UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An ecological classification of the ponderosa pine stands in the southwestern interior of British Columbia Brayshaw, T. Christopher 1955

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1955_A1 B7 E3.pdf [ 23.25MB ]
Metadata
JSON: 831-1.0106268.json
JSON-LD: 831-1.0106268-ld.json
RDF/XML (Pretty): 831-1.0106268-rdf.xml
RDF/JSON: 831-1.0106268-rdf.json
Turtle: 831-1.0106268-turtle.txt
N-Triples: 831-1.0106268-rdf-ntriples.txt
Original Record: 831-1.0106268-source.json
Full Text
831-1.0106268-fulltext.txt
Citation
831-1.0106268.ris

Full Text

AN ECOLOGICAL CLASSIFICATION OF THE PONDEROSA PINE STANDS IN THE SOUTHWESTERN INTERIOR OF BRITISH COLOMBIA by Thomas Christopher Brayshaw A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY In the Department or BIOLOGY AND BOTANY We aecept t h i s thesis as conforming to the standard required from candidates f or the degree of DOCTOR OF PHILOSOPHY i Members of the Examining Committee THE UNIVERSITY OF BRITISH COLUMBIA September, 1955. Faculty of Graduate Studies P R O G R A M M E O F T H E Jffitral ©ral Izxanvtnation for ttye Jb^ree xrf JWfor irf IJfyifosflpljg T H O M A S C H R I S T O P H E R B R A Y S H A W B.A. (University of British Columbia) 1948 M . A . (University of Saskatchewan) 1951 O C T O B E R 12th, 1955 at 2:00 p.m. IN T H E B I O L O G I C A L SCIENCES B U I L D I N G Room 33 C O M M I T T E E I N C H A R G E H . F. A N G U S , Chairman T . M . C. T A Y L O R G . S. A L L E N V . J . K R A J I N A B. G . G R I F F I T H A. H . H U T C H I N S O N C. A . R O W L E S D. J. W O R T I. M c T . C O W A N D. C; B U C K L A N D A . M . C R O O K E R External Examiner—DR. R. F. D A U B E N M I R E , State College of Washington. ; A N E C O L O G I C A L C L A S S I F I C A T I O N O F T H E P O N D E R O S A PINE S T A N D S IN T H E S O U T H W E S T E R N I N T E R I O R O F B R I T I S H C O L U M B I A . A B S T R A C T In this study 121 stands of Pinus ponderosa in the southwestern interior of British Columbia were examined. Floristic analyses of the stands were made by a system of visual estimates based upon scale values for dominance, abundance, and vigour assigned in the field. These values were later synthesized to produce a formula describing the role of each species in the community. Tables have also been included to show presence and fidelity values for the species of each association. Thus the floristic structure of each commun-ity becomes evident. The vigour of tree species was assessed by standard mensuration methods. Climatic data were obtained in some stands over a period of one year. Soil profiles of most of the stands were analysed for p H and texture. The Pinus ponderosa stands are here classified into the following principal communities: A . Pinus ponderosa zone: 1. Pinus — Purshia association with one related subassociation: la. Pinus — Aristida subassociation. 2. Pinus — Agropyron association with two related subassocia-tions: 2a. Pinus — Stipa subassociation. 2b. Pinus — Artemisia subassociation. 3. Pinus — Rhus association. B. Pseudotsuga zone: 4. Pseudotsuga — Pinus — Arctostaphylos association. 5. Pseudotsuga — Arctostaphylos — Calarnagrostis association. 6. Pseudotsuga — Calarnagrostis association. 7. Pseudotsuga — Symphoricarpos association. C. Azonal communities: 8. Populus -— Rosa — Cornus (alluvial) complex. A l l these communities are described individually; their successional relationships discussed; and some recommendations made regarding their utilization. The Agropyron and Arctostaphylos — Calamagrostis associations are thought to represent the climatic climax communities in their re-spective zones. GRADUATE STUDIES Field of Study: Botany Phycology A . H . Hutchinson Systematics of Herbaceous Plants T . M . C. Taylor Forest Ecology and Geography R. W . Pillsbury Forest Associations V. J. Krajina Problems in Plant Ecology V. J. Krajina and R. W . Pillsbury Bryology V. J. Krajina Phylogenetics .'- . - - - - V . J. Krajina Other Studies: Research in Silvics and Silviculture G . S. Allen Biometry V . C. Brink Physical Properties of Soils C. A . Rowles Soil Genesis, Morphology and Classification C. A . Rowles Soil Conservation D. G . Laird L I S T O F P U B L I C A T I O N S A new species of Pellia: V . Krajina and T . C. Brayshaw, The Bryologist 54: 59-67, 1951. The Fescue Grassland in Saskatchewan: R. T . Coupland and T . C. Brayshaw, Ecology 34: 386-405, 1953. ABSTRACT In this study 121 stands of Pinus ponderosa in the south-western interior of B r i t i s h Columbia were examined. F l o r i s t i c analyses of the stands were made "by a system of visual estimates based upon scale values for dominance, abundance, and vigour assigned in the f i e l d . These values were later syn-thesized to produce a formula describing the role of each species in the community. Tables have been included to show presence and f i d e l i t y values for the species of each association. Thus the f l o r i s t i c structure of each community becomes evident. The vigour of the tree species was assessed by standard mensuration methods. Climate data were obtained in some stands over a period of one year. Soil profiles of most of the stands were analysed for pH and texture. The Pinus ponderosa stands are here classified into the following principal communities: A. Pinus ponderosa zone: 1. Pinus - Purshia association with one related sub-association: 1 a. Pinus - Aristida subassociation. 2. Pinus - Agropyron association with two related sub-associations: 2 a. Pinus - Stipa subassociation. 2 b, Pinus - Artemisia subassociation. 3 . Pinus - Rhus association. B. Pseudotsuga zone: 4 . Pseudotsuga - Pinus - Arctostaphylos association. 5 . Pseudotsuga - Arctostaphylos - Calarnagrostis association. 6 . Pseudotsuga - Calarnagrostis association. 7. Pseudotsuga - Symphoricarpoa association. C. Azonal communities: 8. Populus - Rosa - Cornus (alluvial) complex. A l l these communities are described individually, and their successional relationships discussed. The Agropyron and Arctostaphylos - Calarnagrostis associations are thought to represent the climatic climax communities i n their respective zones. INTRODUCTION AND ACKNOWLEDGMENTS This project on the c l a s s i f i c a t i o n of the ponderosa pine stands of the southwestern I n t e r i o r of B r i t i s h Columbia i s one of a ser i e s , being carried out under the supervision of Dr. V. Kra j i n a of the University of B r i t i s h Columbia, deal-ing with the forests of t h i s province. The author wishes to express h i s gratitude to the Department of Biology and Botany at the University of B r i t i s h Columbia, through Dr. A.H. Hutchinson, and l a t e r , Dr. T.M.C. Taylor, for the f a c i l i t i e s made available i n t h i s department. He also wishes to make grateful acknowledgment f o r the finan-c i a l a id provided by the B r i t i s h Columbia Forest Service during the summer of 1952, by the National Research Council of Canada during the summer of 1953» through a grantr.in-aid of Dr. K r a j i n a ^ research i n the ecology of the forests of the P a c i f i c Northwest, and by the University of B r i t i s h Columbia during the summer of 1954* through grants-in-aid of Dr. K r a j i n a 1 s research i n the ecology and sociology of the forests of B r i t i s h Columbia. Very welcome assistance was also received i n the form of the Edith Ashton Memorial and the Leon Koerner scholarships. The author further wishes to express h i s thanks to Dr. V. Kra j i n a f o r h i s help and supervision of t h i s work, and f o r the i d e n t i f i c a t i o n of the bryophytes c o l l e c t e d , to Dr. A.P. Szczawinski f o r the i d e n t i f i c a t i o n of the lic h e n s , to Mr. R.T. Ogilvie f o r obtaining and making available the data on the s o i l samples, and to a l l those whose help made the f i e l d work possible. « » » TABLE OF CONTENTS CHAPTER Page Introduction and Acknovrledgments v I. Scope and Basis of Classification 1 II. Review of Literature 5 III. Methods 1^ IV. Geographical and Ecological Considerations 25 Area of Work 25 Topography and Soils 25 Climate 27 V. Autecological Features of Pinus ponderosa and Pseudotsuga Menziesii 32 Morphology 32 Physiology 3^ VI. Notes on Nomenclature 47 VII. Forest Classification 5 1 General Forest Types or Zones 51 Plant Associations 55 Unions 5^ Effects of Topography and Soils 6k Problems Presented "by U t i l i z a t i o n and i t s Effects 67 Description of Associations and Sub-associations 7 1 VIII. Discussion and Conclusions 122 TABLE OF CONTENTS (Continued) CHAPTER P a g e to to 4a a> T c * JTATUTt MUSS P A N f T nr PINUS PONDEROSA IN SOUTHWESTERN BRITISH COLUMBIA Fig. 1. Map showing tne area within which this survey was carried out. Tie outer limit of Pinus ponderosa i s 3hewn as a dotted l i n e . CHAPTER I SCOPE AND BASIS OF CLASSIFICATION The term •Ponderosa pine stands' i s here i n t e r -preted f a i r l y broadly, to include a l l types of stands i n which t h i s species has been found to occur, i n the area of the southwestern I n t e r i o r of B r i t i s h Columbia outlined In the map ( F i g . 1 ) . These include not only stands i n which i t occurs as the climax dominant, but also those stands i n which i t occurs as a s e r a i dominant, of r e l a t i v e l y l i t t l e impor-tance i n the mature stand. At the outset i t i s important to define the terms 'climax' and 'association 1• The term 'climax' describes a community which has attained a state of more or les s stable equilibrium with i t s environment. I t s composition may be steady, or i t may flu c t u a t e a l i t t l e about a mean composition. In the s t r i c t e s t sense of the term, the climax i s considered to be conditioned by the macro climate of the region, and no other f a c t o r . In t h i s sense i t i s often referred to as the c l i m a t i c climax. In regions of rough topography, such as that under consideration here, topographic and edaphio influences superimposed on the ef f e c t s of the macroclimate, give r i s e to communities whose differences from the c l i m a t i c climax community may be maintained f o r a very long period of 1 2 time. These communities are topographic or edaphic climax communities. I t i s i n t h i s l a t t e r sense that the term 'climax' i s used i n t h i s work. The d e f i n i t i o n of the term 'association' follows that proposed at the Third International Botanical Congress of 1910, (according to Braun-Blanquet, 1928), as a uniform plant community of d e f i n i t e f l o r l s t i c composition; but modi-f i e d by K r a j i n a (1933) to place a d d i t i o n a l stress on the environmental c h a r a c t e r i s t i c s as diagnostic features of the association. The d e f i n i t i o n at present (1955) i n use by Krajina (personal communication) i s as fo l l o w s : A plant association i s a d e f i n i t e uniform plant community (phytocenosis) that i s i n equilibrium with a c e r t a i n complex of environmental f a c t o r s , or ecotope. I t s f l o r l s t i c structure (layering, and the abundance, dominance, constancy, f i d e l i t y , and vigour of the com-ponent species) l i e s w ithin l i m i t s governed, not only by the ecotope, (climate, s o i l , substratum, topography, and b i o t l c f a c t o r s ) , but also by the h i s t o r i c a l factors of vegetational development (the fourth dimension, or space-time f a c t o r ) . I t appears that Sukatchev (1928) and Daubenmire (1952 b) i n t h e i r forest c l a s s i f i c a t i o n s , make use of concepts of the association which are s i m i l a r to, i f not I d e n t i c a l with, that stated above. The above d e f i n i t i o n of the association applies to the lower layers of the vegetation as much as to the upper-most or dominant layers. I t i s usually named a f t e r the p r i n c i p a l dominant species of the uppermost laye r plus one or more species which dominate or characterize the under-story layers. I t further implies no geographical or regional 3 aspect. Thus i t i s seen to d i f f e r sharply from the assoc-i a t i o n of Clements and other North American ecologists (Weaver and Clements, 1933), which i s a r e l a t i v e l y broad regional vegetational type, characterized by the dominants of the uppermost layer only, and then only those which are con-ditioned by the normal macroclimate of the region on well drained, medium textured s o i l s ( i . e . the c l i m a t i c climax f o r the region). This Clementsian association i s a unit which, though i t has been found to be r e a d i l y applicable i n the grassland regions of the Great P l a i n s , tends to break down i n the more complex mosaic ©f forest and other types of veget-ation community of the Co r d i l l e r a n region. The association as here used i s a smaller u n i t than that of Clements, and i s more uniform with i n I t s e l f through a l l i t s layers. Even here, however, the term (uniform* i s not to be taken too r i g i d l y , f o r though the association i s usually quite uniform with respect to i t s dominant species, the occurrences of the less important species show a sporadic character which may r e s u l t from a var i e t y of e c o l o g i c a l , geographical, or h i s t o r i c a l influences; a feature which may be expected i n h i l l y or mountainous regions. I t may be noted, f o r example, that c e r t a i n species are associated with e c o l o g i c a l l y favourable habitats only i n certain v a l l e y s , and do not seem, as yet, to have succeeded i n crossing the i n t e r -vening b a r r i e r s to invade t h e i r e c o l o g i c a l l y equivalent habitats i n other v a l l e y s . k Serai communities, here termed fsubassociations' when recognized as d i s t i n c t from stable or climax associations, are i n t h i s work taken to be those undergoing secondary suc-cession (or sometimes, retrogression). That i s , they are i n a state, whether v i s i b l y a l t e r i n g at the time of observation or not, which, due to recent or current disturbance, such as burning or overgrazing, i s evidently not the climax state as expressed by the f l o r i s t i c composition of a l l l ayers. Daubenmire (1952 b) describes such communities as b i o t l c climaxes, but In view of the I n s t a b i l i t y of both the environ-ment and the communities, the writer prefers to treat them as serai communities, of a temporary nature. The term 'sub-association* appears to the writer to be inadequate to ex-press the complex s t a t i c and dynamic rela t i o n s h i p s that e x i s t among the variants of some of the associations; but the wealthy terminology of Clements has been avoided here, In r e l a t i n g to such communities, i n order to avoid ambiguity due to the dif f e r e n t d e f i n i t i o n s of the community types which might be implied by t h e i r use. CHAPTER I I REVIEW OP LITERATURE The number of publications r e l a t i n g to the class-i f i c a t i o n of the forests of t h i s area i s not large, but shows a wide variety of approaches to the problem. In t h e i r report on the forests of B r i t i s h Columbia to the Commission of Conservation, Whitford and Craig (1918) describe forest types with emphasis on the dominant trees and t h e i r possible u t i l i z a t i o n . Forest types described by them which are of i n t e r e s t to t h i s work include: I n t e r i o r Douglas-f i r , Douglas-fir - Western Larch, and Yellow pine types. In the f i r s t two of these, yellow pine, or ponderosa pine (Pinus  ponderosa), may occur, but i f so, i t makes up l e s s than $0 per cent of the stand. The I n t e r i o r Douglas-fir - Western la r c h type represents the I n t e r i o r Douglas-fir type east of the Okanagan Valley , i t s d i s t i n c t i o n being i n the presence of western l a r c h (Larlx occidental!a). This l a t t e r type i s barely contacted i n the present work, having been met with only at the eastern fringe of the area covered by the present survey. Whitford and Craig also note the successlonal status of lodgepole pine (Pinus contorta) and western l a r c h follow-ing f i r e s i n the I n t e r i o r Douglas-fir types. The yellow pine type l i e s between the Douglas-fir types and the treeless lands of lower elevations. I t i s 5 6 characterized by yellow pine making up more than 50 per cent of i t s stands. Whitford and Craig note that though grass f i r e s are common i n the p r e v a i l i n g l y grassy understory of the Yellow pine type, crown f i r e s destroying the canopy are much more rare than i n the Douglas-fir and other more densely stocked types. Nevertheless, they consider that much of the grassland of t h i s region may be the r e s u l t of repeated grass f i r e s that have k i l l e d o f f the pine. Even at that date (1918), Whitford and Craig deplored the inroads which had already been made on the yellow pine type by logging i n t e r e s t s , ascribing them i n large measure to the a c c e s s i b i l i t y of the open stands i n which t h i s pine grows. In addition, Whitford and Craig describe the grass-land and semi-open f o r e s t , which Includes the more open park-l i k e stands of ponderosa pine, and some of which they consider to have resulted from the burning o f f of the pine. This grassland i s mentioned as abbutting d i r e c t l y onto the Douglas-f i r type north of the l i m i t s of ponderosa pine. Also des-cribed b r i e f l y i s a d i s t i n c t sagebrush type, i n which they apparently include the Purshia tr i d e n t a t a shrub-steppe of the South Okanagan Valley , and which they seem to consider to be climax. Maps are included i n the report, showing the gen-e r a l d i s t r i b u t i o n of the forest types and the p r i n c i p a l tree species. Halliday (1937) i n h i s c l a s s i f i c a t i o n of Canadian forests takes a strongly regional approach, following the outlook of Clements and divides the forests i n t o forest regions, and sections. His forest regions correspond to the formations, and h i s sections approximate the associa-t i o n s , of Weaver and Clements (1929, 1938). The forests to be described i n t h i s work l i e i n the Yellow pine and Douglas-fir section (M.l.) of h i s Montane forest region, (Montane forest formation of Weaver and Clements (1929, 1938) • In t h i s section he apparently In-cludes the dry stands Including Western l a r c h that i n t e r -vene between the grassland and h i s Columbia forest In south-eastern B r i t i s h Columbia. He makes no attempt to break down h i s Yellow pine - Douglas-fir section into subsections i n which ponderosa pine i s the climax dominant and those i n which t h i s species i s subdomlnant to Douglas-fir (Pseudotsuga  Menzlesii) i n the mature stand. Halliday does not include any description of grassland vegetation. An intensive study of a r e s t r i c t e d p o r t i o n of t h i s area, the Tranquille Range, was carried out by S p i l l s b u r y and Tisdale (19MJ.). They found that i n t h i s area of very uniform s o i l texture, there i s a d e f i n i t e zonatlon of both s o i l and vegetation types with a l t i t u d e . The area i n which they worked bears grassland up to elevations 'of about 3200 fe e t , where t h i s formation meets Douglas-fir stands of the Montane f o r e s t , which contain but small amounts of ponderosa pine. Only a r e s t r i c t e d area of ponderosa pine savanna was found, and l i t t l e i s said of i t except that the s o i l texture 8 i s coarser than i n the middle and upper grassland zones (corresponding to the Dark brown and Black s o i l zones res-pectively) which i t replaces l o c a l l y . The s o i l most clos e l y resembles that of the Dark brown s o i l zone, even at elevations which elsewhere have Black s o i l s . Unfortunately, Spillsbury and Tisdale do not give the r e s u l t s of mechanical analyses of the s o i l s of that area other than to state that they generally are loams and sandy loams with some stones, derived from gl a -c i a l t i l l . However, other analyses of the s o i l s and vegetation are rendered very f u l l y . The c l i m a t i c data collected i n t h e i r work show very we l l the increase i n moisture effectiveness with a l t i t u d e . Tisdale (19l|7) carried out further work on the grasslands of the Southern I n t e r i o r of B r i t i s h Columbia. Although not bearing d i r e c t l y on the question of ponderosa pine stand c l a s s i f i c a t i o n s , t h i s work i s of Interest owing to h i s descriptions of the retrogressive changeswhich take place i n the grassland vegetation, to which the understory of the ponderosa pine stands i s c l o s e l y r e l a t e d , as a r e s u l t of exposure to grazing, and of the successional processes which supervene when overgrazed areas are protected f o r a number of years from grazing. The recognition of the s e r a i nature of the areas dominated by sagebrush (Artemisia t r i d e n t a ta) and at least some of those dominated by needlegrass (Stipa comata) due to overgrazing i n t h i s region, i s . o f p a r t i c u l a r i n terest here. 9 Two aut h o r i t i e s on fo r e s t r y from Finnland, Ilvessalo and Kujala, who studied Canadian f o r e s t s , made use of Cajander's methods of stand c l a s s i f i c a t i o n , which, i n contrast to those hitherto mentioned, are based p r i m a r i l y on the f l o r l s t i c composition of the understory, while the com-p o s i t i o n of the tree layer takes secondary consideration, except that observations are made of the ages and other growth cha r a c t e r i s t i c s of the trees present. This method enables a worker to study a forest stand i n which the climax dominants may have been completely replaced by s e r a i dominants (e.g. lodgepole pine i n much of the Douglas-fir climax), to r e l a t e i t to i t s proper climax type, and to predict the p o t e n t i a l composition and growth q u a l i t y of the canopy on the s i t e . Both these authors, while working i n t h i s area, confined t h e i r a c t i v i t i e s to the Douglas-fir and other moister types, and showed l i t t l e or no interest i n the more a r i d types dominated by ponderosa pine, or i n the steppe communities. Ilvessalo (1929) grouped h i s forest types into dry (xerophile), moist (mesophile), and grass-herb (meso-p h l l e and hygrophile) groups. Of these groups, only the dry forests correspond to types covered i n the present work. These include the I n t e r i o r Douglas-fir forest of the area under present study. In the dry forest group he recog-nizes three types whieh are s i m i l a r to i f not i d e n t i c a l with three found i n the present work. These types are: The Arctostaphrlos. Calamagrostls-Arctostaphrlos. and 10 Calarnagrostis types: with the Vaccinium scoparlum and Calarnagrostis-Vaccinium scoparlum types replacing the f i r s t two of them geographically, elsewhere. In a much more comprehensive work using the same system of c l a s s i f i c a t i o n as above, Kujala (1945) describes In hi s "semi-arid i n t e r i o r region", which corresponds to the Montane forest of North American authors, the following types: a Vacclnlum caespltosum ( c o l l e c t i v e ) type, which embraces, among other forms, an Arctoataphylos-rich community, an Arct-ostaphylos-Calarnagrostis type, and a Calarnagrostis type. The l a t t e r two, at l e a s t , he considers to be i d e n t i c a l with those formulated by Il v e s s a l o . Kujala worked f o r the most part further north i n the I n t e r i o r of the province than d i d t h i s writer, and most of the stands analysed by him were beyond the northern l i m i t of ponderosa pine In regions where spruce i s more prominent i n the Douglas-fir f o r e s t . Furthermore, a considerable proportion of these stands was under a secondary canopy of Pinus contorta. Consequently, i t i s to be expected that the f l o r i s t i c composition of the types w i l l vary between the two works. Kujala makes no mention of the Pinus ponderosa dominated types or the more a r i d t r e e l e s vegetation types other than to review the descriptions of them given by Whitford and Craig. S p i l l s b u r y and Smith (1947) have used a system of plant indicators to c l a s s i f y the Coast forest types. Further to the southeast, i n Eastern Washington and Northern Idaho, Daubenmire (1942, 1952 a & b) has studied the whole range of vegetation types from the a r i d steppes of the Columbia Plateau up to the subalpine timberline. In the grasslands of the plateau, Baubenmlre (19i+2) recognizes the same three zones as does Tisdale i n Southern B r i t i s h Columbia, describes a number of associations f o r each, and notes the changes which take place as a r e s u l t of grazing and f i r e . In dealing with the forested areas (1952 a & b ) , he makes use of both canopy and under story dominants. He distinguishes four zones, succeeding each other with Increase i n elevation, and recognizes a number of associations i n each zone. These zones appear to correspond, approximately at l e a s t , to some of the fore s t regions of Halliday. These replace each other a l t i t u d i n a l l y i n the adjacent parts of southeastern B r i t i s h Columbia (Halliday, 1937) i n the following manner: Daubenmire Halliday  Pinus ponderosa zone and Pseudotsuga t a x l f o l i a zone Montane forest Thuja p l i e a t a - Tsuga heterophvlla zone . . . . . . . . . . . . Columbia forest Picea Bngelmannl - Abies lasiocarpa zone . . . . . . Subalpine forest Although several of the associations described by Daubenmire are probably the same as the types of Ilvessalo and Kujala, the zonal c l a s s i f i c a t i o n of the major zones on the basis of canopy composition causes the types to be d i f -f e r e n t l y arranged. Some of the communities which would be 12 united on the basis of understory composition alone are separated by zonal boundaries involving changes i n the composition of the tree layers. Gn the other hand, Dauben-mire does not d i s t i n g u i s h between Ilvessalo's Arctostaphylos, Calarnagrostis-Arctostaphylos. and Calarnagrostis types, but includes them i n h i s Calarnagrostis association. Daubenmire's grouping of plant members of the associations into unions of species which are li n k e d by s i m i l -a r i t i e s i n t h e i r e c o l o g i c a l requirements, phenology, and frequently (but by no means necessarily) l i f e forms, i s an int e r e s t i n g approach. In his c l a s s i f i c a t i o n of the conifer forests of Washington and Idaho (1952,a), Daubenmire l i s t s several unions with t h e i r most important member species, and notes t h e i r ecological roles i n the various habitat types or associations. A number of these unions has been found i n t h i s area; and they, with some ad d i t i o n a l unions noted by the wr i t e r , are discussed i n Chapter VII and Appendix 10. Daubenmire also notes the eco l o g i c a l roles of the tree species of h i s area. His tabular method of sum-marizing the roles of the unions and the trees i s followed here (Appendices 10 and 11)• Several of the associations described by Dauben-mire, or t h e i r equivalents, have been found to be represented i n the area covered by the present work. Prom the foregoing references, i t i s apparent that there has been, with time, a progressively greater awareness 13 of the complexities of the vegetation of at l e a s t t h i s part of the C o r d i l l e r a n region. I t may also be noted that, though several works of a c l a s s l f i c a t o r y nature have been carried out In adjacent regions and forest types, r e l a t i v e l y l i t t l e has as yet been done to study the ponderosa pine associations of the southwestern I n t e r i o r of B r i t i s h Columbia. CHAPTER I I I METHODS The f i e l d work associated with t h i s project included analyses of the vegetation, climate, and s o i l s within the stands analysed. In addition, notes were made of the topography, a l t i t u d e , and the past h i s t o r y of the stands, when possible. To provide a proper basis f o r c l a s s i f i c a t i o n , i t was important that wherever possible, completely v i r g i n stands should be used f o r examination. These proved hard to f i n d i n many d i s t r i c t s , owing to excessive and widespread disturbance by cut t i n g , (see Whitford and Craig, 1918), or by recent f i r e s , but p r i n c i p a l l y by prolonged, heavy over-grazing. In a l l , 121 stands were examined; but some of these were discarded from the f i n a l analysis, owing to t h e i r d i s -turbed nature. The locations of the stands chosen f o r analysis are given i n Appendix 1. The method of vegetational analysis used was based on v i s u a l estimates of the amount (abundance and dominance) and the vigour of each species as i t occurs In each layer of a stand. The scales used are those of Domin and K r a j i n a , (Krajina, 1933). 14 15 Each stand was f i r s t broken down into i t s compon-ent layers, characterized as f o l l o w s : A l dominant trees of the canopy, A2 subdominant and intermediate trees, B l t a l l shrubs (over seven f e e t ) , B2 low shrubs, C herbaceous lay e r , generally under one foot high, D moss-lichen layer. In each of these layers, the abundance and domin-ance of each species present was estimated according to the scale below: + quite s o l i t a r y , dominance very small, 1 seldom, 2 very scattered, dominance small, 3 scattered, 4 often, dominating up to 1/20 of area, 5 often, dominance up to l / 5 » 6 dominance 1/4 to 1/3, 7 dominance 1/3 to 1/2, 8 dominance 1/2 to 3/4* 9 dominance over 3/4, 10 dominance 100 per cent. The scale used to estimate vigour was as f o l l o w s : 0 dead, + occasionally germinating, barely surviving, 1 poor, but maintaining i t s e l f , 2 f a i r l y strong, 3 most vigorous, both i n growth and reproduction. A f t e r each species l i s t e d f o r a stand, the above cha r a c t e r i s t i c s were noted as a formula; v i z . , the dominance followed by the vigour, the two figures being separated by a point. Thus: the formula 6.3 indicates dominance 6 and vigour 3 . When the f i e l d notes were f i n a l l y c o l l e c t e d , and the information f o r each association synthesized from the note8 on i t s component stands; a fu r t h e r , synthetic charact-e r i s t i c was found. This c h a r a c t e r i s t i c i s known as "pre-sence H (Braun-Blanquet, 1932), and i s a measure of prop-o r t i o n of stands of a given association i n which a given species has been found. Braun-Blanquet (1929) recognizes f i v e presence classes; numbered from one to f i v e , depend-ing on the number of f i f t h s of a l l the stands analysed i n an association, i n which the species occurs. In t h i s form, presence i s used i n t h i s work. Presence may also be entered as a f r a c t i o n , or as a percentage. In the tables i n Appen-dix 3$ the formulae f o r dominance and vigour are given f o r each species under every stand used to synthesize the associations' composition; the average values are shown on the r i g h t , and the presence given as a c l a s s . In the tables of d i s t i n c t i v e species f o r the associations i n the text (Tables 2 and 3 ) , and i n the l i s t of species and t h e i r occurrences i n Appendix 3 , the formulae 17 under each association give the presence class and average vigour separated fey a point. The f i d e l i t y of a species represents the degree of l i m i t a t i o n of the species to a given community, set of con-d i t i o n s , or even l o c a l i t y . The f i v e f i d e l i t y classes as l i s t e d by Braun-Blanquet (1932) are used i n Appendix the f i d e l i t y classes being l i s t e d a f t e r each species f o r the community or l o c a l i t y f o r which i t i s most relevant, i f there i s one. B i o l o g i c a l spectra (Braun-Blanquet, 1932; K r a j i n a , 1933) have been drawn up f o r the communities studied. For t h i s purpose, a modification of Raunkiaer*s (190ij.) system of l i f e forms i s used; as f o l l o w s : P. Phanerophytes: woody plants with perennating buds over 2 decimetres (or 8 inches) above ground l e v e l . These may be subdivided into the f o l l o w i n g : Pm. Megaphanerophytes: over 2 metres (or 6^ feet) high. Including trees and t a l l shrubs of the A and B l layers of the stands. Pn. Hanophanerophy tes: less than 2 metres high, but over 2 decimetres. Lower shrubs and tree saplings, of the B2 layer. C. Chamaephytes: perennating buds above the ground l e v e l but less than 2 dm. above i t . Prostrate shrubs, semi-shrubs, some stoloniferous and caespitose herbs, and the seedlings of the t a l l e r shrubs and trees which are s t i l l i n 18 the C layer. H. Hemicryptophytes: Perennating buds at ground l e v e l . Including most perennial and b i e n n i a l herbs. G. Geophytest Perennating organs (rhizomes or bulbs) beneath the ground surface. Includes many Li l i a c e o u s plants, root parasites, et cetera. T. Therophytes; Annuals, perennating only as seeds. B. Bryophytest a l l t e r r e s t r i a l i n t h i s area. L. Lichens; ( t e r r e s t r i a l ) . B . Epiphytest In t h i s area, a l l are lichens with the exception of the p a r a s i t i c Arceuthoblum spp. The contribution of each species to i t s l i f e - f o r m value i n an association i s taken as the product of i t s aver-age dominance and i t s presence c l a s s . These r e s u l t s are t o t a l l e d f o r each l i f e - f o r m i n each association, and eon-verted into percentages. In t h i s form they are l i s t e d i n the table i n Appendix 5* The mean l i f e - f o r m percentages are calculated f o r the Pinus ponderosa and Pseudotsuga zones; but i n the former, the Artemisia (Art) and the Rhus (Rh) communities are excluded from the mean as being too divergent from the general zonal form. These means, with the spectra f o r the Rhus and A l l u v i a l communities, are graphed i n Figure 2. Collections were made of a l l the species found i n the stands examined; and i n addition, c o l l e c t i o n s were made of plants whenever doubt existed as to t h e i r i d e n t i t y . These 19 specimens are deposited at the Herbarium of the University of B r i t i s h Columbia* For i d e n t i f i c a t i o n of the vascular plants, r e f e r -ence was made to the manuals and f l o r a s of Henry (1915) * Peck (1941), Abrams (1940, 1944, 1 9 5 D, Eastham (1947), Hitchcock, A. S. (1950), (for grasses), and Hitchcock, C. L. (for grasses and sedges). The nomenclature of the trees follows that of L i t t l e (1953). The bryophytes were i d e n t i -f i e d by Krajina, and the lichens by Szczawinski. The names of the plants found, with t h e i r authors, are given i n the species l i s t i n Appendix 2. In a few stands, quantitative analyses of the veg-etative cover were made. The d.b.h. of a l l trees and t a l l shrubs of over l / 2 inch i n square acre p l o t s was measured with a diameter tape: and point transects, using a point frame, were made to measure basal cover of the herbaceous and other low vegetation. These data are presented i n Appen-dices 6 (a) and (b). In each stand studied, a number of trees was mea-sured. Height was measured with an Abney l e v e l and 100 f t . tape, diameter at breast height (d.b.h.) with a diameter tape, and age with an increment borer. Ages and diameters of large cut stumps were also recorded, and i n these cases, r a d i i were measured and approximate diameters calculated for each 50 years of age. From these data, curves of d.b.h. and height against age were drawn f o r the stands. I t has 10 20 30 4 0 5 0 % Fig. 2 . Biological spectra of the Pinus ponderosa and Pseudotsuga zones, with the Bhus association and the Alluvial complex shewn separately. been found that when the growth curves for a l l the stands of an association are plott e d together, they f o r the most part l i e within c e r t a i n w e l l defined bands. Graphs showing the bands within which the diameter ( i n inches) and the height ( i n feet) at any given age would generally l i e , are drawn f o r each association described i n the t e x t . Stations to measure c l i m a t i c data were set up i n several stands representative of eight of the associations, (two of the associations were established a f t e r the i n s t r u -ments were set up). The stations were set up at the beginning of September, 1952, and dismantled at the beginning of October, 1953* The instruments could not be attended during the winter, but were read and reset at the beginning of each month from Hay to October, 1953* I t was necessary, owing to the large number of liv e s t o c k i n the area, to surround each st a t i o n with a 10-ft. square enclosure of one pole-one wire fenee. In spite of t h i s precaution, many readings were l o s t as the instruments were l o s t or damaged owing to Interference by men or animals. In each s t a t i o n , i n order to measure s o i l surface temperatures, of which the extremes are thought to be more s i g n i f i c a n t than the means, maximum and minimum thermo-meters were i n s t a l l e d with t h e i r bulbs barely covered by s o i l . P r e c i p i t a t i o n was measured i n cans f i t t e d with funnels. A l i t t l e l i g h t o i l was added a f t e r each reading 21 i n order to prevent re-evaporation of the accumulated water during the i n t e r v a l before the next reading. During the summer of 1953, evaporation was measured with Livingston white bulb atmometers, set up with t h e i r bulbs a foot above the ground. In order to avoid damage to the atmometers by f r o s t s , a 10 per cent solution of normal propyl alcohol was used i n them i n place of the d i s t i l l e d water usually used. The solution began to freeze at about -8°C, forming a soft mass of c r y s t a l s instead of hard i c e ; and was adequate to stand any f r o s t s expected or experienced during the period of exposure of the atmometers. Since the vapour pressure of n-propyl alcohol i s almost the same as that of water through a wide range of temperatures, the concentration of the solution was not appreciably altered by long continued evaporation, the rate of evaporation of the solution was found to be close to that of pure water. The conversion factor from the solu t i o n to pure water was found to be 0.93* Pure water was obtained i n the f i e l d by use of an apparatus comprising two columns of ion exchange resins f o r removing the s a l t s which are common i n the waters of the area studied. The Livingston atmometers i n the stands were standardized against an atmometer set up by the tank evapor-lmeter at the Experimental Station at Suramerland, so that the r e s u l t i n g data could be stated In inches instead of cubic centimetres, and compared d i r e c t l y to the p r e c i p i t a t i o n . The conversion factor was found to be 0.00473 inches/cc. Since the evaporimeter at Summerland i s operated only from June to September, evaporation data are not available f o r the winter months. They could probably be obtained, how-ever, by the use of appropriate n-propyl alcohol solutions i n Livingston atmometers. To describe the r e l a t i v e dryness of the various s i t e s , precipitation/evaporation r a t i o s were calculated from the data obtained from the r a i n gauges and the atmometers. I t i s recognized that since these c l i m a t i c data were collected over only a single year, they represent only approximations to the average c l i m a t i c values f o r these s i t e s . One heavy thunder shower may have a consid-erable effect on the t o t a l p r e c i p i t a t i o n figure f o r the month i n which i t f a l l s . The abnormally heavy p r e c i p i t a t i o n figures f o r August, 1953» i n stands 10, 19, 22, 71, and 73, a l l i n the South Okanagan Valley , show the e f f e c t of one heavy storm a f f e c t i n g that d i s t r i c t (Fig. 3 c shows a f u r -ther e f f e c t of the same storm). Further, the instruments were surrounded by forest vegetation, which would affect the evaporation and temperature; and i n the denser stands, interception by the trees would undoubtedly account f o r some of the p r e c i p i t a t i o n , though attempts were made to situate the r a i n gauges where t h i s e f f e c t would be minimized. Records (Climate of B r i t i s h Columbia, 1952 and 1953) indicate that the year from September 1952 to August F i g . 3. a. Pinus ponderosa savanna, with a grassy herbaceous l a y e r s i m i l a r to that of the adjacent steppe, b. A w e l l developed tap-root of Pinus ponderosa, exposed i n a road cut. c. Erosion of a t r a i l a f t e r a heavy thunder shower (stand 84). 1953 was moister than average i n the southern part of the area (Oliver and Princeton), hut d r i e r than average e l s e -where. During the same period, temperatures were s l i g h t l y warmer i n winter and cooler i n summer, than normal. In addition to the above i n s t a l l a t i o n s , a few further Instruments were set up. In stand 31, two stations were placed. One (31N) was so placed as to be i n shade during the heat of the day, but open to the sky; so that i t recorded the f u l l p r e c i p i t a t i o n , but showed only the shade temperatures of the s o i l . The other (31S) was under the southern branches of a t r e e ; exposed to the sun throughout the day, but receiving only the p r e c i p i t a t i o n which was not intercepted by the branches above. I t thus recorded s o i l temperatures l i k e those of the open exposed grassland. D i s t i n c t variations i n the vegetation composition were seen i n conjunction with these two s i t u a t i o n s . In stand 65 an additional thermometer was set up to record maximum and minimum a i r temperatures (marked ' a i r * i n the climate tables f o r s o i l surface temperatures, Appendix 7 ) i f o r comparison with the s o i l surface temperatures. Tables of corrected values of s o i l surface temp-eratures (maximum and minimum, by months), monthly p r e c i -p i t a t i o n , evaporation, and P/Z r a t i o s obtained i n t h i s work are shown i n Appendix 7* S o i l samples were obtained to depths of around three feet from most of the stands examined, by O g i l v i e , who also c a r r i e d out analyses of the pH by means of a Beckman pH-meter, and of s o i l texture with a Bouyoucos hydrometer. CHAPTER IV GEOGRAPHICAL AND ECOLOGICAL CONSIDERATIONS Area of Work. The area covered by t h i s survey i s that known as the 'Dry B e l t ' of the southwestern I n t e r i o r of B r i t i s h Columbia. I t extends from the Okanagan Valley westward to the Cascade Range; northward as f a r as Pinus ponderosa i s found i n the southern Cariboo region; and covers most of the lower parts of the Okanagan, Similkameen, Thompson, and Nicola Valleys. The species extends eastward to the Rocky Mountains, and a few stands occur also i n the Skagit Valley and other val l e y s of the eastern f o o t h i l l s of the Caseade Range further north along the Praser Canyon. The eastern and northwestern parts of i t s range could not be covered by the scope of t h i s work, however. The outer l i m i t s of pon-derosa pine i n t h i s region are shown as a dotted l i n e on the map •'• (Fig. 1) . Topography and S o i l s . The topography of t h i s region i s characterized by a broad, high plateau l y i n g at elevations between 3500 and 5000 feet above sea l e v e l . This plateau i s dissected into segments by deep U-shaped, glaciated v a l -l e y s , whose f l o o r s l i e mostly at elevations of 1000 to 2000 feet. A few v a l l e y bottoms l i e below 1000 feet, and occas-i o n a l ranges of h i l l s , such as the Okanagan Range, r i s e 25 from the plateau to heights of 6000 to 7500 feet above sea l e v e l . The main valleys contain some large v a l l e y lakes; while smaller, i r r e g u l a r lakes are common on the plateau. The lower slopes and f l o o r s of the vall e y s com-monly display terraee formations that represent old r i v e r f lood p l a i n s , a l l u v i a l fans, or lake beds of Pleistocene times. Modern flood p l a i n s f o l l o w many of the streams. Within the area i n dotted outline i n Figure 1, Pinus ponderosa occurs generally i n open stands on the lower slopes and terraces of the valleys (Fig. 3 a)> and on low parts of the plateau at a l t i t u d e s up to around 4000 f e e t , depending on the topography. On steep north slopes i t s l i m i t may be much lower, or i t may be completely absent. Apparent a i r drainage effects are sometimes noted i n r e l a t i o n to the l i m i t s of Pinus ponderosa. I t was noticed, f o r instance, that at the northern l i m i t of t h i s tree along the gorge of the Eiver Fraser near Dog Creek, t h i s species occurs i n a long tongue extending along the slopes of the gorge, several hundred feet above the r i v e r , with Douglas-f i r stands above, and steppe with occasional Douglas-fir trees below. The pine does not extend down to the r i v e r . The s o i l s on the plateau and v a l l e y slopes con-s i s t generally of stony assorted material derived from g l a c i a l deposits. The terraces, on the other hand, often contain well sorted m a t e r i a l : gravel or sand i n those of f l u v i a l o r i g i n , or clay i n those of lacustrine o r i g i n . The process of maturation of the s o i l s of t h i s vegetation type i s generally melanization, and much of the area i s covered by black, degraded black, or brown, semi-a r i d s o i l s . In the upper forest stands (Pseudotsuga zone) a l i t t l e leaching becomes apparent; though the s o i l s t i l l has quite a dark A i horizon. One effect of the s o i l texture i s seen i n the Influence of the texture on the elevations of the boundar-ies between a l t l t u d i n a l l y adjacent vegetation zones. Both the upper and lower boundaries of the Pinus ponderosa zone l i e at lower elevations on coarse textured s o i l s than on f i n e textured s o i l s , unless the l a t t e r are also very stony. In some l o c a l i t i e s near the l i m i t s of Pinus ponderosa, the upper l i m i t of grassland may extend above the a l t i t u d i n a l l i m i t of Pinus ponderosa. which i s c l i m a t i c a l l y determined. Here, the grassland abutts d i r e c t l y on Douglas-fir stands. This ef f e c t i s no doubt due to the r e l a t i v e a v a i l a b i l i t y of what l i t t l e water i s received i n p r e c i p i t a t i o n ; i t being much l e s s a v a i l a b l e , the f i n e r the s o i l texture. Climate. The area l i e s i n a r a i n shadow region, between major mountain ranges, and the climate i s more or l e s s continental i n character and d i s t i n c t l y dry. This dryness i s most pronounced i n the deeper v a l l e y s , and the p r e c i p i -t a t i o n increases, and the temperature and evaporation de-crease with increase i n a l t i t u d e (Spillsbury and Tisdale, 28 1944) . The climate i s described as comprising the Humid Continental (Dfb, Dsa, Dsb), and mid l a t i t u d e Steppe (Bsk) types according to Koeppen's c l a s s i f i c a t i o n (Chap-man, 19^2); and to range from Subhumid to A r i d a f t e r that of Thomthwaite (Sanderson, 1948). I t i s i n t e r e s t i n g to note that Oliver i s the most a r i d reporting s t a t i o n i n Canada (Sanderson, 1948). The winters are moderately long (November to March) and cold i n most parts; though temperatures are r e l a t i v e l y mild, and the winters shorter i n the deep vall e y s i n the south. Summer temperatures are warm on the plateaux, and hot i n the v a l l e y s , where i n the lower parts, temperatures of 95 to 100°P are not uncommon i n July and August. The annual p r e c i p i t a t i o n cycle shows two seasonal maxima i n most v a l l e y s . A long maximum of moderate precip-i t a t i o n (generally snow) occurs during the winter months, when overcast skies are common; while a short but often more intense maximum occurs i n June and early J u l y . During most of July, however, and i n May, August, September, and October, bright sunshine with very l i t t l e p r e c i p i t a t i o n i s the r u l e . In the North Okanagan Valley and i n parts of the Thompson Valley, June i s the wettest month; but elsewhere, December or January produces more p r e c i p i t a t i o n , though the June rains are s t i l l evident (Climate of B r i t i s h Columbia; reports f o r 1952 and 1953» and data from the Summerland Experimental Station). Table 1 presents some pertinent c l i m a t i c data f o r a number of stations i n the Pinus ponderosa forest region. The figures i n the r i g h t hand column show the p r e c i p i t a t i o n amounts f o r the period of time during which the Instruments used f o r t h i s study were set out i n the f o r e s t . I t i s unfortunate that most of the meteorological stations i n t h i s region are situated near centres of habit-ation i n the bottoms of the deep v a l l e y s , and that few long-term records are available f o r the higher elevations, on the plateaux. Another ecological f a c t o r to be considered i s f i r e . The evidence of f i r e s , both In modem times and i n previous centuries, i s so widespread that i t seems as though f i r e s must be regarded as a normal part of the environment of these stands. These f i r e s would f o r the most part be ground f i r e s (Whitford and Craig, 1918), p a r t i c u l a r l y common i n grassy understories, and le s s so i n shrubby communities: but i n d i c a t i o n that f i r e s which destroyed en t i r e stands have occurred i n the past, i s present i n the obviously suc-cessional states of several of the stands. F i r e has evidently played a large part i n condit-ioning the present day stands. Ground f i r e s tend to select i n favour of grasses and other herbaceous species i n compet-i t i o n with shrubs and young trees, Tisdale (1950) states that In t h i s region the best woodland grazing lands are the res u l t of f i r e . Weaver (l9k7) considers that, before modern f i r e control measures came into e f f e c t , l i g h t natural f i r e s 30 Table 1. Temperature and p r e c i p i t a t i o n data from selected  meteorological stations In the Pinus ponderosa  forest region Station A l t i t u d e Feet Mean Temperature f °F. Jan. J u l y P r e c i p i t a t i o n (inches) Mean T o t a l : Annual Year Sept.1952 -Aug.. 195? Kamloops (Airport) 1133 M e r r i t t 1940 Oliver 995 Princeton 2283 Salmon Arm 1200 Summerland 1600 (Expt. Sta.) Vernon 1383 22 70 10.20 8.00 20 64 9.03 -25 73 9.79 11.39 17 63 14.24 14.49 23 68 23.84 mm 26 70 10 .92 10.70 22 69 15.71 13.63 occurred p e r i o d i c a l l y , causing natural thinning of young reproduction, reducing the proportion of tree species com-peting with the pine, and consuming dead wood, thus reducing the hazard of serious f i r e s : while under f i r e protection, stands tend to become overstocked, pine meets more competition from other tree species, such as Douglas-f i r and l a r c h , and f u r t h e r , dead wood accumulates on the forest f l o o r , increasing the r i s k of heavy damage from any f i r e that does get out of control. CHAPTER V AUTECOLOOIGAL FEATURES OF PINUS PONDEROSA AND PSEUDOTSUGA MENZIESII A eross section of the abundant l i t e r a t u r e that has been produced dealing with the morphology, physiology, phenology, and ecology of these two tree species has revealed some s a l i e n t points that are of Interest here* These w i l l be dealt with under the headings of morphology and physiology. Morphology. Both the trees under discussion have root sys-tems which are regarded as quite extensive and deep i n comparison with those of our native conifers i n general. The pine, i n p a r t i c u l a r , i s noted f o r i t s tendency to develop a deep tap root as a seedling and, where conditions permit, to continue to develop t h i s tap root through l i f e ( Fig. 3 b). Both species develop extensive l a t e r a l roots, those of the pine being the more extensive, frequently extending 50 feet out from the trunk (Pearson, 1930). Such a great development of the root system i s undoubtedly important i n enabling these trees to u t i l i z e s o i l moisture over quite wide areas, and to become more or le s s Independent of the surface horizons during drought. This i s p a r t i c u l a r l y true of the pine, and i s no doubt correlated with the open, 32 33 park-like nature of i t s stands ( F i g . 