Open Collections

UBC Undergraduate Research

Evaluation and implementation of practical energy savings measures for UBC’s indoor and outdoor swimming.. Giffin, Jeff 2010-12-31

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
18861-Giffin_J_SEEDS_2010-1.pdf [ 3.65MB ]
Metadata
JSON: 18861-1.0108324.json
JSON-LD: 18861-1.0108324-ld.json
RDF/XML (Pretty): 18861-1.0108324-rdf.xml
RDF/JSON: 18861-1.0108324-rdf.json
Turtle: 18861-1.0108324-turtle.txt
N-Triples: 18861-1.0108324-rdf-ntriples.txt
Original Record: 18861-1.0108324-source.json
Full Text
18861-1.0108324-fulltext.txt
Citation
18861-1.0108324.ris

Full Text

UBC Social Ecological Economic Development Studies (SEEDS) Student Report  Evaluation and Implementation of Practical Energy Savings Measures for UBC’s Indoor and Outdoor Swimming Pools Jeff Giffin  University of British Columbia CEEN 596 Dec 6, 2010  Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report”.       CEEN 596 Final Project Report    Evaluation and Implementation of Practical Energy Savings Measures for UBC’s  Indoor and Outdoor Swimming Pools       Jeff Giffin    December 6th, 2010                     Executive Summary     The following is a proposal to modify the heating system of the Aquatic Center and  Empire Pool such that both pools are heated with steam condensate collected from  neighboring buildings.  The proposed Neighborhood Condensate Heat Recovery  Project  will  provide  100%  of  the  heating  requirements  for  UBC’s  indoor  and  outdoor  swimming  pools  and  generate  immediate  operational  savings  from  reductions in water, energy, and greenhouse gas emissions.     The project will:  • Save an estimated 10,000m3 of water per annum   • Reduce steam production by 13,000 KLBS/yr (1.7% of annual production)  • Reduce natural gas consumption through improved steam system efficiency  of 9400 GJ/yr   • Reduce campus Greenhouse gas emissions by 468 tonnes/yr (0.75%)  • Provide compatible infrastructure for future hot water district energy system   • Cost an estimated $428,000 CAD    • Generate savings for UBC Utilities of $272,000 per annum   • Payback in 1.6 years                                   2     Table of Contents     Executive Summary ................................................................................................................2  Figures.........................................................................................................................................4  Acknowledgments ...................................................................................................................5  Introduction ..............................................................................................................................6  Purpose ................................................................................................................................................ 7  Project Objectives............................................................................................................................. 7  Background................................................................................................................................8  History of Swimming at UBC ......................................................................................................... 9  Utility Bills Assessment .................................................................................................................. 9  Comparison to the Vancouver Aquatic Center......................................................................11  Building Data....................................................................................................................................13  UBC Aquatic Center ..................................................................................................................................... 13  Empire Pool .................................................................................................................................................... 14  Energy Balance and Calculations ..............................................................................................14  General Options for Swimming Pool Heating........................................................................16  Previous Energy Studies..................................................................................................... 18  UBC Awarded a $1.186 million PSECA Grant.........................................................................18  Rising Cost Forced UBC to Return the Grant..........................................................................18  # 1) Exhaust heat reclaim for the indoor pool ................................................................................ 19  # 2) Domestic water heat reclaim......................................................................................................... 19  # 3) Empire pool heat pumps ................................................................................................................. 19  Lessons Learned..............................................................................................................................20  New Energy and Cost Saving Options............................................................................. 21  Guiding Principles ..........................................................................................................................21  Option 1: Reinstatement of Condensate Return System ...................................................21  Option 2: Condensate Heat Scavenging...................................................................................21  Direct use of steam condensate into the pool as make‐up water............................................ 22  Option 3 ­ Neighborhood Condensate Heat Scavenging ....................................................22  Option 3.1 ‐ New Sub building................................................................................................................ 24  Recommendation of Preferred Options........................................................................ 25  Detailed Evaluation of the Neighborhood Condensate Heat Scavenging Project .....26  Capital cost estimate................................................................................................................................... 26  Simple Payback and NPV Analysis........................................................................................................ 27  UBC Powerhouse Schematic Diagram and Energy Balance Before........................................ 28  UBC  Powerhouse  Schematic  Diagram  and  Energy  Balance  After  Aquatic  Center  Upgrades .......................................................................................................................................................... 28   Project Delivery..................................................................................................................... 29  Appendix: SES Consulting Inc. Energy Study ............................................................... 31      3   Figures   Figure 1. UBC 2007 GHG emission Sources1 .................................................................................. 6  Figure 2. UBC Building Energy Performance Index BEPI10 ..................................................... 8  Figure 3. Aquatic Center and Empire Pool average annual utility costs ........................... 9  Figure 4. Aquatics Center and Empire Pool steam consumption history .......................10  Figure 5. Aquatics Center and Empire Pool electrical consumption history.................10  Figure 6. Aquatics Center and Empire Pool water consumption history........................11  Figure 7. Aquatics Center and Empire Pool annual energy and water cost history...11  Figure 8. UBC and City of Vancouver Aquatic Center energy intensity ...........................12  Figure 9. UBC and City of Vancouver Aquatic Center energy cost intensity..................12  Figure 10. Steam consumption breakdown. ................................................................................15  Figure 11. Aquatics Center Energy Balance.................................................................................16  Figure 12. Small scale condensate heat recovery schematic................................................22  Figure 13. Neighborhood Condensate Heat Scavenging Schematic Diagram ...............23  Figure 14. UBC Powerhouse Schematic Diagram and Energy Balance9 ..........................27  Figure  15.  UBC  Powerhouse  Schematic  Diagram  and  Energy  Balance  After  Aquatic  Center Upgrades 9....................................................................................................................................27      4     Acknowledgments     I  would  like  to  thank  the  University  of  British  Columbia  for  its  the  dedication  to  leadership in sustainability.  Never before has a university so thoroughly embraced  a role as an agent of change for the good of the planet.     I  would  also  like  to  thank  my  beloved  fiancée,  Dr.  Judith  Maxwell  Silverman,  who  challenges me to be my best.       5     Introduction     The  University  of  British  Columbia  (UBC)  aspires  to  become  a  world  leader  in  sustainability  education,  research,  and  operationalization.    To  achieve  this  ambitious  goal  UBC  has  recently  announced  the  following  aggressive  Greenhouse  Gas (GHG) reduction targets.     33% below 2007 levels by 2015  67% below 2007 levels by 2020   100% below 2007 levels by 2050    The targets are based on Scope 1 and 2 GHG emissions eligible to be offset under the  British Columbia Public Sector Carbon Neutrality Law ‐ Bill 44.  Scope 1 emissions  are  defined  as  direct  fossil  fuel  consumption  on  campus  while  Scope  2  is  indirect  emissions from electricity consumption.  UBC’s 2007 GHG baseline is 61,090 tonnes  of CO2 equivalent1.       UBC Vancouver Campus   2007 GHG emission sources          Baseline is 61,090 tonnes   1%  6%  2%   2%  Natural Gas for steam   Natural Gas for direct use   11%   Fleet Gasoline   78%   Fleet Biodiesel  Electricty   Paper   Figure 1. UBC 2007 GHG emission Sources1        To  achieve  the  2015  33%  reduction  target  the  following  key  initiatives  have  been  proposed or committed.    1) Bioenergy Research and Demonstration project – Committed   2) Continuous Optimization of Building – Committed   3) Steam to Hot Water Conversion of District Heating System – Proposed         6   The Steam to Hot Water Conversion has received Executive Level 1 and 2 approvals  and will be seeking Level 1 Board of Governors approval in February 2011.     In  addition  to  the  three  initiatives  listed  above  the  University  has  begun  to  transform  the  campus  in  to  a  living  laboratory  for  sustainability.    This  initiative  involves  leveraging  the  expertise  of  faculty  (including  researchers),  students,  staff,  and industry to solve local and international problems.    Purpose   The  purpose  of  this  CEEN  596  project  is  to  save  money  and  greenhouse  gas  emissions for the University of British Columbia through reductions in energy and  water consumption at the Aquatic Center swimming pools.      