UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The influence of salinity on the distribution of two corixid species Teraguchi, Sonja Edith 1964

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1964_A6_7 T44.pdf [ 3.45MB ]
Metadata
JSON: 831-1.0105984.json
JSON-LD: 831-1.0105984-ld.json
RDF/XML (Pretty): 831-1.0105984-rdf.xml
RDF/JSON: 831-1.0105984-rdf.json
Turtle: 831-1.0105984-turtle.txt
N-Triples: 831-1.0105984-rdf-ntriples.txt
Original Record: 831-1.0105984-source.json
Full Text
831-1.0105984-fulltext.txt
Citation
831-1.0105984.ris

Full Text

THE INFLUENCE OF S A L I N I T Y ON THE OF TWO  DISTRIBUTION  CORIXID SPECIES  by SONJA B.Sc,  EDITH TERAGUCHI  University  of B r i t i s h  Columbia,  1962  A THESIS SUBMITTED IN PARTIAL FULFILMENT  OF  THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in  the Department of Zoology  We  accept  required  The  this  thesis  as c o n f o r m i n g t o t h e  standard  University  of B r i t i s h  September,  1964  Columbia  In the  r e q u i r e m e n t s f o r an  British  mission  for reference  for extensive  p u r p o s e s may  be  cation  of  and  by  written  Department  of  the  study*  the  the  Library  I further  Head o f my  Columbia,  of  of •  make i t f r e e l y  agree for  that  or  c o p y i n g or  s h a l l not  per-  scholarly  Department  that  f i n a n c i a l gain  fulfilment  University  shall  this thesis  permission*  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  in partial  degree at  I t i s understood  this thesis for  w i t h o u t my  that  c o p y i n g of  granted  representatives.  this thesis  advanced  Columbia, I agree  available  his  presenting  be  by publi-  allowed  i ABSTRACT  Cenocorixa expleta to  bifida  (Hungerford)  be c o r r e l a t e d  pressure.  higher s a l i n i t i e s . relations  have d i f f e r e n t  with  £. bifida  of these  those  occurs  distributions  i n the lower  An a t t e m p t  appear  osmotic  the s a l i n i t y  two s p e c i e s . both  species maintain and c h l o r i d e  o f the water but £ . e x p l e t a tends  osmotic  which  and £ . e x p l e t a i n the  was made t o s t u d y  p r e s s u r e , sodium, potassium  than £ . b i f i d a .  and C e n o c o r i x a  l a k e water sodium, c h l o r i d e and  I n low s a l i n i t i e s osmotic  (Hungerford)  In high  salinities  both  hypotonic  t o the water.  potassium  a r e never  hypotonic  well  to maintain  £. bifida  t o the water.  above  lower  species are  t o the water but £ . e x p l e t a m a i n t a i n s  potassium  blood  levels  iso-  b l o o d sodium a n d blood  sodium and  £. expleta contains  more body w a t e r i n a l l s a l i n i t i e s . Both ities  a n d mouth c l o s u r e r e s u l t s  chloride leg  s p e c i e s appear t o d r i n k r e g u l a r l y  i n hypo-osmotic  femoral-tibial  of c u t i c l e  sodium and c h l o r i d e £.  bifida  does C. e x p l e t a .  of the osmotic  water appears  into £. bifida  does n o t o c c u r  r i d g e s and are the only  penetration of s i l v e r  abolishment  t o hypo-osmotic  b l o o d sodium and  The r o s t r a l  i n t e r s e g m e n t a l membranes  which a l l o w e d The  sucrose  media.  i n lowered  in a l l salin-  third areas  ions.  g r a d i e n t by a d d i n g  t o impair e n t r y of water,  but not i n t o £ . e x p l e t a .  i n water t o which  i t i s i s o - o s m o t i c as  ii  This these  study suggests  species to d i f f e r e n t  physiological  salinities.  a d a p t a t i o n of  iv  ACKNOWLEDGMENTS The his  author  wishes  s u p e r v i s i o n and a d v i c e  Special  acknowledgment  t o t h a n k D r . G.G.E. S c u d d e r f o r during the course  i s a l s o made t o D r . W.S.  P.A. D e h n e l , a n d D r . D . J . R a n d a l l ing  of the manuscript.  M o h i n d e r S. J a r i a l on  per cent  body  The Council  grant  of this  f o rtheir  Hoar, Dr.  critical  A p p r e c i a t i o n i s expressed  f o r permitting the i n c l u s i o n  study.  read-  t o Mr.  of h i s data  water.  research  was s u p p o r t e d  t o Dr. Scudder.  by a N a t i o n a l  Research  V  TABLE OF CONTENTS Page 1  Introduction Materials  .....  Methods  . . . .  4 ' 4*  Results D i s t r i b u t i o n and environment under n a t u r a l 11  conditions Changes i n i n t e r n a l environment upon t r a n s f e r t o o t h e r l a k e water  20  E f f e c t of t r a n s f e r on m o r t a l i t y  35  Combination of n a t u r a l and t r a n s f e r results  37-  P o s s i b l e s i t e s of i o n e n t r y  40  Further  observations  on c h l o r i d e changes  . .  45 47  Iso-osmotic experiments Discussion Distribution  49  Mortality  49  Assessment of r e g u l a t o r y a b i l i t y  50  P o s s i b l e s i t e s of i o n and water e n t r y  ....  54  Suggested mechanisms of i o n and water entry  56  P o s s i b l e e f f e c t o r s of i o n and water regulation  58  vi Page 60  P h y s i o l o g y and d i s t r i b u t i o n Conclusions References . . . . . . . .  •  6363  vii LIST OP TABLES Page I II  A r t i f i c i a l media used . . . . . . . . . .  15  Commercial water a n a l y s i s (May 1 9 6 4 ) of samples t a k e n i n 1 9 6 3 and 1 9 6 4  IV  16  B l o o d .osmotic p r e s s u r e s and per cent body water o f a c c l i m a t i z e d i n s e c t s  V  10  Distribution'ahd ionic composition of l a k e water i n 1 9 6 3  III  .  . . . .  17  S i g n i f i c a n c e o f t h e d i f f e r e n c e between b l o o d osmotic p r e s s u r e s of a c c l i m a t i z e d 19  insects VI  The s i g n i f i c a n c e o f the d i f f e r e n c e s between 0 and 7 2 hour l e v e l s ; t r a n s f e r t o Springhouse 6 water  VII  Comparison o f t h e magnitude  22 o f body  water and i o n i c changes; t r a n s f e r t o S p r i n g h o u s e ' 6 water VIII  Comparison o f t h e magnitude  22 o f body  water and i o n i c changes; t r a n s f e r t o 27  B o i t a n o water IX  Comparison o f t h e magnitude  o f body  water and i o n i c changes; t r a n s f e r t o Long water  . . . .•  27  viii Page X  • The s i g n i f i c a n c e o f t h e d i f f e r e n c e s between 0 a n d 6 h o u r l e v e l s ; t o GR  XI  30  water'  2  Comparison  of the magnitude  water and i o n i c GR XII  2  water.  changes; t r a n s f e r t o • 30  of the d i f f e r e n c e s  between t h e l e v e l s sodium,  reached  o f body-  . . . . . . . . . . .  Significances  sure,  transfer •  of osmotic  p o t a s s i u m , and  preschloride  i n s e v e n t y - t w o h o u r s by t h e 3^  two s p e c i e s . XIII XIV  Swelling  of transferred  The s i g n i f i c a n c e s o f t h e d i f f e r e n c e s between b l o o d transferred  XV  35  insects  Appearance  osmotic pressures of  and a c c l i m a t i z e d of alimentary  animals held  i n lake  insects  canal  water  Effect  containing 43  o f mouth c l o s u r e  o f haemolymph  sodium and c h l o r i d e a n d body XVII  Haemolymph  and t o t a l  of B o i t a n o £ . b i f i d a media.  39  of  amaranth XVI  . . . .  body  water  44  chloride  i n various  • -.„••  46  ix  Page XVIII  Haemolymph  sodium  and  w a t e r , and a p p e a r a n c e canal  i n absence  chloride, of  body  alimentary  of osmotic gradient  48  X  L I S T OF FIGURES Page Map  of" B r i t i s h  area Graph  Columbia showing  .•...-.....-..-.».••-.o f haemolymph  freezing  d e p r e s s i o n s a g a i n s t water point  study  point  freezing  depressions; acclimatized 18  insects Graph  o f p e r c e n t body w a t e r a n d  haemolymph potassium transfer  osmotic  p r e s s u r e , sodium,  and c h l o r i d e  t o Springhouse  G r a p h o f p e r c e n t body haemolymph potassium transfer  osmotic  6 water  21  w a t e r and  p r e s s u r e , sodium,  and c h l o r i d e a g a i n s t t i m e ; o f L o n g £ . e x p l e t a and B o i t a n o  bifida  Graph  a g a i n s t time;  o f Long £ . e x p l e t a and B o i t a n o  C.. b i f i d a  £•  Ik  t o B o i t a n o water  25  o f p e r c e n t body w a t e r and  haemolymph potassium transfer C. b i f i d a  osmotic  p r e s s u r e , sodium,  and c h l o r i d e  a g a i n s t time;  o f Long £ . e x p l e t a and B o i t a n o t o Long w a t e r  26  xi Page 6  Graph  of per cent  haemolymph  osmotic pressure,  potassium.and transfer £. 7  chloride  bifida  t o GR  2  of 72 or 6 hour  levels  g  Boitano, 33  water  of m o r t a l i t y  water f r e e z i n g Graph  potas-  o f £ . e x p l e t a and  i n Springhouse 6 ,  Long and GR Graph  time;  29  osmotic p r e s s u r e , sodium,  C. b i f i d a  9  against  water  s i u m , and c h l o r i d e  8  sodium,  o f Long £ . e x p l e t a and B o i t a n o  Comparison of  body w a t e r and  rates  point  against  depressions  of d i s t r i b u t i o n ,  36  per cent  body w a t e r , a n d haemolymph o s m o t i c pressure against  water osmotic  pressure; acclimatized insects 10  38  Areas of s i l v e r s t a i n i n g  Sketch of alimentary C. b i f i d a  transferred  . . . . . . .  e x p l e t a and £ . b i f i d a 11  and  .  of £ . ;  42  canal of  and £ . e x p l e t a  1)2  1  INTRODUCTION  A study of f a c t o r s range  of species requires  the animal's  biology.  restricting  examination  Macan  (1961)  the e c o l o g i c a l  of every aspect of  concludes  t h a t the  range, o f a s p e c i e s depends on i t s d i s p e r s i v e . a b i l i t i e s , i t s behaviour  p a t t e r n s and  i t s physiological  Much l i t e r a t u r e of C o r i x i d a e .  been o b s e r v e d 1939;  Macan,  corixids  flying  taking  them  There  select  (1951)  f o r an a v e r a g e  i s no e v i d e n c e  i n the  f o r ponds  (Williams, 1944; E l l i s o n , records suggest  that  bifida  1955,1960;  1964)  Saskatchewan  o f two  literature have  (Hungerford) Scudder,  distribution  (Hungerford,  1964).  1945).  Cenocorixa  1948;  C o n d u c t i v i t y measure-  of l a k e s i n the C a r i b o o r e g i o n of B r i t i s h  (Scudder,  that'  b e f o r e e n t r y as they  ( H u n g e r f o r d ) . has a more r e s t r i c t e d  Lansbury,  estimated  l a n d i n g on any s h i n y s u r f a c e a p p a r e n t l y m i s -  than C e n o c o r i x a  ments  (Hutchinson,-1933;  flight  water bodies  Distributional expleta  Popham  and have  and c o u l d f l y a maximum o f s i x t o n i n e m i l e s  on a w i n d l e s s d a y .  been o b s e r v e d  Richard, 1958)  d u r i n g t h e day  could maintain active  corixids  abilities  have been t a k e n a t n i g h t i n l i g h t  Popham, 1 9 5 2 ) .  three hours  that  d i s c u s s e s the - d i s p e r s i v e  (Brown, 1 9 5 4 ; ' L e s t o n , 1 9 5 4 ;  traps  and  Corixids  requirements.  Columbia  and c h e m i c a l a n a l y s e s o f l a k e s i n S o u t h e r n  (Rawson and Moore,  1944)  show C. e x p l e t a i s  2  found  in higher s a l i n i t i e s (1948)  Lindberg and  found  a distribution  (1937)  Claus  performed  than £ .  sampled C o r i x i d a e i n t h e apparently correlated  laboratory  water s p e c i e s S i g a r a fossarum ( F i e b e r ) and internal  claimed that  mileau  i n high  Similar indicated  that  while saline  Similarly, (Leach)  .1961  adapted  ( B e a d l e and a & b,  waters  fresh-  distincta  to r e g u l a t e t h e i r  of  insects  Larvae  lutaria  have fresh-  of Aedes water,  i n c a p a b l e of l i v i n g 1951,  1953  (L.),'Anabola  (Curtis)  occur  a &  1933,  b;  nervosa  i n freshwater, while  are those  i n mixohaline  a, b & c j  Shaw, 1 9 5 5  in  1938).  