Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Structural variation as related to the ecology of the redside shiner Richardsonius balteatus (Richardson)… Lindsey, Casimir Charles 1950

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1950_A8 L55 S7.pdf [ 5.55MB ]
Metadata
JSON: 831-1.0106869.json
JSON-LD: 831-1.0106869-ld.json
RDF/XML (Pretty): 831-1.0106869-rdf.xml
RDF/JSON: 831-1.0106869-rdf.json
Turtle: 831-1.0106869-turtle.txt
N-Triples: 831-1.0106869-rdf-ntriples.txt
Original Record: 831-1.0106869-source.json
Full Text
831-1.0106869-fulltext.txt
Citation
831-1.0106869.ris

Full Text

n$o Hz  STRUCTURAL VARIATION AS RELATED TO THE ECOLOGY OP THE REDSIDE SHINER R l c h a r d s o n l u s b a l t e a t u s (RICHARDSON) by Casimir Charles L i n d s e y  A T h e s i s Submitted i n P a r t i a l  F u l f i l m e n t of the  Requirements f o r the Degree of MASTER OF ARTS In the  Department of  ZOOLOGY  The U n i v e r s i t y of B r i t i s h A p r i l , 1950.  Columbia  STRUCTURAL VARIATION AS RELATED TO THE ECOLOGY OF THE REDSIDE SHINER R i c h a r d s o n i u a b a l t e a t u s Richardson. By  CASIMIR CHARLES LINDSEY  ABSTRACT R. b a l t e a t u s i s extremely v a r i a b l e rays.  i n number o f a n a l  Counts of over 4000 specimens from 5^ l o c a l i t i e s i n  B r i t i s h Columbia  v a r i e d from 10 to 21, with d i f f e r e n c e s b e t -  ween means of d i f f e r e n t p o p u l a t i o n s , d i f f e r e n t and sometimes between the sexes.  year c l a s s e s  V a r i a t i o n i s shown t o be  c o n t r o l l e d a t l e a s t p a r t i a l l y by environmental f a c t o r s d u r i n g development; temperature  i s an important f a c t o r *  f o r environmental c o n t r o l of f i n ray count V a r i a t i o n a l s o occurs In body p r o p o r t i o n s .  A mechanism  i s suggested. Inflections in  r e l a t i v e growth o f body p a r t s i s demonstrated;  variation in  p r o p o r t i o n s of these p a r t s i s probably due to environmental c o n t r o l of body s i z e a t I n f l e c t i o n . show heterogonic growth. The  P e c t o r a l and p e l v i c  fins  Notes on l i f e h i s t o r y are g i v e n .  spawning p e r i o d v a r i e s from 7 to 10 weeks, s t a r t i n g b e t -  ween the l a s t week of May end the second week of June.  Indiv-  i d u a l s spawn a t d i f f e r e n t  times and probably more than once  p e r season.  frequent s h a l l o w e r water.  Smaller f i s h  are o l d e r than k years and females l i v e longer than  Few  fish  males.  R e l a t i o n o f s h i n e r s to game s p e c i e s i s d i s c u s s e d ; s h i n e r s eat  t r o u t f r y , trout eat s h i n e r s , and compete with t r o u t f o r other food.  s h i n e r s probably sometira  TABLE OP CONTENTS INTRODUCTION  Page 1  ACKNOWLEDGEMENTS  3  LITERATURE ON THE SPECIES  4  L I F E HISTORY RANGE AND HABITAT  7  SPAWNING  9  EMBRYOLOGY  12  METAMORPHOSIS  15  ' GROWTH  17  SEX RATIO  19  MOVEMENTS  21  Size Differences  21  Night A c t i v i t y  22  Summer Range  23  Winter Habits  23  POOD RELATIONSHIPS  24  R e l a t i o n t o Game Species  24  P r e d a t i o n by Shiners  25  P r e d a t i o n on S h i n e r s  27.  Competition  28  Ecological Relations  29  STRUCTURAL VARIATION LITERATURE ON VARIATION IN PISH  31  ANAL RAY COUNTS  35  Counting Methods  35  Range of V a r i a t i o n  35  A r t i f i c i a l Introductions  Page 36  Intra-population Variation  37  Summary of Adult V a r i a t i o n  38  VARIATION IN ANAL PIN BASE  39  Morphology of the P i n Base  39  P i n Base P r o p o r t i o n  41  PIN RAY FORMATION AND ECOLOGICAL FACTORS  43  Body S i z e at Ray Formation  43  C o r r e l a t i o n with Temperature  43  Geographic V a r i a t i o n  45  VARIATION IN OTHER STRUCTURES  48  R e l a t i v e Growth o f P a r t s  48  Adult V a r i a t i o n i n Proportions  49  Vertebrae  50  Scales  52  CONCLUSIONS:  A POSSIBLE MECHANISM FOR ANAL  RAY COUNT VARIATION  52  Evidence f o r Environmental C o n t r o l  52  P o s s i b l e Causes of I n t r a - p o p u l a t i o n V a r i a tion  54  Hypothesis  55  General  58  A p p l i c a t i o n o f the Hypothesis  SUMMARY  59a  LITERATURE CITED  60  APPENDICES  6  7  3?ig.l. Adult redside shiner, Cottonwood l a k e , 1 9 4 9 . X 4/5  INTRODUCTION ,i  The r e d s i d e s h i n e r R i c h a r d s o n i u s b a l t e a t u s ( R i c h a r d -  lf®v son^-shows g r e a t e r v a r i a b i l i t y i n number of anal f i n r a y s than almost any other fresh-water f i s h which has been s t u d i e d i n North America.  Ray  counts of B r i t i s h Columbia specimens vary  from 10 t o 22.  Shiners occur i n dense p o p u l a t i o n s i n a wide  v a r i e t y of stream and l a k e types from sea l e v e l t o 7300 f e e t . £>8 l a r g e samples can be obtained from a number of d i f f e r e n t environments,  the s p e c i e s lends i t s e l f t o a study on  specific variation.  In  intra-  . a d d i t i o n , as the f i s h occurs together  w i t h v a r i o u s s p e c i e s of economic value, i t s ecology i s of p r a c t i c a l importance. ^ F i g . 1 shows an a d u l t specimen.SA*- 1*JL,£-J The p r e s e n t study has been made along two first,  lines;  to i n v e s t i g a t e the l i f e h i s t o r y and r e l a t i o n s w i t h  c e r t a i n other s p e c i e s , and second,  t o enumerate and i f p o s s i b l e  e x p l a i n some of the m o r p h o l o g i c a l v a r i a t i o n found. l i f e h i s t o r y are p r e s e n t e d f i r s t diffuse,  Data on  because, although somewhat  they form a necessary background t o d i s c u s s i o n of  structural  variation. F i n d i n g s are based on f i e l d c o l l e c t i o n s and  v a t i o n s made i n 1948  and 1949  Columbia, and on experiments  obser-  i n v a r i o u s p a r t s of B r i t i s h at the Summerland, Kaslo  -1-  and  Nelson h a t c h e r i e s .  C o l l e c t i o n s from the Royal O n t a r i o Museum  of Zoology and v a r i o u s other sources were a l s o examined. Anal r a y counts and other measurements have been made on over 4000 specimens from some 54 l o c a l i t i e s .  -3-  ACKNOWLEDGEMENTS The guidance and enthusiasm of Dr. P. A. L a r k i n , and h i s u n s t i n t e d support d u r i n g c o l l e c t i o n of m a t e r i a l f o r t h i s study, have been g e n u i n e l y a p p r e c i a t e d . advice of Dr. W.  A. Clemens, who  also gratefully  acknowledged.  The a s s i s t a n c e and  suggested the problem, i s  Much of the d e s i g n and c o n s t r u c t i o n of apparatus, as w e l l as c o l l e c t i o n of m a t e r i a l i n the f i e l d , was out by A r n o l d D. Nemetz.  carried  I am i n d e b t e d to other f e l l o w  stu-  dents f o r a s s i s t a n c e and s u g g e s t i o n s , p a r t i c u l a r l y to the following:  G. C. Anderson, W. H. C o t t l e , R. G. Ferguson,  C r a i g MacPhee and T. G. N o r t h c o t e . Work d u r i n g the summers of 1948  and 1949 was  con-  ducted under the auspices of the B r i t i s h Columbia Game Comm i s s i o n , and specimens from s e v e r a l l o c a l i t i e s were k i n d l y submitted by p e r s o n n e l of that o r g a n i z a t i o n . are extended t o the f o l l o w i n g :  S p e c i a l thanks  I n s p e c t o r G. F.. Kearns, Sup-  e r v i s o r J . Robinson, Hatchery O f f i c e r A. Higgs and Game Warden R. G. Rutherglen. I am under o b l i g a t i o n t o W. B. S c o t t of the Royal Ontario Museum of Zoology, and to Dr. F. E. J . F r y of the U n i v e r s i t y of Toronto.  F i n a l l y , I wish to express g r a t i t u d e  to my w i f e f o r t a k i n g second p l a c e to t h i s work.  -4-  LITERATURE ON THE SPECIES The r e d s i d e s h i n e r has been v a r i o u s l y p l a c e d i n the genera.Abramis ( C y p r i n u s )  t  Leuciscus  and f i n a l l y  Richardsonius.  The  s p e c i e s was f i r s t named by S i r John Richardson  i n 1836.  The  common name has been g i v e n as Columbia r i v e r minnow, R i c h -  ardson's minnow, r e d s i d e d bream, s h i n e r , l a k e s h i n e r and redside shiner.  E a r l y nomenclature of the s p e c i e s i s d e a l t ,  w i t h by S c h u l t z and DeLac^y  (1935).  The known range of the genus Richardsonius  includes  B r i t i s h Columbia south o f 56°, Washington, Oregon, and p a r t s of Idaho, Nevada and Utah. and C l a r k  W i t h i n t h i s area Jordan,  Evermann  (1930) r e c o g n i z e f o u r s p e c i e s l a r g e l y on the b a s i s  o f anal f i n r a y counts.  They s t a t e however that many s p e c i e s  i n the group need comparison and v e r i f i c a t i o n , and conclude t h a t "any arrangement of these f i s h e s must be s t i l l provisional." subspecies  S c h u l t z and DeLac^y (1935) r e c o g n i z e two  of R, j a l t e a t u s , R. b. b a l t e a t u s  the Eraser r i v e r , and  wholly  (Richardson) i n  Columbia r i v e r and Streams of Washington  Oregon, and R. b. hydrophlox (Cope) p r i n c i p a l l y  confined  to the Columbia system above Snake r i v e r f a l l s i n Idaho and the S a l t l a k e drainage  i n Utah.  Here s e p a r a t i o n i s apparent-  l y a geographic one, again based on v a r i a b l e anal f i n r a y counts.  M i l l e r and M i l l e r  (1948) s t a t e that the s p e c i e s i s  abundant i n the Colorado r i v e r b a s i n of n o r t h e a s t Nevada and has  been r e c e n t l y i n t r o d u c e d i n the upper Colorado r i v e r .  On the b a s i s o f anal f i n r a y counts,  their collections f i t  the d e s c r i p t i o n of R. b. hydrophlox w i t h some i n t e r g r a d e s w i t h R. b. b a l t e a t u s .  A group occurs i n the warm s p r i n g s of  southern Oregon c h a r a c t e r i z e d by low a n a l r a y counts; i t i s r e c o g n i z e d as R. thermophilus Jordan, Evermann and C l a r k  Evermann and C o c k e r e l l by  (1930).  I n 1894.Dr. C. H. Eigenmann p u b l i s h e d r a y counts of R. b a l t e a t u s  taken from d i f f e r e n t l o c a l i t i e s on the Praser  and Columbia systems.  While  t h e r e was c o n s i d e r a b l e v a r i a t i o n  w i t h i n s i n g l e p o p u l a t i o n s , there was a l s o great v a r i a t i o n i n mean r a y counts of d i f f e r e n t p o p u l a t i o n s . anal r a y counts i n the 21 genera  He compared  of A t l a n t i c Slope C y p r i n i d s  w i t h the 17 genera: from the P a c i f i c Slope, the former from 6 t o 14 anal rays  having  (a range of 9), but the l a t t e r v a r y i n g  from 7 t o 22, (a range of 15),  He concluded from  comparison  of c o l l e c t i o n s from the P r a s e r system t h a t the number of rays i n the s p e c i e s , and a l s o the range o f v a r i a t i o n , with increasing a l t i t u d e . t h a t the tendency  He a l s o s t a t e d without e l a b o r a t i o n  of frequency curves of a n a l r a y counts t o  be skewed t o the l e f t i n the process  decreases  i n d i c a t e s t h a t the number of r a y s i s  of.increasing.  In the same y e a r G i l b e r t and Evermann (1894) denied Eigenmann's g e n e r a l i z a t i o n s concerning lower r a y counts and l e s s range at h i g h e r a l t i t u d e s , p u b l i s h i n g counts f o r 30 c o l l e c t i o n s w i t h corresponding a l t i t u d e s as evidence. In 1895 Eigenmann r e i t e r a t e d h i s claims f o r the e f f e c t of a l t i t u d e on r a y count and presented more data, but denied t h a t he intended i t as a g e n e r a l i z a t i o n f o r other species.  -6I n 1897  Evermann p u b l i s h e d a t a b l e of r a y counts  and a l t i t u d e s f o r seven more l o c a l i t i e s , Eigenmann's o b s e r v a t i o n s .  He  states  not conforming to  "At one  time Dr.  Eigenmann thought t h a t a c e r t a i n d e f i n i t e r e l a t i o n e x i s t e d between the number of anal r a y s i n t h i s s p e c i e s and the itude now  alt-  In t h e . l i g h t - o f f u l l e r data Dr. Eigenmann  agrees w i t h us t h a t t h i s g e n e r a l i z a t i o n i s not borne  out by the  facts." F u r t h e r c o n t r i b u t i o n s to the s u b j e c t c o n s i s t e d of  a d d i t i o n a l records of r a y counts from o t h e r . l o c a l i t i e s , (Evermann and Mee>e 1898, 1948)  Snyder 1907,  M i l l e r and  Miller  and d i s t r i b u t i o n a l r e c o r d s which are l i s t e d i n S c h u l t z  and DeLacjefy (1935) (to which should be added r e c e n t works mentioned below). Scales of R i c h a r d s o n i u s  are d e a l t w i t h by C o c k e r e l l  (1911a, 1911b), C o c k e r e l l and A l l i s o n Cockerell  (1909).  (1909) and Evermann and  Occurrences i n B r i t i s h Columbia are g i v e n  by Clemens and Munro (1934), S t a n w e l l - F l e t c h e r (1943), C a r l and Clemens (1948).  and  Measurements of specimens are g i v e n  by Dymond (1936) and Schultz. and  Schaeffer  (1936).  Food i s  l i s t e d by Munro and Clemens (1937), Clemens, Rawson and McHugh (1939), Ferguson (MS)  and Anderson  (MS).  In summary, l i t e r a t u r e on the s p e c i e s comprises d e s c r i p t i o n s and changes i n nomenclature, claims and. d e n i a l s concerning the e f f e c t of a l t i t u d e on anal r a y count, l i m i t e d i n f o r m a t i o n on the ecology of the s p e c i e s .  and Few.  data are a v a i l a b l e i n the l i t e r a t u r e on spawning h a b i t s , growth r a t e s or other phases of the l i f e  history.  -7-  LIPE HISTORY RANGE AND  HABITAT The p r e s e n t study does not extend the range of  the r e d s i d e s h i n e r r e p o r t e d i n the l i t e r a t u r e .  I t includes  54 l o c a l i t i e s i n B r i t i s h Columbia, d i s t r i b u t e d as f o l l o w s : Skeena r i v e r drainage Praser r i v e r  - 1  drainage  Driftwood v a l l e y  - 1  Caribou area  - 5  Thompson r i v e r drainage  -12  Lower P r a s e r v a l l e y Columbia r i v e r  - 2  drainage  Okanagan drainage  -  Arrow-Kootenay drainage  - 21  Kootenai  -  r i v e r drainage  8  4  L o c a l i t i e s where c o l l e c t i o n s were made together w i t h pertinent i n f o r m a t i o n are g i v e n i n Appendix I. The Rattenbury  s p e c i e s i s not l i s t e d by Clemens, Boughton and  (1945) i n T e s l i n l a k e at the n o r t h e r n boundary of  B r i t i s h Columbia.  Cowan (1939) does not l i s t  i t from the  Peace r i v e r drainage, nor has i t been r e p o r t e d a u t h e n t i c a l l y on Vancouver i s l a n d . Shiners occur i n a wide range of h a b i t a t s . frequent small warm^e^ltrophic  Some  l a k e s such as Rosebud, w i t h  abundant a q u a t i c v e g e t a t i o n and r e l a t i v e l y h i g h c o n c e n t r a t i o n of d i s s o l v e d s o l i d s .  Others  are found  i n large cold  P i g . 2 . D i v e r s e h a b i t a t s occupied by s h i n e r s Top - E r i e P o t h o l e Bottom - K a s l o "bay, Kootenay l a k e  -8o l i g o t r o p h l c l a k e s such as Arrow, Kootenay and Okanagan, w i t h barren shores and l i t t l e low temperature  dissolved material.  t o l e r a t e d by s h i n e r s was  An extreme i n  encountered  7  i n Erie  P o t h o l e , a c i r c u l a r p o o l some 200 metres i n diameter  and  metres deep, surrounded  Through-  by a f l o a t i n g marginal mat.  out the summer a steep temperature August 1949 was  the s u r f a c e temperature  7  g r a d i e n t p e r s i s t e d ; on was  21°C.  28  and the bottom  7°C. The s p e c i e s a l s o i n h a b i t s running water.  Shiners  were present among l o g t a n g l e s i n the I n o n o a k l i n r i v e r , where they o c c u r r e d together w i t h Kamloops t r o u t i n a s u r f a c e c u r r e n t of one f o o t per second.  Specimens were taken i n s w i f t  c u r r e n t about p i l i n g s of a b r i d g e across the Shuswap r i v e r at G r i n r o d ; others were found i n Bonanza creek, a shallow stream w i t h g r a v e l bottom and reedy  borders.  Appendix I i n c l u d e s temperatures on l i m n o l o g i c a l c o n d i t i o n s .  and some notes  Pig. 2 i l l u s t r a t e s  the d i v e r s i t y  of h a b i t a t s occupied by s h i n e r s . The r e d s i d e s h i n e r i s adaptable to a c o n s i d e r a b l e range of p h y s i c a l and chemical c o n d i t i o n s , and i s one most s u c c e s s f u l of fresh-water f i s h e s i n B r i t i s h  of the  Columbia.  I t c o h a b i t s t h i s area w i t h r e l a t i v e l y few o t h e r fresh-water species,  (63 i n B r i t i s h Columbia as a g a i n s t about 200 i n  Ontario,) and appears  to f i l l  an important niche or s e r i e s  of n i c h e s i n a number of h a b i t a t s .  I t has probably  invaded  the n o r t h e r n p a r t of i t s range from the south through  the  Columbia and Praser r i v e r systems f o l l o w i n g the r e t r e a t of the l a s t g l a c i a t i o n ,  ( C a r l and Clemens 1948).  I t s absence  from many l a k e s i n B r i t i s h Columbia i s p r o b a b l y due n o t t o i t s i n a b i l i t y t o maintain  I t s p o s i t i o n there, but t o i t s  f a i l u r e so f a r to g a i n entrance  due to g e o g r a p h i c a l  barriers.  This c o n t e n t i o n i s borne out by the e x p l o s i v e success of s h i n e r s i n t r o d u c e d r e c e n t l y i n t o such new l o c a l i t i e s as the Pinantan  - Paul l a k e c h a i n near Kamloops and many l a k e s i n  the Kootenay d i s t r i c t .  I n r e c e n t years i n t r o d u c t i o n has  commonly o c c u r r e d through r e l e a s e o f s h i n e r s used by anglers for l i v e  bait.  