UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An ecological classification of the ponderosa pine stands in the southwestern interior of British Columbia Brayshaw, T. Christopher 1955

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1955_A1 B7 E3.pdf [ 23.25MB ]
Metadata
JSON: 831-1.0106268.json
JSON-LD: 831-1.0106268-ld.json
RDF/XML (Pretty): 831-1.0106268-rdf.xml
RDF/JSON: 831-1.0106268-rdf.json
Turtle: 831-1.0106268-turtle.txt
N-Triples: 831-1.0106268-rdf-ntriples.txt
Original Record: 831-1.0106268-source.json
Full Text
831-1.0106268-fulltext.txt
Citation
831-1.0106268.ris

Full Text

AN ECOLOGICAL CLASSIFICATION OF THE PONDEROSA PINE STANDS IN THE SOUTHWESTERN INTERIOR OF BRITISH COLOMBIA by Thomas Christopher Brayshaw A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY I n the Department or BIOLOGY AND BOTANY  We aecept t h i s t h e s i s as conforming t o the standard r e q u i r e d from candidates f o r the degree of DOCTOR OF PHILOSOPHY i  Members o f the Examining Committee  THE  UNIVERSITY  OF  BRITISH  September, 1955.  COLUMBIA  Faculty of Graduate Studies  PROGRAMME  OFT H E  Jffitral ©ral Izxanvtnation for ttye Jb^ree xrf JWfor irf T H O M A S B.A.  IJfyifosflpljg  CHRISTOPHER  B R A Y S H A W  (University of British Columbia)  M.A.  1948  (University of Saskatchewan) 1951  OCTOBER  12th, 1955 at 2:00 p.m.  IN T H E B I O L O G I C A L SCIENCES B U I L D I N G R o o m 33 C O M M I T T E E IN C H A R G E H.  F. A N G U S ,  Chairman  T.  M . C. T A Y L O R  G . S.  V.  J. KRAJINA  B.  G.  ALLEN GRIFFITH  A. H . H U T C H I N S O N  C. A .  D . J.  I. M c T . C O W A N  WORT  D. C; B U C K L A N D  External  A. M .  ROWLES  CROOKER  Examiner—DR. R. F. D A U B E N M I R E , State College of Washington.  ;  A N E C O L O G I C A L CLASSIFICATION OF T H E P O N D E R O S A PINE STANDS IN T H E SOUTHWESTERN OF BRITISH  INTERIOR  COLUMBIA.  A B S T R A C T In this study 121 stands of Pinus ponderosa  in the southwestern  interior of British Columbia were examined. Floristic analyses of the stands were made by a system of visual estimates based upon scale values for dominance, abundance, and vigour assigned in the field.  These values were later synthesized to produce a  formula describing the role of each species in the community.  Tables  have also been included to show presence and fidelity values for the species of each association. T h u s the floristic structure of each community becomes evident. T h e vigour of tree species was assessed by standard mensuration methods. Climatic data were obtained in some stands over a period of one year. Soil profiles of most of the stands were analysed for p H and texture. T h e Pinus ponderosa  stands are here classified into the following  principal communities: A.  Pinus ponderosa zone: 1. Pinus — Purshia association with one related subassociation: la. 2.  Pinus — Aristida subassociation.  Pinus — Agropyron  association with two related subassocia-  tions: 2a. Pinus — Stipa subassociation. 2b. Pinus — Artemisia subassociation. 3. Pinus — Rhus association. B.  Pseudotsuga zone: 4. Pseudotsuga — Pinus — Arctostaphylos association. 5. Pseudotsuga — Arctostaphylos — Calarnagrostis association. 6.  Pseudotsuga — Calarnagrostis association. association.  7. Pseudotsuga — Symphoricarpos  C.  Azonal communities: 8. Populus -— Rosa — Cornus  (alluvial) complex.  A l l these communities are described individually; their successional relationships discussed; and some recommendations made regarding their utilization. T h e Agropyron  and Arctostaphylos  — Calamagrostis  associations  are thought to represent the climatic climax communities in their respective zones.  GRADUATE STUDIES Field of Study: Botany Phycology  A . H . Hutchinson  Systematics of Herbaceous Plants  T . M . C. Taylor  Forest Ecology and Geography  R. W . Pillsbury  Forest Associations  V . J. Krajina  Problems in Plant Ecology  V . J. Krajina and R. W . Pillsbury  Bryology Phylogenetics  V . J. Krajina .'-  .  -  -  -  - V . J. Krajina  Other Studies: Research in Silvics and Silviculture Biometry  G . S. Allen V . C . Brink  Physical Properties of Soils  C. A . Rowles  Soil Genesis, Morphology and Classification  C. A . Rowles  Soil Conservation  D. G . Laird  LIST  O F  PUBLICATIONS  A new species of Pellia: V . Krajina and T . C . Brayshaw, T h e Bryologist 54: 59-67, 1951. T h e Fescue Grassland in Saskatchewan: R. T . Coupland and T . C . Brayshaw, Ecology 34: 386-405, 1953.  ABSTRACT In this study 121 stands of Pinus ponderosa i n the southwestern i n t e r i o r of B r i t i s h Columbia were examined. F l o r i s t i c analyses of the stands were made "by a system of v i s u a l estimates based upon scale values f o r dominance, abundance, and vigour assigned i n the f i e l d .  These values were l a t e r syn-  thesized to produce a formula describing the r o l e of each species i n the community.  Tables have been included to show presence and  f i d e l i t y values f o r the species of each association.  Thus the  f l o r i s t i c structure of each community becomes evident.  The vigour  of the tree species was assessed by standard mensuration methods. Climate data were obtained i n some stands over a period of one year. S o i l p r o f i l e s of most of the stands were analysed f o r pH and texture. The Pinus ponderosa stands are here c l a s s i f i e d into the following p r i n c i p a l A.  communities:  Pinus ponderosa 1.  zone:  Pinus - Purshia association with one related subassociation: 1 a.  2.  Pinus - A r i s t i d a subassociation.  Pinus - Agropyron association with two r e l a t e d subassociations:  3.  2 a.  Pinus - Stipa subassociation.  2 b,  Pinus - Artemisia subassociation.  Pinus - Rhus association.  B. Pseudotsuga zone:  C.  4.  Pseudotsuga - Pinus - Arctostaphylos  5.  Pseudotsuga - Arctostaphylos  6.  Pseudotsuga - Calarnagrostis association.  7.  Pseudotsuga - Symphoricarpoa association.  association.  - Calarnagrostis association.  Azonal communities: 8.  Populus - Rosa - Cornus ( a l l u v i a l ) complex.  A l l these communities are described i n d i v i d u a l l y , and their successional relationships discussed. The Agropyron and Arctostaphylos - Calarnagrostis associations are thought to represent respective zones.  the c l i m a t i c climax communities i n t h e i r  INTRODUCTION AND ACKNOWLEDGMENTS This p r o j e c t on the c l a s s i f i c a t i o n o f the ponderosa pine stands o f the southwestern I n t e r i o r o f B r i t i s h Columbia i s one o f a s e r i e s , being c a r r i e d out under the s u p e r v i s i o n of Dr. V. K r a j i n a o f the U n i v e r s i t y o f B r i t i s h Columbia, d e a l ing w i t h the f o r e s t s o f t h i s p r o v i n c e . The author wishes t o express h i s g r a t i t u d e to the Department o f Biology and Botany at the U n i v e r s i t y o f B r i t i s h Columbia, through Dr. A.H. Hutchinson, and l a t e r , Dr. T.M.C. T a y l o r , f o r t h e f a c i l i t i e s made a v a i l a b l e i n t h i s department. He a l s o wishes t o make g r a t e f u l acknowledgment f o r the f i n a n c i a l a i d provided by the B r i t i s h Columbia Forest Service during the summer o f 1952, by the N a t i o n a l Research C o u n c i l of Canada during the summer o f 1953» through a grantr.in-aid of Dr. K r a j i n a ^ r e s e a r c h i n the ecology o f the f o r e s t s o f the P a c i f i c Northwest, and by the U n i v e r s i t y o f B r i t i s h Columbia during the summer o f 1954* through g r a n t s - i n - a i d of Dr. K r a j i n a s r e s e a r c h i n the ecology and sociology o f the f o r e s t s of B r i t i s h Columbia. Very welcome a s s i s t a n c e was a l s o r e c e i v e d i n the form o f the E d i t h Ashton Memorial and the Leon Koerner s c h o l a r s h i p s . 1  The author f u r t h e r wishes t o express h i s thanks t o Dr. V. K r a j i n a f o r h i s help and s u p e r v i s i o n o f t h i s work, and f o r the i d e n t i f i c a t i o n o f the bryophytes c o l l e c t e d , t o Dr. A.P. Szczawinski f o r the i d e n t i f i c a t i o n o f the l i c h e n s , to Mr. R.T. O g i l v i e f o r o b t a i n i n g and making a v a i l a b l e t h e data on the s o i l samples, and t o a l l those whose help made the f i e l d work p o s s i b l e .  « » »  TABLE OF CONTENTS CHAPTER  I. II. III. IV.  V.  Page Introduction and Acknovrledgments  v  Scope and Basis of C l a s s i f i c a t i o n  1  Review of Literature  5  Methods  1^  Geographical and E c o l o g i c a l Considerations  25  Area of Work  25  Topography and Soils  25  Climate  27  Autecological Features of Pinus ponderosa and Pseudotsuga Menziesii  32  Morphology  32  Physiology  3^  VI.  Notes on Nomenclature  47  VII.  Forest C l a s s i f i c a t i o n  51  General Forest Types or Zones  51  Plant Associations  55  Unions  5^  E f f e c t s of Topography and S o i l s  6k  Problems Presented "by U t i l i z a t i o n and i t s Effects  67  Description of Associations and Subassociations VIII.  Discussion and Conclusions  71 122  TABLE OF CONTENTS (Continued)  CHAPTER  P  a  g  e  to  to  4a  a>  Tc  *  JTATUTt MUSS  P A N f T nr PINUS PONDEROSA IN SOUTHWESTERN BRITISH COLUMBIA F i g . 1. Map showing tne area within which t h i s survey was c a r r i e d out. Tie outer l i m i t of Pinus ponderosa i s 3hewn as a dotted l i n e .  CHAPTER I SCOPE AND BASIS OF CLASSIFICATION  The term •Ponderosa p i n e stands' i s here i n t e r preted f a i r l y b r o a d l y , t o include a l l types o f stands i n which t h i s species has been found t o occur, i n the area of the  southwestern I n t e r i o r o f B r i t i s h Columbia o u t l i n e d I n  the  map  (Fig.  1).  These include not only stands i n which i t  occurs as the climax dominant, but a l s o those stands i n which i t occurs as a s e r a i dominant, o f r e l a t i v e l y l i t t l e importance i n the mature stand. At the outset i t i s important t o define the terms 'climax' and ' a s s o c i a t i o n • 1  The term 'climax' d e s c r i b e s a  community which has a t t a i n e d a s t a t e of more or l e s s s t a b l e e q u i l i b r i u m w i t h i t s environment.  I t s composition may  be  steady, o r i t may f l u c t u a t e a l i t t l e about a mean composition. In the s t r i c t e s t sense of the term, the climax i s considered to be conditioned by the macro climate o f the r e g i o n , and no other f a c t o r .  I n t h i s sense i t i s o f t e n r e f e r r e d t o as the  c l i m a t i c climax.  I n r e g i o n s of rough topography, such as  t h a t under c o n s i d e r a t i o n here, topographic and edaphio i n f l u e n c e s superimposed on the e f f e c t s of the macroclimate, give r i s e t o communities whose d i f f e r e n c e s from the c l i m a t i c climax community may be maintained f o r a very long p e r i o d of 1  2  time.  These communities are topographic  communities.  o r edaphic climax  I t i s i n t h i s l a t t e r sense that the term  'climax' i s used i n t h i s work. The d e f i n i t i o n o f the term ' a s s o c i a t i o n ' f o l l o w s that proposed at the Third I n t e r n a t i o n a l B o t a n i c a l Congress of 1910,  (according t o Braun-Blanquet, 1928), as a uniform  p l a n t community o f d e f i n i t e f l o r l s t i c composition; but modif i e d by K r a j i n a (1933) t o place a d d i t i o n a l s t r e s s on the environmental c h a r a c t e r i s t i c s as d i a g n o s t i c f e a t u r e s o f the association.  The d e f i n i t i o n a t present (1955) i n use by  K r a j i n a (personal communication) i s as f o l l o w s : A p l a n t a s s o c i a t i o n i s a d e f i n i t e uniform p l a n t community (phytocenosis) that i s i n e q u i l i b r i u m w i t h a c e r t a i n complex of environmental f a c t o r s , o r ecotope. I t s f l o r l s t i c s t r u c t u r e ( l a y e r i n g , and the abundance, dominance, constancy, f i d e l i t y , and vigour of the component species) l i e s w i t h i n l i m i t s governed, not only by the ecotope, ( c l i m a t e , s o i l , substratum, topography, and b i o t l c f a c t o r s ) , but a l s o by the h i s t o r i c a l f a c t o r s of v e g e t a t i o n a l development (the f o u r t h dimension, o r space-time f a c t o r ) . I t appears that Sukatchev (1928) and Daubenmire (1952 b) i n t h e i r f o r e s t c l a s s i f i c a t i o n s , make use o f concepts o f the a s s o c i a t i o n which are s i m i l a r t o , i f not I d e n t i c a l w i t h , that stated above. The above d e f i n i t i o n o f the a s s o c i a t i o n a p p l i e s t o the lower l a y e r s o f the vegetation as much as t o the uppermost or dominant l a y e r s .  I t i s u s u a l l y named a f t e r the  p r i n c i p a l dominant species of the uppermost l a y e r p l u s one or more species which dominate or c h a r a c t e r i z e the understory l a y e r s .  I t f u r t h e r i m p l i e s no geographical  or r e g i o n a l  3 aspect.  Thus i t i s seen t o d i f f e r sharply from the assoc-  i a t i o n o f Clements and other North American e c o l o g i s t s (Weaver and Clements, 1933), which i s a r e l a t i v e l y broad r e g i o n a l v e g e t a t i o n a l type, c h a r a c t e r i z e d by the dominants o f the uppermost l a y e r o n l y , and then only those which are cond i t i o n e d by the normal macroclimate of the r e g i o n on w e l l drained, medium textured s o i l s ( i . e . the c l i m a t i c climax f o r the r e g i o n ) .  This Clementsian a s s o c i a t i o n i s a u n i t which,  though i t has been found t o be r e a d i l y a p p l i c a b l e i n the grassland regions o f the Great P l a i n s , tends t o break down i n the more complex mosaic ©f f o r e s t and other types o f vegeta t i o n community of the C o r d i l l e r a n r e g i o n . The a s s o c i a t i o n as here used i s a smaller u n i t than that of Clements, and i s more uniform w i t h i n I t s e l f through a l l i t s layers.  Even here, however, the term (uniform* i s  not t o be taken too r i g i d l y , f o r though the a s s o c i a t i o n i s u s u a l l y q u i t e uniform w i t h respect t o i t s dominant s p e c i e s , the occurrences of the l e s s important species show a sporadic character which may r e s u l t from a v a r i e t y o f e c o l o g i c a l , geographical, or h i s t o r i c a l i n f l u e n c e s ; a f e a t u r e which may be expected i n h i l l y o r mountainous regions.  I t may be  noted, f o r example, that c e r t a i n species are a s s o c i a t e d w i t h e c o l o g i c a l l y favourable h a b i t a t s only i n c e r t a i n v a l l e y s , and do not seem, as y e t , t o have succeeded i n c r o s s i n g the i n t e r vening b a r r i e r s t o invade t h e i r e c o l o g i c a l l y equivalent h a b i t a t s i n other v a l l e y s .  k S e r a i communities, here termed s u b a s s o c i a t i o n s ' f  when recognized as d i s t i n c t from s t a b l e or climax a s s o c i a t i o n s , are i n t h i s work taken t o be those undergoing secondary succession (or sometimes, r e t r o g r e s s i o n ) .  That i s , they are i n  a s t a t e , whether v i s i b l y a l t e r i n g a t the time of observation or not, which, due t o recent o r current disturbance, such as burning or overgrazing, i s e v i d e n t l y not t h e climax state as expressed by the f l o r i s t i c composition o f a l l l a y e r s . Daubenmire (1952 b) describes such communities as b i o t l c climaxes, but I n view of the I n s t a b i l i t y of both the environment and the communities, the w r i t e r p r e f e r s t o t r e a t them as s e r a i communities, o f a temporary nature. The term 'suba s s o c i a t i o n * appears t o the w r i t e r t o be inadequate t o express the complex s t a t i c and dynamic r e l a t i o n s h i p s t h a t e x i s t among the v a r i a n t s of some of the a s s o c i a t i o n s ; but the wealthy terminology of Clements has been avoided here, I n r e l a t i n g t o such communities, i n order t o avoid ambiguity due to the d i f f e r e n t d e f i n i t i o n s o f the community types which might be implied by t h e i r use.  CHAPTER I I REVIEW OP LITERATURE  The number of p u b l i c a t i o n s r e l a t i n g t o the c l a s s i f i c a t i o n of the f o r e s t s of t h i s area i s not l a r g e , but shows a wide v a r i e t y of approaches t o the problem. I n t h e i r r e p o r t on the f o r e s t s of B r i t i s h Columbia to the Commission of Conservation, Whitford and C r a i g (1918) describe f o r e s t types w i t h emphasis on the dominant t r e e s and their possible u t i l i z a t i o n .  Forest types described by them  which are of i n t e r e s t t o t h i s work i n c l u d e : I n t e r i o r Douglasf i r , D o u g l a s - f i r - Western L a r c h , and Yellow pine types.  In  the f i r s t two of these, y e l l o w p i n e , or ponderosa pine (Pinus ponderosa), may occur, but i f so, i t makes up l e s s than $0 per cent of the stand.  The I n t e r i o r D o u g l a s - f i r - Western  l a r c h type represents the I n t e r i o r D o u g l a s - f i r type east of the Okanagan V a l l e y , i t s d i s t i n c t i o n being i n the presence  of  western l a r c h ( L a r l x o c c i d e n t a l ! a ) . This l a t t e r type i s b a r e l y contacted i n the present work, having been met w i t h only at the eastern f r i n g e of the area covered by the present survey.  Whitford and C r a i g a l s o note the s u c c e s s l o n a l s t a t u s  of lodgepole pine (Pinus contorta) and western l a r c h f o l l o w i n g f i r e s i n the I n t e r i o r D o u g l a s - f i r types. The y e l l o w pine type l i e s between the D o u g l a s - f i r types and the t r e e l e s s lands of lower e l e v a t i o n s . I t i s 5  6  c h a r a c t e r i z e d by y e l l o w pine making up more than 50 p e r cent of i t s stands.  Whitford and C r a i g note that though grass  f i r e s are common i n the p r e v a i l i n g l y grassy understory of the Yellow pine type, crown f i r e s d e s t r o y i n g the canopy are much more r a r e than i n the D o u g l a s - f i r and other more densely stocked types.  Nevertheless, they consider t h a t much o f the  grassland o f t h i s r e g i o n may be the r e s u l t o f repeated grass f i r e s t h a t have k i l l e d o f f the p i n e .  Even a t t h a t date (1918),  Whitford and C r a i g deplored the inroads which had already been made on the y e l l o w pine type by l o g g i n g i n t e r e s t s , a s c r i b i n g them i n l a r g e measure t o the a c c e s s i b i l i t y o f the open stands i n which t h i s pine grows. I n a d d i t i o n , Whitford and C r a i g describe t h e grassland and semi-open f o r e s t , which Includes the more open parkl i k e stands of ponderosa p i n e , and some o f which they consider to have r e s u l t e d from the burning o f f o f the p i n e .  This  grassland i s mentioned as abbutting d i r e c t l y onto the Douglasf i r type n o r t h o f the l i m i t s o f ponderosa p i n e .  A l s o des-  c r i b e d b r i e f l y i s a d i s t i n c t sagebrush type, i n which they apparently i n c l u d e the P u r s h i a t r i d e n t a t a shrub-steppe  o f the  South Okanagan V a l l e y , and which they seem t o consider t o be climax. Maps are i n c l u d e d i n the r e p o r t , showing the gene r a l d i s t r i b u t i o n of the f o r e s t types and the p r i n c i p a l t r e e species. H a l l i d a y (1937) i n h i s c l a s s i f i c a t i o n o f Canadian f o r e s t s takes a s t r o n g l y r e g i o n a l approach, f o l l o w i n g the  outlook of Clements and d i v i d e s the f o r e s t s i n t o f o r e s t regions, and s e c t i o n s .  His f o r e s t regions correspond to  the formations, and h i s s e c t i o n s approximate the a s s o c i a t i o n s , of Weaver and Clements (1929, 1938). The f o r e s t s to be described i n t h i s work l i e i n the Yellow pine and D o u g l a s - f i r s e c t i o n (M.l.) of h i s Montane forest region,  (Montane f o r e s t formation of Weaver and  Clements (1929, 1938)  •  I n t h i s s e c t i o n he apparently  In-  cludes the dry stands I n c l u d i n g Western l a r c h that i n t e r vene between the grassland and h i s Columbia f o r e s t I n southeastern B r i t i s h Columbia.  He makes no attempt to break  down h i s Yellow pine - D o u g l a s - f i r s e c t i o n i n t o  subsections  i n which ponderosa pine i s the climax dominant and those i n which t h i s species i s subdomlnant to D o u g l a s - f i r (Pseudotsuga M e n z l e s i i ) i n the mature stand. any d e s c r i p t i o n of grassland  H a l l i d a y does not  include  vegetation.  An i n t e n s i v e study of a r e s t r i c t e d p o r t i o n of t h i s area, the T r a n q u i l l e Range, was c a r r i e d out by S p i l l s b u r y and T i s d a l e (19MJ.).  They found that i n t h i s area o f very  uniform s o i l t e x t u r e , there i s a d e f i n i t e zonatlon of b o t h s o i l and vegetation types w i t h a l t i t u d e .  The area i n which  they worked bears grassland up t o e l e v a t i o n s 'of about 3200 f e e t , where t h i s formation meets D o u g l a s - f i r stands of the Montane f o r e s t , which contain but small amounts of ponderosa pine.  Only a r e s t r i c t e d area of ponderosa pine savanna was  found, and l i t t l e i s s a i d of i t except that the s o i l texture  8  i s coarser than i n the middle and upper grassland zones (corresponding to the Dark brown and B l a c k s o i l zones r e s p e c t i v e l y ) which i t replaces l o c a l l y .  The s o i l most c l o s e l y  resembles t h a t of the Dark brown s o i l zone, even at e l e v a t i o n s which elsewhere have B l a c k s o i l s .  Unfortunately, Spillsbury  and T i s d a l e do not give the r e s u l t s of mechanical analyses of the s o i l s of that area other than to s t a t e t h a t they g e n e r a l l y are loams and sandy loams w i t h some stones, derived from g l a cial t i l l .  However, other analyses of the s o i l s and v e g e t a t i o n  are rendered very f u l l y .  The c l i m a t i c data c o l l e c t e d i n t h e i r  work show very w e l l the increase i n moisture e f f e c t i v e n e s s with a l t i t u d e . T i s d a l e (19l|7) c a r r i e d out f u r t h e r work on the grasslands of the Southern I n t e r i o r of B r i t i s h Columbia. Although not bearing d i r e c t l y on the question of ponderosa pine stand c l a s s i f i c a t i o n s , t h i s work i s of I n t e r e s t owing to h i s d e s c r i p t i o n s of the r e t r o g r e s s i v e changeswhich take place i n the grassland v e g e t a t i o n , t o which the understory of the ponderosa pine stands i s c l o s e l y r e l a t e d , as a r e s u l t of exposure t o g r a z i n g , and of the s u c c e s s i o n a l processes which supervene when overgrazed areas are p r o t e c t e d f o r a number of years from g r a z i n g .  The r e c o g n i t i o n of the s e r a i nature of  the areas dominated by sagebrush  ( A r t e m i s i a t r i d e n t a ta) and  at l e a s t some of those dominated by needlegrass  (Stipa  comata) due to overgrazing i n t h i s r e g i o n , i s . o f p a r t i c u l a r i n t e r e s t here.  9 Two a u t h o r i t i e s on f o r e s t r y from F i n n l a n d , I l v e s s a l o and K u j a l a , who s t u d i e d Canadian f o r e s t s , made use of Cajander's methods of stand c l a s s i f i c a t i o n , which, i n contrast t o those h i t h e r t o mentioned, are based p r i m a r i l y on the f l o r l s t i c composition of the understory, while the comp o s i t i o n of the t r e e l a y e r takes secondary c o n s i d e r a t i o n , except that observations are made o f the ages and other growth c h a r a c t e r i s t i c s o f the t r e e s present.  This method enables a  worker t o study a f o r e s t stand i n which the climax dominants may have been completely replaced by s e r a i dominants (e.g. lodgepole pine i n much of the D o u g l a s - f i r c l i m a x ) , t o r e l a t e i t t o i t s proper climax type, and t o p r e d i c t the p o t e n t i a l composition and growth q u a l i t y o f the canopy on the s i t e . Both these authors, while working i n t h i s area, confined t h e i r a c t i v i t i e s t o the D o u g l a s - f i r and other moister types, and showed l i t t l e o r no i n t e r e s t i n the more a r i d types dominated by ponderosa p i n e , o r i n the steppe communities. I l v e s s a l o (1929) grouped h i s f o r e s t types i n t o dry ( x e r o p h i l e ) , moist (mesophile), and grass-herb (mesop h l l e and hygrophile) groups.  Of these groups, only the  dry f o r e s t s correspond t o types covered i n the present work. These i n c l u d e the I n t e r i o r D o u g l a s - f i r f o r e s t o f the area under present study.  I n the dry f o r e s t group he recog-  n i z e s three types whieh are s i m i l a r t o i f not i d e n t i c a l with three found i n the present work.  These types a r e :  The A r c t o s t a p h r l o s . Calamagrostls-Arctostaphrlos. and  10  Calarnagrostis types: w i t h the Vaccinium scoparlum and Calarnagrostis-Vaccinium scoparlum types r e p l a c i n g the f i r s t two of them g e o g r a p h i c a l l y , elsewhere. In a much more comprehensive  work u s i n g the same  system of c l a s s i f i c a t i o n as above, K u j a l a (1945) d e s c r i b e s In his  "semi-arid i n t e r i o r r e g i o n " , which corresponds t o the  Montane f o r e s t o f North American authors, the f o l l o w i n g t y p e s : a Vacclnlum caespltosum ( c o l l e c t i v e ) type, which embraces, among other forms, an A r c t o a t a p h y l o s - r i c h community, an A r c t ostaphylos-Calarnagrostis type, and a Calarnagrostis type. The l a t t e r two, a t l e a s t , he considers to be i d e n t i c a l w i t h those formulated by I l v e s s a l o .  K u j a l a worked f o r the most p a r t  f u r t h e r n o r t h i n the I n t e r i o r of the province than d i d t h i s w r i t e r , and most o f the stands analysed by him were beyond the northern l i m i t of ponderosa pine I n regions where spruce i s more prominent i n the D o u g l a s - f i r f o r e s t .  Furthermore, a  considerable p r o p o r t i o n o f these stands was under a secondary canopy o f Pinus c o n t o r t a . Consequently, i t i s t o be expected that the f l o r i s t i c composition o f the types w i l l vary between the two works.  K u j a l a makes no mention o f the Pinus ponderosa  dominated types or the more a r i d t r e e l e s v e g e t a t i o n types other than t o review the d e s c r i p t i o n s of them given by Whitford and C r a i g . S p i l l s b u r y and Smith (1947) have used a system of p l a n t i n d i c a t o r s t o c l a s s i f y the Coast f o r e s t types. Further t o the southeast, i n E a s t e r n Washington and Northern Idaho, Daubenmire (1942, 1952 a & b) has s t u d i e d the  whole range of v e g e t a t i o n types from the a r i d steppes o f the Columbia P l a t e a u up t o the subalpine t i m b e r l i n e .  In  the grasslands of the p l a t e a u , Baubenmlre (19i+2) recognizes the same three zones as does T i s d a l e i n Southern B r i t i s h Columbia, describes a number o f a s s o c i a t i o n s f o r each, and notes the changes which take p l a c e as a r e s u l t o f g r a z i n g I n d e a l i n g w i t h the f o r e s t e d areas (1952 a & b ) ,  and f i r e .  he makes use o f both canopy and under s t o r y dominants.  He  d i s t i n g u i s h e s f o u r zones, succeeding each other w i t h Increase i n e l e v a t i o n , and recognizes a number of a s s o c i a t i o n s i n each zone.  These zones appear t o correspond, approximately  at l e a s t , t o some o f the f o r e s t regions o f H a l l i d a y . These replace each other a l t i t u d i n a l l y i n the adjacent p a r t s o f southeastern B r i t i s h Columbia ( H a l l i d a y , 1937) i n the f o l l o w i n g manner: Daubenmire  Halliday  Pinus ponderosa zone and Pseudotsuga t a x l f o l i a zone  Montane f o r e s t  Thuja p l i e a t a - Tsuga h e t e r o p h v l l a zone  . . . . . . . . . . . .  Columbia f o r e s t  P i c e a Bngelmannl - Abies l a s i o c a r p a zone  ......  Subalpine f o r e s t  Although s e v e r a l o f the a s s o c i a t i o n s described by Daubenmire are probably the same as the types of I l v e s s a l o and K u j a l a , the z o n a l c l a s s i f i c a t i o n o f the major zones on the b a s i s o f canopy composition causes the types t o be d i f f e r e n t l y arranged. Some of the communities which would be  12  u n i t e d on the b a s i s o f understory  composition alone are  separated by zonal boundaries i n v o l v i n g changes i n the composition of the t r e e l a y e r s .  Gn the other hand, Dauben-  mire does not d i s t i n g u i s h between I l v e s s a l o ' s A r c t o s t a p h y l o s , Calarnagrostis-Arctostaphylos. and Calarnagrostis types, but includes them i n h i s Calarnagrostis a s s o c i a t i o n . Daubenmire's grouping o f p l a n t members of the a s s o c i a t i o n s i n t o unions of species which are l i n k e d by s i m i l a r i t i e s i n t h e i r e c o l o g i c a l requirements, phenology, and f r e q u e n t l y (but by no means n e c e s s a r i l y ) l i f e forms, i s an i n t e r e s t i n g approach.  I n h i s c l a s s i f i c a t i o n of the c o n i f e r  f o r e s t s o f Washington and Idaho (1952,a), Daubenmire l i s t s s e v e r a l unions w i t h t h e i r most important member species, and notes t h e i r e c o l o g i c a l r o l e s i n the various h a b i t a t types or a s s o c i a t i o n s .  A number o f these unions has been  found i n t h i s area; and they, w i t h some a d d i t i o n a l unions noted by the w r i t e r , are discussed i n Chapter V I I and Appendix 10.  Daubenmire a l s o notes the e c o l o g i c a l r o l e s of  the tree species o f h i s area.  H i s t a b u l a r method of sum-  m a r i z i n g the r o l e s of the unions and the t r e e s i s f o l l o w e d here (Appendices 10 and 11)• Several of the a s s o c i a t i o n s described by Daubenmire, or t h e i r e q u i v a l e n t s , have been found t o be represented i n the area covered by the present work. Prom the foregoing references, i t i s apparent t h a t there has been, w i t h time, a p r o g r e s s i v e l y g r e a t e r awareness  13  of the complexities of the vegetation of at l e a s t t h i s p a r t of the C o r d i l l e r a n r e g i o n .  I t may a l s o be noted t h a t , though  several works of a c l a s s l f i c a t o r y nature have been c a r r i e d out I n adjacent regions and f o r e s t types, r e l a t i v e l y  little  has as y e t been done t o study the ponderosa pine a s s o c i a t i o n s of the southwestern I n t e r i o r of B r i t i s h Columbia.  CHAPTER I I I METHODS The f i e l d work a s s o c i a t e d w i t h t h i s p r o j e c t included analyses o f the v e g e t a t i o n , c l i m a t e , and s o i l s w i t h i n the stands analysed.  I n a d d i t i o n , notes were made  of the topography, a l t i t u d e , and the past h i s t o r y of the stands, when p o s s i b l e . To provide a proper b a s i s f o r c l a s s i f i c a t i o n , i t was important t h a t wherever p o s s i b l e , completely v i r g i n stands should be used f o r examination.  These proved hard t o  f i n d i n many d i s t r i c t s , owing t o excessive and widespread disturbance by c u t t i n g , (see Whitford and C r a i g , 1918), o r by recent f i r e s , but p r i n c i p a l l y by prolonged, heavy overgrazing.  I n a l l , 121 stands were examined; but some o f these  were discarded from the f i n a l a n a l y s i s , owing t o t h e i r d i s turbed nature. The l o c a t i o n s of the stands chosen f o r a n a l y s i s are g i v e n i n Appendix 1. The method o f v e g e t a t i o n a l a n a l y s i s used was based on v i s u a l estimates of the amount (abundance and dominance) and the v i g o u r of each species as i t occurs I n each l a y e r o f a stand.  The s c a l e s used are those of Domin and K r a j i n a ,  ( K r a j i n a , 1933).  14  15  Each stand was f i r s t broken down i n t o i t s component l a y e r s , c h a r a c t e r i z e d as f o l l o w s : A l dominant t r e e s of the canopy, A2 subdominant and intermediate t r e e s , B l t a l l shrubs (over seven f e e t ) , B2 low shrubs, C  herbaceous l a y e r , g e n e r a l l y under one f o o t h i g h ,  D  moss-lichen l a y e r .  In each of these l a y e r s , the abundance and dominance of each species present was estimated according t o the scale below: + q u i t e s o l i t a r y , dominance very s m a l l , 1 seldom, 2 very s c a t t e r e d , dominance s m a l l , 3 scattered, 4 o f t e n , dominating up to 1/20 of area, 5 o f t e n , dominance up to l / 5 » 6 dominance 1/4 to 1/3, 7 dominance 1/3 t o 1/2, 8 dominance 1/2 t o 3/4* 9 dominance over  3/4,  10 dominance 100 per cent. The s c a l e used to estimate vigour was as f o l l o w s : 0 dead, + o c c a s i o n a l l y germinating, b a r e l y s u r v i v i n g , 1 poor, but m a i n t a i n i n g i t s e l f ,  2 f a i r l y strong, 3 most vigorous, both i n growth and reproduction. A f t e r each species l i s t e d f o r a stand, the above c h a r a c t e r i s t i c s were noted as a formula; v i z . , the dominance followed by the v i g o u r , the two f i g u r e s being separated by a point.  Thus: the formula 6.3 i n d i c a t e s dominance 6 and  vigour 3. When the f i e l d notes were f i n a l l y c o l l e c t e d , and the i n f o r m a t i o n f o r each a s s o c i a t i o n synthesized from the note8 on i t s component stands; a f u r t h e r , s y n t h e t i c characte r i s t i c was found. sence  H  This c h a r a c t e r i s t i c i s known as "pre-  (Braun-Blanquet,  1932), and i s a measure of prop-  o r t i o n of stands of a given a s s o c i a t i o n i n which a g i v e n species has been found.  Braun-Blanquet (1929) recognizes  f i v e presence c l a s s e s ; numbered from one t o f i v e , depending on the number o f f i f t h s of a l l the stands analysed i n an a s s o c i a t i o n , i n which the species occurs. presence i s used i n t h i s work.  In t h i s form,  Presence may a l s o be entered  as a f r a c t i o n , or as a percentage.  I n the t a b l e s i n Appen-  d i x 3$ the formulae f o r dominance and v i g o u r are given f o r each species under every stand used to synthesize the a s s o c i a t i o n s ' composition; the average values are shown on the r i g h t , and the presence given as a c l a s s . In the t a b l e s of d i s t i n c t i v e species f o r the a s s o c i a t i o n s i n the t e x t (Tables 2 and 3 ) , and i n the l i s t of species and t h e i r occurrences i n Appendix 3 , the formulae  17 under each a s s o c i a t i o n give the presence c l a s s and average vigour separated fey a p o i n t . The f i d e l i t y of a species represents the degree o f l i m i t a t i o n of the species t o a given community, set of cond i t i o n s , o r even l o c a l i t y .  The f i v e f i d e l i t y c l a s s e s as  l i s t e d by Braun-Blanquet (1932) are used i n Appendix  the  f i d e l i t y classes b e i n g l i s t e d a f t e r each species f o r the community or l o c a l i t y f o r which i t i s most r e l e v a n t , i f there i s one. B i o l o g i c a l spectra (Braun-Blanquet, 1932; K r a j i n a , 1933) have been drawn up f o r the communities s t u d i e d .  For  t h i s purpose, a m o d i f i c a t i o n o f Raunkiaer*s (190ij.) system o f l i f e forms i s used; as f o l l o w s : P. Phanerophytes:  woody p l a n t s w i t h perennating  buds over 2 decimetres (or 8 inches) above ground  level.  These may be subdivided i n t o the f o l l o w i n g : Pm.  Megaphanerophytes: feet) high.  over 2 metres (or 6^  I n c l u d i n g trees and t a l l  shrubs o f the A and B l l a y e r s of the stands. Pn.  Hanophanerophy t e s : l e s s than 2 metres high, but over 2 decimetres. Lower shrubs and t r e e s a p l i n g s , of the B2 l a y e r .  C. Chamaephytes: perennating buds above the ground l e v e l but l e s s than 2 dm. above i t . P r o s t r a t e shrubs, semishrubs, some s t o l o n i f e r o u s and caespitose herbs, and the seedlings of the t a l l e r shrubs and t r e e s which are s t i l l i n  18  the C l a y e r . H. Hemicryptophytes: Perennating buds a t ground level.  I n c l u d i n g most p e r e n n i a l and b i e n n i a l herbs. G. Geophytest Perennating organs (rhizomes o r bulbs)  beneath the ground surface.  Includes many L i l i a c e o u s p l a n t s ,  root p a r a s i t e s , e t c e t e r a . T. Therophytes; Annuals, perennating only as seeds. B. Bryophytest a l l t e r r e s t r i a l i n t h i s area. L. L i c h e n s ;  (terrestrial).  B . Epiphytest  I n t h i s area, a l l are l i c h e n s w i t h  the exception of the p a r a s i t i c Arceuthoblum spp. The c o n t r i b u t i o n of each species t o i t s l i f e - f o r m value i n an a s s o c i a t i o n i s taken as the product o f i t s average dominance and i t s presence c l a s s .  These r e s u l t s a r e  t o t a l l e d f o r each l i f e - f o r m i n each a s s o c i a t i o n , and eonverted i n t o percentages. I n t h i s form they are l i s t e d i n the table i n Appendix 5*  The mean l i f e - f o r m percentages  are c a l c u l a t e d f o r the Pinus ponderosa and Pseudotsuga zones; but i n the former, the A r t e m i s i a (Art) and the Rhus (Rh) communities are excluded from the mean as b e i n g too divergent from the general zonal form.  These means, w i t h  the spectra f o r the Rhus and A l l u v i a l communities, are graphed i n Figure 2. C o l l e c t i o n s were made o f a l l the species found i n the stands examined; and i n a d d i t i o n , c o l l e c t i o n s were made of p l a n t s whenever doubt e x i s t e d as t o t h e i r i d e n t i t y . These  19 specimens are deposited a t the Herbarium o f the U n i v e r s i t y of B r i t i s h Columbia* For i d e n t i f i c a t i o n o f the v a s c u l a r p l a n t s , r e f e r ence was made t o the manuals and f l o r a s of Henry (1915) * Peck (1941), Abrams (1940, 1944, 1 9 5 D , Eastham (1947), Hitchcock, A. S. (1950), ( f o r g r a s s e s ) , and Hitchcock, C. L. (for  grasses and sedges).  The nomenclature o f the t r e e s  f o l l o w s that o f L i t t l e (1953).  The bryophytes were i d e n t i -  f i e d by K r a j i n a , and t h e l i c h e n s by Szczawinski.  The names  of the p l a n t s found, w i t h t h e i r authors, are given i n the species l i s t i n Appendix 2. In a few stands, q u a n t i t a t i v e analyses o f the vege t a t i v e cover were made.  The d.b.h. of a l l t r e e s and t a l l  shrubs o f over l / 2 i n c h i n square acre p l o t s was measured w i t h a diameter tape: and p o i n t t r a n s e c t s , u s i n g a p o i n t frame, were made t o measure b a s a l cover o f the herbaceous and other low v e g e t a t i o n .  These data are presented i n Appen-  d i c e s 6 (a) and ( b ) . In each stand s t u d i e d , a number o f t r e e s was measured.  Height was measured w i t h an Abney l e v e l and 100 f t .  tape, diameter a t b r e a s t height (d.b.h.) w i t h a diameter tape, and age w i t h an increment b o r e r .  Ages and diameters  of large cut stumps were a l s o recorded, and i n these cases, r a d i i were measured and approximate diameters c a l c u l a t e d f o r each 50 years o f age.  From these data, curves o f d.b.h.  and height against age were drawn f o r the stands.  I t has  10  20  30  40  50  %  F i g . 2 . B i o l o g i c a l spectra of the Pinus ponderosa and Pseudotsuga zones, with the Bhus association and the A l l u v i a l complex shewn separately.  been found that when the growth curves f o r a l l the stands o f an a s s o c i a t i o n are p l o t t e d together, they f o r the most p a r t l i e w i t h i n c e r t a i n w e l l d e f i n e d bands.  Graphs showing the  bands w i t h i n which the diameter ( i n inches) and the height ( i n f e e t ) at any given age would g e n e r a l l y l i e , are drawn f o r each a s s o c i a t i o n described i n the t e x t . S t a t i o n s to measure c l i m a t i c data were set up i n s e v e r a l stands r e p r e s e n t a t i v e of e i g h t o f the a s s o c i a t i o n s , (two of the a s s o c i a t i o n s were e s t a b l i s h e d a f t e r the i n s t r u ments were set u p ) . The s t a t i o n s were set up at the beginning o f September, 1952, and dismantled at the beginning of October, 1953*  The instruments could not be attended d u r i n g the  winter, but were read and r e s e t at the beginning of each month from Hay t o October, 1953*  I t was necessary, owing t o  the l a r g e number of l i v e s t o c k i n the area, t o surround each s t a t i o n w i t h a 1 0 - f t . square enclosure of one pole-one wire fenee.  I n s p i t e o f t h i s p r e c a u t i o n , many readings were l o s t  as the instruments were l o s t or damaged owing t o I n t e r f e r e n c e by men or animals. I n each s t a t i o n , i n order t o measure s o i l surface temperatures, o f which the extremes are thought t o be more s i g n i f i c a n t than the means, maximum and minimum thermometers were i n s t a l l e d w i t h t h e i r bulbs b a r e l y covered by soil. P r e c i p i t a t i o n was measured i n cans f i t t e d w i t h funnels.  A l i t t l e l i g h t o i l was added a f t e r each reading  21  i n order t o prevent re-evaporation of the accumulated  water  during the i n t e r v a l before the next reading. During the summer o f 1953, evaporation was measured w i t h L i v i n g s t o n white bulb atmometers, s e t up w i t h t h e i r bulbs a f o o t above the ground. In order to avoid damage t o the atmometers by f r o s t s , a 10 per cent s o l u t i o n of normal p r o p y l a l c o h o l was used i n them i n place of the d i s t i l l e d water u s u a l l y used. The s o l u t i o n began t o f r e e z e a t about -8°C, forming a s o f t mass of c r y s t a l s i n s t e a d of hard i c e ; and was adequate t o stand any f r o s t s expected or experienced during the p e r i o d of exposure of the atmometers.  Since the vapour pressure  of n-propyl a l c o h o l i s almost the same as that of water through a wide range of temperatures, the concentration of the s o l u t i o n was not a p p r e c i a b l y a l t e r e d by long continued evaporation, the r a t e of evaporation o f the s o l u t i o n was found t o be close to that of pure water.  The conversion  f a c t o r from the s o l u t i o n t o pure water was found t o be 0.93* Pure water was obtained i n the f i e l d by use o f an apparatus comprising two columns of i o n exchange r e s i n s f o r removing the s a l t s which are common i n the waters of the area s t u d i e d . The L i v i n g s t o n atmometers i n the stands were standardized against an atmometer set up by the tank evaporlmeter at the Experimental S t a t i o n at Suramerland, so t h a t the r e s u l t i n g data could be s t a t e d I n inches i n s t e a d of cubic centimetres, and compared d i r e c t l y t o the p r e c i p i t a t i o n .  The conversion f a c t o r was found t o be 0.00473 inches/cc. Since the evaporimeter a t Summerland i s operated only from June t o September, evaporation data are not a v a i l a b l e f o r the winter months.  They could probably be obtained, how-  ever, by the use o f appropriate n-propyl a l c o h o l s o l u t i o n s i n L i v i n g s t o n atmometers. To describe the r e l a t i v e dryness of the v a r i o u s s i t e s , p r e c i p i t a t i o n / e v a p o r a t i o n r a t i o s were c a l c u l a t e d  from  the data obtained from the r a i n gauges and the atmometers. I t i s recognized t h a t s i n c e these c l i m a t i c data were c o l l e c t e d over only a s i n g l e y e a r , they represent only approximations t o the average c l i m a t i c values f o r these s i t e s .  One heavy thunder shower may have a consid-  erable e f f e c t on the t o t a l p r e c i p i t a t i o n f i g u r e f o r the month i n which i t f a l l s .  The abnormally heavy p r e c i p i t a t i o n  f i g u r e s f o r August, 1953» i n stands 10, 19, 22, 71, and 73, a l l i n the South Okanagan V a l l e y , show the e f f e c t of one heavy storm a f f e c t i n g that d i s t r i c t ( F i g . 3 c shows a f u r ther e f f e c t of the same storm).  F u r t h e r , the instruments  were surrounded by f o r e s t v e g e t a t i o n , which would a f f e c t the evaporation and temperature; and i n the denser stands, i n t e r c e p t i o n by the t r e e s would undoubtedly account f o r some o f the p r e c i p i t a t i o n , though attempts were made t o s i t u a t e the r a i n gauges where t h i s e f f e c t would be minimized. Records (Climate of B r i t i s h Columbia, 1952 and 1953)  i n d i c a t e t h a t the year from September 1952 t o August  F i g . 3. a. P i n u s ponderosa savanna, w i t h a g r a s s y herbaceous l a y e r s i m i l a r to t h a t o f the a d j a c e n t steppe, b. A w e l l developed t a p r o o t o f P i n u s ponderosa, exposed i n a road c u t . c. E r o s i o n o f a t r a i l a f t e r a heavy thunder shower (stand 8 4 ) .  1953 was moister than average i n the southern p a r t of the area ( O l i v e r and P r i n c e t o n ) , hut d r i e r than average e l s e where.  During the same p e r i o d , temperatures were s l i g h t l y  warmer i n winter and cooler i n summer, than normal. I n a d d i t i o n t o the above i n s t a l l a t i o n s , a few f u r t h e r Instruments were set up. were placed.  One  In stand 31,  two s t a t i o n s  (31N) was so placed as to be i n shade  during the heat of the day, but open t o the sky; so t h a t i t recorded the f u l l p r e c i p i t a t i o n , but showed only the shade temperatures of the s o i l .  The other (31S) was under the  southern branches of a t r e e ; exposed to the sun throughout the day, but r e c e i v i n g only the p r e c i p i t a t i o n which was not i n t e r c e p t e d by the branches above.  I t thus recorded  s o i l temperatures l i k e those of the open exposed grassland. D i s t i n c t v a r i a t i o n s i n the vegetation composition were seen i n conjunction w i t h these two s i t u a t i o n s .  I n stand 65 an  a d d i t i o n a l thermometer was set up to r e c o r d maximum and minimum a i r temperatures (marked ' a i r * i n the climate t a b l e s f o r s o i l surface temperatures, Appendix 7 ) i  f o r comparison  w i t h the s o i l surface temperatures. Tables of corrected values of s o i l surface temperatures (maximum and minimum, by months), monthly p r e c i p i t a t i o n , evaporation, and P/Z r a t i o s obtained i n t h i s work are shown i n Appendix 7* S o i l samples were obtained to depths of around three f e e t from most of the stands examined, by O g i l v i e ,  who a l s o c a r r i e d out analyses of the pH by means o f a Beckman pH-meter, and of s o i l t e x t u r e w i t h a Bouyoucos hydrometer.  CHAPTER IV GEOGRAPHICAL AND ECOLOGICAL CONSIDERATIONS  Area of Work. The area covered by t h i s survey i s t h a t known as the 'Dry B e l t ' of the southwestern I n t e r i o r of B r i t i s h Columbia.  I t extends from the Okanagan V a l l e y westward t o  the Cascade Range; northward as f a r as Pinus ponderosa i s found i n the southern Cariboo r e g i o n ; and covers most of the lower p a r t s of the Okanagan, Similkameen, Thompson, and Nicola Valleys.  The species extends eastward to the Rocky  Mountains, and a few stands occur a l s o i n the S k a g i t V a l l e y and other v a l l e y s of the e a s t e r n f o o t h i l l s of the Caseade Range f u r t h e r n o r t h along the Praser Canyon.  The e a s t e r n  and northwestern p a r t s of i t s range could not be covered by the scope of t h i s work, however.  The outer l i m i t s of pon-  derosa pine i n t h i s r e g i o n are shown as a dotted l i n e on the map •'• ( F i g .  1).  Topography and S o i l s . The topography of t h i s r e g i o n i s c h a r a c t e r i z e d by a broad, h i g h p l a t e a u l y i n g at e l e v a t i o n s between 3500 and 5000 f e e t above sea l e v e l .  This p l a t e a u  i s d i s s e c t e d i n t o segments by deep U-shaped, g l a c i a t e d v a l l e y s , whose f l o o r s l i e mostly at e l e v a t i o n s of 1000 t o 2000 feet.  A few v a l l e y bottoms l i e below 1000 f e e t , and occas-  i o n a l ranges of h i l l s , such as the Okanagan Range, r i s e 25  from the p l a t e a u t o heights o f 6000 t o 7500 f e e t above sea level.  The main v a l l e y s c o n t a i n some l a r g e v a l l e y l a k e s ;  while smaller, i r r e g u l a r lakes are common on the p l a t e a u . The lower slopes and f l o o r s of the v a l l e y s commonly d i s p l a y terraee formations that represent o l d r i v e r f l o o d p l a i n s , a l l u v i a l f a n s , o r lake beds of P l e i s t o c e n e times.  Modern f l o o d p l a i n s f o l l o w many of the streams. W i t h i n the area i n dotted o u t l i n e i n Figure 1,  Pinus ponderosa occurs g e n e r a l l y i n open stands on the lower slopes and t e r r a c e s of the v a l l e y s ( F i g . 3 ) > and on low a  p a r t s of the p l a t e a u a t a l t i t u d e s up t o around 4000 f e e t , depending on the topography.  On steep n o r t h slopes i t s  l i m i t may be much lower, o r i t may be completely  absent.  Apparent a i r drainage e f f e c t s are sometimes noted i n r e l a t i o n to the l i m i t s of Pinus ponderosa. I t was n o t i c e d , f o r i n s t a n c e , that a t the northern l i m i t o f t h i s t r e e along the gorge of the E i v e r Fraser near Dog Creek, t h i s species occurs i n a long tongue extending along the slopes of the gorge, s e v e r a l hundred f e e t above the r i v e r , w i t h Douglasf i r stands above, and steppe w i t h o c c a s i o n a l D o u g l a s - f i r t r e e s below.  The pine does not extend down t o the r i v e r .  The s o i l s on the p l a t e a u and v a l l e y slopes cons i s t g e n e r a l l y of stony assorted m a t e r i a l derived from g l a c i a l deposits.  The t e r r a c e s , on the other hand, often  contain w e l l sorted m a t e r i a l : g r a v e l o r sand i n those o f f l u v i a l o r i g i n , o r c l a y i n those of l a c u s t r i n e o r i g i n .  The process of maturation of the s o i l s of t h i s vegetation type i s g e n e r a l l y m e l a n i z a t i o n , and much of the area i s covered by b l a c k , degraded b l a c k , or brown, semiarid soils.  I n the upper f o r e s t stands (Pseudotsuga zone)  a l i t t l e l e a c h i n g becomes apparent; though the s o i l  still  has q u i t e a dark A i h o r i z o n . One e f f e c t of the s o i l t e x t u r e i s seen i n the Influence of the t e x t u r e on the e l e v a t i o n s of the boundaries  between a l t l t u d i n a l l y adjacent vegetation zones.  Both  the upper and lower boundaries of the Pinus ponderosa zone l i e at lower e l e v a t i o n s on coarse textured s o i l s than on f i n e textured s o i l s , unless the l a t t e r are a l s o very stony. I n some l o c a l i t i e s near the l i m i t s of Pinus ponderosa, the upper l i m i t of grassland may extend above the a l t i t u d i n a l l i m i t of Pinus ponderosa. which i s c l i m a t i c a l l y determined. Here, the grassland abutts d i r e c t l y on D o u g l a s - f i r stands. This e f f e c t i s no doubt due t o the r e l a t i v e a v a i l a b i l i t y of what l i t t l e water i s r e c e i v e d i n p r e c i p i t a t i o n ; i t being much l e s s a v a i l a b l e , the f i n e r the s o i l t e x t u r e . Climate. The area l i e s i n a r a i n shadow r e g i o n , between major mountain ranges, and the climate i s more or l e s s c o n t i n e n t a l i n character and d i s t i n c t l y dry.  This dryness  i s most pronounced i n the deeper v a l l e y s , and the p r e c i p i t a t i o n i n c r e a s e s , and the temperature and evaporation  de-  crease w i t h increase i n a l t i t u d e ( S p i l l s b u r y and T i s d a l e ,  28  1944) . The climate i s described as comprising the Humid C o n t i n e n t a l (Dfb, Dsa, Dsb), and mid l a t i t u d e Steppe (Bsk) types according t o Koeppen's c l a s s i f i c a t i o n (Chapman, 19^2); and t o range from Subhumid t o A r i d a f t e r that of Thomthwaite (Sanderson, 1948).  