UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The evaluation of margo porosity in relationship to wood permeability of douglas fir (Pseudotsuga Menziesii… Chan, Cho-Kai 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1972_A6_7 C33.pdf [ 11.52MB ]
Metadata
JSON: 831-1.0302207.json
JSON-LD: 831-1.0302207-ld.json
RDF/XML (Pretty): 831-1.0302207-rdf.xml
RDF/JSON: 831-1.0302207-rdf.json
Turtle: 831-1.0302207-turtle.txt
N-Triples: 831-1.0302207-rdf-ntriples.txt
Original Record: 831-1.0302207-source.json
Full Text
831-1.0302207-fulltext.txt
Citation
831-1.0302207.ris

Full Text

THE EVALUATION OF MARGO POROSITY  I N RELATIONSHIP  TO WOOD PERMEABILITY OF DOUGLAS - FIR [PSEUDOTSUGA  MENZIESII (MIRB.) FRANCO]  by CHO-KAI CHAN B.Sc,  CHUNG CHI COLLEGE, H.K.  CHINESE UNIV.,  A THESIS SUBMITTED I N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE  i n t h e Department of Forestry  We a c c e p t t h i s t h e s i s as to the required standard  conforming  THE UNIVERSITY OF B R I T I S H COLUMBIA APRIL,  1972  1964  In presenting  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r  an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree that permission f o r extensive for s c h o l a r l y purposes may by h i s representatives.  copying of t h i s t h e s i s  be granted by the Head of my Department or I t i s understood that copying or p u b l i c a t i o n  of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission.  Department of The U n i v e r s i t y of B r i t i s h Columbia Vancouver 8, Canada  Date  19  7^  A B S T R A C T  L o n g i t u d i n a l a i r p e r m e a b i l i t y measurements o f Douglasfir  [Pseudotsuga m e n z i e s i i  (Mirb.) Franco] o u t e r sapwood from  t h r e e t r e e s o f d i f f e r e n t seed s o u r c e s and growth l o c a t i o n s were d e t e r m i n e d on m i c r o s e c t i o n s  about 500-700 m i c r o n s t h i c k , d r i e d  by a i r - s e a s o n i n g and s o l v e n t - s e a s o n i n g .  The specimens were s u c -  c e s s i v e l y reduced i n l e n g t h from 3.6 t o 0.4 cm.  Darcy's l a w was  found t o be i n v a l i d w i t h r e s p e c t t o specimen l e n g t h .  Sapwood  e a r l y w o o d l o n g i t u d i n a l a i r p e r m e a b i l i t y was found t o be a s e n s i t i v e barometer o f s e a s o n i n g e f f e c t on p i t a s p i r a t i o n .  The o b j e c t i v e was t o d e t e r m i n e where t h e v a r i a t i o n s i n margo p o r o s i t y were s i g n i f i c a n t , and hence a p p l i c a b l e t o problem of Douglas-fir permeability.  The d i a m e t e r s o f e a r l y w o o d margo  openings were measured d i r e c t l y from e l e c t r o n m i c r o g r a p h s o f unaspirated  (solvent-seasoned) p i t s .  The margo measurement was  assumed t o r e p r e s e n t one p l a n e i n s t e a d o f t h e a c t u a l t h r e e dimens i o n a l s t r u c t u r e , and t h e pores o b s e r v e d were t h e ones t h a t c o n t r o l l e d the rate of flow.  Samples from t h e most, i n t e r m e d i a t e l y  and l e a s t permeable specimens were s e l e c t e d and p r e p a r e d f o r t h e e v a l u a t i o n o f a n a t o m i c a l parameters o f b o r d e r e d p i t membranes (margo a r e a and margo p o r o s i t y ) as r e l a t e d t o p e r m e a b i l i t y .  The  e f f e c t s o f p i t a s p i r a t i o n , t r a c h e i d l e n g t h , t o t a l number o f p i t s per t r a c h e i d , number o f t r a c h e i d s p e r square m i l l i m e t e r , and  s p e c i f i c g r a v i t y on p e r m e a b i l i t y were a l s o a s s e s s e d . i a l a s p i r a t i o n was found as t h e most i m p o r t a n t with permeability.  I n an o r d e r o f d e c r e a s i n g  P i t part-  variable correlated importance, p i t  p a r t i a l a s p i r a t i o n , margo p o r o s i t y and s p e c i f i c g r a v i t y t o g e t h e r a c c o u n t e d f o r 94 p e r c e n t o f t o t a l v a r i a b i l i t y i n p e r m e a b i l i t y of solvent-seasoned  earlywood.  No s t a t i s t i c a l e v a l u a t i o n s were  made t o compare t h e t h r e e t r e e s w i t h r e s p e c t t o t h e i r p e r m e a b i l i t y and t h e measured p a r a m e t e r s .  iv  TABLE OF CONTENTS  PAGE TITLE PAGE  i  ABSTRACT  i i  TABLE OF CONTENTS  iv  LIST OF TABLES  vi  LIST OF FIGURES  v i i .  ACKNOWLEDGEMENT  viii  INTRODUCTION  1  LITERATURE REVIEW  3  I . Concept and measurement o f c o n i f e r o u s wood permeability  3  I I . V a r i a b i l i t y o f c o n i f e r o u s wood p e r m e a b i l i t y  7  A. Geographic v a r i a t i o n s B. Wood zone v a r i a t i o n s C. Growth zone v a r i a t i o n s  7 9 10  I I I . C o n i f e r o u s wood s t r u c t u r a l f a c t o r s a f f e c t i n g permeability  14  A. X y l a r y anatomy o f D o u g l a s - f i r  14  1. S t r u c t u r a l components 2. V a r i a b i l i t y o f t r a c h e i d dimensions 3. B o r d e r e d p i t - p a i r s o f l o n g i t u d i n a l t r a c h e i d s a) A k e y f a c t o r i n f l u e n c i n g f l o w b) D e t a i l e d s t r u c t u r e  19 21  (1) P i t b o r d e r (2) P i n u s - t y p e p i t membrane  25 25  (a) Torus (b) Margo (c) Margo pore dimensions  26 27 29  c) P i t a s p i r a t i o n B. M a n i p u l a t i o n o f c o n i f e r o u s wood p e r m e a b i l i t y solvent-seasoning  14 15 19  34 by 39  V  PAGE MATERIAL AND METHODS I . Sample m a t e r i a l s I I . P e r m e a b i l i t y specimens I I I . P e r m e a b i l i t y a p p a r a t u s and measurements IV. A n a t o m i c a l measurements A. T r a c h e i d l e n g t h and number o f p i t s p e r t r a c h e i d B. P e r c e n t p i t a s p i r a t i o n , r a d i a l w a l l t h i c k n e s s and number o f t r a c h e i d s p e r square m i l l i m e t e r C. P i t dimensions and margo p o r o s i t y V. S t a t i s t i c a l a n a l y s e s RESULTS AND DISCUSSION I . D o u g l a s - f i r sapwood b o r d e r e d p i t s A. G e n e r a l s t r u c t u r e B. Margo p o r o s i t y I I . E f f e c t o f specimen l e n g t h on l o n g i t u d i n a l a i r permeability I I I . E f f e c t o f t r a c h e i d dimensions and s p e c i f i c g r a v i t y pn l o n g i t u d i n a l a i r p e r m e a b i l i t y IV. E f f e c t o f p i t s t r u c t u r e on l o n g i t u d i n a l a i r permeability  42 42 43 47 53 53 53 56 59 60 60 60 69 73 81 84  A. P i t a s p i r a t i o n and s e a s o n i n g e f f e c t  84  B. Margo a r e a and margo p o r o s i t y  90  CONCLUSIONS  92  LITERATURE CITED  93  APPENDIX I  DEHYDRATION, INFILTRATION AND EMBEDDING  111  APPENDIX I I  STAINING  113  APPENDIX I I I  DEFINITIONS OF SYMBOLS  114  APPENDIX I V  MARGO AREA CALCULATION  115  APPENDIX V APPENDIX V I  THE ESTIMATION OF MARGO PORE SIZE STATISTICAL AND DATA TABLES  116 123  vi L I S T OF  TABLES  PAGE  Table  1.  Survey  of Douglas-fir tracheid  Table  2.  Survey  o f margo p o r e  Table  3.  Percentage o f u n a s p i r a t e d p i t s i n a i r - d r i e d sapwood o f 5 c o n i f e r o u s s p e c i e s ( f r o m P h i l l i p s , 1933)  36  E f f e c t o f s e a s o n i n g on a s p i r a t i o n o f D o u g l a s - f i r e a r l y w o o d i n t e r t r a c h e i d b o r d e r e d p i t - p a i r s and l o n g i t u d i n a l a i r p e r m e a b i l i t y ( f r o m Meyer, 1971)  41  C h a r a c t e r i s t i c s o f t h r e e D o u g l a s - f i r wood specimens used i n t h e study  42  Average diameters and a p e r t u r e  60  Table  Table  Table  4.  5.  6.  7.  A v e r a g e margo p o r e  Table  8.  Summary o f t r a c h e i d sapwood  Table  Table  9.  10.  11.  areas  17  determinations  o f p i t annulus,  Table  Table  size  length  31  torus  and diameters  dimensions  70  of Douglas-fir 81  Summary o f p e r m e a b i l i t y v s . s p e c i f i c o f D o u g l a s - f i r sapwood  gravity 83  E f f e c t o f s e a s o n i n g on a s p i r a t i o n o f Douglasf i r o u t e r sapwood i n t e r t r a c h e i d b o r d e r e d p i t p a i r s and l o n g i t u d i n a l a i r p e r m e a b i l i t y  85  Percentage thickness  85  of unaspirated pits  and r a d i a l  wall  vii LIST OF FIGURES PAGE Figure  1.  Figure  2A. M i c r o s e c t i o n b l a n k B. P e r m e a b i l i t y sandwich C. Sampling o f r e p l i c a t i n g and embedding specimens  Figure  3.  Schematic diagram o f l o n g i t u d i n a l b i l i t y apparatus  Figure  4.  Permeability c e l l d e t a i l  51  Figure  5.  Schematic diagram o f p i t a s p i r a t i o n  55  Figure  6.  E l e c t r o n m i c r o g r a p h o f t y p i c a l latewood p i t s  62  Figure  7.  E l e c t r o n micrograph o f t y p i c a l earlywood p i t s  64  Figure  8.  E l e c t r o n m i c r o g r a p h o f an u n a s p i r a t e d earlywood p i t from t h e s o l v e n t - s e a s o n e d o u t e r sapwood o f IC t r e e  67  E l e c t r o n micrograph of unaspirated t h e o u t e r sapwood o f I I t r e e  72  Figure  9.  F i g u r e 10.  F i g u r e 11.  Unaspirated coniferous bordered p i t - p a i r  22  a i r permea-  pits  45 45 45 49  from  R e l a t i o n s h i p between l o g a r i t h m o f l o n g i t u d i n a l a i r p e r m e a b i l i t y and specimen l e n g t h o f D o u g l a s - f i r sapwood  75  A. B. C.  75 77 79  CC t r e e IC t r e e I I tree  E l e c t r o n m i c r o g r a p h o f earlywood p i t s from t h e o u t e r sapwood o f D o u g l a s - f i r showing t h e d i f f e r e n t degree o f a s p i r a t i o n as a r e s u l t of seasoning  88  viii  A C K N O W L E D G E M E N T  The a u t h o r wishes t o thank God f o r t h e o p p o r t u n i t y t o study i n t h e F a c u l t y o f F o r e s t r y o f t h e U n i v e r s i t y o f B r i t i s h  Colum-  • l i i a t/ and t o acknowledge t h e s u p e r v i s i o n and guidance o f f e r e d by Dr. J . W. W i l s o n ,  Professor, Faculty of Forestry, University of  B r i t i s h Columbia o v e r t h e p a s t y e a r s a t t h i s U n i v e r s i t y .  G r a t e f u l acknowledgement i s made t o Dr. R. W. Meyer, Western Forest Products Laboratory,  Vancouver, f o r t h e v a l u a b l e  c o u n s e l and k i n d a s s i s t a n c e i n a l l phases o f t h e study.  A special  debt o f g r a t i t u d e i s owed t o t h e Western F o r e s t P r o d u c t s L a b o r a t o r y , Vancouver, as w e l l as t o t h e F a c u l t y o f F o r e s t r y o f t h e U n i v e r s i t y o f B r i t i s h Columbia, f o r t h e i r f i n a n c i a l and  assistance  f o r t h e e x t e n s i v e use o f t h e former's f a c i l i t i e s and e q u i p -  ment.  The c o n s t r u c t i v e c r i t i c i s m s and h e l p f u l s u g g e s t i o n s  by t h e a u t h o r ' s committee a r e much  Particular  offered  appreciated.  thanks a r e due t o Dr. W. G. Warren, M i s s A.  H e j j a and Mr. J . H e j j a s f o r t h e i r a d v i c e on s t a t i s t i c a l  analyses  and computer programming, t h e former w i t h r e g a r d t o t h e e s t i m a t i o n o f margo pore s i z e .  A p p r e c i a t i o n i s extended t o Mrs. A.  Bramhall  and Mrs. 0. E. Ferguson f o r t h e i r a s s i s t a n c e i n t h e p r e p a r a t i o n o f m i c r o s l i d e s used i n a n a t o m i c a l Bramhall  f o r h i s h e l p f u l counsel.  measurements; a l s o t o Dr. G.  ix  L a s t , b u t n o t t h e l e a s t , t h e encouragement and p a t i e n c e o f my w i f e , Anna, i s d e e p l y  appreciated.  1  I N T R O D U C T I O N  S e v e r a l f i e l d s o f wood u t i l i z a t i o n  (e.g. wood p r e -  s e r v a t i o n , wood s e a s o n i n g , d i m e n s i o n a l s t a b i l i z a t i o n and p u l p i n g ) a r e concerned  e i t h e r d i r e c t l y o r i n d i r e c t l y w i t h t h e movement o f  l i q u i d s , gases o r vapours t h r o u g h wood.  I n o t h e r words, t h e  p e r m e a b i l i t y o f wood p l a y s an i m p o r t a n t r o l e i n a f f e c t i n g p r o c e s s i n g time and p r o d u c t q u a l i t y , w h i c h a r e i n v a r i a b l y r e l a t e d t o c o s t factors.  A b a s i c knowledge o f wood p e r m e a b i l i t y i s t h e r e f o r e  e s s e n t i a l f o r a p r o p e r u n d e r s t a n d i n g o f t h e s e f i e l d s o f wood u t i l i z a t i o n , and f o r t h e i r r a t i o n a l  developmentSignificant  s t r i d e s have been made i n u n d e r s t a n d i n g  t h e mechanisms o f f l o w  t h r o u g h wood and t h e r e l a t i o n s h i p o f f l o w t o t h e minute wood structure.  I t i s c l e a r l y seen t h a t p e r m e a b i l i t y depends on an  i n t e r a c t i o n o f s e v e r a l f a c t o r s and t h a t no one approach be i t p h y s i c a l , chemical or anatomical, t o the e x c l u s i o n of the others, w i l l l e a d t o an u n d e r s t a n d i n g o f t h e phenomenon ( B a i l e y , 1964).  The various- f l u i d f l o w passageways i n c o n i f e r o u s woods a r e l i m i t e d w i t h t h e i r s i m p l e and homogeneous s t r u c t u r e .  Fluid  f l o w a l o n g t h e g r a i n must be p r i m a r i l y through t h e predominant, l o n g i t u d i n a l t r a c h e i d s , and t h e b o r d e r e d p i t - p a i r s  connecting  them thus p r o v i d e t h e p o t e n t i a l passageways f o r i n t e r t r a c h e a l flow.  fluid  S i n c e .the p e r f o r a t e d p i t membrane was demonstrated by  several investigators  ( B a i l e y , 1913, a,b;  Cote and Krahmer, 1962;  2 K i s h i m a , 1965; and L i e s e , 1956), i t has been g e n e r a l l y  assumed  t h a t most o f t h e l o n g i t u d i n a l f l u i d f l o w o c c u r s t h r o u g h t h e margo pores o f c o n i f e r o u s  bordered p i t s .  T h e r e f o r e , margo p o r o s i t y  s h o u l d have a p r o f o u n d i n f l u e n c e on p e r m e a b i l i t y .  But no  research  t o date has demonstrated t h e r e l a t i o n s h i p between margo p o r o s i t y and p e r m e a b i l i t y  directly.  The p r e s e n t s t u d y was u n d e r t a k e n t o determine t h e r e l a t i v e i n f l u e n c e o f margo p o r o s i t y and s e v e r a l o t h e r a n a t o m i c a l factors  (margo a r e a ,  t r a c h e i d l e n g t h , number o f p i t s p e r t r a c h e i d ,  per c e n t p i t a s p i r a t i o n , number o f t r a c h e i d s p e r square m i l l i m e t e r and  s p e c i f i c g r a v i t y ) on l o n g i t u d i n a l a i r p e r m e a b i l i t y  f i r sapwood. and  o f Douglas-  Measurements o f r e l a t i v e p e r m e a b i l i t i e s o f earlywood  l a t e w o o d were o b t a i n e d  growth i n c r ement.  by p r e p a r i n g  microsections  across the  LITERATURE  I.  Concept  3  REVIEW  and measurement o f c o n i f e r o u s wood p e r m e a b i l i t y  The movement o f f l u i d s  (penetration) through the c a p i l l a r y  s t r u c t u r e o f wood can be a t t a i n e d by t h e use o f one o f two mechanisms t h a t f o l l o w d i f f e r e n t laws and v a r y i n e f f e c t i v e n e s s t h r o u g h d i f f e r e n t s t r u c t u r e s , namely, (1) d i f f u s i o n , and (2) p e r m e a b i l i t y ( E l l w o o d and Thomas, 1968; Stamm, 1967).  The former i s a spon-  taneous movement o f a s u b s t a n c e i n t o a n o t h e r from a h i g h e r  con-  c e n t r a t i o n zone t o a zone o f l o w e r c o n c e n t r a t i o n under a m o t i v a t i o n w h i c h i s always from w i t h i n (Stamm, 1967).  I t p r i m a r i l y depends  upon t h e d e n s i t y o f wood ( E l l w o o d and Thomas, 1968).  The  latter,  p e r m e a b i l i t y , i s t h e f l u i d c o n d u c t i v i t y o f wood as a porous medium, r e f l e c t i n g i t s c a p a c i t y t o be permeated by f l u i d under a gradient  (Fogg, 1968).  pressure  T h i s mechanism can be more r a p i d t h a n  d i f f u s i o n and p r o v i d e s more o p p o r t u n i t y  f o r c o n t r o l o f depth o f  penetration and  r e t e n t i o n o f t h e p e n e t r a n t and i s l a r g e l y i n d e p e n -  dent o f d e n s i t y  (Ellwood and Thomas, 1968).  :  A l l p e r m e a b i l i t y t h e o r i e s and e q u a t i o n s o r i g i n a t e from Darcy's (1856) famous l a w , a f t e r t h e f o r m u l a t o r , French h y d r a u l i c engineer.  H e n r i P. - G. Darcy, a  He i n v e s t i g a t e d f l o w c h a r a c t e r i s t i c s  o f sand f i l t e r s i n c o n n e c t i o n  with the p u b l i c fountains i n Dijon.  H i s l a w i n f l u i d dynamics s t a t e s t h a t t h e v e l o c i t y o f f l o w o f a liquid  t h r o u g h a porous medium due t o d i f f e r e n c e i n p r e s s u r e , i s  p r o p o r t i o n a l t o the pressure gradient i n the d i r e c t i o n of flow, and i s e x p r e s s e d  k  where  =  as f o l l o w s :  AAP  k = the permeability  constant,  Q = f l u i d flow rate, L = specimen l e n g t h , A = c r o s s - s e c t i o n a l a r e a o f specimen, and  A P = p r e s s u r e drop a c r o s s t h e specimen.  C o n i f e r o u s wood p e r m e a b i l i t y can be d e t e r m i n e d by measurements u s i n g e i t h e r l i q u i d f l o w o r gas f l o w , b u t s i n c e gas f l o w i s n o t c o m p l i c a t e d by t h e d e c r e a s i n g f l o w r a t e and o t h e r anomalous b e h a v i o u r t h a t c h a r a c t e r i z e s l i q u i d f l o w , i t i s much s i m p l e r t o measure (Comstock, 1967).  T h e o r e t i c a l l y , gas and l i q u i d permea-  b i l i t i e s a r e f u n c t i o n s o f t h e permeated wood and t h e r e f o r e s h o u l d be independent o f i n e r t , s t o c k , 1965).  nonswelling, permeating f l u i d s  However, they were r e p o r t e d t o be n o t  (Comstock, 1967; Resch and E c k l u n d ,  (Com-  identical  1964; Smith, 1963).  The gas  p e r m e a b i l i t y v a l u e o f a wood sample i s g e n e r a l l y h i g h e r t h a n t h e value of l i q u i d permeability. due  The d i f f e r e n c e was b e l i e v e d t o be  t o t h e combined e f f e c t o f s l i p f l o w e n c o u n t e r e d w i t h gas  (Comstock, 1967, 1968), and t h r e e major f a c t o r s , namely m e n i s c i e f f e c t s , t r a n s p o r t a t i o n o f d e b r i s , and movement o f t o r i w h i c h predominate i n l i q u i d f l o w ( E l l w o o d and Thomas, 1968).  The former  i s r e s p o n s i b l e f o r h i g h e r measured gas p e r m e a b i l i t y v a l u e s  than  5 t h e t r u e p e r m e a b i l i t y o f wood, whereas t h e l a t t e r f a c t o r s i n t r o d u c e h i n d r a n c e s i n t h e l i q u i d f l o w t h r o u g h wood.  The  d i r e c t r e l a t i o n s h i p between gas and l i q u i d p e r m e a b i l i t y  i n wood was r e v e a l e d f i r s t by Comstock (1967).  He c o n c l u d e d t h a t  under c o n d i t i o n s o f e q u a l s w e l l i n g , s l i p - c o r r e c t e d gas permeabil i t y was no d i f f e r e n t t h a n t h e l i q u i d p e r m e a b i l i t y .  I n other  words, wood p e r m e a b i l i t y i s a c h a r a c t e r i s t i c o f t h e wood i t s e l f , and i s independent o f t h e p e r m e a t i n g f l u i d used t o measure i t .  Assuming l a m i n a r  flow through the c a p i l l a r y s t r u c t u r e o f  wood, t h e l i q u i d p e r m e a b i l i t y o f wood can be a d e q u a t e l y e x p r e s s e d i n the modified fluid  viscosity:  K  _ —  where  form o f Darcy's l a w w h i c h i n c l u d e s t h e e f f e c t o f  Q M  AAP  k = s p e c i f i c or true permeability 3  (darcy),  Q = f l o w r a t e (cm / s e c ) , L = specimen l e n g t h (cm), <3? — v i s c o s i t y ( c e n t i p o i s e ) , 2 A = f l o w area and The  AP = pressure  (cm ), drop  (atm.).  above e q u a t i o n i s o n l y v a l i d f o r an i n c o m p r e s s i b l e  fluid  (Fogg, 1968), b u t has a l s o been employed f o r gas p e r m e a b i l i t y c a l c u l a t i o n s by many i n v e s t i g a t o r s b e f o r e and a f t e r Comstock*s  6 (1967) f i n d i n g .  T a k i n g i n t o a c c o u n t t h e c o m p r e s s i b i l i t y o f t h e gas, t h e s u p e r f i c i a l gas p e r m e a b i l i t y , k g (Scheidegger,  1960) c a n be  c a l c u l a t e d a c c o r d i n g t o Darcy's l a w  kQ = K  g  AAPp  where P = t h e a b s o l u t e p r e s s u r e a t w h i c h t h e f l o w , Q, i s measured, and  p = t h e mean a b s o l u t e p r e s s u r e i n t h e specimen.  Klinkenberg  (1941) d e r i v e d t h e f o l l o w i n g e x p r e s s i o n f o r gas  permeability with corrected s l i p flow:  where  kg = k (1 _ P b = = c o n s t a n t f o r a g i v e n sample, C = constant ^  1 ,  X = mean f r e e p a t h o f t h e gas, and  r = r a d i u s o f pores . 6  The above e x p r e s s i o n has been a p p l i e d t o wood by Comstock  (1967).  7 II.  V a r i a b i l i t y o f c o n i f e r o u s wood p e r m e a b i l i t y A.  Geographic v a r i a t i o n s D o u g l a s - f i r i s d i s t r i b u t e d n a t u r a l l y i n p a r t s of  British  Columbia (Canada) as w e l l as C a l i f o r n i a , Oregon and Washington (Western U n i t e d ' S t a t e s ) , where i t o c c u r s i n the c o a s t a l region,, and  i n the mountains.  between c o a s t a l and 1909;  The  geographical  and e c o l o g i c a l i s o l a t i o n s  i n t e r i o r forms a r e d e f i n i t e (Frothingham,  Haddock, e t a l . , 1967;  L i t t l e , 1953).  A s e r i e s of  f i c a n t d i f f e r e n c e s i n morphology between c o a s t a l and populations  were i n d i c a t e d by Tusko (1963).  t h e r e a r e s u f f i c i e n t grounds t o r e c o g n i z e the p r o v i n c e  o f B r i t i s h Columbia.  c o a s t a l D o u g l a s - f i r , and  two  interior  He c o n c l u d e d t h a t subspecies w i t h i n  These a r e s s p . m e n z i e s i i ,  s s p . g l a u c e s c e n s ( B a i l l y ) Schw., i n t e r i o r  o r Rocky M o u n t a i n D o u g l a s - f i r .  Anatomical d i f f e r e n c e s of both  t y p e s o f the wood cannot n o r m a l l y  be d i s t i n g u i s h e d (Krahmer, 1961),  but t h e y have been found t o d i f f e r i n s t r e n g t h p r o p e r t i e s ease o f t r e a t a b i l i t y  The f i r was  signi-  (Panshin and  and  DeZeeuw, 1970).  i n f l u e n c e o f g e o g r a p h i c o r i g i n on p e r m e a b i l i t y o f Douglasd i s c u s s e d by s e v e r a l i n v e s t i g a t o r s (Blew, 1961;  1966,  1967,  1971;  C r a i g , 1963;  1961;  M i l l e r and Graham, 1963).  E r i c k s o n and E s t e p , 1962;  Miller,  I t i s w e l l e s t a b l i s h e d through  these i n v e s t i g a t i o n s t h a t the p e r m e a b i l i t y , e s p e c i a l l y of wood, from the two  Bramhall,  d i f f e r e n t regions  heart-  i s remarkably d i f f e r e n t , w i t h  the i n t e r i o r type g e n e r a l l y possessing  much l o w e r p e r m e a b i l i t y .  8 B r a m h a l l (1966) showed t h a t t h e p e r m e a b i l i t y o f D o u g l a s - f i r heartwood from 26 a r e a s o f B r i t i s h Columbia, w h i c h v a r i e d from e x t r e m e l y r e f r a c t o r y t o m o d e r a t e l y permeable, i s r e l a t e d t o t h e r e g i o n o f growth.  He a l s o d e p i c t e d a r e l a t i o n s h i p between t h e  a n n u a l p r e c i p i t a t i o n o f t h e a r e a o f growth and t h e p e r m e a b i l i t y , because samples from d r i e r a r e a s showed lower p e r m e a b i l i t i e s t h a n t h o s e from s i t e s w i t h h i g h e r r a i n f a l l .  He c o n c l u d e d t h a t geo-  g r a p h i c o r i g i n i s t h e most i m p o r t a n t f a c t o r i n f l u e n c i n g t h e permeability of Douglas-fir  heartwood.  9 B.  Wood zone v a r i a t i o n s Many i n v e s t i g a t o r s ( B a i l e y , 1913a; B a i l e y ,  Bramhall,  1967,  Fogg, 1968;  1971;  Bramhall  G r i f f i n , 1919,  and W i l s o n ,  1924;  1971;  1966;  Comstock,  Krahmer and Cote, 1963)  1968;  reported  t h a t h i g h e r sapwood p e r m e a b i l i t i e s o f most s p e c i e s a r e found i n the n a t u r a l (green) c o n d i t i o n . has  The wood p r e s e r v a t i o n i n d u s t r y  l o n g been aware o f the sapwood-heartwood d i f f e r e n c e i n p e r -  meability.  T h i s i s e s p e c i a l l y t r u e i n D o u g l a s - f i r and  resinous species.  other  Krahmer and Cote (1963) r e v e a l e d t h a t p i t a s -  p i r a t i o n , o c c l u s i o n and i n c r u s t a t i o n g e n e r a l l y a s s o c i a t e d w i t h the t r a n s f o r m a t i o n o f sapwood i n t o heartwood, a r e e f f e c t i v e i n r e d u c i n g t h e c a p i l l a r y s i z e o f t h e b o r d e r e d p i t - p a i r s and contribute  t o t h e lower p e r m e a b i l i t y o f heartwood.  m e a b i l i t y r a t i o of unextracted, f o r D o u g l a s - f i r was  34:1  thus  The a i r p e r -  e a r l y sapwood t o l a t e heartwood  (Krahmer and Cote, 1963).  They a l s o  found t h a t e x t r a c t i o n o f heartwood w i t h hot w a t e r , e t h a n o l  and  ethanol-benzene improved t h e p e r m e a b i l i t y , but t h e p e r m e a b i l i t y o f e x t r a c t e d heartwood d i d not e q u a l t h a t o f t h e u n e x t r a c t e d wood.  Bramhall  and W i l s o n  sap-  (1971) o b s e r v e d t h a t earlywood permea-  b i l i t i e s o f c o a s t a l D o u g l a s - f i r heartwood were 10 t o 100  times  h i g h e r t h a n t h a t o f i n t e r i o r t y p e f o r s e v e r a l d r y i n g methods. However, p e r m e a b i l i t y o f e i t h e r sapwood o r heartwood l a t e w o o d specimens was  about t h e same (0.2 d a r c y ) f o r each d r y i n g method  t e s t e d , and the h i g h e a r l y w o o d p e r m e a b i l i t i e s r e c o r d e d  a f t e r low  s u r f a c e - t e n s i o n d r y i n g were e n t i r e l y r e s t r i c t e d t o t h e sapwood.  10 C.  Growth zone v a r i a t i o n s Weiss (1912) was p r o b a b l y t h e e a r l i e s t i n v e s t i g a t o r i n  r e c o g n i z i n g h i g h e r p e r m e a b i l i t y f o r d r y latewood t h a n t h a t o f earlywood.  He a m p l i f i e d Tiemann's t h e o r y  (1910) by  suggesting  t h a t t h e s t i f f e r and t h i c k e r - w a l l e d latewood t r a c h e i d s check more t h a n t h e e a r l y w o o d t r a c h e i d s , thus a c c o u n t i n g latewood p e r m e a b i l i t y . non,  Griffin  f o r the higher  (1919) o b s e r v e d t h e same phenome-  b u t e x p l a i n e d t h a t earlywood p i t a s p i r a t i o n i s t h e r e s p o n s i b l e  factor for this effect.  By v i r t u e o f i t s l a r g e r t r a c h e i d s ,  greater  number o f p i t s p e r t r a c h e i d ( P h i l l i p s , 1933; Thomas and S c h e l d , 1967), and s i z e o f t h e p i t s with p i t s i n the unaspirated meable t h a n l a t e w o o d .  (Thomas and S c h e l d ,  1967), earlywood  c o n d i t i o n s h o u l d be much more p e r -  A f t e r d r y i n g t h e g r e a t e r number o f unas-  p i r a t e d latewood p i t s should r e s u l t i n g r e a t e r p e r m e a b i l i t y  there  as t h e l a t e w o o d p i t p o s s e s s e s a more r i g i d p i t membrane t o r e s i s t a s p i r a t i o n ( P h i l l i p s , 1933).  The h i g h l a t e w o o d p e r m e a b i l i t y o f  d r i e d wood has been shown by s e v e r a l i n v e s t i g a t o r s ( E r i c k s o n e t a l . , 1937; H a r r i s , 1953; Osnach, 1961; S c a r t h , 1928; T e e s d a l e , 1914).  I n s t u d i e s o f f l o w passageways, Buro and Buro (1959a) found no c o n s i s t e n t d i f f e r e n c e i n S c o t s p i n e between e a r l y w o o d and l a t e wood, w h e r e a s • E r i c k s o n and B a l a t i n e c z  (1964) n o t e d t h a t u s u a l l y  a g r e a t e r number o f latewood t r a c h e i d s i n D o u g l a s - f i r were permeated. Comstock (1968) c l a i m e d  t h a t t h e h i s t o r y o f t h e wood p r i o r t o  drying i s important i n t h i s r e l a t i o n s h i p .  11 Formal a t t e m p t s t o measure r e l a t i v e earlywood and  latewood  p e r m e a b i l i t i e s have o n l y been made i n r e c e n t y e a r s , because o f t h e t e c h n i c a l problems a s s o c i a t e d w i t h making t h e s e measurements. P a r t i t i o n i n g the l o n g i t u d i n a l gas.^permeability blocks into'earlywood  o f s m a l l wood  and l a t e w o o d components was  done by s e a l i n g  the exposed, s e l e c t e d components o f growth zones on the ends o f b l o c k s w i t h p a r a f f i n by Buro and Buro (1959b) o r r e s i n by Osnach (1961).  Considerable  v a r i a t i o n s were found i n t h e i r  A x i a l gas p e r m e a b i l i t y o f D o u g l a s - f i r m i c r o s e c t i o n s growth increment was (1971).  results. across  i n i t i a l l y d e t e r m i n e d by B r a m h a l l  and  They found t h a t w i t h i n t h e growth increment o f  D o u g l a s - f i r , t h e l a s t - f o r m e d l a t e w o o d and  the Wilson  interior  f i r s t - f o r m e d earlywood  were more permeable, i n d i c a t i n g t h a t t h e f i r s t - f o r m e d earlywood has p e r m e a b i l i t y c h a r a c t e r i s t i c s more r e l a t e d t o l a t e w o o d t h a n earlywood.  They showed t h a t latewood p e r m e a b i l i t y o f e i t h e r sap-  wood or heartwood was The  about 0.2  darcy  f o r s e v e r a l d r y i n g methods.  above o b s e r v a t i o n suggested t h a t t h e latewood margo was  s t i f f e r n a t u r e and r e s i s t s a s p i r a t i o n , t h e r e f o r e , no change i n l a t e w o o d p e r m e a b i l i t y i s e x p e r i e n c e d v e n t i o n a l d r y i n g techniques conversion.  of  significant  as a r e s u l t o f con-  o r i n p h y s i o l o g i c a l sapwood-heartwood  They a l s o o b s e r v e d t h e l e a s t earlywood p e r m e a b i l i t y  i n a i r or oven-dried  i n t e r i o r heartwood, w h i l e h i g h earlywood  p e r m e a b i l i t i e s were e n t i r e l y r e s t r i c t e d t o t h a t sapwood t r e a t e d by low s u r f a c e - t e n s i o n d r y i n g  techniques.  On t h e o t h e r hand, r e p o r t s on t h e i n f l u e n c e o f s p e c i f i c g r a v i t y on p e r m e a b i l i t y a r e c o n f l i c t i n g ; p r o b a b l y  specific  g r a v i t y i t s e l f does n o t a f f e c t p e r m e a b i l i t y b u t r a t h e r f a c t o r s r e l a t e d t o s p e c i f i c g r a v i t y a r e i n v o l v e d (Benvenuti, Obviously  1963).  v a r i a t i o n s i n s p e c i f i c g r a v i t y are expressions of  changes i n c e l l u l a r dimensions and arrangements.  Percentage o f  latewood i s a gross e x p r e s s i o n o f t h e s e changes (Lassen and Okkonen, 1969).  Differences i n s p e c i f i c gravity, either within  a s i n g l e s p e c i e s o r between d i f f e r e n t s p e c i e s d i d n o t show a corresponding and E s t e p ,  v a r i a b i l i t y i n p e r m e a b i l i t y ! . ( C r a i g , 1963; E r i c k s o n  1962; Koran, 1964; M i l l e r , 1961).  This i s a t t r i b u t a b l e  t o t h e f a c t t h a t p e r m e a b i l i t y i s more dependent on t h e arrangement and  f r e q u e n c y o f p i t t i n g t h a n on t h e p r o p o r t i o n o f v o i d spaces  i n t h e wood ( M i l l e r , 1961; Resch and E c k l u n d ,  1964).  However,  Blew (1961) found a r e l a t i o n s h i p between s p e c i f i c g r a v i t y and p e r meability i n coastal Douglas-fir.  B e n v e n u t i (1963) a l s o c o n c l u d e d  t h a t s p e c i f i c g r a v i t y was t h e b e s t s i n g l e i n d i c a t o r o f d i f f e r e n c e s i n p e r m e a b i l i t y between t r e e s  ( l o b l o l l y p i n e , Pinus taeda L.) and  w i t h i n t h e sapwood o f s i n g l e t r e e s ; based on t h e a t t r i b u t e o f l a r g e r t r a c h e i d and fewer a s p i r a t e d p i t s i n l a t e w o o d .  Bramhall  (1967) noted t h a t t h e p o i n t o f g r e a t e s t p e r m e a b i l i t y w i t h i n an i n c r e m e n t was n o t t h a t o f g r e a t e s t s p e c i f i c g r a v i t y , and a s i m p l e c o r r e l a t i o n between s p e c i f i c g r a v i t y and l o n g i t u d i n a l gas-permeab i l i t y might be f o r t u i t o u s .  13 Buro and Buro (1959a) n o t e d t h a t w i d t h o f t h e growth i n crements had no e f f e c t on p e r m e a b i l i t y .  The same a p p l i e s f o r t h e  r e l a t i o n s h i p between t h e growth r a t e and p e r m e a b i l i t y .  14 I I I . C o n i f e r o u s wood s t r u c t u r a l f a c t o r s a f f e c t i n g A.  Xylary 1.  Douglas-fir  S t r u c t u r a l components The  wood t i s s u e .  anatomy o f  Xylem o f D o u g l a s - f i r  i s a typical  Xylary  fusiform.  regularly  forming the  r a y s a r e o f two t y p e s , namely,  The l a t t e r contain:  structure  arranged  i n r a d i a l rows, w i t h b o t h parenchyma and t r a c h e i d s  and  coniferous  I t has a c o m p a r a t i v e l y s i m p l e , r e g u l a r  consisting primarily of longitudinal tracheids,  xylary rays.  permeability  uniseriate  a transverse r e s i n canal.  only other l o n g i t u d i n a l l y oriented  structures  i n Douglas-fir  The are  e p i t h e l i a l c e l l s f o r m i n g t h e l o n g i t u d i n a l r e s i n c a n a l s and t h e l o n g i t u d i n a l parenchyma.  The l o n g i t u d i n a l t r a c h e i d s ,  which con-  s t i t u t e more t h a n 9 0 % o f t h e wood volume ( I s e n b e r g , 1963), a r e o f demonstrated s i g n i f i c a n c e i n l o n g i t u d i n a l p e r m e a b i l i t y . arrangement o f l o n g i t u d i n a l t r a c h e i d s f l u i d movement i n t h e t a n g e n t i a l pit pairs possible  (Cote, 1963).  The  provides f o r stepwise,  lateral  d i r e c t i o n through the bordered  The l o n g i t u d i n a l r e s i n c a n a l i s a l s o a  pathway f o r l o n g i t u d i n a l f l u i d movement, b u t  proportion-  a l l y much l e s s s i g n i f i c a n t t h a n t r a c h e i d s ,  thus i t does n o t appear  t o be e f f e c t i v e  On t h e o t h e r hand,  (Hunt and G a r r a t t ,  the rays c o n t r i b u t e t i o n (Erickson  1967).  t o l a t e r a l f l u i d movement i n t h e r a d i a l  and B a l a t i n e c z ,  1964).  direc-  15 2.  V a r i a b i l i t y o f t r a c h e i d dimensions R i c h a r d s o n (1964) p o i n t e d out t h a t d i r e c t e f f e c t s  of c l i m a t i c v a r i a b l e s are of l i t t l e s i g n i f i c a n c e i n ultimate c e l l size i n conifers.  determining  I n d i r e c t i n f l u e n c e s may  p o r t a n t . w i t h r e s p e c t t o w a l l t h i c k n e s s and  be  lumen d i a m e t e r but  t h e major d e t e r m i n a n t s o f t r a c h e i d l e n g t h a r e unknown. the genotypic  im-  Probably  component o f t h e phenotype p l a y s an i m p o r t a n t r o l e .  A d i r e c t r e l a t i o n s h i p between t r a c h e i d l e n g t h d i s t a n c e from t h e p i t h was  reported  and n o b l e f i r (Anderson, 1951).  and  i n Douglas-fir, white f i r  T h i s r e l a t i o n s h i p i s independent  o f h e i g h t i n t r e e , p r o v i d i n g the t r a c h e i d s a r e l o c a t e d somewhat above ground l e v e l .  The  s h o r t e s t t r a c h e i d s were found near the  p i t h ; outward from t h e p i t h , t r a c h e i d l e n g t h i n c r e a s e d r a p i d l y , t h e n more s l o w l y w i t h a tendency t o l e v e l o f f (Anderson,  1951;  Lee and  that  Smith, 1916).  Wellwood and  Smith (1962) r e p o r t e d  l e n g t h s o f t r a c h e i d s o f 16 D o u g l a s - f i r t r e e s i n c r e a s e as r i n g age  increases.  those at higher son,  1951;  T r a c h e i d s near the t r e e baset.'were s h o r t e r t h a n l e v e l s a t p o i n t s e q u i d i s t a n t from the p i t h  Lee and  Smith, 1916;  Shepard and B a i l e y , 1914).  a growth i n c r e m e n t , a t a g i v e n l e v e l i n the t r e e , the t r a c h e i d s are g e n e r a l l y c o n s i d e r e d tracheids  (Chalk, 1930;  Lee and  a r e i n t h e e a r l i e s t earlywood and  earlywood  Smith, 1916).  e v e r , G e r r y (1915) found t h a t t h e l a r g e s t t r a c h e i d s o f  Within  latewood  t o be l o n g e r t h a n t h e  K r i b s , 1928;  (Ander-  How-  Douglas-fir  s h o r t e s t i n the l a s t l a y e r s of  16 latewood.  Data a v a i l a b l e on t h e t r a c h e i d l e n g t h o f c o a s t a l  and i n t e r i o r D o u g l a s - f i r a r e summarized i n T a b l e 1. investigators  (Krahmer,  Several  1961; Lee and Smith, 1916; Meyer,  1971)  c o n c l u d e d t h a t c o a s t a l D o u g l a s - f i r appears t o produce a t r a c h e i d a v e r a g i n g s l i g h t l y l o n g e r t h a n t h a t growing i n t h e i n t e r i o r . r e s u l t s o f Koran  The  (1964) showed t h a t i n t e r i o r D o u g l a s — f i r t r a c h e i d  l e n g t h was not an i m p o r t a n t f a c t o r i n d e t e r m i n i n g a i r p e r m e a b i l i t y or creosote r e t e n t i o n .  Any minor i n f l u e n c e which t r a c h e i d l e n g t h  might have had was masked by t h e e f f e c t o f more i m p o r t a n t f a c t o r s . On t h e o t h e r hand, Meyer (1971) suggested t h a t s h o r t e r  tracheids  and a s m a l l e r number o f p i t s p e r t r a c h e i d r e n d e r wood r e l a t i v e l y less  permeable.  F l e i s c h e r (1950) r e v e a l e d .that t r a c h e i d s i n t h e p e r meable ( c o a s t a l ) heartwood were l a r g e r and had l a r g e r l u m i n a t h a n those i n t h e r e f r a c t o r y ( c o a s t a l ) heartwood.  For a l l Douglas-  f i r samples measured, Krahmer (1961) n o t e d t h a t t h e permeable woods had a s i g n i f i c a n t l y  l a r g e r average lumen s i z e o f 40.32  microns r a d i a l l y , and 35.61 m i c r o n s t a n g e n t i a l l y , whereas i n r e f r a c t o r y woods t h e w i d t h o f t r a c h e i d s was  27.96 microns  radially  and 26.69 microns t a n g e n t i a l l y .  P e n h a l l o w (1907) r e a l i z e d t h a t t h e c e l l w a l l s o f Douglasf i r a r e about 2.4 microns t h i c k i n t h e earlywood and 8.4  microns  t h i c k i n t h e latewood, i . e . , they a r e some t h r e e times as t h i c k i n t h e latewood as i n the earlywood.  Later, P h i l l i p s  (1933)  17 TABLE 1. SURVEY OF DOUGLAS-FIR TRACHEID LENGTH (mm) Growth T r a c h e i d Length Zone Min. Ave. Max.  Wood Zone  Type Coastal  SW*,HW*  EW* LW  0.34  Coastal  SW,HW  EW,LW  •——  Coastal Mountain (interior) Mountain (interior) Permeable (coastal)  f  II  n  II  II  II  n  HW  Refractory HW (mountain) Interior True SW  —  4.46 8.60 Lee & Smith (1916)  8550 t r a c h e i d s measured a t 171 p o i n t s ( i n crements ) i n a single tree.  3.44  500 measurements made from 10 i n c r e m e n t s .  4.43 3.06 4.18  —  II  —  —  —  —  II  II  II  II  II  H  5.06  5.59 6.16 Krahmer 180 t r a c h e i d s (1961) measured  EW, LW  3.19  3.68 4.09  Interior  I n c l u d e d SW  n  Interior  I n c l u d e d SW  n  Interior  I n n e r HW  II  II  Coastal  SW  EW"  Interior  SW  EW sapwood heartwood earlywood latewood  —  4.11  —  —  4.15  —  —  3.48  II  Koran (1964)  4.14  EW,LW  Outer HW  = = = —  —  Remark  EW,LW  Interior  * SW HW EW LW  —  Source  —  —  3.03  —  —  4.94  —  —  3.49  —  200 t r a c h e i d s measured 20 t r a c h e i d s measured  II  •i  II  II  II  II  II  II  Meyer (1971)  45 t r a c h e i d s measured II  18 s t a t e d t h a t i n most cases a v e r y d i r e c t c o r r e l a t i o n e x i s t e d  be-  tween c e l l w a l l t h i c k n e s s and  pits.  He  the p e r c e n t a g e o f u n a s p i r a t e d  found t h a t B r i t i s h - g r o w n D o u g l a s - f i r xylem w i t h 6 - m i c r o n - t h i c k  r a d i a l w a l l s was  79% a s p i r a t e d , whereas Canadian-grown D o u g l a s - f i r  xylem w i t h 1 1 - m i c r o n - t h i c k r a d i a l w a l l s was  o n l y 47% a s p i r a t e d .  19 3.  Bordered p i t - p a i r s of l o n g i t u d i n a l t r a c h e i d s a)  A key f a c t o r i n f l u e n c i n g f l o w The v a r i e t y o f f l u i d f l o w passageways a r e  l i m i t e d i n c o n i f e r o u s woods w i t h t h e i r s i m p l e and homogeneous structure.  F l u i d f l o w a l o n g t h e g r a i n must be p r i m a r i l y t h r o u g h  t h e predominant,  l o n g i t u d i n a l t r a c h e i d s , and t h e b o r d e r e d p i t -  p a i r s c o n n e c t i n g them thus p r o v i d e t h e p o t e n t i a l passageways f o r i n t e r t r a c h e a l f l u i d flow.  Tiemann's (1910) h y p o t h e s i s t h a t l i q u i d s  pass t h r o u g h m i c r o s c o p i c a l s l i t s i n t h e seasoned wood c e l l w a l l s d u r i n g p r e s s u r e i m p r e g n a t i o n was showed t h a t a l t h o u g h s l i t s may  d i s p r o v e d by B a i l e y  who  occur i n the t r a c h e i d w a l l s d u r i n g  d r y i n g t h e p r i m a r y w a l l s remain u n r u p t u r e d , and a l s o t h a t s m a l l c a r b o n p a r t i c l e s suspended membranes o f b o r d e r e d p i t s  (1913a),  (Bailey,  demonstrated  i n l i q u i d pass t h r o u g h t h e 1913b).  S i n c e t h e o r i g i n a l work o f B a i l e y  (1913,a,b)  and s u b s e q u e n t l y o f Cote and Krahmer (1962), K i s h i m a (1965) and L i e s e (1956) demonstrated  t h a t t h e p i t membrane c o n t a i n s p e r f o r a -  t i o n s , i t has been g e n e r a l l y a c c e p t e d t h a t t h e f l o w o f f l u i d s t r a c h e i d t o t r a c h e i d takes p l a c e through the bordered p i t s .  from In  a d d i t i o n , the dependence o f f l u i d f l o w on t h e a v a i l a b i l i t y o f p i t s has been s u b s t a n t i a t e d by a number o f i n v e s t i g a t o r s  (Balatinecz,  1963; Buro and Buro, 1959a; Cote, 1958; Cote and Krahmer,  1962;  E r i c k s o n and B a l a t i n e c z , 1964; Krahmer and Cote, 1963; L i e s e , Resch and E c k l u n d , 1964; S e b a s t i a n , e_t a l . , 1958; Stamm, 1963; Stamm and Wagner, 1961).  1965; Smith and  1965;  Lee,  20 D e s p i t e a number o f e x p e r i m e n t a l f a c t s which s u p p o r t t h e t h e o r y t h a t p i t s a r e t h e major p a t h s f o r f l o w , P r e s t o n (1959) has e x p r e s s e d t h e o p p o s i t e o p i n i o n t o e x p l a i n t h e l o c a t i o n o f water-borne p r e s e r v a t i v e s w i t h i n t h e c e l l w a l l .  Based on t h e  p r e s e n c e o f p r e s e r v a t i v e s a l t s w i t h i n t h e c e l l w a l l s r e v e a l e d by t h e e l e c t r o n m i c r o s c o p e , he suggested t h a t f a r g r e a t e r f l o w i s l i k e l y t o o c c u r t h r o u g h t h e system o f more numerous, f i n e c a p i l l a r i e s i n the c e l l w a l l s .  H i s h y p o t h e s i s was s u p p o r t e d by B a i l e y  (1964), b u t no new e v i d e n c e was a v a i l a b l e . of  P r o b a b l y t h e presence  s a l t s i n t h e c e l l w a l l as a r e s u l t o f d i f f u s i o n a f t e r  treat-  ment i s a more l i k e l y e x p l a n a t i o n as p o i n t e d o u t by N i c h o l a s (1966) and Tamblyn (1960).  Stamm (1946) r e g a r d e d t h e s e c a p i l l a r i e s as  b e i n g t o o s m a l l and t o r t u o u s t o p e r m i t s u b s t a n t i a l l i q u i d f l o w . Furthermore, Stamm (1967) i n d i c a t e d t h a t t h e passage o f l i q u i d s t h r o u g h t h e c e l l w a l l i n comparison w i t h p i t s i s n e g l i g i b l e as t h e average d i a m e t e r o f openings i n b o r d e r e d p i t s  (0.06 micron)  i s 75 t i m e s g r e a t e r t h a n t h a t o f t h e t r a n s i e n t openings i n water swollen c e l l wall  (0.0008 m i c r o n ) .  21 b) D e t a i l e d s t r u c t u r e The s t r u c t u r e and p h y s i o l o g i c a l b e h a v i o u r o f b o r d e r e d p i t s has been n o t i c e d f o r a l o n g time ( B a i l e y , 1913b, 1915; Russow, 1883; Sachs, 1887; S a n i o , 1873). of pit  S i n c e t h e advent  t h e e l e c t r o n m i c r o s c o p e much more became known about b o r d e r e d s t r u c t u r e ( B a i l e y , 1957; E i c k e , 1954; F r e y - W y s s l i n g and  Bosshard, 1953; Harada and M i y a z a k i , 1952; L i e s e , 1956, 1965; L i e s e and Hartmann-Fahnenbrock,  1953) and about t h e i r  ( F e n g e l , 1966; F r e y - W y s s l i n g , e t a l . , 1956).  ontogeny  B o r d e r e d p i t s and  t h e i r membranes, w h i c h a r e c r i t i c a l s t r u c t u r e s f o r f l u i d  flow i n  c o n i f e r s , have r e c e i v e d a d i s p r o p o r t i o n a t e l y l a r g e s h a r e o f a t t e n t i o n i n t h e e r a o f e l e c t r o n m i c r o s c o p y o f wood.  This i s appro-  x i m a t e l y e q u i v a l e n t t o t h e p e r i o d b e g i n n i n g around 1947 o r 1948 and e x t e n d i n g t o t h e p r e s e n t (Cote, 1967).  The IAWA (1964) d e f i n i t i o n o f a b o r d e r e d p i t i s as f o l l o w s :  a r e c e s s i n t h e secondary w a l l o f a t r a c h e a r y element,  t o g e t h e r w i t h i t s e x t e r n a l c l o s i n g membrane, w h i c h i s o v e r a r c h e d by t h e secondary c e l l w a l l , c a l l e d t h e p i t b o r d e r .  The p i t c a v i t y  i s d e f i n e d as t h e e n t i r e space w i t h i n a p i t from t h e membrane t o the  lumen; t h e space between t h e p i t membrane and t h e o v e r a r c h i n g  p i t b o r d e r i s c a l l e d t h e p i t chamber, and t h e o p e n i n g i n t h e b o r d e r i s the p i t aperture.  An i n t e r c e l l u l a r p a i r i n g o f two b o r d e r e d  p i t s makes a b o r d e r e d p i t - p a i r as d e p i c t e d i n F i g u r e 1.  pit  border  p i t aperture  annulus (membrane rim)  F i g u r e 1.  Unaspirated Coniferous bordered  pit-pair  c  23  A r e v i e w o f t h e l i t e r a t u r e r e v e a l e d no s y s t e m a t i c o f t h e s i z e and number o f b o r d e r e d p i t s i n D o u g l a s - f i r .  study  Marts  (1955), making use o f phase m i c r o s c o p y i n h i s e x a m i n a t i o n o f D o u g l a s - f i r earlywood p i t membranes, s t a t e d t h a t t h e approximate dimensions o f t h e b o r d e r e d p i t s photographed a r e as f o l l o w s : b o r d e r d i a m e t e r 23 m i c r o n s , t o r u s d i a m e t e r 11 m i c r o n s , and a p e r t u r e diameter 7 microns.  F i f t e e n earlywood p i t s o f each sample  (per-  meable and r e f r a c t o r y ) were measured d i r e c t l y from r a d i a l wood s e c t i o n s w i t h a l i g h t m i c r o s c o p e by Krahmer (1961).  He p u b l i s h e d  no average dimensions b u t r e p o r t e d t h a t t h e d i a m e t e r s o f b o r d e r e d p i t s t r u c t u r e s showed no r e l a t i o n s h i p t o t h e p e r m e a b i l i t y o f D o u g l a s - f i r heartwood.  Krahmer and Cote (1963) found t h a t t h e  d i a m e t e r o f D o u g l a s - f i r p i t b o r d e r s were about 18 m i c r o n s , and t h e t o r u s about 10 microns  across.  Meyer (1971) found t h a t t h e average number o f b o r d e r e d p i t s p e r earlywood t r a c h e i d i s much g r e a t e r i n t h e c o a s t a l t h a n t h e i n t e r i o r D o u g l a s - f i r sapwood.  The former c o n t a i n e d  as many p i t s p e r t r a c h e i d as t h e l a t t e r , 144 v s . 65.  over  twice  Based on  the a v a i l a b l e e v i d e n c e , he s u g g e s t e d t h a t t h e number o f p i t s p e r t r a c h e i d t o g e t h e r w i t h t r a c h e i d l e n g t h p l a y s an i m p o r t a n t r o l e i n c o n i f e r o u s wood p e r m e a b i l i t y . Phillips  By means o f an i n d i r e c t  method,  (1933) gave an average number o f p i t s p e r earlywood t r a -  c h e i d and l a t e w o o d t r a c h e i d , 92 and 8 r e s p e c t i v e l y f o r D o u g l a s - f i r grown i n England.  Krahmer (1961) o b s e r v e d t h a t hexagonal earlywood  t r a c h e i d s a r e predominant  i n t h e c r o s s s e c t i o n o f permeable  Douglas-  24  f i r heartwoods, with a r a d i a l wall capable of supporting a double row of bordered p i t s , while the tracheids i n refractory heartwoods are more square i n cross section with a single row of bordered p i t s on the r a d i a l wall.  (1)  P i t border The absence o f n o t a b l e  differences i n the  s t r u c t u r e o f p i t b o r d e r between s p e c i e s , genera, o r f a m i l i e s o f gymnosperms, caused L i e s e as a s t a b l e f e a t u r e .  (1965) t o r e g a r d t h i s p a r t o f t h e p i t  The i n n e r p a r t o f t h e p i t b o r d e r has been  found f o r c o a s t a l and i n t e r i o r D o u g l a s - f i r t o be f r e e o f a w a r t y i  layer  ( L i e s e and Hartmann-Fahnenbrock, 1953), so t h a t w a r t s  should  have no i n f l u e n c e on t h e s e a l i n g e f f e c t o f t h e t o r u s .  (2)  Pinus-type Bailey's  p i t membrane (1913b) concept o f a p e r f o r a t e d  d i v i d i n g membrane w i t h a c e n t r a l , c i r c u l a r , t h i c k e n e d  t o r u s was  s u p p o r t e d by t h e r e s u l t s o f L i e s e and Hartmann-Fahnenbrock  (1953).  The p i t membrane i s t h e e s s e n t i a l component o f a b o r d e r e d p i t - p a i r P r i n c i p a l d i f f e r e n c e s between s p e c i e s e x i s t p r i m a r i l y w i t h t o t h e p i t membrane (Comstock, 1968).  According  regard  t o t h e number  and d e n s i t y o f m i c r o f i b r i l s w i t h i n t h e margo and t h e p r e s e n c e o r absence o f a w e l l d e f i n e d t h i c k e n e d  torus, Liese  (1965) proposed  the f o l l o w i n g f i v e b a s i c t y p e s o f p i t membranes: (1) P i n u s - t y p e , (2) A r a u c a r i a - t y p e ,  (3) T h u j o p s i s - t y p e ,  (4) Gnetum-type, and (5)  Cycas-type.  S i n c e D o u g l a s - f i r i s a member o f t h e P i n a c e a e , o n l y p i t membranes o f t h e P i n u s - t y p e Liese  (1965) d e f i n e d t h e P i n u s - t y p e  are considered  i n d e t a i l here  p i t membrane as one w i t h a  26 d e f i n i t e , thickened torus supported w i t h f a i r l y l a r g e openings.  The  by a m o d e r a t e l y dense margo  g e n e r a l s t r u c t u r e o f the  torus  and margo o f b o t h c o a s t a l and i n t e r i o r D o u g l a s - f i r appeared t o be the same ( L i e s e and Hartmann-Fahnenbrock, 1953).  (a) Torus The  t o r u s i s d e f i n e d as t h e c e n t r a l  t h i c k e n e d p a r t o f the p i t membrane, where the m i c r o f i b r i l s essentially  o r i e n t e d i n a c i r c u l a r p a t t e r n (Krahmer and  are  Cote,  1963), c o n s i s t i n g o f m i d d l e l a m e l l a and two p r i m a r y w a l l s . i s g e n e r a l l y regarded  as i m p e r f o r a t e and nonpermeable  W y s s l i n g e t a l . , 1956;  L i e s e , 1965).  It  (Frey-  Whenever the t o r u s i s d i s -  p l a c e d from i t s m i d d l e p o s i t i o n as a r e s u l t o f p r e s s u r e d i f f e r e n c e s on o p p o s i t e s i d e s o f the p i t , o r o f s u r f a c e t e n s i o n f o r c e s a c t i n g d u r i n g the d r y i n g o f wood above t h e f i b e r s a t u r a t i o n p o i n t ckson,  e t a l . , 1938;  G r i f f i n , 1919,  1924;  Phillips,  (Eri-  1933), i t  c o v e r s the p i t a p e r t u r e e n t i r e l y and thus e f f e c t i v e l y b l o c k s  the  movement o f f r e e l i q u i d s .  Jayme, e t al_. (1960) have suggested t h a t the t o r u s w i t h i t s r a d i a t i n g f i b r i l s i s an a r t i f a c t c r e a t e d drying stresses.  However, L i e s e (1965), Thomas (1967),  by  and  Tsoumis (1965) p o i n t e d out the e x i s t e n c e o f a t o r u s i n u n a s p i r a t e d pits.  Furthermore, the absence o f a t o r u s i n a s p i r a t e d p i t membranes  o f gymnosperm f a m i l i e s o t h e r t h a n the Pinaceae a l s o speak a g a i n s t t h i s hypothesis  ( L i e s e , 1965).  27 Stone (1939) c o n c l u d e d t h a t the s e a l i n g o f p i t s by a s p i r a t i o n i n heartwood t r a c h e i d s Douglas-fir  was  of i n t e r i o r  i n h i b i t e d by the r o u g h l y s u r f a c e d t o r u s .  many D o u g l a s - f i r o f Krahmer and  effective  However,  heartwood a s p i r a t e d p i t s o b s e r v e d i n the  study  Cote (1963) w i t h the e l e c t r o n m i c r o s c o p e d i d show  a v e r y t i g h t s e a l between the t o r u s and  the a p e r t u r e margin.  (b) Margo The F r e y - W y s s l i n g , 1959)  margo (meaning the edge, o r m a r g i n ;  i s the u n t h i c k e n e d , p e r f o r a t e d  membrane between the edge o f the p i t b o r d e r and 1967;  L i e s e , 1965;  a t i n g and  P a n s h i n and  DeZeeuw, 1970)  p a r t of  the t o r u s  (Esau,  c o n s i s t i n g of r a d i -  i n t e r t w i n i n g m i c r o f i b r i l l a r strands arranged i n a  d i m e n s i o n a l network.  The  f e r e n t i a l l y r a d i a l pattern membrane r i m  ( J u t t e and  the  three-  r a d i a t i n g strands arranged i n a prefrom the t o r u s t o the annulus o r  S p i t , 1963), a r e u s u a l l y l a r g e r i n d i a -  meter t h a n the i n t e r t w i n i n g r a n d o m l y - o r i e n t e d m i c r o f i b r i l l a r (Thomas, 1969).  