Project Objectives   This project has four main objectives:     1. To  investigate  and  explain  the  revocation  of  the  Public  Sector  Energy  Conservation  Agreement  (PSECA)  funding  that  was  granted  in  2008  for  improvements  to  the  Aquatic  Center  that  were  recommended  by  an  energy  audit performed by the consulting firm SES Inc.   2. To produce an improved energy audit of the Aquatic Center using previously  unappreciated infrastructure and utility data.   3. To make recommendations for new energy saving upgrade options including  an analysis of capital cost and net present value (NPV) estimates.   4. To  deliver  the  project,  which  summarily  includes  securing  the  necessary  funding,  hiring  of  required  personnel  (project  managers,  mechanical  designers and construction trades), measurement and verification of savings.       7     Background      Together  UBC’s  Aquatic  Center  and  Empire  Pool  are  the  highest  energy  intensity  buildings on campus; together consuming 21 million LBS of steam annually (2.7% of  the  total  steam  produced).  To  provide  this  steam  UBC’s  central  steam  plant  burns  27,000  GJ  of  natural  gas,  which  results  in  1,350  tonnes  of  GHG  emissions  per  year  (2.2% of UBC’s total Scope 1 and 2 emissions).        KWh/M2/Yr   Building Energy Performance Index ( BEPI )   1,400    1,200    1,000    800    600    400    200    ‐      Electricity   Hea.ng     Aqua.c center and  Empire pool    Average UBC  Building   Average BC  Household    Figure 2. UBC Building Energy Performance Index BEPI10        As an ancillary department run by Athletics, the Aquatic Center and Empire Pool are  “revenue” customers and are billed by UBC Utilities for steam, electricity, and water.  Steam is billed at $21.63/KLBS, electricity is billed at $0.039/KWh plus $5.9/KW for  peak  demand  charges,  and  water  is  billed  $0.29/ft3.  Annual  utility  bills  exceed  $630,000/yr,  and  at  $445,000/yr,  steam  represents  the  lion’s  share  and  is  the  primary  focus  for  this  report.    Due  partially  to  these  high  operational  costs  the  Athletics  Department  is  currently  advocating  for  a  new  pool  and  Aquatic  Center.   The  location,  timing,  and  funding of this  new building is uncertain  and  a best‐case  scenario  for  Athletics  would  see  the  existing  Aquatic  Center  pools  renewed  or  decommissioned in under 3 years.         8   Aquatic Center and Empire Pool:  Average annual utility costs  $139,000   Steam indoor pool   $306,000   Electrical indoor and  outdoor pools  Water indoor and  outdoor pools   $90,000   Steam outdoor pool   $96,000  Figure 3. Aquatic Center and Empire Pool average annual utility costs          History of Swimming at UBC    UBC’s  50  x  20  meter  outdoor  pool,  the  Empire  Pool,  was  constructed  in  1954  to  provide  an  event  platform  for  the  British  Empire  Games.    Excavation  dirt  was  deposited  in  a  pile,  which  has  since  become  a  sentimental  campus  staple  know  as  the knoll.  In 1978 the 5,300m2  (57,000ft2) Aquatic Center was completed providing  an  indoor  50  x  25  meter  lap  pool  and  a  20  X  10  meter  baby  pool.    Currently  both  pools are heavily used.  Furthermore, the pools are of significant importance to the  UBC  Athletics  Department  as  over  the  past  12  years  the  UBC  women’s  and  men’s  swimming teams have won 11 CIS championships each.     Utility Bills Assessment   Historical utility data was obtained from UBC Utilities records2. The Aquatic Center  and  Empire  Pool  have  separate  steam  meters  but  share  an  electrical  and  water  meter.  Variations in annual consumption are believed to be primarily due to meter  reading issues.         9   LBS STEAM/YEAR   Annual Steam Consumption   20,000,000  18,000,000  16,000,000  14,000,000  12,000,000  10,000,000  8,000,000  6,000,000  4,000,000  2,000,000  0   Steam indoor pool    Steam outdoor pool       Figure 4. Aquatics Center and Empire Pool steam consumption history   In  2007  the  indoor  pool  was  closed  for  1  month  and  meter  data  is  missing  for  2  months.  Also the outdoor pool began year round operation which has double steam  consumption3.        Annual Electrical Consumption   KWH's/YEAR   2,000,000  1,500,000  1,000,000  500,000  0   Electrical indoor and outdoor pools  Figure 5. Aquatics Center and Empire Pool electrical consumption history      Electrical consumption is very consistent both hourly and annually which suggests  fans  and  motors  are  running  constantly  day  and  night.    This  is  not  surprising  as  large motors for HVAC equipment and pool filtering are run continuously.       10   Cubic Feet/Year   Annual Water Consumption   4,000,000  3,500,000  3,000,000  2,500,000  2,000,000  1,500,000  1,000,000  500,000  0  2005   2006   2007   2008   2009  Forecast   Water indoor and outdoor pools      Figure 6. Aquatics Center and Empire Pool water consumption history   Water consumption has increased significantly in recent years.  It is believed this is  due to increased evaporation losses and leakage from both pools.  The 2006 outlier  is due to a broken water meter.       UBC Aquatic center and Empire Pool  Annual energy and water costs  $800,000  $600,000  $400,000  $200,000  $0  2005   2006   2007   2008   2009   Steam indoor pool    Electrical indoor and outdoor pools   Water indoor and outdoor pools   Empire Pool Steam    Figure 7. Aquatics Center and Empire Pool annual energy and water cost history          Comparison to the Vancouver Aquatic Center    The  City  of  Vancouver  Aquatic  Center  is  similar  in  both  size  (6018m2)  and  age  to  UBC’s  Aquatic  Center.    Data  on  energy  use  and  cost  was  kindly  provided  by  Ian  Harvey4  with  the  City  of  Vancouver.    A  Building  Energy  Performance  Index  (BEPI)  was  calculated  for  both  the  UBC  and  Vancouver  Aquatic  Center  and  these  values      11   were used to compare the energy intensity of the two facilities.  Unfortunately water  data for the Vancouver Aquatic Center is unavailable.       KWh/M^2/Year    Annual Energy Intensity (BEPI)   1400  1200  1000  800  600  400  200  0  2004   2005   2006   2007   2008   2009   UBC Aquatics BEPI (KWh's/M^2/yr)  Vancouver Aquatics BEPI (KWh's/M^2/yr)  Figure 8. UBC and City of Vancouver Aquatic Center energy intensity      The  comparison  of  energy  intensity  above  shows  that  UBC’s  Aquatic  Center  consumes  approximately  25%  more  energy  per  square  meter  than  Vancouver’s  Aquatic Center.        Annual Energy Cost Intensity  $/M^2/Year    $100.00  $80.00  $60.00  $40.00  $20.00  $0.00  2004   2005   2006   2007   2008   2009   UBC Aquatics Energy Cost $/M^2/yr  Vancouver Aquatics Energy Cost $/M^2/yr  Figure 9. UBC and City of Vancouver Aquatic Center energy cost intensity.         12   On a per square meter basis UBC Athletics is paying 2.5 times more for energy than  the City of Vancouver.  There are 2 primary reasons for this large discrepancy:    1. Increased energy intensity (BEPI):  UBC’s  facility  consumes  25%  more  energy  per  square  meter  then  the  Vancouver Aquatic Center.     2. Price of energy:  UBC  Utilities  currently  charges  the  Aquatic  Center  $21.63/KLBS  of  steam.  Steam is produced at the UBC central steam plant at a pressure of 165 PSIG  with  an  energy  content  of  1,264  KJ/LBS.  This  translates  into  a  cost  of  $17.11/GJ.   However  at  the  pool,  the steam heat  exchangers are only 83% efficient and  the remaining energy, (now in the from of 80°C condensate water) is wasted  because  it  is  disposed  of  via  the  sewers.    Due  to  this  loss,  UBC  Athletics  is  effectively paying $20.50/GJ to heat the indoor pool.  In contrast, the City of  Vancouver Aquatic Center is paying  $8.50/GJ for natural gas to heat its pool.    Note: For UBC Utilities the all‐in cost to deliver energy through the steam system is  approximately  $16.50/GJ  and  represents  one  of  the  primary  drivers  behind  the  campus wide steam to hot water conversion.    Building Data   UBC Aquatic Center  The indoor pool has 2 mechanical rooms, 2 steam rooms, 2 saunas, a hot tub, office  space, a fitness room, and a diatomaceous pool filter. The pool is maintained at 28°C  year  round  and  air  temperatures  range  from  22‐24°C5.  Typically  indoor  pools  maintain  higher  air  temperatures  in  the  range  of  27‐29°C,  which  minimizes  evaporative heat losses, make‐up water, and pool chemical use.   There are several  reasons UBC’s Aquatics Center has lower air temperatures.     1. Only 1 out of 6 steam coils in the main air‐handling unit (HV‐1) servicing the  pool area are functional, this means air temperatures can not keep up the set  points5.  2. Event spectators and lifeguard personnel become sleepy and uncomfortable  at the higher air temperatures4.     To  prevent  structural  damage  humidity  levels  are  maintained  below  60%  via  two  large  air‐handling  units  running  at  all  times  (HV‐1  and  HV‐2).  This  method  of  dehumidification is extremely energy costly.  In contrast, most swimming pools use  a heat pump based dehumidification system to capture latent heat and return it to  the  pool4.    Due  to  potential  health  risks  associated  with  build  up  of  nitrogen  trichloride,  as  well  as  other  toxic  gases  produced  when  chlorine  reacts  with  ammonia, ASHRAE recommends public swimming pools with spectator areas to be  maintained at a minimum of 0.54 cfm, approximately 8 air changes per hour6.      13   d to pressure) (kg/  À1  For unoccupied pools: E ¼ ðC þ 0:35V a ÞAp DP=Y  where C is a coefficient which depends on barometric p    (C = 72 at 5000 ft elevation and C = 69 at sea level). Air temperatures in the weight room and office space fluctuate from 18°C at night to  22°C  during  the  day.  A  small  amount  of  air  conditioning  is  provided  to  the  office  For occupied pools: space only.     Siemens  DDC  controls  and  pneumatic  actuators  control  the  majority  of  building  E ¼ ð0:068 þ 0:063F u ÞAp DP=I systems including exterior lighting, air temperature set points and steam valves for  heat  exchangers.  Several  control  nodes  are  connected  to  UBC’s  central  building  where Fu is the pool utilization factor (Fu = Amax/ApN); management system (BMS).    Ama pool area Ap increased by waves area; I is the latent h Empire Pool   The  outdoor  Empire  Pool  is  adjacent  to  the  Aquatic  Center  and  has  a  separate  evaporation of water (kJ/kg). mechanical room with a single steam heat exchanger, steam meter, pumps and sand  A different model has been proposed by Hannsen and M filter.    The  pool  is  maintained  at  27°C  year  round.  In  the  fall  of  2009  a  tent  was  in [1]. Their formula for unoccupied pools may be written installed over the outdoor pool.    )   e/kg of dry air) Due  to  a  broken  condensate  return  line  presently  steam  0:06T a E ¼ 3  10À5 V 1=3 ðe0:06T w Àall  Fof ethe  Þ condensate  generated  after  heating  both  the  pools  is  directed  to  the a sewers.    This  results  in   approximately  10,000  cubic  meters  of  wasted  75°C  water  each  year.  To  prevent 0:5 2 0:5 where V ¼ ½Va2 þ ð0:12ð4ð1 À Fa Þ À ðT a À T w ÞÞ Þ Š ; Tw damage to the sewer system steam condensate from the outdoor pool is quenched  by mixing it with fresh water.  The indoor pool steam condensate is not quenched.  water surface temperature (8C); T is air temperature (8C); a  is air relative humidity (–). Energy Balance and Calculations   Shah [10] evaporative  proposedheat  a correlation based on the analogy b Various  methods  exist  to  calculate  losses  for  occupied  swimming  7 pools .  