UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Evaluation of site quality from aerial photographs of the University of British Columbia Research Forest,… Bajzak, Denes 1960

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1960_A6 B2 E9.pdf [ 32.27MB ]
Metadata
JSON: 831-1.0105926.json
JSON-LD: 831-1.0105926-ld.json
RDF/XML (Pretty): 831-1.0105926-rdf.xml
RDF/JSON: 831-1.0105926-rdf.json
Turtle: 831-1.0105926-turtle.txt
N-Triples: 831-1.0105926-rdf-ntriples.txt
Original Record: 831-1.0105926-source.json
Full Text
831-1.0105926-fulltext.txt
Citation
831-1.0105926.ris

Full Text

i AN EVALUATION OP SITE QUALITY PROM AERIAL PHOTOGRAPHS OP THE UNIVERSITY OP BRITISH COLUMBIA RESEARCH FOREST, HANEY, B. C. by DENES BAJZAK B.S.P., Sopron D i v i s i o n , University of B r i t i s h Columbia, 1958 A THESIS SUBMITTED IN PARTIAL FULFILMENT OP THE REQUIREMENTS FOR THE DEGREE OP MASTER OP FORESTRY i n the Department of FORESTRY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , I960 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by t h e Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f F o r e s t r y  The U n i v e r s i t y o f B r i t i s h Columbia, Vancouver #, Canada. Date A p r i l , I960  ABSTRACT C l a s s i f i c a t i o n of s i t e of f o r e s t land i s p o s s i b l e on a e r i a l photographs. This c l a s s i f i c a t i o n can be based on topo-graphic f e a t u r e s , physiographic f e a t u r e s , f o r e s t cover types, or on t h e i r combinations. A e r i a l photographs of the U n i v e r s i t y Research Forest were typed u s i n g the f o l l o w i n g topographic f e a t u r e s : exposure, percentage of slope, shape i n p r o f i l e , and shape i n contour. Data on topographic and physiographic f e a t u r e s were c o l l e c t e d on 238 sample p l o t s w i t h i n topographic types i n 30-year-old stands, on 83 permanent sample p l o t s i n 70-year-old stands,and on 26 sample p l o t s i n old-growth stands. Both g r a p h i c a l and mathematical analyses were c a r r i e d out to determine r e l a t i o n s h i p s among s i t e index and t h i r t e e n s i t e f a c t o r s . Simple c o r r e l a t i o n c o e f f i c i e n t s f o r s i t e index of each of 320 p l o t s were h i g h l y s i g n i f i c a n t f o r each of l o c a l and general p o s i t i o n on slope, per cent of slope, e l e v a t i o n , s o i l depth, moisture regime, p e r m e a b i l i t y , s o i l t e x t u r e , and t h i c k -ness of A 2 l a ^ e r . Shape i n p r o f i l e was s i g n i f i c a n t l y assoc-i a t e d w i t h s i t e index. Aspect, shape i n contour, and thickness of the humus l a y e r were not s i g n i f i c a n t l y a s s o ciated w i t h s i t e i i i index. The best of the single factors was moisture regime, ' but use of this by i t s e l f could only account f o r 2 0 per cent of the v a r i a t i o n i n p l o t s i t e i ndices. Linear multiple-regression equations were computed to estimate s i t e index from various combinations of topographic and physiographic v a r i -ables. These equations were not used further i n t h i s study for determination of s i t e index because of t h e i r r e l a t i v e l y high standard error of estimate; however, several p o t e n t i a l l y u s e f u l equations were recognized. The best multiple-regress-ion equation was highly s i g n i f i c a n t s t a t i s t i c a l l y but accounted f o r only 3 1 per cent of the v a r i a t i o n i n plot s i t e index. It included aspect, l o c a l and general p o s i t i o n on slope, per cent of slope, shape i n p r o f i l e , elevation, and moisture regime. A procedure was developed to estimate s i t e indices d i r e c t l y from a e r i a l photographs by stereoscopic examination. Photo-estimation of s i t e index was much more accurate than the computed equations based on a l l data collected i n the f i e l d . Standard errors of estimate were reduced from 2 3 feet to 1 6 feet by d i r e c t estimation of s i t e index. Regression equations were developed f o r conversion of s i t e index of Douglas f i r , western hemlock, and western red cedar from one species to another and to the average of a l l three species. i v Site maps were prepared for the 30-year-old stands which had not been mapped i n the 1950 inventory of the University Research Forest. Preliminary s i t e and forest cover types were recognized and general stand and stock tables were developed to describe these 30-year-old stands. v l CONTENTS Page T I T L E PAGE I ABSTRACT I I CONTENTS v TABLES v i i i FIGURES i x AC KNOWLEDGEMENTS x i INTRODUCTION 1 SURVEY OF LITERATURE... 5 INTRODUCTION 5 DEFINITION OF S I T E QUALITY 17 FACTORS WHICH INFLUENCE S I T E QUALITY 19 C l i m a t i c f a c t o r s 19 E d a p h l c f a c t o r s 24 P h y s i o g r a p h i c f a c t o r s 28 B i o t i c f a c t o r s 32 RECOGNITION OF S I T E FACTORS ON AERIAL PHOTOGRAPHS... 35 P h y s i o g r a p h i c i n t e r p r e t a t i o n 35 R e c o g n i t i o n o f s o i l f a c t o r s 44 V e g e t a t i o n 4-8 COLLECTION OF F I E L D DATA 50 THE UNIVERSITY OF BRITISH COLUMBIA RESEARCH FOREST, HANEY 5 0 L o c a t i o n 50 G e o l o g i c a l h i s t o r y 50 C O N T E N T S ( c o n t ' d ) P a g e T o p o g r a p h y 51 C l i m a t e 52 P r e c i p i t a t i o n 52 T e m p e r a t u r e a n d h o u r s o f b r i g h t s u n s h i n e . . 53 S o i l . 53 F o r e s t h i s t o r y 56 F o r e s t t y p e s 57 G E N E R A L P R O C E D U R E 60 P R E L I M I N A R Y WORK 62 C O L L E C T I O N OF F I E L D D A T A 65 I t e m s r e q u i r e d t o c o n f i r m p h o t o c l a s s i f i c a t i o n 66 S o i l f a c t o r s f o r c o r r e l a t i o n w i t h p h o t o c l a s s i f i -• c a t i o n 67 Y i e l d f a c t o r s f o r c o r r e l a t i o n w i t h p h o t o c l a s s i f i -c a t i o n . . • 73 S t o c k i n g 73 C r u i s e d a t a 74 S U M M A R Y AND A N A L Y S E S OF D A T A ' 80 T A B U L A R A N A L Y S I S 80 S T A T I S T I C A L A N A L Y S I S . . . . 86 D I S C U S S I O N OF O B S E R V A T I O N S 98 I n f l u e n c e o f t o p o g r a p h i c v a r i a b l e s o n s i t e i n d e x . . . 98 I n f l u e n c e o f s o i l f a c t o r s o n s i t e i n d e x . . . . . 100 E S T I M A T I O N OF A V E R A G E S I T E I N D E X , AND E S T I M A T I O N B Y S P E C I E S 101 v i i CONTENTS (cont'd) Page SUMMARY AND CONCLUSION 107 BIBLIOGRAPHY 109 APPENDIX 113 v i i i TABLES Number Page 1 Area d i s t r i b u t i o n of fo r e s t cover types on A. 16 and L. portion of the Forest by species 2 Number of trees per acre by species, D.b.h. classes, and stocking, 77 3 S t a t i s t i c s of variables on A. and L. portion of the Forest 89 4 S t a t i s t i c s of variables on second-growth area. 90 5 S t a t i s t i c s of variables on ©ld-growth area.... 91 6 S t a t i s t i c s of variables f o r the combined data. 92 7 Multiple regression constants for Y on X 1 - 13 93 8 Regression equations f o r estimating s i t e index from photo-measurable variables used i n study, eliminating l e a s t important variable i n turn.. 94 9 Regression equations f o r estimating s i t e index from photo-measurable variables, applying several possibly u s e f u l combinations 95 10 S t a t i s t i c s and regression equation f o r the average s i t e index and s i t e indices of Douglas f i r , western hemlock, and western red cedar... 106 11 Linear regression equations f o r conversion of s i t e index of Douglas f i r , western hemlock,and western red cedar from one species to another. 106 i x ILLUSTRATIONS Figure T o follow Pages 1 Stereogram i l l u s t r a t i n g shape i n p r o f i l e and contour 41 2 Site index on aspect 64 3 Site index on percentage of slope 4 Site index on shape i n p r o f i l e 5 Site index on shape i n contour 6 Site index on p o s i t i o n on slope 7 Site index on elevation 8 McBee punch cards 74 9 S i t e index on. aspect 85 10 Site index on l o c a l p o s i t i o n on slope 11 Site index on general p o s i t i o n on slope 12 Site index on percentage of slope 13 Site index on shape i n p r o f i l e 14 Site index on shape i n contour 15 Site index on elevation 16 S i t e index on s o i l depth 17 Site index on moisture regime 18 Site index on pore pattern 19 Site index on s o i l texture 20 Site index on humus-layer thickness 21 Site index on A 2 layer thickness X ILLUSTRATIONS (cont'd) Figure Appendix F 22 Stereogram i l l u s t r a t i n g s i t e Southwest of Marion Lake 1 23 Stereogram i l l u s t r a t i n g s i t e Southwest of Mike Lake 2 24 Stereogram i l l u s t r a t i n g s i t e of Blaney Lake area 3 25 Stereogram i l l u s t r a t i n g s i t e West of Blaney Lake... 4 x i ACKNOWLEDGEMENT The writer of this thesis wishes to express his sincere thanks to Dr. J.H.G. Smith, assistant professor of Faculty of Forestry at! the University of B r i t i s h Columbia for his suggestions, guidance, and encouragement. Fi n a n c i a l assistance received from the Faculty of Forestry (University President's Committee) and from the National Research Council i s g r a t e f u l l y acknowledged by the writer. Acknowledgement also i s due to D. L i t t l e (now deceased) and to Mr. R. Dobell graduated student and s t a f f member of the Computing Centre of University of B r i t i s h Columbia f o r the i r guidance and assistance i n using the ALWAC III-E electronic computer. Staff members of the Computing Centre are hereby thanked f o r the i r kindness and assistance i n the computation. - 1 -AN EVALUATION OP SITE QUALITY PROM AERIAL PHOTOGRAPHS OP THE UNIVERSITY OP BRITISH COLUMBIA RESEARCH FOREST HANEY, B.C. I n t r o d u c t i o n The f o r e s t provides man w i t h i t s products which are indispensable i n the l i f e of any s o c i e t y . Human needs have m u l t i p l i e d w i t h the progress of s o c i e t y t o the present time. With the development of i n d u s t r y the f o r e s t business became more Important. I t s base Is the stored r&w m a t e r i a l i n the f o r e s t which can be u t i l i z e d . This does not i n c l u d e d i r e c t l y the small timber, the growth of t h i s s m all timber, and the s o i l , but man i s p a r t i c u l a r l y i n t e r e s t e d i n the f o r e s t as a continuous source of wood. The q u a l i t y or value of the timber crop and the time r e q u i r e d f o r the t r e e s t o reach t h i s q u a l i t y i n a f o r e s t are most Important i n planning a f o r e s t business. The q u a l i t y of a f o r e s t crop and the r o t a t i o n time depend on the e x i s t i n g t r e e s p e c i e s , on the s o i l and c l i m a t e , and on man's treatment of the f o r e s t . The q u a n t i t y and q u a l i t y of wood that f o r e s t land can produce i n a given period of time vary w i t h the s i t e q u a l i t y of that l a n d . Since s i t e q u a l i t y determines the growth of f o r e s t crops, s i t e c l a s s i f i c a t i o n has great importance i n f o r e s t management and i n f o r e s t r y p r a c t i c e . S i t e c l a s s i f i c a t i o n i s a l s o r e q u i r e d i n f o r e s t research work. The beginning of f o r e s t - s i t e c l a s s i f i c a t i o n reaches back to the nineteenth century. A s i t e - c l a s s i f i c a t i o n method was o r i g i n a t e d i n Germany (1888) which used trees to express the s i t e q u a l i t y of f o r e s t areas. Another method, c h i e f l y e c o l o g i c a l or b i o l o g i c a l , was developed i n Russia and F i n l a n d at the same time. This method used a l l v e g e t a t i o n i n a d d i t i o n to s o i l , c l i m a t e and topography to express s i t e q u a l i t y of f o r e s t l a n d . M o d i f i c a t i o n s of these two approaches are the base of current s i t e - c l a s s i f i c a t i -on methods. S i t e q u a l i t y of f o r e s t land can be expressed by t r e e heights at a c e r t a i n age, by i n d i c a t o r p l a n t s , or by p e r t i n e n t physiographic f a c t o r s . Thus d i f f e r e n t approaches can be used f o r f o r e s t - s i t e c l a s s i f i c a t i o n s . In North America the most commonly used measure of s i t e q u a l i t y i s the average height of dominant and codominant t r e e s , u s u a l l y at 100 years of age. However, s o i l s i t e s and i n d i c a t o r p l a n t s are a l s o used to describe the q u a l i t y of f o r e s t l a n d . S i t e c l a s s i f i c a t i o n can be done by ground sampling, by e v a l u a t i o n from a e r i a l photographs, or by a combined approach. S i t e c l a s s i f i c a t i o n from a e r i a l photographs has c e r t a i n l i m i t a -t i o n s but i s cheaper than any ground method. Since a most Im-portant f a c t o r , t r e e age cannot be determined from a e r i a l photo-graphs, d i r e c t c a l c u l a t i o n of s i t e index i s impossible from data measured only on a e r i a l photographs. Therefore, s i t e c l a s s i f i - 1 c a t i o n from a e r i a l photographs must be based on the photomeasur-able s i t e f a c t o r s such as topography, s o i l , and g e o l o g i c a l f o r -mations, and v e g e t a t i o n . There i s at l e a s t one method of e v a l u a t i n g s i t e q u a l i t y d i r e c t l y i n mathematical terms from a e r i a l photographs. This i s the "Height/crown-diameter r a t i o " method. Tree height and crown width can be measured on a e r i a l photographs, and t h e i r r a t i o w i l l , under c e r t a i n c o n d i t i o n s , provide a measure of s i t e q u a l i t y (Spurr, 1948). This method i s not used o f t e n because of the f a c t that treercrown diameter v a r i e s not only w i t h s i t e q u a l i t y but a l s o w i t h stand d e n s i t y . Crown diameter, l i k e other b i o l o g i c a l c h a r a c t e r i s t i c s of a tr e e s p e c i e s , a l s o changes from place to p l a c e . A f t e r c o n s i d e r a t i o n of the p o s s i b l e methods of s i t e c l a s s i f i c a t i o n from a e r i a l photographs, the topographic approach, w i t h a d d i t i o n of s o i l c h a r a c t e r i s t i c s , was a p p l i e d to evaluate s i t e q u a l i t y i n t h i s study. However, there i s an unusual a d d i t i o n a l f e a t u r e of t h i s study. In one a n a l y s i s s i t e q u a l i t y was expressed by s i t e index not computed from data, but e s t i -mated d i r e c t l y from a e r i a l photographs through e v a l u a t i o n of topographic and s o i l f a c t o r s . A b r i e f e x p l a n a t i o n of s i t e f a c t o r s i s given In the f i r s t p a r t of t h i s study f o r b e t t e r understanding of the r e s u l t s - 4 -of the analyses. Three kinds of f o r e s t areas were analysed, young stands (30 years old), second-growth stands (80 years old), and old-growth stands (more than 300 years o l d ) . Site maps were prepared only f o r young stands because the second-growth and old-growth area had been mapped i n 1950. - 5 -SURVEY OP LITERATURE Introduction The use of a e r i a l photographs f o r f o r e s t - s i t e c l a s s i f -i c a t i o n i s not new. Various methods have been developed based on the photo-recognizable variables of s i t e quality, such as physi-ographic s i t e c l a s s i f i c a t i o n , topographic s i t e c l a s s i f i c a t i o n , d i r e c t estimation of s i t e index using topographic variables, and s i t e c l a s s i f i c a t i o n by forest associations. This i s the f i r s t comprehensive test of s i t e mapping from a e r i a l photographs i n B r i t i s h Columbia. (1) Physiographic-site c l a s s i f i c a t i o n H i l l s (1950) developed a system f o r c l a s s i f y i n g s o i l s i t e s from a e r i a l photographs i n Ontario. His system was based on s o i l nutrients, moisture regimes, and ecoclimate. For basic f o r e s t - s i t e c l a s s i f i c a t i o n he used the s o i l moisture regime, permeability of s o i l materials, temperature, and r e l a t i v e humidi-ty of the l o c a l atmosphere (ecoclimate). The natural patterns of these basic s o i l s i t e s are the geological patterns which can be c a l l e d "land-types" or " s i t e patterns". These land types indicate the s o i l moisture, s o i l permeability, ecoclimate, and other features of s i t e . Since the possible number of s o i l - 6 -si t e s may be over one hundred i n each region, H i l l s grouped them into eleven classes from very hot and wet s i t e s to very cold and dry s i t e s . These basic s o i l s i t e s were mapped on a e r i a l photographs and described by symbols. The Federal Forest Research D i v i s i o n applied the basic s o i l - s i t e system f o r f o r e s t - s i t e c l a s s i f i c a t i o n of Jack pine cover types i n Quebec i n 1953• Eleven soil-moisture regimes and permeability classes were used. Their combinations were grouped into 14 y i e l d - s i t e types. In addition nine land-types were recognized and described f o r mapping purposes. The basic s i t e boundaries were marked on a e r i a l photographs. Burger (1956) used a e r i a l photographs f o r i d e n t i f i -cation of fo r e s t s o i l s i n Ontario. Parent material, s o i l moisture regime, and s o i l depth to the bedrock were estimated from a e r i a l photographs by stereoscopic examination of the three major components of stereoscopic image, r e l i e f , vegetation, and land use. The i n t e r p r e t a t i o n was based on the combination of these components rather than on any single one. Brown (1956) developed a method using a e r i a l photo-graphs f o r forest-road l o c a t i o n through the i n t e r p r e t a t i o n of landforms on a e r i a l photographs. A landform indicates a c e r t a i n parent s o i l material, pattern of topography, depth to bedrock, drainage, and s o i l p r o f i l e . A landform Is a taxonomic s o i l u n i t . Brown used landtypes f o r mapping units which may Include more than one landform. This method can be used f o r s i t e - 7 -c l a s s i f i c a t i o n since s p e c i f i c topographic positions on a given landform, within a given landtype, are characterized by d i f f e r - , ences i n drainage. Topographic positions are the landtype components or s i t e s . Landtypes can be interpreted on a e r i a l photographs through the i d e n t i f i c a t i o n of features of vegetation, topographic forms, s o i l parent material, drainage, and p r o f i l e development. Recognition of geological materials i s the major fa c t o r i n segregation of landtypes. Davidson ( 1 9 5 7 ) investigated the p o s s i b i l i t y of applying H i l l s ' system to the University of B r i t i s h Columbia Research Forest. He stated that there would be l i t t l e value to using the o r i g i n a l system, but i t would be possible to derive a system of s i t e c l a s s i f i c a t i o n based on the soil-moisture regime, available nutrients, and t h e i r b i o l o g i c a l e f f e c t s . Helium ( 1 9 5 9 ) investigated various measures of s i t e within the area of the University of B r i t i s h Columbia Research Forest. He found that s o i l depth and soil-moisture conditions are the major factors influencing s i t e . Helium also studied the i n t e r p r e t a t i o n of geologic and physiographic d e t a i l s from a e r i a l photographs. He concluded that s i t e study on the basis of landform and geomorphological p r i n c i p l e s i s a very good approach since the study of surface expressions of physiographic forms gives information about landforms, h i s t o r y of formation, conditions of climate, and parent material. - 8 - ' Lacate (1959) a p p l i e d Brown's system f o r a t e n t a t i v e physiographic s i t e mapping from a e r i a l photographs f o r a part of the U n i v e r s i t y of B r i t i s h Columbia Research F o r e s t . The f o l l o w -i n g major landtypes were separated: (1) Deep g l a c i o - f l u v i a l d e posits (outwash sands and gra v e l s and r e l a t e d water sorted d e p o s i t s ) . (2) T i l l - c a p p e d , shallow to bedrock, h i l l y to s t r o n g l y r o l l i n g uplands. G r a n i t e , g r a n o d i o r i t e or quartz d i o r i t e are main bedrock types. (3) L a c u s t r i n e or glacio-marine, stony to stone-free, sandy c l a y to s i l t loam d e p o s i t s , deep and shallow t o g r a n i t i c - t y p e bedrock. These major landtypes were d i v i d e d i n t o major landforms, which are the f o l l o w i n g : I n c l u s i o n s w i t h i n landtype (1) (a) t i l l , shallow-to-bedrock, (b) exposed bedrock k n o l l s , (c) shallow organic-type s o i l s o v e r l y i n g bedrock, (d) washed t i l l i n draws and g u l l i e s and at lower slope p o s i t i o n s , (e) t i l l , moderately deep to bedrock. I n c l u s i o n s w i t h i n landtype (2) (a) deep-water-laid sorted to semi-sorted sand and g r a v e l s , sometimes s l i g h t l y loamy, (b) w a t e r - l a i d m a t e r i a l shallow-to-bedrock, (c) water-washed t i l l ( f i n e r f r a c t i o n removed); u s u a l l y coarser textured than dumped t i l l mentioned above, (d) exposed bedrock k n o l l s . I n c l u s i o n s w i t h i n landtype (3) (a) c l a y e y s o i l s , moderately deep, (b) clayey s o i l s , shallow to bedrock, (c) water-washed t i l l or roughly sorted m a t e r i a l s , (d) bedrock k n o l l s . The f o l l o w i n g major s i t e s were d e l i n e a t e d w i t h i n landforms: 1. Most common s i t e s on g l a c i o - f l u v i a l m a t e r i a l s i n major v a l l e y s , (a) e x c e s s i v e l y drained and w e l l - d r a i n e d sands and gravels (deep), (b) e x c e s s i v e l y drained and w e l l - d r a i n e d sands and gravels shallow-to-bedrock, (c) moderately w e l l - d r a i n e d to Im p e r f e c t l y drained sands and g r a v e l d e p o s i t s , (d) p o o r l y drained muck and po o r l y drained sand and gr a v e l at f o o t of steep slopes or i n bedrock-c o n t r o l l e d depressions (not extensive i n a r e a ) . 2. Most common s i t e s on t i l l - c a p p e d bedrock h i l l s , (a) exposed bedrock and e x c e s s i v e l y drained loamy sand to sandy loam t i l l s i t e s (topography u s u a l l y broken, or moderately st e e p ) , (b) w e l l - d r a i n e d to moderately w e l l - d r a i n e d t i l l , shallow-to-bedrock s i t e s on mid- and lower-slope p o s i t i o n s , (c) I m p e r f e c t l y drained s i t e s (dumped and washed t i l l ) i n draws, g u l l i e s and depressions c o n t r o l l e d by bedrock u n d e r l y i n g t h i n s o i l mantle, - 10 -(d) moderately well-drained (pockets and lower slopes) 4 moderately deep t i l l (bedrock deep enough to not act as control on seepage water within rooting zone), (e) imperfectly drained to poorly drained t i l l and muck si t e s (not extensive i n area) at foot of slopes and i n bedrock depressions. 