The  f o r m a t i o n o f the l a r g e r a d i a l l y - o r i e n t e d  ( r a d i a t i n g ) m i c r o f i b r i l l a r s t r a n d s o f the margo can be by the f o l l o w i n g two (i)  strands  explained  hypotheses:  By a g g r e g a t i o n o f e x i s t i n g p r i m a r y w a l l m i c r o f i b r i l s (Brown and  Baker, 1970;  ( i i ) By d e p o s i t i o n  Jayme, e t a l . ,  1960)  o f an a d d i t i o n a l l a y e r o f m i c r o f i b r i l s on  e x i s t i n g primary w a l l  (Thomas, 1968,  1970).  the  28 In the study o f the u l t r a s t r u c t u r e o f longitudinal species, the  Thomas  torus  density  t r a c h e i d b o r d e r e d p i t membranes (1969) o b s e r v e d t h a t  i s considerably  pine  o f t h e margo n e a r  more o p e n t h a n t h e o u t e r p o r t i o n .  Margo  ( t h e number o f margo m i c r o f i b r i l s ) v a r i a t i o n seems t o b e  c o n t r o l l e d b y t h e number o f s m a l l , strands  t h r o u g h o u t t h e margo.  randomly-oriented m i c r o f i b r i l a r  The l a t e w o o d margo d e n s i t y  c o n s i s t e n t l y higher than earlywood. number o f margo m i c r o f i b r i l l a r the  the part  o f southern  wood was d e t e c t e d .  sisting crease.  A d e f i n i t e decrease i n the  strands  with increasing  He s u g g e s t e d t h a t  deep i n t h e xylem r e g i o n  age o f  enzyme a c t i v i t y  may be r e s p o n s i b l e  Thomas a l s o o b s e r v e d t h a t  was  incrustations  per-  f o r the de-  capable o f a l t e r -  i n g margo p o r o s i t y were n o t n o t e d o n e a r l y w o o d p i t membranes o f the  sapwood z o n e , w h e r e a s h e a v y i n c r u s t a t i o n s were f o u n d o n  wood p i t membranes  regardless  of location.  On t h e o t h e r hand,  i n Douglas-fir,  r e m a r k a b l e d i f f e r e n c e s b e t w e e n sapwood a n d h e a r t w o o d p i t s well or and  as between heartwood samples r a t e d  refractory t o creosote Cote  could  (1963).  be o b s e r v e d .  wood a n d i n c l u d e d  penetration  Only very  (1964).  were r e v e a l e d  few h e a v i l y  as  semipermeable b y Krahmer  i n c r u s t e d p i t membranes  sapwood p i t membranes o£ i n t e r i o r  Sebastian,  i n c r u s t a t i o n may  permeable,  no  The p r e s e n c e o f i n c r u s t a t i o n s o n t h e h e a r t -  was r e g a r d e d a s a c r i t i c a l Koran  late-  stiffen  Douglas-fir  factor prohibiting penetration Cote and Skaar  (1965) b e l i e v e d  by that  t h e margo m i c r o f i b r i l s a n d c o n s e q u e n t l y  29 reduce a s p i r a t i o n . can  alter  Nicholas  permeability  (i)  reducing  the  (ii)  improving torus  (iii)  providing  (1966) i n d i c a t e d t h a t  incrustations  by:  s i z e o f margo p o r e s , seal i n p i t aspiration,  hydrophobic surfaces  and  which can  influence a i r  b l o c k a g e " w h e n w a t e r p e r m e a t e s wood.  (c) Margo-.pore d i m e n s i o n s Krahmer and p o r e s may  Cote  (1963) i n d i c a t e d  r a n g e i n s i z e f r o m s e v e r a l m i c r o n s down t o a  troms i n an  i n d i v i d u a l margo.  The  extremely small  fluid on  virtually  flow  tion  that  ption. affect lumina. two  i f the  i n margo d e n s i t y  the  Since  p i t membranes  i s absent, or  (Nicholas,  whole o f the  (Smith, 1963).  Douglas-fir  ation  the  1966).  can  one-component s y s t e m Petty  the  i n c r u s t a t i o n s are  (Krahmer and  important  However, P e t t y  and  rate,  Longitudinal  Cote,  Preston  two  conto  deposited  i f aspir-  natural  varia-  permeability  (1969) s u g g e s t e d be  a false  assum-  s t r u c t u r a l components  namely t h e margo p o r e s and flow  of  they  rarely  1963),  in altering  (margo p o r e s ) may  (1970) i n d i c a t e d t h a t  flow  angs-  r e s i s t a n c e of softwoods  s e a l i s d e f i c i e n t , the be  few  diameter  t h e s e p o r e s compared w i t h t r a c h e i d d i a m e t e r means t h a t stitute  that  through coniferous  the  tracheid  wood t h u s  involves  components i n s e r i e s .  In q u a n t i f i e d by  a number o f  fact,  the  margo p o r e s i z e has  i n v e s t i g a t o r s employing d i r e c t  been and  30 indirect and  a  considerable  seen. lead  measuring techniques.  Nicholas to  (i)  the  observed  species  variation.  difference of  contributes  to  (iii)  the  condition of  pirated)  at  the  the  ssure  and  filtration  distribution number o f lated  of  t o be  s i z e of  the  He  strands  are  thus  be  to  size  allows  on  by  the  the  total calcu-  micro-  because The  use  Nicholas,  the of  a  1968) unaltered  definite  margo s t r a n d s ,  out  electron  a more e x a c t , i s no  much  electron  from  detect.  (Thomas and  pre-  (1966) p o i n t e d  overestimated  there  space occupied  the  f a r a p p e a r t o be  Nicholas  As  depth of  capillary  i n d i c a t i o n of  so  difficult  technique  p i t a s p i r a t i o n and  the  indicated that  margo f o r d i r e c t measurement. the  that  from examination of  may  unas-  important.  openings measured d i r e c t l y  solvent-exchange drying prevents  c e r t a i n assumptions  f l o w method allow' the  Thomas a n d  micrographs'of aspirated pits fine microfibril  an  the  established.  g r a p h s o f p i t membranes. the  on  ( a s p i r a t e d and  (1970) n o t e d  while  and  variation,  t i m e o f measurement i s  expected  easily  and  p o r e numbers p u b l i s h e d  t h a n m i g h t be  obviously-  factors could  based  p i t membrane  of pore r a d i i  pores  values  smaller  that  observed  methods p r o v i d e  2,  are:  accuracy,  Petty  size is  p i t membranes among g e n e r a  the  e f f e c t s on  three  These  d i f f e r e n t measuring techniques have v a r y i n g  summarized i n Table  v a r i a t i o n i n pore  ;.(1966) s u g g e s t e d t h a t  structural  (ii)  amount o f  These are  the  information primary  31 TABLE 2.  Survey o f margo pore s i z e d e t e r m i n a t i o n s  Assumptions  Techniques  Assumed t h a t the pores I. D i r e c t e l e c t r o n . observed a r e the ones microscopic t h a t c o n t r o l the r a t e measurements of flow.  Investigators L i e s e & HartmannFahnenbrock (1953)  Part o f Wood  Species Abies a l b a , L a r i x decidua, Picea a b i e s , Pinus n i g r i c a n s i var. calabrica  Krahmer & Cote (1963)  Pseudotsuga  menziesii i  S e b a s t i a n , Cote & Skaar (1965) Petty & Puritch Assumed t h a t t h e r e i s no a t t r a c t i o n between the p i t membrane and filtrating particles.  II. Indirect f i l t r a t i o n measurements: from o b s e r v a t i o n o f the f i l t r a t i o n o f aqueous suspensions containing p a r t i c l e s of known s i z e d u r i n g passage through wood.  Frenzel  <  (1970)  (1929)  l Picea  glauca  Abies  grandis  , Pinus  I  (1956)  Dimensions  approximately 180 f i l a m e n t s per p i t ; each f i l a m e n t i s 0.03 jam i n diameter. sapwood & heartwood  d i s t a n c e between margo s t r a n d s l e s s than 0.1 t o 1.0 um  sapwood & heartwood  average d i s t a n c e between margo strands i s 0.66 um  sapwood  0.09 - 0.12 um i n r a d i u s  sylvestris  0.072 - 0.144 umin diameter  ! Abies a l b a , L a r i x decidua,• excelsa,. Pinus s y l v e s t r i s , ; Pseudotsuga m e n z i e s i i  0.13 - 0.20 um i n diameter  *  Balatinecz  Liese  (1963)  (1965)  Pseudotsuga  menziesii  Abies Thuja Thuja  nordmanniana occidentalis piicata  Pinus  sylvestris  0.20 - 0.40 um i n diameter sapwood II  500 m i c r o f i b r i l s p e r margo i i  Stamm (1929)  Picea  glauca  Picea  sitchensis  0.205 um -j 0.165 um -J maximum diameters 0.182 um -1  II  Megraw (1967)  I I I . I n d i r e c t flow r a t e measurements Derivation of equiv a l e n t pore r a d i i from:A. combining p r e s s u r e p e r m e a b i l i t y and electro-osmotic flow data  Pore  1  Liese  L i e s e & Bauch (1964)  Assumed t h a t the model used r e p r e s e n t s the wood s t r u c t u r e , ( i ) the r e s i s t a n c e t o flow r e s i d e s ent i r e l y i n the margo pores  Margo  80% 90% 50% 75% 97%  •  Chamaecyparis n o o t k a t e n s i s Picea s i t c h e n s i s Pseudotsuga m e n z i e s i i (Mountain) Thuja p l i c a t a  air-dried heartwood II II  H  of of of of of  flow flow flow flow flow  through through through through through  pores pores pores pores pores  >0.075 >0.047 >0.075 >0.047 >0.009  0.068 - 0.164 um i n r a d i u s 0.098 - 0.164 um i n r a d i u s 0.068 - 0.123 um i n r a d i u s 0.105  - 0.184 um i n r a d i u s  um um um pi um  32  TABLE 2. ( c o n t ' d ) (i)(cont'd)  B. t h e f l o w r a t e o f a i rStamm (1935) t h r o u g h wood under pressure at d i f f e r ent r e l a t i v e humidities  Pinus m o n t i c o l a  C. a i r p e r m e a b i l i t y o f Stamm wood a t d i f f e r e n t moisture contents  Pinus m o n t i c o l a  (1946)  Pseudotsuga m e n z i e s i i Pinus e l i o t t i i  D. d a t a f o r overcoming Stamm (1952) the s u r f a c e t e n s i o n of water.  Picea s i t c h e n s i s E. measurements o f t h e Stamm & Wagner (1961) pressure required Pseudotsuga m e n z i e s i i to displace a i r Yao & Stamm (1967) l i q u i d or l i q u i d l i q u i d m e n i s c i from Stamm, C l a r y & E l l i o t t (196E Pseudotsuga m e n z i e s i i the pores. Pseudotsuga m e n z i e s i i Stamm (1970a)  Stamm F. measurements o f mercury uptake (mercury i m p r e g n a t i o n method)  (1970b)  Clermont  (1963)  H. a c o m b i n a t i o n o f gaseous and l i q u i d p e r m e a b i l i t y measurements I. measurements o f gaseous p e r m e a b i l i t y at various mean p r e s s u r e s .  Petty & Preston  ;  sapwood II  Petty  heartwood  0.094 - 0.150 um i n r a d i u s  heartwood  0.2 - 0.4 um i n r a d i u s  heartwood  0.01  heartwood Pinus ponderosa  s^apwood heartwood  0.46um ( 0.047um(  Pseudotsuga m e n z i e s i i  sapwood  0.2-2.4um(air-«ScOven-dried) i n 0.4-4.4um(solvent-dried) in 0.2-2.2um(air-,oven-& s o l v e n t in  sapwood  P e t t y & P u r i t c h (1970),  " "  " "  );0.30um ( " );0.027um( "  " "  ) )  radius radius dried) radius  0.7-2.5um i n r a d i u s 0.8-4.8um i n r a d i u s 0.380-1.010um(N data) i n r a d i u s  Pseudotsuga m e n z i e s i i  sapwood heartwood  1.04-1.07um i n r a d i u s 0.70-0.83um i n r a d i u s  Picea  sapwood  0.14um a v e r a g e r a d i u s  sapwood  0 . 1 2 u m ( a i r - d r i e d ) , average r a d i u s 0 . 0 9 u m ( s o l v e n t - d r i e d ) , average r a d i u s  Abies  l  i  sapwood heartwood sapwood & heartwood.  Tsuga c a n a d e n i s  (1970)  0.42 um average r a d i u s 11.00 um average r a d i u s  - 0.52 um i n r a d i u s maximum r a d i i 0.20 um ( n e v e r - d r i e d ) ; 0 . 1 7 u m ( d r i e d & resoaked) 0 035um(never-dried);0.025um( " " )  Picea glauca  (1969)  0.028 um, average r a d i u s  0.073 um average r a d i u s  heartwood  G. measurements o f t h e S e b a s t i a n , Cote & Skaar (1965) gaseous p e r m e a b i Comstock (1967) l i t y o f d r y wood.  ( i i ) l o n g i t u d i n a l flow through c o n i f e r o u s tfood i n v o l v e s 2 components (margo p o r e s & t r a c h e i d lumina) i n series  heartwood  sitchensis grandis  2  0.653-1.360um(He d a t a ) i n r a d i u s  a r t i f a c t f o r t h e d i r e c t measurement o f margo pore s i z e  utilizing  t r a n s m i s s i o n e l e c t r o n m i c r o g r a p h s i s t o assume t h e margo as b e i n g i n one p l a n e i n s t e a d o f f i l l i n g a c t u a l t h r e e - d i m e n s i o n a l space.  34  (c) P i t a s p i r a t i o n I n Pinaceae,  during air-drying or heart-  wood f o r m a t i o n , as t h e c e l l u l o s i c margo m i c r o f i b r i l l a r are p l i a b l e , the t o r u s o f a bordered p l a c e d t o b l o c k one o f t h e a p e r t u r e s . as p i t a s p i r a t i o n (IAWA, 1964).  strands  p i t - p a i r i s frequently disT h i s phenomenon i s d e f i n e d  On t h e o t h e r hand, t h e p i t s o f  many o t h e r s p e c i e s i n t h e Cupressaceae, Podbcarpaceae and Taxaceae, without a torus e s s e n t i a l f o r the s e a l i n g of the p i t aperture, remain u n a s p i r a t e d even i n t h e case o f normal d r y i n g o f f r e s h wood ( L i e s e and Bauch, 1967b).  Cote and Krahmer (1962) noted  t h a t i f warts a r e p r e s e n t , as w i t h hemlocks, t h e y c o u l d h i n d e r the e f f e c t i v e s e a l i n g o f t h e torus..  Frey-Wyssling  ahd'-Muhlethaler  (1965) i n d i c a t e d t h a t t h e main purpose o f t o r u s s e a l i n g i n p i t a s p i r a t i o n i s t o e x c l u d e t r a c h e i d s o f o l d e r annual r i n g s from the water c o n d u c t i o n system.  L i e s e and Bauch (1967b) proposed  t h a t t h o s e wood s p e c i e s w i t h t o r i i n c a p a b l e o f c l o s i n g o r w i t h o u t any t o r u s would be exposed t o g r e a t e r p h y s i o l o g i c a l danger.  In surveying p i t a s p i r a t i o n ,  Phillips  (1933), Stone (1939) and o t h e r workers used t a n g e n t i a l l o n g i t u d i n a l s e c t i o n s where K i s h i m a and H a y a s h i (1962) as w e l l as Meyer (1971) employed c r o s s s e c t i o n s , because t h e y found t h a t c o u n t i n g l a r g e r numbers o f c e l l s was p o s s i b l e i n t h e same l i m i t e d a r e a o f m i c r o s c o p i c v i e w when t h e l a t t e r was used.  In a d d i t i o n , the i d e n t i f i -  c a t i o n o f t h e t r a n s i t i o n a l zone between earlywood and latewood  35 c o u l d a l s o be a c h i e v e d i n one and the same s l i d e . shortcoming  The only-  w h i c h c o u l d not be a v o i d e d on any s e c t i o n i s t h a t the  s m a l l a r e a s counted might not be s u f f i c i e n t t o o b t a i n r e p r e s e n t a t i v e r e s u l t s o f t h e p a r t s o f wood s t u d i e d .  W i t h r e s p e c t t o t h e degree o f a s p i r a t i o n , K i s h i m a and H a y a s h i (1962) counted i n c o m p l e t e l y a s p i r a t e d p i t s as u n a s p i r a t e d p i t s u n l e s s t h e t o r i were c o m p l e t e l y adhered t o t h e p i t b o r d e r s , whereas Meyer (1971) d i s t i n g u i s h e d them as p a r t i a l l y aspirated.  P a r t i a l p i t a s p i r a t i o n has been r e c o g n i z e d  i n c o m p l e t e p i t a s p i r a t i o n i n the p a s t Stone, 1939;  (Comstock and Cote,  Thomas and N i c h o l a s , 1966).  as  1968;  As t h e r e i s no com-  p a r i s o n d e t e r m i n e d between the magnitude o f f l u i d f l o w  through  p a r t i a l l y a s p i r a t e d p i t - p a i r s and u n a s p i r a t e d p i t - p a i r s , Meyer (1971) i n d i c a t e d t h a t any d e d u c t i v e use o f t h i s phenomenon i s precluded.  Phillips  (1933) conducted a comprehensive  study o f p i t a s p i r a t i o n on f i v e s p e c i e s o f P i n a c e a e .  He  found  t h a t p i t s o f g r e e n heartwood were a l r e a d y a s p i r a t e d , and no  signi-  f i c a n t d i f f e r e n c e e x i s t e d between heartwood and a i r - d r i e d sapwood. The average p e r c e n t a g e o f u n a s p i r a t e d p i t s per t r a c h e i d i n e a r l y wood as w e l l as latewood  o f a i r - d r i e d sapwood i s shown i n Table. 3.  He r e v e a l e d t h r e e s a l i e n t f e a t u r e s about the p a t t e r n o f o f a s p i r a t i o n i n c o n i f e r o u s sapwood.  occurrence  F i r s t l y , i n green wood some  36 p i t s a r e a s p i r a t e d even when c o n s i d e r a b l e f r e e water i s p r e s e n t . S e c o n d l y , t h e number o f a s p i r a t e d p i t s g r a d u a l l y i n c r e a s e s  with  l o s s o f m o i s t u r e down t o t h e v i c i n i t y o f t h e f i b e r s a t u r a t i o n p o i n t when n e a r l y a l l t h e earlywood p i t s become a s p i r a t e d .  Thirdly,  a c e r t a i n p r o p o r t i o n o f t h e l a t e w o o d p i t s i n d r y wood were found i n unaspirated  state.  He a s c r i b e d t h e g r e a t e r tendency o f l a t e -  wood p i t s t o r e s i s t a s p i r a t i o n t o t h e g r e a t e r p i t membrane r i g i d ity.  TABLE 3.  Percentage o f unaspirated p i t s i n a i r - d r i e d sapwood o f 5 c o n i f e r o u s s p e c i e s (from P h i l l i p s , 1933)  Species  Average P e r c e n t Springwood  of Pits  Unaspirated  (Earlywood) Summerwood (Latewood)  L a r i x decidua  1  29  Picea  7  31  Pinus n i g r a var. c a l a b r i c a  1  40  Pinus  2  66  1  25  excelsa  sylvestris  Pseudotsuga m e n z i e s i i  L i e s e and Bauch (1967a) o b s e r v e d t h e same phenomena:iin Pinus and P i c e a and gave a more d e t a i l e d e x p l a n a t i o n . They i n d i c a t e d t h a t w i t h t h e i n c r e a s i n g t h i c k n e s s o f p i t membrane and a s i m u l t a n e o u s t r e n d towards a l e n s - s h a p e d c o n f i g u r a t i o n o f  37 the t o r u s towards the l a t e w o o d , the a d h e s i o n f o r c e s r e q u i r e d f o r a s p i r a t i n g the p i t s become g r e a t e r , i n as much as even the h i g h s u r f a c e t e n s i o n of water i s not s u f f i c i e n t t o b r i n g about a s p i r a t i o n o f many o f the p i t s i n latewood t r a c h e i d s .  Further-  more, the t i g h t e r margo t e x t u r e i n latewood p i t s , t h e i r  small  d i a m e t e r and the c o n f i g u r a t i o n o f t h e p i t chamber c o n t r i b u t e t o their stiffness.  The  amount o f a d h e s i o n f o r c e n e c e s s a r y f o r p i t  a s p i r a t i o n i s dependent on p i t membrane s t r u c t u r e .  Phillips  (1933) a l s o noted t h a t the o c c u r r e n c e o f t h i c k c e l l w a l l s  was  i n v e r s e l y c o r r e l a t e d w i t h p i t a s p i r a t i o n , but he gave no  explana-  tion.  As e a r l y as i n 1891,  Strassburger  noted  the phenomenon o f r e d u c i n g c o n i f e r o u s wood p e r m e a b i l i t y a f t e r a i r - d r y i n g and t r a c e d i t t o p i t a s p i r a t i o n .  B a i l e y (1913b) ob-  s e r v e d the v a l v e - l i k e a c t i o n o f t h e t o r u s and c o n s i d e r e d  aspira-  t i o n as a f a c t o r i n p r e v e n t i n g p e r m e a t i o n and h i s concept s u p p o r t e d by G r i f f i n  (1919, 1924).  She n o t e d t h a t the  was  lowland  ( c o a s t a l ) D o u g l a s - f i r w i t h a g r e a t e r number o f u n a s p i r a t e d  pits  i s more permeable t h a n t h e mountain ( i n t e r i o r ) grown t r e e .  Sub-  sequently,  Bram-  a number o f i n v e s t i g a t o r s ( B r a m h a l l , 1967,  h a l l and W i l s o n ,  1971;  Wardrop and D a v i e s ,  Meyer, 1971;  1961)  Sebastian et a l . ,  1971; 1965;  d e s c r i b e d the i n f l u e n c e o f p i t a s p i r a t i o n  upon c o n i f e r o u s wood p e r m e a b i l i t y .  38 Since, d e p o s i t s were absent i n t h e b o r d e r e d p i t s o f D o u g l a s - f i r heartwood, Krahmer and Cote (1963) c o n c l u d e d t h a t p i t a s p i r a t i o n a l o n e was r e s p o n s i b l e f o r reduced p e r m e a b i l i t y . S e b a s t i a n et_ al_.  (1965) p r o v e d t h a t e x t r a c t i v e s a r e l e s s i m p o r t a n t ,  i n p e r m e a b i l i t y r e d u c t i o n t h a n p i t a s p i r a t i o n as i n c r u s t a t i o n can o c c u r i n w h i t e s p r u c e sapwood p i t membranes p r i o r t o t h e marked d i f f e r e n c e i n p e r m e a b i l i t y a s s o c i a t e d w i t h heartwood  formation.  R e c e n t l y , a m a t h e m a t i c a l r e l a t i o n between p e r c e n t p i t a s p i r a t i o n and sapwood earlywood l o n g i t u d i n a l gas p e r m e a b i l i t y o f Douglasf i r has been"demonstrated by Meyer (1971).  He a l s o i n d i c a t e d  t h a t gas f l o w i s most pronounced when fewer t h a n 80 t o 9 0 % o f the p i t s a r e a s p i r a t e d .  39 B.  M a n i p u l a t i o n o f c o n i f e r o u s wood p e r m e a b i l i t y by s o l v e n t seasoning Bailey  (1913b) s u g g e s t e d t h a t a s p i r a t i o n i s a r e s u l t o f  the r e c e s s i o n o f an a i r - w a t e r i n t e r f a c e i n t o t h e p i t . (1916) he found t h a t t h e p r e s s u r e  Later,  r e q u i r e d t o f o r c e a i r i n t o wood  s a t u r a t e d with- sap, g l y c e r i n e , a c e t i c a c i d , acetone o r a l c o h o l , was d i r e c t l y p r o p o r t i o n a l t o t h e s u r f a c e t e n s i o n .  Subsequently,  many workers ( E r i c k s o n and C r a w f o r d , 1959; G r i f f i n , 1919; H a r r i s , 1953;  H a r t and Thomas, 1967; K i s h i m a and H a y a s h i , 1962; L i e s e ,  1965;  L i e s e and Bauch, 1966, 1967a,b; P h i l l i p s ,  1  1933) r e g a r d e d  p i t a s p i r a t i o n as a s u r f a c e t e n s i o n - r e l a t e d phenomenon.  I t has been shown t h a t by removal o f water i n wood p r i o r t o d r y i n g using organic solvents o f low surface  tension  and s w e l l i n g power, p i t a s p i r a t i o n i s markedly a l l e v i a t e d and p e r m e a b i l i t y improved i n s e v e r a l c o n i f e r o u s s p e c i e s  (Erickson  and C r a w f o r d , 1959; L i e s e and Bauch, 1967a; Meyer, 1971; P h i l l i p s , 1933).  T h i s was c o n f i r m e d  (1966) on p e n t a n e - d r i e d  by t h e s t u d i e s o f Thomas and N i c h o l a s  wood, and t h e y were t h e f i r s t t o d e p i c t  b o r d e r e d p i t membranes i n t h e u n a s p i r a t e d s t a t e .  I n 1969, Thomas  employed s p e c i a l i z e d l o w s u r f a c e t e n s i o n methods, s p e c i f i c a l l y s o l v e n t - e x c h a n g e , c r i t i c a l - p o i n t and f r e e z e - d r y i n g t e c h n i q u e s e f f e c t i v e l y prevent p i t a s p i r a t i o n . tension o f the f i n a l evaporating  to  He i n d i c a t e d t h a t t h e s u r f a c e  l i q u i d i s important  only with  r e g a r d t o p i t a s p i r a t i o n and does n o t a l t e r margo s t r u c t u r e t o  40 any n o t i c e a b l e degree. wood, i t was  For P i n u s - t y p e p i t membrane o f e a r l y -  found t h a t s u r f a c e t e n s i o n o f 26 dynes/cm i s ade-  quate f o r a s p i r a t i o n ( L i e s e and Bauch, 1967b), whereas p i t s i n latewood t r a c h e i d s showed a d i f f e r e n t b e h a v i o u r d i f f e r e n t anatomical  features.  due t o t h e i r  However, Comstock (1968) p r o v e d  t h a t t h e r e i s no s i n g l e c r i t i c a l s u r f a c e t e n s i o n f o r t h e e v a p o r a t i n g l i q u i d below w h i c h a s p i r a t i o n o f p i t s does not o c c u r , t h a t p i t a s p i r a t i o n depends on o t h e r p r o p e r t i e s o f the  but  evaporating  l i q u i d , such as s w e l l i n g a b i l i t y , i n a d d i t i o n t o i t s s u r f a c e tension.  He r e v e a l e d t h a t t h e c o n c e n t r a t i o n o f s o l v e n t i n t h e  wood would change as d r y i n g p r o g r e s s e d  and c o u l d be q u i t e d i f f e r -  ent a t t h e p o i n t where most a s p i r a t i o n occurs t i o n p o i n t ) t h a n i t was  (about f i b e r s a t u r a -  o r i g i n a l l y ; the r i g i d i t y o f t h e membrane  and a d h e s i o n o f the t o r u s t o the p i t b o r d e r c o u l d be a l t e r e d by the water-solvent  mixtures.  The a c t u a l amount o f a s p i r a t i o n t h a t t o o k p l a c e seasoning was  o f D o u g l a s - f i r xylem from an a l c o h o l - b e n z e n e  measured by Meyer (1971:); as shown i n T a b l e 4.  He  during  mixture concluded  t h a t s o l v e n t - s e a s o n i n g p r o v e d e f f e c t i v e , but a s i g n i f i c a n t number o f p i t s s t i l l became a s p i r a t e d , p r o b a b l y s o l v e n t system used.  due t o t h e c h o i c e o f  41  TABLE 4.  E f f e c t s o f s e a s o n i n g on a s p i r a t i o n o f D o u g l a s - f i r earlywood i n t e r t r a c h e i d b o r d e r e d p i t - p a i r s and longitudinal a i r permeability  Coast  Sapwood  Air Seasoning % Aspirated  not a v a i l able  (from Meyer, 1971)  Interior  Solvent Seasoning  Sapwood  Air Seasoning  Solvent Seasoning  34  93  55  % Unaspirated  II  II  38  6  29  % Partially Aspirated  •i  II  28  1  17  Permeability (darcys)  1.05  8.00  0.05  1.10  42 MATERIALS AND METHODS I.  Sample m a t e r i a l s Wood s e c t o r s were taken from two 1 6 - y e a r - o l d D o u g l a s - f i r  [Pseudotsuga m e n z i e s i i  (Mirb.) Franco] t r e e s growing  side-by-side  i n a provenance t r i a l a t the U n i v e r s i t y o f B r i t i s h Columbia search F o r e s t representing  (Haney, B.C.). coastal  These t r e e s were grown from seeds  (Enumclaw, Washington)  Arm, B.C.) provenances.  Re-  and i n t e r i o r  In a d d i t i o n , one i n t e r i o r  (Salmon  (Kamioops,  B.C.) -grown t r e e was sampled t o i n c l u d e wood from a d i f f e r e n t growth a r e a .  These three t r e e s represent  wood from c o a s t a l and  i n t e r i o r seed sources grown i n a c o a s t a l environment and from an i n t e r i o r seed source grown i n i n t e r i o r c o n d i t i o n s . designated area,  as CC, IC and I I t o i n d i c a t e seed source and growth  respectively.  A 5-inch-thick  about four f e e t above the ground. l a b e l l e d , placed freezer  They were  d i s k was c u t from each t r e e The f r e s h l y sawn d i s k s were  i n s e p a r a t e polythene bags and s t o r e d i n the  (-10°C) u n t i l r e q u i r e d .  Further  c h a r a c t e r i s t i c s o f the  above three wood s e c t o r s a r e g i v e n i n Table 5. TABLE 5.  C h a r a c t e r i s t i c s o f three D o u g l a s - f i r wood specimens used i n the study Diam. Inside Bark Growth L o c a t i o n Age Code Seed Source Kamioops, B. C. 4.8 i n . 26 y r . I I Kamioops, B. C. ( I n t e r i o r or mountain type) IC CC  Salmon Arm, B. C. ( I n t e r i o r or mountain  Haney, B. C.  4.7 i n . 16 y r .  Haney, B. C.  5.3 i n . 16 y r .  type)  Enumclaw, Wash. (Coastal or low-land type)  43 II.  P e r m e a b i l i t y specimens A b l o c k 3/4 x 3 x 2 - i n . i n t a n g e n t i a l , r a d i a l and  t u d i n a l d i r e c t i o n s was The  longi-  c u t from each o f the -.three green d i s k s .  f i r s t two complete increments  from the cambium on each sample  b l o c k were t h e n s e c t i o n e d i n the g r e e n c o n d i t i o n w i t h a s l i d i n g microtome a c c o r d i n g t o the c u t t i n g o r i e n t a t i o n ( i . e . g r a i n d i r e c t i o n p a r a l l e l t o the k n i f e edge, s l i c e a n g l e 10°) Kennedy and Chan (1970).  recommended by  T h i s method not o n l y reduced c e l l w a l l  d e f o r m a t i o n s , b u t a l s o r e s u l t e d i n the ease o f s e c t i o n i n g .  