SPAWNING No i n f o r m a t i o n on the spawning h a b i t s of the r e d s i d e s h i n e r i s a v a i l a b l e from t h e l i t e r a t u r e .  Throughout  the summer of 1949 a l l e f f o r t s t o observe spawning f a i l e d ; no eggs were found d e s p i t e d e t a i l e d examination of the bottom and v e g e t a t i o n i n the v i c i n i t y of young f r y .  Information on  spawning p l a c e s and dates has been i n f e r r e d from other  data.  A few eggs were s t r i p p e d from s h i n e r s and hatched s u c c e s s f u l l y under a r t i f i c i a l  conditions.  Of about 1000  females t e s t e d , o n l y 14 y i e l d e d eggs which subsequently eloped.  dev-  Ripe females d i f f e r e d i n s i z e , and were taken i n  a v a r i e t y of h a b i t a t s at v a r y i n g depths and times o f day. D i s s e c t i o n r e v e a l e d q u a n t i t i e s of u n r i p e eggs remaining i n females which had been s t r i p p e d o f r i p e eggs. were present to be mature.  Unripe  eggs  at a l l times i n most i n d i v i d u a l s l a r g e enough I n Rosebud l a k e , females with r i p e eggs  s p o r a d i c a l l y i n c o l l e c t i o n s from 3 June t o 22 J u l y .  occurred  The maj-  o r i t y of males p r o v i d e d f r e e - f l o w i n g m i l t over the same  -10-  p e r i o d ; d i s s e c t i o n and f l o o d i n g of t e s t e s y i e l d e d a c t i v e sperms both before and a f t e r these I n d i v i d u a l s may a season,  dates.  p o s s i b l y spawn s e v e r a l times i n  the p r o d u c t i o n of eggs and sperms being a more or  l e s s continuous p r o c e s s .  The  small number of females  with  r i p e eggs compared w i t h the number w i t h n e a r - r i p e eggs sugg e s t s t h a t time between complete r i p e n i n g of eggs and  their  deposition i s r e l a t i v e l y short. Pig. 3  shows the s i z e range of f r y c o l l e c t e d at  d i f f e r e n t dates i n Rosebud l a k e .  Average h a t c h i n g s i z e i s  estimated from h a t c h e r y - r e a r e d specimens to be 5.0 Growth r a t e of r e a r e d f r y between h a t c h i n g and of y o l k sac i s p l o t t e d on the same f i g u r e .  mm.  absorption  (Growth of h a t -  chery specimens f a l l s o f f beyond t h i s p o i n t probably due  to  improper f e e d i n g . )  S t a r t i n g from the s i z e of the l a r g e s t  f r y i n the e a r l i e s t  sample, the slope of t h i s l i n e i s used  to o b t a i n the approximate date on which these f i s h were mm.  l o n g , i . e . j u s t hatched.  The p e r i o d from f e r t i l i z a t i o n  to h a t c h i n g , estimated from experimental  data as 8 days, i s  s u b t r a c t e d i n order to give the date of f i r s t No f r y l e s s than 7.2 lake.  5.0  mm.  spawning.  l o n g were taken i n any  Between h a t c h i n g and r e a c h i n g t h i s l e n g t h , f r y are  p r o b a b l y l i v i n g on y o l k r e s e r v e s and are r e l a t i v e l y e ry  inactive.  (Hatchteg specimens i f u n d i s t u r b e d remain q u i e s c e n t on bottom d u r i n g the f i r s t subsequently  5 to 12 days a f t e r h a t c h i n g ,  swim f r e e l y near the s u r f a c e . )  the  but  Rosebud l a k e  samples on 3 J u l y and 8 August probably r e p r e s e n t only  those  i n d i v i d u a l s o l d enough t o be a c t i v e l y f e e d i n g ; s m a l l e r f i s h  J  MAY  I  JUNE  I  I  —I  JULY  I  I  I  AUG.  I  I  SEPT.  Fig. 5. Estimate of spawning period from length frequencyd i s t r i b u t i o n s of f r y , Rosebud lake, 19^9*  -11were present  i n the l a k e but were n o t taken i n the net.  By  28 August the l a s t f r y o f the 1949 year c l a s s had grown beyond minimum catcheable in this last The  size,  so that the s m a l l e s t  sample are the l a s t hatched d u r i n g  fish  the y e a r .  l a s t date o f spawning can be estimated by running a l i n e  with appropriate  s l o p e back from the s m a l l e s t f r y on 28  August to g i v e the date at hatching, the p r e h a t c h i n g  and then s u b t r a c t i n g  period.  I t has been assumed that s i z e l i m i t s i n t h e samples were r e p r e s e n t a t i v e  of those i n the l a k e , t h a t e a r l y growth  r a t e of 21°Chatchery specimens equaled t h a t of w i l d f r y , that t h e i r prehatching t i o n periods mer,  p e r i o d s were e q u i v a l e n t ,  that  incuba-  and growth r a t e s were equal throughout t h e sum-  and that growth between h a t c h i n g  and 15.0 mm. was l i n e a r .  Probably these assumptions are o n l y approximately t r u e , but the r e s u l t a n t e r r o r i s considered r i p e egg c o l l e c t i o n s  t o be s m a l l , as dates f o r  (shown i n t h e f i g u r e ) f i t the estimated  spawning p e r i o d . Spawning i n Rosebud l a k e i n 1949 probably extended from the end of May t o the f i r s t week of August. c o l l e c t i o n s from K a s l o  on Kootenay l a k e suggest t h a t spawn-  i n g at t h a t l o c a l i t y was more r e s t r i c t e d ,  o c c u r r i n g from the  t h i r d week of June to the l a s t week o f J u l y . r e f l e c t e d i n a smaller  Fry  This was  s i z e range i n each year c l a s s .  Scanty data f o r other  lakes  suggest that u s u a l l y  l e n g t h of spawning season i s intermediate Rosebud and Kootenay l a k e s .  between that of  P r o t r a c t i o n of the spawning  -12p e r i o d i s a p p a r e n t l y the r e s u l t of two f a c t o r s ;  different  i n d i v i d u a l s spawn at d i f f e r e n t times, and each i n d i v i d u a l may  spawn more than once d u r i n g a s i n g l e  season.  As no eggs were found i n the w i l d , l i t t l e s a i d as to spawning l o c a l i t i e s  can be  except that they are p r o b a b l y  near shore i n p r o t e c t e d s i t u a t i o n s .  In Rosebud lake s m a l l  f r y were taken at many d i f f e r e n t p o i n t s about the shores, u s u a l l y i n s h e l t e r e d s i t u a t i o n s among matted v e g e t a t i o n . Eggs may have been d e p o s i t e d i n the t h i c k bottom l a y e r of l o o s e organic d e b r i s , or perhaps  i n abundant Chara beds i n  deeper water adjacent to shore.  Small f r y were observed  among f l o a t i n g l o g s and about boat houses over deep water i n K a s l o bay on Kootenay l a k e , but these may from the surrounding shore.  have moved out  Large numbers of f r y were taken  i n the west arm of Kootenay l a k e along a sand beach w i t h little  or no submerged v e g e t a t i o n .  The v a r i e t y of h a b i t a t s  o c c u p i e d by the s h i n e r as w e l l as the v a r i e t y of  localities  i n which young f r y were taken suggest that spawning r e q u i r e ments are not  rigid.  EMBRYOLOGY An attempt was t r o l l e d temperature at  made to r a i s e s h i n e r s under con-  c o n d i t i o n s d u r i n g the summer of  the K a s l o h a t c h e r y .  1949  While a few eggs were hatched  and  the f r y were kept a l i v e f o r p e r i o d s up to 57 days, none developed anal f i n rays b e f o r e death. experiments  Consequently the  d i d not c o n t r i b u t e s u b s t a n t i a l l y to study of  s t r u c t u r a l v a r i a t i o n , but d i d p r o v i d e i n f o r m a t i o n on e a r l y  -13development.  Eggs were kept i n baths at 9°, 12°, 15°, 18°  and 2 1 ° C , s u p p l i e d w i t h a steady f l o w of oxygenated water. The apparatus i s d e s c r i b e d i n Appendix I I I . In the f i e l d ,  eggs were squeezed from r i p e females  by s l i g h t p r e s s u r e on t h e abdomen, and c o l l e c t e d In the d r y i n v e r t e d top of a screw top j a r .  M i l t from one or more males  was o b t a i n e d i n the same manner, and mixed w i t h the eggs. Eggs, m i l t and a s m a l l amount of water were s w i r l e d about and then l e f t q u i e s c e n t f o r a few minutes.  The l i d w i t h  adhering eggs was submerged g e n t l y i n a p a i l o f water and screwed onto an i n v e r t e d j a r underwater so as t o exclude a i r bubbles.  The J a r , kept i n an i n v e r t e d p o s i t i o n ,  then be t r a n s p o r t e d s a f e l y .  could  The l i d w i t h adhering eggs was  removed at the h a t c h e r y and p l a c e d d i r e c t l y i n t o the temperature bath.  Any eggs which had come l o o s e and were f r e e i n  the j a r were poured out i n t o the bath.  I n some cases l i v e  parents were brought t o the h a t c h e r y i n cans and s t r i p p e d d i r e c t l y i n t o the baths. Eggs passed f r e e l y from r i p e females w i t h the a p p l i c a t i o n of s l i g h t p r e s s u r e .  They were a c l e a r golden  yellow, s p h e r i c a l and about 1.6 mm.  i n diameter.  The max-  imum number of r i p e eggs o b t a i n e d from one female was about 250.  The c h o r i o n i c membrane e n l a r g e d , when p l a c e d i n water,  u n t i l i t stood w e l l away from the y o l k , becoming f i r m and e l a s t i c .  increasingly  F e r t i l i z e d eggs adhered even t o smooth  surfaces. M i l t , which streamed f r e e l y from r i p e males when  -14-  o n l y very s l i g h t p r e s s u r e was a p p l i e d , was white and opaque. When a c t i v a t e d by water, sperms were d i s c e r n a b l e at a mag- . n i f i c a t i o n of 720 diameters as minute c i r c u l a r bodies, e x h i b i t i n g a c t i v i t y comparable t o i n t e n s e Brownian movement. A c t i v i t y l a s t e d about  one minute.  F i g u r e 4 shows a s e r i e s of stages i n the development of the egg. Time of development i s not i n d i c a t e d as the s e r i e s i s a composite d i f f e r e n t temperatures  of sketches made from eggs at  on d i f f e r e n t o c c a s i o n s .  F i g u r e 4 A shows an e a r l y stage i n cleavage of the germinal d i s c .  I n F i g . 4B the blastoderm s i t s as a cloudy  cap on top o f the c l e a r y e l l o w y o l k . oderm i s beginning to spread around envelopment has proceeded beneath as a p l u g .  I n F i g . 4C t h e b l a s t the y o l k , and i n F i g . 4D  so t h a t the y o l k i s p r o t r u d i n g  F i g . 4E shows t h e n e u r a l f o l d s forming  on top of the embryo, w h i l e F i g . 4F and 4G a r e l a t e r a l and v e n t r a l views o f a l a t e r stage w i t h o p t i c v e s i c l e s forming. Complete development and h a t c h i n g o c c u r r e d at temperatures  from 12° t o 21°C.  I n the 9° bath  cleavage occurred, but, at 100 hours a f t e r the germinal d i s c appeared  initial  fertilization,  as a group of i r r e g u l a r  cells  s c a t t e r e d on the s u r f a c e of the y o l k ( F i g . 4H). No f u r t h e r development occurred at t h i s  temperature.  At l a t e r stages of development the t a i l bud i n c r eases i n l e n g t h u n t i l the embryo i s c u r l e d around i n a s p i r a l w i t h i n the c h o r i o n .  The h e a r t beat and blood c i r c u l a t i o n  become e a s i l y v i s i b l e ,  and p e r i o d s of spasmodic m o t i l i t y  occur.  Fig.  5« Shiner larvae showing raedian f i n fold and development of f i n rays. X 7s approx.  -15-  The mean number of days between f e r t i l i * a t i o n and hatching at d i f f e r e n t  temperatures are summarized below.  The wide d i f f e r e n c e i n number o f i n d i v i d u a l s h a t c h i n g i n d i f f e r e n t baths i s p r o b a b l y not d i r e c t l y a t t r i b u t a b l e to a f f e c t of temperature on v i a b i l i t y , initial  as the p a r e n t s , the  number and the treatment of the eggs v a r i e d .  Water temperature - Centigrade  9°  12°  15°  18°  21°  H a t c h i n g time,  -  15  11  8  7  0  9  200  4  7  days  Number hatched  METAMORPHOSIS In  the p r e s e n t study metamorphosis of the embryo  was s t u d i e d w i t h s p e c i a l r e f e r e n c e to the development anal f i n .  Nomenclature  of the stages i s that suggested by  Hubbs (1943).  Nomenclature  Eaton (1945).  D e t a i l s of development  from f e r t i l i z a t i o n  of the  of the f i n elements i s that of o f the r e d s i d e s h i n e r  t o j u v e n i l e stage appear t o f o l l o w i n  g e n e r a l the course o u t l i n e d f o r C y p r i n i d s by B a l i n s k y  (1948).  When hatched, the l a r v a bears a r e l a t i v e l y s m a l l y o l k sac. W i t h i n a short time the head, which i s at f i r s t bent down towards  the y o l k sac, s t r a i g h t e n s , and the y o l k i s  r a p i d l y absorbed.  As y o l k i s a s s i m i l a t e d the l a r v a becomes  more a c t i v e , l e a v i n g the bottom to swim f r e e l y f o r i n c r e a s ing  p e r i o d s and s t a r t i n g t o f e e d .  ming l a r v a e  The s m a l l e s t f r e e swim-  ( P i g . 5, top) have a median f i n r u n n i n g from the  centre of the b e l l y around the t a i l  and forward d o r s a l l y t o  a p o i n t some d i s t a n c e ahead of the d e f i n i t i v e p o s i t i o n o f the  -16-  dorsal f i n . e i t no  This f i n i s i n t e r r u p t e d  d e f i n i t i v e f i n rays  a continual  anus.  In  ( l e p i d o t r i c h i a ) are present,  but  s e r i e s of c l o s e l y set d e l i c a t e horny  ( a c t i n o t r i c h i a ) are v i s i b l e . t h i n leaves,  but  As i n the r e g i o n  The  pectorals  The rudiment of the  rays,  are present  at t h i s stage there i s no t r a c e  or median f i n s .  -centre).  only at the  of the  as pelvics  a i r bladder i s obvious.  the l a r v a grows, the f i n f o l d becomes h i g h e r of the d o r s a l ,  and  l a t e r the a n a l f i n ( P i g .  5,  C o n c e n t r a t i o n of t i s s u e occurs i n a s t r i p marking  the base of the f i n , and commencing at the  d e f i n i t i v e f i n r a y s become v i s i b l e  anterior  end  are f u l l y formed before the  of each f i n .  anal.  As the  The  dorsal  rays  anal f i n develops  a s t r i p of denser t i s s u e at the f i n base forms i n t o a s e r i e s of d i s c r e t e masses.  The^se appear from a n t e r i o r  somewhat e a r l i e r than the f i n r a y s ,  so that  to  i t is  posterior, possible  i n a l a r v a at t h i s stage to d i s t i n g u i s h a g r e a t e r number of d i s c r e t e b a s a l  elements than d i s c r e t e l e p i d o t r i c h i a .  At  t h i s stage the p e l v i c f i n rudiments begin to appear as s l i g h t protuberances on  e i t h e r s i d e of the median f i n anter-  i o r t o the anus.As f o r m a t i o n of the d o r s a l f i n rays i s completed and  t h a t of the  anal f i n r a y s p r o g r e s s e s , the  diminshes i n width ahead of the d o r s a l , caudal, and  between anal and  caudal  p e l v i c rudiments grow r a p i d l y and without v i s i b l e r a y s , of the  anus.  f i n fold  between d o r s a l  ( P i g . 5,  bottom).  appear as l i t t l e  and The  paddles  the v e n t r a l f i n f o l d p e r s i s t i n g ahead  -17L a t e r the embryonic f i n f o l d d i s a p p e a r s .  Rays  appear l a s t of a l l In the p e l v i c f i n s , m a r k i n g the d i v i s i o n between l a r v a e and j u v e n i l e stages; beyond t h i s p o i n t the i n d i v i d u a l i s e s s e n t i a l l y a d u l t i n appearance. GROWTH Growth of f r y d u r i n g the f i r s t year has been d e a l t w i t h i n the d i s c u s s i o n of spawning p e r i o d s .  The best  method of ageing subsequent year groups was by t h e i r l e n g t h frequency  distributions. F i g u r e 6 shows l e n g t h s of f i s h sampled at v a r i o u s  times d u r i n g the summer o f 1949 at K a s l o bay on Kootenay lake.  The f i r s t  collection,  taken on May  29 i s shown a t  both ends of the s e r i e s to i n d i c a t e the r e l a t i v e l y growth o c c u r r i n g d u r i n g the w i n t e r months.  slight  C o l l e c t i o n s from  two other p a r t s of the Kootenay l a k e system are shown i n the same f i g u r e .  The c o l l e c t i o n from Taghum, on the lower  Kootenay r i v e r about f o u r m i l e s below Nelson,  apparently  i n d i c a t e s more r a p i d growth than at K a s l o , while f i s h from Lardeau at the n o r t h end of Kootenay l a k e show a s l i g h t l y slower growth. bottom dredgings  Temperature o b s e r v a t i o n s , p l a n k t o n h a u l s , and water a n a l y s i s were made during the  g e n e r a l survey of Kootenay l a k e i n 1949 by the B r i t i s h Columbia Game Commission.  These i n d i c a t e t h a t the n o r t h  end of the lake i s c o l d e r and r e l a t i v e l y poorer In p l a n k t o n and bottom organisms than the south end and west arm.  The  lower Kootenay r i v e r i s s u p p l i e d by warm water r i c h i n plankton, drawn o f f the s u r f a c e o f Kootenay l a k e along the  30  2 0 -2,9 M A Y  K AS L 0  iO  \o  10 J U N E  QUEEN'S BAY  5 LB  16  TAGHUM  JULY  LARDEAU  LI5 J U L Y  o  72.1 J U L Y  u . . i . l .  KASLO  40 -I2> A U G 30  KASLO  KASLO.  b_ ° 0 20 4  o Z  20  -29 M A Y  KASLO  \o  20 STANDARD  40  60 LENGTH  F i g . 6. Length frequency distributions- of shiner from Kootenay lake, 19^-9 •  80 MM,  collections;:  -18shallow west arm. Lardeau,  Apparently e c o l o g i c a l c o n d i t i o n s at  Kaslo and Taghum are r e f l e c t e d by growth r a t e s of  s h i n e r s i n these  localities.  Kootenay l a k e s h i n e r s appeared to show the growth of any p o p u l a t i o n s examined. was  The  o p p o s i t e extreme  r e p r e s e n t e d by f i s h from Pinantan l a k e .  