UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Growth of fishes in different salinities Canagaratnam, Pascarapathy 1957

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1957_A8 C3 G8.pdf [ 3.34MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0106235.json
JSON-LD: 1.0106235+ld.json
RDF/XML (Pretty): 1.0106235.xml
RDF/JSON: 1.0106235+rdf.json
Turtle: 1.0106235+rdf-turtle.txt
N-Triples: 1.0106235+rdf-ntriples.txt
Original Record: 1.0106235 +original-record.json
Full Text
1.0106235.txt
Citation
1.0106235.ris

Full Text

GROWTH OP FISHES IH DIFFERENT SALINITIES by PASCARAPATHT GANAGARATNAM B.Sc,  UNIVERSITY OF CEYLON,  1951  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OP ARTS in Department  the of  Zoology  Ve accept t h i s t h e s i s as conforming t o  the  standard r e q u i r e d from candidates f o r  the  degree of MASTER OF ARTS  Members of the Department i  of  Zoology  THE UNIVERSITY OF BRITISH COLUMBIA March,  1957.  ABSTRACT  J u v e n i l e sodceye, coho, and  chum salmon and  a d u l t g o l d f i s h were s t u d i e d f o r a p e r i o d of t e n weeks t o determine whether v a r y i n g degrees of s a l i n i t y t h e i r growth.  The  temperature and  p o s s i b l e i n f l u e n c e s of such f a c t o r s as  food were r i g i d l y c o n t r o l l e d .  salmon showed h i g h e r percent weight i n c r e a s e media.  influenced  Coho grew best i n 12#o  s a l i n i t y and  Coho and  chum  i n the s a l i n e chum had  a  h i g h e r percent i n c r e a s e i n weight i n 30#° s a l i n i t y .  The  growth of sockeye i n the s a l i n e medium was  retarded  first  weeks i t surpassed  e i g h t weeks, but d u r i n g the l a s t two  f o r the  that of the corresponding group of sockeye i n f r e s h water. The  e a r l y r e t a r d a t i o n i n growth o f sockeye, i n the s a l i n e  medium, i s a t t r i b u t e d to i t s l o n g e r f r e s h water l i f e . a d u l t g o l d f i s h d i d not show any weight i n c r e a s e .  The  records  The  significant difference i n  of the s i z e s a t t a i n e d  s e v e r a l s p e c i e s of f i s h i n h a b i t i n g both sea and show t h a t s a l i n i t y enhances growth.  The  by  f r e s h waters  evidence from  experimental study, by other workers, on the i n f l u e n c e  of  d i f f e r e n t environmental f a c t o r s on growth of f i s h e s , i n d i c a t e s that changes i n m e r i s t i e counts or body  proportions,  i n e a r l y development, produces d i f f e r e n t growth r a t e s . changes c o u l d e v e n t u a l l y a f f e c t the u l t i m a t e  size.  p h y s i o l o g i c a l mechanisms o f growth of f i s h e s are not understood, but environment.  The well  i t has been suggested t h a t the i n f l u e n c e  hormones on growth i s probably ameliorated  These  i n the marine  of  In p r e s e n t i n g the  this thesis in partial fulfilment  requirements f o r an advanced degree at the  of  University  o f B r i t i s h Columbia, I agree t h a t the  L i b r a r y s h a l l make  it  study.  f r e e l y available f o r reference  and  I  further  agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may  be granted by the  Department or by h i s r e p r e s e n t a t i v e .  Head o f  my  I t i s understood  t h a t copying or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not  Department o f  be allowed without my  ~Z-oo A ° ^ y  The U n i v e r s i t y of B r i t i s h Vancouver 8, Canada.  Columbia,  written  permission.  ACKNOWLEDGEMENTS  The author wishes t o express h i s g r a t i t u d e to Dr. W.S.  Hoar, F.R.S.C. f o r suggesting,the problem and  s u p e r v i s i n g the work. Dr. W.A.  He wishes t o thank s i n c e r e l y  Clemens, P.R.S.C., and Dr. C.C. L i n d s e y f o r t h e i r  many u s e f u l suggestions and c r i t i c i s m s . He a l s o thanks Messrs. E . J . Crossman and D.E. M c A l l i s t e r f o r t h e i r h e l p and Mr. D.F. A l d e r d i c e o f the B i o l o g i c a l S t a t i o n , Nanaimo, B r i t i s h Columbia, f o r s u p p l y i n g the chum salmon used i n t h i s experiment. T h i s work was made p o s s i b l e through an award o f a Colombo-Plan  S c h o l a r s h i p by the T e c h n i c a l  Co-operation S e r v i c e , Department  of Trade and Commerce,  Ottawa, on an a p p l i c a t i o n made by the Government o f Ceylon.  - i -  TABLE OF CONTENTS Page INTRODUCTION  1  LITERATURE SURVEY  2  EXPERIMENTAL METHODS  9  Procedures  10  Diets  11  Feeding  •  12  Weighing the F i s h  13  EXPERIMENTAL RESULTS  15  Sockeye  •  15  Coho - S e r i e s 1  19  Coho - S e r i e s 2  19  Chum  19  Goldfish  21  SUMMARY OF EXPERIMENTAL RESULTS  24  DISCUSSION  26  Environmental E f f e c t on Growth  •  26  M e r i s t i c Changes  26  Body P r o p o r t i o n s  27  Growth and S i z e o f F i s h e s  28  S a l i n i t y and S i z e  31  P h y s i o l o g i c a l Mechanisms Responsible f o r Growth....  32  Osmotic S t r e s s  32  Endocrine F u n c t i o n  32  S a l i n i t y and T h y r o i d A c t i v i t y  34  SUMMARY  36  LITERATURE CITED  37  APPENDICES  42  - i i-  LIST OF TABLES Table I.  II. III.  Page S i z e s a t m a t u r i t y o f marine, b r a c k i s h , and fresh,water f i s h e s ..  3  Length and weight o f s p r i n g salmon from New Zealand and B r i t i s h Columbia  7  F i s h used i n experimental study  9  LIST OF FIGURES  "  Figure 1.  Mean weekly weight o f sockeye i n f r e s h water and 6 $ o s a l i n i t y  16  2.  Mean weekly weight o f coho s e r i e s 1 and 2 i n f r e s h water and i n the v a r i o u s s a l i n i t i e s ...  17  3.  Mean weekly weight o f chum i n 6 $ o and 30%° salinity  18  4.  Percentage i n c r e a s e i n weight o f i n d i v i d u a l chum i n  5.  6.  and  30?£o s a l i n i t y  20  Mean weekly weight o f g o l d f i s h i n . f r e s h water and 6foe s a l i n i t y  22  Percentage i n c r e a s e i n weight o f a l l groups i n f r e s h water and i n the v a r i o u s s a l i n i t i e s a t f i v e and t e n weeks  23  - iii  -  APPENDICES  Appendix I.  II.  III.  17.  V.  VI.  VII.  VIII. IX.  X.  XI. XII.  XIII.  Page  Dr. E . P e r c i v a l ' s l e t t e r t o P r o f . Hoar, and data on s p r i n g salmon from New Zealand  42  Sockeye. Weekly r e c o r d o f weight i n c r e a s e i n f r e s h water ...  47  Sockeye. Weekly r e c o r d of weight i n c r e a s e i n 6?&o s a l i n i t y  48  Coho s e r i e s 1. - i n f r e s h water  Weekly r e c o r d o f weight i n c r e a s e 49  Coho s e r i e s 1. Weekly r e c o r d of weight i n c r e a s e in 6 # ° salinity  50  Coho s e r i e s 1. Weekly r e c o r d of weight i n c r e a s e i n 12% o s a l i n i t y  51  Coho s e r i e s 2. i n f r e s h water  Weekly r e c o r d o f weight i n c r e a s e ...  52  Coho s e r i e s 2. Weekly r e c o r d o f weight i n c r e a s e i n 18^o s a l i n i t y  53  Chum. Weekly r e c o r d o f weight i n c r e a s e i n 6%o salinity  54  Chum. Weekly r e c o r d o f weight i n c r e a s e i n 30#o salinity  55  Chum.  56  Data on i n d i v i d u a l weights  G o l d f i s h . Weekly r e c o r d o f weight i n c r e a s e i n f r e s h water  57  G o l d f i s h . Weekly r e c o r d o f weight i n c r e a s e i n 6% s a l i n i t y  58  0  INTRODUCTION  Landlocked t e l e o s t s a r e u s u a l l y s m a l l e r than t h e i r marine c o u n t e r p a r t s ( o f the same s p e c i e s ) . the kokanee salmon (Oncorhynchus  F o r example,  nerka k e n n e r l y i (Suckley)  reaches a s i z e o f 200 mm. t o 400 mm. a t m a t u r i t y , while the sea-going sockeye salmon, Oncorhynchus nerka nerka (Walbum), averages 605 mm. 831  i n l e n g t h and has been r e p o r t e d t o a t t a i n  mm. Non-migratory  anadromous f i s h sometimes show  an exhaustion o f the t h y r o i d gland (Hoar, 1952) and s i n c e the hormone produced by t h i s gland i s e s s e n t i a l f o r t h e growth o f most v e r t e b r a t e s , i t has been suggested (Hoar, 1956) t h a t the excessive osmotic s t r e s s i n f r e s h water c o u l d account f o r the smaller s i z e .  Since some s p e c i e s , such as the smelt (Osmerus  mordax) and the sea-trout (Salmo t r u t t a ) , grow e q u a l l y w e l l i n f r e s h water and i n the ocean, i t i s evident that t h i s s i t u a t i o n i s not u n i v e r s a l . In t h i s work an attempt i s made t o evaluate the e f f e c t o f osmotic s t r e s s and s a l i n i t y on t h e growth o f t h r e e s p e c i e s o f salmon and the g o l d f i s h .  Two l i n e s o f r e s e a r c h  have been f o l l o w e d : - (a) the l i t e r a t u r e has been reviewed and an attempt made to c o r r e l a t e s i z e s o f mature anadromous f i s h and o t h e r s p e c i e s w i t h the s a l i n i t y o f t h e i r  environment,  (b) experiments have been designed t o t e s t the s a l i n i t y e f f e c t when d i v o r c e d from d i e t a r y and such environmental v a r i a b l e s - a a temperature, a e r a t i o n and volume o f water.  LITERATURE SURVEY  An extensive search, o f t h e l i t e r a t u r e was made f o r s i z e s o f f i s h o f d i f f e r e n t s p e c i e s t h a t occur i n h a b i t a t s of d i f f e r e n t s a l i n i t i e s .  Only a few records o f s i z e s ( e i t h e r  l e n g t h o r weight) o f f i s h other than the anadromous forms have been found. E l e v e n s p e c i e s o f f i s h o c c u r i n g i n two o r three d i f f e r e n t h a b i t a t s a r e l i s t e d i n Table I , t o g e t h e r w i t h s i z e s a t m a t u r i t y o r as otherwise one,  indicated.  their  In a l l cases but  Osmerus mordax, the marine and b r a c k i s h water i n h a b i t a n t s  are t h e l a r g e r .  Some show a p p r e c i a b l e d i f f e r e n c e s and warrant  the c o n c l u s i o n t h a t the marine environment favours growth i n these s p e c i e s .  Even among marine s p e c i e s , such as the P a c i f i c  h e r r i n g , Olupea harengus. o r the g i a n t perch, Lat es the l a r g e r s i z e s occur i n h i g h e r Salinities  calcarifer  salinities.  o f b r a c k i s h o r e s t u a r i n e waters, and  a l s o those o f "purer" sea water, vary c o n s i d e r a b l y i n the d i f f e r e n t p a r t s o f the world.  The A t l a n t i c h e r r i n g , Clupea  harengus. measures from 240 mm. t o 350 mm. while t h e same s p e c i e s o c c u r i n g i n the B a l t i c measures 160 mm. The  t o 200 mm.  s a l i n i t y of the B a l t i c v a r i e s from 20$° i n the south t o 1$  i n some of the northern r e g i o n s .  Hodgson (1934) s t a t e s t h a t  the s a l i n i t y i n the regions which the h e r r i n g , frequents i s roughly one-seventh t h a t o f t h e A t l a n t i c  (35#<>).  