I t i s interesting to  note that O l i v e r i s the most a r i d r e p o r t i n g s t a t i o n i n Canada (Sanderson, 1948). The w i n t e r s are moderately long (November to March) and c o l d i n most p a r t s ; though temperatures are r e l a t i v e l y m i l d , and the winters s h o r t e r i n the deep v a l l e y s i n the south.  Summer temperatures are warm on the p l a t e a u x , and  hot i n the v a l l e y s , where i n the lower p a r t s , temperatures of 95 to 100°P are not uncommon i n J u l y and August. The annual p r e c i p i t a t i o n cycle shows two seasonal maxima i n most v a l l e y s .  A long maximum of moderate p r e c i p -  i t a t i o n ( g e n e r a l l y snow) occurs d u r i n g the w i n t e r months, when overcast s k i e s are common; while a short but o f t e n more intense maximum occurs i n June and e a r l y J u l y . During most of J u l y , however, and i n May, August, September, and October, b r i g h t sunshine w i t h very l i t t l e p r e c i p i t a t i o n i s the r u l e .  I n the North Okanagan V a l l e y and i n p a r t s of  the Thompson V a l l e y , June i s the wettest month; but elsewhere, December or January produces more p r e c i p i t a t i o n , though the June r a i n s are s t i l l evident (Climate o f B r i t i s h Columbia; reports f o r 1952 and 1953» and data from the Summerland Experimental S t a t i o n ) .  Table 1 presents some p e r t i n e n t c l i m a t i c data f o r a number of s t a t i o n s i n the Pinus ponderosa f o r e s t r e g i o n . The f i g u r e s i n the r i g h t hand column show the p r e c i p i t a t i o n amounts f o r the p e r i o d of time d u r i n g which the Instruments used f o r t h i s study were set out i n the f o r e s t . I t i s unfortunate that most of the m e t e o r o l o g i c a l s t a t i o n s i n t h i s r e g i o n are s i t u a t e d near centres of h a b i t a t i o n i n the bottoms of the deep v a l l e y s , and that few longterm records are a v a i l a b l e f o r the higher e l e v a t i o n s , on the plateaux. Another e c o l o g i c a l f a c t o r to be considered i s fire.  The evidence of f i r e s , both I n modem times and i n  previous c e n t u r i e s , i s so widespread that i t seems as though f i r e s must be regarded as a normal p a r t of the environment of these stands.  These f i r e s would f o r the most p a r t be ground  f i r e s (Whitford and C r a i g , 1918), p a r t i c u l a r l y common i n grassy u n d e r s t o r i e s , and l e s s so i n shrubby  communities:  but i n d i c a t i o n that f i r e s which destroyed e n t i r e stands have occurred i n the p a s t , i s present i n the o b v i o u s l y succ e s s i o n a l s t a t e s of s e v e r a l of the stands. F i r e has e v i d e n t l y played a l a r g e p a r t i n c o n d i t i o n i n g the present day stands.  Ground f i r e s tend to s e l e c t  i n favour of grasses and other herbaceous species i n competi t i o n w i t h shrubs and young t r e e s , T i s d a l e (1950) s t a t e s that I n t h i s r e g i o n the best woodland g r a z i n g lands are the r e s u l t of f i r e .  Weaver (l9k7) considers t h a t , before modern  f i r e c o n t r o l measures came i n t o e f f e c t , l i g h t n a t u r a l f i r e s  30  Table 1.  Station  Kamloops (Airport) Merritt Oliver Princeton  Temperature and p r e c i p i t a t i o n data from selected m e t e o r o l o g i c a l s t a t i o n s I n the Pinus ponderosa forest region  Altitude  Mean Temperature f °F.  P r e c i p i t a t i o n (inches) Mean Total: Annual Year Sept.1952 -  Feet  Jan.  July  1133 1940 995  22 20 25 17 23 26  70 64 73 63 68 70  10.20 9.03 9.79 14.24 23.84  10.92  10.70  22  69  15.71  13.63  2283  Salmon Arm 1200 Summerland 1600 (Expt. Sta.) Vernon 1383  Aug.. 195?  -  8.00 11.39 14.49 mm  occurred p e r i o d i c a l l y , causing n a t u r a l t h i n n i n g of young reproduction, reducing the p r o p o r t i o n o f t r e e species comp e t i n g w i t h the p i n e , and consuming dead wood, thus reducing the hazard of s e r i o u s f i r e s : while under f i r e p r o t e c t i o n , stands tend t o become overstocked, pine meets more competition from other t r e e species, such as Douglasf i r and l a r c h , and f u r t h e r , dead wood accumulates on the f o r e s t f l o o r , i n c r e a s i n g the r i s k of heavy damage from any f i r e t h a t does get out of c o n t r o l .  CHAPTER V AUTECOLOOIGAL FEATURES OF PINUS PONDEROSA AND PSEUDOTSUGA MENZIESII  A eross s e c t i o n o f the abundant l i t e r a t u r e t h a t has been produced d e a l i n g w i t h the morphology, physiology, phenology, and ecology o f these two t r e e species has revealed some s a l i e n t p o i n t s that are o f I n t e r e s t here* These w i l l be d e a l t w i t h under the headings o f morphology and physiology. Morphology. Both the t r e e s under d i s c u s s i o n have root systems which are regarded as q u i t e extensive and deep i n comparison w i t h those of our n a t i v e c o n i f e r s i n general. The p i n e , i n p a r t i c u l a r , i s noted f o r i t s tendency t o develop a deep tap root as a s e e d l i n g and, where c o n d i t i o n s permit, t o continue t o develop t h i s tap r o o t through l i f e (Fig.  3 b).  Both species develop extensive l a t e r a l r o o t s ,  those o f the pine being the more e x t e n s i v e , f r e q u e n t l y extending 50 f e e t out from the trunk (Pearson, 1930). Such a great development o f the root system i s undoubtedly important i n enabling these t r e e s t o u t i l i z e s o i l  moisture  over q u i t e wide areas, and t o become more o r l e s s Independent of the surface horizons during drought.  This i s p a r t i c u l a r l y  true o f the p i n e , and i s no doubt c o r r e l a t e d w i t h the open, 32  33  p a r k - l i k e nature of i t s stands ( F i g . 3 a ) ,  where root  competition i n the dry conditions make i t necessary f o r each t r e e to occupy a large area of ground f o r i t s supply of water.  Another r e l a t e d f a c t o r i s the infrequency  of  blowdown i n ponderosa p i n e , a phenomenon which, i n s p i t e of the open nature of i t s stands, i s r a r e l y seen, except o c c a s i o n a l l y on very l i g h t shallow  soils.  The hark of both species i s r e l a t i v e l y t h i c k and f i r e r e s i s t a n t , an important f a c t i n t h i s r e g i o n of h i g h l y inflammable grassy u n d e r s t o r i e s .  The bark of D o u g l a s - f i r  accumulates t o a considerable thickness on o l d t r e e s , while t h a t on the ponderosa pine i s maintained somewhat t h i n n e r by c o n t i n u a l shedding of l a r g e f l a k e s of bark.  This l a r g e l y  accounts f o r the lower abundance of a r b o r l c o l o u s l i c h e n s on ponderosa pine than on D o u g l a s - f i r . A conspicuous d i f f e r e n c e between these t r e e s i s shown by the f o l i a g e , the leaves of the pine being from f i v e to nine times as long as those of D o u g l a s - f i r , and borne i n bundles of three (or o c c a s i o n a l l y two),  sur-  rounded by a b a s a l sheath. When growing i n mixed stands, i t i s n o t i c e d that these t r e e s show d i f f e r e n t gross forms.  The  Douglas-fir  trees have more or l e s s long c o n i c a l crowns, w i t h branches r e t a i n e d f a i r l y close to the ground,and short limby b o l e s ; while the pines are more v a r i a b l e i n form, but g e n e r a l l y have longer, cleaner boles below the f i r s t branches, and r e l a t i v e l y s h o r t e r , broader, more rounded crowns.  The  3k  great v a r i a b i l i t y of the ponderosa pine has been nsed by Keen (1942) i n h i s system of t r e e age and vigour c l a s s e s . The seeds of ponderosa pine are n o t i c e a b l y l a r g e r than those of D o u g l a s - f i r , and contain a l a r g e r amount of stored food i n <the garnetbphyte«  This i s of importance i n  the growth of the r o o t i n the germinating s e e d l i n g (Bates and Roeser, 192ij.) • Physiology. I t might be concluded from observation of the r e l a t i v e dryness o f the h a b i t a t s where ponderosa p i n e and D o u g l a s - f i r reach t h e i r r e s p e c t i v e dominance that the pine has the lower requirement f o r water.  However, a s e r i e s of  experiments by Bates (1923) i n 1917 and 1920 showed the opposite t o be the case.  H i s t e s t s on small numbers of  seedlings showed t h a t the pine i s more extravagant of water than D o u g l a s - f i r , and more s u s c e p t i b l e to drought and winterk i l l i n g , due t o i t s i n a b i l i t y to withstand t r a n s p i r a t i o n losses.  On the other hand, Pearson (1920) concluded from  f i e l d observation, that i t i s greater tolerance to drought i n the case of the pine that enable s i t t o extend i t s range t o lower e l e v a t i o n s than D o u g l a s - f i r .  S i m i l a r l y he con-  sidered that drought s e t s the lower l i m i t s of a l l the a l t i t u d i n a l f o r e s t zones.  Bates (1923) a l s o found t h a t  the pine t r a n s p i r e s more water per u n i t mass of dry weight produced i n growth than does D o u g l a s - f i r , and would thus appear to be somewhat l e s s e f f i c i e n t i n photosynthesis than the l a t t e r .  Pearson (192k) found a s i m i l a r r e l a t i o n s h i p .  On the q u e s t i o n of heat r e l a t i o n s , some i n t e r e s t i n g f a c t s have been p u b l i s h e d by both the above authors.  Bates  and Roeser (1924) studied the e f f e c t s of h i g h a i r temperatures on a number of c o n i f e r o u s seedlings.  I n these e x p e r i -  ments, seedlings o f v a r i o u s ages were exposed to h i g h a i r temperatures f o r short p e r i o d s , and i n j u r y to the f o l i a g e was noted.  They found that Pinus ponderosa has a g r e a t e r  a b i l i t y t o withstand temperatures above the 55°C (131°F), regarded as the l e t h a l t h r e s h o l d f o r p l a n t protoplasm, than has Pseudotsuga. and a t t r i b u t e d i t to the g r e a t e r t r a n s p i r ing a b i l i t y of the former.  At low r e l a t i v e h u m i d i t i e s ,  Pinus ponderosa showed l e s s than 50 P©r cent i n j u r y at 170°p, a t which temperature Pseudotsuga showed 100 per cent i n j u r y ; while at 100 per cent humidity, 140°P proved immedi a t e l y f a t a l t o both species, since the c o o l i n g e f f e c t s of t r a n s p i r a t i o n were i n h i b i t e d .  They a l s o found that the sus-  c e p t i b i l i t y to heat damage of t h i s nature i s reduced a f t e r the s e e d l i n g reaches an age of 90 days. These r e s u l t s suggest that the lower a l t i t u d i n a l l i m i t s of ponderosa pine and D o u g l a s - f i r may be set by the occurrences of l e t h a l l y h i g h temperatures during the c r i t i c a l f i r s t three months p e r i o d on the development seedling.  of the  Bates (1923) concluded the same when he p o i n t e d  out that D o u g l a s - f i r would grow almost anywhere that ponderosa pine would grow provided that i t had shade during i t s seedling stage.  36  The l e t h a l temperatures described, however, are seldom I f ever encountered as a i r temperatures I n n a t u r e . On the other hand, s o i l surface temperatures w e l l above the l e t h a l t h r e s h o l d are found t o occur i n the ponderosa pine f o r e s t s d u r i n g a considerable p o r t i o n of the summer, where dry  s o i l i s exposed t o d i r e c t s u n l i g h t .  Heating o f the s o i l  surface t o temperatures of 55°C or h i g h e r causes c o l l a p s e of the  stem t i s s u e s adjacent t o or Just above the s o i l s u r f a c e ,  the  r e s u l t i n g l e s i o n s being known as Whltespot i n j u r y  ( H a r t l e y , 1918).  The nature of the s o i l surface m a t e r i a l may be of Importance here, s i n c e , due t o i t s poor a b i l i t y t o conduct heat downward, needle l i t t e r can reach a temperature as much o as 20 G above t h a t of a m i n e r a l s o i l under the same c o n d i t i o n s of i n s o l a t i o n (Smith, 1951)  a f a c t o r which, i n an open stand,  may i n h i b i t the development of seedlings close under the south side of the parent t r e e .  I t w i l l be seen i n Appendix 7 of  t h i s work, that the monthly maximum s o i l surface temperatures exceeded the l e t h a l l i m i t of 131°F  i n J u l y I n a l l stands checked  In the Pinus ponderosa zone, and a l s o i n the A r c t o s t a p h v l o s a s s o c i a t i o n of the Psendotsuga zone; i n June i n s e v e r a l of the  Pine stands, and even as e a r l y as Hay i n one stand o f the  P u r s h i a a s s o c i a t i o n (Ho. 10). Pearson (1920) found t h a t , although the upper l i m i t s of the ponderosa pine and D o u g l a s - f i r zones were determined by temperature e f f e c t s , the l i m i t of ponderosa pine was not  set by extreme c o l d .  He observed t h a t I n A r i z o n a , where he  worked, the ponderosa pine zone experiences more extremely low w i n t e r temperatures than does the D o u g l a s - f i r zone above It.  He concluded that the l i m i t i n g temperature e f f e c t s here  were those r e l a t i n g t o the minimum heat requirements f o r growth and seed germination, which are g r e a t e r f o r the p i n e than f o r D o u g l a s - f i r (Pearson, 1931).  He found t h a t seeds  of Ponderosa pine germinate best at somewhat higher temperatures than are best f o r D o u g l a s - f i r .  Hoot growth o f the  pine was found t o s t a r t i n the s p r i n g when the maximum d a l l y s o i l temperature at a depth of s i x inches had reached 52 524.°? for f o u r days, while the corresponding value f o r Douglas-  f i r was found t o be $0 - 52°P.  For top growth, there i s a  minimum heat requirement below which e l o n g a t i o n of the p i n e shoot, and e s p e c i a l l y of the l e a v e s , i s i n h i b i t e d , and the e f f i c i e n c y of t r a n s p i r a t i o n and photosynthesis, already reduced, are f u r t h e r lessened.  The p l a n t i s thus unable t o  compete w i t h o t h e r , l e s s heat r e q u i r i n g species i n the h i g h e r a l t i t u d i n a l f o r e s t zones. S u r v i v a l of pine seedlings close t o parent t r e e s has been considered by Pearson (1930) t o be l i m i t e d by a combination of r o o t c o m p e t i t i o n , shade, and low day temperatures. From the above evidence, i t seems t h a t the e c o l o g i c a l l i m i t s of Pinus ponderosa are set by a combination o f heat and moisture requirements.  I t appears t h a t t h i s species  i s r a t h e r l e s s e f f i c i e n t i n photosynthesis than i s D o u g l a s - f i r  38  and t h a t any f a c t o r s which tend t o reduce I t s photosynthetlc a c t i v i t y below the minimum necessary f o r growth w i l l e l i m i n a t e i t s competitive a b i l i t y .  Thus, dense shade, humid m i c r o c l i m -  ate which i n h i b i t s water movement and t r a n s p i r a t i o n , o r low day temperatures  i n summer which w i l l a f f e c t the r a t e o f  photosynthesis d i r e c t l y , may a l l a c t i n combination under a dense canopy t o reduce the vigour of the young s a p l i n g s o f t h i s species I n competition w i t h the D o u g l a s - f i r r e p r o d u c t i o n , which i s more t o l e r a n t of a l l these f a c t o r s .  At the same  time, o l d large pioneer pines i n the same stand, w i t h t h e i r crowns p e n e t r a t i n g the canopy, are s c a r c e l y i f a t a l l a f f e c t e d by these m i c r o c l i m a t i c i n f l u e n c e s , and may show q u i t e vigourous growth. New l i g h t has r e c e n t l y been thrown on the question of the p o s s i b i l i t y of drought as a d i s c r i m i n a t i n g f a c t o r between D o u g l a s - f i r and ponderosa pine a t t h e i r lower  alti-  t u d i n a l l i m i t s by the discovery t h a t ponderosa pine seedlings may u t i l i z e dew which forms on t h e i r f o l i a g e t o prolong t h e i r s u r v i v a l through r a i n l e s s p e r i o d s , and may even t r a n s p o r t some water from t h i s source down t o the s o i l (Stone and Powells, 1954, Stone and Shachori, 1954)*  F u r t h e r , Powells  and K i r k (1945) f i n d t h a t seedlings of t h i s pine are able to s u r v i v e i n s o i l depleted t o about h a l f the normal w i l t i n g c o e f f i c i e n t , as measured w i t h sunflower s e e d l i n g s . By c o n t r a s t , Pearson (1924) found no s i g n i f i c a n t d i f f e r e n c e between the w i l t i n g p e r cents f o r the pine or D o u g l a s - f i r  39  and the normal w i l t i n g c o e f f i c i e n t f o r the  soil.  Pearson (1931) notes that c l a y s o i l s are genera l l y unfavourable to ponderosa pine unless stones are abundant, and Eaasis (1921) f i n d s r e l a t i v e l y heavy reproduction on stony s o i l s .  Two  f a c t o r s probably c o n t r i b u t i n g t o the  unfavourable nature of c l a y s o i l s (Lutz and Chandler, 19l|i>) a r e : f i r s t , that i n a dry r e g i o n e s p e c i a l l y , c l a y tends to r e t a i n , i n a state u n a v a i l a b l e to p l a n t s , a large f r a c t i o n of the meagre supply o f water brought by the r a i n so t h a t i t s w i l t i n g percentage i s h i g h ; and second, that c l a y has a low n o n - c a p i l l a r y pore c a p a c i t y , a feature which i n h i b i t s the ready d i f f u s i o n of gasses i n the s o i l atmosphere and causes poor a e r a t i o n .  Thus, i n these c l a y s o i l s , both  moisture and oxygen s u p p l i e s tend t o be weak and u n r e l i a b l e . This i s shown as i n the r e l a t i v e l y sparse stocking o f stands on c l a y s o i l s , as compared with those on coarser s o i l s , w i t h the same r a i n f a l l .  I t seems t h a t these p r o p e r t i e s o f c l a y  s o i l s d i s c r i m i n a t e mainly against seedling  establishment,  and may perhaps be r e l a t e d to the intense competition  of  the grass roots i n the upper s o i l l a y e r s , since i t i s seen t h a t those t r e e s which do succeed i n e s t a b l i s h i n g themselves tend t o grow b e t t e r on the f i n e r textured s o i l s  (Holtby,  1947).  These two species show d i f f e r e n c e s i n t h e i r respecti v e n u t r i e n t requirements.  Analyses of t h e i r needle l i t t e r  show t h a t , compared to most c o n i f e r s , Pseudotsuga f o l i a g e holds r e l a t i v e l y h i g h n u t r i e n t concentrations, while Pinus  ponderosa has low concentrations g e n e r a l l y . Daubenmire (1953) made analyses f o r n i t r o g e n , phosphorus, potassium,  and calcium contents o f the autumn f o l i a g e of s e v e r a l t r e e species i n d i f f e r e n t a s s o c i a t i o n s .  For these two s p e c i e s , he  obtained the f o l l o w i n g percentages of dry weight o f the material: H  P  K  Pinus ponderosa 0.57  0.09  0.31  O.lj.3  Pseudotsuga  0.13  O.lj.9  1.57  %  %  0.60  %  Ca  %  I t i s seen t h a t Pseudotsuga needles averaged somewhat higher than those o f Pinus ponderosa i n a l l the above n u t r i e n t contents, and conspicuously higher i n calcium. Tarrant, Isaac, and Chandler (1951) c a r r i e d out measurements of a s i m i l a r nature on the P a c i f i c slope, expressing t h e i r r e s u l t s i n pounds per acre.  When these values are reduced  to percentages, i t i s found that they d i f f e r from those of Daubenmire, i n that the amount o f potassium i n the pine exceeds that i n D o u g l a s - f i r .  This may be due t o a seasonal  d i f f e r e n c e , but since Tarrant e t a l do not s t a t e a t what season the f o l i a g e used i n t h e i r analyses was c o l l e c t e d , comparisons between these two sets o f f i g u r e s are n o t r e a l l y valid.  I t may a l s o be noted that Tarrant et a l found t h a t  the pine exceeded D o u g l a s - f i r i n magnesium content.  Since  i t i s known t h a t Daubenmire s c o l l e c t i o n s were made a t a f  season when most leaves are normally shed, h i s r e s u l t s are  of much more value I n e s t i m a t i n g the n u t r i e n t content of the l i t t e r as I t I s formed on the s o i l surface.  Daubenmire»s  r e s u l t s i n d i c a t e that D o u g l a s - f i r c o n t r i b u t e s more p e r u n i t mass o f l i t t e r produced, than does ponderosa pine t o the maintenance o f n u t r i e n t s i n the uppermost l a y e r s o f the s o i l , e s p e c i a l l y I n the case o f calcium.  The d i f f e r e n c e i n  n u t r i e n t y i e l d s of these species would be o f greater s i g n i f i c a n c e w i t h regard t o t h e i r i n f l u e n c e s on the l e a c h i n g o f the s o i l n u t r i e n t elements i n the Pseudotsuga zone than i n the Pinus ponderosa zone, since i n the l a t t e r , owing t o the low p r e c i p i t a t i o n e f f e c t i v e n e s s , l i t t l e or no l e a c h i n g out of s o l u b l e n u t r i e n t s takes p l a c e , except perhaps I n the coarsest g r a v e l l y and stony s o i l s . Seed production i n these two species i s spasmodic: successive good seed years being separated by periods o f three or four r e l a t i v e l y poor seed y e a r s ; few t r e e s produce good crops every year. P o l l e n i s shed i n the l a t e s p r i n g ; i n copious amounts I n the case of the pine.  Douglas-fir  matures i t s seeds i n the autumn of the same year as p o l l i n a t i o n , but ponderosa pine seeds do not mature u n t i l the autumn of the year f o l l o w i n g that of t h e i r p o l l i n a t i o n . Since cone development i s probably i n f l u e n c e d by c o n d i t i o n s of the previous year, i t f o l l o w s t h a t favourable  conditions  f o r cone production would r e s u l t i n a good seed crop the f o l l o w i n g year i n the case of D o u g l a s - f i r , but two years l a t e r i n the case o f the p i n e , other c o n d i t i o n s being  equal.  Meagher (195>0) considers t h a t f o r an appreciable amount o f pine reproduction t o be s u c c e s s f u l , a good crop year should be f o l l o w e d by a year o f h i g h r a i n f a l l ,  since the seeds are  seldom v i a b l e f o r more than one year i n the s o i l .  He a l s o  s t a t e s t h a t l i g h t seed crops are a complete l o s s owing t o the f o r a g i n g a c t i v i t i e s o f rodents.  However, some reproduction  may a r i s e even i n these years from caches o f seeds, made and f o r g o t t e n by rodents, j u s t beneath the s o i l surface. The w r i t e r has f r e q u e n t l y seen small clumps o f f o u r o r f i v e seedlings a r i s i n g from such s i t u a t i o n s .  S o i l surface temp-  eratures would appear t o c o n s t i t u t e another f a e t o r which i s important i n determining the s u r v i v a l o r f a i l u r e o f a germinating seed crop. A favourable seed bed i s important, and i t i s n o t i c e a b l e that a t h i c k needle bed i s l e s s favourable t o seed germination than i s bare m i n e r a l s o i l ; probably p a r t l y f o r the reasons o f temperature mentioned above (see a l s o Smith, 1951)*  I n the open pine stands, extreme surface  temperatures, as mentioned above, no doubt c o n s t i t u t e one of the major d e t r i m e n t a l f a c t o r s .  Weaver (1951) notes t h a t  pine seedlings tend t o c o l o n i z e burnt patches a f t e r s l a s h f i r e s , o f t e n more r e a d i l y than D o u g l a s - f i r , even i n stands where the l a t t e r t r e e normally dominates.  Haasis (1921)  f i n d s t h a t the r e l a t i v e l y heavy regeneration o f pine on stony s o i l s i s r e l a t e d t o the f a c t that the l i t t e r may crack and s h r i n k away from the bases o f exposed stones, and  43  seeds f a l l i n t o the cracks, contact mineral s o i l , and develop readily.  He a l s o notes the e f f e c t o f s o i l texture on root  development, f i n d i n g t h a t seedlings send down deeper, l e s s branched tap r o o t s i n t o c l a y s o i l than i n t o more coarse textured m a t e r i a l s ; a l s o that the r a t i o of top t o root i s greater i n seedlings grown i n coarser s o i l s .  Pearson (1913) found  older t r e e s r o o t i n g r e l a t i v e l y s h a l l o w l y i n c l a y s o i l s . Their r e l a t i v e l y l a r g e seeds permit the germinating seedlings o f both these t r e e species t o send down f a i r l y deep tap r o o t s before withdrawing  t h e i r cotyledons from t h e i r  seed coats and experiencing more intense t r a n s p i r a t i o n . This method of germination i s important t o s u r v i v a l i n dry h a b i t a t s (Bates and Hoeser, 1924), where the time o f germi n a t i o n f o l l o w s and depends on a moist season (Pearson, 1951)> I n t h i s area, f o l l o w i n g the melting of the snow I n the e a r l y spring.  I n t h i s manner they may overcome the intense r o o t  competition of the herbaceous v e g e t a t i o n , most p a r t i c u l a r l y of the grasses, whose r o o t s r a p i d l y deplete the moisture i n the surface l a y e r s o f the s o i l .  The l a r g e r seed o f the  pine gives i t an advantage, since i t s r e l a t i v e l y massive food store permits t h i s species t o penetrate the s o i l more deeply from the s t a r t than can D o u g l a s - f i r (see a l s o Pearson, 1924).  Growth of both these tree species i n mixed stands r e f l e c t s t h e i r r e a c t i o n t o environmental  conditions.  In a  c l o s i n g canopy of the D o u g l a s - f i r f o r e s t where the pine has been a pioneer t r e e , the i n t o l e r a n c e o f the pine t o the i n t e r n a l atmospheric c o n d i t i o n s o f the f o r e s t r e s u l t s I n some n a t u r a l pruning, which i n t u r n leads t o the development of r e l a t i v e l y long c l e a r trunks and short h i g h crowns. D o u g l a s - f i r , on the other hand, being more t o l e r a n t of these 'shade* c o n d i t i o n s , may r e t a i n low branches l a t e i n t o maturi t y , producing a l o n g , low-reaching crown, and a t a p e r i n g , limby trunk, w i t h r e l a t i v e l y knotty wood.  Growth i s , how-  ever, very v a r i a b l e i n the pine ( B r i e g l e b , 1950), v a r i e t y o f growth r a t e s may be encountered  a  i n the same stand.  These f a c t o r s have a d i s t i n e t bearing on the r e l a t i v e economic values o f these t r e e s i n mixed stands; the pine being the more valuable t r e e here. Observations made I n the f i e l d suggest t h a t the amount of sapwood tends t o be greater i n pine than i n D o u g l a s - f i r o f the same age. The wood l i v e s f o r 120 to 13© years a f t e r being formed i n the p i n e , while I n the Douglasf i r i t l i v e s f o r only 70 t o 80 y e a r s . A growth c h a r a c t e r i s t i c which probably Influences the r e l a t i v e competing a b i l i t i e s of the young t r e e s o f these two species i n mixed stands, i s the manner i n which new growth i s added.  D o u g l a s - f i r appears t o s t a r t growth  s l i g h t l y e a r l i e r i n the s p r i n g than does ponderosa p i n e , and i t s leaves are Immediately  extended, e l o n g a t i n g s i m u l t -  aneously w i t h , o r perhaps s l i g h t l y ahead o f , the young twig.  45  Ponderosa pine s t a r t s t o grow a l i t t l e l a t e r , and elongates the t w i g f i r s t , while the l e a v e s are s t i l l r e t a i n e d w i t h i n t h e i r sheaths.  Thus i t slay be e a r l y summer before any  appreciable amount of new f o l i a g e i s a v a i l a b l e t o c a r r y on photosynthesis and t r a n s p i r a t i o n .  I t i s during the p e r i o d  of shoot e l o n g a t i o n t h a t the ponderosa pine becomes most p a l a t a b l e to browsing deer and l i v e s t o c k , although they w i l l a l s o a t t a c k the new f o l i a g e i n the autumn when the grass has d r i e d and become r e l a t i v e l y unpalatable (Pearson, 1950): t h i s may be a cause of m o r t a l i t y among s e e d l i n g s . Pearson (1918) found, i n A r i z o n a , a d i r e c t r e l a t ionship between the amount of p r e c i p i t a t i o n d u r i n g the s p r i n g drought and the degree of e l o n g a t i o n of the c u r r e n t y e a r ' 8 shoot; w h i l e Schulman (1946-47) i n the southern  I n t e r i o r of B r i t i s h Columbia, noted, i n both ponderosa pine and D o u g l a s - f i r , a d e f i n i t e c o r r e l a t i o n between the t h i c k ness o f the annual growth r i n g i n the zylem and the p r e c i p i t a t i o n d u r i n g the e i g h t months p r i o r t o the growing season. The seasonal progress i n diameter growth has been found by Daubenmire and Deters (1947) ponderosa pine and D o u g l a s - f i r .  be d i f f e r e n t f o r  The p i n e i n c r e a s e s i n  diameter r a p i d l y e a r l y i n the growing season, and slows down e a r l y i n summer, but from then on, continues a t a low r a t e through the l a t e summer when other c o n i f e r s , i n c l u d i n g D o u g l a s - f i r , have e n t i r e l y ceased t o increase i n g i r t h and may even have shrunk owing t o l a t e drought.  I t may  not be out of p l a c e , here, to mention one  two of the pests which at times may the t r e e s of t h i s area*  or  have serious e f f e c t s on  Bark beetles (Dendroetonus  spp.)  p e r i o d i c a l l y break out i n epidemic numbers and decimate the pine stands over f a i r l y large areas, p r i n c i p a l l y attacki n g the mature or o l d t r e e s .  Such an outbreak has been i n  progress i n the r e g i o n s t u d i e d , p a r t i c u l a r l y i n the N i c o l a V a l l e y , during recent years.  Whitford and C r a i g (1918) noted  an outbreak i n the same area during the p e r i o d of t h e i r work. A g e n e r a l l y l e s s serious pest i s the porcupine ( E r e t h i z o n sp.) which feeds on the bark of various t r e e s .  I t seems t o  p r e f e r the bark on the main trunk of young pines from two to ten Inches i n diameter, but a l s o attacks D o u g l a s - f i r . The i n j u r y , i f extensive, causes death t o the t r e e , but  may  often a l l o w the t r e e to continue growth from a branch below the g i r d l e d s e c t o r , u l t i m a t e l y producing a crooked trunk. The D o u g l a s - f i r tussock moth (Hemerocampa pseudotsugata) which has p e r i o d i c a l outbreaks on D o u g l a s - f i r , may  i n mixed  stands, attack pine t r e e s associated w i t h the D o u g l a s - f i r (Keen, 1952).  Species of m i s t l e t o e may  attack these c o n i f e r s .  Arceuthobium D o u g l a s l i a t t a c k s the branches of D o u g l a s - f i r and causes d i s t o r t i o n of the growth; and A^ amerlcanum i s frequent on Pinus contorts i n some d i s t r i c t s .  Aj, campvlo-  podum attacks Pinus ponderosa i n other areas, but has yet been seen i n the area of t h i s work.  I t may  not  reduce the  q u a l i t y of a s i t e by 10 t o 15 per cent (Pearson, 1950).  CHAPTER VI NOTES ON NOMENCLATURE  A few problems I n nomenclature arose w i t h regard to p l a n t s o c c u r r i n g I n the ponderosa pine stands.  These  are discussed below under the names o f the taxa Involved. Agropyron splcatum (Pursh) S c r i b n . and Smith var. lnerme ( S c r l b n . and Smith) H e l l e r , and A. lnerme ( S c r i b n . and Smith) Rydb. Daubenmire (1939), studying t h i s complex, found that awn c h a r a c t e r i s t i c s , w h i c h are g e n e r a l l y h e l d to be the most important d i s t i n g u i s h i n g f e a t u r e s between the two taxa, showed a complete gradation from forms t y p i c a l o f the one t o forms t y p i c a l o f the other o f the above species; o f t e n even on the same p l a n t .  He r e p o r t s  spikes bearing awnless s p i k e l e t s at the base, and divergentawned s p i k e l e t s at the apex, w i t h intermediate forms i n between.  The w r i t e r has found the same i n t e r g r a d a t i o n of  characters, even t o the same anomalous type o f s p i k e . Although t y p i c a l plans o f k± splcatum and A_. lnerme appear q u i t e d i s t i n c t , i t i s impossible, i n the f i e l d , t o draw a c l e a r l i n e o f d i s t i n c t i o n between these forms.  Hence,  t h i s w r i t e r f o l l o w s Daubenmire s l e a d i n c o n s i d e r i n g 1  A. lnerme t o be a v a r i e t y o f  splcatum. I t should be  mentioned that i n t h i s area, Aj. splcatum i s represented  mainly by i t s v a r . lnerme. Amelanchier a l n l f o l i a (Nutt.) Nutt. and A± C u s i c k i i Fern. Here, as i n the previous case, a complete i n t o r g r a d a t i o n of forms was found i n the f i e l d ; o c c a s i o n a l l y on the same bush. Although the d e s c r i p t i o n s appear t o make a c l e a r enough d i s t i n c t i o n , t h i s i s not always v i s i b l e i n nature. Consequently, the o l d e r name, Amelanchier a l n l f o l i a , i s taken here t o include b o t h taxa. Elymus condensatus P r e s i and E± clnereus S c r i b n . and Merr. The p r i n c i p a l d i s t i n c t i o n , of branched spikes versus simple spikes, used t o separate these species (Hitchcoek, 195>0) appears i n p r i n t t o be q u i t e sound, were i t not f o r the discovery at Keremeos, by the author, of p l a n t s b e a r i n g •spikes* which v a r i e d from complete s i m p l i c i t y , through forms with a few elongated branches, t o open, p a n i c l e - l i k e inflorescences.  Such p l a n t s a l s o produced a few elongate  rhizomes beneath the ground surface.  L i v i n g specimens were  brought to the U n i v e r s i t y B o t a n i c a l Gardens f o r f u r t h e r c u l t i v a t i o n and observation.  The p l a n t s of our area, which  f o r the most p a r t have simple s p i k e s , are therefore considered t o be E. condensatus P r e s l v a r . pubens P i p e r , the corr e c t d e s i g n a t i o n f o r E. clnereus a t v a r i e t a l rank. Festuca o c c i d e n t a l i s Hook, and F^ idahoensis Elmer. Examination of the m a t e r i a l of Festuea, c o l l e c t e d during the  f i e l d work f o r t h i s p r o j e c t revealed the f a c t t h a t ,  though the m a j o r i t y of specimens f e l l w i t h i n the l i m i t s of F» ldahoensls. as d e s c r i b e d , they could not always be c l e a r l y d i s t i n g u i s h e d from those of  occidentalIS i n this  area, and that p l a n t s t y p i c a l of both these taxa form members of a continuous p o p u l a t i o n .  A graph of frequency  of cases p l o t t e d against the r a t i o of awn/lemma lengths showed a curve which resembled a normal d i s t r i b u t i o n  curve,  covering the range from a r a t i o t y p i c a l of F& o c c i d e n t a l ! s to that t y p i c a l of F_j. ldahoensls.  This p o p u l a t i o n a l s o  grades i n t o a short leaved form commonly r e f e r r e d to here as F. ovina. but on the b a s i s of the t i s s u e d i s t r i b u t i o n i n the l e a f , only one p l a n t c o l l e c t e d appeared t o be the true F. ovina L.  I t appears then, that F^ ldahoensls and t h i s so-  c a l l e d Fj, ovina are r e a l l y e c o l o g i c a l v a r i a t i o n s of Fj. o c c l d e n t a l i s i n the dry i n t e r i o r of t h i s p r o v i n c e .  An a l t e r n a t i v e  explanation i s that the r e g i o n covered by t h i s work l i e s w i t h i n the overlapping ranges of b o t h Fj. Occident a l l s and F. ldahoensls: and that the two species have f o r a very long time been h y b r i d i z i n g w i t h p e r f e c t freedom.  They would thus  have produced a p o p u l a t i o n which, though h i g h l y v a r i a b l e , i s no longer d i v i s i b l e i n t o the p a r e n t a l species.  I f the former  explanation i s concluded to be the case, then the o l d e r speci f i c e p i t h e t , Fj_ Occident a l l s Hook., should be a p p l i e d t o the e n t i r e p o p u l a t i o n , i n c l u s i v e l y , as i s done i n t h i s work. I n t h i s case, the taxon h i t h e r t o c a l l e d jFj. ldahoensls Elmer should be c a l l e d Festuca O c c i d e n t a l l a Hook. v a r . l n g r a t a (Hack.) n.c. ( I \ ovina L. v a r l n g r a t a Hack, ex B e a l , Grasses  50  of North America, 2:598, 1896); the e p i t h e t 'ingrata* being the e a r l i e s t  t o be ascribed t o t h i s taxon i n the rank o f a  variety. Pseudotsttga t a x i f o l i a (Mirbel) Franco.  ( P o i r e t ) B r i t t e n and P^ M e n z i e s l i  There has r e c e n t l y been considerable  s i o n as t o the r e l a t i v e  discus-  l e g i t i m a c y o f the two above e p i t h e t s  a p p l i e d t o the D o u g l a s - f i r .  The u l t i m a t e d e c i s i o n appears t o  depend on the v a l i d i t y o f p u b l i c a t i o n o f Abies t a x i f o l i a Desfontaine.  B o i v i n (1954) opposes Franco i n considering  P. t a x i f o l i a t o be a l e g i t i m a t e combination, while L i t t l e (1953) favours .P. M e n z i e s l i .  Since the w r i t e r has not been  able t o r e f e r t o a l l the p u b l i c a t i o n s necessary t o decide t h i s question f o r h i m s e l f , he i s u s i n g , f o r the purpose of t h i s work, P_. M e n z i e s l i . f o l l o w i n g the nomenclature given i n the Check L i s t o f North American Trees, by L i t t l e (1953).  CHAPTER V I I FOREST CLASSIFICATION  General Forest Types or Zones.  The Pinus ponderosa stands  of the r e g i o n under survey f a l l i n t o two main groups, which may be c a l l e d ' a l l i a n c e s * a f t e r Braun-Blanquet (1932), o r zones, since they tend t o replace each other a l t i t u d l n a l l y , and to form b e l t s or zones around the various r e l i e f f e a t u r e s of the area.  Both these zones l i e w i t h i n the Montane Forest  ( H a l l i d a y , 1937), but i n f a c t they d i f f e r so s t r i k i n g l y from each other i n some o f t h e i r physiognomic and f l o r l s t i c features that t h i s grouping of them together appears misleading. The upper zone, which i n t h i s work i s termed the Pseudotsuga Zone, comprises the lower l e v e l s o f t h e Douglasf i r f o r e s t i n the s t r i c t sense of a D o u g l a s - f i r climax. Pinus ponderosa i s a dominant o f the stands u s u a l l y o n l y i n e a r l y stages of secondary succession f o l l o w i n g d e s t r u c t i o n by f i r e , and u l t i m a t e l y i s r e p l a c e d by Pseudotsuga. the climax dominant here, unless the process of succession i s truncated before completion, by f r e s h disturbance.  Judging from the  widespread occurrence o f mixed pine and D o u g l a s - f i r stands i n t h i s f o r e s t zone, the attainment of the absolute climax stage i s a none too common event.  51  52 The canopy o f t h i s f o r e s t , a t l e a s t I n the l a t e r s e r a i stages, i s moderately open to f a i r l y w e l l c l o s e d ; and the stands are not a t a l l p a r k - l i k e .  The understory v e g e t a t i o n  i s c h a r a c t e r i s t i c a l l y a f o r e s t understory, o f which the dominant unions do n o t occur n a t u r a l l y as Independent communities outside the f o r e s t .  C h a r a c t e r i s t i c o f the understory are the  r e l a t i v e l y l a r g e p a r t played by chamaephytes and the small part played by therophytes (annuals), as compared w i t h the Pinus ponderosa zone below ( F i g . 2).  Of the grasses which  make up v a r y i n g proportions o f the understory, Calarnagrostis rubescens i s the most common, and i t s sod-forming character gives a d i s t i n c t i v e appearance t o the v e g e t a t i o n i n some o f the a s s o c i a t i o n s . The Pinus ponderosa zone l i e s , a l t l t u d i n a l l y , between the Pseudotsuga zone above, and the steppe o r grassland formation which occupies the lower e l e v a t i o n s . I t d i f f e r s both i n f l o r i s t i c composition and i n g e n e r a l physiognomy from the D o u g l a s - f i r f o r e s t , and can r i g h t l y be considered as an i n t e r m e d i a t e zone between the l a t t e r f o r e s t and the steppe. The canopy i n the Pinus ponderosa zone i s u s u a l l y very open; stands o f t e n have a p a r k - l i k e aspect, w i t h the t r e e s spaced w e l l apart over a grassy o r shrubby understory. This zone bears t r e e species i n common w i t h the Pseudotsuga zone, and Pseudotsuga M e n z i e s i i f r e q u e n t l y occurs i n stands of t h i s zone, though Pinus ponderosa i s the dominant t r e e .  53  On the other hand, the understory v e g e t a t i o n i s f o r the most p a r t made up o f steppe communities, which may a l s o occur as independent steppe a s s o c i a t i o n s beyond the l i m i t s o f t r e e s . Compared t o the Pseudotsuga zone, therophytes p l a y a r e l a t i v e l y important p a r t , and chamaephytes a r e l a t i v e l y small p a r t I n the understory o f t h i s zone (Appendix 5 and F i g . 2 ) . The many grass species which c h a r a c t e r i z e the understory here are a l l o f the bunch type.  Of these grasses, the most t y p i c a l  i s Agropyron splcatum. which I s a widespread dominant both under ponderosa pine and I n the t r e e l e s s grassland formation of adjacent areas. Thus i t i s seen that the Pinus ponderosa zone i s i n r e a l i t y a zone o f overlap or i n t e r f u s i o n o f f o r est and steppe v e g e t a t i o n . The d i f f e r e n c e s between the climates o f these two f o r e s t zones may be expressed by comparing the values f o r the maximum s o i l surface temperatures and the P/E r a t i o s f o r the zones, as found during the summer o f 1953 (Appendix 7, a and b d).  I n the Pinus ponderosa zone, o f i|4 maximum temperature  readings obtained, 20 exceeded the recognized l e t h a l l i m i t o f 131°F  ( H a r t l e y , 1918), the highest being 164°F.  On the other  hand, i n the Pseudotsuga zone, o f 24 such readings obtained, only 3 exceeded 131°F., the h i g h e s t being 138°F.  The r e l a -  t i v e dryness o f the Pinus ponderosa zone was i n d i c a t e d by i t s P/E r a t i o , which was only 0.27, while t h a t f o r the Pseudotsuga zone was l . U j . .  There i s some overlap between the  sets o f values, as must be expected; n e v e r t h e l e s s , i t i s evident that the Pinus ponderosa zone i s , ©n the whole,  notably h o t t e r and d r i e r i n the summer than the Pseudotsuga zone above. In a d d i t i o n t o the above v e g e t a t i o n a l zones, there i s a complex of p l a n t communities which occurs i n a l l u v i a l s i t u a t i o n s along stream banks or on f l o o d p l a i n s .  This complex  may perhaps be regarded as p e r p e t u a l l y s e r a i i n nature, owing to the i n s t a b i l i t y o f the s i t e s , and of the p l a n t communities i n them.  Pinus ponderosa u s u a l l y enters these stands only a t  r e l a t i v e l y low e l e v a t i o n s , and then only a f t e r some c l e a r i n g out  o f the other vegetation.  This a l l u v i a l complex w i l l be  d e a l t w i t h i n greater d e t a i l below. Two species which appear t o be constant and d i s t i n c t members o f the Ponderosa pine stands, as compared w i t h other f o r e s t types, are Agropyron splcatum and L e t h a r i a vulpina.  Agropyron splcatum i s a grassland dominant which  occurs i n n e a r l y a l l stands o f the p i n e , and i s dominant of the  understory i n one a s s o c i a t i o n .  While i t s presence i s  f a i r l y h i g h i n both the Pinus ponderosa and the Pseudotsuga zones, i t s dominance and vigour are reduced i n the l a t t e r . The c e r t i c o l o u s l i c h e n , L e t h a r i a v u l p i n a , i s a conspicuous member of n e a r l y a l l these stands, descending to ground l e v e l i n the dry s i t e s o f the Pinus ponderosa zone and i n the  Arctostaphylos a s s o c i a t i o n of the Pseudotsuga zone,  but p r e f e r r i n g s i t e s a t greater heights i n the t r e e s i n the moister a s s o c i a t i o n s (e.g. Symphorlcarpos a s s o c i a t i o n ) . Other species d i s t i n c t i v e f o r the two zones are shown w i t h t h e i r presence c l a s s and vigour f o r each a s s o c i a t i o n , i n  55  the uppermost blocks In Tables 2 and  3.  P l a n t a s s o c i a t i o n s and subassoclations.  This f o r e s t i s sub-  d i v i d e d i n t o seven a s s o c i a t i o n s , d i v i d e d between the zones mentioned above.  two  On a l l u v i a l s o i l s a f u r t h e r complex  of communities i s found. With the a s s o c i a t i o n s are mentioned some subassocl a t l o n s . which represent s e r a i o r d l s c l i m a x states of the a s s o c i a t i o n s , or divergent forms of obvious r e l a t i o n s h i p which are not considered t o be of s u f f i c i e n t importance i n t h i s area, or s u f f i c i e n t l y w e l l known at present, to warrant cons i d e r a t i o n as d i s t i n c t a s s o c i a t i o n s i n t h i s work. a s s o c i a t i o n s and t h e i r subassociations  The  found i n t h i s f o r e s t  region are l i s t e d below, under t h e i r r e s p e c t i v e zones, with the abbreviations  by which they are represented i n the  tables  and i n the t e x t . Pinus ponderosa Zone 1.  (P/u)  Pinus ponderosa - Purshia t r l d e n t a t a a s s o c i a t i o n (Purs h i a ass*n).  la.  (Ari)  Pinus ponderosa - A r l s t l d a l o n g l s e t a  sub-  a s s o c i a t i o n ( A r l s t l d a subass n) f  2.  (Ag)  Pinus ponderosa - Agropyron splcatum a s s o c i a t i o n (Agropyron ass*n).  2a.  (St)  Pinua ponderosa - S t l p a comata  aubassociation  ( S t i p a subass'n). 2b.  (Art)  Pinus ponderosa - A r t e m i s i a t r l d e n t a t a suba s s o c i a t i o n (Artemisia subass n). Y  56  3.  (Rh)  Pinus ponderosa - Rhus glabra a s s o c i a t i o n (Rhus ass'n).  Pseudotsuga Zone i|.  (Arc) Pseudotsuga M e n z i e s l l - Pinus ponderosa - A r c t o staphylos Uva-ursi a s s o c i a t i o n (Arctostaphylos  5.  (A-C)  ass'n),  Pseudotsuga M e n z l e s i i - (Pinus ponderosa) Arctostaphylos  TTva-ursi - Calarnagrostis  mbescens a s s o c i a t i o n (Arctostaphylos Calarnagrostis 6.  (Ca)  ass*n).  Pseudotsuga M e n z i e s l l - Calarnagrostis mbescens a s s o c i a t i o n (Calarnagrostis  7.  (Sy)  -  ass'n).  Pseudotsuga M e n z l e s i i - (Pinus ponderosa) Symphoricarpos albus a s s o c i a t i o n (Symphoricarpoa ass'n).  Extrazonal 8.  (AL)  Communities Populus t r i c h o c a r p a - Rosa nutkana - Cornus s t o l o n l f e r a ( A l l u v i a l ) complex.  Unions,  Many of the species o c c u r r i n g i n these f o r e s t com-  munities are found t o occur together i n more or l e s s d i s t i n c t groups of organisms having s i m i l a r e c o l o g i c a l a f f i n ities.  These groups of e c o l o g i c a l l y equivalent  are termed unions (Daubenmire, 1952, a and b ) .  species The under-  story of each a s s o c i a t i o n contains dominant and c h a r a c t e r i s t i c species which are found repeatedly under s i m i l a r  conditions  57  Table 2.  C h a r a c t e r i s t i c Species of the A s s o c i a t i o n s of the Pinus ponderosa Zone: showing Presence Class and Vigour, Frames enclose the f i g u r e s f o r species under the communities f o r which those speeies are most characteristic. 1  la Ari  5.2 5.1 4.2 5.2  Pu Festuca o c t o f l o r a Qpuntla f r a g i l l s Selaglnella rupestris Sporobolus cryptandrus S t l p a comata Purshia trldentata A r l s t l d a long!seta Chrysopsls v i l l o a a Erlogonum nlveum Phaoella l i n e a r i s Phlox l o n g i f o l l a Chaenactis d o u g l a s l i G i l i a pungens Artemisia trldentata + Aj. t r l f i d a Erigeron pumilus Eriogonum heracleoldes Lappula myosotls Panleum scribnerianum Philadelphus l e w ! s i 1 Rhus glabra R. radleans Sambucus glanca Verbena b r a c t e a t a Woodsia Oregona  §-  2  5.3 4.3 4.3 4.3 4-2 4.2 2.2 2.2 1.3 2.3 2.2  -  2.2  -  1.2  -  i  --3.2  2  2a  3  Ag  St  Rh  5.2 5.2 4.2 5.2 5.3 3.2 5.3 4.3 5.2 5.2 3.2 4.2 3.2  2.1 1.2 2.2 1.2 2.2 1.1  4.2  2.2 5.1 4.2 3.3 4.2 4.3 3.3 3.3 3.2 2.2  -  1.1  1.2 1.2 2.2 1.1  3.3 3.3 4.2 1.2 1.1 1.3  3.2 3.3 3.3 3.2 1.2  -  1.1 1.2  -  3.2  -  -  2.2 1.2 1.2  +  1.2 1.2 2.2  -  1.2  4.2 3.2 5.2 £-3 2.3 3.3 2.2 2.2 2.2 2.3  • 1.3  -  --  2.2 1.2 1.3  -  5.3 4.3 5.3 5.3 4.3 4.3 3.2 4.2  58  Table 3«  C h a r a c t e r i s t i c Species o f the A s s o c i a t i o n s of the Pseudotsuga Zone, and the A l l u v i a l Complex; 5  6  Arc  A-G  Ca  Sy  2.2 3.3  5.2 4.3 1.2 1.2 1.2 1.1 5.2 1.2 4.2 3.3 1.3 2.3 2.1 3.3 i-3 5.3 5.2 4.2 4.2 1.3 1.3 1.2  5.3 3.2 1.3 1.2 1.1 1.1 5.2 1.3 4-2 1.3  5.3 3.3 1.2 1.3 1.3 2.2 4.1 1.1 5.3  4  Calarnagrostis mbescens Cladonia g r a c i l i s C. m i t i s C. v e r t i c l l l a t a Dicranum s t r i c t u m Drepanocladus uncinatus F r a g a r l a Virginiana P y r o l a secunda Spiraea l u c l d a A l l i u m cernuum Anemone m u l t i f i d a Junlpsrus scopulorum Pentstemon f r u t l c o s u s Sedum stenopetalum Solidago m i s s o u r l e n s i s Arctostaphylos u v a - u r s i Carex concinnoldes Shepherd!a canadensis Polytrlchum .luniperlnum Antennaria anaphaloides A. rosea Lathyrus n u t t a l l l i L I Hum columbianum Poa ampla Arnica cordifolia F r l t l l l a r l a lanceolata Aster conspicuua C e t r a r l a canadensis Clematis columpiana C a l l i e r g o n e l l a schreberi Mnlum splnulosnm Nephromopsis p l a t y p h y l l a Osmorhlza c h i l e n s l s Ramalina~farlnacea Rhytldiadelphus t r i q u e t r u s Symphorlcarpos albus Agropyron g r i f f i t h s i l Betula papyrlfera Clematis l i g u s t i c i f o l i a Cornus s t o l o n l f e r a Elymus condensatus Populus t r i c h o c a r p a Smilacina s t e l l a t a Solidago l e p i d a  -  2.2 mm  5.2  -  I-  1  5.3 4.2 4.3 4.2 5.2 5.2 5.3 4.2 4.2 2.1  1.1 1.1 mm  mm  1.2  mm  2.2 2.2  -  mm  1.2 mm  2.1 mm  -• 1.1 -  7  -  -  1.2 1.3  -  1.3  3.2 2.2 1.2 4.2 4-3 4.3 3.3 3-3 3.3 3.2 3.2 2.2 1.2  1.2 1.1 1.1 3.2 2.2 1.3 2.1 1.2 1.3 3.2 2.3 4-2 3.3 2.1 2.2 3.2 4.3 4.2 3.2 3.2 5-3  mm  1.1 1.3  -  1.1 1.3 1.3 1.1  -  1.2 3.2  -  mm  1.1 mm  -  1.1  -' -  1.1 1.1  8  AL  -2.3 1.3 •mm  mm  mm  mm-  1.3. mm  2.2 mm  3.2 4.3 4.3 5.3 4.3 4.3 5.3 4.3 4.3  of s o i l o r other environmental f a c t o r s : and which may theref o r e be thought of as comprising a union which t y p i f i e s that association.  S e v e r a l unions, however, may be represented i n  one a s s o c i a t i o n ; and on the other hand, each union may p l a y r o l e s o f v a r y i n g Importance i n a number o f d i f f e r e n t associations. Thus each a s s o c i a t i o n may be considered as being not merely an a s s o c i a t i o n o f independent  species; but,  f u r t h e r , of being an a s s o c i a t i o n of unions; and characteri z e d by one o r more t y p i c a l o r dominant unions of p l a n t s most favoured by the h a b i t a t . Of the unions described f o r the f o r e s t s of e a s t e r n Washington and adjacent Idaho (Daubenmire, 1952, a ) , the Agropyron splcatum, Poa secunda. P u r s h l a t r l d e n t a t a . Symphorlcarpos  r l v u l a r l s . and Calamagrostis rubescens  unions have been found to be w e l l represented here (Appendix 10); although not always w i t h the same compositions as i n the area covered by Daubenmire.  The c o n i f e r o u s t r e e s  o c c u r r i n g here a l l appear t o have somewhat d i f f e r e n t ecologi c a l requirements and ranges from each other as w e l l as from the understory unions; so that i f tree unions e x i s t here, i t seems t h a t each coniferous t r e e species has a union to i t s e l f .  The same i s probably the case w i t h Populus  tremuloides. On the other hand, i t appears t h a t a number of the deciduous t r e e species o f the a l l u v i a l stands may c o n s t i tute together a d e f i n i t e union.  The e c o l o g i c a l r o l e s of the  tree species are summarized i n t a b u l a r form I n Appendix 11.  60  Tables 2 and 3, which are abstracted from Appendix 3, show species which t y p i f y c e r t a i n a s s o c i a t i o n s w i t h h i g h presence and vigour values, blocked together under t h e i r associations.  Since, however, these t a b l e s are compiled of  independent species occurrences, the b l o c k s of species should not be taken as c o i n c i d i n g w i t h unions, though they do sometimes approximate t o unions.  One b l o c k u s u a l l y contains  representatives of more than one union. The unions found i n t h i s f o r e s t r e g i o n are l i s t e d below w i t h short d e s c r i p t i o n s i n d i c a t i n g t h e i r e c o l o g i c a l ranges and composition.  