Serial  t a n g e n t i a l s e c t i o n s o f 500 um n o m i n a l t h i c k n e s s f o r latewood 700 um f o r earlywood were c o l l e c t e d a c r o s s each annual and t h e s e were m a i n t a i n e d  and  increment  i n saturated c o n d i t i o n at a l l times.  Each m i c r o s e c t i o n b l a n k was  d i v i d e d i n t o three parts, y i e l d i n g  two 7 x 40 mm matched specimens f o r s e a s o n i n g t r e a t m e n t s , and a c e n t r a l p o r t i o n f o r s p e c i f i c g r a v i t y d e t e r m i n a t i o n , as shown i n F i g u r e 2A.  Due  t o increment  w i d t h and c u r v a t u r e no d i s c r e t e l a t e -  wood s e c t i o n s were o b t a i n e d from t h e i n t e r i o r sample ( I I ) , so t h e t h i r d increment  from the cambium o f t h i s m a t e r i a l was  also  s e c t i o n e d t o i n c r e a s e the number o f o b s e r v a t i o n s .  An a i r - s e a s o n i n g t r e a t m e n t was  done t o i n d u c e p i t a s p i r a t i o n .  L a b e l l e d specimens were h e l d between two s t a i n l e s s s t e e l suspended t o p r o v i d e v e n t i l a t i o n .  They were d r i e d t o  w e i g h t a t room temperature (^26°C).  screens,  constant  An s o l v e n t - s e a s o n i n g  treat-  44  F i g u r e 2A.  Microsection a. b. i  b. c. 1  F i g u r e 2B.  F i g u r e 2C.  blank  Grain d i r e c t i o n Air-seasoned Solvent-seasoned Specific gravity  P e r m e a b i l i t y sandwich a.  Plexiglass blocks  b.  P e r m e a b i l i t y specimen ( r a d i a l  c.  S c o t c h d o u b l e - c o a t e d tape  surface)  Sampling o f r e p l i c a t i n g and embedding specimens a.  P e r m e a b i l i t y specimen ( t a n g e n t i a l s u r f a c e )  b.  Sawn p i e c e  c.  Replicating  d.  Embedding  a  20mm  40 mm" Figure  2A  ,-"4  -a •a  36mm  Figure  2B  Figure  2C  46  ment was done t o l i m i t p i t a s p i r a t i o n .  Specimens o f each p r o -  venance were marked w i t h an i n d e l i b l e p e n c i l and e x t r a c t e d w i t h acetone i n a S o x h l e t e x t r a c t o r f o r f o u r h o u r s .  They were t h e n  s o l v e n t exchanged i n t h e S o x h l e t e x t r a c t o r w i t h pure i s o p e n t a n e f o r a n o t h e r s i x h o u r s , d u r i n g which two changes o f s o l v e n t were made.  T h i s was  f o l l o w e d by d r y i n g t o c o n s t a n t w e i g h t a t room  temperature.  A f t e r s e a s o n i n g , a l l specimens were s t o r e d i n a d e s i c c a t o r over s u l p h a t e ) , u n t i l needed.  1  ( a i r - and  solvent-seasoned)  D r i e r i t e (anhydrous c a l c i u m 1  T r e a t e d specimens  were f a s t e n e d between  p l e x i g l a s s b l o c k s w i t h S c o t c h d o u b l e - c o a t e d t a p e as shown i n F i g u r e 2B,  t o h o l d them r i g i d l y f o r i n s e r t i o n i n t o t h e permea-  b i l i t y apparatus.  B e f o r e f a s t e n i n g , c a r e was t a k e n t o ensure  p e r f e c t l o n g i t u d i n a l a l i g n m e n t w i t h t h e wood g r a i n , by g e n t l y t e a r i n g t h e specimen a l o n g an edge. were saved f o r a n a t o m i c a l s t u d i e s . m e a b i l i t y specimen were r e c o r d e d .  determined  The trimmed p i e c e s  The dimensions o f each p e r A l l the 'permeability  were s t o r e d i n a d e s i c c a t o r over ' D r i e r i t e ' , u n t i l  sandwiches'  reguired.  47 I I I . P e r m e a b i l i t y a p p a r a t u s and measurements A s c h e m a t i c diagram o f t h e a p p a r a t u s used f o r a i r permeab i l i t y measurement and d e t a i l s o f t h e p e r m e a b i l i t y c e l l i l l u s t r a t e d i n F i g u r e s 3 and 4.  are  The apparatus o r i g i n a l l y deve-  l o p e d by B r a m h a l l (1970) was m o d i f i e d t o a l l o w measurement o f low f l o w r a t e s by u s i n g water i n s t e a d o f a i r i n t h e f l o w t u b e s . Low p r e s s u r e d i f f e r e n t i a l s were measured by u s i n g water t h a n mercury  i n t h e manometer.  The b a s i c c o n s t r u c t i o n  rather remained  unchanged, e x c e p t t h a t t h e two ends o f the bank o f flowmeters were connected w i t h two c o n t a i n e r s o f e q u a l s i z e t o p r o v i d e water r e s e r v o i r s f o r t h e f l o w m e t e r s .  In t h e p r e s e n t s t u d y , d r i e d a i r (passed t h r o u g h  'Drierite')  was a d m i t t e d t o t h e specimen chamber t h r o u g h t h e base o f t h e c e l l , and a i r p a s s i n g t h r o u g h t h e specimen was conducted t h e upper b r a s s p l u g t o t h e 'donor' water r e s e r v o i r .  through  This pressed  t h e water t o one o f a bank o f flowmeters f o r measurement.  Pre-  s s u r e d i f f e r e n t i a l was a p p l i e d and c o n t r o l l e d by means o f a vacuum pump and mercury manostat,  and was measured w i t h a water mano-  meter b r i d g i n g the specimen.  Water f o r the system was  by d e g a s s i n g under vacuum f o r o n e - h a l f hour.  prepared  Degassing was  has-  t e n e d and made more complete by p l a c i n g t h e vacuum f l a s k i n t h e t a n k o f an u l t r a s o n i c c l e a n e r .  A p a i r of p l e x i g l a s s b l o c k s fastened w i t h only Scotch doublec o a t e d tape was p l a c e d i n the p e r m e a b i l i t y c e l l and used f o r  48  Figure  3.  a. b. c. d. e. f. g. h. i. j. k. 1. m. n. o. P. "I P'. P"._ q. r. s. t. u.  Schematic diagram o f l o n g i t u d i n a l a i r permeable apparatus  A i r flow d i r e c t i o n Drierite C o t t o n wool W a t e r manometer Safety v i a l N i t r o g e n tank (high pressure) Nitrogen flow d i r e c t i o n P e r m e a b i l i t y sandwich Permeability c e l l Vacuum pump Thermometer Water f l o w d i r e c t i o n Degassed water Donor w a t e r r e s e r v o i r Mercury manostat C a l i b r a t e d flowmeters Bead A i r leak Safety flask Degassed water Receiver water r e s e r v o i r  49  50  F i g u r e 4. a. b. c. d. e. f. g. h. •  f  j• k. 1.  Permeability c e l l  detail  Air inlet Nylon net Plexiglass blocks High pressure n i t r o g e n Nylon net Air outlet Brass plug Brass sleeve Specimen Rubber l i n i n g S c o t c h d o u b l e - c o a t e d tape B r a s s base  51  Figure  4.  52 leakage d e t e c t i o n before  each s e t o f p e r m e a b i l i t y  Absence o f leakage i n the  a p p a r a t u s was  recorded  i n the  inserted  i n the p e r m e a b i l i t y  approximately  5 cm  specimen l e n g t h recorded,  the  a microsaw  Hg  and  specimen,  a razor blade,  s p e c i m e n was  men  length.  differential  cm).  After  s a n d w i c h ' was  f o r the  was  The  sawn end  s a n d w i c h ' , was  Pressure  of  differential decrease i n  was with the  trimmed  another set of  reduced i n p r o p o r t i o n t o the  at  longest  reduced i n length  1970).  'permeability  taken.  then  a f l o w measurement  i t s l e n g t h m e a s u r e d , and  m e a b i l i t y measurements was  flow  t o determine a i r flow r a t e  McLauchlan,  in a  e n s u r e d i f no  ' p e r m e a b i l i t y s a n d w i c h ' was  cell  pressure  'permeability  the  A  ( a v e r a g e 3.6  (Bramhall  permeability with  flowmeters.  measurements.  per-  across speci-  53 IV.  A n a t o m i c a l measurements Measurements were made on t h e most and l e a s t permeable  specimens from each t r e e .  A specimen o f i n t e r m e d i a t e  permeabi-  l i t y was a l s o i n c l u d e d as a f u r t h e r t e s t o f t h e e f f e c t o f anat o m i c a l f a c t o r s on p e r m e a b i l i t y .  The a n a t o m i c a l  features believed  t o have t h e g r e a t e s t i n f l u e n c e on p e r m e a b i l i t y were u s i n g l i g h t and e l e c t r o n m i c r o s c o p i c methods.  evaluated  Specific gravity  o f t h e c e n t r a l wood s t r i p t a k e n from t h e c o r r e s p o n d i n g  green  t a n g e n t i a l s e c t i o n ( F i g u r e 2A) was d e t e r m i n e d by t h e maximummoisture-content  A.  method (Smith, 1954; Stamm, 1964).  T r a c h e i d l e n g t h and number o f p i t s p e r t r a c h e i d . P i e c e s trimmed: from t h e p e r m e a b i l i t y specimens were 1  macerated i n 50:50 g l a c i a l a c e t i c a c i d : 30% hydrogen a t 60°C f o r 10 h r .  peroxide  The macerated elements were t h e n t e m p o r a r i l y  mounted i n 1 0 % aqueous g l y c e r i n e s o l u t i o n on m i c r o s l i d e s f o r study.  L o n g i t u d i n a l t r a c h e i d l e n g t h and number o f p i t s p e r  t r a c h e i d were d e t e r m i n e d d i r e c t l y u s i n g a R e i c h e r t V i s o p a n scope.  micro-  An average o f 100 t r a c h e i d s were measured f o r each s p e c i -  men as t a b u l a t e d i n T a b l e V I - 3 .  B.  P e r c e n t p i t a s p i r a t i o n , r a d i a l w a l l t h i c k n e s s and number  o f t r a c h e i d s p e r square m i l l i m e t e r . A s m a l l p i e c e o f wood t a k e n from t h e c e n t r a l p o r t i o n o f t h e f i r s t sawn p i e c e o f each p e r m e a b i l i t y specimen ( F i g u r e 2C)  54 was embedded i n L u f f s Epon f o l l o w i n g t h e u s u a l d e h y d r a t i o n s t e p s (See Appendix I ) . A p p r o x i m a t e l y  f i f t y 1 urn-thick s e r i a l  c r o s s s e c t i o n s were c u t from each embedded b l o c k w i t h a diamond k n i f e mounted on a P o r t e r - B l u m MT-2 u l t r a m i c r o t o m e .  The s e c t i o n s  were s t a i n e d w i t h a l k a l i n e methylene b l u e and mounted f o r l i g h t microscopy  (See Appendix I I ) .  The embedding r e s i n was l e f t i n  p l a c e so t h a t t h e p o s i t i o n o f t h e t o r i a t t h e time o f embedding c o u l d be determined  (Meyer, 1971).  I n o r d e r t o reduce t h e p o s s i b i l i t y o f r e p e a € e d l y  counting  t h e same p i t i n s e r i a l c r o s s s e c t i o n s , o n l y those b o r d e r e d p i t p a i r s d i s p l a y i n g two open a p e r t u r e s were r e c o r d e d a c c o r d i n g t o t h e scheme shown i n F i g u r e 5.  Each p i t - a s p i r a t i o n v a l u e f o r  a i r - o r s o l v e n t - s e a s o n e d m a t e r i a l g i v e n i n T a b l e VI-4 i s based on 100 t o 1,300 o b s e r v a t i o n s on p i t membrane p o s i t i o n a t 500X magnification.  These were o b t a i n e d from 16 t o 50 s e c t i o n s p e r  specimen, depending on t h e number o f u s e f u l s e c t i o n s o b t a i n e d . The number o f p i t membranes observed p e r s e c t i o n v a r i e d , depending on whether o r n o t t h e s e c t i o n passed t h r o u g h h e a v i l y p i t t e d t r a c h e i d - o v e r l a p areas o f a specimen.  Average t h i c k n e s s o f t h e common r a d i a l w a l l o f two a d j a c e n t l o n g i t u d i n a l t r a c h e i d s a t t h e outermost and innermost  margins  o f 8 c r o s s s e c t i o n s f o r each p e r m e a b i l i t y specimen were by measuring d i r e c t l y under t h e l i g h t microscope  determined  (Table V I - 5 ) .  Unaspirated  F i g u r e 5.  P a r t i a l l y Aspirated  Schematic diagram o f p i t a s p i r a t i o n  a.  P i t aperture  b.  P i t chamber  c.  Middle lamella  d.  Margo  e.  Torus  f.  P i t border  Aspirated  56  Number o f t r a c h e i d s p e r square m i l l i m e t e r c r o s s s e c t i o n f o r each p e r m e a b i l i t y specimen was o b t a i n e d by m u l t i p l y i n g r a d i a l and t a n g e n t i a l counts o f t r a c h e i d s p e r m i l l i m e t e r (Table V I - 6 ) .  C.  P i t d i m e n s i o n and margo p o r o s i t y Two r a d i a l s p l i t s were made on each o f t h e f i r s t  p i e c e s as shown i n F i g u r e 2C.  sawn  The s p l i t r a d i a l s u r f a c e s were  r e p l i c a t e d a c c o r d i n g t o t h e d i r e c t c a r b o n method o u t l i n e d by Cote, K o r a n and Day (1964), w i t h t h e e x c e p t i o n t h a t chromium was used f o r shadowcasting.  B r i e f l y , the air-seasoned  specimens  were shadowcasted w i t h chromium a t an a n g l e o f a p p r o x i m a t e l y 30° t o t h e h o r i z o n t a l t o i n c r e a s e t h e c o n t r a s t o f a s p i r a t e d p i t membranes, t h i s was f o l l o w e d by e v a p o r a t i n g c a r b o n over t h e shadowed s u r f a c e s a t an a n g l e o f a p p r o x i m a t e l y z o n t a l w h i l e r o t a t i n g t h e specimens.  75° t o t h e h o r i -  I n o r d e r t o reduce margo  damage by heat r a d i a t i o n , s h a d o w c a s t i n g was n o t a p p l i e d t o some solvent-seasoned found.  specimens, b u t no s i g n i f i c a n t improvement was  As most p i t membranes o f t h e s o l v e n t - s e a s o n e d  specimens  were i n t h e u n a s p i r a t e d p o s i t i o n , r e p l i c a s formed by e v a p o r a t i n g o n l y c a r b o n over t h e non-shadowed s u r f a c e s p r o v i d e d good c o n t r a s t i n e l e c t r o n micrographs.  A p a r a f f i n b a c k i n g l a y e r was a p p l i e d t o p r o t e c t t h e c a r b o n r e p l i c a d u r i n g t h e removal o f wood.  The r e p l i c a s were  c l e a n e d by h y d r o l y s i n g t h e wood w i t h 7 2 % s u l p h u r i c a c i d and 1:1  57 10% chromic / 1 0 % n i t r i c a c i d .  U n f o r t u n a t e l y , t h e specimens  n e c e s s i t y were t h i n n e r t h a n d e s i r a b l e .  by  As t h e r e s u l t , t h e h o t  p a r a f f i n wax e a s i l y p e n e t r a t e d t h e wood t i s s u e , and p a r t l y i n h i b i t e d the hydrolysis step.  E x t r a e f f o r t w o r k i n g under a  d i s s e c t i n g m i c r o s c o p e was r e q u i r e d t o c o m p l e t e l y remove a l l p a r t i a l l y h y d r o l y z e d wood from t h e r e p l i c a s . t r u e f o r t h i n n e r latewood  T h i s was e s p e c i a l l y  specimens.  The e l e c t r o n m i c r o s c o p i c e x a m i n a t i o n was done on an H i t a c h i HU-11E e l e c t r o n m i c r o s c o p e , o p e r a t i n g a t 100KV.  Individual  b o r d e r e d p i t s o f l o n g i t u d i n a l t r a c h e i d s were photographed Kodak 4489 e l e c t r o n microscope f i l m  on  ( E s t a r t h i c k base) a t 4,000  X magnification.  Diameters o f p i t a n n u l i , t o r i , a p e r t u r e s and margo s t r a n d s were measured d i r e c t l y from e l e c t r o n micrographs e n l a r g e d t o a p p r o x i m a t e l y 10,300 X (Tables VI-7A t o 7D), and margo areas (Table VI-7E) were t h e n c a l c u l a t e d  (See Appendix I V ) .  The d i -  mensions o f margo openings were determined by a random-dot g r i d method.  A 10 x 10 i n . c l e a r p l a s t i c sheet w i t h 500  randomly  a r r a n g e d d o t s was p l a c e d over t h e e l e c t r o n m i c r o g r a p h s .  Only  t h e t a n g e n t i a l and r a d i a l d i a m e t e r s o f t h o s e margo openings enc o u n t e r e d w i t h d o t s were measured.  Where a dot was d i r e c t l y  o v e r a margo s t r a n d , t h e opening c l o c k w i s e t o t h e s t r a n d was measured.  V a l u e s a r e l i s t e d i n T a b l e VI-8.,,•  These measurements  were a n a l y z e d by Dr. W. G. Warren (See Appendix V ) , t o d e t e r mine mean s i z e o f margo openings (Tables V I - 9 , 1 0 ) .  59 V.  Statistical  analyses  Regression analyses  (Table VT-11) were conducted  t o study  t h e r e l a t i v e i n f l u e n c e o f each o f t h e measured v a r i a b l e s ( X i ) on l o n g i t u d i n a l a i r p e r m e a b i l i t y (Y perm) f o r each o f n i n e d i f f e r e n t c a t e g o r i e s as f o l l o w s : (1) a l l t r e e s a l l d a t a , (2) a l l trees solvent-seasoned,  (3) a l l t r e e s a i r - s e a s o n e d , (4) a l l  earlywood,  (5) a l l latewood,  (6) a l l t r e e s s o l v e n t - s e a s o n e d  earlywood,  (7) CC d a t a , (8) IC d a t a , and ( 9 ) ' I I d a t a .  B e s t r e g r e s s i o n e q u a t i o n s were s e l e c t e d u s i n g a backward e l i m i n a t i o n technique as  —}  and  (Table V I - 1 2 ) .  The t e s t e d v a r i a b l e s were  follows: Y perm = w e i g h t e d mean o f p e r m e a b i l i t y v a l u e s o f t h e t h r e e l o n g e r specimen l e n g t h s ( d a r c y s ) , X t l = l o n g i t u d i n a l t r a c h e i d l e n g t h (mm), X ca = p i t s c o m p l e t e l y a s p i r a t e d (%), X pa = p i t s p a r t i a l l y a s p i r a t e d {%), X ua = p i t s u n a s p i r a t e d (%), X tn = number o f t r a c h e i d s p e r square m i l l i m e t e r , X sg = specific gravity, 2 X mp = margo p o r o s i t y o r e s t i m a t e d margo pore s i z e (um ), X ma = margo a r e a (um ). 2  C o r r e l a t i o n c o e f f i c i e n t s f o r independent  v a r i a b l e s used i n  e s t i m a t i n g l o n g i t u d i n a l a i r p e r m e a b i l i t y were computed as shown i n T a b l e VI-13A t o E.  The e s t i m a t e d p e r c e n t c u m u l a t i v e  frequency  d i s t r i b u t i o n o f e s t i m a t e d margo pore s i z e f o r t h e p i t s o f t h e t h r e e t r e e s (171 d a t a s e t s ) was o b t a i n e d .  Of t h e s e , o n l y maximum  and minimum margo pore s i z e s o f t h e p i t s i n t h e f i r s t  increment  n e x t t o t h e cambium o f each t r e e were p r e s e n t e d i n T a b l e VI-14 and F i g u r e V I - 1 .  60 RESULTS AND  I.  DISCUSSION  D o u g l a s - f i r sapwood b o r d e r e d p i t A.  General s t r u c t u r e From t h e e l e c t r o n m i c r o s c o p i c e x a m i n a t i o n o f t h e b o r -  dered p i t s ,  no n o t a b l e d i f f e r e n c e s were found i n the g e n e r a l  s t r u c t u r e o f p i t b o r d e r , t o r u s and margo f o r c o a s t a l and D o u g l a s - f i r sapwood ( F i g u r e s 6 and 7 ) .  interior  Average v a l u e s o f t h e  measurements summarized from T a b l e VI-7A t o C a r e t a b u l a t e d i n the f o l l o w i n g t a b l e .  TABLE 6. Diameters Pit  Average d i a m e t e r s o f p i t a n n u l u s , t o r u s and a p e r t u r e (um)  annulus  C C LW  Tree  EW  I C LW  Tree EW  I I Tree EW  13.80  17.67  11.40  16.12  16.95  Pit torus  5.08  8.19  5.94  7.64  8.49  P i t aperture  4.55  6.02  3.51  4.91  5.61  Latewood p i t dimensions were a p p a r e n t l y s m a l l e r t h a n t h o s e o f earlywood, b u t no s t a t i s t i c a l e v a l u a t i o n has been made for  the p i t d i m e n s i o n s .  The i n n e r p a r t o f the p i t b o r d e r was l a y e r and t h e p i t membrane was  f r e e o f a warty  P i n u s - t y p e w i t h smoothly s u r f a c e d  t o r u s , w h i c h agree w i t h p r e v i o u s f i n d i n g s  ( L i e s e , 1965;  Liese  61  F i g u r e 6.  E l e c t r o n m i c r o g r a p h o f t y p i c a l latewood p i t s  from  t h e o u t e r sapwood o f t h r e e D o u g l a s - f i r t r e e s , w i t h i n c r u s t e d and u n a s p i r a t e d p i t membranes; d i r e c t carbon r e p l i c a , pre-shadowed w i t h chromium; magnif i c a t i o n 4,800X A.  II11A  B.  CC11S  C.  IC24S  62  63  F i g u r e 7.  E l e c t r o n m i c r o g r a p h o f t y p i c a l earlywood p i t s  from  the o u t e r sapwood o f t h r e e D o u g l a s - f i r t r e e s w i t h u n a s p i r a t e d p i t membranes;  d i r e c t carbon r e p l i c a ,  pre-shadowed w i t h chromium;  m a g n i f i c a t i o n 4,800X  A.  CC15S  B.  IC15S  C.  II33S  64  65  and Hartmann-Fahnenbrock, 1953).  U n a s p i r a t e d margos were e v i -  d e n t l y t h r e e d i m e n s i o n a l networks c o n s i s t i n g o f r a d i a l l y - o r i e n t e d ( r a d i a t i n g ) and r a n d o m l y - o r i e n t e d strands.  (interwining) m i c r o f i b r i l l a r  The average d i a m e t e r s o f i n d i v i d u a l r a d i a t i n g and i n t e r -  w i n i n g s t r a n d s were t h e same w i t h a v a l u e o f 0.05 m i c r o n ( F i g u r e 8 and T a b l e VI-7D).  However, t h e r a d i a t i n g s t r a n d u s u a l l y appeared  t o be l a r g e r t h a n t h e i n t e r w i n i n g s t r a n d as a r e s u l t o f m i c r o f i b r i l l a r a g g r e g a t i o n (Jayme, Hunger, and F e n g e l , 1960; Brown and Baker, 1970) o r a p p o s i t i o n (Thomas, 1968, 1970).  F o l l o w i n g i s a summary o f f i n d i n g s o f t h e u l t r a s t r u c t u r e o f l o n g i t u d i n a l t r a c h e i d b o r d e r e d p i t membranes i n t h e D o u g l a s - f i r sapwood. (1)  The p a r t o f t h e margo near t h e t o r u s i s more open t h a n i s  the o u t e r p o r t i o n . (2)  The margo d e n s i t y ( t h e number o f margo m i c r o f i b r i l s )  varia-  t i o n seems t o be c o n t r o l l e d by t h e number o f r a n d o m l y - o r i e n t e d m i c r o f i b r i l l a r s t r a n d s throughout t h e margo. (3)  The latewood margo d e n s i t y i s c o n s i s t e n t l y h i g h e r t h a n  earlywood. These f i n d i n g s a r e s i m i l a r t o t h o s e o f Thomas (1969) f o r s o u t h ern pine.  The average earlywood p i t margo a r e a s i n t h e sapwood  samples o f CC, IC, and I I t r e e s were 134.87, 115.43, and 143.53 square m i c r o n s , r e s p e c t i v e l y  (Table V I - 7 E ) .  66  F i g u r e 8.  E l e c t r o n m i c r o g r a p h o f an earlywood p i t from t h e solvent-seasoned  o u t e r sapwood o f IC t r e e ; p i t  membrane was u n a s p i r a t e d ;  arrows A and B denote  e q u a l d i a m e t e r s o f r a d i a t i n g and i n t e r w i n i n g m i c r o f i b r i l l a r s t r a n d s , arrow C denotes of r a d i a t i n g strands;  aggregation  d i r e c t carbon r e p l i c a ,  preshadowed w i t h chromium; m a g n i f i c a t i o n 9,800X  JU  67  m  68 E x a m i n a t i o n o f t h e p i t membranes showed t h a t i n c r u s t a t i o n s c a p a b l e o f a l t e r i n g margo p o r o s i t y were noted on b o t h a s p i r a t e d and u n a s p i r a t e d latewood p i t membranes o f t h e o u t e r sapwood zone, b u t absent on earlywood p i t membranes r e g a r d l e s s o f provenance ( F i g u r e 6).  The n a t u r e o f t h e d e p o s i t e d m a t e r i a l  was not i n v e s t i g a t e d i n t h i s s t u d y .  As i t d i d e x i s t on specimens  a f t e r b o t h a i r - and s o l v e n t - s e a s o n i n g , i t i s p r o b a b l e t h a t t h i s m a t e r i a l was n o t a c o l d - w a t e r - s o l u b l e o r a c e t o n e - i s o p e n t a n e - / _ r soluble extractive.  69 B.  Margo p o r o s i t y Review o f t h e l i t e r a t u r e i n d i c a t e d t h a t margo pore  s i z e i n D o u g l a s - f i r sapwood p i t s where earlywood and latewood were n o t s e p a r a t e d , had been q u a n t i f i e d by s e v e r a l i n v e s t i g a t o r s employing d i r e c t and i n d i r e c t measuring t e c h n i q u e s (Clermont, 1963; Krahmer and Cote, 1963; P e t t y and P r e s t o n , 1969; Stamm, 1952, 1970a).  Margo pore d i a m e t e r s r a n g i n g from 0.1 t o 4.4  microns were r e p o r t e d .  S t u d i e s o f margo p o r o s i t y were c o n f i n e d t o i n c r u s t a t i o n - f r e e earlywood p i t membranes.  An i n t e n s i v e e l e c t r o n m i -  c r o s c o p i c i n v e s t i g a t i o n and an e l a b o r a t e random-dot-grid d i r e c t measuring t e c h n i q u e were a p p l i e d t o determine mean s i z e and t o o b t a i n a f r e q u e n c y d i s t r i b u t i o n o f s i z e s f o r each t r e e .  As t h e  p r o b a b i l i t y f o r random d o t s t o h i t l a r g e r margo openings was h i g h e r , t h e measurements o f t h o s e openings r e c o r d e d were m o s t l y l a r g e r margo p o r e s , t h e r e b y c a u s i n g a s i z e - b i a s e d s a m p l i n g .  An  e s t i m a t e o f t h e a c t u a l average pore a r e a as opposed t o t h e observed average  (Tables VI-9 and 10) was d e t e r m i n e d by W.G. Warren (see  Appendix V ) .  The combined averages o f o b s e r v e d and e s t i m a t e d  margo pore a r e a s , as w e l l as margo pore d i a m e t e r s , a r e g i v e n i n the f o l l o w i n g t a b l e .  70  TABLE.7.  Average margo pore a r e a s and d i a m e t e r s  Combined  Averages  CC  Tree  IC  Tree  II  Tree  Observed margo pore a r e a (um2)  0.1820  0.2152  0.0917  Observed margo pore d i a m e t e r * (um)  0.48  0.52  0.34  E s t i m a t e d margo pore a r e a (um )  0.0344  0.0280  0.0186  E s t i m a t e d margo pore d i a m e t e r * (um)  0.20  0.19  0.15  2  The o b s e r v e d margo pore a r e a and d i a m e t e r were h i g h e r t h a n t h e e s t i m a t e d v a l u e s , t h e I I t r e e p o s s e s s i n g t h e s m a l l e s t margo pore a r e a and d i a m e t e r . previous findings  The above margo pore d i a m e t e r s agree w i t h (Table 2 ) . E s t i m a t e d p e r c e n t c u m u l a t i v e f r e -  quency d i s t r i b u t i o n s o f maximum and minimum margo p o r e a r e a s o f the  pits  i n t h e f i r s t increment n e x t t o t h e cambium o f each t r e e  are  shown i n T a b l e VI-14 and F i g u r e V I - 1 .  The v a r i a b i l i t y o f  margo p o r o s i t y w i t h i n growth i n c r e m e n t s appeared t o be as l a r g e as t h e v a r i a b i l i t y among growth i n c r e m e n t s and a l s o between t r e e s ( F i g u r e s 7 and 9 ) .  The d i a m e t e r was c a l c u l a t e d from t h e combined average by assuming t h e margo pore t o approximate a c i r c u l a r shape.  71  F i g u r e 9.  E l e c t r o n m i c r o g r a p h o f u n a s p i r a t e d p i t s from t h e o u t e r sapwood o f I I t r e e ; preshadowed w i t h chromium;  A.  I I 11A  B.  I I 13S  C.  I I 14S  D.  I I 15S  E.  I I 25S  F  I I 33S  direct  carbon r e p l i c a ,  m a g n i f i c a t i o n , 4,800X  72  73 II.  E f f e c t o f specimen l e n g t h on l o n g i t u d i n a l a i r p e r m e a b i l i t y M i c r o s e c t i o n s o f wood were used i n t h i s s t u d y ,  observe d i f f e r e n c e s between earlywood and l a t e w o o d .  i n order t o F i g u r e s 10A  t o C show t h e r e l a t i o n s h i p between t h e l o g a r i t h m o f p e r m e a b i l i t y and specimen l e n g t h .  The s o l v e n t - s e a s o n e d  earlywood p e r m e a b i l i t y  o f a l l t h r e e D o u g l a s - f i r t r e e s appears t o be e s s e n t i a l l y as specimen l e n g t h d e c r e a s e s , lengths.  constant  b u t a drop o c c u r s a t t h e s h o r t e s t  A tendency f o r an i n c r e a s e i n s o l v e n t - s e a s o n e d  late-  wood p e r m e a b i l i t y i s n o t e d i n CC and IC specimens as t h e specimen length shortened.  