UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Geochemistry of bedrock and soils in the vicinity of the Anvil Mine, Yukon Territory Morton, Penelope Cane 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1973_A6_7 M67_9.pdf [ 14.53MB ]
Metadata
JSON: 831-1.0302661.json
JSON-LD: 831-1.0302661-ld.json
RDF/XML (Pretty): 831-1.0302661-rdf.xml
RDF/JSON: 831-1.0302661-rdf.json
Turtle: 831-1.0302661-turtle.txt
N-Triples: 831-1.0302661-rdf-ntriples.txt
Original Record: 831-1.0302661-source.json
Full Text
831-1.0302661-fulltext.txt
Citation
831-1.0302661.ris

Full Text

GEOCHEMISTRY DF BEDROCK AND SOILS IN THE VICINITY OF THE ANVIL MINE, YUKON TERRITORY by PENELOPE CANE MORTON B . S c , M c G i l l U n i v e r s i t y , 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the department of GEOLOGICAL SCIENCES hie a c c e p t t h i s t h e s i s as conforming to the r e q u i r e d s t a n d a r d The U n i v e r s i t y D f B r i t i s h Cclumtiiia May 1973 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r anted by the Head o f my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood t h a t c o p y i n g or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada D a t e Mu/ £j-A? 7 7 i i ABSTRACT Cambrian (7) s c h i s t s and p h y l l i t e s of the A n v i l Range, Yukon T e r r i t o r y , hast three l a r g e stratabound l e a d - z i n c d e p o s i t s : F a r o , Vangorda, and Swim. Because g e o l o g i c a l e x p l o r a t i o n i s l i m i t e d by a t h i c k cover of g l a c i a l overburden, geochemical techniques uere t e s t e d i n the a r e a . These i n c l u d e bedrock samp-l i n g f o r primary halos and geochemical marker h o r i z o n s , and g l a c i a l overburden sampling f o r secondary d i s p e r s i o n p a t t e r n s . Multi-element geochemistry of bedrock i n d i c a t e s t h a t the s c h i s t s and p h y l l i t e s are not d i s t i n c t i v e i n one or any combin-a t i o n of the t r a c e elements a n a l y z e d . However, some younger rocks are enhanced i n v a r i o u s elements: amphibolite i n l \ l i , C r , Co, and Cu; r h y o l i t e i n Pb and Sn; and g r a n i t e i n Sn. Despite presence of g l a c i a l overburden, the t r a c e element content of bedrock i s r e f l e c t e d i n s o i l s . S o i l s o v e r l y i n g magnetic greenstones are e n r i c h e d i n l\li and Cu, whereas s o i l s o v e r l y i n g g r a n i t e are s l i g h t l y e n r i c h e d i n Sn c o n t e n t . D e t a i l e d bedrock, overburden and s o i l sampling.at the Faro d e p o s i t r e v e a l s t h a t primary Pb, Zn, Mo, and Ba halos e x i s t about the ore zone. Mo p a r a l l e l s the v i s i b l e a l t e r a t i o n envelope, but Pb and Zn extend 100 f e e t i n t o the hanging w a l l and 300 f e e t i n t o the f o o t w a l l . Ba extends 75 f e e t i n t o the hanging w a l l but i s not d e t e c t e d i n the f o o t w a l l . Secondary d i s p e r s i o n p a t t e r n s are p r i m a r i l y r e l a t e d to' i i i the prc-ximity of the Faro ore zone and type of parent m a t e r i a l sampled. T i l l d e p o s i t s have higher background and t h r e s h o l d values f o r Cu, Pb, and Zn than those of g l a c i o f l u v i a l d e p o s i t s . Bath Pb and Zn d i s t r i b u t i o n s i n overburden d e l i n e a t e the Faro #2 ore body; Zn extends to s u r f a c e whereas Pb, i n some c a s e s , does n o t . T h i s i s a r e f l e c t i o n of the type of overburden sampled. In g e n e r a l , Zn i s the more c o n s i s t e n t i n d i c a t o r of o r e . The Zn anomaly i s p r i m a r i l y hydromorphic i n o r i g i n , cxZn having h i g h e r anomalous/threshold c o n t r a s t than t o t a l Zn (11.1 f o r cxZn vs 4.8 f o r t o t a l Z n ) . The nature of the Pb anomaly i s not understood. i v TABLE DF CONTENTS Page INTRODUCTION 1 I - l . I n t r o d u c t i o n 3 1-3. Primary D i s p e r s i o n as an I n d i c a t o r of Economic M i n e r a l i z a t i o n 4 1-3. Secondary D i s p e r s i o n as an I n d i c a t o r of Economic M i n e r a l i z a t i o n 5 I- 4. Sampling of G l a c i a l Overburden 6 DESCRIPTION OF THE STUDY AREA 10 I I - l . L o c a t i o n and Access 11 I I - 2 . Geology 11 a) Regi o n a l S t r a t i g r a p h y 11 b) S t r u c t u r e and Metamorphism 16 c) Economic M i n e r a l i z a t i o n 17 d) D e t a i l e d S t r a t i g r a p h y 20 e) S u r f i c i a l Geology 22 I I - 3 . Topography and Drainage 25 I I - 4 . Climate 25 I I - 5 . S o i l s 30 I I - 6 . v e g e t a t i o n 30 I I - 7. Previous Geochemical work i n the A n v i l Area 31 SAMPLING AND ANALYTICAL TECHNIQUES 33 I I I - l . Sample C o l l e c t i o n and P r e p a r a t i o n 34 a) I n t r o d u c t i o n 34 b) Bedrock 34 c) G l a c i a l Overburden 34 d) S o i l s 37 e) Creek P r o f i l e s 38 I I I - 2 . Sample A n a l y s i s 39 a) Methods used i n Sample A n a l y s i s 39 b) S e m i - q u a n t i t a t i v e S p e c t r o g r a p h i c A n a l y s i s 39 c) Atomic A b s o r p t i o n A n a l y s i s 40 1. P r e - a n a l y t i c a l treatment f o r de-t e r m i n a t i o n of t o t a l Cu, Pb, Zn, Ni and Cd 40 V Page 2. P r e - a n a l y t i c a l treatment f o r p a r t i a l l y e x t r a c t a b l e Cu, Pb, and Zn 40 3. A n a l y t i c a l Method 40 4. A n a l y t i c a l P r e c i s i o n 44 del) A r s e n i c , Mercury and Organic Carbon Analyses 44 e) S o i l pH Measurement 44 RESULTS 51 IU-1. R e s u l t s 52 II/-2; Primary Disperson 52 a) P r e s e n t a t i o n of Data 52 b) 'Metal Content of Bedrock 52 1. In n o n - m i n e r a l i z e d d r i l l h oles 52 2. In m i n e r a l i z e d d r i l l h oles 57 c) A n a l y s i s Df Emission S p e c t r o g r a p h s Data 60 d) Comparison o f t r a c e element content o f bedrock sampled to that o f average rocks . 64 1..' S c h i s t s and P h y l l i t e s 64 2. A n v i l B a t h o l i t h 65 3. Massive Amphibolite 67 4. R h y o l i t e 67 e) A p p l i c a t i o n to E x p l o r a t i o n Geochemistry 70 IV-3. Secondary D i s p e r s i o n 71 IV-3A. Overburden D r i l l Holes 72 a) P r e s e n t a t i o n o f Data 72 b) Cu, Pb, Zn content o f overburden 72 c) C o r r e l a t i o n o f Cu and Zn content o f b a s a l t i l l to bedrock 86 IV/-3B. C^Horizon S o i l s 89 a) P r e s e n t a t i o n o f Data 89 b) Emission S p e c t r o g r a p h s Data 89 1. Trace element content o f s o i l s on t r a v e r s e s 1 to 4 89 2. R e l a t i o n o f t r a c e element content o f s o i l s to that o f bedrock 90 ( i ) D i s t r i b u t i o n o f Sn 90 ( i i ) H o t e l l i n g ' s T2 r e s u l t s o f s o i l s i n the A n v i l area 92 ui Page c) Atomic Absorption Data 98 1. Cu, Pb and Zn content of s o i l s 98 2. Comparison of cx to t o t a l metals 109 3. Correlation of trace element E a n t e n t of s o i l s to pH and i g n i t i o n loss 110 d) Arsenic, Mercury and organic carbon 112 IV-30. Creek P r o f i l e s 114 a ) Presentation of Data 114 b) Cu, Pb, Zn content of channel samples 118 c) Ba content of bedrock and overburden 119 IV-3D. Relationship of Trace Element Content of So i l s and G l a c i a l Ouerburden 119 a) Factors affecting trace element d i s -t r i b u t i o n in g l a c i a l overburden 126 b) Factors affecting trace element d i s -t r i b utions in s o i l s 130 IV- 3E. Summary of Results of Secondary Dispersion and Application to Exploration 133 a) • Summary of Results 133 b) Application to exploration 134 SUMMARY AND CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 137 V- l . Summary and Conclusions 138 V-2. Suggestions for Further Research 140 REFERENCES CITED 142 APPENDIX A - D r i l l Hole Logs 147 B - Results 173 C - Median Test 190 D - Dist r i b u t i o n of Cu, Pb, Zn and Ni 195 v i i LIST OF TABLES Table Page I G e o l o g i c a l legend f o r F i g u r e 2 13 II Ore grades 19 I I I S t r a t i g r a p h i c Column . 23 IV A n a l y s t s and methods employed i n a n a l y s i s of geochemical samples c o l l e c t e d J u l y , August, 1971 35 V Bedrock sampled i n the A n v i l area 36 VI S p e c t r o g r a p h s equipment and standard o p e r a t i n g c o n d i t i o n s 41 Mil Operating c h a r a c t e r i s t i c s and p r e c i s i o n at the 95% confidence l e v e l of emission spectrometer a n a l y s i s kZ M i l l P r e c i s i o n at the 95% confidence l e v e l of emission spectrometer a n a l y s i s estimated from a n a l y s i s of p a i r e d samples 43 IX Operating c o n d i t i o n s f o r the Techtron AA-4 Spectrophotometer 45 X Operating c o n d i t i o n s f o r the P e r k i n Elmer 303 Spectrophotometer 45 XI P r e c i s i o n of atomic a b s o r p t i o n a n a l y s i s at the 95% confidence l e v e l estimated by r e p l i c a t e a n a l y s i s of UBC standard rock 47 X I I I P r e c i s i o n o f atomic a b s o r p t i o n a n a l y s i s of overburden d r i l l hole samples at the 95% l e v e l of confidence 48 XIV R e s u l t s of d u p l i c a t e a n a l y s e s of mercury, o r g a n i c carbon and a r s e n i c 49 XV Means, Ranges, and Standard d e v i a t i o n s of analyses of bedrock by emission spectroscopy 53 XVI Means, Ranges, and Standard d e v i a t i o n s of analyses of bedrock by atomic a b s o r p t i o n 54 v i i i Table Page XVII H o t e l l i n g ' s T o f rocks i n the A n v i l area XVIII Comparison of t r a c e element content of members 3a and 3b u i t h t h a t of normal and b l a c k s h a l e s 62 66 XIX Comparison of t r a c e metal content of samples of the A n v i l B a t h o l i t h u i t h t h a t of an average g r a n i t e and t h a t D f the r h y o l i t e i n 66-PR-l 68 XX XXI XXII Comparison of the average t r a c e element con-t e n t of an u l t r a m a f i c rock u i t h t h a t of the massive a m p h i b o l i t e i n LR-1 Geometric means, l o g standard d e v i a t i o n s , t h r e s h o l d and complete ranges of values f o r Cu, Pb, and Zn i n overburden P r o b a b i l i t i e s of Cu, Pb, Zn d i s t r i b u t i o n s u i t h i n d r i l l h o l e s 69 73 85 XXIII Atomic a b s o r p t i o n analyses i n ppm of roc k s i n t e r s e c t e d i n overburden d r i l l h o l e s 87 XXIV/ Rank c o r r e l a t i o n of Cu and Zn content of overburden to t h a t of u n d e r l y i n g bedrock along L112U 88 XXV Trace element content of C-horizon s o i l s on t r a v e r s e s 1 to k and rocks as determined by emission spectroscopy 91 2 XXV/I H o t e l l i n g ' s T r e s u l t s of s o i l s i n the A n v i l area 95 2 XXVII R e s u l t s of H o t e l l i n g ' s T t e s t on s o i l s from M ^ , M2> and T ] _ ^  9 6 XXVIII I\li, Cu, V, and Cr content of s o i l s 97 XXIX Cu, Pb, Zn content of C-horizon s o i l s from t r a v e r s e 1 to k 103 XXX pH values i n s o i l s of the A n v i l area 108 XXXI Comparison of Zn content i n HNO-j/HClO^ and HC1 e x t r a c t s 111 i x Table Page XXXII C o r r e l a t i o n of cx a n d ' l a t t i c e ' m e t a l s u i t h i g n i t i o n l o s s , pH and e l e v a t i o n 113 XXXIII As, Hg, and o r g a n i c carbon content of C - h c r i z o n s o i l s 115 X LIST OF ILLUSTRATIONS Fig u r e Page 1 L o c a t i o n Map 12 2 G e o l o g i c a l S e t t i n g of Faro, Vangorda and Suim ore d e p o s i t s 14 3 G e o l o g i c a l S e t t i n g of Faro d e p o s i t ( i n pocket) 4, G l a c i a l Map of the A n v i l Range 24 5 Thickness of G l a c i a l Overburden 26 6 L o c a t i o n of t r a v e r s e s and overburden d r i l l h o l e s 27 7 a) Overburden d r i l l holes along L112UI 28 b) Overburden d r i l l holes along L28U 29 8 Trace element v a r i a t i o n along d r i l l hale LR-1 55 9 Trace element v a r i a t i o n along d r i l l hole 66-8 58 10 S i g n i f i c a n t Element D i f f e r e n c e s 63 11 Cu content of g l a c i a l overburden 75 12 Pb content of g l a c i a l overburden 76 13 Zn content of g l a c i a l overburden 77 14 Cu content of g l a c i a l t i l l and u n d e r l y i n g bedrock along L112U 78 15 Cu content of g l a c i a l overburden along L28W 79 16 Pb content of g l a c i a l t i l l and u n d e r l y i n g bedrock along L112W 80 17 Pb content o f g l a c i a l overburden along L28W 81 18 Zn content of g l a c i a l t i l l and u n d e r l y i n g bedrock along L112W 82 19 Zn content of g l a c i a l overburden along L28W 83 20 D i s t r i b u t i o n of Sn along t r a v e r s e s 1 to 4 93 21 Cumulative p r o b a b i l i t y p l a t of t o t a l Cu and Zn content i n s o i l s from T. , 100 X I F i g u r e Page 22 Cumulative p r o b a b i l i t y p l a t of cx Cu and Zn content i n s o i l s from T, , 101 1-4 23 Cumulative p r o b a b i l i t y p l o t of cx and t o t a l Pb content i n s o i l s from T, , 102 1 - H 24 Cu, Pb, Zn, pH v a r i a t i o n along t r a v e r s e 1 104 25 C u , Pb, Zn, pH v a r i a t i o n along t r a v e r s e 2 105 26 Cu, Pb, Zn, pH v a r i a t i o n along t r a v e r s e 3 106 27 Cu, Pb, Zn, pH v a r i a t i o n along t r a v e r s e k 107 28 D i s t r i b u t i o n of Hg along t r a v e r s e 1 116 29 C o r r e l a t i o n of mercury content o f . s o i l s to % o r g a n i c carbon 117 30 L o c a t i o n of creek p r o f i l e s 120 31 Creek P r o f i l e 5 125 32 D i s t r i b u t i t 33 D i s t r i b u t i t 34 D i s t r i b u t i t 35 D i s t r i b u t i t 36• D i s t r i b u t i t 37 D i s t r i b u t i t 38 D i s t r i b u t i t 39 D i s t r i b u t i t 4D D i s t r i b u t i t 41 D i s t r i b u t i t 42 D i s t r i b u t i t 43 D i s t r i b u t i t P l a t e 1 - Creek P r o f i l e 1 121 2 - Creek P r o f i l e 2 122 3 - Creek P r o f i l e 3 123 4 - Creek P r o f i l e 4 124 of Cu along t r a v e r s e 1 and 4 196 of Cu along t r a v e r s e 2 197 of Cu along t r a v e r s e 3 .198 of Pb along t r a v e r s e 1 and 4 199 of Pb along t r a v e r s e 2 200 of Pb along t r a v e r s e 3 201 of Zn along t r a v e r s e s 1 and 4 202 of Zn along t r a v e r s e 2 203 of Zn along t r a v e r s e 3 204 of Ni along t r a v e r s e s 1 and 4 205 of Ni along t r a v e r s e 2 206 of Ni along t r a v e r s e 3 207 x i i ACKNOWLEDGEMENTS The author i s indebted to Dr. U. K. F l e t c h e r f o r i n i t i a t i n g and a c t i v e l y s u p e r v i s i n g t h i s p r o j e c t . Able f i e l d a s s i s t a n c e uas given by Mike Wasket-Myers, without whom s o i l p i t s would not have been dug. Many analyses were performed by D. M a r s h a l l , M. Uasket-Myers, and A. D h i l l o n . A r s e n i c analyses were done by Peter Kemp of M i n e r a l E n g i n e e r i n g and mercury and o r g a n i c carbon analyses were k i n d l y p r o v i d e d by B a r r i n g e r Research L a b o r a t o r i e s . D r i l l core samples were obtained from A n v i l Mining C o r p o r a t i o n through Dynasty E x p l o r a t i o n L t d . Geology was mapped by Ul. 0. Roberts of Dynasty E x p l o r a t i o n L t d . Thanks are extended to LJ. Roberts and U. Jansens f o r a i d i n the f i e l d . F i n a n c i a l a s s i s t a n c e f o r the p r o j e c t was extended by Dynasty E x p l o r a t i o n s L t d . of Vancouver and rock, samples were a l s o ground at t h e i r expense. While a t t e n d i n g u n i v e r s i t y , the author was a l s o supported by an NRC post-graduate s c h o l a r s h i p . INTRODUCTION "A c e r t a i n more or l e s s d o u b t f u l i n d i c a t i o n of the presence of m i n e r a l v e i n s i s a f f o r d e d by A u s u i t t e r u n g . T h i s i s seen u s u a l l y at daun i n hot weather, as a vapour r i s i n g from the outcrop of c e r t a i n v e i n s . I t i s a l s o noted that uhere t h i s appears the hoar f r o s t i s l i g h t e r , the snow melts e a r l i e r and the grass comes to m a t u r i t y more q u i c k l y than over the country rock which u n d e r l i e s the v e i n . " J.G. Hern, B e r i c h t von Bergban F r e i b e r g , 1772 p.29. -3-1-1. INTRODUCTION The A n v i l Range, Yukon T e r r i t o r y , hosts s e v e r a l l a r g e l e a d - z i n c ore bodies and numerous l e a d - z i n c showings. The l a r g e s t of t h e s e , the F a r o , V/angor.da, and Swim ( F i g . 2 ) , are found w i t h i n the same s t r a t i g r a p h i c u n i t (Cambrian (.?).'phyllites of u n i t 3, F i g . 2 and 3 ) . Though g e o l o g i c a l and geochemical e x p l o r a t i o n f o r these d e p o s i t s i s l i m i t e d by a t h i c k cover of g l a c i a l overburden composed of both g l a c i a f l u v i a l and t i l l de-p o s i t s , s e v e r a l geochemical e x p l o r a t i o n methods are p o t e n t i a l l y f e a s i b l e . These i n c l u d e 1) d e t a i l e d rock sampling to l o c a t e geo-chemical halos and geochemical marker h o r i z o n s , 2) g l a c i a l o v e r -burden and s o i l sampling, and 3) lake and stream sediment s a m p l i n g . The u n i t i n which the d e p o s i t s occur i s a l u s t r o u s medium-grey, g r a p h i t i c , q u a r t z - r i c h p h y l l i t e with a dark grey band of g r a p h i t i c , q u a r t z p h y l l i t e c l o s e to the base. These rocks are thought to be pa r t of a metamorphosed sedimentary and v o l c a n i c sequence (Tempelman-Kluit, 1968 & 1972) and thus the dark grey g r a p h i t i c q u a r t z p h y l l i t e may have been an o r g a n i c r i c h b l a c k shale before metamorphism. Black s h a l e s have been r e p o r t e d to be enhanced i n some t r a c e elements r e l a t i v e to those i n other sedimentary r o c k s . In the Hess mountains, Y.T., Doyle (1972) found t h a t a dark shale u n i t was e n r i c h e d i n both molybdenum (1C ppm) and vanadium (435 ppm) r e l a t i v e to s c h i s t s , p h y l l i t e s and g r a n i t i c r o c k s . S o i l s o v e r l y i n g the s h a l e s and sediments i n streams d r a i n i n g areas under-l a i n by the s h a l e s show a pronounced enrichment i n molybdenum -k-and vanadium r e l a t i v e to s a i l s and stream sediments a s s o c i a t e d with the other rock t y p e s . Boyle (1965) noted t h a t at Heno H i l l , Y.T., molybdenum was mainly c o n c e n t r a t e d (up to ID ppm) i n g r a p h i t i c and s e r i c i t i c s c h i s t s . Gleeson (1967) showed th a t high molybdenum values i n stream sediments were r e l a t e d to the g r a p h i t i c and p y r i t e - r i c h p h y l l i t e s of the Heno H i l l r e g i o n . Thus, i n the A n v i l a r e a , d e t a i l e d sampling of diamond d r i l l core was undertaken to determine i f a) a geochemical marker h o r -i z o n s e x i s t s and b) i f there i s a geochemical halo around the Faro ore body. S o i l s and g l a c i a l overburden were a l s o sampled to de-termine the extent and type of anomaly a s s o c i a t e d with the Faro ore body and to see i f a geochemical marker h o r i z o n ( i f i t e x i s t s ) can be d e t e c t e d i n s o i l s and g l a c i a l overburden. 1-2. PRIMARY DISPERSION AS AN INDICATOR OF ECONOMIC MINERAL-IZATION Metasomatism of ore metals i n t o country rock at the time of ore emplacement would y i e l d primary geochemical halos i n w a l l rocks surrounding are d e p o s i t s . According to Hawkes and Uebb (1962), the most common p a t t e r n s of enrichment of ore metals are c o n s i s t e n t with outward movement of the components of the m i n e r a l -i z i n g s o l u t i o n s . In massive r o c k s , the metal content of a u r e o l e s commonly decays l o g a r i t h m i c a l l y with d i s t a n c e from the ore c o n t a c t , but where f r a c t u r i n g Dr some other inhomogeniety e x i s t s , the halo i s more i r r e g u l a r and p o s s i b l y more e x t e n s i v e because of e a s i e r m i g r a t i o n of s o l u t i o n s through f r a c t u r e s , bedding p l a n e s , and -5-other i r r e g u l a r i t i e s . T h e r e f o r e s y s t e m a t i c rock sampling i n the area of a supposed ore body might y i e l d v a l u a b l e i n f o r m a t i o n about the p r o s p e c t i v e s i z e and l o c a t i o n of the d e p o s i t . Boyle et a l (196G) found t h a t the n a t i v e s i l v e r v eins i n the C o b a l t , O n t a r i o r e g i o n can be l o c a t e d by f o l l o u i n g primary s u l p h i d e h a l o s . Boyle and G a r r e t t (1970) r e p o r t t h a t i n USSR the primary halos a s s o c i a t e d u i t h some massive p y r i t i c d e p o s i t s p r o j e c t above the ore bodies f o r d i s t a n c e s up to a k i l o m e t e r and extend hundreds of meters l a t e r a l l y , and t h a t the geochemists are d i r e c t i n g t h e i r a t t e n t i o n to these halos i n p r o s p e c t i n g . 1-3. SECONDARY DISPERSION AS AN INDICATOR OF ECDNDMIC MINERAL-IZATION Oust as d i f f e r e n t rock types c o n t a i n d i f f e r e n t m i n e r a l s , d i f f e r e n t m i n e r a l s host d i f f e r e n t t r a c e elements, these being determined by i o n i c s i z e , c r y s t a l bonding, l a t t i c e energy, and other f a c t o r s . Upon weathering, t h e i r r e l e a s e i n t o the geochemical c y c l e w i l l depend on the s t a b i l i t y (both chemical and mechanical) of the host m i n e r a l , and on the p o s i t i o n the t r a c e element holds i n the c r y s t a l l a t t i c e , as w e l l as the r a t e and type of w eathering. T h e r e f o r e , i t i s reasonable to suppose t h a t the t o t a l t r a c e element content o f a s o i l i s r e l a t e d to the rock from which i t was d e r i v e d ( M i t c h e l l , 1964). I f t h i s i s the c a s e , then geochemical d i s p e r s i o n p a t t e r n s r e s u l t i n g from simple weathering of a m e t a l - r i c h parent m a t e r i a l ( f o r example, an ore body or rock type c h a r a c t e r i s t i c a l l y high i n one or s e v e r a l t r a c e elements) should provide a s t r a i g h t --6-forward geochemical guide to b u r i e d o r e , or to a s p e c i f i c rock t y p e . Thus the gecchemical landscape of r e s i d u a l s o i l s i n an area of v a r y i n g rock types should d e p i c t the u n d e r l y i n g geology. In Ghana, Burridge and Ann (1965) noted t h a t the major and minor- elements i n r e s i d u a l s o i l s o v e r l y i n g p h y l l i t e s , greenstones and g r a n i t i c i n t r u s i o n s , c o u l d be grouped together i n terms of the parent rock and c o u l d be used as a crude method of mapping rock types where there was l i t t l e or no o u t c r o p . Haukes and Uebb (1962) r e p o r t t h a t Coope found t h a t the n i c k e l content of r e s i d u a l s o i l s i n IMguge r e g i o n , Tanganyika c o u l d be r e l a t e d to the u n d e r l y i n g geology. In areas covered by g l a c i a l overburden the r e l a t i o n s h i p between bedrock and s o i l c o n c e n t r a t i o n i s l e s s d i r e c t , s i n c e s o i l parent m a t e r i a l s are g l a c i a l d r i f t d e p o s i t s r a t h e r than bedrock. A knowledge of the Quaternary geology of a r e g i o n i s necessary before attempting to i n t e r p r e t geochemical p a t t e r n s i n g l a c i a t e d t e r r a i n (II.ee, 1971). 1-4. SAMPLING DF GLACIAL OVERBURDEN S t u d i e s of the d i s t r i b u t i o n of rock fragments, m i n e r a l g r a i n s and elements w i t h i n separate l a y e r s of b a s a l t i l l and esker sands, and t h e i r r e l a t i o n s h i p to the o r i g i n a l source i n the bed-rock has become known as g l a c i o f o c u s r e s e a r c h (Lee, 1967). T h i s f i e l d encompasses a) the w e l l known technique of boulder t r a c i n g ( D reimanis, 1958; Lee, 1971; S h i l t s , 1971), b) the more r e c e n t l y developed and more expensive overburden d r i l l i n g programs (Van -7-T a s s e l , 1969; G a r r e t t , 1971; Gleeson et a l , 1971), and c) simple geochemical sampling of g l a c i a l overburden c l o s e to s u r f a c e . Problems a s s o c i a t e d u i t h sampling g l a c i a l overburden are many and v a r i e d . Perhaps the most obvious of these are 1) l a c k of understanding of d r i f t d e p o s i t i o n and 2) sampling problems c r e a t e d by extreme c o m p o s i t i o n a l and s i z e v a r i a t i o n of g l a c i a l m a t e r i a l s . For example, t r a c e element content of the c l a y - s i z e d f r a c t i o n u i l l o f t e n have higher or very d i f f e r e n t metal c o n c e n t r a t i o n s than the co a r s e r s i z e f r a c t i o n s simply because of the high i o n exchange c a p a c i t y of c l a y - s i z e d p a r t i c l e s ( S h i l t s , 1971). N e v e r t h e l e s s , geochemical sampling programs of g l a c i a l overburden have been c a r r i e d out s u c c e s s f u l l y . S h i l t s (1971) showed th a t i n the Lac-Megantic r e g i o n of Quebec, the t r a c e element c o n c e n t r a t i o n s were i n f l u e n c e d to v a r y i n g degrees -by c l a y c o n t e n t , except i n anomalous areas where element c o n c e n t r a t i o n seemed i n d e -pendent of t e x t u r e . At the Dragon Property near Timmons, O n t a r i o , Fortescue and Hughes (1965) s t u d i e d d i s t r i b u t i o n s of Pb, IMi, Cu, and Zn i n the minus BO-mesh f r a c t i o n o f both the upper and b a s a l t i l l , above the ore body, doun i c e from the ore body, and i n con-t r o l s i t e s throughout the r e g i o n . They demonstrated t h a t Pb and IMi had s i m i l a r l e v e l s of c o n c e n t r a t i o n both i n the upper and lower t i l l over the whole area but Cu and Zn showed c o n s i d e r a b l y higher values i n the lower t i l l than i n the upper t i l l , down i c e from the ore body. T h i s supports the hypothesis t h a t one can l o c a t e ore bodies or bedrock sources of anomalousnimetal c o n c e n t r a t i o n by o u t l i n i n g and d e f i n i n g t r a n s p o r t e d anomalies. - a -G a r r e t t (1971) r e a l i z e d that background values f o r Cu and Zn at the Louvem d e p o s i t i n Quebec, were l o u e r i n g l a c i o -l a c u s t r i n e sediments than i n g l a c i a l t i l l . May (197B) suggests t h a t t r a c e element geochemistry c o u l d p r o v i d e a d d i t i o n a l c r i t e r i a f o r d i f f e r e n t i a t i o n of t i l l s from d i f f e r e n t parent m a t e r i a l s , because d i f f e r e n t t r a c e element content i m p l i e s d i f f e r e n t i n i t i a l rock t y p e s . Donovan and James (19S7), s t u d y i n g the Cu, Zn, Pb and Hg d i s t r i b u t i o n s i n l o c a l l y d e r i v e d t i l l over the Tynagh d e p o s i t i n E i r e , found t h a t the anomaly extended eastward from the sub-outcrop of the m i n e r a l i z e d zone (up to 4DTJ0 f e e t f o r Cu, Pb, and Zn) and t h a t i c e movement was r e s p o n s i b l e f o r t h i s d i s p e r s i o n . Gleeson and Cormier (1971), examining t i l l samples from overburden d r i l l h oles i n the Clay B e l t of northwestern Quebec, noted that geochemical anomalies i n the b a s a l t i l l e x h i b i t l i t t l e h o r i z o n t a l displacement by g l a c i a l a c t i o n . However, much g r e a t e r c o n t r a s t of anomalous to background Cu, Pb, and Zn values were found i n the p l u s BO-mesh than i n the minus BO-mesh f r a c t i o n of the t i l l . L arsson and N i c h o l (1971), s t u d i e d the s i l t - s i z e d f r a c t i o n of g l a c i a l t i l l by X-ray d i f f r a c t i o n methods and recorded t h a t the mineralogy of the s i l t was s p e c i f i c to the u n d e r l y i n g bedrock. They maintain t h a t , i n I r e l a n d , these analyses can be used as an a i d to g e o l o g i c a l mapping. Furthermore, i n Co. L i m e r i c k , t r a c e element geochemistry of the b a s a l t i l l o u t l i n e d the sub-outcrop of the C l a r e s h a l e s due to the h i g h l y unusual geochemical com-p o s i t i o n of these s h a l e s , r e l a t i v e to surrounding rock t y p e s . Bayrock and Pawluk (1967) a=lso showed t h a t Fe, Cu, and Zn contents -9-• f g l a c i a l t i l l c o u l d be r e l a t e d to bedrock sub-outcrop p a t t e r n s i n A l b e r t a . Connor et a l (1957) s t u d i e d t r a c e and major element d i s t r i b u t i o n s i n s o i l s developed on t i l l s d e r i v e d from three d i f f e r e n t rock t y p e s . They-found they c o u l d separate t i l l s com-posed of h i g h l y quartzose t u f f s from those composed of carbon-ates and s h a l e s on the b a s i s of t r a c e element c o n t e n t . B u t l e r (1954) was l e s s s u c c e s s f u l and could only d i s t i n g u i s h g l a c i a l d r i f t d e p o s i t s from one another by the z i r c o n content of the heavy m i n e r a l s u i t e . Trace element contents of s o i l s developed on g l a c i a l t i l l s i n S c o t l a n d d e p i c t a marked r e l a t i o n s h i p to bedrock i n the a r e a . Swaine and M i t c h e l l (1960) uere able to d i s t i n g u i s h s o i l s developed an t i l l s o v e r l y i n g g r a n i t e s from those o v e r l y i n g q u a r t z mica s c h i s t s . They mere a l s o able to separate s o i l s developed on t i l l over u l t r a b a s i c , i n t e r m e d i a t e , and a c i d igneous r o c k s , from one a n o t h e r . -10-DESCRIPTIDN DF THE STUDY AREA -11-I I - l . LOCATION AND ACCESS The area of s t u d y , the A n v i l mine and s u r r o u n d i n g s , i s s i t u a t e d w i t h i n the A n v i l Range, 125 a i r m i l e s n o r t h e a s t of Uhitehorse and 235 m i l e s d i s t a n t by road v i a Carmacks. It i s a l s o a c c e s s i b l e by the Watson Lake-Ross R i v e r r o a d , ( F i g . 1 ) . I I - 2 . GEOLOGY a) R e g i o n a l S t r a t i g r a p h y Geology and s t r a t i g r a p h y of the A n v i l Range has been mapped by Tempelman-Kluit (1968, 1969, 1972) and by Roddick and Green (1961) ( F i g . 2 and Table I ) . The area i s u n d e r l a i n by a sequence of P r o t e r o z o i c and P a l e o z o i c s t r a t a which i n c l u d e s two unconform-i t i e s of r e g i o n a l s i g n i f i c a n c e ; one at the base of the Devonian-M i s s i s s i p p i a n and the other below l a t e P a l e o z o i c v o l c a n i c sequences. These s t r a t a have been i n t r u d e d by g r a n i t i c rocks of Late Cretaceous age. Grey, g r i t t y micaceous quartzite ( u n i t 1 ) , i s probably the o l d e s t rock type i n the area and has been c o r r e l a t e d with a P r o -t e r o z o i c G r i t u n i t which occurs to the north and northeast of the area mapped by Tempelman-Kluit (1968). Two thousand-* f e e t of a r g i l l a c e o u s c a l c - s i l i c a t e s ( u n i t 2) o v e r l i e s u n i t 1. The top three hundred f e e t c o n t a i n s beds of grey c r y s t a l l i n e marble up to f i f t y f e e t i n t h i c k n e s s . U n i t 3, known as the p h y l l i t i c u n i t , i s about f o u r thousand f e e t t h i c k , and may or may not be younger than u n i t 2. I t con-t a i n s a c o n s i d e r a b l e number of greenstone lenses which are Table I . G e o l o g i c a l legend f o r F i g u r e 2. CRETACEOUS 12a Medium to f i n e - g r a i n e d equigranular muscavlte, 12 b i o t l t e g r a n o d i o r i t e 12b Medium-grained p o r p h r l t l c (K-feldspar) b i o t l t e quartz monzonlte PERMIAN OR LOWER Massive cobble and pebble conglomerate with fragments 11 of mica quartz s c h i s t (1), andesite (9a), chert (9b), limestone ( ? ) , and serpentine (10) 10 Serpentine, s e r p e n t i n i z e d p e r i d o t i t e PENNSYLVANIAN AND/OR PERMIAN 9a Massive, green a n d e s i t i c v o l c a n i c rocks, commonly amygdaloldali includes common p y r o c l a s t i c and l e s s 9 common pillowed v a r i e t i e s 9b Grey, green and red a r g i l l a c e o u s chert and chert pebble conglomerate DEVONIAN AND MISSISSIPPIAN UPPER DEVONIAN AND MISSISSIPPIAN 8 Massive medium and dark grey chert j medium grey limy s l a t e and a r g i l l a c e o u s cherts chert pebble g r i t MIDDLE DEVONIAN 7 ?a Medium to dark grey, p l a t y t h i n bedded limestone 7b Massive l i g h t grey d o l o m l t l c limestone 6 Massive, medium to l i g h t grey o r t h o q u a r t z i t e 0 R D 0 V I C I A N AND SILURIAN 5 Dark grey to bl a c k , g r a p h i t i c g r a p t o l l t e s l a t e CAMBRIAN AND/OR EARLIER MIDDLE AND UPPER CAMBRIAN(?) 4 Buff weathering, t h i n l y laminated, ochre-coloured, calcareous s i l t s t o n e and p h y l l l t l c s i l t s t o n e 3 Medium grey c h l o r l t l c quartz p h y l l i t e , l o c a l l y g r a p h i t i c or calcareous; f o l i a t e d green c h l o r l t l c t u f f , garnet s t a u r o l i t e b i o t l t e quartz s c h i s t LOWER CAMBRIAN (?) 2 T h i n l y laminated b l o t i t e - g a r n e t - d l o p s i d e - q u a r t z skarn: l i g h t grey marble; amphibolite 1 L i g h t grey massive and t h i n bedded, muscavlte quartz s c h i s t and micaceous q u a r t z i t e , l o c a l l y g r i t t y ; minor g r a p h i t i c micaceous q u a r t z i t e A S t r a t l g r a p h l c p o s l s t i o n u n c e r t a i n , probably Cambrian, pos s i b l y equivalent to ki white weathering, banded limy s i l t s t o n e and p h y l l i t i c s i l t s t o n e ; h o r n f e l s GEOLOGICAL SETTING OF FARO. VANGORDA, 8. SWIM O R E DEPOSITS • DIAMOND DRILL MOlt «bORE BODY GEOlOGlCAt CONTACT (defined: opproitimat«;ai*xn«d) FAULT (defined; o i i u m e d ) v B GLACIAL OVERBURDEN VANGORDA FAULT BLIND CREEK FAULT ; * « - ^  ^ T _ v > ^ •"*• - " ' - l 3 12ai r • J&K.3 12a £&-SUN-I VANGORDA PFARO TOWNSITE ( A f t e r Tempelman-Kluit, 1968) F igure 2 -15-t u f f a c e o u s i n o r i g i n . In p l a c e s i t i s extremely quartz r i c h and should be c a l l e d p h y l l i t i c q u a r t z i t e r a t h e r than p h y l l i t e . U n i t s 2 and 3 have been t e n t a t i v e l y a s s i g n e d a Cambrian age by Tempelman-Kluit (1972). The p h y l l i t e grades upwards i n t o t h i n l y l a m i n a t e d , ochre-c o l o u r e d , c a l c a r e o u s s i l t s t o n e , approximately one thousand f e e t t h i c k , ( u n i t 4 ) , which i s exposed on the no r t h e a s t s i d e of the A n v i l B a t h o l i t h . In a re c e n t p u b l i c a t i o n Tempelman-Kluit (1972) omits t h i s u n i t from the s e c t i o n . Dark g r a p t o l i t e s l a t e s of u n i t 5 o v e r l i e the s i l t s t o n e . They are S i l u r i a n i n age, at l e a s t f o u r hundred f e e t t h i c k and are a l s o exposed on the no r t h e a s t s i d e of the b a t h o l i t h . U n i t s 6 and 7, an o r t h o q u a r t z i t e and a f o s s i l i f e r o u s Mid-Devonian carbonate, o v e r l i e these s l a t e s , and are exposed over a s m a l l area on the no r t h e a s t s i d e of the b a t h o l i t h . A massive medium and dark grey c h e r t with limy s l a t e and a r g i l l a c e o u s c h e r t ( u n i t S) r e s t s uneonfofmably upon u n i t s 3 to 7. Unit B ranges i n age from Lower Devonian to M i s s i s s i p p i a n and i s at l e a s t ten thousand f e e t t h i c k . Rocks of u n i t 9 o v e r l i e uncon-formably those of 2 to 8. They i n c l u d e a lower member of a r g i l -laceous c h e r t (9b) about two thousand f e e t t h i c k , and an upper member of massive a n d e s i t e (9a) about f i f t e e n hundred f e e t t h i c k . North of the A n v i l B a t h o l i t h , the c h e r t member i s u s u a l l y absent but 9a i n c l u d e s massive, a m y g d a l o i d a l , p y r o c l a s t i c , and p i l l o w e d a n d e s i t e s . T h i s u n i t i s e i t h e r Late Pennsylvanian.or E a r l y Permian i n age. Unit 10, a s e r p e n t i n i z e d p e r i d o t i t e i s exposed along the -16-l/angorda F a u l t and u n i t 11, a conglomerate of l o c a l l y d e r i v e d r o c k s , o v e r l i e s u n i t 1 unconformably southwest of the f a u l t . Though both these u n i t s are Permian or younger i n age, they are probably pre-Mid-Cretaceous because the conglomerate does not c o n t a i n younger Cretaceous g r a n i t e pebbles (Tempelman-Kluit, 1968). The A n v i l Range i s cared by g r a n i t i c rocks of two dominant t y p e s ; 12a, a medium to f i n e g r a i n e d e q u i g r a n u l a r muscovite-b i o t i t e - g r a n a d i o r i t e and 12b, a medium g r a i n e d p o r p h y r i t i c (potassium f e l d s p a r ) b i o t i t e - q u a r t z monzonite. Contacts between these phases are g r a d a t i o n a l but those with the country racks are s h a r p . Potassium-Argon dates suggest an e a r l y Upper Cretaceous age (8U-9Q m.y.) f o r the b a t h o l i t h ( U a n l e s s , 1967). b) S t r u c t u r e and Metamorphism The g e n e r a l s t r u c t u r e of the area c o n s i s t s of a n o r t h -w e s t e r l y , doubly p l u n g i n g , a r c h - l i k e u p l i f t with the A n v i l Batho-l i t h as i t s c o r e . Cambrian (or e a r l i e r ) s c h i s t s and p h y l l i t e s , d i p p i n g outwardly from i t , show at l e a s t three p e r i o d s of deform-a t i o n , l a r g e s c a l e recumbent nappe s t r u c t u r e s were t h r u s t to the n o r t h e a s t and subsequently f o l d e d i n an e a s t - w e s t e r l y d i r e c t i o n (Phase 2 ) . A weak s t r a i n s l i p cleavage and w r i n k l e l i n e a t i o n were l a t e r developed (Phase 3) but d i d not a l t e r the o v e r a l l geometry. Devonian and M i s s i s s i p p i a n s t r a t a are l e s s s t r o n g l y deformed than Cambrian (Tempelman-Kluit, 1968, 1972) but Unit 9, c o n s i s t i n g of l a t e r c h e r t s and v o l c a n i c s , i s r e l a t i v e l y undeformed. F a u l t i n g i s evident throughout the area ( F i g s . 2 and 3 ) . -17-In the s o u t h , the A n v i l Range i s bounded by the T i n t i n a F a u l t Zone, u h i c h shows a r i g h t l a t e r a l displacement of 220 to 260 m i l e s (Roddick, 1967). Movements on the f a u l t may have taken place over the p e r i o d from e a r l y P a l e o z o i c to Late T e r t i a r y . The Vangorda F a u l t , which i s s t e e p l y d i p p i n g , i s probably r e l a t e d to the T i n t i n a F a u l t Zone. Rocks of u n i t -1 abut a g a i n s t those of u n i t 9 along t h i s f a u l t ( F i g . 