Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Ecological study of soils in the coastal western hemlock zone Lesko, Gyorgy Laszlo 1961

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1961_A6_7 L3 E2.pdf [ 10.9MB ]
Metadata
JSON: 831-1.0106118.json
JSON-LD: 831-1.0106118-ld.json
RDF/XML (Pretty): 831-1.0106118-rdf.xml
RDF/JSON: 831-1.0106118-rdf.json
Turtle: 831-1.0106118-turtle.txt
N-Triples: 831-1.0106118-rdf-ntriples.txt
Original Record: 831-1.0106118-source.json
Full Text
831-1.0106118-fulltext.txt
Citation
831-1.0106118.ris

Full Text

ECOLOGICAL STUDY OF SOILS IN THE COASTAL WESTERN HEMLOCK ZONE by GYORGT LA.SZLO LESKO B.S.F., Un i v e r s i t y of B r i t i s h Columbia, 1 9 ! ? 8 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE DEGREE OF MASTER OF SCIENCE i n the Department of BIOLOGY AND BOTANY We accept t h i s t h e s i s as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1 9 6 1 In presenting t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree that permission f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s representatives. It i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of ( R ^ y f r ^ j ) ^ / f~ (B^^O^AJ^ The U n i v e r s i t y of B r i t i s h Columbia, Vancouver 8, Canada. Date i i ABSTRACT The main purpose of t h i s study was to delineate ecosystem f o r e s t types wi t h i n the f o r e s t associations of the Coastal Western Hemlock Zone. This aim was r e a l i s e d through the study of the ecotope of 116 sample p l o t s i n f i f t e e n d i f f e r e n t associations. The study involved examination of topographic p o s i t i o n and macroscopic s o i l properties i n a l l sample p l o t s . Twenty-four s o i l p r o f i l e s were analysed f o r chemical pro p e r t i e s . The f o r e s t associations were divided into two or more f o r e s t types or kept as a single f o r e s t type. This was done by the author and coworker, L. O r l o c i , p r i m a r i l y on the basis of ecoptopic information. Results of the study of edaphic f a c t o r s i n r e l a t i o n to plant associations i n d i c a t e that the moisture regime, s o i l depth, organic matter/nitrogen r a t i o and potassium concentration of the s o i l s are the most important f a c t o r s edaphically d i f f e r e n t i a t i n g the f o r e s t a s s o c i a t i o n s . S o i l succession studies included i n t h i s work suggest that the climate, the kind of vegetation and water economy of the s o i l determine the course of s o i l development. S o i l succession may i n i t i a t e on s i x e s s e n t i a l l y d i f f e r e n t kinds of substrata, i n the Coastal Western Hemlock Zone. . S o i l forming processes contributing to development of s o i l s are p o d z o l i z a t i o n , gleyzation, melanization and peat formation i n the study area. ACKNOWLEDGMENT The author wishes to express h i s gratitude to the following organizations who contributed f a c i l i t i e s and f i n a n c i a l assistance to t h i s study: the Department of Biology and Botany, the Department of S o i l Science, the Faculty of Forestry and Un i v e r s i t y Forest, U n i v e r s i t y of B r i t i s h Columbia; The National Research Council, Ottawaj The Vancouver Foundation, and the Greater Vancouver Water D i s t r i c t . The -writer wishes to thank the i n d i v i d u a l s who contributed t h e i r help to t h i s i n v e s t i g a t i o n . Those who assis t e d include Dr. V.J. Krajina who gave guidance and assistance i n the organization and completion of the study; Dr. T.M.C. Taylor, Head of the Department of Biology and Botany; Dr. C. Rowles, Head of the Department of S o i l Science; Dr. J.S. Clark; Mr..L. Farstad; Dr. J.H.G. Smith; Mr. S. E i s ; Mr. L. O r l o c i Mrs. G.L. Lesko; Mr. M.A.M. B e l l ; Mr. R.B. Smith; Mr. R.C. Brooke and many others who helped i n the completion of the research. iv TABLE OF CONTENTS Page Introduction 1 Chapter I.- General d e s c r i p t i o n of the study area 3 a. Geography 3 b. Geology 3 c. Climate It Chapter I I . Method of sampling and analysis 5> a. S e l e c t i o n and a n a l y s i s of s o i l p r o f i l e s $ b. Nomenclature of s o i l horizons 7 Chapter I I I . Short d e s c r i p t i o n and c l a s s i f i c a t i o n of s o i l s found i n the Coastal Western Hemlock Zone 9 a. Subaqueous s o i l s 9 b. Organic s o i l s 9 c. G l e y s o l i c s o i l s 9 d. Regosolic s o i l s 10 e. B r u n i s o l i c s o i l s 10 f . Podzolic s o i l s 11 Chapter IV. D e s c r i p t i o n of s o i l s i n c l a s s i f i e d f o r e s t types 12 Floodplain communities 12 Assoc. 1. Populeto - Loniceretum 12 a. Lonicera - Rubus f o r e s t type 12 b. Elymus glaucus phase 13 c. Equisetum arvense phase Iii Assoc. 2. Piceeto - Oplopanacetum 11* Assoc. 3. Piceeto - Symphorycarpetum 17 Assoc. U. Alneto- - Ribisetum b r a c t e o s i 18 TABLE OF CONTENTS - Continued Page Assoc. 5. Nupharetum po l y s e p a l y 19 Assoc. 6. Caricetum r e t r o r s a e 19 .. Assoc. 7. S a l i c e t o - Oenanthetum 20 Muskeg communities 26 Assoc. 8. P i n e t o - Ledetum 26 Assoc. 9. Thujeto - Coptetum 26 Seepage communities 27 Assoc.10. Thujeto - Polystichetum 27 Assoc. 11. Thujeto - Blechnetum 32 a. O r t h i c Biechnum f o r e s t type 32 b. Biechnum - Rubus f o r e s t -type 3h c. G l e y s o l i c Biechnum f o r e s t type .... 35 d. Peaty Biechnum f o r e s t type 39 Assoc.12. A b i e t e t o - Oplopanacetum 39 Assoc.13. P i c e e t o - L y s i c h i t e t u m hP a. G l e y s o l i c L y s i c h i t u m f o r e s t type h0 b. Peaty L y s i c h i t u m U2 Dry Edaphic communities «... h3 Assoc. l U . Pseudotsugetum m e n z i e s i i h3 • a. O r t h i c G a u l t h e r i a f o r e s t type h3 b. L e g o s o l i c G a u l t h e r i a f o r e s t type h5 c. G a u l t h e r i a - Mahonia f o r e s t type U6 Assoc.15". Tsugeto - Gaultherietum hi a. O r t h i c Vaccinium - G a u l t h e r i a f o r e s t type. hi b. L e g o s o l i c Vaccinium - G a u l t h e r i a U8 vi TABLE OF CONTENTS - Continued Page Zonal communities i|8 Assoc.16. Tsugetum heterophyllae plagiothecium undulati 52 a. The o r t h i c Plagiothecium f o r e s t type 52 b. The Plagiothecium - Mahonia f o r e s t type 5U Assoc.17. Abieteto - Tsugetum heterophyllae 57 a. Vaccinium - Plagiothecium - C l i n t o n i a f o r e s t type 58 b. Vaccinium - Plagiothecium - Acer f o r e s t type 60 Chapter V. Comparison of ecoptopic c h a r a c t e r i s t i c s of associations and f o r e s t types 6k A l t i t u d e and exposure 6k Associations and s o i l subgroups 65 Depth of solum 71 Depth of seepage and ground water 73 Comparison of chemical c h a r a c t e r i s t i c s 77 1. T o t a l organic matter 77 2. T o t a l c a t i o n exchange capacity 78 3. Amount of exchangeable calcium 79 U. Amount of exchangeable magnesium 79 5. Amount of exchangeable potassium 81 6. T o t a l a v a i l a b l e phosphorus 81 7. Concentration of organic matter 81 8. Concentration of cation exchange capacity 82 9. Calcium concentration 82 10. Magnesium concentration 83 11. Potassium concentration 83 v i i TABLE OF CONTENTS - Continued Page 12 . Phosphorus concentration 8I4 13. Saturation of Ca, Mg and K i n % of t o t a l cation exchange capacity Qk II4. Nitrogen content of humus horizons 8ij. 1$, Ratio of t o t a l organic matter and nitrogen (OM/N) 85 Chapter VI. Proposed trends i n s o i l succession 87 1 . Well drained g l a c i a l d r i f t 89 2 . A l l u v i a l deposits 90 3 . Bedrock 90 k» Poorly drained g l a c i a l d r i f t ... 90 5 . Oxbow lakes 91 6. Other lakes 91 Conclusion 9h References 9f? v i i i TABLE OF CONTENTS - Continued Page Figures and Tables Figure 1 and 2. C o r r e l a t i o n between organic matter content and c a t i o n exchange capacity i n f l o o d p l a i n s o i l s 21 Figure 3 and k> Forest stand and s o i l of the Oplopanax - Ribes f o r e s t type 23 Figure 5> and 6. Forest stand and s o i l of the Lysichitum - Oenanthe f o r e s t type .. 2f? Figure 7 and 8. Forest stand and s o i l of the Polystichum f o r e s t type 31 Figure 9 and 10. Forest stand and s o i l of the Blechnum f o r e s t type • • 38 Figure .11 - 13. Forest stand and s o i l s of dry edaphic communities £l Figure lk and If?. Forest stand and s o i l of the o r t h i c Plagiothecium f o r e s t type £6 Figure 16 and 17. Forest stand and s o i l of the Thujeto - Blechnetum a s s o c i a t i o n 63 Figure 18. A l t i t u d e and exposure d i s t r i b u t i o n of the dry edaphic communities 66 Figure 19. A l t i t u d e and exposure d i s t r i b u t i o n of the zonal associations 67 Figure 20. A l t i t u d e and exposure d i s t r i b u t i o n of the seepage associations - 68 Figure 20/a. D i s t r i b u t i o n of s o i l subgroups i n the associations 70 i x TABLE OF CONTENTS - Continued Page Figure 21. Relationship between f o r e s t type, s o i l depth, seepage depth and s i t e indexes 76 Table 1. S i g n i f i c a n t differences i n chemical properties between associations by t o t a l amounts and concentration .. 86 Figure 22 and 23. D i s t r i b u t i o n of exchangeable Calcium and Magnesium i n d i f f e r e n t s o i l subgroups i n the 0 and B Horizons 88 Figure 2l*. Trends of s o i l succession 93 Appendices Short d e s c r i p t i o n of the chemically analysed s o i l p r o f i l e 98 Methods of chemical analysis 119 Data f o r s t a t i s t i c a l analysis and analysis of variance 126 1. T o t a l organic matter i n Kg/100 m2 126 2. Cation exchange capacity i n equivalents/100 m2 127 3. T o t a l amount of exchangeable Calcium i n Kg/lOO m2 128 U. T o t a l amount of exchangeable Magnesium i n Kg/lOO m2 129 5. T o t a l amount of exchangeable Potassium i n Kg/100 m2 130 6. T o t a l amount of av a i l a b l e Phosphorus i n 10 grams/100 m2 131 7. T o t a l organic matter i n % 132 8. Cation exchange capacity i n me/100 g 133 9. Exchangeable Calcium i n me/100 g 13h 10. Exchangeable Magnesium i n me/100 g 135 11. Exchangeable Potassium i n me/100 g , 136 12. Saturation of C a + * + M g + + • K + i n % 137 13. Ava i l a b l e Phosphorus. i n ppm 138 X TABLE OF CONTENTS - Continued Page lk' Organic Matter / Nitrogen r a t i o i n the humus horizon of the associations 1 3 9 C a l c u l a t i o n l l ; 0 INTRODUCTION A v a i l a b l e data on the s o i l s and s o i l s i t e r e l a t i o n s h i p s of the Coastal Western Hemlock Zone* i n B r i t i s h Columbia are very l i m i t e d . However, experimental r e s u l t s from neighboring regions may provide important information. K e l l y and Spilsbury (1939) c l a s s i f i e d the s o i l s of the Lower Fraser V a l l e y on the basis of drainage: Zonal S o i l s Intrazonal S o i l s Azonal S o i l s Subdrainage Groundwater S o i l s Recent A l l u v i a l - excessive Half-Bog , S o i l - r e s t r i c t e d Peat-Bog - f a i r to medium Rowles, Farstad, and L a i r d (1956) recognised Concretionary Reddish Brown, Brown Podzolic, Podzols, Muck, Peat, and G l e y s o l i c s o i l s i n the area of the Coastal Western Hemlock Zone. In the f i e l d of s o i l s i t e r e l a t i o n s h i p H i l l , Arnst and Bond (19W3) stated that " i f the s o i l i s known, production of Douglas-fir can be predicted w i t h i n narrow l i m i t s " . • The s o i l u n i t s are defined by p r o f i l e , texture and depth. Tarrant (19^9) studied the chemical properties of Douglas-fir s o i l s i n r e l a t i o n to s i t e index. He found no s i g n i f i c a n t r e l a t i o n , and concluded that nutrient content of Douglas-fir s o i l s i s too high to constitute a l i m i t i n g f a c t o r i n tree growth. The studies of Krajina and Spilsbury (1953) have thrown l i g h t on the importance of the depth and amount of seepage i n determining f o r e s t a s s o c i a t i o n s . * K r a j i n a , 1959. 2 Gessel and Lloyd (1950) found that s i t e index of Douglas-fir increases with change i n texture from coarse to medium. S o i l depth i s an important f a c t o r i n s o i l s underlain by an impervious l a y e r . Further, they found that s i t e index increased with increasing p r e c i p i t a t i o n up to I4.0 i n . , and up to 60 i n . on s o i l s underlain by impervious hardpan or bedrock. McMinn (1957) studied the water r e l a t i o n s i n the Douglas-fir region and found that "The v a r i a t i o n i n s o i l moisture regimes was a most s i g n i f i c a n t f a c t o r i n the d i f f e r e n t i a t i o n of s i t e s " . Mueller-Dombois (1959) found c o r r e l a t i o n between f o r e s t associations and chemical properties of the s o i l such as replaceable calcium and magnesium, organic matter content and s o i l r e a c t i o n . Keser (i960) studied Concretionary Brown and Minimal Podzol s o i l s i n r e l a t i o n to s i t e index of D o u g l a s - f i r . He found that a v a i l a b l e water i s p o s i t i v e l y correlated to s i t e index, while chemical and p h y s i c a l properties show no c o r r e l a t i o n . The purpose of the present study i s f o u r f o l d : 1. to provide general information on the s o i l s of the study area; 2. to delineate ecosyste#forest types wi t h i n the plant associations of the Coastal Western Hemlock Zone of B r i t i s h Columbia; 3. to discuss r e l a t i o n s h i p s between plant associations and edaphotopic f a c t o r s ; i i . to suggest possible trends i n s o i l succession. * Tansley, 1935 3 CHAPTER I . GENERAL DESCRIPTION OF THE STUDY AREA a. Geography The Coastal Western Hemlock Zone i s located on the western slope of the Coast Mountains, and on Vancouver Island. The study area i s a r e l a -t i v e l y small part of the zone, l y i n g within 122025' - 123°17« longitude, and i i 9 ° l 8 ' - k9°$3x l a t i t u d e . Within these borders the sample plots are concentrated i n the University Research forest (Haney), Coquitlam Lake Watershed Area, Seymour Mt., Grouse Mt., Seymour Creek Valley, Capilano Valley, Lynn Park, and i n the Squamish River floodplain. b. Geology The actual study area l i e s w i t h i n the Coast Mountains. The steep and high mountains of the area are dissected by deep and wide U-shaped va l l e y s . The Coastal Western Hemlock Zone does not extend higher than 3000 f t . but i t i s under the influence of high mountain climate. Valley trend i s generally north to south. These large valleys are the main channels of the present drainage system. Rivers are bordered by w e l l developed floodplains and v a l l e y walls are generally steep except where they are interrupted by terraces or terr a c e - l i k e formations. Mountains are mainly granodiorite, quartzdiorite d i o r i t e and monzonite. Volcanic or sedimentary rocks are of minor importance (Geological Map of B r i t i s h Columbia, 19U8). Bedrock i s almost en t i r e l y covered;;by a layer of g l a c i a l d r i f t of variable thickness. According to M e r r i l (190'6) g l a c i a l t i l l i n most casds t r a v e l l e d only a short distance. This explains the s i m i l a r i t y between composition of g l a c i a l t i l l and underlying bedrock. The mantle of g l a c i a l d r i f t has been deposited by three major gl a c i a t i o n s , v i z . Seymour, Semiamu and Vashon. The major pleistocene deposits are described i n the following paragraphs, a f t e r Armstrong (1956). •it Canada Dept. of Mines and Resources, Geological Survey of Canada, 19U8. k 1. The g l a c i a l t i l l i s a very compact, unsorted deposit, a mixture of c l a y , s i l t , and stone. In s p i t e of i t s coarse texture i t i s almost or e n t i r e l y impervious, because of i t s compact nature. This phenomenon i s due to the angular form of f i n e material and to the great pressure of the i c e sheet. In the three consecutive g l a c i a t i o n s , three d i f f e r e n t g l a c i a l t i l l s were deposited: Sand % S i l t % Clay Surrey t i l l 57 kl 2 Semiamu t i l l U7 U5 8 Seymour t i l l kk U6 10 2 . G l a c i a l outwash i s deposited by water from the melting i c e . 3. Varved s i l t and clay i s a f i n e deposit of g l a c i a l lakes, with good s t r a t i f i c a t i o n . U . Stony, clayey s i l t i s a glacio-marine deposit, composed of about $0% s i l t , k0% sand and 10% c l a y . The d i s t r i b u t i o n of post g l a c i a l deposits are very l i m i t e d . A l l u v i a l deposits and some organic deposits belong to t h i s group, c. Climate The proximity of the ocean and the abrupt e l e v a t i o n of the Coastal Mountain from sea l e v e l to over 6000 f t . strongly influence the r e g i o n a l climate. The former controls the temperature, not allowing e i t h e r extreme coldness or heat, where the l a t t e r i s responsible f o r the great amount of p r e c i p i t a t i o n . The bulk of the p r e c i p i t a t i o n i s winter r a i n f a l l or snow (at higher e l e v a t i o n s ) . June, J u l y and August are the d r i e s t months, with a monthly mean around 2 inches. The mean annual p r e c i p i t a t i o n - i n c l u d i n g r a i n , snow and fog dripping -ranges from 60-70 inches to over 1$0 inches. The f r o s t - f r e e growing season i s around 200 days. The mean annual temperature i s \\0-h$° F. The monthly mean i s 2Q-U0 0 F i n January and 56-61;° F. i n July, according to Chapman, et a l . (1956). 5 CHAPTER I I . METHOD OF SAMPLING AND ANALYSIS a. S e l e c t i o n and a n l y s i s of s o i l p r o f i l e s The study i s based on 12U described s o i l p r o f i l e s . S o i l reaction was determined on 78 p r o f i l e s ; twenty four p r o f i l e s were analysed f o r t o t a l organic matter content, t o t a l c a t i o n exchange capacity, exchangeable calcium magnesium and potassium, and a v a i l a b l e phosphorus, and t o t a l nitrogen content was determined i n the organic horizon of 22 p r o f i l e s . On the basis of the obtained data, s o i l s were c l a s s i f i e d according to the "Outline f o r the C l a s s i f i c a t i o n of Canadian S o i l s as of November 1958"^ The l a s t step was the establishment of ecosystem f o r e s t types with the help of edaphic data. Location of s o i l p i t s was related to s e l e c t i o n of 1/5 acre sample p l o t s f o r vegetational analysis which were located i n areas phytocoenologically uniform. There was no e f f o r t to s e l e c t uniform physiographic conditions, or s i m i l a r s o i l p r o f i l e s i n r e l a t i o n to a p a r t i c u l a r plant community. In other words, the l o c a t i o n of s o i l p i t s i s completely random wit h i n a c e r t a i n plant community. The f i r s t f o r t y f i f t h acre sample p l o t s used i n t h i s work were selected by Dr. V.J. K r a j i n a i n the summer of 1958. The other edaphically analysed sample p l o t s were selected by S. E i s , G. Lesko, and L. O r l o c i . A n alysis of a sample p l o t started with a general d e s c r i p t i o n of the p l o t i n c l u d i n g physiography, topography, slope, exposure and a l t i t u d e . Generally one s o i l p r o f i l e was exposed i n each p l o t . In cases where the topography was more complex one p r o f i l e was opened i n the convex and one i n the concave topography. The e n t i r e s o i l p r o f i l e was exposed i n each case dorm to the bedrock, impervious hardpan or to the apparently unaltered parent m a t e r i a l . Study of the s o i l p r o f i l e included i d e n t i f i c a t i o n of parent material, estimation of stoniness, and drainage. A l l distinguishable l a y e r s ivere # Canadian S o i l Survey Committee, 1958. described separately i n each p r o f i l e , and representative samples were c o l l e c t e d from each l a y e r f o r laboratory a n a l y s i s . Horizon thickness, color, texture'*, structure, consistency, and the nature of boundary between la y e r s were described i n the f r e s h p i t . Depth of p r o f i l e , presence and depth of ground water, and root d i s t r i b u t i o n were also recorded. Analysis of the vegetation'^nd f o r e s t stand was ca r r i e d out by L. O r l o c i and S. E i s . Chemical analyses of the s o i l s were started i n the summer of 1959. They were made on a i r dried s o i l material f i n e r than 2 mm. Analyses were c a r r i e d out f o r s o i l r e a c tion, t o t a l organic matter content, t o t a l base exchange capacity, exchangeable calcium, magnesium and potassium, phosphorus and t o t a l nitrogen. For d e t a i l e d d e s c r i p t i o n of the employed a n a l y t i c a l methods see appendices. The t o t a l amount of exchangeable calcium, magnesium, potassium and a v a i l a b l e phosphorus i n l b . per acre, t o t a l base exchange capacity i n equivalents per 100 m2, and organic matter i n tons per acre were calculated i n the following way: Calcium, magnesium, potassium and t o t a l base exchange capacity of s o i l s were determined by chemical a n a l y s i s and expressed i n me/100 grams accord-ing to horizons and sub-horizons. The a n a l y t i c a l r e s u l t s f o r organic matter content was expressed i n per-cent of dry weight and phosphorus i n ppm of the dry weight (see Appendices). For each horizon and sub-horizon i t s e f f e c t i v e thickness was calcul a t e d . The proportion representing material coarser than 2 mm was subtracted from the measured thickness. % Estimated on the basis of Professor C.F. Shaw's f i e l d method given i n the S o i l Survey Manual 1951. U.S. Dept. A g r i c u l t u r e . According to methods employed by Krajina , 1933. 7 The weight of each horizon and sub-horizon was calculated f o r a unit area on the basis of assumed bulk density figures: Horizon Bulk density 0 0.2 (Lutz and Chandler, 19ll6) A h 0.9 (Keser,., i960) A e 1.3 (estimated) B 1.2 (I6SAAH, I960) The amount f o r the above mentioned chemical properties were calculated separately for each horizon and sub-horizon and added to obtain a value f o r the whole s o i l p r o f i l e . F i n a l l y , the values for u n i t area were converted into l b . per acre, tons per acre and equivalents per 100 m2 according to the different chemical properties of the s o i l , b. Nomenclature of S o i l Horizons"**" L - Undecomposed l i t t e r . 