water i s h i g h l y e u t r o p h i c  slowest  T h i s body of  (Rawson 1934), w i t h l a r g e areas  of weedy shallows.  Shiners are extremely  abundant and many  are of l a r g e s i z e .  A c c o r d i n g to the a v a i l a b l e l e n g t h f r e q -  uency data s h i n e r s i n P i n a n t a n l a k e reach an average l e n g t h at  the end of t h e i r second year approximately  average reached years.  equal to the  by Kootenay l a k e s h i n e r s at the end of t h r e e  Growth r a t e s of the two p o p u l a t i o n s are summarized  below; growth i n other l o c a l i t i e s i n t e r m e d i a t e between these  s t u d i e d was  apparently  two.  Estimated Mean Standard  Length on Sept.  1.  Year 0  Year I  Year III  Kootenay l a k e , K a s l o  17 mm.  34 mm.  55  mm.  Pinantan l a k e  27 mm.  55 mm.  75  mm.  I n the younger age groups of s e v e r a l p o p u l a t i o n s males had a g r e a t e r mean s i z e than females. i a t i o n was statistical  great, and i t was  Range of var-  not p o s s i b l e to a t t r i b u t e  s i g n i f i c a n c e to the d i f f e r e n c e .  However, males  p o s s i b l y have a h i g h e r metabolic r a t e than females, f a s t e r and dying Ageing  growing  sooner. of the l a r g e s t i n d i v i d u a l s by l e n g t h  frequency d i s t r i b u t i o n i s not p o s s i b l e because of the small  -19-  number of specimens.  S c a l e r e a d i n g i s an u n s a t i s f a c t o r y  method of age d e t e r m i n a t i o n as few c i r c u l i are formed each year and a n n u l i are u s u a l l y i n d i s t i n c t .  Nevertheless,  ageing by s c a l e s c o u l d probably be c a r r i e d out i n most popu l a t i o n s by c a r e f u l study of n u c l e a r formations of f i s h spawned at the s t a r t and f i n i s h of the season.  T h i s would  a l l o w d i s t i n c t i o n between, f o r example, small two year olds and l a r g e one year o l d s . Age was  d e t e r m i n a t i o n of the l a r g e s t i n d i v i d u a l  attempted by s c a l e examination.  T h i s f i s h , taken  taken by  g i l l net from Rosebud l a k e , had a standard l e n g t h of 123 and  a t o t a l l e n g t h of 151 mm.  i b l y i t s seventh The  I t was  i n i t s s i x t h or  mm.  poss-  year.  o l d e s t c l a s s which forms an a p p r e c i a b l e per-  centage of most p o p u l a t i o n s i s made up of f i s h i n t h e i r f o u r t h year, the m a j o r i t y of which are  females.  SEX RATIO There i s some i n d i c a t i o n t h a t the sex r a t i o i s unbalanced  i n some p o p u l a t i o n s .  localities,  Of 21 samples from d i f f e r e n t  12 showed sex r a t i o s not s i g n i f i c a n t l y  from 50:50 at the 5% p r o b a b i l i t y l e v e l . had  s i g n i f i c a n t l y more females  different  Seven l o c a l i t i e s  than males (p < 0.01  samples, 0.02  - 0.01  sample).  l o c a l i t i e s . h a d s i g n i f i c a n t l y more males  females  Two  (p < 0.01  f o r 2 samples and 0.05  f o r 1 sample, 0.02  - 0.05  - 0.02  for 4 for 1 than  f o r the o t h e r ) .  There are s e v e r a l p o s s i b l e e x p l a n a t i o n s f o r the r a t i o s found i n these samples.  In many p o p u l a t i o n s the  -20-  l a r g e s t f i s h were almost e x c l u s i v e l y females.  (These  indiv-  i d u a l s were p r o b a b l y o l d e r , r a t h e r than f a s t e r growing, as suggested i n the p r e v i o u s s e c t i o n . )  The same c o n d i t i o n i s  r e p o r t e d by Cooper (1935) f o r the golden s h i n e r Notemigonus crysoleuca3.  In t h i s s p e c i e s females show g r e a t e r v i a b i l i t y ,  r e s u l t i n g i n a drop i n the percentage o f males i n o l d e r year classes.  Such a f a c t o r would tend to r a i s e the percentage  of females i n a sample c o n t a i n i n g a l l year c l a s s e s . To c o r r e c t f o r t h i s d i f f e r e n t i a l m o r t a l i t y i t i s p o s s i b l e i n some cases t o separate the sample by l e n g t h frequency d i s t r i b u t i o n i n t o d i f f e r e n t year groups, and t o c o n s i d e r the sex r a t i o i n each year group s e p a r a t e l y .  While  t h i s reduces the sample s i z e and hence r a i s e s the p r o b a b i l i t y of a g i v e n r a t i o being due t o "chance", t h e r e s t i l l  remain  some samples w i t h s i g n i f i c a n t l y more females even among one year o l d s .  The preponderance  of males i n some  samples  cannot of course be a t t r i b u t e d to h i g h e r male m o r t a l i t y . There i s a l s o the d i s t i n c t p o s s i b i l i t y o f nonrandom sampling due to s e g r e g a t i o n or d i f f e r e n t behaviour of the sexes.  Such a phenomenon r e s u l t i n g i n b i a s e d sampling  i s r e p o r t e d by Heuts  (1947) f o r Gasterosteus a c u l e a t u s .  There i s a l s o the p o s s i b i l i t y that d i f f e r e n t growth r a t e s of the two sexes coupled w i t h s e l e c t i o n of one s i z e c l a s s i n sampling might r e s u l t i n heterogenous  sampling.  Neverthe-  l e s s , t h e r e d s i d e s h i n e r appears t o be p l a s t i c i n many e n v i r o n m e n t a l l y c o n t r o l l e d f e a t u r e s , and t h e r e i s s t r o n g s u g g e s t i o n i n the l i t e r a t u r e  (; Efcerhardt, 1943  ) that  -21-  unequal sex r a t i o s may fishes.  be produced e n v i r o n m e n t a l l y i n some  Consequently, while the evidence p r e s e n t e d here i s  by no means c o n c l u s i v e , the p o s s i b i l i t y of environmental c o n t r o l of sex r a t i o i n R. b a l t e a t u s should not be n e g l e c t e d . The s p e c i e s might serve as s u i t a b l e experimental m a t e r i a l f o r i n v e s t i g a t i n g the s u b j e c t .  MOVEMENTS Size Differences Shiners of d i f f e r e n t depth zones.  s i z e s tend to occupy  different  F r e q u e n t l y f r y were observed c l o s e to shore i n  a few inches of water w h i l e a d u l t s were p r e s e n t o n l y f a r t h e r offshore.  To demonstrate t h i s phenomenon q u a n t i t a t i v e l y  a s e r i e s of c o l l e c t i o n s was made on Rosebud l a k e on 28 August 1949.  A round shallow d i p net of wire s c r e e n i n g , t h r e e f e e t  across and suspended  by f o u r wires from the end of a f i v e  foot  bamboo handle, was used to sample s h i n e r s at v a r y i n g depths. The u n b a i t e d d i p net was  lowered onto the bottom, l e f t there  f o r e x a c t l y s i x t y seconds and then drawn r a p i d l y up out of the water.  straight  T h i s procedure was repeated u n t i l  an adequate sample had been o b t a i n e d .  Sampling was  conducted  i n the same manner i n each depth zone. Table I summarizes the s i z e d i s t r i b u t i o n %f caught. 25 mm. water.  A l l f i s h taken i n one f o o t of water were f r y below i n length.  Very few f r y were taken i n two f e e t of  No f r y were taken i n the two deeper zones, w h i l e the  l a r g e s t percentage of l a r g e f i s h was zone.  fish  taken from the deepest  -22-  TABLE I Standard Length o f Shiners i n D i f f e r e n t Depth Zones, Rosebud l a k e , 28 August 1949 DEPTH FEET  DISTANCE FROM SHORE FEET 6  1  NO. IN SAMPLE 16  PERCENT OF SAMPLE IN SIZE RANGE 10-24mm 25-•39mm 40-59mm 60-80mm 100  0  0  0  2  12  63  6  29  62  3  4  20  58  0  36  55  9  9  30  79  0  3  83  14  The above experiment was conducted i n an area c h a r a c t e r i z e d by a dense growth o f Chara and other a q u a t i c vegetation.  The tendency of young s h i n e r s t o congregate  i n s h o r e was a l s o observed on barren beaches.  Schools of  small one year o l d s h i n e r s mixed w i t h young suckers and squawf i s h , were s e v e r a l times observed l y i n g i n l o n g narrow  bands  w i t h i n t e n inches o f shore i n K a s l o bay. T h i s may have u l t e d from temperature p r e f e r e n c e o f the f r y . the  off  On 6 J u l y 1949  temperature o f the water where such a band of young  was present was 23.5°C.,. compared shore.  res-  fish  w i t h 21.5°C. a few f e e t  Presence o f f o o d might a l s o account f o r such  d i s t r i b u t i o n ; f r y taken along a beach i n the west arm o f Kootenay l a k e were d i s t e n d e d w i t h Night  copeCpods.  Activity. S h i n e r s a r e a p p a r e n t l y a c t i v e at n i g h t i n some  localities.  Night s e i n i n g a t Kaslo and Kuskanook  l a k e y i e l d e d s h i n e r s along exposed sandy beaches,  on Kootenay I n Rosebud  lake on 22 J u l y 1949, a t r a p suspended one f o o t beneath the  -23s u r f a c e i n the c e n t r e of the l a k e caught a l a r g e number of s h i n e r s between 11 P.M. no f i s h between 8:30  and 8:30  A.M.  A.M.  The  same trap caught  and noon, nor were s h i n e r s observed  i n the c e n t r e of the l a k e d u r i n g d a y l i g h t hours. light  Artificial  at midnight r e v e a l e d s h i n e r s moving about o f f  but these may  shore,  have been a t t r a c t e d or s t i m u l a t e d by the  lights.  Summer Range. During  the summer of 1949,  a few  s h i n e r s at  K a s l o bay were marked by c l i p p i n g the l e f t p e c t o r a l f i n . Numbers i n v o l v e d were too s m a l l to be used f o r s a t i s f a c t o r y p o p u l a t i o n estimates.  Up u n t i l  marked; no marking was  done f o r the f o l l o w i n g 13 days.  J u l y 8,  June 25,  92 f i s h had  been On  a sample of 18 f i s h taken at the same boat house  where the others had individuals.  been r e l e a s e d c o n t a i n e d  two marked  T h i s i n d i c a t e s t h a t at l e a s t some of the  fish  were i n the same v i c i n i t y where they had been taken., 13 days previously.  From a t o t a l  of about 200  l o c a t i o n , 10 were r e c o v e r e d . c l i p p i n g other f i n s the f i r s t ,  frequent  About 40 f i s h were marked by  at l o c a t i o n s a few hundred yards  but none of these was  s i m i l a r observations  f i s h marked at t h i s  recovered.  suggest t h a t s h i n e r s may  from  These and  other  sometimes  the same l o c a l i t y f o r c o n s i d e r a b l e p e r i o d s of time,  r e t u r n i n g r e p e a t e d l y to the same boathouse s l i p or group of floating logs. Winter H a b i t s . Scattered observations of the s p e c i e s .  were made on winter  habits  In Cultus l a k e , s h i n e r s were r e a d i l y  seined  -24-  i n shallow water on 25 September 1948.  On 11 November 1948  no s h i n e r s were seen i n t h e i r former h a b i t a t s , but a s c h o o l was found i n the s h e l t e r o f a sunken barge over deeper water. F i s h e r i e s S u p e r v i s o r J . Robinson r e p o r t s that s h i n e r s cannot be caught near shore on Kootenay l a k e d u r i n g w i n t e r .  In  Kaslo bay, few s h i n e r s were v i s i b l e about the boathouses and l o g booms on 7 May 1949.  S h i n e r s became i n c r e a s i n g l y numer-  ous d u r i n g the f o l l o w i n g month, perhaps moving i n from deeper water. S h i n e r s were r e a d i l y o b t a i n a b l e from E r i e p o t h o l e throughout the summer of 1949, but Game Warden T. R u t h e r g l e n r e p o r t s that the only specimens o b t a i n a b l e i n l a t e November 1949 were a few f r y dug out of the mud near shore.  On 22  November 1948 f i v e s h i n e r s from Cultus l a k e were p l a c e d i n an a r t i f i c i a l p o o l a t the n o r t h end of the U n i v e r s i t y of B r i t i s h Columbia l i b r a r y grounds. p o o l f r o z e over completely.  During the w i n t e r the  On 28 February 1949  was taken o f the bottom i n two f e e t of water.  a sample  This contained  one s h i n e r , a l i v e and a p p a r e n t l y b u r i e d i n decaying l e a v e s . The f o r e g o i n g o b s e r v a t i o n s suggest t h a t  during  w i n t e r s h i n e r s may move i n t o deeper water or i n some l o c a l i t i e s may bury themselves i n the bottom and l i e dormant.  FOOD RELATIONSHIPS R e l a t i o n to Game Species The r e l a t i o n which s h i n e r s bear t o game f i s h i s of c o n s i d e r a b l e importance i n B r i t i s h Columbia.  S h i n e r s have  -25been i n t r o d u c e d r e c e n t l y and have m u l t i p l i e d enormously i n s e v e r a l lakes which f o r m e r l y contained only game s p e c i e s . T h i s s i t u a t i o n i s u s u a l l y viewed with alarm by sportsmen, onthe assumption t h a t s h i n e r s w i l l for  s e r i o u s l y compete with t r o u t  food, or t h a t s h i n e r s w i l l consume young t r o u t .  On the  other hand i n some l a k e s such as Snowshoe, s h i n e r s have been purposely i n t r o d u c e d as f o o d f o r game f i s h . sometimes reaches  The s p e c i e s  phenomenal l e v e l s o f abundance.  Whatever  r o l e they may p l a y , s h i n e r s must exert an important  pressure  on the economy of many l a k e s . The p r e s e n t study concerns, only d i r e c t and the p o s s i b i l i t y of c o m p e t i t i o n f o r food.  predation  Studies on  c o m p e t i t i o n are c o n f i n e d t o q u a l i t a t i v e determination of food present i n samples o f s h i n e r s and game s p e c i e s together.  taken  The game f i s h c o n s i d e r e d are the Yellowstone  c u t - t h r o a t Trout Salmo c l a r k i i l e w i s i  ( G i r a r d ) , the Kamloops  t r o u t Salmo g a i r d n e r i i kamloops Jordan, trout? S. g. whitehousei  Dymond  Salveyllinus f o n t i n a l i s  (Mitchill).  the mountain Kamloops  and the speckled  char  P r e d a t i o n by Shiners Consumption o f t r o u t f r y by a d u l t s h i n e r s was investigated experimentally.  I n 1948 three t r i a l s u s i n g  young Kamloops t r o u t f r y from Summerland h a t c h e r y negative r e s u l t s . for  S h i n e r s , chub and s c u l p i n s were p l a c e d  s e v e r a l days i n a h a t c h e r y  sculpins  gave  trough w i t h t r o u t f r y ; only  (Cottus asper) were found  t o eat f r y .  Similar  -26-  r e s u l t s were obtained  when an assortment of f i s h i n c l u d i n g  s h i n e r s were c o n f i n e d w i t h t r o u t f r y i n an enclosure A l l i s o n l a k e ; only the s c u l p i n s ate f r y .  on  On 1 Sept. 1948,  a s e i n e was s e t i n an arc out from the shore of T a y l o r and  lake,  approximately 1000 Kamloops t r o u t f r y were r e l e a s e d i n -  s i d e the a r c . A f t e r 10 minutes the seine was drawn i n capt u r i n g a number o f s h i n e r s .  No f r y were found i n t h e i r  stomachs. In the summer of 1949, s h i n e r s from Rosebud l a k e were kept i n a trough at K a s l o h a t c h e r y f o r s e v e r a l weeks. Kamloops t r o u t f r y were then i n t r o d u c e d .  Dead or i n j u r e d  f r y were eaten by the s h i n e r s , but h e a l t h y f r y remained a l i v e f o r two days i n the trough.  Shiners  would approach  f r y swimming near the s u r f a c e , but would not pursue i f the f r y attempted to evade them. 80 t o 100 mm. a t e l y 25  Shiners w i t h a t o t a l l e n g t h of  ate i n j u r e d f r y with t o t a l l e n g t h of approxim-  mm. On 27 J u l y 1946 Dr. D. C. 0. MacKay c o l l e c t e d  s h i n e r s from Pinantan l a k e f o l l o w i n g p l a n t i n g of Kamloops trout f r y .  The stomachs of e i g h t of these preserved  were examined by the w r i t e r i n 1950; two contained f r y and three  others  contained  specimens  trout  u n i d e n t i f i e d f i s h remains.  Apparently s h i n e r s are capable of e a t i n g t r o u t f r y and  i n some i n s t a n c e s they may do so under n a t u r a l  conditions.  Although c o n d i t i o n i n g of the h a t c h e r y s h i n e r s may have b i a s e d r e s u l t s of the K a s l o may be discouraged  experiments, i t i s suggested t h a t  shiners  from a t t a c k i n g f r y i f the f r y make a d e t -  -27-  ermined e f f o r t to escape.  Trout f r y poured from a  hatchery  can Into shallow water were s e v e r a l times observed to l i e i n a c t i v e on the bottom f o r some minutes a f t e r r e l e a s e .  This  o b s e r v a t i o n coupled w i t h f e e d i n g experiments and the presence of f r e s h l y r e l e a s e d f r y i n s h i n e r ' s stomachs suggests t h a t t r o u t f r y may  be p a r t i c u l a r l y s u s c e p t i b l e to p r e d a t i o n when  they are f i r s t P r e d a t i o n on  i n t r o d u c e d i n t o new  surroundings.  Shiners  Various o b s e r v a t i o n s  i n d i c a t e that shiners  are  eaten by Kamloops t r o u t , c u t - t h r o a t t r o u t and speckled At Nelson hatchery  char.  on 20 Aug. ^ 1949^ a number of Rosebud l a k e  s h i n e r s , from 20 to 40 mm.  l o n g , were i n t r o d u c e d i n a c i r c u l a r  r e a r i n g pond c o n t a i n i n g y e a r l i n g Kamloops t r o u t about 100 long.  mm.  Trout were seen t o eat the s h i n e r s , u s u a l l y swallowing  them whole.  Dead t r o u t f r y were a l s o eaten by the y e a r l i n g s . Shiners occurred i n the stomachs of t r o u t from  various lakes.  Stomachs of the l a r g e r Kootenay l a k e Kamloops  t r o u t taken i n 1949  c o n t a i n e d mainly f i s h , u s u a l l y kokanee  Oncorhynchus nerka k e n n e r l y i (Suckley) shiners.  Kamloops t r o u t i n Pinantan  but o c c a s i o n a l l y  l a k e are s a i d to f e e d  l a r g e l y on s h i n e r s ; thermal s t r a t i f i c a t i o n and  severe  oxygen s t a g n a t i o n i n the hypolimnion (Rawson 1934) the two  species i n t o close contact.  