Open Collections

UBC Undergraduate Research

Evaluation and implementation of practical energy savings measures for UBC’s indoor and outdoor swimming.. 2012

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
Giffin_J_SEEDS_2010-1.pdf
Giffin_J_SEEDS_2010-1.pdf [ 3.65MB ]
Metadata
JSON: 1.0108324.json
JSON-LD: 1.0108324+ld.json
RDF/XML (Pretty): 1.0108324.xml
RDF/JSON: 1.0108324+rdf.json
Turtle: 1.0108324+rdf-turtle.txt
N-Triples: 1.0108324+rdf-ntriples.txt
Citation
1.0108324.ris

Full Text

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Evaluation and Implementation of Practical Energy Savings Measures for UBC’s Indoor and Outdoor Swimming Pools Jeff Giffin University of British Columbia CEEN 596 Dec 6, 2010 Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report”.    CEEN 596 Final Project Report  Evaluation and Implementation of Practical Energy Savings Measures for UBC’s Indoor and Outdoor Swimming Pools      Jeff Giffin December 6th, 2010                  2    Executive Summary    The following is a proposal to modify the heating system of the Aquatic Center and Empire Pool such that both pools are heated with steam condensate collected from neighboring buildings.   The proposed Neighborhood Condensate Heat Recovery  Project  will  provide  100%  of  the  heating  requirements  for  UBC’s  indoor  and outdoor  swimming  pools  and  generate  immediate  operational  savings  from reductions in water, energy, and greenhouse gas emissions.   The project will:  • Save an estimated 10,000m3 of water per annum   • Reduce steam production by 13,000 KLBS/yr (1.7% of annual production)  • Reduce natural gas consumption through improved steam system efficiency of 9400 GJ/yr   • Reduce campus Greenhouse gas emissions by 468 tonnes/yr (0.75%)  • Provide compatible infrastructure for future hot water district energy system   • Cost an estimated $428,000 CAD    • Generate savings for UBC Utilities of $272,000 per annum   • Payback in 1.6 years                    3    Table of Contents     Executive Summary ................................................................................................................2  Figures.........................................................................................................................................4  Acknowledgments ...................................................................................................................5  Introduction ..............................................................................................................................6  Purpose ................................................................................................................................................ 7  Project Objectives............................................................................................................................. 7  Background................................................................................................................................8  History of Swimming at UBC ......................................................................................................... 9  Utility Bills Assessment .................................................................................................................. 9  Comparison to the Vancouver Aquatic Center......................................................................11  Building Data....................................................................................................................................13 UBC Aquatic Center ..................................................................................................................................... 13 Empire Pool .................................................................................................................................................... 14  Energy Balance and Calculations ..............................................................................................14  General Options for Swimming Pool Heating........................................................................16  Previous Energy Studies..................................................................................................... 18  UBC Awarded a $1.186 million PSECA Grant.........................................................................18  Rising Cost Forced UBC to Return the Grant..........................................................................18 # 1) Exhaust heat reclaim for the indoor pool ................................................................................ 19 # 2) Domestic water heat reclaim......................................................................................................... 19 # 3) Empire pool heat pumps ................................................................................................................. 19  Lessons Learned..............................................................................................................................20  New Energy and Cost Saving Options............................................................................. 21  Guiding Principles ..........................................................................................................................21  Option 1: Reinstatement of Condensate Return System ...................................................21  Option 2: Condensate Heat Scavenging...................................................................................21 Direct use of steam condensate into the pool as make‐up water............................................ 22  Option 3 ­ Neighborhood Condensate Heat Scavenging ....................................................22 Option 3.1 ‐ New Sub building................................................................................................................ 24  Recommendation of Preferred Options........................................................................ 25  Detailed Evaluation of the Neighborhood Condensate Heat Scavenging Project .....26 Capital cost estimate................................................................................................................................... 26 Simple Payback and NPV Analysis........................................................................................................ 27 UBC Powerhouse Schematic Diagram and Energy Balance Before........................................ 28 UBC  Powerhouse  Schematic  Diagram  and  Energy  Balance  After  Aquatic  Center Upgrades .......................................................................................................................................................... 28  Project Delivery..................................................................................................................... 29  Appendix: SES Consulting Inc. Energy Study ............................................................... 31    4  Figures Figure 1. UBC 2007 GHG emission Sources1.................................................................................. 6 Figure 2. UBC Building Energy Performance Index BEPI10 ..................................................... 8 Figure 3. Aquatic Center and Empire Pool average annual utility costs ........................... 9 Figure 4. Aquatics Center and Empire Pool steam consumption history .......................10 Figure 5. Aquatics Center and Empire Pool electrical consumption history.................10 Figure 6. Aquatics Center and Empire Pool water consumption history........................11 Figure 7. Aquatics Center and Empire Pool annual energy and water cost history...11 Figure 8. UBC and City of Vancouver Aquatic Center energy intensity ...........................12 Figure 9. UBC and City of Vancouver Aquatic Center energy cost intensity. .................12 Figure 10. Steam consumption breakdown. ................................................................................15 Figure 11. Aquatics Center Energy Balance.................................................................................16 Figure 12. Small scale condensate heat recovery schematic................................................22 Figure 13. Neighborhood Condensate Heat Scavenging Schematic Diagram ...............23 Figure 14. UBC Powerhouse Schematic Diagram and Energy Balance9 ..........................27 Figure 15. UBC Powerhouse Schematic Diagram and Energy Balance After Aquatic Center Upgrades 9....................................................................................................................................27    5    Acknowledgments   I  would  like  to  thank  the  University  of  British  Columbia  for  its  the  dedication  to leadership in sustainability.  Never before has a university so thoroughly embraced a role as an agent of change for the good of the planet.   I would  also  like  to  thank my beloved  fiancée, Dr.  Judith Maxwell  Silverman, who challenges me to be my best.     6    Introduction   The  University  of  British  Columbia  (UBC)  aspires  to  become  a  world  leader  in sustainability  education,  research,  and  operationalization.    To  achieve  this ambitious  goal  UBC  has  recently  announced  the  following  aggressive  Greenhouse Gas (GHG) reduction targets.    33% below 2007 levels by 2015 67% below 2007 levels by 2020  100% below 2007 levels by 2050  The targets are based on Scope 1 and 2 GHG emissions eligible to be offset under the British Columbia Public Sector Carbon Neutrality Law ‐ Bill 44.   Scope 1 emissions are  defined  as  direct  fossil  fuel  consumption  on  campus while  Scope 2  is  indirect emissions from electricity consumption.  UBC’s 2007 GHG baseline is 61,090 tonnes of CO2 equivalent1.       Figure 1. UBC 2007 GHG emission Sources1  To achieve  the 2015 33% reduction  target  the  following key  initiatives have been proposed or committed.   1) Bioenergy Research and Demonstration project – Committed  2) Continuous Optimization of Building – Committed  3) Steam to Hot Water Conversion of District Heating System – Proposed    78% 11%  2% 1%  6%  2%  UBC Vancouver Campus   2007 GHG emission sources          Baseline is 61,090 tonnes  Natural Gas for steam  Natural Gas for direct use Fleet Gasoline Fleet Biodiesel Electricty  Paper    7  The Steam to Hot Water Conversion has received Executive Level 1 and 2 approvals and will be seeking Level 1 Board of Governors approval in February 2011.   In  addition  to  the  three  initiatives  listed  above  the  University  has  begun  to transform  the  campus  in  to  a  living  laboratory  for  sustainability.    This  initiative involves  leveraging  the expertise of  faculty (including researchers),  students,  staff, and industry to solve local and international problems.   Purpose  The  purpose  of  this  CEEN  596  project  is  to  save  money  and  greenhouse  gas emissions  for the University of British Columbia through reductions  in energy and water consumption at the Aquatic Center swimming pools.    Project Objectives  This project has four main objectives:    1. To  investigate  and  explain  the  revocation  of  the  Public  Sector  Energy Conservation  Agreement  (PSECA)  funding  that  was  granted  in  2008  for improvements  to  the Aquatic Center  that were recommended by an energy audit performed by the consulting firm SES Inc.  2. To produce an improved energy audit of the Aquatic Center using previously unappreciated infrastructure and utility data.  3. To make recommendations for new energy saving upgrade options including an analysis of capital cost and net present value (NPV) estimates.  4. To  deliver  the  project,  which  summarily  includes  securing  the  necessary funding,  hiring  of  required  personnel  (project  managers,  mechanical designers and construction trades), measurement and verification of savings.     8    Background   Together UBC’s Aquatic  Center  and Empire  Pool  are  the  highest  energy  intensity buildings on campus; together consuming 21 million LBS of steam annually (2.7% of the  total  steam produced). To provide  this  steam UBC’s  central  steam plant burns 27,000 GJ of natural gas, which results  in 1,350 tonnes of GHG emissions per year (2.2% of UBC’s total Scope 1 and 2 emissions).        