i n and  ( C u r t i s ) are able to l i v e  Shaw, 1 9 5 0 ;  to  to mixohaline  Wigglesworth,  to l i f e  Sutcliffe,  1962).  solutions  to r e l a t e This  on  salinity  containing-a single  contain a mixture  difficult  water.  Ramsay, 1 9 5 0 ,  stigma  Most e x p e r i m e n t s have used  salinity.  on t h e  Sigara  groups  are adapted  1954;  of S i a l i s  Limnephilu.s a f f i n u s  water  i n and  Limnephileus  physiologically of  several  others to saline  Treherne,  larvae  and  on  (Beadle, 1939;  1959;  with  salinities.  of Aedes a e g y p t l (L.) a r e  water  Stobbart,  ( L e a c h ) and  t h e y were u n a b l e  studies  (Edw.) o c c u r  those  experiments  Baltic  some s p e c i e s a r e a p p a r e n t l y a d a p t e d  water c o n d i t i o n s ; detritus  bifida.  o f many s a l t s ,  t o l e r a n c e of salt.  d e s c r i b e s an  natural  these s t u d i e s  t o the e c o l o g y of the  thesis  As  insects  are  insects.  examination  of the  salinity  3 relations Cenocorixa  o f two  which a r e not a l i k e  with  species  to survive  t h e two  of  Corixidae, These  have  and w h i c h a p p e a r t o be  s a l i n i t y (Scudder, 1 9 6 4 ) .  t o d e t e r m i n e whether ability  related  b i f i d a and C e n o c o r i x a e x p l e t a .  distributions correlated  closely  species  I t i s an a t t e m p t  differ in their  i n n a t u r a l water of v a r y i n g s a l i n i t y .  4  MATERIALS -•• - • -  • Adult  Cenocorixa  expleta  lakes  at  were t r a n s p o r t e d  water  this  ments were p e r f o r m e d In t r a n s f e r from  of B r i t i s h  t o Vancouver  o c c u r on d i s p e r s a l . f o r attachment. natural  experiments,  trays  Animals  were removed  transfer  into 3000  containing  simulated natural  from  one  conditions  were g i v e n p l a n t  which  material  were d e s i g n a t e d S p r i n g White,  of the osmotic g r a d i e n t  s u c r o s e t o some w a t e r s . salt  experi-  The e x p e r i m e n t a l media c o n s i s t e d o f  The i m p o r t a n c e  artificial  performed  n e t and put d i r e c t l y  lake waters: these waters  by a d d i n g :  were  insects  house 6 , W e s t w i c k , B o i t a n o , Box 2 0 - 2 1 , GR2.  thermos  in 1963.  covered, p l e x i g l a s s  to another  in gallon  E x c e p t where s p e c i f i e d ,  ml o f e x p e r i m e n t a l m e d i a : t h e d i r e c t l a k e water  Columbia.  A l l experiments  t h e a q u a r i a w i t h a gauze  3 0 x 2 4 | cm,  from  l°c. i n aquaria c o n t a i n i n g the  and d e b r i s .  temperature.  :  ( H u n g e r f o r d ) and  ( H u n g e r f o r d ) were c o l l e c t e d  and h e ] d a t 12 ±  flasks lake  Cenocorixa"bifida  i n the Cariboo region  Insects  -  solutions  were u s e d .  Long, was  In a d d i t i o n , (Table  and  studied three  I)  METHODS Obtaining  t h e Haemolymph Animals  were t a k e n f r o m  t h e e x p e r i m e n t a l media  5 and  surface  w a t e r removed  Kleenex t i s s u e .  Haemolymph was o b t a i n e d  wings on one s i d e •on  t u b e o r a lambda  ber  of Jones  eight  capillaries  1  samples  capillary  melting  point  ) i n 1 mm  (c.l  were s e a l e d  with  Seal-Ease  The m e l t i n g  points  A l l r u n s were made i n d u p l i -  per run.  t o check s e a s o n a l  (1941)  Experiments  variation  during  were  May t o S e p t e m -  1963.  analyze  a  were measured by  on d r y i c e .  immediately.  :  A Zeiss  and  depressions  capillaries  and q u i c k l y f r o z e n  repeated  was t a k e n up w i t h  Individual"haemolymph  were d e t e r m i n e d cate,  point  modification  (O.D.) c o l l e c t i n g putty  and t h i s  formed  o f Haemolymph  (1954)  method.  by d e t a c h i n g t h e  pipette.  Freezing Gross'  piece of  of the a n i m a l : a drop of blood  t h e waxy c u t i c l e  Analysis  by p l a c i n g on a c l e a n  PF5 f l a m e  p h o t o m e t e r was u s e d t o  sodium and p o t a s s i u m .  measured  in self-filling  lambda o f b l o o d  were added  Haemolymph was t e n lambda  collected  pipettes.  t o t e n ml o f g l a s s  Ten  distilled  w a t e r f o r s o d i u m measurements, a n d t w e n t y lambda t o two ml f o r ' p o t a s s i u m measurements, haemolymph f r o m insects  being  pooled  to obtain accurately  amounts o f s o d i u m a n d p o t a s s i u m . ference  o f sodium with  potassium  were made i n t r i p l i c a t e ;  measurable  Correction was made.  e a c h measurement  several  for interA l l samples  in duplicate.  6  Chloride  was  measured w i t h a B u c h l e r  chloridometer.  Fifteen  in  lambda p i p e t t e s  five  and  ten  0.1  N HNO3 /  in  triplicate  variation Analysis  10$ and  was  analyzed  larger  stored  Analysis  firm,  cation  of  seasonal  polyethy-  analysis.  Water  sodium, potassium, was  the  haemolymph  Complete a n a l y s i s  Coast E l d r i d g e .  body c h l o r i d e . by  a Buchler Cotlove preparing  the  digestion  method.  and except was 2)  (Table  The  using  especially  Croghan  by  modifi-  water e x t r a c t i o n  method.  chloride  c h e c k was  Cotlove's  (1963  a,b)  different  The  staining  (1958)  was  silver  used t o  cuticle.  by  alkaline  method.  basic  with  made  water e x t r a c t i o n  permeable a r e a s of  Kodak D - l l .  A  r e s u l t s were n o t  the  chloride  (unpublished)  chloridometer.  Permeability. technique of  a,b)  body  were a n a l y z e d " f o r  solutions  obtained  Total  Dehnel's  (1963  Cotlove's  resulting solutions  was  check  taken  o f Whole A n i m a l  s a m p l e s were p r e p a r e d  used  until  point,  same manner as  commercial  Total  those  12°C.  at  for melting  i n the  a  to  of  1963.  t o September  volumes were a v a i l a b l e .  done by  The  A l l samples were  w a t e r samples were c o l l e c t e d i n  b o t t l e s and  chloride  taken  were added t o 2 m l .  experiments repeated May  samples  Water  All lene  t w e n t y lambda  acetic acid.  during of  or  Cotlov  from  demonstrate The  developer  7 Drinking. closed  with  of the  v a r n i s h was  mouths o f some i n s e c t s were  a drop of Cutex n a i l  Waxes were t r i e d were p e n e t r a t e d as  The  checked at  but by  the  floating  the  varnish. time of  The  sampling.  r e s u l t e d and  stylets.  persistence  plugs  Haemolymph was  often analyzed  above.  dissolved  Sixty milligrams  of amaranth  i n 200  experimental  ml  of the  w i t h mouths open o r c l o s e d were p l a c e d known p e r i o d s . (Hale,  1958)  Insects  and  the  Mortality. m e n t a l media and intervals. could  be  the  of  canal  e x p e r i m e n t and  were  Insects media f o r  insect  saline  t o show  dye.  Insects  were t r a n s f e r r e d t o e x p e r i -  dead r e c o r d e d  upon m e c h a n i c a l  (number o f days f o r 5 0 $  i n these  sketched  and  A n i m a l s were presumed dead  detected  media.  were d i s s e c t e d u n d e r  alimentary  d i s t e n s i o n arid p r e s e n c e  ( a z o r u b i n S)  the  i f no  daily  movements  stimulation.  t o d i e ) was  compared w i t h  removed a t  50  L.D.  c a l c u l a t e d f o r each  appropriate  control.  Calculations The ion  relative  concentrations  o f volumes  (0  and  72  hours).  o f w a t e r movements on  were e s t i m a t e d 72  of sodium, potassium and  effects  hrs)  t o the  by  comparing  ratio  of  the  ratio  concentrations  o r c h l o r i d e i n t h e haemolymph  Examples:  the  (0  8  VoTumeo \ Volume y  Concentrationy? Concentration  when d e c r e a s e i n i o n c o n c e n t r a t i o n i s due t o i o n l o s s as w e l l as d i l u t i o n .  Volumen / Volumeyo  Concentration,-,^ Concentration^  when i n c r e a s e i n i o n c o n c e n t r a t i o n i s due t o i o n  2  n  '  g a i n as w e l l  The  volume  for  haemolymph volume was a n o v e r e s t i m a t e  based  the e x t r a c e l l u l a r  blood  weight water  2  method  i n the present  weight.  (Beard,  animals  The e s t i m a t e  Assume t h a t  large.  L e t the blood  weight  and t h e a c t u a l  was a r o u n d  t h e volume e s t i m a t e  transferred  volume r a t i o  differ  from  Estimate: Volumen ^ Volume^"  The a v e r a g e  body  volume may t h e r e f o r e as the a c t u a l i s three  times t o o  volume 2 5 $ o f t h e body w e i g h t .  t o Springhouse  will  o f t h e body  be 7 3 $ o f t h e body  volume e s t i m a t e blood  (Munson  7 0 $ o f t h e body  times as l a r g e  a 5 $ change i n t h e body w e i g h t is  1949).  estim-  (Newm.) l a r v a e ,  t o be 5 0 . 8 $  for extracellular  have been a s much a s t h r e e volume.  by a dye method  .japonica  volume' h a s been e s t i m a t e d  by t h e M n C l  In P e r i p l a n e t a  ( b l o o d ) volume h a s been  and Y e a g e r , 1 9 ^ 9 ) a n d i n P o p i l l i a the  b e c a u s e i t was  body w a t e r m e a s u r e m e n t s .  t o be 1 9 . 5 $ o f t h e body w e i g h t  ated  loss.  o f haemolymph was n o t d e t e r m i n e d a n d t h e e s t i m a t e  on p e r c e n t a g e  sp. a d u l t ,  as water  If  o c c u r s a s when L o n g £ . e x p l e t a 6 water, the estimate the a c t u a l  ratio  of the  as f o l l o w s :  Actual: 1.3813 T33T+-.348*-  o .. n  a  0  Volumen = Volume 7 2  - . 7 2 T W ^ . I S A n  i f o n l y h a l f o f t h e water g a i n e d e n t e r e d t h e haemolymph.  9 The in  estimate the  volume r a t i o was  c a s e o f w a t e r g a i n and  "water l o s s . the  of the  Ion  volume and  gain"or  loss  concentration  therefore  too  small  was  not  ratios  i n the  too case  postulated  differed  large of  unless  considerably.  Statistics As and  the  the  sample s i z e s  Whitney U t e s t where n e c e s s a r y plotted felt  population  on  was  often  used  (Siegel,  g r a p h s and  a statistical  distributions s m a l l , the  n o n p a r a m e t r i c Mann-"  t o show s i g n i f i c a n c e 1956).  would be  of  results  Ranges o f r e a d i n g s  where n o " o v e r l a p  test  were unknown  occurred  redundant".  it  were was'  TABLE I Solution  A  B  Freezing Point Depress. °C.  .60  .61  media u s e d .  Artificial Na mM/1.  K mM/l.  ( A l l c o n t a i n some s u c r o s e t o a d j u s t the osmotic pressure.)  mM/1.  mM/1.  NO3 mM/l.  11.0  53.  0  Nearly iso-osmotic to B o i t a n o £,. b i f i d a . CI e q u a l t o Long w a t e r .  51.9  20  0  Nearly iso-osmotic to Boitano £ . b i f i d a . CI e q u a l t o GR water.  CI  S04  0  117.  91.8  0  Description  2  C  .82  129.9  0  51.9  39  0  Nearly iso-osmotic to • Long £ . e x p l e t a . C. equal GR water. 2  1.88  D  .63  42.19  2.85  'E  .63  .17  .07  .01  F  .81  42.19  2.85  1.88  G  .81  .17  .07  .01  10.11  .05  10.11  .05  .013  Ionic concentrations — same a s B o i t a n o . I s o osmotic t o Boitano C. bifida. r  .005  Ionic concentrations same a s S p r i n g h o u s e 6. Iso-osmotic t o Boitano £. b i f i d a .  .013  Ionic concentrations — same a s B o i t a n o . I s o o s m o t i c t o Long £ . expleta.  .005  Ionic concentrations same a s S p r i n g h o u s e 6 . Iso--osmotic t o Long £ . expleta.  !  o  11  RESULTS D i s t r i b u t i o n and I n t e r n a l Environment Under N a t u r a l Conditions. . The  s t u d y a r e a i s shown i n F i g u r e 1.  Three  sub-  a r e a s a r e d e s i g n a t e d A, B, and C; A b e i n g s e p a r a t e d from B . by the F r a s e r R i v e r w h i l e C i s f u r t h e r s o u t h .  The e l e -  v a t i o n i n a l l t h r e e areas i s about 91^ meters. and  i o n p r o p o r t i o n s v a r y more w i t h i n subareas  subareas.  The  range of s a l i n i t i e s  Salinities than between  (.56-426.04 mM/1.  NaCl)  w i t h i n the s t u d y a r e a p r e s e n t a g r a d i e n t e x t e n d i n g t o a s a l i n i t y e q u i v a l e n t t o 77 per cent sea water.  Sulfate  u s u a l l y i s i n g r e a t e r and c h l o r i d e i n l e s s e r p r o p o r t i o n than i n sea water, and some of the l a k e s i n subarea A have a g r e a t e r amount of magnesium than would an e q u i v a l e n t concent r a t i o n of sea  water.  A comparison  was made between the h a b i t a t s of  C e n o c o r i x a b i f i d a and C e n o c o r i x a e x p l e t a . shown i n T a b l e s I I and I I I .  The  C. e x p l e t a occurs o n l y i n the  more s a l i n e l a k e s ; £. b i f i d a o c c u r s throughout s a l i n i t i e s b e i n g absent  d e t a i l s are  i n 1963  the range of  o n l y from the two most s a l i n e  l a k e s , Long and GR*2 ( T a b l e I I ) . Of the i o n s s t u d i e d , the d i s t r i b u t i o n s appear t o be c o r r e l a t e d o n l y w i t h sodium and chloride.  C. e x p l e t a however, does not o c c u r i n a r e a A  i s absent from B o i t a n o which  i s h i g h i n sodium.  were more s a l i n e i n September 1963  than i n May  d i s t r i b u t i o n boundaries d i d not change.  The 1963  and  lakes but the  Long Lake was much  12 less  saline  present  i n May  1964  f o r the f i r s t  o f t h e haemolymph  i n t h e i r " n a t u r a l water.  also  included ( J a r i a l ,  lated  of the f r e e z i n g  t h e haemolymph same l e v e l .25°C.  data  of £ . b i f i d a  lower  the  0.33  i s maintained  pressure  higher  t o 0.46°C.  o f t h e haemolymph  a t roughly the  point  Only  freezing  Box. 4 .  In both  bifida cases  0.67°C,  was  The o s m o t i c  point  pres-  at . depresi n water  0.80°c.  difference  was f o u n d  between t h e  p o i n t s o f m a l e s and f e m a l e s .  ( M a y - S e p t . 1963)  point  two s p e c i m e n s o f £ .  for analysis.  e x p l e t a and B o i t a n o £ . b i f i d a  season  depression  i n water of f r e e z i n g  i n water of f r e e z i n g  No s i g n i f i c a n t  .06 to  of £. b i f i d a i s  of £ . expleta i s maintained  point depression  calcu-  pressure of  t o 0.46°C. b u t i n c r e a s e s s i g n i f i c a n t l y  freezing  haemolymph  as  point depressions  t o t h a t of i n s e c t s from  sions 0.33  £.  that the osmotic  i n water o f f r e e z i n g  r o u g h l y t h e same l e v e l  of  body w a t e r i s  freezing, p o i n t d e p r e s s i o n of the blood  sure  ••  test.  Long Lake were a v a i l a b l e  identical  and  Table V gives the s i g n i f i -  osmotic  0 . 0 1 ° C . and s i g n i f i c a n t l y depressions  was  point  from  point depression results,  indicate  The haemolymph  taken  The p e r c e n t  i n water of f r e e z i n g  significantly  from  of animals  1964).  by t h e Mann-Whitney U The  and £ . b i f i d a  time.  held  cances  1963  i n May  IV. and F i g u r e 2 g i v e t h e f r e e z i n g  Table depressions  than  were a v a i l a b l e  f o r checks  on s e a s o n a l  Only  Long  throughout  a  v a r i a t i o n and  13 no  seasonal  variation  c o u l d be d e t e c t e d  lations.  The haemolymph  C.  differed  bifida  osmotic  pressure  o f Box  popu20-21  c o n s i d e r a b l y between 1962 and 1964  did  the s a l i n i t y of the water.  all  i n s e c t s taken  significantly  i n these  The p e r c e n t  as  body w a t e r o f  f r o m n a t u r a l l a k e media do n o t d i f f e r  (Jarial,  1964).  14 a  Figure  1  Map o f B r i t i s h area.  Columbia  showing  Symbols:  Subareas  A B C  study  Table  II  Distribution  Name o f Lake  GR2 Long Box 4 White Box 2 0 - 2 1 Boitano Rush Nr. Op.4 Box 89 Rock Sorenson GRi Westwick' Spr. 4 Spr. 3 Spr. 2 Westwick 4 Nr. Op. C r . Box 17 Op. 4 Westwick 6 Willow Spr. 5 Racetrack Westwick 5 Nr. Rock Spr. 6 Crescent Op. Rock Box 1 6 Westwick 2 Westwick 1 B o i t a n o PH Spr. 1 Westwick 3 Op. C r e s c e n t Box 27  Subarea C C B C B A A B B B A C A A A A A B B B A A A B A B A B B B A A A A A B B  and i o n i c  composition  Conductivity micromhos/cm May/63 Sept/64 50,000 37,500 20,000 29,000 12,000 14,000 7,500 9,000 8,500. 5,750 4,500 9,000 3,300 4,000 3,200 3,700 1,600 1,850 1,800 1,500 1,500 1,550 1,300 1,450 1,250 1,900 1,250 1,050 1,650 1,000 820 1,100 800 900 800 850 700 800 620 1,070 600 750 500 650 450 500 1,050 425 650 425 300 280 270 240 280 230 250 200 270 180 230 150 135 110 80 83 60 75  SOh mM/1 13.52 80.60 11.23 1.20 .06 10.11 5.07 5.53 .38 .07 1.20 .32 ."18 .08 .03 .09 .02 .24 .03 .05 .02 .08 .02 .04 .02 .02 .05 .02 .02 .02 .02 .02 .04 .02 .03 .02 0  o f l a k e water i n 1 9 6 3 .  N04 mM/L .012 .005 .012 .002 .005 ' .013 .019 .005 .006 .004 .003 .004 .006 .005 .005 .005 .006 .004 .005 .003 .010 .005 .003 .013 .003 .004 .005 .006 .002 .003 .005 .006 .005 .004 .004 .019 .004  Na mM/1 717.75 242.73 105.27 31.75 29.14 42.19 16.53 10.00 3.52 6.96 2.17 5.65 3.48 .87 .43 1.00 1.17 1.43 1.57 1.52 1.52 1.00 .17 1.35 .48 .22 .17 .91 .03 .20 .12 .08 .06 .25 .07 .01 .01  K mM/1  CI mM/1  10.24 10.24 8.11 .39 1.53 2.85 1.08 .75 .42 .42 .32 .28 .50 .09 .06 .10 .07 .21 .25 .19 .12 .16 .04 .15 .04 .09 .07 .12 .04 .12 .13 .10 .06 .02 .16 .03 .02  51.90 11.11 11.18 3.47 6.31 1.88 • 74 1.35 .34 .46 trace trace trace 0.00 0.00 0.00 trace trace trace 0.00 trace 0.00 0.00 trace 0.00 trace 0.00 trace 0.00 0.00 trace 0.00 trace 0.00 trace 0.00 trace  Species C. _C. expleta bifida X X X X  X X X X X X X X X X X X  X X  X  x  X  X X  X  Table  C o m m e r c i a l w a t e r a n a l y s i s (May 1964) o f samples t a k e n i n 1963 and 1963 samples had been s t o r e d a t room t e m p e r a t u r e f o r f o u r months.  III  Name o f Sub- Samp- ConducCa Lake area l i n g t i v i t y nM/ date micromhos/cm  1  GR2 Long Box 4 White Box 2 0 - 2 1 Boitano Westwick Box 17 Spr. 6  1  First  C C C C B C B A A A B A A  record  1963 1964 1963 1964 1964 1964 1964 1963 1964 1964 1964 1963 1964  38,000 25,400 21,500 14,800 9,200 6,500 6,800 4,980 4,7^0 1,740 940 830 310  from Long  1.28 .04 1.28 .36 1.08 .30 .54 .68 .73 1.11 1.08 2.84 .73  Lake  Mg mM/l  Na mM/l  3.^2 2.67 13.17 10.09 2.04 9.12 .3.1»4 10.76 8.74 15.14 5.76 6.55 1.55  591.6 406.7 296.7 182.7 113.1 66.1 66.1 36.4 36.4 4.2 4.2 .95 .81  K mM/l  Fe mM/l  SiOp mM/I  22.9 12.4 21.5 12.7 10.5 4.7 3.2 4.0 3.2 •9 .86 .2 .09  .004 .005 .006 .004 .006 .003 .006 .003 .003 .003 .003 .003 .003  .039 .022 .032 .054 .119 .022 .097 .054 .076 .086 .112 .086 .047  SO4 mM/l  20.51 11.50 106.08 62.19 22.11 5-35 12.19 16.89 16.54 4.24 .05 .005 .05  CI mM/l  86.29 80.93 21.85 17.51 14.83 7.92 9.84 5.13 4.34 .97 14.83 .76 .62  NOo mM/l  .058 .019 .058 .010 .058 .051 .013 .013 .010 .010 .019 .097 .026  1964.  PO* mM/l  .021 .063 trace .126 .037 trace trace .022 .014 .021 .025 trace .019  Species 0.e_. £._b.  X X  X  X  X  X  X  X  X X X X X X X  1  17  Table  IV  B l o o d o s m o t i c p r e s s u r e s and p e r c e n t of a c c l i m a t i z e d i n s e c t s .  water  Population  Sampling Date o f B l o o d Si Water'  BloodFreezing P t . Depress i o n °C  Spr. 6 C. b i f i d a  v. 1 9 6 3 .  .57(7)  .01  69.65 i . 4  Westwick £. bifida  v i i . 1962  .63(18)  .06  68.00A  Boitano C. b i f i d a  V.-VIII. -I-962 & V.-VII; 1962  .63(43)  .24. .27  71.28  Box 2 0 - 2 1 £. bifida  v i i . 1962  .59(15) .67(14)  .25 .33  V..1964  White C. b i f i d a .  V.  1964  Box 4 £. b i f i d a  V.  1964  Long £. b i f i d a  V.  1964  Box 2 0 - 2 1 £. expleta  V.  1964  White £.  vii.  1962  .67(9) .67(13) .67(2) .64(1) .69(22)  WaterFreezi n g Pt-. Depress i o n °C  body  .35  .46  Per Cent Body Water * S.E.  68.21i.76 6 9 . 8 9 i . 81 6 9 . 8 9 i , .4  .63 • 33 .37  71.94  expleta 1964  Box 4  V.  £.  V.-VIII. -1-962 & V.-VII. 1963  expleta  Long C. e x p l e t a  .65(6) .80(43)  .46 .81  .6  71.81  18 a Figure  2  Graph  o f Haemolymph f r e e z i n g  against  water f r e e z i n g  acclimatized  point  point  depressions  depressions;  insects.  Symbols: £•  C.  expleta acclimatized  •  acclimatized  •  bifida  WATER  DEPRESSION  OF FREEZING POINT  G°  Table V  Significance acclimatized Populations  Long-C.  expleta  1962-T963  of the d i f f e r e n c e insects.  Compared  U«  4 C.  expleta  ^.00003  Significant  Box  bifida  77.5  4.9  ^.00003  Significant  599.5  5.5  ^.00003  Significant  4 C.  Box  1964  4 C.  bifida  W h i t e C.  expleta  W h i t e C.  bifida  Box 2 0 - 2 1 C. JiLEIda.- 19^4 Box 2 0 - 2 1 C. bifida  C.  bifida  2 0 - 2 1 C. bifida 195*2  1964  Box 2 0 - 2 1  1963  6 C.  bifida  bifida  22.5  17 2.1  106.5  .05  n.s.d-.  .0179  n.s.d.  lb.5  12  .05  n.s.d.  31.5  21  .05  ri. s. d.  16.0  19  .025  n.s.d.  3.9  .00005  Significant  l.bl  .0551  n.s.d.  33  C. 19^2  314.5  Westwick C. bifida 1962  136.5  88  7  .05  n.s.d.  32  28  7* . 0 5  n.s.d.  22.5  24  .01  Spr. 6 bifida Spr.  19^2  W h i t e C. bifida  Box  Significance  6.3  1964  1962-1961  P(U)  927.5  1962  Boitano  C r i t i c a l. z U  of  expleta  1962  Box 2 0 - 2 1 C. bifida ig'Ek 1964  osmotic pressures  W h i t e C.  1964  Box  between b l o o d  C. 1963  W e s t w i c k C. bifida 1^62  Significant  20 Changes Waters  i n I n t e r n a l Environment Boitano Cenocorixa  expleta  were t r a n s f e r r e d  L o n g , and 72  and II  GR2  Lakes.  and  I I I g i v e the  the changes  species  on  osmotic  to the  6 hours  between 0 and  Long  ionic  compositions hours  Cenocorixa  1  blood.  hour  Boitano,  of these  lakes 6.  i n Springhouse  6 water,  48,  Tables  2  (1963).  Figure 3 of the  two  a l a k e hypo-  Changes i n b l o o d  T a b l e V I g i v e s the s i g n i f i c a n c e 72  6,  o f GR .  i n t h e haemolymph c o m p o s i t i o n s  insects  Lake  sampled a t 0 , , 2 4 ,  i n the case  t r a n s f e r t o Springhouse  o c c u r r e d and  and  t o w a t e r from S p r i n g h o u s e  Changes o v e r 72 gives  bifIda  Haemolymph was  o r 0 and  hours,  Upon T r a n s f e r t o O t h e r  of  composition differences  v a l u e s where o v e r l a p p i n g o f  ranges  occurred. Results and  the osmotic  levels  decrease  6 water.  show t h a t  p r e s s u r e and i n both  In £ .  and  but  expleta dilution  chloride  evident.  £.  chloride,  the r e l a t i v e  as  bifida  levels  the  c o u l d be  cannot  and  to  least.  C.  than expected  losses  bifida  from  the  due  chloride  Springhouse ionic  i n sodium,  to d i l u t i o n f o r the  potassium,  and  large  alone, fall  sodium, and  b e i n g p o t a s s i u m , . g r e a t e s t and  appears  fall  small f a l l  account  expleta apparently loses  the magnitude of the  less  sodium, potassium,  s p e c i e s upon t r a n s f e r  potassium  chloride  p e r c e n t body w a t e r i n c r e a s e s  T a b l e V I I compares t h e m a g n i t u d e s o f t h e  body w a t e r c h a n g e s .  