son  (MS)  force  Shiners have r e c e n t l y  entered Paul lake but have so f a r been r e p o r t e d by r e s i d e n t s as o c c u r r i n g i n only a few  may  local  t r o u t stomachs.  Ander-  suggests s h i n e r s must r e a c h a c e r t a i n c r i t i c a l  of abundance before  s e r v i n g as t r o u t f o o d .  level  -28In Rosebud l a k e speckled char were observed chasing  shiners.  Two char, 10 and 12 inches l o n g , swam back and  f o r t h i n a dense s c h o o l of s h i n e r s , d a r t i n g at a s h i n e r every few seconds.  The s h i n e r s were apparently unconcerned,  swimming w i t h i n a f o o t o f t h e char. during the p e r i o d of o b s e r v a t i o n ,  No s h i n e r s were  eaten  but i n j u r e d s h i n e r s thrown  on the water were immediately s e i z e d by the char. In Cottonwood l a k e the s h i n e r p o p u l a t i o n contains  a d i s p r o p o r t i o n a t e number of o l d f i s h .  imens taken on f i v e d i f f e r e n t standard  l e n g t h and probably  apparently  Of 37 spec-  occasions, 30 were over 80 mm. three or more years  dense p o p u l a t i o n of small mountain Kamloops t r o u t  o l d . The present  may prey upon s h i n e r s up to a c e r t a i n c r i t i c a l s i z e , produ c i n g t h i s uneven age d i s t r i b u t i o n .  While no s h i n e r s were  found i n t r o u t stomachs from the l a k e , only a small tage of the s h i n e r p o p u l a t i o n ,  as sampled by d i p n e t t i n g ,  was small enough to be eaten by the t r o u t . to be eaten a p p a r e n t l y l i v e  percen-  Shiners too l a r g e  s u c c e s s f u l l y a l o n g s i d e t r o u t of  almost the same s i z e ; the two s p e c i e s were  frequently•taken  i n the same d i p n e t . Competition Table I I shows the f o o d items i n stomachs of f i s h taken from Rosebud and Cottonwood lakes by g i l l n e t and d i p net.  I n Rosebud l a k e a l l t h r e e s p e c i e s of game f i s h ate  s h i n e r s , and the l a r g e shiners a l s o contained  small s h i n e r s .  In both l a k e s , a l l f o o d items eaten by game s p e c i e s were a l s o taken by s h i n e r s .  T h i s i s a l s o t r u e of c o l l e c t i o n s of s h i n e r s  -29not i n c l u d e d i n Table I I , t a k e n along w i t h speckled f i n g e r l i n g s and c u t - t h r o a t  (or p o s s i b l y Kamloops) f r y i n a  c o l d stream e n t e r i n g Rosebud l a k e . Kamloops t r o u t together and  char  S i m i l a r l y c o l l e c t i o n s of  with s h i n e r s from South Champion lajce  a l s o from the I n o n o a k l i n  r i v e r a l l contained  terrestrial  i n s e c t s p l u s a few l e s s e r items.  TABLE I I Food of Shiners and Game Species Taken Together, 1949 (Rosebud l a k e - 20, 21 June, 22, 23 J u l y , 7 Aug. Cottonwood l a k e - 11 J u l y , 16 Aug.)  1  Speckled  char  Redside s h i n e r COTTONWOOD LAKE Mtn. Kamloops trout Redside s h i n e r  Ecological  25 14  1  15  7  2  1  1  o  CO •H  S  1  .3  1  14  2  3  1  3  2  1  3  12  2  1  7  1  9  1  2  7  2  6  Shiners  Kamloops t r o u t  1  Mollusca  9  CO O jG W) Ph CO !>> & U rH £, Q «H C  Terr'l insects  ROSEBUD LAKE Cut-throat t r o u t  i . C  Larval Diptera  SAMPLE SIZE  Algae  NO. OF STOMACHS CONTAINING FOOD ITEM  2  Relations In summary, s h i n e r s and game s p e c i e s  o f t e n have a d e f i n i t e e f f e c t on each o t h e r .  apparently  I t has been  shown t h a t under c e r t a i n c o n d i t i o n s s h i n e r s e a t t r o u t , t r o u t eat s h i n e r s , s h i n e r s eat s h i n e r s and t r o u t eat t r o u t .  In  -30a d d l t i o n s h i n e r s and young or a d u l t Salmonids have been found to c o n t a i n s i m i l a r f o o d when taken  together.  Shiners may t h e r e f o r e be i n j u r i o u s to.game f i s h p r o d u c t i o n by consuming young and by competing f o r f o o d of both young and o l d , or they may be b e n e f i c i a l by s e r v i n g as prey f o r l a r g e Salmonids,converting r e a d i l y a v a i l a b l e food.  diffuse nutrients into  They probably  fill  a l l o f these  r o l e s i n v a r i o u s h a b i t a t s , environmental c o n d i t i o n s governing  the p r e c i s e r e l a t i o n s h i p . Dymond (1930) has suggested t h a t the c r i t i c a l f a c -  tor  a f f e c t i n g p r o d u c t i o n o f t r o u t i n some B r i t i s h  Columbia  l a k e s i s t h e f o o d a v a i l a b l e f o r the young d u r i n g t h e i r  first  year; once t r o u t are l a r g e enough t o consume f i s h they a r e i n command of an ample f o o d supply.  This s i t u a t i o n may  produce r e l a t i v e l y s m a l l numbers o f r e l a t i v e l y l a r g e f i s h . From the present  study i t i s suggested that s h i n e r s may i n  some cases i n t e n s i f y the c o n d i t i o n o u t l i n e d by Dymond, o f f e r r i n g competition for  t o young t r o u t and s e r v i n g as food  o l d trout. The  probably  amount o f c o n t a c t between s p e c i e s of f i s h  v a r i e s i n d i f f e r e n t seasons.  on the p h y s i c a l and chemical  t o l e r a n c e s of each s p e c i e s  i n v o l v e d might f u r n i s h evidence of the zones occupied  Physiological studies  by each.  as to the degree of overlap  -31-  STRUCTURAL VARIATION LITERATURE ON VARIATION IN PISH Body p r o p o r t i o n s  and the number of f i n r a y s , v e r t e -  brae and s c a l e s are known to vary from p o p u l a t i o n to t i o n i n many s p e c i e s of f i s h .  In order t o make taxonomic  use of these c h a r a c t e r s i t i s necessary genotypic  from phenotyplc  variation.  to be able to  separate  I t i s therefore d e s i r -  able to know which f a c t o r s c o n t r o l phenotyplc what are the mechanisms and  popula-  extent o f t h e i r  variation,  and  operation.  The l i t e r a t u r e c o n t a i n s many d i f f e r e n t l y  contrad-  i c t o r y r e s u l t s of i n v e s t i g a t i o n s on the e f f e c t of p a r t i c u l a r environmental f a c t o r s on p a r t i c u l a r m e r i s t i c c h a r a c t e r s of fish.  Concerning the e f f e c t of temperature on f i n r a y s ,  Schmidt  (1917) concluded  from experimental  s t u d i e s on  L e b i s t e s r e t i c u l a t u s t h a t h i g h e r temperatures d u r i n g  develop-  ment of the young produced h i g h e r numbers of f i n r a y s . S i m i l a r l y Jensen (1939) f i n d s i n the p l a i c e and the dab  that  the number of anal r a y s i s d i r e c t l y p r o p o r t i o n a l to water temperature when the l a r v a e are small, 1°C. to 0.4  anal r a y s .  Schultz  corresponding  (1927) f i n d s a d i r e c t  correlation  between the h i g h l y v a r i a b l e anal r a y count of the golden s h i n e r Notemigonus c r y s o l e u c a s and mean temperature  during  the spawning season. In c o n t r a s t . t o the f o r e g o i n g , Hubbs (1922a) has demonstrated t h a t the number of d o r s a l and Notropis  atherinprdes  anal rays o f both  and Lepomls I n c i s o r i s g r e a t e r when the  -32developmental p e r i o d i s c o l d e r .  Northcote (MS) shows that  the average number of d o r s a l r a y s i n the p r i c k l y  sculpin  Cottus asper Increases from south to n o r t h between C a l i f o r n i a and B r i t i s h Columbia, presumably  i n v e r s e l y to developmental  temperature. The e f f e c t s of temperature been s t u d i e d by s e v e r a l i n v e s t i g a t o r s .  on v e r t e b r a l count has The works of H ubbs  (1921, 1922a, 1922b) on Leptococcus armatus, N o t r o p i s a t h e r i n o l d e s j Lepomis i n c i s o r , N o t r o p i s hudsonius and N o t r o p i s b l e n n i u s , of Schmidt  (1930) on the A t l a n t i c cod, of Suhd .T-  (1943) on the Norwegian h e r r i n g and of Hart and McHugh (1944) on the c a p e l i n , to mention o n l y a few, a l l i n d i c a t e s t h a t lower temperatures However, Schmidt  tend to produce h i g h e r v e r t e b r a l counts.  (1921) shows data f o r Salmo t r u t t a  suggest that the curve of environmental temperature  which against  v e r t e b r a l count i s a c t u a l l y V-shaped, w i t h h i g h counts at low and h i g h temperatures and low counts at i n t e r m e d i a t e temperatures.  M o t t l e y (1937) a l s o makes t h i s s u g g e s t i o n .  Gabriel  (1944) c h a l l e n g e s the v a l i d i t y of  Schmidt's  c o n c l u s i o n s and presents data on c a r e f u l l y c o n t r o l l e d iments w i t h Fundulus h e t e r o c l i t U 3 .  exper-  These show that h i g h  temperature produces fewer v e r t e b r a e , but l o w e r i n g o f d e v e l opmental  temperature below a c e r t a i n p o i n t does not r e s u l t  i n f u r t h e r i n c r e a s e of v e r t e b r a e .  He concludes that  differ-  ences i n v e r t e b r a l count at d i f f e r e n t temperatures are due to d i f f e r e n c e s i n temperature r e l a t i o n s of processes c o n t r o l l i n g growth and p r o c e s s e s c o n t r o l l i n g  differentiation.  -33-  H i s t o - d i f f e r e n t i a t i o n i s more a c c e l e r a t e d by h i g h temperature than somittf s e p a r a t i o n and growth; consequently  at h i g h  temperature v e r t e b r a l d i f f e r e n t i a t i o n takes p l a c e when the embryo i s s m a l l e r and fewer v e r t e b r a e are formed.  However,  there are a l s o g e n e t i c a l l y c o n t r o l l e d d i f f e r e n c e s i n developmental r a t e and i n the degree of temperature c o n t r o l . b r a l count i s t h e r e f o r e probably environmental  the r e s u l t a n t of  Verte-  both  and h e r e d i t a r y e f f e c t s i n the s p e c i e s s t u d i e d .  There i s some doubt as to the e f f e c t of temperature on v e r t e b r a l count of the golden  s h i n e r Motemigonus c r y s o l e u c a s  a c y p r i n i d s i m i l a r i n many r e s p e c t s t o R. (1927) concluded  t h a t anal r a y count was  balteatus.  S hultz c  r e l a t e d to tempera-  t u r e during development, and y e t he s t a t e s t h a t t h e r e i s no s i g n i f i c a n t c o r r e l a t i o n between number of anal rays number of caudal v e r t e b r a e .  Gosline  and  (1948) g i v e s f i g u r e s  suggesting t h a t there i s a tendency f o r the t o t a l v e r t e b r a l count of the species to i n c r e a s e towards the n o r t h - e a s t i t s range (Texas to Maine).  Hart  (MS)  on the other hand  shows a r i s e i n t o t a l v e r t e b r a l count from n o r t h to (between Ontario, Ohio and  Heuts (1947) l i s t s  south  Florida).  Other environmental count.  f a c t o r s may  affect vertebral  s i x s p e c i e s of f i s h i n which  i n c r e a s e d s a l i n i t y produces h i g h e r v e r t e b r a l counts. count may  of  Scale  l i k e w i s e be c o n t r o l l e d by environment; Hubbs (1922a)  claims h i g h temperatures produce h i g h s c a l e counts i n Notropis a t h e r i n o i d e s (1934) suggests  and Lepomis i n c i s o r , while  h i g h temperature produces low  Mottley  s c a l e counts  -34-  i n Salmo g a i r d n e r i i .  Hubbs (1941) shows that young  suckers  i n f e c t e d w i t h p a r a s i t e s show a delay i n time of s c a l e format i o n and a concurrent r i s e i n number of s c a l e s produced. P a r t of the c o n f l i c t i n the f o r e g o i n g examples may  be due to f a i l u r e to separate g e n e t i c a l from  environmental  v a r i a t i o n ; d i f f e r e n c e s o c c u r r i n g over the geographic  range  of a s p e c i e s might show spurious c o r r e l a t i o n w i t h a temperat u r e g r a d i e n t but a c t u a l l y be due  to a g e n e t i c c l i n e .  How-  ever, most of the examples chosen above d e a l e i t h e r w i t h  ex-  p e r i m e n t a l o b s e r v a t i o n s or w i t h d i f f e r e n c e s between d i f f e r e n t year c l a s s e s .  Consequently  i t seems c l e a r that i n some cases  environment does modify the s t r u c t u r e of f i s h e s . W.  R. M a r t i n (1949) has proposed a mechanism f o r of  environmental  c o n t r o l o f body form.  Log-log p l o t s b o d y p a r t s A  a g a i n s t standard l e n g t h of f i s h are c h a r a c t e r i z e d by a s e r i e s of "stanzas" each w i t h a d i f f e r e n t r e l a t i v e growth constant. abrupt.  T r a n s i t i o n from one The  s t a n z a to the next i s u s u a l l y  s u c c e s s i v e growth constants d i s p l a y e d are a l i k e  f o r a l l i n d i v i d u a l s of a s p e c i e s , but the body s i z e at the p o i n t of i n f l e c t i o n from one environmental  control.  s t a n z a t o another  Thus one  i n d i v i d u a l may  i s s u b j e c t to enter a per-  i o d of d e c e l e r a t e d growth of a g i v e n p a r t at a s m a l l e r s i z e than another,  and w i l l t h e r e f o r e have a r e l a t i v e l y s m a l l e r  p a r t d u r i n g the remainder of i t s progress stanza.  through  the  M a r t i n showed e x p e r i m e n t a l l y t h a t t r o u t r a i s e d a t  higher temperatures  showed f a s t e r growth r a t e s , had  larger  body s i z e at i n f l e c t i o n from f a s t to slower growth of head  -35-  and f i n s i z e , and consequently had r e l a t i v e l y l a r g e r heads and f i n s i n l a t e r l i f e .  The d i r e c t i o n of i n f l e c t i o n from  one stanza t o the next determines whether l a r g e r body s i z e at  i n f l e c t i o n r e s u l t s i n r e l a t i v e l y l a r g e r or s m a l l e r p a r t s .  ANAL RAY COUNTS Counting Methods Anal f i n r a y counts were made w i t h the a i d of a b i n o c u l a r microscope.  The l a s t double r a y of the f i n has  been counted as one, and the two (or r a r e l y t h r e e ) rudimentary  r a y s ahead of t h e f i r s t l o n g r a y have been omitted.  There are v e r y few cases i n which the r a y count i s i n doubt, although r a r e l y the l a s t r a y i s s i n g l e or an i n t e r m e d i a t e ray  is split  almost to i t s base.  In g e n e r a l the number of  d i v i s i o n s a t the bases o f the l e p i d o t r i c h i a have been taken as i n d i c a t i v e of the r a y count.  Omission of the a n t e r i o r  rudimentary rays (the procedure u s u a l l y f o l l o w e d i n the l i t e r a t u r e ) i s not thought t o have i n t r o d u c e d an important error.  The time r e q u i r e d to count rays would be c o n s i d e r a b l y  i n c r e a s e d by d i s s e c t i o n t o l o c a t e the o c c a s i o n a l t h i r d r u d imentary ray, which i s r e l a t i v e l y  small.  In f i s h i n their  second or h i g h e r year the l a s t rudimentary r a y i s almost i n v a r i a b l y l e s s than h a l f the l e n g t h of the f i r s t f u l l ray, (see  P i g . 1 ) . The f i r s t r a y counted i s unbranched; the  remainder are s p l i t d i s t a l l y one or more times. Range o f V a r i a t i o n Appendix  I I c o n t a i n s anal r a y counts f o r 54 l o c -  Fig„ 7o Anal ray counts of shiners from three localities,,  -36a l i t i e s i n B r i t i s h Columbia.  Means varied from 12.00'  to 17.44 with a range from 10 to 21.  No obvious r e l a t i o n  was apparent between ray count and a l t i t u d e , l a t i t u d e or drainage system.  Populations separated by less than a mile d i f f e r -  ed markedly, while populations some 600 miles distant were similar. Pig.  7.  Counts from three selected l o c a l i t i e s are shown i n These represent the lowest and highest means obtained  and one intermediate population.  The range of the c o l l e c t i o n s  with highest and lowest means overlap by only one specimen. A r t i f i c i a l Introductions  \  Ray counts were made on shiner stocks recently introduced from other known l o c a l i t i e s , and on samples from the  parent populations.  The species was introduced into  Snowshoe lake from the Inonoaklin r i v e r by A, P. Coates i n 1936, 1937 and 1938.  Ray counts of samples taken from the  two l o c a l i t i e s i n 1949 d i d not d i f f e r s i g n i f i c a n t l y .  (p>0.05).  According to l o c a l residents, shiners were f i r s t introduced into the Paul lake watershed i n Hyas lake; they spread Into Pinantan lake sometime after 1930, and from here entered Paul lake i n about 1945.  The mean ray count of a  sample from Pinantan was s i g n i f i c a n t l y lower than one from Hyas (p 0.02 - 0.05.)  Ray counts of f i s h from the east end  of Paul lake near the creek from Pinantan lake did not d i f f e r s i g n i f i c a n t l y from Pinantan counts, but counts of f i s h from the  west end of Paul (3 miles distant) were s i g n i f i c a n t l y  lower (p< 0.01) than those from the east end, and those from Pinantan.  -37An attempt at a r t i f i c i a l w r i t e r was roduced  unsuccessful.  i n November 1948  i n t r o d u c t i o n by the  Shiners from Cultus l a k e were i n t i n t o three a r t i f i c i a l  U n i v e r s i t y of B r i t i s h Columbia grounds. did  not reproduce  ponds on the  These a p p a r e n t l y  and were not seen a f t e r February  1949.  Intra-population Variation The populations, in  d i s t r i b u t i o n s f o r Pinantan and N i c o l a l a k e  ( F i g . 7 ) , d i s p l a y a s t r i k i n g phenomenon  several populations.  In the former the males have a  s i g n i f i c a n t l y h i g h e r anal r a y count  than the females  (p <0.0l)  w h i l e i n the l a t t e r the r e v e r s e i s t r u e , the females a s i g n i f i c a n t l y h i g h e r ;niean (^><0.01). a n t l y more anal r a y s at Queen*s Bay, 0.05), w h i l e males had lake  (p 0.01  (p 0.02  - 0.02)  - 0.05).  