UBC Undergraduate Research

An investigation into the use of linoleum and hemp in the new SUB : a triple bottom line assessment Bergen, Kevin; Moe, Keenan; Lets, Lekuku; Li, Lucy 2011

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
18861-Bergen_K_et_al_SEEDS_2011.pdf [ 1.76MB ]
Metadata
JSON: 18861-1.0108326.json
JSON-LD: 18861-1.0108326-ld.json
RDF/XML (Pretty): 18861-1.0108326-rdf.xml
RDF/JSON: 18861-1.0108326-rdf.json
Turtle: 18861-1.0108326-turtle.txt
N-Triples: 18861-1.0108326-rdf-ntriples.txt
Original Record: 18861-1.0108326-source.json
Full Text
18861-1.0108326-fulltext.txt
Citation
18861-1.0108326.ris

Full Text

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into the use of Linoleum and Hemp in the New SUB: A Triple Bottom Line Assessment Kevin Bergen Keenan Moe Lekuku Lets Lucy Li University of British Columbia APSC 262 March 31, 2011 Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report”. APPLIED SCIENCE 262      An Investigation Into The Use Of Linoleum and Hemp In The New SUB:  A Triple Bottom Line Assessment    Submitted to:  Carla Paterson Date: March 31,2011  Completed By:           Kevin Bergen           Keenan Moe           Lekuku Lets           Lucy Li ABSTRACT	
   	
   As	
  the	
  campaign	
  for	
  sustainable	
  housing	
  increases	
  globally	
  and	
  across	
  UBC,	
  the	
  demand	
  for	
  rapidly	
  renewable	
  resources	
  rises.	
  There	
  is	
  a	
  swift	
  increase	
  in	
  the	
  number	
  of	
  new	
  buildings,	
  including	
  the	
  new	
  Student	
  Union	
  Building’s	
  Platinum+	
  goal,	
  that	
  are	
  aiming	
  to	
  achieve	
  various	
  Canada	
  Green	
  Building	
  Council’s	
  LEED	
  certifications(Canadian	
  Green	
  Building	
  Council).	
  The	
  purpose	
  of	
  this	
  study	
  is	
  to	
  conduct	
  a	
  triple-­‐bottom	
  line	
  analysis	
  on	
  linoleum	
  and	
  hemp,	
  with	
  specific	
  focus	
  on	
  hempcrete,	
  to	
  determine	
  whether	
  these	
  constituents	
  are	
  viable	
  rapidly	
  renewable	
  building	
  materials	
  suitable	
  for	
  use	
  in	
  the	
  new	
  SUB.	
  This	
  paper	
  includes	
  extensive	
  journal	
  research,	
  primary	
  data	
  collection	
  in	
  the	
  forms	
  of	
  surveys	
  and	
  interviews,	
  and	
  secondary	
  data	
  compilation	
  such	
  as	
  government	
  videos,	
  blogs,	
  and	
  various	
  other	
  sources.	
  	
   	
  	
  From	
  an	
  environmental	
  perspective,	
  both	
  linoleum	
  and	
  hemp	
  can	
  be	
  harvested	
  with	
  relative	
  ease,	
  and	
  are	
  greenhouse	
  gas	
  emissions	
  neutral	
  and	
  negative,	
  respectively.	
  There	
  are	
  minimal	
  usage	
  of	
  pesticides	
  and	
  toxic	
  chemicals	
  during	
  the	
  production	
  and	
  maintenance	
  phase.	
  Each	
  material	
  is	
  biodegradable	
  so	
  waste	
  sent	
  to	
  landfills	
  does	
  not	
  negatively	
  impact	
  the	
  environment.	
  Moreover,	
  from	
  an	
  economic	
  standpoint,	
  linoleum	
  is	
  one	
  of	
  the	
  cheapest	
  rapidly	
  renewable	
  materials	
  available,	
  while	
  hemp	
  despite	
  its	
  initial	
  high	
  production	
  price	
  is	
  highly	
  subsidized,	
  thereby	
  driving	
  the	
  domestic	
  prices	
  down.	
  The	
  low	
  operation	
  and	
  maintenance	
  cost	
  of	
  each	
  material	
  makes	
  them	
  great	
  economic	
  solutions	
  for	
  extended	
  lifetimes.	
  Lastly,	
  the	
  social	
  impacts	
  of	
  choosing	
  linoleum	
  and	
  hempcrete	
  are	
  notable.	
  Not	
  only	
  do	
  linoleum	
  and	
  hemp	
  encourage	
  the	
  growth	
  of	
  local	
  producers,	
  leading	
  to	
  a	
  rise	
  in	
  local	
  employment,	
  but	
  they	
  also	
  create	
  a	
  comfortable	
  and	
  aesthetically	
  pleasing	
  environment	
  for	
  the	
  occupants.	
  Linoleum	
  and	
  hemp	
  are	
  both	
  very	
  durable	
  and	
  therefore,	
  resistant	
  to	
  demanding	
  conditions	
  over	
  a	
  long	
  time	
  period.	
  This	
  radically	
  reduces	
  the	
  required	
  maintenance	
  work,	
  and	
  lends	
  these	
  materials	
  to	
  be	
  very	
  effective	
  in	
  high	
  traffic	
  locations.	
  	
  	
   	
   ii	
   	
   Based	
  on	
  the	
  findings	
  from	
  the	
  triple-­‐bottom	
  line	
  analysis,	
  it	
  is	
  determined	
  that	
  linoleum	
  and	
  hemp	
  are	
  both	
  exceptional	
  materials	
  that	
  exceed	
  the	
  LEED’s	
  rapidly	
  renewable	
  material	
  requirement.	
  However,	
  because	
  neither	
  material	
  can	
  be	
  obtained	
  locally	
  within	
  the	
  500	
  mile	
  radius,	
  the	
  local	
  criteria	
  cannot	
  be	
  met.	
   	
   	
   	
   iii	
   Table	
  of	
  Contents	
   Abstract	
  ........................................................................................................................................	
  i	
   List	
  of	
  Illistrations	
  ..................................................................................................................	
  iv	
   GlossarY	
  ......................................................................................................................................	
  v	
   List	
  of	
  abbreviations	
  ..............................................................................................................	
  vi	
   1.0	
   Introduction	
  ....................................................................................................................	
  1	
   2.0	
   Background	
  .....................................................................................................................	
  2	
   2.1.	
   Linoleum	
  ...................................................................................................................................	
  2	
   2.2.	
   Hemp	
  ..........................................................................................................................................	
  3	
   3.0	
   Possible	
  Uses	
  In	
  New	
  Student	
  Union	
  Building	
  .....................................................	
  4	
   3.1.	
   Linoleum	
  ...................................................................................................................................	
  4	
   3.2.	
   Hemp	
  ..........................................................................................................................................	
  5	
   4.0	
   Triple	
  Bottom	
  Line	
  Analysis	
  ......................................................................................	
  6	
   4.1.	
   Environmental	
  Analysis	
  ......................................................................................................	
  6	
  4.1.1.	
   Linoleum	
  .............................................................................................................................................	
  6	
  4.1.2.	
   Hempcrete	
  ..........................................................................................................................................	
  7	
   4.2.	
   Economic	
  analysis	
  .................................................................................................................	
  9	
  4.2.1.	
   Linoleum	
  .............................................................................................................................................	
  9	
  4.2.2.	
   Hempcrete	
  .......................................................................................................................................	
  11	
   4.3.	
   Social	
  Impact	
  ........................................................................................................................	
  13	
   Detailed	
  below	
  are	
  the	
  social	
  advantages	
  and	
  disadvantages	
  of	
  linoleum	
  and	
   hempcrete.	
  ........................................................................................................................................	
  13	
  4.3.1.	
   Linoleum	
  ..........................................................................................................................................	
  13	
  4.3.2.	
   Hempcrete	
  .......................................................................................................................................	
  15	
   5.0	
   Conclusion	
  &	
  Recommendation	
  ............................................................................	
  18	
   References	
  ..............................................................................................................................	
  20	
   Appendix	
  A	
  ..............................................................................................................................	
  23	
   APPendix	
  B	
  ..............................................................................................................................	
  28	
   Appendix	
  c	
  ..............................................................................................................................	
  29	
   Appendix	
  D	
  .............................................................................................................................	
  31	
   	
   	
   	
   	
   iv	
   LIST	
  OF	
  ILLISTRATIONS	
   	
   	
   Table	
  4.1	
  Hempcrete	
  Survey	
  Results	
  .............................................................................	
  16	
   	
   	
   	
   	
   	
   v	
   GLOSSARY	
   	
   	
   Embodied	
  energy	
  -­‐	
  Energy	
  required	
  to	
  make,	
  transport,	
  and	
  dispose	
  of	
  material.	
   Fiber	
  -­‐	
  the	
  outermost,	
  durable,	
  part	
  of	
  the	
  hemp	
  plants’	
  stalk.	
   GHG	
  negative	
  –	
  pulls	
  more	
  CO2	
  from	
  the	
  atmosphere	
  than	
  it	
  produces	
   Hempcrete	
  -­‐	
  a	
  mixture	
  of	
  hurds,	
  a	
  lime-­‐based	
  binder,	
  water,	
  and	
  pozzolan.	
   Hurds	
  (shives)	
  -­‐	
  The	
  inner,	
  wood-­‐like,	
  part	
  of	
  the	
  hemp	
  plants	
  stalks	
  providing	
  	
  	
   	
   	
  	
  	
  	
  	
  strength.	
   Indica	
  -­‐	
  Cannabis	
  genus	
  grown	
  for	
  recreational	
  and	
  medicinal	
  drug	
  purposes	
   Layout	
  Waste	
  –	
  Waste	
  produced	
  from	
  installation,	
  left	
  overs	
  that	
  were	
  not	
  used.	
   Net	
  Present	
  Value	
  –	
  the	
  evaluation	
  of	
  a	
  product	
  over	
  its	
  useful	
  life,	
  calculated	
  seen	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  from	
  the	
  value	
  today.	
   Pozzolan	
  -­‐	
  a	
  material	
  that	
  acts	
  like	
  cement	
  when	
  combined	
  with	
  calcium	
  hydroxide	
   Sativa	
  (hemp)	
  -­‐	
  Cannabis	
  genus	
  grown	
  for	
  industrial	
  use.	
   Turnover	
  rate	
  -­‐	
  Total	
  time	
  it	
  takes	
  to	
  grow	
  and	
  harvest	
  and	
  replant.	
   Yield	
  –	
  An	
  amount	
  of	
  product	
  grown.	
   	