3. Most common sit e s on glacio-lacustrine (marine) s i t e s , (a) well-drained to moderately well-drained sandy clay moderately deep, (b) well-drained sandy clay shallow-to-bedrock (not extensive), (c) imperfectly drained to poorly drained sandy clay to loam on f l a t s , lower long slopes and depression-a l topography. Each landform was described by the following physio-graphic f a c t o r s : (a) Topography: gentle slope, moderate slope, steep slope, f l a t , draw or g u l l y , depressed f l a t or depression, undulating (micro r e l i e f ) , ridge, and k n o l l . (b) S o i l drainage: very excessively drained, excessi-vely drained, well-drained, moderately w e l l -drained, imperfectly drained, very imperfectly drained, somewhat poorly drained, poorly*idrained, and saturated. - 11 -(c) Parent material: bedrock, granite types - grano- * d i o r i t e , quartz d i o r i t e , etc.; dumped t i l l , unsorted, sandy loam, moderately compact i n C-horizon; water-washed t i l l , unsorted to roughly sorted, gravelly loamy sand to sandy loam; waterlaid, sorted sands and gravels (loamy sand i n texture i n places); sandy to s i l t y clay, stone-free to stony waterlaid, g l a c i e r - l a c u s t r i n e or glacier-marine deposits ( r e s t r i c t e d elevation-a l l y i n southwest and west portions of Forest); organic muck; roughly sorted sand and gravels ( a l l u v i a l fan-type deposits), (included i n this type of parent material are c o l l u v i a l deposits at base of steep bedrock slopes), (d) S o i l texture: sand, gravel, loamy sand, sandy loam, clay loam, and s i l t loam. A method of land c l a s s i f i c a t i o n was applied on more than 8 m i l l i o n acres of national forest land i n the state of Washington (Washington A g r i c u l t u r a l Experiment Station, 1955). This method was established f o r evaluating and mapping mountain land features f o r forest management purposes. The appraisal and mapping constituted the delineation of s o i l material, q u a l i t y and quantity, and topographic variance as landform u n i t s . Both f i e l d and stereophoto appraisal were carried out. The f i e l d delineation of s o i l types was corrected by stereophoto interpre-i. t a t i o n . New delineations were also made on a e r i a l photographs - 12 -by a p p l y i n g f i e l d notes t o the physiography seen on the photo-graphs. The landforms werer mapped by f i e l d a p p r a i s a l and checked and r e f i n e d on a e r i a l photographs by ste r e o s c o p i c examination. New landform areas were d e l i n e a t e d by reference to f i e l d notes. This method was found s a t i s f a c t o r y f o r s o i l c l a s s i f i c a t i o n and mapping of a vast f o r e s t area. Lutz and Caporaso (1957) i n v e s t i g a t e d v e g e t a t i o n and topographic s i t u a t i o n s by u s i n g a e r i a l photographs i n the Alaska I n t e r i o r . This method was used f o r c l a s s i f i c a t i o n of burned lands i n t o broad p r o d u c t i v i t y c l a s s e s . They used t r e e species and topographic s i t u a t i o n s f o r r e c o g n i t i o n of f o r e s t land c l a s s e s . The f o l l o w i n g tree species were found to be u s e f u l i n d i c a t o r s of land c l a s s e s : white spruce, b l a c k spruce, paper b i r c h , quaking aspen, balsam poplar, and w i l l o w s . Aspect had a powerful i n f l u e n c e on s o i l c o n d i t i o n s , e s p e c i a l l y on drainage and depth to permafrost, and f o r e s t v e g e t a t i o n . South f a c i n g slopes were most f a v o r a b l e f o r f o r e s t growth. Degree of slope was a l s o an important f a c t o r when the slope percentage was l e s s than 10 per cent and more than 60 per cent. S o i l drainage was impeded and the ground was f r o z e n on gentle slopes and steep slopes were too dry f o r normal f o r e s t growth. The n a t u r a l boundaries of v e g e t a t i o n types were used i n judging and d e l i n e -a t i n g s i t e c o n d i t i o n s . - 13 -("2) Topographic s i t e c l a s s i f i c a t i o n s Losee (1942) used the topography and v i s i b l e charac-t e r i s t i c s of vegetation f o r mapping f o r e s t - s i t e from a e r i a l photographs at Petawawa. The topographic s i t u a t i o n of a speci-f i c area interpreted with knowledge of the geology and s o i l was used to evaluate s i t e q u a l i t y . He delineated the following series of s i t e types: (a) Ridge series, (b) Dry se r i e s , (c) Moist s e r i e s , and (d) Swamp s e r i e s . These series were divided into f o r e s t associations or forest s i t e types. This method was also applied i n Saskatchewan and to two areas i n Quebec. The following six s i t e s were described i n Saskatchewan i n order from the best to the poorest s i t e : (a) P l u v i a l (b) Lacustrine, (c) G l a c i a l slope, (d) Delta, (e) Plateau, and (f) Lowland. Under Losee*s supervision a si m i l a r method was used to map s i t e on a e r i a l photographs i n Eastern Canada i n 1955. Nine to t h i r -teen d i f f e r e n t s i t e s were determined, which were varied by regions. The following s i t e s were recorded for the Port Arthur D i v i s i o n : (a) Wet f l a t , (b) Dry f l a t , (c) Lower slope, (d) Upper slope, and (e) Ridge. Moessner conducted a study of photo c l a s s i f i c a t i o n of f o r e s t s i t e s at the Central States Forest Experiment Station, U.S.A., i n 1948. He indicated that forest s i t e variations are l a r g e l y caused by basic differences i n topography and s o i l . Moessner pointed out that f o r e s t s i t e c l a s s i f i c a t i o n from a e r i a l photographs can be based on topographic po s i t i o n and s o i l groups. - 14 -He recognized three classes: (a) Upper slopes, (b) Lower slopes, and (c) Bottom land, considering aspect and p o s i t i o n on slope. For areas where more than one broad s o i l group occurs, s i t e c l a s s i f i c a t i o n should be based on s o i l group or landform, i n addition to topography. Land and s o i l c h a r a c t e r i s t i c s have been c l a s s i f i e d by the Northeastern Experiment Station, U.S.A., during the past thirteen years. They found, working i n West V i r g i n i a , that the s i t e index of red oak i s correlated with aspect, slope per cent, p o s i t i o n on slope, and depth of s o i l . The Station c l a s s i f i e d only the f i r s t three factors on a e r i a l photographs. (3) Determination of s i t e index from a e r i a l photographs. Johnson (1957) applied a method fo r evaluation of. s i t e q u a l i t y f o r longleaf pine using a e r i a l photographic evidence i n the Southeastern United States. He used the following variables as independent variables to determine s i t e index: t o t a l tree height, v i s i b l e crown diameter, stand density i n terms of per cent normal basal area, degree of slope, aspect, slope p o s i t i o n , length of growing season, amount of r a i n f a l l during six warmest months of the year, number of dominant and codominant trees per acre, and the r a t i o of t o t a l height to v i s i b l e crown diameter. He found that t o t a l height i s strongly correlated with s i t e index. Height i s also correlated with age of tree. He stated that the height crown-diameter r a t i o i s subject to considerable v a r i a t i o n . No c o r r e l a t i o n existed between slope p o s i t i o n and - 15 -s i t e q u a l i t y . Only average t r e e height, percentage of slope, and number of trees per acre were found usable f o r s i t e index p r e d i c t i o n . He a l s o a p p l i e d a topographic s i t e c l a s s i f i c a t i o n . The f o l l o w i n g topographic s i t e c l a s s e s were used: (a) High f l a t s (under c u l t i v a t i o n ) , (b) Bottomland f l a t s , (c) Broad benches, (d) Upper slopes, (e) Lower slopes, ( f ) Narrow r i d g e tops, (g) Savannahs, and (h) H e a v i l y g u l l i e d areas. Choate and Pope (1958) i n v e s t i g a t e d the p o s s i b i l i t y of developing a technique f o r e s t i m a t i n g s i t e index of Douglas f i r i n the P a c i f i c Northwest u s i n g a e r i a l photographs and topo-graphic maps. Seven topographic v a r i a b l e s were s e l e c t e d as Independent v a r i a b l e s : e l e v a t i o n , l a t i t u d e , aspect, slope per cent, shape i n p r o f i l e , shape i n contour, and s o i l depth. The m u l t i p l e - r e g r e s s i o n a n a l y s i s showed that two v a r i a b l e s , aspect-p l u s - s l o p e and aspect-plus-slope to the second power, were not s i g n i f i c a n t . Seven other v a r i a b l e s were h i g h l y s i g n i f i c a n t , namely e l e v a t i o n , e l e v a t i o n to the second power, l a t i t u d e , l a t i t u d e to the second power, e l e v a t i o n - t i m e s - l a t i t u d e , p r o f i l e -plus-contour, and s o i l depth. Equations u s i n g topographic f e a t u r e s were found u s e f u l f o r e s t i m a t i n g s i t e index as the de-pendent v a r i a b l e by a double-sampling procedure. Tarrant (1948) conducted a ground s o i l survey f o r the Voight Creek Experimental Forest near O r t i n g , Washington. He found that the r e l a t i o n s h i p between types of topography and s i t e c l a s s of Douglas f i r was s t a t i s t i c a l l y s i g n i f i c a n t . Two s o i l . - 16 -types, Barneston gravelly sandy loam and Indianola f i n e sandy loam were found within the experimental f o r e s t . The topography was c l a s s i f i e d by the terms convex and concave. The topographic units were used f o r s o i l mapping. This method could be used f o r s i t e c l a s s i f i c a t i o n from a e r i a l photographs since these topo-graphic units are recognizable on a e r i a l photographs. (4) S i t e c l a s s i f i c a t i o n by f o r e s t associations. E i s , Lesko, and Orloci (Krajina, I960) carried out an ecological c l a s s i f i c a t i o n of the Coastal Western Hemlock Zone i n B r i t i s h Columbia. They based t h e i r c l a s s i f i c a t i o n on f o r e s t communities. Each community was broken down into forest associ-ation types, these forest association types, represented d i f f e r e n t s i t e types. Each type occurs on cert a i n topographic positions, therefore should be recognizable on a e r i a l photo-graphs. This method might be applied f o r s i t e c l a s s i f i c a t i o n from a e r i a l photographs as a usef u l supplement to physiographic s i t e c l a s s i f i c a t i o n . - 17 -DEFINITION OF SITE QUALITY The f o r e s t i s a symbiosis of ligneous p l a n t s i n an i n t e r c o n n e c t i o n w i t h the environment; t h i s i n t e r c o n n e c t i o n i s changing as a r e s u l t of mutual i n f l u e n c e s and of e f f e c t s exerted i n i t s e x t e r n a l shape and i n i t s inner s t r u c t u r e (Morozov, 1922). A n a t u r a l f o r e s t i s the outcome of an e v o l u t i o n reaching back over c e n t u r i e s , but i t s present-day appearance depends on both e a r l i e r and more recent i n f l u e n c e s of c l i m a t e and s o i l . The f o r e s t i s not an independent c r e a t i o n , which submits i t s e l f to any k i n d of treatment, but a l i v i n g community reaching f a r i n t o i t s environment. The trees occupy a b i t of both a i r space and ground space where many v i t a l f a c t o r s operate. No one can i s o l a t e these f a c t o r s from each other and look s e p a r a t e l y at them. However, because we cannot comprehend a l i v i n g space as a whole and des c r i b e i t i n t e l l i g i b l y , the f o r e s t environment which represents a complex c o n d i t i o n and the nature of i t s i n f l u e n c e , can be understood and i n t e r p r e t e d only by f a c t o r i n g the environ-ment i n t o i t s components. The combination of these f a c t o r s determines the p r o d u c t i v i t y of an area. There must be a c l a s s i f i c a t i o n by p r o d u c t i v i t y i n p r a c t i c a l f o r e s t r y . This c l a s s i f i c a t i o n concerns the p o t e n t i a l p r o d u c t i v i t y of an area, i n which case the c a p a c i t y of the s o i l and the c l i m a t e to produce timber are the e s s e n t i a l f a c t o r s Involved. The p r o d u c t i v i t y of a f o r e s t area i s commonly i - 18 -expressed by the term " s i t e " . Site i s used i n f o r e s t r y i n two senses, as an area or l o c a l i t y that supports tree growth, and as the capacity of that area to support tree growth (Spurr 1952). The s c i e n t i f i c term " s i t e " i s applied to the combination of climatic and s o i l conditions a f f e c t i n g a plant. Prom the stand-point of s i l v i c s , s i t e may be considered as including everything r e l a t i n g to the factors operating i n a geographically d e f i n i t e l o c a l i t y so f a r as these factors influence forest vegetation (Tourney, 1937) Site q u a l i t y i s a term used to indicate the productive capacity of an area of forest land usually f o r a given species or a combination of species (Spurr, 1952). The d e f i n i t i o n of s i t e given by the Committee on Forest Terminology of the Society of American Foresters (1950) i s ; "An area considered as to i t s ecological factors with reference to i t s a b i l i t y to produce forests or vegetation; the combination of b i o t i c , c l i m a t i c and s o i l conditions of an area". H i l l s (1952) defined the " t o t a l s i t e " term as follows: " S i t e i s the integrated environmental complex of a l l the features of a prescribed area, and, as such, i s a s p e c i f i c u n i t " . Absolute s i t e q u a l i t y i s measured by the maximum amount of wood that can be grown upon a forest area. To e s t i -mate s i t e q u a l i t y i n practice i t i s necessary to f i n d a measure which i s easy to obtain, accurate, and r e l a t i v e l y - 19 -Independent of stand density. Assessment of s i t e i s very complex even when applied to areas i n which a l l environmental conditions are e s s e n t i a l l y uniform. For c l a s s i f y i n g the s i t e we may choose as reference points any combination of features which appear s i g n i f i c a n t . Site includes a l l features, but i t can be reduced to those com-binations of features which are s i g n i f i c a n t under s p e c i f i c c i r -cumstances ( H i l l s , 1952), However, we always have to view the whole when we c l a s s i f y by parts. FACTORS WHICH INFLUENCE SITE QUALITY A l l s i t e s depend upon c e r t a i n e s s e n t i a l components which are termed s i t e f a c t o r s . The r e l a t i v e i n t e n s i t i e s and duration of action of these factors determine the differences i n s i t e . S i te factors may influence d i r e c t l y or i n d i r e c t l y the nature of the s i t e . Trees and other kinds of vegetation d i f f e r on d i f f e r e n t s i t e s . These differences exist not only i n vegetation but also In climate, s o i l , and In other f a c t o r s . The following s i t e factors w i l l be discussed here: climatic factors edaphic factors, physiographic factors, and b i o t i c f a c t o r s . Climatic Factors Climatic factors include a l l those influencing plant l i f e that are associated with the atmosphere. They have the greatest importance i n determining the vegetation of a large area. The extent of t h e i r influence may be regional or l o c a l . Climatic factors r e f e r to conditions delimiting climatic regions when t h e i r influence i s r e g i o n a l . They refer to conditions - 20 -modifying regional climate mainly by topographic variations and -i n t e r r e l a t i o n s of lands and water within a given c l i m a t i c region. Climate i s not exactly the same at any two places because the regional c l i m a t i c factors are modified by l o c a l conditions. Rhythmic and progressive changes i n climate exist everywhere (Tourney, 1947) . The rhythmic changes are recurrent alternations from day to night, and from season to season. The progressive changes are progressive! alterations such as increase or decrease of temperature or a r i d i t y occasioned by changes i n climate over longer periods of time. These progre-ssive changes are slow, therefore the climate of any p a r t i c u l a r place i s e s s e n t i a l l y stable i n i t s effects on vegetation. Temperature, moisture and l i g h t are the most important conditions determining regional and l o c a l climate. The factors which determine these conditions are: Solar r a d i -ation, a i r temperature, atmospheric humidity, p r e c i p i t a t i o n , and wind. (1) Solar Radiation The chief energy i s solar r a d i a t i o n f o r green plants and a l l l i f e which depends upon them. The arrangement of forest vegetation i n v e r t i c a l layers or zones i s controlled by i n t e n s i -ty, quality, and duration of the l i g h t that reaches each layer (Tourney, 1947). Intensity and q u a l i t y of solar radiation, which reaches the surface of the earth, varies with l a t i t u d e , a l t i t u d e , season of the year and time of day (Kimball, 1936 )*• Solar '"'Cited by Tourney, 1947. - 21 -ra d i a t i o n may be modified also by l o c a l topographic features, vegetation, and by the atmospheric conditions r e s u l t i n g i n scattering and absorption of l i g h t . Solar energy i s altered by the atmosphere. Clouds greatly decrease the quantity of l i g h t and change i t s q u a l i t y also by absorbing the longer wave lengths. A tree growing under a canopy Is exposed to an i n -creased percentage of r e f l e c t e d and transmitted l i g h t . An open-growing tree i s exposed to the highest degree of u n f i l t e r e d l i g h t . Under higher l i g h t I ntensities some plants increase t h e i r rate of growth much more than others, but i n a l l species when the l i g h t i n t e n s i t y under a canopy i s very low and other factors are not more s i g n i f i c a n t , the rate of growth i s d i r e c t l y proportional to the i n t e n s i t y of l i g h t . Height growth i s also related to the i n t e n s i t y of radiant energy. Reduction i n l i g h t i n t e n s i t y reduces photosynthesis and may cause an increase In height growth (Tourney, 1947)* (2) A i r Temperature Temperature of the a i r has no s i g n i f i c a n t e f f e c t on the form and structure of treesj however, i t i s a fundamental f a c t o r . The action of heat i s v i s i b l e only i n i t s f i n a l conse-quences as i n increased retardation or complete cessation of phys i o l o g i c a l processes. The temperature of trees i s approxi-mately the same as the temperature of a i r which surrounds them. When a tree i s colder i t absorbs heat from the a i r and when a tree i s warmer, i t gives off heat to the a i r . A tree obtains i t s heat mostly from the sun through the atmosphere. The - 22 -temperature of a t r e e i s seldom e x a c t l y the same as the tempera 7 ture of the a i r because of the slow heat c o n d u c t i v i t y of p l a n t t i s s u e s . A tree w i t h deeper t i s s u e s i s c o o l e r than the a i r during the day, and warmer at n i g h t . Open-grown trees begin cambial a c t i v i t y e a r l i e r than those growing i n stands. An unfavorable temperature causes unhealthy development and deathc of the trees through d i s e a s e . Trees s u f f e r d i r e c t damage from f r o s t . The l o s s of rep r o d u c t i o n from f r o s t i s great. A i r temperature d i r e c t l y a f f e c t s growth. Solar r a d i -a t i o n modifies the air-temperature requirement of a given s p e c i e s ; a t r e e growing i n the open r e q u i r e s lower a i r temperature than the same species growing under shade. The a i r temperature determines the l i m i t s beyond which p a r t i c u l a r species and p a r t i c u -•55' l a r communities can not extend (Merriam, 1898). (3) P r e c i p i t a t i o n P r e c i p i t a t i o n may occur i n the form of r a i n , snow, s l e e t , h a i l or dew. P r e c i p i t a t i o n i s the c h i e f source of water f o r t r e e s . When the a i r i s cooled to the dew-point, or to the p o i n t of s a t u r a t i o n , i t cannot hold a l l the water i n a vaporous s t a t e and the water i s deposited i n the form of mist (c l o u d s ) , r a i n or dew. P r e c i p i t a t i o n i n f l u e n c e s f o r e s t growth both i n d i r e c t l y through i t s mechanical a c t i o n on the trees and on the s o i l . M i s t absorbs the l i g h t and r e t a r d s h e a t i n g of the s o i l . P r e c i p i t a t i o n i n f l u e n c e s the d i s t r i b u t i o n of f o r e s t s by i t s v a r i a t i o n i n geographical d i s t r i b u t i o n . The character of a * C i t e d by Tourney, 1947. - 23 -for e s t depends i n part upon the seasonal d i s t r i b u t i o n of r a i n - ' f a l l . P r e c i p i t a t i o n during the winter i s not so e f f e c t i v e as summer r a i n f a l l . A very low p r e c i p i t a t i o n during the growing season may cause d e f i c i e n c i e s i n s o i l moisture such that the trees die. (Hursh and Haasis, 1931, Shirley, 1934, Tourney, 1947). Snow i s generally b e n e f i c i a l f o r f o r e s t vegetation during the winter, but i t may be destructive to reproduction and young growth. Avalanches are very destructive to forests i n high mountains. (4) Atmospheric Humidity Atmospheric moisture i s i n the form of vapor. It i s the immediate source of supply f o r p r e c i p i t a t i o n . The amount of moisture i n the a i r i s a main factor influencing f o r e s t s . Water i s a factor fundamental to the v i t a l processes of trees. •The chief factors which influence the d i s t r i b u t i o n , occurrence and development of for e s t are p r e c i p i t a t i o n , atmospheric humidity, and evaporation. Environmental conditions reduce the atmospheric humidity within c e r t a i n l i m i t s , such as high a i r temperature, high winds, and intense solar r a d i a t i o n . Atmospheric humidity i s commonly expressed as r e l a t i v e humidity, which i s the percentage of saturation of the a i r . The amount of water i n the atmosphere determines i t s absolute humidity. When the temperature i s decreasing, the r e l a t i v e humidity i s increasing without increasing absolute humidity. - 2 4 -The combined effect of atmospheric humidity, atmos-pheric pressure, temperature, solar radiation, and wind i s evaporation. The evaporation rate has an influence on tran-s p i r a t i o n a l water loss from trees and also on reduction of water content of the s o i l . (5) Wind Wind influences both the form of trees and t h e i r d i s t r i b u t i o n . Its d i r e c t Influence i s i t s mechanical action on trees. Wind i n d i r e c t l y affects trees through Its influence on humidity, s o i l moisture, evaporation, transpiration, and d i s t r i -bution of atmospheric p r e c i p i t a t i o n . Edaphic Factors Edaphic factors r e l a t e to s o i l conditions. These factors are: s o i l composition, s o i l moisture and permeability, and s o i l temperature. Forest s o i l i s a portion of the earth's surface which serves f o r the sustenance of forest vegetation. It consists of mineral and organic matter, permeated by vary-ing amounts of water and a i r (Wilde, 1946). S o i l i s d i f f e r -entiated into horizons, usually unconsolidated and i t s depth i s v a r i a b l e . It d i f f e r s from i t s parent material i n composition, physical and chemical properties, and b i o l o g i c a l c h a r a c t e r i s t i c s . Trees and other plants obtain from the s o i l water and nutrients, which are necessary for the p h y s i o l o g i c a l processes associated with growth. The s o i l also provides trees - 25 -and p l a n t s w i t h space f o r root growth and development. The nature of s o i l and parent m a t e r i a l i n f l u e n c e s the ki n d and the d i s t r i b u t i o n of v e g e t a t i o n . The climate a l s o i s an important determinant of the range of species, but the c o n d i t i o n of the s o i l o f t e n i s r e s p o n s i b l e f o r l i m i t i n g i t s occurrence (Tourney, 1947). S o i l i n f l u e n c e s the r a t e of growth, y i e l d , f o r m , q u a l i t y of wood, tol e r a n c e and rep r o d u c t i o n of t r e e s . The i n f l u e n c e of s o i l i s apparent i n the l o c a l d i s t r i b u t i o n of t r e e s . I f c l i m a t i c c o n d i t i o n s are s i m i l a r , the q u a l i t y of a s i t e i s deter-mined by the character of the s o i l and i t s topographic p o s i t i o n (Tourney, 1947). The c l i m a t e , parent m a t e r i a l , topographic p o s i t i o n , and ve g e t a t i o n are the important f a c t o r s concerned i n the development of a s o i l . (1) S o i l Texture S o i l m a t e r i a l may be d i v i d e d i n t o two f r a c t i o n s : (a) coarse f r a c t i o n - l a r g e r than C\.05 mm In diameter: stones, g r a v e l and sand-, and (b) a f i n e f r a c t i o n - smaller than 0.05 mm In diameter: s i l t , and c l a y . The r e l a t i v e amounts of the coarse and f i n e f r a c t i o n s of a s o i l determine the s o i l t e x t u r e . The coarse s o i l m a t e r i a l supports p l a n t s . The f i n e s o i l f r a c t i o n s are the a c t i v e p o r t i o n s of the s o i l . They f u l f i l l many ecolo-g i c a l f u n c t i o n s through t h e i r absorptive and n u t r i t i v e proper-t i e s . The a b i l i t y of s o i l to r e t a i n water depends upon the amounts of s i l t and c l a y present. The higher the amount, the greater i s the s o i l moisture. The s o i l pores are f i l l e d w i t h - 26 -water or a i r , t h erefore an increase i n the s o i l m a t e r i a l and subsequent increase i n s o i l moisture of t e n leads to decreased s o i l a e r a t i o n (Wilde, 1946). The f i n e f r a c t i o n s are the c h i e f source of s o l u b l e substances. These e f f e c t s of the t e x t u r a l p r o p e r t i e s of s o i l s are r e f l e c t e d i n the composition and the r a t e of growth of f o r e s t v e g e t a t i o n (Wilde, 1946). (2) S o i l Depth Depth of the e n t i r e s o i l and the thickness of various horizons are important f o r tree growth, l a r g e l y because of water stored i n the s o i l . The s o i l depth v a r i e s from a few inches to many f e e t and i t determines the p e n e t r a t i o n of tree r o o t s . The lower l i m i t of the f o r e s t s o i l i s o f t e n d e l i n e a t e d by an Impermeable l a y e r of s o i l or bedrock. (3) S o i l Moisture and P e r m e a b i l i t y Vegetation obtains water, which i s needed f o r t r a n -s p i r a t i o n and growth, by absorption through roots from the s o i l . The amount of water reaching the s o i l i s determined d i r e c t l y by the amount of p r e c i p i t a t i o n . I t v a r i e s from one c l i m a t i c r e g i o n to another and i t may show great seasonal and y e a r l y v a r i a t i o n w i t h i n a r e g i o n . Water i s present i n the s o i l both i n l i q u i d and vapor forms. The various forms of water i n the s o i l can be c l a s s i f i e d as f o l l o w s , according to t h e i r movement or r e t e n t i o n i n the s o i l : (a) g r a v i t a t i o n a l water; (b) c a p i l l a r y waterj (1) i n t e r s t i t i a l , - 27 -(2) absorbed; and (c) water of h y d r a t i o n . G r a v i t a t i o n a l water-i s f r e e to move under the f o r c e of g r a v i t y . I t remains i n the s o i l only a short time, t h e r e f o r e i t i s of l i t t l e use to p l a n t s . F i l m f o r c e s hold the water i n the i n t e r s t i t i a l spaces between s o i l p r a c t i c l e s . I t i s used by pl a n t s because I t s movement i s extremely slow and uninfluenced by g r a v i t y . This movement i s determined by the s i z e of i n t e r s t i t i a l openings, the v i s c o s i t y of water, and the combined f o r c e s of adhesion and cohesion which cause water to wet the surfaces of s o i l p a r t i c l e s and s t i l l m a intain a continuous f i l m (Tourney, 1947). Water of h y d r a t i o n i s i n chemical combination w i t h the secondary s o i l minerals and i s u n a v a i l a b l e to p l a n t s . Every t r e e species has a c e r t a i n s o i l - m o i s t u r e r e q u i -rement under which i t has optimum growth. There i s a wide range of optimum s o i l moisture f o r d i f f e r e n t s p e c i e s . The growth and v i g o r of a given tree depends upon how n e a r l y the s o i l c o n d i t i o n s conform to the maximum s o i l - m o i s t u r e r e q u i r e -ments f o r the speci e s . Each species i s adjusted i n form and s t r u c t u r e to i t s normal water requirements i n nature. E x t e r n a l f a c t o r s , which determine absorption and l o s s of water, may change the form and s t r u c t u r e of t r e e s p e c i e s . These changes very l a r g e l y determine the character and form of f o r e s t growth. (4) S o i l Temperature The f u n c t i o n a l a c t i v i t y of tree roots depends on s o i l temperature and increases w i t h increase of s o i l temperature up - 28 to the optimum. A too low s o i l temperature may k i l l a p l a n t . ' The heat of the s o i l depends upon d u r a t i o n of s u n l i g h t and the angle of incidence of the sun's r a y s . The s p e c i f i c heat of s o i l v a r i e s w i t h i t s composition; quartz sand heats q u i c k l y , peat heats s l o w l y . The amount of water i n s o i l s i g n i f i c a n t l y i n f l u e n c e s the s o i l temperature; dry s o i l heats q u i c k l y , wet s o i l heats s l o w l y . Dark s o i l s are r a p i d l y heated by the sun's rays because they have greater a b s o r t i v e power. However the dark s o i l s c o o l more r a p i d l y than l i g h t s o i l s , because they l o s e heat through greater r a d i a t i o n . Loose s o i