UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Effects of stratification and incubation temperature on the germination of grand fir (Abies Grandis (Dougl.)… Wang, Shih-Pin (Ben) 1960

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1960_A6 W2 E3.pdf [ 6.41MB ]
Metadata
JSON: 831-1.0105957.json
JSON-LD: 831-1.0105957-ld.json
RDF/XML (Pretty): 831-1.0105957-rdf.xml
RDF/JSON: 831-1.0105957-rdf.json
Turtle: 831-1.0105957-turtle.txt
N-Triples: 831-1.0105957-rdf-ntriples.txt
Original Record: 831-1.0105957-source.json
Full Text
831-1.0105957-fulltext.txt
Citation
831-1.0105957.ris

Full Text

THE EFFECTS OF STRATIFICATION AND INCUBATION TEMPERATURE ON THE GERMINATION OF GRAND FIR (ABIES GRANPIS (DOUGL.) LINDL.) SEED. by BEN S. P. WANG B.S c , Taiwan A g r i c u l t u r a l College, Taiwan, China, 1952. A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF FORESTRY i n the Department o f FORESTRY We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May 23rd, 1960. I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by t h e Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n . s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f Forestry The U n i v e r s i t y o f B r i t i s h Columbia, Vancouver 8, Canada. I f there i s any l i v i n g thing which might explain to the mystery beyond t h i s l i f e , i t should be seeds." Donald Culross Peattie — ABSTRACT The purpose of t h i s study was to develop a s u i t a b l e pretreatment and i n c u b a t i o n temperature f o r t e s t i n g the ger-mination of grand f i r (Abies grandis (Dougl.) L i n d l . ) seed. The germination behaviour of t h i s species v a r i e s w i t h d i f -f e r e n t s e e d l o t s of d i f f e r e n t seed years and of d i v e r s e o r i g i n s . Temperature i s very s i g n i f i c a n t i n the germin-a t i o n of t h i s s p e c i e s . Of those i n c u b a t i o n temperatures t e s t e d , 25° 0 was found t o be near optimum f o r i t s germination. S t r a t i f i c a t i o n was shown t o have a greater e f f e c t on the rat e of germination than on the germinative c a p a c i t y . The longer the s t r a t i f i c a t i o n p e r i o d the l e s s s e n s i t i v e the seed was t o i n c u b a t i o n temperature. The short e r s t r a t i f i c a t i o n periods (30 and 40 days) showed l i t t l e or no s i g n i f i c a n t e f f e c t on the r a t e of germination of the r e l a t i v e l y o l d e r seeds of the 1957 crop. Seeds dewinged by hand and cleaned by a v e r t i c a l a i r stream gave s i g n i f i c a n t l y b e t t e r r e s u l t s than those commercially pro-cessed. R e s u l t s of these experiments were tabu l a t e d and analyzed. A l l the d i f f e r e n c e s among treatments were com-pared and discussed i n d e t a i l . A comparison of nursery germination per cent a f t e r 64 days and l a b o r a t o r y r a t e of germination was made f o r two seedlots and the c o r r e l a t i o n s were shown. ACKNOWLEDGMENTS The writer wishes to express his sincere gratitude to Dr. P. G. Haddock, Dr. G. S. A l l e n , and Dr. J. H. G. Smith of the Faculty of Forestry, University of B r i t i s h Columbia for t h e i r valuable suggestions and constructive c r i t i c i s m . He would also l i k e to thank the B r i t i s h Columbia Forest Service for t h e i r generous supply of seeds of the 1959 crop and Mr. Louis Medveczky for his valuable assistance. TABLE OF CONTENTS ( i i i ) Page Introduction 1 Literature Survey 2 Internal factors a f f e c t i n g germination of seed 2 External fa c t o r s a f f e c t i n g germination of seed 13 Chemical changes during the oourse of germination 32 The S i l v i o s of Grand F i r 34 Experimental Prooedure, Material and Methods 43 Sampling 43 Seedlot 43 Cutting Test 43 R e p l i c a t i o n of the Sample 44 Presoaking 44 S t r a t i f i c a t i o n 44 The Incubation Temperatures 44 The Incubation 44 The Observations 45 The Moisture Content 45 The Weight of 1,000 seeds 46 Nursery Experiment 46 Interpretation and Evaluation of Terms 47 S t a t i s t i c a l Analysis of the Results 47 Results 48 Discussion 67 The Rate of Germination 68 Germinative Capacity 70 Nursery Germination 72 Conclusions 73 Appendix I Nursery Experimental Design f o r Grand F i r — Randomized Blocks 75 Appendix I I Graphs 76 Appendix I I I Plates 98 Lit e r a t u r e Cited 101 (iv) LIST OF TABLES Page Table 1 - Germinative Capacity and Rate of Germination of Four Lots of Grand F i r Seed, i n Relation to Duration of S t r a t i f i c a t i o n and Inoubation Temperature. 48 2 - Nursery Germination Per Gent afte r 64 days of Two Seedlots (5701 and 5705) of Grand F i r Seed, i n Relation t o Duration of S t r a t i f i c a t i o n . 49 3 - Analysis of Variance of Rate of Germination 54 4 - Analysis of Variance of Germinative Oapaoity 55 5 - Multiple Range Comparison of the Mean E f f e c t s of Seedlots (5701, 5705, 5801, 5901) on the Rate of Germination of Grand F i r Seed. 56 6 - Multiple Range Comparison of the Mean E f f e c t s of Incubation Temperatures (15°0, 20°0, 25°C) on the Rate of Germination of Grand F i r Seed. 57 7 - Multiple Range Comparison of the Mean E f f e c t s of S t r a t i f i c a t i o n Periods (30, 40, 60, 80 days) on the Rate of Germination of Grand F i r Seed. 58 8 - Multiple Range Comparison of the Mean E f f e c t s of the Interaction of Seedlots (5701,5705, 5801,5901) and the Incubation Temperatures (15°C, 20°0, 25°C) on the Rate of Germination of Grand F i r Seed. 59 9 - Multiple Range Comparison of the Mean E f f e c t s of Seedlots (5701,5705,5801,5901) on the Germinative Capacity of Grand F i r Seed. 60 10 - Mult i p l e Range Comparison of the Mean E f f e c t s of Incubation Temperatures (15°C, 20 °C, 25°C) on the Germinative Oapaoity of Grand F i r Seed. 61 11 - Multiple Range Comparison of the Mean E f f e c t s of S t r a t i f i o a t i o n Periods (30,40,60,80 days) on the Germinative Capacity of Grand F i r Seed. 62 12 - Multiple Range Comparison of the Mean E f f e c t s of the Interaction of Seedlots (5701,5705,5801, 5901) and the Incubation Temperatures (15°C, 20°0, 25°C) on the Germinative Capacity of Grand F i r Seed. 63 (v) Page Table 13 - Multi p l e Range Comparison of the Mean E f f e c t s of the Interaction o f Seedlots (5701,5705, 5801,5901) and the S t r a t i f i c a t i o n Periods (30,40,60,80 days) on the Germinative Capacity of Grand F i r Seed. 64 14 - Analysis of Variance of the Nursery Germination Per Cent a f t e r 64 days of Seedlots 5701, and 5705 of Grand F i r Seed. 65 15 - Multi p l e Range Comparison of the Mean E f f e c t s of S t r a t i f i c a t i o n Periods (30,40,60,80 days) of Lots 5701 and 5705 on the Nursery Germination Per-Cent aft e r 64 days of Grand F i r Seed. 66 LIST OF FIGURES Figure 1 - Rate of Germination f o r seedlots 5701 and 5705 of Grand F i r as Affected by Duration of S t r a t i f i c a t i o n and Incubation Temperature. 50 2 - Rate of Germination f o r Seedlots 5801 and 5901 of Grand F i r as Affected by Duration of S t r a t i f i c a t i o n and Incubation Temperature. 51 3 - Germinative Capacity i n 35 - 42 Days f o r Seedlots 5701 and 5705 of Grand F i r as Affected by Duration of S t r a t i f i c a t i o n and Incubation Temperature. 52 4 - Germinative Capacity i n 35 - 42 days f o r Seedlots 5801 and 5901 of Grand F i r as Affected by Duration of S t r a t i f i c a t i o n and Inoubation Temperature. 53 5 - Course of Germination of U n s t r a t i f i e d Seedlot 5801 as Affected by Incubation Temperature. 76 6 - Course of Germination for Seedlot 5801 as Affected by Incubation Temperature follow-ing 30 days of S t r a t i f i c a t i o n . 76 7 - Course of Germination f o r Seedlot 5801 as Affected by Incubation Temperature follow-ing 40 days of S t r a t i f i c a t i o n . 77 Page Figure 8 - Course o f Germination f o r Seedlot 5801 as Affected by Incubation Temperature follow-ing 60 Days of S t r a t i f i c a t i o n . 77 9 - Course of Germination f o r Seedlot 5801 as Affected by Incubation Temperature follow-ing 80 Days of S t r a t i f i c a t i o n . 78 10 - Course of Germination f o r U n s t r a t i f i e d Seed-l o t 5701 as Affected by Incubation Temperature. 78 11 - Course of Germination f o r Seedlot 5701 as Affected by Incubation Temperature Follow-ing 30 Days of S t r a t i f i c a t i o n . 79 12,.- Course of Germination f o r Seedlot 5701 as Affected by Incubation Temperature Follow-ing 40 Days of S t r a t i f i c a t i o n . 79 13 - Course of Germination for Seedlot 5701 as Affeoted by Incubation Temperature Follow-ing 60 Days of S t r a t i f i c a t i o n . 80 14 - Course of Germination f o r Seedlot 5701 as Affected by Incubation Temperature Follow-ing 80 Days of S t r a t i f i c a t i o n . 81 15 - Course of Germination f o r U n s t r a t i f i e d Seedlot 5705 as Affeoted by Incubation Temperature. 82 16 - Course of Germination f o r Seedlot 5705 as Affected by Incubation Temperature follow-ing 30 Days of S t r a t i f i c a t i o n . 83 17 - Course of Germination for Seedlot 5705 as Affected by Incubation Temperature Follow-ing 40 days of S t r a t i f i c a t i o n . 84 18 - Course of Germination f o r Seedlot 5705 as Affected by Incubation Temperature Follow-ing 60 days of S t r a t i f i c a t i o n . 85 19 - Course of Germination f o r Seedlot 5705 as Affected by Inoubation Temperature Follow-ing 80 days of S t r a t i f i c a t i o n . 86 ( v i i ) Page Figure 20 - Course of Germination f o r U n s t r a t i f i e d Seedlot 5901 as Affected by Incubation Temperature. 87 21 - Course of Germination f o r Seedlot 5901 as Affected by Incubation Temperature Following 30 days of S t r a t i f i c a t i o n . 88 22 - Course of Germination for Seedlot 5901 as Affected by Incubation Temperature Following 40 days of S t r a t i f i c a t i o n . 89 23 - Course of Germination f o r Seedlot 5901 as Affected by Incubation Temperature Following 60 days of S t r a t i f i c a t i o n . 90 24 - Course of Germination f o r Seedlot 5901 as Affected by Inoubetion Temperature Following 80 days of S t r a t i f i c a t i o n . 91 25 - Course of Germination f o r Seedlot 5701 as Affected by Duration of S t r a t i f i c a t i o n i n Nursery. 92 26 - Course of Germination f o r Seedlot 5705 as affected by Duration of S t r a t i f i c a t i o n i n Nursery. 93 27 - Scatter Diagram of Rate of Germination at 15°C, 20°G, 25°0 i n Laboratory and Nursery Germination Per cent a f t e r 64 days of Lot 5701 by S t r a t i f i c a t i o n Period. 94 28 - Scatter Diagram of Rate of Germination at 15°C i n Laboratory and Nursery Germination-Per cent a f t e r 64 Days of Lot 5705. 95 29 - Soatter Diagram of Rate of Germination at 20°C i n Laboratory and Nursery Ger-mination Per cent a f t e r 64 Days of Lot 5705. 96 30 - Soatter Diagram of Rate of Germination at 25°C i n Laboratory and Nursery Ger-mination Per cent a f t e r 64 Days of Lot 5705. 97 LIST OF PLATES ( • i i i ) Page P i s t e I - Seed Sampler 98 I I - "Vertical Air-stream Gleaner 99 I I I - Botanical Range of Grand F i r 100 i INTRODUCTION A l l e n and B l e n t j e s (195 *0 have pointed out that there are three s i g n i f i c a n t o b j e c t i v e s of f o r e s t t r e e seed research: q u a l i t y c o n t r o l through s t a n d a r d i z i n g the methods of c o l l e c t i n g , handling and processing, the best p o s s i b l e methods of storage, and s u i t a b l e methods of t e s t i n g each species. However, f o r seedlots of unknown previous h i s t o r y , only the t e s t i n g method, i n which pretreatment and germination c o n d i t i o n s can be c o n t r o l l e d , i s of any value. This t e s t i n g Can be done e i t h e r by s i m u l a t i n g n a t u r a l environmental con-d i t i o n s i n order to develop an adequate, simple, quick and rep r o d u c i b l e way, or by a r t i f i c i a l methods which may be der i v e d from clues i n nature. Grand f i r (Abies grandls (Dougl.) L i n d l , ) has not been given very much a t t e n t i o n i n the past owing to i t s l i m i t e d d i s t r i b u t i o n and commercial importance. The recent p u b l i c a t i o n s by Schmidt (1957) and F o i l e e (1959) give d e t a i l e d i n f o r m a t i o n about the s i l v i c s and geography of t h i s species. This study, f o l l o w i n g some p r e l i m i n a r y work done at the Uni-v e r s i t y of B r i t i s h Columbia, has concentrated on some problems of the germination of grand f i r seed. Because most of the experimental m a t e r i a l was from commercial sources, the purpose of t h i s i n v e s t i g a t i o n was to disc o v e r a s u i t a b l e pretreatment and incubation temperature f o r t e s t i n g the seed and to analyze the r e l a t i o n between nursery germination per cent a f t e r 64 days and l a b o r a t o r y r e s u l t s . 2 LITERATURE SURVEY As Mirov (1936) noted, germination tests are used to determine the v i a b i l i t y of seed, to estimate the amount of seed to be used i n the nurseries, or to detect t h e i r requirements for optimum germination under various environments. The germination of seed i s influenced by many complex f a c t o r s . Two groups of factors a f f e c t seed germination, one i n t e r n a l , the other external. Factors r e l a t i n g to provenance, including photoperiodic re-quirements and flov/ering habits, the nature of p o l l i n a t i o n and f e r t i l i z a t i o n , the siz e , weight and longevity of the seed, the degree of maturity, the c h a r a c t e r i s t i c s of dormancy, the p o s i t i o n of the seeds i n the cone and the p o s i t i o n of the cone on the tree, and the c h a r a c t e r i s t i c s of resumption to secondary dormancy under unfavourable external conditions, are inherent i n the seed i t s e l f . Seeds of the seme species from diverse origins w i l l behave d i f f e r e n t l y due to the environment of the seed during i t s development or to genetic factors r e s u l t i n g from i t s s e l e c t i o n . Seeds o r i g i n a t i n g in the f a r northern areas or i n the higher al t i t u d e s may germinate poorly because of a shorter summer grow-ing season, imperfect development and ripening, or too early harvesting as a r e s u l t of late ripening. Huss (1951) reported that seed o r i g i n a t i n g i n the northern part of Sweden frequently exhibits poor germination. 3 Photoperiodic response i s b e l i e v e d t o be i n h e r i t e d from parent t r e e s . Toole et a l . (1956) quoted Honing's f i n d i n g that the r e c i p r o c a l crosses of l i g h t - f a v o u r e d and l i g h t - i n d i f -f e r e n t parent t r e e s d i d not always r e s u l t i n l i g h t - f a v o u r e d F - l progenies, though the female f r e q u e n t l y had s l i g h t l y greater i n -fluence than the male. On the other hand, l i g h t - i n d i f f e r e n t s t r a i n s of A r a b i d o p s i s t h a l i a n a have been reported dominant i n r e c i p r o c a l crosses by Kugler (quoted by Toole et a l . 1956). Both Honing and Kugler i n t e r p r e t e d these v a r i a b l e r e s u l t s of r e c i p r o c a l crosses as evidence of j o i n t cytoplasmic and chromosomal c o n t r o l (Toole et a l . 1956). Toole et a l . (1956) st a t e d that seeds of Lepidum v i r g i n i o u m , N i g e l l a damasoena, Veronica p e r s i c a and S i l e n e ameria and a number of other l i g h t -favoured s p e c i e s , which have features s i m i l a r to short-day p l a n t s , germinated w e l l under exposure t o d a i l y i r r a d i a t i o n of from a few minutes t o a few hours, hut p o o r l y when continuously exposed to e i t h e r l i g h t or darkness. A l s o , seeds of Leptandra  s i b i r i o a and Spiraea j a p o n i c a , B e t u l a pubescens, which c o r r e s -pond to long-day p l a n t s , germinated favourably under continuous i r r a d i a t i o n (Toole et a l . 1956). Seeds of others (e.g. Lettuce) could germinate e q u a l l y w e l l under e i t h e r l i g h t or darkness, and have fe a t u r e s corresponding to intermediate p l a n t s . The i n -h e r i t e d nature of photoperiodism of seeds can be changed by p r i c k i n g , removing of the seed coat, s t r a t i f i c a t i o n , increased oxygen pressure and soaking i n n i t r a t e s o l u t i o n s , as w e l l as by d a i l y a l t e r n a t i n g temperatures. 4 The positions and proportions of male and female conelets on the tree, varying with species or genera, not only influences the seed production but also influences the quality of the seed. The female conelets of grand f i r are always borne on the uppermost region of the crown, which makes i t d i f f i c u l t for the pollen grains borne lower down to r i s e and p o l l i n a t e female conelets on the same tree. The female conelets of Douglas f i r , western hemlock and pines are generally i n the upper crown region but i n greater proportion to the male conelets i n comparison with Abies. Western red cedar often bears both female and male conelets close to the lower part of the crown. It has been found i n Douglas f i r that the better the seed year the lower i n the crown the female conelets occurred. The d i f -ferent periods during which the female conelet i s open to re-ceive p o l l e n grains also a f f e c t s the seed qu a l i t y . The effect of the size and weight of seed upon ger-mination has been studied by many workers, but the r e s u l t s have been very contradictory. Baldwin (1942) reviewed the work of some investigators and found that the s i z e and weight of seed had a d e f i n i t e e f f e c t on germination because the largest and heaviest seeds are the best, have the most food reserves, ger-minate more promptly, and produce the most vigorous seedlings. Tourney and Korstian (1948) stated that when the size of seed i s not dependent upon the range of geographic d i s t r i b u t i o n but rather upon l o c a l conditions, large seed possesses a greater germinating power and produces more vigorous seedlings. Oheng (1945) 5 r e p o r t e d that l a r g e seeds of Juglans r e g i a , Prunus p e r s i o a and Q>uercus v a r i a b i l i s gave b e t t e r germination than t h a t of the s m a l l seeds. Barton and Thornton (1947) reported t h a t the s m a l l seeds of I l e x opaoa possessed about o n e - t h i r d of the germinative c a p a c i t y of the large seeds. Grose and Zimmer (1958) found t h a t l a r g e seeds of Eucalyptus maculata and Eucalyptus s i e b e r i a n a 'germinated f a s t e r and gave a higher germination per cent than that of small ones. Longdon (1958) found the same r e s u l t w i t h southern F l o r i d a s l a s h pine seed. P i s k a r i c (1953) st a t e d t h a t l a r g e s i z e d Q,uerous suber and Onerous c o c o i f e r a seeds germinated b e t t e r than t h a t of small ones. Goo (1948) found that i n Oryptomeria japonica heavier seeds from o l d seed t r e e s showed a higher germination percentage, but he could make no general c o n c l u s i o n i n the case of seeds from young t r e e s . However, a rep o r t of Rohmeder and Chen (1939) sta t e d t h a t no e s s e n t i a l d i f f e r e n c e could be detected between the germination of seeds of d i f f e r e n t s i z e s w i t h spruce, w i t h the exception t h a t oc-c a s i o n a l l y the germination of la r g e seed was i n f e r i o r and slower. Research i n I n d i a and Burma (1943) a l s o i n d i c a t e d that seeds of T e r m i n a l i a chebula, 0 . 