On t h e o t h e r hand, t h e a i r - s e a s o n e d  permea-  b i l i t y o f d i f f e r e n t specimens g i v e s d i f f e r e n t p a t t e r n s as specimen l e n g t h decreases.  I n g e n e r a l , no a p p a r e n t l i n e a r n e g a t i v e  rela-  t i o n s h i p was found between t h e l o g a r i t h m o f p e r m e a b i l i t y and specimen l e n g t h .  Such a s n e g a t i v e investigators 1965).  r e l a t i o n s h i p has been c o n f i r m e d  (Buro and Buro, 1959b; S i a u , 1972; S u c o f f , e t a l . ,  However, some d e v i a t i o n s have a l s o been o b s e r v e d  t h i s l e n g t h e f f e c t (Ameniya, 1962; B r a m h a l l , 1965).  by s e v e r a l  Bramhall  regarding  1971; S e b a s t i a n ,  et a l . ,  (1971) m o d i f i e d Darcy's e q u a t i o n so t h e f u n c t i o n  o f specimen l e n g t h c o u l d be more p r e c i s e l y r e c o g n i z e d .  He r e p o r t e d  t h a t f o r D o u g l a s - f i r , Darcy's l a w was o n l y v a l i d f o r permeable sapwood specimens, b u t i n v a l i d f o r l e s s permeable specimens under steady-state conditions.  He i n d i c a t e d t h a t p e r m e a b i l i t y o f t h e  l e s s permeable specimens d e c r e a s e d s i g n i f i c a n t l y as specimen l e n g t h was reduced from 3.5 cm t o 0.5 cm.  He a l s o suggested t h a t a p h y s i c a l  74  F i g u r e 10A.  R e l a t i o n s h i p between l o g a r i t h m o f l o n g i t u d i n a l a i r p e r m e a b i l i t y and specimen l e n g t h o f CC D o u g l a s - f i r sapwood.  K.0  CC11AL  •  CC11SL  D  CC14AE  •  CC14SE  A  CC15AE  •  CC15SE  75-  xo. u  I  I  10.0  •  5.0  •  •  "A  A ' A  A  A •  -  •  •  •  O o  O  0  G  •  A 1.0  •  •  A  -  A  A  A  •  •  •  0.5  O •  0  D  A  A  A  •  0.1 ; 0  I  0.5  1  I  1.0  i  1.5  2.0  i  . 1  2.5  3.0  Specimen l e n g t h Figure  10A  (cm).  i  3.5  4.  76  Figure  10B.  Relationship air  between l o g a r i t h m  permeability  Douglas-fir  0  IC11AL  •  IC11SL  q,  IC13AE  •  IC13SE  A  IC15AE  •  IC15SE  of longitudinal  and specimen lerjgth o f IC  sapwood*  15.0 10.0  A  A  5.0  CO  o  >1  o  o  u o  g  $  l.o  (1)  a, 0.5  k  A A  0.1  J 0  I 0.5  I 1.0  1 1 1 1.5 2.0 2.5 Specimen l e n g t h  Figure  10B  1 3.0 (cm)  1 3.5  4.<  78  Figure  IOC.  R e l a t i o n s h i p between l o g a r i t h m  of longitudinal  a i r p e r m e a b i l i t y and specimen l e n g t h o f I I Douglas-fir  O  II14AE  •  II14SE  d  IH5AE  •  II15SE  A  II16AE  A  II16SE  sapwood  15.0  MM  10.0  —  o A  —  •  5.0  •  •  —  to >i u  •  •  —  A #  A"  •  •  o  O  O  •  •  •  9  A  1.0  o  O —  u  CD ft  •  i  u  ,<8  •  A"  O  O  •  •  0.5  A  A  A  A  A A  A  — —  •  A  -  0.1  0  1  I  0.5  1.0  1  1.5  1  2.0  2.5  3.0  Specimen l e n g t h  Figure ilOC.  1  1  i  3.5  (cm)  4.  80 model i n w h i c h t h e number o f c o n d u c t i n g t r a c h e i d s decreases e x p o n e n t i a l l y w i t h depthsof p e n e t r a t i o n provided planation of the r e s u l t s .  a l o g i c a l ex-  On t h e o t h e r hand, Meyer (1971)  showed t h a t t h e p r o b a b i l i t y o f o c c u r r e n c e o f f l u i d - f i l l e d wood t r a c h e i d s o f D o u g l a s - f i r d e c r e a s e s e x p o n e n t i a l l y  early-  with  specimen l e n g t h when specimen l e n g t h i s e x p r e s s e d w i t h terms o f numbers o f e f f e c t i v e c o n d u c t i n g t r a c h e i d s .  81 I I I . E f f e c t o f t r a c h e i d dimensions and s p e c i f i c g r a v i t y on longitudinal a i r permeability Tracheid  dimensions and s p e c i f i c g r a v i t y , two o f t h e impor-  t a n t q u a l i t i e s o f wood, a r e i n f l u e n c e d by a l a r g e number o f complex and i n t e r - r e l a t e d f a c t o r s , such as r a t e o f growth, number o f r i n g s from p i t h , and h e i g h t w i t h i n the t r e e  (Wellwood and  Smith, 1962).  The f o l l o w i n g t a b l e summarizes the specimens  TABLE 8.  Type  the t r a c h e i d dimensions o f  used.  Summary o f t r a c h e i d dimensions o f D o u g l a s - f i r sapwood Growth Ave. Zone Tracheid Length (mm)  No.of P i t s No. o f No. o f No.of Obper T r a c h - . T r a c h - T r a c h - s e r v a t i o n s eid eids eid Obser- per mm2 ved  tree  LW EW  2.65 2.38  17.30 48.55  224 415  1169 748  32 64  IC t r e e  LW EW  2.38 2.07  12.55 33.18  325 279  1610 1132  48 48  II  LW EW  CC  tree  —  —  2.81  —  83.93  —  546  1163  80  The t r a c h e i d s measured were from t h e i n c r e m e n t s , 15-16,  15-16  and 24-26 r i n g s from p i t h , r e s p e c t i v e l y f o r CC, IC and I I t r e e s . Latewood t r a c h e i d s a r e l o n g e r , w i t h a s m a l l e r number o f p i t s p e r t r a c h e i d , than those of earlywood.  The t r a c h e i d s o f CC  tree  appear t o be l o n g e r and have more p i t s p e r t r a c h e i d t h a n t h o s e o f IC t r e e .  But t h e l o n g e s t t r a c h e i d s , i n a d d i t i o n t o t h e  highest  82 number o f p i t s p e r t r a c h e i d , d i d n o t r e n d e r t h e earlywood o f I I t r e e r e l a t i v e l y more permeable.  I t s i n f l u e n c e was  therefore  p r o b a b l y masked by t h e e f f e c t o f more i m p o r t a n t f a c t o r s . r e g r e s s i o n analyses  showed t h a t t r a c h e i d l e n g t h  s i g n i f i c a n t l y correlated with permeability  The  ( X t l ) was n o t  (Yperm) (Table VI-12  and 1 3 ) .  The s m a l l e r number o f t r a c h e i d s p e r square m i l l i m e t e r means l a r g e r average t r a c h e i d lumen s i z e .  The summary i n T a b l e 8 i n -  d i c a t e s t h a t l a t e w o o d t r a c h e i d lumen s i z e i s s m a l l e r t h a n e a r l y wood.  On t h e o t h e r hand, t h e e a r l y w o o d t r a c h e i d lumen s i z e s i n  decreasing  o r d e r a r e CC t r e e , IC t r e e and I I t r e e .  Fleischer  (1950) and Krahmer (1961) i n d i c a t e d t h a t t h e p e r m e a b i l i t y o f D o u g l a s - f i r was r e l a t e d t o t r a c h e i d lumen s i z e . negative  A significant  c o r r e l a t i o n between number o f t r a c h e i d p e r square m i l l i -  meter (Xtn) and p e r m e a b i l i t y  (Yperm) i s shown i n T a b l e VI-13.  I n o t h e r words, t h e l a r g e r t r a c h e i d lumen s i z e r e n d e r s wood more permeable.  The averages o f l o n g i t u n d i n a l a i r p e r m e a b i l i t y and t h e corresponding s p e c i f i c g r a v i t y of the three Douglas-fir are t a b u l a t e d i n the f o l l o w i n g t a b l e .  trees  83  TABLE 9.  Summary o f p e r m e a b i l i t y v s . s p e c i f i c g r a v i t y o f D o u g l a s - f i r sapwood,  C C A D LW EW  Tree S D LW EW  I C A D LW EW  Tree S D EW LW  I I A D LW " EW  Pe r meab i 1 i t y 1.43 0.45 1.25 9.78 0.91 0.56 1.01 7.17 (darcys) 0.61 0.27 0.61 0.27 0.67 0.40 0.67 0.40  Specific gravity  V a r i a t i o n o f s p e c i f i c g r a v i t y e x i s t s among t h e t h r e e t r e e s , probably (1961).  Tree S D LW EW  0.75 —  0.33  7.66 —  0.33  Douglas-fir  due t o provenance e f f e c t as c o n c l u d e d by H a i g h  The p e r m e a b i l i t y o f a i r - s e a s o n e d  D o u g l a s - f i r sapwood  i s h i g h e r f o r t h e specimens o f h i g h e r s p e c i f i c g r a v i t y w i t h i n t h e same t r e e . specimens.  The r e v e r s e i s t r u e f o r t h e  T a b l e VI-12 and 13 i n d i c a t e t h a t s p e c i f i c g r a v i t y  (Xsg) i s an i m p o r t a n t with permeability  v a r i a b l e h i g h l y and n e g a t i v e l y c o r r e l a t e d  (Y perm) i n f o u r o f t h e n i n e c a t e g o r i e s  Although the foregoing reports and E s t e p ,  solvent-seasoned  analyzed.  (Blew, 1961; C r a i g , 1963; E r i c k s o n  1962; Koran, 1964; M i l l e r , 1961) on t h e i n f l u e n c e o f  s p e c i f i c g r a v i t y on p e r m e a b i l i t y were c o n f l i c t i n g , t h e r e s u l t s of analyses  l i s t e d i n T a b l e s VI-12 and 13 demonstrate t h a t s p e c i f i c  g r a v i t y i s a good i n d i c a t o r o f d i f f e r e n c e s i n a i r p e r m e a b i l i t y o f D o u g l a s - f i r e a r l y w o o d and l a t e w o o d .  84 IV.  E f f e c t o f p i t s t r u c t u r e on l o n g i t u d i n a l a i r p e r m e a b i l i t y A.  P i t a s p i r a t i o n and s e a s o n i n g e f f e c t , The s i g n i f i c a n t i n f l u e n c e o f p i t a s p i r a t i o n on l o n g i -  t u d i n a l p e r m e a b i l i t y o f D o u g l a s - f i r was c l a r i f i e d r e c e n t l y by Meyer (1971).  He c o n c l u d e d t h a t sapwood earlywood l o n g i t u d i n a l  a i r p e r m e a b i l i t y was a s e n s i t i v e barometer o f t h e e f f e c t o f s e a s o n i n g c o n d i t i o n s on p i t a s p i r a t i o n (Table 4 ) . The r e s u l t s obtained  i n t h i s i n v e s t i g a t i o n lead to a similar  conclusion.  P i t membrane p o s i t i o n was l i n k e d w i t h l o n g i t u d i n a l a i r permeab i l i t y and c o u l d be used t o e x p l a i n t h e earlywood p e r m e a b i l i t y o f a l l t h r e e D o u g l a s - f i r t r e e s , b u t t h i s was not t h e case i n latewood.  I t was shown t h a t n e a r l y a l l t h e earlywood p i t s ob-  s e r v e d were a s p i r a t e d i n a i r - s e a s o n e d  sapwood w h i l s t a c e r t a i n  p r o p o r t i o n o f t h e l a t e w o o d p i t s remained u n a s p i r a t e d  (Table 1 0 ) .  The h i g h e r p e r c e n t a g e o f u n a s p i r a t e d p i t s was r e s p o n s i b l e f o r the greater latewood p e r m e a b i l i t y i n air-seasoned state.  The reduced a s p i r a t i o n was p r o b a b l y  due t o a more r i g i d  s t r u c t u r e ( h i g h e r margo d e n s i t y and p r e s e n c e o f i n c r u s t a t i o n s ) and t o t h e s m a l l e r dimensions o f l a t e w o o d p i t s .  Tracheid w a l l thickness i s correlated with the r e s i s t a n c e t o a s p i r a t i o n as shown i n T a b l e 11. was f i r s t r e c o g n i z e d by P h i l l i p s  (1933).  The above phenomenon T h i s can be e x p l a i n e d  TABLE 10.  E f f e c t o f s e a s o n i n g on a s p i r a t i o n o f D o u g l a s - f i r o u t e r sapwood i n t e r t r a c h e i d b o r d e r e d p i t - p a i r s and l o n g i t u d i n a l a i r p e r m e a b i l i t y  LW Yo A s p i r a t e d  C C D EW  A  Tree S LW  72.03 9.9.78 15.80  Yo U n a s p i r a t e d LI.69 Yc P a r t i a l l y Aspirated  L6.28  Permeability (darcys)  1.43  LW  A  •I C D EW  Tree S LW  5.86 52.14 97.65 12.50  D EW  A  LW not 3.67 available  I I D EW  Tree S LW not 98.60 available  D EW 1.39  .0.03 65.39 66.39 20.51  0.43 66.86 68.63  II  0.34  II  80.90  0.19 18.81 27.75 27.35  1.92 20.64 27.70  II  1.06  II  17.71  1.01  II  0.75  II  0.45  1.25  9.78  0.91  0.56  7.17  7.66  Pesrcentage o f u n a s p i r a t e d p i t s and r a d i a l w a l l t h i c k n e s s  TABLE 11.  LW  D EW  A  C D  C EW  Tree S LW  D EW  LW  A  Vo U n a s p i r a t e d LI.69  0.03 65.39 66.39 20.51  Radial Wall Thickness(um) 4.20  1.45  4.00  1.50  4.13  I C D EW  Tree S LW  D EW  LW  A  I D  I EW  Tree S LW  D EW  0.43 66.86 68.63  0.34  80.90  1.93  2.00  1.96  1.87  4.33  86 as a r e s u l t o f a s i m u l t a n e o u s membrane  i n c r e a s e o f w a l l t h i c k n e s s and p i t  stiffness.  The a c e t o n e - i s o p e n t a n e  s o l v e n t system used i n t h i s  study  appeared t o be more e f f e c t i v e i n p r e v e n t i n g p i t a s p i r a t i o n t h a n t h e e t h a n o l - b e n z e n e system employed by Meyer (1971).  Pit aspira-  t i o n was markedly a l l e v i a t e d by t h e former s o l v e n t system, b u t a s i g n i f i c a n t number o f p i t s s t i l l became a s p i r a t e d i n t h e l a t t e r (Tables 4 and 10).  F i g u r e s 10A t o C show t h a t t h e p e r m e a b i l i t y  o f e a r l y w o o d a f t e r s o l v e n t - s e a s o n i n g was much improved i n a l l t h r e e D o u g l a s - f i r t r e e s , b u t t h a t o f latewood was h a r d l y changed. By means o f s o l v e n t - s e a s o n i n g e f f e c t i v e l y prevented  technique,  i n earlywood p i t s  a s p i r a t i o n was more (Table 10), w h i c h , i n  a d d i t i o n t o t h e i r l a r g e r p i t dimensions and h i g h e r margo p o r o s i t y , a l s o more p i t s p e r t r a c h e i d and l a r g e r t r a c h e i d s , p r o b a b l y r e sulted i n the higher permeability.  The  degree o f a s p i r a t i o n was t h e o n l y o b s e r v a b l e  ultrastruc-  t u r a l d i f f e r e n c e among e a r l y w o o d p i t s as d e p i c t e d i n F i g u r e 11. Nicholas  (1966) r e p o r t e d t h a t p i t s w i t h lower d e n s i t y margos  ( s i m u l t a n e o u s l y w i t h lower s t r e n g t h o f p i t membrane) i n v a r i a b l y were more t i g h t l y a s p i r a t e d .  I n o t h e r words h i g h e r margo p o r o s i t y  (lower margo d e n s i t y ) s h o u l d r e s u l t i n a h i g h e r p e r c e n t a g e o f aspirated p i t s .  The above statement needs f u r t h e r s t u d y .  87  F i g u r e 11.  E l e c t r o n m i c r o g r a p h o f earlywood p i t s from t h e o u t e r sapwood o f D o u g l a s - f i r showing t h e d i f f e r e n t degree o f a s p i r a t i o n as a r e s u l t o f s e a s o n i n g ; d i r e c t c a r b o n r e p l i c a , pre-shadowed w i t h chromium; magnification,  4,800X  A.  Unaspirated  pit,  CC15S  B.  P a r t i a l l y a s p i r a t e d p i t , IC15A  C.  C o m p l e t e l y a s p i r a t e d p i t , showing an i n p r i n t of aperture,  IC15A  89 P a r t i a l p i t a s p i r a t i o n , noted i n t h e p a s t as  incomplete  p i t a s p i r a t i o n (Stone, 1939; K i s h i m a and H a y a s h i , 1962; and Cote, 1968;  Thomas and N i c h o l a s , 1966), was  Comstock  found t o be t h e  most i m p o r t a n t v a r i a b l e r e l a t e d t o p e r m e a b i l i t y i n m u l t i p l e r e g r e s s i o n a n a l y s e s , except i n the " a l l t r e e s s o l v e n t - s e a s o n e d " category  (Table V I - 1 2 ) .  percentages  I t i s e v i d e n t i n Table VI-13A t h a t b o t h  o f p a r t i a l l y a s p i r a t e d p i t - p a i r s and u n a s p i r a t e d p i t -  p a i r s were h i g h l y c o r r e l a t e d w i t h p e r m e a b i l i t y , but t h e yielded a higher p o s i t i v e c o r r e l a t i o n . t h i s phenomenon i s unknown.  former  The a c t u a l r e a s o n f o r  P a r t i a l l y a s p i r a t e d p i t s may  pro-  v i d e an e f f i c i e n t f l o w p a t h o r might be a s e n s i t i v e measure o f over-all p i t condition.  Any d e d u c t i v e use o f p a r t i a l p i t a s p i r a -  t i o n r e q u i r e s a f u r t h e r d e t e r m i n a t i o n o f t h e magnitude o f gas f l o w t h r o u g h p a r t i a l l y a s p i r a t e d p i t - p a i r s i n comparison w i t h unaspirated p i t - p a i r s . found between percentage meability.  As e x p e c t e d , a n e g a t i v e c o r r e l a t i o n o f c o m p l e t e l y a s p i r a t e d p i t s and  was  per-  90 B.  Margo a r e a Krahmer  fractory  a n d margo  (1961) i n d i c a t e d t h a t b o t h p e r m e a b l e a n d r e -  D o u g l a s - f i r woods h a v e b o r d e r e d p i t s t r u c t u r e s  same d i a m e t e r . pit-pairs  In other  showed no r e l a t i o n s h i p t o p e r m e a b i l i t y .  margo p o r o s i t y ficantly  study.  correlated with permeability  was  (Y p e r m ) .  S m i t h a n d Banks between t h e  o f the border o f the p i t s t r u c t u r e  o f t h e margo c o n t r o l l e d t h e f l o w  that  (Xma) were n o t s i g n i -  t h e geometry o f t h e d i s t a n c e  and t h e i n t e r i o r  than that  This  T a b l e VI-13E i n d i c a t e s  (Xmp) a s w e l l a s margo a r e a  (1971) i n d i c a t e d t h a t  o f the  w o r d s , margo a r e a s o f t h e b o r d e r e d  a l s o the case i n the present  torus  porosity  i n grand  fir  rather (Abies  grandis).  Margo a r e a multiple  regression  wood o f a l l t r e e s  a n d margo p o r o s i t y analyses  only  due t o l i m i t e d  s e a s o n e d e a r l y w o o d was t h e b e s t determination, pit  as i t p r o v i d e d  membranes.  of various  The b e s t  c o u l d be i n c l u d e d  f o r the solvent-seasoned sample s i z e .  material  unaspirated  The  solvent-  f o r margo  porosity  the r e l a t i o n s h i p  independent v a r i a b l e s t o p e r m e a b i l i t y  was  determined  as:  SEE  =  R =  0.7295 0.9436**  DF = 8  early-  and i n c r u s t a t i o n - f r e e  equation to describe  Yperm = 6.5814 + 0.1700Xpa  i n the  - 7.3824Xsg + 6.8406Xmp  91 All  s i x independent v a r i a b l e s  used i n r e g r e s s i o n total  variability  analysis  i n permeability.  variables  aspiration  selected  and  Xma)  f o r 97.18 p e r c e n t o f t h e  Pitpartial  single variable  I t alone accounted  variability the  accounted  i n permeability.  was t h e most i m p o r t a n t (Y p e r m ) .  ( X t l , Xpa, X t n , X s g , Xmp  a s p i r a t i o n (Xpa)  influencing  permeability  f o r 73.38 p e r c e n t o f t h e t o t a l In order of decreasing  importance,  i n t h e a b o v e e q u a t i o n , were p a r t i a l p i t  ( X p a ) , margo p o r o s i t y  (Xmp) a n d s p e c i f i c  gravity  (Xsg).  Although there  was n o t a s i g n i f i c a n t s i m p l e c o r r e l a t i o n b e t w e e n  margo p o r o s i t y  and p e r m e a b i l i t y  p i r a t i o n a n d margo p o r o s i t y cent o f the t o t a l  The  partial  variables of  r e t a i n e d by t h e r e g r e s s i o n o f data t e s t e d  anatomical  i n the  regression  earlywood i s e s p e c i a l l y s i g n i f i c a n t ,  p i t a s p i r a t i o n and s p e c i f i c  when t h e s e v e r a l  f o r 90.27 p e r  i n permeability.  i n c l u s i o n o f margo p o r o s i t y  the nine categories  meability  VI-13E), p i t p a r t i a l a s -  together accounted  variability  equation f o r solvent-dried since  (Table  g r a v i t y were t h e two  analysis (Table  factors believed  a r e measured and t e s t e d  together  program f o r each VI-12).  Therefore,  to influence  for their joint  on  permeability,  as  p i t membrane p o s i t i o n becomes r e a d i l y a p p a r e n t .  pereffect  t h e i m p o r t a n c e o f p i t membrane g e o m e t r y a s w e l l  92 CONCLUSION 1.  The  dimensions o f p i t a n n u l i , t o r i and  as margo p o r o s i t y appeared to be wood and  a p e r t u r e s as  well  d i f f e r e n t between e a r l y -  latewood, whereas marked d i f f e r e n c e s were not  noted between p i t s o f d i f f e r e n t t r e e s .  2.  Incrustations  capable o f a l t e r i n g margo p o r o s i t y were  observed only on latewood p i t membranes.  3.  The  v a r i a b i l i t y o f earlywood margo p o r o s i t y w i t h i n growth  increments appeared t o be as l a r g e as the among growth increments and 4.  variability  a l s o between t r e e s .  Solvent-seasoned earlywood p e r m e a b i l i t y  was  p a r t i a l p i t a s p i r a t i o n , margo p o r o s i t y and i n decreasing  a function of specific  gravity,  order of importance, w h i l e the i n f l u e n c e  t r a c h e i d dimensions was  of  masked by the e f f e c t o f the above  more important f a c t o r s .  5.  Acetone-isopentane s o l v e n t  system used i n  solvent-seasoning  appeared t o be e f f e c t i v e i n the p r e v e n t i o n 6.  The  longitudinal a i r permeability  of outer sapwood Douglas-  f i r specimens d r i e d by s o l v e n t - s e a s o n i n g disobeyed Darcy's law w i t h r e s p e c t  of p i t a s p i r a t i o n .  and  air-seasoning  t o specimen  length.  93  L I T E R A T U R E  C I T E D  Ameniya, S. 1962. R e s e a r c h o n wood p r e s e r v i n g t r e a t m e n t . I I I . M e a s u r i n g t h e p e n e t r a t i o n f a c t o r o f a few s o f t w o o d s i n t h e f i b e r d i r e c t i o n . J o u r , o f t h e J a p . Wood R e s . S o c , 8 ( 2 ) : 81-86.  A n d e r s o n , E . A. Tracheid length from p i t h . Jour. Forestry,  1951. v a r i a t i o n i n c o n i f e r s as r e l a t e d t o d i s t a n c e 49  ( 1 ) : 38-42.  B a i l e y , I.W. 1913 a . The p r e s e r v a t i v e t r e a t m e n t o f wood. I . The v a l i d i t y o f c e r t a i n t h e o r i e s c o n c e r n i n g t h e p e n e t r a t i o n o f gases and p r e s e r v a t i v e s i n t o s e a s o n e d wood. F o r e s t r y Q u a r t e r l y , 11: 5-11.  . 1913 b . The p r e s e r v a t i v e t r e a t m e n t o f wood. I I . The s t r u c t u r e o f t h e p i t membranes i n t h e t r a c h e i d s o f c o n i f e r s a n d t h e i r r e l a t i o n o f t h e p e n e t r a t i o n o f gases, l i q u i d s , and f i n e l y d i v i d e d s o l i d s i n t o g r e e n a n d s e a s o n e d wood. F o r e s t r y Q u a r t e r l y , 11: 12-20.  . 1915. The e f f e c t o f s t r u c t u r e o f wood u p o n i t s p e r m e a b i l i t y . tracheids of coniferous timbers. Amer. R a i l . Eng. A s s o c . P r o c , 16: 835-853.  The  . 1916. The s t r u c t u r e o f b o r d e r e d p i t s o f c o n i f e r s a n d i t s b e a r i n g upon t h e t e n s i o n h y p o t h e s i s o f t h e a s c e n t o f s a p i n p l a n t s . B o t . Gaz. 61: 133-142.  . 1957. The s t r u c t u r e o f t h e p i t membranes i n t h e t r a c h e i d s H o l z a l s Roh-und W e r k s t o f f , 15 ( 5 ) : 210-213. A u s t r a l i a CSIRO, T r a n s l . No. 3639.  of conifers.  94  Bailey, P.J. 1964. The p e r m e a b i l i t y o f s o f t w o o d s . J o u r , o f t h e I n s t , o f Wood S c i . , 1 2 : 4 4 - 5 5 . . 1966. P h y s i c a l s t u d i e s i n r e l a t i o n t o -the p e r m e a b i l i t y xylem o f D o u g l a s - f i r . Ph. D. T h e s i s , U n i v . o f L e e d s .  ofthe  Balatinecz, J.J. 1963. The i n f l u e n c e o f m o r p h o l o g i c a l f a c t o r s u p o n l i q u i d f l o w i n D o u g l a s - f i r wood u n d e r p r e s s u r e . M.F. T h e s i s , U n i v . o f W a s h i n g t o n .  B e n v e n u t i , R.R. 1963. An i n v e s t i g a t i o n o f methods o f i n c r e a s i n g t h e p e r m e a b i l i t y of l o b l o l l y pine. M. S c . T h e s i s , U n i v . o f N o r t h C a r o l i n a . B l e w , J.O. 1961. Results o f preservative treatment o f Douglas-fir d i f f e r e n t areas. Amer. Wood P r e s . A s s o c . P r o c , 5 7 : 2 0 0 - 2 1 2 .  from  B r a m h a l l , G. 1966. P e r m e a b i l i t y o f D o u g l a s - f i r heartwood from v a r i o u s o f g r o w t h i n B.C. B. C. Lumberman, 50 ( 1 ) : 9 8 - 1 0 2 . . 1967. Longitudinal permeability within Douglas-fir m e n z i e s i i (Mirb.) Franco] growth increments. M. S c . T h e s i s , U n i v . o f B r i t i s h C o l u m b i a .  areas  [Pseudotsuga  . 1970. The v a l i d i t y o f D a r c y ' s l a w i n t h e a x i a l p e n e t r a t i o n o f wood. Ph. D. T h e s i s , S t a t e U n i v . C o l l e g e o f F o r e s t r y a t S y r a c u s e Univ.  . 1971. The v a l i d i t y o f Darcy's l a w i n t h e a x i a l p e n e t r a t i o n o f wood. Wood S c i . and Tech., 5: 121-134. , and T. A. McLauchlan. 1970. The p r e p a r a t i o n o f m i c r o s e c t i o n s by sawing. Wood and F i b e r , 2 ( 1 ) : 67-69. , and J . W. W i l s o n . 1971. A x i a l gas p e r m e a b i l i t y o f D o u g l a s - f i r m i c r o s e c t i o n s by v a r i o u s t e c h n i q u e s . Wood S c i . , 3 ( 4 ) : 223-230.  drie  Brown, F. L., and H. M. Baker. 1970. S c a n n i n g e l e c t r o n m i c r o s c o p y o f mature D o u g l a s - f i r e a r l y wood i n t e r t r a c h e i d p i t t i n g . Wood and F i b e r , 2 ( 1 ) : 52-64. Buro, A., and E. A. Buro. 1959 a. The r o u t e s by w h i c h l i q u i d s p e n e t r a t e i n t o wood o f Pinus s y l v e s t r i s . H o l z f o r s c h u n g , 1 3 ( 3 ) : 71-77. U. S. F o r e s t Serv., T r a n s l . No. FPL624. . 1959 b. S t u d i e s on t h e p e r m e a b i l i t y o f p i n e wood. H o l z a l s Roh-und W e r k s t o f f , 1 7 ( 1 2 ) : 461-474. U. S. F o r e s t Serv., T r a n s l . No. FPL623. Chalk, L. 1930. Tracheid length, with s p e c i a l reference t o Sitka (Picea s i t c h e n s i s C a r r . ) . F o r e s t r y , 4: 7-14. Clermont, L.P. 1963. Pore s i z e d i s t r i b u t i o n i n D o u g l a s - f i r . P r o j e c t 0-384-2. P r o g r e s s Report No. 7. Can. Dept. F o r e s t . R. D.  spruce  96 Comstock, G . L . 1965. L o n g i t u d i n a l p e r m e a b i l i t y of green e a s t e r n F o r . Prod. J o u r . , 15(10): 441-449.  hemlock.  1967.  L o n g i t u d i n a l p e r m e a b i l i t y o f wood to gases and liquids. F o r . Prod. J o u r . , 17(10): 41-46.  non-swelling  1968. P h y s i c a l and s t r u c t u r a l aspects o f the l o n g i t u d i n a l p e r m e a b i l i t y o f wood. Ph. D. T h e s i s , S t a t e U n i v . C o l l e g e of F o r e s t r y at Syracuse Univ. , and W. A . Cote, J r . 1968. F a c t o r s a f f e c t i n g p e r m e a b i l i t y and p i t a s p i r a t i o n i n c o n i f e r o u s sapwood. Wood S c i . and T e c h . , 2(4): 279-291. Cote, W. A . 1958. E l e c t r o n microscope s t u d i e s o f p i t membrane s t r u c t u r e . I m p l i c a t i o n s i n seasoning and p r e s e r v a t i o n o f wood. F o r . Prod. J o u r . , 8(10): 296-301.  Jr. 1963. S t r u c t u r a l f a c t o r s a f f e c t i n g the p e r m e a b i l i t y of wood. P r o c . 4th C e l l u l o s e C o n f . , J o u r , o f Polymer S c i . : P a r t C, Polymer Symposia, No.2: 231-242.  . 1967. H i s t o r y of wood u l t r a s t r u c t u r e r e s e a r c h . In: H i s t o r y o f Wood S c i e n c e . Wood S c i . and T e c h . , 1 ( 3 ) : 178-180.  , Z . Koran, and A . C . Day. 1964. R e p l i c a techniques f o r e l e c t r o n microscopy of wood and paper. TAPPI, 47(8): 477-484.  97 , and R. L. Krahmer. 1962. The p e r m e a b i l i t y o f c o n i f e r o u s p i t s demonstrated by e l e c t r o n microscopy. TAPPI, 4 5 ( 2 ) : 119-122. C r a i g , D. W. 1963. The p e r m e a b i l i t y o f D o u g l a s - f i r heartwood from v a r i o u s g e o g r a p h i c s o u r c e s i n t h e S t a t e o f Washington. M. Sc. T h e s i s , U n i v . o f Washington. Darcy, H.P.G. 1856. Les f o n t a i n e s p u b l i q u e s de l a v i l l e de D i j o n . V i c t o r Dalmont, P a r i s . ( C i t e d by P. J . B a i l e y , 1966). E i c k e , R. 1954. A c o n t r i b u t i o n t o the s t r u c t u r e o f the bordered p i t i n conifers. Ber. Deut. B o t . Ges., 67: 6/7: 123-7. U.S.D.A., F o r . S e r v i c e , FPL, Madison, W i s . T r a n s l . No. 284. E l l w o o d , E.L., and R. C. Thomas. 