UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The spark spectra of zinc Dick, Kenneth Anderson 1963-12-31

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1963_A6_7_D4 S6.pdf [ 5.48MB ]
Metadata
JSON: 1.0302541.json
JSON-LD: 1.0302541+ld.json
RDF/XML (Pretty): 1.0302541.xml
RDF/JSON: 1.0302541+rdf.json
Turtle: 1.0302541+rdf-turtle.txt
N-Triples: 1.0302541+rdf-ntriples.txt
Original Record: 1.0302541 +original-record.json
Full Text
1.0302541.txt
Citation
1.0302541.ris

Full Text

THE SPARK SPECTRA OF ZINC by KENNETH ANDERSON DICK B.Sc., University of B r i t i s h Columbia, i960 —1 A THESIS SUBMITTED IN PARTIAL FULFIIMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of PHYSICS We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1963 In present ing t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree that permission f o r extensive copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s representat ives . It i s understood tha t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l ga in s h a l l not be allowed without my wr i t t en permiss ion. (Kenneth A . Dick) Department of Physics  The U n i v e r s i t y o f B r i t i s h Columbia, Vancouver 8, Canada. Date 17 A p r i l 1963 V ABSTRACT The spark spectra of zinc have been photographed i n the region between 990 A and 2590 A using a condensed spark i n helium as source. Exposures were taken using a Hilger large quartz prism spectrograph and a 3 meter normal incidence vacuum grating spectrograph of l o c a l design* Of 1000 l i n e s measured, some 228 were c l a s s i f i e d i n the spectra Zn I , Zn I I , and Zn I I I on the basis of square arrays constructed using energy l e v e l s from Moore's "Atomic Energy l e v e l s , " volume I I (19!?2). Also, 6? l i n e s were c l a s s i f i e d i n the t h i r d spark spectrum of zi n c , Zn IV, enabling assignment of r e l a t i v e energies to 8 even le v e l s belonging to the configuration 3d Us and to 27 odd le v e l s belonging to the configuration 3d* Up, In addition, use was made of 2$ l i n e s measured by Bloch and Bloch (1936) i n the region below 500 A i n determination of the ground state 3d*D« vi ACKNOWLEDGEMENTS I wish to thank Dr. A. M. Crooker f o r h i s i n t e r e s t ^ assistance, and encouragement throughout t h i s project. I am also indebted to Messrs. A, J . Fraser, J« Lees, W» J... Morrison, and D, R, Stonebridge f o r assistance i n the construction of the vacuum spectrograph* i i TABLE OF CONTENTS PAGE ABSTRACT . . . • . . • . . . . . . • • . . V ACKNOWLEDGEMENTS • • • • • • » • • • • • • . .. . . . . . . v i INTRODUCTION . 1 EXPERIMENTAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 RESULTS . 5 Spectrograms • • • • • • . • • • » • • • • • • • • « 5 Wavelengths . • • • . • • • • • • • • • • . » . . » • • » » » » • $ Inten s i t i e s • . • • . • • • • • • • . • • • • • « • • . • • • • • f> Tabulation , . , * • 6 ANALYSIS OF RESULTS . . .' . . . . . . . 7 Zh I , Zn I I , Zn I I I . . • 7 Zn IV . . • . . . . . . . . . . . . . .7 The Even Levels • • • • • • • • • • • « • • • • • • « • • • 7 The Odd Levels • • • • • • • • • • • • • 10 I n t e n s i t i e s • . • • • « • • • • • » • • • • • • • « • • • • l l ; The Ground State lU Summary • 1? SUGGESTIONS FOR FURTHER WORK 16 BIBLIOGRAPHY . ... . . . . . . $7 i i i LIST OF TABLES TABLE PAGE I. Relative Term Value of a yF s ; 4 and fr*D^ . . . . . o . . . . . . . '8 11(a). Extrapolation of F i n a yF . . . . . 8 11(b). Estimated Interval Ratio i n a yF .. . • • . • . ... . * • . • • . • • 9 11(c). M u l t i p l e t Intervals i n a*F . . . . . . . . . • . . . • . . • • • 9 : I I I . Relative. Term Values of the Odd Levels . . . • 10 IV(a)^ Extrapolation of f i n z'Dj Z*F° 11 IV(b). Estimated Interval Ratios i n z V , ZyF° . . . . . . . . . . . . . 11 IV(c). M u l t i p l e t Intervals i n z V , Z V * . «. , . . . . . . . . . . 12 V. M u l t i p l e t Intervals i n the Odd Mul t i p l e t s 13 VI. Interval i n a D . .*• « . . . . . . ., . . • . . « . lU V I I . Square Array of Zn IV . . . . . . . . . . . . . • 19 V I I I . C l a s s i f i e d Lines of Zn IV • . • . . . . • . 2k IX. Energy Levels of Zn IV • • • . . . . . . 2 7 X(a). Wavelengths Above 2000 A ( a i r ) . . • . * . . • . 29 X(b). Wavelengths i n the Region from 2000 A to 987 A (vacuum) . . . . . 36 X(c). Wavelengths Below £00 A . . . . . . . . . • • • » . . • . • • • • 56 i v LIST OF FIGURES FIGURE' PAGE 1. The Source Tube . . . . . . . . . . . . . * . . • . • • « • • 17 2,. The E l e c t r i c a l C i r c u i t ,17 3. The S l i t . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1 INTRODUCTION A recent review of spectroscopy i n the vacuum u l t r a v i o l e t by Tousey (16) pointed out the renewed interest i n the subject since 19U5. This rejuvenated i n t e r e s t was attributed to technical advances, such as those i n vacuum, technology, and to the new f i e l d s where the extreme u l t r a v i o l e t i s of importance^ such as high temperature plasmas, rocketry, s o l i d state studies, and--', space astronomy. I t should be kept i n mind, however, that there i s a vast amount of work yet to be done i n the f i e l d , and that many spectra have not been investigated during the past twenty years. One such spectrum i s the t h i r d spark spectrum of zinc, Zn IV. Subbaraya (l£) published nine terms and U8 c l a s s i f i e d l i n e s i n the region from 1029 A to litl+3 A. Bloch and Bloch (l) published 32 c l a s s i f i e d l i n e s i n the region from U66 A to 1)|)|9 A, but did not assign term values. An almost complete lack of agreement between the two analyses l e d Mrs. Moore- S i t t e r l y , i n "Atomic Energy Levels," volume I I (9), to report the spectrum as not having been analysed. Although there has been no subsequent work reported on t h i s spectrum, there has been a signigicant amount of work done on lower members of the Co I isoe l e c t r o n i c sequence? notably that of Rus s e l l , King, and Moore (11) on Co I , and of Shenstone and Wilets (lU) on Cu I I I . The present work represents f o r the most part an extrapolation of re l a t i v e term values i n the Co I isoe l e c t r o n i c sequence uKkig the regular and ir r e g u l a r doublet laws. Two extrapolations have generally been taken: one a l i n e a r extrapolation based on Ni U and Cu I I I , the other a quadratic extra polation which includes Co I . Although begun without reference to eit h e r of the two previous works, use was made of Bloch and Bloch's wavelengths below $00 A i n order to determine the value of the ground state 3d**D. 2 EXPERIMENTAL Three spectrograms were taken, a l l using as source a condensed spark i n helium. The essentials of the source tube and e l e c t r i c a l c i r c u i t are shown i n figures 1 and 2 respectively.. In a l l cases, ZLford type Q-2 plates were used. Exposure 1 was taken on a Hilg e r large quartz prism spectrograph set to cover the region from 2100 A to 2600 A on a ten inch p l a t e . The source was run f o r f i f t e e n minutes i n a pressure ofone atomsphere of helium using a s l i t width of f i v e microns. With the diaphram closed to four millimeters,, a ten second copper arc exposure was taken to provide standards. The plate was developed f o r one and one-half minutes i n Kodak D 19 developer. Exposures 2 and 3 were taken on a 3 meter normal incidence vacuum spectrograph of l o c a l design. The grating was produced by Bausch and Lomb (catalogue number 33-52-H>H71> s e r i a l number 22^7 Al,) and was ruled with 1200 l i n e s per millimeter and a blaze angle of lT'7' on a c i r c u l a r blank of diameter 127 millimeters with a ruled area of height 69 millimeters and width 10l|. millimeters. The design allowed an angle of incidence of 9°ho' and a plate holder of length 30 inches to hold plates of width two inches. A s l i t of one centimeter length was used, with the s l i t width set at f i v e microns (see figure 3.) Half the s l i t was covered with a l i t h i u m f l u o r i d e window to sort out second order l i n e s . A gate valve between s l i t and grating enabled the main chamber of the f i f t y cubic foot spectrograph to be evacuated p r i o r to the source tube being put i n place. Evacuation was accomplished by using a Consolidated Electrodynamics Corporation MC !?G0-B d i f f u s i o n pump with BW60 ba f f l e backed by Balzers DUO £ and Kinney KS - 27 pumps. A cold trap with l i q u i d nitrogen was placed i n the pumping e x i t . Pressure was measured on a Ph i l i p s type PHG - 09 gauge. 