l s conduct heat s l o w l y because of the l a r g e r a i r space. The e f f e c t of s o i l temperature i s u n c e r t a i n on the form assumed by t r e e s . High s o i l temperature gives r i s e to an abundance of sap and to short and t h i c k r o o t s , stems, and leaves (Wesque, 1878)." Vegetation i s more subject to i n j u r y from s p r i n g f r o s t i n warm s o i l s . Physiographic Factors The physiographic f a c t o r s i n c l u d e the c o n d i t i o n s which determine form and s t r u c t u r e of a land surface and the• prog r e s s i v e and rhythmic changes i n these c o n d i t i o n s . The topo-graphic f a c t o r s such as a l t i t u d e , slope, exposure, p o s i t i o n on slope, shape i n p r o f i l e and contour, and surface c o n d i t i o n s i n d i r e c t l y a f f e c t f o r e s t v e g e t a t i o n through t h e i r e f f e c t on the d i r e c t f a c t o r s . Their e f f e c t s are expressed i n the d i f f e r e n c e s i n f o r e s t v e g e t a t i o n on upper slopes as compared w i t h lower ' / 5Cited by Tourney, 1947. slopes, etc. The progressive changes are brought about through erosion and deposition. They have a great influence on f o r e s t vegetation. C y c l i c changes i n physiography are expressed i n seasonal changes i n water l e v e l ; they are important i n s i l v i -c ulture. The physiographic factors l a r g e l y determine the l o c a l or micro-climate. These factors a f f e c t p a r t i c u l a r l y s o i l •Si nutrients, s o i l moisture, and s o i l temperature (Russel, 1932)." The exi s t i n g r e l a t i o n between the physiography of a region and the grouping of i t s f l o r a determine the e f f e c t of physiography upon the water content and composition of the s o i l . (1) Exposure Exposure i s the d i r e c t i o n of the slope of the land. It determines the amount of sunlight received by a slope. Exposure modifies the moisture content and the temperature of the s o i l and a i r . A slope exposed to the sun and wind has d i f f -erent vegetation depending on the extent of exposure. V e r t i c a l sun rays cause greater heating i n the s o i l than those s t r i k i n g the s o i l at an oblique angle. Trees grow at lower altitudes ' than t h e i r normal range on the cooler, northerly exposures, and above t h e i r normal range on the warmer southern slopes In mountainous regions. The e f f e c t of exposure i s also influenced by the steepness of the slope and by the action of a i r c i r c u l a -t i o n . North slopes have a maximum amount of atmospheric and s o i l moisture, because they are protected from the sun during , rCited by Tourney, 1947. - 3 0 -most of the day. An easterly slope i s protected from the sun during the hottest part of the day. It i s a favorable slope f o r tree growth and usually has dense stands with good rates of growth (Tourney, 1947)• There i s the danger of too rapid thawing aft e r f r o s t on east slopes because i t has early sun. South slopes are warm and dry. The s o i l dries out quickly on these slopes. West slopes are also dry and warm. ( 2 ) Slope and P o s i t i o n on Slope Slope indicates the r e l a t i o n of the surface of the land to the horizon. I t controls, through runoff and drainage, the water content of the s o i l . Slope modifies the i n t e n s i t y of i n s o l a t i o n . When other conditions are similar, the gradient of the slope d i r e c t l y influences the depth of s o i l and i t s water content. S o i l Is deepest on l e v e l situations and roots are able to develop f r e e l y . However the s o i l may be poorly drained and tend to swampiness. The s o i l i s f a i r l y deep on gentle slopes and i t s moisture supply i s p l e n t i f u l . Steep slopes have shallow s o i l , e s p e c i a l l y on very steep slopes with rock outcrops. Vegetation on the steep slopes i s exposed to heavy r a i n f a l l which may cause floods and lands l i d e s . - 31 -(3) E a r t h C o n f i g u r a t i o n The c o n f i g u r a t i o n of topographic r e l i e f has a great c l i m a t i c s i g n i f i c a n c e . Rock formation determines the l o c a l water supply of the s o i l and the l o c a t i o n of s p r i n g s . Many s o i l c h a r a c t e r i s t i c s are c l o s e l y r e l a t e d to the shape of the la n d . Convex topography in c l u d e s r i d g e s , h i l l t o p s , and upper sl o p e s . The e f f e c t of convex topography on the s i t e i s through the f a c t that s o i l l o s e s i t s f i n e m a t e r i a l , humus, and mi n e r a l s a l t s through e r o s i o n , and lo s e s moisture through drainage. Concave s i t u a t i o n s i n c l u d e the lower slopes, v a l l e y s , and b a s i n s . The e f f e c t of concave topography on the s i t e i s to b u i l d s o i l by d e p o s i t i o n of f i n e m a t e r i a l , s o l u b l e s a l t s , and moisture from higher lands (Tarrant, 1950). The h o r i z o n t a l shape - shape i n contour - of a land; i s a l s o important because i t a f f e c t s the d u r a t i o n and the frequency of exposure of land to the wind and sun. I t a l s o i n f l u e n c e s drainage. S o i l of a depression i s u s u a l l y more moist than s o i l on a spur or on the end of r i d g e . A depression i s r e l a t i v e l y s h e l t e r e d from the d r y i n g e f f e c t s of wind and sun. Frequently a stream i s l o c a t e d i n a depression. (4) A l t i t u d e A l t i t u d e modifies the cl i m a t e very much. The higher parts of a re g i o n are more subject to l i g h t n i n g . S olar r a d i a -t i o n i s more intense during c l e a r weather at higher e l e v a t i o n than at lower e l e v a t i o n s . Temperature of s o i l and a i r - 32 -decreases with an increase of elevation. Decrease of a i r temperature greatly Influences the amount of p r e c i p i t a t i o n on the windward side of mountains, ridges, or h i l l s (Tourney, 1947). Each tree species grows best at a ce r t a i n a l t i t u d e i n any mountainous region. As a mountain Is ascended, from the p l a i n to the mountain top, a series of zones of vegetation i s passed through. Each zone has one or more c h a r a c t e r i s t i c species as dominants. (Tourney, 1947). ( 5 ) Latitude Latitude influences the growth habits of a tree species. Seed from more northerly l a t i t u d e starts l a t e r and completes growth e a r l i e r than the native seeds. Trees from warmer regions planted i n cooler l o c a l i t i e s s t a r t growth l a t e r . (6) Surface Conditions The surface of fo r e s t land often shows i r r e g u l a r i t i e s such as rock outcrops and depressions. These i r r e g u l a r i t i e s can be described as even or uneven surfaces, a desc r i p t i o n which includes both the l i v i n g and non-living s o i l cover. Surface condition affects a l l the d i r e c t s o i l f a c t o r s . B i o t i c Factors The b i o t i c factors are the plant and animal agencies, including man, which have a great influence on forest vegetation either d i r e c t l y or i n d i r e c t l y . These factors may change, arrest, - 33 -or more or less completely interrupt the development of forest" vegetation. Such actions of b i o t i c factor are of great impor-tance i n a f o r e s t . The complex r e l a t i o n s h i p between plants and between plants and animals profoundly affects forest vegetation as a whole (Tourney, 1947). The e f f e c t of community l i f e i s imprinted on f o r e s t vegetation and on the s i t e i t s e l f . (1) Vegetation The i n t e r r e l a t i o n s h i p s between forest plants are various and numerous. Competition occurs where trees grow close together forming a f o r e s t stand. Weaker trees are over-topped, suppressed, and crowded out by the more vigorous and more aggressive individuals as the r e s u l t of competition. The r e l a t i v e aggressiveness of dominant species determines the composition of a mixed f o r e s t . This aggressiveness depends upon the ease and r a p i d i t y of reproduction of a species, and on i t s growth and i t s l i g h t , moisture, and s o i l requirements (Tourney, 1947). Stand composition i s determined l a r g e l y by the r e l a t i v e capacity of various species to occupy a s i t e perma:-nently. Every f o r e s t community i s changing from time to time. The f o r e s t arises, develops, and matures under the influence of the s i t e f a c t o r s . The series of these changes are c a l l e d succession. The progressive changes i n development of vegeta-t i o n are the most important. On the same s i t e one community replaces another which i s d i f f e r e n t i n growth form. - 34 -Vegetation moves forward from one stage to another i n suc-cession. Large areas of vegetation are never i n complete equilibrium with the s i t e ; i t Is never free from small disturbed areas, ( 2 ) Animals The presence of animals i n a fo r e s t has great impo-rtance to forest l i f e . The interdependence between animals and plants i s more obligatory than between plants alone or between animals alone (Taylor, 1935)." The eff e c t of animals on the for e s t may be constructive or destructive. The forest provides the animals food, shelter from inclement weather, and protect-i o n from enemies. (3) Man Man i s the most powerful and persistent contributing factor i n deforestation or i n disturbance of natural conditions i n f o r e s t s . Man i s primarily interested i n products of the forest which s a t i s f y human needs. The o r i g i n a l balance of nature has been disturbed and changed by man through c l e a r i n g of f o r e s t land, cutting of timber, burning of forest land, elimination of native plants, and introduction of plants and animals. Man has modified and i s modifying the condition and economic importance of natural forest areas. Cited by Tourney, 1947. - 35 -RECOGNITION OP SITE FACTORS ON AERIAL PHOTOGRAPHS S i t e f a c t o r s were discussed i n the previous chapter. I n t e r p r e t a t i o n of these on a e r i a l photographs i s l i m i t e d because c l i m a t i c f a c t o r s , s o i l composition, and s o i l temperature are not reco g n i z a b l e on the photos. I n t e r p r e t a t i o n of edaphic f a c t o r s and of b i o t i c f a c t o r s i s p o s s i b l e to a l i m i t e d degree. Re c o g n i t i o n of physiographic f a c t o r s is' r e l a t i v e l y easy and accurate. Since l o c a l c l i m a t e i s c o n t r o l l e d by l o c a l physio-graphic c o n d i t i o n s part of the c l i m a t i c f a c t o r s Is determinable through study of physiographic f a c t o r s . Physiographic I n t e r p r e t a t i o n The b a s i s of physiographic i n t e r p r e t a t i o n i s a n a l y s i s of topography, and study of i t s o r i g i n , so f a r as p o s s i b l e . Physiographic development i s studied i n reverse order, from the more evident to the l e s s e v i d e n t . The most important evidence i s the e x t e r n a l form, i . e . , surface form, which i s r e c o g n i z a b l e on a e r i a l photographs. Surface form i n c l u d e s the morphology of I n d i v i d u a l f e a t u r e s and the p a t t e r n , form, and drainage of the topography as a whole (Smith, 1943)« A l l kinds of a e r i a l photographs are s u i t a b l e f o r physiographic i n t e r p r e t a t i o n with the a i d of a stereoscope. The i n t e r p r e t e r must have an elementary knowledge of p r i n c i p l e s of physiography and geology, and s k i l l i n p h o t o - i n t e r p r e t a t i o n . - 36 -(a) Development of Topography Topography of an area i s the product of the following f a c t o r s : ( i ) I n i t i a l form, ( i i ) Internal l i t h o l o g y and structure, ( i i i ) Climate, (iv) Modification processes, and (v) Stage of development. I n i t i a l form determines the d i s p o s i t i o n of landforms; upland and lowland, and d i r e c t i o n of stream flow. I n i t i a l forms are subjected to progressive modifications, determined by the dther f a c t o r s . The current form i n a cycle Is determined by the previous processes of erosion and deposition. When the i n i t i a l forms are subjected to erosion, the e f f e c t of i n t e r n a l l i t h o l o g y and structure e x i s t . The e f f e c t of erosion causes valleys and hollows on weak rock. Resistant rocks constitutes ridges, ledges, and higher parts of the landscape. The d i s t r i b u t i o n of ridges and valleys determines streamflows and drainage patterns, and influences the nature Of topography. The influence of i n t e r n a l l i t h o l o g y and structure i s more important i n the maturity of the erosional cycle (Smith, 1943). Resistant and weak rocks are reduced and the e f f e c t of erosion i s minimized with increased age of topography. Climate influences the processes of deposition and erosion. It controls g l a c i a t i o n , stream erosion, wind action, and decomposition or weathering of rock. - 37 -The type of s e q u e n t i a l landforms i s determined by s u r f i c i a l processes which i n c l u d e : weathering, mass movement, stream a c t i o n , g l a c i a t i o n , wind a c t i o n , subsurface s o l u t i o n , and work of waves. I n t e r r e l a t i o n s between stream a c t i o n , mass movement and weathering are very Important. E r o s i o n a l and d e p o s i t i o n a l landforms are the two main types produced by the s u r f i c i a l processes. D i f f e r e n t processes r e s u l t i n many kind of landscapes. The stage of development of a topography r e f e r s to the degree of a d e f i n i t e c y c l e . Stages of e r o s i o n a l develop-ment are described i n the terms youth, m a t u r i t y and o l d age. D i s t r i b u t i o n , o r i e n t a t i o n and i n t e r r e l a t i o n of landforms have great s i g n i f i c a n c e i n the a n a l y s i s of e r o s i o n and d e p o s i t i o n (Smith, 1943). (b) C l a s s i f i c a t i o n and D e s c r i p t i o n of Geographic U n i t s Landforms may be considered as geographic u n i t s . They are the r e s u l t of the e f f e c t s of e r o s i o n a l and c r u s t a l movement f o r c e s on bedrock. The character of landforms In d i c a t e s the ki n d of bedrock m a t e r i a l and the e r o s i o n a l f o r c e s . Landform has a c l o s e r e l a t i o n s h i p to the geologic m a t e r i a l s upon which they were formed, and to the v e g e t a t i o n which grows on these m a t e r i a l s . I t has been mentioned above that the two b a s i c landforms are the most important, the e r o s i o n a l landform, and - 38 -the depositional landform. Erosional landforms include combi-nations and variations of plains, v a l l e y s , slopes, ridges, and uplands. Floodplain deposits and v a l l e y f i l l , a l l u v i a l fans, basin deposits and deltas are the major depositional landforms as the r e s u l t s of stream action. These two major landforms can be divided and described by o r i g i n , f o r example: Landforms,of volcanic and tectonic o r i g i n , landforms produced by mass move-ment, landform of eolian o r i g i n , etc. More information can be obtained from Smith (1943), and Lveder (1959). (c) Recognition of Hydrographic Features The subsurface water has a great influence on the process of geological change, and on the l i f e of vegetation. The d i s t r i b u t i o n and quantity of subsurface water control the flow of r i v e r s , the le v e l s of lakes and the l o c a t i o n of swamps, thus the surface water i s c l o s e l y correlated with the sub-surface water. Hydrographic features as a term includes a l l forms of surface water. Streams Streams are the most common form,Of-hydrographic features. Recognition of streams i s r e l a t i v e l y easy on a e r i a l photographs, because of uniform texture and color of the water surface, and c h a r a c t e r i s t i c winding and branching. Dry stream beds can be recognized by the l i g h t color and texture of sand or rocks. The c h a r a c t e r i s t i c of i n d i v i d u a l streams which may - 39 -vary widely, are determined by the topography and parent material. Stream systems form the drainage pattern. They are extremely important i n the determination of geologic structure and of character of the topography. Stream patterns may occur i n many combinations. More information can be obtained on thi s subject from Smith (1943) and textbooks on g l a c i a l geology and geomorphology. Ponds and small lakes Ponds and small lakes can be determined by th e i r appearance, texture and color. The form of appearance of a lake may be rounded, elongated, curved, or i r r e g u l a r . The bottom of a lake, when dry, i s recognizable but i s less uniform than the water. Large lakes and seas The extent of a water body can be recognized e a s i l y on photos. The edge of lakes or seas i s d i s t i n c t . Swamps Swamps appear i n dark tones on a e r i a l photographs, t h e i r texture generally i s fin e and frequently i s mossy. Some-times stunted trees are present i n swamps. The form of swamps i s sprawling and i r r e g u l a r . Swamps occur i n poorly drained areas. - 40 -(d) Recognition of Topographic Factors Recognition of topographic features on a e r i a l photo-graphs i s the most accurate. A given topography appears i n a three dimensional view under steroscopic examination. A topo-graphy can be described as a whole, f o r example: mountainous topography, badland t e r r a i n , and f l a t plains topography, or by i t s i n d i v i d u a l elements. Elements of topography greatly influence the d i s t r i b u t i o n and growth of vegetation, therefore these elements are very important i n s i t e c l a s s i f i c a t i o n . Aspect Recognition of exposure of a h i l l s i d e or v a l l e y i s easy on a e r i a l photographs i f the d i r e c t i o n of f l i g h t i s known. Aspect can be recorded by cardinal points or azimuth readings generally. Recordings can be made to the nearest 45 degrees of azimuth reading or by eight cardinal points when detailed information i s necessary. Sites which are l e v e l , or nearly l e v e l with less than 5 per cent slopes, are exposed i n a l l d i r e c t i o n s ; these s i t e s can be recorded as l e v e l s i t u a t i o n s . Percent of slope Percentage of slope can be determined with parallax bar or height finder and sterescope from a e r i a l photographs. One has to select points on the top and bottom of the slope. - 41 -These points should be on a l i n e which i s p a r a l l e l with the p r i n c i p a l d i r e c t i o n of the slope. To determine the slope per-centage we have to measure and calculate the parallax difference and ground distance between the two points. Parallax difference can be measured by height finder, and converted to difference i n elevation i n f e e t . The distance between the two points can be determined by any kind of scale, then converted to ground d i s -tance i n feet. The formula i s the following: Parallax difference converted to feet Slope per cent = x 100 Ground distance i n feet Recording can be made i n 10 or larger per cent classes. Shape i n p r o f i l e Shape In p r o f i l e relates to the curvature of the slope. It can be recorded as concave, straight, and convex (Figure 1). Figure 1. Stereogram I l l u s t r a t i n g shape In p r o f i l e and contour. - 42 -( i ) Concave: R e l i e f i s concave i n p r o f i l e (type 1).. It i s associated with lower slopes, basins and v a l l e y f l o o r s . ( i i ) Straights Slopes, which are neither convex or concave, are ca l l e d s t r a i g h t . These are usually midslopes (type 2). ( i i i ) Convex: Slopes are convex In p r o f i l e (type 5). Convex situations are c h a r a c t e r i s t i c of upper slopes, h i l l s , and tops of ridges. They include plateaus which are l e v e l , or nearly l e v e l (less than 5 per cent slope), and which do not receive seepage water from above. Level situations can be c l a s s i f i e d as concave or convex, concave i f i n a v a l l e y and receiving runoff or under-ground drainage from above^ convex when found on the top of h i l l s and lo s i n g moisture. Shape i n contour Shape i n contour relates to the horizontal shape of the land. The end of a ridge or a protuberance of a ridge w i l l be convex; a draw or a cave would be concave. Terms concave, straight, and convex are used also i n the d e scription of the horizontal shape of the land. (i) Concave: R e l i e f i s concave i n contour (type 1). It i s represented mostly by draws or minor valleys on h i l l s i d e s . ( i i ) S traight: Slopes are straight without s i g n i f i c a n t curvature i n contour (type 6). This also includes l e v e l ) - 43 -situations and slopes with less than 5 per cent. r ( i i i ) Convex: R e l i e f i s convex i n contour (type 5) such as the rounded ends or protuberances of ridges or h i l l s . P o s i t i o n on slope Site c h a r a c t e r i s t i c s vary along the slope. Determi-nation and description of the slope i s easy. Posi t i o n on slope can be recorded as a l e v e l s i t u a t i o n , low slope, middle slope, upper slope, and ridge, or h i l l t o p . P osition on slope may be described as l o c a l or general. A h i l l s i d e can be divided into upper slope, middle slope, and low slope. A narrow bench on an otherwise middle slope, can represent low slope I f we consider i t s r e l a t i v e l o c a t i o n on the middle slope. Elevation Elevation can be obtained from a contour map or d i r e c t l y from a e r i a l photographs by measurement of parallax and solu t i o n of the formula: HxdP h = =— P+dP where h i s the elevation difference between two points i n feet, H i s the f l y i n g height i n feet, dP i s the parallax difference of the two points i n inches and P i s the distance between the p r i n -c i p a l point and the conjugate p r i n c i p a l point on the photos i n Inches. - 4 4 -Recognition of S o i l Factors The following three major components are used to i d e n t i f y f o r e s t s o i l c h a r a c t e r i s t i c s : (1) R e l i e f , (2) Natural vegetation, (3) Land use. S o i l development i s c l o s e l y related to the physio-graphy and r e l i e f of a c e r t a i n s i t e . R e l i e f can be divided into •macrorelief such as h i l l s , ridges, vall e y s , terraces, plains, r i v e r s , lakes, etc. and to mi c r o r e l i e f such as small bedrock outcrops, minor depressions, lake shores, small streams, etc. The topography determines the d i r e c t i o n of stream flow and the r e l a t i v e content of s o i l moisture, the s o i l depth to the ground water table, and d i s t r i b u t i o n of organic matter. Natural vegetation indicates many s o i l c h a r a c t e r i s t i c s . Examination of tree species d i s t r i b u t i o n , stand density and tree height gives reasonable information f o r i d e n t i f i c a t i o n of s o i l . However, many species of trees occur on s o i l s which vary greatly i n t h e i r texture and drainage. Land uses such as roads, r a i l r o a d s , excavations and cut-over areas are often good indicators of s o i l c h a r a c t e r i s t i c s . However, these do not occur generally i n natural f o r e s t . (a) Parent material Parent material has a great e f f e c t on s o i l development. - 4 5 -A l l s o i l originates from a parent material. The e f f e c t of parent rocks on the growth of trees i s obvious i n the mountains, where erosion rejuvenates the surface of s o i l . Parent material i s determined mainly by the occurrence of and d i s t r i b u t i o n , shape, and size of h i l l s , ridges, vall e y s , and plains, and by t h e i r p o s i t i o n i n the m i c r o r e l i e f . Landforms give good information on parent material. Interpretation of parent material requires a knowledge of l o c a l g l a c i a l geology and l o c a l ecology. (b) S o i l material Interpretation of s o i l material i s very d i f f i c u l t on a e r i a l photographs. General Information can be obtained by examination of erosional and depositional patterns, stream flows and land use. Bedrock Its appearance depends upon the type of bedrock and conditions under which i t i s exposed. Bedrock appears i n a bare and rough form generally. Sometimes bedrock forms rocky knobs and c l i f f s . Loose rocks The appearance of loose rocks depends on t h e i r size, spacing, and c o l o r . Black rocks appear i n dark tone. Light-colored rocks look almost white. The texture of loose rocks - 46 -depends on t h e i r continuity. Sand Bare sand can be found along beaches, and i n dry beds of r i v e r s and creeks. The tone of sand i s l i g h t , and i t s texture i s smooth. Excavations sometimes indicate the s o i l material. Excavations can be recognized by texture, color, and t h e i r un-natural appearance. Interpreters can i n f e r the purpose and material of excavation from i t s appearance and form. For example: sand, gravel, or clay p i t s are i r r e g u l a r i n form and depth, and frequently show scalloped edges. G l a c i a l t i l l i s often used f o r road b u i l d i n g . (c) S o i l depth S o i l depth can be determined from a e r i a l photographs with a moderate degree of success. M i c r o r e l i e f i s c l o s e l y related to s o i l depth. Ridges, h i l l s and steep slopes have shallow s o i l s . Bottoms of h i l l s and gentle slopes may indicate deep t i l l deposits. S o i l depth can be determined also by observing changes i n stand composition. Changes i n stand composition over a short distance often indicate shallow s o i l on a l e v e l r e l i e f . Douglas f i r stands show good developmemt on deep loamy s o i l at lower elevation. Scrubby growth indicates dry t h i n s o i l on h i l l tops or excessive moisture i n bogs. - 47 -Excavations are also good indicators of s o i l depth. Estimation of s o i l depth i s r e l a t i v e l y easy on cut-over areas' because the surface of the ground can be examined d i r e c t l y . (d) Moisture regime and permeability S o i l moisture regime refers to the available moisture content of s o i l f o r plants during a complete vegetation cycle ( H i l l S , . 