0 - Decomposed organic matter with very low mineral content. A - 1. Surface mineral horizon of maximum organic accumulation. 2. Surface or subsurface horizons that are l i g h t e r i n color than the underlaying horizon and which have l o s t clay minerals, i r o n , aluminum. 3. Horizons belonging to both of these categories. B - 1. An accumulation of clay, i r o n , aluminum and organic matter. 2 . More or l e s s prismatic or blocky structure, stronger colors than that of the A horizon or the underlying nearly unchanged material. 3. Horizons characterised by both of these categories. C - A horizon of unconsolidated material which i s l i t t l e effected by the influence of organisms and presumed to be parent material of the solum. # Canadian S o i l Survey Committee, 195*8. 8 D - Any substratum underlying the C or B horizon and which i s not the parent m a t e r i a l . G - A gley l a y e r of intense reduction, characterised by the presence of ferrous i r o n and n e u t r a l gray c o l o r . Lower case subscription f o r the i d e n t i f i c a t i o n of s o i l sub-horizons: b - A l a y e r characterised by hard i r r e v e r s i b l e pedogenic concretions, c - Hard: i r r e v e r s i b l e pedogenic l a y e r . e - A l a y e r characterised v i s i b l y by the removal of clay, i r o n , aluminum, and/or humus. Usually l i g h t e r colored (higher value) than the l a y e r s below or above. f - A l a y e r enriched by hydrated i r o n . h - A mineral l a y e r containing s u f f i c i e n t amount of decomposed organic matter to show v i s i b l e darkness, at l e a s t on Munsell u n i t darker than the la y e r immediately below, j - Juvenal - A l a y e r with weakly expressed characters, m - (mellowed-mitis) A layer characterised by the l o s s of water-soluble materials only, u s u a l l y s l i g h t l y a l t e r e d by hydrolysis or oxidation. Usually d i f f e r i n g i n c o l o r and structure from the l a y e r immediately above or below. p - A r e l i c (not c u r r e n t l y dynamic) l a y e r . To be used as p r e f i x . q - (Ihitesides) A compact l a y e r that i s apparently cemented when dry, b r i t t l e when moist, r - An i n h e r i t e d consolidated l a y e r - used with C. w - water saturated l a y e r - the apparent water ta b l e . 9 CHAPTER I I I . SHORT DESCRIPTION AND CLASSIFICATION OF THE SOILS FOUND IN THE COASTAL "WESTERN HEMLOCK ZONE a * Subaqueous S o i l s py*. B i o l o g i c a l l y i n e r t A - C - s o i l (having only A and C horizons) u s u a l l y covered by water deeper than 2 meters. I t develops over a c i d rock i n lakes surrounded by podzolic s o i l s . Eutrophic G y t t j a ^ . A-G-soil (having only A and G horizons) covered by water shallower than 2 meters. P r o f i l e i s deep and r i c h i n organic matter. Vegetation w e l l developed, mainly Nuphar and Menyanthes. Occurs i n the shallow margins of the lakes and i n the oxbows of the f l o o d p l a i n s . b. Organic S o i l s Sphagnum Peat (Wilde, lplj.6). Undecomposed peat of Sphagnum, which i s saturated with water. Kalmia p o l i f o l i a , Ledum groenlandicum and Sphagnum mosses are established on i t . Pitchy Peat Anmoor'*. I t develops on old Sphagnum peat. The peat i s decomposed on the surface and converted into black muck humus. The top one foot of the s o i l i s drained i n the d r i e s t months of the year. I t supports f o r e s t vegetation. Spring Line Pitchy Anmoor ( n . f . ) . The top s o i l i s p a r t l y water-logged, m i n e r a l - d e f i c i e n t black much thicker than one f o o t . Humus horizon i s underlain by permanently waterlogged, mineral gley horizon. Occurs on slopes where the seepage water r i s e s over the mineral s o i l surface. These areas are forested. c. G l e y s o l i c S o i l s Orthic Dark Grey Gleysolic^*". S o i l s with dark colored Ah horizons underlain abruptly by a gleyed l a y e r or l a y e r s without d i s t i n c t i l l u v i a l or * W.L. Kubiena, 1 9 5 3 . The S o i l s of Europe. 318 pp. Described and c l a s s i f i e d according to the "Outline f o r the C l a s s i f i c a t i o n of Canadian S o i l s as of November 1 9 5 8 , Canadian S o i l Survey Committee" 10 e l u v i a l subhorizons. A t h i n 0 horizon (0 to k i n . ) may cover the Ah. Thin f o r e s t grows over these s o i l s . Orthic G l e y s o l * ^ . S o i l s with 0 horizons 1 to 6 i n . thick and A h horizon l e s s than 2 i n . t h i c k -underlain by strongly gleyed l a y e r or l a y e r s without noticeable e l u v i a l or i l l u v i a l sub-horizons. These s o i l s are forested. d. Regosolic S o i l s A l l u v i a l Regosol^'". Recent a l l u v i a l deposits which receive new a d d i t i o n a l deposits p e r i o d i c a l l y . P r o f i l e development i s r e s t r i c t e d to the formation of an Ah horizon. These s o i l s are covered by dense f o r e s t s . A cid Legosol?***. Embryonic s o i l s of acid rock outcrops, having a few cm. thick black colored A^ horizon. They support shrubby vegetation. Eluviated Acid Legosol (n.f.) (synonym. Podzol Ranker, Kubiena, 195>3). S o i l s w i t h 0 horizon underlain by A e horizon. The A horizon abruptly underlain by the a c i d parent rock. No i l l u v i a t i o n or very l i m i t e d i n the cracks of the parent rock. These s o i l s are covered by t h i n f o r e s t s . e. B r u n i s o l i c S o i l s Degraded Concretionary Browri>'H*". S o i l s have an 0 horizon, a t h i n (•j=r i n . or l e s s ) continuous A e horizon which contains gray concretions and l a c k s i r o n coatings, over a dark reddish brown to pale brown B horizon (of low base saturation) which contains concretions and i r o n coatings. Mottling i s absent i n the B horizons. Orthic BroTm Podzolic^^. S o i l s with strong to medium acid 0 horizon (generally of \ to 2 i n . t h i c k ) possibly having d, f , or h sub-horizons. The Ah i s l e s s than 2 i n . t h i c k or l a c k i n g , medium to strongly a c i d and unsaturated. The A e i s generally absent, or, i f present, does not exceed \ i n . The B i s brown to y e l l o w i s h brown, medium to strongly a c i d and Described and c l a s s i f i e d according to the "Outline f o r the C l a s s i f i c a t i o n of Canadian S o i l s as of November 1958, Canadian S o i l Survey Committee" (Mimeographed). 11 unsaturated, without any noticeable accumulation of clay or sesquioxides, s l i g h t mottling may be found i n the lower B. The C i s acid i n reaction. Modal Acid Dark Brown*8*. S o i l s having a d i s t i n c t dark grayish brown to black A^ horizon low i n base saturation (below 50%), underlain by a brownish B horizon low i n base saturation and f r e e of mottling. A l l s o i l s of the group are forested, f . Podzolic S o i l s Gleyed Podzol**. Podzol s o i l s having an organic (0) horizon, an e l u v i a l (A e) horizon and i l l u v i a l (B) horizon containing accumulations of organic matter and sesquioxides. Gleying indicated by mottling i s evident i n the upper B or A e horizons. Orterde Podzol**. S o i l s with p r o f i l e s i m i l a r to the previous one, but without mottling i n the upper B or A e horizons. The accumulation of organic matter does not reach 10% i n the B. Minimal Podzol**. Podzol s o i l s having an organic (0) surface horizon, a t h i n (less than one in.) l i g h t colored e l u v i a l (Ae) horizon (may be discontinuous) and an i l l u v i a l (b) which contains accumulations of organic matter and sesquioxides. Lacks d i s t i n c t Bh horizons. Orterde Humic Podzol'"*. These s o i l s have a moderately t h i c k 0 horizon, a d i s t i n c t a c i d unsaturated A e horizon and a f r i a b l e Bh horizon (with 10% or more organic matter) containing i r o n i n a d d i t i o n to organic matter. This i s underlain by a f r i a b l e B^f horizon. Bh horizon t h i c k e r than 3 i n . Humic Podzol**. S o i l s s i m i l a r to the Orterde Humic Podzols but the Bh horizon thinner than 3 i n . A l l s o i l s of t h i s group are f o r e s t e d . #«• Described, and c l a s s i f i e d according to the "Outline f o r the C l a s s i f i c a t i o n of Canadian S o i l s as of November 1 9 5 8 , Canadian S o i l Survey Committee" (Mimeographed). 12 CHAPTER IV. DESCRIPTION OF SOILS IN CLASSIFIED FOREST TYPES The c l a s s i f i e d f o r e s t types have been arranged i n t o f i v e groups according to t h e i r edaphic nature. The f i r s t group (I) includes f l o o d p l a i n communities. These are a f f e c t e d by d i r e c t or subsurface f l o o d i n g . Second (II) are muskeg communities where the-organic s o i l i s saturated by water to the surface during the greater part of the year. Seepage communities belong to the t h i r d (III) group. Seepage i s c h a r a c t e r i s t i c f o r these communities, but i t may not be found i n a l l places of the same plant community. On the other hand, seepage i s always missing from the s o i l s of dry edaphic communities which belong to the fourth (TV) group. The zonal* communities of the f i f t h (V) group are characterized by deep s o i l s . Seepage may or may not be present. I f present, i t i s e i t h e r at such a depth that i t does not apparently e f f e c t the development of the communities, or i t may act temporarily ( a f t e r heavy r a i n or melting snow) over the hardpan or bedrock. - . FLOODPLAIN COMJNITIES Although t h e i r area i s very small i n comparison with the whole area of the Coastal Western Hemlock Zone, f l o o d p l a i n s could play an important r o l e i n f o r e s t r y p r a c t i c e . Their s i g n i f i c a n c e i s due to t h e i r high p r o d u c t i v i t y and case of access. Some of the f o r e s t -types discussed on the following pages are very i n s i g n i f i c a n t i n extent and from the point of view of p r o d u c t i v i t y . They are described i n order to give a f u l l p i c t u r e of the f l o o d p l a i n s and to ai d i n the understanding of the succession involved. Assoc. 1. Populeto - Loniceretum a. Lonicera - Rubus f o r e s t type This i s a young plant community developing on higher w e l l drained * Communities c o n t r o l l e d by the macroclimate, that develop i n various physiographic p o s i t i o n s on deep, w e l l drained s o i l s . 13 locations of river floodplains. According to Orloci (1961) its constant dominant species are: Populus trichocarpa, Alnus rubra, Rubus spectabilis, Lonicera  involucrata, Cornus occidentalis, Eicea sitchensis, Sambucus pubens, Elymus glaucus, Maianthemum dilatatum, Osmorhiza chilensis, Equisetum arvense, Smilacina stellata. The soil is a young Alluvial Regosol. The profile can be divided into Ah and Ci horizons. The Ah is a light brown structureless sand about eight inches thick. Its organic matter content is seemingly very low and its chemical properties are probably very similar to the C]_ layer in the Oplopanax - Ribes forest type described below. The layer is gray coarse sand without any obvious alteration. Depth of ground water varies from two to six feet. Roots are distributed mainly in the strongly acid (pH 5,2) Ah horizon. The Cj_ layer is moderately acid (pH 5,8). b. Elymus glaucus phase This pioneer community develops on coarse alluvial material elevated about one to three feet above the average level of the water table. At first the vegetation is very scattered but soon develops into a dense young forest. The tree layer consists of Alnus rubra, Populus trichocarpa and Salix sitchensis. Seedlings of Picea sitchensis, Thuja plicata, and Pseudotsuga menziesii are present in the earliest stage, but their survival is challenged by flooding. Their establishment becomes successful when the other woody vegetation reaches a sufficient density. The shrub and herb layer are very poor in species and abundance. At first there is essentially no soil development. The coarse sandy stony material is practically free of organic matter. It has an acid I i i r e a c t i o n (pH 5,3-5>5). The community i s flooded annually, but the sand d r i e s out very quickly a f t e r r e t r e a t of the water. The texture of the r i v e r f l o o d deposit becomes f i n e r each year, a f t e r vegetation i s established. However s o i l development, or rather the development of the A^ horizon, s t a r t s when vegetation i s dense enough to r e t a i n the l i t t e r produced by the plant community. This community never reaches the maturity of the f o r e s t stand, because w i t h i n one or two decades the s o i l surface i s elevated s u f f i c i e n t l y and enriched by organic material to give place to the formation of d i f f e r e n t shrub, herb and moss l a y e r s . This community i s i n s i g n i f i c a n t from the f o r e s t r y point of view. On the other hand, i t i s important as a step i n the succession of s o i l s and vegetation on the f l o o d p l a i n s . c. Equisetum arvense phase The Equisetum phase i s another pioneer stage of the Lord.cera -Rubus f o r e s t type. I t i s composed almost e x c l u s i v e l y of dense Alnus rubra underlain by a dense Equisetum arvense: herb l a y e r . The s o i l i s A l l u v i a l Regosol. The deposit i s much f i n e r than i n the Elymus phase. E a r l y development of dense vegetation favors rapid s o i l development. The darker c o l o r of the s o i l suggests some organic matter accumulation. This community's r e l a t i o n to flooding i s s i m i l a r to that of the previously mentioned Elymus phase but the f i n e r s o i l r etains the moisture f o r a longer time. Assoc. 2. Ficeeto - Oplopanacetum (Oplopanax - Ribes f o r e s t type) An e c o l o g i c a l l y uniform community, occurring on f l o o d p l a i n s only. I t i s -distributed both i n the d r i e r and wetter subzones, i t s water supply being 15 c o n t r o l l e d by r i v e r s . In the Coastal Western Hemlock Zone t h i s community occupies those parts of f l o o d p l a i n s -where the s o i l surface i s high above the average water l e v e l of the r i v e r . The f o r e s t type i s characterised by the following constant dominant species ( O r l o c i , I96I): Picea s i t c h e n s i s , Tsuga heterophylla, Populus  trichocarpa, Ribes bracteosum, Oplopanax horridus, Rubus s p e c t a b i l i s , Sambucus pub ens, V i o l a g l a b e l l a , Athyrium f i l i x - f e m i n a , Maianthemum dilatatum, Streptopus roseus, Osmorhiza c h i l e n s i s , T i a r e l l a t r i f o l i a t a , T. u n i f o l i a t a , Dryopteris a u s t r i a c a , Gymnocarpium dryopteris, Smilacina s t e l l a t a , Polystichum munitum, Luzula p a r v i f l o r a , Poa p a l u s t r i s , Mnium insigne, M. punctatum, and Rhytidiadelphus squarrosus. S o i l s * : The s o i l s are A l l u v i a l Regosols, sometimes with several buried A^ horizons. The color of the Ah horizon i s dark brown when wet. The C-j_ i s l i g h t - or grayish-brown. The texture of the deeper horizons i s coarser than the horizons on the top of the p r o f i l e . The A^ horizon i s f i n e sand to sandy loam, enriched by organic c o l l o i d s . The C l horizon i s f i n e to coarse sand. The Ah i s s t r u c t u r e l e s s or weak-crumby, while the C-j_ i s always s t r u c t u r e l e s s . Development of L and 0 horizons i s retarded because of the f a s t decomposing mixed broadleaf and c o n i f e r l i t t e r . Root d i s t r i b u t i o n i s not uniform i n the p r o f i l e . However most roots grow i n the top one foot of s o i l ; i n some p r o f i l e s they are evenly d i s t r i b u t e d through the whole p r o f i l e depth. Chemical properties* 5 5": The s o i l s are strongly a c i d with an even d i s t r i b u t i o n of n u t r i e n t # Described on the basis of 5 p r o f i l e s . -JHJ- On the b a s i s of 3 p r o f i l e s . 1 6 elements. T o t a l base exchange capacity i s maintained mainly by organic c o l l o i d s (see f i g . 1). A l l the important nutrient elements have a d e f i n i t e uprard movement i n the biogeochemical c y c l e . They become accumulated i n the Ah horizon. pH - Ah horizon I4.8 G]_ horizon 5»2 T o t a l organic matter i n tons per acre: 100 T o t a l cation exchange capacity i n equivalents per 100 m2; 10580 A v a i l a b l e P i n l b . per acre: 155 _ Exchangeable cations i n l b . per acre: Ca 173U Mg 90k K 524 (Chemical properties are given f o r the e n t i r e p r o f i l e , excluding stones and material coarser than 2 mm.) Percentage d i s t r i b u t i o n of chemical properties by the horizons t Horizon A^ C i Organic matter 19.8 80.2 Cation exchange capacity U2.6 57.ll Ca 12.6 8 7 . U Mg II4.O 86.0 K 11.0 89.0 P 8.2 91.8 Use and P r o d u c t i v i t y : The primary use of the Oplopanax - Ribes f o r e s t type i s commercial wood production. 17 S i t e indexes (feet) (S. E i s , 1 9 6 1 ) : F* ( 1 U 2 ) , Hw 1 0 7 , Cr 9 8 , B 95, S 135, Ar 89. Assoc. 3- Piceeto - Symphoricarpetum (Symphoricarpos f o r e s t type) This community occupies l o c a t i o n s where the surface i s raised by sedimentation so that the s i t e i s l e s s influenced by subsurface f l o o d i n g . The surface deposit i s rather f i n e . Other p o s s i b i l i t i e s f o r i t s development occur when r i v e r s suddenly change t h e i r course and leave the s i t e without f u r t h e r f l o o d i n g , or when the bed of the r i v e r deepens and the s i t e isc.then too elevated f o r flooding. In these instances the surface deposit i s coarse. Constant dominants are ( O r l o c i I96I): Picea s i t c h e n s i s , Acer macrophyllum, Populus trichocarpa, Symhoricarpos r i v u l a r i s , Acer circinatum, Disporum  oreganum, Mnium insigne. S o i l s : The s o i l i s very s i m i l a r to that i n the Oplopanax - Ribes f o r e s t type but accumulation of l i t t e r i s more advanced. The fermentation l a y e r i s very t h i n and the decomposed humus i s mixed with mineral ma t e r i a l . The s o i l generally i s an A l l u v i a l Regosol, having A^ and C i l a y e r s only. The subsoil i s w e l l drained and the whole p r o f i l e i s d r i e r than that i n the Piceeto - Oplopanacetum. While the s o i l s of t h i s a s s o c i a t i o n are not adequately studied, the apparent s i m i l a r i t y of the p r o f i l e and the e c o l o g i c a l p o s i t i o n of the whole community suggest the Symphoricarpos and Oplopanax - Ribes f o r e s t types are c l o s e l y r e l a t e d . -x- F - Douglas-fir, Cr - western red cedar, Hw - western hemlock, B - amabilis f i r , S - S i t k a spruce, Ar - red a l d e r . 18 Assoc. It. Alneto - Ribisetum b r a c t e o s i (Ribes - Lysichitum f o r e s t type) The occurrence of the Ribes - Lysichitum f o r e s t type i s r e s t r i c t e d to s p e c i a l l o c a l i t i e s on floodplains where drainage i s imperfect. The water table i s not only high, but very slow moving. This f o r e s t type has been found only i n two l o c a l i t i e s , v i z . i n the upper section of Seymour Creek V a l l e y . The community i s characterised by .the following constant dominant species ( O r l o c i , 1961): Alnus rubra, Picea s i t c h e n s i s , Ribes bracteosum, Sambucus pubens, Rubus s p e c t a b i l i s , Lysichitum americanum, V i o l a g l a b e l l a , Maianthemum dilatatum, Dryopteris a u s t r i a c a , and Mnium punctatum. S o i l s : The community develops on Orthic Dark Gray Gleysols with the t o t a l depth of solum being about twelve inches. A J r l ^ " t h i c k A^ horizon i s underlain by a gley horizon r i c h i n organic matter. Depth of the water table was twenty-seven inches l a t e i n Spring. Color of the Ah horizon i s gray to dark brown, while the gley horizon i s dark gray to dark brown. The Ah horizon i s crumby structured sandy loam to weak blocky sand. The G horizon i s loamy sand with weak blocky structure, or s t r u c t u r e l e s s . Roots are d i s t r i b u t e d mainly i n the Ah horizon. Chemical properties of s o i l s : The s o i l s are very strongly a c i d and w e l l supplied with n u t r i e n t elements. The c o r r e l a t i o n between organic matter and t o t a l base exchange capacity suggests a somewhat more important r o l e of mineral c o l l o i d s , than i n the s o i l s of Oplopanax - Ribes f o r e s t type, (see , f i g . 2) 19 pH - Ah horizon it.7 C i horizon 5,0 T o t a l organic matter i n tons per acre: 238* T o t a l c a t i o n exchange capacity i n equivalents per 1002: 11000 A v a i l a b l e P i n l b . per acre: 71.5 Exchangeable cations i n l b . per acre: Ca 2177 Mg 522 K iO-U P r o d u c t i v i t y : S i t e indexes i n f e e t : (S. E i s , l ° 6 l ): Cr 107, Hw Ilk, S 125, Ar 96. Assoc. 5. Nupharetum p o l y s e p a l i The Nuphar polysepalum a s s o c i a t i o n develops i n the shallow waters of oxbow lakes of the f l o o d p l a i n s . I t represents the f i r s t step i n the succession from open water to t e r r e s t r i a l communities. I t s s o i l i s a Eutrophic G y t t j a . The A horizon of the s o i l i s r i c h i n organic matter and i t may have a considerable thickness. The A horizon i s d i r e c t l y underlain by the G l a y e r . Assoc. 6. Caricetum retrorsae Through f u r t h e r s i l t i n g the Nuphar polysepalum a s s o c i a t i o n i s replaced by the Carex retrorsa - Equisetum f l u v i a t i l e a s s o c i a t i o n . In t h i s stage of development the water i s several inches deep. The s o i l i s s t i l l Eutrophic Gyttja but the Ah horizon a t t a i n s much greater thickness. In a more advanced stage S a l i x s i t c h e n s i s invades the a s s o c i a t i o n . * A l l chemical r e s u l t s i n t h i s a s s o c i a t i o n are based on one analysed s o i l p r o f i l e only. 20 By t h i s time the s o i l i s under water only for a part of the year, and the Lysichitum - Oenanthe forest "type begins to develop i n the s i l t - f i l l e d oxbow lake. Assoc. 