2 ) , i n d i c a t i n g v e r t i c a l d i s p l a c e -ment of 10,000 to 20,000 f e e t (Tempelman-Kluit, 1968). L e f t l a t e r a l displacement of the B l i n d Creek F a u l t i s approximately 6,000 f e e t (Roddick, 1967). R e g i o n a l metamorphism a s s o c i a t e d with Phase 1 f o l d i n g predates M i d - O r d i v i c i a n (Tempelman-Kluit, 1972). I t v a r i e s from b i o t i t e - a n d a l u s i t e grade at F a r o , through c h l o r i t e grade at Vangorda to low ( s e r i c i t e ) grade at Swim. Thermal metamorphism a s s o c i a t e d with i n t r u s i o n of the A n v i l B a t h o l i t h has produced l a r g e areas of h o r n f e l s and a l s o r e c r y s t a l l i z a t i o n of s u l p h i d e s i n the Faro d e p o s i t . c) Economic M i n e r a l i z a t i o n Cambrian (?) p h y l l i t e s of U n i t 3 host three l a r g e l e a d -z i n c d e p o s i t s . These are the p r e v i o u s l y mentioned F a r o , Uangorda and Swim d e p o s i t s ( F i g . 2 ) . The s u l p h i d e bodies a l l occur w i t h i n the lower member of Unit 3 which has been d i v i d e d i n t o upper and lower members by Tempelman-Kluit (1969). The lower member, about 1000 f e e t t h i c k , i s a medium grey q u a r t z - r i c h p h y l l i t e with dark grey g r a p h i t i c quartz p h y l l i t e near i t s base. Gre e n i s h - g r e y , non-quartzose p h y l l i t e with l a r g e greenstone lenses -18-comprises the upper member which i s about 3DDD f e e t i n t h i c k n e s s . The ore bodies are t a b u l a r i n shape, the l o n g e s t dim-ension p a r a l l e l i n g the c r e n u l a t i o n f o l i a t i o n throughout the rocks (Phase 1 f o l d i n g ) . Tempelman-Kluit (1972) suggests t h a t t h i s shape r e s u l t s from deformation of the same s t y l e as the host rocks and t h e r e f o r e that the d e p o s i t s were emplaced p r i o r to r e g i o n a l metamorphism. Mineralogy of the three d e p o s i t s i s s i m i l a r . Primary s u l p h i d e m i n e r a l s i n order of d e c r e a s i n g abundance are: p y r i t e , p y r r h o t i t e , s p h a l e r i t e , galena and minor c h a l c o p y r i t e . Minor t e t r a h e d r i t e , b o u r n o n i t e , magnetite and a r s e n o p y r i t e have been i d e n t i f i e d . M a r c a s i t e i s the most abundant secondary m i n e r a l but a n g l e s i t e , g o e t h i t e and gypsum occur i n minor amounts. -Quartz i s the main gangue m i n e r a l but b a r i t e has a l s o been r e c o g n i z e d i n the Swim and V/angorda d e p o s i t s (Tempelman-Kluit, 1968, 1972). Grades, dimensions and estimated ore r e s e r v e s of the r e s p e c t i v e ore bodies are summarized i n Table I I . A l t e r a t i o n a s s o c i a t e d with these d e p o s i t s c o n s i s t s of p a l e , q u a r t z - r i c h p h y l l i t e u s u a l l y l e s s than 100 f e e t i n t h i c k n e s s . At l/angorda, p a l e , c h l o r i t i c - s e r i c i t i c p h y l l i t e i s u n d e r l a i n by dar k e r , g r a p h i t i c s c h i s t , and at Swim, the de p o s i t and a l t e r a t i o n mantle are enc l o s e d by g r a p h i t i c - c h l o r i t e p h y l l i t e . At Faro #1 ore body, which occurs at the contact of u n i t s 2 and 3, the a l t e r -a t i o n i s composed of q u a r t z - s e r i c i t e s c h i s t to m e t a - q u a r t z i t e which i s 3D to 100 f e e t t h i c k on the hanging w a l l and 2D to kO f e e t t h i c k on the f o o t w a l l . The halo i s enc l o s e d by b i o t i t e -c h l o r i t e - q u a r t z s c h i s t which i s l o c a l l y g r a p h i t i c . -19-Table I I . Ore Grades Deposit Dimensions l/angorda 3200' 490' by by 150.1 Swim 12DD1 long zone of two moderately d i p p i n g l e n s e s Amount Df •re (m.t.) Grade 9.4 3.16% Pb 4.96% Zn •.27% Cu 1.76 oz/ ton Ag •.•2 oz/ ton Au 5.G 9.5% com-bined Pb '&• Zn 1.5 oz/ton Ag minor- Cu and Au Faro #1 470.0" 1100' by by 200' #2 18001 by 100' by 30" 63.5 ( t o t a l ) 3.4% Pb 5.7% Zn . 1.196 oz/ ton Ag from Aho, 1969 -20-C o n t r o l s of are d e p o s i t i o n are not yet known. I t has been suggested t h a t the g r a p h i t i c s c h i s t s and p h y l l i t e s act as s t r a t i g r a p h i c c e n t r a l f o r are d e p o s i t i o n (Aha, 1969). Other ideas of ore c o n t r o l s i n c l u d e north-west t r e n d i n g f o l d s or f l e x u r e s , east-west f a u l t s and a s s o c i a t e d p o r p h y r i e s and n o r t h -east f r a c t u r e p a t t e r n s , but the l a t t e r two are probably post ore (Aho, 1969). Tempe.I»man-Kluit suggests (1968, p. 52) t h a t these d e p o s i t s a r e : " e a r l y replacements of c o n s o l i d a t e d or u n c o n s o l i d a t e d qu a r t z r i c h p a r t s Df a i u f f a c e o u s Cambrian sediment. These sediments were l a t e r deformed, perhaps s y n -chronously with r e g i o n a l (?) metamorphism i n post-Cambrian, pre-Devonian t i m e . Volcanism may have pl a y e d an important p a r t i n the o r i g i n a l emplace-ment of the s u l p h i d e s . During deformation and meta-morphism of the host r o c k , the s u l p h i d e s were r e -c r y s t a l l i z e d and the a l t e r a t i o n envelope formed. The Faro body was probably r e c r y s t a l l i z e d f a r a second time during emplacement of the A n v i l b a t h o l i t h . " d) D e t a i l e d S t r a t i g r a p h y The area of study was o r i g i n a l l y to encompass the whole p h y l l i t i c b e l t and thus diamond d r i l l h oles were sampled along t h i s b e l t ( F i g . 2) to e s t a b l i s h rock geochemistry. Holes 70-Sun-l, 66-8, CF-68-1, 68-Sea-l and LR-1 have been d e s c r i b e d with the a i d of t h i n s e c t i o n s while holes 66-PR-l, 68-PR-l and 66-50 have been logged by hand specimen o n l y . D e s c r i p t i o n s can be found i n Appendix A. Time and t r a n s p o r t a t i o n d i d not allow f o r d e t a i l e d s o i l t r a v e r s i n g of the whole b e l t , so d e t a i l e d s o i l geochemistry was l i m i t e d to the v i c i n i t y of the A n v i l Mine (Faro ore b o d i e s ) . F i g u r e 3 ( i n pocket) and Table I I I show the geology and s t r a t i --21-graphy ( a c c o r d i n g to Dynasty E x p l o r a t i o n s ) u n d e r l y i n g the s o i l s s t u d i e d . U n i t Z, composed of c a l c - s i l i c a t e s , has been d i v i d e d i n t o f i v e members, 2a to 2e. 2a c o n s i s t s of coarse to medium g r a i n e d , q u a r t z - b i o t i t e s c h i s t u i t h garnet and s t a u r o l i t e and 2b i s com-posed of banded c a l c - s i l i c a t e s . Contacts between 2a and 2b are g r a d a t i o n a l . 2d i s composed of medium g r a i n e d q u a r t z - b i o t i t e -s e r i c i t e - c h l o r i t e s c h i s t u i t h a n d a l u s i t e , s t a u r o l i t e and g a r n e t . It can be argued t h a t 2a and 2d are a c t u a l l y the same member, because they are very s i m i l a r i n mineralogy and t e x t u r e . Small greenstone l e n s e s (2e) occur throughout the u n i t and are i n the order of ID to 15 f e e t t h i c k . U n i t 3 o v e r l i e s 2d, and c o n t a c t s betueen the tuo are g r a d a t i o n a l . At the bottom of u n i t 3 i s a l u s t r o u s medium grey to b l a c k , g r a p h i t i c q u a r t z - s e r i c i t e - c h l o r i t e - b i o t i t e p h y l l i t e to q u a r t z i t e about 10DD f e e t t h i c k ( 3 a ) . I t c o n t a i n s s m a l l green-stone l e n s e s , ID to 15 f e e t t h i c k , throughout. The remainder of u n i t 3 i s made up of 3000 f e e t of l i m y , s e r i c i t i c - c h l o r i t e p h y l l i t e (3c) and l u s t r o u s l i g h t grey to b l a c k , s e r i c i t i c - c h l o r i t e p h y l l i t e t h a t i s l o c a l l y g r a p h i t i c ( 3 b ) . Dark green massive amphibolite and f o l i a t e d a n d e s i t e l e n s e s (3d) occur throughout 3b and 3c. These greenstone l e n s e s are as t h i c k as f i f t y f e e t i n p l a c e s , and are more numerous than those i n 3a. U n i t 8 (a and b) o v e r l i e s u n i t s 2 and 3 unconformably. I t i s the same rock type as u n i t 9 ( F i g . 2 ) . These v o l c a n i c s and sediments are exposed i n the southern p a r t of t h e area and are -22-t h e r e f o r e , n o t shown i n F i g u r e 3. I n t r u d i n g the p h y l l i t e s and s c h i s t s are the A n v i l B a t h c l i t h ( U n i t 11) and a s s o c i a t e d (?) igneous b o d i e s , ( u n i t s 12 to 1 4 ) . T h e i r l o c a t i o n s and d i s t r i b u t i o n can be seen i n F i g u r e 3. e) S u r f i c i a l Geology The l a s t g l a c i a l event i n the A n v i l area uas the l a t e Wisconsin McConnell advance of the Seluyn lobe of the C o r d i l l e r a n i c e sheet (Hughes et a l . , 196.9). The Seluyn lobe advanced from the Seluyn Mountains and moved p r i m a r i l y westward, as f a r as the P e l l y Mountains. During d e g l a c i a t i o n , major melt water streams flowed west or northwest i n the main v a l l e y s ( F i g . 4 ) . Minor overflow streams g e n e r a l l y flowed westward (Hughes et a l . , 1969). The v a l l e y f l o o r of the P e l l y R i v e r i s covered with d r i f t d e p o s i t s 3D0 to 900. f e e t t h i c k ( K e e l e , 1910). In the v i c i n i t y of A n v i l Mine, l o c a l g l a c i a l t i l l and outwash v a r i e s from 0 to 350 f e e t i n t h i c k n e s s . A contour map showing t h i s v a r i a t i o n can be seen i n F i g u r e 5. Gross s e c t i o n s based on overburden d r i l l holes along l i n e s 112U and 28W show s i z e v a r i a t i o n and roundness of the p l u s 270-mesh f r a c t i o n of the d r i f t ( F i g s . 7a & 7 b ) . Logs of these overburden d r i l l h o l e s appear i n Appendix A and t h e i r l o c a t i o n s can be seen i n F i g u r e 6. The e a s t - w e s t e r l y t r e n d seen i n the e a s t e r n s e c t i o n of Fi g u r e 5 i s caused by an o l d outwash c h a n n e l . Samples from o v e r -burden d r i l l h o l e s i n t h i s area are composed of w e l l - s o r t e d , w ell-rounded, predominantly g r a n i t e , f e l d s p a r , and quartz s i l t to sand d e p o s i t s s e v e r a l hundred f e e t t h i c k . Elsewhere, d r i f t Table I I I . S t r a t i g r a p h i c Column J u r a s s i c to Cretaceous 14 Tan to white f e l d s p a r porphry to f e l s i t e 13 Medium-grained hornblende d i o r i t e 12 Dark green f e l d s p a r porphry to d i o r i t e 11 A n v i l B a t h o l i t h : medium to coarse g r a i n e d p o r p h y r i t i c g r a n o d i o r i t e Permian 8b Younger b a s a l t 8a Younger che r t and p h y l l i t e 3d Dark green massive amphibolite to l i g h t green f o l i a t e d a n d e s i t e 3c Limy s e r i c i t e - c h l o r i t e p h y l l i t e 3b L i g h t grey to b l a c k s e r i c i t e -c h l o r i t e - g r a p h i t e p h y l l i t e 3a Medium grey to b l a c k , q u a r t z -g r a p h i t e - s e r i c i t e - c h l o r i t e -b i o t i t e p h y l l i t e to q u a r t z i t e 2e Massive a m p h i b o l i t e to a n d e s i t e , Cambrian (?) p o s s i b l y v o l c a n i c t u f f -greenstone 2d Medium-grained q u a r t z - b i o t i t e -s e r i c i t e - c h l o r i t e s c h i s t u i t h a a n d a l u s i t e , g a r n e t , and s t a u r o l i t e 2c Massive white c r y s t a l l i n e limestone 2b White to creamy and green to broun banded c a l c - s i l i c a t e 2a Coarse to medium g r a i n e d q u a r t z , b i o t i t e s c h i s t , some garnet and s t a u r o l i t e Figure k CN CO • 63 •Q" Limit of advance 4 J Drumlinoid form(direction of r J movement inferred; not inferred) J Discharge channel (major, lesser) Ice-marginal channel (spurs on upslope s ide) • T own Ross River 20 1 M I L E S GLACIAL MAP OF ANVI L RANGE McConnell Advance A f t e r Hughes et a l , 1969 -25-i s p o o r l y s o r t e d , and c o n t a i n s l o c a l l y d e r i v e d angular fragments of p h y l l i t e , greenstone and g r a n i t e (see Appendix A ) . I I - 3 . TOPOGRAPHY AND DRAINAGE The A n v i l Range l i e s e n t i r e l y w i t h i n the MacMillan p l a t e a u , which forms the c e n t r a l p a r t of the E a s t e r n Yukon P l a t e a u as des-c r i b e d by Bostock,(1948). T h i s p l a t e a u c o n s i s t s of t a b l e l a n d s , f o u r to f i v e thousand f e e t i n e l e v a t i o n , d i s s e c t e d by w e l l developed networks of v a l l e y s . A n v i l Range i t s e l f i s made up o f w e l l rounded mountains r a r e l y exceeding 7000 f e e t i n e l e v a t i o n . The r e g i o n i s drai n e d by the P e l l y R i v e r , the course of which i s s t r u c t u r a l l y c o n t r o l l e d by the T i n t i n a T r e n c h . I I - 4 . CLIMATE Climate i s predominantly c o n t i n e n t a l , with mean d a i l y temperatures ranging from - 1 5 ° F i n the winter months to 6 0° F during the summer. Average p r e c i p i t a t i o n throughout the year ranges from ten to f i f t e e n i n c h e s . For the year ending J u l y , 1971, the a c t u a l p r e c i p i t a t i o n f o r the A n v i l area as recorded at the mine was 5.54 inches of r a i n and 57.3 inches of snow, t o t a l l i n g 11.27 inch e s of p r e c i p i t a t i o n . 10 inches of snow i s e q u i v a l e n t to 1 i n c h o f r a i n (Kendrew and K e r r , 1955). Figure 5 -27-F i g u r e 6. L o c a t i o n of t r a v e r s e s and overburden d r i l l h o l e s . Figure 7a. OVERBURDEN DRIll HOIES ALONG LINE 112W S—4 x 'I .1 3D 6 -51 IEGEND fbrticle Size (*270 mesh) Roundness 2 s'rM & sand 3 sort** sill 4 sand 8. grovel 5 grovel & sand 6 gravel 7 heterogenous NR - cor© not recovered * angular a sub-angular fo sub-rounded O rounded Figure 7b. O V E R S U R D E N D R I L L H O L E S A L O N G L I N E 2 8 W 20 <6 7 '»0 I 7 1 20 fo 7< 4*0 6 O 7°Q IEGEND * a Fbrticle Size K270 mesh) Roundness 2 si If & sand 3 sani& silt 4 sond & grovel 5 gravel & sand 6 gravel 7 heterogenous » onguta' a sub-angular to sub-rounded 0 rounded MR - eons not recovered -30-I I - 5 . SDILS S a i l s are developed on l o c a l l y d e r i v e d g l a c i a l t i l l and Dutuash. Df over 120. s o i l p i t s i n v e s t i g a t e d , 67% uere c l a s s i f i e d r e g o s o l i c , 5% b r u n i s o l i c and the r e s t o r g a n i c . These uere c l a s s i f i e d a c c o r d i n g to the c l a s s i f i c a t i o n system of the Canadian Department Df A g r i c u l t u r e (1970). B r u n i s o l s uere found predominantly over the u e l l - d r a i n e d g l a c i a l t i l l o v e r l y i n g the g r a n i t e . The o r g a n i c s o i l s uere u s u a l l y found i n v a l l e y s and p o o r l y d r a i n e d areas but r e g o s a l s extended from the; v a l l e y bottoms up to and onto the u e l l - d r a i n e d g r a n i t e s . Permafrost uas encountered at v a r y i n g depths from f i v e to t u e n t y - f o u r inches i n approximately 10% of the sample s i t e s , but s i n c e most of the s i t e s uere on south f a c i n g s l o p e s , t h i s i s probably a l o u estimate of the amount of permafrost i n the a r e a . The area uas covered by a l a y e r of v o l c a n i c ash that i s thought to have r e s u l t e d from e r u p t i o n s i n the northern p a r t s of the S t . E l i a s Range (Capps, 1915) about 1400 years ago ( S t u i v e r et a l . , 1964). I t v a r i e s i n t h i c k n e s s from 0 to 1.5 f e e t i n the A n v i l a r e a , averaging 2 to 3 i n c h e s . I t i s found betueen the Lh and.C h o r i z o n s u i t h i n the s o i l p r o f i l e s . I I - 6 . V/EGETATI0IM Ldhite ( P i c e a glauca) and b l a c k ( P i c e a mariana) sp r u c e , lodgepole pine (Pinus c o n t o r t a l a t i f o l i a ) , and a l p i n e f i r (Abies l a s i o c a r p a ) f o r e s t the a r e a . They are p o o r l y developed, seldom exceeding e i g h t inches i n diameter and are a l s o s p a r s e l y d i s -t r i b u t e d . Above t r e e l i n e , approximately 4500 f e e t i n e l e v a t i o n , hooker and lance l e a f w i l l o u s ( S a l i x L . ) , and duarf b i r c h ( B e t u l a  g l a n u l o s a ) predominate along u i t h c a r i b o o moss ( C l a d o n i a a l p e s t r i s ) and h e a t h e r . Grasses, mosses and u i l l o u s p r e v a i l i n the v a l l e y s , u h i l e f i r e u e e d ( E p i l o b i u m l a t i f o l i u m ) i s found throughout the r e g i o n . I I - 7 . PREVIOUS GEOCHEMICAL WORK IN THE ANVIL AREA In 1953. Pr o s p e c t o r s A i r u a y s L t d . c a r r i e d out ext e n s i v e g e o p h y s i c a l and geochemical e x p l o r a t i o n , o u t l i n i n g s u b s t a n t i a l tonnage, i n the Vangorda d e p o s i t . Chisholm (1957, 1959) r e p o r t e d a l a r g e seepage anomaly about 1000 f e e t douns9»ope from the s u l p h i d e body. In 1964,• Dynasty e x p l o r a t i o n s uas i n c o r p o r a t e d , and i n 1965 i n s t i g a t e d a h e l i c o p t e r supported g e o l o g i c and geochemical reconnaissance of the a r e a . The main Faro PbSZn d e p o s i t s uere d i s c o v e r e d i n th a t y e a r , by d r i l l i n g a geochemical, magnetic, and EM anomaly some 12 m i l e s northuest of the o r i g i n a l shouing at Vangorda. Aho (1966) found t h a t stream s i l t s c o u l d not aluays be obtained due to' c o a r s e n e s s , o r g a n i c matter, and v o l c a n i c ash con-t e n t of the sediments; and t h e r e f o r e stream sediment sampling uas not a r e l i a b l e method of conducting geochemical e x p l o r a t i o n . He concluded t h a t z i n c uas the best r e g i o n a l guide to ore because -32-• f i t s m o b i l i t y and abundance, but l e a d uas the most c e r t a i n i n d i c a t o r because i t o c c u r r e d i n s o i l s c l o s e to the source of the l e a d . F o rtescue (1967) made a p r e l i m i n a r y study of d i s t r i b -u t i o n s of Zn, Cu, Pb, and IMi i n both the ash and the B h o r i z o n s o v e r l y i n g the Faro #1 and #3 ore b o d i e s . He found anomalies to shou e q u a l l y u e l l i n both h o r i z o n s , but metal values f o r samples c o l l e c t e d from the ash l a y e r were g e n e r a l l y lower than those from the u n d e r l y i n g B h o r i z o n . SAMPLING AND ANALYTICAL TECHNIQUES -3k-I I I - l . SAMPLE COLLECTION AND PREPARATION a) I n t r o d u c t i o n During J u l y and p a r t of August, 1971, approximately SOO samples uere c o l l e c t e d f o r t r a c e element a n a l y s i s . Table IV summarizes the types of samples taken and the elements f o r uhich they uere a n a l y z e d , b, B) Bedrock Bedrock samples uere o b t a i n e d from e i g h t diamond d r i l l h o les l o c a t e d throughout the p h y l l i t i c b e l t ( F i g . 2 ) . A three to four i n c h p i e c e of core uas taken at tuenty f o o t i n t e r v a l s along each d r i l l hole but at every ten f e e t through the g r a p h i t i c p h y l l i t e . Approximately h a l f of each sample uas sent to Vancouver Geochem Laboratory f o r c r u s h i n g and g r i n d i n g , and the other h a l f uas kept f o r r e f e r e n c e and p e t r o g r a p h i c examination. Table V summarizes the number and types of rock sampled. Logs of the diamond d r i l l h oles can be found i n Appendix A. At Vancouver Geochem L a b o r a t o r y , the e n t i r e sample uas crushed i n a j a u c r u s h e r , then p u l v e r i z e d to minus BO-mesh betueen ceramic p l a t e s . Betueen r u n s , to avoid c o n t a m i n a t i o n , the p l a t e s uere cleaned by g r i n d i n g s i l i c a t e sand. Samples uere ground i n numeric order to ensure t h a t i f contamination o c c u r r e d , i t s source c o u l d be checked. c) G l a c i a l Overburden Samples of g l a c i a l overburden uere o b t a i n e d from tuenty overburden d r i l l h oles d r i l l e d during the summer of 1971 by the -35-TABUS IVi Analysts and methocjfl employed ln analysis of geoohemloal samples oolleoted July, August, 1971 SAMPLE METHOD/I NSTRUITJKT ELEMENT ANALYST 2i)-4 rook Emission Spectrograph Sr, Ba, Cr, Co, D. Marshall ohlps from NI, Ag, TI, Cu, V, P. Morton 8 diamond Ho, Bl, Ga, Sn, M. Myers d r i l l holes Pb, Mn, Fe 2 0 , , As, Sb, Be i A A Techtron V Nltrlc/Perchlorlc Cu, Zn B. Myers (preparation A A Perkln Elmer 303 by P. Morton) Nltrlc/Perchlorlc Pb, NI 168 soli Emission Spectrograph Sr, Ba, Cr, Co, D. Marshall samples Ni. Ag, TI, Cu, V, M. Myers (-80 mesh) Mo, Bl, Ca, Sn, Pb, Mn, Fe, O 3 A A Techtron 4 • Nitric Perchloric Cu, Zn M. Myers (preparation A A Perkln Elmer 303 by P. Morton) Nitric Perchloric Pb, NI Hydrochlorlo acid CU, Pb, Zn P. Morton Soli samples see Stanton. 1966 As P. Kemp on traverses Mineral Eng. 1 and 2 see Barrlnger, 1966 Hg Barrlnger (-80 mesh) Research Lab. see Tech. Comm. #32 Organic carbon Barrlnger Research Lab. Soils samples on A A Perkln Elmer 303 traverse J Nltrlc/Perchlorlc Cd B.Myers 19 soil samples A A Perkln Elmer 303 Cu, Pb, Zn P. Morton corresponding to Nltric/Perohlorlc overburden d r i l l hole sites (-10 mesh) Al l soils Orion Model ^07 pH meter pH A. Dhillon 15& samples of A A Perkln Elmer 303 Cu, Pb. Zn P. Morton glacial t i l l Nltrlc/Perchlorlc and outwash from overburden d r i l l hole sites (-10 mesh) 10 rock chips Emission Spectrograph Sr. Ba, Cr, Co, D. Marshall from bedrock below NI, Ag, Ti, Cu, v. overburden d r i l l Mo, Bl, Ga, Sn, hole sites Pb. Hn, Fe 2 O3 A A Techtron 4 Nltrlc/Perchlorlc Cu, Zn' M. Myers (preparation A A Perkln Elmer 303 by P. Morton) Nltrlc/Perchlorlc Pb, NI Creek profiles: channel samples 6 bedrock Emission Spectrograph Sr, Ba, Cr, Co, D. Marshall Ag, TI, Kl, Cu, P. Morton V, Mo, Bl, Ga, Sn, Pb, Hn, C e , Fe, °3 A A Perkln Elmer 303 c J Nltrlc/Perchlorlc Cu, Pb, Zn P. Morton 9 soli and t i l l Emission Spectrograph Sr, Ba, Cr, Co, D. Marshall ( -80 mesh) NI, Ag, TI, Cu, V, Ko, Bl, Ga, Sn, Pb, Mn, Fe, Sb A A Techtron Nltrlc/Perchlorlo Cu, Zn M. Myers (preparation A A Perkln Elmer 303 by p. Morton) Nltrlc/Perchlorlc Pb, NI Hydrochlorlo aold Cu, Pb, Zn P. Morton -36-Table V. Bedrock Sampled i n the A n v i l Area D r i l l Hole Footage Number of Samples Rock Type U n i t 66-PR-l 25-275 20 G r a p h i t i c p h y l l i t e and r h y o l i t e i n t e r m i x e d 3a and 14? 66-50 80-320 15 P h y l l i t i c q u a r t z i t e 3a 32D-461 7 Quartz-mica s c h i s t 2d : CF-68-1 38-218 10 Limy s e r i c i t i c p h y l l i t e 3c LR-1 140-576 24 Massive a m p h i b o l i t e and a n d e s i t i c t u f f s 12 3d 6S-PR-1 100-800 35 Banded c a l c - s i l i c a t e s and banded b i o t i t e , c h l o r i t e s c h i s t Some limestone 2b 2c 68-SEA-l 90-987 45 C h l o r i t e - s e r i c i t e p h y l l i t e 3b 70-Sun-l 21-415 27 C h l o r i t e - s e r i c i t e p h y l l i t e 3b 66-8 100-280 13 Q u a r t z - s e r i c i t e p h y l l i t e 3a 280-520 19 Ore 520-750 11 Q u a r t z - s e r i c i t e p h y l l i t e 3a 750-1380 19 C a l c - c i l i c a t e s and banded mica s c h i s t s 2d -37-A n v i l Mining C o r p o r a t i o n . T h e i r l o c a t i o n s are shown i n F i g u r e 6. The holes were d r i l l e d at 1000 f o o t i n t e r v a l s with a IModwell mounted Mayhew ID00" r o t a r y d r i l l . T r i c o n e rock b i t s were used and the average hole had a kYz i n c h diameter. Water was the prime d r i l l i n g f l u i d but i n deep h o l e s , b e n t o n i t e was used to help keep the holes from c a v i n g . 100% o f the m a t e r i a l p e n e t r a t e d was brought to s u r f a c e and made a v a i l a b l e f o r sampling i n a s l u i c e s t y l e d mud p i t . A grab sample of approximately 15 pounds was c o l l e c t e d every 10 f e e t a f t e r which the s l u i c e was c l e a n e d . Samples were s t o r e d i n p l a s t i c bags and s e a l e d f o r t r a n s p o r t to the mine s i t e . About 1 pound of sample was t r a n s f e r r e d from the p l a s t i c bags to waterproof K r a f t paper e n v e l o p e s . These were then a i r d r i e d . Samples were wet s i e v e d to wash away the b e n t o n i t e through nylon mesh screens and the p l u s 270-mesh f r a c t i o n was r e t a i n e d . These f r a c t i o n s were subsequently d e s c r i b e d with the a i d of a b i n o c u l a r microscope (see Appendix A ) . The minus 10-mesh, pl u s 270-mesh f r a c t i o n was then ground f o r 5 or 10 minutes i n a tungsten-c a r b i d e Spex b a l l m i l l . The b a l l m i l l was washed with water and d r i e d with acetone between r u n s . In ten overburden d r i l l h o l e s , bedrock was encountered and diamond d r i l l core o b t a i n e d . Samples of these were taken and processed as d e s c r i b e d f o r rock samples. d) S o i l s S o i l s were sampled along four t r a v e r s e l i n e s , two of which match the overburden d r i l l hole g r i d l i n e s (T^ -L112W and Tr,- L2SLLI, F i g s . 5 and 6 ) . S o i l p i t s were dug at 500 f o o t i n t e r --38-v a l s along and T,-> so that every second p i t corresponded to an overburden d r i l l hole l o c a t i o n . Along and T^, p i t s were dug at 4D0 f o o t i n t e r v a l s , while on and M^, two s h o r t t r a v e r s e s over magnetic anomalies, samples were taken every IDC f e e t . At each sample s i t e , a s m a l l p i t was dug, s o i l h o r i z o n s noted, and the c o l o u r and morphology of the C h o r i z o n r e c o r d e d . V e g e t a t i o n , landforms and drainage i n the area uere a l s o des-c r i b e d . Along t r a v e r s e s 1 to k, samples of humus, C h o r i z o n and coarse rock c h i p s i n the C h o r i z o n uere c o l l e c t e d i n K r a f t paper envelopes and a i r d r i e d i n the f i e l d . Along and M^, only samples of the C h o r i z o n uere t a k e n . C h o r i z o n s o i l s uere d i s -aggregated i n the l a b o r a t o r y i n a p o r c e l a i n mortar. H a l f of the sample was then s i e v e d through a nylon screen and the minus 80-mesh f r a c t i o n r e t a i n e d . The other h a l f was s i e v e d through a ID-mesh screen and the f i n e s used f o r pH measurement. e) Creek P r o f i l e s Faro Creek uas d i v e r t e d i n the s p r i n g of 1971 so that i t no longer flowed through the Faro open p i t . The newly d i v e r t e d stream cut down to bedrock w i t h i n a month. F i v e creek p r o f i l e s were sampled from the top of the C h o r i z o n to bedrock. These samples were t r e a t e d i n the same way as the s o i l s and bedrock r e s p e c t i v e l y . -39-I I I - 2 . SAMPLE ANALYSIS a) Methods used i n Sample A n a l y s i s Rock, s o i l , and creek p r o f i l e samples uere analyzed by a s e m i - q u a n t i t a t i v e DC-arc s p e c t r o g r a p h i c p rocedure. The elements f o r u hich samples uere analyzed are l i s t e d i n Table IV/. Atomic a b s o r p t i o n spectrophotometry uas used to measure Cu, Pb, Zn, and IMi i n s o i l s and rocks and Cu, Pb, and Zn i n g l a c i a l overburden. As, Hg, and o r g a n i c carbon uere determined f o r s o i l s on t r a v e r s e s 1 and 2. Cd uas measured on s o i l s from t r a v e r s e 3. Glass e l e c t -rodes uere used to determine s o i l pH. An attempt uas made to apply X-ray d i f f r a c t i o n techniques to the minus SD-mesh f r a c t i o n of s o i l s to estimate the amounts of m i n e r a l s p r e s e n t . Methods used are those d e s c r i b e d by Larsson and IMichol, 1971; B r i s t o l , 19GS, 1972; and Moore, 196S. R e s u l t s uere not s a t i s f a c t o r y . T h i s uas due to problems c r e a t e d by per-f e r r e d o r i e n t a t i o n of some m i n e r a l s , sample p a c k i n g , v a r i a b i l i t y i n the e l e c t r i c a l c u r r e n t , degree of c r y s t a l l i n i t y of the m i n e r a l s i n v o l v e d , the i n t e r a c t i o n e f f e c t s of more than one m i n e r a l , and other undetermined problems. b) S e m i - q u a n t i t a t i v e S p e c t r o g r a p h i c A n a l y s i s Procedures used f o r s p e c t r o g r a p h i c a n a l y s i s i n the G e o l o g i c a l S c i e n c e s C e n t r e , U.B.C, are d e s c r i b e d by Doyle (1972) and Hoffman (1972). The sample, mixed i n a 1:1 c o n c e n t r a t i o n u i t h g r a p h i t e c o n t a i n i n g indium as an i n t e r n a l s t a n d a r d , i s packed i n t o a g r a p h i t e e l e c t r o d e , s e a l e d u i t h sugar s o l u t i o n , and e x c i t e d -40-by a DC a r c . S o i l s had been p r e v i o u s l y i g n i t e d at 550 f o r approximately three hours,tD r e l e a s e excess water and o r g a n i c m a t t e r . S p e c t r a are recorded on s p e c t r o g r a p h s p l a t e s . Oper-a t i n g c o n d i t i o n s of equipment used are summarized i n Table V/I. Tables V H and VIII show p r e c i s i o n of rock and s o i l analyses at the 95% l e v e l Df c o n f i d e n c e , determined f o r both standard ( S t a n t o n , 19663 and d u p l i c a t e samples ( G a r r e t t , 1969). c) Atomic A b s o r p t i o n A n a l y s i s 1. P r e - a n a l y t i c a l treatment f o r d e t e r m i n a t i o n of " t o t a l1 Cu, Pb, Zn, Mi and Cd 0.5g of prepared sample uas weighed i n t o 100 ml beaker and 10 ml of 4:1 n i t r i c - p e r c h l o r i c a c i d added. The samples were r e f l u x e d f o r one hour over low heat and then evaporated to d r y n e s s . Residues uere taken up with 5 ml of 6M h y d r o c h l o r i c a c i d and d i l u t e d to 20 ml u i t h d i s t i l l e d water. Samples s e t t l e d o v e r n i g h t and were then decanted p r i o r to a n a l y s i s . 2. P r e - a n a l y t i c a l treatment f o r p a r t i a l l y e x t r a c t -able Cu, Pb, and Zn 0.5 g of. minus SO-mesh sample was weighed i n t o a 50 ml c a l i b r a t e d t e s t - t u b e . Twenty ml of 0.5M h y d r o c h l o r i c a c i d uas added and the t e s t tubes s e c u r e l y capped. Samples, i n batches of 40, uere shaken f o r ten hours i n a r e c i p r o c a t i n g shaker, a l l o u e d to s e t t l e f o r t u e l v e hours and then decanted f o r a n a l y s i s . 3. A n a l y t i c a l Method Theory and o p e r a t i o n of a n a l y s i s by atomic a b s o r p t i o n i s d e s c r i b e d by Abbey (1967). Both a Techtron AA-4 and a P e r k i n iv Table UI. S p e c t r o g r a p h i c equipment and Standard Operating c o n d i t i o n s Spectrograph Source Arc/Spark stand Microdensitometer Anode Cathode 3-step n e u t r a l f i l t e r N e u t r a l f i l t e r Emulsion Wavelength range Mask S l i t Width Arc c u r r e n t Exposure time P l a t e p r o c e s s i n g H i l g e r - W a t t s Automatic Quartz Spectrograph E l e c t r o - m a t i c products (ARL) Model P6KS, Type 2R41 Spex I n d u s t r i e s #9010 ARL S p e c t r o l i n e Scanner #2200 G r a p h i t e , N a t i o n a l L3709SPK G r a p h i t e , N a t i o n a l L3S03AGKS Spex I n d u s t r i e s #1090; 5%, 20%, and 100% t r a n s m i t t a n c e Spex I n d u s t r i e s #9022; 20% t r a n s m i t t a n c e Spectrum A n a l y s i s #1 2775 to 4800 angstroms 17 mm 15 microns 12 amperes 30 seconds . Kodak developer D-19 at 23DC f o r 5 minutes Kodak s t o p b a t h , 30 seconds Kodak f i x e r , 5 minutes -42-Table V I I . O p e r a t i o n a l c h a r a c t e r i s t i c s and p r e c i s i o n at the 95% confidence l e v e l of emission spectrometer a n a l y s i s . (43 analyses of UBC standard rock) Element S p e c t r a l Line Mean Value P r e c i s i o n ( A ) (ppm) i % Sr 4607.33 690. 33 Ba . 4554.04 575 59 Cr 4254.35 7 32 Co 3453.51 6 38 IMi 3414.77 8 50 Ag 3382.89 [MD** -T i 3372.80 2168 77 Cu 3273.96 r.27 45 In 3256.09 26* 45* V 3185.40 51 43 Mo 3170.35 IMD -B i 3067.72 IMD -Ga 2943.64 19 27 Sn 2839.99 IMD -Pb 2833.07 8 113 Mn 2801.06 243 109 F e ( F e 2 0 3 ) 2912.16 3.3% 45 * from Doyle, 1972; 50 analyses of UBC standard rock not d e t e c t e d -43-Table l / I I I . P r e c i s i o n at the 95% confidence l e v e l of Emission Spectrometer a n a l y s i s estimated from a n a l y s i s of p a i r e d samples* (25 p a i r e d samples) Element P r e c i s i o n i ; % Sr Ba Cr Co Ni T i Cu 21 55 30 35 38 27 41 Element P r e c i s i o n i % Mo Ga Sn Pb Mn Fe 42 78 29 72 33 57 57 ac c o r d i n g to G a r r e t t , 1969. Elmer 303 spectrophotometer uere used. The samples and elements f o r uhich each uas employed are shoun i n Table IV/. Operating c o n d i t i o n s f o r both instruments are given i n Tables IX and X. k. A n a l y t i c a l P r e c i s i o n Each a n a l y t i c a l batch of samples contained one s e t of d u p l i c a t e samples and one s t a n d a r d . The p r e c i s i a n , at the 95% confidence l e v e l , uas c a l c u l a t e d f a r both standard ( S t a n t o n , 1966) and d u p l i c a t e , ( G a r r e t t , 1969) samples. Tables XI to X I I I summarize these r e s u l t s . P r e c i s i o n c a l c u l a t e d from UBC standard rock analyses i s uorse than t h a t c a l c u l a t e d from p a i r e d samples because Cu, Pb, Zn and IMi contents of the UBC standard are very l o u . d) A r s e n i c , Mercury and Organic Carbon Analyses As, Hg and o r g a n i c carbon analyses uere performed on a l l s a i l s from t r a v e r s e s 1 and 2. As uas determined by a m o d i f i c a t i o n of the G u t z e i t method d e s c r i b e d by S t a n t o n , 1966; Hg and o r g a n i c carbon uere determined by B a r r i n g e r Research L a b o r a t o r y . The e q u i p -ment used to measure Hg content i s d e s c r i b e d by B a r r i n g e r (1966). Organic carbon uas determined a c c o r d i n g to T e c h n i c a l Communication 32 of the A p p l i e d Geochemical Research Group of I m p e r i a l C o l l e g e , London (1962). D u p l i c a t e s uere analyzed i n a l l cases but p r e -c i s i o n uas not c a l c u l a t e d due to the s m a l l number of d u p l i c a t e s (Table XIV/). e) S o i l pH Measurement The method employed to measure pH i s d e s c r i b e d by Hoffman, 1972. A s i m p l i f i e d v e r s i o n f o l ' l o u s . A f i v e gram sample of -45-Table IX. Operating c o n d i t i o n s f o r the Techtron AA-4 Spectrophotometer Element* Current Uta) S l i t width Co) Wavelength o (A) Cu Zn 3 3 50 1D0 3247.5 213S.6 Standard s e t t i n g s f o r a l l elements: flame height f u e l gauge a i r p ressure 2.3 2.5 20.0 p s i Table X. Operating c o n d i t i o n s f o r the P e r k i n Elmer 303 Spectrophotometer Element* F u e l Gauge S l i t S c a l e Current Wavelength ( A ) Ni Pb Cu Zn Cd 2.5 4 4 4 4 3 4 4 5 4 1 5 1 1 1 24 14 14 14 14 6 2324 2170 2833 3247 2138 2288 Standard s e t t i n g s f o r a l l elements: flame height a i r pressure meter response 2.3 main 30 l b . a i r 4 2 Table X I . P r e c i s i o n of atomic a b s o r p t i o n a n a l y s i s at the 95% confidence l e v e l estimated by a n a l y s i s of p a i r e d samples S o i l s and Rocks HIMD,/HC1D, Attack 3 k Element Number of Analyses P r e c i s i o n Cu 26 13 Zn 26 kl Ni Zk 21 Pb Zk 37 S o i l s HC1 Attack Cu . 5 13 Pb 5 2 Zn 5 22 -kl Table X I I . P r e c i s i o n of atomic a b s o r p t i o n a n a l y s i s at the 95% confidence l e v e l estimated by r e p l i c a t e a n a l y s i s o f UBC standard rock HND,/HC1D, 3 k Attack Element Cu Zn Ni Pb Mean Value 22 17 5 5 Number of Analyses 26 26 25 10 P r e c i s i a n ± % 25 53 Ik 96 HC1 Attack Cu Pb Zn 17 lk 1 k 3 k 10 117 31 Table X I I I . P r e c i s i o n of atomic absorption a n a l y s i s of overburden d r i l l hole samples at the 9556 l e v e l of confidence Estimated by a n a l y s i s of paired samples Element Number of P r e c i s i a n Analyses + 0, - 7o  Cu g 14 Pb 9 44 Zn 9 32 Estimated by r e p l i c a t e a n a l y s i s of UBC standard rock Element Mean Value ELED Cu Pb Zn 23 7 15 Number of Analyses P r e c i s i a n B 8 8 21 55 31 -49-Table XIV/. R e s u l t s o f d u p l i c a t e analyses of Mercury, Organic carbon and A r s e n i c Mercury ppb Organic Carbon % A r s e n i c ppm 26 37 85 317 239 149 134 350 0.9 0.1 1.5 2.6 1.7 0.1 1.2 2.6 2 2 2 2 2 2 2 3 3 3 2 3 4 2 2 2 -50-minus 10-mesh a i r d r i e d s o i l s uas weighed i n t o a 4 ounce d i x i e cup. 5 ml of d i s t i l l e d water was added and allowed to e q u i l -i b r a t e u i t h the s o i l . The pH was measured by a g l a s s e l e c t r o d e and f r i t t e d s l e e v e r e f e r e n c e e l e c t r o d e attached to an Orion model 407 pH meter. -51-RESULTS -52-IVV-1. RESULTS Analyses Df r o c k s , overburden and s o i l s are presented i n ppm except where n o t e d . Elements, f o r which samples were an a l y z e d , have been compiled i n Table IV/, page 35. I n d i v i d u a l values and sample numbers are l i s t e d i n Appendix B. For p u r -poses of d i s c u s s i o n and p r e s e n t a t i o n , rock and overburden r e s u l t s are c o n s i d e r e d s e p a r a t e l y under the headings primary and second-ary d i s p e r s i o n . IU-2. PRIMARY DISPERSION a) P r e s e n t a t i o n of data Geometric means, l o g standard d e v i a t i o n s and ranges of metal v a l u e s f o r emission s p e c t r o g r a p h i c and atomic a b s o r p t i o n analyses of bedrock w i t h i n d r i l l h o l e s are recorded i n Tables XV/ and XVI r e s p e c t i v e l y . F i g u r e 8 d e l i n e a t e s changes i n C r , N i , S r , and Co content throughout d r i l l hole LR-1 and F i g u r e 9 shows v a r i a t i o n of Pb, Zn, Cu, Ba, S r , and Mo content along the l e n g t h of d r i l l hole 66-8. Two analyses D f rocks from the A n v i l b a t h -o l i t h are recorded i n Table XX. Where means are quoted, they are geometric, u n l e s s otherwise s t a t e d . b) Metal Content of Bedrock 1. In n o n - m i n e r a l i z e d d r i l l h oles D r i l l h o l e s sampled are spaced over an area of the p h y l -l i t i c b e l t 36 m i l e s i n l e n g t h ( F i g . 2 ) . Rocks encountered are w i t h i n u n i t s 2, 3, 12, and 14(?) ( F i g . 2, Tables 2 and 3) but TABLE XV: Means, Ranges, and. Standard D e v i a t i o n s of analyses of bedrock by em i s s s i o n spectroscopy ( i n ppm) DRILL HOLE footage 66-50 42-311 330-459 6S-PR-1 107-207 407-784 66-PR-l 115-143 225-263 NUMBER OF SAMPLES 66-B LR-1 33-103 163-213 120-285 290-550 580-750 770-1380 140-410 423-S76 CP-68-1 53-215 70-Sun-l 35-138 145-end »I-Sta-1 93-«8$ P h y l l i t i c Q u a r t z i t e 3a Quartz mica S c h i s t 2d|« 14 H* 147 322 91 33 57 B049 25 SD 1.5 2. 1 2.0 1.3 1.4 1.6 2.8 R100-350 100-1000 15-160 15-60 30-100 2000-11 0-100 7 282 466 115 36 74 9380 21 2.7 1.5 1.2 1.2 1.4 1.1 3.0 100-1800 300-1000 100-150 30-70 50-100 sooo-n 0-70 Banded c a l c - 26 442 419 146 29 59 7990 36 s i l i c a t e s 1.8 1.6 1.6 1.5 1.5 1.5 2.3 2b 200-1500 100-900 30-400 1S-60 30-130 4000-1* 0-100 S i l i c e o u s . 