3 The range of the spectrograph was found from the grating equation (Sawyer, 12): n* = d(sin<* * sin»" ) where n i s the order number, d the separation of the grating r u l i n g s , <*• the angle of incidence andf the angle of d i f f r a c t i o n . Since the grating radius was 2998.3 millimeters, the value of P at the ends of the 30 inch plate holder was -6.7I4.2''*" For f i r s t order, t h i s leads t o : - ( i d A/mm) (1200 lines/mm) ( s i n 9° h-0 = s i n 6.71*2*) giving a range from Ul6 A to 2385 A. Sawyer also gives the recipr o c a l dispersion as: d^/dx a d cos e where r i s the radius. At the center of the plate holder; **/dx. - (8333*3 A)/(2998.3 mm) = 2.7793 A / mm f o r f i r s t order. This value decreases symmetrically about the center as cos^, giving the reciprocal dispersion at the ends o f the plate holder as: * V d x = 2.7793 (cos 6.7U2*) = 2.7598 A/mm For exposure 2, a l i t h i u m f l u o r i d e xdjadow was used to i s o l a t e the source from the s l i t . The gate valve was kept closed u n t i l the pressure had dropped to 0.5 microns. With the source kept at one atmosphere pressure of helium, the gate valve was opened, and the pressure rose to 50 microns, which held during the exposure time of twenty minutes. An 18" and a 10" plate were set to the red end of the plate holder* Developing time was two minutes using Johnson Azol developer. Exposure 3 was taken with the l i t h i u m f l u o r i d e window removed* The source tube was connected to a Cenco-Hyvac pump, and maintained at a pressure of 7 centimeters as measured on a mercury manometer. The helium entrance and e x i t tubes were shaped (see diagram 1) i n an attempt to minimize the amount of contamination reaching the s l i t * With the gate valve closed, a pressure of 0.6 microns was attained i n the main chamber.. When the gate valve was opened,' a pressure of 0.6 millimeters was maintained during the exposure time of t h i r t y minutes. An 18" and a 10" plate were set to the red end of the plate holder. Developing time was two minutes using Johnson Azol developer. RESULTS Spectrograms. A l l plates displayed good "pole e f f e c t , " thus enabling an estimation of the e x c i t a t i o n of the spectral l i n e s i n most but the weakest cases. Plate 1 contained l i n e s from 2099 A (air) to 2£86 A ( a i r ) with a general minimum of i n t e n s i t y occuring below 2200 A. Plates 2 contained l i n e s from 1133 A to 2381). A with weak i n t e n s i t y below l l j f o A. Plates 3 contained two regions of strong l i n e s j one from 15>80 A to 2318 A, the other from 988 A to 13^0 A. In. between, a few weak l i n e s were present. Below 988 A, three l i n e s occured at approximately 677 A, 717 A, and 1S$ A. This, together with a strong smell of o i l upon opening the spectrograph, indicated a pump o i l leak r e s u l t i n g i n absorption i n the regions indicated. Wavelengths. Measurements were taken on a Zeiss-Abbe comparitor, modified by the maker to enable measurement o f 18" x 2" plates. Wavelengths were determined from the comparltor readings by use of the Hartmann dispersion formula where the constants a„ , G, do were calculated by the method described by Sawyer (12). For plate 1, the constants were determined from measurements of the copper standards, whereas f o r the other plates w e l l known zinc l i n e s were used as standards. The wavelengths expressed to thousanths of A are considered accurate to 0.01 A j those expressed to hundredths to O.Ofj A. I n t e n s i t i e s . I n t e n s i t i e s of spectral l i n e s were measured on a Jarrell-Ash 23-100 recording microphotometer with B r i s t o l dynamatie recorder. This a c t u a l l y provided 6 a measure of the density on the spectrogram. From the cha r a c t e r i s t i c curve of a photographic plate (Kodak 8) the density i s found to be a l i n e a r function of the logarithm of the exposure. Since the exposure i s proportional to the i n t e n s i t y , the density i s therefore proportional to the logarithm of the i n t e n s i t y . For each exposure, the i n t e n s i t y of the l i n e 2138,56 A ( a i r ) was chosen to be 5>00. Hence, f o r each exposure, a logarithmic scale was drawn with which the height of the microphotometer density trace could be converted into an i n t e n s i t y f o r the spectral l i n e . Tabulation, Wavelengths of l i n e s measured, together with corresponding vacuum wavenumbers have been l i s t e d i n tables X(a) and X(b)• Table X(a) contains l i n e s with a greater than 2000 A, and expressed i n a i r wavelengths. Table X(b) contains l i n e s with a less than 2000 A, and expressed i n vacuum wavelengths. Conversions were based on tables by Edlen (3), I n t e n s i t i e s on a l l plates are l i s t e d , together with i n t e n s i t i e s from the l i t e r a t u r e (see the legend at the beginning of each table.) 7 ANALYSIS OF RESULTS Zn I , Zn I I , and Zn III» On the basis of r e l a t i v e term values given by Moore (9) t square arrays were drawn up f o r the arc spectrum and the f i r s t and second spark spectra of z i n c . By f i t t i n g vacuum wavenumbers into these arrays, 26 l i n e s were c l a s s i f i e d i n Zn I , UU i n Zn II> a i d 1$Q i n Zn I I I . Zn IV., Due to the lack of consistent data regarding the energy l e v e l s of Zn IV, the analysis was begun without reference to previous work. As the wavelengths available did not include any below $00 A, no i n i t i a l attempt was made to estab l i s h the ground state a 2D. Instead, an a r b i t r a r y zero of energy was assigned to the l e v e l a F ¥ J i, Using as data the energy l e v e l s i n "Atomic Energy Levels," the r e l a t i v e term values f o r the l e v e l s belonging to the 9 9 configurations 3d Us and 3d Up were calculated f o r Co I , Ni I I , and Cu I I I . The r e l a t i v e term value f o r the lowest l e v e l i n each mutiplet of Zn IV was then estimated by l i n e a r and quadratic extrapolations using the i r r e g u l a r doublet law. S i m i l a r l y , extrapolated values of the LS i n t e r v a l factors using the regular doublet law, together with extrapolated estimates of the i n t e r v a l r a t i o s within the m u l t i p l e t s , l e d to estimations of the multiplet i n t e r v a l s . The d e t a i l s of t h i s analysis^ together with the observed values, have been grouped under "even l e v e l s " and "odd l e v e l s . " The Even Levels. The r e l a t i v e term values of a*F 3 J 1 and ^D,^ are shoTrjn i n table I . Energies are given i n reciprocal centimeters. 