More d e t a i l e d l i s t s of the species  comprising these unions, based on the ranges o f occurrence of the s p e c i e s , as w e l l as a t a b l e showing the r o l e s played by the unions i n the various f o r e s t a s s o c i a t i o n s and other communities, are given i n Appendix 10. 1.  P u r s h l a union.  Purshia t r l d e n t a t a dominates w i t h i n i t s  present range, on sandy s o i l s a t low e l e v a t i o n s .  Ribes  cereurn and Chrysothamnus nanseosus occupy greater ranges, but Purshia may be a p o t e n t i a l dominant of much o f the range now occupied only by these l a t t e r two s p e c i e s . 2. A r l s t l d a union.  A r l s t l d a l o n g i s e t a and other more o r  l e s s psammophilous herbs and sub-shrubs of the d r y steppes and savannas a t low e l e v a t i o n s . I t may be s u f f i c i e n t l y c l o s e l y r e l a t e d , e c o l o g i c a l l y , t o the Purshia union t o warrant i n c l u s i o n i n t o one union w i t h the l a t t e r . Pentstemon R i e h a r d s o n l i . r a r e i n t h i s area, and not a c t u a l l y  61 found In any of the pine stands examined, may be Included I n t h i s union. 3* S e l a g i n e l l a union.  S e l a g l n e l l a r u p e s t r i s var. W a l l a c e l  and a few xerophilous mosses of the d r i e s t s i t e s .  k-» Po& secunda union. Poa C u s i c k i i appears to be more common i n t h i s area than P.. secunda. With these Foas are numerous annuals and drought-evading p e r e n n i a l s , many o f which comp l e t e the a c t i v e p a r t s o f t h e i r l i f e c y c l e s during the s p r i n g , and become dormant during the summer (Daubenmire, 1952  a and b ) .  5. Agropyron splcatum union.  A very u b i q u i t o u s union, w i t h  i t s best development on medium t o f i n e t e x t u r e d s o i l s at low to moderate e l e v a t i o n s .  L i k e the f o r e g o i n g , t h i s i s a union  of the steppe v e g e t a t i o n as w e l l as of the Pinus ponderosa zone.  A r t e m i s i a t r l d e n t a t a and A. t r i f i d a may perhaps belong  i n t h i s union, but t h e i r preference seems to be d i r e c t e d somewhat more s t r o n g l y toward c l a y s o i l s a t low e l e v a t i o n s , so t h e i r i n c l u s i o n here i s d o u b t f u l . Some herbaceous species, such as Lomatium macro carp urn and DelpMnlum b i c o l o r , which cure r e l a t i v e l y e a r l y , may b r i d g e the gap between t h i s and the Poa secunda union. 6. Rhus union.  The Rhus spp., w i t h some other shrubs and  herbs having t h e i r occurrence almost l i m i t e d t o the Rhus asso e l a t i o n .  7.  A r c t o s t a p h y l o s union.  A union o f some xerophileus ever-  green shrubs and a s s o c i a t e d herbs, u s u a l l y dominated by Arctostaphylos u v a - u r s i . which i s c h a r a c t e r i s t i c o f g r a v e l l y s o i l s a t medium t o h i g h e l e v a t i o n s . 8.  Calarnagrostis union. A r i c h herbaceous union dominated by  Calarnagrostis rubescens. P o l y t r i c h u m juniper!num accompanies i t , and may be a member o f i t i n t h i s f o r e s t .  This union  Inhabits medium t o f i n e t e x t u r e d s o i l s a t high e l e v a t i o n s , i n the Pseudotsuga zone.  I t s range overlaps that o f the  previous union; the two occur w i t h r e c i p r o c a l degrees o f dominance i n much o f the Pseudotsuga zone, and share the dominance i n the Arctostaphylos - Calarnagrostis a s s o c i a t i o n ' s understory.  Daubenmire (1952 a and b) Includes the A r c t o -  staphylos union i n t h i s one. 9.  Symphoriearpos union.  A union o f shrubs and a few herbs,  found i n s i t u a t i o n s r a t h e r m o i s t e r than those c h a r a c t e r i z e d by the aforementioned unions.  This union i s u s u a l l y accom-  panied by the Calarnagrostis union (Daubenmire, 1952 b ) . 10.  Rhytldiadelphus union.  A union o f mesophilous f o r e s t  f l o o r mosses, which are found here p r i n c i p a l l y i n the Symphoricarpos a s s o c i a t i o n .  This union may be found, on  examination o f moister f o r e s t types, t o be a r a t h e r a r t i f i c i a l one made up o f o u t l i e r s from s e v e r a l other unions whose main ranges are beyond the l i m i t s of t h i s f o r e s t region.  11.  G e t r a r i a union.  Several a r b o r l c o l o u s l i c h e n s , which  reach t h e i r best development here on D o u g l a s - f i r I n the Symphoricarpos !2.  association.  P v r o l a union.  Daubenmire (1952 b) p l a c e s i n t h i s union  the s t r o n g l y mycotrophic pyrolaeeous and orchidaceous species of the D o u g l a s - f i r f o r e s t s .  Although he Includes Pterospora  here, the present author f e e l s that the r o o t - p a r a s i t i c h a b i t of  t h i s p l a n t p l a c e s i t i n a s u f f i c i e n t l y d i f f e r e n t ecolog-  i c a l sphere to exclude i t from t h i s union of more o r l e s s saprophytic species.  I t i s debatable whether Spiranthes  should be placed i n t h i s union, since elsewhere, i t shows a preference f o r more open grassy s i t u a t i o n s than do most of the other members of t h i s union. A l l u v i a l unions.  The species c h a r a c t e r i z i n g the a l l u v i a l  communities may be grouped i n t o s e v e r a l unions t y p i f i e d f a i r l y w e l l by t h e i r general l i f e forms and the s u c c e s s i o n a l stages or the order i n which they enter the sere. 13.  S a l i x - Gornus union.  Cornus s t o l o n i f e r a and S a l l x  spp., which dominate the pioneer communities on newly exposed r i v e r bars. Populus t r i c h o c a r p a union. Deciduous t r e e s and  tall  shrubs (one l i a n a ) , which form the f i r s t t r e e canopy. 15.  Athvrlum - Smilacina union.  Mesophilous and s c i a p h i l o u s  herbs forming the f i r s t , and u s u a l l y sparse, herbaceous cover beneath the Populus t r i c h o c a r p a canopy.  6k  16.  Solidago l e p l d a union.  Herbs which enter the sere only  when the canopy begins t o open out.  I t i s f r e q u e n t l y accom-  panied here by Rosa nutkana and members o f the Rhus and Symphoricarpos unions. 17.  Elymus condensatus union.  A union o f the open savanna  or meadow on r i v e r f l a t s beyond the f o r e s t e d zone, and domi n a t e d by the t a l l bunch-grass, Elymus condensatus. I t may be mentioned t h a t , i n a d d i t i o n t o the unions mentioned above, a few members o f the Pachystima union (Daubenmire, 1952 a) occur o c c a s i o n a l l y i n these Douglasf i r stands.  T h e i r occurrence i s sporadic, however, and  does not show d e f i n i t e o r g a n i z a t i o n i n t o a union here.  E f f e c t s o f Topography and S o i l s .  The t o p o g r a p h i c a l charac-  t e r of a s i t e i s of primary importance i n modifying the o v e r a l l e f f e c t s o f the macroclimate as expressed i n the vegetation.  However, t h e topography does not have q u i t e such  an absolute importance i n these r e l a t i v e l y d r y f o r e s t s as i t does i n the f o r e s t s of moister c l i m a t i c r e g i o n s . W i t h i n t h i s f o r e s t r e g i o n the e f f e c t of topography, through i t s I n fluence on drainage, appears t o be more important at h i g h e r e l e v a t i o n s , where the climate i s moister and c o o l e r , t h a n , at low e l e v a t i o n s where the low p r e c i p i t a t i o n and h i g h evap o r a t i o n cause drainage e f f e c t s t o be almost n e g l i g i b l e , except very l o c a l l y .  As might he expected, the e f f e c t o f the slope, through i t s i n f l u e n c e on the i n t e n s i t y of i n s o l a t i o n , r e s u l t s i n the occurrence of a l t i t u d i n a l boundaries between p l a n t communities at lower e l e v a t i o n s on n o r t h slopes than on south slopes.  At mid e l e v a t i o n s , an Arctostaphylos or  Arctostaphylos - Calamagrostis community on l e v e l ground may be replaced on a south slope by an Agropyron community, and on a n o r t h slope by a Calamagrostis community.  The  e f f e c t of the slope i s t o reduce the degree of penetrat i o n of rainwater by inducing some of the water to r u n o f f the surface, thus producing a s o i l w i t h a d r i e r , l e s s leached A h o r i z o n .  This e f f e c t i s f u r t h e r enhanced on a  south slope by the increased i n s o l a t i o n and consequent evaporation, while on a north slope the reduced i n s o l a t i o n w i l l p a r t l y or completely compensate, or even overcompensate, for t h i s runoff effect.  A s t r i k i n g example of the e f f e c t of  the slope i s seen i n the o c c a s i o n a l complete absence of the Pinus ponderosa zone on or below steep n o r t h slopes. Two a s s o c i a t i o n s which appear to be c o n d i t i o n e d by s o i l drainage i n t h i s r e g i o n , are the Rhus a s s o c i a t i o n , which occurs at the base of slope or below g u l l i e s i n the h i l l s i d e s which b r i n g a l i t t l e seepage water t o the s u b s o i l i n a d d i t i o n to the supply d e r i v e d d i r e c t l y from the p r e c i p i t a t i o n ; and the Symphoricarpos a s s o c i a t i o n , which u s u a l l y i s found I n s i t u a t i o n s where the topography may induce a c e r t a i n amount of convergence i n the drainage, and thus increase the l o c a l s o i l moisture supply through seepage.  66  The e f f e c t o f s o i l texture i s r e f l e c t e d through i t s i n f l u e n c e on the drainage, storage, and a v a i l a b i l i t y o f moisture i n the s o i l , and i n p a r t on the ion-exchange capa c i t y o f the s o i l .  Probably the most s i g n i f i c a n t s i n g l e  f a c t o r i s the p r o p o r t i o n o f c o l l o i d a l m a t e r i a l ( c l a y ) i n the s o i l , but the i n f l u e n c e of sand, g r a v e l , and stones on the drainage p r o p e r t i e s o f a s o i l are not i n s i g n i f i c a n t . Factors r e l a t i n g t o the s o i l become more important as p r o g r e s s i v e l y d r i e r c l i m a t i c types are s t u d i e d ; Just as topographical f a c t o r s become more important i n moister regions. At low t o moderate e l e v a t i o n s i n t h i s r e g i o n , the p r e c i p i t a t i o n may be so low that heavy c l a y s o i l s can h o l d the bulk o f i t as hygroscopic water, which i s u n a v a i l a b l e to the p l a n t s .  On steep slopes, the slow p e n e t r a t i o n o f  water Into c l a y s o i l s r e s u l t s i n a h i g h p r o p o r t i o n of r u n o f f . I n consequence of these c o n d i t i o n s , such a s o i l i s very d r y , and may support only sparse v e g e t a t i o n , and w i l l tend t o erode r a p i d l y .  I n connection w i t h these characters of c l a y  s o i l s i t i s seen t h a t the lower boundary of the f o r e s t tends to l i e a t higher a l t i t u d e s , where the climate i s moister, on c l a y s o i l s , than on coarser textured m a t e r i a l s . In r e l a t i o n t o growth and reproduction, i t i s found that while reproduction appears best on coarse and stony s o i l s (Haasis, 1921), the growth o f the t r e e s that do become e s t a b l i s h e d i s b e t t e r on the f i n e r textured s o i l s , as w i l l be seen, i n t h i s work, from comparison of the growth  67  curves f o r the Agropyron and Calamagrostis a s s o c i a t i o n s w i t h those f o r the Purshia and Arctostaphylos a s s o c i a t i o n s which are found on coarse textured s o i l s .  This e f f e c t may be  counterbalanced i n country o f h i g h and rough r e l i e f by the e f f e c t s o f t o p o g r a p h i c a l s i t u a t i o n s and l o c a l c l i m a t i c variations.  Holtby (1947) found t h a t s o i l t e x t u r e , expressed  as a percentage of f i n e m a t e r i a l ( c l a y + s i l t ) i n the s o i l , provided a f a i r l y r e l i a b l e i n d i c a t o r of s i t e q u a l i t y , where the topographical e f f e c t s were not too great.  Problems Presented by U t i l i z a t i o n and i t s E f f e c t s .  The dry  f o r e s t of the I n t e r i o r o f B r i t i s h Columbia i s a n a t u r a l resource i n s e v e r a l ways simultaneously.  I t serves f o r timber  production, grazing l a n d , watershed c o n t r o l , r e c r e a t i o n , and game p r o d u c t i o n , but o n l y the f i r s t two o f these w i l l be considered here.  Hot o n l y i s the timber cut f o r lumber pro-  d u c t i o n , but, since t h i s i s l a r g e l y a l i v e s t o c k producing r e g i o n , the understory provides grazing f o r the l a r g e herds of c a t t l e and sheep which are pastured i n the woodlands as w e l l as on the open steppe, f o r up t o s i x months o f every year by the ranches which are s c a t t e r e d through the r e g i o n . This d u a l u t i l i z a t i o n poses some complex problems o f management. Both these resources o f the f o r e s t have been overe x p l o i t e d t o some degree.  Whitford and C r a i g (1918) c i t e d  the r a p i d d e p l e t i o n o f the ponderosa pine stands which had already taken place by 1918; and t h i s process has continued  68  to the present time.  The l o c a l p o l i c y of • s e l e c t i v e logging*  i s o f t e n i n t e r p r e t e d w i t h a *cut and get out* a t t i t u d e , which f r e q u e n t l y r e s u l t s i n only the poorer timber being l e f t to produce the next crop.  This i s e s p e c i a l l y evident i n the  mixed D o u g l a s - f i r and ponderosa pine stands o f the Pseudotsuga zone, where removal of the pine alone I n many areas i s l e a v i n g stands of the r e l a t i v e l y non-commercial Douglasf i r f o r f u t u r e crops. Clark (1952) a f t e r a study o f the mixed Douglasf i r and ponderosa pine stands of the southern I n t e r i o r of t h i s province, notes t h a t c u t t i n g i n these stands, t o date, has been of mature and overmature t r e e s , and he recommends the c u t t i n g o f a l l merchantable t r e e s down t o 12 inches d.b.h. i n the Okanagan area, and down to 2I4. inches d.b.h. i n the Brookmere d i s t r i c t f u r t h e r west. 'merchantable*  However, the word  i m p l i e s that the poor, noncommercial stock  would s t i l l be l e f t t o regenerate the stand.  He does not  appear t o appreciate the s e l e c t i v e e f f e c t of the d i f f e r e n c e s In the commercial values o f the t r e e species Involved. Much l i t e r a t u r e has been produced d e s c r i b i n g what s e l e c t i v e c u t t i n g o f ponderosa pine can mean, when so carr i e d out as t o r e l e a s e those t r e e s which w i l l produce the best as a r e s u l t of that r e l e a s e ; but only three authors w i l l be considered here.  Meyer (191+7) shows the  e f f e c t s of r e l e a s e w i t h t a b l e s o f d.b.h. o f t r e e s from 30 years before t o 60 years a f t e r s e l e c t i v e c u t s .  He f i n d s  69  that the e f f e c t s of release may  l a s t f o r 30 to lj.0 years,  and that In the f i r s t 20 years, the acceleration i n d i a meter growth may Roe  amount to as much as 69 to 73 per  cent.  (1952) recommends a 20 to 30 year cutting cycle, and  shows that i n the f i r s t 10 years a f t e r cutting, d.b.h. may increase on an average, 1.07 for  the 10 years preceding  inches, as against 0.80  cutting.  inches  Pearson (1950) finds  that the volume Increment increases a f t e r cutting into the second f i v e year period, but thereafter declines u n t i l after 30 years the e f f e c t s of the release are no significant.  longer  From t h i s he i n f e r s that the gain i n volume  after 20 years i s not f a s t enough to warrant delaying a second cut beyond that time.  He also describes how  the p o s i -  t i o n of a tree i n a group w i l l a f f e c t i t s growth and reaction to release. When management i s attempted, i n t h i s area, the management p o l i c y may  sometimes c o n f l i c t with the s e l e c t i v e  cutting p o l i c y l a i d down by the Forest Service.  In addition,  areas which are planted with seedlings should be  protected  from l i v e s t o c k f o r several years, which, apart from r a i s i n g the necessity f o r costly fencing programs, w i l l bring the timber managers into c o n f l i c t with the ranchers, who  feel  that they are being deprived of grazing land that they are e n t i t l e d to use. Grazing over much of the past century has i n many d i s t r i c t s been so intensive that pronounced and  extensive  70  changes have been Imposed on the v e g e t a t i o n o f such l o c a l i ties.  I n some cases these changes have been so extreme that  the aspect o f the vegetation has been completely a l t e r e d , and l i t t l e o r no evidence remains t o i n d i c a t e the nature o f the o r i g i n a l stands ( T i s d a l e , 1947),  This has been p a r t i c u l a r l y  true of the Agropyron a s s o c i a t i o n , much o f which has been so depleted o f p a l a t a b l e herbage by long-continued grazing that i t has become n e a r l y u s e l e s s .  over-  The heavy pastur-  ing of l i v e s t o c k may a l t e r both the tree and herbaceous aspects of a stand.  Rumrael (1951) shows that grazing of the grassy  understory reduces the y i e l d o f forage, and at the same time reduces the c o n t r o l that the grasses, through competition, exert on the reproduction o f p i n e , which may increase on grazed stands.  Arnold (1950) notes how p a l a t a b l e and sen-  s i t i v e bunchgrasses may give way under grazing t o g r a z i n g r e s i s t a n t species such as A r i s t i d a spp. e£ c e t e r a , and how an increase i n pine cover i s c o r r e l a t e d w i t h a decrease i n the herbaceous cover.  So that i t i s seen that g r a z i n g may  reduce the forage y i e l d s both d i r e c t l y and i n d i r e c t l y . Pearson (1950) shows that from the p o i n t o f view o f pine regeneration, both undergrazing and overgrazing can be d e t r i m e n t a l : the former by p e r m i t t i n g too much grass comp e t i t i o n f o r tree seedlings to be able to meet; and the l a t t e r through d i r e c t damage to the young pines by t h e browsing of sheep, c a t t l e , or deer, a l l o f which may browse ponderosa p i n e .  C a t t l e and sheep u s u a l l y browse the pine  severely only i f the herbaceous forage p l a n t s have become  71  depleted by overgrazing; and then they prefer the young leaders when at the stage of most rapid elongation, or the young foliage i n autumn (Pearson, 1950)•  But deer, which  prefer to browse woody species ( H i l l and H a r r i s , 1943)* may  a f f e c t young saplings and seedlings during the  winter  as well as at the other times mentioned above, the c a t t l e In t h i s area being normally o f f the range through the  winter  months• The e f f e c t s of heavy pasturing on the s o i l may manifested  i n two ways:  It may  be  r e s u l t i n a depletion of the  humus i n the A horizon, since t h i s i s no longer replenished at a rate s u f f i c i e n t to maintain i t against oxidation and other forms of wastage, with a consequent r e v e r s a l of the normal process of melanlzation, a reduction i n i t s f e r t i l i t y , and a lightening of Its colour.  Much trampling by  animals,  e s p e c i a l l y on the heavier s o i l s , apart from destroying the vegetation cover d i r e c t l y , may  puddle and cake the s o i l sur-  face, thus reducing the rate of penetration of r a i n water, and further reducing the vegetation cover, while a greater proportion of the p r e c i p i t a t i o n runs o f f the l a r g e l y unprotected s o i l and brings about accelerated erosion (Pig. 3 c ) .  Descriptions of the Associations and 1.  Subassociations.  Pinus ponderosa - Purshia t r l d e n t a t a Association (Pu).  This association i s found at low elevations on sandy to  72 gravelly s o i l s of old r i v e r terraces.  In t h i s region i t i s  confined to the South Okanagan V a l l e y from the l a t i t u d e of Kelowna southward, and i s p a r t i c u l a r l y w e l l represented i n the p o r t i o n of the v a l l e y between Okanagan P a l l s and the I n t e r n a t i o n a l Boundary.  Although apparently  s u i t a b l e h a b i t a t s occur  i n the Thompson V a l l e y , Purshia t r i d e n t a t a seems not to have succeeded yet i n c r o s s i n g the i n t e r v e n i n g b a r r i e r s and occupying i t s equivalent e c o l o g i c a l niches there.  Daubenmire  (19^2 b) mentions the occurrence of t h i s a s s o c i a t i o n i n the North Thompson V a l l e y , but the present author has not found any stand of i t there, and the herbarium of the U n i v e r s i t y of B r i t i s h Columbia contains no record of Purshia t r i d e n t a t a from that area.  Daubenmire a l s o describes the occurrence of  t h i s a s s o c i a t i o n i n the Rocky Mountain Trench i n B r i t i s h Columbia and Montana, i n Washington, and east of the Cascade Mountains to C a l i f o r n i a .  The present author has seen exten-  sive areas of i t on pumice s o i l s on the p l a t e a u of C e n t r a l Oregon. The influence of l o c a l topography appears to be s l i g h t , the same a s s o c i a t i o n o c c u r r i n g on a l l slopes of a terrace as w e l l as on i t s l e v e l upper surface.  Only when  seepage i s brought near the surface does the community change, and the Rhus a s s o c i a t i o n takes i t s p l a c e .  I t w i l l be seen  from the table of s o i l textures (Appendix 8) that the p r e dominant t e x t u r a l f r a c t i o n i s sand ( i n one case, g r a v e l ) , and that the c l a y content i s g e n e r a l l y low. loose, and l a c k s cohesion.  The s o i l i s  When denuded of vegetation, i t  w i l l tend t o blow Into dunes, a few small areas of which do occur near O l i v e r i n adjacent Purshia t r l d e n t a t a areas where t r e e s are absent. C l i m a t i c a l l y , the a s s o c i a t i o n i s c h a r a c t e r i s t i c a l l y dry; the p r e c i p i t a t i o n being g e n e r a l l y l e s s than eleven inches per year.  Summer temperatures are h i g h .  Temperature measure-  ments c a r r i e d out i n 1953 on the surface centimetre o f the s o i l show values t h a t , w i t h those from the A r l s t l d a suba s s o c i a t i o n , are the highest found i n any ponderosa pine stand i n t h i s r e g i o n .  Despite the f a c t t h a t the summer of  1953 was c o o l e r and moister than average i n that d i s t r i c t , surface temperatures l e t h a l to seedlings were reached during much of that summer.  Evaporation i s g e n e r a l l y h i g h , but an  a m e l i o r a t i n g i n f l u e n c e on t h i s f a c t o r i s probably provided by the h i g h shrubby undergrowth, which s h e l t e r s the ground from the wind. Purshia t r l d e n t a t a occurs as a dominant of a semia r i d , t r e e l e s s , shrub-steppe  a s s o c i a t i o n of q u i t e d i s t i n c t i v e  aspect, over a considerable area of the South Okanagan V a l l e y between O l i v e r and Osoyoos ( P i g . 4 a ) .  The  area  covered by t h i s v e g e t a t i o n has been g r e a t l y reduced i n recent years as land has been brought under c u l t i v a t i o n , and i r r i g a t i o n has permitted the establishment of extensive f r u i t orchards. The shrub, Purshia t r l d e n t a t a . probably owes i t s success t o the coarse s o i l , which allows r a p i d p e n e t r a t i o n of r a i n water to depths beyond those reached by the r o o t s o f  F i g . 4. a. A P u r s h i a t r l d e n t a t a shrub-steppe community (stand 92). b. A P i n u s ponderosa - P u r s h i a t r l d e n t a t a stand (no. 10). c. A P u r s h i a stand c o n t a i n i n g Pseudotsuga as w e l l as P i n u s (stand 70). The f l o w e r i n g shrub i s Ceanothus v e l u t i n u s .  most of i t s herbaceous competitors, and a l s o r e s u l t s i n a high degree o f a v a i l a b i l i t y of what water does reach the soil.  The same combination of f a c t o r s i s probably r e s -  p o n s i b l e f o r the a b i l i t y o f Pinus ponderosa to grow at lower e l e v a t i o n s , and i n h o t t e r and d r i e r c l i m a t i c c o n d i t i o n s , i n t h i s a s s o c i a t i o n than i n most o t h e r s . secunda unions (Daubenmire, 1952 story.  The P u r s h i a and Poa  a and b) make up the under-  Common a s s o c i a t e s i n c l u d e : A r i s t i d a l o n g l s e t a .  Chrysopsis v i l l o s a , Erlogonum nlveum, P h a c e l i a l i n e a r i s , and Phlox l o n g i f o l l a (Table 2).  Poa secunda i s g e n e r a l l y  replaced by P_j. C n s i c k i i i n t h i s area.  Opuntia f r a g l l i s  occurs w i t h great abundance but low v i g o u r , and G i l i a pungens. G. aggregata. Sporobolus cryptandrus, Stephanomeria t e n u i f o l l a . Festuca o c t o f l o r a . S e l a g l n e l l a r u p e s t r l s . and T o r t u l a r u r a l i s are sometimes conspicuous members. Annuals p l a y a r e l a t i v e l y important p a r t i n the v e g e t a t i o n (Appendix 5), probably through t h e i r a b i l i t y to c o l o n i z e the many open spaces of the s o i l , t o complete t h e i r l i f e cycles between dry seasons, and to u t i l i z e the p r e c i p i t a t i o n water promptly, while i t yet remains i n the surface l a y e r s of the s o i l .  This l a t t e r f a c t o r a l s o a p p l i e s to  S e l a g l n e l l a and t o the moss T o r t u l a r u r a l i s , as w e l l as t o the shallow rooted Opuntia. whose water storage t i s s u e s permit almost i n d e f i n i t e drought s u r v i v a l .  Agropyron  splcatum i s u s u a l l y present i n s m a l l amounts, the introduced annual, Bromus tectorum. i s g e n e r a l l y abundant, and Carex  f i l i f o l l a i s common l o e a l l y , near O l i v e r , ( P i g . 4 b}. Pinus ponderosa, i n t h i s a s s o c i a t i o n , forms mode r a t e l y dense t o open, p a r k - l i k e stands.  I t s reproduction  i s o f t e n f a i r l y good, since i t probably b e n e f i t s from the shade of the shrubby understory during the dangerously hot periods o f i t s f i r s t season's growth.  Growth i s mediocre,  and mature trees average 25 inches i n diameter and 80 f e e t In height (Table k» and P i g . 5 ) . Grazing i s poor, owing to the r e l a t i v e l y h i g h p r o p o r t i o n of unpalatable p l a n t s , which tend t o be f u r t h e r increased under g r a z i n g , (Purshia t r l d e n t a t a i s reputed t o be poisonous t o l i v e s t o c k i n t h i s r e g i o n , and though elsewhere, I n c e n t r a l Oregon, I t i s grazed, i t appears t o be l e f t alone by the l i v e s t o c k h e r e ) . The grazing could perhaps be improved by burning o r otherwise e l i m i n a t i n g the P u r s h i a , thereby p e r m i t t i n g the perenn i a l grasses t o increase w i t h the reduced competition. This measure would probably r e s u l t i n poorer t r e e regenerat i o n owing t o the r e d u c t i o n i n the amount of shade necessary f o r the young s e e d l i n g s , as a p r o t e c t i o n from the intense heat o f the s o i l surface I n summer, and might necess i t a t e the p l a n t i n g of young t r e e s , where i t i s d e s i r e d t o maintain a stand.  The shrubby understory o f P u r s h i a , where i  dense, probably a f f o r d s p r o t e c t i o n f o r the young t r e e s from damage by l i v e s t o c k ; so that the shrubs would seem t o favour the s u r v i v a l o f seedlings i n two ways.  On the other hand,  the trees may show a l i t t l e Improvement i n growth r a t e s where they are r e l e a s e d from the competition o f the  shrubs.  wl  PURSHU I A M S T I M ASSOCIATIONS  S0\-  |. AtROPYRON A STIPA ASSOCIATIONS KOI  3»  V  Fig.5. Ranges o f growth curves of d.b.h. and height against age, f o r pine i n the associations of the Pinus ponderosa zone.  Douglas-fir occasionally enters t h i s association, as i n stand no. 70 (Pig. t[ c ) , but never approaches dominance. Reproduction a f t e r disturbance may be very dense, as i s shown by stand 70, which, a f t e r having been cut seve r a l years ago, now consists l a r g e l y of second growth reproduction.  Here the regeneration i s so dense that i t w i l l  probably give r i s e to stagnation, unless thinned d r a s t i c a l l y . The table of size d i s t r i b u t i o n (Appendix 9) f o r t h i s stand shows t h i s condition very well.  l . a . Pinus ponderosa - A r i s t i d a long!seta Subassociation (Ari).  After a Purshia stand has been burnt with s u f f i c i e n t  i n t e n s i t y to eliminate Purshia tridentata, the herbaceous components of the vegetation, freed from i t s competition, increase i n amount, and the whole aspect i s changed to one of an open stand with a sparse grassy understory 6 a and b ) .  (Figs.  Of the grasses, A r i s t i d a longlseta becomes the  dominant, but Stipa comata and other grasses also show increases.  Of non-grasses,  Chaenactis Douglas11, G i l i a  pungens, and Erlogonum nlveum also show increased abundance and presence.  The same i s true of Phacelia l i n e a r i s and  other annuals. In one stand (no. 19) of t h i s subassociation, near Oliver, many dead s t i c k s of Purshia tridentata l i t t e r ing the ground gave evidence of the recent conversion of t h i s stand from a Purshia stand to i t s present form. I t  c. F i g . 5. a. An A r i s t i d a stand (no. 19) on a l e v e l terrace, b. Stand 78, showing the sparse cover of A r i s t i d a on loosa sand on a south slope, c. An Agropyron stand (no. 104), showing Balsaraorhiza  77  Table 4 '  Mean diameters and heights of mature t r e e s of Pinus ponderosa In the a s s o c i a t i o n s I n which I t I s found.  Association  D.b.h. Inches  Height feet  Pu  25  80  Ag  29  95  Rh  30  90  Arc  22  70  A-C  30  100  Ca  42  135  sy  40  130  AL  60  155  occurs on the same s o i l type, and i n a s i m i l a r s i t u a t i o n as the n e a r l y adjacent w e l l developed P u r s h i a stand, no. 10. Some t r e e s bored i n stand 19 showed signs of r e l e a s e extendi n g back some If? years. Some A r i a t i d a communities have a l s o been seen i n the Thompson V a l l e y , west o f T r a n q u i l l e , i n a d i s t r i c t  where,  to the w r i t e r ' s knowledge, P u r s h i a t r l d e n t a t a does not occur. Apparently t h i s species has not y e t succeeded i n reaching that area; though the e c o l o g i c a l c o n d i t i o n s and the presence of other species elsewhere associated w i t h P u r s h i a t r l d e n t a t a would i n d i c a t e t h a t , i f t h i s shrub were t o g a i n entry t o t h i s v a l l e y , i t would e v e n t u a l l y succeed t o the same e c o l o g i c a l r o l e i n these stands as i t does i n the corresponding communities i n the Okanagan V a l l e y . ion,  I n view of t h e i r  composit-  such communities i n the Thompson V a l i e y should probably  be included w i t h the other A r l s t l d a stands i n the Okanagan V a l l e y as a s u b a s s o c i a t i o n o f the P u r s h i a a s s o c i a t i o n .  One  stand (no. 57) i n the Thompson V a l l e y , occurs on s o i l w i t h an apparently unusually h i g h c l a y content, but t h i s e f f e c t i s a l t e r e d i f one considers the very h i g h p r o p o r t i o n o f g r a v e l i n the same p r o f i l e , as w e l l as the stones which were not c o l l e c t e d i n the samples.  I f the g r a v e l i s i n c l u d e d i n  the sample, the c l a y f r a c t i o n i s redueed t o about 7.5 p e r cent, which i s i n keeping w i t h that i n other Purshia and A r l s t l d a stands. The grazing q u a l i t y i s no doubt improved i n t h i s s u b a s s o c i a t i o n , as compared t o the P u r s h i a a s s o c i a t i o n , but  A r i s t i d a l o n g i s e t a i s probably a r a t h e r unpalatable grass i n view o f i t s sharp, awned f r u i t , which may p e r s i s t on the p l a n t i n t o the next season.  Any tendency f o r Purshia t o  reinvade an A r i s t i d a stand would be encouraged by overg r a z i n g o f the grass. The growth curves of Ponderosa pine here f a l l w i t h i n the same range as those i n the Purshia a s s o c i a t i o n ( P i g . f>).  I t i s n o t i c e a b l e , however, that r e l a t i v e l y  little  reproduction takes place compared t o that i n a Purshia stand.  This i s seen by comparing the frequency  distribution  of s i z e s o f t r e e s i n stand 19 w i t h that i n nearby stand 10 of the unburnt Purshia community (Appendix 9 ) . A note on the seasonal aspects i s presented  here.  Among the e a r l i e s t p l a n t s t o f l o w e r are some o f the annuals, such as Polemonium mlcranthum, which f l o w e r , set seed, and wither up by t h e f i r s t week i n May.  E a r l y i n May, P u r s h i a  t r i d e n t a t a blooms, changing the general colour o f the stand from the u s u a l d u l l grey-green t o a pale y e l l o w .  Also i n  May, Q a l l l a r d l a a r i s t a t a . E r l g e r o n spp., and Phlox l o n g l f o l l a f l o w e r , and L e w l s i a r e d l v l v a produces i t s s h o r t l i v e d r o s e t t e s and flowers before becoming so inconspicuous as t o be e a s i l y overlooked l a t e r i n the season.  I n June,  Oalochortus macrocarpus, and G i l l a aggregata become conspicuous, and e v e n t u a l l y A r i s t i d a l o n g i s e t a heads out. Plantago p u r s h i i now puts i n an appearance, l a t e f o r an annual, and probably t a k i n g advantage o f the June r a i n s .  80  Thereafter, the stand has a dry, dormant appearance u n t i l the f l o w e r i n g of Chrysopsis v i l l o s a and Chrysothamnus nauseosus between August and October.  I f weather permits,  Erlgeron  pumilus. E. l i n e a r i s , and Phlox l o n g l f o l i a may undergo a second f l o w e r i n g i n e a r l y November. 2.  Pinus ponderosa - Agropyron splcatum A s s o c i a t i o n (Ag).  Of a l l the a s s o c i a t i o n s of t h i s f o r e s t r e g i o n , t h i s  one  appears t o be the most widespread and v a r i a b l e i n s i t u a t i o n , s o i l types, and growth c h a r a c t e r i s t i c s .  I t i s a feature of  great areas at low to moderate e l e v a t i o n s , where i t probably represents the c l i m a t i c climax. Daubenmire (1952  b) s t a t e s that coarse s o i l s are  the main requirement f o r t h i s a s s o c i a t i o n , but i n the present work, the Agropyron a s s o c i a t i o n has been found on s o i l s varyi n g from gravels t o clays (Appendix 8).  In the case of the  former, i t i s apparently t o p o g r a p h i c a l l y conditioned  on  slopes below Arctostaphylos or Arctostaphylos - Calarnagrostis stands.  Heavy textured s o i l s under t h i s a s s o c i a t i o n are to  be found mainly on o l d l a c u s t r i n e t e r r a c e s .  O g i l v i e (unpub-  l i s h e d data) has found that s o i l s of t h i s a s s o c i a t i o n o f t e n show a h i g h degree o f m e l a n i z a t i o n of the A h o r i z o n . The climate i n t h i s a s s o c i a t i o n i s s i m i l a r to that i n the Purshia a s s o c i a t i o n , but on the whole, i t s stands have been found at higher a l t i t u d e s than the l a t t e r , and have appeared a l i t t l e eooler and moister (Appendix 7 ) .  81  I n one stand (no. 31) I t was noted that the f l o r l s t i c makeup v a r i e d markedly i n the v i c i n i t y o f the t r e e s . I t was decided then t o i n s t a l l two sets of instruments.  One  s t a t i o n (31N) was s i t u a t e d on the shady north side o f a small group of t r e e s I n such a p o s i t i o n t h a t , although i t was open to the sky and the f u l l p r e c i p i t a t i o n would be recorded, t h e instruments were shaded by the t r e e tops d u r i n g the hot p a r t of the day. The other s t a t i o n (31S) was placed beneath the overhanging canopy o f branches on the south side o f the same clump o f t r e e s , so that while the r a i n gauge r e c e i v e d only the p r e c i p i t a t i o n which was not i n t e r c e p t e d by the t r e e s , the instruments were exposed t o the s u n l i g h t throughout the day. The e f f e c t o f shade on the s o i l surface temperature was s i g n i f i c a n t : the temperature i n the shaded area reached a maximum of 111°P, 20° below the l e t h a l t h r e s h o l d f o r seedl i n g s , while i n the s u n l i t area the maximum recorded was 139°P, and the l e t h a l threshold o f 1 3 1 ° was exceeded during f o u r months, i n 1 9 5 3 . The i n t e r c e p t i o n of p r e c i p i t a t i o n accounted f o r an appreciable p r o p o r t i o n o f the t o t a l ; although i t would vary from spot t o spot.  The r a i n gauge i n 31S received only 7.1ij.  of a t o t a l o f 12.80 inches which f e l l on 3 1 N during the year. The evaporation, as could be expected, was considerably higher from the s u n l i t atmometer on the south side than from the one i n the shade; the t o t a l s being 2 1 . 6 1 and 1 4 . 5 6  82  inches respectively, f o r the period from May t o September, 1953.  The former value i s thought to represent the more  closely the evaporation conditions i n the greater part of an open, p a r k - l i k e stand of t h i s type. The f u l l significance of the differences i n moisture conditions between these two situations i s emphasized by the P/E r a t i o s .  The value of the P/E r a t i o f o r the s u n l i t area  beneath the trees was found to be 0 . 0 9 , and f o r the shaded area, O.36,  or about four times as moist as the former.  The f l o r l s t i c variations associated with these two situations consisted of a small stand of Calamagrostis rubescens i n the shaded area exposed to the sky, t h i s species being absent from other parts of the stand; while under the south side of the trees was a patch of almost bare ground, with a sparse society of annuals, such as Epilobiura minutum, Phacelia l i n e a r i s . Mentzelia a l b i c a u l l s . and G i l l a g r a c i l i s , dominated by Bromus tectorum. Polemonlum mleranthum was found In situations of the l a t t e r type i n other stands. Since the r a i n gauge i n 3 1 N and the atmometer i n 3 1 S were considered to give r e s u l t s most representative of the stand as a whole, the P/E r a t i o s calculated from them are considered to be c h a r a c t e r i s t i c f o r t h i s stand.  These  values are marked N / s i n Appendix 7. The understory of the Pinus ponderosa - Agropyron splcatum association i s r e a l l y an extension of the Palouse grassland climax vegetation among the scattered pine trees,  83  and Daubenmire s Agropyron spicatum union (1952 a and b ) , !  accompanied sometimes by the Poa secunda union, make up the bulk of the ground cover.  Agropyron spicatum, represented  mostly by i t s var. inerme, though present i n a l l the associ a t i o n s , characterizes t h i s association by i t s dominance o f the understory.  Among other grasses, Festuca O c c i d e n t a l l s  (including F^ ldahoensls) i s u s u a l l y important, and i s sometimes accompanied or replaced by Fj_ s c a b r e l l a . Poa secunda or P. c u s i c k i i , K o e l e r l a c r i s t a t a , and some species of Stipa are nearly always present.  The most common sedge present i s  Carex r o s s i i . Among non-grasses, one or both of Artemisia tridentata and the closely related A_. t r l f l d a are usually present, as well as Erlogonum heracleoides and Erigeron pumilus.  Balsamorhiza s a g i t t a t a , which i s of quite widespread  occurrence, here reaches a peak o f abundance.  Luplnus  serlceus and Geranium viscosissimum are sometimes members.  conspicuous  A f a i r l y t y p i c a l example of the Agropyron associa-  t i o n i s shown i n Figure 6 c , a view of stand lOij. i n which Balsamorhiza f o l i a g e i s v i s i b l e among the grass.  An example  of the topographically conditioned form of t h i s association i s shown i n Figure 7a, which shows a south slope of gravelly material (stand 100) below an Arctostaphylos stand.  The  poor tree growth, which i s s i m i l a r t o that i n an Arctostaphylos stand, and the sparseness of the vegetation cover, r e f l e c t the poverty of the s o i l and the topographic influences.  •t  -  F i g . . Agropyron a s s o c i a t i o n , a. sparse cover and poor growth on coarse, l o o s e m a t e r i a l on a south slope {stand 100). b. Dense r e p r o d u c t i o n f o l l o w i n g d i s t u r b a n c e i n s t a n d 27. c. A Pseudotsuga Agropyron stand near Chase. 17  84  The grazing q u a l i t y o f t h i s a s s o c i a t i o n v a r i e s from poor t o e x c e l l e n t .  Pinus ponderosa i n t h i s a s s o c i a t i o n shows  growth r a t e s which vary from the poor extreme shownin stand 1G0 ( P i g . 7a) above, t o good.  The average mature t r e e has a  diameter of 29 inches and a height of 95 f e e t (Table 4 and Pig.  5).  The reproduction i s g e n e r a l l y sparse i n undisturbed  stands (Appendix 9 ) , so that the stand i s maintained i n an open form.  However, sometimes a f t e r disturbances, such as  heavy g r a z i n g , or a f i r e immediately preceding a good seed y e a r , o r some other disturbance which may reduce the competi t i o n of the grasses, the pine or D o u g l a s - f i r may reproduce i n dense patches, as seen i n stand 27 ( P i g . 7b). Between Vernon and Kamloops, s e v e r a l stands may be seen i n which the former open parkland has become replaced by an overstocked stand o f t r e e s .  I n some cases the understory has remained  grassy while becoming g r e a t l y reduced i n d e n s i t y ; b u t i n other cases the grass has become supplanted by the Symphoricarpos union, so t h a t , i n e f f e c t , the Symphoricarpos a s s o c i a t i o n i s seen t o have encroached upon the Agropyron a s s o c i a t i o n . This overstocking by the t r e e s i s accompanied by a great r e d u c t i o n i n the forage y i e l d , which may d e c l i n e from e x c e l l e n t , i n the b e t t e r q u a l i t y stands, t o poor or worthless.  Such overstocked stands should u l t i m a t e l y be thinned  to avoid overcompetition and stagnation among the young t r e e s , and t o t a l suppression of the grass cover beneath (Arnold, 1950).  85  The seasonal aspects here are o f t e n q u i t e marked. In e a r l y s p r i n g ( A p r i l u s u a l l y ) Ranunculus glaberrimus l o c a l l y becomes conspicuous, and i n May Balsamorhiza s a g l t t a t a may flower so p r o f u s e l y t h a t i t colours large areas yellow.  About t h i s time, Delphinium b i c o l o r f l o w e r s . At  t h i s stage Lupinus s e r i c e u s i s j u s t appearing above the ground, but a month l a t e r i t may become the most conspicuous p l a n t while the leaves of Balsamorhiza are d r y i n g and i t s seeds are maturing.  Geranium viscosisslnrum, P o t e n t l l l a  arguta, and Agropyron splcatum flower about now.  By J u l y  the grass i s beginning to cure, and the f o l i a g e of Balsamorh i z a has d r i e d up and may almost have disappeared.  In  September and October the A r t e m i s i a spp. f l o w e r , but seldom conspicuously.  These seasonal aspects r e q u i r e a t t e n t i o n i n  the f i e l d , s i n c e , unless care i s taken, they may  markedly  a f f e c t the dominance and vigour estimates a s c r i b e d to many species. Subassociations and other v a r i a t i o n s of the Pinus ponderosa Agropyron splcatum a s s o c i a t i o n .  The v e g e t a t i v e composition  of t h i s a s s o c i a t i o n i s subject t o a c e r t a i n amount of v a r i a t i o n i n d e n s i t y and f l o r i s t i c makeup, both i n climax and d i s climax s t a t e s .  The t o p o g r a p h i c a l l y conditioned v a r i a n t des-  c r i b e d above, and represented by stands 2, 100, and 101, should probably be segregated as a d i s t i n c t s u b a s s o c i a t i o n . However, the author f e e l s that at present not enough i s known of t h i s type to j u s t i f y the establishment, here, of such a d i s t i n c t  86  unit f o r i t . Pinus ponderosa i s the u s u a l dominant here, and Pseudotsuga i s e i t h e r absent o r only present i n r e l a t i v e l y small amounts.  There are s i t u a t i o n s , however, on o r below  steep n o r t h slopes, or at h i g h e l e v a t i o n s on f a i r l y heavy s o i l s , p a r t i c u l a r l y northward, where Pinus ponderosa i s absent, and the Agropyron grassland abutts d i r e c t l y on the f o r e s t of the Pseudotsuga zone.  Here may often be found a  f a i r l y open p a r k - l i k e stand of Pseudotsuga w i t h Agropyron dominating the understory. Although no stands of t h i s type were analysed i n t h i s work, i t i s thought that t h i s type of stand w i l l become of i n c r e a s i n g importance northward, espe c i a l l y i n regions beyond the n o r t h e r n l i m i t of Pinus ponderosa.  I t may be necessary, then, t o e s t a b l i s h a Pseudotsuga -  Agropyron a s s o c i a t i o n or subassociation to include t h i s type. An example of such a community, photographed near Chase, i s shown i n Figure 7c. Stands o f t h i s subassociation have been seen t o be undergoing a s i m i l a r process o f overstocking with Douglasf i r i n modern times as has been a f f e c t i n g the Pinus ponderosaAgropyron splcatum a s s o c i a t i o n .  Hear Vernon, the w r i t e r has  seen a dense young stand of D o u g l a s - f i r growing upon a deep chernozem s o i l of evident grassland o r i g i n supporting a sparse understory of Agropyron splcatum. Two dlsclimaxes of the Pinus ponderosa - Agropyron splcatum a s s o c i a t i o n , which are thought t o have r e s u l t e d , i n  the main, from excessive disturbance by grazing l i v e s t o c k , are described i n d e t a i l below. 2.a.  Pinus ponderosa - S t i p a comata Subassociation ( S t ) .  In the Lower Grassland (Agropyron - Artemisia) zone, S p i l l s bury and T i s d a l e (1944) and T i s d a l e (1947) describe an e d a p h i c a l l y conditioned community o f which S t i p a comata i s the dominant, accompanied by Sporobolus sometimes by Chrysothamnus nauseosus.  cryptandrus, and This community i s  conditioned by coarser s o i l s than the climax Agropyron A r t e m i s i a a s s o c i a t i o n . I n the sense o f the present work, t h i s S t i p a comata a s s o c i a t i o n would be regarded as climax. In the Middle Grassland (Agropyron - Poa) zone, T i s d a l e (1947) found a S t i p a comata community which was derived from  the Agropjrron-dominated  climax through overgrazing; and a  corresponding S t i p a columbiana - Poa p r a t e n s i s g r a z i n g d i s climax was found i n the Upper Grassland (Agropyron - Pestuca) zone. F l o r i s t i c a l l y , the S t i p a s u b a s s o c i a t i o n d i f f e r s from the Agropyron a s s o c i a t i o n mainly i n the r e d u c t i o n of Agropyron splcatum t o a subdominant o r codomlnant s t a t u s , and the assumption of dominance by S t i p a comata ( F i g . 8 c ) , u s u a l l y accompanied by J3. columbiana and other S t i p a spp. Increases a l s o occur i n Sporobolus  cryptandrus. Lappula  myosotis. and o c c a s i o n a l l y i n A r l s t l d a l o n g i s e t a . as a l s o found by T i s d a l e (1947).  Antennaria spp. may become abun-  dant, and S t i p a spartea enters the subassociation i n the  88  more n o r t h e r l y p a r t s of i t s range.  Under excessive g r a z i n g ,  dominance of the stand may pass to the aggressive, introduced annual grass, Bromus teetorum ( T i s d a l e , 1947), unless the g r a z i n g i s In the s p r i n g , when t h i s species i s r e l a t i v e l y p a l a t a b l e (Daubenmire, 1 9 4 ° ) • One  stand (no. 73) on r a t h e r sandy s o i l , which on  the b a s i s of the v i s u a l estimates was at f i r s t d e f i n i t e l y c l a s s e d w i t h t h i s s u b a s s o c i a t i o n , was found, on more exact q u a n t i t a t i v e study by p o i n t t r a n s e c t , to be r a t h e r i n t e r mediate between an Agropyron and a S t l p a community.  At the  time of making the o r i g i n a l estimates, S t l p a spp. were growing vigourously and heading out while the Agropyron was weak and almost e n t i r e l y v e g e t a t i v e .  This aspect gave  the Impression that S t i p a was a c t u a l l y h e l d a c l e a r dominance.  However, the p o i n t t r a n s e c t revealed t h a t Agropyron  splcatum was r e a l l y the most abundant species present, but that i t had been grazed down u n t i l i t s vigour was w e l l below that of the S t l p a spp.  This stand was apparently i n  process of gradual change from the climax to the S t i p a d i s c l i m a x at the time of observation.  This was one case  where the q u a n t i t a t i v e work was found to be a valuable check on the v i s u a l estimates (Appendix 6 ) . I t i s not yet known t o what r e l a t i v e extents edaphic and g r a z i n g i n f l u e n c e s have conditioned the Pinus ponderosa - S t l p a comata communities found i n t h i s work. The s o i l i s u s u a l l y r a t h e r coarse, and O g i l v i e (unpublished  F i g . 8 • a. A grazed area (stand 102) dominated by Artemisia tridentata. b. A natural exclosure i n the same stand: Agropyron dominating and Artemisia dead or declining, c. A s t i p a stand (no. 69). d. A corner of a cemetry i s a Pseudotsuga - Stipa stand (no. 121), showing dominance of Agropyron when protected from grazing.  89  data) has found that the average of the s o i l pH values i s higher i n the Stipa than i n the Agropyron association generally, though some overlap does occur.  A l l the Stipa  stands analysed i n t h i s project are known to have been f a i r l y heavily grazed.  One stand i n p a r t i c u l a r (no. 121)  showed c l e a r l y the e f f e c t s o f t h i s treatment, since i t contained an exclosure i n the form of a small cemetery (Pig. 8 d ) . This stand l i e s at the foot of a steep north slope, on gravelly soil.  Pinus ponderosa i s absent, and Pseudotsuga forms  a park-like stand.  The ground cover over the extent o f the  stand consists of a very low ( s i x to eight inches) growth of Stipa comata and i t s associates (see Appendix 3 ) , while the area enclosed by the cemetery fence supports a stand o f Agropyron splcatum some 15 to 20 inches high.  The r e l a t i v e  estimates of dominance and vigour ascribed t o Agropyron splcatum  and Stipa comata i n these two situations are as  follows: Main stand (grazed)  Cemetery  Stipa comata  7.3  1.3  Agropyron splcatum  +.+  7.3  It seems evident that t h i s stand was o r i g i n a l l y a Pseudotsuga - Agropyron community. It appears from the above observations that the Stipa comata disclimax community i s the product of heavy grazing on certain edaphic types within the Agropyron association: and that i t may a f f e c t the understory regardless of whether the tree layer i s made up o f pine or o f  90 Douglas-fir.  Thus a d i s t i n c t Pseudotsuga - S t i p a subassoc-  i a t i o n can be recognized. Pinus ponderosa d i s p l a y s the same growth e r i s t i c s i n the S t i p a subassociation  charact-  as i n the Agropyron  association (Pig. 5). 2.b.  Pinus ponderosa - A r t e m i s i a t r l d e n t a t a  (Art).  subassociation  A v a r i a n t which has not o f t e n been met with i s an  a s s o c i a t i o n of Pinu3 ponderosa and A r t e m i s i a t r l d e n t a t a (sagebrush).  Sagebrush i s widely dominant on the open steppe  now, but i s seldom seen dominating under the pine.  Its  s c a r c i t y here i s perhaps due t o the preference of sagebrush f o r c l a y s o i l s at r e l a t i v e l y low e l e v a t i o n s , which s i t e s are u s u a l l y too dry f o r t r e e s t o enter.  Only one  extensive  stand (no. 102) of t h i s type w i t h pine was found which was worth making use o f , but i t y i e l d e d such i n t e r e s t i n g i n formation that i t i s worth d e s c r i b i n g i n some d e t a i l . Stand 102 i s s i t u a t e d on an o l d , eroded l a c u s t r i n e terrace i n the N i c o l a V a l l e y , a t an e l e v a t i o n of about 1700 feet.  I t slopes gently t o the southward, and a number o f  shallow draws cross the t e r r a c e to where the lower edge breaks away i n a steep eroded face t o a lower l e v e l .  There  a t r e e l e s s Artemisia community c a r r i e s a conspicuous, palecoloured  l a y e r of r e c e n t l y deposited s o i l m a t e r i a l on the  ground surface, a t t e s t i n g to the increased r a t e o f erosion of the terrace above i n recent years.  The s o i l of the  terrace i s clay with scattered stones embedded i n i t .  