Similarly  the g i a n t perch, Eat es c a l c a r i f e r . o f t h e I n d o - P a c i f i c v a r i e s i n s i z e i n the d i f f e r e n t r e g i o n s (Roughley, 1953), but no records o f t h e s a l i n i t i e s , temperatures, o r t h e p r o d u c t i v i t i e s o f t h e waters i s g i v e n . Anadromous forms, t h a t mature i n t h e sea, and t h e i r r e l a t e d forms t h a t mature i n l a k e s present contrasts.  some v i v i d  Some o f the forms, f o r which measurement data  were a v a i l a b l e , have been i n c l u d e d i n Table I .  The sockeye  TABLE I - S i z e s a t m a t u r i t y o f marine, b r a c k i s h and freshwater f i s h e s SPECIES  MARINE  BRACKISH WATER  PRESHWATER  AUTHORITY  Chanos chanos (milk f i s h )  600 mm. - 1500 mm. (Hawaian f r e s h water ponds)  1800 mm. (Gulf o f Mannar, Indian Ocean)  Jordan and Evermann, 1903 Munro, 1955  Over 1500 mm. (Indian Ocean)  Weber and Beaufort, 1913  1500 mm. (Australian estuarine waters)  Rdughley, 1953  257 mm. (Krusadai, India) 1  403 mm. (Mandapam Camp, India) 1  604 mm. (Rameswaram, India) 1  Chidambaram and Unny, 1943  Clupea harengus ( A t l a n t i c h e r r i n g ) 240 mm.-350 mm. (Atlantic) Clupea  160 mm.-200 mm. (Baltic)  Hodgson, 1934  pallasi  (Pacific herring)  450 mm. (California to Alaska)  1 - These measurements were taken only a f t e r one year's growth of the m i l k f i s h i n the v a r i o u s experimental ponds.  Jordan and Evermann, 1903 Clemens and Wilby, 1949  TABLE I - continued.  SPECIES  MARINE  Lates c a l c a r i f e r (Giant  263 Kg. (Bay o f Bengal)  perch)  Salmo g a i r d n e r i gairdneri (Steelhead t r o u t )  BRACKISH WATER  FRESHWATER  AUTHORITY  27 Kg. - 45 Kg. (Australian estuaries)  Roughley, 1953  1500 mm. (Australian estuaries)  Munro, 1955  Clemens and Wilby, 1949  1134 mm. (British Columbia)  Salmo g a i r d n e r i kamloops (Kamloops t r o u t )  907 mm. (British Columbia)  C a r l and Clemens, 1953  i I  Oncorhynchus nerka nerka (Sockeye)  C a r l and Clemens, 1953  830 mm. (British Columbia) 200 mm. - 402 mm.  Oncorhynchus nerka k e n n e r l y i (Kokanee)  160 mm. - 380 mm. 220 mm. - 410 mm. (Cultus Lake, B r i t i s h Columbia) 2 - The maximum s i z e s on r e c o r d .  C a r l and Clemens, 1953 Ricker,i1940  TABLE I - continued. SPECIES  Salmo s a l a r ( A t l a n t i c salmon)  Pomolobus pseudoharengus (Alewife) Osmerus mordax (Smelt)  Salvelinus fontinalis (Eastern brook trout) Coregonus , clupeaformis (Whitefish)  MARINE  FRESHWATER  BRACKISH WATER  350 mm. (Grand Lake, Nova S c o t i a )  480 mm. (Nova S c o t i a )  258  145 mm. (Lake Ontario)  mm.  150 mm. - 250 mm. (New Brunswick)  AUTHORITY  Wilder, 1947  P r i t c h a r d , 1929  McKenzie, 1941 150 mm. - 250 mm.  Dymohd, 1944  274 mm. (New Brunswick)  Wilder, 1952  334  mm. (New Brunswick)  403 mm. - 466 mm. 1359 gm. - 1812 gm.  Rawson, 1946 Rawsbn, 1946  479 mm. 2038 gm. (Redberry Lake, Saskatchewan) 1132 gm. - 1585 gm. (Lake Winnipeg, Manitoba)  Hinks, 1943  - 6 -  salmon of the P a c i f i c coast Oncorhynchus nerka nerka and i t s nonmigratory r e l a t i v e , given a s u b s p e c i f i c s t a t u s (Oncorhynchus nerka k e n n e r l y i ) form an i n t e r e s t i n g comparison.  R i c k e r (1940)  s t a t e s t h a t the only known morphological d i f f e r e n c e between these two  forms i s the s m a l l e r average s i z e , at m a t u r i t y , o f the  migratory salmon.  non-  Non-migratory sockeye c o n s i s t o f two types  -  the r e s i d e n t s or kokanee, the progeny of the l a c u s t r i n e form and the " r e s i d u a l " , the progeny of the migratory forms ( R i c k e r , 1938). Both forms are d i s t i n c t l y s m a l l e r than t h e migratory sockeye, as w i l l be seen from the f i g u r e s g i v e n i n Table I.  The a l e w i f e ,  Pomolobus pseudoharengus and the E a s t e r n brook t r o u t , S a l v e l i n u s f o n t i n a l i s . are a l s o s m a l l e r i n t h e f r e s h water environment. The two forms of t r o u t , Salmo g a i r d n e r i . i n the two show d i f f e r e n c e s i n s i z e .  These two forms of t r o u t have been  regarded as subspecies f o r convenience, r e a l morphological  environs a l s o  but they do not have any  d i f f e r e n c e (Lindsey, 1956). The data on s i z e of S p r i n g salmon i n New  i s summarized i n Table I I .  Zealand  These data have been very k i n d l y  s u p p l i e d by Dr. E. P e r c i v a l (1956).  The d i f f e r e n c e between the  average l e n g t h s of the sea-run Quinnat salmon and of t h e  "land-  foTm  l o c k e d " form ranges from 170 mm.  t o 400 mm.  The  sea-run^is  comparable t o t h a t of t h e west coast of Canada. Johnsen (1944) mentions s e v e r a l s p e c i e s t h a t vary i n s i z e i n the d i f f e r e n t North European waters - the 15-spined  s t i c k l e b a c k , S p i n a c h i a s p i n a c h i a , two-spotted  goby,  Gobius f l a v e s c e n s . l a n t e r n f i s h , Myctophum g l a c i a l e . and Pleuronectes p l a t e s s a . to mention a few,  plaice  are some of the  that show great v a r i a t i o n i n the s i z e at m a t u r i t y .  species  He s t a t e s  that when a s p e c i e s v a r i e s i n s i z e w i t h i n i t s h a b i t a t , i t u s u a l l y f i n d s t h e optimum c o n d i t i o n s i n p l a c e s where i t reaches largest s i z e .  Temperature and  the  food are mentioned as t h e  chief  c o n t r o l l i n g f a c t o r s but there i s no statement r e g a r d i n g the s a l i n i t y i n the d i f f e r e n t a r e a s . g l a c i a l e i n the Mediterranean  F o r Instance, Myctophum  i s h a l f the s i z e of that  found  TABLE I I - Length and weight o f s p r i n g salmon (Oncorhynchus tschawytscha) from New Zealand (data obtained from Dr. E. P e r c i v a l ) and B r i t i s h Columbia.  "Type", P l a c e  Date  Average l e n g t h mm.  Average weight gm.  Freshwater h a b i t a t "Landlocked", Quinnat salmon, Macdonald creek, Westland  May, 1955  569  May, 1956  546  1944  746  4800  1944  900  6000  Sea-run f i s h Quinnat salmon - Waimakariri "  "  - Opihi  Spring salmon - B r i t i s h Columbia  907  1  1 - C a r l and Clemens, 1953. These salmon a t t a i n 1450 mm. and weights from 4500 gm. t o 22,500 gm. on r e c o r d .  - 8 -  i n the Norwegian waters.  The d i f f e r e n c e i n the s a l i n i t y i n the  two areas ranges from 5#« t o 10$o (Sverdrup et_ a l , 1942). Pleuronectes 210 mm.  p l a t e s s a i n i t s f i f t h - - y e a r o f growth ranges from  t o 400 mm.  i n the West B a l t i c .  i n I c e l a n d , hut only from 170 mm.  t o 280  mm.  In t h i s s p e c i e s - i n t h e West B a l t i c , the  s i z e range i s g e n e r a l l y s m a l l e r - f o r a l l t h e groups beyond the t h i r d year.  The s a l i n i t y i n the West B a l t i c never exceeds 16$<>  while i n I c e l a n d i t i s about 35$° .  Johnsen s t r e s s e s only the  v a r i a t i o n s i n the temperature and t h e n u t r i e n t s i n these waters but never mentions t h e v a r i a t i o n s i n t h e s a l i n i t i e s .  Hodgson  (1934) on the other hand states- d e f i n i t e l y t h a t the s i z e v a r i a t i o n i n the A t l a n t i c h e r r i n g i n the B a l t i c may be due t o both temperature and  salinity.  EXPERIMENTAL METHODS Details of the fish used i n this experimental study are given in Table III. TABLE III - Pish used in experimental study. SPECIES  SOURCE  INITIAL SIZE (average)  Oncorhynchus nerka (Sockeye)  University hatchery. Eggs from Gultus lake,  2.78 cm.  Oncorhynchus keta (Chum)  Nanaimo Biological station. Eggs from Jones creek.  One orhynchus kisutch  University hatchery. Eggs from Capilano river.  CCoKo)  1st Series  6.7 cm. 2.42 gm.  3.6 cm. 0.469 gm.  Eggs received 25th November, 1955.  Eggs received 12th November, 1955. Hatched January 2, 1956. Alevin began feeding February 18, 1956 - l i v e r four times a day. Were raised i n salinity. Eggs received 25th November, 1955.  4.2 cm.  Oncorhynchus kisutch  1.007 gm,  2nd Series Carassius auratus (Goldfish)  0.207 gm.  PREVIOUS HISTORY  Stouffville, Ontario.  8.4 cm. 12.07 gm.  Received as adults and held at University hatchery for about two months.  - 10 -  Procedures The f i r s t  s e r i e s of coho and t h e sockeye were kept  i n f i v e g l a s s tanks (50.4 cm. x 27.7 tanks (181.5 cm. x 18.9 em. x 26.5  cm. x 30.3 cm.)\  cm.)  Two  long  were used f o r t h e second  s e r i e s of coho and the chums occupied two tanks (45.5 cm. x 24 x 20 cm.).  The g o l d f i s h were kept i n two g l a s s tanks (60.5 cm.  45.5 cm. x 40  x  cm.). The t h r e e tanks of t h e f i r s t  the  cm.  s e r i e s o f coho and  two tanks c o n t a i n i n g sockeye were p l a c e d i n a l a r g e m e t a l  trough, through which tap water was c o n t i n u o u s l y c i r c u l a t e d . T h i s maintained t h e temperature of t h e tanks a t that o f the tap  water.  A l l these t a n k s were subjected t o the same v a r i a t i o n  i n temperature.  Temperature  was thus maintained w i t h i n a range tanks  Q  of  2 0 .  The second s e r i e s of coho tanks aid chuntywere  similarly  p l a c e d i n water baths so t h a t each group compared was s u b j e c t t o the  same v a r i a t i o n .  G o l d f i s h tanks were kept i n a room i n t h e  l a b o r a t o r y and a l t h o u g h the v a r i a t i o n i n temperature was  greater  (5 C°) i t was the same f o r both tanks. S a l i n i t i e s o f 6#o, 12$ , 0  i n the- experiment.  18$«, and 30%o were used  These were prepared from sea water (taken from  Burrard I n l e t ) s u p p l i e d weekly i n l a r g e carboys.  Each week a  sample o f t h e f r e s h sea water was t i t r a t e d by the m o d i f i e d Mohr method. sea  A t t h e beginning of t h e experiment the s a l i n i t y o f the  water ranged from 20$o t o 22$° and d u r i n g t h e l a s t few weeks  i t was i n the neighbourhood o f 28% o . of  Proportionate quantities  d e c h l o r i n a t e d water were added t o make up the v a r i o u s  salinity  strengths 18%o and below, and sea s a l t was added t o make up the 30$o s t r e n g t h . the  Samples from each tank were t i t r a t e d t o v e r i f y  salinity. A l l tanks were c l e a n e d d a i l y by s i p h o n i n g the  f a e c a l d e p o s i t s and decomposing  food from the bottom.  Water i n  a l l tanks was c o m p l e t e l y changed twice a week. There was no p r o v i s i o n f o r t h e r e c i r c u l a t i o n o f water.  A steady flow of i r was maintained i n each tank.  The  l o n g tanks had two a i r breakers p l a c e d a t equal d i s t a n c e s from the  ends.  - 11 Diets The daily amount of food necessary for proper growth of fish was taken as 10$ of the body weight (Barrett and Hum, 1954). Several ingredients listed below were mixed in the proportions indicated to produce an acceptable and convenient diet. Canned salmon 60 gm Ground l i v e r (beef) 25 gm Clark's trout food 12 gm Pablum (mixed cereal) .... 2. gm Brewers yeast 1 gm Pew drops of cod l i v e r o i l 100 gm. Clark's trout food is said to contain a l l the necessary ingredients for trout growth, but the salmon were unaccustomed to i t and did not take i t readily. The importance of vitamin B complex (Phillips, 1946) and vitamin A (Davis, 1927; Outsell, 1939; Phillips, 1940) in trout diet, has been stressed. Davis and Gutsell (1939) believe that cod l i v e r o i l in the diet was a successful method of including vitamin A but Phillip et a l (1940) maintain that the best source is beef-liver. The mixture, as given above, contained the essentials and since the fish fed well i t was used throughout the experiment. During the f i r s t week of the experiment the proportions varied somewhat while the best formula was being developed. Since food was principally canned salmon i t was called "salmon paste". The ingredients listed above were mixed well and ground into a fine paste. Usually about two weeks supply was prepared at one time. The paste was spread in thin even layers and placed in the cooler part of a refrigerator to harden and desiccate quickly. The hardened paste may be broken up into fine particles or powdered depending on the size of fish to be fed. Small fish feed well only on finely ground particles. There are several advantages in using dried food. In an experiment of this type the amount of food fed is an important factor and dried food can be weighed accurately. The  - 12  s i z e of the food p a r t i c l e s can be s e l e c t e d t o s u i t the s i z e o f the f i s h b e i n g f e d .  Young salmon and even g o l d f i s h show a  preference f o r f e e d i n g on food p a r t i c l e s f l o a t i n g on the s u r f a c e and d r i e d food p a r t i c l e s f l o a t f o r sometime.  Since v e r y l i t t l e  food s i n k s t o the bottom the l o s s o f food v a l u e due t o l e a c h i n g i s i n s i g n i f i c a n t , and p o l l u t i o n o f the tank due t o decomposing food i s a t a minimum. Feeding The t o t a l weight o f each group o f f i s h was recorded a t t h e beginning and weekly t h e r e a f t e r .  The q u a n t i t y  of d r i e d salmon paste f e d p e r day was equal t o 10% o f the body weight o f t h e f i s h . "The f o o d f o r each group was weighed separa t e l y d a i l y and f e d i n approximately equal amounts three times a day (8 a.m., 11 a.m., and- 2- p>. mv-)v  D u r i n g t h e f i r s t week much  of the food was not consumed because the f i s h were f r i g h t e n e d when the i n v e s t i g a t o r approached the tanks.  From the second week  onwards they came t o the s u r f a c e and swam about a c t i v e l y u n t i l fed. Coates and Schwab (1956) r e p o r t that f i s h tend t o be h e a l t h i e r when g i v e n t h e i r n a t u r a l food and t h a t young grew w e l l on b r i n e shrimp n a u p l i i .  salmon  I t was decided, t h e r e f o r e ,  t o add l i v i n g b r i n e shrimp n a u p l i i t o the salmon paste d i e t . B r i n e shrimp eggs were hatched i n t h r e e - g a l l o n g l a s s j a r s under heavy a e r a t i o n .  Two and a - h a l f g a l l o n s o f water  were added t o each j a r . About one t h i r d o f t h e volume was sea water and the s a l i n i t y made up t o about 28%o by adding sea s a l t . One teaspoon o f d r i e d shrimp eggs was added t o each j a r and the temperature was kept a t about 29 C° u n t i l h a t c h i n g was completed. Bach j a r was heated s e p a r a t e l y by p l a c i n g a 75 watt f l o o d l i g h t at a s u i t a b l e d i s t a n c e from t h e j a r such that the temperature i n the j a r never exceeded 29 C ° o r dropped below 26 C ° .  Under these  c o n d i t i o n s i t took about two days f o r complete h a t c h i n g and about 75% o f n a u p l i i p r o d u c t i o n was o b t a i n e d .  The n a u p l i i were  separated by f i l t e r i n g through a p i e c e o f No. 9 b o l t i n g  silk  - 13 -  (6.5 em. diameter) s t i t c h e d and s e a l e d overr-ar p l a s t i c j a r . The b r i n e shrimp n a u p l i i were f e d t o f i s h d a i l y a t about 5 or-6 p.nr. f o r feeding.  Since i t was summer t h e r e was ample l i g h t  The chum tanks were i n a dark room and an  automat-  i c l i g h t i n g system was operated so that a l l had an equal amount of l i g h t .  The amount o f t h i s feed was p r o p o r t i o n a l (by volume)  t o the weight of the groups o f f i s h .  The f i l t e r e d shrimps were  washed w i t h f r e s h water i n t o a 250 ml. graduated c y l i n d e r .  This  was then shaken w e l l and the p r o p o r t i o n a t e volumes were q u i c k l y decanted i n t o beakers and reehecked before i n t r o d u c t i o n i n t o the tanks.  F o r i n s t a n c e , i f there were f o u r tanks c o n t a i n i n g 10, 15,  10 and 15 grams of f i s h i n each, then they would r e c e i v e 50, 75, 50 and 75 ml. of the b r i n e shrimp n a u p l i i r e s p e c t i v e l y .  This  was not considered a v e r y a c c u r a t e method, but the most conveni e n t when i t i s remembered that t h e t i n y shrimp n a u p l i i had t o be a l i v e .  A c c o r d i n g t o Coates and Schwab (1956) the shrimp  n a u p l i i l i v e f o r about twelve hours i n f r e s h water.  An  examin-  a t i o n of the water each morning showed complete absence of n a u p l i i - dead o r a l i v e . Weighing the F i s h F i s h were weighed a t t h e s t a r t , and weekly t h e r e a f t e r u n t i l the t e r m i n a t i o n o f t h e experiment.  Dip n e t s  that f i t t e d the tanks were used t o scoop out the f i s h .  In o r d e r  to prevent them from unnecessary s t r a i n and exhaustion when out o f water, a s m a l l canvas bag was f i t t e d i n the middle o f t h e n e t . The f i s h were thus c o l l e c t e d i n the bag which was f u l l o f water, and t r a n s f e r r e d i n t o a l a r g e beaker which was l i n e d w i t h a p l a s t i c coated bag-net.  The beaker w i t h f i s h , water and t h e  bag-net was weighed on a balance which had a s e n s i t i v i t y o f 0.1 gnu  The bag-net was t h e n l i f t e d up t o the edge o f t h e beaker  and h e l d there f o r about f i v e seconds so that n e a r l y a l l the water, except t h a t adhering t o t h e f i s h o r h e l d between f i s h , drained i n t o the beaker.  The f i s h were t h e n q u i c k l y t r a n s f e r r e d  - 14 -  from t h e bag-net i n t o t h e i r tank. bag-net were then weighed. the  The beaker, water and t h e  The d i f f e r e n c e gave the weight o f  fish. T h i s method o f weighing was checked w i t h a  group o f f i f t y coho taken from the same stock as the one used i n the experiment.  An e r r o r o f only 0.5$  was found i n the. mean,  when the h i g h e s t o r lowest weights were taken i n twenty attempts.  With fewer f i s h i t was found t h a t t h e e r r o r  diminished, but d i d not drop below 0.2$. weighed  five,  When chums were  s i n g l y a n - e r r o r up to~5$ could be a n t i c i p a t e d .  - 15 -  EXPERIMENTAL  RESULTS  A l l f i s h used i n the experiments were t r a n s f e r r e d directly 12$° .  from f r e s h water i n t o the d i f f e r e n t s a l i n i t i e s up t o Coho t r a n s f e r r e d t o 18$» were f i r s t kept i n lower  c o n c e n t r a t i o n s f o r two days. s i n c e they were o r i g i n a l l y  The chums were not a c c l i m a t i z e d  r a i s e d i n sea water o f 2 0 $ o  salinity.  The d e t a i l e d measurements o f weight w i l l he found i n Appendices II - X I I I .  R e s u l t s are summarized  i n F i g u r e s 1 - 6.  Sockeve i n f r e s h water and 6 $ o s a l i n i t y .  (Appendices I I and I I I ,  and F i g u r e s 1 and 6). These groups o f f i s h showed a h i g h m o r t a l i t y .  The  r e s u l t s , however, show a marked weight i n c r e a s e i n the t e n week period.  In f r e s h water the mean weight a t the b e g i n n i n g was  0.192 gm. f o r 69 f i s h , and a t the end o f f i v e weeks the average reached 0.560 gm. f o r the t e n s u r v i v i n g f i s h . i n c r e a s e on the i n i t i a l average.  T h i s gave a 192$  At the end o f the t e n t h week  t h e r e were only 8 l e f t and the average weight was 0.806 gm., an i n c r e a s e o f 320$. There was a b e t t e r s u r v i v a l (35$) o f sockeye f r y i n 6 $ o s a l i n i t y , although, d u r i n g the f i r s t week the m o r t a l i t y was a l s o h i g h .  The 138 a v a i l a b l e f r y were i n i t i a l l y  divided  e q u a l l y by numbers and then weighed before b e i n g introduced the  tanks.  into  The average i n i t i a l weight o f f i s h i n 6$<> s a l i n i t y  was s l i g h t l y h i g h e r than that o f the f i s h used i n the f r e s h water tank.  I t w i l l - b e seen from Appendix I I I , t h a t a f t e r f i v e weeks  there was only a 117$ i n c r e a s e i n weight f o r the 24 f r y l e f t i n the  6$» s a l i n i t y tank which was much lower than the 192$ i n c r e a s e  of sockeye i n f r e s h water f o r the same p e r i o d .  At the end o f the  ten weeks the percentage i n c r e a s e (336$) was s l i g h t l y h i g h e r than the  320$ i n c r e a s e o f the f r e s h water ones ( F i g . 6 ) .  The number  of sockeye i n t h i s tank, a f t e r the f i r s t week, remained constant throughout the experimental p e r i o d .  - 16 -  Figure 2  Mean weekly weight of coho s e r i e s 1 and 2 i n f r e s h water and i n the various s a l i n i t i e s .  - 18  Figure 3  -  Mean weekly weight o f chum i n 6$o and 3C>o s a l i n i t y .  19 *  Coho - S e r i e s 1. (Appendices IV - VI, and F i g u r e s 2 and 6 ) . S u r v i v a l of coho i n the t h r e e tanks w i t h 0 $ o , 6$o  , and 1 2 $ o s a l i n i t i e s , was good, and the numbers remained  constant a f t e r the second week. the  The i n i t i a l average weights o f  50 f i s h i n each tank were s i m i l a r .  The percentage i n c r e a s e  was h i g h e s t i n the 12$° s a l i n i t y tank at both stages (end o f the f i f t h and the t e n t h weeks).  The percentage i n c r e a s e - o n the  i n i t i a l average weights i n the 0 $ o , 6$° , and 12$°  salinities  at the end o f t h e f i f t h and t e n t h weeks were 77.2, 88.1, 155.8, and 215.1, 251.2, 421.5  respectively.  