proposed	  options	  through	  the	  means	  of	  their	  expected	  research	  potential	  Fits	  with	  UBC	  as	  a	  living	  laboratory,	  using	  the	  university	  as	  a	  space	  to	  explore	  possibilities	  of	  new	  ways	  of	  doing	  things	  through	  implementation	  and	  monitoring	  	  	  Economic	  Feasibility	  	   Cost	  of	  option	   To	  ensure	  the	  project	  is	  in	  alignment	  with	  UBC's	  budget	   Must	  consider	  financial	  constraints	  such	  as	  incremental	  costs,	  opportunity	  costs,	  and	  financing	  (debt	  vs.	  equity)	  Payback	  period	   To	  provide	  a	  time	  frame	  for	  the	  option	  to	  sustain	  itself	   Shorter	  payback	  periods	  are	  desired	  as	  resources	  can	  be	  devoted	  other	  valuable	  projects;	  also	  to	  ensure	  that	  payback	  periods	  are	  within	  the	  lifespan	  of	  both	  the	  product	  and	  the	  Ponderosa	  building	  itself	  %	  reduction	  in	  energy	  costs	   To	  measure	  cost	  savings	   With	  limited	  resources,	  solutions	  with	  higher	  cost	  savings	  are	  preferred	  Technical	  Feasibility	   Evidence	  of	  precedents	  at	  other	  institutions?	  Y/N	   To	  evaluate	  feasibility	  of	  implementing	  solutions	  within	  UBC's	  abilities.	  	  	  Precedents	  will	  greatly	  accelerate	  feasibility	  studies	  and	  opens	  up	  opportunities	  for	  collaboration	  Evidence	  of	  existing	  products	  (e.g.	  NEST	  thermostat)	  Y/N	   Relevant	  existing	  products/prototypes	  (especially	  those	  available	  on	  the	  market	  already)	  will	  provide	  insight	  to	  whether	  the	  solution	  is	  feasible	  at	  UBC	  Table	  2	  Rationale	  and	  justification	  for	  chosen	  indicators12	  	  Options	  Evaluation	  Summary	  Category	   Criteria	   Indicator(s)	   Best	  Performing	  Option	  Environmental	  Energy	  Conservation	   %	  reduction	  of	  electricity	  consumed	  by	  residential	  spaces	  in	  Ponderosa	  Commons	   Thermostat	  Additional	  Material	  Input	  Required	  Additional	  input	  and	  input	  material	  recyclability	  (3:	  Recyclable;	  2:	  Partially	  Recyclable;	  1:	  Not	  Likely	  recyclable)	   Curtains,	  Thermostat,	  Universal	  Plug	  Social	  Occupant	  Engagement	  Perceived	  positive	  change	  in	  energy	  literacy	  (awareness)	  High	  Resolution	  Feedback	  Perceived	  positive	  change	  in	  energy	  conservation	  behaviour	  (attitude)	  Perceived	  positive	  change	  in	  energy	  conservation	  behaviour	  (action)	  Passive	  	  or	  Active	  (2:	  Active;	  1:	  Passive)	   Thermostat,	  High	  Resolution	  Feedback,	  Universal	  Plug	  Comfort	  Level	   Perceived	  level	  of	  comfort	   Thermostat	  Community	  Sustainability	  Potential	  of	  setting	  up	  local	  business	  partnerships	  or	  sourcing	  from	  local	  supplier	  (3:	  High;	  2:	  Possible;	  1:	  Low)	   Curtains	  Economic	  Research	  Potential	  (Educational	  and	  Economic	  Value)	  Research	  Potential	  	  (3:	  Will	  advance	  university	  as	  an	  academic	  leader	  in	  this	  field;	  	  2:	  Research	  connections	  exist	  or	  have	  a	  potential	  to	  be	  established,	  	  1:	  No	  foreseeable	  research	  potential)	   High	  Resolution	  Feedback	  Economic	  Feasibility	  	  Cost	  of	  option	   Curtains	  Payback	  period	   Thermostats	  %	  reduction	  in	  energy	  costs	   Thermostats	  Technical	  Feasibility	  Evidence	  of	  precedents	  at	  other	  institutions?	  Y/N	   Curtains,	  Thermostat,	  High	  Resolution	  Feedback	  Evidence	  of	  existing	  products	  (e.g.	  NEST	  thermostat)	  Y/N	  Curtains,	  Thermostat,	  High	  Resolution	  Feedback,	  Universal	  Plug	  Table	  3	  Best	  performing	  options	  for	  each	  indicator	  	   	  13	  	  Evaluation	  Results1	  Category	   Criteria	   Indicator(s)	   Fabric	  Curtains	   Thermostat	   High	  Resolution	  Feedback	  Universal	  Plug	  Environmental	  Energy	  Conservation	  %	  reduction	  of	  electricity	  consumed	  by	  residential	  spaces	  in	  Ponderosa	  Commons	  Unknown	  (0)2	   ~33%	  (4)	   10%	  (3)	   5-­‐10%	  (2)	  Additional	  Material	  Input	  Required	  Additional	  input	  and	  input	  material	  recyclability	  (3:	  Recyclable;	  2:	  Partially	  Recyclable;	  1:	  Not	  Likely	  recyclable)	  3	   3	   1	   3	  Social	  Occupant	  Engagement	  Perceived	  positive	  change	  in	  energy	  literacy	  (awareness)	   2.9	   3.6	   4.6	   3.5	  Perceived	  positive	  change	  in	  energy	  conservation	  behaviour	  (attitude)	  3.1	   3.7	   4.1	   3.5	  Perceived	  positive	  change	  in	  energy	  conservation	  behaviour	  (action)	  2.7	   3.6	   3.9	   3.4	  Passive	  	  or	  Active	  (2:	  Active;	  1:	  Passive)	   1	   2	   2	   2	  Comfort	  Level	   Perceived	  level	  of	  comfort	   3.6	   3.7	   3.2	   3.1	  Community	  Sustainability	  Potential	  of	  setting	  up	  local	  business	  partnerships	  or	  sourcing	  from	  local	  supplier	  (3:	  High;	  2:	  Possible;	  1:	  Low)	  3	   1	   2	   1	  Economic	  Research	  Potential	  (Educational	  and	  Economic	  Value)	  Research	  Potential	  	  (3:	  Will	  advance	  university	  as	  an	  academic	  leader	  in	  this	  field;	  	  2:	  Research	  connections	  exist	  or	  have	  a	  potential	  to	  be	  established,	  	  1:	  No	  foreseeable	  research	  potential)	  2	   2	   3	   2	  Economic	  Feasibility	  	  Cost	  of	  option	   CAD$16,728.84	  (4)	   USD	  $277,884	  (1)	   USD	  $120,192.31	  (2)	   CAD	  $33,480	  (3)	  Payback	  period	   3	  years	  (3)	   0.5-­‐2	  years	  (4)	   8	  years	  (1)	   6	  years	  (2)	  %	  reduction	  in	  energy	  costs	   29%	  (3)	   ~30%	  (4)	   5%	  (1)	   5-­‐10%	  (2)	  Technical	  Feasibility	  Evidence	  of	  precedents	  at	  other	  institutions?	  Y/N	   Yes	  (3)	   Yes	  (3)	   Yes	  (3)	   No	  (0)	  Evidence	  of	  existing	  products	  (e.g.	  NEST	  thermostat)	  Y/N	   Yes	  (3)	   Yes	  (3)	   Yes	  (3)	   Yes	  (3)	  Total	   	   	   37.2	   41.6	   36.8	   33.4	  Table	  4	  Evaluation	  results	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  Justifications	  for	  the	  calculations	  can	  be	  found	  in	  Appendix	  E	  and	  F	  2	  According	  to	  the	  Eclipse	  Curtains,	  their	  blackout	  curtains	  can	  reduce	  thermal	  loss	  by	  up	  to	  25%	  (Eclipsecurtains.com,	  2012).	  Since	  an	  estimate	  of	  actual	  energy	  savings	  cannot	  be	  found,	  the	  option	  of	  Fabric	  Curtains	  is	  awarded	  0	  points	  to	  be	  conservative.	  