8 TABLE I RELATIVE TERM. VALUES OF AND b*D, Co I Ni I I Cu I I I Zn 17 Linear Qaadratic Observed (cm"') (cm"') (cm"') (cm"' ) (cm-') (cm"') 3959.6 5156.2 6211.7 7267.2 7126.1 7221.9 16778,2 H+71U.0 17162.7 19611*4 2l4l2i|..2 19779.7 Condon and Shortley (1935) give the theo r e t i c a l LS i n t e r v a l factor, P , f o r 3d*("3F)Us a vF as F - —^ £3J , where £u 3-3 the spin=orbital i n t e r a c t i o n constant f o r a 3d electron. From the regular doublet law (Pauling and Goudsmit Using the value o f f j ^ from the data, and knowing the values of the Rydberg constant R, the f i n e structure constant «< , the quantum numbers n and U. , and the nuclear charge z, the value of the screening constant s was extrapolated to give £ 3 i andTfor Zn IV. Table I I (a) gives t h i s extrapolation, table I I (b) gives the estimated i n t e r v a l r a t i o , and table I I (c) combines these to give estimations of the in t e r v a l s within a*F, together with the observed i n t e r v a l s . TABLE I I (a) EXTRAPOLATION OF f IN a*F Co I Ni I I Cu I I I Zn IV (cm'') (cm"') (em"') (cm"') r -151.7 -216.2 -293.5 -388 U55.2 61*8.6 880.li 1163 (z*s) 12,618 17,981 24,U07 .32,242 (z-s) 10.60 11.58 12.50 13.u0 s I6.4O 16.42 16.50 16.60 9 TABLE I I (b) ESTIMATED INTERVAL RATIO IN a*F Co I N± I I Cu I I I Zh TV A * U.35 3.61 2.5U U.33 3*63 2.5U It. 29 3.67 2.53 U.25 3*72 2.53 TABLE I I (c) MULTIPLET INTERVALS IN a*F Zn IV (predicted) (cm'' ) Zn IV (observed) (cm'' ) -16U5 -979 -1635.9 -1U38.6 -97U.O For a lF, /"=--§- , so the predicted i n t e r v a l was found to be -2585 cm"' as compared to an observed value of -2528.0 cm-'. The t h e o r e t i c a l LS i n t e r v a l for b aD i s zero. However, a l i n e a r extrapolation of the i n t e r n a l i n Nl I I and Gu I I I gave an estimate of -936 cm-'» The observed value was -939.8 cm-'.. The Odd Levels. The r e l a t i v e term values of the lowest l e v e l i n each odd multiplet are shown i n table III., 10 TABLE I I I RELATIVE TERM VALUES OF THE ODD LEVELS Co I (cnf' ) Ni I I (cm"') Cu I I I (cm"') l i n e a r (cm"') Zn IV quadratic (em"') observed (cm"') 285U3.7 U3l6k.O 58059.k 72955 73230 72588.3 '28981*9 UU911.1 60532.3 7609U 75666 75716.3 29359.3 U6163.2 627U5.0 79327 79105 79006*2 .... •» _ « 2 Gy*. 29956.9 U6905.9 63637.6 80369 80152 80240.8 31967.8 4 8 6 8 6 . 2 6602U.5 83363 83983 83095.1 ... 1 « z Da>i 32609.6 U9025.6 6 6 0 8 7 . 0 831U8 83791; 8284O.8 *'p;* 40997.3 58176.8 75802.U 93U28 93874 93025 U36U6.1 59300.1 77279.1 95258 97583 9U883 U0U28.5 59760.0 78183,2 96606 95698 9627U z « U005U.9 60571.U 79396.0 98221 96529 9796U x F J J t U7095.9 67523.2 87001.0 106U79 105529 106071 Goudsmit and Humphreys ( 4 ) have shown that the value of I may be determined from and £?> ^ e s p i n - o r b i t a l i n t e r a c t i o n constants, for the atomic core and the electron, by the equation; where l/t and s , 2^  and sif S. and s, are the quantum numbers of the core, the electron, and the resultant configuration* For zvD°and sV*,. t h i s gives s r - -JJ- f - .L. t 7 11 Solving! ~ S (lly ~ V Fff> ) Table IV (a) gives l i n e a r and quadratic extrapolations of £ 3 J and i Vf, with corresponding FtM* and . Table IV (b) gives the estimated i n t e r v a l r a t i o s , and table IV (c) combines these to give estimates of the in t e r v a l s , together with the observed i n t e r v a l s . Similar estimates and observed values f o r multiplet i n t e r v a l s i n other odd terms are given i n table V. TABLE IV (a) EXTRAPOLATION OF F IN z , V , z'F* Co I (cm"') Ni I I (cm"') Cu I I I (cm"') Linear (cm-') Zn IV Quadra-tic (cm - /) U23.U 13.0 636.2 597.2 803.5 131ii.l 970.8 2031.0 -657.2 -21*0.2 925.3 2163.7 -651.6 -222.6 TABLE IV (b) ESTIMATED INTERVAL RATIOS IN z vD°, Z ' F 0 Co I Ni I I Cu I I I Zn TV z v D ^ 3.31 2.62 1*57 3.38 2.57 1.56 3*1|1 2.56 1.51* 3.1*2 2.55 1.53 12 TABLE IV (b) (continued) Go I Ni I I Cu I I I Zn XV 2 F,*, V F ; ^ U.82i 3.71 U.81; 3.70 1*97 U.82 3.91* 1 .76 U.80 U.00 1 * 7 0 TABLE IV (c) MULTIPLET INTERVALS IN S D , z; F Zn IV (linear) (cm-') Zn IV (quadratic) (cm"') Zn XV (observed) (cm"') -22U7.6 -1675.9 -1005.5 -228U.7 - 1 6 6 1 . 6 - 996.9 - 2 2 6 9 . 9 - 1 6 0 8 . 6 - 1 0 0 2 . 6 F F , V •F.V -1153.0 - 9 6 0 . 8 • 1*08.3 - 1 0 6 8 . 5 - 890.1* - 378.1* - 1 1 8 6 . 6 - 978.6 — 287*8 V V 2 _0 7 F; i _ c 7 D; 1 —.«> 13 TABLE V MULTIPLET INTERVALS IN THE ODD MULTIPLETS l i n e a r quadratic observed _ j (cm"' ) (CM*' ) GamlJ 673.3 633.2 611.9 -11*36.0 ^ 3 9 * 1 -151*1**3 -1116.8 -1119.3 -1187.9 *2232.0 -2l*3l*.0 -2218.2 -2287.6 -2191.7 . -23U3.8 -1800.8 -1555.5 -1910.7 257.5 221.0 316 1359*2 11*79.8 11*28 955.8 572.1* 101*6 -171*1.8 -2788.1 -1318 ik I n t e n s i t i e s . With the estimates of r e l a t i v e term values and multiplet i n t e r v a l s as a guide, a search was made of the wavelengths l i s t e d i n order to c l a s s i f y the strongest l i n e s of the Zn IV spectrum. As a further guide, a square array of Cu I I I was constructed from the data of Shenstone and Wilets (lH). Table VII shows a modified square array with energy l e v e l designations and i n t e n s i t i e s of the c l a s s i f i e d l i n e s , the i n t e n s i t y of each l i n e being chosen from the exposure with the best i n t e n s i t y i n that region. Shown i n brackets are the i n t e n s i t i e s of Gu I I I . The Ground State. In order to establish the ground state a*Dj use was made of Bloch and Bioch's wavelengths below $00 A. I t was found that t h e i r c l a s s i f i c a t i o n of l i n e s i n t h i s region was consistent with the above c l a s s i f i c a t i o n , with the minor condition that t h e i r l i n e s r e s u l t i n g from the transitions between a'D^and the odd l e v e l s z' G^ and z * F ^ were interchanged,. This led to an a*D i n t e r v a l of 2765 cm' and a term value of a*F,j(_relative to ; a^D^of 128,735.5 cm"'. Further of t h e i r l i n e s were then c l a s s i f i e d . Table X (c) contains those l i n e s c l a s s i f i e d , an asterisk denoting the ones c l a s s i f i e d by Bloch and Bloch. A further v e r i f i c a t i o n was found by considering the r a t i o of • i n a*D and a*F, using F - - £3d f o r a*D, The results are shown i n table VI, 1$ TABLE VI INTERVAL IN a 1 D Co I Nl I I Cu I I I Zn TV . Predicted Observed Ld (a'F)(cm"') U55*U 6U8.6 880.U ll5<$.7 C3j (asD)(em"') 389.1+ 602.8 828.7 1102 1106 Ratio 1.169 1.076 1.062 1.05 Summary, Wavelengths are included i n tables X (a),(b),(c). An energy l e v e l table i s given as table IX> and includes i n t e r v a l s . That the analysis i s consistent may be seen from table VII, where the c l a s s i f i e d l i n e s of Zn IV are l i s t e d separately, showing the difference between the observed wavenumbers and the wavenumbers calculated from the energy l e v e l s . I t may also be seen from table VII to account f o r a l l the equivalent major l i n e s i n the same region f o r Cu I I I as observed by Shenstone and Wilets ( l i t ) . 16 SUGGESTIONS FOR FURTHER WORK That there are s t i l l many l i n e s of Zn IV to be c l a s s i f i e d may be seen from tables X (a) and X (b). From table V I I , i t i s evident that there are also many combinations to which these l i n e s may be assigned. The two l i m i t i n g factors i n t h i s work have been the lower l i m i t of wavelengths obtained arid the r e l a t i v e l y low i n t e n s i t y of the l i n e s i n the regions of i n t e r e s t . Several further possible c l a s s i f i c a t i o n s have been investigated, but lack of substantia t i o n has made such c l a s s i f i c a t i o n s suspect. For example, the c l a s s i f i c a t i o n s 1363.9U7 I 73316.6 cm"' a*G^ - xY,\ 13U0.192 A 7U616.2 cm"' . a'G,^ - X ' F ^ would lead to energy l e v e l s : a*GVX. 161,1+93 cm"' -19 cm a G J / x 161,512 cm which i s consistent with an extrapolated value of 161,056 cm ' f a r aaG.>, and an i n t e r v a l of -33 cm - /. V e r i f i c a t i o n of such c l a s s i f i c a t i o n s may be possible through the use of a source more suited to higher e x c i t a t i o n , such as the electrodeless discharge. The use of a grazing incidence vacuum grating spectrograph could also improve o wavelengths i n the region below 500 A. With spectrograms of greater i n t e n s i t y , i t may also be possible to c l a s s i f y l i n e s of Zn I I I which arise from tr a n s i t i o n s involving l e v e l s belonging to the configuration 3d Us • Extrapolation ofi Ni I iso e l e c t r o n i c sequence data should a i d such an Investigation, p a r t i c u l a r l y i n view of Shenstone's (13) p r a c t i c a l l y complete analysis of Cu I I . 