91  The pine stand i s q u i t e open, and the mature t r e e s are of r a t h e r lower than average s i z e f o r an Agropyron type. Reproduction i s sparse, and the marginal nature o f the stand f o r pines i s shown by t h e i r tendency to be s i t u a t e d i n or adjacent t o the draws, where s l i g h t accumulations of coarse m a t e r i a l and stones, and l o c a l drainage f a c t o r s r e l i e v e the e f f e c t o f the h i g h content of c l a y i n the s o i l (about 30 per cent).  (Appendix  8.)  The A r t e m i s i a bushes are from s i x to eight f e e t h i g h , and up to s i x Inches or more i n diameter at the b u t t , and form a dense stand ( P i g . 8a), w i t h almost completely bare s o i l i n between the bushes.  A few weak shoots o f  Agropyron are present. Other species present i n c l u d e : Bromus tectorum. Antennaria dimorpha, E r i g e r o n f i l i f o l l u s , Stephanomeria t e n u i f o l i a . Astragalus p u r s h i i . A. stenophyllus. Chrysothamnus nauseosus. Poa c u s i c k l i . Androsace sp., Hosackia d e n t i c u l a t a , and T o r t u l a r u r a l ! s . At one p o i n t , g u l l y and sheet e r o s i o n have part i a l l y i s o l a t e d a small t a b l e - l i k e promontory, forming a small n a t u r a l exclosure of some 80 square yards, which the l i v e s t o c k i n the area apparently seldom reach.  This ex-  closure was found to support a dense and deep stand o f Agropyron  splcatum.while the A r t e m i s i a bushes were seen  to be dead or d e c l i n i n g ( P i g . 8b).  The dominance and  vigour estimates given f o r A r t e m i s i a and Agropyron i n t h i s  92  stand and i n the n a t u r a l exclosure are as f o l l o w s : Main stand (grazed) n a t u r a l exclosure Artemisia tridentata  6(-7).3 +.1  Agropyron splcatum  3-2-  K-Q.)  6-7.3  I t i s b e l i e v e d that t h i s small exclosure i n d i c a t e s the  o r i g i n a l v i r g i n vegetation, though i t i s not known how  long i t has taken t o r e v e r t t o i t s present (and presumably, original) state.  However, i n d i c a t i o n s o f the approximate date  of the o r i g i n a l change i n the main stand from grass t o sagebrush were found. A r e c e n t l y cut stump was found which revealed a s e r i e s of f i r e s c a r s , which recorded grass f i r e s which had scorched t h i s stump.  F i r e s had occurred since 1750 at  i n t e r v a l s v a r y i n g from three t o l±l y e a r s . The l a s t thus recorded was i n 1879.  fire  Since sagebrush i s l e s s i n f l a m -  mable than grass, t h i s date may i n d i c a t e the approximate time of the o r i g i n a l change-over from grass to sagebrush, r e s u l t ing from the grazing of l i v e s t o c k brought i n by white sett l e r s some 20 years or so b e f o r e . An o l d sagebrush bush, cut down i n order t o check i t s age, was s i x f e e t h i g h , 6.2 inches i n diameter at the base, and was found t o be 65 years o l d ; so i t probably s t a r t e d growth i n 1887 or 1888.  I t i s thought that t h i s  gives a f u r t h e r i n d i c a t i o n of the approximate date of the conversion o f t h i s piece of range from the Agropyron climax to the present A r t e m i s i a d i s c l i m a x .  I t should be mentioned here that T i s d a l e (1947) found that i n the Lower Grassland zone, a sagebrush d i s climax r e s u l t s from overgrazing on f i n e textured s o i l s . Daubenmire (194°) r e p o r t s the same type of change i n Southern Idaho, but not i n C e n t r a l Washington, where A r t e m i s i a t r i d e n t a t a does not compete w i t h Agropyron. A Pseudotsuga - A r t e m i s i a community, r e l a t e d succ e s s i o n a l l y t o the Pseudotsuga - Agropyron s u b a s s o c i a t i o n , has been seen.  The w r i t e r has noted one small area o f t h i s  type o f vegetation occupying an abandoned homestead on a n o r t h slope near T r a n q u i l l e . been encroaching  I n t h i s stand D o u g l a s - f i r has  on the sagebrush rangeland.  This community  may be found on c l a y s o i l s i n low, d r y s i t u a t i o n s beyond the northern l i m i t of Pinus ponderosa. the Praser V a l l e y i n the v i c i n i t y o f Dog Creek being, i n the writer»s mind, another l i k e l y s i t u a t i o n f o r i t . Prom c o n s i d e r a t i o n of the two subassociations described above, i t i s f e l t that each may be a d i s c l l m a x of the Agropyron a s s o c i a t i o n r e s u l t i n g from overgrazing on a r e l a t i v e l y narrow range o f s o i l type w i t h i n the f u l l range occupied by the climax a s s o c i a t i o n .  Thus the S t i p a sub-  a s s o c i a t i o n may r e s u l t from overgrazing on medium t o coarse textured s o i l s , while the A r t e m i s i a subassociation r e s u l t s from s i m i l a r treatment of Agropyron stands on f i n e r t e x t ured m a t e r i a l .  I t i s apparent that p r o t e c t i o n from grazing  f o r a number of years may h a l t the r e t r o g r e s s i v e changes that have been t a k i n g p l a c e , and induce e i t h e r of these  disclimaxes to r e v e r t to the climax, w i t h a corresponding improvement i n forage value of the rangeland. 3•  Pinus ponderosa - Rhus g l a b r a A s s o c i a t i o n (Rh).  Owing  to i t s s p e c i a l i z e d topographical s i t u a t i o n , t h i s community i s of very r e s t r i c t e d extent.  I t occurs at the base of h i l l  slopes or screes, and p a r t i c u l a r l y below the mouths of gullies.  Here the drainage c o n d i t i o n s , perhaps i n combina-  t i o n w i t h the coarse rocky s o i l which i s normally present i n such s i t e s , provide a supply o f subsurface moisture, a v a i l able at depth f o r the v e g e t a t i o n . The broken nature of the ground i s r e f l e c t e d i n the v a r i a b i l i t y of the f l o r l s t i c comp o s i t i o n (Appendix 3) and t r e e growth. Pseudotsuga. may occur i n the canopy i n s m a l l amounts, as i n other stands of Pinus ponderosa. The understory i s t y p i c a l l y shrubby, and o f t e n contains species that r e l a t e t h i s community t o the Symphoricarpos  association,  on the one hand, and to the A l l u v i a l complex, on the other. The understory dominant i s Rhus g l a b r a , n e a r l y always accompanied by .R. radleans, the poison i v y . Other c h a r a c t e r i s t i c shrubs i n c l u d e : Philadelphus l e w i s i i , Sambucus glauca, Amelanchier a l n i f o l i a , and sometimes, Holodiscus d i s c o l o r . Prunus v i r g l n l a n a . and P u r s h i a t r l d e n t a t a . Clematis l l g u s t l c i f o l i a i s shared w i t h the a l l u v i a l complex, and Prunus v i r g i n i a n a with both the a l l u v i a l complex and the Symphoricarpos a s s o c i a t i o n (Appendices 3 and ij.).  Among herbaceous  associates are Pan 1 cum scribnerlanum. Stephanomeria t e n u i -  f o l i a , Verbena b r a c t e a t a . Woodsla oregona, and sometimes S p e c u l a r l a p e r f o l i a t a . These herbaceous species, together w i t h the Rhus spp,, Philadelphus l e w i s i i , and Sambucus glauca, appear to be so commonly associated e c o l o g i c a l l y , that they might be considered to comprise a d i s t i n c t Rhus union (Table 2 and Appendix 10),  Stand 22, represent-  i n g t h i s a s s o c i a t i o n , i s depicted i n Figure 9 a. This a s s o c i a t i o n i s known at low e l e v a t i o n s i n the Okanagan and lower Similkameen V a l l e y s . The stands examined were, f o r the most p a r t , e i t h e r immature or composed of second growth f o l l o w i n g c u t t i n g ; so few mature t r e e s were found.  Consequently, much s i g n i f i c a n c e  should not be a s c r i b e d t o the growth f i g u r e s . The average dimensions of pines at m a t u r i t y appear to d i f f e r l i t t l e from those f o r the Agropyron a s s o c i a t i o n ; t h e i r mean diameter being 30 inches, and t h e i r h e i g h t , 90 f e e t (Table 4 and Fig. 4»  5).  Pseudotsuga M e n z l e s i i - Pinus ponderosa - Arctostaphylos  uva-ursi Association (Arc).  This a s s o c i a t i o n i s described by  I l v e s s a l o (1929) as g e o g r a p h i c a l l y interchangeable w i t h a Vacclnlum scoparlum type; and K u j a l a (1945) describes i t as an A r c t o s t a p h y l o s - r i e h subtype o f h i s Vaccinium caespitosum type.  I t i s i n t e r e s t i n g t h a t , i n t h i s work, the only records  of VJJ, caespitosum are from the Arctostaphylos - Calarnagrostis a s s o c i a t i o n , which i s maintained by both the above authors as a d i s t i n c t type.  Vj, scoparlum was not found In t h i s  study.  b. Fig. 9 • a. A Rhus stand (no. 22). b & c. Arctostaphylos associat i o n , b. under pure Pinus ponderosa canopy (stand 49). c. under a mixed canopy of Pinus and Pseudotsuga (stand 65). An instrument station i s also shewn here.  Between the Arctoataphylos. the Arctostaphylos Calarnagrostis, and the Calarnagrostis a s s o c i a t i o n s , no sharp boundaries can be drawn, on the bases of edaphlc, f l o r i s t i c , or t r e e growth c h a r a c t e r i s t i c s : but the three communities seem t o intergrade i n d i s t i n g u i s h a b l y , as though p a r t s o f a continuum. P l o r i s t i c a l l y , the d i s t i n c t i o n depends l a r g e l y on the r e l a t i v e abundance o f Arctostaphylos u v a - u r s i and Calarnagrostis mbescens. together w i t h the species associ a t e d w i t h them i n the understory.  Edaphlc a l l y , A r c t o -  staphylos and i t s a s s o c i a t e s tend t o be associated w i t h coarse, g r a v e l l y s o i l s , while Calarnagrostis and i t s a s s o c i a t e s u s u a l l y increase w i t h increase i n p r o p o r t i o n s of the f i n e r textured s o i l f r a c t i o n s .  However, t h i s r e l a -  t i o n i s by no means i n v a r i a b l e , and some anomalous cases occur. The Arctoataphylos a s s o c i a t i o n t y p i c a l l y occurs on g r a v e l l y s o i l s a t medium t o higher e l e v a t i o n s .  It is  found both on slopes and on l e v e l ground; but sometimes where i t occurs on the l e v e l upper surface o f an o l d r i v e r t e r r a c e , the south slope below i t may be occupied by a poor type of Agropyron a s s o c i a t i o n .  On steep n o r t h slopes  the A r c t o s t a p h y l o s i s l a r g e l y replaced by Calarnagrostis mbescens. C l i m a t i c a l l y , t h i s a s s o c i a t i o n i s the warmest and d r i e s t of the Pseudotsuga zone.  This i s c o r r e l a t e d  w i t h i t s a l t i t u d i n a l range, which extends t o lower e l e v a t i o n s  than the o t h e r s , and overlaps the Pinus ponderosa zone. The s o i l surface temperature was found to exceed 131°P d u r i n g J u l y and August, 1953, a temperature t h a t was only exceeded once i n any other stand i n the Pseudotsuga (Appendix 7).  zone  The P/E r a t i o s found were comparable to  those found i n Pinus ponderosa zone (Appendix 7 ) • Species commonly found i n t h i s a s s o c i a t i o n i n clude: F r a g a r l a v l r g l n l a n a . A l l i u m cernuum. Anemone mult i f Ida.  Junlperus communis. J . scopulorum, Pentstemon  f r u t l c o s u s , Sedum stenopetalum, Solidago m i s s o u r i e n s l s , Apocynum androsaemifolium. Antennaria h o w e l l i i .  Carex  concinnoides, Shepherdia canadensis. and Cladonla gracilis;  and l e s s f r e q u e n t l y , Calamagrostis rubescens,  Ceanothus v e l u t l n u s , S t i p a r 1 c h a r d s o n i i , Oryzopsls exigua, Cladonia v e r t l c i l l a t a . and Stereocaulon tomentosum (Table 3 and Appendix 3 ) .  Ceanothus v e l u t l n u s shows a d i s t i n c t  tendency to increase a f t e r f i r e .  On steep rocky outcrops,  t a l l shrubs, such as Juniperus scopulorum.  Amelanchier  a l n l f o l l a . and Philadelphus l e w i s l l occur i n greater abundance. There seem t o be good grounds, here, f o r recogn i z i n g a d e f i n i t e Arctostaphylos union, of p l a n t s having s i m i l a r e c o l o g i c a l a f f i n i t i e s ; and i n c l u d i n g : Juniperus spp.. Shepherd!a canadensis. Ceanothus v e l u t l n u s . Carex concinnoides. A l l i u m cernuum. Oryzopsls exigua. Anemone m u l t i f I d a . Pentstemon f r u t l c o s u s . Sedum stenopetalum.  98  Antennarla h o w e l l i l . a n d perhaps F r a g a r i a v i r g i n ! a n a (Appendix 1 0 ) . The absence of the expected Vaccinium caespitosum from t h i s a s s o c i a t i o n may be due i n p a r t t o the warm, dry conditions at the r e l a t i v e l y low e l e v a t i o n s a t which these stands were studied.  This species may enter the community  at higher a l t i t u d e s . As mentioned above, t h i s a s s o c i a t i o n toward i t s lower a l t i t u d i n a l l i m i t s (around 2000 f e e t ) overlaps the Pinus ponderosa zone.  Here i t may occur under a pure pine  canopy, as i n the case of stand no. 49 ( F i g . 9 b ) , and has then a r a t h e r poor productive capacity f o r the a s s o c i a t i o n . P o s s i b l y t h i s v a r i a n t should be made a separate Pinus ponderosa - Arctostaphylos ever, the Arctostaphylos  subassociation.  U s u a l l y , how-  community i s found under a mixed  canopy of D o u g l a s - f i r and p i n e , as i n stand no. 65 (Fig. 9c). The canopy v a r i e s from quite open i n the case o f the Pinus ponderosa - Arctostaphylos v a r i a n t , t o moderately dense, but i s never so dense that s u n l i g h t i s excluded from any part o f the f o r e s t f l o o r .  On the whole, i n mixed stands  i n t h i s and other a s s o c i a t i o n s , D o u g l a s - f i r grows a t about the same r a t e as ponderosa p i n e , so that measurements made on the pine apply almost e q u a l l y w e l l to D o u g l a s - f i r , though Clark (1952) assigns s l i g h t l y higher s i t e i n d i c e s t o D o u g l a s - f i r than to ponderosa pine.  99  Tree growth i n the Arctostaphylos a s s o c i a t i o n i s the poorest of any found i n the a s s o c i a t i o n s described here (Pig.  10a).  I t i s very slow, and mature t r e e s average only  22 inches i n diameter and 70 f e e t i n h e i g h t .  Reproduction of  both ponderosa pine and D o u g l a s - f i r i s o f t e n f a i r l y good; though i t i s p o s s i b l e that t h i s has been increased i n recent years as grass competition has been reduced by g r a z i n g . In the t a b l e s of t r e e s i z e d i s t r i b u t i o n i n Appendix 9 the Arctostaphylos stands are arranged i n order of i n c r e a s i n g a l t i t u d e ; and i t i s seen that there i s a change from the e x c l u s i v e pine canopy of stand J4.9 to the pioneer pine canopy w i t h the i n c r e a s i n g p r o p o r t i o n of D o u g l a s - f i r i n the reprodu c t i o n , i n stand 65. The poor q u a l i t y of t h i s a s s o c i a t i o n f o r timber production i s p a r a l l e l l e d by i t s poor value as g r a z i n g l a n d , i t being of l i t t l e worth unless a f a i r l y good propo r t i o n of p e r e n n i a l grasses (Calamagrostis rubescens, Agropyron splcatum. or S t i p a spp.) accompanies the A r c t o staphylos.  A very low i n t e n s i t y of grazing would be suf-  f i c i e n t to reduce the sparse cover to an unproductive l e v e l , and, since v i r t u a l l y a l l the stands examined have been subjected to grazing f o r a considerable time, i t i s thought p o s s i b l e that t h i s type may have supported more p a l a t a b l e forage formerly than i t does at present. Two stands (nos. 52 and 66) were found to occur on s o i l s which apart from being stony, were s u r p r i s i n g l y  100  f i n e textured (Appendix 8).  Tree growth i n stand 66 i s about  average, and i n stand 52, d i s t i n c t l y b e t t e r than average f o r this association.  I t i s thought that these two stands may  represent encroachment o f the Arctostaphylos  community i n t o  stands which formerly belonged r a t h e r to the ArctostaphylosCalamagrostis a s s o c i a t i o n , o r even t o a poor form o f the Agropyron a s s o c i a t i o n .  This could be the r e s u l t o f g r a z i n g ,  which would tend t o s e l e c t i n favour of the r e l a t i v e l y unpalatable members of the Arctostaphylos  union,  rather  than the more p a l a t a b l e p l a n t s of the grassy unions.  In  f a c t , i t i s even p o s s i b l e that t h i s e n t i r e a s s o c i a t i o n might be a grazing d i s c l i m a x form of the Arctostaphylos Calarnagrostis a s s o c i a t i o n , or a t l e a s t o f i t s poorer p a r t s , although d e f i n i t e evidence i n support o f t h i s has not been found. 5.  Pseudotsuga M e n z i e s l l - (Pinus ponderosa) - Arctostaphylos  uva-ursi - Calarnagrostis rubescens A s s o c i a t i o n (A-C).  Both  I l v e s s a l o (1929) and K u j a l a (1945) keep t h i s community as a type independent e i t h e r of the Arctostaphylos type ( I l v e s s a l o ) or A r c t o s t a p h y l o s - r l c h Vaccinium caespitosum type ( K u j a l a ) , or of the Calarnagrostis type.  The present author i s i n c l i n e d  to regard t h i s community rather as a broad ecotone o r c o n t i n uum between the a s s o c i a t i o n s c h a r a c t e r i z e d by Arctostaphylosand Calamagrostis-  dominated u n d e r s t o r i e s , r e s p e c t i v e l y :  but i t i s of such widespread occurrence, e s p e c i a l l y i n the southern Cariboo d i s t r i c t , that i t i s thought advisable t o  101  keep a separate association f o r i t , as have the abovementioned authors.  Daubenmire (1952 b) apparently includes  t h i s community, and possibly also the Arctostaphylos community, i n h i s Pseudotsuga - Calamagrostis association. No climatic stations were set up In t h i s associ a t i o n , since i t had not been recognized at the time when those stations were i n s t a l l e d . As may be expected of a rather a r b i t r a r i l y defined community, t h i s association i s very variable i n a l l i t s characteristics.  I t i s probable that some form of i t rep-  resents the climatic climax at these higher elevations. The s o i l i s generally coarse.  In f a c t , at present  i t can scarcely, i f at a l l , be distinguished from the foregoing association on the basis of s o i l texture. Topographically conditioned Agropyron and Calamagrostis communities bear the same r e l a t i o n to t h i s associat i o n as to the Arctostaphylos association. The f l o r l s t i c composition of the understory combines elements t y p i c a l of both the Arctostaphylos and the Calamagrostis associations, and includes: Carex concinnoldes. Shepherd!a canadensis. Pragaria v i r g i n i a n a, Allium cernuum, Sedum stenopetalum,  Spiraea l u c l d a ,  Cladonia g r a c i l i s , and Polytrichum .lunlperinum (Table 3) J and less frequently, Antennaria anaphaloldes. A. rosea, and Pachystima myrsinltes. Sallx bebbiana appears i n t h i s association, and sometimes, notably i n the south Cariboo d i s t r i c t , has been seen to show the e f f e c t s of heavy  102  browsing, apparently by moose.  Vaccinium caespitosum i s  sometimes present. Daubenmire (1952 a) i m p l i e s that Calarnagrostis mbescens and Arctostaphylos u v a - u r s l belong i n the same union; a f a c t t h a t i s perhaps r e l a t e d to h i s combining of the Calarnagrostis- and Arctostaphylos- containing stands i n t o one a s s o c i a t i o n (1952 b ) .  I t appears t o the present  author, however, t h a t , although f r e q u e n t l y found together, these two species show abundances i n more or l e s s r e c i p r o c a l r e l a t i o n to each other; and so would seem t o have somewhat d i f f e r e n t e c o l o g i c a l a f f i n i t i e s , at l e a s t i n t h i s r e g i o n . Hence, i t i s p r e f e r r e d here t o keep these p l a n t s i n two separate unions, (Appendix 1 0 ) . I n t h i s a s s o c i a t i o n , the aspect may be misleading when v i s u a l estimates are being c a r r i e d out, since the grass, Calarnagrostis mbescens. grows up t a l l enough t o conceal the presence of the p r o s t r a t e Arctostaphylos (Pig.  11 a and b) thus reducing the dominance and vigour  estimates assigned t o the l a t t e r species.  Further, the  Calarnagrostis i n t h i s a s s o c i a t i o n , where i t does not have complete dominance of the understory, often grows t a l l e r , and flowers more r e a d i l y than i t does i n the Calarnagrostis a s s o c i a t i o n , where i t forms a lower but more continuous mat of f o l i a g e .  I n stand 105, f o r example, the Arctostaphylos  was almost hidden by the t a l l growing Calarnagrostis. y e t a p o i n t transect revealed that i t had n e a r l y twice the b a s a l area of the grass (4.2 per cent t o 2.7 per cent) (Appendix 6 ) .  F i g . 11. a & b. A r c t o s t a p h y l o s - Calarnagrostis a s s o c i a t i o n , a. w i t h P i n u s c o n t o r t a on a r o c k y r i d g e at the n o r t h e r n l i m i t o f P. nonderosa (stand 64). b. Stand 32, on a g r a v e l l y bench. P t e r o s p o r a p a r a s i t i c on pine i n f o r e g r o u n d , c & d. Calarnagrostis a s s o c i a t i o n , c. Stand 5. The l a r g e s t t r e e s and l o g s are P i n u s ponderosa, the medium and young t r e e s , Pseudotsuga. d. Stand 45, w i t h Populus t r e m u l o i d e s .  103  This association was most frequently found under a mixed canopy of Douglas-fir and ponderosa pine.  In one or  two cases the pine appeared to be persistent as the f i n a l dominant of the canopy, which was f a i r l y open i n these cases, usually, however, Pseudotsuga was found to be the climax dominant, while Pinus ponderosa was a s e r a i dominant following f i r e or cutting which opened up the stand.  Once the canopy  has developed beyond a c e r t a i n degree of density, ponderosa pine f a i l s to regenerate adequately, while young Pseudotsuga, more tolerant of these conditions, (see the autecological features, and Appendix 9), increases i n r e l a t i v e amount, and f i n a l l y becomes the dominant.  Pinus ponderosa may maintain  i t s e l f here on rocky outcrops and other such situations where the canopy i s kept f a i r l y open.  Pinus contorta (lodgepole  pine) i s frequently present, p a r t i c u l a r l y at higher elevations and toward and beyond the northern l i m i t of ponderosa pine, as i n stand 61; (Pig. 11a). Pine growth i s varied, but averages l i e between those of the two associations which t h i s divides.  The range  of growth rates overlaps the ranges of the other two associations (Pig. 10a).  The average diameter of mature trees  i s 30 inches, and the height, 100 f e e t . Following severe f i r e s that destroy entire stands in many areas, p a r t i c u l a r l y at higher elevations or i n the more northerly parts of the range of t h i s association, Douglas-fir may be completely replaced over large areas by  even-aged stands of Pinus c o n t o r t a . This f i r e d i s c l i m a x may be termed a Pinus c o n t o r t a - Arctostaphylos u v a - u r s l Calamagrostis rubescens s u b a s s o c i a t i o n . These secondary  stands are sometimes so dense that the t r e e s stagnate  i n growth, and are of l i t t l e or no commercial value.  I f the  secondary canopy i s not too dense, i t has been found ( T i s d a l e , 1950)  that the grazing value of the understory may  be  improved} whereas i t tends to d e c l i n e under a Pseudotsuga climax canopy, e s p e c i a l l y i f there i s much young growth present.  Grazing i n t h i s a s s o c i a t i o n i s g e n e r a l l y of i n t e r -  mediate q u a l i t y between the two r e l a t e d a s s o c i a t i o n s : being b e t t e r than i n the Arctostaphylos and poorer than i n the Calamagrostis a s s o c i a t i o n s . The s e r a i stands of Pinus c o n t o r t a w i l l event u a l l y be replaced by the climax dominant of t h i s a s s o c i a t i o n , D o u g l a s - f i r . The time needed f o r t h i s succession to take place w i l l depend on the d e n s i t y of the stand, and the frequency of o l d s u r v i v i n g t r e e s of D o u g l a s - f i r , which can serve as seed sources. A t r e e species that occurs i n the stands east of the Okanagan V a l l e y , and which o f t e n becomes a s e r a i dominant a f t e r f i r e t h e r e , i s L a r i x o c c i d e n t a l i s (western l a r c h ) . The D o u g l a s - f i r f o r e s t s l y i n g w i t h i n the range of t h i s species are separated from the r e s t by Whitford and C r a i g (1918) as the D o u g l a s - f i r - Western l a r c h type.  The a s s o c i a -  t i o n s based on understory composition overlap both these  105  Douglas-fir types, with r e l a t i v e l y l i t t l e important f l o r i s t i c differences apart from the presence or absence of L a r l x Occidentalls*  For t h i s reason, and because, i n t h i s project,  r e l a t i v e l y l i t t l e work has been done east of the Okanagan Valley, and within the range of the l a r c h , the writer does not f e e l j u s t i f i e d i n separating the  larch-containing  stands i n a d i s t i n c t association or subassociation.  How-  ever, further work i n the southeastern part of t h i s province may  a l t e r the status of the stands found there,  r e s u l t i n the establishment of at least a d i s t i n c t association (Pseudotsuga - L a r l x - Arctostaphylos agrostis) ; reasons.  f o r which there may  be considerable  and  sub- Calarn-  practical  The same v a r i a t i o n i n canopy composition a f f e c t s  the following two associations; and the same argument  may  be applied to them. An i n t e r e s t i n g variant, which however the writer has not seen, i s mentioned by Clark (1952), who  describes  mixed stands on which he worked as being Calarnagrostis rubescens - Arctostaphylos  uva-ursi and  rubescens - Vaccinium scoparlum types.  Calarnagrostis He does not  give  the s p e c i f i c l o c a l i t y f o r the l a t t e r type, but the present author expects that i t may  occur i n the area studied by  Clark i n the Mission Creek d i s t r i c t , near Kelowna; which would be not f a r from the place where t h i s writer has a Vaccinium scoparlum community.  seen  This area i s within the  range of L a r l x O c c i d e n t a l l s , so i t i s possible that the community mentioned may  contain t h i s tree.  the  106  6.  Pseudotsuga menziesli - Calamagrostis  rubescens  Association (Ca). This type of stand has been described by Ilvessalo (1929), Kujala (1945),  and Daubenmire  (1952b);  the l a s t mentioned author using the name i n a rather broader sense than the others to include the two above-mentioned associations. This association usually occurs on somewhat f i n e r textured s o i l s than those on which Arctostaphylos i s dominant, though here as elsewhere, overlaps occur (Appendix 8 ) . It i s often replaced on south slopes by Agropyron stands of h i g h j q u a l i t y , while the l a t t e r community, when on l e v e l ground, may be replaced on a north slope by t h i s association. For a Pseudotsuga forest stand, the findings of Ogilvie show a high degree of melanization of the A horizon here.  He has  also found evidence of s l i g h t leaching. The climate of t h i s association tends to be cooler and moister than that of the Arctostaphylos association described above ( Appendix 7 ) . The f l o r l s t i c  composition of the understory i s  characterized by the dominance of Calamagrostis rubescens, which forms a continuous t u r f of f o l i a g e , though i t seldom flowers ( F i g . 13c).  Arctostaphylos uva-ursi, while often  present, i s of notably reduced abundance and vigour compared with i t s occurrence i n the two previous associations. Other common members of the understory include: Polytrichum .juniperinum. Antennaria anaphaloides. A. rosea. L i l i u m columblanum, Poa ampla. Arnica c o r d i f o l i a .  Fritlllarla  107  l a n c e o l a t a , Lathyrus n u t t a l l i i , and Spiraea l u c i d a . Of these, the two Antennarla species and L l l i u m columblanum appear t o be the most t y p i c a l of the a s s o c i a t i o n ; though A r n i c a c o r d i f o l i a and F r i t i l l a r i a l a n c e o l a t a , which are shared w i t h the Symphoricarpos  a s s o c i a t i o n , appear to  play the more conspicuous r o l e s i n t h i s a s s o c i a t i o n (Table 3 ) • Lathyrus n u t t a l l i i , while sometimes very abundant, does not f l o w e r s t r o n g l y , and may remain an inconspicuous member of the stands.  Other a s s o c i a t e s i n c l u d e : Pachystima myrsln-  i t e s , P y r o l a secunda, Carex h o o d i l , Symphoricarpos  albus,  Aster conspicuous, S a l i x bebbiana, Populus tremuloldes and Thallctrum o c c i d e n t a l e (Appendices 3 and ij.). The Calamagrostis union (Daubenmire, 1952 a) which dominates here, may be thought of as c o n s i s t i n g , i n t h i s area, o f : Calamagrostis rubescens, Antennarla anaphaloides, A. rosea, L l l l u m columblanum. F r i t i l l a r i a l a n c e o l a t a , A r n i c a c o r d i f o l i a , Poa ampla. Carex h o o d i l , and Lathyrus nuttallii.  Members of the A r c t o s t a p h y l o s . Agropyron,  and Symphoricarpos  unions may also be found i n t h i s com-  munity. The boundary between t h i s a s s o c i a t i o n and the Agropyron a s s o c i a t i o n , on the b a s i s of the understory composition, i s u s u a l l y q u i t e sharp, though t r e e growth i n adjacent stands on e i t h e r side of the boundary i s u s u a l l y similar.  Stands occupying marginal s i t u a t i o n s between  these two a s s o c i a t i o n s o f t e n show mosaics of Agropyronand Calamagrostis- dominated understory  communities,  108  conditioned by slight changes i n r e l i e f , or p o s i t i o n r e l a t i v e to tree shade. Pinus ponderosa, i n t h i s association, plays the part of a pioneer dominant; sometimes sharing the role with L a r i x occidentalis, within the range of the l a t t e r species. Pinus contorta may  also be present, as well as small families  of Populus tremuloldes ( F i g . l i d ) ; also playing s e r a i r o l e s . Pinus ponderosa colonizes stands after opening of the canopy by f i r e , and grows very fast i n t h i s s i t u a t i o n .  Mature trees  average \\.2 inches i n diameter, and 135 feet i n height (Table 4 , and F i g . 10a).  However, once the canopy has become well  f i l l e d with mature trees, the pine f a i l s to regenerate adequately under i t , and Pseudotsuga, which i s more tolerant of the cool, r e l a t i v e l y moist, shade, reproduces successfully, as i s best shown i n stand \\$ (Appendix 9 ) , forming an almost closed canopy with the second generation.  Pines which per-  s i s t long i n t h i s canopy must endure much shade from the side while receiving l i g h t from above, and so tend to develop long, well pruned trunks and short crowns.  I f the stand  endures f o r a long enough time without further disturbance, Pseudotsuga ultimately assumes complete dominance as the stand approaches the climax condition. A good example of t h i s stage i s stand 103 ( F i g . 12a), which i s a s t r i c t l y Douglas-fir dominated stand; though a number of old logs of Ponderosa pine l y i n g on the ground, and one barely surviving tree of t h i s species, indicate the former composition of t h i s stand.  I t i s noted that one or two young trees of  F i g . 1 2 . a. A Calarnagrostis stand (no. 103) i n the climax stage, under a Pseudotsuga canopy, b & c. Symphoricarpos association, b. Ungrazed stand (no. 61). c. Stand 71; heavily grazed and p a r t i a l l y cut. The reproduction i s Pseudotsuga.  109  Plcea engelmannii were seen i n t h i s stand, perhaps a further trend i n succession i n t h i s community.  indicating Judging  from the r e l a t i v e extents of climax and disclimax stands of t h i s community that have been found i n this work, i t appears that the climax i s none too often attained. Clark (1952) i n describing the growth i n the mixed pine and Douglas-fir stands, some of which, i n the Brookmere area, are probably of t h i s association, notes that the composition of the reproduction, which i s 80 to 95 P©r cent Douglas-fir, f o r e t e l l s the composition of future crops. He apparently f a i l s to note the successional significance of t h i s f a c t , and treats the two species as though they were of equal value. In Appendix 9 the Calarnagrostis stands are arranged i n order of t h e i r r e l a t i v e successional stages.  In stand 30»  and more so i n stand 1±6, many Douglas-fir seedlings were too small to be t a l l i e d i n this count.  Stand ij.5 reveals the  heavy Douglas-fir reproduction a r i s i n g , while stand 103 i s i n v i r t u a l l y the climax state. The climax state of t h i s association i s a r e l a t i v e l y undesirable phase, from the point of view of u t i l i z a t i o n , f o r two reasons.  The most important timber tree  here, commercially, i s Ponderosa pine, which owing to the high degree of side shading that i t receives i n t h i s associ a t i o n , shows i t s natural tendency to prune i t s lower branches, thus forming f a i r l y long clear trunks (see Chapter V); while Douglas-fir, on the other hand, maintains i t s branches lower,  110  and develops a more tapered, more knotty bole. of the l a t t e r tree i s more b r i t t l e  The wood  than that of Ponderosa  pine here. Calamagrostis rubescens and Lathyrus n u t t a l l i i are important forage p l a n t s , the l a t t e r p a r t i c u l a r l y so i n the Brookmere d i s t r i c t ,  and make t h i s association the best  of the forest grazing lands.  For t h i s reason, and because  of i t s great extent, t h i s community i s extremely for livestock pasturage i n summer.  important  I t reaches i t s greatest  p r o d u c t i v i t y at a r e l a t i v e l y early stage i n succession while the canopy i s s t i l l p a r t i a l l y open, and the f o r e s t f l o o r well l i t . As the climax state i s approached, and the canopy closes up, shading the f o r e s t f l o o r and depositing abundant needle l i t t e r ; the y i e l d of forage decreases  signi-  f i c a n t l y , e s p e c i a l l y i f young Douglas-fir i s present i n abundance (Tisdale, 1950).  Thus i t i s seen that f i r e has  been an important factor i n promoting and maintaining good grazing land here.  Overgrazing i n early stages of t h i s  association may r e s u l t i n increased reproduction of pine as the grass competition i s reduced  (Rummel, 1951), and i n  l a t e r stages, may cause increase i n Douglas-fir reproduction, with a consequent further reduction i n forage.  Tisdale  (1950) has found excellent forage y i e l d s under s e r a i stands of Populus trerouloides. Such pure poplar stands have not been found i n t h i s work; and though t h i s tree i s f a i r l y common i n small groups or f a m i l i e s i n t h i s association, the poplar trees, at least when i n competition with coniferous  species are always small.  It i s noticeable, however, that  the herbaceous understory often becomes denser and r i c h e r under poplars than elsewhere (Pig. l i d ) . It i s regrettable that the present logging method which r e s u l t i n the s e l e c t i v e removal of the best q u a l i t y ponderosa pine are a c t u a l l y tending to hasten the natural process of succession toward the r e l a t i v e l y undesirable, unproductive, Douglas-fir climax.  I t i s manifestly d e s i r -  able to maintain stands of t h i s nature i n a state of d i s climax, with Pinus ponderosa the dominant tree.  Rather  than eliminate the Douglas-fir e n t i r e l y from such stands and make Ponderosa pine the sole tree species, however, i t would be preferable to r e t a i n Douglas-fir i n the stands i n moderate proportions, i n view of the greater contribution made by the needle l i t t e r of t h i s tree to the nutrient content of the upper layers of the s o i l and Tarrant .et a l , 1951).  (Daubenmire, 1953),  For the same reason, Populus  tremuloldes should also probably be encouraged to some extent, e s p e c i a l l y as, a d d i t i o n a l l y , increases i n amount of t h i s species, which may  be a s e r a i dominant i n some  areas of t h i s association, are associated with r i c h e r covers and greater y i e l d s of forage plants (Tisdale, 1950). The author understands that measures of such a nature are now  a c t u a l l y being taken on one management license area i n  t h i s region.  112  7.  Pseudotsuga menziesll - (Pinus ponderosa) - Symphor-  Icarpos albus Association (Sy).  Daubenmire (1952 b) des-  cribes a Pinus ponderosa - Symphoricarpos association, and considers i t as climax at moderate elevations i n eastern Washington and northern Idaho.  In the southwestern  i n t e r i o r of B r i t i s h Columbia, at least west of the Okanagan Valley, t h i s association i s unrepresented as such.  Stands  i n which the Symphoricarpos union underlies a ponderosa pine canopy do occur, but i n a l l the stands analysed i n t h i s project, with the possible exceptions of stands 59 and 118, the pine appears to be a serai dominant to a Douglas-fir climax.  The writer has observed, however, some  stands of a Pinus ponderosa - Symphoricarpos albus associat i o n i n the Kettle Valley, to the east of the area here studied. The Symphoricarpos association, as generally found i n t h i s area, appears to be topographically conditioned, i n situations where the l i e of the land suggests some degree of convergence i n the drainage pattern. However, there are situations (e.g. stand 71) where t h i s does not appear to be the case, and where the association occurs on upland situations of normal slope and apparently normal drainage.  In t h i s region, the association i s best rep-  resented on the east slopes of the Okanagan Valley, and to the north of i t .  Here, i t usually occurs at moderate  to high elevations; but sometimes Symphoricarpos communities  extend i n tongues down draws into the Pinus ponderosa zone, or occasionally into the steppe. The climate of t h i s association (Appendix 7) has been found, on the basis of two stands on the east side of the Okanagan Valley, to be d i s t i n c t l y moister than that of any other association here studied, and to have a somewhat higher proportion of i t s p r e c i p i t a t i o n during the summer months.  The records f o r evaporation are incomplete,  by reason of repeated damage to the atmometers i n s t a l l e d i n these stands, but from the records obtained i t i s evident that the evaporation i s much lower than i n other associations.  The P/E r a t i o i s thus found to be at least four  times that found i n any stand of another association.  The  low evaporation i s no doubt p a r t l y due to the e f f e c t of the r e l a t i v e l y dense shrubby understory, but i t should be noted that i n stand 71, where the understory had been l a r g e l y grazed down by livestock, and some opening of the stand by cutting had already begun at the time of study, the P/E r a t i o i s s t i l l quite high.  I t i s thought that the associa-  t i o n may be more closely associated with the rather moister climatic areas east o f the Okanagan Valley. The understory of t h i s association i s shrubby, and consists of a number of woody species (Pigs. 12 b and c of which the dominant i s Symphoricarpos albus. Associated shrubs include: the abundant Spiraea l u c i d a , Salix bebblana Acer glabrum. Prunus v i r g i n l a n a. and sometimes Berberis aquifollum. Crataegus d o u g l a s i i . and the l i a n a . Clematis  114  columblana.  The Calarnagrostis union Is represented here  by Calarnagrostis rubescens. Poa ampla, Carex hoodii, Arnica c o r d i f o l i a . and F r i t i l l a r l a lanceolata; while Aster consplcuus and Osmorhiza c h i l e n s l s reach peaks of abundance and presence here which d e f i n i t e l y l i n k them with t h i s association (Table 3 ) .  Pour t e r r e s t r i a l mosses show l i n k s  with t h i s association, namely:  Mnium spinulosum,  Calller-  gonella schreberi, Rhytldiadelphus t r l q u e t r u s. and Drepanocladus uncinatus. It appears that there are several unions closely associated with t h i s community.  The Symphoricarpos union  (Daubenmire, 1952 a and b) includes here: Crataegus  douglasll.  Prunus virginiana, Spiraea l u c i d a , Berberi3 aqulfolium. Clematis columblana,  Galium boreale, Aster consplcuus.  Elymus glaucus, and Osmorhiza c h i l e n s l s (Appendices 3 , 4* and 1 0 ) .  Rosa nutkana, (including R. spaldingll) which i s  included i n t h i s union by Daubenmire, i s so broad i n i t s e c o l o g i c a l a f f i n i t i e s , and so widespread among the associations i n t h i s region, that the present author h e s i t a t e s to consider i t a member of the Symphoricarpos union here. A Rhytldiadelphus union, represented by the mosses l i s t e d above, plus perhaps Hylocomium splendens. i s probably better represented i n the forests of the moister climatic regions of t h i s province.  Another union, of arboricolous lichens,  which also appears to be associated with t h i s r e l a t i v e l y moist forest association, comprises: Cetraria .junlperlna. Nephromopsis p l a t y p h y l l a. Ramalina farinacea. Usnea h i r t a .  115  and A l e c t o r i a jubata. Cetraria glauca, and Parmella physodes (Appendices 3 and ij.), of widespread occurrence, become most common and vigorous i n t h i s association; while L e t h a r i a yulpjLna, common elsewhere, here sinks to a r e l a t i v e l y low l e v e l of abundance, at least near the ground.  A l l these  lichens tend to be more abundant on Douglas-fir than on the pine. In t h i s region, Pinus ponderosa plays the part of a s e r a i dominant i n the Symphoricarpos  association, some-  times accompanied by L a r i x occidentalis east of the Okanagan Valley.  Populus tremuloides i s sometimes seen as a pioneer  dominant of t h i s association, forming a temporary  Populus  tremuloides - Symphor1carpos subassociation. In t h i s case the poplar grows to a greater size than i n the Calamagrostis association.  Ponderosa pine here grows at a rate which  d i f f e r s very l i t t l e from that i n the Calamagrostis associat i o n , and reaches about the same s i z e .  Mean dimensions of  mature trees are: d.b.h., lj.0 inches, and height, 130 feet (Table 4> and P i g . 10b).  The canopy here, as i n the prev-  ious communities, tends to close up and prevent e f f e c t i v e pine regeneration, except near the margin of the stand where It adjoins an Agropyron stand.  Douglas-fir, however, esp-  e c i a l l y after l a t e r disturbance of the understory, as by ground f i r e , grazing, or cutting, may regenerate i n almost impenetrable thickets, as seen i n stand 71 (Pig. 12c and Appendix 9 ) . The current method of 'selective' cutting,  116  here as i n the previously described association, tends to accelerate the succession of the stand toward a Douglasf i r climax. Grazing and browsing, i n t h i s association, i s f a i r f o r c a t t l e ; and probably i s more favourable f o r animals of the deer family, which are more p a r t i a l to the browsing of shrubby species ( H i l l and Harris, 1914-3).  Under  conditions of over-grazing and over-browsing, the shrubby vegetation, an example of which i s seen i n stand 61 (Pig. 12b), may be reduced, the Symphoricarpos tending to be replaced, i n part at l e a s t , by Poa pratensis 1952 b ) , as has been noted i n stand 71.  (Daubenmire,  I f a stand i n t h i s  condition i s protected f o r a year or so, i t may  thereafter  show improved grazing q u a l i t i e s under moderate grazing intensity f o r the next few years, u n t i l the shrubs once more regain dominance over the grasses. It has been noticed that i n some cases where an Agropyron grassland bordering a Symphoricarpos stand becomes overused by livestock, Symphoricarpos albus, accompanied by Prunus virgin!ana. Crataegus d o u g l a s s i i. Rosa nutkana, and Amelanchier a l n i f o l i a . may encroach on t h i s grassland, thus extending the l i m i t s of t h e i r community. ant  The r e s u l t -  shrub community may l a t e r be Invaded by the tree species,  which thus complete the conversion of the Agropyron stand to a Symphoricarpos stand.  117  8.  Populus trichocarpa - Rosa nutkana - Cornus s t o l o n l f e r a  ( A l l u v i a l ) Complex (AL). to  Unfortunately, and owing no doubt  a combination of productivity and a c c e s s i b i l i t y , most  of the stands of t h i s type have been destroyed.  A few  r e l a t i v e l y undisturbed stands, however, were found, p r i n c i p a l l y i n the lower Similkameen V a l l e y at elevations between 1200 and 1600 feet. This series of communities i s c h a r a c t e r i s t i c of stream and r i v e r banks and flood p l a i n s .  The s o i l where  these stands were studied was found to be sandy or gravelly alluvium.  I t i s not known, however, to what extent texture  affects communities of t h i s nature. No climatic observations were made i n these stands. A succession of communities, a l l of which may be considered as serai by reason of the e c o l o g i c a l i n s t a b i l i t y of t h e i r situations, extends back from the riverbank. Pour main stages have been recognized (Pig. 1 3 a ) : a.  Riverbank Shrubs. A zone of t a l l shrubs,  including: Cornus s t o l o n l f e r a . Salix lasiandra. S. f l u v l a t i l i s . and other Salix spp.,  and sometimes Blaeagnus  commutata, occupies the most recently exposed ground. b.  Deciduous Woodland.  A Populus trichocarpa -  Betula papyrifera union grows up rapidly through the riverbank shrubs to form a continuous canopy of trees, which i s d i v i s i b l e into two or three layers on the basis  FLOCP  PL»IN  foWUNITlCS.  CHOMKQ B.C  F i g . 13 . a. Schematic section showing the succession o f communities making up the A l l u v i a l complex, b. Ranges of growth- curves f o r Pinus ponderosa i n the A l l u v i a l complex.  118  of r e l a t i v e height.  Populus t r i c h o c a r p a makes up the upper-  most l a y e r , which has an almost l e v e l , continuous upper surface made up of the merged crowns of these t r e e s , i n d i v i d u a l s of which may a t t a i n to f i v e f e e t i n diameter, and 1 2 0 to 1 3 0 f e e t i n h e i g h t , t r e e s of w i d e l y d i f f e r i n g d i a meters c o n t r i b u t i n g to the same l e v e l canopy top.  Populus  tremuloldes, some young specimens of P^ t r i c h o c a r p a . and t a l l e r specimens of B e t u l a p a p y r i f e r a occupy a somewhat lower canopy l a y e r .  Acer glabrum, Alnus t e n u i f o l i a , and  B e t u l a p a p y r i f e r a make up a s t i l l lower l a y e r , which merges w i t h the t a l l e s t shrubs, among which a r e : Cornus s t o l o n l f e r a , S a l i x spp., and sometimes Corylus cornuta. Clematis l i g u s t i c i f o l i a . Prunus v i r g l n l a n a , Rosa nutkana, and Rhus spp. may now enter t h i s m u l t i l a y e r e d community, which i s very dense and shady at t h i s stage.  This community i s predominantly  one o f woody phanerophytes (Appendix ij. and P i g . 2 ) , and the herbaceous v e g e t a t i o n i s r e l a t i v e l y sparse, being represented mainly by Smilaclna s t e l l a t a , Equisetum spp., Carex spp., and sometimes A r a l i a n u d i c a u l i s and Athyrium filix-femlna.  Examples of t h i s stage are stands III4. and  1 1 7 (Appendix 2 and P i g . li+a and b ) . c  Coniferous Phase. As d r i e r c o n d i t i o n s are  reached, Populus t r i c h o c a r p a becomes l e s s vigorous, and the canopy tends t o open out.  At t h i s stage, i f aided by  burning or temporary c l e a r i n g of the stand, Pinus ponderosa may enter the community.  I t s growth here i s exceedingly  c.  d.  F i g . 14 . A l l u v i a l complex, a & b. Populus t r i c h o c a r p a stands 117 & 114, r e s p e c t i v e l y . L i a n a s i n b are C l e m a t i s l i g u s t i c i f o l i a . c. P i n u s ponderosa t r e e i n a d e c l i n i n g Populus t r i c h o c a r p a stand (no. 88). d. T a l l g r a s s meadow o f E l j M u s condensatus at Keremeos.  119  rapid, and very large trees may be produced 13b).  (Pigs. lt|.c and  These penetrate the broken canopy and stand out as  emergent trees above i t .  Most of the largest trees had  already been removed from the stands at the time of t h i s examination, but from inspection of the stumps, and of the growth curves obtained from the trees measured, i t i s e s t i mated that t h i s type of stand i s p o t e n t i a l l y capable of producing mature pines averaging 55 to 60 inches i n diameter, and 155 feet i n height.  It i s noted, however, that pine  reproduction Is sparse or n i l unless further opening of the stand, including the understory, takes place. At t h i s stage, the canopy may be f a i r l y open, and such shade intolerant species as Crataegus douglasii and Amelanchier  a l n i f o l i a may  enter the stand.  sometimes attains the dimensions while  Rhus glabra  of a small tree here,  radicans remains f a i r l y low, but may become exces-  s i v e l y abundant.  Rosa nutkana. while present i n nearly a l l  associations, i s here distinguished by i t s great abundance, and a vigour which much surpasses that i n any other forest type, i t sometimes forming dense thickets up to eight feet high.  Some Cornus s t o l o n i f e r a usually p e r s i s t s through  t h i s stage, and Clematis l i g u s t l c i f o l i a climbs aggressively over the smaller trees of Betula. Alnus. or Populus tremuloides.  Important  herbaceous species that enter at t h i s  stage include: Agropyron g r i f f i t h s i i . Elymus Solidago lepida. and Apocynum cannablnum.  condensatus.  Where grazed,  120  a number of Introduced forage species was found i n t h i s community, including? Poa compreasa, Melilotus alb a,, and Agrostls alba (Appendices 3 and Ij., and Table 3 ) .  Symphori-  carpos albus and Elymus glaucus are often present i n small amounts, representing the Symphoricarpos union, which with the Rhus union, i s often represented along with the Solldago lepida union at t h i s stage. d. High Grass Meadow or Savanna. Well back from the riverbank, where the drainage of the flood p l a i n Is perhaps s l i g h t l y impeded, the forest gives way to an open Pinus ponderosa savanna or a meadow consisting p r i n c i p a l l y of Elymus condensatus. Seme of the shrubby species, such as Rosa, Prunus, and Rhus radicans, p e r s i s t i n t h i s stage, but are reduced i n s i z e , and do not generally reach above the high grass, which i t s e l f may a t t a i n a height of six to eight feet (Pig. Uj.d) . Wide l o c a l variations occur i n t h i s complex of successional communities.  Sometimes, on large, f r e s h l y  exposed areas of r i v e r gravel near a suitable seed source, the conifers, Pinus ponderosa, or sometimes further north, P. contorta, seed i n ahead of the poplars.  In t h i s way the  s t r i c t l y deciduous woodland stage may be bypassed or delayed.  At other l o c a l i t i e s than those studied intensively  i n t h i s work, the tree phases have been found to be represented by other tree species than those mentioned above. L o c a l l y , Populus tremuloides may completely replace P_. trichocarpa; and the coniferous phase may be represented,  further north, or at higher elevations, by Pseudotsuga menziesli. Thuja p l i c a t a (e.g. stand 120)  ( F i g . 15,  a and  b), or by Picea engelmannii. It i s to be regretted that very l i t t l e of t h i s a l l u v i a l type of stand remains uncut, but the f a c t that the land usually has value f o r other purposes besides timber production must no doubt be taken into account.  b. F i g . 15. A l l u v i a l complex, a. With Pseudotsuga, Thuja p l i c a t a , and Betula papyrifera, near Vernon, b. Stand 120, containing Pseudotsuga and Pinus ponderosa.  122  CHAPTER VIII DISCUSSION AND CONCLUSIONS 1.  The concept of primary succession and the climax.  The  recognition of a c l i m a t i c climax coannmity f o r t h i s region, and the primary successions leading toward i t , i s rendered  difficult  by a number of problems. In the f i r s t place, owing to the v a r i a t i o n i n l o c a l macroclimate, and the a d d i t i o n a l c l i m a t i c e f f e c t s of the f a i r l y great range i n a l t i t u d e of the land, i t i s necessary to postulate a series of c l i m a t i c climax communities rather than just one.  