Based on literature reviews the following evaporative heat loss formula was  heat and mass transfer for unoccupied pools, later modi used from M.M. Shal8.   improve accuracy:   Step 1.   E ¼ KAp rw ðrr À rw Þ1=3 ðW w À W r Þ    K = 290 constant   2)  Ap = Area of pool (ft where r is the air density (kg/m3); rr is the room air density Pr = Density of air in room (LBS/ft3)   rw is the saturated air density; W is the specific humidity Pw = Density air at pool surface (LBS/ft3)  moisture/kg of dry air); and K is a constant. Ww = Humidity ratio at surface (LBS of moisture/LBS of dry air)   Wr = Humidity ratio in air (LBS of moisture/LBS of dry air)  In Eq. (5), K = 40 if rr À rw < 0.02; K = 35 if rr À rw > 0   The correlation was evaluated against undisturbed wat When the data is analyzed  .333 * (0.02385‐0.00991) = 632 LBS/hr  E = 290*15,608*0.07054*(0.07339‐0.07054) test data from various sources, covering a wide range of   temperatures (7.1–94.2 8C), air temperatures (6.1–34.6 8C) Step 2.  To include the evaporative effect from pool use the following empirical formula was  relative humidities (28–98%). added7.  Shah recommends Eq. (6) for indoor water pool E = Unoccupided Evaporation rate * (160*N/Ap+1)  undisturbed surfaces and unforced airflow over those surf N = Average number of pool occupants = 20     He also proposed an empirical correlation based on te    cupied pools are of  from various sources for occupied pools:  14   E ¼ Ap ð0:113 À 0:0000175Ap =N þ 0:000059 DPÞ  When the data is analyzed  E = 632 * (160*20/15608+1) = 761 LBS/hr     Step 3.  Annual Energy consumption = LBS/HR evaporation * BTU/LBS * Hours/yr  Enthalpy of evaporation at surface of water = 1047.2 BTU/LBS    = 761 LBS/hr * 1047.2 BTU/LB * 8760 = 6,986 MMBTU/YR    Literature  reviews  and  the  outdoor  pool  steam  meter  data  confirm  the  calculation  above is reasonably accurate.     Using the above calculation with metered data from the outdoor pool and previous  energy audits a break‐down of approximate steam use was generated.  The results  show that ~65% of the steam delivered is used to heat the pools (Fig. 10).     Aquatic center and Empire pool  steam consumption    Indoor Pool Heating   Outdoor Pool Heating    9%  34%   18%   Perimeter Radiant Heating  Air Heating    5%  2%   Hot tub Heating    31%   DHW   Steam Rooms   Figure 10. Steam consumption breakdown.                                   15                 To summarize the building audit, and to aid the reader going forward, a schematic of  the  UBC  Aquatic  Center  energy  INPUTS  and  OUTPUTS  was  generated.  Figure  11  depicts the approximate energy balance for both pools. Note: additional losses from  the building envelope are assumed to account for the difference between INPUT and  OUTPUT energy.    Figure 11. Aquatics Center Energy Balance        General Options for Swimming Pool Heating     High‐energy  consumption  and  low  exergy  heating  requirements  make  swimming  pools  around  the  world  excellent  candidates  for  alternative  heating  methods.    The  following  is  short  review  of  heating  and  energy  saving  options  that  should  be  considered  first  for  all  new  indoor  and  outdoor  swimming  pools  regardless  of  location.        16     1) Collocate swimming pools near to existing waste heat source.  (e.g. UBC’s Ice  Arena  has  approximately  300  KW  of  20°C  waste  heat  from  the  ice  refrigeration system)   2) Outdoor pools should have a pool cover.  A cover can save up to 10% of the  annual energy. 4  3) Indoor  pools  should  consider  using  a  medium  pressure  UV  light  to  destroy  unwanted and potentially toxic chloramines. This will reduce the requirement  for make‐up air and significantly reduce energy consumption.4   4) A heat pump based dehumidification system should be required for all indoor  pools and will pay for its self through tremendous energy, water and chemical  savings.4   5) Air‐to‐Air heat recovery should also be considered to preheat cooler make‐up  air with warm exhaust air4.  Potential systems are reviewed below:   a. Glycol  Loop  –  simple,  low  cost,  low  maintenance  system  ~40%  efficient  b. Heat  Pipe  –  simple,  higher  costs,  low  maintenance  system  ~  60%  efficient  c. Air‐to‐Air  Plate  Heat  Exchanger  –  simple,  higher  costs,  higher  maintenance system ~ 80% efficient  d. BKM  Reverse  Flow  Heat  Recovery  –  complex  multiple  plate  system,  higher costs, higher maintenance ~ 90% efficient       If  heating  is  still  required  after  implementing  these  options  the  following  heating  options  should  be  considered.    Note  that  the  economic,  social,  and  environmental  benefit  of  each  option  will  depend  on  the  location  in  question.    There  is  no  prescriptive solution to heating a pool.    1) Solar thermal – Works exceptionally well on swimming pools in almost every  region on earth and usually can pay for it’s self in less than 5 years4.   The only  reason  not  to  use  solar  thermal  system  is  that  something  better  exists,  for  example waste heat.   2) Geothermal  (all  types)  –  Functions  well  to  heat  pools,  however  the  facilities  must consider the price of electricity, GHG impacts and the conductivity of the  ground before implementing.   3) Air‐source heat pumps – Great for pools in temperate climates like Vancouver.  COP will be less then geothermal but cost will also be less.  Electricity price,  GHG impacts, and noise are issues that need to be considered.   4) Biomass  –  Should  be  considered  if  abundantly  available,  easy  to  access,  and  cheap.  Emissions and maintenance are issues that should be considered.     5) Condensing Natural Gas Boilers – Regardless of the primary heating system a  natural  gas  boiler  will  likely  still  be  required  as  back  up.    This  boiler  can  be  condensing  or  non‐condensing,  but  with  condensing  boilers  efficiencies  of  over 90% can be expected.       17     Previous Energy Studies     In  October  of  2008  SES  Consulting  Inc.  was  hired  to  conduct  a  thorough  review  of  the  UBC  Aquatic  Center  and  Empire  Pool  energy  consumption  and  in  doing  delivered  a  long  list  of  energy  saving  recommendations  (Appendix  1).  The  most  significant projects are listed below.     Table 1. SES Consulting Inc. energy audit recommendations summary   Rank  Short list recommended options  Costs  Payback  GJ/Saved  1  Pool Heat Reclaim  $630,000  3.2  8180  2  Domestic Water Heat Reclaim  $250,000  6.8  1580  Heat Pump Heating for Empire Pool  $150,000  3.3  2680  Hot Tub Heat Reclaim  $15,000  4.7  155  $1,045,000  3.7  12595  3 4  Total Mechanical    In  total  SES  Consulting  Inc.  recommended  the  release  of  $1.186  million  to  implement  a  wide  range  of  energy  savings  options  that  would  annually  save  UBC  Athletics  $320,000  through  a  fuel  use  reduction  of  12,366  GJ,  which  equates  to  a  reduction of 870 tonnes of GHG emissions.  The study was later submitted as part of  a  grant  application  to  the  Public  Sector  Energy  and  Conservation  Agreement  (PSECA).    UBC Awarded a $1.186 million PSECA Grant   In March of 2009 UBC was awarded a $1.186 million PSECA grant to implement the  energy  saving  options  presented  in  the  SES  Consulting  Inc.  energy  audit.    UBC  immediately  appointed  a  project  manager  and  issued  an  RFP  for  a  mechanical  designer, which was won by Stantec Engineering.    Rising Cost Forced UBC to Return the Grant   In  September  2009  UBC  returned  the  PSECA  grant.    It’s  rare  for  a  granting  organization to award over $1 million for an energy retrofit project, it’s even more  unusual  for  the  grantee  to  give  the  money  back!    To  find  out  what  went  wrong  I  conducted  numerous  interviews  with  key  UBC  stakeholders  including  the  Sustainability  Office,  Project  Services,  the  Aquatic  Center  as  well  as  Stantec  personnel.   In short, unexpected and unexamined infrastructure issues drove the costs of each  project  up  until  they  exceeded  PSECA’s  allowable  payback  window.    Below  is  detailed review of each project and the main reasons they were cancelled.      18     # 1) Exhaust heat reclaim for the indoor pool   To  prevent  structural  damage  to  the  building,  indoor  humidity  levels  must  be  maintained <61%.  Currently the indoor pool achieves this goal by exhausting large  volumes of warm moist air and replacing it with cool dry outdoor air.  The process  wastes  a  tremendous  amount  of  heat.    SES  Consulting  Inc.  recommended  the  installation of a dehumidification system and passive air to air heat recovery wheel.   What went wrong:  1. Asbestos was found in and around air handling unit #1 (HV‐1).  2. 5 of 6 steam coils in the HV‐1 were found to be leaking steam and needed to  be decommissioned and replaced.  3. New  VSD  motors  and  DDC  controls  were  required  to  realize  the  predicted  savings.  4. Pool leakage was not properly accounted for in the original study.    # 2) Domestic water heat reclaim   This was a very complicated measure that included the installation of air to water  heat  recovery  coils  in  the  exhaust  of  air‐handling  unit  #2  (HV‐2)  and  a  solar  hot  water  installation  on  the  roof  connected  to  domestic  hot  water  and  the  swimming  pool.   What went wrong:   1. The roof required significant structural upgrades to support the solar panels.   2. HV‐2 required significant reconfigurations and upgrades.    # 3) Empire pool heat pumps  This project would install 70 tons of air source heat pumps to heat the outdoor pool.  What went wrong   1. Noise from the heat pumps was too loud for competitive swim meets and the  only suitable location for the heat pumps was on the pool deck.   2. To  allow  for  swim  team  practices  the  outdoor  pool  is  now  run  year‐round  which  limits  the  effectiveness  of  air  source  heat  pumps,  as  they  would  not  perform well in the winter.   3. The  additional  electric  load  required  by  the  heat  pumps  would  have  triggered significant upgrades to the buildings electrical systems.       19     Lessons Learned    In conclusion, through this re‐examination of the UBC Aquatics Center energy use ‐  and  re‐evaluation  of  the  motives  of  all  the  interested  parties  ‐  at  least  four  salient  lessons  can  be  learned.    These  must  be  respected  if  future  energy  saving  efforts  regarding the UBC Aquatic Center are to be made.  Those lessons are:    1. Be careful when dealing with granting organizations such as PSECA who are  looking for short paybacks and can move projects elsewhere.     2. Make  sure  the  beneficiary  of  the  project  is  onboard  and  committed  to  the  projects success.     3. Be weary of transferring loads from one energy source to another as it may  trigger large and expensive upgrades.     4. Make sure to explore all options and look beyond the traditional boundaries  of individual building energy use.       20   New Energy and Cost Saving Options      Guiding Principles    1. Review options not considered by SES Consulting Inc.   2. Recommend implementation if evaluation indicates   a. Payback is less than 2 years   b. Compatible with the campus Hot Water Conversion Project   Option 1: Reinstatement of Condensate Return System   Over  the  past  decade  UBC  Utilities  and  the  Campus  Sustainability  Office  have  worked  hard  to  return  steam  condensate  back  to  the  powerhouse  and  presently  over  70%  of  the  steam  that  leaves  the  plant  is  returned  and  reheated.    