17 FIGURE lo THE SOURCE TUBE. He i n Quartz Window . FIGURE 2. THE ELECTRICAL CIRCUIT. 110 AC Variac To Electrodes 20 KV Spark Gap 18 From Source Scale 2:1 19 TABLE VII SQUARE ARRAY OF ZN IV 20 21 22 23 *X V„<-z G,M * X z X zX z x z X z %K z X aX z'F^ zX zX zX T X y X Z P-/v y-DU Z P.K. y X y X (5) (0) (o) 1* (i5o) 2 (100) 0 (2) 2 (100) (1*00) 5 (300) 1 (50) 6 (200) 0 (5) 3 (100) 5 (150) 7 (200) 0 (10) (20) (15) X 2 (20) 2 (200) 6 (300) 2 (200) (30) 0 (20) 3 (100) 5 (150) (2) (10) 0 (20) (15) (5) a fF f ) t ho (1000) 25 (300) 25 (2000) (1) 30 (1000) 0 (2) 0 (1) 2 0 X h d o ) 20 (700) 30 (600) 25 (300) (1) 6 (200) 20 (5oo) 20 (1*00) 7 (15) 6 (3) 8 (2) 3 (2) (0) 1 d o ) X 25 (30) 20 (5oo) 20 (5oo) 20 (200) 15 (300) 20 (300) 5 (10) 1 (3) 5 (2) 12 (30) 5 ( l ) 2 (2) (10) X . (0) l (10) 15 (l+oo) 25 (1*00) 15 (200) 20 (300) 8 (10) 10 (2) » x 7 (2) 25 (200) 2 2 25 ^  '• (200) 6 (30) 25 (5oo) 8 (5) 15 (300) 25 (5oo) 30 (5oo) 1* (3) (5) (*) 1* (3) X 15 (5o) 7 2 (5) 6 (2) 10 (20) 20 (5oo) 6 (5) 15 (200) 15 (300) 25 (5oo) (*) (1) (25) m (1*) (5) 10 (200) 10 (300) 8 (300) 20 (300) (5) (10) X (10) (8) (2) (0) (2) 0 (5) (10) (30) (10) (10) (So) (3) (o) » X (30) (20) (10) (o) (5) (20) (30) (10) (15) d o ) (100) (100) X (15) (20) (20) (2) (5) (0) (75) X . (50) . (20) (5) ( i ) (5) (30) (30) (30) (200) (15) (15) * X (1*) (0) (5) (10) (20) X (8) (2) (1) (5) (1) (6) (1*0) (3) (8) (25) gX /P'*. * X x'DV y*P,V ITXK y'P' Z'H'-K g'Sy. aX z*S%,. (3) (5o) (2) (20) (50) (75) (100) (15) (150) (20) (5) (1) (o) (1*0) (5) (300) (1) (5) (1) (2) (300) (30) (10) (5o) (ioo) (100) (1) (15) w (300) (15) (3) (3) d o ) (100) (1) (10) (300) (1*00) (1*00) (10) (20) (15) (25) ~ o — (5o) 7 (200) 7 G,^ y G f V V (3) (3) (200) (300) (5oo) (2) 2l+ TABLE T i l l CLASSIFIED LINES OF ZN TV Wavelength Wavenumber ' (obis.).,- u(calc) c l a s s i f i c a t i o n *A (A) v (cm"' ) AX) (cm-') 1529*839 65366.1+ 0.0 a*F J i t- z D3 Vv 11+81. 22 67512 1.2 z Gait "LU59.968 68U91+.7 0.3 a^F,*- 11+55.631+ 68698.6 0.0 a F,.*- 11+27.783 70038.7 0.0 a* FJX_ - H+19.58U 701*1+3.2 0.3 a F a ^ — z VF , V 11*09.392 70952.6 0.2 a*Fs^ - ZYD|^ 11*03.980 71226.1 -0.5 a*F3X. - 1^00.136 711+21.6 0.1 a'F.*- z vF.% 1391+.522 71709.2 -0.1 z*F,VL 1393.070 71783.9 ( 0.2 a*F, v- ( -0.1+ a F,!{. — z"FvV 1389.078 71990.2 0.2 b'D,^- 1380.870 721+18.1 -6.2 a*F/i4 - z'Dr-/v 1377.637 72588.1 -0.2 a'F,^- 1375.306 72711.1 0.0 a"F,jt- 1371.185 72929.6 -0.2 b*DLK.- z"P,V 1370.10.1 72970.8 -0.1 a * F J > L - 1369.506 73019.0 0.1 a FJV^- z L G ° ^ 1368.166 73090.6 -0.3 a*FA!<- 1365.702 73222.1+ 0.1 a ' F j j c - Z*D;,. 1365.262 7321*6.0 0.2 b'D^- z y P , V 1363.1*1+1* 7331*3.7 -1.5 a Fin_— 1362.535 73392.6 0.3 a'F,*-1362.010 731*20.9 0.0 a'F,*- 1352.270 7391*9.7 0.2 a ' F , ^ - B'F;*. 131*9.882 71+080.6 0.2 a vF, y i- Z'G;,. 131+8.351 7U16U.7 0.7 b'D,*- 131+7.9U9 71*186.8 0.7 a ' % - Z*G;A 131+U.079 71+U00.U 0.1+ a'F,^- 1333.310 75001.3 -0.3 a Fj,./,,- 1329.103 75238.7 -o.U a'F^- 1326.719 75373.9 -0.1 a'F,*-1322.U37 75618.0 -0.9 a*F J } i- 1322.336 75623.8 -0.9 a*F,* - 2*G.^ TABLE VIII (continued) 1321.19a 75689.1 0.1 Z'F;^ 1320,729 75715.8 -0.5 a*E,*- 1317.982 75873.6 0.4 a FJH_- Z XF;^ 1310.132 76328.2 0 . 0 afF,x.- 1306.6U9 76531.6 -0.2 b*IW- y lF,v 1296.736 77116.7 - 1 . 6 a*F l l t- 1296.630 77123.0 0 . 1 a Fyj4_ z'F.V 1292.1i75 77370,9 0 . 6 a*F,K.- Z'F,V 1291.80U 77U11.1 0 . 4 zvF,V 1280.467 78096.5 -o.U 1278.U97 78216.8 - O i 2 a Fj •• zxF,V 1275.767 7838U.2 -0.5 a*F,H. - 1272.956 78557.3 o.U a*F,K. - z'F,V 1272.199 7860U.I - 0 , 8 a F»jv— 1265.732 79005.7 -0.5 a'F,*. - Z *F**i. 1259*651 79387.1 0 , 6 avF,jt - S*GW 1257.305 79535.2 -0,3 a Fisv.«» 7/F:,. 1253.653 79766,9 0 , 6 a Fiiv*" 12U9.681 80020.U - 0 . 2 a'F.vt- 12U6.993 80192.9 0 , 1 a \ - Z'F;* I246.24H 8024I.I 0 , 3 a^Fo* — Z*G;«. 1239.120 80702.U - 0 . 6 a*F ) V t~ 1237.2U7 8082U.6 -0.5 a Fj •/,.«» 1231.448 81205.2 0 . 3 a F,*. — 1228.652 81390.0 -o.U a*F<s4 - z lF , V 1227.610 81U59.1 . - 0 . 1 a'FjH. - z'Fm 1224.328 81677.5 0.5 a'F,*. - z ' D V 1214.118 8236U.3 - 0 . 1 a^ F.K.- z'F,V 1212.700 82460*6 -o.U avF,*.- 2 *GU 1203.427 83096.0 0 , 9 a Fyj^ — z'F.V 1109.926 90096,1 -12 a*FJJt - 10li5.08l 95686.U - 8 a v F % - 482.IO 207U26 -U a*D l ! t - z'FV U78.92 208803 - 8 a JD,st- z Diiv 478.62 20893U 5 z ¥F , V 476.U0 209908 1 a x D 2 ! c * z yF ,V 475.75 • 21019U 0 s vF,\ U7U.5U 210730 8 a * D m - U73.U9 211198 1 a*"DaJt- E 'GJJ*. U73.00 2111)16 7 a*D,K- a'Flv. 472.65 211576 u a | D i J t - U72.08 211828 -2 a Di^» a *F,V 26 TABLE VIII (continued) 468 . 4 2 213U8U -3 a*D,*_- Z D/K.- 4 6 6 . 9 1 2 I 4 I 7 I 1 0 a [ D ^ - U57.29 218680 0 a^D,.^- z vP ,V U56.6U 218991 -5 a 1D//k - W2 .79 220853 -1 U51.58 221UU5 0 alDax_- U50.93 221764 3 a Da^ .- z F*V 4 4 9 . 9 5 222214.7 2 a D,* — y*D,v UU6.55 2 2 3 9 3 9 h : a Dm — 444.36 225043 - U a DJUV*3 1442.35 226065 9 a l D 2 ) t - X^DU U U l . l l 226701 1 a Dij^ — s'P,V U28.53 233356 - 7 a ' D ; * - 32*F,\ U25.88 234808 -2 a Daiv— U23.U9 236133 5 a l D ^ -Configuration I d * 27 TABLE IX ENERGY LEVELS OF ZN IV Designation J Level Interval (cm" ) (cm"') a 2D 2^ 0 , 0 -2765 2765 a yF hi 128735.5 31 -1635.9 130371.U -1U38.6 2| _ 131810,0 - 97U.O 1* ' 13278U.O a*F 31 135957.U - 2 5 2 8 . 0 2 | 138485.U b aD 2ir 148515.2 - 939.8 1* 149U55.0 z v 31 201323.8 -2269.9 2* 203593.7 -1608.6 i i 205202*3 - 1 0 0 2 . 6 2 206204.9 z'G° 205063.7 611.9 hi 204451.8 -15UU.3 31 205996.1 -1187.9 2| 20718U.0 z'r U| 2077U1.7 -1186.6 31 208928.3 - 978.6 2| 209906.9 1 | - 287.8 21019U.7 z2G° u* 208976.3 - 2 2 1 8 . 2 31 ? n i 9 6 . 5 3d*( 3F)Us 3d'( iF)Us 3d,('D)Us 3 d'( 3F) 4p 3 d f f( JF ) 4 P 3dVF) 4p 3d'(3F)Up 28 TABLE IX (continued) Configuration Designation J Level 3d'('F)Up zxF° oi ^2 211830,6 Oi ^2 21U17U.4 3 d ' ( J F ) i i P B-D" 2* 211576.3 1* 213U87.0 3dff(3P)Up Z*P° 2| 221761 221445 * 3d8('D)4P 2| 223619 -^ 2 220OU7 3d*('D)Up y'D- X 2 225010 226056 3 d V D ) 4 P i 2 1| 226700 3d 8('G)4 P x'F 0 31 234810 2| 236128 Inter v a l -2343.8 -1910.7 316 1U28 IO46 -1318 29 TABLE X (a) WAVELENGTHS ABOVE 2000 A (AIR) Legend: Hs Int e n s i t i e s given by Kayser (6), M: Inte n s i t i e s given by Harrison (5). ( ) denote discharge tube i n t e n s i t i e s , P: Intensities.from exposure 1, V: In t e n s i t i e s from exposure 3» L: In t e n s i t i e s from exposure 2, :^ Wavelengths (air) i n Angstroms, y: Wavenumbers (vacuum) i n reciprocal centimeters. H M P V L C l a s s i f i c a t i o n 8 1 2586.01 38659 I 3 0 0 6 .2582.57 38709 I liP'p; - 6d'D 1 2577.32 3 8 7 8 8 I 6h 2576.00 3 8 8 0 8 I I I 7 5h 2575.56 38815 I I I 2 2573.06 38853 I 0 2571.61 3887U . I 5paP/k 10 5 2570.72 38888 I I 6 7 2569.9U 38900 I kv3?; - 6d3D, h 1 2567.80 38932 I Up'p; - 8 s 3S, lOh 2562.58 39011 , I Up*P,4 - 5 s J s A 20 300 1000 2557.97 39082 I I 2 255U.36 39137 I I I 2 2552.55 39165 I I 0 25U7.67 392U0 I I I 0 25U6.51 39258 I 00 25U5.6 39272 I I I UP'P/ -3 UOh 1 25U2.33 39322 I 8s 3S, 1 2539.hh 39367 I I 00 2536.U8 39U13 I 3 2535.9h 39U21 I I 2 253U.72 39UUO I I U 2533.67 39U61 I I 1 2532.18 39U80 I I iiP 3P 0 V " . 1 0 1 2530.09 39512 I 8s 3S, 30 TABLE X(a)(continued) H M P V L V 1 2528.U6 39553 I 2h 2527.91 39559 i n 5 10 2527.08 39560 i n 1 252U.10 39606 1 5 10 2522.09 39638 i n 2h 2520.33 39665 i n 0 2519.15 3968U 1 2 2516.06 39733 1 6 150 : 10 2515*80 39737 1 3h 2515.07 397U8 i n 1 251U.26 39761 1 2 2512.00 39797 1 7 8 2509.07 398U3 i n 3 2508.05 39860 i n 1 2506.90 39878 1 0 2506.65 39882 11 6 Uoo 800 2501.97 39956 11 2h 2U97.87 U0022 i n 2h 2U97.16 U0033 i n 3h 2U96.ll U0056 IT Oh 2U95.69 U0057 1 3 25 Oh 2U93.38 U009U I lOh 2U92.08 U0115 I I I 100 8h 2U91.52 U012U . I 6h 2U91.22 U0129 I I 8h 2U90.79 U0136 I I I 5 12h 2U86.93 U0198 I I I lOh 2U86.18 U0210 I I I 8h 2U8U.57 U0236 I I I 0 2U83.38 U0256 I 2h 2U80.2U U0306 I I I 3 30 Uh 2U79.81 U031U I 1 2U76.39 U0369 I 8 12 2U73.37 U0U18 I I I 8 2U72.70 U0U29 I I I 12 0 2U69.51 U0U82 I Uh 2U68.97 U0U91 I I I 7 12 2U67.16 U0520 I I I 2h 2U63.75 U0576 I I I 3 , 20 6 2U63.53 U0580 I C l a s s i f i c a t i o n Up3P/ •» 7d 3D UP'PA - 5B2S/L UP 3?