9 870 168 126 18 36 4332 12 Limestone 2.0 5.9 1.8 2.4 1.8 2.2 2.5 2c 300-2000 0-800 30-200 0-30 10-70 700-8000 0-40 R h y o l i t e Graphite S c h i s t 14 Quartz-S e r i c l t e S c h i s t 3a Quartz-S e r i c i t e S c h i s t 3B Banded Quarts B i o t i t e , c h l o -r i t e s c h i s t 2b and 2d Meta-tuff 3d 7 • Massive atn-p h i b o l l t e Limey-ser- 10 i c i t e phy-l l i t e 3c Meta-tuff C h l o r i t e -S e r i c i t e P h y l l i t e 3b C h l o r l t e -S e r l c l t a P h y l l i t e 3b 20 291 1.0 250-300 184 1.7 80-200 70 2.4 0-803 84 2.4 40-300 72 2.5 0-400 398 2.1 50-1000 22 1.8 .0-60 608 1.6 300-1000 140 2.2 30-300 82 3.9 0-400 280 1.7 80-500 249 4.0 ' 30-1000 325 6.0 100-3000 S17 5.8 300-3000 690 1.6 400-1500 906 2.2 400- 1* 87S 3.7 10-2000 863 1.4 400-1500 162 2.9 60-1500 243 4.0 0-1000 468 1.9 100-2000 148 2.8 40-1000 93 2.4 5-200 110 1.2 100-150 101 1.4 40-200 92 3.9 1-300 169S 1.9 400-3000 179 1.5 100-300 4 11.0 0-180 183 1 .9 70-1000 184 l.S 80-1000 34 2.0 7-150 54 2.2 30-600 268 1.8 90-500 39" 1.1 30-5O 30 1.6 10-60 34 1.9 10-100 194 1.3 100-300 29 1.6 8-40 47 1.9 15-100 47 1.9 20-200 4 5 1.7 15-300 171 2.7 50-1000 70 1.5 40-120 12 4.5 0-80 72 1.3 50-100 48 1.4 30-100 68 1.9 . 30-200 3587 1.9 700-5000 56 1.3 40-90 27 • 3.0 5-150 92 2.6 40-1000 104 1.7 40-800 308 1.3 200-400 6612 1.7 5000-11 6534 2.5 300-11 37 4.6 25-200 7034 2.2 6000-11 11 7707 l.S 3000- I t 4627 1.9 2000-11 6373 1.7 2000-11 11 It 7 2.3 0-40 52 l.S 40-100 76 3.0 40-800 2962 3.3 100- I t 47 1.4 30-60 60 3.4 0-1000 51 3.0 , 0-S00 9S ' 1.2 60-S00 38 1.2 30-50 25 8.9 0-500 12 2.8 0-100 4 4 2.5 0-100 V MO GA SN PB MN FE 2 0 , AS SB BE (t ) 73 25 4 11 492 10.7 1.8 1.7 2.3 2.0 1.3 1.4 50-120 5-40 0-30 5-35 200-1000 7-20 94' 28 4 20 275 9.9 1.1 1. 1 1.7 2.6 1.6 1.2 80-100 25-30 0-8 S-90 150-500 8-20 91 28 6 13 398 9.3 1.4 1.2 1.7 1.3 1.7 l.S 60-300 15-40 0-20 6-20 150-1000 S-20 105 21 4 11 570 6.7 1.1 1.8 2.5 1.2 1.5 1.7 80-120 5-30 0-30 10-15 400-1000 2-10 0 3 30 27 30 218 1.0 19 1.4 1.0 1.3 1.3 2.0 l.S 2-5 30 15-30 . 20-40 100-500 10-3S 176 9 16 4 19 332 7.2 2.8 4.0 2.5 2.4 1.7 2.1 l.S 200-2000 2-40 7-30 0-10 8-40 100-700 2-10 79 3 26 29 405 18.4 3.5 2.6 1.6 2.9 2.2 6.3 0-1000 0-30 7-40 1S-400 40-1000 10- 20 - 20 10 16 It 1047 20t 2042 170 1.4 1.3 2.3 3.5 2.1 2.9 12-4S 7-18 0-60 40-5000 400-S000 0-700 90 29 . 54 539 10.2 1.1 1.1 2.8 1.6 1.2 80-100 28-30 20-300 400-1500 8-15 71 30 4 26 382 10.4 1.7 . 1.3 1.9 2.3 4.5 l.S 15-200 15-40 0-10 15-600 200-2000 7-20 173 28 7 460 10.6 2.0 1.8 2.6 2.5 1.5 S0-500 5-40 1-20 150-3000 5-20 68 7 . 397 13.6 1.2' 1.2 1.7 1.4 50-100 6-10 200-800 10-20 166 26 10 465 7.6 1.5 1.2 1.4 1.4 1.4 100-300 18-30 7-20 200-800 4-10 134 21 234 10.3 4.1 1.2 2.1 1.9 10-600 0-2 15-25 100-500 4-20 136 24 4 174 11.4 1.8 1.5 4.2 2.6 5.1 80-400 o-s 20-40 2-20 30-1000 5-20 137 2 32 19 76S 20t' 1.7 1.6 1.2 1.5 1.8 30-500 0-20 20-40 10-60 200-2000 5- 201 AG 78 3.0 4-4000 • Some values are extremely h i g h , some low: t h i s y i e l d s a poor estimate of the mean and standard d e v i a t i o n • Geometric mean, standard d e v i a t i o n of logged data, and complete range of values -5k-Table XVI; MEANS1, RANCIJS2, ANO STANDARD DEVIATIONS^ ANALYSES OK BEDROCK BY ATOMIC ABSORPTION. a n a l y s e s i n ppm) D R I L L HOLE NUMIiHR OF CU :s N I PB ROCK TVP« SAMPLUS f o o t . l C l -66-50 4 2 - 3 1 1 14 (mean) 20 80 44 2* P h y l l i t i c q u a r t z i t e ( S.D.) 2.9 1.6 1.5 3.0 3a ( r a n g e ) 2-79 2 2 - 1 6 0 20-83 0-33 3 3 0 - 4 5 9 7 18 69 S3 2* Q u a r t z - m i c a s c h i s t 3.4 1.2 1.2 4.0 2d5e 2-68 4 7 - 9 1 3 8 - 6 0 0-19 6S-PR-1 107-207 26 27 47 44 2** C a l c - s i l i c a t e s 4 0 7 - 7 8 4 2.7 2.0 1.6 3.0 2b 2-102 9-110 6-68 0-23 227-386 9 11 58 27 5« S i l i c e o u s L i m e -2.6 1.7 2.0 3.7 s t o n e 2c 2-30 2 6 - 1 3 9 6-56 0-23 6 6 - P R - l 1 1 3 - 1 4 3 6 1 29 1 28 R h y o l i t e 2 2 3 - 2 6 3 1.4 1.7 1.0 1.4 .6-1.3 1 1 - 5 0 0-1.2 15-38 3 3 - 1 0 3 14 37 58 89 IS G r a p h i t e s c h i s t 1 6 3 - 2 1 3 1.6 2.9 3.5 2.8 11-105 8-255 1 8 - 1 0 5 7 0-42 66-8 1 2 0 - 2 8 5 14 56 124 34 6* Q u a r t z s e r i c i t e 3.3 2.0 1.3 7.2 s c h i s t a b o v e o r e 1 8 - 5 4 3 3 9 - 4 9 3 20-46 0-158 3a 5 8 0 - 7 5 0 8 38 115 42 47 Q u a r t z s e r i c i t e 1.6 1.5 1.2 3.0 s c h i s t b e l o w o r e 21-65 7 6 - 2 7 3 3 1 - 5 0 6-261 3a ' 7 7 0 - 1 3 8 0 19 45 82 38 4* C a l c - s i l i c a t e s 2.7 . 1.8 1.3 5.7 f and b a n d e d m i c a 7 - 6 7 9T 34-236 14-55 0-243 s c h i s t 2b$d LR-1 1 4 0 - 4 1 0 15 44 74 46 0 B a n d e d m e t a - t u f f 2.9 1.6 1.5 1.4 3d? 4-406 31-116 2 3 - 1 1 7 0-4 4 2 3 - 5 7 6 9 48 48 919 1* M a s s i v e a m p h i b o l i t e 1.6 1.3 1.2 2.2 3d 27-136 3 8 - 9 9 7 2 9 - 1 3 7 2 0-10 CF-68-1 S3-21S 10 25 77 .31 2* L i m e y s e r i c i t i c 1.2 1.2 1.2 3.2 p h y l l i t e 3c 18-39 4 1 - 1 0 5 19-41 0-15 7 0 - S u n - l 3 5 - 1 3 8 7 21 57 I S 0 M e t a - t u f f 3d 6.8 1.9 3.0-4-282 15-106 3-77 1 4 5 - e n d 20 8 53 46 1.4* C h l o r i t e s e r i c i t e 2.6 1.6 2.7 2.S p h y l l i t e 3b 2-84 20-116 1 7 - S 6 5 0-29 6 8 - S c a - l 9 3 - 9 8 S 45 30 94 55 2* C h l o r i t e s e r i c i t e 2.2 1.6 l . S 3.6 p h y l l i t e 3b 5-90 1 4 - 1 6 7 2 1 - 2 7 7 0-106 * Z e r o Pb v a l u e s h a v e b e e n r e p l a c e d by 1 i n t h e c a l c u l a t i o n ** From 107- 5 5 3 ' , P b - 0 , and f r o m 5 6 8 - 7 8 4 ' , Pb-6ppni t s a m p l o 1060 c o n t a i n s s u l p h i d e s , a c c o u n t i n g f o r h i g h Cu a n d Pb v a l u e s 1 - C o o m o t r i c mean, 2 - C o m p l o t c r a n g e o f v a l u e s , 3 - s t a n d a r d d e v i a t i o n o f l o g g e d d a t a -55-ure 8. Trace element v a r i a t i o n along d r i l l hole LR-1 -56-have undergone v a r y i n g degrees of metamorphism, depending on where the d r i l l h oles are l o c a t e d . Since Shaw (1954) showed that d i s t r i b u t i o n o f t r a c e elements i n p e l i t i c r a c k s remains e s s e n t i a l l y the same during p r o g r e s s i v e metamorphism, t r a c e e l e -ment content of the s c h i s t s and p h y l l i t e s of u n i t 3 should show no geochemical d i f f e r e n c e s due to r e g i o n a l metamorphism. Tables XV, XVI and F i g u r e s S and 9 are d i s c u s s e d with the above premise i n mind. S i l i c e o u s limestone (2c) i n 68-PR-l and limey s e r i c i t e p h y l l i t e (3c) i n CF-68-1 show pronounced enrichment of Sr (870 and 608 ppm as means r e s p e c t i v e l y ) and d e p l e t i o n of Fe r e l a t i v e to the other rack t y p e s . High Sr content can be ex-p l a i n e d by the s u b s t i t u t i o n a f Ca by Sr i n the Ca m i n e r a l s , mainly c a l c i t e (Goldschmidt, 1958). Massive a m p h i b o l i t e i n LR-1 ( u n i t 12) has c h a r a c t e r i s t i c -a l l y high mean values f o r Cr (1695 ppm), Ni (3587 ppm), Ea (194 ppm) and Cu (95 ppm), and very low S r , Ba and Ga c o n t e n t s , (Tables XV, XVI and F i g . 8 ) . In d r i l l hale 66-PR-l, a h i g h l y a l t e r e d p o r p h y r i t i c r h y a l i t e or f e l s i t e i s encountered, which i s n o t i c e a b l y high i n Sn (mean of 27 ppm), Pb (28 ppm determined.by AA), Be (19 ppm) but has extremely low N i , T i , Cu, V, F ^ O ^ and Zn c o n t e n t . T h i s rock i s n o n - s c h i s t o s e and seems to i n t r u d e the g r a p h i t i c s c h i s t (3a) along f a u l t and f o l i a t i o n p l a n e s , and as such i s probably l a t e r than the p h y l l i t e . The g r a p h i t e s c h i s t ( 3 a ) , i n t o which the r h y a l i t e i n t r u d e s , has n o t i c e a b l y high mean V (176 ppm), Mo (9 ppm) and Pb (15 ppm -57-determined by AA) contents and s l i g h t l y high !\li c o n t e n t . P h y l -l i t i c q u a r t z i t e (3a) w i t h i n 66-50 shows t r a c e element content s i m i l a r to t h a t of the g r a p h i t i c s c h i s t i n 66-PR-l except t h a t the q u a r t z i t e i s lower i n Mo and V l e v e l s . C h l o r i t e - s e r i c i t e p h y l l i t e (3b) found i n 68-Sea-l has high mean T i (>1%), Mn (765 ppm) and F e 2 0 3 (~20%) c o n t e n t s . Presence of c h l o r i t o i d throughout t h i s s e c t i o n (see Appendix A) i s a r e f l e c t i o n of the Fe contentnof the r o c k . C h l o r i t e - s e r i c i t e p h y l l i t e (3b) w i t h i n 70-Sun-l, twenty m i l e s away from 68 - S e a - l , does not show the same i r o n and manganese enrichment although T i i s s t i l l h i g h . 2. In m i n e r a l i z e d d r i l l h oles Diamond d r i l l hole 66-8 i n t e r s e c t s the s m a l l e s t dimension of the Faro #1 ore body. Q u a r t z - s e r i c i t e s c h i s t (3a) above and below the ore zone i s s l i g h t l y enhanced i n Pb and Zn c o n t e n t , r e l a t i v e to other rocks sampled i n the area (Table XV/I). Pb, Zn, Ba and Mo content g e n e r a l l y i n c r e a s e s .towards the ore body ( F i g . 9) but Cu and Sr do not show t h i s r e l a t i o n s h i p . These geochemical halos f o r Pb, Zn, Ba and Mo appear to extend d i f f e r e n t d i s t a n c e s i n t o the bedrock. They are as f o l l o w s : Hanging Wall F o o t w a l l Pb 75 f t . 300 f t . Zn 100 f t . 300 f t . Ba 75 f t . no$ detected Mo 50 f t . 100 f t . I -59-s The hales seem to p a r a l l e l the r e a d i l y v i s i b l e a l t e r a t i o n envelope around the Faro ore body (see p. 18 f o r d e s c r i p t i o n ) , and as such may have formed e i t h e r u i t h emplacement of the ore d e p o s i t or at some time subsequent to i t , perhaps during deformation and metamorphism. Tempelman-Kluit suggests the l a t t e r f o r the formation o f the a l t e r a t i o n halo (see p. 20 ) . Pb and Zn contents vary s y m p a t h e t i c a l l y throughout the l e n g t h of d r i l l hole 66-8 ( F i g . 9 ) . T h i s i s probably a r e f l e c t i o n of the Pb and Zn geochemical halos about the ore zone. Pb content seems to be h i g h e r i n the top 300 f e e t of u n i t 2 than i n the bottom 300 f e e t uhere i t i s g e n e r a l l y b e l o u the d e t e c t i o n l i m i t . Sample 1030 (1030 f e e t from the top of d r i l l h o l e ) c o n t a i n s s u l -phides u h i c h accounts f o r high mean Pb (243 ppm) and Cu (659 ppm) l e v e l s . Minor element c o n c e n t r a t i o n s i n the ore are a l s o recorded i n Table XV. Elements other than Pb and Zn, that are e n r i c h e d i n the ore zone are Cu (sometimes as high as 1%), Mo (up to 45 ppm), Fe (much g r e a t e r than 2 0 % ) , As (up to Vz%), Sb, Ag and minor enrichments of Co and Sn. Ba shous unusual behaviour i n that f o r the top hundred f e e t of the ore body, i t i s present i n amounts exceeding 1% but from 400 to 580 f e e t i n depth, Ba i s p r a c t i c a l l y n o n - e x i s t a n t . Sr e x h i b i t s a ' s i m i l a r r e l a t i o n s h i p ( F i g . 9 ) . The Pb, Zn and Cu values can be accounted f o r by s p h a l -e r i t e , galena and c h a l c o p y r i t e c o n t e n t . The l a r g e amount of Fe present i s due to the p y r i t e and p y r r h o t i t e i n the ore (see lo g of 66-8 i n Appendix A ) . As i s found i n a r s e n o p y r i t e , Sb i n b o u r n o n i t e , and Ag .is probably a s s o c i a t e d u i t h galena and -60-t e t r a h e d r i t e . Minor Co enrichment might w e l l be due t D Co content of the p y r i t e , the most dominant m i n e r a l i n the o r e . ( S t o c k w e l l , 1970). Ba and Sr d i s t r i b u t i o n s are f a r l e s s e a s i l y e x p l a i n e d . B a r i t e has been i d e n t i f i e d at Swim and V/angorda (Tempelman-K l u i t , 1968 and 1972) and i s a l s o present at Faro ( J e n n i n g s , p e r s o n a l communication). B a r i t e thenj only o c c u r s i i n the top h a l f of the ore body i f one assumes 66-8 to be r e p r e s e n t a t i v e of the whole ore body. T h i s e x p l a i n s why the Ba halo i s only found i n the h a n g i n g , w a l l . However, Jennings ( p e r s o n a l commun-i c a t i o n ) , says t h a t b a r i t e can be found i n any p a r t of the ore body and i s not r e s t r i c t e d to the uppermost zone. c) A n a l y s i s of Emission Spectrograph Data One of the o b j e c t i v e s of t h i s t h e s i s was to determine i f a geochemical marker h o r i z o n e x i s t e d . To check fefidtheEeif iher& anea any d i s t i n c t i v e l y d i f f e r e n t rock types and to d i s t i n g u i s h 2 the elements t h a t might cause such d i f f e r e n c e s , a H o t e l l i n g ' s T t e s t t was determined on the f i f t e e n separate rock groups of Table XV ( B j e r r i n g et a l . , 1972). Twelve elements were used i n the a n a l y s i s : S r , Ba, C r , Co, l \ l i , T i , Cu, V, Ga, Pb, Mn i n ppm and Fe as % Fe^O-j. R e s u l t s are t a b u l a t e d i n Table X V I I . T h i s t e s t r e l i e s an the d i s t r i b u t i o n s af the elements used. ; The data are assumed to be lognormal because a) data was determined on a l o g a r i t h m i c s c a l e with a b i a s towards even numbers and b) there w9re not enough samples w i t h i n any rock group to do a X t e s t f o r l o g n o r m a l i t y , that i s , t o prove o t h e r w i s e . For -61-t h i s r e a s o n , r e s u l t s should not be depended upon c o m p l e t e l y . As Hawkes and Webb (1962) say ( p g . 29): " I t should be s t r e s s e d , however, t h a t s t a t i s t i c a l methods should be used s o l e l y as a d i s c i p l i n a r y guide and never as a replacement f o r q u a l i t a t i v e a p p r a i s a l . " In g e n e r a l , Table XVII shows rock types to be geo-c h e m i c a l l y s i g n i f i c a n t l y d i f f e r e n t from one another but i n most c a s e s , no p a r t i c u l a r element, or set of elements can be d i s -t i n g u i s h e d as being the cause, e x c e p t i o n s being the t r a c e element content i n the a m p h i b o l i t e w i t h i n LR-1 and the r h y o l i t e i n 66-PR-l. Amphibolite i n LR-1 i s c h a r a c t e r i s t i c a l l y d i f f e r e n t from other rack types i n S r , Ba, Ga, C r , Co and IMi c o n t e n t , and the r h y o l i t e i n C r , T i , Co, IMi, V, and Fe^O.^ c o n t e n t . These d i s -s i m i l a r i t i e s were n o t i c e d i n the p r e v i o u s s e c t i o n . Since these two rocks are not thought to be members of u n i t s 2 or 3, they have been d e l e t e d i n the element a n a l y s i s shown i n F i g u r e ID. S i g n i f i c a n t d i f f e r e n c e s i n t r a c e element content recorded i n F i g u r e ID are both r e a l and a r e f l e c t i o n of the number of samples w i t h i n each rock t y p e . For example, there are 45 samples of 3b from 68-Sea-l which i s approximately double the next most densely sampled rock t y p e , and t h e r e f o r e many more s t a t i s t i c a l c o n c l u s i o n s can be drawn about the element content of 6 8 - S e a - l . P r e v i o u s l y i t was noted t h a t 3b i n 68-Sea-l was high i n T i , Mn and Fe c o n t e n t . T h i s a n a l y s i s a l s o shows th a t Sr (mean 28D ppm) i s s i g n i f i c a n t l y higher i n 68-Sea-l than i n any s e c t i o n of 66-8 but i t i s lower than t h a t i n the s i l i c e o u s l i m e -stone i n 68-PR-l (mean 87D ppm). A l t e r n a t e l y one could say Sr Ga.Pb Co.Nl CF-68-1 + + + (3°) 8 68-Sea-l 66-8 66-8 66-8 70-Sun-l 70-Sun-l LH-1 LR-1 68-CP-l 66-50 66-50 68-PR-l 68-PR-l 66-PR-l f (3b) above below (2bid) (3b) (3d) (3d) (12) Oo) (3a) (2d&e) (2c) (2b) (lW) ore ore • fc< 68-Sea-l w (3b) 66-8 a r (3a) 66-8 + (3a) 66-8 Sr.Cr -(2t4d) Nl 70-Sun-l Sr.Pb Pb Pb Pb 2 0 (3b) Mn 70-Sun-l cr.Pb + Pb + ' (3d?) LB-1 Pb + + + + + 1 5 (3d) a LR-1 Sr.Ba.Cr, Ba.Ga Ba.Ga Ba.Cr Sr.Nl (12) Co.Nl.Tl Nl Pb.Cr Nl.Ga Ba 10 1> 66-50 + _ + + + + + Ba.Cr + (3a) Co.Nl 66-50 + _ - + - 1 (2die) 68-PR-l Sr.Ti + + + + - + + 9 (2o) 68 -PR-1 + + + Sr Pb Cr.Pb + Cr.Ba + Sr + - 2 6 (2b) Co.Ga Nl.Pb . 66-PR-l Cr.Tl.Co Cr.Co, Cr.Co, Co.Nl Cr.Co, 0 (14?) Cu.Nl.V, Nl.Tl, Nl.Tl.V Tl.V N 1 » " » Fe Fe.V Pb.Po Fe V, Fe 66-PR-l + + + + ?b Pb + Ba + + - + + (3a) + S i g n i f i c a n t l y d i f f e r e n t a t the 95# l e v e l - Not s i g n i f i c a n t l y d i f f e r e n t Sr Element s i g n i f i c a n t l y d i f f e r e n t Blank means t h a t there i s not enough data to come t o a c o n c l u s i o n -63-F i g u r e 10. S i g n i f i c a n t Element D i f f e r e n c e s D r i l l Hole 68-Sea-l 66-8 66-8 66-8 ?0-Sun-l 70-Sun-l 68-PB-l 68-PR-l 66-PH-l 66-50 Bock type (3b) (3a ab - (3a b e - (2b & (3b) (3d) (2c) (2b) (3a) (3a) ove ore)low ore) d)  Sr 280* 10 72 82 870 442 1^2 Cr 184 101 4 146 K l 104 48 T i 1% 4332 Pb Kn 765 17^ A l l values ln ppm except where noted. Connecting lines naan significant differences ln respective elements * Geonetrlo means -6k-content of 66-8 i s very low but Sr content of 68-PR-l (2c) i s high (uhich uas a l s o recorded p r e v i o u s l y ) . The r e s t of the f i g u r e can be read i n l i k e manner. Table XVII and F i g u r e ID serve to enhance the d i f f e r -ences a l r e a d y noted i n the element d i s t r i b u t i o n s but do not add to the o v e r a l l p i c t u r e . IMo geochemical marker h o r i z o n s are r e v e a l e d by s t a t i s t i c a l a n a l y s i s except f o r u n i t s 12' i n LR-1 and lk (?) i n 66-PR-l uhich uere detected b e f o r e . I n t e r e s t i n g l y though, rock d i v i s i o n s of d r i l l hole 66-8, uhich i n t e r s e c t s the Faro ore body, do not shou s i g n i f i c a n t geochemical d i f f e r e n c e s and t h e r e f o r e c o u l d be geochemically the same r o c k . The s e c t i o n seems n o t a b l y e n r i c h e d i n Pb and d e p l e t e d i n Sr (both determined by emission spectrography) r e l a t i v e to other rock groups i n the area ( T a b l e s XV/, XV/II and F i g . 1 0 ) . Atomic .absorption uork on. the same samples does not shou Pb enrichment to the same extent (Table X V I ) . d) Comparison of t r a c e element content of bedrock to t h a t of average rocks 1. S c h i s t s and P h y l l i t e s In v i e u of the c o n s e r v a t i v e behaviour of t r a c e elements i n p e l i t i c r ocks during p r o g r e s s i v e metamorphism (Shau, 1954), average element abundances i n 3a u i t h i n 66-50 and 3b i n 68-Sea-l are compared to those of normal and b l a c k s h a l e s (Table X V I I I ) . There seems to be a marked s i m i l a r i t y betueen minor element con-tent of the s h a l e s and t h a t of the s c h i s t s and p h y l l i t e s of u n i t 3. Fe and T i appear to be higher i n rocks of u n i t 3 compared -65-to those of normal or b l a c k s h a l e s . T h i s may be a r e f l e c t i o n of the provinance of the sediments t h a t i n i t i a l l y formed the r o c k s . Vine and T o u r t e l o t (1970.) found that i n 18 out of 20 s e t s of samples the T i content of the b l a c k s h a l e s and i n 13 out of 20 s e t s of samples the Fe content of the b l a c k s h a l e s , uere a s s o c i a t e d with the d e t r i t a l f r a c t i o n of the sediments. O v e r a l l average Pb and Zn content determined by atomic a b s o r p t i o n on rocks c f u n i t s 2 and 3 range from belou d e t e c t i o n l i m i t i n 70-Sun-l to 15 ppm i n 66-PR-l f o r Pb and from kl ppm i n the c a l c - s i l i c a t e s of 68-PR-l to 3k ppm i n 68-Sea-l f o r Zn. These values t a l l y very u e l l u i t h average abundances of Pb and Zn i n sedimentary r o c k s : Rock .type Zn (ppm) Pb (ppm) s h a l e s 100 20 sandstones 3k 11 carbonate rocks 23 9 (Uedepohl, 1971) and i n magmatic rocks: g r a n i t e 1 40 20 2 d i o r i t e and a n d e s i t e 72 12 b a s a l t s2 150 8 (1T a y l o r , 1964; Vinogradov, 1962) 2. A n v i l B a t h o l i t h Trace element content of tuo samples of the A n v i l B a t h -o l i t h i s compared to t h a t o f an average g r a n i t e i n Table XIX. The -66-Table X V I I I . Comparison af t r a c e element content c f members 3a and 3b u i t h t h a t c f ncrmal and b l a c k s h a l e s ( a l l values i n ppm except Fe) Element Normal* Shale Black Shale + 3a 66-50 3b 68-Sea-l Sr 300 200 147 280 Ba 580 300 322 468 Cr 90 100 91 184 Ni 268 50 57 104 Co 19 10 33 45 T i 4600 2000 88049 >1% Cu 45 70 25 44 V 130 150 73 137 Mo 2.6 10 - 2 Ga 19 20 25 32 Pb 20 20 11 19 Mn 850 150 492 765 Fe(D/o) 4.7 2 >8.5 & <14 Zn 95 300 80 94 From Tur.ekian and Ldedepohl, 1961 + From Vine and T o u r t e l o t , 1970 # A l l elements determined by emission s p e c t r o g r a p h ^ except f o r Zn which uas determined by atomic a b s o r p t i o n 20% ^e^O^ D V h >^ * ^s e q u i v a l e n t to 14% Fe by tat. -67-A n v i l g r a n i t E i s e n r i c h e d i n Sn r e l a t i v e to T a y l o r ' s (1964) g r a n i t e although t h i s might prove to b e i n c o r r e c t u i t h f u r t h e r sampling of the b a t h o l i t h . I f the b a t h o l i t h rocks are e n r i c h e d i n t i n , then t i n content of s o i l s uould become a v a l u a b l e mapping t o o l . S o i l s and g l a c i a l overburden d e r i v e d from the g r a n i t e uould show enhancement o f Sn r e l a t i v e to s o i l s and overburden d e r i v e d from other r a c k s . 3. Massive Amphibolite A comparison ..of the average t r a c e element content of an u l t r a m a f i c rack and t h a t of the massive a m p h i b o l i t e ( u n i t 12) i n LR-1 i s shown i n Table XX. High M i , C r , and Co and low S r , Ba, Pb and Mo i n each compare f a v o u r a b l y with one a n o t h e r . Both geachemically and m i n e r a l o g i c a l l y , t h i s i s a d i s t i n c t i v e rock type i n the a r e a . Because i t i s a l s o very magnetic (Appendix A) and geo-p h y s i c a l e x p l o r a t i o n over the area has d e l i n e a t e d a s u b s t a n t i a l magnetic h i g h , (Dynasty E x p l o r a t i o n , p e r s o n a l communication), then h o p e f u l l y geochemical araapiy.ses of s o i l s o v e r l y i n g such a body f o r IMi and C r , might prove to be a v i a b l e t o o l f o r t e s t i n g geo-p h y s i c a l targets.' That i s to say t h a t s o i l s d e r i v e d from IMi and Cr r i c h r a c k s should a l s o show enrichment i n these elements. 4. R h y o l i t e w i t h i n 66-PR-l Trace element content of the r h y o l i t e i s compared to t h a t of the A n v i l B a t h o l i t h and an average g r a n i t e (Table X I X ) . T h e r E i s a remarkable s i m i l a r i t y i n metal content between the r h y o l i t e -68-Table XIX. Comparison o f t r a c e metal content of samples • f the A n v i l B a t h o l i t h u i t h that of an average g r a n i t e , and t h a t of the r h y o l i t e i n 66-PR-l ( i n ppm) Element G r a n i t e * 710.49** 71050-1* R h y o l i t e+ 66-PR-l T i 2300 2000 1000 308 Mn 400 200 150 218 Ba 6DQ 150 25 249 Co 1 4 2 -Cr 4 25 2 -Cu 10 10 8 7 Mo 2 2 - 3 Ni 0.5 8 2 -Pb 20 30 18 30 Sr 285 200 80 291 V 20 15 2 -Zn 40 ' 36 32 29 Sn 3 15 30 27 Be 5 _ _ • 19 From T a y l o r , 1964 Sample of g r a n i t e from overburden d r i l l hole 71049 Sample of g r a n i t e from overburden d r i l l hole 71050 Geometric mean of 6 samples of r h y o l i t e from d r i l l hole 66-PR-l Table XX. Comparison of the average t r a c e element content of an u l t r a m a f i c rock u i t h that o f the massive amphibolite i n LR-1 ( i n ppm) * * * ")" Element U l t r a m a f i c U l t r a b a s i c Massive Amphibolite Fe 98,500 94,300 136,000 T i 300 300 4,627 \] 40 40 68 Cr 3,000 1,600 1,695 Mn 1,10.0. 1,620 397 Co 130 150 194 Ni 2,000* 2,000 . 3,587 Cu 10 10 95 Zn 50 50 48 Mo 1 0.3 -Ba 1 0.4 -Pb 1 1 -Sr 10 1 22 * From Vinogradov, 1961 ** From T u r e k i a n and Ldedepohl, 1961 i Rankama and Sahama (1950) give 3,160 ppm IMi as t h e i r average value f o r a p e r i d o t i t e t 9 samples analyzed by emission spectroscopy except f o r Zn uhich uas determined by atomic a b s o r p t i o n -70-and the A n v i l B a t h o l i t h . The r h y o l i t e i s found to i n t r u d e the p h y l l i t e s and may or may not be a s s o c i a t e d u i t h the A n v i l i n t r u s i o n . These rocks may a l s o be r e l a t e d to u n i t 14 as des-c r i b e d by Tempelman-Kluit, 1972 (Table I I ) . e) A p p l i c a t i o n to E x p l o r a t i o n Geochemistry L i t h o g e o c h e m i c a l p r o s p e c t i n g can be used i n reconnaissance or d e t a i l e d s u r v e y s . In reconnaissance surveys areas of country rock t h a t are r i c h i n p a r t i c u l a r elements are o u t l i n e d as geo-chemical p r o v i n c e s . D e t a i l e d surveys u s u a l l y aim to o u t l i n e primary d i s p e r s i o n halos a s s o c i a t e d u i t h ore d e p o s i t s . 1. R e g i o n a l In the f o r e g o i n g s e c t i o n , i t uas l e a r n e d t h a t country rocks i n the A n v i l area are not abnormally high i n Pb and Zn c o n t e n t , and t h e r e f o r e a n a l y s i s f o r these elements uould not be u s e f u l i n o u t l i n i n g a l a r g e Pb-Zn p r o v i n c e . A l s o , as seen i n Tables XU, XUI, and XUII and Figure 10 and d i s c u s s e d p r e v i o u s l y , there does not appear to be a geochemically s i g n i f i c a n t marker h o r i z o n r e l a t e d to the Faro ore body. Houever, rocks u i t h i n LR-1, 66-PR-l and the A n v i l B a t h o l i t h are n o t a b l y d i s t i n c t i v e i n t r a c e element c o n t e n t . I f these d i s t i n c t i v e elements can be de-t e c t e d i n s o i l s d e r i v e d from bedrock, then a n a l y s i s f o r these elements u i l l become a v a l i d t o o l f o r g e o l o g i c a l mapping. 2. D e t a i l e d Survey Small geochemical halos about the Faro #1 ore body might be u s e f u l i n d i c a t o r s of o r e , uhere d e t a i l e d d r i l l i n g programs -71-are i n p r o g r e s s . Before implementing multi-element geochemistry of the rocks on a wide s c a l e , more d e t a i l e d sampling of d r i l l h oles across the ore body should be done to determine the f u l l s i z e and extent of the halo both l a t e r a l l y and v e r t i c a l l y . The r e a d i l y v i s i b l e a l t e r a t i o n envelope i s approximately a hundred f e e t t h i c k on the hanging w a l l and f o r t y f e e t t h i c k on the f o o t u a l l . R e s u l t s on 66-8 i n d i c a t e that the Mo halo seems to p a r a l l e l t h i s envelope e n t i r e l y but both Pb and Zn extend a couple of hundred f e e t beyond the v i s i b l e a l t e r a t i o n . T h i s i s more so i n the f o o t u a l l than i n the hanging u a l l d i r e c t i o n . Houever Ba i s only found to be enhanced i n the hanging u a l l and not i n the f o o t u a l l . S i m i l a r s t u d i e s should be done at Vangorda and Suim to e s t a b l i s h i f a geochemical halo extends f a r t h e r than the a l t e r a t i o n and i f s o , geochemical rock sampling u o u l d become a v a l i d p r o s p e c t i n g t o o l i n the A n v i l d i s t r i c t . IU-3. SECONDARY DISPERSION Analyses of o v e r b u r d e t n n d r i l l h o l e s , creek p r o f i l e s and C h o r i z o n s o i l s are presented i n three s e c t i o n s . - I n t e r r e l a t i o n -s h i p s among them and betueen primary and secondary d i s p e r s i o n are d i s c u s s e d . Where d i s t r i b u t i o n s of p o p u l a t i o n s are not knoun, or uhere there are not enough samples to t e s t f o r n o r m a l i t y or l o g -n o r m a l i t y , non-parametric s t a t i s t i c s have been used i n p r e f e r e n c e to those based on the normal d i s t r i b u t i o n ( f o r example, t and F t e s t s ) . Information and comment p e r t a i n i n g to nan-parametric -72-s t a t i s t i c s i s d e s c r i b e d by e i t h e r S i e g e l (1956) Dr Dixon and Massey (1969). Mean values c i t e d are always geometric means except where n o t e d . IV-3A. OVERBURDEN DRILL HOLES a) P r e s e n t a t i o n of Data Geometric means and l o g standard d e v i a t i o n s have been c a l c u l a t e d f o r Cu, Pb, and Zn content of the plus-270 to minus 10-mesh f r a c t i o n o f g l a c i a l t i l l , outwash and combined t i l l and Dutwash. Thresholds (/U + 2 SD) were computed f o r each,(Table X X I ) . Values known to be anomalous were not used i n the above c a l c u l a t i o n s . I n d i v i d u a l values of Cu, Pb and Zn i n overburden along L 28W and L 112W were d i v i d e d i n t o the f o l l o w i n g groups: <T u - SD, ju - SD to </u, p to < JJ + SD, JJ + SD to <^i- * 2SD and yp + 2 SD, and subsequently p l o t t e d on F i g u r e s lk to 19 using these d i v i s i o n s . One hole along l i n e 28w i n t e r s e c t s the Fare #2 ore body. I n d i v -i d u a l v alues are found i n Appendix B. Emission s p e c t r o g r a p h s analyses of bedrock i n t e r s e c t e d i n d r i l l h o l e s are a l s o recorded i n Appendix B. Atomic a b s o r p t i o n analyses of Cu, Pb, Ni and Zn i n these r o c k s are l i s t e d i n Table X X I I I . b) Cu, Pb, Zn Content of Overburden Geometric means and l o g standard d e v i a t i o n s of Cu, Pb, and Zn were f i r s t c a l c u l a t e d f o r a l l non-anomalous samples of -73-Table XXI. Geometric means, log standard d e v i a t i o n s , t h r e s h o l d and complete ranges of values f o r Cu, Pb, and Zn i n overburden ( a l l v a lues i n ppm) Element Mean Range Log Standard Thresho l d D e v i a t i o n  A l l samples, n = 152 Cu 28 10-190 .225 78 Pb 27 5-289 .237 81 Zn 91 30-290 .214 243 T i l l , n = 110 Cu 31 10-190 .234 91 Pb 31 10-289 .226 88 Zn 108 30-290 .188 258 Outwash, n = 42 Cu 19 12-39 .118 34 Pb 18.6 5.52 .182 43 Zn 57 35-100 .122 100 - 7 4 -g l a c i a l overburden (top part of Table X X I ) . V/alues D f Cu, Pb, and Zn w i t h i n the g l a c i a l outwash were found to be s y s t e m a t i c -a l l y equal to or l e s s than t h e i r o v e r a l l geometric means. Samples were t h e r e f o r e separated i n t o outwash and t i l l d e p o s i t s and a median t e s t ( S i e g e l , 1 9 5 6 ) "was performed on the metal content i n each to determine i f they were members of two d i s t i n c t p o p u l a t i o n s , corresponding to d i f f e r e n t d r i f t d e p o s i t s . The t e s t i s d e s c r i b e d and r e s u l t s are r e c o r d e d i n Appendix C. Cu, Pb, and Zn content of g l a c i a l t i l l was found to be higher than t h a t of the outwash at the 35% l e v e l of s i g n i f i c a n c e . Geometric means, ranges and l o g standard d e v i a t i o n s of Cu, Pb and Zn i n t i l l and outwash are l i s t e d i n Table XXI. Cumulative frequency curves f o r l o g a r i t h m i c values of Cu, Pb, and Zn i n the t i l l and outwash are p l o t t e d i n F i g u r e s 1 1 to 1 3 , A l l form reasonably s t r a i g h t l i n e s , i n d i c a t i n g that the Cu, Pb, and Zn values are lognormally d i s t r i b u t e d (Dixon and Massey, 1 9 6 9 , and L e p e l t i e r , 1 9 6 9 ) . Thresholds were then c a l c u l a t e d f o r each (Table X X I ) . D i s t r i b u t i o n of copper, with a mean of 3 1 ppm i n the t i l l and 1 9 ppmiin outwash, i s shown i n F i g u r e s 1 4 and 1 5 . There are no anomalous values ( > 9 1 ppm) i n the t i l l along l i n e 1 1 2 U . There i s a l s o no s y s t e m a t i c i n c r e a s e or decrease o f Cu content along the l e n g t h of the d r i l l h o l e s . To check f o r l a t e r a f e l v a r i a t i o n along 1121JJ, numbers of samples above and below the mean of each of Cu, Pb, and Zn were counted and p r o b a b i l i t i e s of these events happening were c a l c u l a t e d . R e s u l t s are t a b u l a t e d i n Table XXII. I f the p r o b a b i l i t y of the event o c c u r r i n g was l e s s than 5%, then 3 4 5 6 7 8 9 10 P P M 20 3 0 4 0 50 6 0 70 80 9C.0O F i g u r e 11. Cu content of g l a c i a l overburden, squares r e p r e s e n t outwash and c i r c l e s t i l l . •utwash T i l l Mean 19 31 # of samples Log Standard T h r e s h o l d D e v i a t i o n 42 11D .118 .234 34 91 -76-99.99 6 7 8 9 10 P P M 20 3 0 4 0 5 0 6 0 70 8 0 SOT00 F i g u r e s l 2 . Pb content of g l a c i a l overburden, squares r e p r e s e n t outuash, c i r c l e s t i l l . Mean # of samples Log Standard T h r e s h o l d D e v i a t i o n Outuash IS.6 42 .182 43 T i l l 01 110 .226 88 " -77-'/\ J ; / / 1 */ /• ••/ 1 - ' • ' / 1 / /• / / 1 1 / / J / / / / ' 10 3 4 5 6 7 8 9 100 P P M 3 4 5 6 7 8 9 1000 F i g u r e 13. Zn content of g l a c i a l overburden, squares r e p r e s e n t outuash, c i r c l e s t i l l . Mean # of samples Log Standard D e v i a t i o n Threshold •utuash T i l l 57 ma 110 .122 .188 100 258 5000. LINE 112 W 3633 — 20 J40 -60 ft VERTICAL SCALE 16 22 20 \ \ V Figure lk. Cu CONTENT OF GLACIAL TILL. AND UNDERLYING BEDROCK . 618 • ?18 6 31 • ?31 ^53 OS3 t91* •THRESHOLD 22 VALUE IN PPM N 42—— 41 4 8 . 161 12 Y \ A V, V / To\ / / \ / 333 BEDROCK / 0 1000 2000 3000 SCALE ( F E E T ) I <] CO I LINE 28 W V E R T I C A L S C A L E 6 B E D R O C K F i g u r e 15: Cu CONTENT OF GLACIAL OVERBURDEN OUTWASH(ppm) 615 • 715 £-19 • ?19 ^25 B >25 6 34 • >34* • T H R E S H O L D TILL (ppm) . 6 18 e?18 6 31 • X31 6 53 • ?53 6 91 ©>91*6182 #182 6 364 • ?364 0 1000 2000 3000 1 1 1 I SCALE (IN F E E T ) CD SCALE ( F E E T ) LINE 28 W S 3 5 0 0 -7 6 _ V E R T I C A L S C A L E 20 J40 J 6 0 F E E T 0 1000 2000 3000 SCALE (IN F E E T ) 71 B E D R O C K F i g u r e 17: Pb CONTENT OF GLACIAL OVERBURDEN O U T W A S H (ppm) . £12 • >12 6 19 • >19 & 28 B >28 •& 43 • 7 43* • THRESHOLD TILL(ppm) . 4, 18 • >18 6 31 • 7 31 • 7 52 • yea' #7176 #7352 #7704 61408 4. 52 4. 88 •6 176 fe352 & 704 71408 5 0 0 0 l _ UNE 112W 3833 1-60 ft V E R T I C A L S C A L E Figure IB: Zn CONTENT OF GLACIAL TILL AND UNDERLYING BEDROCK 50 < 70 • 770 4 108 • >1084 167 • 7167 i, 256* ft > 2584 516 ® > 516 61032 T H R E S H O L D 81 V A L U E IN PPM 4 8 , 94 \ / |109 / \ 47 / / \ I140 \ [ 49 N 50^ 36 515 B E D R O C K 0 1000 2000 3000 i CD rvi i SCALE ( F E E T ) LINE 28W N .500 ft BEDROCK F i g u r e 19: Zn CONTENT OF GLACIAL OVERBURDEN OUTWASH TILL » * 43 • 4 70 • >43 «• 57 • ? 70 &108 • > 5 7 * 7 5 •>108*«7 , • ?167 ^ 258 " > 7 5 * 1 0 ° ' • > 2 9 B .516 _ • >100 ppm @ ?516" 1032 © ?1032 6 2064 •THRESHOLD 0 7 2 0 6 4 ppm -Bk-that hole uas c o n s i d e r e d higher or lower (as the case may be) i n Cu, Pb, or Zn, r e l a t i v e to o v e r a l l v a l u e s . For Cu, only samples w i t h i n hole kl uere found to have an o v e r a l l higher Cu content than samples w i t h i n other h o l e s . Along l i n e 2811 ( F i g . 15), a reasonably l a r g e Cu anomaly, d e p i c t e d i n holes 71, 70, and 69, extends upslope from the ore body. Values are high throughout 72 and 7.3 but not anomalous (except f o r sample taken d i r e c t l y over ore body i n hole 7 2 ) . There are two anomalous Cu values i n the outwash (?3k ppm) but they do not seem to bear a r e l a t i o n to the Faro #2 ore zone. Pb l e v e l s i n t i l l (mean 31 ppm) and outwash (mean 18.6 ppm) are shown i n F i g u r e s 16 and 17. Values do not seem to vary s u b s t a n t i a l l y along lengths of d r i l l holes on L1121JJ ( F i g . 1 6 ) . Samples w i t h i n d r i l l hole k& are lower i n Pb content than other samples i n d r i l l h oles (Table X X I I ) . One anomalous value (>88 ppm) was d e t e c t e d at s u r f a c e i n hole kZ. F i g u r e 17 shows Pb d i s t r i b u t i o n around the Faro #2 ore zone. A Pb anomaly extends above and downslope from the ore body f o r a l i t t l e more than 1000 feet.. Overburden upslope from ore does not have any anomalous v a l u e s . Samples taken at s u r f a c e at holes 72, 73 and Ik are not anomalous with r e s p e c t to Pb content although samples c o l l e c t e d at ten f o o t depths a r e . G l a c i a l outwash samples are not anomalous (>43 ppm) except f o r one at the bottom of d r i l l hole l k . 0 D i s t r i b u t i o n of Zn with a mean of 108 ppm i n t i l l and 57 ppm i n outwash i s found i n F i g u r e s 18 and 19. There i s no s u b s t a n t i a l v a r i a t i o n i n Zn content throughout t i l l along L112lil Cu Pb Zn D r i l l Hole # of samples above mean below mean Prob. (JK) # of samples above mean below mean Prob. {%) # of samples above mean below mean Prob. (*) 4 9 1 2 43.9 1 2 37.9 1 2 33.9 50 2 2 3^.9 3 1 25.0 4 0 8.5 51 12 8 30.2 11 9 17.4 18 2 0.03* 52 4 10 16.0 10 4 5.4 3 11 0.7* 4? 10 6 3.0* 8 8 21.3 4 12 0.8* 48 3 10 32.8 2 11 0.7* 8 10.9 4 i 2 4 32.0 1 5 8.9 4 2 27.5 42 4 6 26.3 6 4 21.1 9 1 1.6* 43 1 8 5.7 7 2 6.5 5 4 27.2 44 2 1 28.6 1 2 37.9 1 2 33.9 »5 1 4 26.5 1 4 15.3 3 2 34.3 46 0 3 21.6 2 1 37.9 1 2 33.9 TABLE XXII: Probabilities of Cu, Pb, Zn distributions within d r i l l holes along L112W. Those with * are si g n i f i c a n t l y different, that 13 they are either high or low compared to a random distribution. -86-( F i g . 