3 a ) , where root competition i n the dry conditions make i t necessary f o r each tree to occupy a large area of ground f o r i t s supply of water. Another related f a c t o r i s the infrequency of blowdown i n ponderosa pine, a phenomenon which, i n spite of the open nature of i t s stands, i s r a r e l y seen, except occasionally on very l i g h t shallow s o i l s . The hark of both species i s r e l a t i v e l y t hick and f i r e r e s i s t a n t , an important f a c t i n t h i s region of highly inflammable grassy understories. The bark of Douglas-fir accumulates to a considerable thickness on old trees, while that on the ponderosa pine i s maintained somewhat thinner by continual shedding of large flakes of bark. This l a r g e l y accounts f o r the lower abundance of arborlcolous lichens on ponderosa pine than on Douglas-fir. A conspicuous difference between these trees i s shown by the f o l i a g e , the leaves of the pine being from f i v e to nine times as long as those of Douglas-fir, and borne i n bundles of three (or occasionally two), sur-rounded by a basal sheath. When growing i n mixed stands, i t i s noticed that these trees show d i f f e r e n t gross forms. The Douglas-fir trees have more or less long conical crowns, with branches retained f a i r l y close to the ground,and short limby boles; while the pines are more variable i n form, but generally have longer, cleaner boles below the f i r s t branches, and r e l a t i v e l y shorter, broader, more rounded crowns. The 3k great v a r i a b i l i t y of the ponderosa pine has been nsed by Keen (1942) i n his system of tree age and vigour classes. The seeds of ponderosa pine are noticeably larger than those of Douglas-fir, and contain a larger amount of stored food i n <the garnetbphyte« This i s of importance i n the growth of the root i n the germinating seedling (Bates and Roeser, 192ij.) • Physiology. I t might be concluded from observation of the r e l a t i v e dryness of the habitats where ponderosa pine and Douglas-fir reach t h e i r respective dominance that the pine has the lower requirement f o r water. However, a series of experiments by Bates (1923) i n 1917 and 1920 showed the opposite to be the case. His tests on small numbers of seedlings showed that the pine i s more extravagant of water than Douglas-fir, and more susceptible to drought and winter-k i l l i n g , due to i t s i n a b i l i t y to withstand t r a n s p i r a t i o n losses. On the other hand, Pearson (1920) concluded from f i e l d observation, that i t i s greater tolerance to drought i n the case of the pine that enable s i t to extend i t s range to lower elevations than Douglas-fir. S i m i l a r l y he con-sidered that drought sets the lower l i m i t s of a l l the a l t i t u d i n a l forest zones. Bates (1923) also found that the pine transpires more water per unit mass of dry weight produced i n growth than does Douglas-fir, and would thus appear to be somewhat l e s s e f f i c i e n t i n photosynthesis than the l a t t e r . Pearson (192k) found a s i m i l a r r e l a t i o n s h i p . On the question of heat r e l a t i o n s , some i n t e r e s t i n g facts have been published by both the above authors. Bates and Roeser (1924) studied the e f f e c t s of high a i r tempera-tures on a number of coniferous seedlings. In these experi-ments, seedlings of various ages were exposed to high a i r temperatures f o r short periods, and i n j u r y to the f o l i a g e was noted. They found that Pinus ponderosa has a greater a b i l i t y to withstand temperatures above the 55°C (131°F), regarded as the l e t h a l threshold f o r plant protoplasm, than has Pseudotsuga. and attr i b u t e d i t to the greater tr a n s p i r -ing a b i l i t y of the former. At low r e l a t i v e humidities, Pinus ponderosa showed less than 50 P©r cent i n j u r y at 170°p, at which temperature Pseudotsuga showed 100 per cent i n j u r y ; while at 100 per cent humidity, 140°P proved immed-i a t e l y f a t a l to both species, since the cooling e f f e c t s of tra n s p i r a t i o n were i n h i b i t e d . They also found that the sus-c e p t i b i l i t y to heat damage of t h i s nature i s reduced a f t e r the seedling reaches an age of 90 days. These r e s u l t s suggest that the lower a l t i t u d i n a l l i m i t s of ponderosa pine and Douglas-fir may be set by the occurrences of l e t h a l l y high temperatures during the c r i t -i c a l f i r s t three months period on the development of the seedling. Bates (1923) concluded the same when he pointed out that Douglas-fir would grow almost anywhere that ponder-osa pine would grow provided that i t had shade during i t s seedling stage. 36 The l e t h a l temperatures described, however, are seldom I f ever encountered as a i r temperatures In nature. On the other hand, s o i l surface temperatures w e l l above the l e t h a l threshold are found to occur i n the ponderosa pine forests during a considerable portion of the summer, where dry s o i l i s exposed to d i r e c t sunlight. Heating of the s o i l surface to temperatures of 55°C or higher causes collapse of the stem tissues adjacent to or Just above the s o i l surface, the r e s u l t i n g lesions being known as Whltespot i n j u r y (Hartley, 1918). The nature of the s o i l surface material may be of Importance here, since, due to i t s poor a b i l i t y to conduct heat downward, needle l i t t e r can reach a temperature as much o as 20 G above that of a mineral s o i l under the same conditions of i n s o l a t i o n (Smith, 1951) a f a c t o r which, i n an open stand, may i n h i b i t the development of seedlings close under the south side of the parent tree. I t w i l l be seen i n Appendix 7 of t h i s work, that the monthly maximum s o i l surface temperatures exceeded the l e t h a l l i m i t of 131°F i n July In a l l stands checked In the Pinus ponderosa zone, and also i n the Arctostaphvlos association of the Psendotsuga zone; i n June i n several of the Pine stands, and even as early as Hay i n one stand of the Purshia association (Ho. 10). Pearson (1920) found that, although the upper l i m i t s of the ponderosa pine and Douglas-fir zones were determined by temperature e f f e c t s , the l i m i t of ponderosa pine was not set by extreme cold. He observed that In Arizona, where he worked, the ponderosa pine zone experiences more extremely low winter temperatures than does the Douglas-fir zone above I t . He concluded that the l i m i t i n g temperature e f f e c t s here were those r e l a t i n g to the minimum heat requirements f o r growth and seed germination, which are greater for the pine than f o r Douglas-fir (Pearson, 1931). He found that seeds of Ponderosa pine germinate best at somewhat higher temper-atures than are best f o r Douglas-fir. Hoot growth of the pine was found to s t a r t i n the spring when the maximum d a l l y s o i l temperature at a depth of s i x inches had reached 52 -524.°? for four days, while the corresponding value f o r Douglas-f i r was found to be $0 - 52°P. For top growth, there i s a minimum heat requirement below which elongation of the pine shoot, and e s p e c i a l l y of the leaves, i s i n h i b i t e d , and the e f f i c i e n c y of t r a n s p i r a t i o n and photosynthesis, already reduced, are further lessened. The plant i s thus unable to compete with other, less heat requiring species i n the higher a l t i t u d i n a l forest zones. Survival of pine seedlings close to parent trees has been considered by Pearson (1930) to be l i m i t e d by a combination of root competition, shade, and low day temp-eratures. From the above evidence, i t seems that the ecol-o g i c a l l i m i t s of Pinus ponderosa are set by a combination of heat and moisture requirements. I t appears that t h i s species i s rather less e f f i c i e n t i n photosynthesis than i s Douglas-fir 38 and that any factors which tend to reduce I t s photosynthetlc a c t i v i t y below the minimum necessary f o r growth w i l l eliminate i t s competitive a b i l i t y . Thus, dense shade, humid microclim-ate which i n h i b i t s water movement and t r a n s p i r a t i o n , or low day temperatures i n summer which w i l l a f f e c t the rate of photosynthesis d i r e c t l y , may a l l act i n combination under a dense canopy to reduce the vigour of the young saplings of t h i s species In competition with the Douglas-fir reproduction, which i s more tolerant of a l l these f a c t o r s . At the same time, old large pioneer pines i n the same stand, with t h e i r crowns penetrating the canopy, are scarcely i f at a l l affected by these microclimatic influences, and may show quite vigourous growth. New l i g h t has recently been thrown on the question of the p o s s i b i l i t y of drought as a discriminating factor between Douglas-fir and ponderosa pine at t h e i r lower a l t i -t u d inal l i m i t s by the discovery that ponderosa pine seedlings may u t i l i z e dew which forms on t h e i r f o l i a g e to prolong t h e i r s u r v i v a l through r a i n l e s s periods, and may even transport some water from t h i s source down to the s o i l (Stone and Powells, 1954, Stone and Shachori, 1954)* Further, Powells and K i r k (1945) f i n d that seedlings of t h i s pine are able to survive i n s o i l depleted to about h a l f the normal w i l t i n g c o e f f i c i e n t , as measured with sunflower seedlings. By contrast, Pearson (1924) found no s i g n i f i c a n t difference between the w i l t i n g per cents f o r the pine or Douglas-fir 39 and the normal w i l t i n g c o e f f i c i e n t f o r the s o i l . Pearson (1931) notes that clay s o i l s are gener-a l l y unfavourable to ponderosa pine unless stones are abun-dant, and Eaasis (1921) finds r e l a t i v e l y heavy reproduction on stony s o i l s . Two factors probably contributing to the unfavourable nature of clay s o i l s (Lutz and Chandler, 19l|i>) are: f i r s t , that i n a dry region e s p e c i a l l y , clay tends to r e t a i n , i n a state unavailable to plants, a large f r a c t i o n of the meagre supply of water brought by the r a i n so that i t s w i l t i n g percentage i s high; and second, that clay has a low non-capillary pore capacity, a feature which i n h i b i t s the ready d i f f u s i o n of gasses i n the s o i l atmosphere and causes poor aeration. Thus, i n these clay s o i l s , both moisture and oxygen supplies tend to be weak and u n r e l i a b l e . This i s shown as i n the r e l a t i v e l y sparse stocking of stands on clay s o i l s , as compared with those on coarser s o i l s , with the same r a i n f a l l . I t seems that these properties of clay s o i l s discriminate mainly against seedling establishment, and may perhaps be related to the intense competition of the grass roots i n the upper s o i l layers, since i t i s seen that those trees which do succeed i n establishing themselves tend to grow better on the f i n e r textured s o i l s (Holtby, 1947). These two species show differences i n t h e i r respect-ive nutrient requirements. Analyses of t h e i r needle l i t t e r show that, compared to most conifers, Pseudotsuga f o l i a g e holds r e l a t i v e l y high nutrient concentrations, while Pinus ponderosa has low concentrations generally. Daubenmire (1953) made analyses f o r nitrogen, phosphorus, potassium, and calcium contents of the autumn folia g e of several tree species i n d i f f e r e n t associations. For these two species, he obtained the following percentages of dry weight of the mat-e r i a l : H P K Ca % % % % Pinus ponderosa 0.57 0.09 0.31 O.lj.3 Pseudotsuga 0.60 0.13 O.lj.9 1.57 I t i s seen that Pseudotsuga needles averaged some-what higher than those of Pinus ponderosa i n a l l the above nutrient contents, and conspicuously higher i n calcium. Tarrant, Isaac, and Chandler (1951) carried out measurements of a si m i l a r nature on the P a c i f i c slope, expressing t h e i r r e s u l t s i n pounds per acre. When these values are reduced to percentages, i t i s found that they d i f f e r from those of Daubenmire, i n that the amount of potassium i n the pine exceeds that i n Douglas-fir. This may be due to a seasonal difference, but since Tarrant et a l do not state at what season the f o l i a g e used i n t h e i r analyses was co l l e c t e d , comparisons between these two sets of figures are not r e a l l y v a l i d . I t may also be noted that Tarrant et a l found that the pine exceeded Douglas-fir i n magnesium content. Since i t i s known that Daubenmire fs c o l l e c t i o n s were made at a season when most leaves are normally shed, h i s r e s u l t s are of much more value In estimating the nutrient content of the l i t t e r as I t Is formed on the s o i l surface. Daubenmire»s re s u l t s indicate that Douglas-fir contributes more per u n i t mass of l i t t e r produced, than does ponderosa pine to the maintenance of nutrients i n the uppermost layers of the s o i l , e s p e c i a l l y In the case of calcium. The difference i n nutrient y i e l d s of these species would be of greater s i g n i -ficance with regard to t h e i r influences on the leaching of the s o i l nutrient elements i n the Pseudotsuga zone than i n the Pinus ponderosa zone, since i n the l a t t e r , owing to the low p r e c i p i t a t i o n effectiveness, l i t t l e or no leaching out of soluble nutrients takes place, except perhaps In the coarsest gravelly and stony s o i l s . Seed production i n these two species i s spasmodic: successive good seed years being separated by periods of three or four r e l a t i v e l y poor seed years; few trees produce good crops every year. P o l l e n i s shed i n the l a t e spring; i n copious amounts In the case of the pine. Douglas-fir matures i t s seeds i n the autumn of the same year as p o l l i n -a t i o n , but ponderosa pine seeds do not mature u n t i l the autumn of the year following that of t h e i r p o l l i n a t i o n . Since cone development i s probably influenced by conditions of the previous year, i t follows that favourable conditions f o r cone production would r e s u l t i n a good seed crop the following year i n the case of Douglas-fir, but two years l a t e r i n the case of the pine, other conditions being equal. Meagher (195>0) considers that f o r an appreciable amount of pine reproduction to be successful, a good crop year should be followed by a year of high r a i n f a l l , since the seeds are seldom viable f o r more than one year i n the s o i l . He also states that l i g h t seed crops are a complete loss owing to the foraging a c t i v i t i e s of rodents. However, some reproduction may arise even i n these years from caches of seeds, made and forgotten by rodents, just beneath the s o i l surface. The writer has frequently seen small clumps of four or f i v e seedlings a r i s i n g from such s i t u a t i o n s . S o i l surface temp-eratures would appear to constitute another faetor which i s important i n determining the s u r v i v a l or f a i l u r e of a ger-minating seed crop. A favourable seed bed i s important, and i t i s noticeable that a thick needle bed i s l e s s favourable to seed germination than i s bare mineral s o i l ; probably p a r t l y f o r the reasons of temperature mentioned above (see also Smith, 1951)* In the open pine stands, extreme surface temperatures, as mentioned above, no doubt constitute one of the major detrimental f a c t o r s . Weaver (1951) notes that pine seedlings tend to colonize burnt patches a f t e r slash f i r e s , often more r e a d i l y than Douglas-fir, even i n stands where the l a t t e r tree normally dominates. Haasis (1921) finds that the r e l a t i v e l y heavy regeneration of pine on stony s o i l s i s related to the fact that the l i t t e r may crack and shrink away from the bases of exposed stones, and 43 seeds f a l l into the cracks, contact mineral s o i l , and develop r e a d i l y . He also notes the eff e c t of s o i l texture on root development, f i n d i n g that seedlings send down deeper, l e s s branched tap roots into clay s o i l than into more coarse tex-tured materials; also that the r a t i o of top to root i s greater i n seedlings grown i n coarser s o i l s . Pearson (1913) found older trees rooting r e l a t i v e l y shallowly i n clay s o i l s . Their r e l a t i v e l y large seeds permit the germinat-ing seedlings of both these tree species to send down f a i r l y deep tap roots before withdrawing t h e i r cotyledons from t h e i r seed coats and experiencing more intense t r a n s p i r a t i o n . This method of germination i s important to s u r v i v a l i n dry habitats (Bates and Hoeser, 1924), where the time of germ-ina t i o n follows and depends on a moist season (Pearson, 1951)> In t h i s area, following the melting of the snow In the ear l y spring. In t h i s manner they may overcome the intense root competition of the herbaceous vegetation, most p a r t i c u l a r l y of the grasses, whose roots r a p i d l y deplete the moisture i n the surface layers of the s o i l . The larger seed of the pine gives i t an advantage, since i t s r e l a t i v e l y massive food store permits t h i s species to penetrate the s o i l more deeply from the s t a r t than can Douglas-fir (see also Pearson, 1924). Growth of both these tree species i n mixed stands r e f l e c t s t h e i r reaction to environmental conditions. In a closing canopy of the Douglas-fir forest where the pine has been a pioneer tree, the intolerance of the pine to the i n t e r n a l atmospheric conditions of the forest r e s u l t s In some natural pruning, which i n turn leads to the development of r e l a t i v e l y long clear trunks and short high crowns. Douglas-fir, on the other hand, being more tolerant of these 'shade* conditions, may r e t a i n low branches l a t e i n t o matur-i t y , producing a long, low-reaching crown, and a tapering, limby trunk, with r e l a t i v e l y knotty wood. Growth i s , how-ever, very variable i n the pine (Briegleb, 1950), a variety of growth rates may be encountered i n the same stand. These factors have a d i s t i n e t bearing on the r e l a t i v e econ-omic values of these trees i n mixed stands; the pine being the more valuable tree here. Observations made In the f i e l d suggest that the amount of sapwood tends to be greater i n pine than i n Douglas-fir of the same age. The wood l i v e s f o r 120 to 13© years a f t e r being formed i n the pine, while In the Douglas-f i r i t l i v e s f o r only 70 to 80 years. A growth c h a r a c t e r i s t i c which probably Influences the r e l a t i v e competing a b i l i t i e s of the young trees of these two species i n mixed stands, i s the manner i n which new growth i s added. Douglas-fir appears to s t a r t growth s l i g h t l y e a r l i e r i n the spring than does ponderosa pine, and i t s leaves are Immediately extended, elongating simult-aneously with, or perhaps s l i g h t l y ahead of, the young twig. 45 Ponderosa pine s t a r t s to grow a l i t t l e l a t e r , and elongates the twig f i r s t , while the leaves are s t i l l retained within t h e i r sheaths. Thus i t slay be early summer before any appreciable amount of new f o l i a g e i s available to carry on photosynthesis and t r a n s p i r a t i o n . I t i s during the period of shoot elongation that the ponderosa pine becomes most palatable to browsing deer and l i v e s t o c k , although they w i l l also attack the new f o l i a g e i n the autumn when the grass has dried and become r e l a t i v e l y unpalatable (Pearson, 1950): t h i s may be a cause of mortality among seedlings. Pearson (1918) found, i n Arizona, a d i r e c t r e l a t -ionship between the amount of p r e c i p i t a t i o n during the spring drought and the degree of elongation of the current year'8 shoot; while Schulman (1946-47) i n the southern I n t e r i o r of B r i t i s h Columbia, noted, i n both ponderosa pine and Douglas-fir, a d e f i n i t e c o r r e l a t i o n between the thick-ness of the annual growth r i n g i n the zylem and the p r e c i -p i t a t i o n during the eight months p r i o r to the growing season. The seasonal progress i n diameter growth has been found by Daubenmire and Deters (1947) be d i f f e r e n t f o r ponderosa pine and Douglas-fir. The pine increases i n diameter r a p i d l y early i n the growing season, and slows down early i n summer, but from then on, continues at a low rate through the l a t e summer when other conifers, including Douglas-fir, have e n t i r e l y ceased to increase i n g i r t h and may even have shrunk owing to l a t e drought. I t may not be out of place, here, to mention one or two of the pests which at times may have serious e f f e c t s on the trees of t h i s area* Bark beetles (Dendroetonus spp.) p e r i o d i c a l l y break out i n epidemic numbers and decimate the pine stands over f a i r l y large areas, p r i n c i p a l l y attack-ing the mature or old trees. Such an outbreak has been i n progress i n the region studied, p a r t i c u l a r l y i n the Nicola Valley, during recent years. Whitford and Craig (1918) noted an outbreak i n the same area during the period of t h e i r work. A generally less serious pest i s the porcupine (Erethizon sp.) which feeds on the bark of various trees. I t seems to prefer the bark on the main trunk of young pines from two to ten Inches i n diameter, but also attacks Douglas-fir. The i n j u r y , i f extensive, causes death to the t r e e , but may often allow the tree to continue growth from a branch below the g i r d l e d sector, ultimately producing a crooked trunk. The Douglas-fir tussock moth (Hemerocampa pseudotsugata) which has p e r i o d i c a l outbreaks on Douglas-fir, may i n mixed stands, attack pine trees associated with the Douglas-fir (Keen, 1952). Species of mistletoe may attack these conifers. Arceuthobium Douglasli attacks the branches of Douglas-fir and causes d i s t o r t i o n of the growth; and A^ amerlcanum i s frequent on Pinus contorts i n some d i s t r i c t s . Aj, campvlo-podum attacks Pinus ponderosa i n other areas, but has not yet been seen i n the area of t h i s work. I t may reduce the q u a l i t y of a s i t e by 10 to 15 per cent (Pearson, 1950). CHAPTER VI NOTES ON NOMENCLATURE A few problems In nomenclature arose with regard to plants occurring In the ponderosa pine stands. These are discussed below under the names of the taxa Involved. Agropyron splcatum (Pursh) Scribn. and Smith var. lnerme (Scrlbn. and Smith) H e l l e r , and A. lnerme (Scribn. and Smith) Rydb. Daubenmire (1939), studying t h i s complex, found that awn characteristics,which are generally held to be the most important d i s t i n g u i s h i n g features between the two taxa, showed a complete gradation from forms t y p i c a l of the one to forms t y p i c a l of the other of the above species; often even on the same plant. He reports spikes bearing awnless spikelets at the base, and divergent-awned spikelets at the apex, with intermediate forms i n between. The writer has found the same intergradation of characters, even to the same anomalous type of spike. Although t y p i c a l plans of k± splcatum and A_. lnerme appear quite d i s t i n c t , i t i s impossible, i n the f i e l d , to draw a clear l i n e of d i s t i n c t i o n between these forms. Hence, t h i s w r i t e r follows Daubenmire 1s lead i n considering A. lnerme to be a variety of splcatum. I t should be mentioned that i n t h i s area, Aj. splcatum i s represented mainly by i t s var. lnerme. Amelanchier a l n l f o l i a (Nutt.) Nutt. and A± C u s i c k i i Fern. Here, as i n the previous case, a complete intorgradation of forms was found i n the f i e l d ; occasionally on the same bush. Although the descriptions appear to make a clear enough d i s t i n c t i o n , t h i s i s not always v i s i b l e i n nature. Con-sequently, the older name, Amelanchier a l n l f o l i a , i s taken here to include both taxa. Elymus condensatus P r e s i and E± clnereus Scribn. and Merr. The p r i n c i p a l d i s t i n c t i o n , of branched spikes versus simple spikes, used to separate these species (Hitchcoek, 195>0) appears i n p r i n t to be quite sound, were i t not f o r the discovery at Keremeos, by the author, of plants bearing •spikes* which varied from complete s i m p l i c i t y , through forms with a few elongated branches, to open, p a n i c l e - l i k e inflorescences. Such plants also produced a few elongate rhizomes beneath the ground surface. L i v i n g specimens were brought to the University Botanical Gardens for further c u l t i v a t i o n and observation. The plants of our area, which fo r the most part have simple spikes, are therefore consid-ered to be E. condensatus P r e s l var. pubens Piper, the cor-rect designation f o r E. clnereus at v a r i e t a l rank. Festuca occidentalis Hook, and F^ idahoensis Elmer. Examination of the material of Festuea, collected during the f i e l d work for t h i s project revealed the f a c t that, though the majority of specimens f e l l w ithin the l i m i t s of F» ldahoensls. as described, they could not always be c l e a r l y distinguished from those of o c c i d e n t a l I S i n t h i s area, and that plants t y p i c a l of both these taxa form members of a continuous population. A graph of frequency of cases plotted against the r a t i o of awn/lemma lengths showed a curve which resembled a normal d i s t r i b u t i o n curve, covering the range from a r a t i o t y p i c a l of F& occidental!s to that t y p i c a l of F_j. ldahoensls. This population also grades into a short leaved form commonly referred to here as F. ovina. but on the basis of the tissue d i s t r i b u t i o n i n the l e a f , only one plant collected appeared to be the true F.  ovina L. I t appears then, that F^ ldahoensls and t h i s so-c a l l e d Fj, ovina are r e a l l y ecological variations of Fj. o c c l -dentalis i n the dry i n t e r i o r of t h i s province. An a l t e r n a t i v e explanation i s that the region covered by t h i s work l i e s with-i n the overlapping ranges of both Fj. Occident a l l s and F.  ldahoensls: and that the two species have f o r a very long time been hybridizing with perfect freedom. They would thus have produced a population which, though highly v a r i a b l e , i s no longer d i v i s i b l e i n t o the parental species. I f the former explanation i s concluded to be the case, then the older spec-i f i c epithet, Fj_ Occident a l l s Hook., should be applied to the entire population, i n c l u s i v e l y , as i s done i n t h i s work. In t h i s case, the taxon hitherto c a l l e d jFj. ldahoensls Elmer should be ca l l e d Festuca Occidentalla Hook. var. lngrata (Hack.) n.c. ( I \ ovina L. var lngrata Hack, ex Beal, Grasses 50 of North America, 2:598, 1896); the epithet 'ingrata* being the e a r l i e s t to be ascribed to t h i s taxon i n the rank of a vari e t y . Pseudotsttga t a x i f o l i a (Poiret) B r i t t e n and P^ Menziesli (Mirbel) Franco. There has recently been considerable discus-sion as to the r e l a t i v e legitimacy of the two above epithets applied to the Douglas-fir. The ultimate decision appears to depend on the v a l i d i t y of pu b l i c a t i o n of Abies t a x i f o l i a Desfontaine. Bo i v i n (1954) opposes Franco i n considering P. t a x i f o l i a to be a legitimate combination, while L i t t l e (1953) favours .P. Menziesli. Since the writer has not been able to r e f e r to a l l the publications necessary to decide t h i s question f o r himself, he i s using, f o r the purpose of t h i s work, P_. Menziesli. following the nomenclature given i n the Check L i s t of North American Trees, by L i t t l e (1953). CHAPTER VII FOREST CLASSIFICATION General Forest Types or Zones. The Pinus ponderosa stands of the region under survey f a l l into two main groups, which may be c a l l e d 'alliances* a f t e r Braun-Blanquet (1932), or zones, since they tend to replace each other a l t i t u d l n a l l y , and to form b e l t s or zones around the various r e l i e f features of the area. Both these zones l i e within the Montane Forest (Halliday, 1937), but i n fact they d i f f e r so s t r i k i n g l y from each other i n some of t h e i r physiognomic and f l o r l s t i c features that t h i s grouping of them together appears mis-leading. The upper zone, which i n t h i s work i s termed the Pseudotsuga Zone, comprises the lower l e v e l s of the Douglas-f i r forest i n the s t r i c t sense of a Douglas-fir climax. Pinus ponderosa i s a dominant of the stands usually only i n early stages of secondary succession following destruction by f i r e , and ultimately i s replaced by Pseudotsuga. the climax dominant here, unless the process of succession i s truncated before completion, by fresh disturbance. Judging from the widespread occurrence of mixed pine and Douglas-fir stands i n t h i s forest zone, the attainment of the absolute climax stage i s a none too common event. 51 52 The canopy of t h i s f o r e s t , at least In the l a t e r s e r a i stages, i s moderately open to f a i r l y w e l l closed; and the stands are not at a l l p a r k - l i k e . The understory vegetation i s c h a r a c t e r i s t i c a l l y a fore s t understory, of which the dom-inant unions do not occur n a t u r a l l y as Independent communities outside the f o r e s t . Characteristic of the understory are the r e l a t i v e l y large part played by chamaephytes and the small part played by therophytes (annuals), as compared with the Pinus ponderosa zone below ( F i g . 2). Of the grasses which make up varying proportions of the understory, Calarnagrostis  rubescens i s the most common, and i t s sod-forming character gives a d i s t i n c t i v e appearance to the vegetation i n some of the associations. The Pinus ponderosa zone l i e s , a l t l t u d i n a l l y , between the Pseudotsuga zone above, and the steppe or grass-land formation which occupies the lower elevations. I t d i f f e r s both i n f l o r i s t i c composition and i n general phys-iognomy from the Douglas-fir f o r e s t , and can r i g h t l y be con-sidered as an intermediate zone between the l a t t e r forest and the steppe. The canopy i n the Pinus ponderosa zone i s usually very open; stands often have a park-like aspect, with the trees spaced well apart over a grassy or shrubby understory. This zone bears tree species i n common with the Pseudotsuga zone, and Pseudotsuga Menziesii frequently occurs i n stands of t h i s zone, though Pinus ponderosa i s the dominant tree. 53 On the other hand, the understory vegetation i s f o r the most part made up of steppe communities, which may also occur as independent steppe associations beyond the l i m i t s of trees. Compared to the Pseudotsuga zone, therophytes play a r e l a t -i v e l y important part, and chamaephytes a r e l a t i v e l y small part In the understory of t h i s zone (Appendix 5 and F i g . 2 ) . The many grass species which characterize the understory here are a l l of the bunch type. Of these grasses, the most t y p i c a l i s Agropyron splcatum. which Is a widespread dominant both under ponderosa pine and In the treeless grassland formation of adjacent areas. Thus i t i s seen that the Pinus ponderosa zone i s i n r e a l i t y a zone of overlap or i n t e r f u s i o n of f o r -est and steppe vegetation. The differences between the climates of these two forest zones may be expressed by comparing the values f o r the maximum s o i l surface temperatures and the P/E r a t i o s f o r the zones, as found during the summer of 1953 (Appendix 7, a and b d). In the Pinus ponderosa zone, of i|4 maximum temperature readings obtained, 20 exceeded the recognized l e t h a l l i m i t of 131°F (Hartley, 1918), the highest being 164°F. On the other hand, i n the Pseudotsuga zone, of 24 such readings obtained, only 3 exceeded 131°F., the highest being 138°F. The r e l a -t i v e dryness of the Pinus ponderosa zone was indicated by i t s P/E r a t i o , which was only 0.27, while that f o r the Pseudo-tsuga zone was l . U j . . There i s some overlap between the sets of values, as must be expected; nevertheless, i t i s evident that the Pinus ponderosa zone i s , ©n the whole, notably hotter and d r i e r i n the summer than the Pseudotsuga zone above. In addition to the above vegetational zones, there i s a complex of plant communities which occurs i n a l l u v i a l s ituations along stream banks or on flood p l a i n s . This complex may perhaps be regarded as perpetually s e r a i i n nature, owing to the i n s t a b i l i t y of the s i t e s , and of the plant communities i n them. Pinus ponderosa usually enters these stands only at r e l a t i v e l y low elevations, and then only a f t e r some clearing out of the other vegetation. This a l l u v i a l complex w i l l be dealt with i n greater d e t a i l below. Two species which appear to be constant and d i s -t i n c t members of the Ponderosa pine stands, as compared with other forest types, are Agropyron splcatum and Letharia  vulpina. Agropyron splcatum i s a grassland dominant which occurs i n nearly a l l stands of the pine, and i s dominant of the understory i n one association. While i t s presence i s f a i r l y high i n both the Pinus ponderosa and the Pseudotsuga zones, i t s dominance and vigour are reduced i n the l a t t e r . The certicolous l i c h e n , Letharia vulpina, i s a conspicuous member of nearly a l l these stands, descending to ground l e v e l i n the dry s i t e s of the Pinus ponderosa zone and i n the Arctostaphylos association of the Pseudotsuga zone, but pre f e r r i n g sites at greater heights i n the trees i n the moister associations (e.g. Symphorlcarpos association). Other species d i s t i n c t i v e f or the two zones are shown with t h e i r presence class and vigour f o r each association, i n 55 the uppermost blocks In Tables 2 and 3. Plant associations and subassoclations. This forest i s sub-divided into seven associations, divided between the two zones mentioned above. On a l l u v i a l s o i l s a further complex of communities i s found. With the associations are mentioned some subassoc-l a t l o n s . which represent s e r a i or dlsclimax states of the associations, or divergent forms of obvious relationship which are not considered to be of s u f f i c i e n t importance i n t h i s area, or s u f f i c i e n t l y well known at present, to warrant con-sideration as d i s t i n c t associations i n t h i s work. The associations and t h e i r subassociations found i n t h i s forest region are l i s t e d below, under t h e i r respective zones, with the abbreviations by which they are represented i n the tables and i n the text. Pinus ponderosa Zone 1. (P/u) Pinus ponderosa - Purshia t r l d e n t a t a association (Purs h i a ass*n). l a . (Ari) Pinus ponderosa - A r l s t l d a longlseta sub-association ( A r l s t l d a subass fn) 2. (Ag) Pinus ponderosa - Agropyron splcatum association (Agropyron ass*n). 2a. (St) Pinua ponderosa - Stlpa comata aubassociation (Stipa subass'n). 2b. (Art) Pinus ponderosa - Artemisia t r l d e n t a t a sub-association (Artemisia subass Yn). 56 3. (Rh) Pinus ponderosa - Rhus glabra association (Rhus ass'n). Pseudotsuga Zone i | . (Arc) Pseudotsuga Menziesll - Pinus ponderosa - Arcto-staphylos Uva-ursi association (Arcto-staphylos ass'n), 5. (A-C) Pseudotsuga Menzlesii - (Pinus ponderosa) -Arctostaphylos TTva-ursi - Calarnagrostis  mbescens association (Arctostaphylos -Calarnagrostis ass*n). 6. (Ca) Pseudotsuga Menziesll - Calarnagrostis mbescens association (Calarnagrostis ass'n). 7. (Sy) Pseudotsuga Menzlesii - (Pinus ponderosa) -Symphoricarpos albus association (Symphoricarpoa ass'n). Extrazonal Communities 8. (AL) Populus trichocarpa - Rosa nutkana - Cornus st o l o n l f e r a ( A l l u v i a l ) complex. Unions, Many of the species occurring i n these forest com-munities are found to occur together i n more or less d i s -t i n c t groups of organisms having s i m i l a r e c o l o g i c a l a f f i n -i t i e s . These groups of e c o l o g i c a l l y equivalent species are termed unions (Daubenmire, 1952, a and b). The under-story of each association contains dominant and c h a r a c t e r i s t i c species which are found repeatedly under s i m i l a r conditions 57 Table 2. Characteristic Species of the Associations of the Pinus ponderosa Zone: showing Presence Class  and Vigour, Frames enclose the figures f o r species under the communities f o r which those speeies are most c h a r a c t e r i s t i c . Festuca octoflora  Qpuntla f r a g i l l s  S e l a g l n e l l a r u p e s t r i s  Sporobolus cryptandrus  Stlpa comata  Purshia trldentata  A r l s t l d a long!seta  Chrysopsls v i l l o a a  Erlogonum nlveum  Phaoella l i n e a r i s  Phlox l o n g i f o l l a  Chaenactis douglasli  G i l i a pungens  Artemisia t r l d e n t a t a + Aj. t r l f i d a  Erigeron pumilus  Eriogonum heracleoldes  Lappula myosotls  Panleum scribnerianum  Philadelphus lew!si1  Rhus glabra  R. radleans  Sambucus glanca Verbena bracteata  Woodsia Oregona 1 l a 2 2a 3 Pu A r i Ag St Rh 5.2 5 .2 2.1 4 . 2 2.2 5.1 5 .2 1.2 4.2 5.1 4 . 2 4 . 2 2.2 3.2 4 . 2 5 .2 5 .2 1.2 5 .2 3.3 § - 2 5 .3 2.2 £-3 4 . 2 5.3 3.2 1.1 2.3 4 . 3 4 .3 5.3 - 3.3 3.3 4 . 3 4 . 3 - 2.2 3.3 4 .3 5 .2 - 2.2 3.2 4 -2 5 .2 2.2 2.2 2 . 2 4 . 2 3.2 1.2 2.3 -2.2 4 . 2 1.2 -2.2 3.2 - 1.1 -1.3 1.2 3.3 3.2 2.2 2.3 1.2 3.3 3.3 1.2 2.2 2.2 4 . 2 3.3 1.3 - 1.1 1.2 3.2 -2.2 - 1.1 1.2 5.3 - - 1.3 - 4 .3 1.2 1.1 + - 5.3 - 1.2 1.2 - 5.3 - - 1.2 • - 4 . 3 i 3 .2 3.2 2.2 - 4 . 3 - - 1.3 3.2 - - 1.2 - 4 . 2 58 Table 3« Characteristic Species of the Associations of the Pseudotsuga Zone, and the A l l u v i a l Complex; Calarnagrostis mbescens  Cladonia g r a c i l i s  C. m i t i s C. v e r t i c l l l a t a  Dicranum strictum  Drepanocladus uncinatus Fragarla Virginiana  Pyrola secunda  Spiraea luclda  Allium cernuum  Anemone m u l t i f i d a  Junlpsrus scopulorum  Pentstemon frutlcosus  Sedum stenopetalum  Solidago missourlensis  Arctostaphylos uva-ursi  Carex concinnoldes  Shepherd!a canadensis  Polytrlchum .luniperlnum  Antennaria anaphaloides  A. rosea Lathyrus n u t t a l l l i  LI Hum columbianum  Poa ampla  Arnica c o r d i f o l i a  F r l t l l l a r l a lanceolata  Aster conspicuua  Cetrarla canadensis  Clematis columpiana  C a l l i e r g o n e l l a schreberi  Mnlum splnulosnm  Nephromopsis pl a t y p h y l l a  Osmorhlza c h i l e n s l s  Ramalina~farlnacea  Rhytldiadelphus triquetrus  Symphorlcarpos albus  Agropyron g r i f f i t h s i l  Betula papyrlfera  Clematis l i g u s t i c i f o l i a  Cornus s t o l o n l f e r a  Elymus condensatus  Populus trichocarpa  Smilacina s t e l l a t a  Solidago lepida 4 5 6 7 8 Arc A-G Ca Sy AL 2.2 5 .2 5 .3 5.3 -3.3 4 .3 3.2 3.3 -- 1.2 1.3 1.2 -2.2 1.2 1.2 1.3 -- 1.2 1.1 1.3 mm mm 1.1 1.1 2.2 -5 .2 5 .2 5 .2 4 .1 mm - 1.2 1.3 1.1 -I-1 4 . 2 4 -2 5.3 -5 .3 3.3 1.3 - 2.3 4 . 2 1.3 mm 1.2 -4 .3 2.3 - 1.3 1.3 4 . 2 2.1 1.1 • -5 .2 3.3 1.3 1.3 5 .2 i - 3 - - -5.3 5 .3 3.2 1.2 -4 . 2 5 .2 2.2 1.1 -4 . 2 4 . 2 1.2 1.1 mm 2.1 4 . 2 4 . 2 3.2 -- 1.3 4 -3 2.2 -- 1.3 4 . 3 1.3 mm-- 1.2 3.3 2.1 -- mm 3-3 1.2 -- 1.2 3.3 1.3 1.3. - - 3.2 3.2 mm - mm 3.2 2.3 -- 2.2 2.2 4 -2 2.2 - 2.2 1.2 3.3 -- - - 2.1 - mm 1.1 2.2 -- - 1.3 3.2 -1.1 1.2 1.3 4 . 3 mm - - 1.1 4 . 2 -- mm - 3.2 -- - 1.2 3.2 -- 2.1 3.2 5-3 3.2 mm mm - 4 . 3 - - - 1.1 4 .3 - - - -' 5.3 - - mm - 4 . 3 1.1 -• - - 4 .3 - - - - 5 .3 - 1.1 1.1 1.1 4 . 3 - mm 1.1 4 . 3 of s o i l or other environmental f a c t o r s : and which may there-fore be thought of as comprising a union which t y p i f i e s that association. Several unions, however, may be represented i n one association; and on the other hand, each union may play roles of varying Importance i n a number of d i f f e r e n t associations. Thus each association may be considered as being not merely an association of independent species; but, further, of being an association of unions; and character-ized by one or more t y p i c a l or dominant unions of plants most favoured by the habitat. Of the unions described f o r the for e s t s of eastern Washington and adjacent Idaho (Daubenmire, 1952, a), the Agropyron splcatum, Poa secunda. Purshla t r l d e n t a t a . Symphorlcarpos r l v u l a r l s . and Calamagrostis rubescens unions have been found to be well represented here (Appen-dix 10); although not always with the same compositions as i n the area covered by Daubenmire. The coniferous trees occurring here a l l appear to have somewhat d i f f e r e n t ecolog-i c a l requirements and ranges from each other as well as from the understory unions; so that i f tree unions e x i s t here, i t seems that each coniferous tree species has a union to i t s e l f . The same i s probably the case with Populus  tremuloides. On the other hand, i t appears that a number of the deciduous tree species of the a l l u v i a l stands may consti-tute together a d e f i n i t e union. The ec o l o g i c a l roles of the tree species are summarized i n tabular form In Appendix 11. 60 Tables 2 and 3, which are abstracted from Appendix 3, show species which t y p i f y c e r t a i n associations with high presence and vigour values, blocked together under t h e i r associations. Since, however, these tables are compiled of independent species occurrences, the blocks of species should not be taken as coinciding with unions, though they do some-times approximate to unions. One block usually contains representatives of more than one union. The unions found i n t h i s forest region are l i s t e d below with short descriptions ind i c a t i n g t h e i r e c o l o g i c a l ranges and composition. More detailed l i s t s of the species comprising these unions, based on the ranges of occurrence of the species, as well as a table showing the roles played by the unions i n the various forest associations and other communities, are given i n Appendix 10. 1. Purshla union. Purshia trldentata dominates within i t s present range, on sandy s o i l s at low elevations. Ribes  cereurn and Chrysothamnus nanseosus occupy greater ranges, but Purshia may be a p o t e n t i a l dominant of much of the range now occupied only by these l a t t e r two species. 2. A r l s t l d a union. A r l s t l d a longiseta and other more or less psammophilous herbs and sub-shrubs of the dry steppes and savannas at low elevations. I t may be s u f f i c i e n t l y closely r e l a t e d , e c o l o g i c a l l y , to the Purshia union to warrant i n c l u s i o n into one union with the l a t t e r . Pent-stemon Riehardsonli. rare i n t h i s area, and not ac t u a l l y 61 found In any of the pine stands examined, may be Included In t h i s union. 3* S e l a g i n e l l a union. S e l a g l n e l l a r u p e s t r i s var. Wallacel and a few xerophilous mosses of the d r i e s t s i t e s . k-» Po& secunda union. Poa C u s i c k i i appears to be more common i n t h i s area than P.. secunda. With these Foas are numerous annuals and drought-evading perennials, many of which com-plete the active parts of t h e i r l i f e cycles during the spring, and become dormant during the summer (Daubenmire, 1952 a and b). 5 . Agropyron splcatum union. A very ubiquitous union, with i t s best development on medium to f i n e textured s o i l s at low to moderate elevations. Like the foregoing, t h i s i s a union of the steppe vegetation as we l l as of the Pinus ponderosa zone. Artemisia trldentata and A. t r i f i d a may perhaps belong i n t h i s union, but t h e i r preference seems to be directed somewhat more strongly toward clay s o i l s at low elevations, so t h e i r i n c l u s i o n here i s doubtful. Some herbaceous species, such as Lomatium macro carp urn and DelpMnlum b i c o l o r , which cure r e l a t i v e l y e a r l y , may bridge the gap between t h i s and the Poa secunda union. 6. Rhus union. The Rhus spp., with some other shrubs and herbs having t h e i r occurrence almost l i m i t e d to the Rhus asso e l a t i o n . 7. Arctostaphylos union. A union of some xerophileus ever-green shrubs and associated herbs, usually dominated by Arctostaphylos uva-ursi. which i s c h a r a c t e r i s t i c of gravelly s o i l s at medium to high elevations. 8. Calarnagrostis union. A r i c h herbaceous union dominated by Calarnagrostis rubescens. Polytrichum juniper!num accompanies i t , and may be a member of i t i n t h i s f o r e s t . This union Inhabits medium to fine textured s o i l s at high elevations, i n the Pseudotsuga zone. I t s range overlaps that of the previous union; the two occur with r e c i p r o c a l degrees of dom-inance i n much of the Pseudotsuga zone, and share the domin-ance i n the Arctostaphylos - Calarnagrostis association's understory. Daubenmire (1952 a and b) Includes the Arcto-staphylos union i n t h i s one. 9. Symphoriearpos union. A union of shrubs and a few herbs, found i n situations rather moister than those characterized by the aforementioned unions. This union i s usually accom-panied by the Calarnagrostis union (Daubenmire, 1952 b). 10. Rhytldiadelphus union. A union of mesophilous forest f l o o r mosses, which are found here p r i n c i p a l l y i n the Symphoricarpos association. This union may be found, on examination of moister for e s t types, to be a rather a r t i -f i c i a l one made up of o u t l i e r s from several other unions whose main ranges are beyond the l i m i t s of t h i s forest region. 11. Getraria union. Several arborlcolous l i c h e n s , which reach t h e i r best development here on Douglas-fir I n the Symphoricarpos association. ! 