/ - 93% Up3P/ - 7d*D UP 3P; - ?d 3D Up3P/ - 9s 3S, Up3Pi - 8d 3D 31 TABLE X (a)(continued) H M P V L A D Classif: 8h 2U62.1U 4 O 6 O 3 n i 5h 2U60.U5 40631 11 1 2U55.98 40705 11 2h 2U51.30 1*0782 i n 15 21*50.39 1|0797 i n 00 2448.2 0 U083U i n 7 2Uli5.oU I4O887 i n 7 20 2442*14 1*0935 i n 4P3P,° -3 (3) 1 2UU0.19 1*0968 1 8h 21x38*30 1*1000 i n 6h 21*37.61 4 1 0 1 1 i n 8h 21*34.40 U1065 i n 8 Oh 21*30.91 10121* 1 4P*p; - (10) 3 21*29.51* 10178 1 0 21*28.93 10159 1 10 30h 21*27.06 1O190 i n 6 25h 21*23.1*5 10251 i n UP3P; -2 21*21.73 1O280 1 5h 21*20.85 : 10295 i n 10 25h 21*18.86 10329 • n i 7 2104.74 loUoo 11 Oh 2loo*53 101*72 1 6 15 21*08.55 lO506 i n 5 Oh 2l08,13 10513 1 4P*p; - 12h 2U05.32 U1562 i n 1 24O4.88 U1569 1 2h 2401.58 U1627 i n 4P 3P; -3 1 2399.23 IO667 1 3 2398.88 1*1673 i n 2 2396.63 1*1713 i n 1 2395.63 1O730 1 4 P 3 p ; -l5h 0 2393*80 10762 1 (5) 7 2393.11 1077U i n 5 3 2390.18 U1825 11 00 2388*62 10852 1 Up3Po * (2) 2 5h 2383.98 1093U 11 5s*s* - h 1 1 2382*00 1*1969 1 UP'P; -u 8 2371.31 U2158 i n 0 2368.15 42211* 1 2 3h 2366.46 1*221*1* 1TI 32 TABLE X (a)(continued) H M (3) 10 (10) (10) p V L x> 0 l h 2361.11 1*231*0 I 2 2351;. 78 1*21*51* I 10 15 231*8*30 1+2571 I I I 00 231*8.25 U2572 I 6 8 231*7.67 1+2582 I I I 2 3 231*6.62 1*2602 11 0 l h 231*3.1*7 1+2659 I 0 233U.78 i*28l8 I 00 2332.77 1*2851* I 3 2321.03 1+3071 I l*h 15 10 2317.66 1*3131* rv l 2h 2317.16 1+311+3 1 00 231U.20 1+3198 10h 15 30 2313.61+ 1+3209 i n 2 l h 2308.76 1+3300 i n lOh 25 15 2307.60 1+3322 i n 3 2307.03 1+3332 i n Ih 2306.1+0 1+331+1+ IV 1 l h 2300.32 1*31*59 i n 00 2299. 2l+ 1*31+79 20 25 25 2296.82 . 1*3525 i n 0 2293.29 1*3592 i n 3 l h 2292.67 U3601* i n 1 2291*65 '1*3623 i n 15 2287.96 1*3691* 1 0 2286.58 1*3720 i n 1 10 3h 2286.00 1*3731 i n 2 Oh 2276.1*8 1*3911* 1 00 2276.23 1*3919 1 2h 2273*20 1*3977 11 00 2271.72 1*1*006 rv 1 2268.88 1*1*061 1 00 00 2268.05 1*1*077 1 00 00 2267.65 1*1*085 11 8 15 20 2265.25 1*1*132 11 1*0 3 3 2261+.9U 1+1*137 i n 12 25 20 2252*82 1*1*375 i n 3 h 3 221*6.95 1*1*1*91 1 1 223+6.02 1*1*510 1 2 2 2 221*2,58 1*1*578 1 C l a s s i f i c a t i o n l*p3Po - l l d 3 D ki2^ - 1+p *P / & 33 TABLE X (a)(continued) H M P V L * V C l a s s i f i c a t i o n (2) p    10 .2230.55 1+1*818 1 i * 25 15 2229.32 1*1*81+3 I I I i 2229*10 3*1*81*7 IV 3 2228.ll* 1+1+866 I 0 2219 .1+6 1+501+2 rv 1 2 1 2218.11 1+5070 11 2 8 8 2210.18 1+5231 11 30 0 l h 2203.51 U5368 11 10 2191+.51* 1+5553 1 6h 2193.76 1+5570 i n 3 1 2192.25 US601 n 5 3h 2190.10 1+561+6 i n 0 3 2189.61+ 1+5656 1 0 218U.70 1*5759 i n 0 218U.1+0 1+5765 rv 10 8 2180.82 1+583+0 i n 0 2178.91 U5880 rv 5 1 2175.1+6 U5953 i n 2 00 2173.80 3+5988 i n 3 l h 2171.21+ U601+2 i n 2 2170.71+ 1*6053 IV 10 8h 2170.35 1*6061 i n 0 2170.03 3*6068 1 00 2168*39 1*6103 0 2167.29 l*6i26 i n 0 2166.89 U6135 i n 00 2165.1+1 1*6166 00 2165.07 1*6173 i n 2 Oh 2163.1+6 3+6208 rv i * Oh 2162.52 1*6228 i n 1* Oh 2162.08 1*623? i n 00 2160.98 1*6261 8 3h 2156.80 1+6350 i n 2 2155.30 1*6383 3 l h 2153.25 3*61*:27 rv 3 l h 2152.98 1*63*33 IV 1 l h 2150.61+ 1*61*83 i n 0 00 211+8.96 1*6519 i n 00 213+8.50 1*6529 i * l h 211+6.51 U6572 i n 5s*S^- 8P* P° i*d JF y - 2+P^ D; i*dJF, - h$Ys 3k TABLE X (a)(continued) H p V L V 30 5 8 21UU.10. 4 6 6 I 8 I I I 100 800 5oo 5oo 5oo 2 1 3 8 . 5 6 U67U6 I 3 6 2135.710 46808.1 I I I 5 6 2135.608 4 6 8 I O . 3 IV 0 1 2129.302 U69U8.9 IV 0 2 2127*743 it6983.3 I I 0 1 2125.788 47026.5 I Oh 2 2123.872 47069.0 I 1 2 2122.764 U7093.5 I I 5 6 2122.5H6 U7098.4 I Oh 2116.497 47232.9 Oh 2115.301 U7259.6 1" 2 2111.877 4 7 . 3 3 6 . 2 2h Ih 2109.442 47390.9 I I I 7 25 25 2104.236 47508.1 I I 15 2103.920 U7515.2 I I 10 5 2103 . 5 3 6 47523.9 I I I 600 100 300 2101.978 47559.1 I I 8 8 0 0 200 8 0 0 2099.733 47610.0 I I 1Q 10 2097.800 47653.9 I I ( 2 ) 5 2097.6I4 U7658.1 I I 5 25 25 2096.7U7 47677.8 I I - I5h 2089.265 U78U8.5 I I I 6 15 20 2087.166 1*7896.6 I 50h lOOh 2086*710 U7907.X I 3 h 2084.642 4795U.6 I 3 2080.93 1*801*0 rv 3 2079.82 1*8066 11 6 15 25 2078.891 4 8 0 8 7 . 2 i n 2 2077.621 U8116.6 11 2 2076.428 48I44.3 11 2 2 2076.217 1*811*9.2 11 15 10 2071.181 U8266.2 i n 50h 2069.79 k8298.7 1 I5h 2068.204 48335.7 2 200 5oo 2064 . 0 9 5 1*81*31.9 n 7 100 200 8 0 0 2061.906 1*81*83.3 11 10 2059.975 48528.8 i n 15 2 0 25 2056.662 4 8 6 0 6 . 9 11 2h 2 205U.96 1*861*7 11 C l a s s i f i c a t i o n uV's. - kv'v up'p,;- Ud2D/it 4P ap; A- Ud%.^ 4P*P* - 4d3D,/v 35 TABLE X (a) (continued) H M 10 8 200 10 V L V l h 2053.275 1+8677.6 I I I 2h 2h 2052.62 1+8703 l h 3 201+8.837 1+8792.5 2h 5 201+8.293 1+8805.5 h 201+7.573 1+8822.6 I 2 203+7.307 1+8829.0 I 3 203+3.81+1+ 1+8911.7 I I 1 201+3.637 1+8916.7 I I 8h l5h 202+0.655 1+8983.6 I I 10 8 2039.1+83 1+9016.3 I I I 6 10 2039.212 1+9022.8 I I 2h 1 2037.625 1+9061.0 I I I 1 0 2036.969 1+9076.8 IV 1 2036.768 1+9081.6 I I 1 1 2035.716 3+9107.0 I I 2h 2033*518 1+9160.1 I I lOh lOh 2029.1+11+ 3+9259.5 I I 300 1000 2025.375 1+9357.7 I I l h 2019.998 U9U89.0 I I I lOh 2019.3U3 1+9505.1 I I h 8 2016.399 3+9577.1+ I I I 12 15 2011.851+ 1+9689.1+ I I 6 10 2011.62 1+9695 17 C l a s s i f i c a t i o n 1 + a X - Up'PA l+d3G„ - 1+iS'F/ 36 TABLE X (bj WAVELENGTHS IN THE REGION FROM 2000 A TO 987 A (VACUUM) Legend; H: I n t e n s i t i e s given by Kayser (6). K: I n t e n s i t i e s given by K e l l y ( 7 ) . P: Inte n s i t i e s from exposure 1 . V: In t e n s i t i e s from exposure 3. Li. I n t e n s i t i e s from exposure 2 . Wavelengths (vacuum) i n Angstroms. Wavenumbers (vacuum) i n reciprocal centimeters. H K ll 0 V L V 3 ll 1998.957 50026.I I I I 2 1997 .Ii7 50063 I I I 5 10 1996.891 50077*8 I I I 3h 8h 1993.1+20 50165.0 I 1 l h 1990.U86 50239.0 11 1 1989.09 50271+ rv 1 1988.125 50298.6 rv 3 3 1987.81+6 50305.7 IV 10 25 .1986.970 50327.9 11 5h 8 1985.578 50363.2 11 l h 198U.878 50380.9 ' IV 0 1983.111 50li25.8 IV l h 1982.377 50U1+U.5 IV 15 30 1982.U+3 50U50.1+ 11 l h 1979.560 50516.3 IV Oh 1978.123 50553.0 h ll 1977.157 50577.7 0 1976.887 50581+.6 IV 2 197U.875 50636.1 IV 3 1 1971+.1430 506U7.5 I I 2 197li.27 50652 I I I 0 1973.000 50681+.2 I 25 1969.376 50777.5 I I 3 1968.960 50788.2 17 I 5 h 20h 196U.1+95 50903.7 I C l a s s i f i c a t i o n i+d'F3 - U^'D; 1+p 2 P/ \ H K U 1 37 TABLE X (b)(continued) V L 5h 8 1963.100 50939.8 IT 2h 2h 1957.201* 51093.3 I 12h l5h 19&.89U 51153.7 I I I 15 20 1953.001* 51203,2 I I lOh 12h 1951.933 51231.3 I I l h 1950.103 51279.1* IV 1 2 191*8.1*37 51323.2 I I 5 12 191*5.591* 51398.2 I I 2 1 19UU.1U0 51U36.6 I I I 2 19U2.253 51U86.6 I I 5 10 191*0.1*10 51535.5 I lh 1930.51 51800 I 12 8 1929.78 51819 I I I 2 U 1929.70 51822 * I I 2h 1 1921.05 52055 I I 5 7 1920.277 52075.8 I I 10 1919.085 52108.2 I I I 25 Uo 1919.025 52109.8 I I l h 1917.625 5211*7.8 I I I l h 1917.161 52160.5 I I I lh 1915.113 52216.2 3h I* 191h.809 52224.5 I I 10 7 1907.158 521*34.0 IV 8h 3h 1901.511 52589.8 lh 1898*90 52662.1 I I 2h 1895.07 52768 lOh k 189U.269 52790.8 I lOh 2h 1892.819 52831.3 I 3h 1890.701+ 52890.1* lh 1889.08 52936 lh 1888.1*1*3 52953.7 U 1885.28 5301*3 IV 1* 1885.0U 5301*9 IV 12 10 1881.848 53139.3 IV 0 1 1878.1*73 5323U.7 I 5 3 1877.962 5321*9.2 IV 1 187-7*1.2$ 53261*.l* I 3hh 3hh 1875.2 53327 10 12 1872.099 53U16.0 I I I 3h 3h 1867.977 53533.8 I I C l a s s i f i c a t i o n hi •A. 5s'Dz - 1*J54D^ 38 TABLE X (b)(continued) V L V 10 8 1866.059 53588.0 I I I 1 1865.6 53602 I 20 20 I86U.O83 . 