   	
   	
   	
   	
   	
   	
   vi	
   LIST	
  OF	
  ABBREVIATIONS	
   	
   CO2	
  -­‐	
  Carbon	
  Dioxide	
   LCA	
  -­‐	
  Life	
  Cycle	
  Analysis	
  	
   LCC	
  –	
  Life	
  Cycle	
  Cost	
   LEED	
  -­‐	
  Leadership	
  in	
  Energy	
  and	
  Environmental	
  Design	
  (LEED)	
  Green	
  Building	
  	
   Rating	
  System	
   NPV	
  –	
  Net	
  Present	
  Value	
   RRM	
  -­‐	
  Rapidly	
  Renewable	
  Materials	
   SO2	
  –	
  Sulfur	
  Dioxide	
   SUB	
  -­‐	
  Student	
  Union	
  Building	
   VOC	
  	
  -­‐	
  Volatile	
  Organic	
  Compounds	
  	
   	
   	
   	
   	
   1	
   1.0 INTRODUCTION	
  	
   	
   The	
  new	
  Student	
  Union	
  Building	
  is	
  trying	
  to	
  acquire	
  Canada	
  Green	
  Building	
  Council’s	
  LEED	
  Platinum+	
  certification	
  (Canadian	
  Green	
  Building	
  Council).	
  LEED	
  platinum	
  is	
  achieved	
  by	
  acquiring	
  80	
  points	
  out	
  of	
  the	
  possible	
  100,	
  with	
  additional	
  6	
  points	
  for	
  innovation	
  in	
  design	
  and	
  4	
  points	
  for	
  regional	
  priority.	
  The	
  use	
  of	
  rapidly	
  renewable	
  materials	
  can	
  help	
  attain	
  the	
  MR	
  Credit	
  6.	
  This	
  requires	
  that	
  that	
  2.5%	
  of	
  the	
  total	
  value	
  of	
  all	
  building	
  materials	
  and	
  products	
  used	
  in	
  the	
  project	
  based	
  on	
  cost	
  must	
  consist	
  of	
  one	
  or	
  a	
  combination	
  of	
  rapidly	
  renewable	
  materials	
  (Canadian	
  Green	
  Building	
  Council).	
  Rapidly	
  renewable	
  materials	
  by	
  definition	
  must	
  be	
  plant	
  based	
  and	
  have	
  a	
  regeneration	
  and	
  growth	
  cycle	
  of	
  less	
  than	
  10	
  years.	
  	
  	
  This	
  report	
  will	
  present	
  an	
  evaluation	
  of	
  linoleum	
  and	
  hemp,	
  with	
  specific	
  focus	
  on	
  hempcrete.	
  Conclusions	
  will	
  be	
  drawn	
  upon	
  whether	
  linoleum	
  and	
  hemp	
  are	
  optimal	
  RRMs	
  that	
  will	
  aid	
  the	
  overall	
  qualifications	
  for	
  the	
  MR	
  Credit	
  6,	
  especially	
  the	
  local	
  contents	
  requirement.	
  Our	
  team	
  has	
  conducted	
  the	
  research	
  and	
  assessment	
  of	
  linoleum	
  and	
  hemp	
  usages	
  in	
  the	
  new	
  SUB	
  based	
  on	
  the	
  triple-­‐bottom	
  line	
  analysis	
  by	
  specifically	
  investigating	
  the	
  environmental,	
  economic	
  and	
  social	
  impacts.	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   2	
   2.0 BACKGROUND	
   	
   Detailed	
  below	
  are	
  brief	
  descriptions	
  of	
  linoleum	
  and	
  hemp.	
  	
   2.1. LINOLEUM	
   	
   Linoleum,	
  invented	
  in	
  1863,	
  is	
  a	
  biodegradable	
  material	
  that	
  can	
  be	
  used	
  for	
  material	
  will	
  crack	
  (Wikipedia,	
  2011).	
  Linoleum,	
  when	
  installed	
  and	
  maintained	
  properly,	
  has	
  a	
  life	
  expectancy	
  of	
  roughly	
  40	
  years	
  due	
  to	
  its	
  exceptional	
  durability	
  (Contempo	
  Floor	
  Coverings,	
  (a)).	
  It	
  is	
  also	
  extremely	
  versatile,	
  and	
  can	
  therefore	
  be	
  used	
  in	
  a	
  multitude	
  of	
  areas,	
  such	
  as	
  flooring,	
  decorations,	
  and	
  even	
  counter	
  tops.	
  	
  	
  Linoleum	
  consists	
  mainly	
  of	
  linseed	
  oil	
  (27%);	
  colophonim	
  (8%);	
  limestone(10%);	
  ground	
  wood	
  (10%);	
  ground	
  cork	
  (10%);	
  and	
  pigment	
  (5%),	
  which	
  is	
  usually	
  titanium	
  dioxide.	
  (Potting,	
  &	
  Blok,	
  1995,	
  and	
  Jonsson,	
  Tillman,	
  &	
  Svensson,	
  1997,	
  pp.	
  3).	
  The	
  main	
  ingredient,	
  linseed	
  oil,	
  is	
  extracted	
  from	
  flax,	
  which	
  is	
  an	
  annual	
  crop	
  grown	
  mostly	
  in	
  western	
  Canadian	
  prairies	
  and	
  Argentina.	
  The	
  extraction	
  process	
  can	
  be	
  completed	
  in	
  two	
  ways:	
  through	
  hydraulic	
  pressure	
  or	
  using	
  heat	
  and	
  pressure	
  (Knudsen,	
  2007,	
  pp.	
  4059-­‐4067).	
  Despite	
  the	
  fact	
  that	
  flax	
  is	
  mostly	
  grown	
  in	
  Canada,	
  linoleum’s	
  main	
  producers	
  are	
  located	
  in	
  either	
  United	
  States	
  or	
  Europe,	
  with	
  the	
  largest	
  manufacturer	
  situated	
  in	
  Kirkacldy,	
  UK,	
  owned	
  by	
  Switzerland-­‐based	
  Forbo	
  Group	
  (Wikipedia,	
  2011).	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   3	
   2.2. HEMP	
   	
   Hemp,	
  a	
  plant	
  from	
  the	
  Cannabis	
  genus,	
  Sativa,	
  is	
  grown	
  for	
  industrial	
  purposes.	
  It	
  is,	
  however,	
  commonly	
  mistaken	
  for	
  the	
  Cannabis	
  genus,	
  Indica,	
  a	
  strain	
  that	
  produces	
  psychological	
  effects	
  due	
  to	
  its	
  THC	
  content	
  (5	
  up	
  to	
  20%).	
  Nevertheless,	
  studies	
  have	
  shown	
  that	
  negative	
  side	
  effects	
  from	
  Sativa	
  are	
  negligible	
  (West,	
  1998).	
  Sativa	
  is	
  chosen	
  industrial	
  use	
  due	
  to	
  its	
  long,	
  soft,	
  durable,	
  fibrous	
  properties	
  that	
  provide	
  immense	
  amounts	
  of	
  strength	
  (International	
  Year	
  of	
  Natural	
  Fibers,	
  2009).	
  The	
  plant’s	
  fiber	
  (the	
  outer	
  layer	
  of	
  the	
  stalk)	
  constitutes	
  25%	
  of	
  its	
  mass,	
  while	
  the	
  remaining	
  75%	
  attributes	
  to	
  the	
  hurds	
  (the	
  wood-­‐like	
  material	
  in	
  the	
  center	
  of	
  the	
  stalk),	
  also	
  known	
  as	
  shives.	
  The	
  principal	
  producers	
  of	
  hemp	
  are	
  located	
  in	
  China,	
  Canada,	
  France,	
  Germany,	
  Chile,	
  and	
  Korea	
  (International	
  Year	
  of	
  Natural	
  Fibers,	
  2009),	
  with	
  British	
  Columbia	
  producing	
  158	
  acres	
  out	
  of	
  the	
  total	
  26,815	
  acres	
  from	
  Canada	
  in	
  2010	
  (Government	
  of	
  Alberta,	
  2011).	
  Due	
  to	
  hemps	
  strength	
  and	
  durability,	
  it	
  can	
  be	
  used	
  as	
  different	
  types	
  of	
  fabrics,	
  biofuel,	
  plastics,	
  and	
  hempcrete.	
  	
  Hempcrete	
  is	
  a	
  hemp-­‐lime	
  composite	
  material	
  similar	
  to	
  concrete	
  most	
  commonly	
  used	
  for	
  wall	
  insulation.	
  It	
  is	
  a	
  mixture	
  of	
  hurds	
  and	
  a	
  lime-­‐based	
  binder,	
  typically	
  with	
  small	
  amounts	
  of	
  water	
  and	
  pozzolan	
  (sand	
  or	
  cement).	
  Its	
  primary	
  producers	
  are	
  located	
  in	
  United	
  States,	
  England,	
  France,	
  and	
  Ireland.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   4	
   3.0 POSSIBLE	
  USES	
  IN	
  NEW	
  STUDENT	
  UNION	
  BUILDING	
  	
   	
   Detailed	
  below	
  are	
  potential	
  uses	
  of	
  linoleum	
  and	
  hemp	
  in	
  the	
  new	
  SUB	
  at	
  the	
  University	
  of	
  British	
  Columbia.	
  	
   3.1. LINOLEUM	
  	
   	
   Linoleum	
  can	
  be	
  used	
  in	
  three	
  main	
  capacities	
  for	
  the	
  new	
  Student	
  Union	
  Building:	
  flooring,	
  furniture,	
  and	
  decoration.	
  	
  Linoleum,	
  due	
  to	
  its	
  resilient	
  and	
  enduring	
  properties,	
  is	
  an	
  ideal	
  flooring	
  material.	
  It	
  can	
  be	
  used	
  for	
  high	
  traffic	
  hallways,	
  entrances,	
  dance	
  studios,	
  and	
  club	
  rooms	
  where	
  a	
  significant	
  influx	
  of	
  students	
  is	
  expected	
  (Wikipedia,	
  2011).	
  	
  It	
  can	
  also	
  be	
  installed	
  in	
  the	
  potential	
  new	
  daycare	
  center	
  and	
  numerous	
  kitchen	
  areas	
  because	
  of	
  its	
  ample	
  cushioning.This	
  will	
  reduce	
  the	
  number	
  of	
  accidents	
  for	
  the	
  children	
  and	
  kitchen	
  staff,	
  as	
  well	
  as	
  breakage	
  of	
  dropped	
  kitchenware.	
  Moreover,	
  linoleum	
  is	
  substantially	
  water	
  resistant,	
  making	
  it	
  another	
  great	
  candidate	
  for	
  bathroom	
  and	
  kitchen	
  flooring,	
  where	
  occasional	
  water	
  accumulation	
  may	
  occur.	
  Even	
  if	
  impromptu	
  water	
  damage	
  does	
  occur,	
  linoleum	
  can	
  be	
  renovated	
  by	
  painting	
  over	
  the	
  top	
  coat	
  without	
  stripping	
  off	
  the	
  entire	
  floor	
  (Contempo	
  Floor	
  Coverings,	
  (b)).	
  However,	
  for	
  areas	
  where	
  water	
  might	
  come	
  up	
  from	
  the	
  sub-­‐floor,	
  particularly	
  in	
  the	
  basement,	
  linoleum	
  should	
  not	
  be	
  considered	
  (Salgado,	
  2011).	
  	