2 . Pvrola union. Daubenmire (1952 b) places i n t h i s union the strongly mycotrophic pyrolaeeous and orchidaceous species of the Douglas-fir f o r e s t s . Although he Includes Pterospora here, the present author f e e l s that the r o o t - p a r a s i t i c habit of t h i s plant places i t i n a s u f f i c i e n t l y d i f f e r e n t ecolog-i c a l sphere to exclude i t from t h i s union of more or les s saprophytic species. I t i s debatable whether Spiranthes should be placed i n t h i s union, since elsewhere, i t shows a preference f o r more open grassy situations than do most of the other members of t h i s union. A l l u v i a l unions. The species characterizing the a l l u v i a l communities may be grouped into several unions t y p i f i e d f a i r l y w e l l by t h e i r general l i f e forms and the successional stages or the order i n which they enter the sere. 13. S a l i x - Gornus union. Cornus s t o l o n i f e r a and S a l l x spp., which dominate the pioneer communities on newly exposed r i v e r bars. Populus trichocarpa union. Deciduous trees and t a l l shrubs (one l i a n a ) , which form the f i r s t tree canopy. 15. Athvrlum - Smilacina union. Mesophilous and sciaphilous herbs forming the f i r s t , and usually sparse, herbaceous cover beneath the Populus trichocarpa canopy. 6k 16. Solidago leplda union. Herbs which enter the sere only when the canopy begins to open out. I t i s frequently accom-panied here by Rosa nutkana and members of the Rhus and Symphoricarpos unions. 17. Elymus condensatus union. A union of the open savanna or meadow on r i v e r f l a t s beyond the forested zone, and dom-inated by the t a l l bunch-grass, Elymus condensatus. I t may be mentioned that, i n addition to the unions mentioned above, a few members of the Pachystima union (Daubenmire, 1952 a) occur occasionally i n these Douglas-f i r stands. Their occurrence i s sporadic, however, and does not show d e f i n i t e organization into a union here. Eff e c t s of Topography and S o i l s . The topographical charac-t e r of a s i t e i s of primary importance i n modifying the o v e r a l l e ffects of the macroclimate as expressed i n the vegetation. However, the topography does not have quite such an absolute importance i n these r e l a t i v e l y dry forests as i t does i n the forests of moister c l i m a t i c regions. Within t h i s forest region the effect of topography, through i t s In-fluence on drainage, appears to be more important at higher elevations, where the climate i s moister and cooler, than, at low elevations where the low p r e c i p i t a t i o n and high eva-poration cause drainage effects to be almost n e g l i g i b l e , except very l o c a l l y . As might he expected, the effect of the slope, through i t s influence on the i n t e n s i t y of i n s o l a t i o n , r e s u l t s i n the occurrence of a l t i t u d i n a l boundaries between plant communities at lower elevations on north slopes than on south slopes. At mid elevations, an Arctostaphylos or Arctostaphylos - Calamagrostis community on l e v e l ground may be replaced on a south slope by an Agropyron community, and on a north slope by a Calamagrostis community. The effect of the slope i s to reduce the degree of penetra-t i o n of rainwater by inducing some of the water to run o f f the surface, thus producing a s o i l with a d r i e r , less leached A horizon. This ef f e c t i s further enhanced on a south slope by the increased i n s o l a t i o n and consequent evaporation, while on a north slope the reduced i n s o l a t i o n w i l l p a r t l y or completely compensate, or even overcompensate, for t h i s runoff e f f e c t . A s t r i k i n g example of the e f f e c t of the slope i s seen i n the occasional complete absence of the Pinus ponderosa zone on or below steep north slopes. Two associations which appear to be conditioned by s o i l drainage i n t h i s region, are the Rhus association, which occurs at the base of slope or below g u l l i e s i n the h i l l s i d e s which bring a l i t t l e seepage water to the subsoil i n addition to the supply derived d i r e c t l y from the p r e c i -p i t a t i o n ; and the Symphoricarpos association, which usually i s found In situations where the topography may induce a certain amount of convergence i n the drainage, and thus increase the l o c a l s o i l moisture supply through seepage. 66 The e f f e c t of s o i l texture i s r e f l e c t e d through i t s influence on the drainage, storage, and a v a i l a b i l i t y of moisture i n the s o i l , and i n part on the ion-exchange cap-a c i t y of the s o i l . Probably the most s i g n i f i c a n t single factor i s the proportion of c o l l o i d a l material (clay) i n the s o i l , but the influence of sand, gravel, and stones on the drainage properties of a s o i l are not i n s i g n i f i c a n t . Factors r e l a t i n g to the s o i l become more impor-tant as progressively d r i e r c l i m a t i c types are studied; Just as topographical factors become more important i n moister regions. At low to moderate elevations i n t h i s region, the p r e c i p i t a t i o n may be so low that heavy clay s o i l s can hold the bulk of i t as hygroscopic water, which i s unavailable to the plants. On steep slopes, the slow penetration of water Into clay s o i l s r e s u l t s i n a high proportion of runoff. In consequence of these conditions, such a s o i l i s very dry, and may support only sparse vegetation, and w i l l tend to erode r a p i d l y . In connection with these characters of clay s o i l s i t i s seen that the lower boundary of the fo r e s t tends to l i e at higher a l t i t u d e s , where the climate i s moister, on clay s o i l s , than on coarser textured materials. In r e l a t i o n to growth and reproduction, i t i s found that while reproduction appears best on coarse and stony s o i l s (Haasis, 1921), the growth of the trees that do become established i s better on the f i n e r textured s o i l s , as w i l l be seen, i n t h i s work, from comparison of the growth 67 curves f o r the Agropyron and Calamagrostis associations with those f o r the Purshia and Arctostaphylos associations which are found on coarse textured s o i l s . This ef f e c t may be counterbalanced i n country of high and rough r e l i e f by the effe c t s of topographical situations and l o c a l c l i m a t i c v a r i a t i o n s . Holtby (1947) found that s o i l texture, expressed as a percentage of f i n e material (clay + s i l t ) i n the s o i l , provided a f a i r l y r e l i a b l e i n d i c a t o r of s i t e q u a l i t y , where the topographical e f f e c t s were not too great. Problems Presented by U t i l i z a t i o n and i t s E f f e c t s . The dry forest of the I n t e r i o r of B r i t i s h Columbia i s a natural resource i n several ways simultaneously. I t serves f o r timber production, grazing land, watershed con t r o l , recreation, and game production, but only the f i r s t two of these w i l l be con-sidered here. Hot only i s the timber cut f o r lumber pro-duction, but, since t h i s i s l a r g e l y a l i v e s t o c k producing region, the understory provides grazing f o r the large herds of c a t t l e and sheep which are pastured i n the woodlands as well as on the open steppe, f o r up to s i x months of every year by the ranches which are scattered through the region. This dual u t i l i z a t i o n poses some complex problems of manage-ment. Both these resources of the forest have been over-exploited to some degree. Whitford and Craig (1918) c i t e d the rapid depletion of the ponderosa pine stands which had already taken place by 1918; and t h i s process has continued 68 to the present time. The l o c a l p o l i c y of •selective logging* i s often interpreted with a *cut and get out* a t t i t u d e , which frequently r e s u l t s i n only the poorer timber being l e f t to produce the next crop. This i s es p e c i a l l y evident i n the mixed Douglas-fir and ponderosa pine stands of the Pseudot- suga zone, where removal of the pine alone In many areas i s leaving stands of the r e l a t i v e l y non-commercial Douglas-f i r f o r future crops. Clark (1952) a f t e r a study of the mixed Douglas-f i r and ponderosa pine stands of the southern I n t e r i o r of t h i s province, notes that cutting i n these stands, to date, has been of mature and overmature trees, and he recommends the cutting of a l l merchantable trees down to 12 inches d.b.h. i n the Okanagan area, and down to 2I4. inches d.b.h. i n the Brookmere d i s t r i c t further west. However, the word 'merchantable* implies that the poor, noncommercial stock would s t i l l be l e f t to regenerate the stand. He does not appear to appreciate the selective e f f e c t of the differences In the commercial values of the tree species Involved. Much l i t e r a t u r e has been produced describing what selective cutting of ponderosa pine can mean, when so car-r i e d out as to release those trees which w i l l produce the best as a r e s u l t of that release; but only three authors w i l l be considered here. Meyer (191+7) shows the effe c t s of release with tables of d.b.h. of trees from 30 years before to 60 years a f t e r s e l e c t i v e cuts. He fi n d s 69 that the effects of release may last for 30 to lj.0 years, and that In the f i r s t 20 years, the acceleration i n dia-meter growth may amount to as much as 69 to 73 per cent. Roe (1952) recommends a 20 to 30 year cutting cycle, and shows that in the f i r s t 10 years after cutting, d.b.h. may increase on an average, 1.07 inches, as against 0.80 inches for the 10 years preceding cutting. Pearson (1950) finds that the volume Increment increases after cutting into the second five year period, but thereafter declines u n t i l after 30 years the effects of the release are no longer significant. From this he infers that the gain i n volume after 20 years i s not fast enough to warrant delaying a second cut beyond that time. He also describes how the posi-tion of a tree in a group w i l l affect i t s growth and reaction to release. When management is attempted, i n this area, the management policy may sometimes conflict with the selective cutting policy l a i d down by the Forest Service. In addition, areas which are planted with seedlings should be protected from livestock for several years, which, apart from raising the necessity for costly fencing programs, w i l l bring the timber managers into conflict with the ranchers, who feel that they are being deprived of grazing land that they are entitled to use. Grazing over much of the past century has in many dist r i c t s been so intensive that pronounced and extensive 70 changes have been Imposed on the vegetation of such l o c a l i -t i e s . In some cases these changes have been so extreme that the aspect of the vegetation has been completely alt e r e d , and l i t t l e or no evidence remains to indicate the nature of the o r i g i n a l stands (Tisdale, 1947), This has been p a r t i c u l a r l y true of the Agropyron association, much of which has been so depleted of palatable herbage by long-continued over-grazing that i t has become nearly useless. The heavy pastur-ing of liv e s t o c k may a l t e r both the tree and herbaceous aspects of a stand. Rumrael (1951) shows that grazing of the grassy understory reduces the y i e l d of forage, and at the same time reduces the control that the grasses, through competition, exert on the reproduction of pine, which may increase on grazed stands. Arnold (1950) notes how palatable and sen-s i t i v e bunchgrasses may give way under grazing to grazing r e s i s t a n t species such as A r i s t i d a spp. e£ cetera, and how an increase i n pine cover i s correlated with a decrease i n the herbaceous cover. So that i t i s seen that grazing may reduce the forage y i e l d s both d i r e c t l y and i n d i r e c t l y . Pearson (1950) shows that from the point of view of pine regeneration, both undergrazing and overgrazing can be detrimental: the former by permitting too much grass com-p e t i t i o n f o r tree seedlings to be able to meet; and the l a t t e r through d i r e c t damage to the young pines by the browsing of sheep, c a t t l e , or deer, a l l of which may browse ponderosa pine. Cattle and sheep usually browse the pine severely only i f the herbaceous forage plants have become 71 depleted by overgrazing; and then they prefer the young leaders when at the stage of most rapid elongation, or the young foliage in autumn (Pearson, 1950)• But deer, which prefer to browse woody species ( H i l l and Harris, 1943)* may affect young saplings and seedlings during the winter as well as at the other times mentioned above, the cattle In this area being normally off the range through the winter months• The effects of heavy pasturing on the s o i l may be manifested i n two ways: It may result i n a depletion of the humus i n the A horizon, since this i s no longer replenished at a rate sufficient to maintain i t against oxidation and other forms of wastage, with a consequent reversal of the normal process of melanlzation, a reduction in i t s f e r t i l i t y , and a lightening of Its colour. Much trampling by animals, especially on the heavier s o i l s , apart from destroying the vegetation cover directly, may puddle and cake the s o i l sur-face, thus reducing the rate of penetration of r a i n water, and further reducing the vegetation cover, while a greater proportion of the precipitation runs off the largely unpro-tected s o i l and brings about accelerated erosion (Pig. 3 c ) . Descriptions of the Associations and Subassociations. 1. Pinus ponderosa - Purshia trldentata Association (Pu). This association i s found at low elevations on sandy to 72 gravelly s o i l s of old r i v e r terraces. In t h i s region i t i s confined to the South Okanagan Valley from the l a t i t u d e of Kelowna southward, and i s p a r t i c u l a r l y well represented i n the portion of the v a l l e y between Okanagan P a l l s and the Inter-national Boundary. Although apparently suitable habitats occur i n the Thompson Valley, Purshia t r i d e n t a t a seems not to have succeeded yet i n crossing the intervening b a r r i e r s and occupy-ing i t s equivalent ecological niches there. Daubenmire (19^2 b) mentions the occurrence of t h i s association i n the North Thompson Valley, but the present author has not found any stand of i t there, and the herbarium of the University of B r i t i s h Columbia contains no record of Purshia t r i d e n t a t a from that area. Daubenmire also describes the occurrence of t h i s association i n the Rocky Mountain Trench i n B r i t i s h Columbia and Montana, i n Washington, and east of the Cascade Mountains to C a l i f o r n i a . The present author has seen exten-sive areas of i t on pumice s o i l s on the plateau of Central Oregon. The influence of l o c a l topography appears to be s l i g h t , the same association occurring on a l l slopes of a terrace as w e l l as on i t s l e v e l upper surface. Only when seepage i s brought near the surface does the community change, and the Rhus association takes i t s place. I t w i l l be seen from the table of s o i l textures (Appendix 8) that the pre-dominant t e x t u r a l f r a c t i o n i s sand ( i n one case, gravel), and that the clay content i s generally low. The s o i l i s loose, and lacks cohesion. When denuded of vegetation, i t w i l l tend to blow Into dunes, a few small areas of which do occur near Oliver i n adjacent Purshia trldentata areas where trees are absent. C l i m a t i c a l l y , the association i s c h a r a c t e r i s t i c a l l y dry; the p r e c i p i t a t i o n being generally l e s s than eleven inches per year. Summer temperatures are high. Temperature measure-ments carried out i n 1953 on the surface centimetre of the s o i l show values that, with those from the A r l s t l d a sub-association, are the highest found i n any ponderosa pine stand i n t h i s region. Despite the f a c t that the summer of 1953 was cooler and moister than average i n that d i s t r i c t , surface temperatures l e t h a l to seedlings were reached during much of that summer. Evaporation i s generally high, but an ameliorating influence on t h i s f a c t o r i s probably provided by the high shrubby undergrowth, which shelters the ground from the wind. Purshia trldentata occurs as a dominant of a semi-a r i d , t r e e l e s s , shrub-steppe association of quite d i s t i n c t i v e aspect, over a considerable area of the South Okanagan Valley between Oliver and Osoyoos (Pig. 4 a ) . The area covered by t h i s vegetation has been greatly reduced i n recent years as land has been brought under c u l t i v a t i o n , and i r r i g a t i o n has permitted the establishment of extensive f r u i t orchards. The shrub, Purshia t r l d e n t a t a . probably owes i t s success to the coarse s o i l , which allows rapid penetration of r a i n water to depths beyond those reached by the roots of F i g . 4. a. A Purshia t r l d e n t a t a shrub-steppe community (stand 92). b. A Pinus ponderosa - Purshia t r l d e n t a t a stand (no. 10). c. A Purshia stand containing Pseudotsuga as well as Pinus (stand 70). The flowering shrub i s Ceanothus velutinus. most of i t s herbaceous competitors, and also r e s u l t s i n a high degree of a v a i l a b i l i t y of what water does reach the s o i l . The same combination of factors i s probably res-ponsible f o r the a b i l i t y of Pinus ponderosa to grow at lower elevations, and i n hotter and d r i e r climatic conditions, i n t h i s association than i n most others. The Purshia and Poa  secunda unions (Daubenmire, 1952 a and b) make up the under-story. Common associates include: A r i s t i d a longlseta. Chrysopsis v i l l o s a , Erlogonum nlveum, Phacelia l i n e a r i s , and Phlox l o n g i f o l l a (Table 2 ) . Poa secunda i s generally replaced by P_j. C n s i c k i i i n t h i s area. Opuntia f r a g l l i s occurs with great abundance but low vigour, and G i l i a  pungens. G. aggregata. Sporobolus cryptandrus, Stephano-meria t e n u i f o l l a . Festuca o c t o f l o r a . S e l a g l n e l l a r u p e s t r l s . and Tortula r u r a l i s are sometimes conspicuous members. Annuals play a r e l a t i v e l y important part i n the vegetation (Appendix 5), probably through t h e i r a b i l i t y to colonize the many open spaces of the s o i l , to complete t h e i r l i f e cycles between dry seasons, and to u t i l i z e the precip-i t a t i o n water promptly, while i t yet remains i n the surface layers of the s o i l . This l a t t e r factor also applies to Sel a g l n e l l a and to the moss Tortula r u r a l i s , as well as to the shallow rooted Opuntia. whose water storage tissues permit almost i n d e f i n i t e drought s u r v i v a l . Agropyron splcatum i s usually present i n small amounts, the introduced annual, Bromus tectorum. i s generally abundant, and Carex f i l i f o l l a i s common l o e a l l y , near Ol i v e r , (Pig. 4 b}. Pinus ponderosa, i n t h i s association, forms mod-erately dense to open, park-like stands. I t s reproduction i s often f a i r l y good, since i t probably benefits from the shade of the shrubby understory during the dangerously hot periods of i t s f i r s t season's growth. Growth i s mediocre, and mature trees average 25 inches i n diameter and 80 feet In height (Table k» and Pig. 5). Grazing i s poor, owing to the r e l a t i v e l y high proportion of unpalatable plants, which tend to be further increased under grazing, (Purshia  trldentata i s reputed to be poisonous to li v e s t o c k i n t h i s region, and though elsewhere, In central Oregon, I t i s grazed, i t appears to be l e f t alone by the li v e s t o c k here). The grazing could perhaps be improved by burning or other-wise eliminating the Purshia, thereby permitting the peren-n i a l grasses to increase with the reduced competition. This measure would probably r e s u l t i n poorer tree regenera-t i o n owing to the reduction i n the amount of shade neces-sary f o r the young seedlings, as a protection from the intense heat of the s o i l surface In summer, and might neces-s i t a t e the planting of young trees, where i t i s desired to maintain a stand. The shrubby understory of Purshia, where i dense, probably affords protection f o r the young trees from damage by l i v e s t o c k ; so that the shrubs would seem to favour the s u r v i v a l of seedlings i n two ways. On the other hand, the trees may show a l i t t l e Improvement i n growth rates where they are released from the competition of the shrubs. wl S0\-PURSHU I AMSTIM ASSOCIATIONS KOI |. AtROPYRON A STIPA ASSOCIATIONS 3» V Fig.5. Ranges of growth curves of d.b.h. and height against for pine in the associations of the Pinus ponderosa zone. age, Douglas-fir occasionally enters this association, as i n stand no. 70 (Pig. t[ c), but never approaches dominance. Reproduction after disturbance may be very dense, as i s shown by stand 70, which, after having been cut sev-eral years ago, now consists largely of second growth rep-roduction. Here the regeneration is so dense that i t w i l l probably give rise to stagnation, unless thinned drastically. The table of size distribution (Appendix 9) for this stand shows this condition very well. l . a . Pinus ponderosa - Aristida long!seta Subassociation (Ari). After a Purshia stand has been burnt with sufficient intensity to eliminate Purshia tridentata, the herbaceous components of the vegetation, freed from i t s competition, increase in amount, and the whole aspect i s changed to one of an open stand with a sparse grassy understory (Figs. 6 a and b). Of the grasses, Aristida longlseta becomes the dominant, but Stipa comata and other grasses also show increases. Of non-grasses, Chaenactis Douglas11, G i l i a pungens, and Erlogonum nlveum also show increased abundance and presence. The same i s true of Phacelia linearis and other annuals. In one stand (no. 19) of this subassociation, near Oliver, many dead sticks of Purshia tridentata l i t t e r -ing the ground gave evidence of the recent conversion of this stand from a Purshia stand to i t s present form. It c. Fig. 5. a. An Aristida stand (no. 19) on a level terrace, b. Stand 78, showing the sparse cover of Aristida on loosa sand on a south slope, c. An Agropyron stand (no. 104), showing Balsaraorhiza 77 Table 4 ' Mean diameters and heights of mature trees of  Pinus ponderosa In the associations In which  I t Is found. Association D.b.h. Height Inches feet Pu 25 80 Ag 29 95 Rh 30 90 Arc 22 70 A-C 30 100 Ca 42 135 sy 40 130 AL 60 155 occurs on the same s o i l type, and i n a s i m i l a r s i t u a t i o n as the nearly adjacent we l l developed Purshia stand, no. 10. Some trees bored i n stand 19 showed signs of release extend-ing back some If? years. Some A r i a t i d a communities have also been seen i n the Thompson Valley, west of Tranquille, i n a d i s t r i c t where, to the writer's knowledge, Purshia trldentata does not occur. Apparently t h i s species has not yet succeeded i n reaching that area; though the ecological conditions and the presence of other species elsewhere associated with Purshia tr l d e n t a t a would indicate that, i f t h i s shrub were to gain entry to t h i s v a l l e y , i t would eventually succeed to the same eco l o g i c a l r o l e i n these stands as i t does i n the corresponding com-munities i n the Okanagan Valley. In view of t h e i r composit-ion, such communities i n the Thompson Valiey should probably be included with the other A r l s t l d a stands i n the Okanagan Valley as a subassociation of the Purshia association. One stand (no. 57) i n the Thompson Val l e y , occurs on s o i l with an apparently unusually high clay content, but t h i s e f f e c t i s altered i f one considers the very high proportion of gravel i n the same p r o f i l e , as well as the stones which were not collected i n the samples. I f the gravel i s included i n the sample, the clay f r a c t i o n i s redueed to about 7.5 per cent, which i s i n keeping with that i n other Purshia and A r l s t l d a stands. The grazing q u a l i t y i s no doubt improved i n t h i s subassociation, as compared to the Purshia association, but A r i s t i d a longiseta i s probably a rather unpalatable grass i n view of i t s sharp, awned f r u i t , which may p e r s i s t on the plant into the next season. Any tendency f o r Purshia to reinvade an A r i s t i d a stand would be encouraged by over-grazing of the grass. The growth curves of Ponderosa pine here f a l l w ithin the same range as those i n the Purshia association (Pig. f>). I t i s noticeable, however, that r e l a t i v e l y l i t t l e reproduction takes place compared to that i n a Purshia stand. This i s seen by comparing the frequency d i s t r i b u t i o n of sizes of trees i n stand 19 with that i n nearby stand 10 of the unburnt Purshia community (Appendix 9). A note on the seasonal aspects i s presented here. Among the e a r l i e s t plants to flower are some of the annuals, such as Polemonium mlcranthum, which flower, set seed, and wither up by the f i r s t week i n May. Early i n May, Purshia  tr i d e n t a t a blooms, changing the general colour of the stand from the usual d u l l grey-green to a pale yellow. Also i n May, Q a l l l a r d l a a r i s t a t a . Erlgeron spp., and Phlox l o n g l - f o l l a flower, and Lewlsia r e d l v l v a produces i t s short-l i v e d rosettes and flowers before becoming so inconspicuous as to be e a s i l y overlooked l a t e r i n the season. In June, Oalochortus macrocarpus, and G i l l a aggregata become con-spicuous, and eventually A r i s t i d a longiseta heads out. Plantago p u r s h i i now puts i n an appearance, lat e f o r an annual, and probably taking advantage of the June r a i n s . 80 Thereafter, the stand has a dry, dormant appearance u n t i l the flowering of Chrysopsis v i l l o s a and Chrysothamnus nauseosus between August and October. I f weather permits, Erlgeron  pumilus. E. l i n e a r i s , and Phlox l o n g l f o l i a may undergo a second flowering i n early November. 2. Pinus ponderosa - Agropyron splcatum Association (Ag). Of a l l the associations of t h i s forest region, t h i s one appears to be the most widespread and variable i n s i t u a t i o n , s o i l types, and growth c h a r a c t e r i s t i c s . I t i s a feature of great areas at low to moderate elevations, where i t probably represents the c l i m a t i c climax. Daubenmire (1952 b) states that coarse s o i l s are the main requirement f o r t h i s association, but i n the present work, the Agropyron association has been found on s o i l s vary-ing from gravels to clays (Appendix 8). In the case of the former, i t i s apparently topographically conditioned on slopes below Arctostaphylos or Arctostaphylos - Calarnagrostis stands. Heavy textured s o i l s under t h i s association are to be found mainly on old lacustrine terraces. Ogilvie (unpub-lish e d data) has found that s o i l s of t h i s association often show a high degree of melanization of the A horizon. The climate i n t h i s association i s s i m i l a r to that i n the Purshia association, but on the whole, i t s stands have been found at higher a l t i t u d e s than the l a t t e r , and have appeared a l i t t l e eooler and moister (Appendix 7). 81 In one stand (no. 31) I t was noted that the f l o r -l s t i c makeup varied markedly i n the v i c i n i t y of the trees. I t was decided then to i n s t a l l two sets of instruments. One sta t i o n (31N) was situated on the shady north side of a small group of trees In such a p o s i t i o n that, although i t was open to the sky and the f u l l p r e c i p i t a t i o n would be recorded, the instruments were shaded by the tree tops during the hot part of the day. The other s t a t i o n (31S) was placed beneath the overhanging canopy of branches on the south side of the same clump of trees, so that while the r a i n gauge received only the p r e c i p i t a t i o n which was not intercepted by the trees, the instruments were exposed to the sunlight through-out the day. The ef f e c t of shade on the s o i l surface temperature was s i g n i f i c a n t : the temperature i n the shaded area reached a maximum of 111°P, 20° below the l e t h a l threshold f o r seed-l i n g s , while i n the s u n l i t area the maximum recorded was 139°P, and the l e t h a l threshold of 131° was exceeded during four months, i n 1 9 5 3 . The interception of p r e c i p i t a t i o n accounted f o r an appreciable proportion of the t o t a l ; although i t would vary from spot to spot. The r a i n gauge i n 31S received only 7.1ij. of a t o t a l of 12.80 inches which f e l l on 31N during the year. The evaporation, as could be expected, was consider-ably higher from the s u n l i t atmometer on the south side than from the one i n the shade; the t o t a l s being 2 1 . 6 1 and 1 4 . 5 6 82 inches respectively, for the period from May to September, 1953. The former value is thought to represent the more closely the evaporation conditions i n the greater part of an open, park-like stand of this type. The f u l l significance of the differences i n moisture conditions between these two situations i s emphasized by the P/E ratios. The value of the P/E ratio for the sunlit area beneath the trees was found to be 0 . 0 9 , and for the shaded area, O.36, or about four times as moist as the former. The f l o r l s t i c variations associated with these two situations consisted of a small stand of Calamagrostis  rubescens i n the shaded area exposed to the sky, this species being absent from other parts of the stand; while under the south side of the trees was a patch of almost bare ground, with a sparse society of annuals, such as Epilobiura minutum, Phacelia linea r i s . Mentzelia albicaulls. and G i l l a g r a c i l i s , dominated by Bromus tectorum. Polemonlum mleranthum was found In situations of the latter type in other stands. Since the rain gauge in 3 1 N and the atmometer in 3 1 S were considered to give results most representative of the stand as a whole, the P/E ratios calculated from them are considered to be characteristic for this stand. These values are marked N/s i n Appendix 7. The understory of the Pinus ponderosa - Agropyron  splcatum association i s really an extension of the Palouse grassland climax vegetation among the scattered pine trees, 83 and Daubenmire !s Agropyron spicatum union (1952 a and b), accompanied sometimes by the Poa secunda union, make up the bulk of the ground cover. Agropyron spicatum, represented mostly by its var. inerme, though present in a l l the assoc-iations, characterizes this association by i t s dominance of the understory. Among other grasses, Festuca Occidentalls (including F^ ldahoensls) i s usually important, and is some-times accompanied or replaced by Fj_ scabrella. Poa secunda or P. cusickii, Koelerla cristata, and some species of Stipa are nearly always present. The most common sedge present i s Carex r o s s i i . Among non-grasses, one or both of Artemisia tridentata and the closely related A_. t r l f l d a are usually present, as well as Erlogonum heracleoides and Erigeron  pumilus. Balsamorhiza sagittata, which i s of quite widespread occurrence, here reaches a peak of abundance. Luplnus  serlceus and Geranium viscosissimum are sometimes conspicuous members. A f a i r l y typical example of the Agropyron associa-tion i s shown in Figure 6c , a view of stand lOij. i n which Balsamorhiza foliage i s visi b l e among the grass. An example of the topographically conditioned form of this association is shown in Figure 7a, which shows a south slope of gravelly material (stand 100) below an Arctostaphylos stand. The poor tree growth, which i s similar to that i n an Arcto-staphylos stand, and the sparseness of the vegetation cover, reflect the poverty of the s o i l and the topographic influences. •t -F i g . 1 7. Agropyron association, a. sparse cover and poor growth on coarse, loose material on a south slope {stand 100). b. Dense reproduction following disturbance i n stand 27. c. A Pseudotsuga -Agropyron stand near Chase. 84 The grazing q u a l i t y of t h i s association varies from poor to excellent. Pinus ponderosa i n t h i s association shows growth rates which vary from the poor extreme shownin stand 1G0 (Pig. 7a) above, to good. The average mature tree has a diameter of 29 inches and a height of 95 feet (Table 4 and Pig. 5 ) . The reproduction i s generally sparse i n undisturbed stands (Appendix 9), so that the stand i s maintained i n an open form. However, sometimes a f t e r disturbances, such as heavy grazing, or a f i r e immediately preceding a good seed year, or some other disturbance which may reduce the compet-i t i o n of the grasses, the pine or Douglas-fir may reproduce i n dense patches, as seen i n stand 27 (Pig. 7b). Between Vernon and Kamloops, several stands may be seen i n which the former open parkland has become replaced by an overstocked stand of trees. In some cases the understory has remained grassy while becoming greatly reduced i n density; but i n other cases the grass has become supplanted by the Symphoricarpos union, so that, i n e f f e c t , the Symphoricarpos association i s seen to have encroached upon the Agropyron association. This overstocking by the trees i s accompanied by a great reduction i n the forage y i e l d , which may decline from excellent, i n the better quality stands, to poor or worth-l e s s . Such overstocked stands should ultimately be thinned to avoid overcompetition and stagnation among the young trees, and t o t a l suppression of the grass cover beneath (Arnold, 1950). 85 The seasonal aspects here are often quite marked. In early spring ( A p r i l usually) Ranunculus glaberrimus l o c a l l y becomes conspicuous, and i n May Balsamorhiza  saglttata may flower so profusely that i t colours large areas yellow. About t h i s time, Delphinium b i c o l o r flowers. At t h i s stage Lupinus sericeus i s just appearing above the ground, but a month l a t e r i t may become the most conspicuous plant while the leaves of Balsamorhiza are drying and i t s seeds are maturing. Geranium viscosisslnrum, P o t e n t l l l a arguta, and Agropyron splcatum flower about now. By July the grass i s beginning to cure, and the f o l i a g e of Balsamor-hiza has dried up and may almost have disappeared. In September and October the Artemisia spp. flower, but seldom conspicuously. These seasonal aspects require attention i n the f i e l d , since, unless care i s taken, they may markedly affect the dominance and vigour estimates ascribed to many species. Subassociations and other variations of the Pinus ponderosa -Agropyron splcatum association. The vegetative composition of t h i s association i s subject to a c e r t a i n amount of v a r i a -t i o n i n density and f l o r i s t i c makeup, both i n climax and d i s -climax states. The topographically conditioned variant des-cribed above, and represented by stands 2, 100, and 101, should probably be segregated as a d i s t i n c t subassociation. However, the author f e e l s that at present not enough i s known of t h i s type to j u s t i f y the establishment, here, of such a d i s t i n c t 86 unit f o r i t . Pinus ponderosa i s the usual dominant here, and Pseudotsuga i s e i t h e r absent or only present i n r e l a t i v e l y small amounts. There are s i t u a t i o n s , however, on or below steep north slopes, or at high elevations on f a i r l y heavy s o i l s , p a r t i c u l a r l y northward, where Pinus ponderosa i s absent, and the Agropyron grassland abutts d i r e c t l y on the forest of the Pseudotsuga zone. Here may often be found a f a i r l y open park-like stand of Pseudotsuga with Agropyron dominating the understory. Although no stands of t h i s type were analysed i n t h i s work, i t i s thought that t h i s type of stand w i l l become of increasing importance northward, esp-e c i a l l y i n regions beyond the northern l i m i t of Pinus ponder-osa. I t may be necessary, then, to e s t a b l i s h a Pseudotsuga -Agropyron association or subassociation to include t h i s type. An example of such a community, photographed near Chase, i s shown i n Figure 7c. Stands of t h i s subassociation have been seen to be undergoing a s i m i l a r process of overstocking with Douglas-f i r i n modern times as has been a f f e c t i n g the Pinus ponderosa-Agropyron splcatum association. Hear Vernon, the write r has seen a dense young stand of Douglas-fir growing upon a deep chernozem s o i l of evident grassland o r i g i n supporting a sparse understory of Agropyron splcatum. Two dlsclimaxes of the Pinus ponderosa - Agropyron  splcatum association, which are thought to have resulted, i n the main, from excessive disturbance by grazing l i v e s t o c k , are described i n d e t a i l below. 2.a. Pinus ponderosa - Stipa comata Subassociation (St). In the Lower Grassland (Agropyron - Artemisia) zone, S p i l l s -bury and Tisdale (1944) and Tisdale (1947) describe an edaphically conditioned community of which Stipa comata i s the dominant, accompanied by Sporobolus cryptandrus, and sometimes by Chrysothamnus nauseosus. This community i s conditioned by coarser s o i l s than the climax Agropyron -Artemisia association. In the sense of the present work, t h i s Stipa comata association would be regarded as climax. In the Middle Grassland (Agropyron - Poa) zone, Tisdale (1947) found a Stipa comata community which was derived from the Agropjrron-dominated climax through overgrazing; and a corresponding Stipa columbiana - Poa pratensis grazing d i s -climax was found i n the Upper Grassland (Agropyron - Pestuca) zone. F l o r i s t i c a l l y , the Stipa subassociation d i f f e r s from the Agropyron association mainly i n the reduction of Agropyron splcatum to a subdominant or codomlnant status, and the assumption of dominance by Stipa comata (F i g . 8c), usually accompanied by J3. columbiana and other Stipa spp. Increases also occur i n Sporobolus cryptandrus. Lappula  myosotis. and occasionally i n A r l s t l d a longiseta. as also found by Tisdale (1947). Antennaria spp. may become abun-dant, and Stipa spartea enters the subassociation i n the 88 more northerly parts of i t s range. Under excessive grazing, dominance of the stand may pass to the aggressive, introduced annual grass, Bromus teetorum (Tisdale, 1947), unless the grazing i s In the spring, when t h i s species i s r e l a t i v e l y palatable (Daubenmire, 194°)• One stand (no. 73) on rather sandy s o i l , which on the basis of the v i s u a l estimates was at f i r s t d e f i n i t e l y classed with t h i s subassociation, was found, on more exact quantitative study by point transect, to be rather i n t e r -mediate between an Agropyron and a Stlpa community. At the time of making the o r i g i n a l estimates, Stlpa spp. were growing vigourously and heading out while the Agropyron was weak and almost e n t i r e l y vegetative. This aspect gave the Impression that Stipa was a c t u a l l y held a clear domin-ance. However, the point transect revealed that Agropyron  splcatum was r e a l l y the most abundant species present, but that i t had been grazed down u n t i l i t s vigour was w e l l below that of the Stlpa spp. This stand was apparently i n process of gradual change from the climax to the Stipa disclimax at the time of observation. This was one case where the quantitative work was found to be a valuable check on the v i s u a l estimates (Appendix 6 ) . I t i s not yet known to what r e l a t i v e extents edaphic and grazing influences have conditioned the Pinus ponderosa - Stlpa comata communities found i n t h i s work. The s o i l i s usually rather coarse, and Ogilvie (unpublished Fig. 8 • a. A grazed area (stand 102) dominated by Artemisia tridentata. b. A natural exclosure in the same stand: Agropyron dominating and Artemisia dead or declining, c. A stipa stand (no. 69). d. A corner of a cemetry i s a Pseudotsuga - Stipa stand (no. 121), showing dominance of Agropyron when protected from grazing. 89 data) has found that the average of the s o i l pH values i s higher in the Stipa than i n the Agropyron association generally, though some overlap does occur. A l l the Stipa stands analysed in this project are known to have been f a i r l y heavily grazed. One stand i n particular (no. 121) showed clearly the effects of this treatment, since i t con-tained an exclosure in the form of a small cemetery (Pig. 8d). This stand l i e s at the foot of a steep north slope, on gra-velly s o i l . Pinus ponderosa is absent, and Pseudotsuga forms a park-like stand. The ground cover over the extent of the stand consists of a very low (six to eight inches) growth of Stipa comata and i t s associates (see Appendix 3 ) , while the area enclosed by the cemetery fence supports a stand of Agropyron splcatum some 15 to 20 inches high. The relative estimates of dominance and vigour ascribed to Agropyron  splcatum and Stipa comata in these two situations are as follows: Main stand (grazed) Cemetery  Stipa comata 7.3 1.3 Agropyron splcatum +.+ 7.3 It seems evident that this stand was originally a Pseudotsuga - Agropyron community. It appears from the above observations that the Stipa comata disclimax community i s the product of heavy grazing on certain edaphic types within the Agropyron  association: and that i t may affect the understory regard-less of whether the tree layer i s made up of pine or of 90 Douglas-fir. Thus a d i s t i n c t Pseudotsuga - Stipa subassoc-i a t i o n can be recognized. Pinus ponderosa displays the same growth charact-e r i s t i c s i n the Stipa subassociation as i n the Agropyron association (Pig. 5 ) . 2.b. Pinus ponderosa - Artemisia trldentata subassociation ( A r t ) . A variant which has not often been met with i s an association of Pinu3 ponderosa and Artemisia t r l d e n t a t a (sagebrush). Sagebrush i s widely dominant on the open steppe now, but i s seldom seen dominating under the pine. I t s sc a r c i t y here i s perhaps due to the preference of sagebrush fo r clay s o i l s at r e l a t i v e l y low elevations, which s i t e s are usually too dry f o r trees to enter. Only one extensive stand (no. 102) of t h i s type with pine was found which was worth making use of, but i t yielded such i n t e r e s t i n g i n -formation that i t i s worth describing i n some d e t a i l . Stand 102 i s situated on an old , eroded lacustrine terrace i n the Nicola Valley, at an elevation of about 1700 feet. I t slopes gently to the southward, and a number of shallow draws cross the terrace to where the lower edge breaks away i n a steep eroded face to a lower l e v e l . There a treeless Artemisia community ca r r i e s a conspicuous, pale-coloured layer of recently deposited s o i l material on the ground surface, a t t e s t i n g to the increased rate of erosion of the terrace above i n recent years. The s o i l of the terrace i s clay with scattered stones embedded i n i t . 91 The pine stand i s quite open, and the mature trees are of rather lower than average size f or an Agropyron type. Reproduction i s sparse, and the marginal nature of the stand for pines i s shown by t h e i r tendency to be situated i n or adjacent to the draws, where s l i g h t accumulations of coarse material and stones, and l o c a l drainage factors r e l i e v e the eff e c t of the high content of clay i n the s o i l (about 30 per cent). (Appendix 8.) The Artemisia bushes are from s i x to eight feet high, and up to s i x Inches or more i n diameter at the butt, and form a dense stand (Pig. 8a), with almost completely bare s o i l i n between the bushes. A few weak shoots of Agropyron are present. Other species present include: Bromus tectorum. Antennaria dimorpha, Erigeron f i l i f o l l u s , Stephanomeria  t e n u i f o l i a . Astragalus p u r s h i i . A. stenophyllus. Chrysothamnus nauseosus. Poa c u s i c k l i . Androsace sp., Hosackia denticulata, and Tortula r u r a l ! s . At one point, g u l l y and sheet erosion have par-t i a l l y i s o l a t e d a small t a b l e - l i k e promontory, forming a small natural exclosure of some 80 square yards, which the livestock i n the area apparently seldom reach. This ex-closure was found to support a dense and deep stand of Agropyron splcatum.while the Artemisia bushes were seen to be dead or declining (Pig. 8b). The dominance and vigour estimates given f o r Artemisia and Agropyron i n t h i s 92 stand and i n the natural exclosure are as follows: Main stand (grazed) natural exclosure Artemisia tr i d e n t a t a 6 ( - 7 ) . 3 3 - 2 - K-Q.) Agropyron splcatum +.1 6-7.3 I t i s believed that t h i s small exclosure indicates the o r i g i n a l v i r g i n vegetation, though i t i s not known how long i t has taken to revert to i t s present (and presumably, o r i g i n a l ) state. However, indications of the approximate date of the o r i g i n a l change i n the main stand from grass to sage-brush were found. A recently cut stump was found which revealed a series of f i r e scars, which recorded grass f i r e s which had scorched t h i s stump. Fires had occurred since 1750 at in t e r v a l s varying from three to l±l years. The l a s t f i r e thus recorded was i n 1879. Since sagebrush i s l e s s inflam-mable than grass, t h i s date may indicate the approximate time of the o r i g i n a l change-over from grass to sagebrush, r e s u l t -ing from the grazing of li v e s t o c k brought i n by white set-t l e r s some 20 years or so before. An old sagebrush bush, cut down i n order to check i t s age, was s i x feet high, 6.2 inches i n diameter at the base, and was found to be 65 years o l d ; so i t probably started growth i n 1887 or 1888. I t i s thought that t h i s gives a further i n d i c a t i o n of the approximate date of the conversion of t h i s piece of range from the Agropyron climax to the present Artemisia disclimax. I t should be mentioned here that Tisdale (1947) found that i n the Lower Grassland zone, a sagebrush d i s -climax r e s u l t s from overgrazing on fine textured s o i l s . Daubenmire (194°) reports the same type of change i n South-ern Idaho, but not i n Central Washington, where Artemisia  tridentata does not compete with Agropyron. A Pseudotsuga - Artemisia community, related suc-cessionally to the Pseudotsuga - Agropyron subassociation, has been seen. The writer has noted one small area of t h i s type of vegetation occupying an abandoned homestead on a north slope near Tranquille. In t h i s stand Douglas-fir has been encroaching on the sagebrush rangeland. This community may be found on clay s o i l s i n low, dry situations beyond the northern l i m i t of Pinus ponderosa. the Praser Valley i n the v i c i n i t y of Dog Creek being, i n the writer»s mind, another l i k e l y s i t u a t i o n for i t . Prom consideration of the two subassociations described above, i t i s f e l t that each may be a discllmax of the Agropyron association r e s u l t i n g from overgrazing on a r e l a t i v e l y narrow range of s o i l type within the f u l l range occupied by the climax association. Thus the Stipa sub-association may result from overgrazing on medium to coarse textured s o i l s , while the Artemisia subassociation r e s u l t s from s i m i l a r treatment of Agropyron stands on f i n e r text-ured material. I t i s apparent that protection from grazing fo r a number of years may h a l t the retrogressive changes that have been taking place, and induce either of these disclimaxes to revert to the climax, with a corresponding improvement i n forage value of the rangeland. 3• Pinus ponderosa - Rhus glabra Association (Rh). Owing to i t s specialized topographical s i t u a t i o n , t h i s community i s of very r e s t r i c t e d extent. I t occurs at the base of h i l l slopes or screes, and p a r t i c u l a r l y below the mouths of g u l l i e s . Here the drainage conditions, perhaps i n combina-t i o n with the coarse rocky s o i l which i s normally present i n such s i t e s , provide a supply of subsurface moisture, a v a i l -able at depth f o r the vegetation. The broken nature of the ground i s r e f l e c t e d i n the v a r i a b i l i t y of the f l o r l s t i c com-po s i t i o n (Appendix 3) and tree growth. Pseudotsuga. may occur i n the canopy i n small amounts, as i n other stands of Pinus ponderosa. The under-story i s t y p i c a l l y shrubby, and often contains species that r e l a t e t h i s community to the Symphoricarpos association, on the one hand, and to the A l l u v i a l complex, on the other. The understory dominant i s Rhus glabra, nearly always accom-panied by .R. radleans, the poison i v y . Other c h a r a c t e r i s t i c shrubs include: Philadelphus l e w i s i i , Sambucus glauca, Amelanchier a l n i f o l i a , and sometimes, Holodiscus d i s c o l o r . Prunus v i r g l n l a n a . and Purshia t r l d e n t a t a. Clematis l l g u s -t l c i f o l i a i s shared with the a l l u v i a l complex, and Prunus  virg i n i a n a with both the a l l u v i a l complex and the Symphor-icarpos association (Appendices 3 and ij.). Among herbaceous associates are Pan 1 cum scribnerlanum. Stephanomeria tenui-f o l i a , Verbena bracteata. Woodsla oregona, and sometimes Specularla p e r f o l i a t a . These herbaceous species, together with the Rhus spp,, Philadelphus l e w i s i i , and Sambucus glauca, appear to be so commonly associated e c o l o g i c a l l y , that they might be considered to comprise a d i s t i n c t Rhus union (Table 2 and Appendix 10), Stand 22, represent-ing t h i s association, i s depicted i n Figure 9 a. This association i s known at low elevations i n the Okanagan and lower Similkameen Valleys. The stands examined were, for the most part, either immature or composed of second growth following c u t t i n g ; so few mature trees were found. Consequently, much significance should not be ascribed to the growth figures. The average dimensions of pines at maturity appear to d i f f e r l i t t l e from those f o r the Agropyron association; t h e i r mean diameter being 30 inches, and t h e i r height, 90 feet (Table 4 and F i g . 