7. S a l i c e t o - Oenanthetum (Lysichitum - Oenanthe forest type) The Lysichitum - Oenanthe forest type occurs i n s i l t - f i l l e d oxbow lakes, where the water table i s high and stagnant throughout the whole year. The following constant dominant species are characteristic f o r the community (O r l o c i , I 9 6 I ) : S a l i x lasiandra, S a l i x sitchensis, Lonicera  involucrata, Rubus s p e c t a b i l i s , Gornus occidentalis, Lysichitum americanum, Oenanthe sarmentosa, Glyceria pauciflora , Athyrium f i l i x - f e m i n a , and Angelica genuflexa. Soil'*: The s o i l i s an Orthic Dark Gray Gleysol, consisting of an A n horizon underlain by a gley horizon. The color of the Ah .'•horizon i s gray-brown or dark gray depending on the amount of organic material present. I t s texture i s clay-loam with sticky consistency and compact structure. The gley horizon i s permanently water logged and i t s physical properties are s i m i l a r to that of the Ah horizon. The water table fluctuates from about one foot below the s o i l surface to considerable height above the surface. Chemical properties: The pH of the Ah layer i s 5 .5» Other chemical properties were not studied i n t h i s forest type. Described on the basis of 3 p r o f i l e s . 21 CORRELATION BETWEEN ORGANIC MATTER CONTENT AND TOTAL CATION EXCHANGE CAPACITY IN PLOODPLAIN SOILS P i g . 1 R i b e s - Oplopanax f o r e s t t y p e 10 15 CEC. i n me/100 grams P i g . 2 • i R i b e s - L y s i c h i t u m ;fo :rest t y p e CEC. i n me/100 grams 22 Figure 3>} h Figure 3. Oplopanax - Ribes forest type Figure U . A l l u v i a l Regosol 2h Figure $3 6 Figure 5. Lysichitum - Oenanthe forest type Figure,6. Orthic Dark Gray Gleysolic s o i l Z5 f i g u r e 6. :,. MUSKEG COMMUNITIES Assoc. 8. Pin e t o - Ledetum (Ledum f o r e s t type) This f o r e s t type develops on h i g h moors and along the margin of g l a c i a l l a k e s . I t i s i n s i g n i f i c a n t from a f o r e s t r y p o i n t of view, because of i t s small extent and low p r o d u c t i v i t y . P o o r l y growing Pinus c o n t o r t a , Chamaecyparis n o o t k a t e n s i s , and Thuja p l i c a t a c o n s t i t u t e the crown canopy. Ledum groenlandicum and Kalmia  p o l i f o l i a are c h a r a c t e r i s t i c i n the shrub l a y e r . The cover of the herb l a y e r i s l e s s than f i f t y percent, and I s composed of Cornus canadensis, Linnaea b o r e a l i s , and Habenaria saccata. The moss l a y e r i s s t r o n g l y developed and dominated by Sphagnum species. T h i s f o r e s t type grows on undecomposed l i v i n g Sphagnum peat. The ground water i s stagnant and f i l l s the peat to the surface. The a c i d i t y of the peat ranges from pH 3>h to ij.,0. Assoc. 9. Thujeto - Copteturn (Coptis - L y s i c h i t u m f o r e s t type) As the Sphagnum bog becomes o l d the drainage improves and the P i n e t o - Ledetum gives p l a c e to the a s s o c i a t i o n mentioned above. This has a dense t r e e l a y e r w i t h Thuja p l i c a t a and Tsuga h e t e r o p h y l l a the dominant s p e c i e s . The shrub cover i s r e l a t i v e l y low, 1$ to 20 percent. Taxus b r e v i f o l i a , Menziesia f e r r u g i n e a , Vaccinium p a r v i f o l i u m and G a u l t h e r i a  s h a l l o n are u s u a l l y common. L y s i c h i t u m americanum dominates the herb l a y e r . C o p t i s a s p l e n i f o l i a , Biechnum s p i c a n t , D r y o p t e r i s a u s t r i a c a and Cornus  canadensis are constant members of the community. The moss l a y e r i s w e l l developed w i t h Mnium punctatum, Eurhynchium oreganum, and Plagiothecium 27 undulatum important species, i n addition to Sphagnum species. The surface of the s o i l , however, may be covered by a t h i n layer of fresh Sphagnum peat, i n which case there i s about a one foot thick layer of decomposed muck-like peat i n the top s o i l (Pitchy Peat Anmoor). This mucky layer i s underlain by very s l i g h t l y decomposed Sphagnum peat. The a c i d i t y of the peat steadily decreases with increasing depth. The pH i s around 3,5 on the surface and reaches the value of 5,5 at t h i r t y inches depth. The average water table i s 7 inches below the surface during the summer months. . SEEPAGE COMMUNITIES A l l forest associations supplied with permanent or temporary seepage water belong to the group of seepage communities. The depth of the seepage below the s o i l sufrace i s an important fa c t o r d i f f e r e n t i a t i n g associations within the seepage communities. I f the water table i s too high the a i r supply becomes inadequate and eliminates Douglas-fir from the s i t e or reduces i t s productivity to a very low value. (See f i g . 2 1 ) The seepage communities are composed of four associations: a) The Thujeto - Polystichetum b) The Thuj eto - Blechnetum c) The Abieteto - Oplopanacetum d) The Piceeto - Lysichitetum Assoc. 10. Thujeto - Polystichetum (Polystichum forest type) The Thujeto - Polystichetum occurs mostly i n the dry subzone on gentle, lower concave slopes i n v a l l e y bottoms, on young terraces and on slopes between old terraces. The degree of the slopes range from 3 degrees to UO degrees. 28 This association consists of a single forest type that may be called the Polystichum forest type. They are characterized by the following constant dominant species (Orloci, l ° 6 l ) : Thuja p l i c a t a , Tsuga heterophylla,  Vaccinium parvifolium, Rubus s p e c t a b i l i s , Polystichum muniturn, Dryopteris  austriaca, Plagiothecium undulatum, Mnium punctatum, Eurhynchium oreganum, Rhytidiadelphus loreus. S o i l s : The s o i l s are deep and w e l l aerated. Accumulation of unincorporated organic material i s r e s t r i c t e d . The l i t t e r i s mixed with a great amount of herbaceious remains. This mixture i s soon decomposed and incorporated into the mineral s o i l forming a mu l l - l i k e moder (Kubiena, 1553) of various thickness. Parent material i n different p l o t s : Physical properties: Stoniness Depth of solum Thickness of the 0 horizon Thickness of A^ horizon Thickness of the A e horizon Texture of the A^ horizon Texture of the A e horizon Texture of the B horizon Structure of the A h horizon Structure of the A e horizon Structure of the B horizon g l a c i a l t i l l $2%, a l l u v i a l 20%, lacustrine 11$, g l a c i a l outwash lk% (of plots) 31% (0-8056)* 39.2 inches (20-58 inches) 1.9 inches (0-8 inches) 2.3 inches (0-10 inches) 0.1;5 inches (0-l-| inches) sandy loam to clay loam sand to sandy loam, sand to clay weak granular to crumby single grain to weak blocky single grain to f i r m blocky # Averages and ranges, 29 Chemical p r o p e r t i e s * : 3.U (3.2-3.7) U.5 (3.7-5.U) U.O (3.5-U.6) 5.U (U.8-5.6) 18U 1U695 112 ' 712 5U2 U16. D i s t r i b u t i o n of chemical properties by horizons i n percentage:-: Horizon 0 A. B Organic matter 39 2 59 Cation exchange capacity 13 2 85 Ca U2 18 UO Mg 19 7 7U K 12 3 85 P U 1 95 D i s t r i b u t i o n of s o i l subgroups and s i t e indexes: No. of S i t e index ( E i s , 196l) S o i l subgroups P r o f i l e s E Hw Cr Modal Acid Dark Brown 9 167 137 119 Orthic Brown Podzolic 6 I69 121 l l U Minimal Podzol 3 l6l 132 99 Orterde Humic Podzol 2 156 117 122 Three p r o f i l e s studied. pH - 0 horizon Ah horizon A e horizon B horizon Organic matter i n tons per acre: T o t a l c a t i o n exchange capacity i n equiva-l e n t s per 1002: Av a i l a b l e P i n l b . per acre:: Exchangeable cations i n l b . per acre: Ca Mg K 30 Figure 1 s 8 Figure 7- Polystichum forest type Figure 8. Orthic Brown Podzolic s o i l with seepage (the length of the ruler i s 36 in.) 32 The s o i l s are mostly w e l l drained although a few are p o o r l y drained. Almost a l l the p r o f i l e s are u n d e r l a i n by an impervious or semi-impervious l a y e r . During the v e g e t a t i v e season, i n 3$% of the s o i l p i t s permanent or temporary seepage moves over t h i s hardpan at an average depth of 35 inches from the mineral s o i l surface of the p r o f i l e s . The s o i l s are moist i n the upper p a r t of the B h o r i z o n and u s u a l l y wet i n the lower p o r t i o n . Roots are concentrated i n the A n h o r i z o n or i n the upper ten inches of the p r o f i l e . I n some p r o f i l e s the roots are evenly d i s t r i b u t e d i n the A and B h o r i z o n s . Assoc. 11. Thujeto - Blechnetum The Thujeto - Blechnetum occurs i n the dry and wet subzone on gentle s l o p e s , t e r r a c e s and v a l l e y bottoms. The impervious l a y e r i n the s o i l p r o f i l e i s r e l a t i v e l y h i g h and the lower p o r t i o n of the s o i l p r o f i l e s are p o o r l y aerated. The a s s o c i a t i o n i s c h a r a c t e r i z e d by the f o l l o w i n g constant dominant species ( O r l o c i , 1961): Tsuga h e t e r o p h y l l a , Abies a m a b i l i s , Vaccinium  alaskaense, Rubus s p e c t a b i l i s , Blechnum s p i c a n t , Cornus canadensis, T i a r e l l a  t r i f o l i a t a , D r y o p t e r i s a u s t r i c a . The a s s o c i a t i o n i s d i v i d e d i n t o f o u r f o r e s t t y p e s : a. O r t h i c Blechnum f o r e s t type b. Blechnum - Rubus f o r e s t type c. G l e y s o l i c Blechnum f o r e s t t y p e d. Peaty Blechnum f o r e s t type a. The O r t h i c Blechnum f o r e s t type The O r t h i c Blechnum f o r e s t type i s d i s t r i b u t e d i n the wet subzone, where i t occurs on gentle slopes (2 degrees t o 10 degrees), t e r r a c e s and v a l l e y bottoms. I t s f l o r i s t i c composition i s as described f o r the Thu.ieto -Blechnetum. 3 3 S o i l s : The s o i l s are moderately deep with some excess water supply. A wet, cool microclimate favours accumulation of raw humus. This has a tendency to form f i r m or hard i r r e v e r s i b l e aggregates i f dried out i n room temperatures. Parent material i n d i f f e r e n t p l o t s : P h ysical p r o p e r t i e s : Depth of solum Stoniness Thickness of the 0 horizon Thickness of A e horizon Texture of the A e horizon Texture of the B horizon Structure of the A e horizon Structure of the B horizon Chemical p r o p e r t i e s * : pH - 0 horizon Ae horizon B horizon Organic matter i n tons per acre Total cation exchange capacity i n equivalent per 100 ra.2 21306 Av a i l a b l e P i n l b . per acre: 92 Exchangeable cations i n l b . per acre: Ca 5 0 7 Mg 5 2 2 K 312 * On the basis of three analysed s o i l p r o f i l e s . The pH values are averages of nine p r o f i l e s . g lacial t i l l 66% 3 glacial outwash and a l l u v i a l 2 5 $ , lacustrine 9% (of plots) 3 3 inches (lU to 5 3 inches) 32% (0 to 60%) 5 . 6 inches (1 to 17 inches) 1 . 3 inches ( 0 to 3 inches) sand to sandy loam sand to clayey loam single grain to weak blocky single grain to firm blocky, sometimes compact i n lower B 3 . 5 ( 3 . 3 - U . O ) 3 . 8 ( 3 . 5-U.O) 5 . 0 ( U . 5 - 5 . 2 ) 3 5 8 3k Distribution of chemical properties according to horizons i n percentage: Horizon 0 A. B Organic matter 63 h 33 Cation exchange capacity 27 2 71 Ca 100 0 0 Mg ho 8 52 K 32 7 61 P 7 h 8? Distribution of s o i l subgroups and site indexes: S o i l subgroup N o * o f Site Index (Eis, l$?6l) Profiles F HOT Cr B Orthic Brown Podzolic 3 ±1+9 107 127 127 Minimal Podzol 3 1U5 126 116 120 Orterde Humus Podzol 5 130 116 96 110 These soils are imperfectly or moderately drained. A l l the profiles are underlain by an impervious or very slowly pervious layer. The degree of drainage i s strongly influenced by the depth of this impervious layer and by the amount of seepage water. The A horizon and the upper part of the B horizon i s sufficiently aerated throughout the greater part of the year. The average depth of the seepage i s thirty inches i n the summer time. Seepage occurred in 92% of the profiles studied. The distribution of roots i s related to the extent of drainage within the pro f i l e . The bulk of roots i s i n the 0, A and the upper portion of the B horizon. The roots do not penetrate the gleyed part of the B horizon. b. The Blechnum - Rubus forest type The Blechnum - Rubus forest type i s found i n the dry subzone. Its physiographic situation i s identical with the previous forest type. Floristxcally the presence of Rubus v i t i f o l i u s and the absence of 35 G l i n t o n i a u n i f l o r a separate i t from the Biechnum f o r e s t i y p e . S o i l s : The s o i l properties are s i m i l a r to the Biechnum f o r e s t type. The depth of solum and the thickness of 0 horizon i n d i c a t e s some differ e n c e but the small number of sample p l o t s (three) do not permit any d e f i n i t e conclusions. Seepage e x i s t s i n a l l p r o f i l e s at an average depth of twenty-two inches. Parent material i n d i f f e r e n t p l o t s : a l l u v i a l deposit and g l a c i a l t i l l P h y s i c a l p r o p e r t i e s : Depth of solum 29 inches (28 to 31 inches) Stoniness 25$ 05% to k0%) Thickness of the 0 horizon 1.3 inches (0 to 2 inches) Thickness of the A e horizon 2.1 inches (0 to 6 inches) Chemical p r o p e r t i e s : pH*- 0 horizon 3.9 A e horizon k*h B horizon 5«6 Other chemical properties have not been studied i n t h i s f o r e s t type. D i s t r i b u t i o n of s o i l subgroups and s i t e indexes: No. of S i t e index ( E i s , 1961) S o i l subgroup P r o f i l e s F H Cr Orthic Brown Podzolic 1 180 180 170 Minimal Podzol 1 157 163 153 Orterde Podzol 1 178 125 128 c. G l e y s o l i c Biechnum f o r e s t type The g l e y s o l i c Biechnum f o r e s t type has been found only i n the wet subzone, but i t probably occurs i n the dry subzone as w e l l . I t occupies * Only one p r o f i l e was studied. 36 gentle concave slopes (6 degrees to lk degrees). F l o r i s t i c a l l y the absence of Pseudotsuga menziesii and Polystichum munitum d i f f e r e n t i a t e i t from the Q two former f o r e s t types. S o i l s : The s o i l s are shallow and imperfectly drained. D e f i c i e n t aeration i s i n d i c a t e d by gray mottling i n the whole B horizon. The accumulation of unincorporated, muck-like organic matter i s moderately t h i c k . This organic horizon has a compact but f r i a b l e nature. Most of the roots are concentrated i n t h i s horizon and only few penetrate i n t o the A e horizon and the top of B horizon. Seepage functions throughout the whole year at an average depth of 17 inches. Parent m a t e r i a l : g l a c i a l t i l l P h y s i c a l p r o p e r t i e s : Stoniness 35% {2.5% to 50%) Depth of solum 15.6 inches (7 to 22 inches) Thickness of the 0 horizon 6 inches (3 to 8 inches) Thickness of the A e horizon 2.1 inches (0 to 5 inches) Texture of the A e horizon sandy loam , Texture of the B g horizon sandy loam Structure of the A g horizon weak blocky Structure of the B g horizon blocky to compact Chemical properties were not studied i n t h i s f o r e s t type. The d i s t r i b u t i o n of s o i l subgroups and s i t e indexes: No. of S i t e index ( E i s , l ? 6 l ) S o i l subgroup P r o f i l e s Hw Cr B_ Gleyed Podzol 2 112 111 116 Orthic g l e y s o l 1 123 - 113 37 Figure 9, 10 Figure 9. Biechnum forest type Figure 1 0 . Orthic Brown Podzolic s o i l with seepage (The ruler i s 18 i n . long.) Figure. 10. 39 d. Peaty Biechnum forest type The peaty Biechnum forest type was studied i n only one sample plot i n the wet subzone. I t s f l o r i s t i c composition i s i d e n t i c a l with the previous forest type, but i t i s developed on old, decomposed peat. S o i l s : The s o i l i s a mineral d e f i c i e n t peat s o i l , with very high ground water (10 inches). The top 10 inches of the s o i l i s of well-decomposed peat and l i t t e r . I t has an amorphous structure i n the wet condition and forms very hard, i r r e v e r s i b l e aggregates i f dried at room temperature. The pH i s J4.O on the top, gradually increasing to pH £.5 at s i x t y inches depth. Roots are r e s t r i c t e d to the top 10 inches of the p r o f i l e s . S o i l subgroup and s i t e index: No. of Index s i t e (Eis, I96I) S o i l subgroup P r o f i l e s Hw Cr B_ Pitchy Peat Anmoor 1 10U 10U 102 Assoc. 12. Abieteto - Oplopanacetum (Oplopanax - Adiantum forest type) The Abieteto - Oplopanacetum i s an i n s i g n i f i c a n t forest type. I t s occurrence i s very rare and area small. I t s stand consists of Thuja p l i c a t a ,  Tsuga heterophylla and Abies amabilis. Oplopanax horridus i s a characteristic species i n the shrub layer and Adiantum pedatum i n the herb layer. This community may occur i n both subzones on rego-gley s o i l s . Seepage i s at the s o i l surface and always rapidly moving. This moving surface seepage prevents the accumulation of organic matter. The s o i l and vegetation have not been studied i n d e t a i l . ko Assoc. 13. Piceeto - Lysichitetum The Piceeto - Lysichitetum i s distributed i n both subzones i n the area studied. Poorly and very poorly drained l o c a l i t i e s are occupied by t h i s plant community. The topography of these poorly drained areas i s concave to f l a t . The physiographic position may be valley bottom, terrace or basin. I t may occur on concave mountain slopes i f the impervious layer i s very high i n the p r o f i l e and the s i t e supplied by seepage water throughout the whole year. The f l o r i s t i c composition i s represented by the following constant dominant species: Tsuga heterophylla, Vaccinium alaskaense, Rubus  sp e c t a b i l i s , Lysichitum americanum, Blechnum spicant, T i a r e l l a t r i f o l i a t a , Eurhynchium s t o k e s i i , Mnium punctatum, Conocephallum conicum, P e l l i a species, Rhytidiadelphus loreus, Hylocomium splendens, Sphagnum squarrosum, Plagiothecium undulatum. The constant but only sporadic occurrence of Picea sitchensis i s also c h a r a c t e r i s t i c f o r the association. The association i s divided i n t o two forest types on the basis of pedological differences. The f i r s t i s the Gleysolic Lysichitum forest type, characterized by gley s o i l s . The second i s the peaty Lysichitum forest type, occurring on organic s o i l s . F l o r i s t i c differences have not been established between these two forest types, a. Gleysolic Lysichitum forest type This forest type has been found on terraces and on very gentle slopes (1 to 5 degrees). S o i l s * : The s o i l s are very shallow and imperfectly drained. The organic matter accumulation i s i n the form of black muck. The 0 horizon i s underlain by a B Q horizon. No i n d i c a t i o n of el u v i a t i o n has been observed i n the p r o f i l e . The accumulation of organic matter i n the B Q horizon i s prominent. i l l Parent material i n different p l o t s : Physical properties: Stoniness Depth of solum Thickness of the 0 horizon Texture of ...the B Q horizon Structure of the B Q horizon Chemical properties"'-": pH - 0 horizon B G horizon Organic matter i n tons per acre: Total cation exchange capacity i n equivalents per 100 m.2: Available P i n l b . per acre: Exchangeable cations i n l b . per acre: Ca 2022 Mg 370 K lOi; D i s t r i b u t i o n of s o i l subgroups and s i t e indexes: a l l u v i a l deposits and g l a c i a l t i l l 1Q% (0% to h0%) 17 inches (7 to 22 inches) 9 inches (5 to 12 inches) sand to loam blocky to compact k.k (3.S-U.9) 5.0 (11.6-5.5) 181; U816 li.ii S o i l Subgroup No. of S i t e index (Eis, 1961) P r o f i l e s Hw Cr S B Orthic Dark Gray Gleysolic 2 96 120 ? 