4 - 0 . 6 inches i n diameter, gave a s i g n i f i -c a n t l y higher germination percentage than seeds of la r g e diameter; I l j i n . (1952), on the other hand, f a i l e d to e s t a b l i s h a r e l a t i o n s h i p between seed weight and germinative c a p a c i t y . Lavender (1958) a l s o could f i n d no c o r r e l a t i o n between seed s i z e and the weight of Douglas f i r seedlings r e s u l t i n g . The s i z e of the cone, the p o s i t i o n of the seed i n the 6 cone and the p o s i t i o n of the cone on the t r e e have been reported t o have a s i g n i f i c a n t e f f e c t on the germination of seed. Vaz (1955) found th a t the seed of Gupressus l u s i t a n i o a from bigger cones i s g e n e r a l l y of higher q u a l i t y . Kockarj (1952) reported that seeds of Scotch pine from medium s i z e d cones (3-4.5 x 1.5-2.5 centimeters--length x diameter) showed the best ger-m i n a t i o n r e s u l t s . Reports on seeds from cones borne i n d i f -f e r e n t p a r t s of the t r e e showed the g e r m i n a b i l i t y v a r i e d w i t h the s p e c i e s . Acatay (1938) found i n h i s i n v e s t i g a t i o n s that most seeds from cones of the upper part of the crown gave higher germinative energy than d i d cones of the lower crown; Scots pine was an exception. The general tendency t o b e t t e r seed pr o d u c t i o n at tops of the crowns i s p r i m a r i l y a t t r i b u t e d t o the r e l a t i v e l y higher content of reserve foods and lower riate of water s a t u r a t i o n , and b e t t e r chance f o r c r o s s - p o l l i -n a t i o n (Acatay 1938). As t o the e f f e c t of seeds from d i f f e r e n t p o r t i o n s of the cone, Jewesson and Danyluk (1951) reported that a l l p a r t s of the cones of i n t e r i o r Douglas f i r except the extreme basal s c a l e s , bore v i a b l e seeds whereas the upper r e g i o n of the lodgepole pine cones produced the greatest percentage of v i a b l e seeds. Wright (1945) discovered that the f r e s h weight of eastern white pine seed increases s i g n i f i c a n t l y from s m a l l t o larg e cones and from the apex to the base of the cone. The e f f e c t of age and vigour o f the mother t r e e upon seed q u a l i t y and germination has been stud i e d widely and various conclusions reached. E a r l y i n v e s t i g a t i o n s i n d i c a t e d that seeds c o l l e c t e d from o l d p a r e n t t r e e s were p o o r e r i n q u a l i t y and g e r m i n a b i l i t y t h a n t h o s e c o l l e c t e d from young p a r e n t t r e e s . However, P e a r s o n (1910) and O l s o n (1923) found t h a t t h e age o f t h e p a r e n t t r e e s o f ponderosa p i n e and w e s t e r n w h i t e p i n e had no i n f l u e n c e on the g e r m i n a t i o n c a p a c i t y o f t h e seed. A l l e n (1942) r e p o r t e d t h a t young Douglas f i r t r e e s , c o n s i d e r a b l y l e s s t h a n 20 y e a r s of age, are c a p a b l e o f p r o d u c i n g f e r t i l e seeds p r o v i d e d t h a t adequate c r o s s - p o l l i n a t i o n o c c u r s . Nakamura (1945) c o u l d not f i n d any c o r r e l a t i o n between the g e r m i n a t i o n p e r -centage and age o f the p a r e n t t r e e s of O r y p t o m e r i a j a p o n i o a , whereas Tourney and K o r s t i a n (1948) s t a t e d t h a t t h e b e s t f i l l e d seeds are from m i d d l e - a g e d p a r e n t t r e e s . A c c o r d i n g t o Gayer ( B a l d w i n (quoted) 1942) , g e r m i n a t i o n i s u s u a l l y a t a peak on the c o m p l e t i o n o f r i p e n i n g . T h e r e f o r e , g e r m i n a t i o n g e n e r a l l y i s p o o r e r as the seed ages. The r a t e o f d e g e n e r a t i o n o f seed w i t h age v a r i e s w i t h the l i f e span o f d i f f e r e n t s p e c i e s and s t o r a g e c o n d i t i o n s ( C r o c k e r 1948). M a t u r i t y has been d e f i n e d by A l l e n (1957), f o r p r a c t i c a l p u r p o s e s , as t h e " s t a g e a t w h i c h a l l p o t e n t i a l l y good seeds are c a p a b l e o f g e r m i n a t i o n and s u c c e s s f u l s t o r a g e " . The degree o f seed m a t u r i t y has a d e f i n i t e e f f e c t on g e r m i n a t i o n . The v a r i a t i o n i n seed m a t u r a t i o n i s r e l a t e d t o i n h e r i t a n c e but a f f e c t ed by o t h e r f a c t o r s such as l o c a l i t y or c l i m a t e ( A l l e n 1958). Some s p e c i e s s u c h as Douglas f i r , A b i e s , and hemlock, complete t h e p r o c e s s e s from f l o w e r i n g t o s e e d - r i p e n i n g i n one y e a r , wherea 8 others such as pines, require two years. Even on a single tree the date of maturity may vary somewhat from place to place and from year to year (Allen 1957) . It seems that each species has a minimum requirement of warm days for seed ripening after f e r t i l i z a t i o n below which i t cannot be completed. A l l e n (1957) reported that i n the lower mainland of B r i t i s h Columbia for f a i r l y normal years, cones of Douglas f i r mature about September 1 and hemlock about September 15. The rate of germination or r e l a t i v e dormancy i s influenced permanently by the maturity of seed, and neither s t r a t i f i c a t i o n nor storage could e n t i r e l y eliminate the differences that exist i n the fresh untreated seeds (Allen 1958). The danger of early c o l l e c t i o n l i e s i n the higher moisture con-tent of the endosperm and the embryo, which i n h i b i t s germination (Koshimizu 1936; Sprague 1936), i n the l i v i n g testa, which l i m i t s the gaseous exchange of the embryo (Crocker and Barton 1953), or i n the death of the under-developed embryo or endosperm. Crocker and Barton (1953) quoted Helgeson's desiccation study of sweet clover (Melilotus alba) which showed that seed coats change from the permeable immature stage to the impermeable mature f i n a l stage. This i s believed to be caused by dehy-dration which brings about an i r r e v e r s i b l e change i n some c o l -l o i d a l material i n the seed coats (Crocker and Barton 1953). Many investigators have reported that poor germination or poor seed qua l i t y i s caused by improper time of cone c o l l e c t i o n (Cook 1941; Rohmeder 194S; Kasalicky 1951; Lanquist 1956; 9' A l l e n 1957 and 1958). Many c r i t e r i a have been d e v e l o p e d and a p p l i e d as an i n d i c a t i o n o f t h e m a t u r i t y o f s e e d , but t h e i r a p p l i c a b i l i t y v a r i e s w i t h t h e s p e c i e s . S p e c i f i c g r a v i t y o f cones has been w i d e l y used as an i n d e x f o r d e t e r m i n i n g t h e m a t u r i t y o f ponderosa p i n e ( P i n u s  p o n d e r o s a ) ( M a k i 1940), of r e d p i n e ( P i n u s r e s i n o s a ) and w h i t e p i n e ( R u d o l f 1940), of J e f f r e y p i n e ( P i n u s J e f f r e y ! ) , w h i t e f i r ( A b i e s c o n o o l o r ) , C a l i f o r n i a r e d f i r ( A b i e s m a g n i f i c a ) , Douglas f i r , sugar p i n e ( P i n u s l a m b e r t i a n a ) , and C a l i f o r n i a i n c e n s e -c e d a r ( L i b o o e d r u s d e o u r r e n s ) ( L a n q u i s t 1946), and o f C o l o r a d o b l u e s p r u c e ( P i c e a pungens)(Cram 1956). C o l o u r change of cones has been used s u c c e s s f u l l y as an i n d i c a t i o n o f t h e m a t u r i t y o f Monterey p i n e ( P i n u s r a d i a t a ) (Report of F o r e s t r y and Timber B u r e a u , A u s t r a l i a 1949) and c l u s t e r p i n e ( P i n u s p i n a s t e r ) ( M a g i n i 1951), but u n s a t i s f a c t o r y r e s u l t s have been r e p o r t e d f o r A r a u o a r i a o u n n i n g h a m i i (Report o f Queensland D i r e c t o r o f F o r e s t s , A u s t r a l i a 1955), w h i t e s p r u c e ( P i c e a g l a u c a v a r . a l b e r t i a n a ) ( C r o s s l e y 1953) and Douglas f i r ( F i n n i s 1950). F i n n i s (1950) suggested t h a t the r e l a t i v e s i z e o f the embryo appears t o show promise o f b e i n g a guide t o seed m a t u r i t y o f Douglas f i r . The same method gave a s a t i s f a c t o r y r e s u l t f o r the m a t u r i t y o f hoop p i n e ( A r a u o a r i a o unninghamii ) (Report o f Queensland D i r e c t o r o f F o r e s t s , A u s t r a l i a 1955). C r o s s l e y (1953) s t a t e d t h a t the. f i r m n e s s o f t h e cone, the c o l o u r o f t h e t e s t a and the b r i t t l e n e s s o f t h e seed are r e -l i a b l e i n d i c e s o f m a t u r i t y i n w h i t e s p r u c e . Other methods used 1° as an i n d i c a t i o n o f m a t u r i t y a re cone w e i g h t , w e i g h t o f 100 seeds, and t h e s e l e n i u m t e s t ( F l n n i s 1950). Seed dormancy has been c o n s i d e r e d as t h e most i m p o r t a n t i n f l u e n c e on g e r m i n a t i o n r e s i d i n g i n the seed i t s e l f ( B a l d w i n 1942). The term "dormancy" i s d e f i n e d by Meyer and Anderson (1952) as a s t a t e i n which " s e e d s , a p p a r e n t l y r i p e , f a i l t o germinate even i f p l a c e d under s u c h c o n d i t i o n s t h a t a l l en-v i r o n m e n t a l f a c t o r s a re f a v o u r a b l e " . The s i g n i f i c a n c e o f d o r -mancy i n seed i s t h a t i t p e r m i t s the seed t o o v e r w i n t e r s a f e l y w i t h o u t g e r m i n a t i n g . The degree o f dormancy v a r i e s w i t h s p e c i e s , o r i g i n and t i m e o f c o l l e c t i o n ( E l i a s o n and H e i t 1940). O r o c k e r (1948) has c l a s s i f i e d t he dormancy o f seed as r e s u l t i n g from one o r a c o m b i n a t i o n o f the f o l l o w i n g f a c t o r s . H a r d - c o a t e d n e s s of seed, w h i c h r e s t r i c t s w a t e r ab-s o r p t i o n . , gas exchange and m e c h a n i c a l r e s i s t a n c e t o the ex-p a n s i o n o f t h e embryo, has been shown i n some c a s e s t o be a g e n e t i c f a c t o r , a l t h o u g h t h e appearance and degree o f h a r d n e s s i s m o d i f i e d by e n v i r o n m e n t a l c o n d i t i o n s s u c h as weather (Orocker and B a r t o n 1953). I t i s b e l i e v e d - t h e cause o f t h e i m p e r m e a b i l i t y o f seed c o a t s i s due t o t h e o u t s i d e l a y e r o f t h e c e l l s or t h e o u t e r h a l f o f t h e " l i g h t l i n e " o f t h e c e l l s o f the seed c o a t w h i c h i s p a l i s i d e i n form, p r e v e n t i n g t h e e n t r a n c e o f water ( O r o c k e r 1948). Boden (1957) r e p o r t e d t h a t dormancy i n E u c a l y p t u s p a n d i f l o r a and E u c a l y p t u s d i v e s seeds i s due t o some p h y s i c a l and c h e m i c a l p r o p e r t y o f t h e seed c o a t . Among 11 t h e d e v e l o p e d methods f o r b r e a k i n g t h i s t y p e o f dormancy are m e c h a n i c a l s c a r i f i c a t i o n , s o a k i n g i n c o n c e n t r a t e d s u l p h u r i c a c i d , b o i l i n g w a t e r , c o l d w ater or a l c o h o l , low t e m p e r a t u r e and h i g h h u m i d i t y s t o r a g e , temperature a t t h e f r e e z i n g p o i n t or l o w e r , h i g h temperature (60° C) , and s h a k i n g or m i x t u r e o f t r e a t m e n t s and c o n d i t i o n s . R u d i m e n t a r y embryos have been d i s c o v e r e d i n Ginkgo b i l o b a , F r a x i n u s e x c e l s i o r , and I l e x opaca seed; t h e y r e s u l t from t h e u n p a r a l l e l development o f t h e embryo i n r e l a t i o n t o t h e o t h e r p a r t s o f t h e s e e d . Seed h a v i n g t h i s c h a r a c t e r i s t i c r e -q u i r e s a p e r i o d o f " a f t e r - r i p e n i n g " b e f o r e i t i s c a p a b l e o f g e r m i n a t i o n . Dormant embryos t h a t o ccur i n such s p e c i e s as basswood, a s h , t u l i p p o p l a r , dogwood, hemlock, A b i e s and p i n e , are f u l l y -d e v e l o p e d and absorb water r e a d i l y but do not germinate u n t i l c e r t a i n b i o - c h e m i c a l changes have o c c u r r e d ( B a l d w i n 1942). Ghadwick (1946) r e p o r t e d t h a t t h e dormancy o f e a s t e r n r e d cedar ( J u n i p e r u s v i r g i n i a n a ) seed i s due t o i t s waxy seed c o a t and dormant embryo. Asakawa (1957) found t h a t t h e d e l a y e d g e r m i n a t i o n o f F r a x i n u s mandshurioa v a r . j a p o n i c a seed r e s u l t e d f r o m t h e dormancy of t h e embryo. Seeds of t h i s k i n d can be brought out o f dormancy by s t r a t i f i c a t i o n d u r i n g w h i c h n e c e s s a r y p h y s i o l o g i c a l c hanges'take p l a c e . Secondary dormancy of seed i s known as a s t a t e i n which " t h o r o u g h a f t e r - r i p e n e d seeds or u n t r e a t e d seeds may a g a i n 12 become dormant i f exposed t o o v e r - d r y i n g o r t o a t e m p e r a t u r e h i g h e r t h a n t h e optimum f o r w h i c h a f t e r - r i p e n i n g had p r e p a r e d them" ( B a l d w i n 1942). T h o r n t o n (1945) r e p o r t e d t h a t secondary dormancy i s caused by t h e e x t e r n a l c o n d i t i o n s c l o s i n g o f f t h e oxygen s u p p l y t o t h e t i s s u e and t h u s a l t e r i n g t h e m e t a b o l i s m as w e l l as t h e c h e m i c a l c o m p o s i t i o n o f t h e embryo p r e v e n t i n g p r o p e r development. He, as w e l l as Stone (1957), b e l i e v e s s e condary dormancy, and even p r i m a r y dormancy, has i t s i n -c e p t i o n i n t h e a c c u m u l a t i o n o f i n t e r m e d i a t e p r o d u c t s , formed by p a r t i a l a n a e r o b i c r e s p i r a t i o n , t h a t a c t a s i n h i b i t o r s because th e o x i d a t i o n system has been t e m p o r a r i l y i m p a i r e d t h r o u g h an i n s u f f i c i e n t s u p p l y o f oxygen. He a l s o b e l i e v e s t h a t t h e s t r u c t u r e o f t h e seed c o a t , t h e e x t e n t and m e t a b o l i c a c t i v i t y of t i s s u e s s u r r o u n d i n g the d e v e l o p i n g s e e d , and e x t e r n a l f a c t o r s such as t e m p e r a t u r e , m o i s t u r e , and c a r b o n d i o x i d e , so a l t e r t h e amount of oxygen a v a i l a b l e t o t h e embryonic t i s s u e t h a t dormancy may d e v e l o p i n t h e seed. Chromosome r e p r o d u c t i o n and c e l l d i v i s i o n a re a l s o a f f e c t e d under t h e p a r t i a l a n a e r o b i c c o n d i t i o n ( T h o r n t o n 1945). Secondary dormancy c o u l d be b r o k e n by a r e l a t i v e -l y low t e m p e r a t u r e and i n c r e a s e d oxygen p r e s s u r e o r r e m o v a l o f the seed c o a t ( C r o c k e r and B a r t o n 1953; T h o r n t o n 1945; Stone 1957). Some c h e m i c a l compounds, known t o be i n h i b i t o r s o f g e r m i n a t i o n , have been found t o be p r e s e n t i n t h e seed i t s e l f . Rohmeder (1951) found t h a t the t u r p e n t i n e o f s i l v e r f i r seed i n -h i b i t e d g e r m i n a t i o n . Cox (1945) r e p o r t e d t h a t dormancy of b l a c k 13 and white ash seed was p r i m a r i l y due t o the r e a d i l y d i f f u s i b l e i n h i b i t i n g substances i n the endosperm. He a l s o found the i n -h i b i t i n g substances i n the storage t i s s u e s i n non-after-ripened seeds of red oak, black cherry, sugar maple, but not i n the completely a f t e r - r i p e n e d seeds of these species. He suggested that the mechanism of I n h i b i t i o n i n v o l v e d the i n a c t i v a t i o n of enzymes p a r t i c u l a r l y those of the r e s p i r a t o r y system. Redman and Robinson ( 1 9 5 * 0 found that the seed coat of yellow b i r c h contains a water-soluble substance that i n h i b i t s the growth of the embryo. This substance l o s e s I t s i n h i b i t i n g e f f e c t when the seed i s exposed to an extended p e r i o d of l i g h t . Other substances found to i n h i b i t germination In seeds are ammonia, hydrocyanic a c i d (from amygdalin), e s s e n t i a l o i l s , a l k a l o i d s , g l y c o s i d e s , and a substance not i d e n t i f i e d but known as " B l a s t o k o l i n e . " E p i c o t y l dormancy has been found i n tr e e peony (Paeonia s u f f r u t l c o s a ) seed (Barton 1 9 4 4 ) , This type of dormancy can be terminated by low temperature ( 1 - 1 0 ° C). Seeds of T r i l l i u m grandiflorum. T r i l l i u m erectum and Qaulophyllum  t h a l i c t r o i d e s have to be t r e a t e d by two separate c o l d periods, one before the appearance of the root and the other a f t e r the root appears, owing to t h e i r double dormancy nature (Barton 1 9 ^ 4 ) . Under the heading of e x t e r n a l i n f l u e n c e s on seed germination, f a c t o r s such as the i n c u b a t i o n temperature, moisture content, l i g h t , oxygen and carbon d i o x i d e , exert the primary 14 natural effects on the course of germination. Seed of each species under i t s divergent environmental conditions forms i t s s p e c i f i c pattern i n requirements f o r and tolerances of each factor or combination of factors (Baldwin 1942). Incubation temperature i s the main c o n t r o l l i n g factor of germination (Baldwin 1942). Toole et a l . (1956) stated that the great v a r i a b i l i t y of the temperature requirement,among d i f -ferent species and within a species i s established, depending on age, storage conditions, and other-factors. They quoted Atterburg's work as an example that f r e s h l y harvested seeds of some cereals were early found to have a comparatively low maxi-mal temperature of 10° to 15° C but the maximal value was raised by about 10° G as the seeds aged over several weeks. Neverthe-l e s s , a temperature region most favourable f o r germination does exist f o r p a r t i c u l a r l o t s of seed (Toole et a l . 