18), samples e i t h e r being c o n s i s t e n t l y high or low through the l e n g t h of the d r i l l h o l e . T h i s i s a l s o r e f l e c t e d i n l a t e r a l v a r i a t i o n . Along L112W, holes 51 and kZ are higher and holes 52 and kl l o u e r i n Zn content compared to samples as a whole (Table X X I I ) . The z i n c anomaly, a s s o c i a t e d with the Faro #2 ore body, i s d e l i n e a t e d i n Figure 19. The l a r g e anomaly extends both upslope f o r 100TJ f e e t and downslope f o r 15GTJ f e e t , c o v e r i n g an area of at l e a s t 2500 f e e t i n l e n g t h . Holes anomalous at depth are a l s o anomalous at s u r f a c e except f o r d r i l l hole 70. Outwash c o l l e c t e d from bottoms of holes 76, 75 and Ik a l s o proves to be e i t h e r high or anomalous i n Zn c o n t e n t , but samples taken c l o s e r to s u r f a c e are n o t . c) C o r r e l a t i o n of Cu and Zn content of b a s a l t i l l to that Df u n d e r l y i n g bedrock along l i n e 112U Bedrock was encountered i n 9 d r i l l holes along l i n e 112U. R e s u l t s o f Cu, Pb, IMi and Zn atomic a b s o r p t i o n analyses of these racks are t a b u l a t e d i n Table X X I I I . I n d i v i d u a l values are p l o t t e d on F i g u r e s lk, 16 and 18. Because t r a c e element content of a s o i l i s r e l a t e d to the rock from which i t was d e r i v e d ( M i t c h e l l , 1964), rank c o r r e l a t i o n (Dixon and Massey, 1969) of Cu and Zn content of b a s a l t i l l and u n d e r l y i n g bedrock was executed (Table XXIV). Zn content ( r g = .78, p = .009) of the t i l l i s s i g n i f i c a n t l y c o r r e l a t e d to that of the bedrock but Cu content ( r = .52, p = .081) i s n o t . s Pb values were not c o r r e l a t e d because of poor p r e c i s i o n of Pb analyses ( T a b l e s XI, X I I , and X I I I ) . Table X X I I I . Atomic a b s o r p t i o n analyses i n ppm of rocks i n t e r s e c t e d i n overburden d r i l l h o l e s Sample Number Rock Type Cu Zn Ni 71041 B i o t i t e - c h l o r i t e s c h i s t 61 94 51 71042 Bleached q u a r t z - s e r i c i t e 12 < 109 137 s c h i s t 71043 Banded micaceous 29 50 2B q u a r t z i t e 71044 Banded q u a r t z - b i o t i t e - 20 77 37 c h l o r i t e s c h i s t 71045 Mica p h y l l i t e 22 111 50 71046 B i o t i t e - c h l o r i t e - 16 81 38 quart z s c h i s t 71049 G r a n i t e 9 36 5 71050-1 G r a n i t e 3 32 71D50-4 Banded s c h i s t i n contact 433 515 112 u i t h g r a n i t e 71052 Banded c a l c - s i l i c a t e 10 140 53 Copper Z i n c Cu Zn D r i l l Hole Rock (ppm) Rank Overburden Rank (ppm) Rock Rank (ppm) Overburden Rank (ppm) V d i 2 d 1 4 l 61 1 39 1 94 4 220 1 0 0 3 9 42 12 6 24 7 109 3 170 2 1 1 1 1 4 3 29 2 31 3 50 7 100 7 1 1 0 0 44 20 4 27 6 77 6 110 6 2 4 0 0 4 5 22 3 30 4 111 2 120 5 1 1 3 9 46 16 5 30 5 8 i 5 120 4 0 0 1 1 49 9 8 12 9 36 8 40 9 1 1 1 1 50 3 9 33 2 32 9 100 8 7 49 1 1 52 10 7 22 8 140 1 160 3 ,: V 1 2 4 58 26 di - d i f f e r e n c e l n rank P r o b a b i l i t y o f o c c u r r i n g 8.1* 0.9* TABLE XXIV: Rank C o r r e l a t i o n of Cu and Zn content o f overburden t o t h a t of u n d e r l y i n g bedrock a l o n g l i n e 112W -89-IV7-3B. C-HORIZOIM SOILS a) P r e s e n t a t i o n of Data C-horizon s o i l s have been analyzed by emission s p e c t r o -scopy and atomic a b s o r p t i o n . As, Hg, o r g a n i c carbon, and pH have a l s o been determined. Data i s presented i n s e c t i o n s c o r -responding to types of a n a l y s i s . Cd l e v e l s uere determined by atomic a b s o r p t i o n on samples from Traverse 2 but i n most cases they uere be l o u 1 ppm and t h e r e f o r e are not d i s c u s s e d f u r t h e r . I n d i v i d u a l values f o r a l l analyses as w e l l as i g n i t i o n l o s s of samples on h e a t i n g are t a b u l a t e d i n Appendix B. b) Emission S p e c t r o g r a p h i c Data 1. Trace element content of s o i l s on T r a v e r s e s 1 to 4 Multi-element content of s o i l s i s summarized i n Table XXV. Analyses of samples c o l l e c t e d d i r e c t l y over the Faro #2 ore body have been i n c l u d e d i n the c a l c u l a t i o n of means and l o g standard d e v i a t i o n s . Elements a n a l y z e d , except f o r Ba, Cu, IMi and Pb (>.180), do not show a l a r g e spread of values as shown by t h e i r s m a l l l o g standard d e v i a t i o n s . These exceptions are r e l a t e d to s p o r a d i c anomalous values throughout the a r e a . For example, Ba (1800 ppm), Cu (400 ppm), Pb (700 ppm) and Ag (7 ppm) are s i m u l -taneously high i n sample 144 (Appendix B) which i s l o c a t e d approximately 25DD f e e t south of the Faro #2 ore body ( S t a . 4 8 ) . Sample 261, north of the water dam on T-j, i s a l s o anomalous i n Pb (400 ppm) and Ag (10 ppm). These are the only s o i l s n o t i c e -ably high i n Pb and Ag i n the area (as determined by emission s p e c t r o s c o p y ) . Ni values are a l s o high whenever s o i l s sampled o v e r l i e massive greenstones (Appendix B ) . 2. R e l a t i o n of t r a c e element content of s o i l s to that of bedrock T o t a l contents of t r a c e elements i n s o i l s are r e l a t e d to the nature of the parent m a t e r i a l s from which they are d e r i v e d (Swaine and M i t c h e l l , 1960). At A n v i l , parent m a t e r i a l i s g e n e r a l l y l o c a l l y d e r i v e d t i l l composed of v a r y i n g amounts of p h y l l i t e , s c h i s t and g r a n i t e fragments. I f the minus 80-mesh f r a c t i o n of s o i l s sampled i s r e p r e s e n t a t i v e of a homogeneous mixture of these rock fragments, then t r a c e element content of-s o i l s should r e f l e c t t r a c e element content of t i l l and thus o v e r -a l l bedrock i n the a r e a . Emission s p e c t r o g r a p h i c analyses recorded i n C-horizon s o i l s are compared to t r a c e element content of a l l rocks analyzed from the A n v i l area (Table XXV/). R e l a t i v e to s o i l s , standard d e v i a t i o n s and ranges of metal values i n bedrock are h i g h . T h i s r e s u l t s from the combination of d i f f e r e n t rock t y p e s . In g e n e r a l , t r a c e element content of s o i l s i s w i t h i n 25% of t h a t of bedrock with the e x c e p t i o n of Sr 0*50%), Ba'(~100%), Cu (-33%), and Pb (•*100%); i n d i c a t i n g that these elements have been a f f e c t e d by s o i l forming p r o c e s s e s , and are e n r i c h e d i n the secondary e n v i r o n -ment. ( i ) D i s t r i b u t i o n of Sn A n v i l B a t h o l i t h has a s i g n i f i c a n t l y high t i n content (see p. 67); much higher than normal g r a n i t e by an order of magni-tude'. , S o i l s d e r i v e d from t i l l made up of l o c a l g r a n i t e fragments -91-Table XXV/. Trace element content of C-horizon s o i l s on t r a v e r s e 1 to 4 ( n = 135) and rocks (n = 223) as determined by emission spectroscopy (values i n ppm except f o r %Fe 2Q 3) Element S o i l s Rocks Mean • Log Complete Mean Log Complete S.D. Range S.D. Range Sr 2B7 .017 150-1000 190 .489 0-2000 Ba 6B6 .189 300-1800 352 .672 0-1% Cr 146 .168 30-400 117 .597 0-^3000 Co 29 .172 8-60 36 .356 0-600 Mi 73 .206 25-400 77 .518 0-5000 T i 8650 .179 4000-1% 7103 .317 200-1% Cu 46 .190 15-200 35 .491 0-1000 V 103 .125 '50-200 100 .417 0-2000 Ga 27 .072 20-40 25 .220 5-40 Pb 33 .259 10-700 13 .449 5-600 Mn 461 .157 150-1000 420 • .371 100-3000 F e 2 0 3 9.0 .132 > 4-20% .•J. IN 9.6 .233 1-20% -92-might be expected to r e f l e c t t h i s . F i g u r e 2D shous d i s t r i b u t i o n • f Sn i n C - h c r i z o n s o i l s , u i t h r e l a t i o n to geology, along ^ . LUhere values are absent, Sn uas belou d e t e c t i o n l i m i t ( 2 ppm) of the emission s p e c t r o g r a p h ) . S o i l s from the northern p a r t s of and have d e t e c t a b l e Sn v a l u e s ; T^, direct.ty over the A n v i l B a t h o l i t h ( u n i t 11, Table I I I ) but T , over u n i t 2a. According to mapped geology, T. does not t r a v e r s e the g r a n i t e , but C-harizon s o i l s sampled uere p r e -dominantly composed of quartz and g r a n i t e fragments, probably as a r e s u l t of mechanical movement of s o i l s dounslope. Samples on T,-,, taken over the b a t h o l i t h , do not have d e t e c t a b l e Sn, although rock fragments i n p i t s uere composed of both g r a n i t e and p h y l l i t e . Samples c o l l e c t e d along T^ u s u a l l y have d e t e c t a b l e and even very high (up to 20D ppm) Sn content; but a c c o r d i n g to knoun geology, no samples uere c o l l e c t e d d i r e c t l y over the A n v i l B a t h -o l i t h ( F i g . 2 0 ) . The use of Sn content of s o i l s f o r mapping it-he l o c a t i o n of the b a t h o l i t h i s q u e s t i o n a b l e . More t r a v e r s e s should be made on a l l s i d e s of the b a t h o l i t h , t a k i n g l o c a l geology and s t r u c t u r e i n t o account, before u t i l i z i n g the concept. 2 ( i i ) H o t e l l i n g ' s T r e s u l t s of s o i l s i n the A n v i l area In the s e c t i o n on primary d i s p e r s i o n , i t uas noted that massive a m p h i b o l i t e and the r h y o l i t e ware c h a r a c t e r i s t i c a l l y d i f f e r e n t i n t r a c e element composition r e l a t i v e to other rocks i n the a r e a . Suggestions uere made to sample s o i l s o v e r l y i n g g r e e n -stones and a s c e r t a i n i f they uaire c h a r a c t e r i s t i c a l l y high i n Cr I Figure 20. D i s t r i b u t i o n of Sn along t r a v e r s e 1 to 4. See Table I I I ^ and Figure 3 f o r key to g e ology. 1 -9k-and N i , and a l s o to- see i f other element v a r i a t i o n s found i n rocks c o u l d be det e c t e d i n s o i l s . Consequently, s o i l s o v e r -l y i n g d i f f e r e n t rock types uere separated i n t o groups and 2 H o t e l l i n g ' s T t e s t ( B j e r r i n g et a l . , 1972) a p p l i e d to emission s p e c t r o g r a p h s analyses of s o i l s (12 elements i n Table XXV). R e s u l t s are t a b u l a t e d i n Table XXVI. The same r e s t r i c t i o n s apply to i n t e r p r e t a t i o n of these r e s u l t s as t D those of bedrock (see p. 6C ) . In g e n e r a l , s o i l s o v e r l y i n g d i f f e r e n t rock types ( f o r example, s o i l s over u n i t s 2a and 11) are s i g n i f i c a n t l y d i f f e r e n t i n composition from one another but no element or s e t of elements could be d e t e c t e d as cause, one reason being the s m a l l number of samples i n each group. Exceptions to t h i s are s o i l s o v e r l y i n g and u h i c h are d i f f e r e n t i n C r , N i , Cu, and V c o n t e n t . S o i l s uere combined i n three groups, those from T^ ^ , and M^. Average N i , Cu, V and Cr contents i n each group are t a b u l a t e d i n Table XXVIII. H o t e l l i n g ' s T2 t e s t (Table XXVII) uas performed on emission s p e c t r o g r a p h i c a n a l y s i s (12 elements of Table XXV) of the three groups. S o i l s from T^_^ are d i s t i n c t l y l o u e r i n N i , Cu, and V content r e l a t i v e to those of M^, and s i g -n i f i c a n t l y l o u e r i n Cu content compared to those.from Table XXVII). S o i l s from are higher i n V content compared t D those of M, . Although Cr l e v e l s are higher i n s o i l s from than from the d i f f e r e n c e i s not s t a t i s t i c a l l y s i g n i f i c a n t and 2 does not shou i n the H o t e l l i n g ' s T t e s t . T h i s does not mean tha t i t i s not g e o l o g i c a l l y s i g n i f i c a n t but th a t at p r e s e n t , -95-TABLE XXVI: Hotelling's T results of 3 o i l 3 In the Anvil arsa (Emission Spectro-graphic data) Soils overlying 2a&d ore 2a 11 3^5: c 2d 2b 3a 3b M 2 Number of samples 2a&d 12 ore 5 2a - + 21 11 + + 15 3b&c + + + 12 2d + + + - 12 2b + + + + - - 35 3a + - 6 3b + + - 8 M2 + Cr.Nl V V V V + l 4 Cu,V M + + Cr.Nl + + + + + + V 32 1 Cu + significantly different at the 95% level of confidence - not significantly different Blank space Infers that there Is not enough data to come to a conclusion. Cr Infers that Just Cr by i t s e l f i& signlflcantiy different. -96-Table XXV/II: R e s u l t s of He-telling's T t e s t on s a i l s from M, , Mr,, and T, , S a i l s from Tl - 4 . S a i l s fron Ml 1 Number of Samples S a i l s from Tl - 4 126 S o i l s from Ml Cu + 29 S o i l s from M 2 + IMi, Cu 1/ \1 + 13 + S i g n i f i c a n t d i f f e r e n c e at 95% l e v e l E l Element uhich shous a s i g n i f i c a n t d i f f e r e n c e Element T r a v e r s e s 1-4 M^ s o i l s M,-, s o i l s * Ni 73 i 104 153 Cu 46 72 114 V 103 123 268 - J Mean value i n ppm T i e l i n e s mean s i g n i f i c a n t d i f f e r e n c e s i n mean metal c o n t e n t . -97-Table XXV/III. N i , Cu, V and Cr content of S o i l s as determined by emission s p e c t r o -scopy ( a l l values i n ppm) A l l S o i l s MM S o i l s M„ „ ., T / mr\ 1 2 b O l l S on T±_k (n = 126) ( n = g g ) ( p = 1 3 ) Mean Log Mean Log Mean Log S.D. S.D. S.D. Ni 73 .21 104 .15 153 .16 Cu 46 ' .19 72 .14 114 .26 V 103 .12 123 .12 26S .11 Cr 145 .17 176 .12 216 .11 those mathematical techniques a p p l i e d , do not separate Cr content as being h i g h . More samples and analyses might prove o t h e r w i s e . However, i t has been s t a t i s t i c a l l y e s t a b l i s h e d t h a t IMi and Cu content i n s o i l s o v e r l y i n g the greenstones (which are r e f l e c t e d by magnetic h i g h s ) i s higher than t h a t over other bedrock, and t h e r e f o r e , s o i l sampling of magnetic anomalies i s a v a l i d t o o l f o r v e r i f y i n g probably o r i g i n s of some g e o p h y s i c a l t a r g e t s . c) Atomic A b s o r p t i o n Data Elements analyzed by atomic a b s o r p t i o n a r e : Cu, Pb, Zn and IMi i n n i t r i c / p e r c h l o r i c e x t r a c t s and Cu, Pb and Zn i n d i l u t e h y d r o c h l o r i c a c i d e x t r a c t s . For ease of d i s c u s s i o n , Cu, Pb, and Zn va l u e s from HC1 e x t r a c t s are r e f e r r e d . t o as cx metals and from n i t r i c / p e r c h l o r i c as t o t a l m e t a l s . IMi values are not d i s c u s s e d but r e s u l t s are t a b u l a t e d i n Appendix B.' D i s t r i b u t i o n s of t o t a l Cu, Pb, Zn, and IMi with r e s p e c t to geology are a l s o p l o t t e d i n F i g u r e s 32 to 43 (Appendix D). 1. Cu, Pb, and Zn content of S o i l s In a p r e v i o u s s e c t i o n , average Cu, Pb and Zn content of g l a c i a l t i l l was found to be higher than t h a t of outwash (p.73) and t h e r e f o r e type of parent m a t e r i a l was noted at each sample s i t e . Only a few s i t e s along T^ have e i t h e r g l a c i a l or a l l u v i a l outwash as parent m a t e r i a l , so samples were not separated but were t r e a t e d as one p o p u l a t i o n . On cumulative l o g a r i t h m i c frequency p l o t s : Cu, Pb, and Zn (both cx and t o t a l metal) a l l form reasonably s t r a i g h t l i n e s i n d i c a t i n g t h a t they come from lognormal d i s t r i b u t i o n s ( F i g s . 21-23). -99-Thresholds f o r Cu ( t o t a l - 5 7 , cx-30 ppm), Pb (73, 69 ppm) and Zn (175, 52 ppm) i n both e x t r a c t s have been determined using lcgnormal d i s t r i b u t i o n s (Table XXIX). Average pH value f o r s o i l s i s 5.6 but when separated i n t o o r g a n i c and m i n e r a l s a i l s , o r g a n i c s o i l s are s i g n i f i c a n t l y (95%.* l e v e l ) more a l k a l i n e (Table XXX). pH v a r i a t i o n along t r a v e r s e s has been p l o t t e d an F i g u r e s 2k to 27, along u i t h both cx (dashed l i n e s ) and t o t a l ( s o l i d l i n e s ) Cu, Pb, Zn l e v e l s . Along T 1 ( F i g . 2k), Cu and Pb content vary s y m p a t h e t i c a l l y , although Cu values are u s u a l l y not anomalous" uhereas Pb sometimes a r e . pH v a r i e s c o n s i s t e n t l y from north to south: over the A n v i l B a t h o l i t h i t has a mean value of k.5 uhich i n c r e a s e s to 6.5 at s t a t i o n 25. Metal contents do not vary c o n c o r d a n t l y u i t h pH; except at s t a t i o n 25, uhere Cu and Zn are both anomalous c o r r e s -ponding to the higher pH. These anomalous values c o u l d a l s o be due to the c l o s e p r o x i m i t y of the mine s i t e ( F i g . 3 ) . Pb v a r i e s i n accordance u i t h Zn over the Faro #2 ore body (T,-,, F i g . -25) uhereas Cu i s not r e l a t e d to Pb and Zn except at s t a t i o n kB, uhere a l l metal values are anomalous. Cu i s anomalous i n s e v e r a l samples north of the ore zone, and these t i e i n to the Cu anomaly a l r e a d y e s t a b l i s h e d i n g l a c i a l overburden upslope from the ore body ( F i g . 15). pH i s moderately constant (pH 5.5) throughout most of the l e n g t h of the t r a v e r s e but touards the v a l l e y bottom (Rose Creek, F i g . 3, south end F i g . 25) increases_ to 6.5. Cu, Pb, and Zn contents along T^ ( F i g . kO) are g e n e r a l l y u i t h i n background v a l u e s . Houever, at s t a t i o n 6k, both Pb and Zn -100-- / »• m / a B / • / Cu, / V / ' - I I I D ' / / f J J / 7 / / / • / / 9 u • / / u — 10 3 4 5 6 7 8 9 100 2 PPM (Total') 3 4 5 6 7 8 9 100C F i g u r e 21. Cumulative p r o b a b i l i t y p l o t of t o t a l Cu and Zn content i n s o i l s from T^_^ (115 samples) Cu Zn Mean (ppm) 28 89 Log Standard D e v i a t i o n .192 .177 Thresh o l d (ppm) 57 175 -10.1 » 2 3 4 5 6 7 8 9 10 2 . 3 4 5 6 7 8 9 1 0 0 PPM (Cx) F i g u r e 22. Cumulative p r o b a b i l i t y p l o t of cx Cu and Zn content i n s o i l s from T, , (115 samples) Mean Log Standard T h r e s h o l d (ppm) D e v i a t i o n (ppm) cxCu cxZn 12 2k .258 .208 30 52 -102-99.99 95 t ft • B * • • n • • » • • 'Tot • • c <-1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 100 Pb in ppm F i g u r e 23. Cumulative p r o b a b i l i t y p l o t of cx and t o t a l Pib content of s o i l s from T^_^ (115 samples) Mean Log Standard Threshold (ppm) D e v i a t i o n (ppm) cxPb 23 Pb 22 .292 .311 69 73 -103-Table XX<IX. Cu, Pb, Zn content of C-Horizon S o i l s from T r a v e r s e s 1 to 4 (115 samples) HND,/HC1D. 3 4 E x t r a c t s Element Geometric Complete Log Standard T h r e s h o l d * Mean Range D e v i a t i o n Cu 28 10-133 .192 57 Pb 22 3-470 .311 73 Zn 89 22-1789 .177 175 HC1 E x t r a c t s Cu 12 2-49 .258 30 Pb 23 0-5052 .292 69 Zn 24 6-1300 .208 52 T h r e s h o l d : x + t g r ^^S.D. ( o n e - t a i l e d ) .(janomalous values not i n c l u d e d i n c a l c u l a t i o n s except f o r complete ranges of v a l u e s ) Zn -Wk -106-57 60 65 7tl 76 73T.rc'n 55 ' ~J!> STATIONS ELEV O 3200 "~" FEET ' F i g u r e 26. D i s t r i b u t i o n of Cu, Pb, sZpdaEiid ©ldclaL}.aft§<afea^ igrsB 3 (See F i g . 6 f o r l o c a t i o n ) -107 FEET Lire 27. D i s t r i b u t i o n of Cu, Pb, Zn and pH along Traverse k (See F i g . 6 f o r l o c a t i o n ) -lO-S-Table XXX. pH values i n s o i l s of the A n v i l Area A r i t h m e t i c Standard Number of Mean D e v i a t i o n Samples A l l S o i l s T M M ' • I - H !1! '1^ 5 . 6 0.7 1 6 5 Organic # s o i l s T 1_ i + 6 . 0 0 . 5 3k M i n e r a l 1-k s o i l s T-, , k 5 . 3 0.6 90 * They are s i g n i f i c a n t l y d i f f e r e n t at the 9 5 % l e v e l of s i g n i f i c a n c e -109-are anomalous ( F i g . 2 5 ) . Ag (ID ppm) was a l s o r e p o r t e d to be high i n the sample (Appendix B ) . A s m a l l Cu anomaly occurs on the southwest s i d e of the water dam and i t i s a s s o c i a t e d u i t h very high Sn (200 ppm) v a l u e s . Metal values along do not vary u i t h pH, even though i t i s e r r a t i c , v a r y i n g from 4.5 to 7. T^, uhich i s l o c a t e d 4800 f e e t uest of ( F i g . 6 ) , g e n e r a l l y shows background l e v e l s i n a l l metals ( F i g . 2 7 ) . Cu content v a r i e s s y m p a t h e t i c a l l y with pH, although Pb and Zn do n o t . 2. Comparison of Cold to Hot e x t r a c t a b l e Metals-Mode of occurrence of a metal may be i n d i c a t e d by i t s r e l a t i v e e x t r a c t a b i l i t y i n d i f f e r e n t r e a g e n t s . In g e n e r a l , cx metal to t o t a l metal r a t i o s i n s y n g e n e t i c c l a s t i c anomalies tend to be low whereas i n e p i g e n e t i c p a t t e r n s the content of r e a d i l y e x t r a c t a b l e metal i s enhanced by p r e c i p i t a t i o n and maintained by a c t i v e exchange u i t h metals i n ground and s u r f a c e waters, causing the cx metal to t o t a l metal r a t i o to be high (Hawkes and Webb, 1962). R e s u l t s from the A n v i l s o i l s (Table XXPX, F i g s . 24-27) show that approximately 40% Cu, 100% Pb and 30% Zn ware leached from minus 80-mesh s o i l s by c o l d d i l u t e HC1. G e n e r a l l y , cx metals vary i n accordance with the t o t a l e x t r a c t a b l e metals ( F i g s . 24-27). cxZn d e l i n e a t e s the Faro #2 ore body ( F i g . 24) and has a higher anomalous to background c o n t r a s t than t o t a l Zn (Table XXXI). cxCu does not d e p i c t the Faro DTB zone. Pb, on the other hand has s i m i l a r l e v e l s w i t h i n both c o l d and hot e x t r a c t s i n d i c a t i n g t h a t Pb i n C-horizon s o i l s i s e a s i l y leached and not bonded s t r o n g l y -110-i n the s o i l s . At B a t h u r s t , N.B., Presant (1971) a l s o found t h a t n e a r l y a l l the Pb uas removed from some C-horizon s o i l s by d i l u t e e x t r a c t i o n s . Log r a t i o s of cx metal to t o t a l metal uere a l s o c a l c u l -ated at a l l sample s i t e s and cxZn/Zn r a t i o s uere higher i n anomalous samples, but o v e r a l l r e s u l t s uere no b e t t e r than those a l r e a d y o b t a i n e d . Because c o n t r a s t i s higher f o r cxZn (Table XXXI, 11.1 vs 4.8) i t can be concluded t h a t cxZn d e l i n e a t e s the Faro #2 anomalous zone b e t t e r than t o t a l Zn. 3. C o r r e l a t i o n among tr.ace element content of s o i l s u i t h pH, i g n i t i o n l o s s and topography C o r r e l a t i o n s among cx me t a l s , ' l a t t i c e ' metals ( t o t a l l e s s cx m e t a l ) , pH, e l e v a t i o n and i g n i t i o n l o s s i n s o i l s are t a b u l a t e d i n Table XXXII. E l e v a t i o n above sea l e v e l i s i n c l u d e d i n the c o r r e l a t i o n s because pH i n c r e a s e s and some metal values seem to decrease dounslope ( F i g s . 24-27). R e s u l t s i n d i c a t e that pH i s n e g a t i v e l y c o r r e l a t e d u i t h e l e v a t i o n . ' L a t t i c e * Cu i s n e g a t i v e l y c o r r e l a t e d u i t h i g n i t i o n l o s s (an estimate of o r g a n i c content of the s o i l ) uhereas cxCu i s s i g n i f i c a n t l y p o s i t i v e l y c o r r e l a t e d ; i m p l y i n g that cxCu i s probably f i x e d by o r g a n i c m a t t e r . cxCu i s n e g a t i v e l y c o r r e l a t e d u i t h e l e v a t i o n , and p o s i t i v e l y c o r r e l a t e d u i t h pH, i n d i c a t i n g t h a t cxCu i s mobile i n a c i d i c environments. ' L a t t i c e ' Cu, on the other hand, i s n e g a t i v e l y c o r r e l a t e d u i t h pH and p o s i t i v e l y c o r r e l a t e d u i t h e l e v a t i o n , uhich might i n d i c a t e t h a t d i s p e r s i o n of ' l a t t i c e ' Cu i s predominantly mechanical movement dounslope. Negative c o r r e l a t i o n u i t h pH uould a r i s e because pH i n c r e a s e s dounslope, uhereas ' l a t t i c e ' Cu de-creases . \ - I l l -Table XXXI. Comparison of Zn content ( i n ppm) i n HND3/HClDit and HC1 e x t r a c t s HIMDHC10, HC1 3 H Mean of Background values 89 Zk n = 115 n = 113 Threshold 175 52 Mean of anomalous values 633 577 n = 8 577 n = 7 Anomalous/threshold r a t i o 4.B 11.1 -112-1 4 C o r r e l a t i o n s among l a t t i c e Zn, pH and e l e v a t i o n are s i m i l a r to those of ' l a t t i c e ' Cu. ' L a t t i c e ' Zn i s p o s i t i v e l y c o r r e l a t e d u i t h ' l a t t i c e ' Cu and Pb, n e g a t i v e l y c o r r e l a t e d u i t h pH and p o s i t i v e l y c o r r e l a t e d u i t h e l e v a t i o n . cxZn, houever, i s not s i g n i f i c a n t l y c o r r e l a t e d u i t h pH, i g n i t i o n I D S S or e l e v a t i o n . When anomalous values are i n c l u d e d i n the c o r r e l a t i o n m a t r i x , cxZn becomes n e g a t i v e l y c o r r e l a t e d u i t h e l e v a t i o n . T h i s i s probably due to l o c a l i z a t i o n of ExZn dounslope from the Faro #2 ore body. C o r r e l a t i o n s i n v o l v i n g cxPb and ' l a t t i c e ' Pb are not so e a s i l y e x p l a i n e d . Since cxPb i s n e a r l y equal to t o t a l Pb (Table XXIX, F i g s . 24-27), i t may not be v a l i d to d e f i n e ' l a t t i c e ' Pb as t o t a l Pb l e s s cxPb, and t h i s undoubtedly causes some d i s c r e p a n c i e s . cxPb i s p o s i t i v e l y c o r r e l a t e d u i t h ' l a t t i c e ' Zn and n e g a t i v e l y c o r r e l a t e d u i t h i g n i t i o n l o s s . C o r r e l a t i o n u i t h i g n i t i o n l o s s d isappears uhen anomalous values are i n c l u d e d i n the c a l c u l a t i o n s . Negative c o r r e l a t i o n of cxPb u i t h pH co u l d i n d i c a t e t h a t cxPb i s m o b i l i z e d i n an a l k a l i n e environment, or t h a t there e x i s t s at l e a s t one f a c t o r u hich a f f e c t s cxPb and pH i n an opposite manner. Negative c o r r e l a t i o n of ' l a t t i c e ' Cu and Zn u i t h pH can be e x p l a i n e d by i n t e r - r e l a t i o n s h i p s u i t h e l e v a t i o n ; t h a t i s , Cu and Zn decrease dounslope uhereas pH i n c r e a s e s : Pb, on the other hand, shows no s i g n i f i c a n t c o r r e l a t i o n s with e l e v a t i o n . d) As, Hg, and o r g a n i c carbon As i s e n r i c h e d i n the Faro d e p o s i t (up to 5000 ppm, Table XU) and t h e r e f o r e s o i l s sampled along T 1 ! 1 9 were analyzed f o r As Table XXXII. C o r r e l a t i o n of cx and l a t t i c e metals u i t h i g n i t i o n l o s s , pH, and e l e v a t i o n ( (n = 11D) c-xCu cxPb cxZn Cu' Pb' Zn1 i g n i t i o n pH ' l o s s  cxCu 1 cxPb .0078 1 cxZn .4072** .2798** 1 Cu" -.6774** .2249* -.1579 1 Pb' -.0806 -.5792** .0511 .1206 11 Zn1 -.4347** -.0294 -.5115** .6206** .2700** 1 i g n i t i o n l o s s .3098** .0497' -.0170 -.3615** -.2142* -.1363 . 1 pH .5349** -.2780** .1133 -.5121** -.0773 -.4610** .0475 1 E l e v a t i o n -.4301** .0933 -.0271 .3898** .1167 .3382** .1167 -.4683** Cu', Pb', Zn': L a t t i c e Cu, Pb, Zn ** S i g n i f i c a n t at the 99% l e v e l * S i g n i f i c a n t at the 95% l e v e l t—1 i -114-c o n t e n t . The complete range of values i n s a i l s was only 1 to 5 ppm (Table X X X I I I ) . Consequently, no more samples were analyzed and nothing was done with the d a t a . Hg and o r g a n i c carbon were a l s o determined i n these same samples but most samples from T^ were l o s t i n t r a n s i t to B a r r i n g e r Research L a b o r a t o r i e s . Means and ranges l i s t e d i n Table XXXIII are r e p r e s e n t a t i v e of samples along T^ and the north h a l f of T^. Samples o v e r l y i n g the ore body were l o s t . Hg values along T-^. a r e p p l o t t e d i n F i g u r e 2B. F i g u r e 29 demonstrates a d i r e c t r e -l a t i o n s h i p between percent o r g a n i c carbon content and l o g Hg content of the s o i l s . S o i l s of high o r g a n i c content are known to c a r r y a s i g n i f i c a n t l y g r e a t e r q u a n t i t y of Hg than other s o i l s (Jonasson, 1970). On a l e s s e r s c a l e , o r g a n i c content of C-horizon s o i l s i s probably r e s p o n s i b l e f o r t r a p p i n g Hg and t h i s e x p l a i n s the r e l a t i o n s h i p d e p i c t e d i n F i g u r e 29. Due to the l o s s of samples and t h e r e f o r e i n c o n c l u s i v e n e s s of a Hg anomaly over the Faro ore zone, t h i s data w i l l not be d i s c u s s e d f u r t h e r . IV-3C. CREEK PROFILES a) P r e s e n t a t i o n of data T o t a l Cu, Pb, and Zn contents of channel samples from creek p r o f i l e s are recorded on P l a t e s 1 to 4 and Figure 31. A l l emission s p e c t r o g r a p h i c data and cxCu, cxPb and cxZn r e s u l t s are r e p o r t e d i n Appendix B. -115-Table XXXIII. As, Hg, and organic carbon content of C-horizon s o i l s Arithmetic Range Standard Number of Mean Deviation Samples As 2.2 1-5 1.0 58 (ppm) Hg 62* 10-1971 0.57** 34 (ppb) Organic Carbon (%) 1.2 .1-3.5% 0.8 34 Mean of logged data **. Log standard deviation ? i i i— 2b / / y 2d A \ / u \ \ 2c*** 2b 7 Si -1 G( 10 55 11 443 237 1 34 / 2a 2d 1971 29 31 371 wt 50 42 6 5 53 3a 2b 350 6 G 85 1 8 3b&c \ 2b \ 2b fy C C O L O G I C C O N T A C T S" FAULT SCALE (leet) 1000 2T30 DISTRIBUTION OF Hg ALONG TRAVERSE ONE O N P P B ) F O H P O C K T Y P E D E S C R I P T I O N S S E E T A D L E m Figure 28 1.5 _i i i_ 2-5 log total Hg F i g u r e 29. C o r r e l a t i o n of mercury content of s o i l s to % o r g a n i c carbon (34 a n a l y s e s ) -118-b) Cu, Pb, Zn contents of Channel Samples L o c a t i o n s of creek p r o f i l e s are shoun i n F i g u r e 3D. C-1 and C-2 are s i t u a t e d approximately 3DDD f e e t north of the Faro #2 ore body over u n i t 2a ( F i g . 30 and Table I I I ) and C-3, C-4, and C-5 o v e r l i e the Faro #2 ore zone w i t h i n u n i t 3a ( F i g . 30 ) . Depth of overburden i s l e s s than 6 f e e t i n a l l cases ( p l a t e s 1 to 4, F i g . 3 1 ) . Cu. content of bedrock channel samples ranges from 45 to 73 ppm, which compares f a v o u r a b l y to mean values of Cu r e p o r t e d i n s c h i s t s and p h y l l i t e s i n the v i c i n i t y of A n v i l Mine (see Table X V I ) . -Pb content of bedrock i n p r o f i l e s 2, 3, and 5 ranges from 120 to 2910 ppm; and Zn i n p r o f i l e s 1, 2, 4, and 5, from 500 to 1100 ppm. T-hese values are c o n s i d e r a b l y e n r i c h e d r e l a t i v e to Pb and Zn l e v e l s i n sedimentary rocks (23 to 10D ppm f o r Zn; 9-20 ppm f o r Pb); and are probably a r e f l e c t i o n of the Pb, Zn halo about the Faro ore b o d i e s . G e n e r a l l y , Pb and Zn content of bedrock i s r e f l e c t e d i n the overburden: where bedrock values are enhanced, metal l e v e l s are anomalous; but where metal content of bedrock i s 'normal', metal contents of t i l l are not above t h r e s h o l d (Zn 243 ppm, Pb 81 ppm). An e x c e p t i o n to t h i s i s Pb content i n the upper t i l l l a y e r of p r o f i l e 1. The upper t i l l c o n t a i n s 252 ppm whereas u n d e r l y i n g t i l l and, bedrock c o n t a i n 37 and 28 ppm r e s p e c t i v e l y . The upper l a y e r , c^, c o n t a i n s fragments of coarse g r a i n e d s e r i c i t e s c h i s t but the lower i s composed predominantly of angular b i o t i t e s c h i s t , probably d e r i v e d from rocks below. -119-c) Ba content of Bedrock and Overburden Ba content of bedrock encountered i n p r o f i l e s 3 to 5 ranges from 20DO to 7000 ppm (see Appendix B f o r emission s p e c t r o g r a p h i c d a t a ) , but i n other rocks i n the a r e a , Ba content i s u s u a l l y l e s s than BOO ppm (Table XU). Figure 9 shows Ba to be e n r i c h e d (2000-3000 ppm) i n rocks d i r e c t l y o v e r l y i n g Faro #1 ore body. Since rock samples from p r o f i l e s 3 to 5 o v e r l i e the $2 ore body, high Ba content i s not unexpected. Average Ba l e v e l s i n s o i l s i n the area i s 690 ppm (Table XXU) but Ba content of overburden o v e r l y i n g bedrock i n p r o f i l e s 3 to 5 ranges from 900 to 5000 ppm; these enhanced values i n overburden correspond to the high values i n bedrock. Because Ba content of bedrock i s r e f l e c t e d i n overburden, Ba might be a p o t e n t i a l p a t h - f i n d e r element i n the A n v i l a r e a . IU-3D. RELATIONSHIP OF TRACE ELEMENT CONTENT OF SOILS AND GLACIAL 0UERBURDEN Secondary d i s p e r s i o n p a t t e r n s r e s u l t from r e d i s t r i b u t i o n of t r a c e elements by both mechanical and chemical means. T h i s r e d i s t r i b u t i o n i s governed by p h y s i c a l and chemical p r o p e r t i e s of the d i s p e r s e d c o n s t i t u e n t s and the media i n which they move. At A n v i l , two'types of d i s p e r s i o n p a t t e r n s e x i s t : 1) s y n g e n e t i c p a t t e r n s r e s u l t i n g from p h y s i c a l movement of rock fragments by g l a c i a l p rocesses during the P l e i s t o c e n e and 2) e p i g e n e t i c p a t t e r n s r e s u l t i n g from r e d i s t r i b u t i o n of mobile elements i n s u r f a c e and ground w a t e r s . -12D-F i g u r e 3D. L o c a t i o n of Creek P r o f i l e s LEGEND 0 ORE BODY • OVERBURDEN DRILL HOLE • CREEK PROFILE LOCATION \ CEOLOGICAL CONTACT "\ ROAD ANVIL BATHOLITH \ \ REFER TO TABLE III FOR GEOLOGICAL LEGEND THOUSAND FEET CREEK PROFILE 1 Horizon Cu T i l l c-! I l l 50% coarse grained f r a g -ments s e r i c l t e s c h i s t T i l l o 2 9 3 60% angular fragments b i o t i t e s c h i s t Bedrock 7 3 Rusty b i o -t i t e schist Pb Zn (ppm) 2 5 2 l6kl 3 7 2 2 5 9 28 1100 P l a t e 2. CREEK PROFILE 2 P l a t e 3. C R E E K P R O F I L E 3 KJ P l a t e 4. CREEK PROFILE k I U ^ V ^ - 14..- v > ^ ' Sample Horizon Cu Pb Number (ppm) Zn 16 105 930 189 T i l l C S i l t , 30% coarse grained p h y l l i t e f r a g -ments 191 Bedrock 4-5 35 500 S i l v e r y char-c o a l t o brown-i s h grey s e r -i c l t e p h y l l i t e g r aphite pres-sent l\3 -F-I Figure 31. CREEK PROFILE 5 78L Sample Horizon Cu Pb Zn Number (ppm) 192 T i l l C« S i l t y 27 82 1108 Fragments mostly composed of quartz and g r a n i t e 196 T i l l C Sandy 35 71 109^ Quartz & g r a n i t e 193 Graphite s c h i s t 39 104 500 l a y e r 19^ T i l l C S i l t y - 38 112 12^3 sand $0% coarse-grained p h y l l i t e fragments 195 Bedrock 50 120 1000 Q u a r t z - s e r l c l t e s c h i s t -126-a) F a c t o r s a f f e c t i n g t r a c e element d i s t r i b u t i o n s i n g l a c i a l overburden During the l a s t stage of g l a c i a t i o n ( l a t e W i s c o n s i n ) , the Seluyn lobe of the C o r d i l l e r a n i c e sheet moved i n a w e s t e r l y to n o r t h w e s t e r l y d i r e c t i o n over the Faro ore zone, d e p o s i t i n g t i l l i n the A n v i l a r e a , c o n t a i n i n g s u l p h i d e fragments r e l a t e d to the Faro d e p o s i t . Distance t r a v e l l e d by l o c a l t i l l i n the area i s not known, however the Pb, Zn anomaly a s s o c i a t e d with the Faro ore body cannot be detected i n t i l l along L112W, which at i t s s h o r t e s t d i s t a n c e , i s 2500 f e e t west of the Faro #1 ore body ( F i g . 5 ) . T h e r e f o r e d i l u t i o n of s u l p h i d e fragments w i t h i n the plus 270 to minus 10-mesh f r a c t i o n of t i l l i s such t h a t the anomaly cannot be d e t e c t e d Yz mile from the ore zone. E f f e c t s of d i l u t i o n o f s u l p h i d e fragments w i t h i n g l a c i a l outwash can be estimated i n the same way. Rock fragments en-countered i n holes lk, 75, and 76 (L28U) are g e n e r a l l y composed of q u a r t z , g r a n i t e and f e l d s p a r . Examination of a i r photographs shows l i n e a m e n t s , r e l a t e d to outwash channels, t r a v e r s i n g the area u n d e r l a i n by the A n v i l B a t h o l i t h . T e n t a t i v e l y , i t i s assumed tha t s o r t e d sediment w i t h i n the above holes was d e r i v e d from areas o v e r l y i n g the A n v i l B a t h o l i t h , and may have t r a v e l l e d only ten m i l e s ( F i g . 2 ) . Study of l a t e r a l v a r i a t i o n from hole to hole along l i n e 112bJ (Table XXII) y i e l d e d i n f o r m a t i o n about homogeniety of Cu, Pb and Zn content of t i l l . For example, hole kl was found to be e n r i c h e d i n Cu and d e p l e t e d i n Zn r e l a t i v e to a-random d i s t r i b u t i o n . Most of the t r a c e element v a r i a t i o n s can be e x p l a i n e d by -127-inhomageniety i n t i l l fragments (Appendix A ) . Sediment throughout the l e n g t h of hole kl c o n t a i n s mostly rounded fragments o f s i l i c e o u s b l a c k c h e r t (up to 55%) th a t i s composed p u r e l y of quartz (determined by X-ray d i f f r a c t i o n ) . P y r i t e and l i m o n i t e are found i n the l o u e r p o r t i o n of the h o l e , probably accounting f o r the high Cu c o n t e n t , s i n c e C u+ + sub-++ s t i t u t e s f o r Fe i n the p y r i t e l a t t i c e . Zn, on the other hand i s not known to s u b s t i t u t e f o r Fe i n p y r i t e , although i t i s not uncommon to have i n c l u s i o n s of s p h a l e r i t e i n p y r i t e , and f o r Zn to s u b s t i t u t e i n l i m o n i t e . P r i c e (1972) c i t e s Prokhorov (1965) as saying the Cu/Zn r a t i o i n p y r i t e ranges from k to 160 f o r p y r i t e d e p o s i t s . Uhat the a s s o c i a t i o n of Pb and Zn m i n e r a l s would do to change t h i s r a t i o i s not known. I t i s c o n c e i v a b l e t h a t Cu can be enhanced throughout hole kl due to p y r i t e c o n t e n t , whereas Zn i s impoverished due to the q u a r t z - r i c h nature of the sediment. Pb ( F i g . 16) i s d e p l e t e d i n t i l l throughout hole kQ. The t i l l i s . composed predominantly of c a l c - s i l i c a t e s ( u n i t 2b) and s i n c e Pb has been shown to be low and i n some cases below de-t e c t i o n l i m i t i n rocks from u n i t 2b ( F i g . 9, bottom 800 f e e t of hole 66-8), t i l l d e r i v e d from these rocks i s l i k e l y to be low i n Pb as w e l l . Zn i s e n r i c h e d i n holes 51 and kZ ( F i g . 18); the p r i n c i p a l rock fragments i n each are b i o t i t e - c h l o r i t e s c h i s t and r u s t y b i o t i t e - s e r i c i t e p h y l l i t e r e s p e c t i v e l y . P e l i t e s i n g e n e r a l have higher Zn content than other sedimentary rocks (see p. 65) and t h i s might be r e s p o n s i b l e f o r the higher v a l u e s . Impoverished Zn l e v e l s i n hale 52 are a r e f l e c t i o n of limestone and c a l c --128-s i l i c a t e content of the rock fragments i n that h o l e . Along l i n e 28UJ, Cu, Pb, and Zn d i s t r i b u t i o n s ( F i g . 15, 17, and 19) are o b v i o u s l y a f f e c t e d by the presence of the s u l p h i d e body, and a l s o the presence of g l a c i a l outuash as u e l l as t i l l . D i r e c t i o n of movement of ground water throughout the area has not been s t u d i e d , but ground uater probably f l o u s dounslope touards the v a l l e y , and then n o r t h - u e s t e r l y along Rose Creek, uhich d r a i n s i n t o the P e l l y R i v e r . Examination of F i g u r e s 15, 17 and 19 r e v e a l s t h a t a t o t a l Cu anomaly extends upslope from the ore zone, but t o t a l Pb and Zn anomalies are l o c a l i z e d dounslope from the ore zone. Fundamental to i n t e r p r e t a t i o n of these geochemical anomalies i s an understanding of the form the metal takes i n s o i l s and t i l l . That i s to say: Is i t present as a s i l i c a t e or s u l p h i d e ? Chelated to o r g a n i c complexes? Sorbed to Fe and Mn hydroxides? Loosely sorbed or t i g h t l y bonded to c l a y m i n e r a l l a t t i c e s ? The Cu anomaly noted i n t i l l (L28U, F i g . 15) i s a l s o de-l i n e a t e d i n C-horizon s o i l s by a broad f l a t anomaly ( F i g . 2 5 ) . Cold e x t r a c t a b l e Cu i n the same s o i l s i s not anomalous. Thi s i n d i c a t e s t h a t the Cu anomaly i s probably c l a s t i c r a t h e r than hydromorphic i n o r i g i n . In t h i s c a s e , t o t a l Cu i s probably l a r g e l y present as s i l i c a t e s or as s u l p h i d e s . To v e r i f y t h i s h y p o t h e s i s , l e v e l s of cxCu should be determined on samples of g l a c i a l overburden. Pb and Zn anomalies extend to s u r f a c e above the ore body and dounslope, along the b e d r o c k / t i l l i n t e r f a c e . The Zn anomaly extends f u r t h e r than the Pb anomaly, uhich i s to be expected s i n c e m o b i l i t y of Zn i n the secondary environment i s u s u a l l y higher -129-than Pb (Haukes & Webb, 1962). Cu i s net anomalous dounslope, e i t h e r because there i s not enough Cu i n the ore zone or because Cu i s being leached from a c i d i c s o i l s . S u p e r f i c i a l l y d i s t r i b u t i o n of Pb appears to be e r r a t i c . Samples analyzed at s u r f a c e (C-horizon s o i l s ) are not anomalous i n Pb although samples at l o u e r depths are ( h o l e s 72 and 73, F i g . 