As  mentioned, the condensate return piping from both the indoor and outdoor pools is  currently  decommissioned.  This  results  in  approximately  21  million  LBS/yr  (10,000M2/yr) of wasted 75 degree Celsius water.     Restoring  the  condensate  system  would  return  90%  of  the  condensate,  annually  saving  UBC  Utilities  $10,000  in  water,  $2,000  in  steam  chemicals,  and  $7,000  in  energy and carbon liabilities.       To  fully  capture  all  of  the  condensate  from  both  pools  over  140  meters  of  2  inch  condensate  piping  will  need  to  be  restored.    In  addition  4  new  condensate  pumps  must be installed as well as a new condensate receiver for the Empire pool.  The cost  of this restoration is expected to exceed $400,000, which will result in a payback of  21 years.  As such this option violates the guiding principles.   Option 2: Condensate Heat Scavenging  A  common  practice  with  steam  district  energy  systems  is  to  install  a  second  heat  exchanger to recover the leftover heat in the steam condensate.  Typically these are  shell  and  tube  style,  however,  recently  plate  and  frame  heat  exchangers  have  become  popular.  The  main  advantage  of  plate  and  frame  is  their  greater  heat  transfer efficiency and small size to surface area ratio, which allows them to fit into  tight mechanical room spaces.     This  project  would  install  a  small  28  KW  (stainless‐steel  brazed  plate  heat  exchanger,  2  circulation  pumps  and  200  feet  of  insulated  PEX  (cross‐linked  polyethylene)  piping  to  exchange  heat  from  the  condensate  tank  to  the  pool  filter  tank (Fig. 12).        21   Figure 12. Small scale condensate heat recovery schematic.      It  is  anticipated  that  the  project  would  reduce  the  average  temperature  of  the  condensate tank from 75°C to 33°C (167°F to 91.4°F) with just over 11,000 KLBS/yr  condensate  entering  the  receiving  tank  the  annual  energy  savings  for  athletics  are  estimated 832 KLBS of steam and $18,000/yr. This translates into annual savings at  the powerhouse of 1070 GJ and 53 tonnes of GHG emissions.     The preliminary capital cost for the project is estimated at $10,000, translating to a  payback of 0.56 years.      Direct use of steam condensate into the pool as make‐up water   Another  option  briefly  considered  by  this  report  is  to  pump  steam  condensate  directly into the pool for use as pool make‐up water. However, the UBC steam plant  uses two types of amines, Cyclohexamine and Morpholine, to inhibit corrosion in the  condensate return piping.  Although these products are found in concentrations of  <  10  parts  per  million  (ppm)  they  are  toxic  in  higher  concentrations.  Options  for  removing the amine were reviewed but in the end the concept was abandoned due  to safety concerns.   Option 3 ­ Neighborhood Condensate Heat Scavenging   This project has the potential to provide 100% of the heating requirements for both  swimming  pools.  The  project  would  install  supply  and  return  pipes,  pumps  and  plate  heat  exchangers  to  divert  returning  condensate  from  neighboring  buildings     22   through plate heat exchangers located in each pools mechanical room (Fig. 13) and  then back to the powerhouse.  Once back at the powerhouse the reduced condensate  temperatures will allow for greater flue gas heat recovery in the boiler economizers  (Fig.  15)  and  improve  the  overall  steam  system  efficiency.      Additional  benefits  of  the  project  include  repairing  the  broken  condensate  return  line  and  compatibility  with planned future hot water heating infrastructure.      Figure 13. Neighborhood Condensate Heat Scavenging Schematic Diagram       To  achieve  the  goal  of  heating  both  pools  approximately  14,000  GJ/yr  of  annual  energy  will  be  required.    With  average  condensate  temperatures  of  75°C  and  pool  temperatures  of  28°C  a  ΔT  of  43°C  (77°F)  across  the  plate  heat  exchangers  is  achievable and approximately 175,000 KLBS/yr of condensate will be required. This  large  volume  of  condensate  will  come  from  the  nearest  18  buildings  listed  below  (Table 2).     Reduced  steam  production  and  increased  efficiency  in  the  boiler  economizers  will  annually  save  9400  GJ  of  natural  gas,  468  tonnes  of  GHG  emissions,  10,000  cubic  meters of water and $272,000. A preliminary capital cost estimate for the project is  $428,000 for a simple payback of 1.6 years (Table 5).    Note: The above simple payback assumes UBC Utilities continues to bill Athletics at  the same $20.50/GJ rate until the project is paid off at which point a new rate will be  negotiated (Table 5).                23       Table 2.  Annual Condensate return flows of buildings neighboring the pools.  !"#$%&' Neighborhood condensate heat recovery UBC hospital (Koerner, Detwiller, Purdy )  !"#$%&'(#)"*$ /012 IRC Biomedical Research COPP, FRIEDMAN, MEDICAL SCIENCES BLOCK C J.B. MacDonald David Strangway WOODWARD BIOMEDICAL LIBRARY Line loss condensate Life Sciences Center CHBE Pulp and paper Aquatic Center + Empire Pool Wesbrook Building and Annex Cunningham building + Addition Total condensate available  ()*+,-.&+/012 36010  +,-. 3,4, 5128 2563 17266 7561 2264 4016 28400 51035 13074 2743 6573 8844 6807 192283  22*/3,45&  !T °F 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77  2773 439 215 395 197 1329 582 174 309 2187 3930 1007 211 506 681 524 14806  67,45& 2925 464 227 417 208 1403 614 184 326 2307 4146 1062 223 534 718 553 15620   Note: Condensate line meters at the powerhouse confirm average annual returns for  the southeast loop are over 300,000 KLBS/yr.    Option 3.1 ‐ New Sub building   The  new  24,000  m2  Student  Union  Building  (SUB)  will  be  located  adjacent  to  the  Aquatic  Center  and  completed  in  the  spring  of  2014.    The  building  will  be  built  to  LEED  Gold  standards  and  partake  in  the  living  building  challenge  which  requires  low  GHG  forms  of  heating.    As  mentioned,  the  future  of  the  Aquatic  Center  and  Empire Pool is uncertain and both pools might be decommissioned in 3 years.  If this  happens significant heating capacity, pumps and plate heat exchangers will become  available for the SUB.     It is anticipated that the new SUB building will have a building energy performance  index (BEPI) for heating of 50 KWh/m2/yr and annually require 4,300 GJ.     The  new  SUB  will  be  built  to  UBC  code  using  a  low  temperature  hydronic  heating  system  and  if  connected  to  the  condensate  return  would  require  approximately  61,000 KLBS/yr.  Assuming this displaces high efficiency natural gas boilers annual  savings are expected of 2,600 GJ, 129 tonnes of GHG’s and $24,000.   It is assumed  that  any  costs  to  hook  up  the  system  would  be  paid  out  of  the  new  SUB  project  budget.     This  option  has  been  presented  to  the  mechanical  designers  for  the  new  SUB  who  are considering it in conjuncture with solar thermal panels. Backup heating will still  be  required  as  the  condensate  system  is  powered  by  electric  pumps,  which  will  cease to operate during power outages.      24     Recommendation of Preferred Options     Based  on  the  evaluation  criteria  below  the  preferred  option  is  to  heat  both  pools  with  returning  condensate  from  other  buildings.    The  Neighborhood  Condensate  Heat Recovery Project will provide will provide 100% of the heating requirements  for both of UBC’s pools and generate immediate operational savings from reductions  in water, energy, and greenhouse gas emissions.     The project will:  • Save an estimated 10,000m3 of water per annum   • Reduce steam production by 13,000 KLBS/yr (1.7% of annual production)  • Reduce natural gas consumption through improved steam system efficiency  of 9400 GJ/yr   • Reduce campus Greenhouse gas emissions by 468 tonnes/yr (0.75%)  • Provide compatible infrastructure for future hot water district energy system   • Cost an estimated $428,000 CAD    • Generate savings for UBC Utilities of $272,000 per annum   • Payback in 1.6 years     Table 3. Evaluation Criteria   Decision Criteria Under 2 year Payback Compatibility with future energy sources Compatibility with planned buildings (New Sub and New Student Residences) Funding potential Total Yes Preferred option     Option 1 No  Option 2 Yes  No  No  No  No  No 0  Yes 1  Option 3 Yes  Option 3.1 Yes  Yes  Yes  Yes Yes  Yes Yes 4  √  4 √  25        Detailed  Evaluation  of  the  Neighborhood  Condensate  Heat  Scavenging  Project  Capital cost estimate   A  capital  cost  estimate  of  $427,823  was  calculated  for  the  project  with  the  assistance of the consultant Marian Lis, PEng.      Table 4 Neighborhood Condensate Heat Scavenging Capital Cost Estimate          26     Simple Payback and NPV Analysis    Despite  the fact  that the Aquatic  Center may  be decommissioned  in the next  three  years,  a  simple  payback  analysis  shows  that  the  project  will  have  paid  for  itself  in  savings after only 1.6 years (Table 5).  Additionally I have calculated the Net Present  Value  of  this  project  over  a  10  year  period  using  a  discount  rate  of  5.75%.    This  demonstrates a present value of potential savings of $1.6 million for UBC Utilities in  the event that the pools remain in existence.      Table 5. Simple Payback and NPV Analysis    AQUATIC CENTER POOL PROJECT SUMMARY    YEAR  2010  1) POWERHOUSE BAU (2008 BASELINE)  2011  $/YR  NATURAL GAS CONSUMPTION/YR STEAM PRODUCTION/YR STEAM SOLD TO ATHLETICS FOR POOL USE COST OF STEAM SOLD (UTILITIES)  1,000,000 770,000 13,427 13,427  GJ KLBS/YR KLBS/YR KLBS/YR  NET PROFITS (LOSS) PER YEAR  $/YR  $ $  290,426 173,259  $ $  290,426 173,259  $  117,167  $  117,167  $ $ $ $  61,102 25,796 12,000 290,426  $ $  389,324 272,157  $ $ $ $  75,386 31,827 12,000 290,426  $ $  409,639 292,472  2) POWERHOUSE POST POOL PROJECT     STEAM REDUCTION/YR STEAM PRODUCTION/YR PERCENT REDUCTION NATURAL GAS CONSUMPTION/YR PERCENT REDUCTION ENERGY SAVED/YR GHG EMISSIONS SAVED WATER/CHEMICAL SAVED CONDENSATE SOLD TO ATHLETICS FOR POOL USE PROJECT COST SIMPLE PAYBACK NET PROFIT LOSS PER YEAR CASH FLOW COMPARED TO BAU  $  10 YEAR NPV Discount rate  13,427 756,573 1.7% 990,585 0.94% 9415 468 10000 174377 428,000 1.6  KLBS/YR KLBS/YR % GJ % GJ tonnes cubic meters KLBS/YR $  428,000  $ $  (428,000) (428,000)  $1,599,039 5.75%  3) POWERHOUSE POST POOL PROJECT AND NEW SUB BUILDING STEAM REDUCTION/YR STEAM PRODUCTION/YR PERCENT REDUCTION NATURAL GAS CONSUMPTION/YR (GJ) ENERGY SAVED/YR POOL + NEW SUB GHG EMISSIONS SAVED WATER/CHEMICAL SAVED CONDENSATE SOLD TO ATHLETICS FOR POOL USE PROJECT COST  13427 756573 1.7% 993184 11616 578 10000 174377 428,000  $  SIMPLE PAYBACK NET PROFIT LOSS PER YEAR CASH FLOW COMPARED TO BAU  $  428,000  $ $  (428,000) (428,000)  1.5  10 YEAR NPV Discount rate New Sub GJ Energy Saved New Sub Tonnes of GHG's Saved $ saved/YR  KLBS/YR KLBS/YR % GJ GJ tonnes/yr cubic meters KLBS/YR  $1,750,344 5.75%  $  2599 129 23,986        27       UBC Powerhouse Schematic Diagram and Energy Balance Before          UBC POWERHOUSE ENERGY EFFICIENCY CALCULATOR AND PROCESS FLOW DIAGRAM Steam Generation Make up Water  87900 30%  100 30%  LBS/hr % 26370    61530 167  LBS/hr  50  Degrees F  1.3  MMBTU/hr  26370 130 80  LBS/hr Degrees F Delta T  26370 220 90  LBS/hr Degrees F Delta T  61530 198 31  LBS/hr Degrees F Delta T  Degrees °F Percent of flue gas  4%,;"(<%,=) $>,%;() ;"#(';()<%'()) ,%;"?