1956) under which a l l seeds w i l l germinate vigorously, completely and uniformly in a r e l a t i v e l y short period. Laboratory germination methods are designed to achieve t h i s . Baldwin (1942) reviewed previous investigations and concluded that most tree seeds germinate o o best between 20 and 27 0. In laboratory practice, i t i s de-si r a b l e to treat each species separately i n order to secure near-optimum conditions. A l l e n and Bientjes (1954) reported i n t h e i r recommended procedure f o r t e s t i n g s t r a t i f i e d Douglas f i r seed that 25° G i s the best incubation temperature r e s u l t i n g i n almost complete germination within a period of 14 days. They o also recommended a constant temperature of 20 0 and a 21-day 15 Q i n c u b a t i o n p e r i o d f o r w e s t e r n hemlock seed and 25 C and a 14-day i n c u b a t i o n p e r i o d f o r ponderosa p i n e and A b i e s s p e c i e s . B i e n t j e s (1.954) c o n f i r m e d t h a t a 20° 0 c o n s t a n t temperature i s t h e b e s t one f o r w e s t e r n hemlock seed g e r m i n a t i o n t e s t s ; C h i n g (1958) recommended a 20° 0 c o n s t a n t t e m p e r a t u r e w i t h s u p p l e m e n t a l l i g h t f o r a f i v e - w e e k g e r m i n a t i o n p e r i o d w i t h o u t s o a k i n g or s t r a t i f i c a t i o n . H e i t and E l i a s o n (1940) r e p o r t e d t h a t Norway s p r u c e ( P i c e a a b i e s ) seed c a n be t e s t e d a c c u r a t e l y i n 15 days at a c o n s t a n t g e r m i n a t i o n t e m p e r a t u r e o f 15° 0 whereas A b i e s  balsamea under th e same c o n d i t i o n s , may r e q u i r e 60 days t o com-p l e t e i t s g e r m i n a t i o n . Rohmeder (1942) found t h a t Ulmus montana seeds ge r m i n a t e d b e s t a t a c o n s t a n t g e r m i n a t i o n temperature o f O r, 25 0 or at an a l t e r n a t i n g t e m p e r a t u r e v a r y i n g between 20 and 30° 0. I n 1954, he r e p o r t e d t h a t f r e s h , sound, g o o d - q u a l i t y seeds o f P i n u s n i g r a v a r . a u s t r i a c a g e r m i n a t e d e q u a l l y w e l l a t o a c o n s t a n t t e m p e r a t u r e o f 25 0 or a t an a l t e r n a t i n g t e m p e r a t u r e o f 20-25° 0. M u g n a i n i (1954) found the optimum g e r m i n a t i o n t e m p e r a t u r e f o r P i n u s p i n a s t e r seed t o be 20° 0 c o n s t a n t w i t h t h e sand-medium m o i s t u r e a t about 20 p e r c e n t . The r e -commended g e r m i n a t i o n t e m p e r a t u r e f o r s o u t h e r n p i n e seed i s between 70-75° TP (Wakeley.1954). A l t e r n a t i n g t e m p e r a t u r e s , r a t h e r t h a n a c o n s t a n t one, are more f a v o u r a b l e f o r some s p e c i e s e s p e c i a l l y t h o s e i n c o m p l e t e -l y a f t e r - r i p e n e d or g e r m i n a t i n g w i t h i n r e l a t i v e l y narrow l i m i t s ( B a l d w i n 1942). A l l e n and B l e n t j e s (1954) s u g g e s t e d t h a t t h e 16 germination of Douglas f i r seed at al t e r n a t i n g inoubation tem-peratures of 30° C maximum (eight hours d a i l y ) , dropping to 15-20° 0 at night, gave the same resu l t as at 25° 0 constant. Wakeley (1954) reported that a l l southern pine seeds benefit immensely by some day-to-night f l u c t u a t i o n i n germinating temperatures. Asakawa (1957) found that the best germination of Fraxinus mandshurioa var. japonica seed was obtained by using d a i l y f l u c t u a t i n g temperatures of 25° 0 and 8° 0 (1.6-20 hours). Morinaga (1926) suggested that the response of seed to a l t e r n a t i n g temperatures i s believed to come from the embryo. Bunning (1956) explained the favourable ef f e c t of a l t e r n a t i n g temperature on seed germination with the diurnal rhythm theory by s t a t i n g that temperature s e n s i t i v i t y i n germinating seeds shows p e r i o d i c a l changes, and phases with equal s e n s i t i v i t y follow each other at approximately 24 hour i n t e r v a l s . Toole et a l . (1956) suggested that the increased r e s p i r a t i o n and metabolism at a continued high temperature changes the balance of the intermediate materials of the respiratory cycle. This new balance may not be favourable f o r germination at a continued high temperature, but with a change to a lower temperature germination w i l l be promoted. The s e n s i t i v i t y of the seed to temperature or l i g h t disappeared as the seed completed i t s af t e r - r i p e n i n g or s t r a t i f i c a t i o n requirements. For the general use of al t e r n a t i n g temperatures, Baldwin (1942) advised that i t should be li m i t e d to 20° - 30° 0 or s l i g h t l y l e s s , the higher 17 t e m p e r a t u r e t o be m a i n t a i n e d f o r s i x t o e i g h t hours d a i l y o n l y . M o i s t u r e c o n t e n t i s a n o t h e r i m p o r t a n t f a c t o r a f f e c t -i n g seed g e r m i n a t i o n . B a l d w i n (1942) s t a t e d , "as i n most c h e m i c a l r e a c t i o n s , w a t e r i s n e c e s s a r y f o r t h e m o b i l i z a t i o n o f enzymes, f o r t h e h y d r o l y s i s o f r e s e r v e foods and f o r i n i t i a t i n g c e l l d i v i s i o n i n the r e s t i n g embryo. F u r t h e r m o r e , m o i s t u r e i s needed for i m b i b i t i o n by the c o l l o i d s o f w h i c h the s t r u c t u r e s s u r r o u n d i n g t h e embryo are so l a r g e l y composed. The s w e l l i n g c u l m i n a t e s i n t h e m e c h a n i c a l b u r s t i n g o f t h e seed c o a t , and p e r m i t s the growth movements con n e c t e d w i t h g e r m i n a t i o n p r o c e s s " . Not o n l y i s s u f f i c i e n t m o i s t u r e r e q u i r e d by t h e seed t o i n i t i a t e i t s g e r m i n a t i o n , but water s h o u l d a l s o be a v a i l a b l e d u r i n g t h e c o u r s e o f g e r m i n a t i o n . The f u l l y - r i p e n e d seeds o f t e n r e v e r t t o s e condary dormancy when the g e r m i n a t i o n medium becomes to o d r y . However, th e optimum range f o r seed g e r m i n a t i o n v a r i e s w i t h s p e c i e s , age, and c o n d i t i o n s o f t h e seed. S t i l e (1948) e x p l a i n e d t h a t seeds are adapted t o d i f f e r e n t m o i s t u r e r e q u i r e -ments f o r g e r m i n a t i o n a c c o r d i n g t o the h a b i t a t i n w h i c h t h e y grow, and t h a t such a d a p t a t i o n s a r e e v i d e n t i n t h e m o i s t u r e r e -q u i r e m e n t s o f t h e a x i s of t h e embryo and t h e i m b i b i t i o n a l c a p a c i t y o f the c o t y l e d o n s and endosperm. C r o c k e r and B a r t o n (1953) quoted D u n i n and M a z d r i k o v a ' s f i n d i n g t h a t t h e minimum m o i s t u r e r e q u i r e m e n t f o r g e r m i n a t i o n may be g r e a t e r i n seeds w i t h low g e r m i n a t i o n v i g o u r . B a r t o n (1941) found t h a t under the same r e l a t i v e h u m i d i t i e s t h e amount of m o i s t u r e absorbed 18 by seed v a r i e s w i t h d i f f e r e n t temperatures. I t i s t h e r e f o r e concluded that the nature of the seed coat and the s t r u c t u r e and chemical composition of the seed have d e f i n i t e e f f e c t s on moisture absorption (Orocker and Barton 1953). Nevertheless, each species has i t s minimum moisture requirement f o r germination. As Schmidt (1930) reported, o l d Scotch pine seed i s more s e n s i t i v e t o higher moisture than f r e s h seed, whereas abundant moisture and a e r a t i o n are re q u i r e d f o r the germination of cypress. Seeds, i n general, a f t e r being k i l n - d r i e d or a i r - d r i e d , would r e q u i r e soaking p r i o r t o germin-a t i o n . On the other hand, over-soaking i s i n j u r i o u s to seed germination. Holmes and Buszewicz (1955) found a depression of germination caused by soaking Douglas f i r seed beyond s e v e r a l days. Tourney and Durland (1923) reported t h a t soaking f o r more than three t o f i v e days of a number of coniferous seeds was g e n e r a l l y i n j u r i o u s . L i g h t i s another f a c t o r i n f l u e n c i n g germination of seeds of some s p e c i e s . Many i n v e s t i g a t o r s ' conclusions are con-f l i c t i n g . The d i f f e r e n t r e s u l t s are probably due t o d i f f e r e n t p h y s i o l o g i c a l c o n d i t i o n s and d i s s i m i l a r i n t e n s i t i e s and q u a l i t y of l i g h t used by d i f f e r e n t workers. I n the case of germination of non-treated seed, l i g h t i s b e l i e v e d t o increase r e s p i r a t i o n (Orocker and Barton 1953), to r a i s e the temperature, t o s t i m u l a t e enzyme a c t i v i t y and chemical f u n c t i o n s , to produce the a c i d i t y c h a r a c t e r i s t i c of readiness f o r germination (Baldwin 1942), 19 and to reverse the ch a r a o t e r l s t i c s of photo-reaction of seed (Toole et a l . 1956). Gardner (1921) found that l i g h t seemed to activate the l i p o l y t i c enzyme which hydrolyzes fa t s to f a t t y acids. He also found that embryos of seed incubated in l i g h t became more acidic than i f incubated i n darkness, but he found no r e c i p r o c a l relationship between the effects of l i g h t and temperature. Toole, et a l . (1956) stated that the effect of l i g h t on seed germination i s a reversible photo-reaction which regulates seed germination by promotion or i n h i b i t i o n depending upon the required r e l a t i v e radiant energy which i n turn varies with time of imbibition, temperature condition during germination, p r i o r exposure to ra d i a t i o n , time and condition of storage, and other f a c t o r s . He also found that the photoreaction of the l i g h t and temperature interactions on seed germination i s not dependent on the temperature during the l i g h t treatment but during imbibition i n the dark following the l i g h t exposure. Light i s favourable for the germination of Scotch pine and some species of other pines (Sarvas 1950; E l i a s o n and Heit 1940a; Richtar 1959). Vaartaja (1955) reported that Betula verrucosa and Betula pubescens seed germinated well, both i n darkness and under various l i g h t conditions, at 25°-35° 0, had s l i g h t l y de-creased germination at 20°-25° 0, and depended largely upon, the photoperiod at 10°-20° 0. He also observed that no l i g h t was needed for the germination•of these seeds i f they had been 20 s t r a t i f i e d . Hasegawa (1953) came to the same conclusion regard-ing the germination of Pinus thunbergil seed. Ono (195*0 stated that l i g h t i s s i g n i f i c a n t l y favourable to germination of Chamaecyparis obtusa seeds, but the eff e c t i s increased by lengthening the presoaking time i n the darkness p r i o r to i l -lumination. A l l e n (19^1) reported that the fre s h untreated Douglas f i r seeds of coastal o r i g i n and old lodgepole pine seeds responded well to l i g h t , but old Douglas f i r seed of i n t e r i o r o r i g i n and fr e s h western red cedar seeds showed no response to i t . He also found that the soaking and exposure to l i g h t of the fre s h Douglas f i r seed had l i t t l e or no effect upon the germin-ation at the lower temperature ( 1 5 ° - 2 7°C) J but had a s i g n i -f i c a n t effect at the higher temperature ( 1 5 ° - 3 8°C). From the same experiment, A l i e n (19^1) stated that the fre s h untreated grand f i r and western hemlock seeds showed a d e f i n i t e preference fo r darkness. As to the quality of l i g h t , Hashimoto, Shihira and Ishikawa (195*0 reported that the Paulownia tomentosa seeds exhibited a higher germination rate under red and yellow l i g h t than under white; Pinus d e n s i f l o r a and Pinus thunbergil seeds responded well to white and yellow, but poorly to green, blue and to darkness; Chamaecypar1s obtusa and Chamaecyparis n i s i f l o r a seeds germinated higher i n a l l portions of the l i g h t spectrum but lower i n darkness. Iwakawa and Kotani (195**') also found red l i g h t (6500A) and f u l l l i g h t (daylight) favoured germination of Pinus d e n s i f l o r a and Pinus thunbergil seeds rather than 21 green (5350__) , b l u e (4600A) or d a r k n e s s . Lame (1957) r e p o r t e d t h e r e d p o r t i o n o f t h e l i g h t spectrum promoted th e g e r m i n a t i o n o f V i r g i n i a p i n e seed f o l l o w e d by a 24-hour i m b i b i t i o n a t 5° 0 and a c o n s t a n t t e m p e r a t u r e o f 25° 0. The r e q u i r e m e n t s o f l i g h t f o r seed g e r m i n a t i o n can be met by s u c h t r e a t m e n t s as a f t e r - r i p e n i n g i n d r y s t o r a g e , p r i c k i n g t h e s e e d c o a t s , f u l l atmosphere o f oxygen, Knopp's s o l u t i o n ( C r o c k e r 1948) or s t r a t i f i c a t i o n as w e l l as by l i g h t ( A l l e n 1941.; r e p o r t o f C a l i f o r n i a F o r e s t and Range Experiment S t a t i o n 1958; V a a r t a j a 1955). The r o l e of oxygen i n t h e g e r m i n a t i o n o f seed i s d i r e c t l y r e l a t e d t o c h e m i c a l changes and r e s p i r a t i o n ( B a l d w i n 1942). I t seems t h a t each s p e c i e s has i t s minimum oxygen r e -quirement f o r g e r m i n a t i o n . M o r i n a g a (1926) found t h a t a s m a l l s u p p l y o f oxygen was n e c e s s a r y f o r t h e g e r m i n a t i o n o f C a t - t a i l {.Typha l a t l f o l i a L.) s e e d , but a f a v o u r a b l e e f f e c t r e s u l t e d when th e oxygen c o n c e n t r a t i o n o f t h e a i r was reduced by d i l u t i n g w i t h hydrogen or n i t r o g e n . He a l s o s t a t e d t h a t t h e f a v o u r a b l e e f f e c t s o f reduced oxygen p r e s s u r e s d i s a p p e a r e d when t h e seed c o a t s were b r o k e n . Most h a r d c o a t e d s e e d s , n o t a b l y , Leguminosae, c a r r y on an a n a e r o b i c r e s p i r a t i o n i n t h e e a r l y s t a g e o f germin-a t i o n due t o t h e i m p e r m e a b i l i t y of t h e seed c o a t s t o oxygen, and the a e r o b i c o x i d a t i v e p r o c e s s t a k e s p l a c e as soon as t h e seed c o a t s a r e r u p t u r e d ( Meyer and Anderson 1958) . ;C,ox (1945) found t h a t the dormancy o f t h e r e d ash seed was p r i m a r i l y due t o t h e s t r u c t u r e s o f t h e endosperm l i m i t i n g t h e s u p p l y o f oxygen 22 t o t h e embryo. T h i s d i f f i c u l t y c o u l d be overcome by t h e r e m o v a l of p a r t o f t h e endosperm from t h e r a d i c l e o r by t r e a t m e n t w i t h c o n c e n t r a t e d s u l p h u r i c a c i d . Carbon d i o x i d e i s a n o t h e r f a c t o r i n f l u e n c i n g t h e g e r m i n a t i o n o f seed. B a l d w i n (1942) s u r v e y e d many i n v e s t i g a t i o n s on t h i s s u b j e c t and c o n c l u d e d t h a t c a r b o n d i o x i d e u s u a l l y e x e r t s an i n h i b i t o r y a c t i o n on seed g e r m i n a t i o n and t h a t t h e i n h i b i t i n g e f f e c t i s i n c r e a s e d i n p r o p o r t i o n t o t h e c o n c e n t r a t i o n . The h i n d r a n c e may be t h e t o x i c e f f e c t r e l a t e d t o r e s p i r a t i o n o f t h e g e r m i n a t i n g seed. However, T h o r n t o n (1945) r e p o r t e d t h a t seeds o f l e t t u c e c o u l d be thrown out o f dormancy by e x p o s i n g the seeds t o 40 t o 80 per c e n t c a r b o n d i o x i d e w i t h 20 p e r cent oxygen at 35° C. K e e p i n g t h e g e r m i n a t i o n medium always m o i s t w i t h o u t f r e e w a t e r , w i l l p r e v e n t t h e a c c u m u l a t i o n of carbon d i o x i d e i n t h e l a b o r a t o r y seed g e r m i n a t i o n t e s t , and y e t p r o -v i d e f a v o u r a b l e g e r m i n a t i o n m o i s t u r e . A n o t h e r group of e x t e r n a l f a c t o r s t h a t i n f l u e n c e g e r m i n a t i o n b e h a v i o r o f seed a r e a r t i f i c i a l r a t h e r t h a n n a t u r a l . These i n c l u d e a l l p hases o f seed c o l l e c t i o n , p r o c e s s i n g , s t o r a g e and p r e t r e a t m e n t s , and some o f these have been shown t o change t h e g e r m i n a t i o n p a t t e r n and a f f e c t the v i a b i l i t y o f seed. These f a c t o r s are i n t e r - r e l a t e d w i t h each o t h e r . F i r s t o f a l l , cones of a p a r t i c u l a r s p e c i e s have t o be c o l l e c t e d at t h e r i g h t t i m e . ', The e a r l y - c o l l e c t e d green cones a r e d i f f i c u l t t o p r e s u r e -and may y i e l d i n f e r i o r seed and s m a l l q u a n t i t i e s of germinable 23 seed ( A l l e n 1957a). A l s o , t h e c o l l e c t e d cones have t o be s t o r e d i n a c o o l , d r y and w e l l - v e n t i l a t e d shed i n o r d e r t o p r e v e n t mould and t o p r e v e n t l a t e r e x t r a c t i o n d i f f i c u l t i e s ( B a l d w i n 1942). The p r o p e r method o f seed e x t r a c t i o n depends upon the m a t u r i t y o f t h e seed, t h e s p e c i e s and t h e e x t e n t t o w h i c h t h e m o i s t u r e c o n t e n t must be re d u c e d . F o r s a t i s f a c t o r y r e s u l t s , cones o f some s p e c i e s r e q u i r e p r e c u r i n g by a i r - d r y i n g f o r a c e r t a i n p e r i o d p r i o r t o k i l n d r y i n g . A l l e n (1957a) r e p o r t e d t h a t seed i n the green, uncured Douglas f i r cones showed v e r y heavy l o s s e s when p l a c e d d i r e c t l y a t 104° F, whereas seed i n the p r e c u r e d s i m i l a r cones showed no i l l e f f e c t s at a 122° F k i l n t e m p e r a t u r e . R i e t z (1939) and A l a r c o n (1950) found t h a t l o n g l e a f p i n e and Monterey p i n e cones have t o be p r e c u r e d t o a m o i s t u r e c o n t e n t o f 35 p e r c e n t and 40 p e r c e n t r e s p e c t i v e l y . N o r d strom (1953) s t a t e d t h a t good r e s u l t s w i t h S c o t c h p i n e cones were o b t a i n e d by s o a k i n g the cones i n wa t e r f o r f i f t e e n m i n u t e s p r i o r t o a k i l n - d r y i n g t e m p e r a t u r e of 113° F. F o r s t e r (1956) found t h a t t h e immature case-hardened s l a s h p i n e and l o b l o l l y p i n e cones w i l l n o t open on d r y i n g u n l e s s s p r i n k l e d w i t h w a t e r . Hebb (1954) r e p o r t e d t h a t t h e most e f f e c t i v e way t o open p i n e cones i s t o d i p t h e cones i n b o i l i n g water f o r a moment. The s u s c e p t i b i l i t y o f seed t o h i g h temperature i n k i l n - d r y i n g v a r i e s w i t h t h e s p e c i e s . L e b a r r o n and Roe (1945) d i s c o v e r e d t h a t good r e s u l t s were o b t a i n e d by d r y i n g j a c k p i n e cones at t e m p e r a t u r e s of 140°-150° F f o r 2 - 3 h o u r s . R e p o r t s from European c o u n t r i e s s t a t e d t h a t most p i n e and s p r u c e cones can be d r i e d a t k i l n 24 t e m p e r a t u r e s up t o 122° F (Kangas 1942; T i r e n 1946; A l a r c o n 1950). R i e t z (1939) d e s c r i b e d t h a t the optimum c o n d i t i o n s f o r the d r y i n g o f l o n g l e a f p i n e cones are 115° F and an e l e v e n hour p e r i o d . A l l e n (1957a) a l s o found t h a t Douglas f i r cones can be s a f e l y d r i e d a t a k i l n t e m p e r a t u r e o f up t o 122° F. He a l s o n o t i c e d a 20 p e r c e n t or more l o s s i n Douglas f i r seed v i a b i l i t y when t h e k i l n t e m perature was r a i s e d t o 140° F. Wakeley (1948) r e p o r t e d t h a t seed o f s o u t h e r n p i n e s , e s p e c i a l l y l o n g l e a f p i n e , m a i n t a i n s v i a b i l i t y b e t t e r w i t h slow d r y i n g a t low t e m p e r a t u r e r a t h e r t h a n f a s t d r y i n g a t h i g h t e m p e r a t u r e s . D i r e c t s u n - d r y i n g of cones was r e p o r t e d t o owe i t s b e n e f i c i a l e f f e c t s to the g r a d u a l change o f t h e m o i s t u r e c o n t e n t (Wakeley 1948). Seed, s u b j e c t e d t o h i g h k i l n - d r y i n g t e m p e r a t u r e s , i s h i g h l y s u s c e p t i b l e t o r o t d u r i n g the c o u r s e o f g e r m i n a t i o n due t o a l o s s o f v i g o u r ( A l l e n 1957a). D e w i n g i n g i s r e c o g n i z e d as a v e r y i m p o r t a n t f a c t o r a f f e c t i n g t h e g e r m i n a t i o n o f seed. S m a l l l o t s o f most c o n i f e r o u s seeds can be dewinged q u i t e s a t i s f a c t o r i l y by hand r u b b i n g . Other s i m p l e methods, such as t y i n g the seeds l o o s e l y i n a sack and t h e n b e a t i n g i t w i t h f l a i l s , t r a m p l i n g i t , or b a n g i n g i t a g a i n s t t r e e s or w a l l s , or r a k i n g t h e m o i s t e n e d seeds u n t i l d r y , are l i k e l y t o cause i n j u r y . M e c h a n i c a l d e w i n g i n g has been used s u c c e s s f u l l y i n h a n d l i n g l a r g e q u a n t i t i e s o f seed but o f t e n causes s e r i o u s damage. Huss (1950) r e p o r t e d t h a t seed dewinged