14	  	  Recommendations	  Based	  on	  the	  results	  of	  the	  sustainability	  criteria	  matrix,	  input	  from	  operational	  staff	  and	  residents,	  the	  three	  options	  of	  using	  fabric	  curtains,	  high	  resolution	  real-­‐time	  feedback	  systems	  and	  programmable	  thermostats	  are	  recommended	  as	  strategies	  for	  engaging	  and	  enabling	  current	  and	  future	  building	  occupants	  to	  adopt	  energy	  efficient	  behaviour.	  The	  option	  of	  attaching	  ‘universal	  plugs’	  to	  power	  strips	  was	  excluded	  from	  the	  recommendations,	  on	  the	  basis	  of	  complex	  logistics	  and	  lack	  of	  precedents	  (which	  makes	  it	  unreliable).	  The	  rationale	  for	  the	  recommendation	  of	  the	  three	  aforementioned	  options	  and	  the	  exclusion	  of	  the	  fourth	  option	  is	  discussed	  in	  greater	  detail	  below.	  The	  three	  options	  of	  using	  fabric	  curtains,	  high	  resolution	  real-­‐time	  feedback	  systems	  and	  programmable	  thermostats	  can	  be	  seen	  as	  an	  integrated	  way	  of	  tackling	  the	  problem	  of	  reducing	  heating	  loads	  in	  residences.	  It	  is	  hoped	  that	  the	  integration	  of	  one	  or	  all	  of	  the	  options	  in	  tandem	  would	  help	  to	  reinforce	  and	  amplify	  the	  effectiveness	  of	  each	  of	  the	  three	  proposed	  options.	  	  Rationales	  behind	  the	  recommendations	  are	  classified	  into	  the	  following:	  High-­‐level	  Cost	  Implications,	  Environmental	  impact,	  Social	  Impact,	  Co-­‐benefits	  and	  Academic	  Research	  Potential.	  	  In	  addition,	  the	  recommendations	  of	  the	  three	  options	  are	  also	  based	  on	  the	  fact	  that	  they	  performed	  well	  when	  judged	  against	  the	  indicators	  discussed	  earlier	  in	  the	  sustainability	  criteria	  matrix.	  While	  all	  four	  options	  were	  successful	  in	  achieving	  positive	  environmental	  impacts	  of	  energy	  reductions,	  the	  indicators	  measuring	  economic	  (i.e.	  cost	  implications)	  and	  technical	  feasibility	  were	  given	  greater	  weight	  in	  deciding	  our	  final	  recommendations	  (with	  the	  exception	  of	  high-­‐resolution	  real-­‐time	  feedback;	  please	  see	  page	  16	  for	  justification).	  This	  is	  because	  ultimately	  economic	  and	  technical	  feasibility	  will	  be	  the	  constraining	  factors	  in	  deciding	  whether	  or	  not	  to	  implement	  these	  proposed	  options.	  As	  shown	  in	  Table	  2,	  the	  options	  of	  fabric	  curtains	  and	  NEST	  thermostats	  were	  the	  best	  performers	  in	  the	  economic	  and	  technical	  feasibility	  criteria.	  Fabric	  Curtains	  High-­‐level	  Cost	  Implications	  Blackout	  curtains	  are	  cheaper	  than	  aluminum	  Venetian	  blinds.	  Blackout	  curtains	  are	  easier	  to	  repair	  and	  replace,	  as	  well	  as	  being	  more	  economical	  to	  clean	  in	  terms	  of	  time	  and	  money	  (Cooper,	  2012).	  The	  blackout	  curtains	  in	  question	  would	  ideally	  be	  similar	  to	  Eclipse	  curtains	  (eclipsecurtains.ca,	  2012)	  and	  the	  venetian	  blinds	  similar	  to	  standard	  aluminum	  blinds	  from	  Blinds.ca	  (blinds.ca,	  2012).	  Environmental	  Impacts	  Curtains	  insulate	  warmth	  of	  the	  room	  and	  allow	  less	  heat	  to	  escape	  through	  the	  windows;	  this	  will	  reduce	  GHG	  emissions	  due	  to	  the	  reduction	  of	  heating	  required	  within	  rooms	  (Nicol,	  2001).	  There	  will	  also	  be	  less	  light	  pollution	  in	  the	  surrounding	  area	  (Harder,	  2004)	  outside	  the	  buildings,	  as	  with	  15  	  	  curtains,	  less	  light	  is	  likely	  to	  be	  seen	  from	  the	  outside	  due	  to	  the	  thick	  and	  continuous	  window	  covering.	  Social	  Impacts	  Students	  are	  more	  likely	  to	  acquire	  better	  sleep	  with	  the	  curtain’s	  blackout	  quality,	  as	  much	  light	  is	  let	  in	  through	  the	  slats	  of	  venetian	  blinds	  light	  in	  a	  room.	  Blackout	  blinds	  are	  recommended	  to	  combat	  this,	  as	  well	  as	  help	  to	  improve	  students’	  concentration	  and	  cognitive	  function,	  which	  is	  critical	  in	  studying	  (Pilcher	  &	  Huffcutt,	  1996).	  There	  will	  also	  be	  less	  frustration	  dealing	  with	  broken,	  bent,	  tangled	  or	  lopsided	  blinds	  (Rubin	  et	  al,	  1978).	  Using	  curtains	  is	  very	  straightforward	  and	  no	  additional	  resource	  needs	  to	  be	  spent	  to	  train	  students	  on	  how	  to	  use	  them.	  Co-­‐benefits	  Well	  rested	  students	  will	  be	  happier	  and	  more	  productive	  (Brown,	  n.d.).	  We	  expect	  there	  will	  be	  less	  maintenance	  call-­‐outs	  compared	  to	  that	  of	  blinds	  repairs.	  Curtains	  can	  be	  easily	  removed	  and	  cleaned	  –	  which	  will	  improve	  health	  among	  students	  due	  to	  the	  increased	  opportunity	  to	  eliminate	  settled	  dust	  and	  subsequent	  dust	  mites	  from	  the	  room	  (Khatri	  et	  al,	  2011).	  Academic	  Research	  Potential	  Potential	  academic	  research	  areas	  arising	  from	  this	  technology	  could	  include	  psychology	  tests	  to	  measure	  the	  difference	  in	  sleep	  between	  the	  different	  window	  covers.	  Practical	  research	  could	  include	  the	  identification	  of	  the	  best	  blackout/environmentally	  friendly/durable	  fabric	  to	  use	  for	  the	  curtain	  material.	  NEST	  Programmable	  Thermostats	  High-­‐level	  Cost	  Implications	  	  The	  cost	  for	  providing	  a	  NEST	  thermostats	  for	  all	  ‘beds’	  in	  Ponderosa	  would	  be	  approximately	  USD	  $278,000	  (NEST	  Lab,	  2012).	  According	  to	  NEST’s	  website	  the	  money	  saved	  would	  mean	  payback	  period	  of	  less	  than	  two	  years	  (based	  on	  an	  energy	  bill	  of	  $2,200	  per	  year).	  USD	  $277,884	  may	  seem	  like	  a	  substantial	  cost	  over	  more	  conventional	  programmable	  thermostat	  cost	  to	  Ponderosa	  (USD	  $33,920-­‐$80,352).	  NEST	  has	  a	  motion	  detector,	  provides	  feedback	  on	  how	  much	  energy	  the	  user	  has	  saved,	  and	  informs	  the	  user	  the	  impact	  of	  his/her	  behaviour.	  It	  is	  also	  connected	  to	  the	  internet	  and	  will	  inform	  the	  user	  about	  how	  the	  weather	  affects	  the	  user’s	  heating/cooling	  choices.	  