Figure 2. UBC Building Energy Performance Index BEPI10  As an ancillary department run by Athletics, the Aquatic Center and Empire Pool are “revenue” customers and are billed by UBC Utilities for steam, electricity, and water. Steam is billed at $21.63/KLBS, electricity is billed at $0.039/KWh plus $5.9/KW for peak  demand  charges,  and  water  is  billed  $0.29/ft3.  Annual  utility  bills  exceed $630,000/yr,  and  at  $445,000/yr, steam  represents  the  lion’s  share  and  is  the  primary  focus  for  this  report.    Due  partially  to  these  high  operational  costs  the Athletics  Department  is  currently  advocating  for  a  new  pool  and  Aquatic  Center.  The  location,  timing, and funding of  this new building  is uncertain and a best‐case scenario  for  Athletics  would  see  the  existing  Aquatic  Center  pools  renewed  or decommissioned in under 3 years.     ‐      200    400    600    800    1,000    1,200    1,400   Aqua.c center and  Empire pool   Average UBC  Building  Average BC  Household   KW h/ M 2/ Yr   Building Energy Performance Index ( BEPI )  Electricity   Hea.ng      9    Figure 3. Aquatic Center and Empire Pool average annual utility costs     History of Swimming at UBC  UBC’s  50  x  20 meter  outdoor  pool,  the  Empire  Pool,  was  constructed  in  1954  to provide  an  event  platform  for  the  British  Empire  Games.    Excavation  dirt  was deposited  in a pile, which has since become a sentimental  campus staple know as the knoll.  In 1978 the 5,300m2  (57,000ft2) Aquatic Center was completed providing an  indoor 50 x 25 meter  lap pool and a 20 X 10 meter baby pool.   Currently both pools are heavily used.  Furthermore, the pools are of significant importance to the UBC Athletics Department  as  over  the  past  12  years  the UBC women’s  and men’s swimming teams have won 11 CIS championships each.    Utility Bills Assessment  Historical utility data was obtained from UBC Utilities records2. The Aquatic Center and  Empire  Pool  have  separate  steam  meters  but  share  an  electrical  and  water meter.  Variations in annual consumption are believed to be primarily due to meter reading issues.     $306,000  $96,000  $90,000  $139,000  Aquatic Center and Empire Pool:  Average annual utility costs  Steam indoor pool   Electrical indoor and outdoor pools Water indoor and outdoor pools Steam outdoor pool     10    Figure 4. Aquatics Center and Empire Pool steam consumption history In  2007  the  indoor  pool was  closed  for  1 month  and meter  data  is missing  for  2 months.  Also the outdoor pool began year round operation which has double steam consumption3.       Figure 5. Aquatics Center and Empire Pool electrical consumption history Electrical consumption is very consistent both hourly and annually which suggests fans  and motors  are  running  constantly  day  and  night.    This  is  not  surprising  as large motors for HVAC equipment and pool filtering are run continuously.   0 2,000,000 4,000,000  6,000,000 8,000,000 10,000,000  12,000,000 14,000,000 16,000,000  18,000,000 20,000,000  LB S  ST EA M /Y EA R   Annual Steam Consumption   Steam indoor pool   Steam outdoor pool   0 500,000  1,000,000 1,500,000  2,000,000  K W H 's /Y EA R   Annual Electrical Consumption   Electrical indoor and outdoor pools    11    Figure 6. Aquatics Center and Empire Pool water consumption history Water consumption has increased significantly in recent years.  It is believed this is due to increased evaporation losses and leakage from both pools.  The 2006 outlier is due to a broken water meter.       Figure 7. Aquatics Center and Empire Pool annual energy and water cost history    Comparison to the Vancouver Aquatic Center  The City  of Vancouver Aquatic Center  is  similar  in both  size  (6018m2)  and  age  to UBC’s  Aquatic  Center.    Data  on  energy  use  and  cost  was  kindly  provided  by  Ian Harvey4 with  the City of Vancouver.   A Building Energy Performance  Index (BEPI) was  calculated  for  both  the  UBC  and  Vancouver  Aquatic  Center  and  these  values  0 500,000 1,000,000  1,500,000 2,000,000 2,500,000  3,000,000 3,500,000 4,000,000  2005  2006  2007  2008  2009  Forecast  Cu b ic  F ee t/ Y ea r  Annual Water Consumption   Water indoor and outdoor pools  $0 $200,000  $400,000 $600,000  $800,000  2005  2006  2007  2008  2009  UBC Aquatic center and Empire Pool  Annual energy and water costs  Steam indoor pool   Electrical indoor and outdoor pools Water indoor and outdoor pools  Empire Pool Steam     12  were used to compare the energy intensity of the two facilities.  Unfortunately water data for the Vancouver Aquatic Center is unavailable.      Figure 8. UBC and City of Vancouver Aquatic Center energy intensity The  comparison  of  energy  intensity  above  shows  that  UBC’s  Aquatic  Center consumes  approximately  25%  more  energy  per  square  meter  than  Vancouver’s Aquatic Center.        Figure 9. UBC and City of Vancouver Aquatic Center energy cost intensity.  0 200  400 600  800 1000  1200 1400  2004  2005  2006  2007  2008  2009  K W h /M ^ 2 /Y ea r    Annual Energy Intensity (BEPI)   UBC Aquatics BEPI (KWh's/M^2/yr) Vancouver Aquatics BEPI (KWh's/M^2/yr)  $0.00 $20.00  $40.00 $60.00  $80.00 $100.00  2004  2005  2006  2007  2008  2009  $/ M ^ 2 /Y ea r    Annual Energy Cost Intensity  UBC Aquatics Energy Cost $/M^2/yr Vancouver Aquatics Energy Cost $/M^2/yr    13  On a per square meter basis UBC Athletics is paying 2.5 times more for energy than the City of Vancouver.  There are 2 primary reasons for this large discrepancy:   1. Increased energy intensity (BEPI): UBC’s  facility  consumes  25%  more  energy  per  square  meter  then  the Vancouver Aquatic Center.   2. Price of energy: UBC  Utilities  currently  charges  the  Aquatic  Center  $21.63/KLBS  of  steam. Steam is produced at the UBC central steam plant at a pressure of 165 PSIG with  an  energy  content  of  1,264  KJ/LBS.  This  translates  into  a  cost  of $17.11/GJ.  However at  the pool,  the steam heat exchangers are only 83% efficient and the remaining energy, (now in the from of 80°C condensate water) is wasted because  it  is  disposed  of  via  the  sewers.    Due  to  this  loss,  UBC Athletics  is effectively paying $20.50/GJ to heat the indoor pool.   In contrast, the City of Vancouver Aquatic Center is paying  $8.50/GJ for natural gas to heat its pool.  Note: For UBC Utilities the all‐in cost to deliver energy through the steam system is approximately  $16.50/GJ  and  represents  one  of  the  primary  drivers  behind  the campus wide steam to hot water conversion.   Building Data   UBC Aquatic Center The indoor pool has 2 mechanical rooms, 2 steam rooms, 2 saunas, a hot tub, office space, a fitness room, and a diatomaceous pool filter. The pool is maintained at 28°C year  round  and  air  temperatures  range  from  22‐24°C5.  Typically  indoor  pools maintain  higher  air  temperatures  in  the  range  of  27‐29°C,  which  minimizes evaporative heat  losses, make‐up water, and pool chemical use.   There are several reasons UBC’s Aquatics Center has lower air temperatures.    1. Only 1 out of 6 steam coils in the main air‐handling unit (HV‐1) servicing the pool area are functional, this means air temperatures can not keep up the set points5. 2. Event spectators and lifeguard personnel become sleepy and uncomfortable at the higher air temperatures4.   To prevent  structural  damage humidity  levels  are maintained below 60% via  two large  air‐handling  units  running  at  all  times  (HV‐1  and  HV‐2).  This  method  of dehumidification is extremely energy costly.  In contrast, most swimming pools use a heat pump based dehumidification system to capture latent heat and return it to the  pool4.    Due  to  potential  health  risks  associated  with  build  up  of  nitrogen trichloride,  as  well  as  other  toxic  gases  produced  when  chlorine  reacts  with ammonia, ASHRAE recommends public swimming pools with spectator areas to be maintained at a minimum of 0.54 cfm, approximately 8 air changes per hour6.     14   Air temperatures in the weight room and office space fluctuate from 18°C at night to 22°C  during  the  day.  A  small  amount  of  air  conditioning  is  provided  to  the  office space only.   Siemens  DDC  controls  and  pneumatic  actuators  control  the  majority  of  building systems including exterior lighting, air temperature set points and steam valves for heat  exchangers.  Several  control  nodes  are  connected  to  UBC’s  central  building management system (BMS).   Empire Pool  The  outdoor  Empire  Pool  is  adjacent  to  the  Aquatic  Center  and  has  a  separate mechanical room with a single steam heat exchanger, steam meter, pumps and sand filter.    The  pool  is maintained  at  27°C  year  round.  In  the  fall  of  2009  a  tent was installed over the outdoor pool.   Due  to  a  broken  condensate  return  line  presently  all  of  the  steam  condensate generated  after  heating  both  the  pools  is  directed  to  the  sewers.    This  results  in approximately  10,000  cubic  meters  of  wasted  75°C  water  each  year.  To  prevent damage to the sewer system steam condensate from the outdoor pool is quenched by mixing it with fresh water.  The indoor pool steam condensate is not quenched.  Energy Balance and Calculations Various methods exist  to calculate evaporative heat  losses  for occupied swimming pools7.  Based on literature reviews the following evaporative heat loss formula was used from M.M. Shal8.    Step 1.    K = 290 constant  Ap = Area of pool (ft2) Pr = Density of air in room (LBS/ft3)  Pw = Density air at pool surface (LBS/ft3) Ww = Humidity ratio at surface (LBS of moisture/LBS of dry air)  Wr = Humidity ratio in air (LBS of moisture/LBS of dry air)  When the data is analyzed E = 290*15,608*0.07054*(0.07339‐0.07054).333 * (0.02385‐0.00991) = 632 LBS/hr   Step 2. To include the evaporative effect from pool use the following empirical formula was added7.  E = Unoccupided Evaporation rate * (160*N/Ap+1) N = Average number of pool occupants = 20    Most of the empirical equations for unoccupied pools are of following type: E ¼ gApðDPÞn (1) where E is the water evaporation rate per unit area of the pool (kg/ (m2 s)); g is a constant; Ap is the pool surface area (m 2); DP = Pw $ Pr is the difference between water and room saturation pressures (Pa); and n is a value ranging from 1 to 1.2. The most widely published and used correlation for water evaporation rates is the one proposed by Carrier in 1918 [12] and later reported in the ASHRAE Application Handbook [13]: E ¼ ð0:089þ 0:40782VaÞApDP=Y (2) where Va is the velocity of air parallel to the water surface (m/s) and Y is the latent heat of evaporation of water (kJ/kg). In Eq. (2), E, Ap and DP are measured respectively in kg/h, m2 and Pa. The expression is based on laboratory experiments in which air was blown above thewater surface of a pool. Some authors suggest that the formula overestimates evaporation for unoccupied pools and recommend it for evaluating evaporation losses from occupied swimming pools [14]. Smith et al. [15,16] conducted tests on occupied and unoccupied swimming pools and gave empirical formulas based on these data; their equations are: For unoccupied pools: E ¼ ðC þ 0:35VaÞApDP=Y (3) where C is a coefficient which depends on barometric pressure (C = 72 at 5000 ft elevation and C = 69 at sea level). For occupied pools: E ¼ ð0:068þ 0:063FuÞApDP=I (4) where Fu is the pool utilization factor (Fu = Amax/ApN); Amax is the pool area Ap increased by waves area; I is the latent heat of evap ration of wat r (kJ/kg). A different model has been proposed by Hannsen andMathisen in [1]. Their formula for unoccupied pools may be written as E ¼ 3& 10$5V1=3ðe0:06Tw $Fa e0:06Ta Þ (5) here V ¼ ½V2a þ ð0:12ð4ð1$FaÞ $ ðTa $ TwÞÞ0:5Þ 2( 0:5 ; Tw is the water surface temperature (8C); Ta is air temperature (8C); andFa is air relative humidity (–). Shah [10] propos d c rrelation based on the analogy between heat and mass transfer for unoccupied pools, later modified to improve accuracy: E ¼ KAprwðrr $ rwÞ1=3ðWw $WrÞ (6) where r is the air density (kg/m3); rr is the room air density, while rw is the saturated air density; W is the specific humidity (kg of moi ture/kg dry air); and K is a constant. In Eq. (5), K = 40 if rr $ rw < 0.02; K = 35 if rr $ rw > 0.02. The correlation was evaluated against undisturbed water pool test data from various sources, covering a wide range of water temperatures (7.1–94.2 8C), air temperatures (6.1–34.6 8C) and air