1968. P e r m e a b i l i t y o f wood i n r e l a t i o n t o i t s s t r u c t u r e and p e n e t r a b i l i t y by f l u i d s . Impregnated f i b r o u s m a t e r i a l s , IAEA, V i e n n a , pp. 19-33. E r i c k s o n , H.D., and J . J . B a l a t i n e c z . 1964. L i q u i d f l o w p a t h s i n t o wood u s i n g p o l y m e r i z a t i o n — D o u l g a s - f i r and s t y r e n e . F o r . Prod. J o u r . , 1 4 ( 7 ) : 293-299.  techniques  , and R. J . C r a w f o r d . 1959. The e f f e c t o f s e v e r a l s e a s o n i n g methods on t h e p e r m e a b i l i t y o f wood t o l i q u i d s . Amer. Wood P r e s . A s s o c . P r o c , 55: 210-219. , and E. M. E s t e p . 1962. P e r m e a b i l i t y o f D o u l g a s - f i r heartwood from w e s t e r n Washington. For. Prod. J o u r . , 1 2 ( 7 ) : 313-324.  98 , H. S c h m i t z , and R. A. G o r t n e r . 1937. The p e r m e a b i l i t y o f wood t o l i q u i d s and f a c t o r s a f f e c t i n g the r a t e o f f l o w . U n i v . Minn., A g r . Expt. S t a . Tech. B u i . 122. . 1938. D i r e c t i o n a l p e r m e a b i l i t y o f seasoned wood t o water and some f a c t o r s w h i c h a f f e c t i t . J o u r . A g r . Res., 56(10): 711-746. Esau, K. 1967. P l a n t Anatomy, 2nd ed. John W i l e y and Sons, I n c . N.Y. F e n g e l , D. 1966. Development a n d . u l t r a s t r u c t u r e o f b o r d e r e d p i t s i n P i n a c e a e . Svensk P a p p e r s t i d . , 6 9 ( 7 ) : 232-241. T r a n s l . Can. Dept. F o r e s t . R.D., ODF TR48. F l e i s c h e r , H.O. 1950. An a n a t o m i c a l comparison o f r e f r a c t o r y and e a s i l y t r e a t e d Doulgas - f i r heartwood. Amer. Wood P r e s . A s s o c . P r o c , 46: 152-157. Fogg, P . J . 1968. L o n g i t u d i n a l a i r p e r m e a b i l i t y o f s o u t h e r n p i n e wood. Ph. D. T h e s i s , L o u i s i a n a S t a t e U n i v e r s i t y . F r e n z e l , P. 1929. Uber d i e P o r e n g r o s s e n E i n i g e r P f l a n z l i c h e r Zellmembranen. P l a n t a , 8: 642-665. ( C i t e d by R. A. Megraw, 1967). F r e y - W y s s l i n g , A. 1959. Die p f l a n z l i c h e Z e l l w a n d . Springer - Verlag, B e r l i n . ( C i t e d by K. Esau, 1967).  99 , and H.H. B o s s h a r d . 1953. Uber den F e i n b a u der S c h l i e Bhaute i n H o f t u p f e l n . H o l z a l s Roh-und W e r k s t o f f , 11: 417-420. ( C i t e d by J . Bauch, W. L i e s e and F. S c h o l z , 1968). , H.H. Bosshard, and K. M u h l e t h a l e r . 1956. Die s u b m i k r o s k o p i s c h e E n t w i c k l u n g der H o f t u p f e l . [The s u b m i c r o s c o p i c development o f the b o r d e r e d p i t ] . P l a n t a , 4 7 ( 2 ) : 115-126. (Ger., E n g l . sum.). , and K. M u h l e t h a l e r . U l t r a s t r u c t u r a l Plant Cytology. E l s e v i e r P u b l i s h i n g Co. N.Y.  1965.  Frothingham, E.H. 1909. D o u l g a s - f i r : A s t u d y o f the P a c i f i c c o a s t and Rocky M o u n t a i n forms. U.S.D.A.., F o r . S e r v i c e , Washington, D.C, C i r c u l a r 150. G e r r y , E. 1915. F i b e r measurement s t u d i e s : l e n g t h v a r i a t i o n s , where t h e y o c c u r and t h e i r r e l a t i o n t o the s t r e n g t h and uses o f wood. S c i . , 61(1048): 179. G r i f f i n , G.J. 1919. B o r d e r e d p i t s i n D o u g l a s - f i r : A s t u d y o f the p o s i t i o n o f the t o r u s i n mountain and l o w l a n d specimens i n r e l a t i o n to creosote penetration. J o u r . F o r e s t r y , 1 7 ( 7 ) : 813-822. . 1924. F u r t h e r note on t h e p o s i t i o n o f the t o r i i n b o r d e r e d p i t s i n r e l a t i o n to penetration of p r e s e r v a t i v e s . J o u r . F o r e s t r y , 2 2 ( 6 ) : 82-83. Haddock, P.G., J . W a l t e r s , and A. Kozak. 1967. Growth o f c o a s t a l and i n t e r i o r provenances o f D o u g l a s - f i r [Pseudotsuga m e n z i e s i i (Mirb.) F r a n c o ] a t Vancouver and Haney i n B r i t i s h Columbia. F a c u l t y o f F o r e s t r y , U n i v . o f B.C., Research Papers No.79.  100 Haigh, R. W. 1961. The e f f e c t o f provenance and growth r a t e on s p e c i f i c g r a v i t y and summerwood p e r c e n t a g e o f young D o u g l a s - f i r . B.S.F. T h e s i s , U n i v . o f B r i t i s h Columbia. Harada, H., and Y. M i y a z a k i . 1952. The e l e c t r o n m i c r o s c o p i c o b s e r v a t i o n conifer tracheids. J o u r . Jap. F o r e s t r y S o c , 34: 350.  of the c e l l w a l l o f  H a r r i s , J.M 1953. Heartwood f o r m a t i o n i n P i n u s r a d i a t a (D. Don). N a t u r e , 172 (4377): 552. H a r t , C A . and R. J . Thomas. 1967. Mechanism o f b o r d e r e d p i t a s p i r a t i o n as caused by capillarity. For. Prod. J o u r . , 1 7 ( 1 1 ) : 61-68 . Hunt, G.M., and G.A. G a r r a t t . 1967. Wood p r e s e r v a t i o n . 3 r d ed. M c G r a w - H i l l Book Co., N.Y. I n t e r n a t i o n a l A s s o c i a t i o n o f Wood A n a t o m i s t s . 1964. M u l t i l i n g u a l g l o s s a r y o f terms used i n wood anatomy (Engl. vers i o n ) . I s e n b e r g , I.H. 1963. The s t r u c t u r e o f wood. I n : The c h e m i s t r y o f wood, e d i t e d by B.L. Browning. I n t e r s c i e n c e P u b l i s h e r s , N.Y. Jayme, G., G. Hunger, and D. F e n g e l . 1960. The e l e c t r o n m i c r o s c o p e p i c t u r e o f c e l l u l a r m i c r o s t r u c t u r e o f c l o s e d and u n c l o s e d p i t s i n c o n i f e r o u s woods. H o l z f o r s c h u n g , 1 4 ( 4 ) : 97-105. U.S.D.A., F o r . S e r v i c e , FPL, Madison, W i s . T r a n s l . No.424.  101 J u t t e , S.M., and B . J . S p i t . 1963. The s u b m i c r o s c o p i c s t r u c t u r e o f b o r d e r e d p i t s on t h e r a d i a l w a l l s o f t r a c h e i d s i n Parana p i n e , K a u r i and European spruce. H o l z f o r s c h u n g , 1 7 ( 6 ) : 168-175. Kaye, G.I., and N. Lane. 1967. A o n e - s t e p method f o r o r i e n t i n g t i s s u e d u r i n g embedding in plastic. S t a i n Technology, 4 2 ( 6 ) : 318-319. Kennedy, R.W., and C.K. Chan. 1970. T e n s i l e p r o p e r t i e s o f m i c r o s e c t i o n s p r e p a r e d by d i f f e r e n t microtomy t e c h n i q u e s . J o u r , o f t h e I n s t , o f Wood S c i . , 25:39-42. K i s h i m a , T. 1965. Review on t h e b o r d e r e d p i t s t r u c t u r e o f c o n i f e r o u s wood and the l i q u i d p e n e t r a t i o n . Wood Res., 34: 10-12. , and S. H a y a s h i . 1962. Ort t h e c l o s u r e o f b o r d e r e d p i t - p a i r s i n c o n i f e r o u s t r a c h e i d s . Wood Res., 27: 22-39. T r a n s l . Can. Dept. F i s h e r i e s and F o r e s t r y , OOFF TR6. Klinkenberg, L . J . 1941. The p e r m e a b i l i t y o f porous media t o l i q u i d s and gases. D r i l l i n g Prod. P r a c t . , pp. 200-213. Koran, Z. 1964. A i r p e r m e a b i l i t y and c r e o s o t e r e t e n t i o n i n D o u g l a s - f i r . F o r . Prod. J o u r . , 1 4 ( 4 ) : 159-166. Krahmer, R.L. 1961. A n a t o m i c a l f e a t u r e s o f permeable and r e f r a c t o r y D o u l g a s - f i r . F o r . Prod. J o u r . , 1 1 ( 9 ) : 439-441. , and W. A. Cote, J r . 1963. Changes i n c o n i f e r o u s wood c e l l s a s s o c i a t e d w i t h heartwood formation. TAPPI, 4 6 ( 1 ) : 42-49.  102 K r i b s , D.A. 1928. Length o f t r a c h e i d s i n j a c k p i n e i n r e l a t i o n t o t h e i r p o s i t i o n i n t h e v e r t i c a l and h o r i z o n t a l axes o f t h e t r e e . U n i v . Minn., A g r . Expt. S t a . Tech. B u i . 54. Lassen, L.E., and E.A. Okkonen. 1969. Sapwood t h i c k n e s s o f D o u g l a s - f i r and f i v e o t h e r w e s t e r n softwoods. U.S.D.A., F o r . S e r v i c e , FPL, Madison, W i s . Res. Paper No.124. Lee, H.N., and E.M. Smith. 1916. Douglas-fir f i b e r , with s p e c i a l reference F o r e s t r y Q u a r t e r l y , 14: 671-695.  t o length.  L i e s e , W. 1956. F i n e s t r u c t u r e o f b o r d e r e d p i t s i n c o n i f e r o u s woods. I n t e r n a t i o n a l Conference on E l e c t r o n M i c r o s c o p y , Proc. 550-554. London. A u s t r a l i a CSIRO, T r a n s l . No. 3621. . 1965. The f i n e s t r u c t u r e o f b o r d e r e d p i t s i n softwoods. I n C e l l u l a r U l t r a s t r u c t u r e o f Woody P l a n t s , ed. by W. A. Cote, J r . , pp. 271-290. Syracuse U n i v . P r e s s . , and J . Bauch. 1964. About t h e p e n e t r a b i l i t y o f t h e b o r d e r e d p i t s o f c o n i f e r s . D i e N a t u r w i s s e n S c h a f t e n 21:516. G r e a t B r i t a i n F o r . Prod. Res. Lab., T r a n s l . No. 124. . 1966. On t h e c l o s u r e o f b o r d e r e d p i t s i n c o n i f e r s . J o u r . Wood S c i . and T e c h n o l . , Quart. Rev. ( C i t e d by W. L i e s e and J . Bauch, 1967 b ) . . 1967 a. On t h e c l o s u r e o f b o r d e r e d p i t s i n c o n i f e r s . Wood S c i . and Tech., 1 ( 1 ) : 1-13.  103  . 1967 b. The e f f e c t o f d r y i n g o n t h e l o n g i t u d i n a l p e r m e a b i l i t y sapwood o f gymnosperms. ( S o u v e n i r f o r i n a u g u r a t i o n of l a b o r a t o r i e s , I n d i a n Plywood Ind. Res. Ass.). T r a n s l . Can. D e p t . F o r e s t . R.D., ODF TR318.  , a n d M. H a r t m a n - F a h n e n b r o c k . 1953. E l e c t r o n microscope i n v e s t i g a t i o n s of the bordered conifers. Biochimica et Biophysica Acta, 11(2): 190-198. A u s t r a l i a C S I R O , T r a n s l . No. 2220 .  of  pits  of  L i t t l e , E.L. J r . 1953. Check l i s t o f n a t i v e and n a t u r a l i z e d t r e e s o f U n i t e d States (including Alaska). A g r i c u l t u r a l handbook No. 41, F o r e s t S e r v i c e , W a s h i n g t o n , D. C.  Luft, J. 1961. Improvements i n epoxy r e s i n embedding methods. J o u r . B i o p h y s . B i o c h e m . C y t . , 9: 409-414.  M a r t s , R.O. Some s t r u c t u r a l d e t a i l s by phase c o n t r a s t . For. Prod. Jour., 5(5):  of  1955. Douglas-fir  pit  membranes  381-382.  M e g r a w , R. A . 1967. A hydrodynamic p a r t i c u l a t e approach size distribution. F o r . P r o d . J o u r . , 1 7 ( 1 1 ) : 29-38.  to  p i t membrane  M e y e r , R.W. 1971. I n f l u e n c e o f p i t a s p i r a t i o n on e a r l y w o o d of Douglas-fir. Wood a n d F i b e r , 2 ( 4 ) : 3 2 8 - 3 3 9 .  M i l l e r , D.J. 1961. P e r m e a b i l i t y of D o u g l a s - f i r i n Oregon. For. Prod. Jour., 11(1): 14-16.  pore  permeability  104 , and R.D. Graham. 1963. T r e a t a b i l i t y o f D o u g l a s - f i r from w e s t e r n U n i t e d Amer. Wood P r e s . A s s o c . P r o c . , 59: 218-222.  States.  N i c h o l a s , D.D. 1966. S t r u c t u r e and c h e m i c a l c o m p o s i t i o n o f t h e p i t membrane i n r e l a t i o n t o t h e p e r m e a b i l i t y o f l o b l o l l y p i n e (Pinus taeda L ) . Ph. D. T h e s i s , N o r t h C a r o l i n a S t a t e U n i v . Osnach, N.A. 1961. On t h e p e r m e a b i l i t y o f wood. Derev. Prom., 1 0 ( 3 ) : 11-13. T r a n s l . Can. Dept. F o r e s t . R.D., ODF P a n s h i n , A . J . , and C. DeZeeuw. Textbook o f wood- t e c h n o l o g y . M c G r a w - H i l l , N.Y.  TR99.  1970. V o l . 1.  Penhallow, D.P. 1907. Anatomy o f Gymnosperms, B o s t o n . ( C i t e d by H. N. Lee and E. M. Smith, 1916). P e t t y , J.A. 1970. P e r m e a b i l i t y and s t r u c t u r e o f t h e wood o f S i t k a Proc. Roy. Soc. Lond. B. 175: 149-166.  spruce.  , and R. D. P r e s t o n . 1969. The dimensions and number o f p i t membrane pores i n c o n i f e r wood. Proc. Roy. Soc. Land. B. 172: 137-151. , and G.S. P u r i t c h . 1970. The e f f e c t s od d r y i n g on t h e s t r u c t u r e and p e r m e a b i l i t y o f t h e wood o f A b i e s g r a n d i s . Wood S c i . and Tech., 4: 140-154. P h i l l i p s , E.W.J. 1933. Movement o f t h e p i t membrane i n c o n i f e r o u s woods, w i t h s p e c i a l reference t o p r e s e r v a t i v e treatment. F o r e s t r y 7: 109-120.  105 P r e s t o n , R.D. 1959. The f i n e s t r u c t u r e o f wood w i t h s p e c i a l r e f e r e n c e t o timber impregnation. Record o f t h e 1959 Ann. Conv. o f t h e B r i t . Wood P r e s . Assn. pp. 31-57. Resch, H., and B. A. E c k l u n d . 1964. P e r m e a b i l i t y o f wood e x e m p l i f i e d by measurements on redwood. For. Prod. J o u r . , 1 4 ( 5 ) : 199-206. R i c h a r d s o n , S.D. 1964. The e x t e r n a l environment and t r a c h e i d s i z e i n c o n i f e r s . I n t h e F o r m a t i o n o f Wood i n F o r e s t Trees, ed. by M. H. Zimmermann. Academic P r e s s , N.Y. pp. 367-388. Russow, E. 1883. Zur K e n n t n i s s des H o l z e s , i n s o n d e r h e i t des C o n i f e r e n h o l z e s . Bot. C e n t r a l b l a t t , V o l . V I I I . ( C i t e d by I . W. B a i l e y , 1913 b ) . Sachs, J . 1887. V o r l e s u n g e n Uber P f l a n z e n - P h y s i o l o g i e . Leipzig. ( C i t e d by I . W. B a i l e y , 1913 b ) .  2nd ed.  S a n i o , C. 1873. Anatomie d e r gemeinen K i e f e r (P. s y l v e s t r i s ) . J . W i s s . B o t . , 9: 50-126. ( C i t e d by J . Bauch, W. L i e s e and F. S c h o l z , 1968). S c a r t h , G.W. 1928. The s t r u c t u r e o f wood and i t s p e n e t r a b i l i t y . Paper Trade J o u r . , A p r . 16, pp. 228-233. Scheidegger, A.E. 1960. The p h y s i c s o f f l o w through porous media. U n i v . o f T o r o n t o P r e s s , Canada.  Revised  edition.  106 S e b a s t i a n , L.P., W. A. Cote, J r . , and C.Skaar. 1965. R e l a t i o n s h i p o f gas phase p e r m e a b i l i t y t o u l t r a s t r u c t u r e of white spruce. F o r . P r o d . J o u r . , 1 5 ( 9 ) : 394-404. Shepard, H.B., and I.W. B a i l e y . 1914. Variation i n length of coniferous fibers. P r o c . Soc. Amer. F o r . , 9:4. Siau, J.F. 1972. The e f f e c t o f specimen l e n g t h and i m p r e g n a t i o n time upon the r e t e n t i o n o f o i l s i n wood. Wood S c i . 4 ( 3 ) : 163-170. Smith, D.M. 1954. Maximum m o i s t u r e c o n t e n t method f o r d e t e r m i n i n g s p e c i f i c g r a v i t y o f s m a l l wood samples. U. S. FPL, Madison, W i s . Rept. No. 2014. Smith, D.N. 1963. The p e r m e a b i l i t y o f wood t o l i q u i d s and gases. Paper p r e s e n t e d a t 5 t h FAO Conf. on Wood Tech., Madison, W i s . , Sept., 1963. , and E. Lee. 1958. The l o n g i t u d i n a l p e r m e a b i l i t y o f some hardwoods and softwoods. Great B r i t a i n Dept. S c i . o f Indus. Res., F o r . Prod. Res. Spec. Rept. 13. H.M.S..O. London. Smith, D.N.R., and W.B. Banks. 1971. The mechanism o f f l o w . o f gases t h r o u g h c o n i f e r o u s wood. P r o c . Roy. Soc. Lond. B. 177: 197-223. Stamm, A . J . 1929. The c a p i l l a r y s t r u c t u r e o f softwoods. J o u r n . A g r i . Res., 3 8 ( 1 ) : 23-67.  107 . 1935. The e f f e c t o f changes i n t h e e q u i l i b r i u m r e l a t i v e vapor p r e s s u r e upon t h e c a p i l l a r y s t r u c t u r e o f wood. U. S. F o r e s t S e r v i c e , FPL, Rept. No. R 1075. _. 1946. Passage o f l i q u i d s , v a p o r s , and d i s s o l v e d m a t e r i a l s t h r o u g h softwoods. U,S.D.A. Tech. B u i . 929. . 1952. Surface properties of c e l l u l o s i c m a t e r i a l . I n Wood C h e m i s t r y , e d . by L. E. Wise and E. C. J a h n , 2nd e d i t i o n , V o l . 2: 769-792. R e i n h o l d Pub. Corp., N.Y. .  h963.  P e r m e a b i l i t y o f wood t o f l u i d s . F o r . P r o d . J o u r . , 1 3 ( 1 1 ) : 503-507. . 1964. Wood and C e l l u l o s e S c i e n c e . Ronald P r e s s Co., N.Y. . 1967. Movement o f f l u i d s i n wood. P a r t I : Flow o f f l u i d s . Wood S c i . and Tech., 1 ( 2 ) : 122-141. _. 1970 a. Maximum e f f e c t i v e p i t p o r e r a d i i o f t h e heartwood and sapwood o f 6 softwoods as a f f e c t e d by d r y i n g and r e s o a k i n g . Wood and F i b e r , 1 ( 4 ) : 263-269. . 1970 b. V a r i a t i o n s o f maximum t r a c h e i d and p i t pore dimensions from p i t h t o b a r k f o r Ponderosa p i n e and redwood b e f o r e and a f t e r d r y i n g d e t e r m i n e d by l i q u i d d i s p l a c e m e n t . Wood S c i . and Tech., 4:81-96.  108 • , S. W. C l a r y , and W.J. E l l i o t . 1968. E f f e c t i v e r a d i i o f lumen and p i t pores i n softwood. Wood S c i . , 1 ( 2 ) : 93-101. , and E. Wagner. 1961. D e t e r m i n i n g t h e d i s t r i b u t i o n o f i n t e r s t r u c t u r a l openings i n wood. For. Prod. J o u r . , 11(3) : 141-144. Stone, C D . 1939. A s t u d y on t h e b o r d e r e d p i t s o f D o u g l a s - f i r w i t h r e f e r e n c e t o t h e p e r m e a b i l i t y o f wood t o l i q u i d s . Ph. D. T h e s i s , U n i v . o f Washington, S e a t t l e . S t r a s b u r g e r , E. 1891. Uber den Bau und d i e V e r r i c h t u n g d e r L e i t u n g s bahnen i n den P f l a n g e n . H i s t o l o g i s c h e B e i t r a g e H I I I , Jena. ( C i t e d by G. B r a m h a l l , 1970). S u c o f f , E . I . , P.Y.S. Chen, and R.L. H o s s f e l d . 1965. P e r m e a b i l i t y o f unseasoned xylem o f n o r t h e r n w h i t e c e d a r . For. Prod. J o u r . 1 5 ( 8 ) : 321-324. Tamblyn, N. 1960. P e n e t r a t i o n o f c h e m i c a l s i n t o wood. 5th W o r l d F o r . Congress, S e a t t l e , Washington. Teesdale, C H . 1914. Relative resistance of various conifers t o i n j e c t i o n with creosote. U.S.D.A. B u i . No. 101. Thomas, R . J . 1967. The s t r u c t u r e o f t h e p i t membranes i n l o n g l e a f p i n e : An e l e c t r o n m i c r o s c o p e s t u d y . Amer. Wood P r e s . A s s o c . P r o c . 63: 20-29. . 1968. The development and u l t r a s t r u c t u r e o f t h e b o r d e r e d p i t membrane i n t h e s o u t h e r n y e l l o w p i n e s . H o l z f o r s c h u n g , 2 2 ( 2 ) j 38-44.  y  1 . 1969. The u l t r a s t r u c t u r e o f s o u t h e r n p i n e b o r d e r e d p i t membranes as r e v e a l e d by s p e c i a l i z e d d r y i n g t e c h n i q u e s . Wood and F i b e r , 1 ( 2 ) : 110-123. . 1970. O r i g i n o f b o r d e r e d p i t margo m i c r o f i b r i l s . Wood and F i b e r , 2 ( 3 ) : 285-288. , and D. D. N i c h o l a s . 1966. P i t membrane s t r u c t u r e i n l o b l o l l y p i n e as i n f l u e n c e d by s o l v e n t exchange d r y i n g . F o r . Prod. J o u r . , 1 6 ( 3 ) : 53-56. . 1968. The u l t r a s t r u c t u r e o f t h e p i n o i d p i t i n southern yellow pine. TAPPI, 5 1 ( 2 ) : 84-88. , and J . L . S c h e l d . 1967. The d i s t r i b u t i o n and s i z e o f t h e i n t e r t r a c h e i d p i t s i n e a s t e r n hemlock. F o r e s t S c i . 1 3 ( 1 ) : 85-89. Tiemann, H.B. 1910. The p h y s i c a l s t r u c t u r e o f wood i n r e l a t i o n t o i t s p e n e t r a b i l i t y by p r e s e r v a t i v e f l u i d s . Amer. R a i l . Eng. & M a i n t e n . o f Way A s s o c . B u i . 120 (App. D): 359-375. Tsoumis,G. 1965. L i g h t and e l e c t r o n m i c r o s c o p i c e v i d e n c e on t h e s t r u c t u r e o f t h e membrane o f b o r d e r e d p i t s i n t r a c h e i d s o f c o n i f e r s I n C e l l u l a r U l t r a s t r u c t u r e o f Woody P l a n t s , ed. by W. A. Cote, J r . , pp. 305-317. Syracuse U n i v . P r e s s . Tusko, F.F. 1963. A study o f v a r i a b i l i t y i n c e r t a i n D o u g l a s - f i r populations i n B r i t i s h Columbia. Ph. D. T h e s i s , U n i v . o f B r i t i s h Columbia.  Wardrop, A.B., and G.W. D a v i e s . 1961. Morphological factors r e l a t i n g t o the penetration o l i q u i d s i n t o wood. H o l z f o r s c h u n g , 1 5 ( 5 ) : 129-141. W e i s s , H.F. 1912. S t r u c t u r e o f commercial woods i n r e l a t i o n t o t h e injection of preservatives. Amer. Wood P r e s . A s s o c . P r o c . 8: 185-197. Wellwood, R.W. and J.G.H. Smith. 1962. V a r i a t i o n i n some i m p o r t a n t q u a l i t i e s o f wood from young Douglas f i r and hemlock t r e e s . U n i v . o f B r i t i s h Columbia, F a c . o f F o r e s t r y . Res. Pap. No. 50, 15pp. Yao, J . and A . J . Stamm. 1967. V a l i d i t y o f d e t e r m i n i n g p i t pore s i z e s i n softwoods surface tension resistance with flow rate. F o r . Prod. J o u r . , 1 7 ( 2 ) : 33-40.  Ill  APPENDIX I .  DEHYDRATION, INFILTRATION AND EMBEDDING  The wood specimen was d e h y d r a t e d s t e p w i s e i n a v i a l u s i n g a c e t o n e and p r o p y l e n e o x i d e a t room temperature a c c o r d i n g t o the f o l l o w i n g s c h e d u l e :  D e h y d r a t i n g Reagents  Time i n each change No. o f changes  50% a c e t o n e aqueous s o l u t i o n  15 min.  1  7 0 % a c e t o n e aqueous s o l u t i o n  15 min.  1  9 5 % a c e t o n e aqueous s o l u t i o n  60 min.  1  100% acetone  15 min.  3  100% p r o p y l e n e o x i d e  20 min.  3  Specimens i n t h e f i n a l change o f 100% p r o p y l e n e o x i d e were i n f i l t r a t e d by p a s s i n g t h r o u g h t h e L u f f s  (1961) Epon s e r i e s  i n p r o p y l e n e o x i d e , u n t i l pure Epon was r e a c h e d .  Infiltration  Reagents  Time  1:1 L u f f s Epon/propylene o x i d e  60 min.  2:1 L u f f s Epon/propylene o x i d e  60 min.  100% L u f f s Epon  overnight  F o r embedding, a s m a l l , coded paper l a b e l was i n s e r t e d i n t o a BEEM c a p s u l e w h i c h was d r i e d i n an oven f o r one hour a t 60°C. T h e r e a f t e r , t h e c a p s u l e was f i l l e d h a l f f u l l w i t h f r e s h Epon.  Luffs  P o s i t i o n i n g o f i n d i v i d u a l specimens i n c a p s u l e s was done  by u s i n g a minuten p i n and a s m a l l s t i f f paper d i s c (Kaye and Lane, 1967) as i l l u s t r a t e d a t 60°C f o r 36 h o u r s .  i n Figure I - l .  F i n a l c u r i n g was done  gure I - l . I l l u s t r a t i o n o f p o s i t i o n i n g o f wood specimen i n 'BEEM' c a p s u l e f i l l e d ;w/~jjj with,Epon The p a r t i a l assembly ready f o r l o w e r i n g i n t o the embedding medium ::>  The completed assembly ready f o r c u r i n g , t h e d i s c f l o a t s on t h e l i q u i d L u f t ' s Epon.-"^ a. b. c. d. e.  No.15 "miauten. p i n (Clay-Adams, Cat.No.E.81) S t i f f paper d i s c (6mm i n d i a m e t e r ) Wood specimen BEEM c a p s u l e L u f t s Epon 1  113  APPENDIX I I  Serial  STAINING  c r o s s s e c t i o n s o f Epon embedded m a t e r i a l  f o r l i g h t m i c r o s c o p y were p i c k e d up on a c o v e r s l i p and a i r d r i e d f o r s e v e r a l minutes. following, f i l t e r e d  They were t h e n s t a i n e d i n t h e  Solution:  Methylene b l u e c h l o r i d e  1 gm.  Sodium b o r a t e  1 gm.  D i s t i l l e d water  t o make 100 m l .  The f o l l o w i n g t e c h n i q u e c o n s i s t e n t l y gave s h a r p s t a i n ing  f o r p i t t o r u s and m i d d l e l a m e l l a . 1.  F l o o d o r immerse d r y embedded s e c t i o n s on c o v e r  slips  i n t h e above s o l u t i o n f o r 45 m i n u t e s . 2.  Wash t h o r o u g h l y  i n s e v e r a l changes o f d i s t i l l e d water  t o remove excess s t a i n . 3.  Dry s t a i n e d s e c t i o n s i n a i r .  4.  Mount i n permount.  5.  Cure f o r a p p r o x i m a t e l y 12 hours i n an oven a t 60°C.  114  APPENDIX I I I .  DEFINITIONS OF SYMBOLS  Symbol A a CC CV DF E IC L Len N P p AP> Perm R r S SD SEE T t Xf Xg Xtl Xca Xpa Xua Xtn Xsg Xmp Xma Yperm /  o" f af n  2  Definition Air-seasoned. Radius o f a s p i r a t e d a r e a (um). D o u g l a s - f i r sapwood from a c o a s t a l seed s o u r c e grown i n c o a s t a l environment. C o e f f i c i e n t of v a r i a t i o n . Degrees o f freedom. Earlywood. D o u g l a s - f i r sapwood from an i n t e r i o r seed s o u r c e grown i n c o a s t a l environment. Latewood. Specimen l e n g t h (cm). Number o f o b s e r v a t i o n s . Diameter o f p i t annulus (um). Radius o f p i t annulus (um). P r e s s u r e d i f f e r e n t i a l (cm Hg). " Longitudinal a i r permeability (darcys). Multiple correlation coefficient, Simp«le c o r r e l a t i o n c o e f f i c i e n t . Solvent-seasoned. Standard d e v i a t i o n . Standard e r r o r o f estimate. Diameter o f p i t t o r u s (um). Radius o f p i t t o r u s (um). E s t i m a t e d margo pore a r e a (um ). Observed margo pore a r e a (um ). L o n g i t u d i n a l t r a c h e i d l e n g t h (mm). P i t completely aspirated P i t p a r t i a l l y aspirated P i t u n a s p i r a t e d (%). Number o f t r a c h e i d s p e r square m i l l i m e t e r . Specific gravity. E s t i m a t e d margo pore a r e a (um ). Margo a r e a (um ). Weighted mean o f p e r m e a b i l i t y v a l u e s o f t h e f i r s t t h r e e l o n g e r specimen l e n g t h s ( d a r c y s ) . An e s t i m a t e o f the v a r i a n c e o f the a c t u a l d i s t r i b u t i o n . The square r o o t o f ^ f . 3.1416. 2  2  2  2  2  115  APPENDIX I V . MARGO AREA CALCULATION  F i g u r e IV-1.  Diagrammatic, r a d i a l  view of a bordered p i t  a = r a d i u s o f a s p i r a t e d a r e a (um) p = r a d i u s o f p i t annulus (um) t =? r a d i u s o f p i t t o r u s (um) 1 P Assume t = — .*. p = 2t I.  ,  a = —5 p  • •  ,  5 5 a = — ( 2 t ) = — T, where T = t o r u s o  o  diameter.  P a r t i a l l y a s p i r a t e d margo a r e a (um ) = [na 2-nt2] x % p a r t i a l l y a s p i r a t e d 2  =  II[(|T) -(^T) ]X% 2  2  o  z  partially aspirated  9 9 = — IT. T x % p a r t i a l l y a s p i r a t e d 54 2 II.  U n a s p i r a t e d margo a r e a (um ) = [ n P - n t ] x % unaspirated 2  2  = n [ ( j P)? - ( j T ) ] x % u n a s p i r a t e d 2  = ^ n  [P  2  - T ] x % unaspirated 2  I I I . T o t a l margo a r e a a v a i l a b l e t o f l o w (xna ) = 1 + 11 9 ? 1 2 o = — IT T x % p a r t i a l l y a s p i r a t e d + — n [P - T ] x % u n a s p i r a t e d . z  116 APPENDIX V.  THE ESTIMATION OF MARGO PORE SIZE BY  W. G. WARREN*  Attempts t o d e s c r i b e t h e data i n terms o f s i z e - b i a s e d s a m p l i n g from a s t a n d a r d d i s t r i b u t i o n were u n s u c c e s s f u l .  Several  s t a n d a r d forms i n c l u d i n g l o g n o r m a l , W e i b u l l , n e g a t i v e e x p o n e n t i a l , gamma and b e t a were c o n s i d e r e d .  Various aspects o f s i z e - b i a s e d  s a m p l i n g from such d i s t r i b u t i o n s were i n v e s t i g a t e d and w i l l be reported independently. data i n q u e s t i o n .  They do n o t appear a p p l i c a b l e t o t h e  The e m p i r i c a l t e c h n i q u e f i n a l l y chosen f o r  h a n d l i n g t h e s e d a t a i s d e s c r i b e d below.  