1952). S o i l moisture depends greatly on s o i l texture, which determines the movement and retention of moisture i n the s o i l . However, a general r e l a t i o n s h i p exists between moisture regime, permeability and slope percentage. This r e l a t i o n s h i p depends upon the cl i m a t i c factors, the actual amount and d i s -t r i b u t i o n of r a i n f a l l , and evaporation. The extremes of moisture regime can be determined e a s i l y from a e r i a l photographs. A muck or peat s i t e w i l l be very wet, whereas a ridge or h i l l t o p with t h i n s o i l w i l l be very dry. The p o s i t i o n of the slope i s a good indicator of the moisture regime. However, the parent material, s o i l material and s o i l depth should be known during i n t e r p r e t a t i o n of s o i l moisture regime. A sandy s o i l on f l a t r e l i e f or a narrow h i l l -top w i l l be dry. A l e v e l s i t u a t i o n or low slope with deep loamy s o i l w i l l be f r e s h (normal). A swamp, or a v a l l e y bottom,can be described as wet. When the r e l i e f cannot be used to i d e n t i f y moisture t regime the f o r e s t vegetation i s very use f u l f o r this purpose. - 48 -Species d i s t r i b u t i o n i s c l o s e l y related to the moisture regime. Di f f e r e n t species indicate d i f f e r e n t s o i l moisture. Thus species i d e n t i f i c a t i o n helps to i d e n t i f y moisture regime. Douglas f i r i s dominant only i n well-drained portions of the lower and middle elevations. Western red cedar indicates moist s o i l on f l a t s i t e s and banks of r i v e r s . Red alder occurs on lowlands, r i v e r valleys and moist mountain slopes. Permeability of s o i l r efers to the c a p a b i l i t i e s of s o i l f o r r e t e n t i o n and movement of s o i l water. Size and percentage of s o i l materials and t h e i r combination determine the movement of water i n the s o i l . In permeable material water moves i n any form, therefore either pervious or porous material may be permeable. Permeability can be interpreted by consideration of the parent material, s o i l texture, p o s i t i o n oh slope and slope percentage. Recognition of s o i l permeability on a e r i a l photo-graphs i s uncertain. Vegetation The occurrence of a given tree or groups of trees on a given topographic s i t e often i s s u f f i c i e n t to permit the recogn-i t i o n and c l a s s i f i c a t i o n of the forest s i t e q uality. D i s t r i b u t -ion of species, with respect to the s i t e as the c h a r a c t e r i s t i c habitat of a species, can us u a l l y be recognized on a e r i a l photo-graphs . - 49 -Individual trees can be recognized on a e r i a l photo-graphs by t h e i r image f a c t o r s : shape, tone, shadow pattern, size, and texture. Crown form of the tree which is,the most important factor i n species i d e n t i f i c a t i o n , may be pyramidal, conical, s p i r e - l i k e , etc. These crown forms are d i s t i n c t i v e f o r various species. I d e n t i f i c a t i o n of tree species i n pure stands i s r e l a t i v e l y easy. The percentage of tree species i n mixed stands also i s recognizable because of t h e i r tonal differences and c h a r a c t e r i s t i c appearance. (Bajzak, 1959). D i f f e r e n t forest communities indicate d i f f e r e n t s i t e q u a l i t i e s . Recognition of f o r e s t types i s possible on a e r i a l photographs, by tree species i d e n t i f i c a t i o n , evaluation of water supply, r e l a t i v e size of vegetation and a l t i t u d e . For example; the Douglas f i r - s a l a l forest type occurs on a shallow podsol developed from g l a c i a l t i l l and rock outcrops, mostly on h i l l tops, ridges or on upper slopes. Excessive drainage makes the s o i l dry f o r most of the growing season. Douglas f i r i s the dominant species of t h i s f orest type. Western red cedar and western hemlock constitute the second layer of the stand. The s i t e index range of t h i s f orest type i s 70-110 f e e t . The western red cedar - deer f e r n f o r e s t type Is l o c -ated on gentle slopes and on f l a t land on ground water podsol s o i l s , which were derived mainly from g l a c i a l t i l l . Excessive or very good water supply are c h a r a c t e r i s t i c of these s o i l s . - 50 -Western red cedar i s the dominant s p e c i e s . Some western hem-l o c k and amabilis f i r a l s o occur i n t h i s f o r e s t type. The s i t e index of t h i s f o r e s t type i s about 180 f e e t . These f o r e s t types e x i s t i n the c o a s t a l western hemlock zone on the mainland of B r i t i s h Columbia ( K r a j i n a , i960). COLLECTION OP FIELD DATA THE UNIVERSITY OP BRITISH COLUMBIA RESEARCH FOREST, HANEY Lo c a t i o n The U. B. C. Research Forest comprises about 10,000 acres, which are s i t u a t e d w i t h i n the Coast a l Mountains, 30 miles from Vancouver, B r i t i s h Columbia. The Forest i s roughly r e c -tangular and i s bounded by G a r i b a l d i Park, P i t t Lake, and P i t t Meadows ( G r i f f i t h , I960). G e o l o g i c a l H i s t o r y The general r e g i o n of the Forest c o n s i s t s of rugged mountains r i s i n g up to 7,000 f e e t above sea l e v e l . These moun-t a i n s are separated by deep U-shaped v a l l e y s . The area was subjected to at l e a s t f o u r g l a c i a t i o n s . During each g l a c i a t l o n the land was depressed r e l a t i v e to the sea, and the i c e r e s t e d on the s e a j f l o o r . Then the i c e thinned and f l o a t e d , and g l a c i o -marine stony c l a y deposits were l a i d down below e l e v a t i o n s of - 51 -500 f e e t . Above e l e v a t i o n s of 500 f e e t , outwash was deposited. A f t e r that the i c e melted and the land rose above the sea (Armstrong, 1957)• Most of the rock on the Forest area i s quartz d i o r i t e , g r a n o d i o r i t e , or d i o r i t e . Some g r a n i t e outcrops occur around Loon Lake. V o l c a n i c rock occurs east of Marion Lake, and g l a c i a l d r i f t can be found between Marion and Katherine Lakes. Topography The e l e v a t i o n range of the Forest i s 100 - 2,600 f e e t above sea l e v e l . The center of the Forest contains three p a r a l l e l north-south v a l l e y s . The eastern v a l l e y i s formed by Marion Lake and the west f o r k of the North A l o u e t t e R i v e r . Blaney Creek flows from P l a c i d Lake to Blaney Lake i n the cent-r a l v a l l e y . The western v a l l e y contains Loon Lake which i s about one mile long, and 120 acres i n area. The r i d g e s c o n t a i n numerous rock outcrops and vary i n steepness. The c e n t r a l r i d g e forms a s e m i - c i r c l e running to the northeast u n t i l i t reaches 2,600 f e e t e l e v a t i o n . Then i t continues as a h i g h r i d g e to the n o r t h boundary of the F o r e s t . The northwest slope i s rocky, very steep and drops a b r u p t l y from the r i d g e top down to the P i t t Lake. Scrubby t r e e s grow on t h i s s l o p e . The southern p o r t i o n of the Forest has a south exposure and i s lower i n e l e v a t i o n . Slopes have numerous rock outcrops and b l u f f s , and vary g r e a t l y i n steepness. - 52 -The North A l o u e t t e R i v e r i n the east and Blaney Greek » i n the west provide the major drainage of the F o r e s t . The North A l o u e t t e R i v e r cuts a deep channel across the southeast corner of the area. Climate The climate of the Forest i s c o n s i d e r a b l y i n f l u e n c e d by the P a c i f i c Ocean and by the Coast Mountains. The general c h a r a c t e r i s t i c s of the c l i m a t e are m i l d , wet winters and r e l a t i v e l y warm, dry summers. P r e c i p i t a t i o n P r e c i p i t a t i o n of the Forest f o l l o w s the general pat-t e r n of the southern c o a s t a l r e g i o n of B r i t i s h Columbia. The average annual p r e c i p i t a t i o n i s approximately 90 inches. The period from October to March i s very wet w i t h approximately 70 inches of p r e c i p i t a t i o n as snow and r a i n f o r these s i x months. The other six-month p e r i o d i s dry w i t h only 20 inches of p r e c i p i t a t i o n . The annual average s n o w f a l l i s about 60 inches. P r e c i p i t a t i o n i s highest i n December and January and lowest i n J u l y and August. The lower p a r t of the Forest represents a warmer and d r i e r zone w i t h p r e c i p i t a t i o n of 70-30 inches per year; the higher p a r t i s c o o l e r and wetter w i t h p r e c i p i t a t i o n over 100 inches per year. - 5 3 -Temperature and Hours of Bright Sunshine Temperature i s mild during the winter months, approxi-mately 3 0 ° P , and cool i n the summer approximately 60°F. The average annual temperature i s about 50°F. The average length of fr o s t - f r e e period i s about 1 9 0 days per year. The t o t a l number of hours of bright sunshine i s about 1 , 3 0 0 . Hours of sunshine are lowest i n December, approximately 3 0 hours, and highest i n July, about 2 0 0 hours. S o i l The following f i v e main s o i l types are distr i b u t e d on the Forest area: ( 1 ) A l l u v i a l s o i l s . ( 2 ) Organic s o i l s . ( 3 ) Hydromorphic s o i l s , (4) Dry edaphic s o i l s , and ( 5 ) Climax or zonal s o i l s . ( 1 ) A l l u v i a l s o i l s These s o i l s occur on flood plains and occupy r e l a t i -vely small areas, however, t h e i r economic importance i s high because of thei r excellent productivity and good a c c e s s i b i l i t y . (a) Well-drained immature a l l u v i a l s o i l . The surface of the s o i l i s well above the average water l e v e l of the r i v e r . The s o i l p r o f i l e i s immature. Parent material i s sandy r i v e r deposits. The humus content of the s o i l i s generally low. S o i l depth i s about 3 - 7 feet. (b) Poorly drained immature a l l u v i a l s o i l . The water table i s just below the s o i l surface. Parent material i s - 54 -s t r a t i f i e d a l l u v i a l sand. This s o i l i s also immature, but i t contains organic matter. Water content of this s o i l i s higher than that of the former. ( 2 ) Organic s o i l s These s o i l s are developed on former swamps and on muskegs. Parent material i s organic. The depth of the water table i s 7-10 inches below the s o i l surface; however, i t sometimes i s above the s o i l surface. This s o i l type i s not s i g n i f i c a n t . (3) Hydromorphic s o i l s These s o i l s have importance because of t h e i r great productivity. Their productivity and d i s t r i b u t i o n are deter-mined by the amount, type, and depth of the seepage water. The seepage water i s usually highly n u t r i t i v e f o r the plants. (a) Black muck ( o C -gley) s o i l . This s o i l occurs on r i v e r terraces and concave slopes, where the seepage approaches the surface of the s o i l . Parent material i s g l a c i a l t i l l or a l l u v i a l deposit. The A layer i s very r i c h i n organic material. This s o i l i s poorly aerated. The mineral s o i l i s us u a l l y compacted and i t i s us u a l l y sandy loam which i s 1-2 feet deep. (b) Excessively drained high-seepage s o i l . Rapidly moving spring water characterizes this s o i l type. This r a p i d l y moving seepage water prevents the accumulation of organic mat-ter on the surface of the s o i l . Parent material i s usually - 55 -very coarse g l a c i a l t i l l . If the s o i l p a r t i c l e s are f i n e the steepness of the slope causes rapid water flow, This s o i l i s shallow and stony. It i s very rare, even on concave slopes. (c) Ground water podzol s o i l . I t occurs mostly on gentle slopes i n the lower t h i r d of a h i l l side. Parent material i s mostly g l a c i a l t i l l . Excessive or very good water supply i s the c h a r a c t e r i s t i c of t h i s s o i l . Active seepage exists throughout the year i n most cases. This podzolic s o i l i s associated with a cool micro-climate. S o i l depth i s 4-7 f e e t . This s o i l type i s the most abundant on the upper part of the Forest (in the wetter subzone). (d) Red-brown podzolic s o i l . This s o i l occurs on concave lower slopes of varying steepness. Parent material i s mostly g l a c i a l t i l l . The s o i l i s 3-6 feet deep, well drained and r e l a t i v e l y coarse. It has drainage and favorable water supply. Seepage water i s always present. The s o i l p r o f i l e i s well developed. I t i s an important s o i l type i n the d r i e r subzone (lower part of the Fo r e s t ) . (4) Dry edaphic s o i l s These s o i l s are dry and shallow. (a) Shallow podzol s o i l . This s o i l was developed from g l a c i a l t i l l or rock outcrops. I t occurs on h i l l t o p s , ridges, and upper slopes. S o i l depth i s about 1-2 f e e t . (b) Very shallow dry podzol s o i l . This s o i l Is very shallow, and occurs on dry outcrops, with excessive drainage. - 56 -The mineral p a r t of the s o i l i s an ashy gray l a y e r . S o i l depth i s 5-10 inch e s . (5) Zonal s o i l s These s o i l s are r e l a t i v e l y deep and t h e i r water-hold-i n g c a p a c i t y i s h i g h . (a) Brown p o d z o l i c s o i l . This was derived from g l a c -i a l t i l l . Seepage water i s r a r e . The s o i l p r o f i l e i s w e l l developed and 4-6 f e e t deep. This i s a r e l a t i v e l y dry s o i l . I t i s not found on extreme topographic s i t u a t i o n s . Brown pod-z o l i c s o i l i s common i n the lower p a r t of the F o r e s t . (b) Brown p o d z o l i c s o i l at higher e l e v a t i o n s (above 2,000 f e e t ) . This s o i l has f i n e t e x t u r e . Temporary seepage water Is quite common, and i n most cases water i s supplie d i n abundance by increased p r e c i p i t a t i o n at higher e l e v a t i o n s w i t h -i n the F o r e s t . This s o i l type i s most abundant i n the wet subzone of the western hemlock f o r e s t zone ( K r a j i n a , I960). Forest H i s t o r y Two main f a c t o r s , f i r e and lo g g i n g , determined the development of the present c o n d i t i o n of the F o r e s t . About 1840 a f i r e burned over most of the P i t t Lake sl o p e . A l l of the area, which supports second-growth stands at the present time, was burned over by a l a r g e f i r e i n 1868. I n 1925 a f i r e , which s t a r t e d near the southeast corner of the present U.B.C. F o r e s t , burned 1,560 acres of s l a s h . This f i r e was very severe and l e f t o nly a t h i n covering of s o i l i n a few p l a c e s . A second major - 5 7 -f i r e occurred i n 1931 i n s l a s h on the east side of the F o r e s t . I t burned f o r 48 days on much of what i s now c a l l e d the A. and L. par t of the F o r e s t . The east p a r t of the f o r e s t was logged from 1921 to 1931, and supports a 30-year o l d immature stand at the present time. Forest Types The f o l l o w i n g f o u r main f o r e s t types are found i n the F o r e s t : (1) Old-growth, (2) Scattered old-growth, (3) Second-growth, and (4) Immature (reproduction)(See f o r e s t - c o v e r map, Appendix B ) . (1) Old-growth The t o t a l old-growth area remaining i n the Forest i s about 800 acres. About 80 per cent of t h i s area comprises almost the e n t i r e east slope of the north c e n t r a l r i d g e . The stands c o n s i s t of over-mature cedar-hemlock-fir w i t h s c a t t e r e d white pine and balsam ( S c i e n t i f i c names are l i s t e d I n Appendix A ) . The three major species vary c o n s i d e r a b l y i n d i f f e r e n t stands. The cedar c o n s t i t u t e s the major part of the volume, .1 but v a r i e s g r e a t l y I n s i z e and q u a l i t y . About one-half of the cedar i s of poor q u a l i t y w i t h dead tops, e s p e c i a l l y the l a r g e r t r e e s . Hemlock trees vary considerably i n age and are a t h i r d l e s s i n t o t a l volume than the .cedar. The best hemlock occurs on the area w i t h a n o r t h e r l y aspect. The volume of Douglas f i r I s - 58 -one-half of the volume of hemlock. Many f i r s have broken or dead tops, and numerous f i r snags occur. The volume of other species i s s m a l l . A few yellow cedars occur at the higher e l e v a t i o n on the poorer s i t e s . A few small patches of o l d -growth which occur throughout the r e s t of the Forest survived the f i r e . The age of the old-growth stands i s about 300 years. (2) Scattered old-growth This type occurs throughout the western p o r t i o n of the Forest on about 1,000 acres. Douglas f i r i s the major species i n the s c a t t e r e d old-growth stands. Old-growth Douglas f i r trees occurs i n groups, or s i n g l y . W i t h i n t h i s type one-half of the old-growth volume c o n s i s t s of dead cedars, very s c a t t e r e d . (3) Second-growth Twenty per cent of the Forest area (2,030 acres) i s occupied by second-growth stands, which are about 80 years o l d . The older second-growth stands are found on the P i t t Lake slope and along the southern boundary of the F o r e s t . Douglas f i r i s the major species i n the second-growth stands. Sometimes i t occurs i n pure stands or i s mixed w i t h hemlock and cedar. The trees are reasonably w e l l pruned and t h r i f t y on the b e t t e r s i t e s . Hemlock forms a few small pure stands; i t has the second l a r g e s t volume i n the second-growth stands. Cedar i s a secondary s p e c i e s . Balsam grows i n small patches mixed w i t h hemlock through t h i s type. A few white pine - 5 9 -and yellow cedar occur In bogs and higher e l e v a t i o n s . i (4) Immature stands Reproduction occupies 45 percent (3,770 acres) of the stocked productive area of the F o r e s t . The area logged i n the 1920's one m i l e wide and s i x miles long, has various stages of r e p r o d u c t i o n . T h i r t y y ear-old dense stands cover the southeast p a r t of the F o r e s t . In other places r e p r o d u c t i o n was k i l l e d by the f i r e of 1931• Along the timber edge, s t o c k i n g Is good. The e n t i r e r i d g e west of Marion Lake i s p o o r l y stocked, but no l a r g e area i s without n a t u r a l r e p r o d u c t i o n w i t h i n the F o r e s t . Douglas f i r i s u n i f o r m l y d i s t r i b u t e d through the area. I t c o n s t i t u t e s about 30 percent of the number of t r e e s where the s t o c k i n g i s poor, and a much lower percentage where the s t o c k i n g i s good. The number of hemlock and cedar trees Increases w i t h the degree of s t o c k i n g . With a few exceptions hemlock i s more numerous than cedar. Scattered white pine and yew occur i n some p o o r l y stocked areas. The age of the r e p r o d u c t i o n v a r i e s from about 12 to 32 years. Some small patches of a l d e r type occur i n the F o r e s t , w i t h some second-growth Douglas f i r , hemlock and cedar. - 60 -GENERAL PROCEDURE The productive capacity, or s i t e quality, of an area can be evaluated through the s i t e f a c t o r s . These factors and t h e i r effects on tree growth are greatly v a r i a b l e . Each factor has a d i f f e r e n t influence on s i t e quality; some of them are more important than others. Some factors can be measured only with d i f f i c u l t y , and t h e i r measurement would be expensive. Use of a e r i a l photographs f o r the evaluation of s i t e quality should be cheaper than any ground method but th i s method eliminates those s i t e factors which are unrecognizable on a e r i a l photographs. Determination of several s i t e factors used i n th i s study i s un-c e r t a i n or impossible from a e r i a l photographs. The most valuable expression of s i t e quality i s s i t e index. Site index i s based on the height reached by a forest stand at a given stage i n i t s development. Since s i t e index involves the measurement of the average height of dominant and codominant trees at a s p e c i f i c age, i t cannot r e a d i l y be deter-mined d i r e c t l y from a e r i a l photographs. However, i t can be calculated from regression equations using d i f f e r e n t s i t e factors as independent variables; or i t can be estimated by the photo-interpreter d i r e c t l y from a e r i a l photographs. In t h i s study the following s i t e factors were used as independent v a r i a b l e s ; (a) topographic factors i n c l u s i n g aspect, l o c a l p o s i t i o n on slope, general p o s i t i o n on slope, percentage of slope, shape i n p r o f i l e , shape i n contour, and elevation; - 61 -(b) s o i l factors including pore pattern, s o i l depth, moisture regime, texture of s o i l , portion i n rock, thickness of humus layer and thickness of A 2 layer. The U n i v e r s i t y Research Forest i s r e l a t i v e l y homo-geneous with respect to the climate and s o i l , therefore most of the forest was used to evaluate s i t e q u a l i t y . The Forest was divided into types based on topographic features. The types were established on a e r i a l photographs and transfered by K a i l P l o t t e r to a base map. These types provided a reference f o r c o l l e c t i o n and analysis of data. Each type was located by stereoscopic examination of a e r i a l photographs and was d e s c r i -bed by the code of topographic features. The c o r r e l a t i o n between s i t e index and the variables was calculated from ground data collected on a sample plot within numerous types. Usually a tenth-acre c i r c u l a r sample plot was established on a representative p o r t i o n of each type. Two summer months were spent c o l l e c t i n g the f i e l d data. Two kinds of analysis of f i e l d data were carried out to f i n d the c o r r e l a t i o n between variables, a graphical analysis and a l i n e a r multiple regression analysis computed on the ALWAC III E electronic computer. These analyses indicated the s i g n i -ficance of variables f o r estimation of s i t e index. The elec-tronic computer was used to f i n d many equations f o r s i t e index as the dependent variable and s i t e factors as independent variables,, - 62 -However, these equations were not adequate to compute the s i t e index d i r e c t l y from the independent v a r i a b l e s . There-f o r e determination of s i t e i n d i c e s f o r d i f f e r e n t types, was ..based on the equations and f i e l d experience as a guide to the judge-ment and e s t i m a t i o n of the p h o t o - i n t e r p r e t e r . F i n a l l y a s i t e map was drawn up. The p r e v i o u s l y e s t a b l i s h e d topographic types were used as the base f o r the s i t e map. Those types which had s i m i l a r s i t e i n d i c e s were j o i n e d . PRELIMINARY WORK In the f a l l of 1958 the U n i v e r s i t y Research Forest was typed on a e r i a l photographs. D e l i n e a t i o n of the types was based on the f o l l o w i n g topographic f e a t u r e s : aspect, percentage of slope, shape i n p r o f i l e , and shape i n contour. S i x t e e n a e r i a l photographs i n two f l i g h t l i n e s were used f o r the t y p i n g . These a e r i a l photographs were taken i n 1955 at a f l y i n g height of 15,900 f e e t A.S.L. A 1 2 - i n c h - f o c a l - l e n g t h camera was used, thus the s c a l e of the photograph was about 1 i n c h to 20 ch a i n s . I n t e r p r e t a t i o n was done u s i n g an Abrams 2-4-x stereoscope, Model CB-I. Four hundred and e i g h t y - f i v e types were e s t a b l i s h e d on the A. and L. p o r t i o n of the F o r e s t . These types were r e l a t i -v e l y s m a l l , about 5 acres i n s i z e , because of the rough, .'.steep, and v a r i a b l e topography. There were 211 types on the second and old-growth area. The types on these area were g e n e r a l l y l a r g e i n s i z e ; average s i z e of these types was about 20 acres because of the r e l a t i v e l y uniform topography. - 63 -After i n t e r p r e t a t i o n each type was described by the code of aspect, percentage of slope, shape i n p r o f i l e , shape i n contour, general p o s i t i o n on slope, and elevation. Except f o r elevation, these topographic features were determined by stereo-scopic examination of a e r i a l photo-pairs. Elevation was read from a contour map. The types were transfered to a base map using a r a d i a l planimetric p l o t t e r . The base map was made by Multiplex planimetry by Photographic Surveys (Western) Ltd., with a scale of 1 inch equal to 1,000 feet (Appendix C). During the f a l l of 1958 three days were spent i n the University Research Forest cheeking the photo c l a s s i f i c a t i o n . The checking was done with Kare Helium as part of hi s directed studies. His work indicated that the descr i p t i o n of the types from a e r i a l photographs was i n close agreement with the actual topographic features. A preliminary graphical analysis was carried out between s i t e index as the dependent variable and topographic features as independent variables f o r the second-growth and old-growth portions of the Forest. Site index was determined from a s i t e map which was made by ground survey i n 1950. In that survey s t r i p s had been run through the Forest at 10-or 20-chain i n t e r v a l s . Dominant and codominant trees were measured every 5 chains along the s t r i p s and s i t e index was calculated from these data. The independent variables were obtained from the - 64 -type c l a s s i f i c a t i o n . A separate graph was drawn up f o r s i t e index on each independent v a r i a b l e . The r e s u l t s of the p r e l i m i -nary a n a l y s i s were s i m i l a r to those from g r a p h i c a l a n a l y s i s of data c o l l e c t e d i n 1959 and described i n f o l l o w i n g s e c t i o n . The order of c l a s s e s w i t h i n each v a r i a b l e was i n decreasing order of s i t e index. The crosses on the graphs represent the average s i t e i n d i c e s f o r the corresponding c l a s s e s ; the numbers represent the number of types i n each c l a s s (Figures 2 to 1), Figure 2 presents the r e l a t i o n s h i p between s i t e index and aspect. Types w i t h south aspects had the highest average s i t e index. Average s i t e index f o r types w i t h western exposure i s about the same as f o r types w i t h north exposure. Reference to the graph shows a decreasing order of exposure w i t h a decrease i n s i t e index: South (S.I.122), West (S.1 .120), L e v e l s i t u a t i o n ( S . I . I l l ) , East (S.I.109), North (S.1 .105), and Ridge (S.I.9 6 ) . In F igure 3 the slope range of 5 per cent to 34 per cent had the highest average s i t e index (S.I.121), and w i t h increase i n slope, percentage s i t e index decreased. The l e v e l s i t u a t i o n had a r e l a t i v e l y low s i t e index ( S . I . I I I ) . No important d i f f e r e n c e s were found between shape i n p r o f i l e , and shape i n contour. However, concave-shaped topo-graphy i n d i c a t e d b e t t e r s i t e q u a l i t y than the s t r a i g h t or convex topography (Figures 4 and 5 ) . To follow page 64 (p +M-1.it::i • • H - lift ill! Iii; '• \ \ \ :i:t. • • -TTT-i':i'. riliitiii :!;;::rti T T T T Trrr i if!i TTTT -••I P p I4-H-m lili m V III. .A flit llif .,.!