536U5.7 I I 3 2 1862.773 53683.U I 0 0 1856.782 53856.6 U 3 185U.700 53917.1 i n 0 1853.66 5391*7- 2h 1 1850.73U 5U032.6 1 Oh 0 1850.10 5Uo5l 1 U 18U9.767 5U060.9 rv l h 18.U8.U7 5U099 rv 3h U 18U7.5U1 51*126.0 1 5 5 18UU.879 5U20U.1 i n l 181+3.91 5U233 25 UO 1839.295 5U368.7 i n u U 1836.638 51*1*1*7*3 1 1 6 12 I836.OO8 5UU66.0 i n 5 3 1835.096 5UU93.1 IV 5 2 183U.922 5UU98.2 IV 2h 2 183U.23U 5U518.7 1 1 25 Uo 1833.5UO 5U539.3 1 1 l5h 6h 1831.31*8 5U60U.7 1 1 1 1830.280 5U636.U 1 8h 5h 1829.185 5U669.2 1 2 1826.199 51*758*6 1 15 10 182U.737 5U802.U i n 1 1821.653 5U895.2 IV 1 1821.09 5U912 1820.79 5U921 1 1 1820.318 5U935.5 1 12h 8 1816.U57 55052.2 1 10 6 181U.192 55121.0 IV 25 20 1811.0U8 55216.6 I I 3 1808.915 55281.8 I I l h 1802.U3 551*81 l h 1801.96 5 u 1801.681 55503.7 rv 2 1 1800.082 55553.0 I V 15 15 1797.651 55628.2 1 1 2 2 1796.657 55658.9 1 1 ClassL f i c a t i o n Ud JD T - UP 3F; Us'DA - UP 3P; US*D/H - 6p1P'U. 5s3D, - Us *b<Jt- 6?*?°*. l*d'F, - Up7GJ 39 TABLE X (b)(continued) V L > 1 1 1795.115 55706.7 IT 10 1790.763 558U2.1 11 3h l h 1789.572 55879.3 u 2 1777.212 56267.9 I I 5 'U 177U.OOO 56369.8 I I 0 1771.990 561}33.7 I I I 0 1769.666 56507.8 30 50 1767.692 56571.0 I I I 2h l 1763.035 56720.U 10 15 1762.195 56747.4 I 1 1756.633 56927.1 20 35 1753.811 57018.7 I I I 1 8 1751.816 57083.6 I I 50 80 17ii9 .630 57154.9 I I I 10 1 1747.80 57215 IV h 1742.290 ] 57395.7 I I I 2 17U1.919 57408.0 n 3 h 1737.865 5751P..9 1 2 3 1736*044 57602.2 1 20 35 1735.618 57616.4 11 2 2 1732.950 57705.1 11 0 172U.967 57972.1 i n 1 1 1721.671 58083.1 i n U h 1715.758 58283.3 • 11 1 1 I71U.464 58327.3 2 3 1713.2U7 58368.7 11 liO 80 1706.6J18 58594.4 i n 25 ho 1695.386 58983.6 i n 0 1691.962 59103.0 l h 1690.93 59139 Uo 50 1688.k9h 5922U.4 i n 1 3 I686.480 59295.1 11 1 1 I 6 8 3 . 4 8 3 59400.7 11 0 1 1682.638 59U30.5 IV 50 100 1673.052 59771.0 i n k 1670.770 59852.6 1 2 1670.563 59860.1 IV 10 1666.7U5 59997.2 I I I 2 1665.0U6 60058.h I I I 2 8 1664.311 6OO84.9 I I C l a s s i f i c a t i o n 4d 3F 3 - 4 p V 3 Us 3D Y « 4P*P/ ks\ - 4P3F,° lid'F.'- hi'n Ud'F, - ' 4P'F; 4dJD, - 4a JD R - 4p 3Pz 4S'D4 - \\piK US'D, - 4P 3p; 4S JD 2 - l;p 3P| Up TABLE X (b)(continued) V L V 1 1663.330 60120.U I I I 2 1662.7U6 601U1.5 I I I 2 1660.773 60212.9 u 1655.021+ 60U22.1 I I I 1* 1653.375 601+82.1+ I I I 1 1653.021+ 60U95.2 I I 2 1652.931 601+98.-3 I I 1 1652.58 60512 I I 30 50 1651.71+8 6051+1.9 I I I h 12 1650.217 60598.1 I I 1 161+9.925 60608.8 I I 0 3 16U9.051+ 1 6061+0.8 I I I 1 161+8.1+12 60661+.1+ I I I £ 2,1 161+7.512 60697.6 3 161+5.875 60758.0 6 30 161+5.U01+ 60775.U I I I 30 80 161+1+.817 60797.2 I I I 10 161+0.1+1+3 60959.2 I I I 30 100 1639.335 61000.1+ I I I 0 U 1638.21+1+ 6101+1.0 1 1635.63 61139 IV Oh 8 1635.21+2 61153.0 I I I 1 1633.U9 61219 IV 2 1632.609 61251.7 I I 8 1631.527 61292.3 I I 8 1631.366 61298.3 I I I 2 10 1630.119 613U5.2 I I 30 100 1629.201 61379.8 I I I 3h 20 1628.1+70 6H+07.3 I I I 1 1626.203 611+92.9 2 1625.71+7 61510.2 I I I 2 162U.103 61572.1+ I I I 2 1623.1+1+8 61597.3 I I 80 1622.500 61633.3 I I I 2 1621.959 61653.8 I I 2 1621.570 61668.6 I I I 20 50 1619.601+ 6171+3.5 I I I 2 20 1617.681+ 61816.8 I I 1 1616.107 61877.1 1 1615.993 61881.5 C l a s s i f i c a t i o n l+d'G, - Up V 3 Ud'-v- up'^; Us3D7 - Up3Pc Ud'p, - UP'B; US'I\ - UP JF; US'D, - UP JFI Ud3DA - up'-br Us'D2 - Up'Dl bx TABLE X (b)(continued) H 9 8 10 K V L V 2 1615.308 61907.7 8 I 6 l i u u 0 9 619U2.2 1 5 1613.918 61961.0 I I 1 1613.119 61991.7 I I I 1 20 1611.880 62039.k I I 1 1611.191 62051.3 2 1610.9U6 62075.3 I I 0 1610.22 62103 6 1609.390 62135.3 I I 2 25 1608.827 62157.1 I I 1 1607.2U6 62218.2 I I I 4 1606.882 62232.3 IV 1 20 1606.079 62263.4 I I 0 1605.53 62285 IV 1 1605.36 62291 IV 3 I6O4.464 62326.1 rv 5 1604.345 62330.7 11 1 8 1603.U90 62364.O i n 0 15 1603.318 62370.7 11 l 1602.444 624O4.7 i n i 1602.22 624IU IV 1 5 1601.695 621*33.9 i n 5 Uo 30 1600.871 62466.O i n 5 35 30 1598.524 62557.7 i n 1 1597.835 6258U.7 2 1596.913 62620.8 i n 15 1595.73U 62667.1 11 0 15 1595.298 62681*. 2 IV 1 20 1595.032 6269U.7 i n 1 1593.717 6271*6.1* 2 6 1592.423 62797 .U i n 0 1592.118 62809.U i n 15 1590.131 62887.9 1 5 1 25h 1589.5U8 62911*0 1 1 1588.381 62957.2 i n 3 1587.840 62978*6 i n 8 1586.U36 63034.4 IV It 1585.223 63082*6 I I I 2 158U.669 6310U.7 I I I 3 1583.938 63133.8 I I C l a s s i f i c a t i o n 5S'D4 - UP^D; 4S*D3 4P 3FJ kd % - 5P'P; l*d'G, kv^; kpy, hz TABLE X (b)(continued) C l a s s i f i c a t i o n 1+3^ » i+p'Fr UaJD, - lip'F; L V •3 1583*092 63167.5 I I I 30 l582oOl+8 63209.2 I I I 50 1581.515 63230.5 I I I 2 1579.930 63293.9 I I I 2 1578.856 63337.0 I I I Uh 1578.31*1* 63357.6 I I I 1* 1577.528 63390.3 IV 2 1577.301* 63399.3 n 5 1576.750 631+21*6 i n 2 1575.81+9 63U57.9 11 0 1575.710 631+63.5 i n l h 157U.868 631+97.U l h 1571+.121+ 63527.1* 2 1573.803 6351*0.1* 11 20h 1573.016 63572.2 11 i * 1572.1+37 63595.6 i n u 1571.380 63638.3 11 2 1570.852 63659.7 i n 2 1570.107 63689.9 11 10 1569.351 63720.6 IV 8 1568.890 63739.3 i n 8 1567.900 63779.6 rv 1* 1567.308 63803.7 i n 0 1567*028 63815*1 i n 1* 1566.801 6382l*.3 IV 2 1566.179 6381*9.7 IV 2 1565.672 63870.3 i n 2 1561+.91+5 63900.0 IV 3 1561+.112 6393U.O i n 8 1563.900 6391*2.7 20 1562.535 63998.6 i n 2 1561.90 61*025 TV 6 1559.731 61*113.6 rv 8 1559.10+1 61*125.6 i n 10 1559.01*7 61*11*1.8 i n 1 1558.901+ 61*11*7.6 rv 3 1557.673 61*198.3 i n 2 1556.181 61+259.9 i n li 1556.050 61*265.3 i n 15 1555.787 61+276.2 11 $3% - 1*P3D; lid's, - I*P/JD; i+3'DZ - i+p'p; 1*3 TABLE X (b)(continued) H K V L A p C l a s s i f i c a t i o n     6 1555.238 61*298.8 I I I I551w735 61*319.6 I I 3 155U.177 61*31*2.7 I I 1553.809 61*358.0 I I I 15 1553.572 61*367.8 I I 3 10 1553.098 61*387.1* I I I 5 3 30 1552.933 6U39U.3 I I I 7 6 30 1552.291 61*1*20.9 I I I 1 1551.031 61*1*73.2 I I 15 1550.7U7 61+1*85.1 IV 2 151*9.838 61*522.9 I I I 7 15U8.972 61*559.0 I I 5 151*8.126 61*581.7 I I 10 151*7.800 61+607. 8 I I 15 151*7.001 61+610..2 I I 2 25 151*6.655 61*655.7 I I l 151*6.1+52 61+661+. 2 I I 1* 151*6.071 61*680.1 I I I 10 151*5.091* 6l+7a.o n 20 151*1*.925 61*728.1 11 6 151*3.919 61*770.2 IV 15 151*3.1*28 61*790.9 11 20 151*3.039 61*807.2 11 8 151*2.515 61*829.2 11 1 151*2.236 61*81*0.9 i n 1 20 151*1.708 61*863.1 i n 25 151*0.901* 61*897.0 11 12 i51*o.H*3 61*929.0 11 12 1539.831* 61+91*2.1 11 1* 1539.369 61*961.7 rv 7 1539.069 61*971*.!* rv 15 1536.727 65073.1* 11 20 1535.809 65112.3 11 10 25 1535.107 65H*2.0 11 6 1533.682 65202.6 rv 3 1* 1533.086 65227.9 i n 3 1532.918 65235.1 i n 2 1532.160 65267.3 i n 6 1532.025 65273.1 11 10 1531.382 65300.5 11 l*sJDI - I+PJF: WD, - I+P'D: IIS'D* - 1+p'Dl 1*3 V - # X 5s"?D2 °> l*p *Dj hi%/t- l*p"X l + p X - 6s'S.^ 10  . n 1*3^ - Up'Dl 1*1* TABLE X (b)(continued) L 20 1531.07U 65313.6 I I 12 1530,608 65333.5 I I 7 1529.839 65366.1* IV 5 1528.752 651*12.8 I I I 15 1528.551* 651*21.3 I I 25 1527.902 651*1*9.2 I I 5 1526.91*3 651*90.3 I I I 20 1526.851* 65?49l*.2 I I I 1* 1525.56 65550 IV 30 1523.873 65622.3 I I 2 1522.95 65662 I I I 25 1521.289 65733.7 I I 15 1520.985 69!h6.9 IT 10 1520.71*0 65757.5 I I I 20 1520.520 65767*0 I I 5 1520.017 65788.7 I I I 6 1519.UU2 65813.6 I I I 6 1518.63U 6581*8.7 I I 50 1515.8UU 65969.8 I I I 25 3£Uw787 66015.9 I I 15 !5lU.u78 66029.1* I I 15 1513.505 66071.8 I I l 1511.886 6611*2.6 I I I 15 1511.708 66150.1* I I 30 1510.355 66209.6 I I 25 1508.6hl 66281*.6 I I 5 1507.869 66318*8 I I 5o 1505.900 661*05.5 I I I l 150U.07 661*86 I I 15 1503.6U9 6650l*.9 I I 15 1503.100 66529.2 I I 1*0 1500.1*19 6661*8.0 I I I ho 1U99.UOO 66693.1* I I I 2 1U99.0714. 