in £.  the  t o have t a k e n  in chloride  up  chloride  concentration i s  i n c r e a s e i n body  water.  21  a  Figure 3  Graph of per cent body water and haemolymph osmotic p r e s s u r e , sodium, potassium and  chloride  a g a i n s t t i m e ; t r a n s f e r of Long £. e x p l e t a and B o i t a n o £. b i f i d a t o Springhouse 6 water. • Symbols: £. e x p l e t a  £.  acclimatized  •  transferred  o  bifida acclimatized  •  transferred  O  H A E M O L Y M P H  O  M I L L I M O L E S / L  ^  O  P E R C E N T  22 Table VI  The s i g n i f i c a n c e o f t h e d i f f e r e n c e s between 0 a n d 72 h o u r l e v e l s ; t r a n s f e r t o S p r i n g h o u s e 6 w a t e r .  P(U)  U  Population  Values Compared  Boitano C. b i f i d a  Osmotic 175 Pressure: 0 & 72 h r .  2.88  0 & 72  7.01  CI: hr.  1.5  Osmotic 765.5 Pressure: 0 & 72 h r .  Long £• expleta  Significance  .006  Significant  .OL^p^.019  Significant  .0003  Significant  Table V I I  C o m p a r i s o n o f t h e magnitude o f body w a t e r and i o n i c changes; t r a n s f e r t o Springhouse 6 water.  Population  I o n Volumeo/Volume-^  Boitano C. b i f i d a  Na K  .78 .78  .81 .71  Long C. e x p l e t a  Na K CI  .80 .80 .80  .54  ConcentrationY2/Concentration  .25 .64  0  23 Changes o v e r 72 h o u r s i n B o i t a n o . the  composition  o f t h e haemolymph o f B o i t a n o £ . b i f i d a  Long £ . e x p l e t a upon t r a n s f e r £• same l e v e l s cent  bifida  maintains  i t s internal milieu  and  chloride  £ . e x p l e t a the f a l l  could  be due  potassium  Springhouse s o d i u m and  levels  of. i o n i c  decrease.  tudes rise  as b e f o r e t r a n s f e r  levels  of the i o n i c i n the l e v e l s  alone.  As i n than of  Figure 5 gives  but i n £ . b i f i d a  level  increase.  water l o s s a l o n e .  is  g a i n e d and  loss  magni-  In £ . b i f i d a  the  seem n o t t o be  R e l a t i v e l y more p o t a s s i u m  This chloride  the per cent  IX compares t h e  potassium  there i s i n d i c a t i o n  a t the  d e c r e a s e , w h i l e .the sodium  Table  o f s o d i u m and  and  water.  i t s internal milieu  and body w a t e r c h a n g e s .  to  water l o s s .  t o Long Lake  expleta maintains  potassium  level  o f t h e haemolymph o f B o i t a n o £ . b i f i d a  body w a t e r a n d t h e c h l o r i d e and  chloride  in £. expleta.  Long £ . e x p l e t a upon t r a n s f e r  same l e v e l s  changes.  of potassium  Changes o v e r 72 h o u r s i n L o n g .  £•  Table V I I I  i n the  to dilution  6 there i s a greater loss  the composition  a t the  o f sodium and  a l o n e , but t h e f a l l  seems n o t t o be due  chloride  Lake.  p r e s s u r e and  and .body w a t e r  i n the l e v e l s  to d i l u t i o n  and  but i n C.. e x p l e t a t h e p e r  body w a t e r i n c r e a s e s and t h e o s m o t i c  compares t h e m a g n i t u d e s  of  t o water from B o i t a n o  as b e f o r e t r a n s f e r ,  sodium, potassium  In  Figure 4 gives  of c h l o r i d e  than  sodium  l o s s as w e l l  i s u n e x p e c t e d a s Long  due  Lake  as  24 w a t e r c o n t a i n s more c h l o r i d e (Table  I).  t h a n does B o i t a n o Lake  water  25 a Figure  4  Graph  of per cent  body  osmotic  pressure,  against  time; t r a n s f e r  Boitano £. b i f i d a  w a t e r and  haemolymph  s o d i u m , p o t a s s i u m and of Long £ . e x p l e t a  to Boitano  water.  Symbols: £.  £.  expleta . acclimatized  •  transferred  •  bifida. acclimatized  •  transferred  O  chloride and  C.  C.  BIFIDA  TIME  IN  HOURS  TIME  EXPLETA  IN  HOURS  26 a Figure  5  Graph  of per cent  body w a t e r and  osmotic  pressure,  against  time; t r a n s f e r  haemolymph  s o d i u m , p o t a s s i u m and  Boitano £. expleta  o f Long £ . e x p l e t a  t o Long  water.  Symbols: £.  £.  expleta acclimatized  •  transferred  q  bifida acclimatized  #  transferred  O  chloride and  P E R C E N T  27 Table VIII  Population  C o m p a r i s o n o f t h e m a g n i t u d e o f body w a t e r and i o n i c changes; t r a n s f e r t o B o i t a n o water. I o n Volumen/Volumeyg  Long Na C. e x p l e t a K  Table  IX  .79 .79  Concentration^/Coflcentrationp .78 .29  C o m p a r i s o n o f t h e m a g n i t u d e o f body w a t e r and c h a n g e s ; t r a n s f e r t o Long w a t e r .  Population  Ion V o l u m e o / V o l u m e ^  Boitano C. b i f i d a  Na K Cl  1.26 1.26 1.26  ionic  Concentrationyg/Concentrationn  1.63 2.26 .61  28 Changes o v e r 6 h o u r s the  changes  species the  on  i n the  t r a n s f e r t o GRg  insects  occurred gives  blood.  1  and  the  Marked c h a n g e s  where o v e r l a p p i n g results  chloride levels  pressure, XI  s o d i u m and  account  f o r the  increase  expleta  the  increase  water l o s s .  and  £.  6  the  In  both  would be  centration  of  Long w a t e r . ) is  u n e x p e c t e d as  do  Long and  GR  Boitano  percent  2  i n GR i n the  lake waters  ionic  water  osmotic  body  cannot  but be  in £. due  does n o t  to increase  amount o f w a t e r be  lost.  is similar  water c o n t a i n s  and  significantly.  could  chloride level  (Table I ) .  the  and  level,  potassium  from the  2  while  l o s s o f water  sodium  the  body w a t e r  increase  the  some p o t a s s i u m may  fall  occurred.  sodium l e v e l  species  potassium The  the  expected  i t appears that  s i x hours.  levels  i n the  i n the  blood,composition  significantly  bifida  to  d i f f e r e n c e s between 0 and  potassium  In  two  X  show t h a t  water changes.  the  Table  compares t h e m a g n i t u d e s o f  as much a s  in  of ranges  decrease  of  gives  lake hyper-osmotic  many i n s e c t s d i e d w i t h i n  The  Table  water, a  6  Figure  2  composition  s i g n i f i c a n c e of t h e  hour v a l u e s  the  haemolymph  i n GR .  (The  lost con-  to that  i n both  in  species  more c h l o r i d e t h a n  29 a Figure  6  Graph o f p e r c e n t  body  w a t e r and  haemolymph  osmotic  p r e s s u r e , s o d i u m , p o t a s s i u m , and  against  time; t r a n s f e r  Boitano £. b i f i d a  o f Long £ . e x p l e t a  t o GRg  water.  Symbols: £.  £.  expleta acclimatized  •  transferred  D  bifida acclimatized  •  transferred  O  chloride and  C.  BIFIDA  TIME  IN  HOURS  30 Table X  The s i g n i f i c a n c e of. t h e d i f f e r e n c e s between 6 h o u r l e v e l s ; t r a n s f e r t o GR water.  0 and  2  Values P o p u l a t i o n compared L o n g C. explefa  Table XI  u  Osmotic Pressure: 0 & 6 hr.  5-5  2  p  6.48  , . ( )  Significances  u  .0003  C o m p a r i s o n o f t h e m a g n i t u d e o f body c h a n g e s ; t r a n s f e r t o GR water.  Significant  w a t e r and  ionic  2  Population  I o n VolumenyVolumeg  Concentrationg/Concentrationo  Boitano C. b i f i d a  Na K CI  1.23 1.23 1.23  1.65 1.02 .78  Na Long C. e x p l e t a K CI  1.35 1.35 1.35  1.30 1.11 .63  31 C o m p a r i s o n o f t h e 72 7  g i v e s the composition  species after and  gives  and  after  the s i g n i f i c a n c e s  levels  reached  occurred  i n the  (calculated  osmotic  lower  potassium  i n GRg  t h e Mann-Whitney U  expleta are while  6 the osmotic  chloride  of £ .  Table  between  XII  the  test).  significantly chloride  hypo-  and  Long £ .  p r e s s u r e and  the  c o n c e n t r a t i o n s of £ . e x p l e t a  bifida  p r e s s u r e and  sodium and  Boitano,  6 l a k e water a r e  but  o n l y the sodium  concentrations are s i g n i f i c a n t l y osmotic  two  s p e c i e s where o v e r l a p p i n g r a n g e s  Springhouse  and  Figure  6,  Lake.  of the d i f f e r e n c e s  by  than- t h o s e  B o i t a n o the  bifida  of the  i n Springhouse  s i x hours  In S p r i n g h o u s e  sodium., p o t a s s i u m ,  °f £ •  results.  t o t h e b l o o d o f b o t h B o i t a n o jC. b i f i d a  expleta.  are  hours  two  B o i t a n o and  6 hour  o f t h e haemolymph  seventy-two  Long Lakes  and  lower.  and  In  potassium c o n c e n t r a t i o n s lower  than  those  of £ .  c o n c e n t r a t i o n s do n o t  differ  significantly.. Long Lake w a t e r Boitano £. Long £ .  bifida  expleta.  s u r e does n o t although £. sodium and lower  level  and  i s hyper-osmotic  nearly  i s o - o s m o t i c t o the b l o o d  I n Long w a t e r t h e haemolymph o s m o t i c  differ significantly  between t h e two  expleta maintains s i g n i f i c a n t l y potassium of  t o the blood  and £ .  chloride.  bifida  lower  maintains a  of  of pres-  species levels  of  significantly  32 GR2 species. sodium and cantly  l a k e water  In GR  2  to blood  w a t e r t h e haemolymph o s m o t i c  potassium  between t h e  significantly  i s hyperosmotic  c o n c e n t r a t i o n s do n o t  two  higher  species.  i n C.  The  blood  e x p l e t a than  of  both  pressure  differ  signifi-  chloride is  i n C.  and  bifida.  33 a Figure  7  C o m p a r i s o n o f 72 sure,  sodium,  and £ . b i f i d a GR  2  or 6 hour l e v e l s  of osmotic  p o t a s s i u m , and c h l o r i d e o f C. i n S p r i n g h o u s e 6,  Boitano,  presexpleta  Long a n d  water.  Symbols: G.  expleta acclimatized  m  72 h o u r t r a n s f e r  a  6 hour t r a n s f e r C.  bifida acclimatized  •  72  O  hour t r a n s f e r  6 hour t r a n s f e r A  Graph  3  o f haemolymph  water osmotic  <9  osmotic pressure  against  pressure.  B  Graph  o f haemolymph  sodium a g a i n s t  water  C  Graph  o f haemolymph  potassium against  sodium.  water  potassium. D  Graph  o f haemolymph  chloride.  chloride against  water  Table XII  S i g n i f i c a n c e s o f t h e d i f f e r e n c e s between t h e l e v e l s o f o s m o t i c p r e s s u r e , s o d i u m , .potassium, and c h l o r i d e r e a c h e d i n s e v e n t y - t w o h o u r s by t h e two s p e c i e s . U«  Experiment  z  Critical U  P(U)  Significance  .05  n.s.d.  .357  n.s.d.  .00003  significant  .1 • 567  n.s.d. n.s.d.  Osmotic Pressure  106  Chloride  7  Osmotic Pressure Sodium Chloride  12  Long G. e x p l e t a & B o i t a n o C. b i f i d a i n Long  Osmotic Pressure  165.5  1.12  .1112  n.s.d.  Long C. e x p l e t a .& B o i t a n o C. b i f i d a  Osmotic Pressure Sodium Chloride  233.5  1.08  .1401  n.s.d.  .500  n.s.d. significant  Long  C.  expleta  &  B o i t a n o C. b i f i d a in Springhouse b Long  C.  expleta  &  B o i t a n o C. b i f i d a ' in Boitano  i n GR-2 6~~hr.  83  5.66  1 6  4  2  .012  U)  4=-  35 Effect  of T r a n s f e r Figure  on M o r t a l i t y  8 compares  White  Lake G_. b i f i d a  house  6, B o i t a n o ,  t o any  Lake C_. e x p l e t a Boitano £'  (Table not  swell  Table  XIII  (Swollen:  groups i n c r e a s e s  Boitano  upon  The m o r t a l i t y o f Long  i n S p r i n g h o u s e 6 and  swells  Boitano  g r e a t l y i n these  and W h i t e  Lake C.  lakes  bifida  do  noticeably.  Swelling  of t r a n s f e r r e d i n s e c t s .  abdomen g r e a t l y d i s t e n d e d ; % Swollen Lake  Spr. 6  Long £ . e x p l e t a C. b i f i d a  Boitano  Lakes..  water.  