Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Statistical analysis of tree growth and some environmental factors of plant communities in a selected… Eis, Slavoj 1962

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1962_A1 E4 S7.pdf [ 80.04MB ]
Metadata
JSON: 831-1.0105632.json
JSON-LD: 831-1.0105632-ld.json
RDF/XML (Pretty): 831-1.0105632-rdf.xml
RDF/JSON: 831-1.0105632-rdf.json
Turtle: 831-1.0105632-turtle.txt
N-Triples: 831-1.0105632-rdf-ntriples.txt
Original Record: 831-1.0105632-source.json
Full Text
831-1.0105632-fulltext.txt
Citation
831-1.0105632.ris

Full Text

S T A T I S T I C A L ANALYSIS OF TREE GROWTH AND SOME ENVIRONMENTAL FACTORS OF PLANT COMMUNITIES IN  A SELECTED AREA OF THE COASTAL WESTERN HEMLOCK  ZONE  by SLAVOJ E I S Dipl.  F o r . Eng., Prague Tech. U n i v . ,  19^8  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE  REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  in  t h e Department of  BIOLOGY AND  We a c c e p t required  THE  this  thesis  BOTANY  as c o n f o r m i n g t o t h e  standard  UNIVERSITY OF B R I T I S H COLUMBIA November, 1961  In the  presenting  requirements  this thesis  f o r an  of B r i t i s h Columbia, it  freely available  agree that for  Department  copying  gain  shall  or  not  shall  f o r reference  and  study.  I  Department o f  for extensive  publication  April  Biology  10,  granted  and  1962  by  Botany Columbia,  of  the  It i s  of t h i s t h e s i s  a l l o w e d w i t h o u t my  The U n i v e r s i t y o f B r i t i s h Vancouver Canada. Date  be  copying  of  University  Library  his.representatives.  be  the  the  p u r p o s e s may  o r by  that  advanced degree a t  fulfilment  I agree that  permission  scholarly  in partial  make  further this  Head o f  thesis my  understood  for financial  written  permission.  The  U n i v e r s i t y of B r i t i s h  Columbia  GRADUATE STUDIES FACULTY OF GRADUATE STUDIES Field  of Study:  Forest  F o r e s t Synecology Forest Autecology Plant Physiology Taxonomy of Higher Other  Ecology  Plants  V.J. K r a j i n a V.J. Krajina D.J. Wort T.M.C. T a y l o r  PROGRAMME OF  FINAL ORAL EXAMINATION for  Studies:  Silviculture Biometry S o i l Genesis S o i l Chemistry S o i l & Plant Relations  P.G. Haddock; J.C. Sawyer C.A. Rowles J.S. C l a r k J.D. Beaton  THE  the Degree of  DOCTOR OF PHILOSOPHY of SLAVOJ  EIS  D i p l . For. Eng.(Technical U n i v e r s i t y , Prague,) 1948 WEDNESDAY, MARCH 28th, 1962, IN ROOM 2211,  at 2:00  P.M.  BIOLOGICAL SCIENCES BUILDING  COMMITTEE IN CHARGE Chairman  F.H.  J.E. BIER P.G. HADDOCK S.W. NASH C.A. ROWLES  Soward R.F. SCAGEL W.B. SCHOFIELD T.M.C. TAYLOR' R.W. WELLWOOD  D.J. WORT E x t e r n a l Examiner: Dr. R.T.  Coupland  Department of P l a n t E c o l o g y U n i v e r s i t y of Saskatchewan  STATISTICAL ANALYSIS OF TREE GROWTH AND SOME ENVIRONMENTAL FACTORS OF PLANT COMMUNITIES IN A SELECTED AREA OF THE COASTAL WESTERN HEMLOCK ZONE  ABSTRACT The c l i m a t e , s i t e p r o d u c t i v i t y and environmental c h a r a c t e r i s t i c s of the a s s o c i a t i o n s were s t a t i s t i c a l l y e v a l u a t e d u s i n g c o r r e l a t i o n and regression analyses. The purpose of the study was to a s s e s s the degree to which the p r o d u c t i v i t y and the p l a n t community are i n f l u e n c e d by i n d i v i d u a l environment a l f a c t o r s as w e l l as by groups of f a c t o r s . I t was found t h a t almost a l l the stands i n v e s t i g a t e d were s e v e r e l y a f f e c t e d by f i r e and t h a t most stands i n lower a l t i t u d e s have developed f o l l o w i n g d e s t r u c t i o n of the p r e v i o u s stands by f i r e s . The ' h i s t o r y of major f i r e s was t r a c e d back at l e a s t 500 years. The p a t t e r n of ecosystem f o r e s t communities has been used as a b a s i s f o r the s e p a r a t i o n of b i o l o g i c a l l y equivalent forest habitats. M i c r o c l i m a t e s of seven of the most important ass o c i a t i o n s were s t u d i e d i n d e t a i l over a p e r i o d of twelve months. I t i s c o n c l u d e d t h a t topography i s the p r i m a r y f a c t o r i n f l u e n c i n g s o i l and water cond i t i o n s within a given macroclimatic region. This r e s u l t s i n the development of a c e r t a i n m i c r o c l i m a t e and an accompanying a s s o c i a t i o n . The g r e a t e s t d i f f e r e n c e s among the p l a n t communit i e s were i n temperature maxima and relative-humidity minima. Temperature means and minima, h u m i d i t y means and maxima and r a i n f a l l a l l o n l y d i f f e r e d s u b s t a n t i a l l y between the two subzones.  F o r e s t stand s t a t i s t i c s were compared w i t h convent i o n a l stand t a b l e s . S i t e - i n d e x curves f o r Douglasf i r , western hemlock, red cedar, a m a b i l i s f i r and spruce i n d i c a t e d i f f e r e n c e s between a s s o c i a t i o n s , and show t y p i c a l t r e n d s which r e f l e c t s i t e q u a l i t y . I t was concluded that a set of p h y s i o g r a p h i c c h a r a c t e r i s t i c s i s t y p i c a l f o r each a s s o c i a t i o n as w e l l as f o r each p r o d u c t i v i t y c l a s s . However, wide s t a n d a r d d e v i a t i o n s and l a r g e o v e r l a p s i n d i c a t e that s i m i l a r p h y s i o g r a p h i c l o c a l e s may be o c c u p i e d by d i f f e r e n t a s s o c i a t i o n s and by stands of d i f f e r e n t productivity. T o p o g r a p h i c a l f e a t u r e s were found to be more c l o s e l y c o r r e l a t e d w i t h p l a n t communities than w i t h p r o d u c t i v i t y . Many s i g n i f i c a n t c o r r e l a t i o n s between s i t e index and s i x t e e n environmental f a c t o r s were found w i t h i n individual associations. G e n e r a l t r e n d s i n the s i t e index-environmental f a c t o r r e l a t i o n s h i p s were a l s o studied. These i n v e s t i g a t i o n s have shown t h a t i t i s poss i b l e to use many combinations of e n v i r o n m e n t a l f a c t o r s f o r an e s t i m a t i o n of f o r e s t p r o d u c t i v i t y and of p l a n t community. I t was found, however, t h a t due to h i g h c o r r e l a t i o n s among environmental f a c t o r s , only two or t h r e e c h a r a c t e r i s t i c s need to be used f o r e s t i m a t i o n of e i t h e r p r o d u c t i v i t y or p l a n t community w i t h an accuracy approaching cases i n which many environmental, f a c t o r s were c o n s i d e r e d . Almost a l l of the v a r i a b i l i t y of the p l a n t comm u n i t i e s s t u d i e d can be accounted f o r by d i f f e r e n c e s i n the s o i l and m o i s t u r e regime. ' S i m i l a r c o r r e l a t i o n of s i t e index w i t h s o i l and m o i s t u r e was found to be s u b s t a n t i a l l y lower. Seepage water and s o i l permeab i l i t y were found to be the two most important charac t e r i s t i c s of both p l a n t community and s i t e index.  