17). In hole 73, ore fragments uere r e c o g n i z e d i n the ID f o o t sample but at a 2 f o o t depth ( s o i l p i t ) , the Pb value uas only k ppm. F i e l d notes at t h i s sample s i t e (hole 73) i n d i c a t e t h a t sand, probably stream a l l u v i u m , i s the parent m a t e r i a l (com-posed predominantly t b f q u a r t z , f e l d s p a r , and g r a n i t e fragments). In c o n t r a s t Zn content at the same s i t e i s anomalous but content i s 10DD ppm l o u e r than the sample taken at a depth o f ID f e e t . D i f f e r e n c e s i n d i s t r i b u t i o n of Pb and Zn may r e f l e c t r e l a t i v e m o b i l i t y of the l a t t e r i n a s l i g h t l y a c i d i c s u r f i c i a l environment. Pb and Zn anomalies i n outuash at the bottom of hole 74 c o u l d be e i t h e r a r e s u l t of ground uater f l o u at the t i l l / b e d r o c k i n t e r f a c e or r e l a t e d to a Pb, Zn source s e v e r a l m i l e s auay. Since Cu i s only anomalous i n tuo s p a t i a l l y u n r e l a t e d samples ( F i g . 15) and, on the average.., 2 out of every 40 samples of background m a t e r i a l u i l l have c o n c e n t r a t i o n s above t h r e s h o l d l e v e l , these anomalies are not c o n s i d e r e d important. • R'ante c o r r e l a t i o n of Zn content i n b a s a l t i l l to that i n u n d e r l y i n g bedrock (Table XXIV/) i n d i c a t e s that Zn content of t i l l i s r e l a t e d to bedrock, even though i t i s mobile i n a hydrous regime. As Krauskopf (1972) s t a t e s , p. 33: -13C-"The f a c t t h a t Zn i s a metal most o f t e n . s u c c e s s -f u l l y used i n geochemical p r o s p e c t i n g (e.g.) Kennedy, 1956), both f o r Zn ores and as a guide-element f o r ores o f other m e t a l s , suggests that the amount of Zn i n a s o i l may be roughly c o r r e l -ated u i t h the amount i n rocks beneath, d e s p i t e the f a c t t h a t the element i s mobile enough to t r a v e l long d i s t a n c e s i n ground uater and s u r f a c e u a t e r . " That i s to say, Zn i s probably leached from the rocks f a s t enough to keep up u i t h i t s m o b i l i t y i n the overburden, and main-t a i n s a s t e a d y - s t a t e r e l a t i o n s h i p . b) F a c t o r s a f f e c t i n g t r a c e element d i s t r i b u t i o n s i n s o i l s Cu, Pb, and Zn anomalies encountered i n C-horizon s o i l s are r e l a t e d to those i n g l a c i a l overburden. The s m a l l Cu anomaly upslope from the ore zone and the l a r g e Pb, Zn anomaly a s s o c i a t e d u i t h the ore zone, have been d i s c u s s e d i n the pr e v i o u s s e c t i o n ( F i g . 2 5 ) . I n d i v i d u a l Pb values are e r r a t i c , but these can be e x p l a i n e d by v a r i a t i o n s i n types of parent m a t e r i a l (see p.129 ) . Along T^ ( l i n e 112W), seven s o i l s are anomalous i n Pb co n t e n t , but t i l l sampled at depth along t h i s l i n e i s not anom-alous u i t h r e s p e c t to Pb ( F i g . 1 6 ) . S t a t i s t i c a l l y t h i s anomaly cannot be e x p l a i n e d by mechanical movement of s u l p h i d e fragments from the ore body. Disseminated s u l p h i d e s have been r e p o r t e d at the conta c t of the A n v i l b a t h o l i t h and c a l c - s i l i c a t e s ( l o g 71D.5D, Appendix A) on T^ and t h i s might have some a f f e c t on Pb d i s t r i b -u t i o n . High Zn values ( F i g . 35, F i g . 24) near t h i s contact can be e x p l a i n e d by p r o x i m i t y of samples to t h i s m i n e r a l i z a t i o n . The Cu anomaly on the southuest s i d e Df the uater dam (T^, F i g . 25) i s a s s o c i a t e d u i t h higher pH (6.3 to 7 ) , a l l o u i n g -131-f o r removal of Cu from s o l u t i o n . Anomalous Cu by i t s e l f can e a s i l y be e x p l a i n e d by pH but Sn i s h i g h l y anomalous i n the same samples (20D ppm). Some g e o l o g i c a l reason must be evoked f o r t h i s connection but at p r e s e n t , not enough data i s a v a i l a b l e to come to any c o n c l u s i o n . The Pb, Zn, Ag anomaly r e p o r t e d at s t a t i o n 6k i s probably r e l a t e d to bedrock at that s i t e . Depth of overburden i s l e s s than 3 f e e t and s o i l parent m a t e r i a l i s composed predominantly of angular fragments of muscovite-b i o t i t e s c h i s t ( u n i t 2 a ) . Minor s u l p h i d e m i n e r a l i z a t i o n i s probably present i n bedrock. Some modes Df occurrence o f Cu, Pb, and Zn have been p o s t u l a t e d i n pr e v i o u s s e c t i o n s . ' L a t t i c e ' Cu i s probably present as s i l i c a t e s and s u l p h i d e s ( p . 110) uhereas cxCu i s f i x e d by or g a n i c matter (p.110). Since c o n t r a s t f o r cxZn i s b e t t e r than that f o r t o t a l Zn (Table XXXI), and cxZn/Zn r a t i o s i n anomalous samples are higher than those i n background (p.110), the Zn anomaly r e l a t e d to the Faro ore zone i s predominantly hydromorphic r a t h e r than c l a s t i c . The anomaly at depth i n the t i l l ( F i g . 19) i s probably both hydromorphic and c l a s t i c , as s u l p h i d e fragments have been r e c o g n i z e d i n samples (Appendix A ) . When anomalous values are i n c l u d e d i n c a l c u l a t i o n s of c o r r e l a t i o n c o e f f i c i e n t s , cxZn i s n e g a t i v e l y c o r r e l a t e d u i t h e l e v a t i o n uhich i m p l i e s t h a t cxZn i n c r e a s e s dounslope from the ore zone, due to the d i r e c t i o n of f l o u of ground u a t e r . Contrary to t h i s , i s the l a c k of s i g n i f i c a n t c o r r e l a t i o n of cxZn i n o r g a n i c and m i n e r a l s o i l s to pH (Table XXXII). I f Zn i s mobile i n the a r e a , and a hydromorphic anomaly e x i s t s , then s i g n i f i c a n t c o r r e l --132-a t i o n u i t h pH i s expected. ' L a t t i c e ' Zn i s n e g a t i v e l y c o r r e l a t e d u i t h pH but t h i s probably i s a f u n c t i o n of topography, uhich a f f e c t s pH and ' l a t t i c e ' Zn a d v e r s e l y . cxPb i s n e g a t i v e l y c o r r e l a t e d - u i t h ph, but shous no c o r r e l a t i o n u i t h topography. Th i s might i n d i c a t e that Pb can move i n s o l u t i o n from a more a l k a l i n e to a c i d i c a r e a , but i f t h i s i s the cas e , uhy does not Pb d e l i n e a t e the ore body at s u r f a c e ? Present (1971) a l s o found Pb to be n e g a t i v e l y c o r r e l a t e d u i t h pH i n B^, B^, and C h o r i z o n s at B a t h u r s t , N.B., but pos-i t i v e l y c o r r e l a t e d i n A,-, h o r i z o n . He e x p l a i n e d the negative c o r r e l a t i o n to be r e l a t e d to dounuard l e a c h i n g of Pb under r e d u c i n g c o n d i t i o n s . • He s t a t e s ( p . 58): "The extremely high negative r value i n the h o r i z o n i n d i c a t e s t h a t l e a d b u i l d s up i n t h i s h o r i z o n as the a c i d i t y i n c r e a s e s . T h i s i s to be expected, as l e a d i s more mobile and moves from the A^ h o r i z o n dounuards e v e n t u a l l y i n t o the B^ h o r i z o n as the a c i d i t y i n c r e a s e s . At the same time, the i n c r e a s e d a c i d i t y uould permit the movement of more f r e e i r o n , c l a y , and humic substances dounuards i n t o the o x i d i z i n g B^ h o r i z o n . These m a t e r i a l s uould r e a c t u i t h l e a d and immobilize i t . A c o n t i n u a t i o n of t h i s process u i t h l e s s e n i n g i n t e n s i t y dounuards could e x p l a i n the s i g n i f i c a n t n e g a t i v e r values o b t a i n e d f o r l e a d and pH i n the B^ and C h o r i z o n s . " T h i s i d e a i m p l i e s t h a t Pb i s reasonably mobile i n the p o s t u l a t e d environment uhich i s c o n t r a r y to most p r e v a l e n t concepts ( f o r example, Haukes and Webb, 1962). I f t h i s i s the case at A n v i l , then a l l h o r i z o n s u i t h i n s o i l s p r o f i l e s should be analyzed f o r pH and Pb and c o r r e l a t i o n s c a l c u l a t e d . The f a c t that approx-imat e l y 1D0% of the Pb i s e x t r a c t e d by c o l d d i l u t e HC1 shous that -133-Pb i s e a s i l y leached from the a c i d i c s o i l s at A n v i l , and thus supports higher m o b i l i t y f o r Pb. II/-3E. SUMMARY DF RESULTS OF SECONDARY DISPERSION AND APPLIC-ATION TO EXPLORATION a) Summary of R e s u l t s The study of metal values i n g l a c i a l overburden, C-h o r i z o n s o i l s and creek p r o f i l e s i n the A n v i l area has e s t a b l i s h e d s e v e r a l i n t e r e s t i n g - f a c t s . They are as f o l l o w s : 1. Multi-element geochemistry of s o i l s was s u c c e s s f u l i n d e l i n e a t i n g greenstones ( r e s p o n s i b l e f o r magnetic h i g h s ) . 2. Sn content of s o i l s might be u s e f u l i n d e l i n e a t i n g the A n v i l B a t h o l i t h . 3. The Pb, Zn, Ba halo r e p o r t e d i n bedrock around the Faro ore zone can be d e t e c t e d i n channel samples from creek p r o -f i l e s where overburden i s not deep. 4. Two types of g l a c i a l parent m a t e r i a l e x i s t i n the A n v i l area with d i f f e r e n t background values f o r Cu, Pb, and Zn. 5. Copper does not d e l i n e a t e the Faro ore body although there are a few s p o r a d i c anomalous v a l u e s . 6. Pb d e l i n e a t e s the ore zone at depth but has e r r a t i c values i n s o i l s . T h i s i s r e l a t e d to the type of parent m a t e r i a l sampled. 7. Zn d e l i n e a t e s the ore zone i n g l a c i a l overburden, C-horizon s o i l s and i n creek p r o f i l e s . . C o ntrast f o r cxZn i s b e t t e r than f o r t o t a l Zn. - 1 3H -8. Zn anomaly i n s o i l s i s thought to be predominantly hydromorphic r a t h e r than c l a s t i c but i n overburden at depth, i t i s probably a combination of the two. 9. Zn content of b a s a l t i l l i s s i g n i f i c a n t l y c o r r e l a t e d to that i n bedrock. ID. Anomalous samples i n outuiash i n d i c a t e a source (or sources) of high Pb, Zn content i n some d i s t a n t a r e a . V/arious other s i n g u l a r f a c t s have come to l i g h t and these cannot be e a s i l y e x p l a i n e d . They a r e : 11. Cold e x t r a c t a b l e Zn i s not c o r r e l a t e d u i t h pH yet other i n f o r m a t i o n (p.131) i n d i c a t e s t h a t the Zn anomaly i s hydro-morphic i n o r i g i n . 12. Cojld-extractable Pb i s n e g a t i v e l y c o r r e l a t e d u i t h pH. 13. Approximately 100% Pb i s a v a i l a b l e f o r e x t r a c t i o n by c o l d ,5M HC1. Ik. A c l a s t i c Cu anomaly e x i s t s upslope from the Faro ore body. b) A p p l i c a t i o n to E x p l o r a t i o n • f primary e x p l o r a t i o n i n t e r e s t at A n v i l i s the s i z e and extent of the Pb, Zn anomaly a s s o c i a t e d u i t h the Faro ore zone and of secondary i n t e r e s t i s the p o t e n t i a l use of p a t h f i n S e r elements ( f o r example, IMi, Cr and S n ) , to a i d i n g e o l o g i c a l mapping. 1. Geochemistry as an a i d i n l o c a t i n g p o t e n t i a l are Sampling of g l a c i a l overburden, both at s u r f a c e or at depth, has been s u c c e s s f u l i n d e l i n e a t i n g s u l p h i d e m i n e r a l i z a t i o n at -135-A n v i l Mine. Zn i s by f a r the best i n d i c a t o r of ore; cxZn having b e t t e r anomalous/threshold c o n t r a s t than t o t a l Zn. Pb, on the other hand, i s e r r a t i c i n C-horizon s o i l s but Pb values i n o v e r -burden d r i l l h o l e s are eextremely anomalous c l o s e to o r e . T h i s supports Aho1s (1966) c o n c l u s i o n s that Zn content of s o i l s i s the best r e g i o n a l and Pb, the best l o c a l guide to o r e . Cu does not d e l i n e a t e the ore zone i n C-horizon s o i l s or i n g l a c i a l overburden. Fortescue (1966) a l s o noted t h a t Cu content of the ash l a y e r and B h o r i z o n s o i l s d i d not r e f l e c t the Faro ore zone. Therefore of Cu, Pb and Zn, only a n a l y s i s f o r Pb and Zn i n s o i l and overburden samples uould be expected to be s u c c e s s f u l i n d i s c o v e r i n g p o t e n t i a l Pb, Zn ore i n the A n v i l a r e a . Thickness and nature o f overburden i n the A n v i l area might prove to be d e t e r r e n t s i n geochemical s a m p l i n g . C a r e f u l a n a l y s i s of t i l l , outuash and g l a c i a l f e a t u r e s i n the area should help i n r e c o g n i z i n g s i g n i f i c a n t anomalies, and de t e r m i n a t i o n of r e l a t i v e e x t r a c t a b i l i t y of a metal i n d i f f e r e n t reagents uould a l s o help i n c h a r a c t e r i z i n g them. D i r e c t i o n of i c e movement during the P l e i s t o c e n e and ground uater movement uould be r e q u i r e d to i n t e r -p r e t s y n g e n e t i c and e p i g e n e t i c anomalies r e s p e c t i v e l y . As e x t e n s i v e overburden d r i l l i n g has been done at A n v i l , i n f o r m a t i o n should be c o l l e c t e d from d r i l l samples to e s t a b l i s h types of g l a c i a l d r i f t d e p o s i t s i n the a r e a , and to determine background and t h r e s h o l d values and r e l a t i o n s h i p s betueen metal content and l i t h o l o g y i n each. From a geochemical s t a n d p o i n t , d r i l l i n g methods employed at A n v i l are not the b e s t . The minus 270-mesh f r a c t i o n of the overburden i s uashed auay u i t h the d r i l l i n g -136-mud, and s i n c e c l a y s i z e d p a r t i c l e s have much higher i o n exchange c a p a c i t y than c o a r s e r f r a c t i o n s , a l a r g e percentage of the metal content i s l o s t i n sample p r e p a r a t i o n . Dry d r i l l i n g methods, as employed at Heno H i l l (van T a s s e l , 1969), uould be more u s e f u l to the geochemist. A n a l y s i s of creek p r o f i l e s around the Faro ore zone has e s t a b l i s h e d t h a t the Pb, Zn, Ba halo i n bedrock l o c a t e d above the ore zone can be d e t e c t e d i n t i l l d i r e c t l y o v e r l y i n g the anomalous bedrock. T h i s i s a f u r t h e r e x t e n s i o n of l i t h o g e o c h e m i c a l p r o s -p e c t i n g proposed i n s e c t i o n IV/-2E. 2. Geochemistry as an a i d to g e o l o g i c a l mapping Massive a m p h i b o l i t e ( u n i t 12) and the A n v i l B a t h o l i t h ( u n i t 11) have d i s t i n c t i v e t r a c e element chemistry (see s e c t i o n IV/-2D, 2 & 3) u h i c h suggests t h a t s o i l s d e r i v e d from such bedrock, might a l s o be enhanced i n s i m i l a r elements. In the A n v i l a r e a , s o i l s o v e r l y i n g greenstones (3d) are found to be n o t a b l y e n r i c h e d i n IMi and Cu content (Table XXV7II): these greenstones are a l s o r e s p o n s i b l e f o r s u b s t a n t i a l magnetic highs i n the a r e a . T h e r e f o r e , sampling of s o i l s o v e r l y i n g magnetic highs and a n a l y s i s f o r IMi and Cu, might prove u s e f u l i n determining o r i g i n s of some of the g e o p h y s i c a l t a r g e t s . Some s o i l s o v e r l y i n g the A n v i l B a t h o l i t h are notably en-r i c h e d i n Sn but Sn values are a l s o high along T^ uhere g r a n i t e i s not t r a v e r s e d . More s t u d i e s should be done before using Sn as a p a t h - f i n d e r element f o r g r a n i t e . SUMMARY AMD CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH -138-1/-1. SUMMARY A IMD CONCLUSIONS Fa r o , Uangorda, and Swim concordant ore d e p o s i t s are s p a t i a l l y r e l a t e d to Cambrian i(ii^)lpftyrMit-es' anbi'sdslaist-suiuhieh f l a n k the A n v i l B a t h o l i t h . Multi-element geochemistry of bedrock i n the A n v i l area ('of u n i t s 2 and 3) does not d e l i n e a t e a d i s -t i n c t i v e geochemical rock type a s s o c i a t e d u i t h the ore b o d i e s , i n p a r t i c u l a r u i t h the Faro d e p o s i t . ; Houever, massive amphi-b o l i t e ( u n i t 1 2), r h y o l i t e ( u n i t 14?) and b a t h o l i t h i c rocks ( u n i t 11) are d i s t i n c t i v e i n t r a c e element c o n t e n t s . Massive am p h i b o l i t e i s c h a r a c t e r i z e d by e n r i c h e d C r , N i , Co, and Cu l e v e l s ; r h y o l i t e by high Pb and Sn and d e p l e t i o n i n a l l other analyzed elements; and b a t h o l i t i c rocks by enhanced Sn v a l u e s . S o i l s o v e r l y i n g magnetic greenstones and the A n v i l B a t h o l i t h are a l s o enhanced i n N i , Cu, and Sn content r e s p e c t i v e l y . In other words, de s p i t e presence of g l a c i a l overburden and sampling problems a s s o c i a t e d with t i l l , t r a c e element content of bedrock i s r e f l e c t e d i n s o i l s . T h e r e f o r e , a n a l y s i s of s o i l s f o r p a t h f i n d e r elements such as Ni f o r amp h i b o l i t e would prove u s e f u l i n i n d i c a t i n g bed-rock at depth, and thus a i d i n g e o l o g i c a l mapping. D e t a i l e d bedrock, overburden and s o i l sampling was under-taken at the Faro d e p o s i t . A primary d i s p e r s i o n h a l o , r e l a t e d to the Pb, Zn m i n e r a l i z a t i o n surrounds the Faro ore zone: the f u l l extent of the halo i s not known. However, Mo f o l l o w s the r e a d i l y v i s i b l e a l t e r a t i o n halo whereas Pb and Zn extent s e v e r a l hundred f e e t i n t o the f o o t w a l l and a hundred i n t o the hanging w a l l . Ba, on the other hand, extends 75 f e e t i n t o the hanging w a l l but -139-i s not d e t e c t e d i n the f o o t u a l l ( F i g . 9 ) . These halos are a l s o detected i n bedrock samples from creek p r o f i l e s d i r e c t l y o v e r l y i n g the Faro #2 ore body. S t u d i e s of g l a c i a l overburden i n d i c a t e t h a t at l e a s t two types of g l a c i a l overburden e x i s t i n the area — t i l l com-p r i s e d of l o c a l l y d e r i v e d angular rock fragments and outuash com-posed of u e l l - s o r t e d , sub-rounded g r a i n s of q u a r t z , f e l d s p a r , and g r a n i t e . Each has d i s t i n c t i v e background and t h r e s h o l d values f o r Cu, Pb, and Zn: t i l l has higher l e v e l s than outuash. Secondary d i s p e r s i o n p a t t e r n s p e r t a i n i n g to ore i n o v e r -burden and s o i l s are thus r e l a t e d to the type of g l a c i a l o v e r -burden ( s y n g e n e t i c p a t t e r n s ) and to secondary f a c t o r s a c t i n g on the s y n g e n e t i c p a t t e r n s and the Faro ore body ( e p i g e n e t i c p a t t e r n s ) . Pb and Zn d i s t r i b u t i o n s i n g l a c i a l overburden d e l i n e a t e the Faro #2 ore zone; Zn extends to s u r f a c e uhereas Pb i n some cases does n o t . T h i s i s a r e f l e c t i o n of parent m a t e r i a l sampled at s u r f a c e ; t i l l or a l l u v i u m . Cus does not d e f i n e the Faro ore body, but a c l a s t i c Cu anomaly e x i s t s upslope from the ore zone. The Zn anomaly a s s o c i a t e d u i t h the Faro ore zone i s p r e -dominantly hydromorphic i n o r i g i n , cxZn having b e t t e r anomalous/ t h r e s h o l d c o n t r a s t than t o t a l Zn (11.1 f o r cxZn vs 4.8 f o r t o t a l Zn) The nature of the Pb anomaly i s not understood. Taking e v e r y t h i n g i n t o c o n s i d e r a t i o n , Zn d i s t r i b u t i o n i n the A n v i l area i s by f a r the most important and most c o n s i s t e n t i n d i c a t o r of o r e . Zn content of bedrock along L112U i s r e f l e c t e d i n b a s a l p o r t i o n s of t i l l ( Table XXIV) but those Zn d i s p e r s i o n p a t t e r n s r e l a t e d to ore are p r i m a r i l y hydromorphic and t h e r e f o r e -140-can be det e c t e d by c o l d a c i d e x t r a c t i o n r a t h e r than the more time-consuming t o t a l e x t r a c t i o n . W-2. SUGGESTIONS FOR FURTHER RESEARCH Based on the f o r e g o i n g r e s u l t s and c o n c l u s i o n s , s e v e r a l recommendations f o r f u r t h e r r e s e a r c h i n the A n v i l area can be made. These are as f o l l o w s : 1. To e s t a b l i s h the l a t e r a l and v e r t i c a l extent of the geochemical halos about the ore zone, d r i l l h oles i n t e r s e c t i n g ore along 2 p e r p e n d i c u l a r s e c t i o n s through the Faro #1 ore body (one NW-SE, and the other NE—SLU) shouHlt! be sampled at 10 f o o t i n t e r v a l s . Samples should then be analyzed f o r Pb, Zn, Ag, Ba, Sr and Mo. I f d r i l l data are a v a i l a b l e , s i m i l a r s t u d i e s should be done at Vangorda and Suim to e s t a b l i s h i f primary d i s p e r s i o n i s evid e n t at these d e p o s i t s . 2. Cold e x t r a c t a b l e Cu, Pb and Zn should be determined on a l l g l a c i a l overburden sampled, to v e r i f y and/or e s t a b l i s h the nature of anomalies around the FarD ore body. 3. Ba content of g l a c i a l overburden should be determined on samples both c l o s e to and d i s t a n t from the Faro ore body to confirm t h a t Ba can be-used as a p a t h - f i n d e r element f o r ore at A n v i l . 4. G l a c i a l f e a t u r e s i n the area should be used to ad-vantage; sampling outuash channels might prove to be a v i a b l e t o o l f o r l o c a t i n g ore i f a p i l o t sampling program uas undertaken and e v a l u a t e d i n the A n v i l a r e a . -141-5. Because cxZn i n c r e a s e s dounslope uhen ancmalous samples are i n c l u d e d i n c a l c u l a t i o n s , sediments and uater from seepages i n t o the v a l l e y might a l s o be anomalous i n Zn. I n -s t i g a t i o n of a sampling program of seepages might a l s o prove to be u s e f u l i n l o c a t i n g ore i n the a r e a . 6. To determine the mode of occurrence of Pb i n the A n v i l s o i l s , Pb l e v e l s i n v a r i o u s e x t r a c t i o n s ( f o r example, u a t e r -s o l u b l e Pb and s u l p h i d e Pb) should be measured. Amounts of Pb present i n heavy m i n e r a l , potash feldspar', and mica separates should a l s o be determined to see i f some Pb removed by d i l u t e HC1 i s present i n s u l p h i d e or potassium m i n e r a l s . _ l 4 2 -REFEREIMCES CITED Abbey, S., 1967, A n a l y s i s Df Rocks and M i n e r a l s by Atomic Ab-s o r p t i o n S p e c t r o s c o p y , Part 1, Determination of Mg, L i , Zn and Fe, paper 67-37, 35 pp. Aho, A.E., 1969, Base Metal Province of Yukon, CIM T r a n s . V72, pp. 71-83. Aho, A.E., 1966, E x p l o r a t i o n i n Yukon u i t h s p e c i a l r e f e r e n c e to the Anvil-Vangorda D i s t r i c t , Western Miner, A p r i l 1966. A p p l i e d Geochemical Research Group T e c h n i c a l Communication 32 ( o r g a n i c C ) , August, 1962, I m p e r i a l C o l l e g e , London. B a r r i n g e r , A.R., 1966, I n t e r f e r e n c e - F r e e Spectrometer f o r High-S e n s i t i v i t y Mercury Analyses of S o i l s Rocks a n d - A i r , T r a n s . Imm 1775, pp.B120-B124. Bayrock and Pauluk, 1967, Trace E l e m e n t s i i n T i l l s of A l b e r t a : Can. 0. of E a r t h S c i e n c e s , V4, pp. 597-6D7. B j e r r i n g J . H., and P. Seagreaves, 1972, UBC T r i p and T r i a n g u l a r Regression Package, Vancouver, 12D pp. Bostock, H.S., 1948, The Physiography of the Canadian C o r d i l l e r a , • u i t h S p e c i a l Reference to the Area North of the 55th P a r a l l e l , GSC Mem. 247. B o y l e , R. LJ., 1965, Geology, Geochemistry and O r i g i n of the Lead-Z i n c - S i l v e r Deposits of the Kena H i l l - G a l e n a H i l l Area, Y.T., GSC B u l l : I I I , 320 pp. B o y l e , R. L l . , Dass, A.S., Church, D., M i h a i l o v , G., Durham, C , Lynch, J . , and Dyck, LJ., 1966. Research i n Geochemical P r o s p e c t i n g Methods f o r Native S i l v e r D e p o s i t s , Cobalt Area, Ont., Can. Dept. Mines Tech. Surv.,. GSC Paper 67-35. B o y l e , R. U., and R. G. G a r r e t , 1970. Geochemical P r o s p e c t i n g — A Revieu of I t s S t a t u s and F u t u r e , E a r t h - S c i e n c e Revieus, V o l . 6,. pp. 51-7,5. B r i s t o l , C . C , 1968. The Q u a n t i t a t i v e Determination of M i n e r a l s i n Some Metamorphosed V o l c a n i c Rocks by X-ray Bouder D i f -f r a c t i o n , Can. J . of E a r t h S c i . V5, pp. 235-242. B r i s t o l , C . C , 1972. Q u a n t i t a t i v e Determination of some Carbonate M i n e r a l s i n G r e e n s c h i s t F a c i e s M e t a v o l c a n i c Rocks, Can. J . of E a r t h S c i . V o l . 9, pp. 36-42. -143-B u t l e r , 3. R., 1954, Trace Element D i s t r i b u t i o n i n Some Lancashire S o i l s , J . of S o i l S c i . , V5, #1, pp. 156-165. B u r r i d g e , J . C , and Ann, P.M., 1965. A S p e c t r o g r a p h i c Survey of R e p r e s e n t a t i v e Ghana Fo r e s t S o i l s . J . of S o i l S c i . , V16, #2, pp. 296-309. Canada Dept. of A g r i c u l t u r e , 197B. The System of S o i l s C l a s s -i f i c a t i o n f o r Canada, 249 pp. Capps, S.R., 1915. An Ancient V o l c a n i c E r u p t i o n i n ' t h e Upper Yukon B a s i n , USGS, pp. 95-D. Chisholm, E . 0., 1957. Geo p h y s i c a l E x p l o r a t i o n of a Lead-Zinc Deposit i n Yukon T. i n S i x t h Commonwealth Mining and M e t a l l u r g y Congress, pp. 269-2779. Chisholm, E . 0., 1959. Geochemical E x p l o r a t i o n of a Yukon Pb-Zn Deposit; Western Miner, 1732 #11, pp. 36-47. Connor, J . , N.F. Shrimp and O.C.F. Tedrow, 1957. A S p e c t r o g r a p h i c Study of the D i s t r i b u t i o n of Trgce Telements i n Some P o d z o l i c S o i l s , S o i l Science V o l . S3, #1, pp. 65-73. Dixon, LJ. J . , and F. J . Massey, J r . , 1969. I n t r o d u c t i o n to S t a t i s t i c a l A n a l y s i s , 3rd e d i t i o n , McGrau H i l l , 63S pp. Donovan, P.R., and James C.H., 1966. Geochemical D i s p e r s i o n i n G l a c l G l a c i a l Overburden over the Tynagh (Northgate) Base Metal D e p o s i t , U. C e n t r a l E i r e . In Proceedings Symposium on Geochemical P r o s p e c t i n g Ed. E. M. Cameron, GSC Paper 66-54, pp. 89-110. Doyle, P . J . , 1972. Reg i o n a l Stream Sediment Reconnaissance and Trace Element Content of Rock, S o i l and P l a n t M a t e r i a l i n E a s t e r n Yukon T., MSC. T h e s i s , U.B.C. Dreimanis, A., 1958. T r a c i n g Ore Boulders as a P r o s p e c t i n g Method i n Canada. CIM B u l l . V o l . 51, pp. 73-80. F o r t e s c u e , J.A.C., 1967. Geochemical Sampling Test on the V o l c a n i c Ash L a y e r , A n v i l A r e a , i n M i n e r a l Deposits of the Yukon. GSC Rep. 67-40, pp. 12-14. Fortescue and Hughes, 1965* Copper, Z i n c , N i c k e l and Lead i n Lower T i l l M a t e r i a l C o l l e c t e d Near a Massive Sulphide Ore Body i n the Clay B e l t of Northern O n t a r i o . GSC Paper 65-2, pp.23-27. G a r r e t t , R.G., 1969. The Determination of Sampling and A n a l y t i c a l E r r o r s i n E x p l o r a t i o n Geochemistry, EcC G e o l . V 64, pp. 568-574. -144-G a r r e t t , 1971. D i s p e r s i o n of Cu and Zn i n G l a c i a l Overburden at the Louvem D e p o s i t , V a l D'or Quebec. CIMM Sp. B u l l . 11, pp. 157-158. Gleeson, C.F., 1967. Molybdenum Content of Stream and Spring Sediments, Kena H i l l A r e a , Yjjkon T. GSC Map 51-1965. Gleeson, C.G., and Cormier R., 1971. E v a l u a t i o n by Geochemistry of G e o p h y s i c a l Anomalies and G e o l o g i c a l T a rgets Using Overburden Sampling at Depth. CIMM S p . V o l . 11, pp. 159-165. Goldschmidt, V.M., 1958. Geochemistry, Ed. by A. Muir, I n t e r -n a t i o n a l S e r i e s of Monographs on P h y s i c s , Oxford U n i v . P r e s s , London, 730 pp. Hawkes, H.E., and Webb, O.S., 1962. Geochemistry i n M i n e r a l E x p l o r a t i o n . Harper and Rou, N.Y., 415 pp. Hoffman, S . J . , 1972. Geochemical D i s p e r s i o n i n Bedrock and G l a c i a l Overburden Around a Copper Property i n South C e n t r a l B.C. MSC T h e s i s , U.B.C. Hughes, O.L., Campbell, R.B., M u l l e r , J . E . , and Wheeler, J.O., 1969. G l a c i a l L i m i t s and Flow P a t t e r n s , Yukon T e r r i t o r y , South of 65 Degree North L a t i t u d e . GSC Paper 68-34, 9 pp. Oonasson, I.R., 1970. Mercury i n the N a t u r a l Environment: A Review of Recent Work. GSC pp. 70-57. Kar v i n e n , W. 0., 1970. A n v i l D i s t r i c t Geology, A t l a s E x p l o r a t i o n P r i v a t e R e p o r t . K e e l e , 0., 1910. A Reconnaissance across the MacKenzie R i v e r s , Yukon and N.W.T., GSC Pub. #1097. Kendrew, W.G., and K e r r , D.P., 1955. Climate of B.C. and Yukon T., Ottawa, 222 pp. Kennedy, V.C., 1956. Geochemical S t u d i e s i n the Southwestern Wisconsin Zinc-Lead Area; USGS B u l l . 1000-E, 35 p. Krauskopf, K.B., 1972. Geochemistry of M i c r o n u t r i e n t s i n Micro-n u t r i e n t s i n A g r i c u l t u r e ; S o i l S cience S o c i e t y of America, • pp. 7-36.. La r s s o n , J . 0., and N i c h o l , I . , 1971. A n a l y s i s of G l a c i a l M a t e r i a l as an A i d i n G e o l o g i c a l Mapping. CIMM Sp V o l . 11, pp.197-203. Lee, H.A., 1967. G l a c i o f o c u s Research i n Report of A c t i v i t i e s , GSC, Paper 67-1, P t . A, p. 149. s -145-Lee, H.A., 1971. M i n e r a l Discovery i n the Canadian S h i e l d Using the P h y s i c a l Aspects of Overburden; CIM B u l l . , pp. 32-36. L e p e l t i e r , C. 1969. A S i m p l i f i e d S t a t i s t i c a l Treatment of Geo-chemical Data by G r a p h i c a l R e p r e s e n t a t i o n . E c . G e o l . , V o l . 64, p. 538. May, R.W., 1970. Cu, Zn, C r , IMi Geochemistry of G l a c i a l T i l l s i n Southern O n t a r i o , Canada. AOs. GSA, 1970 Annual Meeting, IMov. 11-13, M i l u a l k e e , Ldis., V o l . 2, #7, pp. 618. M i t c h e l l , R. L., 1964. Trace Elements i n S o i l s , i n Chemistry of the S o i l , chapter 8, Ed. F.E.Bear, IM.Y., R e i n h o l d . Moore, C.A., 1968. Q u a n t i t a t i v e A n a l y s i s of N a t u r a l l y O c c u r r i n g Multicomponent M i n e r a l Systems by X-ray D i f f r a c t i o n , Clays and Clay M i n e r a l s , V. 6, pp. 325-336. Pr e s a n t , E .LU-, 1971. Geochemistry of Fe, Mn, Pb, Cu, Zn, As, Sb, Ag, Sn, Cd i n s o i l s of the B a t h u r s t Area, N.B., GSC B u l l . 174. p p o P r i c e , B . J., 1972. Minor Elements i n P y r i t e s from the Smither's Map A r e a , B.C. and E x p l o r a t i o n A p p l i c a t i o n s of Minor Element S t u d i e s , U.B.C. Unpub. Master's T h e s i s . Rankama, K., and T. G. Sahama, 1950. Geochemistry, U n i v e r s i t y of Chicago P r e s s , Chicago and London, 912 pp. Roddick, J . A., 1967. T i n t i n a Trench, J o u r . G e o l . , V. 75, pp.23-33. Roddick, J.A., and Green, L.H., 1961. Tay R i v e r Map Area, Yukon T e r r i t o r y , GSC Map 13-1961. Shau, D. M., 1954. Trace Elements i n P e l i t i c Rocks, Part 1, V a r i a t i o n s During Metamorphism Part 2, Geochemical V a r i -a t i o n s B u l l . GSA 65, pp. 1151-1182. S h i l t s , U.U., 1971. T i l l S t u d i e s and T h e i r A p p l i c a t i o n to Regional D r i f t P r o s p e c t s , Can. Min. J o u r . , pp. 45-50. S i e g e l , S., 1956. Non-Parametric S t a t i s t i c s j M c G r a u - H i l l Book Co. L t d . , New York, 312 pp. Stanton, R.E., 1966. Rapid Methods of Trace Element A n a l y s i s f o r Geochemical A p p l i c a t i o n , Edward Arnold L t d . , London. S t o c k w e l l , J . E . , 1970; C o b a l t , N i c k e l and Manganese i n P y r i t e from Faro #1, Vangorda and Swim Lakes D e p o s i t s , A n v i l Range, Y.T. B a c h e l o r ' s Unpubl U.B.C. T h e s i s . -146-S t u i v e r , M., e t a l . , 1964, Age Df a WidBspread Layer of v o l c a n i c Ash i n the• SU Ylukon T e r r i t o r y , A r t i e . 17, pp. 259-260. Suaine, D. 0., and M i t c h e l l , R. L., 1960. Trace Element D i s -t r i b u t i o n i n S o i l P r o f i l e s , J . S o i l S c i . V. 11, pp. 347-368. T a y l o r , S.R., 1964. Abundance of Chemical Elements i n the Con-t i n e n t a l C r u s t , GeocBiirnei et Cosmochim. Acta V28, pp. 1280-1281. Tempelman-Kluit, D.J., 1968. Geologic S e t t i n g of the Fa r o , Vangorda and Suim Base Metal D e p o s i t s , Yukon T. i n Report of A c t i v i t i e s , Pt.. A, May to Oct., 1967, GSC Paper 68-1A, p. 43-52. Tempelman-Kluit, D.J., 1969, Anvil-Vangorda D i s t r i c t , Yukon (105K) i n Report of A c t i v i t i e s , Part A, A p r i l to October, 1968, GSC Paper 69-1A, pp. 38-39. Tempelman-Kluit, D.3., 1970, The R e l a t i o n s h i p Betueen Sulphide G r a i n s i z e and Metamorphic Grade of Host Rocks i n Some S t r a t a -Bound P y r i t i c Ores, Can. J . of E a r t h S c i . V o l . 7, pp.1339-1345. Tempelman-Kluit, D.O., 1972, Geology and O r i g i n of the Fa r o , Vangorda and Suim Concordant Zn-Pb d e p o s i t s , C e n t r a l Y.T., GSC B u l l . 208, 73 pp. T u r e k i a n , K.K., and UJedepohl, K.H., 1961, D i s t r i b u t i o n of the Elements i n Some Major U n i t s of the Earth's C r u s t : B u l l . GSA, 72, pp. 175-192. Van T a s s e l , R.E., 1969, E x p l o r a t i o n by Overburden D r i l l i n g at Keno H i l l Miraes L t d . , 2nd I n t e r n a t i o n a l Geochemical Symposium, Q u a r t e r l y Colorado School of Mines, V. 64, pp. 457-478. V i n e , J.D., and B. T o u r t e l o t , 1970, Geochemistry of Black Shale Deposits - A Summary Report, E c . G e o l . , V o l . 65, pp. 253-272. Vinogradov, A.P., 1962, Average Contents of Chemical Elements i n the P r i n c i p a l Types of Igneous Rocks of the Ear t h ' s C r u s t , Geochemistry ( T r a n s , of Geochimiya) pp. 641-664. UJanless, R. K., et a l . , 1967, Age Determinations and G e o l o g i c a l S t u d i e s , K ^ A s r l s o t o p i c Ages, Rept. 7, GSC Paper 66-17, pp. 40-41. UJedepohl, K.H., 1969. Ed. Handbook of Geochemistry VII-1 S p r i n g e r -Ver'lag, B e r l i n . UJedepohl, K.H., 1971, Zn and Pb i n Eommon Sedimentary Rocks: E c . G e o l . V o l . 66, pp. 240-242. -147-APPENDIX A Part 1: Diamond d r i l l hole logs Part 2: Dverburden d r i l l hole logs 66-PR-l 50-V loo-t'''' 150- , 200-250 . 276 O G l a c i a l o v e r b u r d e n 33-103" G r a p h i t e p h y l l i t e (3s 7) L i g h t g r e y t o c h a r c o a l g r e y , b a n d e d g r a p h i t i c p h y l l i t e c o m p o s e d o f a p p r o x i m a t e l y 50^ g r a p h i t e a n d 50J 7 3 - f a u l t q u a r t z . Q u a r t z a l s o a p p e a r s a s l e n s e s t h r o u g h o u t i s u l p h i d e s a r e a l s o p r e s e n t ( u p t o 2;4 p y r i t e a n d c h a l c o p y r l t e ) . Good f a u l t s c h i s t o s i t y . 113-160* h h y o l i t e t u f f ( ? ) W h i t e t o c r e a m y y e l l o w , p o r p h y r i t i c r h y o l i t e o r a n d e s l t e t u f f . P h e n o -c r y s t s (10>i) a r e q u a r t z a n d f e l d -s p a r - u p t o 1mm l n s i z e . Rock I s e a r t h y l o o k i n g I n p l a c e s a n d no s c h i s t o s i t y o r f o l i a t i o n e v i d e n t . G r a p h i t e p h y l l i t e R h y o l i t e t u f f e nd 50 CF-68-1 G l a c i a l o v e r b u r d e n 100 -3c. 150 -93' B l a c k , e x t r e m e l y f i n e g r a i n e d (<.02 mm), c a l c a r e o u s - q u a r t z - g r a p h l t e - s e r l c l t e p h y l l i t e . T h e r e a r e some w i d e l y s p a c e d bands(.5mm t h i c k ) o f more g r a p h i t i c r i c h m a t e r i a l . 139' P h y l l l t l c l i m e s t o n e 1 e a s i l y b r o k e n a l o n g I t s f o l i a t i o n p l a n e . K o s t l y c o mposed o f c a l c i t e (lc s e r l c l t e ? ) , 10;? q u a r t z , w i t h m i n o r g r a p h i t e . 190' 2 0 0 . 218 end B l a c k , f i n e g r a i n e d , c a l c a r e o u s , c h l o r l t l c -q u a r t z p h y l l i t e . T h e r e a r e c r o s s - c u t t i n g v e i n s o f c a l c i t e . 70-Sun-l G l a c i a l o v e r b u r d e n L i g h t g r e e n , m e d i u m - g r a i n e d m e t a - t u f f c o n -t a i n i n g a o s t l y f e l d s p a r ( p l a g . '•O;*). c h l -o r i t e (30i) a n d s e r l c l t e (25.i) w i t h ijb q u a r t z l e n s e s . Some o f t h e c h l o r i t e h a s b e e n I n t r o d u c e d w i t h t h e q u a r t z . T h e r e I s c a l c i t e v e l n l n g a s w e l l . E x t r e m e l y f i n e - g r a i n e d c a l c a r e o u s p e l l t e , c o m p o s e d o f c a l c i t e a n d q u a r t z , w i t h l i t t l e c h l o r i t e e n d some s e r l c l t e . P r o p o r t i o n s c a n ' t be d e t e r m i n e d b e c a u s e o f g r a l n s l z e . L i g h t g r e e n , m e d i u m - g r a i n e d m e t a - t u f f c o n -p o s e d o f p l a g i o c l a s e , s e r l c l t e , c h l o r l t e i p y r i t e a n d c a l c i t e v e l n l n g . P l a g i o c l a s e h a s a l m o s t e n t i r e l y b e e n a l t e r e d t o s e r -l c l t e . D a r k g r e y t o b l a c k , b a n d e d , f i n e - g r a i n e d g r a p h l t l c - s e r l c i t l c - c h l o r l t e p h y l l i t e w i t h m i n o r c a l c l t e ( ? ) . b a n d i n g i s d u e t o q u a r t z r i c h l a y e r s up t o 2mm t h i c k . L i g h t t o d a r k g r e y , f i n e - g r a i n e d c a l c a r e o u s g r a p h i t i c c h l o r l t e - q u a r t z p h y l l i t e . C a l c i t e i s medium g r a i n e d a n d h a s b e e n I n t r o d u c e d l a t e r . B l a c k , e x t r e m e l y f i n e - g r a i n e d , g r a p h i t e p h y l l i t e . Some q u a r t z a n d c a l c i t e v e l n l n g . T h i n s e c t i o n I s a l m o s t opaque d u e t o t h e h i g h c o n t e n t o f g r a p h i t e . 66-50 G l a c i a l o v e r b u r d e n *»2-311* P h y l l l t l c q u a r t z i t e T a n t o v e r y l i g h t g r e e n b a n d e d q u a r t z i t e c o m p o s e d c h i e f l y o f quartz(6c-?0^>) , b i o t i t e {5-10%), serlclte(5-15,i)and c h l o r i t e (0-15^ ). V e r y p o o r f o l i a t i o n t h r o u g h o u t . B a n d i n g I s d u e t o m i c a r l c h - e l t h e r b i o t i t e a n d / o r s e r l c l t e l a y e r s . S a m p l e s show some l l m o n l t e s t a i n i n g . 