The  v a r i a t i o n of climate with a l t i t u d e w i l l thus induce a s e r i e s of such climax communities r e p l a c i n g each other a l t i t u d i n a l l y . Further, i t i s f e l t that, owing to the wide l o c a l v a r i a t i o n s i n topographic and edaphic conditions which modify the e f f e c t of the macroclimate on the vegetation, the primary succession can seldom proceed to such a stage that the climate can be said to be the sole determining habitat f a c t o r . F i n a l l y , i t must be assumed that the climate and a l t i t u d e w i l l remain constant at a given l o c a l i t y , while erosion of the land toward i t s ultimate peneplanation,  and weathering of the s o i l toward  one of medium, or loamy texture take place.  This assumption, however,  must be made i n the face of the fact that the climate i s known to change more r a p i d l y with time alone than through any change i n a l t i t u d e or topography which may be due to the forces of erosion or land movement.  It may,  moreover, be pointed out that the pene-  planation of the land w i l l i t s e l f a f f e c t the climate. Thus the writer concludes  that the c l i m a t i c climax a s s o c i a t i o n  123  for a region of t h i s nature i s a hypothetical community. seldom attained, except by chance, as where the i d e a l  This i s  topographical  form and s o i l t e x t u r a l type, or conditions approaching them, have "been present  since the f i r s t exposure of the land following the  l a s t recession of the ice sheet. Secondary succession, on the other hand, which returns a community towards a stable association following temporary d i s turbance of the pre-existing association, takes place more r a p i d l y and i s much more e a s i l y recognizable  than i s the primary  succession.  It i s i n view of the above aspects of the climax concept that the writer has f e l t that i t i s more p r a c t i c a l i n t h i s work to use the term 'climax' to include the topographic and edaphic climaxes, as well as the c l i m a t i c climax.  It i s thus implied that  the natural vegetation i n i t s mature state, i n dynamic equilibrium with a highly variable t o t a l environment, i s better described as a mosaic of topographic and edaphic, as w e l l as c l i m a t i c , climax associations, r e f l e c t i n g a pattern of habitat factors 1953).  (Whittaker,  Most of such associations would be regarded as s e r a i i n the  terminology of Clements, and would thus be c a l l e d 'associes' (or more c l o s e l y i n this case, ' f a d e s ) , since they do not r e f l e c t 1  c l i m a t i c influences alone.  However, i n as f a r as they are i n more  or l e s s stable equilibrium with their p a r t i c u l a r habitat f a c t o r s , they can be considered as climax i n the broad sense of the term (Daubenmire, 1952 b). For this review and discussion of the dynamic r e l a t i o n s between the various associations and subassociations, the assumption of peneplanation of the land surface without change i n a l t i t u d e or climate i s conceded to be sound.  12^  2.  The r e l a t i o n s between topography, s o l i texture and vegetation.  Other factors being equal, there appears to be a d e f i n i t e though not i n f a l l i b l e , r e l a t i o n s h i p between a l t i t u d e , slope, s o i l texture, and vegetation. It further appears that i n the driest s i t u a t i o n s at the lowest elevations i n the area, s o i l texture, through i t s e f f e c t s on the a v a i l a b i l i t y of the meagre supply of moisture, important f a c t o r determining vegetation types.  i s the most  With increasing  a l t i t u d e and dampness though,the topography, with i t s attendant drainage and exposure e f f e c t s , becomes of progressively greater importance. The low a v a i l a b i l i t y of the s o i l moisture i n a f i n e textured s o i l i s r e f l e c t e d i n the zonal boundaries,  which tend to l i e at  higher a l t i t u d e s on fine than on coarse textured 3.  The topographic  influence on zonatlon.  out i n Chapter VII that corresponding ponderosa and Pseudotsuga zones may  soils.  It has been pointed  associations of the Pinus  replace each other according  to the slope, i n places where the topography i s a decisive f a c t o r f o r either one of them (Pig. 1 6 ) , and that the zonal boundaries tend to be depressed on north slopes and elevated on south slopes. situations where this may  In  take place the primary succession  following l e v e l l i n g of the topography would involve changes from associations of one zone to associations of the other. example:  For  at moderate elevations, i n the Pinus ponderosa zone,  a Calarnagrostis stand occupying a north slope would change to a stand of the Aisropyron association upon reduction of the slope.  Fig.16. Schematic section, from North to South, showing the topographic r e l a t i o n s between communities, which are found i n situations where the topography i s decisive.  125  On the other hand, an Agropyron stand on a south slope at a higher elevation would undergo change i n the opposite d i r e c t i o n , to an association of the Pseudotsuga zone which i s normal at that altitude. In t h i s region, the Symphoricarpos association usually occupies s i t u a t i o n s , at moderate to high elevations, where drainage conditions enhance the moisture supply.  This a s s o c i a t i o n  may he expected, normally, to change ultimately to the Calarnagrostis association, which would "be the next d r i e r type i n a  topographically  determined s e r i e s , as the depressions or re-entrants  supporting  the Symphoricarpos stand "become l e v e l l e d out.  But i n some situations  where the Symphoricarpos communities extend i n tongues down draws into the Pinus ponderosa zone (or occasionally even into the steppe), the primary succession would he toward the Agropyron association, which usually occupies the surrounding land. On the other hand, the Rhus association which occupies topographical  situations of enhanced moisture supply at low  elevations, may he expected to succeed eventually  to the Purshia  association, as a r e s u l t of the greater r e l a t i v e importance at low a l t i t u d e s of the very coarse textured  s o i l usually found i n  such s i t u a t i o n s . The succession which takeB place i n a l l u v i a l s i t u a t i o n s , through a series of shrub and tree phases to a meadow phase, has been described  i n d e t a i l under the A l l u v i a l complex.  It  seems l i k e l y that this succession may be broken off at any stage by a reversal or change i n the d i r e c t i o n of the current e c o l o g i c a l  126  trend, and be superseded by a correspondingly a l t e r e d trend i n succession.  Since the s o i l l a i d down by the r i v e r s of t h i s  region i s u s u a l l y coarse, further succession toward the c l i m a t i c climax may be expected to proceed v i a the Rhus and Purshia associations, at least at low elevations.  #  The e f f e c t of a l t i t u d e and s o i l texture on the d i s t r i b u t i o n  of associations.  Apart from the e f f e c t s of slope, mentioned  above, i t has been found that s o i l texture i s a f a c t o r which determines  c e r t a i n of the communities.  At low elevations, with  some exceptions, f i n e and medium textured s o i l s are occupied by the Agro-pyron association, and coarser s o i l s by the Purshia association; while at higher elevations, the f i n e r s o i l s support the Calamagrostis association, and the coarser s o i l s the Arctostaphylos - Calamagrostis and Arctostaphylos associations. These l a s t two associations have been hard to separate t e x t u r a l l y on the basis of the few s o i l samples so f a r analysed.  It i s  f e l t that the difference between them may be due to the influence of other f a c t o r s not at present evident, and which may include some factors of an h i s t o r i c a l nature.  An approximate r e l a t i o n s h i p  between a l t i t u d e , predominant textural character of the s o i l , and associations i s shewn g r a p h i c a l l y i n Figure 1 7 . Primary succession involving the weathering of a l l s o i l s to a medium textured loamy material without change i n a l t i t u d e , could be represented i n Figure 17 by a general horizontal convergence from both directions towards the communities represented  GPAVEL  SAND  LOAM  CLAY  SOIL Fig.17.  TEXTURE  Chart of the approximate r e l a t i o n s between s o i l texture, a l t i t u d e , and some associations.  12?  "by a l i n e drawn v e r t i c a l l y upward above the word 'LOAM . 1  This  l i n e , i n the Pinus ponderosa zone, would traverse the Agro-pyron association, and i n the Pseudotsuga zone, the Arctostaphylos Calamagrostis  association.  Thus some forms of these two asso-  c i a t i o n s are considered to represent the c l i m a t i c climax associations at their respective l e v e l s .  5.  The s e r i a l arrangements of plant associations.  It can be  seen from Figures 16 and 1 7 that the plant communities can be arranged are:  i n three kinds of series i n t h i s region: These series  the a l t i t u d i n a l - c l i m a t i c , edaphic, and topographic  series;  the l a t t e r two of which are equivalent to the e c o l o g i c a l - edaphic series of Sukatchev  (1928).  represented adequately  Not a l l of these series.can be  i n any one table or diagram.  Over a larger  region, geographical - c l i m a t i c series (the e c o l o g i c a l - geographical series of Sukatchev,) would also become apparent.  Such s e r i e s  would d i f f e r i n some respects from the a l t i t u d i n a l - c l i m a t i c series.  These series may be taken to represent the trends i n  primary succession which may be possible i n various s i t u a t i o n s and under various conditions or trends of change i n the ecotope. The dynamic r e l a t i o n s between the associations and subassociations are summarized f o r the two zones separately i n Tables 5  6.  Successional trends between the zones, however,  have been f o r the most part omitted to avoid confusion.  T  a  b  l  e  5  *  Primary and secondary successional relationships between the various associations and subassociations of the Pinus ponderosa zone. ~ "  4a Pinus ponderosa Arotostaphylos Subass'n. Pinus ponderosa Purshia Ass n . f  Pinus ponderosa Agropyron Ass'n. (ClimatTc climax)  2c Pseudotsuga Agropyron Subass'n.  J  2a Pinus ponderosa Stipa Subass'n. 2b Pinus ponderosa Artemisia Subass'n.  la Pinus ponderosa A r i s t i d a Subass'n.  2d , Pseudotsuga Stipa Subass'n.  Pinus ponderosa Symphorioarpos Subass'n. ^ 7b N Populus tremuloides Sympho r i ca rpo s ' Subass *n. v  3 Pinus ponderosa Rhus Ass'n.  8 8a A l l u v i a l ) Cornus stolonlfera Complex ; Salix spp. (Riverbank shrubs)  ^ -^,8d .^Elymus condensatus r  Populus triohocarpa Betula papyrifera (Deciduous woodland)  Pinus ponderosa - _ Rosa nutkana (Coniferous phase )  (meadow)  Table 6.  Primary and secondary successional relationships between the various associations and subassociations of the Pseudotsuga zone.  Pseudotsuga - Arotostaphylos Ass'n.  A 4a Pinus ponderosa Aroto staphylo s Subass'n.  Pseudotsuga Arotostaphylos Calamagrostis Ass'n. (Climatic climax)  Pseudotsuga • Calarnagrostis Ass'n.  7a Pinus ' ponderosa Symphoricarpos Subass'n.  Pseudotsuga • Symphorioarpos Ass'n.  /  /  6a:  5b Pinus contorta Arotostaphylos Calarnagrostis Subass'n.  Pinus ponderosa Calarnagrostis Subass'n. 5a Pinus ponderosa Arotostaphylos Calarnagrostis Subass'n.  /  2 Pinus ponderosa - Agropyron Ass'n. (on south slopes )  Populn's tremuloides — Symphoricarpos Subass'n.  2c Pseudotsuga Agropyron Subass'n.  2d Pseudotsuga Stipa Subass'n.  130  6  >  The nature of the "boundaries between communities.  It might  be expected that as gradients i n e c o l o g i c a l conditions are found to e x i s t , corresponding gradients, or continua, i n f l o r l s t i c compositions of the communities w i l l also be found (Whittaker, 1953).  This i s true among a few of the associations found here,  which grade into one another so imperceptibly that boundaries between them must be rather a r b i t r a r i l y drawn.  This condition  i s true of the Arctostaphylos. Arctostaphylos - Calamagrostis. and Calamagrostis associations; and may be thought to represent the continuous process of primary succession from one association to another.  In the majority of cases, however, i n t h i s area at  l e a s t , the associations are found to be f a i r l y c l e a r l y defined, and the tension zones or ecotones between them to be r e s t r i c t e d i n extent.  It seems as though, where two or more plant populations  or unions are i n competition f o r the dominance of a community, a t i p of the e c o l o g i c a l balance i n favour of one of them r e s u l t s i n that union assuming a degree of dominance out of proportion to the degree of favour which i t has received.  This r e a c t i o n would  tend to narrow the boundaries between e c o l o g i c a l l y adjacent communities. It i s further noticeable that the e c o l o g i c a l and geographical l i m i t s of the understory types do not necessarily coincide with those of the ranges of dominance of the tree species.  This i s  understandable when i t i s observed how markedly the environment of the understory d i f f e r s from that of the trees i n the same stand.  131  7.  Secondary successions:  and grazing.  a comparison of the e f f e c t s of f i r e  Secondary successions a f f e c t i n g the associations,  which l a r g e l y "by reason of the r a p i d i t y with which t h e i r success i v e stages supersede one another, are r e l a t i v e l y e a s i l y recognizable, have been discussed under the descriptions of the various associations.  A few points of more general a p p l i c a t i o n are  presented here. It i s possible f o r two or more secondary successions to proceed simultaneously i n the same stand.  A good example of this  can be shown by the Pseudotsuga - Symphoricarpos association. This association can undergo a secondary succession i n i t s understory, from a temporary Symphoricarpos - Poa pratensis b i o t i c disciimax, to the Symphoricarpos climax state (of the understory).  At the  same time, a succession may be taking place i n the tree layer, where the successional dominance of Populus tremuloides or Pinus ponderosa. i s being replaced by the climax dominance of Pseudotsuga. These two types of succession may proceed almost independently of each other. Where grass and shrub unions are i n competition f o r dominance, the e f f e c t s of f i r e and grazing on the vegetation tend to be contrary to each other.  F i r e , to which shrubs are generally more  susceptible than grasses, induces an encroachment of grassy vegetation onto areas formerly occupied by shrubs. of the A r i s t i d a stands are examples of t h i s e f f e c t . may be perpetuated by repeated f i r e s .  At least some The advance  On the other hand, grazing  of the r e l a t i v e l y palatable grasses may, i f too intense, so reduce  132  t h e i r competitive a b i l i t y that shrub communities are enabled to invade the grassland.  In regard to the l a t t e r change, i t has  been noticed that where Agropyron grassland or parkland bordering a Symphoricarpos stand becomes overused, Symphoricarpos albus. accompanied by Prunus v l r g i n i a n a and Crataegus d o u g l a s l l . may  invade  t h i s grassland, extending the boundaries of t h e i r stand (see p. 116).  Trees may  follow such an extension or may  grassland d i r e c t l y .  invade the wasted  Modern f i r e control methods, by reducing  the spread of grass f i r e s , provide further assistance to t h i s process.  Another example of the opposed influences of f i r e  and  grazing i s provided by the r e l a t i o n s h i p between the Agropyron a s s o c i a t i o n as i t occurs on f i n e textured s o i l s and the Artemisia subassociation which i s derived from i t (see p. 9 0 et sag,.).  It  has been noticed that i n some areas where s t a n d B of the Artemisia grazing disclimax have been burnt, the shrub has been eliminated from the competition, and grass has a greater chance to regain i t s l o s t dominance, e s p e c i a l l y i f protected from grazing f o r a few years. Other e f f e c t s of f i r e on stands are shown by a comparison between the Purshia a s s o c i a t i o n and the r e l a t e d A r i s t i d a association.  The  sub-  elimination of Purshia t r l d e n t a t a from the com-  munity apparently a f f e c t s some improvement i n the grazing q u a l i t y and perhaps a l i t t l e improvement i n tree growth.  On the other  hand, the extremely sparse regeneration of the trees i n the A r i s t i d a stands indicates that the shade of Purshia busheB i s  133  necessary i n these hot dry stands f o r the establishment of tree seedlings, through the amelioration of the s o i l surface temperatures to which these seedlings are exposed. The time at which a f i r e occurs can be important to the subsequent changes i n a stand.  A single f i r e immediately preceding  a heavy seed year i n the pine may lead to very dense regeneration, ultimate increase i n the density of the canopy, and consequent reduction i n the production of herbaceous material i n the understory.  On the other hand, repeated f i r e s ,  such as may occur  n a t u r a l l y i n grassland or parkland areas, by destroying a large proportion of the tree seedlings, w i l l tend to maintain stands of an open park-like nature, with a r e l a t i v e l y high production of herbaceous material. An example of the dependance of tree stocking and understory type on animal stocking and f i r e has been observed i n the North Okanagan Valley and adjacent d i s t r i c t s ,  where much land  that formerly supported grassland or park-like stands of the Agropyron association i s now becoming occupied by r e l a t i v e l y dense young stands of Ponderosa pine or Douglas-fir.  The understory i n  some cases retains the o r i g i n a l species composition, while becoming very reduced i n density owing to the overstocking of the trees; but i n other cases the grass i s being replaced by a shrubby understory dominated by the Symphoricarpos union.  It i s thought that a  combination of the increased grazing i n t e n s i t y and the improved c o n t r o l of grass f i r e s associated with white settlement of the  134  d i s t r i c t may be the agency inducing t h i s change.  Such a stand  may he expected to show reduced p r o d u c t i v i t y as grazing land, and suppressed growth of the trees owing to the intense  competition  between them. The increased rate of regeneration i n many stands,  with  i t s attendant heavy overstocking and reduced forage density, together with the findings of Tisdale (1950) regarding the r e l a t i v e grazing values of forest stands i n d i f f e r e n t stages of succession, indicate the part that f i r e has played i n the past i n producing and maintaining good grazing land. The amount of the Agropyron association which at present e x i s t s i n one or other of i t s grazing disclimax states indicates a need f o r a reduction i n the amount of l i v e s t o c k u t i l i z i n g this most heavily grazed association to a l e v e l which w i l l permit the more palatable grasses to be grazed while yet r e t a i n i n g t h e i r competitive capacity. 8.  The r e l a t i o n between the habitat and tree growth and repro-  duction.  It has generally been noticed that, apart from the  e f f e c t s of disturbance, while tree growth i s best on the f i n e r textured s o i l s ( s e e also Holtby, 19^7),-reproduction i s heaviest o n s o i l s o f coarser texture, (Haasis, 192l).  Superimposed o n t h i B ,  however, and d i f f i c u l t t o separate from i t , are the e f f e c t s of disturbance.  The heavy reproduction following disturbances, noticed  i n p a r t i c u l a r i n stands of t h e Purshia and Agropyron associations have been discussed elsewhere. Examination of the growth curves f o r the associations  suggests the a d v i s a b i l i t y of cutting a l l trees to age which w i l l vary from association to association.  limits,  It may  he  noticed that the period of rapid growth p e r s i s t s somewhat longer i n the better q u a l i t y associations (Agropyron. Calarnagrostis. and Symphoricarpos associations, and the coniferous phase of the A l l u v i a l complex). 9.  The value of ponderosa pine i n mixed stands.  The  successional  trend from pioneer ponderosa pine dominance to climax Douglas-fir dominance i n the mixed stands of the Pseudotsuga zone has been described.  It has also been noted that the present logging methods,  through removal of the pine, tend to accelerate t h i s trend toward a climax stage which i s of r e l a t i v e l y low value from the point of view of both timber production and forage y i e l d . t i o n s demonstrate the d e s i r a b i l i t y of maintaining  These observa-  such stands i n their  more productive e a r l i e r successional stages; and at a stocking density which provides enough shade to induce natural pruning of the pines, but not so much as to suppress these trees or the understory beneath them. In spite of the fact that the ponderosa pine i s the most commercially valuable tree of this f o r e s t , the low nutrient content of i t s f o l i a g e compared to that of Douglas-fir or aspen poplar (Daubenmire, 1953) shows that i t may  be desirable to maintain  mixed stands of these trees, rather than pure pine stands, i n order to maintain an adequate turnover of nutrients i n the forest l i t t e r at higher  levels.  136  10.  A need f o r f a r t h e r research and establishment  reserves.  of research  The need f o r further research i n t h i s forest region i s  strongly indicated.  In p a r t i c u l a r , the "breadth of the e c o l o g i c a l  range occupied by the Agropyron association as defined here, the v a r i a b i l i t y i n i t s tree growth c h a r a c t e r i s t i c s , and the d i v e r s i t y of i t s reactions to disturbance are too great to permit p r a c t i c a l use of i t .  This s i t u a t i o n demonstrates a need f o r a more intense  examination of t h i s community and of the r e l a t e d steppe communities i n order to produce a f i n e r and more p r a c t i c a l breakdown of this association than has been possible i n this very introductory work. The need for further work i s also indicated i n order to e s t a b l i s h the precise relationships between the Arctostaphylos and Arctostaphylos - Calamagrostis  the  associations, and between the  Symphoricarpos association as found i n t h i s region and as found by Daubenmire ( 1 9 5 2 b) further to the  southeast.  The extensive disturbance which has taken place i n t h i s forest region and the adjacent steppe communities, and the d i f f i c u l t y experienced by the writer i n finding v i r g i n stands for examination suggest a measure which would be of great use to further research into both the c l a s s i f i c a t i o n and the u t i l i z a t i o n of the vegetation.  This measure i s the establishment  i n this region of  areas of natural vegetation as research reserves, representing a l l the known plant associations.  These research reserves would need pro-  t e c t i o n from grazing as well as logging, and their u t i l i z a t i o n should be directed p r i m a r i l y f o r research purposes.  Such measures  have already been taken i n the United States, and i n the Province of Saskatchewan (Coupland, 195*0.  137  CHAPTER IX SUMMARY 1.  A c l a s s i f i c a t i o n of the ponderosa pine stands i n the Okanagan,  Similkameen, Thompson, and Nicola Valleys has been c a r r i e d out, and the stands divided between a number of associations,  sub-  associations, and a complex of azonal communities. 2.  The association used here i s defined according  International Botanical Congress of  to the' Third  (Braun-Blanquet,  1910  1932),  as a uniform plant community of d e f i n i t e f l o r i s t i c composition; but with a d d i t i o n a l stress on the environmental factors as diagnostic c h a r a c t e r i s t i c s (Sukatchev, Daubenmire, 1952 b).  I928;  Krajina,  1933*  The f l o r i s t i c characterization i s based on  the s p e c i f i c composition of a l l the layers of a stand. 3.  The methods used included:  f l o r i s t i c analyses of 121 stands  by a system of v i s u a l estimates, a f t e r Braun-Blanquet, Domin, and Krajina.  Scale values f o r abundance and dominance, and for vigour  were assigned to each species as i t occurred  in each layer of a  community; the scale values of the several component stands being averaged i n the f i n a l synthesis of each association.  Presence  and f i d e l i t y values derived i n the synthesis were also assigned to the  species. Measurements of diameters, heights, and ages of repres-  entative trees i n each stand were made and i n some cases the i n t e n s i t y of stocking was  also measured.  S o i l samples were obtained from many of the stands, and have been analysed by Ogilvie f o r pH and  texture.  Instrument stations to record c l i m a t i c data were i n s t a l l e d i n several representative stands, and maintained f o r one year.  The resulting data give an approximation of the  c l i m a t i c values f o r these f o r e s t stands. 4.  The associations studied have "been found to f a l l into two  main a l t i t u d i n a l zones.  At r e l a t i v e l y high l e v e l s occurs the  Pseudotsuga zone, where Pseudotsuga menziesli i s the climax dominant of the f o r e s t . a closed canopy.  Mature stands of this forest zone have  Here, Pinus ponderosa i s a pioneer dominant  only, maintaining i t s e l f i n the stands only so long as the canopy i s f a i r l y open.  Below the Pseudotsuga zone, and "between  i t and the steppe, l i e s the Pinus ponderosa zone, which may absent under some conditions.  be  Here Pinus ponderosa i s the climax  tree, and forms open, park-like stands, underlain by understory communities which are also t y p i c a l associations of the e c o l o g i c a l l y adjacent steppe.  The Pinus ponderosa zone may be considered as  a zone of overlap or i n t e r f u s i o n of the forest and steppe formations, between which i t l i e s . 5.  The following p r i n c i p a l associations and subassociations have been  recognized: A.  Pinus ponderosa 1.  Pinus - Purshia association. la.  2.  zone.  Pinus - A r i s t i d a subassociation.  Pinus - Agropyron association.  139  3. B.  2a.  Pinus - Stipa subassociation.  2b.  Pinus - Artemisia  subassociation.  Pinus - Rhus association.  Pseudotsuga zone. 4.  Pseudotsuga - Pinus - Arctostaphylos  association.  5.  Pseudotsuga - Arctostaphylos - Calarnagrostis association.  C.  6.  Pseudotsuga - Calarnagrostis association.  7.  Pseudotsuga - Symphoricarpos association.  Azonal communities. 8.  PopuluB - Rosa - Cornus ( A l l u v i a l ) complex.  These communities are described i n d i v i d u a l l y , with discussions of t h e i r f l o r i s t i c , edaphic, topographic,  and c l i m a t i c  c h a r a c t e r i s t i c s ; tree growth and grazing q u a l i t i e s ; and successional relationships and the e f f e c t s of present 6.  It has been found that, while topography may  their  utilization.  be the most  important f a c t o r determining vegetation types under the moister c l i m a t i c conditions at high elevations, under the  influence  of the dry climate of low elevations i n t h i s region, s o i l  texture  becomes more important as a determining f a c t o r . 7.  Apart from topographical  influences, i t has generally been  found that at low elevations, i n the Pinus ponderosa zone, medium and f i n e textured s o i l s are occupied by the Agropyron a s s o c i a t i o n and coarse s o i l s by the Purshia association.  At  140  higher elevations, i n the Pseudotsuga zone, medium and f i n e textured s o i l s support the Calamagrostis  a s s o c i a t i o n and coarse  s o i l s the Arctostaphylos - Calamagrostis  and Arctostaphylos  associations.  The Rhus and Symphoricarpos associations are found  i n situations where seepage or drainage conditions enhance the supply of moisture i n the s o i l . 8.  The relationships of the A r i s t i d a subassociation to the  Purshia association as a f i r e disclimax or as an immature Purshia association, and of the Stipa and Artemisia subassociations as grazing disciimaxes of the Agropyron association on coarse and f i n e textured s o i l s , respectively, are described.  The great  extent of these grazing disclimax communities i s also observed. 9.  The writer's conclusion that the climax vegetation f o r the  region i s more p r a c t i c a l l y described as a mosaic of several communities i n equilibrium with a highly v a r i a b l e t o t a l environment, rather than as a single c l i m a t i c climax, i s discussed and explained. 10.  The dynamic r e l a t i o n s l i n k i n g a l l the associations and  subassociations are reviewed and discussed. The possible trends i n primary succession, i n r e l a t i o n to topography, a l t i t u d e , climate, and s o i l , lead to the conclusion that the Agropyron and Arctostaphylos - Calamagrostis associations represent the c l i m a t i c climax communities i n t h e i r respective zones, 11.  The secondary successional trends following disturbance of  the associations are described.  The d i f f e r e n t i a t i n g effects of  141  f i r e and grazing on grass and shrub communities are compared, and i t i s noted that grazing favours shrub over grass unions while f i r e has the opposite influence. It i s noted that while tree growth rates of ponderosa pine and Douglas-fir are favoured by f i n e textured s o i l s , regeneration appears heavier on coarse s o i l s .  Superimposed on  the above e f f e c t , however, are the e f f e c t s of disturbance on regeneration, which may be favoured by grazing and sometimes by f i r e and cutting. 12.  The need f o r further research i s indicated.  A P P E N D I C E S  APPENDICES Page 1.  L i s t of stands analysed, with t h e i r l o c a l i t i e s and elevations  145  2.  L i s t of species, with authors  149  3.  Tables showing the abundance and dominance, and the vigour, of species i n each association  160  L i s t of a l l species found i n the analyses, with t h e i r l i f e form, presence and vigour . . .  197  B i o l o g i c a l spectra of the associations and subassociations • • • • • • • •  213  6.  Tables of percentage basal cover of plants  . .  215  7.  Tables of climatic data obtained from the instrument stations set out i n t h i s project • •  218  8.  Table of the mean values of the textures of s o i l samples • • • •  223  Frequency d i s t r i b u t i o n of trees i n size (diameter) classes f o r several stands  225  The compositions and ecological roles o f plant unions  229  Table showing the ecological roles of the tree species  234  4. 5.  9. 10. 11.  APPENDIX  1.  L i s t of stands analysed; with t h e i r l o c a l i t i e s and elevations. Those stands not used f o r the f i n a l syntheses of vegetation types are asterisked.  Appendix 1. Locations and Altitudes of Stands Analysed. 1.  Spius Cr. Valley, E side, about $ vol, S of Midday Cr.  2. 3.  Opposite Canford M i l l , N side H'way 8. 1900' Princeton, 8 mi. W, on Coalmont rd. 300' above r d . 2500 » » " " 2900'  5.  6. 7. 8. 9. 10. 11. 12. 13. lij.. 15. 16.  17. 18. 19. 20. 21. 22. 23. 21}.. 25. 26. 27. 28. 29. 30. 31. 32. 33. %. 35. 36.  37. 38. 39. k.0. 5l.  3200'  by rd.  "  »  »  »  3000'  Princeton, 2 mi. S. W of H'way 3 . 2500' " 7 mi. S. Slope E of H'way 3 . 2600' O l i v e r , 1 mi. SE, on Inkaneep I.R. on bench. 1100' Osoyoos, 2 mi. HE, " " foot of g u l l y . 1000' O l i v e r , 1 mi. E, on I.R. On bench S of rd. 1100' " 1 mi.NE, on I.R. N of power l i n e , E of canal. 1100 " " " i n shallow depression £ mi.N of 11. 1100 " 2 mi.NE, on bench W of Baldy Mtn. rd. 1100' Osoyoos, k ml. E, across Haines Cr. from H'way 3 . 2800 Oliver, k mi. W. W of Caws ton rd. 2000' n  w  »  »  "  »  »  »  »  » i ml.S of 15.  n  M  M  B  n  11  11  M  M  n  " " "  § mi. E of 39. 2900' S. i mi. SSW of 30. 3000*  H  k2. I4.3. 44.  Aspen Grove, 12 mi S, on H'way 5 , E of rd. Brookmere, 5 mi. E, S of rd. 3500' " 7 mi. E, S of rd. 3850'  lj.7.  M e r r i t t , 10 ml. N, i n Guichon Valley. E of rd. N of Steffens Cr. 3700'  k5. lj.6.  2300  5 mi.N, on bench & N of Park Ranch rd. 1300' k mi.NNW. On bench ¥ of H'way 97. 1300' " 1 mi.SE. W of Inkaneep Cr. r d . i ml. S of 8. 1100» Okanagan F a l l s , 1 mi.SE. N side McLean Cr. rd. 1200' O l i v e r , 2 ml. NE, on bench £ ml. N of 13. 1100' k ml. NE, Mouth of deep ravine i mi. N of Baldy Mtn. rd. 1500' 6 mi. NNE, on slope £ mi. SE of Gallagher L. 1200' Okanagan F a l l s , 2 mi. NW. S of H'way 9 7 . Ik00' " 2 mi.E, S side McLean Cr. rd. IkOO' Yellow Lake, on rock terrace S of middle of L. 2750' Princeton, 3 mi. E, on golf course S of H'way 3 . 2000' " 3 mi. ESE. Slope SE of t a i l i n g s . 2400' " 2 mi. E. Bench S of H'way 3 , NE of t a i l i n g s . 2200 " 8 mi. S on H'way 3 . i mi. N of Whipsaw Cr. 3100' " 8 mi. S " " " N side of rd. 2800' " k mi. NW, on bench between Asp Cr. & rd. on W. 2600 " " " n i l l s i d e £ mi. W of 32. 2800' NNW. Face of terrace, E side Asp Cr. 2500' Bromley, i mi. SE. N side of R. S side of r d . 1600' " 1 mi. N. N of R. & rd. 1600' Princeton, 6 mi. E. 1 mi. E of 5 mi. Cr. N of rd. 2100 2 mi. S. \ mi. SE of 6. E side H'way 3 . 2500» 8 mi. ¥, on Coalmont rd. . 200' above rd. 2900'  " "  5 ml. E, N of rd. 6 mi. E, S of rd.  J ml. NE of k 3 . 38OO'  3k00 •  3850'  147  48.  M e r r i t t , 8 mi NW. 5 mi. N of Lower Nicola. Bench W of Guichon Cr. 2600 " 6 mi. NW. 2 mi. N of Lower Nicola. Bench W of Cr. 2100 ' " 7 mi. NW. Bench W of Guichon Cr. 2600' " 7 mi. NW. " " «• » 1 mi. S of 50. 2300• Dot, 5 mi.N. 5 mi. up Skuhun Cr. rd. 2300* Spences Bridge, 3 mi. E. Eroded h i l l s l o p e N of rd. 900' Dot, 6 mi. NW. S of H'way 8. 1600« Knutsford, 2 mi. NW. S o f H'way 5 (1952). 2200' Paul Lake, N of W end of L. 200 f t . above L. 2700' Tranquille, 6 mi. WNW. 2100' Vernon, 9 mi. SW. W of Carr's Ldg. rd. opposite L. 2000' Oyama, 2 mi. NE. On bench above L. 1700' Vernon, 7 mi. SE. 1 mi. W of Ravine L. bed of ravine, 1800' 4 mi. E. Slope across g u l l y from logging rd. 2600' " 4 mi. S. N slope of Rattlesnake H i l l . 2000' 1  49. 50.  51.  52. *53. *54. 55. 56. 57. 58. 59. 60. 61. 62. 63.  64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78.  79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. #90. 91.  11  "  "  B  £ mi. E of 62.  2000'  Chasm, 1 mi. E. N of old Cariboo Rd. 3600' Clinton, 4 mi. NE. E side of H'way 2. 3400' 3 mi. NE. W of H'way 2. 3200' " 6 mi. EKE. H i l l s i d e W of R. Bonaparte. 1700' » 3 mi. ENE. K n o l l E of Clinton Cr. 2800' " " K n o l l W of Clinton Cr. 2800' Kelo:wna, 3 mi. SW, 2 mi. S of Westside. E of H'way 97, on l o t 2189 (before subdivision). 1600» Winfield, 6 mi. E, on S side of Swalwell L. rd. Lot 3690. 3200' Sumraerland 8 mi. SW, 2 mi.E of Shingle Cr. cross'g. 2400' 5 mi. WSW. On broad divide W of Shingle Cr. rd.2500' Darke Lake. 1 mi. NNW of camp. 3300' Paulder, 3 mi. W, S of Trout Cr. N side of r d . 3000' Oliver, 6 mi. N, on bench S of mesa. W of R. 1300' " 5 mi. N. On bench * mi. SW of 76. 1300' " " " " " } mi. SW of 77. 1300' Okanagan F a l l s , 2 mi. NE. Dry v a l l e y f l o o r . 1500» Oliver, 3 mi. SE. Shallow draw on second bench. 1400* Ospyoos, 3 mi. N. E of L. Foot of Mika Cr. g u l l y . 1100' Oliver, 3 mi. SE, on second bench. f- mi. SW of 80. 1400» " 2 mi. E, on second bench. S of power l i n e . 1500 3 mi. SSE. A l l u v i a l 'fan' below g u l l y . 1200' " 4 mi. NW. i mi. SW of 18. On bench. 1300' " 2 mi. NE. Stony creek bottom. 1100' Okanagan F a l l s , 1 mi. SW. Steep slope above rd. 1300' Keremeos, 10 mi. S. Chopako I.R. | mi S of ry. bridge, on E side of ry. 1200' Princeton, 8 mi. S, on Copper Mountain rd. E of rd. M  M  ;  w  1  11  3000'  Skagit Valley, | mi. N of Internat'l Bdy. W. side of R. Lot 222. 1600' Osoyoos, 4 mi. E. S side steep k n o l l 1 mi. N of H'way 3. 3600'  1^8  97. 98. 99. 100. 101.  Osoyoos 2 mi NE. Low sandy bench £ of L. 1000» " 4 mi. E. $ mi. NE of 14. S side Haynes Cr. 3000' " " " f mi. N of 14. N side " 2800' O l i v e r , 4 mi* N. i mi. S of 77. steep face of terrace. 1100' Okanagan P a l l s , 2 mi. NE. £ mi. NW of 79. Entrance of dry v a l l e y . 1500 » Osoyoos, 4 ml* E. i mi. NE of 14. S side Haynes Cr. 2800' Oliver, 6 mi. E, & mi. N of Baldy Mtn. r d . 2900' Aspen Grove, 9 mi. S. E side of H'way 5 . 3400' Canford, 4 mi. NW. Pace of terrace N of H'way 8. 1800' 3 mi NW. Steep slope N of H'way 8. •§• mi. SE of  102. 103. 104. 105.  Dot, 5 mi. NW. 1 mi. SE of 54. Astride H'way 8. 1700' Nicola, 5 mi N, on Skwakum Mtn. r d . 4400• Kelowna, 3 mi. NE H i l l s i d e 3/4 mi. W of Kelowna Cr. 1800• " 5 mi. NNW. Level shoulder, S end Bluegrouse Ridge.  106.  Clinton, 4 mi. NE. £ mi. W of 6 5 . Between H'way 2 & Ry.  107. 108. 109.  Clinton, 15 mi. NE. N slope of Bonaparte Valley. 3400' Brookmere, 10 mi. E, on r d . 3400' Princeton, 16 mi. S. i mi. N of Sunday Cr. £ mi E. of H'way 3 . 4000' Chopako, J mi. E, adjoining Internat'l Bdy. 1200' " (sta) 1 mi. N. W side rd., S of Snehumption Cr. 1200' " 2 mi.HE. 1 mi. E of 111. 1200' " 2 mi.NE. i mi. N of 112. 1200' " 6 mi. N. i mi. N of 88. E side of Ry. 1200' " 5 mi. N. On R bank of River, 1200' Kelowna, 3 mi. NW. S slope of terrace ^ mi. S of Lambly Cr. crossing. 1300' Vernon, 6 mi. SE. £ mi. E of school, N. bank of Coldstream Cr. 1500' Chase, 3 mi. SSW. H i l l s i d e E of H'way 1. 1300' Hedley, 5 mi. SSE. W bank of R. 1600' " 6 mi. SSE. W bank of R. 1600' " 6 mi. SSE. Bench at graveyard, £ mi. W of R. 1700'  92. 93. 94. 95. 96.  110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121.  *  n  100  2000 •  3100'  3400'  Stands not included i n f i n a l synthesis of data.  APPENDIX 2. L i s t of specie a, with authors, which have been found to occur i n the Pinus ponderosa stands i n the southwestern i n t e r i o r of B r i t i s h Columbia. In some cases where the nomenclature i s doubtful, alternative names are given.  i5o  Appendix 2 .  L i s t of s p e c i e s , w i t h t h e i r authors, which have been found t o occur i n the Pinus ponderosa stands i n the Southwestern I n t e r i o r of B r i t i s h Columbia.  Acarospora S c h l e i c h e r ! (Ach.) Mass. Acer glabrum Torr. A. negundo L. A. p l a t a n o l d e s L. A c h i l l e a m i l l e f o l i u m L. v a r . l a n u l o s a (Nutt.) P i p e r Agoserls aurantlaca (Hook.) Greene As. glauca (Nutt.) Greene v a r . dasycephala T. & G. (A. s c o r z o n e r a e f o l i a (Schrad.) Greene) A. h e t e r o p h v l l a ( N u t t . ) Greene Agropyron dasystachvum (Hook.) S c r i b n . A. i g r l f f i t h s i ! S c r i b n . & Smith. A. s m i t h i i Rydb. A i spicatum (Pursh) S c r i b n . & Smith, v a r . inerme H e l l e r A. s. v a r . spicatum A. subsecundum (Link) Hitchk. A. trachycaulon (Link) Malte A g r o s t i s a l b a L. . A l e c t o r i a chalybelformis (L.) Roehl. A. f r e m o n t i i Tuck. A. .iubata TL.) Ach. A. sarmentosa Ach. A l l i u m cernuum Roth Alnus t e n u l f o l l a Nutt. Amaranthus graeclzans L. A. r e t r o f l e x u s L. Amelanchier a l n i f o l l a (Nutt.) Nutt. ( i n c l u d i n g Aj. C u s i c k i i Pern.) Androsace o c c l d e n t a l l s Pursh f o r Androsace sp. Anemone m u l t i f I d a P o i r . Antennarla anaphaloides Rydb. A. dimorpha T. & G. A. h o w e l l i i Greene A. p a r v i f o l l a Nutt. (= Aj. d l o l c a Gaertn. ?) A. racemosa Hook. A. rosea TD.C. Eaton) Greene Apocynum androsaemifoHum L. A. cannabinum L. A q u i l e g i a formosa F i s c h e r Arab!3 g l a b r a TL.) Bernh. A. m o l b o e l l l i Hornem. A. puberula Nutt. A r a l i a n u d i c a u l i s L. Arceuthobium amerlcanum Nutt. A. d o u g l a s i i Engelm.  151  Arctostaphylos uva-ursi (L.) Sprang. Arenarla f ormoaa Fischer Aj, t e n e l l a Nutt. A r i s t i d a longiseta Steud. Arnica c o r d i f o l i a Hook. A. fulgena Pursh Arrhenatherum e l a t i u s (L.) P r e s l Artemisia campestris L. subsp. p a c l f i c a (Nutt.) H. & C. A. d i s c o l o r Dougl. A. dracunculus L. subsp. glauca (Pallas) H. & C. (A. dracunculoides Pursh) A* f r i g i d a Willd. A i ludoviciaha Nutt. i n c l . var. gnaphalodes (Nutt.) T. & G. A. tridentata Nutt. " A. t r i f i d a Nutt. A± tridentata var. t r i f i d a (Nutt.) H. & C. Asclepias speciosa. Torr. Asparagus o f f i c i n a l i s It, Aster canescens Pursh A. consplcuus L i n d l . A. douglasii (Lindl. A. ericoides L. A. fremontli Gray A. laevis I*. A. occidentalis Nutt. Astragalus Beckwithii T. & G. A. canadensis L. A. l o t i f l o r u s Hook. A. p u r s h i i Dougl. A. serotinus Gray A. atenophyllus T. & G. A. tenellus Pursh Athyrium f i l i x - f e m i n a (L.) Roth Balsamorhiza sagittata Nutt. Barbilophozia hatcheri (Evans) Loeske Berberis aquifolium Pursh Betula papyrifera Marsh i n c l . var. occidentalis (Hook.) Sarg. Boletus sp. — Braehytheclum albicans (Neck.) Br. & Sch. Bromus breviariatatus Buckl. B. carinatus Hook. & Arn. B_. inermi s Leyss. B. japonleus Thuhb. B. marginatus Nees B. m o l l i s L. B. racemosus L. B. tectorum L. Bryum canariense B r i d . Calarnagrostis rubeacens Buckl. (C. Sukadorfii Scribn.) C a l l i e r g o n e l l a achreberi (Br. & Sch.) Grout Calochortus macrocarpus Dougl. Calypso bulbosa (E.) Oakes Campanula r o t u n d i f o l i a L.  152  Carex concinnoides Mack. O. f e s t i v e l l a Mack. Ci f i l i f o l i a Nutt. C. nbodii Boott C. p r a t i c o l a Rydb. C. r o s s i i Boott C. siccata Dewey C. xerantlca Bailey C a s t i l l e i a angustifolia (Nutt.) G. Don C± luteseens(Greenra.) Rydb. C miniata Dougl. Ceanothus sanguineus Pursh C. velutlnus Dougl. Cephaloziells byssacea (Roth) Warnst. Ceraatium arvenae L. Ceratodon purpureus (Hedw.) B r i d . Cetraria juniperina (E.) Ach. var. canadensis Ach. IL glauca (L.T Ach. .C. i s l a n d i c a (E.) Ach. C scutata Twulf) Poetsch Chaenactis dduglasii (Hook.) Hook. & Arn. Chenopodium album. L. C. botrya E. Chimaphila umbellata (E.) Barton Chrysopsla v i l l o a a (Pursh) Nutt. Chrysothamnus nauaeoaua (Pall.:)' B r i t t . C. v i s c i d l f l o r u s (Hook.) Nutt. Circaea alpina E. Ciraium arvense E. C. arummondii T. & G. C. lanceolatum H i l l C. undulatum Spreng. Cladonia carioaa (Ach.) Spreng. C. carneola Pries £. chlorophaea (Plk.) Spreng. C. pyxidata (L.) Hoffm. var. chlorophaea Plk. C± coccifera (E7) Willd. Cladonia coniocraea (Plk.) Spreng. deformls (E.) H ffm. Oj. flrabriata (E.) Pries C. furcata (Huda.) Schrad. C. .gracilis (L.) Willd. C. mitia Sandst. C nemoxyna (Ach.) Nyl. Sjl pyxidata (E.) Hoffm. C. squamosa (Scop.) Hoffm. JL. v e r t i c i l l a t a Hoffm. Clarkia p u l c h e l l a Pursh Claytonia lanceolata Pursh C. l i n e a r i s Dougl. C. p e r f o l i a t a Donn 0  153  C. spathulata Dougl. Clematis columbiana (Nutt.) T. & G. <L. l l g u s t l c l f o l i a Nutt. Collema cr!spurn (L.) Wigg. C o l l l n s i a p a r v i f l o r a Dougl. Comandra p a l l i d a A.DC. Corallorrhiza maculata Raf. Cornlcularia C a l i f o r n i a (Tuck.) D.Rietz Cornus s t o l o n l f e r a Michx. Corylus cornuta Marsh, var. c a l i f o r n i c a (A.DC.) Sharp Crataegus "douglasli L i n d l . Crepis acuminata Nutt. C. atribarba Heller Cryptantha a f f i n i s (Gray) Greene . C. ambigua (Gray) Greene C. humilis (Gray) Payson C. leucophaea (Dougl.) Payson Cynoglossum o f f i c i n a l e L. Cypripedium montanum Dougl. Cystopterls f r a g i l i s (L.) Bernh. Danthonia splcata (L.) Beauv. Delphinium b l c o l o r Nutt. Deschampsla elongata (Hook.) Munro Dicranum fuscescens Turn. D. ma .jus Smith D. scoparium Hedw. D. s t r i ctum Schleich. Disporum trachycarpum (S. Wats.) Benth. & Hook. Dodecatheon meadia L. var. puberulum Nutt. Draba verna L. Drepanocladus uncinatU3 (Hedw.) Warnst. Elaeagnus commutata Bernh. (fj. argentea Pursh not Moench) Elymus canadensis L. Ej. condensatus Presl (Mostly var. pubens Piper) B. glaucus Buckl. E. innovatus Beal Encalypta sp. Eplloblum adenocaulon Haus. JE. angustifolium L. E. minutum L i n d l . ( i n c l . E. panlculatum Nutt.) Equisetum arvense L. E. hyemale L. E. laevigatum A.Br. firigeron canadensis L. E. compos!tus Pursh E. eorymboaus Nutt. B. f l l l f o l l u s (Hook.) Nutt. E. f l a g e l l a r l s Gray E. peucephvllus Gray E. pumilus Nutt. E. speciosus DC.  E. strigosus Muhl. Erlogonum heracleoides Nutt. E. niveum Dougl. Erysimum inconspicuum (S. Wats.) MacM. Euphorbia glyptosperma Engelra. Eurhynchlum strlgosum (Hoffm.) Bry. Eur. Festuca subulata T r i n . P. occidentalia Hook. i n c l . J \ idahoensis Elmer (F. ovlna L. var. ingrata Hack.) P. oetoflora Walt. F. ovlna L. P. p a c i f l e a Piper F. scabrella Torr. Pomes l a r i c l s (Jack.) Murr. Fragarla bracteata Heller jj\ v l r g l n i a n a Duchesnft var. glauca S. Wats. F r i t i l l a r i a lanceolata Pursh F. pudica (Pursh) Sprang. Funaria hygrometrica Hedw. G a i l l a r d i a a r l s t a t a Pursh Galium boreale E. G. t r i f l o r u m Michx. Gayophytum ramosissimum T. & G. Geaster sp. Gentiana amarella L. G. glauca P a l l . Geranium viscosisslmum Pisch. & Mey. Geum t r i f l o r u m Pursh G i l i a aggregata (Pursh) Spreng. Jis. g r a c i l i s Hook. (Collomia g r a c i l i s Dougl.) G. grandiflora (Dougl.) Gray, not (Benth.) Steud. (Collomia grandlflora Dougl.) G. l i n e a r i s ( N u t t . ) Gray rCollomia l i n e a r i s Nutt.) £ j . Pungens Benth. not Dougl. Leptodactylon pungens (Torr.) Nutt. — G. sinuata Dougl. Goodyera menziesli L i n d l . Grlndelia squarrosa Dunal Habenarla unalaschensis l(Spreng) Macoun Haplopappus carthamoides (Hook.) Gray Helianthus fluslckll Gray H. giganteus E. Heracleum lanatum Michx. Heuchera c y l l n d r i c a Dougl. ( i n c l . H. o v a l i f o l i a Nutt.) Hieraclum albiflorum Hook. H. canadense Michx. H. cynoglossoldes Arvet. Holodiscus d i s c o l o r (Pursh) Maxim. Hosack!a denticulata Drew Humulus lupulus L. Hydrophvllum capitaturn Dougl. 6  155  Hylocomium splendena (Hedw.) Bry. Eur. Hypericum perforatum L. Impatlens b i f l o r a Walt. Iva x a n t h i f o l i a Nutt. Juneus b a l t i c u s Willd. Juniperus communis L. var. montana A i t . J . scopulorum Sargent Koeleria c r l s t a t a (L.) Pers. Lactuca p u l c h e l l a (Pursh) DC. L. s c a r i o l a L. Lappula myosotis Moench (L. enhinata G i l i b . ) L a r l x occidentalis Nutt. Lathyrus n u t t a l l i i S. Wats. Lecanora p a c i f l e a Tuck. Lecidea l u r i d a foill.) Ach. L. rubiformis Wahl. Lepidium densiflorum Schrad. L. perfoliatum L. Lesquerella rdouglasii S. Wats. Letharia vulpina (LT) Hue Lewisia redivlva 'Pursh, L i l i u m eolumblanum Hanson Linnaea borealls L. Linum l e w i s i i Pursh Lithospermum incisum Lehm. L. ruderale Dougl. Lomatium ambiguum (Nutt.) Coulter & Rose L. dissectum (Nutt.) Math. & Const. L. macrocarpum (Hook. & Arn.) Coult. & Rose L. nudicaule (Pursh) Coult. & Rose L. piper! Coulter & Rose L. triternatum (Pursh) Coult. & Rose L. utriculatum (Nutt.) Coult. & Rose Lonicera c i l i o s a (Pursh) Poir. L. involucrata (Rich.) Banks L. utahensis S. Wats.. Lupinus nootkatensis Donn L. serlceus Pursh Madia exigua (Smith) Greene Marchant!a polymorpha L. Medicago satlva L. Melampyrum lineare Desr. Melllotus alba Desv. Mentzelia a l b i c a u l i s Dougl. M. l a e v l c a u l l s (Dougl.) T. & G. Mertensia l o n g l f l o r a Greene M. o b l o n g l f o l l a (Nutt.) G.Don. M. panlculata (Ait.) G. Don. Microseris nutans Schultz Mimulus floribundus Dougl. M. guttatus Fischer M i t e l l a nuda L. Mnlum spinulosum Br. Menarda f l s t u l o s a L.  156  Muhlenberg!a mexicana (L.) T r i n . M. !ri chard sonis (Trln.) Rydb. Mycoblastus alpinus (Pr.) Kernst. Nephroma laevigata Ach. . Nephromopsis platyphylla (Tuck.) Herre Oenothera biennis L. Ch p a l l i d a M n d l . Opuntla f r a g i l i s (Nutt.) Haw. 0. polyacantha Haw. Orobanche f a s c i c u l a t a Nutt. Orthocarpus t e n u i f o l i u s (Pursh) Benth. Oryzopsls hymenoldes TRoem. & Schult.) Ricker 0. exigua Thurb. Osmorhiza chilensis Hook. & Am. Oxytropis g r a c i l i s (A. Nels.) K. Schum. 0. lambertli Pursh Pachystima myrsinites (Pursh) Raf. Pan! cum scribnerianum Nash Parmelia caperata (L.) Ach. P. olivacea (E.) Ach. P. Physodes (L.) Ach. P. s a x a t i l i s (L.) Ach. P. sulcata Tayl. Parmeliopaifl arabigua (Wulf.) Nyl. P e l t i g e r a aphthosa (L.) Willd. Us. canina IETF W i l l d . P. scutata (Dicks.) Duby P. venosa (L.) Baumg. Pentstemon confertus Dougl, ( i n c l . var. coeruleo-purpureus Gray) P i frutlcosus (Pursh) Greene subsp. Scouleri (Lindl.) Pennell & Keck) P. ovatus Dougl. P. serrulatus Menz. Phacelia l i n e a r i s (Pursh) Holz. P. leucophylla Torr'.. PhiladelphUB l e w i s i l Pursh Phleum pratense L. Phlox l o n g i f o l i a Nutt. P. speciosa Pursh Physocarpus malvaceus (Greene) Kuntze Picea gngelmannii Parry Pinus contorta Dougl. P. ponderosa Laws. Plantago major L. P. p u r s h l l Roem. & Schult. Poa ampla Merr. P. @anbyi (Scribn.) Piper P. compressa L. P. e u s i c k i i Vasey P. fendleriana (Steud.) Vasey  157  P. Interior Rydb. 3P. l o n g i l i g u l a Scrlb. & Williams P. nervosa(Hook.) Vasey P. pratensis L. PJJ. scabrella (Thurb.) Benth. P. secunda Presl Pohlia cruda (L.) Lindb. nutans TSchreb.) L i n d l . Polemonium micranthum Benth. Polygonum convolvulus L. P.- a o u g l a s i i Greene Polyporus Schweinltzii Pries Polystichum muniturn ([Kaulf.) Pres1 Polytrichum .juniperinum Hedw. P. p l l i f e r u m Hedw. Populus tremuloides Michx. P. trichocarpa T. & G. P o t e n t i l l a arguta Pursh P. glandulosa L i n d l . P. g r a c i l i s Dougl. i n c l . var. f l a b e l l i f o r m i s (Lehm.) Nutt. P. monspeliensis L. ' P. pennsylvanica L. Prunella vulgaris L. Prunus emarginata Dougl. P. persica L. P_. v i r g i n i a n a L. var. demissa (Nutt.) Torr. Pseudotsuga menziesii (Mirb.) Franco P. t a x i f o l i a (Lamb.) Britt. Psoroma hypnorum (Vahl.) S. Gray Pterospora andromedea Nutt. P t i l i d l u m pulcherrimum (Web.) Hampe Purshia tridentata (Pursh) DC. Pyrola chlorantha Sw. P. p i c t a Smith P. secunda L. Pyrus communis L. P. malus L. Ramalina farinacea (L.) Ach. Ranunculus bongardi Greene (R^ occidentalis Nutt. var. L y a l l i i A. Gray) R. glaberrimus Hook. Rhinanthus c r i s t a - g a l l i L. i n c l . , here, R^ minor L. & R. borealis (Stern.) Chab. Rhus glabra L. R. radicans L. Rhytldiadelphus triquetrus (Hedw.) Warnst. Rhizocarpon alplcolum (Wahl.) Rabh. Ribes cereum Dougl. R. lacustre (Pers.) P o i r . (R_j. oxyacanthoides L. var l a c u s t r l s Pers.) R. oxyacantholdes L. R. viscosisslmum Pursh Rinodlna (oanradli Koerb.  