ii  ABSTRACT  A plant  s t u d y o f p r o d u c t i v i t y and  c o m m u n i t i e s was  Coastal  w e s t e r n hemlock zone.  composite  ecological project  investigations Laszlo  c a r r i e d out  of  soils  and  productivity  present  regression  and  analyses.  of  i s a part  zone, w h i c h by  of  the the  includes  George L e s k o  and  are  influenced groups  by  using  purpose  of the  p r o d u c t i v i t y and  correlation  associaand  s t u d y was  to  the  community  plant  assess  i n d i v i d u a l e n v i r o n m e n t a l f a c t o r s as w e l l  as  of f a c t o r s . I t was  were s e v e r e l y  found that  a f f e c t e d by  a l t i t u d e s have d e v e l o p e d s t a n d s by  site  c h a r a c t e r i s t i c s of the  evaluated  The  degree t o which the  fires.  l e a s t 500 The  forest  this  vegetation  environmental  the  u s e d as  study  i n v e s t i g a t i o n , climate,  t i o n s were s t a t i s t i c a l l y  at  forest  Orloci respectively. In t h e  by  of  i n a s e l e c t e d area  This on  environment  The  almost a l l the  fire  and  following  that  stands  most  investigated  stands i n  destruction  of t h e  h i s t o r y o f m a j o r f i r e s was  lower previous  traced  back  years. pattern  a basis  o f e c o s y s t e m f o r e s t c o m m u n i t i e s has  f o r the  separation  of b i o l o g i c a l l y  been  equivalent  habitats. Microclimates  of  a s s o c i a t i o n s were s t u d i e d  seven  of the  in detail  most  important  over a p e r i o d  of  twelve  iii  months. factor  I t was'  concluded  influencing soil  macroclimatic  region.  certain microclimate The ties  greatest  and  water  This and  topography i s the conditions  r e s u l t s i n the  an  accompanying  differences  among t h e  were i n t e m p e r a t u r e maxima and  minima.  T e m p e r a t u r e means and  maxima and the  that  two  rainfall  stand  stand t a b l e s .  a  communi-  minima, h u m i d i t y means  a l l d i f f e r e d s u b s t a n t i a l l y only  s t a t i s t i c s were compared w i t h  Site-index  and  between  differences  trends which r e f l e c t I t was  concluded  is typical  productivity large  l o c a l e s may  overlaps be  amabilis  site  quality.  that  a  set  However, wide indicate  o c c u p i e d by  t o be  than w i t h  and  that  as w e l l  standard  similar  spruce  show  typical  characteras  for  each  deviations  physiographic  different associations Topographical  and  by  features  more c l o s e l y c o r r e l a t e d w i t h p l a n t  communi-  productivity.  Many s i g n i f i c a n t c o r r e l a t i o n s between s i t e  index  e n v i r o n m e n t a l f a c t o r s were f o u n d w i t h i n  associations.  western  Sitka  of p h y s i o g r a p h i c  of d i f f e r e n t p r o d u c t i v i t y .  were f o u n d  f i r and  f o r each a s s o c i a t i o n  class.  conventional  curves f o r D o u g l a s - f i r ,  between a s s o c i a t i o n s ,  sixteen  of  relative-humidity  indicate  ties  given  development  plant  cedar,  stands  a  association.  hemlock, w e s t e r n r e d  and  within  subzones.  Forest  istics  primary  General trends  i n the  site  index -  and  individual environmental  iv factor  r e l a t i o n s h i p s were a l s o The  is for  possible  studied.  r e s u l t s of the i n v e s t i g a t i o n s  t o u s e many c o m b i n a t i o n s  of environmental  an e s t i m a t i o n o f f o r e s t p r o d u c t i v i t y  munity.  However,  i t was f o u n d  among e n v i r o n m e n t a l need be u s e d  factors,  that,  o n l y two o r t h r e e c h a r a c t e r i s t i c s  moisture regime.  Similar  m o i s t u r e was f o u n d  index.  cases  a l l of the v a r i a b i l i t y  c a n be a c c o u n t e d  important  com-  or p l a n t  i n w h i c h many  f a c t o r s were c o n s i d e r e d .  Almost  w a t e r 'and s o i l  factors  correlations  f o r estimation of either productivity  environmental  and  and o f p l a n t  due t o h i g h  community w i t h an a c c u r a c y a p p r o a c h i n g  studied  have shown t h a t i t  of the p l a n t  f o r by d i f f e r e n c e s correlation  i n t h e s o i l and  of s i t e  index w i t h  t o be s u b s t a n t i a l l y l o w e r .  p e r m e a b i l i t y were f o u n d  c h a r a c t e r i s t i c s of both p l a n t  communities  soil  Seepage  t o be t h e two most community and s i t e  V  TABLE OF  CONTENTS Page  INTRODUCTION  1  REGIONAL SETTING AND HISTORY  7 7  Relief  10  Geology Glacial  History  13  Climate  i n General  15  Forest  Soils  19  Forest  Composition  26 29  Recent H i s t o r y  35  METHODS OF F I E L D WORK General Data Climatic  on P l a n t  Community and E n v i r o n m e n t  of Climatic  35 4l  Measurements  Description  . . .  Stations  ANALYSIS OF THE DATA  45 49  Mathematical Approach  49  The  Climate  67  Temperature  67  Precipitation  78  Relative  Humidity  83  on Age  88  Site  Index  Environment Plant  . . . . . . . . . . . .  Communities  100 148  vi TABLE OP CONTENTS ( c o n t i n u e d ) Page Communities o f the D r i e r Subzone  158  Gaultheria Association  158  Moss A s s o c i a t i o n  l6l  Polystichum Association  165  Communities of t h e Wetter Subzone  168  Vaccinium - S a l a l Association  168  V a c c i n i u m - Moss A s s o c i a t i o n  171  Blechnum A s s o c i a t i o n  172  Vaccinium - Lysichitum Association  175  R i b e s - Oplopanax A s s o c i a t i o n  177  M u l t i p l e Regression Analysis  180  Conclusions  186  Summary  192  BIBLIOGRAPHY  199  APPENDICES  216  vii LIST OF FIGURES Figure  To F o l l o w Page  1.  Map  2.  Vancouver, g e o l o g i c a l map  3.  Summary of g e n e r a l m e t e o r l o g i c a l d a t a f o r the  of the r e g i o n s t u d i e d  '. .  