The	  features	  that	  NEST	  provides	  are	  unique	  and	  address	  the	  problems	  of	  programmable	  thermostats	  found	  in	  the	  literature	  (Karjalainen	  2011,	  Gao	  &	  Whitehouse,	  2010,	  Meier	  et	  al.	  2011).	  Environmental	  Impacts	  A	  life	  cycle	  analysis	  would	  allow	  transparency	  on	  the	  overall	  environmental	  impacts	  of	  the	  NEST	  thermostat.	  However,	  like	  many	  products	  today,	  they	  do	  not	  have	  life	  cycle	  analysis,	  which	  requires	  further	  research.	  With	  an	  expected	  life	  span	  of	  at	  least	  of	  at	  least	  25	  years	  (for	  the	  electric	  base	  board	  heating)	  (Stantec,	  2010)	  these	  energy	  savings	  could	  be	  substantial.	  However,	  it	  is	  unclear	  whether	  these	  energy	  savings	  is	  enough	  to	  offset	  the	  environmental	  impacts	  resulted	  from	  the	  manufacturing	  16  	  	  of	  (the	  NEST)	  programmable	  thermostats.	  There	  are	  facilities	  in	  the	  Vancouver	  area	  for	  the	  recycling	  of	  thermostats	  (City	  of	  Richmond,	  2009).	   Social	  Impacts	  Studies	  have	  found	  that	  over	  40%	  of	  programmable	  thermostats	  owners	  don’t	  programme	  them	  (Koehler,	  Dey	  K.,	  Mankoff,	  &	  Oakley,	  2010).	  This	  seems	  to	  be	  mainly	  due	  to	  a	  lack	  of	  understanding	  and	  misconceptions	  about	  how	  heating	  systems	  work	  (Peffer,	  et	  al.	  2011).	  One	  of	  the	  features	  of	  NEST	  is	  that	  it	  tells	  you	  the	  estimated	  time	  it	  will	  take	  to	  reach	  the	  new	  temperature.	  This	  should	  help	  stop	  people	  using	  thermostats	  like	  a	  ‘valve’	  (Meier	  et	  al.	  2011).	  People	  like	  to	  have	  control	  over	  the	  temperature	  of	  the	  environment	  and	  it	  is	  beneficial	  to	  their	  well-­‐being	  when	  they	  do	  (Karjalainen,	  2011).	  Although	  the	  NEST	  thermostat	  will	  start	  automatically	  adjusting	  itself	  after	  a	  week	  you	  can	  still	  change	  its	  settings	  if	  you	  wish.	  You	  can	  control	  it	  when	  away	  from	  home	  using	  a	  laptop	  or	  a	  smart	  phone	  so	  your	  home	  is	  the	  right	  temperature	  when	  you	  return.	  NEST	  helps	  you	  teach	  it	  sustainable	  behaviour	  by	  giving	  feedback	  as	  to	  whether	  your	  actions	  are	  ‘green’	  by	  changing	  its	  display.	  	  Academic	  Research	  Potential	  It	  appears	  there	  have	  been	  no	  studies	  looking	  at	  how	  people	  use	  one	  particular	  type	  of	  programmable	  thermostat	  as	  would	  be	  the	  case	  in	  residence.	  In	  addition	  “…there	  have	  been	  few	  careful	  studies	  of	  the	  energy	  savings	  attributed	  to	  these	  [programmable]	  thermostats.”(Meier	  et	  al,	  2011).	  The	  NEST	  thermostat	  in	  particular	  provides	  research	  opportunities	  as	  it	  is	  a	  new	  product	  and	  a	  new	  concept.	  Occupants’	  use	  of	  this	  thermostat	  may	  potentially	  be	  very	  different	  than	  ‘traditional’	  thermostats.	  	  High-­‐resolution	  Real-­‐time	  Feedback	  Systems	  High-­‐level	  Cost	  implications	  	  Based	  on	  Oberlin	  College’s	  case,	  the	  installation	  cost	  per	  student	  is	  $109.27,	  which	  translates	  to	  a	  total	  estimated	  installation	  cost	  of	  $120,191.31	  for	  both	  Phase	  1	  and	  Phase	  2	  of	  the	  Ponderosa	  hub	  (Appendix	  C).	  Oberlin	  College	  achieved	  a	  total	  20%	  of	  monetary	  savings	  for	  combined	  utilities	  under	  a	  competition	  environment.	  (Petersen	  et	  al.,	  2007).	  Using	  5%	  as	  a	  conservative	  estimate	  for	  maintainable	  savings,	  the	  payback	  period	  would	  be	  8	  years	  (Petersen	  et	  al.,	  2007).	  Environmental	  Impacts	  	  	  	  	  	  	  The	  two	  week	  competition	  period	  at	  Oberlin	  College	  saved	  68,300kWH	  of	  electricity	  which	  translates	  to	  a	  reduction	  of	  148,000lbs	  of	  CO2,	  1,360lbs	  of	  SO2	  and	  520lbs	  of	  NOx	  in	  emissions	  (Petersen	  et	  al.,	  2007).	  The	  electric	  power	  needed	  to	  run	  all	  parts	  of	  the	  feedback	  system	  was	  less	  than	  600W	  by	  direct	  measurement	  (Petersen	  et	  al.,	  2007).	  Social	  Impacts	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  In	  addition	  to	  the	  successful	  results	  achieved	  by	  Oberlin	  College,	  a	  literature	  review	  across	  various	  studies	  shows	  that	  feedback	  does	  lead	  to	  substantial	  reduction	  in	  energy	  consumption	  (Fischer,	  2008).	  Students	  at	  Oberlin	  College	  have	  also	  expressed	  that	  they	  were	  “engaged	  by	  the	  accessibility	  of	  data	  and	  were	  inspired	  to	  think	  about	  their	  personal	  and	  collective	  resource	  use”	  and	  would	  intend	  to	  17  	  	  continue	  to	  adopt	  better	  energy	  conservation	  practices	  (Petersen	  et	  al.,	  2007).	  Both	  Fischer	  and	  Darby	  emphasize	  that	  an	  intrinsic	  or	  extrinsic	  motivation	  to	  conserve	  energy	  is	  necessary	  in	  order	  for	  feedback	  to	  be	  effective	  (Fischer,	  2008;	  Darby,	  2006).	  Although	  there	  is	  no	  significant	  evidence	  for	  post-­‐study	  persistent	  behavioural	  change,	  a	  new	  type	  of	  behavior	  that	  lasts	  three-­‐month	  or	  longer	  seems	  likely	  to	  persist	  (Darby,	  2006);	  continued	  feedback	  would	  likely	  to	  facilitate	  this	  process.	  Co-­‐Benefits	  	   	  The	  feedback	  system	  will	  provide	  opportunity	  for	  UBC	  faculties	  and	  students	  to	  participate	  and	  improve	  the	  system’s	  design.	  The	  system	  will	  also	  provide	  solid	  infrastructure	  for	  energy	  rebate	  programs	  to	  increase	  incentives	  for	  energy	  conservation.	  Academic	  Research	  Potential	  	  Open-­‐source	  and	  Application	  Program	  Interface	  (API)	  provides	  flexibility	  to	  expand	  data	  accessibility	  to	  other	  devices	  such	  as	  mobile	  handsets	  (Brewer	  et	  al.,	  2011)	  in	  the	  future.	  Rationale	  for	  Exclusion	  of	  Option	  4:	  Use	  of	  Power	  Strips	  with	  Universal	  Plugs	  Academic	  Research	  Potential	  While	  the	  design	  of	  the	  Universal	  Plug	  itself	  does	  not	  warrant	  further	  research,	  it	  is	  becoming	  increasingly	  imperative	  to	  look	  into	  more	  intuitive	  forms	  of	  reminders	  and	  prompts	  if	  energy-­‐users	  are	  expected	  to	  be	  engaged	  into	  developing	  lifelong	  energy-­‐efficient	  behaviours.	  