rela e humidities (28–98%). Shah recommends Eq. (6) for indoor water pools with undisturbed surfaces and unforced airflow over those surfaces. He also proposed an empirical correlation based on test data from various sources for occupied pools: E ¼ Apð0:113$ 0:0000175Ap=N þ 0:000059DPÞ (7) Eq. (7) is recommended for normal activity occupied pools (N, number of pool occupants less than 45), under the following conditions: water temperature (25–30 8C), air temperature (26– 31.7 8C) and air relative humidity (33–72%). Finally, Shah [11] also proposed another formula for pools with very intense activity such as diving and water polo. As stated previously, some of the correlations mentioned are derived from energy balances and others from experimental measurements in real pools, but there is no evidence in the literature ofmeasurements carried out on scalemodels, apart from some studies quoted by Shah in [11], some of which date back to more than 60 years ago and cover a range of air and water temperatures that is too wide to be considered reliable. The aim of this paper is therefore to provide new experimental results for evaporation rates from water basins, thanks to a scale model and an apparatus which allows one to accurately control all the main parameters influencing the phenomenon. Nomenclature A surface of evaporation area (m2) D diffusivity E evaporation rate (kg/(m2 s); kg/(m2 h), lbs/h) G mass flow rate (kg/s, g/h) I water latent heat of evaporation (kJ/kg) K mass transfer coefficient (referred to pressure) (kg/ (Pa m2 s)) L water evaporation heat (kJ kg$1) m mass (kg) N number of pool occupants (–) P saturation pressure (Pa, Hg) Re Reynolds number (–) Sc Schmidt number (–) Sh Sherwood number (–) t time (s) T temperature (8C) V velocity (m/s) Y latent heat of evaporation (kJ kg$1) W specific humidity (kg of moisture/kg of dry air) Subscripts a air ev evaporation los loss max pool area plus waves area p pool r room un unoccupied v ventilation w water Greek letters D interval (–) D deviation (–) y viscosity r air density (kg/m3) F relative humidity (%) F. Asdrubali / Energy and Buildings 41 (2009) 311–319312   15  When the data is analyzed E = 632 * (160*20/15608+1) = 761 LBS/hr    Step 3. Annual Energy consumption = LBS/HR evaporation * BTU/LBS * Hours/yr Enthalpy of evaporation at surface of water = 1047.2 BTU/LBS  = 761 LBS/hr * 1047.2 BTU/LB * 8760 = 6,986 MMBTU/YR   Literature reviews and the outdoor pool steam meter data confirm the calculation above is reasonably accurate.   Using the above calculation with metered data from the outdoor pool and previous energy audits a break‐down of approximate steam use was generated.   The results show that ~65% of the steam delivered is used to heat the pools (Fig. 10).     Figure 10. Steam consumption breakdown.               34%  31% 2% 5%  18%  9%  Aquatic center and Empire pool  steam consumption   Indoor Pool Heating  Outdoor Pool Heating  Hot tub Heating  Perimeter Radiant Heating Air Heating  DHW  Steam Rooms    16         To summarize the building audit, and to aid the reader going forward, a schematic of the  UBC  Aquatic  Center  energy  INPUTS  and  OUTPUTS  was  generated.  Figure  11 depicts the approximate energy balance for both pools. Note: additional losses from the building envelope are assumed to account for the difference between INPUT and OUTPUT energy.     Figure 11. Aquatics Center Energy Balance    General Options for Swimming Pool Heating  High‐energy  consumption  and  low  exergy  heating  requirements  make  swimming pools around the world excellent candidates  for alternative heating methods.   The following  is  short  review  of  heating  and  energy  saving  options  that  should  be considered  first  for  all  new  indoor  and  outdoor  swimming  pools  regardless  of location.       17    1) Collocate swimming pools near to existing waste heat source.  (e.g. UBC’s  Ice Arena  has  approximately  300  KW  of  20°C  waste  heat  from  the  ice refrigeration system)  2) Outdoor pools should have a pool cover.   A cover can save up to 10% of the annual energy. 4 3) Indoor  pools  should  consider  using  a medium  pressure  UV  light  to  destroy unwanted and potentially toxic chloramines. This will reduce the requirement for make‐up air and significantly reduce energy consumption.4  4) A heat pump based dehumidification system should be required for all indoor pools and will pay for its self through tremendous energy, water and chemical savings.4  5) Air‐to‐Air heat recovery should also be considered to preheat cooler make‐up air with warm exhaust air4.  Potential systems are reviewed below:  a. Glycol  Loop  –  simple,  low  cost,  low  maintenance  system  ~40% efficient b. Heat  Pipe  –  simple,  higher  costs,  low  maintenance  system  ~  60% efficient c. Air‐to‐Air  Plate  Heat  Exchanger  –  simple,  higher  costs,  higher maintenance system ~ 80% efficient d. BKM Reverse  Flow Heat  Recovery  –  complex multiple  plate  system, higher costs, higher maintenance ~ 90% efficient     If  heating  is  still  required  after  implementing  these  options  the  following  heating options  should  be  considered.   Note  that  the  economic,  social,  and  environmental benefit  of  each  option  will  depend  on  the  location  in  question.    There  is  no prescriptive solution to heating a pool.   1) Solar thermal – Works exceptionally well on swimming pools in almost every region on earth and usually can pay for it’s self in less than 5 years4.  The only reason  not  to  use  solar  thermal  system  is  that  something  better  exists,  for example waste heat.  2) Geothermal  (all  types) – Functions well  to heat pools,  however  the  facilities must consider the price of electricity, GHG impacts and the conductivity of the ground before implementing.  3) Air‐source heat pumps – Great for pools in temperate climates like Vancouver. COP will be  less then geothermal but cost will also be  less.   Electricity price, GHG impacts, and noise are issues that need to be considered.  4) Biomass –  Should be  considered  if  abundantly  available,  easy  to  access,  and cheap.  Emissions and maintenance are issues that should be considered.    5) Condensing Natural Gas Boilers – Regardless of the primary heating system a natural gas boiler will  likely still be required as back up.   This boiler can be condensing  or  non‐condensing,  but  with  condensing  boilers  efficiencies  of over 90% can be expected.     18    Previous Energy Studies  In October of 2008 SES Consulting  Inc. was hired to conduct a  thorough review of the  UBC  Aquatic  Center  and  Empire  Pool  energy  consumption  and  in  doing delivered  a  long  list  of  energy  saving  recommendations  (Appendix  1).  The  most significant projects are listed below.    Table 1. SES Consulting Inc. energy audit recommendations summary  Rank Short list recommended options Costs Payback GJ/Saved 1 Pool Heat Reclaim  $630,000 3.2 8180 2 Domestic Water Heat Reclaim  $250,000 6.8 1580 3 Heat Pump Heating for Empire Pool  $150,000 3.3 2680 4 Hot Tub Heat Reclaim  $15,000 4.7 155  Total Mechanical  $1,045,000 3.7 12595  In  total  SES  Consulting  Inc.  recommended  the  release  of  $1.186  million  to implement  a wide  range  of  energy  savings  options  that would  annually  save UBC Athletics  $320,000  through  a  fuel  use  reduction  of  12,366  GJ, which  equates  to  a reduction of 870 tonnes of GHG emissions.  The study was later submitted as part of a  grant  application  to  the  Public  Sector  Energy  and  Conservation  Agreement (PSECA).   UBC Awarded a $1.186 million PSECA Grant  In March of 2009 UBC was awarded a $1.186 million PSECA grant to implement the energy  saving  options  presented  in  the  SES  Consulting  Inc.  energy  audit.    UBC immediately  appointed  a  project  manager  and  issued  an  RFP  for  a  mechanical designer, which was won by Stantec Engineering.   Rising Cost Forced UBC to Return the Grant  In  September  2009  UBC  returned  the  PSECA  grant.    It’s  rare  for  a  granting organization to award over $1 million for an energy retrofit project, it’s even more unusual  for  the  grantee  to  give  the money  back!    To  find  out what went wrong  I conducted  numerous  interviews  with  key  UBC  stakeholders  including  the Sustainability  Office,  Project  Services,  the  Aquatic  Center  as  well  as  Stantec personnel.  In short, unexpected and unexamined infrastructure issues drove the costs of each project  up  until  they  exceeded  PSECA’s  allowable  payback  window.    Below  is detailed review of each project and the main reasons they were cancelled.     19    # 1) Exhaust heat reclaim for the indoor pool  To  prevent  structural  damage  to  the  building,  indoor  humidity  levels  must  be maintained <61%.  Currently the indoor pool achieves this goal by exhausting large volumes of warm moist air and replacing it with cool dry outdoor air.  The process wastes  a  tremendous  amount  of  heat.    SES  Consulting  Inc.  recommended  the installation of a dehumidification system and passive air to air heat recovery wheel.  What went wrong: 1. Asbestos was found in and around air handling unit #1 (HV‐1). 2. 5 of 6 steam coils in the HV‐1 were found to be leaking steam and needed to be decommissioned and replaced. 3. New VSD motors  and DDC  controls were  required  to  realize  the  predicted savings. 4. Pool leakage was not properly accounted for in the original study.   # 2) Domestic water heat reclaim  This was a very complicated measure that  included the  installation of air  to water heat  recovery  coils  in  the  exhaust  of  air‐handling  unit  #2  (HV‐2)  and  a  solar  hot water  installation on the roof connected to domestic hot water and the swimming pool.  What went wrong:  1. The roof required significant structural upgrades to support the solar panels.  2. HV‐2 required significant reconfigurations and upgrades.    # 3) Empire pool heat pumps This project would install 70 tons of air source heat pumps to heat the outdoor pool. What went wrong  1. Noise from the heat pumps was too loud for competitive swim meets and the only suitable location for the heat pumps was on the pool deck.  2. To  allow  for  swim  team practices  the  outdoor  pool  is  now  run  year‐round which  limits  the  effectiveness  of  air  source  heat  pumps,  as  they would  not perform well in the winter.  3. The  additional  electric  load  required  by  the  heat  pumps  would  have triggered significant upgrades to the buildings electrical systems.     20    Lessons Learned  In conclusion, through this re‐examination of the UBC Aquatics Center energy use ‐ and re‐evaluation of  the motives of all  the  interested parties  ‐ at  least  four salient lessons  can  be  learned.    These  must  be  respected  if  future  energy  saving  efforts regarding the UBC Aquatic Center are to be made.  Those lessons are:   1. Be careful when dealing with granting organizations such as PSECA who are looking for short paybacks and can move projects elsewhere.   2. Make  sure  the  beneficiary  of  the  project  is  onboard  and  committed  to  the projects success.    3. Be weary of transferring loads from one energy source to another as it may trigger large and expensive upgrades.   4. Make sure to explore all options and look beyond the traditional boundaries of individual building energy use.     21  New Energy and Cost Saving Options    Guiding Principles  1. Review options not considered by SES Consulting Inc.  2. Recommend implementation if evaluation indicates  a. Payback is less than 2 years  b. Compatible with the campus Hot Water Conversion Project  Option 1: Reinstatement of Condensate Return System Over  the  past  decade  UBC  Utilities  and  the  Campus  Sustainability  Office  have worked  hard  to  return  steam  condensate  back  to  the  powerhouse  and  presently over  70%  of  the  steam  that  leaves  the  plant  is  returned  and  reheated.    As mentioned, the condensate return piping from both the indoor and outdoor pools is currently  decommissioned.  This  results  in  approximately  21  million  LBS/yr (10,000M2/yr) of wasted 75 degree Celsius water.   Restoring  the  condensate  system  would  return  90%  of  the  condensate,  annually saving  UBC  Utilities  $10,000  in  water,  $2,000  in  steam  chemicals,  and  $7,000  in energy and carbon liabilities.     