( rijf •ill: AAA li'ii tt!i ki[ •!:.!-; iiiiiiH-i in i ! : :l U;.:.:T liii :.:_] ITTTT TTTT lilt 4P--rtf. in: m - , -r 7 • i i .1 :: :.i \l\l fir!; I'.'.' ±i£l trr:. H: TTT7 i f il.i.f m p tit p l-i; •:•:•'• : pr m - • -t r:i: :Utt ri tf .•r.p f.pl'f r— • m xitt P ~j= llif Erf ::— HK" ;l:p. ..... r -rP"r ttrr ;|f "T" n tat p:' ' T : ii i ii'A. ;-::;; 1, .I7"h fill (.... -lill1 ffft •• {•' titf P .: if -rti-i tri 1 '-T ' - i ;i'i| i t (ii ; 1 • im ijii • •-^ . . . . rtu -An xTTTi If'iii itl-Tt •r-i;' rrfrr iii. •iiiiiii: iiii iiii ::.!!:::: ::! i::: :::: j::t; i::: tii-f T l-fli •AM tijl irt; I ::.j1.:.. iiiiiii!! £p :: i i r " • '1L ::: j !!!; ijii. iiii i! ;: rrrr ;iii 1 if'i .. ... . .:;j: .-lit. ::;-|j till M P j — . vv' iriri .1 ~:i' Iii: ::t:i:::: :•;::(;:::: m iitr •f iiii jnt IHf i:l: m TTTT i * n • ffLI : :.K ::::!::.:: ::.-!.t 1:  :-p i n ; -4 : ":i !: i: •[.::•: iii: t • fiiii •:t::. TT.i iiii A -| IP riff .... AA ft! i A:: • :;;;);;;.; i:.::: i:i :iii :: nii 'lit :: i i-fl i 1>!.-. .U •HI I!! Hi; ::;: ::: 1 rms SVi • • • • ::, 1!; p: n i::l !::: iij! :; |' ii ! .Iiiiiii1 'hi iii i P i i : i ii::!iiii — j — A^VAA : :ii!i : ;i . . P , .. P :li:r'-: ....j.... ':: i i : : p: r ! M' fill iii! hiiiLiii llil iiit (.... ;;ii|iii; •: • r.:.. ::•:]•::: iilliiiii . . i.... ?** \:::i i:!i IB til V' i ! M;i i11 * iii: iii1 iiii .ill 1 -- • i • T"-Pj-..p_.: *— :ri"i '• '• • :i. llpll: ; ! i : i ; ; ; ; ;-;;|:;;; i:;i!iii; i .. ii ?: ii :ijt s till ifll !t!'i 1 .. iiiiliiii AAAAAAAA —i..., ..: l — t i p ! i?: llrkl ... — ! M; iii! ' 1i : i' iipjpp ! ..... 1...: pil i;; ! p i iiii :::•!.i '::: Till 'Iiii !''' i''f iiii ^ P lip iiii Hi: T : : : | - . : : — 1 — lll!|i! ; ) . ;i;:L::; •::: :j;::: • r • • • . :: ::i: ::ii iiii i::: iiillil II iipiiiii :1 I.;:I ll\\\::.-::::):••• .. I..  '' 1 .... :.;:|::." i iiii iiii . . . . I , . . :• :(:::: • litt-i: ::: ;p:: i " ' : ; : ; ; i : : : : .•I'.'.: '; ; TTTTrrm 1 iii! •'ii I P H P I : • •: I:;.; :.:: |!:: •:: i •;:: ;i!i • -1 :i:i iiii ...,| iiii P P : •; i ' • p ill! . p ;!:' i:!l i::: :::: : :! -:: ! -: :.::!.:!:. ::::i:;:: .1.1 iii: llliiilll .. 1. . l-:i:|;;ii :: .. i.... — I..  iiiiliiii : i: : Iiii. i:ITi iiii 1: t: iiii !.:.]',. ::ir ill! — i 1 ii! ii•1 i!lij'l:! ...i.... pliiilp 1:.  • • i iiiiliiii ::::!:::: iiii :j:r •; • j fiit i:i:fi :..i fill ii Iiii p -1 • V ^'i:i p :;.:;|: :r ;ililiiii : ! ! ; | i ! ! ! i i *' li :i iii; !][ iii! iiii ::i:l:i:; ....! 1 ,. Iiiiiii:! i:':; iiiiliiii .;:': i' 1 u. : j i... i iii •ri H W 1 H • • -Pft~ ; ..'•. :'; ...|..., . . p j :: p ;;::'!.•:•:; : ::i i:!i Li' ™ iii: Iiii 1 1'P't ... j. ':: i: 1:: p ::::|:::: iiiiiii i!:i ii i 1 ;: i| i • • • l.lj.| • Ii ;ii 1 • rr^ u;::: •::|::.: pp.: .. ::::!:::: ..,. j. .. . .:!:'!'. ti;; . ii; iiii till 'I1! p.:!'.:. . . P ' 1:1 p . ' 'III ' ; ' 1 :;|:-: - • • i • • . . i. .. ::.: i:;:: :::':: ::: i • : ; j i: P i M ' i;lt 1 i: .III! TTTT rrrr pijiii; .'liiiiill .;.!i.:i:;:; :m\ . . . . . I . . . . ii::!:::. ...: i.;: j i,;ij:;!i i::: *- - -.!: i ,.|.... ifil m lilt 1| -ii ; •t i W ,•; i • ; j ]-J 1  :;:iii;: : on : - | . . • ••: mM .:::|.;;;; iiiij:ii! !'!•;• '1 ' : i' : i.i ti ip; tIM . • I: • • •..:!'• • I • p I :.: ::•:! ::. , 1 . 1 ! iiii iii1 i:i! i •. PP V Iiii i'.ir iii| iii :rt; i ifii . . i i:::; i ; ! , hi: iii: p i i pilillli ... .^ ... 11: i i i I:: i:!:t:::: .::':lri;t :!li iiili iiii : i ri P I : Iiii :::|:.-: :;:: |:::: • • • t — 'ill $ ;a Iiii ... i . . . :;::!so Wl STiiil : Iii I i i LA ST m AH Hti1 *ii * i.: p-il;;;; ::::!:::: •£11 ; : ; ; ! ; ; ; iiiiliiii ;.:::(:::: if Ft j-ij' llil iiii iiii llil ! 1 I ;:.n ••• • ::•:!::::. :::: i p p :::-.jr.;li ~':V- ::.::i:; j: :7::i:::: iflip! ii 1! 1:1x1-i:::r "iir jiff in it I-iii:!;: 1; :'.!;];::! :;  i;:': iisf ..:. i:::. ? •' • "i .. i III" ill! , p..:: iiii .. j :... i.... : (j. 1;;:: I : i i 1 mm m :;-:ii:::: TJ1: : jwj* "i; i i : i;! -ft | iiii: i;:il 1.111 iiii t'li ttji , ppliip p :(:::: : : P !i!p! iiiiliiii fj-f :::: ::::|.-:.:: ri-'fi :i:t- '• 1 ?: i-BT i ... . ;i!;i;:-'::. :.:.|:::: P •• - : 1: :ii:ii.: iiii :: n f | li!t -iir^lli ! ; ; : : :i;;n;;: ::::!,.ii. — j — iiii : J i.. ..,.. ij-i'i r:tj m Hit 1 :::; j::: i ;!!:!:: :: :::;; :::.:};;;•: . . . 1 . . . ILi: : r:!. fin t:it .Hi rrn :::: :::: iii; •ti lii:il:p iiiiiii;; ii'iiii- ;!;,!::.." iiiiliiii ::;., i,:.: iiiiinil ::::|:::: I;! • i'i- 1 i r iii: '.III Frfl :!::[:::; jj::: Wm i-fii i;.l fri; i.i u In! V ..1 i.. iE|- in:i i • -1 4 ;;.. T T T T •iii. iiii :-j i : i — ..::!..(: ::::i:-:;: :::it!::: iiiij;::: T T T T T T T T T T T T T T T T iiii- I!-!J H m\ f a ..... •i'l ill.: Hiijiiii iiii ilii .......... :r::t:::: .  ....j..,. : i.. iiii -fj. i;ip£ : ill i.ii- !i ttript m x \.: • f • • iiii ., n .11 :... i .. . !: 1! iii-:ji:i:.-:i iiii .iiri. ilfi ;Ttx L4i- +t 11 IJ i 1--U Ll-.... iiii iiiijiiii ::::|::r. :::.)..:.:: .^:.r;: .. 1.1:1 xi. iiij:; ii 'i "PP ;• i • T:  1",:; :::: i iiiij::-;; .. ,.,.|.... :; • r . . . . •. T . ./ ^.4+. i ... ' i Tt'i' ' c in T"' 'T " ::!:;: A i r - iiiiiil'i i:: ,r**T T ' * fii! ii " ; " i i i i i i f ' k V . I «- -o h s lif S;ii H G >h f :.. I i * 14 I I :;iii:i;: ;:::il:r5 :::: i::" :::; •!:i :i':::; T : iiii ::.: iiiiiiiii ::.!!:::• :.-:!!•::• :::;!::;: ii;: 'if! . T.. ... | t : .  .j . 1 . 1 . ; .ill ."::!...: ..., 1.; i. ::.;.:." iiiiiilii •iiii ii 1 .... ::;: « I'ilPi 'iiii:::: pi: i; iii, ! 1 1 - .... 1..  — I !;:.: .! ! : i i 1 ; Iiii •:; i; :;i: :.t • • 1-;: - .;:: i::".: liii|iiii iiiijiiii' l • • • -.. .1.... ... •!.. Tr-rrrT rr ii !i!Mj iiiiii.::. ::::t!.::: • • i • •• 1 ::; I i:::: .!::} iii; ji -iiii fiiifii iiiif'i- iiii i ii" • — j . . , ,,, ., iiiii! 1' Bo • iiiiliii: ii:ii::i. T — 1 i;": i::: i :: *J Iiii lift i :i nit ; •«— • : i : * • : •1 •. i.. 1.  . -iiiiliii ::; |..:: :::;::: '::.:[• W: ... |.... ' ! i . . | . J H ! iiiijiiii .... j .. .. !:: :l i: ii • • i' Iiii 1 i * * Ml1 9 il iiiiii - r — .. ,., ( i .. . i... iii:|:i;; i.iliiii ... 1.. . iiiliii. ........ i-i;!;ii; iii:ji;;i I liiiiiiii iirj - :i;i ;i :i. i.... ... i... .:: i::.. .:::!':. :.:.|. .. l-lil'iiii ;: :i ... | .: j ;.: : :: i.:': ••ii!:;:: i-ii iiii iiiii iii; Iiiiliii :!;; Ii ill; ii ; 1 . . r.::i . ... 1..  . ..I.1:; -iifiii :. iiiiii • .| •-• . .:: ' 11: i'i 'iii ii — - - - -: ' :; i: . 7 i~ .".'•!.: ii ... i... iijiiii iiiii i:i i. 1  i i i ! • • ! • : .. i i . 1 .:-.i'.: i'l-- ..•1:::. :::: Iiii i .. i.i. • • i • ;•;r • :: . i:: .. .... —-i • '!' ! ; : ' - — |..: •:••) ::: :ii|:iii 1 . 1 ill! .! . : | . . ; I • ..!.::! i :ii:iii :.. i ... i :.::.(:::: ;: iiii ;! .. .|.. . •:;;.|::-: "•:;}::;' ..: j . : :—i.l_ -4—7 : 11.::: .. i.. . iiiijiiii ....... :iiii:ii iiiijiiii iiiiiilii i.i. .i !::: ;; ii iiij I! ;};;-• ' i i . i i i • • iiiij.ii! . 1 • • "! :.i ..:. i..:, ....(..,. • i; i i i i i i iiiiliii; iiijliiii i;;; iiii :i ii !:!j !i 1.. . - ...,|.. . iii!" ' i i; i::i!iii! L :: i . i. L. 1 !!!! Ii !! Iiii ii ..... 1 iiiiliii ; .... :•:.)'.:: r • . | • ' ' i 1 i " :;iil:i. ; ! ! ; ! ! ! ' ! . •l ; • ; ; i :'!1 i i 'i i; i j! | ,' : i. • 40 , :: 1 '! iii ii:;!i •. •j ':: ::.: i:;' i : : i'i! "XV jiii *;;; l:ii  i. i j; 1 :: :::: j:... . • • . ! : • • I " i . i:. i.::: 1 ;! !|fi -: i • • • • t — 1:..: i i i: i i i. i ::::ii:.i •iiijllii ii iii iii i ::: i iiii ;; t, i'i ;i :; iiij :i .:;....! :ii!':'i l^ilii: : :!i: . i . 1 '.. ....(.,., ..iii:::: ;.".: :.: l; . i.,. :i.:i :. I i 1 > 1 ; r • 1.  • 1 . :.;: i.:.. •' i .: l.iljii!! • 1 • •': | 1 !• • " ; • • ii. r •' i. • . ' I —-r~-: l Til iii :!•' ' : ..h:: • •(••-, I jl'i i.ii i ii ijH II .: ::r: ii :i;x 1, ... r' i • i ... i' . • • • 1 .• ' • i • 1 ,,ij ii! •:• ].::: 1 l: TfTTTT li !' ji |jH ii:':!::.-::: |i.x -r—i : 4i - iiii: 'iiii.;' ..:'.!... :!i'!i: : •: •iiii!!!! ...: l.: . ::.ii . : iiiijiii, tt i i ii"; x la -Kl :;-:]"• :•:) • o . iiiijiiii iiiiii::: tnHr E .n F iiiii, ii 1J4& ..... :. :i: "• - cot L:i|iii! S T I G nif c t : K ;i! ; 1. .... ——r—-— 1 i!i.ii:ii ........ :.::!::'• : • •. i::: • :!:ijili! :: :i , , h-; ill i" .. . .... T ... . :. j: •.. • • [ i:i:i:ili — . it it lilflii; IF Hit ft '''i' • • i , • •' i i:::lii.: i!;: i i  iii I t ji t.-*_»-......... i i ' iiii: :\:\. .. : 1:;:.: ::::!:::: •ii: ! iiii iiiiliii! i iiii ..... !!.|ij • • • i : i . ,...[.... :;.::):::: ii:iiiiii iiillliii Iiiijiiii . :;.:x ::!::  —Vrfi- ....j.... :iij::'i iiiijiiii ::i; iixiiii •* T+*-l Uli iii- ! iiiiii!! "i:; * iii!! ii iiii!. :• . iiiiiiii: iiiijiiii it ii;;'-:!. iii! i 1 ! - - • -1... -: i ;, i :: i ! ' • 1 M I ;: r ]!:.::;•; iiiii:;'; ii! Iiiii 1 i.' 111:: :::ij!;!i |!Hi ii;.: iiiiiilii ::i'i iiiHiili i I t r:: ii iiii i Ii iH! PiHr TT,-• ' • ; iniiliil Iii! :H!i:::l TTTT . ; . .( Liiiijifii iiHji'i:. i:: I • j;ii r.'.r. : i i! iiii rrtr ifii I'l' iii;!il.ii : ::.:!:i:: :..1 — I , .: ii. Hiilili :;:r iiii .,t.+ iiii:it..: : i jj i :i: j .!.: 1 .:. iiiiiifif iiiijpi i:;ib:i- l!i! iiiiinii !r*'. rr:' iii!. :t=;i:..; — , . . . 'ililllH : : : : ! . : : : i' i : i: •' i iii:ii:£ . :.;.j. :;i:i.i:: : : : . , ; :."! :;i; Hiiiiiii : ' : • ] ' : : ' ::::)::;: '. i.r". iiiii i4.ll .U !. - + • t-T M * iiiiiiiii . : : | : : : : ' : : ; ! : : : : : : : : ! : : : . : : :.r: i! ii "i:!i: •1 .iii|!i:: : : : : ! : . : : . . : : ) : • : . ; ; ; ; ! ; ; ! : iiiii;; : . . . . ( . . . • ' : : ! : : : . ' t . .. -i : : • : m wm mm.- • ifiliiii liipi: :P .' : j: on . • • j • •:: iLllLLi. :-:;j. . • ::: i:::: —! • • IF \ .1 "it p:jip .: p. e it • : : : . ; . : : : i::: i: • . ~:.::.:: :!.• SI. .::. i! • :::J:::. fiiHi;; ••: Iiiii ! : • : .lis 7 | : : • ; ! • ( ; • . ; . : J , i ; i : : : . : . . : | : . . . | . . . j .1 :: :.:l. . i^ijiiii iiiii •! i i !•• 1 . . . . . iiii ' . : . • ! . : : : .... j.... .. ..i iiiijii- i •rHr • I': Mil i•' • Hi:!: if . . . . . . . . .. i,.: "iiinn : : : : ) : : : : ' : : . ) . ' : : : i:.:j::i: i'ST iii: iiii i!:; -. . . . . '—- ,—:p-. . . . . . . . : : : ! : • : : . . | . . . . : : • : J : . : :::: ;i:: ; i' • :.rt :i;i TTTT m i i! .- 3 1 1" - -' i"" i' ... 1 :; j; } iiii ...i ... :: I-HI ' : ! . . ; ; • ' . : : ! : : • - i::! : : : : iiii 1 : . . : • — 4 — .. i. . •: 1 '.• rT TT IT . 1. .. 1 : : . . [ . . t Hi! jij; •'•A:'.: •:: j: . • . t: . .". ,T.:.i '.' .A.'.': T;:[TT:;: ! ; ! • Ill 1 ' 1—rp- , . j ;iiii:ii; •:••:•]•:. A. iiii I i:! j I:! i . i .. : i rfp"., •::: I'::: I : . i :..i' :' : : : . | . ; • • : : : | : : : : 1 .;: i: AAA, t iii: 1 ': i; • l :. L — 1 ..  i.... ::: i P' • i •••! • . • • i"; • •fijiiii 1 ;i:i • I no :!• : . . ! . — ! . . : : : | . ; ; : ;.'ij: liji i' • pi.: : • • . '• : i : ! " i : j • • i. •1 . : ! ' • : ' "i' •' ... p .. . • i. •:: • •(•••• iifi iiii : I:!:: •: i' '• .. i • "i •• : : : : ! : : : : :n: . . .1 ...I 'ill •1 ' : i. j • .. i... :!: i: " • : ' . ::::j:::: ::;i iii.; i.;. • A • \\\\ : . : : ] : . . • . ".: i: •: . . j:::: . . | : . . . iiiiiiii ::  1:: iifliiii :: :i . . . . , iji! i:: i i.ii. -—i iiii . . . . '•I !.:4"; i '.' ii" :iii!iii: '• | • . j; i ;• iiii ii!! . I'l i iiii ''iii . . . | . . , ' ! . . . ' . . : : ) • • : : : : • • ( : • . . : ; : : ! • : : • : ;:!ii ! : . : . . [ . . : : ::::|::.:: . . . . . . . . . ; ; ; ; ::;: l-Ar, Iiiii;'-.: ' j • r. • : j: •• • • i • •. ' . : ! ; : : : . : : ! . ; . : ifi'-iiii ;:.i •Pi . . . . i ij :;: • 40-J . .. 1..: 1:i: iiii: :- :!i'i: :iii|:ii: iiiijiiii iH! Ii!! (ii: ij!; i[ii : i!: • ,i • . . . I ; . : A . •• ii'il. . I : : • : ! : ... j...: . j iifl:;:. i:! i j i i i: . . . . iiiiliif if. iiii i j|! : - J 1 •i j ' . : , ! . ' : : : : : ; 1 • -. . : " i • . . • j: : iii;!i:ii • •', I •:: iii: :: :j :.: : : : : } : : : ; A. A- !:-! illl iTT; 1 :::•( - : . . . . | : : : : ! : : ' .1 — ... .1 — ] • ; < ' , .. -U .;: iiiitiiii ::::|:»; ;:::).:;:: .: j: XL'' r i i * !!] •' • i :d.U: pip:' ;' i ' • . : ! ! . . « ! » : • • j ••: •' ! • . :; 1;: iiiiiiii .1,1 i|:i 1 (. • p • !:T 1 , * ;i:'i::!i : • i .:. .. i .. 1. . ! i . . . . ) . . . , iliii-iii • i ! i iiii iii; • ; [ . ii i-i ill: i:.: p:; H—.. . 1 ' . :: -j ' •'. 1 j".. .:::|: . • i::  i ;:, :. i IIII Hipf. : : ; : ! : . : : :; P:::: iilijiiii 1 1!: i ]'' '• • : ' : \ : iiii . . , . , nm I , •i:f!i ..  1.,. , o ijiiliri; . ' ! ! ' . f. : " " ! " : • it:\ ;:!•!« IE ft $ }N : ::"" iliiiii-i HHjifi :.:: "A' : NG fcTF HT iiii \<A «k :\a lit! - (•• ' • • ..... j iiii iiii n:; 1 : . : : ! . : : . : :• I ': • I Ml; ii-::! i iiii ::!i iii! I::K 'i t •i-H-. . . ; ; } • : ; : : : ; : v1 r :"i 1 iff! I!:': if:: IP jt:i , , ?! ii:;]"f — I :iiij;::: : [.  i. :. Hipii .: .11 ,:::f • a '• '• ', ii;:!!::: : ;:i 1,.. • 1! i M  ! '. | . 1 • •• ppp p'|P: :ji;.!:;:.: tlf! t * • j !!1! TA.4 (Jhf: ::r: . .j. |i:!i !fq I r" -4 I • . iiifi *:-:!  ii':-' f:,i|:-i: ::p;::: :; i i iii: ..X: AAA ::::i:::: :;:H J • . . : : : ::i : i: A * ip 1 •. • iiill^i iiii •:jt|i;' • 1 ::::{:!:; ::::!;-:: :::: i:::: :!:.:: ! * t 1 .';li A firt fit! -T r Ililhii ! ii ! iiilllj: :i::li:ii :r::|:::: 1 •::1;:; • ]•• •  ( • • i. i-i ill' i ; n l i r-i n !:![! mi m nn P; : ! ; : til: : h:: Il!:j::t: !-: 111 i:-: j i.'l};::: {, . ! aa, I" r .. 1:.;. r: :;i All jfii V til-;.*-titt .iiii If I 1 $ tip _-rtr M f T jliijiiii piflHH tit!|:':-;i :::;! !1!I lit'I iiifiHJ! ! ! ; . , | . . . . jiiiipi iri-liii! M _~. ilit v\H WW i,':tt "iiii r t : T i • I t f i •fn± TTTT lifi TTTT IN :. . t i . .; H; r ftli •tit. t H IHI -fit: iitte tj-..* m -^~T • -Sit ml Mm t ' . . . .. 1.1.... P: : ! ' : : : ii.ij. 1 i i . HI : i-tn .:.:;) II. 4 iililllitll ii-iT > r; — •ft-i r p • r tf •Ml iii Iiii iii; ::'.:: fiff TTTT H ' r-•rr  tjri TIT. :ti|t •rrrr m L | T&tlf t ri.lll.i "i:iiiil #hh 4.*i-.i • i 13 — i f 44^-Tlri i r i •till rritt ijiirtfi Tltjfl § m ;l:lj!:i! t • • • :i:rir - lt i; r#4 £m 4-f i-f-P i:fiii il'iiillli :Jl:: Tf: IJlf iiii: Ttifft ;• ffH fiji • lit [iiii ii :.l i i;:i •t; •rrrr Ii!!' i n 1 \" 1- •: T ri ri r: ]•!# r:i: •til i •• 'T'l fHi iln f i iff! |. j;:. T I T lG •In s L C l.::r 1 mmmtl I.Uj :: j! ijii BB Ml HI mJB IB m Tfr nr. TTf" ii flfi :i:!n: *¥-• .•iii }••'• :lli :: I: llil llil |- -1 -j i-| » H i t ; • ii iii :.ttt it:' , i III ii;i iig !u:. •:rr.i rrtf -t • t i4::Hii ft ::.-• :.;ir:::. : '•-! i — .. ::.;r. rj.ii rrrr j-f-lt -rrrr ill'!: ' iff ' 'ti .: i : . i : : : . iiiiiii!: ::::l:::: rttr frvr iiii ii Tt-rttt : : • : ] : . : : ;i,i :r . • • • i • • Tilbi: ill ll- llil yl'li H'l; ' 11 ; t tn It i ' : : I i iifll ": i 11 20 llilj jjr " . . . . i .. ..:! ifOM ill! iii! 1 i I-i ii : i il {1 M t * M i ;! lir .:; i 'i; • • | — IIQI. l~ -rfrri :::! • ; ; : 4 1 ii 1 -t|-|-Iiii ;-l4 iii! ti t--ii ri . , . .. ;.;!.! it -f- :t-t 11 i1 1* — 1.  i. -ii:i:;;i . |;: j.:.... • ::l: :: illj-fl .... pi: r itli M iitt-'0 ' V " 1 i Hi 1 I •"• 1 ri :i::: .:l:|:lfi I i •!::l:.:l :ii:|'rr;i .".[.::: :: I.; II !!f|; 3 i l i'l'i i i i - IT 11 ; i i' . .. 1. . . . • • • 1 • ,. • iii;!-: : n i::;: ••••l ... 1 — iiiiliiii iiliiiili .. . j . . :. :::: 1 •::: tf:t ii': ii ill -lllii •:' iiiiiiii ..!.:. ... . j !1J! l!|i riif ii Mil iiiiiii. :ii U: lli: il i: : ;:j: : Ii- ;-i!t nil liiil! < : 1 .if'": .1 . : ' . 1 . . . . ii j: iH] Iii- an ;i jl i;;S iii! iii; :.' j:.-; I • feo :.  j: :. . i.. :;:j.: . . . iiii -:::-|. if 1" ' ' •' j • •:.!.: •: . . . j . . . . .... .:•!:;:: ....).... i •'' •::: t iiii Iiii : 111 |i:i t ii njx • i • r • : : : . ( : : : : liiijiii; •if ' i 11 ill ip!:.! llfjl.l "Ii 11 . i . • ii : : : ' iliiii ii ;:: — TTtT t .jiii. |!1 i i:.: •: i = |- ... 1.. . 1 !JiiJ! . . i.. :': — :':ij. ;: . I .; . ..: i:!.": ... .1. :. iiiiiii'. r • •  • .... lllj I'iTT '.ill ij tin II in! ii 'iii •4; iilij.'iii. iiiiliiii i.|. i'iii : :•![.: j ": • -iliiii • •it ji i | . 1 j 1'. •io .-.ii I:- rijlii . i i.ilj. ill! i - 'i ijii il Ii i-i'l i: ;i11 , i d i l l • 1 ' : i... ••.:.]..•• :iilj.iiii Iiii Jr'-' 1 i ii i||! nil , 1 ' — I. l::i|i::i !!:l III! ! ! I' 1 I .j 1 i i r :; ji liji ii t in. .) i. • • ••'! ': ... j .. ... i.. .. iiii :lij nit iiii: Iiii i i i ; Iliiii" . .: i:::. "' W .:"!:. . .:: i:. " Iilli::ll iiiiji::: •:l..i. .-'iii iii! It II ' * ii llil 1 Ifjl f HI .ii: i.i 11 :•:!:•. . • . [ : • i: •: .1': p.!:;:  :::: I:::: i:|..:l Iiii ' i l l i i i i ; , if .:: 11:: : ::! ..::i:;;! ':: i 1: i .1 ; i j i i iiii i • 1  iiii iiii ! iiii : j. i:|i!ri: liiljiiil .... I.... i 1 i 1!:: i : ill"" Iiliiiili TI mi**! Tl iiii ill.: .hi. •sr 1 :: :j ..: iiilil:" iiiiliiii .::ij::l' P 1;' j DS | m on I T : : ... •:!:.: : i: I::.. .::_] :.. .ow s LOP£ ilfuD >LC| Si JPHiHU PR iii! iEV :i:i ....i.i m 'it m -::ljlill iiiiiiiii1 bLC ,.!| iiii Jill Tl'H 1 if iiii "i ". • .:.'!:: i iiii iiii. iii! t... i'iii . . i t . ]: iiii ri;; itJlw • if iiii If-iiii • : : ; : ( : : • : :!:: i i::. Il:i|;ill :i"H lii:l iiii i f i 1 ' I . Hi • 1 fi iiii i'i 'II - [ .. t iiiiiii •m i::: &' ; ! ii It -iii! pf ?! I! I Iiiiitffi - Mi i- :!:•: . : : ' ! ' " • illilin. iii;|::'. Iliijilii : i.. J ; : . . km :'tti" Mf Y.y. •»: ! Si riif liili! -iTf ii;] 4i:| i ifi' |il ltt| f ml.!;:]::.I I::;|:::; • i'i ... i .! .r:ir Iiii {iliiii -; rr liH Iiii -flit a Viii i " tht it"* Hr r-rrr " • • j • • iiiiliiii .:: 11:: :i|!|;;:: iiijiii! :•;: i .Iiii i.i i r :..L •i-H t Hi ill { t;i! 11 r m m •Srim 1 .;:; iiii .:  :l.:;: •i|';i|;lll . . . 11, .. ::::.!:•: i.i mm T- IT :: i: 4 ifit Si! % iiii tfi.il , i f SHE i Mi'lill i! j; i::.: •i! ' 1 1 • : : i ..'iliiii1 , 11;!, i ; ti iii in i iiii iiii ::::|!iif i\ ii tiff •ii' rijt il"-i 1 iilfi !ii 4 14-Sir irti Tlif i i i i I i f 11. 1 - 65 -The i n f l u e n c e of p o s i t i o n on slope on s i t e index was important (Figure 6 ) . Low slope'and middle slope p o s i t i o n had* the h i g h e s t average s i t e i n d i c e s (S.I.118 and S.I.117)• S i t e i n d i c e s were lower on upper slopes and on r i d g e s . S i t e index decreased w i t h increase i n e l e v a t i o n (Figure 7)« However, the v a r i a t i o n was broad. A b e t t e r r e g r e s s i o n l i n e could be e s t a b l i s h e d i f the data were d i v i d e d i n t o two groups, the f i r s t group from 200 to 1,300 f e e t e l e v a t i o n , and the second group from 1,400 to 2,500 f e e t . The r a t e of decrease i n s i t e index w i t h increase of e l e v a t i o n i n the f i r s t group was not as l a r g e as i n the second group. These g r a p h i c a l analyses i n d i c a t e d t h a t aspect, percentage of slope, p o s i t i o n on slope, and e l e v a t i o n are usable v a r i a b l e s f o r the e s t i m a t i o n of s i t e q u a l i t y from a e r i a l photo-graphs . COLLECTION OF FIELD DATA During the summer of 1959, the months of May and J u l y were spent i n c o l l e c t i o n of f i e l d data. A f t e r c o n s i d e r i n g the s i t e f a c t o r s used by H i l l s (1950), and Choate (1958), the f o l l o w i n g v a r i a b l e s were chosen f o r study: (A) Items r e q u i r e d to confirm the photo c l a s s i f i -c a t i o n , (B) S o i l f a c t o r s f o r c o r r e l a t i o n w i t h photo c l a s s i f i -c a t i o n , (C) Y i e l d f a c t o r s f o r c o r r e l a t i o n w i t h photo c l a s s i f i c a t i o n , (D) Stocking, and (E) Cruise data. D i f f e r e n t - 66 -classes were set up f o r each variable, and these classes were coded to f a c i l i t a t e recording and analysis of data. (A) Items required to confirm photo c l a s s i f i c a t i o n Code (1) Aspect: In azimuth reading. l°-360° Level s i t u a t i o n (less than 5 per cent i n slope). L (2) Local p o s i t i o n on slope: Level s i t u a t i o n . Low slope. L Middle slope. M Upper slope ( H i l l ) . H Ridge R Low seepage LS Middle seepage. MS Swamp. Sw (3.) General p o s i t i o n on slope: Level s i t u a t i o n Low slope. L Middle slope. M Upper slope. H Ridge. R Swamp. Sw Rock Rock - 67 -Code (4) Per cent of slope; In percentage 0-100$ (5) Shape i n p r o f i l e : Convex. C Straight. S Concave Co (6) Shape i n contour: Convex. C Straight. S Concave. Co (7) Elevation: In hundredAs of f e e t . (8) Distance to the nearest creek: In hundred's of fe e t . (B) S o i l factors f o r c o r r e l a t i o n with photo c l a s s i f i c a t i o n . (1) S o i l depth: In inches. (2) Moisture regime (after H i l l s , 1950): Extremely dry: S o i l i s always dry. Available moisture i s extremely low. S o i l p r o f i l e i s f e a t u r e l e s s . Generally t h i s s i t e i s found on d r i f t i n g sand, extremely steep eroding loam or clay banks, on bare bedrock, or on ridges without s o i l . Q Dry: S o i l dries out over long periods. Available moisture i s low. S o i l development i s better than at the former c l a s s . Generally these s i t e s can be found on very steep slopes of r a p i d l y permeable sand, on steep banks of more slowly permeable clays and - 68 -Code. loams, and on very shallow material over convex bedrock. 0 Somewhat dry: S o i l dries out temporarily. Available moisture supply i s moderate. This s i t e is' commonly found on moderately permeable materials with a water table below the tree roots. 1 Optimum (normal): Available moisture supply of the s o i l i s adequate. The influence of micro-climate i s normal on both s o i l development and plant growth. These are the s i t e s of the normal or zonal s o i l s . This moisture regime i s generally found on moderately per-meable material. A water table i s a v a i l a b l e . Optimum moisture Regime i s not the average f o r a clim a t i c region; i t i s the optimum moisture which i s required f o r the development of zonal s o i l s and climax vegetation. 2 Somewhat moist: Moisture supply i s more than adequate for a small portion of the growing season. Below the B horizon the s o i l i s dry. This s i t e i s found on slowly permeable clay loams, and i n shallow sand over a somewhat impermeable l a y e r . 3 Moist; Moisture supply i s more than adequate f o r part of the year. This moisture regime can be i d e n t i f i e d by development of a g l e i layer or a shallow layer of organic matter. These g l e i s o l i c mineral s o i l s are found on r a p i d l y permeable s o i l s with a high f l u c t u a t i n g water table, or a slowly permeable s o i l with a seasonal water table. Excess moisture causes cool s o i l and poor root-- 69 -Co ing below two and a half f e e t . Somewhat wet: These s i t e s are saturated with water six to twenty inches from the surface of the mineral s o i l f o r most of the year. The s o i l i s generally covered by a thick layer of organic matter. Excess moisture causes cold s o i l and poor rooting below one and a half f e e t . Wet: S o i l i s saturated with water close to the surface (a few inches). Excess moisture causes cold s o i l and poor rooting below one foot. Very wet: There i s a continuous saturation of the surface of the mineral s o i l . This pre-vents decomposition of the organic matter which constitu-tes peat or muck. This peat i s usually three-four feet deep. Excess moisture l i m i t s rooting to accumulated organic matter. Extremely wet: Water table exists almost to the surface of organic matter. Saturated: Saturated s i t e s may or may not have an organic matter layer. They comprise marsh and deep bogs. Water table exists at the surface a l l year.. (3) Permeability (after H i l l s , 1950): The following permeability classes may occur either on mineral or organic materials. - 70 -Code Instantaneous: There are no f i n e s o i l p a r t i c l e s which stop the movement of water. Mineral material i s commonly gravel and large stones without s o i l Organic material, which belongs to the permeability class, i s peat. This peat i s commonly so dry that the water, pass-ing through the s o i l , does not wet i t . Q Extremely r a p i d : Extremely rapid permeability i s c h a r a c t e r i s t i c of coarse sands and loose medium sand s o i l s . The water only moves r a p i d l y downward but water vapour can r a p i d l y evaporate into the atmosphere. This permeability class occurs on sphagnum peat organic s o i l . 0 Very r a p i d : This permeability class i s c h a r a c t e r i s t i c of very previous s o i l s , such as the loosely packed f i n e sands, f a i r l y compact medium and coarse sands, and gravelly or bouldery sands. Poorly decomposed peat moss of organic s o i l s represents this permeability c l a s s . The water moves r a p i d l y downward and water vapour can pass f a i r l y r a p i d l y upward i n these s o i l s . 1 Rapid: Water movement i s rapid i n the loamy sands s o i l s . The rapid permeability class occurs on moss and woody peat organic s o i l with some decomposition. Gravity water moves f r e e l y downward and water vapour f r e e l y upward. 2 - 71 -Code Moderately rapid: Largely compact f i n e sand, somewhat compacted loamy sand, s i l t y sand and sandy loam s o i l have this permeability c l a s s . Organic materials of this permeability class are muck and peat with some sedge. 3 Moderate: This permeability class i s the c h a r a c t e r i s t i c of moderately previous s o i l s such as the sandy loam mineral s o i l s , or the muck and peat, and sedge and muck organic s o i l s . Gravity water moves slowly downward and water vapour slowly upward. 4 Moderately slow; Gravity water moves slowly through the s o i l s which have th i s permeability c l a s s . Normal moisture regimes are commonly found on mineral s o i l s of th i s permeability c l a s s . Mineral s o i l s of this class are channelled s i l t and clay loams. Medium tex-tured, f a i r l y well decomposed peats and mucks of organic s o i l s belong to this permeability c l a s s . 5 Slow: Slow permeability class i s the c h a r a c t e r i s t i c of moderately well-channelled, impervious s o i l s , such as massive clay and s i l t loam. Pine textured mucks belong to this permeability class of organic s o i l . 6 Very slow: Impervious s i l t loams, clay loams, and clays of mineral s o i l s which are poorly channelled, belong to th i s permeability c l a s s . Gravity water moves through the channels, but these channels are small and - 72 -Code infrequent. The organic s o i l s of this permeability class are mucks and peats with a moderate percentage of sapropel (organic ooze). 