10  17  region 4.  Years of s t a n d e s t a b l i s h m e n t i n d i c a t i n g  fire 32  history 5.  7  Temperature maxima, means and minima i n the 71  shelter 6.  Temperature maxima and minima 6 f e e t above the 72  ground and of the ground s u r f a c e 7.  Average w e e k l y p r e c i p i t a t i o n i n i n c h e s . . . .  78  8.  Weekly average c u m u l a t i v e p r e c i p i t a t i o n  78  ...  9. ) Hygrothermograph r e c o r d f o r s e l e c t e d t h r e e  10.  j  11. ) 12.  83  weeks  R e l a t i v e h u m i d i t y means and minima i n the 85  shelter 13.  Average w e e k l y e v a p o r a t i o n from atmometers . .  14.  Cumulative  average w e e k l y e v a p o r a t i o n from 85  atmometers 15.  85  Average s i t e i n d i c e s of a l l commercial t r e e 91  species 16.  S i t e i n d e x curves of D o u g l a s - f i r  92  17.  S i t e i n d e x curves o f western  92  hemlock  viii L I S T OF  FIGURES  (continued)  Figure  To F o l l o w  18.  Site  index  curves  of r e d cedar  19.  Site  index  curves  o f b a l s a m and  20.  Comparison  of s i t e  index  92  curves  Sitka of  spruce  .  Distribution standard  97 of s i t e  indices  d e v i a t i o n s and  by  means, errors  . .  98  analyzed  . .  105  standard  22.  Altitude  and  aspect  of a l l p l o t s  23.  Altitude  and  aspect  of p l o t s  in  individual 106  communities 24.  Aspect  25.  Slope  26.  Shape o f p r o f i l e  27.  Wind e x p o s u r e and  28.  S t o n i n e s s and  29.  Ground w a t e r and  30.  Soil  and and  107  altitude  108,  shape o f c o n t o u r s and  position  parent  soil  on  slope  . . . .  soil  125 128  moisture t h i c k n e s s of  organic 132  matter 31.  P o d z o l i s a t i o n and  32.  Changes i n b a s a l a r e a and  33.  the  establishment  Change In t h e  137  altitude volume o f t r e e s p e c i e s of the  number o f t r e e s p e r  Regression  analysis  stand  . . . .  a c r e and  160  in 160  mean d i a m e t e r 34.  116 120  material  depth  p e r m e a b i l i t y and  since  92  immature  Douglas-fir 21.  Page  of s i t e  index  l8l  ix L I S T OF FIGURES  (continued)  Figure  To F o l l o w  35.  Regression  analysis  of p l a n t  36.  Regression  analysis  of ecosystem  communities 3-7.  Regression  in drier  analysis  communities  communities  i n wetter  subzone  182  plant 183  subzone  of e c o s y s t e m  . '. . .  plant 184  Page  X  L I S T OF  TABLES  Table  Page  1.  Description  2.  Site  3.  Correlation  4.  Summary o f E x i s t i n g on  5.  of  Indices  the  Microclimatic  of  Individual  Coefficients,  Tree Site  Species I n d e x on  Ecological  Coastal Forests  47  Stations . . . . Age  Range  . . .  Comparison Work and and  Lesko  of  101  and 103  Correlation 6.  97  Classifications  of N o r t h America  Means, S t a n d a r d D e v i a t i o n s ,  . .  93  the  Nomenclature  C l a s s i f i c a t i o n s of  of  the  Orloci  Present  (l96l) 150  (1961)  7.  Soil  Properties  8.  Soil  Subgroups  9.  C o n s t a n t Dominant and  151 153  Character  Species  . . . .  155  xi  ACKNOWLEDGEMENTS  The a u t h o r Dr.  wishes t o extend  h i sgratitude to  V. J . K r a j i n a f o r t h e o r g a n i z a t i o n o f t h i s  study and  f o r h i s g u i d a n c e , a n d t o t h e o t h e r members o f h i s c o m m i t t e e : Dr.  G. S. A l l e n ,  Dr.  J . W. K e r , D r . T. M. C. T a y l o r and D r . D. J . Wort f o r  their  D r . J . S. C l a r k , D r . P. G. Haddock,  help. A s p e c i a l word  of a p p r e c i a t i o n i s extended t o  Dr.  H. Dempster, D r . T. E . H u l l ,  Dr.  J . G. H. S m i t h and Mr. R. D o b e l l  statistical and  cooperation  on c l i m a t o l o g i c a l  t o D r . J . W. K e r and D r . J . H. G. S m i t h f o r t h e i r i n a n a l y s i s of f o r e s t  and s o i l s  of the region;  mensuration data; t o comments on  t o D r . P. G. Haddock, critical  on t h e m a n u s c r i p t . The a u t h o r  a l s o w i s h e s t o t h a n k Mr. J . O r l o c i and  Mr. G. L e s k o f o r t h e i r Mr. T. V. B e r r y ,  cooperation  Commissioner  V a n c o u v e r Water  during  t h e f i e l d w o r k and  o f t h e V a n c o u v e r Water  a s s i s t a n c e i n p r o v i d i n g access  Greater  with  D r . J.D. Chapman  G. E . Rouse and D r . W. B. S c h o f i e l d f o r t h e i r  advice  for  suggestions  help  J . E . A r m s t r o n g a n d D r . J . S. C l a r k f o r t h e i r  geology Dr.  f o rtheir  t o D r . B. G. G r i f f i t h ,  Mr. R. S c h m i d t f o r h e l p f u l  measurement;  Dr.  problems,  D r . S. W. Nash,  District.  into  the area  Board  of the  xii  Financial given and  by:  National  Powell River  support  This  W.  J . Van  Co.,  B.  C.  Dusen and  Dr.  the  the  study,  MacMillan,  Sugar R e f i n i n g Leon J .  Faculty  support, w i t h o u t which the  completed  investigation  Research Council,  Vancouver Water D i s t r i c t , Mr.  f o r the  Bloedel Greater  Koerner,  of F o r e s t r y ,  author  is gratefully  Co.,  was  c o u l d not  acknowledged.  U.B.C. have  CHAPTER  I  INTRODUCTION  S i n c e the  t i m e when c l a s s i f i c a t i o n  of  forest  became a u s e f u l  t o o l i n f o r e s t management, f o r e s t e r s  most f r e q u e n t l y  expressed  or h e i g h t forest  trees  at  c e r t a i n ages.  and  W i t h more  ( e . g . " Mayer, 1953)  many f o r e s t e r s  height-age  measures of  c u r v e s and  forest  volume  Difficulty  may  deforested  areas,  ance o r  age,  species. a 2.  site  In  the  3.  may 4.  Site the tree  not  be  do  most  useful  not  conventional  shortcomings:  encountered and  on  in classifying  areas which,  bear the  most  due  to  disturb-  productive  and  potential productivity  therefore  may  be  classification  of  method i s n o t  of  different. site as  from a e r i a l  useful  as  are  photophysio-  features.  Conventional nature  stand-  concluded  Actual  graphs the graphic  the  and  productivity.  I n d e x " c u r v e s have s e v e r a l 1.  have  intensive  have  " S i t e Index" are  However, methods r e l y i n g o n l y "Site  the  management, t h e s e methods have been r e f i n e d  ardized that  of  s i t e p r o d u c t i v i t y by  sites  can  be  be  index  site only  suitable  c u r v e s , w h i c h by  their  averages from a large  area,  for  c u r v e s may  composition layer.  