And,	  the	  fact	  that	  a	  notable	  aspect	  of	  the	  design	  of	  the	  Universal	  Plug	  is	  that	  it	  intuitively	  reminds	  users	  to	  yank	  out	  the	  plug	  after	  use	  makes	  it	  a	  stepping	  stone	  for	  future	  designers	  and	  researchers	  looking	  into	  inducing	  positive	  behavioural	  changes	  among	  energy	  users.	  In	  terms	  of	  its	  research	  potential,	  the	  Universal	  Plug	  acts	  as	  a	  precedent	  to	  research	  into	  more	  intuitive	  forms	  of	  prompts	  and	  reminders	  that	  encourage	  best-­‐practice	  behaviour	  among	  users.	  However,	  this	  type	  of	  research	  is	  more	  suitable	  for	  private	  designers	  and	  does	  not	  fall	  within	  the	  scope	  of	  research	  conducted	  by	  academic	  institutions	  like	  UBC.	  	  Having	  said	  that,	  phantom	  plug	  load	  is	  an	  issue	  that	  needs	  to	  be	  addressed	  as	  it	  consumes	  energy	  without	  benefit	  to	  anyone.	  Thus,	  research	  into	  reducing	  phantom	  load	  is	  called	  for.	  Challenges	  and	  Implicated	  Stakeholders	  However,	  foreseeable	  challenges	  come	  in	  the	  form	  of	  resistance	  from	  incumbent	  electrical	  equipment	  manufacturers	  to	  incorporate	  the	  Universal	  Plug	  into	  their	  existing	  designs	  of	  power	  strips.	  As	  they	  are	  one	  of	  the	  most	  important	  stakeholders	  in	  the	  implementation	  of	  this	  recommendation,	  attaining	  their	  support	  is	  critical.	  Alternatively,	  the	  challenge	  may	  be	  overcome	  by	  seeking	  small-­‐scale,	  local	  manufacturers	  who	  may	  be	  more	  receptive	  to	  incorporating	  new	  design	  ideas.	  Another	  important	  barrier	  to	  the	  adoption	  of	  the	  Universal	  Plug	  was	  the	  lack	  of	  adequate	  precedents	  to	  verify	  and	  validate	  its	  reliability	  and	  scalability.	  	  On	  the	  whole,	  the	  uncertainties	  involved	  in	  the	  implementation	  of	  this	  option	  and	  the	  administrative	  costs	  involved	  in	  the	  provision	  and	  the	  re-­‐collection	  of	  the	  power	  strips	  made	  this	  option	  less	  desirable	  compared	  to	  the	  other	  option.	  Thus,	  it	  was	  not	  recommended	  as	  an	  ideal	  demand-­‐side	  management	  strategy	  to	  be	  used	  for	  the	  Ponderosa	  Commons.	  	  18  	  	  Discussion	  While	  the	  three	  options	  of	  fabric	  curtains,	  high-­‐resolution	  real-­‐time	  feedback	  systems	  and	  programmable	  thermostats	  are	  recommended	  on	  the	  basis	  of	  their	  potential	  social	  and	  environmental	  benefits,	  cost	  implications	  and	  future	  research	  potential,	  there	  are	  some	  challenges	  associated	  with	  them.	  Fabric	  Curtains	  Possible	  concerns	  with	  curtains	  include	  claims	  that	  curtains	  could	  pose	  as	  a	  fire	  hazard	  if	  positioned	  over	  heaters	  in	  the	  room	  –	  which	  they	  should	  not	  if	  installed	  correctly	  with	  the	  right	  length	  and	  material.	  Implicated	  stakeholders	  could	  include,	  but	  are	  not	  limited	  to,	  UBC	  students,	  Student	  Housing	  and	  Hospitality	  Services,	  the	  contractor	  for	  the	  provision	  and	  maintenance	  of	  the	  curtains,	  and	  the	  manufacturers	  of	  the	  curtains	  themselves.	  These	  stakeholders	  would	  need	  to	  be	  actively	  engaged	  in	  order	  to	  ensure	  the	  successful	  implementation	  of	  the	  proposed	  option.	  NEST	  Programmable	  Thermostat	  	  As	  NEST	  is	  a	  relatively	  new	  technology	  there	  has	  not	  been	  any	  independent	  and	  reliable	  research	  done	  on	  it	  to	  validate	  its	  performance	  claims.	  It	  is	  important	  to	  consider	  the	  incentives	  of	  different	  stakeholders,	  that	  is,	  who	  consumes	  the	  energy	  and	  who	  pays	  the	  bills.	  People	  who	  pay	  for	  their	  heating	  are	  13%	  more	  likely	  to	  turn	  down	  their	  thermostats	  than	  those	  who	  don’t	  pay	  (Gillinghamy,	  Harding,	  &	  Rapso,	  2012).	  In	  campus	  residence	  where	  energy	  bills	  are	  included	  in	  the	  rent,	  students	  may	  not	  see	  an	  incentive	  to	  reduce	  energy	  use.	  A	  reward	  scheme	  can	  effectively	  address	  this	  issue.	  The	  design	  and	  aesthetics	  can	  make	  a	  significant	  difference	  in	  the	  usability	  and	  therefore	  use	  of	  a	  product	  (Tractinsky	  et	  al.	  2000	  as	  cited	  in	  Karjalainen,	  2011).	  NEST	  has	  been	  designed	  to	  blend	  into	  any	  wall	  “chameleon	  design”	  and	  be	  user	  friendly.	  	  High-­‐resolution	  Real-­‐time	  Feedback	  System	  The	  poor	  performance	  of	  this	  option	  under	  the	  economic	  feasibility	  criteria	  indeed	  undermines	  the	  recommendation’s	  rationale.	  However,	  given	  that	  Ponderosa	  Commons	  will	  have	  separate	  metering	  for	  each	  suite	  and	  for	  each	  floor,	  the	  meter	  installation	  cost	  is	  already	  a	  sunk	  cost.	  The	  incremental	  cost	  of	  installing	  sensors,	  a	  server,	  and	  software	  should	  not	  be	  as	  significant.	  In	  this	  case,	  the	  academic	  research	  potential	  of	  this	  option	  may	  very	  likely	  outweigh	  the	  cost.	  It	  will	  also	  provide	  a	  solid	  infrastructure	  for	  future	  energy	  incentive	  programs.	  UBC	  Plant	  Operations	  will	  need	  to	  devote	  extra	  resources	  into	  both	  software	  and	  hardware	  maintenance.	  For	  example,	  providing	  high-­‐resolution	  feedback	  on	  a	  per	  suite	  basis	  requires	  separate	  meters	  to	  be	  installed,	  which	  will	  increase	  workload	  on	  UBC	  Plant	  Ops	  staff.	  	  19  	  	  Appendices	  Appendix	  A	  Direct	  feedback:	  available	  on	  demand.	  Learning	  by	  looking	  or	  paying.	  • Self-­‐meter-­‐reading	  	  	  • Direct	  displays	  	  	  • Interactive	  feedback	  via	  a	  PC	  	  	  • Pay-­‐as-­‐you-­‐go/keypad	  meters	  	  	  • ‘Ambient’	  devices	  	  	  • Meter	  reading	  with	  an	  adviser,	  as	  part	  of	  energy	  advice	  	  	  • Cost	  plugs	  or	  similar	  devices	  on	  appliances	  	  	  	  Indirect	  feedback	  –	  raw	  data	  processed	  by	  the	  utility	  and	  sent	  out	  to	  customers.	  	  • Learning	  by	  reading	  and	  reflecting	  	  	  • More	  frequent	  bills	  • Frequent	  bills	  based	  on	  readings	  plus	  historical	  feedback	  	  	  • Frequent	  bills	  based	  on	  readings	  plus	  comparative/normative	  feedback	  	  	  • Frequent	  bills	  plus	  disaggregated	  feedback.	  	  	  • Frequent	  bills	  plus	  detailed	  annual	  or	  quarterly	  energy	  reports.	  	  • Inadvertent	  feedback	  –	  learning	  by	  association	  	  • With	  the	  advent	  of	  microgeneration,	  the	  home	  becomes	  a	  site	  for	  generation	  as	  well	  as	  consumption	  of	  power.	  	  	  • Community	  energy	  conservation	  projects	  such	  as	  the	  Dutch	  ‘Eco-­‐teams’.	  	  	  (Darby,	  2006)	  	   	  20  	  	  Appendix	  B	  	  	  Figure	  1	  High-­‐resolution	  Feedback	  versus	  low-­‐resolution	  feedback	  at	  Oberlin	  College	  (Petersen	  et	  al.,	  2007)	  	  	  Figure	  2	  Feedback	  System	  Design	  at	  University	  of	  Hawaii	  Manoa	  Campus	  (Brewer	  et	  al.,	  2011)	  “Dorm	  energy	  usage	  is	  captured	  by	  one	  or	  more	  meters,	  which	  are	  queried	  by	  WattDepot	  sensors	  and	  the	  raw	  data	  sent	  to	  the	  WattDepot	  server.	  Analyses	  are	  computed	  and	  stored	  in	  cloud-­‐based	  services	  for	  ease	  of	  retrieval	  and	  display	  in	  the	  Makahiki	  web	  application”	  (Brewer	  et	  al.,	  2011).	  	   	  21  	  	  Appendix	  C	  	  The	  Universal	  Plug	  	  Figure	  3	  Universal	  Plug’s	  circular	  cut-­‐out	  that	  allows	  people	  to	  pull	  out	  the	  plugs	  	  Figure	  4	  The	  plug	  also	  has	  a	  built-­‐in	  reminder	  in	  the	  form	  of	  a	  glowing	  inner	  surface	  	  Appendix	  D	   Oberlin	  University	   UBC	  Total	  Students3	   Total	  Dormitories4	   Student	  per	  Dormitory	   Installation	  Cost	  per	  Dormitory5	   Installation	  Cost	  per	  student	   Ponderosa	  Phase	  1	  (bed)	  6	   Ponderosa	  Phase	  2	  (beds)	   Estimated	  Total	  Installation	  Cost	  2288	   25	   91.52	   $10,000	  	   $109.27	  	   577	   523	   $120,192.31	  	  Table	  5	  High	  resolution	  feedback	  installation	  cost	  estimate	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  3	  http://www.parchment.com/c/college/college-­‐959-­‐Oberlin-­‐College.html	  4	  (Petersen	  et	  al.,	  2007)	  5	  (Petersen	  et	  al.,	  2007)	  6	  http://www.planning.ubc.ca/vancouver_home/consultations/current_projects/academic_lands/articles460.php	  22	  	  Appendix	  E	  Category	   Criteria	   Indicator(s)	   Option	  1	  -­‐	  Curtains	   Option	  2	  -­‐	  Thermostat	  Environmental	  Energy	  Conservation	   %	  reduction	  of	  electricity	  consumed	  by	  residential	  spaces	  in	  Ponderosa	  Commons	   Not	  Enough	  Data	   If	  manufacturing	  recommendations	  are	  followed,	  there	  is	  the	  potential	  to	  save	  33%	  (Honeywell,	  2012).	  	  Additional	  Material	  Input	  Required	   Additional	  input	  and	  input	  material	  recyclability	   Patent	  for	  recycling	  polyester	  (Oakley,	  1993)	   Thermostats	  can	  be	  recycled	  (City	  of	  Richmond,	  2009).	  Social	  Occupant	  Engagement	  Perceived	  positive	  change	  in	  energy	  literacy	  (awareness)	   Survey	  Results	  Perceived	  positive	  change	  in	  energy	  conservation	  behaviour	  (attitude)	  Perceived	  positive	  change	  in	  energy	  conservation	  behaviour	  (action)	  Passive	  	  or	  Active	  (2:	  Active;	  1:	  Passive)	   Passive	   Active	  Comfort	  Level	   Perceived	  level	  of	  comfort	   Survey	  Results	  Community	  Sustainability	   Potential	  of	  setting	  up	  local	  business	  partnerships	  or	  sourcing	  from	  local	  supplier	  (3:	  High;	  2:	  Possible;	  1:	  Low)	  Google	  search	  reveals	  several	  Canadian	  suppliers	  of	  Eclipse	  curtains	   Ordering	  thermostats	  online	  is	  probably	  the	  most	  cost	  effective,	  which	  means	  bypassing	  any	  local	  supplier.	  Possibility	  of	  creating	  additional	  hours	  of	  employment	  for	  local	  electricians.	  Economic	  Research	  Potential	  (Educational	  and	  Economic	  Value)	  Research	  Potential	  	  (3:	  Will	  advance	  university	  as	  an	  academic	  leader	  in	  this	  field;	  	  2:	  Research	  connections	  exist	  or	  have	  a	  potential	  to	  be	  established,	  	  1:	  No	  foreseeable	  research	  potential)	  The	  basis	  of	  curtains	  being	  more	  energy	  saving	  in	  a	  university	  setting	  has	  been	  proven	  (otherwise	  they	  wouldn't	  be	  used),	  however	  research	  potential	  lies	  in	  developing	  more	  sustainable/cheaper	  curtains.	  Extensive	  papers	  and	  studies	  already	  on	  programmable	  thermostats;	  most	  studies	  are	  for	  individual	  home	  owners	  and	  few	  are	  for	  university	  type	  residence.	  The	  context	  in	  UBC	  residence	  and	  sustainability	  will	  contribute	  to	  original	  research.	  	  Economic	  Feasibility	  	  Cost	  of	  option	   $14.99	  x	  1116	  =	  CAD$16,728.84	  (Amazon.com,	  2012)	   Nest	  USD	  $249	  	  per	  thermostat	  (Nest	  Labs,	  2012);	  other	  options	  USD	  $72-­‐$120	  per	  thermostat	  (Prothermostat.com,2008).	  Maximum	  USD	  $277,884	  (Nest),	  USD	  $33,920-­‐$80,352	  (other	  options)	  Payback	  period	   2.9	  years	  (Petersen	  et	  al,	  2007)	   “Through	  proper	  use	  of	  pre-­‐programmed	  settings,	  a	  programmable	  thermostat	  can	  save	  you	  about	  $180	  every	  year	  in	  energy	  costs”	  (Energy	  Star,	  2009).	  	  Plus	  additional	  labour	  costs	  for	  installation.	  %	  reduction	  in	  energy	  costs	   29%	  -­‐	  cost	  savings,	  comparing	  the	  curtains	  with	  blinds	  (Blinds.ca,	  2012)	   If	  manufacturing	  recommendations	  are	  followed	  there	  is	  the	  potential	  to	  save	  33%	  (Honeywell,	  2012).	  	  (Variable	  for	  thermostat	  type	  15	  -­‐	  33%)	  Technical	  Feasibility	  Evidence	  of	  precedents	  at	  other	  institutions?	  Y/N	   UBC,	  University	  of	  Manchester,	  University	  of	  Edinburgh	   Google	  search	  reveals	  various	  studies	  on	  programmable	  thermostats.	  Examples:	  "Programmable	  thermostats	  as	  means	  of	  generating	  energy	  savings:	  some	  pros	  and	  cons"	  by	  André	  Pourde	  from	  the	  University	  fo	  Alberta	  (Plourde,	  2003).	  Evidence	  of	  existing	  products	  (e.g.	  NEST	  thermostat)	  Y/N	   Curtains	  are	  very	  easily	  available	  and	  widely	  used.	  