5 ) . 4» Pseudotsuga Menzlesii - Pinus ponderosa - Arctostaphylos  uva-ursi Association (Arc). This association i s described by Ilvessalo (1929) as geographically interchangeable with a Vacclnlum scoparlum type; and Kujala (1945) describes i t as an Arctostaphylos-rieh subtype of h i s Vaccinium caespitosum type. I t i s i n t e r e s t i n g that, i n t h i s work, the only records of VJJ, caespitosum are from the Arctostaphylos - Calarnagrostis association, which i s maintained by both the above authors as a d i s t i n c t type. Vj, scoparlum was not found In t h i s study. b. Fig. 9 • a. A Rhus stand (no. 22). b & c. Arctostaphylos associa-t i o n , b. under pure Pinus ponderosa canopy (stand 49). c. under a mixed canopy of Pinus and Pseudotsuga (stand 65). An instrument station i s also shewn here. Between the Arctoataphylos. the Arctostaphylos -Calarnagrostis, and the Calarnagrostis associations, no sharp boundaries can be drawn, on the bases of edaphlc, f l o r i s t i c , or tree growth c h a r a c t e r i s t i c s : but the three communities seem to intergrade indistinguishably, as though parts of a continuum. P l o r i s t i c a l l y , the d i s t i n c t i o n depends l a r g e l y on the r e l a t i v e abundance of Arctostaphylos uva-ursi and Calarnagrostis mbescens. together with the species assoc-iated with them i n the understory. Edaphlc a l l y , Arcto-staphylos and i t s associates tend to be associated with coarse, gravelly s o i l s , while Calarnagrostis and i t s associates usually increase with increase i n proportions of the f i n e r textured s o i l f r a c t i o n s . However, t h i s r e l a -t i o n i s by no means i n v a r i a b l e , and some anomalous cases occur. The Arctoataphylos association t y p i c a l l y occurs on gravelly s o i l s at medium to higher elevations. I t i s found both on slopes and on l e v e l ground; but sometimes where i t occurs on the l e v e l upper surface of an old r i v e r terrace, the south slope below i t may be occupied by a poor type of Agropyron association. On steep north slopes the Arctostaphylos i s l a r g e l y replaced by Calarnagrostis  mbescens. C l i m a t i c a l l y , t h i s association i s the warmest and d r i e s t of the Pseudotsuga zone. This i s correlated with i t s a l t i t u d i n a l range, which extends to lower elevations than the others, and overlaps the Pinus ponderosa zone. The s o i l surface temperature was found to exceed 131°P during July and August, 1953, a temperature that was only exceeded once i n any other stand i n the Pseudotsuga zone (Appendix 7). The P/E r a t i o s found were comparable to those found i n Pinus ponderosa zone (Appendix 7)• Species commonly found i n t h i s association i n -clude: Fragarla v l r g l n l a n a . Allium cernuum. Anemone  mult i f Ida. Junlperus communis. J . scopulorum, Pentstemon fr u t l c o s u s , Sedum stenopetalum, Solidago missouriensls, Apocynum androsaemifolium. Antennaria h o w e l l i i . Carex  concinnoides, Shepherdia canadensis. and Cladonla  g r a c i l i s ; and less frequently, Calamagrostis rubescens, Ceanothus velutlnus, Stipa r 1chardsonii, Oryzopsls exigua, Cladonia v e r t l c i l l a t a . and Stereocaulon tomentosum (Table 3 and Appendix 3 ) . Ceanothus velutlnus shows a d i s t i n c t tendency to increase af t e r f i r e . On steep rocky outcrops, t a l l shrubs, such as Juniperus scopulorum. Amelanchier  a l n l f o l l a . and Philadelphus l e w i s l l occur i n greater abundance. There seem to be good grounds, here, f o r recog-n i z i n g a d e f i n i t e Arctostaphylos union, of plants having s i m i l a r ecological a f f i n i t i e s ; and incl u d i n g : Juniperus  spp.. Shepherd!a canadensis. Ceanothus velutlnus. Carex  concinnoides. Allium cernuum. Oryzopsls exigua. Anemone  multifIda. Pentstemon fr u t l c o s u s . Sedum stenopetalum. 98 Antennarla howellil.and perhaps Fragaria virgin!ana (Appen-dix 10). The absence of the expected Vaccinium caespitosum from t h i s association may be due i n part to the warm, dry conditions at the r e l a t i v e l y low elevations at which these stands were studied. This species may enter the community at higher a l t i t u d e s . As mentioned above, t h i s association toward i t s lower a l t i t u d i n a l l i m i t s (around 2000 feet) overlaps the Pinus ponderosa zone. Here i t may occur under a pure pine canopy, as i n the case of stand no. 49 (Fig. 9b) , and has then a rather poor productive capacity f o r the association. Possibly t h i s variant should be made a separate Pinus  ponderosa - Arctostaphylos subassociation. Usually, how-ever, the Arctostaphylos community i s found under a mixed canopy of Douglas-fir and pine, as i n stand no. 65 (Fig. 9 c ) . The canopy varies from quite open i n the case of the Pinus ponderosa - Arctostaphylos variant, to moderately dense, but i s never so dense that sunlight i s excluded from any part of the forest f l o o r . On the whole, i n mixed stands i n t h i s and other associations, Douglas-fir grows at about the same rate as ponderosa pine, so that measurements made on the pine apply almost equally w e l l to Douglas-fir, though Clark (1952) assigns s l i g h t l y higher s i t e indices to Douglas-fir than to ponderosa pine. 99 Tree growth i n the Arctostaphylos association i s the poorest of any found i n the associations described here (Pig. 10a). I t i s very slow, and mature trees average only 22 inches i n diameter and 70 feet i n height. Reproduction of both ponderosa pine and Douglas-fir i s often f a i r l y good; though i t i s possible that t h i s has been increased i n recent years as grass competition has been reduced by grazing. In the tables of tree size d i s t r i b u t i o n i n Appendix 9 the Arctostaphylos stands are arranged i n order of increasing a l t i t u d e ; and i t i s seen that there i s a change from the exclusive pine canopy of stand J4.9 to the pioneer pine canopy with the increasing proportion of Douglas-fir i n the reprod-uction, i n stand 65. The poor quality of t h i s association f o r timber production i s p a r a l l e l l e d by i t s poor value as grazing land, i t being of l i t t l e worth unless a f a i r l y good prop-o r t i o n of perennial grasses (Calamagrostis rubescens, Agropyron splcatum. or Stipa spp.) accompanies the Arcto-staphylos. A very low i n t e n s i t y of grazing would be suf-f i c i e n t to reduce the sparse cover to an unproductive l e v e l , and, since v i r t u a l l y a l l the stands examined have been sub-jected to grazing f o r a considerable time, i t i s thought possible that t h i s type may have supported more palatable forage formerly than i t does at present. Two stands (nos. 52 and 66) were found to occur on s o i l s which apart from being stony, were sur p r i s i n g l y 100 f i n e textured (Appendix 8). Tree growth i n stand 66 i s about average, and i n stand 52, d i s t i n c t l y better than average f o r t h i s association. I t i s thought that these two stands may represent encroachment of the Arctostaphylos community into stands which formerly belonged rather to the Arctostaphylos-Calamagrostis association, or even to a poor form of the Agropyron association. This could be the r e s u l t of grazing, which would tend to select i n favour of the r e l a t i v e l y unpalatable members of the Arctostaphylos union, rather than the more palatable plants of the grassy unions. In f a c t , i t i s even possible that t h i s entire association might be a grazing disclimax form of the Arctostaphylos -Calarnagrostis association, or at least of i t s poorer parts, although d e f i n i t e evidence i n support of t h i s has not been found. 5. Pseudotsuga Menziesll - (Pinus ponderosa) - Arctostaphylos  uva-ursi - Calarnagrostis rubescens Association (A-C). Both Ilvessalo (1929) and Kujala (1945) keep t h i s community as a type independent eit h e r of the Arctostaphylos type (Ilvessalo) or Arctostaphylos-rlch Vaccinium caespitosum type (Kujala), or of the Calarnagrostis type. The present author i s i n c l i n e d to regard t h i s community rather as a broad ecotone or contin-uum between the associations characterized by Arctostaphylos-and Calamagrostis- dominated understories, respectively: but i t i s of such widespread occurrence, es p e c i a l l y i n the southern Cariboo d i s t r i c t , that i t i s thought advisable to 101 keep a separate association for i t , as have the above-mentioned authors. Daubenmire (1952 b) apparently includes this community, and possibly also the Arctostaphylos com-munity, i n his Pseudotsuga - Calamagrostis association. No climatic stations were set up In this assoc-iation, since i t had not been recognized at the time when those stations were installed. As may be expected of a rather ar b i t r a r i l y defined community, this association i s very variable i n a l l i t s characteristics. It i s probable that some form of i t rep-resents the climatic climax at these higher elevations. The s o i l i s generally coarse. In fact, at present i t can scarcely, i f at a l l , be distinguished from the fore-going association on the basis of s o i l texture. Topographically conditioned Agropyron and Calam-agrostis communities bear the same relation to this associa-tion as to the Arctostaphylos association. The f l o r l s t i c composition of the understory com-bines elements typical of both the Arctostaphylos and the Calamagrostis associations, and includes: Carex  concinnoldes. Shepherd!a canadensis. Pragaria virginiana, Allium cernuum, Sedum stenopetalum, Spiraea luclda, Cladonia g r a c i l i s , and Polytrichum .lunlperinum (Table 3) J and less frequently, Antennaria anaphaloldes. A. rosea, and Pachystima myrsinltes. Sallx bebbiana appears in this association, and sometimes, notably i n the south Cariboo d i s t r i c t , has been seen to show the effects of heavy 102 browsing, apparently by moose. Vaccinium caespitosum i s sometimes present. Daubenmire (1952 a) implies that Calarnagrostis  mbescens and Arctostaphylos uva-ursl belong i n the same union; a fact that i s perhaps related to his combining of the Calarnagrostis- and Arctostaphylos- containing stands into one association (1952 b). I t appears to the present author, however, that, although frequently found together, these two species show abundances i n more or l e s s r e c i p r o c a l r e l a t i o n to each other; and so would seem to have somewhat di f f e r e n t ecological a f f i n i t i e s , at least i n t h i s region. Hence, i t i s preferred here to keep these plants i n two sep-arate unions, (Appendix 10). In t h i s association, the aspect may be misleading when v i s u a l estimates are being carried out, since the grass, Calarnagrostis mbescens. grows up t a l l enough to conceal the presence of the prostrate Arctostaphylos (Pig. 11 a and b) thus reducing the dominance and vigour estimates assigned to the l a t t e r species. Further, the Calarnagrostis i n t h i s association, where i t does not have complete dominance of the understory, often grows t a l l e r , and flowers more r e a d i l y than i t does i n the Calarnagrostis association, where i t forms a lower but more continuous mat of f o l i a g e . In stand 105, f o r example, the Arctostaphylos was almost hidden by the t a l l growing Calarnagrostis. yet a point transect revealed that i t had nearly twice the basal area of the grass (4.2 per cent to 2.7 per cent) (Appendix 6 ) . F i g . 11. a & b. Arctostaphylos - Calarnagrostis association, a. with Pinus contorta on a rocky ridge at the northern l i m i t of P. nonderosa (stand 64). b. Stand 32, on a g r a v e l l y bench. Pterospora p a r a s i t i c on pine i n foreground, c & d. Calarnagrostis a s s o c i a t i o n , c. Stand 5. The l a r g e s t trees and logs are Pinus ponderosa, the medium and young trees, Pseudotsuga. d. Stand 45, with Populus tremuloides. 103 This association was most frequently found under a mixed canopy of Douglas-fir and ponderosa pine. In one or two cases the pine appeared to be persistent as the f i n a l dominant of the canopy, which was f a i r l y open in these cases, usually, however, Pseudotsuga was found to be the climax dom-inant, while Pinus ponderosa was a serai dominant following f i r e or cutting which opened up the stand. Once the canopy has developed beyond a certain degree of density, ponderosa pine f a i l s to regenerate adequately, while young Pseudotsuga, more tolerant of these conditions, (see the autecological features, and Appendix 9), increases i n relative amount, and f i n a l l y becomes the dominant. Pinus ponderosa may maintain i t s e l f here on rocky outcrops and other such situations where the canopy is kept f a i r l y open. Pinus contorta (lodgepole pine) i s frequently present, particularly at higher elevat-ions and toward and beyond the northern limit of ponderosa pine, as in stand 61; (Pig. 11a). Pine growth i s varied, but averages l i e between those of the two associations which this divides. The range of growth rates overlaps the ranges of the other two assoc-iations (Pig. 10a). The average diameter of mature trees is 30 inches, and the height, 100 feet. Following severe f i r e s that destroy entire stands in many areas, particularly at higher elevations or i n the more northerly parts of the range of this association, Douglas-fir may be completely replaced over large areas by even-aged stands of Pinus contorta. This f i r e disclimax may be termed a Pinus contorta - Arctostaphylos uva-ursl -Calamagrostis rubescens subassociation. These second-ary stands are sometimes so dense that the trees stagnate i n growth, and are of l i t t l e or no commercial value. I f the secondary canopy i s not too dense, i t has been found (Tis-dale, 1950) that the grazing value of the understory may be improved} whereas i t tends to decline under a Pseudotsuga climax canopy, e s p e c i a l l y i f there i s much young growth present. Grazing i n t h i s association i s generally of i n t e r -mediate q u a l i t y between the two related associations: being better than i n the Arctostaphylos and poorer than i n the Calamagrostis associations. The serai stands of Pinus contorta w i l l even-t u a l l y be replaced by the climax dominant of t h i s associa-t i o n , Douglas-fir. The time needed f o r t h i s succession to take place w i l l depend on the density of the stand, and the frequency of old surviving trees of Douglas-fir, which can serve as seed sources. A tree species that occurs i n the stands east of the Okanagan Valley, and which often becomes a s e r a i domin-ant after f i r e there, i s L a r i x occidentalis (western l a r c h ) . The Douglas-fir forests l y i n g within the range of t h i s species are separated from the rest by Whitford and Craig (1918) as the Douglas-fir - Western l a r c h type. The associa-tions based on understory composition overlap both these 105 Douglas-fir types, with relatively l i t t l e important f l o r i s t i c differences apart from the presence or absence of Larlx  Occidentalls* For this reason, and because, i n this project, relatively l i t t l e work has been done east of the Okanagan Valley, and within the range of the larch, the writer does not f e e l justified in separating the larch-containing stands i n a distinct association or subassociation. How-ever, further work in the southeastern part of this prov-ince may alter the status of the stands found there, and result i n the establishment of at least a distinct sub-association (Pseudotsuga - Larlx - Arctostaphylos - Calarn-agrostis) ; for which there may be considerable practical reasons. The same variation i n canopy composition affects the following two associations; and the same argument may be applied to them. An interesting variant, which however the writer has not seen, i s mentioned by Clark (1952), who describes the mixed stands on which he worked as being Calarnagrostis  rubescens - Arctostaphylos uva-ursi and Calarnagrostis  rubescens - Vaccinium scoparlum types. He does not give the specific locality for the latter type, but the present author expects that i t may occur in the area studied by Clark i n the Mission Creek d i s t r i c t , near Kelowna; which would be not far from the place where this writer has seen a Vaccinium scoparlum community. This area i s within the range of Larlx Occidentalls, so i t i s possible that the community mentioned may contain this tree. 106 6. Pseudotsuga menziesli - Calamagrostis rubescens  Association (Ca). This type of stand has been described by Ilvessalo (1929), Kujala (1945), and Daubenmire ( 1 9 5 2 b ) ; the last mentioned author using the name i n a rather broader sense than the others to include the two above-mentioned associations. This association usually occurs on somewhat finer textured soils than those on which Arctostaphylos i s domin-ant, though here as elsewhere, overlaps occur (Appendix 8). It i s often replaced on south slopes by Agropyron stands of highjquality, while the latter community, when on level ground, may be replaced on a north slope by this association. For a Pseudotsuga forest stand, the findings of Ogilvie show a high degree of melanization of the A horizon here. He has also found evidence of slight leaching. The climate of this association tends to be cooler and moister than that of the Arctostaphylos association des-cribed above ( Appendix 7 ) . The f l o r l s t i c composition of the understory i s characterized by the dominance of Calamagrostis rubescens, which forms a continuous turf of foliage, though i t seldom flowers (Fig. 13c). Arctostaphylos uva-ursi, while often present, i s of notably reduced abundance and vigour com-pared with i t s occurrence in the two previous associations. Other common members of the understory include: Polytrichum  .juniperinum. Antennaria anaphaloides. A. rosea. Lilium  columblanum, Poa ampla. Arnica cordifolia. F r i t l l l a r l a 107 lanceolata, Lathyrus n u t t a l l i i , and Spiraea l u c i d a . Of these, the two Antennarla species and L l l i u m columblanum appear to be the most t y p i c a l of the association; though Arnica c o r d i f o l i a and F r i t i l l a r i a lanceolata, which are shared with the Symphoricarpos association, appear to play the more conspicuous roles i n t h i s association (Table 3)• Lathyrus n u t t a l l i i , while sometimes very abundant, does not flower strongly, and may remain an inconspicuous member of the stands. Other associates include: Pachystima myrsln-i t e s , Pyrola secunda, Carex hoodil, Symphoricarpos albus, Aster conspicuous, S a l i x bebbiana, Populus tremuloldes and Thallctrum occidentale (Appendices 3 and ij.). The Calamagrostis union (Daubenmire, 1952 a) which dominates here, may be thought of as consisting, i n t h i s area, of: Calamagrostis rubescens, Antennarla anaphaloides, A. rosea, L l l l u m columblanum. F r i t i l l a r i a lanceolata, Arnica c o r d i f o l i a , Poa ampla. Carex hoodil, and Lathyrus  n u t t a l l i i . Members of the Arctostaphylos. Agropyron, and Symphoricarpos unions may also be found i n t h i s com-munity. The boundary between t h i s association and the Agropyron association, on the basis of the understory composition, i s usually quite sharp, though tree growth i n adjacent stands on either side of the boundary i s usually s i m i l a r . Stands occupying marginal sit u a t i o n s between these two associations often show mosaics of Agropyron-and Calamagrostis- dominated understory communities, 108 conditioned by slight changes in r e l i e f , or position relative to tree shade. Pinus ponderosa, i n this association, plays the part of a pioneer dominant; sometimes sharing the role with Larix occidentalis, within the range of the latter species. Pinus contorta may also be present, as well as small families of Populus tremuloldes (Fig. l i d ) ; also playing serai roles. Pinus ponderosa colonizes stands after opening of the canopy by f i r e , and grows very fast in this situation. Mature trees average \\.2 inches i n diameter, and 135 feet in height (Table 4, and Fig. 10a). However, once the canopy has become well f i l l e d with mature trees, the pine f a i l s to regenerate ade-quately under i t , and Pseudotsuga, which i s more tolerant of the cool, relatively moist, shade, reproduces successfully, as i s best shown in stand \\$ (Appendix 9 ) , forming an almost closed canopy with the second generation. Pines which per-sist long i n this canopy must endure much shade from the side while receiving light from above, and so tend to develop long, well pruned trunks and short crowns. If the stand endures for a long enough time without further disturbance, Pseudotsuga ultimately assumes complete dominance as the stand approaches the climax condition. A good example of this stage is stand 103 (Fig. 12a), which i s a s t r i c t l y Douglas-fir dominated stand; though a number of old logs of Ponderosa pine lying on the ground, and one barely surviving tree of this species, indicate the former composition of this stand. It i s noted that one or two young trees of Fig. 12. a. A Calarnagrostis stand (no. 103) in the climax stage, under a Pseudotsuga canopy, b & c. Symphoricarpos association, b. Ungrazed stand (no. 61). c. Stand 71; heavily grazed and partially cut. The reproduction i s Pseudotsuga. 109 Plcea engelmannii were seen in this stand, perhaps indicating a further trend in succession in this community. Judging from the relative extents of climax and disclimax stands of this community that have been found i n this work, i t appears that the climax is none too often attained. Clark (1952) in describing the growth in the mixed pine and Douglas-fir stands, some of which, i n the Brookmere area, are probably of this association, notes that the composition of the reproduction, which i s 80 to 95 P©r cent Douglas-fir, foretells the composition of future crops. He apparently f a i l s to note the successional significance of this fact, and treats the two species as though they were of equal value. In Appendix 9 the Calarnagrostis stands are arranged in order of their relative successional stages. In stand 30» and more so in stand 1±6, many Douglas-fir seedlings were too small to be t a l l i e d in this count. Stand ij.5 reveals the heavy Douglas-fir reproduction arising, while stand 103 is in virtually the climax state. The climax state of this association i s a r e l -atively undesirable phase, from the point of view of u t i -lization, for two reasons. The most important timber tree here, commercially, i s Ponderosa pine, which owing to the high degree of side shading that i t receives in this assoc-iation, shows i t s natural tendency to prune i t s lower branches, thus forming f a i r l y long clear trunks (see Chapter V); while Douglas-fir, on the other hand, maintains i t s branches lower, 110 and develops a more tapered, more knotty bole. The wood of the latter tree i s more b r i t t l e than that of Ponderosa pine here. Calamagrostis rubescens and Lathyrus n u t t a l l i i are important forage plants, the latter particularly so in the Brookmere d i s t r i c t , and make this association the best of the forest grazing lands. For this reason, and because of i t s great extent, this community is extremely important for livestock pasturage i n summer. It reaches i t s greatest productivity at a relatively early stage i n succession while the canopy is s t i l l p a r t i a l l y open, and the forest floor well l i t . As the climax state is approached, and the canopy closes up, shading the forest floor and depositing abundant needle l i t t e r ; the yield of forage decreases signi-ficantly, especially i f young Douglas-fir i s present in abundance (Tisdale, 1950). Thus i t i s seen that f i r e has been an important factor in promoting and maintaining good grazing land here. Overgrazing i n early stages of this association may result in increased reproduction of pine as the grass competition i s reduced (Rummel, 1951), and in later stages, may cause increase i n Douglas-fir reproduction, with a consequent further reduction i n forage. Tisdale (1950) has found excellent forage yields under serai stands of Populus trerouloides. Such pure poplar stands have not been found in this work; and though this tree i s f a i r l y com-mon in small groups or families in this association, the poplar trees, at least when in competition with coniferous species are always small. It i s noticeable, however, that the herbaceous understory often becomes denser and richer under poplars than elsewhere (Pig. l i d ) . It is regrettable that the present logging method which result in the selective removal of the best quality ponderosa pine are actually tending to hasten the natural process of succession toward the relatively undesirable, unproductive, Douglas-fir climax. It i s manifestly desir-able to maintain stands of this nature in a state of dis-climax, with Pinus ponderosa the dominant tree. Rather than eliminate the Douglas-fir entirely from such stands and make Ponderosa pine the sole tree species, however, i t would be preferable to retain Douglas-fir in the stands i n moderate proportions, in view of the greater contribution made by the needle l i t t e r of this tree to the nutrient con-tent of the upper layers of the s o i l (Daubenmire, 1953), and Tarrant .et a l , 1951). For the same reason, Populus  tremuloldes should also probably be encouraged to some extent, especially as, additionally, increases in amount of this species, which may be a serai dominant in some areas of this association, are associated with richer covers and greater yields of forage plants (Tisdale, 1950). The author understands that measures of such a nature are now actually being taken on one management license area in this region. 112 7. Pseudotsuga menziesll - (Pinus ponderosa) - Symphor-Icarpos albus Association (Sy). Daubenmire (1952 b) des-cribes a Pinus ponderosa - Symphoricarpos association, and considers i t as climax at moderate elevations i n east-ern Washington and northern Idaho. In the southwestern interior of Brit i s h Columbia, at least west of the Okanagan Valley, this association i s unrepresented as such. Stands i n which the Symphoricarpos union underlies a ponderosa pine canopy do occur, but in a l l the stands analysed in this project, with the possible exceptions of stands 59 and 118, the pine appears to be a serai dominant to a Douglas-fir climax. The writer has observed, however, some stands of a Pinus ponderosa - Symphoricarpos albus associa-tion in the Kettle Valley, to the east of the area here studied. The Symphoricarpos association, as generally found in this area, appears to be topographically condit-ioned, in situations where the l i e of the land suggests some degree of convergence i n the drainage pattern. How-ever, there are situations (e.g. stand 71) where this does not appear to be the case, and where the association occurs on upland situations of normal slope and apparently normal drainage. In this region, the association i s best rep-resented on the east slopes of the Okanagan Valley, and to the north of i t . Here, i t usually occurs at moderate to high elevations; but sometimes Symphoricarpos communities extend i n tongues down draws into the Pinus ponderosa zone, or occasionally into the steppe. The climate of this association (Appendix 7) has been found, on the basis of two stands on the east side of the Okanagan Valley, to be distinctly moister than that of any other association here studied, and to have a some-what higher proportion of i t s precipitation during the summer months. The records for evaporation are incomplete, by reason of repeated damage to the atmometers installed i n these stands, but from the records obtained i t i s evident that the evaporation i s much lower than in other associa-tions. The P/E ratio i s thus found to be at least four times that found i n any stand of another association. The low evaporation is no doubt partly due to the effect of the relatively dense shrubby understory, but i t should be noted that in stand 71, where the understory had been largely grazed down by livestock, and some opening of the stand by cutting had already begun at the time of study, the P/E ratio i s s t i l l quite high. It i s thought that the associa-tion may be more closely associated with the rather moister climatic areas east of the Okanagan Valley. The understory of this association i s shrubby, and consists of a number of woody species (Pigs. 12 b and c of which the dominant i s Symphoricarpos albus. Associated shrubs include: the abundant Spiraea lucida, Salix bebblana  Acer glabrum. Prunus virginlana. and sometimes Berberis aquifollum. Crataegus douglasii. and the liana. Clematis 114 columblana. The Calarnagrostis union Is represented here by Calarnagrostis rubescens. Poa ampla, Carex hoodii, Arnica cordifolia. and F r i t i l l a r l a lanceolata; while Aster  consplcuus and Osmorhiza chilensls reach peaks of abundance and presence here which definitely link them with this association (Table 3 ) . Pour t e r r e s t r i a l mosses show links with this association, namely: Mnium spinulosum, Calller-gonella schreberi, Rhytldiadelphus trlquetrus. and Drepanocladus uncinatus. It appears that there are several unions closely associated with this community. The Symphoricarpos union (Daubenmire, 1952 a and b) includes here: Crataegus douglasll. Prunus virginiana, Spiraea lucida, Berberi3 aqulfolium. Clematis columblana, Galium boreale, Aster consplcuus. Elymus glaucus, and Osmorhiza chilensls (Appendices 3, 4* and 10). Rosa nutkana, (including R. spaldingll) which i s included in this union by Daubenmire, i s so broad in i t s ecological a f f i n i t i e s , and so widespread among the assoc-iations in this region, that the present author hesitates to consider i t a member of the Symphoricarpos union here. A Rhytldiadelphus union, represented by the mosses l i s t e d above, plus perhaps Hylocomium splendens. i s probably better represented in the forests of the moister climatic regions of this province. Another union, of arboricolous lichens, which also appears to be associated with this relatively moist forest association, comprises: Cetraria .junlperlna. Nephromopsis platyphylla. Ramalina farinacea. Usnea hirta. 115 and Alectoria jubata. Cetraria glauca, and Parmella physodes (Appendices 3 and ij.), of widespread occurrence, become most common and vigorous in this association; while Letharia yulpjLna, common elsewhere, here sinks to a relatively low level of abundance, at least near the ground. A l l these lichens tend to be more abundant on Douglas-fir than on the pine. In this region, Pinus ponderosa plays the part of a serai dominant in the Symphoricarpos association, some-times accompanied by Larix occidentalis east of the Okanagan Valley. Populus tremuloides i s sometimes seen as a pioneer dominant of this association, forming a temporary Populus  tremuloides - Symphor1carpos subassociation. In this case the poplar grows to a greater size than i n the Calamagrostis association. Ponderosa pine here grows at a rate which differs very l i t t l e from that in the Calamagrostis associa-tion, and reaches about the same size. Mean dimensions of mature trees are: d.b.h., lj.0 inches, and height, 130 feet (Table 4> and Pig. 10b). The canopy here, as i n the prev-ious communities, tends to close up and prevent effective pine regeneration, except near the margin of the stand where It adjoins an Agropyron stand. Douglas-fir, however, esp-ecially after later disturbance of the understory, as by ground f i r e , grazing, or cutting, may regenerate in almost impenetrable thickets, as seen in stand 71 (Pig. 12c and Appendix 9 ) . The current method of 'selective' cutting, 116 here as i n the previously described association, tends to accelerate the succession of the stand toward a Douglas-f i r climax. Grazing and browsing, in this association, i s f a i r for cattle; and probably i s more favourable for animals of the deer family, which are more partial to the browsing of shrubby species ( H i l l and Harris, 1914-3). Under conditions of over-grazing and over-browsing, the shrubby vegetation, an example of which i s seen in stand 61 (Pig. 12b), may be reduced, the Symphoricarpos tending to be replaced, i n part at least, by Poa pratensis (Daubenmire, 1952 b), as has been noted i n stand 71. If a stand i n this condition i s protected for a year or so, i t may thereafter show improved grazing qualities under moderate grazing intensity for the next few years, u n t i l the shrubs once more regain dominance over the grasses. It has been noticed that in some cases where an Agropyron grassland bordering a Symphoricarpos stand becomes overused by livestock, Symphoricarpos albus, accompanied by Prunus virgin!ana. Crataegus douglassii. Rosa nutkana, and Amelanchier a l n i f o l i a . may encroach on this grassland, thus extending the limits of their community. The result-ant shrub community may later be Invaded by the tree species, which thus complete the conversion of the Agropyron stand to a Symphoricarpos stand. 117 8. Populus trichocarpa - Rosa nutkana - Cornus stolonlfera  (Alluvial) Complex (AL). Unfortunately, and owing no doubt to a combination of productivity and accessibility, most of the stands of this type have been destroyed. A few relatively undisturbed stands, however, were found, prin-cipally i n the lower Similkameen Valley at elevations be-tween 1200 and 1600 feet. This series of communities i s characteristic of stream and river banks and flood plains. The s o i l where these stands were studied was found to be sandy or gravelly alluvium. It i s not known, however, to what extent texture affects communities of this nature. No climatic observations were made i n these stands. A succession of communities, a l l of which may be considered as serai by reason of the ecological i n s t a b i l i t y of their situations, extends back from the riverbank. Pour main stages have been recognized (Pig. 13a): a. Riverbank Shrubs. A zone of t a l l shrubs, including: Cornus stolonlfera. Salix lasiandra. S. fluv-l a t i l i s . and other Salix spp., and sometimes Blaeagnus  commutata, occupies the most recently exposed ground. b. Deciduous Woodland. A Populus trichocarpa -Betula papyrifera union grows up rapidly through the riverbank shrubs to form a continuous canopy of trees, which i s divisible into two or three layers on the basis FLOCP PL»IN foWUNITlCS. CHOMKQ B.C Fig. 13 . a. Schematic section showing the succession of communities making up the Al l u v i a l complex, b. Ranges of growth- curves for Pinus ponderosa in the A l l u v i a l complex. 118 of r e l a t i v e height. Populus trichocarpa makes up the upper-most layer, which has an almost l e v e l , continuous upper surface made up of the merged crowns of these trees, indiv-iduals of which may a t t a i n to f i v e feet i n diameter, and 120 to 130 feet i n height, trees of widely d i f f e r i n g d i a -meters contributing to the same l e v e l canopy top. Populus  tremuloldes, some young specimens of P^ trichocarpa. and t a l l e r specimens of Betula papyrifera occupy a somewhat lower canopy layer. Acer glabrum, Alnus t e n u i f o l i a , and Betula papyrifera make up a s t i l l lower l a y e r , which merges with the t a l l e s t shrubs, among which are: Cornus s t o l o n l f e r a , S a l i x spp., and sometimes Corylus cornuta. Clematis l i g u s t i -c i f o l i a . Prunus v i r g l n l a n a , Rosa nutkana, and Rhus spp. may now enter t h i s multilayered community, which i s very dense and shady at t h i s stage. This community i s predominantly one of woody phanerophytes (Appendix ij. and P i g . 2 ) , and the herbaceous vegetation i s r e l a t i v e l y sparse, being represented mainly by Smilaclna s t e l l a t a , Equisetum spp., Carex spp., and sometimes A r a l i a nudicaulis and Athyrium  f i l i x - f e m l n a . Examples of t h i s stage are stands III4. and 117 (Appendix 2 and Pig. li+a and b). c Coniferous Phase. As d r i e r conditions are reached, Populus trichocarpa becomes l e s s vigorous, and the canopy tends to open out. At t h i s stage, i f aided by burning or temporary clearing of the stand, Pinus ponderosa may enter the community. I t s growth here i s exceedingly c. d. F i g . 14 . A l l u v i a l complex, a & b. Populus trichocarpa stands 117 & 114, r e s p e c t i v e l y . Lianas i n b are Clematis l i g u s t i c i f o l i a . c. Pinus ponderosa tree i n a d e c l i n i n g Populus trichocarpa stand (no. 88). d. T a l l grass meadow of EljMus condensatus at Keremeos. 119 rapid, and very large trees may be produced (Pigs. lt|.c and 13b). These penetrate the broken canopy and stand out as emergent trees above i t . Most of the largest trees had already been removed from the stands at the time of this examination, but from inspection of the stumps, and of the growth curves obtained from the trees measured, i t i s es t i -mated that this type of stand i s potentially capable of producing mature pines averaging 55 to 60 inches in diameter, and 155 feet in height. It is noted, however, that pine reproduction Is sparse or n i l unless further opening of the stand, including the understory, takes place. At this stage, the canopy may be f a i r l y open, and such shade intolerant species as Crataegus douglasii and Amelanchier a l n i f o l i a may enter the stand. Rhus glabra sometimes attains the dimensions of a small tree here, while radicans remains f a i r l y low, but may become exces-sively abundant. Rosa nutkana. while present i n nearly a l l associations, i s here distinguished by i t s great abundance, and a vigour which much surpasses that in any other forest type, i t sometimes forming dense thickets up to eight feet high. Some Cornus stolonifera usually persists through this stage, and Clematis l i g u s t l c i f o l i a climbs aggressively over the smaller trees of Betula. Alnus. or Populus tremul-oides. Important herbaceous species that enter at this stage include: Agropyron g r i f f i t h s i i . Elymus condensatus. Solidago lepida. and Apocynum cannablnum. Where grazed, 1 2 0 a number of Introduced forage species was found i n this community, including? Poa compreasa, Melilotus alb a,, and Agrostls alba (Appendices 3 and Ij., and Table 3) . Symphori-carpos albus and Elymus glaucus are often present in small amounts, representing the Symphoricarpos union, which with the Rhus union, i s often represented along with the Solldago  lepida union at this stage. d. High Grass Meadow or Savanna. Well back from the riverbank, where the drainage of the flood plain Is perhaps slightly impeded, the forest gives way to an open Pinus ponderosa savanna or a meadow consisting principally of Elymus condensatus. Seme of the shrubby species, such as Rosa, Prunus, and Rhus radicans, persist in this stage, but are reduced in size, and do not generally reach above the high grass, which i t s e l f may attain a height of six to eight feet (Pig. Uj.d) . Wide local variations occur in this complex of successional communities. Sometimes, on large, freshly exposed areas of river gravel near a suitable seed source, the conifers, Pinus ponderosa, or sometimes further north, P. contorta, seed in ahead of the poplars. In this way the s t r i c t l y deciduous woodland stage may be bypassed or de-layed. At other l o c a l i t i e s than those studied intensively in this work, the tree phases have been found to be rep-resented by other tree species than those mentioned above. Locally, Populus tremuloides may completely replace P_. trichocarpa; and the coniferous phase may be represented, further north, or at higher elevations, by Pseudotsuga  menziesli. Thuja plicata (e.g. stand 120) (Fig. 15, a and b), or by Picea engelmannii. It is to be regretted that very l i t t l e of this a l l u v i a l type of stand remains uncut, but the fact that the land usually has value for other purposes besides timber production must no doubt be taken into account. b. Fig. 15. Al l u v i a l complex, a. With Pseudotsuga, Thuja plicata, and Betula papyrifera, near Vernon, b. Stand 120, containing Pseudotsuga and Pinus ponderosa. 122 CHAPTER VIII DISCUSSION AND CONCLUSIONS 1. The concept of primary succession and the climax. The recognition of a climatic climax coannmity for this region, and the primary successions leading toward i t , is rendered d i f f i c u l t by a number of problems. In the f i r s t place, owing to the variation i n local macro-climate, and the additional climatic effects of the f a i r l y great range i n altitude of the land, i t is necessary to postulate a series of climatic climax communities rather than just one. The variation of climate with altitude w i l l thus induce a series of such climax communities replacing each other altitudinally. Further, i t is f e l t that, owing to the wide local variations in topographic and edaphic conditions which modify the effect of the macroclimate on the vegetation, the primary succession can seldom proceed to such a stage that the climate can be said to be the sole determining habitat factor. Finally, i t must be assumed that the climate and altitude w i l l remain constant at a given l o c a l i t y , while erosion of the land toward i t s ultimate peneplanation, and weathering of the s o i l toward one of medium, or loamy texture take place. This assumption, however, must be made in the face of the fact that the climate is known to change more rapidly with time alone than through any change in altitude or topography which may be due to the forces of erosion or land movement. It may, moreover, be pointed out that the pene-planation of the land w i l l i t s e l f affect the climate. Thus the writer concludes that the climatic climax association 123 for a region of this nature i s a hypothetical community. This is seldom attained, except by chance, as where the ideal topographical form and s o i l textural type, or conditions approaching them, have "been present since the f i r s t exposure of the land following the last recession of the ice sheet. Secondary succession, on the other hand, which returns a community towards a stable association following temporary dis-turbance of the pre-existing association, takes place more rapidly and is much more easily recognizable than is the primary succession. It i s i n view of the above aspects of the climax concept that the writer has f e l t that i t is more practical in this work to use the term 'climax' to include the topographic and edaphic climaxes, as well as the climatic climax. It is thus implied that the natural vegetation i n i t s mature state, in dynamic equilibrium with a highly variable total environment, is better described as a mosaic of topographic and edaphic, as well as climatic, climax associations, reflecting a pattern of habitat factors (Whittaker, 1 9 5 3 ) . Most of such associations would be regarded as serai in the terminology of Clements, and would thus be called 'associes' (or more closely in this case, ' f a d e s 1 ) , since they do not reflect climatic influences alone. However, in as far as they are i n more or less stable equilibrium with their particular habitat factors, they can be considered as climax in the broad sense of the term (Daubenmire, 1952 b). For this review and discussion of the dynamic relations between the various associations and subassociations, the assumption of peneplanation of the land surface without change in altitude or climate is conceded to be sound. 12^ 2 . The relations between topography, s o l i texture and vegetation. Other factors being equal, there appears to be a definite though not i n f a l l i b l e , relationship between altitude, slope, s o i l texture, and vegetation. It further appears that in the driest situations at the lowest elevations in the area, s o i l texture, through i t s effects on the a v a i l a b i l i t y of the meagre supply of moisture, is the most important factor determining vegetation types. With increasing altitude and dampness though,the topography, with its attendant drainage and exposure effects, becomes of progressively greater importance. The low a v a i l a b i l i t y of the s o i l moisture in a fine textured s o i l i s reflected in the zonal boundaries, which tend to l i e at higher altitudes on fine than on coarse textured soils. 3 . The topographic influence on zonatlon. It has been pointed out in Chapter VII that corresponding associations of the Pinus  ponderosa and Pseudotsuga zones may replace each other according to the slope, in places where the topography is a decisive factor for either one of them (Pig. 1 6 ) , and that the zonal boundaries tend to be depressed on north slopes and elevated on south slopes. In situations where this may take place the primary succession following levelling of the topography would involve changes from associations of one zone to associations of the other. For example: at moderate elevations, in the Pinus ponderosa zone, a Calarnagrostis stand occupying a north slope would change to a stand of the Aisropyron association upon reduction of the slope. Fig.16. Schematic section, from North to South, showing the topographic relations between communities, which are found in situations where the topography is decisive. 125 On the other hand, an Agropyron stand on a south slope at a higher elevation would undergo change in the opposite direction, to an association of the Pseudotsuga zone which is normal at that altitude. In this region, the Symphoricarpos association usually occupies situations, at moderate to high elevations, where drainage conditions enhance the moisture supply. This association may he expected, normally, to change ultimately to the Calarnagrostis association, which would "be the next drier type in a topographically determined series, as the depressions or re-entrants supporting the Symphoricarpos stand "become levelled out. But in some situations where the Symphoricarpos communities extend in tongues down draws into the Pinus ponderosa zone (or occasionally even into the steppe), the primary succession would he toward the Agropyron association, which usually occupies the surrounding land. On the other hand, the Rhus association which occupies topographical situations of enhanced moisture supply at low elevations, may he expected to succeed eventually to the Purshia association, as a result of the greater relative importance at low altitudes of the very coarse textured s o i l usually found i n such situations. The succession which takeB place in a l l u v i a l situations, through a series of shrub and tree phases to a meadow phase, has been described in detail under the A l l u v i a l complex. It seems l i k e l y that this succession may be broken off at any stage by a reversal or change i n the direction of the current ecological 126 trend, and be superseded by a correspondingly altered trend in succession. Since the s o i l l a i d down by the rivers of this region i s usually coarse, further succession toward the climatic climax may be expected to proceed via the Rhus and Purshia associations, at least at low elevations. # The effect of altitude and s o i l texture on the distribution  of associations. Apart from the effects of slope, mentioned above, i t has been found that s o i l texture is a factor which determines certain of the communities. At low elevations, with some exceptions, fine and medium textured soils are occupied by the Agro-pyron association, and coarser soils by the Purshia association; while at higher elevations, the finer soils support the Calamagrostis association, and the coarser soils the Arctostaphylos - Calamagrostis and Arctostaphylos associations. These last two associations have been hard to separate texturally on the basis of the few s o i l samples so far analysed. It is f e l t that the difference between them may be due to the influence of other factors not at present evident, and which may include some factors of an historical nature. An approximate relationship between altitude, predominant textural character of the s o i l , and associations is shewn graphically i n Figure 17. Primary succession involving the weathering of a l l soils to a medium textured loamy material without change in altitude, could be represented in Figure 17 by a general horizontal conver-gence from both directions towards the communities represented GPAVEL SAND LOAM CLAY SOIL TEXTURE Fig.17. Chart of the approximate relations between s o i l texture, altitude, and some associations. 