7 Fractured impermeable: Various types of channelled bedrock; usually sedimentary limestones, sandstones, and shales; represent this permeability c l a s s . Fractured impermeable class may also include many hard-pans of both geologic or pedologic o r i g i n . 8 Impermeable: Impermeable bedrocks, generally granite, gneiss and other igneous rocks, belong to this permeability c l a s s . However, massive methamorphic and sedimentary rocks may also belong to this c l a s s . 9 (4) Texture of s o i l : Loamy sand LS Clay - Loam CL Loam L Sandy loam SL Sand ;S S i l t y loam S1L S i l t S i Clay C Sandy gravel SG Gravel G Peat P - 73 -(5) Portion i n rock: In percent (6) Humus layer thickness: In inches , (7) Ag layer thickness: In inches (C) Y i e l d factors f o r c o r r e l a t i o n with photo c l a s s i f i -cation (by species). (1) Total height: In fe e t . (2) Age at breast height: In years. (3) Total age: In years. (4) Site index: In f e e t . (5) Growth i n diameter inside bark at breast height from one to five, years ago; In millimeters. (6) Growth i n diameter inside bark at breast height from s i x to ten years ago: In millimeters. (7) Double-bark thickness at breast height: In millimeters. (8) Diameter outside bark at breast height: In inches. (9) Most prominant lesser vegetation. (D) Stocking Good stocking: Sample plot i s 0.05-acre (radius 26.3 f e e t ) . Medium stocking: Sample plot is'O.l-acre (radius 37.2 f e e t ) . Poor stocking: Sample plot i s 0.20-acre (radius 52.7 f e e t ) . - 74 -(E) Cruise data (by species and two-inch d.b.h. c l a s s e s ) . Two hundred and t h i r t y - e i g h t sample plots were established by the author and Dr. J.H.G-. Smith within the types on the A. and L. portion of the Forest. The centers of the sample plots were marked on the a e r i a l photographs, and trans-fered to the base map (Appendix C). Types sampled were well di s t r i b u t e d over the area. One plot was established per type by random se l e c t i o n i n a representative p o s i t i o n within each type sampled. McBee punch cards, form C 5 1 3 5 9 , were used for c o l l e c t i o n of f i e l d data. The variable classes were d e s c r i -bed by t h e i r code numbers or code l e t t e r s on these cards (See Figure 8, on following page). On the sample plots, a l l topographic variables were estimated with the exception of slope, aspect, and elevation. A hand compass was used to determine the degree of exposure. A Haga height-finder was used to check on slope per cent. S o i l data were measured or estimated from a small s o i l p i t , which was established i n the center of each p l o t . One dominant or codominant tree was chosen f o r each major species present i n the plot as close as possible to the center of the plot to measure the y i e l d factors and determine the s i t e index. Tree height was measured with a Haga height-finder. Sample trees were measured with a diameter tape and bored with an increment borer to determine siz e , age, and growth at breast height. Years-to-reach-breast-height was estimated by counting rodes, where possible. To follow page 74 / / o -O-o -o o o o o ! O -i o-i o4i -;s o -o o O o o o G c -c o 13 c o °"iH O o c c-o o o c 7 4 2 1 O G O C 7 4 2 1 o o o o 7 4 2 1 0 «5 = o T-4 t4 TO O I 2 t L o o c l Z » £ C> o o o 01 II 21 I Z • L O O O O O O o " ° ~ o - o - o - o - o - o o o o i ) i o o o-o-o-11 o o o o o -o -- o - o ~ o - o o -o -o o o o o -o -- o - o - o - o O' o o o ' o o o -o ~ Q -o ! o -o o o 3 o o o o o o o 7 4 2 1 o o o o Cruise data o o o o Type No. Stocking CD • bQ -p <; •H W 0 •» X CD CD rH cd -P o IH CD -p; •H CO 0 -p •H 03 CD a) I* CD O CO LA H I I H -p o -w X> -P M •p ft CD rH •H 0 CO CD a •rH bO >i CD CD -P ^ in -H £ rH -P •H K X> CD cd -P CD £ H in - H CD O to •rH o o o u <tH o o •H -p t. o +3 CD CD CD >s cd a rH rH CO S ft CO ft ft B -a; -p o CD P. o OJ O o •H •H CO O ft H rH Cd CD c CD C5 CD ft O rH 01 <H O CD o CD CD H •H o ft CD ft cd s ft CO c O •H -P cd > CD H W 125 -p CH CD o co CD cd CD I o I 2 • I O O O O o •H -P cd •p CD bQ CD > U CD CO CO CD I Z • I O G O O Figure 8 - 75 -The s i z e of the sample p l o t was chosen depending on the degree of s t o c k i n g w i t h i n the p l o t . For w e l l stocked p l o t s , 0.05 acres was used, f o r medium and p o o r l y stocked p l o t s , 0.10 and 0.20 acres r e s p e c t i v e l y were used. The most prominant species of l e s s e r v e g e t a t i o n were a l s o recorded f o r each p l o t . For c o l l e c t i n g f i e l d data on the second-growth area of the F o r e s t , eighty-three permanent sample p l o t s and t h i n n i n g p l o t s were used. Only the topographic and s o i l data were c o l l e c t e d on these p l o t s . Some of these p l o t s were syste m a t i -c a l l y l o c a t e d , others were randomly s e l e c t e d . Due to the l a c k of time and t r a n s p o r t a t i o n f a c i l i t i e s , only 26 p l o t s were e s t a b l i s h e d over the old-growth and s c a t t e r e d old-growth areas. Some s o i l and v e g e t a t i o n data were c o l l e c t e d along every road w i t h i n the Forest at 10-chain i n t e r v a l s . The s i t e i n d i c e s of a l l p l o t s were based on expected average t o t a l height of dominant and codominant trees at age one-hundred years. For the old-growth stands, s i t e index curves were used to determine the s i t e i n d i c e s . S i t e i n d i c e s f o r the permanent sample p l o t s and t h i n n i n g p l o t s were a v a i l a b l e from previous mensurational work (Smith and Ker, 1959). A stand t a b l e was prepared f o r the A. and L. p o r t i o n of the F o r e s t , showing the number of trees per acre by species, d.b.h. c l a s s e s and s t o c k i n g (Table 2 ). Area d i s t r i b u t i o n of f o r e s t cover types by sp e c i e s , age, s t o c k i n g and s i t e f o r the same area i s presented i n Table 1. - 76 -TABLE I Area d i s t r i b u t i o n of fo r e s t cover types on A; and L. portion of the Forest by species, age, stocking, and s i t e 1. Species 2 Stock, S.I. Composition Age -ing 3 80 110 140 170 200 Total (Area i n Acres) FHC 1 G 9.9 - - . - 9.9 M • 31.1 3.8 8.4 - 43.3 D 15.2 11.7 - 26.9 2 G 11.1 28.9 70.8 19.5 - 130.3 M 30.7 57.2 38.8 24.4 - 151.1 D 14.1 8.9 - - 23.0 HCF 1 G 3.9 32.0 - - - 35.9 M 6.5 - - - 6.5 P 2.7 18.3 21.0 2 G 8.6 198.6 173.9 26.5 - 407.6 M 41.3 18.5 42.8 - 102.6 P 2.1 24.2 26.3 HC 1 G - ' • • 41.0 8.4 26.9 76.3 M 22.6 21.1 58.0 16.6 118.3 P 19.9 20.6 6.6 - 47.1 2 G 96.0 184.6 357.7 88.9 - 727.2 M 87.0 87.2 49.5 19.7 - 243.4 P 10.6 9.8 - • - 20.4 CH 1 G 8.8 36.1 14.7 - 59.6 M 19.3 14.4 34.7 - 68.4 P 45.3 27.4 22.8 95.5 2 G 87.9 169.7 204.7 56.1 - 518.4 M 58.4 149.5 38.3 20.4 - 266.6 P 34.3 36.8 3.2 - 74.3 HF 1 G 3.8 - - ' 4.5 - 8.3 M 3.2 11.3 4.1 - ' - 18.6 P 5.0 8.1 - 7.9 - 21.0 2 G 2.5 3.6 40.3 8.2 - • 54.6 M 42.3 27.7 32.1 - 102.1 P 8.7 5.9 • - - 14.6 Total 722.9 1,266.8 1,203.2 299.3 26.9 3,631.4 1. Species- Douglas f i r , F; western hemlock, H; western red cedar, C. 2. Age- under 20 years, 1; over 20 years, 2. 3. Area of stocking c l a s s e s ( i n acres): Stocking: Good: 2,102.2 (S.I.130) Medium: 1,133.1 (S.I.120) Poor: .395.1 (S.I.80) Total 3,631.4 acres TABLE 2\. Number of trees per acre by species, d.b.h. cl a s s e s and s t o c k i n g Douglas f i r Western hemlock Western red cedar d.b.h Med- Very Med- Very Med- Very Classes Poor ium Good good Poor ium Good good Poor ium Good good (Inches) 2.69 3.64 (Number of t r e e s ) 0 0.83 4.47 25.83 68.48 49.90 145.00 10 . 4 2 37.37 66.00 171.00 2 3.75 8.95 7.38 10.30 23.75 47.63 75.60 306.00 20.00 41 . 0 5 91.80 284.00 4 4 . 17 7 . 0 5 7.11 29.10 11 . 2 5 21.59 63.40 302.00 9.58 14.74 56.40 106.00 6 2 . 9 2 5.00 5 .24 10.90 4.17 2.90 29.30 109.00 4.58 2.63 21.90 37.70 8 2.08 0.79 3.09 10.90 0 . 4 2 2.30 13.60 29.10 1 . 2 5 0.80 7.11 — 10 0 . 4 2 1 . 0 5 2.55 3.64 - - 6.04 7.21 1 . 2 5 0.53 2.95 -12 0.42 0.26 2.01 7 . 2 7 - 1.61 - 0.94 _ 14 - 0.26 0.81 - - - 0.81 0.40 16 - - 0.13 - - - 0 .13 - - 0 . 2 7 — 18 - - 0 .13 - - - 0.13 — — _ 20 - - 0.13 - - - - - - — — No. of tre e s per Acre 1 4 . 5 8 2 7 . 8 3 31.28 7 6 . 3 5 6 5 . 4 2 1 4 3 . 4 4 2 4 0 . 5 2 8 9 8 . 3 1 47.08 9 7 . 1 2 2 4 7 . 7 7 5 9 3 . 7 0 TABLE 2. (cont'd) Number of trees per acre by species, d.b.h. classes and stocking : : STETca BaT= White pine Yew spruce sam Western cherry d.b.h. Classes Poor Med-ium GOod Poor Med-ium Good Very good Med-ium Good GOod Poor Med ium GOod Very good 0 0.80 0 . 5 4 1 .67 4 . 2 1 2 . 5 5 1 0 . 0 0 0 .16 - - 3.1b 1.88 -2 0 . 4 2 0 . 5 3 0 . 1 3 1 .67 2 . 3 7 1 .21 - 0 . 4 8 0 .13 6^27 - • 6 . 3 2 6 . 4 4 -4 0.42 - 0.13 - 0 . 2 6 - - - - 0 . 2 7 0 . 4 2 2 .11 3 . 7 6 3 . 6 4 6 - - 0.13 - - - - - - 0 . 6 7 - - 1 .75 •-8 - - - - - - - 0.16 - 0 . 6 7 - - 0 . 2 7 -10 - - - - - - - - - 0 . 5 4 - - - -12 - - - - - - - - 0 . 2 7 - - — 14 - - - - - - - - - - — — — 16 — — — — — — — — 0 . 1 3 No. of trees per Acre 0 . 8 4 1 .33 0 .93 3 . 3 4 6 . 8 4 3 . 7 6 1 0 . 9 0 0.80 0 .13 2.82 0 . 4 2 1 1 . 5 9 1 4 . 1 0 3 . 6 4 TABLE 2. (cont'd) Number of trees per acre by species, d.b.h. classes and stocking Red alder Black cottonwood Aspen Western white bi r c h d.b.h. Med- Med- Med-Classes Poor ium Good Poor ium Good Poor ium Good Poor Medium Good 0 T7F7 2711 0757 - 1.58 0.13 1757 0726" 07T3 0T42" 8758 4.16 2 2.50 0.80 4.03 1.67 2.63 1.07 - 0.53 0.13 2.92 8.68 6.44 4 I .67 2.11 5.91 0.42 0.80 0.40 0.42 - 0.13 1.25 3.42 4.56 6 - 2D.. .05 4.7© - 0.26 1.61 - - 0.13 - 1.58 2.69 8 3.49 - - 0.13 - - 0.81 10 2.01 - - 0.13 - - 0.13 12 0.94 0.42 - 0.27 -14 0.13 - - 0.40 - - 0*13 16 0.13 - - - - - - - 0.13 No. of trees per Acre 5.84 6.07 22.01 2.51 5.27 4.14 2.09 0.79 0.52 4.59 222?36 19.05 Broad l e a f Lodge-pole Other d.b.h. maple pine deciduous Classes Good Good Good 0 - - -2 0.13 0.13 -4 - - 0.27 6 0.13 - -No. of trees per Acre 0.26 0.13 0.27 Very Totals: Poor Medium Good good No. of trees per acre 146.71 319.94 587.76 1,582.9 Acres sampled 2.40 3.80 7.45 .28 - 80 -SUMMARY AND ANALYSES OP DATA The f o l l o w i n g t h i r t e e n independent v a r i a b l e s were used f o r the analyses: Aspect, X I ; L o c a l p o s i t i o n on slope, X2; General p o s i t i o n on slope, X3; Per cent of slope, X4; Shape i n p r o f i l e , X5; Shape i n contour, X6; E l e v a t i o n , X7; S o i l :dep£hy-X8j Moisture regime, X9; P e r m e a b i l i t y , X10; S o i l t e x t u r e , X l l : Humus-layer t h i c k n e s s , X12; A2~layer t h i c k n e s s , X13. The average s i t e index f o r Douglas f i r , western hemlock, and west-ern red cedar trees measured at each sampling point expressed as t o t a l height i n f e e t at 100 years, was the dependent v a r i a b l e . V a r i a b l e s one to t e n are the p h o t o - i d e n t i f i a b l e v a r i a b l e s . Tabular a n a l y s i s The f o l l o w i n g t a b u l a t i o n of f i e l d data of A. and L. p o r t i o n of the Forest was set up: Average Number s i t e index: of p l o t s : (1) Aspects: North 125 13 East 120 55 South 116 78 West 123 86 F l a t 108 2 A l l 120 234 - 81 -Average Number s i t e index: of p l o t s : t (2) L o c a l p o s i t i o n on slop e : . (3) (4) Per c L e v e l 118 16 Low 121 33 Middle 120 53 High 104 17 Ridge 105 27 Low seepage 131 47 Middle seepage 136 29 Swamp 81 12 A l l 119 234 a l p o s i t i o n on sl o p e : L e v e l 133 11 Low 129 73 Middle 126 73 High 113 16 Ridge 105 36 Swamp 88 16 Rock 76 8 A l l 118 253 ent of s l o p e : 0- 4 106 11 0- 4 128'"" 6 5-10 124 70 5-10 126* 65 11-20 124 66 - 82 -Average Number s i t e index; of p l o t s : (4) Per cent of s l o p e : (cont'd) 21-30 117 28 31-40 119 25 41-50 100 9 51-60 110 2 61-70 78 2 71-80 83 2 81^90 75 2 A l l 120 217 ^"Excluding swamp types (5) Shape i n p r o f i l e : Convex 114 92 S t r a i g h t 117 63 Concave 126 80 A l l 118 231 (6) Shape i n contour: Convex 114 92 S t r a i g h t 119 80 Concave 125 59 A l l 119 231 (7) E l e v a t i o n : 0- 400 133 2 500- 600 124 22 700- 800 128 15 900-1000 136 36 - 83 -Average Number s i t e index: of p l o t s : (7) E l e v a t i o n : (cont'd) 1100-1200 135 38 1300-1400 110 29 1500-1600 110 28 1700-1800 108 34 1900- 94 9 A l l 121 213 (8) S o i l depth: 0-10 107 22 11-20 116 105 21-30 125 79 31- 128 9 A l l 119 215 Also summarized by 1-inch c l a s s e s (9) Moisture regime: Dry 91 27 Somewhat dry 118 121 Normal (optimum) 140 48 Somewhat moist 140 5 Moist 117 6 Somewhat wet 111 7 Wet 89 6 Extremely wet 50 1 A l l 119 221 - 84 -Average Number s i t e index: of p l o t s (10) Pore p a t t e r n : Extremely r a p i d 90 6 Very r a p i d 118 176 Rapid 132 29 Moderately r a p i d 123 6 Moderate 88 2 Moderately slow 125 1 Slow 65 1 A l l 119 221 (11) S o i l t e x t u r e : Sand 118 147 Clay loam 140 2 Loam 130 2 Sandy loam 130 44 Loamy sand 145 9 Sandy g r a v e l 100 8 Peat 82 6 A l l 120 218 (12) Depth of humus layer.; i n inches: - 0 105 1 1- 2 115 15 3- 4 118 61 5- 6 119 56 7- 8 125 41 9-10 123 28 - 85 -Average Number s i t e i n d e x j of p l o t s : (12) Depbhof humus l a y e r : i n inches (cont'd) 11T12 115 14 13-14 167 3 15-16 123 5 17- 95 6 A l l 120 230 (13) Depth of A 2 l a y e r : i n inches: 0 123 139 1 122 41 2 111 28 3 104 12 4 110 10 5 98 " 2 6 125 1 7 100 2 8 70 1 A l l 119 236 The numbers of p l o t s were not the same f o r each v a r i a b l e because some p l o t s were incomplete. Prom t h i s tabu-l a t i o n of data separate graphs were drawn f o r s i t e index on each v a r i a b l e . The f o l l o w i n g graphs i l l u s t r a t e the l i n e a r r e g r e s s i o n e x i s t i n g between the s i t e index and v a r i a b l e s : F igure 9 t o Figure 21. To follow page 85 ill-it fill ; I:.; :: :i ;::! ii Hi! 'H* TT iiii. :i TT ii-j TFT nrfr liilliiii TT ii: :;f; +Xr: iHIF ••-+r TtT. 1-1U ijilrf iiii i — -:. 1T4 S i i I i i i i ipl lit ill i "t' I i .ij, ii: i iiiiiilii iiii|iiii : xi;. • T; iiii T - ' T T ii!5 1.1.1 4;Xi ±Hir i T -Itii 1 Ipipil , r xu-; iHll 1.141 -:;::.:::•: '• \ i it lik: iiii ilL.l.l .. r:r..l:in .......... iii-ifi-Hi l.'TXt .iiiii ife iLilj •rrt-UU- • iiii •it r$ it-ti fttf tit • u " TT~ til ::.z: ..::: . . : : ! . : . . i-ifl-i-: .; rrr i i l f c i liijliii? iiiii iiii j~ i l l s +br 1 . . . . ! 'rili til'lti iii l H i p ! ;:;:i:r:i rri: i: :i irri trrr — i riff1 illL. TI ;' . . .:1:... 111! i::: — i — •i-jJi-L JTI: ;::t ::.f ]iii kr i'.ltl ;:U.r 11111 : i ; ; — t i n ft "rui^i frr^T^TT i iiiii! iiii Iii: ITi iiii :-;:ff ::::i:;.: ir' W. i;tt k » tf;l ti n ' tni'i' iff iii: ;.ji: i... i Iiii . . : . rripi : :h i:.::. iiii • I K Tt|! .'T v.:\ : ir :i1: :;:; ;'•. eiiiti^liHi 1 . iiiiiiii l -Hi:: ji-;: Iiii ,„i „ i'i: "|; ;!'' ; ;| tijf iiii .... .. I iiiijiiii ;u.:..i.i. iii ill: ihi ! ::::.:;:: T lia-iiii iiiijiiii ill-far - I T . ' : ;u: •ii jfi iir -ii iH . t i l i t 5 J . vllti;:. ::;;|r:::: li!;flili Si ..  |.. Iiii v,:. r ;:rn |1.L;. il.:ui. .;.(rt frf. l l l l m . . . j . . . . tilt.! . .. — iiiijiiii iiiiiilii:! i|fi !:rr! if. r ill! iiii "Ii: r i h ; ITTI / J J S : iiiiH;: far- iiiijiiii iiii uii . . . . tHi-l! K) ii p? :.':i ::::|;ii: )! ill! III! tttJtMFTitTtl" :ji; ji! iii 'ii! it; .: :|:-:: ••..p.. ... i,::: .iiiiii! Ijiliiii :..i|i:.i .,i||:,i iiiiii.: i t 5} iiii tit j;;; tTTT iiii iiii !;; uii iiii iii:- : - - • j . •: ]•:•; Iiiiiilii ! 1 "ii •:;:]:::: ....| .: .:::] .:: •::: jiii. iii! iiji ill! j|!t :.:;{.::: '•ft 1 :::" :..i.::i iiiiliii! iinjin: iir! iiii ;; i: TTtT TTtT TTTt Ttf. TJTT iiii Iiii iii. iiii M ......... .iiiiiiii : : : : ) : : • : Iiii|iii! iiiiiiii-: .... j... ::-i:|:::: • 1 ..., -iii! l.l: .i I; I . . 1 :.:; i:::: • • ! . i .i: j.:.. ::iil;i.| -r:-| : •ii iiii itii" iii; iiii iiiiii n: ::.:.!:.:. , iiitii: lllllli:: :|i|j:i|i lii-i]i!ii iiii 1 ; . , iih ;|:j illj nli pflflp .:. j.... i :: i '•!:! iii it:: -: iiililH.; "'Ill" iiij IHI : : : 1 1 ' .' : : t .:. I:. i: . ; . : i 1 . . . iiiili- i t lilijiii: 1 :•!•:! !!ii •!:!i i;i; I! i'i IliT !||! Wm Iii 1 t ! • ' rr i j:' i. ii;:!;;:' .i 'I:.:: • :. |.:i: iiiiiiii! 1:11. iiii i: :i iiij 1.1! i 'iiii '! ! i' :i i # ri :;i! i::: ... I .::i niiiiii Itii t i l t : iiiijiiii iiiiliii; ..  1.  i : : i : ! J : : ;•; iiii-• ji. .ji.: III! Hit f H i i i i i i l l i l i i S ; "wi l ^ i i i ! iiiiliii! liii ill;! in; iiii iin: iiii M M M Iiii :::.:|:::: if- :: :{.::• t i t t Iiiijiiii .:: i nil Iiii H:i i:!i 1 iiiiliii! ; ; ; ; ...... iiiii;-::: I:; • :i!:i;:;i iii! iiii i iii ! !i: P l l l l .•.:!.•:: AO !!::il:;: • Iiiii . . , . 1 . . . . •:::j: '••'A i;ij Iii: •.. j. . • i- i i ;:;:i;:ii i;:;i!ii: ;:::|;i;-i . . .,1 . . . iiiii.-:;: :::i ill! .,.:.! iii! •• • i - -, - Y — . ...i •.: • iiijiiii ill! :..i: iiii -; p: i i"t i 1; 1 i ! > 1 i iiii Hif iii 1 .• . . . . . . . . ..:!! ' ' iiiiiiii! iiij ii 1! nil in? ill: jiii •iiii iiii i; "i T i ,t ;;;• :::: iliijilil i:.H:ir: iiiiii;^. • • • ; 1 1 ' ' . .1 ..... . ::ii •if-i i'ii.i i. ll i:lii ...ll U-ij-M-ff L £ -iti ::':j:::: I ijao. t i t i ! H!!j!:! : : : ! : . . : iiii ' ' 1 : i::.! TTTT :::;|.::: ::::ti::: :::: it™ :ii;p;i . . . I . . . 1 '• i I1!! i|i| Ml! |!|i i, • .! "; 1 _ ,;jl|l'i " i •• •i-i.- •i-i ill! ii':: illj. i 11 j iiii i i i j i i Tiii ; ! ; : | : : ; ; . iiiiiiii! ,. • j • - . iiii iii! iiiiiiii! iii! I iiii A11; l i i i i j i i i l %-ili Uii ••'<: • • • : T 'IV " :'il!!ili -ijiiii in: Eftftt til- l i t i l t .LT.. . . Nil JRTH DT!: i : ; EA SO :lF . i n * i. • r;:r iii? -iii ;•!!' ;i;!' iiiiiiii! : : ; ! . : : . . . j . . ; t ! l i : ; : i;:!:.. i!:: j:.: 1: i: i:::: IHiillii iiiijiiii •:- i :.! i "J; i" 1...J j •'Hi mi till Hli- '•"-•:•.:}:;: l::|lii:i iiiiliii i;:liii:i i;:;ji.:: iiii[riii iiiiliii! !::.;• :ti.it lit ;;•;;; ;.[•;! iii;l i ,,, ,.. . ••.' j.;: • ijill'i I ' :ii!:; :: I'll jiii i:i( iiii Ji! 1 UIJ I!! III! I 4-tilt!! ::::!.:•: • i j. j:;.' i!ii|ii:i :-::li.*? iiiijiiii : 'i i iiij L:.j ir '' i' t , , , , it).!!5-: iiiiliii! iii i ! iiiiiiii iii: liif liiihiij Hi1 iii:iiiil . . j : . . . iiii :ii:i;;:i | • • i • i '•: ;:t:. fill u.. :!il ;1 ii ii-tr':! •::;!:;;: •'; ij : j j j-lj!:j!iil iiiiii!:; .: •: 111:: ; : 11 iii i Iiii •i-lt ti i i :RT • "i l iiij iiiii iiii. i i |ii - I iiiilii!: iiiiiilii ::.:i;:;! .. 1.. iiii' -hi! iiii 't;ti .ri.ii iit • ;• Hi: 44 U4- tin :.:.•: I::: i i i i i i in iiij ;:•: Ui:!;::. iiiiliii: I ' M ) * ' ' ! ! Iiiiii i;;r|:::i ::i:i:::i :;:;!;:;; iiii iiii iiiijiHi Iiiii i:Hi iiii' i t l mmm 11-1,11 mn| i .|i 1 1 4 ::\tu IH i HiHJrHH IRiH: hH l:;rii HJttj j.j i 'J:-):!] L i i H i • ;: :i i ! lliljlll! ...II.I.I TTTT iiiiiiii. :-rtr:.:i: p. :JP .P •::::.!!.;;: llliili TTTIT.. . p iiiiiiii i '.in ii iiiiiii iiii pi .ii.. .....j.... ..:.! — illiill iiiiliiii . . . . . . . . . _!:; J . : . . iiiifci 1 — :. .:]:: . : :•:: j : : : : 1:1.1 p;: p. i. iiiiiiii . ; I.I i.i;. i. ipijpp :.. .1 — ::::}:;:: p ;. 11 "•: lllriiil I ! ! ! ! ! - ! - rill iitt .. \ 11 |J IPL . ijrli:!! ~ T P : : ::::(:::. ipjpp Iliiiiill 111111" P. •-•I---- !—rill ::  pp 1:ii:: t-pri Hi- iiiiji!7 ipiiiii: p- • ill!.::!! —1 -illl • " ' t . . . . ;- :: 1, i.. 1. 1 i ft * •' aim* • *' — I:.' eiAiili Iiiii!!! ': : j:: -. : i'.i - - -?- V I c r ? ti c ± : : J S p 1 " • • 1C Ai p. p ! : : • • . . . . j . . . . iiiiiiii Hlill!! fill . i| i I. ' • i: n .' 1:. • I P I P . . llil!:!:! pp. — j — . pp. • I •: ri p .; iiiiliiii •Iiiiiii . . . ! . . . . 11.. i.: i1: i PI iiil- .' i: |:: 1 iiiiiiii; iiiiliiii p . :ii:: p p ipiipp i::i|:-p 111 iiliiiili . ; — IH iliiii !!!:|iiii .....j.... .Iiliiiili t! ' • 111 ::i: jiii ii.ii T ; . . . i.,. pptpp . . . . . . . . . iiiiiii; : I il! i 1 llllill .piip. pt.p.p i!t| • • 11 ! :; :l.. p . : • • ' . • • : iiiiiiii -p !:.:.• : i j:::: p..r... llijlll iiiiiiii iiilii i-llili iii! ji:; -T- i!i!|l- iii iiii 11 -iiii ii;1 —• -.:: .iiiiiii. v ' i : • p j i: i" ! l|:i! .i'ii: . iiiiiii iii :.l iiiiiiii; i.i 11 : P : | . P : in-pp.: : :|p  Ilii-••••)••- . . , | . . , . iiiii: ii:.i|il:[ i'i trtt Hi! p.l pp i pp • 1 -" •:! i i: • . . . . ! : : : : iiiljpp i::: iii! r i f • 11 i' TT tip lift iiii m iiii :.) ..p.: P : I | P P ::  i:' p llil iiiiliiii . . . . . . . ; . i t : : iiri 1 iiii . . i. . :  i i.::: H 1 1 ri! |;;i I P ! TT. Hi -il.iii iiiill; iiiiiiii : j:: . ^ P P I I 111! 1 iii": llli III! +i|r I H ; 1 „i ; i Ii : :: i.::. P I ! — .iiiiiii iiiiiii: ' iiii! •ii:i: .•:iiT!> ii- . : . | iiii i:.;; 1 1;! i iii frrrr :: p : .... 1.... : : : ' ! : : : . ::i • • • •ill ii . i. p i p ! 11 — I i : • • i ! " j l l i . 1  i i t! • . 11. :; u t i 1 -Iii .:.:r • too ::li;l | • 1 / .. i ;••> ill! Pi'l 'III llil i i P I P . P P P | : P : 1 • . il.. iiilii- iiiiiii iii-iiii llil ill p: i •'It -lim pptiip -Iii 111. iiii ipt iiiiiii . : . . ! ! : ; . - i : - . ) . . . p . 11: p iliiii! ilijiii; ..:. .... .1.1 pii iii! iii £rtT lit; .. n i i BO . I. ., :•':]::•• r i i; i iiiiiiii: ] liij •SI; iiii iiii i i.: ij!pi; : IH pfp • • • t i-M • •::. ~ 1 . • \ •p.i.p: :: i: 1 • -i • • .  1.. : P : i. I P . , , . . | . . . . • •Pi p-PI . 1:::. ipj lfr> iii! • ; M :.  j: •. i p p . ppjp.p 1—.-P P I P P -.:::(:;;: iiiiiii Mi • pi : ri; ' 1 i" iiii !-!!| If..|p—. i::: i' •: ,. i i1 . iiiiliiii • • • • 11 . . . •" i • • ii i! 1111 • .. iii I'll ill! Pii .pi mm p; i . -iii- ~~— T~—~ • • :j —' iliilll i.ilipi • . i • • • . . . . iPi ill i: P till rlii 1 • •"• :!.1|1 : 1 : . ! ! : . : | . iiiiiiii! in r-i ii:: iiii iiii. I IP : Ii- jiii jiii-ill I 111 41 iiii Hi ! ' • f . . . . ::.:: . . . 1. . . . . , . ,::.).• iiii'i i ii.. " i • lit! iiii 11; H i;" iii •ill ..  — . — Hiiiilf 1 •• • • IP.. iiiiiiii' Hi iiii J i.; ']}': ill! • H-::ll i'iii i •: i • .! . .! lit i iili! •I.: ;i:i|;ii! ill! iii: 111 . : : : '• ~m i: I: 111 llli iiii 1 ; *: iii I : ji! i  i • Iii ,; il:jiii il: :pi i p p iiiiliiii . 111! •i'i Hi; iii l lit IIT" T:r 'Hi n i i i ! 1 [ 1 ! V. t -LLU. 11111 ;:•|:;:: iiii i .. • p- ilili- • llil IIII : i;; .:i:: i.i U nii j:.l iiii ill! •Pi p.l ill! : ! ! ii i :Mi " i : i I! . . . . . . . IIII • p ' iiiiliiii liiiiiiii |-j:!l! iiii Hp | ' '•! il.l-fit; iii'' iiit 1 i-i-l 44 ; j I Hi! in: ..1.. . . . P . . . . -il' LO lie iiii »« mi iiiiillii ::::j:::: — j -. . . . . I.... < \ ' f t " i o i p •™ fe®Si_i II!" i •VO *l? Sill %\ liH-!t:t ;i:i it.! •ti i i i|t t - i-ip ilil]iii! PI 1. w T*T*I ,rf. iiiiiii;: II-• • * P • • • • .::. . • • ! :5 I *:i P P ' P J F rp p ..:i:5H pi .t: PI •pi .. .j iiii it,, i -p fill iii! pp M 1.. :ii|i! Hlifilii iiii iiii: :.'::::! I' I':!: i.piipp iilii;::: . . . . — lij iiiii " : : llil iiii ii:! r..;.ii'! mtiii tlil i-!1- iiiilr:: ii i 111.11 piijlPi iilill- i p!:: i :.. 1 j:' p • :• • j. i • | in p!' • : iit • t-T j UP!. 1-1 r! t r i iiii iii t i iii;!i::i :i:;ii::: iiii -M ml m •111 iiii •1-1" iiii it ' i i'ii-i-;i •JTft i t iiii -iiii i HI": i liiiiiiii iii! • • p ill !:!,: :r:'r Iiii rP: m iiii-i: Tr PP iJ.!-llli "rtr tiii iiii ii'r 44 tff f + tL . ; . . | . iiiiliiii TTTT I I ; : it: lliiiil'l iiiiliiii i.;i-i ill iiiii i i i u; r liti iiii r r J P.:. t.i; r iiit :tj;: lit'' I S i i ! i ii Z-tt 44 " ' J tfr iiii l HP tin iiiiiiii: iiiiliiii .!:i|j„, 1 iiiiiii . i • !! rv M i: i 1 in 11 .,.. iiiii Iii! Iiii i IT " lli': •"ti; P 3.4 Ilii- :] i It! ;i:n V i 11; 1 il iiiiltiif ;i.r.;.i:i: !|1i 1 i!l| il I iii t i.:ii •iiii. .{ii mP •Iiii r.;.iif]T •*-Ht ii i fit IS V n i; if iiti Hi '! ji: 11 * r pp iiiii t ! | • ( t - - . ! 1 • ' IP • ii.l 1 I  i ffiilllil i l l l-ll fi I 4!j iiii ifi if . . il iiii 1 i I-i; RIT Jim ttft Ifip ft ri I: ii iiii •tin IT] m Till-I iiit :ilir w 1 i-fr n m if :|il! P Itlr : T : ; - i i l i inl i iiii iii: !•;-!: I itr: i l P i ! . :rti .;.ru Hi! iiiijliiii iiiifiiii lit -U.ll !|i| 11H iiii P rrii w i H - 'Ii!! '"it ..  1.:, :;.:;I.:M . . . . . . . . . -.. :..i:L. iiiiEiii i i i i i i i . • - 1 1-- -4; J'tH-T ' T T T it-1 ri -r iiii T iiri :..!:: ::-.!::; Iiiiiii!!! t--- iiiiiiii i : : k Tt *" i - i .;. -4 •Hi rr::: iin. l l i l i i i iiff l i r--:' • jj :::: i: . :: i :-.:.: u::: :-::• (.:;..-: iiiiiiii! .-rlli iiii ilit-I irjl l l i l .i_r.:.,:.T. Iiiiiii 11-11 . . . T , ::::|:n: r.-: :|.:-— t . . . . 1 . . . . :; :r; :.:r: rr* J iiiii iirbj -' iTi' ; ; ; i'i 1 i1 i1 i i . ::i:::: . :.:': i:: ; iii! rii Iiiiiii!! - , . . :.; i.i j!;;; .,. . . . I ::!'!;: -:::j:::i . . . . ( . . . ! ::::j:::: ... j., it :::j|i:;i ::-!::•:.: i i i i i !;;: ii.:! :ilr: ill! iiii "•V ' .'.'A liiiji!!! i ^ . . . . iiii!;:!: ; i < D J 1 i i • : i :i:; . . . . : i'il'-l" C" 1T ' 1111! •l--;||i|i :.::! : . . .'ill:: - ::|::T nut:-.: H M H \\\\\ M iiiiliiii w • llli il! i S . i l . 1 • • :: .1.,: :|,i|: -.-:|:-.. 1- : :!:• ': j: Ml :Hi. : i i.... HH . . . : 1 . . : . . i :::]•::: : : : : ; ] : - : : ' ; ' i •Iiii! ill! | ; : : : ) : : : : ' 1 " j • • • • ::::[:::.: -:.:|.n- • : i r i i i {-:; .1:  i 1.1: i — •pit :i:;l!; p ::::!.::.. : :!:: i lit: • - r: iiiiiiii: • • | - • • ::::!::.:: :::i|:::: iiiiiiii! - * i 4 :r.-. t; u |!1l hr. iii! . , . | . . . . Hi:":! :: i| :;: : : : ; ( : : . : : ::::i::i: : t ;'; :iil pi.; .!"";: iiii il.l Hi; i;:: i : l • • • r . . 1 . . to - - •; j i.. 11.. i ill!! 1!! 1 Hi! llil ill! l l i l • 11 : :.i. ;iiiii:i f. :|...; . . i..;; i i i i i i : llli • 11" . - : • ] • : • • — .::! •: u I'I ';' i:!ii:i-| i 1 1 ! i.i; i. • • ::.:: j:::: r— r— :.. •!-'!:: iiiiiiii : : : 11: r!: ii!;ii:!!i :i;i iii! iiliiiili •Pi-1 • iiiiiiii! : : • : ( : . : . /^ H:1 iiiiliiii 1 1 . 1 ( 1 1 : 1 I i i i l i i i i ! i ! i | l : . » :! 1!!1. :i:p:r: : 1 :i i • • • t • • • .. :i; :-i si' iiii) ®:: , , . .il. ,; -ii#ii-t!! :i;:: 11 .ill... : : : : ! . . ':|-.: .. i —..::l,.;.i | ; | . ! T — — • ::!:! l l : iii; :l:i !iili !lii i i i i i T •1 • •ill:.:: . : : ) • : : : '!: I .iiiiiii -i'i i'-ii ;i i i . : : : . I I . nnli'ii iiiii::;: P -prr . • • . [ . . : i l l ! ' : :! 11 - : 1 1 1 1  1 i I .: . j .: i '. iiii . . . . j . : i : ! : ! ! i . i . . ,. in-ll.II . . . i. . . i i i j i l : Si1 ijii Hi! n i l 1 ! ! 1- • " i. : :: I : • • • • I ::  i:::: 11 . i;::: I . :.: ! . : • : n-i iiii. llli ill; . . :.:i:!::-.: .. . j : . :!;1!' . . . ii:|i! nil::.. : . : : ) • : : . . '' i ' ' :.i I.:. ;H. (tri jii: li;i Iiii ! | i ;: i {• ' : 1 : . : : : ! i 1. :: I :: ill' i•:": 11 I: •, -.-! .i •lill-l 1 iiii jii; i|;i :: i'i . .. . . : . . ::•;;!•:;• -—H~ I . I . . I::l! ..I llil":-" . i " ....i .. •:|;:-. ..  i. iiii |l!i i'i- i l l Mil iiii ! . . iliiii:: iliiii .. I.  :: : : i 1:1: — i.. . :  j.::•: •" 1 • '• i-1 . . 1 .. u p 1 ' ' p.:!' .. i.. . i; : . • •: i::: •.'