Coho - S e r i e s 2. (Appendices V I I and V I I I , and F i g u r e s 2 and 6 ) . The second s e r i e s o f coho was used, mainly, t o observe the e f f e c t o f a h i g h e r c o n c e n t r a t i o n (18$<> ) o f  salinity.  Since these coho had a h i g h e r i n i t i a l average weight t h e i r weight i n c r e a s e was compared with another group, from t h e same stock, i n f r e s h water. Again the coho s u r v i v e d w e l l .  The average  weight i n each tank (0$° and 18$o s a l i n i t y ) was a l i t t l e twice t h a t o f the average i n i t i a l weight o f s e r i e s 1.  initial over  The p e r -  centage i n c r e a s e was a g a i n g r e a t e r i n the 1 8 $ o s a l i n i t y .  Fish  were not kept i n s a l i n i t i e s h i g h e r than 18$o owing t o the r e p o r t e d h i g h m o r t a l i t i e s i n f r y and f i n g e r l i n g s experienced by other workers  (Black, 1951).  Chum. (Appendices IX - XI, and F i g u r e s 3, 4, and 6 ) . In t h i s experiment the f i s h i n 30$o f a i l e d t o s u r v i v e a f t e r the f i f t h week.  salinity  T h i s i s hot a t t r i b u t e d  to the s a l i n i t y s i n c e the experimental c o n d i t i o n s f o r t h i s  group  of f i s h were f a r from i d e a l (because o f the s m a l l s i z e o f the tanks).  The percentage i n c r e a s e a t the end o f t h i s p e r i o d  was  166 f o r 11 f i s h , as compared w i t h 120 f o r e i g h t f i s h i n 6$» . salinity. experiment.  These f i s h were a c t i v e and f e d w e l l throughout the The p r e c i s e cause o f death o f the chum i n 30$*  s a l i n i t y tank was not known.  - 20 -  F i g u r e 4.  Percentage i n c r e a s e i n weight o f i n d i v i d u a l chum i n 6$c and 30$• salinity. Groups A t o B represent p a i r s of chum o f approximately s i m i l a r weights a t beginning o f experiment.  - 21 -  With the remaining ehum (2 i n 30$° s a l i n i t y and 8 i n 6$« s a l i n i t y ) i n the two tanks, another experiment was begun, where i n d i v i d u a l weights were recorded and f i s h i d e n t i f i e d by c l i p p i n g the f i n s .  Three f i s h were taken from the  lower s a l i n i t y tank and a c c l i m a t i z e d i n s a l i n i t i e s o f 10$° , 18$o , and 25$° , (two days each) before b e i n g introduced i n t o 30$° s a l i n i t y .  The f i s h were s e l e c t e d so t h a t t h e i r weights  i n each p a i r (the one i n the 6$° s a l i n i t y and t h e corresponding one i n the 30$° s a l i n i t y ) were s i m i l a r . the  F o r t h e second time  f i s h i n 30$« s a l i n i t y d i e d a f t e r the t h i r d week, t h r e e f i s h  d i e d i n the f o u r t h week i n the 6$° s a l i n i t y tank.  This  experiment was d i s c o n t i n u e d a f t e r the t h i r d week.  Even d u r i n g  t h i s short p e r i o d each o f the f i v e f i s h in-3©$" s a l i n i t y showed an i n c r e a s e i n weight over t h a t o f each o f the corresponding f i v e f i s h i n 6$° s a l i n i t y  (Pig. 4).  G o l d f i s h . (Appendices X I I and X I I I , and F i g u r e s 5 and 6 ) . G o l d f i s h were used p r i m a r i l y t o t e s t the e f f e c t of s a l i n i t y on a p u r e l y f r e s h water type.  Comparison o f growth  was made only i n f r e s h water and 6$» s a l i n i t y , s i n c e h i g h e r s a l i n i t i e s are l e t h a l .  Pora (1939)  observed t h a t g o l d f i s h  were able t o l i v e i n h a l f sea water (about 12$° - 16$° ) f o r only a week o r so. The 15 f i s h i n each o f t h e two tanks were mature and any a p p r e c i a b l e i n c r e a s e i n growth was not anticipated.  At the end o f the f i f t h week the percentage  i n c r e a s e i n f r e s h water was s l i g h t l y h i g h e r , but a t the end o f the  t e n t h week the ones i n 6$° s a l i n i t y showed a v e r y s m a l l  increment over that o f the f r e s h water group.  - 22 -  W E E K S i I  ...  F i g u r e 5.  Mean weekly weight o f a d u l t g o l d f i s h i n f r e s h water and 6$« s a l i n i t y .  4 5 0  n  5  1 0  5  1 0  5  1 0  5  1 0  5  W E E K S  Figure 6.  Percentage increase i n weight of a l l groups in. fresh water and i n the various s a l i n i t i e s , at f i v e and ten weeks. A - Sockeye; B - Coho series 1; B-, - Coho series 2; C - Goldfish; D - Chum.  - 24 -  SUMMARY OF EXPERIMENTAL RESULTS  In  a l l the groups of f i s h t h e r e was  a p p r e c i a b l e i n c r e a s e but those i n 6 $ o , 12$o , 18$  an 0  , o r 30$  o  s a l i n i t y showed g r e a t e r i n c r e a s e than the corresponding ones i n fresh""water.  Even i n the case o f g o l d f i s h t h e r e was a v e r y  s l i g h t i n c r e a s e shown by the group i n 6 $ o s a l i n i t y .  The h i s t o -  gram ( F i g . 6) shows the growth a t t a i n e d d u r i n g the two. p e r i o d s (5 and 10 weeks) of the experiment, f o r a l l the groups.  Up t o  f i v e weeks sockeye and g o l d f i s h grew b e t t e r i n f r e s h water. In  chum and i n both s e r i e s o f coho, i n c r e a s e d s a l i n i t i e s were  a s s o c i a t e d w i t h g r e a t e r percentage weight i n c r e a s e . There were two i n s t a n c e s where t h e f r e s h water groups i n d i c a t e d b e t t e r growth a t the h a l f - t i m e p e r i o d of the experiment.  In the f i r s t case, the sockeye i n 6$° s a l i n i t y  grew p o o r l y at the beginning, but a f t e r the f i f t h week began t o grow r a p i d l y , and even surpassed that of the sockeye i n f r e s h water.  The growth increment i n g o l d f i s h p a r a l l e l e d that o f the  sockeye.  The f i n a l increments o f these two groups i n the s a l i n e  medium were too s m a l l t o make any statement r e g a r d i n g the s u i t a b i l i t y of the medium i n promoting b e t t e r growth. The experiment, w i t h the i n d i v i d u a l weights o f the  chum salmon, was encouraging, but u n f o r t u n a t e l y the f i s h d i d  not  s u r v i v e a f t e r the t h i r d week.  The growth i n c r e a s e o f chum  i n 30$o s a l i n i t y , w i t h i n t h i s short p e r i o d , seems s t r i k i n g (Fig.  4). Growth curves ( F i g s . 1, 2, 3, and 5) f o r the  v a r i o u s s e r i e s show many i n t e r e s t i n g f e a t u r e s .  Only i n the case  of  g o l d f i s h do the growth curves ( F i g . 5) tend t o run p a r a l l e l  to  each o t h e r .  The i n i t i a l weight o f the chum used i n the  experiments was much higher- than that of the o t h e r two  species  and the growth eurves ( F i g . 3) show the g r e a t e s t i n c r e a s e w i t h i n the of  time p e r i o d .  The curves ( F i g . 2) f o r the f r e s h water groups  the two s e r i e s o f coho run almost p a r a l l e l .  The curves  - 25 -  w i t h i n the s e r i e s d e v i a t e markedly.  I n sockeye the growth  curves ( P i g . l ) do not d e v i a t e u n t i l a f t e r t h e e i g h t h week. The  i n c r e a s e i n growth i n 6 $ o s a l i n i t y i s q u i t e sharp i n t h e  l a s t two weeks o f the experimental  period.  - 26 -  DISCUSSION  Environmental E f f e c t On Growth. The growth o f f i s h i s governed by two main f a c t o r s - h e r e d i t y and environment.  Inherent c h a r a c t e r s are  i n f l u e n c e d t o a marked extent by f a v o u r a b l e or unfavourable environmental f e a t u r e s , p a r t i c u l a r l y i n the e a r l y stages of growth.  These e f f e c t s may  be s u p e r f i c i a l (e.g. c o l o u r ) or deep  seated (e.g. changes i n m e r i s t i c counts and s i z e ) .  Of the  i n f l u e n c i n g environmental f a c t o r s , temperature, s a l i n i t y and the food supply are some o f the most important. M e r i s t i c Changes.  A l t e r a t i o n i n m e r i s t i c counts i n the embryo,  e f f e c t e d by v a r i a t i o n i n environmental f a c t o r s , produce  variation  i n the s i z e a t h a t c h i n g , and consequently change the r a t e of growth i n l a t e r l i f e .  S e v e r a l i n v e s t i g a t o r s have shown t h a t  changes i n temperature and s a l i n i t y may  i n c r e a s e o r decrease the  number of v e r t e b r a e or f i n rays i n many s p e c i e s of f i s h .  Schmidt  (1919) s t u d i e d the e f f e c t of h i g h temperatures d u r i n g development of the young of guppy, L e b i s t e s reticulatus« and concluded t h a t a h i g h e r number of f i n rays were produced.  Taning (1952) found, i n  experiments on s e a - t r o u t , Salmo t r u t t a , that the number of d o r s a l , a n a l , and p e c t o r a l f i n rays were g r e a t e s t a t i n t e r m e d i a t e temperatures.  Higher o r lower temperatures decreased the number. Increase i n number of v e r t e b r a e i n s e v e r a l s p e c i e s  o f f i s h have been r e p o r t e d i n many experimental r e s u l t s . (1921) on cabezon, L e p t o c o t t u s armatus. Schmidt  Hubbs  (1930) on  A t l a n t i c cod, Gadus c a l l a r i a s . and Sund (1943) on Norwegian h e r r i n g , Clupea harengus. t o mention but a few, have a l l i n d i c a t e d that lower temperatures tend t o produce h i g h e r v e r t e b r a l counts.  The a l t e r a t i o n i n the number o f v e r t e b r a e i n  Salmo t r u t t a i s e f f e c t e d w e l l b e f o r e h a t c h i n g as shown by Taning (1944, 1946). l i k e temperature, s a l i n i t y too a l t e r s the m e r i s t i c c h a r a c t e r s of f i s h e s .  Heuts (1947) l i s t e d s e v e r a l s p e c i e s i n  which s a l i n i t y probably produces h i g h e r v e r t e b r a l counts. Schmidt's (1917, 1920) experimental work w i t h v i v i p a r o u s blenny, Zoarces v i v i p a r o u s . i n d i c a t e d t h a t not o n l y low water temperatu r e s and h i g h s a l i n i t i e s produce h i g h numbers o f v e r t e b r a e , hut a l s o h i g h s a l i n i t i e s a l o n e b r i n g about the same e f f e c t ,  lindsey  (1952) s t u d i e d the e f f e c t s of s a l i n i t y on v e r t e b r a l count i n the t h r e e - s p i n e d s t i c k l e b a c k , G-asterosteus a c u l e a t u s . and found t h a t a f t e r making adjustments a c c o r d i n g t o p a r e n t a l i n f l u e n c e ( h e r e d i t a r y ) , a r i s e i n s a l i n i t y a t 16 C° o r 18 C  G  produced an  i n c r e a s e i n v e r t e b r a l count., while a r i s e a t 12 C° produced a decrease. The o v e r a l l e f f e c t o f t h e environment on taxonomie c h a r a c t e r s o f f i s h e s has been reviewed by Vladykov (1934).  He  s t a t e s that low temperatures, l a r g e space o r a r e a of h a b i t a t , or h i g h degree of s a l i n i t y i n a g i v e n area are each c o r r e l a t e d w i t h a h i g h number o f segments and t h e i r components.  