by most m e c h a n i c a l dewingers were damaged t o v a r i o u s 25 d e g r e e s , depending upon th e type o f dewinger and t h e s p e c i e s of t r e e seed. He a l s o s t a t e d t h a t 10 t o 20 p e r c e n t of the y e a r l y h a r v e s t e d seed i n Sweden was d e s t r o y e d by d e w i n g i n g . A l l e n (1957a) found t h a t l o s s e s of A b i e s l a s i o c a r p a seed by b r u s h d e w i n g i n g are almost i n e v i t a b l e and the damage i n c r e a s e s w i t h t h e amount of hard d e b r i s p r e s e n t and w i t h each s u c c e s s i v e de-w i n g i n g t r e a t m e n t . Damage by d e w i n g i n g i s i n c r e a s e d i n p r o -p o r t i o n t o the speed of t h e dewinger. The g e r m i n a t i o n t e s t s showed t h a t the damage imposed upon the seed seems t o i n c r e a s e more r a p i d l y a t t h e end t h a n t h a t at t h e b e g i n n i n g of t h e p r o -c e s s . The p r o p e r number of r e v o l u t i o n s v a r i e s w i t h the type of dewinger and d i f f e r e n t s p e c i e s . E l i a s o n and H e i t (1940) r e -p o r t e d t h a t i n j u r y t o r e d p i n e seeds ceased when the speed of t h e d e w i n g i n g machine was r e d u c e d from 120 t o 60 r e v o l u t i o n s p e r m i n u t e . A l l e n (1.957a) found t h a t a s l o t t e d - d r u m dewinger produced o n l y s m a l l l o s s e s i n Douglas f i r seed when the sample f o r d e w i n g i n g c o n t a i n e d l i t t l e h a r d d e b r i s . Huss (1950) r e -p o r t e d t h a t t h e c e n t r i f u g a l machine w i t h a speed o f 3000-4000 r e v o l u t i o n s p e r minute d i d not a f f e c t the g e r m i n a t i o n c a p a c i t y o f t h e s e e d s . I t i s g e n e r a l l y agreed t h a t g e r m i n a t i o n i s f r o m 20 t o 30 p e r c e n t h i g h e r i f t h e seed i s hand-rubbed i n s t e a d o f b e i n g m e c h a n i c a l l y dewinged. A l l e n (1957a) d e s c r i b e d seed o f Douglas f i r damaged by d e w i n g i n g as h a v i n g a d u l l , d u s t y l o o k -i n g seed c o a t , and p r o d u c i n g s e e d l i n g s o f low v i g o u r a p p a r e n t l y s u s c e p t i b l e t o d e s t r u c t i v e c o n t a m i n a t i o n . Thus, p r o p e r a d j u s t -ments and s p e c i a l c a r e are r e q u i r e d f o r t h e use o f m e c h a n i c a l 26 d ewingers i n o r d e r t o reduce the damage t o a minimum. The purpose of c l e a n i n g o r winnowing i s t o s e p a r a t e th e sound dewinged seeds from d e b r i s and i m p u r i t i e s as w e l l as from the empty or dead seeds. C l e a n i n g can be done e f f e c t i v e l y by machine. I t has been r e p o r t e d t h a t the damage caused t o t h e seed by c l e a n i n g i s v e r y l i g h t . Huss (1952) r e p o r t e d t h a t a new; winnower w i t h a speed of 30 r e v o l u t i o n s p e r minute i n c r e a s e d t h e g e r m i n a t i o n o f P i n u s p i n a s t e r when the seed was g i v e n two r u n s t h r o u g h i t , whereas t h e o r i g i n a l machine w i t h a maximum of 60 r e v o l u t i o n s p e r minute gave much l e s s g e r m i n a t i o n . The c o m m e r c i a l l y used " C l i p p e r " c l e a n i n g machine has been r e p o r t e d s a t i s f a c t o r y i n so f a r as damage i s concerned ( A l l e n 1957a). S i n c e c l e a n i n g i s the l a s t s t e p of t h e whole seed p r o c e s s , i t i s b e l i e v e d t h a t o n l y t h o s e seeds which have been i n j u r e d by ex-t r e m e l y h i g h k i l n t e m p e r a t u r e s , rough d e w i n g i n g , e a r l y c o l l e c t i o n or poor s t o r a g e o f cones w i l l be damaged by c l e a n i n g . S t o r a g e i s a q u i t e i m p o r t a n t f a c t o r w h i c h i n f l u e n c e s t h e g e r m i n a t i o n o f seed t h r o u g h i t s e f f e c t on seed v i a b i l i t y . A l t h o u g h the e f f e c t of s t o r a g e i s dependent upon t h e m a t u r i t y and upon t h e i n h e r i t e d l o n g e v i t y of t h e s p e c i e s , as w e l l as upon the e x t r a c t i n g and c l e a n i n g p r o c e s s e s , o n l y t h e a p p r o p r i a t e c o n d i t i o n s of s t o r a g e w i l l m a i n t a i n the v i a b i l i t y o f the seed t o the maximum. There i s a wide v a r i a t i o n i n the s e n s i t i v i t y o f seed t o v a r i o u s c o n d i t i o n s o f s t o r a g e . Ewart (1908) c l a s s i f i e d seeds i n t o t h r e e b i o l o g i c a l c a t e g o r i e s based on t h e i r l i f e - s p a n under optimum s t o r a g e c o n d i t i o n s : m i c r o b i o t i c seeds, whose l i f e 27 span does not exceed t h r e e y e a r s ; m e s o b i o t i c seeds, whose l i f e span r a n g e s from 3 t o 15 y e a r s ; and m a c r o b i o t i c seeds, whose l i f e span ranges from 15 t o more than 100 y e a r s . The m e s o b i o t i c and m a c r o b i o t i c seeds are g e n e t i c a l l y endowed w i t h a s p e c i a l s t r u c t u r e of h a r d c o a t s w h i c h e f f e c t i v e l y s e a l the seed a g a i n s t the m o i s t u r e and oxygen exchanges and the l o s s o f s t o r e d f o o d t h r o u g h c o n t i n u o u s r e s p i r a t i o n , whereas t h e m i c r o b i o t i c seeds are g e n e t i c a l l y handicapped from w i t h s t a n d i n g d r y n e s s and from m a i n t a i n i n g low m o i s t u r e c o n t e n t w i t h o u t i n j u r y . Most t r e e s p e c i e s are m e s o b i o t i c , m a c r o b i o t i c seeds b e i n g r a r e , except among Leguminosae and Rosaceae ( B a l d w i n 1942). Holmes and B u s z e w i c z (1958) r e v i e w e d p r e v i o u s i n v e s t i g a t i o n s on t h e s t o r a g e of temperate f o r e s t t r e e s p e c i e s and c o n c l u d e d t h a t i n c o n t r a s t , many temperate zone t r e e seeds such as, t h o s e o f the genera Querous, Fagus, A e s o u l u s , Oastanea, J u g l a n s , S a l i x , P o p u l u s and Ulmus, are of a m i c r o b i o t i c t y p e and d e t e r i o r a t e r a p i d l y . H e i t and E l i a s o n (1941) found t h a t the h a r d p i n e s i n g e n e r a l are l e s s s e n s i t i v e t o poor s t o r a g e c o n d i t i o n s t h a n t h e s o f t p i n e s o r o t h e r c o n i f e r s . S t o r a g e of seed i n v o l v e s t h r e e f a c t o r s , namely, t e m p e r a t u r e , m o i s t u r e c o n t e n t , and gas exchange. S t o r a g e t e m p e r a t u r e has been s t u d i e d w i d e l y and i t has been prove d t h a t a t room t e m p e r a t u r e s i n b o t h open and s e a l e d s t o r a g e , seed d e t e r i o r a t e s g r e a t l y i n v i a b i l i t y . Temperatures c l o s e t o or below f r e e z i n g have been found t o be i d e a l f o r most seed. N e l s o n (1938) s t a t e d i n h i s experiment on t h e s t o r a g e of 28 l o n g l e a f p i n e , s l a s h p i n e and l o b l o l l y p i n e seeds, t h a t 30°-40° F i s t h e optimum range f o r t h e b e s t p r e s e r v a t i o n v i a b i l i t y . V i l m o r i n (1944) r e p o r t e d t h a t A b i e s a l b a r e t a i n e d f u l l ger-m i n a t i o n c a p a c i t y f o r a t l e a s t a y e a r i f s t o r e d i n d a r k n e s s at a t e m p e r a t u r e i n t h e neighbourhood of -10° C. Wakeley (1948), on t h e o t h e r hand, found t h a t seed of p r i n c i p a l s o u t h e r n p i n e s p e c i e s can be b e t t e r s t o r e d f o r y e a r s a t 5° F t h a n at 35°-40° F. B a r t o n (1953) recommended u s i n g 0°-5° 0 f o r s t o r i n g seeds f o r l e s s t h a n f i v e y e a r s and -4° G f o r l o n g e r t h a n f i v e y e a r s . She l a t e r found t h a t m a i n t a i n i n g the v i a b i l i t y of ponderosa p i n e , Douglas f i r , S i t k a s p r u c e , w e s t e r n r e d cedar and w e s t e r n hemlock seeds, -18° 0 was b e t t e r t h a n -4° C or -11° G. S c h u b e r t (1955) r e p o r t e d t h a t the b e s t g e r m i n a t i o n r e -s u l t s a f t e r two y e a r s were o b t a i n e d when seeds of sugar p i n e were s t o r e d a t 0° F, of J e f f r e y p i n e a t 23° F, and o f ponderosa p i n e a t 32° F. Stone (1957a) found t h a t the embryo v i g o u r o f sugar p i n e seed was b e s t m a i n t a i n e d a t a d r y s t o r a g e temperature o f -18° 0. A l l e n (195 7) found i n h i s s t o r a g e b e h a v i o r e x p e r i -ment of 11 p r i n c i p a l c o n i f e r s p e c i e s t h a t a l l 11 s p e c i e s c o u l d be s t o r e d f o r p e r i o d s of from 5 t o 7 y e a r s i n s e a l e d v i a l s w i t h o u t l o s s a t 0° F or 32° F, and presumably over a s t i l l w i d e r range o f low t e m p e r a t u r e s , whereas t h o s e s t o r e d a t f l u c t u a t i n g room temperature l o s t t h e i r v i a b i l i t y c o m p l e t e l y over t h e same p e r i o d s . I t might be c o n c l u d e d t h a t most seeds can be s a f e l y s t o r e d i n s e a l e d or a i r - t i g h t c o n t a i n e r s a t 0° - 5° 0 f o r a few y e a r s and a t s u b f r e e z i n g t e m p e r a t u r e s f o r l o n g e r p e r i o d s . S9i The suitable seed moisture content f o r prolonged storage varies with the species. Orocker (1948) reported that seeds i n which the food reserve substances are mainly fats absorb less moisture than those i n which the reserve food substances are mainly carbohydrates. The nature of the seedcoat i s another factor c o n t r o l l i n g the moisture content. The moisture content of seed i s also affected by d i f f e r e n t temperatures and a i r humidities (Orocker and B-arton 1953) . Huss (1954) reported that f o r both good and poor seed the moisture content during storage i s the primary factor a f f e c t i n g germination, e s p e c i a l l y f o r prolonged storage periods at above-freezing temperatures. Higher v i a b i l i t y of seed w i l l be maintained, within l i m i t s , at lower moisture contents. I t i s believed that each species has a c r i t i c a l range above which seed w i l l s t a r t to deteriorate rapi d l y and below which seed w i l l be injured i f drying i s pro-longed i n the k i l n . Crocker (1948) suggested that f a t t y seeds should be reduced to four to f i v e per cent moisture content and the starchy seeds to f i v e to s i x per cent before se a l i n g for storage. Holmes and Buszewicz (1958) quoted Baldwin's work and recommended the optimum range of moisture content f o r cold storage of d i f f e r e n t genera should be as follows: Pinus 7-9 per cent; Abies 11 per cent; Picea 6-7 per cent; Ulmus 3-7 per cent-j Thuja 8 per cent; Betula 1-5 per cent; and Eucalyptus 7-9 per cent. Organfor (1952) found that Abies grandis seed can be proper-l y stored at 0° C with a moisture content of 6 per cent, while Barton (1953) found that the same species can be stored at 5° C 30 w i t h a m o i s t u r e c o n t e n t o f 11 p e r c e n t . A l l t h e s e f i n d i n g s g e n e r a l l y agree t h a t t h e optimum range o f m o i s t u r e c o n t e n t o f seed f o r s t o r a g e i s below t e n p e r c e n t (oven-dry b a s i s ) . C r o c k e r and B a r t o n (1953) s t a t e d t h a t r e p e a t e d o p e n i n g and s e a l i n g o f t h e s t o r e d c o n t a i n e r s i s v e r y d e t r i m e n t a l t o seed v i a b i l i t y because of the f l u c t u a t i o n of the m o i s t u r e c o n t e n t o f t h e seed. Gas exchange i s r e l a t e d t o the r e s p i r a t i o n of seed. I n s e a l e d c o n t a i n e r s , under low temperature and w i t h low m o i s t u r e c o n t e n t seeds w i l l have a v e r y lov; r a t e o f r e s p i r a t i o n . C r o c k e r (1948) r e p o r t e d t h a t seeds a r e b e t t e r s e a l e d i n a i r r a t h e r t h a n i n vacuum o r w i t h an absence of oxygen. The cause o f t h e d e t e r i o r a t i o n o f seed d u r i n g d r y s t o r a g e has been a t t r i b u t e d t o t h e e x h a u s t i o n of s t o r e d f o o d s , d e g e n e r a t i o n o f enzymes, g r a d u a l c o a g u l a t i o n o f p r o t e i n s o f t h e embryo, a c c u m u l a t i o n o f t o x i c m e t a b o l i c p r o d u c t s and the g r a d u a l d e g e n e r a t i o n o f t h e n u c l e i of the c e l l s o f the embryo. Regard-i n g t h e d e g e n e r a t i o n o f t h e n u c l e i , C r o c k e r (1948) emphasized i t because he b e l i e v e s i t r e s u l t s i n d i s o r d e r i n the d e l i c a t e mechanism o f m i t o t i c d i v i s i o n . M i r o v (1936) s t a t e d t h a t f a u l t y methods o f t e s t i n g o f t e n l e a d t o an i n c o r r e c t p i c t u r e of the seed q u a l i t y or g e r m i n a b i l i t y . The importance o f s p e c i f y i n g or s t a n d a r d i z i n g t h e p r e t r e a t m e n t and t h e g e r m i n a t i o n c o n d i t i o n s f o r c o n i f e r o u s t r e e s p e c i e s has been emphasized by M i r o v (1936), E e i t and E l i a s o n (1940) and A l l e n and B i e n t j e s (1954). S i n c e seeds o f 31 v a r i o u s s p e c i e s or genera behave d i f f e r e n t l y , t h e f i n d i n g of t h e b e s t c o m b i n a t i o n o f p r e t r e a t m e n t and g e r m i n a t i o n c o n d i t i o n s f o r t h e p a r t i c u l a r s e e d l o t i s d e s i r a b l e . P r e t r e a t m e n t i n v o l v e s s o a k i n g , l i g h t t r e a t m e n t and s t r a t i f i c a t i o n , and the r e q u i r e m e n t s of each t r e a t m e n t or c o m b i n a t i o n o f t r e a t m e n t s and t h e i r s u i t a b l e p e r i o d s v a r y w i t h t h e s p e c i e s . P r e s o a k i n g has been used t o p e r m i t s t r a t i f i c a t i o n w i t h -out use o f a medium ( A l l e n and B i e n t j e s 1954). They recommended 36 hou r s p r e s o a k i n g f o r w e s t e r n hemlock seed, 16 hours f o r ponderosa p i n e , and 24 hours f o r Douglas f i r and A b i e s s p e c i e s . R e s u l t s from s o a k i n g A b i e s g r a n d i s seed i n d i c a t e d t h a t 24 hours p r e s o a k i n g i s s a t i s f a c t o r y f o r t h i s s p e c i e s . G e n e r a l l y s p e a k i n g , 24 t o 36 h o u r s p r e s o a k i n g i s t h e optimum range f o r p r e s o a k i n g most t r e e seeds. I t has been r e p o r t e d t h a t p r o l o n g e d c o l d - s o a k i n g i s almost e q u a l i n e f f e c t on t h e g e r m i n a t i o n o f seed t o t h a t o f s t r a t i f i c a t i o n ( R u d o l f 1950 and 1952). Holmes and B u s z e w i c z (1955) r e p o r t e d t h a t g e r m i n a t i o n of seeds o f S i t k a spruce and l o d g e p o l e p i n e was a c c e l e r a t e d by s o a k i n g t h e seeds i n water or p l a c i n g them on wet b l o t t i n g paper a t 36° P w h i l e Douglas f i r seed responded t o s o a k i n g a t room temperature o n l y . C r o s s l e y and Skov (1951) found t h a t a 20-day c o l d s o a k i n g ( a t 2-4° C) o f w h i t e spruce seed gave s i g n i f i c a n t l y g r e a t e r g e r m i n a t i o n (53 p e r c e n t ) t h a n t h e unsoaked c o n t r o l s (24 and 30 per c e n t ) . -S t r a t i f i c a t i o n has been w i d e l y a p p l i e d as a p r e t r e a t -ment f o r i m p r o v i n g g e r m i n a t i o n and r e d u c i n g v a r i a b i l i t y o f 32 g e r m i n a t i o n b e h a v i o r of c o n i f e r o u s seed b o t h i n l a b o r a t o r y t e s t i n g and n u r s e r y p r a c t i c e ( A l l e n 1960). The p r o c e s s i n v o l v e s m i x i n g seeds w i t h m o i s t s o i l , sand, g r a n u l a t e d peat moss, or any o t h e r m o i s t medium and p l a c i n g them at a low t e m p e r a t u r e f o r a s e t p e r i o d ( B a r t o n and O r o c k e r 1948). A l l e n and B i e n t j e s (1954) d e v e l o p e d a "naked s t r a t i f i c a t i o n " i n w h i c h no medium i s used. As t o t h e g e r m i n a t i o n c o n d i t i o n s , A l l e n and B i e n t j e s (1954) d e v e l o p e d a s t a n d a r d i z e d procedure f o r t e s t i n g Douglas f i r seed or o t h e r s p e c i e s . T h e i r procedure i n v o l v e d s o a k i n g th e seed f o r 84 t o 36 hours i n t a p water a t room tem p e r a t u r e or u n t i l the seed m o i s t u r e c o n t e n t was about 60 p e r c e n t (oven-dry b a s i s ) . Then the seed was d r a i n e d and s u r f a c e - d r i e d w i t h paper t o w e l s . The seed was then p l a c e d i n l o o s e l y c o v e r e d c o n t a i n e r s ( g l a s s p r e f e r a b l y ) i n a r e f r i g e r a t o r a t 0-S° C f o r s i x weeks. F o r i n c u b a t i o n , samples were p l a c e d on t h e g e r m i n a t i o n medium. at 2 5 ° 0 c o n s t a n t (or a l t e r n a t i n g temperature o f e i g h t hours o • o at 30 0 and s i x t e e n hours at 15-20 0 ) . The normal germinates were t h e n c o u n t e d and removed d a i l y or b i - d a i l y . F i n a l l y , t h e g e r m i n a t i v e energy was r e c o r d e d a f t e r t e n d a y s , and the t o t a l g e r m i n a t i o n a f t e r f o u r t e e n d a y s . THE CHEMICAL CHANGES DURING THE COURSE OF GERMINATION The f i r s t s t e p o f seed g e r m i n a t i o n i s t h e i m b i b i t i o n of w a t e r by v a r i o u s t i s s u e s w i t h i n t h e s e e d . As a r e s u l t , t h e volume of the seed i s i n c r e a s e d and the s e e d c o a t s are r e n d e r e d more permeable t o oxygen and c a r b o n d i o x i d e . As the r a t e of 33 w a t e r a b s o r p t i o n i n c r e a s e s , the s t o r e d foods i n the endosperm or c o t y l e d o n w i l l be d i g e s t e d t h r o u g h h y d r o l y s i s , and t h e r e -s u l t i n g s o l u b l e p r o d u c t s w i l l be t r a n s l o c a t e d t o t h e growing r e g i o n of t h e embryo. W i t h an i n c r e a s e i n the h y d r a t i o n of t h e c e l l s , enzymes become a c t i v a t e d (Meyer and Anderson 1952). The change of s t o r a g e m a t e r i a l i n the seed d u r i n g t h e g e r m i n a t i o n p e r i o d v a r i e s w i t h t h e c o m p o s i t i o n of the seed and w i t h each s t a g e . The appearance of sugar and the d e c l i n e i n the amount, of f a t s at the e a r l y g e r m i n a t i o n s t a g e i n o i l y seeds, t h e i n -c r e a s e d sugar c o n t e n t and d e c r e a s e d s t a r c h c o n t e n t o f the s t a r c h y seeds, and t h e i n c r e a s e d v a l u e of the r e s p i r a t o r y q u o t i e n t i n f a t t y seeds d u r i n g t h e e a r l y s t a g e o f g e r m i n a t i o n are a l l s i g n s of g e r m i n a t i o n i n w h i c h t h e r e s e r v e m a t e r i a l s are consumed i n r e s p i r a t i o n or i n t h e c o n s t r u c t i o n o f t h e c a r b o h y d r a t e con-s t i t u e n t s o f t h e c e l l w a l l s ( B a l d w i n 1942; Bonner 1950; Meyer and Anderson 1958-).. B a l d w i n (1942) s t a t e d t h a t d u r i n g the e a r l y g e r m i n a t i o n s t a g e o f P i n u s s t r o b u s seed, a g r e a t amount of s t a r c h appeared i n t h e p o i n t of t h e r a d i c l e but d i s a p p e a r e d when t h e r o o t e l o n g a t e d . I n t h e g e r m i n a t i o n o f P i n u s t h u n b e r g i i seed, the l o s s o f f a t s and n i t r o g e n compounds from t h e endosperm was d e t e c t e d s h o r t l y a f t e r t h e i m b i b i t i o n s t a r t e d , though th e l a t t e r r e a p p e a r e d i n the endosperm when the r a d i c l e broke through t h e seed c o a t s . The