expleta  and  in Spring-  i s t h e m o r t a l i t y o f W h i t e and  whereas  Population  White  lake  i s much h i g h e r  Long C.  XIII)  2  of a l l three  other  Lakes than  bifida.  and Long Lake C_. e x p l e t a  Long and GR  Mortality transfer  the m o r t a l i t y of Boitano  I  C. b i f i d a  swimming  impossible.)  twenty-four hours a f t e r Bolt.  Long  transfer GR2  74  34  0  0  0  0  0  0  0  0.  0  0  36 a Figure  8  Graph  of m o r t a l i t y  rates  point  depressions.  against  Mortality  e x p r e s s e d as a p e r c e n t a g e of  the a p p r o p r i a t e  water  rates  freezing  (LD 50)  of the m o r t a l i t y  control.  Symbol: Long £ .  White  C.  expleta acclimatized  •  transferred  a  bifida  B o i t a n o C_.  acclimatized  ^  transferred  v  bifida acclimatized  •  transferred  O  are rate  OSMOTIC  PRESSURE  OF  WATER  MILLIMOLES/L  NACL  37 Combination  of N a t u r a l and T r a n s f e r R e s u l t s  T a b l e X I V compares t h e haemolymph sure  o f jC. b i f i d a  and W h i t e L a k e s Springhouse  not  differ  the  lake.  72 h o u r s  after  osmotic  The r e s u l t s  from  those  9; open c i r c l e s  osmotic  and s q u a r e s  pressure of t r a n s f e r r e d  t a i n s a h i g h e r haemolymph expleta ence The  in salinities  is significant  (3. b i f i d a  NaCl  69 mM/l  pressure osmotic NaCl,  NaCl).  o n l y i n B o i t a n o water  appears  pressure of the.water  that  haemolymph  i s lower  ties  part  t o break  than  that of  b e i n g most  osmotic  down when t h e  i s g r e a t e r than  183  mM/l  t o the  i n Westwick and B o i t a n o w a t e r s .  of i t snatural  o f 9 5 - 1 3 3 . 7 2 mM/l  NaCl).  o f t h e haemolymph  e x p l e t a m a i n t a i n s s i m i l a r haemolymph o n l y a narrow  main-  does £ .  (69 mM/l  i s , i n e x t e r n a l media h y p e r o s m o t i c of insects  from  6 and B o i t a n o l a k e s ( i n w a t e r up  The r e g u l a t i o n  of £ . b i f i d a  do  but the d i f f e r -  !!• e x p l e t a i n a l l s a l i n i t i e s , t h e d i f f e r e n c e  to  taken  pressure than  up t o 95 mM/l  i n Springhouse  insects  r e p r e s e n t i n g haemolymph  p e r c e n t body w a t e r o f _C. b i f i d a  pronounced  that  a r e combined i n  insects.  osmotic  from  show  of i n s e c t s  N a t u r a l and t r a n s f e r r e s u l t s Figure  t o water  pressures of t r a n s f e r r e d  significantly  pres-  Westwick, B o i t a n o ,  transfer  6 and B o i t a n o L a k e s .  t h e haemolymph  6,  from S p r i n g h o u s e  osmotic  NaCl).  osmotic  range  C.  pressures  ( i n water of  over  salini-  38 a Figure  9  Graph  of d i s t r i b u t i o n ,  per cent  body w a t e r  haemolymph o s m o t i c p r e s s u r e a g a i n s t pressure;  acclimatized  and  water osmotic  transferred  Symbols: £.  C.  and  expleta acclimatized  •  72 h o u r t r a n s f e r  •  6 hour t r a n s f e r  0  bifida acclimatized  ^  72 h o u r t r a n s f e r  O  6 hour t r a n s f e r  ©  insects.  HAEMOLYMPH  OSMOTIC  PRESSURE  MILLIMOLES/L  NACL  PEPCENT  BODY  WATER  RANG E  The s i g n i f i c a n c e s o f t h e d i f f e r e n c e s between b l o o d o s m o t i c p r e s s u r e s o f t r a n s f e r r e d and a c c l i m a t i z e d a n i m a l s ( c a l c u l a t e d by t h e Mann-Whitney test).  T a b l e XIV  Populations Compared Boitano C. b i f i d a  SprTT5  C. b i f i d a  &  Mean B l o o d O.P. mM/l NaCl  Range o f R e a d i n g s  174.41  156.97-188.95  165.69  156.97-177.32  C. b i f i d a & 179.51 Spr/5 C. b i f i d a 165.69  Critical U  1  30  40  in Spr. 6 water  White  U  C. b i f i d a  174.41-203.48  183.13  171.51-197.67  in Boitano water  C. b i f i d a & 183.13  Boitano  £• b i f i d a in Boitano water .  183.13  7.05  n.s.d,  .33  n.s.d,  156.97-177.32  & 186.04  White  Significance  159.87-186.04  Tn Spr. b water Westwick C. b i f i d a Boitano  P(U)  149.5  1.07  .1423  n.s.d.  101.5  .20  .4207  n.s.d.  l65.69-i9i.85 —  171.51-197.67  • -  •  u> vo  40 Possible  S i t e s o f Ion The  F i g u r e .10.  Entry  results  Only the  of s i l v e r rostral  r i d g e s and  femoral-tibial  intersegmental  tion  ions.  of  silver  cuticle  and  c a n n o t be  Table of the £•  XV  alimentary  bifida  Tne  after  t a i n i n g Amaranth.  Figure  11  describe  o f Long £ .  canal  i n t o the  Boitano  that  the  in  Long Lake w a t e r . gut  i n t o the  from the  increase  i n lake  t o the  rectum.  i s no  water  Instead  haemolymph.  some  are  in  t h a t water passes  water p r o b a b l y The  £.  out  bifida  passes  drinking rate  i n s e c t s are  con-  alimentary  body c a v i t y when B o i t a n o  when B o i t a n o  Boitano  There i s  of the  evidence  the  appearance  e x p l e t a and  w a t e r p a s s e s out  There  of  the  gut  the  body c a v i t y when b o t h s p e c i e s  water.  penetra-  w a t e r i s d r u n k s l o w l y and gut  leg  precipitates within scraping.  water passes through the some e v i d e n c e  silver  i n s e c t s have been The  third  membranes a l l o w  by  canal  shown i n  the  removed  and  the  s t a i n i n g are  is  into  may  t r a n s f e r r e d t o Long  Lake  water. One  third  o f the  animals  before  being  placed  i n t h e Amaranth  midguts.  This  closed pink  technique effects leakage.  used  indicates that  i s only  sixty-six  o f mouth c l o s u r e may The  whose mouths were solution  t h e mouth  per  cent  therefore  haemolymph c o n c e n t r a t i o n s  be  had  closure  effective. lessened  o f sodium  by and  The  chloride Boitano closed  of Boitano £ . b i f i d a and Springhouse  than  with  water a p p a r e n t l y  and Long £ . e x p l e t a i n  6 water a r e l e s s  t h e mouth open does n o t change  while  Long Lake  the  water a l s o decrease  change  o f Long  C. b i f i d a  blood  Lake.insects  upon mouth c l o s u r e Ionic  Ionic levels  but t h e amount  o f _ C . e x p l e t a i n GR  (Table XVI).  o f body  while levels  i n Long Lake w a t e r do n o t  h i g h e r when mouths a r e c l o s e d t h a n  change  Haemolymph  upon mouth c l o s u r e but t h e amount o f body  decreases.  open  t h e amount o f body  amount o f body w a t e r r e m a i n s unchanged.  of B o i t a n o  t h e mouth  (Table XVI).  s o d i u m and c h l o r i d e c o n c e n t r a t i o n s in  with  2  water  water a r e  when t h e mouths a r e  water a p p a r e n t l y  does n o t  k2  a  Figure  10  Areas  of s i l v e r  staining  of £.  expleta  and  £.  bifida. Symbols: Stippling  Figure  11  Sketch  stained  of a l i m e n t a r y  areas  canal  of £ .  bifida  and  expleta. Symbols: Arbitrary Midgut  1  Midgut  2  divisions  of  gut  Extent A«B  Hindgut  1  Bladder  of  C-D hindgut  D-E  £.  MALPIGHIAN  TUBULES-CUT  Table  XV  Appearance amaranth  Range o f c o l o u r  canal  of animals  held  i n lake water  containing  recorded:  colour description  clear  code  clear  Experiment  of alimentary  Time i n Hours  pink  pink  Midgut  light red l i g h t e r than l i g h t red  1  24 48 72 96  red dk. r e d dk. r e d dk. r e d  dk. dk. dk. dk.  Boitano C. b i f i d a i n Long water & amaranth  24  I t . red distended I t . red distended  L o n g _C. expleta in Boitano water & amaranth  24 48  Long C. expleTa i n Long water & amaranth  24 48  red same as  media  red  Midgut  Boitano C. b i f i d a Tn Boitano water & amaranth  48  media  2  red red red red  Hindgut  1  darker red " than media dk. r e d  B l a d d e r of H i n d g u t  clear pink I t . red I t . red  distended, clear distended, clear distended, clear d i s t e n d e d > red''  I t . red distended I t . red distended  It. red distended I t . red distended  distended,  I t . red  distended,  I t . red  dk. r e d dk. r e d  dk. r e d dk. r e d  clear pink  distended, distended,  clear clear  red red  red dk. r e d  clear pink  small, small,  clear clear  44 T a b l e XVI  Population  E f f e c t o f mouth c l o s u r e on haemolymph sodium a n d c h l o r i d e a n d body w a t e r Medium 48 n r .  Ion  (GR -6  Mouth Open mM/l  Mouth C l o s e d mM/l  2  hr.) Boitano C. b i f i d a  Boitano water  Na Cl  150.94 92.94  122.67 57.31  No  change  Spr .6 water  Na Cl  137.46 79.27  122.23 67.24  No  change  Long water  Na Cl  221.41 55-48  224.025 56.17  Less  GR water  Na Cl  Long water  Na Cl  197.05 127.44  189.66 99.53  No  change  Spr. 6 water  Na Cl  146.16  106.57  No  change  Boitano water  Na Cl  137.02 85.71  90.48 55.03  No  change  GR water  Na Cl  257.95 81.09  274.48 95.20  No  change  2  Long C. e x p l e t a  Body W a t e r Mouth C l o s e d Compared w i t h Mouth Open  2  45 Further  Observations  on C h l o r i d e . C h a n g e s  Table XVII gives fall  i n haemolymph  transferred  ide  chloride  t o Long and GR  hyperosmotic  further  to £. bifida  2  observations  on t h e  when B o i t a n o £ . b i f i d a i s lake  water both o f which a r e  haemolymph, c o n t a i n  t h a n B o i t a n o Lake w a t e r , and c o n t a i n  less  more  chlor-  chloride  than the b l o o d . Total chlorides  fall  Long a n d G R  2  body c h l o r i d e s  as w e l l  when B o i t a n o £ . b i f i d a  waters.  The b l o o d  insects  osmotic  t o t h e b l o o d and c o n t a i n i n g a s Long and G R  2  lake  i s transferred  chloride  Boitano  chloride  are transferred  as haemolymph to  does n o t f a l l  t o water s l i g h t l y  If  hypo-  t h e same amounts o f  waters.  46 Table XVII  Haemolymph and t o t a l C. b i f i d a i n v a r i o u s  Analysis Medium  body c h l o r i d e media.  Haemolymph c h l o r i d e mM/l  T o t a l body c h l o r i d e mM/g d r y w e i g h t  B o i t a n o Lake w a t e r . 24 h r ,  92.94  Long Lake w a t e r .24 h r ,  46.37 (35.65-56.68)  .04  GR Lake water. 6 hr,  72.66  .0.8. ( . 0 7 - . 0 9 )  S o l u t i o n A. Cl similar t o Long b u t O.P.. l e s s .  92.17 ( 9 0 . 0 3 - 9 3 . 7 9 ) -  2  S o l u t i o n B. . Cl similar t o GR but 0.P. l e s s . 2  100.15  (91.21-94.90)  of B o i t a n o  (70.89-74.53)  (96.13-103.63)  .125  (.12-.13)  47 Iso-osmotic  Experiments  T a b l e X V I I I compares t h e l e v e l s sodium  and c h l o r i d e  expleta The  i n B o i t a n o (3. b i f i d a  o f haemolymph and Long (3.  u n d e r h y p o - o s m o t i c and i s o - o s m o t i c  ionic  concentrations  o f each p a i r  conditions.  o f media a r e  identical. In t h e i s o - o s m o t i c media unable t o m a i n t a i n the blood high a l e v e l  from t h e g u t .  water. not  I n t h e i s o - o s m o t i c media higher  levels  t h a n i n t h e h y p o - o s m o t i c media  c a s e o f sodium  when t h e b a s i c  The a p p e a r a n c e  changed  The d e c r e a s e d nor t o  Water does n o t a p p e a r t o e n t e r t h e  expleta maintains s l i g h t l y  chloride  and c h l o r i d e a t a s  do n o t a p p e a r t o be due t o d i l u t i o n  stoppage of d r i n k i n g .  £•  sodium  as i n the hypo-osmotic media.  concentrations  haemolymph  Boitano insects are •  medium  Long  o f sodium and  except i n the  i s Springhouse 6  o f t h e g u t o f L o n g (J. e x p l e t a i s  when t h e s u c r o s e i s added  t o the water.  48  Table-XVIII  Population  Boitano C. b i f i d a  Haemolymph sodium and c h l o r i d e , body w a t e r , a n d appearance of a l i m e n t a r y canal i n absence of osmotic g r a d i e n t . 