index  be  of p l a n t  specific local changed by cover,  conditions.  variation  in  especially in i t s  2 5. T r e e h e i g h t  i s only  a sum o f a l l t h e i n f l u e n c e s  under which the t r e e the As research of  causes of d i f f e r e n c e s  a r e s u l t of these  I t does n o t e x p l a i n i n tree  limitations,  h a s been done on a l t e r n a t e  growth.  considerable  approaches t o the study  site. Ecologists  physiographic  factors, that  o f f e r one method  i n the study  are considered  humidity,  directly  soil  influence  only  moisture,  a part.  competitors,  the vegetation;  direct  factors.  interaction attempt  to prescribe  factors,  fact  site  of these  that  specific  plants  a c t i o n on  t o i t s component  quality  the s i t e .  necessitates accomplishing  One method  possible that  t o develop a c l a s s i f i c a t i o n  are i n d i c a t i v e of s i t e  quality.  on t h e  vegetation  occur i n d e f i n i t e e c o l o g i c a l h a b i t a t s , p r o v i d i n g Using plant  uses  I t i s based  forming the f o r e s t  l i b r i u m h a s been r e a c h e d .  parts.  related to site  Number o f methods  to identify  factors  I t d e f i e s an  h a s been d e v e l o p e d and a r e i n u s e . communities  biotic  such  q u a l i t y i s the r e s u l t of the  quality i s directly  factors.  factors,  through t h e i r  limits  of s i t e  Some o f t h e s e  other  influences.  precise  determination  evaluation  plant  Thus t h e s i t e  o f many v a r y i n g  Since  this  do so i n d i r e c t l y  vegetation,  r a d i a t i o n , are factors  a l t i t u d e , d e g r e e and d i r e c t i o n o f s l o p e ,  and  of s o i l ,  and c l i m a t i c f a c t o r s a s t h e y a c t upon  of which t r e e s  as  grew.  that  communities  of f o r e s t  equi-  It is  habitats  3 The habitat and  study  climates, s o i l s ,  t h e i r use  Excellent 1956;  of the  in site  reviews  logical  classification  literature  Geiger,  the  Klima  field auf  1957;  forest  (1911)  was  are  1949,  Wolfe,  recent. by  and  Bliss, of  eco-  (2). the  first  to publish  o f m i c r o c l i m a t o l o g y i n h i s work "Boden  k l e i n s t e m Raum".  on  productivity  is relatively  i960  by K r a j i n a ,  In Germany, K r a u s in  v e g e t a t i o n and  of m i c r o c l i m a t i c l i t e r a t u r e  1953;  Cantlon,  i n f l u e n c e of h a b i t a t f a c t o r s  In the U n i t e d  States  und  ecologists  c o r r e l a t e d p l a n t c o m m u n i t i e s w i t h m e t e o r o l o g i c a l measurements of l o c a l time  areas  study  developed  of m i c r o c l i m a t e , a l o n g two  is  r e p r e s e n t e d by  in  agricultural 1910,  Cox,  weather  1926; The  1922;  second,  1941; Hills,  the  The  meteorology Smith,  Mitchell,  1952;  1953;  Morozov, 1926,  of f o r e s t f i r e  Stickel,  1931).  i s represented topography  1953;  1936,  1947,  Pierce,  1939;  1952;  by  the  1919;  1934;  Young,  1920),  Graham, 1939;  meteorological factors  Hawley,  (Aikman,  Harshburger,  1928;  Daubenmire,  1957),  study  1929;  Potzger,  line,  1915;  1929,  1929, 1944;  McMinn,  economic  Stickel,  line,  Cantlon,  1943,  the  this  has  and  Pogrebniak,  1929;  the  of b o t a n i s t s emphasizing  Burnes,  vegetation  Since  o f the Weather Bureau  and  Gast  ecological  1899).  ( B a t c h e l o r and West,  1920)  1930;  and  first,  investigations  1941;  Hayes,  (Cowles,  soil,  lines.  (Alexander,  research  1899  as e a r l y as  soils  Larsen,  (Burnes,  1953;  4 1912;  Fuller,  1952;  1942;  Huffaker,  environmental responses i n plants 1928;  (Braun-Blanquet, 1947;  Daubenmire,  1921;  1955,  1939;  1959, I960 (2);  Odum,  and p l a n t  1957;  as w e l l  1953;  1929),  1932,  Oosting,  Ludi,  and e c o s y s t e m  as b i o c e n o t i c 1952;  Daubenmire,  Hartmann,  1909;  194l;  Heimburger,  and  communities  C l e m e n t s , 1905,  and Clements,  both ecotopic  (Curtis,  Ellenberg,  1947; 1921;  Du R i e t z ,  w h i c h encompasses  1957;  Cain,  1938; Weaver  Sisam,  approaches  1945;  Hough,  1938; T h o r n t h w a i t e , 1940; V a a r t a j a , 1954),  Livingston, the  Hills,  1933;  1956;  Dansereau, 1933,  Krajina,  Sukachev,  1955,  1958 and o t h e r s ) . I n N o r t h A m e r i c a many s t u d i e s of t r e e s  t o environmental f a c t o r s .  1955;  Forristal  I960;  Hanzlik,  1948;  Hills,  1937;  Lowry  et  i960), 1954;  1950;  e t a l , 1953; 191k;  1952;  1952;  Warren  Hill,  1956;  Arnst  Isaac  L u t z and C h a n d l e r , 1955;  and Matheson,  1949;  W i l d e , 1958;  or p l a n t  S c h m i d t , 1954;  Tourney,  1955;  Grasovsky,  1946;  J e m i s o n , 1934;  1954;  indicators  Scott,  S i s a m , 1938;  1947; W e s t v e l d , 1954), 1929; G r i f f i t h , Kramer  S c h m i d t , 1954,  1957;  to climate  i960;  Hills,  Scott  Peech  Tarrant, Wittich,  (Becking,  Society of  Spilsbury  a n d D e c k e r , 1944; 1955;  a n d Bond,  and H o p k i n s ,  Tamm, 1950;  19^7;  1959;  Griffith,  1952;  communities  Rowe, 1956;  (Carmean,  Stout,  American F o r e s t e r s ,  Logan,  1955;  1949;  194l;  H u s c h and L y f o r d ,  Spurr,  to plant  To s o i l s  Gessel,  Heimburger,  and Youngberg,  a l , 1947;  1949,  have r e l a t e d t h e g r o w t h  and Smith, (Carmean,  1952;  Isaac,  Lemmon,  a n d Duncan,  1955;  1959;  1948,  Spurr,  1955;  Trapp,  Chase,  1959;  Choate,  1958;  Losee,  Starr, Exp.  1955;  the  Circ.  T a r r a n t , 1950;  designed  investigations  of O r l o c i ,  and  analyzed  Lesko,  The  who  i n the  sense  specific  area  1.  the  a r e a and  2.  s t u d y were c o l l e c t e d  who  the  analyzed  soils.  plant  To  analyze  cation,  humidity, soil  climatic  It utilizes  data  on  temperature  month  stations,  communities, p l a n t com-  (1959).  of K r a j i n a study  were:  diameter,  basal  i n the  communities.  moisture  d u r i n g a twelve  forests  the p l a n t  growth i n h e i g h t h ,  and  in  Columbia.  volume o f t r e e s p e c i e s p r e s e n t  collect  Agr.  as a p a r a l l e l work t o  more i m p o r t a n t  relative  coniferous  o b j e c t i v e s of the p r e s e n t  analyze  1948;  Spurr,  Washington  of ecosystem u n i t s  In a s e l e c t e d To  Jarvis,  2J1 - 1955).  