Currently,	  the	  specific	  curtains	  in	  question	  are	  out	  of	  stock	  online,	  however	  with	  business	  ties	  this	  can	  be	  accommodated	  /	  remedied	  quickly	  At	  the	  moment	  NEST	  is	  out	  of	  stock.	  However	  even	  when	  it	  is	  in	  stock	  it	  is	  only	  available	  in	  the	  US	  through	  purchasing	  with	  a	  US	  credit	  card.	  Other	  programmable	  thermostats	  are	  easily	  available	  in	  Vancouver.	  	  Table	  6	  Indicators	  matrix	  calculation	  for	  Option	  1	  and	  2	   	  23  	  	  Appendix	  F	  Category	   Criteria	   Indicator(s)	   Option	  3	  -­‐	  High	  Resolution	  Feedback	   Option	  4	  -­‐	  Universal	  Plug	  Environmental	  Energy	  Conservation	   %	  reduction	  of	  electricity	  consumed	  by	  residential	  spaces	  in	  Ponderosa	  Commons	   Conservative	  estimate	  of	  10%	  from	  precedents	  (Petersen	  et	  al.,	  2007)	  Under	  the	  assumption	  that	  the	  use	  of	  the	  Universal	  Plug	  eliminates	  phantom	  load	  completely,	  energy	  savings	  of	  approximately	  10%	  can	  be	  expected.	  Phantom	  loads	  account	  for	  5-­‐10%	  of	  residential	  electricity	  use.	  (Dawson	  et	  al.,	  n.d.)	  Additional	  Material	  Input	  Required	  Additional	  input	  and	  input	  material	  recyclability	   Not	  enough	  information.	  Assumed	  %	  of	  recycle	  material	  to	  be	  low.	  Also,	  instead	  of	  one	  meter	  for	  the	  entire	  building,	  depending	  on	  if	  the	  feedback	  is	  per	  floor	  or	  per	  suite,	  many	  meters	  will	  need	  to	  be	  installed,	  which	  will	  consume	  more	  material.	  Currently	  a	  design	  idea;	  recyclability	  unknown.	  Some	  manufacturers	  (e.g.	  BITS	  Limited)	  are	  known	  for	  accepting	  broken	  or	  spent	  power	  strips	  for	  recycling.	  BITS	  also	  focuses	  on	  reducing	  and	  reusing	  input	  material	  (Smart	  Plugs:	  A	  Buyer’s	  Review,	  2011).	  Social	  Occupant	  Engagement	  Perceived	  positive	  change	  in	  energy	  literacy	  (awareness)	   Survey	  Results	  Perceived	  positive	  change	  in	  energy	  conservation	  behaviour	  (attitude)	  Perceived	  positive	  change	  in	  energy	  conservation	  behaviour	  (action)	  Passive	  	  or	  Active	  (2:	  Active;	  1:	  Passive)	   Active	   Active	  Comfort	  Level	   Perceived	  level	  of	  comfort	   Survey	  Results	  Community	  Sustainability	   Potential	  of	  setting	  up	  local	  business	  partnerships	  or	  sourcing	  from	  local	  supplier	  (3:	  High;	  2:	  Possible;	  1:	  Low)	  BC	  Hydro	  offers	  smart	  meters	  and	  feedback	  displays	  (BC	  Hydro,	  2011)	   The	  Assist	  Plug,	  installed	  on	  small	  kitchen	  appliances	  manufactured	  by	  Breville	  is	  similar	  to	  the	  Universal	  Plug	  in	  design	  (hollow	  cut-­‐out	  in	  the	  plug	  and	  allows	  plug	  to	  be	  pulled	  out	  with	  minimal	  effort).	  However,	  manufacturers	  are	  mostly	  located	  in	  China.	  Unlikely	  that	  the	  Universal	  Plug	  can	  be	  made	  locally	  at	  the	  required	  scale	  and	  cost.	  Economic	  Research	  Potential	  (Educational	  and	  Economic	  Value)	  Research	  Potential	  	  (3:	  Will	  advance	  university	  as	  an	  academic	  leader	  in	  this	  field;	  	  2:	  Research	  connections	  exist	  or	  have	  a	  potential	  to	  be	  established,	  	  1:	  No	  foreseeable	  research	  potential)	  Many	  possible	  research	  projects	  such	  as	  extending	  feedback	  to	  mobile	  devices,	  developing	  intelligent	  feedback	  meters,	  and	  developing	  energy	  rebate	  schemes	  Design	  of	  Universal	  Plug	  itself	  has	  little	  research	  potential.	  May	  add	  value	  to	  cognitive	  behaviour	  studies	  (for	  example,	  what	  kind	  of	  reminders	  and	  prompts	  are	  more	  effective	  at	  engaging	  energy-­‐users	  into	  developing	  long-­‐term	  energy	  conservation	  practices).	  Economic	  Feasibility	  	  Cost	  of	  option	   Estimated	  installation	  cost	  per	  student:	  $109.27	  (see	  Appendix	  D	  for	  detailed	  calculation);	  $109.27	  ×	  Total	  Students	  in	  Ponderosa	  =	  $109.27	  ×	  1100	  beds	  =	  $120,192.31	  	  A	  typical	  configuration	  of	  a	  power	  strip	  with	  the	  universal	  plug	  would	  cost	  approximately	  $30.	  	  If	  such	  a	  power	  strip	  is	  to	  be	  provided	  to	  each	  resident	  (UBC,	  2011),	  the	  total	  costs	  may	  be	  expected	  to	  be	  1116	  ×	  $30	  =	  $33480	  Payback	  period	   8	  years	  (Petersen	  et	  al.,	  2007)	   The	  power	  strips	  can	  be	  collected	  from	  occupants	  by	  UBC	  residence	  office	  at	  the	  end	  of	  each	  term,	  thus	  avoiding	  repurchase	  costs.	  The	  expected	  annual	  cost	  savings	  of	  eliminating	  standby	  power	  are	  $6975	  (see	  cell	  below).	  Initial	  costs	  of	  purchasing	  these	  power	  strips	  are	  covered	  through	  cost	  savings	  from	  reduced	  energy	  wastage	  in	  33480/6975	  =	  4.8	  years.	  Taking	  into	  account,	  repair,	  replacement	  and	  maintenance	  costs,	  a	  conservative	  estimate	  of	  the	  payback	  period	  can	  be	  taken	  to	  be	  6	  years.	  24  	  	  %	  reduction	  in	  energy	  costs	   5%	  -­‐	  conservative	  estimate	  taken	  from	  precedent	  (Petersen	  et	  al.,	  2007)	   Potential	  annual	  cost	  savings	  of	  up	  to	  $25	  per	  household	  can	  be	  expected	  by	  reducing	  standby	  power	  (based	  on	  annual	  residential	  energy	  consumption	  per	  household	  in	  B.C).	  1116	  student	  beds	  are	  expected	  to	  be	  added	  in	  the	  Ponderosa	  Commons.	  Taking	  4	  beds	  to	  be	  using	  an	  equivalent	  amount	  of	  energy	  to	  a	  typical	  household,	  the	  potential	  annual	  cost	  savings	  are	  (1116/4)	  ×	  4	  ×	  $25	  =	  $6975	  Technical	  Feasibility	  Evidence	  of	  precedents	  at	  other	  institutions?	  Y/N	   University	  of	  Hawaii	  (Petersen	  et	  al.,	  2007)	   No	  such	  precedent	  at	  institutions	  Evidence	  of	  existing	  products	  (e.g.	  NEST	  thermostat)	  Y/N	   WattDepot	  (Brewer	  et	  al.,	  2007)	   The	  Assist	  Plug	  has	  received	  positive	  customer	  feedback	  and	  is	  now	  applied	  to	  Breville	  products	  worldwide	  (Clay,	  2012).	  Table	  7	  Indicators	  matrix	  calculation	  for	  Option	  3	  and	  4	  	  25	  	  Appendix	  G	  Survey	  Have	  you	  ever	  lived	  in	  a	  university	  residence	  before	  (duration	  greater	  than	  two	  weeks)?	  