113 Orthic Gleysol 2 96 82 135 70 Root d i s t r i b u t i o n i n the p r o f i l e s i s regulated by the water table. Permanent seepage i s at the surface of the mineral s o i l i n the Orthic Gleysols while the top 10 inches of the solum i n the Orthic Dark Grey •a The chemical properties are calculated f o r the 0 horizon. Nutrients i n the EQ horizon are not available for tree growth. A l l calculations are based on ..two analysed p r o f i l e s , one of them from the Peaty Lysichitum type. 1*2 G l e y s o l i c s o i l s are above the ground water l e v e l . The roots are concentrated i n the 0 horizon and i n the top of the A^ horizon r e s p e c t i v e l y . b. Peaty Lysichitum f o r e s t type The Peaty Lysichitum f o r e s t type has a s i m i l a r d i s t r i b u t i o n to the G l e y s o l i c Lysichitum f o r e s t type. Gentle concave slopes, small basins and o l d Sphagnum bogs may be the physiographic l o c a t i o n of the Peaty Lysichitum f o r e s t type. S o i l s : Besides the high water table, the great thickness of unincorporated organic material i s very c h a r a c t e r i s t i c of the s o i l s . The c o l o r of the organic l a y e r i s black. I t i s f r i a b l e or s t i c k y i n the natural condition and forms very hard aggregates i f dried out at room temperature. Parent material i n d i f f e r e n t p l o t s : cumulose deposits P h y s i c a l p r o p e r t i e s : Depth of solum: 10 to 12 inches Thickness of the 0 horizon: over 12 inches Chemical prop e r t i e s : pH of the 0 horizon: k*5 to lj.,8 For other chemical properties see the previous forest type. D i s t r i b u t i o n of s o i l subgroups and s i t e indexes: No. of S i t e index ( E i s , l ° 6 l ) S o i l subgroup P r o f i l e s Hw Cr S B Pitchy Peat Anmoor 1 91 98 7k # Spring Line Pitchy Anmoor 2 90 12U iko 67 These are very poorly drained s o i l s . The .water table i s i n the organic horizon and about 10 Inches from the surface. Occasionally the whole p r o f i l e i s saturated with water. The d i f f e r e n c e i n the water • supply between P i t c h Peat Anmoor and Spring Line Pitch.Anmoor i s i n the .rate of movement of the seepage. The water i s semi-stagnant i n the former and r e l a t i v e l y r a p i d l y moving i n 'the l a t t e r . The oxygen supply i s much better i n moving water than i n stagnant or semi-stagnant water. Root d i s t r i b u t i o n i s r e s t r i c t e d to the top of the organic l a y e r . Small hummocks allow establishment of tree seedlings, while depressions are devoid of t r e e s . DRY EDAPHIC COMMUNITIES Dry edaphic communities are d i s t r i b u t e d i n both the dry and wet subzones. They are r e s t r i c t e d to l o c a l i t i e s which are supplied only by water from p r e c i p i t a t i o n . The s o i l s are shallow or very coarse textured. The p r e v a i l i n g humus type i s the raw humus (mor). Assoc. i i i . -Pseudotsugetum menziesii The Pseudotsugetum occurs i n the d r i e r subzone on h i l l - t o p s or upper slopes. This as s o c i a t i o n i s divided into three f o r e s t types on the basis of f l o r i s t i c and pedologic d i f f e r e n c e s , a. Orthic Gaultheria f o r e s t type The Orthic Gaultheria forest type occurs on convex h i l l s i d e s . The steepness of the slopes range from £ degrees to 18 degrees. The constant dominant species of t h i s type are the following ( O r l o c i , l°6l): Pseudotsuga menziesii, Thuja p l i c a t a , T 5uga heterophylla, Gaultheria shallon, Vaccinium parvifolium, Pteridium aquilinum, Eurhynchium oreganum, Hylocomium splendens, Plagiothecium undulatum. S o i l s : Parent material g l a c i a l t i l l kk Physical properties: Stoniness Depth of solum Thickness of the 0 horizon Thickness of the A e horizon Texture of the A e horizon Texture of the B horizon Structure of A e horizon Structure of B horizon Chemical properties*: pH - 0 horizon A e horizon B horizon Organic matter i n tons per acre: Total cation exchange capacity i n equivalents per 100 m2 35$ (20% to 60%) 22.0 inches (11 to 3I4 inches) 3.6 inches (1 to 9 inches) 2 inches (thin broken to 5 inches) sand sand to loamy sand single grain to weak blocky single grain to firm blocky 3.9 (3-U-U.5) U.o (3.7-4.3) 5.2 (5.0-5.iij 75 UU68 85 Available P i n l b . per acre: Exchangeable cations i n l b . per acre: Ca 195 Mg 100 K 123 D i s t r i b u t i o n of chemical properties by horizons i n percentage: Horizon Organic matter Cation exchange capacity Ca Mg K 0 52 20 99 51 59 5.U A e 2 1 1 1 0.2 B 78 0 kp 9k.k it On the basis of one analysed p r o f i l e , except f o r pH values which are averages of f i v e p r o f i l e s . \6 D i s t r i b u t i o n of s o i l subgroups and s i t e indexes: No. of S i t e index (Els, 1961) S o i l subgroup P r o f i l e s F Hw Cr Degraded Concretionary Brown 2 111 110 78 Orterde Podzol 1 122 87 90 Orterde Humic Podzol 1 117 93 77 b. Legosolic Gaultheria forest type The Legosolic Gaultheria forest type occurs mostly on h i l l - t o p s or on steep slopes. The contours are always convex. The slopes are between 30 degrees to J4O degrees on h i l l s i d e s and under 20 degrees on h i l l - t o p s . The plant community i s i d e n t i c a l with the Gaultheria forest type except that Ca l l i e r g o n e l l a schreberi, missing from the l a t t e r , i s present here. S o i l s : Parent material granitic bedrock Physical properties: Stoniness (above bedrock): 0 Depth of solum 3.3 inches (1 to 10 inches) Thickness of the 0 horizon 2.9 inches (1.5 to 2 inches) Thickness of the Ae horizon 2.1; inches (1 to 6 inches) Texture of Ae horizon sand to sandy loam Structure of the A e horizon single grain to weak blocky Chemical properties: pH - 0 horizon 3.8 (3.5-U.l) A e horizon 3.8 (3.5-U.l) The other chemical properties have not been studied i n t h i s forest type. Chemical data on ELuviated Acid Legosol are presented i n the Yaccinium - Gaultheria forest type. U6 S o i l subgroup and s i t e index:. No. of P r o f i l e s S o i l subgroup Eluviated Acid Legosol 5 c. Gaultheria - Mahonia f o r e s t type S i t e index ( E i s , 1961) F Hw Cr 85 8 6 73 The Gaultheria - Mahonia f o r e s t type occurs on steep convex h i l l -s ides. The slope i s 30 degrees to 35 degrees and exposed to the south. F l o r i s t i c a l l y Mahonia nervosa• separates t h i s f o r e s t type from the previous two. I t i s a constant dominant i n the Gaultheria - Mahonia f o r e s t type and only a c c i d e n t a l i n the two others. S o i l s : Parent material i n d i f f e r e n t p l o t s : g l a c i a l d r i f t P h y s i c a l properties: Stoniness Depth of solum Thickness of the 0 horizon Thickness of the A e horizon Texture of the A e horizon Texture of the B horizon Structure of the A e horizon Structure of the B horizon Chemical properties""": pH - 0 horizon A e horizon B horizon Organic matter i n tons per acre: T o t a l cation exchange capacity i n equivalents per 100m.2: 60$ {h0% to 80$) Ii.3.5 inches (39 to I4.8 inches) 3 inches 2 inches sand sand to loamy sand sin g l e g r a i n to weak blocky s i n g l e grain to f i r m blocky I 4 . I h*k 5.7 76 33U3 -> On the basis of one analysed p r o f i l e . hi A v a i l a b l e P i n l b . per acre: 33 Exchangeable cations i n l b . per acre: Ca 232 Mg 110 K 123 D i s t r i b u t i o n of the chemical properties according to horizons i n percentage: Horizon 0 A e B Organic matter J4.8 3 h9 Cation exchange capacity 32 1 67 Ca 88. 2 10 Mg 33 6 61 K 59 U 37 P lU 9 77 S o i l subgroups and s i t e indexes: No. of S i t e index ( E i s , I96I) S o i l subgroup P r o f i l e s F Hw Cr Minimal Podzol 2 99 90 75 Assoc. 15. Tsugeto - Gaultherietum The Tsugeto - Gaultherieturn occurs only i n the wet subzone. This edaphically extremely dry community i s located on h i l l t o p s , ridges and on convex slopes close to h i l l t o p s . The a s s o c i a t i o n i s divided into two f o r e s t types. One of them i s characterized by podzolic s o i l s and the other by l e g o s o l s . a. Orthic Vaccinium - Gaultheria f o r e s t type The Orthic Vaccinium - Gaultheria f o r e s t type i s characterized by the following constant dominant species ( O r l o c i , I96I): Tsuga heterophylla, Thuja p l i c a t a , Vaccinium alaskaense, Gaultheria shallon, Hylocomium splendens, Rhytidiadelphus loreus, Plagiothecium undulatum, Rhytidiopsis robusta. 1*8 The sporadic occurrence of Chamaecyparis nootkatensis and Pinus  monticola i s very important i n the recognition of t h i s forest "type. S o i l s : Parent material Physical properties: Stoniness Depth of solum Thickness of the 0 horizon Thickness of the A e horizon Texture of the Ae horizon Texture of the B horizon Structure of the A e horizon Structure of the B horizon Chemical properties: pH - 0 horizon A e horizon B horizon g l a c i a l t i l l or g r a n i t i c bedrock 7% (5$ to 10$) 8.6 inches (6 to 12 inches) 5.3 inches (5 to 6 inches) 3 inches (2 to h inches) sand to loamy sand loamy sand to sandy loam single grain to granular granular to blocky 3.1 (3.05-3.1) 3.U (3.14-3.1*9) lu3 (U.0-U.6) Other chemical properties have not been studied i n this forest type, but probably they are very s i m i l a r to the s o i l s of the Gaultheria forest type. D i s t r i b u t i o n of s o i l subgroups and s i t e indexes: S o i l subgroup No. of P r o f i l e s S i t e index (Eis, 19&L) P Hw Cr Cy B 77 59 hh Orterde Humic Podzol 3 7h 61 b. Legosolic Vaccinium - Gaultheria forest type F l o r i s t i c a l l y mainly the presence of C a l i i e r g o n e l l a schreberi separates t h i s forest type from the previous one. h9 S o i l s : Parent m a t e r i a l P h y s i c a l p r o p e r t i e s : Stoniness Depth of solum Thickness of the 0 horizon Thickness of the A e horizon Texture of the A e horizon Structure of the Ae horizon Chemical Pr o p e r t i e s * : pH - 0 horizon Ae horizon Organic matter i n tons per acre: T o t a l cation exchange capacity i n equivalents per 100m2; A v a i l a b l e P i n l b . per acre: Exchangeable cations i n l b . per acre: Ca Mg K g r a n i t i c bedrock 256 (0% to 1056) U.O inches (2 to 6 inches) 5.2 inches (1 to 11 inches) 3.8 inches (2 to 6 inches) f i n e sand granular 3.6 (3.U-3.8) 3.5 (3.U-3.7) Sh 179k 10.7 170 90 187 D i s t r i b u t i o n of chemical properties by horizons i n percentage: Horizon Organic Matter Cation exchange capacity Ca Mg K P 0 70 U8 53 52 68 hS 30 52 1*7 hQ 32 55 # On the basis of one analysed p r o f i l e . The pH values are averages f o r Figure 11, 12, and Figure 11. Orthic Gaultheria f o r e s t type Figure 12. Degraded Concretionary Brown s o i l Figure 13. E l u v i a t e d Acid Legosol s o i l from l e g o s o l i c Vaccinium - Gaultheria f o r e s t type S o i l subgroup and s i t e index: No. of S i t e index (ELs, 196l) S o i l subgroup P r o f i l e s F Hw Cr Cy B Elu v i a t e d Acid Legosol 6 69 55 53 63 hO E. ZONAL COMMUNITIES There i s one zonal a s s o c i a t i o n i n each subzone. The Tsugetum  heterophyllae plagiothecietosum undulati i s zonal i n the dry subzone and the Abieteto - Tsugetum heterophyllae i n the wet subzone. Zonal communities occur i n a wide range of topographic conditions, but always on deep, w e l l drained s o i l s . Assoc. 16. Tsugetum heterophyllae plagiothecietosum u n d u l a t i The Tsugetum heterophyllae plagiothecietosum undulati i s divided i n t o two f o r e s t types. -One i s the Orthic Plagiothecium f o r e s t type, which i s characterized by a very poorly developed shrub l a y e r . The other i s the Plagiothecium - Mahonia f o r e s t type characterized by a w e l l developed shrub l a y e r . Both f o r e s t types occur on terr a c e s , gentle slopes (0 degrees to 25 degrees), or on f l a t h i l l - t o p s , a. The Orthic Plagiothecium f o r e s t type The Orthic Plagiothecium f o r e s t type has a dense tree l a y e r but very poorly developed shrub and herb l a y e r s . .The moss l a y e r i s u s u a l l y w e l l developed. The constant dominant species of the f o r e s t type are the following ( O r l o c i , 1961): Tsuga heterophylla, Psedotsuga menziesii,  Thuja p l i c a t a , Acer circinatum, Pteridium aquilinum, Plagiothecium undulatum, Eurhynchium oreganum, Hylocomium splendens, Rhytidiadelphus l o r e u s . S o i l s : The s o i l s are mostly coarse textured but deep. The solum i s covered 53 w i t h a t h i n o r m o d e r a t e l y t h i c k l a y e r o f decomposed and p a r t l y decomposed o r g a n i c m a t t e r . T h i s o r g a n i c l a y e r i s b l a c k o r v e r y d a r k r e d d i s h - b r o w n m o r . P a r e n t m a t e r i a l P h y s i c a l p r o p e r t i e s : S t o n i n e s s D e p t h o f s o l u m T h i c k n e s s o f t h e 0 h o r i z o n T h i c k n e s s o f t h e A e h o r i z o n T e x t u r e o f t h e A e h o r i z o n T e x t u r e o f t h e B h o r i z o n S t r u c t u r e o f t h e A e h o r i z o n S t r u c t u r e o f t h e B h o r i z o n C h e m i c a l p r o p e r t i e s " * : . pH - 0 h o r i z o n A e h o r i z o n B h o r i z o n O r g a n i c m a t t e r i n t o n s p e r a c r e s T o t a l c a t i o n e x c h a n g e c a p a c i t y i n e q u i v a l e n t s p e r lOOm? A v a i l a b l e P i n l b . p e r a c r e : E x c h a n g e a b l e c a t i o n s i n l b . p e r a c r e : C a Mg K g l a c i a l t i l l and o u t w a s h 39% {$% t o 60%) 39 i n c h e s (30 t o 55 i n c h e s ) 2.6 i n c h e s (0.5 t o 6 i n c h e s ) 1.2 i n c h e s (0 t o 3 i n c h e s ) s a n d t o l o a m y s a n d s a n d t o s a n d y l o a m s i n g l e g r a i n t o weak b l o c k y s i n g l e g r a i n t o f i r m b l o c k y 3.8 (3.U-U.1) h.O (3.7-U.2) 5.6 (5.3-6.0) 1U3 11200 79 210 3U0 206 # On t h e b a s i s o f t h r e e a n a l y s e d p r o f i l e s . The pH v a l u e s a r e a v e r a g e s o f s i x p r o f i l e s . 5U Distribution of chemical properties by horizons i n percentage:: Horizon 0 Afi B Organic matter 23 2 75 Cation exchange capacity 8 2 90 Ca 9k k 2 Mg 10 7 83 K 23 5 72 P 6 U 90 Distribution of s o i l subgroups and site indexes: No. of Site index (Eis, 1961) S o i l subgroup Profiles F Hw Cr Minimal Podzol 5 138 105 86 Orterde Podzol 1 Ikk 113 88 Orterde Humic Podzol 2 151 128 100 A l l are well-drained, coarse textured s o i l s . The roots are evenly distributed i n some of the profiles but mostly they are concentrated i n the 0 horizon and i n the upper part of the solum proper. A l l s o i l profiles with one exception are underlain by hardpan. In 33% of the profiles temporary or permanent seepage i s evident at an average depth of forty-one inches. The moisture conditions are f a i r i n the whole profile. b. The Plagiothecium - Mahonia forest type The forest i n this community i s just as dense as i n the previous forest type, the only difference between the two i s the well developed shrub layer of the Plagiothecium - Mahonia type. In the shrub layer Mahonia nervosa i s the dominant species. Soils: The general s o i l properties are very similar to those of the Plagiothecium forest type. There i s , however, a difference i n parent material and i n stoniness. Figure lU, 15> Figure l l j . . Orthic Plagiothecium f o r e s t type Figure 15>. Orthic Brown Podzolic s o i l Figure IS. 57 Parent m a t e r i a l i s mostly a l l u v i a l deposits. P h y s i c a l p r o p e r t i e s : Stoniness ranges from 2% to $0% with a 26% average. Chemical p r o p e r t i e s : pH values* - 0 horizon 3.9 (3.8-4.0) A e horizon I4.O (I4.O-U.I) B horizon 5.h (5.0-5.6) For other chemical properties see the Plagiothecium f o r e s t type. D i s t r i b u t i o n of s o i l subgroups and s i t e indexes: No. of S i t e index ( E i s , 1961) S o i l subgroup P r o f i l e s F Hw Cr Orthic Brown Podzolic 1 121 95 90 Minimal Podzol 1 117 120 llh Orterde Podzol 1 155 99 88 Orterde Humic Podzol 1 161 132 85 These p r o f i l e s are w e l l - or excessively-drained. Root d i s t r i b u t i o n i s even throughout the whole p r o f i l e . There i s no i n d i c a t i o n of seepage i n any of the p r o f i l e s . Assoc. 17. Abieteto - Tsugetum heterophyllae The Abieteto - Tsugetum heterophyllae i s the zonal a s s o c i a t i o n of the wet subzone. The ecotopic conditions of t h i s a s s o c i a t i o n are s i m i l a r to that of the Tsugetum heterophyllae plagiothecietosum u n d u l a t i . The differences are mainly c l i m a t i c c haracterizing the wet subzone, i . e . the amount of p r e c i p i t a t i o n , amount of snow f a l l and temperature. The a s s o c i a t i o n i s divided i n t o two f o r e s t types: •5C- Two p r o f i l e s were studied f o r pH. 58 a. Vaccinium - Plagiothecium - C l i n t o n i a f o r e s t type This f o r e s t type occurs on terraces, h i l l s i d e s (slope 5 to 30 degrees) or on f l a t h i l l t o p s . I t s species composition i s characterized by the following constant dominant species ( O r l o c i , l ° 6 l ) : Tsuga heterophylla, Thuja p l i c a t a , Abies amabilis, Vaccinium alaskaense, Biechnum spicant, Plagiothecium undulatum, Rhytidiadelphus loreus, Mnium punctatum, Hylocomium splendens. F l o r i s t i c a l l y the presence of C l i n t o n i a u n i f l o r a and the absence °f A c e r circinaturn d i s t i n g u i s h t h i s community from the Vaccinium - Plagiothecium -Acer f o r e s t types. S o i l s : The deep s o i l s are covered by a th i c k l a y e r of decomposed organic matter. This accumulated decomposed organic matter i s black or very dark reddish brown mor. In two out of seven p r o f i l e s the col l e cted humus sample formed very hard i r r e v e r s i b l e aggregates when dried at room temperature. Parent material i n d i f f e r e n t p l o t s : g l a c i a l t i l l 70$, g l a c i a l outwash 30$ (of p l o t s ) Physical properties: Stoniness 1*7$ (20$ to 80$) Depth of solum 3U.7 inches (19 to 58 inches) Thickness of the 0 horizon 7.5 inches (3 to 12 inches) Thickness of the A e horizon 0.9 inches (0 to 3 inches) Texture of the A e horizon sand to sandy loam Texture of the B horizon sand to loam Structure of the A e horizon single grain to weak blocky Structure of the B horizon single g r a i n to fir m blocky 59 Chemical properties*:. pH - 0 horizon 3.6 (3.3-4.3) A e horizon 3.9 (3.8-4.0) B horizon 5.3 (5.0-5.9) Organic matter i n tons per acre 195 T o t a l c a t i o n exchange capacity i n equivalents per 100m2 8440 A v a i l a b l e P i n l b . per acre 28.6 Exchangeable cations i n l b . per acre: Ca 840 Mg 287 K 173 D i s t r i b u t i o n of chemical properties by horizons i n percentage: Horizon 0 A B Organic matter 58 1 hi Cation exchange capacity 34 5 61 Ca 97.5 2.5 0 Mg 54 4 hh K 54 8 38 P 30 2 68 D i s t r i b u t i o n of s o i l subgroups and s i t e indexes: No. of S i t e index (Eis, 1961) S o i l subgroup P r o f i l e s F Hw Cr B Orthic Brown Podzolic 1 119 107 113 117 Minimal Podzol h 108 114 98 93 A l l s o i l s are w e l l drained i n the top two feet of t h e i r p r o f i l e s , but some are imperfectly drained i n the lower p o r t i o n of the B l a y e r . # The data f o r chemical properties are the average of three p r o f i l e s i n c l u d i n g one from the Vaccinium - Plagiothecium - Acer f o r e s t type. The pH values are averages f o r the Vaccinium - Plagiothecium - C l i n t o n i a f o r e s t •'type. 60 The major p o r t i o n of the roots i s located i n the 0 horizon. Indication of temporary or permanent seepage has been found i n 36$ of the sample p l o t s at an average depth of 35 inches. P l o t s with permanent seepage could be considered as h i g h l y degraded Biechnum f o r e s t types, which by t h e i r ecosystems and advanced primary succession may be considered as parts of t h i s zonal plant a s s o c i a t i o n . b. Vaccinium - Plagiothecium - Acer f o r e s t type The Vaccinium - Plagiothecium - Acer f o r e s t type has a l t i t u d i n a l l y a lower p o s i t i o n on the mountain slopes r e l a t i v e to the previous f o r e s t type. I t may be found on gentle lower slopes (5 to 20 degrees) and r i v e r or lake te r r a c e s . I t s f l o r i s t i c composition i s i d e n t i c a l with the Vaccinium -Plagiothecium - C l i n t o n i a f o r e s t type except f o r the presence of Acer circinatum and the absence of C l i n t o n i a u n i f l o r a . S o i l s : The q u a l i t y of the accumulated organic matter i s s i m i l a r to that of the previous f o r e s t type. Parent material i n d i f f e r e n t s o i l s : g l a c i a l outwash, l a c u s t r i n e deposit 60$, g l a c i a l t i l l 40$ (of p l o t s ) Physical properties: Stoniness 16$ (0$-to 50$) Depth of solum 39.1 inches (16 to 52 inches) Thickness of the 0 horizon 5»3 inches (1 to 13 inches) Thickness of the A e horizon 0.1 Inch (0 to 2 inches) Texture of the A e horizon sand to loamy sand Texture of the B horizon sand to clayey loam Structure of the A e horizon weak granular to weak blocky Structure of the B horizon weak granular to f i r m blocky 61 Chemical properties: pH - 0 horizon ' 3.3 (2.9-3.6) A e horizon 3.7 (3.4-4.6) B horizon 5.2 (5.0-5.7) For other chemical properties see the Vaccinium - Plagiothecium -C l i n t o n i a f o r e s t type. D i s t r i b u t i o n of s o i l subgroups and s i t e indexes: No. of S i t e indexes (Eis, 1961) S o i l subgroup P r o f i l e s F Hw Cr B Minimal podzol 8 114 102 108 92 Orterde Humic Podzol 2 135 108 85 107 Orthic Brown Podzolic 1 122 104 113 94 The drainage of s o i l s i s excessive to poor. Roots are located mostly i n the 0 horizon but a few penetrate down to the impervious l a y e r . In the poorly drained p r o f i l e s the lower portion of the B horizon i s without any roots. Seepage e x i s t s i n 1Q% of the p r o f i l e s at an average depth of 32 inches. Those p l o t s , where seepage i s observable, could be considered again as highly degraded Blechnum f o r e s t types. (Zonal f o r e s t type, which developed from Blechnum f o r e s t type i n the course of primary succession.) Figure 16 and 17 \ Figure 16. Vaccinium - Plagiothecium f o r e s t type Figure 17. Orterde Humic Podzol (The r u l e r i s 18 i n . long.) 63 F/gure 17. 64 CHAPTER V. COMPARISON OF ECOTOPIC CHARACTERISTICS OF ASSOCIATIONS AND FOREST. TYPES A l t i t u d e and exposure I t i s very d i f f i c u l t to draw sound conclusions from the general d i s t r i b u t i o n of a s s o c i a t i o n and f o r e s t types according to a l t i t u d e and exposure i n the study area. The evaluation would be more r e a l i s t i c i f the study area were divided up i n t o geographical units with s i m i l a r climates. Three such u n i t s were separated i n the present study. Area number one includes Seymour Mountain, Lynn Park, C y p r e s s Creek area and Grouse Mountain. Area number two includes Seymour Creek V a l l e y and Coquitlam Lake area. Area number three i s the Un i v e r s i t y Forest at Haney. The associations of the dry and wet subzone are very sharply separated from each other w i t h i n these geographic u n i t s . (See f i g . 18, 19, 20). The a l t i t u d i n a l differences are e s p e c i a l l y sharp between the dry edaphic and zonal communities of the subzones, because they are controlled mainly by the climate. Overlapping i s considerably wide i n the case of seepage communities, because of the s i g n i f i c a n t r o l e of t h i s edaphic f a c t o r . The following tables shows the a l t i t u d i n a l d i s t r i b u t i o n of sample plot s compared by associations i n the three geographic groupings. Area Range of a l t i t u d e of sample p l o t s i n f e e t * T AT G VG P B No. 1 430- 950 1100-2730 600-960 ? 5OO-I36O 460-3000 No. 2 - • 550- 880 600- 650 590-1000 430- 700 570- 920 No. 3 1010-1050 1620-2600 900-1400 1450-2000 ' 750-1500 1450-1680 * T - Tsugetum heterophyllae plagiothecietosum undulati AT - Abieteto - Tsugetum heterophyllae G - Pseudotsugetum menziesii VG - Tsugeto - Gaultherietum P - Thujeto - Polystichetum B - Thujeto - Blechnetum 65 These data suggest t h a t the wet subzone begins at the a l t i t u d e of l400-l500 feet i n the number three area, 900-1000 feet i n the number one area and 500-600 feet i n the number two area. Associations and s o i l subgroups The d i s t r i b u t i o n of s o i l subgroups i n the associations i s f a r from being random. (See f i g . 