I t i s assumed t h a t t h e p r o b a b i l i t y d e n s i t y f u n c t i o n o f fx  p o r e s i z e i s f ( x ) w i t h d i s t r i b u t i o n f u n c t i o n F ( x ) =/  f(t)dt.  Under t h e method o f s a m p l i n g , w i t h t h e p r o b a b i l i t y o f an i n d i v i d u a l ' s s e l e c t i o n b e i n g p r o p o r t i o n a l t o i t s s i z e , we s h a l l have an obs e r v e d d i s t r i b u t i o n whose d e n s i t y , g ( x ) , i s r e l a t e d t o t h e a c t u a l d e n s i t y by: g(x) = k x f (x) where k may be determined  (1)  from t h e f a c t t h a t  g(t) dt = 1 Thus f (x) d x  -1  (2),say.  * Research s c i e n t i s t , B i o m e t r i c s s e c t i o n , Western F o r e s t L a b o r a t o r y , Vancouver, B. C.  Products  117  L e t us denote t h e v a r i a n c e o f t h e a c t u a l d i s t r i b u t i o n by: °  2  = J  f  /"° o  (x-U )  2  f  f ( x ) dx  (3)  and t h e mean o f t h e o b s e r v e d d i s t r i b u t i o n by: /-OO U  g  =  Jo  X  g  ^  d  ^  X  Then, as i s w e l l known 2, Ug = u  f  + a /u f  (5)  f  To complete t h e n o t a t i o n , l e t t h e d i s t r i b u t i o n f u n c t i o n o f t h e o b s e r v e d d i s t r i b u t i o n be: G(x) = It follows  g(t) dt  that:  y* S M  d t =  yx  (6)  fit  )dt _ F ( x ) f  *  (7)  f  and thus  ^O  ^  X  H  Let the e m p i r i c a l d i s t r i b u t i o n f u n c t i o n o f the observed d i s t r i b u t i o n be:  G * ( x ) defined  from:  where t h e sample i s o f s i z e n,  \  i  n + 1 /  eSuppose s t i m a t e t hoaft G we ( x ) t,r asay G° n t ean gral: ck t h e(pxo)i.n t sWe ( may t h e ni approximate Jby some c t u rhvee ias  118 g(x)  dx x o by t a k i n g a s u c c e s s i o n o f v a l u e s o f x , say 8 , 2 8 , 3 8 , 4 8 8^ = i8 ,  ( 5 s m a l l ) so t h a t and use  G  0  (  8  .  +  1  )  -G°(5.  )  t o approximate g ( 8 ^  /8  +8/2),  and f i n a l l y form t h e sum:.  i  =  5 (5  1  ±  + 5/2)  (10)  The sum c a n be a s s u r e d f i n i t e by e x t r a p o l a t i n g t h e t r a c k i n g f u n c t i o n t o a t t a i n u n i t y f o r some f i n i t e v a l u e o f x . seems r e a s o n a b l e t o e s t i m a t e u ^ by 1 / S .  I t then  F u r t h e r , weronay e s t i m a t e  the d i s t r i b u t i o n f u n c t i o n F ( x ) b y : 1. S  G° ( .  2  t  i , 8 <x ±  + 1  ) - G°U.)  6 (s  ±  +  8  /2)  w h i c h can be c o n v e n i e n t l y a c h i e v e d , c o m p u t a t i o n a l l y , by s t o r i n g t h e p a r t i a l sums o b t a i n e d i n t h e c a l c u l a t i o n o f S.  The e s t i m a t e  o f t h e d i s t r i b u t i o n f u n c t i o n may be used t o p r o v i d e e s t i m a t e s o f any o t h e r p r o p e r t y , e.g. p e r c e n t i l e s , h i g h e r o r d e r moments e t c . , 2 however t o o b t a i n a n e s t i m a t e o f t h e v a r i a n c e , <r , i t would seem f  more c o n v e n i e n t t o s u b s t i t u t e i n e q u a t i o n ( 5 ) . Thus, of  ^2  = "I  x  - 77 I  (ID  where x i s t h e mean o f t h e o b s e r v a t i o n s . I n p r a c t i c e i t was found v e r y d i f f i c u l t t o t r a c k t h e data w i t h some r a t i o n a l f u n c t i o n .  119 The p o l y n o m i a l  ratio: P (x) =  ax + bx 1+cx +bx  (12)  (p(0) = 0, p ( x ) — 1 as x •—- « ) was s u c c e s s f u l f o r some data s e t s , b u t t h e s t a n d a r d n o n - l i n e a r l e a s t squares f i t computer package c o u l d n o t be r e l i e d on t o y i e l d an a c c e p t a b l e s o l u t i o n , even w i t h f a i r l y good i n i t i a l e s timates.  Note t h a t t o behave as a d i s t r i b u t i o n f u n c t i o n i t i s  r e q u i r e d t h a t a, b, c > 0, o t h e r w i s e p ( x ) may c o n t a i n a z e r o f o r x yo, be non-monotonic f o r x > o o r become i n f i n i t e f o r f i n i t e p o s i t i v e x , sometimes w i t h i n t h e range o f t h e d a t a .  T h e r e f o r e t o be c e r t a i n o f t r a c k i n g t h e d a t a , t h e "curve" chosen c o n s i s t e d o f s t r a i g h t l i n e segments between s u c c e s s i v e d a t a points. i "* 1  1  T h i s r e q u i r e s some e l a b o r a t i o n .  order s t a t i s t i c o f the observations.  L e t x_^ denote t h e Because o f t h e l i m i t a -  t i o n s o f measuring t h e r e may be s e v e r a l , s a y r , o b s e r v a t i o n s w i t h the same v a l u e , i . e . x . =  x  = x .  , .  I n such cases t h e  d a t a p o i n t was chosen a s :  The f i n a l l i n e segment was o b t a i n e d by e x t e n d i n g t h e l i n e between t h e l a s t two data p o i n t s , o b t a i n e d as j u s t d e s c r i b e d , u n t i l i t i n t e r s e c t e d t h e l i n e y = 1.  S i n c e i t i s convenient.ato t a k e 5 = 1  the a b s c i s s a f o r t h i s i n t e r s e c t i o n p o i n t was a p p r o p r i a t e l y rounded.  120 The e s t i m a t e s , as g i v e n by t h e computer program w r i t t e n t o the above p r e s c r i p t i o n , a r e p r e s e n t e d i n T a b l e 1.  The f o l l o w i n g i n -  formation i s given.  (i)  ID:  T h i s r e f e r s t o a s e r i a l number between 1 and 171 and  i s s i m p l y an i n t e r n a l c o d i n g t o e n a b l e q u i c k , unique i d e n t i f i c a t i o n of the data s e t .  (ii)  Code:  T h i s i s a l e t t e r number c o m b i n a t i o n such as I I 1 - 4 1,  CC2-7 9 e t c .  The f i r s t p a r t i n d i c a t e s t h e s o u r c e o f the m a t e r i a l  and t h e f i n a l number t h e photograph w i t h i n t h a t s o u r c e .  There  a r e t h r e e cases i n t h e I I 1 - 5 s e r i e s , and one under CC1-4  series,  where independent e s t i m a t e s have been o b t a i n e d from t h e same photograph.  I n o t h e r cases t h e same code number was g i v e n t o a  d i f f e r e n t photographs, i . e . a s e r i e s o f photographs from a s o u r c e was sampled a t one t i m e and a second s e r i e s from t h e same s o u r c e a t a l a t e r t i m e , b u t t h e same s e r i a l numbers were used.  This  one r e a s o n f o r the a d d i t i o n a l ID number.  (iii)  N:  The number o f pores measured on t h e photo.  (iv)  X : The mean o f t h e o b s e r v a t i o n s . I f the major and minor g axes o f a pore a r e a, b t h e n t h e o b s e r v a t i o n was t a k e n as Ft ab. To o b t a i n a c t u a l dimensions t h i s s h o u l d be d i v i d e d by 4 and d i v i d e d  by t h e a p p r o p r i a t e m a g n i f i c a t i o n f a c t o r , t h e same f o r a l l obs e r v a t i o n s from one photo b u t v a r y i n g s l i g h t l y f o r d i f f e r e n t photo's.  (v)  x  f  :  The v a l u e o f 1/S o b t a i n e d as d e s c r i b e d above.  This  i s an e s t i m a t e o f t h e a c t u a l average pore s i z e as opposed t o t h e observed average above.  The m a g n i f i c a t i o n f a c t o r and t h e d i v i s o r  4 (1 o f ( i v ) ) a r e a l s o r e q u i r e d here t o o b t a i n a c t u a l  (vi) ^ ^  :  (vii)  (viii)  dimensions.  An e s t i m a t e o f t h e v a r i a n c e as o b t a i n e d from e q u a t i o n ( 1 1 ) .  :  The square r o o t o f t h e q u a n t i t y d e s c r i b e d i n ( v i ) .  c v . : 'o^ e x p r e s s e d as a p e r c e n t a g e o f  x^.  *  *  The d a t a o f T a b l e V - l a r e summarized i n T a b l e V-2. The f o u r cases where independent e s t i m a t e s were o b t a i n e d from t h e same  *  photograph  are bracketed.  I n T a b l e V-2  t h e d a t a a r e summarized  by code, t h e s e r i e s o b t a i n e d a t d i f f e r e n t times b e i n g k e p t and a l s o combined.  separate  T a b u l a t e d a r e t h e maximum, minimum and average  o f t h e s e v e r a l x ^ v a l u e s f o r each s e t , and a l s o o f t h e c v . v a l u e s . For completeness  t h e number o f photos i n t h e s e t i s a l s o r e c o r d e d .  T a b l e V - l (See T a b l e VI-9) T a b l e V-2 (See Table VI-10)  122 This t a b u l a t i o n reveals a rather d i s t u r b i n g feature. estimates  The  x ^  from t h e two s e r i e s o f t h e code a r e , when a v a i l a b l e ,  g e n e r a l l y v e r y d i f f e r e n t ( g r e a t e r d i f f e r e n c e s t h a n c o u l d be a c c o u n t e d f o r by t h e v a r i a b l e m a g n i f i c a t i o n f a c t o r ) .  On t h e  o t h e r hand t h e f o u r cases where we have independent  estimates  from t h e same photograph show good agreement.  I t must be c o n -  cluded t h e r e f o r e , that t h e d i f f e r e n c e s r e f l e c t sampling e r r o r s -  consequent on a h i g h l y v a r i a b l e p o p u l a t i o n is,  f o r some r e a s o n , a t y p i c a l ) .  Accordingly  n a t i o n we c a n make w i t h any c o n f i d e n c e  ( o r t h a t a photograph the only  discrimi-  i s between groups I I I - 4 ,  I I I - 5 and I I I - 6 on one hand and a l l r e m a i n i n g groups on t h e o t h e r ( i n s u f f i c i e n t d a t a f o r I C l - 3 ) a l t h o u g h a f i n e r o r d e r i n g i s perhaps possible.  The i n t r o d u c t i o n o f c.v. adds t o t h e p i c t u r e ; f o r  example CC1-4 and IC2-7 have l o w and h i g h v a r i a n c e s t o t h e i r r e s p e c t i v e means. group.  i n relation  T h i s may be a c h a r a c t e r i s t i c o f t h e  123 APPENDIX V I . Table VI-1.  Data  S T A T I S T I C A L AND  for longitudinal  DATA TABLES  a i r permeability  Code  Len (cm)  AP (cmHg)  Perm (darcys)  Code  Len (cm)  AP (cmHg)  Perm (darcys)  CC 11 AL  3.61 3.05 2.53 2.03 1.58 1.14 0.73 0.47  5.93 5.68 5.01 3.63 3.43 2.84 2.20 1.64  2.13 1.78 1.91 2.38 2.12 2.62 1.77 1.97  CC 11 SL  3.63 3.15 2.62 2.13 1.67 1.18 0.71 0.48  5.93 5.73 5.01 3.65 3.09 2.81 2.07 1.57  1.67 1.48 1.36 2.28 3.08 3.16 3.28 3.32  CC 14 AE  3.58 3.07 2.59 2.04 1.61 0.98 0.65 0.46  5.97 5.76 5.01 3.57 3.43 2.90 2.21 1.64  0.68 0.98 0.47 0.65 0.63 0.26 0.26 0.9.1  CC 14 SE  3.66 3.12 2.60 2.07 1.61 1.16 0.69 0.48  5.59 5.32 4.56 3.32 2.87 2.47 1.86 1.36  12.08 11.81 11.45 11.41 10.87 9.08 7.49 5.17  CC . 15 AE  3.66 3.12 2.66 2.16 1.66 1.13 0.68 0.45  5.97 5.65 4.95 3.68 3.34 2.89 2.17 1.62  0.46 0.47 0.45 0.44 0.40 0.34 0. 50 1.43  CC 15 SE  3.62 3.15 2.65 2.09 1.63 1.18 0.68 0.44  5.59 5.30 4.56 3.32 3.12 2.58 1.93 1.34  9.58 9.75 9.86 10.26 10.23 9.12 6.08 4.51  ,  124  T a b l e V I - 1 (cont'd)  Code  Len (cm)  AP (cmHg)  Perm (darcys)  Code  Len (cm)  CC 22 AL  3.60 3.10 2.58 2.15 1.68 1.25 0.77 0.45  5.97 5.73 5.02 3.26 3.17 2.67 2.13 1.64  0.96 0.82 0.82 1.08 0.96 1.22 1.81 1.23  CC 22 SL  3.67 3.20 2.68 2.17 1.73 1.26 0.77 0.46  5.97 5.73 5.03 3.23 3.14 2.69 2.07 1.65  1.23 0.93 1.00 1.48 1.24 1.32 1.16 2.38  CC 25 AE  3.63 3.16 2.64 2.16 1.68 1.23 0.76 0.46  6.64 5.73 5.01 3.00 2.81 2.57 1.93 1.51  0.32 0.29 0.29 0.38 0.34 0.39 1.22 0.54  CC 25 SE  3.67 3.21 2.72 2.17 1.70 1.25 0.77 0.46  6.43 5.61 4.71 2.94 2.61 2. 32 1.66 1. 39  7.55 6.79 6.67 6.62 6.32 6.15 5.78 2.76  CC 27 AE  3.62 3.14 2.62 2.06 1.62 1.16 0.70 0.37  6.68 5.80 5.05 2.89 2.68 2.63 1.91 1.45  0.51 0.42 0.37 0.79 0.44 0.42 0.33 0.51  CC 27 SE  3.63 3.13 2.63 2.15 1.67 1.22 0.74 0.29  6.39 5.42 4.64 2.54 2.37 2.21 1.59 0.90  10.43 10.54 10.22 10.79 10.45 10.11 9.03 7.25  Perm AP (cmHg) ( d a r c y s )  T a b l e V I - 1 (cont'd)  Code  Len (cm)  AP (cmHg)  Perm (darcys)  Code  Len (cm)  IC 11 AL  3.62 3.12 2.63  5.87 5.77 5.01  1.27 1.24 1.28  IC 11 SL  3.63 3.19 2.74  5.82 5.77 5.05  0.98 0.82 0.82  1.21 0.75 0.48  2.78 2.07 1.05  1.98 2.02 1.46  1.26 0.74 0.51  2.71 2.08 1.03  1.61 1.38 2.09  3.63 3.16 2.61  6.08 5.74 5.06  0.72 0.48 0.51  3.62 3.19 2.74  6.02 5.77 5.02  4.69 4.65 4.60  1.20 0.74 0.47  2.98 2.04 1.12  0.96 0.53 0.66  1.24 0.75 0.47  2.77 2.08 1.08  5.28 4.14 4.84  3.64 3.16 2.65  5.91 5.45 5.01  1.21 0.88 0.69  3.62 3.10 2.60  5.72 5.52 4.56  8.71 8.49 8.19  1.05 0.75 0.44  2.35 2.07 1.09  0.58 0.24 0.35  1.15 0.64 0.47  2. 03 1.82 0.96  7.81 4.66 4.68  IC 13 AE  IC 15 AE  IC 13 SE  IC 15 SE  AP Perm (cmHg) ( d a r c y s )  T a b l e V I - 1 (cont'd)  Code  Len (cm)  AP (cmHg)  Perm (darcys)  Code  Len :(cm)  AP (cmHg)  Perm (darcys)  IC 21 AL  3.67 3.16 2.65 2.13 1.63 1.27. 0.84 0.57  6.56 5.77 5.03 4.49 2.89 2.57 1.99 1.48  0,76 0.65 0.76 0.74 0.67 0.59 0.51 0.56  IC 21 SL  3.64 3.19 2.69 2.18 1.65 1.30 0.85 0.56  6.61 5.85 5.01 4.25 2.86 2.52 2.01 1.45  0.75 0.74 0.82 0.90 0.84 0.65 0.55 0.52  IC 24 AL  3.66 3.14 2.59 2.13 1.60 1.30 0.84 0.51  6.73 5.80 5.03 4.19 2.97 2.60 2.04 1.41  0.77 0.72 0.72 0.66 0.61 0.60 0.60 0.50  IC 24 SL  3.68 3.19 2.69 2.16 1.60 1.22 0.81 0.53  6.75 5.82 5.01 4.22 2.95 2.58 2.05 1.40  1.32 1.63 1.49 2.13 1.45 1.00 1.33 1.01  3.65 3.16 2.62 2.10 1.61 1.20 0.79 0.52  7.06 5.74 5.02 3.37 3.06 2.52 2.07 1.45  0.42 0.34 0.34 0.34 0.30 0.27 0.26 0.37  IC 27 SE  3.64 3.12 2.62 2.09 1.65 1.19 0.83 0.50  6.59 5.40 4.56 3.19 2.73 2.19 1.83 1.25  8.18 8.46 8.31 7.77 8.07 7.27 5.13 4.71  27 AE  127 T a b l e VI-1  [cont'd)  Code  Len (cm)  AP (cmHg)  Perm (darcys)  Code  Len (cm)  AP (cmHg)  Perm (darcys)  II 14 AE  3.57 3.10 2.59 2.17 1.68 1.19 0.73 0.46  5.82 5.76 5.18 4.33 3.96 3.23 2.93 2.52  1.25 1.25 1.31 1.12 0.83 0.67 0.64 0.81  II 14 SE  3.57 3.10 2.63 2.19 1.68 1.17 0.70 0.49  5.85 5.62 5.14 4.24 3.82 3.21 2.86 2.46  6.91 7.13 7.22 7.51 6.74 5.98 4.46 3.13  II 15 AE  3.58 3.09 2.63 2.20 1.71 1.22 0.74 0.55  5.94 5.68 5.18 4.28 4.19 3.29 2.92 2.49  0.85 0.82 0.83 0.79 0.63 0.57 0.39 0.42  II 15 SE  3.58 3.15 2.67 2.19 1.65 1.18 0.73 0.47  5.71 5.65 5.11 4.19 3.76 3.12 2.75 2. 38  9.18 9.13 8.57 8.93 8.53 8.01 7.29 3.71  II 16 AE  3.60 3.11 2.66 2.20 1.68 1.19 0.73 0.47  5.78 5.67 5.17 4.31 3.96 3.27 2.89 2.47  0.45 0.54 0.34 0.55 0.39 0.34 0.31 0.35  II 16 SE  3.60 3.09 2.61 2.15 1.62 1.12 0.65 0.46  5.51 5.49 5.15 4.10 3.71 3.05 2.69 2.39  7.77 8.05 7.89 8.63 8.72 8.46 4.17 .2.63  II 25 AE  3.64 3.192.69 2.18 1.65 1.21 0.77 0.51  6.76 5.72 5.42 5.15 4.81 4.16 4.08 3.77  0.48 0.71 0.64 0.75 0.66 0.48 0.36 0.34  II 25 SE  3.57 3.09 2.62 2.17 1.68 1.20 0.75 0.50  5.72 5.62 5.12 4.28 3.97 3.15 2.78 2.41  9.20 7.74 6.57 7.19 6.59 7.98 4.27 3.18  II 33 AE  3.66 3.18 2.69 2.18 1.68 1.20 0.74 0.52  5.93 5.74 5.15 4.34 4.06 3.26 2.86 2.45  0.53 0.51 0.40 0.47 0.39 0.34 0.28 0.34  II 33 SE  3.60 3.20 2.69 2.15 1.66 1.16 0.71 0.43  5.70 5.64 5.09 4.18 3.69 3.08 2.64 2.17  7.39 6.64 6.31 6.46 6.95 7.39 5.82 4.22  128  T a b l e VI-2  P e r c e n t p o s i t i o n i n t h e r i n g and s p e c i f i c of p e r m e a b i l i t y specimens  Code  Percent  Position  Specific  CC11 CC14 CC15 CC22 CC25. CC27  L E E L E E  69.55 27.73 9.64 76.79 52.16 22.39  .5823 .2314 .3020 .6311 .3377 .2252  IC11 IC13 IC15 IC21 IC24 IC27  L E E L L E  69.82 51.58 19.91 93.10 63.40 16.30  .6622 .6198 .2778 .6629 .6725 .3107  1114 1115 1116 1125 1133  E E E E E  74.25 49.25 18.50 8.95 48.81  .3585 .2995 .3458 .3325 .3139  Gravity  gravity  T a b l e V I - 3 . T r a c h e i d l e n g t h and number o f p i t s p e r t r a c h e i d o f p e r m e a b i l i t y specimens T r a c h e i d l e n g t h (mm) Min. Ave. Max. S.D.  uoae  N  No. o f P i t s Per T r a c h e i d Max. S.D. Min. Ave.  1.31 1.21 0.88 0.98 0.56 1.06  2.64 2.34 2.37 2.65 2.46 2.34  3.92 3.25 3.46 3.69 3.42 3.46  0.57 0.50 0.49 0.63 0.61 0.55  112 82 105 112 112 116  6 32 21 3 3 9  19.45 56.80 51.19 15.15. 35.40 50.82  50 90 89 25 72 95  8.36 14.07 14.74 6.49 14.21 18.76  E  1.58 0.90 1.00 1.25 0.38 0.52  2.56 2.32 2.00 2.30 2.27 1.89  3.42 3.19 2.88 3.38 3.23 2.82  0.41 0.54 0.34 0.46 0.59 0.42  105 84 83 108 112 112  5 5 15 6 2 12  12.51 17.58 41.47 11.53 13.62 40.48  25 ,32 68 23 38 84  4.41 5.63 11.02 3.93 5.97 12.93  1114 E 1115 E 1116 E 1125 E 1133 E  1.58 1.58 2.00 1.56 1.52  3.11 2.76 2.89 2.59 2.68  4.00 3.58 3.96 3.50 3.60  0.45 0.48 0.41 0.41 0.47  105 112 112 112 105  35 43 35 45 11  73.72 92.80 97.37 86.28 69.48  126 166 180 131 118  19.32 22.12 24.68 20.91 25.11  ecu  L  CC14 CC15 CC22 CC25 CC27  E E  IC11 IC13 IC15 IC21 IC24 IC27  L  E E L  E E L L  130 Table VI-4.  P i t membrane p o s i t i o n s r e c o r d e d f o r a i r - s e a s o n e d and s o l v e n t - s e a s o n e d D o u g l a s - f i r p e r m e a b i l i t y specimens.  Code  N  % Asp. P i t  % Unasp. P i t  % P a r t . Asp. P i t  CC11AL 11SL 14AE 14SE 15AE 15SE 22AL 22SL 25AE 25SE 27AE 27SE  99 179 788 253 764 312 ;.168 219 645 228 496 294  66.67 10.61 99.11 4.35 100.00 6.73 77.38 21.00 100.00 3.51 100.00 8.84  9.09 70.95 0.13 61.26 0.00 60.58 14.29 59.82 0.00 84.21 0.00 59.52  24.24 18.44 0.76 34.39 0.00 32.69 8.33 19.18 0.00 12.28 0.00 31.63  IC11AL 11SL 13AE 13SE 15AE 15SE 2 IAL 21SL 24AL 24SL 27AE 27SE  205 182 231 194 808 666 182 233 49 239 1313 1028  44.88 7.69 93.94 6.70 100.00 2.55 54.40 4.72 57.14 25.10 99.01 1.75  18.05 69.23 1.30 74.74 0.00 61.11 2 3.08 82.40 20.41 48.95 0.00 70.04  37.07 23.08 4.76 18.56 0.00 36.34 22.53 12.88 22.45 25.94 0.99 28.21  II14AE 14SE 15AE 15SE 16AE 16SE 25AE 25SE 33AE 33SE  215 446 556 370 914 503 835 368 720 476  96.74 1. 57 99.64 1.62 ,97.70 1.39 98.92 1.09 100.00 1.26  0.93 81.84 0.00 74.32 0.55 76.94 0.24 85.05 0.00 86.34  2.33 16.59 0.36 24.05 1.75 21.67 0.84 13.86 0. 00 12.39  131 T a b l e V I - 5 . Average r a d i a l w a l l t h i c k n e s s o f D o u g l a s - f i r permeability  specimens  Code  N  Ave. R a d i a l W a l l T h i c k n e s s  CC11AL 11SL 14AE 14SE 15AE 15SE 22AL 22SL 25AE 25SE 27AE 27SE  8 8 8 8 8 8 8 8 8 8 8 8  4.00 4.40 1.60 1.60 1.00 0.80 4.40 3.60 2.20 2.40 1.00 1.20  IC11AL 11SL 13AE 13SE 15AE 15SE 21AL 21SL 24AL 24SL 27AE 27SE  8 8 8 8 8 8 8 8 8 8 8 8  4.40 4.60 2.40 2.40 1.60 1.60 4.00 4.40 4.00 4.00 1.60 1.80  II14AE 14SE 15AE 15SE 16AE 16SE 25AE 25SE 33AE 33SE  8 8 8 8 8 8 8 8 8 8  2.40 2.40 2. 20 2.20 1.80 1.60 1.80 1.60 1.80 2.00  (um)  132 T a b l e V I - 6 . Average t r a c h e i d d i a m e t e r and number o f t r a c h e i d s p e r square m i l l i m e t e r  Ave. No. o ^ T r a c h e i d s p e r mm  Code  N  Ave. Rad.Trache i d Diam. (vim)  Ave. Tang.Trache i d Diam. (um)  CC11AL CC11SL CC14AE CC14SE CC15AE CC15SE CC22AL CC22SL CC25AE CC25SE CC27AE CC27SE  8 8 8 8 8 8 8 8 8 8 8 8  27.20 27.20 36.80 38.40 38.40 38.40 24.00 22.40 33.60 33.60 40.00 36.80  33.00 34.80 34.40 35.20 40.00 36.20 34.00 34.80 36.80 33.60 35.20 40.00  1114 1056 789 739 651 719 1225 1282 808 885 710 679  IC11AL IC11SL IC13AE IC13SE IC15AE IC15SE IC21AL IC21SL IC24AL IC24SL IC27AE IC27SE  8 8 8 8 8 8 8 8 8 8 8 8  21. 20 22.40 28.80 28.80 32.00 35.20 20.80 20.00 24.00 25.00 27.20 28.80  28.80 26.80 28.00 27.20 33.60 32. 00 27.20 28.00 28.80 29.40 28.80 29.40  1637 1665 1240 1276 930 887 1767 1785 1446 1360 1276 1181  II14AE II14SE II15AE II15SE II16AE II16SE II25AE II25SE II33AE II33SE  8 8 8 8 8 8 8 8 8 8  27.58 28.05 30.49 30.20 33.35 34.49 34.96 35.02 30.49 32.01  28.75 28.39 27.67 27.55 29.37 28.76 25.34 24.95 26.97 25.85  1261 1255 1185 1201 1020 1008 1128 1144 1216 1208  133 T a b l e VI-7A.  Average d i a m e t e r s o f p i t a n n u l i o f s o l v e n t seasoned D o u g l a s - f i r p e r m e a b i l i t y specimens  Code  N  Min.(um)  Ave.(um)  Max.(um)  S.D.  CV.  5 9 '3 1 15 14  11.41 15.85 17.89 15.07 12.86 16.25  12.53 17.65 18.01 15.07 16.20 18.84  13.10 19.07 18.19 15.07 17.73 21.62  0.669 1.253 0.161 0.0 1.290 1.361  5.34 7.10 0.89 0.0 7.96 7.23  IC11SL IC13SE IC15SE IC21SL IC24SL IC27SE  7 5 29 2 4 16  11.46 12.28 15.34 9.56 10.39 14.66  12.16 14.54 17. 38 9.97 12.08 16.44  13.10 16.90 19.17 10.39 13.53 18.72  0.565 1.870 0.953 0.587 1.329 1.271  4.64 12.86 5.48 5.88 11.00 7.73  II14SE II15SE II16SE II25SE II33SE  8 19 15 20 23  13.95 15.65 14.73 16.18 14.63  15.21 17.04 17.11 17.91 17.48  16.71 18.47 19.29 19.75 19.21  0.877 0.882 1. 305 1.041 1.058  5.77 5.18 7.62 5.81 6.05  CC11SL CC14SE CC15SE CC22SL CC25SE CC27SE  v  134  T a b l e VI-7B.  Average d i a m e t e r s o f p i t t o r i o f s o l v e n t - s e a s o n e d D o u g l a s - f i r p e r m e a b i l i t y specimens  N  Min.(um)  Ave.(um)  5 9 3 1 15 14  5.11 6.96 7.89 5.18 6.01 7.12  5.98 8.16 8.36 5.18 7.74 8.50  5 IC11SL IC13SE 5 IC15SE 29 2 IC21SL IC24SL 3 IC27SE . 16  5.16 5.58 7.12 4.73 5.15 6.72 7.15 7.41 7.16 8.00 7.00  Code CC11SL CC14SE CC15SE CC22SL CC25SE CC27SE  II14SE II15SE II16SE II25SE II33SE  8 19 15 . 20 23  Max.(um)  S.D.  CV.  6.70 9.41 8\ 77 5.18 8.94 10.49  0.602 0.811 0.444 0.0 0.724 0.720  10.07 9.93 5.31 0.0 9.35 8.47  5.84 6.78 8.21 5.50 6.49 7.94  6.36 7.57 9.76 6.28 7.16 8.72  0.463 0.919 0.673 1.096 1.158 0.567  7.93 13.55 8.19 19.91 17.85 7.13  7.99 8.52 8.84 8.87 8.27  9.61 9.31 9.95 10.15 9.16  0.807 0.484 0.816 0.654 0.583  10.10 5.69 9.23 7.37 7.05  135  T a b l e VI-7C.  Average d i a m e t e r s o f p i t a p e r t u r e s o f s o l v e n t seasoned D o u l g a s - f i r p e r m e a b i l i t y specimens  Code  N  Min.(um)  Ave.(um)  Max.(um)  S.D.  C.V.  CC11SL CC14SE CC15SE CC22SL CC25SE CC27SE  1 8 3 1 15 14  4.15 4.59 5.64 4.95 4.48 4.66  4.15 6.11 5.83 4.95 5.94 6.20  4.15 6.96 5.98 4.95 7.15 8.24  0.0 0.844 0.175 0.0 0.691 0.915  0.0 13.80 3.00 0.0 11.64 14.75  IC11SL IC13SE IC15SE IC21SL IC24SL IC27SE  1 3 14 1 1 12  3.26 3.72 3.99 3.30 3.96 4.59  3.26 4.21 5.28 3.30 3.96 5.25  3.26 5.02 5.82 3.30 3.96 5.91  0.0 0.709 0.577 0.0 0.0 0.445  0.0 16.85 10.91 0.0 0.0 8.46  II14SE II15SE II16SE II25SE II33SE  1 3 1 3 4  3.63 4.03 5.14 4.24 4.85  3.63 4.45 5.14 4.57 5.27  3.63 4.71 5.14 4.88 5.71  0.0 0.367 0.0 0.320 0.413  0.0 8.25 0.0 7.01 7.82  T a b l e VI-7D.  Average r a d i a l l y o r i e n t e d and randomly o r i e n t e d  microfibril  d i a m e t e r s o f s o l v e n t - s e a s o n e d D o u l g a s - f i r earlywood p e r m e a b i l i t y specimens  Code  N  Radially Oriented M i c r o f i b r i l Diameter (um) Min. Max. Ave. S. D. C. V.  Randomly O r i e n t e d M i c r o f i b r i l Diameter (um) Max. Min. Ave. S. D. C. V.  CC14SE CC15SE CC25SE CC27SE  20 10 55 40  0.04 0.04 0.04 0.04  0.05 0.05 0.05 0.05  0.06 0.06 0.05 0.06  0.005 0.005 0.003 0.004  10.31 9.43 . 5.93 7.74  0.04 0.05 0.04 0.04  0.05 0.05 0.05 0.05  0.06 0.06 0.05 0.05  0.005 0.004 0.005 0.005  10.90 8.11 10.62 9.88  IC13SE IC15SE IC27SE  25 65 25  0.04 0.04 0.04  0.05 0.05 0.05  0.06 0.07 0.06  0.004 0.005 0.006  8.59 9.42 11.25  0.04 0.04 0.04  0.05 0.05 0.05  0.06 0.07 0.06  0.005 0.006 0.005  10.00 11.02 10.28  II14SE II15SE II16SE II25SE II33SE  25 25 10 20 35  0.04 0.04 0.04 0.04 0.04  0.05 0.05 0.05 0.05 0.05  0.06 0.06 0.05 0.06 0.06  0.005 0.005 0.003 0.003 0.004  10.99 10.99 6.45 66.49 7.70  0.04 0.04 0.05 0.04 0.04  0.05 0.05 0.05 0.05 0.05  0.05 0.05 0.05 0.05 0.06  0.005 0.005 0.000 0.003 0. 005  10.77 10.87 0.11 6.28 9.86  137  T a b l e VI-7E.  Code  Average margo a r e a s o f s o l v e n t - s e a s o n e d D o u g l a s - f i r earlywood p e r m e a b i l i t y  specimens  2  2  Ave. Margo A r e a (um )  Combined A r e a (um ) <  CC14SE  127.53  CC15SE  132.30  CC25SE CC27SE  136.67  IC13SE  101.34  IC15SE  123.42  IC27SE  121.54  II14SE  113.15  II15SE  134.29  II16SE  138.73  II25SE  166.79  II33SE  164.69  134.87 i  142.99  115.43  143.53  T a b l e V I - 8 . Average r a d i a l and t a n g e n t i a l margo pore r a d i i o f s o l v e n t - s e a s o n e d D o u g l a s - f i r e a r l y w o o d p e r m e a b i l i t y specimens R a d i a l Pore R a d i i (um)  T a n g e n t i a l Pore R a d i i  ID  Code  N  Min.  Ave.  Max.  S.D.  C  30 31 35 36 37 38 39 40 41 42 43  CC14SE  65 62 93 47 68 84 74 47 53 63 73  .027 .027 .049 .072 .049 .049 .049 .024 .074 .049 .048  .325 .360 .324 .272 .299 .284 .205 .207 .295 .247 .219  1.033 1.033 1.299 .531 1.176 1.225 .878 .922 .931 .927 .918  .260 .250 .255 .138 .239 .244 .157 .178 .190 .206 .185  44 45 46  CC15SE  80 70 52  .049 .025 .074  .294 .239 .322  .858 .980 .784  .187 .173 .215  5 6 7 8 47 48 49 50 51 52 53 54 55 56 57  CC25SE  52 51 54 51 53 47 29 76 68 67 50 50 61 65 69  .024 .023 .024 .024 .025 .025 .049 .025 .025 .025 .025 .025 .025 .024 .024  .415 1.179 . 358 1.019 .471 1.509 .518 1.321 .254 1.084 . 208 .837 .188 .419 .484 1.478 .665 .225 .181 .665 . 301 .985 .226 1.078 .858 .229 .756 .196 . 332 1.184  II II II  " II II II II II II  II  "  II II II II II II II II II II  " it II  (um)  Min.  Ave.  Max.  S.D.  C. V.  80.014 69.440 78.675 50.751 79.860 86.059 76.842 86.193 64.355 83.185 84.568  .054 .027 .049 .024 .049 .025 .049 .024 .025 .024 .024  .138 .161 .159 .124 .137 .129 .105 .103 .124 .119 .107  .326 .435 .441 .290 . 368 .441 .341 .218 .294 .317 . 362  .073 .100 .076 .068 .064 .079 .060 .058 .072 .075 .079  53.412 62.212 47.569 54.631 46.942 61.344 57.613 55.756 57.712 63.217 73.681  63.535 72.360 66.715  .049 .025 .025  .153 .114 .140  . 368 .343 . 343  .085 .072 .089  55.411 62.567 63.820  .328 79.071 .303 84.481 .339 72.056 .409 78.908 .254 100.149 .161 77.624 .119 63.459 .428 88.424 .156 69.433 .148 82.196 .268 89.143 .194 85.690 .176 77.176 .153 77.918 .304 91.611  .024 .023 .024 .024 .025 .025 .025 .025 .025 .025 .025 .025 .025 .024 .024  .137 .150 .122 .158 .114 .115 .092 .149 .110 .087 .114 .112 .106 .095 .123  .330 .417 .259 .401 .320 .320 .246 .394 .296 .271 .296 . 319 .319 .220 . 338  .085 .095 .065 .098 .068 .083 .052 .102 .068 .055 .093 .072 .074 .054 .075  61.898 63.295 53.125 61.990 59.917 72.610 56.460 68.248 61.528 62.620 81.446 64.242 69.795 57.407 60.940  V.  Table V I - 8 ( c o n t ' d )  9 10 11 12 58 59 60 61 62 63 64 65 66 67 175 34 13 14 15 16 17 18 19 20 21 68 69 70 71 72 73 74 75 76 77 78 79 80 Rl  CC27SE II II II II II II II II II II II II II  IC13SE IC15SE II II II II II II II II II II II  » II II  » II II II II II II II II  44 44 49 62 74 77 93 94 102 92 65 70 47 68 28 45 46 46 71 72 62 61 58 63 79 24 56 56 64 61 60 50 68 68 70 55 58 68  .098 .072 .049 .048 .024 .049 .025 .024 .025 .024 .024 .025 .049 .025 .073 .054 .059 .024 .024 .024 .024 .048 .024 .072 .048 .025 .049 .024 .024 .025 .024 .025 .024 .024 .024 .024 .024 .024  .777 .536 .450 .173 .185 .301 .593 .254 .290 . 555 .286 . 335 .291 .239 .294 .377 .485 .230 .357 .323 . 347 .319 .203 .237 .373 .200 .521 .317 .201 .263 .288 .274 .343 .316 .403 .442 .378 . 224 r  4fi  1.863 1.683 1.029 .673 .683 1.103 1.863 .927 1.863 2.000 1.304 1.422 1.512 1.275 .922 1.141 1.176 .793 1.214 1.058 1.442 1.514 1.010 1.106 1.538 .739 1.505 .966 .732 1.275 1.238 .931 1.739 1.135 1.268 1.505 1.268 .878 "1 _ 7fiR  .474 60.944 .417 77.721 .243 53.918 .117 67.952 .121 65.573 .245 81.140 .520 87.656 .191 75.141 .290 100.064 .478 86.097 .251 87.825 .318 94.763 .268 92.285 .231 96.594 .221 75.109 .295 78.125 .290 59.746 .164 71.372 .246 68.882 .221 68.490 .344 99.162 .240 75.198 .162 79.948 .204 85.915 .288 77.223 U 6 4 82.147 .412 78.944 .293 92.410 .158 78.755 .252 95.776 .261 90.542 .236 86.163 .385 112.275 .261 82.543 .330 81.899 .402 90.883 .316 83.693 .206 92.007  .049 .048 .025 .024 .024 .025 .025 .024 .025 .024 .024 .025 .024 .025 .024 .054 .059 .024 .024 .024 .024 .024 .024 .024 .048 .025 .024 .024 .024 .025 .024 .025 .024 .024 .024 .024 .024 .024  . 