  	
  Furthermore,	
  linoleum	
  can	
  be	
  manufactured	
  in	
  an	
  assortment	
  of	
  colors	
  and	
  designs,	
  which	
  allows	
  for	
  different	
  arrays	
  of	
  wall	
  coverings	
  to	
  be	
  constructed,	
  including	
  artistic	
  murals,	
  or	
  even	
  3D	
  wall	
  coverings.	
  In	
  addition,	
  because	
  of	
  its	
  malleable	
  property,	
  linoleum	
  can	
  be	
  used	
  to	
  create	
  defining	
  sculptures	
  inside	
  the	
  new	
  SUB.	
  Another	
  possible	
  application	
  of	
  linoleum	
  is	
  for	
  counter	
  tops	
  in	
  kitchens,	
  bathrooms,	
  and	
  daycare	
  centers,	
  where	
  excessive	
  amounts	
  of	
  scratches	
  are	
  expected	
  to	
  incur	
  (Potting,	
  &	
  Blok,	
  1995).	
   	
   5	
   3.2. HEMP	
  	
   	
   The	
  different	
  parts	
  of	
  hemp	
  can	
  be	
  incorporated	
  into	
  distinctive	
  parts	
  of	
  the	
  new	
  Student	
  Union	
  Building,	
  including	
  fabrics,	
  paper,	
  fuel,	
  plastic,	
  and	
  building	
  materials.	
  	
  The	
  fibrous	
  strands	
  of	
  hemp	
  are	
  ideal	
  for	
  fabrics	
  due	
  to	
  their	
  increased	
  durability	
  over	
  cotton.	
  They	
  can	
  be	
  used	
  as	
  rugs,	
  carpets,	
  as	
  well	
  as	
  various	
  couches	
  and	
  chair	
  coverings	
  (The	
  Information	
  Distillery).	
  Hemp	
  hurds,	
  naturally	
  acid-­‐free	
  and	
  unlikely	
  to	
  deteriorate	
  over	
  time,	
  are	
  alternatives	
  that	
  can	
  be	
  incorporated	
  in	
  paper	
  production.	
  This	
  will	
  lead	
  to	
  a	
  reduction	
  of	
  overall	
  waste	
  produced	
  by	
  the	
  SUB.	
  Nonetheless,	
  hemp	
  hurds,	
  because	
  of	
  their	
  resilience,	
  can	
  also	
  be	
  used	
  during	
  the	
  building	
  construction	
  phase	
  in	
  the	
  form	
  of	
  hempcrete.	
  Possible	
  applications	
  include	
  foundations,	
  walls,	
  roofs,	
  floors,	
  shingles,	
  paneling,	
  and	
  pipes,	
  with	
  the	
  exception	
  of	
  load	
  bearings	
  supports.	
  Furthermore,	
  biofuel	
  can	
  be	
  extracted	
  from	
  hemp	
  to	
  fuel	
  diesel	
  generators	
  that	
  produce	
  electricity	
  to	
  power	
  building	
  appliances,	
  thereby	
  decreasing	
  total	
  external	
  energy	
  consumption	
  (Whitis).	
  Lastly,	
  plastic	
  can	
  be	
  created	
  from	
  hemp	
  –	
  a	
  more	
  environmentally	
  friendly	
  alternative	
  to	
  petroleum-­‐based	
  plastics	
  due	
  to	
  hemp’s	
  improved	
  strength	
  and	
  freedom	
  from	
  toxic	
  chemicals	
  (The	
  Information	
  Distillery).	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   6	
   4.0 TRIPLE	
  BOTTOM	
  LINE	
  ANALYSIS	
  	
   	
   For	
  the	
  remainder	
  of	
  this	
  report,	
  the	
  Triple	
  Bottom	
  Line	
  analysis	
  will	
  focus	
  on	
  hempcrete,	
  a	
  specific	
  use	
  of	
  hemp,	
  as	
  well	
  as	
  linoleum.	
   	
   4.1. ENVIRONMENTAL	
  ANALYSIS	
  	
   4.1.1. Linoleum	
  	
   	
   Through	
  the	
  primary	
  use	
  of	
  LCA	
  the	
  advantages	
  and	
  disadvantages	
  will	
  be	
  discussed	
  below.	
  Although	
  linoleum	
  can	
  be	
  used	
  for	
  more	
  then	
  flooring	
  applications,	
  this	
  analysis	
  will	
  look	
  at	
  the	
  comparison	
  and	
  effects	
  of	
  linoleum	
  as	
  a	
  flooring	
  solution	
  due	
  to	
  the	
  content	
  of	
  research	
  material.	
  	
  	
   Advantages	
  	
   	
   Linoleum	
  presents	
  the	
  majority	
  of	
  its	
  advantages	
  when	
  compared	
  to	
  similar	
  resilient	
  floor	
  finishes	
  like	
  vinyl.	
  Comparing	
  the	
  LCA	
  flow	
  charts	
  in	
  Appendix	
  A	
  the	
  apparent	
  advantage	
  linoleum	
  has	
  is	
  its	
  use	
  of	
  natural	
  ingredients.	
  The	
  use	
  of	
  these	
  natural	
  ingredients	
  is	
  biodegradable	
  can	
  in	
  fact	
  offset	
  a	
  lot	
  of	
  the	
  GHG	
  emissions	
  produced	
  during	
  its	
  manufacturing	
  (Lozada-­‐Figueroa,	
  2004,	
  pp	
  1-­‐3).	
  For	
  example,	
  “In	
  the	
  waste	
  handling	
  of	
  the	
  old	
  linoleum	
  GHG	
  emissions	
  are	
  avoided	
  because	
  the	
  energy	
  from	
  incineration	
  substitutes	
  energy	
  from	
  coal.	
  Since	
  these	
  avoided	
  emissions	
  are	
  larger	
  than	
  the	
  emissions	
  from	
  manufacturing	
  of	
  the	
  new	
  linoleum	
  we	
  end	
  up	
  with	
  a	
  negative	
  net	
  emission”	
  (Petersen,	
  &	
  Solberg,	
  2004,	
  pp.	
  143-­‐167).	
  	
  	
  Analyzing	
  the	
  graphs	
  in	
  Appendix	
  B	
  we	
  can	
  see	
  that	
  linoleum	
  does	
  uses	
  a	
  lower	
  amount	
  of	
  scarce	
  renewable	
  materials,	
  most	
  likely	
  due	
  to	
  the	
  regrowth	
  of	
  flux	
  crops	
  annually.	
  We	
  can	
  also	
  see	
  that	
  linoleum	
  has	
  slightly	
  lower	
  net	
  energy	
  consumption	
  over	
  vinyl,	
  however	
  as	
  mentioned	
  before	
  if	
  we	
  include	
  the	
  offset	
  to	
  coal	
  use	
  this	
  consumption	
  is	
  further	
  reduced.	
  Lastly,	
  looking	
  at	
  the	
  major	
  emissions	
  linoleum	
  generates	
  less	
  CO2	
  gas	
  due	
  to	
  its	
  CO2	
  neutral	
  harvesting	
  of	
   	
   7	
   linseed	
  oil	
  and	
  little	
  to	
  no	
  dust	
  particles	
  (Petersen,	
  &	
  Solberg,	
  2004,	
  pp.	
  143-­‐167).	
  In	
  full	
  environmental	
  analysis,	
  “The	
  difference	
  between	
  linoleum	
  and	
  vinyl	
  flooring	
  is	
  less	
  clear,	
  and	
  depends	
  on	
  what	
  environmental	
  parameters	
  are	
  considered	
  most	
  important” (Moussatche,	
  &	
  Languell,	
  2001,	
  pp.	
  1-­‐4).	
  	
   Disadvantages	
   	
   When	
  comparing	
  to	
  other	
  resilient	
  flooring	
  solutions	
  linoleum	
  has	
  apparent	
  advantages	
  regarding	
  many	
  environmental	
  aspects.	
  However,	
  when	
  we	
  extend	
  our	
  environmental	
  analysis	
  to	
  include	
  more	
  flooring	
  options	
  the	
  advantages	
  begin	
  to	
  reduce.	
  	
  	
  	
  When	
  comparing	
  to	
  the	
  next	
  commonly	
  compared	
  hardwood	
  flooring	
  option	
  linoleum	
  has	
  a	
  reduced	
  incentive	
  for	
  usage.	
  Using	
  the	
  tables	
  from	
  Appendix	
  B	
  again	
  for	
  the	
  analysis	
  we	
  can	
  see	
  that	
  linoleum	
  consumes	
  more	
  net	
  energy	
  then	
  hardwood.	
  Both	
  of	
  these	
  flooring	
  options	
  do	
  provide	
  energy	
  offsets	
  to	
  coal	
  burning	
  however	
  the	
  potential	
  offset	
  for	
  hardwood	
  is	
  still	
  much	
  greater.	
  Continuing	
  the	
  comparison,	
  linoleum	
  produces	
  greater	
  SO2	
  and	
  VOC,	
  as	
  well	
  as	
  overall	
  material	
  waste	
  including	
  6%	
  layout	
  waste	
  (Jonsson	
  et	
  al.,	
  1997,	
  pp.).	
  	
  	
   4.1.2. Hempcrete	
  	
   	
   Advantages	
  	
   	
   	
   Due	
  to	
  the	
  fact	
  that	
  hempcrete	
  is	
  extracted	
  from	
  hemp	
  hurds,	
  the	
  following	
  analysis	
  of	
  hempcrete	
  will	
  first	
  describe	
  the	
  environmental	
  advantages	
  of	
  hemp,	
  then	
  narrow	
  down	
  to	
  the	
  growth,	
  transportation,	
  materials	
  and	
  processing,	
  and	
  energy	
  aspects	
  of	
  hempcrete.	
  	
   Hemp	
  has	
  a	
  short	
  turnover	
  rate.	
  It	
  takes	
  approximately	
  90	
  to	
  120	
  days	
  (3	
  to	
  4	
  months)	
  for	
  hemp	
  to	
  grow	
  10	
  to	
  20	
  feet	
  tall	
  and	
  be	
  ready	
  for	
  harvesting.	
   	
   8	
   Consequently,	
  it	
  can	
  produce	
  four	
  times	
  the	
  yield	
  of	
  trees	
  and	
  eight	
  times	
  that	
  of	
  cotton.	
  Hemp,	
  impervious	
  to	
  diseases,	
  requires	
  minimal	
  agrochemicals	
  during	
  the	
  growth	
  cycle,	
  thus	
  lowering	
  the	
  amount	
  of	
  chemical	
  contamination	
  of	
  soil.	
  Moreover,	
  as	
  an	
  adaptable	
  plant,	
  hemp	
  grows	
  in	
  most	
  climates	
  and	
  enriches	
  poor	
  soils	
  after	
  every	
  crop	
  (American	
  Lime	
  Technology,	
  2008).	
  	