158  R. orbata (Ach.) Wainlo Rinodina sp. Rosa nutkana P r e s l i n c l . v a r . h i s p l d a Pern. (R. Spalding Crepin) R i pisocarna A. Gray Rnbus s t r l g o s n s E. R. Idaeus E. v a r . s t r l g o s n s (Micfax.) Maxim. Rubus leueodermls Dougl. R. p a r v l f l o r u s B u t t . Rumex a c e t o s e l l a L. S a l i x bebblana Sarg. ^ f l u v i a t i l i a Butt. S l a s l a n d r a Benth S a l s o l a k a i l L. Sambucus glauca Hut. (S. ooerules Raf.?) S a n i c u l a graveolens Poepp. S marvlandlca L. S a x i f r a g a l n t e g r l f o l l a Hook. Sedum stenopetalum Pursh S e l a g l n e l l a r u p e s t r i a (L.) Sprang, v a r . Wallace1 (Hieron.) Prye (S. Wallace1 Hieron.) Seneclo aureus L. v a r . b o r e a l l s Macoun S. canus Hook. S. e x a l t a t u s Nutt. (S. lugens Rich.?) S e t a r i a glauca (L.) Beauv. Shepherdia canadensis (£.) HUtt. S l l e n e a n t i r r h i n a £. S. d o u g l a s i i Hook. S. m e n z i e s l l Hook. S. s c o u l e r i Hook. Sisymbrium altisslmum t . S. incisum Engelm. S i t anion h y s t r i x (Hutt.) J.G. Smith Smilaclna racemosa Desf. S. s t e l l a t a Deaf. Solldago canadensis Li. S. l e p i d a DC. S. m l s s o u r l e n s i s Hutt. S p e c u l a r l a p e r f o l l a t a (L.) A.DC. Spiraea d o u g l a s i i Hook. 1*. lttcida Dougl. ( ^ b e i t n l i f o l l a P a l l a s ? ) Splranthes romanzoffiana Cham. Sporobolua cryptandrua (Terr.) A. Gray S t e l l a r l a b o r e a l i s B i g e l . (S. calycantha Bong.) S^ longipes Goldie S. n i t o n s Nutt. Stephanomeria t e n u l f o l l a (Torr.) H a l l (S. minor Nutt.) Stereoeanlon tomentosum P r i e s S t i p a oolumbiana Macoun ' Bj, comata T r i n . & Rupr. S. e l m e r i P i p e r & Brodie (§± v i r l d u l a var. pubescens Vasey) S. o c c i d e n t a l i s Thurb. t  T  159  S. r i e h a r d s o n i i (Vasey) Scribn. S. spartea T r i n . S. v i r i d u l a Trin. S. w i l l i a m s i i Scribn. Symphoricarpos albus (L.) Blake not C. Koch (S. racemosus MichxT] Taraxacum erythro spermum Andrz. • T. o f f i c i n a l e Weber Tellima p a r v i f l o r a Hook. Tetradymia canescens DC. Thalictrum Occidentale A. Gray Thuja p l i c a t a D. Don Timmla austriaca Hedw. Tortula r u r a l i s (Hedw.) Smith Tragopogon pratensis L. Trlfolium pratense L. T. repens L. Trlsetum canescens Buckl. U r t l e a l y a l l i i S. Wats. Usnea dasypoga (Ach.) Roehl. Ui. h i r t a (L.) Wigg. X barbata (L.) Pries var. h i r t a (L.) Pries Vaccinlum caespitosum Michx. Verbascum thapsus L. Verbena bracteata Lag. & Rodr. (V^ bracteosa Michx.) V i c i a americana Muhl. X i sativa L. i n c l . var. a n g u s t i f o l i a (L.) Ser. V i o l a adunca J.E. Smith V. canadensis L. V-. p a l u s t r l s L. V. n u t t a l l i i Pursh subsp. praemorsa (Dougl.) Piper Woodsia i l v e n s i s Br. W-. oregona D.C. Eaton W. scopulina D.C. Eaton Woodsia sp. Xanthium strumarium L. Zanthoria candelaria (L.) Kickx. Zygadenus venenosus S. Wats. i n c l . var. gramineus (Rydb.) Walsh  TallTmm okanagense  English  160  APPENDIX 3 Tables showing the abundance and dominance, and the vigour of species In each association and subassociation, by stands. Each stand i s divided into layers (see p. Ik under 'Methods'), f o r each layer, the t o t a l estimated cover percentage i s given i n the column under each stand; and the average percentage cover stated with the average abundance and dominance. The averages and ranges of abundance and dominance are shown as a formula i n which the lowest and highest values are separated by the average value i n heavier p r i n t . The averages of the vigour values are given; and the presence of each species i n each association i s expressed both as a f r a c t i o n and as a class. Tree species of presence class 1 are shown i n the tables i n the A layers, but herbaceous and other species of presence class 1 are l i s t e d separately, following the table f o r each association , or subassociation, with t h e i r stand numbers followed, ( i n brackets) by dominance and vigour values separated by a point. The estimated exposure to wind of each stand i s indicated i n the tables by a series of symbols, thus: -> , » •'» The values associated with these symbols are relative' within t h i s investigation; but the writer has fixed the symbol .' f o r cases i n which the e f f e c t of the wind was just v i s i b l e i n the forms of the trees. +  + +  PINUS PONDEROSA - PURSMIA TRIDENTATA " S T A N D  10  N *  PATE , A L T I T U D E (FTJ EXPOSURE^ x  17AA5Z 100 WNW  't  II 4/(/-5Z IIOO  HW s t  13 IIOO  + /  17  24  IH/6/-5Z It/6/52 1300 not SSE NNV ii" f +  70 e/a/sz 1600 NW 10 ++  ASSOCIATION 79 ie/a/si 1500 NW 2 ++  92  isfetsz ti'OO z 10 ++  2&BJ52 1300 ESE 5 ++  Zl/B/fZ IIOO  su 5 ++  67 21/B/SZ 22/5/13 HOO  E 30 ++  WOO  su y /  96  2SW  1500 N S ++  j AVERA6C & RANfiE PRESENCE OF SCALE VALUES ASSKNEP AS ABUN DANCE t DOM1 N A N C E VIGOUR FRICTION C L A S S ALL STANDS A  Ai PINUS PONDEROSA P S E U 6 0 T S U 6 A MENZIESII Aa tWS POM DEROSA KEUDOTtlKA MENZIESII  &  PINUS PONDEROSA 'PURSHA TRIKNTATA AMELAKCWER ALNIFOJA PSEUD7T50GA MEHZIE5II  &»  PWUS PONDEROSA "PURSHIA TRIDENTATA CHRYWTKArtNUS NAUSE03US AM£LANCMIER ALNIFOL1A PSEUDOTSU6A KENZIESII ' RI6R CEREUH ROW NUTKANA  c  ACHILLEA MILLEFOLIUM MLSAMOftHJZA SA6ITTATA BROMUI TECTORUM "FESTUCA OCTOFUWA KOELCRIA CRISTATA "OPIMTIA FRACILIS PINUS PONDEROSA POA CUSICKII * PURSHIA T R I D E N T A T A "SP0RC60LUS CRYPTANDRUS STIPA COMATA AGROPYRON SPICATUM ANTCNNARIA PARVIFDLIA ARAMS PUBCRLLA "ARBTIDA LON6BETA CAREX ROSSII , J "CKRYSOPJIS VILL05* CRCPIS ATmBARBA ERMERON FIUFOUUS "ERI040NUM NIVEUM GAILLAROIA ARISTATA LITNOSPERMW RUDE R A L E "PHACEUA LINEARIS "PHUK LOMIFOLIA PLANTA60 PURWII ANTENNARIA DinORPHA A9TRA1ALUS PUR9HII LEVtSIA RCDIVIVA POLYGONUM DOU6LA6II STEfHANOMERW TTNUIFOUA TRAIOPOtON PRATENSS APOCYNUN ANMDSAEMIFCLIUM AMELANCHIER ALNIFOLIA ZYflADENUS VENENOSUS ARCT06TAPUYLOS UVA-WBI ARTEMISIA CAMPE6TRIS ACTRAIALUC SCROTIWUS BERBERS AkUIFOUUM CAUMMORTUS HACROCARPUS CUACNACnc DOUGLASII CWMSOTHAMNUS NAUSEOSUS COLUNSTA PUMFLORA COMANDRA PALLIDA ERKIRON PUMILUS CBOtOXUM HCRACLEOIDES FtSTUCA 0CCI0CNTAU9  far +.2-1 —  571 +.3-2 —  4% 3.3-2 —  6 2 4-2-3 —  2-2-3 —  i"X 4-3 +•3  +.2+ —  20% S-2-i —  is a 5.1-3 —  ZS% i.Z —  5% 4-3 +.3  10 35 +.3 1-3  JJS Z.Z 3-3 — —  15% 3-4.2-I 5-1 — —  3-2 2-3 — —  41-2 +.! — —  +0?; «-7-2-l 1-3-2  30% 5-2-3 + 3 2-3 3-3  (0% l-hi 8-3 1.2-1 — — +•3 —  402 +•++ 6-7-2-3 +.1 — — +•+2 —  10% l~t e-2-3 +.2-1 — — — —  Zi"S 3-/ 5-3 +.+ —• — — —  2-3-K-3) 4-2-3 t-2-3  15% 2-2-3 3-3 3-4-2-J 2.+H) +.2-3  70S —  +.2  e-z-t 2-3 2-2-1 3-2 11-2 4 2-i 2.1-3 3.2 Z-Z 2-2.-3 — +.2. — 1-2-3 — +•+  2.2  1-2 — 1-2-2 2-2-3  1-2.  +.2 — 1-2.-3 +•1 1.2-3 — — — — — — — — — +-I-3 +-J — — — + 2-3  ~  + 2  /•2-3 31 l-l i-i-i K-4J.I-2 2-3-1 5-2 2-3.2, +.2-3 y.i-2 — 3r4.l-2 — +•2  +.2  — — 3-1-2 2-2 — — — — — +•1 — — — — — — — — — +.1 . — — — — — —  ISK  II  + •/ + •2-3 + .1-2 1-1-2 2 2 + .2 — 2-3-2 J-.2-3 — +-2 +.2-3 + 2-3 + .1-2 +.2-5 ++.3 2-1 + .2 +.1-2 — — — — — — — — — — — — — — — — — — — — + 3  use  2-3-3 1-2 30% 2-1 5-2-1 — 1-2 +.2 — 1-2 40%  1-2 4-2 4-2 2-/-2 l-Z-3 + •/ 1 + 3 2 1-2 1  +• +  2-2-3 1-2-3 +.1 12-3 22-3 +.1 22 — 1.3 1.3 1-2 — l-l — — 2-2 — 33 — l-l — — — — —  +.! — — — — — — 1.2 — —  2-3-2(-3) 4-i:3 + •3 1-3 — — 2-3-3 +.+ + •2 3-+.2-3 3-4.2-3 2-3.2 1-3 — +•3 — 1-3 — +•3 l-l +.2 — +.2 +.3 — +•; — — — +.i — — — +.3 — +.1 1-1-2 :  — — 1-3 — l-l — +.+  25% 4-2 5-3 — 1-2 1-2 — 1-2-3 20% 2-2 2-2-3 — /-2-3 21-3 — +•1 +.2-3 2-1-1 — +.2-) J-+.2 2-3 +.3 — 1-2-2 — 1-2- J 1-2-3 — 2-2 1-2-3 — — — 3-3 — — — — — 2-3-1-2 — + .3 +.2-4 + .3 12.-2  +•2 — — 1-3 — — —  yss 4-3 — log 4fjL) — 15% 4-2 31-2 +•2 —  1-1-2 5-3-2 — I-/-2 — 1-2-3 +.2-3 60* l-l +.1-2 6-3 l-Z 12-1 l-l 4-1 1-3 1-2-3 1-3 i i Z-L-i 3-3 — M 1-2-2-3 — +.2-3 — +.3 2(-3H +.3 — + .2-3 1-2 l-2-l +-I-2-3 +.3 +.3 1-2-3 —  +.+ +-l.i  +.2-3 +.1 +.2 +.2-3  — +-I-2 — 1-3  i'% 4-3 — 10* 4+S-3 —  5" 58 4-2-3 — 10% +f#i —  2 Z 1-3 1-2-3 +.2-3  Ill 3-3 3-*-3 1-1-3 ~  17% +.1 4-T-3 2-(2)-3 — — — —  20% 2-2 4S--3 1-3 +-2 — —  i% 3-2-3 —  5% 4-3 1-3  15 X +-S'-3 —  7% 4-2-i 1-3  20Z 4-5-2 1-3 1-2-3  10 % 4-3 1-3 2-2-3 1 -i  —  Z5% 1-2 J-2-3 + -I + •2 — 1-3 1-3  Zb'% Z-i -l-l S-i —  1-2  1-3 —  +oas 10% i-i-i 1-2 1-2 2-3 2-3 1-2-3 2-2-3 3-4-2,3 r-3 — 1-1-2 1-2-2-3 1-2-3 — l-2-l + .2-3 1-1-2 +-II-2 1(2). 2-! +•2 l-l M-£ + •/ + -+ 2-3 — /•i 2 3 1-2-2 3-2 l-t-t 1.1-2 — 1-22-3 ++•2-3 l-Z 4->-! 3-4.2-3 1-2.1 — — 1-2-2 1-2-3 — ' +•+ Ii — 1-3 1-2-J +-1-2-3 — — 1-3 1-3 — 1-2-2-3 +.1 +.2 '— — +.3 1-2-3 +-I-3 +.2 • 1 i 1-3 +.2-J + -I-3 — + -2-J +.2 — 1-3 1*2-3 — 1-2-3 .2-3 — 1-2-5 + - hi +-|.i-3 1.2 ++-2-3 -f .1-2 +-I.2-3 — (-2-3 1-1-2 — 1-1-2 — 2-3 4-2-3 — + 2-3 +.2 ,-2 — 1-3 +.2-i ++ .1-2 +.+ — — + -i +.2 +.2 +.2. — + -I.2-3 — +.+ +-I + .1 + 1 + •3 I.J — — — -f.l — — 1-2-3 1-3 (-2 — — \-l — — — 13 +.3 + -I-2 1-2-3 + •).(  +./  +•3 + 2-3  . . +•3 —  — — —  — 1-3 —  — 5-3 3-4-3 — — —  —  35-38 1-2-3 1-3  — — +.2-3  —  5% 3-4-3 l -3 + 2 1-3 15% 1-2-2 + J.3 — — — +•3 —  10 % — — J--2-3 +./ — 21 — 1-1-2 +-I -1-2 33 1-2 —  2J-* 1-2-3 IMW 31 — t-l-2-3 4-1-2  — + -I-3  +.2-3 + -»-.3 1-2-3 +-i -3  +.1 — — /-2-3 •f • + 1-2-1-2 + .2 +.3 — + -I.J —  l-2-l  + ./  +.2-3 1-2.2 1-2.2-3 1-2.2. 13  —  -^-1-1-2 tl 1-2-3 1.' +-I.5 +-i 1-2-3 + 3 + .2 +.2 +. 2-? + -I2-3 + 2  + .1  +.1-/  1-3 + -1.2  -  -  /5 D  E  '3  2  3 3  IZ 4-  2  2 3  (2 13 S 4  C  4%  5% 4.2-3 +-2-3 5% 3-4-2-3 +.2-3  STANDS WHERE FOUND &  0-3-4 D-+-I //X  .-+-« o-4--'  4-  ' 41  /4% e- 3-7 • -2-4  4-  o- 1 - 1 « - + -J  1  223 3 n-2-< o-/-« o-+-r c - + -I o - + -I o- + -l 38% .-l-i C-2lr o-+ » » -l-i 0 -1 -J o i l . /-. o -2-« » 2-t  » - l -I . -3-. o -2-» .-(-)  .-. -2-s .-/-» <. -1-4 - 1 -1 • -l-i o-l-l . l-l a  e  -/  o -1 • t -1 - i D  . . + -/  0- l - i # -+-' „ -1 -1 a- + -( • -+-i . -+-i - + -i o -+-. a  a -+- • a --^ -l e -+-. o -+- . t -+-f » - + -I o -+-+ c '-+- i a -+- i  1-2  3  2  1-2 3 2 2 2 3 2-3  5" 1 f 1 1  1 41 1 1 1 2. 1 $ ( i 1 | ; 1 I  1 / 1 1 j ( I I  \ I  • i •  2 2 J 2 / 1 3 22 2 «i 2 3 3 2 2-3 3 2 2-3 2 2 2 2 2 2 2-3 3 2 2 2 2  /  3 2 3 2 2 2. 2. 2. 3  ^ 2-3 2  12 (3 0 3 4 // 12 /2 12 1/ ft  II  t;. M it ti 10 9 9 9 6  ft  6 S ft? 10 9 9 9 9 7 6 6 6 6 t> 3 4 7 4. 4. 4 4.  4  5" 5 4. 3 j  4. 3  5 5 4  j y  43 2 2 2 5" 5"  y y y  5"  y  5" s  y  44 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 2 2. 2 2. 2. 2  ^  2 2 2 2  10 FtVTUCA S t A M E L L A SIUA AKKEMTA 6UIA CIAOUS eiuA PUKCNS HtERJCIOH CYNOSLOSSOICES UTHOWCimUM IUUSUM PANKUH SCRBNERIANUM POLErtOMUM MIWANTHUN SAXIFRA6A [WTESRFOLIA SILENE ANTIRRHINA SILENE DOUGLASII SISVMMtlUM INC3SUM STIPA ELMERI  +.2-5 +.2-J l-iJ + 2 +.1 1.2 +.»  II  13  17  24  70  3-4-OJ-3  +.i  79  83  +.2  +.2-3  +.1 1-2-3  I-!  _  86  67  +.3 +.3  1- 2 . 3  92  + -M  +-I.2-3  .-+-4 .-+-/ . -+-I .-+-1  1-2-3  +./  + .3 +  +.3  1-3  +.3  1.2  2  1-3  +•3  1- 3 + 3  +.3  L3  +•2. 1-3  +.2 +••2 + .2  ON  TREES  LETHARIA ALECTORIA CETRARIA PARMEUA  VULPINA FREMONT1I GLAUCA PUV-SOPES  I.I 1.2. +Ta  +•2  1.1-2.  72-3  1-1-2 +• + +--/ + .2 •-5-2  4.3 1.2-3 +-•+ 6.2-3 1.2 3-2-3  +.1 +.1  4-3 2-3-2-3 +••2-3  +.3  1-2-3 1 -2 23  +.1  4-1-2 1.1-2 3-3 +•2-3 +.1  4-1 +-I-2 +•( + .3 +•1  2.2  +.1  +.2-3  + ./  +.+  +.+  +.1  1-2-2 1- / 2- 1-3 +.2-3 4fS).2-3  2TSJ  2- 1-2 3- 3 2-2-3 3-4-2-3 4- 2-3 1-2-3  +•2-3 I.I  +.1-2  +.+ +• +  +-I-I +.+  K.2-3 +-I-3 2-3-3 J--3 +-S + -! . 1.3 1-2-3  2.2-3 1- 2-3 2- 3-3 3-4-3 4-3 2- 3 1-2-3  P  £  2 •  3 } 3 2  3  2.  +-i-i  l-i  +.2 +.3 +C-P-3  +•1 +.1  .-2-» .-!-(  o-l.)  .-2-« o-2-r .-2-r .-1-3 .-+-+ c-+-. c. - + - .  + .+  + -I.I +.+ +. + +-I  +.2  .-1-1  + .3  . -+.. .-+-t  + .3  +.2  2 2 3 2-3 3 2  • -+-i . -+-, . -t-i  +.+  +.1  c  .  D  ON GROUND CLABONIA CHLOROPHALA PELT16ERA CANINA CERATOBON PURPUREUS SELAHNELLA RUPESTRIS TORTUL* RURALIS POLYTRICHUM PILIFERUM WtACHTTHECIUM ALBICANS CLAPONIA COCCI F E R A CLAMWIA 6RACILS PCLYTRICHUM ru«l»ERlNUM RINONNA SP.  B  (  +.1  +.2 '+•2  A  96  2.) +•2-3  +.2-3 +.+  6i  o- +  -t  2 1 2 3 3 3 1 1 1 1 1 / 1 / 1  2 2 2 2 2-3 2 2 2 3 1  3 3 • 3 4 443" 3 5"  2 2 2 2 2 2 Z 2 2 2 2 2  3 3 3  5 >" 4 44 3 2 2 2 2 2  10  4  3 4 3  2 2 2  1/  II 6 9 10 7 S S  2  / +• /-2 2  \  163  Pinus ponderosa - Purshia association. L i s t of species of presence class 1. Stand no. followed by, i n brackets, abundance and dominance, and vigour. Acer glabrum 87(1.2) Agoseris heterophylla 2i+(+.3) A l e c t o r i a .iubata 83(+.+) Amaranthus graecizans 79(+«3) Arabis h o l b o e l l i i 10(1.2) Arenaria t e n a l l a 10(1.3), 85(+.l) Artemisia dracunculus 85(+.3) A. tridentata 2i|(+.l), 92(+.3) A;, t r i f i d a 24(1.3) Asclepias speclosa 85(+.3) Asparagus o f f i c i n a l i s 24(+.2) Aster canescens 10(+.2), 85(1.2) A. ericoides 70(+.2), 87 (+.3) Astragalus stenophyllus 92(+.l), 96(+.3) Boletus sp. 10(+. ) Bromus racemosus 24,79(2.3) Bryum canariense 13(+.l) Carex f i l i f o l i a 10(3.3), 83(1.3) Ceanothus sanguineus 70(1.3) C. velutinus 70(1.3) Cephaloziella byssacea 13(+.) Cetraria scutata 86(+. ) Chenopodium album 83(+.3), 92(+.l) Cirsium undulatum 86(+.2), 92(+ 1) Cladonia pyxidata 85(+.l) Clayton!a l i n e a r i s 10,96(+.3) £s. p e r f o l i a t a 96T+.2) Collema crispurn 85( + . ) Corn!cularia c a l i f o r n i c a 85, 86(+.2) Delphinium b i c o l o r lOT+.l), 96(1.3) Dodecatheon meadia 24,79(+.3) Draba verna 10(+.3) Epilobium mlnutum 79(+.3), 92(+.l) Erigeron canadensis 79(+.l) E. corymbosus 70(1.3) E. pumilus 2i+(1.3), 96(1.2) E._ strigosus 79(1.3) Eurhynchium strigosum 79(+.l) Festuca p a c i f i c a 10(1.3). 96(2.2) Fragaria virginiana 70(1.3), 87(1.2) F r i t i l l a r i a pudica 83(+.3) Geum t r i f l o r u m 79(+.2) G i l i a grandiflora 86(+.3) Happlopappus carthamoides 87(+.3) Lactuca _scariola 79( + . 2) Lepidium densiflorum 13(+.l), 79(+.3)  Lesquerella douglasii 85(+.2), 92(+.3) Lomatium macrocarpum 10(+.3) L. triternatum 96f+.2) Mentzella a l b i c a u l i s 83,92(1.3) Oenothera p a l l i d a 85,92(+.2) Orobanche f a s c i c u l a t a 92(4-.2) Oryzopsis hymenoides 92(1.2) Panicum scribnerlanum 21+,96(+.2) Pentstemon fruticosus 86(1.3) Phacelia leucophylla 85(+.D, 92(1.3) Poa p r a t e n s i s 7 9 ( + . + ) Pohlia nutans 2JLJ.( + .2) P o t e n t i l l a n u t t a l l l i 79(+.3) Ranunculus glaberrimus 96(1.2) Rhizocarpon alpicolum 85(+. ) Rhus glabra 86(1.2), 87(2.3) Rumex acetosella 79(+.2) S a l s o l a ~ k a l i 53(+.3) Shepherd!a canadensis 70(+.3) Sisymbrium altisslmum 2i}.(+.2), 79(+.l) Solidago missouriensls 70(+.1) Spiraea lucida 87(1.2) Stipa columblana (10(+.2) Symphoricarpos albus 2if(+.3) Tellima p a r v i f l o r a 10(+.2) T r i f o l i u m pratense 87(+.l) Verb a scum Thap3us 2i+,79(+.l) Xanthium strumarlum 92(+.2) Xanthoria candelaria 92(+.l)  PINUS PONDEROSA - ARISTIDA LONGISETA SUBASSOCIATION STAND  0  tit  SLTTTOJOP (FT}  U/tKO. •oc •w 2 ++  18  19  2'  ST  72  460 SE  urn —  im  MOO  ++  ++  2KB stw ID +•+•  ?  —  s 2, ++  76  e/ata 000  TT  76  IKO  300  IW J ++ •  ++  62  95  MOD  DPO BE U>  svcwa  S turn ++  116 a  f  +•  INtE IUIE9  w am tsi l  ALL STANDS  WKIXE  Ai PM1S  POXMROSA  PS£U»TSU6A  MERIIESII  «• PINUS  PONDEROSA  PSEUDOTSUSA  MEWZSSlI  P I N U S PONDEROSA PURSHIA TRIDENTATA  6.  PINUS P O H f C R O S A CURYSOTUAMNUS NAUSCOSUS PURSHIA TRIDENTATA AKELAUCUIER ALIrtFOLIA RIBES CCftC U M C ACHILLEA HU.LCFIX.IUM A6RDPYRON SPICATUH "ARISTIDA LONOISETA B A L t A K O R H I Z A SADITTATA BROMUS T C C T O R U M • F C S T U C A OCTOFLORA KOELERIA CR1STATA " OPUNTIA FRAfilUS "PMACCLIA U N E A R H PINUS PONDEROSA "SP0R0B9LUS CRYPTAHDRta STIPA COHATA ANTENNARIA DVIOftPHA ARTEMISIA CAMPCSTAIS * CHACNACTIi DOUU.AS1I ACURTSOPSIS VD-LOfA ERKCRON FAJFOLItrt "EaiOSONUH MrvEUM GAILLARCXA ARISTATA LITMOtPCRMUM INCrtXJM POA CWCKII POLYGONUM D0U6LASII ARADIS PUBEIM-1 AtTEft CANESCKNS A S T R A G A L U S PURSUB CAAEX R O S S II CNRTSOTHAMNWS M A U S E O S U S COMANPRA PALLIDA CRCPIS ATRJBARBA S U A Asf8RCCATA * ALIA PUMEKS LEV13IA RCWVNA UTUOSPERHUM P4I0CRALE PHACELIA IXUCOPWYU.A * PHLOX LOMIFOLIA STEPHAItfnCRlA TCTOTOUA STI'A ELMERI TRAOPDMI PRATENSa  UMum  ir«  omcmALC  AtiKAMLUt vamrnat CALOummn HAttotMnis CJUMH UNMLATUH I P U B W nmruHi M M I W I MKRACLEOIOCS LCMMCKXLI.A DOWLASII POrmiA ALBEAULU PUUJTMO PWUMa P0LEH0NU2M PBCRAIfTMUHj P U M M A TKIDENTATA  or* i.i  irs •-j-.w 21% M-l  103 4-J-.M-2)  J-B 4.)  20 a  7*  s.t-s  —  7%  its  4.1-2 —  •4.2-1 +-I  I S  *>  9.1-2 +.1 I-2.2H — — ros  •.2+  +.2-1  4.2-J + 2  4.2 4.2  1-2-1  1-2-1 2-1.2 1-1 H I  J-2 +.1  +.2-1  1-2-J — 1-2 —  +.2-1  J.2-J hi — +•2 •.•  — •J-l  1-4.2  +.2-1  4.2 +.+ —  is  S  l-J.2-1 I.I  J.2-J  142 4-2 2.2  l<2 1-2  l-l  2-K  +•+  l-l l-l 1.2  f.2 1.2-1  in  +.K-0 —  f«  1-2  1.2-1  5-4.2 + 2-1 2 1  + 4./  l-l l-l 4.2  !•/ — + 2  1-2.2-1 1.2-1 1-2  2.1-2  J-4.2 + -I  +.1 —  2-2 +.1  |.|-2 +.1 +.2f3) +*2  22  4.2-J — — —  IS  — +.1  +.+ +.1 i-y — —  +.1  z  + J  +.i —  + .)  2-2 — +.1 +.2  +.1 + 1  1.2 —  1.2-1 +.+2  ~  +.1 +.2 +.1  2*J  —  — 1*2 +•2 •.l  1-4.2  +.•  I.I  -  f-t-i 12)  —  — +.2-J 1.2-1  + .2  1.1-2 —  +.+ ~  + .2 +.2  — +.2 2>H2_  I'i  1.1-2 —  1.2-1  — +.1  -  + 1  +.1  4-2-1  +.2-1 +ll<-2)  1^2-5  1.2-1  ~ IO  — 1-2  41-K  <s  r»  10 •  +*l-2  S T *  l-l l.l  2.1 —  ~  4-1-1  4.2-J —  — 4.2  /OS 4.2-1 1.1  4.2-1  +.2-1 — +.1 2.2 1.1-2  4f&H  +.1  —  a  4-1 — — —  H  10* 1-2  rs 4.2-J ira  4 ^ . H —  +M-I-2 — — + H.2-1 1-4.J  111  1-2.1-2 — —  1.2-1 —  1.2  + .+ tl — —  I./-2 +•2  1-2-1  +.2-J  1.^2  + + 2-I 1-2-2 + 1  — 2.3 +.2-1 —  I-Z-I + .1 + .2 — il-DJ l.l +.3  +.2  +.I-:  — — — — *-i  +-I.I-2 I'I — — +.i-l 1-2.2-1  +.2  • -I-2 l-l +.+  +.1 +.1 4s2  -  7«  -  1-3-1  -  —  10%  2 r » 1.2-1  4.2 1-2-2 J l  •  2-2-1 +.•2 + •2  1.2  y-J I-(-2  2-2  f-1.21 2 1  +.2  + .2 1.1-2 +•!  l.l  1-2.2-1 l-l 2-1.1 lW-2-1 +-1.2 1-2-1 1.2-1 1-2.IfO  2-2 l-l  2-1 +.1-1 +-1.2-1  +.2  2 1  1-2-2-1 + -I.2J  f-l-l 1-2.3 1-2 1 • J.2  2-2-1 +.2  + -I.2-1  ••.+  +.1  l-l  +.2 +•2-1 +.1  1-1-2  1.2  +.1 1-2  +.2  1-2-1  +  + 2-1  -I.I  +^1-2  2.J  +.+ +.1 +4.1-2 _  —  4.2 — — +.1 —  10% +4.I-1  2.2-1  4-f.l 1.1  1-2.2 1-2-2  l-l-i  +.2-1 + + I-2 + 4.1  1-22-J 11 +.2-1 1.1 1-2.2-1 21 2 1  1-2-1  1-2-1  +H.I  1-2  —  7? 4.3  1.2 — — —  +.1  1-2-2-1  4-t-i  K  1-2 —  •2.1-2 2-1.2  irn  4.2-J  r»  +.+  +.2  1-21 —  IDS 4«.5 —  4."  4.1  4.2-1 _ /  4.2-1 +.1  — —  !1  «  » « - 3  +.2-1 —  +.1  y-i  I S B  .  4.1 —  20 « +4.1-2 2-1.2-1 4M3.3 1-2-1  rs  s% 4-1-2  +  +  1.2-1 +.2 4.1 1.2  I l l 4+fl.t — 4 * 3-4.1 "  1-2-1  2.1-2 — —  2-1.2-1  l-i. +.2 1.2-1 l-l +.1 1.2-i +H.2  4-.1  +-I-J  I.2-)  +.2-1 —  +.2  +1 — — 2>'£ +.2-1  1-4.2-1 4.1-2 + .2  +  l.l  +.1-2 + .1 1.2 B4J.J l-l — — —  +.2-1 +! — —  1-2-1  -  1  l-l +.3  "  +.1  (-2-1  +.•2  2-1! 4.3 M  4-i-r 12 — +-2-1 1-21 +-I 2-3.2-1  1 -1 —  2-1 1.2-1 l-I +-J-1 — —  +.2 1-2  4.2-1 +.2 4 * 4.1 IS 1-2 — —  20S 11-2X2 1-2.1-2 4*1  2-2-1 1-2  — — +.2-1  ++  + 1-2 — — +J-! 1-2.1-2 +.2  £•2 —  +2 — —  1-2-2-1  — l-l l.l  + .1  + .1-2  +.1  +1M> +.i  2-1.1 +.2  i.i  +j-i  -  - •  2*1. H i  I.J  +.J  • -1-4 ..l-l  • - + -•  '.'  — —  T  •  -2-4  .-<-< .-/-I  • -1 -1 .-l-l - M  .1 . « -/-» (i  • - l-i  • - J -a  1 2-3  12  y  4^ 2  3 2-1  12 2  IT f  1  2  12  2  0  £ 1  7  2  S 4 1  S s 2  2  12  r  3  12 to  1  j 1  JT  ) i 1  1 t 2 i f£  1  ".»- f -i  * -+-• • . l-i • " ' "1  • - 1 -1 • -f-i .-l-l  4 • •'-I • - + .* • -+ • - + -/ • - + -. « -+-. * -4-1 !-+-•<  1  2  2 2 2  2  2-1  2 2  1  2-  J  2  2  2 1 f  2  l-i . . ( -l  • -1 •>  P  I  • •-  * -l-l •• --/-i / - »'  c  4.  £  .-2 4 .-1-r  •" 1  +.1  1.2 +.2  ,.3-r  » - J-i a - f-t  +.1-1  +.2  +.J  --  10%  1.2 —  eo%  —  4-2-3  as . 4-r  —  '2  +4.2-1 —  —  1.2-1  10 B 4.2-1  CLASS  /6  mm  A  MtCttttCC M nucra  ABiniDANLI  2 1  1  i *  22 2 2  2  2 2 1 2  2 2  !  2 2  !  2  }  j j  1  i  )  l»  12  ID ID  12  II II II II 9  a 9 9 9 ID  .S  9 9  5 7  J-  7 4  7 4  »  7  2  <  (-1 1  f 1 I  2 21 2-J I 1 /  2 1  4 •  4  1  4 4 4  1  *  2  2  ST 5  S ST S  1  Ss y s  4 4 • • • T  4  *4  4 S 3  J 1 J 1  *  1 $ I J ] 1 1  2  2 1 1  2 E  *  i2 1 2  8 SILEHE ANTIRRHINA SISYMBRIUM AL7ISSIHUM SISYMBRIUM IN CIS 1*4 D  ON £ROUND CLADONIA C H L O R O P H A E A PELTI6ERA C A N IMA SELAilNELLA RUPESTRIS TOR T U L A R U R A L IS CERATODflN PURPUREU3 POLYTRICWUM PILIFtRUM CLAPONIA GRACILIS PCHLIA NUTANS RINOMNA SP. ON T R E E 3 LETHARIA VULMWA ALECTORIA FREMONTM AL£CT(iRIA Tl*ATA CORNICULARIA CAUFORNICA  id  19  11  57  72  76  77  78  +-2 +.+H  — —  — +•2  — 1.3  +.2 -i —  — — —  — — —  — — +-2-J  + •2-1 — —  VS%  A-0%  10%  3JTSI  s-%  4-2-J 2-J.2  +.+  2-2-3 —  +.+-I +•-1 3-1-2  3-4.1 +.2-3 — — +. 1-2 — +.I-Z — —  2-2  l-l  1-2 — 2-2 — 2-3-2 — 23  2.J 6-2 +.1  +.+  l-l — (.2-5 —  — —  + .+  1-3 —  —  +.+  — — — — —  +.+  +.+  — —  —  —  +.+  +.+ +- +  —  1%  +.2-3 +.2 + 2 +.1  11  +.2 — +.1 — — —  —  2 S  2-3.1-2 2-3-1 +-S--2-3 (.3 2.3 3-2 +.2 —  +- + +.J  +-+ + .+ +.+  10% 2.2-3 -hi 4-3 — — +-(.1-2 +.1 — —  +-+ —  +.+  8 2 — +-1-2-1 —  35  116  — — +.J  — — +.i  • -+-*  A  c  D  £  2 2 2  3 44-  2 2 2  10 0  /  2 2 2 2 2 2 2 2 1  9 7 7 3 3 3  IT 4 4 43 3 2 2 2  1 (  / + +  10 3 4 3  5 2 2. 2  a c  35-*  -t-  2-l(-2) l-l  — — 3-4.2-3 +.2  . - 2 * .-l-j .-3-. .-2-«  2 1-2 4 2  — — — —  S-V-2-3 3-4-2-3 4.2-3 — — 1-2  — — — — — — — — —  — — — —  .-+-» #-+-*  2 I J 1  + +  +.+  +.+  +-+ —  -f+• 2-3 — — 1-2  +.+  —  +.+ +.+ +.+  .-/-«  '  1  2  ©  167  A r l s t l d a sub-association.  Species of presence class 1.  Allium cernuum 5 7 ( 1 . 3 ) , 72(+.3) Amaranthus graecizans 72(+.l) A, retroflexus 116(1.1) Antennarla h o w e l l i i 57(2.3) Parvifolla 76(1.2) Apocynum androsaemlfollum 76(+.2) Arabis h o l b o e l l i i 8(+.lI Arenaria t e n e l l a 8(1.3) Artemisia f r i g i d a 57(+.3), 72(+.2) trldentata57(1.3) A. t r i f l d a 52(k.3) Arctostaphylos uva-ursi l 8 ( + . 2 ) , l l 6 ( + . 3 ) Ascleplas speciosa 19(1.2) Asparagus o f f i c i n a l i s 77(+.+) Astragalus l o t i f l o r u s 57(1.2) Berberis aquifolium l l 6 ( + . 3 ) Boletus S P . 8(+.2) Bryum canariense 1 9 ( 1 . 3 ) , 72(+.l) Carex f i l i f o l i a 8(2..3), 19(+.l) C. p r a t i c o l a !>7(+.3) Chenopodium album 57(+.+) Cladonia coccifera 76,77(+.2) C. fimbriata 76(+.+) Claytonia l i n e a r i s 19(+.l) Crepis acuminata 8(1.2) Cryptantha leucophaea 76(1.3) Delphinium b i c o l o r 87l9(+.2) Drab a verna 19( + ..2), 95(1.3) Bncalypta sp.8(2.3) Equisetum hyemale. 19(+.l) Brlgeron canadensis 82(1.2) E. corymbosus 57(+.3) E. f l a g e l l a r i s 57(2.2) E. peucephyllus 8(+.2) E. pumllus 8(+.2) Euphorbia glyptosperma 72(+.2) Festuca Occidentalls 72(+.l) Fragarla virgin!ana 57(+.1) F r i t i l l a r i a pudlca 19(+.2), 82(+.3) Gayophytum ramosissimum 72(+.3) G i l i a g r a c i l i s 19(1.2) G. slnuata 95(+.l) Juniperus scopulorum 57(+.3) Lactuea s c a r i o l a 8*2(+.2) Lappula myosotis 57(+. ) Lepidium densiflorum 57(+.1) Linum LewTsil 57(2.3) Lomatlum macro carp um l l 6 ( + . 3 ) L. t r i t e m a t u m 19(+.3) L. utriculatum 19(+.3) +  Lupinus sericeus 72(3.3) Oenothera p a l l i d a 78(1.2), 82(+.l) Oryzopsis hymenoides 78,95(2.3) Oxytropis Lambertii 78(+.3) Parmelia physodes 57 (+.+), 82(+.2) P e l t l g e r a aphthosa 8(+.2) Pentstemon confertus l8(+.2), 76(+.3) P. f r u t i c o s u s 72(+.3), ll6(+.0) •roa Canbyl 5(+.l) Pa. l o n g i l i g u l a 19(1.3) Polytrichum juniperinum 19(+.+) Prunus v i r g i n i a n a 82(*.l) Ranunculus glaberrlmus 19(1.2) Rhus glabra 19(+.1). 76(1.2) R. radlcans 9 5 ( - 3 ) Rlbes viscosissimum 19(+.l) Rosa nutkana 57(+.2) Rumex acetosella 72(+.3) SalsolaHretli 95,116 (+.3) Silene douglasii 76(+.l) Stipa occidentalis 72(+.3) Telliiaa p a r v i f l o r a 19(+.l) Verbascum thapsus 8(+.l), ll6(+.0) Vlcia sativa72T+.1) V i o l a adunca 72(+.3) Zygadenus venenosus 76(+.3)» 116(1.3) +  ' PINUS PONDEROSA - AGROPYRON SPICATUM  bTANB  m  DATE ALTITUDE (FT.) EXPOSURE. * SLOPE W MNP EXPOSURE  PINUS PONDEROSA PSEUDOTSUSA MENZIEStl PINUS PONDEROSA PSEUDOTSUSA MENZIEill PINUS PONDEROSA APIELANCMIEP AUIir-ollA PSEUDOTSUOA MEJI2IESH Bj" AMELANCHIER ALNIFBLIA PINUS PONDEROSA ROSA NUTtfANA RIBES CEREUli SYMPHORICARPOS ALBUS ARTEMISIA TRIDENTATA ARTEMISIA TRIF1DA CHRVSOTUAMNUS NAUSEOSUS PSEUDOTSUGA MENZIESII PftUNUS VIRGINIANA  I iififa 1900 s ' to  4 2900 SSE 30  20% M M  10% 5-2 4-2-1  20% 4.2 "  10I 3-4.12 1.12  s j * * * * "  CORYMB. S «  211 I-+2H 'OS 3-1-2 3-2  7% 4-1 —  10% J.2-3 l-l-i  iot 1-1 4.1  r. l'.2i —  20% •;.i + .!  35%  Ill 1.1-2 i.l ~  51 51 102 3.1-2 3-4.2 4-S-.2 1.2-3 +.2 + .2! + •2 —  10% 2.2 2.3-2 1-2.2-3  IOZ 1-2  i"SS 3-1 +-I 3.1-2 — 31-2  5t 1.1-4 l-l 3-2-3 1-1-2  IOZ +.2 — +.1 1-2-3  2-1 — —  - -  —  3-12  ~  —  —  at +•2 1.12 — — +.2 •*4.2 +.1  ASSOCIATION  27 29 2 8 akJ-n it/el-a 20&232 ok/it 2200 2000 2400 H N N 1200 2 3 t + f +4 } 20  it IOZ it 1.2 4-5-1 3-4.2-4 l-l 1 4.1  i'S 2.2 ! — 2-2  ~  16 V</H 2!0O E /  3-11 1.1-2  2% 151 4-1 2 f U 2 — — 2+2 4.2  .  PAULO*  2S/VM 2600 SE +0  H IS i/i/52 1MB tooo iaoo £ NV 20 1 ?  30* 7-2 Z2  C ACHUEA MILLEFOLIUM . <•*• 1-22,1 'AGROPYRON S P I C A T U M 4-54-2 723 BALSAMORHIZA S A 6 I T T A T A 3-1-2 +.1-2 CREPtS ATRIBARBA — 1-2-3 UTHOSftRMUM RUDERALE 1-2 ANTENNAR1A RAPVIFOLIA +.J +.2 ARAMS PUHXULk 1-2 l-l BROMUS T E C TOR UM 2-K-2) — CAREX ROSSI I 1-2-2-3 1.2-3 COLLOSIA RARMFLORA +.2 2-2 XERlDSONUM HERAtLEOIPES U-2 +.! XFESTUCA OtCIPEHTALIS — — MERACIUH CYMRLOStOtDES KOELERIA CRtSTATA — •— LUMHU9 SERICEUS — 2.J PMUS PONBCROCA +.2 +.1-2 M S A NUTNANA TRMOPOaOH PRATENSB — — ZYOADEHUS VENENDSAK t-2 — AMELANCHIER ALNIFOUA 31 ANTENNARIA DIHORPMA — ASTRAtAUiS lEROTUin — +J CALOCHORTUt HACROCARPVS — KLPHIMUM BULOR +J +.2 ERMCRON F1UFOLIUS XERIBIRO* PUMU.US — •J FRASAXM VROMANA 2.2 LOHAT1UH MACRMARKM POA CUSKNU 2-3 SPIRAfA LUCtDA 2-1 CYMPVORKAAPOS ALUS — ASOSUB «.HKA — — APXYMUM ANDRORACMPJUU J-2f3) AACTOSTAPHYLOS UXH-UtSI ASTER FREMORTU — — — AST*A«Aun rrtnonnLLus KIBCRU AtMflFOtnJM CALAMAaaoSTtt Ruscscns CASTTU.ETA LUTESCUS CUtSIWI UNBULATUM — ++2 EPILOMW1 MMUTUW  comutA  7  .1-2-0 ~  —  -  — 2-2  —  IOZ IOZ 20% I.l II 3-4.1 1-1-22-1-2 2-3.1 +.1 + .2 1.2 +.1 — 1-3 2-1-2 + .2-3 — J4.2-.I  •-  1.2-1  10 X 4 f-3 25% i l l —  lot 4I.I + .)  31 21*fe2 2900 S 15  !  34 2600 sv 30  19 40 2trt52 Z/7A52is/rA*2 M a 2900 aoo zzoo 2700 $w sv H 2f to 1 f +  — —  Z5 » ICS 5.1 4T-1 l-l — i'S 3-4.2.3 +•3 1-2 i-J  It 1.1 +.3  5% ICt l-l 1-1-2 t-2 1.1-2 2(-iLzB) 112 +.2-3 —  5% l-l 1-2.2-3 1-2 — I.l  +.1-2  10% • tOS 4. J 4.3 1.1(2) i-A.i  Itfrl  3-4-3 2-1  lit 4.1 1-4.1  5t 4.1 4.3  irz j"* i l l 4-5.3 I. l-i 4-2-3  5% I.l •+.J l-l  51 4.1  ez +.3 l-i 4-3  at 3-1 1.2 3.2-3  121 Kit 4-2-14-f-2-l 4.1  1-2-1-2  —  4-3  — +.2  21  — 1-1-2  -  t-2-3 t-2-l-i  X " Z 75% 75% 65* 70% 50% (OS 45-X 55% 60S 1-2-3 1-2-2 1-2-3 1-2-1-1 — 1-2-2 + +.I-2 1-3 1-2-1 lt-lXl-1 /-2-^-3 7-1 7-2-36-7-3 A> 5-3 4-5-1-1 (-73.-1 6-7-1 51 73 S-3 2-2 3-4.2-3 +.1 — 4-3-1 1-2 i-n-i) \-m — 2.2-3 1-1-2 1-2-3 1-2.1 +.1 i.i I-} 1.2 2-3 1.3 l , 1-3 — + 3 +3 +.2 +.1 1.3 + . 0 2 ) +.3 +.2-3 ++3 i-J — 1-2-3 III t.+ 2-3 J-4) 2 2 3 2-3-2-3 — 1-2-3 + -1.2-3 +•3 +.IM +.2-3 -r-J r.2-! +.1-2 -+.+ +.+ +•2 2-2-3 2-! 4 ! 5-2 I.l 1-21-1 1.2 — l-l-Z + -3 1-2 +.2 — — 1-2-2 — +-I.I-2 + . 2 1-2 1.2 — I. l-l 2-2 3 - 4 3 3-2-3 1-2-2 2 2 - 3 1-2-2 +•2-3 1.3 +•3 — 23 2-3-2-3 1-2-3 l-l +.J U +.1-2 1-2-J I-2-1 3 K 3 11 ii — 22-3 4-3 4-1-25 1-3 4.3 2-3-1-3 4.1 2-3-3 — +.1 2-3-3 +.2-3 22 +.1 l-l +.+2 1-2-3 +-(•2-3 — 1.2 2.2-5 3.3 3-3 2-2-3 1.3 3-3 +.2 2(9-3 2(3). 3 +.1 2.2-3 5.3 3-3 — 4-3 !f4» 4-i 3-3 +2-2-3 r-2.2 3-3 +.1 2.1-2 +2-1-2 +•2 + -I +.1 +.+ +.1 +.2 I.l 4-1 2-2 +.1 +J +.+ — +.1 +-I.I-2 +.2-3 — 2-3 +.3 +.2 11-3 +.3 +.2-3 — ++I-2 — — + -I-2 +.2 + -I-2 +.2-3 — — +.1 +.3 +.1 l-l 124 — — 31 1-2.1 +.1 — 21 2-1 — +.1 — +.2 22 2.2-3 +.3 — — — — — — — — — +2.3 2-2-3 2.2 +.1-2 — — +.2 l-l-l 2.3 +2 +.1-3 — — — — — — — — +.2 — — +.3 +2. — 4-2-1 +.2-3 +.2-3 — +.1-2 1.) +.2-3 .— +.+2 2-3 — — — — — 1-2-J l-t 1.2-3 1-3 +1 /•+2 I.l — — 1-1-2 23 +.1 +-L+-I +•2-3 +.3 1-2-J +.3 2.3 2-3.! — — — — ~ 5-3 1.2 1.2 +-H — +.1 — 1.2 — Ii2.2 +1 +.2 1-2-3 3-1-2 +.1 2.1 — — — — l-l ++I M +.1 I.l — — +.2-3 — — — — — L3 ++J I.l +•» 1-2-3 — — — — — +.2-3 +.2 + 1-2 — — 1.1-2 — — — — — — — 4.1 1.3 13 +•3 +.2 +i — 2-3J — — — — — — — — l-l +1 2.1-2 |.| +.+ — — — — 2-3-2 4.2. — — — 4v2fJ) 2.2-) — — — — — — — — — +.1 — — • — — + . 2 — +.+ +23 — — — 2,2-3 — — — — — — t>3 W.2 +.3 701 1-2-3 7-3  }  +.+  -  94  2*/r/n 2A0O SE 24' + +  •97. 2000 w  9a 2900 SV If ++  101 iaoo Sw 3!-" /  104  >s/r/-5i 2000 iaoo SW SE J 20 / ++ /  AVERAGE * fUMC OF SCALE VAi-UCS ABUNDANCE t M M ) IANCE ALL STAMPS  +.+  IJ-X 4F.3 3-3  4-J-3 +.J  J"S 2-2-3 i 4.5 t-2 +•3  3-4.3  10% 2-2-3 1-4-3 1-2-1 +.2-3 1-4.1  +.1-2 —  -  10 S 4.2-3 1-5 i-i  5£ +.3 3-4.3 1-3-2 — —  Ai'Z J-2-3 2-3 3-2 3 £-i 2-2-3 3-4-3 +-1-2-J + .2-3 2-3 +.J l-J 1-2-3 -r.+ 4-S-3 1-2-23 +-2 +.2-3 — 1-3 2.2-3 ^-3-3-2 +•2-3 Ii 3-4-Z 4-2 +.) +.2 +-1-I 1-3 3-3 2-3-2-3 1-3 + . + ++0.I — +.( +./ — — + .( +-I.3 1-2-3 t-3  — 1-2.3 — 2.1 1.2 +.3 — +.1.2-3 3-4-3  f* 3HV3-2  10 Z 4-jr. 3 t-.i  6(5 ? 1-2 6-1-34-y-i 4.1 4-i 1-2-1+-I-3 +•3  + -I-J —  2<?r + 1-2 2-3-2 l.l-l I-} — i-.i  3-4.2-3 t-.l + 2 t—1-2-3 2-2-3 + -1-3 4-J.3-2 +3 2-1 — •hi +.1 1-2.2-3 — 1-1-2 — + -I.3  y«F 3^-3 2^  y« 3-2 4-3 2-2-3 I-2-2W  /CS 4.2 <W,3  /0* 4-3 2-3  1-2  2S +.1-2 2-3  +./-2  1-1 f — — T.l K  1-2-J 1-3 — +-U — — 2-3  I.l +tiU +.3 +3 +•2 +4-2 2-3  +.H2  +.i  — — + -J-3 +.3  +.3 +.1 — + 1-2 — . — +-I.3 — t.l +-0 +•2 +.3 +.1 +-t2  J-4-i — +.3 —  1.3 ~  +• f  T./-2 4.2-i + .2 t-.l — t•+ r-2 i +-i — — — — T -<-+ +.3 —  —  _  ~  — t-.l  — 1-2-3 1-3 +-I.2-3 + -I-J-2 f-(-2-3 1-2 — +.2 + -I-3 -t-.3 1-3 +.2 1.2-J 1-2-3 +-I.2 +.3 hhl — — 3-3 — +-I-2 -— +.2 +J +4.2-3 + -1-2-3 1-1-2 22 J — — t-(-2 +-H 1-2 -t-.l — — 1-2-2-3 + .2-3 +•2 +-I-I-2 +.1 — — — — +.J  — +.2-3 —  — +.) +.2-3 — 2-3 +.2 t-2.3  rs  4-3 +.0  2*i 35 +.2-3 + .1 +.( (-.1-2 1-2-l-Z h i 1-2 + -I-2 t--3 2-3-2 3 — +.2 t-.i 3-4. )-l 3.2-? — — — — +.2 — 1-2-1 —  (0* t-2 2-2 — +-I  43Z 2-3 y-2 /•2-2f-j) 1-2.) -f-l-Z-i lf*>.3  4-T-J2 t-.^-J  2-3-3 — — — 1-1-2 1-1-2  /ys  10% 4.2-3 +.2l« \% 2-3.1-2 t.3 +.2-J  0  E s 4  *-4-7  4 2  3 3  23 17  5 4  4-2-r - 1 -«  2 ( 2  2 2 2.  23 U iy  4 4  2 2 Z 1 t 1 3 1 L 1  2 2 2 3 2 2 2 3 2 1  23 21 17 II II y b 5 9 e  b" J43 3 2 2 2 2 2  1  2 3  21 ii 20 19 20 IS 14 IS IJISIB 16 Ii 17 IS It14 15 Ii 10 II 10 10 13 10 10 10 II IS 10 10 e y 6 7 7 e 6  1-2-3 — +.3 — —  . - 2 -«  0  — — f.2-3 — —  •. -l-i  4.2tJ) r.2 3-4-3 — 1-3 — 1-2 — +-2 — 1-2 1-2 2-3 +-1.2 +.3  . -+-.. - + -V .-( -. o-+* J-3% .-1-4 , -i-7 . -Z-4 ,-i-t .-l-l ,-/-4 .-2-. .-/-* . -/-A ,-l -I • -2-A a  ' +-I  ,-2-i . -f-i  — +.3  +.2 +4-2-3.  . .-l-i  —  - ./-*  —  22-3 +.1-2 —  —  +.3 —  —  + 2-3 • — — — —  —  —  —  — — — — — +.1 — — +•2-3 — +4.J-2  is  ,-t-l fl-' •-+-. .-I-I . - f-i. • -+-. (-r .-/-» .-l-l  .-+-» . -+-I . - + -1 .-+-. .-/-» .-+-.  .-+-1 • -+-. »-+-+ .-+-• • -+-» •  T  2 1 1  ;  / 2 1 2 1 3 1 2 3 1 / 1 1 2 1 1-2 1 1 1 1 1 / 2 / 1 1 2 1 1 2 1 t 1 1 / 1 1 1  C  f  25 17  8% ,-2-r . - I-.  _  vsut  3 2  ti%  IS (-.1 +--I-2  45 S 1-2-3  SUNOS WHERE  PRESENCE. 19 nucTipa c u t s  4 2  A  m • MS' 4 51 4-SJ 3.2-3  - _- - _- - -  1^2-3 —  91 1600 SSE ty i  2 2 2-3 2. Z 2 2 3 3 2 3 3 1 1 2 3 1 2 2 2 2 2-3 2-J 2 z 2 2 1 3 2 2 1  )  1 2 ( 2 I 2 2  ' 5 A' 5 - s J 44 4 4 4 4 44  )  3 i 3 S I f J J 2  2 2  < 5-  2 2  T T  1  »9  2  2  4  7  14  FESTUCA OCTOFLORA FRITILLARIA PUDICA  6AILLARDIA GCUPI  CILIA GILIA  GILIA  + 3  AROTATA  I.J  TPJFLORUH  ASDKtOATA GRACILIS  +.3 • •2 1-2 + .+ +.1  6RANDIFL0RA  HEUCHrRA CYUNDRICA LACTUCA SCAR+OLA LOMATIUM  DISSECTUM  PtUTSTEMON PHACELIA  FRUTICOSLiS  2)2  LEUCOPMYU.A  PHACELIA  LINEARIS  PLAHTASO  SENECIO SILENE  STIPA COLUMBIANA STIPA COMATA PSEUDOTSUGA MCMXIESlI  AN  turab  +.3 1- 2-3 /.2  +  CANINA CULOROPMAEA  POLrTRICW/« CE.RATOOON  l-l +  2- 12 +  +.2  PIUFERUM  TORTULA  LETHARIA  CORNICLE PARMELIA  VULPINA  ARIA CALIFORNIA PHYSODES  1.2-3 +.+  +.2 1.3 +-2>3 +.1 +.2 l«i)  T.l  I.I  l-l  2.2-1  l-l  +.1  16 +-J +.1  + 3 +.1  f-l-2  +-I.I  5-a  223 +.+  20  i.i 1-1-3 -f.l-2 +.12  1.3  2-2  I.J  +./  15" *  + +•1 +.+  32  |.| 1.3  l-l +.1  +a-i  1.2-3 1-3  29  + 1-2 1-3 +.2  1-2.3  +.+  IZ + 4.2 1-2.1  2.2  a.%  1.3 302  1-2-1-1+.1-2  +.3  ++3  34  39  2-3  +.+  +.2  + .J  1-2-3 +.1-2  ++2  +•+  1.3  >•}  +.1  1-2-3  15" K  +•  4-4M 3-1  +•+  3-4.1-2 1-2.2-3  l.l  +.1 +.1 +.+  +^2  +•2-1  1.2-3 +.1  S6 +.1 1-2 3  +.3  l-l-l  +.1  +.3  I S  1-1-2 +.2-3  + 1-2 4 *  +•1  +.+ + -I.I-2  +.1-2  l-l +.1-2 +.1  +.+ +.+  91  +.+ +41-2  +2 1-1-2  1-2-1 T.l 7 »  3-2 +•+  2.2-1  1-2.3 + 1-2 2 «  97  98  2.1  + 1  t-i  +•»  +.1 +.1  +.+ +.2  + 1  20%  (.1  +.2 +.1 +.1  +.1  + -/.2  +-I-I-2  +.2-3 +.1  +.2  2.3  +.1 +.1  + 42  13  (-1.1 1.2  +-J  2-1  +.1  +.2 3-4-1 12 l-J +.2  i-l 40 Z  la. +•  • -+-• ..+-1 .-l.l • -+-E .-+-1 3-+-I .-+-1 .-+-, • -+-2  '..+-L . -+-(  22  10% +••2 (-2.1 +.2-1  l.l  A  .-+-» • -+-J • -+-* .-+-. .-+-•  l.l  + -I-2-J  2 y z  1.2 +.2-3  104  +-I  1-2-1-2 + - C 2  +.1 +.2-1  10/  +-I-2-J  22  10%  «0  +4-2 +.1  f-i.2-1 + 4./ 1.3 1-2 + 4.1 1.2,3 1-2-3  T-l  +.1  94  +.2 +.1-2 + 4 . 2 +.1 +-M-2  +./ +./  +.+ +.2-3  +.1  +.1-2 13  57  +.1 1.2 1.3-2,  1.2  3.2 +.+• +.2-3 +.+  1-2-3  io a  l.l  40  1.1-2  +-L2-3  +•3  4.1 3.1  1.1-2 +•2-3 +.+•  +•3  +.1 + l 1-2-3  + -I.2-1  31  +-I-3  1.3  r.3 T.l  +.+  +.2 +.2 1-21  ze  I.+4  4.1  +.1 +.1  27  +.3  12  1.2-3  +.1-2  S E L A A I N E L L A RUPCSTRIS RURALIS  o  +.3  +.2 + 3  PWPUREUS  FOULIA NUTANS POLYTRICNUM TUNtPCRMUM  OM TREES  22-3 1.2.  T.l  1-3  EXALTATUS DOUGLASII  PELFISERA CLADONIA  1-2 •1-2  '  SISYMBRIUM ALTISSIMUM STEPHANOMERIA TENUIFOLIA  D  M  22  PURSHU  POA PRATENSI& POLYGONUM DOUGLAS!!' ' POTENTILLA ARGUTA  •/J"  ::+., .-+-» .--Kt. .-+-*  ::{.-r . -l-l  .-+-« .-+-> .'t-l  4.1-2  +.1-2  +.1 +-.2  +J-3  • -f-E .-+-. .-+-1  ft 1 1 1 / 1 1 / 1 1 / 2 1 1 1 / 1 / 1 1 1 1 2 2 / / 2 1-2. / 2 1  I  1  1 1 1  171  Agropyron splcatum association. Species of presence class 1. Agoserls heterophylla l 5 ( + . 3 ) , 94(+.2), 98(+.l) A l e c t o r i a chalyb e l f oralis 56(+. ) A. Fremont!1 55,56 (4-. 4-) A. . l u b a t a ^ k . l i O ^ . l , . 55,56(+.+) Allium cernuum 27,28(1.3), 56(2.3) Anemone m u l t l f i d a 28(+.3) Antennaria anaphaloldes 29(3.3) A. rosea 3 K + . 3 ) Apocynum cannabinum 20(1.3) Arabis H o l b o e l l i i 55(4-. 3). 9 K + . 1 ) Arenaria formosa 29(4-.3) Arnica fulgens 15(3.3) Artemisia campestris 2(+i2) A. discolor 101(4-. 3T A. f r l g i d a 2(4-. 3). 5 5 , 5 6 ( 1 . 3 ) , 100(+.2) Aster consplcuus 7(+.2) Astragalus canadensis 55(+.3) Aj, P u r s h i i 2 ( 2 . 3 ) , 20,98( + . 3 ) , 100(1.3) Brachythecium albicans 7(+.3), 29(1.2), 39(+.2), 56(1.3) Bromus racemosus 16(4-.2) . 56(4-.1), 9 8 ( 1 . 1 ) , 104(2.3) Bryum canariense 2(4-.2), 34(+.3), 56(+.l) Campanula r o t u n d i f o l i a 56 (1.3) Carex p r a t i c o l a 28l4-."3) C a s t i l l o .1a a n g u s t l f o l l a 29(1.2) Ceanothus sanguineus l k ( + . + ) . 104(+.l) C. velutiiius 1x0(4-.4-f. 101(4-. 2) Cephaloziella byssacea l 4 ( » ) Cetraria canadensis 27,28,29(+.+) C. glauca 2 8 . 2 ) . 39(+.l), 56(+.3) C. scutata 56(+. ) Chaenactis Douglasii 2,94(+.2), 34,100(1.2) Chenopodium album 100 (+.+),. 101(1.1) . C. Botrys 101 (4-.4-) Cladonia cariosa 27(+.3) C. c o c c i f e r a 94(4-. 1 ) , 98(4-. 2) C. coniocraea 34(+.3) C. g r a c i l i s 34(+.3), 94(2.3) Clarkia p u l c h e l l a l4(+.2) Clayton!a lanceolata 91(1.3) C. p e r f o l i a t a 97(+.2) Crepis acuminata 7(3.3), 3K+.3) Cryptantha ambigua 91(+.2) C. a f f i n i s 14(1.2). 97(1.3) Danthonia spicata 4(4-,3) Dodecatheon meadia 14(4-.2), 15,91,98(4-.3) Brysifflum lqcon,splcttum 4(4-.2), 7(+.3) Eurhynehium strigosum 20(4-.1) 39(+.4-) +  Festuca p a c i f i c a l k ( 1 . 2 ) ZM. scabrella 3 9 , 5 6 ( 2 . 3 ) , 55(4-3) Fragaria bracteata liO(+.3) Geranium yiseossissltmim 3 K + . 3 ) , 55(+.2) Hellanthus C u s i c k i i 3 1 ( 1 . 3 ) , 39(3.3) H. gjganteus i i K . 3 , 7(3.3) Hoaackia dentlculata 100(+.2) Hydrophyllum capltatum 4 ( 1 . 1 ) , 7(2.2) Juniperua communis 29(+.l), 98(+.3) Ix scopulorum 27,56,29(+.2) Lactuca p u l c h e l l a 34(+.l) Bappula myosotis 34(+.3), 9 1 ( 2 . 2 ) , 98(+.l) Lecanora p a c l f i c a 27,28,29,55(+.+) Lesouerella Douglasii 34,56(+.2) Lewisia r e d i v l v a 20,98(1.3), 9 K + . 3 ) , 94( + .2) Lithospermum lnclsum 20(+.2), 91(+.3) liomatium amblguum 9 1 ( 2 . 3 ) , 94<+.3), 97(1.3) £*. P l P e r i 9K+.2) L. triternatum l k , l 6 ( + . 2 ) , 9 1 ( 1 . 2 ) , 97(+.3) L. utrieulatum k ( 1 . 2 ) , 7(+.l), 94,97(+.3) Madia exlgua 98(1.2) Mentzella a l b i c a u l l s 3 1 , 3 9 ( + . 3 ) , 101(1.3) Mertensia l o n g l f l o r a 31.97(1.3). 9 1 ( 1 . 2 ) , 94(+.2) Mycoblastus alpinus 39(+. ) Monarda f i s t u l o s a ^ 56(1.3) Nephromopsls p l a t y p h y l l a 55,56( + .l) Oenothera p a l l i d a 98(+.+) Opuntia f r a g i l i s 2 0 ( 1 . 2 ) , 100(+.l) Qrthoearpus t e n u i f o l l u s 9K+.1) Oxytropis g r a c i l i s 27T+.3) Oj. Lambertii 55(1.3) Pacfaystima myrsinltes 4»39(+.l) Panioum Scribnerianum 20(+.+) Parmella ollvacea 53,39(+. ) Parmeliopsis ambigua 40,56(+.+) P e l t i g e r a aphthosa 3 4 ( . 2 ) Pentstemon confertus 14,27,28(+.3) Philadelphus Lewiali 15C+.3) Phleum pratense 20(+.2) Phlox l o n g i f o l l a ±4(+.l), 1 6 ( 1 . 3 ) , 20(+.3), 98(2.3) Poa ampla 29(2.3). 3 9 ( 1 . 3 ) , 104(+.2) Ps. fendlerianet 98(1.3) Pj. secunda 25,29(3.3) P. stenantha 29(1.3) Polemonium micranthum 91.(2.3) Populus tremuloldes 31(+.l), 56(1.2) P o t e n t l l l a H u t t a l l i i 27(+.3) Prunus emarginata 7(+.2) Purshia t r i d e n t a t a 2 0 ( 1 . 1 ) , 98(+.l) Pyrus Malus 55(+.2) Ranunculus glaberrimus 9 1 , 9 7 ( 1 . 2 ) , 98(+.2) Rhus radicans 2(+.2), 101(+.l) Rinodina sp. 20,104(+.3), 94(1.3) r  +  173  Rubus leucodermls 29(+.l) S a l i x b ebb 1 ana 29(+.3) Sambucus glauca 91(+.2), 97(1.2) Seneclo canus 39(1.1) Shepherdia canadensis- 7 , 5 6 ( . 2 ) , ix(+.3) Sllene a n t l r r n l n a 20(+.3) S. douglasii 3K+.3), 34(+.2), 1x0(1.3) S. menziesll 31(+.3) Sisymbrium Ihclsum 1x0(1.3). 98(+.2), 101(+.3) Solldago missourlensls 2 ( + . 3 ) , l 6 ( + . 2 ) , 55(+.+)> 9K+.1) Sporobolus cryptandrus 97(+.2) Stipa elmeri 9/x(+.3) S,. r i c h a r d s o n l i 28(1.3) S. v i r i d u l a 15(+.3) S. w i l l ! a m s i i l 6 ( + . 3 ) , 20(1.2) Tellima p a r v i f l o r a 91,9ix(1.3), 97(+.2) Tetradymia canescens lix(1.3), 97(+.2) Usnea h i r t a 5o(+. ) Verb as cum thapsus 2 8 , 3 K + . D , 98(+.+) V i c i a americana 56(+.2) V i o l a adunca 7 ( + . D , 31(3.2-3) V. n u t t a l l l l 27( + . D , 3 K + . 3 ) Woodsia i l v e n s i s 9M+.3) W. scopulina 91,97(+.3) W. oregona 15(1.1), 16(+.1) +  174  PINUS PONDEROSA - STIPA COMATA SUBASSOCIATION STAND  N *  IZ  DATE , , A L T I T U D E (FT.J '  EXPOSURE SLOPE  «  WIND EXPOSURE  UOD VNV 2 + +  Z5  68  69  nso  2/aAsi zaoo  2/aArz 2800  I\/S/S2 zsoe  10 + +  ++  wsw 2 + +  s 10 ++  73  ssw  s  80  I7/B/S2 1400  1  D + +  84  121  1200 NW 7 + -+  \700 Ht  A V E R A C E 1 ft ANdt Or W A L l V A 1U E S  PRESENCE  ABUHPANCC ft  AS mom  ILL STANP5  7/  STAUB VUUC  Ai PfNUS PONDEROSA PSEUDOTSUGA MENZlESlI  —  i»  10%  PINUS  PONDEROSA  PSEUDOTSU6A  HENElLSH  PIN'LB PONDEROSA AMELANCHIER ALNIFOLIA 7UHIPEKUS SCOPULOROM PSEUtX/TSUOA MENZIESll PURSHIA TRIDENTATA  a.  CHRYSOTHAHNUS NAUSEOSUS fc/BES CER.EUM PINUS PONDEROSA ROSA NUTXANA AMELANCHIER ALNIFOLIA ARTEMISIA TRIDENTATA PURSHIA TRIDENTATA SYMPHORICARPOS ALBUS  C  ACHILLEA MILLEFOLIUM ANTENNARIA DlMORPHA  POA CUSICKII  SPOROfcOLUS C RYPTANDRUS "STIPA COMATA AQR0PVRON ANTENNARIA  SPlCATUM PARVIFOLIA  ARAB. I S PUBERULA BROMUS TECTORUM FESTUCA OCTOFLORA KOELERIA CRlSTATA LITHOSPEBMUM RV&ERALE OPUNTIA FRA6ILIS PINUS PONDEROSA PLAN TAG0 PURSHII ROSA NUTKANA TRAGOROGOW PRATENSIS AMELANCHIER ALNIFOLIA  L0NGISETA  ARtST/PA ARTEMISIA  CREPIS  FRI61QA  ATRIBAR9A  *E,ftl(lERON PUMIUUS "ERIOOONUM HEBACLEOIDES *LAPRULA MYOSOTB LEPlDJUM DENSIFLORUM LEVISIA REOIVIVA  POA PRATENS1S  SISYMBRIUM ALTISS1MUM STIPA COLUMBIANA AOCSERIS GLAUCA ALLIUM CERNUUM ANEMONE MULTtFlDA ANTENNARIA UOVELLH ARCTOSTAPHYLOS UVA-UR5I ARTEMISIA C A M PESTR1S ASTER FREMONTII ASTER OCCIDENTALIS ASTRAGALUS SEROTINUS BALSAMORHIZA SAGITTATA BROMUS RACEMOSUS CARCX ROSSU CHRYSOPSIS VILLOSA CIRSIUM UNOULATUM EPILOBIUM MINUTUM ERI6EBON ER'SEROM  CANADENSIS COMPOS'TUS  ER1QERON FIUFOLIUS ERieERON FLAGELLARS ERlOaONUM NIVEUM F R AO A R I A VRSIMANA FRITILLARIA PUDlCA  GAILLARD1A  ARISTATA  GEUM TRIFLORUM GU.IA GRACILIS HCUCHERA CYLINDRICA LACTUCA PULCMELLA LESfiUERELLA DOUGLASII LJNUM LEWISll OXYTROPlS GRACILIS PHACELIA LINEARIS PHLOX LONSlFOUA POLYGONUM DOUGLASl! POTENTILLA PENNSYLVANIA PURSHIA TRIDENTATA SALSOLA KALI S T ' P A " RlCMARDSONIl STIPA SPARTEA SYMPHORJCARPOS ALBUS TARAXACUM OFlC'NALE ARTEMISIA TRIFIDA  D  ON  i-3  ~  «ROUND  CLADONIA CHLOROPHAEA TORTULA RURAUS SELASlNELLA RUPEfiTRIS CERATODON PURPUREUS CLADONIA GRACILIS PELTIGERA CANlNA POHLIA NUTANS POLYTRlCHUM PlLlFCRUM ON TREES LETHARIA VULPINA ALCCTORlA TUBATA CETRARiA 6LAUCA CWNKtfLARlA C A U F M M C A  —  1% +.+ +-.2*3 — — -M 25P  ,-2.2 — — — +•1 +•1-2. —  70 S S I-1-3  1-2-3 i-2 +.+ 6-3 — 1-3  +•1  3-hi.  +•2  +•2.-3 1-2-2.-1  +.1-2  — —+•+ — 4-3 —  +.3 +-.2-3 +.3  +.+  +.1 +-.2  1-2-3  +.1 — — — — — — — — — — l-l +.1-2 —  +*2  — — — — — — +.I-2 — — — • — — — — — — —\ l-l-Z  1.2-3  +.+  — l-l —  — — — —  2ttS y-6-3  ~  t-i +.j — — +•3  10% 2-2 +.2 — +.Z — —  10% 4-r-s —  4-2-) — +.2-3 — —  — — •1-1-2  3 -1-1  —  — — +.1  4 0 * 2.-1-1  (OX l-S  2-3  Ai  2.1 l.2(-i) — — — I.I-J  +./  +.3 —  +.1  3-4.2-J —  + 2-3 +.+ M-2 —  1-2-3 — — — — +.2 — — — — — — — — — — — J.J Z.I +.3 —  1.1-2  +.2  — — — — +.2 i-z  IS It 4-J--3  +•3  s* 4-3  -  r-3 — '  s% 3-4-3 —  — 1-3  41-0.3 —  2-2-3  J-2.2-3  — — —• —  +.2-3 —  f 36 +.3  10% +•2 —  1-1-2 2-2 — — —  1-2-1 i'0%  +.3 +.2-3 1-2-2-3 +.2  7%  +.3-2  -hi  +.2-1 2-2  1-2 i.i — — — —  — — — — —  65<H 1-1-2 1-1-3  (-2-3  1-2-2-J l-l- 2-3 —  2-1-2  2-3-3 —  1.3  —  /•2-i  4*5  7%  6%  2-3-3  55% +-Z-i 2-3  2-J.5  3.2-3  3-3  2-3-2  — —  2-2 1.3  -f-2-3  +.1 — 11  +.2 -t-.l — — —  +.3 +•2-3 +•2-3 — — —  (-2.3 +.i  +-2-3  +.2-S — + .+ l-i 1-2-1  +2  — — — — — — — — +.2 —  + .3  •t-.l — — 2.1 —  +•+  — 2-2 +•2-3 •— — — — —  +.3  — I-S +.2-1 + -I.2-3  +.3 12  +-I.2-J —  -  +.3 +.2-3 +./  — — — — — — —  —  + -1.1-2 +4-Z l.l  2-3-3  — 1-2 — 1-2-3  +.+  — — 1.1-2 — 1- 2-3 +.3 — — — 1-2-2-3 — —  +•3  + -I-I-2  2-3-2-3 +.+  +2 —  1-2-3  —  +-.3  — —  +.2-3 f-2-3  +•2-3  1-2-3 +.1  — — —  +.2  1-3 — —  +.1  — — — +•+ + -(•2 1.2-3 — — — — —  1.2-3  +-I.2-3 —  +-I.J-2  + -1.I +.1  — —  +./ +.2 — — — — — — — +.2-3 l-l — — — — — — +.1 — — —  +  •  -I.2  2.3 — — — — — — — — — — — — — — +-I.2-3  +.3 — +.2 — — — — — — — — — — — —  *2).2  2-1 H-l  — — +.1  i-l-l-l  — +>l — 4.3  —  1.2-3  J-2-3  l-i-3 .+•1 2-3.2 — — — 4-5-3 — — — + .2-J — — — — +<4).2-3 — — — — — — — — — — — — —  I.I  W-2 — — — — I.I  1-2-J  — — —  4-0 % 2-3.2-3 —  + + -2-3 +.J 7.3  4.+  2-2-3 — — — — — —  +-.2-3 — 23 —  +.*  — — 1-3 — — — — — +.2 1-2$  + + .2  2-3.  2 3  i-i  —  .-l-i .-+-.  .-3-7 .-l-l .-l-l  . -+-*  +.1  — — 3 H M  .  +-3  -2-1-  • -l-l .-1-4  —  .-+-,  +•3 — J-4-2-3 l-i-l  1.3  .-+-, .-+-i  .-+-1  ..+-.  0-+-1 .-1-2  .-+-• .-+-«  » -+^* »-+-!  5 2  2 1 1 1 1  2 J 3 2-3 3  7 3 2  5 2 2 2 2  1 1 I 2 1  2 2 2 2 /-2 1-2 2 1  6  3 2-3  S  1  .-+-.  1 1 1 1  .-+-» .-+-!  2 1  .-+-1  .-+-1  1  ; i  .-+-.  • -l-l .-+-1  .-+-. 4-4-1  i i i i i i i i i i 2  .-+-+  ;  ..+-! .-+-1 .-+-«  •  . -+-I .-+-1  •  -+-I  . - t -1 *-+•! • -+-I • - l-l  .  1 1  3  2 3 2  2-3 2. 3 2. 2 3 2  1  2  1  2  1  2-3 2 2-3 2-3 3 2 2 2-3 2-3 2  1  3 l-J 3  2  2  J"  r  4 3 2 2 2  7 8 7  1<  6 tr 6 y  6 4 4  4 ir  4 4 4 4 4 A 4 4 2  3  2  2  2  3  1 2  3  1 2  2  1-2 2  2  1  2 2  2-1 2 2  I  1 1  1 S  1-2  2  2-3 2  2 2-» )I | f ]  2  2 S 2 Z 2 J 2 1 3  ] 2  2 I  2 3 1 2 2 2 2 2 2 1 J  ] 2  ) 2  2-1 |  J  2 t J  . 4 - 1  2  1-2  2  .-1-44-2.-4 .-1-1 4 -l-l  I |  1  1 -+-«  |  ii  2  2  «  •  -+-I  -I-4  hi  |  I  2 t  44 4  3  2 2. 2 2  i"  a 6 6 S 1  1  > 2 2  2  2  •  —  7  1  .-+-« • -+-J  .-+-1  _ i-i-s  2  1 1 1 1 1 1 1 2 / 1 1  • -+-I  — — — —  3 2-3  2 1 1 1  .-+-.  —  1  1 1  .-+-1  — — — — — — — — — — 1-1-2 — — — • +.1  5  1 1  ,-l-t .-)-* .-l-i  3  E  7 2  1 1 2 1 f 2 l-l 1 4 2 2 1 1 1 2 2 1 1 3 2 1 2  .-l-i  —  —  51% .-l-i .-l-i • -2-» .-l-i .-(-,  D  2-3  1  .  c  3 1  2 1  .-(-»  1-2-3 +J  —  _  .. -+-* -/-*  .-+-.  — i-hi.  4-r.3  .-l-i .-l-z . -l.l ..+ -i  . -/ -I .-l-l  1-2-2  1.3 — — —  -+-.  .-+-.  1-2-3  — — 3-2  .  — +•3 — — —— — — —  +.2-/ +.2.-S  1-3 /•2-S  1-2-1-2 4-J-.2 -t.l — 1-1-2 — —+.3 +.2 +.1-2 — + .+ — — —  +.2-3  +.2  1-2-2-3  —  1-2  — +.1 +•2 — —  .3-4.3  , '>-2  2% —  +.1  — 3(-4).l~2  7-3  .-+-,  355 c-2-t * -+-i • -+-. • -+-i  — —  +.+  10% .-4-i  (-2-2  255  il-D-i  +-2 — —  — 1.2 —  ~  2-3-2-3 2(-3>-2-3 3-4.2-3 t-2-3 1-2-2 2-3-2-3  lt-)7-3  .  B  4 K .-2-« . -+-i  IK  7%  4.2-3  y% 4.3 , —  3-3 4>-S — —  +-' — —'• — +•2-3 — +•2 — — — +H)-t-2 +.3 — 1-2-3 — +-I-I-2 — — — +-2-J — 1-2.1-2 — +.2-3 — 1-2-3 — + -I.I-2 — +-2 — — — — — 2.3 — l-l — i— 11 — 2-2-J — +-I —+-I —  I.I  1-2  —  4-2-3  y.i  — (.2 — — — —  +•!  5% 4-2-1 +.1  CLASS  k  FOIW  A  FRACTION  4. $ z. J  y 4 4 4 4 4 4 4 4 4 4 4 4 1 3 3  4  3  3  3 3  3 1 3 I 2  2 2 1 2 2 2 2 2  2 2 2 2  2 2 1 2 J 2 2 2 2 2 2  2 a 2 2  2 a J 2 J  ?  J  2 2  •  5  I  t  a  2-2  —  — — —  +.1-2  — —  +.•  +  1-2  +  1  +.1-2  +•+ — —  +.+  +— •+  +.+  +  •3  — —  -  .-l-l  »-+.•  ..+-. .-+-+  1 .1 1.  1  1  / 2  +  \ 2  175 Stipa sub-association. Species of presence class 1. Acarospera schleicheri 68(+.3) Agropyron subsecundum 68(+.3) A. trachycaulon 68(+.2) Amaranthus graeclzans 81t(+.l) Astragalus purghli 25(+.3) At t e n e l l u s 6 8 ( 1 . 2 ) Bryum canariense 80(3.2) Cetraria i s l a n d i c a 69(+.2) Chenopodium album 68(+.l) Cladonia c o c c i f e r a 73(+.3) .C. furcata 68(1.3) Claytonia l i n e a r i s 8it(1.3) Comandra p a l l i d a 58(1.3) Cryptantha humilis 12(+.2) Delphinium b i c o l o r 81T.(+«3) Blymus condensatus 1 2 K + .1) Epilobium angustifolium (73(+.2) Brigeron corymbosus 73 (+.+) E. peucephyllus 12(+.3) E. strigosus 25(+.3) Erysimum inconspicuum 68(+.3) Euphorbia glyptosperma 8i].(+.2) Festuca occidentalis 73(1.2) Z i p a c i f l c a 8/+(+.3) G i l i a pungens 12(+.l) Hieraclum cahadense 68(+.3) H. cynoglossoides 73(+.3) Hypericum perforatum 25(+.3) Juniperus communis 69(+.3) Lecanora p a c i f i c a 80(+.+) Lithospermum incisum 12(+.2) Eomatium macrocarpum 68(+.+) !>.. u t r i culatum 8 l i T l . 3) Eupinus sericeus 73(1.3) Mentzelia a l b i c a u l i s 12(+.2) Muhlenberg;!a richardsonis 68(1. Panicum scrlbnerlanum 25(+.3) Parmelia physodes 6*9 (+.1) P. sulcata 69(+.+) Parmeliopsis ambigua 12(+.2) Peltigera scutata 69(+.+) Pentstemon confertus 69(+.2) Poa fendlerTana SJTl.3) Polemonium mi c rant hum 12(1.3) Polytrichum juniperinum 73(+.2) Prunus persica 25>(+ .1) Pyrus communis 2$l+.2) Pj. malus 25(1.1) Rinodina sp. 25(+.l)  Sedum stenopetalum 68(+.3) Setaria g l a u c a 8 ^ ( + . 3 ) Stipa elmeri 80(1.3) S. occidentalis 73(1*3) Usnea h i r t a D9(+.2) Verbena bracteata 8]+(+.3) Xanthoria candelaria 69(+.2) Zygadenus venenosus 73(1*3)  176  IPiNUS PONDEROSA - RHUS GLABRA ASSOCIATION 9 22 81 /// OFAVERAGE 23 SCALE  SYANb Nft.  DATE ALTITUDE (FT.) EXPOSURE SLOPE (•) WIND EXPOSURE  1200 SW 15 ++  1500 SW 4"  n/e/a 1200 w 12 !  17/8/52 HOC ssw +  7/VS3 1200 Z +  4 • RANGE VALUES PRESENCE ASSIGNED ABUNDANCE AS S. DOMINANCE VIGOUR FRACTION CLASS  ALL STANDS A  Ai PINUS PONDEROSA PSEUOOTStWA M E W l C S I I Ai POTUS POHDEROSA PSEUDOTSIWA HENZtESU POPULUS T R E M U L O I P E S PMU5  PONDEROSA  AMELANCHIER  "RHUS GLABRA "PHILADELPHUS  ALNIFOLIA LEWISlI  *SAMBUCUS G L A U C A  A C E R SLABRUM PURSHIA TRIDENTATA POPULUS TREMULOIDES PRUNUS VJRCfMANA  B*  PINUS P O N D E R O S A "RHUS GLABRA "R. RADICANS AMELANCHIER ALNIFOLIA CHRYS0THAMNU5 NAUSEOSUS "PHILADELPHUS LEWISll P R U N U S VIRGIN I A N A PURSHIA TRIDENTATA  RIBES C E R E U M ROSA N U T K A N A  CLEMATIS USUSTICIFOLIA -SAMBIXUS GLAUCA ARTEMISIA TRIDENTATA BERBERIS A&UIFOUUM POPULUS TREMULOIDES SYMPHORICARPOS ALbUS  c  ACHILLEA AGROPYRON  BROMUS  MILLEFOLIUM SPICATUM  TECTOftUM  OPUMTIA FRAGILIS "PANICUM SCRIBNERIANUM PINUS PONDEROSA *RHUS 6LABRA *R. RADICANS AMELANCHIER ALNIFOLIA GAJLLARDIA AR1STATA L1THOSPE RMUM RUOERALE PLANTAfiO PURSHII POA CUSICKM " S T E P H A N O M E RIA TENUIFOLIA STIPA COMATA TRAGOPOGON PRATENSIS "VOODSlA OREGONA ANTENMAftlA MMORPHA A. WRVIPOUA APOGYNVM ANDKOSAEMJ FOLIUM A R A B IS P U B E R U L A ARJSTIDA LONG B E T A ASTRAGALUS SEROTIML/S B A L S A M D R H I Z A SA61TTATA b E R B C R t S A & U I FOLIUM CALOCHDRTUS MACROCARPUS C A R E X ROJSII CHRYSOPS1S VILLOSA C l R S l U M UHDULATUM CREPIE ATRLBARBA E R I O S O N U M ^ WIVEUM GILIA A 6 G R E 6 A T A WEUCHERA CYLINDRICA PUR&HIA T R I D E N T A T A ROSA N U T K A N A SPOROBOLUS CRYPTANDRUS VERBASCUM THAPSuS "VERBENA BRACTEATA ZYCA&ENUS VENENOSUS AGRflPYRON T R A C H Y C A U L O N COMANDRA PALLIDA EPILOBIUM ANGUSTIFOLIUM E R I G E RON FILIFOLIUS EUPHORBIA 6LYPTOSPERMA FE5TUCA OCTOFLORA LlTHOSPERMUM IMCISUM PENTSTEMON CONFERTUS KOELERIA CRIST AT A PHACELlA LINEARIS PHlLADELPHUS LEWKH POTENTILLA AftWTA S0UCAOO MISSOURIEMSI& STIPA E L M E R I TARAXACUM OFFICINALE  D  ON ( K X W CLADONIA CHLOROPHAEA PELT16ERA CANINA POLYTRICHUM PILlFERUM SELABINELLA RUPESTRIS CE&AT0DON PURPUREUS TOR T U L A R U R A L S ON T H E M LETHARIA VULPINA  SX ••3 +.3  y-2 10% 4-2 —  15% 1-7-1 +.3  5X 1.1-2 1.2 I.l  20 X 3-2 2.3 +•3 2-3  —  +- + -I  1.2-3 —  1-2  1.3  1-1-2 +.2  — —  33-55 +.1 S-2 2.2  +•2 +•2.-3 +.1 5-3 —  + •1-2 1-2  +.1 —  +•2-3 l-l 1-1-2  — —  J--2-3 3-2-3 +.1 3-4-2-3 +-I  3-2 3-2-3 +-I — — 21  2-3-2 3-3 2-2  15% 1-2-2-3 1-2-2 3-2-3 2-2C-D  1-2-1 3-2 3-2 l-l +-3 +-I-2 — +.1  +•3 —  — — — —  +.2 1-2-1 13 +-I-2-3 2-1-2 +•/  — — — — —  +•+ 1-2 +.1 1-2-3  +-I  2-2  +-2-3  +-J + •3 +-I  1-2 1-3 +.2-3 1-1-2 —  •4-2-3 —  +.3 — — — — — —  2.2 +.2 — —  +•2 — — — —  +0 Z 3-2 1-2-2  5-1-2  +.2 '—  1-2 +-I  IS 3J y.2-3 —  — —  -  — —  +.2-3 — —  1-2-3 —  +•2 —  +•+  +.1 ++-I  +•2-3 +.3 +•+ — — +.1 —  +.3 +•1-2 —  +•1 1-2 3 1.1-2 +.1-2 +.+-I 10 Z +•} +•1 — —  / % 2.3 2 5 JS 5.1  1-2-3  10%  20% 2.2-3 1.2-3 4-3 1.3 1-3 4.3 I-Jf2) 1-2-2-3 +•3 3-3-2 — • +.3 +.3 23 +•3 — +2-Z  3ra 20% 2.2 3.2-3 jr. 2 6-2-3 3.2-3 +.2-3 2-1 +.2-3 +•+ Z-2-2-3 2-2-3 3.2-3 I-2-IC-2) +-I +-2-3 +-I 1-3 1-2-3 — +•1-2  11  41-2055  10 s t-5-2-3  — — — — —  30% 2-2 1-2-3 4-2 +•1 3-3 1-1-2 3-2 1-2-1 +-I  2-M3 1-3 +-+ 3-2 + -I +-V-2-3 +-I  l-l +•3  — •— +-I-2  4-2-3 +-•+ +-I +•1 +•3 1-2-2 +•3 2-3 —  l-l 1-3 1-2-3 +.2-3 +-I — — —  +-I — — —  +-3 — —  1.2  +•}  +.2  — — 1-2-1  1-1-2 +-I-2-3 30 % 1-2-3 + -I 3*.3 5-2  +.3 1-1-2  +-I -3  +.1  -  3SX 2-1-2 SI 33 1-1-2 1-3 2-2 . 21 2-3-3 2-3 3-3 3-3 1-2 1-2-3 +•3 +-3 *I0Z + -I  1-2-3 3-2-3 +-I-2 2-3-3 1-1-2 2-3-1-2 2-3-2 l-l +-2-3 1-2-2-3  5"5S 2.2-3 25 S-i.l  S  o-+- + «-+-!  —  ' 1% + .1 1.3 1-3 1-2-3 +.H2 —  20 % (-2-2-3 4-3 +•3 2-3-2 —  1-1-2 + 1 1-2-3 +.2 1-2  -  25Z 1-1-2 1-2-1-2 4-2-3 +.1 12 l-l 22-3 2(-3)-2  + •3 +-3 — 2-3 — 2-3 t-Z-Z 3-4-3 — +-I-2 — +H-3 +•2-1 — ++•3 + -I-3 +-I -2 + •3 — + •2-3 — +•3 +•1 +.3-2 — +•1 — 1-1-2 — +.3 — i-Z-3 +•+ +.3 1-1-2 + •3 —  1-1-2 l-l +.2-!  +.+  +.2-3 + •3 +.3 +.1-2  1-3 — — — — — — —  l-2-i +.1 — — — —  — —  hz-i  — — — —  — — — —  —  2-1 — — —  +  i  1-2-3  10%  +.+  (IS 1-1-3 1-2-4 .-2-« o-l-l o-l-J o-+-t o-|-2 o—+-I 0-4-.2 298 • -2-J 4-5-4  *-2-j 0-2-3 «-/-! o-2-J • -I-2 o-2-i .-l-i »-1 -J C-l-S O-l-l .-l-l 0 - + -I  • - + -I  242 .-l-i i-2->J-3-4 • - l-l 1-2-4 o- 1 -1 o-ll .-2-j o- l-l 0-1-2 o-l -2 0-1 -2 0-2-i o-l-J 0-2-J o--+-» 0-1-1 o-l-l o-l-i 0-1-2 o-+-» 0-2-4 o-+-t 0-+-*  0-/-I  0-+- »  .-1 -1 o-l -1 0-1 -2 e-+-t O-l-l O-l-l ,-l-i o-l-i o-l-l . -1 -4 0-+-.  .- + -» O-l-l • -+-+ 0- + - . .-+-2  • - +- * . -+-. .1-2  • - + -I  • -+-• .- + -* +.1-3 $-+-* .-l-l — — 0- 1-2 — —  + 1 3-2-3 .1-2-2-3 22 4-2-3 l-li Z-3-2  22 Z 4-S-T  + H-+  ++•>  7% 2-3-J o—  10% +•3 —  +.3 3-3 —  +-+•  0 - + -.  .-+-,  C-+-+-  STANDS WHERE FO^ND  A c  D  E  3 +  3 3  5 /  S i  5  +  3 3 2-3  5  5  2 2  2 3  5  1  2 I 1-2 1 I | 1  3 2-3 2 3  + 3 3  2  2  2 5 2 2 1 2 1 2 1 1-2 2 / 1-2 1 1 1  2 2-3 3  5 y  1 2 3 1 2 1 3 2 1 1 1 1  2 2 2 1 2-3 1 2 2 1 2-3 3 2 2 2-3 2 1 2 3 3 2 2 3 1-2 1  2 2.  1 1 1 1 1 / / 3 1 /  1 1 1 1 1 1  122  1 2 2 2 2 2 2 2 2 2  1-2  f1  1  2  A"  •4 4 4 4 4 443 2 2 2 2 5" y y  s y y 5 5  4+ 4 4 4 4 4 + 4 3 3 3 3 3 3 3  3 J 3 . 4 3 3  y  y y  4 4 3 3 2 2 5 5 s 4 4 4 4 4 4 4 3 3 2 2  2 2 S  5 5  y y y  4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 + 3 3 3 3 3 3 3  1 1 I  2 2 3 2 2 1-2 3 3 2 1 2-3 1 2 2 3 2 2 2 2 1-2 2 3 2 2 / 3 /-2 2 1  2 / 3 4 2 2  /-2 2-3 2 3 2  5" 4 4 4 3 3  4 4 4 3 3  1  1  4  4  1-2  1 1 1 1 2 1 1 1 / 1 / 1 1 1-2 1 1 1 I 1  t-2  3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2. 2 2 Z  3 3 3 2 2 2 2 Z 2 2 2 2 2. 2. 2 2 2 2  Z  20% .-2-1 0-l-« 0-2-4 • -l-r .-l-l .-l-l  J  177  Rhus a s s o c i a t i o n .  Species  o f presence  A l l i u m cernuum l l l ( + . 3 ) Apocynum cannablnum 9(+.2) Arabis h o l b o e l l l i 9(1.2) A r t e m i s i a campestris 9(1.3) Aj. f r i g i d a 11K+.3) Aster ericoides 8l(+.3) Astragalus p u r s h i i 23(+.2) B o l e t u s sp. 22(1.3) Bryum canarlense 23(+.3) Ceanothus sanguineus 81(3.3) C e p h a l o z i e l l a byssacea 23(+. ) Crataegus d o u g l a s i i 81(+.1) C r e p i s acuminata 9(1.3) Delphinium b i c o l o r 22(+.l) Elymus condensatus 22(+.2) Encalypta sp". 9Tl.3) E p i l o b i u m mlnutum 8l(+.3) Equisetum hyemale 8l(+.3)  E r i g e r o n pumilu3  9(+.2)  Erlogonum h e r a c l e o i d e s 23(+.3) Eurhynchium strigosum 23(+.+) F r i t i l l a r i a pudica 23(+.3) Geaster s p . 22(+.3) Holodlscus d i s c o l o r 22(+.3) Juniperus scopulorum 81(+.3) Mertensia panlculata 8l(+.2) Mlmulus g u t t a t u s 5l(+.2) Pentstemon s e r r u l a t u s 22(+.3) Plahlia nutans 9(2.2) Polemonium micranthum 22(+.3) Polygonum d o u g l a s i i 111(2.3) P o l y t r i c h u m .juniperinum 22(+.2) Rhinanthus c r i s t a - g a l l l 81(1.2) Ribes v i s c o s i s s l m u m 8~l(+.l) Silenelnenziesli 8 l (+. 3) Specularia p e r f o l i a t a 9(+.2) S p i r a e a l u c i d a 22(+.l) Stipa v i r i d u l a 8K+.3) V i c i a sativa 22(+.3)  class  1.  PSEUDOTSUGA MENZIESII - PINUS PONDEROSA - ARCTOSTAPHYLOS M S I  S T A N D N>~ BATE ALTITUDE  •48 , , (FT.)  i"0  V>/y2  61'  10/7/-?! «/7/->2  2600  SLOPE C) WIND E X P O S U R E  I2/./J2 2100 S  JI///H  67 i/a/u isoo  60 3400  ESE 20  U STANDS  A  I0SS 4.3 4-2-3  U K A-J-.2-1 1-2-1  ll'SS 4-2-S  Ba  AMELANCUIER ALNIFOLIA PINUS PONDEROSA PSEDOT5UGA MEN2ICSII ROSA NUTKANA •SHEPHERPIA CANADENSIS CEANOTUUS VELUTINUS TUNIRERUS COMMUNIS •TUNIPERUS SCOPULORUM CURYSOTHAMNUS NAUSEOSUS C ACHILLEA MILLEFOLIUM AGROPYRON SPICATUM "ALLIUM CERNUUM AM.ELANCHIER ALNIFOLIA ANTENNARIA P6RVIF0LIA ' ARA&I5 PU8CRULA •ARCTOSTAPHYLOS UVi-URSI CAREX RCSSII FRAGARIA VIRGIN IANA GAILLARDIA ARISTATA KOELERIA CRISTATA PINUS PGNPEROSA ROSA NUTKANA 'SEPUN STENOPETALUM •SDLIDAGO MIS50URIENSIS TARAXACUM OFFICINALE •ANEMONE MULTIFIDA ANTENNARIA P1MOTPMA ANTENNARIA HOwELLII APOCYNUM ANDROSALMIFOLIUM ARTEMISIA CAMPESTRIS A3TRAOAUJ5 SEROTINUS •CAREX CONCINNOIDES CREPIS ATRIBARBA GEUM TRIPLORUM LITMOSPERMUM RUDEHALE • PENTSTEMON FRUTlCOSUS PSEUDOTSUGA MENZIESII TRAGOPOGON PRATENSIS BALSAMORHIZA SA6ITTATA feROMUS TECTORUM COMANDRA PALLIDA FESTUCA SCA&RELLA HIERACIUM CYNOGLOSSGIDES TUNIPERUS COMMUNIS LOMAT1UM MACROGARPUM POA CUSICKII OXYTROPlS GRACILIS SPIRAEA LUCIOA STIPA COMATA STIPA RICHARDSONII AGOSERIS OLAUCA ARTEMISIA FRIGIDA ASTER FREMONTH ASTER OCCIDENTALIS ASTRAGALUS PURSHII ASTRAGALUS TEUELLUS CALAMA6R0STIS RUfcCSCENS CEANOTHUS VELUTINUS CHEMOPODIUM ALBUM CIBSIUM UNDULATUM COCLINSIA PARVIFLORA ERIGERON COMPOSITUS ERIGERON FILIFOLIUS GALIUM 60REALE HEUCHERA CYLINDRICA TUNCUS 6ALTICUS •TUNIPERUS SCOPULORUM LAPRULA MYOSOTIS LINUM LEUISII OPUNTIA FRAGILIS ORYZOPSIS EKIGUA PHACELIA LINEARIS  D  L"  4-2-1 I 1.2-1 +2-1  8 7  y y  855 4-2-1 2-2-1  2 3  a  y y  6 -.7 ^•42  y y3  t 2 2 2 2 2 1 1 2-3  a a  y y y y 4  2 2 3  S  y  8  y y S" y y y 5  10%  10%  10%  1-4.2 1-4.2  ON T R C E S LETHARIA VULPINA CETRARIA GLAUCA >ANTwORIA CAN DEL A P I A  10% 4(-»2 + .2-1  4.2-1 2-3.2fl ?