%,@))  Q3  45'(%) .267:)  LBS/hr Condensate Return Degrees F  250 70%  2.1       45'(%) .2678)  Deaerator vent (loss) 1.98 MMBTU/hr  MMBTU/hr     !"#$%#&'(%)*%(+,#)) -./01233-)     87900 4280708 15936187 49 181  LBS/hr HEX 1 and 2 BTU/hr Feedwater BTU/hr !T °F Boiler Feedwater °F     9%'%,'(",) 87900 230  Q4 4.22 3516  2;"#"=>A%,)  LBS/hr  Q2  6.9     MMBTU/hr  Degrees F !T °F  78  MMBTU/hr  Boiler Feedwater °F  LBS/hr Steam to deaerator  LBS/hr  87900     260     1758 2.11  LBS/hr Ancillary steam line (loss) MMBTU/hr  82626 99 11.59  LBS/HR Steam to Campus MMBTU/hr Steam to Campus @ 165 PSI MMBTU/hr Condensate Return + Make up water  Delta T (F) Steam Temp F LBS/hr  106 366 87900  N efficiency of Steam plant = E Steam out - E Condensate/Make up water in / E of natural gas  Boiler input MMBTU/HR  82.55  B">5%,)) C)'#$)D)  80.8%  Degree F Percent of flue gas  Q1  108.2  NG MMBTU/hr calculation MeteredNG consumption  108.2           Figure 14. UBC Powerhouse Schematic Diagram and Energy Balance9       UBC  Powerhouse  Schematic  Diagram  and  Energy  Balance  After  Aquatic  Center  Upgrades   UBC POWERHOUSE POST POOL PROJECT Steam Generation Make up Water  86367 30%  100 30%  LBS/hr % 25910 50  LBS/hr  4%,;"(<%,=) $>,%;() ;"#(';()<%'()) ,%;"?%,@))  Degrees F    25910 130 80  60457 142  Degrees °F Percent of flue gas  Q3  LBS/hr Degrees F Delta T  25910 217 87  60457 198 56  MMBTU/hr          45'(%) .2678)     LBS/hr Degrees F Delta T  86367 5661095 14203265 66 164  LBS/hr HEX 1 and 2 BTU/hr Feedwater BTU/hr !T °F Boiler Feedwater °F     9%'%,'(",) 86367 230  Q4 4.25 3548  2;"#"=>A%,)  LBS/hr  Q2  7.6  MMBTU/hr  Degrees F !T °F  MMBTU/hr LBS/hr Steam to deaerator  87     Boiler Feedwater °F 252 LBS/hr 86367        1758 2.11  LBS/hr Ancillary steam line (loss) MMBTU/hr  81060 97 9.86  LBS/HR Steam to Campus MMBTU/hr Steam to Campus @ 165 PSI MMBTU/hr Condensate Return + Make up water  Delta T (F) Steam Temp F LBS/hr  N efficiency of Steam plant = E Steam out - E Condensate/Make up water in / E of natural gas  Boiler input MMBTU/HR 81.78  B">5%,)) C)'#$)D)  81.5%     Degree F Percent of flue gas     LBS/hr Degrees F Delta T  !"#$%#&'(%)*%(+,#)) -./01233-)  Deaerator vent (loss) 1.98 MMBTU/hr  2.1  45'(%) .267:)  LBS/hr Condensate Return Degrees F  250 70%  Q1  107.2  MMBTU/hr calculation  114 366 86367  Figure 15. UBC Powerhouse Schematic Diagram and Energy Balance After Aquatic Center Upgrades 9         28     Project Delivery   The  proposed  Neighborhood  Condensate  Recovery  Project  has  received  unanimous support form UBC Building Operations and Utilities personal and $50K  in  seed  funding  has  been  committed  by  them.    A  project  manager  has  been  appointed,  a  Request  for  Proposals  has  been  issued  to  private  sector  engineering  firms,  and  AME  Consulting  Inc.  has  been  selected  for  detailed  design  and  capital  budgeting confirmation.      Additionally it has been confirmed that the Utilities steam fitter crew can install the  outdoor piping and that the labor involved will be free to the project.  However, this  crew  is  only  available  from  February  to  April  2011  and  some  equipment  such  as  direct buried condensate piping requires at least two months lead‐time.  Thus there  is a strong incentive to move quickly to order the piping and implement this project.  The scheduled completion date for the project is April 1st 2011.                        29     References:      1. UBC GHG emissions inventory 2007  http://www.sustain.ubc.ca/sites/default/files/uploads/pdfs/2007GHGInven torySummary.pdf             2. Personal communications ‐ Anne‐Marie Novak, Accounting Supervisor UBC  Utilities  3. Personal communications – Lloyd Campbell, Manager UBC Aquatic center.   4. Personal communications ‐ Sean Healy, Supervisor Aquatic Services and Ian  Harvey, Manager of Major Maintenance for the City of Vancouver.   5. Personal communications – Mark Scott, Manager Building Management  System    6. ASHRAE addendum n to ASHRAE standard 62‐2001  http://www.ashrae.org/content/ASHRAE/ASHRAE/ArticleAltFormat/2004 18145036_347.pdf     7.    F. Asdrubali, A scale model to evaluate water evaporation from indoor  swimming pools. Energy and Buildings, Volume 41, Issue 3, March 2009,  Pages 311‐319  http://www.sciencedirect.com/science?_ob=DownloadURL&_method=confir m&_ArticleListID=1569348634&_uoikey=B6V2V‐4TPHRPR‐ 1&count=1&_docType=FLA&_acct=C000050221&_version=1&_userid=10&m d5=376a704d87b1e33ed625fe25255566d1    8. M.M. Shah, Prediction of evaporation from occupied indoor swimming pools,  Energy and Buildings 35 (2003) 707–713.    9. UBC Steam plant ABB hourly data and annual reports     10. NRCAN Survey of House hold energy use 2007  http://oee.nrcan.gc.ca/Publications/statistics/sheu‐summary07/pdf/sheu‐ summary07.pdf                  30      Appendix: SES Consulting Inc. Energy Study       UBC Aquatic Centre and Empire Pool Energy Study Alliance  Energy Study for: UBC Aquatic Centre and Empire Pool Attention:  Kavie Toor Senior Business Development Manager Prepared by: SES Consulting Inc.  October 3, 2008        31   UBC Aquatic Centre– 6121 University Blvd, Vancouver, BC - Energy Study -  TABLE OF CONTENTS 1. !  1.1! 1.2! 1.3! 1.4!  2.! 3.!  Executive Summary ..................................................................................................................2! Background of the Project ....................................................................................................................... 2! Précis of Project....................................................................................................................................... 2! Summary Report Table............................................................................................................................ 2! Allocation of Funds .................................................................................................................................. 2!  Customer Information ...............................................................................................................3! Background Description of Facility, Hardware and Systems ....................................................3! 3.1! Overview .................................................................................................................................................. 3! 3.2! Mechanical Systems ................................................................................................................................ 3! 3.3! Electrical System ..................................................................................................................................... 3! 3.4! Lighting System ....................................................................................................................................... 4! 3.5! Energy Analysis ....................................................................................................................................... 4! 4.! Energy Conservation Opportunities ..........................................................................................7! 4.1! Mechanical Upgrades .............................................................................................................................. 7! 4.1.1 Pool Heat Reclaim ............................................................................................................................... 7! 4.1.2 Domestic Water Heat Reclaim ............................................................................................................ 7! 4.1.3 Empire Pool Heat Pumps .................................................................................................................... 8! 4.1.4 Hot Tub Heat Reclaim ......................................................................................................................... 8! 4.1.5 Mechanical Opportunity Summary ...................................................................................................... 8! 4.1.6 Investigation of Alternative Technologies ............................................................................................ 8! 4.2! DDC Controls ........................................................................................................................................... 9! 4.2.1 HV Scheduling ..................................................................................................................................... 9! 4.2.2 Pool turnover night mode..................................................................................................................... 9! 4.2.3 Outdoor Air Lockout ............................................................................................................................. 9! 4.2.4 Domestic Water Night Setback ............................................................................................................ 9! 4.2.5 Load Shedding and Energy Monitoring ............................................................................................. 10! 4.2.6 DDC Opportunity Summary ............................................................................................................... 10! 4.3! Lighting Opportunities ............................................................................................................................ 10! 5.! Energy Consulting and Project Management .........................................................................10!  Appendices     A.  Mechanical & Motor Spreadsheets  Project Summary Mechanical Systems Steam Summary  A1 A2 A3  B.  Quantum Lighting Audit  B1  C.  Acknowledgements  C1  32   1. Executive Summary 1.1 Background of the Project SES Consulting Inc. was asked to provide an Energy Study to analyse the present operation of the UBC Aquatic Centre and Empire Pool (UBC AQC). The 5,300 m2 (57,000 ft2) single storey aquatic centre operates 50 meter indoor and outdoor pools with some office space and a fitness centre in the basement. The facility currently has a combination of linear fluorescent, high intensity discharge (HID), and compact florescent lighting. Heating, ventilation, and air conditioning (HVAC) is provided by five air handling units, of which only one of these units has DX air conditioning. The facility currently produces 1,203 Tonnes of Annual CO2 Emissions based on the following energy consumption data. Normalized Annual Utility Costs (Inc taxes) and Consumption for the UBC AQC for 2006 and 2007 are: Historical Data Steam Electricity Total  Energy Use (GJ) 2007 2006 17,090 22,406 6,754 7,451 23,843 29,856  BEPI (MJ/m2) 2007 2006 3,240 4,248 1,281 1,413 4,521 5,661  BEPI (kWh/ft2) 2007 2006 84 110 33 36 117 146  Cost ($) 2007 2006 $ 446,381 $ 585,241 $ 85,042 $ 95,279 $ 531,424 $ 680,520  The aim of the study was to analyse the existing operation of the building to try to seek out opportunities to reduce energy consumption, and to analyse the costs associated with these potential projects. Note that 2007 data was used as the baseline for analysing project savings as this data represents current consumption, though savings estimates will increase significantly if the normal energy usage is closer to 2006 levels.  