The c h a r a c t e r s  considered were v e r t e b r a e , s c a l e s , median f i n s , g i l l r a k e r s and body p r o p o r t i o n s , and of these the l e a s t a f f e c t e d by temperature was v e r t e b r a e .  He a l s o s t a t e s t h a t the number o f segments  decrease from n o r t h to south i n the Northern Hemisphere,  from  s a l t water t o f r e s h water, from open t o c l o s e d a r e a s , from o f f shore t o i n s h o r e and from r i v e r s to brooks.  These changes,  although s m a l l , could c e r t a i n l y a f f e c t the growth and s i z e o f f i s h e s i n the e a r l y stages. Body P r o p o r t i o n s .  The r e l a t i v e growth of f i s h e s i s c h a r a c t e r i z e d  by a s e r i e s o f stanzas and each s t a n z a has a d i f f e r e n t constant.  growth  The change from one stanza t o another i s q u i t e abrupt  and i s known as an i n f l e c t i o n .  M a r t i n (1949) demonstrated that  the d i f f e r e n c e s i n developmental r a t e i n iLshes, when c o n t r o l l e d by temperature o r by d i e t , c o u l d produce d i f f e r e n c e s i n body form.  He a l s o found e x p e r i m e n t a l l y that the length-weight  r e l a t i o n s h i p i n t r o u t could be a l t e r e d under d i f f e r e n t ature conditions.  temper-  By i n c r e a s i n g temperature t h e l e n g t h of t r o u t  - 28  fry  was i n c r e a s e d , and t h i s i n c r e a s e d s i z e a t growth i n f l e c t i o n  a l t e r e d the r e l a t i v e growth i n weight.  H i s experimental evidence  supports the theory that d i f f e r e n c e s i n body form may be e f f e c t e d by d i f f e r e n c e s i n body s i z e a t growth i n f l e c t i o n .  Small d i f f e r -  ences i n the e a r l y stages o f development w i l l probably produce l a r g e d i f f e r e n c e s i n body form i n l a t e r  life.  Growth and S i z e of P i s h e s of d i f f e r e n t s p e c i e s i n d i f f e r e n t environments has been the s u b j e c t o f study by many i n v e s t i g a t o r s . In  the l i t e r a t u r e , the main items considered have been temperature  and food.  Pew workers have t r i e d t o determine the s a l i n i t y  effect  on growth and s i z e . Gibson and H i r s t  (1955) s t a t e t h a t an i s o t o n i c  s o l u t i o n ( p h y s i o l o g i c a l l y s a l i n e s o l u t i o n ) produces b e t t e r growth than f r e s h water i n the p r e - a d u l t l i f e  o f guppies.  In t h e i r  experiments they r a i s e d guppies i n f r e s h water f o r an average p e r i o d of ten-weeks o r u n t i l mature, at v a r i o u s temperatures and found t h a t the f a s t e s t growth occurred-at 23 C° and 25 C ° . Above and below these l i m i t s the growth was slow. sea  Guppies i n 25$  water and a t 30 0° surpassed the growth r a t e o f the f r e s h  water f i s h a t 25 0° d u r i n g a p e r i o d of s i x t y t o e i g h t y days ©f age.  The f a s t e s t growth they have on r e c o r d occurred a t 23 C°  and 25$ sea water.  The f i s h a l s o f l o u r i s h e d i n 50$ sea water  and 20 C° or 25 C ° .  The growth curve f o r the one a t 20 G° and  50$ sea water was steeper than t h a t f o r 25$ sea water and the same temperature.  They s t a t e t h a t t h i s d i f f e r e n c e may be g e n e t i c .  Since the i n v e s t i g a t o r s d i s c o n t i n u e d the experiments as soon as the  males were mature, t h e r e i s no experimental evidence t o show  t h a t sea water enhances the s i z e of a d u l t f i s h o r u l t i m a t e s i z e . N e v e r t h e l e s s , t h e r e i s the p o s s i b i l i t y o f o b t a i n i n g l a r g e r guppies i n the optimum sea water medium. P i s h c u l t u r e experiments c a r r i e d out i n I n d i a w i t h the m i l k f i s h , Chanos chanos. demonstrate t h a t food i s the most important f a c t o r governing growth.' Chidambaram and Unny (1946) r e p o r t t h a t t h e i r experiments with these f i s h , which are marine forms e n t e r i n g e s t u a r i e s t o spawn, i n d i c a t e d best growth  - 29  i n f r e s h water.  -  Chanos f i n g e r l i n g s (7 mm.  t o 8.5  mm.)  were  r a i s e d i n t h r e e tanks, one with f r e s h water, one with b r a c k i s h water and the t h i r d was  observed  with sea water.  The growth of these  f o r a p e r i o d of one year.  fish  Since the growth recorded  (Table I) i n d i c a t e d p r o g r e s s i v e decrease w i t h i n c r e a s i n g s a l i n i t y , an a n a l y s i s of the plankton i n a l l tanks was sea water pond was  c a r r i e d out.  The  the poorest i n plankton, and e s p e c i a l l y i n  algae which i s the main d i e t of these f i s h .  From a l l t h i s  evidence they concluded t h a t the best growth i n Chancre f i n g e r - l i n g s was  produced by f r e s h water.  accept such a statement,  I t i s r a t h e r d i f f i c u l t to  u n l e s s i t c o u l d be proved t h a t the sea  water does not support a good growth of the a l g a e , the most e s s e n t i a l c o n s t i t u e n t of the d i e t of the Chanos  fish.  spawns i n e s t u a r i e s or lagoons and  f r y enter mouths of r i v e r s o r streams.  the  F r y are o f t e n trapped  h i g h t i d e s i n stagnant p o o l s , where they may  by  grow t o a moderate  s i z e , depending l a r g e l y on the s i z e of the p o o l , the amount of water and the food a v a i l a b l e . f r e s h water.  They never mature s e x u a l l y i n  In Hawaii and some South East A s i a n c o u n t r i e s  where an extensive programme f o r f i s h c u l t u r e i s i n progress, these f r y are r a i s e d i n f r e s h water ponds.  The l e n g t h s a t t a i n e d  vary, but never equal those captured i n the sea (Table I ) . I n t r o d u c t i o n of f r e s h water w h i t e f i s h - Coregonus clupeaformis - i n 1940  i n t o a s a l i n e l a k e of Saskatchewan  (which  contained no f i s h ) , r e s u l t e d i n a s m a l l commercial f i s h e r y i n 1945  (Rawson, 1946).  The s a l i n i t y  p o t e n t i a l f i s h food supply was  of the l a k e was  15$«  .  The  of the same order as t h a t i n  l a r g e r f r e s h water l a k e s where w h i t e f i s h are produced i n l a r g e quantities.  W h i t e f i s h were i n t r o d u c e d as f r y , and a f t e r f o u r  years measured from 403 mm. 1812  gm.  (Table I ) .  - 466 mm.  and weighed 1359  gm.  -  T h i s shows a r a t e of growth twice t h a t o f  the same s p e c i e s i n f r e s h water, as i n Lake Winnipeg or the Great Lakes (Rawson, 1946).  Hinks (1943) s t a t e s t h a t i n Mani-  toba commercial catches, the average weight of w h i t e f i s h i s w i t h i n the range 1130 so caught are 6 - 8  gm.  - 1585  years o l d .  gm.  and the bulk o f the  fish  - 30 -  Aim  (1934) s t a t e s that those A t l a n t i c  salmon  which never e n t e r the sea do not show the same growth as those t h a t go t o sea, although they have e q u a l l y good f e e d i n g conditions.  Salmon i n the B a l t i c p r e c i n c t s show a p r e f e r e n c e f o r  the southern waters.  Aim  (1934) assumes that the warmer waters  and h i g h e r s a l i n i t i e s of the southern B a l t i c are b e n e f i c i a l and hence the smolts from the n o r t h e r n r i v e r s concentrate i n t h i s The s a l i n i t y here ranges from 8 $ o t o 10$. i n the  region.  s u r f a c e and from 15$<> t o 20$0 i n the deeper p a r t s , whereas the n o r t h e r n p a r t o f the B a l t i c never exceeds 3.5$<> • too i n c r e a s e s southwards.  The  temperature  The r e c o r d s of the s i z e s of salmon i n  the v a r i o u s p a r t s o f the B a l t i c show c o n s i d e r a b l e d i f f e r e n c e s (Dixon, 1934). F i s h r e t a i n e d i n f r e s h water were s m a l l e r than those normally m i g r a t i n g to sea.  F r a s e r (1918) r e a r e d sockeye  salmon i n f r e s h water and compared them w i t h sea-run f i s h o f the Fraser r i v e r . 250 mm.  The f r e s h water forms reached an average l e n g t h o f  while the sea-run averaged 566 mm.  The growth i n the  f i r s t year i n both cases was v e r y n e a r l y the same, but i n the second, t h i r d , and f o u r t h years t h e r e was almost a t h r e e - f o l d d i f f e r e n c e i n the sea-run form. F o e r s t e r (1947) showed e x p e r i m e n t a l l y that  offspring  o f non-migratory sockeye o r kokanee i n C u l t u s l a k e , B r i t i s h C o l umbia, would grow t o the same s i z e as that of the sea-run f i s h from the same l a k e , i f they had the o p p o r t u n i t y o f g o i n g t o sea as smolts.  He l i b e r a t e d 63,874 y e a r l i n g s o f kokanee, a f t e r  c l i p p i n g the p e l v i c s , along with the normal sockeye migrants.  seaward  In the f i f t h year 25 i n d i v i d u a l s , w i t h the p e l v i c s  o f f , were taken i n the commercial f i s h e r y (34$ of which sampled).  was  The l e n g t h s of those recovered were l a r g e r than the  normal f o u r y e a r o l d C u l t u s sockeye but w e l l w i t h i n the range o f the f i v e year o l d s .  T h i s experiment demonstrated t h a t the s i z e  d i f f e r e n c e i n the sockeye and kokanee could not be h e r e d i t a r y , but probably environmental.  1  - 31 -  S a l i n i t y and S i z e ,  Changes i n s a l i n i t y not o n l y " a f f e c t s the  growth and s i z e o f f i s h e s bat a l s o that o f other organisms. Ekman (1935) s t a t e s that the B a l t i c was f o r m e r l y 5$<> more s a l i n e than a t p r e s e n t .  T h i s was supported by a study o f the then  inner l i m i t s of d i s t r i b u t i o n of c e r t a i n molluscs, e s p e c i a l l y Littorina.  I t was d u r i n g the l i t t o r i n a stage o f the B a l t i c  t h a t the s i z e s o f the m o l l u s c s Cardium  edule and M y t i l u s e d u l i s  were l a r g e r than a t present and i n the same l o c a l i t y . Sverdrup e t a l (1942) s t a t e t h a t among the e u r y h a l i n e animals, those l i v i n g i n reduced s a l i n i t i e s have a s m a l l e r maximum s i z e than those o f t h e same s p e c i e s i n h a b i t i n g higher s a l i n i t i e s .  Reduced s i z e may r e s u l t from the s c a r c i t y o f  food organisms, which must be adapted t o l i v e i n o r near the same biotope.  These authors s t a t e "whatever the cause may be, i t  should be noted here that i t i s a strange and unexplained f a c t that with few exceptions marine animals from groups with f r e s h water r e p r e s e n t a t i v e s a r e l a r g e r than the f r e s h water r e l a t i v e s and u s u a l l y the s i z e d i f f e r e n c e i s enormous".  -  32  P h y s i o l o g i c a l Mechanisms R e s p o n s i b l e F o r The for  present  Growth.  e x p e r i m e n t a l r e s u l t s show a  b e t t e r growth i n j u v e n i l e salmon s p e c i e s  used.  Factors  such as f o o d ,  i n the  the  salinity  o f t h e medium.  d i f f e r e n c e s i n s i z e were n o t s p e c u l a t i o n i s perhaps Osmotic S t r e s s .  Although the  e i t h e r on k i d n e y o r s a l t a b s o r b i n g  of various  be  one  entirely;  i s o t o n i c with sea  lack certain essential salts  conducive to supporting  marine  concentrat-  of the  life*  i n f l u e n c e of s a l i n i t y  on  activities growth.  Rate of r e s p i r a t i o n , maintainance of osmotic e q u i l i b r i u m , water b a l a n c e , changes i n . e x t e r n a l appearance b e f o r e and  of the The  endocrine  speculated  p i t u i t a r y and  t h y r o i d glands are  abolism  a m p h i b i a n s i s w e l l known and on  the  in fish  possibility  through the  changes  system.  endocrines i n c o n t r o l l i n g growth o r metabolism. mammals and  or  migration ,  m a t u r i t y , - a r e : a l l , . : , i n - one~way~~or - a n o t h e r , r e l a t e d t o  in' a c t i v i t y  for  and-are,  Hormonal c o n t r o l o f the m e t a b o l i e  explanation  and  water  s a l t s to maintain s u i t a b l e osmotic pressure  Endocrine Function. may  specific  i o n s i n sea-water.  Many i n l a n d l a k e s h a v e s u f f i c i e n t  marine organisms, but t h e r e f o r e , not  demands  c o n t r o l , s i n c e i n many i n s t a n c e s  p a r t i c u l a r l y i n f i s h e s , t h e y are not ions  various  large  Extensive  s a l t s i n s e a w a t e r c a n n o t be  r e l a t e d to osmotic pressure  1949).  extra  been conducted t o a s c e r t a i n the  b i o l o g i c a l e f f e c t or f u n c t i o n of the  (Baldwin,  Experiment-  the passage of  mechanism.  fish  hypotonic  osmotic e q u i l i b r i u m .  amounts o f w a t e r t h r o u g h t i s s u e s m i g h t c r e a t e  f u n c t i o n of the  the  f r e s h water  e f f e c t s of the  evidence t o d a t e i s c i r c u m s t a n t i a l but  The  causes f o r  been s u g g e s t e d t h a t t h e  t o m a i n t a i n an  e x p e r i m e n t a l work has  variable  i n v e s t i g a t e d i n t h i s p r o j e c t , some  must expend e n e r g y i n c o m b a t i n g t h e al  only  and  permissible.  I t has  medium i n o r d e r  salinities  t e m p e r a t u r e , volume o f w a t e r  a e r a t i o n were c o n t r o l l e d c a r e f u l l y , so t h a t t h e was  tendency  Their role i n  i c t h y o l o g i s t s have  o f e x p l a i n i n g the  activity  important  of the  c h a n g e s i n met-  thyroid.  - 33 -  The  f i r s t c o n t r i b u t i o n t o our knowledge o f the  p i t u i t a r y growth hormone i n r e l a t i o n t o the growth o f f i s h was made by P i c k f o r d - a n d Thompson (1948).  They observed that t h e  growth o f mimmiehog. Pundulus h e t e r o c l i t u s . was a c c e l e r a t e d a f t e r p u r i f i e d mammalian growth hormone was administered peritoneally.  Hoar (1951) suggests t h a t t h i s treatment  intracould  have produced s t i m u l a t i o n o f the t h y r o i d gland which may have been r e s p o n s i b l e f o r t h e observed e f f e c t .  Growth s t i m u l a t i o n i n  f i s h was observed as a r e s u l t e i t h e r o f f e e d i n g powdered p i t u i t ary gland  (Regnier,  N i c o s c i o , 1940).  1938), o r i n j e c t i n g the e x t r a c t  (Nixo-  However, these r e s u l t s a r e not n e c e s s a r i l y  a t t r i b u t a b l e t o t h e i s o l a t e d e f f e c t o f t h e growth promoting hormone, s i n c e i n t h e f i r s t case the e f f e c t may be d i e t a r y , and i n the second t h e e x t r a c t may have i n c l u d e d s e v e r a l hormones. I n d i r e c t t e s t s f o r the f u n c t i o n o f t h e t h y r o i d and  i t s p a r t i n the growth o f f i s h e s has been attempted by many  investigators.  Thiourea,  an a n t i - t h y r o i d chemical,  assess the d i f f i e i e n c e s that develop i n f i s h . (1944) and N i g r e l l i  that  o f t h y r o i d hormone as w e l l as  producing reduced growth i n the h y b r i d phorus.  Goldsmith e t a l  et a l (1946), have both r e p o r t e d  t h i o u r e a i n h i b i t s the formation  was used t o  Platypoecilus-Xiphor-  T h i s o b s e r v a t i o n was a l s o made i n t h e P a c i f i c salmon  (Hoar and B e l l , 1950).  T h y r o i d hormone a d m i n i s t r a t i o n has been  used t o study changes i n growth r a t e , sexual maturation, oxygen consumption i n - r e s p i r a t i o n , and i n m i g r a t i o n behaviour. and E v e r e t t  (1943) pointed  r e t i c u l a t u s t h a t thyroxine acceleration i n f i s h .  Smith  out a f t e r experimenting on L e b i s t e s does not always produce growth  They a l s o concluded that i t i s not  p o s s i b l e t o c o n s i d e r thyroxine  as a s p e c i f i c growth promoting  f a c t o r i n f i s h as i s the p i t u i t a r y growth hormone f o r the mammals. Hoar (1951)» i n an exhaustive review o f t h e hormones i n f i s h , l a y s emphasis on the f a c t t h a t , although p i t u i t a r y growth hormone has not been c o n c l u s i v e l y demonstrated, there i s much evidence t o support the b e l i e f t h a t the t h y r o i d  - 34  -  gland i s r e l a t e d to growth of f i s h , and t h a t a t h y r o t r o p i c hormone i s produced by the S a l i n i t y and ing  pituitary.  Thyroid A c t i v i t y .  There i s some evidence suggest-  that t h y r o i d hormone i s r e l a t e d t o osmoregulation and  of f i s h .  Olivereau  growth  (1948) found t h a t when a marine f i s h i s  p l a c e d i n d i l u t e sea water t h e r e i s an Increase i n t h y r o i d activity.  Hoar and B e l l (1950), showed that i f anadromous f i s h  were r e t a i n e d i n f r e s h water a f t e r t h e i r n a t u r a l seaward migration  time, they developed h y p e r p l a s t i c t h y r o i d s .  The  importance of i o d i n e f o r t h y r o i d a c t i v i t y i s w e l l known and i t may  be that those forms t h a t c o u l d l i v e i n sea water had  added advantage of having a copious supply  the  of t h i s element t o  b u i l d up s u f f i c i e n t s u p p l i e s o f the hormone f o r growth. In f r e s h water, osmoregulation i s more d i f f i c u l t and i t has  been shown t o be r e l a t e d to the supply  t h y r o i d hormone (Black, 1951b).  of  Smith's (1956) study on t r o u t  i n d i c a t e d a f a l l i n t h y r o i d a c t i v i t y with i n c r e a s e i n s a l i n i t y and  i n j e c t i o n of thyroxine  r a i s e d the s a l i n i t y t o l e r a n c e .  t h i o u r e a and t h i o u r a c i l were administered was  reduced i n t r o u t .  the s a l i n i t y  When  tolerance  Hoar (1952) suggests t h a t when both  osmoregulation and growth are dependent on the a v a i l a b i l i t y of t h y r o i d hormone, and when t h e probably reduced.  supply  i s inadequate, growth Is  Fontaine (1956) s t a t e s that much of the work  done i n t h i s f i e l d i s s t i l l i n c o n c l u s i v e and t h a t the  suggestions  made by Hoar (1952) are very a t t r a c t i v e i n not only attempting to e x p l a i n t h i s a l t o g e t h e r hazy phenomenon, but a l s o i n d i c a t i n g some l i n e s of r e s e a r c h that may  be  fruitful.  Another o b s e r v a t i o n made i n the present i s worth mentioning.  The  experiment  growth i n c r e a s e i n sea water  delayed i n the case of the sockeye.  was  T h i s s p e c i e s spends  one,  two  or three years i n f r e s h water before i t s seaward  The  growth d i f f e r e n c e of the experimental f i s h reared i n f r e s h  and  sea water was  insignificant.  migration.  Coho go t o sea a f t e r a year i n  f r e s h water ( C a r l and Clemens, 1953)  and  i n the case of the chum  almost immediately a f t e r emerging from the g r a v e l .  These  two  - 35 species survived  b e t t e r and grew b e t t e r i n the v a r i o u s  c o n c e n t r a t i o n s o f sea water. Since sockeye spend a l o n g e r p e r i o d  i n fresh  water, the p h y s i o l o g i c a l adjustments necessary f o r l i f e i n sea water are delayed.  The r e t a r d e d growth o f sockeye observed i n  the s a l i n e medium ( 6 $ o s a l i n i t y ) d u r i n g the f i r s t e i g h t weeks of the experiment, was probably due t o the f a i l u r e of the p h y s i o l o g i c a l mechanisms^ t o respond t o the h y p e r t o n i c medium. However, these sockeye f r y , i n 6%o s a l i n i t y , showed a marked increase  i n growth d u r i n g the l a s t two weeks. The r e s u l t s of t h i s experiment show t h a t  i t y alone may  salin-  b r i n g about a d i f f e r e n c e i n growth r a t e and s i z e .  Data taken from records o f s i z e s o f some f i s h e s a l s o show that those i n sea water grow t o a g r e a t e r s i z e .  These i n d i c a t e  that  t h e r e must be -some f a c t o r o r combination of f a c t o r s i n sea waterthat c o n t r i b u t e s  t o t h i s enhanced growth.  f a c t o r s and t h e i r i n f l u e n c e  S e v e r a l environmental  on the growth of f i s h e s e i t h e r on  the whole animal o r on some p a r t s have been d i s c u s s e d .  It i s  yet t o be seen whether the t h y r o i d c o n t r o l s f u l l y the metabolism of f i s h and t o what extent i t may do so i n the f r e s h water and marine environments.  Study o f hormonal c o n t r o l o f growth should  be a p r o d u c t i v e f i e l d of i n v e s t i g a t i o n that may t h i s phenomenon of s a l i n i t y and growth o f f i s h .  throw l i g h t  on  - 36  -  SUMMARY  1.  In the l i t e r a t u r e , records maturity and  of the s i z e s a t t a i n e d a t  by s e v e r a l s p e c i e s of f i s h , i n h a b i t i n g both sea  f r e s h waters, i n d i c a t e t h a t the marine environment  promotes b e t t e r growth. 2.  The  experiments on growth of j u v e n i l e salmon i n d i c a t e b e t t e r  growth i n sea water and p a r t i c u l a r l y i n the  higher  s a l i n i t i e s used. 3.  Sockeye i n 6$o s a l i n i t y showed only a very s l i g h t i n weight, over that of the f r e s h water group. t h i s s a l i n e medium was of the experiment and  f r e s h water l i f e of t h i s 4.  The 12$o  5.  Growth i n  r e t a r d e d d u r i n g the f i r s t t h i s i s probably due  increase  to the  e i g h t weeks longer  species.  