phenomenon was  Females had y  having signific-  Kootenai l a k e (p 0.G2  and i n the west end of Paul l a k e  The remaining 14 c o l l e c t i o n s i n which the.  i n v e s t i g a t e d d i d not show d i f f e r e n c e s which  sex d i f f e r e n c e s i n r a y count  A p o s s i b l e e x p l a n a t i o n of  i s discussed l a t e r .  V a r i a t i o n , i n r a y count was s i n g l e year c l a s s e s . on 18 August 1948 - 0.02)  found a l s o w i t h i n  For example, Pinantan l a k e f r y taken  showed a s i g n i f i c a n t p o s i t i v e  correlation  between standard l e n g t h and anal r a y  count.  While i n t h i s and most other samples the l a r g e r f r y had er  ray count,  able) was  -  s i g n i f i c a n t l y more r a y s i n Snowshoe  were s t a t i s t i c a l l y s i g n i f i c a n t .  (p 0.01  observed  high-  the r e v e r s e t r e n d (not s t a t i s t i c a l l y demonstr-  found i n some sample^ Mean a n a l r a y count  a l s o may  vary from year t o  -38year i n one l o c a l i t y .  Mean count o f s h i n e r s o f a l l s i z e s  c o l l e c t e d from Pinantan l a k e i n 1946 was s i g n i f i c a n t l y lower  (p<,0.01) than the mean o f i n d i v i d u a l s taken t h e r e  i n 1948.  The h i g h e r mean o f the 1948 sample appeared  t o be  due l a r g e l y t o one year o l d f i s h , which showed a h i g h e r mean than o l d e r f i s h ,  (on the b a s i s o f s i z e frequency d i s t r i b u t i o n ) .  Despite annual v a r i a t i o n found i n some p o p u l a t i o n s , r a y counts of s h i n e r s taken by the w r i t e r at Sicamous on Shuswap lake i n 1949 d i d not d i f f e r s i g n i f i c a n t l y from  counts  r e p o r t e d f o r the same l o c a l i t y by Dr. Eigenmann i n 1894.  Summary o f A d u l t V a r i a t i o n I n summary, s i g n i f i c a n t d i f f e r e n c e s i n a n a l r a y counts have been found between f i s h i n d i f f e r e n t bodies o f water,  between r e c e n t l y i n t r o d u c e d p o p u l a t i o n s and t h e i r  parent stock, between f i s h i n d i f f e r e n t p a r t s of the same l a k e , and between c o l l e c t i o n s made i n d i f f e r e n t years from the same l o c a l i t y .  Sometimes males have  significantly  fewer r a y s than females, sometimes s i g n i f i c a n t l y more.  With-  i n a year c l a s s , the l a r g e r f i s h sometimes have s i g n i f i c a n t l y more r a y s , and possib.l.x they sometimes have fewer.  These  are s t r o n g i n d i c a t i o n s t h a t a n a l r a y count i s not- a t l e a s t p a r t i a l l y subject to environmental  control.  -39-  VARIATION IN ANAL PIN  BASE  Morphology of the P i n Base Schmidt  (1917) and Hubbs (1922a) c l a i m a d i r e c t  r e l a t i o n s h i p between v e r t e b r a l count and a n a l r a y count i n c e r t a i n s p e c i e s of f i s h . Cyprinldae i o n , and no  However, i n f a m i l i e s such as  the anal f i n Is short r e l a t i v e to the caudal strict  s e r i a l arrangement common to f i n r a y  v e r t e b r a l elements i s apparent. it  i s debatable  reg-  Goodrich  and  (1930) s t a t e s that  whether the r a d i a l s of median f i n s  are  d e r i v a t i v e s of the a x i a l s k e l e t o n or are s p e c i a l s t r u c t u r e s developed to support  the f i n j  at any r a t e i t i s i m p o s s i b l e  i n many a d u l t T e l e o s t s to a s s o c i a t e each anal f i n segment w i t h a corresponding  body somite, e i t h e r by the musculature  or i n n e r v a t i o n . The  supporting  elements of the anal f i n of R.  teatus were examined on specimens c l e a r e d ¥/ith KOH v i o l e t r a d i a t i o n , and  photographs of specimens.  The  appear i n g e n e r a l to correspond (1930).  tened p l a t e s , the proximal  (1934), and  a l s o on X-ray  anal f i n r a y elements ( P i g . 8) to the f i g u r e s and d e s c r i p t -  A s e r i e s of long, l a t e r a l l y  each proximal  flat-  r a d i a l elements, p r o j e c t inward  toward the haemal spines of the v e r t e b r a e . end  ultra-  s t a i n e d w i t h a l i z a r i n a c c o r d i n g to the  methods o u t l i n e d i n H o l l i s t e r  ions of Goodrich  and  bal-  At the  element a r t i c u l a t e s w i t h a small  and s l i g h t l y t a p e r i n g median r a d i a l element.  outer cylindrical  This projects  down and backwards, and bears on i t s p o s t e r i o r f a c e a t h i r d still  s m a l l e r d i s t a l r a d i a l element.  The  lepidoCtrichia  P i g . 8 . P r i n t of X-ray  photograph  P i g . 9 . V a r i a t i o n i n a n a l f i n s of s h i n e r s Top - 1.3 a n a l r a y s , Argenta slough. Bottom - 20 a n a l r a y s , S.Champion l a k e .  -40-  a r i s e as two s t r i p s ,  S  ...straddling the j u n c t i o n of the p r o x i m a l  and median elements and u n i t i n g some d i s t a n c e below to form a single c y l i n d r i c a l anal ray. its  D i s t a l to the j u n c t i o n of  two elements each r a y i s d i v i d e d by a s e r i e s of j o i n t s ,  and each of the f u l l y developed r a y s , w i t h the e x c e p t i o n of the most a n t e r i o r one, b i f u r c a t e s one or more times a n t e r o posteriqrally.  A n t e r i o r t o the f i r s t l o n g anal r a y there i s ,  i n a d u l t i n d i v i d u a l s , an unbranched r a y about one t h i r d the l e n g t h of the l o n g e s t , and i n a d d i t i o n one, or r a r e l y two, much s m a l l e r rudimentary r a y s .  The l a s t two r a y s of the f i n  are u n i t e d at the base. The number of proximal r a d i a l elements does not correspond to the number of somites they occupy nor, t h e r e fore,  to the number of haemal spines i n the r e g i o n o c c u p i e d  by the anal f i n .  There i s a crowding o f proximal elements  e s p e c i a l l y toward the p o s t e r i o r end o f the s e r i e s .  Also,  the number of f i n r a y s does n o t n e c e s s a r i l y correspond t o the number of p r o x i m a l r a d i a l elements s u p p o r t i n g them nor t o any simple f r a c t i o n t h e r e o f ; there i s a v a r i a b l e degree of f u s i o n of p r o x i m a l elements, e s p e c i a l l y at e i t h e r end of the s e r i e s .  A t y p i c a l s e r i e s r e s u l t i n g from t h i s  crowding  and f u s i o n , taken from one of the c l e a r e d specimens, i s : 18 d i s t i n g u i s h a b l e l e p i d o t r i c h i a supported by 16 d i s t i n g u i s h a b l e proximal r a d i a l s , opposite 9 haemal spines on the v e r t e b r a l column.  The number of r a d i a l s may be as true an index o f  the number o f segments i n the f i n base as the r a y s , but counti n g f i n r a y s r a t h e r than r a d i a l s has the c o n s i d e r a b l e  advan-  F i g . 1 0 . Relation of anal ray count to mean postanal length (converted to preanal length of 50 mm. )„ 409 f i s h .  -41-  tage of much g r e a t e r speed.  Pin  Base P r o p o r t i o n Ford  (1933) and others f i n d that v e r t e b r a e of the  eaudal r e g i o n tend to be the most v a r i a b l e i n number. Though no homology between anal rays and caudal was  v i s i b l e i n R.  b a l t e a t u s , the p o s s i b i l i t y was  )  vertebrae examined  that d i f f e r e n c e s i n anal r a y count might be due t o d i f f e r e n c e s i n l e n g t h of the caudal r e g i o n . Post^anal l e n g t h (as d e f i n e d i n Appendix IV) i s p l o t t e d a g a i n s t anal r a y count i n P i g . 10. compare f i s h of d i f f e r e n t s i z e s i t was for  I n order  necessary  to  to correct  the d i f f e r e n t i a l growth of the two p o r t i o n s of the body..  Each p o s t a n a l l e n g t h was  t h e r e f o r e converted  to the c o r r e s -  ponding measurement at an a r b i t r a r i l y chosen - s t a n d a r d — l e n g t h of 30 mm.,  assuming t h a t the s l o p e of the l i n e of best f i t  for  the l o g - l o g p l o t of p o s t a n a l against -s+^ae^ard l e n g t h of  all  f i s h , d e s c r i b e d the slope of growth of each i n d i v i d u a l  Ofertin 1949). While p o s t a n a l lengths of i n d i v i d u a l s w i t h  the  lowest r a y counts appear to be somewhat l e s s than f o r those w i t h i n t e r m e d i a t e and h i g h ray counts, not s u f f i c i e n t of  the d i f f e r e n c e i s  to account f o r the whole range of v a r i a t i o n  anal r a y s . The p r o p o r t i o n of the p o s t a n a l r e g i o n  by the anal f i n base i s next  considered,  a g a i n s t anal r a y count i n P i g . 11.  occupied  and i s p l o t t e d  C l e a r l y , f i n s with more  P i g . 11. Relation of anal ray count to mean length of f i n base. 115 f i s h .  -42-  rays g e n e r a l l y occupy a g r e a t e r p r o p o r t i o n of the region.  T h i s i s a l s o apparent  w i t h r a y counts  caudal  i n P i g . 9, which shows f i s h  of 13. and 20 r e s p e c t i v e l y ;  the anal f i n of  the l a t t e r can be seen to extend much f a r t h e r p o s t e r i o r l y . P o s t a n a l l e n g t h (expressed as a f r a c t i o n of the standard l e n g t h ) was anal r a y counts. r a y count,  g r e a t e r f o r males than females  at^all  However, c o n s i d e r i n g only f i s h of a g i v e n  there i s no s i g n i f i c a n t d i f f e r e n c e between sexes  i n the p r o p o r t i o n of the p o s t a n a l d i s t a n c e occupied by f i n base. due  Probably  the  sex d i f f e r e n c e s i n p o s t a n a l l e n g t h are  to an i n f l e c t i o n i n r e l a t i v e growth of the p o s t e r i o r p a r t  of the body which occurs a f t e r r a t i o of f i n base to postanal l e n g t h , and a l s o anal r a y count, has been f i x e d .  Log-log  p l o t s of p o s t a n a l r e l a t i v e growth of 200 E r i e pothole adults suggest  that t h i s i n f l e c t i o n occurs at onset of s e x u a l mat-  u r i t y i n the second or t h i r d year of l i f e .  Further, post-  a n a l l e n g t h of males i s g r e a t e r even i n those p o p u l a t i o n s having s i g n i f i c a n t l y lower male ray counts^  suggesting  again  that sex d i f f e r e n c e i n p o s t a n a l l e n g t h i s not d i r e c t l y dependent on the same f a c t o r which c o n t r o l s anal r a y  counts.  -43-  PIN  RAY  FORMATION AND  Body S i z e  at Ray  ECOLOGICAL FACTORS  Formation  Collections  were made of f r y i n which the  rays were j u s t forming.  F i g . 12  shows the  number of f i n  rays v i s i b l e i n f r y from d i f f e r e n t samples. t i o n t h e r e was  i n Rosebud l a k e , and seems u n l i k e l y that  from the  In each c o l l e c -  a p p a r e n t l y a s p e c i f i c s i z e at which anal rays  s t a r t e d to appear, but  of e a r l y and  anal  t h i s s i z e d i f f e r e d on  different  a l s o between d i f f e r e n t l o c a l i t i e s . there are  genetically  l a t e spawners, as no  different  such c o n d i t i o n  spawning data a l r e a d y d i s c u s s e d .  factor  iduals  or f a c t o r s  responsible evidently  about e q u a l l y , and  It  strains  was  apparent  Apparently  at appearance of anal r a y s i s s u b j e c t to environmental The  dates  size control.  affect a l l indiv-  v a r y from time to time at a given  locality. Data are  i n s u f f i c i e n t to decide whether s i z e  ray f o r m a t i o n i s r e l a t e d  to mean r a y  count a t t a i n e d ,  there i s some i n d i c a t i o n that f i s h forming r a y s at s i z e form fewer r a y s . influences fin,  at l e a s t the  as i t a f f e c t s the  at  though larger  N e v e r t h e l e s s , environment a p p a r e n t l y final  stage of f o r m a t i o n of the  anal  time of appearance of d e f i n i t i v e f i n  rays. Correlation  w i t h Temperature Temperature o b s e r v a t i o n s at time of f r y  might be expected to f u r n i s h d i r e c t evidence on the of temperature to ray f o r m a t i o n .  collections relation  However, sharp temperature  5  o xo  JULY  X  •o  X  ox  <io _l <  z < 0 Id CO  X  OX  OlXO • X M0(  • 6<»t»xx • • »x  8 AUG.  x  XX  x  |.o • R A Y S STILL FORMING  O  i'o  —r  8 STANDARD  10  °  PROBABLY COMPLETE  *  COMPLETE  T  12  LENGTH  T  —i— 14 MM  F i g . 12. Variation i n size at formation of anal rays, Rosebud lake f r y , 1949.  -44-  g r a d i e n t s f r e q u e n t l y e x i s t i;3f the environment of s h i n e r f r y , and d i u r n a l changes may be g r e a t .  Temperatures  at Kaslo  bay on 9 J u l y 1949 were as f o l l o w s : S u r f a c e temperature, c e n t r e o f bay  -  17.9°C.  Shade s i d e o f boat house  -  19.0  Sun s i d e of boat house  -  21.5  Ten inches from beach, two i n c h e s deep -  23.5  Rosebud l a k e temperatures were 4C° warmer on the i n s h o r e than the o f f s h o r e s i d e of a l o g c l o s e to shore.  Gradients  of 6 C° w i t h i n . t h r e e f e e t i n E r i e p o t h o l e have been mentioned. Many other"examples were noted where sharp temperature  dif-  f e r e n c e s were s e t up by c u r r e n t , wind a c t i o n or s u n l i g h t . The mean temperature to which a group o f f r y were s u b j e c t e d c o u l d be d e r i v e d o n l y from an e x t e n s i v e s e t of o b s e r v a t i o n s throughout the whole diurnal- c y c l e i n each l o c a l i t y studied.  Such o b s e r v a t i o n s were not made, but the  range of temperatures i n which f r y were moving was r e c o r d e d f o r most c o l l e c t i o n s . anal r a y s were s t i l l  Table I I I shows c o l l e c t i o n s i n which forming.  A p o s i t i v e c o r r e l a t i o n appears  to e x i s t between observed temperature and mean a d u l t a n a l r a y count.  .,  -45-  TABLE I I I Temperatures  a t Which Developing P r y Taken, 1949 MEAN ADULT ANAL RAY COUNT  TEMPERATURE °C  E r i e p o t h o l e , 28 Aug.,1230 h r s .  12.08  15° - 21°  L i t t l e Shuswap l a k e , 4 Sept.,1030  14.90  18° - 19°  E r i e l a k e , 16 Aug.,  16.01  17° - 23°  Rosebud l a k e , 5 J u l y , 1300  16.09  20° - 24°  Rosebud l a k e , 8 Aug., 1200  16.09  23°  Middle Champion lake,12 July,1400  17.04  25°  Geographic  0900  Variation While l o c a l d i f f e r e n c e s have been shown to a f f e c t  water temperature p r o f o u n d l y , a c o r r e l a t i o n between  tempera-  ture and mean r a y count, i f i t e x i s t s , should be apparent i f a s u f f i c i e n t number of l o c a l i t i e s from a number of geographic areas a r e c o n s i d e r e d .  Table IV shows mean r a y counts of 51  l o c a l i t i e s i n the U n i t e d S t a t e s from which r a y counts have been r e c o r d e d .  These a r e grouped a c c o r d i n g to the average  summer a i r temperature between June and August" as g i v e n i n the A t l a s of American A g r i c u l t u r e  (Baker 1936).  Number o f  l o c a l i t i e s i s i n d i c a t e d i n b r a c k e t s below each mean. of i n d i v i d u a l l o c a l i t i e s were each g i v e n equal weight. comparable  Means No  temperature data i n s u f f i c i e n t d e t a i l were a v a i l -  able f o r B r i t i s h  Columbia.  -46-  TABLE IV Mean Anal Ray Counts W i t h i n Temperature  Isotherms  AVERAGE SUMMER TEMP., JUNE-AUGUST (20 y r . average, mean of d a i l y extremes) 55-60 P  60-65 P  65-70 P  70-75 P  13.10 (5)  14.30 (23)  16.27 (3)  16.80 (8)  R. b. hydrophlox  11.42 (6)  13.40 (3)  R. thermophilus  12.07 (3)  R. b. b a l t e a t u s  Combined mean  13.10 (5)  13.55 (32)  14.83 (6)  16.80 (8)  A g e n e r a l r e l a t i o n s h i p appears t o e x i s t between summer a i r temperature and mean r a y count.  I n a d d i t i o n the  lower means f o r R. b. hydrophlox w i t h i n the same isotherms as R. b. b a l t e a t u s  suggests t h a t t h e i r taxonomic  may be j u s t i f i e d on g e n e t i c grounds.  separation  The former group occurs  at the southern e x t r e m i t y of the range of the genus;  other-  wise d i s t r i b u t i o n of means forms no r e g u l a r geographic arrangement  except when c o n s i d e r e d r e l a t i v e t o t h e i r r e g u l a r  p a t t e r n of summer i s o t h e r m s .  R. thermophilus i n h a b i t s  warm s p r i n g s of h i g h a l k a l i content, and may w e l l be a phenotypic v a r i a n t . Eigenmann (1894) c l a i m e d a n e g a t i v e c o r r e l a t i o n between a l t i t u d e and anal r a y count, as d i s c u s s e d p r e v i o u s l y . Probably such a g e n e r a l r e l a t i o n does e x i s t , but i s l a r g e l y masked i n the p a r t s of the Columbia system from which h i s  -47opponents  drew t h e i r examples.  S e c t i o n s o f the Columbia and  Snake r i v e r s f a l l i n g w i t h i n the h o t t e s t summer isotherms, ( i n t h e v i c i n i t y of Walla Walla, Wash., and a g a i n i n the v i c i n i t y of Nampa, Ida.) are a t a h i g h e r e l e v a t i o n than c o o l e r c o a s t a l areas.  Hence r a y count, which f o l l o w s temp-  e r a t u r e , does not i n these areas f o l l o w The hypotheses  altitude.  o f temperature  c o n t r o l l e d anal r a y  count f i t s i n g e n e r a l the B r i t i s h Columbia  collections.  Highest r a y count was found i n Champion l a k e s , - s m a l l , shallow, r a p i d l y warming bodies o f water.  Lowest r a y count  was found i n E r i e p o t h o l e , w i t h the c o l d e s t shallow water encountered. There i s no evidence f o r c o r r e l a t i o n of r a y count with dissolved s o l i d s .  