20/a) There i s a d e f i n i t e r e l a t i o n s h i p between f o r e s t a s s o c i a t i o n and s o i l subgroup. The c o r r e l a t i o n i s the greatest i n the a s s o c i a t i o n of extreme edaphic p o s i t i o n . The Ribes - Lysichitum, Lysichitum -Oenanthe, Oplopanax - Ribes, Coptis - Lysichitum and Ledum f o r e s t types are confined to p a r t i c u l a r s o i l subgroups. In the dry edaphic communities the El u v i a t e d Legosol i s most common. The Minimal Podzol i s the prevalent s o i l subgroup i n the zonal a s s o c i a t i o n s . A s e r i e s of d i f f e r e n t degrees of podzolization may be followed i n these a s s o c i a t i o n s , from the Orthic Brown Podzolic to the Humic Podzol subgroup. Podzolization reaches the most advanced stage i n the Abieteto - Tsugetum heterophyllae i n the wet subzone while the Thujeto - Polystichetum i s d i s t r i b u t e d mainly on B r u n i s o l i c s o i l s . P o d z olization i s retarded i n the l a t t e r community probably as a r e s u l t of i t s species composition which does not support raw humus accumulation. The greatest s o i l v a r i a t i o n i s i n the Thujeto - Blechnetum. This v a r i a t i o n i s p a r t l y due to the f a c t that the wettest section of the Thujeto - Blechnetum i s associated with g l e y s o l i c s o i l s . The p a r t i c i p a t i o n of podzolic s o i l s i s considerably smaller i n t h i s plant a s s o c i a t i o n than i n the dry edaphic or zonal communities. The accumulation of raw humus i s great enough to promote the process of p o d z o l i z a t i o n , but i n the imperfectly drained places the high water t a b l e r e s t r i c t s downward migration of organic matter and sequioxides. The Piceeto - Lysichitetum i s more uniform from the point of view of s o i l s than i s indicated i n f i g . 20/a. A l l four of these s o i l s are poorly P i g . 1 8 . A l t i t u d e And E x p o s u r e D i s t r i b u t i o n Of The Dry E d a p h i c Communities Worth 67 F i g . 1 9 . A l t i t u d e And Exposure D i s t r i b u t i o n Of The Zonal Assoc ia t ions h/orih g-QOft. 22Q1±_ o Tsugetum heterophyl lae 3oukh 68 Fig.,20. - A l t i t u d e And Exposure D i s t r i b u t i o n Of Seepage A s s o c i a t i o n s iVorlh SOOfi-69 Figure 20/a Figure 20/a. D i s t r i b u t i o n of S o i l Subgroups i n the Associations The width of the dark area i n the diagramm i s proportional with the frequency of a c e r t a i n s o i l subgroup i n d i f f e r e n t associations. • I t s value v a r i e s from 0 to 100$. Abbreviations: RO — Piceeto - Oplopanacetum RL - Alneto - Ribisetum bracteosi 0L - S a l i c e t o - Oenanthetum L - Pineto - Ledetum CL - Thujeto - Coptetum VL - Piceeto - Lysichitetum B - Thujeto - Blechnetum P - Thujeto - Polystichetum TA - Abieteto - Tsugetum heterophyllae Th - Tsugetum heterophyllae plagiothecietosum PG - Pseudotsugetum menziesii TG - Tsugeto - Gaultherietum EAL - ELuviated Acid Legosol DCB - Degraded Concretionary Brown OP - Orterde Podzol OHP - Orterde Humic Podzol HP - Humic Podzol MP - Minimal Podzol OBP - Orthic Brown Podzolic MA mm. Modal Acid Dark Brown Forest GP - Gleyed Podzol 0G - Orthic Gley s o l PP - Pitchy Peat Anmoor 0D - Orthic Dark Gray G l e y s o l i c SP - Sphagnum Peat SPA - S r i r i n P - l n n e P i t r . h v A ™ n n r AR - A l l u v i a l Regosol RO DISTRIBUTION OF SOIL SUBGROUPS IN THE ASSOCIATIONS AR m EALDCB OfPOHP HP MPOBP MA. GP OG oa SPA PP SP R L OL C L V L B T A T h P G T G i i 71 drained and characterized by reduction. The only r e a l difference i s i n the thickness of accumulated organic matter and the speed of water movement. There are four s o i l subgroups most widely distributed i n the Coastal Western Hemlock Zone. These are the Orthic Brown Podzolic, Minimal Podzol, Orterde Podzol and Orterde Humic Podzol. A l l four occur i n three or more different plant associations on w e l l drained s o i l s . A l l other s o i l subgroups are r e s t r i c t e d to a pa r t i c u l a r plant association or occur on extremely wet or dry habitats. Depth of solum The depths of sola are compared only i n those forest types where the s o i l depth i s an important factor determining s i t e quality. Forest types i n which the water table i s high and permanent regardless of the depth of the impervious layer are not included. Solum depths are compared separately i n the dry and wet subzone. The following data are means and standard deviations. Dry subzone: Legosolic Gaultheria 3.3 i 1.5 Orthic Gaultheria 22.0 t 9.1 Gaultheria - Mahonia t 6.k Plagiothecium - Mahonia 35.5 113.2 Orthic Plagiothecium 39.0 i 9.2 Polystichum 39.2 -10.1 Biechnum - Rubus 29.0 i 1.7 The dotted l i n e s separate populations vfhich are s i g n i f i c a n t l y different from one another at the one percent l e v e l , i n both subzones. 72 Wet subzone: Legosolic Vaccinium - Gaultheria 4.0 1 1,7 Orthic Vaccinium - Gaultheria 8.6 - 3.0 Vaccinium - Plagiothecium - C l i n t o n i a 34.7 112.6 Vaccinium - Plagiothecium - Acer 39.1-11.6 Orthic Blechnum 33.0 l l O . l G l e y s o l i c Blechnum l£.6 1 7.7 The G l e y s o l i c Ble chnum fo r e s t type d i f f e r s s i g n i f i c a n t l y from the Vaccinium - Plagiothecium and Orthic Blechnum f o r e s t types at the f i v e percent l e v e l . The f o r e s t types are arranged i n the order of increasing wetness i n both subzones. This arrangement i n d i c a t e s that the extremeness of the s i t e decreases with increasing s o i l depth as the shallow s o i l s are e i t h e r dry or wet. Consequently, the wet shallow s o i l s must have a d d i t i o n a l water supply which i s not d i r e c t p r e c i p i t a t i o n . This a d d i t i o n a l water supply i s seepage or ground water. The configuration of the topography determines i f the s i t e w i l l c o l l e c t or r a p i d l y drain o f f the p r e c i p i t a t i o n water. However, the topography alone never determines the wetness of the s i t e . The reason . f o r t h i s i s that i f the impermeable l a y e r i s high i n a concave area the s i t e i s l i k e l y to be wetj on the other hand a s i t e with the same topography may be moderately dry i f the impervious l a y e r i s very deep under the solum. In the same way convex topography can represent extremely dry s i t e s i f the s o i l i s shallow, or deep but coarse; the same convex s i t e s develop mesic s i t e s , i f the s o i l i s deep and r e l a t i v e l y f i n e . Consequently the mutual evaluation of s o i l depth (depth of the impervious layer) and topography can serve as a u s e f u l t o o l i n the estimation of s i t e q u a l i t y . But, as i t was mentioned i n the beginning of t h i s chapter, 73 the l e v e l of ground water or the depth of seepage i s often f a r from being equal to the depth of impervious l a y e r . Hence, the s i t e s need to be examined also from t h i s point of view. Depth of seepage and ground water The following table summarizes the abundance and average depth of seepage or ground water i n the f o r e s t types. The depths are measured from the surface of the organic horizon. Percentage of Depth i n Forest type Occurrence inches Vaccinium - Plagiothecium A. 18 32 Orthic Plagiothecium 33 Jjl Vaccinium - Plagiothecium C. 36 35 Polystichum 38 35 Orthic Biechnum 92 30 Biechnum - Rubus 100 22 G l e y s o l i c Biechnum 100 17 Peaty biechnum 100 10 Vaccinium - Lysichitum 100 7 Coptis - Lysichitum 100 7 Ledum 100 5 The depth of ground water i n the coarse textured f l o o d p l a i n f o r e s t types depends on the vrater l e v e l of the r i v e r . I f we assume that the f i r s t colonies of vegetation appear on sediments j u s t above the average l e v e l of the r i v e r , the posi t i o n s of f l o o d p l a i n f o r e s t types r e l a t i v e to t h i s l e v e l are the following: Ribes - Lysichitum - 1 to 3 f e e t Lonicera - Rubus - 2 to 6 f e e t Oplopanax - Ribes - 5 "to 10 f e e t Symphoricarpos - 10 f e e t and onward Ik The water l e v e l i n the Lysichitum - Oenanthe fo r e s t type does not follow the f l u c t u a t i o n of water i n the r i v e r . The f i n e sediment of t h i s h a b i t a t does not permit drainage of the water but keeps i t at a high l e v e l (one foot or higher) throughout the whole year. In f i g . 21 the s i t e indexes f o r F, Hw, and Cr as w e l l as s o i l depth and seepage are summarized according to f o r e s t types. The communities are arranged i n the order of increasing wetness from l e f t to r i g h t . The f o r e s t types are separated according to subzone and the types occurring i n both subzones are placed into a t h i r d group. In the dry subzone the s i t e index gradually increases with wetness of the s i t e up to the Blechnum - Rubus f o r e s t type, where the average depth of seepage i s 22 inches. From t h i s point the p r o d u c t i v i t y decreases with increasing wetness. The example of Gaultheria -Mahonia f o r e s t type demonstrates a case where the deep s o i l (U3 inches) and corase texture r e s u l t s i n a much d r i e r habitat than the 22 inch deep s o i l i n the Orthic Gaultheria f o r e s t type. Both habitats occur on convex topography but the r e l a t i v e l y high impervious l a y e r i n the Orthic Gaultheria forest type i s more e f f e c t i v e i n r e t a i n i n g a v a i l a b l e water f o r plant growth than the deep, coarse p r o f i l e of the Gaultheria - Mahonia type. With the exception of L e g o s o l i c Vaccinium - Gaultheria and Orthic Vaccinium - Gaultheria f o r e s t types a l l communities i n the wet subzone are w e l l supplied with water, regardless of the presence of seepage. In other words, i f the s o i l i s s u f f i c i e n t l y deep, p r e c i p i t a t i o n water s a t i s f i e s the needs of vegetation, and the s i t e q u a l i t y i s more or l e s s i n d i f f e r e n t to the a d d i t i o n a l water supply. The high water table i n the G l e y s o l i c and Peaty Blechnum f o r e s t types a f f e c t s the s i t e i n d i r e c t l y causing an a i r d e f i c i e n c y i n the - s o i l . These poorly aerated s i t e s w i l l not support Douglas-fir. The c l i m a t i c d ifferences of the two subzones are a l s o indicated by the differ e n c e of ground water l e v e l corresponding to the best s i t e f o r Dou g l a s - f i r . The 7 5 Figure 21 Figure 21. Relationship Between Forest Type, S o i l Depth, Seepage Depth and S i t e Indexes a. dry subzone b. wet subzone c. f o r e s t types occurring i n both subzones. The v e r t i c a l l i n e s i n the graphs i n d i c a t e the depth of seepage from the surface of organic horizon. The s o i l depths are indicated by the continuous l i n e i n the graph. Symbols: Df - Douglas-fir Hw - Western hemlock Cr - red cedar LG - Legosolic Gaultheria f o r e s t type MG - Gaultheria Mahonia f o r e s t type G - Orthic Gaultheria f o r e s t type MT - Plagiothecium Mahonia f o r e s t type T - Orthic Plagiothecium f o r e s t type P - Polystichum forest type RB - Blechnum rubus f o r e s t type LTG - Legosolic Vaccinium Gaultheria f o r e s t type TG - Orthic Vaccinium Gaultheria f o r e s t type VP1.C - Vaccinium Plagiothecium C l i n t o n i a f o r e s t type VP1.A - Vaccinium Plagiothecium Acer f o r e s t type B - Orthic Blechnum f o r e s t type GB - G l e y s o l i c Blechnum forest type PB - Peaty Blechnum f o r e s t type VL - f o r e s t types of Piceeto - Lysichitetum CL - Coptis Lysichitum f o r e s t type L - " Ledum f o r e s t type Site Index In tt._ 0) -J 00 <o 5 o o o o i—r~i—i—r o r A / \ / i / Depth of seepage I / 0? 77 seepage i n the Blechnum - Rubus f o r e s t type of the dry subzone (22 inches) i s c o n s i d e r a b l y higher than i n the O r t h i c Blechnum (30 inches) i n the wet subzone. G e n e r a l l y , the p r o d u c t i v i t y of the dry subzone i s higher than t h a t of the wet subzone. Comparison of Chemical C h a r a c t e r i s t i c s S t a t i s t i c a l a n a l y s i s has been c a r r i e d out a t the a s s o c i a t o n l e v e l f o r the chemical p r o p e r t i e s of s o i l s . The a s s o c i a t i o n s of dry edaphic communities and those f o r the L y s i c h i t u m .associations were combined t o form one u n i t each f o r s t a t i s t i c a l a n a l y s i s . By t h i s s i m p l i f i c a t i o n seven groups have been compared. 1 . Dry edaphic communities (De) 2. Tsugetum h e t e r o p h y l l a e plagiothecietosum u n d u l a t i (T) 3. A b i e t e t o - Tsugetum he t e r o p h y l l a e (AT) 1L. Thujeto - Polystichetum hylocomietosum s p l e n d e n t i s (P) 5. Thujeto - Blechnetum (B) 6. P i c e e t o - Oplopanacetum (0) 7 . L y s i c h i t u m communities (Ly) A n a l y s i s of v a r i a n c e was c a r r i e d out f o r the t o t a l amounts and f o r the c o n c e n t r a t i o n of chemical p r o p e r t i e s . S i g n i f i c a n t d i f f e r e n c e s were e s t a b l i s h e d by Tukey's Studentized Range Test.* (For t a b l e s of a n a l y s i s of v a r i a n c e see Appendices.) 1 . T o t a l Organic Matter The accumulation of organic matter takes place i n two d i f f e r e n t ways i n the s o i l s of the Western Hemlock 2.one. One i s the accumulation of organic matter formed i n s i t u , on the surface of the mineral s o i l . The other way i s the l a t e r a l t r a n s l o c a t i o n of i n c o r p o r a t e d humus which e v e n t u a l l y accumulates i n seepage s o i l s above the impervious l a y e r . (See the chemical * Snedecore, 1 9 5 7 . 78 properties of p l o t number I 4 I 4 , 110.) The accumulated organic matter i s stored p a r t l y i n the 0 horizon and p a r t l y i n the solum as incorporated humus. The amount of t h i s accumulated organic matter v a r i e s according to a s s o c i a t i o n . Organic Matter i n t / Acre De 0 T AT P Ly E 72 100 1U3 195 18U 211 358 De, 0 and T are s i g n i f i c a n t l y lower than B at the 5$ l e v e l . There i s no other s i g n i f i c a n t d i f f e r e n c e among as s o c i a t i o n s . A c t u a l l y the greatest organic matter accumulation takes place i n the Lysichitum communities where sometimes several yards t h i c k of peat l a y e r occur. In t h i s study, however, only that part of the s o i l which can be u t i l i z e d by plants i s considered. I f the Piceeto - Oplopanacetum i s not considered - representing very young regosols only - the pattern i n d i c a t e s that the amount of accumulated organic matter increases with the wetness of the s i t e . The amount of organic matter i n the s o i l i s an important f a c t o r determining s i t e q u a l i t y . I t s action i s mainly i n d i r e c t through i t s c a t i o n exchange and waterholding capacity. The 0 and B horizons are s i g n i f i c a n t l y higher than the A horizon i n the amount of stored Organic matter. 2. T o t a l c a t i o n exchange capacity The t o t a l values of ca t i o n exchange capacity f o r the whole s o i l p r o f i l e are compared i n the following t a b l e . Cation exchange capacity i n e/l00 square meter De Ly AT T 0 P B__ 3202 5202 Qhko 11200 10580 14695 21306 The analysis of variance does not i n d i c a t e s i g n i f i c a n t d i f f e r e n c e s between ass o c i a t i o n s . 79 I n d i v i d u a l mean compared by Tukey's Studentized Range Test show-s i g n i f i c a n t d i f f e r e n c e between B , De, communities. The v e r t i c a l d i s t r i b u t i o n of cation exchange capacity i s s i m i l a r to the d i s t r i b u t i o n of organic matter. The 0 and B horizons are s i g n i f i c a n t l y higher than the A horizon. 3 . Amount of exchangeable Calcium Most of the exchangeable Ca i s stored i n the 0 l a y e r of the s o i l s i n the Coastal Western Hemlock Zone. This suggests that the Ca which p a r t i c i p a t e s i n the biogeochemical cycle i s retained i n the s o i l and the exchangeable Ca not u t i l i z e d by the vegetation i s e a s i l y removed by drainage water. This phenomenon i s due to the very high degree of m o b i l i t y of exchangeable Ga (Lutz Sc. Chandler, 19.1*6). The reg o s o l i c s o i l s of the Oplopanax forest "type are r e l a t i v e l y r i c h i n Ga throughout the whole mineral p r o f i l e . On the other hand the B horizon of the older podzolized s o i l s are extremely poor i n exchangeable Ca. The amount of exchangeable calcium by associations i n l b . per acre  De AT T Ly B P 0 _ 199 81*0 211 2022 507 712 1731* The t o t a l amount of calcium i n Ly i s s i g n i f i c a n t l y l a r g e r than i n De, T and B communities. S i m i l a r l y 0 i s s i g n i f i c a n t l y higher than De and T communities. The Ca content of the 0 horizon i s s i g n i f i c a n t l y higher than that of the A and B horizons. 1*. Amount of exchangeable Magnesium The t o t a l amount of exchangeable Mg i s about one h a l f the amount of Ca. Exchangeable Magnesium by associations i n l b . per acre  . _De AT T Ly B P 0 _ 100 287 31*0 1*1*6 522 51*2 901* 80 The difference between 0 and De i s significant. The vertical distribution of Mg i s different from that of Ca. While Ca i s concentrated mainly i n the 0 horizon, the greater part of Mg i s stored i n the B horizon. The amount of Mg i n the B horizon i s significantly greater than i n the 0 or A horizon. The over-all ratio of exchangeable Ca and Mg i s very close to 2:1. (The over-all average of calcium i s 889 lb./acre and I4.I48 lb./acre i s of magnesium.) The vertical distribution of the two elements shows a remarkable difference. Over Q0% of the total exchangeable Ca i s concentrated in the 0 horizon. On the other hand, the Mg i s stored mostly in the B horizon of the so i l s . This phenomenon seems to be explained by the different uptake of these two nutrients by the vegetation. According to Tarrant, Isaac and Chandler (1951) the three leading tree species of the Coastal Western Hemlock Zone return the following amount of Ca and Mg to the s o i l annually i n the form of l i t t e r . Ca Mg lbs./acre Western red cedar 42.8 0.8 Douglas-fir, 100-year old 8.0 0.2 Western Hemlock 5.6 0.6 (The translocation of Mg + + - Meyer and Anderson (1952) - may be one reason for the smaller amount of magnesium in the l i t t e r . ) I f we assume an average stand composed of 50$ Western Hemlock, 30% Western red cedar, and 20% Douglas-fir the annually returned amount of Ca would be 17.2 lbs/acre. The returned amount of Mg i s only 0.58 lbs/acre annually. The grand average amount of exchangeable Ca i n the soils (includ-ing the 0 horizon) i s 900 lbs/acre. Consequently a f u l l rotation of Ca i n 81 the biogeochemical cycle takes about 50 years. On the other hand a f u l l r otation of Mg requires about 800 years assuming a grand average of 1+50 lbs/acre. 5. Amount of exchangeable Potassium The t o t a l amount of exchangeable Potassium by associations i n lbs/acre: De T AT P B Ly 0 Ihh 206 • 173 1+16 312 259 52I+ The t o t a l amount of exchangeable potassium i s s i g n i f i c a n t l y l arger i n the 0 association than i n De, T and AT associations. The potassium content of the B horizon i s s i g n i f i c a n t l y higher than that of A and 0 horizons. 6. Total available Phosphorus The t o t a l amount of available Phosphorus i n lbs/acre by associations: De T AT P B Ly 0 h6 19 28.6 112 92 37-9 155 The t o t a l amount of phosphorus i n the 0 association i s s i g n i f i c a n t l y l arger than i n AT and Ly associations. Phosphorus content of the B horizon i s s i g n i f i c a n t l y higher than that of the A and 0 horizons. 7. Concentration of organic material In percent of dry Tfeight Horizon De T AT P B Ly 0 0 76.6 72.6 85.0 76.0 85.7 74.0 0 A 5.0 2.6 0.6 9.6 2.6 7.0 3.6 B 10.0 9.0 10.3 8.1 7.0 12.0 1.3 The concentration of organic matter i n the Oplopanax - Ribes forest type i s si g n f i c a n t l y lower than on a l l other associations. 82 The concentration of organic matter in the 0 horizon i s significantly higher than i n A and B horizons. 8. Concentration of Cation Exchange Capacity In me/100 grams Horizon De T AT P B Ly 0 0 84.6 88.6 96 97.6 95 95 0 A 13.6 8.6 8.5 39.0 9 17 16.6 B 36.5 31.6 26.6 26.3 29.3 26 6.6 The concentration of cation exchange capacity of Oplopanax - Ribes forest type is significantly lower than a l l other associations. The concentration of cation exchange capacity of the 0 horizon i s significantly higher than the A and B horizon. 9. Calcium concentration Concentration of exchangeable calcium in me/100 grams: Horizon De T AT P B Ly 0 0 8.11 11.72 15.43 8.78 4.60 14.99 A. 0.46 0.61 0.25 8.07 0.0 0.79 1.27 B 0.15 0.19 0.0 0.23 0.0 0.77 0.55 The concentration of Ca i n the 0 horizon of Abieteto - Tsugetum i s significantly higher than that of the Thujeto - Blechnetum. The concentration of exchangeable Ca i n P and Ly communities i s significantly higher than i n 0 and B associations. The concentration of Ca i n the 0 horizon i s very highly significantly higher than i n the A and. B horizons. 83 10. Magnesium concentration Concentration of exchangeable Magnesium i n me/100 grams: Horizon De T AT P B Ly 0 0 3.71 3.78 5.98 4.43 3.20 6.28 A 0.57 0.68 0.21 4.63 0.65 0.84 O.96 B 0.52 0.83 0.72 1.81 0.1*7 0.28 0.58 The concentration of exchangeable magnesium i n the P association i s s i g n i f i c a n t l y higher-; than i n the 0 association. The concentration of Mg i n the 0 horizon i s s i g n i f i c a n t l y higher than i n the A and B horizons. 