1.2 Précis of Project We have identified a number of excellent opportunities to cut the overall energy consumption for the facility in half. This accomplishment will require a large mechanical retrofit to the pool heating and ventilation systems, so that energy used to heat the pool, can be reclaimed before it is exhausted with the ventilation systems. In addition, we propose to heat the outdoor pool with air source heat pumps, and to add smaller heat reclaim systems to transfer heat to domestic hot water, and the hot tub. To supplement this heat reclaim, we propose to add solar water heating to the facility, and to tie all of these concepts together through DDC controls. After adding sensors, and intelligent programming, we can use DDC to monitor and verify the estimated energy savings, in addition to creating alarms if the system is not performing as planned. These projects represent a tremendous energy and greenhouse gas saving opportunity, and we highly recommend that the client pursue incentive opportunities from Eco Energy, BC Hydro, and the PSECA program to help implement these measures.  1.3 Summary Report Table The costs associated with each of these projects are summarized below: Project Summary Measure Description DDC Savings Mechanical Savings Lighting Savings Total Savings  Capital Cost $69,000 $1,045,000 $72,300 $1,186,000  Annual Savings Savings Electricity Electricity Gas Payback BEPI GHG (GJe) (kWh) (GJ) MJ / m! (Tonnes) $23,200 377,000 1,357 308 3.0 316 29 $282,000 (724,810) (2,609) 12,595 3.7 1,893 841 $15,200 198,761 716 4.8 136 4 $320,000 (149,049) (537) 12,903 3.7 2,350 874  1.4 Allocation of Funds These projects have the potential to reduce the energy footprint of the facility by 51.9% resulting in a building energy performance index (BEPI) of 2,171 MJ/m2. If all of these projects meet with your approval, then we recommend that $1,186,000 be budgeted for the implementation of capital projects. We estimate that these projects will increase the electrical load by (149,049) kWh, while saving 12,903 GJ of steam. The net result of this is 12,366 GJ of annual energy savings. When the UBC AQC achieves these savings, 870 Tonnes of annual greenhouse gas (GHG) emissions (72.6% GHG reduction) will be eliminated while saving $320,000 each year. 2        33   2. Customer Information UBC Aquatic Centre  6121 University Blvd Vancouver, B.C. V6T 1Z1  Contact Information:  Kavie Toor, Senior Business Development Manager Phone: (604) 822 – 1688 Email: ktoor@interchange.ubc.ca  3. Background Description of Facility, Hardware and Systems 3.1 Overview The UBC AQC, constructed in 1974, is a single storey building occupied seven days a week from approximately 7 am to 10 pm. The facility contains a large 50 m indoor pool, as well as a 55 m seasonal outdoor pool, some office space, a fitness centre and locker rooms. UBC Utilities Customer Number - Aquatic Centre UBC Utilities Customer Number - Empire Pool  236 240  Facility type Facility age  Swimming Pool / Fitness Centre Constructed 1974  Total floor area and number of floors  5,274 m2 / 1 storey + basement  3.2 Mechanical Systems Heating, ventilation and air conditioning (HVAC) for the UBC AQC is provided by five air handling units. The largest air handling unit (HV-1) has a 40 hp supply fan, and a 20 hp return fan serving the indoor pool natatorium. Other units serve the pool mezzanine viewing area, the fitness and locker rooms, and the lobby areas. All of these units have steam heating coils, and only MZ-1 serving the office area has mechanical cooling which is provided by a 20 ton DX air conditioning unit. The indoor pool area is also heated using a hot water radiant heating system. Circulating and heating pool water uses a tremendous amount of energy in this complex. Each of the large 50 meter pools has a 50 hp pool pump, as well as a number of filter pumps. These pumps alone represent almost 700,000 kWh of electricity consumption. Each of the pools, as well as the hot tub have dedicated steam heat exchangers to heat pool water. Steam is provided to the facility through underground piping from a central UBC boiler plant that is located on campus. Domestic hot water for the UBC AQC is provided by another dedicated steam heat exchanger, and is circulated with a domestic hot water recirculation pump. The facility is equipped with a limited amount of building automation controls using a Siemens DDC system with pneumatic actuation of most devices. This DDC system provides complete control of most building systems including the exterior lighting, air handling units and steam valves for the heat exchangers. All major equipment is listed on pages A2-A3, indicating annual energy consumption, operating schedule, and area served.  3.3 Electrical System The facility has a 12.47 / 600 kVA electrical service. The peak monthly billing demand for this facility is approximately 250 kW in the winter, and rises up to 290 kW during the summer. Monthly demand and consumption profiles can be found in Section 3.5. Billing is according to BC Hydro rate schedule 1200.  3        34   3.4 Lighting System Please refer to the attached Quantum Lighting report (Appendix B) for a description of the lighting systems of this building. For the analysis of proportional energy use, we have assumed lighting density of 1.3 W/ft2.  3.5 Energy Analysis The main purpose of our study was to identify potential areas for conservation, and to analyze the feasibility of these projects. To understand the patterns of energy consumption, we have analyzed the electrical consumption for the building. The following energy analysis for the facility is based on UBC Utilities records. These graphs highlight trends in energy consumption that help us identify areas for potential conservation.  +,-./"!012$3! 456!78.$9,:! 6"%9/"!;<":9/,:$<! !"#$%& %!"  !"#$%&!'()*!!!  %"" $!" $""  $""!  #!"  $""<  #""  $""=  !"  &'(  )*+  ,'-  ./-  ,'0  &1(  &12  .13  4*/  567  89:  ;*6  In Figure 3.5A we notice the facility demand has had a relatively consistent load profile for the last several years with a peak load of approximately 290 kW that drops down to 250 kW during the winter. This reflects the relatively constant use of the facility with additional pool pumps and some AC equipment contributing to a higher peak demand during the summer. The load factor for the facility is above 0.80, showing us that the majority of equipment in the building is running 24 hours a day.  +,-./"!012?3!456!78.$9,:!6"%9/"!;<":9/,:$<!6@%A.#B9,@% %"">"""  =)>  $!">""" $"">"""  $""!  #!">"""  $""< $""=  #"">""" !">"""  &'(  )*+  ,'-  ./-  ,'0  &1(  &12  .13  4*/  567  89:  ;*6  In Figure 3.5B we notice that monthly electrical consumption is quite unusual, with large variations for a given month from year to year. This trend results from two factors: changing facility loads as a result of seasonal activities, and the variations in the meter reading date from month to month. When we look at the daily consumption trend, it appears that the daily consumption is more consistent at around 5,000 kWh per day during the peak season, dropping down to 4,500 kWh per day during April. 4        35   The monthly steam consumption data provided by UBC Utilities can be seen in Figure 3.5 C. Once again we see wide variation from year to year, with a generally obvious seasonal heating profile. This variation indicates an opportunity to reduce unnecessary consumption, for if it was possible one year, then it should be possible to repeat this behavior again. While annual steam consumption appears to vary dramatically from year to year, we have assumed an annual baseline of 17,000 GJ as we feel that the addition of monitoring and exception reporting technology will raise alarms and allow UBC plant operations to solve the problems causing this usage. We feel the 2006 consumption of 22,000 GJ could have been avoided through better management and control systems.  #$%&'(!)*+,-! ./0!12&34$,! 0(54'(!356!789$'(! :;;<! =;54><?!@4(38! 0;5A&894$;5! :';B$<( '$""" &$!"" &$"""  !"  %$!""  %""!  %$"""  %""> %""?  #$!""  %""@ #$""" !""  ()*  +,-  .)/  01/  .)2  (3*  (34  035  6,1  789  :;<  =,8  The monthly steam consumption data for the Outdoor Empire Pool can be seen in Figure 3.5 D. This trend shows us a few very important observations. First and foremost, it appears that the steam heating for the outdoor pool was left on during the past winter, using approximately 4,500 GJ (over $100,000 of steam at market rates) when the pool was not being used. Secondly steam consumption seems to have dropped to virtually nothing during the summer of 2008. We highly recommend investigation of the steam metering and consumption for this outdoor pool, as we conclude that either the billing data is incorrect, or the steam heating has recently been left on in the winter and turned off in the summer. If we assume that past trends are accurate, then the outdoor pool represents 4,000 GJ of annual steam consumption on average.  5        36   We have also analyzed the breakdown of energy consumption by building system in order to estimate the percentage of load each system represents. In Figure 3.5 E, the electricity consumption profile shows us that the lighting, ventilation, and pool pumps are the most significant electrical consumers in the building. These areas will be a focus of our energy savings measures.  In Figure 3.5 F, the overall energy consumption chart shows our estimate of the energy consumption breakdown associated with electrical usage and building heating. We see that estimated steam usage accounts for 72% of the total energy consumption for this facility, so this will be a focus for our study. These charts help us identify that we need to have a hard look at mechanical systems in addition to lighting opportunities to identify the areas with major potential for conservation.  6        37   4. Energy Conservation Opportunities The primary purpose of this study was to identify energy conservation opportunities at the UBC AQC. We have identified and analyzed many potential opportunities to save energy and cost by modifying and upgrading mechanical systems at this facility, and we will explain these ideas in detail in this section. For financial savings estimates, we have used a base rate of $22.00/GJ for steam plus an average cost of the BC Carbon Tax of $25 / tonne. For electricity, current BC Hydro electricity rates of $7.23 / kW for demand and $0.0354 / kWh for consumption have been used, plus an additional 0.5% in rate riders. For Greenhouse Gas estimates, we have used emissions factors of 0.022 kg CO2e / kWh of electricity in BC. For steam use, we have used the natural gas emissions factor of 51.0 kg CO2e / GJ and assumed an overall system efficiency of 75% to account for combustion and transmission losses resulting in a final steam emission factor of 68.0 kg CO2e / GJ. Once again we note for emphasis, that we are assuming a baseline steam consumption of roughly 17,000 GJ per year for all of these savings estimates. Savings potential may be much higher than those described below if annual steam consumption is normally at 22,000 GJ as it was in 2006.  4.1 Mechanical Upgrades The following measures describe a major upgrade to most of the pool water heating and ventilation systems. The changes we propose will significantly improve the efficiency of the water and air heating, as well as providing better overall control of the ventilation and humidity in the facility. 