t o t a l amount of sugar i n b o t h t h e endosperm and t h e embryo was v e r y s m a l l and d i d not change, w h i l e b o t h t h e f a t s and o t h e r r e s e r v e s i n t h e endosperm were d e c r e a s e d . The 34 amount of free amino acids increased gradually as the seed started i t s germination and increased rapi d l y when the r a d i c l e appeared (Hatano 1955). THE SILVIOS OF GRAND FIR Botanical Features Grand f i r , also c a l l e d lowland f i r , western balsam, s i l v e r f i r , larch and giant f i r , i s one of the four true f i r species in Canada and one of the nine species in North America. Since i t s height, on a favourable s i t e , reaches a maximum of 275 feet with a diameter of from three to four feet, grand f i r i s the giant true f i r among the Canadian f i r s (Sudworth 1908). On the less favourable h i l l lands i t s greatest height i s from 80 to 125 feet, with a diameter of from 18 to 30 inches (Sudworth 1908). It has a high, clear, straight stem with a narrow crown at a young age. The crown becomes rounded and dome-l i k e on the top and the lower branches tend to droop down as Its age increases. The rounded top re s u l t s from a cessation of height growth i n the leader and an elongation of the older, shorter top side branches. The bark i s smooth and ash brown, with r e s i n b l i s t e r s and chalky white blotches on the young trunks, whereas on the older trees i t i s usually cut by deep, narrow furrows into hard, sharp horny ridges (Harlow and Harrar 1950). The leaves are needle-like, flattened, appearing d i s -t i n c t l y two-rowed on the lower branches, i j to Z\ inches long, blunt, grooved above, dark yellow-green above, conspicuously whitish below, and notched at the end. Leaves of the upper part 3 5 o f the crown are o f t e n s h o r t e r , 1 t o 1-J i n c h e s l o n g , and more or l e s s crowded t o g e t h e r . Mature buds are c o v e r e d by r e s i n , and t h e t w i g s of t h e season are p a l e r u s s e t brown and s l i g h t l y h a i r y . The r e d d i s h (male c o n e l e t when f i r s t appears) t o p a l e green (female c o n e l e t when f i r s t appears) c o n e l e t s a re u n i s e x u a l , a p p e a r i n g i n e a r l y s p r i n g , w i t h t h e f e m a l e , g l o b o s e or o v o i d t o c y l i n d r i c a l i n shape, on the uppermost p a r t of t h e crown, and w i t h t h e male, o v o i d or c y l i n d r i c a l i n shape, on t h e l o w e r s i d e o f t h e branches of t h e upper h a l f o f the crown (U.S.F..S. Woody-p l a n t Seed Manual 1 9 4 8 ) . The seed b e a r i n g cones are e r e c t , c y l i n d r i c a l , y e l l o w i s h green t o g r e e n i s h p u r p l e , 2/\ t o 4-| i n c h e s l o n g , w i t h b r a c t s s h o r t e r t h a n t h e s c a l e s , and t h e y r i p e n i n September. The s l e n d e r , s p i k e - l i k e cone a x i s i s l e f t on t h e t r e e a f t e r t h e seeds d i s i n t e g r a t e (Harlow and H a r r a r 1 9 5 0 ; N a t i v e T r e e s of Canada 1 9 5 6 ) . The seeds o f grand f i r a re p a l e y e l l o w i s h - b r o w n and have s h i n y , p ale-brown w i n g s . The wood o f grand f i r i s l i g h t , s o f t , f i n e - t e x t u r e d , non-porous, p a l e -y e l l o w i s h - b r o w n t o l i g h t - b r o w n i n c o l o u r . I t i s used f o r lumber, c r a t e m a t e r i a l , pulpwood, plywood, and box shooks. G e o g r a p h i c a l d i s t r i b u t i o n Grand f i r i s a c o r d i l l e r a n element and i s found from the v a l l e y s and l o w e r s l o p e s o f s o u t h e r n B r i t i s h Columbia t o n o r t h e r n I d a h o , Oregon, and t h e n o r t h e r n c o a s t o f C a l i f o r n i a . I t m i g r a t e d a l o n g t h e c o a s t a l r e g i o n and up the c o r d i l l e r a t h r o u g h t h e Kootenay V a l l e y t o t h e s o u t h e r n p a r t o f ••the i n t e r i o r wet b e l t of B r i t i s h Columbia a f t e r t h e r e t r e a t o f t h e g l a c i e r s ( H a l l i d a y and Brown 1 9 4 3 ) . The l i m i t e d d i s t r i b u t i o n o f t h i s 36 s p e c i e s i n B r i t i s h Columbia i s p o s s i b l y due e i t h e r t o t h e mountains e x c e e d i n g i t s upper a l t i t u d i n a l l i m i t o r t o i t s de-pendence upon d i s t u r b a n c e s and i t s r e s t r i c t e d edaphic t o l e r a n c e (Schmidt 1957). The a l t i t u d i n a l range of grand f i r extends from, sea l e v e l a t Vancouver I s l a n d t o e l e v a t i o n s o f 7,000 f e e t i n s o u t h w e s t e r n Montana. I t i s found o n l y on t h e west s l o p e s o f t h e R o c k i e s but on b o t h s l o p e s o f t h e Cascades and the c o a s t a l r a n g e s , e x t e n d i n g f a t h e r s o u t h on t h e w e s t e r n s l o p e s t h a n on the e a s t e r n (Sudworth 1908). C l i m a t i c R equirements The s p e c i e s o c c u r s on a wide range o f s i t e s , where t h e average a n n u a l p r e c i p i t a t i o n v a r i e s from 14 t o 40 i n c h e s i n e a s t e r n Oregon and from E7 t o 110 i n c h e s i n w e s t e r n 'Washington and Vancouver I s l a n d . I n t h e a r e a s o f h e a v i e r p r e c i p i t a t i o n grand f i r grows o n l y on t h e r a i n - p r o t e c t e d s i t e s ( F o i l e s 1959). The average a n n u a l t e m p e r a t u r e s range f r o m 42° t o 50° F ( F o i l e s 1959). The s p e c i e s f a v o u r s a c l i m a t e o f low summer p r e c i p i t a t i o n and h i g h e r summer t e m p e r a t u r e . Thus t o some de-gree i t s range may be r e l a t e d t o a h i g h f o r e s t - f i r e f r e q u e n c y (Schmidt 1957). I t s f r o s t - f r e e season ranges from 60 t o 225 days and the range of s n o w f a l l v a r i e s from a few i n c h e s on t h e c o a s t t o more t h a n 500 i n c h e s on the mountains ( F o i l e s 1959). E d a p h i c Requirements Grand f i r t h r i v e s on d i v e r s e s o i l s , d e p e n d i n g upon t h e m o i s t u r e c o n d i t i o n s . Where m o i s t u r e i s abundant i t w i l l even grow on q u i t e p o o r , s h a l l o w s o i l s , but where the m o i s t u r e s u p p l y i s low i t r e q u i r e s deeper, r i c h e r s o i l s (Cheyney 1942). Owing t o i t s deep r o o t system, grand f i r p r e f e r s t h e deep, m o i s t , 37 w e l l - d r a i n e d a l l u v i a l s o i l of the r i v e r v a l l e y , the l o w e r , g e n t l e m o u n t s i n s l o p e s , d e p r e s s i o n s and g u l c h e s . I t grows b e s t on n e u t r a l or s l i g h t l y a l k a l i n e s o i l s and w i l l outgrow Douglas f i r on t h e l a t t e r . I t i s the l e a s t a c i d o p h i l o u s s p e c i e s o f A b i e s n a t i v e t o B r i t i s h C o l u m b i a , but i t grows f a i r l y w e l l on s o i l s as a c i d as moss s i t e s ( K r a j i n a 1960). Types and A s s o c i a t e s P u r e s t a n d s o f grand f i r a re v e r y r a r e , except i n t h e b o r d e r s o f swamps (Cheyney 1942). I t u s u a l l y grows w i t h both hardwoods and c o n i f e r s . I n t h e Rocky mountains, i t o f t e n oc-c u r s i n a m i x t u r e w i t h Douglas f i r , w e s t e r n l a r c h , and ponderosa and l o d g e p o l e p i n e s (Harlow and H a r r a r 1950). I n the w e s t e r n w h i t e p i n e r e g i o n , i t o f t e n m i n g l e s w i t h w e s t e r n w h i t e p i n e , w e s t e r n l a r c h , Douglas f i r , Engelmann s p r u c e , w e s t e r n hemlock, Douglas f i r , Oregon a s h , b i g l e a f maple and b l a c k cottonwood and at h i g h e r e l e v a t i o n s o f i t s s o u t h e r n l i m i t i t i s mixed w i t h S h a s t a f i r , w h i t e f i r , noble f i r , a l p i n e f i r and w e s t e r n w h i t e p i n e (Harlow and H a r r a r 1950). I n the C o a s t a l Douglas F i r Zone of B r i t i s h Columbia i t i s a s s o c i a t e d w i t h w e s t e r n w h i t e p i n e , Douglas f i r , S i t k a s p r u c e , b l a c k cottonwood, b i g l e a f maple, r e d a l d e r , w h i t e b i r c h , t r e m b l i n g aspen and b i t t e r c h e r r y ( K r a j i n a 1959). I n the I n t e r i o r Western Hemlock Zone, i t oc-c a s i o n a l l y becomes an edaphic c l i m a x s p e c i e s and i t i s a s s o c i a t -ed w i t h w e s t e r n l a r c h , Engelmann s p r u c e , Douglas f i r , b i g l e a f maple, r e d a l d e r , w h i t e b i r c h , t r e m b l i n g aspen, w e s t e r n w h i t e p i n e , a l p i n e f i r and l o d g e p o l e p i n e ( K r a j i n a 1959). Shade T o l e r a n c e Grand f i r i s i n t e r m e d i a t e i n shade t o l e r a n c e . I t i s 38 s i m i l a r t o S i t k a spruce (on t h e c o a s t ) and somewhat more t o l e r a n t t h a n ^ o u g l a s f i r , ponderosa p i n e , w e s t e r n w h i t e p i n e and n o b l e f i r but l e s s t o l e r a n t t h a n w e s t e r n r e d c e d a r , w e s t e r n hemlock or s i l v e r f i r (Schmidt 1 9 5 7 ) . I t forms t h e dominant s p e c i e s and c l i m a x f o r e s t i n i t s pure s t a n d s i n some a r e a s ( F o i l e s 1 9 5 9 ) . On t h e s w o r d f e r n s i t e s o f t h e C o a s t a l Douglas ^ i r Z 0ne I t o f t e n competes w i t h Douglas f i r because i t i s a more shade t o l e r a n t s p e c i e s t h e r e a l t h o u g h i t i s l e s s p r o d u c t i v e . On t h e m a i d e n h a i r -f e r n s i t e s o f the C o a s t a l Douglas F i r Zone I t o f t e n forms the dominant canopy f i r s t but w i l l be r e p l a c e d by w e s t e r n r e d cedar when the f l o o d p l a i n becomes mature. On t h e l i c h e n s i t e s of e a s t e r n Vancouver I s l a n d , grand f i r grows i n a shrub form es-p e c i a l l y when t h e s t a n d i s exposed. I n t h e I n t e r i o r • D o u g l a s F i r Zone o r I n t e r i o r Western Hemlock Zone i t o c c a s i o n a l l y becomes an e d a p h i c c l i m a x t r e e but w i l l e v e n t u a l l y be r e p l a c e d by more shade t o l e r a n t s p e c i e s . I t i s c o m p l e t e l y m i s s i n g i n peat bog s i t e s ( K r a j i n a i 9 6 0 ) . I n t h e w e s t e r n w h i t e p i n e t y p e i t I s a major component and grows w e l l . Grand f i r responds w e l l t o r e l e a s e ( F o i l e s 1 9 5 9 ) . Seed H a b i t Grand f i r s t a r t s t o produce seed a t about twenty y e a r s o f age. F a i r l y good c r o p s o c c u r a t i n t e r v a l s o f about two "or t h r e e y e a r s , w i t h l i g h t c r o p s i n t h e i n t e r v e n i n g y e a r s (U.S.F.S, Woody-plant Seed Manual 1 9 ^ 8 ) . However, heavy c r o p s of t h i s s p e c i e s a r e r a r e i n comparison w i t h i t s a s s o c i a t e d s p e c i e s such as w e s t e r n w h i t e p i n e and w e s t e r n hemlock ( H a i g , D a v i s and Weldman 19^1) . A r e c o r d o f cone p r o d u c t i o n on Van-couve r I s l a n d i n 19^5 showed t h a t e i g h t y p e r c e n t o f t h e ob-s e r v e d t r e e s averaged between 675 and 800 cones p e r t r e e ( F o r e s t r y C h r o n i c l e 1 9 ^ 6 ) . F o i l e s (1959) r e p o r t e d t h a t a seed 39 c r o p of grand f i r i n t h e I n l a n d Empire i s c o n s i d e r e d t o be good i f t h e r e are more t h a n 40 cones per t r e e , and a c r o p of SI t o 40 cones i s c o n s i d e r e d f a i r . The number of c l e a n seed p e r pound of grand f i r v a r i e s from 12,000 t o 44,000 w i t h the average b e i n g about 23,000 seeds (U.S.F.S. Woody-plant Seed Manual 1948). The p u r i t y of t h i s s p e c i e s has averaged about 83 p e r c e n t . Grand f i r seed e a s i l y l o s e s i t s v i a b i l i t y i f improper s t o r a g e methods are used. I t was r e p o r t e d t h a t about 50 p e r c e n t o f grand f i r seed v i a b i l i t y w i l l be l o s t a f t e r 11 y e a r s when i t i s s t o r e d a t a t e m p e r a t u r e of 40° F w i t h an i n i t i a l m o i s t u r e c o n t e n t of about 6 per c e n t (U.S.F.S. Woody-plant Seed Manual 1948). S c h u b e r t (1952) found t h a t grand f i r seed had 8 p e r c e n t g e r m i n a t i o n c a p a c i t y a f t e r 16 y e a r s o f c o l d s t o r a g e . Seed D i s s e m i n a t i o n Grand f i r cones r i p e n i n September and about 90 per c e n t of t h e seeds f a l l w i t h i n 400 f e e t o f t h e p a r e n t t r e e b e f o r e November 1 (Westveld 1949). The B r i t i s h Columbia F o r e s t S e r v i c e (1950) r e p o r t e d t h a t the d i s p e r s a l o f grand f i r seeds s t a r t e d i n e a r l y September and 75 p e r c e n t of them had been d i s s e m i n a t e d by the end of December. Seed G e r m i n a t i o n and S e e d l i n g E s t a b l i s h m e n t I t has been r e p o r t e d t h a t grand f i r r e p r o d u c e s o n l y by seed (Schmidt 1957). Owing t o i t s dormant n a t u r e , d i f f i c u l -t y o f c l e a n i n g , h i g h p e r c e n t a g e of i n j u r e d seeds d u r i n g de-w i n g i n g , i n s e c t i n f e s t a t i o n , and g e n e r a l l y p e r i s h a b l e n a t u r e , the g e r m i n a b i l i t y o f t h i s seed i s seldom above 50 p e r c e n t i n n a t u r e (U.S.F.S. Woody-plant Seed Manual 1948). I t germinates well on mild humus and on duff as well as on mineral s o i l s . It regenerates poorly under i t s own canopy (Krajina i 9 6 0 ) . Schmidt (1957) stated that i n natural forest regeneration i t occurs most commonly a f t e r f i r e s and on recently deposited a l l u v i a l s o i l s , where i t becomes established under deciduous stands. On the exposed s i t e s , the mortality of grand f i r seed-l i n g s Is about 50 per cent in the most c r i t i c a l f i r s t season. In addition to the early losses from damping o f f , the cause of mortality may be due to high s o i l temperature on the exposed areas, drought on protected locations, or competition on brush-covered areas (Westveld 1949). Therefore, on exposed areas, the establishment of grand f i r seedlings w i l l be benefited by a moderate amount of overhead shade (Westveld 1949). Organfor (1952) reported that two-year-old seedlings are old enough f o r planting, ^rowth and Y i e l d Grand f i r i s a fast-growing and long-lived species. On the optimum sit e s on the coast o f Washington, grand f i r reaches heights of 140 to 200 feet with breast height diameters of 20 to 40 inches; occasionally It reaches 250 feet i n height and 50 Inches i n diameter ( F o i l e s 1959)- On the exposed subalpine ridges of the Inland Empire i t a t t a i n s heights of 50-70 feet and diameters of 12-14 inches, whereas on the pumice s o i l s of eastern Oregon, i t reaches heights of 100 to 130 feet with diameters of 20 to 36 inches ( F o i l e s 1959). Westveld (19*19) reported that the average diameter Increment of grand f i r Is 1.1 inches per decade and Organfor ( 195 2 ) stated that the current annual Increment of grand f i r In Denmark i s 36-38 cubic meters per hectare at an age of 20-40 years. Heavy 41 t h i n n i n g o f t h i s s p e c i e s i s h i g h l y e c o n o m i c a l and p r a c t i c a b l e ( O r g a n f o r 1952) . I n j u r i o u s A g e n t s Grand f i r i s l e s s r e s i s t a n t t o f i r e t h a n l o d g e p o l e p i n e , w e s t e r n - l a r c h , ponderosa p i n e , and D o u g l a s f i r but more r e s i s t a n t t h a n s u b a l p i n e f i r , w e s t e r n hemlock, and Engelmann s p r u c e . I t s n e e d l e s are o c c a s i o n a l l y damaged by sudden ex-treme drops of t emperature i n t h e f a l l , but c o l d i n j u r y i n n a t i v e s t a n d s i s seldom f a t a l . I t was r e p o r t e d t h a t snow break-age i s a s e r i o u s cause of m o r t a l i t y i n dense immature s t a n d s i n t h e I n l a n d Empire ( F o i l e s 1959). Oheyney (1942) s t a t e d t h a t a l t h o u g h grand f i r i s v e r y s u s c e p t i b l e t o h e a r t r o t , the t r e e i s not g r e a t l y a f f e c t e d by i t d u r i n g t h e f i r s t 100 y e a r s . The known f u n g i a t t a c k i n g t h i s s p e c i e s a r e : I n d i a n p a i n t fungus ( E c h i n o d o n t i u m t i n c t o r i u m ) , A r m i l l a r i a m e l l e a , P o r i a w e i r i i , P o r i a s u b a c i d s and Fomes annosus. The e f f e c t s o f a t t a c k by t h e s e f u n g i w i l l l e a d t o e a r l y decay l o s s e s i n t h i s s p e c i e s . The spruce budworm ( G h o r i s t o n e u r a f u m i f e r a n a ) and t u s s o c k moth (Hemerooampa pseudotsugata ) cause d e f o l i a t i o n and m o r t a l i t y of t h i s s p e c i e s , w h i l e w e s t e r n balsam bar k b e e t l e ( D r y o c o e t e s c o n f u s u s ) and t h e f i r engraver ( S c o l y t u s v e n t r a l i s ) o n l y a t t a c k t h e b a r k (Keen 1952). Keen (1958) found t h a t t h e f i r cone moth (Ba r b a r a o o l f a x i a n a v a r . s i s k i y o u a n a ) , t h e f i r seed maggot (Earomyia spp.) and s e v e r a l seed c h a l c i d s d e s t r o y a g r e a t number o f grand f i r seeds. O r g a n f o r (1952) s t a t e d t h a t wind does not g r e a t l y a f -f e c t the crowns of grand f i r and i t s power of r e s i s t a n c e t o 42 wind seems equal t o that of S i t k a spruce. s i r e d number of seeds was chosen at random from the small groups. A t o t a l of 4,500 seeds from each seedlot was used f o r the labora-tory germination test and another 1,200 seeds from two of the four seedlots were sown f o r the nursery study. Seedlots Three of the four seedlots i n t h i s study were from com-mercial sources. Their origins and crop years are as follows: Seedlot Year of Source or No. Origin Prop Company  5701 Mt. Adams, Washington 1957 Herbst Brothers 5705 Washington (Cascades)(3000 f t . ) 1957 Manning 5801 Courtenay, B. 0. 1958 Roche 5901* Mt. Prevost, B.C. (1350 f t . ) 1959 B.C.Forest Service * This seedlot was collected by B. C. Forest Service on August 27-28, 1959 and cones were received and a i r - d r i e d at room temperature f o r a week and then hand-dewinged and cleaned by v e r t i o a l a i r stream (Shown i n Plate 2). Cutting Test i n order to determine the percentage of f i l l e d seed and number of seeds f o r each r e p l i c a t e . The r e s u l t s of the c u t t i n g test are shown as follows: A c u t t i n g test has been conduoted for each seedlot Seedlot No. 5701 F i l l e d Seed ( i n per cent) 45 5705 87 5801 51 5901 97 44 R e p l i c a t i o n o f t h e Sample The r e s u l t s from a p r e v i o u s s t u d y on t h i s . s p e c i e s con-d u c t e d i n t h i s l a b o r a t o r y i n d i c a t e d the d e s i r a b i l i t y of s i x r e p l i c a t i o n s f o r each s t r a t i f i c a t i o n p e r i o d and each i n c u b a t i o n t e m p e r a t u r e l e v e l . There were 50 seeds i n each r e p l i c a t e . P r e s o a k i n g I t was found from t h e p r e v i o u s t e s t s of grand f i r seed t h a t a s o a k i n g p e r i o d of 24 h o u r s i s c l o s e t o optimum; t h u s i t was used i n t h i s s t u d y . The seeds were soaked i n tap w a t e r a t l a b o r a t o r y room temperature f o r 24 h o u r s . S t r a t i f i c a t i o n "Naked s t r a t i f i c a t i o n " ( A l l e n and B i e n t j e s 1954) f o r f o u r d i f f e r e n t p e r i o d s was adopted f o r t h i s s t u d y , namely, 30, 40, 60 and 80 days. A f t e r s o a k i n g the seeds i n tap w a t e r f o r 24 hours and s u r f a c e - d r y i n g them, t h e y were p l a c e d i n open v i a l s i n l o o s e l y c o v e r e d j a r s w i t h a p i e c e o f m o i s t e n e d paper t o w e l t o reduce l o s s o f m o i s t u r e . They were t h e n p l a c e d i n a r e f r i g e r a t o r a t 0° 0 f o r 30, 40, 60 and 80 days r e s p e c t i v e -l y . The c o n t r o l sample was t r e a t e d o n l y by p r e s o a k i n g i n t a p w a t e r f o r 24 h o u r s a t room t e m p e r a t u r e . The I n c u b a t i o n Temperatures The t h r e e i n c u b a t i o n t e m p e r a t u r e s used i n t h i s s t u d y were: 15° 0, 20° G and 25° C. The I n c u b a t i o n S i x - c e n t i m e t e r p e t r i - d i s h e s were f i l l e d w i t h a measured q u a n t i t y of v e r m i c u l i t e at w a t e r - h o l d i n g c a p a c i t y . 