48 h o u r s a f t e r t r a n s f e r Ion  Hypoosmotic mM/l  Boitano water  Na Cl  150.94 92.94  D (Boitano water & sucrose)  Na. Cl  Name o f medium  Spr. 6 .water E (Spr. 6 water & sucrose)  Na Cl  Isoosmotic mM/l  87.435 40.35  . Body Mater  . Gut Appearance (Amaranth)  Control  Table X I I  Less than control  24-72 h r . red through out .• A H g u t distended.  137.46 79.27 36.97 13.96  Na Cl  •  -  Na Cl  197.05 127.44  Control  Table X I I  Boitano water  Na Cl  137.02 85.71  More than control  Table XII  F (Boitano water & sucrose)  Na Cl  More : than control l e s s than above  Rectum r e d by 48 h r . No distension.  Spr. 6 water  Na Cl  G (Spr. 6 water & sucrose)  Na Cl  Long Long C. e x p l e t a w a t e r •  145-55 91.93  146.16 66.57  More t h a n control  130.06 95.99  More t h a n control l e s s than above  49 DISCUSSION  Distribution Cenocorixa different with The  bifida  distributions  range o f s a l i n i t i e s  comparison  any  lake  Lake  of  i s n o t wide  species  salinities  from w e l l  below  100 p e r c e n t s e a w a t e r (Macan, 1 9 6 3 ) . that  w i t h i n any subarea  both s p e c i e s  have a c c e s s t o  ( A , B, C) where t h e y  i s absent  lower s a l i n i t i e s  Neither  (.1-25$ sea  (17-43$ s e a water) o c c u r  seems l i k e l y  However- C. e x p l e t a with  as well as s a l i n i t y .  i n w h i c h C_. b i f i d a  i n waters with  w e l l above t h a t It  have  w i t h Aedes d e t r i t u s o r Ephydra m a c e l l a r i a  which a r e found to  expleta  which a p p e a r t o be c o r r e l a t e d  sodium a n d c h l o r i d e c o n c e n t r a t i o n s  w a t e r ) o r C. e x p l e t a in  and C e n o c o r i x a  f r o m many l a k e s , n o t a b l y  and sodium and c h l o r i d e  i s present  occur.  i n t h e most s a l i n e  those  concentrations. lake,  GR  2  ( T a b l e II)..  Mortality Mortality change  in salinity  animals the greater However t h e r e increase and  e x p e r i m e n t s show t h a t t h e g r e a t e r t h e o f t h e medium upon t r a n s f e r o f t h e the increase  i s some i n d i c a t i o n  i n mortality (Figure 8 ) . of a disproportionate  i n m o r t a l i t y o f C_. e x p l e t a  i t i s i n these  salinities  that  i n t h e lower i t swells  salinities  enormously.  50 Neither water  species  (Figure  Assessment  s u r v i v e s more t h a n a few h o u r s  of R e g u l a t o r y A b i l i t y  C.  t a k e n ) show t h a t o f t h e haemolymph  natural  of a c c l i m a t i z e d  o n l y t o t h e l a k e water  different  bifida  range  regulates  t h e y were  the osmotic pressure  o s m o t i c p r e s s u r e ) o v e r most o f i t s  ( 2 , 8 8 - 1 8 3 mM/l  (95-133 mM/l)  NaCl) (Figure 2 ) .  differ  from which  (insects  NaCl)  w h i l e C. e x p l e t a  t h e o s m o t i c p r e s s u r e o f i t s haemolymph  only a part mM/l  insects  (maintains a blood osmotic pressure  from water  regulates  2  8).  Examinations subjected  i n GR  of i t s natural  over  (95-235  range  The b l o o d o s m o t i c p r e s s u r e s do n o t  when b o t h s p e c i e s a r e f r o m t h e same l a k e  (Figure  2). Transfer acclimatization osmotic  e x p e r i m e n t s show t h a t p r e v i o u s  does  p r e s s u r e r e a c h e d by s e v e n t y - t w o  6 and B o i t a n o water osmotic and  not s i g n i f i c a n t l y a f f e c t  (Table XIV).  t o t h e media  iso-osmotic  Both  in salinities  in salinities  hours  8).  Neither £. expleta  capable (Beadle, water  of hypo-osmotic  below  183  above t h i s .  1939).  less  saline  Long  nor £ . b i f i d a  regulation  t h a n 95 mM/l  NaCl  mM/l  Death  NaCl occurs  NaCl  appear  a s i s A.  Lake £ . e x p l e t a  i n Springhouse  species are hyper-  when b l o o d o s m o t i c p r e s s u r e r e a c h e s 250 mM/l 6,  t h e haemolymph  (Figure  t o be  detritus  transferred to  i s unable t o m a i n t a i n  51 as h i g h a b l o o d o s m o t i c  p r e s s u r e as  i s Boitano £. 7,  9).  bifida  upon t r a n s f e r t o t h e same w a t e r  (Figure  the  o n l y i n B o i t a n o water,  d i f f e r e n c e s are  mM/l  two  p o p u l a t i o n s used  chloride analyses differed  acclimatization. potassium, results Levels  and  Differences  chloride  initially  z e r o t i m e , Long £ .  osmotic  and  house 6 and  ionic  £.  blood  bifida. larger  in Spring-  bifida  water.  the  i n Long £ .  with  Boitano £.  insects  will  upon t r a n s f e r and  probably loses  in Springhouse  6  6 and  IV).  loss  B o i t a n o water  sodium, potassium,  (Table V I I ) .  some w a t e r upon t r a n s f e r of i o n i c  9; T a b l e  regardless"  e x p l e t a g a i n s l a r g e amounts o f  t o Springhouse  bifida  9) > w h i l e a l l a c c l i m a t i z e d  or s p e c i e s ( F i g u r e 2,  Long £ .  evidence  2,  have  A c c o r d i n g l y Long  c o n t a i n s i m i l a r amounts o f body w a t e r  of s a l i n i t y  4)  (Figure  sodium,  both.  t h e r e f o r e have  g r a d i e n t s t o contend  GRg  or  in Boitano £.  expleta w i l l  in  e x p l e t a c o n t a i n s more body w a t e r t h a n B o i t a n o £ .  in a l l s a l i n i t i e s  3,  variation  chloride  h i g h e r than  l a r g e r g r a d i e n t s i n Long and  i n the  c o u l d t h e r e f o r e be  and  B o i t a n o w a t e r and  potassium,  i n s p e c i e s and  observed  levels  o f sodium, potassium,  f o r sodium,  both  of genotypic or phenotypic  expleta are At  69  NaCl. The  and  significant  However  Boitano £.  to Springhouse  (Figure  3;  Table  and  bifida  water (Figures chloride gains  6 but t h e r e i s no VIII).  52  £.  bifida  transfer death and  l o s e s w a t e r a n d g a i n s sodium and p o t a s s i u m t o Long Lake  of both  (Figure  s p e c i e s i n GR  g a i n o f sodium  (Figure  5, T a b l e  house 6 w h i l e b o t h B o i t a n o water.  £ . e x p l e t a b l o o d sodium  to that  and  potassium  than  chloride lymph  o f the water  i n Springhouse  t o be a n e f f e c t  o f t h e change  not t o changed c h l o r i d e iow  6 a n d B o i t a n o Lakes  of £ . b i f i d a  when t h e a n i m a l  6, B o i t a n o ,  of £ . expleta being  i n B o i t a n o and Long  o f B o i t a n o C. b i f i d a  The low c h l o r i d e  higher-levels  i n Springhouse  two s p e c i e s m a i n t a i n s i m i l a r  chloride  Lake.  b l o o d sodium i s  m a i n t a i n s much  the blood potassium  that  that of  . •  t h a n Long C . - e x p l e t a  The  i s below  of the water.  Long L a k e s ,  lower  in Spring-  s p e c i e s m a i n t a i n t h e same l e v e l i n  Boitano £. b i f i d a of  t o m a i n t a i n haemolymph  as B o i t a n o £ . b i f i d a  t h e w a t e r i n Long l a k e b u t £ . b i f i d a similar  o f water  6, T a b l e X I ) .  Long £ . e x p l e t a i s u n a b l e sodium a t a s h i g h a l e v e l  I X ) . The r a p i d  may be due t o l o s s  2  upon  Lakes.  l e v e l s of. b u t t h e haemo-  i s much l o w e r  i n Long  i n Long Lake  appears  i n osmotic  c o n d i t i o n s and  g r a d i e n t s as t h e c h l o r i d e  i s not  i s s u b j e c t e d t o a medium c o n t a i n i n g  t h e same c o n c e n t r a t i o n o f c h l o r i d e a s Long w a t e r b u t l o w e r osmotic  pressure  media d i f f e r e d  (Table XVII).  from  However t h e a r t i f i c i a l  t h e l a k e i n many o t h e r ways s o t h i s  53 phenomenon needs f u r t h e r e x a m i n a t i o n . was f o u n d  The t o t a l  t o be low a s w e l l a s t h e b l o o d  chloride  chloride  (Table  XVII). T h u s no s t r i k i n g the  levels  o f osmotic  maintained  pressure,  by t h e two s p e c i e s  expleta maintains  ability by  s o d i u m , and c h l o r i d e  of potassium  o f sodium  a difference in ability  i n Long water.  maintaining  There  i s some  and  a r e suggested  indication  the various, l e v e l s  same f o r t h e two p o p u l a t i o n s that  Boitano  water than  i n Long w a t e r .  when b o t h  does B o i t a n o  or i n  provided but- n o t  i n t h e haemolymph  as J a r i a l  may  that the cost of  (1964)  Long £ . e x p l e t a consumes more oxygen  versa  There  t o r e g u l a t e water c o n t e n t  the b l o o d . • These p o s s i b i l i t i e s  £.  in a l l salini-  of t i s s u e s t o f u n c t i o n i n the conditions  demonstrated.  between  i n the lower s a l i n i t i e s .  lower l e v e l s  t i e s - and a l o w e r l e v e l be  d i f f e r e n c e was o b s e r v e d  i s not the  has shown  i n Springhouse  £. bifida  and  vica  T h e s e d i f f e r e n c e s may n o t be  s p e c i e s a r e a c c l i m a t i z e d t o t h e same  6  observed  salinity  before t r a n s f e r . Prosser adapting: lation. fall £.  discusses  two e x t r e m e ways o f  p h y s i o l o g i c a l adjustment and p h y s i o l o g i c a l r e g u Considering  i n the f i r s t  bifida  (1955)  osmotic  category  i n the second  pressure, £. expleta  seems t o  i n i t s n a t u r a l range o f  (Figure 9 ) .  Considering  salinities,  sodium,  54 neither  species  salinities  seems t o r e g u l a t e  but £ . e x p l e t a  sodium f r o m r i s i n g salinities. tain  with  i s able  potassium  least  Both s p e c i e s 69 mM/l N a C l  species  i n the higher  i s able  t o main-  below t h e w a t e r p o t a s s i u m i n  B o i t a n o a n d Long L a k e s w h i l e this.  i n the lower  t o prevent the blood  t h e w a t e r sodium  In a d d i t i o n t h i s  the blood  sodium w e l l  £. bifida  i s u n a b l e t o do  appear t o r e g u l a t e  c h l o r i d e up t o a t  7).  (Figure  P o s s i b l e S i t e s o f I o n and Water EntryCuticle.  C o r i x i d sp.  (Beament, 1961;  1956)  and £ . e x p l e t a  water  ( p e r m e a b i l i t y measured as r a t e  than S i a l i s Table  XX  ( O l o f f s , 1964)  a r e l e s s permeable t o o f water l o s s i n a i r )  sp. (Table XX).  Rates  o f Water L o s s  Species  i n A i r o f 20°C.  Beament(l96l) Holgate(l956) mg/hr/cm /SD mg/hr/cnr/SD 2  £.  expleta  Corixid Sialis  part  sp. Adult Nymph sp. Larva  .1626  .07-.1  .11  .2-.3  .4  .45  of the c u t i c l e  to water.  Oloffs(l§64) mg/hr/cmVSD  Adult  Heavy water and l i g a t u r e experiments no  Holgate,  of S i a l i s  I t i s therefore  water through the c u t i c l e  (Shaw, 1955  larvae  possible that o f C. e x p l e t a  b) show  e s p e c i a l l y permeable penetration of is also  slow.  55 (1958  Croghan's  a,b)  (L.)  indicates that  the  tion  of  purely  only  t h a t the  Silver  silver  cuticle  Silver  r i d g e s and  cuticle  exchanges of the  The an  (Ramsay,  silver  and  evidence  permeable. are  anal  ten  1953;  site  (anal  s t a i n i n g areas  i o n and aegypti  f o r s o d i u m and  i960).  Stobbart, of £ .  10).  p a i r of  Aedes a e g y p t i  p a p i l l a e o f A.  the  (Figure  have been shown t o be. t h e  important  The  e x p l e t a and  only water have potassium  significance £.  bifida  unknown. Alimentary  appear to drink c l o s u r e and  sodium and feeders canal  accompanying  £.  e x p l e t a and  i n decreased  and  of  levels  of  1951)  and  i n g e s t a with with  might water.  