To  fully  capture  all  of  the  condensate  from both  pools  over  140 meters  of  2  inch condensate piping will need  to be restored.    In addition 4 new condensate pumps must be installed as well as a new condensate receiver for the Empire pool.  The cost of this restoration is expected to exceed $400,000, which will result in a payback of 21 years.  As such this option violates the guiding principles.  Option 2: Condensate Heat Scavenging A  common practice with  steam district  energy  systems  is  to  install  a  second heat exchanger to recover the leftover heat in the steam condensate.  Typically these are shell  and  tube  style,  however,  recently  plate  and  frame  heat  exchangers  have become  popular.  The  main  advantage  of  plate  and  frame  is  their  greater  heat transfer efficiency and small size to surface area ratio, which allows them to fit into tight mechanical room spaces.   This  project  would  install  a  small  28  KW  (stainless‐steel  brazed  plate  heat exchanger,  2  circulation  pumps  and  200  feet  of  insulated  PEX  (cross‐linked polyethylene) piping  to  exchange heat  from  the  condensate  tank  to  the pool  filter tank (Fig. 12).     22    Figure 12. Small scale condensate heat recovery schematic. It  is  anticipated  that  the  project  would  reduce  the  average  temperature  of  the condensate tank from 75°C to 33°C (167°F to 91.4°F) with just over 11,000 KLBS/yr condensate entering  the receiving  tank  the annual energy savings  for athletics are estimated 832 KLBS of steam and $18,000/yr. This translates into annual savings at the powerhouse of 1070 GJ and 53 tonnes of GHG emissions.   The preliminary capital cost for the project is estimated at $10,000, translating to a payback of 0.56 years.     Direct use of steam condensate into the pool as make‐up water  Another  option  briefly  considered  by  this  report  is  to  pump  steam  condensate directly into the pool for use as pool make‐up water. However, the UBC steam plant uses two types of amines, Cyclohexamine and Morpholine, to inhibit corrosion in the condensate return piping.  Although these products are found in concentrations of  < 10  parts  per  million  (ppm)  they  are  toxic  in  higher  concentrations.  Options  for removing the amine were reviewed but in the end the concept was abandoned due to safety concerns.  Option 3 ­ Neighborhood Condensate Heat Scavenging  This project has the potential to provide 100% of the heating requirements for both swimming  pools.  The  project  would  install  supply  and  return  pipes,  pumps  and plate  heat  exchangers  to  divert  returning  condensate  from  neighboring  buildings    23  through plate heat exchangers located in each pools mechanical room (Fig. 13) and then back to the powerhouse.  Once back at the powerhouse the reduced condensate temperatures will allow for greater flue gas heat recovery in the boiler economizers (Fig. 15) and  improve  the overall  steam system efficiency.     Additional benefits of the project  include  repairing  the broken  condensate  return  line  and  compatibility with planned future hot water heating infrastructure.      Figure 13. Neighborhood Condensate Heat Scavenging Schematic Diagram  To  achieve  the  goal  of  heating  both  pools  approximately  14,000  GJ/yr  of  annual energy will be required.   With average condensate  temperatures of 75°C and pool temperatures  of  28°C  a  ΔT  of  43°C  (77°F)  across  the  plate  heat  exchangers  is achievable and approximately 175,000 KLBS/yr of condensate will be required. This large  volume  of  condensate will  come  from  the  nearest  18  buildings  listed  below (Table 2).   Reduced steam production and  increased efficiency  in  the boiler economizers will annually  save  9400 GJ  of  natural  gas,  468  tonnes  of  GHG  emissions,  10,000  cubic meters of water and $272,000. A preliminary capital cost estimate for the project is $428,000 for a simple payback of 1.6 years (Table 5).  Note: The above simple payback assumes UBC Utilities continues to bill Athletics at the same $20.50/GJ rate until the project is paid off at which point a new rate will be negotiated (Table 5).          24      Note: Condensate line meters at the powerhouse confirm average annual returns for  the southeast loop are over 300,000 KLBS/yr.   Option 3.1 ‐ New Sub building  The  new  24,000 m2  Student  Union  Building  (SUB) will  be  located  adjacent  to  the Aquatic Center and completed  in  the spring of 2014.   The building will be built  to LEED  Gold  standards  and  partake  in  the  living  building  challenge which  requires low  GHG  forms  of  heating.    As  mentioned,  the  future  of  the  Aquatic  Center  and Empire Pool is uncertain and both pools might be decommissioned in 3 years.  If this happens significant heating capacity, pumps and plate heat exchangers will become available for the SUB.   It is anticipated that the new SUB building will have a building energy performance index (BEPI) for heating of 50 KWh/m2/yr and annually require 4,300 GJ.   The new SUB will be built  to UBC code using a  low  temperature hydronic heating system  and  if  connected  to  the  condensate  return  would  require  approximately 61,000 KLBS/yr.  Assuming this displaces high efficiency natural gas boilers annual savings are expected of 2,600 GJ, 129 tonnes of GHG’s and $24,000.     It  is assumed that  any  costs  to  hook  up  the  system would  be  paid  out  of  the  new  SUB  project budget.   This option has been presented to  the mechanical designers  for  the new SUB who are considering it in conjuncture with solar thermal panels. Backup heating will still be  required  as  the  condensate  system  is  powered  by  electric  pumps,  which  will cease to operate during power outages.  !"#$%&' ()*+,-.&+/012 !T °F 22*/3,45& 67,45& Neighborhood condensate heat recovery UBC hospital (Koerner, Detwiller, Purdy ) 36010 77 2773 2925 !"#$%&'(#)"*$ +,-. 77 439 464 /012 3,4, 77 215 227 IRC 5128 77 395 417 Biomedical Research 2563 77 197 208 COPP, FRIEDMAN, MEDICAL SCIENCES BLOCK C 17266 77 1329 1403 J.B. MacDonald 7561 77 582 614 David Strangway 2264 77 174 184 WOODWARD BIOMEDICAL LIBRARY 4016 77 309 326 Line loss condensate 28400 77 2187 2307 Life Sciences Center 51035 77 3930 4146 CHBE 13074 77 1007 1062 Pulp and paper 2743 77 211 223 Aquatic Center + Empire Pool 6573 77 506 534 Wesbrook Building and Annex 8844 77 681 718 Cunningham building + Addition 6807 77 524 553 Total condensate available 192283 77 14806 15620 Table 2.  Annual Condensate return flows of buildings neighboring the pools.    25    Recommendation of Preferred Options  Based  on  the  evaluation  criteria  below  the  preferred  option  is  to  heat  both  pools with returning condensate  from other buildings.   The Neighborhood Condensate  Heat Recovery Project will provide will provide 100% of the heating requirements for both of UBC’s pools and generate immediate operational savings from reductions in water, energy, and greenhouse gas emissions.   The project will:  • Save an estimated 10,000m3 of water per annum   • Reduce steam production by 13,000 KLBS/yr (1.7% of annual production)  • Reduce natural gas consumption through improved steam system efficiency of 9400 GJ/yr   • Reduce campus Greenhouse gas emissions by 468 tonnes/yr (0.75%)  • Provide compatible infrastructure for future hot water district energy system   • Cost an estimated $428,000 CAD    • Generate savings for UBC Utilities of $272,000 per annum   • Payback in 1.6 years    Table 3. Evaluation Criteria  Decision Criteria  Option 1 Option 2 Option 3 Option 3.1 Under 2 year Payback  No Yes Yes Yes Compatibility with future energy sources  No No Yes Yes Compatibility with planned buildings (New Sub and New Student Residences) No No Yes Yes Funding potential  No Yes Yes Yes Total Yes 0 1 4 4 Preferred option    √ √   26     Detailed  Evaluation  of  the  Neighborhood  Condensate  Heat  Scavenging  Project  Capital cost estimate  A  capital  cost  estimate  of  $427,823  was  calculated  for  the  project  with  the assistance of the consultant Marian Lis, PEng.     Table 4 Neighborhood Condensate Heat Scavenging Capital Cost Estimate       27    Simple Payback and NPV Analysis   Despite  the  fact  that  the Aquatic Center may be decommissioned  in the next  three years, a simple payback analysis shows  that  the project will have paid  for  itself  in savings after only 1.6 years (Table 5).  Additionally I have calculated the Net Present Value  of  this  project  over  a  10  year  period  using  a  discount  rate  of  5.75%.    This demonstrates a present value of potential savings of $1.6 million for UBC Utilities in the event that the pools remain in existence.          Table 5. Simple Payback and NPV Analysis    AQUATIC CENTER POOL PROJECT SUMMARY YEAR 2010 2011 1) POWERHOUSE BAU (2008 BASELINE) $/YR $/YR NATURAL GAS CONSUMPTION/YR 1,000,000           GJ STEAM PRODUCTION/YR 770,000             KLBS/YR STEAM SOLD TO ATHLETICS FOR POOL USE 13,427               KLBS/YR 290,426$          290,426$ COST OF STEAM SOLD (UTILITIES) 13,427               KLBS/YR 173,259$          173,259$ NET PROFITS (LOSS) PER YEAR 117,167$          117,167$ 2) POWERHOUSE POST POOL PROJECT STEAM REDUCTION/YR 13,427               KLBS/YR STEAM PRODUCTION/YR 756,573             KLBS/YR PERCENT REDUCTION 1.7% % NATURAL GAS CONSUMPTION/YR 990,585             GJ PERCENT REDUCTION 0.94% % ENERGY SAVED/YR 9415 GJ 61,102$ GHG EMISSIONS SAVED 468 tonnes 25,796$ WATER/CHEMICAL SAVED 10000 cubic meters 12,000$ CONDENSATE SOLD TO ATHLETICS FOR POOL USE 174377 KLBS/YR 290,426$ PROJECT COST 428,000$          428,000$ SIMPLE PAYBACK 1.6 NET PROFIT LOSS PER YEAR (428,000)$         389,324$ CASH FLOW COMPARED TO BAU (428,000)$         272,157$ 10 YEAR NPV $1,599,039 Discount rate 5.75% 3) POWERHOUSE POST POOL PROJECT AND NEW SUB BUILDING STEAM REDUCTION/YR 13427 KLBS/YR STEAM PRODUCTION/YR 756573 KLBS/YR PERCENT REDUCTION 1.7% % NATURAL GAS CONSUMPTION/YR (GJ) 993184 GJ ENERGY SAVED/YR POOL + NEW SUB 11616 GJ 75,386$ GHG EMISSIONS SAVED 578 tonnes/yr 31,827$ WATER/CHEMICAL SAVED 10000 cubic meters 12,000$ CONDENSATE SOLD TO ATHLETICS FOR POOL USE 174377 KLBS/YR 290,426$ PROJECT COST 428,000$            428,000$ SIMPLE PAYBACK 1.5 NET PROFIT LOSS PER YEAR (428,000)$         409,639$ CASH FLOW COMPARED TO BAU (428,000)$         292,472$ 10 YEAR NPV $1,750,344 Discount rate 5.75% New Sub GJ Energy Saved  2599 New Sub Tonnes of GHG's Saved 129 $ saved/YR 23,986$   28      UBC Powerhouse Schematic Diagram and Energy Balance Before                            UBC  Powerhouse  Schematic  Diagram  and  Energy  Balance  After  Aquatic  Center  Upgrades                      Figure 14. UBC Powerhouse Schematic Diagram and Energy Balance9    Figure 15. UBC Powerhouse Schematic Diagram and Energy Balance After Aquatic Center Upgrades 9  UBC POWERHOUSE POST POOL PROJECT 100 Degrees °F Steam Generation 86367 LBS/hr 30% Percent of flue gas 250 Degree F Make up Water 30% % 70% Percent of flue gas 25910 LBS/hr 50 Degrees F Q3 2.1 MMBTU/hr 25910 LBS/hr 130 Degrees F 80 Delta T 60457 LBS/hr Condensate Return 142 Degrees F 25910 LBS/hr 217 Degrees F 87 Delta T 60457 LBS/hr 86367 LBS/hr 198 Degrees F 5661095 HEX 1 and 2 BTU/hr 56 Delta T 14203265 Feedwater BTU/hr 66 !T °F 164 Boiler Feedwater °F Deaerator vent (loss) 1.98 MMBTU/hr 86367 LBS/hr Q2 7.6 MMBTU/hr 230 Degrees F Q4 !T °F 87 4.25 MMBTU/hr Boiler Feedwater °F 252 3548 LBS/hr Steam to deaerator LBS/hr 86367 1758 LBS/hr Ancillary steam line (loss) 2.11 MMBTU/hr Q1 107.2 MMBTU/hr calculation 81060 LBS/HR Steam to Campus Delta T (F) 114 97 MMBTU/hr Steam to Campus @ 165 PSI Steam Temp F 366 9.86 MMBTU/hr Condensate Return + Make up water LBS/hr 86367 81.5% N efficiency of Steam plant = E Steam out - E Condensate/Make up water in / E of natural gas  Boiler input MMBTU/HR81.78 !"#$%#&'(%)*%(+,#)) -./01233-) 45'(%) .2678) 9%'%,'(",) 45'(%) .267:) 4%,;"(<%,=) $>,%;() ;"#(';()<%'()) ,%;"?