66707.8 I I 30 11*98.770 66721.1* I I I 25 11*97.387 66783.O I I 50h 11*93.193 66970.6 I I 8 11*92.128 67018.h i i 5o 11*90.939 67071.8 i n 5o 11*86.061* 67291.9 11 C l a s s i f i c a t i o n a F J / T- z D , ^ ks%^~ 7p'P,°* 4P* p* - 6s2S./L l*s D,. / u- l*p D,jt l*s*D3 «- l*p3B° ha'B, - l*p'P,° U«'p a - ' I*P'F; UB'D, - I*P'D; l*sJD, - Up'K TABLE X L 6 H+83,282 20 ll4.82.lU5 15 1U81.836 15 H+81.22 5o 1U78.255 50 1U77.003 25 1U75..599 2|0 1U73.U09 l 1U72.33 20 11+71.891 U 11+71.232 1 11+70.1+62 0 1U70.0U8 0 1U68.978 u 1U67.858 5 IU67.U86 l 1U66.655 30 1U65.7U8 2 1U65.U3 30 1U6U.188 I5h H+62.708 2 1U60.623 25 1U59.968 3 1U59*OOU 10 1U57.537 25 •11+57.1*10 liO 11+56*923 5o 1U56.716 7 1U55.63U 7 1U5U.U80 15 1U51.160 30 1U50.770 3 1UU9.850 15 1UU9.52U 3 1U1+6.932 6 1UU6.103 30 H+U5.072 25 110+2.522 15 H+Ul.i+99 30 1U39.078 (continued) 671+18.1 I I I 67U69.8 I I 67U83*9 IV 67512 r v 676U7.3 11 6770U.7 1 67769.1 i n 67869.8 i n 67920 . i n 67939*8 1 67970.2 i n 68005.8 i n 68025.0 i n 6807U.5 1 68126.5 n 681U3.8 i n 68182.U 6822U.6 i n 68239 IV 68297.2 i n 68366.U 11 68U63 .9 11 68U9U.7 IV 68539 .9 11 68608.9 r 6861U.9 n 68637.8 11 686U7 .6 i n 6869806 r v 687U8.U 68910 .U i n 68928*9 11 68972.7 i n 68988.2 IV 69111.8 i n 69151.U i n 69200.7 11 69323.0 i n 69372.2 i n 69U88.9 11 Clas s i f i cation Up'Dl - 5 s 3D 2 a X - B'0S* l+s'D.v Up*2P/V UPJD; - 5s 3D i l+s'D, - Up'F/ Up'P," - Ud'So hi's* ~ Gp'P,' UsJD2 - Up'P/* J+SJD, - UPJD; US?D,*- 8 p LP° •Us 's 0 - .6p'P,° U s X - 5d*D,* UpLP/\- 5d 7D^ Us'Dj ~ Up'Dl a'F a* - Up'Fs - 5s3D^ Up'D| - Ud'Dt Up?Dl - 1+d's, Up'Dl - Ud3G* UpJD; Ud'D, UP'FI - 5e3D, U P X " 5d*D<J4. K V L 0 0 1 20 0 3 20 5 30 6 2h 30 20 2 2 25 25 5 25 12 25 0 30 2 25 5 0 1 8 1 0 0 12 1 2 15 1* 00 6 1* 1 25 2 2 30 2 2 3 1 6 1 30 0 6 1*6 TABLE X (b)(continued) 11*37.13+0 69582.6 11*37.017 69588.6 13+36.582 69610.6 13*36.121 69632.0 13+33.888 6971*0.5 13*32.129 69826.1 13+31.51 69856 li+31.16 69873 11*30.121 6992U.2 11*27.905 70032.7 11*27.783 70038.7 11*26,621* 70095.6 11*25.21*1 70163.6 11*25.030 70171+.0 11*22.992 70273+.5 11*21.525 703I+7.O 11+20.91*1 70375.9 13+19.977 701+23.7 11*19.581* 701*1*3.2 11*18.696 701*87.3 11*17.893 70527.2 11*16.066 70618.2 11*13.898 70726.5 11*13.011 70770.9 11*12.762 70783.3 13+11.679 70837.6 11*11.312 70856.1 11*11.01*9 70869.3 11*10.360 70903.9 13*09.887 70927.7 31*09.392 70952.6 11*08.703 70987.3 11*07.189 71063.7 11*06.31*8 71106.2 l3*Ol*.107 71219.6 13*03.980 71226.1 11*02.766 71287.7 11*02.519 71300.3 11*01.792 71337.3 11*00.136 711*21.6 C l a s s i f i c a t i o n IV i n 1*P3D; * 5s 3B 3 i n 1+P'D; - 5s 3D, i n 1*S*D; - 1+P'D2 H I 1 i n I*P'D° - 5s ' i u i n rv a lF J / u - z V , ^ i n UP'D; - 5s"D,. H I I+p'p; - 5s3 D, i n I I I l*p3D? - 5fl'.D2. i n 1+p'p; - 5s 'BZ i n 1*P'D; - 5s % 1 IV a'F2J,v - IV I I I i n I+P'D; - kdsD^ rv 1 1 i n I+P^ D; - Ss3BT i n IV 1 i n I*P'F; «. i*d'D2 IV a^Fj/,. » z X / * . I I I 3+p'D° - l+p'P, I I I I 1*P'F; - l*dJGj I hd% - 7p'P/ IV a 2 F j / v - Z ' G J ^ rv rv i n UP'D/1 - l*d py IV a 4F 2y v - s y F 2 V hi H TABLE X (b) (continued) K V L u 1 20 1395.678 „ 7161*9.8 I I I 3 25 139U.932 71688.1 I I I 10 139U.522 71709*2 IV 3 1 1393.761 7171*8*3 I I I 3 1393.U91 71762.2 I I I 2 25 1393.070 71783.9 IV 0 1 1392.188 71829*1* I I I 2 1391.812 7181*8.8 I I I 2 25 1391.22U 71879.2 I I I 1 10 1390.UOU 71921.6 I 2 35 1 3 8 0 , 6 3 4 71961.1* I I I 0 1389 . 0 7 8 71990.2 IV 0 15 1388.290 72031.1 IV 7 Uo 1387.715 72060.9 I I 15 1387.U65 72073.9 I I I 25 1387.250 72085.1 I I I 15 1387.072 72094.3 IV i 1386.311 72133.9 I 00 8 I384 . 3 5 U 72235.9 r v 00 8 1383.720 72269.0 i n 1 1382.05U 72356.1 00 1 138l.3l|8 72393.1 i n 00 12 1381.023 721*10.1 i n 1 1 1380.870 72U18.I IV 2 30 1379.179 72506.9 . i n 15 1377.944 72571.9 i n Uo 1377.637 72588.1 IV 2 12 1377*371* 72601.9- i n 00 12 1375.978 72675.6 IV 3 20 1375.306 72711.1 IV I 15 137l*.61*7 7271*6.0 I I I 1 25 1373.709 72795.6 I I I 0 10 1372.576 72855.7 I I I 1 1371.637 72905.6 1 10 1371.185 72929.6 IV 6 1370.550 72963.1* I I I 6 1370.1*11 72970.8 IV 5 25 1369.506 73019.0 TV Clas s i f i cation 3-r UP'F; - a"PW- (a*FJtH. - UP'F; - (Up D', (Up3F,- UpJD°2 a VF / ! t UP'F; a*F, N UP'D: a*F a V UP'F; Up'Po a 2F 3 J T a F i * Ud X Ud 3P, Up'D/ - Ud3F, z F, Y Ud JG 3 5s X Up3D/ - Ud^ G^ , UP'F; - Ud'r>3 U d X 5S'D^  Ud'P^ Ud*D4 Z*Ds* 5s'D Z a G*, 'A. Ud'D, 5s JD Z z ' P , \ Ud3S, a'FJ* Z'G: U8 TABLE X (b)(continued) L' A V 6 1368.166 73090.6 IV 20 1368.068 73095.8 I I I 12 1366.990 73153.1* I I I 10 1366.691 73169.4 I I 20 1365.702 73222.1* IV 10 1365*262 7321*6.0 r v 15 136U.3U9 73295.0 i n 15 1363.9U7 73316.6 IV 15 1363.UUU 7331*3.7 IV 20 1362.535 73392.6 IV 15 1362.010 731*20.9 ( i n (IV 12 1361.351 731*56.1). IV 25 1359.820 73539.2 I I I 15 1359.619 73550.0 I I I 10 1359.U80 73557.5 IV 6 1358.619 7360l*.2 IV 25 1357.817 7361*7.6 IV 8 1356.532 73717.1* I I I 20 1356.189 73736.O IV 10 1355.982 7371*7.3 IV 2h 1355.876 73753.1 I I I 2 1355.5U6 73771.0 I I I 1 1355.229 73788.3 i n 25 1354.223 7381*3.1 i n 8 1353.969 73856.9 i n 30 1352.900 73915.3 IV 8 1352.270 7391*9.7 IV 15 1350.655 71*038.2 I I I 12 1350.397 71*052.3 I I I 30 1349.882 71*080.6 IV 0 1349.290 71*113.1 8 1348.351 7l*l61u7 IV 20 13U7.9U9 71*186.8 IV 8 1347.311 71*221.9 I I I 8 1347.226 71*226.6 I 25 1346.152 71*285.8 I I I 2 13H5.628 71*311**8 C l a s s i f i c a t i o n a F 2 / l - a DJJt l*p3D; - lid'F,. 1*P3D; - Ud'p, ( - 7 f % \ a*FjyiL - z*D*3A *>AD2>L - z fP;* 1*PJD; - l*dSD2 a'F l S 4 - z*F;^ &vF2/x - z*D/'/T l*p'D°A - l*d3D( a'F,* - z'D'* l*pJDS - h&% hvK - 5s% Up'Ff - Ud*F, Up'DT - Ud'P, l*p'D^ *. l*d3D, (1*P3D; - l*d 3P 0 (l*p JF; - l*d'G^ l*p'P(° - l*d3D, Up'P/ - 4d SP 0 a*F J ) T - Z'F;* I*P3D; - h&\ a'F J J I L - z*G,* *'D,* - y 2F aV a'F,*- z*GS/, UP'F/ - 5 s % UP3P,° - Ud'S, U9 TABLE X (b)(continued) H K V L C l a s s i f i c a t i o n 0 13U5.U21 7U326.2 0 13U5.125 7U3U2.5 0 13UU.723 7U36U.8 Z G j ^ 1 20 25 13UU.079 7UU00.U IV a yF,* - 6 20 25 13U3.816 7UU15.0 I I I UP'F; - Ud'D^  0 30 30 13U3.370 7UU39.7 I I I UdJF3 2 15 25 13U2.750 7UU7U.O IV 3 15 30 13U0.192 7U616.2 IV UP'F; - 5s 5D A 2 20 30 1338.975 7U68U.O I I I 1 1337.601 7U760.7 i n U 12 1336.92U 7U798.6 rv h 1335.119 7U899.7 15 15 1333.310 75001.3 IV a ^ ^ - U 15 15 1333.192 75008.0 IV 2 20 25 1331.839 7508U.2 i n 5 12 1331.U28 75107.3 IV Up'Fy -3 6 10 1330.921 75135.9 i n 3 10 25 1330.312 75170.3 IV UP'F/ -20 25 1330.16U 75178.7 i n 5s 3D, 00 12 25 1329.957 75190.U i n 2 10 15 1329.103 75238.7 IV a 2 F j / t - 12 1328.828 7525U.3 I I 1 5 10 1328.57U 75268.7 I I I UP JP; - 5S5D, 5 Uo 30 1328.377 75279.8 I I I UP'F; - Ud'G,- 10 8 1326.935 75361.6 I I I UP 3F; - 5s'DA 4 15 20 1326.719 75373.9 IV a*F 2 / l - 0 5h 1326.178 75U0U.7 I UdsF, 1 2h 3 1325.827 75U2U.6 I I I UP'D: - 1 132U.821 75U81.9 I 2 3 1323.90U 7553U.2 I I 2 30 35 1323.52U I I I Up3Fa° - UdJD, 15 25 1322.U37 75618.0 IV a F 3y t - z a D l / x U 15 25 1322.336 75623.8 IV a VF S / V - z v G U 3 25 10 1321.19U 75689.1 rv a*F,* - z*F,\ U 25 10 1320.729 75715.8 IV a vF yy 4 - 3VG',«. U Uo 5 1319.U01 75792.0 UP'F; -30* 1319.128 75807.7 i n Ud3G, 10 1318.82 75825 i n k 30 25 1317.982 75873.6 IV a*F 3 / i - Z*F;/V 0 1316.667 759U9.U 1 5o TABLE X (b)(continued) H K V L V 3h 0 1316.1*68 75960.8 n i 1 1315.381 76023.6 rv 1 10 5 131U.823 76055.9 i n 00 25 25 I31I+.O80 76098.9 i n 1 6 3 1312.913 76166.5 i n 1 20 1311.958 76222.0 IV 1 25 3 1311*1)43 76269.3 i n 1 20 1310.132 76328.2 IV 00 20 12 1308.58*4 761+18.5 i n 1 20 20 1307.388 761*88 J4 i n 10 1306.783 76523.8 11 6 20 20 1306.6)49 76531.6 IV 8 10 1306.332 76550.2 I I 2 20 30 1303.558 76713.1 I I I 1 1302.82 76757 rv 10 10 1301.697 76822.8 i n 3 I3OI.39O 7681x0.9 i n 3 20.S 20 i 1301.179 76853.1* i n & 1 12 10 1298.688 77000.8 i n 1 15 15 1298.51+2 77009 .1* i n . 3 2 1297.U38 77075.0 15 15 1296.736 • 77116.7 IV 15 15 1296.630 77123.0 rv 1 1295.507 77189*8 i n 2 30 30 1295.329 77200*5 i n l 1 i29l4 . i l 77273, 5 6 1292.U75 77370.9 rv li 10 8 1292*231+ 77385.1* i n 25 1 1292.019 77398*2 11 5 20 8 1291.80)4 771+11*1 rv 2 8 15 I290.I43I1 771+93.3 rv 2 8 10 1290.01+9 77516.1* i n 8 6 1289.973 77521.0 i n 5 5 1288.888 77586.3 i n 5 5 1288.807 77591.1 H I 0 1286.0U2 77758.0 8 3 1285.775 77771+.1 i n 12 20 1281i.72 77838 r? 2 12 20 12814.385 77858*3 IV 5 li 128/4.195 77869.8 rv C l a s s i f i c a t i o n I+PJF: -i+p'm - 1+P'D; - i+p3p° - a F»* - 1+P'F; - HP'P; - l+p'pfsi- l+d3D, l+d3D, l+d?F3 5s*D, l+d3G3 l+d'S, 7s X y AF 3V UP'F; - k&% l;p 3P; - lid'Di : n i 1+P3F;- Ud'Fj l+p3F/ - 1+d'P, lip'p; 1+P3FJ - 1+P'F; - aYF3y,_ - UP'F; - 1*PX ~ a*F / / V - 5s 3D, z'F,V Z*Ffy. 5s % l+d'F, z yF; / v l+d3D, z vF?