12? "by a line drawn vertic a l l y upward above the word 'LOAM1. This line, i n the Pinus ponderosa zone, would traverse the Agro-pyron association, and in the Pseudotsuga zone, the Arctostaphylos -Calamagrostis association. Thus some forms of these two asso-ciations are considered to represent the climatic climax associations at their respective levels. 5 . The seria l arrangements of plant associations. It can be seen from Figures 16 and 17 that the plant communities can be arranged in three kinds of series in this region: These series are: the altitu d i n a l - climatic, edaphic, and topographic series; the latter two of which are equivalent to the ecological - edaphic series of Sukatchev ( 1 9 2 8 ) . Not a l l of these series.can be represented adequately in any one table or diagram. Over a larger region, geographical - climatic series (the ecological - geographical series of Sukatchev,) would also become apparent. Such series would differ in some respects from the alt i t u d i n a l - climatic series. These series may be taken to represent the trends i n primary succession which may be possible i n various situations and under various conditions or trends of change in the ecotope. The dynamic relations between the associations and subassociations are summarized for the two zones separately in Tables 5 6 . Successional trends between the zones, however, have been for the most part omitted to avoid confusion. T a b l e 5* Primary and secondary successional relationships between the various associations and subassociations of the Pinus ponderosa zone. ~ " 4a Pinus ponderosa -Arotostaphylos Subass'n. Pinus ponderosa -Purshia Ass fn. la Pinus ponderosa -Aristida Subass'n. Pinus ponderosa -Agropyron Ass'n. (ClimatTc climax) 2a J Pinus ponderosa -Stipa Subass'n. 2b Pinus ponderosa -Artemisia Subass'n. 2c Pseudotsuga -Agropyron Subass'n. 2d , Pseudotsuga -Stipa Subass'n. 3 Pinus ponderosa -Rhus Ass'n. 8 8a Alluvial) Cornus stolonlfera -Complex ; Salix spp. (Riverbank shrubs) Populus triohocarpa  Betula papyrifera (Deciduous woodland) Pinus ponderosa -Symphorioarpos Subass'n. ^ 7b N vPopulus tremuloides -Sympho r i ca rpo s ' Subass *n. Pinus ponderosa -_ Rosa nutkana (Coniferous phase ) ^ -^,8d r .^Elymus condensatus (meadow) Table 6. Primary and secondary successional relationships between the various associations and subassociations of the Pseudotsuga zone. Pseudotsuga - -Arotostaphylos Ass'n. A 4a Pinus ponderosa  Aroto staphylo s Subass'n. Pseudotsuga -Arotostaphylos -Calamagrostis 5b Pinus / Ass'n. (Climatic climax) contorta -Arotostaphylos -Calarnagrostis Subass'n. Pseudotsuga -• Calarnagrostis Ass'n. 6a: Pinus ponderosa  Calarnagrostis Subass'n. Pseudotsuga -• Symphorioarpos 7a Pinus 5a Pinus ponderosa  Arotostaphylos -Calarnagrostis Subass'n. / 2 Pinus ponderosa - Agropyron Ass'n. (on south slopes ) Ass'n. ' ponderosa -Symphoricarpos Subass'n. / Populn's  tremuloides — Symphoricarpos Subass'n. 2c Pseudotsuga -Agropyron Subass'n. 2d Pseudotsuga -Stipa Subass'n. 130 6 > The nature of the "boundaries between communities. It might be expected that as gradients in ecological conditions are found to exist, corresponding gradients, or continua, in f l o r l s t i c compositions of the communities w i l l also be found (Whittaker, 1 9 5 3 ) . This is true among a few of the associations found here, which grade into one another so imperceptibly that boundaries between them must be rather a r b i t r a r i l y drawn. This condition is true of the Arctostaphylos. Arctostaphylos - Calamagrostis. and Calamagrostis associations; and may be thought to represent the continuous process of primary succession from one association to another. In the majority of cases, however, i n this area at least, the associations are found to be f a i r l y clearly defined, and the tension zones or ecotones between them to be restricted in extent. It seems as though, where two or more plant populations or unions are i n competition for the dominance of a community, a t i p of the ecological balance in favour of one of them results i n that union assuming a degree of dominance out of proportion to the degree of favour which i t has received. This reaction would tend to narrow the boundaries between ecologically adjacent communities. It is further noticeable that the ecological and geographical limits of the understory types do not necessarily coincide with those of the ranges of dominance of the tree species. This is understandable when i t is observed how markedly the environment of the understory differs from that of the trees in the same stand. 131 7 . Secondary successions: a comparison of the effects of f i r e  and grazing. Secondary successions affecting the associations, which largely "by reason of the rapidity with which their succes-sive stages supersede one another, are relatively easily recog-nizable, have been discussed under the descriptions of the various associations. A few points of more general application are presented here. It is possible for two or more secondary successions to proceed simultaneously in the same stand. A good example of this can be shown by the Pseudotsuga - Symphoricarpos association. This association can undergo a secondary succession in i t s understory, from a temporary Symphoricarpos - Poa pratensis biotic disciimax, to the Symphoricarpos climax state (of the understory). At the same time, a succession may be taking place in the tree layer, where the successional dominance of Populus tremuloides or Pinus  ponderosa. is being replaced by the climax dominance of Pseudotsuga. These two types of succession may proceed almost independently of each other. Where grass and shrub unions are in competition for dominance, the effects of f i r e and grazing on the vegetation tend to be contrary to each other. Fire, to which shrubs are generally more susceptible than grasses, induces an encroachment of grassy vegetation onto areas formerly occupied by shrubs. At least some of the Aristida stands are examples of this effect. The advance may be perpetuated by repeated f i r e s . On the other hand, grazing of the relatively palatable grasses may, i f too intense, so reduce 132 their competitive a b i l i t y that shrub communities are enabled to invade the grassland. In regard to the latter change, i t has been noticed that where Agropyron grassland or parkland bordering a Symphoricarpos stand becomes overused, Symphoricarpos albus. accompanied by Prunus vlrginiana and Crataegus douglasll. may invade this grassland, extending the boundaries of their stand (see p. 1 1 6 ) . Trees may follow such an extension or may invade the wasted grassland directly. Modern f i r e control methods, by reducing the spread of grass f i r e s , provide further assistance to this process. Another example of the opposed influences of f i r e and grazing is provided by the relationship between the Agropyron association as i t occurs on fine textured soils and the Artemisia subassociation which is derived from i t (see p. 9 0 et sag,.). It has been noticed that in some areas where standB of the Artemisia grazing disclimax have been burnt, the shrub has been eliminated from the competition, and grass has a greater chance to regain i t s lost dominance, especially i f protected from grazing for a few years. Other effects of f i r e on stands are shown by a comparison between the Purshia association and the related Aristida sub-association. The elimination of Purshia trldentata from the com-munity apparently affects some improvement in the grazing quality and perhaps a l i t t l e improvement in tree growth. On the other hand, the extremely sparse regeneration of the trees i n the Aristida stands indicates that the shade of Purshia busheB is 133 necessary in these hot dry stands for the establishment of tree seedlings, through the amelioration of the s o i l surface tempera-tures to which these seedlings are exposed. The time at which a f i r e occurs can be important to the subsequent changes in a stand. A single f i r e immediately preceding a heavy seed year in the pine may lead to very dense regeneration, ultimate increase in the density of the canopy, and consequent reduction in the production of herbaceous material in the under-story. On the other hand, repeated f i r e s , such as may occur naturally in grassland or parkland areas, by destroying a large proportion of the tree seedlings, w i l l tend to maintain stands of an open park-like nature, with a relatively high production of herbaceous material. An example of the dependance of tree stocking and under-story type on animal stocking and f i r e has been observed in the North Okanagan Valley and adjacent d i s t r i c t s , where much land that formerly supported grassland or park-like stands of the Agropyron association i s now becoming occupied by relatively dense young stands of Ponderosa pine or Douglas-fir. The understory in some cases retains the original species composition, while becoming very reduced in density owing to the overstocking of the trees; but in other cases the grass is being replaced by a shrubby understory dominated by the Symphoricarpos union. It i s thought that a combination of the increased grazing intensity and the improved control of grass fi r e s associated with white settlement of the 134 d i s t r i c t may be the agency inducing this change. Such a stand may he expected to show reduced productivity as grazing land, and suppressed growth of the trees owing to the intense competition between them. The increased rate of regeneration i n many stands, with i t s attendant heavy overstocking and reduced forage density, together with the findings of Tisdale (1950) regarding the rela-tive grazing values of forest stands in different stages of succession, indicate the part that f i r e has played in the past in producing and maintaining good grazing land. The amount of the Agropyron association which at present exists in one or other of i t s grazing disclimax states indicates a need for a reduction i n the amount of livestock u t i l i z i n g this most heavily grazed association to a level which w i l l permit the more palatable grasses to be grazed while yet retaining their competitive capacity. 8. The relation between the habitat and tree growth and repro- duction. It has generally been noticed that, apart from the effects of disturbance, while tree growth is best on the finer textured soils ( s e e also Holtby, 19^7),-reproduction i s heaviest on soils o f coarser texture, (Haasis, 192l). Superimposed on t h i B , however, and d i f f i c u l t t o separate from i t , are the effects of disturbance. The heavy reproduction following disturbances, noticed in particular in stands of t h e Purshia and Agropyron associations have been discussed elsewhere. Examination of the growth curves for the associations suggests the advisability of cutting a l l trees to age limits, which w i l l vary from association to association. It may he noticed that the period of rapid growth persists somewhat longer in the better quality associations (Agropyron. Calarnagrostis. and Symphoricarpos associations, and the coniferous phase of the A l l u v i a l complex). 9 . The value of ponderosa pine in mixed stands. The successional trend from pioneer ponderosa pine dominance to climax Douglas-fir dominance in the mixed stands of the Pseudotsuga zone has been described. It has also been noted that the present logging methods, through removal of the pine, tend to accelerate this trend toward a climax stage which is of relatively low value from the point of view of both timber production and forage yield. These observa-tions demonstrate the desirability of maintaining such stands in their more productive earlier successional stages; and at a stocking density which provides enough shade to induce natural pruning of the pines, but not so much as to suppress these trees or the understory beneath them. In spite of the fact that the ponderosa pine is the most commercially valuable tree of this forest, the low nutrient content of i t s foliage compared to that of Douglas-fir or aspen poplar (Daubenmire, 1953) shows that i t may be desirable to maintain mixed stands of these trees, rather than pure pine stands, in order to maintain an adequate turnover of nutrients in the forest l i t t e r at higher levels. 136 1 0 . A need for farther research and establishment of research  reserves. The need for further research i n this forest region is strongly indicated. In particular, the "breadth of the ecological range occupied by the Agropyron association as defined here, the vari-a b i l i t y in i t s tree growth characteristics, and the diversity of i t s reactions to disturbance are too great to permit practical use of i t . This situation demonstrates a need for a more intense examination of this community and of the related steppe communities in order to produce a finer and more practical breakdown of this association than has been possible in this very introductory work. The need for further work is also indicated in order to establish the precise relationships between the Arctostaphylos and the Arctostaphylos - Calamagrostis associations, and between the Symphoricarpos association as found in this region and as found by Daubenmire (1952 b) further to the southeast. The extensive disturbance which has taken place in this forest region and the adjacent steppe communities, and the d i f f i -culty experienced by the writer in finding virgin stands for examination suggest a measure which would be of great use to further research into both the classification and the u t i l i z a t i o n of the vegetation. This measure is the establishment in this region of areas of natural vegetation as research reserves, representing a l l the known plant associations. These research reserves would need pro-tection from grazing as well as logging, and their u t i l i z a t i o n should be directed primarily for research purposes. Such measures have already been taken in the United States, and in the Province of Saskatchewan (Coupland, 195*0. 137 CHAPTER IX SUMMARY 1. A classification of the ponderosa pine stands in the Okanagan, Similkameen, Thompson, and Nicola Valleys has been carried out, and the stands divided between a number of associations, sub-associations, and a complex of azonal communities. 2 . The association used here is defined according to the' Third International Botanical Congress of 1910 (Braun-Blanquet, 1 9 3 2 ) , as a uniform plant community of definite f l o r i s t i c composition; but with additional stress on the environmental factors as diagnostic characteristics (Sukatchev, I 9 2 8 ; Krajina, 1933* Daubenmire, 1952 b). The f l o r i s t i c characterization is based on the specific composition of a l l the layers of a stand. 3 . The methods used included: f l o r i s t i c analyses of 121 stands by a system of visual estimates, after Braun-Blanquet, Domin, and Krajina. Scale values for abundance and dominance, and for vigour were assigned to each species as i t occurred in each layer of a community; the scale values of the several component stands being averaged in the f i n a l synthesis of each association. Presence and f i d e l i t y values derived in the synthesis were also assigned to the species. Measurements of diameters, heights, and ages of repres-entative trees in each stand were made and i n some cases the intensity of stocking was also measured. Soi l samples were obtained from many of the stands, and have been analysed by Ogilvie for pH and texture. Instrument stations to record climatic data were installed in several representative stands, and maintained for one year. The resulting data give an approximation of the climatic values for these forest stands. 4. The associations studied have "been found to f a l l into two main altitudinal zones. At relatively high levels occurs the Pseudotsuga zone, where Pseudotsuga menziesli is the climax dominant of the forest. Mature stands of this forest zone have a closed canopy. Here, Pinus ponderosa is a pioneer dominant only, maintaining i t s e l f in the stands only so long as the canopy is f a i r l y open. Below the Pseudotsuga zone, and "between i t and the steppe, l i e s the Pinus ponderosa zone, which may be absent under some conditions. Here Pinus ponderosa is the climax tree, and forms open, park-like stands, underlain by understory communities which are also typical associations of the ecologically adjacent steppe. The Pinus ponderosa zone may be considered as a zone of overlap or interfusion of the forest and steppe formations, between which i t l i e s . 5 . The following principal associations and subassociations have been recognized: A. Pinus ponderosa zone. 1. Pinus - Purshia association. l a . Pinus - Aristida subassociation. 2. Pinus - Agropyron association. 139 2a. Pinus - Stipa subassociation. 2b. Pinus - Artemisia subassociation. 3 . Pinus - Rhus association. B. Pseudotsuga zone. 4. Pseudotsuga - Pinus - Arctostaphylos association. 5 . Pseudotsuga - Arctostaphylos - Calarnagrostis association. 6. Pseudotsuga - Calarnagrostis association. 7 . Pseudotsuga - Symphoricarpos association. C. Azonal communities. 8. PopuluB - Rosa - Cornus (Alluvial) complex. These communities are described individually, with discussions of their f l o r i s t i c , edaphic, topographic, and climatic characteristics; tree growth and grazing qualities; and their successional relationships and the effects of present u t i l i z a t i o n . 6. It has been found that, while topography may be the most important factor determining vegetation types under the moister climatic conditions at high elevations, under the influence of the dry climate of low elevations in this region, s o i l texture becomes more important as a determining factor. 7 . Apart from topographical influences, i t has generally been found that at low elevations, i n the Pinus ponderosa zone, medium and fine textured soils are occupied by the Agropyron association and coarse soils by the Purshia association. At 140 higher elevations, in the Pseudotsuga zone, medium and fine textured soils support the Calamagrostis association and coarse s o i l s the Arctostaphylos - Calamagrostis and Arctostaphylos associations. The Rhus and Symphoricarpos associations are found in situations where seepage or drainage conditions enhance the supply of moisture in the s o i l . 8. The relationships of the Aristida subassociation to the Purshia association as a f i r e disclimax or as an immature Purshia association, and of the Stipa and Artemisia subassociations as grazing disciimaxes of the Agropyron association on coarse and fine textured so i l s , respectively, are described. The great extent of these grazing disclimax communities is also observed. 9. The writer's conclusion that the climax vegetation for the region is more practically described as a mosaic of several communities in equilibrium with a highly variable total environ-ment, rather than as a single climatic climax, is discussed and explained. 1 0 . The dynamic relations linking a l l the associations and subassociations are reviewed and discussed. The possible trends in primary succession, in relation to topography, altitude, climate, and s o i l , lead to the conclusion that the Agropyron and Arctostaphylos - Calamagrostis associations represent the climatic climax communities i n their respective zones, 1 1 . The secondary successional trends following disturbance of the associations are described. The differentiating effects of 141 f i r e and grazing on grass and shrub communities are compared, and i t is noted that grazing favours shrub over grass unions while f i r e has the opposite influence. It i s noted that while tree growth rates of ponderosa pine and Douglas-fir are favoured by fine textured soils, regeneration appears heavier on coarse s o i l s . Superimposed on the above effect, however, are the effects of disturbance on regeneration, which may be favoured by grazing and sometimes by f i r e and cutting. 12. The need for further research is indicated. A P P E N D I C E S APPENDICES Page 1. L i s t of stands analysed, with their l o c a l i t i e s and elevations 145 2. L i s t of species, with authors 149 3. Tables showing the abundance and dominance, and the vigour, of species i n each associa-tion 160 4. L i s t of a l l species found i n the analyses, with their l i f e form, presence and vigour . . . 197 5. Biological spectra of the associations and subassociations • • • • • • • • 213 6. Tables of percentage basal cover of plants . . 215 7. Tables of climatic data obtained from the instrument stations set out i n this project • • 218 8. Table of the mean values of the textures of s o i l samples • • • • 223 9. Frequency distribution of trees i n size (dia-meter) classes for several stands 225 10. The compositions and ecological roles of plant unions 229 11. Table showing the ecological roles of the tree species 234 APPENDIX 1. L i s t of stands analysed; with their l o c a l i t i e s  and elevations. Those stands not used for the f i n a l syn-theses of vegetation types are asterisked. Appendix 1. Locations and Altitudes of Stands Analysed. 1. Spius Cr. Valley, E side, about $ vol, S of Midday Cr. by rd. 3200' 2. Opposite Canford M i l l , N side H'way 8. 1900' 3. Princeton, 8 mi. W, on Coalmont rd. 300' above rd. 2500 » » " " 2900' 5. " » » » 3000' 6. Princeton, 2 mi. S. W of H'way 3. 2500' 7. " 7 mi. S. Slope E of H'way 3. 2600' 8. Oliver, 1 mi. SE, on Inkaneep I.R. on bench. 1100' 9. Osoyoos, 2 mi. HE, n " " foot of gully. 1000' 10. Oliver, 1 mi. E, on I.R. On bench S of rd. 1100' 11. " 1 mi.NE, on I.R. N of power line, E of canal. 1100 12. " " w " in shallow depression £ mi.N of 11. 1100 13. " 2 mi.NE, on bench W of Baldy Mtn. rd. 1100' lij.. Osoyoos, k ml. E, across Haines Cr. from H'way 3 . 2800 15. Oliver, k mi. W. W of Caws ton rd. 2000' 16. » » » » » » » i ml.S of 15. 2300 17. " 5 mi.N, on bench & N of Park Ranch rd. 1300' 18. n k mi.NNW. On bench ¥ of H'way 97. 1300' 19. " 1 mi.SE. W of Inkaneep Cr. rd. i ml. S of 8. 1100» 20. Okanagan Falls, 1 mi.SE. N side McLean Cr. rd. 1200' 21. Oliver, 2 ml. NE, on bench £ ml. N of 13. 1100' 22. M k ml. NE, Mouth of deep ravine i mi. N of Baldy Mtn. rd. 1500' 23. M 6 mi. NNE, on slope £ mi. SE of Gallagher L. 1200' 21}.. Okanagan Falls, 2 mi. NW. S of H'way 97. Ik00' 25. " 2 mi.E, S side McLean Cr. rd. IkOO' 26. Yellow Lake, on rock terrace S of middle of L. 2750' 27. Princeton, 3 mi. E, on golf course S of H'way 3 . 2000' 28. " 3 mi. ESE. Slope SE of tailings. 2400' 29. " 2 mi. E. Bench S of H'way 3, NE of tailings. 2200 30. " 8 mi. S on H'way 3. i mi. N of Whipsaw Cr. 3100' 31. " 8 mi. S " " " N side of rd. 2800' 32. " k mi. NW, on bench between Asp Cr. & rd. on W. 2600 33. " " " n i l l s i d e £ mi. W of 32. 2800' % . B n NNW. Face of terrace, E side Asp Cr. 2500' 35. Bromley, i mi. SE. N side of R. S side of rd. 1600' 36. " 1 mi. N. N of R. & rd. 1600' 37. Princeton, 6 mi. E. 1 mi. E of 5 mi. Cr. N of rd. 2100 38. 11 2 mi. S. \ mi. SE of 6. E side H'way 3. 2500» 39. 11 8 mi. ¥, on Coalmont rd. . 200' above rd. 2900' k.0. M M " H § mi. E of 39. 2900' 5 l . n " " S. i mi. SSW of 30. 3000* k2. Aspen Grove, 12 mi S, on H'way 5, E of rd. 3k00 • I4.3. Brookmere, 5 mi. E, S of rd. 3500' 44. " 7 mi. E, S of rd. 3850' k5. " 5 ml. E, N of rd. J ml. NE of k 3 . 3850' lj.6. " 6 mi. E, S of rd. 38OO' lj.7. Merritt, 10 ml. N, in Guichon Valley. E of rd. N of Steffens Cr. 3700' 147 48. Merritt, 8 mi NW. 5 mi. N of Lower Nicola. Bench W of Guichon Cr. 2600 1 49. " 6 mi. NW. 2 mi. N of Lower Nicola. Bench W of Cr. 2100 ' 50. " 7 mi. NW. Bench W of Guichon Cr. 2600' 51. " 7 mi. NW. " " «• » 1 mi. S of 50. 2300• 52. Dot, 5 mi.N. 5 mi. up Skuhun Cr. rd. 2300* *53. Spences Bridge, 3 mi. E. Eroded hillslope N of rd. 900' *54. Dot, 6 mi. NW. S of H'way 8. 1600« 55. Knutsford, 2 mi. NW. S of H'way 5 (1952). 2200' 56. Paul Lake, N of W end of L. 200 f t . above L. 2700' 57. Tranquille, 6 mi. WNW. 2100' 58. Vernon, 9 mi. SW. W of Carr's Ldg. rd. opposite L. 2000' 59. Oyama, 2 mi. NE. On bench above L. 1700' 60. Vernon, 7 mi. SE. 1 mi. W of Ravine L. bed of ravine, 1800' 61. 11 4 mi. E. Slope across gully from logging rd. 2600' 62. " 4 mi. S. N slope of Rattlesnake H i l l . 2000' 63. " " B £ mi. E of 62. 2000' 64. Chasm, 1 mi. E. N of old Cariboo Rd. 3600' 65. Clinton, 4 mi. NE. E side of H'way 2. 3400' 66. M 3 mi. NE. W of H'way 2. 3200' 67. " 6 mi. EKE. Hillside W of R. Bonaparte. 1700' 68. » 3 mi. ENE. Knoll E of Clinton Cr. 2800' 69. M " " Knoll W of Clinton Cr. ; 2800' 70. Kelo:wna, 3 mi. SW, 2 mi. S of Westside. E of H'way 97, on lot 2189 (before subdivision). 1600» 71. Winfield, 6 mi. E, on S side of Swalwell L. rd. Lot 3690. 3200' 72. Sumraerland 8 mi. SW, 2 mi.E of Shingle Cr. cross'g. 2400' 73. w 5 mi. WSW. On broad divide W of Shingle Cr. rd .2500' 74. Darke Lake. 1 mi. NNW of camp. 3300' 75. Paulder, 3 mi. W, S of Trout Cr. N side of rd. 3000' 76. Oliver, 6 mi. N, on bench S of mesa. W of R. 1300' 77. " 5 mi. N. On bench * mi. SW of 76. 1300' 78. " " " " " } mi. SW of 77. 1300' 79. Okanagan Falls, 2 mi. NE. Dry valley floor. 1500» 80. Oliver, 3 mi. SE. Shallow draw on second bench. 1400* 81. Ospyoos, 3 mi. N. E of L. Foot of Mika Cr. gully. 1100' 82. Oliver, 3 mi. SE, on second bench. f- mi. SW of 80. 1400» 83. " 2 mi. E, on second bench. S of power l i n e . 1500 1 84. 11 3 mi. SSE. Alluvial 'fan' below gully. 1200' 85. " 4 mi. NW. i mi. SW of 18. On bench. 1300' 86. " 2 mi. NE. Stony creek bottom. 1100' 87. Okanagan Falls, 1 mi. SW. Steep slope above rd. 1300' 88. Keremeos, 10 mi. S. Chopako I.R. | mi S of ry. bridge, on E side of ry. 1200' 89. Princeton, 8 mi. S, on Copper Mountain rd. E of rd. 3000' #90. Skagit Valley, | mi. N of Internat'l Bdy. W. side of R. Lot 222. 1600' 91. Osoyoos, 4 mi. E. S side steep knoll 1 mi. N of H'way 3. 3600' 1^ 8 92. Osoyoos 2 mi NE. Low sandy bench £ of L. 1000» 93. " 4 mi. E. $ mi. NE of 14. S side Haynes Cr. 3000' 94. " " " f mi. N of 14. N side " n 2800' 95. Oliver, 4 mi* N. i mi. S of 77. steep face of terrace. 1100' 96. Okanagan Palls, 2 mi. NE. £ mi. NW of 79. Entrance of dry valley. 1500 » 97. Osoyoos, 4 ml* E. i mi. NE of 14. S side Haynes Cr. 2800' 98. Oliver, 6 mi. E, & mi. N of Baldy Mtn. rd. 2900' 99. Aspen Grove, 9 mi. S. E side of H'way 5. 3400' 100. Canford, 4 mi. NW. Pace of terrace N of H'way 8. 1800' 101. 3 mi NW. Steep slope N of H'way 8. •§• mi. SE of 100 2000 • 102. Dot, 5 mi. NW. 1 mi. SE of 54. Astride H'way 8. 1700' 103. Nicola, 5 mi N, on Skwakum Mtn. rd. 4400• 104. Kelowna, 3 mi. NE Hillside 3/4 mi. W of Kelowna Cr. 1800• 105. " 5 mi. NNW. Level shoulder, S end Bluegrouse Ridge. 3100' 106. Clinton, 4 mi. NE. £ mi. W of 65. Between H'way 2 & Ry. 3400' 107. Clinton, 15 mi. NE. N slope of Bonaparte Valley. 3400' 108. Brookmere, 10 mi. E, on rd. 3400' 109. Princeton, 16 mi. S. i mi. N of Sunday Cr. £ mi E. of H'way 3. 4000' 110. Chopako, J mi. E, adjoining Internat'l Bdy. 1200' 111. " (sta) 1 mi. N. W side rd., S of Snehumption Cr. 1200' 112. " 2 mi.HE. 1 mi. E of 111. 1200' 113. " 2 mi.NE. i mi. N of 112. 1200' 114. " 6 mi. N. i mi. N of 88. E side of Ry. 1200' 115. " 5 mi. N. On R bank of River, 1200' 116. Kelowna, 3 mi. NW. S slope of terrace ^ mi. S of Lambly Cr. crossing. 1300' 117. Vernon, 6 mi. SE. £ mi. E of school, N. bank of Coldstream Cr. 1500' 118. Chase, 3 mi. SSW. Hillside E of H'way 1. 1300' 119. Hedley, 5 mi. SSE. W bank of R. 1600' 120. " 6 mi. SSE. W bank of R. 1600' 121. " 6 mi. SSE. Bench at graveyard, £ mi. W of R. 1700' * Stands not included in f i n a l synthesis of data. APPENDIX 2. Li s t of specie a, with authors, which have been found to occur in the Pinus ponderosa stands i n the south-western interior of Brit i s h Columbia. In some cases where the nomenclature i s doubtful, alternative names are given. i 5o Appendix 2 . L i s t of species, with t h e i r authors, which have been found to occur i n the Pinus ponderosa  stands i n the Southwestern I n t e r i o r of B r i t i s h  Columbia. Acarospora Schleicher! (Ach.) Mass. Acer glabrum Torr. A. negundo L. A. platanoldes L. A c h i l l e a m i l l e f o l i u m L. var. lanulosa (Nutt.) Piper Agoserls aurantlaca (Hook.) Greene As. glauca (Nutt.) Greene var. dasycephala T. & G. (A. scorzoneraefolia (Schrad.) Greene) A. h e t e r o p h v l l a ( N u t t . ) Greene Agropyron dasystachvum (Hook.) Scribn. A. i g r l f f i t h s i ! Scribn. & Smith. A. s m i t h i i Rydb. A i spicatum (Pursh) Scribn. & Smith, var. inerme Heller A. s. var. spicatum A. subsecundum (Link) Hitchk. A. trachycaulon (Link) Malte Agrostis alba L. . A l e c t o r i a chalybelformis (L.) Roehl. A. fremontii Tuck. A. .iubata TL.) Ach. A. sarmentosa Ach. Allium cernuum Roth Alnus t e n u l f o l l a Nutt. Amaranthus graeclzans L. A. retroflexus L. Amelanchier a l n i f o l l a (Nutt.) Nutt. (including Aj. C u s i c k i i Pern.) Androsace occldentalls Pursh f o r Androsace sp. Anemone multifIda P o i r . Antennarla anaphaloides Rydb. A. dimorpha T. & G. A. h o w e l l i i Greene A. p a r v i f o l l a Nutt. (= Aj. d l o l c a Gaertn. ?) A. racemosa Hook. A. rosea TD.C. Eaton) Greene Apocynum androsaemifoHum L. A. cannabinum L. Aquilegia formosa Fischer Arab!3 glabra TL.) Bernh. A. m o l b o e l l l i Hornem. A. puberula Nutt. A r a l i a nudicaulis L. Arceuthobium amerlcanum Nutt. A. douglasii Engelm. 151 Arctostaphylos uva-ursi (L.) Sprang. Arenarla f ormoaa Fischer Aj, tenella Nutt. Aristida longiseta Steud. Arnica cordifolia Hook. A. fulgena Pursh Arrhenatherum elatius (L.) Presl Artemisia campestris L. subsp. paclfica (Nutt.) H. & C. A. discolor Dougl. A. dracunculus L. subsp. glauca (Pallas) H. & C. (A. dracunculoides Pursh) A* f r i g i d a Willd. A i ludoviciaha Nutt. i n c l . var. gnaphalodes (Nutt.) T. & G. A. tridentata Nutt. " A. t r i f i d a Nutt. A± tridentata var. t r i f i d a (Nutt.) H. & C. Asclepias speciosa. Torr. Asparagus o f f i c i n a l i s It, Aster canescens Pursh A. consplcuus Lindl. A. douglasii (Lindl. A. ericoides L. A. fremontli Gray A. laevis I*. A. occidentalis Nutt. Astragalus Beckwithii T. & G. A. canadensis L. A. lo t i f l o r u s Hook. A. purshii Dougl. A. serotinus Gray A. atenophyllus T. & G. A. tenellus Pursh Athyrium filix-femina (L.) Roth Balsamorhiza sagittata Nutt. Barbilophozia hatcheri (Evans) Loeske Berberis aquifolium Pursh Betula papyrifera Marsh i n c l . var. occidentalis (Hook.) Sarg. Boletus sp. — Braehytheclum albicans (Neck.) Br. & Sch. Bromus breviariatatus Buckl. B. carinatus Hook. & Arn. B_. inermi s Leyss. B. japonleus Thuhb. B. marginatus Nees B. mollis L. B. racemosus L. B. tectorum L. Bryum canariense Brid. Calarnagrostis rubeacens Buckl. (C. Sukadorfii Scribn.) Calliergonella achreberi (Br. & Sch.) Grout Calochortus macrocarpus Dougl. Calypso bulbosa (E.) Oakes Campanula rotundifolia L. 152 Carex concinnoides Mack. O. f e s t i v e l l a Mack. Ci f i l i f o l i a Nutt. C. nbodii Boott C. praticola Rydb. C. r o s s i i Boott C. siccata Dewey C. xerantlca Bailey Ca s t i l l e i a angustifolia (Nutt.) G. Don C± luteseens(Greenra.) Rydb. C miniata Dougl. Ceanothus sanguineus Pursh C. velutlnus Dougl. Cephaloziells byssacea (Roth) Warnst. Ceraatium arvenae L. Ceratodon purpureus (Hedw.) Brid. Cetraria juniperina (E.) Ach. var. canadensis Ach. IL glauca (L.T Ach. .C. islandica (E.) Ach. C scutata Twulf) Poetsch Chaenactis dduglasii (Hook.) Hook. & Arn. Chenopodium album. L. C. botrya E. Chimaphila umbellata (E.) Barton Chrysopsla villoaa (Pursh) Nutt. Chrysothamnus nauaeoaua (Pall.:)' B r i t t . C. viscidlflorus (Hook.) Nutt. Circaea alpina E. Ciraium arvense E. C. arummondii T. & G. C. lanceolatum H i l l C. undulatum Spreng. Cladonia carioaa (Ach.) Spreng. C. carneola Pries £. chlorophaea (Plk.) Spreng. C. pyxidata (L.) Hoffm. var. chlorophaea Plk. C± coccifera (E7) Willd. Cladonia coniocraea (Plk.) Spreng. deformls (E.) H0ffm. Oj. flrabriata (E.) Pries C. furcata (Huda.) Schrad. C. .gracilis (L.) Willd. C. mitia Sandst. C nemoxyna (Ach.) Nyl. Sjl pyxidata (E.) Hoffm. C. squamosa (Scop.) Hoffm. JL. v e r t i c i l l a t a Hoffm. Clarkia pulchella Pursh Claytonia lanceolata Pursh C. linearis Dougl. C. perfoliata Donn 153 C. spathulata Dougl. Clematis columbiana (Nutt.) T. & G. <L. l l g u s t l c l f o l i a Nutt. Collema cr!spurn (L.) Wigg. Colllnsia parviflora Dougl. Comandra pallida A.DC. Corallorrhiza maculata Raf. Cornlcularia C a l i f o r n i a (Tuck.) D.Rietz Cornus stolonlfera Michx. Corylus cornuta Marsh, var. californica (A.DC.) Sharp Crataegus "douglasli Lindl. Crepis acuminata Nutt. C. atribarba Heller Cryptantha a f f i n i s (Gray) Greene . C. ambigua (Gray) Greene C. humilis (Gray) Payson C. leucophaea (Dougl.) Payson Cynoglossum officinale L. Cypripedium montanum Dougl. Cystopterls f r a g i l i s (L.) Bernh. Danthonia splcata (L.) Beauv. Delphinium blcolor Nutt. Deschampsla elongata (Hook.) Munro Dicranum fuscescens Turn. D. ma .jus Smith D. scoparium Hedw. D. stri ctum Schleich. Disporum trachycarpum (S. Wats.) Benth. & Hook. Dodecatheon meadia L. var. puberulum Nutt. Draba verna L. Drepanocladus uncinatU3 (Hedw.) Warnst. Elaeagnus commutata Bernh. (fj. argentea Pursh not Moench) Elymus canadensis L. Ej. condensatus Presl (Mostly var. pubens Piper) B. glaucus Buckl. E. innovatus Beal Encalypta sp. Eplloblum adenocaulon Haus. JE. angustifolium L. E. minutum Lindl. ( i n c l . E. panlculatum Nutt.) Equisetum arvense L. E. hyemale L. E. laevigatum A.Br. firigeron canadensis L. E. compos!tus Pursh E. eorymboaus Nutt. B. f l l l f o l l u s (Hook.) Nutt. E. fl a g e l l a r l s Gray E. peucephvllus Gray E. pumilus Nutt. E. speciosus DC. E. strigosus Muhl. Erlogonum heracleoides Nutt. E. niveum Dougl. Erysimum inconspicuum (S. Wats.) MacM. Euphorbia glyptosperma Engelra. Eurhynchlum strlgosum (Hoffm.) Bry. Eur. Festuca subulata Trin. P. occidentalia Hook. i n c l . J\ idahoensis Elmer (F. ovlna L. var. ingrata Hack.) P. oetoflora Walt. F. ovlna L. P. paciflea Piper F. scabrella Torr. Pomes l a r i c l s (Jack.) Murr. Fragarla bracteata Heller jj\ vlrglniana Duchesnft var. glauca S. Wats. F r i t i l l a r i a lanceolata Pursh F. pudica (Pursh) Sprang. Funaria hygrometrica Hedw. Gaillardia arlstata Pursh Galium boreale E. G. triflorum Michx. Gayophytum ramosissimum T. & G. Geaster sp. Gentiana amarella L. G. glauca P a l l . Geranium viscosisslmum Pisch. & Mey. Geum triflorum Pursh G i l i a aggregata (Pursh) Spreng. Jis. g r a c i l i s Hook. (Collomia gracilis Dougl.) G. grandiflora (Dougl.) Gray, not (Benth.) Steud. (Collomia grandlflora Dougl.) G. l i n e a r i s ( N u t t . ) Gray rCollomia linearis Nutt.) £ j . Pungens Benth. not Dougl. Leptodactylon pungens (Torr.) Nutt. — 6  G. sinuata Dougl. Goodyera menziesli Lindl. Grlndelia squarrosa Dunal Habenarla unalaschensis l(Spreng) Macoun Haplopappus carthamoides (Hook.) Gray Helianthus fluslckll Gray H. giganteus E. Heracleum lanatum Michx. Heuchera cyllndrica Dougl. ( i n c l . H. ova l i f o l i a Nutt.) Hieraclum albiflorum Hook. H. canadense Michx. H. cynoglossoldes Arvet. Holodiscus discolor (Pursh) Maxim. Hosack!a denticulata Drew Humulus lupulus L. Hydrophvllum capitaturn Dougl. 155 Hylocomium splendena (Hedw.) Bry. Eur. Hypericum perforatum L. Impatlens b i f l o r a Walt. Iva xanthifolia Nutt. Juneus balticus Willd. Juniperus communis L. var. montana Ait. J. scopulorum Sargent Koeleria crlstata (L.) Pers. Lactuca pulchella (Pursh) DC. L. scariola L. Lappula myosotis Moench (L. enhinata Gilib.) Larlx occidentalis Nutt. Lathyrus n u t t a l l i i S. Wats. Lecanora paciflea Tuck. Lecidea lurida foill.) Ach. L. rubiformis Wahl. Lepidium densiflorum Schrad. L. perfoliatum L. Lesquerella rdouglasii S. Wats. Letharia vulpina (LT) Hue Lewisia redivlva 'Pursh, Lilium eolumblanum Hanson Linnaea borealls L. Linum l e w i s i i Pursh Lithospermum incisum Lehm. L. ruderale Dougl. Lomatium ambiguum (Nutt.) Coulter & Rose L. dissectum (Nutt.) Math. & Const. L. macrocarpum (Hook. & Arn.) Coult. & Rose L. nudicaule (Pursh) Coult. & Rose L. piper! Coulter & Rose L. triternatum (Pursh) Coult. & Rose L. utriculatum (Nutt.) Coult. & Rose Lonicera c i l i o s a (Pursh) Poir. L. involucrata (Rich.) Banks L. utahensis S. Wats.. Lupinus nootkatensis Donn L. serlceus Pursh Madia exigua (Smith) Greene Marchant!a polymorpha L. Medicago satlva L. Melampyrum lineare Desr. Melllotus alba Desv. Mentzelia albicaulis Dougl. M. laevlcaulls (Dougl.) T. & G. Mertensia longlflora Greene M. oblonglfolla (Nutt.) G.Don. M. panlculata (Ait.) G. Don. Microseris nutans Schultz Mimulus floribundus Dougl. M. guttatus Fischer Mitella nuda L. Mnlum spinulosum Br. Menarda flstulosa L. 156 Muhlenberg!a mexicana (L.) Trin. M. !ri chard sonis (Trln.) Rydb. Mycoblastus alpinus (Pr.) Kernst. Nephroma laevigata Ach. . Nephromopsis platyphylla (Tuck.) Herre Oenothera biennis L. Ch pallida Mndl. Opuntla f r a g i l i s (Nutt.) Haw. 0. polyacantha Haw. Orobanche fasciculata Nutt. Orthocarpus tenuifolius (Pursh) Benth. Oryzopsls hymenoldes TRoem. & Schult.) Ricker 0. exigua Thurb. Osmorhiza chilensis Hook. & Am. Oxytropis gra c i l i s (A. Nels.) K. Schum. 0. lambertli Pursh Pachystima myrsinites (Pursh) Raf. Pan! cum scribnerianum Nash Parmelia caperata (L.) Ach. P. olivacea (E.) Ach. P. Physodes (L.) Ach. P. saxatilis (L.) Ach. P. sulcata Tayl. Parmeliopaifl arabigua (Wulf.) Nyl. Peltigera aphthosa (L.) Willd. Us. canina IETF Willd. P. scutata (Dicks.) Duby P. venosa (L.) Baumg. Pentstemon confertus Dougl, ( i n c l . var. coeruleo-purpureus Gray) Pi frutlcosus (Pursh) Greene subsp. Scouleri (Lindl.) Pennell & Keck) P. ovatus Dougl. P. serrulatus Menz. Phacelia linearis (Pursh) Holz. P. leucophylla Torr'.. PhiladelphUB l e w i s i l Pursh Phleum pratense L. Phlox longifolia Nutt. P. speciosa Pursh Physocarpus malvaceus (Greene) Kuntze Picea gngelmannii Parry Pinus contorta Dougl. P. ponderosa Laws. Plantago major L. P. purshll Roem. & Schult. Poa ampla Merr. P. @anbyi (Scribn.) Piper P. compressa L. P. eusickii Vasey P. fendleriana (Steud.) Vasey 157 P. Interior Rydb. 3P. longiligula Scrlb. & Williams P. nervosa(Hook.) Vasey P. pratensis L. PJJ. scabrella (Thurb.) Benth. P. secunda Presl Pohlia cruda (L.) Lindb. nutans TSchreb.) Lindl. Polemonium micranthum Benth. Polygonum convolvulus L. P.- aouglasii Greene Polyporus Schweinltzii Pries Polystichum muniturn ([Kaulf.) Pres1 Polytrichum .juniperinum Hedw. P. plliferum Hedw. Populus tremuloides Michx. P. trichocarpa T. & G. Potentilla arguta Pursh P. glandulosa Lindl. P. g r a c i l i s Dougl. i n c l . var. flabelliformis (Lehm.) Nutt. P. monspeliensis L. ' P. pennsylvanica L. Prunella vulgaris L. Prunus emarginata Dougl. P. persica L. P_. virginiana L. var. demissa (Nutt.) Torr. Pseudotsuga menziesii (Mirb.) Franco P. tax i f o l i a (Lamb.) B r i t t . Psoroma hypnorum (Vahl.) S. Gray Pterospora andromedea Nutt. Ptilidlum pulcherrimum (Web.) Hampe Purshia tridentata (Pursh) DC. Pyrola chlorantha Sw. P. picta Smith P. secunda L. Pyrus communis L. P. malus L. Ramalina farinacea (L.) Ach. Ranunculus bongardi Greene (R^ occidentalis Nutt. var. L y a l l i i A. Gray) R. glaberrimus Hook. Rhinanthus c r i s t a - g a l l i L. i n c l . , here, R^  minor L. & R. borealis (Stern.) Chab. Rhus glabra L. R. radicans L. Rhytldiadelphus triquetrus (Hedw.) Warnst. Rhizocarpon alplcolum (Wahl.) Rabh. Ribes cereum Dougl. R. lacustre (Pers.) Poir. (R_j. oxyacanthoides L. var lacustrls Pers.) R. oxyacantholdes L. R. viscosisslmum Pursh Rinodlna (oanradli Koerb. 158 R. orbata (Ach.) Wainlo Rinodina sp. Rosa nutkana P r e s l i n c l . var. hisplda Pern. (R. Spalding Crepin) R i pisocarna A. Gray Rnbus strlgosns E. R. Idaeus E. var. strlgosns (Micfax.) Maxim. Rubus leueodermls Dougl. R. pa r v l f l o r u s Butt. Rumex acetosella L. Sa l i x bebblana Sarg. ^ f l u v i a t i l i a Butt. S t laslandra Benth Salsola k a i l L. Sambucus glauca Hut. (S. ooerules Raf.?) Sanicula graveolens Poepp. S T marvlandlca L. Saxifraga l n t e g r l f o l l a Hook. Sedum stenopetalum Pursh S e l a g l n e l l a rupestria (L.) Sprang, var. Wallace1 (Hieron.) Prye (S. Wallace1 Hieron.) Seneclo aureus L. var. b o r e a l l s Macoun S. canus Hook. S. exaltatus Nutt. (S. lugens Rich.?) Setaria glauca (L.) Beauv. Shepherdia canadensis (£.) HUtt. Sllene a n t i r r h i n a £. S. douglasii Hook. S. menziesll Hook. S. scouleri Hook. Sisymbrium altisslmum t . S. incisum Engelm. S i t anion h y s t r i x (Hutt.) J.G. Smith Smilaclna racemosa Desf. S. s t e l l a t a Deaf. Solldago canadensis Li. S. lepida DC. S. mlssourlensis Hutt. Specularla p e r f o l l a t a (L.) A.DC. Spiraea douglasii Hook. 1*. lttcida Dougl. (^ b e i t n l i f o l l a Pallas?) Splranthes romanzoffiana Cham. Sporobolua cryptandrua (Terr.) A. Gray S t e l l a r l a b o r e a l i s B i g e l . (S. calycantha Bong.) S^ longipes Goldie S. nitons Nutt. Stephanomeria t e n u l f o l l a (Torr.) H a l l (S. minor Nutt.) Stereoeanlon tomentosum Pries Stipa oolumbiana Macoun ' Bj, comata Tr i n . & Rupr. S. elmeri Piper & Brodie (§± v i r l d u l a var. pubescens Vasey) S. occidentalis Thurb. 159 S. riehardsonii (Vasey) Scribn. S. spartea Trin. S. viridula Trin. S. williamsii Scribn. Symphoricarpos albus (L.) Blake not C. Koch (S. racemosus MichxT] Taraxacum erythro spermum Andrz. • T. officinale Weber Tellima parviflora Hook. Tetradymia canescens DC. Thalictrum Occidentale A. Gray Thuja plicata D. Don Timmla austriaca Hedw. Tortula ruralis (Hedw.) Smith Tragopogon pratensis L. Trlfolium pratense L. T. repens L. Trlsetum canescens Buckl. Urtlea l y a l l i i S. Wats. Usnea dasypoga (Ach.) Roehl. Ui. hirta (L.) Wigg. X barbata (L.) Pries var. hirta (L.) Pries Vaccinlum caespitosum Michx. Verbascum thapsus L. Verbena bracteata Lag. & Rodr. (V^ bracteosa Michx.) Vicia americana Muhl. Xi sativa L. i n c l . var. angustifolia (L.) Ser. Viola adunca J.E. Smith V. canadensis L. V-. palustrls L. V. n u t t a l l i i Pursh subsp. praemorsa (Dougl.) Piper Woodsia ilvensis Br. W-. oregona D.C. Eaton W. scopulina D.C. Eaton Woodsia sp. Xanthium strumarium L. Zanthoria candelaria (L.) Kickx. Zygadenus venenosus S. Wats. i n c l . var. gramineus (Rydb.) Walsh TallTmm okanagense English 160 APPENDIX 3 Tables showing the abundance and dominance, and  the vigour of species In each association and subassociation, by stands. Each stand is divided into layers (see p. Ik under 'Methods'), for each layer, the total estimated cover percentage i s given in the column under each stand; and the average percentage cover stated with the average abundance and dominance. The averages and ranges of abundance and dominance are shown as a formula in which the lowest and highest values are separated by the average value i n heavier print. The averages of the vigour values are given; and the pre-sence of each species in each association i s expressed both as a fraction and as a class. Tree species of presence class 1 are shown in the tables in the A layers, but herb-aceous and other species of presence class 1 are l i s t e d separately, following the table for each association , or subassociation, with their stand numbers followed, (in brackets) by dominance and vigour values separated by a point. The estimated exposure to wind of each stand i s indicated in the tables by a series of symbols, thus: -> + , + + » •'» The values associated with these symbols are relative' within this investigation; but the writer has fixed the symbol .' for cases in which the effect of the wind was just visible in the forms of the trees. PINUS PONDEROSA - PURSMIA TRIDENTATA ASSOCIATION j " S T A N D N * P A T E , x A L T I T U D E (FTJ E X P O S U R E ^ 10 17AA5Z 100 WNW 't II 4/(/-5Z IIOO HW s t 13 IIOO + / 17 IH/6/-5Z 1300 SSE f 24 It/6/52 not NNV i i " + 70 e/a/sz 1600 NW 10 ++ 79 ie/a/si 1500 NW 2 + + isfetsz ti'OO z 10 + + 2&BJ52 1300 ESE 5 + + Zl/B/fZ IIOO s u 5 + + 67 21/B/SZ HOO E 30 + + 92 22/5/13 WOO s u y / 96 2 S W 1500 N S + + A V E R A 6 C & RANf i E O F S C A L E V A L U E S A S S K N E P P R E S E N C E ABUN t DOM DANCE 1 NANCE VIGOUR C AS FRICTION / 5 D CLASS E ALL STANDS A STANDS W H E R E F O U N D & Ai f a r 571 4% 6 2 i " X y s s i'% 5" 58 i% 5% 5% 4 % PINUS PONDEROSA +.2-1 +.3-2 3.3-2 4-2-3 2-2-3 4-3 4-3 4-3 4-2-3 3-2-3 4-3 — 4.2-3 0-3-4 4- '3 2 PSEU60TSU6A MENZIESII — — — — — +•3 — — — — 1-3 +-2-3 D-+-I ' Aa 20% is a ZS% 5% 10 35 log 10* 10% 15 X 7% — 5% //X tWS POM DEROSA +.2+ S-2-i 5.1-3 i.Z 4-3 +.3 4 f j L ) 4+S-3 + f # i +-S'-3 4-2-i — 3-4-2-3 .-+-« 4- 3 IZ 2 K E U D O T t l K A MENZIESII — — — — +.3 1-3 — — — — 1-3 — +.2-3 o-4--' 1 3 4-& JJS 15% ISK use +0?; 30% 15% 2 Z I l l 20Z 10 % 5% / 4 % PINUS PONDEROSA Z.Z 3-4.2-I 3-2 41-2 «-7-2-l 5-2-3 4-2 1-3 3-3 4-5-2 4-3 — 3-4-3 e- 3-7 4- 2 (2 5 ' P U R S H A TRIKNTATA 3-3 5-1 2-3 + . ! 1-3-2 + 3 31-2 1-2-3 3-*-3 1-3 1-3 1-3 l -3 + 2 • -2-4 3 13 5 AMELAKCWER ALNIFOJA — — — — 2-3-3 2-3 +•2 +.2-3 1-1-3 1-2-3 2-2-3 — o- 1 - 1 1 S 4 PSEUD7T50GA MEHZIE5II — — — — 1-2 3-3 — ~ — 1 -i 1-3 « - + -J 1-2 3 4 &» (0% 4 0 2 10% Z i " S 30% 25% 17% 20% Z5% Zb'% 15% 223 3 12 PWUS PONDEROSA l-hi +•++ l~t 3-/ 2-1 4-2 1-1-2 +.1 2-2 1-2 Z-i -l-l — 1-2-2 n - 2 - < 2 1-2 j "PURSHIA TRIDENTATA 8-3 6-7-2-3 e-2-3 5-3 5-2-1 5-3 5-3-2 4-T-3 4S--3 J-2-3 S-i 5-3 + J .3 5" 3 (3 y CHRYWTKArtNUS NAUSE03US 1.2-1 +.1 +.2-1 +.+ — — — 2-(2)-3 1-3 + -I — 3-4-3 — o-/-« 2 0 4 AM£LANCMIER ALNIFOL1A — — — —• 1-2 1-2 I-/-2 — +-2 + •2 1-2 — — o-+-r 1 2 3 PSEUDOTSU6A KENZIESII — — — — +.2 1-2 — — — — 1-3 — — c - + -I f 2 3 2 ' RI6R CEREUH +•3 +•+2 — — — — 1-2-3 — — 1-3 — — +•3 o - + -I 1 3 2 ROW NUTKANA — — — — 1-2 1-2-3 +.2-3 — 1-3 — — o- + - l 1 2-3 4 2 c 70S 15% 40% 20% 6 0 * 35-38 +oas 10% 10 % 2 J - * 38% // ACHILLEA MILLEFOLIUM — 2-3-K-3) 2-2-3 1-2 2-2 l-l 1-2-3 1-2 1-2 i - i - i — 1-2-3 . - l - i 1 2 5" MLSAMOftHJZA SA6ITTATA +.2 4-2-3 3-3 4-2 2-3-2(-3) 2-2-3 +.1-2 1-3 2-3 1-2-3 2-3 — I M W C-2lr 2 12 5" BROMUI TECTORUM e-z-t t-2-3 3-4-2-J 4-2 4-i:3 — 6-3 r-3 3-4-2,3 2-2-3 J--2-3 31 o-+ » 4- J /2 y " F E S T U C A OCTOFUWA 2-3 + 2 2 .+H) 2-/-2 + •3 /-2-3 l-Z 1-1-2 1-2-2-3 1-2-3 — +./ — » - l - i 1 2 12 y KOELCRIA CRISTATA 2-2-1 /•2-3 +.2-3 l-Z-3 1-3 21-3 12-1 — l-2-l + .2-3 — t-l-2-3 0 -1 -J 1 1/ y "OPIMTIA FRACILIS 3-2 3 1 II + •/ — — l-l 1-1-2 +-II-2 1(2). 2-! +•2 21 4-1-2 o i l 1 / ft 5" PINUS PONDEROSA 11-2 l-l + •/ 1 + — +•1 4-1 + •/ l-l + -+ M - £ — + ./ . /-. 1 1 II y POA CUSICKII 4 2-i i-i-i + •2-3 3 2 2-3-3 +.2-3 1-3 2-3 — 2 3 /•i 1-1-2 +.2-3 o -2-« 3 t;. 5" * PURSHIA TRIDENTATA 2.1-3 K-4J.I-2 + .1-2 1-2 1 +.+ 2-1-1 1-2-3 1-2-2 3-2 1.1-2 l-t-t +-I -1-2 1-2.2 » 2 - t 2. 2- M s " SP0RC60LUS CRYPTANDRUS 2-3-1 1-1-2 +• + + •2 — 1-3 1-22-3 l-Z ++•2-3 — 3 3 1-2.2-3 » - l -I 1 2 it y STIPA COMATA 3.2 5-2 2 2 2-2-3 3-+.2-3 +.2-) i i 4->-! 3-4.2-3 1-2.1 — 1-2 1-2.2. . - 3 - . $ 2 ti AGROPYRON SPICATUM Z-Z 2-3.2, + .2 1-2-3 3-4.2-3 J-+.2 Z-L-i — 1-2-3 1-2-2 — - o -2-» «i 10 ANTCNNARIA PARVIFDLIA 2-2.-3 — +.1 2-3.2 2-3 3-3 — ' +•+ +./ I i 13 .-(-) 2 9 4-ARAMS PUBCRLLA — +.2-3 2-3-2 12-3 1-3 +.3 — +-1-2-3 1-3 1-2-J — — +.2-3 ( 3 9 4 "ARBTIDA LON6BETA +.2. y.i-2 J-.2-3 22-3 — — M — 1-3 1-3 — + -I-3 + -»-.3 .-. -2-s i 3 9 4 CAREX ROSSII , J — — — +.1 +•3 1-2-2 1-2-2-3 — 1-2-2-3 +.1 +.2 1-2-3 .-/-» 1 2 6 4 "CKRYSOPJIS VILL05* 1-2-3 3r4.l-2 +-2 2 2 — — — +.3 1-2-3 ' — — +.1 +-i -3 <. -1-4 2-3 ft 4 CRCPIS ATmBARBA — — +.2-3 — 1-3 1-2- J +.2-3 +-I-3 + . 2 • 1 i 1-3 — a - 1 -1 | 3 6 4 ERMERON FIUFOUUS +•+ +•2 + 2-3 1.3 — 1-2-3 — +.2-J + -I-3 — + -2-J — — • -l-i ; 2 S 4 "ERI040NUM NIVEUM 2.2 +.2 + .1-2 1.3 +•3 — +.3 1-3 + . 2 — 1*2-3 /-2-3 - o-l-l 1 2-3 ft? 4 GAILLAROIA ARISTATA 1-2 — +.2-5 1-2 l-l 2-2 2(-3H — 1-2-3 .2-3 -^-1-1-2 . l-l I 2 10 4 L ITNOSPERMW RUDE RALE — — ++.3 — +.2 1-2-3 +.3 — 1-2-5 + - hi +-|.i-3 •f • + e - / 1 2 9 4 "PHACEUA LINEARIS 1-2-2 3-1-2 2-1 l-l — — — 1.2 ++-2-3 -f .1-2 1-2-1-2 tl o - 1 • t / 2 9 4 " P H U K LOMIFOLIA 2-2-3 2-2 + .2 — +.2 — + .2-3 +-I.2-3 (-2-3 — + . 2 1-2-3 D -1 - i 1 2 9 4 PLANTA60 PURWII 1-2. — +.1-2 — +.3 — 1-2 1-1-2 1-1-2 — +.3 1.' . . + -/ 1 2 9 4 ANTENNARIA DinORPHA +.2 — — 2-2 — 3-3 l-2-l — 2-3 4-2-3 +-I.5 0- l-i 2 7 3 A9TRA1ALUS PUR9HII — — — — +•; — +-I-2-3 — + 2-3 +.2 ,-2 +-i # -+-' j 2 - 3 6 3 LEVtSIA RCDIVIVA 1-2.-3 — — 3 3 — : — +.3 — 1-3 — 1-2-3 „ -1 -1 ( 3 6 3 POLYGONUM DOU6LA6II +•1 — — — — — +.2-i ++ .1-2 +.+ + -I.J + 3 a- + -( 2 6 3 STEfHANOMERW TTNUIFOUA 1.2-3 +•1 — l-l — — +.3 — — + -i • -+- i 2 6 3 TRAIOPOtON PRATENSS — — — — +.i — 1-2-3 +.2 +.2 +.2. — + .2 . -+-i I 2 t> 3 APOCYNUN ANMDSAEMIFCLIUM — — — — — 2-3-1-2 — — + -I.2-3 +.2 a - + -i 2 3 2 AMELANCHIER ALNIFOLIA — — — — — — +.+ — +.+ +-I + .1 o - + - . I / 4 ZYflADENUS VENENOSUS — — — — — + .3 +-l.i + 1 + •3 I.J l-2-l +. 2-? \ 3 7 ARCT06TAPUYLOS UVA-WBI — — — — +.3 +.2-4 +.2-3 — — — -f.l 1-3 a - + - • 2 4. 2. ARTEMISIA CAMPE6TRIS — — — +.! — — 1-2-3 — + -I2-3 a --^  -l I 3 4. 2 ACTRAIALUC SCROTIWUS — — — — +.1 + .3 +.1 (-2 e - + - . • 2 4 2. BERBERS AkUIFOUUM — — — — 1-1-2 12.-2 +.2 — — \-l 2 4. CAUMMORTUS HACROCARPUS — — — — +•2 +.2-3 — — — + 2 o - + - . i 2. 