45 The i n c u b a t o r s used f o r g e r m i n a t i o n were a "B.O.D.-"- c a b i n e t " f o r 15° C and two T h e l c o e l e c t r i c i n c u b a t o r s f o r 20° C and 25° C. I n an e f f o r t t o keep the t e m p e r a t u r e c o n s t a n t , t h e i n c u b a t o r s e t a t 20° C was p l a c e d I n a c o o l s t o r e - r o o m , but the--tempera-t u r e f l u c t u a t e d f rom 1 t o 2° 0 above or below 20° 0. The i n -c u b a t o r w i t h a c o n s t a n t t e m p e r a t u r e of 25° 0 was a l s o i n f l u e n c e d n O by room temperature up t o l u 0 above or below 25 0. A pan of w a t e r was p l a c e d i n t h e bottom of t h e i n c u b a t o r i n o r d e r t o reduce the e v a p o r a t i o n from t h e m o i s t v e r m i c u l i t e . D u r i n g the c o u r s e o f g e r m i n a t i o n , w a t e r was added t o t h e g e r m i n a t i o n medium t o keep i t a p p r o x i m a t e l y a t m o i s t u r e - h o l d i n g c a p a c i t y . The O b s e r v a t i o n s O b s e r v a t i o n s were made e v e r y second day, and t h e g e r m i n a t e d seeds were d i s c a r d e d a f t e r t h e y had been r e c o r d e d . A t the end o f each g e r m i n a t i o n p e r i o d , a c u t t i n g t e s t was c o n d u c t e d and the number of sound but ungerminated seeds was r e c o r d e d . -The M o i s t u r e Content Ten grams of seeds o f each s e e d l o t were weighed and d r i e d i n an oven a t a temperature of 102° C f o r 24 h o u r s . The o v e n - d r i e d samples were reweighed and the m o i s t u r e c o n t e n t o f each s e e d l o t was t h e n c a l c u l a t e d on t h e oven-dry b a s i s . The m o i s t u r e c o n t e n t o f each s e e d l o t f o l l o w i n g 24 hours o f s o a k i n g " B l o o d oxygen d e t e r m i n a t i o n " 46 was d e t e r m i n e d i n t h e same way. The r e s u l t s - a r e as f o l l o w s : S e e d l o t No. O r i g i n a l M o i s t u r e Content M o i s t u r e Content a f t e r 24 Hours S o a k i n g (Oven-dry B a s i s )  5 7 0 1 7.1 69.3 5 7 0 5 7.3 63.1 5 8 0 1 10.2 81.7 5 9 0 1 11.4 67.9 The Weight of 1,000 Seeds One thousand seeds of each s e e d l o t were counted out and p l a c e d i n a d e s i c c a t o r (CaClg) f o r 48 hours i n o r d e r t o b r i n g a l l s e e d l o t s t o be t e s t e d i n t h e same m o i s t u r e c o n t e n t and were t h e n weighed. The r e s u l t s are as f o l l o w s : S e e d l o t No. Weight o f 1,000 Seeds ( i n grams) 5 7 0 1 27.24 5 7 0 & 29.23 5 8 0 1 27.72 5 9 0 1 18.32 N u r s e r y E x p e r i m e n t S i x seedbeds were p r e p a r e d i n an area o f 20 f e e t l o n g and 9 f e e t and 6 i n c h e s wide r a i s e d s i x i n c h e s above th e g e n e r a l l e v e l . The s o i l i n the U n i v e r s i t y Campus n u r s e r y i s a sandy loam w i t h low f e r t i l i t y . A w i r e s c r e e n was s e t up around t h e seedbeds t o p r e v e n t damage by r o d e n t s . A t o t a l o f 1,200 u n s t r a t i f i e d and s t r a t i f i e d seeds were sown i n randomized b l o c k s on A p r i l 2 6 t h , 1959. P e r i o d s of s t r a t i f i c a t i o n used were 30, 40, 60 and 80 days. S e e d l o t s used were 5701 and 5705, sowed 47 a t a d e n s i t y of 50 seeds p e r square f o o t . A d i a g r a m of t h e randomized b l o c k s i s g i v e n i n Appendix 1. The number of seed-l i n g s was counted and r e c o r d e d p e r i o d i c a l l y and t h e r e s u l t s were c a l c u l a t e d . I n t e r p r e t a t i o n and E v a l u a t i o n of Terms The r a t e o f g e r m i n a t i o n : The r a t e o f g e r m i n a t i o n i s t h e G e r m i n a t i o n p e r cent a t 10 days e x p r e s s e d as a p e r c e n t a g e o f t h e t o t a l g e r m i n a t i v e c a p a c i t y . The g e r m i n a t i v e c a p a c i t y : The g e r m i n a t i v e c a p a c i t y i s ex-p r e s s e d as a p e r c e n t a g e which i s o b t a i n e d by d i v i d i n g t h e sumi of t h e germinated and non-germinated sound seeds by t h e t o t a l number of seeds used i n the s i x r e p l i -c a t e s . S t a t i s t i c a l A n a l y s i s of t h e R e s u l t s An a n a l y s i s of v a r i a n c e and a Student-Newman-Keuls• " m u l t i p l e range comparison" were a p p l i e d t o compare the d i f -f e r e n c e s i n r a t e of g e r m i n a t i o n and g e r m i n a t i v e c a p a c i t y among the d i f f e r e n t s e e d l o t s . I n o r d e r t o f i n d the r e l a t i o n s h i p be-tween t h e l a b o r a t o r y g e r m i n a t i o n t e s t and t h e n u r s e r y g e r m i n a t i o n p e r c e n t , comparisons were made by the c o r r e l a t i o n method. 48 RESULTS T a b l e 1 - G e r m i n a t i v e C a p a c i t y (G.O.) and Rat e o f G e r m i n a t i o n (G-10", P e r c e n t a g e o f v i a b l e seeds g e r m i n a t i n g a f t e r 10 days) of Four L o t s of Grand F i r Seed, i n R e l a t i o n t o D u r a t i o n of S t r a t i f i c a t i o n and I n c u b a t i o n Temperature. S e e d l o t P l a c e o f O r i g i n and Days I n c u b a t i o n Temperature Number 1 5 u C 2 0 u C 25 c r~C Year of C o l l e c t i o n S t r a t i f i e d G-10 G. C. G-10 G.O. G-10 G. < 5 7 0 1 Mt. Adams, 0 0.0 35 0.0 20 0.0 17 Washington 30 1.7 40 5.5 28 0.0 21 1957 40 0.0 41 0.0 23 7.4 18 60 1.9 34 13.5 30 15.3 20 80 4.2 29 23.7 30 44.2 22 5 7 0 5 Cascades,Washingt on 0 0.7 51 0,8 41 5.6 36 (3,000 f e e t ) 30 0.0 67 2.9 57 38.2 55 1957 40 0.6 57 3.2 58 26.4 59 60 6.6 61 42.0 67 67.9 59 80 16.8 68 66.7 69 88.4 66 5 8 0 1 C o u r t e n a y , B. C. 0 0.0 6 12.9 2 0.0 3 30 7.3 15 17.8 16 49.2 12 1958 40 3.5 19 11.7 6 38.0 7 60 9.7 24 16.7 12 45.5 11 80 25.7 25 35.0 20 76.1 8 5 9 0 1 Mt. P r e v o s t , B.C. 0 10.7 93 44.1 88 59.9 92 (1,350 f e e t ) 30 1.1 92 80.2 93 80.1 94 1959 40 16.9 93 94.5 97 97.2 95 60 61.0 92 94.7 94 99.3 96 80 97.9 97 100.0 96 100.0 95 T a b l e 2 - N u r s e r y G e r m i n a t i o n P e r Gent a f t e r 64 Days o f Two S e e d l o t s (5701 and 5705) o f Grand F i r Seed, i n R e l a t i o n t o D u r a t i o n of S t r a t i f i c a t i o n (30, 40, 60, 80 d a y s ) . S e e d l o t P l a c e of O r i g i n Days G e r m i n a t i o n Number s n d Y e a r of C o l l e c t i o n S t r a t i f i e d P e r cen t 5 7 0 1 Mt. Adams, Washington 0 2 1957 30 7 40 13 60 14 80 19 5 7 0 5 Cascades, Washington 0 24 (3,000 f e e t ) 30 42 1957 40 44 60 44 80 47 50 to £ 100 o u o - P 60 C •H •P ai C 0) U0 to T J d) to <u rH X> rd •H > <H O 0> HO n3 - P c <K O I O rH I o 80 60 U0 20 5701 So 8o Gc _g__ 5705 8o 8o J o 15 20 25 15 20 25 Incubation Temperature0 C Figure 1. Rate of germination (" G-10, percentage of viable seeds germinating after 10 days ) for seedlots 5701 and 5705 of grand f i r as affected by duration of stratification ( 0 - 8 0 days) and incubation tempera-ture ( 15°C, 20°C, 25°C ). 51 £> I O O o rH U 0) - P <M b0 C •H - P (ti C o bO to •o 0) Q> W (_ fd •H > o OJ to a - P Q> C U I o rH 80 60 40 20 0 5801 80 6o 3o 3 ° to 4o fio J o 5901 So 8 o 6o 4o 30 4o 3o 15 20 25 15 20 25 Incubation Temperature ° C Figure 2. Rate of germination ( G-10, percentage of viable seeds germinating aft e r 10 days ) for seedlots 5801 and 5901 of grand f i r as affected by duration of s t r a t i f i c a t i o n ( 0 - 80 days) and incubation temperature ( 15°C, 20°C, 25°C ). 52 •p • H O a cd o > •rl •P g 80 bO <H O a> o © a. co cd C O •rl - P 3 O 60 " & 40 I CT\ C •rl 20 15 20 25 15 20 25 Incubation Temperature ° C Figure 3- Germinative capacity in 35 - 42 days for seedlots 5701 and 5705 of grand f i r as affected by duration of stra-tification ( 0 - 8 0 days ) and incubation temperature ( 150c, 20°C, 25°C ). 53 c o • H • P cd C 80 S 1 0 0 o a cd o QJ !> • H - P rd C U 0> bO «H o t? O U CD (X CO cd to rd *C I 60 4 0 20 Figure 4-5801 AO 8o 3° o , X l -Q 8o 5 9 0 1 3o £9 8? 15 2 0 2 5 .25 15 2 0 Incubation Temperature ° C Germinative capacity in 35 - 42 days for seedlots 5 8 0 1 and 5 9 0 1 of grand f i r as affected by duration of stra-tification ( 0 - 80 days ) and incubation temperature ( 15°C, 20°C, 25°C). 54 STATISTICAL ANALYSIS OF DATA I . LABORATORY GERMINATION Table 3 - Analysis of Variance of Rate of Germination Source of Degrees of Sum of Mean Variance Freedom Squares Square F Seedlot (S) 3 19340.76 6446.92 66.23 *** Temperature (T) 2 6674.93 3337.47 34.29 *** S t r a t i f i c a t i o n 4 10620.23 2655.06 27.28 #** (St.) S x T 6 1598.06 266.34 2.74 * S x St. 12 1350.56 112.55 1.16 St. x T 8 658.90 82.36 0.85 Error Variance 24 2336.26 97.34 To t a l 59 42579.70 A l l data were transformed to arcsi n s . *** S i g n i f i c a n t at 0.1 per cent l e v e l * S i g n i f i c a n t at 5.0 per cent l e v e l 55 Table 4 - Analysis of Variance of Germinative Capacity. Source of Variance Degrees of Freedom Sum of Squares Mean Square F Seedlot (S) 3 26913.71 9871.24 1161.32 *** Temperature (T) 2 282.94 141.47 16.64 **# S t r a t i f i c a t i o n 4 566.40 141.60 16.66 ##* (St.) S x T 6 220.18 36.70 4.32 ** S x St. 12 222.48 18.54 2.18 * St. x T 8 49.57 6.20 0.73 Error Variance 24 .203.94 8.50 T o t a l 59 28459.24 A l l data were transformed to arcsi n s . S i g n i f i c a n t at 0.1 per cent l e v e l #* S i g n i f i c a n t at 1.0 per cent l e v e l * S i g n i f i c a n t at 5.0 per cent l e v e l 56 Table 5 - M u l t i p l e Range Comparison of the Mean E f f e c t s of Seedlots (5701 , 5705, 5801, 5901) on the Rate of Germination of Grand F i r Seed. Seedlot Mean ^ (x) x - 11.27 X - 25.14 x - 25.81 5901 59.98 (69.17) 2 tt* 48.71 (12.52) 3 tt« 34.84 (11.58) *tt 34.17 (10.10) 5801 25.81 (23.27) tt# 14.54 (11.58) 0.67 (10.10) 5705 25.14 (21.93) tttt 13.87 (10.10) 5701 11.27 ( 7.83) transformed ar c s i n t o t a l s . 2 means of actual percentages of the rate of germination. 3 calculated standardized ranges f o r significance at 1.0 per cent l e v e l from Wn = qeui-Sx, adjusted f o r comparisons of d i f f e r e n t mean differences (W. T. Federer 1955. Experi-mental Design, The Macmillan Company, N. Y., p. 22). S i g n i f i c a n t at 1.0 per oent l e v e l . Table 6 - Multiple Range Comparison of the Mean E f f e c t s of Incubation Temperatures (15° C, 20° 0, £5° C) on the Rate of Germination of Grand F i r Seed. Incubation Temperature Mean^(x) £ - 16.64 x - 32.83 • 25° 0 42.18 0 (46.94) 2 25.54 „ ( 9.99r 9.35 (8.71) . o 20 C 32.83 (31.41) 16.19 ( 8.71) 15° C 16.64 (13.32) transformed a r c s i n t o t a l s . means of actual percentages of the rate of germination, calculated standardized ranges f o r si g n i f i c a n c e at 1.0 per cent l e v e l from Wn = q*n-Sx, adjusted f o r comparisons of d i f f e r e n t mean differences (three treatments). #* S i g n i f i c a n t at 1.0 per cent l e v e l Table 7 - Mu l t i p l e Range Comparison of the Mean E f f e c t s of S t r a t i f i c a t i o n Periods (30, 40, 60, 80 days) on the Rate of Germination of Grand F i r Seed. S t r a t i f i c a t i o n Period Mean 1(£) X ~ 13.01 x - 23.71 x - 25.95 £ - 38.36 •JHfr ** ** 80 days 51.72 38.71 28.01 25.77 13.36 (56.56) 2 (14.74) 3 (13.99) (12.94) (11.29) *«• 60 days 38.36 25.35 14.65 12.41 (36.36) (13.99) (12.94) (11.29) 4HS- -40 days 25.95 12.94 2.24 (24.95) (12.94) (8.32) 30 days 23.71 10.70 (23.66) ( 8.32) 4 Control 13.01 (12.25) transformed arosin t o t a l s . means of the actual percentages of the rate of germination. 3 calculated standardized ranges f o r significance at 1.0 per cent l e v e l from WQ = q*n-Sx, adjusted f o r comparison of d i f f e r e n t mean differences ( f i v e treatments). 4 calculated standardized ranges f o r significance at 5.0 per cent l e v e l from Wn = q.<*n-Sx, adjusted for comparison of d i f f e r e n t mean differences ( f i v e treatments). Least s i g n i f i c a n t difference i n transformed a r c s i n t o t a l s , 8.32. ** S i g n i f i c a n t at 1.0 per cent l e v e l . * S i g n i f i c a n t at 5.0 per cent l e v e l . 53 Table 8 - Multiple Range Comparison of the Mean E f f e c t s of the Interaction of Seedlots (5701, 5705, 5801, 5901) and the Incubation Temperatures (15° C, 20° 0,25° C) on the Rate of Germination of Grand F i r Seed. Seedlot Incubation Temperature (°C) Mean 1 Differences 5901 25 73.79 37.31 4.13 (87.30) 2 (22.80) 3 (12.88) 4 20 69.66 33.18** (82.70) (21.65) 15 36.48 (37.52) 5801 25 37.15 22.14* 11.87 (41.76) (19.27) (15.57) 20 25.28 10.27 (18.82) (17.20) 15 15.01 -( 9.24) 5705 25 41.67 32.00 17.59 (45.30) (25.26) (18.39) 20 24.08 14.41 (15.56) (18.39) 15 9.67 ( 4.94) 5701 25 16.01 10.59 3.72 (13.38) (18.39) (15.57) 20 12.29 6.87 ( 8.54) (15.57) 15 5.42 ( 1.56) Means of transformed arosin t o t a l s . Aotual percentages of rate of germination. Calculated standardized ranges f o r significance for 12 treatments at 1.0 per cent l e v e l from Wn = qotn-SS, adjusted f o r comparison of d i f f e r e n t mean differences. 4 Calculated standardized ranges f o r si g n i f i c a n c e f o r 12 treatments at 5.0 per cent l e v e l from Wn = q«n'Sx, adjusted f o r comparison of d i f f e r e n t mean differences. Least s i g n i f i c a n t difference i n transformed arcsin t o t a l s , 12.88. ** S i g n i f i c a n t at 1.0 per cent l e v e l . * S i g n i f i c a n t at 5.0 per cent l e v e l . .. Table 9 - Mu l t i p l e Range Comparison of the Mean E f f e c t s of Seed-l o t s (57G1, 5705, 5801, 5901) on the Germinative Capacity of Grand F i r Seed. Seedlot Mean^x) x - 19.75 £ - 31.24 X - 49.68 *tt «tt 5901 75.79 (94)^ 56.04 _ 44.55 26.11 (3.68) 3 (3.41) (2.97) ** ** -5705 49.68 (58) 29.93 18.44 (3.41) (2.97) #* • 5701 31.24 (27) 11.49 (2.97) 5801 19.75 (12) • transformed a r c s i n t o t a l s . means of actual percentages of germinative capacity. 3 calculated standardized ranges f o r s i g n i f i c a n c e at 1.0 per cent l e v e l from Wn = q_ocn'Sx, adjusted f o r comparison of d i f f e r e n t mean differences (four treatments). Least s i g n i f i c a n t difference i n transformed t o t a l s , 2.19. ** S i g n i f i c a n t at 1.0 per cent l e v e l . 61 Table 10 - Multiple Range Comparison of the Mean E f f e c t s of Incubation Temperatures (15° C, 20° C, 25° C) on the Germinative Capaoity of Grand F i r Seed. Inoubation Temperature Mean^(x) x - 41.68 x - 43.71 15° C 46.95 (52) 2 5.2,7 3.24 (2.95) 3 (2.57) 20° 0, 43.71 (47) * 2.03 A (1.90) 4 25° C 41.68 (44) 1 transformed a r c s i n t o t a l s . 2 means of actual percentages of germinative capaoity. 3 calculated standardized ranges for s i g n i f i c a n c e at 1.0 per cent l e v e l from W__ = qi.cn-SX , adjusted f o r comparison of d i f f e r e n t means (three treatments). 4 calculated standardized ranges f o r si g n i f i c a n c e at 5.0 per cent l e v e l from W_ = q*n-Sx, adjusted f o r comparison of d i f f e r e n t mean differences (three treatments). Least s i g n i f i c a n t difference i n transformed a r c s i n t o t a l s , 1.90. S i g n i f i c a n t at 1.0 per oent l e v e l . * S i g n i f i c a n t at 5.0 per cent l e v e l . Table 11 - Multiple Range Comparison of the Mean E f f e c t s of S t r a t i f i c a t i o n Periods (30,40,60,80 days) on the Germinative Capacity of Grand F i r Seed. S t r a t i f i c a t i o n Period Mean^x) x-38.34 x-44.08 x-45.04 x-45.83 ** 80 days 47,29 (52) 2 8.95 3.21 A 2.25 1.46 (4.34) 3 (3.2S) 4 (2.97) (2.45) •Mr* 60 days 45.83 (50) 7.49 1.75 0.79 (4.12) (2.97) (2.45) ** 40 days 45.04 (49) 6.70 0.96 (3.81) (2.45) ** 30 days 44.08 (48) 5.74 (3.33) Control 38.34 (40) transformed arosin t o t a l s . c means of actual percentages of germinative capacity. 3 calculated standardized ranges f o r si g n i f i c a n c e at 1.0 per oent l e v e l f o r f i v e treatments from Wn - q-m-Sx, adjusted f o r comparison of d i f f e r e n t mean dif f e r e n c e s . 4 calculated standardized ranges for si g n i f i c a n c e at 5.0 per oent l e v e l f o r f i v e treatments from W n = qocn'Sx, adjusted f o r comparison of d i f f e r e n t mean differences. Least s i g n i f i c a n t differenoe i n transformed arosin t o t a l s , 2.45. ** S i g n i f i c a n t at 1.0 per oent l e v e l . 63 Table 12 - Multiple Range Comparison of the Mean E f f e c t s of the Interaction of Seedlots (5701, 5705, 5801, 5901) and the Incubation Temperatures (15° C, 20° C, 25° C) on the Germinative Capaoity of Grand F i r Seed. Seedlot Incubation Mean x Differences Temperature (°C) 5901 25 76.45 (94) 2 1.22 0.85 (4.59)4 (3.80) 20 75.60 (94) 0.27 (3.80) 15 75.33 (93) 5801 25 16.21 (8) 8.23** 2.38 (5.90) 3 (3.80) 20 18.59 ( I D 5.85** (5.15) 15 24.44 (18) 5705 25 47.99 (55) 3.16 1.92 (4.59) (3.80) 20 49.91 (58) 1.24 (3.80) 15 51.15 (61) 5701 25 26.05 (20) 10.84 4.72* (5.90) (3.80) 20 30.77 (26) 6.12** - (5.15) 15 36.89 (36) means of transformed a r c s i n t o t a l s . rf actual percentages of germinative capacity. 3 calculated standardized ranges f o r sig n i f i c a n c e f o r 12 t r e a t -ments at 1.0 per cent l e v e l from Wn z qcOi-Sx, adjusted f o r comparison of d i f f e r e n t mean differences. 4 calculated standardized ranges f o r significance f o r 12 t r e a t -ments at 5.0 per cent l e v e l from Wn = c.otn-Sx, adjusted f o r comparison of d i f f e r e n t mean differences. Least s i g n i f i c a n t difference i n transformed arosin t o t a l s , 3.80. S i g n i f i c a n t at .1.0 per cent l e v e l . * S i g n i f i c a n t at 5.0 per cent l e v e l . 64 Table 13 - Multiple Range Comparison of the Mean E f f e c t s of the Interaction of Seedlots (5701, 5705, 5801, 5901) and the S t r a t i f i c a t i o n Periods (30, 40, 60, 80 days) on the Germinative Capacity of Grand F i r Seed. S t r a t i f i c a t i o n Seedlot Period Mean . Differences 5901 80 days 78.35 (96) 2 5.68 3.71 1.25 2.14 (7.05) 4 (6.59) (4.94) (5.97) 60 days 76.21 (94) 3.54 1.57 0.89 (5.97) (4.94) (4.94) 40 days 77.10 (95) 4.43 2.46 (6.59) (5.97) 30 days 74.64 (93) 1.97 (4.94) 0 72.67 (91) 5801 80 days 24.29 (18) 13.33** 2.13 5.96 1.30 (8.74) 3 (5.97) (6.59) (4.94) 60 days 22.99 (16) 12.03** 0.83 4.66 (8.30) (4.94) (5.97) 40 days 18.33 (11) 7.37** 3.83 (4.94) (4.94) 30; days 22.16 (14) 11.20** (5.97) 0 10.96 ( 4) 5705 80 days 55.35 (68) 14.65** 4.74 5.69 3.25 (8.74) (5.97) (6.59) (4.94) 60 days 52.10 (62) 11.40** 1.49 2.44 (8.30) (4.94) (5.97) 40 days 49.66 (58) 8.96** 0.95- -- (6.69) (4.94) 30 days 50.61 (60) -9.91** (7.67) 0 40.70 (43) -5701 80 days 31.18 (27) 2.14 1.57 0.01 0.83 (4.94) (6.59) (4.94) (5.97) 60 days 32.01 (28) -2.97. 0.74 0.82 (6.59) (4.94) (4.94) 40 days 31.19 (27) 2.15 1.56 (5.97) (5.97) 30 days 32.75 (30) 3.71 (7.05) 0 29.04 (24) Means of transformed a r c s i n t o t a l s . Actual percentages of germinative capacity. continued— Table 13 (cont'd) 3 Oaloulated standardized ranges f o r s i g n i f i c a n c e f o r 20 t r e a t -ments at 1.0 per cent l e v e l from Wn = q^n-Sx, adjusted f o r comparison of d i f f e r e n t mean dif f e r e n c e s . 