(-4>.2-3 22-1 2.2H) +.2-1  1-2-3  41  10% 2-1.1 )-«-l 3 4 1-2 22  ICS*  JDK  4-5.(2-)5  3-1.j  11%  Ml  2.2 1-2-2  12 2.2 1-2.2-1  +.1-2  , +-1 | 2-2-3 ! 1.2-1 40JI 1-2.2-3 3-2  b 2-3 1-2 2.2 +.2 2-3-2-3  4-J-.2-5 I  -  K-2). 1-2  1-2  1-1-2-1  T-I-2H1 -2.2H)  1-1-2 + .1-2  l-2(-l) 12  2-32H)  11-2). 2 If 21.2 1-2.2  +.1 t.l  1-2-1  +.2  1-1-2 +.2-1 3.2-3 1-2-1-2 12-3  1-2-3  +.  1-2-1 +.1 1-21 + -I.3 1-2.3 +• + T-1.2-3  l(-2).2-3 I.+ I-1 +.2-3 + •2-3  +•2 1-2.2 + -I.2H) I-I-2  1- 23  K-21.2  1.3 2- 3 2 1.1-2 1-2-3  + +•2-3  | II-2I.2 1-2-2 t.l 6.1  G-2-3 +. 1-2 II-2J.2 22 2.1 1-2.1  I ZJ-«5 1-2-2 2-2  40JS  3 2 -I.2H)  2-3.2  + -1-2  +-I-2  30% 1.2  3-4.2  'A  1-2  /6 c  l>"«  4(-y).2-3 A(-i).2-3 , 2.2  + -I-2-J  tttU-Z  1- 2-3 2- 3 +.2-3  1.2 +.2 +-I.2M  2-2-3 + -I-2-3 +.2  -?.", -2.. •I.I  2 1 3 1  1  2 2-3 3 / 2 2 2 - 1 /  2 2-1 1 2 2 2 1-2 2-3 2 2 2 2 2 2 / 1 1 2 3 2 3 2 2 2-3 2 1-2 3 1 2 2 3 2 2 1-2 2 1 1 1 2 2-1 3  2-1  1  +.2  T-l  1-2-3  +_itl)  • SHEPHERDIA CANADENSIS SPOROfiOLUS CRYPTANDRUS STEPHANOMERIA TENUJFOLIA STIPA C0LUM6IANA SYMPHORCARPCS ALfcUS  ON OROUNP CLAPONIA CHLOROPHAEA PCLTlGE R A CANINA TORTULA RURALIS CLADONIA CARIOSA CLAPONIA ORACILIS POLYTRICHUM PIUFERUM &RYUM CANARIENSE CERATODON PURPUREUS CLAPONIA COCCIFERA CLADONIA VERTICILL ATA POLYTRICHUM TUNIPERINUM  H5? 4 -)-. 1-2  I0W  4-y.aw PINUS PONDEROSA PSEUDOTSUGA MENZIESII •7UNIPERUS SCOPULORUM AMELANCHIER ALNIFOLIA  2.2-1 1-2-1  (J7ANPS WUtnFount  2-3 2  A PINUS POMREROSA PSEUDOTSUGA ME.N2IESII  +-3  2-3.2 2-3-2 +.2-3 T.2-1 l(-2)-l-2  K2H)  +.J + .3 + .1-2 +.3 f-l-3  ASSOCIATION  AVERAGE I RANGE OF S C A L E VAIUCS ASsianep  3 2 1 M 1 1 1-2 1-2 2-3 2 3 1  7  .  :  7  e 6 4 4 2  a a7 8 8 7 7 7  e e  « 7  87 y6  6 6 6 J" 6 S  y  6  s  y y  4 4  4 4 4 • 4 4 y « 4 4 2 3 3 2 2 2 3 3  2 2 3 2 3  2  2 2 3 2 2 3 2 3 1 2 J 1 2  2  3 3  4 2  5  5 5 S  y y y y 4  4 4  4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3  43 3 3 2 2  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  179  Arctostaphylos association. Species of presence class 1. Agropyron trachycaulon 67(1.3) A l e c t o r i a fremontii 67(+. ) A. .1 ub at a 66(+.+) Apocynum cannabinum LL9(+.+ ) Aster ericoides 6T(1.3) A. l a e v i s 65( + .l) Astragalus stenophyllus 66(1.2) Brachythecium albicans 65(+.l) Calochortus macrocarpus 67(+.2) Carex xerantica 67(+.2) Cerastium arvense 6>7(+.2) Cetraria i s l a n d i c a 66(+.3) C. scutata 65(+. ) Cirsium drummondii 66(+.2) Cornicularia c a l i f o r n l c a 66(+.+) Delphinium b i c o l o r 3) Blymus condensatus 67(1.2) Erigeron f l a g e l l a r ! s 66(+.2) Erlogonum heracleoides 5 l ( + . 3 ) Festuca occidentalis 65(1.2) Za. octoflora 1x9(1.2) P. ovina 55~( + .2) Lactuca p u l c h e l l a 66(+.2) Lecidea l u r i d a 6~6(+. ) Lesquerella douglasii, 67(+.3) Nephromopsls p l a t y p h y l l a 5l(+.l) Parmelia physodes 51(+.2) Parmellopsis ambigua 65( + . ) P e l t i g e r a aphthosa 65(+.2) Poa i n t e r i o r 67(+.+) P. secunda 67(+.3) Pbhlla nutans 50(+.+) Polygonum douglasii 65(+.3) P o t e n t i l l a pennsylvanica 65(+.3) Rinodina orbata J4.9( + .l) S e l a g l n e l l a rupestris 48(1.2) Senecio canus 66(1.2) Silene a n t i r r h i n a 5l(+.2) S. s c o u l e r l 5 K + . 3) Sisymbrium altissimum 67(+.3) Sitanion h y s t r i x $0(1.3) Stereocaulon tomentosum 6(+.3) Stipa elmeri 50(1.3) S^ occidentalis 51(1.3) JLL v l r l d u l a ^2(+.3) Usnea h i r t a 65(+. ) Zygadenus venenosus 52(+.2)  PSEUDOTSUGA MENZIESII - (PINUS PONDEROSA) - CALAMAGROSTIS RUBESCENS - ABCTOSTAPHYLOS UVA-URSI ASSOCIATION STAND  N  5  DATE , . A L T I T U D E (FT.) EXPOSURE,.. SLOPE C) WIND EXPOSURE  / 21/5/52 3200 V  24/4/52 25-00  32  24/o/M 2500 JE S" + +  35"  Z7/6/SI  1600 + +  36 so/V-rz 1600 ssw IS + +  37 1/7/M 2100 s 10 ++  38  47  2500 E S + +  3700 SW 10  1/7/52 4/7/52 1  64 3I///52  69 23/3252 3000 V 30 + +  3600 S 10 + +  10529/7/CSl 3100 SSE S + +  106 107 108 109 I4/H/43 I 4 / & / I 3 2o/a{ss2i/e/« 34» S 5 ++  3400 SE 10  1  4000  3400 s IS +  S  f  AVER/ISC « RANGE PRESENCE OP SCALE VALUES ASSIfiNCO ABUNDANCE AS I DOMINANCE mow FRACTION CLASS ALL STANDS  A PINUS PONDEROSA PSEUDOTSUGA MENZIESII PINUS PONDEROSA PSEUDOTSUGA HEN2IESM PINUS C O N T O R T A POPULUS TREMULOIDES  Bi  PINUS PONDEROSA PSEUDOTSUGA MENZIESII TUNIPERUS SCOPULORUM PINUS C O N T O R T A POPULUS TREMULOIDES Bi AMELANCHIER ALNIFOLIA PINUS PONDEROSA PSEUDOTSUGA MENZIESII ROSA NUTKANA XSHEPHERDIA CANADENSIS CEANOTHUS VELUTINUS TUMPERUS COMMUNIS TUNIPERU5 SCOPULORUM PINUS C O N T O R T A POPULUS TREMULOIDES SALIX BEUIANA ACHILLEA MILLEFOLIUM ANTENNARIA PARVI FOLIA XARCTOSTAPHYLOJ UVA-URSI XCALAMAGRDSTIS RUBESCENS XCAREX CONCINNOIDES CAREX ROSSII FRASARIA V1RGINIANA PSEUDOTSUGA MENZIESII A6R0PYR0N SPICATUM AMELANCHIER ALNIFOLIA COLLINSIA PARVIFLORA HIERACIUM CYNO6L0SSOIDES KOELERIA CRISTATA PINUS PONDEROSA ROSA NUTKANA SPIRAEA LUCIDA ALLIUM CERNUUM ANTENNARIA UDWELLII ANTENNARIA RACEMOSA APOCYNUW ANMOSAEMIfDLIUM ARNICA CORDIFOLIA ASTRAGALUS SEROTINUS CREPIS ATRD5AR6A L I T H O S P E R M U M RUDE R A L E SEDUM STENOPETALUM ASOSERIS GLAUCA ARABS PUBERULA ASTER CONSPICUUS ASTER PREMONTM MLSAMORHIZA SA8ITTATA DERKERtS AS.UIFOLIUM \ BROMUS TCCTORUM I ) I )  CAST1LLETA ANOUSTIFOLIA EPILOSIUM AM6USTF0L1UM FESTUCA OCCIDENTALIS KDTRACIUH ALBIFLOOUM LUPINUS SERKCUS PACHYST1MA MYRSIN1TES PINUS CONTORTA reifTSTEMON FRUTICO«U»  3055 6.2-3 4.2 3055 62  3.2  15% 32  30 55  6-2-1  3-4.1-2  It  2.+2 20%  3.2  4-4-2  If)*  4-4-3 4.3  3-4.2H) 2-3.2  20 %  6055  S-2  4-3.4-4.2 7-2-3 43-2 15%  4-S  s%  15%, 4-3(2)  3-2-3  2.3-2  4.3-2  —  ir« +.i  1.2-3  10% 1.1-2  4.2-3  +.2i5  4-3  4-J-.2-3 +.2.-3  15% 4.2-3  4-5.2-3  4.3  —  10 55 3-4.2-3 4-3 —  —  15%  3-3  4-5-3 —  4.1 10 55 1.2 +.1  3.2  1-2.+2 2.1-2 +•2  2.2 5-2 1-2-2-1  +1  2052 3-2-1 1-2-3  +.1 3.1 — — —  4T3  +.2-3  + 2-3 +.1 70S  22  72 S-2 t-2  +•2  4-J-.3 7-2  6-2-1 1-2 1-2 32-3 1- l  + .1 1.2 +.2  +-I-2  2- 2-1 4.2+ +.2  402  +.2-3 3.2-3 6.2-3 4-J-.2  + -I-I 1-2.2 1-2-2 2- 3-3 +.1-2  +-Z +.3  6-2-3, 3.2+3) +.2  +J 2.2 1-2 6-2  6S% 1.2 1.2-3  ++•2-3' l-l +.1 2-1-2  l-l I-+2 —  l-l  1-2-3 l-l — l-l  +-J  1-2-3  +.1-2 I.+-I  4-2  +.1 + 1-2 +2.2-3 — +.1-2 2.1  2.2-3  3-42-3  +.2-3  —  1-2.1-2  — — —  ' +• +  + -I.2-S 3-42-3 + 4.1  +•1  1-2 1-2-3  +-I.2-3 —  — —  — —  1355  31  4-+2  4.2-3 +.2 —  1-2-2  45% 1-2 2.2  5-6-0.-)3 +.2 2-2-3  2.3  — 1-2.1  l U +4.1-2 + 1 +2-1-2 +•2-3 +.1-2 — 1-2.1-2 +-I.2-J  7-3 , 4-2-3 6-1  +•2  IJ.-3  +2-3 +.2-3  J--6-2 2.2-3 i--3  I S 55  +.1  2-3 2-3 3-4-2  +.3 F2  — —  ++.2  4+2  +.2-1  — —  1-1-2 + + - 2  1-2-2 1- 1-2 2- Z-2  20% l-l 1-2.1-2 3-4.2 — — — 3-43  1-2 +.1-2 +.+!  4.2-1  +.1  — +.3 I.l +•1 3.2-3 +- +  1-2  2.2 — J— +-I.I  20 S 2-J-l 1-2 5- 2 2-3-2 3(-4).2-3  — —  — —  — —  — —  35 a  601 1-2-3 2.2 IT-3  2-2-3 3-1-2  +.+2  4tS%2 +2.2  4-3-2  4.2-3  I.+2 1-2-1-2 1-2.3 2.3  +.1-2 3-42-3  l-l  +-I 1-2-3 2-3.2-3 +•! +.1-2 +.3 — —  +.1 — 1-2-3 1-3  1-21  1-2.2 —  +.2 +-J  2-2-3 +.1 — ++.+2 +.3  1-1-2  +.2 — +-I.I I.+-I — +-I.3 1.3  —  —  —  +.++ +-I-I  — — —  — +-I.+ —  +-I  — —  1-2.2  1.2  —  —  —  — +-I  10 35 +.3-2 3-3-2  ion  2.3  4-S--3 —  +.2 +.1 — — — — —  15 a 3.2-3 — 4-J-.2-3 —  4.3 +.3 — —  15% —  3-4-3  +•2-3 —  I.l  —  4.2  , 15%  4(-»l-2 1-2-2-3 2-3-2-3 + -I.2-3 2.2-3 2.2-3 — —  +•2  —  50-X +.2  40  1-3  S  1-2-3  3-3  2-3. i".2-3 2-3  4.3  2.2 12 I.l +-I.I 3-2-3 +•+ +•2-3  +.2 I.l 3-3  4-5--2  4-4-3-2  J--2-3 1.2  1.2-3  l-l  +-I. 2-3 1-2-3 +.+2 ++-I  1-2-1 +.1 l-l — 1-3 1-3 1.2 — +.1-2  2-2 — —  l+iM +.3 1.2 — — —  +.3 —  +.2-3 —  +4.1 —  15%  +.2-3  4MV.3 +.3  10% 10% 15% 7% 1455 4-4-2-3 4-51 4-5.1 4-1 1j -- 34 --4. 4-1-32.1 3.3 3-3 15% IOC 19 2 12% 20% 2.2-3 1-4-4 4-5.2-3 3.3 4-S--3 2-4-4 S-l . 4-5-1 3.3 1-3 4 - 3 +.3 +.3 — .-Is —  455  1.2 3.3 — I.l  2-1-1  + +.2 2.2 — +.2 —  2.2-3 4-4.3 — —  5% 2-2-3  4-5"-2-3 I05S +.+-I  IJ-R 4.2-3  4.3 +.3 3-4.3 10% 20*  10% 4.3 10%  42-3 4.—2-3  4.3 4-3  5-2-3 —  +.3  4-4.3  3D 55  2035 2.2-1  —  4-2-3 +-i".2-3  20S5  lf2)-2 +•3 1-2-3  +•} —  — +-I-2-3 — +.1-2 — +-I-2-! 12 — 1-2-3 —  15'%  1-2-1 +.2  4.3  +21  loss +.+ 1-2.2 2.2-3  3-2  3-4-3 2-3-2-3 +•2 +.2  3-4-3  — —  1-2 1  j-ys ++.2 +.2  5058 1-2 2-3.3  4.2-3 4-2-3 1.2-3 +•2-3 +2-2  1-2.1  I-+2  +•+ 1-2 1-3  +.1-2 +.1-2 I.l 4 2  +.1  1-2.3 —  2-2-3 +.+ — + 2-3 + -I-3 — +-I  — +.2-3  1.2-3  6-1 4-5-3 2.3 +-I-2 2.2-3 1-2-1-2 1-2 —  1-2-2-5 + 2-3 +.+ I.l  +.3 — —  +-I-2 +-1.2-3  +.2  1-3  —  1 55 1.3 1-2-3 — 1-2.3 —  22-3 1.2-3 — — — — 3.3  65% +-I.2 2-3-3 <-72-3  4-4-2  3.1-2  1-1-2 5'5-55  1-2-3 +.3  +•2-3  6-3  5%  1.2-1 1-2-2 2.2  + 4-1 + -I-2  +.1-2 +•3 +•2-3  2-1 1-2.3  45- a 12 2-3  +.3 4". 3 1-2-2-3 2-3.3  1-2-2-3 1-2-3  +.1 1-2-3 +•+  |(-2U  +.2-3 +•3 +-I  1-2-2-3 — +•2 l-l  ++.I 1-2-1 + -I-3 — +•/  1-2-2-3 +•3 +.3  +•)  ++2-3 — —  — —  +.2 —  —  — +.2-3  — —  — —  +.1  +-I.3  1-2  2-3  — +•3 2.2  2.3 —  1-2.2  — +•1-2 — 1-3 —  +.1  5-55 10% 3.3  1-2 + 1-2 — — — — 1-2.2-3  1-2.2-1  2-3.2  1-2-3 2-3 — 33 3.2  5% 2.1  1-2-3  +-I.I-2  2-3-2-3  4.3  5% —  +.2-3 +.2 + +•2-3 I-+2 —  +•+  STANDS WHERE FOUND  2-2-3 —  +• +  — 1.3 — 2.2-3 — — +-I.3  1-2-2  +  4-1-2 — -+• +  1-2.2-3 — +.1 21 2-2  12-3 +.1 —  — —  —  I.l  — — —  —  —  +.3  1-2-2 l+2).l +-I  4-1.2  11%  .-2-4 t-3 r .-+--4  .-l-r . -1 - 4  12*  .2-1 ."-/-I  ,-3-r  .-1 -1 .-1-4  .  .-1/ - 4- . .-+-. .-/-* .-l-l .-+-1  4-255 ,-1-2  . -2-T 1-4--J 4.I-2  .-l->  4-1-2 4  -1-2  4-2-4  .-+-.  4-1-1 .-l-l  .-/-.  .-l-l  4-2-4  +•2-3 . - l - l +2-3 .-+-2 +.1-2 +-I.I-2 +.1 .-l-l  -— 1.3 —  1.3'  . -+-»  +.1 —  4-1-1 4-+-I  .-l-l .-1-2 .-+-1 . -+-I  • --+-+, 1 .  .-l-l  .-+-2  . -+-l  —+-I .-+-1  ..(-.  .-+-1  4-1-1  —  +•1-2  ,-/-4  .-+-1 4-+-I  As C  P  E  4  3 3  15-  5 5  4 4 3 2  3  14 14  5  2  43  2 3  13 15  4  2 3 1 3 2-3 2 / J / 2  2  1  1 21 2  1 2  5r 1  3 3  3 4 5 3 1-2 4 221 2 2  22  2  2-3 1-2  2  1 1 1 1 21  1 1 1 1 2 2  1 1 1 1 1 1 1  1  | 1 1 21 1 1 l  1 1  13  11" 15  12 10 7 7 5 4 6 4  2 2  15  2 2  15 IS  J  2 1 1-2 2. 1 21 2.  1  14  1 2 3 2 1 1  2  3  2• 2 1  22 22  2-3 3 2  22 2  1  2 21  2 2-) 3 1 /  1  14  15  IS 14 15 II 10 10 II II 12 12 II 9 9  7 7  7 S 7  fl  a 4 (5  5 4 6 i  5  5  6  56 y  4 4 5  r 2  '  1  • s  5. z  2 2  55 s  4 4 3 -3 22 2 2  4 4 4 5" 45'  5 S  4  4 4  4 4 4 4 4 3 3 3 3  3 3 3 3  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  6  32  — +•3  — —  —  —  (0 £  2S%  40K  +-•2' —  -t-.l +.1 $-3 3.1 —  6"l-2 2-3.2. +.2-3 l.l — —  I POA  PRATENSIS  SITANIQN HYSTRIX VICIA AMERICANA POPULUS  D  TBEMULODCS  ON  CLADONIA  CHLOROPHAE*  CLADONIA  GRACILIS  PCLTIflERA  CAN1NA  "POLYTRICHUM  BRACHYTHECIUM  TUNIPCRINUM ALBICANS  CLADONW. (O CC irERA CCRATODON PUR PO R E U S CLADONIA  NEMOXYNA  PELTICERA  POLYTRtCMUM ON  APHTHOSA  PILlPCRUM  TREC3  LCTMAftIA  PARMELIA  VULPtNA  PARMCLIOPSIS  ALECTORIA ALECTORIA  CETRARIA CETRARIA  PHY3O0ES  AMNGUA  FREMONTH XU&ATA  OLAUCA  CANADENSIS  — — 2-2 +•0  +-I  2.1 1-2 — — — — 2.1  — — —  —  r.+ —  —  —  +.+  — — 2.2-3  4.2  +.+  -t-. +.2 1-3 1-2-J  35  36  + .1-3 — +.1 —  —  +-I.I  —  60%  3S  —  — +•3  —  —  +.1-1  V+7 — —  1-1-2 J-4-3 • 2-3  I.J  4.2-3 +.1-2 — +•2 1.3 4.3 + 1-2  1-2.1-2  — — — + 2 1-1-2 3-2  1.2. + 2  I. + +  1-2-3  +.  '  +.1-2 — +.1  64 —  2<rz 3-4.2 2-3.2 — +.1 +•2 — 23 — — +.1  M-2 1-2.1 — 4.2 f f l — — — — — —  1-2 1-2.3  1-2- .  +-  +.1  1-3  +.1 +.2-3  ——  106  89 +.1-2. —  1-23 —  +.2-3 t-.2-i  10?" •r—  f.l  20 c  3-4-J.  +.2 1.2-3 +.1 +.2  2,7  I.I  i-Z-3 — — — — — — —  1.1-3 -t.t -f. -*-.+ -+-•1  t.l  4-3 — •f-.l +.1 4.3 — + .2 — t-l-l-z •f-2.  - \c <z>  20%  23'% 4-!'. 3 3-3  —  2.2  •J-.2  2-2 +.2 +.3 — — +.2-3  1-3  4.3 — ..-.-» -t-.l -f.i-2 —_  3-2 — \-L-i -+• -1.3  -K2-3  3-4.2 2.2-3 — -— —  —  — — —  — — —  1-2-3  3.J  -t-.l  •f.  +.  —  — • t-.| •+•.2  —  —  —  ,  /oa 1-2-J  _  -t-.l  A  B  c  : — —  . -t-t  i-2-i (-2;  . --f--J  i i / i  2 3 1 1  3-2-3 K2 — —t. 2-J 1-2-3  ,-3-i .-2-.1 -*  3 2 ?.  2 2. 7.-3  , - I.i  1 1  2.  — — —  . -(•-.  I  ?2._  109  D  - E  >• A  y  *  '  2 2. 2  IdW 2-1-3 l-i 1-2-3 1-2  I-2.-3  *'••! 1. 2  _  .  -I-.  f-« r- t *J  I  . -/ -4  2,  .-  I  ,.-,-•>  /-«  2. 2. 2.  n •  10 9 V  4A  S'  y •  y y  +  -4 3 3 2. 2. 2. 2  1*  -f  (  v  3  4.  2  4_ 4 Z  CD  i \  Arctostaphylos - Calarnagrostis association. Species presence class 1. Acer glabrum K+.2), 105(+.3) A l e c t o r l a sarmentosa 35»36(+.2) Anemone mult I f i d a 5li(+.3), 107(1.3) Antennarla anaphaloldes 108(1.3) A. dlmorpha ii7(+.2) A. rosea 5(1.3) Arceuthobium americanum 32(2.3), 6ii(+.3) A. d o u g l a 3 l i l05(+.2) Arenarla formosa 6(3«3) Artemisia campestris 38( + .3), 61i,107(+.2) Aster laevis 6)i(+.+) Bryum canariense 89(2.3) Calypso bulbosa l(+.3) C a s t i l l e l a a n g u s t i f o l i a 62i(+.3) C. miniata 107(1.3). 108(+.3). 109(+.2) Cetraria i s l a n d i c a 35,105,106(+.2) C. scutata U.7J+. ) Cirsium undulatum 37(+.+) Cladonia carneola 6lj.( . ) C. furcata 35,106(1.3), 105(+.+) C m l t i a 35(.3), 6it,105(+.2) C. nemoxyna 35,61±,108( + . ) C. v e r t i c i l l a t a 35(1.3), 32,89(+.2) Claytonla spathulata 35(+.l) Comandra p a l l i d a 57+.2), 107(1.3) Danthonia spicata 35»38(+.3) Dicranum fuseescens 35(+. ) D. strlctum 35(+. ) DiaporBm trachycarpum 105(+.2) Drepanocladus uncinatus 35(+. ) Epllobium mlnutum 3 5 ( . l ) Erigeron compositus 6(+.3) E. pumilus 37(+.2) E. speciosus • 6it(1.3) Erlogonum heracleoldes 6(+.+), 38(1.3) Burhynchlum strlgosum 35(+.2), 89(1.2), 105(+.+) Fomes l a r i c i s M+.3) Fragaria bracteata 35(+.D, 38(+.3) F. virginlana 5T3.3) Galllardia aristata 37,105(+.l) Galium boreale 5TtTl.2), 107(+.3), 108(+.2) Geranium ylscosisslmum 108(+.2) G i l l a aggregata 37(+.2) G± g r a c i l i s J £ ( + . 3 ) Habenarla unalaschensls l(+.+), 105(+.3) Heliahthus c u s i c k i i 109(2.3) Heuchera c y l i n d r i c a 35,37(+.l) Hosackla denticulata 109(+.2) Eathyrus n u t t a l l 1 1 1(6.2), 108(1.2) Lecanora p a c l f i c a 32,35(+. ) +  +  Einnaea borealia 6k(+.l), l08(+.3) Linum l e w i s i i 107(+.l) Llthospermum i n c l sum k7(+.3) Soma titan dissectum 35(+.3) !>•• utriculattim 5T+.2) Eonicera c i l i o s a 1(1.2) Melairoyrum l i n e are 108(+.3) Mycoblastua alpinus 35,37,61i(+.2) Nephromopsia platyphylla 35,37,Ii7(+.2) Oryzopsls e x i g u a 3 8 ( + . 3 ) Oxytropls g r a c i l i s 47(2.3) Parmelia olivacea 1 (+.+.) P. sulcata 106(+. ) Philadelphus l e w i s i l 36(1.2), 37(+.l) Poa ampla 37(1.3), 47(1.2) P. canbyi 89(+.3) P. c u s i e k l l 32,47(2.3), 37(+.2) P i i n t e r i o r K+.2) P. nervosa 6(+.+) Pohlia nutans 6(4-3), 37(2.3) Polemonium micranthum l(+.+) Polygonum douglasii 105(+.3) P o t e n t i l l a arguta 37,108(+.2) Prunus vlrginlana 6,37(+.l), 38(+.+) Psoroma hypnorum 89(+.l) Pterospora andromedea l,6(+.3), 32(1.3) P t i l i d i u m pulcherrimuro 36(+.3) Pyrola seeunda l(+.2) Ribes cereum 37(+.2) R. viscosissimum l(+.2) Rinodina conradii 89(+. ) Rubus leucodermis 35(+.+) Senecio aureus 6~4(+.3) Smilacina s t e l l a t a 107(1.1) Solidago mis sour lens i s 64,107(+.3), 106(1.3) S t e l l a r i a longipes 108(+.3) Stereoeaulon tomentosum 35(1.3), 64, 106(+.3) Stipa columbiana 32(2.3). 35(1.3), 38(+.2) S. r i c h a r d s o n i l 64(1.3), 106(+. + ), 107(2.3) S± w i l l i a m s i i 37(+.3) Taraxacum o f f i c i n a l e 6(2.3), 64(+.2), 107(+.l) Tortula r u r a l ! s 6 7 + . + ) , 35(1.2), 109(+.3) Tragopogon pratensis 38(+.3), 47(1.3) Trifolium repens 2±7(+.3) Usnea dasypoga 37(+.1) U. h i r t a 35(1.3). 37(1.2) Vaccinlum caespitosum 108(2.3). Verbascum thapsus 37(+.l) V i o l a adunca 1(1.3). 37(+.2) Woodsia sp. 36( + .2) Xanthoria candelaria 64(+.+) Zygadenus venenosus 6(2.3), 10£(+.3), 109(1.3)  PSEUDOTSUGA MENZIESII - CALAMAGROSTIS RUBESCENS ASSOCIATION STAND N i DATE ., ALTITUDE ( F T . ) EXPOSURE WIND EXPOSURE  A* PINUS PONDEROSA PSEUDOTSUGA MEN2IESII PICEA ENGELMANNII As PINUS PONDEROSA PSEUDOTSUGA MENZIESII PINUS CONTORTA PICEA EN6ELMANNII POPULUS TP.EMUL0I6ESBi PSEUDOTSUGA MENZIESII PINUS PONPEROSA SALIX DEWIANA AMELANCHIER ALNIFOLIA PINUS CONTORTA POPULUS TREMULOIDES Bl PINUS PONDEROSA PSEUDOTSUQA MENZIESII ROSA NUTKANA AMELANCHIER ALU FOLIA POPULUS TREMUL0IDE5 SALIX BE&BIANA SPIRAEA LUCIPA SYMPHORICARPOS ALBUS R1B.ES CEREUM  S  30  41  33  24/5/K 21/6/52 25/6/52 3100 . 2800 3000 VNV EIIE SE 20 20 y / + ++  4.3r5 8.2-3 50%  1-2-3  i-i —  20%  2-3 15" «S 4-3 + .3 —  20%  4-5.1 4-3  20*6  1-2-3  5-3 •—  42  3/7/52 4/7/52 3400 3100 NNV V 10 5 / ++  I5"56  4-5-1  4.3  159 4-5-3-2 4S.3 —  10%  4-J-.3M  +.3 20% 5-1 —  1-3  43  577/52 3500  SW Z  t  15% 4-5-1 1-3-2 12%  4-2-3 4-3 —  44  6/7/52 3850 SSV 15" /  10% 5.1  3-4.3 20% 4-5.1-2 4-5-1 —  46  45  3800 s 7  20% 5.1  5-1  4.3  1-3  15* 4-J--3 1-2-3  3-4.2 15%  S.2 +.1 — —  10 s +.1  4-5-2 —  +.2-1 —  +.3 1-1-2  ii %  4-3 4.3 +•3 —  —  51.  3-2-3 3-2-3 —  +.1 —  +.2 —  15 3 4-S-.3 4-J-3 — 1.2-3 — 1-3 — +.3  IS » l-l 4-S-3-2 +-1 —  5% 1-2-3  15- K 4-S--3 4.3 1-2-3  75  93  7  203  20% 4-5-2-3 4-5.3 —  74  7/7/52 12/8/52 13/8/52 23/S/-53 3300 3000 3000 3800 SSW E NNE. NNW 30 20 5 + ++  6/7/-52  10% 4-1 1-7 — —  —  1555 4.3-2 4.3 4-5-3 4-5-3 20%  35 % 7-1 —  25%  4-3 5-3  I5"S 4.2 3.2-3 IS a 1-2-3 1-2-3 —  1-3  a  20 4-3 4.3  +-I-3  io a  4.2-3  10%  3-3 +.3  10 9  4.3-2 1-2-3 +.2-3  — 1-2 — +.3 2-32-3 — — — — +.2 1-2-3 +-I 1 . 2 3 — — — 3-41-2 2.2 1-2 1-2-2 15% ion ion 15% 15% 83 15 55 5% 15* 15% 1-1-2 4-2 +-I-2 2-3-2-3 1-2-3 3-1-2 1-2 1-1-2 1-2-2-3 + 4.1-0 3-1-2 4.2-3 2-3.2 4-3 4.3 4.2-3 22 4-2-3 +.1-2 2-2 32 2-2-3 4.2-3 +.2 2-3.2 1-2 +4.2 1-2. 1-2.2-3 1-2 — — 2-1-2 — +•2-1 4-J-.I-2 l-l 4^-1 2-1 +.1 — — — — — +-I.I-2 +.2 +.2-3 2-1 +.1 +.1 +.1 +.1-2 +.1 +.1 + .2 +.1-2 + . 1 2 +.3 — — — — — + 3 +•3 +.3 +.3 — — — — — 1-2.1-2 +.2 +.2-3 l-2.2(-3) 1.2 — — — 4.3 +•2 +.1  +.1 — +.2 80S 75% 80S C ACHILLEA MILLEFOLIUM 2-3.2-3 +.1 1-2-3 "CALAMA6ROSTIS RUBESCENS a-s>.3' 8-2-3 8-3 I.J FRA6ARJA V1RGINIANA 11 1.1-2 HIERACIUM CYN06L0SS0IDES 1 3 + •3 +.2-1 LUPINUS SERICEU5 1.2-1 2-3.2 4.3 PINUS PONDEROSA +3 +.1 ++-I PSEUDOTSU6A MENZIESII l-l 2.1-2 +-1.2-3 — ZYGADENUS VENENOSUS 23 +.2-3 ""ANTENNARIA ANAPUALOIDES 1-2-3 2-1.3 2.3 "ANTENNARIA ROSEA +2 +2 "ARNICA COftDIFOLIA 3.1-2 +.2-3 2-1.2 ASTRAGALUS SEROTINUS 2-3.3 3.3 BALSAMORHIZA SASITTATA +.0 +.2 4.1-2 BERBERIS AQUIFOLIUM +.2+ +.2 + - I . I COLLIUSIA PARVIPLORA 12 + -!.» +.2-3 — CREPS ATRIBARBA + + .3 + 1 — FESTUCA OCCIDENTALIS 1-2.2 J.3 ROSA NUTKANA 3-1-2 — SPIRAEA LUOIDA 1.1-2 3-4.2+3) — ASROPYRON SPCATUM +.1-0 4-2^3 AMELANCHIER ALNIFOLIA +.+ 1 2 3 — — ANTENNARIA RARVIFOUA + .2 — — ARAMS LANESCENS +.1 — ARCTOSTAPHYLOS UVA-URSI +.1-2 1-2.2 ASTIR FREMONTM +.1 +.1 CAREX R05SII +.3 +.1-2 — CAST1LLETA ANGUSTIFOLIA I.J 2-3 — — EPILOSIUM ANGUSTIFOLUH +.1 — — FRAGARIA pRACTEATA 1-2-3 — + • > «FRmu.A«IA LANCEOLATA 1-2-3 GRIM TRIFLORUM 1.2 — 6IUA GRACILIS +•2 +.2-3 — KCCLERIA CRISTATA +-+ +•3 — — — LATHYRUS UUTTALLU l-l "LLUM COLUMBIANUM — — PACHVSTIMA MYR5KITCS +.1 «PDA AMPLA +-I-3 SYMPHORICARPOS ALBUS +.1  75%  1-2-3 8-2-1 —  1-2-2-3 2.2 +-I-2 1.1-2 +•2-3 1-3  + -I-2-3  1-1-2 22 +.1 —  +.3 +-•3 3-4-2-3 +.1 1-1-2 2-2-3 +-I — —  +.2-3  1.2-3  +.1-2 — —  1-2-2 —  1-2-3 —  2-3 —  +-I.2 — +.3 l.l  70%  45%  •60%  1-2-3 G-7-1 2-3 +-1.1-2 + 4.3 1-2-2-3 2.2 1-2-3 3.3 2.2 1-2-1 l-l +.1-2 +1 +-I.I — 2.3 1.2-3 + 4.3 + 4.2 — — 2.3 +.3 +.2-3 1-3 — 2-2 1-2.2 l.l 2.3 1-2.3 — +.1 + 1 — +T| +.1 1.3 + -I-J 1 M-2-3 + -I-2 1.3 4.3 4-3 4.3 +— .1-2 +.1 1.1-2 3.2 1-2.2 — 2-J-3 +•2 24 +-M 1-3 2-1-2 + 4.3 +.1-2 +.2-3 +.1-2 — — 1-2-3 1-3 + -I.1 +.3 1 .2-3 — +.3 +-I.1 — + +•1 +.1 — — +.1-2 — — +•2 1-2-2-3 — 1.3 + 2-3 — — 2-3.1 +.+ 2.3 4.2-3 2-3.3  7-1  —  +.1  1-2-3 6-2  2fJXl-2. +J-3  +-I.I  l.l  60% 1-3  70%  55% — 6.2 —  60%  70%  99  Q/7/53 3400  V 10 ++  10 9  3-3  +-J 2S% 1-2-3 1-2-3  3(^43  103  vsv 10  ++  —  +.Z-3  |y« +.+ -0  4.3 1-3-2  1-2-3  10 5(  2-2-3 —  — — I-Z.Z-3  -+-2  2.1-2  + .2  $% +•1-2  to* —  —  +.+ —  2-3  —  l-Z +.1 —  Z  DOMINANCE  ALL S T A N K HERE STANDS WFO ^ND  A  21%  T 3  -»-3-a  + 2255  c 3 3 2-3  #-3-r  3  • -+-»1 .-'•*.  2  2. 3  •  -4-7  I25» +-3->-  * 1  2-3  3  3  1  • 11%  .-3-»-  +  .-+-2  — —  ,--+-*  7S%  60%  6S%  . - 1-2 ,-/-4  . -J-»  4,-7'*  / -i  . - 2 - *  .-+-.  .- l— l-i t  (-1 .-+.1  3  2 2  1 1 1 1 2 Z 7 1 1  21 1 1 1 1  •  •l-i  . -+-, .-+-.  .-+-. . -l-i .-/-«  . - l-i  21  1-2 1 3 2  2  1 3 2  |  3 2  1 I  ?  / 3  2  1 1  + ' / //  / i" / / 1 1  2 2  / • - 1 -1 . 1 • - l-i 1 .-+•-1 /  13 13  y y  (  3  1  3  14 II 9 3  1  '  3  3  2  2 1  2 2 2  3 2  3 / 2 2  2-3 2 3  2 3 / 3 1  21 2  y 44  2  6  I  13  5  • 14  12 10  6 9  6 34 11  2. /  5 5'  /3  M 12 13  3  F  /+  3  2  CLASS  D  2  Z  3  f  2  2 2  .-/ .- l-i  • - 1 -1 .-l-i . -+• -1 -t .-+- 1 1 -» l-i  2-3  2  2  . - 2. v .-1 -4  2 3  2  2  .. --2 -/ 4 .-l-l  2-1  2.  . - 2 - .  .-/.»  3  3  .-2.*-2 2 . - /-* .--+-j /  PRESENCE  A3 vieous FRACTION  +  +.+  2.2-3 +.2-3 1-2-1-2 +. I -K N 7.31-2) 7-3 7-2-3 e-3 6-3 +•2 ,-2-3 1-1-2 1-3 3-3 — 1-2-3 2-2-3 1-2.2-3 +.2-1 1-2-2 +-3 ( 2 2 — 1-2.1 l.l 3.3 1-2.3 + 4-2 — — + -I.+-1 +.2 +- + -+.+ +.1-2 — 2.2-3 1-2 + 3 + -I.+ + -I-I +.1-2 +.2-3 — lf-2M 1.2-3 +.3 +4.2-3 +.3 — — +.3 +.3 +-I.3 1-3 +4.2-3 +.2-3 +.? 1.3 4 . 2 — — 1-2.2-3 12 2-2.-3 3-4.3 — — 1.2 1.2-3 1-2.3 +.1 1.3 — — — — +.+ +.1 3.2 +.2 — — + -I.I 2-2-3 3-2-3 + 4.1 — — — +.2-3 +.2-3 +•3 + 4.2 — — 1-2-3 —• 1-2-1 1.3 1-2-3 3-4-1 — — 2-2-3 1-2.2 1-2-3 1-3 1-2.1 l.l 1-2-2 + 4.1-2 — — 2-3.2-3 2-3 3-4.3 3-4.2-3 4-J.2 — — — — 2-3.2-J 2-7.1-2 1-2-2 24 +.1 +.+ — — — l-l 2 3 1-1-2 1.2-3 — — — — +.3 +.3 +-3 — — — — I.I + -I.I-2 + 4-2 +.3 +.1 +-I.3 lM-2-J +.2-3 — — — — +.3 +-.3 4+U-2-3 — — +.2 +.1 +.1-2 r-2-2 1-2-2 — — — — + .2-3 +.1 1-2.2-3 — — — — +.1-2 +.2 1.3 2-3-2 1-1-3 (-3 — — — — — +.3 +.1 — — — — — 2-3-3 4.2-3 5-1 — — — 23 /-2.2-3 +3 2-3 3-3 +-I.2-1 + - M — — — + M 2 +4.1-2 1-1-2 1-3 +.3 1-3 + -I.I +.2 1.1-2 71 1-1-2  ft  35a  10 «  +.2 +.2  SCALE V A L U E S A S S I G N E D  10/7/53 A&UNDANCE 4400  3-4-2-3 +•2  AVERAGE, t RANOfc OF  11  13  12 12 10 9 II II 9 9 II 10 II 9  10 a 8 6 7 7 7 & 7 8 6  6  6 6 6  7 7 7 7 £  y j  4 3 4 3  3 2 5  5  1" y y y y s  4  4  * 4  4-  4 4  4-  4 4 3  3 3 3 3 3 3 3 3 i  3 a 1 3 3 3 3  3  TARAXACUM OFFICINALIS VlCIA AMERICANA AGOSERIS AURANTtACA ANTENNARIA HOVELLII ANTENNARIA RACE MO SA ASTER CONSPltUUS BR0MU5 CARJNATUS BROMUS TEC TO RUM CAREX C0NCINNOIDCS CAREX WOOD!) EP.LOBIUM M J N U T U M ERIOSONUM HCRACLEOIPES GALLIUM BOREALE G0ODYERA MENZIESII HE IX H£RA CYUNDPICA HLERACIUM ALMFLCRUM HYDRO PWYLLUM CAPITATUM PENTSTEMON CONFERTUS POA PRATEN5IS POA SCABRELLA POPULUS TREMULOIDES POTENTILLA ARSUTA PTEROSPORA ANDROMEOLTA SENECIO EXALTATUS STIPA COLUMBIANA THAUCTRUN OCCIDENTALS  5  30  33  4-1  42  43  — — — —  — — — — —  +.2  •M-l  -r-(-2 +• -1- i-J  —  I- 2-3  +.1 —  — — — —  -(-•2 — — — —  2-2-3  —  — — — — —  0  ON GROUND CLADONIA CHLOROPHAEA PELTWER* CANINA BRACHYTMECtUM ALBICANS XROLYTRICWUM JVNIPERINUN 6RYUM CANARIENSE CLADONIA GRACILIS CC RATH DON "PURPUREUS CLADONIA COCCIFERA CLADONIA PIMSRUTA PELTI6ERA APHTHOSA POHLIA NUTANS POLYTRJCHUM P. UFERUM TORTULA RURALIS ON TUBES - LETHAWA VULWNA ALECTORIA 7UBATA ALECTORIA FBEMONTII PARMELIA PHYSOCCS PARMEUOPSi Att&l&UA USNEA HRTA  1-2  1-2  1.3  +.+  -r-2.  +.+ +.2 —  + .2 — —  — —  1-2 —  — — —  — — — — — — — — — —  — — — — — — — — — — — — —  —  —  l-l —  1-2  1-3  +.|C-J) —  +•-2 —  —  •)--3 T.l  -  z%  15 %  l-i ihi -t-.l +•1 — — — — — — +•1 — —  T-I-Z  +.2-3 — — — —  t-2  1-2-2 +. 1  —  +•2-3 +.1  — — —  T-I-2 —  1-2  —  +-2-3  + -2-J 1-2-3  +•3  + •2 — — — — — — — — —  +•3  —  — —  +-3  Li  — — — — — — —  +.3 +•2 + .2-3  +•2-3 — +.3  -+-.3 +-3  — — — — —  •r-l — — — — —  2-3 T-2  1-3  T.l  —  2-2-3 1-2-2 +.1  — — — —  1-2-2-3 t-2. l-l +•1 +•1-2  1-2.1-2 +.1  —  —  —  T-T  +-M-2, — — —  — —  — l-l  T-3 T - 1-2  — — — — 1-2.3 — — 3-3  — — —  —  45 -tl  + -I.I-2 +•3  — — — 1-2-1 — — +•3 +.2 T-2  — — —  1-2 T-^2  —  1.1-2  i-i T-2-3 — —  46  7A  75  T-I.Z  — — —  T-I  +.3  1-2 — —  t.i  — — —  — — —  i.e-3  T-3 +-3 T-2-3  — — —  3-2  — — —  2-2-3 —  1-2-3  — — — — —  1.2-3  •T-1  93  — — — —  2-3 — —  — 1-2-3 — — — —  +.2 2-3 — — —  —  — —  —  —  —  —  — — — —  T-i  —  — —  — — — —  +•3 T-3  1-3  — —  T-3 +.1  1-2-3  — — — —  -r-l  -ml  T-2  l(-2)-3  5 +-1.2.-3  lC-2)-3  +.3  — —  — — —  44  -t-f-2. f-2tl) (-2-2  — — — — —  Z  2-2-3  t.2(-3) — 3-1-2  +-+  IS i%  T  1. hi —  T-l-l-2  T-l-2 T . T  T-2-3  — —  -r-2-3 +.+ — —  — —  —  —  1-2-3 T-2  — —  -S+ T.-t-  TH-2  +-1-1-2  1-3  -r-l.3  IOZ  T  +.2-J  +.2  1-2  -r--r — +.3  — —  T-  +  1-2  — A.l-l  T--2  —  +.2-3  — — —  T-2  —  + -I  2-3-2  1-2-2-i — 1  T-/  —  T-I.  T-T  ~-l  1%  -t-.T — — 1-2-3  — — —  T-2  —  +.2  2-3-3  T-I  T-2-3 T-T T-T  SS% i- 2 - 3  2-; *-2-3  2-3-3  T-.T 2-3 T-3 1-3  -r--r  1-3  T-I  99  1-2.23  +.3  A  B  .-+-i .-/-• • -+-*  f 2  101 —  /• »-a — —  2-3 J 1-2-3 — —  .  -T-«  . -l-l . -l-i  1.3  — — — — T-3  2-3.3  — —  —  1-3  — —  1-3 — 1-2-1-} 3-4-2  T T-2-3  T-2-7 —  T-2-3  — — — — — —  .-T-.  t  .-+-* .•+•1 • - l-I  M  1-2  — — — —  I-: —  .-+-1  1  4--T-'  . .-+--* •  -T-I  I-1-2  . - /-* (-) •  -T-i  ,-t-L  .-+-<  •*£'.  —  •—  t -T-- 1  —  T-I. 2  \  —  /  +  + !  2  2 3 2. 2 2  )  2-1 2 3 2 2 3 2 3 3 2 3 3 2 /-2 3 3 2 2 2  0 7  .7  44-  E 3 1  2.  6  2 1 2  4-  t £  y  ri  6  4  3 3 + 3  4  3 3 3" 3  3 r 3  A3 3  3 2 2 2 2 2 2 2 2 2  £  2 2 2 2 2 2  12% ,-1-2, .-/-I  -r.3  l-ll  / / / /  2  ~  1-2-2  2  • -T-I  5% +•3  + + +;  +.2 — •— — —  2 2 1 / /  +-M-2 —  • / • 1  c  -!-»  .-t-t  e  ,.+..  I I  2  1 t  1 T  t  1 I t-l I T  1  -f  2 2 2 2 1 2 2  |2  1 1-2 1-2 2 2 /  2  +  13  IL 1/ 7 i"  3  3 3 3  12 I 4 4  5 4 4  3 3 2 2 2 2 2 2 2 5 3 2 2 2 2  186  Calarnagrostis Association.  Species of presence class 1.  Acer glabrum 7ij.(+. + ) Agoseris glauca i+2,99(1.3) A^. heterophylla ij.6(+.2) Agropyron subsecundum 99(3/3) A. trachycaulon 30( + .3), Ij.6(1.3) A l e c t o r i a sarmentosa 7[L(1.3) Allium cernuum 103(+.\) Alnus t e n u l f o l i a 5(+.2) Aquilegia formosa 103(1.3) Arab Is glabra Zjl,99(1.3) Arenaria formosa 42(+.2) Astragalus p u r s h i i 5(1.3) A i stenophyllua 5(ii.2) Barbilophozla hatcheri 93(+.3) Boletus sp. 5(+.+), 103(+.3) Bromus marginatua 46(3.3) C a l l i e r g o n e l l a schreberi -33(1.2), 74(+.+) Calochortus macrocarpus 75 (+.2) C a s t i l l e j a lutescens 93(+.2) Carex f e s t l v e l l a 99(+.3) Ceanothus velutinua 7J4. ( . 3 ) Cetraria .juniperina 7k( + . ) -Cj. glauca 2il( + . l ) . i+3(+.2) C. i s l a n d i c a 93(+.2) Chimaphlla umbellata 7i±(1.3) Cirsium lanceolatum 45(+.+) Cladonia carlo sa IfX,I16 (+. ) C. coniocraea 93( + . ) C. deformis i+k,93(+. ) C. furcata 93(+. ) Oj. m i t i s 93(+.3) C. squamosa 93(+. ) H i v e r t i c l l l a t a 30(+.l) Corallorrhiza maculata 33(2.3), 103(+.3) Crepis acuminata IJ3T+.3) Cryptantha a f f i r i i s 99(1.2) Danthonia spicata i|-5(+.3) Delphinium b i c o l o r 30,99(+.2) Dicranum fuscescens 74(+.l) P-i ma .jus 74(1.2) D. scoparlum 5(1.1), 7i+(+.l) D. strictum 74(+.l) Disporum trachycarpum 93(+.l), 103(+.3) Dodecatheon meadia 75(+.3), 93(2.3) Drepanocladus uncinatus 7i(.,93(+.l) Elymus glaucus 103(+.2) Erigeron corymbosus 30( + .2), ii2(+.3) Erlogonum heracleoides 42,i(.6( + .3), l+Si + ,2.) Eurhynchium strigosum 7lj.(+.+) Festuca scabrella 75(2.3) Funaria hygrometrica li2(+.3) Galium bore ale h . ? ( + . 1 ) . ^6(2.3), 99(1.3)  187  Gent 1 ana glauca 4 K + .3) Geranium viacoalaalmum 4 2 ( 1 . 2 ) , 99(2.3) G l l l a grand i f l o r a 99T+.3) iL. linearis 42,44(+.3) Habenaria unalaachensia 103(+.3) Helianthus c u s i c k i i 4 l ( + . 3 ) Heuehera c y l i n d r i c a 4 2 ( + . 3 ) , 75,83(2.3) Hieracium canadense 7 4 ( » 3 ) , 75(+.2) Hydrophyllum capitatum 4 3 ( + . 2 ) , 4 5 ( 1 . 2 ) , «+6(+.3) Juniperus communis74(+.2) Eappula myoaotia 45(+.l) Earix occidentalis 93(+.2) Eecanora p a c i f i c a 93(+. ) Eeakeella S P . fTT+.+) Elnnaea b o r e a l i s 103(2.3) Eithospermum ruderale 42,99 Eoma titan trlternatum 93(1.3) Eonlcera involucrata 45(+.l) L. utahensls 103(+.1) Euplnus nootkatensls 3 3 ( 4 . 3 ) , 103(2.3) Marchantla polymorpha 5 , 4 l ( + . l ) M i t e l l a nuda 103(+.3) Mnlum splnulosum 74(3*3) Mycoblastus alpinus 74(+.1 ) Nephromopsls p l a t y p h y l l a 93(1.3) Osmorhiza c h i l e n s i s 103(+.+) Parmelia caperata 30(+. ) P. s a x a t i l l s 93(+. ) P e l t i g e r a venosa 74,93(+.2) Pentstemon frutlcosus 45(+.l) Phleum pratense k3(+.3) Poa canbyl 7FT2.3) P. nervosa 5(+.D, 45(3.3) Pohlia cruda 4 l , 9 3 ( + . ) Polyporus schwelnitzii 33(+.l) Polyat1chum muniturn 5(+.+) P o t e n t i l l a glandulosa 45(+.3) Prunua emarginata 46(1.1) P. v i r g i n i a n a 93(+.l) Paoroma hypnorum 93(+.3) Pteroapora andromedea 3 3 , 4 5 , 7 4 ( « 3 ) P t i l l d i u m pulcherrimum 93(+. ) Pyrola p i c t a 5(+.+) P. secunda 103(+.3) Rhlnanthua c r i a t a - g a l l l 75(2.3) Rhizocarpon alpicolum 4 l ( » ) Rhytidiadelphus triquetrus 103(+.2) Ribes lacustre 103(+.1) R. oxyaoanthoides 99(+.3) Rubus p a r v l f l o r u s 103(+.1) R. strigoaus K>3(+.2) Sanicula graveolens 43,46(+.3) +  +  +  Saxlfraga i n t e g r i f o l i a 93(1.2) Sedum stenopetalum Ij3( .3) Seneclo aureus IJ3,99 ( +. 3) Shepherd!a canadensis 74(1.3), 103(+.2) Sllene douglasii 99(+.3) S. menzlesii F ^ ( l . l ) S. s c o u l e r i ii2(+.3) Sisymbrium Inclsum 99(+.3) Smilaclna racemosa 74(1.3) s t e l l a t a 93,99(+.+) S t e l l a r l a longipes 42,99(1.3) Stipa r i c h a r d s o n i l 42,99(2.3) wllllamsll lxl(-»-.3) Taraxacum erythroapermum 30(1.2) Tellima p a r v l f l o r a 5.93(+.2) Timmia austrlaca 7li,93(+.2) Tragopogon pratensis 42(+.3), 75(+.2) Verbascum thapsus 4l(+.+) Xanthorla candelaria 45>( »3) +  +  PSEUDOTSUGA MENZIESII - (PINUS PONDEROSA) - SYMPHORICARPOS ALBUS ASSOCIATION 3  S T A N D D A T E A L T I T U D E  ,  EXPOSURE S L O P E WIND  23/5/52 2250  , (Fr.)  WSW  35  f) EXPOSURE  +  i"8  16 17/6/52  2750 NE 5  +  60  61  E  +  5  2000 15  +  59  24/7/52 2577/52 28/5-/52 1600 1700 moo V  21M52  SW  +  +  63  6Z 2*^/52 2000 N  29/7/12 2000 N 15 +  10  20  +  + +  AVERAGE 1 RANGE OF S C A L E V A L U E S ASSIGNED  i/e  71 S/8/52 3200  S 10  + +  I4/S/S3  aoo  L  NW  +  15  +  ABUNDANCE DOMINANCE  ALL  STANDS  70%  5-2 7.2  4-3 4.2  A> PINUS PONDEROSA PSEUDOTSUGA MENZIESII POPULUS TREMULOIDES  20%  20% 1-1-2  PINUS PONDEROSA PSEUDOTSUGA MENZIESII  B.  +.1 5.1-2 i'SJ 2.1-2  PSEUDOTSUGA MENZIESII AMELANCHIER ALNIFOLIA PINUS PONDEROSA A C E R OLABRUM POPULUS TREMULOIDES CRATAEGUS D0U6LASII PRUNUS VIRGINIANA SALIX BCBBIANA  — +.1-0 +.2 — — — —  Bi  sots  ROSA NUTKANA "SYMPHORICARPOS  A L B U S  PSEUDOTSUOA MENZIESII AMELANCHIER ALNIFOLIA &ER6ERIS A6WIFOUUM PINUS ' PONDEROSA PRUNUS VIR6INIANA • SPIRAEA LUCIRA ACER IGLABRUM  C  BERpERIS  A6UIF0LIUM CALAMAOROSTIS RUBESCEH5 PSEUDOTSUOA MEN2IESII "SPIRAEA LUCIDA "SYMPHORI ACHILLEA " A S T E R ASTER CAREX  CARPOS ALDUS MILLEFOLIUM CONSPKUUS FREMONTII ROSSII  FRA6AR1A  VIRGIWANA GALLIUM BOREAEE LITHOSPERMUM RUDERALE. "OSMORHIZA CHILENSIS PINUS PONDEROSA "POA PRATENSIS ROSA N U T K A N A TPAGOPOGON PRATENSIS A C E R G L A B R U M ASROPYKON SPICATUM "ARNICA COROIFOLIA ASTER LAEVIS ASTRAGALUS SEROTINUS BROMUS CAR1NATUS BROMUS TECTORUM COLLMSLA PASVIFLORA  DISPOflUM  TRACHYCARPUM OLAUCUS OCCIDENTALIS  " E L Y M U S FESTUCA  GEUM  OOOPYERA  TRIFLORUM MENZIESII  HEUCHERA  CYLINORICA  POTCNTILLA  A  RGUTA  TARAXACUM O F F I C I N A L E VIOLA ADUNCA AMELANCHIER  ALNIFOLIA  ANTENNARIA A N A P U A L O I D E S ARMCA F U L 8 E N S BALSAMORHIZA S A O I T T A T A CASTILLETA A N 6 U S T F O L I A  2-2-V a-2  +.2 — — —  8 *  2.2-3 — —  +-I  —  — — —  ' 30%  80%  +-I-D +.2-1 + -K-2) 5-.I-2 +•1-2 +•2  5-1-2 —  5-2-3 +.3 +-)  +.1 —  +•+  +-I —  + 1 —  +.1  — 4-2  1-2.1 — —  3-2-3 —  — — —  +•+ — —  - M  — —  +.1  5.2-3  — 4-2  2.2-3  — + 3 — — —  40 * 4-1-2  10 9 3-2-3 +.1  6-2-3 —  —  2S% l-l i-6-2  10 % 4-3  3-3  4-S-.2-3 1% 3.2 +.1 — — — — — —  10 % 4-3  15* 4.2-3 +  3-3 -I.I  +.2-3 — — —  1.2-3 502 2.3  6-1 + 4-1  — — — J-.J — 30  SS  1-2-2  1-1-2  +.1-2  4.2 4.1-2 +.2 +.2 1-3  + + .I +-I  +•2  +.2-3  — —  +•3 +4  —  —  1-3  +41  —  —  1-2-3 . +.1 —— —  34 +.1 +.3  +-I.2-3  +.1 +.3  +.1-2 — — •—  +.1  3-4-3 +.3  50 S 33 7-3 —  10%  60% —  4^2-3  S 3  +•2-3  +.2-3  IDS 4.2K1) 4-3 1.3 45 % 609  20 S 4.3 4-5-3 25 % l-l  7.3  3-4.3  — —  +-I  4-2  —  1-2-3 +.2 3-4-2  40%  i'0%  60%  10%  +.1 —  +• +  1-1-2 +-I-3 +-• +  — — —  +.2-3  2-1 G-7.3 2.1-2 l-l +-3 +.1-1 +.1-2  2-3-1 + • 1-2 45SS 1.1-2 +•2 1-2-1 +-I-I-2 II +.+ +.1 2-3 M-l-2 1-4.2 11-21-2-3 +•3 — +.2 1-2-1 1-2.3 1 3 l.l l-l +-I-I-2 — 1-2-2 +.2-3 +.2-3 — ifrai + 5 5 !  +.1  1-2.1 +.+ + -L2 +*l  — — — —  +.+ —  +.3  2.21-3)  +-I  31  4-2-3 + 2  1-2-3  7-8-3  2-  —  +*J —  +.2-1  +.1-2  —  —  +.1  +4.2  — -—  +.+  +4.2-3  1.2-3  +•1-2  +.2-3  — —  +.+ 2-1-2  1-3  +•1-2 +.1-2  — —  4.1 +*l — — — —  1-2-3  1-2-J  U  —  —  +.1  —  1-2  —  +-I-2-3  1-2-3  +.2  +.1-2  +.2-3  —  .  +.11-2) —  +•+  +.2-3  — 1-2.1-1  —  1.1-2  1-1-2  +  3.2 3-2-1  3-1 —  +.+ l-l 1.2-1 1.1-2  + 4.F-2 +.2  1-1-2 I- +  -—  1-1-2  1-2.2  1.1-2  +.+  1.1-2  +• + +-I  +-I  2-1.1  3.1  l-l  +.1 +.1  +  +.2  +.1-2 —  —  +.1-2  +4.2-3 +.2,  —  +-1-2-3 +.2-!  +.+  +•2-1  +.+  +.!  +-+  +.2-3  — —  —  +*l  +.+  —  —  . +  +.1 +  —  -I.+ +.+ I.I  l-l  +.2-1 +-+  l-l —  +-I  +41  1-2-2  1.21-3) +.1 +•+  19%  1-4-r o-2-i 32« •-£•"" l-S-T .-!-)  1556  10%  — —  —  35 S 2.1-2 4.1  35 %  +.3  +.3  5.3 2-3 1.2  30 Si 20% 60% 11 +.3 +4-2-1 3-4.2-3 5- 3-2 7 - B - 3 1-2 1-2-2-1 +-2-J — — 2-1-2 — +•3 1-3 +-I — +•2 — +.+ l.l —— 2-1  , .-' 3HW-3  4.1 —  +  +-J-2  +-I.2-3  +•2  1-2-3  +.1-2 1-2-3  —  1-2.2-3  20%  10%  1-2-3 4.2  +  53 4-3  3-3-2 +.3 +.2 1-3 +•2 21 — +.2 1-3 £-1.2-3 — 1-2-2  l-l —  2-2  +.1-2  +.3  3-3  15 S 3-3  1.1-2  1-2-1-2  + 4 1  5-3  +.1  %  15  4.1-2 +.1 1-2-2  3-3  —  +•3  5-2  +.+ 1-2-3  2-3  I.I  +•2 +•3  I.I  -—  —  30% 1-2  +.1  +-I.I + . H 2 1.2-3 +-I.3  +.1  —  +•3  4 . 2 5.2-J +. +  l.l  2.2 +•2-3 2-3.2  +3 +.2  +.2-3 1-2  +  4-2 +-1  + 1  +.1-2  —  30% 4-3  7.3  10 B 3-1-2 3-2  JO *  3-4.1-2  . t-l 4-5-3  2-3  J-.3  5"-3 1-2-3  1-2.1-2 — —  +.1  I5SS  I S *  — — — — —  +.3 +.2-3 — — 2.3 +-I -2-3 1-2.1-2 l-l — — +.3 +1 -4. 1 2-2-3 — I.J +.1-2 +.2 1-2.2-3 1-3 — 2.3 + -I-3 — — +.3 — +.3 I.J 1-2.3 +-J hi +.1 +.1  —  535  40 % 1-2-3 —  +•1-2  +•2 4-2-1 +•2. — — — —  .-(-.  .-!-.  . - l-i .-+-! .-(-. .-+-1 4SSS .-1.1 .-r-> .-i-i  .-(-. • -+-i . . + . .  .-i-i  0-2-,.  -+-..  3855  . - l-L  o -2-..-l-i »- 2- >"  .-l-i .-l-i  .-2-1 .-+-i  — —  .-l-l  .-I..  .-+-. l-i .-+-. ,-+..  .  .+-.  . - l-i 1-1-2  .— —  .-l-i .-l-i  .-(-.  . - l-l  — —  2-3  I- +  — —  3  5 2 3 2 2  • -+-. .-+-1  .-+-.  • -+-1 .-+-1 ..+-1 •  -+--I  .-+** • -l-l .-+-1 . - + —  C 3  CLASS  3 3  3  2-3 2  P  E;  is 7  4  W 16 3-  S Z  9  3 2 2 2 2 2 3-2  a 7 6 6 3 3 3  6 1  2 3 2  10  /  3  6 S 6 6  1-2 1 1 3 I  1-2 2  + 1  1 1 1  9 0  6  r  5"  y 4 4 3 3 2 2 Z  1" i" 43 33 3 3 2  2-3  1 l-l  1  J 2  10  b"  2.  0 to  y ;f 4. 44. 4.  1  Z 1 1  2  l"-2-J 1-2 —  3  4  . - l-i  .-  — —  4  . - 4 - .  1.2-1 1-2  +  T  --I-. .-(-»  AS  STANDS W E R E  A Ai  PRESENCE  VIGOUR F R A C T I O N  1  1 1  1 2 1 +  2 2 2 3 2  4 4  1  7 0 8 7 6  4 4 4 4 4 3 3  1  y y y 6  ]  1  1 1 1  2  1 1 1 1 1  2 1  1 I 1 1 1 1 1  1  1  2 2 2 2 2 3  2 2 3 1-2 2 2 2 1  2-3  I  +•  2 3  +  3  z 1  7 /  8 e /  2  2  Q 9  8  1  2 2 2  2 I  3  I  7 V  S  6  y 6  6 y 6  5"  y 6 6  3 3 3 3 3 3 j  5"  3 3  3  11  4 4 3 4  3 CHtMAPHLA  Cmsiun  UKBELLATA  "ClXHATIS LANCEOLATUM COLUMBIA NA CREPIS ATRI6ARBA ERJOERON CORVMBOSUS CRI0O0NUH HERACLEOtDES FESTUCA SCAbRELLA FRASARtA BftACTEAYTA XFRmLLARIA LANCEOLATA 6 ILIA 8RANW FLORA HCRACIUM CYNOSLOSSOI6ES KCCLEDM CRISTATA LATHYRUS NUTTALLII LUPINUS SERICEUS PCNTSTE HON CONEERTUS RVMEX ACETOSELLA SU-tNE MENZIESII SMILACINA RACE MOSA STIPA COLUMBIANA STIPA WILLIAMSII THALICTRUM OCCIDENTALE VCRBASCUM TMAPSUS VKIA AMERICANA ZY6ADCKIUS VENENOSUS PRUNUS VfRCINIANA  DON  SROUND CLADONIA CHLOROPHAEA PELT1SERA CANMA BRACMYTHECIUM ALBICANS CLADONIA GRACILIS "MKIUM SPINULOSUM POLYTRICHUM TUNIPCRINUrt XRHYTIADELPMUS THIfiuetRUS TORTULA RUBALIS BR YUM CANARIENSE * CALLIER60NELLA SCHREBERI UCRANUM MATUS MEPMUXLADUS UNCIMATUS PTILICIUM PULCHERRIMUM O N TREES LETHARIA VULPINA PARMELIA PHYSOOES ALECTORIA TtBATA CETRARIA dLAUCA XNEPMROMOPSIS PLATYPUYLL* X CETRARIA IUNIPCRINA CETRARIA SOfTATA XRAMAUNA FARINACEA USMEA HIRTA ALECTORIA FREMONTII PARMCLIOPStS AM6I6UA  +—.1-2 —  +.J — — — — — — — — — — — — — — — — — — — —  +.1 + +.1-2  + 2. — -—  - • —  +.2 —•—  2.1 +.1 — — — — — — — —  26 — — —  1-2-3 +•3 1-2 4.3  58  59  60  ' 61  62  63  71  —  -H2  —  —  -  — — — — — —  +•+  lf-2)-l-2  +.2-? +.1 +•+ —  +•3  +.3 +•2 +•1 4.3  -i-l.3 —  1-2.3 —  — — —  1-2.1-2 2-3 — — —  +  J  +•3 —  +•3  +.2-3  —  —  +•3 +.1-2 +.2 —  —  -f.t -— — — — — — — —  --  —  +  +.3  H-3  1-2-2 +.3 +-I 1.3 —  +.3 — — — —  1-3  1.2 +•3 +•3  +•2-3 1-3  — — 1-2-3 — — —  +.3  +.3 1-3 5-2 +.3 —  +.1-2 + 1.2 1-2 — —  +-•3 —  — ———  -K2-3  — — —  +.2-3  - -  +.1 +•3  2.3  — — —  +.1-2 —  +-I.1  30*  Z%  + -../  — — —  —  +.2 +•2 „  — — —  1-3 1-2.3 1-2-3  t-3  +.J —  +.1 +•3 +.3 +.1  +.  -f.+ +-.J  +•+ +•3 +-3 — —  +-I —  -M  -+.  -— —  3.3 — —  + 2-3 - -  +-I  —  + .1-2.  —  +•1  +.1  +.1 + -I.2. +.3 -I.3  + 1  2-3.3 —  - +-!.? IS" K +-I-3 1-2-3 3-2 +.3 +--I-2 3-2-3 +.2 1-2.2-3 +•3 3.2 1-2 • —  +•2 1-2.2-3 2-3 +.2 —  +.2 +.1 +.2 + .2-3 + •1  +.  —  -+•1  —  —  1-3 1-2  +-i  — —  (.2 +.1 +-.I-2 —  +.2.-3 —  —  l-2(-3)  +.+  •.+-. • -+-I  •-+-£ - + -.  "~~  2-?- i  +.+ I.l  l-l is  •-+-.  1-2.2-J  —  - -  0 -+-I  +.+  +.1-2 1-2-3  • -+-• •- + - I , •-+- 1-4  —  —  —  0 - + - 4  —  +.+  +-.+ a  1.2-3 1.2-3 2-3-2-3 —  +•3 —  1-2-2-3 +.3 —  +•+ +./ +.2-3 1-3 + 3 +.1 +.2 + 2 +. I' +.2 + -I.3  +4  li"K  IS 5S  +•3 +•2 +.2 +.1-2 4.2-3  +-1-2-3 1-2-3 3-42-3 +•3  +.+ +.2  1-2.2 2-1 1-1-2 1.2 1-3 +-I +.1  +.1 1.3  +./  —  +  4  -+-. - I-J • -+-I » +-2 • - 1-3 0 -+-I • -+-» •-+-I • -+-I -+-•  *•  +.3  1.2  i  1 2-3 1  +1  4-  '/  1 t-  3 3 3 4  2-3 2, 3 2 3  31 i 1 1  2 2  hZ  3 1 3  l-l  3  1 ( t  1 /  -l-i • -2-> -+-. -+- • • - l-i • - 1-4 • - 1-2 * -+-I •  f  /  •+ \  0 -+-4  1  1.3  •- l - l  1  /•!  •--1 l--1«  * * -+-I  •-+-I -+-•  * -+-. — —  D  I  •-+-• •-+-• /-2.2-} +-3 +.2 - ' +.1 +•2 - - -  c 1-2 1-2 1  ^  1 1-2 3 /  4 3  4  E 2  2  2 2 2  4  2 2 2  i  2  3 i4 S 3 4  A  4 4 3 4 4 3 i 3 i  2  1 Z  2 a 2.  z 2  2 2 2 2 2 2 2  I2» -1-4  +.2  +-I +.3 +.3 +.1 +.+2 +.2-3  • •  \%  4-2-3 +.2  3-4.2-3 1-2-3 + 2-? +-+  ..- 2  1-2-3 2(-3).3 4-3 +.2-3  -+-.  0  +.+  —  A •  +.2C-3)  -  —  1.3 1-2-3 +.2  - •  + 3  --  +  +.+  118  • -+-.  •-+-l - + •. •- + -•  *  ++  1  3  Z  2 3 2 2 2 2-3 2 2  3 2 2  2 3 2 2  3 3  1 2 2 1  9 tc 7  y s y y. y 3 3  3  3 3 9 9 B 7 7 5 6  6 y 4 J  S J' ' 4  3 3 3 3 3 2 2 2 2 2  5 5" 4 4 4 *  3 3 3 2 2  191  Symphoricarpos association. Species of presence class 1. Agoseris aurantiaca 90(+.3) A. glauca 60(+.3) A. heterophylla 26(+.3) Agropyron subsecundum 59(+.l), 63(1.3) A. trachycauloh 26(1.3) A l e c t o r i a chalybeiformis 6l(+.+) A. sarmentosa 7K+. + ) . 90(2.3) Anemone < • mul t i f i d a 71(+.2) Antennarla h o w e l l i i 60(1.2), 71(1.1) A. p a r v i f o l i a 59(1.2). 60(2.3) A. racemosa 59(+.l) A. rosea. 26(1.3) Aquilegiai formosa 6l(+.l) Arabis puberule. 58,60(+.3) A. glabra 60,62(+.3) Arceuthobium douglasii 58(+.3) Arctostaphylos uva-ursi 60(1.2), 71&-.2) Arrhenatherum e l a t l u s 58(+.3) Artemisia trldentata 26(+.2) Asparagus o f f i c i n a l e 6l(+.+), 63(+.3) Asclepias speclosa ll8(+.2) Barbilophozla hatcher! 60(+.3) Betula papyrifera 62(+.l) Boletus sp. 7K1.3) Bromus breviaristatus 6l(+.2) B. m o l l i s 60(1.3) B. racemosus 59(+.2) Bryum canariense 26(+. ) Calochortus macrocarpus 59(+.3) C a s t l l l e l a minlata 90T+.1) Ceanothus sanguineus 58(+.2) Cerastlum arvense 90(1.3) Ceratodon purpureus 26(+.+), 60(1.3) Chenopodium album 58,60(+.l) Circaea alpina 6l(+.+) Cirsium arvense 58(+.l), l l 8 ( + . 2 ) Cladonia coccifera 58(+.3), 71(+.2) C. fimbriata 60(•+. ) C. furcata 59(+. ) C. m i t i s 59(+.2), 60(+.l) Cj, v e r t l c i l l a t a 60(1.3) Claytonia p e r f o l i a t a 7K+.2) C o r a l l o r r h i z a maculata 71(+.3) Corylus cornuta 60(+.l) Cynoglossum o f f i c i n a l e ll8(+.2) Cystopteris f r a g i l l s 60(1.3) Danthonia splcata 5o(+.3) Carex conclnnoides 58,71(1.2) Delphinium b i c o l o r 26(1.3) Deschampsla elongata 60(1.2) Dicranum strictum 58(1.3), 62(+.3)  Dodecatheon meadia 26(+.3) Epilobium adenocaulon 90(+.1) E. angustifollum 5BT+.2), 60(+.+) Erlgeron speeiosua 63(+.3) Eurhynchium strigosum 26(1.+), 60(+.2) Festuca aubulata6~oT+.3) G a i l l a r d l a a r l a t a t a 26(+.3) Galium t r l f l o r u m 7K+.3) Gent1ana acuta 71(+.3) Habenaria unalaachenaia 58(+.3) Hellanthua glganteua 3(+.2) Hleracium alblflorum 63(+.+), 71(1.+) Holodlacua diacolor 60(2.3) Rvlocomlum splendens 58,62(+.2) Juncua baltleua 90T+.2) Junlperua communia 60(+.2) is. acopulorum 59T+.3) Lappula myoaotis 58(+.2) Lepldlum denslflorum 26(+.2) L i l i u m colurablanum 3(+.l), 90(1.3) Llnnaea borealis 71(+.2) Lithoapermum lnciaum 26(1.3) Lomatium dlasectum 58(1.3) L. trlternatum 26"(1.3) Lonlcera c l l l o a a 61(2.3), 7K+.+) Mlcroaerls nutana 26(1.3) Mlaulua floribundus 26(+.2) M l t e l l a nuda 60(2.3) Mycoblaatus alplnua 26(+...) Nephroma laevlgatum 6 l ( + . ) Pachyatima myralnitea j(+.l) Parmella s a x a t i l i s £8( + . ) Peltlgera aphthoaa 58(1.3), 60(+.2) Phacella l l n e a r l a 26(+.2) Phlladelphua l e w i s l l 60(+.l) Phleum pratenae 90 (+.3) Phlox specloaa 26(1.3) Phyaocarpua malvaceua 58(2.2) Plant ago ma.ior 60 (+.1) Poa ampla 26?+.3), 58(1.3) Pohlla nutans 60(+.3) Polemonlum mlcranthum 58(+.2) Polygonum convolvulus 63(+.1) l i douglasii 59 (+.2). 7K+.3) Plcea engelmannii 90(+.2) P n t e n t i l l a g r a c i l i s 90(1.3) P. monapellenaia 26(2.3) Pteroapora andromedea 71(+.2) Pyrola chlorantha 71(+ .2) P i p l c t a 3(1.2) P. secunda 3( + .D, 7K+.2) Ranunculus bongardii 7K+.+)  Rhus radicans H8(+.2) Ribes cereum 26(3.3) R. lacuatre 58(+.2), ll8(+.+) Rubus atrigosus 7K+.2), 60(+.3) Sambucua glauca 61(1.2), 90(+.2) Sanlcula marylandica 6l(+.l) Saxlfraga l n t e g r i f o l i a 26(+,3) Sedum atenopetalum 15(2.3) S e l a g i n e l l a rupeatria 26(+.2) Seneclo exaltatua 25(2.3), 118(2.2) Shepherd!a canadensis 62(+.2) Silene douglaali 62(1.3) Smllaclna a t e l l a t a 62(+.2), 7K+.+) Solldago canadensia 26(1.3), 58(+.2) £>. lepida 58(+.l) Spiranthea romanzoffiana 90(+.3) S t e l l a r i a calycantha 5H(+.3), 60(1.2) S. nitens 59(1.2) Stipa r i c h a r d s o n i i 60(+.2) S. virldula' 58(+.3) Tellima p a r v i f l o r a 60(1.1) Thallctrum daaycarpum 26(2.1) Trlfolium repena 60(+.3) Trisetum canescens 58(+.3), 7K+.2) V i o l a canadenai8 61(2.3) n u t t a l l i i 26(1.2). 58(t.3) l i . P a l u a t r i s 71(1.3)  194  POPULUS TRICHOCARPA - ROSA NUTKANA - CORNUS STOLONIFERA (ALLUVIAL) COMPLEX S T A N D M*< DATE ALTITUL€ (r-.J EXf'GSUfrL, , SLOPE (') wire EXPOSURE  '2 SO + ,  HQ l  4fJXl  PSEUPCTSwGA  XH3PULU5 TRKMOCAftfrA 'fti'TuLA WPY»ifEPA PINUS PONtiEPOSA POPULUS TftEHULOlDtS PSCu&GTSuGA MENZIESII ACtP CLABRuM ALNUS TENUIFOL'A 'CLEMATIS LisuSrrciroLlA (•ftUflUL VlWINfAf/A THUJA W.ICATA E, PFdJNUi VIRGINIANA 'CLEMATIS LIOUSTICirOLIA * POPULUS TRICHOCARP* SALIX 6CB6IANA ACER GlABRUM AMCLANCHICfi ALNII'OLIA *£OftNUS STGLOMFCRA POPULUS TREMULOlt-ES 'ROiA NUTKANA SALlX FLUVlATlLIS *BETULA PAPVRlFtRA CRATAEGUS &OUGLASII *ELAEAGNUS COMHUTATA PON SEROSA GLABRA  hi Kaunas vmgriioNA *ROSA NUTKANA SYMPHORICARPOS ALi>US "CLEMATIS LiGUSTiarOCW "CORNUS STOLONIFERA AMELANCWICR ALNIFOLIA XEi-A£AiSNI/S COHMUTATA X POPULUS TRItHOCAftPA xRHUS 6LAIRA x f t H U S RAD1CANE SAL (X fcCPBlANA ACER GLA6RUM CRATAEGUS POVOLASII PtfUH)S Tft£WULO!l>C;> C x ROSA NUTKANA XAGROPYfiON GRlFFrruStl *ELWUS CONPENSATUS NCLILOTUS ALMS *ftHU5 RAPJCANS "SNlLAClNA STELLATA _ "SOLIPAOC LEhPA ACHILLEA MILLETDLIUN X A P O C Y N U M CAMNASmUN ASTCR DOU6LA3H ASTER ER ICO J P E S ASTRAGALUS CAKAOENSiS C H E N 0 POM UM A L B U M "CLEMATIS LIGUSTICIFOLIA CLYMUS Gi.MC.Ui GALLIUM &MEALE POA PRATCNSlS PRUNUS VIRGINIAN* SYMPWORICARPCS ALftUS TARAXACUM OFFlCWALE VICIA AMERICANA ACER 6LABRUM A6R05TIS ALBA ALLIUM CERNUUM APOCYNUM ANJROSAEMiraJUn ARTEMISIA PRACUNCULUS ARTEMISIA LlitWICIANA ASCLEPIAS SFTClOSA ASTER CWSPlCUVS AiTER FREMCHTM 6 E R R E R K AftUlFOCiUM 8 R 0 M U S INERM(T P R O W S RACETOSUt  OR&JUM UUPULATUM  M CORNUS (TOLONlFERA PfSPORUM TRACHYCARPUM ELYMUS CANADENSIS CALLLARflA AftitTATA LACTUCA PULC^CLLA LACTUCA 6CARI0L.A PNIEUM PRATETifE POA U>MP«£S6J •RHUS JLAftRA SISYMBRIUM ALTISSlMUM STIPA C O L U M B I A N A TRAWPOflOU P R A T E K M t  0  i-A.i-l  HOC  |  i-i 2. hi  1-2.2-1  2 1  +.2,-1 1.1-3  T-l  VULPINA  +-}  10 & 1-2-2  J--3 1-2  L-l  2-12  1.2-3  1-2 2-1-21  3-3  3.3 1-2-3 4-1 4.1 r- t 2-3.j 2-3.il 1-1-1  1-2  6-1 S. 3  +-I-2 • -l-i fii"JS J . 1-2 •*--(.)  + 2.-3  2-3.9  >4-2-3 2-3 2.3 3.3 1.2  + 3 z-t T-l + l-i + -2"3 J.J 4.3 +.1 '-2-1-2  + -I-2 —  4.3 + -I-3 l-2-i r-l.3 l-i l.J 3 7  +3 +•? 2-3-3 2-2-3  +•3  — r-(.2-3  1-4-1  I2»  1-2  «  M S 2-1 4-; /•2 ll-iU  +*l  l-i.I-2  lC-2>2  -1-2-1 l-l  1-2-2  5 9 -t-2 l-l-) l-l  + 1 + 2-3  eo a l-l 1-S i-J  +•1 l-i 3-4-1 it 3.> t-2 12 3 -t-2-3 I M ) . ! + 4~» 1-2-J f-2 3.3  2.3  +•1 •t-2 -t-l l-l-l 4-»--3 4.1-2 +.i  30<a 1-2-2-3 4-3 4-J  3-3 1-3  l-l 1-2  3 4.3 +-1 1.2  2-1-3 I.l 2.) l-l  s e e 4.1 /•*  40% 1-1-2  + -I.I 6-2-3  +• + 6>  3.1 1.3  i.l 4-fi  2.1  4-3 -r-+ 2.1  1-2  —  — I.l  l-l  T.I-2 •  -r.J l-l + •2  +.+ 2.2-3 l-i  • T+  +.2-3 2-J  —  +.3  —  -t-l -r-l —  —  1 -3 —  ->-l i.l  4>i~l +.1  —  ~  1  — —  1-4.3  1-2-3  117 119 120 2I/7/-SI il/>/:"4 li^-i'3 ICOC ISCCts'OCs t  A V E R A J C 1 RANdC PRESENCE CT S C A L E VALUES ASSIGNED ABUNDANCE A* t, DOMINANCE vieouR FR ATT ION CLASS L ALL STAVES k STANK EBB  FOU BND  1-3  +3  —  +•2 +-I 1-3  3-1  1-2 1.2  +.2 T-T 1-4-1  —  — — — —  — — —  —  —  -  +.1 2.3  _  — —  40% 45 K 1-2 -l-i 1-2-J i-4i + -I-3 3-4-3 2-32-3 7-3  3-2-3  +-I-3 +-I + -!  +.3 +.3 + •/  2.2? • -  T.l 4.1 —  i-i  J  30  55  2-1 3 1-2-1 4.i l-l i-l •T.i-Z  60 K  +•(  «•»  '-2 2-J  +.1-1  20% +•1-2 — — 1-2-2-3 -—  -  -  -t.l  +.1-2 — 1-2  +-I 1-2-3 —  +-2 +-1  K-2J.3  +-2  4.-4-  . -)  .-/->.-/-» . -+-, .-+- +  i 2 3 2 2-3 2 1 +  +  +  . 2-^ . - 1 -4.  .-2 A. . -/ -• » - 2 *  -  .-  l-i  »-+-I  ..+--.  . -1 -. 40 a 4? 6-3 /•2  T--2-7 +• +  435t  1.2-3 i-i  1-3  l-l •*•!  4-1.2-3  l-l  — T.l  f-2.i-2 1-2./  l-l  —  -(  -4  -f-4 - l-l - 1 -1 -+•-  +-2  . -1 -»  . .-+-i »-l-t • -+-. , .+-.  . - + -. l-i ,-+-. . -  1-4  . -+.. . -+-I , . - /.« » -T- .  • -+"-J  . -+-, ,-+-/ * - ' -1 (- 1 •« • -+-* • -+-. .  -.1 I-) 1.) T.L  —  — —  —  —  +.1  +•3 •*-.)  —  1 1 + 2  / 3 / /  .  T-2  — —  2  . . . . r  . -T-i  -  2-?.2-» t-3  3  . - / -2  ti-9 .-2-4 , - / • -1-.  r  — 1-2  2 i -i - 2 2 i 2 3 2  2 Ji i 2 1 1 I  --2-4  3iK S2% 3-1-1. .-Z-* it .-2• -I-4 ft-l -1 l-l-l . - J-4 i.l-3 . - l-a . -2-»1-2  4  . - I-.  o -+ . -  + -+ 3-3 10 s \-l.hl  . . 3 -•  ,-l-t  --  2-2-3  — —  i-4'i  l-J  —  l-l-l  +•3  7-3  3-J  70 « l-hl 51 2-2-3 1-2.3  y-j(-2) ^-3  2.3  1.3 25% l-l +-1-.3  2-2.  20 5 S--I-2. 1-2 1.3 (-2-3 — +•2 — — + -I-I-2 •t-\-2 3-4.? 3-3 1-3 3-3 1-3 -t-.l +•? — — -r-W -r.hl —•  3J  -  — +.1  t>-i  f. l-i 7-1 3-3  15"«  40% 4.1 13  io a as a 4-2.-1 2-i i-i l-l 1-2 t-3 1-2-3 2-1 +•2 4-3 )-2 1 -2 hi I- 2-J  4-3  )•/  1-2  5%' 1-2-1 1!  l-l-l 1-2-2.  + -t1•.3+  2.1 -  -— —• —  —  +•( + •2  60 fi l-l 7-1 14 1 l-l 1-2  1-2.3 +.2 +.1  2-1  —  20% I.l 4-5.1 l-l l-2-l  -t-.r  +.1  15 55 51  T-3  1-2-3 4y  T.l I-2.J 4. J  5ta t-i ii  +.1-1  7. J  1*2  4-1  1.3  75"«  it + -M-J r-i. J  iy«  J-4-3  1-2-3  3-4. J J-2-2-3  • -  /  2-1-3 $>%  11+  J/5/53 I2C0  ii  10% 4-i I K ~  2C«  *+-  CETRARIA SLAUCA LCTMRIA  27% 41 '•J  m  r .  MOJZinSH  At  )I2  (2&t  1  A.  PINUi *RHUS  fifi  • --fvi , .-Hi  2 2  2 2 2. 2-  4  1 ? 2 2 1  1 *•1  C  D  E  3 3 3  7  5~  4 J i  2-3 i  9 6 7 y  5 1 4 V  2  1  2  2 3 3 3 3 l-l  2 i 2 3  ;  3 5 3  3 2-3 3 1-2 3 23 3  2 3 3 2. 3, 2 Z 1  2 3 2 I 1 2  l-Z t 2.  2-1  3 J  3 2 3 % 2  6 4  5" 6 4 y 4 4 3  y  y y y y 2  3  2  i  2  7 y  4  9 T 6 7 7 7 6 y y  4  y 4 i y  4y 4  1  1 / 2 +  2  / 2. 2  -f. I  / + I 1 I i-l 1  J 1 1  £  t-3  | $  3  •  2 2.  f  3  5 y  0  4 4  1-2 3 J J | J 2 2 J 2. j I 3 2  3  4 3  9 P  I  )  if  4 4 4  J 2  2  1  2 2 J  2 2 2 2  I  2. / J / 2  2  ,  6  i-l M  2.  /!2  4 *  2 2 2 J  4  4 z 1 1 I 2 4  j 2 5 44 4 44 4J 3  3 4 ) j 3 1 2  5 s  3 t  | 2 2  3 2. 3 ] ] ]  *  2. 1 J J  2 J j  ] f 2  j  2  j 2  i 2  >  J  *  i  •+ —  • -•+-» • -*•-«>  +  1  2 I  19£  A l l u v i a l complext  species of class 1 presence  Acer negundo 117(2.2) A. platanoides 117(+.2) Agoserls glauca 88(+.3) Agropyron dasrstachyum S8(+.2) A i smitb.ll 119 (+.2) A. subsecundum 88(+.3) A. trachycaulon 88(4.3) A r a l l a nudlcaulis 120(7.3) Asparagus o f f i c i n a l e 112(+.3) Aster consplcuus 119(3.3) A^ l a e v T s 1 1 0 ( 2 . 3 ) A. occidentalis 88(+.3) Athyrlum f i l l x - f e m l n a 117(1.3) Brachythecium albicans 88(+.l) Bromus japonlcus 88(1.3) B. tectorum 5B72.3) Campanula r o t u n d i f o l l a 120(+.2) Carex s i c c a t a 6*8(+.3) Caatllle.la anguatifolia 88(+.3) Cetraria scutata 119(+.l) Chrysopsis v i l l o s a 119(+.l) Circaea alpina 117(3.3) Cirslum arvense 110(+.3) Cladonia cariosa 119(+.3) Corylus cornuta 117(6.3) Elymu3 innovatus 115(1.3) Equlsetum arvense 120(+.l) E. laevigatum 88(+.2) Geaater sp. 120(+.3) Hellanthus sp. 110(2.3) Heracleum 1anaturn 117(1.3) Hleracium canadense 88(+.3) Humulus lupulus 117(1.2) Impatiens b i f l o r a 117(+.3) Junlperus scopulorum 119(1.3) Lathyrus n u t t a l l i i 120(1.1) Lepidlum denslflorum 88(+.3) Lonlcera involucrata l l i ( + .2) Muhlenbergia mexicarta llij.(+.3) Medicago sativa 110(3.3) Oenothera biennis 88(+.2) Parmelia physodes 88(+*+) Philadelphus l e w i s i l 117(2.3) Plant ago ma.ior SBT+.3) Poa ampla 119(1.3) Z i Interior 88(2.3) r  Polyporus schweinitzii 88(+.3) P o t e n t i l l a g r a c i l i s 110(+.1) Ribes lacustre 117(1.2) R. oxyacantholdes 117(+.2) Rubus leucodermls 117(2.2) Ik parviflorus 117(2.3) S a l i x lasiandra 88(+.2) Sanicula marylandica 120(+.3) Sllene menziesll "BB(1.2) Smilacina racemosa 117(1.3) Thuja p l l c a t a 120(+.2) Trlfolium pratense 120(+.3) Urtica l y a l l i l 117(1.3) Usnea h l r t a 119(+.l) Verbascum thapsus 110(+.1) V i o l a canadensis 120(+.+) Zygadenus yenenosus 88(+.3)  19?  APPENDIX it L i s t of a l l species found In the analyses, with t h e i r l i f e forms, presence and vigour (separated by a point) f o r each association and subassociation, the f i d e l i t y class (after Braun-Blanquet, 1932) (F.C.), and the s i t u a t i o n , i f any, to which the f i d e l i t y relate s. The symbols used to describe the l i f e forms are as follows: P C H G  phanerophytes (undifferentiated) chamaephytes hemicryptophytes geophytes  For further explanation 17-18 under 'Methods*.  T B L E  therophytes (annuals) bryophytes licnehs ( t e r r e s t r i a l ) epiphytes  of the terms, see pages  The symbols designating the associations and subassociations are those used i n the t e x t j and are as follows: 1 la 2 2a 3  h 5  6 7  8  Pu Purshia association Ari Aristida subassociation Agropyron association Ag St Stipa subassociation Rh Rhus association Arc Arctostaphylos association A-C Arctostaphylos - Calarnagrostis association Ca Calarnagrostis association Symphoricarpos association sy AL A l l u v i a l complex  APPENDIX 4 L i f o Form:  Presence and Vigour of Species by Associations: and F i d e l i t y Classes  Association number and symbol Species Acarospora schleioheri Acer glabrum A. negundo A. platanoides Achillea millefolium Agoseris aurantiaca A. glauca A. heterophylla Agropyron dasystachyum A. g r i f f i t h s i i A. smithii A. spioatum A. subsecundum A. traohycaulon Agrostis alba A l e c t o r i a chalybeiformis A. fremontii A. jubata A* sarmentosa Allium oernuum Alnus t e n u i f o l i a Amaranthus graecizans A. retroflexus Amelanchier a l n i f o l i a Anemone m u l t i f i d a Antennaria anaphaloides A. dimorpha A. howellii A. p a r v i f o l i a  Life Form E P P P H G G T H H H H H H  H E E E E G P T  T P H H H C C  1 Pu mm  la Ari  -  2a St  2  -  -  -  -  5.2  5.2  5.2  1.2  -  2.2 1.2  -  -  -  -  4.2  5.2  -  —  mm  -  -  -  -  -  -  2.3  -  -  —  —  -  -  5.3  4.2 1.3 1.2  -  -  2.1 1.1  2.1 2.1  -  1.3  1.3  1.2  -  4.2  -  -  1.1 1.1 2.2  -  -  3.2  4.2 1.2 1.2  -  -  4.2  5.3 -  2.3 1.2  1. 1.1 1.1  -  1.3  -  -  5.2 1.3 1.3 3.2  -  4.3  mm  -  4 3 fin Arc  5.2 2.3 1.3 1.2  4.2 1.3 1.3 1.3  5.2  -  2.2  -  -  2.3 1.3  —  -  —  —  —  -—  -  -  —  -  3.2  5.2  4.2  2.3  1.2  -  -  -  -  -  5.3  -  -  -  -  -  2.2 2.3  5.3  5.2 2.1 4.3  -  5.2  • -  1.3  m  —  5.2  2.3 1.1  3.2  -  1.2  3.1  -  1.1  3.3 1.2 1.2 3.3  -  -  3.2  1.1 1.1  -  8 AL  6 Ca  -  -  -  -  7 Sy  5 A-G  -  3.3 mm  3.3  -  - . -  5.2 4.2  -  4.2 4.2 5.2  -  -  -  -  -  2.2 2.2 1.2 3.3  -  5.2 1.3 1.3 1.2 3.2 5.2  -  -  3.2 1.3 1.3  -  2.1 3.2 1.3 1.3 1.2  -  3.2 1.2 1.2  -  1. 2.1 4.2 1.2  -  -  1.3  -  1.2 4.3 1.2 5.2  -  1.3 2.3  -  -  -  -  2.3 2.3  4.3  4.3  4.3 1.2 2.2  2.2 3.2  1.1 1.2  -  4.2  -  -  -  -  -  -  F.C. 1 3 1 1 2 4 2 2 1 5 1 2 2 2 5  Remarks  Ground -water Intro duoed n  Common throughout Ca  Al Common i n region Rh Al  ?  