4 2. CUACNACnc DOUGLASII +-I-3 +.1 — — — — 1 3 +.3 t -+-f • 2. 5" 2 CWMSOTHAMNUS NAUSEOSUS +-J . — — — — — — + -I-2 1-2-3 + •).( + .1 » - + -I 2. 5 ^ COLUNSTA PUMFLORA — — — — 1-3 1-3 +-I-2 1-3 3 4. 2 COMANDRA PALLIDA — — — 1.2 — — +•3 . . +.1-/ o - + - + ^ 3 2 ERKIRON PUMILUS — — — — l-l — — +•3 + -1.2 j 2 CBOtOXUM HCRACLEOIDES + 2-3 — — — — — — +.2-3 + 2-3 c '-+- i 2-3 4. 2 F t S T U C A 0CCI0CNTAU9 ~ — + 3 +.+ — 1-3 — - - a -+- i 2 3 10 II 13 17 24 70 79 83 6 i _ 86 6 7 92 9 6 A B c P £ FtVTUCA S t A M E L L A S IUA A K K E M T A 6UIA C IAOUS e i u A P U K C N S HtERJCIOH CYNOSLOSSOICES U T H O W C i m U M IUUSUM PANKUH SCRBNERIANUM POLErtOMUM M IWANTHUN SAXIFRA6A [WTESRFOLIA S I L ENE ANTIRRHINA S I L E N E DOUGLASII S I SVMMt lUM INC3SUM STIPA E L M E R I D ON GROUND CLABONIA C H L O R O P H A L A PELT16ERA CANINA CERATOBON PURPUREUS S E L A H N E L L A RUPESTRIS T O R T U L * RURALIS POLYTRICHUM P I L I F E R U M WtACHTTHECIUM ALBICANS CLAPONIA COCCI F E R A CLAMWIA 6RACILS PCLYTRICHUM r u « l » E R l N U M RINONNA SP. ON TREES L E T H A R I A VULPINA ALECTORIA FREMONT1I CETRARIA GLAUCA PARMEUA PUV-SOPES +.2-5 +.2-J l-i J + 2 +.1 1.2 +.» +./ +.3 I.I 1.2. +Ta 7 2 - 3 I.I +.+ +.1 1-2-3 +•2 1.1-2. +•2-3 +.1-2 +.2 '+•2 1.2 1-1-2 +• + +--/ + .2 •-5-2 2.2 +.+ +.2-3 +.2-3 + 2 4 . 3 1.2-3 +-•+ 6.2-3 1.2 3-2-3 +.1 +.1 + . + 3-4-OJ-3 +.2 +.3 + .3 +•3 +.1 +.1 +.3 +.1 +.i I-! 4-3 2-3-2-3 +••2-3 4-1-2 1.1-2 3-3 +•2-3 +.1 +.2-3 +-I.2-3 1-3 1-3 1-2-3 1 -2 2 3 4-1 +-I-2 +•( + .3 +•1 + ./ + 3 1-2-2 1- / 2- 1-3 +.2-3 4fS).2-3 +.+ +• + +•2-3 + -M 1- 3 L 3 2TSJ 2- 1-2 3- 3 2-2-3 3-4-2-3 4- 2-3 1-2-3 +-I-I +.+ +.3 +.3 +.1 +.3 K.2-3 +-I-3 2-3-3 J--3 +-S + -! . 1.3 1-2-3 +.+ + -I.I + . + +. + +-I 2.) 1- 2.3 1-2-3 +•2. 1-3 2.2-3 1- 2-3 2- 3-3 3- 4-3 4-3 2- 3 1-2-3 + .+ +.2 + .3 +.1 +-i-i +C-P-3 +.2 +.2 +••2 + .2 l-i +.2 +.3 +•1 +.1 + .3 . - + - 4 . - + - / . -+-I . - + - 1 . • -+-i . - + - , . - t- i . - 2 - » .-!-( o-l.) . - 2 - « o - 2 - r . - 2 - r . - 1 - 3 . - + - + c - + - . c. - + - . .-1-1 . - + . . . - + - t o- + -t 2 • 2 1 2 3 3 3 1 1 1 1 1 / 1 / 1 3 } 3 2 ( 2 2 3 2-3 3 2 2 2 2 2 2-3 2 2 2 3 1 2 / +• /-2 2 3 3 3 • 3 4 4-4-3" 3 5" 1/ II 6 9 10 7 S S 3 3 3 10 3 4 3 2. 2 2 2 2 2 2 Z \ 2 2 2 2 2 5 >" 4 4-4 3 2 2 2 2 2 4 2 2 2 163 Pinus ponderosa - Purshia association. List of species of presence class 1. Stand no. followed by, in brackets, abundance and dominance, and vigour. Acer glabrum 87(1.2) Agoseris heterophylla 2i+(+.3) Alectoria .iubata 83(+.+) Amaranthus graecizans 79(+«3) Arabis h o l b o e l l i i 10(1.2) Arenaria tenalla 10(1.3), 85(+.l) Artemisia dracunculus 85(+.3) A. tridentata 2i|(+.l), 92(+.3) A;, t r i f i d a 24(1.3) Asclepias speclosa 85(+.3) Asparagus o f f i c i n a l i s 24(+.2) Aster canescens 10(+.2), 85(1.2) A. ericoides 70(+.2), 87 (+.3) Astragalus stenophyllus 92(+.l), 96(+.3) Boletus sp. 10(+. ) Bromus racemosus 24,79(2.3) Bryum canariense 13(+.l) Carex f i l i f o l i a 10(3.3), 83(1.3) Ceanothus sanguineus 70(1.3) C. velutinus 70(1.3) Cephaloziella byssacea 13(+.) Cetraria scutata 86(+. ) Chenopodium album 83(+.3), 92(+.l) Cirsium undulatum 86(+.2), 92(+ 1) Cladonia pyxidata 85(+.l) Clayton!a linearis 10,96(+.3) £s. perfoliata 96T+.2) Collema crispurn 85( + . ) Corn!cularia californica 85, 86(+.2) Delphinium bicolor lOT+.l), 96(1.3) Dodecatheon meadia 24,79(+.3) Draba verna 10(+.3) Epilobium mlnutum 79(+.3), 92(+.l) Erigeron canadensis 79(+.l) E. corymbosus 70(1.3) E. pumilus 2i+(1.3), 96(1.2) E._ strigosus 79(1.3) Eurhynchium strigosum 79(+.l) Festuca pacifica 10(1.3). 96(2.2) Fragaria virginiana 70(1.3), 87(1.2) F r i t i l l a r i a pudica 83(+.3) Geum triflorum 79(+.2) G i l i a grandiflora 86(+.3) Happlopappus carthamoides 87(+.3) Lactuca _scariola 79( + . 2) Lepidium densiflorum 13(+.l), 79(+.3) Lesquerella douglasii 85(+.2), 92(+.3) Lomatium macrocarpum 10(+.3) L. triternatum 96f+.2) Mentzella albicaulis 83,92(1.3) Oenothera pallida 85,92(+.2) Orobanche fasciculata 92(4-.2) Oryzopsis hymenoides 92(1.2) Panicum scribnerlanum 21+,96(+.2) Pentstemon fruticosus 86(1.3) Phacelia leucophylla 85(+.D, 92(1.3) Poa pratensis79(+.+) Pohlia nutans 2JLJ.( + .2) Potentilla n u t t a l l l i 79(+.3) Ranunculus glaberrimus 96(1.2) Rhizocarpon alpicolum 85(+. ) Rhus glabra 86(1.2), 87(2.3) Rumex acetosella 79(+.2) Salsola~kali 53(+.3) Shepherd!a canadensis 70(+.3) Sisymbrium altisslmum 2i}.(+.2), 79(+.l) Solidago missouriensls 70(+.1) Spiraea lucida 87(1.2) Stipa columblana (10(+.2) Symphoricarpos albus 2if(+.3) Tellima parviflora 10(+.2) -Trifolium pratense 87(+.l) Verb a scum Thap3us 2i+,79(+.l) Xanthium strumarlum 92(+.2) Xanthoria candelaria 92(+.l) PINUS PONDEROSA - ARISTIDA LONGISETA SUBASSOCIATION S T A N D tit SLTTTOJOP (FT} 0 U/tKO. 18 19 2 ' ST 72 76 e/ata TT 76 62 svcwa 95 116 a w INtE IUIE9 MtCt t t tCC •oc 460 urn im 2KB MOO 000 IKO 300 MOD DPO am ABiniDANLI M •w S E — — s t w s I W S t u - B E t s i n u c r a CLASS 2 + + ? ++ + + ID +•+• 2 , ++ + + J + + • rn + + U> + • lf ALL m m / 6 STANDS W K I X E A T c P A i i r « i r s 103 J-B r s s% r s 10 B a s PM1S POXMROSA •-j-.w 4-J-.M-2) 4.) 4f&H 4.2-J 4-1-2 4.2-1 4.1 4 . " 4.2-1 4-2-3 . 4-r 4. 1 12 y P S £ U » T S U 6 A M E R I I E S I I _ / I 2-3 i 1 «• or* 21% 20 a 7 * /OS i ra . I S B IDS irn I l l 10% P INUS P O N D E R O S A i.i M - l s.t-s 4.2-1 4.2-1 4 ^ . H » « - 3 4 « . 5 4-t-i 4+fl.t I.2-) 4.2-1 4^  3 12 IT PSEUDOTSUSA MEWZSSlI — ~ 1.1 — — — +.2 2 2-1 2 f 7% its i n 10 • r » 7 « 7? 4 * 4 * P I N U S PONDEROSA 4.1-2 •4.2-1 +.K-0 4-1-1 1.2-1 4.1 4.2-1 4.2-J 4.3 3-4.1 +.2-1 4.1 , .3-r 1 2 12 * PURSHIA TRIDENTATA — +-I — +*l-2 ~ — +.1 — " — — 1 1 ) 2 6. I S *> f « IO a r » K ' 2 I S PINUS POHfCROSA 9.1-2 1-4.2 1-2 — — +.2-1 1-2 1.2 4.2 1-2-1 +.2 1-2 2 0 CURYSOTUAMNUS NAUSCOSUS +.1 +.2-1 1.2-1 1-2 4-1 — — — — 2.1-2 + 1 — • -1-4 2 7 S PURSHIA TRIDENTATA I-2.2H 4.2 +.2-1 4.2-J — — — — — — . . l - l j £ S s AKELAUCUIER ALIrtFOLIA — +.+ — — — — +.1 — +.1 — — 1.2 • - + -• 1 1 4 2 RIBES CC ft CUM — — +.1 — +.+ - — — 2-1.2-1 — — 2 1 2 C r o s is S S T * 41-K 1 0 * 20 « 10% 2 r » 10% eo% 2>'£ 2 0 S ACHILLEA HU.LCF IX . IUM •.2+ l-J.2-1 2.2 1.1-2 1-2 +4.1-2 • 4.2 1.2-1 +4.I-1 +4.2-1 +.2-1 11-2X2 2 12 r A6RDPYRON SPICATUH +.2-1 I.I 1.1-2 — H « 2-1.2-1 1-2-2 1.2 2.2-1 — 2-1! 1-2.1-2 £ 2 l» ST "ARISTIDA LONOISETA 4.2-J J.2-J <s f-t-i y-i 4M3.3 J l y-J 4-f . l 4.3 4 * 1 JT 3 12 5 BALtAKORHIZA SADITTATA + 2 1 4 2 — 1 2 ) +.1 1-2-1 •2.1-2 I-(-2 1.1 — M 2-2-1 .-2 4 2 to S BROMUS TCCTORUM 4.2 4-2 4 .2 1-4.2 1-21 1-2-1 2-1.2 2-2 1-2.2 1-4.2-1 4-i-r 1-2 .-1-r ) 2 12 S •FCSTUCA OCTOFLORA 4.2 2.2 5-4.2 |.|-2 — +.2-J 1-2-2-1 f-1.21 1-2-2 + 4.1-2 12 — • -2-4 2 ID T KOELERIA CR1STATA 1-2-1 l<2 + 2-1 +.1 !1 +.2 2-2-1 2 1 l-l-i + .2 — — .-<-< i 2-1 ID S " OPUNTIA FRAfilUS 1-2-1 1-2 2 1 +M-I-2 1.^ 2 +.•2 +.2 +.2-1 l.l +-2-1 +.2-1 .-/-I 1 2 12 1 "PMACCLIA UNEARH 2-1.2 l-l + 4 . / +.2f3) — + + 2-I + •2 + .2 + + I-2 +.1-2 1-21 ++ • -1 -1 1 2 II S PINUS PONDEROSA 1-1 2-K l-l +*2 — 1-2-2 l.l 1.1-2 + 4.1 + .1 +-I + 1-2 . - l - l t 1 II s "SP0R0B9LUS CRYPTAHDRta H I +•+ l-l 22 + H.2-1 + 1 1-2.2-1 +•! 1-22-J 1.2 2-3.2-1 — - M 2 2- II y STIPA COHATA J-2 l-l 4.2 4.2-J 1-4.J l-l 2 1 11 B4J.J 1-1 — . 1 . i J II s ANTENNARIA DVIOftPHA +.1 l-l !•/ — 111 — 2-1.1 1-2-2-1 +.2-1 l-l — + J - ! « -/-» f 2 9 4 ARTEMISIA CAMPCSTAIS 1.2 — — 1-2.1-2 2.3 lW-2-1 + -I.2J 1.1 — 2-1 1-2.1-2 ( i £ 2 a 4 * CHACNACTIi DOUU.AS1I +.2-1 f.2 + 2 — — +.2-1 +-1.2 f-l-l 1-2.2-1 — 1.2-1 +.2 • - l-i 1 2 9 • ACURTSOPSIS VD-LOfA 1-2-J 1.2-1 1-2.2-1 IS — — 1-2-1 1-2.3 2 1 — l-I £•2 • - J -a 1 9 • ERKCRON FAJFOLItrt — l-l 1.2-1 — 1.2-1 I-Z-I 1.2-1 1-2 1 2 1 +.2-1 +-J-1 — • f 9 • "Ea iOSONUH MrvEUM 1-2 l.l 1-2 +.1 — + .1 1-2.IfO • J.2 1-2-1 + ! — +2 • - l-i 2 ID T GAILLARCXA ARISTATA — 2.1 2-2 +.+ 1.2 +.2 2-2 1-2-1 1.2-1 — — — . . ( -l 2 4 LITMOtPCRMUM INCrtXJM +.2-1 — +.1 +.1 + .+ — l-l + H . I +.2 — +.2 — * -l-l 2 * POA CWCKII J.2-J 2.1-2 J-4.2 i-y tl 2-1 2-2-1 + 4 .1 1-2-1 • - / - »' 2 9 4 POLYGONUM D0U6LASII hi +.1 + -I — — il-DJ +.1-1 +.2 + 1.2 1-2 1-2-2-1 • -/-i 1 2 9 4 ARADIS PUBEIM-1 — — +.+ — — l.l +-1.2-1 + -I.2-1 — 1 — + .1 • -1 •> 2 . S AtTEft CANESCKNS ASTRAGALUS PURSUB +•2 — ~ I./-2 +.3 +.2 ••.+ +.1 1.2-1 - l-l l.l +1M> ". 1 2 2 S 5 3 J CAAEX R O S S II CNRTSOTHAMNWS M A U S E O S U S COMANPRA PALLIDA • . • +.• + .2 +.1 z +•2 +.I-: +.2 1-2 1-1-2 l-l +.2 l-i. +.2 l-l + .1-2 +.1 +.i »- f -i * -+-• • . l-i i 2 1 2 7 J-7 4 1 J 1 CRCPIS ATRJBARBA — +.2 + J +.i — +-I.I-2 +•2-1 +.3 • " ' "1 * S U A Asf8RCCATA •J-l 1.2-1 — — — I'I 1.2 +.1 1.2-1 +.1-1 » - J- i * * A L I A P U M E K S + .2 +.+2 +.2-J 1.1-2 — — — + 2-1 l-l " +.2 a - f-t 2 7 1 LEV13IA RCWVNA I.I + .) 1.2-1 — — — +.1 + -I.I +.1 +.1 • - 1 -1 2 4 $ UTUOSPERHUM P4I0CRALE PHACELIA IXUCOPWYU.A * PHLOX L O M I F O L I A 2-2 +.1 +.1 1.2 1.2-1 *-i +.i-l 1-2.2-1 1-2 +^ 1-2 1.2-i +H .2 (-2-1 2-1.1 +.2 i.i • -f- i . - l - l ! 2 2 » 7 I J ] STEPHAItfnCRlA TCTOTOUA — + 1 — — +.2 • -I-2 +.2 4-.1 • " 1 4 1 1 S T I ' A ELMERI T R A O P D M I PRATENSa U M u m omcmALC +.1 +.2 ~ +.2 +.1 +.1 +.1 l-l +.+ 1-2-1 +.+ 2.J +-I-J +.J +.•2 +.1 + j - i • •'-I • - + .* • - + ! 2 2 (-1 < f 1 2 2 A t i K A M L U t vamrnat 2*J • - + -/ 1 1 1 C A L O u m m n H A t t o t M n i s C J U M H U N M L A T U H - - I'i -+.1 4s2 - +.1 - 1.2 +.2 - • • - + -. } 2 2 1 I 4 1 2 I P U B W n m r u H i « -+-. 2-J • E M M I W I MKRACLEOIOCS L C M M C K X L I . A DOWLASII — + 1 +.1 - 1-3-1 +4.1-2 - -I.J '.' +.J — * -4-1 !-+-•< j I 1 4 1 * 2 P O r m i A A L B E A U L U — — 4-2-1 +.2-1 _ 2*1. H i — / 4 i P U U J T M O PWUMa P0LEH0NU2M PBCRAIfTMUHj 1*2 +•2 +.2 1^ 2-5 +ll<-2) j 2 1 4 4 1 2 P U M M A TK IDENTATA • . l 2>H2_ +.1 8 i d 19 11 57 72 76 77 78 8 2 35 116 A a c D £ SILEHE ANTIRRHINA — + •2-1 +-2 — — — +.2 -i — — — — — • -+-* 2 3 2 S ISYMBRIUM AL7ISS IHUM — — +.+H — +•2 1.3 — — — +-1-2-1 — — c 2 4- 2 S I SYMBR IUM IN CIS 1*4 +-2-J — + .+ — — — — — — +.J +.i 2 4- 2 D VS% A-0% 10% 3JTSI s-% 1% 2 S 10% -f- 3 5 - * -t-ON £ROUND CLADONIA CHLOROPHAEA 4-2-J +.+ 2-2-3 +.+-I 3-4.1 +.2-3 2-3.1-2 2.2-3 +• 2-3 2-l(-2) — — . - 2 * 2 2 10 IT P E L T I 6 E R A CAN IMA 2-J.2 2. J — +•-1 +.2-3 +.2 2-3-1 - h i — l-l — — . - l - j 1-2 2 0 4 S E L A i l N E L L A RUPESTRIS 6-2 3-1-2 — + 2 +-S--2-3 4-3 — — 3-4.2-3 . - 3 - . 4 2 © 4 TOR T U L A RURAL IS 2-2 +.1 1-3 — +.1 (.3 — 1-2 S-V-2-3 — +.2 .-2-« 2 2 9 4-CERATODflN PURPUREU3 l-l +.+ — — +. 1-2 11 2.3 — +.+ 3-4-2-3 — .-/-« / 2 7 3 POLYTRICWUM PIL IFtRUM 1-2 l-l — — +.2 3-2 +-(.1-2 — 4 .2-3 — — 2 2 7 3 CLAPONIA GRACILIS — — — — +.I-Z — +.2 +.1 — — — — .-+-» I 2 3 2 PCHLIA NUTANS 2-2 (.2-5 — — — +.1 — — — — — — #-+-* J 2 3 2 RINOMNA SP. — — +.+ — — — +- + — — 1-2 — — 1 1 3 2 ON T R E E 3 L E T H A R I A VULMWA 2-3-2 — +.+ +.+ +.+ — +.J +-+ + + +.+ +.+ +-+ 1 / 10 5 ALECTORIA FREMONTM — — — — +.+ — +-+ — — +.+ — ( + 3 2 AL£CT(iRIA T l * A T A +- + + .+ +.+ +.+ ' + 4 2. CORNICULARIA CAUFORNICA 2 3 +.+ +.+ 1 2 3 2 167 Arlstlda sub-association. Species of presence class 1. Allium cernuum 57(1.3), 72(+.3) Amaranthus graecizans 72(+.l) A, retroflexus 116(1.1) Antennarla howellii 57(2.3) Parvifolla 76(1.2) Apocynum androsaemlfollum 76(+.2) Arabis h o l b o e l l i i 8(+.lI Arenaria tenella 8(1.3) Artemisia fr i g i d a 57(+.3), 72(+.2) trldentata57 ( 1 . 3 ) A. t r i f l d a 52(k.3) Arctostaphylos uva-ursi l 8 ( + . 2 ) , l l 6 ( + . 3 ) Ascleplas speciosa 19(1.2) Asparagus o f f i c i n a l i s 77(+.+) Astragalus lotiflorus 57(1.2) Berberis aquifolium l l 6 ( + . 3 ) Boletus S P . 8(+.2) Bryum canariense 19(1.3), 72(+.l) Carex f i l i f o l i a 8(2..3), 19(+.l) C. praticola !>7(+.3) Chenopodium album 57(+.+) Cladonia coccifera 76,77(+.2) C. fimbriata 76(+.+) Claytonia linearis 19(+.l) Crepis acuminata 8(1.2) Cryptantha leucophaea 76(1.3) Delphinium bicolor 87l9(+.2) Drab a verna 19( + ..2), 95(1.3) Bncalypta sp.8(2.3) Equisetum hyemale. 19(+.l) Brlgeron canadensis 82(1.2) E. corymbosus 57(+.3) E. f l a g e l l a r i s 57(2.2) E. peucephyllus 8(+.2) E. pumllus 8(+.2) Euphorbia glyptosperma 72(+.2) Festuca Occidentalls 72(+.l) Fragarla virgin!ana 57(+.1) F r i t i l l a r i a pudlca 19(+.2), 82(+.3) Gayophytum ramosissimum 72(+.3) G i l i a g r a c i l i s 19(1.2) G. slnuata 95(+.l) Juniperus scopulorum 57(+.3) Lactuea scariola 8*2(+.2) Lappula myosotis 57(+. + ) Lepidium densiflorum 57(+.1) Linum LewTsil 57(2.3) Lomatlum macro carp um l l 6 ( + . 3 ) L. tritematum 19(+.3) L. utriculatum 19(+.3) Lupinus sericeus 72(3.3) Oenothera pallida 78(1.2), 82(+.l) Oryzopsis hymenoides 78,95(2.3) Oxytropis Lambertii 78(+.3) Parmelia physodes 57 (+.+), 82(+.2) Peltlgera aphthosa 8(+.2) Pentstemon confertus l8(+.2), 76(+.3) P. fruticosus 72(+.3), ll6(+.0) •roa Canbyl 5(+.l) Pa. longiligula 19(1.3) Polytrichum juniperinum 19(+.+) Prunus virginiana 82(*.l) Ranunculus glaberrlmus 19(1.2) Rhus glabra 19(+.1). 76(1.2) R. radlcans 9 5 ( + - 3 ) Rlbes viscosissimum 19(+.l) Rosa nutkana 57(+.2) Rumex acetosella 72(+.3) SalsolaHretli 95,116 (+.3) Silene douglasii 76(+.l) Stipa occidentalis 72(+.3) Telliiaa parviflora 19(+.l) Verbascum thapsus 8(+.l), ll6(+.0) Vlcia sativa72T+.1) Viola adunca 72(+.3) Zygadenus venenosus 76(+.3)» 116(1.3) ' PINUS PONDEROSA - AGROPYRON SPICATUM ASSOCIATION b T A N B m D A T E A L T I T U D E ( F T . ) E X P O S U R E . * S L O P E W M N P E X P O S U R E P I N U S P O N D E R O S A P S E U D O T S U S A M E N Z I E S t l P I N U S PONDEROSA P S E U D O T S U S A M E N Z I E i l l P I N U S P O N D E R O S A AP I ELANCMIEP AU I i r-o l lA PSEUDOTSUOA M E J I 2 I E S H Bj" A M E L A N C H I E R ALN IFBL IA P INUS P O N D E R O S A R O S A N U T t f A N A R I B E S C E R E U l i S Y M P H O R I C A R P O S A L B U S A R T E M I S I A T R I D E N T A T A A R T E M I S I A TRIF1DA C H R V S O T U A M N U S NAUSEOSUS P S E U D O T S U G A MENZ IES I I PftUNUS V I R G I N I A N A C ACHUEA M I L L E F O L I U M 'AGROPYRON SP ICATUM BALSAMORHIZA S A 6 I T T A T A C R E P t S A T R I B A R B A U T H O S f t R M U M R U D E R A L E ANTENNAR1A RAPVIFOLIA A R A M S PUHXULk BROMUS TEC TOR UM CAREX ROSSI I COLLOSIA RARMFLORA XERlDSONUM HERAtLEOIPES XFESTUCA OtCIPEHTALIS MERACIUH CYMRLOStOtDES KOELERIA CRtSTATA L U M H U 9 SERICEUS PMUS PONBCROCA MSA NUTNANA TRMOPOaOH PRATENSB ZYOADEHUS V E N E N D S A K AMELANCHIER ALNIFOUA ANTENNARIA DIHORPMA ASTRAtAUiS lEROTUin CALOCHORTUt HACROCARPVS KLPHIMUM BULOR ERMCRON F 1 U F O L I U S XERIBIRO* PUMU .US FRASAXM VROMANA L O H A T 1 U H M A C R M A R K M POA CUSKNU SPIRAfA LUCtDA CYMPVORKAAPOS ALUS ASOSUB «.HKA APXYMUM ANDRORACMPJUU AACTOSTAPHYLOS UXH-UtSI ASTER FREMORTU AST*A«Aun rrtnonnLLus KIBCRU A t M f l F O t n J M CALAMAaaoSTtt Ruscscns CASTTU.ETA LUTESCUS CUtSIWI UNBULATUM EPILOMW1 MMUTUW comutA PAULO* s j * * * * " CORYMB. S « I iififa 1900 s ' to 4 2900 SSE 30 7 2S/VM 2600 SE +0 H i/i/52 iaoo N V ? IS 1MB tooo £ 20 1 16 V</H 2!0O E / 20 akJ-n 1200 } 2 7 it/el-a 2000 N 3 + 4 2 8 20&232 2200 H 2 t + 2 9 ok/it 2400 N f 31 21*fe2 2900 S 15 ! 3 4 2600 s v 30 19 2trt52 aoo s v f 4 0 Z/7A52 2900 $ w 2f 1 is/rA*2 zzoo H to + 20% 10% 2 1 1 it IOZ it 7% 10 X lot m • M S ' 10% • tOS M M 5-2 3-11 1.2 4-5-1 3-4.2-4 4-1 4 f-3 4 I . I 4 51 4-SJ 4.3 4. J 3-4-3 4-2-1 I-+2H 1.1-2 l-l 1 4.1 — + .) 3.2-3 1.1(2) i-A.i 2-1 20% 10I ' OS 10% iot r. 20% 35% 25% Z5 » ICS l i t 5t j " * irz 4.2 3-4.12 3-1-2 J.2-3 1-1 l ' . 2 i •;.i i l l 5.1 4T-1 4.1 4.1 i l l 4-5.3 " 1.12 3-2 l-l-i 4.1 — + . ! — — l-l — 1-4.1 4.3 I. l-i 4-2-3 3 0 * 2% 151 i'S 10% Ill 51 51 102 i ' S It 5% 51 ez 7-2 4-1 2 f U 2 2.2 ! 2.2 1.1-2 3.1-2 3-4.2 4-S-.2 3-4.2.3 1.1 I.l 4.1 +.3 2-2-3 Z2 — — — 2.3-2 i.l 1.2-3 +.2 +•3 +.3 •+.J l-i ~ 2+2 4.2 2-2 1-2.2-3 ~ + . 2 ! — + •2 1-2 i-J l-l 4-3 4-3 +.2-3 IOZ i"SS at 5t IOZ IOZ IOZ 20% 5% I C t 5% at Kit 121 (0* 1-2 3-1 +•2 1.1-4 +.2 I.l I I 3-4.1 l-l 1-1-2 l-l 3-1 4-2-1 4-f-2-l +-I 1.12 l-l — 1-1-2 2-1-2 2-3.1 t-2 2(-iLzB) 1-2.2-3 1.2 4.1 t-2 2-1 3.1-2 — 3-2-3 +.1 +.1 + .2 1.2 1.1-2 1-2 3.2-3 2-2 — — — 1-1-2 1-2-3 +.1 — 1-3 1 1 2 +.2-3 — — — — — 31-2 +.2 — 2-1-2 + .2-3 — — I.l 1-2-1-2 + .2 1-1-2 +-I - - •*-. -- J4.2-.I 1.2-1 - - - - - - -— 3-12 4.2 1-2-0 — 1^ 2-3 — _ +.1-2 _ 21 t-2-3 +.1-2 ~ +.1 ~ 2-2 • - — — I t f r l — t-2-l-i — 701 75% 75% 65* 70% 50% X " Z (OS 45-X 55% 60S 4 3 Z . <•*• 1-22,1 1-2-3 1-2-3 1-2-2 1-2-3 1-2-1-1 — 1-2-2 + +.I-2 1-3 1-2-1 lt-lXl-1 /-2-^-3 2-3 4-54-2 7 2 3 7-3 7-2-3 6-7-3 A> 7-1 5-3 4-5-1-1 (-73.-1 6-7-1 51 73 S-3 y-2 3-1-2 +.1-2 2-2 3-4.2-3 +.1 — 4-3-1 1-2 i-n-i) \-m /•2-2f-j) — 1-2-3 — 2.2-3 1-1-2 1-2-3 I-} 1-2.1 +.1 l} , 1.2 2-3 1.3 i.i 1-2.) 1-2 — 1-3 + 3 + 3 +.2 +.1 1.3 + .02) +.3 + + 3 +.2-3 i-J -f-l-Z-i +. J +.2 — 1-2-3 III t . + 2-3 J - 4 ) 2 2 3 2-3-2-3 — 1-2-3 + -1.2-3 lf*>.3 1-2 l-l -+.+ +.+ +•3 + . I M +.2-3 -r-J r .2- ! +.1-2 2-K-2) — +•2 2-2-3 2-! 4 ! 5-2 I.l + -3 1-21-1 1.2 — l-l-Z + -I-J 1-2-2-3 1.2-3 1-2 +.2 — — 1-2-2 — +-I.I-2 +.2 1-2 1.2 — I. l-l — +.2 2-2 2-2 3-43 3-2-3 1-2-2 22-3 1-2-2 +•2-3 1.3 +•3 +.! U-2 — U 2 3 2-3-2-3 +.1-2 1-2-3 l-l +.J 1-2-J I-2-1 3 K 3 — — — — 22-3 4-3 4-1-25 1-3 4.3 11 2-3-1-3 4.1 2-3-3 — i i 2-3-3 +.2-3 2 2 +.1 +.1 l-l +.+2 1-2-3 +-(•2-3 1-2.3 — •— — 2.2-5 3.3 3-3 1.2 2-2-3 +.2 1.3 2(9-3 2(3). 3 3-3 — 2.J 2.2-3 5.3 3-3 +.1 — 4-3 ! f 4 » 4 - i 3-3 3-3 +2-2-3 r-2.2 — +.2 +.1-2 +.1 +.+ 2.1-2 +2-1-2 +•2 + -I +.1 +.2 +.1 +.+ I.l 4-1 2-2 +.1 + J 2.1 — — — +.+ +.1 +.3 +-I.I-2 +.2-3 — +.2 11-3 +.3 +.2-3 2-3 1.2 t-2 — — +.3 ++I-2 — — + -I-2 +.2 + -I-2 +.2-3 — — +.1 +.3 31 124 — — +.1 31 2-1 1-2.1 +.1 — 21 l-l — — — +.1 — +.2 2 2 2.2-3 +.3 — — — — — +.1.2-3 + J — +.2 — — — — +2.3 2-2-3 2.2 +.1-2 — — - 3-4-3 — 2.3 + 2 +.1-3 — — — — — — — l-l-l + J +.2 — +.2 +.1-2 — — +.3 +2 . — 4-2-1 +.2-3 +.2-3 — — 1.) +.2-3 +.2-3 • J — .— 1-2-J 1-3 l-t 1.2-3 +.+2 2-3 — — — — — — 2 .2 2 3 /•+2 + 1 I.l — — 1-1-2 +.1 +-L+-I +•2-3 +.3 1-2-J 1-2-J 2-3 2.3 5-3 1.2 1.2 +-H 2-3.! — — — — +.3 ~ 1-3 2-1 1-2-3 3-1-2 — +.1 — 1.2 — Ii2.2 + 1 +.2 — — 2.1 +.1 I.l — — — — +.1 l-l ++I M +-U — — — I.l +•» L3 + + J — +.2-3 — — — — — — J-2f3) 1-2-3 — — — — — +.2-3 +.2 + 1-2 — — 1.1-2 — — — +.2 — + i — — — — — 4.1 1.3 1 3 +•3 — — — 2-3J — — — — — — — — 2-3 | . | +.+ l-l +1 2.1-2 . — 4v2fJ) — — — 2-3-2 4.2. — — — — 2.2-) +.) — — +.1 — — — — — — — +.2-3 + + 2 — +.+ — —• — — - +.2 +.+ — — + 2 3 2-3 — — t>3 — — — 2,2-3 — — — — — — +.2 W . 2 +.3 t-2.3 M a 2 7 0 0 IJ-X 4 F . 3 3-3 3-4.3 10% 1-4-3 1-2-1 1-4.1 6-1-3 4.1 1-2-1 + 3 +•2 +4-2 2-3 91 94 • 9 7 . 9a 101 104 2*/r/n >s/r/-5i 1600 2A0O 2 0 0 0 2900 i a o o 2000 iaoo SSE SE w SV Sw SW SE ty 24' I f 3!-" J/ 20 i + + + + / / + + f * y«F y « 4-J-3 4-T-J2 4-3 3HV3-2 3^-3 3-2 4-3 +.J t-.^ -J + .0 2 ^ 2-2-3 I-2-2W J"S 10 Z /CS / 0 * 10% 2-2-3 i 4.5 4-jr. 3 4.2 4-3 4.2-3 t-2 +•3 t-.i <W,3 2-3 +.2l« r s 10 S 5 £ 2 S \% 4.2-3 +.3 3-4.3 1-2 +.1-2 2-3.1-2 1-5 1-3-2 2-3 t .3 -i-i — — +./-2 ~ +.2-J 3 5 2* i 2<?r I S +.2-3 + .1 +.( + 1-2 J-4-i (-.1 (-.1-2 1-2-l-Z h i 2-3-2 1-1 — +--I-2 1-2 + -I-2 l.l-l K f t--3 I-} — +.3 — 2-3-2 3 — +.2 — — — — t-.i T . l f.2-3 3-4. )-l 3.2-? — i-.i — — — — — 1.3 t-.l — +.2 — 1-2-1 — ~ +• f _ 6(5 ? Ai'Z / y s 45 S 1-2 J-2-3 2-3 3-4.2-3 T./-2 1-2-3 4-y-i £-i 3-2 3 4 .2- i 4.2tJ) 4-i 2-2-3 3-4-3 t-.l + .2 r . 2 3-4-3 +-I-3 +-1-2-J + .2-3 + 2 — 1-3 +•3 +.J 2-3 t—1-2-3 t-.l — 1-2 l-J 1-2-3 2-2-3 — — +-2 -r.+ + -1-3 t • + 4-S-3 1-2-23 4-J.3-2 r-2 i 1-2-3 — +-2 +.2-3 + 3 1-2 — 1-3 2.2-3 2-1 — ^-3-3-2 Ii +•2-3 — +-i +.3 1-2 3-4-Z 4-2 •hi — — 2-3 +.) +.2 +.1 — — +-1.2 +-1-I 1-3 1-2.2-3 +.3 3-3 2-3-2-3 1-3 — — + . + ++0.I — 1-1-2 — — ' +-I +.( +./ T -<-+ + .( — — — +.3 — +.2 +-I.3 1-2-3 t-3 + -I.3 — +.3 +4-2-3. +.J +.i — 1-2-3 — — 22-3 1-3 +.1-2 +-I.2-3 + -I-J-2 f-(-2-3 1-2 — — — +.2 + -I-3 -t-.3 1-3 +.2 1.2-J 1-2-3 +-I.2 +.3 +.3 — hhl — 3-3 — — — +-I-2 + -1-2-3 -— +.2 + J +4.2-3 + 2-3 • — t-(-2 1-1-2 2 2 J — — — — +-H 1-2 -t-.l +•2 + .2-3 — 1-2-2-3 — — — +-I-I-2 — — — +.1 — I.l _ +.3 2-3-3 — — — +.1 — — — — + t i U — + 1-2 — — — — +.3 + -J-3 . — +-I.3 — — +.1 — t . l 1-1-2 — — +-0 +•2-3 +.H2 +.3 +.3 +•2 1-1-2 — +4.J-2 +.1 +-t2 A V E R A G E * f U M C OF SCALE VAi-UCS ABUNDANCE 19 t MM) IANCE vsut nucTipa c u t s ALL SUNOS is STAMPS WHERE f A T C 0 E ti% 4 3 25 s . - 2 -« 2 2 17 4 *-4-7 4 3 2 3 5 2 3 17 4 4-2-r 2 2 2 3 0- 1 -« ( 2 U 4 2 2. i y 4 8% , - 2 - r 2 2 2 3 b" . - I-. 2 2 21 J-Z 2 17 4-• - 1 3 II 3 . - l - i t 2 II 3 1 2 y 2 . -+-.- 3 2 b 2 . - + -V 1 3 5 2 .-( -. L 2 9 2 o - + * 1 1 e 2 J -3% .-1-4 1 2 21 ' 5 , -i-7 3 i i A' . -Z-4 2 20 5 ,-i-t 1 2 19 - s . - l - l 1 2 20 J , - / - 4 ; 2-3 IS 4-a - / 2. 14 4 . - 2 - . 2 Z IS .-/-* 1 2 IJ-. -/-A 2 2 IS- 4 ,-l -I 1 3 IB 4 • -2-A 3 3 16 4 1 2 Ii 2 3 17 4 ,-2-i 3 3 IS . - f - i 1 1 It-/ 1 14 4-. 1 2 15 . - l - i 1 3 Ii 4 2 1 10 - ./-* 1 2 II ) 1-2 2 10 3 ,-t-l 1 2 10 f l - ' 1 2 13 i •-+- . 1 2-3 10 3 . - I - I 1 2-J 10 S . - f - i . 1 2 10 I • -+- . / z II f (-r 2 2 IS .-/-» / 2 10 J . - l - l 1 1 10 J .-+-» 1 3 e 2 . - + - I 2 2 y . - + -1 1 2 6 . - + - . 1 1 7 . -/-» 2 ) 7 2 . - + - . 1 1 e 2 t 2 6 .-+-1 1 < 2 • -+-. 1 ( 5- 2 »-+-+ / 2 » . - + - • 1 I 9 2 • -+-» 1 2 T • 1 2 T 1 PRESENCE. 2 4 7 14 •/J" 16 2 0 27 ze 2 9 31 3 4 3 9 4 0 57 S6 91 9 4 9 7 98 « 0 10/ 104 A ft F E S T U C A O C T O F L O R A F R I T I L L A R I A P U D I C A 6 A I L L A R D I A AROTATA GCUP I T P J F L O R U H C I L I A ASDKtOATA GILIA G R A C I L I S G I L I A 6 R A N D I F L 0 R A HEUCHrRA C Y U N D R I C A L A C T U C A SCAR+OLA L O M A T I U M D I S S E C T U M PtUTSTEMON FRUTICOSLiS P H A C E L I A LEUCOPMYU.A PHACEL IA LINEARIS P L A H T A S O PURSHU POA P R A T E N S I & P O L Y G O N U M D O U G L A S ! ! ' ' ' P O T E N T I L L A A R G U T A SENECIO E X A L T A T U S S I LENE D O U G L A S I I S I S Y M B R I U M A L T I S S I M U M S T E P H A N O M E R I A T E N U I F O L I A STIPA C O L U M B I A N A STIPA C O M A T A P S E U D O T S U G A MCMXIESl I D AN t u r a b P E L F I S E R A C A N I N A C L A D O N I A C U L O R O P M A E A POLrTR ICW/« P I U F E R U M C E . R A T O O O N P W P U R E U S F O U L I A NUTANS P O L Y T R I C N U M TUNtPCRMUM S E L A A I N E L L A R U P C S T R I S TORTULA R U R A L I S OM TREES o L E T H A R I A V U L P I N A CORNICLE ARIA CALIFORNIA P A R M E L I A PHYSODES 2 ) 2 2 2 /.2 + I.I M l-l + +.2 l-l l-l 1-2 •1-2 +.3 1- 2-3 2- 12 + 2.2-1 +.1 I.J +.3 • •2 1-2 + .+ +.1 22-3 1.2. +.3 1.2-3 +.+ 1.2-3 5-a +.2 + 3 +.1-2 2 2 3 + . + + 3 T.l +.2 1.3 +-2>3 +.1 +.2 l « i ) T.l 1-3 1.3 I.J 15" * +.1 +.1 +.+ 3 2 | . | 1.3 +-J +.1 + 3 +.1 f-l-2 +-I.I 12 2-2 + . / + +•1 +.+ l-l +.1 i.i 1-1-3 -f.l-2 + . 1 2 +.3 I.+4 +.+ 4 . 1 IZ + 4 . 2 + -I.2-1 1-2.1 r.3 T.l 1.1-2 +•2-3 +.+• +.2 +.2 1-21 1.3 2.2 a.% 1-2-1-1 4.1 3.1 +•+ +.+• +.2-3 +.+ +a-i 1.2-3 1-3 1-2.3 1.3 3 0 2 +.1-2 4-4M 3-1 3-4.1-2 +.1 +.1 +.+ + 1-2 1-3 + . 2 1-2-3 +.3 1.3 +•3 +.1 15" K l.l l . l 1-2.2-3 3.2 +•3 + + 3 +•+ +-I-3 +.1 + l +-L2-3 >•} 1-2-3 +• +.1 2-3 +.2 1-2-3 +.1-2 +^2 +./ io a 1.2 +.+ +.2-3 1-1-2 +.2-3 +.+ + .J + + 2 1-2-3 +.1 I S + -I.I-2 +.1-2 l-l +.1-2 +.1 +.1-2 1 3 +•2-1 1.1-2 +.3 +.1 1.2 1.3-2, + 1-2 4 * +•1 +.+ + .+ + .+ T-l +-I-I-2 +.1 1.2-3 +.1 +.3 1-2-1 T.l 7 » 3-2 +•+ 2.2-1 +.1 +.1 +.1 1-2 3 l-l-l + 2 1-1-2 + ./ 1-2.3 + 1-2 2 « f - i .2-1 1-2 +.2-3 +.1 +.+ +41-2 +.1 +.1 +.+ +.2 + 1 10% + 4 . / + 4.1 1.2,3 1.2 +.2-3 + . 2 2.1 +•» + . 2 +.1-2 +.1 1-2-1-2 +.1 +.2-1 2 2 2 y z 1.3 1-2-3 (.1 +.2 1 3 + 1 +-I +-I-2-J + 4 - 2 +.1 + 4 . 2 +-M-2 +-C2 + -I-2-J +.1 2 0 % + -/.2 + . 2 3-4-1 1 2 l-J + .2 +.1 t-i +.1 +.1 2-1 +.1 i-l 40 Z l.l 4.1-2 +-.2 1.2 la. +• +.1-2 (-1.1 l . l 2 2 2.3 + 4 2 +-J 1 0 % +••2 (-2.1 +.2-1 +J-3 • -+-• . . + - 1 . - l . l • -+-E .-+-1 3-+-I .-+-1 . - + - , • -+-2 .-+-» • -+-J • -+-* . - + - . . - + - • '..+-L . -+-( : : + . , .-+-» . - - K t . . - + - * ::{.-r . - l - l .-+-« .-+-> . ' t - l • -f-E . - + - . .-+-1 1 1 1 / 1 1 / 1 1 / 2 1 1 1 / 1 / 1 1 1 1 2 2 / / 2 1-2. / 2 1 I 1 1 1 1 171 Agropyron splcatum association. Species of presence class 1. Agoserls heterophylla l5 (+ .3 ) , 94(+.2), 98(+.l) Alectoria chalyb e l f oralis 56(+. ) A. Fremont!1 55,56 (4-. 4-) A. . l u b a t a ^ k . l i O ^ . l , . 55,56(+.+) Allium cernuum 27,28(1.3), 56(2.3) Anemone multlfida 28(+.3) Antennaria anaphaloldes 29(3.3) A. rosea 3K+.3) Apocynum cannabinum 20(1.3) Arabis Holboellii 55(4-. 3). 9K+.1) Arenaria formosa 29(4-.3) Arnica fulgens 15(3.3) Artemisia campestris 2(+i2) A. discolor 101(4-. 3T A. f r l g i d a 2(4-. 3). 55 ,56(1 .3) , 100(+.2) Aster consplcuus 7(+.2) Astragalus canadensis 55(+.3) Aj, Purshii 2(2 . 3 ) , 20,98( + . 3 ) , 100(1.3) Brachythecium albicans 7(+.3), 29(1.2), 39(+.2), 56(1.3) Bromus racemosus 16(4-.2) . 56(4-.1), 98(1.1), 104(2.3) Bryum canariense 2(4-.2), 34(+.3), 56(+.l) Campanula rotundifolia 56 (1.3) Carex praticola 28l4-."3) Castillo .1a angustlfolla 29(1.2) Ceanothus sanguineus l k ( + . + ) . 104(+.l) C. velutiiius 1x0(4-.4-f. 101(4-. 2) Cephaloziella byssacea l 4 ( + » ) Cetraria canadensis 27,28,29(+.+) C. glauca 2 8 . 2 ) . 39(+.l), 56(+.3) C. scutata 56(+. ) Chaenactis Douglasii 2,94(+.2), 34,100(1.2) Chenopodium album 100 (+.+),. 101(1.1) . C. Botrys 101 (4-.4-) Cladonia cariosa 27(+.3) C. coccifera 94(4-. 1 ) , 98(4-. 2) C. coniocraea 34(+.3) C. gra c i l i s 34(+.3), 94(2.3) Clarkia pulchella l4(+.2) Clayton!a lanceolata 91(1.3) C. perfoliata 97(+.2) Crepis acuminata 7 (3 .3) , 3K+.3) Cryptantha ambigua 91(+.2) C. a f f i n i s 14(1.2). 97(1.3) Danthonia spicata 4(4-,3) Dodecatheon meadia 14(4-.2), 15,91,98(4-.3) Brysifflum lqcon,splcttum 4(4-.2), 7(+.3) Eurhynehium strigosum 20(4-.1) 39(+.4-) Festuca pacifica lk( 1 . 2 ) ZM. scabrella 39,56(2.3) , 55(4-3) Fragaria bracteata liO(+.3) Geranium yiseossissltmim 3 K + . 3 ) , 55(+.2) Hellanthus Cusickii 31(1.3), 39(3.3) H. gjganteus i i K . 3 , r 7(3.3) Hoaackia dentlculata 100(+.2) Hydrophyllum capltatum 4 ( 1 . 1 ) , 7(2.2) Juniperua communis 29(+.l), 98(+.3) Ix scopulorum 27,56,29(+.2) Lactuca pulchella 34(+.l) Bappula myosotis 34(+.3), 91(2.2), 98(+.l) Lecanora paclfica 27,28,29,55(+.+) Lesouerella Douglasii 34,56(+.2) Lewisia redivlva 20,98(1.3), 9 K + . 3 ) , 94( + .2) Lithospermum lnclsum 20(+.2), 91(+.3) liomatium amblguum 91(2.3), 94<+.3), 97(1.3) £*. P l P e r i 9K+.2) L. triternatum lk , l 6 ( + . 2 ) , 91(1.2), 97(+.3) L. utrieulatum k( 1 . 2 ) , 7(+.l), 94,97(+.3) Madia exlgua 98(1.2) Mentzella albicaulls 31,39(+.3), 101(1.3) Mertensia longlflora 31.97(1.3). 91(1.2), 94(+.2) Mycoblastus alpinus 39(+. ) Monarda fistulosa^ 56(1.3) Nephromopsls platyphylla 55,56( + .l) Oenothera pallida 98(+.+) Opuntia f r a g i l i s 20(1 .2) , 100(+.l) Qrthoearpus tenuifollus 9K+.1) Oxytropis g r a c i l i s 27T+.3) Oj. Lambertii 55(1.3) Pacfaystima myrsinltes 4»39(+.l) Panioum Scribnerianum 20(+.+) Parmella ollvacea 53,39(+. ) Parmeliopsis ambigua 40,56(+.+) Peltigera aphthosa 3 4 ( + . 2 ) Pentstemon confertus 14,27,28(+.3) Philadelphus Lewiali 15C+.3) Phleum pratense 20(+.2) Phlox longifolla ±4(+.l), 16(1.3), 20(+.3), 98(2.3) Poa ampla 29(2.3). 39(1 .3) , 104(+.2) Ps. fendlerianet 98(1.3) Pj. secunda 25,29(3.3) P. stenantha 29(1.3) Polemonium micranthum 91.(2.3) Populus tremuloldes 31(+.l), 56(1.2) Potentllla H u t t a l l i i 27(+.3) Prunus emarginata 7(+.2) Purshia tridentata 20(1.1), 98(+.l) Pyrus Malus 55(+.2) Ranunculus glaberrimus 91 ,97(1.2), 98(+.2) Rhus radicans 2(+.2), 101(+.l) Rinodina sp. 20,104(+.3), 94(1.3) 173 Rubus leucodermls 29(+.l) Salix b ebb 1 ana 29(+.3) Sambucus glauca 91(+.2), 97(1.2) Seneclo canus 39(1.1) Shepherdia canadensis- 7 , 5 6 ( + . 2 ) , ix(+.3) Sllene antlrrnlna 20(+.3) S. douglasii 3K+.3), 34(+.2), 1x0(1.3) S. menziesll 31(+.3) Sisymbrium Ihclsum 1x0(1.3). 98(+.2), 101(+.3) Solldago missourlensls 2(+.3), l 6 ( + . 2 ) , 55(+.+)> 9K+.1) Sporobolus cryptandrus 97(+.2) Stipa elmeri 9/x(+.3) S,. richardsonli 28(1.3) S. viridula 15(+.3) S. will!amsii l6 ( + . 3 ) , 20(1.2) Tellima parviflora 91,9ix(1.3), 97(+.2) Tetradymia canescens lix(1 .3) , 97(+.2) Usnea hirta 5o(+. ) Verb as cum thapsus 2 8 , 3 K + . D , 98(+.+) Vicia americana 56(+.2) Viola adunca 7 ( + . D , 31(3.2-3) V. n u t t a l l l l 27( + . D , 3 K + . 3 ) Woodsia ilvensis 9M+.3) W. scopulina 91,97(+.3) W. oregona 15(1.1), 16(+.1) 174 PINUS PONDEROSA - STIPA COMATA SUBASSOCIATION S T A N D N * D A T E , , A L T I T U D E (FT.J EXPOSURE ' S L O P E « WIND EXPOSURE IZ UOD V N V 2 + + Z5 nso wsw 2 + + 68 2/aAsi zaoo s 10 ++ 69 2/aArz 2 8 0 0 ssw 10 + + 73 I\/S/S2 zsoe s 1 ++ 80 I7/B/S2 1400 D + + 84 1200 N W 7 + -+ 121 AVE RACE 1 ft Or W A L l V A 1 ANdt UES PRESENCE \700 Ht ABUHPANCC ft mom c AS FRACTION k D CLASS E 7/ ILL S T A N P 5 A STAUB V U U C F O I W B Ai 5% s* s% y% 4 K PfNUS PONDEROSA i-3 +•! 4-2-1 4-3 3-4-3 4 . 3 . — . - 2 - « 3 3 7 5 PSEUDOTSUGA M E N Z l E S l I — ~ — +.1 - — , — 1.2 . -+-i 1 2-3 2 2 i» 10% 2 t t S 10% IS It IK 10% P I N U S P O N D E R O S A y-6-3 4-r-s 4-J--3 r-3 41-0.3 — . - 4 - i 3 7 5 PSEUDOTSU6A H E N E l L S H — ~ — +•3 — ' — ~ (-2-2 .-+-, 1 2-3 2 2 1% 7% 2 5 5 2% 3 5 5 PIN'LB PONDEROSA +.+ t-i 4-2-) 4.2-3 J-2.2-3 2-2-3 2-3-3 — c-2-t 2 2 7 5 A M E L A N C H I E R ALN IFOL IA +-.2*3 +.j — — — — 1.3 * -+-i 1 J 3 2 7UHIPEKUS SCOPULOROM — — +.2-3 1-3 — — • -+- . 1 3 2 2 PSEUtX/TSUOA M E N Z I E S l l — — — +.2-3 —• — /•2-i • -+-i 1 2 - 3 2 2 PURSHIA T R I D E N T A T A - M +•3 — — — . - + - . 1 3 2 2 a. 25P 10% 10% f 36 7% 4*5 7% 6% CHRYSOTHAHNUS NAUSEOSUS ,-2.2 2-2 — +•2 +.3 +.3-2 2-3-3 1 2 6 4-fc/BES CER.EUM +.2 — — -hi +.2-1 1-2 . - l - i 1 2 J" 4 P INUS PONDEROSA — — •1-1-2 1-1-2 1-2 2-2 +.1 .-l-z I 2 r 4 ROSA NUTXANA — +.Z 3 -1-1 2-2 i . i — — . - l . l 2 2 4 3 A M E L A N C H I E R ALNIFOLIA — — — — — +.1 1-2-J ..+ -i 1 /-2 3 2 A R T E M I S I A T R I D E N T A T A +•1 — — — — — +•2 — . -+-* 1 1-2 2 2. PURSH IA T R I D E N T A T A +•1-2. 4-2-3 — — — — — — . -/-* 2 2 2 2 S Y M P H O R I C A R P O S A L B U S — — +.1 1-2-1 — — — — . - + - . . 1 1 2 2 C 70 SS 4 0 * (OX i'0% 65<H 55% 4-0 % 51% ACHILLEA M I L L E F O L I U M I-1-3 2.-1-1 l-S +.3 (-2-3 1-1-2 +-Z-i 2-3.2-3 .-l-i 1 3 S A N T E N N A R I A D l M O R P H A 1-2-3 2-3 1.1-2 +.2-3 1-2-2-J 1-1-3 2-3 — .-l-i 1 2 - 3 7 POA CUSICKII i-2 Ai +.2 1-2-2-3 l-l- 2-3 2 - J . 5 + + -2-3 • - 2 - » 2 3 8 i" SPOROfcOLUS C RYPTANDRUS +.+ 2.1 +.2 — 2-1-2 3-3 +. J . - l - i 1 2 7 " S T I P A C O M A T A 6-3 lt-)7-3 7-3 4>-S 7 .3 .-(-, f 3 a y AQR0PVRON S P lCATUM — l.2(-i) 2-3-2-3 2(-3>-2-3 3-4.2-3 , '>-2 — 4.+ 2 2 6 4 ANTENNAR IA PARVIFOLIA 1-3 — t-2-3 1-2-2 2-3-2-3 il-D-i — 2-2-3 . - l - i l-l 2-3 6 4 ARAB. IS P U B E R U L A +•1 — +-2 + . + — +.2 1.2-3 — . - + - . 1 2. S 4 B R O M U S T E C T O R U M — — — 3(-4).l~2 .3-4.3 3.2-3 .-3-7 4 3 1 4 F E S T U C A OCTOFLORA 3-hi. I.I-J — — 1-2-2-3 J-2-3 — . - l - l 2 2. 1- 4 KOELER IA CRlSTATA +•2 +./ 2-2 3-3 2-3-2 — — .-l-l 2 2 < 4 L I T H O S P E B M U M RV&ERALE +•2.-3 +.3 1.3 + .3 +.2-3 +-I.J-2 — — .-+-. 1 3 6 4 OPUNTIA FRA6ILIS 1-2-2.-1 — -f-2-3 •t-.l — +•3 l-i-3 — . -/ -I 1 2 tr 4 PINUS PONDEROSA +.1-2 +.1 +.1 — + -1.1-2 + -I-I-2 .+•1 — . - l - l 1 1 6 4 P L A N T A G 0 PURSHII — 3-4.2-J — — +4-Z 2-3-2-3 2-3.2 1-2-3 . - ( - » 2 2 y 4 R O S A NUTKANA —- — 11 2.1 l.l +.+ — + J . - l - i 2 1 4 T R A G O R O G O W PRATENSIS +•+ + 2-3 +.2 — + -1.I + 2 — +.1 . -+-* 1 2 6 4 A M E L A N C H I E R ALNIFOLIA — + . + -t-.l +•+ +.1 — — — 1 1 4 1 A R t S T / P A L0NGISETA 4-3 M-2 — — — 1-2-3 4-5-3 — . -2-1- 3 2-3 4 3 A R T E M I S I A FRI61QA — — 2-2 +-.3 — — 3 H M 2 2 4 3 C R E P I S ATRIBAR9A +.3 1-2-3 — +•2-3 +.2-3 — — +-3 • -l-l 1 2-3 ir 4 *E, f t l ( lERON PUMIUUS +-.2-3 — — •— f-2-3 +•2-3 — .-1-4 2 2-3 4 3 " ER IOOONUM HEBACLEOIDES +.3 — +.3 — 1-2-3 — + .2-J — . - + - , 1 3 4 3 * L A P R U L A M Y O S O T B + . + — +•2-3 — +.1 — — 1 2 4 3 LEP lD JUM DENSIFLORUM +.1 — +•2-3 — +.2 — — +•3 1 2 4 3 L E V I S I A R E O I V I V A +-.2 +.2 — — 1-3 — — 1 2-3 4 3 POA PRATENS1S 1-2-3 — — +.3 — + -I.2 — J-4-2-3 ,-l-t 2 2-3 A 1 S I SYMBR IUM ALTISS1MUM +.1 — — — — • 2.3 +<4).2-3 l-i-l .- )-* 1 2 4 3 S T I P A COLUMBIANA — — (-2.3 I-S + . 1 — 1.3 .-l-i 1 1 4 I AOCSERIS G L A U C A — — +.i +.2-1 — — — — 1 3 2 2 A L L I U M C E R N U U M — — +-2-3 + -I.2-3 — — — +•3 .-+-1 1 l-J 3 2 A N E M O N E MULTtF lDA — — +.2-S +.3 — — — — .-+-. 1 3 2 2 A N T E N N A R I A U O V E L L H — — — 1 2 +•+ — — — • - + - I 1 1 2 1 A R C T O S T A P H Y L O S UVA-UR5I — — + . + +-I.2-J + -(•2 — — —- . - + - , 1 2 3 2 ARTEMIS IA CAM PESTR1S — — l-i — - 1.2-3 — — — .-+-i 1 3 1 2 A S T E R FREMONT I I — — 1-2-1 +.3 — — — — . - + - 1 1 > 2 2 A S T E R OCCIDENTAL IS — — + 2 +.2-3 — — — — ..+-. 1 2 2 2 ASTRAGALUS SEROTINUS — J . J — + . / — — — — 0-+-1 2 2 2 2 BALSAMORHIZA S A G I T T A T A l-l Z.I — — — — — 1-2-3 .-1-2 / 1 S 2 BROMUS RACEMOSUS +.1-2 +.3 — — — — — .-+-• 1 2 2 2 CARCX ROSSU — — — — 1.2-3 — — 1-2-2 . - + - « 1 2 Z 2 CHRYSOPSIS V I L L O S A +*2 — — — — — » -+^ * 1 1-2 2 2 C IRS IUM U N O U L A T U M — +-' — — — +-I .2-3 1.3 — »-+-! 1 2 J 2 EP I LOB IUM M I N U T U M — — — — +.3 — — .-+-. 1 2 2 2 ERI6EBON CANADENSIS — —'• — — +./ — — . + - » 1 1 1 1 E R ' S E R O M C O M P O S ' T U S — — +.2 +-I.2-3 +.2 — — — . - + - ! 1 2 3 2 ER1QERON F IUFOL IUS — +•2-3 — — — +.2 +-.2-3 — .-+-« 1 2 ] J ERieERON F L A G E L L A R S — — +•2 2-3-3 — — — — • -+-J 2 2-1 2 2 E R l O a O N U M N IVEUM +. I-2 — — — — — 2 3 — .-+-1 1 2 2 2 F R AO A R I A V R S I M A N A — — +H)-t-2 1-2 — — — — .-+-1 1 2 I 2 F R I T I L L A R I A PUD lCA — +.3 — — — — + . * — . - + - . ; i I 2 2 GAILLARD1A A R I S T A T A — 1-2-3 1-2-3 — — — — • - l - l 1 3 2 G E U M TR I FLORUM • — — +-I-I-2 +.+ — — — 1-1-2 .-+-1 i 1 1 2 GU.IA GRACILIS — — — — +.2-3 — 1-3 — ..+-! i 1 2 2 HCUCHERA CYLINDRICA — — +-2-J — l-l — — — .-+-1 i S 2 a -L A C T U C A P U L C M E L L A — — 1-2.1-2 1.1-2 — — — — • .-+-« i 1-2 2 2 L E S f i U E R E L L A DOUGLASII — — + . 2 - 3 — — — — +.1 • i 2 2 2 L J N U M L E W I S l l — — 1-2-3 1- 2-3 — — . i 2 - 3 2 2 OXYTROP l S GRACILIS — \ — + -I.I-2 +.3 — — — — .-+-1 i 2 2 PHACEL IA L INEARIS l-l-Z — +-2 — — — +.2 . -+- I i 2 1 a P H L O X L O N S l F O U A 1.2-3 — — — — * 2 ) . 2 1-2$ — . - + - 1 i 2-» I J J P O L Y G O N U M DOUGLASl ! + . + — — — +.1 + + .2 — .-+-. i ] 2 P O T E N T I L L A P E N N S Y L V A N I A — — 2 . 3 1-2-2-3 — — 4-4-1 2 ) 2 PURSHIA T R I D E N T A T A l-l l-l — — — +.2-/ — • -+-I 1 | ) J S A L S O L A K A L I — — i— — — +.2.-S . - + - + ; f 2 S T ' P A " R lCMARDSONI l 11 1-3 . - t -1 1 ] S T I P A S P A R T E A — — 2-2- J / • 2 - S *-+•! hi 2-1 2 ? S Y M P H O R J C A R P O S ALBUS — — +-I 2-1 — — — • -+-I | t J T A R A X A C U M O F l C ' N A L E — —- +-I H - l — — i-hi. • - l-l 2 J J A R T E M I S I A T R I F I D A D — — +.1 3-2 — . 4 - 1 2 1-2 2 2 2 O N « R O U N D CLADONIA C H L O R O P H A E A — y.i 1-2-1-2 4-J-.2 i-l-l-l I.I _ .-1-4- I 1 T O R T U L A RURAUS (.2 I.I -t.l — W - 2 4 - r . 3 _ 4-2.-4 | SELAS lNELLA R U P E f i T R I S — — 1-1-2 — — 2-3. i - i i-i-s .-1-1 | 2 4. • C E R A T O D O N P U R P U R E U S — — —- + . 3 — 2 3 4 - l - l t $ C L A D O N I A GRACILIS — — + . 2 + . 1 - 2 — — — • i z. P E L T I G E R A C A N l N A — — — + .+ +>l — 1 - + - « | i J POHLIA NUTANS 1-2 +.2 — — — — « -+- I I 5 I POLYTRlCHUM P l L l F C R U M i-z — — 4 . 3 I.I — — • -I-4 2 2 t a O N T R E E S -LETHAR IA V U L P I N A 2 - 2 — +.1-2 + 1-2 +•+ + . + . - l - l 1 1 ALCCTORlA TUBATA — — + 1 — + •+ + . + — - »-+.• .1 / \ C E T R A R i A 6 L A U C A — — — + . 1 - 2 — — + •3 — ..+-. 1 . 2 CWNKt fLAR lA C A U F M M C A + . • .-+-+ 1 + 2 175 Stipa sub-association. Species of presence class 1. Acarospera schleicheri 68(+.3) Agropyron subsecundum 68(+.3) A. trachycaulon 68(+.2) Amaranthus graeclzans 81t(+.l) Astragalus purghli 25(+.3) At tenellus 6 8 ( 1 . 2 ) Bryum canariense 80(3.2) Cetraria islandica 69(+.2) Chenopodium album 68(+.l) Cladonia coccifera 73(+.3) .C. furcata 68(1.3) Claytonia linearis 8it(1.3) Comandra pallida 58(1.3) Cryptantha humilis 12(+.2) Delphinium bicolor 81T.(+«3) Blymus condensatus 12K + .1) Epilobium angustifolium (73(+.2) Brigeron corymbosus 73 (+.+) E. peucephyllus 12(+.3) E. strigosus 25(+.3) Erysimum inconspicuum 68(+.3) Euphorbia glyptosperma 8i].(+.2) Festuca occidentalis 73(1.2) Z i paciflca 8/+(+.3) G i l i a pungens 12(+.l) Hieraclum cahadense 68(+.3) H. cynoglossoides 73(+.3) Hypericum perforatum 25(+.3) Juniperus communis 69(+.3) Lecanora pacifica 80(+.+) Lithospermum incisum 12(+.2) Eomatium macrocarpum 68(+.+) !>.. u t r i culatum 8 l iT l . 3) Eupinus sericeus 73(1.3) Mentzelia albicaulis 12(+.2) Muhlenberg;!a richardsonis 68(1. Panicum scrlbnerlanum 25(+.3) Parmelia physodes 6*9 (+.1) P. sulcata 69(+.+) Parmeliopsis ambigua 12(+.2) Peltigera scutata 69(+.+) Pentstemon confertus 69(+.2) Poa fendlerTana SJTl.3) Polemonium mi c rant hum 12(1.3) Polytrichum juniperinum 73(+.2) Prunus persica 25>(+ .1) Pyrus communis 2$l+.2) Pj. malus 25(1.1) Rinodina sp. 25(+.l) Sedum stenopetalum 68(+.3) Setaria glauca8 ^ ( + . 3 ) Stipa elmeri 80(1.3) S. occidentalis 73(1*3) Usnea hirt a D9(+.2) Verbena bracteata 8]+(+.3) Xanthoria candelaria 69(+.2) Zygadenus venenosus 73(1*3) 176 IPiNUS PONDEROSA - RHUS GLABRA ASSOCIATION SYANb Nft. DATE ALTITUDE (FT.) EXPOSURE SLOPE (•) WIND EXPOSURE 9 1200 SW 15 + + 22 1500 SW 4" 23 n/e/a 1200 w 12 ! 81 17/8/52 HOC ssw + /// 7/VS3 AVERAGE 4 • RANGE OF SCALE VALUES ASSIGNED PRESENCE 1200 Z ABUNDANCE S. DOMINANCE VIGOUR c AS FRACTION A D CLASS E + ALL STANDS A STANDS WHERE FO^ ND Ai SX 10 s / % 5"5S 7% PINUS PONDEROSA PSEUOOTStWA M E W l C S I I y-2 ••3 +.3 t-5-2-3 2.3 2.2-3 2-3-J o— 3 + 3 3 5 / S i Ai 10% 15% IS 3J 2 5 JS 25 S 22 Z POTUS POHDEROSA 4-2 1-7-1 y.2-3 5.1 S-i.l 4-S-T 5 3 5 5 PSEUDOTSIWA HENZtESU +.3 o-+- + + 3 f POPULUS T R E M U L O I P E S — — 1-2-3 — «-+-! 1 2-3 1 1 P M U 5 P O N D E R O S A 5X 20 X 10% 20% ' 1% (IS 1.1-2 3-2 2.2-3 1.2-3 + .1 1-1-3 2 2 5 y A M E L A N C H I E R A L N I F O L I A 1.2 2.3 4-3 1.3 1.3 1-2-4 2 3 y "RHUS GLABRA 1.2-3 +•3 1-3 4.3 1-3 .-2-« 2 y " P H I L A D E L P H U S L E W I S l I I.l 2-3 I-Jf2) 1-2-2-3 o-l-l I 3 4 *SAMBUCUS G L A U C A — 1-2 +•3 3-3-2 1-2-3 o-l-J 1-2 2-3 + 4 A C E R SLABRUM — +- + -I — • +.3 +.H2 o-+-t 1 2 3 3 PURSH IA T R I D E N T A T A 1.3 +.3 23 o-|-2 I 3 3 3 POPULUS T R E M U L O I D E S — 1-1-2 +•3 o—+-I | 2 2 PRUNUS V JRC fMANA — +.2 — +2-Z — 0-4-.2 1 2 2 2 B* 33-55 3ra 20% 3SX 20 % 298 PINUS P O N D E R O S A +.1 2.2 3.2-3 2-1-2 (-2-2-3 • -2-J 2 2 5 5 " R H U S G L A B R A S-2 6-2-3 jr. 2 SI 4-3 4 - 5 - 4 5 2-3 3 y 5 " R . R A D I C A N S 2.2 3.2-3 +.2-3 33 +•3 *-2-j 2 A" s A M E L A N C H I E R A L N I F O L I A 2-1 +.2-3 1-1-2 2-3-2 0-2-3 2 1 •4 4 C H R Y S 0 T H A M N U 5 N A U S E O S U S +•2 +•+ Z-2-2-3 1-3 «-/-! 1 2 4 4 " P H I L A D E L P H U S L E W I S l l +•2.-3 2-2-3 3.2-3 2-2 . — o-2-J 2 2 4 4 PRUNUS VIRGIN IAN A +.1 I-2-IC-2) 21 1-1-2 • -I-2 1 1 4 4 PURSHIA T R I D E N T A T A 5-3 +-I +-2-3 2-3-3 o-2-i 2 2 4 4 RIBES C E R E U M — +-I 1-3 2-3 + 1 .-l-i 1 2 4- 4 ROSA N U T K A N A + •1-2 1-2-3 3-3 1-2-3 »-1 -J 1-2 2 4- 4 C L E M A T I S U S U S T I C I F O L I A 1-2 +•1-2 — 3-3 C-l-S 2 2 3 - S A M B I X U S G L A U C A +.1 — 1-2 +.2 O - l - l / 2 3 3 A R T E M I S I A T R I D E N T A T A 11 — — 1-2-3 . - l - l 1-2 2 2 2 B E R B E R I S A & U I F O U U M +•2-3 — 1-2 0- + -I 1 2 2 2 P O P U L U S T R E M U L O I D E S — l-l — +•3 1 2 2 2 S Y M P H O R I C A R P O S A L b U S — 1-1-2 — +-3 - • - + -I 1 2 2 2 c 4055 15% 30% *I0Z 25Z 242 A C H I L L E A M I L L E F O L I U M 1-2 1-2-2-3 2-2 + -I 1-1-2 .-l-i 1 2 5" S AGROPYRON SP ICATUM J--2-3 1-2-2 1-2-3 1-2-3 1-2-1-2 i-2->- 2 2 y 5 B R O M U S T E C T O f t U M 3-2-3 3-2-3 4-2 3-2-3 4-2-3 J-3-4 3 2 y 5 OPUMTIA F R A G I L I S +.1 +•1 +-I-2 +.1 • - l-l 1 1 s y "PANICUM SCR I BNER IANUM 3-4-2-3 2-2C-D 3-3 2-3-3 12 1-2-4 2 2-3 y PINUS PONDEROSA +-I 1-2-1 1-1-2 1-1-2 l-l o- 1 -1 1 1 y y *RHUS 6 L A B R A 3-2 3-2 3-2 2-3-1-2 22-3 o - l l 3 2 5 *R . RADICANS 3-2-3 3-2 1-2-1 2-3-2 2(-3)-2 .-2-j 2 2 5 y A M E L A N C H I E R A L N I F O L I A +-I l-l +-I l-l o- l-l 1 1 4- 4 GAJLLARDIA AR1STATA — +-3 2-M3 +-2-3 0-1-2 1 2-3 + 4 L 1 T H O S P E RMUM RUOERALE — +-I-2 1-3 1-2-2-3 + •3 o-l -2 1 3 4 4 PLANTAf iO PURSHII 21 — +-+ + H-+ +-3 0-1 -2 1 2 4 4 POA CUS ICKM 2-3-2 +.1 3-2 2-3 — 0-2-i 2 2 4 4 " S T E P H A N O M E R IA TENUIFOL IA 3-3 +•3 + -I 2-3 — o-l-J 2. 2-3 4 4 ST I PA C O M A T A 2-2 — +-V-2-3 3-4-3 t-Z-Z 0-2-J 1 2 4 4 T R A G O P O G O N P R A T E N S I S +-I +.2 +-I +-I-2 — o--+-» 1 1 + 4 " V O O D S l A O R E G O N A 2-2 1-2-1 l-l +H-3 — 0-1-1 1 2 4 4 ANTENMAftlA MMORPHA — 13 +•3 +•2-1 — o-l-l 1 3 3 3 A. WRVIPOUA — +-I-2-3 — ++•3 + -I-3 o-l-i 1 3 3 3 APOGYNVM ANDKOSAEMJ FOLIUM — 2-1-2 •— +-I -2 + •3 0-1-2 / 2 3 3 A R A B IS PUBERULA — +•/ +-I-2 + •2-3 — o-+-» / 3 2 3 3 ARJSTIDA LONG BETA +-2-3 — 4-2-3 +•3 — 0-2-4 3 3 3 ASTRAGALUS SEROTIML/S — — +-•+ +.3-2 +•1 o-+-t 1 1-2 3 3 BALSAMDRHIZA SA61TTATA — +•+ +-I — +•1 0 - + - * / 1 3 3 bERBCRtS A & U I FOLIUM — 1-2 +•1 — 1-1-2 0-/- I 1 1-2 3 3 CALOCHDRTUS MACROCARPUS — +.1 +•3 +.3 — 0-+- » 1 2 J 3 CAREX ROJSII — 1-2-3 1-2-2 — i-Z-3 .-1 -1 1 2 3 3 CHRYSOPS1S V ILLOSA +-J — +•3 ++•> 1-3 o-l -1 1 3 . 4 + ClRS lUM UHDULATUM + •3 - — 2-3 +•+ — 0-1 -2 1 2 3 3 C R E P I E A T R L B A R B A +-I +.2-3 — +.3 — e-+-t 1 2 3 3 ER IOSONUM^ WIVEUM 1-2 — l-l 1-1-2 — O - l - l 1-2 1-2 3 GILIA A 6 G R E 6 A T A 1-3 — 1-3 + •3 — O - l - l 1 3 3 3 WEUCHERA CYLINDRICA +.2-3 1-2-3 1-2-3 — — ,-l-i 1 3 3 3 PUR&HIA TR IDENTATA 1-1-2 — +.2-3 1-1-2 — o-l-i 1 2 3 3 ROSA N U T K A N A — +•2 +-I l-l — o-l-l 1 1 3 3 SPOROBOLUS CRYPTANDRUS •4-2-3 — — +.2-! l-2-i . -1 -4 2 2-3 3 VERBASCUM THAPSuS — +•+ — +.+ +.1 0 - + - . 1 1 3 3 " V E R B E N A B R A C T E A T A +.3 +.1 — +.2-3 — .- + -» 1 2 3 3 Z Y C A & E N U S VENENOSUS — ++-I +-I + •3 — O - l - l 1 2 3 3 AGRflPYRON TRACHYCAULON — +•2-3 — +.3 — • -+-+ / 3 2 2 COMANDRA PALLIDA — +.3 — +.1-2 — 0- + - . 1 2 2 2 EPILOBIUM ANGUSTIFOLIUM — +•+ — — hz-i . - + - 2 / 2 Z 2 ERIGE RON FILIFOLIUS — — +-3 — + i • - +- * 1 2 2 2 EUPHORBIA 6LYPTOSPERMA — — — 1-2-3 . -+-. 1 2 2 Z F E 5 T U C A OCTOFLORA 2.2 +.1 — — — .1-2 1-2 1-2 2 2 L l T H O S P E R M U M IMCISUM +.2 — 1.2 — — • - + -I 1 2 2 2 P E N T S T E M O N C O N F E R T U S — +.3 +•} — — • -+-• 1 3 2 2 KOELERIA CRIST AT A — +•1-2 +.2 — — .- + -* 1 2 2 2 PHACEL lA LINEARIS +•2 — — — +.1-3 $-+-* I 2 2 2. PHlLADELPHUS L E W K H — +•1 — 2-1 — .-l-l 1 / 2 2. POTENTILLA Af tWTA — 1-2 3 1-2-1 — — 0- 1-2 t-2 3 2. 2 S0UCAOO MISSOURIEMSI& — 1.1-2 1-1-2 — — 0 - + - . 1 /-2 2 2 STIPA E L M E R I — +.1-2 +-I-2-3 — — .-+-, 1 2 2 2 T A R A X A C U M OFF IC INALE +.+-I + 1 C-+-+- I 1 Z 2 D +0 Z 10 Z 30 % 10% 10% 20% ON ( K X W CLADONIA CHLOROPHAEA 3-2 +•} 1-2-3 3-2-3 +•3 .-2-1 2 5" J PELT16ERA CANINA 1-2-2 +•1 + -I .1-2-2-3 — 0-l-« / /-2 4 4 POLYTRICHUM PILlFERUM 5-1-2 — 3*.3 22 +.3 0-2-4 3 2-3 4 4 S E L A B I N E L L A RUPESTRIS +.2 — 5-2 4-2-3 3-3 • -l-r 4 2 4 4 CE&AT0DON PURPUREUS '— +.3 +-I -3 l-li — .-l-l 2 3 3 3 TOR T U L A R U R A L S 1-2 1-1-2 Z-3-2 .-l-l 2 2 3 3 ON THEM L E T H A R I A VULPINA +-I +.1 - +.+ +-+• 1 1 4 4 177 Rhus a s s o c i a t i o n . Species of presence c l a s s 1. A l l i u m cernuum l l l(+.3) Apocynum cannablnum 9(+.2) A r a b i s h o l b o e l l l i 9(1.2) A r t e m i s i a campestris 9(1.3) Aj. f r i g i d a 11K+.3) A s t e r e r i c o i d e s 8l(+.3) Astragalus p u r s h i i 23(+.2) Boletus sp. 22(1.3) Bryum canarlense 23(+.3) Ceanothus sanguineus 81(3.3) C e p h a l o z i e l l a byssacea 23(+. ) Crataegus d o u g l a s i i 81(+.1) Crepis acuminata 9(1.3) Delphinium b i c o l o r 22(+.l) Elymus condensatus 22(+.2) Encalypta sp". 9Tl.3) Epilobium mlnutum 8l(+.3) Equisetum hyemale 8l(+.3) E r i g e r o n pumilu3 9(+.2) Erlogonum h e r a c l e o i d e s 23(+.3) Eurhynchium strigosum 23(+.+) F r i t i l l a r i a p u d i c a 23(+.3) Geaster sp. 22(+.3) Holodlscus d i s c o l o r 22(+.3) Juniperus scopulorum 81(+.3) Mertensia p a n l c u l a t a 8l(+.2) Mlmulus guttatus 5l(+.2) Pentstemon s e r r u l a t u s 22(+.3) Plahlia nutans 9(2.2) Polemonium micranthum 22(+.3) Polygonum d o u g l a s i i 111(2.3) Polytrichum .juniperinum 22(+.2) Rhinanthus c r i s t a - g a l l l 81(1.2) Ribes viscosisslmum 8~l(+.l) S i l e n e l n e n z i e s l i 8 l (+. 3) S p e c u l a r i a p e r f o l i a t a 9(+.2) Spiraea l u c i d a 22(+.l) S t i p a v i r i d u l a 8K+.3) V i c i a s a t i v a 22(+.3) PSEUDOTSUGA MENZIESII - PINUS PONDEROSA - ARCTOSTAPHYLOS MSI ASSOCIATION S T A N D N>~ BATE , , A L T I T U D E (FT.) S L O P E C) WIND EXPOSURE •48 V > / y 2 2600 A PINUS POMREROSA PSEUDOTSUGA ME.N2IESII PINUS PONDEROSA PSEUDOTSUGA MENZIES I I • 7 U N I P E R U S SCOPULORUM A M E L A N C H I E R ALNIFOL IA Ba A M E L A N C U I E R ALNIFOLIA PINUS P O N D E R O S A PSEDOT5UGA MEN2ICSI I ROSA N U T K A N A •SHEPHERPIA CANADENSIS C E A N O T U U S VELUTINUS TUNIRERUS COMMUNIS •TUN IPERUS SCOPULORUM C U R Y S O T H A M N U S NAUSEOSUS C ACHILLEA M ILLEFOL IUM AGROPYRON SPICATUM " A L L I U M C E R N U U M AM.ELANCHIER ALNIFOLIA ANTENNARIA P6RVIF0LIA ' ARA&I5 PU8CRULA • A R C T O S T A P H Y L O S UVi-URSI CAREX RCSSII F R A G A R I A VIRGIN IANA G A I L L A R D I A AR ISTATA K O E L E R I A CRISTATA PINUS PGNPEROSA ROSA NUTKANA ' S E P U N STENOPETALUM •SDLIDAGO MIS50URIENSIS TARAXACUM OFFICINALE •ANEMONE MULTIFIDA ANTENNARIA P1MOTPMA ANTENNARIA HOwELLI I APOCYNUM ANDROSALMIFOLIUM ARTEMISIA CAMPESTRIS A3TRAOAUJ5 SEROTINUS • C A R E X CONCINNOIDES CREPIS ATR I BARBA G E U M T R I P L O R U M L I T M O S P E R M U M R U D E H A L E • P E N T S T E M O N FRUT lCOSUS PSEUDOTSUGA MENZ IES I I TRAGOPOGON P R A T E N S I S B A L S A M O R H I Z A SA6ITTATA feROMUS T E C T O R U M COMANDRA PALLIDA F E S T U C A SCA&RELLA HIERACIUM CYNOGLOSSGIDES TUNIPERUS COMMUNIS LOMAT1UM MACROGARPUM POA CUSICKII O X Y T R O P l S GRACILIS S P I R A E A LUCIOA ST IPA COMATA S T I P A RICHARDSONII AGOSERIS OLAUCA A R T E M I S I A FRIGIDA ASTER FREMONTH A S T E R OCCIDENTALIS A S T R A G A L U S PURSHII A S T R A G A L U S T E U E L L U S C A L A M A 6 R 0 S T I S RUfcCSCENS CEANOTHUS V E L U T I N U S CHEMOPODIUM A L B U M CIBSIUM UNDULATUM COCLINSIA PARVIFLORA ER IGERON COMPOSITUS ER IGERON FILIFOLIUS GAL IUM 6 0 R E A L E H E U C H E R A CYLINDRICA TUNCUS 6ALTICUS •TUNIPERUS SCOPULORUM L A P R U L A MYOSOTIS LINUM LEUIS I I OPUNTIA FRAGILIS ORYZOPSIS EKIGUA PHACELIA LINEARIS • SHEPHERDIA CANADENSIS SPOROfiOLUS CRYPTANDRUS STEPHANOMER IA TENUJFOLIA ST IPA C0LUM6IANA SYMPHORCARPCS ALfcUS ON OROUNP CLAPONIA CHLOROPHAEA P C L T l G E R A CANINA TORTULA RURALIS CLADONIA CARIOSA CLAPONIA ORACILIS POLYTRICHUM P I U F E R U M & R Y U M C A N A R I E N S E CERATODON PURPUREUS CLAPONIA COCCIFERA CLADONIA VERTICILL ATA P O L Y T R I C H U M TUNIPERINUM ON TRCES L E T H A R I A V U L P I N A C E T R A R I A GLAUCA >ANTwORIA CAN DEL AP IA I0SS 4.3 4-2-3 l l 'SS 4-2-S 4 - y . a w 10% 3-1.j 4 1 10% 2-1.1 )-«-l 3 4 1-2 2 2 3-2 + -1-2 b -2-3 1-2 2.2 +.2 2-3-2-3 +-I-2 2 - 3 2 H ) 2-3.2 2-3-2 10% 1-4.2 1-4.2 i " 0 10/7/-?! 1-1-2-1 T-I-2H1 -2.2H) 1-1-2 + .1-2 l-2(-l) 1 2 1.2 +.2 +-I.2M «/7/->2 U K A-J-.2-1 1-2-1 I 0 W + -I-2-J 10% 4-5.(2-)5 1-2-3 11% M l 40J I 1-2.2-3 2-3.2 4-J-.2-5 I K-2). 1-2 t.l 1-2-1 +.2 1-1-2 +.2-1 3.2-3 1-2-1-2 12-3 + +•2-3 +. 1-2 2.2-1 1-2-1 I2/./J2 2 1 0 0 S H 5 ? 4 -)-. 1-2 6 1 ' J I / / / H 60 3400 67 i/a/u isoo ESE 2 0 l>"« ICS* 4(-y).2-3 A(-i).2-3 , 2.2 4-2-1 I 1.2-1 +2-1 855 4-2-1 2-2-1 J D K 4.2-1 ?(-4>.2-3 +.2-1 +.2-3 T.2-1 l(-2)-l-2 K 2 H ) 30% 1.2 3-4.2 G-2-3 +. 1-2 II-2J.2 2 2 2.1 1-2.1 +.1 1-2-3 1- 23 K-21.2 1.3 2- 3 2 1.1-2 1-2-3 +.J + .3 + .1-2 +.3 f-l-3 4 0 J S 1-2 3 2 - I .2H) 11-2). 2 If 21.2 1-2.2 'A tttU-Z 1 2 2.2 1-2.2-1 1-2-2 t.l 6.1 1-2-1 +.1 1-21 + -I.3 1-2.3 +• + T-1.2-3 +•2 1-2.2 + -I .2H) I-I-2 10% 4(-»2 + .2-1 2-3.2fl 22-1 2.2H) 2.2 1-2-2 +.1-2 , +-1 | 2-2-3 ! 1.2-1 I ZJ-«5 1-2-2 2-2 | II-2I.2 l(-2).2-3 I.+ I-1 +.2-3 + •2-3 1- 2-3 2- 3 +.2-3 +.2 T-l 1-2-3 +_itl) +-3 2-2-3 + -I-2-3 +.2 AVERAGE I RANGE OF S C A L E V A I U C S A S s i a n e p U (J7ANPS STANDS WUtn-Fount A -?.", - 2 . . •I.I /6 c D L" 2-3 8 y 2 7 y 2 a y 3 7 y 2 6 y 1 -.7 y 3 ^•4- 3 1 . : 2 2 t a y 2 a y 2 7 y 2 e y 2 6 4 2 4 3 1 4 3 1 4 2-3 2 2 2 S y 2 a 5 3 a y 1 7 y 2 8 S" 2-3 8 y 3 8 y / 7 y 2 7 5 2 7 5 2 e 5 - 1 e S / « y 2 7 y 2-1 8 y 1 7 y 2 y 4 2 6 4 2 6 4 1-2 6 4 2-3 6 4 2 J " 4 2 6 4 2 S 4 2 y 4 2 6 4 2 s 4 / y 4 1 y 4 1 4 3 2 4 3 3 4 3 2 4 3 3 4 3 2 • 3 2 4 3 2-3 4 3 2 y 4 1-2 « 3 3 4 3 1 4 3 2 2 2 2 3 2 3 3 2 2 2 2 2 2 2 1-2 2 2 2 3 2 1 3 2 1 2 2 1 2 2 2 3 2 2-1 2 2 3 3 2 2-1 2 2 1 2 2 3 2 2 2 3 2 1 2 2 M 2 2 1 3 2 1 2 2 1-2 3 2 1-2 1 2 2-3 2 2 2 J 2 3 1 2 1 2 2 179 Arctostaphylos association. Species of presence class 1. Agropyron trachycaulon 67(1.3) Alectoria fremontii 67(+. ) A. .1 ub at a 66(+.+) Apocynum cannabinum LL9(+.+ ) Aster ericoides 6T(1.3) A. laevis 65( + .l) Astragalus stenophyllus 66(1.2) Brachythecium albicans 65(+.l) Calochortus macrocarpus 67(+.2) Carex xerantica 67(+.2) Cerastium arvense 6>7(+.2) Cetraria islandica 66(+.3) C. scutata 65(+. ) Cirsium drummondii 66(+.2) Cornicularia californlca 66(+.+) Delphinium bicolor 3) Blymus condensatus 67(1.2) Erigeron flagellar!s 66(+.2) Erlogonum heracleoides 5l(+.3) Festuca occidentalis 65(1.2) Za. octoflora 1x9(1.2) P. ovina 55~( + .2) Lactuca pulchella 66(+.2) Lecidea lurida 6~6(+. ) Lesquerella douglasii, 67(+.3) Nephromopsls platyphylla 5l(+.l) Parmelia physodes 51(+.2) Parmellopsis ambigua 65( + . ) Peltigera aphthosa 65(+.2) Poa interior 67(+.+) P. secunda 67(+.3) Pbhlla nutans 50(+.+) Polygonum douglasii 65(+.3) Potentilla pennsylvanica 65(+.3) Rinodina orbata J4.9( + .l) Selaglnella rupestris 48(1.2) Senecio canus 66(1.2) Silene antirrhina 5l(+.2) S. scoulerl 5 K + . 