  Hempcrete,	
  unlike	
  concrete,	
  produces	
  no	
  toxic	
  by-­‐products,	
  off	
  gases,	
  and	
  high	
  embodied	
  energy,	
  and	
  creates	
  less	
  site	
  waste	
  due	
  to	
  increased	
  efficiency	
  in	
  the	
  building	
  process	
  (Watson,	
  2010).	
  It	
  is	
  also	
  much	
  less	
  energy	
  intensive	
  because	
  of	
  its	
  high	
  thermal	
  mass	
  and	
  insulating	
  properties,	
  therefore	
  lowering	
  the	
  heating	
  and	
  cooling	
  emissions	
  necessary	
  to	
  maintain	
  a	
  comfortable	
  room	
  temperature.	
  At	
  the	
  end	
  of	
  hemp’s	
  lifecycle,	
  it	
  can	
  be	
  reused	
  as	
  building	
  material	
  or	
  even	
  broken	
  up	
  to	
  fertilize	
  gardens,	
  as	
  it	
  is	
  biodegradable	
  (American	
  Lime	
  Technology,	
  2008,	
  and	
  Goran	
  Homes).	
  	
   Another	
  significant	
  advantage	
  of	
  hempcrete	
  is	
  that	
  its	
  greenhouse	
  gas	
  negative.	
  Hempcrete	
  absorbs	
  more	
  carbon	
  dioxide	
  from	
  the	
  atmosphere	
  than	
  it	
  produces	
  in	
  its	
  lifecycle,	
  thereby	
  reversing	
  the	
  effects	
  of	
  global	
  warming.	
  Throughout	
  the	
  process	
  of	
  manufacturing	
  from	
  crop	
  to	
  building	
  the	
  material	
  sequesters,	
  hempcrete	
  stores	
  approximately	
  108	
  kg	
  of	
  CO2	
  per	
  m3	
  of	
  wall	
  (Watson,	
  2010).	
  This	
  value	
  is	
  greater	
  for	
  roofing	
  material	
  with	
  a	
  theoretical	
  maximum	
  is	
  165	
  kg.	
  For	
  each	
  acre	
  of	
  hemp,	
  approximately	
  4.6	
  tonnes	
  of	
  carbon	
  dioxide	
  are	
  emitted	
  from	
  manufacturing	
  and	
  processing,	
  while	
  approximately	
  8.9	
  tonnes	
  of	
  carbon	
  dioxide	
  are	
  absorbed	
  during	
  its	
  useful	
  lifetime	
  (Watson,	
  2010).	
  This	
  is	
  based	
  on	
  the	
  Manitoba	
  average	
  of	
  2.5	
  dry-­‐tonnes	
  of	
  hemp	
  yielded	
  per	
  acre	
  (Manitoba	
  Agriculture,	
  Food	
  and	
  Rural	
  Initiatives).	
  Refer	
  to	
  Appendix	
  B	
  for	
  calculations.	
  Moreover,	
  hempcrete	
  continues	
  to	
  sequester	
  “carbon	
  as	
  lime”	
  as	
  “the	
  hempcrete	
  calcifies	
  over	
  time,”	
  effectively	
  reducing	
  the	
  amount	
  of	
  greenhouse	
  gases	
  in	
  the	
  atmosphere	
  (Hemp	
  News,	
  2011).	
  	
  	
  	
   	
   9	
   Hempcrete	
  Natural	
  Building	
  Ltd.,	
  the	
  local	
  manufacturer	
  of	
  hempcrete	
  (Allin,	
  2011),	
  purchases	
  hemp	
  hurds	
  from	
  a	
  processing	
  facility	
  in	
  Manitoba	
  (Hendyrson,	
  2011).	
  With	
  the	
  remainder	
  of	
  the	
  essential	
  materials	
  obtained	
  locally	
  and	
  the	
  mixing	
  of	
  hempcrete	
  done	
  on	
  site,	
  their	
  product	
  is	
  produced	
  with	
  minimal	
  transportation	
  emissions.	
  Implementing	
  this	
  RRM	
  material	
  into	
  the	
  SUB	
  would	
  decrease	
  the	
  buildings	
  ecological	
  footprint,	
  bringing	
  it	
  closer	
  to	
  the	
  LEED	
  platinum+	
  requirement.	
  	
   Disadvantages	
  	
   	
   Despite	
  the	
  fact	
  that	
  hempcrete	
  is	
  greenhouse	
  gas	
  emission	
  negative,	
  it	
  does	
  however	
  emit	
  some	
  GHG	
  in	
  its	
  production	
  period	
  since	
  lime	
  and	
  hurds	
  are	
  required	
  during	
  processing.	
  Nevertheless,	
  as	
  discussed	
  above,	
  the	
  amount	
  of	
  GHG	
  absorbed	
  in	
  hempcrete’s	
  lifetime	
  will	
  exceed	
  the	
  GHG	
  generated;	
  hence,	
  this	
  caveat	
  can	
  be	
  overlooked.	
  Moreover,	
  from	
  the	
  lack	
  of	
  projects	
  in	
  BC,	
  there	
  are	
  currently	
  no	
  local	
  hemp	
  producers,	
  effectively	
  leading	
  to	
  a	
  subsequent	
  lack	
  of	
  local	
  processing	
  facilities.	
  Currently,	
  hempcrete	
  projects	
  must	
  purchase	
  hurds	
  from	
  Manitoba.	
  This	
  contributes	
  to	
  an	
  additional	
  transportation	
  distance	
  of	
  approximately	
  1,870	
  km	
  from	
  Winnipeg,	
  Manitoba	
  to	
  Vancouver,	
  BC,	
  causing	
  increased	
  emissions	
  during	
  shipping	
  phase	
  (Travel	
  Math).	
  	
  	
  	
   4.2. ECONOMIC	
  ANALYSIS	
  	
   	
   4.2.1. Linoleum	
  	
   	
   The	
  economic	
  analysis	
  of	
  linoleum	
  is	
  best	
  compared	
  through	
  a	
  life	
  cycle	
  analysis	
  of	
  NPV	
  per	
  square	
  foot	
  for	
  a	
  given	
  lifetime.	
  The	
  chart	
  in	
  Appendix	
  C	
  estimates	
  the	
  life	
  cycle	
  NPV	
  of	
  a	
  variety	
  of	
  flooring	
  solutions.	
  The	
  figure	
  is	
  calculated	
  in	
  US	
  dollars,	
  and	
  based	
  off	
  US	
  wages	
  and	
  standards	
  (Moussatche,	
  &	
  Languell,	
  2001,	
  pp.	
  1-­‐4).	
  Keep	
  in	
  mind,	
  that	
  “Life	
  cycle	
  costing	
  should	
  not	
  be	
  confused	
  with	
  Life	
  Cycle	
  Assessment	
  which	
  includes	
  the	
  whole	
  life	
  of	
  the	
   	
   10	
   material	
  including	
  environmental	
  accounting;	
  life	
  cycle	
  cost	
  includes	
  only	
  the	
  economic	
  values	
  used	
  to	
  compare	
  the	
  cost	
  of	
  different	
  material	
  alternatives	
  over	
  the	
  serviceable	
  or	
  useful	
  life	
  span”	
  (Moussatche	
  et	
  al.,	
  2001,	
  pp.	
  1-­‐4).	
  	
   Advantages	
  	
   	
   The	
  clear	
  advantages	
  of	
  linoleum	
  from	
  an	
  economic	
  point	
  are	
  its	
  long	
  useful	
  lifetime,	
  and	
  its	
  relatively	
  inexpensive	
  O&M	
  costs.	
  These	
  factors	
  play	
  a	
  large	
  role	
  in	
  reducing	
  the	
  lifetime	
  cost	
  of	
  linoleum	
  per.	
  square	
  foot.	
  The	
  O&M	
  is	
  73%	
  of	
  that	
  associated	
  with	
  vinyl	
  floors	
  (Moussatche	
  et	
  al.,	
  2001,	
  pp.	
  1-­‐4).	
  Directly	
  comparing	
  the	
  LCC	
  of	
  all	
  the	
  flooring	
  options	
  linoleum	
  is	
  the	
  most	
  cost	
  effective	
  resilient	
  flooring	
  solution	
  at	
  approximately	
  $117	
  per	
  square	
  foot.	
  It	
  provides	
  a	
  more	
  expensive	
  but	
  still	
  competitive	
  LCC	
  to	
  alternative	
  soft	
  flooring	
  solutions	
  like	
  carpet.	
  Linoleum	
  is	
  even	
  cheaper	
  then	
  a	
  few	
  of	
  the	
  hard	
  flooring	
  systems.	
  	
  When	
  we	
  directly	
  compare	
  the	
  LCC	
  of	
  the	
  other	
  RRM	
  flooring	
  systems	
  like,	
  cork,	
  rubber	
  and	
  bamboo	
  linoleum	
  is	
  $72.68	
  cheaper	
  then	
  the	
  second	
  lest	
  expensive	
  rubber,	
  and	
  $177.46	
  cheaper	
  then	
  bamboo	
  the	
  most	
  expensive	
  alternative.	
  	
   	
   	
   Disadvantages	
  	
   	
   The	
  only	
  major	
  economic	
  disadvantage	
  behind	
  linoleum	
  flooring	
  is	
  its	
  increased	
  capital	
  cost	
  over	
  non-­‐rapidly	
  renewable	
  materials.	
  The	
  LCC	
  of	
  linoleum	
  is	
  also	
  much	
  large	
  then	
  hard	
  flooring	
  solutions	
  with	
  a	
  comparable	
  life	
  span.	
  With	
  an	
  initial	
  capital	
  cost	
  5	
  times	
  higher	
  then	
  exposed	
  concrete	
  it	
  is	
  much	
  more	
  expensive	
  to	
  buy,	
  install	
  and	
  maintain.	
  The	
  best	
  flooring	
  solution	
  for	
  The	
  SUB	
  should	
  be	
  based	
  on	
  the	
  quality	
  and	
  necessary	
  functions	
  of	
  the	
  flooring,	
  using	
  his	
  economic	
  analysis	
  as	
  a	
  guide	
  to	
  the	
  best	
  financial	
  solution	
  to	
  meet	
  those	
  needs	
  (Moussatche	
  et	
  al.,	
  2001,	
  pp.	
  1-­‐4).	
  How,	
  ever	
  linoleum	
  may	
  be	
  too	
  high	
  of	
  a	
  cost	
  to	
  justify	
  its	
  use	
  over	
  less	
  expensive	
  floorings.	
  	