11. Potassium concentration Concentration of exchangeable Potassium i n me/100 grams: Horizon De T AT P B Ly 0 0 2.38 1.46 0.95 0.76 o.54 0.37 A. 0.19 0.11 0.09 0.27 0.08 0.15 0.14 B 0.13 0.13 0.11 0.16 0.11 0.12 0.11 The concentration of exchangeable K i n the 0 horizon of Dry Edaphic communities i s s i g n i f i c a n t l y higher than that of a l l other associations. S i m i l a r l y the Tsugetum heterophyllae i s s i g n i f i c a n t l y higher than the B, 0 , Ly and AT associations. The concentration of exchangeable K steadily decreases with increasing wetness of the association. The concentration of K i n the 0 horizons i s s i g n i f i c a n t l y higher than i n the A and B horizons. 84 12, Phosphorus concentration Concentration of available Phosphorus i n ppm Horizon De T AT P B Ly 0 0 46.0 62.0 31.6 24.0 14.6 10.5 A 16.3 15.0 15.0 9.0 6.6 12.3 13.3 B 47.0 19.6 13.3 20.0 25.6 14.3 11.3 The concentration of P i n the Dry Edaphic and Tsugetum heterophyllae i s significantly higher than that of a l l other associations. P concentration in the 0 horizon of the Tsuga heterophylla association i s significantly higher than i n the 0 horizon of the Tujeto - Blechnetum. Similar to K, the distribution of P concentration decreases with increasing wetness of the site. Poorly drained soils are prone to suffer considerable removal of phosphate by leaching (McGregor, 1953). 13. Saturation of Ca, Mg, and K Saturation of Ca, Mg, and K i n % of total cation exchange capacity: Horizon De T AT P B Ly 0 0 16 19 23 15 9 36 -. A- 9 14 4 24 19 10 17 B 4 14 3 9 3 18 25 There i s no significant difference i n the base saturation of s o i l s . 14. Nitrogen content of humus horizons Nitrogen content of humus horizon i n % of dry vreight: De T AT P B Ly ' 0 1-2 1-3 1*4 1*4 l«3 1*3 0-2 The nitrogen % of the Oplopanax - Ribes forest type i s significantly smaller than a l l other associations except Lysichitum, at the one per cent level. Significant differences are established by Student's test.. (Moroney, 1958, Wilde, 1959). 85 Ratio of total organic matter to total nitrogen content i n humus horizons. 15. Ratio of Total Organic Matter and Nitrogen (OM/N): De T AT B : Ly P : 0 65 61 60 66 1 h3 h6 : 25 The v e r t i c a l line separates the populations which are significantly different from each other at the five percent lev e l . These differences of organic matter/nitrogen ratio indicate the differences i n the intensity of biological activity i n each association. The high biological activity i n the Oplopanax - Ribes forest type i s due to the loose sandy s o i l and the vegetation composition. The Piceeto -Lysichitetum and Thujeto - Polystichetum possess better biological conditions In the top s o i l than the Dry Edaphic and Zonal communities or Tujeto -Blechnetum. Significant differences are summarized i n table 1. There i s one row and one column for each association or association group i n the table. In the square, where the column of an association intersects the row of another association, those chemical properties are indicated i n which those two associations are significantly different. The differences i n the to t a l amounts of chemical properties are indicated i n the upper lefthand section of the table and the differences i n concentrations i n the lower righthand section. The arrows beside the symbols of chemical properties point i n the direction of the association which i s richer i n that chemical property. 86 Table 1. Significant differences i n chemical properties between associations by total amount and concentration De AT B Ly Ca-Mg~ K -Ca-K-K-•3 * - OM J CEC P^ Ca- Ca- C a - 0M-CEC-Ca-O M / N 0 M - 0 M -' * Ca O M / N 0 M -CEC-N -i O M / N Ca-l O M / N -O M - N -CEC- 4 Ca- O M / N Mg~ i O M / N Ca — O M / N O M -CEC-T, O M / N K-P-p-4 O M / N K-P-K-P-O M / N O M - * . C E C ^ O M / N K — P^ N -K-P* K — P-O M / N K — P-K-P -O M / N O M - 4 , CEC — O M / N K-P-N - 1 Ly B AT De Concentration Legend: Ca - Calcium Mg - Magnesium K - Potassium OM - Organic matter P - Phosphorus CEC - Cation exchange capacity N - Nitrogen OM/N- Organic matter/Nitrogen ratio 87 CHAPTER VI. PROPOSED TRENDS IN SOIL SUCCESSION The climate, water-economy and vegetation are the main forces a l t e r i n g the parent material to form s o i l at any given place i n the Coastal Western Hemlock Zone. The role of climate i s both direct and i n d i r e c t . I t s i n d i r e c t action l i e s i n determining the kind of vegetation. I t s d i r e c t effect i s the weathering and transportation of soluble material i n response to gravity. The water-economy controls the vegetation. On the other hand, vegetation also influences the water-economy by the accumulation of organic matter or by Sphagnum bog formation. The main effect of vegetation on s o i l s i s the transportation of plant nutrient elements to the surface of the s o i l through the biogeochemical cycle. This action i s demonstrated by the translocation of Ca and Mg from the B horizon to the 0 horizon i n the course of s o i l development. (See figures 22, 23) The greater loss of bases from the B horizon i s also due to the behaviour of hydrogen ions i n s o i l s of different reactions. As was pointed out by Bear (1955), "The effici e n c y of H+ i n replacing plant nutrients may decrease with f a l l i n g pH. The higher the neu t r a l i z a t i o n , the stronger the replacing power of H+". The combined effect of these three forces contribute to the processes of podzolization, gleyzation or peat formation, depending on the nature and topographic position of parent material. There are s i x main groups of substrata on which s o i l development may s t a r t : 1. Well drained g l a c i a l d r i f t , 2 . A l l u v i a l deposits, 3. Bedrock, - I 4 . Poorly drained g l a c i a l d r i f t , 88 D i s t r i b u t i o n o f Exchangeable C a l c i u m and Magnesium i n D i f f e r e n t S o i l Subgroups i n the 0 and B H o r i z o n s F i g . 22 of t o t a l Ca R e g o s o l P o d z o l i c M i n i m a l O r t e r d e Brown P o d z o l Humic Po d z o l 89 $. Periodically flooded oxbow lakes, 6. Other lakes. The development of s o i l on the above substrata w i l l be discussed separately. 1. Well drained glacial d r i f t Fresh, well drained glacial d r i f t i s colonized by alder. In this stage the s o i l i s an acid Regosol. The decomposed remains of the vegetation slowly build up an Ah horizon while weathering action transforms the parent material into a B horizon. The s o i l i s called Modal Acid Dark Brown at this stage of succession. The increasing proportion of conifer species i n the stand promotes the formation of raw humus over the Ah layer. Through the effect of raw humus (increased acidity of s o i l solution), the i n i t i a l signs of podzolization appear i n the pr o f i l e . This s o i l i s called Orthic Brown Podzolic. Further development of the s o i l follows continued podzolization. Minimal Podzol, Orterde Podzol, and Orterde Humic Podzol follow each other as the accumulation of sequioxides and organic matter increases i n the B horizon. When there are no more sesquioxides to be leached out from the top s o i l , organic matter alone accumulates in the B horizon. This i s the most advanced stage of s o i l development i n the Coastal Western Hemlock Zone, and i s called Humus Podzol. Depending on the water-economy and vegetation, the period of time for any stage of this development w i l l vary. The soils of the Coastal Western Hemlock Zone are relatively young and most of them have not developed beyond the stage of Minimal Podzol. Soils developed from gla c i a l outwash are usually i n a less advanced stage of development. This i s due to their finer texture and topographic position. "90 Shallow g l a c i a l t i l l r egosols may develop i n t o Concretionery Brown s o i l s i f subjected to p e r i o d i c w e t t i n g and d r y i n g . These s o i l s w i l l develop i n t o Orterde Podzols through degradation. From t h i s p o i n t development f o l l o w s the p a t t e r n described i n the f i r s t paragraph. 2. A l l u v i a l Deposits S o i l development on a l l u v i a l d eposits f o l l o w s the same sequences as on w e l l drained g l a c i a l d r i f t . Concretionary Brown s o i l s do not develop from A l l u v i a l Regosols. T h e i r l o c a t i o n i n the v a l l e y bottom does not favour the p e r i o d i c w e t t i n g and d r y i n g necessary f o r the formation of Concretionary Brown s o i l s , and so these are absent. 3. Bedrock S o i l development on exposed bedrock s t a r t s w i t h the a c t i v i t y of a moss and/or l i c h e n v e g e t a t i o n . The f i r s t product of t h i s v e g e t a t i o n i s a t h i n A c i d Legosol. F u r t h e r accumulation of organic m a t e r i a l creates favourable c o n d i t i o n s f o r establishment of shrubs and t r e e s e e d l i n g s . Weathering products very s l o w l y accumulate under the p r o t e c t i o n of the v e g e t a t i o n and organic l a y e r . The h i g h p r e c i p i t a t i o n causes l e a c h i n g of t h i s mineral l a y e r as q u i c k l y as i t i s formed. Therefore, i n s t e a d of the development of a B or A n l a y e r an A e l a y e r i s formed. The s o i l i s an E l u v i a t e d A c i d Legosol i n t h i s stage of development. This i s the most advanced stage of s o i l development on rock-outcrops i n the C o a s t a l Western Hemlock Zone. 4» P o o r l y drained g l a c i a l d r i f t On p o o r l y drained g l a c i a l d r i f t the Rego-Gley s o i l i s the s t a r t i n g p o i n t . These s o i l s are c o l o n i z e d by L y s i c h i t u m or by Oplopanax - Adiantum communities depending on the nature of seepage. By the accumulation of an organic h o r i z o n , the Rego-Gley develops i n t o O r t h i c Gley then S p r i n g l i n e P i t c h y Anmoor. I f the impervious l a y e r i s lowered g r a d u a l l y by weathering 91 processes, the top of the mineral horizon w i l l be drained and the s o i l s become Podzolic Gleysol. I f the drained part of the s o i l becomes increasingly deeper, the s o i l w i l l develop towards Humus Podzol through the steps of Gleyed Podzol, and Orterde Humic Podzol. 5. Oxbow lakes S o i l development i n the oxbow lakes starts with the underwater Gyttja s o i l . The mutual action of organic accumulation and fine a l l u v i a l deposits soon f i l l s up the basin of the shallow oxbow lake. The f i r s t semi-t e r r e s t r i a l s o i l i s the Orthic Dark Grey Gleysolic. The i n s u f f i c i e n t number of observations does not show c l e a r l y the further development of t h i s peculiar habitat. 6. Other lakes The development of lakes without periodic flooding d i f f e r s sharply from that of the oxbow lakes. Here cumulose deposits alone f i l l up the lake basin. In the deep waters, the zoogenous "dy" s o i l marks the star t i n g point of s o i l succession. When the water.is shallow enough for the establishment of Nuphar and Menyanthes communities the Dy develops into Gyttja s o i l . When the accumulated organic material reaches the surface of the water, the peat-forming Sphagnum mosses establish on the Gyttja. The s o i l develops into Sphagnum peat. I f the Sphagnum peat rises higher than the permanent water table i t w i l l decompose at the surface giving place to the Pitchy Peat Anmoor. There has not been found any evidence showing the further development of th i s s o i l . The f u l l scheme of s o i l succession i s demonstrated i n figure 2k* The s o l i d l i n e s i n the scheme indicate successional trends that a c t u a l l y can be followed i n nature. Further possible developments are indicated by a broken l i n e . 92 Figure 2k Figure 2h. Trends of s o i l succession T R E N D S O F S O I L S U C C E S S I O N Well drained glacial drill Glacial Drift Regosol Concretionary Brown Alluvial deposit Alluvial Regosol Modal Acid Dark Brown Forest <-0 c -I DO Degraded Concretionary Brown Bedrock - Acid Legosol' Orthic Brown Podzolic Eiuviated , 'Acid Legosol Minimal Podzol ~y Orterde Podzol Orterde Humic Podzol Humus Podzol _ P itchy y peat „-Anmoor Peat- Gyttja • Dy- Lak e Orterde Humic Podzol l Gleyed Podzol 1 I I ' Podzolic Gleysol — — Springline Pitchy Anmoor Orthic Gleysol -Rego Gleysol Poorly drolned glacial drift Orthic Gleysol Orthic Dark Gray Gleysolic 1 GylIJa 1 Oxbow lakes Oo 9k CONCLUSION 1. The soils of the Coastal Western Hemlock Zone are very acid. The pH ranges from 2.9 to k.9 in the 0 horizons, 3.5 to 4.6 in A e horizons, 3.7 to 5.4 in Ah horizon and 4.0 to 6.0 in B horizons. 2. The forest associations and forest types are separated from each other by edaphic differences besides their floristical structure. Differences in soil morphology, in moisture-regime, in soil depth and in chemical properties play roles in the delineation of forest types. Organic matter/nitrogen ratio, the concentration of potassium and phosphorus seems to be the most important chemical properties differ-entiating associations from each other. 3. The lesser vegetation appears to be more sensitive to changes in ecological factors than the commercial tree species of the Coastal Western Hemlock Zone.- Significant differences in soil depth moisture-regime and in chemical properties that are not indicated by the composition of tree species are clearly shown by the changes in the lesser vegetation. 4. In the course of podzolization the accumulation of calcium, magnesium and potassium does not take place in the B horizon of the soils. These elements apparently accumulate in the humus horizon on the top of the soil profile, or are entirely removed from the soil by seepage water. This phenomenon is due to the great amount of precipitation and to impervious layers that underly the great majority of soils. The high precipitation promotes the leaching and lateral transportion of these elements over the impervious layer. 95 REFERENCES Armstrong, J.E., 1956. S u r f i c i a l geology of Vancouver area, B r i t i s h Columbia. Geological Survey of Canada, Paper 55-40. Bear, F.E., 1955* Chemistry of the s o i l . Reinhold Publishing Corporation, 430 Park Avenue, New York. Canada Dept. of Mines and Resources, Geological Survey of Canada, 1948. Geological map of B r i t i s h Columbia 932A, scale one inch = 20 miles. Canadian S o i l Survey Committee, 1958. Outline for the c l a s s i f i c a t i o n of Canadian s o i l s as of November 1958. Mimeographed. Chapman, J.D., D.B. Turner, A.L. Farley, and R.I. Ruggles, 1956. B r i t i s h Columbia atlas of resources. B.C. Natural Resources Conference, 1956. Vancouver, B.C. E i s , S., 1961. Data f o r Ph.D. Thesis, Dept. of Biology and Botany, University of B r i t i s h Columbia, Vancouver, B.C. Forest S o i l Committee of the Douglas-fir Region, 1957. An introduction to the forest s o i l s of the Douglas-fir region of the P a c i f i c Northwest. Anderson H a l l , University of Washington, Seattle. Gessel, S.P. and W. Lloyd, 1950. " Effect of some physical s o i l properties on Douglas-fir s i t e quality. Journ. of Forestry 48:406-410. H i l l , W.W., A. Arnst and R.M. Bond, 1948. Method of correlating s o i l s with Douglas-fir s i t e quality. Journ. of Forestry 46:11:835-841. K e l l y , C.C. and R.H. Spilsbury, 1939- S o i l survey of the Lower Fraser Valley. Dominion of Canada, Dept. of Agriculture, Publ. 650. Keser, N., i960. A study of s o i l s as related to s i t e index of Douglas-fir at Haney, B r i t i s h Columbia. Master of Art Thesis, Dept. of Forestry, University of B r i t i s h Columbia, Vancouver, B.C. Krajina, V.J., 1933. Die Pflanzengesellschaften des Mlynica - Tales i n den Vysoke Tatry (Hohe Tatra). I : Bot..Zentralbl. Beih. 50.II: I b i d . 51. , 1959. Bioclimatic zones i n B r i t i s h Columbia. The University of B r i t i s h Columbia, Botanical Series No. 1. , and R.H. Spilsbury, 1953. 3ome ecological c l a s s i f i c a t i o n of B r i t i s h Columbia: Forest associations on east coast of Vancouver Island. An extract i n the Forestry Handbook f o r B r i t i s h Columbia, 1st ed. (1953), published by the Forest Club, University of B r i t i s h Columbia, Vancouver, B.C. Kubiena, W.L., 1953. -Soils of Europe. Thomas Murby and Company, London, England. 96 Lutz, H.J. and R.F. Chandler, 1946. Forest s o i l s . Eighth printing i n 1959. John Wiley and Sons Inc., New York. McGregor, A.J., 1953. Phosphate movement and natural drainage. The Journ. of S o i l Science. 4:86-97. McMinn, R.G., 1957. Water relations i n the Douglas-fir region on Vancouver Island. Ph.D. Thesis, Dept. of Biology and Botany, University of Bri t i s h Columbia, Vancouver, B.C. Me r r i l l , G.P., 1°06. Rock, rock-weathering and soils. The MacMillan Book Company, New York and London. Meyer, B.S. and D.B. Anderson, 1952. Plant physiology, 2nd ed. D. van Norstrand Company, Inc., Toronto, New York and London. Moroney, N.J., 1958. Facts from figures. Penguine books. Harmondsworth, Middlesex. Mueller-Dombois, D., 1959. The Douglas-fir .forest associations on Vancouver Island i n their i n i t i a l stages of secondary succession. Ph.D. Thesis, Dept. of Biology and Botany, University of British Columbia, Vancouver, B.C. Orloci, L., 1961. Forest Types of the Coastal Western Hemlock Zone. Master of Science Thesis, Dept. of Biology and Botany, University of B r i t i s h Columbia, Vancouver, B.C. Rowles, C.A., L. Farstad and D.G. Laird, 1956. S o i l resources of British Columbia. 9th Br i t i s h Columbia Natural Resources Conference, February 22-24, 1956. Snedecore, G.W., 1957. S t a t i s t i c a l methods. The Iowa Stage College Press. Ames, Iowa. Tansley, A.G., 1935« The use and abuse of vegetational concepts and terms. Ecology 16 : 284-307. Tarrant, R.F., 1949. Douglas-fir site quality and s o i l f e r t i l i t y . Journal of Forestry 47:716-720. U.S. Dept. of Agriculture, S o i l Survey Staff, 1951. -Soil survey manual. United States Dept. Of Agriculture. Wilde, S.A., 1946. Forest soils and forest growth. Published by the Chronica Botanica Company, Waltham, Mass., U.S.A. , 1959. -Analysis of soils and plants for foresters and horticulturist. J.W. Edwards, Publisher, Inc., Ann Arbor, Michigan. A P P E N D I X SHORT DESCRIPTION OF THE CHEMICALLY ANALYSED SOIL PROFILE Piceeto - Oplopanacetum Plot No. 79 Alluvial Regosol Horizon Ah C Ahp C Depth in. 0-5 5-19 19-28 28-43 Color (dry) 2.5 Y 5/2* 5 Y 6/1 2.5 Y 6/2 5 Y 6/1 Descripb ion Dark brown weak crumby sandy loam. Light brown loose sand. Brown weak blocky loamy sand. Light grayish brown loose sand. Coarse sand under water table. pH OM CEC Ca Mg K BS N P % me/100 grams % % ppm Ah 4.8 4.90 23.62 0.769 1.186 0.164 8.97 0.176 16.1 C 5.2 0.26 3.47 0.210 0.279 0.074 16.74 — 8.5 A-hp 5.3 1.77 8.57 0.322 0.254 0.086 7.72 - 13.0 C 5.2 0.33 2.56 0.442 0.191 0.077 27.73 - 11.0 * Munsell notation of color. Plot No. 80 Alluvial Regosol Horizon C Av D hp Depth in. 0-1* ii-30 30 + Color (dry) 5 Y 6/1 5 Y 5/1 Ground water 40 in. Description Brownish gray loose sand. Dark brownish gray loose loamy sand. Stony gravel. C Ahp (Footnote) pH 5.3 5.0 OM % 0.40 1.94 CEC 3.13 8.85 Ca Mg_ me/100 grams ~ 0.601 1.265 0.493 0.737 K 0.103 0.136 BS % 38.24 24.15 N % P ppm 5.0 11.0 pH - soil reaction; OM - total organic matter content; CEC - cation exchange capacity; Ca, Mg, K - exchangeable calcium, magnesium and potassium; BS - saturation of calcium, magnesium and potassium. Plot No. 82 Alluvial Regosol Horizon Depth i n . Color (dry) Description A^ 0—U io TR 4/1 Dark brown cnimby structured loamy sand, C 4-60 2,5 Y 6/2 Light brown loose sand. Ground water 6 feet. Ah C PH 01 CEC Ca Mg K BS N P % me/100 grams % % ppm 4.8 3*9 16.69 1.780 1.196 O.I60 18.78 0.169 13.0 5.1 1.5 7.91 0.632 0.722 0.116 18.58 - 15 .7 Alneto - Ribisetum bracteosi Plot No. 76 Horizon Ah C A D hpg Orthic Dark Gray Gleysolic Depth i n . 0-5 5-16 16-25 2 5 * Color (dry) 10 YR 5/2 2,5 YR 6/2 10 YR 4/1 S o i l developed on ground water 25 inches. Description Dark brown weak crumby sandy loam. Light gray weak blocky sand. Dark gray structureless loamy sand. Gravel. flood plain, parent material a l l u v i a l sand j A h C Ahpg pH OM CEC Ca Mg K BS % me/100 grams % 4 . 6 6.9O 17.34 0.794 0.839 0.151 10.28 4 . 8 1.97 6.47 0.769 0.281 0.118 18.05 5 . 0 12 .00 25.68 3.268 1.094 0.213 17 .81 N % 0.169 P ppm 37.0 11.6 21.7 Thujeto - Polystichetum Plot Mo. 22/a Minimal Podzol Horizon Depth i n . Color (dry) Description L 8-7 Undecomposed l i t t e r of Alnus and Polystichum. 0 7-0 5 Y 2/2 Well decomposed and partly decomposed organic matter; high proportion of decaying wood; dark reddish gray. A e 0~! 2,5 Y 6/2 Light gray, weak crumby structured sand. B nj §-17 10 YR 6/5 Brown, mottled reddish brown and dark brown; coarse loamy sand; weak structure; gray concretions. B njb 17-24 10 YR 6/4 Light brown, mottled yellow and reddish brown; slightly compacted stony loamy sand; many gray and brown concretions. Gr 24 + Light gray, mottled reddish; firmly cemented loamy sand. Soi l developed on gentle slope; parent material glacial t i l l ; stoniness 40$. pH OM CEC Ca Mg K BS N P % me/100 grams % % ppm L 0 A e B h j B chjb 4.8 3.7 4.2 5.3 5.6 5.9 82.9 7.24 7.16 7.16 0.85 93.52 17.34 24.62 21.06 5.95 8.228 0.696 t 0.012 t 4.976 0.643 1.852 0.833 0.554 0.116 0.164 0.105 0.075 14.56 8.39 8.18 4.51 10.57 1.94 34.5 6.1 9.5 26.2 24.8 M o d a l A c i d D a r k B r o w n D e p t h i n » C o l o r ( d r y ) D e s c r i p t i o n l - j r Undecomposed l i t t e r o f c o n i f e r s a n d P o l y s t i c h u m . •g-O 10 YR 3 /1 B l a c k , decomposed o r g a n i c m a t t e r ; f r i a b l e b l o c k y . 0-3!" 10 YR 4 / l B r o w n , m o t t l e d g r a y ; f r i a b l e g r a n u l a r s t r u c t u r e d l o a m w i t h s o f t b r o w n c o n c r e t i o n s . 3 i - l 6 10 YR 6 /3 R e d d i s h b r o w n , b l o c k y s t r u c t u r e d s a n d . 16-24 10 YR 6 /3 B r o w n , m o t t l e d g r a y i s h and r e d d i s h ; f r i a b l e b l o c k y f i n e s a n d . 2lfrk7 5 Y 7-2 B r o w n i s h r e d d i s h g r a y ; h a r d , cemented u p p e r p o r t i o n , s o f t e r i n t h e l o w e r p a r t ; c o m p a c t e d s a n d . 