* lip 3Po - l+d3Py lip'P,0 - UP'P; - l+d3P2 5s 3D/ I+P3P; - 5S'D2 51 H TABLE X (b)(continued) K V L V 12 6 1283.9U5 77885.0 I I I 2 20 30 1283*510 77911*1; IV 15 1 1283.003 779U2.2 1 20 1282.369 77980.7 IV 3 2 1282.01U 78002.3 IV 1 20 20 1281.52U 78032*1 I I I 2 2 1281.300 780U5.7 IV u 20 3 1280.U67 78096.5 TV 3 1279.727 781U1.7 r v 2 20 1 2 1279.0U3 78183.5 n i U 1 1278.U97 78216.8 r v 3 25 20 1277.lUO 78300.0 rv 1 3 20 1276.232 78355*7 i n 5 1275.767 7 8 3 8 4 . 2 r v 1 20 30 127U.393 78U68.7 i n 7 5 1273*839 78502.9 IV U 20 15 1272.956 78557.3 IV 20 1 2 1272.199 7860U.I IV 0 20 20 1272.056 78612.9 I I I 0 25 20 1270.581 7870U.2 I I I 1 1269.U2 78776 1 1269*1U 7879U 1 1268.93 78807 0 15 1 2 1268.U12 78838.7 I I I 3 15 15 1268.075 78859.7 I I I 0 1 2 15 1267.U02 78901.6 I I I 0 1266.980 78927.8 5 20' 30 1265.732 79005.7 r v 15 12 1265.378 79027*8 i n 2 8 3 i 1263.U16 79150.5 11 3 25 Uo 1262.5U2 79205.3 i n 000 1 2 1261.532 79268*7 0 1 1261.092 79296.U 1 2 1259.993 79365.5 1 0 1259.651 79387.1 rv 7 2 1257.305 79535.2 IV 0 1255.81i2^ 79627.9 2 0 1255*618 796U2.1 2 125U.307 79725.3 C l a s s i f i c a t i o n UpF aYF2v, 4 P 3F; a 2F 5 > i UP'F; a'F,* UP3P; a'Fj* - Ud3F, UP'F; UP 3P; (UP 3P; (Up 3F 3p« 3 a vF 2 J V a vF 3 J 4 Ud3F, Z'F;, V Ud F3 Ud 3D a Up3F; - Ud'F, Ud'P, Ud3P, 2 yFyy x Ud'Dz Ud3F3 UP'P-A- 6d'D^ UP 3P; - hd3G3 52 TABLE X (b)(continued) K V L V C l a s s i f i c a t i o n 5 3 1253.653 79766*9 IV 2 30 30 1253.336 79787.1 I I I l+p'P/ - J+d'P, 2 8 5 1251.01+1 79933.1+ I I I l+p'P." - 1+d'P, 3 2 1250.1+70 79969.9 I I I Up'Po - l+d*P0 1 3 2 1250.378 79975*8 I I I UP'P; - 5s 'D» 1 10 12 121+9.681 80020.1+ IV aX - z.-F3\ 0 1 121+9.385 80039*1+ rv 0 0 121+9.055 80060*5 rv 2 2 121+8.180 80116.6 rv iiP 5 p ; -1 2 121+7.390 80167*1+ i n l+d3D3 0 0 121+6.993 80192.9 IV a^Fyj^ 0 121+6.21+1+ 8021+1.1 IV a « z 'GIK 0 121+1+.888 80328.5 0 121+3.827 80397.0 i n 25 121+3.151 80I+I+O..8 i n 1 1 2 121+2.1+20 801+88.1 i n 0 15 1 121+0.772 80595.0 i n UP3,P; - .l+d3F4 1 .6 1 1239.592 80671.7 • i n I+P'P/ - l+d 3^ 0 1239.1+65 80680*0 rv 1 8 2 1239*120 80702.1+ rv a*F,K - 5 1 1238.769 80725*3 rv 00 6 1 1237*21+7 80821+.6 IV a*F J A - x. _ e 5 2 1231+.868 80980.3 rv kd3?, 2 10 5 1233.938 810I+I.I+ i n u P ?p; -2 0 1233.811 8101+9*7 IV 8 2 1231.UU8 81205.2 IV 0 I23O.93I+ 81239.1 i n I+P3P; - kd% 1 It' 2 1230*1+30 81272.1+ n r . 3 1 1229.378 8131+2.0 rv 3 1229*01+1+ 81361+.1 IV 10 2 1228.652 81390*0 IV a*"F/A - z Pz4 1+ 20 30 1228*1+7*+ 81I+OI.8 IV 3 1 1227.610 811+59*1 IV a*F j K - z 2 F 3 \ 1« 0 1227.258 8U+82.5 2 1 I226.319 8151+1+.9 8 2 1225.557 81595.6 i n 8 1221+.71+0 81650.0 rv 5 2 1221+.328 81677.5 rv a^ F^  -k 8 8 1221+.01+5 81696.1+ rv 6 2 1223.660 81722.0 IV 53 TABLE X (b) (continued) K V L A i> 1* 20 15 1223.160 81755.5 IV 0 1221.915 81838.8 0 1220.698 81920.4 1 1219*890 81974.6 2 I 2 I 4 . I I 8 82364.3 XV 2 1212*700 821*60.6 IV 1* 1212.1*81* 821*75.3 IV 6 1212.250 82491.2 rv lh 1211.887 82516.0 11 0 1203.427 83096.0 rv 1 1 1201.492 83229.9 IV 0 1201*298 8321*3.3 IV 0 15 1200*828 83275.9 i n 0 1197*448 83510.9 0 1197*098 83535.1* 11 1 1196.090 83605.8 1 20 8 1195.369 83656.2 i n 0 15 5 1193.235 83805.8 i n $h 1191.913 83898.8 i n 00 6 2 1190.1*09 8UOO4.8 IV 8 1189.592 81*062.1* i n 6 2 1187*69 81*197 rv 8 2 II87.4I3 81*216.7 IV 12 Il81*.8l0 . 81*1*01.7 11 0 12 5 1182.021 81*600.9 rv 1 1181*552 81*63l*.l* 3 i 1180*010 81*71*5*0 2 1179.816 81*759*0 0 10 6 1179*503 81*781.5 IV 12 I l u 1178.891 81*825.5 IV 1 1178.1*01* 81*860*6 0 1178.087 81*883.1* 00 8 5 1177.505 81*925.3 rv 0 1 II74.348 85153.6 2 2 1173.858 85189*2 1 1 1172*316 85301.2 IV 6 3h 1170*157 851*58.6 i n 6 i 3A 1169*105 85535.5 i n 5 1 1167.753 8563U.6 i n 2h 1166.790 85705.2 C l a s s i f i c a t i o n a F 2 > 4 - a YVK - 4 P X - I*P3P; - hp'?;*- z*G° 8slS./v Z'F;*. l*d'F, 7 d 7D^ l*p'p;«. 7d,D//l. 5U TABLE X (b)(contined) K 00 00 00 00 0 1 V L A V 12 5 •1165,860 85773*6 I I I 10 1 1165.720 85783*9 I I I 3 1 1165.548 85796*6 I I I 2 1165.311 858ll;*0 k 2 1158.741 86300.6 IV lih 1157.322 864O6.l1 I I I 6 4 1155.843 86517.0 IV 12 5 1155*510 865U1.9 I I I 0 1155.05 86576 r v 0 1 1 1 5 4 . 4 2 3 86623.U rv 0 1152*979 86731*8 IV 1 0 1150*478 . 86920.li 1 0 1U19.852 86967.7 3 l h 1D19.633 8698U.3 2 1 1147 . 0 3 9 87181.0 15 1146 . 1 9 0 872U5.6 i n 1 1144.20 87397 2 1 1142.933 87U9U.2 1 lHil.910 87572.6 11 1 1140.837 87655.0 rv 0 1138,248 8785U*3 1 U 3 6 , U 2 3 87995.4 IV 1 1133.7U9 88203*0 IV 3 1 1133.060 88256*6 0 1132.680 88286.2 0 1132.271 88318.1 0 1118.077 89439*3 2 1116.870 89535.9 IV u 1109.926 90096*1 IV 0 IIO9.O64 90166.1 0 1094*458 91369.U 0 1094.129 91396.9 2 1070.708 93396*2 i n 1 1069.745 93U80.2 3 * 1068.69 93572 24 1067.38 93687 1 IO46 . 8 8 O 95521.9 IV 1 10U5.081 95686*1; IV 1 1044*524 95737^1 r v 0 1044.33U 9575H.8 r v C l a s s i f i c a t i o n kp?^ - 8d JD / J t a2F, - 7 VZ-A. 2-X. 55 TABLE X (b)(continued) "A V 101+3.908 95793*9 IV 101+3.599 95822.2 IV 101+3.000 95877.3 rv 1039.315 96217*2 IV 1035.886 96536*7 1035.565 96565.6 1030.186 97069*8 1018.50 98181+ 1018.11+ 98218 1017.1+9 98281 990.1+8 100961 998.78 101131+ C l a s s i f i c a t i o n 56 TABLE X (c) WAVELENGTHS BELOW 500 A Legend: B: Int e n s i t i e s given by Bloch and Bloch (1). Wavelengths (vacuum) i n Angstroms. Vi Wavenumbers (vacuum) i n rec i p r o c a l centimeters. * r Lines c l a s s i f i e d by Bloch and Bloch. B > V C l a s s i f i c a t i o n 2 « 1+82.10 2071+26 a'D,(t 2 1+78.92 208803 aaD,.4 1+ 1+78.62 208931+ a'D,* zYFJ,. .2 1+76.1+0 209908 a"D** z*FA\ 0 1+7-5.75 21019)+ a'Di* •m z F /JV 6 1+71+.51+ 210730 a'D,*. m z'D*/,. * 2 1+73.1+9 211198 a'W - z"GU * 2 1+73*00 2111+16 z'F,V * 6 1+72.65 211573 a'D,.* - * 1+72.08 211828 a"Di!t M zJF3V * 1 1+68.1+2 2131+81+ a*D,K z* D/st -"- 6 1+66.91 211+171+ a"Di><v - z Fl^. •5':- 1 1+57.29 218680 a* D / * - Z * P ? J V 0 1+56.61+ 218991 a'LW a» 3 1+52.79 220853 a D/it - a-r-i» y *"«*. 0 1+51.58 2211+1+5 a'D^ z"p;>t 3 1+50.93 221761* a"D^ - 5 hk9>9$ 22221+7 a'D,,,. 0 1+1+6.55 223939 a'D,* - z*P/k 5 1+1+1+.36 22501+3 a D2Jl - y lF ,v_ 7 1+1+2.35 226065 a;D^ v ylDxV 0 1+1+1.11 226701 a Dx*. zXP,V 7 1+28.53 233356 a.mD/H. - X1F,V 8 1+25.88 231+808 - x"F3\/T 0 1+23J+9 236133 a L D 2 J T - x'F.V 57 BIBLIOGRAPHY 1* L. Bloch et E. Bloch, Ann, de Phys. (11) 5, 3l*8 (1936). 2. E. V, Condon and G. H, Shortley, "The Theory of Atomic Spectra," Cambridge U. P., 1935. 3. B. Edlen, "Vacuum Corrections to Three Decimal Places, f o r a 2000 - 13,900 A," Land, 1952. 1*. S. Goudsmit and C. J . Humphreys, Phys. Rev. 31*960 (1928). 5. G. R. Harrison, "M. I . T, Wavelength Tables," J . Wiley & Sons, New York, 1939. 6. H. Kayser, "Tabelle der Hauptlinien der Linienspektren a l l e r Elements," J . Springer, B e r l i n , 1939. 7. R. L. K e l l y , "Vacuum U l t r a v i o l e t Emission Lines," U. C. R, L. 5612. 8. Kodak, "Kodak Photographic Plates f o r S c i e n t i f i c and Technical Use," seventh e d i t i o n , 1953. 9. C. E. more, "Atomic Energy Levels," volume I I (1952), U. S. National Bureau of Standards, c i r c u l a r 1x67. 10. L. Pauling and S. Goudsmit, "The Structure of Line Spectra," McGraw-Hill, New York, 1930. 11. H. N. Ru s s e l l , R. B..' King, and C. E. Moore, Phys. Rev. 58,1*07 (19li0). 12. R. A. Sawyer, "Experimental Spectroscopy," Prentice-Hall, New York, 19l*6. 13. A. G, Shenstone, P h i l . Trans. Roy. Soc. (London)(A) 235, No. 751, PP 195-21*3 (1936). 11*. A. G. Shenstone and L. Wilets, Phys.. Rev. 83,101* (1951). 15. T. S, Subbaraya. Proc, Indian Acad. Sci.' (A) 2, 113 (1935). 16. R. Tousey, Applied Physics 1, 679 (1962). 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Country Views Downloads
United States 7 1
China 4 2
Canada 1 0
Poland 1 0
City Views Downloads
Shenzhen 4 2
Ashburn 4 0
Lewes 3 0
Coquitlam 1 0
Unknown 1 18

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0302541/manifest

Comment

Related Items