   	
   11	
   4.2.2. Hempcrete	
  	
   	
   This	
  economic	
  impact	
  analysis	
  will	
  be	
  discussed	
  relative	
  to	
  Industrial	
  Hemp	
  production	
  as	
  it	
  is	
  the	
  main	
  source	
  of	
  Hempcrete.	
  	
   Advantages	
  	
   	
   Hemp	
  is	
  resistant	
  to	
  rodents,	
  fungus,	
  and	
  many	
  weeds,	
  which	
  makes	
  it	
  easy	
  to	
  maintain	
  because	
  there	
  will	
  be	
  limited	
  or	
  no	
  use	
  of	
  pesticides,	
  herbicides	
  and	
  insecticides	
  (Rodie,	
  2009,	
  pp.	
  1).	
  This	
  leads	
  to	
  a	
  major	
  reduction	
  of	
  maintenance	
  cost.	
  Despite	
  the	
  fact	
  that	
  	
  hemp	
  is	
  cheap	
  to	
  maintain,	
  the	
  costs	
  of	
  production	
  vary.	
  In	
  fact,	
  the	
  average	
  budgeted	
  cost	
  of	
  starting	
  hemp	
  production	
  is	
  based	
  on	
  a	
  minimum	
  of	
  10	
  acres,	
  and	
  is	
  quite	
  expensive.	
  See	
  Appendix	
  D	
  for	
  budget	
  costs	
  but	
  overall	
  hemp	
  production	
  is	
  viable.	
  	
  Furthermore,	
  hempcrete	
  houses	
  are	
  highly	
  insulated,	
  making	
  the	
  building	
  easier	
  to	
  heat	
  in	
  the	
  winter	
  and	
  easier	
  to	
  keep	
  cool	
  in	
  the	
  summer.	
  This	
  effectively	
  reduced	
  the	
  heating	
  and	
  cooling	
  costs	
  of	
  the	
  building.	
  “In	
  many	
  tests...when	
  installed,	
  the	
  energy	
  efficiency	
  of	
  hemp	
  a	
  building	
  and	
  insulating	
  materials	
  surpasses	
  expectations”	
  (ULC).	
  As	
  a	
  matter	
  of	
  fact,	
  present	
  hempcrete	
  houses	
  serve	
  as	
  an	
  extremely	
  cost	
  effective	
  alternative	
  to	
  reduce	
  operating	
  costs.	
  	
  Moreover,	
  the	
  Canadian	
  government	
  provides	
  subsidies	
  and	
  has	
  invested	
  in	
  hemp	
  production	
  since	
  hemp	
  was	
  legalized	
  in	
  Canada	
  (Government	
  of	
  Alberta,	
  2011).	
  These	
  benefits	
  encourage	
  potential	
  farmers	
  to	
  farm	
  hemp	
  as	
  the	
  revenue	
  margin	
  increases	
  annually.	
  The	
  investment	
  and	
  subsidies	
  have	
  also	
  reduced	
  hemp	
  price.	
  In	
  a	
  CNN	
  video	
  it	
  is	
  reported	
  that	
  the	
  government	
  is	
  planning	
  to	
  remove	
  taxes	
  on	
  hemp	
  trades	
  .	
  	
  	
  	
   	
   12	
   Furthermore,	
  hempcrete	
  buildings	
  have	
  a	
  very	
  long	
  life.	
  This	
  is	
  attributed	
  to	
  the	
  material	
  properties	
  of	
  hemp	
  being	
  fibrous	
  and	
  durable.	
  Although	
  building	
  with	
  hempcrete	
  is	
  initially	
  expensive	
  compared	
  to	
  other	
  materials,	
  it	
  will	
  likely	
  outlast	
  the	
  lifetime	
  of	
  its	
  competitors.	
  This	
  is	
  due	
  to	
  the	
  lime	
  content	
  in	
  the	
  hempcrete	
  mixture	
  constantly	
  calcifying,	
  turning	
  to	
  stone-­‐like	
  material	
  consequently	
  making	
  the	
  material	
  more	
  durable	
  and	
  stronger.	
  Studies	
  in	
  Europe	
  have	
  estimated	
  600-­‐800	
  year	
  life	
  span	
  for	
  the	
  wall	
  system	
  (Department	
  of	
  Agricultural	
  Economics,	
  1998).	
  Implementing	
  hempcrete	
  in	
  the	
  SUB	
  would	
  significantly	
  reduce	
  operating	
  costs	
  and	
  provide	
  a	
  long	
  lasting	
  building	
  which	
  reduces	
  the	
  total	
  cost	
  over	
  the	
  lifetime	
  of	
  the	
  building.	
  	
   	
   Disadvantages	
  	
   	
   Hemp	
  is	
  a	
  tall,	
  densely	
  branched	
  plant	
  with	
  a	
  strong	
  fiber	
  core	
  that	
  is	
  difficult	
  to	
  harvest.	
  This	
  forces	
  farmers	
  to	
  resort	
  to	
  traditional	
  hand	
  cutting	
  methods	
  in	
  most	
  places.	
  The	
  Germans,	
  however,	
  have	
  introduced	
  an	
  alternative	
  harvesting	
  method	
  for	
  fiber	
  separation	
  by	
  using	
  steam	
  and	
  ultrasonic	
  waves.	
  Consequently,	
  the	
  cost	
  of	
  such	
  a	
  machine	
  is	
  not	
  feasible	
  with	
  the	
  current	
  market	
  demand.	
  	
  Implementing	
  such	
  a	
  system	
  would	
  surely	
  increase	
  the	
  import	
  cost	
  of	
  hemp	
  products	
  (Government	
  of	
  Alberta,	
  2011).	
  In	
  addition,	
  the	
  past	
  hemp	
  restriction	
  is	
  preventing	
  further	
  innovations	
  in	
  the	
  hemp	
  manufacturing	
  sector	
  as	
  some	
  manufactures	
  believe	
  that	
  the	
  market	
  may	
  still	
  be	
  volatile;	
  therefore,	
  the	
  risk	
  outweighs	
  the	
  benefits.	
  This	
  is	
  illustrated	
  by	
  the	
  decrease	
  in	
  Canadian	
  hemp	
  production	
  by	
  68%	
  in	
  2007	
  (Government	
  of	
  Alberta,	
  2011).	
  Refer	
  to	
  Appendix	
  E	
  for	
  Canadian	
  hemp	
  production	
  details.	
  	
   Finally,	
  storage	
  and	
  transportation	
  costs	
  are	
  higher	
  than	
  average	
  for	
  to	
  two	
  reasons.	
  One,	
  in	
  order	
  to	
  maintain	
  exceptional	
  quality,	
  hemp	
  requires	
  special	
  protection	
  from	
  microbial	
  breakdown;	
  especially	
  in	
  humid	
  areas	
  like	
  Vancouver.	
  Two,	
  the	
  estimated	
  storage	
  costs	
  of	
  hemp	
  range	
  from	
  $13.22	
  to	
   	
   13	
   $14.23	
  per	
  ton	
  based	
  on	
  a	
  six	
  month	
  storage	
  period-­‐-­‐this	
  cost	
  includes	
  repairs,	
  insurance,	
  and	
  losses	
  (Ehrensing,	
  1998).	
  Furthermore,	
  the	
  vast	
  majority	
  of	
  hemp	
  is	
  exported,	
  further	
  increasing	
  the	
  shipping	
  costs.	
   	
   4.3. SOCIAL	
  IMPACT	
   	
   Detailed	
  below	
  are	
  the	
  social	
  advantages	
  and	
  disadvantages	
  of	
  linoleum	
  and	
  hempcrete.	
  	
   	
   4.3.1. Linoleum	
  	
   	
   Despite	
  the	
  fact	
  that	
  linoleum	
  serves	
  only	
  as	
  a	
  building	
  material,	
  it	
  contributes	
  considerably	
  to	
  the	
  social	
  welfare	
  of	
  those	
  who	
  produce	
  and	
  use	
  it.	
  The	
  benefits	
  of	
  using	
  linoleum	
  are	
  illustrated	
  by	
  evaluating	
  how	
  the	
  structure,	
  design,	
  amount	
  of	
  maintenance	
  work,	
  and	
  the	
  potential	
  emerging	
  domestic	
  producers	
  affect	
  the	
  users,	
  while	
  the	
  disadvantages	
  are	
  described	
  by	
  the	
  mainstream	
  misconception,	
  release	
  of	
  VOCs	
  and	
  its	
  accompanying	
  odor	
  when	
  treated	
  improperly.	
  	
   Advantages	
  	
   	
   Linoleum	
  flooring,	
  manufactured	
  in	
  a	
  myriad	
  of	
  colors,	
  can	
  be	
  installed	
  in	
  prominent	
  areas	
  of	
  the	
  new	
  SUB	
  as	
  powerful	
  media	
  that	
  illustrate	
  a	
  general	
  message	
  to	
  students,	
  staff,	
  faculty	
  and	
  visitors	
  through	
  means	
  of	
  wall	
  coverings,	
  murals	
  or	
  even	
  sculptures.	
  These	
  compositions	
  will	
  help	
  strengthen	
  the	
  UBC	
  spirit.	
  Linoleum	
  can	
  also	
  be	
  used	
  to	
  decorate	
  certain	
  club	
  or	
  lounge	
  rooms	
  to	
  acquire	
  the	
  precise	
  environment	
  as	
  linoleum	
  can	
  be	
  pieced	
  together	
  in	
  striking	
  patterns	
  (Contempo	
  Floor	
  Coverings,	
  (b)).	
  The	
  themed	
  lounges	
  that	
  are	
  being	
  built	
  can	
  be	
  achieved	
  effortlessly	
  in	
  order	
  to	
  convey	
  the	
  ambiance	
  suitable	
  for	
  any	
  occasion.	
  	
   	
   14	
   Moreover,	
  linoleum	
  requires	
  minimal	
  maintenance	
  to	
  preserve	
  its	
  immaculate	
  condition;	
  only	
  regular	
  mopping	
  and	
  an	
  annual	
  polish	
  are	
  necessary	
  for	
  an	
  optimal	
  finish	
  (Contempo	
  Floor	
  Coverings,	
  (a)).	
  This	
  will	
  drastically	
  decrease	
  the	
  level	
  of	
  work	
  needed	
  from	
  the	
  maintenance	
  workers,	
  and	
  thereby	
  increase	
  their	
  overall	
  level	
  of	
  welfare.	
  As	
  previously	
  mentioned,	
  linoleum	
  also	
  has	
  a	
  relatively	
  supple	
  surface	
  (Jonsson	
  et	
  al.,	
  1997,	
  pp.	
  ).	
  This	
  crucial	
  property	
  will	
  aid	
  the	
  reduction	
  of	
  the	
  severity	
  of	
  accidents	
  in	
  kitchens,	
  bathrooms	
  and	
  daycare	
  centers	
  if	
  they	
  do	
  arise.	
  Furthermore,	
  Canada	
  currently	
  does	
  not	
  have	
  any	
  large	
  linoleum	
  manufacturers	
  despite	
  its	
  extensive	
  comparative	
  advantage	
  in	
  the	
  production	
  of	
  flax	
  (Flax	
  Council	
  of	
  Canada).	
  If	
  LEED	
  specified	
  buildings,	
  such	
  as	
  the	
  new	
  SUB,	
  become	
  more	
  prevalent,	
  there	
  can	
  potentially	
  be	
  an	
  influx	
  of	
  demand	
  that	
  can	
  stimulate	
  the	
  emergence	
  of	
  domestic	
  producers.	
  This	
  will	
  raise	
  the	
  overall	
  employment	
  level	
  in	
  neighboring	
  linoleum	
  industries	
  and	
  in	
  the	
  long	
  run,	
  the	
  welfare	
  of	
  those	
  related	
  to	
  the	
  linoleum	
  production	
  lines.	
   	