Yes/No	  If	  you	  have	  answered	  yes	  to	  the	  previous	  question,	  please	  mark	  all	  the	  seasons	  during	  which	  you	  have	  stayed	  at	  the	  residence.	  Spring	  (March	  -­‐	  May)	  Summer	  (June	  -­‐	  July)	  Autumn	  (September	  -­‐	  November)	  Winter	  (December	  -­‐	  February)	  	  Please	  rate	  each	  option	  regarding	  the	  following:	  How	  will	  it	  affect	  your	  awareness	  for	  conserving	  energy?	  	  (1:	  Significantly	  less	  aware;	  5:	  Significantly	  more	  aware)	  How	  will	  it	  affect	  your	  attitude	  towards	  energy	  conservation?	  (1:	  Want	  to	  make	  an	  effort	  to	  waste	  energy;	  5:	  Want	  to	  make	  an	  effort	  to	  conserve	  energy)	  How	  likely	  do	  you	  think	  it	  will	  change	  your	  behaviour	  in	  the	  long-­‐term	  with	  regards	  to	  energy	  conservation?	  (1:	  Not	  at	  all	  likely	  to	  change	  my	  behaviour;	  5:	  Very	  likely	  to	  change	  my	  behaviour)	  Please	  rate	  how	  the	  energy	  conservation	  measure	  will	  affect	  your	  perceived	  comfort	  level?	  (1:	  Significantly	  decrease	  my	  comfort	  level;	  5:	  Significantly	  increase	  comfort	  level)	  	  	  The	  survey	  results	  cannot	  be	  directly	  published	  due	  to	  lack	  of	  BREB	  approval.	  Please	  contact	  Marie	  at	  limarie90@gmail.com	  for	  more	  information,	  comments	  or	  questions.	  	   	  26  	  	  References	  Amazon	  (2012)	  Eclipse	  Curtains.	  Retrieved	  from	  http://www.amazon.com/s?ie=UTF8&rh=i%3Aaps%2Ck%3Aeclipse%20curtains&page=1	  -­‐	  Accessed	  25.3.2012	  	  Blinds.ca	  (2012)	  Aluminum	  Blinds.	  Retrieved	  from	  http://www.blinds.ca/control/subCategory/categoryID,28?gtse=googca&s_kwcid=TC%7C7695%7Caluminum+venetian+blinds%7C%7CS%7C%7C5540261066&esvt=GOCAE&esvadt=999999-­‐41-­‐12-­‐1&esvid=8&gclid=CLm7opCh4K4CFQJ9hwodZRxGbA	  –	  Accessed	  14.3.2012	  	  BC	  Hydro	  Regeneration.	  (September	  14,	  2011).	  Generation	  System.	  In	  Generation	  System.	  Retrieved	  January	  25,	  2012,	  from	  http://www.bchydro.com/energy_in_bc/our_system/generation.html.	  	  BC	  Hydro	  (2012,	  February	  11).	  Reduce	  Standby	  Power	  Use.	  Retrieved	  from	  http://www.bchydro.com/guides_tips/green-­‐your-­‐home/electronics_guide/surge_protectors.html#	  -­‐	  Accessed	  11.3.2012	  	  BC	  Hydro.	  (2011).	  BC	  Hydro	  -­‐	  Heating	  &	  Cooling.	  Retrieved	  from	  http://www.bchydro.com/guides_tips/buyersguide/heating___cooling.html#Thermostats	  	  BC	  Hydro	  (2011)	  Smart	  Metering	  Program.	  Retrieved	  from	  http://www.bchydro.com/etc/medialib/internet/documents/smi/smi_business_case.Par.0001.File.smi_business_case.pdf	  -­‐	  Accessed	  14.3.2012	  	  Brewer,	  R.	  S.,	  Lee,	  G.	  E.,	  &	  Johnson,	  P.	  M.	  (2011).	  The	  Kukui	  Cup :	  a	  Dorm	  Energy	  Competition	  Focused	  on	  Sustainable	  Behavior	  Change	  and	  Energy	  Literacy.	  Sciences-­‐New	  York,	  1-­‐10.	  	  Brown,	  F.	  Happiness	  -­‐	  Sleep	  Your	  Way	  to	  a	  Happier	  Life.	  Retrieved	  May	  1,	  2012,	  from	  http://ezinearticles.com/?Happiness-­‐-­‐-­‐Sleep-­‐Your-­‐Way-­‐to-­‐a-­‐Happier-­‐Life&id=2232577	  Campus	  +	  Community	  Planning:	  Ponderosa	  Hub.	  (2011,	  July	  22).	  Retrieved	  from	  http://www.planning.ubc.ca/vancouver_home/consultations/current_projects/academic_lands/articles460.php	  	  Clay,	  E.	  (2011)	  Breville’s	  Assist	  Plug	  –	  A	  Hole	  in	  One!	  Livable	  Design.	  Retrieved	  from	  http://blog.livabledesign.com/breville%E2%80%99s-­‐assist-­‐plug-­‐%E2%80%93-­‐a-­‐hole-­‐in-­‐one/	  -­‐	  Accessed	  11.3.2012	  	  City	  of	  Richmond	  (2009)	  Hazardous	  waste	  products.	  Retrieved	  from	  http://www.richmond.ca/services/recycling/hhp.htm	  -­‐	  Accessed	  20.3.2012	  	  Cooper,	  B.	  (2012,	  March	  22).	  Blinds	  Vs.	  Curtains:	  Choose	  What's	  Best	  for	  You.	  Ideal	  Home	  Garden.	  Retrieved	  May	  1,	  2012,	  from	  http://www.idealhomegarden.com/home-­‐improvement/curtains-­‐vs-­‐blinds/	  27  	  	  Dawson,	  E.,	  Potter,	  J.,	  &	  Meier,	  S.	  (2010)	  Are	  Phantom	  Loads	  Haunting	  Your	  Energy	  Bill?	  Retrieved	  from	  http://pages.uoregon.edu/hof/W09HOF/19Phantom_ppr.pdf	  -­‐	  Accessed	  11.3.2012	  Darby,	  S.	  (2006).	  THE	  EFFECTIVENESS	  OF	  FEEDBACK	  ON	  ENERGY	  CONSUMPTION	  A	  REVIEW	  FOR	  DEFRA	  OF	  THE	  LITERATURE	  ON	  METERING	  ,	  BILLING	  AND.	  Change,	  (April).	  	  Earth911	  (2011)	  Smart	  Plugs:	  A	  Buyer’s	  Review.	  Retrieved	  from	  http://earth911.com/news/2011/01/10/smart-­‐plugs-­‐a-­‐buyers-­‐review/	  -­‐	  Accessed	  11.3.2012	  	  Eclipse	  Curtains:	  energy-­‐saving	  noise-­‐reducing	  blackout	  curtain.	  (n.d.).	  Retrieved	  March	  20,	  2012,	  from	  http://www.eclipsecurtains.com/	  	  Energy	  Star	  (2009)	  A	  Guide	  to	  Energy-­‐Efficient	  Heating	  and	  Cooling.	  Retrieved	  from	  http://www.energystar.gov/ia/partners/publications/pubdocs/HeatingCoolingGuide	  FINAL_9-­‐4-­‐09.pdf?547e-­‐f4b4	  -­‐	  Accessed	  25.3.2012	  	  Fischer,	  C.	  (2008).	  Feedback	  on	  household	  electricity	  consumption:	  a	  tool	  for	  saving	  energy?	  Energy	  Efficiency,	  1(1),	  79-­‐104.	  doi:10.1007/s12053-­‐008-­‐9009-­‐7	  	  Gao.	  G	  and	  Whitehouse.	  K,	  2010,	  “The	  Self-­‐Programming	  Thermostat:	  Optimizing	  Setback	  Schedules	  based	  on	  Home	  Occupancy	  Patterns.”	  Proceedings	  of	  the	  First	  International	  Workshop	  on	  Nudge	  &	  Influence	  through	  Mobile	  Devices.	  	  	  Gibson,	  L.	  (n.d.).	  UBC	  to	  install	  biomass	  gasifier.	  Retrieved	  from	  http://biomassmagazine.com/articles/3601/ubc-­‐to-­‐install-­‐biomass-­‐gasifier	  	  Gillinghamy,	  K.,	  Harding,	  M.,	  &	  Rapso,	  D.	  (2012).	  Split	  Incentives	  in	  Residential	  Energy	  Consumption.	  The	  Energy	  Journal,	  33(2).	  Retrieved	  from	  http://www.stanford.edu/~mch/GillinghamHardingRapson_SplitIncentives.pdf	  	  Honeywell	  (2012)	  VisionPRO	  8000	  7-­‐Day	  Programmable	  Thermostat.	  Retrieved	  from	  http://yourhome.honeywell.com/home/products/thermostats/7-­‐day-­‐programmable/visionpro+8000.htm	  –	  Accessed	  25.3.12	  	  Karjalainen.	  S,	  2011,	  “Usability	  guidelines	  for	  room	  temperature	  controls.”	  Intelligent	  Buildings	  International,	  2:2,	  85-­‐97.	  	  Khatri,	  K.,	  Lodha,	  N.,	  &	  Upadhyay,	  B.	  (2011).	  