3) Sisymbrium altissimum 67(+.3) Sitanion hystrix $0(1.3) Stereocaulon tomentosum 6(+.3) Stipa elmeri 50(1.3) S^ occidentalis 51(1.3) JLL vlrldula ^2(+.3) Usnea hirta 65(+. ) Zygadenus venenosus 52(+.2) PSEUDOTSUGA MENZIESII - (PINUS PONDEROSA) - CALAMAGROSTIS RUBESCENS - ABCTOSTAPHYLOS UVA-URSI ASSOCIATION S T A N D N 5 D A T E , . A L T I T U D E (FT.) E X P O S U R E , . . S L O P E C) W I N D E X P O S U R E / 2 1 / 5 / 5 2 3 2 0 0 V 2 4 / 4 / 5 2 25-00 32 2 4 / o / M 2500 J E S" + + 35" Z7/6/SI 1600 + + 36 so/V-rz 1600 s s w IS + + 37 1 / 7 / M 2100 s 10 + + 38 1/7/52 2 5 0 0 E S + + 47 4/7/52 3 7 0 0 S W 10 1 64 3 I / / /52 3600 S 10 + + 69 23/3252 3000 V 3 0 + + 105-29/7/CSl 3100 S S E S + + 106 I4/H/43 3 4 » S 5 + + 107 I4/&/ I3 3 4 0 0 S E 10 1 108 2o/a{ss 3 4 0 0 s IS + 109 2i/e/« 4000 S f A V E R / I S C « RANGE OP S C A L E V A L U E S A S S I f i N C O P R E S E N C E ABUNDANCE I DOMINANCE mow C AS FRACTION As P CLASS E A L L STANDS A STANDS WHERE FOUND 15%, s% 20S5 15% 10 35 ion IJ-R 10% 10% 15% 7% 1455 3-4.2H) 4-3(2) 3-2-3 4-4.3 4.2-3 +.3-2 4.3 4.2-3 4-4-2-3 4-51 4-5.1 4-1 j - 4 - . 4 3 15- 5 2-3.2 4.3-2 2.3-2 4-3 4-5.2-3 3-3-2 +.3 3-4.3 4-1-3 2.1 3.3 3-3 1 - 3 - 4 4 3 14 5 6 0 5 5 2035 3D 55 10% 10% 15 a 10% 20* 15% 12% 20% I O C 19 2 4-4.2 2.2-1 4.3 42-3 4.3 3.2-3 4.3 2.2-3 4-5.2-3 4-5-1 3.3 2.2-3 1-4-4 4 3 14 5 ' 7-2-3 5-2-3 4-3 4.2-3 4.3 — +.3 4-4.3 S-l . 1-3 3.3 4-S--3 2-4-4 4 3 14 r — 4-J-.2-3 — — +.3 +.3 4-3 — .-Is 3 3 4- 2 — — — — — — — — — — 4 . 3 2-3.2 . - + - » 2 2 3 1 ir« 10% 10 55 15% 15% 5% 15% 455 1 55 10% 5-55 11% 13 +.i 1.2-3 1.1-2 3-4.2-3 3-3 — 2-2-3 +.2-3 1.2 1.3 1-2-3 3.3 .-2-4 2 2 • s +-i".2-3 4.2-3 4-J-.2-3 4-3 4-5-3 +•2-3 3-4-3 4MV.3 3.3 1-2-3 2-3 2-3 t-3 r 3 3 15 5 +.3 +.2i5 +.2.-3 — — — — +.3 — — — — . - + - - 4 1 3 4 z . 4-5"-2-3 1-2.3 3 3 +•3 . - l - r 3 3 5 2 I.l — 3.2 2 .2 . -1 -4 2-3 1-2 4 2 20% l U 1355 20 S I05S , 15% 15'% l o s s 5% 5% 5% 12* l-l +4.1-2 31 2-J-l +.+-I 4(-»l-2 1-2-1 + .+ — 2.1 1.2-1 . 2 - 1 2 1 13 5-+.1 1-2.1-2 + 1 4-+2 1-2 I.l 1-2-2-3 + .2 1-2.2 1-2-3 1-2 1-2-2 ."-/-I / 2 11" 5 3.1 3-4.2 +2-1-2 4.2-3 5- 2 2-1-1 2-3-2-3 4.3 2.2-3 1-2 + 2 2 - 3 2 . 2 ,-3-r J 2 15 s — — +•2-3 + . 2 2-3-2 + +.2 + -I.2-3 +21 3-2 1-2 1.2-3 + 4-1 .-1 -1 / 2 12 4 — — +.1-2 — 3(-4).2-3 2.2 2.2-3 3-4-3 3-4-3 — — + -I-2 . - 1 - 4 2 2 10 4 — — — 1-2-2 — 2.2-3 2-3-2-3 — — — +.1-2 . /-. 2 2 7 3 +.2-3 3-43 1-2.1-2 — — +.2 — +•2 +.2-3 — — +•3 . - 1 - 4 1 2  -3 +.2-1 +-I.2-J — — — — +.2 1.2-3 — — +•2-3 . - + - . 1 2 5 2 4.2 1-2.2-3 3.3 . - / - * 2 2-3 4 2 — — — — — +•2 — — 1-2 1 1-2.2-1 3.1-2 2-1 . - l - l 2 1-2 6 2 — — — — — 1-3 — 1-1-2 1-2.3 . - + - 1 1 2 4 2 IS 55 6S% 45% 601 35 a 50-X 4 0 S j-ys 5058 65% 5'5-55 45- a 4-255 15 ++.2 1.2 1-2 1-2-3 2-2-3 +.2 1-2-3 ++.2 1-2 +-I .2 1-2-3 12 , - 1 - 2 1 2 4 +.1 1.2-3 2.2 2 .2 3-1-2 2-3.2-3 3-3 + .2 2-3.3 2-3-3 +.3 2-3 . -2-T 2 2 14 4 2-3 2-3 7-3 , 6-1 IT-3 4.2-3 i". 2-3 4.3 4.2-3 6-1 <-72-3 +•2-3 +.3 1-4--J 5- J 15 5' 3-4-2 5-6-0.-)3 4-2-3 4-3-2 4tS%2 4-5--2 J--2-3 4-2-3 4-5-3 4-4-2 6-3 4". 3 r 2 15 4 + + - 2 2-2-3 + . 2 +.+2 + 2 . 2 2 . 2 1.2 1.2-3 2.3 2.3 1-2-2-3 1-2-2-3 4 . I - 2 1 2 IS 5" + + • 2 - 3 ' 1-2-3 1-2 1-2-1-2 I.+2 1 2 1.2-3 +•2-3 +-I-2 — 1-2-3 2-3.3 . - l - > 1 2 IS 4-l-l +.1-2 +.1-2 -2.3 .3 I.l +.2 +2-2 2.2-3 1-2.2 2-2-3 1-2-2 4 - 1 - 2 1-2 2. 14 5 +.1 I.+-I + . + ! +.1-2 1-21 +-I.I I.l 1-2.1 1-2-1-2 +.1 |(-2U + 4-1-2 4 -1-2 1 1 15 S 2-1-2 4-2 4.2-1 3-42-3 1-2.2 3-2-3 3-3 I-+2 1-2 1-2-3 — — 4 - 2 - 4 2 2. II 4 +.1 +.1 l-l — + • + l-l +•+ — +•+ +• + -+• + .-+-. 1 1 10 4 l-l + 1-2 +-I +.2 +•2-3 +-I. 2-3 1-2 4-1-1 1 2 10 4 +2.2-3 — 1-2-3 +-J 4-4-3-2 1-2-3 1-3 1-2-2-5 +.2-3 1-2-2-3 1-2.2-3 . - l - l 1 3 II 4 I-+2 +.3 2-3.2-3 2-2-3 1-2-1 +.+2 +.1-2 + 2-3 +•3 — — .-/-. 1 2 II 4 — I.l +•! +.1 +.1 + + - I +.1-2 + .+ +-I +•2 +.1 1 1 12 4 — +.1-2 +•1 +.1-2 — l-l I.l I.l + + . I l-l 2 1 . - l - l 1 1 12 4 l-l 2.1 3.2-3 + + . + 2 — l f 2 ) - 2 4 2 1-2-1 2-2 4 - 2 - 4 2 2 II 4 1-2-3 +- + +.3 +.3 1-3 +•3 + -I-3 +•2-3 1 3 9 3 l-l 2.2-3 1-2 — 1-1-2 1-3 1-2-3 +.1 +.3 — +2-3 . - l - l 1 2 • 9 3 — +.2 1.2 +•} 1-2.3 — — 1.3 +.1-2 . - + - 2 1 2 7 3 — 3-42-3 2.2 +.1 — — — — — +•/ — +-I.I-2 1 1  3 l-l +-I.I +.1-2 2-2-3 +.1 . - l - l 2 2 7 — — I.+-I 2-2 — +.+ +-I-2 1-2-2-3 2.2-3 12-3 4 - 1 - 1 2 2 S 3 2.3 J — 1-2-3 — — +-I-2-3 — +.1 4 - + - I 1 2 7 3 +•2 +-I.I 1-3 +-I.3 — — + 2-3 +-1.2-3 +•3 — — . - l - l 1 2 fl 3 1.3 +.1-2 + -I-3 +.2 +.3 — .-1-2 1 2-3 a 3 l+iM — — 1-3 +•) +-I.3 — . - + - 1 1 3 4 2 — — — — +.3 +-I-2-! +-I +.2-3 — . -+- I 1 2 (5 2 1-2.2 1.2 1 2 +.2 • - + 1 1 2 5 2 — — — — — +•+ + +•2-3 1.3' + .3 -— .-+-, 1 2 4 2 — — +.++ — +-I.+ — 1-2-3 2-3-2-3 I-+2 1.3 . - l - l 1 2 6 2 1-2.1 — +-I-I — — — — +-I.I-2 — — I.l — . - + - 2 | 1 i 2 1-2 1.2 +.2 . -+-l 1 2 5 2 — +.1 +.3 — ++2-3 — — — — — + - I 1 2  2 — +-I — — — +•1-2 — — — 1-2-2 +.1 . - + - 1 1 1 6 2 1-2-3 — 2.3 — +.2-3 — — +.2 — — . . ( - . 2 2 5- 2 +-I.2-3 1-3 +-I.3 . - + - 1 1 2-) 6 2 — — 4-S--3 — — — — — l + 2 ) . l 4-1-1  3 y 2 +.1 +-I , - / - 4 l 1 4 2 — — — +4.1 — — — +.1 4-1.2 — . - + - 1 1 / 4 2 — — +-I — — +.2-3 — — +•1-2 4 - + - I 1 1 5 2 PINUS PONDEROSA PSEUDOTSUGA MENZIES I I PINUS PONDEROSA P S E U D O T S U G A H E N 2 I E S M PINUS CONTORTA POPULUS TREMULOIDES Bi PINUS PONDEROSA PSEUDOTSUGA MENZIESI I T U N I P E R U S SCOPULORUM PINUS CONTORTA POPULUS TREMULO IDES B i AMELANCHIER ALNIFOLIA PINUS PONDEROSA PSEUDOTSUGA MENZIES I I ROSA N U T K A N A X S H E P H E R D I A CANADENSIS CEANOTHUS V E L U T I N U S TUMPERUS COMMUNIS TUNIPERU5 SCOPULORUM PINUS C O N T O R T A POPULUS TREMULOIDES SAL IX B E U I A N A ACH ILLEA M I L L E F O L I U M A N T E N N A R I A PARVI FOLIA X A R C T O S T A P H Y L O J UVA-URSI XCALAMAGRDST IS RUBESCENS X C A R E X CONCINNOIDES C A R E X ROSSII FRASARIA V1RGINIANA PSEUDOTSUGA MENZ IES I I A 6 R 0 P Y R 0 N SPICATUM A M E L A N C H I E R ALNIFOLIA COLLINSIA PARVIFLORA HIERACIUM CYNO6L0SSOIDES KOELER IA CRISTATA PINUS PONDEROSA ROSA N U T K A N A S P I R A E A LUC IDA A L L I U M C E R N U U M A N T E N N A R I A UDWELL I I A N T E N N A R I A RACEMOSA APOCYNUW ANMOSAEMIfDL IUM ARNICA CORDIFOLIA A S T R A G A L U S SEROTINUS CREPIS ATRD5AR6A L I T H O S P E R M U M RUDE RALE S E D U M S T E N O P E T A L U M A S O S E R I S GLAUCA A R A B S PUBERULA A S T E R CONSPICUUS A S T E R PREMONTM M L S A M O R H I Z A SA8ITTATA D E R K E R t S AS.UIFOLIUM \ B R O M U S T C C T O R U M CAST1LLETA ANOUSTIFOLIA I EP ILOS IUM AM6USTF0L1UM ) F E S T U C A OCCIDENTALIS KDTRACIUH ALBIFLOOUM I LUPINUS SERKCUS ) PACHYST1MA MYRSIN1TES PINUS CONTORTA reifTSTEMON FRUTICO«U» 3055 6.2-3 4.2 3055 6 2 3.2 15% 3 2 4.1 10 55 1.2 +.1 3.2 1-2.+2 2.1-2 +•2 7 2 S-2 t-2 +•2 +.3 F2 +-Z +.3 +J 2.2 1-2 6-2 30 55 6-2-1 3-4.1-2 It 2.+2 20% 3.2 4-4-2 I f ) * 4-4-3 4.3 20 % S-2 4-3. 43-2 15% 4-S 4-2-3 2 .2 5-2 1-2-2-1 +1 7 0 S 22 4-J-.3 7-2 6-2-1 1-2 1-2 32-3 1- l + .1 1.2 +.2 +-I-2 2- 2-1 4.2+ +.2 6-2-3, 3.2+3) + .2 J--6-2 2.2-3 i--3 2052 3-2-1 1-2-3 4T3 + 2-3 +.1 402 +.2-3 3.2-3 6 .2-3 4-J-.2 1-1-2 1-2-2 1- 1-2 2- Z-2 + -I-I 1-2.2 1- 2-2 2- 3-3 +.1-2 4+ 2 +-J IJ.-3 +.2-3 1-2.1-2 + 2 - 3 +.2-3 ' +• + + -I.2-S 3-42-3 + 4 .1 +•1 I 6 32 35 36 2,7 3S V+7 64 89 106 10?" /oa 109 A B c D - E P O A P R A T E N S I S — — — + .1-3 — — — 1-23 +.1-2. +.2-3 •r— 1-2-J : — . -t-t i 2 >• SITANIQN H Y S T R I X — +•3 — — — — +•3 — — — t-.2-i _ — i 3 A 2 V IC IA AMERICANA 2-2 +.1 +-I.I +.1-1 / 1 y ' 2. P O P U L U S T B E M U L O D C S +•0 — — — — — — f.l -t-.l i-2-i (-2; . --f--J i 1 * 2 D (0 £ 2S% 4 0 K 60% 20 c 2<rz 2 3 ' % 20% - \c <z> IdW ON C L A D O N I A C H L O R O P H A E * +-•2' -t-.l 6"l-2 3-4-J. 1-1-2 3-4.2 M-2 I.I t.l 4-!'. 3 — 3-2 3-4.2 2-1-3 3-2-3 , - 3 - i 3 2 y PCLTIflERA CAN1NA — +.1 2-3.2. J-4-3 2-3.2 1-2.1 i-Z-3 4-3 3-3 2.2 — 2.2-3 l-i K 2 . - 2 - . - 2 2. n y C L A D O N I A G R A C I L I S +-I $-3 +.2-3 I.J • 2-3 — — — •J-.2 4.3 \-L-i — 1-2-3 — 1 -* ?. 7.-3 + " P O L Y T R I C H U M TUNIPCRINUM 2.1 3.1 l.l 4.2-3 1-2.1-2 +.1 4.2 ffl — •f-.l 2-2 — -— —- . - I - . 10 -4 B R A C H Y T H E C I U M A L B I C A N S 1-2 — — +.1-2 — +•2 — — +.1 +.2 . . - . -» -+• -1.3 1-2 t. 2-J , - I . i 1 2. • 9 3 C L A D O N W . (O CC irERA — — — — — — 4.3 +.3 -t-.l -K2-3 — I-2.-3 1-2-3 f-« 1 2. V 3 CCRATODON PUR PO R E U S — — +.+ +•2 — 2 3 — — — — -f.i-2 _ r- t *J I 2. 4- 2. C L A D O N I A N E M O X Y N A — — — 1.3 + 2 — — — + .2 — —_ — — *'••! — . -(•-. I ?_ A 2. PELTICERA A P H T H O S A — — — 4.3 1-1-2 — — — — +.2-3 — — 1. 2 — . -/ -4 2, 2. S' 2. POLYTRtCMUM PILlPCRUM — 2.2-3 + 1-2 3-2 +.1 — — t-l-l-z — — — — ,.-,-•> 2. y • 2 O N T R E C 3 LCTMAftIA VULPtNA 2.1 4 .2 1.2. I. + + 1-2 1-2- . 1.1-3 •f-2. 1-3 1-2-3 3.J -t-.l . - /-« I 1 * P A R M E L I A PHY3O0ES r . + +.+ + 2 1-2-3 1-2.3 -t.t -f P A R M C L I O P S I S A M N G U A — — -t-. +. +- —- -f. •f. +. — , ( v 3 A L E C T O R I A FREMONTH +.2 +.2 +.1-2 +.1 4_ A L E C T O R I A X U & A T A — — 1-3 1.2-3 — 1-3 — -*-.+ — — — — 4 CETRARIA O L A U C A +.1 ' +.1 +.1 -+-•1 • t-.| C E T R A R I A C A N A D E N S I S 1-2-J +.2 +.2-3 •+•.2 Z 4. 2 CD i \ Arctostaphylos - Calarnagrostis association. Species presence class 1. Acer glabrum K+.2), 105(+.3) Alectorla sarmentosa 35»36(+.2) Anemone mult If id a 5li(+.3), 107(1.3) Antennarla anaphaloldes 108(1.3) A. dlmorpha ii7(+.2) A. rosea 5(1.3) Arceuthobium americanum 32(2.3), 6ii(+.3) A. dougla3li l05(+.2) Arenarla formosa 6(3«3) Artemisia campestris 38( + .3), 61i,107(+.2) Aster laevis 6)i(+.+) Bryum canariense 89(2.3) Calypso bulbosa l(+.3) C a s t i l l e l a angustifolia 62i(+.3) C. miniata 107(1.3). 108(+.3). 109(+.2) Cetraria islandica 35,105,106(+.2) C. scutata U.7J+. ) Cirsium undulatum 37(+.+) Cladonia carneola 6lj.(+. ) C. furcata 35,106(1.3), 105(+.+) C ml t i a 35(.3), 6it,105(+.2) C. nemoxyna 35,61±,108( + . ) C. v e r t i c i l l a t a 35(1.3), 32,89(+.2) Claytonla spathulata 35(+.l) Comandra pallida 57+.2), 107(1.3) Danthonia spicata 35»38(+.3) Dicranum fuseescens 35(+. ) D. strlctum 35(+. ) DiaporBm trachycarpum 105(+.2) Drepanocladus uncinatus 35(+. ) Epllobium mlnutum 35( +.l) Erigeron compositus 6(+.3) E. pumilus 37(+.2) E. speciosus • 6it(1.3) Erlogonum heracleoldes 6(+.+), 38(1.3) Burhynchlum strlgosum 35(+.2), 89(1.2), 105(+.+) Fomes l a r i c i s M+.3) Fragaria bracteata 35(+.D, 38(+.3) F. virginlana 5T3.3) Galllardia aristata 37,105(+.l) Galium boreale 5TtTl.2), 107(+.3), 108(+.2) Geranium ylscosisslmum 108(+.2) G i l l a aggregata 37(+.2) G± g r a c i l i s J £ ( + . 3 ) Habenarla unalaschensls l(+.+), 105(+.3) Heliahthus cusickii 109(2.3) Heuchera cylindrica 35,37(+.l) Hosackla denticulata 109(+.2) Eathyrus nuttall11 1(6.2), 108(1.2) Lecanora paclfica 32,35(+. ) Einnaea borealia 6k(+.l), l08(+.3) Linum lewisii 107(+.l) Llthospermum i n c l sum k7(+.3) Soma titan dissectum 35(+.3) !>•• utriculattim 5T+.2) Eonicera c i l i o s a 1(1.2) Melairoyrum line are 108(+.3) Mycoblastua alpinus 35,37,61i(+.2) Nephromopsia platyphylla 35,37,Ii7(+.2) Oryzopsls exigua38(+.3) Oxytropls gracilis 47(2.3) Parmelia olivacea 1 (+.+.) P. sulcata 106(+. ) Philadelphus lewisil 36(1.2), 37(+.l) Poa ampla 37(1.3), 47(1.2) P. canbyi 89(+.3) P. cusiekll 32,47(2.3), 37(+.2) Pi interior K+.2) P. nervosa 6(+.+) Pohlia nutans 6(4-3), 37(2.3) Polemonium micranthum l(+.+) Polygonum douglasii 105(+.3) Potentilla arguta 37,108(+.2) Prunus vlrginlana 6,37(+.l), 38(+.+) Psoroma hypnorum 89(+.l) Pterospora andromedea l,6(+.3), 32(1.3) Ptilidium pulcherrimuro 36(+.3) Pyrola seeunda l(+.2) Ribes cereum 37(+.2) R. viscosissimum l(+.2) Rinodina conradii 89(+. ) Rubus leucodermis 35(+.+) Senecio aureus 6~4(+.3) Smilacina stellata 107(1.1) Solidago mis sour lens is 64,107(+.3), 106(1.3) Stellaria longipes 108(+.3) Stereoeaulon tomentosum 35(1.3), 64, 106(+.3) Stipa columbiana 32(2.3). 35(1.3), 38(+.2) S. richardsonil 64(1.3), 106(+. + ), 107(2.3) S± williamsii 37(+.3) Taraxacum officinale 6(2.3), 64(+.2), 107(+.l) Tortula rural!s67+.+), 35(1.2), 109(+.3) Tragopogon pratensis 38(+.3), 47(1.3) Trifolium repens 2±7(+.3) Usnea dasypoga 37(+.1) U. hirta 35(1.3). 37(1.2) Vaccinlum caespitosum 108(2.3). Verbascum thapsus 37(+.l) Viola adunca 1(1.3). 37(+.2) Woodsia sp. 36( + .2) Xanthoria candelaria 64(+.+) Zygadenus venenosus 6(2.3), 10£(+.3), 109(1.3) PSEUDOTSUGA MENZIESII - CALAMAGROSTIS RUBESCENS ASSOCIATION STAND Ni S 30 33 41 42 43 44 45 46 74 75 93 99 103 AVERAGE, t RANOfc OF S C A L E V A L U E S PRESENCE DATE . , ALTITUDE ( F T . ) EXPOSURE WIND EXPOSURE 24/5/K 3000 21/6/52 3100 . 25/6/52 2800 3/7/52 3100 4/7/52 3400 577/52 3500 6/7/52 3850 6/7/-52 3800 7/7/52 3800 12/8/52 3300 13/8/52 23/S/-53 3000 Q/7/53 3400 10/7/53 A S S I G N E D 3000 4400 A & U N D A N C E vieous A3 C L A S S VNV 20 ++ SE y / EIIE 20 + NNV 10 ++ V SW Zt SSV s SSW 7 E NNE. NNW V vsv ft D O M I N A N C E FRACTION 5 / 15" / 7 30 + 5 20 + + 10 + + 10 ++ ALL STANDS A S T A N K W H E R E FO^ND c D F A* 4.3r5 20% 20% I5"56 10% 15% 10% 203 20% 20% 1555 I5"S 10 9 35a 21% / 3 PINUS PONDEROSA 4-5.1 4-5-1 4-J-.3M 4-5-1 5.1 5-1 5.1 4.3-2 4.3 4.2 3-3 — T 3 5 PSEUDOTSUGA MEN2IESII 8.2-3 2-3 4-3 4.3 +.3 1-3-2 3-4.3 4.3 1-3 4-5-3 4-5-3 3.2-3 +-J +.Z-3 -»-3-a 3 3 2-3 /+ 5 PICEA ENGELMANNII + + ( ' As 50% 15" «S 20*6 159 20% 12% 20% 20% 15* 35 % 25% IS a 2S% |y« 2255 13 y PINUS PONDEROSA 1-2-3 4-3 1-2-3 4-5-3-2 5-1 4-2-3 4-5.1-2 4-5-2-3 4-J--3 7-1 4-3 1-2-3 1-2-3 +.+ -0 # - 3-r 3 2. PSEUDOTSUGA MENZIESII i-i + .3 5-3 4S.3 — 4-3 4-5-1 4-5.3 1-2-3 5-3 1-2-3 1-2-3 3(^ 43 4.3 • -4-7 * 3 13 y PINUS CONTORTA — — •— — 1-3 — — — — — — 1-3-2 • -+-»- 2 3 2 - 3 3 2 PICEA EN6ELMANNII 3-4.2 1-3 3-4-2-3 1-2-3 1 1 1 1 2 POPULUS TP.EMUL0I6ES- . - ' • * . 3 -1 3 Bi 15% ii % 15 3 IS » 5% 15- K 10% 20 a io a 10% 10 9 10 « 10 5( I25» 3 14 II y 4-PSEUDOTSUGA MENZIESII S.2 4-3 4-S-.3 4-J-3 l-l 1-2-3 4-S--3 4-1 +-I-3 4.2-3 3-3 4.3-2 + • 2 2-2-3 +-3->- 3 PINUS PONPEROSA +.1 4.3 1.2-3 — 4-S-3-2 1-2 4.3 1-7 4-3 — +.3 1-2-3 — .-2.*-2 2 SALIX DEWIANA +•3 1-3 — +-1 +.3 1-2-3 — 4.3 2-32-3 — +.2-3 — 2 - 3 . - /-*  3 9 4 2 AMELANCHIER ALNIFOLIA — — +.3 — — 1-2-3 — — — — +.2 — — — .--+-j / 2-3 2 3 PINUS CONTORTA 1.2-3 +-I I-Z.Z-3 -+-2 1 POPULUS TREMULOIDES — — — — 1-2 3-41-2 2.2 1-2-2 — 2.1-2 + .2 • 2. 2 6 I Bl 10 s 51. 15 55 ion 5% 15* ion 15% 15% 15% 15% 83 $% to* 11% 13 5 PINUS PONDEROSA +.1 3-2-3 1-1-2 1-1-2 4-2 +-I-2 2-3-2-3 1-2-3 3-1-2 1-2 1-2-2-3 + 4.1-0 +•1-2 — 2 2 PSEUDOTSUQA MENZIESII 4-5-2 3-2-3 4.2-3 4-2-3 +.1-2 2-3.2 4-3 4.3 4.2-3 3-1-2 22 2-2 + . 2 .-3-»- 3 2 • 14 y ROSA NUTKANA — — 32 +4.2 1-2. 1-2.2-3 1-2 2-2-3 4.2-3 +.2 2-3.2 1-2 + . 2 l-Z - + 2 2 12 j AMELANCHIER ALU FOLIA +.2-1 +.1 +•2-1 — — 4-J-.I-2 l-l 4^ -1 2-1 2-1-2 +.1 — — +.1 2 1 1-2 10 4 POPULUS TREMUL0IDE5 — — — — +-I.I-2 2-1 — +.2 +.2-3 — +.1 — +.+ — .-+-2 1 6 9 3 4 SALIX BE&BIANA +.2 +.1-2 +.1 +.1 +.1-2 +.1 +.1 +.1-2 + .2 1 1 SPIRAEA LUCIPA +.3 — + 3 — — +•3 — — +.3 +.3 + . 3 — — — ,--+-* 1 3 6 3 SYMPHORICARPOS ALBUS 1-1-2 +.1 — 1-2.1-2 — — +.2-3 l-2.2(-3) 1.2 — +.2 — +.+ — . - 1-2 1 2 3 3 R1B.ES CEREUM — +.2 — +.1 — — 4.3 +•2 ,-/-4 2 2 4 2 C 80S 80S 75% 75% 70% 45% •60% 60% 70% 55% 60% 70% 7S% 60% 6S% 11 5 ACHILLEA MILLEFOLIUM +.1 2-3.2-3 1-2-3 1-2-3 2-3.3 1-2-3 1-2-3 1-3 2.2-3 — Z-K N +.2-3 1-2-1-2 +. I . -J-» Z 2 "CALAMA6ROSTIS RUBESCENS a-s>.3' 8-2-3 8-3 8-2-1 7-1 6-2 G-7-1 71 7-3 6.2 7.31-2) 7-2-3 e-3 6-3 4,-7'* 7 3 M 5 FRA6ARJA V1RGINIANA I.J 1.1-2 11 — 2-3 +-1.1-2 + 4.3 1-1-2 1-1-2 — +•2 1-3 ,-2-3 3-3 1 2 12 1" HIERACIUM CYN06L0SS0IDES +.2-1 1-3 +•3 1-2-2-3 1-2-2-3 1-2-3 2.2 1-2-3 2-2-3 1-2.2-3 +.2-1 1-2-2 — +-3 / -i 1 3 11 y LUPINUS SERICEU5 1.2-1 2-3.2 4.3 2.2 3.3 2.2 1-2-1 1-2.3 1-2.1 + 4-2 l.l 3.3 ( - 2 - 2 — . - 2 - * 2 3 13 y PINUS PONDEROSA + 3 +.1 ++-I +-I-2 l-l +.1-2 + 1 + -I.+-1 +.2 — +.1-2 +- + -+.+ — .-+-. 1 1 y PSEUDOTSU6A MENZIESII 2.1-2 +-1.2-3 l-l 1.1-2 — +-I. I 2.3 +.1-2 2.2-3 1-2 + 3 + -I.+ — + -I-I .- l-t 1 2 12 y ZYGADENUS VENENOSUS - — 23 +.2-3 +•2-3 1.2-3 + 4.3 + 4.2 1.2-3 +.3 — lf-2M +4.2-3 + . 2 - 3 +.3 — l-i 1 3 12 s 4 ""ANTENNARIA ANAPUALOIDES 2.3 1-2-3 2-1.3 1-3 2.3 — — — +.3 — 1-3 +4.2-3 +.3 +-I.3 (-1 1 | 10 "ANTENNARIA ROSEA + 2 + 2 + -I-2-3 +.3 +.2-3 1-3 1.3 +.2-3 +.? .-+.1 1 3 9 4 "ARNICA COftDIFOLIA 3.1-2 +.2-3 2-1.2 1-1-2 — 1-2.2 2-2 1-2.2-3 12 2-2.-3 — 3-4.3 — 4 . 2 . - 2 - . 2 2 II ASTRAGALUS SEROTINUS 2-3.3 3.3 22 1-2.3 l.l 2.3 1.2 1.2-3 — 1-2.3 +.1 1.3 — .-/.» 2. Z II * BALSAMORHIZA SASITTATA +.0 4.1-2 +.2 +.1 — +.1 + 1 +.+ +.1 — 3.2 — — — . - /  1 9 4 BERBERIS AQUIFOLIUM +.2+ +.2 +- I . I — — +T| +.1 + -I.I + 4.1 2-2-3 3-2-3 — — + . 2 .- l-i / ' 9 4-COLLIUSIA PARVIPLORA 12 + -!.» +.2-3 +.3 1.3 + -I-J 1-2-3 + 4.2 — — +.2-3 +.2-3 +•3 — 1 ? II 4 CREPS ATRIBARBA — + + .3 + 1 +-•3 + -I-2 1.3 M 4.3 1-2-1 1.3 — 1-2-3 1-2-3 —• — . - / I 3 10 4 FESTUCA OCCIDENTALIS — 1-2.2 J.3 3-4-2-3 4-3 4.3 3-4-1 2-2-3 — — 1-2.2 1-2-3 1-3 . - 2 - 4 3 3 II 4-ROSA NUTKANA 3-1-2 +.1 +.1-2 +.1 1.1-2 1-2.1 l.l 1-2-2 + 4.1-2 . - l - l / 9 4 SPIRAEA LUOIDA 1.1-2 — 3-4.2+3) 1-1-2 — 3.2 1-2.2 2-3.2-3 2-3 3-4.3 3-4.2-3 4-J.2 — — . - 2. v 3 2 10 4 ASROPYRON SPCATUM +.1-0 4-2^ 3 — 2-2-3 2-J-3 +•2 — — — — 1-2-2 2-3.2-J 2-7.1-2 — .-1 -4 2 2 a 3 3 AMELANCHIER ALNIFOLIA 1-2-3 +.+ +-I 24 +-M 24 +.1 +.+ • - 1 -1 1 1 8 ANTENNARIA RARVIFOUA — — + .2 — 2-1-2 1-3 + 4.3 l-l — 1-1-2 1.2-3 2-3 — — . - l - i 1 2 6 3 ARAMS LANESCENS +.1 — — — +.1-2 +.2-3 +.1-2 +.3 +.3 — +-3 — — — . -+-f + 2 7 3 ARCTOSTAPHYLOS UVA-URSI +.1-2 — 1-2.2 +.2-3 — — 1-2-3 — — I.I + -I.I-2 + 4-2 — — • -1 -t ' / 2 7 3 ASTIR FREMONTM +.1 +.1 1.2-3 1-3 +.3 +.1 +-I.3 .-+- 1 / 3 7 3 CAREX R05SII +.3 +.1-2 +.1-2 + -I.1 +.3 1.2-3 lM-2-J +.2-3 1 -» / 2 & 3 CAST1LLETA ANGUSTIFOLIA I.J — 2-3 — +.3 +-I.1 — — — 4+U-2-3 — — +.3 +-.3 l-i / 3 7 3 EPILOSIUM ANGUSTIFOLUH +.1 — — — + +•1 — +.1 +.2 +.1 — — +.1-2 r-2-2 1-2-2 • •l-i i" / 8 3 FRAGARIA pRACTEATA 1-2-3 — — 1-2-2 — — +.1-2 +.1 — — — + .2-3 — 1-2.2-3 . -+-, / 2 6 i «FRmu.A«IA LANCEOLATA +•> — 1-2-3 — — +•2 — +.1-2 +.2 — 1.3 — — — .-+-. / 2 6 3 GRIM TRIFLORUM 1.2 1-2-3 1-2-2-3 2-3-2 1-1-3 (-3 1 2-3 6 a 6IUA GRACILIS +•2 +.2-3 — — 1.3 + 2-3 — +.1 +.3 — — — — — .-+-. 1 2 6 1 KCCLERIA CRISTATA — +-+ +•3 2-3 2-3.1 — — — — — 2-3-3 — — . - l - i 2 3 6 3 LATHYRUS UUTTALLU — — — — +.+ 2.3 4.2-3 23 5-1 — — — /-2.2-3 4 . 2 - 3 .-/-« 2 2 7 3 "LLUM COLUMBIANUM l-l +-I.2 + 3 2-3 +-I.2-1 3-3 . - l-i / 3 7 PACHVSTIMA MYR5KITCS +.1 — — — — 2fJXl-2. +-I.I +4.1-2 +-M-2 1-1-2 — — — + - M • - 1 -1 . 1 / 7 3 «PDA AMPLA +-I-3 +.3 +.1 +J-3 1-3 1-3 1.1-2 +.3 • - l-i 1 3 7 3 SYMPHORICARPOS ALBUS +.1 l.l l.l + -I.I +.2 .-+•-1 / 1 £ 3 5 30 33 4-1 42 43 4 4 45 46 7A 75 93 99 101 A B c 0 E TARAXACUM OFFICINALIS — — +.2 •M-l -r-(-2 — -t-f-2. -tl T-I.Z — T-I — — .-+-i f 7 3 VlCIA AMERICANA — — — +• -1- i-J f-2tl) (-2-2 + -I.I-2 + . 3 — — 1-2.23 /• »-a .-/-• 2 2 .7 1 AGOSERIS AURANTtACA — — — — — -+-.3 lC-2)-3 +•3 1-2 — — — • -+-* • / 3 4- 2. ANTENNARIA HOVELLII — — — +-2-3 — +-3 -ml — — t.i — — . - T - « • 1 2. 4- 2 ANTENNARIA RACE MO SA I- 2-3 — + -2-J — — — — — 2-3 J . - l - l 2 2 y 1 ASTER CONSPltUUS l-l — 1-2-3 — — — — i.e-3 3-2 — 1-2-3 . -l-i 2 2 6 2 BR0MU5 CARJNATUS +.1 — — +•3 — — + . 3 1-2-1 — — +.3 — 1 ) r BROMUS TEC TO RUM — 1-2 — + •2 — — — — — — 1.2-3 — — / 2-1 i t CAREX C0NCINNOIDCS — — — — l-l — — — — 1-2-3 +-M-2 / 2 4- £ CAREX WOOD!) — — — — + . 3 •r-l T - 3 +•3 T - 3 •T-1 — — — + 3 6 3 EP.LOBIUM M J N U T U M — — — — + • 2 — T- 1-2 + . 2 + - 3 — — — . - T - . + 2 4 2 ERIOSONUM HCRACLEOIPES — — — — + . 2 - 3 — — T - 2 T - 2 - 3 — — — +- 2 3 2 GALLIUM BOREALE — — — — +•2-3 — — — — — — 1.3 — ; 3 3 2 G0ODYERA MENZIESII -(-•2 — — — — — — — — 2-2-3 +.2 — +.2 t 2 + 2 HE IX H£RA CYUNDPICA — — — — + . 3 — — — — — 2-3 2-3 — — 2 3 3 2 HLERACIUM ALMFLCRUM — — — — — 2 - 3 1-2.3 1-2 — 1-2-3 — — — •— .-+-* / 3 4 2 HYDRO PWYLLUM CAPITATUM — — — — — T - 2 — T - ^ 2 +•3 — — — — — / 2 3 2 PENTSTEMON CONFERTUS — — — — — — — — 1-3 — T-3 — .•+•1 / 3 3 2 POA PRATEN5IS 2-2-3 1-3 +•3 T - 3 2 - 3 . 3 • - l-I / 3 3" 2 POA SCABRELLA — — — — 1-3 T . l 3-3 — — — — — — • - T - I 2 2 3 £ POPULUS TREMULOIDES 1.1-2 / /-2 3 2 POTENTILLA ARSUTA — +.|C-J) — — l(-2)-3 T - 2 i-i — — — — 1-3 — .-+-1 1 3 r 2 PTEROSPORA ANDROMEOLTA — — •)--3 — — — T-2-3 — T - i — — — 4--T-' + 3 3 2 SENECIO EXALTATUS — +•-2 T.l +-3 — — — — — — T - 3 — . .-+--* + 2 A- 2 STIPA COLUMBIANA — — - Li — — — — — +.1 — 1-3 — • - T - I ! 2 3 2 THAUCTRUN OCCIDENTALS — 1-2-3 1-2-1-} 3-4-2 2 2 3 2 0 z% 15 % 5 Z IS i% T T IOZ 1% SS% T 5% 12% ON GROUND CLADONIA CHLOROPHAEA 1-2 l-i T - I - Z +-1.2 .-3 1-2-2-3 2-2-3 + . 2 + . 2 -J T-I. 1-2 -t-.T i- 2-3 T - 2 - 3 +•3 ,-1-2, I 2 13 PELTWER* CANINA 1-2 ihi t-2 2-2-3 t-2. l-l t.2(-3) 1. hi T - l - 2 — 2 - ; T-2-7 M .-/-I I 2 IL 5 BRACHYTMECtUM ALBICANS -t-.l 1-2-2 1-2-2 +•1 — — T . T A.l-l — * - 2 - 3 — 1-2 . - / - * 2 2 4 XROLYTRICWUM JVNIPERINUN 1.3 +•1 + . 1 +.1 + • 1 - 2 3-1-2 T-l-l-2 -r--r T--2 — 2-3-3 T - 2 - 3 — (-) 1 2 1/ 4 6RYUM CANARIENSE +.+ — — — 1-2.1-2 + - + T - 2 - 3 — — T - . T — — • - T - i t 1 3 CLADONIA GRACILIS -r-2. — +•2-3 — +.1 -r-2-3 — + . 3 + . 2 - 3 2 - 3 — — ,-t-L .-+-< 2 7 3 CC RATH DON "PURPUREUS +.+ — +.1 — — +.+ — — — 1-2-3 T - 3 — — 2 i" 2 CLADONIA COCCIFERA +.2 — — — — — — — 1-3 — -r.3 •*£'. 1 | 3 2 CLADONIA PIMSRUTA — — — T - T — — — T - + — — -r--r — T 3 2 PELTI6ERA APHTHOSA + .2 — — — — — — T - 2 — 1-3 — t 2 3 2 POHLIA NUTANS +•1 -r-l T - 2 1 2 POLYTRJCHUM P. UFERUM — — T-I-2 — — — T H-2 — — — T-I — •— t -T-- 1 1 1-2 3 2 TORTULA RURALIS — — — +-1-1-2 + . 2 ~ I 1-2 2 ON TUBES 1-3 + -I - LETHAWA VULWNA +.2-3 1-2 +-M-2, — 1-2-3 1-2 2 - 3 - 2 2-3-3 I-: — T-I. 2 e-!-» t-l 2 12 5 ALECTORIA 7UBATA — — — — T - 2 -r-l.3 1-2-2-i T-I 1-2-2 l-ll .-t-t I 2 3 ALECTORIA FBEMONTII — — — — — T - / — 1 — ,.+.. T / I 2 PARMELIA PHYSOCCS 1-2 — — — — — ~-l T - 2 - 3 I-1-2 — 1 2 4 2 PARMEUOPSi Att&l&UA — — — -S+ T - T T - T -f + 4 2 USNEA HRTA T.-t- T - T 2 \ 186 Calarnagrostis Association. Species of presence class 1. Acer glabrum 7ij.(+. + ) Agoseris glauca i+2,99(1.3) A^ . heterophylla ij.6(+.2) Agropyron subsecundum 99(3/3) A. trachycaulon 30( + .3), Ij.6(1.3) Alectoria sarmentosa 7[L(1.3) Allium cernuum 103(+.\) Alnus tenulfolia 5(+.2) Aquilegia formosa 103(1.3) Arab Is glabra Zjl,99(1.3) Arenaria formosa 42(+.2) Astragalus purshii 5(1.3) A i stenophyllua 5(ii.2) Barbilophozla hatcheri 93(+.3) Boletus sp. 5(+.+), 103(+.3) Bromus marginatua 46(3.3) Calliergonella schreberi -33(1.2), 74(+.+) Calochortus macrocarpus 75 (+.2) Castilleja lutescens 93(+.2) Carex f e s t l v e l l a 99(+.3) Ceanothus velutinua 7J4. ( . 3 ) Cetraria .juniperina 7k( + . ) -Cj. glauca 2il( + . l ) . i+3(+.2) C. islandica 93(+.2) Chimaphlla umbellata 7i±(1.3) Cirsium lanceolatum 45(+.+) Cladonia carlo sa IfX,I16 (+. ) C. coniocraea 93( + . ) C. deformis i+k,93(+. ) C. furcata 93(+. ) Oj. mitis 93(+.3) C. squamosa 93(+. ) Hi v e r t i c l l l a t a 30(+.l) Corallorrhiza maculata 33(2.3), 103(+.3) Crepis acuminata IJ3T+.3) Cryptantha affiriis 99(1.2) Danthonia spicata i|-5(+.3) Delphinium bicolor 30,99(+.2) Dicranum fuscescens 74(+.l) P-i ma .jus 74(1.2) D. scoparlum 5(1.1), 7i+(+.l) D. strictum 74(+.l) Disporum trachycarpum 93(+.l), 103(+.3) Dodecatheon meadia 75(+.3), 93(2.3) Drepanocladus uncinatus 7i(.,93(+.l) Elymus glaucus 103(+.2) Erigeron corymbosus 30( + .2), ii2(+.3) Erlogonum heracleoides 42,i(.6( + .3), l+Si + ,2.) Eurhynchium strigosum 7lj.(+.+) Festuca scabrella 75(2.3) Funaria hygrometrica li2(+.3) Galium bore ale h . ? ( + . 1 ) . ^6(2.3), 99(1.3) 187 Gent 1 ana glauca 4 K + .3) Geranium viacoalaalmum 4 2 ( 1 . 2 ) , 99(2.3) G l l l a grand i f lor a 99T+.3) iL . linearis 42,44(+.3) Habenaria unalaachensia 103(+.3) Helianthus cusickii 4l(+.3) Heuehera cylindrica 42(+.3), 75,83(2.3) Hieracium canadense 7 4 ( + » 3 ) , 75(+.2) Hydrophyllum capitatum 43(+.2), 45(1.2), «+6(+.3) Juniperus communis74(+.2) Eappula myoaotia 45(+.l) Earix occidentalis 93(+.2) Eecanora pacifica 93(+. ) Eeakeella S P . fTT+.+) Elnnaea borealis 103(2.3) Eithospermum ruderale 42,99 Eoma titan trlternatum 93(1.3) Eonlcera involucrata 45(+.l) L. utahensls 103(+.1) Euplnus nootkatensls 33(4.3) , 103(2.3) Marchantla polymorpha 5,4l(+.l) Mitella nuda 103(+.3) Mnlum splnulosum 74(3*3) Mycoblastus alpinus 74(+.1 ) Nephromopsls platyphylla 93(1.3) Osmorhiza chilensis 103(+.+) Parmelia caperata 30(+. ) P. saxatills 93(+. ) Peltigera venosa 74,93(+.2) Pentstemon frutlcosus 45(+.l) Phleum pratense k3(+.3) Poa canbyl 7FT2.3) P. nervosa 5(+.D, 45(3.3) Pohlia cruda 4 l , 9 3 ( + . ) Polyporus schwelnitzii 33(+.l) Polyat1chum muniturn 5(+.+) Potentilla glandulosa 45(+.3) Prunua emarginata 46(1.1) P. virginiana 93(+.l) Paoroma hypnorum 93(+.3) Pteroapora andromedea 33,45,74( + «3) Ptilldium pulcherrimum 93(+. ) Pyrola picta 5(+.+) P. secunda 103(+.3) Rhlnanthua cr i a t a - g a l l l 75(2.3) Rhizocarpon alpicolum 4 l ( + » ) Rhytidiadelphus triquetrus 103(+.2) Ribes lacustre 103(+.1) R. oxyaoanthoides 99(+.3) Rubus parvlflorus 103(+.1) R. strigoaus K>3(+.2) Sanicula graveolens 43,46(+.3) Saxlfraga in t e g r i f o l i a 93(1.2) Sedum stenopetalum Ij3( +.3) Seneclo aureus IJ3,99 ( +. 3) Shepherd!a canadensis 74(1.3), 103(+.2) Sllene douglasii 99(+.3) S. menzlesii F ^ ( l . l ) S. scouleri ii2(+.3) Sisymbrium Inclsum 99(+.3) Smilaclna racemosa 74(1.3) stellata 93,99(+.+) Stellarla longipes 42,99(1.3) Stipa richardsonil 42,99(2.3) wllllamsll lxl(-»-.3) Taraxacum erythroapermum 30(1.2) Tellima parvlflora 5.93(+.2) Timmia austrlaca 7li,93(+.2) Tragopogon pratensis 42(+.3), 75(+.2) Verbascum thapsus 4l(+.+) Xanthorla candelaria 45>(+»3) PSEUDOTSUGA MENZIESII - (PINUS PONDEROSA) - SYMPHORICARPOS ALBUS ASSOCIATION S T A N D D A T E , , A L T I T U D E (Fr.) EXPOSURE S L O P E f) W I N D E X P O S U R E 3 23/5/52 2250 W S W 35 + 16 17/6/52 2750 NE 5 + + i"8 21M52 2000 E 15 + 59 24/7/52 1700 + 60 2577/52 moo S W 5 + 61 28/5-/52 1600 V 20 + + 6Z 2 * ^ / 5 2 2 0 0 0 N 10 + 63 29/7/12 2 0 0 0 N 1 5 + 71 S / 8 / 5 2 3 2 0 0 S 10 + + i/e I4/S/S3 aoo N W 15 + + A V E R A G E 1 R A N G E O F S C A L E V A L U E S A S S I G N E D PRESENCE A B U N D A N C E L D O M I N A N C E VIGOUR C A S F R A C T I O N P C L A S S E ; A L L STANDS A S T A N D S W E R E T Ai 70% 8 * 10 % 10 % 5 3 5 20 S I S * IDS I 5 S S 53 19% 3 P I N U S P O N D E R O S A 5-2 4-3 4-3 4-3 3-4-3 4.3 4.2K1) 4-3 . t-l 4-3 1-4-r 4 is r P S E U D O T S U G A M E N Z I E S I I 7.2 4.2 3-3 — +.3 4-5-3 1.3 4-5-3 o-2-i 3 3 7 4 A > 20% 20% 40 * 10 9 50 S 25 % 609 45 % 30% 20% 32« 3 W P I N U S P O N D E R O S A +.1 1-1-2 4-1-2 3-2-3 33 l-l J-.3 2-3 4-3 5.3 • - £ • " " 3 5" P S E U D O T S U G A M E N Z I E S I I 5.1-2 4-S-.2-3 6-2-3 +.1 7-3 5"-3 7.3 7.3 5-3 2-3 l-S-T 5 3 16 S P O P U L U S T R E M U L O I D E S — — — — 1-2-3 3-3 1.2 . - ! - ) 2 2-3 3- Z B. i'SJ 1% 15* 60% 10% JO * 10 B 15 S 10% 10% 1556 P S E U D O T S U G A M E N Z I E S I I 2.1-2 3.2 4.2-3 — 4^ 2-3 3-4.1-2 3-1-2 3-3 3-3-2 +.3 3 2 9 y A M E L A N C H I E R A L N I F O L I A — +.1 3-3 +.2-3 3-4.3 3-2 l-l +.2 1-3 .-(-. 2 3 a 4 P I N U S P O N D E R O S A +.1-0 — + -I.I S 3 +•2-3 +-I — — +•2 21 2 2 7 4 A C E R O L A B R U M +.2 — +.2-3 — +.2-3 4-2-3 — 1-2-3 +.2 — .-!-. 1-2 2 6 3 P O P U L U S T R E M U L O I D E S — — — — +.1 + 2 1-2-3 + 4.2 1-3 £-1.2-3 . - l-i 1 2 6 3 C R A T A E G U S D 0 U 6 L A S I I — — — — 1-2.1-2 — +.2 — — 1-2-2 .-+-! 1 2 3 2 P R U N U S V I R G I N I A N A — — — — — 4-2 3-4-2 1-2.2-3 — — .-(-. 3 2 3 2 S A L I X B C B B I A N A — — 1.2-3 — — — +-J-2 1-2.1-1 — .-+-1 I 3-2 3 Z Bi sots 2S% 502 40% i'0% 60% 10% 30 Si 20% 60% 4SSS R O S A N U T K A N A 2-2-V l-l 2.3 +.1 2-1 1-2-3 + 4 . 2 +.3 +4-2-1 11 .-1.1 1-2 2 10 1" " S Y M P H O R I C A R P O S A L B U S a-2 i-6-2 6-1 — G-7.3 7-8-3 5 . 2 - J 3-4.2-3 5- 3-2 7 - B - 3 .-r-> 6 3 9 i" P S E U D O T S U O A M E N Z I E S I I +.2 2.2-3 +• + 2.1-2 + . + 1-2 1-2-2-1 +-2-J .-i-i 1 2 0 4-A M E L A N C H I E R A L N I F O L I A — — + 4-1 1-1-2 l-l 4-2 l.l — — 2-1-2 .-(-. 2 1 6 3 & E R 6 E R I S A 6 W I F O U U M — — — +-I-3 +-3 +-1 + . 1 +•3 — 1-3 • -+-i / 3 6 3-P I N U S ' P O N D E R O S A — +-I — +-• + + . 1 - 1 — — +-I +•2 — . . + . . + 1 S 3 P R U N U S V I R 6 I N I A N A +-I-D — — — + . 1 - 2 2.2 I.I l.l — +.+ . - i - i 1 1 6 3 • S P I R A E A L U C I R A +.2-1 — J-.J — 2-3-1 +•2-3 +•3 2-1 —- — 0-2-,- 2-3 1 6 3 A C E R I G L A B R U M — — — — +• 1-2 2-3.2 +.1 — — . -+- . . 1 l-l 3 2 C ' 30% 80% 3 0 SS + 5 5 ! 45SS 30% 1 5 % 3 5 % 35 S 40 % 3855 BERpERIS A 6 U I F 0 L I U M + -K-2) +.1 1-2-2 1.1-2 +•2 1-2 1.1-2 +-I.2-3 2.1-2 1-2-3 . - l-L 1 J 10 b" C A L A M A O R O S T I S R U B E S C E H 5 5-.I-2 5.2-3 1-1-2 1-2-1 +-I-I-2 +•2 +.1-2 1.1-2 4.1 — o -2-.- Z 2 Q P S E U D O T S U O A M E N 2 I E S I I +•1-2 +.1-2 +.+ II +•3 2-2 ,+.-' 1-1-2 +•1-2 . - l - i 1 9 " S P I R A E A L U C I D A +•2 — 4.2 + . 1 M-l-2 2-3 5-2 + • 2 3 H W - 3 3.2 +•2 »- 2- >" 1 2. 0 y " S Y M P H O R I C A R P O S A L D U S 5-1-2 4-2 4.1-2 1-4.2 4.1-2 4.1 3-1 3-2-1 4-2-1 . - 4 - . 4 2 to ;f A C H I L L E A M I L L E F O L I U M — 2.2-3 +.2 11-21-2-3 +•3 +.1 — — 1-1-2 +•2. . - l-i 1 2 7 4. " A S T E R C O N S P K U U S 5-2-3 — +.2 — +.2 1-2-2 +.2 +.+ I- + — - - I - . 2 2 / 4-A S T E R F R E M O N T I I +.3 + 3 1-3 1-2-1 1-2.3 +•3 + . 1 - 2 l-l -— — . - ( - » 1 3 8 4. C A R E X R O S S I I +-) — + + .I 1 -3 l.l +.3 1-2-3 1.2-1 1-1-2 — . - l - i 1 2 e 4. FRA6AR1A V I R G I W A N A +.1 — +-I l-l +-I-I-2 + 4 1 1-2 1.1-2 1-2.2 — . - l - i 1 1 8 4 G A L L I U M B O R E A E E — — +•2 — 1-2-2 1-2-1-2 2- U + 4.F-2 1.1-2 1.2-1 . - I . . 2 2 7 4 L I T H O S P E R M U M R U D E R A L E . +.2-3 +.2-3 +.2-3 +.1-2 +.2 + . + + 1-2 .-+-. 2 V " O S M O R H I Z A C H I L E N S I S + • + — +•3 — ifrai 1-2-3 + 4.1 + • + 1.1-2 — .- l-i 1 2 / 4 P I N U S P O N D E R O S A +-I — + 4 +.1 +-I — +*l +-I +-I — + 1 7 4 " P O A P R A T E N S I S — 1-3 + 4 1 1-2.1 31 + 3 — 2-1.1 3.1 l"-2-J .-2-1 2 2 0 4 R O S A N U T K A N A + 1 — — +.+ + 1 +.2 1.2-3 + . 1 l-l 1-2 .-+-i I 1 8 4 T P A G O P O G O N P R A T E N S I S — +.2-3 + . 3 + -L2 +.1-2 — — +.1 + . + — . - + - . 1 2 7 4 A C E R G L A B R U M +.1 — — +*l +.1 I.I — +.2 +.1 , - + . . 1 1 6 3 A S R O P Y K O N S P I C A T U M — 2.3 +-I-2-3 1-2.1-2 +.2-3 — — +.1-2 — — . - l - l 1 2 S 3 " A R N I C A C O R O I F O L I A 4-2 — l-l +.3 — 1-2 1-2-3 — — + - I . + — 2 2 y 3 A S T E R L A E V I S + 4. 1 +•1-2 +.1-2 + . + . . + - . 1 2 y A S T R A G A L U S S E R O T I N U S 1-2.1 — I.J 1-2-2-3 +-I. I — — — I.I . - l-i 1 2 y ] B R O M U S C A R 1 N A T U S +.1-2 + . H 2 + 4 . 2 +.1 +.1-2 l-l 1 1 6 B R O M U S T E C T O R U M — 1-2.2-3 + . 2 1-3 1 . 2 - 3 — — + 4 . 2 - 3 1-1-2 .-l-i 1 2 6 3 C O L L M S L A P A S V I F L O R A — 2.3 + -I-3 — + - I . 3 -— — + . 2 , +.2-1 .— .-l-i 1 3 y 3 DISPOflUM T R A C H Y C A R P U M 3-2-3 — +.3 — +.+ 3-3 +.+ — +-+ — 2 2 6 3 " E L Y M U S O L A U C U S — — +.3 I.J 1-2-3 1-3 2-1-2 + - 1 - 2 - 3 l-l .-(-. 1 2 6 3 F E S T U C A O C C I D E N T A L I S 1-2.3 +-J + . 2 - 3 + . 2 - ! . - l-l 1 3 y GEUM T R I F L O R U M — hi +.1 +.1 +-I-2-3 +.1 — +.+ — • -+-. I 1-2 6 3 O O O P Y E R A M E N Z I E S I I — — +-I.2-3 — -— 1-2-J +.11-2) +•2-1 +-I — . - + - 1 1 2 5" j H E U C H E R A C Y L I N O R I C A — 1-2-3 . +.1 — +.2-3 +.+ . — +.+ — .-+-. 1 2 y P O T C N T I L L A A RGUTA +•+ + . 3 2 - 3 +•1-2 + . ! +41 • -+-1 1 2 6 TARAXACUM O F F I C I N A L E — +.1 +.1-2 — — + . 1 - 2 +•+ +-+ 1-2-2 .-+-1 1 1 6 3 VIOLA A D U N C A — —- — — 1-2-3 — + . 2 - 3 +.2-3 1.21-3) 2-3 ..+-1 1 2-3 I 5" 3 A M E L A N C H I E R A L N I F O L I A - M — — +.+ — — — — +.1 I- + • -+--I 1 4 ANTENNARIA A N A P U A L O I D E S — — •— — +*J + . 3 — +*l +•+ .-+** +• 2 4 ARMCA F U L 8 E N S 34 + . 3 + 4 . 2 - 3 • - l - l z 3 3 BALSAMORHIZA S A O I T T A T A — +.1 +.1 2.21-3) — +.+ — — — .-+-1 1 I 4 CASTILLETA A N 6 U S T F O L I A + . 3 +.2-1 + . 3 — . - + — + 3 3 11 3 26 58 59 60 ' 61 62 63 71 118 A c D E CHtMAPHLA UKBELLATA +.1-2 — — -H2 — — - — +•+ • 1-2 3 Cmsiun LANCEOLATUM — — lf-2)-l-2 — +.1-2 - - +.+ — +.2C-3) 0 -+-. 1-2 3 2 " lXHATIS COLUMBI  NA — — — — — +.+ 0 - + - 4 1 3 2 CREPIS ATRI6ARBA +.J 1-2-3 +.2-? — +.1 — - • — — • -+-• I 4 2 ERJOERON CORVMBOSUS — +•3 +.1 +-I.1 +•3 — - — • - + - I i 2-3 4 2 CRI0O0NUH HERACLEOtDES — 1-2 +•+ — -K2-3 — - - - — • -+- , 1 2, 3 2 FESTUCA SCAbRELLA — 4.3 — 2.3 1-3 — — 3.3 — - 1-4 2-3 3 4 2 FRASARtA BftACTEAYTA — — 1.2 - — — l-2(-3) 0 - + - I 1 2 3 2 XFRmLLARIA LANCEOLATA — +•3 +.3 — +•3 + 3 - — • -+-. + 3 4 2 6 ILIA 8RANW FLORA — -i-l.3 +•2 — +•3 — + 2-3 +-I • - + - I 1 3 i 2 HCRACIUM CYNOSLOSSOI6ES — — +•1 +•2-3 — +.+ — - - • .+-. 4- 1 4 1 KCCLEDM CRISTATA — 1-2.3 4.3 1-3 -- +.1 • -+-£ ' i i 2 LATHYRUS NUTTALLII — — — — — + .1-2. — +•1 - + -. 1 S Z LUPINUS SERICEUS — 1-2.1-2 — — +.1 — +.+ • + 4 / 1 3 2 PCNTSTE HON CONEERTUS — 2-3 — — + -I.2. -+•1 • 1 2 4 a RVMEX ACETOSELLA — — + J +.2-3 +.3 — +.+ "~~ -+-. t- 2 A 2. SU-tNE MENZIESII — — +•3 + -I.3 1-3 — 2-?- i - I-J hZ 3 4 z SMILACINA RACE MOSA — — — — + 1 1-2 +-i +.1-2 1-2.2-J • -+-I 1 1 4 2 STIPA COLUMBIANA — +•3 +.2-3 — — — » +-2 ( 3 3 2 STIPA WILLIAMSII — — — 1-2-3 2-3.3 — +.2.-3 1-2-3 • - 1-3 l-l 3 4 2 THALICTRUM OCCIDENTALE — +•3 — — (.2 — +.+ 0 -+-I t ^ 4 2 VCRBASCUM TMAPSUS — +.1-2 — +.1 • -+-» 1 3 2 VKIA AMERICANA — +.2 — - - +-.I-2 — - - I.l • -+-I 1 1-2 i 2 ZY6ADCKIUS VENENOSUS — — +.3 +-!.? — • -+-I / 3 3 2 PRUNUS VfRCINIANA +.1 — l-l +-.+ -+-• / i 2 D + Z% 30* IS" K is a IS 5S li"K \% I2» ON SROUND 1.2-3 1-2-3 CLADONIA CHLOROPHAEA +.1-2 + -../ +.3 +.3 +-I-3 +•3 +-1-2-3 -1-4 f 3 9 S PELT1SERA CANMA + 2. - f . t + H-3 1-3 1-2-3 1.2-3 +•2 1-2-3 2(-3).3 *• - l - i / Z tc J' ' BRACMYTHECIUM ALBICANS — - — 1-2-2 5-2 3-2 2-3-2-3 3-42-3 4-3 +.3 • -2-> 2 7 4 CLADONIA GRACILIS — +.3 +.3 +.3 — +.2 +.2-3 -+-. 3 y 3 "MKIUM SPINULOSUM - - — +-I — +--I-2 +•3 +.1-2 +•3 -+- • •+ 2 s 3 POLYTRICHUM TUNIPCRINUrt — — 1.3 +.1-2 3-2-3 — +.+ 1.2 • - l - i \ 2 y 3 XRHYTIADELPMUS THIfiuetRUS - • — — + 1.2 +.2 1-2-2-3 4.2-3 4-2-3 • - 1-4 2 y . 3 TORTULA RUBALIS — — +.3 1-2 1-2.2-3 +.3 +.2 • - 1-2 2-3 y 3 BR YUM CANARIENSE +.2 — — +•3 - * -+-I 2 3 2 * CALLIER60NELLA SCHREBERI — — — 3.2 3-4.2-3 +.2 • 2 3 2 UCRANUM MATUS — — +-•3 1-2 • — 1-2-3 0 - + - 4 3 3 2 MEPMUXLADUS UNCIMATUS —•- - - — — — +•+ + 2-? +.2 • -+-• 2 3 2 PTILICIUM PULCHERRIMUM — — +./ +-+ • -+-• 1 2 3 2 O N TREES LETHARIA VULPINA 2.1 1.3 1-3 -f.+ +•2 +.2-3 1-2.2 +.1 1.3 • - l - l 1 2 9 5 PARMELIA PHYSOOES +.1 1-2-3 1-2.3 +-.J 1-2.2-3 1-3 2-1 1.3 /•! • - l-« 3 9 5" ALECTORIA TtBATA — +.2 1-2-3 +•+ 2-3 + 3 1-1-2 +./ /-2.2-} * -1 -1 2 B 4 CETRARIA dLAUCA — — t-3 +•3 +.2 +.1 1.2 +-I +-3 * -+-I 2 7 4 XNEPMROMOPSIS PLATYPUYLL* — +.2 +.J +-3 — +.2 1-3 +.3 +.2 • -+-I 3 7 4 X CETRARIA IUNIPCRINA — +•2 — — +.2 + 2 +-I +.3 - ' -+-• 3 5 * CETRARIA SOfTATA — „ +.1 — +.1 +. I' +.1 +.1 +.1 * -+-. +- 1 6 3 XRAMAUNA FARINACEA — — +•3 +-I +.2 +.2 +.+2 +•2 • -+-. + 2 6 3 USMEA HIRTA — — +.3 — + .2-3 + -I.3 .. 2 +.2-3 - - — • -+-l 1 2 y 3 ALECTORIA FREMONTII — — +.1 -M + •1 + 4 - — - - — * - + •. 1 4 2 PARMCLIOPStS AM6I6UA +. -+. +. • - + -• J 2 191 Symphoricarpos association. Species of presence class 1. Agoseris aurantiaca 90(+.3) A. glauca 60(+.3) A. heterophylla 26(+.3) Agropyron subsecundum 59(+.l), 63(1.3) A. trachycauloh 26(1.3) Alectoria chalybeiformis 6l(+.+) A. sarmentosa 7K+. + ) . 90(2.3) Anemone <• mul t i f i d a 71(+.2) Antennarla howellii 60(1.2), 71(1.1) A. parvifolia 59(1.2). 60(2.3) A. racemosa 59(+.l) A. rosea. 26(1.3) Aquilegiai formosa 6l(+.l) Arabis puberule. 58,60(+.3) A. glabra 60,62(+.3) Arceuthobium douglasii 58(+.3) Arctostaphylos uva-ursi 60(1.2), 71&-.2) Arrhenatherum elatlus 58(+.3) Artemisia trldentata 26(+.2) Asparagus officinale 6l(+.+), 63(+.3) Asclepias speclosa ll8(+.2) Barbilophozla hatcher! 60(+.3) Betula papyrifera 62(+.l) Boletus sp. 7K1.3) Bromus breviaristatus 6l(+.2) B. mollis 60(1.3) B. racemosus 59(+.2) Bryum canariense 26(+. ) Calochortus macrocarpus 59(+.3) Castlllela minlata 90T+.1) Ceanothus sanguineus 58(+.2) Cerastlum arvense 90(1.3) Ceratodon purpureus 26(+.+), 60(1.3) Chenopodium album 58,60(+.l) Circaea alpina 6l(+.+) Cirsium arvense 58(+.l), ll8(+.2) Cladonia coccifera 58(+.3), 71(+.2) C. fimbriata 60(•+. ) C. furcata 59(+. ) C. mitis 59(+.2), 60(+.l) Cj, v e r t l c i l l a t a 60(1.3) Claytonia perfoliata 7K+.2) Corallorrhiza maculata 71(+.3) Corylus cornuta 60(+.l) Cynoglossum officinale ll8(+.2) Cystopteris f r a g i l l s 60(1.3) Danthonia splcata 5o(+.3) Carex conclnnoides 58,71(1.2) Delphinium bicolor 26(1.3) Deschampsla elongata 60(1.2) Dicranum strictum 58(1.3), 62(+.3) Dodecatheon meadia 26(+.3) Epilobium adenocaulon 90(+.1) E. angustifollum 5BT+.2), 60(+.+) Erlgeron speeiosua 63(+.3) Eurhynchium strigosum 26(1.+), 60(+.2) Festuca aubulata6~oT+.3) Gaillardla arlatata 26(+.3) Galium trlflorum 7K+.3) Gent1ana acuta 71(+.3) Habenaria unalaachenaia 58(+.3) Hellanthua glganteua 3(+.2) Hleracium alblflorum 63(+.+), 71(1.+) Holodlacua diacolor 60(2.3) Rvlocomlum splendens 58,62(+.2) Juncua baltleua 90T+.2) Junlperua communia 60(+.2) is. acopulorum 59T+.3) Lappula myoaotis 58(+.2) Lepldlum denslflorum 26(+.2) Lilium colurablanum 3(+.l), 90(1.3) Llnnaea borealis 71(+.2) Lithoapermum lnciaum 26(1.3) Lomatium dlasectum 58(1.3) L. trlternatum 26"(1.3) Lonlcera cllloaa 61(2.3), 7K+.+) Mlcroaerls nutana 26(1.3) Mlaulua floribundus 26(+.2) Mltella nuda 60(2.3) Mycoblaatus alplnua 26(+...) Nephroma laevlgatum 6l(+. ) Pachyatima myralnitea j(+.l) Parmella saxatilis £8( + . ) Peltlgera aphthoaa 58(1.3), 60(+.2) Phacella llnearla 26(+.2) Phlladelphua lewis l l 60(+.l) Phleum pratenae 90 (+.3) Phlox specloaa 26(1.3) Phyaocarpua malvaceua 58(2.2) Plant ago ma.ior 60 (+.1) Poa ampla 26?+.3), 58(1.3) Pohlla nutans 60(+.3) Polemonlum mlcranthum 58(+.2) Polygonum convolvulus 63(+.1) l i douglasii 59 (+.2). 7K+.3) Plcea engelmannii 90(+.2) Pntentilla g r a c i l i s 90(1.3) P. monapellenaia 26(2.3) Pteroapora andromedea 71(+.2) Pyrola chlorantha 71(+ .2) P i plcta 3(1.2) P. secunda 3( + .D, 7K+.2) Ranunculus bongardii 7K+.+) Rhus radicans H8(+.2) Ribes cereum 26(3.3) R. lacuatre 58(+.2), ll8(+.+) Rubus atrigosus 7K+.2), 60(+.3) Sambucua glauca 61(1.2), 90(+.2) Sanlcula marylandica 6l(+.l) Saxlfraga ln t e g r i f o l i a 26(+,3) Sedum atenopetalum 15(2.3) Selaginella rupeatria 26(+.2) Seneclo exaltatua 25(2.3), 118(2.2) Shepherd!a canadensis 62(+.2) Silene douglaali 62(1.3) Smllaclna atellata 62(+.2), 7K+.+) Solldago canadensia 26(1.3), 58(+.2) £>. lepida 58(+.l) Spiranthea romanzoffiana 90(+.3) Stellaria calycantha 5H(+.3), 60(1.2) S. nitens 59(1.2) Stipa richardsonii 60(+.2) S. virldula' 58(+.3) Tellima parviflora 60(1.1) Thallctrum daaycarpum 26(2.1) Trlfolium repena 60(+.3) Trisetum canescens 58(+.3), 7K+.2) Viola canadenai8 61(2.3) n u t t a l l i i 26(1.2). 58(t.3) l i . Paluatris 71(1.3) 194 POPULUS TRICHOCARPA - ROSA NUTKANA - CORNUS STOLONIFERA (ALLUVIAL) COMPLEX S T A N D M*< fifi HQ )I2 m 11+ 117 119 120 A V E R A J C 1 RANdC CT S C A L E VALUES P R E S E N C E D A T E J / 5 / 5 3 • - l i ^ - i ' 3 2I/7/-SI il/>/:"4 ASSIGNED A L T I T U L € (r-.J '2 SO l (2&t HOC I2C0 I 2 » ts'OC- ICOC ISCC- ABUNDANCE A* EXf 'GSUfrL, , s t, DOMINANCE vieouR FR ATT ION CLASS S L O P E (') L w i r e E X P O S U R E + , r . / t A L L STAVES k | S T A N K EBB FOUND 1 i i B C D E A. 2 C « 10% i y « 15 55 15"« 4fJXl 4-i +-} 51 f. l-i 2 - 2 . 4 3 7 4 I K 4-1 t>-i 7-1 y-j(-2) . . 3 -• 3 5~ J PSEUPCTSwGA M O J Z i n S H - ~ 3-3 ^-3 . - I-. 4.-4- 3 2 i At 27% 10 & 5ta 5%' 40% 20 5 1 XH3PULU5 TRKMOCAftfrA 41 1-2.2-1 2 1 1-2-2 t-i 1-2-1 4.1 S--I-2. 1-2 . -) i 2-3 9 5 1 ' f t i ' T u L A WPY»ifEPA '•J ii 1! 13 1.3 (-2-3 2 i 6 4 PINUS PONt iEPOSA +.2,-1 T-l J--3 1-4.3 — + • 2 . 2 - ^ 3 7 V POPULUS T f tEHULOlDtS i-A.i-l 1.1-3 1-4-1 1-2-3 — + -I-I-2 — . - 1 -4. 2 2 y / ! PSCu&GTSuGA MENZIESI I 1-2 •t-\-2 3-4.? .-/->- 2-3 2 4 A C t P C L A B R u M 3-3 1-3 3-3 .-/-» 2 3 * 2 A L N U S TENUIFOL 'A 1-3 -t-.l . -+-, 1 3 2 2 ' C L E M A T I S L i s u S r r c i r o L l A T-3 +•? — — . - + - + + 3 2 2 (•ftUflUL VlWINfAf/A 2-1-3 - r-W 3 2 2 T H U J A W.ICATA —• -r.hl + + l-l J , J E, $>% 5 9 30<a io a as a 40% 4 5 K PFdJNUi VIRGINIANA L-l 2-12 -t-2 4-2.-1 2-i 1-2 -l-i 1-2-J .-2 A. 2 2 6 if ' C L E M A T I S LIOUSTICirOLIA i-i 1-2-2-3 l-l i-i i-4i + -I-3 . -/ -• i - i i 4 * POPULUS TRICHOCARP* 2. hi 1-2 l-l-) 4-3 1-2-3 1-2 t-3 - 2 2 6 4 S A L I X 6CB6 IANA 3-3 1.2-3 2-1-21 l-l 4-J 2-1 +•3 » - 2 * 2 3 4 A C E R G l A B R U M +•2 4-3 3-4-3 i-4'i - i ; 4 3 A M C L A N C H I C f i ALNII'OLIA 3.3 1.3 )-2 2 - 3 2 - 3 .- l-i 2 3 5" 3 * £ O f t N U S S T G L O M F C R A 1-2-3 J-4-3 1 -2 hi 7-3 i-i J 3 5 6 4 POPULUS TREMULO l t -ES 4-1 1-2-3 3-3 I- 2-J 2 3 4 3 ' R O i A N U T K A N A 4.1 + 1 3J 7-3 ,-l-t 3 3 y 3 SAL lX F L U V l A T l L I S r- t 1-2 + 2-3 1-3 o - + 2-3 4 * B E T U L A P A P V R l F t R A 2 - 3 . j l-l +•2 2.3 . - 2 3 4 C R A T A E G U S &OUGLASII 2-3.il 1-2 +-I » - + - I 1 1-2 3 2 * E L A E A G N U S COMHUTATA 1-1-1 1-3 l-J 1 3 J 2 P I N U i PON SEROSA +.1-1 ..+--. + 2 3 2 2 *RHUS GLABRA 3-4. J 1-2-3 1.3 -- . -1 -. 2 3 2 hi 75"« 4 y « M S 20% 60 fi 25% 3 0 55 60 K 4 0 a 435t Kaunas vmgr i ioNA J-2-2-3 1-2 2-1 I.l l-l l-l 2-1 3 +•( 4? - - 2 - 4 2 2 9 5 *ROSA N U T K A N A 7. J 6-1 4-; 4-5.1 7-1 +-1-.3 1-2-1 «•» 6-3 ti-9 J- 3 P y SYMPHORICARPOS ALi>US S. 3 l-l 14 1 3-1 4.i . - 2 - 4 i i 3 0 " C L E M A T I S L i G U S T i a r O C W it /•2 l-2-l l-l 1-2 l-l '-2 /•2 , - / 2. • y "CORNUS STOLON IFERA + -M-J ll-iU 1-2 1.2 i-l T--2-7 • - 1 - . 2 3, 7 A M E L A N C W I C R ALNIFOLIA r - i . J +*l +•( 2-J 1 2 y XEi-A£AiSNI/S COHMUTATA 1*2 + •2 +.2 +.1-1 . -T-i 1 Z 4 X POPULUS TRItHOCAftPA T . l lC-2>2 l-i.I-2 2-1-3 •T.i-Z +• + . - / -2 I 1 y 3 x R H U S 6 L A I R A I-2.J 3 4.3 I.l T-T . -( -4 2 2 y x f tHUS RAD1CANE 4. J -1-2-1 +-1 2.) 1-4-1 . - f - 4 2 3 y SAL (X fcCPBlANA 1-2-2 l-l 1.2 l-l +- + . - l-l / 2 y j ACER GLA6RUM 3-J 3-3 . - 1 -1 3 I 2 2 CRATAEGUS POVOLASII +-I-2 -t-.r l-l-l . -+•- / 1 2 PtfUH)S Tft£WULO!l>C;> • - l - i +.1 1-2-2. r +-2 / 2 i 2 C fii"JS eo a s e e 40% 70 « 20% 10 s 3 i K S2% x ROSA NUTKANA J . 1-2 +•1 l-l 4.1 1-1-2 l-hl +•1-2 \-l.hl 3-1-1. .-Z-* 2 l-Z 9 5 XAGROPYf iON GR lFF r ruS t l •*--(.) l-i 1-S /•* 2.1 51 it .-2-r 2 t T 4-* E L W U S CONPENSATUS + 2.-3 3-4-1 i-J 3.1 2-2-3 — +-I • - I - 4 2. 6 4 N C L I L O T U S A L M S 2-3.9 it 3.> + -I.I +• + 1-2.3 ft-l -1 2- 2. 7 4 * f tHU5 RAPJCANS >4-2-3 12 3 t-2 6-2-3 6> 3-2-3 — l-l-l . - J -4 4 2-1 7 4-"SNlLAClNA S T E L L A T A _ 2-3 -t-2-3 I M ) . ! 1.3 1-2-2-3 1-2-3 i.l-3 . - l-a 1 3 7 4 "SOLIPAOC L E h P A 2.3 4~» + i.l 4-3 +-I-3 . -2-»- ? J 6 4 ACHILLEA M I L L E T D L I U N 3.3 1-2-J -r-+ +-I . -1 -» 2 3 y J XAPOCYNUM CAMNASmUN 1.2 f-2 3.3 4-fi -— — 1-2 . 2 2 y 3 ASTCR DOU6LA3H + 3 2.3 2.1 + -! - . - + - i 1 3 4 3 ASTER ER ICO J PES z-t +•1 1-2.3 + 1.3 +.3 »-l-t 1 % y 4 ASTRAGALUS CAKAOENSiS T-l +.2 -t • + • -+-. *• 2 4 ) C H E N 0 POM UM A L B U M + l-i •t-2 +.1 +.3 - - — , .+-. 1 i j " C L E M A T I S LIGUSTICIFOLIA -t-l 1-2 — + •/ +-2 1-2 I 2 y 3 C L Y M U S Gi.MC.Ui + -2"3 - -t. l +-1 1.2-3 . - + -. 2. 4 1 GALL IUM & M E A L E J . J l-l-l - l-l T.I-2 l-i i-l I 4 2 POA PRATCNS lS 4.3 4-»--3 — • K-2J.3 i-i M 1 ) 4 5 PRUNUS VIRGINIAN* +.1 I.l +.+ +.1-2 ,-+-. 4 s SYMPWORICARPCS ALftUS '-2-1-2 4.1-2 2.2-3 • 2 . 2 ? . - 1-4 2. 2 y 3 TARAXACUM OFF lCWALE +. i 2.1 T + l-l . -+.. / 2. 4 t VICIA AMERICANA + -I-2 - l-i • - — 1-3 •*•! . -+-I J f 4 | A C E R 6 L A B R U M — 1-2 , / 1-2 z A6R05TIS A L B A 4.3 2-1 4-3 . - /.« 2 3 1 ALL IUM CERNUUM + -I-3 4-1.2-3 l - l » - T - . 1 J 1 2 APOCYNUM ANJROSAEMira JUn l-2-i - 1 J I ARTEMISIA PRACUNCULUS r - l . 3 -r.J - — - / | 2 2 ARTEMIS IA L l i tW IC IANA l-i - — l-l 1-3 — l-l-l 2 J 4 ASCLEP IAS SFTClOSA —• + •2 + 3 + 2 3 A S T E R CWSPlCUVS — 2-?.2-» f-2. i-2 • -+"-J 2 2 2. A i T E R FREMCHTM l.J )•/ - t-3 . -+-, J 3 6 E R R E R K AftUlFOCiUM 1-2 +-2 1-2./ ,-+-/ / 2. ] 8 R 0 M U S INERM(T 3 7 +.2-3 T.l * - ' - 1 2. j ] P R O W S RACETOSUt 2-J — 4.1 (- 1 •« 2 I OR&JUM UUPULATUM + 3 — +.3 +.1 — — — • -+-* -f. 3 ] * M CORNUS (TOLONlFERA - T . l • -+-. I 2 PfSPORUM TRACHYCARPUM — — - 2-2-3 l-l / £ 2. E L Y M U S CANADENSIS +•? -t-l — — . + 1 C A L L L A R f l A A f t i t T A T A — -r-l — — — — I t-3 J L A C T U C A PULC^CLLA — — — — 1 J L A C T U C A 6CARI0L.A 1-3 T-2 I 2 P N I E U M P R A T E T i f E 2-3-3 — ->-l — — -.1 i-l J POA U>MP«£S6J i.l I-) 1 | j > •RHUS J L A f t R A 2-2-3 4>i~l +.1 $ J S I SYMBR IUM ALTISS lMUM +•3 • --fvi J ] j STIPA COLUMBIANA — +.1 — 2.3 — 1.) , .-Hi 1 f i * TRAWPOflOU P R A T E K M t r-(.2-3 ~ — T.L — — — 1 2 2 i 0 *+- _ •+ CETRARIA SLAUCA — 1 — — — — +.1 +•3 • -•+-» 2 j 2 L C T M R I A VULPINA — — — — •*-.) — • -*•-«> + 1 2 I 19£ Al l u v i a l complext species of class 1 presence Acer negundo 117(2.2) A. platanoides 117(+.2) Agoserls glauca 88(+.3) Agropyron dasrstachyum S8(+.2) A i smitb.ll 119 (+.2) A. subsecundum 88(+.3) A. trachycaulon 88(4.3) Aralla nudlcaulis 120(7.3) Asparagus officinale 112(+.3) Aster consplcuus 119(3.3) A^ l a e v T s 1 1 0 ( 2.3) A. occidentalis 88(+.3) Athyrlum fillx-femlna 117(1.3) Brachythecium albicans 88(+.l) Bromus japonlcus 88(1.3) B. tectorum 5B72.3) Campanula rotundifolla 120(+.2) Carex siccata 6*8(+.3) Caatllle.la anguatifolia 88(+.3) Cetraria scutata 119(+.l) Chrysopsis vi l l o s a 119(+.l) Circaea alpina 117(3.3) Cirslum arvense 110(+.3) Cladonia cariosa 119(+.3) Corylus cornuta 117(6.3) Elymu3 innovatus 115(1.3) Equlsetum arvense 120(+.l) E. laevigatum 88(+.2) Geaater sp. 120(+.3) Hellanthus sp. 110(2.3) Heracleum 1anaturn 117(1.3) Hleracium canadense 88(+.3) Humulus lupulus 117(1.2) Impatiens b i f l o r a 117(+.3) Junlperus scopulorum 119(1.3) Lathyrus n u t t a l l i i 120(1.1) Lepidlum denslflorum 88(+.3) Lonlcera involucrata l l i r ( + .2) Muhlenbergia mexicarta llij.(+.3) Medicago sativa 110(3.3) Oenothera biennis 88(+.2) Parmelia physodes 88(+*+) Philadelphus lewisil 117(2.3) Plant ago ma.ior SBT+.3) Poa ampla 119(1.3) Z i Interior 88(2.3) Polyporus schweinitzii 88(+.3) Potentilla gracilis 110(+.1) Ribes lacustre 117(1.2) R. oxyacantholdes 117(+.2) Rubus leucodermls 117(2.2) I k parviflorus 117(2.3) Salix lasiandra 88(+.2) Sanicula marylandica 120(+.3) Sllene menziesll "BB(1.2) Smilacina racemosa 117(1.3) Thuja pllcata 120(+.2) Trlfolium pratense 120(+.3) Urtica l y a l l i l 117(1.3) Usnea hlrta 119(+.l) Verbascum thapsus 110(+.1) Viola canadensis 120(+.+) Zygadenus yenenosus 88(+.3) 19? APPENDIX it L i s t of a l l species found In the analyses, with  their l i f e forms, presence and vigour (separated by a point) for each association and subassociation, the f i d e l i t y class (after Braun-Blanquet, 1932) (F.C.), and the situation, i f any, to which the f i d e l i t y re-late s. The symbols used to describe the l i f e forms are as follows: P phanerophytes (undifferentiated) T therophytes (annuals) C chamaephytes B bryophytes H hemicryptophytes L licnehs (terrestrial) G geophytes E epiphytes For further explanation of the terms, see pages 17-18 under 'Methods*. The symbols designating the associations and sub-associations are those used i n the textj and are as follows: 1 Pu Purshia association l a Ari Aristida subassociation 2 Ag Agropyron association 2a St Stipa subassociation 3 Rh Rhus association h Arc Arctostaphylos association 5 A-C Arctostaphylos - Calarnagrostis association 6 Ca Calarnagrostis association 7 sy Symphoricarpos association 8 AL All u v i a l complex APPENDIX 4 Lifo Form: Presence and Vigour of Species by Associations: and Fidelity Classes Association number and symbol Life 1 la 2 2a 3 4 5 6 7 8 F.C. Remarks Species Form Pu Ari St fin Arc A-G Ca Sy AL Acarospora schleioheri E mm - 1.3 - - - - - 1 Acer glabrum P 1.2 - - - 3.2 - 1.2 1.1 3.2 3.3 3 Ground -water A. negundo P - - - - - - - - - 1.2 1 Intro duoed A. platanoides P - - - - - - - — - 1.2 1 n Achillea millefolium H 5.2 5.2 5.2 5.3 5.2 5.2 5.2 5.2 4.2 3.3 2 Common throughout Agoseris aurantiaca G - - - - - - - 2.3 1.3 - 4 Ca A. glauca G 2.2 - 2.3 2.3 • - 2.2 2.3 1.3 1.3 1.3 2 A. heterophylla T 1.2 - 1.2 mm - - 1.3 1.2 1.3 - 2 Agropyron dasystachyum H - - - - - - - - - 1.2 1 A. g r i f f i t h s i i H — - — — — — — — — 4.3 5 Al A. smithii H - - - - - - - — - 1.2 1 A. spioatum H 4.2 5.2 5.3 4.2 3.2 5.2 4.2 3.2 3.2 5.2 2 Common in region A. subsecundum H mm - - 1.3 - - - 1.3 1.2 - 2 A. traohycaulon H - - - 1.2 2.3 1.2 - 1.3 1.2 1.3 2 Rh Agrostis alba H - - - - - - - - - 2.3 5 Al Alectoria chalybeiformis E - - 1. - - - - - 1. - ? A. fremontii E 2.1 2.1 1.1 - - 1.1 2.2 2.1 2.1 - 2 A. jubata E 1.1 2.1 1.1 3.1 - 1.1 2.2 3.2 4.2 - 2 A* sarmentosa E - - - - - - 1.2 1.3 1.2 - 4 Ca Allium oernuum G - 1.3 1.3 2.3 1.3 5.3 3.3 1.3 - 2.3 4 Aro Alnus tenuifolia P - - - - - - - 1.2 - 2.3 4 Al Amaranthus graecizans T 1.2 1.1 - 1.1 - - . - - - - 3 Steppe ruderal A. retroflexus T - 1.1 - - - - - - - - 1 Introduced Amelanchier a l n i f o l i a P 4.2 2.2 5.2 2.2 5.3 5.2 5.2 4.2 4.3 4.3 2 Anemone multifida H - - 1.3 2.3 - 4.2 1.3 - 1.2 - 4 Aro Antennaria anaphaloides H - - 1.3 m - - 1.3 4.3 2.2 - 4 Ca A. dimorpha H 3.2 4.2 3.2 5.2 3.3 4.2 1.2 - - - 3 Steppe A. howellii C - 1.2 - 2.1 mm 4.2 3.2 2.2 1.1 - 3 Arc A. parvifolia C 4.2 1.2 4.3 4.3 3.3 5.2 5.2 3.2 1.2 - 2 L.F. 1 la 2 2a 3 4 5 6 7 8 Pu Ari Ag St Rh Aro A-C Ca Sy Al F.C. Remarks Antennaria raoemosa C - - - -A. rosea C - 1.2 -Apooynum agdrosaemifolium G 2.2 1.1 2.2 A. oannabinum G - 1.2 Aquilegia formosa H -Arab i s glabra H - - - -A. holboellii H 1.2 1.1 1.2 A. puberula "H 4.3 3.2 4.2 4.2 Aralia nudicaulis H -Arceuthobium americanum E - -A. douglasii E + Arotostaphylos uva-ursi C 2.2 1.2 2.2 2.2 Arenaria formosa H 1.3 ~ A. tenella H 1.3 1.3 Aristida longiseta H 4.3 5.3 - 3.3 3.3 Arnica oordifolia H - - . + «. -A. fulgens H 1.3 Arrhenatherum elatius H - - - -Artemisia campestris H 2.3 4.2 1.2 2.3 1.3 A. discolor C - 1.2 A. draounoulus H 1.3 -A. fri g i d a C - 1.2 1.2 3.2 A. ludovioiana H - - + + A. tridentata P 1.2 1.2 2.3 2.2 A. t r i f i d a C 1.3 1.2 2.2 2.2 Asclepias speciosa H 1.2 1.2 Asparagus o f f i o i n a l i s G 1.2 2.2 Aster canescens H 1.2 3.2 A. oonspicuus H - 1.2 A. douglasii H - - - -A. eriooides H 1.2 + A. fremontii H 2.3 2.3 A. laevis H -A. oooidentalis H - - - 2 . 