   Disadvantages	
  	
   	
   The	
  mainstream	
  society	
  has	
  been	
  influenced	
  to	
  desire	
  mass	
  amounts	
  of	
  high-­‐end	
  marble	
  and	
  hardwood,	
  as	
  they	
  are	
  the	
  symbols	
  of	
  status.	
  Despite	
  its	
  renowned	
  title	
  as	
  the	
  one	
  of	
  the	
  greenest	
  and	
  most	
  affordable	
  materials,	
  linoleum	
  is	
  often	
  misunderstood	
  and	
  interpreted	
  as	
  a	
  cheap	
  and	
  classless	
  material	
  (Contempo	
  Floor	
  Coverings,	
  (a)).	
  Many	
  only	
  consider	
  linoleum	
  as	
  an	
  economical	
  alternative	
  as	
  opposed	
  to	
  the	
  greener	
  choice.	
  To	
  some	
  viewers,	
  the	
  use	
  of	
  linoleum	
  may	
  mislead	
  them	
  to	
  infer	
  the	
  SUB	
  as	
  an	
  unrefined	
  piece	
  of	
  architecture	
  due	
  to	
  the	
  lack	
  of	
  expensive	
  materials.	
  In	
  addition,	
  linoleum	
  releases	
  low	
  levels	
  of	
  VOCs	
  as	
  mentioned	
  in	
  the	
  environmental	
  analysis	
  during	
  its	
  lifecycle;	
  however,	
  the	
  VOC	
  levels	
  detected	
  are	
  harmless	
  to	
  human	
  health	
  (Knudsen,	
  2007,	
  pp.	
  4059-­‐4067).	
  Needless	
  to	
  say,	
  despite	
  being	
  accepted	
  by	
  the	
  Canadian	
  Health	
  Agency,	
  the	
  public	
  generally	
  does	
  not	
  want	
  to	
  use	
  any	
  type	
  of	
  material	
  that	
  releases	
  any	
  amount	
  of	
  unsafe	
  chemicals.	
  Moreover,	
  linoleum	
  when	
   	
   15	
   treated	
  improperly	
  may	
  have	
  an	
  unpleasant	
  smell	
  that	
  may	
  require	
  extended	
  periods	
  of	
  ventilation	
  (Knudsen,	
  2007,	
  pp.	
  4059-­‐4067).	
  	
  This	
  can	
  cause	
  tremendous	
  inconveniences	
  to	
  users	
  during	
  its	
  life	
  period	
  and	
  the	
  discomfort	
  may	
  hurt	
  the	
  reputation	
  of	
  linoleum.	
   	
   4.3.2. Hempcrete	
  	
   	
   There	
  are	
  significant	
  social	
  advantages	
  of	
  using	
  hempcrete	
  as	
  it	
  benefits	
  both	
  the	
  society	
  and	
  individuals.	
  Detailed	
  below	
  are	
  effects	
  of	
  hempcrete	
  on	
  the	
  community,	
  how	
  it	
  creates	
  a	
  healthy	
  and	
  comfortable	
  living	
  environment,	
  as	
  well	
  as	
  a	
  public	
  survey	
  regarding	
  hempcrete	
  awareness	
  and	
  potential	
  use.	
  	
   Advantages	
  	
   	
   The	
  social	
  benefits	
  of	
  hempcrete	
  can	
  affect	
  the	
  community	
  in	
  a	
  variety	
  of	
  ways.	
  The	
  cultivation	
  of	
  the	
  plant	
  “supports	
  biodiversity”	
  and	
  provides	
  a	
  “transition	
  to	
  organic	
  farming”	
  (Hemp	
  News,	
  2011).	
  Hempcrete	
  also	
  “supports	
  local	
  and	
  regional	
  sustainable	
  development,	
  employment	
  creation,	
  and	
  eco-­‐innovations”	
  that	
  aid	
  present	
  and	
  future	
  generations	
  by	
  encouraging	
  the	
  expansions	
  of	
  sustainable	
  housing	
  (Hemp	
  News,	
  2011).	
  In	
  addition,	
  Jayeson	
  Hendyrsan,	
  owner	
  of	
  Hemp	
  Natural	
  Building	
  Ltd.,	
  stated	
  that	
  if	
  there	
  were	
  more	
  hempcrete	
  projects	
  in	
  BC,	
  a	
  BC	
  processing	
  facility	
  would	
  likely	
  be	
  constructed	
  to	
  complement	
  the	
  existing	
  BC	
  hemp	
  farms.	
  The	
  increase	
  of	
  demand	
  will	
  likely	
  stimulate	
  a	
  growth	
  of	
  employment,	
  leading	
  to	
  an	
  eventual	
  rise	
  of	
  overall	
  societal	
  welfare.	
  	
  	
   Hempcrete	
  is	
  more	
  lightweight,	
  safer,	
  and	
  easier	
  to	
  work	
  with	
  than	
  concrete,	
  resulting	
  in	
  a	
  less	
  labour	
  intensive	
  manufacturing	
  and	
  installation	
  process	
  (American	
  Lime	
  Technology,	
  2008).	
  Houses	
  built	
  with	
  hempcrete	
  are	
  also	
  “healthier	
  than	
  conventional	
  houses,”	
  and	
  by	
  adapting	
  such	
  material	
  into	
  our	
  new	
  SUB,	
  a	
  more	
  comfortable,	
  aesthetically	
  pleasing	
  living	
  environment	
  can	
   	
   16	
   be	
  created	
  (Pawlik-­‐Kienlen,	
  2008).	
  Hempcrete	
  has	
  all	
  of	
  these	
  beneficial	
  aesthetic	
  qualities	
  for	
  the	
  following	
  reasons:	
  it	
  is	
  non-­‐toxic	
  and	
  mould	
  resistant	
  resulting	
  in	
  better	
  air	
  quality	
  (important	
  as	
  North	
  Americans	
  typically	
  spend	
  90%	
  of	
  the	
  day	
  indoors	
  (Hemp	
  News,	
  2011));	
  it	
  also	
  exhibits	
  high	
  vapour	
  permeability	
  that	
  allows	
  the	
  walls	
  to	
  reduce	
  condensation	
  and	
  moisture	
  in	
  the	
  building	
  and	
  self-­‐regulate	
  the	
  moisture	
  content	
  (American	
  Lime	
  Technology,	
  2008);	
  furthermore,	
  it	
  has	
  the	
  ability	
  to	
  store	
  heat	
  due	
  to	
  a	
  U-­‐value	
  of	
  0.040	
  KW/m;	
  last	
  but	
  not	
  least,	
  it	
  is	
  fire	
  resistant	
  (American	
  Lime	
  Technology,	
  2008);	
  and	
  have	
  the	
  ability	
  to	
  absorb	
  approximately	
  90%	
  of	
  airborne	
  sound.	
  Consequently,	
  it	
  is	
  not	
  surprising	
  that	
  “hemp	
  buildings	
  and	
  insulation	
  products	
  have	
  won	
  numerous	
  awards	
  and	
  commendations	
  from	
  technical	
  and	
  health	
  experts”	
  in	
  Germany,	
  the	
  UK	
  and	
  elsewhere	
  (Hemp	
  News,	
  2011).	
  	
   During	
  the	
  course	
  of	
  this	
  research,	
  20	
  members	
  of	
  society	
  were	
  randomly	
  selected	
  and	
  surveyed	
  (10	
  UBC	
  students,	
  10	
  middle	
  aged	
  adults).	
  The	
  participants	
  were	
  asked	
  if	
  they	
  were	
  aware	
  of	
  hempcrete,	
  and	
  then	
  informed	
  of	
  the	
  aforementioned	
  social	
  benefits.	
  They	
  were	
  also	
  asked	
  if	
  they	
  will	
  consider	
  hempcrete	
  when	
  building	
  a	
  house,	
  commercial	
  building	
  or	
  the	
  like.	
  See	
  Table	
  1	
  below	
  for	
  the	
  results.	
  The	
  people	
  who	
  replied	
  no	
  or	
  were	
  hesitant	
  generally	
  felt	
  they	
  require	
  more	
  information	
  or	
  were	
  happy	
  with	
  the	
  current	
  technology	
  of	
  traditional	
  houses.	
  	
   Table	
  4.1	
  Hempcrete	
  Survey	
  Results	
   	
  	
   Is	
  aware	
  of	
  hempcrete	
  as	
  a	
  building	
  material	
   Would	
  potentially	
  use	
  hempcrete	
  as	
  a	
  building	
  material	
   	
  	
   	
   yes	
  or	
  likely	
   no	
  or	
  hesitant	
  UBC	
  Students,	
  Undergrad	
  (Randomly	
  selected)	
   0	
   8	
   2	
  Adults,	
  30+	
  yrs	
  old	
  (Randomly	
  selected)	
   1	
   6	
   4	
  	
   	
   17	
   Disadvantages	
  	
   	
   The	
  disadvantages	
  of	
  hempcrete	
  are	
  not	
  plentiful	
  in	
  nature,	
  but	
  they	
  do	
  have	
  a	
  significant	
  effect	
  on	
  the	
  industry.	
  Foremost,	
  hempcrete	
  is	
  not	
  ULC	
  (Underwriters	
  Laboratories	
  of	
  Canada)	
  rated.	
  ULC	
  is	
  “a	
  key	
  architect	
  of	
  the	
  Canadian	
  National	
  Safety	
  System,	
  administered	
  by	
  the	
  Standards	
  Council	
  of	
  Canada	
  (SCC)”	
  (ULC).	
  Without	
  testing	
  and	
  certification	
  by	
  the	
  ULC,	
  the	
  government	
  will	
  not	
  take	
  responsibility	
  in	
  the	
  event	
  of	
  a	
  failure	
  (Hendyrsan,	
  2011).	
  As	
  a	
  result,	
  architects	
  are	
  not	
  able	
  to	
  design	
  buildings	
  using	
  hemp	
  that	
  meet	
  building	
  standards,	
  for	
  example,	
  fire	
  rating.	
  	