320-461* Q u a r t z - m i c a s c h i s t F i n e t o m e d i u m - g r a i n e d , w e l l - b a n d e d b i o t i t e (15-20>), c h l o r i t e (10^ ), quartz(60>) s c h i s t . B a n d i n g i s d u e t o a l t e r n a t i n g b i o t i t e r i c h a n d q u a r t z r i c h l a y e r s . Q u a r t z o f t e n a p p e a r s l n l e n s e s p a r a l l e l t o t h e f o l i a t i o n . D i s s e m i n a t e d p y r i t e I s n o t uncommon. e n d 6H-FH-1 -151 50. G l a c i a l o v e r b u r d e n 100. 150. 2b 107-207' 1 L i g h t p r e y t o b r o w n b a n d e d , M o t l t e ( 2 5 ; £ ) s e r i c i t e (5*) , q u a r t z ( ? 0 - i ) s c h i s t . W e l l -f o l l a t e d w i t h f i n e b a n d i n g o f b r o n z e b i o t l t e (,2nn) a n d q u a r t z ( l c a i ) p a r a l l e l -i n g t h e f o l i a t i o n . I n p l a c e s , c h l o r i t e I s p r e s e n t up t o 15>. B l u i s h m i n e r a l f o u n d l n m i n o r a n o u n t s i I s p r o b a b l y c o r d l e r i t e . B e l o n g s t o t h e b a n d e d c a l c - s l l l c a t e s . 200. 250J 227-386" S i l i c e o u s l i m e s t o n e W h i t e t o l i c h t g r e e n ( a n d b r o w n l n some c a s e s ) , b a n d e d , c h l o r l t e - b l o t l t e - s e r l c l t e c a l c l t e s c h i s t . B a n d i n g I s due t o i e a l c l t e a n d c h l o r l t e i b l o t l t e i s e r i c i t e a n d q u a r t z l a y e r s ( l n t h e o r d e r o f l-3mm) 3 0 0 J > w i d e . Some e p i d o t e I s p r e s e n t l n p l a c e s . 2c 350. 400J 407-78^' B a n d e d c a l c - s l l c a t e s L i g h t g r e e n t o t a n , v e i l - b a n d e d (.1mm) b l o t l t e ( 3 5 ; b ) , c h l o r i t e ^ ) , s e r l c l t e ( 5 ^ ) , q u a r t z f 5 5 * ) s c h i s t . The q u a r t z - b l o t l t e b a n d i n g I s p a r a l l e l t o t h e s c h i s t o s i t y . C a l c l t e , g a r n e t s , p y r r h o t l t e a n d e p i d o t e 4504 nay o r may n o t be p r e s e n t . >b 500. 550 553' B r e c c l a t e d c h l o r l t e - c a l c i t e - q u a r t z s c h i s t . C o u l d be a f a u l t . 600. 650. ?00. 2b 750. 703" Q u a r t z - c h l o r l t e v e i n c o n t a i n i n g some p y r r h o t l t e . eoo -152 LH-l G l a c i a l o v e r b u r d e n 2 8 0 ' L i g h t t o d a r k g r e y , f i n e - g r a i n e d , f i n e l y b a n d e d g r a p -hltlc(5^) m u s c a v l t e - b l o t l t e p h y l l i t e w i t h 10-15$ q u a -r t z ( p r e s e n t b o t h l n m a t r i x a n d l n v e i n s ) a n d 10-15^ p l a g i o c l a s e f e l d s p a r a l t e r i n g t o s e r l c l t e . "tfc c a l c i t e p r e s e n t a s v e i n s . 13d.?) 387* F i n e - g r a i n e d , g r e e n t o b r o n z e b a n d e d blotlte(50^), c h l o r l t e ( 1 0 ^ ) , serlclte(15S) q u a r t z s c h i s t , w i t h 5* c a l c i t e v e l n l n g p a r a l l e l i n g t h e f o l i a t i o n . B i o t i t e i s p r e s e n t I n b r o n z e c o l o u r e d l a y e r s a n d c h l o r i t e I s p r e s e n t l n g r e e n l a y e r s i e a c h l a y e r I s 2 t o 3 mm w i d e . 423' L i g h t g r e e n , f o l i a t e d c h l o r i t e s c h i s t i a m p h i b o l e h a s a l t e r e d t o c h l o r i t e a n d t a l c i 2-3>b p y r i t e p r e s e n t , some s e r l c l t e b u t n o q u a r t z . 576* D a r k g r e e n , medium t o c o a r s e g r a i n e d m a g n e t i c r o c k c o m posed o f a l t e r e d o r t h o p y r o x e n e ( t o a m p h i b o l e a n d s e r p e n t i n e ) , 15# o l l v e n e ( a l t e r e d t o a b o v e ) w i t h t h e r e s t b e i n g a m p h i b o l e a n d s e r p e n t i n e . M u s t h a v e b e e n a p e r l d o t l t e . 68-Sea-l -153 50- „ Glacial o v e r b u r d e n 100. i so-ius* E x t r e m e l y f i n e - g r a i n e d U.02mm), l i g h t g r e e n l n c o l o u r , s e r l c l t e - q u a r t z p h y l l l t e i . m i n o r c h l o r i t e a n d c h l o r l t o l d . R o c k s a m p l e I s r i n e l y l a m i n a t e d ( p r i m a r y b e d d l n g 7 ) 200-3b 250. 300. 3b 315" F i n e - g r a i n e d (<.04 n m ) , b l a c k , c h l o r l t e - s e r l c l t e -q u a r t z p h y l l i t e K i t h m i n o r c h l o r l t o l d a n d g r a p h i t e . F i n e l y l a m i n a t e d . 350-1*00-450. 3b 500. 550 . 600 . 610' F l n e - g r a l n c d (<.02mm), s e r i c i t e q u a r t z p h y l l i t e w i t h m i n o r c h l o r i t e , b i o t l t e a n d g r a p h i t e , l a n d i n g due t o q u a r t z r i c h f o l i a l-2mm t h i c k . T h e r e I s a g o o d f o l i a t i o n l n t h e r o c k . 650 , 6 ? 0 ' 3b S e r i c i t e , c h l o r i t e , q u a r t z p h y l l i t e w i t h p l a g i o c l a s e a n d m i n o r g r a p h i t e , p y r i t e , c h a l c o p y r i t e a n d s p h e n e . 700 -154-750 800 3b 850 J 900 I 915' G r e y t o b l a c k s e r l c l t e - c h l o r l t e - q u a r t z p h y l l i t e v l t h m i n o r g r a p h i t e a n d c h l o r l t o l d . F y r r h o t l t e l a a s s o c i a t e d v l t h q u a r t z / c h l o r i t e l e n s e s t h r o u g h -950 987 lend 66-8 0 50 100 G l a c i a l o v e r b u r d e n 150 165' W e l l - f o l l a t e d , b a n d e d , q u a r t z - b l o t l t e s c h i s t w i t h m i n o r p y r i t e a n d c a l c i t e . 200 2l*0* V h l t e t o l i g h t g r e y , w e l l - f o l l a t e d , b a n d e d , s e r i c l t e - q u a r t z s c h i s t w i t h 250 J- ' m i n o r c a l c i t e , b i o t i t e , - p y r r h o t i t e a n d p y r i t e . 3andlng i s due t o m u s c a v l t e r i c h l a y e r s w i t h q u a r t z r i c h l a y e r s l n b e t w e e n l l n t h e o r d e r o f 2-3mm). 300 350 P y r i t e , s p h a l e r i t e , g a l e n a , c h a l c o p y r l t e o r e . Q u a r t z I s m a j o r g a n g u e m i n e r a l . fcoo 1*50 !*• 500 550 530* F i n e - g r a i n e d , f i n e l y b a n d e d , b l a c k , q u a r t z ( r r a p h l t e p h y l l i t e . H a n d i n g I s d u e t o a l t e r n a t i n g q u a r t z and o r r a p h l t e r i c h l a y e r s ( l n t h e o r d e r o f l - 2 a a ) . T h e r e i s a p p r o x i m a t e l y 5-10^ g r a p h i t e , t h e r e s t b e i n g q u a r t z and m i n o r m u s c a v l t e a n d s u l p h i d e s . 600 650 650' M e d i u m - g r a i n e d , b a n d e d , p o o r l y f o l i a t e d , q u a r t z r i c h b l o t i t e - s e r l c l t e - o t a u r o l l t » q u a r t z c c r . l s t . T h e b i o t i t e h a s e m a i l z i r c o n s l n i t . L i t t l e o r no a l t e r a t i o n . 700 -15 6-750 eoo 850 790* Kedlun-grained, b l o t l t e - s e r l c l t e andaluslte s c h l s t i quartz ^-5> and usually appears ns lenses, r.ock Is not well f o l i a t e d . The andaluslte Is a l t e r i n g to b i o t l t e and c o r d l e r l t e . Serpentine, c h l o r i t e and s t a u r o l i t e are also present. Some hydrothermal a l t e r a t i o n . -2d 9 0 0 950 2d 1000 . 1 0 5 0 1030* Medium-grained, l i g h t green to brown, b i o t l t e , s e r i c i t e , quartz schist with 15^ andaluslte and minor serpentine, s t a u r o l i t e and py r i t e . 1100 -11U0* Medium-grained, bronze coloured, w e l l -f o l i a t e d b i o t l t e r i c h rock conposed of 1150 -| 70% b i o t l t e , 22% a l b i t e with 3^ s e r i c i t e and % pyrrhotlte. The plag-ioclase occurs i n lenses. 1200 1250 1 3 0 0 1350 13B0 1340' end Medium-grained b i o t l t e , s e r i c i t e , quartz, andaluslte, plagioclase schist with minor s t a u r o l i t e and tour.uallne Specimen Is not w e l l - f o l i a t e d . Hydro-thermal a l t e r a t i o n evldenti quartz occurs mostly l n lenses. -157-710kl (0-50 feet of overburden) Composed of angular fragments of quartz-bio-t i t e schist, mica quartzite and Individual sub-rounded fragments of quartz; flakes and small books of biotite and muscovite. Grainslze varies from .Irani to 8mm and the and i s generally tan in colour due to llmonlte stain. Same as above but less biotite and more muscavite. Light tan, f l a t angular rock fragments ranging in size from less than .1mm to 5mm1 average 1.5 mm. It i s composed of 10$ quartz, 35^ biotite quartz schist, bioti t e , JQ% muscovite-quartz schist. Same as 20-30. Light green to grey angular to sub-angular, poorly sorted t i l l composed mostly of quartz-blotite schist with some garnet and greenish muscpvlte schist. L i t t l e or no llmonlte pre-sent in this overburden sample. Fines are nearly a l l quartz grains. Bedrock Quartz rich blotite-chlorite_schist, composed of 50-60$ quartz, present i n quartz rich layers. The rest i s composed of alternating quartz-blotite and quarta-chlorlte layers ln the order of l-2mm. The amount of biotite is sl i g h t l y greater than that of chlorite. -158-?1042 (0-100 f e e t of overburden) Depth 0-10 Sample has approximately 70$ organic matter l n I t . Rest of the sample Is composed of angular sand and grav e l s i z e d fragments of g r a n i t e , b i o t l t e s c h i s t , quartz, black chert, and musco,-v l t e . 10-20 S i l t to gravel s i z e d m a t e r i a l composed of rounded quartz and gra n i t e fragments, 2$% b i o t l t e and s e r i c i t e p h y l l i t e fragments, and 40$ q u a r t z i t e fragments with minor black chert. S i l t s i z e d Is nearly a l l bronze mica f l a k e s . 20-30 Tan, s i l t to gravel s i z e d composed nearly com-p l e t e l y of knotty b i o t i t e - s e r i c i t e p h y l l i t e and q u a r t z i t i c p h y l l i t e fragments. There i s no gra n i t e evident i n sample. 30 -40 Sub-angular, tan to grey, s i l t to g r a v e l s i z e d m a t e r i a l composed of 15^ r u s t y quartz and g r a n i t e , 70/5 rusty s e r i c i t e p h y l l i t e fragments and minor quartz, b i o t l t e , and gabbro. 40-50 S i m i l a r to 30 -40 . 50-60 Tan to grey, poorly sorted t i l l composed of fragments of p h y l l i t i c quartzite (60JK) and s e r -i c i t e phylllte(30#) and minor quartz and gr a n i t e . 60 -70 90$ gravel s i z e d m a t e r i a l , cream to l i g h t grey i n colour, and angular to sub-angular l n shape. Fragments are quartz, q u a r t z i t i c grey p h y l l i t e , b i o t l t e p h y l l i t e and black chert. 70-80 Same as 60-70. 80-90 Gravel s i z e d m a t e r i a l with rounded and angular fragments of granlte ( 2 0 $ and rounded), 15;* -quartz," 15%~sericite p h y l l i t e , 15^ b i o t l t e s c h i s t and 40$ q u a r t z i t e fragments. 90 -100 Sand and gr a v e l s i z e d m a t e r i a l that i s brown-i s h grey l n colour and composed of 70% b i o t l t e s e r i c i t e quartz s c h i s t , 10% quartz and 20$ c h l o r l t l c p h y l l i t e fragments. 100 Bedrock Fine-grained, white to l i g h t brown, micaceous r i c h s c h i s t with a poor f o l i a t i o n . Banding, p a r a l l e l to the f o l i a t i o n , i s caused by b i o t l t e , quartz and muse v i t e l a y e r i n g w i t h i n the rock. Modes of the minerals are 50% quartz and 50% b i o t l t e and musc-a v l t e . -159-7104-3 (0-80 feet of overburden) Light brown to dark grey, very angular .unsorted t i l l composed of 25% gravel sized materlal-mostly rusty quartz rich phyllite fragments and some quartzi and 75% sand and s i l t sized material composed predominantly of quartz and feldspar, some chlorite, b i o t l t e , musco.vite , black chert and phyllite fragment Same as above. Light to dark grey, poorly sorted t i l l composed of 50% sand sized particles, 25% gravel and 25% s i l t . Gravel sized material is composed of 70% b i o t l t e phyllite and 30% quartz and quartz rich phyllite. Sand and s i l t i s composed of mostly quartz and phyllite fragments with minor muscovite, b i o t l t e , chlorite and some feldspar. Same as 20-30. 90% pebble sized material-sllghtly rounded. Frag-ments are composed of 50% s e r i c i t e - b i o t i t e phyl-l i t e , 10% calc-silicates and minor quartz, quartz-mica schist, granite and black chert. Charcoal grey, angular sand and gravel sized particles containing 15% sand made up of clear quartz, green chlorite, muscovite, quartzite, and phyllite fragments. The coarser material i s mostly green to black quartzite with minor quartz and p h y l l l t l c material. Very similar to 40-50. White to light grey, very angular sand and fine gravel sized material composed predominantly of foliated quartzite and green to black siliceous material. There are some sulphides present with 10% white quartz. Bedrock Light grey, fine-grained, banded, quartz-rich schist. The banding, ln the order of l-3mm, i s shown by alternating quartz-biotite r i c h layers. Modes are 60% quartz, 20% b i o t l t e , some musco.vite, altered feldspar and some chlorite. ' Dark grey to dark green, very fine-grained, chlorite phyllite composed of 50% quartz and the rest b i o t l t e and chlorite. Some quartz-chlorite velnlng, cleavage i s poor. Very similar to above but a good cleavage i s seen, and there is an increase in bronze mica and no quartz veining present. -160-710^5 (0-4o feet of overburden) Depth 0-10 60$ gravel sized t i l l made up of pebbles of quartz-ite and blot l t e - s e r l c i t e phyllite. The rest of the sample is made up of sand sized particles of the phyllite, calcite, quartz, mica and chlorite. 10-20 Same as 0-10 but no quartzite, rather 5-10$ free quartz. 20-30 Gravel sized material(2-4mm), angular and grey in colour composed mostly of phyllite chlps(75$) which are very slightly calcareous, 10$ limestone fragments and 15$ p h y l l l t i c quartzite. 30-40 Same as above. 40-50 Bedrock Light to dark grey, banded phyllite, very fine-grained, composed of 50$ quartz, ca l c i t e , 15$ serlclte and some bio t i t e , chlorite and graphite. Banding due to alternating light and dark layers probably due to biotle and-graphite content. Banding i s highly contorted. 71044 (0-20 feet of overburden) Depth 0-10 Light green to grey in colour, gravel sized mater-i a l composed predominantly of greenish coloured limestone fragments and minor biotite phyllite fragments. Limestone i s siliceous. 10-20 Same as above. 20-33 Bedrock 21 Banded quartz-biotlte-chlorite schist with some serlclte. It i s grey to brown ln colour and tends to be quartz ric h . Also Is calcareous. 27 Graphite phyllite with calcite and pyrite veining. 30 Banded quartz r i c h rock with no prominent schistosity, Banding Is due to quartz r i c h and chlorite ric h layers. There are also graphite r i c h layers. -161-71047 (0-150 feet of overburden) Depth 0-10 Light yellow to brown, very mica rich unsorted t i l l i grainslze varies from 1 cm to .1mm, the majority of fragments less than 1 mm. These fines are composed of 30% quartz, 60% muscovite and 10% biotlte. There i s minor limonite. Larger fragments(10%) are a l l sericite phyllite. 10-20 Very similar to above except there are 30% rock fragments present rather than 10 . 20-30 Tan to dark brown, sub-rounded fragments of gravel sized material composed of 20% sericite phyllite, 25% quartzite, 20% quartz, 25% s e r l -cite-chlorite phyllite and 10% biotlte schist. 30-40 Tan to light grey t i l l composed of 20-30% frag-ments greater than 2mm and the rest less than 2mm. They are predominantly rusty weathering sericit e phyllite. 40-50 Light grey to tan t i l l composed of s i l t , sand and gravel sized material. The coarse fraction (25%) i s made up of 30% quartz-biotlte schist, 20% muscovlte-quartz phyllite, 30% rusty weath-ering phyllite and 20% quartzite:fragments. The fines are madeup of particles of musco.vite, bi o t l t e , quartz, chlorite, and minor pyrite and blotlte-quartz schist. 50-60 Nearly 100% gravel sized material composed of black chert (50%), rusty seric i t e quartz schist (25%) quartz(10%) and minor b i o t l t e , muscovite, and biotlte schist. 60-70 Nearly 100% gravel sized material that is dark grey to dark brown ln colour composed of 15% quartz, 10% muscovite quartz phyllite, 50% quartz-i t e , 10% calc-silicates and 10% black chert. 70-80 Sample needs to be resleved and washed. 80-90 Angular, predominantly gravel sized material made up of 10% quartz, 55% black chert, 20% muscovite quartzite and 15% quartz r i c h phyllite. 90-100 Similar to 80-90. 100-110 Same again. 11.0-120 Same again. 120-130 70% gravel and 30% sand sized material composed mostly of black chert, biotlte schist and calc-s i l i c a t e s . There i s 2% pyrite throughout! has not weathered to limonite. 130-140 80% gravel and 20% sand sized particles com-posed of 40% ca l c - s l l l c a t e s , 10% muscovite quartz schist, 30% dark quartzitic material and 20% p h y l l l t i c quartzite. 140-150 Same as 130-140. -162-71048 (0-130 feet of overburden) Depth 0-10 Light grey to tan, angular sand to gravel sized material composed of 15$ rusty weathering se r l c l t e phyllite, 5$ weathered granite, 5$ quartz, 35$ banded c a l c - s i l i c a t e s , 30$ fresh serlc l t e phy-l l i t e and 10$ quartz-llmonice fragments from veins, 10-20 Similar to above except there i s no granite or free quartz. 20-30 S i l t to gravel sized material! the gravel Is composed of mostly serlclte phyllite fragments and c a l c - s i l i c a t e s . The flnes(75$) are made up of muse vite, b i o t i t e , chlorite, quartz, garnet and serlclte phyllite. 30-40 Cream to tan, sand and gravel(20$) sized mater-i a l , sub-angular and mostly composed of calc-s i l i c a t e s and sericite-quartz-phylllte. 40-50 Same as 30-40. 50-60 100$ gravel sized t i l l , tan to cream ln colour containing 20$ free quartz and 80$ c a l c - s l l l c a t e fragments. 60-70 Not recovered. 70-80 Same as 50-60. 80-90 White to cream gravel sized particles, cub-angular, containing fragments of quartz(15$), s e r i c l t e -quartzite(60$), calc-sllicates(10$) and quartz with pyrite. 90-100 Same as 50-60. 100-110 Cream to tan, angular, gravel sized material composed of fragments of quartz(30$), and sericite-quartz phyllite. 110-120 Same as 100-110. 120-130 Sand(60$) and gravel(40$) sized, white to tan ln colour, containing fragments of quartz(60$), quartz with pyrlte(10$) and calc-sllicates(30$). -163-71049 (0-20 feet of overburden) Depth 0-10 90$ gravel sized material, white to light yellow ln colour, 80$ composed of quartz and granite fragments, the rest being quartz rich muscovite phyllite. A l l fragments are very angular but equant in size. 10-20 Sar.d(50$) and gravel sized material, white to light yellow In colouri composed of granite and quartz rock fragments, and particles of quartz, muscovite, b i o t i t e , chlorite, granite and fe l d -spar in the fines, 20-25 Bedrock White to light yellow, coarse grained muscavite, rich granite. Feldspars have been altered to serlclte yielding yellowish white colour. Modes are 30$ quartz, 60$ altered feldspar and 10$ musenvite. 71046 (0-30 feet of overburden) Depth 0-10 White to light cream in colour, gravel sized material composed of quartzitlc phyllite chips. Some are si i g h l l y ealcai-eous and very angular. There Is less than 5$ -free quartz. 10-20 Dark grey to light green, gravel and some sand sized material, angular in shape. Contains 5$ calcite, 5$ quartz, 15$ phyllite chips and 75$ calcareous schist with calcite velnlng. 20-30 Same as 10-20. 30-33 Bedrock Green to brown banded quartz mica schist, composed of 30$ b i o t i t e , 50$ quartz and some chlorite and muscovite. The chlorite i s us-ually associated with the quartz. -164-71050 ( 0-40 overburden) Depth 0-10 Not recovered. 10-20 Light green to tan brown, poorly sorted, angu-lar fragments ranging ln size from .1 mm to 10 mm. Approximately half i s gravel and the rest sand. Tan colour due to llmonlte stain due to weathering of pyrite and biotite on fracture surfaces of the rock fragments. T i l l Is com-posed mostly of serlcite-biotite-quartzlte bits which are very rusty weathering. Some clear and white quartz i s present with minor bi o t i t e , muscovite, chlorite and rusty quartz. 20-30 Light brown to grey, poorly sorted, sub-angular to sub-rounded t i l l composed predominantly of serlclte and blotite-chlorite phyllite fragments and the fines being composed of quartz, b i o t i t e , muse: vite and chlorite particles. 30-40 Light grey to tan brown, angular to sub-rounded poorly sorted t i l l very similar to 10-20. 40-50 Bedrock 40 Medium grained, muscovite granite with altered feldspar. 44 Banded phyll11 e. 50 Altered granitej white to yellow ln colour, v i s i b l e pyrite present. Contact? -165-71051 (0-200 feet of overburden) Depth 0-10 Poorly sorted, greyish brown-silt to clay sized material composed of muscovite-blotlte phyllite fragments and minor quartz and chlorite. 10-20 Gravel sized material, poorly sorted in rock type consisting of 30$ quartz, 60$ biotite-muscovite-quartz schist and 10$ grey phyllite. The fines are mica flakes.' 20-30 Light brown to light green gravel sized material consisting of angular to sub-angular chips of 10$ quartz, 80$ mica schist and minor calc-s i l i c a t e s and greenish quartzite. 30-40 Mostly gravel sized material up to 2 cm in size, tan to light grey fragments of quartz(10$), biotite schist(30$), rusty serlclte schlst(30$), and chlorite phyllite(30$). 40-50 Poorly sorted but of the same composition. 50-60 Mostly gravel sized material up to 2 cm ln size, composed of 15$ quartz, 35$ quartz rich rusty s e r l -clte phyllite, 20$ c a l c - s i l i c a t e s , 20$ greenstone, and 10$ b i o t i t e . 60-70 Brown to light green, gravel sized material sub-angular to sub-rounded containing 10$ fragments of biot i t e schist, 20$ quartz and 70$ calcareous light green rook (ca l c - s i l i c a t e s ? ) . 70-80 Same as 60-70. &0-90 Angular, dark brownish grey gravel sized material composed of nearly 100$ biotite chlorite schlst( band-ed and slightly calcareous). 90-100 Same as 80-90. 100-110 Angular, white to brownish grey ln colour, gravel-sized material composed of 40$ serlclte schist fragments, 50$ blotite-chlorite schist, 5$ quartz, and 5$ rusty schist fragments. 110-120 Same as above. 120-130 Same again. 130-140 Same again. 140-150 White to light green, fresh, angular fragments composed o f gravel sized: 40$ quartz, 30$ biotite schist and 30$ greenish c a l c - s i l i c a t e s . 150-160 S i l t to gravel sized, dark brown in colour, angular and fresh fragments composed of 70$ blotlte-chlorlte s e r i c l t e - p h y l l i t e , 20$ quartz and 10$ c a l c - s l l l c a t e s . 160-170 Same as 150-160. 170-180 Not recovered. 180-190 White, sand and fine gravel sized material com-posed of 90$ quartz, quartz and granite, and feldspar fragments, the rest being chlorite, biotite schist. 190-200 Same again. -166-71052 (0-130 feet of overburden) Depth 0-10 S l i t to gravel sized material, dark grey In colour and sub-rounded in shape. Composed of fragments of diorite, quartz and quartz rich phyllite. 10-20 Light grey to dark grey, sand and gravel sized material composed of fragments of banded calc-sillcates(40%), quartzite(20%), quartz(5%)i granite(10%) and quartz rich b i o t l t e - c h l o r l t e -phyllite (20%). 20-30 Tan coloured, sub-rounded to rounded, sand sized particles composed of 20% quartz part-i c l e s , and the rest are green c a l c - s i l i -cates. Sample i s calcareous. 30-40 Tan to dark grey, well-sorted gravel sized material, sub-rounded to well-rounded: composed of 30% granite fragments, 45% quartzite and 25% c a l c - s l l l c a t e fragments. Very minor micaceous material present. 40-50 Same as 30-40. 50-60 Light grey, sub-angular, gravel sized t i l l , composed of fragments of quartz(5%). chlorite schist(10%), biotlte schist(5%) and light green quartzite(80%). 60-70 Similar to above but granite has increased to "20%. 70-80 Nearly 100% gravel sized fragments of limestone and calclte. White to light grey i n colour. 80-90 Same as 70-80. 90-100 Similar to above. 100-110 Light grey, sub-angular to sub-rounded gravel composed of fragments of calc-slllcate(10%), limestone(75%) which i s siliceous, calcite(5%), and minor quartz and chlorite mica schist. 110-120 Same as 100-110. 120-130 Same as above. 130-152 Bedrock Banded, biotite-chlorite c a l c - s l l i c a t e composed of quartz, bi o t l t e , chlorite, altered feldspar? and calclte. The banding i s due to alternating layers of light and dark coloured minerals. 71069 ( 0-45 feet overburden) 100% angular to sub-angular gravel sized material composed of quartz and mica phyllite. The ser i c i t e rich phyllite i s sometimes rusty weathering. 15% quartz 85% phyllite Exactly the same except the phyllite i s more rusty weathering and the quartz content has increased to 20%. Same again except biotlte i s increasing! s t i l l predominantly sericite phyllite. Same as above. Composition i s the same but the gralnsize Is much smaller. 71070 ( 0-4-0 feet overburden) Not recovered. Tan to light brown, sub-angular, sand and gravel sized material, composed of fragments of quartz, granite, muscovite, biotlte , biotlte-muscovite phyllite, calc-silicates and some minor rounded chert fragments. Granite, quartz and muscavlte make up the bulk of the finer grained materlal-( 1.5 ma 80% sample).- Larger fragments are pred-ominantly •mica phyllite. White to light brown, gravel sized angular frag-ments ofi rusty weathering se r i c i t e schlst(50%), quartz(15%), calc-silciates(5%). and 20-25 % rounded and weathered granite fragments. Light tan to brown, sub-angular to sub-rounded well sorted, approximatley a l l sand and small gravel sized material. Subangular fragments(85%) are predominantly com-posed of rusty weathering serici t e schist.' Rounded fragments (15%) & r e made up of black chert, granite and free quartz. -168-Depth 0-40 40-50 50-60 60-70 70-80 80-90 0-10 10-20 20-30 30-40 40-50 50-60 60-75 71071 (0-90 feet of overburden) Not recovered. White to light brown, s l i t and sand sized, angular fragments oft /-quartz-white In colour 60% ^muscovite (.biotlte 15% Sericite(talc?) schist 5% chlorite 5% pyrite grains 10% biotlte-quartz schist Same as above but some galena present with the pyrite. Same composition as above but 10% of the sample i s gravel sized. White to light grey, s l i t and sand and gravel sized fragmentsi composed predominantly of bleached granite fragments. The feldspar i s white and dusty looking. L i t t l e or no muscovite, no sulphides present. Same as 70-80. 710?2 (0-75 feet of overburden) Grey to brown, poorly sorted, sub-angular material composed o f i 25% fine grained mica flakes and quartz 1 50% medium gralned(sand and small gravel) quartz biotlte schist, seri c i t e schist, and quartz-. 25% coarse grained (4-5mm) fragments of biotlte phyllite, chlorite phyllite and f e l s i t e ( ? ) . Similar to above. Same again. Approximately 90% composed of sericit e and biotlte schist which i s not rusty weathering. The sample is poorly sorted, ranging in size from .05 to 2mm. Some rounded quartz present. Same as 30-40 with 5-10% quartz. Mica-quartz sand with fragments of quartz and phyllite. 10 to 15% sulphides present. Ore 1 galena, pyrite with a about 60% mica quartz sand. -169-Depth 71073 (0-140 feet of overburden) 0-10 Rusty brown to dark grey sand sized particles of: 70-75$ rusty weathered quartz and granite grains, 3-5$ ore fragments 15$ grey phyllite fragments(with some sulphides) 5-10$ serlclte phyllite fragments Grains are a l l sub-rounded to rounded. 10-20 Rusty brown sand and gravel sized grains, vary-ing from very angular quartz to very rounded chert pebbles. It Is composed of a heterogeneous Jumble of fragment typesi black chert(very rounded) black phyllite (sub-angular) granite and quartz (rusty and sub-rounded) calc-silicates mica-schist ( serlclte greater than biotite) 20-30 Mostly gravel sized material that i s sub-angular. It i s composed of: 20$ rusty weathered granite 5$ chlorite schist 50$ mica-schist (rusty serlclte) 15$ biotite schist 5$ grey phyllite 5$ calc-silicates 30-40 Similar to 20-30. 40-50 Busty to dark brown, fine to gravel-sized, rounded granite to sub-angular phyllite and schist frag-ments, composed of: 85$ phyllite 10$ granite Pine grained quartz and muscavlte Some llmonlte staining evldent-pyrite? 50-60 Rusty to dark brown, s i l t and sand sized particles composed of muscavlte, b i o t i t e , quartz and grey serlclte phyllite. These make up 90$ of the sample. Some granite and weathered pyrite grains-" present. 60-70 Same as 50-60. 70-80 Light grey to rust brown s i l t and sand sized particles composed of quartz(25$), serlclte phyllite (40$), muscavlte(15$), feldspar(5$), llmonlte(5$), and minor biotite and chlorite. 80-90 Same as 70-80. 90-100 Light to medium grey, s i l t and sand sized, sub-angular t i l l composed principally of: 75$rsericlte schist (fresh) tblotlte schist 5$ serlclte schist (rusty) 10$ white quartz 5$ chlorite schist 10$ mica flakes 100-110 Same as 90-100 except most of the serlclte schist Is rusty. Some pyrite. 110-120 Same as 100-110 except no pyrite seen. 120-130 Light grey, s l i t and sand sized particles com-posed of: grey sericlte schist(50$), biotite schist (15$). white quartz (25$) and the rest mica flakes. A l l fragments are angular to sub-angular. 130-140 Same as 120-130. -170-Depth 71074 (0-230 feet of overburden) 0-10 Grey to brown, poorly sorted, sub-angular t i l l com-posed of a heterogeneous mixture of granite, grey phyllite, rounded chert, sub-angular quartzite, and chlorite schist. Fines consist of a. quartz-mica sand. No one thing predominates. 10-20 Not recovered. 20-30 Very similar to 0-10. 30-40 Grey to brown, 40% gravel and 60% s l l t - s l z e d sub-angular t i l l . The coarse fraction i s composed of 25% sericite-blotlte schist, 50% p h y l l l t i c quartzite, 10% black chert and 10% quartz. L i t t l e or no granite present as fragments. The fines consist of a quartz and mica sand. 40-50 Light brown bimodal, sub-angular to sub-rounded t i l l . The s i l t ( 8 0 % ) consists of mica sand and the coarse of mica schist, quartz(together make up 65% of the coarse fraction), feldspar and rounded granite fragments. 50-60 Not recovered. 60-70 Mostly made up of fine-grained ( s i l t size) mica sand with the blot l t e s s e r i c i t e ratio equal to 6 0 i 4 0 . The coarse fraction(15%) i s composed of angular fragments of mica schist and quartz and of rounded fragments of feldspar, quartzite and chert. 70-80 A l l s i l t and sand sized material, composed of quartz and mica. 80-90 S i l t and sand sized material as above. Some chlorite present in this sample. 90-180 : Not recovered. 180-190 White to light tan in colour, bimodal'till - 2 0 % gravel and 80% s i l t - composed predominantly of sub-rounded quartz(70%), the rest being b l o t l t e -sericlte schist, chlorite schist and black chert. 190-200 Same composition as above but i s 100% fine-grained s i l t . 200-210 Same again. 210-220 Same again. 220-230 Same again. -171-71075 (0-258 feet of overburden) Depth 0-10 90$ gravel sized material composed of angular fragments of granite(15$). angular grey phyllite(15$), rounded black chert(15$), grey-green quartzlte(50$), and quartz(10$) 10-20 Poorly sorted, white to black ln colour composed of similar rock types to above. 20-30 Same as 10-20. 30-40 Same as 10-20. The exact modes of the constit-uents change but the overall appearance remains the same. 40-50 Gravel sized material with very few fines, white to grey ln colour and composed predominantly of subrounded granite(80$) fragments the rest being serlclte phyllite, diorite and sandstone. Very l i t t l e angular material present. 50-60 Well sorted gravel sized material composed pre-dominantly of granite with some sandstone and greenstone. 60-70 Blmodal, 20$ gravel and 80$ s i l t sized material composed of quartz, mica, feldspar, granite, phy-l l i t i c quartzite and mica schist. 70-80 Same bimodal distribution as above. Fines are com-posed of quartz-feldspar-mica sand and the coarse grained fraction i s composed of 50$ sub-angular granite, 20$ sub-angular phyllite quartzite, 20$ well-rounded chert and 10$ s l i g h t l y rounded black chert and sandstone. 80-90 Similar to 70-80 but only 10$ coarse grained mat-e r i a l . A l l rounded and sub-rounded. 90-100 Nearly 100$ sand and s i l t sized material, composed of sub-angular quartz-feldspar-mlca sand and s i l t . 100-110 Nearly 100$ s i l t sized material composed of: 70$ quartz and muscavlte 5$ black chert 15$ feldspar 10$ biotite 110-120 Poorly sorted, s i l t to gravel sized material,composed of a hodgepodge of granite, quartz, chlorite schist mica schist, chert, quartzite, d i o r i t e , and black chert. The sand and s i l t i s made up of quartz, mica and feldspar. No one thing predominates. 120-130 A l l sllt(80$) and sand sized particles very similar to 100-110. 130-140,, Same again. 140-150 Same again. Quartz i s subrounded l n a l l cases. 150-160 Same again except there i s 5$ gravel sized material consisting of quartz and granite. 160-170 Same as 120-130. 170-180 Light brown s i l t and gravel sized material very sim-i l a r to 70-80. 180-240 Not recovered. 240-258 90$ sand and s i l t sized material consisting of mica-phylllte and bi o t i t e - s e r i c l t e schist. S i l t tends to be more biotite rich than the others: l i t t l e or no feldspar. No rounded chert present either. - 1 7 2 -?10?6 ( 0-226 feet of overburden) Depth 0-10 Mostly gravel sized material with with- some sand. Fragments range from well-rounded to sub-angular. Sample consists of granltei 30% rounded and 10% sub-angular, and a hodgepodge of rounded quartz, sub-rounded chlorite schist, rounded black chert, rounded phyllite and large quartz pebbles. 10-20 Similar to above. 20-30 S i l t to gravel sized material that i s the same as above. 30-4-0 90% gravel sized fragments of fresh sub-angular biotlte granite(50%), rounded muse vite granite (15%), sub-angular phyllite(20%) and 15% chert pebbles. 4-0-50 Bimodal distribution of 20% gravel and 80% sand sized particles. The gravel i s made up of rounded granite, quartz, and chert fragments! and angular p h y l l l t i c quartzite and granite. The sand i s mostly granite, quartz, feldspar and chert particles. 50-60 Sub-rounded gravel sized material consisting of granite (30%), sericite phyllite (25%), black chert (15%). very rounded chert pebbles (5%) and p h y l l l t i c quartzite. 60-70 Sub-angular s i l t ' and sand, sized particles com-posed of quartz, feldspar, b l o t i t e , muscovite, grey phyllite,chlorite phyllite & black chert. 70-80 Similar to 60-70. 80-90 Not recovered. 90-100 Quart-mlca-phyllite sand with l i t t l e or no gravel sized material. 100-110 Similar to 90-100. 110-120 Same again. 120-130 Light to dark grey, sand and gravel sized fragments containing angular pieces of black quartz rich phyllite with some pyrite, rounded granite and quartz and various types of phyllites. 130-140 S i l t and sand sized particles composed of 40% rounded quartz and granite fragments and 60% grey to black quartz r i c h phyllite. 140-150 80% black, blotlte-sericlte-graphlte phyllite particles of sand and fine gravel size. The rest are quartz grains. 150-220 Not recovered. 220-226 S l i t to gravel sized material containing 70% bronze and black mica schist, light green cal c - s i l i c a t e s and some quartz grains. The fragments of schist are very angular. APPENDIX B RESULTS EMISSION SPECTROSCOPY RESULTS Of RFOROCK (PPM) FF AS PEP CFNT FF2H3 81 ANK I P /.EPfl MEANS THAT E L c Ml N T I S HrtUW Dt T F CT I PN 11 M IT 9998 =• 1 0 , 0 0 0 PPM 9999 MFANS >10,000 P P M IIP.1LL HOLF 68-.SEA-1 FOO TAC.F H f l F SP HA CR CC NI AG T I CU IN V HO 81 GA SN PR MN F F. 68! 936eSFA 141 4CC 5 00 200 5C 8C 09999 50 50 80 3 30 0 151000 20 .6811 136FSFA 1'. 1 4CC 5 00 2C0 30 100 09999 0 40 100 2 40 0 20 100 0 71 (i811?'.(B5HKl 400 1000 ?00 40 100 09998 1C 4C 100 0 4C C 2C 900 10 6RU4D68SFA141 30 C 500 200 30 60 09998 50 40 60 2 3C C 15 6CC 1 c 6 81 1 (.5 f P SF A 11, i ?CC 50C 700 5C 7C C9999 50 4 0 100 2 30 0 107000 i r 6>U67068SF«II6 40C 40 0 150 40 60 9999 100 4C 15C C 30 5 15 500 7 681 1 65C8SF A14C 4CC 500 1 30 40 100 9998 50 40 180 2 40 15 700 1C 681209fBSFA14C 4C0 800 1£0 20 7C 9998 3C 4 0 80 2 40 20 500 P 6917306PSFA140 3001 20 0 150 30 100 9998 5 40 IOC 2 40 15 600 B 6 8 l Z 4 2 f 8SFA 14 I 4CC 80C 2C0 5C 150 9998 30 50 120 2 40 25 900 10 68126068S FA 140 400 400 70C 6C lao- 9998 5C 50 15C 2 30 202000 21 68128068SEA140 200 100 500 220 800 9999 6 40 20C 2 25 152C0C 21 681300( 6SFA 14C 4CC 200 1 50 40 100 9998 • 0 40 100 2 30 0 15 1000 15 68131568SFA 140 150 20C 150 60 15C 9999 90 4C 120 3 30 0 101000 20 68134068SFA140 400 600 200 50 100 9998 100 40 200 2 4C C 18 1000 1 5 6813646eSFA140 15C 3CC . i eo 5C 12C 9999 100 30 100 2 30 0 20 800 15 68138068SFA140 150 400 1 50 4C 60 9000 100 30 100 2 30 5 151000 7 68]4C068SEA14C ICC ?00 100 30 60 4000 100 40 30 2 20 C 6C1C0C c 6R14206FSFA14C 20C 4CC 7CC 6C 120 9999 100 50 400 3 30 0 151200 21 68144068SFA140 80 100 100 30 60 9998 60 40 ICO 3 3C c 151500 .70 6814656RSEA 143 4CC 50C 700 60 100 9999 60 50 300 3 40 5 201000 20 68148068SFA143 4CC 50C 200 60 IOC 9999 50 50 200 2 30 . 5 401000 2C 68I50068SEA140 TOO 800 200 30 90 9999 60 40 2CC C 30 5 20 200 10 681572<f SEA14C 4CC 300 200 60 200 9999 100 40 200 2 3C C 15ICOO 10 68154568SEA140 BC IOC 80 30 100 999S 40 40 70 3 20 0 . 15 800 20 68157068SFA140 300 500 100 40 100 9998 80 40 20C c 4C c 15 500 ! C 681 59068SFA 14C 3CC 40C la o 3C 1 00 9998 80 50 150 2 30 5 20 1000 10 68161P68SFA140 400 400 ISO 40 IOC 9998 80 4C 2CC ? 30 5 2 C 1 O 0 10 68163468SFA140 100 400 1 80 50 1 00 9998 80 40 200 2 30 5 2C 400 10 6916506eSEA 14C ?CC 40 C 1 FO 4C IOC 9999 50 30 103 2 40 0 15 700 1 C 6B169C68SFA140 300 500 180 300 100 9999 70 4C ICC 0 3C C 15 500 7 68171068SEA140 300 500 200 40 100 9999 100 50 3CC 2 40 C 201C00 ' 70 68173068SFA14C 5C0 30C 180 50 1 CO 9999 100 50 too 2 30 0 20 i o n o 15 68175068SEA140 700 600 1R0 20 IOC 9999 0 30 ICC 2 3C c 2C 100 1 5 681 77C68SF »143 30 C 600 200 50 120 9999 70 30 200 2 3C c 1C1C00 21 6817C06PSFA 144 5 CC 50C 20C 5C 170 9999 40 30 300 3 30 0 201000 70 6818086eSEA140 200 400 180 15 40 09999 30 30 ICC 0 3C C 501000 5 691835* ESFA 14C 4 CC 600 1 PO 30 .100 09999 30 30 100 2 40 0 301000 t 681 B5966SFA 140 400 40010CC ICO 400 19999 25 40 40 C C 20 0 601000 20 68187< 68SEA140 4001000 200 • 30 40 09998 40 40 80 2 3C C 2C 500 15 6 8 l 8 S 5 f 8SFA 143 4CC 40C IPC 5C 20C 0999O 100 40 500 20 30 0 20 500 10 681915£P S F A143 ICC 40C 18C ec ?CC 09999 100 40 200 4 30 0 70 800 ' 21 6819456PSFA143 4002000 200 30 100 09999 40 4C 100 2 4C C 2C 500 1C 68196568SFA14C 4CC7 000 700 30 80 09999 40 40 100 2 40 0 20 50C 10 68198568SEA140 50C100C 200 40 80 09999 30 40 IOC 2 4C c 30 700 20 OR ILL HOLE 6 6-PR - l IOTAGE HCLF SP PA CR CO N I AG T I CU IN V MO 81 GA SN PB KN FF «F 661113 66PP 1 9C 3C0 400 0 0 0 . 