filtered  of amaranth  expected Amaranth  media and  i n the  gut  was  Mouth from  haemolymph  C o r i x i d s are  be  bifida  ridges  a p p e a r t o sweep d e t r i t u s i n t o t h e  were c o n d u c t e d presence  £.  (Table XV).  s e a l i n g of r o s t r a l  c h l o r i d e (Table XVI).  (Sutton,  dilution  canal.  in a l l s a l i n i t i e s  t h e medium r e s u l t s  the  joints  (first  is  bifida  t h r o u g h which a p p r e c i a b l e  exchange o c c u r s . been shown t o be  salina  a,b)  and  £.  salina  precipita-  is especially  e x p l e t a and  o f A.  ( K r o g h , 1939)  papillae)  process  femoral-tibial  ( C r o g h a n , 1958  branchiae)  are  the  Artemia  u p t a k e and  passive  of £.  s t a i n i n g areas  of  localized  of r e g i o n  s t a i n i n g areas  rostral  areas  is a  work w i t h  underwater alimentary  to suffer experiments  i t i s evident not  the  that  result  of  56 the  feeding  ingested the  process.  The d e e p e n i n g o f t h e c o l o u r  amaranth s o l u t i o n suggests  haemolymph f r o m t h e m i d g u t  hypo-osmotic iso-osmotic canal  lutaria  detritus  (Beadle  (Beadle,  S. l u t a r i a  and Shaw, 1950;  1939;  Ramsay,.1950)  (Shaw, 1955  b,  a c t i v e and/or passive  i s r e t a i n e d by Shaw  regarded the  as a c t i v e l y  substance  forces drag study  cannot  of d i f f u s i o n ,  or these  forces  uptake f o r  Shaw, 1955) i n dilute  and A.  media.  is,the  to cross  (1963).  transported  of a c t i v e  only  transport  i f the t r a n s f e r of  f o r by t h e a c t i o n o f t h e  potential.gradient, solvent  i n any combination.  potential gradients  of osmotic Water.  gradients  (i960)  "A s u b s t a n c e c a n be  be a c c o u n t e d electric  c e l l membranes  Andersen and U s s i n g  definition  has n o t been d e m o n s t r a t e d .  effects  source  Entry  1 1  The  present  d i d n o t i n v o l v e measurements o f i o n o r w a t e r  or of e l e c t r i c port  means.  the f o l l o w i n g negative  which  alimentary  c).  Substances are considered  give  The  d r i n k and f o o d  S u g g e s t e d Mechanisms o f I o n a n d W a t e r  by  media i s  and h y p o - o s m o t i c o r  o f w a t e r and i o n i c  does n o t n o r m a l l y  of the ions  when t h e i n g e s t e d  o f C. e x p l e t a .  i s the c h i e f route  Sialis  t h a t w a t e r moves i n t o  i n t h e case of £ . b i f i d a i n the case  of the  and t h u s a c t i v e  Some e v i d e n c e  have been  fluxes trans-  of the  obtained.  Water a p p e a r s t o move f r o m t h e m i d g u t o f  57 C.  bifida  sure  t o the  of the  ( T a b l e s XV, o f  haemolymph o n l y  XVIII).  W a t e r a p p e a r s t o move f r o m t h e  under i s o - o s m o t i c medium  Long w a t e r ) t o t h e haemolymph to. t h e determinations  reared the  gut  solution  be  involved  from the  be  up  can  in  a d d i t i o n i n the  taken  transported absorption  the  by  i n the Aedes  aegypti  water  from  i n a one  that  per  some  1933). two  gut  Water  mechanisms:  p r e s e n c e of sodium  ions  i t may  be  linked  t o the  active  ions  probably  (Shaw, 1955  c).  have been made on  No  the  and  osmotic  gut  pres-  fluids  of  yet.  chloride  by  evidence  that  both  The  recovery  species  they  concentration C.  indicating  of S i a l i s  in  solutions  of these  Ions.  sodium by  up  were p l a c e d  (Wigglesworth  gut  by a mechanism  as  bifida  o s m o t i c a l l y from d i l u t e  determinations  corixids  a  observations.  presumably  absorbed  it  sure  these  c a e c a e when t h e y  of NaCl  When  Colorimetric  i n f r e s h w a t e r were u n a b l e t o t a k e  o s m o t i c u p t a k e was can  (Table XV).  amaranth c o n c e n t r a t i o n s  done t o c o n f i r m  gut  well. C.  (Boitano  haemolymph  w a t e r a p p e a r s t o move f r o m  lumen  of the  lumen o f t h e  cent  c o n d i t i o n s as  i s hyperosmotic blood,  of the  pres-  fluid  the"ingested  i s below t h a t  osmotic  ingested  '£•' expleta  must be  when t h e  are  expleta  i n Springhouse 6  able  gradient.  o f haemolymph  to take The  i n Long  up  recovery  ( F i g u r e 6)  sodium  ( F i g u r e 3)  these of  and  ions  is  against  haemolymph  i s evidence  that  53  i t Ms. a b l e t o e x c r e t e gradient.  this  ion against a concentration  These o b s e r v a t i o n s a r e not s u f f i c i e n t  that active transport i s involved.  Theinward  evidence  flow of  w a t e r due an o s m o t i c  g r a d i e n t a p p e a r s t o enhance the-  ability  t o take  low  o f '£. b i f i d a  c o n c e n t r a t i o n s as the l e v e l s  blood  d r o p s when t h e o s m o t i c  XVIII). of  The e f f e c t  observed  carbohydrate  to similar  the  blood  and f i n a l l y  chloride  conclusively  osmotic  pressure  The low l e v e l  as the water c h l o r i d e i s lower the water  is initially  iso-osmotic t o the blood.  (Table XVIII).  demonstrate t h i s  haemolymph  Sufficient effect  Abolishment on t h e  sodium and •  evidence  o f water flow  In the case  than  hyper- •  g r a d i e n t seems t o have no e f f e c t  e n t r y was n o t o b t a i n e d .  of the  i n Long w a t e r c o u l d be  o f C. e x p l e t a t o . m a i n t a i n levels  (Table  o f t h e haemolymph,..The  i s unknown.  c h l o r i d e while  the osmotic  ability  effects  i n the  was n o t due t o t h e s t o p p a g e  c h l o r i d e of £ . b i f i d a  due  osmotic  levels  ions  i s abolished  o f t h e a d d e d s u c r o s e ' on t h e b l o o d  haemolymph  of  of these  gradient  d r i n k i n g or t o the d i l u t i o n  effect and  up sodium and c h l o r i d e f r o m  of.aquatic  to on i o n  animals  w h i c h have been s u f f i c i e n t l y  w e l l .studied, the net flow o f  water i s s m a l l  t h e i o n f l u x a n d e x e r t s no  significant  compared w i t h  effects  Possible Effectors  Malphigian  (Shaw,  1963).  o f Ion. a n d W a t e r  Regulation  t u b u l e s and r e c t a l  pads.  The  59 malphigian and  tubules  convoluted  applied  of £ .  and  t o the  two  rectal  pads i n bugsmay be area  of the  wall  columnar c e l l s and a  neutral wall  the  1963;  Goodchild, red  of £ .  than the  cells  possible  that  important  deeply  the  part  1958)  while  show t h a t  osmotic. a  fluid  content The with  ions are ved  eliminated  (Ramsay,  aegypti rectum.  i n the  can  1953  rectum and  a,  b).  may  the d i l u t i o n  In S i a l i s  (Shaw, 1955)  1963).  on  the  rectal deeply  comm.).  It is  p l a y the  most  or s l i g h t l y  in short  found  blood  hypo-  detritus the that  supply  1955;  secrete degree surplus  are  (1950) shows t h a t  of  1963;  (Bahadur,  sodium and  Ramsay  effect  show  from t h e  i s so a d j u s t e d  those  and  (1950; 1952;  o f A.  than  cytoplasm  (1950) has  differs  tubules  or  s t a i n more  pers.  o f Ramsay  i t i s iso-osmotic  distinct  i n j e c t i o n s of  Ramsay  urine  rectal .  (Bahadur,  which  of C o r i x i d a e  more p o t a s s i u m  of r e s o r p t i o n  dye  (Jarial,  long  large cuboidal  Anal  bifida  studies  malphigian  The  patches of c e l l s  them  the  11).  developed  i n r e g u l a t i o n as The  ionic  £.  are  closely  tracheated  red  1951).  rectum  in mosquitoes.  in  richly  well  r e v e a l two and  be  staining striated  pads a r e  around  expleta  c o n s i s t i n g of a  for neutral  expleta  £.  (Figure  rectum with  Sutton,  dye  as  They are  special affinity sp.  bladder  of the  with  and  o f them a p p e a r t o  defined  large nuclei.  In C o r i x a  bifida  fluid  conserA.  which e n t e r s  p o t a s s i u m and  perhaps  the  60 chloride  are resorbed  gregaria  (Phillips,  i n the  1964  s i u m arid c h l o r i d e a r e  Physiology  and  a,  do  i n the  will.be  most £ .  bifida.  study  area  f o r the  of £ .  in higher  bifida.  do  i n as  indicate  upon t r a n s f e r  to less  establishment (water  of £. and  £.  salinities  Thus most  than  £.  salinities.than  may low  of  hinder  future  salinities  Long £ .  as  expleta  ( m o r t a l i t y , water g a i n , i o n l o s s )  Acclimatization  NaCl  occur  expleta  results  Boitano £. h i f i d a  mM/l  potas-  main p o p u l a t i o n s  This circumstance  more d i f f i c u l t y  the  The  acclimatized'to higher  establishment' of £ . bifida  c) w a t e r , s o d i u m ,  Distribution  t h e main p o p u l a t i o n s  expleta  b,  in Shistocera  resorbed.  Acclimatization. expleta  r e c t u m and  £. has  than  t o lower' s a l i n i t i e s .  saline  water w i l l  bifida  in salinities  chloride loss,  in turn above  sodium and  hinder 183  potassium  gain). Adaptation T h e r e a p p e a r s t o be tion  of t h i s  does n o t osmotic  and  i n water  pressure.  bifida  a correlation  s p e c i e s and  occur  to maintain  of £ .  i n which  c h l o r i d e w e l l above t h o s e  this  pressure, of the  distribu-  to osmoregulate.  i t does n o t  salinities  osmotic  salinities.  between t h e  its ability  I n low  i t s blood  t o low  regulate i t s  species  sodium,  water.  It  The  i s able potassium,  61 abolishment  of the osmotic  g r a d i e n t appears t o impair the  e n t r y o f w a t e r , sodium and c h l o r i d e and £ . b i f i d a found- i n w a t e r t o w h i c h species  i t i s iso-osmotic.  i s t r a n s f e r r e d t o water of h i g h e r  haemolymph  osmotic  pressure  If this s a l i n i t i e s the  a n d sodium become s i m i l a r t o  those  o f t h e water>  rises  a n d i t d i e s q u i c k l y i n w a t e r o f 426 mM/l .  £.  expleta  which  i t i s found.  when t h e i o n i c  and  this  potassium  quickly  sure, the  t o the higher  sodium  concentrations i s able  below t h o s e  a r e low.  to maintain  NaCl.  In h i g h e r i t s blood  If this  salinities  o f body w a t e r r i s e s . do n o t f a l l  same w a t e r by C,  gradient  salini-  sodium  o f the water but i t d i e s  t o water o f lower  levels  salinities.  salinities in  species is.  the osmotic  sodium, p o t a s s i u m , and c h l o r i d e l e v e l s  amount  NaCl. .  o f water,, s o d i u m , o r c h l o r i d e e v e n  i n w a t e r o f 426 mM/l  transferred  potassium  The a b s e n c e o f a n o s m o t i c  entry  species  the  of £ . expleta t o higher  i s iso-osmotic  does n o t i m p a i r  ties  the c h l o r i d e drops,  Adaptation  i s not  fall  pres-  while ,  However t h e c h l o r i d e and  below t h o s e  maintained  i n the  bifida. CONCLUSIONS  Although obvious bifida general  the present  results  physiological adaptation to different nature  salinities,  of the study.  do n o t d e m o n s t r a t e  o f £ . e x p l e t a and £ . this  may  be due t o t h e  The e v i d e n c e  presented  by  62  this  t h e s i s suggests that  their  abilities  t h e two s p e c i e s may  to survive  differ in  i n n a t u r a l water of v a r y i n g  salinity.  The d i f f e r e n c e seems t o be t h e a d a p t a t i o n  C. e x p l e t a  to higher  the  former can h y p o - r e g u l a t e  bifida £•  salinities  seems a d a p t e d  expleta  acclimatized  t r a n s f e r and had t h e b l o o d followed  hypo-osmotic  iso-osmotic  would be more c o n v i n c i n g or acclimated  for'longer  as  only  sodium and p o t a s s i u m .  