No.  coast of B r i t i s h  s t u d y was  1959;  1958;  complex o f c o o l wet  Pacific  i960;  (Bajzak,  1952,  Copraso,  d a t a f o r the p r e s e n t  a l o n g the  munities  Hills,  L u t z and  environmental  The  or topography  1958;  Tarran, 1950;  Station The  1942;  1938),  and  precipitation, and  its stratifi-  temperature  p e r i o d from  nine  eight located i n  u n i f o r m p l a n t communities,  and  one  variation micro-  selected outside  the  forest. 3.  To  determine  of e l e v a t i o n ,  the  local  importance  slope, aspect,  and i n f l u e n c e  shape o f  contours,  6 shape o f p r o f i l e , parent ture  position  m a t e r i a l , depth  regime,  and s o i l  on s l o p e , w i n d  o f solum,  exposure,  s t o n i n e s s , mois-  forming processes,  as  m e a s u r e d b y t h i c k n e s s o f H and Ae h o r i z o n s , on composition  o f v e g e t a t i o n and f o r e s t  as m e a s u r e d b y s i t e The diagrams,  study  index.  i s documented w i t h r e p r e s e n t a t i v e maps,  charts, t a b l e s p o r t r a y i n g the area  being  analyzed.  kinds  o f d i a g r a m s t o show s e q u e n c e s ,  differences  productivity  and c o n d i t i o n s  I t u t i l i z e s new as w e l l as c o n v e n t i o n a l  observed.  s i m i l a r i t i e s and  CHAPTER I I  REGIONAL SETTING AND  HISTORY  Relief The on  the southern  Alouette It  area  under  study  separated  i n t o three  (Pitt  River  of the Vancouver F o r e s t  Service.  5,000 f e e t e l e v a t i o n w i t h i n  a few m i l e s  mountain b l o c k s and I n d i a n  uplifted,  This  feature  w e l l developed  fissures  erosion  and t h a t  area  an a l m o s t h o r i z o n t a l  flat-topped.  ridges slopes.  of these peaks  of a former,  out of which the  carved.  Another  lava  issued  from  i t came t o r e s t o v e r a v e r y  theory open  extensive  surface. sharp, w h i l e  Below them a r e t h e e v e n - t o p p e d  and s p u r s and l o n g , Still  feature  surface,  Some o f t h e summits a r e v e r y are  several  q u a n t i t i e s , t h e r e b y r e t a i n i n g i t s heat and  fluidity, with  floors  evidence  are  U-shaped  a l t i t u d e of t h e i r  i s probably  195^0 s u g g e s t s t h a t  i n vast  by two l o n g  The s t r i k i n g  m o u n t a i n s have s u b s e q u e n t l y been (Armstrong,  from the sea,  Arm) w i t h  i s the approximately uniform  ridges.  district  The m o u n t a i n s , r i s i n g t o  hundred f e e t below sea l e v e l .  and  between  L a k e a n d Howe Sound i n a l t i t u d e s below 3,000 f e e t .  o f t h e B. C. F o r e s t  blocks  1. Map) i s l o c a t e d  f r i n g e o f t h e c o a s t a l mountain range  i s the southwestern p a r t  valleys  (Figure  gently  concave o f t e n  lower are s t e e p - s i d e d  7  others  connecting terraced  v a l l e y s whose b o t t o m s  8 as  a rule  have been e r o d e d b y g l a c i e r s  Sumas g l a c i a t i o n .  Seymour R i d g e ,  during the l a s t , the  f o r example,  o c c u p i e s t h e a r e a between Seymour V a l l e y has  -at i t s s o u t h e r l y e n d p l a t e a u - l i k e  3,850  and  cirques  4,050  Small lakes  cut i n the terrace An  low  feet.  gradient  interesting  tance  of t h e i r axes.  o f 21 m i l e s .  t h e s e main  a younger  o f 60 f e e t  per mile  series  descending  and  cataracts.  slopes  from which they Their  slopes.  i n a succession  upper reaches  of t r i b u t a r y  over At  glaciers  The v a l l e y steep  there  valleys rapids  usually  have a  s t e p s p r o b a b l y due t o t h e c u t t i n g o f  confluence  cascade  In addition,  of the v a l l e y s  c i r q u e s by a r e c e d i n g v a l l e y  notched by v e r y  cataract  headwaters  of foaming  successive  narrow.  over a d i s -  of streams occupying V-shaped  number o f t e r r a c e - l i k e  valleys  i s the  s t r e a m s a r e s t e e p and t o r r e n t i a l .  streams through canyons.  and  The  occupy the bottoms o f  Seymour C r e e k V a l l e y , f o r  however, have r e l a t i v e l y g e n t l e is  3,200,  at  C h a r a c t e r i s t i c a l l y , the t r i b u t a r i e s of  south-flowing  t h e main  terraces  o f t h e main v a l l e y s  Some o f them o c c u p y h a n g i n g v a l l e y s into  and I n d i a n Arm,  floors.  feature  example, r i s e s an a v e r a g e  which  sided  glacier,  a t the p o i n t  or t o the  where t h e  edges i n many c a s e s have been canyons; In o t h e r s the streams  them. t h e summit  or near i t there  i s often  m e a d o w - l i k e a r e a where a s t r e a m h a s i t s s o u r c e  m  a  level,  a small  lake  ( e . g . Seymour  from  lakes which l i e i n steep  feet  below t h e  much l o w e r  thin-edged  than  the  When t h e contained  Creek).  fjords  of  seems t o be sheet of the  as  either  these  r e t r e a t e d , t h e main  d r a i n e d by the  the  r o c k and  rock b a r r i e r s  a result  near  not  valleys progressed.  of p o s t  barriers.  t h e mouth o f b r e a k i n g up  the v a l l e y w a l l s , near  The  valleys  o f the i c e the  margin  range. terrain  i s notable  rugged  c p e s t s , p r e c i p i t o u s s l o p e s and  places  the  cliffs  peaks, almost 3 m i l e s from  rise  sea  material  t o b u i l d up  striated  and  valleys,  roche  features  indicate  action  extremely In  f o r s e v e r a l hundreds of f e e t  and  5,000 f e e t the  for  deep v a l l e y s .  high, are  shore.  commonly n o t more  L a n d s l i d e s have been  I n many p l a c e s t u r b u l e n t w a t e r has  the  cutting drift  o f t h i n n i n g and  i t emerged f r o m  flow  side.  i n w h i c h l a k e s f o r m e d as u p l i f t  G e n e r a l l y the  by  Lynn Creek,  d i v i d e s , w h i c h g e n e r a l l y are  glacier  canyons through  existence  like  s i d e d c i r q u e s , many h u n d r e d  summits on  These l a k e s were l a t e r glacial  Others,  swept down  steep a l l u v i a l  cones.  p o l i s h e d s u r f a c e s of r o c k s , moutonne'es and t h a t tne  r e g i o n has  of atmospheric  agencies  frequent.  sufficient  Deeply  cirques,  other g l a c i a l  than  grooved, hanging  topographic  been l i t t l e  altered  s i n c e the r e t r e a t  of  Ice. The bare,  s t e e p e r s l o p e s of the mountains are  or covered w i t h  stunted trees.  usually  W i t h l e s s e n i n g of  the  10 declivity, slopes  the f o r e s t  growth i n c r e a s e s u n t i l  and v a l l e y s a r e d e n s e l y  have l e f t  occasional great Terraces  overall  alluvial  by growth.  