0 200 0 50 . 0 2 0 30 30 25 100 1 10 661123 66PP190 3C0100C 0 0 0 C 30C 4C 5C 0 2 0 30 15 20 100 1 70 661143 66PR190 3001000 0 0 0 0 30C C 60 0 2 0 30 30 30 180 1 20 661223 660R190 250 200 0 0 7 0 400 0 30 0 5 0 30 3C 4C 30C 2 35 661243 66PR 19C 3C0 IOC 0 C 0 0 300 0 30 0 3 0 30 30 30 400 i ? 2C 661263 66PP190 300 30 0 0 0 C 40C c 30 0 3 0 30 3C 4C 500 7 15 66133 66PR161 15C 700 120 50 100 09998 40 50 120 2 0 30 c 15 50C 10 0 66143 66PP130 2 C C 4CC 6C 2C SC C5000 60 40 120 25 4 20 5 30 400 6 c 66153 66PP130 200 SOO 100 30 300 0999e 6C 40Z00C 40 C 25 C 15 200 e c 66163 ItPP. 13C 1 CC 300 60 30 150 06000 100 40 200 40 0 20 0 30 100 7 0 66173 66PP130 IOC 0 4CC 15C10CC C40CC 50 40 7C 4 0 7 15 8 600 10 0 66183 66PP130 200 500 50 30 120 09000 50 40 90 40 0 15 C 15 ICC 5 c 66193 t t P ? 13 C ec 500 70 20 150 05000 40 40 400 25 0 20 10 -15 100 2 c 661103 66PR130 300 400100C 40 7C0 C70CC ?C 6C 70C 5 0 25 2C 15 500 a 0 661163 66PP130 100 501000 50 830 01500 5C 60 40 0 0 • 0 C 1C1C0C l.C •0 661173£(PR IF 3C 5CC 50C 150 35. 5C C6000 60 40 80 10 0 30 0 20 300 8 9C 661183 66 PP 1 30 300300C 200 25 7C C9998 40 5C 3C0 2 0 3C 1C 15 400 p C 661193 <6PR13C 3CC1000 2 00 70 1 50 09998 60 50 200 0 0 30 C 4C 5CC 10 0 661203 66PP. 130 ?CC15CC 18C 4C 2 CC C9998 100 5C 6 CC 30 0 30 0 4 0 400 6 0 661213 66PR130 200 100 40 7 50 09000 . 6C 40 8C 12 C 7 5 4C 700 £ C -175-ORILL HOLF 66-8 FOOT Af,F Kll E SR RA CR cn NI AG TI CU I N V MO ai GA SN PB FF AS SB 668120 AN61 40 500 200 50 100 19998 100 50 15C 2 30 IC 4C 700 e C c 668140 AN63 C 300 90 30 60 C9000 40 30 50 2 20 0 15 400 10 0 c 668150 AN6 1 200 400 120 40 7C C9999 90 50 1 CC 3 0 30 5 15 50'0 ?0 6681 65 AN6 1 50 600 1 00 70 120 09993 60 40 100 2 3C C 20 500 20 0 0 668175 AN 6 2 2CC 60C 100 4C 7C 09998 40 50 100 2 0 25 0 15 400 2C 663100 AN6 2 40 '.00 100 40 100 09998 60 40 80 2 3C c 15 500 10 0 0 6682C0 AN61 2 CC 800 100 30 50 09998 20 50 100 0 0 25 0 15 300 IC 668215 AM 6 1 1301000 1 50 6C 120 060CC 40 40 1 CC 0 40 0 18 400 IC 0 0 669220 AN6 2 150 50C 1 20 4C 5C C9998 50 60 70 2 0 25 c 151 COO 10 668228 AN61 15C 800 1 ?0 30 30 08000 30 50 60 2 0 25 e 15 20C IC 668240 AN 6 1 5C30CC 15C 5C 100 05000 300 50 80 2 40 5 40 800 10 c c 668260 AN61 502000 150 40 40 08000 30 50 100 0 40 5 2CC 500 10 0 0 668270 AN31 ec30oo 70 100 50 C50C0 000 501000 30 0 20 0 50 600 8 668285 AN50 0 0 5 600 100 4 30C 500 10 0 15 7 c 400 40 21 6682<:0 AN5C 4009999 2 400 80 200 403000 40 0 18 8 3599994000959«3COC 70C 668310 AN 50 3CC99S9 0 400 0 100 3C2CCC 4C C 18 8 2099993000 9S991CCC 4CC 668320 AN50 4009999 0 150 0 200 2040CC 50 C ie 12 4C995 95C0099991200 500 668330 AN5C C 150 ICO 90 C 20040007000 40 30 15 18 3099994000 99995000 600 668340 AN5C 6CC9999 0 30 C c 30C 2 06OOO 50 0 12 15 6099995000 99951 5 cc 7CC 668360 AN50 5009999 0 150 0 20C 2C2C00 40 C 15 6 2 59 9992 000 <)959 1Cn0 4CC 668375 AN5 0 7000999 0 180 0 200 203000 40 0 18 8 3C95S52CC09999 400 400 6683P0 AN 50 8CC9999 1 18C 3 150 IC 700 50 0 10 7 609 9991000 99991000 300 668390 AN50 0 300 1 200 7 180 181500 30 C 35 7 89999 8005«993CCC 15C 668400 AN50 0 100 1 200 30 30 255000 30 0 40 10 5999910009999700C C 668415 AN 5 C C 100 1 30C 3C 35 15 100 30 C 28 8 89999 400 99993000 100 668430 AN50 0 0 1 500 40 40 209959 20 0 35 7 15 SC1C00 "9905000 PO 668440 AN5C C 0 10 400 80 45 1509998 30 0 20 10 109999 1000 959550 no ICO 668450 AN50 0 0 4 400 12 45 30C4000 25 5 20 12 659991000 9 99 9 100 0 *0 668*60 AN50 0 100 1 500 40 40 159999 20 C 25 IC 165C00 300 999950 00 00 668470 AN5C C 100 1 400 25 25 68000 25 0 20 10 09998 700 9<;sq/,r;cC ac 668500 AN 50 0 0 1 75 45 2CC 2C6C00 25 2 15 15 159999 700 999910 )0 2CC 668520 AM5 0 0 10 1 500 40 50 303000 25 5 2C 10 69999 100 9999 2000 100 66852e AN32 3O05O0C 2C0 18 IOC 3C40001000 301200 20 30 109999 600 B 0 0 668530 AN32 601000 40 5 4C 4C30CC1CCC 20 200 10 18 1C9999 500 IC3CCC c 668550 AN34 C 2 00 15 50 30 4020002000 40 70 15 20 1C95S81C0C 20 c c 668580 AN 61 2C01500 1 5C 40 5C C990fl 60 30 100 2 30 10 100 600 15 0 0 668620 AN63 300 400 100 30 50 09998 30 40 ICC 0 30 C 30C1500 10 c 0 66865C AN63 100 600 1 00 50 70 09998 30 30 100 2 30 0 80 500 IC c c 668670 AN61 5C1CCC 100 4C ICO 09998 60 40 80 2 30 0 50 400 10 c c 663700 AN'6 3 40 600 100 40 IOC C9998 50 40 100 4 3C C 100 500 10 0 0 668710 AN61 IBC1200 1 50 40 60 01000 60 50 80 2 0 25 15 400 10 668720 AN 61 4C 500 100 40 1 OC 060CO 40 30 9C 2 30 0 20 400 IC c c 663750 AN61 30 400 100 40 70 0999 8 6C 30 8C C 3C c 2C 500 8 0 0 66877C AN65 3C 400 1 00 40 50 01500 15 20 100 0 30 0 15 500 7 0 0 668790 AN62 C 40C 80 20 40 G99S9 3C 2C 5C 4 30 5 15 600 7 0 0 668830 AN63 100 600 100 40 100 09998 80 30 80 2 3C C 25 400 18 c c 668860 AN64 8C100C ICO IC 3C C9998 50 40 50 0 40 5 15 800 8 c 0 668900 AN6 1 401200 ICO 2C 4C C9999 18 30 5C 0 30 5 2C 500 10 0 0 668930 AN64 30 400 80 30 60 09999 30 20 5C t 25 C 2C 400 10 0 0 66eiOC0 AN64 5CI 000 100 30 60 09998 20 35 70 2 30 7 35 500 IC c 0 6681030 AN64 30 600 100 30 4C C9998 80 35 7C 2 30 5 50 000 10 c c 6681060 AN64 402000 100 50 40 199981000 30 80 0 30 6 6CC tOC 20 6681090 AN64 eciooc 120 40 35 C9999 800 40 100 0 30 8 201000 20 6681120 AN6 2 30 60 C 80 10 30 05000 80 30 40 2 3C IC 40 400 5 6681140 AN65 2CC 70C 1 00 40 50 09998 100 30 70 0 20 C 2C 600 IC 6681170 AN 6 4 18C150C 15C 4C 6C 09998 30 50 100 2 0 25 c 15 500 10 6681180 AN62 1509999 80 50 30 09998 100 40 8C 0 4C 7 30 200 10 6681200 AN65 4C 400 40 20 40 09998 80 40 15 2 15 0 15 400 10 6681270 AN65 6C200C 150 4C 6C C9999 60 50 150 0 50 0 15 400 10 6681300 AN65 200 800 100 30 50 09998 90 50 80 0 40 IC 20 400 8 6681340 AN62 3CC 70C 150 30 50 09998 0 50 100 0 40 5 30 500 10 6681380 AN64 4CC100C ?C0 60 100 C9999 80 60 200 0 30 0 252000 20 DRILL HOLE CF-68-1 FOOTAGE HOLE SR BA CR CO NI AG TI CU IN V MO Bl GA SN PB MN FF 68253 FGX421000 60C ICO 30 50 8000 30 40 30C 0 25 2C 500 6 68269 FCX42 3CC 800 1 50 40 80 9998 40 30 100 0 30 7 400 10 68293 FOX42 5CC100C 18C 4C 80 9958 4C 40 150 0 30 10 500 10 682116 F0X42 6CC1500 1 80 *0 90 8000 40 . 40 150 0 30 10 toe 10 682139 FDX4210CC 4CC 100 8 4C 2000 40 40 3 CC 0 18 15 800 4 682151 FCX42 8001000 300 30 50 8000 4C 4C 200 0 3C IC 500 8 68217C FC1X42 3CC100C 200 30 50 9000 50 30 100 0 30 10 200 8 682190 FC1X42 400100C 300 3C 50 800C 5C 30 100 0 30 10 400 5 682205 FHX4210001000 200 30 40 3000 30 40 200 0 20 10 500 5 682215 FOX42 8CC SOC 200 30 50 5000 30 40 200 0 20 5 500 10 -176-O R U L HOL E L R - 1 FOU TARE HOLE SR PA CP CO NI AG T I CU IN V MC B l GA SN PP MN \ 0 7 0 2 1 4 2 L P 1 1 5 1 0 0 0 5 0 0 7C0 1 00 100 9 9 9 9 3 0 0 50 4C0 0 2C 2 2 0 0 0 7 0 2 1 6 1 6 I PI 16 SOC 10 80 3 0 30 3 0 0 0 40 60 700 0 5 1 3C00 e 7 0 2 1 8 0 LR 120 i e C 1 5 C 0 1 2C 4 0 7 0 0 0 7 0 30 2C0 0 3 0 2 2 0 0 8 7 0 2 2 1 0 t P 120 4 3 0 1 0 0 0 150 20 50 8 0 0 0 50 30 IOC 0 2C 3 0 2 0 0 10 7 0 2 2 2 0 IP. 17C 5C 5 CC 90 20 - 5C 5 0 0 0 0 20 50 0 2 0 10 3 0 0 1 0 7 0 2 7 4 2 1 P 1 2 0 7 0 C 1 0 0 C 1 5 0 20 30 3 0 0 0 2 0 30 100 0 2 0 I C 6 0 0 p 7 C 2 2 6 3 I R 1 2 C 5 C C 1 5 0 0 1 20 3 0 5 0 0 9 9 9 8 4 0 30 100 2 4C C 10 150, 7 7 0 2 7 8 0 L P 1 Z 0 5 0 C 7 0 0 0 700 40 IOC C999R 5C 40 200 2 5C 5 18 3 0 0 8 7 0 2 3 0 0 L P 1 2 C 6 C C 1 0 0 0 3 0 6 0 8 0 0 9 9 9 9 8 0 50 4 0 0 0 30 7 1C1C00 2 0 7 0 2 3 1 0 I R 12C 6 C C 1 5 C C 1/0 4 0 BC C 9 9 9 8 50 4 0 I C C 0 4 0 0 15 5 0 0 1 0 7 0 2 3 3 0 L ° 1 2 0 6 0 0 1 0 0 0 150 4 0 100 0 9 9 9 8 50 5 0 3CC C 4C c 1C1 COO 1C 7 0 2 3 4 0 LP 12C 4 C C 7 0 0 0 7 0 0 3 0 1 00 09 9 9 8 40 4 0 4 0 0 4 4 0 0 10 500 10 7 0 2 3 7 0 LR 1 70 3 0 0 2 0 0 C 1 20 50 2C0 C 9 9 9 8 I C C 4 0 100 4 4 0 0 3 150 70 7 0 2 3 P 7 I.P170 3 0 0 2 0 0 0 1 0 0 10 30 0 9 0 0 0 4 0 4 0 100 3 4 0 5 2C 300 5 7 0 2 4 1 0 L R 1 2 0 5 0 0 1 0 0 0 3 0 0 100 2 0 0 0 9 9 9 9 5 0 0 4 0 50C c 3 0 c C 40C 2C 7 0 2 4 2 3 LP 117 C C 4 0 0 I C C 70C C 3 0 0 0 5 0 0 3 0 80 0 10 0 20 8 0 0 10 7 0 2 4 4 3 L P 117 C 0 1 0 C 0 3 C 0 5 0 C C C 9 9 9 8 eC 30 8C 3 a 5 C 8 0 0 70 7 0 7 4 5 9 L R 1 1 7 0 0 2 0 0 0 7 003 0 0 0 0 3 0 0 0 9 0 40 50 0 6 c 1 300 1 0 7 0 2 4 P 0 L R 116 C C 2 C C 0 7CC3 0 0 0 0 2 0 0 0 100 40 50 0 6 0 1 200 1C 7 0 2 5 0 0 1 PI 16 0 0 2 0 0 0 2 0 0 5 0 0 0 0 3 0 0 C 6 0 5 0 60 0 6 c 1 2 0 0 10 7 0 2 5 1 5 LP. 1 16 C 0 2 0 0 0 2 0 0 5 0 0 0 0 3 0 0 0 9 0 50 6 0 0 6 0 1 4 0 0 1 0 7 0 2 5 4 0 1 R 116 6 0 C 3 0 0 0 7 C C 5 0 0 C C 9 9 9 8 70 50 1 CC 0 6 0 1 4 0 0 7C 7 0 2 5 6 2 L R 1 1 5 5 0 0 3 0 0 0 2 0 0 5 0 0 0 0 9 9 9 3 6 0 50 80 0 6 c 1 5 0 0 20 7 0 2 5 7 6 LP. 115 4C C20CC 2 C C 5 0 0 0 060CO 1 0 0 4 0 7 0 2 6 0 1 4 0 0 70 D R I L L HOL F 6 6 - 5 0 FOOTAGE HOLE SR BA CR CO NI AG TI CU I N V HO B l GA SN PR MN F E 6 6 5 0 4 2 81 ICO 1 5 0 1 0 0 2 0 5 0 9 9 9 8 0 40 50 7 0 2 0 0 8 500 1 0 6 6 5 0 6 2 61 ICC 4 0 C 1 20 40 100 9 9 9 8 5C 4 0 1 0 0 2 0 3 0 0 5 4 0 0 2C 6 6 5 0 8 2 6 1 1 2 0 3 0 0 100 25 40 8 0 0 0 4 0 4 0 50 2 C 3C c 1C 4 0 0 10 6 6 5 0 1 0 2 8C 12C 4 0 0 ICO 4C 6C 9 9 9 8 1 0 0 5 0 1 0 0 2 0 30 5 10 4 0 0 10 6 6 5 0 1 2 1 8 1 170 3 0 0 15C 3C 4 0 9 9 9 8 30 50 17C C 0 35 C 201 0 0 0 7 6 6 5 0 1 4 1 8 0 200 3 0 0 1 2 0 5 0 1 0 0 9 9 9 8 5 0 40 100 0 0 3 0 C 15 5CC 15 6 6 5 0 1 6 0 A L L 0 T Z 8C ICC 5C 15 2C 5 0 2 0 0 0 50 3 0 15 3 0 5 0 2 6 0 0 1C 6 6 5 0 1 8 2 81 2 0 0 4 0 0 150 30 6 0 9 9 9 8 30 4 0 100 2 C 3C 5 1C 4 0 0 8 6 6 5 0 2 C 1 81 15C 4 0 0 1 5 0 3 0 4 0 9 9 9 8 20 50 100 2 0 4 0 5 12 4 0 0 10 6 6 5 0 7 2 0 8 1 1 C C 1 0 0 0 16C 3C 3C 50CC 10 50 5C 2 5 3 0 3 0 10 5 0 0 1 C 6 6 5 0 2 4 0 8 1 150 4 0 0 1 00 4C ICO 6 0 C C 60 40 5C 2 C 2C 5 2C 5 0 0 20 6 6 5 0 2 6 0 81 100 1 5 0 7 0 6 0 6 0 9 9 9 9 0 40 120 3 0 15 C e ecc 10 6 6 5 0 2 7 9 8 1 3CC 6CC I C C 4C 6 0 9 9 9 8 6 0 4 0 1 0 0 0 0 3 0 7 25 4 0 0 10 6 6 5 0 3 1 1 2 0 3 5 0 7 0 0 120 30 60 9 9 9 8 0 50 100 2 0 4C 1C 35 4 0 0 P. 6 6 5 0 3 3 C 62 2 CC 5 0 0 1 0 0 4 0 1 0 0 9 9 9 8 6 0 4 0 100 2 0 30 5 15 500 10 6 6 5 0 3 5 0 6 2 2 0 0 5 0 0 1 CO 3C 50 9 9 9 8 25 40 8C 2 0 3 0 8 15 5 0 0 10 6 6 5 0 3 82 6 2 2 0 0 1 0 0 0 150 4 0 70 9 9 9 8 0 60 100 2 0 3 0 5 15 4 0 0 1 0 6 6 5 0 4 0 2 6 4 2CC 4CC I C C 4C 7C 9 9 9 8 5 0 5 0 1 0 3 2 0 30 0 10 200 1 c 6 6 5 0 4 2 0 6 5 5 0 0 3 0 0 150 30 100 80CC 20 50 IOC C c 2 5 C 6C 2 0 0 8 6 6 5 0 4 4 1 4C1 8CC 4 0 0 1 2 0 3 0 5 0 8 0 0 0 0 50 100 0 0 3 0 5 9C 1 50 a 6 6 5 0 4 5 9 4C I C C 4 0 0 1 0 0 50 100 9 9 9 8 6 0 4 0 8 0 3 0 25 5 7 2 0 0 15 — OR I L L HOLE 7 0 - S U N - l ~ FOCTAGE HOLE SR eA CR cc NI AG T1 CU IN V MO 81 CA SN PB MN F f 7 0 1 3 5 7 0 S U N 1 1 6 3C 100 1 15 5 9 0 0 0 0 2 0 10 2 15 0 •a 100 6 7 C 1 5 C 7 C S L N 1 1 6 1 CC 7 0 0 0 4 0 6 9 9 9 9 0 35 1 0 0 2 18 0 0 8 0 8 7 0 1 7 0 7 0 S U N 1 1 6 ICO 7 0 0 I 4 0 20 9 9 9 9 0 3 5 8 0 2 2 5 0 0 200 a 7 0 1 9 0 7 0 S L N 1 4 2 2 0 0 1 5 0 0 1 0 0 4 0 4 0 9 0 0 0 40 4 0 ICC 2 2C c 2 300 4 7 0 1 1 1 0 7 C S U N U 6 2CC 6C 0 6C 5C 9 9 9 9 0 3 0 4 C C 2 25 0 1 4 0 0 2 0 7 0 1 1 3 0 7 0 S U M 16 3 0 0 80 1 100 6 0 9 9 9 9 5 0 0 5 0 6CC 0 30 c 2 4 C 0 2C 7 0 U 3 8 7 C S U N U 6 3C0 1 0 0 1 8 0 9 0 150 9 9 9 9 5 0 0 4 5 4 0 0 0 20 0 2 5 0 0 18 7 0 U 4 5 7 0 S U N 1 3 1 4 0 0 BOO 150 30 50 7 0 0 C 35 4 C 2 0 C 0 2 0 0 7 4 0 0 P 7 0 1 1 5 0 7 0 S U M 3 2 4 3 0 8 0 0 1 5 0 4 0 5 0 8 0 0 0 30 4 0 2 0 0 0 2 0 C 6 4 0 0 7 7 0 1 2 1 0 7 0 S U N 1 4 3 3CC 4 0 C 120 40 5C 9 0 0 0 0 4 0 1 0 0 0 30 0 4 4 0 0 9 7 0 1 2 3 0 7 0 S I I N 1 3 0 0 IOC 1 50 6C 6 0 9 0 0 0 5 4 0 8 0 5 3C C 6 80 10 7 0 1 2 5 0 7 0 S U N 1 3 1 0 150 100 6C 6 0 4 0 0 0 0 3 0 5C 2 3C c 2 0 1 0 0 7 7 0 1 2 6 0 7 C S I J M 3 1 15C 4 0 0 1 50 4 0 6 0 9 9 9 8 30 30 150 0 3C c 5 ICO 7 7 0 1 2 7 5 7 C S I J N 13 1 15C 5CC 1 5 0 2 0 4 0 9 9 9 e 2C 4C I C C 0 3 0 0 6 200 6 7 0 1 2 8 0 7 0 S I I N 1 33 3 0 0 9 0 0 1 5 0 4 0 5 0 5 0 0 0 30 4 0 2CC 0 3C c 6 4 0 0 5 7 C 1 2 9 0 7 C S U M 1 3 1 1 5C 3 0 0 1 8 0 3 0 6 0 9 9 9 8 0 3 0 3 0 0 0 30 0 6 100 9 7 0 1 3 1 7 7 0 S I I N 1 3 0 200 500 150 30 6C 9 9 9 8 C 3 0 SC 3 3 0 0 6 1 5 0 9 7 0 1 3 2 0 7 0 S U N 1 4 0 0 1 0 0 0 7 0 0 2 0 0 7 0 0 9 9 9 9 0 15 4 0 0 3 15 c 5 2 0 0 21 7 0 1 3 2 5 7 C S U N 1 3 1 IOC 20C 7C 25 5C 9 9 9 8 0 2 0 1 0 0 3 20 0 3 1 5 0 5 7 0 1 3 4 0 7 0 S U N I 3 3 300 3C I 70 3C 4C 4 0 0 0 3 0 30 8 0 C 2C c 5 2 0 0 5 7 C 1 3 5 0 7 C J U M 3 2 1 CC 1 00 1 2 0 3 0 9 0 9 9 9 8 0 3 0 100 5 2 5 c 2 2 0 0 7 7 C 1 3 6 0 7 C S C M 1 4 1 c 5 0 0 5 0 0 100 500 9 9 9 9 0 10 100 3 10 0 2 150 10 7 O 1 3 6 5 7 0 S U N 1 4 0 100 0 2 0 0 4 0 120 40CC 30 50 1 cc 2 8 5 3 1 0 0 0 6 7 0 1 3 8 5 7 0 S U M 4 0 4 0 0 2 0 0 2 0 0 6 0 1 0 0 9 9 9 9 100 50 4 0 0 2 3C C 2 1 C C 0 1 0 7 0 1 4 0 0 7 C S U N 1 3 C C 15C i ec 6C 17C 9 9 9 8 0 2 0 100 3 30 0 2 3 0 1C 7 0 1 4 0 5 7 0 S 1 I M 3 0 0 100 10C0 2 C 0 I O C C 9 9 9 9 4 0 2 0 300 3 3C c 3 4 0 2C 7 0 1 4 1 5 7 C S U N 1 3 C c 4 0 0 1 8 0 4 0 1 0 0 6 0 0 0 0 30 100 3 4C c 2 50 10 -177-ORIll HOLE 68-PR-l FOOTAGE HOLF SR RA CR cn NI AG TI CU I N V ec PI GA SN PP MN F E 6 8 3 1 0 7 tP- PF162 2 00 4 0 0 100 40 70 9 9 9 8 6 0 50 80 2 25 C 10 400 10 6 8 3 1 7 7 6 8PR164 7 CO 600 1 20 50 6 0 9999 90 50 120 7 25 5 15 50C IC 6 8 3 1 4 7 68PR 16 2 700 50C 130 60 100 9998 ee 50 I CC 2 30 5 10 500 2C 6 8 3 1 6 7 68PR164 4 00 300 150 30 60 9 9 9 8 IOC 50 ICC 0 30 C 2C 6C0 10 £ 8 3 1 f 6 6 8PR 164 3CC 40C 13C 4C 6C 9998 100 60 100 0 30 0 15 700 15 6 8 3 2 0 7 6 8 P P 1 6 4 400 400 1 30 ?C 50 9 998 6C 60 IOC 0 3C 5 1 5 1 0 0 0 10 6 8 3 2 2 7 6 8 P R 1 7 0 2 0 0 C 0 30 0 10 700 0 60 120 0 5 10 400 2 6 8 3 2 4 4 6PPR 171 10CC 20C ICO 2C 3C 4 0 0 0 3 0 50 120 0 15 6 10 400 6 6 8 3 2 6 4 68 PR 170 4 00 400 150 30 50 7000 30 60 IOC 0 30 5 I C 800 ' i n 6832 74 6 8 P P 1 7 0 500 800 150 30 70 7000 40 60 100 0 30 C 1C1CCC e 683292 68PR171 ?CC 40C ieo 30 50 7 0 0 0 0 40 90 0 30 5 15 500 IC 6 8 3 3 1 3 6 8 P P 1 7 0 3 00 300 150 25 3C 7CC0 0 40 ICC 0 25 C 15 5 0 0 '• 7 6 8 3 3 4 7 68PR17C10CC 30C 200 30 6 0 8000 15 50 100 0 30 0 15 50C 1 0 6 8 3 3 ( 9 6 8°" 17C 15CC 80 15C 2C 4C 5000 0 50 12C 0 30 30 101000 8 6 8 3 3 8 6 68PP1722OO0 3 0 0 150 15 30 2000 20 50 ICC 0 20 IC IC 400 c 6834C76EPP 1X20 4 CC 600 400 50 100 9998 7 0 40 300 2 25 5 101000 2C 6 8 3 4 2 7 68"R If. 2 200 40C 100 40 PC 9998 ec 4C 80 2 25 10 10 400 70 6 8 3 4 4 5 68PP162 300 6 0 0 150 30 70 9 998 50 40 100 0 30 7 15 20C ' 1 0 6 8 3 4 6 4 68PR 162 3CC 60C 150 3C 7C 9998 50 4 0 100 3 30 8 15 150 IC 6 8 3 4 8 5 68PR 164 8 CC 40C 150 2C 3C 50CC 30 40 7C 0 25 7 15 4 0 0 c 6 8 3 5 0 4 6 8 P P 1 X 6 4 4 00 900 150 20 40 5000 30 40 6C C 25 7 8 100 R 6 8 3 5 2 6 6EPR 173 3C0 40C 120 3C 5C 7000 0 30 50 2 20 10 10 500 10 6 S 3 5 5 3 6 8 P R 1B X 300 500 750 5C 130 9959 c 6C 15C 0 40 10 10 4 0 0 e 6 8 3 5 6 8 68PR174 4 0 0 700 300 30 80 9998 0 60 100 0 30 15 18 50C 8 6R35P8 ( 8 P R 1 6 4 tec 6CC 750 3C SC 9998 40 6 0 too 0 30 10 20 600 9 6 8 3 6 0 6 68PR164 350 50C 200 50 110 999e 4C 50 ICO 4C IC 13 2 0 0 1 0 683626 68PP17C15CC 300 1 00 15 30 4 0 0 0 30 60 100 20 5 15 50C c 6 8 3 6 4 0 68PK 16 1 7CC 4CC 13C 20 40 500C 30 60 80 30 5 15 4 0 0 7 6 8 3 6 6 7 6 8 P P 1 2 0 9C0 500 150 10 40 4000 40 50 8C 3C B 15 4C0 5 6 8 3 6 8 7 68PR164 7CC 500 1 80 30 70 9 9 9 8 60 40 80 30 e IC 4C0 8 6 8 3 7 0 7 68PP 164 7CC 50C 2C0 3C 60 9998 40 50 103 30 5 12 500 IC 6 R 3 7 2 3 6 8 P P 1 6 2 1 0 0 0 3 0 0 150 20 40 300C 10 50 7C 3C c 2C 4 C 0 . K 6 8 3 7 4 3 teoP 1*4 8CC IOC 3C 2C 3C 9 9 9 9 40 40 6 0 15 20 6 500 10 6 8 3 7 6 4 68PR164 800 400 120 20 3C 7CC0 30 50 60 25 5 20 200 7 6 8 3 7 E 4 66PP.161 3CC 4 0 C 150 3 5 80 9998 50 50 80 30 e 15 20 0 .. 1 C ATOMIC A E S U P P T I O N A N A L Y S E S OF yFOROCK U S I N G N I T R I C / P E R C H l O R IC ATTACK ( I N P P M -178 CU ZN NI PP. HOLE AND FOOTAGE CU 6 8 1 9 3 0 c 3 3 . 3 3 3 6 8 1 1 1 3 0 0 5 .079 6 8 1 1 2 5 C c 1 1.175 6 8 1 1 4 5 0 0 2 6 . 9 5 1 6 8 1 1 6 5 0 0 2 3 . 6 6 5 6 8 1 1 8 5 C 0 4 6 . C 1 5 A8170O 0 0 1 9 . 0 6 ? 6 8 1 2 3 0 0 0 1 1 . 5 0 4 6 8 1 2 4 2 c 0 1 9 . 0 6 3 6 8 1 2 6 0 . 0 0 6 0 . 1 4 8 6 8 1 2 8 0 c c 9 . 2 C 3 6 8 1 3 0 0 0 0 6 . 5 4 9 6 8 1 3 1 5 0 c 5 7 . 2 1 7 6 8 1 3 4 0 0 0 9 0 . 6 5 1 6 8 1 3 6 4 0 0 4 6 . 8 7 6 6 8 1 3 e C c 0 7 4 . 1 06 6 8 1 4 C C C 0 4 6 . 8 7 6 6 8 1 4 2 0 c 0 e7.368 6 8 1 4 4 0 0 0 4 1 . 8 5 1 6 8 1 4 6 5 0 0 6 6 . 2 9 0 6 8 1 4 8 C c c 2 8 . 4 1 0 6 8 1 5 0 0 0 0 31 . 4 6 5 6 8 1 5 4 5 0 0 1 7 . 0 0 8 6 8 1 5 7 0 c c 6 9 . 3 4 5 6 8 1 5 9 0 0 0 5 0 . 4 C 5 6 8 1 6 1 C c c 5 3 . 7 6 5 6 8 1 6 3 4 0 0 5 0 . 4 C 5 6 8 1 6 5 0 c c 6 5 . 6 7 9 6 8 1 6 7 0 0 0 8 3 . 7 0 2 6 8 1 6 9 0 0 0 5 4 . 9 8 7 6 8 1 7 1 0 0 0 3 8 . 4 9 1 6 8 1 7 3 C c 0 5 3 . 6 5 1 6 8 1 7 5 0 0 0 5.397 6 E 1 7 7 0 0 0 4 4 .444 6 8 1 7 9 0 c c 1 6 . 5 0 8 6 6 1 8 C 8 c 0 1 8 . 095 6 8 1 8 3 5 0 0 3 0 . 1 5 9 6 8 1 8 5 9 • 0 0 6 . 6 6 7 6 8 1 8 7 6 c 0. 2 4 . 7 6 2 6 8 1 8 9 5 0 0 4 2 . 5 4 0 6 8 1 9 1 5 c ' 0 5 8 . 7 3 0 6 8 1 9 4 5 c 0 2 5 . 7 1 4 6 8 1 9 6 5 0 0 2 7 .619 6 8 1 9 8 5 c Q 1 4 . 2 8 6 ( I L L HOLE 6 8 - S E A - l 7N N I P B 1 1 1 . 3 6 6 4 7 . C 7 9 0.0 1 3 6 . 7 4 0 43 .P49 0.0 8 8 . 4 1 0 5 C . 4 1 9 0. 0 7 3 . 3 1 5 3 5 . 6 6 5 3 . 9 6 3 99.1 91 3 7 . 9 4 6 0.0 1 C 5 . 66C 7 2 . 1 9 0 C. C 9 7 . C35 4 5 .932 0.0 7 7 . 6 2 8 4 0 . 0 3 1 0.0 E 4 . C 9 7 53 . 5 2 8 0 . 0 1 4 7 . 3 5 C 5 9 . 3 8 ? 0.0 9 4 . 8 7 9 2 7 7 . 7 0 1 7 . 3 0 6 8 9 . C 8 7 3 8 . 7 8 1 C.C 8 6 . 9 4 9 6 5 . 1 9 5 0.0 8 6 . 5 4 9 61 . 2 1 6 0.0 1 0 9 . 0 4 2 4 8 . 3 2 e 0.0 5 2 . 0 2 7 51 .874 0.0 6 7 . 7 0 6 45 .063 7 0 . 7 2 2 1 4 5 . 717 6 2 . 9 3 0 C. C 1 3 1 . 2 9 0 4 4 . 8 C 9 0.0 1 2 7 . 6 8 3 6 9 . 7 7 3 3 .538 6 4 . 9 2 3 4 4 . P 9 C 2 4 . 1 8 6 1 4 . 6 4 4 4 0 . 9 4 0 5 . 9 4 6 1 5 1 . 7 7 3 3 8 . 267 0.0 1 2 2 . 6 3 3 9 6 . 3 1 6 0. 0 1 2 0 . 4 6 9 6 7 . 3 9 1 7 .099 1 3 3 . 4 5 4 5 9 . 6 2 0 2 . 9 3 8 6 2 . 7 5 9 6 4 . 1 6 8 5 . 7 8 2 9 1 . 6 1 4 7 3 . 7 9 4 0 . 0 1 0 6 . 0 4 2 6 6 . 185 C.C 1 4 7 . 881 7 5 . 3 3 5 0.0 1 6 7 . 3 5 8 6 3 . 6 1 2 7. 6 4 9 4 3 . 7 0 0 4 7 . 7 C 3 C.C 3 5 . 9 4 7 4 5 .502 1 0 . 2 4 4 3 2 . 4 6 7 5 2 . 189 0.0 1 0 1 . 4 9 8 4 6 . 4 9 7 0.0 3 7 . 3 5 7 2 1 . 5 0 0 3 3 . 7 4 6 1 2 1 . 9 3 8 7 9 . 4 1 2 0 . 0 2 43 .1 72 241 .859 1 0 6 . 0 5 1 1 C 6 . 4 3 2 3 9 . 3 4 2 0.0 8 0 . 3 5 2 56 .C90 C. C 1 4 4 . 4 9 3 60 . 0 3 3 0.0 1 2 3 . 348 4 9 .2 48 0.0 1 0 6 . 4 3 2 4 C . 2 3 9 0.0 1 3 1 . 1 0 1 3 5 . 8 9 7 P « HOLE AND FOCTAGE 6 6 1 3 3 C C 6 6 1 4 3 0 0 6 6 1 5 3 0 0 " 6 6 1 6 3 C 0 6 6 1 7 3 a o 6 6 1 8 3 0 0 6 6 1 9 3 c c 6 6 1 1 0 3 0 0 6 6 1 1 1 3 o c 6 6 1 1 2 3 0 c 6 6 1 1 4 3 0 0 6 6 1 1 6 3 C C 6 6 1 1 7 3 0 0 6 6 1 1 8 3 0 0 6 6 1 1 9 3 C 0 6 6 1 2 0 3 0 C 6 6 1 2 1 3 0 0 6 6 1 2 2 3 0 C 6 6 1 2 4 3 0 0 6 6 1 2 6 3 C c D R I L L HOLE CU" ZN 3 6 . 2 2 2 1 0 5 . 9 8 6 3 1 . 9 3 8 7 6 , 1 5 3 4 0 . 8 9 6 7 4 . 5 8 3 4 9 . 8 5 4 6 1 . 2 3 7 4 5 . 5 7 0 2 5 5 . 9 3 7 " 3 6 . 6 1 1 " 3 6 . 1 1 4 2 8 . 0 7 6 8.541 1 1 . 9 4 0 6 7 . 5 3 6 0 . 6 4 5 .31.781 0 . 6 4 5 3 5 . 7 5 4 1.058 2 4 . 7 7 9 4 3 . 0 3 3 2 2 4 . 5 2 6 3 4 . 2 1 5 6 5 . 7 4 C 2 1 . 8 6 9 3 7 . 4 2 1 4 9 . 7 3 5 11 .833 1 C 5 . 1 1 5 1 4 . 4 6 3 3 9 . 6 6 4 2 4 1 .490 1. CC8 1 1 . 3 0 4 1.345 5 C . 3 5 3 1 .345 3 8 . 0 2 2 6 6 - P R - l N l 5 1 . 7 3 0 0.0 39 .191 2 8 . 1 1 4 1 0 9 . 9 8 9 11 . 60 9 7 0 . 1 8 5 4 2 . 166 1 0 5 7 . 1 7 0 1 2 . 1 3 3 4 4 . 8 4 8 1 2 . 0 6 7 7 2 . 3 5 3 4 . 123 5 2 3 . 0 8 9 1 5 . 4 2 3 C. C 1 5 . 4 2 3 0 . 0 2 9 . 8 9 2 1 . 1 5 4 2 4 . 6 0 0 7 4 3 . C E 5 1 6 . 2 3 7 1 8 . 1 0 7 3 1.499 2 9 . 2 1 7 1 5 . 4 C P 6 2 . 8 3 2 3 6 . 4 1 6 7 7 . 4 5 7 1 9 . i 2 2 2 6 . 4 17 5 6 . 3 2 C 0 . 0 2 7 . 4 7 3 0.0 3 8 . 7 7 8 . 0.0 3 7 . 1 7 5 -179 DRILL HCLE 66-50 HOLF AND FOOTAGE cu ZN N r P8 665042 0 0 2.760 46.898 21 .627 0.0 665C62 C 0 54.411 93.014 6 1. 824 5.156 665082 0 0 29 .571 99. 767 47.356 0.0 66501 C2 0 0 79.751 58.07 2 46 .016 0.0 6650121 c c 17. 743 72.692 36. 136 6. 959 6650141 0 0 54.411 111.773 : 80.516 3. 35S 665C1(0 c c 25.234 22 .667 i 20.666 0.0 6650182 c c 21.686 1C5.57C 42. 952 CC 66502C1 0 0 14.588 122.716 36.555 1.840 665C22C c 0 17.617 160.235 32 .4 89 0.0 6650740 0 0 56.777 85. 88tr '. 83.CC7 33.424 665 026 0 0 0 2.760 150.073 : 44.991 5.047 6650279 0 0 57.254 65.9*7 56.5 06 0.0 6650311 0 c 6.232 65 .162 72.765 3. 222 6650330 c 0 66.545 66.732 56.239 0 .0 6650350 0 0 2 i . en 8C. C79 ' 41.324 0.0 6650382 0 0 6.2 32 91.855 38.757 0.0 66504C2 c c 45.180 68.302 58.916 0.0 6650420 c 0 8.958 47. 1C5 67.474 15. 745 6650441 0 0 2.726 60 .451 54.641 19.113 6650459 0 0 56.086 80.864 53.4C3 0.0 DRILL HOLE LR-1 HOLF ArD FOOT AGE cu ZN NI PB 702142 0 0 406.299 31 .206 52.728 0.0 7021616 C c 30.236 33.333 23. 855 CO _ 702180 0 0 21.1C2 43.972 47.542 CO " 7C2210 0 c 51.339 1C7.801 52.164 0.0 702270 0 0 3.780 73.759 25.461 C. C 702742 0 c 24.252 97.163 34.655 0.0 704263 0 c 35.5C6 8 7. 543 37.995 0.0 702280 0 0 40.630 51.064 53. 526 0. 0 7023C0 C 0 51.965 116.312 49.916 0.0 7 02310 0 0 35.276 83.688 39.950 0.0 702330 0 0 41.437 97. C94 41.532 c. c 702340 0 0 33.083 112.137 31 .698 4.298 7C2370 0 c 96.5C5 57.436 110.014 0.0 702387 0 0 35.756 1C5.583 40.755 C C 7C2410 0 0 260.651 100.51 3 117.080 0.0 702423 0 c 136.<75 59.82° 779.690 10.630 702443 0 0- 48 .120 53.333 1372.755 C. 0 702459 C • c 38.429 45.312 366 .675 0.0 7024 8 0 0 0 42.774 45.812 IOC?.75C C 0 702500 0 0 37.761 39.658 823. 160 C C 7C2515 C 0 58.145 44.444 927.263 0.0 702540 c 0 44.11C 38.574 810.817 C. C 7C2562 0 0 27 .402 43.761 . 955 .704 0.0 702576 c c 47.118 42.393 j 910.201 0.0 - - • -O i l ' l l HCLE 70-SUN-l . . _ . . HOLE AND FOOTAGE CU ZN M P8 70135 0' 0 8.460 57.426 5.265 0.0 70150 0 0 4. C61 61.386 3.1CI O.C 70170 0 0 4.399 51.485 11 .3 84 0.0 7015C C c 31.947 15.197 15.736 0.0 " 701110 0 0 4.326 83. 22C 1 8.899 0.0 701130 0 0 282.862 106.377 37.P11 0.0 701138 c c 272. 878 7e.l55 77 .355 0.0 701145 0 0 22.296 74.536 2 5.581 9.689 701150 0 0 19.301 52.1C3 19.922 0.0 701210 0 c 2.329 90.457 41.619 0.0 701230 0 0 8.652 52.628 58. 62C 4.303 701250 0 0 3.661 66.576 48 .866 27.543 70126C C 0 16.306 44.867 28.833 0.0 '701275 0 0 9.983 46.314 17.540 0.0 7012e0 0 0 15.308 68.747 22.205 0.0 701250 c 0 3.661 45.2C8 27. C53 CO 701312 0 0 2.955 35.459 17.5 78 CO 7C1320 0 0 8.319 75 .260 253.499 0.0 701325 c c 2.757 27.795 26.573 C. c 701340 0 0 24.128 20.169 24.813 0.0 701350 c c 3.447 30.646 43. c c . 701360 0 0 6.7C4 48. 463 376.SC7 0.0 701365 c 0 11 .030 32.7B4 35.680 0.0 701385 c 0 84. 446 116. 169 75.C7C 0.0 701400 0 0 2.757 48.463 • 40.402 0.0 7014C5 0 0 20.336 51.314 565.578 0.0 701415 0 0 3.IC2 74.833 4 3.e4 8 0. 0 -180-H O I F Af.n 66817C 6681 *C 6 6 3 1 5 0 6 t e i t 5 6 6 8 1 7 5 6681=0 6 6 8 7 0 0 66HP1S 6 6 6 7 7 0 666'7R 6 6 3 7 4 3 6 6 9 2 6 0 " 6 6 8 2 7 3 66 "2 »5 6 6 P S 6 0 , 6 6 8 6 7 0 66P6 50 6 6 8 6 7 0 " 6 6 9 7 0 0 6 6 8 7 1 0 6 6 6 7 2 C 6 6 8 7 5 0 6 6 3 7 7 0 6 6 8 7 5 0 6688''3 6 6 8 8 ( 0 6 6 8 9 0 0 6 6 8 9 3 3 6 6 P 1 0 C 0 6 6 8 1 0 3 C 6 6 3 1 0 6 0 6 6 8 1 0 5 C 6 6 8 1 1 2 G 6 6 P 1 1 4 C 6 6 e i l 7 C 6 6 8 1 1 E 0 66812 CO 6 6 8 1 2 7 C 6 6 8 1 3 0 0 6 6 8 1 3 4 0 6 6 e i 3 8 C r o o t AGE c c 0 0 c 0. 0 0 c c c 0 0 0 0 0 0 0 c 0 0 0 0 0 c 0 0 c 0 c 0 0 0 0 0 c 0 0 0 0 o 0 0 0 0 0 0 3 0 0 0 0 0 6" 0 c 0 c 0 0 0 0 0 0 0 0 0 0 0 c G 0 a c 3 c 0 0 0 0 0 c Ctl 1 36.3*1 22.7*1 47 .731 SO.736 27.857 39 .780 7C.168 3 0 . 1 1 5 3 1 . 0 3 3 I P . 151 2 5 7 . 0 * 6 1 9 . 6 * 0 4 3 0 . 7 5 2 5 4 3 . 3 7 2 6 5 . 135 7 2 . 9 1 3 2 4 . 5 5 0 5 1 . 3 9 1 4 9 . 7 5 5 2 1 . 1 7 6 53.355 4 7 . 7 7 6 21 .931 19.734 4 1 . 5 7 3 5 3 . 3 5 0 2 5 . 5 5 8 2 3 . 4 9 3 2 3 . 4 9 3 8 3 . 3 2 0 6 7 5 . 7 1 9 2*1.190 61.354 1 7 . 2 2 8 53.1C9 8*.76C 3 8 . 2 1 5 31.C1C 7 3 . 2 5 7 7 .857 36.550 n R I l l HOIF ZN 2^5.897 7C. 7°6 4 2 1 . 3 2 3 9 7 . 0 9 ? "6.556 77.145 453.256 c3 . 4 4 l 159.231 7C. 906 9 5 . 7 * * 113.669 3 5 . C*9 191.433 2 7 3 . 746 124.737 94.232 125.411 79.562 76.0*4 106.532 125.456 136.973 1C5.4C2 52.65C 29.*02 100.513 77.265 105.933 236.581 1*0.855 57 .436 * 5 . 8 1 2 *5.128 50.353 112.871 233.8*6 3*.188 102.56* 9 3 . 7 9 6 67.779 66-6 N l * ? . 3 * 6 V . 2 f 3 3*.964 41 . 1 3 9 ?o.7f I 4ft .980 3 1 . 0 5 * 41.673 32 .7 37 3*.* 73 32.5*5 20.'J62 2i>. PTC 23.419 31.573 37.523 3 ° . 2 * 0 4 9 . 3 3 2 3 7 . 5 ( 3 50.5H6 50.451 *8.5*6 4 3 . 2 1 7 5 6 . 9 76 *5 .6*C 7 9.15* 4 5 . 5 * 5 36.152 * 1 . ? 3 1 36.611 37.837 26.656 51 .132 38.513 2 2 . 9 7 7 3 9 . 6 0 7 14.216 50.783 5 5 . P C I * 2 . 3 5 * 3 8 . 5 7 9 PB 17.783 5.713 C O 0.0 c. c 0.0 8.486 C C 0 .0 4 6 . 4 1 8 2C.547 5 2 . 6 5 2 0.0 158.854 97 .239 2 6 1 . 737 5 4 . 4 8 6 4 9 . 7 5 1 8 5 . 075 6.790 1 8 . 19 4 35.476 19.369 13.112 21.994 0.0 I 4 . 0 2 P 8.322 3 6 . 9 * 5 3*.385 2 4 3 . 1 * 1 C. C 9.547 0.0 C C 0.0 C. C 0.0 C. C 0.0 0.0 HOLE At-0 6 8 3 1 C 7 6 8 3 1 2 7 6 8 3 1 * 7 6 8 3 1 6 7 6 8 3 1 8 6 6 8 3 2 0 7 6 8 3 2 2 7 6 8 3 7 4 4 6 8 3 7 ( 4 6 8 3 2 7 4 6 8 3 2 9 2 6 8 3 3 1 3 6 8 3 3 4 7 6 e 3 3 6 9 6 8 3 3 6 6 6 8 3 4 C 7 6 8 3 4 2 7 6 8 3 4 4 5 6 8 3 4 6 4 6 8 3 * 8 5 6 8 3 5 C 4 6 9 3 5 7 6 6 8 3 5 5 3 6 8 3 5 6 8 6 9 3 5 8 8 6 8 3 6 0 6 6 9 3 6 2 6 6 3 3 6 4 8 6 8 3 6 6 7 6 9 3 6 8 7 6 8 3 7 C 7 6 8 3 7 2 3 6 8 3 7 4 3 6 8 3 7 6 4 6837e* FOOT AGE C 0 0 C 0 0 0 C 0 0 c o c 0 0 0 c 0 c 0 0 0 0 C c 0 0 c 0 C 0 0 0 0 0 c 0 c o 0 0 0 0 a o o c o 0 0 C 0 C 0 . 0 0 0 C 0 0 0 C 0 C 0 0 C 0 c c cu 62. 185 2.353 **.P57 8 3 . 9 0 5 102.545 5 9 . 3 7 9 4. 195 27.430 7 0 . 0 0 9 37.112 8.713 4.519 14.155 2.116 16.931 7*.074 57.8*8 4 7 . 6 1 5 6 0 . 3 1 7 21.517 3C.335 2 .*69 3 0 . 9 2 4 3.723 24.365 2 3.47 6 7 C 6 4 3 2*.365 25.331 25.790 37.56.3 16.5e2 15.9C5 2*.365 57.*53 OR I L L 32 29 5 58 37 23 3* 51 84 56 139 68 97 38 26 7C 14 23 32 77 U C 84 97 66 81 90 34, 101 73 15. 72 73. 22 94. 7 5 . H U E ZN . 88* .801 .733 .597 .741 .836 .761 .645 .420 611 . 0 * * 529 331 .*32 .296 . 756 .058 . C59 . 364 .876 .2*0 .956 .674 .337 .188 .099 .653 .980 .267 . 2*8 .277 .267 .762 .059 .2*7 6 8 - P R - l NI 37.891 * * .383 5 3 . 257 61 .265 5*.725 *6.2C6 7.800 25.053 4 0 . 8 5 9 5 6 . 1 6 0 4 6 . 5 8 2 2 5 . 7 C 9 5C.851 16.5*5 2*.536 69.581 4*.0*9 51.57* 6 5 . 1 5 2 4 2 . 0 5 7 4 5 . 556 52.862 58.195 32.553 4 2 . 2 1 * 4 8 . 4 5 7 27.194 47.051 4 5 . 4 1 8 4 8 . ' 4 0 52.671 6.612 4 4 . 2 1 9 4 1 . 5 6 2 P8 0.0 0.0 C C CO 0.0 CO 12.2C2 15.203 c. eoi 7.520 13.122 6 .87 1 CO 0.0 9.148 0.0 0.0 CO cc 0 .0 CO 0 .0 0. 0 23.388 20.772 7.006 C C 6.581 1. 581 4. 544 2.46 7 e.64 5 3.CIO 12.193 ORILL H U E CF-6B-1 HOLF ASD FOOTAGE a i ZN K I PR 6 8 7 5 3 0 c. 1 9 . 352 RC. 501 3 7. 204 0.0 687(.9 0 0 26.754 9 i . 2 e 5 3*.7P3 c c 6 8 7 9 3 0 c 7 7 . 5 3 8 87.691 34.71', 0.0 6 3 7 1 1 6 c . 0 27.538 6*.C57 23. 356 c. c 6 8 7 1 3 9 0 0 2 7 . 7 3 0 4 1 . 6 8 9 15.443 C O 687151 c c 2 0 . 0*9. 6 9 . 72 1 7') . 9 7 7 I C 545 6 9 7 1 7 0 0 0 2".976 8 5. 816 3 6.4 55 0.0 68215C c. c 35.iro 105.67'. * ! . ? ( ( 15. 114 6 3 7 7 0 5 0 0 7 7.3(7 7 ? . 34 C 7 7. B .649 6H7715 c 0 1 '!. 7 Ml 71.63 I '75 c c c m P«, ANn ix ATOMIC AT, 5MI;>MII:N ANAIYSFS o r r v r p m i a n r s n R I l L HOI FS US INC N ITK IC/PrKCHMmK. A 1 TACK -181 F A Nil r rwTAGF ru PB 7K 7 070 0 0 730.OCO * l . a i t 7 7C.COO 70?0 0 0 300 .000 ?? .24 7 4 00.000 70*0 0 c ?oc. ccc 35.060 5 02.000 7 7 ) 0 0 0 130.000 31.112 40,:. ooo 7720 c c 59.000 J9.461 500.000 7270 C 0 46.CCO 451.358 roc. ooo 7.?4 0 0 0 4 3 .000 110.824 4C0.000 7250 c c 14C. CCO ICC. 32C 27C0.000 7 11 0 0 0 120.000 2*97.00? 27CC. CCO 7?7C c c 73.000 2341.715 7700.000 73'0 c 0 57.CCO 936.245 15 00.0*0 73*0 0 0 63.000 345.501 17CC.C.-C 715C c 0 67.000 668.77* 1400.0'' 7370 0 0 43.000 459.378 ICCC . ere 73F0 0 0 52.000 240.388 130C.C00 7390 0 0 50.000 353.873 900.COO 73ICC c c 75.000 343.227 1000.000 7 ? l 10 C c 68 .COO 344. 321 ace.coo 7317C 0 0 57.000 347.467 HOC.000 7313C c 0 48.000 T9.96 3 500.000 73140 0 0 45.000 793. mo 13CC.CCC 751 5 0 0 16.000 i3.v:o 40 .000 7520 c 0 17.000 26. 7'.6 4C.0C.1 7530 0 0 19.000 21.224 5 OCO754C C 0 15.000 24.328 70.000 7550 c 0 17. OCC 5. 298 70.000 7560 0 0 1*.000 11.323 6C. COO 7570 0 c 37.000 12.387 70.000 7580 0 0 25.000 11.677 7C.000 7590 0 0 18.000 17.723 70.OCO 751CC C 0 27.000 11.677 60.OCO 751 IC 0 0 23.000 15.231 55. CCC 75120 0 0 21.000 13.810 8C.CCC 7512C 0 c 24.CCO 17. 773 7C.0C0 75140, 0 0 18.000 23.434 5C.0CC 75150 0 0 17.000 22 .004 65.000 7516C C 0 24.000 25.222 65.000 75170 0 0 17.000 36.349 6C. COC 75180 0 0 20.000 30.597 75.000 75250 c c 2C.000 14.52C 85.000 75258 0 0 16.CCO 15.588 70.000 76 IC C 0 12.000 16.656 70 .000 7620 c c 13.CCC 18.436 4C.CCC 7630 0 0 13 .000 17.01 1 40.00C 764C c c 18.000 19.506 55.000 7650 0 0 18.000 33.469 5C.CC0 766 0 0 0 19.000 20 .315 6C.000 767C 0 0 18.000• 9. 508 45.000 7680 0 0 1 3 .000 13.821 5C.00C 7690 c c 13.000 16.602 55.000 76100 0 0 12.000 13. 513 35.OCO 76110 0 0 16 .010 17.220 5C.C00 7612C 0 c 26.OCO 25. 281 6C.000 76130 0 0 22.000 13.513 5C.CCC 76 1*0 . 0 c 22.000 12.654 35.000 76150 0 0 30 .000 22.486 40.000 76226 c c 39.000 25.592 35.000 7430 0 0 16.000 4C.974 1 1C.0OO 7440 0 0 23.000 133.354 150 .009 7450 c c 2*.CCO 72.989 180.000 7470 0 0 19.000 32.630 80.000 7480 c c 17.000 35.060 100.000 7490 c 0 20.OCO 27.437 9C.000 7*190 0 0 23.000 30.204 8C.CC0 742C0 0 0 19. cca 28. 128 35.COO 74219 0 c 22.CCO 5 2.515 ICC.CCC 74220 0 0 21.000 18.47 1 50.000 7473C c c 19.000 2 2.4 74 4C.00B 741C 0 0 35.COO 444.625 5CC.C00 715 0 0 0 310.000 25.201 170.000 7160 c c 29C.CCC 23. 809 710.000 7170 0 0 330.000 3C.775 350.COC 7180 c c 10.000 30.475 140.000 7190 c c 10.coo 14. ice 11C.COO 6910 0 0 80.000 58.138 11C.000 692 0 0 0 170.000 36.450 90 .000 6930 0 c 1 5 C CCC 17. 095 50.000 6940 0 0 190.000 20.535 70.OCO 69*5 c c 180.000 27.259 60.000 461C 0 c 22.000 36. 377 100.000 4*20 0 0 2 C CCO 2C.944 7C.000 4610 0 0 30.000 25.308 12C.C00 4510 c c 2 9.000 24.943 120.000 4570 0 0 27.000 2 C 944 9C.0O0 4530 0 0 31.000 25.108 IOC.COO 4540 0 0 1O.O0O 75. 6 73 1?C.COO 441 0 c 0 36.000 55.047 7HC.O0O • 4420 c 0 27. CCC 2 C 2 1 8 11C.000 F ANC FOOTAGE cu PR JN 4 1 1 0 0 0 60.000 29.317 1 3 C CCC 412C C c 43.000 11 .336 155.000 41 '0 C c 33.000 27.494 7CC.000 4 1 4 0 0 0 2 9 . 0 0 0 18 .403 30.OCO 41 5C C c 39.000 2 1 . 670 220.000 4 1 1 0 0 0 23.OCC 36.265 PC.CCC 4 3 7 0 0 0 27 . 0 0 0 41.401 75.000 4 3.10 C c 22.000 15.166 110.000 4340 0 c 26.CCO 69.1 70 190.000 43*0 0 0 22.000 2 8 . 2 2 4 35.OCO 436C C c 2 8 . 000 3 4 . 067 120.000 4 1 7 0 0 0 70.000 3 5 . 5 3 ? n c . cco 4 3 8 0 0 0 31.000 21.308 100.000 4210 c c 19.000 59.356 1 5 C O 0 O 4 2 2 0 0 0 75.000 47.806 210.000 4 2 3 0 c 0 3 0 . 0 0 0 2 8 . 7 7 8 190.000 4 2 4 0 0 0 31.000 19.784 1 30. 000 ••wo 0 J 26.000 17.040 12C.CCC 4l«0 r e H . c ••: 19.098 1 3 0 . 0 0 3 ^ 7 0 0 t> 25.P": 30.7«9 05.000 458C c c 3 6 . 000 4 6 . 0 6 2 1 2 0 . 0 0 0 4 7 9 0 0 0 26.000 3 3 . 5 6 * 15C. CCC 421 oo 0 0 2 4 . 0 0 0 2 9 . 7 6 3 170.000 4 8 1 0 0. 0 27.000 27.C04 11C.000 48 20 0 0 38 . 0 0 0 37.719 160.000 483C 0 0 2 1 . 0 0 0 17.040 190.000 4840 0 0 24.CCC 23.561 11C.CCC 4S5C C c 18.000 19.440 8 0.0 00 4 36 0 0 0 21.000 25.283 PC. CCC 4 3 8 0 0 0 23.000 21.156 30.coo 43^0 C c 29.COO 21.156 85.000 48 100 0 0 29.OCO 17.C4C 11c.000 431 10 0 c 33.000 12.594 95 .000 48120 c c 23.CCC 1 7 . 040 9 0 . 000 43130 0 0 45 .000 1 6 . 1 8 3 75.CCO 4710 0 c 55.000 3 2 . 1 7 0 80.000 4 7 2 0 0 0 49.OCO 19. 645 8 5 . COO 47 3 0 0 0 31.CCO 17.22C 65.000 4740 c 0 48.000 1 7 . 2 2 0 70.000 4 7 5 0 0 c 19.CCC 11.691 75.OCC 4 7 6 0 0 0 25 .000 14.798 80.OCO 477C c c 16.000 10.655 40.000 4780 0 0 27.000 31.471 ICC.000 4 7 9 0 0 0 3 7.000 19.<397 3 0.000 4 7 1 0 0 0 0 20.CCO 37.416 1CC.CCC 47 1 1 0 0 0 48.000 33.116 100.000 47120 c c 5 3 . CCC 3 3 . 81 8 100.000 471 ?0 c c 54.CCC 35.316 120.000 4 7 1 4 0 0 0 60.000 58.567 1 1C.00C 47 1 5 0 0 0 44.000 27 .934 90 .000 5210 c c 4C.CCC 61.111 150.000 5270 0 0 33 .000 55.279 6C.000 5230 c c 32.000 35.036 69.000 5240 0 0 28.0OC 29.302 6C. CCO 5250 0 0 13 .000 2 3 9 . 8 3 2 14C.C00 526C c 0 2 4 . CCC 55.925 6C.000 5270 0 0 72.COO 45.928 ec.ccc 52 80 0 0 7 5 .000 4 8 . 8 2 4 80.000 5290 c c 7 7 . COO 71.2C5 7C.000 5 2 1 0 0 0 0 63.000 81.C37 3C.CC0 52110 0 0 23.000 33 .553 100 .000 521*0 c c 2 1 . COC 66.313 11c.000 52130 0 0 22.000 59.840 160.000 4910 c c 10.000 60.976 65.000 49 70 c 0 17.COC l l . R9C 4C.C0O 5010 0 0 42.000 3 6 . 5 5 2 110.CCC 5C7C c 0 2 9 . CCC 31 . 4 6 0 17C.000 50'0 0 0 3 3 . CCC 37. C96 1CC.COO 5110 0 0 52.000 tC.976 150.000 5120 c c 10.000 31.777 80.000 5130 c c 39.000 34.64 1 9C. COO 5140 0 0 41.000 33.636 13C.CC0 51 5C c 0 55 . 0 0 0 4 5 . 3 7 6 140.000 516 0 0 0 16.000 77.965 1 tc. CCC 5170 0 0 2 0 . 0 0 0 27.451 200 .000 51P0 c c 20.000 26.C67 13C.OO0 5 190 0 0 13.CCO 5C.645 1 l ccco 5193 0 0 33 .000 2ft.334 9C.0CO 5196 c c 43.COO 31. 14 2 100.000 5118 0 0 54.one 3C.P75 27C. CCC 511CC c c 34.000 3 7 . 5 1 0 100.000 51105 0 0 43.000 15. 6 5 t 14C.000 5 1 1 1 0 0 0 35.000 5 5 . 1 5 7 130.000 51 17C 0 c 34. CCC 72.771 11C.000 5 1 1 1 0 0 0 4 1 .000 57.77C 2CC.CCC 511*0 0 c 79.000 44 .64 2 700.000 51150 c c 36.CCO 7 5 . 6C7 1 10.000 51160 c c 8 7 . 0 0 0 37.436 76 C. 000 5 1 1 7 0 0 0 37.000 25.80 7 160.COO 51190 c 0 14.000 7 7. 0 77 140.00',) 5 1 7 0 0 0 0 13.000 18. H'.C ice. ccc -1BZ E M I S S I O N SPECTROSCOPY R E S U L T S ( P P M ) BLANK OR ZFPO MEANS THAT " 9 9 9 MEANS >10,CCC PPM 9 9 9 8 = 1 0 , 0 0 0 PPM CF ROCKS I N T E R S E C T E D IN OVERBURDEN D R I L L HOLFS FE AS PER CENT F E 2 0 3 FL EM ENT IS BFLOw D E T E C T I O N I I M I T SR PA CR CO NI AG T I CU IN V MO B l GA SN PB MN 7 1 0 4 1 64 2CC 6 0 0 1 8 0 4C 8C 0 9 9 9 B 9 0 4 0 70 2 0 30 8 15 4 0 0 7 1 0 4 ? 6 2 1 50 ? 0 C 3 C 0 70 2 0 0 0 9 9 9 9 3 0 4 0 15C 3 0 15 C 8 6 0 0 7 1 0 4 3 6 ? 50C 8 0 0 1 50 3 0 6 0 0 4 0 0 0 50 50 150 0 0 2 0 C 12 500 7 1 0 4 4 W G R R D S 6 4 5CC eoc 180 3 0 50 0 9 0 0 0 30 5 0 12C 0 0 3 0 10 18 5 0 0 7 1 0 4 5 43 4 0 0 6 0 0 2 0 0 4 0 100 0 9 9 9 8 30 50 150 0 C 3 0 5 I E 4 0 0 7 1 0 4 6 67 4CC 7 0 C 150 30 3 0 0 4 0 0 0 15 5 0 1 0 0 0 0 20 4 15 too 7 1 0 4 9 9 9 2 0 0 150 25 4 8 0 2 C 0 0 10 50 15 2 0 30 15 3 0 2 0 0 7 1 0 5 C 1 98 80 25 2 2 2 0 1 0 0 0 8 4 0 2 0 5 3 5 3C 18 150 7 1 0504COMTATRK 9C 2C 9 0 3C 70 4 9 9 9 8 5 0 0 6 0 5 0 2 0 3 0 4 0 2 0 1 5 0 0 7 1 0 5 ? 7 3 4 0 0 5 0 0 1 5 0 2 0 4 0 0 3 5 0 0 10 50 80 0 0 2 5 7 I C 4 0 0 F E 2 0 3 7 1 0 4 1 10 7 1 0 4 2 7 1 0 4 3 7 1 0 4 4 7 1 0 4 5 7 1 0 4 6 7 1 0 4 9 7 1 0 5 0 1 7 1 0 5 0 4 7 1 0 5 2 15 8 7 15 P 2 1 B 5 CU, ZN NI , AND PR ATCM1C A B S O R P T I O N A N A L Y S E S OVERBURDEN OR I L L HOLES U N PPM) N I T R I C / P E R C H - O P IC ATTACK OF BEDROCK I N T E R S E C T E D IN HOLE AND FOOTAGE cu ZN 7 1 0 4 1 0 0 6 1 . 8 8 6 5 4 . 5 C 7 7 1 0 4 2 0 0 1 2 . 8 6 4 1 0 9 . 5 3 1 7 1 0 4 3 C 0 2 9 . 2 C 5 5 C . 8 8 9 7 1 0 4 4 0 0 2 0 . 1 6 5 7 7 . 5 4 4 7 1 0 4 5 0 • 0 2 2 . 9 4 7 1 1 1 . 9 5 5 7 1 0 4 6 0 0 1 6 . 3 4 1 8 1 . 4 7 2 7 1 0 4 9 0 0 . 9 . 3 9 7 3 6 . 8 3 4 2 3 8 c c 8 2 . 3 9 9 7 4 . 6 3 7 9 9 9 8 0 0 o.c C O 7 1 0 5 C 1 0 0 3 . 1 5 4 3 2 . 0 4 7 7 1 C 5 C 4 0 0 4 3 3 . 7 1 1 5 1 5 . 8 7 7 7 1 0 5 2 0 C 1 C . 6 4 6 1 4 C . 6 9 4 HOLE AND FOOT AGE NI PB 7 1 0 4 1 C C 5 1 . 8 3 7 4 . 2 2 8 7 1 0 4 2 0 0 1 3 7 . 9 5 0 7. 5 1 8 7 1 0 4 3 0 0 2 8 .605 9 . 1 9 5 7 1 C 4 4 0 0 3 7 . 8 e 4 9 . 8 9 6 7 1 0 4 5 0 0 5 0 . 9 5 9 S. 728 7 1 0 4 6 0 0 3 8 . 4 3 4 1 6 . 8 6 7 7 1 0 4 9 0 0 5 . 391 5 . 9 3 9 2 3 8 0 0 9 1 . 6 2 7 1 1 . 3 0 0 9 9 9 8 0 0 0.0 0.0 7 105C1 c c 0.0 1 2 . 1 2 7 7 1 0 5 0 4 0 0 1 1 2 . 5 1 7 2 5 . 1 5 5 7 1 C 5 2 C 0 5 3 . 4 4 5 7 . 7 2 6 -183-F M I S S I C N S P F C T P C S C O P Y RESULT S OF S O I L S ( P P M ) FF AS P F P C F NT F E 2 0 3 BLANK OP ZERO MEANS Tr-AT ELEMENT I S BELOW D E T E C T I O N L I M I T 9 9 9 S MEANS > 1 0 , 0 0 0 P P M 9 5 S R - 10.CCO PPM CPS C H C R I Z C N PEGOSOL C P F G f. MTR I ZON PFGOSCL CORG C i i n R l Z f J N ORGAN IC CCR C HORIZON ORGANIC C B S C H C R I Z C N P R L M S C L S O I L TRAVERSE 1 STATION L i N r s m SR PA C» CO. N I AG T I CU IN V MO Bl GA SN PR MN FE IG TYPE L C S S i i a i i ? w c p s 2CC 70C 100 30 4C C90CC 4 0 5 0 7C 35 15 4 0 5 0 0 7 3.2 1251 112WCBS 15C 4 0 0 no 10 30 0 9 9 9 8 30 50 5C 4 0 18 4 0 30C 8 5.5 1381 112VCR S 3CC 300 50 10 3C C 9 9 9 8 30 4 0 6 0 20 7 20 3 5 0 6 2.5 13 9 L 1 1 7 W C R S 4 0 0 8 0 0 1 8 0 4C 8 0 C 9 9 9 8 45 70 SC 30 f 8C 8 C 0 10 5. 1 141 2 L l 12 VC RS 3 0 0 1 0 0 0 2 0 0 4 5 1 5 0 0 9 9 9 8 7 0 60 100 40 IC IOC 7 0 0 10 4.8 151 Ji.ii2v.cn<; 4 C C 1 0 0 0 1 50 4 0 1 5 0 0 9 9 9 8 50 6 0 100 30 C I C C 5CC 1 0 6 .9 161 8 L 112WCR S 3 C C 1 0 0 P 7C0 3C 80 C 9 9 9 8 50 6 0 100 30 0 5 0 7 0 0 i o n . e 1 7 2 1 L 1 1 2 W C P S 3 0 ^ 1 0 0 0 7 0 0 4 0 100 0 9 5 9 8 5C 50 IOC 3C C 7 0 7 0 0 20 10 .8 1 8 2 4 L 112WCR S 3CC1 0 0 0 1 :30 3 0 7 0 0 9 9 9 8 5 0 5 0 100 40 0 50 7 0 0 1 5 1 1 . 1 1 9 2 7 L 1 1 2w CO P 30C 80 0 190 25 ICC C 9 5 9 8 50 60 2CC 30 0 5 0 5 0 0 IC 6 . 7 1 1 0 3 0 L 1 1 2 V C P S 4 0 0 1 0 0 0 130 25 70 0 5 0 0 0 5 0 60 100 3 0 c 2C 500 8 1 4 . 7 1 1 0 3 0 L 112VCF S 4CC 70C I P C 3C 6C 0 5 0 0 0 50 4 0 1 0 0 30 0 30 5 0 0 7 1 4 . 7 11133L112V.COR 3 0 C 1 5 0 0 700 30 9 0 C7CCC 50 5 0 IOC 3 C c 1 0 0 5 0 0 10 5.8 1 1 2 3 6 L H 2 V C R S 3C U 5 0 0 7 0 0 3 0 90 0 5 0 0 0 6 0 50 70 30 c SO 5C0 1 0 6.8 1 1 3 3 9 L 1 1 7 W C R S 5CC 1000 1 50 25 4 0 2 4 0 0 0 60 50 8C " 30 0 7 0 5 0 0 8 1 2 . 5 1144 2L 117WCRS 3 0 0 1000 1 30 4C IOC OIOOC 50 60 IOC 2 5 c 4 0 5 0 0 15 7.7 1 1 5 4 5 L 1 1 2 V C P S 2 0 0 1 0 O 0 180 30 7 0 0 5 0 0 0 40 50 50 3 0 c 4 0 50C 1 0 5.7 1 1 6 4 P L 112XCP S 3CC 1 C 0 C 18C 35 80 0 9 9 9 8 50 5 0 1 0 0 2 5 0 7 0 5 0 0 15 7.5 1 1 7 5 1 1 1 1 2 W C P S 3 0 0 3 0 0 1 5 0 30 100 0 9 9 9 8 50 4 0 80 2 C c 7 0 4 0 0 8 6.7 1 1 8 5 5 L 1 1 ?>*COP 3CC 7 0 0 2 00 30 1 0 0 0 9 9 9 8 50 40 100 2 0 0 70 5 0 0 1 0 5 .9 1 2 0 6 0 1 1 12UC.0R 3CC 50C 180 3 0 50 0 3 0 0 0 50 50 I C C 2 0 0 7 0 5 0 0 F 1 2 . C 12 1 6 4 1 112V.C0P 3 0 C 7 0 0 180 30 6 0 0 9 9 5 8 30 4 0 20C 2 5 c 15 4 0 0 10 8 . 2 1 2 2 6 7 L 112VXP S 4CC 700 15 0 4 C IOC 0 9 9 9 8 5 0 4 0 1 0 0 30 0 20 2 0 0 1 5 1 1 . 6 1 2 3 7 0 1 1 1 7 W C R S 3 C 0 1 0 0 0 1 80 15 50 C 9 0 0C 30 5 0 I C C 2 5 c 1 5 2 0 0 P 3. 6 1 2 4 7 3 L 1 1 2 W C R S 3 0 0 8 0 0 1 3 0 7 0 5 0 0 9 9 9 3 30 50 100 2 5 c 2C 2 0 0 8 10 .0 125761 112'nCR S 4CC 3 0 0 1 8 0 3 0 1 0 0 0 9 9 9 8 9 0 50 1 0 0 2 5 0 50 3 0 0 101 7.1 SOIL T R A VERSE 2 STATION L I N E S O I L TYPF 227811. 