4.1.1 Pool Heat Reclaim This project involves a retrofit of the main pool ventilation unit (HV-1) to add a large air to air heat exchanger, and a heat pump to be used as a dehumidification reclaim device. In addition to this equipment a new heating loop will be required to transfer heat to the water for the indoor lap pool. The essential concept with this measure is to reclaim the heat in the very moist air that is normally exhausted from the pool (using a very efficient heat pump in cooling mode that rejects heat into the pool), and then to run the dehumidified return air through a passive air to air heat exchanger (with an efficiency of 80%) to significantly reduce the heating of outside air. In addition, using this strategy, it will be possible to reduce ventilation rates as outdoor air will no longer be required for dehumidification purposes. This measure is a very complicated upgrade, and will require additional piping, ductwork, equipment, controls and electrical wiring that we estimate will cost $630,000 including design fees. According to our analysis, this will result in savings of 8,177 GJ of steam, while adding and 366,200 kWh (1,318 GJe) for a net energy savings of 6,858 GJ. This translates into a net savings of $197,000 per year for a simple payback of 3.2 years. Estimated GHG savings from this item alone are 548 tonnes per year. Note: All measures that propose reduced ventilation rates will still remain well above ASHRAE recommended levels for pool applications. 4.1.2 Domestic Water Heat Reclaim This project involves a retrofit of the pool mezzanine ventilation unit (HV-2) to add a heat pump used as a dehumidification reclaim device. This unit will be connected to the pool water heating loop, and will also have a small secondary pump that will pre-heat domestic water when there is demand. The essential concept with this measure is similar to above, but we will also add a solar water heating component to this design. By adding solar panels to this same water heating loop, we will allow the sun to preheat domestic hot water whenever it is possible, and will use control valves to re-direct water flow to the main pool if excess heat is available. When both the main pool and the domestic water heating system are not calling for heat, both dehumidification heat pumps will shut down. Once again, this measure is a very complicated upgrade, and will require additional ductwork, equipment, controls and electrical wiring that we estimate will cost $250,000. According to our analysis, this will result in savings of 1,580 GJ of steam, while adding 94,100 kWh (339 GJe) of electricity for a net energy savings of 1,241 GJ. This translates into an overall savings of $37,000 per year for a simple payback of 6.8 years. Of particular note, this project will qualify for an Eco Energy Incentive from the federal government because of the solar water heating component, though this funding has not been included in our analysis. Estimated GHG savings from this item are 105 tonnes per year. 7        38   4.1.3 Empire Pool Heat Pumps The empire pool is currently heated with steam from April through October, for 7 months per year. This system is particularly well suited to the installation of air to water heat pumps, as the heat is required for the pool when outdoor temperatures are generally above 10°C. This measure involves the recommended installation of 70 tons of modular air source heat pumps for heating the empire pool, using the existing steam heating system as a back-up. Assuming an average coefficient of performance of 3.0 on these heat pumps, we will add 248,100 kWh (893 GJe) of electricity, while saving at least 75% of the current steam consumption for the Empire Pool, for a net energy savings of 1,786 GJ. Once again, this measure is a very complicated upgrade, and will require additional piping, equipment, controls and electrical wiring that we estimate will cost $150,000. According to our analysis, this will result in savings of $45,000 per year for a simple payback of 3.3 years. Estimated GHG savings from this item are 177 tonnes per year. 4.1.4 Hot Tub Heat Reclaim A smaller project worth considering is the installation of an air source heat pump in the pool pump room in the basement to be used instead of steam to heat the hot tub. Assuming a coefficient of performance of 3.0, we will add 16,400 kWh (59 GJe), while saving 100% of the current steam consumption for the hot tub heat exchanger, for a net energy savings of 96 GJ. This measure will require additional piping, equipment, controls and electrical wiring that we estimate will cost $15,000. According to our analysis, this will result in savings of $3,200 per year for a simple payback of 4.7 years. Estimated GHG savings from this item are 10 tonnes per year. 4.1.5 Mechanical Opportunity Summary We have summarized the DDC energy conservation measures below. 4.1 Item 4.1.1 4.1.2 4.1.3 4.1.4 4.1  Mechanical Measure Summary Description Cost Payback Pool Heat Reclaim $ 630,000 3.2 Domestic Water Heat Reclaim $ 250,000 6.8 Heat Pump Heating of the Empire Pool $ 150,000 3.3 Hot Tub Heat Reclaim $ 15,000 4.7 Total Mechanical $ 1,045,000 3.7  $ $ 197,000 $ 37,000 $ 45,200 $ 3,210 $ 282,000  Savings GJ kWh 8,180 (366,237) 1,580 (94,111) 2,680 (248,089) 155 (16,373) 12,595 (724,810)  GHG 548 105 177 10 840  4.1.6 Investigation of Alternative Technologies We investigated a number of other technology solutions for the facility that have not been presented under our recommended measures, as longer paybacks made these solutions less attractive. First we looked into ground source heat pump technology as a potential solution to heating pool water and ventilation air. We quickly came to the conclusion that it would be less cost effective to use geo-exchange than dehumidification reclaim. Estimated ground source heat pump capital costs are in the ballpark of $2,500,000 for a system sized to handle the current energy use for the UBC AQC, as we would require approximately 400 boreholes, and a major mechanical equipment upgrade for the facility. According to our brief analysis, this system would have a very rough payback of over 6 years, and would achieve a net energy savings of 12,800 GJ per year. In addition, if the site does not have a large aquifer present to provide a continuous source of heat, there is a risk of freezing the ground with extended use of the system without switching to air conditioning in the summer. The combination of higher capital costs, longer payback and increased risk have caused us to reject this option. Finally we investigated micro steam turbines for electricity generation. The main heating distribution system at UBC is a high pressure steam, distributed to the various facilities at between 80 and 100 psi. At each building the steam is routed through a pressure reducing valve (PRV) and this wasted energy can be used to generate electricity. Once again we have rejected this idea due to very large capital costs and long payback periods. 8        39   4.2 DDC Controls The existing Siemens DDC system at the facility provides some relatively low capital cost opportunities to implement a number of new energy savings features that we recommend to customize the controls based on our review of building operations. While these projects are relatively small in comparison to the proposed mechanical upgrades, we feel that these projects remain good opportunities, and will be important tools to monitor and verify the overall savings from section 4.1. These features are described below with an estimate of cost and energy savings provided for each measure. 4.2.1 HV Scheduling Currently only one of the five air handling units is scheduled, and the others operate 24/7. The challenge with scheduling this equipment in a pool environment is that humidity levels build up and can cause mouldy damp conditions to fester. This said, we believe it will be possible to schedule off the pool mezzanine, and the locker / fitness air handling units when the space is unoccupied and humidity levels are below 70% relative humidity. This project will require the addition of new humidity sensors in the critical areas served by these units. This will result in savings of 40,800 kWh of electricity and $1,450 per year in energy expenses. The estimated cost of adding these sensors is $6,000, resulting in a simple payback of 4.1 years. 4.2.2 Pool turnover night mode Currently each of the main 50 hp pool pumps operates 24/7 to maintain design turnover rates as required to maintain health standards. In addition, the outdoor Empire Pool pump remains on all winter even though the pool is not used for swimming. According to our brief analysis, turnover rates for the pool are far higher than required by health standards. We recommend slightly reduced (10%) circulation during operating hours and larger reductions after hours or when not in use (50% lap pool and 50% empire pool). Reductions still meet or exceed BC Health Act standards. This project will require the addition of new variable speed drives for the equipment the two pool pumps, and that this equipment be added to DDC control to implement this strategy. This will result in savings of 309,000 kWh of electricity and $11,000 per year in energy expenses. The estimated cost of adding this upgrade is $35,000, resulting in a simple payback of 3.2 years. This addition also has the added bonus of allowing us to implement automated load shedding on these pumps. 4.2.3 Outdoor Air Lockout While there is an existing Outside Air Temperature (OAT) strategy in place it is currently configured at a set point of 18ºC, and it is not turning off the heating pumps. Especially with the implementation of the proposed heat reclaim and air source heat pump systems, we feel it will be very important to re-program the steam heat exchanger control valves to ensure steam is not being used while the other systems are operating. This will result in pump savings of 26,800 kWh of electricity, 101 GJ of steam and $3,600 per year in energy expenses. The estimated cost of adding this upgrade is $10,000, resulting in a simple payback of 2.8 years. 4.2.4 Domestic Water Night Setback This project would schedule the domestic hot water recirculation pump off while the facility is unoccupied. While we estimate this will save a very small amount of electrical pump energy (131 kWh), it will be much more important to stop sending hot water through the building all night long to lose heat. We estimate that this will save at least 5% of the remaining steam used to heat DHW, representing savings of approximately 14 GJ per year. This represents a total of $360 per year in energy savings. We estimate the addition of this pump to DDC will cost $1,000 to implement, giving this project a payback of 2.8 years.  9        40   4.2.5 Load Shedding and Energy Monitoring This project would add dashboard energy monitoring links for both steam and electricity to the DDC system, and would implement real time energy alarms when daily consumption rises above setpoint. Campus electricity peak demand would be linked to this system in a program to implement electrical load shedding when instantaneous demand rises above the current monthly peak. This facility has a number of non critical loads such as the pool pumps and de-humidification heat pumps that could be added to a load shedding program that would empower the facility to response to campus wide peaks, and to begin to manage overall campus peak demand. In addition, we have noted that huge surges in steam consumption have occurred in this facility in the past couple of years that may have been mitigated if DDC alarms had notified plant operations of the exceptional energy use. We highly recommend installing additional controls to the existing DDC system to enable these monitoring and load shedding features. We estimate that this could save 10% of the annual steam consumption remaining in the facility or 193 GJ per year, and could easily reduce campus peak demand by 20 kW per month or more representing $6,800 annually. The expected cost of this measure is $17,000, resulting in a simple payback of 2.5 years. 