4 Calculated standardized ranges f o r significance f o r 20 t r e a t -ments at 5.0 per cent l e v e l from Wn = q«n'Sx, adjusted f o r comparison of d i f f e r e n t mean differences. Least s i g n i f i c a n t difference f o r transformed arosin t o t a l s , 4.94. S i g n i f i c a n t at 1.0 per cent l e v e l . I I . NURSERY GERMINATION Table 14 - Analysis of Variance of the Nursery Germination Per Cent a f t e r 64 days of Seedlots 5701 and 5705 of Grand F i r SeedV Source of Variance Degrees of .Freedom Sum of Squares Mean Square F Seedlot 1 S t r a t i f i c a t i o n 4 Error Variance 4 To t a l 9 1075.37 301.30 15.60 1392.27 1075.37 75.33 3.90 275.74 16.75 A l l data were transformed to arcsi n s . S i g n i f i c a n t at 1.0 per cent l e v e l . #**Significant at 0.1 per cent l e v e l . 66 Table 15 - Multiple Range Comparison of the Mean E f f e c t s of S t r a t i f i o a t i o n Periods (30, 40, 60, 80 days) of Lots 5701 and 5705 on the Nursery Germination Per Cent a f t e r 64 days of Grand F i r Seed. S t r a t i f i o a t i o n . Period Meair (x) £-18.73 X-27.87 £-31.34 £-31.76 80 days 34.56 (33) 2 15.83* (8.83) 3 6.69 (8.06) 3.22 (7.00) 2.80 (5.50) 60 days 31.76 (29) 13.03* (8.06) 3.89 (7.00) 0.42 (5.50) 40 days 31.34 (29) 12.61* (7.00) 3.47 (5.50) 30 days 27.87 (24) 9.14* (5.50) Control 18.73 (13) transformed ar c s i n t o t a l s . p means of actual percentages of nursery germination per cent. 3 calculated standardized ranges for significance at 5.0 per cent l e v e l f o r f i v e treatments from Wn » ejotn-Sx, adjusted for comparison of d i f f e r e n t mean differences. Least s i g n i f i c a n t difference i n transformed a r c s i n t o t a l s , 5.50. * S i g n i f i c a n t at 5.0 per cent l e v e l . 67 DISCUSSION A very s i g n i f i c a n t difference was found among the four d i f f e r e n t seedlots i n respect to both the rate of germination and the germinative oapaoity. In general, the germination of grand f i r seed i s sluggish, the degree of sluggishness vary-ing with the d i f f e r e n t seed o r i g i n s . Seedlot 5901 of l a s t year's crop, exhibited the best r e s u l t s i n both respects. This was the only seedlot personally processed and cleaned by the w r i t e r , and thus the oareful handling of t h i s l o t may be one of the factors contributing to the high germination r e s u l t s . Seedlot 5705 was c o l l e c t e d i n 1957 and was the next best of the four l o t s . Seedlots 5701 and 5801 were oolleoted i n 1957 and 1958 respectively, and both showed very low and sluggish germination behavior. The low germination of these two seedlots could not he assessed further owing to t h e i r unknown past h i s t o r y . Very s i g n i f i c a n t differences have also been found among the three incubation temperature l e v e l s and four s t r a t i -f i c a t i o n periods i n respect of both the rate of germination and germinative oapaoity. The combined e f f e c t (interaction) as shown i n Tables 3 and 4 indicated that incubation temperature had highly s i g n i f i c a n t effeet on a l l seedlots i n respect of both the rate of germination (F = 2.74) and germinative capacity (F = 4.32). However, the e f f e c t of s t r a t i f i c a t i o n on germina-t i v e capacity was less s i g n i f i c a n t (F = 2.18) on a l l seedlots. The i n s i g n i f i c a n c e of the i n t e r a c t i o n of seedlot and s t r a t i -f i c a t i o n (F » 1.16) on the rate of germination indicated that s t r a t i f i c a t i o n always resulted i n a higher rate of germination regardless of the seedlot. The i n t e r a c t i o n e f f e c t of incubation temperature and s t r a t i f i c a t i o n on both the rate of germination (F a 0.85) and germinative capacity (F = 0.73) was i n s i g n i f i c a n t because the influence of s t r a t i f i c a t i o n was s i m i l a r at a l l i n -cubation temperatures. In order to evaluate the e f f e c t s of each factor and t h e i r interactions on the rate of germination and germinative capacity, the discussions are broken down i n the following manner. THE RATE OF GERMINATION  Seedlot The germination behavior of eaoh seedlot, expressed as the rate of germination, should r e f l e c t the i n i t i a l seed q u a l i t y , the state of dormancy, age, and the handling and storage h i s t o r y . According to the seedlot, the r e s u l t s of the rate of germination were, i n descending order, 5901 (69.17 per cent), 5801 (23.27 per cent), 5705 (21.95 per oent), and 5701 (7.83 per cent). The crop years were respectively 1959, 1958, 1957 and 1957. From the point of view of the f i l l e d seed percentage (based on c u t t i n g t e s t ) , the order of the rate of germination should be 5901 (97 per cent), 5705 (87 per cent), 5801 (51 per cent) and 5701 (45 per cent). However, the actual germination r e s u l t s showed that seedlot 5801 was very s l i g h t l y higher than 5705. 69 Incubation Temperature As a whole, the response of .the seed, s t r a t i f i e d and u n s t r a t i f i e d , showed that the two higher constant incubation temperatures of 25°C and 20°C gave a higher rate of germination than 15°C. The rate of germination was s i g n i f i c a n t l y higher at an incubation temperature of 25°C (46.9*1- per cent) than at 20°C (31.41 per cent), while both of them were better than at 15°G ( 1 3 . 3 2 per cent). S t r a t i f i c a t i o n The ef f e c t of s t r a t i f i c a t i o n on the rate of germin-ation was highly s i g n i f i c a n t f o r the two longer periods (80 and 60 days) and s l i g h t l y s i g n i f i c a n t for the two shorter periods (40 and 30 days). As Table 7 and Figures 1 and 2 show, a l l periods of s t r a t i f i c a t i o n ( 3 0 , 40, 6 0 , and 80 days) gave s i g n i f i c a n t l y higher rates of germination than the u n s t r a t i f i e d controls. Seed s t r a t i f i e d for 80 days gave a higher rate of germination {56*56 per cent) than that s t r a t i f i e d for 60 days ( 3 6 . 3 6 per cent), and both 60 and 80 day periods gave s i g n i -f i c a n t l y higher values than did 40 days (24 .95 per cent) and 30 days ( 2 3 . 6 6 per cent). However, no s i g n i f i c a n t difference in the rate of germination could be detected between 30 and 4o days. The Interaction E f f e c t of Seedlot and Temperature As Table 8 shows, the seedlot of the more recent crop, 1 9 5 9 , germinated s i g n i f i c a n t l y better at both the Incubation temperatures of 25°C ( 8 7 . 3 0 per cent) and 20°C (82 . 70 per cent) than at 15°C (37.52 per c e n t ) . Both seedlots 5705 and 5801 gave a s i g n i f i c a n t l y b e t t e r r a t e of germination at an incuba-t i o n temperature of 25°C than at 15°C. F o r the r a t e of ger-mination, the i n c u b a t i o n temperature exerted a somexfhat greater e f f e c t on the seedlots germinated at 25°C than at 20°C, but s t a t i s t i c a l l y t h i s cannot be v a l i d a t e d . This was e s p e c i a l l y t r u e i n the case of seedlot 5701. GERMINATIVE CAPACITY  Seedlot As Table 9 shows, the order i n germinative c a p a c i t y among the four seedlots was 5901 (94 per c e n t ) , 5705 (58 per c e n t ) , 5701 (27 per c e n t ) , and 5801 (12 per cent). The reason seedlot 5801 became the lowest one i n germinative c a p a c i t y i s b e l i e v e d to be due to the l a r g e number of seeds which r o t t e d d u r i n g the course of germination at higher i n c u b a t i o n tempera-t u r e (25°C or 20°C) p o s s i b l y because of improper treatments i n the previous h i s t o r y of the seeds. Incubation Temperature As f a r as the germinative c a p a c i t y i s concerned, i t seems that the l o i t e r i n c u b a t i o n temperature of 15°C (52 per cent) was b e t t e r than the higher ones of 20°C (47 per cent) and 25°C (44 per c e n t ) , and the in c u b a t i o n temperature of 20°C was greater i n e f f e c t than '25°C (Table 1 0 ) . Seed that may have been i l l t r e a t e d p r i o r to the germination t e s t by one f a c t o r or another seemed to s u f f e r l e s s d e t e r i o r a t i o n at the lower i n c u b a t i o n temperature of 15°C ( i . e . perhaps micro-organism 7/1 infeotions developed le s s rapidly) than at the higher ones (25° 0 and 20° 0). S t r a t i f i o a t l o n As Table 11 and Figures 3 and 4 show, a l l s t r a t i f i e d seeds of 30, 40, 60, and 80 days duration gave a s i g n i f i c a n t l y higher germinative oapaoity than the u n s t r a t i f i e d ones, whereas there were no s i g n i f i c a n t differences among the d i f f e r e n t s t r a t i f i c a t i o n periods. As s t r a t i f i c a t i o n period increased the germinative oapaoity of grand f i r seed increased moderately. The Interaction E f f e c t of Seedlot and Temperature As the data i n Table 12 and Figures 3 and 4 show, no s i g n i f i c a n t difference i n germinative oapaoity f o r seedlot 5901 or 5705 at a l l three inoubation temperature l e v e l s was detected. However, seedlot 5701 showed a s i g n i f i c a n t l y higher germinative oapaoity at the incubation temperature of 15° 0 (36 per oent) than at both 20° C (26 per oent) and 25° 0 (20 per oent), while the germinative oapaoity at 20° 0 was s i g n i f i c a n t l y better than at 25° 0. Seedlot 5801 showed a s i g n i f i c a n t l y greater germina-t i v e oapaoity at 15° 0 (1.8 per oent) than at both 20° 0 (11 per oent) and 25° 0 (8 per c e n t ) . Here, again, the differences i n germinative capacity f o r seedlots 5701 and 5801 at three inoubation temperature l e v e l s oan he attributed to the large percentages of seeds rotted at higher inoubation temperatures (20° 0 and 25° 0) during the course of germination. I t i s sug-gested t h i s might have been due i n part t o i n j u r i e s sustained i n the course of commercial processing. The Interaction Effeot of Seedlot and S t r a t i f i c a t i o n As Table 13 shows, a l l s t r a t i f i c a t i o n periods had highly s i g n i f i c a n t e f f e c t s on the germinative capacity of seed-l o t s 5705 and 5801, but no s i g n i f i c a n t e f f e c t s could be detected i n seedlots 5701 and 5901. In the former two seedlots, there were no s i g n i f i c a n t differences i n e f f e c t among the various s t r a t i f i o a t i o n periods but germination tended to increase as s t r a t i f i c a t i o n period was increased. That no s i g n i f i c a n t e f f e c t of s t r a t i f i c a t i o n could be found on the germinative capacity of seedlot 5901 may be due to i t s freshness and high percentage of f i l l e d seeds (based on cu t t i n g t e s t ) . Sinoe the previous seed h i s t o r y of the three commercial l o t s i s unknown, the factors which were responsible f o r the d i f f e r e n t r e s u l t s cannot be explained. Nursery Germination The comparison of nursery germination with laboratory germination i s a c t u a l l y not an important one beoause of the temperature, moisture, and germination medium differences be-tween these two completely d i s t i n c t environments. Nevertheless, i t s purpose i s to obtain some idea of t h e i r r e l a t i o n s h i p . As the r e s u l t s i n Table 15 show, a l l the s t r a t i f i e d seeds, no mat-te r what period, germinated s i g n i f i c a n t l y better than the un-s t r a t i f i e d ones, while no s i g n i f i c a n t differences among the seeds s t r a t i f i e d f o r various periods could be found. These r e s u l t s seem to somewhat resemble those obtained i n the laboratory f o r the eff e c t of s t r a t i f i c a t i o n on germinative capacity. This may perhaps be attributed to the longer germina-t i o n period (64 days) and the d a i l y a l t e r n a t i n g temperatures i n the nursery, or other differences i n conditions. Figures 25 and 28 and c o r r e l a t i o n c o e f f i c i e n t s show that nursery germination per oent a f t e r 64 days was close to the laboratory rate of germination at SG° C (r • 0.908) for seedlot 5701 when compared by length of s t r a t i f i c a t i o n period. There was found to he no s i g n i f i c a n t c o r r e l a t i o n between the laboratory rate of germination and nursery germination per oent a f t e r 64 days f o r seedlot 5705. CONCLUSIONS The following oonolusions may he drawn from the r e s u l t s obtained. 1. The germination behavior of grand f i r seed was greatly affected by the diverse seed origins and pretreatments i n respect to both the rate of germination and the germinative capacity. Some of these differences are probably due to the effeot of crop year and seed processing h i s t o r y . 2. The germination vigour of each seedlot, expressed as the rate of germination and representing the i n i t i a l seed q u a l i t y , the state of dormancy, age, and handling and storage h i s t o r y , was i n the following descending order: 5901 (69.17 per oent), 5801 (23.27 per oent), 5705 (21.93 per oent), and 5701 (7.83 per oent). 74 3. The rate of germination for a l l seeds, s t r a t i f i e d and u n s t r a t l f i e d , was s i g n i f i c a n t l y greater at an incubation temperature of 25°C than at 20°C and 15°C. 4 . The rate of germination of grand f i r seed was In-creased more by the longer s t r a t i f i c a t i o n periods (60 and 80 days) than by the shorter ones (30 and 40 days). 5. The germinative capacity seemed to be higher at the loiter Incubation temperature of 15°C than at the higher temperatures of 20°C and 25°C. This was e s p e c i a l l y true f o r seedlots 5701 and 5801 which had a large number of r o t t i n g seeds developed at the higher incubation temperatures (20°C and 25°C) during the course of germination. 6. S t r a t i f i c a t i o n period had l i t t l e e f f e c t on the germinative capacity of grand f i r seed. The shorter s t r a t i -f i c a t i o n periods (30 and 40 days) were as e f f e c t i v e as the longer ones (60 and 80 days), I,, Regarding the germinative capacity of grand f i r seed, the longer the s t r a t i f i c a t i o n period, the l e s s sensitive the seed was to incubation temperature differences. . 8. S i g n i f i c a n t c o r r e l a t i o n was found between the nursery germination per cent a f t e r 64 days and the laboratory rate of germination at 2 0 o C ( r = 0.908) for seedlot 5701 only. Appendix I. Nursery experimental design for grand f i r — randomized blocks. <- 20' > If c If 80 30 0 60 40 80 40 30 0 60 O r> 30 40 0 60 80 f— c IT 60 • 40 80 30 0 IT O r>J 30 0 40 60 80 rH O 60 80 30 0 40 0 •30 80 40 60 H O £>-IfN 80 0 30 40 60 IT O l> IT 40 80 0 30 60 40 60 0 80 30 o 0 40 60 80 30 rH O C~-lf> 0 30 60 80 40 1. Figures in the small blocks are stratification periods. 2. There are 50 seeds in each small block of one square foot. Appendix I I . 76 F i g u r e 5. Course o f g e r m i n a t i o n o f u n s t r a t i f i e d ' > s e e d l o t 5801 as a f f e c t e d by i n c u b a t i o n terapernture (15°C, E0°C, 25°C) . P 1 0 r a CD C) u I n c u b a t i o n P e r i o d (days) F i g u r e 6, Course o f g e r m i n a t i o n f o r s e e d l o t 5801 as a f f e c t e d by i n c u b a t i o n t emperature (15°C, 20°C, 25°C) f o l l o w i n g 30 days of s t r a t i f i c a t i o n . 'Incubation P e r i o d (days) F i g u r e 7. Course o f g e r m i n a t i o n f o r s e e d l o t 5801 as a f f e c t e d by i n c u b a t i o n temperature (15° C, 20° C, 25° C) f o l l o w i n g 40 days of s t r a t i f i c a t i o n . 15 10 20 30 40 I n c u b a t i o n P e r i o d (days) F i g u r e 8. Course of g e r m i n a t i o n f o r s e e d l o t 5801 as a f f e c t e d by i n c u b a t i o n temperature (15° C, 20° C, 250 o) f o l l o w i n g 60 days o f s t r a t i f i c a t i o n . I n c u b a t i o n P e r i o d (days) Figure 9. Course of germination for seedlot 5801 as a f f e c t by incubation tempereture (15°C, 20°0, 25°C) 10 20 30 Incubation Period (days) Figure ID. Course of germination for u n s t r a t i f i e d seedlot 5701 as affected by incubstion temperature 10 0 (15°C, 20°C, 25O0) 10 20 30 Incubation Period (days) 40 79 Figure 11.Course of germination for seedlot 5701 as affected by Incubation Period (days) Figure 13, Course of germination for seedlot 5701 as affected by incubation temperature (15°C, 20°C, 25°C) following 40 days of s t r a t i f i c a t i o n . -P d °10 u CD P-. C O •H •P c 5 • H a f-i CD O 0 20 30 40 Incubation Period (days) 10 20 30 40 I n c u b a t i o n P e r i o d (days) F i g u r e 13. bourse o f g e r m i n a t i o n f o r S e e d l o t 5701 as a f f e c t e d by I n c u b a t i o n t emperature (15°C, 20°C, 25°0) f o l l o w i n g 60 days of s t r a t i f i c a t i o n . 81 Figure 14. Course of genainp.tion for seedlot 5701 as affected by incubation temperature (15°C, 20°C, 25°C) following 80 days of s t r a t i f i c a t i o n . 82 60 10 20 30 40 Incubation Period (days) Figure 16. Course of gerrainstion for seedlot 5705 as affected by incub8tion temperature (15°C, E0°C, 25°C) following 30 days of s t r a t i f i c a t i o n . 34 Figure 17. Course of germination for seedlot 5705 as affected by incubation temperature (150C, 20°C, 25°C) following 40 days of s t r a t i f i c a t i o n . -P CJ CD O u CD o •H -P CO c: -rH a CD o 20 30 40 Incubation Period (days) 50 85 Figure 18. Course of germination for seedlot 5705 as effected by incubation temperature (15°C, 20°C, 25°C) following 60 days of s t r a t i f i c a t i o n . 70|_ ' 60 ci <D O u (U o •H -P a a rH o 50 40 30 20 10 0 10 Incubation Period (days) 50 86 Figure 19. Course of germination f o r seedlot 5705 as affected by incubation temperature (15°C, 20°C, 25°C) following 80 days of s t r a t i f i c a t i o n . -p a CD O ?H CD to, o •rH • P CD c •H CD O 20 30 40 Incubation Period (days) 87 10 20 30 40 Incubation Period (days) 88 1 0 2 0 3 0 Incubation Period (days) 5 10 15 20 25 30 Incubation period (days) Figure 23. Course of germination for seedlot 5901 as affected by incubation temperature (15°C, 20°C, 25°C) following 60 deys of s t r a t i f i c a t i o n . _ J I I I L_ 10 15 20 25 30 Incubation Period (days) 5 10 15 20 25 Incubation Period (days) Figure 25. Course of genuinetion f o r seedlot 5 7 0 1 as a f f e c t e d by d u r a t i o n of s t r a t i f i c a t i o n ( 3 0 , 4 0 , 6 0 , 8 0 days) i n Nursery. F i g u r e 27. S c a t t e r Diagram of Rate o f G e r m i n a t i o n a t 15 UG, 20 UC, 25°C i n L a b o r a t o r y and N u r s e r y G e r m i n a t i o n P e r c e n t a f t e r 64 days o f L o t 5701-by S t r a t i f i c a t i o n P e r i o d . 30L 94 a • H . a o • H - P CC a P a CD o u 20 f-t o 10 rH o <SH P o co u <x> o - P , 0 «>2o o 15°G r = 0.873 30 60 40 . 80 10 20 N u r s e r y G e r m i n a t i o n P e r c e n t a f t e r 64 days. a • H .— p « c: o q> • H - P CO a o o fH CD >> fH O «H P o co u CD O P CO CO K r-1 20 10 0 20 °0 r ~ 0.908 80 60 •30 40 10 20 N u r s e r y G e r m i n a t i o n P e r ceni a f t e r 64 days. 50 p d CD o u CD 40 O | 30 o ,o CO r-3 3 20 • H p cc rH (1) o <•-! o CD - P CO « 10 0 25°C r = 0.866 80 60 40 0 30 10 20 N u r s e r y G e r m i n a t i o n P e r cent a f t e r 64 days 95 Figure 28. Scatter Diagram of Rate of Germination at 15 C in Laboratory and Nursery Germination Per cent aft e r 64 days of Lot 5705. 