best i n c r e a s e i n weight of the coho was  obtained -in  salinity.  Ghum showed good growth i n both 6$o and  30$ o s a l i n i t i e s ,  the percentage weight i n c r e a s e i n the l a t t e r medium was 6.  G o l d f i s h d i d not show any i n c r e a s e i n the two  7.  The  but better.  s i g n i f i c a n t d i f f e r e n c e i n weight  media.  e f f e c t of d i f f e r e n t environmental f a c t o r s on growth of  f i s h has been s t u d i e d experimentally  by s e v e r a l i n v e s t i g a t o r s ,  and t h e i r evidence shows that the a l t e r a t i o n i n m e r i s t i c counts or body p r o p o r t i o n s ,  i n e a r l y development, produces  d i f f e r e n t growth r a t e s i n the s u c c e s s i v e l i f e , and 8.  The  stages of l a t e r  consequently a f f e c t s the u l t i m a t e  size.  p h y s i o l o g i c a l mechanisms of growth of f i s h e s are  w e l l known.  The  i n f l u e n c e of hormones on growth i s  probably ameliorated  i n sea water.  not  LITERATURE CITED  Aim, G-. 1934. Salmon In the B a l t i c p r e c i n c t s . E x p l . Mer. 92: 1-63.  Rapp. Cons.  Baldwin, E. 1949. An I n t r o d u c t i o n to Comparative B i o c h e m i s t r y . 3rd Ed. U n i v e r s i t y Press Cambridge. B a r r e t t , I . , and Hum, D.R. 1954. - A- manual of game f i s h c u l t u r e f o r use i n B r i t i s h Columbia t r o u t h a t c h e r i e s . British Columbia Game Dept. Mimeo.40pp. B l a c k , T.S'. 1951a. Changes i n body c h l o r i d e , d e n s i t y , and water content of chum (Oncorhynchus keta) and coho (0. k i s u t c h ) salmon f r y when t r a n s f e r r e d from f r e s h water to sea water. J . P i s h . Res. Bd. Can. 8: 164-177. Black, T.S. 1951b. Some aspects o f the p h y s i o l o g y of f i s h . I. Osmotic r e g u l a t i o n i n t e l e o s t f i s h e s . Univ. Toronto Stud. B i o l . Ser. No. 59. Pub. Ont. P i s h . Res. Lab. 71: 53-89. CarV G.C., and Clemens, W.A. 1953. The f r e s h water f i s h e s o f B r i t i s h Columbia. B r i t i s h Columbia Prov. Mus. No. 5, 136pp. Chidambaram, K., and Unny, M.M. 1946. T a r i a t i o n i n the r a t e o f growth o f the m i l k - f i s h (Chanos chanos). Nature 157?375• Clemens, W.A., and Wilby, G.T. 1949. P i s h e s of the P a c i f i c coast o f Canada. B u l l . P i s h . Res. Bd. Can. No. 68:368pp. Coates, J.A., and Schwab, R.L. 1956. B r i n e shrimp f e e d i n g experiments. Prog. Report Washington Dept. of P i s h . Mimeo. 7pp. Davis, H.S. 1927. Some f e e d i n g experiments w i t h t r o u t f i n g e r l i n g s . Trans. Amer. P i s h . Soc. 57: 281-285; Dixon, B. 1934. The age and growth o f salmon caught i n the P o l i s h B a l t i c i n the years 1931 - 33. J . Cons. E x p l . Mer. 9: 66-78. Dymond, J.R. 1944. Spread of the smelt (Qsmerus mordax) i n the Canadian waters o f the Great Lakes. Can. F i e l d Nat. 58: 12-14. Ekman, Sven. 1935. T i e r g e o g r a p h i c des Meeres. Akad. T e r l a g s g e s e l l s h . M.B.H., L i e p z i g . 542pp. P o e r s t e r , R.E. 1947. Experiment t o develop sea-run from landlocked sockeye salmon (Oneorhynehus nerka k e n n e r l y i ) . J . P i s h . Res. Bd. Can. 7: 88-93.  - 38 -  Fontaine, M. 1956. The hormonal c o n t r o l o f water and s a l t e l e c t r o l y t e metabolism i n f i s h . Mem. Soc. E n d o c r i n o l . No. 5: 69-82. E r a s e r , C.McL. 1918. Rearing sockeye salmon i n f r e s h water. C o n t r i b . Can. B i o l . 1917 - 1918: 105-109. Gibson, M.B., and H i r s t , B. 1955. The e f f e c t o f s a l i n i t y and temperature on the p r e - a d u l t growth o f guppies. Copeia No. 3: 241-243. Goldsmith, E.D., N i g r e l l i , R.E., Gordon, A.S., Charipper, H.A,, and Gordon, M. 1944. E f f e c t o f t h i o u r e a on f i s h development. E n d o c r i n o l . 35: 132-134. O u t s e l l , J.S. 1939. P i n g e r l i n g t r o u t f e e d i n g experiments, leetown 1938. Prog. F i s h - C u l t . No. 45: 32-41. Heuts, M.J. 1947. The p h e n o t y p i c a l v a r i a b i l i t y o f Gasterosteus a c u l e a t u s L. p o p u l a t i o n s i n Belgium. Meded. vlaamsche Acad. K l . Wet. 9: 5-63. Hinks, D. 1943. The f i s h e s o f Manitoba.  102pp.  Hoar, W.S. 1951. Some aspects of the p h y s i o l o g y o f f i s h . I. Hormones i n f i s h . Univ. Toronto Stud. B i o l . No. 59. Pub. Ont. F i s h . Res. Lab. 71: 1-51. Hoar, W.S. 1952. T h y r o i d f u n c t i o n i n some anadromous and l a n d l o c k e d t e l e o s t s . Trans. Roy. Soc. Can. 46: 39-53. Hoar, W.S. 1956. The hormonal c o n t r o l o f water and s a l t e l e c t r o l y t e metabolism i n f i s h . Mem. Soc. E n d o c r i n o l . No. 5: 69-82. Hoar, W.S., and B e l l , G.M. 1950. The t h y r o i d gland i n r e l a t i o n to the seaward m i g r a t i o n o f P a c i f i c salmon. Can. Res. D. 28: 126-136. Hodgson, W.C. 1934. The N a t u r a l H i s t o r y o f the h e r r i n g o f the southern North Sea. A r n o l d London. 120pp. Hubbs, C.L. 1921. L a t i t u d i n a l v a r i a t i o n i n the number o f v e r t i c a l f i n - r a y s i n L e p t o c o t t u s armatus. Occ. Pap. Mus. Z o o l . Univ. Mich. 94: 1 - 7 . Johnsen, S. 1944. S t u d i e s on v a r i a t i o n i n f i s h i n n o r t h European waters. I . V a r i a t i o n s i n s i z e . Bergens. Mus. Arbok. 1944 (4) 1945: 3-129. Jordon, D.S. and Evermann, B.W. 1903. American Food and Game F i s h e s . New York. 572pp.  - 39 Lindsey, C.C. 1952. Environmental determination o f the number of t e l e o s t f i n r a y s . Ph.D. T h e s i s . Cambridge U n i v e r s i t y . Lindsey, C.C. 1956. Recommended common and s c i e n t i f i c names o f B r i t i s h Columbia f r e s h water f i s h e s . P i s h . Management D i v . B r i t i s h Columbia Game Commission. Mimeo. 26pp. M a r t i n , W.R. 1949. The mechanics o f environmental c o n t r o l o f body form i n f i s h e s . Univ. Toronto S t u d i e s , B i o l . No. 58, Pub. Ont. P i s h . Res. Lab. 70: 5-76. McKenzie, R.A. 1946. The smelt f i s h e r y o f n o r t h e a s t e r n New Brunswick. B u l l . P i s h . Res. Bd. Can. 70: 1-20. Munro, I.S.R. 1955. The marine and f r e s h water f i s h e s o f Ceylon. Dept. o f Ext. A f f a i r s . Canberra, A u s t r a l i a . 351pp. N i g r e l l i , R.F., Goldsmith, E.D., and Charipper, H.A. 1946. E f f e c t s o f mammalian t h y r o i d powder on growth and maturation of t h i o u r e a - t r e a t e d f i s h e s . Anat. Rec. 94:79. Nixo-Nieoscio, N.V. 1940. The i n f l u e n c e o f hormones on growth i n fish. Proc. Moscow Z o o l . Park 1: 178-184. O l i v e r e a u , M. 1948. Influence d'une dimunition de s a l i n i t e s u r l a a c t i v i t e de l a glande Thyroide de deu Teleosteens marins Muraena helena. C R . Soc. B i o l . P a r i s . 142: 176-177. P e r c i v a l , E . 1956. L e t t e r t o Dr. W.S. Hoar, 9 t h Sept. 1956 (Copy i n Appendix I ) . P h i l l i p s , A.M. 1946. Vitamin B requirements f o r t r o u t . Amer. P i s h . Soc. 76: 34-45.  Trans.  P h i l l i p s , A.M., Tunison, A.V., Penn, A.H., M i t c h e l l , C R . , and McCay, C M . 1940. C o r t l a n d hatchery r e p o r t , N.Y. Cons. Dept., No. 9: 9-14. P i c k f o r d , G.E., and Thompson, E.P. 1948. The e f f e c t o f p u r i f i e d mammalian hormone on the k i l l i f i s h (Fundulus h e t e r o c l i s t u s ( L i n n . ) ) . J . Exp. Z o o l . 109: 367-384. Pora, E.A. 1939. Sur l ' a d a p t a t i o n d*un t e l e o s t e e n d u l c a q u i c o l e , C a r a s s i u s c a r a s s i u s L., au m i l i e u s a l i n . B u l l . Soc. S t i . C l u j . , 9: 384-393. P r i t c h a r d , A.L. 1929. The a l e w i f e (Pomolobus pseudoharengus) i n Lake O n t a r i o . Univ. Toronto Stud. B i o l . Ser. 33. Pub. Ont. P i s h . Res. Lab. No. 38: 39-54. Rawson, D.S. 1946. S u c c e s s f u l i n t r o d u c t i o n o f f i s h i n a l a r g e s a l i n e l a k e . Can. P i s h C u l t u r i s t , Nov. 1946: 5-8.  - 40 -  Regnier, M.T. 1938. C o n t r i b u t i o n a 1'etude de l a s e x u a l i t e ' des C y p r i n i d o n t e s v i v i p a r e s (Xiphophorus h e l l e r i . L e b i s t e s r e t i c u l a t u s ) . B u l l . B i o l . France-Belg. 72: 385-493. R i c k e r , W.E. 1938. "Residual" and kokanee salmon i n C u l t u s l a k e . J . P i s h . Res. Bd. Can. 4: 192-218. R i c k e r , W.E. 1940. On the o r i g i n o f the kokanee, a f r e s h water type o f sockeye salmon. Trans. Roy. Soc. Can. 34: 121-135. Roughlfy, T.C. 343pp.  1953.  P i s h and  F i s h e r i e s of A u s t r a l i a , Sidney,  Schmidt, Johs. 1917. R a c i a l i n v e s t i g a t i o n s I . Zoarces v i v i p a r o u s and l o c a l r a c e s o f same. Compt. Rend. Lab. C a r l s b e r g . 13(3): 279-397. ' -Schmidt, Johs. 1919. R a c i a l i n v e s t i g a t i o n s I I I . Experiments with L e b i s t e s r e t i c u l a t u s (Peters) Regan. Compt-Rend. Lab. C a r l s b e r g . 14(5): 1-8. Schmidt, Johs. 1920. R a c i a l i n v e s t i g a t i o n s V. Experimental i n v e s t i g a t i o n s with Zoarces v i v i p a r o u s L. Compt-Rend. Lab. C a r l s b e r g . 14(9): 1-14. Schmidt, Johs. 1930. R a c i a l i n v e s t i g a t i o n s X. The A t l a n t i c cod (Gadus c a l l a r i a s L.) and l o c a l races o f same. Compt-Rend. Lab. C a r l s b e r g . 18(6): 1-72. Smith, D . C , and E v e r e t t , G.M. 1943. The e f f e c t o f t h y r o i d hormone on growth r a t e , time o f sexual d i f f e r e n t a t i o n and oxygen consumption i n the f i s h , L e b i s t e s r e t i c u l a t u s . J . Exp. Z o o l . 94: 229-240. Smith, D.C.W. 1956. The r o l e o f the endocrine organs i n the s a l i n i t y t o l e r a n c e o f t r o u t . Mem. Soc. E n d o c r i n o l . No. 5: 83-101. Sund, 0. 1943. V a r i a t i o n i n the number of v e r t e b r a e i n the Norwegian w i n t e r h e r r i n g . Ann. B i o l . Copenhague. 1: 56-57. Sverdrup, H.U., Johnson, M.W. and Fleming, R.H. 1942. Oceans. P r e n t i c e - H a l l , Inc. New York 1084pp.  The  Taning, A. 1944. Experiments on m e r i s t i c and other c h a r a c t e r s i n f i s h e s . I . On the i n f l u e n c e - o f temperature i n some m e r i s t i c - c h a r a c t e r s i n sea t r o u t and the f i x a t i o n - p e r i o d o f these c h a r a c t e r s . Medd. Komm. Havundersg., Zbh. Ser. P i s k . 11: 1-66. Taning, A. 1946. Stage o f d e t e r m i n a t i o n of v e r t e b r a e i n t e l o e s t e a n f i s h e s . Nature 157:594.  - 41 -  Tailing, A. 1952. Experimental study of m e r i s t i c c h a r a c t e r s i n f i s h e s . B i o l . Rev. 27: 169-193. Vladykov, V.D. 1934. Environment and taxonomic c h a r a c t e r s of f i s h e s . Trans. Roy. Canadian I n s t . 