on t h e f o r e s t e d Inlet  north  r a i s e d marine d e l t a s of former  filling  area  slopes. Capilano,  1,000  streams.  feet,  The  h a s been much subdued by  o f t h e l o w e r v a l l e y s by m a r i n e and  deposits. F o r more d e t a i l e d i n f o r m a t i o n  geography o f the r e g i o n , also  Avalanches  along  t o e l e v a t i o n s of almost  topography of t h i s  extensive  scars  from Burrard  Seymour and L y n n C r e e k , represent  covered  the gentler  shows I p c a t i o n s  about t h e p h y s i c a l  a map i s p r o v i d e d  of a l l the p l o t s  (Figure  l ) . It  analysed.  References: A r m s t r o n g , 1954, 1959. A e r i a l photographs, geographical of B r i t i s h Columbia.  1956, 1957; G r i f f i t h , and g e o l o g i c a l maps  Geology "The  c l a y s and s i l t s  composed c h i e f l y of g l a c i e r s the  rock.  of rock  of the Vancouver area are  f l o u r p r o d u c e d by m e c h a n i c a l  and l e s s e r e x t e n t  by c h e m i c a l  The s a n d s a r e m a i n l y q u a r t z ,  a d d i t i o n many f e l d s p a r s and r o c k Varved deposits inches extent, land.  silts  thick.  Glacio-marine  but contain i n  and c l a y s a r e f o u n d  Stony s i l t s  glacio-marine  decomposition of  fragments"  i n l a y e r s from a f r a c t i o n  deposits  (Armstrong, as g l a c i a l  1954).  lake  o f an i n c h t o s e v e r a l  and c l a y e y  deposits  abrasion  silts  are, to a great  exposed d u r i n g u p l i f t a r e marine d r i f t  stones  of the  LEGEND r  (Armstrong  TERTIARY  1954,1956)  M I O C E N E OR L A T E R  Basaltic flows,dykes,and sills, minor tuffs  U 0  O L I G O C E N E OR M I O C E N E  OS  Kl TSILA NO FORMA TION conglomerate, sandstone, shale  z u  u  EOCENE  BURRARD FORMATION sandstone, shale, conglomerate, minor tuff and basalt  V r  TR IASSIC(?)AND/OR LATER GAMBIER  U-5  Tuff, breccia, agglomerate, andesite, slate, argillite, arkose, q greywacke, conglomerate, minor dacite, trachyte, and basalt  ol  U E 5 £  GROUP  TR IASSIC(?)AND/OR BOW EN I S L A N D  EARLIER GROUP  2A Hornfels, meta-andesite, Andesitic and basaltic lavas 2 a, 2 b recrystallized tuff, argillaceous and pyroclastic rocks, cherty quartzite, horndlende-feldspar tuff, quartzite, argillite, slate, gneiss, minor recrystallized lime schists, minor limestone stone and cherty lime-silicate roc 2B Banded hornblende-feldspar gneiss, hornblende-btotite-feldsp gneiss, hornblende biotite-quartz schist, diontic gneiss, granitoid gneiss, hybrid diorite and granitic rock PLUTONIC ROCKS  ( The sequence of these rocks is not an age sequence) Bi  -in  Bh II. in  Plutonic rocks in which BIOTITE forms SO to 90 per cent and Hor IO to 50 per cent of mafic mineral content, Bh j granite, Bh Q gran Bh [jj, quartz diorite (  Plutonic rocks in which BIOTITE and HORNBLENDE each form a cent of mafic mineral content, B H J J granodionte, B H Q J , quartz dio /  Hb I M V . M  Plutonic rocks in which HORNBLENDE forms SO to 90 per cent an Biotite IO to 50 percent of mafic mineral content, Hbn;, granodion quartz diorite  H, - V , M  Plutonic rocks in which HORNBLENDE forms 90 per cent or more Biotite IO per cent or less of mafic mineral content, H j , granite, H] H [jj, quartz diorite, H jy, diorite, H y, quartz gabbro and gabbro Heavily drift-covered area  To  follow  page  10  11 transported  by, f l o a t i n g  i c e and  fine  materials  carried  by  water. Glacial silt, the  c l a y and  glacial  till  stony  i c e as  and  glacier  transported  consist flood  interbedded  channels  S e d i m e n t a r y and the  area under study  map  Figure  2. and  H o r s e s h o e Bay.  metamorphosed f o r m i n g  on  chlorite,  albite  epidote  feldspar-rich The area,  and  are  little  have been over-lying  and  in places  i n other places  Gambler r o c k s  (3  are  Creek,  greatly  mainly  slopes,  layers  of  the  Brunswick  material.  sedimentary m a t e r i a l .  changed t o resemble  less  lower  in  geological  i n Lynn  mountains  of p y r o c l a s t i c r o c k s  c o n s i s t i n g of angular  generally  on  deposits  in deltas,  See  exposed r o c k s  i n a l l except  a l t e r e d but  these  infrequent  form outcrops  and,  Gambier g r o u p ,  consists chiefly  epidote  erate  and  are  1957).  summits o f the  or h o r n b l e n d e - r i c h  minor interbedded rocks  1954,  The  of  1954).  v o l c a n i c rocks  P r e g r a n i t i c rocks  as  sediments  gravel deposited  (Armstrong,  (Armstrong  or  beneath  from d e p o s i t i o n  Outwashes a r e  sand and  sand,  abrasion,  streams which i s s u e d from g l a c i e r s ;  p l a i n s and  Hollyburn  of mechanical  material.  of  either directly  t e r m i n a l moraines r e s u l t i n g  by  of  mixtures  material deposited  a result  lateral  deposited  denotes unsorted  lavas  In g e n e r a l they  some o f t h e  diorite.  in Figure  and  Mt.  At 2)  contain volcanic the  base  i s a basal  to rounded b o u l d e r s  t h a n 2 f e e t i n d i a m e t e r embedded  and in a  with  these chlorite rocks of  the  conglomfragments matrix  12 of r o c k d e t r i t u s .  Boulders are  of  whereas s u b a n g u l a r fragments are and  p a r t l y of t a l u s from h i g h e r  consists  of  underlying  small rock,  a n g u l a r and  older plutonic  p a r t l y of v o l c a n i c elevations.  The  The  r e s t s on of  and  are  (Bh,  rocks BH,  are fall  HB,  and  s u c h as  hornblende  granite  (Bh-^),  etc.  biotite  i n the  p l u t o n i c rocks  areas  of  older  profound  composition  con-  breccia  influence of the  and  References:  rocks.  only  important  map  mafic fourfold  H)  legend.  o u t l i n e d i n the  (H^),  granodiorite  than the  ratio  sedimentary older  biotite-hornblende  of hornblende near the  to  exposed  strata, indicating  formations  on  rocks. 195^,  (H-^),  different varieties  (H^),  increases  Armstrong,  the  n a t u r a l l y i n t o the  the  of t h e s e  plutonic  Burrard  of p l u t o n i c  granite  Normally,  volcanic  dipping  w h i c h c o v e r most o f  the  more c l o s e l y a s s o c i a t e d  of g r a n i t e ,  the  surface  example, h o r n b l e n d e g r a n i t e  etc.,  The  origin.  