Housing	  Conditions	  Affecting	  Concentration	  of	  House	  Dust	  Mites	  (HDMs)	  and	  its	  Effect	  on	  Homemakers	  Health.	  Retrieved	  from	  http://www.krepublishers.com/02-­‐Journals/JHE/JHE-­‐34-­‐0-­‐000-­‐11-­‐Web/JHE-­‐34-­‐2-­‐000-­‐11-­‐Abst-­‐PDF/JHE-­‐34-­‐2-­‐113-­‐11-­‐2132-­‐Khatri-­‐K/JHE-­‐34-­‐2-­‐113-­‐11-­‐2132-­‐Khatri-­‐K-­‐Tt.pdfKoehler,	  C.,	  Dey	  K.,	  A.,	  	  Koehler,	  C.,	  Dey	  K.,	  A.,	  Mankoff,	  J.,	  &	  Oakley,	  I.	  (2010).	  Motivate	  Environmentally	  Sustainable	  Thermostat-­‐Use	  through	  Goal-­‐Setting,	  Just-­‐In-­‐Time	  Recommendations,	  and	  Behavior	  Reflection.	  MobileHCI.	  Retrieved	  from	  http://ceur-­‐ws.org/Vol-­‐690/paper7.pdf	  	  28  	  	  Mankoff,	  J.,	  &	  Oakley,	  I.	  (2010).	  Motivate	  Environmentally	  Sustainable	  Thermostat-­‐Use	  through	  Goal-­‐Setting,	  Just-­‐In-­‐Time	  Recommendations,	  and	  Behavior	  Reflection.	  MobileHCI.	  Retrieved	  from	  http://ceur-­‐ws.org/Vol-­‐690/paper7.pdf	  	  Meier.	  A,	  Aragon.	  C,	  Peffer.	  T,	  Perry.	  D,	  Pritoni.	  M,	  2011,	  “Usability	  of	  residential	  thermostats:	  Preliminary	  investigations.”	  Building	  and	  Environment	  46,	  1891-­‐1898.	  Moon,	  J.	  W.,	  &	  Han,	  S.-­‐H.	  (2011).	  Thermostat	  strategies	  impact	  on	  energy	  consumption	  in	  residential	  buildings.	  Energy	  and	  Buildings,	  43,	  338-­‐346.	  Retrieved	  from	  http://www.sciencedirect.com/science/article/pii/S0378778810003440	  	  Oakley,	  E.	  (1993,	  August	  17).	  Process	  for	  recycling	  polyester/cotton	  blends.	  US	  Patent	  5236959.	  Retrieved	  March	  24,	  2012,	  from	  http://www.google.ca/patents?hl=en&lr=&vid=USPAT5236959&id=9t8jAAAAEBAJ&oi=fnd&dq=recycling+polyester&printsec=abstract#v=onepage&q=recycling%20polyester&f=false	  	  Peffer,	  T.,	  Pritoni,	  M.,	  Meier,	  A.,	  Aragon,	  C.,	  &	  Perry,	  D.	  (2011).	  How	  people	  use	  thermostats	  in	  homes:	  a	  review.	  Building	  and	  environment,	  46,	  2529	  -­‐	  2541.	  Retrieved	  from	  http://eec.ucdavis.edu/publications/How_people_use_thermostats_in_homes.pdf	  	  Petersen,	  J.	  E.,	  Shunturov,	  V.,	  Janda,	  K.,	  Platt,	  G.,	  &	  Weinberger,	  K.	  (2007).	  Dormitory	  residents	  reduce	  electricity	  consumption	  when	  exposed	  to	  real-­‐time	  visual	  feedback	  and	  incentives.	  International	  Journal	  of	  Sustainability	  in	  Higher	  Education,	  8(1),	  16-­‐33.	  doi:10.1108/14676370710717562	  	  Prothermalstats.com.	  (2012).	  Honeywell	  VisionPro	  8000	  Programmable	  Thermostat,	  1	  Heat/1	  Cool.	  Retrieved	  from	  http://www.prothermostats.com/product.php?product=100896	  	  Nest	  Labs	  (2012)	  Living	  with	  Nest.	  Retrieved	  from	  http://www.nest.com/living-­‐with-­‐nest/	  -­‐	  Accessed	  5.3.2012	  	  Nexterra.	  (n.d.).	  UBC	  bioenergy	  research	  and	  demonstration	  project.	  Retrieved	  from	  http://www.nexterra.ca/news/100215_backgrounder.html	  	  Oakley	  et	  al.	  (1993)	  U.S.	  Patent	  #5,236,959	  –	  Process	  for	  Recycling	  Polyester/Cotton	  Blends.	  Retrieved	  from	  	  http://www.google.ca/patents?hl=en&lr=&vid=USPAT5236959&id=9t8jAAAAEBAJ&oi=fnd&dq=recycling+polyester&printsec=abstract#v=onepage&q=recycling%20polyester&f=false	  –	  Accessed	  14.3.2012	  	  Plourde,	  A.	  (2003).	  Programmable	  Thermostats	  as	  Means	  of	  Generating	  Energy	  Savings:	  Some	  Pros	  and	  Cons.	  Informally	  published	  manuscript,	  Canadian	  Building	  Energy	  End-­‐Use	  Data	  and	  Analysis	  Centre,	  University	  of	  Alberta,	  Edmonton,	  Canada.	  Retrieved	  from	  http://www.ualberta.ca/~cbeedac/publications/documents/progtherm1_000.pdf	  -­‐	  Accessed	  18.3.2012	  	  29  	  	  Prothermostats.com	  (2008)	  Honeywell	  Digital	  LineVoltProT	  8000	  Programmable	  Heat	  Only	  Thermostat.	  Retrieved	  from	  http://www.prothermostats.com/product.php?product=101013	  –	  Accessed	  3.3.2012	  	  Stantec	  Consulting.	  (2010).	  Alternative	  Energy	  Feasibility	  Report	  for	  University	  of	  British	  Columbia.	  UBC.	  (2011).	  UBC	  board	  of	  governors:	  Steam	  to	  hot	  water	  conversion.	  1-­‐18.	  Retrieved	  from	  UBC.	  (2011).	  	  Walmart	  (2012)	  Eclipse	  Crinkle	  Energy-­‐Efficient	  Curtain.	  Retrieved	  from	  http://www.walmart.com/ip/Eclipse-­‐Crinkle-­‐Blackout-­‐Energy-­‐Efficient-­‐Curtain-­‐Panel-­‐Black/13038049	  -­‐	  Accessed	  14.3.12	  	  University	  of	  British	  Columbia,	  Student	  Housing	  (2012)	  About	  Us.	  Retrieved	  from	  http://www.housing.ubc.ca/about-­‐us	  -­‐	  Accessed	  25.2.2012	  	  University	  of	  British	  Columbia	  (2011)	  UBC	  Annual	  Operational	  Sustainability	  Report	  Vancouver	  Campus.	  Retrieved	  from	  http://sustain.ubc.ca/sites/sustain.ubc.ca/files/uploads/pdfs/Plans%20and%20Reports/UBC%20Annual%20Operational%20Sustainability%20Report%202010-­‐2011.pdf	  –	  Accessed	  25.2.2012	  	  University	  of	  British	  Columbia.	  (February.	  24,	  2011).	  UBC	  Public	  Affairs.	  In	  Pioneering	  UBC	  clean	  energy	  project	  gets	  $11.2	  million	  in	  new	  government	  support.	  Retrieved	  January	  25,	  2012,	  from	  http://www.publicaffairs.ubc.ca/2011/02/24/pioneering-­‐ubc-­‐clean-­‐energy-­‐project-­‐gets-­‐11-­‐2-­‐million-­‐in-­‐new-­‐government-­‐support/	  	  “UBC	  board	  of	  governors:	  Steam	  to	  hot	  water	  conversion.”	  Retrieved	  from	  http://bog.sites.olt.ubc.ca/files/2011/01/SUB-­‐BG-­‐2011.02.07_4.5-­‐UBCV-­‐Steam-­‐to-­‐Hot-­‐Water.pdf	  	  UBC.	  (2011).	  2010	  Climate	  Action	  Plan	  Report.	  1-­‐18.	  Retrieved	  from	  UBC.	  (2012).	  “2010	  Climate	  Action	  Plan	  Report.”	  Retrieved	  from	  http://www.sustain.ubc.ca/sites/sustain.ubc.ca/files/uploads/pdfs/Plans%20and%20Reports/UBC%20Climate%20Action%20Plan%20Report_2010.pdf	  	  University	  Neighbourhoods	  Association.	  (2010).	  Board	  Meeting	  Package	  December	  2010.	  Retrieved	  from	  UNA	  (2012).	  “Board	  Meeting	  Package	  December	  2010.”	  Retrieved	  from	  http://www.myuna.ca/wp-­‐content/uploads/2010/04/Board-­‐Meeting-­‐Package-­‐December-­‐2010-­‐for-­‐web-­‐site.pdf	  	  U.S	  Green	  Building	  Council	  (2011)	  LEED	  2009	  for	  New	  Construction	  and	  Major	  Renovations	  Rating	  System	  With	  Alternative	  Compliance	  Paths	  For	  Projects	  Outside	  the	  U.S.	  Retrieved	  from	  http://www.usgbc.org/ShowFile.aspx?DocumentID=8868	  –	  Accessed	  23.3.2012	  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.18861.1-0108552/manifest

Comment

Related Items