47+ S t r a t i f i e d f i n e a n d c o a r s e s a n d . S o i l d e v e l o p e d o n v a l l e y b o t t o m , p a r e n t m a t e r i a l g l a c i a l o u t w a s h ; s e e p a g e a t 50 i n c h e s . pH OM CEC Ca Mg K _ B S N P % me /100 grams '. % % ppm 4 . 6 4 . 1 66.0 97.24 13.471 2.569 1.047 17.57 1.48 16.1 4 . 6 ' 22.4 61.75 15.444 8.630 0.427 39.67 - 12 .5 5.2 5 .26 27.74 t 0.598 0.114 2.56 - 1.0 5 .6 1.68 18.70 t 0 .554 0,078 3.37 - 5 .0 5 . 5 1.18 11.80 0.320 0.526 0.085 7.88 - 1 2 . 5 Plot No. 110 Modal Acid Dark Brown Horizon Depth i n . Color (dry) Description L ijf-O Dry remains of conifers and lesser vegetation. Aft 0-5 5 Y 3/1 Grayish black, structureless loamy sand. Bf 5-11 10 YR 5/3 Reddish brown, mottled black; friable blocky structured sand with few concretions. Bf j 11-44 5 Y 6/3 Grayish, reddish brown, fr i a b l e blocky sand. Bh 44-46 $ YR 3/4 Blackish dark brown, friable blocky loam C r 46 + Light brownish gray, compacted and cemented glacial t i l l . S o i l developed on a U shaped valley bottom; parent material gl a c i a l t i l l ; stoniness 35$• PH OM CEC Ca Mg K BS N P % me/100 grams % % ppm Ah 4.15 24.4 69.26 2.787 1.623 0.1;08 6.95 0.79 11.2 Bf 5.35 1.3*4 25.148 t 0.846 0.919 6.92 - 15.0 B f J 5.60 3.28 16.23 0 0 0.072 O.I4I4 - 5.5 5.30 32.8 60.82 t 0.437 0.157 0.97 - 14.0 H O Orthic Brown Podzolic Depth i n . Color (dry) Description 3-0 10 TR 2/1 Dark gray, black brown; friable crumby and blocky structured decomposed organic matter. In small patches only. 0-5 10 YR 6/4 Reddish brown, friable blocky structured clay with fe?f concretions. 5_55 2,5 Y 7/2 Light brown friable blocks mixed with undecomposed varved clay. 55+ Grayish brown, hard varved clay. Soil developed on steep slope between two terraces; parent material varved clay; seepage at 58 inches. PH OM CEC Ca Mg K BS N P % me/100 grams % % ppm 3.7 79.0 102.56 4.645 5.763 0.656 10.78 1.6 22.5 5.3 Ih.k 27.53 0.384 2.971 0.223 12.98 - 12.8 5.4 2.95 15.82 0.320 0.263 0.154 4.65 - 22.00 Thujeto - Blechnetum Plot No. 91 Minimal Podzol Located on terrace; r e l i e f simple; parent material varved s i l t . Horizon Depth i n . Color (dry) Description L 7^ 6 Undecomposed conifer l i t t e r . 0 6-0 10 YR 2/2 Reddish black decomposed organic matter; structure weak blocky; irregular; moist. A e 10 YR 6/1 Well defined patches of gray sand. Bj 0-17 10 YR 7/4 Yellowish brown, mottled reddish; firm blocky sandy loam; very few concretions; diffuse irregular boundaries; moist. Bf 17-29 10 YR 6/4 Pinkish red layer with diffuse boundaries; clayey loam; compact; plastic. Bj 29-42 -5 Y 7/3 Brownish gray, mottled red; clayey loam; compact plastic; boundary diffuse; transition to C. C 42* 5 Y 7/1 Brovmish gray, loamy sand; compact, hard; almost impervious. L 0 A e B J Bf pH OM CEC Ca Mg K BS N p % me/100 grams % % ppm 4.1 18.5 3.5 83.3 94.48. 0.995 2.933 0.561 4.75 1.62 3.8 3.39 8.62 t 0.460 0.074 6.20 - 6.1 5.0 2.6 17.67 t 0.393 O.069 2.61 - 24.6 5.2 5.21 30.10 0 0.262 0.078 1.12 - 2.5 5.2 4.34 26.09 t O.67I 0.137 3.09 - 11.3 5.2 1.04 8.42 t I.632 0.108 29.24 - 15.0 Plot Mo. 101 Orterde Humic Podzol Horizon L 0 Ae Bfhj Bq C L 0 Ae Bq Depth in. Color (dry) Description Undecomposed litter, in patches only. 20-0 2.5 YR 2/2 Reddish black decomposed organic matter mixed with decaying wood; moist. 0-5 5 Y 6/1 Sharply bordered irregular layer of gray sand; friable, weak blocky; moist. 2-19 10 Y R 4/4 Reddish brown, mottled black; blocky textured friable sand; lower boundary diffused; the lower portion saturated by ground water. 10-28 10 YR 7/4 Grayish brown cemented layer of coarse sand; compact hard; slowly pervious; boundaries diffuse; seepage above. 28 • 5 Y 6/3 Brownish gray gravely coarse sand; loose. Located on terrace at an elevation of 690 feet; parent material alluvial sand; topography flat. PH 0M CEC Ca Mg K BS N P % me/100 grams % % ppm 4.3 3.8 3.9 5.2 5.6 95.7 1.58 6.55 1.44 95.44 5.02 34.42 8.94 4.778 3.834 t 0.158 0 0.379 0 0.379 0.397 0.067 0.078 0.066 9.43 4.45 1.32 4.97 1.37 10.0 0 11.0 2.5 Plot No. 49 Orterde Humic Podzol Located on mountain side with simple concave r e l i e f ; parent material glacial t i l l ; stoniness 30%', bedrock i s the impervious layer. Horizon Depth i n . Color (dry) Description L 12-10 Conifer l i t t e r with white and yellow mycelium. 0 10-0 5 YR 2/1 Black to reddish brown OM mixed with decaying vrood; friable, moist. Ae]_ 0-3 5 Y 6/l Gray, friable granular structured s i l t y sand; upper boundary sharp, lower diffuse. A e2 3-8 2.5 YR 5/2 Dark gray, mottled brown; loamy sand with blocky structure; sharp boundary to B. Bh 8-12 10 YR 5/3 Dark reddish brown, mottled brown and red; sand with angular blocky structure; moist; few concretions. Bhg 12-14 5 Y 6/3 Grayish, mottled brown and yellow; compacted sandy loam; the layer of seepage. pH 0M GEO Ca Mg K__ BS N P % . me/100 grams . . % $ ppm L 4.1 0 3.6 79.4 96.29 8.026 2.852 0.673 11.99 1.02 16.0 A e l 4.0 3.29 3.19 t 1.440 0.113 48.68 - 14.5 A e 2 4.3 3.29 13.97 0 0 0.082 0.59 - 44.0 B h i 4.6 8.86 24.13 0 0.203 0.105 1.27 - 41.0 By*. 4.9 7.84 21.06 0 0.379 0.107 2.30 - 13.5 ox Piceeto - Lysichitetum Plot No. 43 Pitchy Peat Anmoor Horizon On 0 2 0 3 Depth i n . Color (dry) 0-12 10 YR 2/2 12-60 10 YR 2/2 60 10 YR 3/1 S o i l developed in a depression of up to the surface. Description Amorphous black muck. Peaty black muck. Undecomposed peat, a valley bottom; ground water from one foot Ol 02 PH 4.5 4.8 4.6 0M-% 82.3 83.6 83.6 CEC 109.590 96.290 89.370 Ca Mj me/100 grams K 30.526 20.572 26.544 6.490 5.536 5.637 0.238 0.076 0.136 BS % 33.99 27.19 36.16 N % 1.52 P ppm 11.60 3.40 1.00 Plot No. 95 Orthic Gleysol Horizon Depth i n . Color (dry) Ol 02 B hg Ol 02 Bhg C 0-7 7-0 0-11 11 10 YR 3/1 10 YR 3/2 10 YR 3/2 5 Y 4/1 Description Black, mucky organic matter. Light brown undecomposed peat. Dark brown compacted loamy sand. Grayish brown sand; structureless. S o i l developed on a f l a t terrace; parent material a l l u v i a l sand; seepage at 10 inches from the surface; strong reduction i n B h. PH OM GEC Ca Mg K BS N P 4.5 4.9 4.7 5.1 % 66.4 76.16 16.70 3.15 65.960 81.500 60.43 11.30 me/100 grams 14.466 6.081 13.803 5.637 2.307 0.905 1.986 0.567 0.890 0.551 0.101 0.078 % 32.50 24.55 5.47 23.28 % 1.83 ppm 9.2 5.0 21.4 56.0 Abieteto - Tsugetum heterophyllae Plot No. 18 Orterde Humic Podzol Soil developed oma mountain slope at the altitude of 1730 f t . Slope i s exposed to SW. Parent material i s glacial t i l l with 25$ stoniness. Horizon Depth i n . Color (dry) Field Description L 6|-6 Undecomposed conifer l i t t e r . 0 6-0 10 IR 2/2 Partly decomposed and decomposed organic matter mixed with decaying wood. A@ 0-2 10 YR 6/l Well developed l i g h t gray podzol layer with sharp boundaries on both sides. Texture i s sandy loam, structure single grain. 2-20 10 YR 4/3 Rusty brown, mottled by very bright stripes of gray and dark brown. Texture i s sandy loam, structure blocky. 20 • Light brown-gray compacted sand. pH OM CEC Ca Mg K_ BS N P % me/100 grams '. % % ppm 0 3.7 88.0 87.61; 13.604 3.922 1.224 21.39 1.37 35.0 A 3.9 0.13 4.31 0 0 0.095 2.2 - 3.0 Bhi 4.5 9.47 15.18 t 0.496 0.137 4.16 - 25.5 H O CO Plot No. 32 Orterde Humic Podzol Horizon Depth i n . Color (dry) Description L 7ip-7 Undecomposed l i t t e r of mostly Tsuga and Abies. 0 7-0 10 YR 2/l Very dark reddish brown; mostly amorphous decaying wood; smaller amount of friable crumby humus. A e 0-2 10 YR 6/1 Light gray, friable granular sand; irregular sharply bordered. Bfh 2-15 10 YR 5/6 Dark rusty brown, mottled dark brown and reddish brown; slightly compacted blocky structured clayey loam; some concretions. D 15 + Light brown compacted stony sand; slowly pervious. S o i l developed on gentle lower slope; parent material glacial outwash. PH OM CEC Ca Mg K BS N P % me/100 grams % % ppm L U.5 0 3.9 87.2 100.UU 17.780 9.17U 0.UU2 21.27 1.57 35.2 A e U.o 1.2U 15.UU 0.501 0.U21 0.097 6.59 - t B f h 5.o 12.8 U0.10 t 1.U88 0.072 3.89 - l l . o H O Plot No. 1 1 8 Orthic Brown Podzolic S o i l pit located on slightly concave h i l l s i d e ; parent material i s local outwash overlying glacial t i l l ; stoniness $%-, seepage at 3 4 " . Horizon Depth i n . Color (dry) L 1 | - 1 0 1 - 0 1 0 YR 4 / 2 Bfj O-lii 1 0 YR 7 / 4 B f h J 1 4 - 3 3 1 0 YR 5 / 6 B g 3 3 - 5 4 1 0 YR 5 / 6 D 5 4 • Description Mostly undecomposed Thuja twigs. Friable, black decomposed organic matter; sharp boundary with the mineral horizon. Reddish brown, mottled yellow; friable blocky loamy sand; distinct lower boundary. Dark reddish brown, mottled yellow; friable blocky sand; distinct lower boundary; few concretions. Light grayish brown, mottled reddish; sticky clayey sandy loam. Cemented t i l l . L 0 PH OM CEC Ca Mg K % me/100 grams 4 . 6 4 . 4 5 . 9 5 . 5 6 . 1 6 5 . 9 3 . 9 4 6 . 9 0 . 1 5 1 1 2 . 5 7 1 5 . 7 9 2 2 . 8 4 6 . 6 6 1 6 . 4 5 7 0 . 0 4 5 " t t 3 . 6 6 0 0 . 1 0 0 0 . 9 0 4 0 . 5 1 0 0 . 7 5 5 0 . 0 9 2 0 . 1 1 8 0 . 0 8 2 BS N P % % Ppm 1 8 . 5 4 1 . 5 5 2 1 . 0 1 . 5 - 6 . 2 B ^ i .5 . 9 .  4 . 4 7 - 2.0 B g .1 0.1* - 6 t 10  8.88 - 7.0 o H Plot No. 108 Humus Podzol Pit 1 S o i l developed on concave h i l l s i d e ; parent material g l a c i a l t i l l ; stoniness 20%; seepage i s 30 inches from the surface. Horizon Depth i n . Color (dry) Description L 16-lU Wet l i t t e r of conifers. 0 lU-0 5' YR 2/1 Reddish black compact layer of decomposed organic matter. Bh 0-2 5 YR 3/I4 Dark gray, firm blocky loam. Bhg 2-19 10 YR 5/U Dark brown, mottled black; firm blocky loam; developed under seepage influence. C r 1 9 • Light gray compacted, cemented sandy loam; impervious. PH OM CEC Ca Mg K BS N P % me/100 grams % el /» ppm L U.5-0 U.3 Ui.U 8U.87 8.096 U.988 0.925 16.5 - 11.0 Bh 5.15 2U.3 5U.56 t 0.U80 0.180 1.2 - 13.0 Bhg 5.5 13.35 U8.UU 0 0.175 0.131 0.63 - 7.5 Plot No. 108 Minimal Podzol Pit 2 S o i l developed on convex slope; parent material glacial t i l l ; stoniness 80%, Horizon Depth i n . Color (dry) Description L 7-6 Undecomposed l i t t e r with yellow and white mycelia, 0 6-0 5 YR 2/1 Black amorphous decomposed organic matter. A e j 0-1 Only i n patches; light gray sand. Bj> 1-50 10 YR 5/6 Reddish brown, very irregular layer; firm blocky loamy sand with concretions. Bhj 1-58 10 YR 5/4 Brown, very irregular layer of loose loamy sand. C r 58 • Light gray, cemented, hard, impervious. pH OM CEC Ca Mg K__ BS N P % me/100 grams % % ppm L 4.3 0 3.9 80.0 100.44 14.931 4.861 1.200 20.90 1.6 24.7 A e j - " B f 5.9 3.7 20.25 t 0.058 0.115 0.85 - l . o B h i 5.5 9.3 24.61 t 0.175 0.137 1.26 - 3.6 Tsugetum heterophyllae plagiothecietosum Plot No. 46 Minimal Podzol Parent material i s coarse glacial d r i f t with % stones. Elevation i s 1010'. Horizon Depth i n . Color (dry) Description L 1-3/4 Undecomposed l i t t e r of conifers with white and yellow mycelium. •0 3/4-0 5 YR 2/2 Reddish black layer of decomposed organic matter. It contains yellow mycelium. A e 0-g- 10 YR 6/1 Thin but regular layer of gray sand; i t has a very weak granular structure. B mj 1r"l6 10 YR 6/3 Light brown, mottled gray and reddish brown; structure i s very weak granular, texture sandy loam; contains a few rocks and numerous brown concretions. Bj 16-27 5 YR 6/2 Grayish brown, mottled reddish brown and dark brown; loose sand with scattered subangular blocks. 'm 27-30 5 Y 6/1 Gray, mottled reddish brown; compacted sand; lower lim i t of root penetration. C 30* ^ I 7/1 Gray slowly permeable compacted sand. pH 0M CEC Ca Mg K__ BS N P % me/100 grams % $ ppm L 4.54 0 4.0 70.0 86.26 9.820 4.986 1.162 18.31 1.09 71.0 A U.2 2.5 8.52 0.543 0.811 0.103 17.1 - 17.5 B®, 2.3 9.20 t 0.787 0.108 9.72 - 32.7 B-° 5.4 0.95 2.58 t 0.554 0.095 25.15 - 1 9 - 9 4 . 5.5 0.52 2.87 t 0.802 0.068 30.31 - 23.0 Plot No. .107 Orterde Humic Podzol Horizon Depth i n . Color (dry) Description L 5-4 Undecomposed l i t t e r . 0 li—0 10 R 2/1 Black, friable, decomposed organic material. A e 0-5 10 YR 6/1 Irregular layer of gray sandy loam; friable weak blocky. Bf 5 YR 4/6 Pinkish red patches of loam up to 2" thick; structureless. Bfhj 2-21 10 YR 6/3 Reddish brown loamy;: sand j friable weak blocky. Bfh 21-31 10 YR 7/4 Dark reddish brown; firm blocky loamy sand. Bf 31-55 10 YR 6/3 Rusty brown; hard blocky; loamy sand; wet. So i l pit located on h i l l s i d e ; parent material glacial t i l l ; 60$ stoniness; seepage at 43 inches. BS N P % % ppm L 0 A e Bf B f h j Bfh B f PH OM CEC Ca Mg K % me/100 grams 4.4 1.258 4.1 72.6 88.47 10.352 5.028 4.2 1.51 6.47 t 0.849 0.100 5.1 3.3 16.50 0.557 1.047 0.160 5.3 7.21 18.75 t 1.021 - 0.111 5.2 15.7 45.74 t 0.554 0.144 5.5 6.17 34.85 0.013 0.162 0.078 18.8 1.2 43.5 14.66 - 9.5 IO.69 - 37.0 6.03 - 13.5 1.52 - 9.7 0.72 - 2.5 H Plot No. kk Pit 1 Soil pit located on the lower third of a h i l l s i d e ; parent material glacial t i l l ; stoniness k0%; seepage i s active i n the greater part of the year. Horizon Depth i n . Color (dry) Description L 1-3/4 Undecomposed l i t t e r with %»mite and yellow mycelium. 0 3/4-0 10 YR 2/2 Reddish black decomposed organic matter with yellow and white mycelium. A e 0--| 10 YR 6/l An irregular and broken layer of light gray sand. B b j l ir-13 10 YR 5/6 Light brown, loose sandy loam; with many brown concretions. B,.? 13-28 10 YR 7/4 Gray mottled ligh t brown; loose sandy loam with J many brown and gray concretions. 28-30 10 YR 6/3 Light brown, loose sandy loam; with gray concretions; penetrated by many roots developed under seepage condition. C r 30+ 5 Y 6/2 Olive gray cemented sandy loam, very slowly permeable. pH 0M CEC Ca Mg K__ BS N P % me/100 grams % % ppm 1 4.5 0 4.1 75.11 92.41 14.997 1.320 1.972 19.8 1.23 72.0 A p 4.0 4.2 12.5 0.689 0.391 0.129 9.67 - 19.5 B h H 1 5.6 4.28 18.16 0.019 0.156 0.108 1.55 - 9.9 Bbi? 5.7 2.62 11.71 0 0 0.101 0.85 - 12.7 B h 5.5 9.48 39.86 t 0.656 0.131 1.97 - 7.4 Q1 5.7 1.05 11.22 0.410 0.377 0.101 7.91 - 12.4 H vn Pseudotsugetum menziesii Plot No. 10U Degraded Concretionary Brown So i l pit i s on the upper convex portion of the h i l l s i d e ; parent material i s shallow glacial t i l l on solid rock; stoniness 20$; elevation 1025 f t . Horizon Depth i n . Color (dry) Description L 3lp-3 Undecomposed l i t t e r of conifers and salal. 0 3-0 10 IR 2/1 Blackj , well decomposed friable organic material. A e 0-3 10 YR.6/2 Gray, mottled black structured sand. ; irregular; soft blocky B b f j 3-11 10 XR 5/4 Reddish brown, weak blocky structured brown concretions. sandy loam D 11 + Solid bed rock. PH OM CEC Ca Mg K BS N P % me/100 grams % % ppm L 4.5 0 . 4.5 69.0 84.13 8.494 3.744 1.632 16.48 1.18 40.0 A e 4.0 2.5 9.08 0.272 0.304 0.081 7.23 6.0 B b f j 5.1 5.25 14.72 t 0.291 0.095 2.62 59.0 Plot No. 105 Mnimal Podzol Elevation 900 feet; steep h i l l s i d e ; topography simple; parent material glacial t i l l ; stoniness 80$; (seepage at 40"). Horizon Depth i n . Color (dry) Description L 4-3 Partly decomposed and undecomposed organic material with mycelium. 0 3-0 10 YR 2/1 Black, well decomposed organic material with l i t t l e decaying wood. A e 0-3 10 YR 7/1 Gray, weak blocky, friable sand. Bmj 3-35 2.5 Y 6/2 Grayish brown, single grain stony sand. Bfh 35-48 I 10 YR 5/4 Reddish brown, firm blocky stony developed under seepage effect. sandy loam, D 48+ Solid bedrock. pH 0M CEC Ca Mg K BS N P % me/100 grams % % ppm L 4.4 0 4.1 77.5 86.48 10.810 3.230 1.960 18.5 1.2 47.0 A e 4.4 4.47 11.68 0.316 0.605 0.136 9.04 29.6 Bmj 5.5 3.6 14.26 t 0.633 0.129 5.34 35.0 Bfh 5.7 i5.o 57.99 0.314 0.751 0.170 2.12 28.0 H —0 Tsugeto - Gaultherietum Plot No. 52 Eluviated Acid Legosol S o i l developed on exposed h i l l t o p ; elevation 1800 feet; parent material quartz d i o r i t e ; stoniness 0. Horizon Depth i n . L 3.5-2 0 A 2-0 0-1.5 1.5+ Color (dry) 5 I 3/1 5 Y 5/1 Description Laminated undecomposed and partly decomposed l i t t e r ; many yellow mycelia. Dark gray, f r i a b l e , crumby; w e l l decomposed OM; very densely penetrated by roots. Ashy gray, granular structured fine sand. Solid bedrock. pH 3.7 3.6 3.7 OM CEC Ca Mg me/100 grams. K 84.2 8U.U8 5.016 4.170 3.571 8.8 19.08 0.911 0.817 0.356 BS 15.1 10.9 N 1.2 P ppm 51.0 13.0 H H CO 1 1 9 METHODS OF CHEMICAL ANALYSIS Determination of pH 1 . pH-measurements were taken on material finer than two mm. using a Beckman pH meter, Model N, i n a paste-like soil-water mixture. Determination of Organic Matter Reagents 1 N potassium dichromate. Dissolve h9»0h gm of reagent grade K 2 C r 2 0 7 i n water and dilute to 1 l i t e r . 0 . 5 ferrous sulfate. Dissolve II4O gm. of reagent grade FeSOjJH^O i n water, add 1|0 ml concentrated ^ SO^, cool, and dilute to 1 l i t e r . Standardize this reagent each day by titr a t i n g against 10 ml of N potassium dichromate, as directed i n the method described below. - Barium diphenylaminesulfonate. Prepare a 0 . 1 6 per cent aqueous solution. - o-phenanthroline ferrous complex (optional). . Prepare 0 . 0 2 5 M solution of one of the phenanthroline ferrous complex indicators. - Sulfuric acid; not less than 96 per cent. - Phosphoric acid; 85 per cent, U.S.P. grade. Procedure Transfer a weighed quantity of s o i l (ground to pass a 0 . 5 mm sieve) containing 10 to 25 mg. of organic carbon into a 500 ml Erlenmeyer flask, and add 10 ml of N potassium dichromate. Then add rapidly 20 ml of concentrated sulfuric acid, directing the stream into the solution. Immediately swirl vigorously by hand for 1 minute and l e t the flask stand on a sheet of asbestos for about 30 minutes. Then add 20 ml of water, 10 ml of phosphoric acid, and 0 . 5 ml of barium diphenylaminesulfonate indicator. Proceed with the t i t r a t i o n as follows: add the ferrous sulphate solution u n t i l the solution i s purple or blue, then add the ferrous sulphate i n small lots of about 0 . 5 ml u n t i l the color flashes to green with l i t t l e or no warning. Add 0 . 5 ml of N potassium dichromate to restore an excess of dichromate and complete the t i t r a t i o n by adding ferrous sulphate drop by drop to a l i g h t green end point. I f more than 8 ml of the available 10 ml of potassium dichromate i s reduced, the determination should be repeated with less s o i l . Percentage of organic matter i n so i l sample a ( M i l l i l i t e r s of 1 N K 2 C r 2 0 7 reduced) x O .69 Weight of sample (gm) 120 Determination of Exchangeable Cations and Exchange Capacity 1. Extraction Reagents: (1) Ammonium acetate I N , pH 7.0 - Prepare sufficient volume by mixing 70 ml Nh^ OH, sp. gr. 0.90, and 58 ml of 99.5$ HAC per l i t r e of solution desired. After cooling adjust to pH 7.0 and dilute with water to volume. (2) HCl concentrated (3) HNO3 concentrated (1+) 1:1 HCl 1 part cone. HCl to part HOH (5) 1:1 H2O2 1 part reagent grade H 2 02, 30$ and 1 part H20 (6) L i (Internal Standard) 1250 gamma/ml (see below) 2. Apparatus 1+00 ml beakers Fi l t r a t o r s Buchner funnels, 70 cm. ?ifhatman 1+2 f i l t e r paper 7.0 cm. Graduate cylinders, 100 ml 250 ml. 100 ml beakers Procedure Place 20 gm of s o i l i n a 100 ml beaker, add 50 ml NH^Ac. Stopper flask, shake for several minutes and allow to stand overnight. Transfer the s o i l to a small buchner funnel f i t t e d to a f i l t r a t o r and f i l t e r the solution into a 2+00 ml beaker. Leach the sample with an additional 150 ml NHjjAc using gentle suction (take about § hour) to complete leaching. Place the f i l t rate on a steam bath or hot plate and evaporate to dryness. Keep beaker covered. Add 5 ml concentrated HNO3 and 1 ml concentrated HCl and evaporate to dryness. Add 5 nil 1:1 H2O2 to destroy organic matter (add more i f necessary) and heat gently to avoid spattering. Add ^ ml 1:1 HCl and evaporate to dryness to dehydrate s i l i c a . Take up the residue with 2 ml concentration HCl, policing any adhering residue. 121 F i l t e r into a 250 ml volumetric flask and add 5 ml of a 1250 gamma Li/ml solution and make to volume. Designate this solution 'A'. Note: If care i s used i n taking aliquots from solution A, i t may not be necessary to remove the siliceous residue by f i l t e r i n g . 2. Determination of Exchange capacity Reagents: 9% Ethyl alcohol U.S.P. Sodium chloride Antifoam spray NaOH 1 N Technical Standard 0.2 N H2S0ij. Standard 0.1 N HaOH (CO2 free) Methyl red indicator Apparatus: UOO ml beaker 100 ml graduate, 25 ml graduate 600 ml Kjeldahl flasks Kjeldahl d i s t i l l a t i o n apparatus 2-50 ml burettes (1 base burette) 500 ml Erlenmeyer flasks Procedure: Leach the s o i l sample from step 1 with 80 ml ethyl alcohol i n small portions to remove excess acetate. Transfer s o i l with the f i l t e r paper to a Kjeldahl flask; add 1|00 ml H2O, about 10 gm NaCl and a spray of the antifoam agent. Add 25 ml of 1 N NaOH and connect immediately to the d i s t i l l a t i o n apparatus. D i s t i l l about 150 ml into a flask containing 50 ml 0.2 N ^SO^and methyl red. If the indicator i n the acid starts to turn yellow immediately, add 10-20 more I^SO^. Titrate the excess acid with the 0.1 N NaOH. Calculate exchange capacity and express as me per 100 g s o i l . 122 Determination of Exchangeable Cations 1. Calcium Reagents: (1) Stock lithium internal standard - 12,500 gamma Li/ml. Dissolve 7,6377 g. L i C l i n 1 1. Dilute 1:10 to give 1250 gamma Li/ml. (2) Stock calcium standard - 1250 gamma Ca/ml. Place 3.1215 g. reagent grade CaC03 i n a 1 1. flask. Add sufficient HCl to dissolve the CaC03 and add sufficient excess to make the solution 0.1 N in HCl (12.5 ml cone. HCl for 1 1. std.) After the carbonate has dissolved make to 1 1. (3) Flame Photometer standards for Ca. Prepare a series of standards containing 0, 50, 100, 150 and 200 gamma Ca/ml and containing 25 gamma Li/ml. (U) L i Internal Standard, 25 gamma Li/ml. This solution i s to be used for diluting samples high i n Ca and should be prepared exactly from the same L i stock solution used for the Flame Photometer standard. Apparatus: Volumetric flasks, 500 ml and 250 ml. 25 ml. Erlenmeyer flasks Perkin Elmer flame photometer Procedure: Determine the calcium concentration of the samples as directed in the flame photometer manual. I f the concentration i s too high, dilute the sample with the 25 gamma Li/ml solution. 