biotite  a l l the  division  eroded  gently  plutonic rocks,  h o r n b l e n d e and  facies For  the  I n l e t , the  continental  From the  minerals,  the  1957).  beds are  area,  of  which i s predominantly g r a n i t i c .  Along Burrard formation  origin  matrix  subangular fragments  g l o m e r a t e g r a d e s upward i n t o a n o r m a l v o l c a n i c (Armstrong,  origin  1956,  1957.  the  13 Glacial History  The  a r e a u n d e r s t u d y was  T h r e e were p r o b a b l y and  covered  probably  the  valleys  reached  at which time the v a l l e y .  the  last  the e a r l i e r  wood f r o m it  as  the Vashon  years  sea,  on t h e  maxima,  stony  level.  over  predominantly  which b u r i e d evidence  years  o l d " (Armstrong,  and  i n the 1,000  the  places  this  Similarly,  t h i n n e d and  During  the  depressed  s a l t water,.  F o r example,  in  glaciation  the r e t r e a t  of  i c e masses p r e v i o u s l y  floated  free,  c l a y d e p o s i t s c o n t a i n i n g marine  i n the  date  1954).  of the Vashon  feet.  of  determinations  old.  l a n d was  case  by w a s t i n g ,  sea f l o o r  numerous s t o n e s  feet  Vashon  or more t h i c k  Radio-carbon-age  each g l a c i a t i o n  ice, largely  glacio-marine  500  Sumas,  g l a c i o - m a r i n e d e p o s i t s f r o m Whatcom d e p o s i t s  t o the  above sea  feet  o f C a p i l a n o Sumas t i l l  amounted t o a t l e a s t  resting  7,500  11,250 + 1000  about  During  this  activity.  t h e base  11,350 +200  relation  Seymour and  l a n d f e a t u r e s have r e s u l t e d  glacial  glaciation  fourth,  i c e sheet p r o p o r t i o n s d u r i n g t h e i r  o r Sumas g l a c i a t i o n  f r o m wood f r o m last  The  the  Vashon  i c e moved g e n e r a l l y i n a s o u t h e r l y d i r e c t i o n .  "Present from  only.  t h e y were p r o b a b l y The  glaciations.  m a j o r , n a m e l y Seymour, Semiamu and  region completely while  glaciated  glaciations  subjected to four  leaving shells  and  L a t e r , t h e s e were e l e v a t e d  above t h e p r e s e n t  i n t h e most e a s t e r n p a r t o f t h e  altitude  a r e a , Haney  of  outwash  14 was d e p o s i t e d  during  During into  the Eraser  glacio-marine  a recessional  post-Vashon time  stage. Sumas i c e a d v a n c e d w e s t w a r d  L o w l a n d t o w a r d s t h e s e a and d e p o s i t e d  deposits  i n f r o n t o f and b e n e a t h t h e i c e .  Among t h e most o b v i o u s marks o f g l a c i a l are  the " e r r a t i c s " ,  present lies  locations.  boulders  streamline  intervening last  transported  In the area  most o f t h e t e r r a i n .  of l o n g  ridges  studied,  This t i l l  glacial  till  the d i r e c t i o n  which,  with  o f movement o f t h e  r a p i d l y moving i c e sheet.  edge o f t h e i c e t o n g u e s a l o n g  than i n the centre were p l u g g e d sheet  of the v a l l e y  by i c e .  followed  the v a l l e y w a l l s , f l o o r s which,  rather  a t the time,  In v a l l e y s d r a i n i n g towards the Ice  t h e w a t e r became ponded t o f o r m i c e dammed l a k e s .  of the channels the m e l t i n g pied  under-  often displays a pattern  or•"drumlinoids",  "grooves" r e c o r d  activity  by i c e t o t h e i r  Meltwater d r a i n i n g from the i c e u s u a l l y the  Whatcom  of the i c e sheet  by s m a l l  falling  c u t by e s c a p i n g  streams.  m e l t w a t e r were e m p t i e d  i n t o them f r o m t h e i r w a l l s  b r o o k s have been p a r t l y p l u g g e d  Coarse sand and g r a v e l  sediment created  rather well drained  t o remove t h e d e b r i s  o r washed m  t o form chains  by t r i b u t a r y of lakes,  a t U. B. C. F o r e s t . carried  by m e l t w a t e r i n t h e f o r m o f  outwash p l a i n s o r t e r r a c e s ,  soils.  after  and a r e now e i t h e r d r y o r o c c u -  Others unable  s u c h a s some o f t h e l a k e s  Many  producing  15 Within  the ice-dammed l a k e s , s i l t  and c l a y from the  g l a c i a l waters were d e p o s i t e d l o c a l l y i n great volumes, t o form l a c u s t r i n e d e p o s i t s .  Along the lake margins, t e r r a c e s  of sand and g r a v e l were l a i d the d r a i n  down, mainly near the mouth of  channels. Most of the area south of the C o a s t a l Mountains i s  covered w i t h a mantle of s u r f a c e d e p o s i t s as much as 500 f e e t or more t h i c k . glacial drift,  These c o n s i s t l a r g e l y of r i v e r d e p o s i t s , i n t e r g l a c i a l sediments and some small areas of  peat. References: Climate  Armstrong, 1954, 1956,  1957.  i n General The  area under study as a c l i m a t i c r e g i o n corresp'onds  w i t h Koeppen's Cfb and m i l d Dfb and Trevartha's Dbf.  As a b i o c l i m a t i c r e g i o n i t l i e s w i t h i n  Cbf and m i l d  altitudinal  range of C o a s t a l Western Hemlock Zone ( K r a j i n a , 1959) i s a s u b d i v i s i o n of Coast F o r e s t  which  (B. C. A t l a s of Resources,  1956; H a l l i d a y , 1937; Rowe, 1959; Weaver and Clements,  1938)  or C o a s t a l B e l t (Whitford and C r a i g , 1918). The istics  l o c a t i o n of the area i s such t h a t the c h a r a c t e r -  of the c l i m a t i c elements combine t o produce a pre-  dominantly marine-type c l i m a t e w i t h c o o l summers and m i l d winters.  The climate g e n e r a l l y can be c l a s s e d as m i l d ,  e s p e c i a l l y when one c o n s i d e r s the n o r t h e r l y l a t i t u d e i n which  16 the area i s l o c a t e d . c l o u d b u r s t s and  floods  cause w i d e s p r e a d There definite  (a) the t e r r a i n ,  North P a c i f i c  Ocean.  It  Columbia,  The the  ocean  Ocean and located  influences  conditions within  surfaces.  The  studied  i n the S t r a i t  b a y s and p r o t e c t e d  t h u s t h e ocean  i s s e p a r a t e d from  temperature  of  i s warmer i n t h e  F. warmer d u r i n g  data, Washington,  two  F.  However, some o f t h e s h a l l o w  h i g h and  Ocean s t r o n g l y These  land  of the w a t e r ' a l o n g the  c o v e s a r e 5 t o 10°  semipermanent  area.  distances.  o f J u a n de F u c a r a n g e s f r o m 45°  i n July.  summer ( C l i m a t o l o g i c a l  the N o r t h P a c i f i c  short  t h a n t h e s e a s o n a l change i n t h e  average temperature  P.  over the  combine t o  i n t h e summer t h a n t h e a d j o i n i n g  J a n u a r y t o 53°  (c) the  the western b o u n d a r i e s of  s e a s o n a l change i n t h e s u r f a c e  cooler  Vancouver  not  and t h e c o a s t a l t r o u g h .  