20: 99-140. Weber, M., and De Beaufort, L.F. 1913. P i s h e s of the IndoA u s t r a l i a n A r c h i p e l a g o . V o l . 2. 404pp. Wilder, D.G-. 1947. A comparative study of the A t l a n t i c salmon, Salmo s a l a r Linneaus, and the l a k e salmon,Salmo s a l a r sebago (GirardT Can. J . Res. D 25: 175-189. Wilder, D.G. 1952. A comparative study of anadromous and f r e s h water p o p u l a t i o n s of brook t r o u t ( S a l v e l i n u s f o n t i n a l i s ) ( M i t c h e l l ) . J . P i s h . Res. Bd. Can. 9: 169-203.  APPENDIX - I C  0 P  Y  P. 0. Box 1471  Canterbury U n i v e r s i t y C o l l e g e C h r i s t c h u r c h , C. 1 New Zealand September IX, '56  P r o f e s s o r W. S. Hoar Z o o l . Dept. University Vancouver, B. G. Dear P r o f e s s o r Hoar, F i r s t , l e t me thank you f o r k i n d l y sending some r e p r i n t s of your work on f i s h behaviour and p h y s i o l o g y which reached me some short time ago. Meanwhile, I have obtained d e t a i l s o f s p r i n g salmon runs from the Marine Department and sent you them a l o n g with my m a t e r i a l from Lake C o l e r i d g e . MacDonald's Creek, Westland, runs i n t o a lagoon which, I t h i n k , i s b r a c k i s h and resembles Lake E l l e s m e r e on t h e east s i d e o f Canterbury from which I obtained a male and a female mature a t 16" and 1 l b . 1 oz, t h i s l a s t May. I t does l o o k as i f your p r o p o s i t i o n c a r r i e s a l o t o f weight, v i z . t h a t t h e r e i s "evidence o f osmotic s t r e s s i n t h e i r r e l a t i v e l y reduced growth r a t e " ( B i o l . Rev., p. 444, V o l . 28, 1953). Presumably, the f i s h running i n from the sea resemble those going i n t o Western Canadian r i v e r s d u r i n g the spawning runs. Yours v e r y t r u l y , "E. P e r c i v a l . "  - 43 APPENDIX - I - continued Oncorhynchus tschawytscha i n New Zealand Spawing r u n from a f r e s h water l a k e , Lake C o l e r i d g e , May, 1954 some f r e s h l y r u n and c l e a n , some worn t o v a r y i n g e x t e n t s . 3NGTH"  18 19 18 17*  m 17 3/4 t  17 15 19* 20* 18* 18* 19 19 18i 18* , 18 3/4 19 3/4 18* 18* 18 3/4 19 18* 21 17 21* 18 3/4 17* 19* 17* , 19 3/4 18* 18 17* , 18 3/4 18 18 3/4 20 3/4 18 19* , 19 3/4 19 3/4 19 y  WEIGHT (lb.oz.)  SEX  2.0 2.0 2.0 2.0 2.0 2.0 1.8 1.2 2.0 2.4 2.4 2.4 2.4 2.4 2.0 2.0 2.0 2.4 2.0 1.8 1.14 1.14 2.0 2.8 1.3 2.0 2.0 1.9 2.7 1.5 2.2 2.0 1.15 1.11 2.1 1.9 1.13 2.1 1.12 2.6 2.6 2.8 1.14  M M P M M M M M M M M P M M M P P P M M F M P M M M M M M P M M. M M M M M M P P M M  LENGTH"  19* 19 18* 19* 19* 19 18* 19* 19* 19* , 18 3/4 19* 18* 20* 20* 18 3/4 17 3/4 17 3/4 18 20* 19* 18* 19* , 18 3/4 18 3/4 19* , 18 3/4 18 3/4 19* 17* 18* 19 3/4 18* 19* 18 18 3/4 18* 18 3/4 17 3/4  WEIGHT (lb.oz.)  SEX  2.6 2.6 2.4 2.8 2.10 2.6 2.4 2.8 2.10 3.0 2.10 2.8 2.4 3.8 2.8 2.10 2.2 1.12 1.12 2.4 2.0 2.0 2.12 2.4 2.6 2.4 2.4 2.0 2.10 2.0 2.4 2.6 2.0 2.8 2.6 2.12 2.4 2.10 1.12  P P P M P P P M P P P M P P P P P P  F  M P P P P M M P P P P  ?  P P P M P M M  ?  - 44 APPENDIX - I - continued QUINNAT SALMON "LANDLOCKED" May. 1955  231"  18"  241" 23" 241" 251" 241" 191" 24" 23" 191" 211"  May. 1956 P P P M P P M M P M M M  QUINNAT SALMON TAKEN Weight 16 l b s 15 19 15 15 11 20 8 111 10 7  HI 12  QUINNAT SALMON TAKEN Weight 15 l b s 8 8 11 12  81 9  15 16 13 14 12  9  8  9 91  10  91  MACDONALD'S CREEK. WESTLAND 25" 24"  211" 20" 19" 21" 21" 22"  M M P P P P P P  RANGITATA - 1944 Length 30 inches 29 29 35 32 37 29 33 30 281 28  27  WAIMAKARIRI - 1944 Length 33 inches 28 29 31 31 27 30 33 34 32 34 31 28 27 28 29 30 28  APPENDIX - I - continued QUINNAT SALMON TAKEN - continued Weight 10 l b s 12 11 14 11 9 91  9  91  10 11 11 101 13 8 QUINNAT SALMON TAKEN Weight  WAIMAKARIRI - 1944 Length 29 inches 31 30 32 28 28 29 28 25 30 30 27 29 37 29 OPIHI  -  1944  Length  12 l b s 17 19 21 16 18  32 inches 32 36 36 36 35  18) 10) 12) 7) 16) 11) 21) 20) 8) 17)  E s t i m a t e d Length and Weight  38 36 36 33 36 34 38 38 33 38  Estimated Length and Weight  39 40 37 37 36 38 34 36 35 37 36 36 34  16) 23 17) 16} 10) 21) 8) 14) 12) 18) 12) 17) ll)  - 46 APPENDIX - I - continued QtJINNAT SALMON TAKEN Weight 4 lbs 14 H i 12 11 11 8 12 13 10 12 12 10 10 13  RAKAIA  -  1944  Length 20 inches 32 30 32 30 30 28 31 33 27 31 30 28 31 34  Estimated Length and Weight  APPENDIX - I I Sockeye:  Weekly record o f weight i n c r e a s e .  SOCKEYE - F r e s h water. No. o f Weeks  0 $ c SALINITY Temperature  No. o f F i s h  Weight i n gm.  Mean weight i n gm.  $ Increase  Initial  69  13.3  0.192  13  1  17  4.8  0.283  11.8  2  16  5.8  0.363  12  3  16  6.4  0.400  12  4  10  4.8  0.480  12.5  5  10  5.6  0.560  6  8  4.9  0.613  13  7  8  5.3  0.663  13.5  8  8  5.8  0.730  13.5  9  8  6.1  0.763  13  10  8  6.5  0.810  191.7  319.8  C°  12.5  13  APPENDIX - I I I Sockeye:  Weekly record o f weight i n c r e a s e . SOCKEYE - 6$o SALINITY  No. o f Weeks  Temperature No. o f P i s h  Initial  Weight i n gm.  Mean weight i n gm.  fo Increase  G°  69  15.3  0.221  13  25  8.5  0.339  11.8  2  24  8.6  0.358  12  3  24  9.4  0.392 "~  12  4  24  10.4  0.433  12.5  5  24  11.6  0.481  6  24  12.8  0.533  13  7  24  14.4  0.600  13.5  8  24  16.8  0.700  13.5  9  24  20.0  0.832  13  10  24  23.1  0.963  1  .  117.6  335.7  12.5  13  APPENDIX - IV Coho:  S e r i e s 1. COHG  No. o f Weeks  No. o f F i s h  Weekly record o f weight  - Fresh water. Weight i n gm.  0$o  increase.  SALINITY Mean weight i n gm.  Temperature $ Increase  C°  Initial  50  22.8  0.456  13  1  39  21.7  0.556  11.8  2  38  21.8  0.574  12  3  38  22.6  0.595  12  4  38  27.5  0.724  12.5  5  38  30.7  0.808  6  38  35.1  0.924  13  7  38  39.2  1.032  13.5  8  38  44.1  1.161  13.5  9  38  49.8  1.311  13  10  38  54.6  1.437  .  77.2  215.1  12.5  13  APPENDIX - V Coho:  S e r i e s 1.  Weekly r e c o r d of weight  COHO - 6$o JJ  0 <  0  increase.  SALINITY  f  Weeks  Temperature No. of P i s h  Weight i n gm.  Mean weight i n gm.  $. Increase  C°  Initial  50  24.3  0.486  13  1  44  23.0  0.523  11.8  2  44  26.1  0.593  12  3  44  29.8  0.677  12  4  44  34.9  0.795  12.5  5  44  40.2  0.914  6  44  46.4  1.055  13  7  44  52.3  1.189  13.5  8  44  59.9  1.361  13.5  9  44  68.1  1.548  13  10  44  75.1  1.707  88.1  251.2  12.5  13  APPENDIX - VI Cohos  S e r i e s 1.  Weekly r e c o r d o f weight i n c r e a s e .  COHO - 12$o SALINITY N  o  #  o  Temperature  f  Weeks  No. o f P i s h  Weight i n gm.  Mean weight i n gm.  $ Increase  C°  Initial  50  23.3  1  38  21.8  0.574  11.8  2  38  22.7  0.597  12  3  37  27.8  0.751  12  4  37  35.2  0.951  12.5  5  37  44.1  1.192  6  37  52.0  1.405  13  7  37  60.4  1.632  13.5  8  37  69.7  1.884  13.5  9  37  80.1  2.165  13  10  37  89.9  2.430  0.466  13  155.8  421.5  12.5  13  APPENDIX - V I I Coho:  S e r i e s 2.  i  Weekly record o f weight  COHO - Presh water. K o  .  o  increase  0 $ o SALINITY Temperature  f  Weeks  No. o f P i s h  Weight i n gm.  Mean weight i n gm.  $ Increase  C°  Initial  50  49.6  0.992  13.5  1  48  52.7  1.098  14.4  2  27  56.8  1.209  13  3  47  60.7  1.278  13  4  47  65.4  1.391  13  5  47  72.2  1.536  6  47  78.1  1.662  12.8  7  47  85.0  1.809  12.5  8  47  90.1  1.917  11.5  9  46  95.5  2.080  11  10  46  101.1  2.200  53.2  121.8  13  10.5  APPENDIX - V I I I Goho:  S e r i e s 2.  Weekly record o f weight i n c r e a s e .  COHO - 18$ No. o f Weeks  No. o f P i s h  Initial  50  1  50  2  0  Weight i n gm.  SALINITY Mean weight i n  Temperature $ Increase  C°  1.022  13.5  55.3  1.106  14.4  50  61.1  1.222  13  3  49  69.7  1.422  13  4  49  80.0  1.632  13  5  49  92.4  1.886  6  49  103.6  2.114  12.8  7  49  117.2  2.392  12.5  8  49  126.8  2.589  11.5  9  49  137.1  2.797  11  10  49  146.9  2.998  51.1  84.5  193.5  13  10.5  APPENDIX - IX Chum:  Weekly record o f weight i n c r e a s e . CHUM - 6fo SALINITY 0  No. o f Weeks  Temperature No. o f F i s h  Weight i n gm.  Mean weight i n gm.  i» Increase  C°  Initial  11  27.6  2.509  12.6  1  11  30.0  2.727  13  2  11  33.8  3.073  12.8  3  9  39.1  4.344  13.5  4  9  42.4  4.710  12.8  5  8  44.2  5.530  120.4  13  APPENDIX - X Chum:  Weekly r e c o r d o f weight i n c r e a s e .  CHUM - 30$o SALINITY No. o f Weeks  No. o f P i s h  Weight i n gm.  Mean weight i n gm.  Temperature $ Increase  Initial  12  28.1  2.342  12.6  1  12  31.6  2.633  13 VJl VJ)  2  12  38.4  3.200  12.8  3  11  48.6  4.420  13.5  4  11  59.1  5.373  12.8  5  11  68.4  6.220  6  2  Experiment  discontinued.  165.6  13  APPENDIX - XI Chum:  Data on i n d i v i d u a l weights in.gm.  30$o SALINITY  6 $ o SALINITY  H CD  cd o  7.1  6.8  5.8  7.1  5.4  6.8  6.9  13  5.7  7.4  7.0  6.3  7.5  5.6  7.1  7.3  12.8  7.2  5.9  7.7  7.3  7.0  7.9  6.0  7.7  7.8  13  7.5  6.3  8.1  7.8  7.8  8.7  6.6  8.6  8.6  13  DEAD  DEAD  DEAD  DEAD  DEAD  13  34.5  23.0  22.2  26.5  24.6  cd  H«  0) CQ O  EH  o  Initial  6.1  6.7  5.6  1  6.6  6.9  2  7.2  3  7.9  H  a s  cd o  o  o t> HCD  •H  P <H 0)  CD  H  Lower Caudal  «H  'ri  H  Upper Caudal  m •H  Adipose  4^  Left Pelvic  CD CD  Normal fish  SQ  M  Hi  Pl •rl >tf  *H  0)  ft P.  cd  CO  H?  4 fa i n c r ease 29.5 up t o 3rd wk.  12.0  12.5  14.1  14.7  <D U . 3 -P  cd o U  CD  o  Pi  a  CD EH  VJl  APPENDIX - X I I Goldfish:  Weekly record o f weight i n c r e a s e .  GOLDFISH - F r e s h water. No. o f Weeks  No. o f F i s h  0 $ o SALINITY  Weight i n gm.  Mean weight i n gm.  $ Increase  Temperature C°  Initial  15  189.5  12.63  17.5  1  15  191.2  12.75  17  2  15  193.8  12.92  17.5  3  15  196.4  13.10  17.8  4  15  196.0  13.06  17  5  15  199.0  13.27  6  15  201.00  13.40  16.5  7  15  203.6  13.57  16.5  8  15  205.8  13.72  15  9  15  208.0  13.87  13  10  15  209.8  13.99  5.1  10.77;  16.8  12.5,  APPENDIX - X I I I Goldfish:  Weekly r e c o r d o f weight i n c r e a s e .  GOLDFISH - 6$.SALINITY No. o f Weeks  No. o f F i s h  Weight i n gm.  Mean weight i n gm.  $  Increase  Temperature «o  Initial  15  172.8  11.52  17.5  1  15  173.1  11.54  17  2  15  175.0  11.67  17.5  3  15  176.6  11.77  17.8  4  15  177.0  11.80  17  5  15  178.6  11.91  6  15  181.2  12.08  16.5  7  15  184.1  12.27  16.5  8  15  186.2  12.41  15  9  15  189.1  12.60  13  10  15  192.8  12.85  3.4  11.5  16.8  12.5  00  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 11 16
Malaysia 11 0
Poland 6 0
India 4 2
Canada 3 0
China 3 2
South Africa 1 0
Sri Lanka 1 0
Estonia 1 0
Brazil 1 0
City Views Downloads
Unknown 14 6
Ashburn 6 0
Kuala Selangor 5 0
Bangalore 4 0
Fort Worth 2 0
Beijing 2 0
Mountain View 2 0
Saskatoon 2 0
Shenzhen 1 1
Tallinn 1 0
Hot Springs National Park 1 0
Durban 1 0
São Paulo 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0106235/manifest

Comment

Related Items