to decidedly  t o more n e a r l y  suggestions  than £ . b i f i d a  £.  conditions  conditions.  These  had i n s e c t s been . ,  t o t h e same  lake  composition  changes, been  periods.  of  water  before  63 REFERENCES A n d e r s e n , B. and H.H. U s s i n g (i960). In " C o m p a r a t i v e B i o c h e m i s t r y " , V o l . I I , Ch. 7 , . p p . 371-402. ( F l o r k i n , M. and Mason, H.S., eds). Academic P r e s s , , London. A c t i v e t r a n s p o r t . Bahadury J .  59-69.  ( 1 9 6 3 ) . . . P r o c . R. E n t . S o c . L o n d . R e c t a l pads i n H e t e r o p t e r a .  (A) ,38, .  -Beadle,- L.C. (1939). J . Exp. B i o l . 16,346-362. Regul a t i o n o f t h e haemolymph i n t h e s a l i n e w a t e r mosquito l a r v a Aedes d e t r i t u s Edw. B e a d l e , L.C. and J . Shaw (1950). J . Exp. B i o l . 2 7 , 9 6 109. The r e t e n t i o n o f s a l t and t h e r e g u l a t i o n o f the n o n - p r o t e i n n i t r o g e n f r a c t i o n i n the blood of the a q u a t i c l a r v a e S i a l i s l u t a r i a . Beament, J.W.L. (1961). J . Exp. B i o l . 38,277-290. The w a t e r p r o o f i n g mechanisms o f a r t h r o p o d s . II. The p e r m e a b i l i t y o f t h e c u t i c l e o f some a q u a t i c i n s e c t s .  B e a r d , R.L. The  (1949).  J.; New  b l o o d volume o f t h e  York E n t . Soc. 57,79-91. larva  of the  Japanese b e e t l e .  Brown, E-.S. (1954). P r o c . R. E n t . S o c . L o n d o n . (A) 17-22T R e p o r t on C o r i x i d a e ( H e m i p t e r a ) t a k e n i n l i g h t - t r a p s a t Rothamsted E x p e r i m e n t a l S t a t i o n .  C l a u s , A. . ( 1 9 3 7 ) .  Z o o l . Jb. 58,365-432.  29,  Vergleichend-  p h y s i o l o g i s c h e Untersuchungen zur Oekologie der Masserwanzen, mit besonderer B e r u c k s i c h t i g u n g der Brackwasserwanze S i g a r a l u g u b r i s ( F i e b ) . Cotlove, E. (1963 a ) . A n a l y t i c a l C h e m i s t r y . 35,95-100. D e t e r m i n a t i o n of the t r u e c h l o r i d e content of b i o l o g i c a l f l u i d s and t i s s u e s . I A n a l y s i s by chlorine-36 isotope d i l u t i o n . C o t l o v e , E. (1963 b ) . A n a l y t i c a l C h e m i s t r y . 35,101-105. D e t e r m i n a t i o n of the t r u e c h l o r i d e c o n t e n t of b i o l o g i c a l f l u i d s and t i s s u e s . I I A n a l y s i s by s i m p l e n o n i s o t o p i c methods. C r o g h a n , P.O. (1958 a ) . J . E x p . B i o l . 35,219-233O s m o t i c and i o n i c r e g u l a t i o n o f A r t e m i a s a l i n a ( L ) . C r o g h a n , P.O. (1958 b ) . J . Exp. B i o l . fluxes in Artemia s a l i n a ( L ) .  35,425-436.  Ionic  64 E l l i s o n , N.P. Corixa  (19^5).  Northw. N a t . 2 0 , 2 7 2 -  .  Note on  flying.  GoodchildT A.J.P. (1963). P r o c . Z o o l . S o c . Lond. l 4 l , 851-910.' S t u d i e s on t h e f u n c t i o n a l anatomy o f t h e intestines of Heteroptera. G r o s s , W.J. (1954). J . Exp. B i o l . 31,402-423. Osmotic r e s p o n s e s i n t h e S i p u n c u l i d DencTrostomum z o s t e r i c o l u m . Hale, L.J. (1958). "Biological Methuen, L o n d o n . H o l g a t e , M.W. piration insects.  (1956). through  L a b o r a t o r y Data".  J . Exp. B i o l . 33,107-118. Transt h e c u t i c l e s o f some a q u a t i c  H u n g e r f o r d , H.B. (1948). 827. The C o r i x i d a e (Hemiptera).  U n i v . Kansas S c i . B u l l . 3 2 , 1 o f the western hemisphere,  Hutchinson, GTE. (1933). I n t . Rev. H y d r o b i o l . 28,436-468. The z o o - g e o g r a p h y , o f t h e A f r i c a n a q u a t i c i f e m i p t e r a i n r e l a t i o n t o past c l i m a t i c change. J a r i a l , M.S. (1964). Columbia.  MSc. T h e s i s , U n i v e r s i t y  of B r i t i s h  Jones, L.L. (1941). J . C e l l . Comp. P h y s i o l . 1 8 , 7 9 - 9 2 . O s m o t i c r e g u l a t i o n i n s e v e r a l c r a b s o f tb"e" P a c i f i c Coast of North America. Krogh,  A. (1939). "Osmotic R e g u l a t i o n i n A q u a t i c Cambridge U n i v . P r e s s , L o n d o n .  Lansbury, I . (1955). Can. E n t . 87,474-481. r e c o r d s o f North American C o r i x i d a e . Heteroptera).  Animals".  Distributional (Hemiptera,  (i960). Proc. E n t . Soc. Bri-t. Columbia. 57,34-43. The C o r i x i d a e ( H e m i p t e r a - H e t e r o p t e r a ) o f " B r i t i s h Columbia.  Lansbury,  I-r  L e s t o n , D.  (1954).  E n t . mon. Mag. 9 0 , 1 6 6 -  (Hem.) a t u l t r a - v i o l e t  light;  additional  .  Corixidae  data.  L i n b e r g , H. (1948). Comment. B i o l . H e l s i n g f . , 1 0 , 1 - 2 0 6 . Zur. K e n n t n i s d e r I n s e k t e n f a u n a im B r a c k w a s s e r des B a l t i s c h e n Meeres.  65 Macan, T.T. the  (1939).  migration  Macan, T.T. limit  of  J . Soc. B r i t . E n t . 2,1-6. some a q u a t i c  . (1961). B i o l . . Rev. 3 6 , 1 5 1 - 1 9 8 . the range of f r e s h w a t e r animals.  Macan, T.T. (1963)'. "Freshwater Ecology": Sons I n c . , New Y o r k .  Munson, S.C.  and  (1949).  J.F.-Yeager  America. 42,165-173. sp. O l o f f s , P.C. (1964). Columbia.  MSc.  Blood  Notes  insecfs.  Ann.  volume o f  Factors  on that  John W i l e y . . . .  Ent.  &  Soc.  Periplaneta  T h e s i s , U n i v e r s i t y of  British  P h i l l i p s , J.E. (1964 a). J . Exp. B i o l . 41,15-38'. - R e c t a l a b s o r p t i o n i n the d e s e r t l o c u s t S h i l T o c e r a g r e g a r i a (Forskal). I Water. P h i l l i p s , J.E-. ' ( 1 9 6 4 b ) . J . Exp. B i o l . 4 1 , 3 9 - 6 7 . ' R e c t a l " a b s o r p t i o n i n the d e s e r t l o c u s t ShislTocera g r e g a r i a (Forsk&l). II Sodium, p o t a s s i u m and c h l o r i d e . P h i l l i p s . , J'.E. (1964 c ) . J . E x p . B i o l . 4 1 , 6 9 - 8 0 . Rectal absorption in the.desert locust ShisTocera gregaria (Forskal). I l l The n a t u r e o f t h e e x c r e t o r y p r o c e s s . Popham, E . J . (1951). J . S o c . B r i t . Ent-. 3 , 2 6 8 - 2 7 3 A study of the changes of the water-bug fauna of n o r t h S u r r e y f r o m 1946 t o 1950 with s p e c i a l r e f e r e n c e to the m i g r a t i o n of c o r i x i d s . Popham, E . J . ( 1 9 5 2 ) . E n t . mon. Mag. 8 8 , l 8 0 - l 8 l . Observat i o n s on t h e b e h a v i o u r o f a q u a t i c i n s e c t s d u r i n g t h e d r y i n g up o f a s m a l l m o o r l a n d pond. P r o s s e r , C.L. (1955). B i o l . v a r i a t i o n i n animals.  Ramsay, J.A.  (1950).  regulation  Rev.  J . Exp.  i n mosquito  30,229-262.  Biol.  27,145-157.  Physiological  Osmotic  larvae.  Ramsay, J.A. (1951). J . Exp. B i o l . 2 8 , 6 2 - 7 3 . Osmotic r e g u l a t i o n i n m o s q u i t o l a r v a e ; VEe r o l e of t h e malphigian tubules. Ramsay, J.A, (1952). J . Exp. B i o l . 29,110-126. The e x c r e t i o n o f sodium and p o t a s s i u m by t h e malphigian t u b u l e s of Rhodnius.  66 Ramsay, J.A. (1953 a ) . J . Exp. B i o l . 30,79-89. Exchanges o f sodium a n d p o t a s s i u m i n mosquiTfo l a r v a e . Ramsay, J.A. (1953.b). J . Exp. B i o l . 30,358-369. Active t r a n s p o r t o f p o t a s s i u m by t h e malph~igian t u b u l e s o f insects. Ramsay, J.A. (.1955). J . Exp. B i o l . 32,200-216. The " e x c r e t i o n o f s o d i u m , p o t a s s i u m , and w a t e r by t h e malphigian tubules of the s t i c k insect Dixippus roorosus . ( O r t h o p t e r a , Phasmidae).. Ramsay, J.A. ( 1 9 5 8 ) . J . Exp. B i o l . 35,871-891. Excret i o n by t h e m a l p h i g i a n t u b u l e s o f . t h e s t i c k i n s e c t D i x i p p u s morosus ( O r t h o p t e r a , P h a s m i d a e ) . I Amino a c i d s , s u g a r s , and u r e a . Rawson, D.S. a n d J . E . Moore Research. 22,141-201. chewan.  (1944)..  C a n a d i a n J o u r n a l ofThe s a l i n e l a k e s o f S a s k a t -  R i c h a r d , G. (1958). V i e e t M i l i e u . 9,179-199. Contribut i o n a l ' e t u d e des v o l s m i g r a t o i r e s de C o r i x i d a e (Insectes Heteropteres). L e s v o l s de I ' e t e 1 9 5 7 ( 1 ) . S c u d d e r , G.G.E. Shaw,  (1964).  Unpublished-in  preparation.  J . (1955 a ) . J . Exp. B i o l . 32,321-329. A simple procedure f o r the study,of ionTc r e g u l a t i o n i n small animals. ••  Shaw, J . (1955 b ) . J.. E x p . B i o l . 3 2 , 3 3 0 - 3 5 2 . The permea b i l i t y and s t r u c t u r e o f the c u t i c l e of t h e a q u a t i c larva.of S i a l i s lutaria. . Shaw, J . (1955 c ) . J . Exp. B i o l . r e g u l a t i o n and w a t e r b a l a n c e of S i a l i s l u t a r i a • .  32,353-382. Ionic i n the aquatic l a r v a  Shaw, J . ( 1 9 6 3 ) . Viewpoints i n Biology. 2,163-201. K i n e t i c aspects o f . i o n r e g u l a t i o n i n aquatic animals. S i e g e l , S. (1956). "Nonparametric-Statistics f o r the Behavioral Sciences". M c G r a w - H i l l Book.Company I n c . Toronto. S t o b b a r t , R.H. (1959). J . Exp. B i o l . 36,641-653. Studies on the. e x c h a n g e and r e g u l a t i o n o f sodium i n t h e l a r v a A e d e s a e g y p t i ( L ) . I The s t e a d y s t a t e e x c h a n g e . o  f  67 S t o b b a r t , R.H. ( i 9 6 0 ) . . J . Exp. B i o l . 37,594-608. Studies .on t h e e x c h a n g e and r e g u l a t i o n o f sodium i n t h e l a r v a Aedes a e g y p t i ( L ) . I I The n e t t r a n s p o r t and t h e f l u x e s a s s o c i a t e d with i t . ••. o  f  S u t c l i f f e , D.W. (1961 a ) . J . E x p . B i o l . 3 8 , 5 0 1 - 5 1 9 . S t u d i e s on s a l t and w a t e r b a l a n c e i n c a d d i s l a r v a e (Trichoptera). I .Osmotic and i o n i c r e g u l a t i o n o f body f l u i d s i n L i m n e p h i l u s a f f i n u s ( C u r t i s ) . S u t c l i f f e , D.W. (1961 b ) . J . E x p . B i o l . 38,521-53°'• S t u d i e s on s a l t and w a t e r b a l a n c e i n c a d d i s l a r v a e (Trichoptera).. II O s m o t i c and i o n i c - r e g u l a t i o n o f . body f l u i d s In L i m n e p h i l u s s t i g m a ( C u r t i s ) and Anabolia nervosa (Leach). . S u t c l i f f e , D.W. (1962). J . Exp. B i o l . 39,l4l-l60. S t u d i e s on s a l t and water b a l a n c e Tn" c a d d i s l a r v a e (Trichoptera). I l l D r i n k i n g and e x c r e t i o n . S u t t o n , M.F. (1951). P r o c . Z o o l . S o c . Lond. 121,465-499. On t h e f o o d , f e e d i n g mechanism and a l i m e n t a r y c a n a l of C o r i x i d a e (Hemiptera, H e t e r o p t e r a ) . Treherne, J.E. (1954). J . Exp. B i o l . 31,386-401. The e x c h a n g e . o f l a b e l l e d sodium i n t h e l a r v a o f A e d e s aegypti (L). W i g g l e s w o r t h , V.B. (1933). J . Exp. B i o l . a d a p t a t i o n of mosquito l a r v a e t o s a l t  W i g g l e s w o r t h , V.B.  (1938).  10,27-37-  The  water.  J . E x p . Biol,.- 15,235-247.  The  r e g u l a t i o n o f o s m o t i c p r e s s u r e and c h l o r i d e c o n c e n t r a t i o n i n t h e haemolymph o f m o s q u i t o l a r v a e . W i l l i a m s , P.X. (1944). P r o c . H a w a i i E n t ..-Soc. 1 2 , 1 8 6 - 1 9 6 . B i o l o g i c a l s t u d i e s on H a w a i i a n w a t e r - l o v i n g i n s e c t s . P a r t V; H e m i p t e r a o r b u g s .  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105984/manifest

Comment

Related Items