%,@)) 2;"#"=>A%,) B">5%,)) C)'#$)D) UBC POWERHOUSE ENERGY EFFICIENCY CALCULATOR AND PROCESS FLOW DIAGRAM 100 Degrees °F Steam Generation 87900 LBS/hr 30% Percent of flue gas 250 Degree F Make up Water 30% % 70% Percent of flue gas 26370 LBS/hr 50 Degrees F 1.3 MMBTU/hr Q3 2.1 MMBTU/hr 26370 LBS/hr 130 Degrees F 80 Delta T 61530 LBS/hr Condensate Return 167 Degrees F 26370 LBS/hr 220 Degrees F 90 Delta T 61530 LBS/hr 87900 LBS/hr 198 Degrees F 4280708 HEX 1 and 2 BTU/hr 31 Delta T 15936187 Feedwater BTU/hr 49 !T °F 181 Boiler Feedwater °F Deaerator vent (loss) 1.98 MMBTU/hr 87900 LBS/hr Q2 6.9 MMBTU/hr 230 Degrees F Q4 !T °F 78 4.22 MMBTU/hr Boiler Feedwater °F 260 3516 LBS/hr Steam to deaerator LBS/hr 87900 1758 LBS/hr Ancillary steam line (loss) 2.11 MMBTU/hr Q1 108.2 NG MMBTU/hr calculation 82626 LBS/HR Steam to Campus Delta T (F) 106 108.2 MeteredNG consumption 99 MMBTU/hr Steam to Campus @ 165 PSI Steam Temp F 366 11.59 MMBTU/hr Condensate Return + Make up water LBS/hr 87900 80.8% N efficiency of Steam plant = E Steam out - E Condensate/Make up water in / E of natural gas  Boiler input MMBTU/HR 82.55 !"#$%#&'(%)*%(+,#)) -./01233-) 45'(%) .2678) 9%'%,'(",) 45'(%) .267:) 4%,;"(<%,=) $>,%;() ;"#(';()<%'()) ,%;"?%,@)) 2;"#"=>A%,) B">5%,)) C)'#$)D)   29    Project Delivery The  proposed  Neighborhood  Condensate  Recovery  Project  has  received unanimous support form UBC Building Operations and Utilities personal and $50K in  seed  funding  has  been  committed  by  them.    A  project  manager  has  been appointed,  a  Request  for  Proposals  has  been  issued  to  private  sector  engineering firms,  and  AME  Consulting  Inc.  has  been  selected  for  detailed  design  and  capital budgeting confirmation.    Additionally it has been confirmed that the Utilities steam fitter crew can install the outdoor piping and that the labor involved will be free to the project.  However, this crew  is  only  available  from  February  to  April  2011  and  some  equipment  such  as direct buried condensate piping requires at least two months lead‐time.  Thus there is a strong incentive to move quickly to order the piping and implement this project. The scheduled completion date for the project is April 1st 2011.               30    References:    1. UBC GHG emissions inventory 2007 http://www.sustain.ubc.ca/sites/default/files/uploads/pdfs/2007GHGInventorySummary.pdf   2. Personal communications ‐ Anne‐Marie Novak, Accounting Supervisor UBC Utilities   3. Personal communications – Lloyd Campbell, Manager UBC Aquatic center.    4. Personal communications ‐ Sean Healy, Supervisor Aquatic Services and Ian Harvey, Manager of Major Maintenance for the City of Vancouver.    5. Personal communications – Mark Scott, Manager Building Management System     6. ASHRAE addendum n to ASHRAE standard 62‐2001 http://www.ashrae.org/content/ASHRAE/ASHRAE/ArticleAltFormat/200418145036_347.pdf   7.    F. Asdrubali, A scale model to evaluate water evaporation from indoor swimming pools. Energy and Buildings, Volume 41, Issue 3, March 2009, Pages 311‐319 http://www.sciencedirect.com/science?_ob=DownloadURL&_method=confirm&_ArticleListID=1569348634&_uoikey=B6V2V‐4TPHRPR‐1&count=1&_docType=FLA&_acct=C000050221&_version=1&_userid=10&md5=376a704d87b1e33ed625fe25255566d1   8. M.M. Shah, Prediction of evaporation from occupied indoor swimming pools, Energy and Buildings 35 (2003) 707–713.  9. UBC Steam plant ABB hourly data and annual reports    10. NRCAN Survey of House hold energy use 2007 http://oee.nrcan.gc.ca/Publications/statistics/sheu‐summary07/pdf/sheu‐summary07.pdf          31    Appendix: SES Consulting Inc. Energy Study                                       UBC Aquatic Centre and Empire Pool Energy Study Energy Study for:  UBC Aquatic Centre and Empire Pool   Attention: Kavie Toor  Senior Business Development Manager    Prepared by:  SES Consulting Inc.     October 3, 2008   Alliance   32   UBC Aquatic Centre– 6121 University Blvd, Vancouver, BC  - Energy Study -   TABLE OF CONTENTS  1. ! Executive Summary .................................................................................................................. 2! 1.1! Background of the Project ...................................................................................................................... 2! 1.2! Précis of Project ...................................................................................................................................... 2! 1.3! Summary Report Table ............................................................................................................................ 2! 1.4! Allocation of Funds ................................................................................................................................. 2! 2.! Customer Information ............................................................................................................... 3! 3.! Background Description of Facility, Hardware and Systems .................................................... 3! 3.1! Overview ................................................................................................................................................. 3! 3.2! Mechanical Systems ............................................................................................................................... 3! 3.3! Electrical System .................................................................................................................................... 3! 3.4! Lighting System ...................................................................................................................................... 4! 3.5! Energy Analysis ...................................................................................................................................... 4! 4.! Energy Conservation Opportunities .......................................................................................... 7! 4.1! Mechanical Upgrades ............................................................................................................................. 7! 4.1.1 Pool Heat Reclaim .............................................................................................................................. 7! 4.1.2 Domestic Water Heat Reclaim ........................................................................................................... 7! 4.1.3 Empire Pool Heat Pumps ................................................................................................................... 8! 4.1.4 Hot Tub Heat Reclaim ........................................................................................................................ 8! 4.1.5 Mechanical Opportunity Summary ..................................................................................................... 8! 4.1.6 Investigation of Alternative Technologies ........................................................................................... 8! 4.2! DDC Controls .......................................................................................................................................... 9! 4.2.1 HV Scheduling .................................................................................................................................... 9! 4.2.2 Pool turnover night mode.................................................................................................................... 9! 4.2.3 Outdoor Air Lockout ............................................................................................................................ 9! 4.2.4 Domestic Water Night Setback ........................................................................................................... 9! 4.2.5 Load Shedding and Energy Monitoring ............................................................................................ 10! 4.2.6 DDC Opportunity Summary .............................................................................................................. 10! 4.3! Lighting Opportunities ........................................................................................................................... 10! 5.! Energy Consulting and Project Management ......................................................................... 10!  Appendices  A. Mechanical & Motor Spreadsheets Project Summary A1   Mechanical Systems A2   Steam Summary A3  B. Quantum Lighting Audit  B1  C.  Acknowledgements  C1   33   2 1.  Executive Summary 1.1 Background of the Project SES Consulting Inc. was asked to provide an Energy Study to analyse the present operation of the UBC Aquatic Centre and Empire Pool (UBC AQC). The 5,300 m 2  (57,000 ft 2 ) single storey aquatic centre operates 50 meter indoor and outdoor pools with some office space and a fitness centre in the basement.  The facility currently has a combination of linear fluorescent, high intensity discharge (HID), and compact florescent lighting.  Heating, ventilation, and air conditioning (HVAC) is provided by five air handling units, of which only one of these units has DX air conditioning.  The facility currently produces 1,203 Tonnes of Annual CO2 Emissions based on the following energy consumption data. Normalized Annual Utility Costs (Inc taxes) and Consumption for the UBC AQC for 2006 and 2007 are: Historical Data 2007 2006 2007 2006 2007 2006 2007 2006 Steam 17,090 22,406 3,240 4,248 84 110 446,381$  585,241$ Electricity 6,754 7,451 1,281 1,413 33 36 85,042$    95,279$ Total 23,843 29,856 4,521 5,661 117 146 531,424$  680,520$ Energy Use (GJ) BEPI (MJ/m2) BEPI (kWh/ft2) Cost ($)  The aim of the study was to analyse the existing operation of the building to try to seek out opportunities to reduce energy consumption, and to analyse the costs associated with these potential projects.  Note that 2007 data was used as the baseline for analysing project savings as this data represents current consumption, though savings estimates will increase significantly if the normal energy usage is closer to 2006 levels. 1.2 Précis of Project We have identified a number of excellent opportunities to cut the overall energy consumption for the facility in half.  This accomplishment will require a large mechanical retrofit to the pool heating and ventilation systems, so that energy used to heat the pool, can be reclaimed before it is exhausted with the ventilation systems.  In addition, we propose to heat the outdoor pool with air source heat pumps, and to add smaller heat reclaim systems to transfer heat to domestic hot water, and the hot tub.  To supplement this heat reclaim, we propose to add solar water heating to the facility, and to tie all of these concepts together through DDC controls.  After adding sensors, and intelligent programming, we can use DDC to monitor and verify the estimated energy savings, in addition to creating alarms if the system is not performing as planned.  These projects represent a tremendous energy and greenhouse gas saving opportunity, and we highly recommend that the client pursue incentive opportunities from Eco Energy, BC Hydro, and the PSECA program to help implement these measures. 1.3 Summary Report Table The costs associated with each of these projects are summarized below:  Project Summary Measure Capital Cost Savings Electricity Electricity Gas Payback BEPI GHG Description (kWh) (GJe) (GJ) MJ / m! (Tonnes) DDC Savings $69,000 $23,200 377,000 1,357 308 3.0 316 29 Mechanical Savings $1,045,000 $282,000 (724,810) (2,609) 12,595 3.7 1,893 841 Lighting Savings $72,300 $15,200 198,761 716 4.8 136 4 Total Savings $1,186,000 $320,000 (149,049) (537) 12,903 3.7 2,350 874 Annual Savings  1.4 Allocation of Funds These projects have the potential to reduce the energy footprint of the facility by 51.9% resulting in a building energy performance index (BEPI) of 2,171 MJ/m 2 .  If all of these projects meet with your approval, then we recommend that $1,186,000 be budgeted for the implementation of capital projects.  We estimate that these projects will increase the electrical load by (149,049) kWh, while saving 12,903 GJ of steam.  The net result of this is 12,366 GJ of annual energy savings.  When the UBC AQC achieves these savings, 870 Tonnes of annual greenhouse gas (GHG) emissions (72.6% GHG reduction) will be eliminated while saving $320,000 each year.   34   3 2. Customer Information UBC Aquatic Centre   6121 University Blvd Vancouver, B.C. V6T 1Z1  Contact Information: Kavie Toor, Senior Business Development Manager      Phone:  (604) 822 – 1688      Email: ktoor@interchange.ubc.ca 3. Background Description of Facility, Hardware and Systems 3.1 Overview The UBC AQC, constructed in 1974, is a single storey building occupied seven days a week from approximately 7 am to 10 pm.  The facility contains a large 50 m indoor pool, as well as a 55 m seasonal outdoor pool, some office space, a fitness centre and locker rooms.  