2 3.2 4.2 1.2 1.1 3.2 5.3 + 5.3 1.3 2.2 2.2 -1.3 1.3 2.3 1.1 2.2 3.2 2.2 1.1 - 3 A-C 1.3 4.3 1.3 - 4 Ca 3.1 - - 2.3 3 Arc - - - 3.3 4 Al - 1.3 1.1 - 4 Ca - 1.3 1.3 - 3 Ca & Sy - - - - 3 Pu & Ag 2.2 3.2 1.2 mm 2 - - - 1.3 5 Al conto] 1.3 - 1.3 - 5 Parasites Pinus 1.2 - - - 5 11 Pseudotsuga 5.3 3.2 1.2 mm 3 Arc & A-C 1.3 1.2 - m 2 - - - - 4 Pu & Ari mm - - - 4 Ar i & Pu - 3.2 3.2 - 4 Ca & Sy - + 2.3 - 4 sy - - 1.3 - 1 1.2 - - - 3 Coarse soi l s + - - - 1 - - - 2.3 3 Al - - - - 4 St - - mm 2.3 4 Al — — 1.2 ~ ) _ 1 3 Ag & St - - 1.1 J 2.2 2 - - 1.2 1.3 1 Ifctrto'.d;;'; - - - - 4 Ari 2.2 2.2 4.2 2.2 4 sy - - - 3.3 5 Al - - - 3.3 4 Al 2.2 3.3 4.3 2.3 3 Sy 1.1 - 3.2 1.3 3 sy - mm - 1.3 3 Clinton area Astragalus beokwithii A. canadensis A. l o t i f l o r u s A. purshii A. serotinus A« stenophyllus A. tenellus AUbyrium filix-femina  Balsamorhiza sagittata  Barbilophozia hatcheri  Berberis aquifolium  Betula papyrifera  Boletus sp. Braohythecium albioans  Bromus breviari status B. carinatus  B.inermis B. japonious  B. marginatus  B. mollis  B. racemosus B. tectorum  Bryum canariense  Calarnagrostis rubescens  Ca}liergonella schreberi  Caloohortus macrocarpus  Calypso bulbosa  Campanula rotundifolia  Carex concinnoidels C. f e s t i v e l l a  C. f i l i f o l i a  C. woodii C. pratioola L.F. 1 la 2 2a 3 4 5 6 7 8 F.C. Remarks Pu Ari AK St Rh Arc A-C Ca Sy AL H mm - 1.1 - - - - - - 1 H - - 1.3 - - - - - - 3.2 4 Al H - 1.2 -' - - - - - - - 1 H 3,2 3.2 1.3 1.3 1.2 2.2 - 1.3 - - 3 Pu & Ari H 2.2 2.2 3.2 2.2 3.1 4.2 3.2 4.2 3.2 - 3 Pseudotsuga zone H 1.2 - 2.3 - - 1.2 - 1.2 - - 2 H - - - 1.3 - 2.2 - - - - 3 Arc H - - - - - - - - - 1.3 5 Al H 5.2 5.2 5.2 2.1 3.1 3.1 2.2 4.1 2.1 - 3 Steppe B - - - - - - - 1.3 1.3 - 3 Ca & Sy C 2.2 1.3 2.1 - 3.2 2.1 4.1 - 5.3 2.2 3 Sy P - - - - - - - - 1.1 4.3 4 Al G 1.2 1.2 - - 1.3 mm - 1.2 1.3 - 2 B 2.2 mm 1.2 mm - 1.1 3.2 4.2 4.2 1.1 3 Ca & Sy H - - - mm - - mm - 1.2 - 1 H - - - - - - - 2.3 3.1 - 3 Sy & Ca H - mm - - - - - - - 2.3 5 Al (Introd«) T -• - - - - - - - - 1.3 1 Introduced H - - - - - - - 1.3 - - 1 T - - - - - - - - 1.3 - 1 Introduced T - 1.2 - 1.2 2.2 - - - - 1.2 2.3 2 it T 5.3 5.2 4.2 4.3 5.2 3.2 2.2 2.2 3.2 1.3 3 Steppe (Introds) B 1.1 1.2 1.2 1.2 1.3 2.2 1.3 3.1 2.2 - 2 H 1.1 - 2.2 - mm 2.2 5.2 5.3 5.2 - 3 Pseudotsuga zone B - - - - - - - 1.1 2.2 - 4 sy G 2.2 2.3 3.2 - 3.2 1.2 - 1.1 1.2 - 3 Steppe H - mm - - - mm + 1.3 - - 4 Ca H - - 1.3 - - - - - mm 1.2 2 H - - mm - - 4.2 5.2 2.2 1.1 - 4 Aro & A-C H — - mm - - - - 1.3 - - 1 H 1.3 1.2 - - mm - - - mm - 4 Pu & Ari (Oliver) H - - - - - - - 2.3 1.3 - 3 Ca H - 1.3 1.3 - - - - - 1.3 - 1 to o o Carex Rossii C. sicoata C. xerantica Castilleja angustifolia C. lutescens C. miniata Ceanothus sanguineus  C. velutinus  Cephaloziella byssacea  Cerastium arvense  Ceratodon purpureus  Cetraria juniperina  C. glauca C. islandica C. soutata Chaenaotis douglasii  Chenopodium album  C. botrys Chimaphila umbellata  Chrysopsis v i l l o s a  Chrysothamnus nauseosus  C» visoidiflorus  Ciroaea alpina  Cirsium arvense  C« drummondii  C. Ianceolatum  C. undulatum  Cladonia oariosa C. oarneola C« ohlorophaea C. coccifera C. ooniocraea C. deformi3 L.F. 1 la 2 2a 3 4 5 6 7 8 F.C. Remarks Pu Ari Ag St Rh Arc A-C Ca Sy AL H 4.2 3.2 4.2 2.2 3.2 5.1 5.2 3.2 4.2 - 2 H - - - mm - - - - 1.2 ? H - - - - - 1.1 - - - - 1 H - - 1.2 - - - 2.2 3.3 2.3 1.3 3 Pseudotsuga zone H - + 2.3 - - - - 1.1 - - 3 Ag H - - - - - - 1.3 1.3 1.1 - 3 Ca & A-C P 1.3 - 1.1 - - - - - 1.'2 - 2 P 1.3 - 1.1 - - 3.2 3.2 1.3 - - 3 Aro & A-C (esp. B 1.1 - 1.1 - 1. - - - - - ? after f i r e ) C - - - - - 1.2 -• - 1.3 - 2 B 4.2 3.2 2.2 2.3 3.3 2.2 2.2 2.2 1.2 - 3 Pinus ponderosa zone E - - 1.1 - mm 2. 2 1.2 3.3 - 4 Sy E 2.1 - 1.2 2.2 - 2.1 2.1 1.2 4.2 2.2 3 Sy E - - - 1.2 - 1.3 1.2 1.1 - - 3 Arc E 1.1 - 1.1 - - 1.1 1.1 - 3.1 1.1 3 Sy H 2.2 4.2 1.2 - - - - - - - 4 Ari T 1.2 1.1 - 1.1 - 2.1 - - 1.1 3.2 2 Introd., ruderal T - - 1.1 - - - mm - - - 1 C - - - - - - - 1.3 2.2 - 4 Ca & Sy H 4.3 4.3 - 2.2 4.3 - - - - + 3 Coarse steppe soils P 4.2 3.2 2.1 4.2 - 2.2 - - - 4.2 3 Open stands P - - + - - - - - - - 1 H - - - - - - - - 1.1 1.3 4 Al G - - - - - - - 1.1 1.3 1 Introd., invading H - - - - - 1.2 - - - - 1 H - - - mm - - - 1.1 2.2 - 3 sy H 1.2 2.2 2.1 2.2 3.2 - 1.1 - - 2.3 2 L - - 1.2 - - 3.2 - 1. - 1.3 2 L - - - - - - 1.1 - - - 1 L 5.2 5.2 3.2 4.1 5.3 5.2 5.2 5.2 5.3 - 2 Common throughout L 2.2 1.2 1.1 1.3 - 2.2 3.2 2.3 1.3 - 3 A-C & Ca L - - 1.3 - - - - 1. - - ? L - - - - - - - 1. - - ? ro O L.P. 1 la 2 2a 3 4 5 6 7 8 F.C. Remarks Pu Ari Ag St Rh Arc A-C Ca Sy AL Cladonia fimbriata L - 1.1 - - - - - 2.1 1.1 - 3 Ca C. furoata L - - - 1.3 - mm 1.2 1. 1. - 2 C. gracilis L 1.1 2.2 1.3 2.2 - 3.3 4.3 3.2 3.3 m 3 A-C C. mitis L - - - - - mm 1.2 1.3 1.2 - 3 Ca C. nemoxyna L - - - - - - 2.2 - - - 5 A-C C. pyxidata L 1.1 — — - - — -. — - — 1 C. squamosa L - — — — — — — 1.1 — — 1 C. v e r t i c i l l a t a L — - — - - 2.2 1.2 1.2 1.3 — 3 Pseudotsuga zone Clarkia pulchella T - - 1.2 - - - + - - 1 Osoyoos & eastward Claytonia lanceolata G - - 1.3 - - - - - - - 4 Ag C. linearis T 1.3 1.1 - 1.2 - - - - - - 3 Pu C. perfoliata T 1.1 - 1.2 - - - - 1.2 - 2 C. spathulata T - - - - - - 1.1 - - - 1 Clematis oolumbiana P - - - - - - - - 2.1 + 4 sy C. l i g u s t i c i f o l i a P - - - mm 3.2 - - - - 5.3 4 Al Collema crispa L 1.1 - + - - - - - - - ? Collinsia parviflora T 2.3 + 4*2 1.2 1.3 2.2 4.2 4.3 3.3 * 2 Comandra pallida H 2.2 3.2 2.2 1.3 2.2 3.3 1.2 - - - 2 Coralorhiza maoulata G - - - - - - - 1.3 1.3 - 3 Ca & Sy Cornicularia californica E 1.2 2.2 1.1 2.1 - 1.1 - - - mm 3 Pinus ponderosa Cornus stoldnifera P - - - mm - - - - - 4.3 5 Al Corylus cornuta P - - - - - - - — 1.1 1.3 4 Al Crataegus douglasii P - - — - + — — — 2.2 3.2 4 Al C. oolumbiana P - - - - - - - - + + ? Crepis acuminata H - 1.2 1.3 - 1.3 - - 1.3 - - 2 C. atribarba H 4.3 3.2 5.2 4.2 3.3 4.2 3.2 4.3 2.2 - 2 Cryptantha a f f i n i s T - mm 1.2 - - - - 1.1 - mm 2 C. ambigua T 1.2 — — — — — — 2 C. humilis T - — 1.2 - — - — - 2 C. leuoophaea H - 1.3 - - - - - - - - 3 Ari Cynoglossum officinale H - - - - - - + - 1.2 - 1 Int roduoed Cypripedium montanum G - - - - - - - - , + 5 Cystopteris f r a g i l i s H - - — - — — - + 1.3 - 1 Danthonia spicata H — - 1.3 - - — 1.3 1.3 1.3 — 3 Higher elevations L.F. 1 l a 2 2a 3 4 5 6 7 8 F.C. Remarks Pu A r i AK St Rh Arc A-C Ca s,y AL Delphinium bicolor G 1.2 1.2 3.2 1.2 1.1 1.2 . - 1.2 1.3 - 3 Ag Deschampsia elongata H — — — — — — — — 1.2 — 1 Dioranum fusoesoens B — - — mm - — 1.2 1.1 — - 3 A-C D. majus B - - - - - - - 1.2 2.3 - 4 sy D. scoparium B - - - - - - - 1.1 - - 1 D. striatum B - - - - - - 1.2 1.1 1.3 - 3 Pseudotsuga zone Disporum traohyoarpum G - - - - - - 1.2 1.2 3.2 2.2 3 sy Dodecatheon meadia H 1.3 — 1.3 - - — 1.3 1.3 — 2 Draba verna T 1.3 1.3 1.3 - - - - - - - 3 I'nt rdds, ru dera 1 Drepanocladus uncinatus B - - - - - 1.1 1.1 2.2 - 3 Sy Eohinocystis lobata H - - - - - - - - - + 5 Al Elaeagnus oommutata P - - + mm - — - — — 3.3 5 Al Elymus canadensis H - - - - - - - - - 2.3 5 Al E. oondensatus H mm - + 1.1 + 1.1 - mm 4.3 4 Al E. glaucus H mm - - mm 1.2 3.2 3.2 3 Sy & Al E. innovatus H - - - - - - - r 1.3 5 Al Enoalypta sp. B 1.2 - - 1.3 mm m - - «•» ? Epilobium adenocaulon T - - - mm - mm — — 1.1 - 1 E. angustifolium H - - - 1.1 2.2 - 2.1 3.1 1.1 - 3 Pseudotsuga zone E. minutum T 1.2 2.2 2.2 2.2 1.3 - 1.1 2.2 - - 3 Steppe Equisetum arvense G - - - - - - - - - 1.1 3 Al E. hyemale H - 1.1 - - 1.2 - - - - 2.3 4 Al E. laevigatum H - + - - - mm - • - - 1.2 4 Al Erigeron canadensis T 1.1 1.2 — 2.1 - — — — - — 3 Ruderal E. compositus H - 1.1 2.2 2.2 - 2.3 1.3 - - - 2 E. corymbosus H 1.3 1.3 2.2 1.1 - — - 1.2 2.2 — 2 E. f i l i f o l i u s H 4.2 4.3 3.3 2.2 2.2 2.3 - - - - 3 Pu & Ari E. f l a g e l l a r i s C 1 1.1 - 2.3 - 1.2 - - - - 3 St, N of R.Thompson E. peucephyllus H - 1.3 - 1.3 - wm - • - - - 3 S.Okanagan Valley E. pumilus H 2.3 1.2 3.3 3.3 1.2 1.2 - - 3 Ag & St E. speoiosus H - - — — - 1.3 — 1.3 + 2 E. strigosus H 1.3 - 1.3 - — — - — 3 Steppe Eriogonum heraoleoides C 2.2 2.2 4.3 3.3 1.3 1.2 1.2 2.2 2.2 - 4 Ag & St E. niveum H 4.3 5.2 - 2.2 3.2 - - - - - 4 Pu & Art o L.F. 1 la 2 2a Pu Ari St Erysimum inoonspiouum T - - 1.3 1.3 Euphorbia glyptosperma T — 1.2 - 1.2 Eurhynchium strigosum B 1.1 - 1.1 -Festuoa subulata H - - — — F. oocidentalis H 2.2 1.1 4.3 1.2 F. ootoflora T 5.2 5.2 2.1 4.2 F. ovina H - •at - -F. pacifica T 1.3 - 1.2 1.3 F. scabre11a H 2.3 - 1.3 -Fomes l a r i c i s E - - - -Fragaria bracteata H - mm 1.3 -F. virginiana H 1.2 1.1 3.2 2.2 F r i t i l l a r i a lanceolata G - - - -F. pudica G 1.3 1.2 2.3 2.3 Gaillardia aristata H 4.2 4.2 2.2 2.3 Galium boreale H «• - - -G. triflorum H mm - - -Gayophytum ramosissimum T - 1.3 - -Geaster sp. G — - - -Gentiana amarella T - - - -G. glauca T - - - -Geranium viscosissimum H — — 1.3 — Geum triflorum H 1.2 - 2.2 2.1 G i l i a aggregata H 2.3 3.3 2.2 - -G. gracilis T 2.3 1.2 2.3 2.3 G. grandiflora T 1.2 — 2.2 -G. linearis T - - - -G. pungens C 2.2 3.2 - 1.1 G. sinuata T — 1.1 - -Goodyera menziesii H - - - -Grindelia squarrosa H - + - -Eabenaria unalaschensis G - - - -Haplopappus oarthamoides H 1.3 - - -3 4 5 6 7 8 F.C. Remarks Rh Arc A-C Ca Sy AL - - - - - 3 Ag & St 2.2 - - - - 3 Rh, (ruderal) 1.1 - 1.1 1.1 1.1 - 2 - - . - - 1.3 - 1 - 1.2 2.2 4.3 3.3 mm 3 Ag & Ca 2.2 1.2 - - mm - 3 Pu & Ari - 1.2 - - - - 1 From higher levels - - - - - - 3 Steppe - 3.2 - 1.3 2.3 - 2 - - 1.3 - - - ? On Pseudotsuga mm - 1.2 3.2 2.2 - 4 A-C - 5.2 5..2 5.2 4.1 - 3 Pseudotsuga zone - - - 3.2 2.3 - 3 Ca & Sy 1.3 - - - - - 3 Ag & St 4.3 5.2 1.1 - 1.2 2.2 2 - 2. 2 1.2 2.3 4.2 3.3 3 Sy & Al - - - - 1.3 - 5 sy - - - - - - 5 Ari 1.3 - - - - 1.3 . ? - - - - 1.3 - 1 - - 1.3 - - 1 - - 1.2 1.2 - - 3 Ag - 4.2 + 3.3 3.1 - • 3 Aro 3.3 - 1.1 - r— mm - 3 Coarse steppe soils - - 1.3 3.2 - - 2 - - - 1.3 2.3 - 2 - - - 1.3 - - 1 - - - - - - 4 Pu & A r i - - - - - 1 — — — 2.2 3.2 — 3 i Sy & Ca - - 1.2 1.3 1.3 - j. 3 Ca & Sy - - - - - - 1 o L.F. 1 Pu l a Ari 2 2a Afi St 3 4 Rh Arc 5 A-C 6 Ca 7 .SJL 8 AL F.C. Remarks Helianthus cusiokii H. giganteus  Heracleum lanatum  Heuohera cylindrioa  Hieraoium albiflorum  H. canadense H. oynoglossoides  Holodisous disoolor  Hosackia dentioulata  Humulus lupuj.us  Hydrophyllum capitatum  Eylo comium splendens  Hypericum p'erfo ratum  Impatiens biflora  Iva xanthifolia  Juncus baltious  Juniperus communis J. scopulorum  Koeleria cristata  Laotuoa pulchella  L. scariola  Lappula myosotis Larix occidentalis  Lathyrus n u t t a l l i i  Leoanora paoifioa  Leoidea lurida L. rubiformis Lepidium densiflorum L. perfoliatum  Lesquerella douglasii  Letharia vulpina Lewisia rediviva Lilium columbianum H H E H H H H P T H G B H H T G P P H H T T P H L L L T T H E G G 2.3 - 1.3 5.3 5.3 «* mm . 1.1 1.2 - 1.1 1.2 1.1 + 1.3 2.2 4.1 5.1 3.3 3.3 1.3 1.3 -• 2.2 2.3 3.3 2.1 1.3 1.3 - 1.3 4.2 1.2 1.2 --1.2 -- 1.3 1.2 1.3 1.3 2.3 4.2 4.2 1.1 2.2 2.1 -1.2 3.2 1. 1. 1. 3.2 1.2 2.2 5.2 4.1 1.3 3.2 1.2 1.3 2.2 3.3 2.3 3.3 4.3 5.2 1.1 2.1 1. - 1.2 4.1 5.2 1.1 2.3 4.3 1.2 3.2 2.3 4.2 + 1.2 1. 2.3 2.3 1.2 5.3 2.2 1.2 3.3 1.1 1.2 3.3 1. 1.2 3.2 1.1 2.1 1.3 1.2 1.2 1.3 1.3 2.3 1.2 + 2.1 5*2 5 • 2 5 • 2 3v3 1.2 1.3 1.3 1.2 1.3 + 1.3 2.2 2.2 1.2 1.3 2.1 2 3 5 2 3 2 2 3 2 1 2 1 1 5 1 3 3 3 2 2 2 3 3 3 ? ? ? 3 1 3 2 4 4 Al A-C & Ca Rh & Sy Introduced Int roduced Al Arc Arc & A-C Arc Introd., ruderal St. E. edge of area Ca St, (Int rod. ) Intrdduead Steppe Common throughout Ca Ca CO o L.F. 1 la 2 2a 3 4 5 6 7 8 F.C. Remarks Pu Ari Ag St Rh Arc A-C Ca Sy AL Linnaea borealis C - - mm - - - 1.2 1.3 1.2 - 3 Ca Linum lewisii H - 1.2 - 2.3 - 2.2 1.1 - - - 3 St, Thompson basin Lithospermum incisum H 2.1 4.2 1.3 1.2 2.2 - 1.3 - 1.3 mm 4 Ari L. ruderale H 4.2 3.2 5.2 4.3 4.3 4.2 3.2 1.3 4.2 - 2 Lomat ium ambiguum G - - 1.3 - - - - - - - 1 L. dissectum G - . - 2.3 - - - 1.3 - 1.3 - 3 Ag L. maorocarpum G 1.3 1.2 3.2 1.1 - 3.2 - - - - 2 L. nudioaule G - - - mm - - - - + — 1 L. Piperi G - - 1.2 - - - - - - 1 L. t rite mat um G 1.1 1.3 1.2 - - - - 1.3 1.2 - 2 L. utriculatum G - 1.3 1.2 1.3 - - 1.2 - - - 2 Lonicera ci l i o s a P - - - - - - 1.2 - 1.2 - 3 Pseudotsuga zone L. involuorata P - - - - - - - 1.1 - 1.2 3 Al L. utahensis P - - - - - - 1.1 - - 1 Lupinus nootkatensis H - - - - - + 1.3 - - 4 Ca L. sericeus H - 1.3 4.3 1.3 - - 2.3 5.2 2.1 - 3 Ag & Ca Madia exigua T - - 1.2 - - - - - - - 1 Marchantia polymorpha B - - - - - - - 1-8 1 - 1 Medioago sativa H - - - - - mm - 1.3 1 Introduced Melampyrum lineare H - - - - - - 1.3 - - - 1 Al (Introd.) Melilotus alba H - - - - - - - - - 4.2 5 Mentzelia albicaulis T 1.3 2.3 1.3 1.2 - - - - - 3 A r i , under trees M. laevicaulis T - - + - - - - - - - 1 Mertensia longiflora G - - 1.2 - - - - - - - 5 Ag M. paniculata H - - - - 1.2 - - - - 1 Mycoblastus alpinus E - - 1. - - + 1.2 1.2 1. - ? Microseris nutans H - - - - - - - - 1.3 - 1 Mimulus guttatus H - - 1.1 - - - - - 1 M. floribundus T - - - - - - - - 1.3 - 1 Mite11a nuda H - - - - - - - 1.3 1.3 - 3 Ca & Sy Mnium spinulosum B - - - - - - - 1.3 3.2 - 4 Sy Monarda fistulosa H - - 1.3 - - - - - + - 3 Ag Muhlenbergia mexioana H - - - - - - - - - 1.3 1 M. richardsonis H — mm —• 1.2 — - — — — — 1 L.F. 1 la 2 2a 3 4 5 6 7 8 F.C. Remarks Pu Ari St Rh Aro A-C Ca Sy AL Nephroma laevigata L - - - - - - - 1. - ? sy Nephromopsis platyphylla L — - 1.1 — 1.1 1.2 r.3 4.3 1.2 4 Oenothera biennis H — — — — — — — 1 0. pallida Opuntia f r a g i l i s G 1.2 1.2 1.1 - - - - - - 3 Pu & Ari C 5.1 5.2 1.2 4.2 5.1 2.. - — — — 4 Steppe & P. pond. 0. polyaoantha c — — •* + — — — 1 Steppe Orobanohe fasoiculata G 1.2 - + — - - — — 3 Orthocarpus tenuifolius T - - 1.1 - - - - — — • — 1 sandy soils, Pu & Ari Oryzopsis hymenoides H 1.2 1.3 1.1 - - - - — — — 4 0. exigua H _ i - - — — 2.3 1.3 — 4 Arc Osmorhiza ohilensis H - - - - - - - 1.1 4.2 — 4 Sy Oxytropis gracilis H - 1.2 1.3 2.2 - 4.2 1.2 — — 4 Aro 0. lambertii H - 1.3 1.3 — — — — — 3 Steppe Pachystima myrsinites C mm - 1.1 - - 2.1 3.1 1.1 3 Ca Rh Panicum soribnerianum H 2.2 — 1.1 1.2 5.3 — 4 Parmelia caperata E - - - - — — — 1. — ? P. olivacea E - - 1. - - — 1.1 — — ? P. physodes E 2.2 1.1 2.1 1.1 - 1.1 3.2 2.2 5.3 1.1 4c Sy P. saxatilis E - mm - - - — — 1.1 1. ? P. suloata E - - mm 1.1 - - 1. — — — ? Parmeliopsis ambigua L - - 1. 1.2 - 1.2 3. 2.1 2. ? A-C & Ca Peltigera aphthosa L - 1.2 1.2 - - 1.1 2.2 2.2 1.2 mm 3 P. oanina L 5.2 4.2 4.2 2.1 4.2 5.2 5.2 5.2 5.2 mm 2 P. soutata L mm - - 1.1 - - - - - - 1 P.ve-nosa L - - - - - - 1*3 — mm 1 Pentstemon oonfertus H mm 1.2 1.3 1.2 2.3 - - 2.3 3.3 - 2 P. fruticosus C 1.2 1.2 2. 2 - - 4.2 2.1 1.1 - • - 4 Arc P. ovatus H - - - - 1.2 - - - - - 1 P. serrulatus C - - - - 1.3 - - - - - 1 Phaoelia linearis T 4.2 5.2 2.2 2.2 2.2 2.1 - 1.2 - 4 Ari & Pu P. leucophylla H 1.2 3.2 2.2 - - - - - - - 3 Ari Philadelphus l e w i s i i P - - 1.3 - 4.3 - 1.2 — 1.1 1.3 4 Rh Phleum pratense H — - 1.2 — — mm 1.3 1.3 2.3 2 ro o -a Phlox longifolia P. speoiosa Physocarpus malvaceus Pioea engelmanni Piaus oontorta P. ponderosa Plantago major P. Purshii Poa ampla P. oanbyi P. oompressa P» ousickii P. Fendleriana P. interior P. longiligula P. nervosa P. pratensis P« scabrella P. se ounda Pohlia oruda P. nutans Polemonium micranthum  Polygonum convolvulus  P. douglasii  Polyporus sohweinitzii  Polystichum muniturn  Polytrichum juniperinum  P. piliferum  Populus tremuloides  P. t richooarpa Potentilla arguta  P. glandulosa  P. gracilis L.F. 1 la 2 2a 3 4 5 6 7 8 F.C. Remarks Pu Ari St Rh Arc A-C Ca AL C 4.2 3.2 1.2 2.3 - mm - - - 3 Pu H - - - - - - - - - 1 P - - - - - - - - 1.2 - 4 sy P - - - - - - - 1.3 1.2 + 3 Pseud.zone & Al P - - - - - + 2.3 2.3 - - 3 Pseud. M after fire P 5.3 5.3 5.3 5.3 5.3 5.2 5.3 5.3 5.3 4.3 2 Characteristic of H - - - - - - - - 1.1 1.3 1 Introduced. type T 4.2 2.1 2.1 4.2 4.2 - - - - 3 Steppe & P. pond. H - - 1.3 - - - 1.2 3.3 1.3 1.3 4 Ca H - 1.1 - - - - 1.3 1.3 - - 3 A-C & Ca H - - - - - - - - - 2.3 5 Al (Intrdd.;) H 5.3 4.2 3.2 5.3 4.2 3.3 1.2 - - - 3 Steppe & P. pond. H - - 1.2 1.3 - - - - - - 3 Ag & St H - - - - - 1.1 1.2 - - - 3 A-C H - 1.3 - - - - - - - - 1 H - - 1.3 - - - - 1.2 - mm 2 H 1.1 - 1.3 3.2 - - 2.2 2.3 4.2 3.3 3 Sy & Al H - - - - - - - 2.2 - - 3 Ca H - - 1.3 - - 1.3 - - - - 2 B - - - - - - - 1.1 - - - 1 B 1.2 2.2 2.2 2.2 1.2 1.1 1.3 2.1 1.3 - 2 T 2.2 2.2 1.3 1.3 1.3 - - - 1.2 - 3 Pu & Ari T - - - - - • - -• - 1.1 - 1 Introduced T 3.2 4.2 2.2 2.1 1.3 1.3 1.2 - 1.2 mm 3 Ari & Pu G - - - - - - - 1.1 1.2 1.3 ? H - - - - - - - 1.1 - - 1 From W. of Casoades B 2.1 1.1 2.1 1.1 1.2 2.1 4.2 4.2 3.2 - 3 Ca & A-C B 3.2 3.2 3.2 2.2 4.3 3.1 2.2 2.1 - - 3 P. ponderosa zone P - - 1.1 - 2.2 - 2.1 2.2 3.3 3.3 3 Sy & Al P - - - - - mm - - 5.3 5 Al H - - 2.2 - 2.3 - 1.2 2.3 3.2 - 3 sy H H 1.3 1.3 mm — 1.3 2.3 1.1 1 2 ro o 00 L.F. 1. la 2 2a 3 4 5 6 7 8 F.C. Remarks Pu Ari St Rh Aro A-C Ca s,y AL Potentilla monspeliensis H - - - - - - - 1.3 - 1 P. pennsylvanica H - - - 2.3 - 1.2 - - - - 3 St, Clinton area Prunella vulgaris H - - - • - - - - - 1.3 - 1 Prunus emarginata P - - 1.1 - - - 1.1 - - - 1 P. persioa P - - mm 1.1 - - - - - - 1 P. virginiana P - 1.1 2.1 - 4.2 - 1.1 1.1 3.2 5.3 3 Al & Rh Pseudotsuga menziesii P 2.3 1.3 4.3 2.2 1.3 5.2 5.3 5.3 5.3 2.3 3 Pseudotsuga zone Psoroma hypnorum L - - - - - - 1.3 1.3 - - 3 A-C & Ca Pterospora andromedea G - - - - - + 1.3 2.3 1.2 - 3 Ca Ptilidium puloherriraum B - - - - - - 1.3 - 2.2 - 2 Purshia tridentata P 5.3 3.2 1.1 2.3 4.3 - - mm - - 3 Pu & Rh Pyrola chlorantha H - - - - - - - - 1.2 1 P. piota H - - - - - - 1.1 1.2 - 3 Sy P. secunda C - - - - - - 1.2 1.3 1.1 - 3 Ca Pyrus communis P - - - 1.2 - - - - - - 1 Introduced P. malus P - - 1.1 1.1 - - - - - - 1 n Ramalina farinacea B - - - - - - - - 3.2 - 5 sy Ranunculus bongardii H - - - - - - - - 1.1 - 1 R. glaberrimus T 1.1 1.2 1.2 - - - - - - - 3 P. pond, zone Rhinanthus c r i s t a - g a l l i T - - + - 1.2 - - 1.3 mm - 1 Rhizocarpon alpicolum L 1.1 - - • - - - - 1.1 - - 1 Rhus glabra P 1.2 1.1 + mm 5.3 - - - - 3.3 4 Rh P. radicans P - 1.2 1.2 - 5.3 - - - 1.2 4.3 4 Rh, & Al Rhytidiadelphus triquetrus B a* - - - - - - 1.2 3.2 - 4 sy Ribes cereum P 2.3 2.2 3.3 4.2 4.2 + 1.2 2.2 1.3 - 2 R. laoustre P - - - - - - - 1.1 1.1 1.2 3 Al R. oxyacanthoides P - - - - - - - 1.3 - 1.2 3 Ca R. viscosissimum P mm 1.1 - - 1.1 - 1.2 - - - 2 Rinodina conradii L - - - - - - 1.3 - - - ? R. orbata L - - - - - 1.-3 - - - - ? R. sp. (unidentified) L 2.2 2.1 1.3 1.1 - - - - - - 3 Pu Rosa nutkana P 2.2 1.2 4.2 3.2 4.2 5.2 4.2 5.2 5.2 5.3 2 R. pisocarpa P - - - - - - 1.2 - - - 1 L.F. 1 la 2 2a 3 4 5 6 7 8 . F.C. Remarks Pu Ari Ag St Rh Arc A-C Ca Sy AL Rubus strigosus P - - - - - - - 1.2 1.2 - 3 Ca & Sy R. leucodermis P - - 1.1 - - - 1.1 - - 1.2 2 R. parviflorus P - - - - - - - 1.1 - 1.3 3 Al Rumex acetosella H 1.1 1.2 - - - - - - 2.2 - 3 Sy, Salix bebbiana P - - 1.3 - - - 2.2 4.3 2.3 4.3 3 Ca & Al S. f l u v i a t i l i s P - - - - - - - - - 3.3 5 Al S. lasiandra P - - - - - - - - - 1.2 5 Al Salsola k a l i T 1.3 1.3 + 2.3 - - - - - - 3 St, Introd. ruderal Sambucus glauoa P - - 1.2 - 4.3 - - - 1.2 + 4 Rh Sanicula graveolens G - - - - - - - 1.3 - - 5 Ca S. marylandioa G - - - - •at - - - 1.1 1.3 4 Al Saxifraga integrifolia H 2.3 - 2.2 - - - - 1.2 1.3 - 2 Sedum stenopetalum C - - - 1.1 mm 5.2 3.3 1.3 1.3 - 4 Aro Selaginella rupestris C 4.2 4.2 2.2 3.2 4.2 1.2 1.2 mm 1.2 - 3 Steppe Senecio aureus H — - - - - - 1.3 1.3 - - 3 A-C & Ca S. eanus H - + 1.1 - - 1.2 - - - - 2 S. exaltatus H - - 2.3 - - - - 2.2 1.2 - 3 Ag Setaria glauoa T - - - 1.3 - - - - - - 1 Shepherdia canadensis P 1.3 - 1.2 - - 4.2 4.2 1.2 1.1 ' - 4 Arc & A-C Silene antirrhina T 2.3 2.2 1.2 - - 1.2 - - -' - 3 Pu S. douglasii H 2.3 1.1 2.3 1.3 - - - 1.3 1.2 - 3 Ag S. menziesii H - - 1.3 - 1.3 - - 1.3 2.3 1.2 2 S. scouleri H - - - - - 1.2 - 1.3 - - 3 Ca Sisymbrium altissimum T 1.2 2.2 2.2 3.2 - 1.3 - - - 2.3 2 Introduced S. incisum T 2.2 2.2 1.3 - - - - 1.2 - - 3 Sitanion hystrix H - - - - - 1.3 2.3 - - - 3 A-C Smilacina raoemosa H - - - - - - - 1.2 2.1 1.3 3 Sy S. stellata G - - - - - - 1.1 1.1 1.1 4.3 4 Al Solidago canadensis H - - - - - - - - 1.3 - 1 S. lepida H - - - - - - - - 1.1 4.3 4 Al S. missouriensis H 1.1 - 1.2 - 2.2 5.2 1.3 - - mm 4 Aro Speoularia perfoliata T - - - - 1.3 - - - - - 5 Rh Spiraea douglasii P - - mm - - - - - 1.2 - 1 West ©f Cascades S. lucida P 1.2 — 3.2 - 1.1 3.1 4.2 4.2 5.3 - 3 sy L.P. 1 la 2 2a 3 4 5 6 7 8 F.C. Remarks Pu Ari St Rh Arc A-C Ca Sy AL Spiranthes romanzoffiana G - - - - - - - 1.2 - 1 Sporobolus cryptandrus H 5.2 5.2 1.2 5.2 3.3 2.2 - - - - 3 Steppe Stellaria borealis H - - - - - - - - 1.2 - 1 S. longipes H - - - - - - 1.3 1.3 - - 3 A-C & Ca S. nitens T - - - - - - - - 1.2 - 1 Stephanomeria tenuifolia H 3.2 3.2 2.2 - 4.3 2.2 • - - - - 3 . Rh Stereocaulon tomentosum L - - mm - - 1.3 1.3 - - - 3 Arq & A-C Stipa oolumbiana H 1.2 - 2.2 3.3 - 2.3 1.2 1.2 2.3 2.3 3 St S. comata H 5.2 5.3 2.2 5.3 4.2 3.3 - - - - 3 Steppe, grazed S. elmeri H 2.3 3.3 1.3 1.3 2.2 - - - - - 3 Ari S. occidentalis H - 1.2 - 1.3 - 1.3 - - - - 2 R. richardsonii H - - 1.2 2.3 - 2.3 1.2 1.3 1.3 - 2 S. spartea H - - - 2.3 - - - - - -• 5 St, Clinton area S. viridula H - - 1.3 - 1.3 1.3 - 1.3 - 2 S. williamsii H - - 1.2 mt - - 1.3 1.3 2.3 - 3 Sy Symphoricarpos albus P 1.3 - 3.2 2.1 2.2 - 2.1 3.2 5.3 3.2 4 Sy Taraxacum erythrospermum G- - - - - - - 1-J2 - 1- Introduced T. officinale G - - 3.1 2.1 2.1 5.1 1.2 3.2 + 3.2 3 Aro, (Introd.) Tellima parviflora H 1.1 1.1 1.3 - - - - 1.2 1.1 - 2 Tetradymia oanescens P mm + 1.2 mm mm - - - - - 3 Ag Tinimia austriaoa B - - - - - - - 1.2 - - 1 Thaiiotrum Occidentale H - - - - - - - 2.2 2.2 - 3 Ca & Sy Thuja plioata P - - - - - - - - - 1.2 5 Tortula russalis B 4.3 4.2 2.2 4.2 3.2 4.1 1.2 1.1 3.2 mm 3 Steppe Tragopogon pratensis T 3.2 3.2 4.2 4.2 4.1 4.1 - 1.2 4.2 2.2 2 Introduced Trifolium pratense H 1.1 - - - - - - - - 1.3 1 tt T. repens H - - - - - - 1.3 - 1.2 - 1 it Trisetum canesoens H - - - - - - - - 1.3 - 1 Urtioa l y a l l i i H - - - - - - - - - 1.3 5 Al Usnea dasypoga E - - - - - - 1.1 - - - 1 U. hirta E - - 1.2 1.2 - 1.1 1.3 2.1 3.2 1.1 3 Sy Vaccinium caespitosum C - - - - - - 1.3 - - - 5 A-C Verbascum thapsus T 1.1 1.1 1.1 - 3.1 - 1.1 1.1 2.1 1.1 2 Introd., ruderal Verbena braoteata H - + - 1.3 3.2 - - - - - 4 Rh L.F. 1 la 2 2a 3 4 5 6 7 8 P.C. Remarks Pu Ari A £ St Rh Arc A-C Ca Sy AL Vicia americana H — _ 1.2 _ 2.1 3.2 2.1 3.3 3 Ca & Al V. sativa H - 1.1 - - 1.3 - - - - 1 Introduced Viola adunca H - 1.3 1.1 - - - 1.2 - 3.3 3 sy Sy & A l V. canadensis H - - - - - - - 1.3 1.1 3 V. palustris H - - - - - - - - 1.2 - 1 V. n u t t a l l i i H - 1.2 - - - - 1.2 - 2 Woodsia ilvensis H - - 1.3 - - - - - _ — 1 W. oregona H - - 1.2 - 4.2 - - - • - - 4 Rh W. scopulina H - - 1.3 - - - - - - - 1 W. sp.(unidentified) H - - - - - ! - 1.2 - _ ? Xanthium strumarium T 1.2 - - - - - _ _ 1 Xanthoria candelaria L 1.1 - - 1.2 - 2.2 1.1 1.3 1.1 - 3 Arc Zygadenus venenosus G 3.3 1.3 4.3 1.3 3.2 1.2 1.3 5.3 2.3 1.3 3 Ca & Ag ro r-l ro APPENDIX 5 Biological spectra of the associations and  subassoclations. The use of the symbols is as follows: Pm megaphanerophytes T therophytes (annuals) Pn nanophanerophytes B bryophytes C chamaephytes L lichens (terrestrial) H hemicryptophytes E epiphytes G geophytes For further explanation of the terms, see pages 17-18 under 'Methods'. The contribution of each l i f e form to a given association is given as a percentage of the total contribution of a l l l i f e forms to the same associa-tion. Since the biological spectra for the Artemisia subassociation and the Rhus association d i f f e r appre-ciably from the normal spectra for the Pinus ponderosa zone, the l i f e form percentages for these two commun-it i e s are l i s t e d apart from the remainder of that zone, and are excluded from the zonal averages. APPENDIX 5 Biological Spectra of the Associations Studied. Percentages Ass'n. Pm Pn C H G T B L E Pu 13.8 11.4 10.2 33.1 3.8 13.8 6.2 5.1 2.6 Ari 13.8 5.6 6.8 42.6 4.0 15.6 4.2 4.7 2.7 Ag 14.6 9.2 7.8 41.0 6.5 11.2 3.1 2.9 3.7 St 13.6 6.0 10.9 39.5 3.7 13.4 4.0 5.4 3.5 Mean (Pinus zone ) 13.8 8.1 8.8 39.2 4.5 13.5 4.4 4.5 3.1 Art 15.7 16.7 13.9 32.9 5.7 7.1 5.7 2.9 1.4 Rh 20.1 20.1 12.9 - 28.0 3.5 ,7.6 4.1 2.9 0.8 Arc 14.3 12.5 17.8 31.3 6.2 3.9 3.1 7.4 3.3 A-C 21.2 11.2 16.4 27.2 3.1 2.7 3.5 9.3 5.4 Ca 20.1 9.5 9.9 35.0 6.3 3.5 6.2 5.6 3.9 sy 18.6 12.3 12.4 30.5 4.3 4.9 6.3 3.4 7.3 Mean (Pseudo-tsuga zone ) 18.6 11.4 14.1 31.0 5.0 ;>3.8 4.8 6.4 5.0 Al 31.9 20.7 9.5 25.5 5.6 4.1 0.3 0.7 1.7 APPENDIX 6 Tables of percentage basal cover of plant3 in several representative stands. 6a. Table of the basal cover of a l l species con-tacted i n the measurements. These values in-clude those shown separately i n Appendix 6b. 6b. Table of the basal area of trees and t a l l shrubs over 1/2 inch d.b.h. APPENDIX 6a. . 216 BASAL COVER PERCENTAGE - ALL LAYERS A C J J I U T A MILLEFOLIUM «IWYI»M SPCATWM ALLIUM C E R N U U H AHtLANCWEK A U B F O J A AMMONC MULTWM A N T C N N A A I A ANAH*AL01Dfc3 4. DlMOftPWA * • HOWELLII A . ftACEMOSA APOCYMW A N D R O S A i n i r c u r AttAfte, P U & C R U L A AR.CTOSTAPHYL0S UVA-U t t l A R I S T I D A L O N O S C T A A f t » U CORtXTOLlA ARTEMISIA PKI61DA ASTER COMSPCOW A . FREMONTl t ASTRAGALUS SEROTINUS A . S T E N O P H Y L L U S 6ALSAM0RHI2A S t t rTTATA ftCKfttRLS A O U I F O L I U M BRACUYTUtCJUM ALBICANS BROMUS CARIHATUS B. MAROINATUS B . T E C T O R U M CALAHAflAOSTlS RU6ESCCNS CAMPANULA ROTUN&IFOLIA CAR EX COHXINNOIDES C . F l L i rOL IA C HOODII C ROSSM C L A N O T H U J VELUTlNUS CLRATOPO* PURPWJLUS CMBrSOPSrS VILLOSA CHUYSOTHAMMUS NAUSfOSUS CLADONIA CULOROPMALA C . COCCIFERA C . GRACILIS C . FWRCATA C . M I T E C . VERT IO ILLAT A CALYPSO B U L B 0 6 A COLLIN&IA PARVIFIORA CREPIS ATRI&AR&A 0 ICR AHUM SP. PISPORUM TRACHYCAftPUM E L Y M U S GLAUCUS ERIbtRON IILIFOLIUS t RIOCONUM rlCRACLtOIDLS C . NIYEUM F E S T U C A OCCIDENTALS F. OCTOFLORA F . SCAfcRELLA TRAOAPIA hRACTEATA r. VIROINIANA GAILLARCMA ARISTATA GALL IUM B O R C A L L G . T R I F L O R U M GILIA PUNGENS UELIAHTHUS OIGANTEU1 UlCRAGttJM CYNOtt-ObSOlDlS HYDROPMYLLUM CAPITATUM KCCLCRIA CRISTATA LATHYRUb N U T T A L L H LLl/ IS IA R E M VIVA L I L I U M COLUMWANUM LITHOiPCRMUM RUM.KALL L O M A T I U M wiy:irun LONICLRA CILIOSA LUPINUS SL'RICKUS OPUNTIA F-RAOIUS O R Y 2 0 P S I b LKIGUA OSMORHIZA CWIXN ' . I S PACHYSTIMA MYRSIN11 PANICUM SCRIBNER1ANUM P C L T I 6 E R A APHTHOSA P. CANINA P E N T S T E M O N C0NFTRTU*> P . OVA! US PMACCLIA L INEAR I J PH ILADELPH IA LEWISi l PULOX I.ON61I0L1A PINUS PONDEROSA P L A N T A 6 0 PURSHII POA CUSICKll P . PRATENSIS POLEMONIUM MICRAN THUM POLYGONUM WXJOLASIl POLYPORUS SCUWEINITZII POLY TPICHUM JUNIPERINUM P . PfXIFERUM POPULUS TREMULOIDES PRUNUS VlhCINIANA PSEUDOTSUOA MCNZIESI I PURSHIA TRIDCMTATA R.INODINA SP. RHUb OLABRA R, B AWCAffS RUYTILWELPHU5 TRMUETRUS ROSA NUTKANA SAM6UCUS GLAUCA bEDUM STENOPETALUM ' J C L A O I N E L L * HUfESTBK VHLPHEWOIA CANADCWR r. lLFN C M C N I I F S I I SMU.ACINA RACEMOSA SOUWtfiO mS0URIENSI3 SPIRAEA LUCIDA SPOROROLUS CRVPTAMPRU3 STIPA COMATA S . RILHARDSONII •j. S PARTE A '.YMPHORICARPOS ALBUS TARAXACUM OFFICINALE IHAJ ICTRIH OCLIt-LHTALL TOR TULA RURALCS TRAOOP00OH PRATCNS/S VICIA AMERICANA VIOLA ADUNCA Am (9 69 73 R H 2 2 A R C 49 _A-C 1 0 j " U » 4y 46 flST OJ o.i 0.1 1 . 6 0.6 0.2 0.3 0.1 0.1 OA 0.1 219 144 U.l O.I 0.1 0 . 1 0J4 0.1 1.1 2.9 0.1 0.1 OS • °— 1.4 4.9 0.0 071 APPENDIX 6b Percentage Basal Cover of Trees and T a l l Shrubs of Over 1/2 Inch D.B.H. Ass'n. Stand Aoer glabrum  Arnelanohier a l n i f o l i a  Juniperus scopulorum  Picea engelmannii  Pinus contorta  P. ponderosa  Populus tremuloides  Prunus virginiana  Pseudotsuga manziesii  Purshia t r i dentata  Salix bebbiana  Sambucus glauoa  Shepherdia canadensis Pu A r i Ag 10 70 19 56 31 St 69 73 Rh 22 Arc 49 52 65 A~C Ca Sy 105 30 45 46 103 61 71 - 0.002 + - 0.006 -- + - -0.002 0.068 9.066 0.059 0.062 0.096 0.067 0.072 0,185 0.072 0.078 0.076 0.068 0.092 0.188 0.314 -- - - + - - - - - + 0.001 -0.009 - 0.049 + 0.080 0.091 0.001 -0.002 -0.047 0.032 0.152 0.001 0.054 0.022 0.613 0.118 0.189 - - 0.008 0.001 - + + indicates the occurrences of plants whose total basal cover amounted to less than 0.0005^. ro APPENDIX 7 Tables of climatic data obtained from the  instruments set out in this project, between September, 1952 and September, 1953. The following data are included: 7a. Maximum and minimum temperatures in degree's Fahrenheit, of the uppermost centimetre of s o i l . In the case of stand no. 65, air temp-eratures (marked 'air') are given in addition. 7b. Precipitation, in inches, with the year's totals. 7c. Evaporation, by Livingston Atmometer, for the period from May to September, 1953* The original values as volumes have been converted to depths in inches, as described under 'Methods' (pp. 21-22). 7d. Precipitation/Evaporation ratios for the period from May to September, 1953. Monthly means are also given, being calculated from the data avail-able when the series i s incomplete. In the case of stand 31> additional ratios are calculated from the data from the rain gauge i n the station 31N and the atmometer in station 3 1 S , (marked N/S). For explanation see the discussion i n the description of the Pinus ponderosa - Agropyron  splcatum association (p. 80). APPENDIX 7a Maximum and Minimum Soil Temperatures: Degrees Fahrenheit Sept. •52 -Stand Apr. •53 May •53 June •53 July •53 Aug. '53 Sept, •53 Pu 10 max 124 145 146 164 156 122 min 11 36 46 48 45 31 70 max 95 110 123 138 150 98 min 13 36 46 45 42 32 Ari 19 max 104 121 135 156 146 123 min 10 36 43 45 43 28 Ag 3IN max 97 82 94 110 111 87 min 12 29 35 41 39 33 S max 126 103 137 141 139 134 min 11 32 37 45 43 35 56 max 119 118 119 148 144 129 min 16 38 44 47 43 34 St 73 max - - 125 145 145 106 min - - - — - -Rh 22 max 82 90 94 134 127 76 min 19 38 48 51 46 37 Arc 49 max 120 118 127 147 141 124 min 10 36 41 46 39 35 65 Max 114 127 126 138 138 128 s o i l min 14 35 43 44 39 32 ai r max 87 79 78 90 - -- min -12 28 39 38 — ** Cal 30 max 113 - 124 124 126 102 min 13 m - - - -46 max 85 94 94 120 106 88 min 16 33 32 42 39 36 Sy 61 max 85 88 81 101 105 85 min 16 37 44 47 46 39 71 max 103 119 115 132 105 88 min 17 35 42 33 43 32 APPENDIX 7b Preoipitat ioni Inohes Winter Year j Summer Sept. Sept. Sept. May •52 - •52 - •52 - '53 -Apr. May June July Aug. Sept. Sept. Aug. Sept. Stand •53 •53 •53 Pu 10 6.53 1.24 1.69 0.05 2.52 0.07 12.10 12.03 5.57 70 6.54 0.88 1.74 0.48 1.84 0.28 11.76 11.48 5.22 Ar i 19 6.60 1.20 1.71 0.11 2.13 0.08 11.83 11.75 5.23 Ag 56 6.70 2.14 3.28 0.69 1.02 0.60 14.43 13.83 7.73 3 IN 8.54 0.75 1.72 6.16 1.13 0.65 13.45 12.80 4.91 S 5.38 0.19 0.19 0.08 1.30 0.24 7.38 7.14 2.00 St 73 5.33 0.79 2.02 0.33 2.37 0.28 11.12 10.74 5.79 Rh 22 5.77 1.69 2.16 0.31 1.82 0.14 11.89 11.75 6.12 Arc 49 6.50 0.32 1.20 0.67 0.88 1.15 10.72 9.57 4.22 65 4.89 0.58 2.92 1.64 1.00 0.62 11.65 ' 11.03 6.76 Cal 30 .6.76 0.85 1.69 0.11 1.30 0.59 11.30 10.71 4.54 46 7.78 0.35 2.06 0.09 0.81 1.86 12.95 11.09 5.17 Sy 61 4.63 1.26 4.42 0.65 0.49 mm _ 71 7.92 1.46 3.70 1.28 2.75 1.13 18.23 17.10 10.31 APPENDIX 7c Evaporation: May to September, 1953. In Inches. 221 Stand May June July Aug. Sept. Total Pu 10 70 3.51 2.96 3.50 2.74 7.36 5.23 5.26 3.24 3.50 2.50 23.13 16.67 Ari 19 - 5.08 9.41 6.94 5.02 -Ag 56 31N S 3.11 2.72 3.72 2.02 1.57 2.56 4.59 3.80 6.03 3.87 3.79 4.SI 3.82 2.68 4.49 17.41 14.56 21.61 St 73 - 3.41 7.40 5.36 3.92 -Rh 22 3.79 3.09 6.32 4.75 3.02 20.97 Aro 49 65 4.65 4.38 3.78 2.91 7.05 4.96 5.42 4.63 4.11 3.08 25.01 19.96 Cal 30 46 2.55 2.42 1.62 0.83 3.89 2.22 3.16 2.38 2.97 2.36 14.19 10.21 Sy 61 71 1.70 0.69 1.01 -1.51 1.52 1.47 mm APPENDIX 7d Precipitation/Evaporation Ratio* May to September, 1953. Stand May June July Aug. Sept. Mean for Season Pu 10 0.35 0.48 0.01 0.48 0.02 0.24 70 0.28 0.64 0.09 0 .57 0.11 0.31 A r i 19 - 0.33 0.01 0,30 0.02 0 . 1 7 * Ag 56 0.69 1.63 0.15 0.24 0.16 0.43 31N 0.28 1.10 0.04 0.58 0.24 0.36 S 0.05 0 .74 0.01 0.27 0 .05 0.09 N/S 0.20 0.67 0.03 0.23 0 .14 0 ,26 * * St 73 - 0.59 0.04 0.44 0 .07 0 .29* Rh 22 0.45 0.70 0.05 0.38 0.05 0.29 Arc 49 0.07 0.32 0.01 0.16 0.28 0 .17 65 0.13 1.00 0.33 0.22 0 .15 0.32 Cal 30 0.34 1.03 0.03 0.41 0.20 0.32 46 0.15 2.60 0.04 0.34 0.79 0.51 Sy 61 0.74 6.40 m» _ 0.33 2 .49 * 71 mm 3.64 1.82 0.72 2 .06* Mean P/E ratio fo r the Pinus zone ( i n c l . stand 4 9 ) : 0.27 Mean P/E ratio fo r the Pseudotsuga zone t 1.14 * Season's means calculated from the months for which the required data were available. ** These figures were obtained by dividing the precipitation figures from 31N by the evaporation figures from 31S. For disoussion, see text, P. 53. APPENDIX 8 Table of mean values of the textures of s o i l  samples taken to depths of three feet from a series of stands representing the different associations and subassociations (except the al l u v i a l complex); according to unpublished data of Ogilvie. The size particle (diameter) limits correspond-ing to the various fractions of the s o i l are as follows Clay under 0.0002 mm. S i l t 0.002 - 0.02 mm. Sand 0.02 - 2 ram. Gravel over 2 mm. The gravel i s given as a percentage by weight of the whole sample, while the sand, s i l t , and clay values are given as percentages of a l l material less than 2 mm. in diameter. Because of the practical d i f f i c u l t i e s associated with their collection, and since the largest fragments are considered to have the least importance in respect to the physical properties of the s o i l ; stones of over 5 cm. diameter were not collected. APPENDIX 8 Mean values for the textures o f soil samples, from  several representative stands, to depths of three feet. Gravel % Sand % S i l t % Clay % Pu 10 3.8 94.0 2.6 3.3 70 7.6 79.2 10.0 9.2 85 0,2 91.0 4.5 4.5 Ari 19 1.1 95.0 1.9 2.9 57 52.3 65.2 19.2 15.3 Ag 2 53.6 82.8 7.9 9.1 4 58.9 71.0 10.2 18.9 7 27.8 44.3 20.9 34.4 16 51.0 79.4 11.0 9.6 28 48.7 71.0 17.4 11.8 31 21.5 37.8 21.6 39.6 St 69 12.4 70.0 16.8 10.2 Art 102 19.2 39.0 30.5 30.5 Rh 9 39.0 85.6 7.9 6.5 22 28.9 83.0 10.1 6.9 Aro 49 38.0 88.4 4.8 6.8 52 44.6 71.9 13.4 15.8 65 28.8 74.8 15.8 9.4 66 26.0 69.5 16.0 15.8 A-C 1 44.1 75.9 10.8 12.1 6 29.1 91.5 4.4 4.2 32 54.8 86.0 8.4 5.5 Ca 5 34.4 68.3 14.3 19.7 30 26.3 55.8 21.7 22.2 41 16.4 54.6 20.2 - 25.1 43 37.0 73.5 13.6 12.9 46 43.4 62.4 17.6 20.4 sy 3 38.9 66.0 14.3 19.6 61 36.8 65.5 21.9 12.6 APPENDIX 9 Frequency distribution of trees in size (dia- meter) classes for several stands representing associations and subassociations, except the Al l u v i a l complex. Figures give the numbers of stems over 1/2 inch d.b.h. in an acre, in successive five-inch d.b.h. classes. Pinus refers to Pinus ponderosa in a l l stands, except for the Pinus contorta i n stand 103. APPENDIX 9 Tables showing the frequenoy distribution of tree sizes in several representative stands by successive five inch diameter classes Type Stand Pu 70 Pu 10 Ari 19 Ag 56 Ag 31 St 73 St 69 Rh 22 "• Tree sp. Pinus Pseud. Pinus Pinus Pinus Pseud. Pinus Pinus Pinus Pinus Pseud. d.b.h. classes 1 - 5 " 646 30 33 _ 15 10 8 8 70 79 6-10 15 2 23 3 23 7 1 9 28 87 1 11 - 15 15 2 8 2 - 4 1 5 5 43 16 - 20 - 2 3 - 1 3 2 3 5 . -21 - 25 - 2 5 - - 4 2 1 -26 - 30 - 1 - 1 - 2 3 1 -31 - 35 mm mm - 1 1 - 3 - - mm , mm 36-40 - - - • 1 - - - - -41 - 50 - — —mm _ — 1 • mm mm mm 50 ro o Aro Aro 49 52 Pinus Pinus Pseud. Aro 65 Pinus Pseud. A-C 105 Pinus Pseud. d.b.h. olasses 1 - 5" 6-10 11 - 15 16 - 20 21 - 25 26 - 30 31 - 35 36 - 40 41 - 50 32 7 5 10 2 10 22 9 8 3 2 9 2 2 36 79 7 17 4 6 5 1 31 6 7 2 3 2 1 121 19 14 10 11 2 50 Ca Ca CA Ca Sy Sy 30 46 45 103 61 71 PinuB Pseud. Pinus Pseud. Pinus Pseud. Pinus Pseud. Pioea Pinus Pseud. Pinus Pseud. oont. eng.  d.b. h. classes 1 - 5" 1 13 *5 28 *3 13 97 2 85 1 5 29 5 318 6 - 10 1 5 7 - 1 1 3 - ^ 2 19 4 93 11 - 15 4 1 3 - 0 - 1 16 5 24 2 27 16 - 20 4 1 3 - 5 - - 26 2 5 2 6 21 - 25 3 1 4 - 4 - 21 - - 3 26 - 30 - - 1 2 4 - - 18 mm - 3 31 - 35 - mm 6 mm 3 - 6 2 1 -36 - 40 1 - 5 - - - - 3 2 1 1 41 - 50 1 - 2 - 2 - - 1 - - 1 50 — - 1 - - l — mm mm - mm mm mm * In stand 30, and especially in stand 46, many Douglas1 - f i r seedlings were too small to be t a l l i e d in this count* 229 APPENDIX 10 The composition and ecological roles of plant unions. 10a. Lists of species found in this work, which are assigned to unions on the bases of ecological range, and to a lesser degree, l i f e form. 10b. Table showing the roles of the unions in the various forest associations. The presentation follows that of Daubenmire (1952 a and b). The significance of the symbols used is as follows i C major climax role S major serai role c minor climax role s minor serai role Appendix 10a. Lists of species which are here considered to belong to definite plant unions in the Pinus ponderosa forests. 1. Purshia union. Purshia trldentata  Chry3othamnus nauseosus 2. Aristida union. Aristida longlseta  Sporobolus cryptandrus  Oryzopsls hymenoides  Carex f i l i f o l i a  Stipa elmeri  Astragalus purshii  Lithospermum inclsum  Phlox longifolia  G i l i a pUngens G. aggregata 3. Selaginella union. Selaginella rupestris var. Tortula ruralis Polytrichum piliferum it. Poa secunda union. Poa cusickii  P. secunda  Festuca octoflora  F. pacifica ' Bromus tectorum  B. racemosus  Draba verna  Collinsia parviflora  Ranunculus glaberrimU3  Arabis hol b o e l l i i  Epllobium minutum Lewisla rediviva Ribes cereum Chaenactis douglasii  Chrysopsis v i l l o s a  Eriogonum nlveum  Aster canescens  Oenothera pallida  Opuntia f r a g i l i s  Arenaria tenella  Phacella leucophylla  Polygonum douglasii  Erlgeron f i l i f o l i u s Wallace! Ceratodon purpureus Sisymbrium inclsum  Silene antlrrhina  Phacella linearis  Polemonium micranthum  Mentzella albicaulls  Erigeron pumilus  E. peucephyllus  Plantago purshii Lomatlum macrocarpum 5. Agropyron splcatum union. Agropyron spicatum Festuca occidentalis F. scabrella Koelerla cristata Stipa columbiana S. comata Balsamorhlza aagittata Lupinus sericeus  Geranium viscosisslmum  Eriogonum heracleoides  F r i t i l l a r i a pudica  Delphinium blcolor  Artemisia trldentata As_ t r i f i d a  A. frigida 231 6. Rhus union. Rhus glabra R. radlcans  Phlladelphus lewlsil Panlcum scribnerlanum  Stephanomerla tenuifolla 7. Arctostaphylos union. Arctostaphylos uva-ursl  Juniperus communis J. scopulorum  Ceanothus velutlnus  Shepherd!a canadensis  Pentstemon fruticosus  Carex concinnoldes  Oryzopsls exigua  Allium cernuum 8. Calamagrostis union. Calamagrostis rubescens  Carex hoodii Poa ampla Lilium columblanum  F r i t i l l a r i a lanceolata  Arnica cordifolia  Lathyrus n u t t a l l i i  Antennarla anaphaloid.es  A. rosea: -Agoseris aurantlaca 9 . Symphoricarpos union. Symphor1carpo s albus  Berberis aquifolium  Prunus virgin!ana  Crataegus douglasii  Spiraea lucida  Clematis columbiana 1 0 . Rhytidladelphus union. Rhytidladelphus trlquetrus  Mnium splnulosum Calllergone11a schreberi  Brachythecium albicans  Drepanocladus uncinatus Verbena bracteata  Woodsia oregona  Specularla perfoliata  Sambucus glauca Antennarla howe11ii  Fragarla virgin!ana  Anemone multIfIda  Sedum stenopetallum  Apocynum androsaemlfollum  Solldago mlssouriensls Hleraclum alblflorum  Seneclo aureus  Thai!ctrum occldentale  Aqullegla formosa  Fragarla bracteata  Lupinus nootkatensis  Castilleja miniata  C. angustifolia  Polytrichum .juniperinum Aster conspicuus  Osmorhiza chilensis  Elymus glaucus  Galium boreale  Arnica fulgens  Lonicera c i l i o s a Dlcranum ma .jus  D. strlctum  Ptllldium pulcherrlmum  Barbilophozia hatcher!  Hy.locomlum aplendens  Psoroma hypnorum 11. Cetraria union. Cetraria glauca C. scutata  C. juniperina  Parmelia physodes  Nephromopsls platyphylla 12. Pyrola union. Pyrola chlorantha  P. picta P. secunda  Chimaphila umbellata  Goodyera menziesli 13. Salix - Cornus union. Cornus stolonifera Salix laslandra Si f l u v i a t i l i s lit. PopulU3 trichocarpa union. Populus trichocarpa  Betula papyrifera  Alnus tenuifolia 15. Athyrium - Smilaclna union. Smilacina stellata Athyrium filix-femina  Equisetum hyemale 16. Solidago lepida union. Solidago lepida  Apocynum cannabinum  Agropyron g r i f f i t h s l i 17. Elymus condensatus union. Elymus condensatus 232 Alectoria Jubata A. sarmentosa  Ramalina farinacea  Usnea hirta Calypso bulbosa  Habenaria unalaschensis  Corallorhlza maculata  Spiranthes romanzoffiana Salix bebbiana  Elaeagnus commutata Acer glabrum Clematis l i g u s t i c i f o l i a Corylus cornuta Aralia nudicaulis  Impatiens b i f l o r a Elymus lnnovatus  E. canadensis  Echinocystis lobata Equisetum laevigatum 1 APPENDIX 10b Roles played by the plant unions in the forest associations and subassooiations Associations and Subassooiations Union 1 l a 2 2a 3 4 5 6 7 8 Pu Ar i Ag St Rh Arc A-C Ca Sy AL Purshia C _ - s - - - - -Aristida c S - s s - — — Selaginella c- s Mi - c — mm — m Poa secunda 0 S 0 S ~' — — — ~ Agropyron spicatum c s C S s s s s s Rhus - — — — C — — 8 Arcto staphylo s - - - • — - C C c c — Calamagrostis ' — — — — c C C c mm Sympho rioarpo s — — — mm o — c c C s Rhyt idiadelphus Cetraria - — — — — — 0 0 o • Mi - - — - - mm mm 0 c M Pyrola - - - - - - s s s -Salix - Cornus - - - - - - - - - S Populus trichocarpa - - - - - - - - - S Athyrium - Smilaoina - - - - - - - - - S Solidago lepida - - - - - - - - - s Elymus condensatus - - - - - - - - S C Major climax role S Major serai role c Minor climax role s Minor serai role 23k APPENDIX 11 Table showing the ecological roles of the  tree species of this area i n the various associations • • • APPENDIX 11 Roles played by the tree species i n the various associations Species Pu Rh Aro A-C Ca Sy AL Pinus ponderosa C c C S,o S S S S P. contorta - - m s S s - s Pseudotsuga menziesii - c 0 C c C c s Larix oooidentalis - • - - s s s -Picea engelmannii - - - - - c o s Thuja plicata - - - - - - - s Populus tremuloides - - - - s S s P. trichocarpa - - - - - - - S Betula papyrifera - - - - - - - s Alnus tenuifolia - - - - - - - s Acer glabrum c s C Major olimax role S Major serai role o Minor climax role s Minor serai role 236 REFERENCES Abrams, L. 191+0 - 1951. Illustrated flora of the Pacific States. Vols. 1 - 3 * Stanford University Press. Anonymous 1952 & 1953* Climate of Br i t i s h Columbia. Reports for 1952 and 1953* B.C.Dept. of A g r l c , Victoria. Arnold, J.F. 1950. Changes in Ponderosa pine bunchgrass ranges in northern Arizona resulting from pine regen-eration and grazing. Jour. For. Ii8: 118. Bates, C.G. 1923. Physiological requirements of Rocky Mountain trees. Jour. Agr. Res. 21+: 97-l61i. and J. Roeser. 192li. Relative resistance of tree seedlings to excessive heat. TJ.S.D.A. Dept. Bull . 1263. Boivin, B. 195^. Pseudotsuga menzlesii (Mirbel) Franco versus Pseudotsuga tax i f o l i a (Poiret) Britton: Boletim Sociedade Broteriana; 2b: 63. Braun-Blanquet, J. 1928. Plant Sociology. Ed. 1. Trans. G.D. Fuller and H.S. Conard. McGraw H i l l Co. 1932. Briegleb, P.A. 1950. Growth of Ponderosa pine. Jour. For. 48: 3*1.9. Chapman, J.D. 1952. The climate of Br i t i s h Columbia. Paper presented to the 5th B.C. Natural resources conference, 27/2/-52. Clark, M.B. 1952. Preliminary study of growth and develop-ment in some Douglas-fir - Ponderosa pine types. B.C.-Forest Service Tech. Publ. 38. Coup land, R.T., 195^. The role of natural grassland in research. Reprinted from Addresses and Proceedings of Farm Week, University of Saskatchewan. Daubenmire, R.F. 1939. The taxonomy and ecology of Agropyron  splcatum and A^ inerme. Bull. Torr. Bot. Club, 66: 327-329. . 1914-0. Plant succession due to overgrazing in the Agropyron bunchgrass prairie of southeastern Washington. Ecology, 21: 55-61i. . 191+2. An ecological study of the vegetation of south-eastern Washington and adjacent Idaho. Ecological Mono-graphs, 12: 53-79. 237 Daubenmire, R.F. 1952 (a) Classification of the conifer forests of eastern Washington and northern Idaho. 1952 (b) Forest vegetation of northern Idaho and adjacent Washington, and i t s bearing on concepts of vegetation classification. Ecological Monographs, 22: 301-330. — # 1953* Nutrient content of leaf l i t t e r of trees in the northern Rocky Mountains. Ecology, 34 : 786. and M.E. Deters. 191^ 7. Comparative studies of growth i n deciduous and evergreen trees. Bot. Gaz. 109: 1-12. Eastham, J.W. 1947. Supplement to 'Flora of southern B r i t i s h Columbia* of J.K. Henry. B.C. Prov. Mus. Special Publ. No. 1. Fowells, H.A. and B.M. Kirk. 1945- Availability of s o i l moisture to Ponderosa pine. Jour. For. 431 601. Haasis, F.W. 1921. Relations between s o i l type and root form in Western yellow pine seedlings. Ecology, 2: 292-303. Halliday, W.E.D. 1937. A forest classification for Canada. Can. Dept. Mines and Resources, Forest Res. Bul l . 89. Hartley, C. 1918. Stem lesions caused by excessive heat. Journ. Agr. Res. lij.: 595 - 601t. Hatter, J. 1953. Moose situation i n central B.C. North-west Sportsman, 8(9): 9 - 17. Henry, J.K. 1915. Flora of"southern B r i t i s h Columbia and Vancouver Island. W.J. Gage & Co. H i l l , R.R. and Harris, D. 1943. Food preferences of Black H i l l s deer. Jour. Wildlife Management, 7: 233-235. Hitchcock, A.S. 1950. Manual of the grasses of the United States. Ed. 2, revised by A. Chase. U.S.D.A. Misc. Publ. 200. Hitchcock, C.L. Grasses and grass-like plants of Montana, Idaho, Washington, Alberta and B r i t i s h Colum-bia. University of Washington bookstore. Holtby, B.E. 1947. Soil texture as a site indicator in the Ponderosa pine stands in southeastern Washington. Jour. For. 45: 824. ( 238 * Ilvessalo, Y. 1929. Notes on some forest site types i n North America. Acta Porestalia Pennica, 34(39) : 1-111. Keen, P.P. 1942. Eonderosa pine tree classes redefined. Jour. For. 41: 249-253. 1952. Insect enemies of western forests. U.S.D.A. Misc. Publ. 273. Krajina, V. 1933. Die Pflanzengesellshaften des Mlynica-Tales in den Vysoke Tatry (Hohe Tatra). Beiheftezum Bot. Centralbl. Bd. $0 Abtly. 2 Heft 3: 774-975, and 1934 Bd. 51 Abtlg. 2 Heft 1: 1-248. Kujala, V. 1945* Waldvegetationsuntersuchungen in Kanada. Annales Academiae Scientiarum Pennicae, Series A: Iv. Biologica 7. L i t t l e , E.J. 1953. Check l i s t of native and naturalized trees of the United States (including Alaska). U.S. Forest Service, Agr. Handbk. No. 1+1. Lutz, H.J. and R.F. Chandler, 191+6. Forest s o i l s . J. Wiley & Sons Inc. N.Y. Meagher, G. 1950. Reproduction of Ponderosa pine. Jour. For. 48: 188. Meyer, W.H. 1934* Growth in selectively cut Ponderosa pine forests of the Pacific Northwest. U.S.D.A. Tech. Bull. No. 407. Ogilvie, R.T. 1955. Soil texture of Pinus ponderosa com-munities in Brit i s h Columbia. University of Br i t i s h Columbia. Master's Thesis (Unpublished). Pearson, G.A. 1918. The relation between spring precipi-tation and height growth of Western yellow pine saplings. Jour. For. 16: 677-689. X920. Factors controlling distribution of forest types. Part 1 in Ecology, 1: 139-159. Part 2 in Ecology, 1: 289-308. 192li. Studies in transpiration of coniferous tree seedlings. Ecology, 5*340-34-7. 1930. Eight and moisture in forestry. Ecology, 11: 145-160. 1931. Forest types in the Southwest as determined by climate and s o i l . U.S.D.A. Tech. Bull. No. 247. 239 Pearson, G.A. 1950. Management of Ponderosa pine in the Southwest. U.S.D.A. Agric. Monogr. No. 6. 1951. A comparison of the climate i n four Ponderosa pine regions. Jour. For. 49: 258. Peck, M.E. 19l|l. A manual of the higher plants of Oregon. Binfords & Mort. Roe, A.L. 1952. Growth of selectively cut Ponderosa pine stands in the upper Columbia Basin. U.S.D.A. Ag. Handbk. No. 39. Rummelj R.S. 1951. Some effects of livestock grazing on Ponderosa pine forest and range in Central Washington. Ecology, 32: 59I4.-607. Sanderson, M. 1948. The climates of Canada according to the new Thornthwaite classification. Sci. Ag. 28: 501-517. Schulman, E. 1946-47. Dendrochronologies in southwestern Canada. Tree-Ring Bul l . 13:. 10-24. Smith, D.M. 1951. Influence of seedbed conditions on the regeneration of Eastern white pine. Connecticut Ag. Expt. Sta. Bull. 545. Spillsbury, R.H. and D.S. Smith. 1947. Forest site types of the Pacific Northwest. B.C. Forest Service Tech. Publ. No. 30. and Tisdale, E.W. 1944« Soil plant relationships and vertical zonation in the southern Interior of Br i t i s h Columbia. Sci. Ag. 24: 395. Stone, E.C. and H.A. Fowells, 1954* Drought survival of Ponderosa pine seedlings. Calif. Ag. 8(7): 9. and A..Y. Shachori, 1954« Absorbtion of a r t i f i c i a l Dew. Calif. Ag. 8(12): 7. Sukatchev, V.N. 1928. Principles of classification of the Spruce communities of European Russia. Jour. Ecology, 16: 1 - 18. Tarrant, R.F., L.A. Isaac, and R.F. Chandler, 1951. Observations on l i t t e r f a l l and foliage nutrient content of some Pacific Northwest tree species. Jour. For. 49: 914-915. Tisdale, E.W. 1947. The grasslands of the southern Interior of B r i t i s h Columbia. Ecology, 28: 346. Tisdale, E.W. 1950. Grazing of forest lands in Interior B r i t i s h Columbia. Jour. For. 48: 856-860. Weaver, H. 1947. Management problems in the Ponderosa pine region. Northwest Sci. 21: 160. 1951'. Observed effects of prescribed burning on perennial grasses in Ponderosa pine forests. Jour. For. 49: 267. Weaver, J.E. and F.E. Clements. 1938. Plant Ecology McGraw H i l l Co. Whitford, H.N. and R.D. Craig. 1918. Forests of B r i t i s h Columbia. Commission of Conservation, Canada. Whittaker, R.H. 1953* A consideration of the climax theory: the climax as a population and pattern. Ecological Monographs, 23: 41-78. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0106268/manifest

Comment

Related Items