2PWCPEG SP RA CR_ CO N I AC T I CU IN V MO PI GA SN PB MN 3CC10CC 180 3C 1 0 0 0 9 S S e 4 0 6 0 1 0 0 0 0 3 0 0 3 0 6 0 0 2 2 3 8 4 L 2 8 W C R C G 4 0 0 9 0 0 150 30 6 0 0 9 9 9 8 40 6 0 100 0 C 3 0 C 2C 7C0 2 2 9 e £ L 7 e w c n R i j 3CC 500 100 2 0 5C C9998 50 50 1 0 0 0 0 25 0 25 5 0 0 23089L?fi"WCRRU 4 C 0 1 0 0 0 1 50 35 7C 0 9 9 9 8 40 60 1 cc 0 0 30 c 3C 5 0 0 2 3 l 9 2 L 2 R h C R F G 3 0 0 1 0 0 0 150 35 1 0 0 0 9 9 9 8 40 60 100 0 0 3 0 c 4C 5CC 2 3 2 9 51 28WCREG 3 C C 1 0 0 C 1 2 0 3C 3C 0 9 9 9 8 4 0 6 0 100 0 0 3 0 0 3 0 5 0 0 2 3 3 9 9 1 2 P W C R E G 3 0 0 7 0 0 1 8 0 20 10 0 09 99 8 40 50 ICO 0 c 2e c 2C 5 0 0 2 3 4 1 0 1 L 2 E W C R F G 2 C C 1 0 0 0 1 BO 4 0 1 0 0 0 9 9 9 8 60 50 1 0 0 5 0 30 0 30 4 0 0 2 3 5 1 0 4 L 2 3 W C P E G 3 C C 1 0 0 C 150 4C 8C C 9 9 9 8 9 0 5 0 100 0 0 30 0 3 5 4 0 0 2 3 7 1 0 7 L 2 8 W C P E G 3 0 0 1 5 0 0 1 HO 4C IOC 0999e 100 50 30C 0 c 3 0 i c 3 5 5 0 0 2 3 8 U 0 L 2 E v . r p F G 5 C Q 1 0 0 0 1 0 0 4 0 5 0 0 9 9 9 8 70 50 100 0 c 3 0 c 3C 50C 2 3 9 1 1 3 1 ?pwr.REG 3CC 50C IOC 3C 6C 0 9 9 9 3 70 50 100 0 0 25 0 35 4 0 0 2391141.28WCPEG 4 0 0 5 0 0 100 30 50 0 9 0 0 0 80 50 80 0 7 2 5 c 5C 5 0 0 2 4 1 1 1 9 L ? t W 0 » G 4CC 7 0 0 I 00 30 6 0 0 9 9 9 3 40 5 0 1 0 0 0 0 25 0 4 0 4 0 0 242122L28WC.REG 4 0 C 1 0 0 0 100 3C 6C C 8 0 0 0 60 50 I C C 0 0 25 0 8 0 4 0 0 2 4 3 1 2 5 L 2 9 W C P E G 4 0 0 1 0 0 0 150 30 50 0 9 9 9 8 4 0 5 0 100 0 0 25 c 5C 4CC 2 4 3 1 2 8 L 2 8 V C F G 4 C C 1 0 0 C 15C 3C 5C • 0 3 0 0 0 4 0 4 0 3 0 0 0 25 0 4 0 4 0 0 2 4 4 1 3 0 L 7 P W C P E G 300 7 0 0 15C 20 6C C 5 9 S 5 4 0 4 0 90 0 0 2C c 5C 3 0 0 2 4 4 1 3 1 L 2 R W C R E G 4 0 0 1 0 0 0 150 30 6 0 0 9 9 9 9 50 6 0 IOC 2 c 3C c 100 500 2 4 5 1 3 5 L 2 8 W C R E G 4CC 8 0 0 1H0 20 50 0 9 9 9 8 3 0 7 0 100 0 0 4 0 7 30 7 0 0 2 4 6 1 3 8 1 78WCR EG 300 50 0 1 50 30 6C C 9 9 9 8 4C 5C 1 cc 2 0 3 0 0 2 0 7 0 0 2 4 7 1 4 1 L 2 8 W C P F G 4 0 0 1 5 0 0 200 4 0 1 2 0 0 9 9 9 8 50 60 2 0 0 2 0 35 c 2C 6CC 2 4 8 1 4 4 L 2PWCR EG 4 C C 1 8 0 C 2C0 5C 1 2 0 7 9 9 5 8 4 0 0 6 0 150 2 5 4 0 7 7 0 0 7 0 0 2 4 9 1 4 7 L 7 8 W C P F G 5 0 0 1 5 0 0 l eo 30 9 0 0 9 9 9 8 70 70 ICC 0 c 4C c 3 0 6 0 0 250150I.2EWCPEG 4CC 7 0 0 1 5 0 3 0 - 7 0 0 9 9 9 8 40 50 100 2 0 35 c 4C 5 0 0 251 153L2PWCR EG 2C0 300 60 20 4C 0 6 0 0 0 30 4 0 8C 2 0 2 0 0 20 2 0 0 2 5 U 5 4 L 2 8 H C P F G 2 0 0 3 0 0 70 20 50 0 9 0 0 0 30 4 0 8C 2 c 2C c 2C 2 0 C 252157t.28Vr.REG 4CC 500 100 3C 6C 0 9 9 9 8 4 0 4 0 1 2 0 2 0 25 0 20 4 0 0 2 5 2 1 6 C I 2EWCORG 4 CC 50 C i ee 3C 9C 0 9 9 9 9 50 6 0 120 0 0 3 0 0 2 0 6 0 0 2 5 3 1 6 3 L 2 8 W C P F G 500 5 0 0 1H0 40 100 0 9 9 9 9 60 5 0 ICO 0 c 3C c 4 0 5 0 0 2 5 4 1 6 6 L 2 E U C R E G 3 C C 1 0 0 C 3 0 0 5 0 2 0 0 0 9 9 9 9 30 5 0 2 0 0 4 0 30 0 15 5 0 0 2 5 5 1 69L 28WCR EG 4 0 0 5 0 0 3C0 40 150 0 9 9 9 9 50 6 0 1 OC 0 c 3 0 0 15 5 0 0 2 5 6 1 7 2 L 2 P W C R E G 4 0 0 5 0 0 2 0 0 50 150 0 9 9 9 8 ac 50 I C C 2 0 3C c 2C EOC FE IG I OSS 15 3.8 1 0 1 C . 7 8 4.0 10 IC ,1° ? £ 9 4 . 4 2.3 3 .9 5.4 5.9 2 .9 5 5.C 9 1 1 . 4 7 5.2 « 3.5 3.8 2.4 3.4 6.9 4 . E 2.7 3.6 5.5 .3 6 . 4 .0 4.8 6. .3 5 . C 5.0 101 C. 5 18 S.O 1 0 .0 15 1 0 . C 15 15 10 B 6 6 8 8 -18k-SOIL TRA VF R SE 3 STATItN I INESOIl SR PA r.p CC NI AG T t Cl) IN V MO B l GA SN PB fN F F IG i Y P F LOSS 35R240WCAMCRFG 300 6 0 0 100 10 4C 0 6 0 0 0 15 50 6C 0 0 25 7 3 0 4 0 0 5 4.9 357243WOAMCPEG 3 00 4 0 0 8 0 8 30 0 9 0 0 0 15 50 9 0 0 0 75 7 75 ?00 5 1 0 . C 359246V.OAMC.REG ?CC 50C 100 E 4C 0 9 9 9 8 30 4 0 1 00 0 0 20 5 20 2 0 0 5 4.9 359?46V.T>AMrPEG 3 00 7 0 0 30 8 40 C 9 9 9 8 3C 50 ICO 0 0 2 5 5 2 0 4 0 0 4 4.9 360249V,rM"CPFG 3CC 500. 1 0 0 2 0 45 0 9 9 9 8 18 50 100 2 0 75 e 25 4 0 0 710.0 3M?5?wrAMCn»G 4CC 60C 1 CO 3C 55 C 9 9 9 8 40 60 I oc 0 0 75 7 20 4 0 0 6 5. C 362255WCAVCPFG 3 0 0 4 0 0 80 8 30 O4O0C 20 4 0 5C 0 C 25 e 3 5 4 0 C 5 5.0 363758V.DA«rPFG 5 CC 700 I 00 3 0 5 0 , 0 9 0 0 0 40 50 100 0 0 30 7 35 4CC 7 1 0 . 0 364761wr.AMCnRG 9CC 40C ICO 3 5 5 0 10999e 3C 4C ) 00 0 10 2 5 I 0 4 00 5 0 0 9 10.C 365264WnAMr.ORG 3 0 0 4 0 0 1 2 0 4 0 5 0 0 9 9 9 8 30 4 0 ICC 0 C 3C IC 3C 4 0 0 810.0 366267wnAnrREG 5 CC 7 0 0 1 2 0 3 0 5 0 0 9 9 9 B 5 0 5 0 1 0 0 0 0 25 5 30 5 0 0 PIC. C 367270WCAM COPG 50 0 7 0 0 150 30 5C C 9 9 9 B 50 50 1 CC 0 0 30 5 20 4 0 0 i n io .0 "3682 73Wf1AMrPEG 7 0 0 3 0 0 BO 35 50 0 4 0 0 0 30 40 60 0 0 2 5 IC 2C eoc 675.0 369276V. DA Mr ORG 4CC 40C ICO 35 5 0 0 7 0 0 0 50 4 0 80 0 0 25 5 25 4 0 0 810. C 370279WDAMCPFG 3 0 0 40 0 100 18 5C C 7 0 C 0 4 0 50 90 2 0 3C 5 4 0 1 5 0 5 10 .0 37l287V.CiAMr.REG 3CC 5 0 0 120 3 0 6 0 0 9 9 9 8 4 0 50 100 2 0 2 5 C 2C 2 0 0 715.0 3722F5wnAMCRFG 3CC 500 80 20 4C 0 8 0 0 25 50 7C 0 0 25 5 25 2 0 0 5 5.C 3732eP,WCAMCP EG 30 0 50C 1 CO 30 5C C 9 9 9 8 30 50 1 CC 0 0 25 0 15 4 0 0 5 15.0 3742«1 WTAMCnpr, 300 4 0 0 1 0 0 2 0 5 0 0 BOO 40 50 100 0 0 20 C 2C 50C 7 5. C 37529wnAMr.ORG 3CC 50C ICO ZC 5C C 9 9 9 8 5 0 5 0 1 1 0 0 0 20 0 2 0 3 0 0 6 4.9 3 773OOWDAMCORG1O00 2 0 0 1 2 0 30 40 0 6 0 0 0 25 3 0 ICO 0 C 18 12 10 2 0 0 315.0 378303V.rAMCREG 3 C 0 3 0 0 1 0 0 2 0 5 0 0 5 0 0 0 30 40 50 0 0 20 5 20 2 0 0 5 5. r 379306WEAM CORG 2CC 100 100 30 6C 0 7 0 0 0 20 40 7C 0 0 2 0 0 10 7 0 0 9 5.0 380309V, DAMCORG 4 00 6 0 0 IPO 50 100 9 9 9 8 • 6C 70 120 0 35 C 2C 7C0 1 5 1 0.0 "" 38131? WD AMCUPG 300 500 1 PC 4C 1 00 9 9 9 R 80 6 0 1 00 0 25 0 25 7 0 0 1 5 5. C 382315WCAMr.PFG 300 4 0 0 100 40 IOC 8 0 0 C 7C 6C ICO 0 2 5 C 15 5 0 0 i r E.C 38331PWDAMCnRG 6 0 0 500 1 8 0 4 0 1 0 0 3 0 0 0 9 0 6 0 150 0 3 0 C 2C eoo 1 020.0 384321WDAHCPRG 4 C C 1 5 0 0 7 0 0 6 0 4 00 9 9 9 8 2 0 0 BO 2 0 0 0 30 5 4 0 1 0 0 0 15ZC.C 385324WEAMCP EG 4 0 0 1 0 0 0 150 3 0 IOC 9 9 9 8 1 0 0 8C 1 5C 5 35 10 5 0 5 0 0 10 10.0 386327kCA^CREG 3 0 0 6 0 0 180 30 100_ 9 9 9 8 ec 8C 150 3 35 20C 5C ECO 1 5 1 0 . 0 3B7330WDAVC0RG 3CC 70C 2CC 5C 130 999e EC 8C 2C0~ 2 30 7 3 0 6 0 0 15IC.C 388333 ViCAMCORG 4 0 0 1 0 0 0 1 8 0 30 100 9 9 9 8 50 70 150 0 25 5 3C 5 0 0 8 5.0 SOIL TRAVERSE 4 STAT ION LINE SOIL SR BA CR CO NI A G TI CL IN V MQ B l GA SN PB MN FE IG TYPE LOSS 489336L16CVCRS 5CC 500 1 0 0 2 0 4 0 9 0 0 0 50 50 100 0 35 IC 3C 50C 8 1 4 . 3 490339L160WCHR 3CC 70C ICC 3C 5 0 9 9 9 ? 4 0 50 100 2 3 0 5 5 0 7 0 0 8 5.C 491342L16rViCRS 3 5 0 1 0 0 0 180 40 100 9 9 9 8 4 0 60 IOC 0 3C 5 35 7 0 0 4.4 497 3 4 5L 1 60V.CR S 35C 7 0 0 1 5 0 3 0 7 0 9 9 9 8 4 0 50 100 2 30 5 30 700 1C1C.C 4933481 160WCOR 4C0 500 4 0 I C 15 C9958 20 50 I C C 0 0 3 0 8 20 6 0 0 10 494351L160*CRS 3 0 0 4 0 0 2 0 0 4 0 100 9 9 9 8 4 0 5 0 100 0 3 0 5 6C 5 0 0 10 9.5 495354L 160UC0R 25C POC 4 0 0 4C 2 0 C 9 9 9 8 4 0 6 0 1 0 0 0 30 5 60 4 0 0 10 . 0 4 9 6 3 5 7 L 16TWCPS 40C 5 0 0 700 40 ICO 9 9 9 8 5C 50 ICC 0 3C C 4C 5 0 0 10 10.0 4973 6 0 L 1 6 C U C 0 R 3 0 0 1 0 0 0 200 4 0 100 9 9 9 e 4C 50 100 0 2 5 c 3 5 5 0 0 1 C1C. 0 49836'L 1 dOKCR S ?cc 4 0 0 3 0 10 25 9 9 9 8 5 0 5 0 100 4 25 0 35 5 0 0 IC E.C 499366L lfcOWCR S 80C 500 100 30 4C 9 9 9 8 5C 6 0 15C 0 25 0 15 4 0 0 810.0 41003691 16PV.CRS 3 0 0 1 0 0 0 2 0 0 3 0 100 9 0 0 0 5 0 6 0 100 0 25 c 30 5 0 0 10 .0 41013721. 160KCR S 3CC 700 zee 3C 1 0 0 9 9 9 8 5 0 6 0 1 0 0 2 30 40 5 0 0 IC 5.0 4102375L16CV.CRS 3 0 0 1 0 0 0 2 0 0 3 0 100 9 9 9 9 4 0 70 120 2 3C 5 0 5 0 0 10 5.0 410438 11 1 £nv.r.R s 2CC 2 0 0 1 80 35 1 0 0 9 9 9 9 5 0 5 0 1 0 0 2 20 40 5 0 0 P I C . C 4105384L 160WCTR 100 7 0 0 I P C 30 ICC 9 9 9 8 40 60 I C C 2 25 40 5 0 0 IC 5.C 4106387L160kCPS 4 00 3 0 0 3 0 0 4 0 100 9 9 9 8 4 0 6 0 100 0 25 4C 50C 1 0 5.0 41073901. 160 VCR S 4 C C 1 C 0 C 2C0 4C 1 0 0 9 9 9 3 5 0 6 0 1 0 0 2 35 50 EOO 1 C 5. C 4108393L 160WCR S 4 C C 1 0 C C i ec 3C 80 9 9 9 8 4 0 5 0 1 2 0 2 3 0 30 5 0 0 8 10 .0 4109396L16rwCRS 3 0 0 1 0 0 0 180 4 0 9 0 9 9 9 8 4 0 60 100 0 3C 70 7 0 0 810.0 •41 1C399L 1 60V.CP S 3 CC 80C 1 8 0 4 0 too 9 9 9 8 4 0 70 1 0 0 2 30 50 7 0 0 P 5. C 4111402LI6rwCRS 4 0 0 500 1 50 35 4C 9 9 9 8 2C '50 2 0 0 2 25 25 700 8 9.5 41124C5L16PV.CRS 4C C 8 0 0 2 0 0 3 5 l?0 9 9 9 8 7 0 50 120 2 25 5C EOO 10 9 . 5 411340PL 16PWCP S 6CC100C 2 C 0 3C 100 9 9 5 8 I C C 6 C IOC 0 30 30 5 0 0 1 Cl5.C 4114411L16CUrnR 4 0 0 8 0 0 2 0 0 4 0 120 9 9 9 8 70 50 150 2 30 50 5 0 0 10 5.3 4115414L 160V.CRS 4 C C 1 C 0 0 2 0 0 3 0 100 9 9 9 8 4 0 7 0 1 2 0 2 30 30 700 1 0 4.9 . 4116417L 160WCOR 4 0 0 1000 180 3C 100 9 9 9 8 4C 50 1 CC 2 25 40 400 15 5. C 4117420L16CV.C0R 5 0 0 8 0 0 180 3 0 80 9 9 9 8 100 50 100 0 30 25 40C 10 5.0 4118423L16CKC0R 5 0 0 1 0 0 0 2 0 0 35 100 9 9 9 6 5C 50 100 2 25 2C 4 0 0 IC1C.C 4119426L 160 V,rR S 3 C C 1 0 0 0 1 5 0 3C 80 9 9 9 8 40 5 0 1 0 0 2 25 35 4 0 0 fi 5.C 4120429L16TWCRS 30 0 80 0 180 50 15C 9 9 9 8 5C 6C 150 2 25 2C 500 2 0 1 0 . 0 4121432L140WCRS 3CC 7 0 0 2 0 0 4 0 1 5 0 9 9 9 B 50 50 100 2 25 2C 4 0 0 I C 4. 9 4 1224 3 5L 160WO1P. 3CC eoc 180 3C I C C 9 9 9 3 6 0 6 0 100 2 30 30 5 0 0 IC 5.0 4123438H6CV.'C0R 3 0 0 1 0 0 0 130 30 100 9 9 9 8 5C 6 0 100 2 30 4C 500 10 5.0 4124441L16PV.C0R 3 CC 8 0 0 180 30 100 9998 40 7 0 100 2 30 25 500 I C 5.C -185-MAGNFTIC A NOVA L Y 1 F E , IG SAMPLE * SR PA CR CO N I AG T I CU I N V M i ) B l GA SN PB MN l o s s 157MAGANOM 1 6CC 8CC 7 0 0 4C ICO 0 9 9 0 3 1 0 0 6 0 l o o 0 0 3 0 0 2 0 0 7 0 0 I C 1 C . C ISBMAGAC.OMI 5 0 0 1 0 0 0 1 80 50 100 099<J8 50 6 0 100 0 0 3 0 c 70 6 0 0 10 5.C 1 9 9 M A G ANOM1 4CC 5 0 0 1 80 • 3 0 1 0 0 0 9 9 9 8 7 0 60 100 0 C 3 0 0 2 0 0 500 8 1 0 . 0 200MAGANC>M I 35C 4CC 1 HO 5C ICC C 9 9 5 P 6C 50 1 CC 0 0 2 5 0 7 0 5 0 0 I C 5.C 20 IM A GAMLJM 1 35 0 5 0 0 1 50 40 15C C999R 80 50 1 CC 2 0 2 0 0 30 5 0 0 10 10 .0 201 MAGANOMl 3 0 0 5 0 0 2 0 0 50 1 3 0 0 9 9 9 3 100 50 100 2 0 3C C 4C 500 • 1010.0 202MAGANQM I 4CC 5CC 2C0 4C ICO 0 9 9 9 9 1 0 0 6 0 1 5 0 0 0 30 0 2 0 4 0 0 1 0 1 7 . 4 2 C 3 N A G A N P V 1 4 0 0 5 0 0 2 0 0 4 0 100 0 9 9 9 8 100 60 ICC 2 0 3C C 3C 4 0 0 10 5.0 204MAGAN0M1 5CC 80C 1 90 4C 1 OC C9 9 9 8 9 0 5 0 150 0 0 30 0 3 0 4 0 0 1 C l 5 . C 2 0 5 P A C A N r ^ l 5 0 0 1 0 0 0 1 UO 4C IOC C 9 5 9 8 9 0 60 ICC C C 3C C 2C 4 0 0 K 5.0 2C6MAGANCV1 5 C C 1 0 0 0 5 0 0 4 0 1 0 0 0 9 9 9 9 9 0 70 150 2 0 3C C 25 40C 10 5 . 0 207MAGAW1V, 1 5CC ECC 2CC sc 15C C 9 9 9 8 7 0 6 0 150 0 0 3 0 0 9 0 5 0 0 1 6 1 C . C 208 VAf-ANOMl 4 0 0 5 0 0 1 50 50 100 0999e 6C 6 0 100 0 c 3C C 3 0 5 0 0 I C 1 C . C 20SMAGASOM1 4CC 7 0 0 1 8 0 4 0 1 0 0 0 9 9 9 9 6 0 6 0 150 3 0 25 0 20 6 0 0 1 0 5 . 0 210M.AGAM1M1 3 CC POO 1 50 3 0 8 0 099.99 50 50 100 2 0 25 c 2 5 4 0 0 8 . C 21IMAGANOM 1 3CC 8 0 0 2 0 0 4C I C C C 9 95H 80 50 I CC 2 0 2 5 0 25 5 0 0 10 6 . 0 2 1 1 MACAr-CMl 2 0 0 5 0 0 2 0 0 4 0 100 0 9 9 9 5 50 5C ICC 2 c 25 c 2C 50C 8 5 . 0 212MA0ANOM 1 3CC 800 15C 3C IOC 0 9 9 9 8 8 0 5 0 100 2 0 25 0 25 4 0 0 8 5.C 213 MA GANPMI 200 70C 120 10 3C C 5 5 9 8 4C 5 0 I CO 0 0 2 5 c 2 0 5 0 0 7 5.0 2l4MAGAf>.rMl 200 4 0 0 1 2 0 30 1 0 0 0 9 9 9 8 70 50 100 7 0 2C c 6C 4 0 0 € 5.C 215MAGANOM1 2CC ROC 150 3C I C C C 9 5 9 8 7 0 5 0 150 2 0 25 0 20 300 IC 5.C 216MAGANCM1 4 0 0 1 0 0 0 130 30 70 0 9 9 5 8 £ C 7C ICC 0 c 2 5 c 4C eoo 8 5 . 0 217MAGAN0MI 4CC 8 0 0 2 0 0 4 0 2 0 0 0 9 9 9 8 100 70 200 2 0 25 0 20 5 0 0 9 1 0 . 0 216MAGANOM1 4CC PCC 15C 3C 18C C9SSe 2CC 5 0 1 5 0 0 0 2 0 0 '30 5 0 0 7 6.C 2 1 9 MAGANOM1 300 70 0 1 50 5C 12C 0 5 5 9 8 8C 4C 100 2 c 2 5 c 3 0 5 0 0 10 9.5 220MAOAN0M1 2 CC 3 0 0 1 2 0 3 0 1 0 0 0 9 9 9 8 50 4 0 100 2 0 2C c 15 150 1 C 7 C . C 221MAGANO-4 i 2CC 40C 12C 3C ec C 9 9 9 3 35 5 0 100 2 0 2 0 0 15 4 0 0 P1C.C 2 2 1 MA GANCM1 3 0 0 5 0 0 130 50 120 0 9 9 5 9 4C 70 2CC 3 0 3C c 2 C 4 0 0 101 0 . 0 222MAGAMOM1 4CC 7 0 0 •>oo 6 0 1 5 0 0 9 9 9 9 7 0 8 0 2 0 0 3 0 30 0 30 7 0 0 1 5 1 C . C 2 23MA0AN0M1 3 0 0 1 0 0 0 2C0 30 100 C 9 9 5 5 7C 7 0 2 0 0 3 0 2 5 0 2 0 5 0 0 15 6 .0 224MAGAN0M1 4 0 0 1 0 0 0 1 9 0 4 0 150 0 9 9 9 9 7C 8 0 150 2 0 3 0 c ICC 5 0 0 1 0 1 0 . 0 225MAGAN0M1 3CC 70C 180 5C 1 2 C C 9 9 9 9 7 0 7 0 2 0 0 3 0 25 0 75 5 0 0 1 C l C. c K A G N E T I C A N C P A I Y 2 FF t r , SAMPLE # SR PA CR CC N I AG T I CU IN V MO B l GA SN PB MN LC5S 238MAGA NOM 2 4CC eoc 2 C 0 4C 1 8 0 0 9 9 9 8 1 0 0 5 0 4 00 4 0 2 0 0 15 4 0 0 1 0 5 . 0 2 3 7 MAGAN0M2 4 0 0 5 0 0 1 5 0 40 100 0 9 9 9 P I C C 6 0 200 4 0 3C c 3 0 7 0 0 IC 5.C 23 6MAGA N0M2 4 CC 5 0 0 1 50 35 3 0 0 9 9 9 8 100 6 0 2 0 0 3 0 3 0 0 1 5 1 0 0 0 io m .o 235MAGANGM2 4 0 0 7 0 0 3 0 0 5C 2CC C 9 5 9 8 IOC 70 3CC 3 0 2 0 0 25 8 0 0 1 0 1 5 . 0 234MAGAM1M2 5 0 0 7 0 0 3 0 0 40 150 0 9 9 9 8 1 0 0 70 2 0 0 3 0 2 0 c 2C 70C IC 5 . 0 233MAGANOM2 4CC 4CC 3CC I C C 3 0 0 0 9 9 9 9 7 0 0 5 0 4 0 0 3 0 2 0 0 10 9 0 0 70 I C O 222MAGA N0M2 3CC1C0C 2CC 35 IOC C 9 9 9 9 50 6 0 2 0 0 0 0 20 0 20 4 0 0 1 C 5. 5 231MAGAN0M2 300 7 0 0 700 5C l e o C 9 9 9 9 1 0 0 50 35C 4 0 3C c 15 7 0 0 I f 15.C 231MAGANCM2 3 CC 5 0 C 2 5 0 5 0 2 0 0 0 9 9 9 8 100 6 0 3 0 0 4 0 2 5 c 2C 50C 1 5 1 5 . 0 230MAGANOM 2 3 C C 1 0 0 C 300 5C 2CC 0 9 5 5 8 100 50 3CC 7 0 25 0 30 6 0 0 ?C 5. C 229 M A G A N CV2 4 0 0 1 0 0 0 2 0 0 6 0 180 0 9 9 9 5 160 50 3CC 4 0 2 5 c 5C 7C0 15 1 0 . 0 226MAGANOM7 3CC 8 8 0 200 4 0 120 0 9 9 9 9 1 0 0 6 0 3 0 0 7 0 2 5 0 20 4 0 0 1 5 1 0 . 0 227MAGANQM2 3 0 0 1 0 0 C 1 80 4C l a c C 9 9 5 E I C C 7 0 2 0 0 4 0 2 5 0 20 7 0 0 1C 1C. C 2Z6MAGANGM2 4 0 0 1 0 0 0 2 0 0 5 0 120 0 9 9 9 8 1 0 0 70 3 0 0 5 0 2 5 c 18 40C 1 0 1 0 . 0 ( O P M ) T R A V E R S E S SAMPLE * M PR 1 1 ? 0 0 2 7 . 0 2 3 5 4 . 2 1 5 1 2 5 0 0 1 1 . 2 0 3 5 1 . 5 2 2 1 3 8 C 0 1 0 . 7 3 6 31 .898 139 C c 3 C . 2 5 1 . 7 7 . 2 1 5 1 4 1 2 0 0 55 .762 9 0 . 2 5 7 1 5 1 5 c c 4 5 . 4 1 6 7 2 . 7 5 4 1 6 1 8 0 0 2 2 . 6 6 8 3 6 . 9 9 3 t 721 0 0 4 5 . 1 6 0 4 6 . 9 3 5 1 8 2 4 0 c 2 0 . 251 3 7. 74 2 1 9 2 4 0 0 3 0 . 2 0 8 4 3 . 5 1 8 1 1 0 2 0 0 c 2 9 . 3 0 9 2 0 . 6 2 6 1 1 1 3 3 c c 4 5 . 0 7 5 1 2 C . 1 88 1 1 2 3 6 0 0 31 .768 8 1.036 1 1 3 3 5 c 0 1 7 . C 0 2 5 9 . 0 6 8 1 1 4 4 2 c 0 3 3 . 8 2 9 47 .533 1 1 5 4 5 c c 3 0 . 8 6 4 3 8 . 9 8 5 1 1 6 4 8 0 0 2 4 .922 7 5 . 1 9 4 1 1 7 5 1 c c 6 2 . 3 2 9 9 2 . 8 3 8 11 855 0 0 6 2 . 5 C 7 7 9 . 0 7 2 1 2 0 6 0 0 0 3 9 . 8 3 0 6 2 . 5 2 9 1 2 1 6 4 0 0 1 2 . 2 5 5 6 . 751 1 2 2 6 7 0 0 5 1 . 7 2 7 1 2 . 8 3 9 1 2 3 7 0 0 0 2 5 . 0 2 3 7 . 1 4 3 1 2 4 7 3 c 0 2 3 . 4 1 7 1 5 . 1 5 7 1 2 5 7 6 0 0 6 9 . 5 0 6 5 C . 3 4 7 2 2 7 8 1 0 0 2 5 . 1 9 2 2 0 . 3 9 0 2 2 8 8 4 c C 2 5 . R 7 C 2 3 . 8 5 3 2 2 9 R 6 0 0 31 .425 1 5 . 2 6 7 2 3 0 8 5 c 0 3 1 . 6 8 3 2 2 . 8 4 2 2 3 1 9 2 0 0 4 2 . 2 4 1 1 6 . 2 6 4 " 2 3 2 95 0 0 3 7 . 2 3 3 1 9 . 5 9 8 2 3 3 5 8 0 0 4 0 . 6 5 2 6. 5 9 5 2 3 4 1 0 1 0 0 5 3 . 9 C 6 1 8 . 8 1 5 2 3 5 1 0 4 0 c 3 0 . 9 9 4 1 8 . 7 6 3 2 3 7 1 C 7 c c 4 7 . 2 7 4 1 5 . 0 4 6 2 3 8 1 1 0 c 0 1 9 . 5 5 6 1 5 . 157 " 2 3 9 1 1 3 0 0 2 5 . 7 0 0 2 3 . 8 5 3 2 3 9 1 1 4 c 0 2 5 . 6 5 8 3 1 . 5 5 1 2 4 1 1 1 9 0 0 2 3 . 6 7 0 2 7 . 5 7 5 2 4 2 1 2 2 0 0 2 9 . 5 3 6 6 4 . 2 2 1 2 4 3 1 2 5 c 0 2 6 . 7 2 0 2 5 . 3 8 9 2 4 3 1 2 8 0 0 3 3 . 1 4 9 3 4 . 4 0 9 2 4 4 1 3 1 c C 2 5 . 8 7 0 1 1 0 . 5 0 2 2 4 5 1 3 5 c C 2 1 . 3 1 4 3 . 776 2 4 6 1 3 9 0 0 2 9 . 7 0 7 2 0 . 2 6 8 2 4 7 1 4 1 4 1 . 4 7 4 8 . 9 9 0 2 4 8 1 4 4 4 5 . 8 7 8 4 7 C . 856 2 4 9 1 4 7 3 7 . 8 4 4 12 .542 2 5 0 1 5 0 • 3 3 . C 5 8 3 4 . 113 2 5 1 1 5 3 1 9 . 6 0 8 7 . 4 5 6 2 5 1 1 5 4 2 6 . 5 8 3 7 . 4 5 6 2 5 2 1 5 7 2 6 . 5 8 3 1 7 . 4 C 1 2 5 2 1 6 0 2 6 . 5 3 3 1 0 . 2 4 9 2 5 3 1 6 3 5 4 . 2 5 7 3 3 . 1 3 0 2 5 4 1 6 6 7 8 . 9 0 6 1 0 . 9 5 0 2 5 5 1 6 9 4 7 . 7 3 0 1 3 . 0 1 2 2 5 6 1 7 2 5 9 . 4 4 8 1 6 . 3 5 9 3 5 7 2 4 3 1 0 . 6 2 5 1 3 . 505 3 5 8 2 4 0 1 7 . 1 4 8 1 4 . 3 8 9 3 5 5 2 4 6 1 9 . 8 8 9 1 4 . 3 8 9 3 6 0 2 4 5 0 C 3 5 5 . 1 C 1 1 2 . 5 5 4 3 6 1 2 5 2 0 0 3 2 .378 1 2 . 5 5 4 3 6 2 2 5 5 c c 2 5 . 5 1 1 2 3 . 6 2 1 3 6 3 2 5 3 0 0 2 0 . 5 0 0 1 4 . C37 3 6 4 2 5 1 0 0 3 1 .657 3 0 9 . 9 1 8 3 6 5 2 6 4 0 0 3 1 . 6 5 7 2 0 . 7 7 1 3 6 6 2 6 7 0 C 2 7 . 8 4 4 2 0 . 7 7 1 3 6 7 2 7 0 0 0 49 .021 7 . 7 5 9 3 6 8 2 7 3 c c 4 1 . 1 4 5 2 0 . 3 2 1 3 6 9 2 7 6 0 0 4 4 . 2 8 7 2 7 . 7 7 2 3 7 0 2 7 9 0 0 5 5 . 3 6 5 3 9 . 1 4 9 3 7 1 2 8 2 C c 4 7 . 5 5 5 3 1 . 5 4 6 3 7 2 2 8 5 0 0 3 2 . 3 2 8 1 7 . 4 5 2 3 7 3 2 8 8 c c 2 8 . 3 5 6 1 4 . 0 6 1 3 7 4 2 9 1 c 0 3 6 . 8 2 5 1 3 . 3 5 1 3 7 5 2 9 4 0 0 4 8 . 6 5 6 2 2 . 0 3 6 3 7 6 2 9 7 0 0 3 8 . 0 9 2 1 5 . 2 4 0 3 7 7 3 0 0 c C 3 2 . 1 C 1 5 . 3 9 5 3 7 8 3 0 3 0 0 6 8 .309 2 2 . 7 2 9 3 7 9 3 C 6 c c 3 8 . 3 9 8 3 . 4 9 9 3 8 0 3 C 9 0 0 3 8 . 3 3 0 I C . 54C 3 8 1 3 1 2 0 0 3 8 . 3 3 0 1 4 . 8 8 3 3 8 2 3 1 5 0 C 4 2 . 4 4 C I C . 5 4 0 3 8 3 3 18 0 0 3 1 . 5 6 9 6 . 5 4 0 3 8 4 3 2 1 0 0 165 .322 1 5 . 3 2 9 3 8 5 3 2 4 . c c 5 7 . 2 1 6 2 1 . 8 4 3 3 8 6 3 ? 7 0 0 4 4 . 4 4 7 1 1 . 4 2 3 3 8 7 3 3 C 0 0 7 1 . 4 6 4 11 . 4 2 3 3 8 8 3 3 3 0 c 4 5 . 514 1 1 . 4 7 3 -186-CD 7.H SAMPLE n PH 7 3 . C 4 1 1 3 7 . 5 4 0 71 .67? 142 .66 1 2 4.5 1 7 . 2 3 C 8 5 . 5 9 7 5 4.6 3 5 .473 1 4 4 . 1 2 4 8 4.9 5 5 . 4 C 5 2 0 4 . 1 1 5 0 4.9 ^ 3 . 7 6 4 166.799 1 2 4.8 2 3 . 6 4 9 ,113.39 7 15 4.6 3 7 . 5CC 1 6 7 . 5 3 6 18 4. 5 3 3 . 1 0 8 7 C 2 . 6 5 2 21 4.7 3 1 . 0 0 1 1 7 5 . 1 0 3 2 4 4.8 3 1 . 4 1 9 7 6 . 3 5 4 27 5.3 3 2 . 7 7 0 1 5 7 . 2 9 3 3 0 5.6 49 .662 1 6 7 . 5 3 6 23 5.4 3 8 . 5 1 4 5 9 . 7 6 5 36 4.8 28 .041 1 1 6 . 3 2 4 3 9 5.0 2 4 . 6 6 2 1 3 0 . 2 7 2 42 4.8 2 7 . 0 2 7 1 4 1 . 158 4 5 4.8 4 7 . 9 7 3 1 3 6 . 0 7 7 48 4.3 4 1 . 852 1 7 1 . 9 2 5 51 5.1 4 2 . 2 3 0 1 4 2 . 6 6 1 66 5.9 2 1 .622 7 0 . 9 6 5 60 6.2 4 6 . 6 5 3 1 1 4 . 8 3 9 64 5.0 1 2 . 4 6 5 7 6 . 7 9 4 70 5.7 17 .084 6 6 . 2 7 6 73 5.4 6 8 . 3 3 7 1 5 4 . 4 5 2 76 6.5 2 4 . 3 1 2 1 1 3 . 4 3 0 81 4.8 2 7 . 2 6 9 1 5 4 . 2 9 3 84 5.1 41 .068 I O C . 74 6 86 5.5 2 6 . 9 4 0 1 1 4 . 8 3 9 39 5.2 3 7 . 1 2 5 1 3 7 . 3 8 5 92 5.0 2 8 . 5E3 1 2 5 . 4 0 7 95 4.9 3 3 . 5 1 1 100 .044 98 5.5 3 1 . 8 6 9 1 5 2 . 8 8 4 101 5.4 6 2 . 7 6 2 6 6 . 5 2 1 104 4.9 66 .037 1 3 4 . 5 6 6 107 5.8 45.339 9 0 . 8 8 5 1 1 0 5.5 4 2 . C 5 3 1 2 1 . 8 8 5 1 1 3 5. 2 6 7 .351 1 3 3 . 1 5 7 1 1 4 5.4 3 4 . 1 3 8 6 6 . C39 1 1 6 5.3 2 2 . 5 9 8 2 8 2 . 5 1 6 1 2 ? 5.6 39.0<>6 1 7 1 . 9 0 7 1 2 5 5.5 2 6 . 2 6 E 1 3 2 4 . 5 2 7 1 ? 8 5.5 2 3 . 5 8 4 9 C 3 . 1 7 1 131 5.4 2 2 . 0 1 2 8 8 7 . 7 1 5 1 3 5 5.4 11.499 n e s . 5 2 1 141 4.9 2 7 . 2 6 9 7 3 . 9 7 6 1 4 4 5.4 2 9 . 3 0 8 6 6 . 0 3 9 1 4 7 6 .6 1 3 3 . 6 5 5 1 C 1 9 . 2 9 2 150 4.9 3 0 . 9 1 8 1 0 6 . 2 3 6 1 5 3 6 .1 1 4 . 4 5 3 4 2 . 3 5 1 1 5 7 5.2 1 4 . 8 1 5 4 8 . C93 160 6.6 27 .375 5 3 . 1 1 8 1 6 3 5.5 2 0 . 934 5 1.682 1 6 6 5. 7 3 6 . C 7 1 5 3 . 3 1 5 169 7.0 59.903 9 3 . 3 1 5 1 7 ? 6.5 3 4 . 4 6 1 6 8 . 5 1 C 2 4 6 5.1 4 8 . 3 C 9 6 6 . 1 8 7 2 4 9 4 . 3 1 0 . 3 0 6 4 3 . 0 6 9 2 5 2 6.1 1 C . 6 2 8 4 5 . 9 4 C 2 5 5 5.3 16 .425 7 6 . 8 0 6 2 5 8 5.3 1 0 . 6 2 8 6 9 . 6 2 8 2 6 4 6.0 2 0 . 7 9 0 5 7 . 4 2 5 2 6 7 5. 5 1 4 . 4 5 3 5 5 . 2 7 1 2 7 0 6.0 22 .382 5 9 . 3 1 6 27 3 5.0. 1 5 . 6 4 6 2 1 1 . 0 3 6 2 7 6 6. 1 18 . 0 3 5 91 .880 279 5.7 2 4 . 4 7 7 6 7 . 4 7 4 2 8 2 5.5 2 7 . C 5 3 76.eC6 2 8 5 6. 1 2 1 . 7 5 6 6 1 . 7 3 2 2 8 8 5.5 3 5 . 6 3 6 6 1 . 0 1 4 251 5.9 3 3 . 1 7 2 8 5 . 4 1 9 2 9 4 5.7 3 5 . 7 4 9 109 . 107 30 0 7.2 1 5 . 7 e i 8 6 . 1 3 7 3 0 3 5.5 1 4 . P 1 5 8 0 . 3 9 5 3 06 6.3 2 7 . 6 9 7 53 .1 18 3 09 6.6 4 1 . f66 6 8 . 1 9 2 312 6.5 2 0 . 6 8 7 1 0 2 . 4 5 6 3 1 5 6 .4 7 5 . 774 5 4 . 6 9 4 321 6.3 3 7 . 5 6 0 1 1 C . 526 31 8 6.2. 1 5 . 6 0 0 7 0 . 1 0 1 1 7 4 7.0 3 0 . 8 6 1 75 .494 3 2 7 6 .9 4 5 . 7 8 2 7 7 . 8 C 5 3 30 5. 9 2 " .165 1 0 5 . 5 3 7 3 3 3 6.7 4 6 . 1 2 1 3 3 . 8 9 5 . 1 0 4 . 4 5 1 9 8 . 6 0 4 62.399 7 7 . 8 0 5 35.CCC 7 0 . 371 4 7 . 1 3 9 7 6 . 2 6 4 2 6 . 4 5 2 8 2 . 4 2 7 -187 4 B 9 3 3 6 0 0 1 9 . 7 9 6 1 4 . 3 4 9 4 9 0 3 3 9 0 c 2 9 . 1 83 3 8 . 3 1 4 4 9 1 3 4 2 C 0 46 . 7 2 3 2 3 . C 9 1 4 9 2 3 4 5 0 0 29 . 7 3 4 1 6 . 8 5 9 4 9 3 3 4 P C 0 Q. 563 4 . 7 6 8 4 9 4 3 5 1 C c 5 7 . C78 5 2 . 0 2 3 4 9 5 3 5 4 0 0 104 . 4 9 2 4 2 . 6 7 4 4 9 6 3 5 1 C c 3 5 . 5 8 0 2 2 . 4 8 3 4 9 7 3 6 0 C 0 3 1 . 9 9 2 2 5 . 7 6 9 4 9 9 3 6 3 0 0 6 . 112 2 8 . 5 5 8 4 9 9 3 ( 6 C 0 2 0 . 837 1 0 . 3 4 8 4 1 0 0 3 6 9 0 0 5 1 . 4 4 2 2 3 . 3 2 5 4 1 0 1 3 7 2 0 0 3 8 . 1 5 4 3 2 . 0 8 1 4 1 0 2 3 7 5 C 0 4 2 . 4 0 3 2 7 . 2 8 C 4 1 0 4 3 E 1 0 0 4 7 . 9 7 6 3 2 . 0 8 1 41 0 5 3 8 4 0 0 4 3 . 0 2 5 3 0 . 8 4 0 4 1 C 6 3 G 7 0 0 5 8 . 7 7 6 2 9 . 8 9 8 4 1 0 7 3 9 0 0 0 4 8 . 7 8 6 2 1 . 4 5 5 4 1 C 8 3 S 3 c c 2 5 . 847 2 2 . 9 3 3 4 1 0 9 3 9 6 0 0 46 . 9 6 6 3 9 . 0 8 8 4 1 1 0 3 9 9 0 0 59 . 6 3 9 2 8 . 9 1 6 4 1 1 1 4 C 2 c c 1 3 . 7 4 9 1 C . 6 6 2 4 1 1 2 4 0 5 0 0 4 3 . 329 2 9 . 9 5 5 4 1 1 3 4 0 9 0 c 33 . 0 5 8 1 9 . 6 6 3 4 1 1 4 4 1 1 c 0 50 . 8 2 6 5 4 . 2 6 4 4 1 1 5 4 1 4 c 0 3 7 . 9 9 1 2 8 . 1 3 9 4 1 1 6 4 1 7 0 0 50 . 2 0 6 3 3 . 3 9 9 4 1 1 7 4 2 0 c c 4 4 . 4 8 0 2 1 . 2 4 4 4 1 1 9 4 2 3 0 0 4 6 . 6 5 9 2 5 . 194 4 1 1 9 4 2 6 0 0 3 1 . ,919 2 5 . 5 0 3 4 1 2 0 4 2 9 c 0 5 7 . 811 1 1 . 7 8 3 4 1 2 1 4 3 7 0 0 7 0 . 2 5 3 2 4 . 8 8 5 4 1 2 2 4 3 5 0 0 51 . 1 76 1 6 . 1 1 1 4 1 2 3 4 3 8 c 0 3 6 . 1 7 3 1 3 . 7 0 C 4 1 2 4 4 4 1 0 0 3 2 . 6 0 7 1 4 . 2 7 9 M AGNETIC A N O M A L I E S S A f F1 E u N I PR .197 0 0 5 0 . 521 1 3 C . C 7 8 199 0 0 4 9 . .927 6 2 . 3 8 6 1 9 9 0 0 52 . • 6 C 9 1 1 6 . 9 6 1 2 0 0 c c 5 C . ,596 5 6 . 3 7 3 2 0 1 0 0 53 . ,944 3 4 . 5 3 3 2 C 2 c c 0 7 0 1 9 . 7 5 2 2 0 3 c c 4 9 . 9 8 7 1 4 . 8 6 3 2 0 4 0 0 4 2 . 2 2 7 1 6 . 20 1 2 C 5 0 0 44 . 7 7 0 1 6 . 2 0 1 2C6 0 c 4 P . 9 2 7 2 C . 9 4 1 2 0 7 0 0 6 1 . ,282 6 1 . 0 1 9 208 0 c 4 9 . 1 03 1 9 . 8 0 6 2 0 9 0 0 3 7 . 0 2 7 1 6 . 8 9 9 2 1 0 0 0 3 7 . ,366 1 3 . 1 5 5 2 1 1 c c 5 7 . 01 0 1 3 . 1 5 5 2 1 2 0 0 4 1 . 9 5 1 1 5 . 5 8 7 2 1 3 0 0 2 6 . 5 2 9 1 6 . 8 9 9 2 1 4 c c 5 2 . 0 4 8 5 5 . 4 3 9 2 1 5 0 0 4 4 . 861 2 3 . 38 1 2 1 6 0 0 5 6 . 7 9 4 2 1 . 5 9 9 2 1 7 0 c 7 9 . 166 1 5 . C 7 6 218 0 0 1 3 2 . 157 1 7 . C 9 8 2 1 9 0 c 6 8 . 392* 2 8 . 0 9 4 2 2 0 0 0 5 1 . 7 3 0 1 1 . 582 2 2 1 0 0 4 4 . 8 8 9 1 1 . 2 1 3 2 2 ? c 0 6 4 . 3 73 1 7 . 5 7 8 2 2 3 c c 3 0 . 5 7 7 1 4 . 8 1 0 2 2 4 0 0 6 1 . 0 4 6 6 8 . 771 2 2 5 0 0 57 . 0 3 4 54 .565 2 2 6 c 0 8 6 . 226 4 . 768 2 7 7 0 0 9 9 . 0 8 4 1 4 . 2 2 7 2 2 8 c 0 6 0 . 4 9? 8 .164 2 2 9 c c 1 1 5 . C4E 4 2 . 6 2 4 2 3 0 0 0 1 0 7 . 875 1 8 . 7 5 4 231 c c 5 0 . 6 1 7 1 0 . 4 5 7 2 3 2 0 0 26 . 740 I C . 7 3 8 2 3 3 0 0 2 3 1 . 3 4 7 1 . 1 4 5 23 4 0 0 9 5 . 187 9 . 7 5 5 2 3 5 0 0 9 0 . 549 2C.C1C 2 3 6 c c 6 6 . 056 7 . 9 3 7 2 3 7 0 0 7 4 . 0 1 7 1 2 . 236 2 3 8 0 0 86 . n« . 1 0 . 7 B 4 35 , 6 C ? 1 3 9 . 4 3 2 3 3 6 5.5 2 4 . 7 5 6 15 7.15C i?9 5. 0 24 .776 96 .149 3 4 ? 5.7 2 1 . 3 54 1 1 9. 109 3 4 5 4.5 1 7 . 2 6 4 1 2 7 . 7 9 6 3 5 1 5. 4 2 5 .788 1 0 6 . 2 1 I 3 5 4 6 .0 2 1 . 0 7 3 IOC. 142 3 5 7 5.5 2 4 . 1 6 4 9 5 . 5 9 0 3 6 0 5.3 1 8 . 5 4 5 1 0 7 . 729 3 6 9 5.0 1 5 . 4 5 4 6 1 . 4 5 1 377 5.4 34 .560 63 .727 3 7 5 5 .4 2 9 . 784 7 6 . 6 2 4 381 4.6 21 .635 76. 6 2 4 38 4 5.6 2 0 . 2 3 0 7 6 . 6 2 4 3 3 7 5.2 2 2 . 197 8 C . 4 1 7 3rn 5.5 1 7 . 7 0 2 7 7 . 3 8 3 3°3 4 . 5 2 2 . 1 9 7 75 .865 3 9 6 5.1 Z S . 2 E 8 9 7 . 866 3 9 9 4 . 9 1 7 . 6 9 3 22 .378 4 0 2 4.7 3 3 . 6 5 1 8 1 . 119 4 0 5 4.9 2 5 . 6 7 2 5 4 . 5 4 5 4 C 8 5.9 1 1 . 1 0 1 5 2 . 4 4 8 4 1 1 6.1 31 . 9 1 7 7 2 . 7 2 7 4 14 5.6 6 7 . 9 5 7 7 4 . 1 2 6 41 7 6.4 3 9 . 8 9 6 100 .699 4 2 0 6.3 2 4 . 9 7 8 6 0 . 140 4 ? 3 6.3 2 2 . 5 5 0 7 2 . 727 4 2 6 5. 3 3 9 . 5 4 9 1 1 3 . 2 8 7 4 7 9 6.1 2 3 . 304 5 2 . 3 C 8 4 3 2 6.4 2 3 . 5 9 1 9 5 . 1 0 5 4 2 5 • 6 . a 2 3 . 5 9 1 36 .364 4 3 8 6.3 3 9 . 8 9 6 6 5 . 7 3 4 4 4 1 6.1 3 3 . 6 5 1 7 8 . 3 2 2 2 1 . 1 2 4 6 2 . 5 2 2 1 9 . C 80 5 9 . 6 8 C CL 2N S A MPLE * P H 4 9 . 0 6 3 2 5 8 . 6 1 5 1 9 7 7.4 4 2 . 5 8 9 1 8 5 . 4 3 5 1 9 9 6. 0 4 4 . 6 3 4 2 6 1 . 4 5 6 199 6.4 4 C . 8 6 6 2 3 7 . 3 0 0 2 0 0 5.9 6 ? .166 7 0 . 4 1 7 20 1 5.1 4 0 . 7 6 4 6 8 . 9 6 6 2 0 2 6.1 4 7 . 6 9 8 6 2 . 4 3 2 2C3 5.9 4 2 . 1 2 3 7 7 . 6 7 7 2 0 4 6.0 3 9 . 066 7 1 . 8 6 9 2 C 5 6 .9 4 1 . 1C4 5 2 . 9 2 2 2 0 6 6.9 3 5 . 3 2 9 1 2 7 . 0 4 2 2 C 7 6.6 2 9 . 2 14 9 8 . CC4 208 7.C 3 2 . 7 7 2 6 6 . C 6 2 2 0 9 5.7 2 2 . 7 6 0 65 .336 2 1 0 5.1 4 3 . 4 E 2 5 5 . 1 7 2 2 1 1 5.1 3 3 . 9 7 0 1 2 1 . 2 3 4 2 1 2 5.1 11 . 8 9 0 7 1 . 1 4 3 2 1 3 4.5 2 0 . 5 7 3 6 7 . 5 1 4 2 1 4 5.2 3 9 . 0 6 6 6 8 . 2 4 0 2 1 5 4 . 9 3 7 . 4 5 6 9 5 . 7 2 4 2 1 6 5. 9 7 2 . 5 0 8 6 3 . 6 5 1 217 6.3 1 6 9 . 1 8 4 S 5 . 3 6 2 2 1 8 6.4 3 9 . 3 6 1 6 2 . 1 7 1 2 1 9 4.9 24.e60 8 9 . 3 0 9 2 2 0 4 . 9 18 .645 110 .526 221 5.0 3 0 . C39 133.7 17 2 2 2 6. 4 2 6 . 9 3 1 7 1 . C 5 3 7 2 3 5.2 2 9 . 0 0 3 7 3 . 4 5 4 2 2 4 5.5 3 7 . 4 5 6 7 3 . 9 4 7 2 2 5 5.3 7 8 . 7 2 3 61 .678 2 2 6 5.6 8? .366 9 9 . 1 7 8 2 2 7 5.6 4 e . 7 1 9 4 7 . 8 6 2 2 2 3 6.3 137 .419 1 0 4 . 6 0 5 2 2 9 6 .0 116 .012 8 9 . 8 0 3 2 3 0 5.2 7 4 . 7 5 C 4 5 . 5 5 7 2 3 1 4.6 2 5 . 0 3 3 4 9 . 9 1 9 2 32 5.4 4 2 4 . 1 6 3 5 5 . 7 3 5 2 2 3 5.5 9 5 . 9'g E 8 . 2 C 7 2 3 4 5.6 1 2 3 . 0 7 7 9 0 . 1 4 5 2 3 5 5.4 9 8 . 7 4 0 8 0 .4 5 2 2 3 6 5. 3 P 6 . 2 2 3 9 3 . C 5 3 2 3 7 5.1 9 5.57 8 7 0 . 7 5 9 2 3 8 5.4 C U . P P , ANC 7 N ATOMIC AH SORPTION A N A L Y S T S OP U S I N G ,5M HCI EXTRACTS SOI L S -188-SAM PL F IJ cu PH ZN 2 3.0 3 8 . 2 1 5 2 2 . C 5 7.0 3 1 . 9 6 8 . 3 2 . 0 8 4 . 0 2 1 . 9 6 ? 1 9 . C . 9 P .0 5 6 , 4 2 8 78 .0 12 6.0 7 1 . 4 8 C 3 3 . 0 15 7.0 5 0 . 1 8 2 22.C 18 7.0 3 1 . 9 6 8 2 5 . 0 ' 21 9 . C 2 9 . 4 6 9 2 6 . 0 24 1 6.0 26 .970 1 1 0 . 0 30 1 6 . 0 2 7 . 5 6 ? 2 3 . 0 3 3 1 0 . 0 9 4 . C36 4 4 . 0 3 6 7.0 4 7 . 6 1 B 21.C 3 9 1 7 . 0 82 .193 2 0 . 0 4 2 9 . C 5 3 . 3 3 8 2 2 . 0 4 5 6 .0 1 3 . 7 4 9 2 1 . 0 4 8 1 2 . 0 5 8 . 9 7 6 3 8 . 0 51 13.C 8 2 . 7 3 4 3 1 . 0 55 1 7 . 0 7 9 . 0 3 8 6 5 . 0 6 0 3 2 . C 6 6 . 4 3 5 7 0 . 0 6 4 9 . 0 3 . 0 9 2 1 2 . C 7 0 5 . 0 5.0 12.0 7 3 9 . 0 1 7 . 5 6 5 1 3 . 0 7 6 4 9 . 0 3 4 . 4 6 7 1 0 0 . 0 81 1 0 . 0 1 5 . 0 3 0 . 0 6 4 1 1 . C 2 2 . 6 4 3 . 0 8 6 2 0 . 0 15.0 32.C 8 9 1 0 . 0 2 6 . 3 3 0 . 0 9 5 11.0 8.2 3 4 . 0 101 12 .0 8 . 2 4 0 . 0 I C 4 2 4 . 0 1 2 . 5 2 0 . 0 107 2 2 . 0 8 . 2 2 9 . C 1 1 0 3 1 .0 1 8 . 8 2 1 . 0 2 4 6 7 . 0 6.2 1 7 . 0 2 4 9 " 4 . 0 1 4 . 3 18.0 2 5 2 9 . 0 1 8 . 0 1 5 . 0 2 5 5 4 . C . 1 9 . 2 1 4 . 0 2 5 8 9 . 0 1 5 . 5 11.C 261 1 2 . 0 3 3 0 . 5 120 .0 2 6 4 8.0 2 1 . 7 18.0 2 6 7 1 2 . 0 1 4 . 3 12.C 2 7 C 1 1 . 0 2 0 . 5 23 .0 2 7 6 1 9 . 0 .26. 1 1 5 . C 2 7 9 1 1 . 0 2 7 . 3 2 C . C 2 8 2 1 3 . 0 3 7 . 3 24 .0 2 P 5 5.0 1 5 . 5 2 5 . 0 2.88 1 0 . 0 0 . 0 2 1 . 0 2 5 1 1 3 . 0 6.2 1 5 . 0 2 9 4 1 5 . 0 2 1 . 7 1 8 . C 2 9 7 9 . 0 2 2 . 3 2 3 . 0 3 0 3 10.0 2 6 . 1 3 4 . 0 3 C 6 9 .0 6 . 2 42.C 3 C 9 1 8 . 0 1 4 . 3 21 .0 3 1 2 1 8 . 0 1 4 . 3 2 7 . 0 3 1 5 1 0 . 0 0.0 2 8. C 3 1 8 3 4 . 0 9 . 9 14.0 3 2 1 7 3 . C 2 3 . 6 2 4 . 0 3 2 4 3 6 . C 3 2 . 3 2 4 . 0 3 2 7 1 8 . 0 9 .9 16 .0 3 3 0 2 5 . C 9.3 1 8 . 0 3 3 3 13 .0 10 .6 21.C 3 3 6 2 4 . 0 10.6 4 0 . 0 3 3 9 7.0 3 1 . 7 29.0 34 2 8.C 2 0 . 5 2 4 . 0 3 4 5 7 . 0 1 5 . 5 37 .0 3 0 0 14.C 2 9 . 5 3 3 . C 2 4 3 2 .0 1 1 . 6 6.0 2 4 0 2.0 1 4 . 1 9.0 4 2 0 2 4 . 0 1C.4 39.0 4 2 3 1 8 . 0 22 .8 30 .0 4 2 6 7. C 2 8 . 8 2 4 . 0 4 29 1 0 . 0 1 6 . 7 12.C 4 3 2 1 4 . 0 2 2 . 7 1 9 . 0 4 3 5 1 9 . 0 2 2 . 7 3 0 . 0 4 3 8 6 . 0 1 9 . 7 19.0 4 4 1 1 4 . 0 1 9 . 7 2 5 . 0 3 4 8 6.C 1 5 . 8 2 7 . 0 1 6 3 10 .0 2 6 . 5 19.0 1 5 7 9 . 0 2 7 . 7 11 .0 2 7 3 1 3 . 0 2 9 . 6 17.C 1 6 9 16 .0 0.0 1 7 . 0 150 5 . C 3 5 . G 2 0 . 0 27 13.0 3 2 . 9 2S.C 92 8 .0 18 .2 2 8 . 0 351 7 . 0 4 8 . 6 2 0 . 0 S A M P I E 1 C l P9 ZN 354 11 .0 4 C . 4 3 0 . C 3 5 7 11 .0 7 0 . 2 3 ? .0 3 6 0 I C C 2 5 . 3 7 9 . 0 363 4 . 0 7 5 . 2 S.C 3 6 6 2 9 . 0 8 .8 14 .0 369 1 1 .0 1 5. 8 17.0 3 7? 9 .0 2 6 . 5 21.C 3 7 5 1 2 . 0 ? 6 . 5 7 7 . 0 391 9.C 3 1.5 19.0 3 P 4 1 0 . 0 3 1 . 5 2 9 . 0 3 6 7 9 . 0 3 0 . 9 ? 2 . 0 ? 9 0 1 1 .0 ? 0 . 2 2 6 . C 3 96 11 .0 37 .8 7 6 . C 3 9 9 8. C 2 9 . 6 1 9.0 4 0 ? 7.0 1 3 . 2 14.C 4 C 5 1 3 . 0 3 8 . 5 2 4 . 0 4C8 4 1 .0 3 C . 3 2 2. 0 411 3 0 .0 4 8 . 6 54 .C 4 1 4 1 0 . 0 3 1 . 5 2 3 . 0 4 1 7 1 1 . C 3 C . 3 3 0 . 0 3 9 3 1 2 . 0 2 5 . 9 14.C 9 8 1 2 . 0 16 .5 36 .0 1 1 3 1 5 . 0 2 7 . 1 26.0 1 1 4 2 4 . 0 3 6 . 5 26.C 147 16.C 1 7 . 6 " 1Q. 0 1 5 3 6 . 0 3 7 . 9 1C.C 160 1 5 . 0 ' 7 . 6 2 5 . 0 166 1 5 . 0 1 2 . 9 2 3 . 0 172 1 8 . 0 I P . 2 3 7 . 0 119 10 .0 2 0 . 5 1 7 0 . C 122 2 5 . 0 7 8 . 3 1 2 0 . 0 125 9 . 0 17.6 U C C . C 1 2 9 9 .0 2 6 . 5 5 1 0 . C 141 1 1 . 0 4 1 . 1 2 7 . C 1 3 1 10.C 6 C . 5 6 ? 0 . 0 1 4 4 42 .0 5 0 5 2 .7 2 ? 0 .0 135 5 . C 1 7 . 5 1 3 0 0 . 0 130 1 4 . 0 1 1 1 . 0 3 9 C . 0 1 9 7 3 0 . 0 1 2 7 . 8 1 2 0 . 0 198 2 9 . 0 7 4 . 8 1 10.0 1 99 2 7 . 0 1 4 0 . 2 1 2 C . 0 2C0 2 C . C 5 7 . 1 1 0 0 . 0 201 2 7 . 0 2 6 . 5 2 6 . C 202 2 7 . C 7 0 . 6 35 .0 2 0 3 2 9 . 0 7 C . 6 3 4 . 0 2 0 4 25 .0 20 .6 3 ? . C 2 C 5 2 2 . 0 2 0 . 6 4 0 .0 2 0 6 2 0 . 0 2 3 . 5 44. C 2 0 7 16 . C 6 5 . 4 5 2. C 2 0 8 18 .0 3 4 . 4 57.C 2C3 1 3 . 0 14.4 19 .0 2 1 0 8.0 1 1 . 9 1 6 . C 211 16.C 13.2 I 1 .0 2 1 2 11.C 1 2 . 5 1 4 . 0 2 1 3 7.0 15.C 3.C 2 1 4 1 7 . 0 3 9 . 5 13.0 2 1 5 1 3 . 0 1 2 . 5 14. 0 2 1 6 2 0 . 0 2 2 . 6 29 .0 2 1 7 31 .0 1 0 . 7 . 16.0 2 1 3 1 0 0 . 0 1 8 . 2 2 6 . 0 2 1 9 13.0 1 8 . 8 1 0 . 0 2 20 1 0 . 0 8.2 12.C 221 8.0 8 .2 3 3 .0 2 2 2 1 8 . C 2 3 . 8 4 4 . 0 2 ? 3 10 .0 17.6 9.0 2 2 4 9 . 0 6 0 . 3 1 9 . 0 2 2 5 7.C 3 8 . 8 3.0 2 2 6 4 9 .0 1 2 . 5 2 5 . C 2 2 7 ? 7 . 0 1 2 . 5 29 .0 228 1 5 . 0 e. s P. C 2 2 9 4 4 .0 2 6 . 3 33.C 2 3 0 2 7 . C 1 2 . 5 2 0 . 0 231 4 4 . 0 6 . 3 9 .0 2 3 8 1 8 . 0 6.1 15 .0 227 2 3 . C 7.3 2 6 . 0 2 3 6 35 .0 4.3 2 2 . 0 735 6 2 . C ? C . 2 2 3 . C 2 34 3 2 . 0 13 .4 2 2.G 2 3 3 9 . C 1 7. 8 1 9 . 0 ? 3 ? 1 9 0 . 0 14.1 9 . C E M I S S I O N S P F C T P C S C C P Y P E S U I T S CF C P F F K P»OFILFS <|>PM) FE AS PER CENT F E 2 0 3 B I A N K OP ZFRC MEANS Tt-AT FLEMCNT IS BELOW D E T E C T I O N L I M I T 9965 MF AN S MO,OOO PPM 9998 = 10.000 PPM SAMPLE * ppr«=i LE SP HA CR CO NI AG T I CU IN V MO Bl GA SN PB MN 180 r.P IR G 8C 50C 1 50 2C 40 07000 150 20 50 0 0 30 0 50 300 181 CR1RG 150 900 20C 50 150 09000 150 50 ICC 0 C 3C 5 40 900 ie2 3CC120C 200 30 50 69999 200 70 ISO 0 30 8 . 40 500 183 CP 2P G 4C01500 200 30 100 C9998 100 50 1 CC 0 0 30 6 100 500 184 CR3RG 3001500 200 60 150 2999e IOC 70 ICO 0 0 30 5 1C0500C 185 35C1500 250 5C 150 29919 150 70 200 0 30 0 180 400 186 CR3PG 2006000 200 8 30 5CS958 3CC 60 300 30 0 40 1C9999 500 187 1507000 120 30 0 405000 600 40 350 9 20 C4CCC 10 189 CP4RG 4CC 900 300 25 90 C9998 40 50 100 0 0 30 5 60 800 191 3002000 250 30 40 09999 200 80 3CC 200 30 C 5C 500 152 CR 5R G 4CC1000 1 50 20 50 09998 50 50 100 0 0 30 6 90 900 193 3C03000 200 30 30 C9995 100 70 180 4 30 0 150 500 154 CR5RG 4CC1000 60 8 35 09000 50 50 100 0 0 30 10 90 700 195 3002000 250 30 100 C9999 100 70 25C 0 30 0 200 500 196 CR5PG 4002000 100 to 40 09998 50 50 100 0 0 30 10 5C 700 FE GE 180 8 181 15 182 2C C 183 10 184 10 185 21 0 186 20 187 2 40 185 10 191 12 0 19 2 10 193 15 0 154 10 195 2C 0 196 10 ATCHIC ABSORPTION ANALYSES OF CU, PB, AND ZN CONTENT OF BEDROCK IN CREEK PROFILES 1 IN PPM ) SAMPLE « CU PB ZN 182 0 c 73.0C0 28.484 1100.000 185 0 0 5O.OC0 244.264 7OC.C0O 187 c 0 72.000 2910.807 70 .000 191 c c 45.CCC 35.060 5CC. CCC 193 0 0 39.000 104.651 500.COO 195 c c "50.000 120.101 1000.000 SAMPLE # 180 181 163 184 186 192 155 196 SAMPLE * • 180 181 1E3 184 186 192 155 1 ° 6 SAMPLE » ISO 181 IP3 1 84 1 86 1 E6 192 194 156 ATOMIC A8S0RPT ION ANALYSES OF TILL IN CREEK PROFILES (PPM) USING NITRIC/PERCHLORIC ATTACK 0 0 0 C 0 0 0 0 0 0 c 0 0 0 C 0 0 c 0 0 0 0 c 0 0 0 0 0 0 0 0 0 cu 111.073 53.657 38.501 72.232 541.738 26.917 38. 5C1 35.775 M 61. 216 36.447 41.076 85.366 15. E17 29.010 29.149 24.269 CU 25.0 15.0 20.0 12.C 99 .0 IC. C 14.0 11 .0 1C.C ZN 1641.208 2256.325 315.453 930.729 71. C48 1108.348 1243.335 1094.135 pe 252.81 7 36.752 222 .733 208.497 21. 595 81 .849 112.530 7C. 87C US ING HCL PB 168.6 30.0 213.5 162. 1 9999.0 64. 7 46.3 48.3 44.7 ATTACK ZN 30C. C 300.0 140.0 200.C 140.0 510.0 66C.C 4B0.0 400.0 - I S O -A P P E N D I X C -191-MEDIAIM TEST ( S i e g e l , 1956) T h i s t e s t s whether tuo independent groups d i f f e r i n c e n t r a l t e n d e n c i e s . I t g i v e s i n f o r m a t i o n as to whether i t i s l i k e l y t h a t tuo independent groups (not n e c e s s a r i l y of the same sample s i z e ) have been draun from p o p u l a t i o n s u i t h the same median. i . e . H^: tuo groups are from p o p u l a t i o n s u i t h the same median. It a l s o t e s t s whether the tuo independent samples come from the same p o p u l a t i o n or n o t . The pouer e f f i c i e n c y as IM approaches i n f i n i t y = 63%. METHOD 1. Determine combined median of n^ and n^ s c o r e s . 2. S p l i t each group's s c o r e s at combined median i n t o those t h a t exceed the median and those t h a t do n o t . 3. I f + n^ y kO, then c a l c u l a t e the t e s t s t a t i s t i c j £ c o r r e c t e d f o r c o n t i n u i t y . 4. I f the j£ s t a t i s t i c c a l c u l a t e d from the data i s g r e a t e r than 2 X 1 05' " ^ e n r e J e c t H p l . Group 1 Group 2 T o t a l # of s c o r e s above combined median § of s c o r e s belou combined median A A + B C + D T o t a l A + C B + D I\l = n^ + n^ X 2 = NCAD-BC-Sj)2 (A+B) (C+D) (A+C) (B+D) The median t e s t uas used to determine i f the Cu, Pb, and Zn r e s u l t s of the g l a c i a l outwash ( i n the overburden d r i l l hale samples) uere s i g n i f i c a n t l y lower than these of the g l a c i a l t i l l . The r e s u l t s f c l l o u . Z i n c H A' There i s no d i f f e r e n c e i n the medians of the t i l l and outuiash. The z i n c values i n the g l a c i a l outwash are s i g -n i f i c a n t l y l o u e r than those i n the t i l l . O v e r a l l median = 90 T i l l •utwash T o t a l # of values >9D 75 76 # of values <90 37 kl 78 T o t a l 112 k2 15k Test s t a t i s t i c : JC kB.kl9 X 21,.05 = 3 ' B k The c a l c u l a t e d value i s h i g h l y of c onfidence and t h e r e f o r e we accept the a l t e r n a t e . s i g n i f i c a n t at the 95% l e v e l r e j e c t the n u l l h y pothesis and -193-Copper The median value of copper f o r the t i l l i s the same as t h a t f o r the outuash. The median Cu value of the t i l l i s higher than t h a t of the o utuash. O v e r a l l median: 26 T i l l Outuash T o t a l # of values >26 70 74 # of values <:26 k2 38 80 T o t a l 112 42 154 C a l c u l a t e d t e s t s t a t i s t i c : JQZ 32.25 } % Z ± D 5 = 5.84 The c a l c u l a t e d value i s h i g h l y s i g n i f i c a n t at the 95% l e v e l o f s i g n i f i c a n c e and t h e r e f o r e ue r e j e c t the n u l l h y pothesis and accept the a l t e r n a t e ; t h a t the median copper value of the t i l l i s h i g her than t h a t of the outuash. -194-Lead Hj-|: TherE i s no d i f f e r e n c e i n the median Pb value c f the t i l l and t h a t o f the outuash. Hfl: The median Pb value of the t i l l i s s i g n i f i c a n t l y higher than t h a t of the outuash O v e r a l l median = 26 T i l l Outuash T o t a l # of va l u e s >26 69 8 77 # of values ^ 26 •43 23 77 T o t a l 112 k kZ 15k C a l c u l a t e d s t a t i s t i c : JT lk.ZZ jC 1 05 = 3*8it The c a l c u l a t e d value i s h i g h l y s i g n i f i c a n t at the 95% l e v e l of s i g n i f i c a n c e and t h e r e f o r e ue r e j e c t the n u l l h y pothesis and accept t h a t the median Pb value f o r the t i l l i s higher than t h a t of the outuash. -195-APPENDIX D DISTRIBUTION OF Cu, Pb, Zn AND N i ALONG TRAVERSES 1 TO k k \ T-4 2a 2b 2d 25 21 24 10 15 34 2 7! 21 / 22 18 22 25! IS 34 ^ „ ^ v 2€ 11 32 67 39 ~~ 23 22 40 33 24 24 40 34 21 19 2b N \ \ 2c 2b T 2e -1 11 17 35 55 34 11 24 33 31 31 2d 33 50 39 21ST ?5 27 48 42 3b&c 3d} 2 22 47 12 v I 2a 2b 2b 7 / C C O L O G I C C O N T A C T r F A U L T S C A L E (feet) 10^0 ?O00 DISTRIBUTION OF Cu ALONG TRAVERSES ONE AND FOUR (IN PR1> F O R f(OCK T Y P E D E S C R I P T I O N S S E E T A B L E l U Figure 32 Figure 33 S T R E A M / . G E O L O G I C C O N T A C T SS a s s u m e d , i n f e r r e d S S F A U L T S C A L E In l e e t "X» 2 Q C O DISTRIBUTION O F C u ALONG TRAVERSE TH R EE ON PPM ) F O R R O C K T Y P E D E S C R I P T I O N S S E E T A B L E H I Figure 3k -199-\ 2a T-4 38 2b / y 2d 23 17 5 7 42 22 26 23 10 23 32 27 / / 32 30 30 21 23 33 11 30 2 0 54 . 28-33 21 25 25 12 24 1G 14 14. 2b \ / w \ 2c \ T-1 541 2 7 7 90| 72 37 32 11 / 2a 2b 2d 44 20 120 81 5 3 39 75; 9e| 79 2b — 3a 3b&c \ i / 2b 7 / GEOLOGIC CONTACT r r" F A U L T S C A L E (leet) 10^0 DISTRIBUTION OF Pb ALONG TRAVERSES ONE AND FOUR < IN PPM > FOR POCK TYPE DESCRIPTIONS SEE TABLE UI F i g u r e 35 Figure 36 -20.1-Figure 37 \ T-1 138 143 2a T-4 13"Si 157 2b — SS 120 126 10 100 95 1 08 s i G3 79 79 1 i i / 80 2d ? i 2b 77 75 97 22 81 •V n V v VAr ^  52 72 74 100 73 11 3 32 33 3G GS 78 63 X / w \ 2 c ^ 2b 2d 3b&c 35 144 204 \1 96 V , 3 202 125 78 157 187 98 116 . -138 141 13G 171 3a •— 142 70 115 77 \ 5S 94 11 / 2a 2b V y 2b 7 S eCOLOGIC CONTACT r" F A U L T SCALE (feet) 2CO0 DISTRIBUTION OF 2 n ALONG TRAVERSES ONE AND FOUR (IN PPM/ roii ROCK TYPE DESCRIPTIONS SEE TABLE IH F i g u r e 38 -203-SCALE flctrl) Figure 39 yS* S T R E A M • / G E O L O G / C C O N T A C T / / a s s u m e d , i n i c r r e d /' j> F A U L T S C A L E In feet ' O X ) 2000 DISTRIBUTION OF Zn ALONG TRAVERSE TH R EE (IN P F M ) F O R R O C K T Y P E D E S C R I P T I O N S S E E T A B L E HI Figure 40 \ 2a 2b T-4 3-1 - 4G" 30 10 57 104 3G 32 6 20 51 38 42 1 2d / 48 43 58 4 9 2S 4 7 ~ f /. "j v aoj" 14 43 33 51 " 38 50 44 47 32 58 7 51 3S 2b 11 \ / w 11 \ 2 c ^ 2b T-1 271 10 30 55 45 22 30 30 29 45 31 17 33-T / 2a 2b 2d 30 25 62 62 -4t«t 3a 12 51 25| \ v y 3b&c r 2b 7 S G E O L O G I C C O N T A C T y F A U L T SCALE ((eel) 0 _ _ . 1000 DISTRIBUTION OF Ni ALONG TRAVERSES ONE AND FOUR (in PPM ) F O R F O C K T Y P E D E S C R I P T I O N S S E E T A f t l E U J F i g u r e kl Figure 42 -207-S T R E A M / , G E O L C G / C C O N T A C T / / a s s u m e d , i n f e r r e d ,f f A U L T S C A L E In feet DISTRIBUTION OF Ni ALONG TRAVERSE TH R EE (IN pr-M) F O R R O C K T Y P E D E S C R I P T I O N S S E E T A B L E IXC Figure 43 \ \ o GEOLOGICAL CONTACT KXIATION ; dip • (DOING ; d i p FOLD AXIS: plung® FAULT W H t C T I O N Of DISPLACEMENT ALONG JALUT SOAO OM soot MINE SITE S C A L E 4 5 ^JglT,'*7""rr^ T H O U S A N D F E E T GEOLOGICAL SETTING OF THE FARO ORE BODIES i LEGEND . ' I J U R A S S I C TO CHETACE0U3 1 13 Medina g r a i n e d h o r n b l e n d e d i o r i t e i i A n v i l B a t h o l l t h r medium t o c o a r s e - g r a i n e d p o r p h r l t i c g r a n o d i o r i t e C A J B R I A N ( ? ) >I Dark g r e e n n a s s l v e a a p h i b o l i t e t o l i g h t g r e e n f o l i a t e d a n d e s l t e 3c Limy s e r l c l t e , c h l o r i t e p h y l l i t e 3b L i g h t g r e y t o b l a c k s e r l c l t e , c h l o r i t e g r a p h i t e p h y l l i t e , > Hedtun p r e y t o b l a c k q u a r t z , g r a p h i t e , s e r l c l t e , c h l o r i t e , b i o t i t e p h y l l i t e t o q u a r t z i t e 2e M a s s i v e a a p h i b o l i t e t o a n d e s l t e , p o s s i b l y v o l c a n i c t u f f - g r e e n s t o n e 2d Medium B r a i n e d q u a r t z , b i o t i t e , s e r l c l t e , c h l o r i t e s c h i s t w i t h a r . d a l u s l t e , eramet and s t a u r o l l t e 2c M a s s i v e w h i t e c r y s t a l l i n e l l o e s t o r . e 2b White to c r e a n y and gre e n to b r o w n banded c a l c - s l l l c a t e 2a C o a r s e t o median g r a i n e d q u a r t z , b i o t i t e s c h i s t , some r a r n e t and s t a u r o l l t e G e o l o g y by W. R o b e r t s September 1971 Drawn by P. M o r t o n 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0302661/manifest

Comment

Related Items