UBC Utilities Customer Number  - Aquatic Centre  236 UBC Utilities Customer Number  - Empire Pool  240  Facility type      Swimming Pool / Fitness Centre Facility age                                                       Constructed 1974  Total floor area and number of floors        5,274 m 2  / 1 storey + basement 3.2 Mechanical Systems Heating, ventilation and air conditioning (HVAC) for the UBC AQC is provided by five air handling units.  The largest air handling unit (HV-1) has a 40 hp supply fan, and a 20 hp return fan serving the indoor pool natatorium.   Other units serve the pool mezzanine viewing area, the fitness and locker rooms, and the lobby areas.  All of these units have steam heating coils, and only MZ-1 serving the office area has mechanical cooling which is provided by a 20 ton DX air conditioning unit.  The indoor pool area is also heated using a hot water radiant heating system. Circulating and heating pool water uses a tremendous amount of energy in this complex.  Each of the large 50 meter pools has a 50 hp pool pump, as well as a number of filter pumps.  These pumps alone represent almost 700,000 kWh of electricity consumption.  Each of the pools, as well as the hot tub have dedicated steam heat exchangers to heat pool water.  Steam is provided to the facility through underground piping from a central UBC boiler plant that is located on campus. Domestic hot water for the UBC AQC is provided by another dedicated steam heat exchanger, and is circulated with a domestic hot water recirculation pump. The facility is equipped with a limited amount of building automation controls using a Siemens DDC system with pneumatic actuation of most devices.  This DDC system provides complete control of most building systems including the exterior lighting, air handling units and steam valves for the heat exchangers.  All major equipment is listed on pages A2-A3, indicating annual energy consumption, operating schedule, and area served.  3.3 Electrical System The facility has a 12.47 / 600 kVA electrical service.  The peak monthly billing demand for this facility is approximately 250 kW in the winter, and rises up to 290 kW during the summer.  Monthly demand and consumption profiles can be found in Section 3.5.  Billing is according to BC Hydro rate schedule 1200.   35   4 3.4 Lighting System Please refer to the attached Quantum Lighting report (Appendix B) for a description of the lighting systems of this building.  For the analysis of proportional energy use, we have assumed lighting density of 1.3 W/ft 2 . 3.5 Energy Analysis The main purpose of our study was to identify potential areas for conservation, and to analyze the feasibility of these projects.  To understand the patterns of energy consumption, we have analyzed the electrical consumption for the building.  The following energy analysis for the facility is based on UBC Utilities records. These graphs highlight trends in energy consumption that help us identify areas for potential conservation. !" #"" #!" $"" $!" %"" %!" &'( )*+ ,'- ./- ,'0 &1( &12 .13 4*/ 567 89: ;*6 ! " # $ % & !' ( ) *! !! +,-./"!012$3!456!78.$9,:!6"%9/"!;<":9/,:$<!!"#$%& $""! $""< $""=   In Figure 3.5A we notice the facility demand has had a relatively consistent load profile for the last several years with a peak load of approximately 290 kW that drops down to 250 kW during the winter.  This reflects the relatively constant use of the facility with additional pool pumps and some AC equipment contributing to a higher peak demand during the summer.  The load factor for the facility is above 0.80, showing us that the majority of equipment in the building is running 24 hours a day.  !">""" #"">""" #!">""" $"">""" $!">""" %"">""" &'( )*+ ,'- ./- ,'0 &1( &12 .13 4*/ 567 89: ;*6 = ) > +,-./"!012?3!456!78.$9,:!6"%9/"!;<":9/,:$<!6@%A.#B9,@% $""! $""< $""=   In Figure 3.5B we notice that monthly electrical consumption is quite unusual, with large variations for a given month from year to year.  This trend results from two factors:  changing facility loads as a result of seasonal activities, and the variations in the meter reading date from month to month.  When we look at the daily consumption trend, it appears that the daily consumption is more consistent at around 5,000 kWh per day during the peak season, dropping down to 4,500 kWh per day during April.   36   5 The monthly steam consumption data provided by UBC Utilities can be seen in Figure 3.5 C.  Once again we see wide variation from year to year, with a generally obvious seasonal heating profile.  This variation indicates an opportunity to reduce unnecessary consumption, for if it was possible one year, then it should be possible to repeat this behavior again.  While annual steam consumption appears to vary dramatically from year to year, we have assumed an annual baseline of 17,000 GJ as we feel that the addition of monitoring and exception reporting technology will raise alarms and allow UBC plant operations to solve the problems causing this usage.  We feel the 2006 consumption of 22,000 GJ could have been avoided through better management and control systems.  !"" #$""" #$!"" %$""" %$!"" &$""" &$!"" '$""" ()* +,- .)/ 01/ .)2 (3* (34 035 6,1 789 :;< =,8 ! " #$%&'(!)*+,-!./0!12&34$,!0(54'(!356!789$'(!:;;<! =;54><?!@4(38!0;5A&894$;5!:';B$<( %""! %""> %""? %""@   The monthly steam consumption data for the Outdoor Empire Pool can be seen in Figure 3.5 D.  This trend shows us a few very important observations.  First and foremost, it appears that the steam heating for the outdoor pool was left on during the past winter, using approximately 4,500 GJ (over $100,000 of steam at market rates) when the pool was not being used.  Secondly steam consumption seems to have dropped to virtually nothing during the summer of 2008.  We highly recommend investigation of the steam metering and consumption for this outdoor pool, as we conclude that either the billing data is incorrect, or the steam heating has recently been left on in the winter and turned off in the summer.  If we assume that past trends are accurate, then the outdoor pool represents 4,000 GJ of annual steam consumption on average.     37   6 We have also analyzed the breakdown of energy consumption by building system in order to estimate the percentage of load each system represents.  In Figure 3.5 E, the electricity consumption profile shows us that the lighting, ventilation, and pool pumps are the most significant electrical consumers in the building.  These areas will be a focus of our energy savings measures.  In Figure 3.5 F, the overall energy consumption chart shows our estimate of the energy consumption breakdown associated with electrical usage and building heating.  We see that estimated steam usage accounts for 72% of the total energy consumption for this facility, so this will be a focus for our study.  These charts help us identify that we need to have a hard look at mechanical systems in addition to lighting opportunities to identify the areas with major potential for conservation.     38   7 4. Energy Conservation Opportunities The primary purpose of this study was to identify energy conservation opportunities at the UBC AQC.  We have identified and analyzed many potential opportunities to save energy and cost by modifying and upgrading mechanical systems at this facility, and we will explain these ideas in detail in this section.  For financial savings estimates, we have used a base rate of $22.00/GJ for steam plus an average cost of the BC Carbon Tax of $25 / tonne.  For electricity, current BC Hydro electricity rates of $7.23 / kW for demand and $0.0354 / kWh for consumption have been used, plus an additional 0.5% in rate riders. For Greenhouse Gas estimates, we have used emissions factors of 0.022 kg CO2e / kWh of electricity in BC. For steam use, we have used the natural gas emissions factor of 51.0 kg CO2e / GJ and assumed an overall system efficiency of 75% to account for combustion and transmission losses resulting in a final steam emission factor of 68.0 kg CO2e / GJ.  Once again we note for emphasis, that we are assuming a baseline steam consumption of roughly 17,000 GJ per year for all of these savings estimates.  Savings potential may be much higher than those described below if annual steam consumption is normally at 22,000 GJ as it was in 2006. 4.1 Mechanical Upgrades The following measures describe a major upgrade to most of the pool water heating and ventilation systems. The changes we propose will significantly improve the efficiency of the water and air heating, as well as providing better overall control of the ventilation and humidity in the facility. 4.1.1 Pool Heat Reclaim This project involves a retrofit of the main pool ventilation unit (HV-1) to add a large air to air heat exchanger, and a heat pump to be used as a dehumidification reclaim device.  In addition to this equipment a new heating loop will be required to transfer heat to the water for the indoor lap pool.  The essential concept with this measure is to reclaim the heat in the very moist air that is normally exhausted from the pool (using a very efficient heat pump in cooling mode that rejects heat into the pool), and then to run the dehumidified return air through a passive air to air heat exchanger (with an efficiency of 80%) to significantly reduce the heating of outside air.  In addition, using this strategy, it will be possible to reduce ventilation rates as outdoor air will no longer be required for dehumidification purposes.  This measure is a very complicated upgrade, and will require additional piping, ductwork, equipment, controls and electrical wiring that we estimate will cost $630,000 including design fees.  According to our analysis, this will result in savings of 8,177 GJ of steam, while adding and 366,200 kWh (1,318 GJe) for a net energy savings of 6,858 GJ.  This translates into a net savings of $197,000 per year for a simple payback of 3.2 years.  Estimated GHG savings from this item alone are 548 tonnes per year. Note:  All measures that propose reduced ventilation rates will still remain well above ASHRAE recommended levels for pool applications. 4.1.2 Domestic Water Heat Reclaim This project involves a retrofit of the pool mezzanine ventilation unit (HV-2) to add a heat pump used as a dehumidification reclaim device.  This unit will be connected to the pool water heating loop, and will also have a small secondary pump that will pre-heat domestic water when there is demand.  The essential concept with this measure is similar to above, but we will also add a solar water heating component to this design.  By adding solar panels to this same water heating loop, we will allow the sun to preheat domestic hot water whenever it is possible, and will use control valves to re-direct water flow to the main pool if excess heat is available.  When both the main pool and the domestic water heating system are not calling for heat, both dehumidification heat pumps will shut down.  Once again, this measure is a very complicated upgrade, and will require additional ductwork, equipment, controls and electrical wiring that we estimate will cost $250,000. According to our analysis, this will result in savings of 1,580 GJ of steam, while adding 94,100 kWh (339 GJe) of electricity for a net energy savings of 1,241 GJ.  This translates into an overall savings of $37,000 per year for a simple payback of 6.8 years.  Of particular note, this project will qualify for an Eco Energy Incentive from the federal government because of the solar water heating component, though this funding has not been included in our analysis.  Estimated GHG savings from this item are 105 tonnes per year.   39   8 4.1.3 Empire Pool Heat Pumps The empire pool is currently heated with steam from April through October, for 7 months per year.  This system is particularly well suited to the installation of air to water heat pumps, as the heat is required for the pool when outdoor temperatures are generally above 10°C.  This measure involves the recommended installation of 70 tons of modular air source heat pumps for heating the empire pool, using the existing steam heating system as a back-up.  Assuming an average coefficient of performance of 3.0 on these heat pumps, we will add 248,100 kWh (893 GJe) of electricity, while saving at least 75% of the current steam consumption for the Empire Pool, for a net energy savings of 1,786 GJ.   