  	
   The	
  implementation	
  of	
  hempcrete	
  in	
  commercial	
  and	
  residential	
  industries	
  is	
  further	
  limited	
  through	
  US	
  politics	
  that	
  prohibit	
  the	
  manufacturing	
  and	
  processing	
  of	
  hemp.	
  This	
  effect	
  is	
  then	
  rippled	
  through	
  the	
  global	
  market	
  due	
  to	
  the	
  dominant	
  role	
  United	
  States	
  plays	
  on	
  the	
  global	
  market.	
  This	
  ban	
  is	
  attributed	
  to	
  the	
  negatively	
  portrayed	
  image	
  of	
  hemp	
  associated	
  with	
  cannabis	
  (West,	
  1998).	
  As	
  a	
  result,	
  some	
  farmers	
  view	
  the	
  market	
  as	
  volatile	
  and	
  are	
  hesitant	
  to	
  invest	
  in	
  furthering	
  the	
  industry	
  through	
  larger	
  crops	
  and	
  processing	
  plants	
  (West,	
  1998).	
  Consequently,	
  due	
  to	
  the	
  latter	
  reason,	
  the	
  public	
  must	
  be	
  well	
  informed	
  of	
  the	
  difference	
  between	
  hemp	
  and	
  cannabis	
  before	
  any	
  misinterpretations	
  form	
  and	
  cast	
  a	
  negative	
  veil	
  onto	
  the	
  sustainable	
  new	
  SUB.	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   18	
   	
   5.0 CONCLUSION	
  &	
  RECOMMENDATION	
   	
   In	
  conclusion	
  to	
  the	
  environmental,	
  economic,	
  and	
  social	
  analysis’	
  we	
  have	
  conducted	
  on	
  two	
  rapidly	
  renewable	
  materials	
  for	
  use	
  in	
  the	
  construction	
  of	
  the	
  new	
  Student	
  Union	
  Building:	
  	
   • Linoleum	
  consisting	
  of	
  flax	
  seed	
  oil	
  • Hemp	
  for	
  the	
  use	
  in	
  hempcrete	
  	
  	
   We	
  have	
  evaluated	
  each	
  material	
  on	
  its	
  advantages	
  and	
  disadvantages	
  in	
  each	
  of	
  the	
  criteria	
  and	
  have	
  developed	
  strong	
  understanding	
  and	
  recommendations	
  regarding	
  the	
  materials.	
  	
  	
   Linoleum	
  	
   Using	
  the	
  triple	
  bottom	
  analysis	
  technique,	
  it	
  was	
  concluded	
  that	
  although	
  linoleum	
  is	
  not	
  manufactured	
  within	
  500	
  miles	
  of	
  UBC,	
  its	
  strong	
  social	
  befits,	
  relatively	
  neutral	
  carbon	
  footprint,	
  its	
  biodegradable	
  properties	
  and	
  low	
  economic	
  LCC	
  make	
  it	
  a	
  viable	
  solution	
  for	
  a	
  green	
  surface	
  covering.	
  It’s	
  wide	
  range	
  of	
  color	
  and	
  patterns,	
  and	
  versatility	
  make	
  it	
  very	
  appealing	
  for	
  a	
  wide	
  rang	
  of	
  uses.	
  Linoleum	
  also	
  meets	
  all	
  of	
  the	
  MR	
  Credit	
  6	
  criteria	
  for	
  rapidly	
  renewable	
  materials	
  in	
  the	
  LEED	
  scoring	
  platform.	
  All	
  of	
  these	
  unique	
  qualities	
  make	
  linoleum	
  a	
  low	
  maintenance,	
  user	
  friendly	
  solution	
  for	
  the	
  new	
  student	
  union	
  building	
  while	
  helping	
  to	
  achieve	
  LEED	
  Platinum+.	
  	
   Hemp	
   	
  	
   Through	
  the	
  triple	
  bottom	
  line	
  analysis	
  of	
  hemp,	
  it	
  is	
  determined	
  that	
  there	
  are	
  many	
  advantages	
  of	
  hemp;	
  in	
  particular,	
  hempcrete.	
  The	
  advantages	
  are	
  numerous	
  and	
  outweigh	
  the	
  disadvantages	
  in	
  each	
  assessment.	
  The	
  material	
  is	
  environmentally	
  friendly,	
  is	
  high	
  yielding,	
  grows	
  rapidly,	
  fully	
  recyclable,	
  provides	
  a	
  healthy	
  living	
  environment,	
  and	
  is	
  durable	
  and	
  strong.	
  Regarding	
  the	
  new	
  SUB	
  project,	
  walls,	
  floors,	
   	
   19	
   and	
  roofs	
  could	
  be	
  constructed	
  from	
  hempcrete,	
  supported	
  by	
  a	
  structural	
  framework	
  made	
  from	
  concrete,	
  steel,	
  or	
  timber.	
  The	
  material	
  provides	
  a	
  comfortable	
  living	
  space,	
  and	
  the	
  operating	
  costs	
  of	
  the	
  building	
  would	
  be	
  effectively	
  reduced	
  through	
  decreased	
  heating	
  and	
  cooling	
  costs.	
  Although	
  the	
  material	
  (hurds)	
  are	
  currently	
  expensive,	
  a	
  project	
  such	
  as	
  the	
  SUB	
  could	
  be	
  the	
  driving	
  force	
  behind	
  British	
  Columbia	
  constructing	
  a	
  processing	
  facility	
  for	
  BC	
  grown	
  hemp,	
  reducing	
  the	
  material	
  costs	
  and	
  increasing	
  the	
  sustainable	
  factor	
  as	
  transportation	
  could	
  be	
  less	
  than	
  500	
  miles	
  from	
  Vancouver,	
  BC.	
   	
  	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   20	
   	
   REFERENCES	
   	
   	
  American	
  Lime	
  Technology.	
  (2008).	
  Hemp	
  Lime	
  Technology.	
  Retrieved	
  from	
  	
   www.americanlimetec.com/tech_sheets1.php?category=Technical+Data+&Submit=Go	
  	
  Annonymous.	
  (1998,	
  June).	
  Canada	
  will	
  let	
  farmers	
  grow	
  hemp	
  –carefully.	
  Wood	
  Technology.	
   	
   Retrieved	
  from	
  http://proquest.umi.com/pqdweb?index=4&did=30132778&SrchMode	
  	
   =1&sid=1&Fmt=3&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=13015437	
   70&clientId=6993	
  	
  Canadian	
  Green	
  Building	
  Council.	
  (n.d.).	
  Introduction	
  to	
  LEED.	
  Retrieved	
  from	
  www.cagbc.org	
  	
   /AM/Template.cfm?Section=LEED	
  	
  Contempo	
  Floor	
  Coverings,	
  Inc.	
  (n.d.(a)).	
  Linoleum	
  Floors	
  That	
  Will	
  Roll	
  With	
  The	
  Punches.	
   	
   Retrieved	
  from	
  http://www.contempofloorcoverings.com/blog/linoleum-­‐floors-­‐	
   that-­‐will-­‐roll-­‐with-­‐the-­‐	
  punches.html	
  	
  	
  Contempo	
  Floor	
  Coverings,	
  Inc.	
  (n.d.(b)).	
  Benefits	
  &	
  Advantages	
  Linoleum	
  Flooring.	
  Retrieved	
  	
   from	
  http://www.contempofloorcoverings.com/blog/advantages-­‐benefits-­‐linoleum-­‐	
   flooring.html	
  	
  	
  Dell’Isola,	
  A.J.	
  &	
  Kirk,	
  S.J.	
  (1981).	
  Life	
  Cycle	
  Costing	
  for	
  Design	
  Professionals.	
  New	
  York,	
  NY:	
  McGraw	
  Hill.	
  	
  Department	
  of	
  Agricultural	
  Economics.	
  (1998,	
  July).	
  Industrial	
  Hemp:	
  Global	
  Operations,	
  Local	
   	
   Implications.	
  Retrieved	
  from	
  www.uky.edu/Classes/GEN/101/Hemp/HEMP98.PDF	
  	
  Ehrensing,	
  D.T.	
  (1998,	
  May).	
  Feasability	
  of	
  Industrial	
  Hemp	
  Production	
  in	
  the	
  United	
  States	
   	
   Pacific	
  	
  Northwest.	
  Retrieved	
  from	
  http://extension.oregonstate.edu/catalog/html/	
  	
   sb/sb681/#Economic%20Importance:	
  	
  Flax	
  Council	
  of	
  Canada.	
  (n.d.).	
  Canada	
  –	
  A	
  Flax	
  Leader.	
  Retrieved	
  from	
  	
   http://www.flaxcouncil.ca/english/index.jsp?p=what2&mp=what	
  	
  Goran	
  Homes.	
  (n.d.).	
  Biocomposite	
  Sustainable	
  Building	
  Materials	
  –	
  Hempcrete.	
  Retrieved	
  from	
  	
   http://goranhomes.kootenaybusiness.ca/hempcrete.html	
  	
  Government	
  of	
  Alberta.	
  (2011,	
  February	
  2).	
  Industrial	
  Hemp	
  Production	
  in	
  Canada.	
  Retrieved	
  	
   from	
  www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/econ9631	
  	
  Hemp	
  News.	
  (2011,	
  January	
  25).	
  Hemp	
  Insulation	
  and	
  Building	
  Materials.	
  Retrieved	
  from	
   	
   http://hempnews.tv/tag/hempcrete/	
  	
  International	
  Year	
  of	
  Natural	
  Fibers.	
  (2009).	
  Natural	
  Fibers:	
  Hemp.	
  Retrieved	
  from	
  	
   www.naturalfibres2009.org/en/fibres/hemp.html	
  	
   	
   21	
   Jonsson,	
  A.,	
  Tillman,	
  A.M.,	
  &	
  Svensson,	
  T.	
  (1997,	
  May).	
  Life	
  Cycle	
  Assessment	
  of	
  Flooring	
  	
   Materials:	
  Case	
  Study.	
  Technical	
  Environmental	
  Planning.	
  doi:10.1016/S0360-­‐	
   1323(96)00052-­‐2	
  	
  Knudsen,	
  H.N.	
  (2007,	
  December).	
  Sensory	
  and	
  Chemical	
  Evaluation	
  of	
  Odourus	
  Emissions	
  from	
  	
   Building	
  Products	
  with	
  and	
  without	
  Linseed	
  Oil.	
  Department	
  of	
  Health	
  and	
  Confort.	
  42,	
  	
   12,	
  4059-­‐4069.	
  doi:10.1016/j.buildenv.2006.05.009	
  	
  Lewel,	
  F.M.	
  (n.d.).	
  Lightweight	
  Concrete.	
  Retrieved	
  from	
  www.greenhomebuilding.com	
  	
   /pumicecrete.htm	
  	
  Linoleum	
  -­‐	
  Wikipedia,	
  the	
  free	
  encyclopedia.	
  (2011,	
  March	
  20).	
  Wikipedia,	
  the	
  free	
  encyclopedia.	
  	