Analysis for principal  dissolved  s o l i d s were made on s e v e r a l l a k e s c o n t a i n i n g s h i n e r s by R. J . Waldie of the P a c i f i c B i o l o g i c a l S t a t i o n .  While  calculations  from the f i e l d data have not y e t been made, there are i n d i c a t i o n s t h a t Rosebud l a k e and E r i e p o t h o l e are both r e l a t i v e l y r i c h i n d i s s o l v e d s o l i d s w h i l e v a r y i n g g r e a t l y i n r a y count; Kootenay  l a k e , w i t h r a y count s i m i l a r to Rosebud, i s r e l a t -  i v e l y poor i n d i s s o l v e d m a t e r i a l .  5  P R E A N A L  10  L E N G T H  ( C U R V E S  ;  2 , 4 - , 6 ]  50  MM.  Figo lpo Relative growth of body parts of shiners, plotted on log-log coordinateso (Axes for each curve are indicated i n the margins)„  -48-  VARIATION IN OTHER STRUCTURES R e l a t i v e Growth o f P a r t s F i g u r e 13 shows growth o f v a r i o u s p a r t s r e l a t i v e to p r e a n a l l e n g t h , p l o t t e d on l o g - l o g a x i s . measurement are l i s t e d i n Appendix IV.  Methods of  Preanal r a t h e r than  standard l e n g t h was used as a b s c i s s a because p o s t a n a l growth has  an i n f l e c t i o n a t a p r e a n a l l e n g t h o f about 11.0 mm. as  shown i n F i g . 13. thesis,  As might be p r e d i c t e d from Martin's hypo-  (1949), v a r i a t i o n i s found between d i f f e r e n t  popula-  t i o n s i n the p r o p o r t i o n of p o s t a n a l l e n g t h , probably  result-  i n g from d i f f e r e n c e of body l e n g t h at i n f l e c t i o n as already di-scussed.  Consequently p r e a n a l l e n g t h was thought t o be a  b e t t e r standard  of r e f e r e n c e f o r d e s c r i b i n g growth of p a r t s .  Growth of a p a r t at the same r a t e as growth of the whole i s termed isometry.  P a r t s growing f a s t e r than the  whole are s a i d to show t a c h y a u x e s i s ;  p a r t s growing slower  than the whole are s a i d t o show bradyauxesis  (Martin 1949).  In a l o g - l o g p l o t of l e n g t h of p a r t a g a i n s t body length, the former c o n d i t i o n r e s u l t s i n a slope of l e s s than 45°, w h i l e the l a t t e r produces an angle  of more than 45° with the  abscissa. Eye, head, anal h e i g h t and p o s t a n a l l e n g t h a l l show i n f l e c t i o n from tachyauxesis l e n g t h of about 11.0 mm. head growth.  to bradyauxesis  I n f l e c t i o n i s sharpest  at a p r e a n a l i n eye and  P o s t a n a l growth shows i n a d d i t i o n an e a r l i e r  i n f l e c t i o n from bradyauxesis  t o tachyauxesis  at about 7.0  mm.  -49A sharp i n f l e c t i o n i s seen i n development of the pelvics.  These appear a t a p r e a n a l l e n g t h of about 7.0  grow r a p i d l y u n t i l about 9.0 treme tachyauxesis  mm.,  mm.,  and then i n f l e c t from  to moderate t a c h y a u x e s i s .  ex-  At a l a t e r  stage both p e c t o r a l s and p e l v i c s show h e t e r o s e x u a l growth, females  a p p a r e n t l y i n f l e c t i n g to approximately  isometric  growth ( i s a u x e s i s ) of these p a r t s at a s m a l l e r s i z e and hence having  s h o r t e r p e c t o r a l s and p e l v i c s .  I t i s p o s s i b l e to det-  ermine the sex of o l d e r f i s h by t h i s c h a r a c t e r i s t i c .  In o l d  males the p e c t o r a l s o v e r l a p the o r i g i n of the p e l v i c s , the p e l v i c s extend p o s t e r i o r to the anus; i n females p e c t o r a l s do not r e a c h the p e l v i c s ,  and  the '  and the p e l v i c s do not  r e a c h the p o s t e r i o r border of the anus. Adult V a r i a t i o n i n P r o p o r t i o n s Considerable v a r i a t i o n i s founds between i n d i v i d u a l s and between p o p u l a t i o n s , i n those s t r u c t u r e s showing i n f l e c t i o n i n growth.  Examples are shown i n P i g . 13 f o r . e y e , head  and p o s t a n a l growth.  These d i f f e r e n c e s are p r o b a b l y  caused  by d i f f e r e n c e i n average s i z e at i n f l e c t i o n , perhaps due temperature,  d i e t or g e n e t i c e f f e c t s .  i c u l a r l y marked i n eye diameter, i n f l e c t i o n i n growth.  Eye  and head l e n g t h s from 10.1 i d u a l s of 30.0  mm.  D i f f e r e n c e s were p a r t -  a measurement showing sharp  diameters mm.  to  from 3.5  to 14.0  mm.  mm.  to 4.9  mm.,  occurred i n i n d i v -  preanal length.  I n s u f f i c i e n t measurements we're taken f o r d e t a i l e d c o r r e l a t i o n of body p r o p o r t i o n s %© anal r a y count. diameter  Eye  appears to show rough p o s i t i v e c o r r e l a t i o n w i t h r a y  -50-  count.  Champion l a k e s h i n e r s w i t h h i g h r a y count have s t a t -  i s t i c a l l y g r e a t e r eye diameters l a k e f i s h w i t h low r a y counts  than E r i e pothole and Paul (p.< 0.01); other  populations  s t u d i e d were i n t e r m e d i a t e i n mean eye diameter and r a y count. C o r r e l a t i o n of r a y count with other p r o p o r t i o n s s t u d i e d i s a p p a r e n t l y not c l o s e .  This i s not s u r p r i s i n g i n  that c o n s i d e r a b l e time elapses between f i x i n g of the anal r a y count 6.5 mm.) 11.0  (sometime b e f o r e r e a c h i n g a p r e a n a l l e n g t h of and i n f l e c t i o n of most body p r o p o r t i o n s at about  mm.  The l a t t e r occurs when the f i s h are swimming a c t -  i v e l y and f e e d i n g ; the former may occur before a b s o r p t i o n of the y o l k sac when the f i s h are l y i n g  inactive.  Vertebrae X-ray photographs were taken of 109 s h i n e r s w i t h anal r a y counts from 11 t o 20.  Use o f a small d e n t a l X-ray  u n i t was k i n d l y p r o v i d e d by Dr. Otto Bluh of the P h y s i c s Department, U n i v e r s i t y o f B r i t i s h Columbia. on h o l d e r s c o n t a i n i n g 5" two  P i s h were l a i d  7" medical X-ray f i l m and exposed  seconds t o "hard" rays at a d i s t a n c e o f two f e e t . F i g u r e 8 shows an X-ray p i c t u r e of a s h i n e r w i t h  37 v e r t e b r a e .  Counts s t a r t e d a t the f i r s t v e r t e b r a b e a r i n g  a n e u r a l spine and i n c l u d e d the h i p p u r a l p l a t e . Table V g i v e s the r e l a t i o n o f v e r t e b r a l t o anal r a y counts.  S c a t t e r i s c o n s i d e r a b l e , but there i s a tendency  f o r h i g h e r r a y count to be a s s o c i a t e d w i t h h i g h e r v e r t e b r a l count.  The mean v e r t e b r a l count f o r f i s h with from 11 to 15  rays i s s i g n i f i c a n t l y lower than the mean f o r f i s h w i t h 16  -51to 20 rays  (p < 0.01). TABLE V V e r t e b r a l and Anal Ray Counts.  NO. OP VERTEBRAE  11  12  13  NO. OP ANAL RAYS 15 16 18 17 14  36  2  1  3  2  37  4  7  12  9  38  1  3  39  2  2 10  3  3  20  MEAN 13.36  1 8  7  5  7  1  15.00  6  4  2  2  1  15.48  1  No s i g n i f i c a n t d i f f e r e n c e was found v e r t e b r a l counts of the sexes.  f i n were s i m i l a r i n the sexes,  between t h e  S i m i l a r l y , the numbers o f  v e r t e b r a e p o s t e r i o r t o the f i r s t proximal  0.06).  19  r a d i a l o f the anal  (range 18 t o 21, mean 19.81 ±  T h i s i s f u r t h e r i n d i c a t i o n t h a t the longer  postanal  l e n g t h of males d i s c u s s e d p r e v i o u s l y i s due t o an adjustment o c c u r r i n g a f t e r segmentation i s complete. In many s p e c i e s of f i s h v e r t e b r a l count has been shown t o be n e g a t i v e l y c o r r e l a t e d w i t h temperature.  I f high-  er temperatures produce more anal r a y s , i t might be supposed that h i g h r a y count would be a s s o c i a t e d w i t h fewer v e r t e b r a e . b Apparently  the r e v e r s e i s t r u e f o r R. B a l t e a t u s . A s i m i l a r  c o n d i t i o n may e x i s t f o r Notemigonus c r y s o l e u c a s as r e p o r t e d by Hart (MS).  -52Scales Counts of l a t e r a l l i n e s c a l e s were made on 115 from Snowshoe lake and I n o n o a k l i n r i v e r .  fish  These showed a  v a r i a t i o n from 54 to 67, w i t h a mean of 60.98 ±  0.25.  As  i n the case of v e r t e b r a l count, s c a l e count appeared to show a loose p o s i t i v e c o r r e l a t i o n to a n a l ray count w i t h i n the two p o p u l a t i o n s s t u d i e d . w i t h 54 to 61 s c a l e s was than those with 62 to  Mean r a y count of Snowshoe f i s h s i g n i f i c a n t l y lower (p 0.02  -  0.05)  67.  Such a r e l a t i o n i s i n keeping w i t h Hubbs  (1922)  1  f i n d i n g s t h a t h i g h temperature produced both h i g h r a y count and h i g h s c a l e count i n the minnow N o t r o p i s a t h e r i n o i d e s . From data In C a r l and Clemens (1948), the range of v a r i a t i o n of s c a l e s count i s probably  g r e a t e r i n R.  balteatus  than i n a l l other B. C./3'yprinids, but l e s s than i n some of the  Salmonids.  CONCLUSIONS: Evidence  A POSSIBLE MECHANISM FOR  f o r Environmental Two  ANAL RAY  COUNT VARIATION  Control  types of v a r i a t i o n i n body form have been con-  s i d e r e d ; v a r i a t i o n i n p r o p o r t i o n s i n v o l v i n g continuous i a b l e s which are measured, and v a r i a t i o n i n number of  varmet-  americ p a r t s i n v o l v i n g d i s c o n t i n u o u s v a r i a b l e s which are counted.  The former i n c l u d e d lengths of f i n s and  relative  s i z e of d i f f e r e n t s e c t i o n s of the body; the l a t t e r included f i n r a y s , v e r t e b r a e and s c a l e s . V a r i a t i o n may  be e i t h e r genotypic  or  phenotypic.  -53I t i s n e c e s s a r y to separate the two before i n v e s t i g a t i n g which f a c t o r s are o p e r a t i v e i n the l a t t e r .  Only the prob-  lem o f anal r a y count v a r i a t i o n has been examined i n d e t a i l . Considerable evidence has been p r e s e n t e d t h a t anal r a y count i s s u b j e c t t o environmental c o n t r o l .  Populations  i n c l o s e l y a d j o i n i n g bodies of water may d i f f e r w i d e l y i n mean r a y count.  No p a t t e r n i s apparent i n the d i s t r i b u t i o n  of r a y counts w i t h i n drainage b a i s i n s or' other geographic f e a t u r e s such as might be expected i f g e n e t i c c l i n e s were involved.  Ray counts o f r e c e n t l y i n t r o d u c e d p o p u l a t i o n s  d i f f e r from those of t h e i r p a r e n t a l stock. from year to year i n one l o c a l i t y ,  Counts  differ  and d i f f e r between l a r g e  and small i n d i v i d u a l s of the same year c l a s s .  Mean r a y  count a l s o v a r i e s between d i f f e r e n t p a r t s of the same l a k e . On the other hand comparison of r a y counts of R. b. hydrophlox w i t h those of R. b. b a l t e a t u s i n comparable temperature zones suggests that a g e n e t i c c l i n e may occur a t the southern end o f the range.  Evidence i s p u r e l y nega-  t i v e i n the case of the I n o n o a k l i n - Snowshoe l a k e t r a n s p l a n t which produced no v a r i a t i o n i n mean r a y count.  Genetic  d i f f e r e n c e s i n sex e v i d e n t l y can a f f e c t r a y count, but the f a c t that males are sometimes h i g h e r and sometimes lower than females suggests that there i s no simple s e x - l i n k e d c o n t r o l of r a y number. I t t h e r e f o r e seems apparent that among the populat i o n s s t u d i e d environment anal r a y count.  plays a large part i n determining  That temperature  i s an important f a c t o r i s  -54suggested by s e v e r a l l i n e s of evidence.  Temperature  differ-  ences o f f e r a ready e x p l a n a t i o n f o r the v a r i a t i o n between times and l o c a l i t i e s a l r e a d y mentioned.  Temperature  obser-  v a t i o n s at time of f o r m a t i o n of a n a l rays r o u g h l y f i t  the  observed r a y counts, and mean r a y counts grouped a c c o r d i n g t o temperature  zones are r e l a t e d to average  d u r i n g the developmental  a i r temperature  period.  P o s s i b l e Causes of I n t r a - p o p u l a t i o n V a r i a t i o n Considerable v a r i a t i o n has been noted i n s e v e r a l body p r o p o r t i o n s .  Sharp i n f l e c t i o n s i n r e l a t i v e growth of  these p a r t s has been demonstrated.  Probably the mechanism  o u t l i n e d by M a r t i n (1949) i s o p e r a t i v e ; environment body s i z e at i n f l e c t i o n to a new  growth s t a n z a and  controls therefore  governs r e l a t i v e s i z e of p a r t s d u r i n g t h a t s t a n z a . S i g n i f i c a n t d i f f e r e n c e s i n a n a l r a y count have been found between the sexes.  As e i t h e r males or females may  have  the h i g h e r counts i n d i f f e r e n t p o p u l a t i o n s , simple sexl i n k e d c o n t r o l of r a y count seems improbable.  Possibly  one  sex develops f a s t e r and reaches the stage at which the number of r a y s i s determined at an e a r l i e r date than the other.  (That males grow f a s t e r than females has been sug-  gested. ) I f a l l f r y i n a year c l a s s developed at the same temperature, no d i f f e r e n c e between sexes would be apparent. This i s the case i n most p o p u l a t i o n s s t u d i e d .  I f , however,  f r y developed d u r i n g a p e r i o d o f s t e a d i l y r i s i n g water  temp-  e r a t u r e s , the sex which developed f a s t e r would on the average  -55l a y down rays a t lower temperatures r a y count.  and show a lower mean  I f water temperatures were f a l l i n g d u r i n g develop-  ment, f a s t growers would then tend to have more r a y s . Lower r a y count of l a r g e r i n d i v i d u a l s i n a year c l a s s may a l s o be the r e s u l t o f r i s i n g water temperatures, and h i g h e r r a y count of l a r g e r f r y the r e s u l t o f f a l l i n g  temper-  atures. I t seems u n l i k e l y t h a t a l l i n t r a p o p u l a t i o n v a r i a t i o n i s p u r e l y environmental.  Though a l l i n d i v i d u a l s may  form v i s i b l e r a y s at the same s i z e under g i v e n c o n d i t i o n s , they do not a l l form e x a c t l y the same number of r a y s .  Data  p r e s e n t e d f o r v a r i a t i o n of R. b. b a l t e a t u s and R. b. hydrophlox i n comparable  temperature  zones suggests that the mean  v a l u e about which environmental c o n t r o l operates i s g e n e t i c a l l y determined.  S i m i l a r l y some degree of g e n e t i c  variabil-  i t y i s p r o b a b l y present w i t h i n p o p u l a t i o n s .  Hypothesis I t has been shown t h a t a n a l f i n s w i t h r e l a t i v e l y l a r g e number of rays occupy a r e l a t i v e l y l a r g e p r o p o r t i o n of the p o s t a n a l r e g i o n .  V a r i a t i o n has been observed i n the s i z e  at which p a r t i t i o n i n g of the p o s t a n a l t i s s u e i n t o segments becomes v i s i b l e .  There i s some evidence to suggest that  s i z e at which f i n rays become v i s i b l e i s governed by tempera t u r e s , and t h a t f i s h which form r a y s at a l a r g e r s i z e are those which form fewer r a y s .  The h i g h e s t  r a y count observed  was 21, and the h i g h e s t number of v e r t e b r a e p o s t e r i o r t o the  -56o r i g i n of the a n a l f i n was a l s o 21. ,A h y p o t h e t i c a l mechanism f o r the d e t e r m i n a t i o n o f anal r a y count i s o f f e r r e d . 1-.  Two assumptions  are r e q u i r e d .  The number of segments i n t o which the f i n base  div-  i d e s Is governed by the number of body somites l y i n g adjacent to  i t at the time of f i n segmentation. 2.  Environment  a f f e c t s the r e l a t i v e l e n g t h s o f the  caudal r e g i o n and the presumptive a n a l f i n base at t h e time of  segmentation. A c c o r d i n g t o t h i s h y p o t h e s i s the s t r i p o f t i s s u e  which w i l l become a n a l f i n i n i t i a l l y occupies the whole vent r a l l e n g t h of the caudal r e g i o n .  I f the s t r i p i s broken  i n t o i t s d e f i n i t i v e elements now, the maximum number o f f i n r a y s w i l l l a t e r develop; no amount of environmental manipula t i o n can produce more f i n r a y segments than t h e r e are body segments l y i n g adjacent t o them.  Though I n t h i s case the  segmentation of the f i n base i s h i s t o l o g i c a l l y  determined  w h i l e the base i s as l o n g as the p o s t a n a l l e n g t h , the d e f i n i t i v e rays do not form u n t i l l a t e r ; by t h i s time the c a u d a l r e g i o n has grown more r a p i d l y than the f i n base, and the base occupies l e s s than the whole of the c a u d a l . s l i d i n g of t a i l  The consequent  somites past f i n segments produces the s t a g -  gered e f f e c t seen i n t h e a d u l t .  When f i n r a y s and a s s o c i a t e d  r a d i a l elements develop, the p r o p o r t i o n o f f i n base t o c a u d a l r e g i o n i s " f r o z e n " and remains r e l a t i v e l y constant throughout  life. If,  however, environmental f a c t o r s d e l a y the time  -57at which h i s t o l o g i c a l d i f f e r e n t i a t i o n of the f i n base i n t o segments  occurs, then the base w i l l have come to occupy l e s s  than the whole caudal r e g i o n .  