Once again, this measure is a very complicated upgrade, and will require additional piping, equipment, controls and electrical wiring that we estimate will cost $150,000.  According to our analysis, this will result in savings of $45,000 per year for a simple payback of 3.3 years.  Estimated GHG savings from this item are 177 tonnes per year. 4.1.4 Hot Tub Heat Reclaim A smaller project worth considering is the installation of an air source heat pump in the pool pump room in the basement to be used instead of steam to heat the hot tub.  Assuming a coefficient of performance of 3.0, we will add 16,400 kWh (59 GJe), while saving 100% of the current steam consumption for the hot tub heat exchanger, for a net energy savings of 96 GJ.   This measure will require additional piping, equipment, controls and electrical wiring that we estimate will cost $15,000.  According to our analysis, this will result in savings of $3,200 per year for a simple payback of 4.7 years.  Estimated GHG savings from this item are 10 tonnes per year. 4.1.5 Mechanical Opportunity Summary We have summarized the DDC energy conservation measures below.  4.1 Mechanical Measure Summary Item Description Cost Payback $ GJ kWh GHG 4.1.1 Pool Heat Reclaim $ 630,000 3.2 $ 197,000 8,180 (366,237) 548 4.1.2 Domestic Water Heat Reclaim $ 250,000 6.8 $ 37,000 1,580 (94,111) 105 4.1.3 Heat Pump Heating of the Empire Pool $ 150,000 3.3 $ 45,200 2,680 (248,089) 177 4.1.4 Hot Tub Heat Reclaim $ 15,000 4.7 $ 3,210 155 (16,373) 10 4.1 Total Mechanical $ 1,045,000 3.7 $ 282,000 12,595 (724,810) 840 Savings  4.1.6 Investigation of Alternative Technologies We investigated a number of other technology solutions for the facility that have not been presented under our recommended measures, as longer paybacks made these solutions less attractive.  First we looked into ground source heat pump technology as a potential solution to heating pool water and ventilation air.   We quickly came to the conclusion that it would be less cost effective to use geo-exchange than dehumidification reclaim.  Estimated ground source heat pump capital costs are in the ballpark of $2,500,000 for a system sized to handle the current energy use for the UBC AQC, as we would require approximately 400 boreholes, and a major mechanical equipment upgrade for the facility.  According to our brief analysis, this system would have a very rough payback of over 6 years, and would achieve a net energy savings of 12,800 GJ per year.  In addition, if the site does not have a large aquifer present to provide a continuous source of heat, there is a risk of freezing the ground with extended use of the system without switching to air conditioning in the summer.  The combination of higher capital costs, longer payback and increased risk have caused us to reject this option.  Finally we investigated micro steam turbines for electricity generation.  The main heating distribution system at UBC is a high pressure steam, distributed to the various facilities at between 80 and 100 psi. At each building the steam is routed through a pressure reducing valve (PRV) and this wasted energy can be used to generate electricity.  Once again we have rejected this idea due to very large capital costs and long payback periods.    40   9 4.2 DDC Controls The existing Siemens DDC system at the facility provides some relatively low capital cost opportunities to implement a number of new energy savings features that we recommend to customize the controls based on our review of building operations.  While these projects are relatively small in comparison to the proposed mechanical upgrades, we feel that these projects remain good opportunities, and will be important tools to monitor and verify the overall savings from section 4.1.  These features are described below with an estimate of cost and energy savings provided for each measure. 4.2.1 HV Scheduling Currently only one of the five air handling units is scheduled, and the others operate 24/7.  The challenge with scheduling this equipment in a pool environment is that humidity levels build up and can cause mouldy damp conditions to fester.  This said, we believe it will be possible to schedule off the pool mezzanine, and the locker / fitness air handling units when the space is unoccupied and humidity levels are below 70% relative humidity. This project will require the addition of new humidity sensors in the critical areas served by these units.  This will result in savings of 40,800 kWh of electricity and $1,450 per year in energy expenses.  The estimated cost of adding these sensors is $6,000, resulting in a simple payback of 4.1 years. 4.2.2 Pool turnover night mode Currently each of the main 50 hp pool pumps operates 24/7 to maintain design turnover rates as required to maintain health standards.  In addition, the outdoor Empire Pool pump remains on all winter even though the pool is not used for swimming.  According to our brief analysis, turnover rates for the pool are far higher than required by health standards. We recommend slightly reduced (10%) circulation during operating hours and larger reductions after hours or when not in use (50% lap pool and 50% empire pool). Reductions still meet or exceed BC Health Act standards. This project will require the addition of new variable speed drives for the equipment the two pool pumps, and that this equipment be added to DDC control to implement this strategy. This will result in savings of 309,000 kWh of electricity and $11,000 per year in energy expenses.  The estimated cost of adding this upgrade is $35,000, resulting in a simple payback of 3.2 years.   This addition also has the added bonus of allowing us to implement automated load shedding on these pumps. 4.2.3 Outdoor Air Lockout While there is an existing Outside Air Temperature (OAT) strategy in place it is currently configured at a set point of 18ºC, and it is not turning off the heating pumps.  Especially with the implementation of the proposed heat reclaim and air source heat pump systems, we feel it will be very important to re-program the steam heat exchanger control valves to ensure steam is not being used while the other systems are operating.  This will result in pump savings of 26,800 kWh of electricity, 101 GJ of steam and $3,600 per year in energy expenses. The estimated cost of adding this upgrade is $10,000, resulting in a simple payback of 2.8 years. 4.2.4 Domestic Water Night Setback This project would schedule the domestic hot water recirculation pump off while the facility is unoccupied. While we estimate this will save a very small amount of electrical pump energy (131 kWh), it will be much more important to stop sending hot water through the building all night long to lose heat.  We estimate that this will save at least 5% of the remaining steam used to heat DHW, representing savings of approximately 14 GJ per year.  This represents a total of $360 per year in energy savings.  We estimate the addition of this pump to DDC will cost $1,000 to implement, giving this project a payback of 2.8 years.   41   10 4.2.5 Load Shedding and Energy Monitoring This project would add dashboard energy monitoring links for both steam and electricity to the DDC system, and would implement real time energy alarms when daily consumption rises above setpoint.  Campus electricity peak demand would be linked to this system in a program to implement electrical load shedding when instantaneous demand rises above the current monthly peak.  This facility has a number of non critical loads such as the pool pumps and de-humidification heat pumps that could be added to a load shedding program that would empower the facility to response to campus wide peaks, and to begin to manage overall campus peak demand.  In addition, we have noted that huge surges in steam consumption have occurred in this facility in the past couple of years that may have been mitigated if DDC alarms had notified plant operations of the exceptional energy use.  We highly recommend installing additional controls to the existing DDC system to enable these monitoring and load shedding features.  We estimate that this could save 10% of the annual steam consumption remaining in the facility or 193 GJ per year, and could easily reduce campus peak demand by 20 kW per month or more representing $6,800 annually.  The expected cost of this measure is $17,000, resulting in a simple payback of 2.5 years. 4.2.6 DDC Opportunity Summary We have summarized the DDC energy conservation measures below.  4.2 DDC Measure Summary Item Description Cost Payback $ GJ kWh GHG 4.2.1 HV Scheduling $ 6,000 4.1 $ 1,450 40,800 0.9 4.2.2 Pool turnover night mode $ 35,000 3.2 $ 11,000 309,000 6.8 4.2.3 Outdoor Air Lockout $ 10,000 2.8 $ 3,600 101 26,800 7.5 4.2.4 Domestic Hot Water Night Setback $ 1,000 2.8 $ 357 13.5 131 0.9 4.2.5 Energy Monitoring and Load Shedding $ 17,000 2.5 $ 6,780 193 20.0 13.1 4.2 Total DDC $ 69,000 3.0 $ 23,200 308 377,000 29 Savings  4.3 Lighting Opportunities Please refer to the attached Quantum Lighting report (Appendix B) for a description of the lighting opportunities in this building. 5. Energy Consulting and Project Management As these projects are very complicated, we have included design scope for each item in our analysis.  These estimated capital costs in this report all include design costs, and project management time to help direct the implementation of the projects described.  If management is interested in following through with the installation of these projects, we highly recommend that these projects proceed on a design build basis to ensure that the engineering team remains involved from conceptual vision through to commissioning.  We feel this is the best way to ensure that these projects are implemented in a way that will achieve the energy savings described in this study.     42    A p p e n d i x  A : I n v e n t o r y  S u m m a r y U B C  A q u a t i c  C e n t r e P r o j e c t  S u m m a r y B u i l d i n g  A r e a 5 , 2 7 4 m 2 5 6 , 7 5 0 s q f t E n e r g y  C o n s u m p t i o n G J k W h S t e a m 1 7 , 0 9 0 H i s t o r i c a l E l e c t r i c i t y  -  M e c h a n i c a l  E 4 , 9 2 0 1 , 3 6 6 , 7 8 1 D a t a 2 0 0 7 2 0 0 6 2 0 0 7 2 0 0 6 2 0 0 7 2 0 0 6 2 0 0 7 2 0 0 6 E l e c t r i c i t y  -  L i g h t i n g 1 , 5 4 2 4 2 8 , 2 6 2 S t e a m 1 7 , 0 9 0 2 2 , 4 0 6 3 , 2 4 0 4 , 2 4 8 8 4 1 1 0 4 4 6 , 3 8 1 $ 5 8 5 , 2 4 1 $ P l u g  L o a d 2 9 1 8 0 , 9 5 6 E l e c t r i c i t y 6 , 7 5 4 7 , 4 5 1 1 , 2 8 1 1 , 4 1 3 3 3 3 6 8 5 , 0 4 2 $ 9 5 , 2 7 9 $ E l e c t r i c i t y 6 , 7 5 4 1 , 8 7 6 , 0 0 0 T o t a l 2 3 , 8 4 3 2 9 , 8 5 6 4 , 5 2 1 5 , 6 6 1 1 1 7 1 4 6 5 3 1 , 4 2 4 $ 6 8 0 , 5 2 0 $ S u m  T o t a l 2 3 , 8 4 3 1 , 8 7 6 , 0 0 0 A c t u a l  E l e c t r i c a l  I n v e n t o r y  B r e a k d o w n E x i s t i n g  S y s t e m s S y s t e m k W h k W A v e .  H o u r s V e n t i l a t i o n 6 3 9 , 5 9 3 8 3 7 , 7 3 0 W /  s q  m W /  s q  f t P u m p s 6 9 9 , 8 2 7 1 1 2 6 , 2 5 9 L i g h t i n g 1 4 . 0 1 . 3 2 C o o l i n g 2 7 , 3 6 2 1 6 1 , 6 6 7 M e c h a n i c a l : 4 0 . 0 3 . 7  -  - P l u g  L o a d 1 . 8 0 . 2 L i g h t i n g 4 2 8 , 2 6 2 7 4 5 , 8 0 0 O t h e r  ( P l u g  L o a d ) 8 0 , 9 5 6 9 8 , 7 6 0 ( e s t i m a t e d  h r s ) T o t a l 1 , 8 7 6 , 0 0 0 2 9 4 6 , 3 8 0 E n e r g y  S t u d y  P r o j e c t  S a v i n g s P r o j e c t  S u m m a r y M e a s u r e C a p i t a l  C o s t S a v i n g s E l e c t r i c i t y E l e c t r i c i t y G a s P a y b a c k B E P I G H G D e s c r i p t i o n ( k W h ) ( G J e ) ( G J ) M J  /  m ! ( T o n n e s ) D D C  S a v i n g s $ 6 9 , 0 0 0 $ 1 7 , 0 0 0 2 0 5 , 0 0 0 7 3 8 3 0 8 4 . 1 1 9 8 2 5 M e c h a n i c a l  S a v i n g s $ 1 , 0 4 5 , 0 0 0 $ 2 8 2 , 0 0 0 ( 7 2 4 , 8 1 0 ) ( 2 , 6 0 9 ) 1 2 , 5 9 5 3 . 7 1 , 8 9 3 8 4 1 L i g h t i n g  S a v i n g s T o t a l  S a v i n g s $ 1 , 1 1 4 , 0 0 0 $ 2 9 9 , 0 0 0 ( 5 1 9 , 8 1 0 ) ( 1 , 8 7 1 ) 1 2 , 9 0 3 3 . 7 2 , 0 9 0 8 6 6 E n e r g y  S a v i n g s 4 6 . 3 % N e t  E n e r g y  S a v i n g s 1 1 , 0 3 2 P r o j e c t e d  F u t u r e  U s a g e * 2 , 3 9 5 , 8 1 0 4 , 1 8 7 2 , 4 3 1 3 3 7 E l e c t r i c i t y S t e a m T o t a l G H G  S a v i n g s C u r r e n t  G H G  ( t  C O 2 e ) * 4 1 1 , 1 6 2 1 , 2 0 3 G H G  S a v i n g s  ( t  C O 2 e ) * ( 1 1 ) 8 7 7 8 6 6 7 2 . 0 % * N o t e :  E m i s s i o n  f a c t o r s  o f  6 8 . 0  k g  C O 2 / G J  f o r  s t e a m  a n d  0 . 