09 5  .211 .179 .169 .108 .100 .151 .228 .134 .142 .209 .124 .133 .109 .093 .101 .141 .178 .099 .125 .116 .116 .128 .107 .104 .169 .084 .143 .148 .089 .128 .116 .129 .125 .128 .161 .161 .156 .113 . 1 If,  .466 .457 .392 .337 .244 .417 .662 . 537 .515 .683 .338 .294 .244 .319 .194 .380 .353 .264 .340 .288 .288 .409 .337 .337 .385 .296 .364 .652 .244 .490 . .316 .466 .435 . 314 .439 .364 .512 .415 . 392  .107 .102 .087 .065 .055 .109 .178 .110 .106 .162 .079 .077 .059 .068 .058 .074 .089 .066 .077 .065 .071 .085 .069 .075 .083 .064 .099 .124 .059 .124 .082 .105 .107 .086 .103 .104 .123 .103 . 104  50.834 57.166 51.546 60.190 55.304 72.316 77.759 81.968 74.829 77.271 63.486 57.390 54.393 73.224 57.175 52.778 50.305 66.668 61.626 55.884 61.398 66.157 64.060 72.032 48.979 76.184 69.215 83.783 65.909 97.000 70.879 81.551 85.066 67.034 64.291 64.467 78.802 90.816 58-9 59  Table VI-8 (cont'd) 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 22 23 24 25 26 103 104 105 106 107 108 109 110  IC15SE II II II  n IC27SE II  " II II II II II II II  it II II  n II II  II14SE n II II II II II II  n II II II  n  55 45 62 44 75 36 42 48 40 42 33 45 48 73 65 69 48 53 57 28 56 30 40 54 54 25 51 41 48 41 29 24 24 26  .024 .024 .024 .024 .024 .025 .024 .025 .024 .024 .025 .025 .025 .025 .049 .024 .025 .024 .024 .049 .025 .046 .046 .023 .023 .023 .025 .024 .024 .024 .025 .025 .024 .024  .275 .191 .436 .249 .398 .398 .240 .523 .459 .296 .836 .269 .551 .434 .623 .569 .227 .550 .348 .644 .434 .179 .116 .191 .267 .170 .165 .183 .111 .095 .149 .134 .053 .066  .732 .634 1.401 .878 1.171 1.275 .829 1.773 1.262 .874 1.422 .985 1.576 1.626 1.626 1.707 .784 1.562 1.739 1.373 1.527 .486 .278 .972 .833 .556 .735 .966 .338 .463 .441 . 343 .097 .121  .202 73.246 .162 85.118 .377 86.587 .199 79.961 .295 74.075 92.470 .368 .208 86.448 .431 82.363 .392 85.298 .255 86.078 .437 52.262 .256 95.181 .418 75.993 . 376 86.735 .447 71.873 .463 81.288 .179 78.988 .437 79.426 .355 1 0 2 . 0 4 1 .442 68.587 .394 90.767 .116 65.049 .061 52.457 90.854 .174 .192 71.962 .120 70.478 .158 95.338 .171 93.451 .081 72.967 .104 1 0 9 . 4 4 1 .107 71.814 .091 68.332 .029 55.024 44.620 .029  .024 .024 .024 .024 .024 .025 .024 .025 .024 .024 .025 .025 .025 .025 .025 .049 .025 .024 .024 .025 .025 .046 .046 .023 .023 .023 .025 .024 .024 .024 .025 .025 .024 .024  .130 .105 .159 .116 .153 .142 .109 .168 .132 .121 .178 .112 .159 .169 .218 .207 .105 .141 .135 .205 .146 .098 .067 .083 .113 .066 .068 .076 .053 .048 .056 .068 .034 .044  .537 .293 .507 .244 .406 .392 .317 .468 .413 .388 .417 .369 .567 .443 .591 .439 .294 .342 .386 .417 .443 .185 .139 .231 .347 .139 .221 .266 .121 .195 .147 .147 .097 .097  .100 .074 .114 .074 .107 .101 .078 .126 .107 .096 .097 .099 .108 .115 .136 .122 .066 .082 .091 .129 .105 .038 .024 .045 .085 .038 .046 .055 .028 .038 .040 .033 .017 .025  76.645 70.776 71.781 63.240 69.687 71.195 71.577 74.884 81.100 79.019 54.801 88.123 67.678 67.944 62.429 58.895 62.743 58.108 67.270 62.746 71.880 38.583 35.614 53.971 75.472 57.212 68.472 71.974 52.215 78.813 71.332 48.382 50.632 56.457  141  Or^vocNCOOcNCTir^H^^voincNvocNcncnc<ocOr-CO ro m vo vo ro a ^ v o c N v o r o u j ^ O L n c N v o H r ^ r - i v o c o c o  h H H O n C 0 r | H ( N ( D ^ ^ r ^ c N O m o r ^ r ^ v o v o c r i i n r o ocricococNCOcriinHcNvovo  H r o L n o j v o o o c o r M C N i n c M ^ ^ r ^ c n c o c N r o i n i n o i vovovovor^voin^r^ininincninuninLnkOLOLnvoin  r ^ H v o H r o m o c M ^ v o r ^ m oomininin'^'vovoinLnvoin  c M r ^ ^ f T i C O r o H O O r o r o r ^ c N c n c n i ^ v o o ^ c n c n v o ^ ^ ^ r o ^ r o ^ ^ i ^ ^ ^ c N ^ C N r v j r o ^ ^ r o ' ^ ' ^ r o  M m o o o M h O ^ i i i H O inoiro^rocNCMrocM'sJ'm'*  o o o o o o o o o o o o  o o o o o o o o o o o o o o o o o o o o o o  vo co i n ^ v o c r i C O C N i ^ o v o r ^ O H r ^ v o H i n o i H c T i r N i H O C D ^ r o r o o o D c y i c N c n ^ r ^ c N ^ c n c o c n r ^ < N H r ~ M ( N H H ( N H ( N 0 1 ( N f > ) r l H ( N H H r H H H H O i f O r H  H  r^^cocMcninHCMr^cMCOH'*'=l HCMO'Nt incoLno vor^vovovoinrooocncor^in^ininvocovovocor^vo  Ovoror-r^cO'^comcriLnro  ,  ,  o o o o o o o o o o o o o o o o o o o o o o  ^ o o r o ^ ^ r o r o r o i n ^ i n i n L n ^ t n i n r o ^ i n i n L n i n CMCMCMCMCMCMCNCNCNCMCMCMCMCNCMCMCNCNCMCNCMCM  cn CM ro ro CN VO O tn CM cM'*vor^cMcncMr^'«tcN'*r^ C N I - I H H I - I O I - I I - I I - I C M O J H  o o o o o o o o o o o o i n i n ^ i n i n ^ m i n ^ ^ f i n i n CMCNCMCMCMCMCMCMCMCMCMCM  o o o o o o o o o o o o o o o o o o o o o o  o o o o o o o o o o o o  vocMOOcoinvoocMCMCNCMcovoHinor~-vocMvocniH HiHCMr^OLn<HcnrHCM<Ti ^voinr~>cMvocMt --r^Or^ rocMroiDCTiin^cNr^cMvovoincMr^COOvocriCNvoro  (NOcO( ^(J>o^^f^oo^^  ,  s  i n r o ^ r ^ i n G o r o i ^ c n i n ^ ^ c N O o o i n L n r o c M r o o r - vor^r^or^vor^vor-^^vovocMr^covovocor^vovO'vJ'  o ^ c o N i n c o ^ o o c o o c o ^ m ^ i n c n H ^ f f i H ' *  ,  criLnooinroHcnin^oinroco •H CO i n v o r o y 3 H C O i H r - ~ O C M o t ^ H H C T i r o r ^ k O c n r ^ r ^ r ^ cMvocoinincotncrimvor^vo H c n v o c M c n ^ c N O ^ m c o c M H  OHCoraovocNOr-'incnvOiHvooovOrHOOcnHcriro H H O H H O r H H H O O O r H O O O i H O O H O O  H O O O O O O O O O O O  < T i C M ^ r ^ i n H C M ^ r o ^ o o o v o o ^ o o i r - - C M C O r ~ - i > OOcnHCMOrovoro^o^vooocrivor^cNrocncOrH'Nl ^ v o r o c o ^ r o i n L n c o c M ^ r o v o c M i n c M ^ i n r o i n s l ' H  C M ^ f l O ^ H C v i r j i n ' ^ o i r o o vocnroc?iCMvor--H Nt ro^rcri  rokocooicncncoorocncninncMincncMr^a^cnOrH LOinHvorocnvoiniHCNcoo<Tio>cn<j^oDcncM03inr-H H i H H H O r H r H C M H t H r H O O O O i H O H r H H O  " v f r o ^ r o L n ^ i H v o c M O c n m CNOOvOiHr-r--r--COO irOiHro H - O O H O O O O O H H H  s f o i n ^ ^ n n c i i n ^ i n t n i r i ^ i n i n n ^ f m i n i r i i n CMCNCNCMCMCMCMCNCMCMCMCMCMCMCNCMCMCMCNCNCMCN O O O O O O O O O O O O O O O O O O O O O O  m i n ^ f i n i r i ' ^ i r i i n ^ ^ ' i n i n CMCNCNCNOJCMCNCMCMCMCMCM O O O O O O O O O O O O  c M i n c o c N ^ r ^ r ^ ^ c O i H c n r o t ^ r ~ v o c o r o ^ H O > D O  n o O v D ^ i ^ ^ H ^ L O k D r - C ^ rom^fmroro^fLn^l'voLnm  co m  co vo .H H H  >  1  HCMro^r^cocriHCMro^t<invor^cocM'*ino iOHro CMCMCMHrHHrHHHrHHCMCMCMHCMCMCM iHHiHHHHrH.-Hi-HrHi-H.Hi-l.--IH >  ,  ,  >  v o r ^ o o c n O H C M o o ^ i n ^ o r ^ CMCMCMCMrorororororororo r - H r H r H r H H H H H H r - H r - I H  T a b l e VI-8 (cont'd) 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172  II25SE »  » »  » » » »  »  II33SE  » » » »  »  60 52 30 71 75 70 64 67 53 59 85 62 55 77 43 62 49 68 76 81 56 69 73 67 67 47 55 44 33 42 69 48 58 63 68  .024 .025 .024 .025 .025 .049 .025 .024 .025 .025 .025 .025 .049 .024 .024 .025 .049 .049 .098 .049 .025 .025 .049 .025 .049 .049 .049 .025 .025 .025 .049 .025 .049 .025 .025  .248 .131 .185 .521 .412 .251 .343 .216 .248 .351 .290 . 336 .323 .431 .457 .229 .367 .310 .274 .283 .183 .280 .385 . 349 .326 .317 .400 .293 .120 .266 .341 .168 . 397 .380 .346  .976 . 539 1.171 1.642 1.397 .907 1.348 1.019 1.520 1.127 .784 1.127 1.659 1.561 1.488 .784 1.220 1.220 .829 1.268 .588 1.471 1.324 1.176 .980 .735 1.379 .887 .394 .936 .837 .394 1.527 1.084 1.379  .188 .111 .218 .399 .365 .165 .307 .187 .274 .252 .217 .263 .289 . 390 .410 .166 .295 .223 .184 .221 .149 .312 .316 .287 .253 .208 .327 .225 .101 .214 .203 .101 .323 .289 .310  76.052 85.075 117.718 76.581 88.514 65.682 89.551 86.948 110.262 71.611 74.881 78.059 89.283 90.380 89.871 72.581 80.313 72.045 67.121 78.184 81.664 111.466 82.128 82.178 77.753 65.542 81.723 76.785 84.318 80.685 59.489 60.078 81.289 76.086 89.527  .024 .025 .024 .025 .025 .025 .025 .024 .024 .025 .025 .025 .024 .024 .024 .025 .024 .024 .049 .024 .025 .025 .025 .025 .025 .025 . 025 .025 .025 .025 .025 .025 .049 .025 .025  .115 .083 .086 .180 .157 .098 .124 .105 .094 .135 .127 .141 .110 .136 .173 .106 .164 .141 .118 .112 .090 .108 .138 .126 .138 .135 .161 .143 .073 .132 .151 .099 .178 .155 .114  .341 .294 .244 .466 .490 .245 .466 .316 . 319 . 392 .392 .343 .415 .585 .488 .294 .366 .341 .268 .293 .221 .368 .417 .392 .417 .319 .591 .345 . 222 .443 .443 .-296 .443 .296 .271  .066 .066 .069 .117 .118 .053 .088 .069 .066 .098 .090 .078 .077 .104 .140 .065 .095 .076 .049 .064 .047 .076 .101 .092 .088 .076 .118 .086 .045 .093 .090 .056 .103 .074 .070  57.150 79.183 79.611 65.227 75.482 54.007 71.173 65.723 69.750 72.264 70.754 55.250 69.960 76.213 80.919 61.187 57.888 53.631 41.013 57.440 52.939 70.531 73.389 72.841 63.437 56.235 73.317 60.530 60.988 70.790 59.453 57.012 57.754 47.763 61.937  143 T a b l e VI-9 (Table V - l ) . Observed and e s t i m a t e d margo pore areas o f s o l v e n t - s e a s o n e d D o u g l a s - f i r sapwood earlywood p e r m e a b i l i t y specimens ID  Code  65 62 93 47 68 84 74 47 53 63 73 80 70 52  (pm ) 0.175567 0.217450 0.193339 0.124180 0.158641 0.157127 0.086901 0.082359 0.136414 0.123831 0.107307 0.167363 0.107795 0.184088  Xf (um ) 0.039402 0.038516 0.050509 0.041565 0.052384 0.038567 0.023034 0.022669 0.034746 0.025033 0.017340 0.048851 0.026288 0.044214  614.97 789.96 1249.43 630.47 964.00 791.91 259.81 243.67 611.80 436.79 286.43 1002.68 371.08 1071.06  24.80 28.11 35.35 25.11 31.05 28.14 16.12 15.61 24.73 20.90 16.92 31.67 19.26 32.73  186 216 168 141 142 175 167 162 171 199 228 156 176 178  30 31 35 36 37 38 39 40 41 42 43 44 45 46  CC1-4 CC1-4 CC1-4 CC1-4 CC1-4 CC1-4 CC1-4 CC1-4 CC1-4 CC1-4 CC1-4 CC1-5 CC1-5 CC1-5  Print No. 1 1 1 2 3 4 5 6 7 8 9 1 2 3  N  5 6 7 8 47 48 49 50 51 52 53 54 55 56 57  CC2-5 CC2-5 CC2-5 CC2-5 CC2-5 CC2-5 CC2-5 CC2-5 CC2-5 CC2-5 CC2-5 CC2-5 CC2-5 CC2-5 CC2-5  1 2 3 4 1 2 3 4 5 6 7 -8 9 10 11  52 51 54 51 53 47 29 76 68 67 50 50 61 65 69  0.231822 0.233796 0.216425 0.345519 0.126477 0.099274 0.063214 0.337038 0.095950 0.064622 0.167827 0.110510 0.106810 0.072647 0.178114  0.024386 0.030821 0.030126 0.028324 0.020893 0.015943 0.021088 0.032080 0.020263 0.013978 0.015992 0.018022 0.017469 0.020750 0.030736  1021.80 1361.79 1133.70 1814.79 374.62 225.61 150.86 1661.36 260.44 120.21 412.34 288.67 270.30 190.18 831.69  31.97 36.90 33.67 42.60 19.36 15.02 12.28 40.76 16.14 10.96 20.31 16.99 16.44 13.79 28.84  292 257 249 335 225 229 141 308 193 190 308 227 226 158 219  9 10 11 12 58 59 60 61 62 63 64 65 66 67  CC2-7 CC2-7 CC2-7 CC2-7 CC2-7 CC2-7 CC2-7 CC2-7 CC2-7 CC2-7 CC2-7 CC2-7 CC2-7 CC2-7  1 2 3 4 1 2 3 4 5 6 7 8 9 10  44 44 49 62 74 77 93 94 102 92 65 70 47 68  0.619834 0.409162 0.271482 0. 070890 0.070220 0.187884 0.657030 0.150625 0.197833 0.571612 0.154193 0.189326 0.122237 0.102124  0.111159 0.065851 0.063557 0.028130 0.020274 0.030349 0.044814 0.023438 0.026600 0.043807 0.023268 0.025038 0.034432 0.018719  9792.78 4231.62 2288.72 225.14 .178.83 828.02 4751.64 526.48 788.85 4083.52 559.32 712.42 533.94 270.39  98.96 65.05 47.84 15.00 13.37 28.78 68.93 22.94 28.08 63.90 23.65 26.69 23.11 16.44  214 228 181 123 157 228 370 233 254 347 237 256 160 211  X  g  0  2  / \  CV.  0  2  a  f  144 T a b l e VI-9 (cont'd) ID  Code  175 IC1-3  Print No. 3  N 28  (um ) 0.126308  Xf (Um ) 0.026369  474.57  f 21.78  2  / \  2  CV.  ff  195  IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5 IC1-5  1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  45 46 46 71 72 62 61 58 63 79 24 56 56 64 61 60 50 68 68 70 55 58 68 53 55 45 62 44 75  0.207378 0.320035 0.092987 0.173108 0.154170 0.186714 0.177237 0.093311 0.112126 0.245770 0.075372 0.316547 0.233401 0.071814 0.179282 0.145655 0.174332 0.240566 0.171976 0.276550 0.317183 0.268531 0.127115 0.399318 0.147650 0.090922 0.309832 0.115098 0.261695  0.045487 0.075986 0.021011 0.033038 0.026627 0.026119 0.043570 0.026835 0.026142 0.054063 0.013686 0.029786 0.017993 0.015134 0.014586 0.024036 0.026024 0.014983 0.021471 0.028340 0.031082 0.026246 0.015372 0.037798 0.019274 0.014967 0.026815 0.020964 0.019673  844.07 1548.84 283.06 833.35 635.67 785.12 1090.10 333.90 420.73 1939.97 143.37 1538.16 711.63 151.50 416.04 526.42 668.43 620.56 593.31 1242.33 1601.40 1123.07 303.36 2366.58 436.99 200.78 1393.39 348.52 911.97  29.05 39.36 16.82 28.87 25.21 28.02 33.02 18.27 20.51 44.05 11.97 39.22 26.68 12.31 20.40 22.94 25.85 24.91 24.36 35.25 40.02 33.51 17.42 48.65 20.90 14.17 37.33 18.67 30.20  189 179 185 206 219 248 175 157 182 188 212 310 346 194 336 225 239 388 265 296 303 304 270 309 258 225 325 212 351  IC2-7 IC2-7 IC2-7 IC2-7 IC2-7 IC2-7 IC2-7 IC2-7 IC2-7 IC2-7 IC2-7 IC2-7 9 9 . IC2-7 100 IC2-7 101 IC2-7 102 IC2-7  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  36 42 48 40 42 33 45 48 73 65 69 48 53 57 28 56  0.276744 0.115384 0.389866 0.299675 0.160171 0.564062 0.159164 0.378825 0.320270 0.560557 0.513266 0.101788. 0.328851 0.205862 0.504157 0.285981  0.026144 0.018560 0.032444 0.021633 0.019559 0.041811 0.019583 0.039603 0.036934 0.048242 0.049447 0.021266 0.030327 0.019254 0.036140 0.019171  1134.68 317.38 2076.23 1083.15 495.26 3781.72 464.19 2281.37 1777.09 4197.06 4085.23 296.56 1592.67 659.67 2929.34 868.60  33.68 17.82 45.57 32.91 22. 25 61.50 21.54 47.76 42.16 64.78 63.92 17.22 39.91 25.68 54.12 29.47  310 228 341 359 268 353 267 293 277 326 308 195 314 311 360 373  34 13 14 : 15 16 17 18 :.19 20 21 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98  145  T a b l e V I - 9 (cont'd) Code  Print No.  N  22 23 24 25 26 103 104 105 106 107 108 109 110  III-4 III-4 III-4 II1-4 II1-4 II1-4 II1-4 III-4 II1-4 III-4 III-4 II1-4 III-4  1 2 3 4 5 1 2 3 4 5 6 7 8  30 40 54 54 25 51 41 48 41 29 24 24 26  0.061107 0.026342 0.066015 0.125879 0.042760 0.051182 0.065766 0.022194 0.024652 0.034362 0.033977 0.006185 0.010012  0.022977 0.012560 0.016311 0.017790 0.013246 0.009924 0.012859 0.008378 0.005901 0.009299 0.013649 0.004948 0.006185  /\ 2 f 190.71 37.68 176.48 418.57 85.10 70.91 124.91 21.25 19.54 40.36 48.05 1.19 4.35  1 2 3 4 27 125 28 122 29 124 111 112 113 114 115 116 117 118 119 120 121 123  III-5 III-5 III-5 III-5 II1-5 III-5 III-5 III-5 III-5 III-5 III-5 II1-5 II1-5 II1-5 II1-5 II1-5 III-5 II1-5 III-5 III-5 III-5 III-5  1 2 3 4 5 15 6 12 7 14 1 2 3 4 5 6 7 8 9 10 11 13  72 45 48 32 44 104 47 58 67 53 84 68 51 39 63 37 47 56 61 60 66 40  0.041120 0.047175 0.034851 0.049117 0.038648 0.023772 0.021562 0.023068 0.049640 0.058057 0.046727 0.096333 0.037668 0.042676 0.020185 0.025591 0.018554 0.019488 0.033497 0.063005 0.041138 0.015138  0.012713 0.011746 0.009109 0.009269 0.009278 0.008733 0.007802 0.009684 0.016975 0.014458 0.018969 0.019416 0.015919 0.013817 0.008867 0.006440 0.007701 0.007689 0.010453 0.020353 0.014273 0.008482  67.59 90.58 51.04 69.13 55.04 23.19 23.37 22.45 120.70 152.01 107.98 258.64 61.15 69.06 17.38 21.09 15.34 15.71 41.72 150.34 66.41 9.78  8.22 9.52 7.14 8.31 7.42 4.82 4.83 4.74 10.99 12.33 10.39 16.08 7.82 8.31 4.17 4.59 3.92 3.96 6.46 12.26 8.15 3.13  149 174 168 207 178 131 133 118 139 174 121 199 117 145 113 171 119 124 148 145 137 89  126 127 128 129 130 131 132 133 134 135 136 137  II1-6 II1-6 III-6 III-6 II1-6 III-6 III-6 III-6 III-6 III-6 III-6 III-6  1 2 3 4 5 6 7 8 9 10 11 12  33 58 46 53 35 34 41 54 45 66 57 59  0.045007 0.017661 0.012836 0.031118 0.015859 0.012299 0.011366 0.018791 0.015039 0.039667 0.038230 0.034554  0.007329 0.008314 0.006698 0.014562 0.007785 0.006745 0.006127 0.006944 0.008090 0.014039 0.009083 0.013697  47.82 13.46 7.55 41.75 10.89 6.88 5.56 14.25 9.93 63.54 45.85 49.48  6.92 3.67 2.75 6.46 3.30 2.62 2.36 3.77 3.15 7.97 6.77 7.03  227 106 96 107 102 91 92 131 93 135 179 123  ID  xg  2  (um )  Xf  (um ) 2  /\  CV.  f 13.81 6.14 13.28 20.46 9.22 8.42 11.18 4.61 4.42 6.35 6.93 1.09 2.08  128 105 175 246 149 2 04 203 128 178 164 122 51 79  146 T a b l e VI-9 ID  Code  138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157  II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5 II2-5  158 159 160 161 162 163 164 165 166 167 168 169 170 171 172  II3-3 II3-3 II3-3 II3-3 II3-3 II3-3 II3-3 II3-3 II3-3 II3-3 II3-3 II3-3 II3-3 II3-3 II3-3  (cont'd) Print No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  N 60 52 30 71 75 70 64 67 53 59 85 62 55 77 43 62 49 68 76 81  Xg (um ) 0.117906 0.047722 0.084164 0.386798 0.301807 0.089893 0.202062 0.097794 0.115701 0.199851 0.156911 0.198169 0.163236 0.274123 0.396240 0.098808 0.255396 0.166686 0.118620 0.131160  56 69 73 67 67 47 55 44 33 42 69 48 58 63 68  0.062524 0.152081 0.248006 0.201124 0.191849 0.162750 0.269601 0.159795 0.034070 0.16309 5 0.192337 0.060399 0.284210 0.217792 0.175811  2  xf  /\  (um ) 0.025461 0.011150 0.012040 0.042772 0.024486 0.032848 0.022996 0.016330 0.015451 0.025903 0.029027 0.026961 0.028174 0.025390 0.031362 0.021843 0041023 0.041785 0.050375 0.033004  /\ 2 °f 415.69 70.62 153.37 2548.43 1176.03 324.53 713.16 239.57 268.26 780.36 642.90 799.42 672.04 1115.33 2021.02 291.15 1553.15 921.72 607.16 572.14  *f 20.39 8.40 12.38 50.48 34.29 18.01 26.70 15.48 16.38 37.93 25.36 28.27 25.92 33.40 44.96 17.06 39.41 30.36 24.64 23.92  191 181 245 284 337 132 279 223 255 259 210 252 219 313 341 188 229 173 116 172  0.018310 0.016340 0.038182 0.027658 0.033737 0.030565 0.046689 0.033949 0.009876 0.024873 0.051906 0.019389 0.059453 0.047198 0.026863  140.21 384.13 1387.51 830.91 923.83 699.73 1767.39 725.52 40.58 583.84 1237.84 135.03 2269.19 1367.33 679.48  11.84 19.60 37.25 28.83 30. 39 26.45 42.04 26.94 6.37 24.16 35.18 11.62 47.64 36.98 26.07  155 288 234 250 216 210 219 193 157 236 164 145 195 190 235  2  CV.  T a b l e VI-10 (Table V - 2 ) . Summary o f observed and e s t i m a t e d margo p o r e a r e a s o f s o l v e n t - s e a s o n e d D o u l g a s - f i r sapwood earlywood p e r m e a b i l i t y specimens  Code  Total No. o f Pits  Min.  Ave.  Max.  Min.  Ave.  Max.  Min.  Ave.  Max.  Total No. o f Pores  Xg  (um )  Xf  2  (um )  CV. s  2  1  CC14SE CC15SE CC25SE CC27SE  11 3 15 14  0.0824 0.1078 0.0632 0.0702  0.1421 0.1531 0.1633 0.2696  0.2175 0.1841 0.3455 0.6570  0.0173 0.0263 0.0140 0.0187  0.0349 0.0398 0.0227 0.0400  0.0524 0.0489 0.0321 0.1112  141 156 141 123  177 170 237 228  228 178 335 370  729 202 843 981  IC13SE IC15SE IC27SE  1 29 16  0.1263 0.0718 0.1018  0.1263 0.1961 0.3228  0.1263 0.3993 0.5640  0.0264 0.0137 0.0186  0.0264 0.0275 0.0300  0.0264 0.0760 0.0494  195 157 195  195 251 305  195 388 373  28 1695 783  II14SE II15SE II16SE II25SE II33SE  13 22 12 20 15  0.0062 0.0151 0.0114 0.0477 0.0341  0.0439 0.0385 0.0244 0.1802 0.1717  0.1259 0.0963 0.0450 0.3962 0.2842  0.0049 0.0064 0.0061 0.0112 0.0099  0.0118 0.0119 0.0091 0.0279 0.0323  0.0230 0.0204 0.0146 0.0504 0.0595  51 89 91 116 145  148 145 123 229 205  246 207 227 341 288  487 1242 581 1259 859  T a b l e VI-11.  Data f o r r e g r e s s i o n a n a l y s e s  Code  Y perm (darcy)  Xtl (mm)  Xca (X100%)  Xpa (X100%)  Xua (X100%)  Xtn  Xsg  CC11AL CC11SL CC14AE CC14SE CC15AE CC15SE CC22AL CC22SL CC25AE CC25SE CC27AE CC27SE  1.97 1.56 0.63 11.88 0.46 9.68 0.89 0.93 0.31 7.15 0.40 10.42  2.64 2.64 2.34 2.34 2. 37 2.37 2.65 2.65 2.46 2.46 2.34 2. 34  .6667 .1061 .9911 .0435 1.0000 .0673 .7738 .2100 1.0000 .0351 1.0000 .0884  .2424 .1844 .0076 .3439 . 0000 .3269 .0833 .1918 .0000 .1228 .0000 . 3163  .0909 .7095 .0013 .6126 .0000 .6058 .1429 .5982 . 0000 .8421 .0000 .5952  1114 1056 789 739 651 719 1225 1282 808 885 710 679  .5823 .5823 .2314 .2314 .3020 .3020 .6311 .6311 .3377 .3377 .2252 .2252  IC11AL IC11SL IC13AE IC13SE IC15AE IC15SE IC21AL IC21SL IC24AL IC24SL IC27AE IC27SE  1.26 0.90 0.49 4.66 0.82 8.55 0.72 0.76 0.75 1.36 0.38 8.30  2.56 2.56 2.32 2.32 2.00 2.00 2.30 2.30 2.27 2.27 1.89 1.89  .4488 .0769 .9394 .0670 1.0000 .0255 .5440 .0472 .5714 .2510 .9901 .0175  .3707 .2308 .0476 .1856 .0000 .3634 .2253 .1288 .2245 .2594 .0099 .2821  .1805 .6923 .0130 .7474 .0000 .6111 .2308 .8240 .2041 .4895 .0000 .7004  1637 1665 1240 1276 930 887 1767 1785 1446 1360 1276 1181  .6622 .6622 .6198 .6198 .2778 .2778 .6629 .6629 .6725 .6725 .3107 .3107  II14AE II14SE II15AE II15SE  1.26 7.04 0.84 9.06  3.11 3.11 2.76 2.76  .9674 .0157 .9964 .0162  .0233 .1659 .0036 .2405  .0093 .8184 .0000 .7432  1261 1255 1185 1201  .3585 .3585 .2995 .2995  Xmp (um^)  P (um)  T (um)  .0349  17.65  8.16  .0398  18.01  8.36  .0227  16.20  7.74  .0400  18.84  8.50  .0264  14.54  6.78  .0275  17.38  8.21  .0300  16.44  7.94  .0118  15.21  7.99  .0119  17.04  8.52  T a b l e VI-11.  Code II16AE II16SE II25AE II25SE II33AE II33SE  (cont'd)  Y perm - X t l (darcy) (mm) 0.46 7.88 0.69 7.35 0.50 6.96  2.89 2.89 2.59 2.59 2.68 2.68  Xca Xpa (XI00%) (X100%) .9770 .0139 .9892 .0109 1.0000 .0126  .0175 .2167 .0084 .1386 .0000 .1239  Xua (XI00%)  Xtn  Xsg  .0055 .7694 .0024 .8505 .0000 .8634  1020 1008 1128 1144 1216 1208  . 3458 .3458 .3325 .3325 .3139 .3139  Xmp (um )  P (um)  T (um)  .0091  17.11  8.84  .0279  17.91  8.87  .0323  17.48  8.27  2  Table VI-12. Regression 1.  Selected regression equations  Equations  DF  1.7671  0.8946  30  1.4177  0.9312  1.9267  0.8732  1.0836  0.9590  0.2783  0.7660  1.6110  0.9239  0.1939  0.9115  0.7295  0.9436  1.4834  0.9498  A l l t r e e s a l l data Yperm = 7.5858 + 2.3460X_ - 0.1082X - 17.7 303X tl ca sg Yperm = 2.0458 + 0.4778X - 3.3205X pa sg Yperm = 11.7783 - 2.9125X _ + 0.1319X - 0.2983X,. tl ua tn J  2.  R or r Calculated  SEE  n  sg  - 6.4700X pa sg  A l l trees solvent-seasoned  15  15  ic ic  **  22  7  earlywood  Yperm = 6.5814 + 0.1700X - 7.3824X + 6.8406X pa sg mp 7.  ic ic  A l l latewood Yperm = 4.6094 + 0.2138X  6.  ic ic  A l l earlywood Yperm = 1.0390 + 0.4812X pa  5.  30  A l l trees air-seasoned Yperm = 0.4849 + 0.2046X pa  4.  **  31  A l l t r e e s solvent-seasoned Yperm = 14.9585 - 20.9123X  3.  ic ic  ic ic  8  A l l CC t r e e s Yperm = 0.4287 + 0.5911X pa  ic ic  10  T a b l e VI-12.  Regression 8.  Equations  SEE  R or r Calculated  A l l IC t r e e s Yperm = -0.0911 + 0.6108X pa  9.  (cont'd)  1.2556  0.9185  1.3989  0.9340  **  DF  10  A l l I I trees Yperm = 0.9672 + 0.4011X pa  it ic  8  T a b l e VI-13A.  Correlation  c o e f f i c i e n t s f o r independent v a r i a b l e s  longitudinal a i r permeability  X  x  t l  X  t l  X ca  X  for a l l trees  X pa  ua  tn  used  a l l data  in  estimating  (N=34, DF=32)  Yperm  X sg  1.00 0. 22  1.00  ca X  0.09  -  0.28  -  pa X  ua tn  X  -  1.00  0.10  -0.22  -0.25  -0.13  1.00  0. 02  -0.39*  -0.34*  -0.31  0.76**  sg Yperm  1.00  -0.02  -0.53**  0.92**  0.80**  -0.37*  1.00 -0.44**  1.00  153 Table VI-13B.  C o r r e l a t i o n c o e f f i c i e n t s f o r independent v a r i a b l e s used i n estimating l o n g i t u d i n a l a i r p e r m e a b i l i t y f o r a l lt r e e s solvent-seasoned and air-seasoned (N=17, D F = 1 5 )  All / 1  X  x  X  t l pa tn  X  trees X  t l  pa  solvent-seasoned X  tn  X sg  Yperm  1.00 1.00  0.13 0.13  -0.62**  1.00  0.02  -0.82**  0.77**  -0.09  0.86**  -0.78**  1.00  sg Yperm  All X  x  t l  X pa tn X  t l  trees X  pa  -0.96**  1.00  air-seasoned X  t n  X sg  Yperm  1.00 0.23  1.00  0.07  0.63**  1.00  0.02  0.76**  0.75**  1.00  0. 38  0.77**  0.33  0.43  sg Yperm  1.00  154  T a b l e VI-13C.  C o r r e l a t i o n c o e f f i c i e n t s f o r independent v a r i a b l e s used i n e s t i m a t i n g l o n g i t u d i n a l a i r p e r m e a b i l i t y f o r a l l l a t e w o o d a n d a l l e a r l y w o o d (N=10, DF=8)  All X  x  t l  X  X  pa  4 -  latewood X  t l  pa  X  4 -  Yperm  X sg  tn  1.00 0.22  1.00  -0.59  -0.29  1.00  -0.73*  -0.39  0.80**  tn X  1.00  sg Yperm  0.45  0.75*  All X  x  t l  X  X  pa  4 -  t l  -0.66*  -0.72*  1.00  earlywood X  pa  X  tn  X  Yperm sg  1.00 0.09  1.00  0.30  -0.12  1.00  0.09  -0.22  0.54*  tn X  1.00  sg Yperm  -0.03  0.92**  -0.16  -0.19  1.00  155 T a b l e VT-13D.  All  C o r r e l a t i o n c o e f f i c i e n t s f o r independent variables used i n e s t i m a t i n g l o n g i t u d i n a l a i r p e r m e a b i l i t y f o r a l l CC, IC a n d I I d a t a CC  X  t l 1.00 X  t l X pa  x  data  (N=12, X  pa  DF=10) X  4 -  1.00  -0.36 0.95**  -0.33  1.00  0.99** sg Yperm -0.44  -0.34  0.95**  X  4 -  X  tn  All  IC  t l X pa  X  4 -  X  0.70*  0.88** sg Yperm -0.46  t l 1.00  t l X pa tn X sg Yperm x  (N=12,  DF=10)  tn  X  Yperm sg  II  -0.40  1.00  -0.42  0.79**  0.92**  data X  -0.54  -0.53  4 -  tn  X  Yperm sg  1.00  0.19  -0.17  1.00  0.67*  -0.02  -0.16  1.00  0.01  -0.05  0.93**  1.00  (N=10, DF=8) X  pa  1.00  0.09  0.01  1.00  1.00  tn  X  data  1.00 -0.44 .  -0.41  pa  -0.33  All  0.95**  X  t l 1.00 X  x  Yperm sg  tn  1.00  156 Table VI-13E.  X  x  tl  tl  C o r r e l a t i o n c o e f f i c i e n t s f o r independent v a r i a b l e s used i n e s t i m a t i n g l o n g i t u d i n a l a i r p e r m e a b i l i t y f o r a l l t r e e s solvent-seasoned earlywood (N=12, DF=10)  X  pa  X  4 -  tn  X sg  X mp  X ma  1.00 0.19  1.00  0.34  -0.36  1.00  0.09  -0.61*  0.59*  X mp  0.64*  -0.16  -0.57  -0.27  1.00  X ma  0.21  0.12  -0.11  -0.48  0.20  1.00  0.40  0.15  X  Yperm  pa X  4 -  tn X sg  Yperm 0.22  1.00  0.73** -0.75** -0.84**  1.00  157  T a b l e VI-14.  Code  ID  F r e q u e n c y d i s t r i b u t i o n s o f maximum a n d minimum e s t i m a t e d margo p o r e a r e a s  Maximum Xf(um^) C u l . F r e q . {%)  ID  Xf  Minimum Cul.Freq.(%)  (W)  CC 14 SE  37  .0024 . 0240 .0480 .0720 .0960 .1200 .1440 .1680 .1920 .2160 .2400 .4800 .7200 .8520 1.2792  13.4 33.1 68.0 82.6 91.1 93.3 94.5 95.6 96.1 96.7 97.7 99.6 99.7 99.9 100.0  43  .0023 .0230 .0460 .0690 .0920 .1150 .1380 .1610 .1840 .2070 .2300 .3450 .4002 1.2282  32.0 85.4 94.3 95.7 97.3 98.3 98.6 99.1 99.3 99.4 99.5 99.8 99.9 100.0  IC 15 SE  81  .0024 .0240 .0480 .0720 .0960 .1200 .1440 .1680 .1920 .2160 .2400 .4800 .7200 .9600 1.0320 2.8560  44.2 82. 5 87.9 89.9 91.5 93.0 94.0 95.0 95.1 95.9 96.5 98.8 99.2 99.8 99.9 100.0  68  .0024 .0240 . 0480 .0720 .0960 .1200 .1440 .1680 .1920 .2160 .2400 . 3120 .3600 . 3816  45.8 92.0 95.8 96.9 98.0 98.4 99.2 99.3 99.5 99.5 99.6 99.7 99.9 100.0  158 Table VI-14 (cont'd)  Maximum  Minimum  Code II 14 SE  ID  Xf(um )  22  .0021 .0210 .0420 .0630 .0840 .1050 .1260 .1470 .1680 .1890 .2100 .2877 . 3402  2  C u l . F r e q . (%) 22.0 71.7 83.8 93.2 97.2 97.9 98.6 99.1 99.3 99.5 99.6 99.9 100.0  ID  Xf(um )  109  .0023 .0046 .0069 .0092 .0115 .0138 . 0161 .0184 .0207 .0230  2  C u l . F r e q . (%) 73.1 86.8 91.5 94.5 96.9 98.0 98.5 99.0 99.5 100.0  159  F i g u r e VI-1.  Percent cumulative  f r e q u e n c i e s o f maximum  and minimum estimated margo pore  areas  Legend  Code  ID  0  •  CC14SE  37  maximum•  CC14SE  43  minimum-  •  IC15SE  81  maximum.  •  IC15SE  68  minimum  A  II14SE  22  maximum;  •  II14SE  109  Margo pore area  minimum.- .  Percent 4^  o  -i  Cumulative Ul  w  o  Frequencies Ol O  O  o o  VO  00  o  o.  1-  O  Q_  >  11  do.UJ)  dP •o  EH  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0302207/manifest

Comment

Related Items