   Retrieved	
  February	
  9,	
  2011,	
  from	
  http://en.wikipedia.org/wiki/Linoleum	
  	
  	
  Lozada-­‐Figueroa,	
  C.	
  (2004).	
  Flooring	
  materials-­‐life	
  cycle	
  costing	
  for	
  M.E.	
  Rinker,	
  SR.	
  School	
  of	
   	
   Building	
  Construction	
  at	
  the	
  University	
  of	
  Florida.	
  Retrieved	
  from	
  http://etd.fcla.edu/UF	
  	
   /UFE0009020/lozada_c.pdf	
  	
  Manitoba	
  Agriculture,	
  Food	
  and	
  Rural	
  Initiatives.	
  (n.d.).	
  Yield	
  Expectations:	
  Hemp.	
  Retrieved	
  	
   from	
  www.gov.mb.ca/agriculture/crops/hemp/bko05s13.html	
  	
  Mass,	
  E.	
  (2009,	
  June).	
  Hemp.	
  Natural	
  Life.	
  Retrieved	
  from	
  http://proquest.umi.com/pqdweb?	
  	
   index=1&did=1689677021&SrchMode=1&sid=1&Fmt=3&VInst=PROD&VType=PQD&R	
   QT=309&VName=PQD&TS=1301543770&clientId=6993	
  	
  Moussatche,	
  H.,	
  &	
  Languell,	
  J.	
  (2001).	
  Flooring	
  materials-­‐life	
  cycle	
  costing	
  for	
  educational	
  	
   facilities.	
  University	
  of	
  Florida.	
  19,	
  10,	
  333-­‐343.	
  Retrieved	
  from	
  	
   http://www.kntiledesign.com/Upload/File	
  /lifeCyclesCostStudy1.0.pdf	
  	
  Pawlik-­‐Kienlen,	
  L.	
  (2008,	
  January).	
  Environmental	
  and	
  Health	
  Concerns:	
  Modern	
  Mud	
  Huts.	
   	
   Retrieved	
  from	
  http://www.alive.com/6491a17a2.php?subject_bread_cramb=59	
  	
  Petersen,	
  A.	
  K.,	
  &	
  Solberg,	
  B.	
  (2004).	
  Greenhouse	
  gas	
  emissions	
  and	
  costs	
  over	
  the	
  life	
  cycle	
  of	
  	
   wood	
  and	
  alternative	
  flooring	
  materials.	
  Climatic	
  Change	
  ,	
  143-­‐167.	
  64,	
  1-­‐2,	
  143-­‐167.	
  	
   doi:10.1023/B:CLIM.0000024689.70143.79	
  	
  Potting,	
  J.	
  &	
  Blok,	
  K.	
  (1995).	
  Life-­‐cycle	
  assessment	
  of	
  four	
  types	
  of	
  floor	
  covering.	
  Journal	
  of	
  	
   Cleaner	
  Production.	
  201-­‐213.	
  Butterworth-­‐Heinemann	
  Ltd,	
  Oxford,	
  United	
  Kingdom.	
  	
   DOI:10.1016/0959-­‐	
   6526(95)00082-­‐8.	
  	
  Rodie,	
  J.B.	
  (2009,	
  October).	
  Hemp	
  Goes	
  Mainstream.	
  Textile	
  World.	
  159,	
  6,	
  46.	
  Retrieved	
  from	
  	
   http://proquest.umi.com/pqdweb?index=0&did=1868254091&SrchMode=1&sid=3&F	
   mt=3&Vinst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1301520802&clientId=	
   6993	
  	
  	
  Salgado,	
  J.	
  (2011,	
  February	
  4).	
  Linoleum	
  Vs.	
  PVC.	
  Retrieved	
  February	
  4,	
  2011,	
  from	
  	
   	
  www.ehow.com/info_7895956_linoleum-­‐vs-­‐pvc.html	
  	
  The	
  Information	
  Distillery.	
  (n.d.).	
  Hemp.	
  Retrieved	
  from	
  	
   www.informationdistillery.com/hemp.htm	
   	
   22	
   	
  Travel	
  Math.	
  (n.d.).	
  The	
  flight	
  distance	
  from	
  Winnipeg,	
  Canada	
  to	
  Vancouver,	
  Canada.	
  Retrieved	
  	
   from	
  www.travelmath.com/flight-­‐distance/from/Winnipeg,+Canada/to/	
  	
   Vancouver,+Canada	
  	
  ULC.	
  (n.d.).	
  About	
  Us.	
  Retrieved	
  from	
  http://www.ul.com/canada/eng/pages/aboutus/	
  	
   Watson,	
  M.	
  (2010,	
  July	
  8).	
  Sustainable	
  Building	
  Materials.	
  Retrieved	
  from	
  	
   http://equalplanet.co.uk	
  /http:/equalplanet.co.uk/sustainability/building-­‐	
   materials/hello-­‐world/	
  	
  West,	
  D.P.	
  (1998).	
  Hemp	
  and	
  Marijuana:	
  Myths	
  &	
  Realities.	
  Retrieved	
  from	
  www.naihc.org	
  	
   /hemp_information/content/hemp.mj.html	
  	
  Whitis,	
  M.	
  (n.d.).	
  Hemp.	
  Retrieved	
  from	
  www.freelabs.com/~whitis/politics/hemp/	
  	
    	
   23	
   	
   APPENDIX	
  A	
   	
   Shown	
  below	
  are	
  the	
  flow	
  charts	
  for	
  the	
  three	
  major	
  flooring	
  options	
   compared	
  in	
  the	
  environmental	
  analysis	
  of	
  linoleum	
  flooring.	
  	
  These	
  flow	
  charts	
   show	
  the	
  complete	
  environmental	
  life	
  cycle	
  of	
  linoleum,	
  vinyl,	
  and	
  hard	
  wood	
   flooring.	
   	
   	
  Jonsson,	
  A.,	
  Tillman,	
  A.M.,	
  &	
  Svensson,	
  T.	
  (1997,	
  May).	
  Life	
  Cycle	
  Assessment	
  of	
  Flooring	
  Materials:	
  Case	
  Study.	
  Technical	
  Environmental	
  Planning.	
  doi:10.1016/S0360-­‐1323(96)00052-­‐2	
   	
   24	
   	
   	
  Jonsson,	
  A.,	
  Tillman,	
  A.M.,	
  &	
  Svensson,	
  T.	
  (1997,	
  May).	
  Life	
  Cycle	
  Assessment	
  of	
  Flooring	
  Materials:	
  Case	
  Study.	
  Technical	
  Environmental	
  Planning.	
  doi:10.1016/S0360-­‐1323(96)00052-­‐2	
   	
   25	
   	
  Jonsson,	
  A.,	
  Tillman,	
  A.M.,	
  &	
  Svensson,	
  T.	
  (1997,	
  May).	
  Life	
  Cycle	
  Assessment	
  of	
  Flooring	
  Materials:	
  Case	
  Study.	
  Technical	
  Environmental	
  Planning.	
  doi:10.1016/S0360-­‐1323(96)00052-­‐2	
   	
   	
   	
   26	
   The	
  bar	
  graphs	
  pictured	
  below	
  directly	
  compare	
  linoleum,	
  vinyl	
  flooring	
  and	
  solid	
  wood	
  flowing	
  against	
  the	
  four	
  major	
  contributions	
  to	
  GHG	
  emissions:	
   • Resource	
  use	
  	
   • Energy	
  use	
   • Emissions	
   • Waste	
  generation	
  	
  Using	
  these	
  graphs	
  we	
  can	
  directly	
  compare	
  the	
  environmental	
  impact	
  of	
  each	
  flooring	
  solution	
  in	
  the	
  several	
  components	
  that	
  contribute	
  to	
  the	
  overall	
  GHG	
  emssions	
  on	
  a	
  yearly	
  basis.	
   	
   	
   	
   	
  Jonsson,	
  A.,	
  Tillman,	
  A.M.,	
  &	
  Svensson,	
  T.	
  (1997,	
  May).	
  Life	
  Cycle	
  Assessment	
  of	
  Flooring	
  Materials:	
  Case	
  Study.	
  Technical	
  Environmental	
  Planning.	
  doi:10.1016/S0360-­‐1323(96)00052-­‐2	
   	
   	
   27	
   	
  Jonsson,	
  A.,	
  Tillman,	
  A.M.,	
  &	
  Svensson,	
  T.	
  (1997,	
  May).	
  Life	
  Cycle	
  Assessment	
  of	
  Flooring	
  Materials:	
  Case	
  Study.	
  Technical	
  Environmental	
  Planning.	
  doi:10.1016/S0360-­‐1323(96)00052-­‐2	
   	
   	
   28	
   APPENDIX	
  B	
   	
   	
   CO2 produced during manufacturing and processing of hemp, annually: 1.84 tonnes CO2/tonne hemp produced 2.5  tonnes hemp produced/acre (Manitoba) 1.84 tonne CO2/tonne hemp * 2.5 tonne hemp/acre = 4.6 tonne CO2 produced/acre  CO2 absorbed during growth of hemp, annually: 22 tonnes CO2 absorbed/hectare = 8.9 tonnes CO2 absorbed/acre  Conclsuion: Hemp absorbs nearly twice the amount of CO2 than it produces.	
   	
   	
   29	
   APPENDIX	
  C	
   	
   	
   	
  Moussatche,	
  H.,	
  &	
  Languell,	
  J.	
  (2001).	
  Flooring	
  materials-­‐life	
  cycle	
  costing	
  for	
  educational	
  	
   facilities.	
   University	
  of	
  Florida.	
  19,	
  10,	
  333-­‐343.	
  Retrieved	
  from	
  	
   http://www.kntiledesign.com/Upload/File	
  /lifeCyclesCostStudy1.0.pdf	
   	
   30	
   	
   	
   	
   	
   	
   	
  Moussatche,	
  H.,	
  &	
  Languell,	
  J.	
  (2001).	
  Flooring	
  materials-­‐life	
  cycle	
  costing	
  for	
  educational	
  	
   facilities.	
   University	
  of	
  Florida.	
  19,	
  10,	
  333-­‐343.	
  Retrieved	
  from	
  http://www.kntiledesign.com/Upload/File	
  /lifeCyclesCostStudy1.0.pdf	
   	
   	
   	
   31	
   APPENDIX	
  D	
   	
   	
   	
   	
   	
   	
   	
   32	
   	
   	
   	
   	
   33	
   APPENDIX	
  E	
   	
   	
  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.18861.1-0108326/manifest

Comment

Related Items