Fewer body somites w i l l l i e  adjacent to the base, and fewer segments w i l l be l a i d down when d i f f e r e n t i a t i o n o c c u r s . radials will so  Development  of the r a y s and  a l s o occur l a t e r than i n the f i r s t  instance,  that, the f i n base, c o n s i s t i n g of fewer segments, w i l l  occupy a s m a l l e r p r o p o r t i o n of the p o s t a n a l d i s t a n c e when "frozen". Environmental c o n t r o l of the p r o p o r t i o n of f i n base to caudal l e n g t h at time of segmentation, (the second assumption) might operate i n s e v e r a l ways. 1.  The temperature c o e f f i c i e n t f o r growth of the  two p a r t s might vary w i t h segmentation of the f i n base occurr i n g at a g i v e n s i z e . the  I f Q, 10  (temperature c o e f f i c i e n t ) f o r  f i n base were h i g h e r than f o r the whole t a i l r e g i o n , then  at h i g h e r temperatures the base would be b e t t e r able to keep pace w i t h the t a i l  and would occupy more somites at time of  segmentation. 2.  Another mechanism would i n v o l v e f i n base and  t a i l each growing at a constant r a t e , w i t h the t a i l faster.  growing  I f temperature determined the s i z e at which segmen-  t a t i o n of the base occurred, i t would a f f e c t the number of somites adjacent to the base at t h a t time. 3.  Other mechanisms might be p o s t u l a t e d  involving  p i r a c y of the p r e a n a l or other r e g i o n on the f i n base, so that the more delayed the segmentation was 'the l e s s  base  -58m a t e r i a l would be a v a i l a b l e . the  At p r e s e n t the exact nature o f  mechanism i n v o l v e d i s almost e n t i r e l y  conjectural.  ><•  General A p p l i c a t i o n of the Hypothesis Determination o f the number of f i n r a y s i n f i s h by a mechanism s i m i l a r t o the one suggested might account f o r many of t h e apparent c o n t r a d i c t i o n s i n t h e . l i t e r a t u r e .  It  has been p o i n t e d out that low temperature a p p a r e n t l y produces i n c r e a s e d f i n r a y counts i n some s p e c i e s but decreased counts i n others.  L e t us suppose  that the number o f segments i n t o  which a presumptive f i n base d i v i d e s i s i n f l u e n c e d by the number of body somites adjacent t o i t at the time of d i f f e r entiation.  I f the base i s growing f a s t e r than the adjacent  somites, any f a c t o r  (such as low temperature) d e l a y i n g seg-  mentation of the f i n base w i l l produce more f i n segments. I f on the other hand the base i s growing slower, a f a c t o r d e l a y i n g segmentation w i l l produce fewer f i n segments. ilarly, ficients  Sim-  i f the mechanism i n v o l v e s d i f f e r e n t temperature c o e f f o r growth of f i n base and body proper, then h i g h  temperature w i l l produce more rays i f f i n base Q 1 0 i s the h i g h e r , fewer r a y s i f body Q 10 i s the h i g h e r . I f i n some s p e c i e s the f i n base takes i t s segmentat i o n p a t t e r n from the adjacent somites at an e a r l y stage, before any d i f f e r e n t i a l  growth has occurred, then the number  of f i n rays w i l l be governed t o some extent by f a c t o r s ing  the number of body somites, (e.g. temperature  the  number of v e r t e b r a e ) .  affect-  affecting  -59E v o l u t i o n of f i s h w i t h short median f i n s from a n c e s t o r s having l o n g many-rayed f i n s c o u l d be p o s t u l a t e d by the  simple p r o c e s s of delay i n time o f r a y  differentiation.  A mutation or s e r i e s of mutations i n h i b i t i n g r a y d i f f e r e n t i a t i o n might c o n f e r s e l e c t i v e advantage improved  by producing f i s h w i t h  speed or m a n e u v e r a b i l i t y . T h i s mechanism suggested i s as y e t h y p o t h e t i c a l ,  but the a v a i l a b l e data appear to f i t the h y p o t h e s i s . r o l l e d experiments and h i s t o l o g i c a l  Cont-  s e c t i o n i n g are r e q u i r e d ,  but d i f f i c u l t i e s encountered i n a r t i f i c i a l r e a r i n g must be first  overcome.  Due  to i t s s p e c t a c u l a r v a r i a b i l i t y i n anal  f i n r a y count, R. b a l t e a t u s i s suggested as admirable m a t e r i a l f o r f u r t h e r study.  -59a-  SUMMARY 1.  Shiners occur i n a wide v a r i e t y o f h a b i t a t s i n c l u d i n g  s m a l l warm l a k e s , l a r g e c o l d l a k e s , c o l d s p r i n g s and running water. 2. ing  The spawning p e r i o d v a r i e s from 7 t o 10 weeks, s t a r t i n the l a s t week of May i n some l o c a l i t i e s  and the  second week of June i n o t h e r s . •3.  D i f f e r e n t i n d i v i d u a l s spawn at d i f f e r e n t times, and  one i n d i v i d u a l may spawn more than once i n a season. . 4.  Eggs can be hatched e x p e r i m e n t a l l y at temperatures  from 12°C. to 21°C., w i t h c o r r e s p o n d i n g mean h a t c h i n g times v a r y i n g from 15 t o 7 days.  At 9°G. eggs show i n i t i a l  cleavage and then d i e . 5.  Pry l i e q u i e s c e n t f o r about  a week f o l l o w i n g h a t c h i n g ,  then swim a c t i v e l y i n the shallow water a f t e r the y o l k sac is  absorbed. 6.  ably.  Growth rates, 'of d i f f e r e n t p o p u l a t i o n s vary c o n s i d e r Most p o p u l a t i o n s c o n t a i n few i n d i v i d u a l s o l d e r than  year I I or I I I . 7.  The l a r g e s t f i s h taken was i n year V or VI.  Females l i v e l o n g e r than males.  are almost e x c l u s i v e l y 8.  Older year groups  females.  D i f f e r e n t s i z e s o f f i s h f r e q u e n t d i f f e r e n t depth  zones,  the s m a l l e r f i s h occupying shallower water. 9.  Shiners and game s p e c i e s p r o b a b l y a f f e c t each other  considerably.  Under c e r t a i n circumstances s h i n e r s eat t r o u t  -59bf r y , t r o u t eat s h i n e r s , and s h i n e r s eat the same food as trout. 10.  Great  d i f f e r e n c e s e x i s t between mean anal r a y  counts of d i f f e r e n t 11.  populations.  V a r i a t i o n i n r a y count i s due a t l e a s t  partially  to environmental c o n d i t i o n s d u r i n g development. 12.  Temperature i s probably  an important  environmental  f a c t o r c o n t r o l l i n g r a y count. 13.  There i s v a r i a t i o n i n p r o p o r t i o n of body p a r t s  between d i f f e r e n t p o p u l a t i o n s .  Early inflections  i n the r e l a t i v e growth r a t e s o f these p a r t s . f a c t o r s probably  occur  Environmental  cause v a r i a t i o n i n p r o p o r t i o n s by v a r y i n g  body s i z e at i n f l e c t i o n . 14.  D i f f e r e n c e s e x i s t between body p r o p o r t i o n s of the  sexes. 15.  D i f f e r e n c e s e x i s t between a n a l r a y counts of the  sexes i n some p o p u l a t i o n s . sometimes fewer. 16.  Males sometimes have more r a y s ,  Environmental c o n t r o l i s suggested.  Anal f i n r a y s do not appear u n t i l r e l a t i v e l y  i n development.  late  Environment a f f e c t s s i z e at which r a y s  appear. 17.  I t i s suggested that the number of segments i n  the f i n i s governed by the number of body somites l y i n g adjacent  to i t at the time o f segmentation, and t h a t e n v i r -  onmental f a c t o r s may c o n t r o l the p r o p o r t i o n of the caudal r e g i o n occupied by the f i n base at t h i s 18.  time.  T h i s mechanism might account f o r many of the con-  -59ct r a d i c t o r y r e p o r t s i n the l i t e r a t u r e on the a f f e c t o f e n v i r onment on number of f i n rays i n d i f f e r e n t  species.  >  -60LITERATURE CITED Anderson, G. C. M.S. a Study of t h e p r o d u c t i o n of Kamloops t r o u t (Salmo g a i r d n e r i i kamloops Jordan) i n P a u l IgJs©, B r i t i s h Columbia. Unpub. M.A. t h e s i s , Univ. of B.C., 1949 , " Baker, 0. E, 1936. A t l a s of American a g r i c u l t u r e . y.S. Govt. P r i n t . Off., Washington.' Balinsky,  B. I . 1948. acters 118  On the development of s p e c i f i c char-  i n cyprinid fishes.  Proc. Z o o l . Soc. London.  ( 2 ) : 335 - 344.  C a r l , G. C. and W. A. Clemens. 1948. of B r i t i s h Columbia.  The f r e s h - w a t e r f i s h e s  B. C. Prov. Mus.  Handbook  No. 5: 1-132. Clemens, W. A.,  R. V. Boughton and J . A. Rattenbury. 1945.  A preliminary lake,  report  on a f i s h e r y survey of T e s l i n  B r i t i s h Columbia.  Rept. Prov. P i s h .  Dept.,  1944: 70-75. Clemens, W.  A. and J . A. Munro. 1934.  squawfish.  The food of the  P i s h . Res. Bd. Can. Prog. Rept. Pac.,  No. 19: 3, 4. .Clemens, W.  A., D. S. Rawson and J . L. McHugh. 1939.  A b i o l o g i c a l survey of Okanagan lake, B r i t i s h  Col-  umbia. P i s h . Res. Bd. Can. B u l l . 56:1-70. Cockerell,  T. D. A. 1911a.  Some notes on f i s h  Proc. B i o l . Soc. Wash. 24: C o c k e r e l l , T. D. A. 1911b.  scales.  209-214.  The s c a l e s of freshwater f i s h e s .  B i o l . B u l l . Woods Hole, Mass. 20: 367-386. Cockerell,  T. D. A. and E d i t h M. A l l i s o n . 1909.  of some American C y p r i n i d a e .  The  scales  Proc. B i o l . Soc. Wash.  -6122; 157-164. Cooper, Gerald P. 1935.  Age and growth o f the golden  (Notemigonus c r y s o l e u c a s auratus) i l i t y f o r propagation. Let.  Pap.  shiner  and i t s s u i t a b -  Mich. Acad. S c i . , A r t s ,  21: 587-597.  Cowan, I . McTaggart. (1939). The v e r t e b r a t e fauna of the Peace R i v e r d i s t r i c t  of B r i t i s h Columbia. Occ. Pap.  B. C. Prov. Mus., No. 1: 1-102. Dymond, J . R. 1930.  A possible c r i t i c a l factor  affecting  the p r o d u c t i o n o f t r o u t i n some B r i t i s h lakes.  Trans. Amer. P i s h . Soc.  Dymond, J . R. 1936. Columbia.  Some fresh-water Rpt.  Columbia  60: 247-249.  fishes of B r i t i s h  Commissioner of F i s h e r i e s o f B r i t i s h  Columbia f o r 1935  L-60-L73. 1937 (Royal Ont. Mus.  Z o o l . Cont. No. 9 ) . Eaton,  T. H. J r . 1945. of f i s h e s .  S k e l e t a l supports  o f the median f i n s  Jour. Morph. 76 (3): 193 - 212.  H Eigenmann, C. H. 1894.  R e s u l t s of e x p l o r a t i o n s i n western  Canada and the northwestern U.  United States.  Bull.  S. F i s h . Comm. 12: 101-132.  Eigenmann, C. H. 1895.  L e u c i s c u s b a l t e a t u s (Richardson), a  study i n v a r i a t i o n . Evermann, B. W. 1897.  Amer. Nat.  29: 10-25.  A r e p o r t upon salmon I n v e s t i g a t i o n s  i n the headwaters o f the Columbia r i v e r i n the S t a t e of X  Idaho i n 1895,  together w i t h notes upon the  f i s h e s observed i n that S t a t e i n 1894 B u l l . U. S. F i s h . Comm. 16: 151-202.  and 1895.  Eberhardtt K« 1943. Geschlechtsbestimmung und -differenzierung bei Betta splendens Regan I . Z .indukt. Abstamm. - u . VererbLehre 81: 5153 - 373.  -62Evermann, B. W. and T. D. A. C o c k e r e l l . 1909.  Descriptions  of three new s p e c i e s of C y p r i n o i d f i s h e s .  Proc.  B i o l . Soc. Wash. 22: 185-188. Evermann, B. W. and Meek, S. E. 1898.  A r e p o r t upon salmon  i n v e s t i g a t i o n s i n the Columbia r i v e r b a s i n and elsewhere on the P a c i f i c coast i n 1896. Bur.  Bull.  U.S.  P i s h . 17_: 15-84.  Ferguson, R. G. MS.  The i n t e r r e l a t i o n s among the f i s h pop-  u l a t i o n s of Skaha l a k e , B r i t i s h Columbia and t h e i r s i g n i f i c a n c e i n the p r o d u c t i o n  of Kamloops t r o u t  (Salmo g a i r d n e r i i kamloops Jordan).  Unpub. B.A.  t h e s i s , Univ. of B. C., 1949. Ford, E. 1937.  V e r t e b r a l v a r i a t i o n i n TeLZosteaja: f i s h e s .  Jour. Mar. B i o l . Assoc. 22: 1-60. G a b r i e l , M. L. 1944.  Factors  of vertebrae  a f f e c t i n g the number and form  i n Fundulus h e t e r o c l i t u s .  Jour.  Exper.  Z o o l . 95: 105-147. Gilbert,  C. H. and B. W. Evermann. 1894.  A r e p o r t upon  i n v e s t i g a t i o n s i n the Columbia r i v e r b a s i n ,  with  d e s c r i p t i o n s of f o u r new s p e c i e s of f i s h e s .  Bull.  U. S. Bur. F i s h . 14: 169-204. Goodrich, Edwin S. 1930.  Studies  opment of v e r t e b r a t e s .  on the s t r u c t u r e and d e v e l Macmillan and Co., London,  1-827. G o s l i n e , Wm.  A. 1948.  Some p o s s i b l e uses of X-rays i n  ichthyology and f i s h e r y r e s e a r c h . No. 1: 58-61.  Copeia, 1948,  -63Hart, J . L. and J . L, McHugh. 1944. of B r i t i s h Columbia. 54  (1944) :  Hart, J . S.  MS.  The  smelts  (Osmeridae)  B u l l . P i s h . Res.  Bd.  1-27.  Geographic  v a r i a t i o n of some p h y s i o l o g i c a l  and m o r p h o l o g i c a l c h a r a c t e r i s t i c s i n f i s h . t h e s i s , Univ. of Toronto, Heuts, M.  J . 1947.  Can.  Ph.  D.  1949.  The p h e n o t y p i c a l v a r i a b i l i t y of  Gasterosteus a c u l e a t u s (L.) p o p u l a t i o n s i n Belgium. I t s b e a r i n g on the g e n e r a l g e o g r a p h i c a l v a r i a b i l i t y of the s p e c i e s .  Verhandl. K. Vlaamse Acad. Wetensch.,  L e t t . , en Schone Kunsten B e l g i e , K l . Wetensch. 9: Hollister,  1-63. Gloria.  study.  1934.  C l e a r i n g and dyeing f i s h f o r bone  Z o o l o g i c a 12  Hubbs, C. L. 1921.  (10):  The l a t i t u d i n a l  89-101. v a r i a t i o n i n the number  of v e r t i c a l f i n r a y s i n Leptococcus  armatus.  Occ. Pap. M u s . Z o o l . , Univ. Mich. 94: Hubbs, C. L. 1922a.  1-7.  V a r i a t i o n s i n the number of v e r t e b r a e  and other m e r i s t i c c h a r a c t e r s of f i s h e s w i t h the temperature  correlated  of water d u r i n g development.  Amer. Nat. 56: 360-372. Hubbs, C. L. 1922b.  Seasonal v a r i a t i o n i n the number of  v e r t e b r a e of f i s h e s . Let.  Pap.  Mich. Acad. Sci.,. A r t s ,  2: 207-214.  Hubbs, C. L. 1941.  Increased number and delayed development  of s c a l e s i n abnormal suckers. S c i . , A r t s , L e t . 26: 229-237.  Pap.  Mich. Acad.  -64Hubbs, C. L. 1943.  Terminology of e a r l y stages o f f i s h e s .  Gopeia 1943  ( 4 ) : 260.  Jensen, A. J . G. 1939.  F l u c t u a t i o n s i n the r a c i a l c h a r a c t e r s  of the p l a i c e and the dab. E x p l . Mer. 1942.  14: 370-384.  J . Cons. Perm. I n t .  (Ref. from Mayr, E r n s t .  Systematics and the o r i g i n o f s p e c i e s .  Columbia.Univ.  P r e s s , New Y o r k ) .  Jordan, D. S., B. W. Evermann and H. W. C l a r k e . 1930. Check l i s t  o f the f i s h e s and f i s h l i k e v e r t e b r a t e s  of North and Middle America n o r t h o f the n o r t h e r n boundary  of Venezuala and Colombia.  U. S. F i s h .  Comm. Doc. 1055 (App. t o Rept. U. S. F i s h . Comm^., 1928)  : 1-670.  M a r t i n , W. R. 1949.  '^he mechanics  o f body form i n f i s h e s .  o f environmental c o n t r o l Univ. Toronto S t u d i e s ,  B i o l . , No. 58. Pub. Ont. F i s h . Res. Lab., No. 70: 1 -. 81. M i l l e r , R. R. and Ralph G. M i l l e r . 1948.  The c o n t r i b u t i o n  of the Columbia r i v e r system t o the f i s h fauna of Nevada. M o t t l e y , C.. McC.  Copeia (1948) ( 3 ) : 174-187.  1934.  development  on  The e f f e c t o f temperature during the number o f s c a l e s i n the  Kamloops t r o u t Salmo kamloops. Fish. 8  (20):  M o t t l e y , C. McC. 1937. (Salmo).  Cont. Can.  Biol.  255-263. . The number o f v e r t e b r a e i n t r o u t  Jour. B i o l . Bd. Can.,  3  ( 2 ) : 169-176.  -65Munro, J . A. and W.  A. Clemens.  i n B r i t i s h Columbia population.  The American merganser  and i t s relation:, to the f i s h  B i o l . Bd. Can.  Northcote, T. G, MS. phology  1937.  B u l l . No.  55:  1-49.  Some aspects of the comparative  mor-  and ecology of Cottus asper Richardson  Cottus rotheus  (Rosa Smith).  Univ. of B. C ,  1950.  Rawson, D. S. 1934.  Unpub. g. A.  thesis,  P r o d u c t i v i t y s t u d i e s i n l a k e s of the  Kamloops r e g i o n , B r i t i s h Columbia. B u l l . No.  and  B i o l . Bd.  Can.  42:*----31.. . . . . . .  Richardson, John. 1836. The f i s h ) .  Fauna B o r e a l i - Americana (Pt. 3 -  R i c h a r d Bentley, London: 1-327.  (Ref.  from C a r l and Clemens 1948). Schmidt, J . 1917.  R a c i a l i n v e s t i g a t i o n s . I. Zoarces  viviparus  L. and l o c a l races of the same. C. R. Trav. C a r l s b e r g . 13 Schmidt, J . 1921.  Lab.  (3): 279-396.  R a c i a l i n v e s t i g a t i o n s . V I I . Annual  f l u c t u a t i o n s of r a c i a l c h a r a c t e r s i n Zoarces ' v i v i p a r u s L. C. R. Trav. Lab.  C a r l s b e r g . 14  (15) :  1 - 24. Schmidt, J . 1930. cod  R a c i a l i n v e s t i g a t i o n s . X.  The  Atlantic  (Gadus c a l l i a r i o s L. ) and l o c a l r a c e s of the  same.  C. R. Trav. Lab. C a r l s b e r g . 18  S c h u l t z , L. P. 1927.  (6):  1-72.  Temperature-controlled v a r i a t i o n i n  the golden s h i n e r , Notemigonus c r y s o l e u c a s . Mich. Acad. S c i . , A r t s , L e t . 7: 417-432.  Pap.  -66-  S c h u l t z , L. P. and A. G. DeLacy, 1935. i c a n Northwest. 365-380.  Mid-Pac. Mag.,  Jan. -Feb.: 63-76.  J u l y - S e p t . : 211-226.  Oct.-Dec.  Apr.-June: 127-142.  1936.  D e s c r i p t i o n s of  i n t e r g e n e t i c h y b r i d s between c e r t a i n C y p r i n i d  f i s h e s of Northwestern U n i t e d S t a t e s . Soc. Wash. 49: Snyder, J . 0. 1907.  27  Oregon.  B u l l . U.  John F. and Theodora C. 1943.  B. C. Prov. Mus.,  No.  4:  Some acc-  Columbia.  1-97.  V a r i a t i o n i n number of v e r t e b r a e  Norwegian w i n t e r h e r r i n g . 1: 56-57.  Bur.  Driftwood  V a l l e y r e g i o n of n o r t h c e n t r a l B r i t i s h  Sund, Oscar. 1943.  S.  : 69-102.  ounts of the f l o r a and fauna of the  Pap.  