•{;;:: i ;i: - iii i; ;i . _ | . . . T j . t i in: ..  i.... • . ; I ; •Hi •.._! : : . 1 . • .::!•:: .:.: |:::: 1 . ! . ! : . ' 1 • t • • • • iiiiiiii |::l iiii ii;) ~fr-i iii! •iii! Ii;! ( .. . . . 1 . . . . • j ..|..n • .ill::;: • • • I 'i iiii i i i i i i i ....i.. . • • i • • • i j ;i; : - : | ' • : liiilil'l : •: :i:  i: In: i ..|...:.. 1:1!!!!!! i . ) . - HI i i i i t-. 1, 1 ii' • •Hi::!: 1:1 • •: • | .1 :j il: : ' 1 1 iiii .IHII---1 ' ' 1 777 . ••, ••• •:;lI •: i: Iiiiiii1: ! . : ! . • r,:: ' 11 iii 1 iiii ii': Mi; i l l It t i 11. 11 i' ' : - • : .: l i : ! i iiiii:!.: 1 " • i l - : ' .-:!. ill :. n :,: i iiliiiili Hi [it; Iiii i ii; ...i.... : : • : 1 1 : i • : : : : 1 1 1 1 : i l i i i i 1 ! ! t ; ; • 1 -..  j .. 1 !:::ji!ii .... 1.-. •i-M iiii i i I"' 1 i"ii ril ii i i P ;#:?:• iiiii!:;'! iiiiiiii; i!;iii! :! iii! iiii iiii ;H m Pb l « i K 1 GU56E i.-i:ji;:, : : : } : : : . ::.: I: .. • r i • • .I.1S0* - ;"M'n EWI ' t\ B V •: imi iirto ST hOr V' i l i i-t iw IV j.. i ill: £l 1 n' $ i . . . . | . . . . : %Urr:t 1 H i l l l ,: no ; 1 I'l! 1 1 1 1 U M T ::.: i::;: X. . : : . . ! . :: r: t .. j i liij -'iH ! 1H : IW Crtn iiii 1 i;"i i;!;:R 111!! ! : : : ) : ; : : ' i i i i 1 1 1 iiiiliiii . . : . J . ; ;J j iisi r..ir ttr: iiii H"i; : rl • : it! •;i! ; : i 1.111. t-i , 1 :: [ . . : ; : . ( ; • . . : IJ!:!ll Iiiiiii: ' ; : . | : - | : : •.' i •::: 11 I'I ::;i iiii iiii i i i i i| 1 ! ij.i fill | . i : i l l ! ::;:j;::: : i ! i ! l iiiiliiii iii?« " I % fTT i.:li : lit -1-il-.i.j_;i Iiii llli 1.]:; j i j ! ... (... ; T ; T I : T : . : iiiiiiii- H i l l iHHpl! . 1 . . i l l i l i i i i !;! ... I. . :::ii:::: : ..j..:: iiii i:: I H:!!: i 11 .;. ji . . i... : • : : ! iiiiiiii i i i- : i::j ii:: ! ! ! ! i ! : : : :. j.:;: I T : iijjii! iff ::::|iiil ::;'.|:::i ill i l l : iiiiiiii! Int.:::! lliijliii Iiiiiiii: I : 11: •: I mi Hi! • i i r; i i i i iiii iii! it-.: 1 1! t IV ill! ii.:!) iii; ..  j.... ..::i::: i ::;}:: 1 . i.::: ' ' ! : ! ; : : : iiiiiiii: iillil 1 1! !!:ii;i! . . . . . . . . , i : i : i ! ! :.::r^  .1:  i! £•!; iiii ! | i ; 11 I.I iiiii iiii ; 1 ri" i iii Hit iiii ;j::i:;ii ::!:!: !; i; i;!.; llljpill nil'::.;: i i i i l i i i i i.ini: i. iriiiilii iiii!; 1! 1 Iiiijiiiiliil! • ; 1 i iiiiiiii it;! i i.i.i rfcti m , ; ; : 4 . •iii i i i i i i f r til: iii! iiiiiilii Uii ::: i ::: i iiii. it;: Iiiiliii! iiiii ii:! ' 'i 1 ::ij TTTT : : M . -Uii TTTT .... TTTT J : : ; ; .).. ^  iiii iiii TTTT ifii iiii Tllit: m 1 iiij :;:!:: ::•::::: ~r, TJ'ti :.;.|:.i.: 111 i'i ill ii! Iiil.il • -j- i!!i iui tiff fin 4T.:t -i -m t-'f Iiii :•:: i:i:.|:ii: .:..|.:.. lllljii! : : : : J : I : : -ill till. ITII i.l t! j.U.l iiiihlii :.::!:::: Iiiiiilii inTr iiiijiiii iiii : pi • • • .... iiii :-:;t:.::: :: ::!:'.":.;' :;:.!:;... iiiij:!!! f i ; iiHi iiii ' i::r iii-! 'II .1^ .1.1.. k.' ' ' A i> » TI ..:. | h : : ' Tr 1 I ft p i P \ F ( l i i p >l I 1 I I :::: j:... •r.i\:::: |ii':l;i;i frrr ... :::.i:::: ..:.|.. .. ii|i|ii|i ....j..i. !:!!'!!!! iiiiiilii ill! iiii i... ll iiiii :;:i|:::: ::::|:;ii iii!!!!!'! !; •' • ;;t; I "'' litiliii: s I Iiiiiilii '..-jii: ::: i| •:: ;•:;!::.: III:1::.!! i::: i... iiii :! t! Iiii iiii . . i.... 1::: iiiii ..: iiiijiiii' n ii- 1'' ' : 1. r. !lii 'ill iiiii t iiii iiii ii:.l;:;ii :::; i:i: ~.}\ iiii i'l 11 i-i.i j!!! :t'i| iiji r. iiii • • • ill! iii! — i — ::::);::: . • • • I rn.ji Iii! l ;'i !'!;t t :•:: . . . ::•:(:::: iLii -i.L iiii ::i 1 iiii Ti:! ill! :;; i. 1 |-:lii:-: . •!.•: .:.: | . to • • -1" • • • ::-j :|-iiiiiiii! .ill il: It!: ! i i! Mil !il: 1 • "Iii ! i 1  i i. ;.:. 11:11 iiiiiilii ii'l ' ;*:i ii- III! ,-th ! i 11 • 1 • r..::i:::: ..... t — : :ii : : i : :l|i| !!) m i;ii|i!i! I.:. .: i 1 :!:i: -•t! iij: iiii :ii; Iii; tin 1 .:.-|:::: iiiiiiii. .. . i. ' iiiiiiii! .1:1; l ; : ! iiii |!l! X!': •ifl'l it... iiiii!:!! .:.::[:::: ::::]::•: . ... — Jo /V.- V l :!!i i i ! iii! t 'v iiii i! 1  I ; ; I .tin 1 ! III! ;:• '•':•!::• _ i i :'i!!:.:il | V ! f t 9 Ti', t 111! i:ii ill! -.:ti itu. ::::j — i • — ... iil!.|il!i ....!:.. • I •::: ! • • iiii u;i iiii iiii ' I I I Iiii i i . : ij.ii. iii: 1 . .TI iii: 'Ml ... 1. . iiiiiilii Iiiiiiii1 :. i. •:: . . . 1 . . . :. j ': . . .... -' i !' iii; -'A , i 11 iiii :::: : ; : i : : : : .:' 1 i. i 'il • • i x> . . . : r. • 1 r iiiiiiii ii ; 1 ::: i iiii .:.;.;! III!- iiji iiii iiii !|:! ; i ; Iiii i'ii!;;:; .;. ii-'ii . i • I • I::: : iiiij Hi is. ill! Iiij |H| iiii III! Mi' ''ii iii1 " ! iiijl iiiii ;i ;;i;i ; : :i:i;:: : . . . . I . . . . '.ill.': : .1.::. .... .... ::!.:: :::itliTT —! iiri w j t i r iiii Tttf !H( Tit!' 1 i: t 11 i I s :::|:::: : . I : . . : .•:]•:•.: ' BO iii I:::i:i!: •.:::!:: : ::::ji::: !i!;!!l!i iiii Iiii . ;. j TTtt 1 tSi. iiii ;;i! l"i • 1 1 : * f ; H;I-i'ii I::. ::::|': : :.:: j •:: : iiiilii-...... ::! ::' :l::;i i'ili .!!!! i'ii ii!> Jj!! iii! i''i :1 11 1 t;!; lljj :::.:..:. ii;! li|i|i||| iiiiliii: :::;i.;::: ::: i ; 1 7 ^ I ' Ji Mil ,| nil i'ii •: : ..:.!•::: ::-jj_: : iiiiiiii! :!:!:  :T !:!: •••! ui! .... !!!!| i'l^ fji M : 1 Vl1 Hil •. en J Iiiiiiii .1 : i i 1 : : i . :.l|:ii: iii! - - M . : I , |!li iiii • iT? :u:! 'iii 1 il i tS« ' .1: • iiiijiiii ; ! ; • ! ; ; ' ! ..).... ':::i:::l :i::|:.;;: .:i!l i'ii r W I ji' j 1' , ! :::.!:•.. . . i.. . — j — : i.' .... j. . . . ........ . iiiiiilii •:ii! !!:! iiii: ' t 1 iiii fill " !fi.i i uf • iiiiii:: i ' i i : ' ... . :i;ii:i : ;lil!ll!l ..:.i.. iiiiiilii iiiii iiitiiii! i-i-ti • •it ti ij' •[ J- j! IH' m. •:::):::: . : 1 :i IP ' ::\t..-i:i'-l4f>; Iiiiliii • :!lii : :! iiiijiiii Iiii : li ] ill! iii. Hi! I'ii : i' i :i:i itii iiii ' 111 li rn ::-| ' :::.!.:: ::::!' • • iii I.... ' : : : : r:- Hij i.. : ' q •iiii , Hi j!'! Ml!' ;; j .11! iiii I I'l' Hi.! •ill . i li;i|: l: Iiiiiiii .; :!.::; • j iii.jiii.: • in 11. I'l'. Jilt H ll iiii 1 . :lii!li :l :!:!'!;  :::: 1:::: !!ii 'iiiiiiii |iil|i|!! Km ill; tfii tiii irii H ... . mo till ::::!.;:•; iiiiiiii: jH'i lli|i|ii iiiilii w m ffi •til' ,n iiii iHt > Mil iTi; 1: iii i;il : •:: l. RA W l f c r i : . 1IW1 RA ho IM •ui I'll i i i'i mi 4ili I'll &% if! I ...iiiiii :::: 1:::: l!ii|!!!i iiii til* :.;J •;.: ;l .in : i :.l iiii iiii i! n •|! fli III; irnr 1 % "1 j • -j-it-t-', • lili1!!!:- .. . i.,. iiiiiilii ii'fi rrrrr Iiii .:::: ;: :.:i:;::: ::•!::•: - T : I • ;;f 1 •ii-U .try t4;jj; iiti •:i!r t.ni iiji ti1 -iiijlili ... .,. . .III iiii :.|:: i: •: iiil 1 1 i - 1 - " i8i m i i | ill; .:;;.! ! i; I i iiii iir i!l.i "IT 1 i; Ini :...:!..::: Ilii|iii^ •rt;r rrfr ^ r r r •'iH Iiiiiilii iii! iiiii jiii Itrf. 1.J j H'tr ,,. 4 • . > iiii u;-Lf flti iiii n ' M ! 1! -*fj; i 111 iiii it . . ... | i II i iiii 'it' iiiiiiii I-I! iiiii iii! i!i| iiii '+ iiii I44.1 iiii! ii.:;. it:ij i-lii &i \ k tit i|i; lip ;:.!.! i j... i:;i ui! iiiii::;: i'i: •'': jll'i iii! •itT i l f •rrr: ri.:: il-i-i-' t" iiii liif iiiii i , . tiw riTi !TT ,| •iixi ir;' i i -Ill ;;::|::.:.r 'Hi I ii' ! I I ti'' ijij ! j i-i i!li iiii 11' iiii iiii .... ,..., .:.!:« iiiij : i : i 1 ; r.i 11!! i i !t "i rh • 444. ifi-1 „ : I : . L Iiii i II t( tt 1  ilii: I iiii •r • r: tin iii" iiii [i-i - r r r Ttrr t n i !'-!; liif I r"' fill iiiii 144 W iiii ;±'!: <-.i!tJ iifr tta ti*" T T TF tiff! • I ;rn tit itii -tt -1. 1 .i, T'fti iiii ::!t :::i n r r iii! i': i ! Ttit iiii mm ll if Ij; iii • i|l! ... :.j til! i 111. iltt A m j i-i: n.xr: ri*i .... :l5 --til • -itff I , iiti Uii mr „, M tir ! p :..1.: 1 : r : : j : : - | "TT Hit ; ; ! : ! ; : ; : i l . iii! TTTTT ' :::1 i i: :. i: •J!:; TT :::[ • .^4 TTl .:; :r -i - • " iiii TT i;'l - i - 14 1)1 f t p :.:!:  r :;:'.:.:  liijlli t 1 r_t- i nx M *•; "iltr :.:.;•.:.: :i::jr:: .. 1.. ::::!:::: .... .... i.,.. r.rr:: iiii lif iiii nil t r M l 1 TIH it II P rtr:, Iiiiiiii i:; 1:1 : r : ..ii.:-.. ;:::i::r. .iiii iiii Hll iiiiiiii Hiiitt - t l 4 ! .. j... i l i i i i i i l i i i i ::: n iiii irrvr *':X." .... J ..... i i p • ; •:. T il..' l l i ; r. T':! i'iii ifi! VP' 1 i-i i n:: ;! -in: Il il l ! : . i l : . 1 M • • • 1 • •: ( i l i n 1#1 B rll iii! ii™" ;: i: :t i . . . . . ., T i l i l ,Tirnpr? l±f: fi til! 11 il -P rri- ......p. . . P I P . : . . . : j . . . . ::!::  :.:::  i::.: .... t.... I P : j: . : . t j .1 in • :::: •::: . I:.: " 1.: • :!il:::: ::::|:-.:. .:. :j iiiiiiii !:.:( si,: HIT (1 :i;:|ii : ii 1': ..  I . p i - i i i i i ; i l l ::: p:: • iiiiiiii lli|!lll iij .... .iiiii,!:: lull i:: : : i ri iiji Mi! ii Il iiii ii ....i.... -::'::\':Y:: ... iiiiiii i i i i i i i i..; . (' i iii if ii ijii ij I:-: — 1.. :::.:j:::: — j.. . " i i i i j-- • ::;: .i::: ...i; ;:'-!i fill [_! i! :! : ri I i i i j n ... .. .. TipS iiiiliiii ::::!.;::; :::: :::: i l ! i i ' i f i i lili-ii l£» i i - i •ilili'l iir: 1 ii i '.::i: III! 111: l i p i i 1 1 .ill •:: . . . W'Tf. ..: I :.  iii ill! ilj it:: 1 1 iln l i l i - •!''' P — "': • P . 1 Jii! III! :: i i !' 'i •': 11 iiii till HH i 1 J::: • i: : • * i * iii iii il ri' !• 1 II M ii|' '! ,, • i |; • i '::: |.: MZO —-!—-Tin:: Tip — - j — T T : •:: -ill ;; ii ItH il !iii Ii 11 ill! il ii ill: )l i.tii. i i j i i . 1 IjT: A r. i .; • j ;: h Hi: ; ii if iiii 1 —j--- . 1 i : : 1 .. .... *— iii ri'l i Iii! ijiill Il III! II I i 'IIT" i; :::: j, . i i ' ' .iiiiiii . il iii .1 lit; '•i ;iii l: :i|! II ;; i' 1 1 '1 •• | ••• L. 100 J : i .-. ~ f i - ~ ' ' ' 1 • .. :l:::: L:::|:::: I i I i [jj! :: '.;ii: :l .. 1 : • • I . ::•: iii! ill Ml n Iiii il iiiiiiii 1: - - I n ' ! ' ' 1 p — : I : j .ilijiii ! ! ! ' ; ; 1 J I I I ; ; ii iiii t' " • r : . . 1 . . ' r ': iiiiiiii •vji III! 'iii :! : i i: :: ::. j ---•! • ;• ' : I: m i i i i i . i.. :4.L1 I i i i • 1 : iiiiiii M ill j! iii! ii • t ' -1 1 i — llili_li. •rr-i i i i :;. {.:•• • -.iiiii;- ;;;  i: , .^ 1 : — i — - • I'll' i •••{•••• • ••••] •••I: ..: l.. . i i i i i i i i,r; Jill ii Hi ii •!: ; . .;. . iii Iiiiiiii : i: | i : " 7! 1  t:it ;itt i i i j;; ;; t-r Hll I-i 1 Mil i': - -.7 T j • . . i . . :: .j.::. . I.::, •iiiiiii- t;; • '•'  ii If ii *- T I • i :: 1 . : •. I * • • • 1 • • •!ni;':  1 ' • :: r! • ?•  i ... I j i : • i H ilii i t ••-•rr-: TIITI • • I • iiii If!T il *li.: 11 iMiifii II p" • i " iilfiii i~- • • • • t ~~\~~~ i :.;: i,.. • i i i i : ::ii iiii 1.; . i ill! ,,,, 1 1 1 1 .1 . - i i i i .. .|.. I' i mil: .: • :| ' • i H i l l ! iiiii;.! iii! ij;i 1 ill' ij11 if i 1: i; :. .. i i' ii'i . .mil::: ....(.:.. ....... l l i l : : •: :j .:. •••:!:: ::: i 11'i'll rti! fj'ifii ;i iiiiii' .... 1. . i n ... 1 ... . nilf ; •:::!•• •: • i- • • ::::•;::: .. |.. , l i j i i nil tiki 1 - -10* ... . L€(AM -lajuu i d m S"y W i l H« U i i. 1W". ~ :rt|t! ti ... .•:..•:::• 11 • 111 :::: 1.: 1; IT : - : : " ; : : l l i l ! . . . j Hn .ijii Hi •' • 1 till . i.li! 1. !: :ii| :; l: i;i;.-.-: : : : ; l ; l : I!;:}::-ppjip- •I H i l l iiiii'l ililllll ::: i i Il'- • ffii! il iiiiiiii i. .... ! '" 1 '• I : . j . . : ; i i : i i • • • iii i i i ' :: •: i • 11 HI iln ii 1 :: I .: :::'!'• • " ' • i iiiiiii! iiiijlii i... _— . :.|.!,: .. , . i : . . i i j i i . * * .  P1 • i p ••I 1 - .-i • 1 it • T • : : •: I:..: .::':.:: ilir : i:: I! iiiiii .!. [..!.! —'-• ! 1 ' 1 1 . . , | :.T I'M;;;; !!!!:! :::::::. It: in .::; . .i- i lit i p.: iiii ii 1 .. j .. . iiiiiiii: : : : : ! : : : : ;[;•;;•*• :!:;!:::: .:::!:::: .! i: iiii :l::ill .... .... '. 1 i'Ht hi! •••il*' 4 til 1 il iliiii iiiii ......... : i; 1.:: iiiiiiii t '• : \ J •' - : : : I:.. l l ; i . i : Iiliiiili . ..hi.. .:,,,...: ::::!:::: ;::.,]:::: iiiiiii; i!H f r-t ii-;; 4 jii ::i ffjiili fl -II! T- iliiii - 86 -S t a t i s t i c a l Analysis The S 7 program f o r the ALWAC I I I E electronic com-puter was used f o r the analysis of f i e l d data. This s t a t i s t i -c a l program provides f o r the computation of means, covariances, standard deviations, c o r r e l a t i o n c o e f f i c i e n t s , and regression c o e f f i c i e n t s . Pour separate l i n e a r multiple-regression analyses were carried out; one for the A. and L. portion of the Forest, one f o r the second-growth area, one for the old-growth area, and one f o r the combination of these areas. Data of 211 complete sample plots from the A. and L. portion of the Forest were used f o r the computation. The number of plots i n the second-growth area was 83, and 26 i n the old-growth area. Some variables had no actual value, therefore, a code value was given f o r these variable classes. The highest number i n the scale corresponded to that class which had the highest s i t e index, and the lowest number was used f o r the class with poorest s i t e (based on the graphical a n a l y s i s ) . The following code values were given f o r the variable classes: Aspect, X I : South-1: East-2; West-3; North-4. Local p o s i t i o n on slope, X2: Swamp-1; Ridge-2; Upper slope-3; Flat-4; Middle slope-5; Low slope-6; Low and middle slopes with seepage-%'ater-7. General p o s i t i o n on slope, X3: Rock-1; Swamp-2; Ridge-3; Upper slbpe-4; Middle slope-5? Low slope-6j F l a t - 7 . - 87 -Per cent of slope, X4: Over 81 per cent-O; 71-80 per c e n t - 1 ; 61-70 per c e n t - 2 ; 51-60 per c e n t - 3 ; 41-50 per c e n t - 4 ; 3 1 - 4 0 p e r : c e n t - 5 ; 21-30 per c e n t - 6 ; 1 1 - 2 0 per c e n t - 7 ; 5 - 1 0 per cent-8; 0-4 per c e n t - 9 . Shape i n p r o f i l e , X5: Convex -1 ; S t r a i g h t - 2 ; Concave - 3 . Shape i n contour, X 6 : Convex -1 ; S t r a i g h t - 2 ; Concave - 3 . E l e v a t i o n , X7: Over 1,900 f e e t - 1 ; 1 , 7 0 0 - 1,800 f e e t - 2 ; 1 , 5 0 0 -1,600 f e e t - 3 ; 1,300 -1,400 f e e t - 4 ; 1 , 1 0 0 - 1 , 2 0 0 f e e t - 5 ; 9 0 0 - 1 , 0 0 0 f e e t - 6 ; 700-800 f e e t - 7 ; 500-600 f e e t - 8 ; 0-400 f e e t - 9 . S o i l depth, X8: 0 - 1 0 i n c h e s - l ; 1 1 - 2 0 i n c h e s - 2 ; 21-30 i n c h e s - 3 ; over 31 inches-4. Moisture regime, X 9 : Wet -0 ; Dry-1; Somewhat w e t - 2 ; M o i s t - 3 ; Somewhat dry-4; Somewhat m o i s t - 5 ; Normal (optimum) -6. P e r m e a b i l i t y , X 1 0 : Moderate - 0 ; Extremely r a p i d - 1 ; Very r a p i d - 2 ; Moderately r a p i d - 3 ; R a p i d - 4 . S o i l t e x t u r e , X l l : P e a t - 1 ; Sandy g r a v e l - 2 ; Sand - 3 ; Loam -4; Sandy loam - 5 ; Loamy c l a y - 6 ; Loamy sand - 7 . Humus l a y e r t h i c k n e s s , X12: 1 - 2 i n c h e s - l ; 3 - 4 inches - 2 ; 5 - 6 i n c h e s - 3 ; 7-8 inches-4; over 9 i n c h e s - 5 . l a y e r t h i c k n e s s , X 1 3 : Zero i n c h - 0 ; 1 i n c h - 1 ; 2 i n c h e s - 2 ; 3 i n c h e s - 3 ; 4 i n c h e s - 4 ; over 5 inches - 5 « S i t e index, Y: Estimate of average height of f i r , hemlock, and cedar at age 1 0 0 based on one tre e of major species per p l o t . - 88 -The r e s u l t s of the analyses are presented I n Tables 3, 4, 5, and 6. Table 7 contains the m u l t i p l e - r e g r e s s i o n constants f o r Y on X l - 1 3 . Regression equations were computed u s i n g the photo-measurable v a r i a b l e s (XI to X9), then e l i m i -n a t i n g the l e a s t important v a r i a b l e i n t u r n . Constants and r e g r e s s i o n c o e f f i c i e n t s of these equations, c o r r e l a t i o n co-e f f i c i e n t s , and standard e r r o r s of estimate are presented i n Table 8. F i n a l l y , r e g r e s s i o n equations were computed f o r e s t i m a t i n g s i t e index from photo-measurable v a r i a b l e s applying s e v e r a l p o s s i b l y u s e f u l combinations of v a r i a b l e s . V a r i a b l e s used i n these combinations had the highest c o r r e l a t i o n co-e f f i c i e n t s i n the a n a l y s i s u s i n g a l l v a r i a b l e s . Table 9 contains the constants of these equations, c o r r e l a t i o n c o e f f i c i e n t s , and standard e r r o r s of estimate. The l a s t two analyses were c a r r i e d out only f o r the combined data. D i s c u s s i o n of observations f o l l o w s the tables-. TABLE 3 S t a t i s t i c s of v a r i a b l e s on A. and L. p o r t i o n of the Forest S t a t i s t i c s V a r i a b l e s XI X2 X3 X4 X5 X6 X7 Means Standard dev. Minimum Maximum C o r r e l a t i o n c o e f f i c i e n t s 2.15 0 . 9 4 1 4 5 .12 1.89 1 7 .098 . 4 2 5 ' 4 . 9 0 1 . 2 9 1 7 .359^ 6 . 7 0 1 .73 0 9 . 1 6 4 ' 1.98 0.85 1 3 .199*: 1.88 0.80 1 3 4.65 2„04 1 9 .316 •5H5-S t a t i s t i c s V a r i a b l e s X8 X9 X10 X l l X12 X13 Means 2.41 3.92 Standard dev. 0.74 1^53 Minimum 1 0 Maximum 4 6 C o r r e l a t i o n c o e f f i c i e n t s 190 .537 Age 30 No. p l o t s 211 S i g n i f i c a n t '"'""Highly s i g n i f i c a n t 2.24 0.75 0 4 3.47 1.19 1 7. .190*""" .328' 3.31 1.31 1 5 0.91 1.33 0 5 .055 . 2 4 9 ' 118 . 9 6 28.08 60 205 1.000 TABLE 4 S t a t i s t i c s of variables on second-growth area S t a t i s t i c s Variables XI X2 X3 X4 X5 X6 X7 Means 2.13 5.1C 5.47 7.58 i:.64 1.71 5.53 Standard dev. 1.18 1.08 0.70 1.01 0.76 0.89 1.43 Minimum 1 1 3 4 1 1 3 Maximum 4 7 7 9 3 3 9 Correlation c o e f f i c i e n t s .073 .331"" ,328'wr .150 .190 .012 .143 S t a t i s t i c s Variables X8 X9 X10 XI1 X12 X13 Y Means 2.45 5.13 3.33 5.37 2.41 1.41 131.51 Standard dev. 0.77 1.06 0.95 1.63 1.31 1.22 26.74 Minumum 1 0 0 1 1 0 80 Maximum 4 6 4 7 5 5 190 Correlation c o e f f i c i e n t s .163 .107 .307" .137 .087 .043 1.000 Age 70 No. of plots 83 *~*Highly s i g n i f i c a n t TABLE 5 S t a t i s t i c s of variables on old-growth area S t a t i s t i c s Variables XI. X2 X 3 X4 X5 X6 X7 Means 2.04 5.19 5.31 5.89 1.73 1.96 - 3 . 2 7 Standard dev. 1.04 0.85 0.47 2.34 0.92 0.96 1.37 Minimum 1 3 5 1 1 . 1 1 Maximum 4 6 6 9 3 3 5 Correlation c o e f f i c i e n t s .159 . 0 9 2 .062 .162 .063 .284 .587":h:" S t a t i s t i c s Variables X8 X9 X10 X l l XI2 X 1 3 Y Means 2.23 4.73 2.77 5.73 2 . 3 1 1.12 105.00 Standard dev. 0.82 1.04 0.91 1.28 1.09 1.48 20.59 Minimum 1 2 2 3 1 0 60 Maximum 4 6 4 7 5 5 140 Correlation c o e f f i c i e n t s . 1 1 9 .112 .405'"" .265 .089 .355 1.000 Age 300 No. of plots 26 '•^Significant '"•'""Highly s i g n i f i c a n t S t a t i s t i c s TABLE 6 S t a t i s t i c s of v a r i a b l e s f o r the combined data V a r i a b l e s XI' . X2 X3 X4 X5 X6 X7 Means Standard dev. Minimum Maximum C o r r e l a t i o n c o e f f i c i e n t s 2.13 1.02 1 4 .075 5.12 1 .64 1 7 . 3 6 8 * " 5.08 1.15 1 7 . 3 4 9 * * 6.86 1.70 0 9 .191*** 1 .87 0 .84 1 3 .152* 1 .84 0 .84 1 3 .088 4.77 1 .94 1 9 .346 S t a t i s t i c s V a r i a b l e s X8 X9 X10 X l l X12 X13 Y Means 2.40 4.30 2 .57 4.14 2 .99 1.06 121.08 Standard dev. 0.75 1 .55 0 .94 1.63 1.36 1.33 28.08 Minimum 1 0 0 1 1 0 60 Maximum 4 6 4 7 5 5 205 C o r r e l a t i o n c o e f f i c i e n t s .187** .444** .238** .252** .030 .168** 1.000 No. of p l o t s 320 **Signif i c a n t ''""•Highly s i g n i f i c a n t TABLE .7." M u l t i p l e r e g r e s s i o n constants f o r Y on X.. 1 * }13 No. a b l b 2 b 3 b 4 b 5 b 6 b 7 Young stand 211 58.85 1.33 l i 8 5 2.09 1.12 2.03 1.87 1.99 Second-growth 83 17.33 2.92 5.33 4.05 1.33 4.86 -2.52 •0.26 Old-growth stand 26 -58.89 -4.46 -•2.95 20.55 - . 9 8 -10.25 9.60 10.36 A l l 320 43.53 1.72 2.42 2.50 1.13 2.41 1.25 2.75 b8 b 9 \ o b b b R2 11 12 13 R SE„ E Young stand -2.06 6.64 -3.22 1.22 1.18 -1.89 .1624 .4029* '* +26.54 Second-growth 5.77 0.81 6.58 O.65 O.69 0.68 .2566 .5065* ±24.96 Old-growth stand 0.06 6.02 0.11 1.40 5.76 -0.22 .6857 .8281* '* ±16.01 A l l -0.40 5.02 -0.32 .55 1.54 -1.03 .3162 .5623* ±23.67 *";:*Hi ghly s i g n i f i c ant - 94 -TABLE .8. ... Regression equations f o r es t i m a t i n g s i t e index from photo-measurable v a r i a b l e s used i n study, e l i m i n a t i n g l e a s t important v a r i a b l e s i n t u r n (320 p l o t s ) Constant (a) V a r i a b l e s 44.53 44.12 45.11 49.68 Regression c o e f f i c i e n t s (b) XI Aspects 1.83 1.83 1.83 X2 L o c a l 2.69 2.67 2.67 2 .77 p o s i t i o n X3 General 2.33 2.32 2.29 2.07 p o s i t i o n X4 Percent 1.12 1.13 1.14 1.06 of slope X5 Shape i n 2.34 2.04 2.08 2.12 p r o f i l e X6 Shape i n -0.54 contour X7 E l e v a t i o n 2.83 2.85 2.91 2.80 X8 S o i l depth 0.66 0.67 X9 Moisture 4.88 4.86 4.93 5.15 regime R^or r 2 •309., .308 .308.... R or r .555*"' .555^ f .555™ .551,H>* SEg S.I. ±23.58 ±23.58 ±23.58 ±23.65 Constant (a) V a r i a b l e s 5 2 . 1 6 5 8 . 2 2 6 3 . 0 4 7 3 . 8 7 86.55 Regression c o e f f i c i e n t s (b) XI X 2 X3 X4 X5 X 6 X7 X 8 X 9 3 . 1 7 1 . 8 3 1.16 2 . 8 7 5.06 3 . 0 4 1 . 9 1 3 . 2 4 5 . 1 4 3 . 5 4 3.55 5 . 3 5 3 . 6 6 6 . 9 3 8 . 0 4 R2 or r ^ R or r SE E S.I. . 3 0 0 .548-""* ± 2 3 . 7 0 . 2 9 6 . 5 4 4 * * + ' 2 3 . 6 8 . 2 9 2 .540** ± 2 3 . 7 4 . 2 5 7 . 5 0 7 * * ± 2 4 . 3 2 . 1 9 7 . 4 4 3 * ' ±25.28 ^"'Highly s i g n i f i c a n t TABLE 3. Regression equations f o r estimating s i t e index from photo-measurable variables, applying several possibly useful combinations (320 plots) Constant (a) Variables 54.17 5 8 . 8 4 6 2 . 6 6 6 5 . 9 1 6 6 . 3 1 6 3 . 0 4 . 7 1 . 7 9 Regression c o e f f i c i e n t s (b) X2 Local 3 .37 5 . 4 9 5 . 5 3 6 . 1 3 6 . 3 0 3 .54 5 .58 p o s i t i o n X3 General p o s i t i o n X 4 Per cent of slope 1.12 1 . 4 0 1.76 3 .14 3 . 19 X5 Shape i n 1.77 0 . 8 8 1 . 0 0 1 .21 p r o f i l e X6 Shape i n contour X7 Elevation 3 .07 3 . 5 6 3.82 3.55 4 . 3 5 X8 S o i l depth 0 . 5 4 2 . 4 8 X9 Moisture 5 . 3 0 5 . 3 5 regime R 2or r 2 .299 .235,,,. .232 .172 .173 . 2 9 2 , .224„>t R or r ' .547** .485"""* .481** .417** .416** .540'""'"" .473*""v SE S.I. +23.73 ±24.79 +24.73 +25.65 +25.66 +23.74 +24.85 '""""Highly s i gnif icant TABLE 9.. (cont'd) Regression equations f o r est i m a t i n g s i t e index from photo-measurable v a r i a b l e s , applying s e v e r a l p o s s i b l e u s e f u l combinations (320 p l o t s ) Constant (a) V a r i a b l e s 74.80 73.87 62.79 3 5 . 4 2 70.13 60.48 91.34 Regression c o e f f i c i e n t s (b) X2 L o c a l p o s i t i o n 3.71 0 . 6 6 2 . 6 3 4 . 4 6 X3 General p o s i t i o n 5.22 2 . 2 0 5.53 6 . 3 1 X4 Percent 0 . 9 7 1.13 of slope 2 . 6 6 X5 Shape i n p r o f i l e X6 Shape i n contour - 0 . 6 6 X7 E l e v a t i o n 3.66 3 .10 2 . 9 5 4.62 X 8 S o i l depth 3 .25 X9 Moisture regime 6 . 3 5 6 . 9 3 6.60 5.24 R 2or r 2 R or r •235^ .485'""* . 2 5 7 „ > t .507"""" . 2 5 0 , ^ .500'""* . 3 0 1 .175.,., .188 .418'"""' .433"""" . 1 2 3 . 3 5 1 SE^, S o l * ± 2 4 . 6 7 ±24 .32 ± 2 4 . 4 3 ± 2 3 . 7 1 ± 2 5 . 6 3 ±25.55 ±26 .42 """Highly s i g n i f i c a n t TABLE 9.. (cont'd) Regression equations for estimating s i t e index from photo-measurable variables applying several possibly useful combinations (320 plots) Constant (a)  ~W.82 71*50 91.09" Regression c o e f f i c i e n t s (b) Variables H 7 T 5 T 111.45 66.19 X2 Local 6.07 p o s i t i o n X3 General p o s i t i o n X4Per cent of slope X5 Shape i n p r o f i l e 2.38 X6 Shape i n -1.05 contour X7 Elevation X8 S o i l depth X9 Moisture regime  5.00 .16 6.03 1.82 6.33 3 . 6 6 4.60 3.35 5.22 6.6.0 R 2or r 2 R or r SE E S, I . .139 ^ .373'; ±26.18 .023 .152 ±27.88 .138 ,372' ; :- ; ±26.19 . 177 . 4 2 1 * * ± 2 5 . 5 9 .127 .356** ±26.37 .236 .486*-±24.66 '""Highly s i g n i f i c a n t - 98 -D i s c u s s i o n of Observations The g r a p h i c a l a n a l y s i s of data i l l u s t r a t e s the r e l -a t i o n s h i p between the v a r i a b l e s . The mathematical a n a l y s i s provides us w i t h the equations of these r e l a t i o n s h i p s , and informs about the s t a t i s t i c a l s i g n i f i c a n c e of these equations. The r e s u l t s of g r a p h i c a l and mathematical analyses w i l l be discussed together i n the f o l l o w i n g sections Influence of topographic v a r i a b l e s on s i t e index. (1) Aspect According to F i g u r e 9 the f o l l o w i n g trend of aspect was observed w i t h the decrease of s i t e index: North (S.I.125), West (S.I.123), East (S.I.120), South (S.I.116), and f l a t s i t u a t i o n (S.I.108). The numbers represent the average s i t e i n d i c e s f o r the corresponding aspects. The graph i n d i c a t e s a w e l l f i t t e d l i n e a r r e l a t i o n s h i p between the s i t e index and aspects, but the data represent averages and the v a r i a t i o n of i n d i v i d u a l observations around the l i n e i s l a r g e ; t h i s r e l a t i -onship i s s t a t i s t i c a l l y non s i g n i f i c a n t (rO.075). However, the s i t e q u a l i t y probably i s higher on the North, East and West slopes than on the South slopes because the South slopes are subject to the d r y i n g e f f e c t of sun. (2) L o c a l and general p o s i t i o n on the slope. L o c a l p o s i t i o n on the slope i s an important f a c t o r i n f l u e n c i n g s i t e q u a l i t y . According to Figure 10 s i t e index decreases w i t h the f o l l o w i n g order of l o c a l p o s i t i o n c l a s s e s : - 99 -Middle seepage (S.I.136), Low seepage (S.I.131), Lower slope (S.I.121), Middle slope-(S.I.120), L e v e l s i t u a t i o n (S.I.118), Ridge (S.I.105), High slope (S.I.104), and Swamp (S.I.81). Where seepage i s o c c u r r i n g the s i t e q u a l i t y i s h i g h . The c o r r e l a t i o n c o e f f i c i e n t " r " f o r t h i s v a r i a b l e was 0.37, h i g h l y s i g n i f i c a n t . This trend of l o c a l p o s i t i o n c l a s s e s i s expect-a b l e ; however, the s i t e q u a l i t y of l e v e l s i t u a t i o n i s too low. This v a r i a b l e i s c o r r e l a t e d a l s o w i t h moisture regime (rO.43). Figure I I i l l u s t r a t e s the r e l a t i o n s h i p between s i t e index and general p o s i t i o n on s l o p e . The e f f e c t of general p o s i t i o n on s i t e q u a l i t y i s about same as the e f f e c t of l o c a l p o s i t i o n w i t h exception of l e v e l s i t u a t i o n , which has the hig h e s t average s i t e index (S.I.133). The c o r r e l a t i o n co-e f f i c i e n t was h i g h l y s i g n i f i c a n t (rO.35). (3) Percentage of s l o p e . I t i s obvious that s i t e index decreases w i t h increase i n per cent of slope (Figure 12). Decrease of s i t e index i s slow on slopes from zero to 20 per cent. On slopes over 20 per cent the s i t e index decreases r a p i d l y w i t h increase i n slope percentage. The c o r r e l a t i o n c o e f f i c i e n t (r0.20) i n d i c a t e s that t h i s r e l a t i o n s h i p i s s t a t i s t i c a l l y s i g n i f i c a n t , however, t h i s value i s low, and v a r i a t i o n of data around the l i n e i s broad. (4) Shape i n p r o f i l e and contour. Figure 13 and Figure 14 i l l u s t r a t e these r e l a t i o n -s h i p s . However, these average values of s i t e i n d i c e s do hot represent adequately the i n d i v i d u a l data, t h e r e f o r e these - 100 -r e l a t i o n s h i p s are non s i g n i f i c a n t . I t can be s t a t e d that only the concave curvature i n p r o f i l e and contour represents better' s i t e q u a l i t y . (5) E l e v a t i o n . S i t e index decreases w i t h increase i n e l e v a t i o n (Figure 15). S i t e index decreases s l o w l y w i t h increase i n e l e v a -t i o n from 100 f e e t to 800 f e e t . A small increase of s i t e index occurs at 1,000 f e e t e l e v a t i o n , then s i t e index r a p i d l y decreases w i t h increase i n e l e v a t i o n . The c o r r e l a t i o n c o e f f i c i e n t f o r t h i s r e l a t i o n was h i g h l y s i g n i f i c a n t (rO.35). ( Influence of S o i l Factors on s i t e index. (1) S o i l depth. Figure 16 i l l u s t r a t e s the r e l a t i o n s h i p between s i t e index and s o i l depth. S i t e index increases w i t h increase i n s o i l depth to 30 inches. Over 30 inches, the s o i l depth does not i n f l u e n c e the s i t e q u a l i t y . (2) Moisture regime. Mositure regime i s the most important f a c t o r deter-mining the s i t e q u a l i t y of an area. Figure 17 i l l u s t r a t e s t h i s r e l a t i o n s h i p . This r e g r e s s i o n i s h i g h l y s i g n i f i c a n t (r0.44). The optimum moisture regime i n d i c a t e s the highest average s i t e index (S.I.140). Extremely wet s o i l represents the lowest s i t e q u a l i t y (S.I.50). (3) P e r m e a b i l i t y . The trend of p e r m e a b i l i t y c l a s s e s w i t h decrease i n s i t e index i s presented by F i g u r e 18. S o i l w i t h r a p i d - 101 -permeability represents the highest s i t e q u a l i t y (S.I . 