4.2.6 DDC Opportunity Summary We have summarized the DDC energy conservation measures below. 4.2 Item 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2  DDC Measure Summary Description HV Scheduling Pool turnover night mode Outdoor Air Lockout Domestic Hot Water Night Setback Energy Monitoring and Load Shedding Total DDC  Savings Cost Payback $ 6,000 4.1 $ 35,000 3.2 $ 10,000 2.8 $ 1,000 2.8 $ 17,000 2.5 $ 69,000 3.0  $ $ 1,450 $ 11,000 $ 3,600 $ 357 $ 6,780 $ 23,200  GJ  101 13.5 193 308  kWh 40,800 309,000 26,800 131 20.0 377,000  GHG 0.9 6.8 7.5 0.9 13.1 29  4.3 Lighting Opportunities Please refer to the attached Quantum Lighting report (Appendix B) for a description of the lighting opportunities in this building.  5. Energy Consulting and Project Management As these projects are very complicated, we have included design scope for each item in our analysis. These estimated capital costs in this report all include design costs, and project management time to help direct the implementation of the projects described. If management is interested in following through with the installation of these projects, we highly recommend that these projects proceed on a design build basis to ensure that the engineering team remains involved from conceptual vision through to commissioning. We feel this is the best way to ensure that these projects are implemented in a way that will achieve the energy savings described in this study.  10        41   Appendix A: UBC Aquatic Centre Energy Consumption Steam Electricity - Mechanical E Electricity - Lighting Plug Load Electricity Sum Total  GJ 17,090 4,920 1,542 291 6,754 23,843  kWh 639,593 699,827 27,362 428,262 80,956 1,876,000  Project Summary kWh 1,366,781 428,262 80,956 1,876,000 1,876,000  2  Building Area 5,274 m  56,750 sqft  Historical Energy Use (GJ) Data 2007 2006 Steam 17,090 22,406 Electricity 6,754 7,451 Total 23,843 29,856  (1,871)  4,187  12,903  3.7  2,431  2,090  337  866  Inventory Summary  Energy Savings 46.3% Net Energy Savings 11,032  BEPI (MJ/m2) BEPI (kWh/ft2) Cost ($) 2007 2006 2007 2006 2007 2006 3,240 4,248 84 110 $ 446,381 $ 585,241 1,281 1,413 33 36 $ 85,042 $ 95,279 4,521 5,661 117 146 $ 531,424 $ 680,520  W/ sq m W/ sq ft 14.0 1.32 40.0 3.7 1.8 0.2  Existing Systems kW Ave. Hours 83 7,730 112 6,259 Lighting 16 1,667 Mechanical: Plug Load 74 5,800 9 8,760 (estimated hrs) 294 6,380  Actual Electrical Inventory Breakdown System Ventilation Pumps Cooling Lighting  Total  Other (Plug Load)  $1,114,000 $299,000 (519,810)  Annual Savings Capital Cost Savings Electricity Electricity Gas Payback BEPI GHG (kWh) (GJe) (GJ) MJ / m! (Tonnes) $69,000 $17,000 205,000 738 308 4.1 198 25 $1,045,000 $282,000 (724,810) (2,609) 12,595 3.7 1,893 841  Energy Study Project Savings Project Summary Measure Description DDC Savings Mechanical Savings Lighting Savings Total Savings  2,395,810  42      Projected Future Usage*  Electricity Steam Total GHG Savings Current GHG (t CO2e)* 41 1,162 1,203 GHG Savings (t CO2e)* (11) 877 866 72.0% *Note: Emission factors of 68.0 kg CO2/GJ for steam and 0.022 kg CO2 / kWh for electricity in BC  A1        Syste Type V V V V V V AC P P P P P P P P P P P P P P P P P P  V V V V V V V V V V V V V V  Equipment Number HV-1 HV-2 HV-3 HV-4 MZ-1 RF-1 CU-1 P-1 P-2 P-2D P-3 P-4E P-4D P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-1 P-14 P-15 P-16-25 P-26 P-27 CA-1 CA-2 CA-3 OZ-1 EF-1 EF-2 EF-3 EF-4 EF-5 EF-6 EF-7 EF-8 EF-9 EL-1  Area Served  Fan room Natatorium Fan room Natatorium Filter room Weight room Filter room Filter room Mechanical room Offices and lobby Fan room Nataorium Roof Administration Filter room Main Pool Filter room Main Pool Filter room Radiation Filter room Hot Tub filter Filter room Filter room Filter room Filter room Filter room Facility Filter room Facility Filter room Aquatic center Filter room Aquatic center Filter room Facility Filter room Facility Empire Filter Rm Empire Filter Rm Ozone Room Main Pool Filter rm Facility Filter Rooms Pools Empire pool mechEmpire pool Empire pool mechEmpire pool Filter room Aquatic center Ozone Room Ozone Room Empire Filter Rm Empire Filter Rm Ozone Room Chlorine Room Chlorine room Storage room Storage room Electric Vault Electric vault Change room Change room Change room Change room Change room Change room Empire filter roomEmire Filter rm Gen set room Gen set room Elevator Mech RoElevator Mechanical Room Aquatic Center Aquatic Center  Location  UBC Aquatic Centre  Appendix A - Mechanical and Motor Inventory  System Name  ENERGY INVENTORY FORM - Mech Systems BUILDING NAME:  Pool Air Handler Mezzanine Air handler Weight Area Filter room Administration Pool Return Fan MZ-1 DX cooling Main Pool Pump Hydro Air Heating pump Filter Pump Heating pump Heating Pump Heating Pump Heating Pump Condensate pump main Condensate pump main Sump Pump Sump Pump Sanitary pump main Sanitary pump main Pool pump Ozone Injection Pump DHW recirc pump Chemical pumps Sump pump Sump pump Air Compressor Air Compressor Air Compressor Ozone Generator Chlorine Exhaust fan Storage Exh Electrical Rm Exh. Male Dryer Washroom Exhaust Womens dryer exhaust Empire Filter Room Generator Room Exh. Elevator Exhaust fan Elevator  Totals  Monthy Profile A A A A A A C A F E E A A A A A A A A A A I A A A A A A A A A A A A A A A I A A A  hp 40 10 15 1 5 20 22 50 7.5 1.5 0.8 7.5 5 1 0.3 3 3 2 2 7.5 7.5 50 1 0.08 0.2 3 3 3 1 3 0.3 0.5 0.33 0.75 1 1 1 0.75 0.75 0.5 5  Load kW 29.8 7.5 11.2 0.7 3.7 14.9 16.4 37.3 5.6 1.1 0.6 5.6 3.7 0.7 0.2 2.2 2.2 1.5 1.5 5.6 5.6 37.3 0.7 0.1 0.1 2.2 2.2 2.2 0.7 2.2 1.0 0.4 0.2 0.6 0.7 0.7 0.7 0.6 0.6 0.4 3.7  215.4  744 744 744 744 496 744 149 744 0.62 521 521 744 744 744 372 372 372 31 31 186 186 744 744 744 744 31 62 372 62 124 124 744 744 744 744 744 744 744 3.1 155 155  720 720 720 720 480 720 0 720 1.8 432 432 720 720 720 360 360 360 30 30 180 180 0 720 720 720 30 60 360 60 120 120 720 720 720 720 720 720 0 3 150 150  744 744 744 744 496 744 0 744 2.17 372 372 744 744 744 372 372 372 31 31 186 186 0 744 744 744 31 62 372 62 124 124 744 744 744 744 744 744 0 3.1 155 155  Check Month Op. Hours Apply Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Jim Groenewoud  Jan  Feb  Load Factor  744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 496 448 496 480 496 480 496 496 480 744 672 744 720 744 720 744 744 720 0 0 0 48 149 240 397 397 288 744 672 744 720 744 720 744 744 720 2.17 1.96 2.17 1.5 0.31 0 0 0 0 372 336 446 504 595 648 744 744 648 372 336 446 504 595 648 744 744 648 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 372 336 372 360 372 360 372 372 360 372 336 372 360 372 360 372 372 360 372 336 372 360 372 360 372 372 360 31 28 31 30 31 30 31 31 30 31 28 31 30 31 30 31 31 30 186 168 186 180 186 180 186 186 180 186 168 186 180 186 180 186 186 180 0 0 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 31 28 31 30 31 30 31 31 30 62 56 62 60 62 60 62 62 60 372 336 372 360 372 360 372 372 360 62 56 62 60 62 60 62 62 60 124 112 124 120 124 120 124 124 120 124 112 124 120 124 120 124 124 120 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 744 672 744 720 744 720 744 744 720 0 0 744 720 744 720 744 744 720 3.1 2.8 3.1 3 3.1 3 3.1 3.1 3 155 140 155 150 155 150 155 155 150 155 140 155 150 155 150 155 155 150  Inventory By:  100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%  % of Total 19.1 4.8 7.2 0.5 1.6 9.5 2.0 23.9 0.0 0.5 0.3 3.6 2.4 0.5 0.1 0.7 0.7 0.0 0.0 0.9 0.9 16.0 0.5 0.0 0.1 0.1 0.1 0.7 0.0 0.2 0.1 0.2 0.2 0.4 0.5 0.5 0.5 0.2 0.0 0.0 0.5  24/7 24/7 24/7 24/7  24/7 24/7  24/7  24/7  24/7 24/7 24/7 24/7 24/7 24/7 on demand 24/7 24/7  Schedule  24 24 24 24 16 24 16 24 0.1 24 24 24 24 24 12 12 12 1 1 6 6 24 24 24 24 1 2 12 2 4 4 24 24 24 24 24 24 24 0.1 5 5  hours / day  Mechanical System Electricity Use  261,398 65,350 98,024 6,535 21,783 130,699 27,362 326,748 71 7,120 3,797 49,012 32,675 6,535 980 9,802 9,802 545 545 12,253 12,253 219,324 6,535 523 1,307 817 1,634 9,802 545 3,267 1,460 3,267 2,157 4,901 6,535 6,535 6,535 3,290 20 681 6,807  Annual Annual Hrs kWh 8,760 8,760 8,760 8,760 5,840 8,760 1,667 8,760 13 6,362 6,362 8,760 8,760 8,760 4,380 4,380 4,380 365 365 2,190 2,190 5,880 8,760 8,760 8,760 365 730 4,380 730 1,460 1,460 8,760 8,760 8,760 8,760 8,760 8,760 5,880 37 1,825 1,825  1,369,232  Page A2  43            Appendix A - Steam Devices  Equipment Number  Service Areas  ENERGY INVENTORY FORM - Steam Devices BUILDING NAME: UBC Aquatic Centre  System Name Indoor Pool Hot Tub Natatorium Natatorium Mezzanine Change rooms Filter room Administration and Lobby Domestic Hot Water Outdoor Pool  4,482,500 84,000 2,796,000 808,000 1,614,000 0 172,000 600,000 1,200,000  BTU/h  100 100 100 100 100 100 100 100 100  ComB Eff  11,756,500  a a h h h h h a i  24 24 24 24 24 24 16 16 24  720 720 144 144 144 144 96 480 720  4,811  744 744 446 446 446 446 298 496 744  4,608  720 720 576 576 576 576 384 480 0  N 744 744 0 0 0 0 0 496 744  3,312  O  744 744 0 0 0 0 0 496 744  2,728  S  720 720 144 144 144 144 96 480 720  2,728  Monthly Hours J J A 744 744 298 298 298 298 198 496 744  3,312  M 720 720 504 504 504 504 336 480 720  4,117  A 744 744 595 595 595 595 397 496 744  4,992  M 672 672 605 605 605 605 403 448 0  5,506  F 744 744 744 744 744 744 496 496 0  4,614  % Monthy Daily LF Profile Hours J 11 20 38 33 6 10 50 48  5,456  D 744 744 744 744 744 744 496 496 0  J  J  387 13 834 209 76 0 9 157 0  F  F  350 12 678 170 62 0 7 142 0  737 1882 1309 1309  M  M  387 13 667 167 61 0 7 157 452  573 2070 1513 1385  A  A  374 13 565 142 51 0 6 152 437  1642 2531 1537 1537  M  M  387 13 334 84 30 0 3 157 452  1382 2101 1573 1573  J  J  387 13 0 0 0 0 0 157 452  Monthy GJ J 374 13 161 41 15 0 2 152 437  1169 1639 1392 1392  A 387 13 0 0 0 0 0 157 452  S 374 13 161 41 15 0 2 152 437  O 387 13 500 126 46 0 5 157 452  N 374 13 646 162 59 0 7 152 0  D 387 13 834 209 76 0 9 157 0  J A S O N D 1250 994 1413 2217 2301 3052 1044 1245 1109 1741 1745 2106 1006 921.7 1011 1882 2009 576.1 1006 922 1178 1947 2018 1000  5,456 1,685 1,420 1,911 1,740 1,460 1,195 1,009 1,009 1,195 1,686 1,412 1,685  360 3193 1901 1901  26.2 0.9 30.9 7.8 2.8 0.0 0.3 10.6 20.5  % of Total  on demand on demand on demand on demand on demand on demand on demand on demand on demand  Comments  Steam Consumption  4,556 155 5,379 1,350 490 0 55 1,848 3,572  Annual GJ 8,760 8,760 4,800 4,800 4,800 4,800 3,200 5,840 5,880  17,407  Annual Hrs  51,640  Total 17,090 22,406 16,630 17,167  44      Lap Pool Heat Exchanger HX-1,2 Hot Tub Heat exchanger HX-3 HV-1 Heating Coil HV-2 Heating Coil HV-3 Heating Coil HV-4 heating Coil MZ-1 Heating Coil DHW Heat Exchanger HX-4 Empire Pool Heat ExchangHX-5  Totals  Actual Consumption 2007 Actual Consumption 2006 Actual Consumption 2005 Baseline      

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.18861.1-0108324/manifest

Comment

Related Items