Biol.  R e l a t i o n s h i p s of the f i s h fauna of the  F i s h . 1907. Stanwell-Pletcher,  Proc.  1-10.  l a k e s of Southeastern  Occ.  1935:  Oct.-Dec.1936: 275-290,.'  S c h u l t z , L. P.. and M. B. S c h a e f f e r . new  Pishes of the Amer-  Ann.  Biol.  i n the  (Copenhagan)  -67-  APPENDIX I  -  Data on Shiner C o l l e c t i o n s The g e o g r a p h i c a l i n d i c e s are s i m i l a r to those used i n the G e o g r a p h i c a l Gazeteer of B r i t i s h Columbia, of Lands.  Department  L a t i t u d e and l o n g i t u d e r e f e r to the south-east •  corner of the q u a d r i l a t e r a l i n which the l o c a l i t y  lies;  compass r e f e r e n c e s -give the a p p r o p r i a t e q u a r t e r of t h i s area. D i s t r i c t s r e f e r r e d t o are Land D i s t r i c t s , purposes o n l y ) .  (for administrative  Dates f o l l o w i n g r e f e r only t o time of  c o l l e c t i o n of specimens  d e a l t w i t h i n Appendix  II.  Tempera-  t u r e readings are i n Centigrade degrees; A r e f e r s to a i r temperature, S t o s u r f a c e temperature.  Numbers p r e c e d i n g  each dash r e f e r to depths i n metres.  B i n d i c a t e s bottom.  Thus 2 - 18.5 at 2 metres  i n d i c a t e s t h a t the temperature was  depth.  18.5°C.  Permanent c o l l e c t i o n numbers o f  specimens  from t h e Royal O n t a r i o Museum o f z o o l o g y a r e i n d i c a t e d by the l e t t e r s R.O.M.Z-.  -68-  ALLISON L.  49° 120° N.W.  head, Kamloops  Expansion o f A l l i s o n  dist.  c r . , near  29 Aug., 6 Sept. 1948.  Sept. 1949, 1030 h r s . : A-18, S-16,  1-15,  Temp. 5  7-15, 9-12,  11-9, 12.5-8, 38B-4.5. ARGENTA SLOUGH.  50° 116° S. W. Off Duncan r . , on road to  Howser, Kootenay d i s t . 4 June 1949. ARROW. LAKES.  Kootenay  Deer Park.  49°  Collector I. Barrett.  district.  118°  S.E.  E. s i d e Lower Arrow 1.  7 June 1949. F o s t h a l l Ck. 50°  117° S.W.  W. side Upper Arrow 1.  29 J u l y 1949. Nakusp  50° 117°  S.W.  E.  s i d e Upper Arrow 1..  18 J u l y 1949. BABINE L.  54°  126°  N. W. C a s s i a r  d i s t . 1947.  Collector  A l . Johnson. BAPTISTE L.  50°  116° N. E.  Edgewater, Kootenay d i s t .  T r i b . t o Macaulay c r . , near 15 June 1949.  deepest 10 m., shallow shores. BLUE L. (TURKEY L.) c r . , Kamloops  49°  120°  C o l l e c t o r H. T y l e r . Expansion of A l l i s o n  d i s t . 1948.  CARDEJV. L. (SHUMWAY L.)  50°  Campbell c r . , Kamloops CHAMPION LAKES.  N. W.  Area 34 acres,  120° N.E.  Expansion of  d i s t . 4 Sept. 1949.  49° 117° S.W.  Three small l a k e s at head  of -head of Landis c r . , t r i b . t o Champion d i s t . 12 J u l y 1949.  c r . , Kootenay  Temp. South 1. 1230 h r s : S-21,  Middle 1. 1400 h r s . : S-25.2.  -69-  CHILLIWACK SLOUGH. 2 Oct. 1932. CHIMNEY L.  49° 121° S. W.  C o l l e c t o r W. E. R i c k e r . R.O.M.Z.  51° 121° N. W.  d i s t . 8 Sept. 1949. COLUMBIA R., Kootenay r .  CASTLEGAR.  below C a s t l e g a r .  Head of Chimney c r . ,  Deepest 25 m. 49°  6 J u l y 1949.  COTTONWOOD L.  C o l l e c t o r Sam M i t c h e l l .  Backwater near sawmill one m i l e  Temp. 1030 h r s : S-13.5 - 15.5.  11, 14 J u l y ; 12, 16,  Temp, at o u t l e t 20 June 49, 1430 h r s :  29 June 49, 1630 h r s : 11.0.  h r s : 15.0.  CULTUS L.  Lillboet  49° 117° S. E. head o f Cottonwood c r . ,  27 Aug. 1949.  1800 h r s :  #8581.  117° S. W. Near mouth o f  S. E. o f Nelson, Kootenay d i s t .  15.5.  New Westminster d i s t .  5 J u l y 49, 1000  11 J u l y 49, 1500 h r s : 18.8. . 27 Aug. 49, S-17, 14B - 11.  49°  Av. depth 13 - 14 m.  121° S.W. Head o f Sweltzer r . , t r i b .  to C h i l l i w a c k  r . , New Westminster d i s t .  near o u t l e t ;  11 Nov. 1948 one m i l e W. on S. shore.  DOUGLAS L.  50° 120° S. E. Expansion o f N i c o l a r . , c a . 10  m i l e s E. o f N i c o l a 1., Kamloops DUCK L.  (ELLISON L.)  d i s t . 7 Sept. 1949.  49° 119° N. E. 8 m i l e s N. E. of  Kelowna, Osoyoos d i s t . DUTCH L.  6 Sept. 1949.  51° 120° N. E.. One m i l e N. E. o f j u n c t i o n of  North Thompson and Clearwater r i v e r s , 27 Aug. 1946. ERIE L.  25 Sept. 1948  dist.  C o l l e c t o r D. C. G. MacKay.  (BEAVER L.)  49°  Salmo, Kootenay d i s t . 1815 h r s :  Kamloops  117° S. E.  Three m i l e s W. of  16 Aug. 1949.  Temp. 28 June 49,  S-17. 16 Aug. 49, 0800 h r s : S - 17. 1030 H r s :  S - 23. Lake Shallow, weed beds i n c e n t r e .  -70-  ERIE POTHOLE.  49°  d r a i n s W.  117°  S. E. . 1 .3/8 m i l e s W.  into Archibald  Aug.. 1949.  Ck.,  of E r i e  28 June, .5 J u l y , 16, 28.  Temp. 28 June 49, 1750 h r s : S - 17.2.  Aug. 49, 1200 hrs:. S - 20.4.  1.,  16  28 Aug. 49, 1645 Hrs:  A - 32, S- 31, 1 - 15, 2 - 14, 3 - 13, 4 - 9, 5 - 9, 6 - 8, 7B - 7. GARNET VALLEY L.  Av„ depth 6 - 7 m. Water  49°  119°  N. W. Expansion of Eneas ck.,  Osoyoos d i s t . 6 J u l y 1928. HYAS L. 50° chain,  120°  N. E.  stained.  R.O.M.Z. #6203.  Drains i n t o Pinantan 1.,  Kamloops d i s t . 30 J u l y 1948.  Anderson.  Paul ,ck.  C o l l e c t o r G. C.  , .  INONOAKLIN R.  49°  118°  N. E.  Plows S. E.  into.Lower  Arrow 1. at Edgewood, Kootenay d i s t . 2 Sept. 1949. Murton's  sawmill.  KOOTENAY L.  Kootenay d i s t .  Campbell ck.  N. W.  Enters E. s i d e  Kootenay 1. 2 m i l e s N. of K a s l o .  29 May 1949. .  Kaslo  49°  490 116°  116°  N. W.  by road N. of Nelson. 29 May,  49°  116°  near S. end. 21 J u l y Lardeau  50°  116°  s i d e Kootenay 1.  10 June 1928.  21 J u l y , 14 Aug.  Kuskanook  W.  45,miles  R. 0. M. Z. #6541.  1949.  S.W.  E.  s i d e Kootenay 1.  1949. S.W.  N. end Kootenay 1.  15  J u l y 1949. Nelson  49°  26 June 1949.  117°  S.E.  Boathouses.  S. shore, West arm Kootenay 1.  -71-  Queen's Bay  49°  immediately KOOTENAY ,R.  N.W.  W.  117?  i n t o Columbia  S.W.  of Nelson, highway c r o s s i n g of  6 J u l y 1949.  S.  shore.  Cut o f f from Kootenay r . by r a i l w a y  embankment. .S. shore, 3 m i l e s W. Temp. 1700 49°  • 120°  LITTLE SHUSWAP L.  17.5.  N.W.  Expansion of A l l i s o n c r . , 1948.  119°  N.W.  Shuswap 1., Kamloops d i s t .  BAINS L.  49°  (WEST L.)  Nechako r . ,  NICOLA L.  50°  120°  loops d i s t . OKANAGAN L.  end of Temp. ,.  115°  5.3°  S.E.  7 Sept.  N.E.  1949. 122°  N.W.  Cariboo d i s t . S.W..  2^ miles  Head of B e a v e r l y  1949.  Expansion of N i c o l a r.,, Kam1949.  Osoyoos d i s t .  North End  5 J u l y 1928.  Okanagan Landing 1.  of W.  4 Sept. 1949.  of J a f f r a y , Kootenay d i s t .  cr.,  W.  S - 19.  (ROSEN L . ) .  NADSILNICH L.  24 June  S -  50°  E. end 1025 h r s ;  of Nelson.  hrs:  Kamloops d i s t . 4 Sept.  MC  1949.  r . at C a s t e l g a r , Kootenay d i s t .  Three-mile.Pool  LAIRD L.  10 June  Drains West arm of Kootenay 1.  4 3/4 m i l e s W.  Kootenay r .  1949.  shore Kootenay 1.  N. o f entrance to West arm.  49°  Taghum  116°  5 m i l e s S.W.  PADDY RYAN LAKES. Kootenay d i s t .  50°  R.O.M.Z.  #6206.  119° , S.E.  of Vernon.  50° 116°. N.E.  6 Sept.  E. s i d e Okanagan 1949.  .4 m i l e s S.W.  15 June 1949.  of Invermere,  F i v e shallow l a k e s ,  sources of water f o r town of Invermere.  Each l a k e 3  -72acres. PAUL L.  Collector H. Tyler.  50° 120° N.E. Expansion of Paul c r . , Kamloops  d i s t . W. end  3 Aug. 1949;  E. end  4 Aug. 1949.  Collector G. C. Anderson. PINANTAN L. head,  50° 120° N. E. Expansion of Paul c r . near Kamloops d i s t .  MacKay;  27 July 1946 Collector D. C. G.  18 Aug. 1948.  PUNTCHESAKUT L. 52° 122° N.W. ck.,  Cariboo d i s t .  Expansion of Puntchesakut  12 July 1949.  Collector B i l l H i l -  len. ROSEBUD L. r.,  49° .117°  Kootenay d i s t .  S.. E. Head of Rosebud ck., 21 June, .28 Aug. 1949.  May 49, 1535 h r s : S - 16. (shade), 22 (sun).  Salmo  Temp. 17  3 June 49, 1350 h r s : S - 19  20 June 49, 1800 h r s : S - 19 (east  shore), 5 - 2 1 (W. shore), 19 - 12.3 - 10.8 (ascending i n l e t ck.).  21 June 49, 0700 h r s : 17, 0915 hrs: 5 - 18.5,  1330 h r s : S - 1915)  28 June 49, 2010 hrs; S - 17.  29 June 49, 0815 h r s : S - 17.  5 July 49, 1215 h r s :  S - 20, 24 - 28 ( i n protected pockets inshore). July 49, 0800 h r s :  S -- 19, 1400 h r s : S - 23.  23 28 Aug.  49, 1215 h r s : A - 34 ( i n sun), S - 21, 1 - 19, 2 - 18.5, 4-18,  6 - 18, 7 - 17, 8 - 14, 9 - 13, 10 - 11, 11- 9.5,  12 - 8.5, 13.5 - 8, 15 B - 7. SKAHA L. (DOG L.)  49° 119°  S.W.  Expansion of Okanagan r . ,  4 miles S. of Okanagan 1., Similkameen d i s t . 2 Aug.1948. SHUSWAP L. 50° 119° N.E. Head of S. Thompson r . , Kamloops d i s t . 3 Sept. 1949.  Sicamous, entrance of Mara 1.  -73-  SHUSWAP R., GRINROD.  50° 119° N.E.  S i m i l e s N. of  anderby, Kamloops d i s t , 3 Sept. 1949, SLOCAN L.  49°  dist.  117° N.E.  10 Aug. 1949.  SNOWSHOE L.  49°  Head of Sloean r . , Kootenay Silverton.  118° N.E.  In Sees. 34 and 35, T p.69,  between Inonoaklin arid Whatshan cks., Kootenay d i s t . 2 Sept. 1949.  Temp. 1905 hrs:  A - 23, S - 20, 1 - 18,  5 - 18, 6;- 15, 7 - 11.5, 7 - 11.5, 8 - 9.5, 10 - 8.5, 12 - 8. SPRING L. AND TIMOTHY L.  51°  mile ck., L i l l o o e t d i s t . STEVENS L.  121° N.E., expansion of 111 Autumn, 1949.  (ROCK L., LAZY L.)  49° 115° N.W.  N.E. of  Wasa, between Lewis and Wdlf cks., Kootenay d i s t . 25 July 1949. TAYLOR L.  Collector J . J . Osman.  49° 120° N.W.  and Yale "dists., TETANA L.  Merrit - Princeton road, 1948.  55° 126° N.E.  dist.  Head of G u l l i f o r d ck., Kamloops  Head of Driftwood r . ,  Collector J. P. Stanwell-Pletcher.  Cassiar  R.O.M.Z.  #12,217. WILLIAMS L.  52° 122° S.E.  Praser r . , Cariboo d i s t . G. C. Toner.  Head of Williamslake ck., 2 Aug. 1944.  R.O.M.Z. #14371.  Collector  -74-  APPENDIX I I Anal Ray Counts of Shiners from L o c a l i t i e s i n B r i t i s h  Columbia.  The symbol T i n d i c a t e s t o t a l counts which i n c l u d e males, females and f i s h whose sex was not determined. Counts i n c l u d e o n l y a d u l t s , or c o l l e c t i o n s of f r y i n which a l l the a n a l r a y s had formed. • . A n t e r i o r rudimentary r a y s not counted; l a s t s p l i t r a y counted as one. NO. OP ANAL RAYS 10 11 12 13 14 1 5 16 I V 1 8 19 20 21  LOCALITY ALLISON L.  <r  T ARROW LAKES Deer Park  22  16.86  1  33 13 46  13.45 13.23 13.39  2 12 22 22 15  73  15.49  43 73 116  14.88 15.00 14.96  21 12 33  15.19 15.00 .15.12  5  15.00  49  13.73  3  7  4  4 13 7 1 1 6 4 1 5 19 11 2  4  1  4  T  ARGENTA SLOUGH?  3 1 4  T  T  1 5 7 17 1 2 1 '8 11 33 1 3 2 1 3 18 50 25  T  1 1 2  P o s t h a l l Ck.s  <J  Nakusp  BABINE L.  T  BAPTISTE L.  T  BLUE L.  T  CARDEW L.  ?  T CHAMPION LAKES Middle' Lake  c? T  South Lake T  1  1 1  •  NO. MEAN  a. 5 5  6  1 1 2  2  1 1  2 1 3  5 6 2 6 7 12  7 2 9  2  1  2  6 1 3 18  8  2  1  4  6  4  1  15  16.13  4 8 7 8 11 1 6  4 5 9  4 5 9  2 2 4  22 28 50  15.64 15.36 15.48 17.12 16.86 17.04 17.77 17.58 17.44  - —  1 1 2  4 12 14 14 7 6 5 1 5 19 20 19  3 2 5  3 3  51 22 73  3 7 5 6 1 2 3 2 3 8 33 56 50 25  1 1 8  22 12 1 181  -75-  10 11 12 13 14 15 16 17 18 19 20 21 CHILLIWACK SLOUGH  T  CHIMNEY L.  T  COLUMBIA R. Castlegar  T  COTTONWOOD L.  T  CULTUS L. 25 Sept. 1948  2  2 1  2  3  5  3  2  4  2  1  4 11 11  14.79  52  16.56  31  15.52  9  14.44  8  16.62  173 180 414  11.97 12.02 12.06  53  13.98  19  14.26  29 21 51  12.79 12.90 12.82  7 10 6  DUTCH L.  T  1  4  3  1  ERIE L.  T  1  1  1  ERIE POTHOLE  %  2 38 103 25 4 43 96 36 5 2 80 237 82 12  Kaslo, 1928 K a s l o , 1949  3 5  4  9 18 13 11  1  1 17 21 11  2  3  8  1  1  2  3  1  -  1  8  T  2 10 9 8 1 5 10 5 3 16 19 13  T  2  7 10 10  5  -  1  35  16.37  T  2 12 19 17  6  1  1  58  16.35  3 5 9 9 2 9 7 12 12 32 59 41  2 1 8  1 3  29 31 155  16.17 16.03 16.06  1  1  34  15.79  <?  T KUSKANOOK  14.94 14.73  449  5  KOOTENAY L. Campbell Ck.  69 95  1  2  %  17.00  29 147184 68 20  T  INONOAKLIN R;  36  15.08 14.80  DUCK L.  T  15.22  26 25  T  HYAS L.  9  1  DOUGLAS L.  T  14.50  -  T  GARNET VALLEY L.  1  14  2 5 12 1 11 7  Combined  T  1  17.00  3 6  %  S  4  4  2 22 26 16 5 36 39 9  11 Nov. 1948  2  4  NO. MEAN  T  1  1 13 11  6  -7610 11 12 13 14 15 16 17 18 19 20 21  NO. MEAN  4  1  39  15.82  1  4 23 19 10  9  66  15.91  1 1  2 5 19 16 3 6 13 21 12 5 8 19 41 31 10  1 1  46 58 111  16.34 15.90 16.14  $  1  T  1  1 2 3  1 1 3  16 18 41  16.44 16.39 16.44  3 15 16 12  2  1  49  16.96  6 24 22 49 10 6 4 10 28 20 10 5 10 34 50 69 20 11  1 1 2  118 1 79 1 197  16.47 16.58 16.51  61  14.90  56 26 86  14.20 14.35 14.21  17  16.82  29 38 67  18.00 17.13 17.51  Lardeau  T  Nelson  T-  Queen's Bay 93  T  1 11 22  KOOTENAY R. Taghum  Three-Mile Pool LAIRD L.  T %  T LITTLE SHUSWAP L.  T  McBAINS L.  $  2 5 6 6 3 6 8 13 13  4 20 20 15  -  1  2 4 6  2  T  1 14 20 17 1 2 14 5 2 18 36 22  NADSILNICH L.  T  3  2  7  NICOLA L.  3-  2 2 4  2 6 10 4 21 9 6 27 19  <^  T OKANAGAN L. N. End 1928 T Okanagan Lndg, <?  T PADDY RYAN LAKES  T  1  2 5 4 2 6  3  2  3  2  8 10 11  5  3  37  15.59  5 13 11 4 9 2 3 12 24 13  3 4 7  1 1 3  34 20 62  15.38 15.45 15.29  47  13.51  1  5 20 15  7  -  PAUL L. E. End c?  T  3 10 3 4 12 5 17 52 20  1 1 3  17 22 92  14.12 14.14 14.10  -7710 11 12 13 14 15 16 17 18 19 20 21 W. End  5. <?  T PINANTAN L. 1946  1948 T  ROSEBUD L.  2  * T  PUNTCHESAKGT L.  1  T  1 1  1 12 14 2 10 14 6 — 1 4 56 60 19 ' - 2 2  5 7 7 9 2 12 16 _  5 45 48 16 1 3 13 38 19 9 1 10 99161 83 13 2 3 16 35 12  T  SHUSWAP L.  T  SHUSWAP R., Grinrod  T  SLOCAN L.  T  SNOWSHOE L. T  3  1 13 25 24 25 8 9 25 27 17 7 1 22 50 51 42 15  cT T  SKAHA L.  2 1 3  3 12 12 *  2  1  13.50 13.96 13. 68  16 18 34  13.56 13.50 13.53  115 83 368  13.68 14.25 13.99  69  13.94  99 90 189  15.96 16.03 15.99  30  13.53  88  15.19  7  2  16 11  1  1  36  15.25  2 11 14  3  2  32  15.75  "  ;  7  1 5 29 26 24 3 1 — 14 25 13 5 5 16 122 162 96 17  1  30 31 143  3 24 28 23  SPRING L. AND TIMOTHY L. T  88 12.86 6 0 13.20 421 12.93  2 3  2  5 18 17  52  16.63  3 2 5  2 1 2 4 1  7 7 14  14.43 13.86 14.14  38  13. 50  4  15.25  52  15.96  T  1 3 4  TAYLOR U. .  T  5 14 15  3  1  TETANA L.  T  1  2  -  1  WILLIAMS L.  T  5 14 19  7  STEVENS L.  3 5 8  NO. MEAN  5  5  6 1  -78-  AFPENDIX I I I D e s c r i p t i o n of Constant Temperature  Pig.  14.  Apparatus.  Constant temperature a p p a r a t u s , K a s l o h a t c h e r y . Apparatus f o r r e a r i n g eggs at c o n s t a n t tempera-  t u r e was of 1949.  c o n s t r u c t e d a t t h e K a s l o h a t c h e r y d u r i n g the summer A l t h o u g h s h i n e r f r y d i e d a f t e r a b s o r p t i o n o f the  y o l k s a c , t h e apparatus was used s u c c e s s f u l l y i n t h e r e a r i n g of Kamloops t r o u t at temperatures f r o m 9°C. t o 21°C.  (The  l a t t e r temperature i s a p p a r e n t l y the h i g h e s t r e c o r d e d i n the  l i t e r a t u r e f o r successful hatching of trout.)  so r e a r e d were p r e s e r v e d and have not y e t been  Specimens  examined.  The apparatus o p e r a t e d s a t i s f a c t o r i l y and p r o v i d e d baths of oxygenated water at 9°, 12°, 15°, 18° and at  ±  0.4°.  21°C.  P i g . 14 shows a g e n e r a l view. Water was f e d i n t o a 10 f o o t l e n g t h o f eaves  t r o u g h i n g suspended above the b a t h s ; excess s p i l l e d over a w a l l at one end, so t h a t a c o n s t a n t l e v e l was m a i n t a i n e d i n the  -79trough.  Channels of cork, glass and rubber tubing l e d water  across from the trough into each of f i v e galvanized p a i l s . A thermo regulator with p i l o t lamp was suspended i n each p a i l , and the desired temperature was maintained either by an immersion heater or by an e l e c t r i c hot-plate beneath the p a i l .  Tubes  from the bottom of each p a i l l e d to a number of baths.  An  e l e c t r i c aerator suspended above the p a i l s was provided with tubes entering each p a i l ;  these served also as agitators which  prevented unequal heating within the p a i l s .  Plow to each bath,  of about 80 c.c. per minute, was controlled by a screw-type stop-cock. Baths consisted of 3|"x 6 " x l 2 " baking dishes. Overflows were provided by glass tubing with f i n e metal screen covers.  Baths were suspended within 24" hatchery troughs,  into which the overflow from the baths passed.  A l l metal  parts were covered with aluminum paint. Eggs were placed on a wire basket standing one inch above the f l o o r of the bath. plankton tows. liver. syringe.  Shiner f r y were f e d  Trout f r y were f e d skimmed milk and ground  Floors of baths were cleaned d a i l y with a rubber  -80APPENDIX IV . D e f i n i t i o n of Measurements Made on Shiners Measurements on adult shiners were made with a vernier calip(r\§ reading to 0 . 1 mm., i n 0.5 mm.  or on a s t e e l rule marked  Measurements on f r y were made with a binocular  microscope containing a calibrated Whipple counting g r i d . ANAL PIN BASE  -  Distance from o r i g i n to i n s e r t i o n of  anal f i n . ANAL HEIGHT  -  Distance from o r i g i n of anal f i n to t i p  of longest ray. EYE DIAMETER HEAD LENGTH  -  Antero-posterior diameter of eyeball. Distance from t i p of snout to posterior  margin of operculum. PECTORAL AND PELVIC LENGTHS  -  Distance from i n s e r t i o n  of f i n to t i p of longest ray. PREANAL LENGTH -  Distance from t i p of snout to o r i g i n  of anal f i n . POSTANAL LENGTH  -  Distance from o r i g i n of anal f i n t o  posterior margin of fleshy part of peduncle. STANDARD LENGTH  -  Distance from t i p of snout to  posterior margin of fleshy part of peduncle. TOTAL LENGTH  -  Distance from t i p of snout to t i p of  longest caudal ray when t a i l compressed.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0106869/manifest

Comment

Related Items