1 3 2 ) . S o i l with slow permeability represents the lower s i t e q u a l i t y ( S . 1 , 6 5 ) . The c o r r e l a t i o n c o e f f i c i e n t of this r e l a t i o n s h i p was ( r 0 . 2 4 ) , highly s i g n i f i c a n t . (4) S o i l texture. S o i l texture s i g n i f i c a n t l y influences s i t e q u a l i t y . Site index i s higher on loamy sand, clay loam and loamy s o i l s than on the sandy, gravelly and peat s o i l s (Figure 1 9 ) • (5) Humus layer thickness. Humus layer thickness on the s o i l does not influence s i g n i f i c a n t l y the s i t e q u a l i t y . However, s i t e index i s lower on s o i l with a t h i n humus layer (from zero to 2 inches) than on s o i l with thicker humus layers (Figure 2 0 ) . (6) layer thickness. Site q u a l i t y i s correlated with A^-layer thickness ( r 0 . 1 7 ) . Site index decreases with increase i n Ag-layer thickness (Figure 2 1 ) . Estimation of Average Site Index, and Estimation by Species. Graphical and mathematical analyses provide us with good information about the relationships which exists among the var i a b l e s . However, the mathematical equations, which were computed, were not accurate enough to estimate s i t e indices. The standard errors of estimate of these equations are very high, over ± 22 feet i n each case with the exception of the equation f o r old«growth stand using thirteen variables (Table 7 ) . - 102 -The computed equations represent general relationships between the variables. However, the natural condition of a forest cannot be expressed completely by a mathematical formula. It could happen that the s i t e q u a l i t y of a p a r t i c u l a r forest type i s better although having otherwise worse s i t e factors than the s i t e q u a l i t y of other types having the same or better s i t e f a c t o r s . Sometimes many variables would indicate a good s i t e q u a l i t y f o r a c e r t a i n type but one variable determines a low s i t e q u a l i t y . Therefore, f o r a good estimation of s i t e q u a l i t y one needs the judgement of the photo-interpreter i n each case. In t h i s the following method was developed and applied to estimate the s i t e q u a l i t y from a e r i a l photographs. It was supposed that the s i t e q u a l i t y of a topo-graphic type i s the same within the type. Generally this i s true because the topographic factors determine the s i t e quality through t h e i r influence on microclimate, s o i l and moisture conditions of a p a r t i c u l a r place. As the f i r s t step the i n t e r -preter collected and analysed the f i e l d data. It i s very important that the photo-interpreter c o l l e c t s the f i e l d data because he had to know the working area. After analysis the photo-interpreter decided which variables were the most imp-ortant f o r c o r r e l a t i n g with the s i t e q u a l i t y . Then the i n t e r -preter, knowing the actual f i e l d relationships among the variables, examined many topographic types, on which the ground data were collected, stereoscopically on a e r i a l photographs. - 103 -In the second step the photo-interpreter estimated s i t e indices from the a e r i a l photographs f o r numerous types and checked those on the ground. If the estimation of s i t e indices was accurate enough the interpreter estimated the s i t e indices for the rest of the types.. The s i t e estimation of the writer after t r a i n i n g i n the f i e l d , was highly s i g n i f i c a n t having (r=0.65). The standard error of estimate was ± 16.4 feet, which i s about the same as the standard error of estimate found "from the determination of type s i t e index from the i n d i v i d u a l tree data on each p l o t . The average s i t e index was estimated f i r s t by f i v e -foot classes, then the s i t e indices f o r Douglas f i r , western hemlock, western red cedar, and red alder were estimated separately. Estimation of s i t e index f o r i n d i v i d u a l species from a e r i a l photographs i s more d i f f i c u l t than the estimation of average s i t e index. Before the estimation of s i t e index fo r i n d i v i d u a l species the photo-interpreter must study the ecolo g i c a l c h a r a c t e r i s t i c s of the l o c a l species and the i r topographic l o c a t i o n on the working area. The estimation of s i t e indices f o r i n d i v i d u a l species was based on the following observations within the University Research Forest area. Site index of Douglas f i r i s greater than the s i t e index of western hemlock and of western red cedar on better s i t e s , p a r t i c u l a r l y where seepage surface running water i s found on lower and middle slopes. Site index of Douglas f i r i s lower on upper slopes. Site index f o r the three species i s about the same on - 104 ~ low s i t e . S i t e index of western hemlock i s greater than the other two species on upper slopes and dryer middle slopes where the humus l a y e r i s t h i c k e r . S i t e index of red alder and b l a c k cottonwood v a r i e s between 90 and 130 f e e t . Red a l d e r has a lower s i t e index than the b l a c k cottonwood. The average s i t e index f o r Douglas f i r i s 120 f e e t , f o r western hemlock 122 f e e t , f o r western red cedar 113, and the average f o r the three species 119 f e e t . A good c o r r e l a t i o n was found between the i n d i v i d u a l and average s i t e i n d i c e s . This c o r r e l a t i o n was s i g n i f i c a n t at the two per cent p r o b a b i l -i t y l e v e l (t=2.058, degrees of freedom=152) (Table 10). Table 10 presents the s t a t i s t i c s and r e g r e s s i o n equation f o r the av-erage s i t e index and s i t e i n d i c e s of Douglas f i r , western hemlock, and western red cedar. Table I I contains the constants and Standard E r r o r s of estimate of l i n e a r r e g r e s s i o n equations f o r conversion of s i t e index of Douglas f i r , western hemlock, and western red cedar from one species to another. P r e p a r a t i o n of S i t e Maps. In preparing s i t e maps the problem i s to choose adequate mapping u n i t s . I t i s d i f f i c u l t to determine the borders of d i f f e r e n t s i t e types on the ground. The b i g ad-vantage of a e r i a l photographs i s that a p h o t o - i n t e r p r e t e r , w i t h a good f o r e s t r y background, can e a s i l y determine type boundaries on a e r i a l photographs by ster e o s c o p i c examination. The b a s i c mapping u n i t f o r s i t e maps may be f o r e s t cover types, s o i l t^pes, - 105 -physiographic types or topographic types, depending on the method which was used for the evaluation of s i t e q u a l i t y . Topo-graphic types were the basic mapping units i n this study. Site indices f o r each topographic type were determined from the f i e l d data or were estimated from a e r i a l photographs. Then those types were combined which had s i t e indices within 20-foot classes. Two s i t e maps were prepared f o r the A. and L. portion of the Forest; (1) average s i t e map, and (2) s i t e map f o r Douglas f i r (Appendix D and E). A s i t e map was prepared f o r the second-growth and old-growth area of the Forest i n 1950 by ground survey. This s i t e map i s presented on same map with the average s i t e map f o r A. and L. portion of the Forest (Appendix D). TABLE 10 S t a t i s t i c s and r e g r e s s i o n equation- f o r the average s i t e index and s i t e i n d i c e s of Douglas f i r , western hemlock, and western red cedar S.I. S.I. S.I. S.I. S t a t i s t i c s of Douglas f i r Western hemlock Western red cedar Average Means 119.5 122.1 112.5 119.2 Standard d e v i a t i o n s 27.0 32.0 31.9 25.7 Minimum 65 50 40 - 60 Maximum 205 200 200 175 C o r r e l a t i o n .896** .780** c o e f f i c i e n t s . 7 3 4 * * 1.000 No. of p l o t s 152 t 2.058** DO a Constants .276 .913 .286 3.616 TABLE I I Li n e a r r e g r e s s i o n equations f o r conversion of s i t e index of Douglas f i r , western hemlock, and western red cedar from one species to another Y X b CC S E E F i r Hemlock 59.60 0.49 0.58"" + 21.98 F i r Cedar 80. Ql 0.37 0.40** + 2 4 . 7 2 Hemlock Cedar 48.87 0.60 0.60** + 25.67 Hemlock F i r 39.63 O.69 0.58** + 26.06 Cedar F i r 55.57 0.48 0.40** + 29.14 Cedar Hemlock 40.16 0.59 0.60** + 25.58 'Highly s i g n i f i c a n t - 107 -SUMMARY AND CONCLUSION The s i t e q u a l i t y of the University of B r i t i s h Columbia Research Forest area was evaluated on a e r i a l photo-graphs. The method used was based on a combination of Choate's (1958) and H i l l s ' (1950) systems. A s i g n i f i c a n t c o r r e l a t i o n was found between s i t e index as the dependent variable and some topo-graphic and s o i l factors as independent variables. Linear multiple-regression equations were calculated by a ALWAC III-E electronic computer determine s i t e index from the various topo-graphic and s o i l variables. Because these equations had high standard errors of estimate f o r computation of s i t e index (SE E 25 feet) s i t e index was estimated d i r e c t l y from photos f o r d i f f e r e n t topographic types by the author. This estimation by a photo-interpreter was more valuable (SE 17 feet) than use of the computed equations. One s i t e map was prepared to i l l u s t r a t e the s i t e q u a l i t y of part of the U.B.C. Forest by averaging the s i t e indices of Douglas f i r , western hemlock, and western red cedar j another s i t e map was prepared f o r Douglas f i r alone. Regression equations were developed f o r conversion of s i t e index of Douglas f i r , western hemlock, and western red cedar to each other species and the average of a l l species. - 108 -This study confirms the u t i l i t y of a e r i a l photo-graphs f o r evaluating s i t e q u a l i t y . Although, applied at Haney on a r e l a t i v e l y small area, the method could be used f o r evaluation of s i t e q u a l i t y of lar g e r areas. This method i s more accurate on deforested (logged) or on young stand areas because the topographic and s o i l factors can be observed there more e a s i l y by stereoscopic examination. However, the a p p l i -cation of th i s method f o r second-growth and old-growth forests was also successful. This method of evaluation of s i t e q u a l i t y from a e r i a l photographs i s not an i d e a l method but does offe r many advantages. I t i s l i k e l y that the accuracy of photo-estimation of s i t e index can be increased by more experience i n photo-i n t e r p r e t a t i o n and by more observation i n the f i e l d . - 109 -BIBLIOGRAPHY American Society of Photogrammetry, 1952. - Manual of photo-gramme t r y . 2d ed., 876 pp. Washington, D.O. Armstrong, J.E., 1957. S u r f i c i a l geology of New Westminster Map-area, B r i t i s h Columbia. Canada Department of Mines and Technical Surveys. Ottawa. Paper 57-5. 25 PP. Bajzak, D., 1959. Tree species i d e n t i f i c a t i o n on a e r i a l photo-graphs. University of B r i t i s h Columbia. Unpublished directed studies. 65 pp. Baker, P.S., 1934. Theory and practice of s i l v i c u l t u r e . 502 pp. McGraw-Hill Book Company, Inc. New York. Beaufait, W.R., Influence of s o i l and topography on willow oak s i t e s . Southern Forest Experiment Station. Occas. Paper No. 178, 11 pp. Bennett, H.H., 1939. S o i l conservation. 993 pp. McGraw-Hill Book Company, Inc. New York. Brown, W.G.E., 1956. Roads and Land. Canada Department of Northern A f f a i r s and National Resources. Forestry Branch. Reprinted from Timber of Canada. 7 PP. Bruce, D. and F.X. Schumacher, 1942. Forest mensuration. 2d.ed., 425 PP. McGraw-Hill Book Company, Inc. New York. Burger, D., 1957. I d e n t i f i c a t i o n of forest s o i l s on a e r i a l photographs. For. Chron. 53(1)t 54-60. Chapman, H.H. and W.H. Meyer-., 1949. Forest mensuration. 552 pp. McGraw-Hill Book Company, Inc. New York. Chase, CD., 1959. Physiographic s i t e c l a s s i f i c a t i o n . Lake States Forest Experiment Station. 12 pp. mimeo. Choate, G.A., 1958. Plan f o r a study of the evaluation of s i t e q u a l i t y through the use of a e r i a l photographs. D i v i s i o n of Forest Economic Research P a c i f i c Northwest Forest and Range Experiment Station. U.S. Forest Service. Unpublished research plan. 18 pp. - 110 -Davidson, J.G.N., 1957* A preliminary inve s t i g a t i o n of the p o s s i b i l i t y of applying G. Angus H i l l s ' system of ' ecological c l a s s i f i c a t i o n to the University Forest at Haney, B.C. University of B r i t i s h Columbia. Unpublished manuscript. 1 pp. Forest Club, 1959." Forestry Handbook f o r B r i t i s h Columbia. 2d ed., 800 pp. Vancouver, B.C. Forest S o i l Committee of the Douglas F i r Region., 1 9 5 7 . An Introduction to forest s o i l s of the Douglas-fir Region of -the P a c i f i c Northwest." University of Washington. Seattle, Wash. I-I - XIV-35 PP. Faculty of Forestry, U.B.C. 1959. The f i r s t decade of management and research - U.B.C. Forest 1949-1958. U.B.C. Forest Committee B u l l e t i n , 82 pp. Graham, E.H., 1944. Natural p r i n c i p l e s of land use. 274 pp. Oxford University Press. New York. G r i f f i t h , B.G., I960. Growth of Douglas f i r at the University of B r i t i s h Columbia Research Forest as related to climate and s o i l . Forestry B u l l e t i n No."2. University of B r i t i s h Columbia. Vancouver, B.C. 68 pp. Heger, L., 1959. A comparison of conventional and natural height-age curves for Douglas f i r . "University of B r i t i s h Columbia . Unpublished M. F. thes i s . 71 pp. Helium, K., 1959. Studies i n s i t e and geomorphology. University of B r i t i s h Columbia. Unpublished directed studies. 49 pp. H i l l s , G.A., 1952. The c l a s s i f i c a t i o n and evaluation of s i t e ' for f o r e s t r y . Ontario Department of Lands and Forest. Research Report No. 24. Ontario. 41 pp. 1950." The use of a e r i a l photography i n mapping s o i l s i t e . For. Chron. 26(1)% 4-37. " 1953. The use of s i t e i n forest management. For. Chron. 29(1): 128-136. Ja r v i s , J.M., 1958. Airphoto i n t e r p r e t a t i o n f o r forest mana-gement. Canadian Pulp and Paper Industry. 11 ( 3 ) : 8-14. Kittredge, J., 1952. Deterioration of s i t e q u a l i t y by erosion-. Journal of Forestry, 50(7): 554-556. 1948. Forest Influences. 394 PP. McGraw-Hill Book Company, Inc. New York. - I l l -Krajina, V.J., I 9 6 0 . Ecology of the fo r e s t of the P a c i f i c Northwest. Progress report on National Research Council 1 grant No. T-92. 2 1 pp. Longwell, C.R., Knopf, A., and R.F. F l i n t , 1 9 4 6 . Outlines of physical geology. 3 1 8 pp. John Wiley & Sons, Inc. New York. Losee, S.T.B., 1 9 4 2 . A i r photographs and f o r e s t s i t e s . For. Chron. 1 8 ( 3 ) : 1 2 9 - 1 4 4 and ( 4 ) : 1 6 9 - 1 8 1 . Lueder, D.R., 1 9 5 9 . A e r i a l photographic in t e r p r e t a t i o n . 4 6 2 pp. McGraw-Hill Book Company, Inc. New York. Lutz, H.J., and R.F. Chandler, 1 9 4 6 . Forest s o i l s . 5 1 4 pp. John Wiley and Sons, Inc. New York. and A.P. Copraso, 1 9 5 8 . Indicators of fo r e s t land classes i n air-photo i n t e r p r e t a t i o n of the Alaska I n t e r i o r . Alaska Forest Research Center, U.S. Department of Agricu-l t u r e , Forest Service. Tuneau, Alaska. Station paper No. 1 0 . 3 1 pp. Marschner,"F.J., 1 9 5 9 . Land use and i t s patterns in"the United States. United States Department of Agriculture. A g r i c u l t u r a l handbook No. 153. Washington, D.C. 2 7 7 PP. Moessner, K.E., 1 9 4 9 . Stereograms i l l u s t r a t i n g f o rest s i t e s . Central States Forest Experiment Station. Miscellaneous Release No. 4. Columbus, Ohio. 2 1 pp. Morozov, G.F., 1 9 5 2 . Az erdB elettana. 3 8 8 pp. Mezttgaz-dasagi Kiado. Budapest. Hungarian t r a n s l a t i o n . Roth, Gy., 1 9 3 5 . ErdBmuveles I. 4 0 8 pp. Magyar K i r a l y i Jozsef Nador Muszaki es Gazdasagtudomanyi Egyetem Banya-, Koho- es ErdomernBki Kar. Rtttting-Romwalter Nyomda. Sopron. Schuchert, C , and CO. Dunbar, 1 9 4 6 . 2 9 1 PP. Outlines of h i s t o r i c a l geology. John Wiley & Sons, Inc. New York. Smith, H.T.U., 1 9 4 3 . A e r i a l photographs and the i r applica-t i o n s . 37?;;pp. Apple ton-Century Crofts, Inc. New York. Smith, J.H.G. and J.W. Ker, 1 9 5 9 . Empirical"yield equations f o r young forest growth. B.C. Lumberman. Sept. 2 pp. Reprint. Spurr, S.H., 1 9 4 8 . A e r i a l photographs i n f o r e s t r y . 3 4 0 pp. The Ronald Press Company. New York. 1 9 5 2 . Forest Inventory. 476 pp. The Ronald Press Company. New York. - 112 -Tarrant, R.F., 1950. A r e l a t i o n between topography and Douglas f i r s i t e q u a l i t y . Journ. For. 4_§(10): 723-724. Tourney, J.W. 1947. Foundation of s i l v i c u l t u r e upon an e c o l o g i c a l b a s i s . 468 pp. 2d ed. rev. John Wiley and Sons, Inc. New York. Washington. A g r i c u l t u r a l Experiment S t a t i o n , 1955. E v a l u a t i n g and mapping mountain land f e a t u r e s f o r f o r e s t management purposes. S t a t i o n c i r c u l a r No. 271. Watson, R., 1917. S i t e determination, c l a s s i f i c a t i o n and a p p l i c a t i o n . Journ. For. "15: 552-553 Wilde, S.A., 1958. Forest s o i l s . 537 pp. The Ronald Press Company. New York. . , 1946. Forest s o i l and f o r e s t growth. 241 pp. Chronica Botanica Company. Waltham, Mass. - 113 -APPENDICES Page A Common and s c i e n t i v i c names of species B Forest cover map C Topographic type map D Site map f o r Douglas f i r , Western Hemlock and Western red cedar E Site map for Douglas f i r F Stereograms i l l u s t r a t i n g various s i t e s . APPENDIX A COMMON AND SCIENTIFIC NAMES OF SPECIES Univer s i t y Forest Tree Species Coniferous Species Abies amabilis (Dougl.) Forb. Chamaecyparis nootkatensis (D.Don) Spach Picea sitchensis (Bong) Carr. Pinus contorta Dougl. Pinus monticola Dougl. Pseudotsuga t a x i f o l i a (Poir.) B r i t t o n Taxus b r e v i f o l i a Nutt. Thuja p l i c a t a Donn. Tsuga heterophylla (Raf.) Sarg. Common name Amabilis F i r Yellow cedar Sitka spruce Lodgepole pine Western white pine Douglas f i r Western yew Western red cedar Western hemlock Broad-leaved Species Acer circinatum Pursh. Acer macrophyllum Pursh. Alnus rubra Bong (oregona) Betula papyrifera Marsh Var. commutata (Regel) Fern Cornus N u t t a l i i Audubon Crataegus Douglasii L i n d l . Malus fusca (Raf.)•Schneid Populus trichocarpa Torr. & Gray Prunus emarginata (Doug.) D. D i e t r . Rhamnus Purshiana DC. Vine maple Broadleaf maple Red alder Western white b i r c h Western dogwood Black Hawthorn P a c i f i c crabapple Black cottonwood Wild cherry Cascara 42 Appendix B, Forest Cover Map 43 - 50 -Western red cedar i s the dominant species. Some western hem-lock and amabilis f i r also occur i n this f o r e s t type. The s i t e index of t h i s f o rest type i s about 180 f e e t . These forest types exist In the coastal western hemlock zone on the mainland of B r i t i s h Columbia (Krajina, I960). COLLECTION OP FIELD DATA THE UNIVERSITY OF BRITISH COLUMBIA RESEARCH FOREST, HANEY Location The U. B. C. Research Forest comprises about 10,000 acres, which are situated within the Coastal Mountains, 30 miles from Vancouver, B r i t i s h Columbia. The Forest i s roughly rec-tangular and i s bounded by Garibaldi Park, P i t t Lake, and P i t t Meadows ( G r i f f i t h , I960). Geological History The general region of the Forest consists of rugged mountains r i s i n g up to 7,000 feet above sea l e v e l . These moun-tains are separated by deep U-shaped v a l l e y s . The area was subjected to at lea s t four g l a c i a t i o n s . During each g l a c i a t i o n the land was depressed r e l a t i v e to the sea, and the ice rested on the sea.floor. Then the ice thinned and floated, and gl a c i o -marine stony clay deposits were l a i d down below elevations of - 51 -500 f e e t . Above e l e v a t i o n s of 500 f e e t , outwash was deposited. A f t e r that the i c e melted and the land rose above the sea (Armstrong, 1957)• Most of the rock on the Forest area i s quartz d i o r i t e , g r a n o d i o r i t e , or d i o r i t e . Some g r a n i t e outcrops occur around Loon Lake. V o l c a n i c rock occurs east of Marion Lake, and g l a c i a l d r i f t can be found between Marion and Katherine Lakes. Topography The e l e v a t i o n range of the Forest i s 100 - 2,600 f e e t above sea l e v e l . The center of the Forest contains three p a r a l l e l north-south v a l l e y s . The eastern v a l l e y i s formed by Marion Lake and the west f o r k of the North Alouette R i v e r . Blaney Creek flows from P l a c i d Lake to Blaney Lake i n the cent-r a l v a l l e y . The western v a l l e y contains Loon Lake which i s about one mile long, and 120 acres i n area. The r i d g e s c o n t a i n numerous rock outcrops and vary i n steepness. The c e n t r a l r i d g e forms a s e m i - c i r c l e running to the northeast u n t i l i t reaches 2,600 f e e t e l e v a t i o n . Then i t continues as a h i g h r i d g e to the n o r t h boundary of the F o r e s t . The northwest slope i s rocky, very steep and drops a b r u p t l y from the r i d g e top down to the P i t t Lake. Scrubby trees grow on t h i s s l o p e . The southern p o r t i o n of the Forest has a south exposure and i s lower i n e l e v a t i o n . Slopes have numerous rock outcrops and b l u f f s , and vary g r e a t l y i n steepness. APPENDICES P2, P2» APPENDIX F, I S t e r o g r a m i l l u s t r a t i n g s i t e s s o u t h w e s t o f M a r i o n L a k e F i g u r e 22 D e s c r i p t i o n o f t y p e s b y c o d e s o f p h o t o - m e a s u r a b l e v a r i a b l e s w h i c h w e r e u s e d i n t h i s s t u d y . T y p e N u m b e r S h a p e I n c o n t o u r 5 A s p e c t 2 7 0 " 90 90 90 90 90 L 270 E l e v a t i o n L o c a l p o s i t i o n s s s 3 a c a H R H M M L G e n e r a l p o s i t i o n S o i l d e p t h T R H M H L M o i s t u r e r e g i m e P e r c e n t o f s l o p e w 20 19 17 14 14 12 10 10 10 10 15 20 20 25 20 0 1 1 1 1 2 1 1 S h a p e of p r o f i l e S 60 40 45 50 30 0 S s s Co c s A v e r a g e s i t e i n d e x 80 80 110 140 130 160 80 140 APPENDIX F> 2 Sterograai i l l u s t r a t i n g s i t e a southweat of Mik© Lake Figure 23 Description of types by codes of photo-measurable var i a b l e * which were used i n t h i s study. Type Member jr 2 3 4 5 6 Shape i n contour lap—t 130 270 270 30 270 Local p o s i t i o n J t L - ~ ± J T LS M L M R S o i l 20 20 15 15 20 10 General po s i t i o n — Per cent of slope Shape of Elevation 7 L L L Rock Moisture regime 3 S S S Average s i t e index — Co c s $ 8 9 S 9 10 2 1 1 2 1 150 120 ISO 130 90 APPENDIX P, 3 Sterograra i l l u s t r a t i n g s i t e s of Blaney Lake area. Figure 24 Type Local General Per cent Shape Number Aspect p o s i t i o n p o s i t i o n of slope i n pr 1 90 M M 40 s 2 130 L L 8 c o 3 0 L L 20 s ° 4 0 L L 15 s 5 270 L L 20 c 6 180 I v 20 s 7 180 LS L 15 s 8 180 I L 20 c 9 180 M M 25 c 10 90 L M 15 s 11 270 M M 30 s 12 180 M M 35 c Shape i n S o i l Moisture Average contour Elevation depth regime s i t e index C 13 20 I 135 So 11 30 2 135 C 12 20 1 130 Co 12 15 2 125 c 12 20 1 125 s 12 15 1 120 Co 12 25 2 140 c 12 20 1 130 s 13 20 2 130 s 8 13 i t 25 20 15 2 \ 135 120 80 A P P E N D I X F , 4 Sterograram i l l u s t r a t i n g s i t e s west of Blaney Lake. Figure 25 Description of types by codes of photo-measurable variables which were used i n the study. Type Number Aspect Local p o s i t i o n 1 General Per cent Shape of po s i t i o n of slope p r o f i l e "•fl'-m .••I—in— i •• . i iw H - . B I . ^ f c w • • • i w i i w — * i— . . . . j — . m I I I IIIIW 5o x 2 5 4 5 6 7 9 270 180 L 180 270 270 180 270 270 M LS M L LS R H LS M L M M M II H II 40 4 25 15 20 15 30 25 S S« s s c s 3 Shape i n Contour Elevation S o i l depth Moisture regime Average Si t e Index 7 20 2 116 s 10 10 1 100 Co 10 25 2 150 c 12 20 1 130 c 10 20 1 120 s 11 20 2 130 c 12 10 1 110 C 12 20 1 100 C 0 11 25 2 140 S I T E M A P F O R D O U G L A S F I R U N I V E R S I T Y R E S E A R C H F O R E S T H A N E Y B.C. Legend Site index i Inch = l,ooo teef 61 — 60 80 81 — 100 101 121 Ml 120 MO 160 161 — 180 181 161 S I T E M A P U N I V E R S I T Y R E S E A R C H F O R E S T H A N E Y B.C. I lnch= looo feel Legend SHe index 61 - 60 80 81 - 100 101 - 120 121 - MO 141 161 160 180 181 - 131 r TOPOGRAPHIC TYPE MAP UNIVERSITY RESEARCH FOREST HANEY E C I Inch = looo feel Legend: Type number Type boundary Sampling points Permanent sample plots Lakes Roads Western limit of railroad logging 17 o o • • Border of new logging Creeks 18 I o 7 o •'7 v i 0 8 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105926/manifest

Comment

Related Items