2. Potassium Reagents: (1) Lithium internal standard solutions - as above. (2) Stock Potassium standard, 1250 gamma K/ml. Dissolve 2,3836 gm KC1 per l i t r e of solution. (3) Flame photometer standards for K. Prepare a series of standards containing 0, 10, 20, 30, iiO and 50 gamma K/ml. and 25 gamma Li/ml. As before, prepare twice the volume of the 0 and the highest standard. Apparatus: As above. Procedure: As above 123 • Magnesium and Calcium Reagents: (1) Standard MgCl 2 0.2 N. Place 4.2165 g. MgC03 i n a 500 ml volumetric flask. Add 10 ml of HCl to dissolve the carbonate and add 15 ml l/N. KaOH to make the solution nearly neutral. (2) Standard MgCl2 0.02 N . Dilute the 0.2 N MgCl 2 solution 1:10. (3) Standard EDTA. Dissolve di-disodium dehydrogen tetra-acetic acid (Versenate) i n 2 l i t r e s (approx.). of H2O. Add about 35 drops 0.1 N MgCl2 to make for a sharp endpoint. (4) Eriochrome black T indicator. Prepare a solution of 1 g. of hydroxydj mine hydrochloride i n 25 ml ethyl alcohol. Prepare the indicator as needed by adding 0.2 g. of eriochrome black T (1 - hydroxy — 2 -naphthylazo — 5 - nitro — 2 - naphthol — 4 - sulphonic acid sodium salt) and 5 ml. of this solution. (5) NHjjCl - NHjt0H buffer solution. Dissolve 67.5 g. of NH^Cl i n 200 ml. of water and mix with 570 ml of cone. NH^ OH. Dilute to 1 1. The pH should be 10. Apparatus: 125 ml. Erlenmeyer flasks 50 ml. burette Procedure: Pippette a 5 ml aliquot of solution A into a 125 ml Erlenmeyer flask. Add sufficient water to make the volume approximately 40 ml. Place an additional 7 ml of buffer i n the solution; add squint of cyanide; add 2-4 drops of the eriochrome black T indicator and ti t r a t e the solution u n t i l a clear blue endpoint i s reached. Absorbed Phosphorus Reagents: Ammonium floride - I N (approx.). Dilute 37 g. N H i F / l i t e r . Keep i n plastic bottle. 0.5 N HCl - (approx.) 20.2 ml. cone. HCl / 500 ml. Extracting solution - 0.03/N N H L F + 0.025 N HCl 30 ml. IN NH^F • 50 ml. 0.5 N HCl / l i t e r . P.B. - Ammoniummolybdate - HCl reagent, boric acid saturated: Dissolve 100 g. reagent grade ammonium molybdate i n 850 ml H2O. F i l t e r and cool. Make solution of 1700 ml cone. HCl in 160 ml H2O. Cool. Add f i r s t solution to second slowly with constant s t i r r i n g . Add approx. 110 g. reagent grade boric acid and dissolve. 122* P.C. - Amino naphtol sulphonic acid. 2.$ g. of 1 part amino 2 parts naphtol and 1* parts sulphonic acid, 5 . 0 g. sodium sulfit e ( ^ 2 8 0 3 ) . 11*6.25 g. sodium-bisulfite (meta Na2S20^) Mix ingredients and grind to fine powder i n mortar. For use dissolve 16 g. of powder i n 100 ml warm H 2 0 . Add 2 g. reagent grade H3BO3, f i l t e r and allow to stand overnight. Store in dark glass and renew every two weeks. P standard - 100 ppm. 0.1*393 g. pure Kn^PO^ / l i t e r H2O containing 100 ml IN HCl. Prepare 1 0 , 2 0 , 30, 1*0, 50 ppm standard solution by diluting the 100 ppm standard solution with extracting solution. Procedure: Extract - Shake 5 g. s o i l with 50 ml extracting solution for one minute, and f i l t e r . Take 5 ml unknown solution +5 ml. H2O + \ ml. P.B. 4- 3 ml P.C. and reed with photoelectronic colorimeter i n 30 minutes. Use 660 f i l t e r . Nitrogen Determinat ion Weight out five g. of s o i l and transfer using folded f i l t e r paper to an 800 ml. Kjeldahl flask. Add approximately 30-1*0 ml cone. ^ SO^, 10 gms. (1 tsp.). of a mixture of 10 parts anhydrous Na2S0[1 and 1 part CuS0]|. Mix ingredients by swirling the flask. Add 2-3 selenized granules. Digest u n t i l the solution i s clear and continue digestion for twenty minutes. Cool and then add gradually 300 ml. of tap H2O. Shake well. Cool again. Nov/ add about 1 teaspoonful of glass beads and/or .5 gm. of granulated Zn and an excess (90 ml.) of cone. NaOH solution. (1*0$), pouring down the side of the flask to prevent mixing of solutions and loss of NH3. Connect to the d i s t i l l i n g apparatus immediately and then swirl the flask gently to mix the contents. D i s t i l l into a 300 ml. Erlenmeyer flask containing 25-50 ml. of saturated boric acid solution, measured with a graduate (50 ml. of boric acid takes care of 95 mg. of N as NH3) . Also add 1* drops of a mixed indicator of Bromocresol green and methyl red. The tube from the d i s t i l l i n g apparatus must extend below the surface of the acid to prevent loss of NH3. Collect approximately 150 ml. of the d i s t i l l a t e and titrate the boric acid on the complex with standard N/ll* H2S0] 4 . A blank should be run i n every case as there i s a slight correction. .Subtract the blank from the total amount of acid required for the sample. ml of acid x normality x .011* x 100 a $N wt. of sample where .Oil* represents the gms. N per ml. i n a normal solution. 125 Where the normality i s N/lU the equation becomes ml of acid x N/lIj X .OlU x 100 • ml of acid x .02 = $N 5 g. I f a 1 g. sample i s used, say of a l f a l f a , the calculation s i m p l i f i e s to ml. of acid 0.1 a Mixed Indicator: Mix 10 ml. of 0.1 per cent bromcresol green i n 95 per cent alcohol with 2 mi. of 0.1 per cent methyl red i n 95 P e^ cent alcohol. The color produced by t h i s indicator i n boric acid i s b l u i s h green. Ti t r a t e with standard acid u n t i l the blue color just disappears. One drop i n excess w i l l turn the solution pink. I f t i t r a t e d to a f a i n t pink, subtract 0.02 ml. from the reading. 126 DATA FOR STATISTICAL ANALYSIS AND ANALYSIS OF VARIANCE 1. Total Organic Matter i n Kg/lOO m.2 Assoc. Horizon 0 Horizon A Horizon B Pit Pit 1. 822.0 44.2 837.0 1703.2 De Pit 2. 870.0 8.1 802.0 1680.0 Pit 3. 1010.0 434.0 0.0 1444.0 Total 2702.0 486.3 1839.0 4827.2 Pit 1. 1464.5 94.2 . 4707.0 6265.7 T Pit 2. 375.0 53.3 1880.4 2308.7 Pit 3. 355.0 32.5 689.i 1076.6 Total 2194.5 180.0 7276.5 9651.0 Pit 1. 2032.0 0.0 982.0 3014.0 AT Pit 2. 2468.0 9.0 1295.0 3773.0 Pit 3. 3104.0 77.3 3195.0 6376.0 Total 7604.0 86.0 5472.0 13163.O Pit 1. 1200.8 0.0 4524.0 5724.8 P Pit 2. 663.0 241.0 1587.0 2491.0 Pit 3. 2951.0 47.0 1202.0 4200.0 Total 4814.8 288.0 7313.0 12415.8 P i t 1. 2820.0 426.0 4070.0 7316.0 B Pit 2. 4040.0 412.0 634.0 5086.0 Pit 3. 8240.0 156.0 3296.0 II692.O Total 15100.0 994.0 8000.0 24094.0 Pit 1. 0.0 803.0 742.0 1545.0 0 Pit 2. 0.0 0.0 1885.0 1885.0 P i t 3. 0.0 532.0 2770.0 3302.0 Total 0.0 1335.0 5397.0 6732.0 P i t 1. Ly Pit 2. Pit 3. Total 0.0 3444.0 4909.0 8353.0 1130.0 0.0 0.0 1130.0 4199.0 0.0 0.0 4199.0 5329.0 3444.0 4909.0 13682.0 Analysis of Variance Source of variation Df. SS. MS Association 6 26,144.931 4,357.488 Pit 2 : 4,146.090 2,073.045 Horizon 2 40,132.887 20,066.443 Association x p i t 12 13,346.708 1,112.225 Assoc..x horxzon 12 36,249.077 3,020.755 P i t x Horizon 4 18,474.963 4,618.741 Residual 24 36,268.554 1,511.189 Total 62 174,763.210 F 2.88 * 15.2 ** 3.0 * # Significant at 5 Ver cent level We Significant at 1 per cent l e v e l 2. Cation Exchange Capacity i n Equivalents/100 m2 Assoc. Horizon 0 Horizon A Horizon B P i t P i t 1. 916 80 3472 4468 De P i t 2. 1077 29 2237 3343 P i t 3. 862 935 0 1797 T o t a l 2855 1044 5709 9608 P i t 1. 1769 4oi 19323 21493 T P i t 2. 462 162 7702 8326 P i t 3. 431 110 3389 3930 T o t a l 2662 673 30414 33749 P i t 1. 2511 0 3490 6001 AT P i t 2. 2454 293 2064 4811 P i t 3. 3575 957 9985 14571 T o t a l 8540 1250 15539 25329 P i t 1. 1558 0 24857 26415 P P i t 2. 1002 667 8575 10244 P i t 3. 3329 113 3985 7427 T o t a l 5889 780 37419 44086 P i t 1. 3363 939 25105 29407 B P i t 2. 4891 100 3123 .8114 P i t 3. 8246 :.496 17656 26398 T o t a l 16500 1535 45884 63919 P i t 1. 0 3566 4620 8186 0 P i t 2. 0 7859 139 7998 P i t 3. 0 2102 13478 15580 T o t a l 0 13527 18237 31764 P i t 1. 4602 0 0 4602 Ly P i t 2. 5131 0 0 5131 P i t 3. 0 1966 9043 11009 T o t a l 9733 1966 9043 20742 Analysis of Variance Source of V a r i a t i o n Df SS MS As s o c i a t i o n 6 204 34.0 P i t 2 67 33.5 Horizon 2 542 271.0 Assoc. x P i t 12 188 15.6 Assoc. x Horizon 12 354 29.5 P i t x Horizon 4 169 42.0 Residual 24 446 T o t a l o2 1970 128 3. Total Amount of Exchangeable Calcium in Kg/lOO m2 Assoc. Horizon 0 Horizon A Horizon B Pit Pit 1. 2.29 0.06 0.26 2.61 De Pit 2. 2.17 0.02 t 2.19 Pit 3. 1.01 O.9O 0.00 1.91 Total 5.47 O.98 0.26 6.71 Pit 1. 4.18 t 0.09 4.27 T Pit 2. i.5o 0.18 0.04 1.72 Pit 3. 0.98 0.19 t 1.12 Total 6.66 0.32 0.13 7.11 Pit 1. 7.26 _ t 7.26 AT Pit 2. 7.60 - t 7.60 Pit 3. 12.70 0.70 t 13.40 Total 27.56 0.70 t 28.26 Pit 1. 1.41 0.00 9.71 11.12 P .Pit 2. 2.74 3.34 t 6.08 Pit 3. 5.86 0.91 0.01 6.78 Total 10.01 4.25 9.72 23.98 Pit 1. 0.71 t t 0.71 B Pit 2. 8.13 t t 8.13 Pit 3. 8.30 t t 8.30 Total 17.14 t t 17.14 Pit 1. 0.00 2.32 7.07 9.39 0 Pit 2. 0.00 0.53 22.40 22.93 Pit 3. 0.00 4.5o 21.50 26.00 Total 0.00 7.35 50.97 58.32 Pit 1. 25.60 0.00 0.00 25.60 Pit 2. 19.75 0.00 0.00 19.75 Pit 3. 0.00 1.80 22.60 24.40 Total 45.35 1.80 22.60 69.75 Analysis of Variance Source of variation Df SS MS F Association 6 405.60 67.6 1.91 Pit 2 11.00 5.5 Horizon 2 235.60 117.3 3.31 Assoc. x Pit 12 75.16 6.26 Assoc. x Horizon 12 838.60 69.84 1.97 Pit x Horizon 4 66.45 16.61 Residual 24 848.96 35.37 Total 62 2U81.37 129 4. Total Amount of Exchangeable Magnesium in Kg/100 m^  Assoc. Horizon 0 Horizon A Horizon B Pit Pit 1. 0.41 0.07 0.75 1.23 De Pit 2. 0.58 0.01 0.54 11.13 Pit 3. 0.52 0.49 0.00 1.01 Total 1.51 0.57 1.29 3.37 Pit 1. 0.79 0.64 3.38 4.81 T Pit 2. 0.08 0.06 1.24 1.38 Pit 3. 0.30 0.13 4.82 5.25 Total 1.17 0.83 9.hk 11.44 Pit 1. 1.50 0.00 0.20 1.70 AT Pit 2. 1.33 0.00 0.82 2.15 Pit 3. 3.98 0.32 11.51 8.81 Total 6.81 0.32 5.53 12.66 Pit 1. 1.06 _ 7.08 8.14 P Pit 2. 0.31 1.13 3.17 4.61 Pit 3. 2.16 0.05 3.29 5.50 Total 3.53 1.18 13.51; 18.25 Pit 1. 1.27 0.61 5.75 7.63 B Pit 2. 1.76 0.57 0.18 2.51 Pit 3. 4.04 0.19 3.21 7.44 7.07 1.37 9.1U 17.58 P i t 1. 0.00 2.18 3.21 5.39 0 P i t 2. 0.00 0.26 7.95 8.21 Pit 3. 0.00 1.83 14.96 16.79 Total 0.00 4.27 26.12 30.39 Pit 1. 3.32 0.00 0.00 3.32 •T Ly Pit 2. 4.99 0.00 0.00 4.99 Pit 3. 0.00 1.15 4.71 5.86 Total 8.31 1.15 . 4.71 14.17 Analysis of Variance Source of variation Df SS MS F Association 6 45.2 7.53 2.17 P i t 2 16.4 8.20 2.19 Horizon 2 90.0 45.oo 12.03 ** Assoc. x Pit 12 29.73 2.47 Assoc. x Horizon 12 112.9 9.4 2.51 * Pit x Horizon It 19.7 4.92 Residual 2k 89.87 3.74 Total 62 403.80 130 5. Total Amount of Exchangeable Potassium i n Kg/lOO m.2 Assoc. Horizon 0 Horizon A Horizon B Pit Pit 1. 0.81 o.o5 0.52 1.38 De Pit 2. 0.81 0.01 0.56 1.38 Pit 3. 1.42 0.68 - 2.10 Total 3.04 0.74 1.08 4.86 Pit 1. 0.99 0.24 2.27 3.50 T Pit 2. 0.38 0.06 1.50 1.94 Pit 3. 0.23 0.05 1.19 1.47 Total 1.60 o.35 4.96 6.91 Pit 1. 1.19 0.00 0.77 1.96 AT Pit 2. 1.34 0.25 0.73 2.32 P i t 3. 0.61 0.23 0.70 1.54 Total 3.14 0.48 2.20 5.82 Pit 1. 0.39 0.00 9.22 9.61 P Pit 2. 0.41 0.18 1.70 2.29 Pit 3. 0.83 0.30 0.97 2.10 Total 1.63 0.98 11.89 14.00 Pit 1. 0.78 0.31 3.84 4.93 B Pi t 2. 1.33 0.14 0.61 2.08 Pit 3. 1.30 0.30 1.99 3.59 Total 3.41 0.75 6.44 10.60 Pit 1. 0.00 0.97 3.29 4.26 0 Pit 2. 0.00 0.17 4.72 4.89 Pit 3. 0.00 0.78 7.72 8.50 Total 0.00 1.92 15.73 17.65 Pit 1. 0.39 0.00 0.00 0.39 Pit 2. 1.95 0.00 0.00 1.95 Pit 3. 0.00 0.89 3.76 4.65 Total 2.34 0.89 3.76 6.99 Analysis of Variance Source of Variation Df Association 6 Pit 22 Horizon 2 Assoc. x. Pit 12 Assoc. x Horizon 12 Pit x Horizon 4 Residual 24 Total 6~2 SS MS F 15.1 2.51 1.34 2.2 1.1 42.57 21.28 11.37 18.94 1.57 45.6 3.8 2.13 6.01 1.5 44.93 1.87 175-35 131 6. Total Amount of Available Phosphorus i n 10 grams/100 m2 Assoc. Horizon 0 Horizon A Horizon B Pit Pit 1. a. 98 2.92 28.81 36.71 De Pit 2. 5.12 0.19 89-91 95.22 Pit 3. 5.20 6.42 0.00 11.62 Total 15.30 9.53 118,72 143.55 Pit 1. 8.78 5.92 39.81 54.51 T Pit 2. 3.60 2.53 35.01 41.14 Pit 3. 3.55 2.27 151.71 157.53 Total 15.93 10.72 226.53 253.18 Pit 1. 6.27 0.00 3.32 9-59 AT Pit 2. 9.9k 2.06 34.88 46.88 Pit 3. 12.51 0.00 27.95 39.96 Total 28.72 2.06 65.65 96.43 Pit 1. 3.42 0.00 324.11 327.53 P Pit 2. 1.64 1.35 13.41 16.40 P i t 3. 12.28 0.39 22.56 35.23 Total 17.34 1.79 360.08 379.16 Pit 1. 6.58 6.66 146.59 159.83 B Pi t 2. 8.12 4.71 72.77 85.60 Pit 3. 8.64 0.00 55.44 64.08 Total 23.34 11.37 274.80 309.51 Pit 1. 0.00 24.30 113.95 138.25 0 Pit 2. 0.00 2.22 97.68 99.90 Pit 3. 0.00 16.38 267.50 283.88 Total 0.00 42.90 479.13 522.03 Pit 1. 4.87 0.00 0.00 4.87 Ly Pit 2. 5.08 0.00 0.00 5.08 Pit 3. 0.00 41.95 38.39 80.34 Total 9.95 41.95 38.39 90.29 Analysis of Variance Source of variation Df SS MS Association 6 17153 2858 Pit 2 3167 1583 Horizon 2 66553 33276 Assoc. x Pit 12 30540 2545 Assoc. x Horizon 12 35910 2992 Pit x Horizon 4 4420 1105 Residual 24 62700 2610 Total 62 220443 132 7. T o t a l Organic Matter i n % Assoc. Ho r i z o n 0 Horizon A Horizon B P i t P i t 1. 77 4 15 96 De P i t 2. 69 2 5 76 P i t 3. 84 9 - 93 T o t a l 230 15 20 265 P i t 1. 73 2 16 91 T P i t 2. 75 4 9 88 P i t 3. 10 2 2 74 T o t a l 218 8 27 253 P i t 1. 80 0 9 89 AT P i t 2. 88 1 9 98 P i t 3. 87 1 13 101 T o t a l 255 2 31 288 P i t 1. 19 0 14 93 P P i t 2. 66 22 5 93 P i t 3. 83 7 7 97 T o t a l 228 29 26 283 P i t 1. 82 3 5 • 90 B P i t 2. 79 3 9 91 P i t 3. 2 7 io5 T o t a l 257 8 21 • 286 P i t 1. 0 5 2 7 0 P i t 2. 0 2 1 3 P i t 3. 0 1 5 T o t a l 0 i i 4 15 P i t 1. 82 0 0 82 Ly P i t 2. 66 0 0 66 P i t 3. 0 7 12 19 T o t a l 148 7 12 167 A n a l y s i s of Variance Source of v a r i a t i o n Df SS MS F A s s o c i a t i o n 6 6762.0 1127.0 7.1** P i t 2 71.0 35.5 H o r i z o n 2 47766.0 23883.0 150.0** Assoc. x P i t 12 855.0 71.0 8.6** Assoc. x Horizon 12 10365 863.0 P i t x ; Horizon 4 209.0 52.0 R e s i d u a l 24 3825 159.0 T o t a l 62 69853 133 8. Cation Exchange Capacity i n me/100 g Assoc. Horizon 0 Horizon A Horizon B Pit Pit 1. 86 12 58 156 De Pit 2. 84 9 15 108 P i t 3. 8U 19 0 103 Total .254 40 73 367 Pit 1. 88 6 46 140 T Pit 2. 92 12 40 144 Pit 3. 86 8 9 103 Total 266 26 95 387 Pit 1. 88 4 15 107 AT Pit 2. 100 0 25 125 P i t 3. 100 15 40 155 Total 288 19 80 387 Pit 1. 102 27 129 P Pit 2. 97 61 27 185 Pit 3. Jk 17 25 136 Total 293 78 79 450 P i t 1. 94 9 30 133 B Pi t 2. 96 13 24 133 Pit 3.' 95 _ i 34 13i± Total 285 27 88 4oo Pit 1. 0 24 . 9 33 0 Pit 2. 0 9 3 12 Pit 3. 0 17 8 _2£ Total 0 50 20 70 Pit 1. 109 _ 109 Ly Pit 2. 81 - - 81 Pit 3. 0 17 26 _U3 Total 190 17 26 233 Analysis of Variance Source of variation Df SS MS F Association 6 11571 1928 5.3 * Pit 2 316 158 Horizon 2 48009 24004 66.1 ** Assoc. x P i t 12 2415 201 Assoc. x Horizon 12 13370 1114 3.06* P i t x Horizon 4 1067 266 Residual 24 8717 363 Total 62 85465 13)4 9. Exchangeable Calcium in me/100 g Assoc. Horizon 0 Horizon A Horizon B Pit Pit 1. 8.1+9 0.27 t 8.76 De Pit 2. 10.81 0.32 0.31 11.1+1+ Pit 3. 5.02 0.90 0.00 5.92 Total 21+.32 1.1+9 0.31 26.12 Pit 1. 10.35 0.00 0.56 10.91 T Pit 2. 15.00 O.69 0.02 15.71 Pit 3. 9.82 0.51+ 0.00 10.36 Total 35.17 1.23 0.58 36.98 Pit 1. 11+. 93 0.00 0.00 11+.93 AT Pit 2. 13.60 0.00 0.00 13.60 Pit 3. 17.78 0.50 0.00 18.28 Total 1+6.31 0.50 0.00 1+6.81 Pit 1. 1+.61+ 0.00 0.38 5.02 P Pit 2. 13.1+7 15.1+9 0.32 29.23 Pit 3. 8.23 0.70 0.01 8.91+ Total 26.31+ 16.11+ 0.71 1+3.19 Pit 1. 0.99 OQOO 0.00 0.99 B Pit 2. 8.03 0.00 0.00 8.03 Pit 3. 1+.78 0.00 0.00 1+.78 Total 13.80 0.00 0.00 13.80 Pit 1. 0.00 0.77 0.1+1+ 1.21 0 Pit 2. 0.00 1.26 0.60 1.86 Pit 3. 0.00 1.78 0.63 2.1+1 Total 0.00 3.81 1.67 5.1+8 Pit 1. 30.52 0.00 0.00 30.52 Ly Pit 2. 114.1+7 0.00 0.00 lit. 1+7 Pit 3. 0.00 0.79 0.77 1.56 Total 1+1+.99 0.79 0.77 1+6.55 Analysis of Variance Source of variation Df ss MS Association 6 182.91+ 30.1+9 Pit 2 1+2.21 21.1 Horizon 2 1003.23 501.6 Assoc. x Pit 12 233.914 19.1+9 Assoc. x Horizon 12 1+1+1.1+5 36.78 Pit x Horizon 1+ 50.95 12.73 _ /• /A Residual 21+ 1+00.07 16.66 Total 62 2351+.79 F 1.82 135 10. Exchangeable Magnesium i n me/100 g Assoc. Horizon 0 Horizon A Horizon B Pit Pit 1. 3.23 0.60 0.75 4.58 De Pit 2. 3.74 0.30 0.29 4.33 Pit 3. 4.17 0.82 0.00 4.99 Total 11.14 1.72 1.04 13-90 P i t 1. 5.03 0.85 1.05 6.93 T Pit 2. 1.32 0.39 0.66 2.37 Pit 3. 4.99 0.81 0.80 6.60 Total 11.34 2.05 2.51 15-90 Pit 1. 4.86 0.00 0.17 5.03 AT Pit 2. 3.92 0.00 o.5o 4.42 Pit 3. 9*17 0.42 1.49 11.08 Total 17.95 0.42 2.16 20.53 Pit 1. 5.76 0.00 2.97 8.73 P Pi t 2. 2.57 8; 63 0.60 11.80 Pit 3. 4.98 0.64 1.85 . 7.47 Total 13.31 9.27 5.42 28.00 Pit 1. 2.93 0.46 0.67 4.06 B Pi t 2. 2.85 1.44 O.38 4.67 P i t 3. 3.83 0.16 0.38 4.37 Total 9.61 2.06 1.43 13; 10 Pit 1. 0.00 1.19 0.30 1.49 0 Pit 2. 0.00 o;49 0.73 1.22 Pit 3. 0.00 1.20 0.72 1.92 Total 0.00 2.88 1.75 4.63 Pit 1. 6.49 0.00 0.00 6.49 Pit 2. 6.08 0.00 0.00 6.08 Pit 3. 0.00 0.84 0.28 1.12 Total 12.57 o.84 0.28 13.69 Analysis of Variance Source of variation Df SS MS Association 6 34.58 5.76 Pit 2 0.20 0.10 Horizon 2 111.04 55.52 Assoc. x Pit 12 22.62 1.88 Assoc. x Horizon 12 48.35 4.03 P i t x Horizon 4 10.75 2.69 Residual 24 76.84 3.20 Total 62 304.38 F 1.8 17.3 136 11. Exchangeable Potassium i n me/100 g Assoc. Horizon 0 Horizon A Horizon B Pit Pit 1. 1.96 0.11+ 0.17 2.27 De Pit 2. 1.63 0.08 0.09 1.80 Pit 3. 3.57 0.36 0.00 3.93 Total 7.16 0.58 0.26 8.00 Pit 1. 1.26 0.10 0.16 1.52 T Pit 2. 1.97 0.13 0.13 2.23 Pit 3. 1.16 0.10 0.11 1.37 Total U-39 0.33 o.4o 5.12 Pit 1. 1.20 0.00 0.14 1.34 AT Pit 2. 1.22 0.09 0.14 1.45 Pit 3. 0.44 0.10 0.07 0.61 Total 2.86 0.19 0.35 3.40 Pit 1. 0.66 0.00 0.22 0.88 P Pit 2. 1.05 0.43 0.11 1.59 Pit 3. 0.59 0.12 Q.16 0.87 Total 2.30 0.55 0.49 3.34 Pit 1. 0.56 0.07 0.14 0.77 B Pit 2. 0.67 0.11 0.11 O.89 Pit 3. 0.40 0.07 0.08 0.55 Total 1.63 0.25 0.33 2.21 Pit 1. 0.00 0.16 0.09 0.25 0 Pit 2. 0.00 0.10 0.14 0.24 Pit 3. 0.00 0.16 0.12 0.28 Total 0.00 0.42 0.35 0.77 Pit 1. 0.24 0.00 0.00 0.24 Pit 2. 0.89 0.00 0.00 O.89 Pit 3. 0.00 0.15 0.12 0.27 Total 1.13 0.15 0.12 1.40 Analysis of Variance Source of variation Association Pit Horizon Assoc. x Pit Assoc. x Horizon Pit x Horizon Residual Total Df ss 6 4.04 2 0.08 2 9.26 12 1.33 12 7.29 4 0.14 24 2.16 62 24.30 Mb a 0.67 7.5 0.04 4.63 51.4 ---0."11 1.2 0.60 6.7 0.03 0.09 12. Saturation of C a + + + Mg++ • K* i n % Assoc * Horizon 0 Horizon A Horizon B Pit De Pit 1. 18 9 5 32 P i t 2. 16 7 3 26 Pit 3. 15 11 0 26 Total 49 27 8 84 P i t 1. 19 15 11 45 T Pit 2. 20 io 2 32 Pit 3. 18 17 30 _65 Total 57 42 43 142 Pit 1. 11 0 13 24 P Pit 2. 18 40 8 66 P i t 3. 15 8 8 31 Total 44 48 29 121 Pit 1. 5 6 3 14 B Pit 2. 12 49 2 63 Pit 3. 9 4 _ i 18 Total 26 59 10 95 P i t 1. 9 17 26 0 Pit 2. - 24 38 62 Pit 3. - 19 19 J i Total 52 74 126 Pit 1. 40 0 0 40 Ly Pit 2. 32 0 0 32 Pit 3. 0 10 18 28 Total 72 10 18 100 Pit 1. 21 2 4 27 AT Pit 2. 21 0 1 22 Pit 3. 27 7 _ J i 38 Total 69 9 9 87 Analysis of Variance Source of variation Df SS MS F Association 6 322 53.6 Pit 2 219 109.5 Horizon 2 379 189.5 1.8 Assoc. x Pit 12 1098 91.5 Assoc. x Horizon 12 2762 230.1 2.1 P i t x Horizon 4 550 137.0 Residual 24 2665 111.0 Total 62 7995 13. Available Phosphorus i n ppm Assoc. Horizon 0 Horizon A Horizon B P i t P i t 1. U7 30 35 112 De P i t 2. ho 6 59 105 P i t 3. 51 13 0 6U Total 138 U9 9U 281 P i t 1. h3 9 13 65 T P i t 2. 72 19 13 ioU P i t 3. 71 17 33 121 Total 186 U5 59 290 P i t 1. 25 0 U 29 AT P i t 2. 35 30 25 90 P i t 3. 35 0 11 U6 Total 95 30 Uo 165 P i t 1. 22 _ 22 UU P P i t 2. 16 12 12 UO P i t 3. 3h 6 26 66 Total 72 18 60 150 P i t 1. 10 _ 11 221 B P i t 2. 16 lU - Ul 71 P i t 3. 18 6 Jl _k2 Total UU 20 11 ii*i P i t 1. 0 16 13 29 0 P i t 2. 0 13 16 29 _ P i t 3. 0 11 5 16 Total 0 Uo 3U 7U P i t 1. 12 _ _ 12 Ly P i t 2. 9 - 21 30 P i t 3. 0 37 22 59 Total 21 37 U3 101 Analysis of Variance Source of v a r i a t i o n Df SS MS Association 6 U660 776 P i t 2 617 308 Horizon 2 2396 1198 Assoc. x P i t 12 200U 167 Assoc. x Horizon 12 5209 U3U P i t x Horizon U 300 75 Residual 2U 3305 138 Total 62 18U91 Ii*. Organic Matter / Nitrogen Ratio i n the Humus Horizon of the Associations De T AT P B Ly 0 P i t 1. 65 60 62 49 51 54 28 Pit 2. 58 61 64 45 78 36 25 P i t 3. 73 64 55 43 70 40 23 Total 196 185 181 137 199 130 76 Analysis of Variance Source of variation Df SS MS F Association 6 4110.0 685.00 37.2 * Pit 2 o.l 0.05 Residual 12 220.9 18.40 Total 20 4331.0 C a l c u l a t i o n Df = degrees of freedom = n -1 ; i f n = number of data eg. The number of associations i s 75 Df f o r assoc. a 7-1 «• 6 In i n t e r a c t i o n s , Df i s the product of the degrees of freedom of the items making up the i n t e r a c t i o n . eg. Assoc. x P i t i n t e r a c t i o n , Df = 6x2 =. 12 Correction f a c t o r : C » ( ^ X ) 2 j X • i n d i v i d u a l data n A s s o c i a t i o n SS = X a s s o c i a t i o n ^ - C A 9 9 i s the number of data making up an a s s o c i a t i o n . P i t SS a ( Z P i t l . ) 2 + ( 5 P i t 2 . ) 2 * ( 1 P i t 3 . ) 2 - C P 21 Horizon SS - ( Z Horizon Q ) 2 + ( Z Horizon A ) 2 • ( X Horizon B ) 2 - C 21 A s s o c i a t i o n x P i t SS = Z P i t 2 - (C+A+P) AP 3 Assoc.x Hor.SS s (De assoc. X Hor.0)2+... »(Ly a s s o c .X Hor.O) 2 + 3 * (De assoct. X H o r . A ) 2 * ( L y assoc. Z Hor.A-)2 + 3 + (De assoc. X Hor.B)2+....+(Ly assoc. X Hor.B)2 - (C+A+H) AH 3 P i t x Horizon SS - ( X P i t l.Hor . 0 ) 2 + ( Z P i t l.Hor.A) 2»( X P i t l.Hor.B) 2 7 + ( Z P i t 2.Hor .0) 2 »( X P i t 2.Hor.A) 2+( Z P i t 2.Hor.B) 2 + 7 ( X P i t 3.Hor.O)2+( X P i t 3.Hor.A) 2»( Z P i t 3.Hor.B) 2- (C+P+H) ... 7 Residual SS - X x 2 - (C+A+H+P+AP+AH+PH) To t a l SS = X x 2 ~ 0 Association MS . Association SS 6 P i t MS = 2 Horizon MS = Horizon SS 2 Association x P i t MS s Association x P i t SS 12 Association x Horizon MS = Association x Horizon SS 12 P i t x Horizon MS - P i t x Horizon SS h Residual MS = Residual SS 24 T? „ MS Residual MS Comparison of the association means by Tukey's Studentized Range Test s - = y S 2 i Q . k.$h S 2 = Residual MS f - number of items making up the means D s S- Q x I f the difference between two means are larger than the value of D, the difference i s s i g n i f i c a n t . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0106118/manifest

Comment

Related Items