2 2 4 4 4 3 1 2 4 4 3 3 2  Ca Aro Al Steppe ruderal Introduced Aro Ca Steppe Arc  L.F. 1 Pu Antennaria raoemosa A. rosea Apooynum agdrosaemifolium A. oannabinum Aquilegia formosa Arab i s glabra A. h o l b o e l l i i A. puberula A r a l i a nudicaulis Arceuthobium americanum A. douglasii Arotostaphylos uva-ursi Arenaria formosa A. t e n e l l a A r i s t i d a longiseta Arnica o o r d i f o l i a A. fulgens Arrhenatherum e l a t i u s Artemisia campestris A. d i s c o l o r A. draounoulus A. f r i g i d a A. ludovioiana A. tridentata A. t r i f i d a Asclepias speciosa Asparagus o f f i o i n a l i s Aster canescens A. oonspicuus A. douglasii A. eriooides A. fremontii A. l a e v i s A. oooidentalis  C C G G H H H "H H E E C H H H H H H H C H C H P C H G H H H H H H H  2.2 1.2 4.3 -  2.2  la 2 A r i Ag 1.1  1.1 3.2  1.2  1.3 1.3 4.3 5.3 - - . 2.3 1.3 1.2 1.3 1.2 1.2 1.2 1.2  4.2 1.2 1.2 1.2 1.2 2.2 3.2 -  2a St  1.2 2.2 1.2  -  3.2 1.2  4.2  -  -  2.2 1.3  + 2.2 ~  1.2 + 2.3 2.2  4.2 1.1  3.3 «. 2.3  3.2 + 2.2 2.2  6 Ca  7 Sy  3.2 1.3 3.1  2.2 4.3  1.1 1.3  -  1.2 -  1.1 1.3  5.3  2.2  3.2  1.2  + 5.3  1.3 1.2 5.3 1.3  -  -  3.3 -  mm  1.3  1.2 +  -2.2  -  --  3.2 1.2  -  -  3.2 +  --  1.3  2.2  --  2.2  -  —  —  -  -  1.3  -  -  1.3 1.3  1.3 2.3 1.1 2.2  -  -  -  1.3  -  1.2  -  -  3.2 2.3 1.3  -  -  F.C. Remarks  8 Al  -  -  2.3 3.3  -  -  mm  1.3  -  mm  m  -  2.3 -  1.2  2.3 ~ ) _ 1  -  1.1 1.2  2.2 1.3  -  2.2  -  -  4.2  -  2.2 1.1  3.3  4.3 3.2  2.2 3.3 3.3 2.3 1.3 1.3  2.2 + 2.3  -  -  3.2  5 A-C  -2.3  -  -  1.2 4.2  + 1.3 1.2 1.2  3 4 Rh Aro  -  -  mm  mm  -  -  -  J  3 4 3 4 4 3 3 2 5 5 5 3 2 4 4 4 4 1 3 1 3 4 4 3  Al St Al Ag & St  2 1 4 4 5 4 3 3 3  Ifctrto'.d;;'; Ari sy Al Al Sy sy Clinton area  A-C Ca Arc Al Ca Ca & Sy Pu & Ag Al conto] Parasites Pinus Pseudotsuga Arc & A-C 11  Pu & A r i A r i & Pu Ca & Sy  sy  Coarse s o i l s  L.F. 1 Pu Astragalus beokwithii A. canadensis A. l o t i f l o r u s A. p u r s h i i A. serotinus A« stenophyllus A. t e n e l l u s AUbyrium f i l i x - f e m i n a Balsamorhiza sagittata Barbilophozia hatcheri Berberis aquifolium Betula papyrifera Boletus sp. Braohythecium albioans Bromus b r e v i a r i status B. carinatus B.inermis B. japonious B. marginatus B. m o l l i s B. racemosus B. tectorum Bryum canariense Calarnagrostis rubescens Ca}liergonella schreberi Caloohortus macrocarpus Calypso bulbosa Campanula r o t u n d i f o l i a Carex concinnoidels C. f e s t i v e l l a C. f i l i f o l i a C. woodii C. p r a t i o o l a  H H H H H H H H H B C P G B H H H T H T T -  T B H B G H H H H H H H  mm  -  3,2 2.2 1.2  la Ari  -  -  1.2 3.2 2.2  2a St  3 Rh  1.1 1.3  -  -  -  -  1.3 3.2 2.3  1.3 2.2  1.2 3.1  1.3  2.2 4.2 1.2 2.2  2 A  K  -'  -  -  5.2  -  5.2  -  5.2 -  2.2  -  1.3  2.1  1.2 2.2  1.2  -  -  -• -  -  mm  -  mm  1.2 5.3 1.1 1.1  5.2 1.2  -  -  2.2  2.3  -  —  1.3  -  -  mm  -  -  -  -  -  -  2.1  -  -  -  1.2  mm  -  -  1.2 4.2 1.2 2.2  -  3.2  -  1.3 mm  1.2 -  -  1.3  1.3  mm  -  mm  -  2.2 4.3 1.2  --  -  -  4 Arc  -  -  5 A-C  -  3.2  -  -  3.1  -  3.1  2.2  3.2  2.1  1.3 -  5.2 1.3 mm  3.2 -  -  mm  -  -  -  mm  1.1  4.1 -  -  3.2  3.2 2.2 2.2  2.2 1.3 5.2  -  1.2 mm  -  4.2  -  -  mm  -  +  5.2 -  6 Ca  7 Sy  -  -  -  -  1.3 4.2 1.2  -  4.1 1.3  -  1.2 4.2  -  2.3  -  1.3  -  2.2 3.1 5.3 1.1 1.1 1.3  -  3.2  -  2.1 1.3 5.3 1.1 1.3 4.2 1.2 3.1  -  1.3 1.2 3.2 2.2 5.2 2.2 1.2  -  mm  2.2 1.3  1.1  2.3  1.3 1.3  -  -  mm  8 AL  3.2 1.3  -  2.2 4.3  -  1.1  -  2.3 1.3  -  2.3 1.3  -  --  -  1.2  -  -  F.C. Remarks 1 4 1 3 3 2 3 5 3 3 3 4 2 3 1 3 5 1 1 1 2 3 2 3 4 3 4 2 4 1 4 3 1  Al Pu & A r i Pseudotsuga zone Arc Al Steppe Ca & Sy Sy Al Ca & Sy Sy & Ca Al (Introd«) Introduced Introduced it  Steppe (Introds) Pseudotsuga zone  sy  Steppe Ca  Aro & A-C Pu & A r i ( O l i v e r ) Ca  to o o  Carex Rossii C. sicoata C. xerantica Castilleja angustifolia C. lutescens C. miniata Ceanothus sanguineus C. velutinus Cephaloziella byssacea Cerastium arvense Ceratodon purpureus Cetraria juniperina C. glauca C. i s l a n d i c a C. soutata Chaenaotis douglasii Chenopodium album C. botrys Chimaphila umbellata Chrysopsis v i l l o s a Chrysothamnus nauseosus C» v i s o i d i f l o r u s Ciroaea alpina Cirsium arvense C« drummondii C. Ianceolatum C. undulatum Cladonia oariosa C. oarneola C« ohlorophaea C. c o c c i f e r a C. ooniocraea C. deformi3  L.F. 1 Pu  la Ari  2 Ag  2a St  3 Rh  4 Arc  5 A-C  6 Ca  H H H H H H P P B C B E E E E H T T C H P P H  3.2  4.2  2.2  3.2  5.1  -  5.2  3.2  1.1  -  G  H H H L L L L L L  4.2  -  1.3 1.3 1.1  -  4.2  -  2.1  -  1.1 2.2 1.2  -  4.3 4.2  -  --  +  -  -  -  -  3.2  -  -  -  -  4.2 1.1  -  4.3 3.2  -  -  -  -  1.2  2.2  -  5.2 2.2  -  -  -  5.2 1.2  -  -  -  -  1.2 2.3  -  1.1 1.1 1.1  -  2.2 1.1 1.2  -  1.1 1.2  -  1.1  -  2.1 +  -  -  mm  -  -  -  -  -  -  -  -  -  1.  -  2.3  3.3  1.2 2.2  -  2.2 1.2  -  1.1  -  -  -  -  -  mm  2.1 1.3 1.1  -  2.1  -  -  2.2 4.2  4.3  -  2.2  -  -  -  -  -  mm  -  2.2  -  3.2  -  -  3.2 1.1 1.3  4.1 1.3  5.3  -  3.2  -  2.1 1.2  -  -  -  -  -  -  -  1.2  -  -  2.2  1.3 3.2  -  -• 2.2 2. 2 2.1 1.2 1.1  -  mm  -  -  -  1.1  3.2  -  -  5.2 2.2  1.1 5.2 3.2  -  -  -  -  -  -  -  -  3.3 1.1 1.3  7 Sy 4.2  1.2  2.3  1.3  -  1.1 1.'2  1.3  -  -  2.2 1.2 1.2 1.1  -  -  -  8 AL  -  1.3 1.2 3.3 4.2  -  -  -  -  2.2 -  3.1  1.1  -  1.1  3.2  1.3  2.2  --  -  -  -  -  -  -  + 4.2  1.1 1.1  1.3 1.3  1.1  2.2  -  -  1.  -  5.2 2.3 1. 1.  -  -  -  -  -  2.3 1.3  5.3 1.3  -  -  -  -  -  -  F.C. Remarks 2 ?  1 3 3 3 2 3 ?  2 3 4 3 3 3 4 2 1 4 3 3 1 4 1 1 3 2 2 1 2 3 ? ?  Pseudotsuga Ag Ca & A-C  zone  Aro & A-C (esp. after f i r e ) Pinus ponderosa zone Sy  Sy  Arc Sy Ari Introd., ruderal Ca & Sy Coarse steppe s o i l s Open stands Al Introd., invading  sy  Common throughout A-C & Ca  ro O  Cladonia fimbriata C. furoata C. g r a c i l i s C. m i t i s C. nemoxyna C. pyxidata C. squamosa C. v e r t i c i l l a t a Clarkia pulchella Claytonia lanceolata C. l i n e a r i s C. p e r f o l i a t a C. spathulata Clematis oolumbiana C. l i g u s t i c i f o l i a Collema crispa Collinsia parviflora Comandra p a l l i d a Coralorhiza maoulata Cornicularia c a l i f o r n i c a Cornus s t o l d n i f e r a Corylus cornuta Crataegus douglasii C. oolumbiana Crepis acuminata C. atribarba Cryptantha a f f i n i s C. ambigua C. humilis C. leuoophaea Cynoglossum o f f i c i n a l e Cypripedium montanum Cystopteris f r a g i l i s Danthonia spicata  L.P. 1 Pu  la Ari  2 Ag  -  1.1  -  -  1.1  2.2  1.3  L L L L L L L L T  -  -  -  -  -  2a St  3 Rh  4 Arc  -  -  -  1.3 2.2  --  mm  -  7 Sy  -  2.1 1. 3.2 1.3  1.1 1. 3.3 1.2  1.2 4.3 1.2 2.2  —  —  -  -  —  -.  -  —  —  —  —  —  —  -  —  -  -  2.2  1.2  —  -  1.3  T T P P L T H  1.1  -  --  1.2 1.3  -  1.1  -  1.2  -  -  1.2  -  -mm  -  +  1.1 2.3 2.2  4*2 2.2  1.2 1.3  G  -  + 3.2  E P P P P H H T T T H H  1.2  2.2  1.1  2.1  H H  -  3.3  6 Ca  1.1  G T  G  -  mm  5 A-C  -  -  4.3  -  -  —  -  -  -  -  -  —  -  -  1.2 3.2  1.3 5.2 1.2 1.2  mm  1.3  --  -  -  —  -  —  1.3  -  mm  -  -  3.2 -  1.3 2.2  -  -  -  -  -  -  +  -  -  1.1  -  --  -  -  4.3  3.3  -  -*  -  -  1.3  1.3  1.1  -  -  -  -  -  4.2  3.2  -  1.2  4.2 1.2  4.2  -  —  -  2.2 3.3  1.3 3.3  -  —  --  1.3  --  -  -  —  5.3  —  1.2  —  -  -  -  —  +  —  —  --  -  -  2.1  +  -  1.1 1.2  m  -  -  -  —  -  -  -  -  -  -  8 AL  -  -  -  — —  -  -  1.1 2.2 +  -  -  mm  4.3 1.3 3.2 +  -  -  1.3 4.3 1.1  —  —  —  —  —  --  —  -  -  --  -  -  --  +  —  —  -  -  —  1.3  2.2  -  -  mm  -  1.2  -  , +  +  1.3 1.3  -  1.3  —  F.C. Remarks 3 2 3 3 5  1 1 3 1 4 3 2 1 4 4  Ca A-C Ca A-C  Pseudotsuga zone Osoyoos & eastward Ag Pu  sy  Al  ?  2 2 3 3 5 4 4  Ca & Sy Pinus ponderosa Al Al Al  ?  2 2 2 2 2 3 1 5 1 3  Ari Int roduoed  Higher  elevations  Delphinium b i c o l o r Deschampsia elongata Dioranum fusoesoens D. majus D. scoparium D. striatum Disporum traohyoarpum Dodecatheon meadia Draba verna Drepanocladus uncinatus Eohinocystis lobata Elaeagnus oommutata Elymus canadensis E. oondensatus E. glaucus E. innovatus Enoalypta sp. Epilobium adenocaulon E. angustifolium E. minutum Equisetum arvense E. hyemale E. laevigatum Erigeron canadensis E. compositus E. corymbosus E. f i l i f o l i u s E. f l a g e l l a r i s E. peucephyllus E. pumilus E. speoiosus E. strigosus Eriogonum heraoleoides E. niveum  G H B B B B G H T B H P H H H H B T H T G H H T H H H C H H H H C H  2a St  3 Rh  4 Arc  5 A-C  6 Ca  1.2  3.2  1.2  1.1  1.2  . -  1.2  —  —  —  —  —  -  —  mm  -  -  la Ari  A  1.2 — —  L.F. 1 Pu  1.3 1.3  mm  —  1.3  -  -  -  2  K  -  -  -  +  1.1  +  -  -  1.3 1.3  +  mm  1.2  -  1.1  -  1.3 4.2 1  -  2.3  -  1.3 2.2 4.3  -  -  2.2  2.2  1.2  -  1.1 + 1.2 1.1 1.3 4.3 1.1 1.3 1.2  -  -mm  -  1.1 2.2  2.2 1.3  -  3.3  2.1 2.2 1.1 2.2 2.3 1.3 3.3  -  —  —  2.2 5.2  4.3  1.3 3.3 2.2  —  2.2 2.2 3.3  -  -  1.3  mm  -  1.2  -  2.2  -  —  1.1  -  -  —  mm  1.2  1.1 1.2 1.1 1.1 1.2 1.3  1.3 3.2 1.3  1.1  2.2  —  —  -  -  -  1.2 1.2 —  1.1  -  mm  m  mm  —  2.3 —  2.3 1.2 wm  1.2  1.2  -  -  —  2.3  -  -  mm  1.2  3.2  -  -  r  —  —  2.1 1.1  3.1 2.2  1.1 1.1  - •  -  —  —  1.3  -  -  1.2  2.2  -  -•  1.2 1.3  -  1.3 3.2  —  -  -  ,y 1.3 1.2  —  mm  7 s  —  -  1.3  —  —  -  1.2  2.2  2.2  -  -  -  8 AL  —  2.2 —  + 3.3 2.3 4.3 3.2 1.3 «•»  1.1 2.3 1.2 —  —  + —  -  -  F.C. Remarks 3 1 3 4 1 3 3 2 3 3 5 5 5 4 3 5  Ag A-C  sy  Pseudotsuga zone  sy  I'nt rdds, ru dera 1 Sy Al Al Al Al Sy & A l Al  ?  1 3 3 3 4 4 3 2 2 3 3 3 3 2 3 4 4  Pseudotsuga zone Steppe Al Al Al Ruderal Pu & A r i St, N of R.Thompson S.Okanagan V a l l e y Ag & St Steppe Ag & St Pu & Art  o  L.F. 1 Pu Erysimum inoonspiouum Euphorbia glyptosperma Eurhynchium strigosum Festuoa subulata F. oocidentalis F. ootoflora F. ovina F. p a c i f i c a F. scabre11a Fomes l a r i c i s Fragaria bracteata F. v i r g i n i a n a F r i t i l l a r i a lanceolata F. pudica Gaillardia aristata Galium boreale G. t r i f l o r u m Gayophytum ramosissimum Geaster sp. Gentiana amarella G. glauca Geranium viscosissimum Geum t r i f l o r u m G i l i a aggregata G. g r a c i l i s G. grandiflora G. l i n e a r i s G. pungens G. sinuata Goodyera menziesii G r i n d e l i a squarrosa Eabenaria unalaschensis Haplopappus oarthamoides  T T B H H T H T H E H H G G H H H T  G T T H H H T T T C T H H G H  -  la Ari  -  2  2a St  1.3  1.3 1.2  -  —  1.2  1.1  -  1.1  -  —  —  2.2 5.2  1.1 5.2  4.3 2.1  1.2 4.2  1.3 2.3  -  1.2 1.3  1.3  -  1.2 1.3 4.2 «• mm  -  —  -  —  1.2 2.3 2.3 1.2  -  2.2 —  -  1.3  -  1.1  1.3 3.2  -  2.2 -  1.2 4.2  2.3 2.2  2.3 2.3  •at  mm  -  -  -  1.3  —  3.3 1.2 —  -  3.2 1.1  + -  -  -  1.3 2.2 2.2 2.3 2.2  --  —  2.1  - -  2.3  -  -  1.1  --  3 Rh  -  2.2 1.1  4 Arc  - .  - 1.2 2.2 - 1.2 1.2 - - 3.2mm  -  -  1.3 4.3  -  5.2  -  5.2 2. 2  - - 1.3 - - - 4.2 3.3 - - - -  5 A-C  -  -  6 Ca  -  -  1.1  1.1  2.2  4.3  -  1.3 1.2 5..2  -  -  1.1 1.2  -  -  1.2 +  1.1 1.3  -  -  -  -  7 Sy  -  1.1 1.3 3.3 mm  -  -  1.3  2.3  3.2 5.2 3.2  2.2 4.1 2.3  -  2.3 -  1.3 1.2 3.3  -  3.2 1.3 1.3  -  -  1.2 4.2 1.3  -  -  1.3  -  3.1  -  r— mm  2.3  -  -  -  -  --  2.2 3.3  -  1.3  -  -• -  -  -  —  —  —  2.2  3.2  —  -  -  1.2  1.3  1.3  -  -  -  -  -  ?  -  -  -  3 3 2 1 3 3 1 3 2  mm  -  -  F.C. Remarks  8 AL  .  4 3 3 3 2 3 5 5 ?  1 1 3 3 3 2 2 1 4 1 3 i j. 3 1  Ag & St Rh, (ruderal)  Ag & Ca Pu & A r i From higher levels Steppe On Pseudotsuga A-C Pseudotsuga zone Ca & Sy Ag & St Sy & A l  sy  Ari  Ag Aro Coarse steppe s o i l s  Pu & A r i Sy & Ca Ca & Sy  o  L.F. 1 Pu Helianthus c u s i o k i i H. giganteus Heracleum lanatum Heuohera c y l i n d r i o a Hieraoium albiflorum H. canadense H. oynoglossoides Holodisous disoolor Hosackia dentioulata Humulus lupuj.us Hydrophyllum capitatum Eylo comium splendens Hypericum p'erfo ratum Impatiens b i f l o r a Iva x a n t h i f o l i a Juncus baltious Juniperus communis J . scopulorum Koeleria c r i s t a t a Laotuoa pulchella L. s c a r i o l a Lappula myosotis Larix occidentalis Lathyrus n u t t a l l i i Leoanora paoifioa Leoidea lurida L. rubiformis Lepidium densiflorum L. perfoliatum Lesquerella douglasii Letharia vulpina Lewisia rediviva Lilium columbianum  H H E H H H H P T H  la Ari  2 Afi  2a St  1.3 1.3  -•  2.2  2.3  4.2  1.3 1.2  3 Rh  5 A-C  6 Ca  1.3  1.3  7  .SJL  8 AL  1.2 1.3  2.3  3.3  2.1  3.3  1.1 2.3 4.3  2.3 2.3 1.2 5.3  1.2 1.2  --  3.2 1.1 1.3 2.1 1.3  1.2 1.2  G  B H H T  1.2  -  -  1.3  2.2 1.2 1.3 +  G  P P H H T T P H L L L T T H E G G  4 Arc  5.3 «*  1.1 -  1.3 5.3 mm .  1.2 1.1  1.2 1.3 4.2 1.1 2.1 1.2  1.  1.3 2.3 4.2 2.2 3.2  1.3 2.2  2.3 3.3 4.3 5.2 1.1  3.2 2.3 4.2  1.  3.3  1.2 1.3 1.3 2.3  1.3 2.2 2.2  2.1  1.  1.2  + 1.2 1.  1.1 1.2 3.3 1.  1.2 + 2.1  1.1  1.3 4.1 3.3  2.2 5.1 3.3  +  1.2  3.2 1.2 5.2 1.3  2.2 4.1 3.2  4.1  1.2 5.2  5*2  2 3 5 2 3 2 2 3 2 1 2 1 1 5 1 3 3 3 2 2 2 3 3 3 ?  Al A-C & Ca  Rh & Sy Introduced  Int roduced Al Arc Arc & A-C Arc  Introd., ruderal St. E. edge of area Ca  ? ?  1. 1.2  F.C. Remarks  1.3  5•2  5 • 2 2.1  3v3  1.2  3 1 3 2 4 4  St, (Int rod. ) Intrdduead Steppe Common throughout Ca Ca  CO o  la Ari  2 Ag  -  2.1 4.2  1.2 4.2 3.2  1.3  1.2  L.F. 1 Pu Linnaea b o r e a l i s Linum l e w i s i i Lithospermum incisum L. ruderale Lomat ium ambiguum L. dissectum L. maorocarpum L. nudioaule L. P i p e r i L. t r i t e mat um L. utriculatum Lonicera c i l i o s a L. involuorata L. utahensis Lupinus nootkatensis L. sericeus Madia exigua Marchantia polymorpha Medioago sativa Melampyrum lineare Melilotus alba Mentzelia a l b i c a u l i s M. l a e v i c a u l i s Mertensia l o n g i f l o r a M. paniculata Mycoblastus alpinus Microseris nutans Mimulus guttatus M. floribundus Mite11a nuda Mnium spinulosum Monarda f i s t u l o s a Muhlenbergia mexioana M. richardsonis  C H H H G G G G G G G P P P H H T B H H H T T G H E H H T H B H H H  -  -  . -  --  -  1.1  1.3 1.3  --  -  1.3 -  -  -  —  -  -  mm  1.3 5.2 1.3 2.3 3.2  -  1.2 1.2 1.2  -  2a St  2.3 1.2 4.3  -  1.1 mm  1.3  -  -  -  -  1.3  4.3 1.2  1.3  -  2.3  -  -  -  mm  -  1.3  -  -  1.2  1.  -  --  --  +  1.2  -  -  1.3  -  —•  1.2  -  3 Rh  4 Arc  5 A-C  6 Ca  7 Sy  -  1.2  2.2  1.2 1.1 1.3 3.2  1.3  -  1.3  -  --  1.3  -  -  +  -  2.2 4.3  -  -  -  -  -  --  -  1.2  -  --  1.1  —  -  4.2  -  3.2  -  -  -  -  -  1.2 1.2  -  -  1.3  +  --1.2  --  --  +  2.3  -  --  -  -—  -  1.3  -  1.3 4.2  -  -  1.3  1.2  -  1.2  -  1.1 1.1 1.3 5.2  -1  1-8  mm  --  -  1.2 -  1.3 1.3  -  —  -  -  -  -  2.1  8 AL  mm  -  -  -  —  1.2  -  -  --  -  1.3  -1.  4.2  1.3  1.3  -  -  1.3 1.3 3.2 +  -  —  -  -  -  —  F.C. Remarks 3 3 4 2 1 3 2 1 1 2 2 3 3 1 4 3 1 1 1 1 5 3 1 5 1  Ca St, Thompson basin Ari  Ag  Pseudotsuga zone Al Ca Ag & Ca Introduced A l (Introd.) A r i , under trees Ag  ?  1 1 1 3 4 3 1 1  Ca & Sy Sy Ag  L.F. 1 Pu Nephroma laevigata Nephromopsis platyphylla Oenothera biennis 0. p a l l i d a Opuntia f r a g i l i s 0. polyaoantha Orobanohe fasoiculata Orthocarpus t e n u i f o l i u s Oryzopsis hymenoides 0. exigua Osmorhiza ohilensis Oxytropis g r a c i l i s 0. lambertii Pachystima myrsinites Panicum soribnerianum Parmelia caperata P. olivacea P. physodes P. s a x a t i l i s P. suloata Parmeliopsis ambigua P e l t i g e r a aphthosa P. oanina P. soutata P.ve-nosa Pentstemon oonfertus P. fruticosus P. ovatus P. serrulatus Phaoelia l i n e a r i s P. leucophylla Philadelphus l e w i s i i Phleum pratense  L L H G C c  G T H H H H H C H E E E E E L L L L L H C H C T H P H  la Ari  2a St  2  -  3 Rh  -  4 Aro  -  —  -  1.1  —  —  —  —  —  1.2 5.1  1.2 5.2  1.1 1.2  4.2  5.1  2..  —  —  •*  +  —  —  -  1.2  -  -  -  1.2  1.3  _ i  -  mm  2.2  -  -  1.2 1.3  -  —  -  -  2.2  1.1  -  -  -  5.2 mm  -  mm  1.2  -  mm  1.2 4.2  -  1.2 1.2  -  -  -  4.2 1.2  5.2 3.2  -  —  -  -  +  1.1 1.1  -  1.3 1.3 1.1 1.1  -  1. 2.1  -  mm  1. 1.2 4.2  -  1.3 2. 2  -  -  2.2 2.2 1.3 1.2  -  —  -  —  -  -  -  5 A-C  -  1.1  1.2  -  —  -  -  -  -  2.2  -  4.2  1.2  —  —  —  —  1.2  5.3  -  1.1  -  1.1 1.2  -  2.1 1.1  -  —  -  —  --  -  —  4.2  1.2 1.1 5.2  1. 3. 2.2 5.2  -  -  2.2 -  1.2 1.3 2.2  -  -  4.3 —  -  1.2  —  —  — •  —  —  —  —  —  1.1  4.2  — —  —  —  3.1  1.1  —  —  —  2.3  -  2.1  1.1  1.2  -  -  1.1 3.2  -  —  8 AL  -  -  —  -  1.3  -  1. 4.3  —  —  -  -  r.3  7 Sy  —  2.3  -  -  —  —  -  —  6 Ca  —  -  4.2  -  2.1 —  -  2.1 -  1.2 mm  1.  —  —  —  2.2 1.1 —  5.3 1. —  1.1 —  2.1 2.2 5.2  2. 1.2 5.2  -  mm  1*3 2.3 1.1  —  mm  -  -  —  1.3  3.3  -  1.2 -  1.1 1.3  mm  -  -  •-  -  -  -  -  1.3 2.3  F.C. Remarks ?  sy  4 1 3 4 1 3 1 4 4 4 4 3 3 4  sandy s o i l s , Pu & A r i Arc Sy Aro Steppe Ca Rh  4c  Sy  ? ? ? ? ?  3 2 1 1 2 4 1 1 4 3 4 2  Pu & A r i Steppe & P. pond. Steppe  A-C & Ca  Arc  A r i & Pu Ari Rh  ro  o  -a  Phlox l o n g i f o l i a P. speoiosa Physocarpus malvaceus Pioea engelmanni Piaus oontorta P. ponderosa Plantago major P. Purshii Poa ampla P. oanbyi P. oompressa P» o u s i c k i i P. Fendleriana P. i n t e r i o r P. l o n g i l i g u l a P. nervosa P. pratensis P« scabrella P. se ounda Pohlia oruda P. nutans Polemonium micranthum Polygonum convolvulus P. douglasii Polyporus sohweinitzii Polystichum muniturn Polytrichum juniperinum P. piliferum Populus tremuloides P. t richooarpa P o t e n t i l l a arguta P. glandulosa P. g r a c i l i s  L.F. 1 Pu  la Ari  2  2a St  C H P  3.2  -  1.2  2.3  -  -  P  P P H T H H H H H H H H H H H B B T T T G H B B P P H H H  4.2  -  -5.3 4.2  -  -  5.3  -  -  -  5.3  -  5.3  -  5.3  2.1  2.1 1.3  4.2  -  -  1.1  -  4.2  -  1.3  -  -  1.2 2.2 3.2  -  -  -  -  3.2 1.2  5.3 1.3  -  1.3 1.3  -  3 Rh  -  -  5.3  4.2 -  4.2  -  -  -  -  -  2.2 2.2  2.2 1.3  2.2 1.3  1.2 1.3  -  4.2  -  2.2  -  2.1  2.1 3.2  1.1 3.2  -  2.1 3.2 1.1  -  2.2  1.1  -  -  -  1.3  -  -  1.3  -  -  1.3  3.2  4 Arc  5 A-C  -  + 5.2  2.3 5.3  1.3 2.3 5.3  -  5.3 1.1  4.3 1.3  1.2 1.3  3.3 1.3  1.3  1.3  -  -  3.3  -  1.2  1.1  1.2  -  -  1.3  -  -  -  2.2  -  1.3  -  -  • -  -•  -  1.3  -  1.3  1.2  1.1 2.2  1.2 4.3 2.2  2.1 3.1  -  -  2.3  8 AL  7  -  mm  1.1  -  6 Ca  -  -  -  mm  -  -  -  4.2 2.2 2.1 mm  1.2 —  -  -  -  -  -  -  1.2 2.3 2.2  -  1.1 2.1  -  1.2 1.2  -  -  -  -  -  -  4.2  -  1.3 1.2 1.1 1.2 1.2  +  -  -  2.3  mm  3.3  mm  3.2 -  1.3  -  3.3  3.3 5.3  2.3 1.3  3.2  -  2.3  1.1  1.1 1.1 4.2 2.1 2.2  -  -  -  -  F.C. Remarks 3 1 4 3 3 2 1 3 4 3 5 3 3 3 1 2 3 3 2 1 2 3 1 3 ?  1 3 3 3 5 3 1 2  Pu  sy  Pseud.zone & A l Pseud. after f i r e Characteristic of Introduced. type Steppe & P. pond. Ca A-C & Ca A l (Intrdd.;) Steppe & P. pond. Ag & St A-C M  Sy & A l Ca  Pu & A r i Introduced Ari & Pu From W. of Casoades Ca & A-C P. ponderosa zone Sy & A l Al  sy  ro o 00  L.F. 1. Pu P o t e n t i l l a monspeliensis P. pennsylvanica Prunella vulgaris Prunus emarginata P. persioa P. v i r g i n i a n a Pseudotsuga menziesii Psoroma hypnorum Pterospora andromedea P t i l i d i u m puloherriraum Purshia t r i d e n t a t a Pyrola chlorantha P. piota P. secunda Pyrus communis P. malus Ramalina farinacea Ranunculus bongardii R. glaberrimus Rhinanthus c r i s t a - g a l l i Rhizocarpon alpicolum Rhus glabra P. radicans Rhytidiadelphus triquetrus Ribes cereum R. laoustre R. oxyacanthoides R. viscosissimum Rinodina conradii R. orbata R. sp. (unidentified) Rosa nutkana R. pisocarpa  H H H  P P P P L G  B P H H  C P P B H T T L  P P B P P P P L L L P P  -  2.3 -  5.3  -  -  -  la Ari  -  -  1.1 1.3  -  2.3  -  mm  -  2.2 2.2  -  2.1 4.3  3.2  1.1  -  1.2  a*  mm  -  1.1  -  1.1  -  -  1.1 1.2  -  -  -  -  2  -  -  1.1  -  2a St  -  2.3  1.1 2.2  4.2 1.3  -  2.3 -  -1.2 1.1  -  -  +  -  -  -  -  -  1.1 5.3 1.3 1.3 1.3  -  -  1.2  -  1.1 -  -  -  1.1  -  -  1.3 4.2  -  -  1.1 3.2  -  -  -  -  -  1.2 1.3  -  -  1.-3  -  -  4.2  5.2  4.2 1.2  -  -  3.2 5.3  5.3 2.3  -  +  -  1.1 5.3 1.3 2.3  -  4.2  -  1.2  1.3  -  1.1 1.3  -  8 AL  ,y 1.3  1.2  -  7  -  -  -  -•  -  6 Ca  -  4.2  -  -  5.2  1.1  -  2.2  2.1 1.2  --  -  3.3  + 1.2  -  -  1.2  -  5.3 5.3  1.1 1.2  mm  -  -  4.3  -  5 A-C  -  -  --  -  --  4 Aro  -  -  -  -  •-  1.2 +  -  3 Rh  mm  -  -  -  1.3 1.1  -  1.2 2.2 1.1 1.3  s  -  --  1.2 2.2  -  1.2 1.2 1.1  -  3.2 1.1  -  mm  -  1.2 3.2 1.3 1.1  -  -  -  -  -  -  3.3 4.3  -  -  1.2 1.2  -  -  -  5.2  5.2  -  -  -  -  5.3  -  F.C. Remarks 1 3 1 1 1 3 3 3 3 2 3 1 3 3 1 1 5 1 3 1 1 4 4 4 2 3 3 2  St, Clinton area  A l & Rh Pseudotsuga zone A-C & Ca Ca Pu & Rh Sy Ca Introduced n  sy P. pond, zone  Rh Rh, & A l  sy Al Ca  ?  ?  3 2 1  Pu  L.F. 1 Pu Rubus strigosus R. leucodermis R. parviflorus Rumex acetosella Salix bebbiana S. f l u v i a t i l i s S. lasiandra Salsola k a l i Sambucus glauoa Sanicula graveolens S. marylandioa Saxifraga i n t e g r i f o l i a Sedum stenopetalum Selaginella rupestris Senecio aureus S. eanus S. exaltatus Setaria glauoa Shepherdia canadensis Silene antirrhina S. douglasii S. menziesii S. scouleri Sisymbrium altissimum S. incisum Sitanion hystrix Smilacina raoemosa S. s t e l l a t a Solidago canadensis S. lepida S. missouriensis Speoularia p e r f o l i a t a Spiraea douglasii S. l u c i d a  P P P H P P P T P G  G H C C H H H T P T H  H H T T H H G H H H T P P  -  -  1.1  -  1.3  la Ari  -  -  -  -  4.2  —  -  1.3 2.3 2.3  -  -  1.2 2.2  -  -  -  1.1  -  1.2  1.1  -  1.3  -  +  -  -  2.2 1.1  -  2.2 2.2  -  -  -  —  2a St  -  --  -  3 Rh  -  -  -  -  -  -  +  2.3  -  --  4.3  2.2  -  -  2.2  1.1 3.2  - -  -  1.1 2.3  -  1.2 1.2 2.3 1.3  -  2.2 1.3  -  -  -  -  1.2 mm  3.2  -  -  1.3  -  1.3 -  3.2  -  -  -  -  -  4 Arc  -  -  1.2  1.3  4.2  -  -  1.2  - - 2.3 - -  --  2 Ag  -  •at  mm  4.2  -  -  -  -  -  5.2 1.2  -  1.2  -  -  4.2 1.2  -  1.2 1.3  1.3  -  -  -  2.2 1.3  -  1.1  -  -  -  1.3  -  -  5.2  -  -  3.1  5 A-C  -  1.1  -  2.2  -  3.3 1.2 1.3  -  4.2  -  2.3 1.1  -  1.3 4.2  6 Ca  7 Sy  1.2  1.2  -  1.1  -  4.3  -  -  -  1.3  -  1.2 1.3  -  2.2 2.3  -  1.3  1.2  1.2  1.1  1.3 1.3 1.3  1.2 2.3  1.2  -  -  -  -  1.2 1.1  -  -  4.2  -  +  1.1 1.3 1.3 1.2  2.2  -  -  4.3 3.3 1.2  -  -  --  -  1.2 1.3  1.2  1.3  mm  8 AL  -  -' -  -  2.1 1.1 1.3 1.1  -  -  1.2 5.3  -  -  -  '-  1.2  2.3 -  1.3 4.3  -  4.3 mm  -  -  . F.C. Remarks 3 2 3 3 3 5 5 3 4 5 4 2 4 3 3 2 3 1 4 3 3 2 3 2 3 3 3 4 1 4 4 5 1 3  Ca & Sy Al Sy, Ca & A l Al Al St, Introd. Rh Ca Al  ruderal  Aro Steppe A-C & Ca Ag Arc & A-C Pu Ag Ca Introduced A-C Sy Al Al Aro Rh West ©f Cascades  sy  L.P. 1 Pu Spiranthes romanzoffiana Sporobolus cryptandrus S t e l l a r i a borealis S. longipes S. nitens Stephanomeria t e n u i f o l i a Stereocaulon tomentosum Stipa oolumbiana S. comata S. elmeri S. occidentalis R. r i c h a r d s o n i i S. spartea S. v i r i d u l a S. w i l l i a m s i i Symphoricarpos albus Taraxacum erythrospermum T. o f f i c i n a l e Tellima p a r v i f l o r a Tetradymia oanescens Tinimia austriaoa Thaiiotrum Occidentale Thuja p l i o a t a Tortula russalis Tragopogon pratensis Trifolium pratense T. repens Trisetum canesoens Urtioa l y a l l i i Usnea dasypoga U. h i r t a Vaccinium caespitosum Verbascum thapsus Verbena braoteata  G H H H T H L H H H H H H H H P GG H P B H P B T H H H H E E C T H  la Ari  -  -  5.2  5.2  -  3.2  -  1.2 5.2 2.3  -  -  -  3.2  -  -  5.3 3.3 1.2  -  -  -  -  1.3  -  1.1  1.1  -  mm  +  -  -  4.3 3.2 1.1  4.2 3.2  -  -  -  1.1  -  -  -  --  -  -  1.1 +  2a St  3 Rh  -  -  1.2  5.2  3.3  -  --  -  2  -  2.2 mm  2.2 2.2 1.3  -  1.2  -  1.3 1.2 3.2  -  3.1 1.3 1.2  -  -  3.3 5.3 1.3 1.3 2.3 2.3  -  -  4.3  -  4.2 2.2  -  -  1.3  -  1.2  -  -  -  -  1.2  2.3  2.3  1.3 -  -  2.2 1.3 2.3 3.3  -  1.3 2.3  -  2.1  -  2.1  5.1  mm  mm  -  -  -  2.2 4.2  4.2 4.2  3.2 4.1  -  1.3  -  -  -  -  -  -  -  -  1.1  1.2  2.2  -  2.2  -  1.2  -  2.1  -  -  -  1.3  -  -  -  -  1.2  -  1.3  -  3.1 3.2  8 AL  6 Ca  1.3  mt  7 Sy  5 A-C  4 Arc  -  -  -  -  4.1 4.1  -  1.1  -  • -  1.3 1.2  -  1.2  -  -  1.3 2.1 1.2  -  -  1.2  -  1.3  -  1.1 1.3 1.3 1.1  -  -  1.3 3.2 1-J2 3.2 1.2  -  1.2  -  1.3  -  -  -  -  -  -  -  -•  1.3 2.3 5.3  3.2  +  3.2  -  1.1  -  -  -  -  1.2 2.2  2.2  1.1 1.2  3.2 4.2  -  1.2 1.3  2.1  -  3.2  1.1  1.1  2.1  1.1  -  -  -  -  -  -  -  -  1.2 mm  2.2 1.3  -  1.3  -  -  F.C. Remarks 1 3 Steppe 1 3 A-C & Ca 1 3 . Rh 3 Arq & A-C 3 St 3 Steppe, grazed 3 Ari 2 2 5 St, Clinton area 2 3 Sy 4 Sy Introduced 13 Aro, (Introd.) 2 3 Ag 1 3 Ca & Sy 5 3 Steppe Introduced 2 tt 1 it 1 1 5 Al 1 3 Sy 5 A-C 2 Introd., ruderal 4 Rh  L.F. 1  Pu V i c i a americana V. sativa V i o l a adunca V. canadensis V. p a l u s t r i s V. n u t t a l l i i Woodsia i l v e n s i s W. oregona W. scopulina W. sp.(unidentified) Xanthium strumarium Xanthoria candelaria Zygadenus venenosus  H H H H H H  H H H H T L G  —  -  -1.2 1.1 3.3  la Ari _  1.1 1.3  1.3  2 A  £  1.2  -  1.1  -  -  1.2 1.3 1.2 1.3  2a St  -  -  --  -  4.3  1.2 1.3  -  4 Arc  _  -  -  3 Rh  1.3  -  4.2 -  -3.2  -  -  -  -!- -  2.2 1.2  5 A-C  6 Ca  7 Sy  8 AL  P.C. Remarks  2.1  3.2  2.1  3.3  -  -  --  --  3.3 1.3 1.2 1.2  3 1 3 3 1 2 1 4 1  1.2  -  -  1.2  - • -  -  -  1.1  -  _  —  -  -  -  _  _  1.1 1.3  1.3 5.3  1.1 2.3  Rh  ?  _  -  Ca & A l Introduced sy Sy & A l  1.3  1 3 3  Arc Ca & Ag  ro r-l  ro  APPENDIX 5 B i o l o g i c a l spectra of the associations and subassoclations. The use of the symbols i s as follows: Pm Pn C H G  megaphanerophytes nanophanerophytes chamaephytes hemicryptophytes geophytes  T B L E  therophytes (annuals) bryophytes lichens ( t e r r e s t r i a l ) epiphytes  For further explanation of the terms, see pages 17-18 under 'Methods'. The contribution of each l i f e form to a given association i s given as a percentage of the t o t a l contribution o f a l l l i f e forms to the same association. Since the b i o l o g i c a l spectra f o r the Artemisia subassociation and the Rhus association d i f f e r appreciably from the normal spectra f o r the Pinus ponderosa zone, the l i f e form percentages f o r these two communi t i e s are l i s t e d apart from the remainder of that zone, and are excluded from the zonal averages.  APPENDIX 5  B i o l o g i c a l Spectra o f the Associations Studied.  Percentages  H  G  T  B  L  E  10.2 6.8 7.8 10.9  33.1 42.6 41.0 39.5  3.8 4.0 6.5 3.7  13.8 15.6 11.2 13.4  6.2 4.2 3.1 4.0  5.1 4.7 2.9 5.4  2.6 2.7 3.7 3.5  8.1  8.8  39.2  4.5  13.5  4.4  4.5  3.1  15.7  16.7  13.9  32.9  5.7  7.1  5.7  2.9  1.4  Rh  20.1  20.1  12.9 -  28.0  3.5  ,7.6  4.1  2.9  0.8  Arc A-C Ca sy Mean (Pseudotsuga zone )  14.3 21.2 20.1 18.6  12.5 11.2 9.5 12.3  17.8 16.4 9.9 12.4  31.3 27.2 35.0 30.5  6.2 3.1 6.3 4.3  3.9 2.7 3.5 4.9  3.1 3.5 6.2 6.3  7.4 9.3 5.6 3.4  3.3 5.4 3.9 7.3  18.6  11.4  14.1  31.0  5.0  ;>3.8  4.8  6.4  5.0  Al  31.9  20.7  9.5  25.5  5.6  4.1  0.3  0.7  1.7  Pm  Pn  Pu Ari Ag St Mean (Pinus zone )  13.8 13.8 14.6 13.6  11.4 5.6 9.2 6.0  13.8  Art  Ass'n.  C  APPENDIX 6 Tables of percentage basal cover of plant3 i n several representative stands. 6a.  Table of the basal cover of a l l species contacted i n the measurements. These values i n clude those shown separately i n Appendix 6b.  6b.  Table of the basal area of trees and t a l l shrubs over 1/2 inch d.b.h.  216 APPENDIX  6a. .  BASAL COVER PERCENTAGE - ALL LAYERS Am ACJJIUTA MILLEFOLIUM «IWYI»M SPCATWM ALLIUM C E R N U U H AHtLANCWEK A U B F O J A AMMONC MULTWM  (9  RH  69  73  22  _A-C 10j"  ARC  49  U »  4y  46  flST OJ  A N T C N N A A I A ANAH*AL01Dfc3 4. DlMOftPWA  o.i  * • HOWELLII  A. ftACEMOSA APOCYMW A N D R O S A i n i r c u r  AttAfte,  PU&CRULA  ARISTIDA  LONOSCTA  AR.CTOSTAPHYL0S  UVA-Uttl  A f t » U CORtXTOLlA A R T E M I S I A PKI61DA ASTER COMSPCOW A . FREMONTlt ASTRAGALUS SEROTINUS A. STENOPHYLLUS 6ALSAM0RHI2A S t t r T T A T A ftCKfttRLS AOUIFOLIUM BRACUYTUtCJUM ALBICANS BROMUS CARIHATUS B. MAROINATUS B. TECTORUM CALAHAflAOSTlS RU6ESCCNS CAMPANULA ROTUN&IFOLIA CAR E X COHXINNOIDES C. FlLirOLIA C HOODII C ROSSM CLANOTHUJ VELUTlNUS CLRATOPO* PURPWJLUS CMBrSOPSrS VILLOSA CHUYSOTHAMMUS NAUSfOSUS CLADONIA CULOROPMALA C. COCCIFERA C . GRACILIS C. FWRCATA C. MITE C . VERTIOILLAT A CALYPSO BULB06A COLLIN&IA PARVIFIORA CREPIS ATRI&AR&A 0 ICR AHUM S P . PISPORUM TRACHYCAftPUM ELYMUS GLAUCUS ERIbtRON IILIFOLIUS t RIOCONUM rlCRACLtOIDLS C . NIYEUM FESTUCA OCCIDENTALS F. OCTOFLORA F. SCAfcRELLA TRAOAPIA hRACTEATA r. VIROINIANA GAILLARCMA ARISTATA GALLIUM BORCALL  0.1 OS O.I 0.1  G. TRIFLORUM GILIA PUNGENS UELIAHTHUS OIGANTEU1 UlCRAGttJM CYNOtt-ObSOlDlS HYDROPMYLLUM CAPITATUM KCCLCRIA CRISTATA LATHYRUb NUTTALLH LLl/ISIA R E M VIVA LILIUM COLUMWANUM LITHOiPCRMUM RUM.KALL LOMATIUM  0.1  1.6  0.6  0.2  wiy:irun  LONICLRA CILIOSA LUPINUS SL'RICKUS OPUNTIA F-RAOIUS ORY20PSIb LKIGUA OSMORHIZA CWIXN'.IS PACHYSTIMA MYRSIN11 PANICUM SCRIBNER1ANUM PCLTI6ERA APHTHOSA P . CANINA PENTSTEMON C0NFTRTU*> P. OVA! US PMACCLIA LINEAR IJ PHILADELPHIA LEWISil PULOX I.ON61I0L1A PINUS PONDEROSA PLANTA60 PURSHII POA CUSICKll P. PRATENSIS POLEMONIUM MICRAN THUM POLYGONUM WXJOLASIl POLYPORUS SCUWEINITZII POLY TPICHUM JUNIPERINUM P. PfXIFERUM POPULUS TREMULOIDES PRUNUS VlhCINIANA PSEUDOTSUOA MCNZIESII PURSHIA TRIDCMTATA R.INODINA S P . RHUb OLABRA R, B AWCAffS RUYTILWELPHU5 TRMUETRUS ROSA NUTKANA SAM6UCUS GLAUCA bEDUM STENOPETALUM 'JCLAOINELL* HUfESTBK VHLPHEWOIA CANADCWR r.lLFN C MCNIIFSII SMU.ACINA RACEMOSA SOUWtfiO mS0URIENSI3 SPIRAEA LUCIDA SPOROROLUS CRVPTAMPRU3 STIPA COMATA S . RILHARDSONII •j. S P A R T E A '.YMPHORICARPOS ALBUS TARAXACUM OFFICINALE IHAJ ICTRIH OCLIt-LHTALL TOR TULA RURALCS TRAOOP00OH PRATCNS/S VICIA AMERICANA VIOLA ADUNCA  0.1  0J4 0.1  0.3 0.1  1.1  • °— 1.4  0.1 OA 0.1  2.9 0.1  4.9 0.0  071  219  144  U.l  APPENDIX 6b Percentage Basal Cover o f Trees and T a l l Shrubs of Over 1/2 Inch D.B.H.  Ass'n. Stand Aoer glabrum Arnelanohier a l n i f o l i a Juniperus scopulorum Picea engelmannii Pinus contorta P. ponderosa Populus tremuloides Prunus v i r g i n i a n a Pseudotsuga manziesii Purshia t r i dentata S a l i x bebbiana Sambucus glauoa Shepherdia canadensis  Pu 10  70  Ari 19  Ag 56  31  St 69  73  Rh 22  Arc 49  52  65  A~C 105  Ca 30  45  46  103  -  0.002 0.006  0.068 9.066 0.059 -  0.062  0.009  0.049  -  0.096  0.067  0.072  0,185 + +  0.072 -  +  0.078 0.076 -  0.068 -  0.092 -  0.002 0.188 0.314 + 0.001 -  0.047 0.032  0.152  0.001  0.054 0.022 0.613  -  -  Sy 61  0.008 0.001  -  71 + -  -  0.080 0.091 0.001 0.002 0.118 0.189 -  +  + indicates the occurrences of plants whose t o t a l b a s a l cover amounted to l e s s than 0.0005^.  ro  APPENDIX 7 Tables of climatic data obtained from the instruments set out i n t h i s project, between September, 1952 and September, 1953. The following data are included: 7a.  Maximum and minimum temperatures i n degree's Fahrenheit, of the uppermost centimetre of s o i l . In the case of stand no. 65, a i r temperatures (marked 'air') are given i n addition.  7b.  P r e c i p i t a t i o n , i n inches, with the year's t o t a l s .  7c.  Evaporation, by Livingston Atmometer, f o r the period from May to September, 1953* The o r i g i n a l values as volumes have been converted to depths i n inches, as described under 'Methods' (pp. 21-  22).  7d.  Precipitation/Evaporation r a t i o s f o r the period from May to September, 1953. Monthly means are also given, being calculated from the data a v a i l able when the series i s incomplete. In the case of stand 31> additional r a t i o s are calculated from the data from the r a i n gauge i n the station 3 1 N and the atmometer i n station 3 1 S , (marked N/S). For explanation see the discussion i n the description of the Pinus ponderosa - Agropyron splcatum association (p. 80).  APPENDIX 7a Maximum and Minimum S o i l Temperatures:  Stand  Degrees Fahrenheit  Sept. •52 Apr. •53  May •53  June •53  July •53  Aug. '53  Sept, •53  10  max min  124 11  145 36  146 46  164 48  156 45  122 31  70  max min  95 13  110 36  123 46  138 45  150 42  98 32  A r i 19  max min  104 10  121 36  135 43  156 45  146 43  123 28  Ag 3IN  max min max min  97 12 126 11  82 29 103 32  94 35 137 37  110 41 141 45  111 39 139 43  87 33 134 35  56  max min  119 16  118 38  119 44  148 47  144 43  129 34  St 73  max min  -  -  125  -  145  145  -  106  —  max min  82 19  90 38  94 48  134 51  127 46  76 37  max min 65 Max s o i l min a i r max min  120 10 114 14 87 -12  118 36 127 35 79 28  127 41 126 43 78 39  147 46 138 44 90 38  141 39 138 39  124 35 128 32  —  **  max min  113 13  -  124  -  124  -  126  -  102  46  max min  85 16  94 33  94 32  120 42  106 39  88 36  61  max min  85 16  88 37  81 44  101 47  105 46  85 39  71  max min  103 17  119 35  115 42  132 33  105 43  88 32  Pu  S  Rh 22  Arc 49  -  Cal 30  Sy  m  -  -  -  -  APPENDIX 7b Preoipitat ioni  Stand  Winter Sept. •52 Apr. •53  Inohes  May  June  July  Aug.  Sept.  Sept. •52 Sept. •53  Year j Sept. •52 Aug. •53  Summer May '53 Sept.  10 70  6.53 6.54  1.24 0.88  1.69 1.74  0.05 0.48  2.52 1.84  0.07 0.28  12.10 11.76  12.03 11.48  5.57 5.22  A r i 19  6.60  1.20  1.71  0.11  2.13  0.08  11.83  11.75  5.23  Ag  56 3 IN S  6.70 8.54 5.38  2.14 0.75 0.19  3.28 1.72 0.19  0.69 6.16 0.08  1.02 1.13 1.30  0.60 0.65 0.24  14.43 13.45 7.38  13.83 12.80 7.14  7.73 4.91 2.00  St  73  5.33  0.79  2.02  0.33  2.37  0.28  11.12  10.74  5.79  Rh  22  5.77  1.69  2.16  0.31  1.82  0.14  11.89  11.75  6.12  Arc  49 65  6.50 4.89  0.32 0.58  1.20 2.92  0.67 1.64  0.88 1.00  1.15 0.62  10.72 11.65  9.57 11.03  4.22 6.76  Cal 30 46  .6.76 7.78  0.85 0.35  1.69 2.06  0.11 0.09  1.30 0.81  0.59 1.86  11.30 12.95  10.71 11.09  4.54 5.17  4.63 7.92  1.26 1.46  4.42 3.70  0.65 1.28  2.75  0.49 1.13  Pu  Sy  61 71  mm  18.23  '  _  17.10  10.31  221  APPENDIX 7c  Evaporation: May  Stand Pu  10 70  A r i 19  t o September, 1953.  In Inches.  May  June  July  Aug.  Sept.  Total  3.51 2.96  3.50 2.74  7.36 5.23  5.26 3.24  3.50 2.50  23.13 16.67  5.08  9.41  6.94  5.02  2.02 1.57 2.56  4.59 3.80 6.03  3.87 3.79 4.SI  3.82 2.68 4.49  3.41  7.40  5.36  3.92  -  Ag  56 31N S  St  73  Rh  22  3.79  3.09  6.32  4.75  3.02  20.97  Aro 49 65  4.65 4.38  3.78 2.91  7.05 4.96  5.42 4.63  4.11 3.08  25.01 19.96  Cal 30 46  2.55 2.42  1.62 0.83  3.89 2.22  3.16 2.38  2.97 2.36  14.19 10.21  61 71  1.70  0.69 1.01  1.51  1.52 1.47  Sy  3.11 2.72 3.72  -  -  -  17.41 14.56 21.61  -  mm  APPENDIX 7d  Precipitation/Evaporation  Stand  Pu  10 70  A r i 19 Ag  56 31N  S N/S  Ratio*  May t o September, 1953.  May  June  July  Aug.  Sept.  0.35 0.28  0.48 0.64  0.01 0.09  0.48 0.57  0.02 0.11  0.24 0.31  -  0.33  0.01  0,30  0.02  0.17*  0.69 0.28 0.05 0.20  1.63 1.10 0.74 0.67  0.15 0.04 0.01 0.03  0.24 0.58 0.27 0.23  0.16 0.24 0.05 0.14  0.43 0.36 0.09 0,26**  Mean f o r Season  St  73  -  0.59  0.04  0.44  0.07  0.29*  Rh  22  0.45  0.70  0.05  0.38  0.05  0.29  Arc 49  0.07 0.13  0.32 1.00  0.01 0.33  0.16 0.22  0.28 0.15  0.17 0.32  0.34 0.15  1.03 2.60  0.03 0.04  0.41 0.34  0.20 0.79  0.32 0.51  0.74  6.40 3.64  0.33 0.72  2.49* 2.06*  65  Cal 30 46  Sy  61 71  mm  m»  _  1.82  Mean P/E r a t i o fo r the Pinus zone ( i n c l . stand 4 9 ) :  0.27  Mean P/E ratio fo r the Pseudotsuga zone t  1.14  * Season's means calculated from the months for which the required data were a v a i l a b l e . ** These figures were obtained by dividing the p r e c i p i t a t i o n figures from 31N by the evaporation figures from 31S. For disoussion, see t e x t , P. 53.  APPENDIX 8 Table of mean values of the textures of s o i l samples taken to depths of three feet from a series of stands representing the d i f f e r e n t associations and subassociations (except the a l l u v i a l complex); according to unpublished data of O g i l v i e . The size p a r t i c l e (diameter) l i m i t s corresponding to the various f r a c t i o n s of the s o i l are as follows Clay Silt Sand Gravel  under 0.0002 mm. 0.002 - 0.02 mm. 0.02 - 2 ram. over 2 mm.  The gravel i s given as a percentage by weight of the whole sample, while the sand, s i l t , and clay values are given as percentages of a l l material less than 2 mm. i n diameter. Because of the p r a c t i c a l d i f f i c u l t i e s associated with t h e i r c o l l e c t i o n , and since the largest fragments are considered to have the least importance i n respect to the physical properties of the s o i l ; stones of over 5 cm. diameter were not c o l l e c t e d .  APPENDIX 8 Mean values for the textures o f s o i l samples, from several representative stands, t o depths of three f e e t .  Gravel  %  Sand  %  Silt  %  Clay  %  Pu  10 70 85  3.8 7.6 0,2  94.0 79.2 91.0  2.6 10.0 4.5  3.3 9.2 4.5  Ari  19 57  1.1 52.3  95.0 65.2  1.9 19.2  2.9 15.3  Ag  2 4 7 16 28 31  53.6 58.9 27.8 51.0 48.7 21.5  82.8 71.0 44.3 79.4 71.0 37.8  7.9 10.2 20.9 11.0 17.4 21.6  9.1 18.9 34.4 9.6 11.8 39.6  St  69  12.4  70.0  16.8  10.2  Art  102  19.2  39.0  30.5  30.5  Rh  9 22  39.0 28.9  85.6 83.0  7.9 10.1  6.5 6.9  Aro  49 52 65 66  38.0 44.6 28.8 26.0  88.4 71.9 74.8 69.5  4.8 13.4 15.8 16.0  6.8 15.8 9.4 15.8  A-C  1 6 32  44.1 29.1 54.8  75.9 91.5 86.0  10.8 4.4 8.4  12.1 4.2 5.5  Ca  5 30 41 43 46  34.4 26.3 16.4 37.0 43.4  68.3 55.8 54.6 73.5 62.4  14.3 21.7 20.2 13.6 17.6  19.7 22.2 - 25.1 12.9 20.4  sy  3 61  38.9 36.8  66.0 65.5  14.3 21.9  19.6 12.6  APPENDIX 9 Frequency d i s t r i b u t i o n of trees i n size (diameter) classes f o r several stands representing associations and subassociations, except the A l l u v i a l complex. Figures give the numbers of stems over 1/2 inch d.b.h. i n an acre, i n successive f i v e - i n c h d.b.h. classes. Pinus refers to Pinus ponderosa i n a l l stands, except f o r the Pinus contorta i n stand 103.  APPENDIX 9 Tables showing the frequenoy d i s t r i b u t i o n of tree sizes i n several representative  Type Stand "• Tree sp.  Pu 70 Pinus Pseud.  stands by successive f i v e inch diameter  Pu 10 Pinus  Ari 19 Pinus  Ag 56 Pinus Pseud.  Ag 31 Pinus  classes  St 73 Pinus  St 69 Pinus  Rh 22 Pinus Pseud.  d.b.h. classes 1-5"  646  30  33  _  15  10  8  8  70  79  6-10  15  2  23  3  23  7  1  9  28  87  11 - 15  15  2  8  2  -  4  1  5  5  43  16 - 20  -  2  3  -  1  3  2  3  5  21 - 25  -  2  5  -  -  4  2  1  -  1  -  1  -  2  3  1  -  -  1  1  -  3  -  -  mm ,  -  -  -  -  -  -  —mm  _  26 - 30 31 - 35 36-40 41 - 50  mm  -  mm  —  •  1 —  1  • mm  mm  1  . -  mm  mm  50  ro o  Aro 49 Pinus d.b.h. olasses 1 - 5"  Aro 52 Pinus Pseud.  Aro 65 Pinus Pseud.  32  10  3  36  6-10  7  22  2  7  11 - 15  5  9  9  17  16 - 20  10  8  6  21 - 25  2  26 - 30 31 - 35 36 - 40 41 - 50 50  2 2  1  A-C 105 Pinus Pseud.  31  121  6  19  4  7  14  5  2  10  3  11  2  2  79  1  Ca 30 PinuB Pseud.  Ca 46 Pinus Pseud.  d.b. h. classes 1 - 5"  13  *5  28  6 - 10  1  5  7  11 - 15  4  1  3  -  16 - 20  4  1  3  21 - 25  3  1  1  26 - 30  -  31 - 35  -  36 - 40  1  41 - 50  1  50  —  mm  -  *3  CA 45 Pinus  13 1  Pseud.  97  0  -  -  5  -  4  -  4  -  1  2  4  -  6  mm  3  5  -  2  -  1  -  Ca 103 Pinus Pseud. oont.  Sy 61 Pioea eng.  Pseud.  Pinus  29  5  318  2  19  4  93  16  5  24  2  27  26  2  5  2  6  21  -  85  1  1  3  -  1  -  ^  -  3  3  18  mm  6  2  1  -  2  1  1  -  1  mm  mm  -  -  -  3  2  -  -  1  -  l  —  mm  mm  -  * In stand 30, and e s p e c i a l l y in stand 46, many Douglas - f i r seedlings were too small to be t a l l i e d in t h i s count* 1  Pseud.  5  2  -  Pinus  Sy 71  mm  229  APPENDIX 10  The unions.  composition and  ecological roles of  plant  10a.  L i s t s of species found i n t h i s work, which are assigned to unions on the bases of ecological range, and to a lesser degree, l i f e form.  10b.  Table showing the roles of the unions i n the various forest associations. The presentation follows that of Daubenmire (1952 a and b). The significance of the symbols used i s as follows i C major climax role c minor climax role  S s  major serai role minor s e r a i role  Appendix 10a. L i s t s of species which are here considered to belong to d e f i n i t e plant unions i n the Pinus ponderosa forests. 1. Purshia union. Purshia trldentata Chry3othamnus nauseosus  Ribes cereum  2. A r i s t i d a union. A r i s t i d a longlseta Sporobolus cryptandrus Oryzopsls hymenoides Carex f i l i f o l i a Stipa elmeri Astragalus p u r s h i i Lithospermum inclsum Phlox l o n g i f o l i a G i l i a pUngens G. aggregata  Chaenactis douglasii Chrysopsis v i l l o s a Eriogonum nlveum Aster canescens Oenothera p a l l i d a Opuntia f r a g i l i s Arenaria t e n e l l a Phacella leucophylla Polygonum d o u g l a s i i Erlgeron f i l i f o l i u s  3. Selaginella union. Selaginella rupestris var. Wallace! Tortula r u r a l i s Ceratodon purpureus Polytrichum p i l i f e r u m it. Poa secunda union. Poa c u s i c k i i P. secunda Festuca octoflora F. p a c i f i c a ' Bromus tectorum B. racemosus Draba verna Collinsia parviflora Ranunculus glaberrimU3 Arabis h o l b o e l l i i Epllobium minutum Lewisla rediviva 5. Agropyron splcatum union. Agropyron spicatum Festuca occidentalis F. scabrella Koelerla c r i s t a t a Stipa columbiana S. comata Balsamorhlza aagittata  Sisymbrium inclsum Silene a n t l r r h i n a Phacella l i n e a r i s Polemonium micranthum Mentzella a l b i c a u l l s Erigeron pumilus E. peucephyllus Plantago p u r s h i i Lomatlum macrocarpum  Lupinus sericeus Geranium viscosisslmum Eriogonum heracleoides F r i t i l l a r i a pudica Delphinium b l c o l o r Artemisia trldentata As_ t r i f i d a A. f r i g i d a  231  6. Rhus union. Rhus glabra R. radlcans Phlladelphus l e w l s i l Panlcum scribnerlanum Stephanomerla t e n u i f o l l a 7. Arctostaphylos union. Arctostaphylos uva-ursl Juniperus communis J . scopulorum Ceanothus velutlnus Shepherd!a canadensis Pentstemon fruticosus Carex concinnoldes Oryzopsls exigua Allium cernuum  Verbena bracteata Woodsia oregona Specularla p e r f o l i a t a Sambucus glauca  Antennarla howe11ii Fragarla virgin!ana Anemone multIfIda Sedum stenopetallum Apocynum androsaemlfollum Solldago mlssouriensls  8. Calamagrostis union. Calamagrostis rubescens Carex hoodii Poa ampla L i l i u m columblanum F r i t i l l a r i a lanceolata Arnica c o r d i f o l i a Lathyrus n u t t a l l i i Antennarla anaphaloid.es A. rosea Agoseris aurantlaca  Hleraclum alblflorum Seneclo aureus Thai!ctrum occldentale Aqullegla formosa Fragarla bracteata Lupinus nootkatensis C a s t i l l e j a miniata C. a n g u s t i f o l i a Polytrichum .juniperinum  9. Symphoricarpos union. Symphor1carpo s albus Berberis aquifolium Prunus virgin!ana Crataegus douglasii Spiraea lucida Clematis columbiana  Aster conspicuus Osmorhiza c h i l e n s i s Elymus glaucus Galium boreale Arnica fulgens Lonicera c i l i o s a  :  10. Rhytidladelphus union. Rhytidladelphus trlquetrus Mnium splnulosum Calllergone11a schreberi Brachythecium albicans Drepanocladus uncinatus  Dlcranum ma .jus D. strlctum P t l l l d i u m pulcherrlmum Barbilophozia hatcher! Hy.locomlum aplendens Psoroma hypnorum  232  11. Cetraria union. Cetraria glauca C. scutata C. juniperina Parmelia physodes Nephromopsls platyphylla  A l e c t o r i a Jubata A. sarmentosa Ramalina farinacea Usnea h i r t a  12. Pyrola union. Pyrola chlorantha P. p i c t a P. secunda Chimaphila umbellata Goodyera menziesli  Calypso bulbosa Habenaria unalaschensis Corallorhlza maculata Spiranthes romanzoffiana  13. Salix - Cornus union. Cornus s t o l o n i f e r a Salix laslandra Si f l u v i a t i l i s  S a l i x bebbiana Elaeagnus commutata  lit. PopulU3 trichocarpa union. Populus trichocarpa Betula papyrifera Alnus t e n u i f o l i a  Acer glabrum Clematis l i g u s t i c i f o l i a Corylus cornuta  15. Athyrium - Smilaclna union. Smilacina s t e l l a t a Athyrium f i l i x - f e m i n a Equisetum hyemale  A r a l i a nudicaulis Impatiens b i f l o r a  16. Solidago lepida union. Solidago lepida Apocynum cannabinum Agropyron g r i f f i t h s l i  Elymus lnnovatus E. canadensis Echinocystis lobata  17. Elymus condensatus union. Elymus condensatus  Equisetum laevigatum  1  APPENDIX 10b Roles played by the plant unions i n the forest associations and subassooiations  Union  1 Pu  la Ari  Purshia Aristida Selaginella Poa secunda Agropyron spicatum Rhus Arcto staphylo s Calamagrostis Sympho rioarpo s Rhyt idiadelphus Cetraria Pyrola Salix - Cornus Populus trichocarpa Athyrium - Smilaoina Solidago lepida Elymus condensatus  C  _  c0  S s S s  c  c  '—  —  -  —  Associations 2a 2 St Ag  Mi  -  s  —  mm  —  m  ~  —  —  s  s  —  —  -  —  mm  —  —  —  -  -  -  -  C Major climax role c Minor climax r o l e  C c  o —  —  -  s  —  —  -  -  —  s  —  -  8 AL  — —  •—  7 Sy  -  s C  —  -  -  ~'  —  -  -  S S  -  —  s s c  Subassooiations 6 4 5 Ca A-C Arc  0 C  —  and 3 Rh  -  C C c 0  mm  mm  -  s -  S s  c C c 0 0 s -  —  8  c  —  c C o • c s -  Major serai role Minor serai role  mm  s Mi M  S S S s S  23k  APPENDIX 11 Table showing the e c o l o g i c a l r o l e s of the tree species of this area i n the various associations  • ••  APPENDIX 11  Roles played by the tree species i n the various associations  Pu  Species Pinus ponderosa P. contorta Pseudotsuga menziesii Larix oooidentalis Picea engelmannii Thuja p l i c a t a Populus tremuloides P. trichocarpa Betula papyrifera Alnus t e n u i f o l i a Acer glabrum  C o  c  C  -  -  c •  -  -  -  Major olimax role Minor climax role  Rh  Aro  A-C  Ca  Sy  AL  C  S,o s C  S S  S s C s c  S  c  S s s  s o  s  m 0  -  -  --  s  -  -  -  -  -  S s  c  -  -  -  s  Major s e r a i role Minor serai role  -  S  -  c  -  s s S s s s  236  REFERENCES  Abrams, L. 191+0 - 1951. I l l u s t r a t e d f l o r a of the P a c i f i c States. Vols. 1 - 3 * Stanford University Press. Anonymous 1952 & 1953* Climate of B r i t i s h Columbia. Reports for 1952 and 1953* B.C.Dept. of A g r l c , V i c t o r i a . Arnold, J.F. 1950. Changes i n Ponderosa pine bunchgrass ranges i n northern Arizona r e s u l t i n g from pine regeneration and grazing. Jour. For. Ii8: 118. Bates, C.G. 1923. Physiological requirements of Rocky Mountain trees. Jour. Agr. Res. 21+: 97-l61i. and J . Roeser. 192li. Relative resistance of tree seedlings t o excessive heat. TJ.S.D.A. Dept. B u l l . 1263. Boivin, B. 195^. Pseudotsuga menzlesii (Mirbel) Franco versus Pseudotsuga t a x i f o l i a (Poiret) B r i t t o n : Boletim Sociedade Broteriana; 2b: 63. Braun-Blanquet, J . 1928. Plant Sociology. Ed. 1. Trans. G.D. F u l l e r and H.S. Conard. McGraw H i l l Co. 1932. Briegleb, P.A. 4 8 : 3*1.9.  1950. Growth of Ponderosa pine.  Jour. For.  Chapman, J.D. 1952. The climate of B r i t i s h Columbia. Paper presented to the 5 t h B.C. Natural resources conference, 27/2/-52. Clark, M.B. 1952. Preliminary study of growth and development i n some Douglas-fir - Ponderosa pine types. B.C.Forest Service Tech. Publ. 38. Coup land, R.T., 195^. The role of natural grassland i n research. Reprinted from Addresses and Proceedings of Farm Week, University of Saskatchewan. Daubenmire, R.F. 1939. The taxonomy and ecology of Agropyron splcatum and A^ inerme. B u l l . Torr. Bot. Club, 66: 327329. . 1914-0. Plant succession due to overgrazing i n the Agropyron bunchgrass p r a i r i e of southeastern Washington. Ecology, 21: 55-61i. . 191+2. An e c o l o g i c a l study of the vegetation o f southeastern Washington and adjacent Idaho. Ecological Monographs, 12: 53-79.  237  Daubenmire, R.F. 1952 (a) C l a s s i f i c a t i o n of the conifer forests of eastern Washington and northern Idaho. 1952 (b) Forest vegetation of northern Idaho and adjacent Washington, and i t s bearing on concepts of vegetation c l a s s i f i c a t i o n . E c o l o g i c a l Monographs,  22: 301-330.  —  1953* Nutrient content of l e a f l i t t e r of trees i n the northern Rocky Mountains. Ecology, 3 4 786. #  :  and M.E. Deters. 191^7. Comparative studies of growth i n deciduous and evergreen trees. Bot. Gaz.  109: 1-12.  Eastham, J.W. 1947. Supplement to 'Flora of southern B r i t i s h Columbia* of J.K. Henry. B.C. Prov. Mus. Special Publ. No. 1. Fowells, H.A. and B.M. K i r k . 1945- A v a i l a b i l i t y of s o i l moisture to Ponderosa pine. Jour. For. 431 601. Haasis, F.W. 1921. Relations between s o i l type and root form i n Western yellow pine seedlings. Ecology, 2: 292-303. Halliday, W.E.D. 1937. A forest c l a s s i f i c a t i o n f o r Canada. Can. Dept. Mines and Resources, Forest Res. B u l l . 89. Hartley, C. 1918. Stem lesions caused by excessive heat. Journ. Agr. Res. lij.: 595 - 601t. Hatter, J . 1953. Moose s i t u a t i o n i n central B.C. west Sportsman, 8 ( 9 ) : 9 - 17.  North-  Henry, J.K. 1915. Flora of"southern B r i t i s h Columbia and Vancouver Island. W.J. Gage & Co. H i l l , R.R. and Harris, D. 1943. Food preferences of Black H i l l s deer. Jour. W i l d l i f e Management, 7: 233-235. Hitchcock, A.S. 1950. Manual of the grasses of the United States. Ed. 2, revised by A. Chase. U.S.D.A. Misc. Publ. 200. Hitchcock, C.L. Grasses and grass-like plants of Montana, Idaho, Washington, Alberta and B r i t i s h Columbia. University of Washington bookstore. Holtby, B.E. 1947. S o i l texture as a s i t e indicator i n the Ponderosa pine stands i n southeastern Washington. Jour. For. 45: 824.  (  238 * Ilvessalo, Y. 1929. Notes on some forest s i t e types i n North America. Acta Porestalia Pennica, 34(39) : 1-111. Keen, P.P. 1942. Eonderosa pine tree classes redefined. Jour. For. 41: 249-253. 1952. Insect enemies of western f o r e s t s . Misc. Publ. 273.  U.S.D.A.  Krajina, V. 1933. Die Pflanzengesellshaften des MlynicaTales i n den Vysoke Tatry (Hohe Tatra). Beiheftezum Bot. Centralbl. Bd. $0 Abtly. 2 Heft 3: 774-975, and 1934 Bd. 51 Abtlg. 2 Heft 1: 1-248. Kujala, V. 1945* Waldvegetationsuntersuchungen i n Kanada. Annales Academiae Scientiarum Pennicae, Series A: Iv. Biologica 7. L i t t l e , E.J. 1953. Check l i s t of native and naturalized trees of the United States (including Alaska). U.S. Forest Service, Agr. Handbk. No. 1+1. Lutz, H.J. and R.F. Chandler, & Sons Inc. N.Y.  191+6.  Forest s o i l s .  Meagher, G. 1950. Reproduction of Ponderosa pine. For. 48: 188.  J . Wiley Jour.  Meyer, W.H. 1934* Growth i n s e l e c t i v e l y cut Ponderosa pine forests of the P a c i f i c Northwest. U.S.D.A. Tech. B u l l . No. 407. Ogilvie, R.T. 1955. S o i l texture of Pinus ponderosa communities i n B r i t i s h Columbia. University of B r i t i s h Columbia. Master's Thesis (Unpublished). Pearson, G.A. 1918. The r e l a t i o n between spring p r e c i p i t a t i o n and height growth of Western yellow pine saplings. Jour. For. 16: 677-689. X920. Factors c o n t r o l l i n g d i s t r i b u t i o n of forest types. Part 1 i n Ecology, 1: 139-159. Part 2 i n Ecology, 1: 289-308. 192li. seedlings.  Studies i n transpiration of coniferous tree Ecology, 5*340-34-7.  1930. 145-160.  Eight and moisture  i n forestry.  Ecology, 11:  1931. Forest types i n the Southwest as determined by climate and s o i l . U.S.D.A. Tech. B u l l . No. 247.  239  Pearson, G.A. 1950. Management of Ponderosa pine i n the Southwest. U.S.D.A. Agric. Monogr. No. 6. 1951. A comparison of the climate i n four Ponderosa pine regions. Jour. For. 49: 258. Peck, M.E. 19l|l. A manual of the higher plants of Oregon. Binfords & Mort. Roe, A.L. 1952. Growth of s e l e c t i v e l y cut Ponderosa pine stands i n the upper Columbia Basin. U.S.D.A. Ag. Handbk. No. 39. Rummelj R.S. 1951. Some e f f e c t s of livestock grazing on Ponderosa pine forest and range i n Central Washington. Ecology, 32: 59I4.-607. Sanderson, M. 1948. The climates of Canada according to the new Thornthwaite c l a s s i f i c a t i o n . S c i . Ag. 28: 501-517. Schulman, E. 1946-47. Dendrochronologies Canada. Tree-Ring B u l l . 13:. 10-24.  i n southwestern  Smith, D.M. 1951. Influence of seedbed conditions on the regeneration of Eastern white pine. Connecticut Ag. Expt. Sta. B u l l . 545. Spillsbury, R.H. and D.S. Smith. 1947. Forest site types of the P a c i f i c Northwest. B.C. Forest Service Tech. Publ. No. 30. and Tisdale, E.W. 1944« S o i l plant relationships and v e r t i c a l zonation i n the southern Interior of B r i t i s h Columbia. S c i . Ag. 24: 395. Stone, E.C. and H.A. Fowells, 1954* Drought survival of Ponderosa pine seedlings. C a l i f . Ag. 8 ( 7 ) : 9. and A..Y. Shachori, 1954« Dew. C a l i f . Ag. 8(12): 7.  Absorbtion of a r t i f i c i a l  Sukatchev, V.N. 1928. P r i n c i p l e s of c l a s s i f i c a t i o n of the Spruce communities of European Russia. Jour. Ecology, 16: 1 - 18. Tarrant, R.F., L.A. Isaac, and R.F. Chandler, 1951. Observations on l i t t e r f a l l and foliage nutrient content of some P a c i f i c Northwest tree species. Jour. For.  49: 914-915.  Tisdale, E.W. 1947. The grasslands of the southern Interior of B r i t i s h Columbia. Ecology, 28: 346.  Tisdale, E.W. 1950. Grazing of forest lands i n Interior B r i t i s h Columbia. Jour. For. 48: 856-860. Weaver, H. 1947. Management problems i n the Ponderosa pine region. Northwest S c i . 21: 160. 1951'. Observed e f f e c t s of prescribed burning on perennial grasses i n Ponderosa pine f o r e s t s . Jour. For. 49: 267. Weaver, J.E. and F.E. Clements. McGraw H i l l Co.  1938. Plant Ecology  Whitford, H.N. and R.D. Craig. 1918. Forests of B r i t i s h Columbia. Commission of Conservation, Canada. Whittaker, R.H. 1953* A consideration of the climax theory: the climax as a population and pattern. Ecological Monographs, 23: 41-78.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0106268/manifest

Comment

Related Items