4-> a CD o f-l CD a, >> u o -p CO f-t o J=> CO a • H o • H +5 CD CJ • H u CD o o CD •P CO K 30 20 10 0 15° 0 r = 0.415 80 0 60 30 40 .10 20 30 40 Nursery Germination Per cent after 64 days Figure 29. Scatter Diagram of Rate of Germination at 20° 0 i n Laboratory and Nursery Germination Per cent a f t e r 64 days of Lot 5705. 80 CO 30L o CD 20)-•p CO 10-20° G r = 0.321 60 30 -*40 J L _ i , | _ L 10 20 30 40 50 Nursery Germination Per oent aft e r 64 days 90 Figure 30. Scatter Diagram of Rete of Germination at 25°0 in Laboratory and Nursery Germination Per cent a f t e r 64 days of Lot 5705. 80 97 80 25° C r = 0.427 -p a CD O u (0 04 70 60 >> j-i o •p co 60 M O £> CO a •H If) -p CO o •H -p CO -rH PS rH CO O <M O CD •p CO K 40 30 30 40 20 10 01 10 20 30 40 Nursery Germination Per cent a f t e r 04 days 50 Plate I. Appendix I I I . Seed Sampler (Constructed by W. Bientjes) 98 Front View Back View 99 Plate I I . V e r t i c a l A i r Stream Seed Cleaner ( B u i l t by W. Bientjes) Plate I I I . Botanical Range of Grand F i r (aft e r Foiles,1960) LITERATURE CITED 101 1. Aoatay, A. 1939. Investigations into the quantity and quality of seed found i n various parts of the crowns of native forest trees. For. Abstracts. V o l . 1, 1939 (34). 2. Alaroon, F. 1950. The Villabona k i l n . For. Abstracts 12, 1950 (172). 3. A l l e n , G. S. 1941. Light and temperature as factors i n the germination of seed of Douglas f i r (Pseudotsuga t a x i f o l i a (Lamb.) B r i t t . ) . For. Chron. 17, 1941 (99-109). 4. 1942. Douglas f i r seed from young trees. J . For. 40, 1942 (722-3). 5. — , 1957. Storage behavior of conifer seeds i n sealed containers held at 0° F*, 32° F., and room temperature. J . For. 55 (4): 278-281. 6. 1957a. Better handling of a scarce commodity. B. C. Lumberman 41 (7): 32-36. 7 # 1958. Factors a f f e c t i n g the v i a b i l i t y and germination behavior of coniferous seed. I I I . Commercial processing and treatments s i m i l a r to processing, Pseudotsuga  menziesii (Mirb.) Franco, and other species. For. Chron. 34 (3): 266-298. 8. i960. Factors a f f e c t i n g the v i a b i l i t y and germination behavior of coniferous seed. IV. S t r a t i f i c a t i o n period and incubation temperature, Pseudotsuga menziesii (Mirb.) Franco. For. Chron. 36 (1): 18-29. 9. , and Bientjes, W. 1954. Studies on coniferous tree seed at the University of B r i t i s h Columbia. For. Chron. 30 (2): 183-196. 10. Asakawa, S. 1957. Studies on the delayed germination of Fraxlnus mand3hurioa var. japonica seeds. B u l l . Government For. Exp. Sta. No. 103: 25-44. Tokyo, Japan. 11. Baldwin, H. I. 1942. Forest tree seed of the north temperate region with s p e c i a l reference t o North America. Chronica Botanica Co. 240 pp. 12. Barton, L. V. 1941. Relation of c e r t a i n a i r temperatures and humidities to v i a b i l i t y o f seeds. Contributions from Boyoe Thompson Inst. 12: 85-102. 102 13. Barton, L. V. 1944. Seeds showing s p e c i a l dormancy. Contributions from Boyce Thompson Inst. 13: 259-271. 14. - 1953. Seed storage and v i a b i l i t y . Contr. Boyce Thompson Inst. 17 (2): 87-103. 15. 1954. E f f e c t of presoaking on dormancy of seeds. Contr. Boyce Thompson Inst. 17 (7): 435-8. 16. , and Crocker, W. 1948. Twenty years of seed research at Boyce Thompson I n s t i t u t e f o r Plant Research. Faber and Faber Ltd., London. 148 pp. 17. • , and Thornton, N. C. Germination and sex population studies of Ilex opaca A i t . Contr. Boyce Thompson Inst. 14 (9): 405-10., 18. Bientjes, W. 1954. The effeots of temperature, seed moisture, and s t r a t i f i c a t i o n on the germination o f western hemlock seed. Res. Note No. 11, U.B.C. For. Club. 7 pp. 19. Boden, R. W. 1957. Some aspects of seed dormancy i n Euoalyptus. Aust. For. 21 (2): 81-85. 20. Bonner, J. F. 1950. Plant Biochemistry. N. Y. Academic Press. 537 pp. 21. Bunning, E. 1956. Endogenous rhythms i n plants. Ann. Rev. Plant P h y s i o l . 7: 71-90. 22. Chadwick, L. C. 1946. Seeds of red cedar. American Nurseryman. 83 (9): 10. 23. Cheng, K. S. 1945. Studies on the germination of forest seeds and the development of t h e i r seedlings r e l a t i v e to the s i z e , weight and s p e c i f i c gravity of the seeds. J . A g r i c . Asso. China No. 180: 65-75. 24. Cheyney, E. G. 1942. American s i l v i c s and s i l v i c u l t u r e . The Univ. of Minnesota Press. Minneapolis, Minn. U.S.A. 472 pp. 25. Ching, T. M. 1958. Some experiments on the optimum germination conditions f o r western hemlock (Tsuga  heterophylla Sarg.). J . For. 56 (4): 277-279. 26. C l i f o r d , H. T. 1953. A note on the germination o f Euoalyptus seed. Australian For. 17 (1): 17-20. 103 27/. Cook, M. T. 1943. Germination f a i l u r e s of the Magnolia i n Puerto Rico. For. Abstr. 4: 226. 28. Cox, L. G. 1945. A p h y s i o l o g i c a l study of embryo dormancy i n the seed of native hardwoods and I r i s . Bio. Abstr. 19: 22794. 29. Oram, W. H. 1951. Spruoe seed v i a b i l i t y : dormancy of seed from four species of spruoe. For. Chron. 27: 1-9. 30 # 1956. Maturity of Colorado spruoe cones. For. S o i . 2 (1): 26-30. 31. Crocker, W. 1948. Growth of plants. Reinhold Publishing Oo. N. Y. 459 pp. 32. — — and Barton, L. V. 1953. Physiology of seeds. Chronioa Botanioa Co. Mass., U.S.A. 267 pp. 33. Grossley, D. I. 1953. Seed maturity i n white spruoe (Picea glauoa (Moench) Voss var. albertiana (S. Brown). Sarg.). S i l v i c u l t u r e Res. Notes No. 104. Can. Dept. of Resources and Development. 34. . , and Skov, L. 1951. Cold soaking as a pre-germination treatment f o r white spruce seed. S i l v i c u l t u r e l e a f l e t No. 59. Project A-21, Div. of For. Res., Forest Branch, Dept. of Resources and Development, Ottawa. 4 pp. 35. E l i a s o n , E. 3"., and Heit, C. E. 1940. The s i z e of Scotch pine oones as re l a t e d to seed size and y i e l d . J . For. 38: 65-66. 36. ._ 1940a. The e f f e c t of l i g h t and temperature on the dormanoy of Scotch pine seed. . Report from Proceedings of the Asso. of O f f i c i a l Seed Analysts of North America. 11 pp. 37. Ewart, A. JV 1908. On the longevity of seeds. Pro. Roy. Soo. V i o t o r i a , 21: 1-210. 38. Feberer, W. T. 1955. Experimental Design (Theory and A p p l i c a t i o n ) . The Maomillan Co., N. Y. 544 pp. 39. F i n n i s , J . M. 1950. Seed maturity i n Douglas f i r . Res. Note No. 18. B. C. Forest Service, V i c t o r i a , B. C., Canada. 4pp. 104 40. F o i l e s , M. W. 1959. S i l v i c s of grand f i r . Misc. Pub. No. 21. Intermountain For. and Range Exp. Sta., U.S.D.A. 12 pp. 41. Forestry Chronicle. 1946. Reports of Standing Committees, 1945 (Canadian Sooiety of Forest Engineers): S i l v i c u l t u r e . For. Ghron. 22 (1): 73-82. 42. Foster, A. A. 1956. Opening case-hardened southern pine oones. J . For. 54 (7):466-467. 43. Gardner, W. A. 1921. The e f f e c t of l i g h t on germination of l i g h t - s e n s i t i v e seeds. Bot. Gaz. 71: 249-288. 44. Goo, M. 1948. E f f e c t s of i n d i v i d u a l seed weight and seed coat on the germination of the seeds c o l l e c t e d from the young and old mother trees i n Cryptomeria japonica D. Don. Tokyo Univ. For. B u l l . No. 36. 10 pp. 45. — 1954. Is germination per cent of Sugi (Cryptomeria japonica seeds affeoted by the p o s i t i o n i n crown of t h e i r oones? J . Jap. For. Soc. 36 (1): 23-25. 46. Grose, R. J . , and Zimmer, W. J . 1958. Influence of seed siz e on germination and early growth of seedlings o f Eioalyptus maoulata Hook, and Euoalyptus sieberiana F. V. M. B u l l . For. Comm. V i c t . No. 9. 10 pp. 47. Haig, I . T., K. P. Davis, and R. H. Weidman. 1941. Natural regeneration i n the western white pine type. U. S. Dept. Agr. Teoh. B u l l . 767, 99 pp. 48. H a l l i d a y , W. E. D., and Brown, A. W. A. 1943. D i s t r i b u t i o n patterns of forest trees i n Canada. Ecology 24: 353-373. 49. Harlow, W. M., and Harrar, E. S. 1950. Textbook of Dendrology. 3rd e d i t i o n . MoGraw-Hill Book Co. N. Y. 555 pp. 50. Harding, J . H. 1940. Acacia germination t r i a l s . Austr. For. 5: 53-56. 51. Hasegawa, M., and Furukawa, T. 1953. The l i g h t germination of forest tree seed. ( I ) . The difference of germination be-haviors between Pinus thunbergii and Pinus d e n s i f l o r a seed. J . Jap. For. Soo. 35 (12): 382-384. 52. Hashimoto, N., I . S h i h i r a , and S. Ishikawa. 1954. E f f e c t of coloured l i g h t on the germination of forest tree seed. J . Jap. For. Soo. 36 (3): 63-65. 105 53. Hatano, K. I. 1955. The chemistry of tree seeds. J . Jap. For. Soc. 39 (6): 238-244. 54. Hebb, E. A. 1954. How to open pond pine cones. J . For. 52 (10): 770. 55. Heit, 0. E. and E l i a s o n , E. J . 1940. Coniferous tree seed t e s t i n g and factors a f f e c t i n g germination and seed q u a l i t y . Tech. B u l l . N. Y. Agr. Exp. Sta. No. 255, 45 pp. (N. Y. State Conservation Dept.). 56. 1941. Storage of conifer seed. N. Y. Nursery Notes No. 10: 2-3. 57. Holmes, G. D., and G. Buszewicz. 1955. Experiments with cold-wet pre^-treatment as a method of increasing the germination rate of seed of Douglas f i r , S i t k a spruce and lodgepole pine. Report For. Res. For. Comm., London, 1955 (84-91). 58. 1958. The storage of seed of temperate forest tree species. For. Abstr. 19: 313-322 455-476. 59. Holmsggard, E., and A> Kjer. 1951. Research on germination i n the laboratory and nursery of four Abies and two Picea species. For. Abstr. 13 (5): 491. 60. Buss, E. 1950. On dewinging damages of seeds. Medderanden Fran Stakens Skogsforskningsinstitut, Stockholm. 56 pp. 61. 1951. Methods used at the Swedish Forest Research I n s t i t u t e i n seed experiments. Stakens Skogsforsknings-i n s t i t u t , Stockholm. 88 pp. 62. 1954. Studies on the importance of water con-tent f o r the storage of conifer seed. Medd. Skogsforskningsinstitut, Stockholm. 60 pp. 63. I l j i n , A. I. 1955. Influence of the size of Soots pine seed on t h e i r q u a l i t y . For. Abstr. 16 (2): 235. 64. India and Burma. 1943. Forest research i n India and Burma, 1941-42. Part 1. The Forest Research I n s t i t u t e , Dehra Dun. For. Abstr. 5: 253. 65. Iwakawa, M., and Kotani, S. 1954. E f f e c t of coloured l i g h t on the germination of Akamatsu (Pinus densiflora) and Kuromatsu (Pinus thunbergii). J . Jap. For. Soc. 36 (9): 249-252. 1 0 6 66. Jew,esson, R. S., and Danyluck, W. 1951. The comparative v i a b i l i t y of seeds from d i f f e r e n t parts of the cones of i n -t e r i o r Douglas f i r and lodgepole pine. Res. Note No. 4, Univ. of B. 0. For. Club. 67. Kangas, E. 1943. The influence of the drying k i l n on the extraction and germination of pine seeds. For. Abstr. 5: 252. 68. Kasallcky, E. 1952. Improving the quality of coniferous seeds. For. Abstr. 13 (5): 489. 69. Keen, F. P. 1952. Insect enemies of western f o r e s t s . U. S. Dept. Agr. Misc. Pub. 273, revised July 1952, 280 pp. 70. 1958. Gone and seed insects of western f o r e s t trees. U.S.D.A. Tech. B u l l . 1169, 168 pp. 71. Kockarj, N. T. 1952. Co r r e l a t i o n of y i e l d and germination of Pinus s y l v e s t r i s seed with s i z e of cone. For. Abstr. 13 (4): 384. 72. Koshimizu, T. 1936. On the r e l a t i o n between the ripening stages of the maize seed and i t s germination. Bot. Mag. (Tokyo) 70: 504-513. 73. Krajina, V. J . 1959. Bioolimatic zones i n B r i t i s h Columbia. Botanical Series No. 1. Univ. of B. C , Vancouver, B. C., Canada. 47 pp. 74. 1960. Lecture Notes (Autecology). 75. Lame, R. D. 1956. Factors a f f e c t i n g seed germination o f Pinaoeae genera. Rep. Northeast For. Exp. Sta. 76. Lanquist, K. B. 1946. Tests of seven p r i n c i p a l forest trees i n northern C a l i f o r n i a . J . For. 44 (12): 1063-66.. 77. Lavender, 0. P. 1958. E f f e c t of seed si z e on Douglas f i r seedlings. Res. Note No. 32, Oregon For. Lands Res. Center. 8 pp. 78. Lebarron,.R. K., and Roe, E. I . 1945. Hastening the ex-t r a c t i o n of jack pine seeds. J . For. 43 (11): 820-21. 79. Magini, E. 1951. The Influence of season of c o l l e c t i o n on the germination capacity of Pinus pinaster seed. For. Abstr. 13 (2): 159. 1 0 7 80. Maki, T. E. 1940. Significance and a p p l i c a b i l i t y of seed maturity indices f o r ponderosa pine. J . For. 28: 55-60. 81. Meyer, B. S., and Anderson, D. B. 1958. Plant physiology. 2nd E d i t i o n , D. Van Nostrand Go. N. Y. 784 pp. 82. Mirov, N. T. 1936. A note on germination methods for coniferous species. J . For. 34: 719-723. 83. Morinaga, T. 1926. The favourable e f f e c t of reduced oxygen supply upon the germination of oertain seeds. Oontr. Boyoe Thompson Inst. 1: 100-110. 84. 1926a. Germination of seeds under water. Oontr. Boyoe Thompson Inst. 1: 67-99. 85. Mugnaini, 0 . 1954. Studies of the germination of Pinus  pinaster. For. Abstr. 16 (2): 201. 86. Nakamura, K., Goo, M., and Hasegawa, S. 1954. Does the qu a l i t y of seed change yearly? J . Jap. For. Soc. 36 (1): 1-2. 87. Nelson, M. L. 1938. Preliminary investigations on dry cold storage of southern pine seed. Occasional paper No. 78, Southern For. Exp. Sta., New Orleans, La. U.S.A. 19 pp. 88. New York State Cornell University A g r i c u l t u r a l Experiment Station. 1940. Fifty-second annual report, 1939. Albany, N. Y. 203 pp. 89. — 1942. Fifty^-fourth annual report, 1941. Ithaca, N. Y. 202 pp. 90> Nordstrom, L. 1957. The delayed germination of pine seeds. For. Abstr. 18: 477. 91. Olson, D. S. 1932. Germinative capacity of seed produoed from young trees. J . For. 30: 871. 92. Ono, K. 1954. The studies on the l i g h t - e f f e c t upon the germination of Japanese cypress (Ohamaecyparis obtusa) seeds. J . Jap. For. Soc. 36 (4): 89-92. 93. Organfor, T. 1952. Abies grandis. I t s p o s s i b i l i t i e s i n Danish Forestry. Dansk Skovforening T i d s s k r i f t . 94. Pearson, G. A. 1910. The influence of age and condition of trees upon seed production i n western yellow pine (Mimeo. Report U.S.F.S.). 108 95. P i s k o r i o , 0. 1953. E f f e c t of the s i z e of Onerous suber and Onerous ooocifera seeds on germination and seedling development. For. Abstr. 15 (2): 168. 96. Purdue University Indiana A g r i c u l t u r a l Experiment Stat i o n . 1939. Fifty-second annual report of Purdue University A g r i c u l t u r a l Experiment Station, f o r the year ending June 30, 1939. Lafayette, Ind. U.S.A. 142 pp. 97. Redmond, D. R., and Robinson, R. 0. 1954. V i a b i l i t y and germination i n yellow b i r c h . For. Chron. 30 (1): 78-87. 98. Report of Forest and Timber Bureau, A u s t r a l i a , 1949. Maturation and extraction of Pinus radiata seed. 99. Report of B r i t i s h Columbia Forest Service, 1949. 1950. Seed d i s p e r s a l of B r i t i s h Columbia Coastal oonifers. Rep. of B.C.F.S., 1949, 1950. (26-8). 100. Report of C a l i f o r n i a Forest and Range Experiment Station, 1957. 1958. Germination speeded i n Douglas f i r seed. 1958 (18-19). 101. Report of Queensland Director of Forests, A u s t r a l i a . 1955. Hoop pine (Areuoarla ounninghamii). 102. Richtar, B. 1959. The r e s u l t s of various methods of seed pretreatment on the quality and quantity of seedlings. For. Abstr. 20: 546. 103. R i e t z , R. C. 1939. E f f e c t of f i v e k i l n temperatures on the germinative oapacity of longleaf pine seed. J . For. 37: 960-963. 104. Righter, F. I. 1945. Pinus: The r e l a t i o n s h i p of seed s i z e and seedling size to inherent vigor. J . For. 43: 131-137. 105. Rohmeder, E. 1942. Germination with Ulmus montana. For Abstr. 4: 164. 106. — — ' 1952. Contributions to the physiology of germination of forest p l a n t s . For. Abstr. 13 (1): 147-149. 107. — , and Chen, C. Y. 1939. Germination t e s t s with spruce seeds of d i f f e r e n t s i z e s . For. Abstr. 1: 89. 108. Rudolf, P. 0. 1940. When are pine cones ripe? Rep. from Proceedings of Minnesota Academy Society 8: 31-38. (Lake States For. Exp. Sta.). 109) 109. Rudolf, P. 0. 1950. Cold soaking — a short-out substitute f o r s t r a t i f i o a t i o n . J . For. 48: 31-32. 110. — • 1952. Oold-soaking of jack pine seeds. J . For. 50 (8): 626. 111. Sarvas, R. 1952. E f f e c t of l i g h t on the germination of forest tree seeds. For. Abstr. 13 (3): 277. 112. Schmidt, R. L. 1957. The s i l v i c s and plant geography of the Genus Abies i n the coastal forests of B r i t i s h Columbia. Tech. Pub. T.46, B.C. For. Service. 31 pp. 113. Schubert, G. H. 1952. Germination of various ooniferous seeds. Forest Res. Notes No. 83, C a l i f . For. and Range Exp. Sta., U.S.F.S. 7 pp. 114. 1955. E f f e c t of storage temperatures on v i a b i l i t y of sugar, Jeffrey and ponderosa pine seed. For. Res. Notes No. 100, C a l i f . For. and Range Exp. Sta., U.S.F.S. 3 pp. 115. Sprague, G. F. 1936. The r e l a t i o n of moisture content and time of harvest to germination of immature corn. Amer. Soc. Agron. Jour. 28: 472-478. 116. S t i l e , I. E. 1948. Relation of water to the germination of corn and cotton seeds. Plant physiology 23: 201-222. 117. Stone, E. C. 1957. Embryo dormancy of P. Jeffrey!, Murr. as affected by temperature, water uptake, s t r a t i f i c a t i o n and seed coat. Plant P h y s i o l . 32: 93-99.. 118. 1957a. The e f f e c t of seed storage on seedling s u r v i v a l of sugar pine. J . For. 55 (11): 816-820. 119. Thornton, N. C. 1945. Importance of oxygen supply i n secondary dormancy and i t s r e l a t i o n to the i n h i b i t i n g mechanism regulating dormancy. Contr. Boyce Thomp. Inst. 13:(10): 487-500. 120. T i r e n , L. 1946. On extraction, storage, and germination tests of seed. For. Abstr. 8: 48-49. 121. Toole, E. H., et a l . 1956. Physiology of seed germination. Annual Review of Plant P h y s i o l . 7: 299-324. 122. Tourney, J . W., and Durland, W. D. 1923. The e f f e c t of soak-ing c e r t a i n tree seeds i n water at greenhouse temperatures on the v i a b i l i t y and the time required f o r germination. J . For. 21: 369-375. n o 183. Tourney, J . W., and Korstian, 0. F. 1948. Seeding and Plant i n g i n the Practice of Forestry. John Wiley and Sons Inc., N. Y. 124. U. S. F. S. 1948. Woody-plant Seed Manual. Misc. Puh. No. 654, U. S. D. A. U. S. Government P r i n t i n g O f f i c e , Wash., D. 0. 416 pp. 125. Yaartaja, 0. 1955. Photoperiodic response i n germina-t i o n of seeds of c e r t a i n trees. Abstr. i n B u l l , of Ecology Soc. of Amer. 36 (4): 110. 126. Vaz, A. L. 0. 1955. The importance o f provenance i n forest seed; some factors a f f e c t i n g the qu a l i t y of seed of Oupressus l u s i t a n i o a . For. Abstr. 16 (3): 499. 127. Vilmorin, R. 1947. Note on the conservation of the germinative oapaoity of seed of Abies alba. For. Abstr. 8 (3): 377. 128. Wakeley, P. 0. 1947. Advanoes i n s t o r i n g southern pine seed. Southern For. Note No. 47, Southern For. Exp. Sta. U.S.F.S. 129. 1954. Planting the southern pines. Forest Service, U.S.D.A. Agr. monograph No. 18, U. S. Government P r i n t i n g O f f i c e , Washing. D.O. 233 pp. 130. Wareing, P. P. 1956. Photoperiodism i n Woody plants. Ann. Rev. Plant P h y s i o l . 7: 191-214. 131. Westveld, R. H. 1949. Applied s i l v i c u l t u r e i n the United States. 2nd E d i t i o n . John Wiley and Sons Inc. N. Y. 590 pp. 132. Wilson, J . K. 1944. Immersing seeds of species of Robinia i n b o i l i n g water hastens germination. J . For. 42: 453-454. 133. Wright» ^* W. 1945. Influence of size and portion of oone on seed weight i n eastern white pine. J . For. 43: 817-819. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105957/manifest

Comment

Related Items