0 2 2  k g  C O 2  /  k W h  f o r  e l e c t r i c i t y  i n  B C E n e r g y  U s e  ( G J ) B E P I  ( M J / m 2 ) B E P I  ( k W h / f t 2 ) C o s t  ( $ ) A n n u a l  S a v i n g s A 1   43      A p p e n d i x  A   -   M e c h a n i c a l  a n d  M o t o r  I n v e n t o r y M e c h a n i c a l  S y s t e m  E l e c t r i c i t y  U s e E N E R G Y  I N V E N T O R Y  F O R M  -  M e c h  S y s t e m s B U I L D I N G  N A M E : U B C  A q u a t i c  C e n t r e I n v e n t o r y  B y : J i m  G r o e n e w o u d S y s t e  S y s t e m E q u i p m e n t L o c a t i o n A r e a  S e r v e d M o n t h y L o a d L o a d A n n u a l A n n u a l %  o f S c h e d u l e T y p e N a m e N u m b e r P r o f i l e h p k W F a c t o r J a n F e b M a r A p r M a y J u n J u l A u g S e p O c t N o v D e c H r s k W h T o t a l h o u r s  /  d a y      V P o o l  A i r  H a n d l e r H V - 1 F a n  r o o m N a t a t o r i u m A 4 0 2 9 . 8 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  2 6 1 , 3 9 8 1 9 . 1 2 4 / 7 2 4 V M e z z a n i n e  A i r  h a n d l e r H V - 2 F a n   r o o m N a t a t o r i u m A 1 0 7 . 5 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  6 5 , 3 5 0 4 . 8 2 4 / 7 2 4 V W e i g h t  A r e a H V - 3 F i l t e r  r o o m W e i g h t  r o o m A 1 5 1 1 . 2 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  9 8 , 0 2 4 7 . 2 2 4 / 7 2 4 V F i l t e r  r o o m H V - 4 F i l t e r  r o o m F i l t e r  r o o m A 1 0 . 7 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  6 , 5 3 5 0 . 5 2 4 / 7 2 4 V A d m i n i s t r a t i o n M Z - 1 M e c h a n i c a l  r o o m O f f i c e s  a n d  l o b b y A 5 3 . 7 1 0 0 % 4 9 6 4 4 8 4 9 6 4 8 0 4 9 6 4 8 0 4 9 6 4 9 6 4 8 0 4 9 6 4 8 0 4 9 6 5 , 8 4 0  2 1 , 7 8 3 1 . 6 2 4 / 7 1 6 V P o o l  R e t u r n  F a n R F - 1 F a n  r o o m N a t a o r i u m A 2 0 1 4 . 9 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  1 3 0 , 6 9 9 9 . 5 2 4 / 7 2 4 A C M Z - 1  D X  c o o l i n g C U - 1 R o o f A d m i n i s t r a t i o n C 2 2 1 6 . 4 1 0 0 % 0 0 0 4 8 1 4 9 2 4 0 3 9 7 3 9 7 2 8 8 1 4 9 0 0 1 , 6 6 7  2 7 , 3 6 2 2 . 0 o n  d e m a n d 1 6 P M a i n  P o o l  P u m p P - 1 F i l t e r  r o o m M a i n  P o o l A 5 0 3 7 . 3 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  3 2 6 , 7 4 8 2 3 . 9 2 4 / 7 2 4 P H y d r o  A i r P - 2 F i l t e r  r o o m M a i n  P o o l F 7 . 5 5 . 6 1 0 0 % 2 . 1 7 1 . 9 6 2 . 1 7 1 . 5 0 . 3 1 0 0 0 0 0 . 6 2 1 . 8 2 . 1 7 1 3  7 1 0 . 0 2 4 / 7 0 . 1 P H e a t i n g  p u m p P - 2 D F i l t e r  r o o m R a d i a t i o n E 1 . 5 1 . 1 1 0 0 % 3 7 2 3 3 6 4 4 6 5 0 4 5 9 5 6 4 8 7 4 4 7 4 4 6 4 8 5 2 1 4 3 2 3 7 2 6 , 3 6 2  7 , 1 2 0 0 . 5 2 4 P F i l t e r  P u m p P - 3 F i l t e r  r o o m H o t  T u b  f i l t e r E 0 . 8 0 . 6 1 0 0 % 3 7 2 3 3 6 4 4 6 5 0 4 5 9 5 6 4 8 7 4 4 7 4 4 6 4 8 5 2 1 4 3 2 3 7 2 6 , 3 6 2  3 , 7 9 7 0 . 3 2 4 P H e a t i n g  p u m p P - 4 E F i l t e r  r o o m  A 7 . 5 5 . 6 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  4 9 , 0 1 2 3 . 6 2 4 P H e a t i n g  P u m p P - 4 D F i l t e r  r o o m A 5 3 . 7 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  3 2 , 6 7 5 2 . 4 2 4 P H e a t i n g  P u m p P - 5 F i l t e r  r o o m A 1 0 . 7 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  6 , 5 3 5 0 . 5 2 4 P H e a t i n g  P u m p P - 6 F i l t e r  r o o m A 0 . 3 0 . 2 1 0 0 % 3 7 2 3 3 6 3 7 2 3 6 0 3 7 2 3 6 0 3 7 2 3 7 2 3 6 0 3 7 2 3 6 0 3 7 2 4 , 3 8 0  9 8 0 0 . 1 1 2 P C o n d e n s a t e  p u m p  m a i n P - 7 F i l t e r  r o o m F a c i l i t y A 3 2 . 2 1 0 0 % 3 7 2 3 3 6 3 7 2 3 6 0 3 7 2 3 6 0 3 7 2 3 7 2 3 6 0 3 7 2 3 6 0 3 7 2 4 , 3 8 0  9 , 8 0 2 0 . 7 1 2 P C o n d e n s a t e  p u m p  m a i n P - 8 F i l t e r  r o o m F a c i l i t y A 3 2 . 2 1 0 0 % 3 7 2 3 3 6 3 7 2 3 6 0 3 7 2 3 6 0 3 7 2 3 7 2 3 6 0 3 7 2 3 6 0 3 7 2 4 , 3 8 0  9 , 8 0 2 0 . 7 1 2 P S u m p  P u m p P - 9 F i l t e r  r o o m A q u a t i c  c e n t e r A 2 1 . 5 1 0 0 % 3 1 2 8 3 1 3 0 3 1 3 0 3 1 3 1 3 0 3 1 3 0 3 1 3 6 5  5 4 5 0 . 0 1 P S u m p  P u m p P - 1 0 F i l t e r  r o o m A q u a t i c  c e n t e r A 2 1 . 5 1 0 0 % 3 1 2 8 3 1 3 0 3 1 3 0 3 1 3 1 3 0 3 1 3 0 3 1 3 6 5  5 4 5 0 . 0 1 P S a n i t a r y  p u m p  m a i n P - 1 1 F i l t e r  r o o m F a c i l i t y A 7 . 5 5 . 6 1 0 0 % 1 8 6 1 6 8 1 8 6 1 8 0 1 8 6 1 8 0 1 8 6 1 8 6 1 8 0 1 8 6 1 8 0 1 8 6 2 , 1 9 0  1 2 , 2 5 3 0 . 9 6 P S a n i t a r y  p u m p  m a i n P - 1 2 F i l t e r  r o o m F a c i l i t y A 7 . 5 5 . 6 1 0 0 % 1 8 6 1 6 8 1 8 6 1 8 0 1 8 6 1 8 0 1 8 6 1 8 6 1 8 0 1 8 6 1 8 0 1 8 6 2 , 1 9 0  1 2 , 2 5 3 0 . 9 6 P P o o l  p u m p P - 1 E m p i r e  F i l t e r  R m E m p i r e  F i l t e r  R m I 5 0 3 7 . 3 1 0 0 % 0 0 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 0 0 5 , 8 8 0  2 1 9 , 3 2 4 1 6 . 0 2 4 / 7 2 4 P O z o n e  I n j e c t i o n  P u m p P - 1 4 O z o n e  R o o m M a i n  P o o l A 1 0 . 7 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  6 , 5 3 5 0 . 5 2 4 P D H W  r e c i r c  p u m p P - 1 5 F i l t e r  r m F a c i l i t y A 0 . 0 8 0 . 1 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  5 2 3 0 . 0 2 4 P C h e m i c a l  p u m p s P - 1 6 - 2 5 F i l t e r  R o o m s P o o l s A 0 . 2 0 . 1 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  1 , 3 0 7 0 . 1 2 4 / 7 2 4 S u m p  p u m p P - 2 6 E m p i r e  p o o l  m e c h E m p i r e  p o o l A 3 2 . 2 1 0 0 % 3 1 2 8 3 1 3 0 3 1 3 0 3 1 3 1 3 0 3 1 3 0 3 1 3 6 5  8 1 7 0 . 1 1 S u m p  p u m p P - 2 7 E m p i r e  p o o l  m e c h E m p i r e  p o o l A 3 2 . 2 1 0 0 % 6 2 5 6 6 2 6 0 6 2 6 0 6 2 6 2 6 0 6 2 6 0 6 2 7 3 0  1 , 6 3 4 0 . 1 2 V A i r  C o m p r e s s o r C A - 1 F i l t e r  r o o m A q u a t i c  c e n t e r A 3 2 . 2 1 0 0 % 3 7 2 3 3 6 3 7 2 3 6 0 3 7 2 3 6 0 3 7 2 3 7 2 3 6 0 3 7 2 3 6 0 3 7 2 4 , 3 8 0  9 , 8 0 2 0 . 7 1 2 V A i r  C o m p r e s s o r C A - 2 O z o n e  R o o m O z o n e  R o o m A 1 0 . 7 1 0 0 % 6 2 5 6 6 2 6 0 6 2 6 0 6 2 6 2 6 0 6 2 6 0 6 2 7 3 0  5 4 5 0 . 0 2 V A i r  C o m p r e s s o r C A - 3 E m p i r e  F i l t e r  R m E m p i r e  F i l t e r  R m A 3 2 . 2 1 0 0 % 1 2 4 1 1 2 1 2 4 1 2 0 1 2 4 1 2 0 1 2 4 1 2 4 1 2 0 1 2 4 1 2 0 1 2 4 1 , 4 6 0  3 , 2 6 7 0 . 2 2 4 / 7 4 V O z o n e  G e n e r a t o r O Z - 1 O z o n e  R o o m A 0 . 3 1 . 0 1 0 0 % 1 2 4 1 1 2 1 2 4 1 2 0 1 2 4 1 2 0 1 2 4 1 2 4 1 2 0 1 2 4 1 2 0 1 2 4 1 , 4 6 0  1 , 4 6 0 0 . 1 2 4 / 7 4 V C h l o r i n e  E x h a u s t  f a n E F - 1 C h l o r i n e  R o o m C h l o r i n e  r o o m A 0 . 5 0 . 4 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  3 , 2 6 7 0 . 2 2 4 V S t o r a g e  E x h E F - 2 S t o r a g e  r o o m S t o r a g e  r o o m A 0 . 3 3 0 . 2 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  2 , 1 5 7 0 . 2 2 4 V E l e c t r i c a l  R m  E x h . E F - 3 E l e c t r i c  V a u l t E l e c t r i c  v a u l t A 0 . 7 5 0 . 6 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  4 , 9 0 1 0 . 4 2 4 V M a l e  D r y e r E F - 4 C h a n g e  r o o m C h a n g e  r o o m A 1 0 . 7 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  6 , 5 3 5 0 . 5 2 4 V W a s h r o o m  E x h a u s t E F - 5 C h a n g e  r o o m C h a n g e  r o o m A 1 0 . 7 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  6 , 5 3 5 0 . 5 2 4 V W o m e n s  d r y e r  e x h a u s t E F - 6 C h a n g e  r o o m C h a n g e  r o o m A 1 0 . 7 1 0 0 % 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 8 , 7 6 0  6 , 5 3 5 0 . 5 2 4 V E m p i r e  F i l t e r  R o o m E F - 7 E m p i r e  f i l t e r  r o o m E m i r e  F i l t e r  r m I 0 . 7 5 0 . 6 1 0 0 % 0 0 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 0 0 5 , 8 8 0  3 , 2 9 0 0 . 2 2 4 / 7 2 4 V G e n e r a t o r  R o o m  E x h . E F - 8 G e n  s e t  r o o m G e n  s e t  r o o m A 0 . 7 5 0 . 6 1 0 0 % 3 . 1 2 . 8 3 . 1 3 3 . 1 3 3 . 1 3 . 1 3 3 . 1 3 3 . 1 3 7  2 0 0 . 0 2 4 / 7 0 . 1 V E l e v a t o r  E x h a u s t  f a n E F - 9 E l e v a t o r  M e c h  R o E l e v a t o r  M e c h a n i c a l  R o o m A 0 . 5 0 . 4 1 0 0 % 1 5 5 1 4 0 1 5 5 1 5 0 1 5 5 1 5 0 1 5 5 1 5 5 1 5 0 1 5 5 1 5 0 1 5 5 1 , 8 2 5  6 8 1 0 . 0 2 4 / 7 5 V E l e v a t o r E L - 1 A q u a t i c  C e n t e r A q u a t i c  C e n t e r A 5 3 . 7 1 0 0 % 1 5 5 1 4 0 1 5 5 1 5 0 1 5 5 1 5 0 1 5 5 1 5 5 1 5 0 1 5 5 1 5 0 1 5 5 1 , 8 2 5  6 , 8 0 7 0 . 5 2 4 / 7 5 T o t a l s 2 1 5 . 4 1 , 3 6 9 , 2 3 2 C h e c k  M o n t h  O p .  H o u r s  A p p l y P a g e  A 2   44       A p p e n d i x  A   -   S t e a m  D e v i c e s S t e a m  C o n s u m p t i o n E N E R G Y  I N V E N T O R Y  F O R M  -  S t e a m  D e v i c e s B U I L D I N G  N A M E : U B C  A q u a t i c  C e n t r e  S y s t e m E q u i p m e n t S e r v i c e  A r e a s B T U / h C o m B %  M o n t h y D a i l y A n n u a l A n n u a l %  o f C o m m e n t s N a m e N u m b e r E f f L F P r o f i l e H o u r s J F M A M J J A S O N D J F M A M J J A S O N D H r s G J T o t a l   L a p  P o o l  H e a t  E x c h a n g e r H X - 1 , 2 I n d o o r  P o o l 4 , 4 8 2 , 5 0 0 1 0 0 1 1 a 2 4 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 3 8 7 3 5 0 3 8 7 3 7 4 3 8 7 3 7 4 3 8 7 3 8 7 3 7 4 3 8 7 3 7 4 3 8 7 8 , 7 6 0 4 , 5 5 6 2 6 . 2 o n  d e m a n d H o t  T u b  H e a t  e x c h a n g e r H X - 3 H o t  T u b 8 4 , 0 0 0 1 0 0 2 0 a 2 4 7 4 4 6 7 2 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 1 3 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 8 , 7 6 0 1 5 5 0 . 9 o n  d e m a n d H V - 1  H e a t i n g  C o i l N a t a t o r i u m 2 , 7 9 6 , 0 0 0 1 0 0 3 8 h 2 4 7 4 4 6 0 5 5 9 5 5 0 4 2 9 8 1 4 4 0 0 1 4 4 4 4 6 5 7 6 7 4 4 8 3 4 6 7 8 6 6 7 5 6 5 3 3 4 1 6 1 0 0 1 6 1 5 0 0 6 4 6 8 3 4 4 , 8 0 0 5 , 3 7 9 3 0 . 9 o n  d e m a n d H V - 2  H e a t i n g  C o i l N a t a t o r i u m  M e z z a n i n e 8 0 8 , 0 0 0 1 0 0 3 3 h 2 4 7 4 4 6 0 5 5 9 5 5 0 4 2 9 8 1 4 4 0 0 1 4 4 4 4 6 5 7 6 7 4 4 2 0 9 1 7 0 1 6 7 1 4 2 8 4 4 1 0 0 4 1 1 2 6 1 6 2 2 0 9 4 , 8 0 0 1 , 3 5 0 7 . 8 o n  d e m a n d H V - 3  H e a t i n g  C o i l C h a n g e  r o o m s 1 , 6 1 4 , 0 0 0 1 0 0 6 h 2 4 7 4 4 6 0 5 5 9 5 5 0 4 2 9 8 1 4 4 0 0 1 4 4 4 4 6 5 7 6 7 4 4 7 6 6 2 6 1 5 1 3 0 1 5 0 0 1 5 4 6 5 9 7 6 4 , 8 0 0 4 9 0 2 . 8 o n  d e m a n d H V - 4  h e a t i n g  C o i l F i l t e r  r o o m 0 1 0 0 h 2 4 7 4 4 6 0 5 5 9 5 5 0 4 2 9 8 1 4 4 0 0 1 4 4 4 4 6 5 7 6 7 4 4 0 0 0 0 0 0 0 0 0 0 0 0 4 , 8 0 0 0 0 . 0 o n  d e m a n d M Z - 1  H e a t i n g  C o i l A d m i n i s t r a t i o n  a n d  L o b b y 1 7 2 , 0 0 0 1 0 0 1 0 h 1 6 4 9 6 4 0 3 3 9 7 3 3 6 1 9 8 9 6 0 0 9 6 2 9 8 3 8 4 4 9 6 9 7 7 6 3 2 0 0 2 5 7 9 3 , 2 0 0 5 5 0 . 3 o n  d e m a n d D H W  H e a t  E x c h a n g e r H X - 4 D o m e s t i c  H o t  W a t e r 6 0 0 , 0 0 0 1 0 0 5 0 a 1 6 4 9 6 4 4 8 4 9 6 4 8 0 4 9 6 4 8 0 4 9 6 4 9 6 4 8 0 4 9 6 4 8 0 4 9 6 1 5 7 1 4 2 1 5 7 1 5 2 1 5 7 1 5 2 1 5 7 1 5 7 1 5 2 1 5 7 1 5 2 1 5 7 5 , 8 4 0 1 , 8 4 8 1 0 . 6 o n  d e m a n d E m p i r e  P o o l  H e a t  E x c h a n g H X - 5 O u t d o o r  P o o l 1 , 2 0 0 , 0 0 0 1 0 0 4 8 i 2 4 0 0 7 4 4 7 2 0 7 4 4 7 2 0 7 4 4 7 4 4 7 2 0 7 4 4 0 0 0 0 4 5 2 4 3 7 4 5 2 4 3 7 4 5 2 4 5 2 4 3 7 4 5 2 0 0 5 , 8 8 0 3 , 5 7 2 2 0 . 5 o n  d e m a n d T o t a l s 1 1 , 7 5 6 , 5 0 0 5 , 4 5 6  4 , 6 1 4  5 , 5 0 6  4 , 9 9 2  4 , 1 1 7  3 , 3 1 2  2 , 7 2 8  2 , 7 2 8  3 , 3 1 2  4 , 8 1 1  4 , 6 0 8  5 , 4 5 6  1 , 6 8 5  1 , 4 2 0  1 , 9 1 1  1 , 7 4 0  1 , 4 6 0  1 , 1 9 5  1 , 0 0 9  1 , 0 0 9  1 , 1 9 5  1 , 6 8 6  1 , 4 1 2  1 , 6 8 5  5 1 , 6 4 0  1 7 , 4 0 7  J F M A M J J A S O N D T o t a l A c t u a l  C o n s u m p t i o n  2 0 0 7 3 6 0 7 3 7 5 7 3 1 6 4 2 1 3 8 2 1 1 6 9 1 2 5 0 9 9 4 1 4 1 3 2 2 1 7 2 3 0 1 3 0 5 2 1 7 , 0 9 0  A c t u a l  C o n s u m p t i o n  2 0 0 6 3 1 9 3 1 8 8 2 2 0 7 0 2 5 3 1 2 1 0 1 1 6 3 9 1 0 4 4 1 2 4 5 1 1 0 9 1 7 4 1 1 7 4 5 2 1 0 6 2 2 , 4 0 6  A c t u a l  C o n s u m p t i o n  2 0 0 5 1 9 0 1 1 3 0 9 1 5 1 3 1 5 3 7 1 5 7 3 1 3 9 2 1 0 0 6 9 2 1 . 7 1 0 1 1 1 8 8 2 2 0 0 9 5 7 6 . 1 1 6 , 6 3 0  B a s e l i n e 1 9 0 1 1 3 0 9 1 3 8 5 1 5 3 7 1 5 7 3 1 3 9 2 1 0 0 6 9 2 2 1 1 7 8 1 9 4 7 2 0 1 8 1 0 0 0 1 7 , 1 6 7  M o n t h l y  H o u r s M o n t h y  G J P a g e  A 3 P a g e  A 3

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 8 2
United States 3 0
Japan 2 0
City Views Downloads
Beijing 8 0
Redmond 2 0
Tokyo 2 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items