of the l a n d ;  The  climatic  but the r e g i o n  Island  w i n t e r and  c o a s t and  (b) t h e P a c i f i c  Ocean f o r m s  i s far less  temperature  in  These  Pacific  by V a n c o u v e r  g e n e r a l l y do  of s o u t h e r n B r i t i s h  low p r e s s u r e r e g i o n s  entirely different The  blizzards,  main c l i m a t i c c o n t r o l s w h i c h have a  on t h e c l i m a t e  h i g h and  British  o c c u r i n f r e q u e n t l y and  are three  semipermanent  produce  s u c h as  damage.  influence  Columbia:  D e v a s t a t i n g storms  the  1959).  low p r e s s u r e a r e a s o v e r  influence  p r e s s u r e systems  the c l i m a t e bring  of the  a flow of  17 air  from over  in  a clockwise  cell  and  the  ocean t o t h i s  direction  pressure  becomes v e r y weak and d u r i n g the pressure Pacific  summer.  Ocean.  air is  the  A  North  and  spreads  area  and  r e l a t i v e l y dry,  high pressure this  two  pressure  moist thus  a i r on  over  of A l a s k a and  flow  on  moves s o u t h w a r d  summer  i n the  low  fall, the  Pacific  becomes r a t h e r weak of a i r around  systems b r i n g s a s o u t h w e s t e r l y  movement r e s u l t i n g  This  Aleutian  i n mid-winter, while  A circulation  flow  T h i s a i r i s warmer t h a n  condensation  this  of a i r from  shore.  The  high  North  as a c o n s e q u e n c e ,  a r e a moves s o u t h w a r d and  shore.  pressure  of a i r a r o u n d  and  of the y e a r .  semi-  semipermanent  most o f t h e  intensifies  c o o l i n g and  winter  the  precipitation.  season  pressure  of the A l e u t i a n I s l a n d s  of l i g h t e s t  r e a c h i n g i t s maximum i n t e n s i t y  at  around the  circulation  Gulf  circulates  s e m i p e r m a n e n t low  same t i m e  clockwise  Pacific  season  pressure  The  air  semipermanent h i g h  direction  moves n o r t h the  The  region brings a northwesterly  i s c o o l and the  cell.  At  intensifies  high pressure over  around the  i n a counterclockwise  p e r m a n e n t low  region.  take p l a c e w i t h  o f warm  the  and  land surface,  the  i n a r a i n y season d u r i n g the  these  onshore  late  fall  months. The  recorded  average monthly hours  at Vancouver C i t y  December t o 282  in July  of b r i g h t  observatory  ( F i g u r e 3).  which measurable p r e c i p i t a t i o n  falls  sunshine  r a n g e f r o m 36  The  in  number o f d a y s i n  i s approximately  155  and  To  follow  page  Fig Summary  of  Genera  Coquitlam Lake  of  Wrnds  Vancouver  Airport  Data  U B C Forest  D Frequency  Meteorological  J  for  the  17  3 Region  Mosquito Creek  D H o u r s of Vancouver  J Bright City  D Sunshine  18 (Vancouver  City).  Damaging h a i l s t o r m s  occur r a r e l y i n t h i s  area. November, December, and months, and  June,  Cloudy mornings teristic The in  and A u g u s t - a r e  w i t h no r a i n  of the weather  relative  strong  humidity ranges of  e a s t e r l y winds.  50-55$  The  43°  highest  F. t o 85°  The  F . and  o f 85$  have been r e c o r d e d . )  yearly  f r o m 75°  P.  higher elevations.  The  at 4  in July.  t o 25$  f r o m 50°  The  i n summer  F.  (Vancouver  Ranger S t a t i o n  extreme  City)  from  F . t o 10°  J u l y maximum  The  (station  maxima r a n g e  minima f r o m 15°  average  p.m.  d u r i n g p e r i o d s of  F.  F . t o 5°  F.  temperature  i n t h e l o w e r e l e v a t i o n s t o 65 The  summer.  occur w i t h e a s t e r l y winds.  ranges  extreme  p.m.  of the  (The minimum t e m p e r a t u r e s f r o m -2°  respectively.  ranges  half  temperature  F. a t Seymour M o u n t a i n  subalpine border).  4  at  3).  (Figure  afternoons are charac-  f r o m an a v e r a g e  lowest i n winter u s u a l l y  t o about  sunny  humidity o c c a s i o n a l l y drops  a v e r a g e mean t e m p e r a t u r e  80°  and  the d r i e s t  d u r i n g the l a t t e r  J a n u a r y t o an a v e r a g e  relative  and  July  January are the wettest  0  J u l y minimum t e m p e r a t u r e  F. i n t h e i s usually  i n t h e mid-40 s. !  Temperature been l i m i t e d few  t o e l e v a t i o n s b e l o w 1,500  snow c o u r s e m e a s u r e m e n t s .  tation 150  and p r e c i p i t a t i o n  ranges  f r o m p r o b a b l y 65  i n c h e s a t the upper  The  feet  average  o r 70  altitudinal  measurements have other than f o r a annual  precipi-  inches to well limits  over  of the area  at  19 s t u d i e d (3,000 f e e t ) .  The average annual s n o w f a l l ranges  from  10 i n c h e s i n t h e lower e l e v a t i o n s t o more than 300 i n c h e s . Snow depth i n h i g h e r e l e v a t i o n s may exceed 5 f e e t .  Snow a t  h i g h e r e l e v a t i o n s b e g i n s i n December and c o n t i n u e s u n t i l  late  s p r i n g w i t h snow depths i n c r e a s i n g u n t i l the middle o f March. At h i g h e r e l e v a t i o n s the snow remains on t h e ground April.  until  M e l t i n g snow f u r n i s h e s a c o n t i n u o u s s u p p l y o f water  almost throughout t h e summer.  P r a c t i c a l l y a l l of the area  under s t u d y i s covered w i t h t i m b e r .  Timber p r o d u c t i o n , water-  shed p r o t e c t i o n and r e c r e a t i o n comprise t h e major l a n d u s e s . Most of the h i g h e r a r e a i s i n a c c e s s i b l e from t h e time snow b e g i n s t o accumulate u n t i l  spring.  R e f e r e n c e s : B.C. A t l a s of Resources, 1956; Canada, Dept. o f T r a n s p o r t , C l i m a t i c Summaries and R e p o r t s ; Chapman, 1952; G r i f f i t h , I960; K r a j i n a , 1959. Forest  Soils Under a g i v e n s e t of c l i m a t i c and b i o l o g i c c o n d i -  t i o n s , v a r i a t i o n o f the s o i l i s c o n t r o l l e d by t h e i n t e r a c t i o n of the t e x t u r e and s t o n i n e s s of t h e p a r e n t m a t e r i a l , t h e s l o p e of t h e ground  s u r f a c e and t h e m o i s t u r e regime  i n the ground.  P a r e n t m a t e r i a l s o f any g e o l o g i c a l o r i g i n n o r m a l l y v a r y from p l a c e t o p l a c e and w i l l thus g i v e r i s e t o s e v e r a l d i f f e r e n t k i n d s of s o i l .  20  Glacial t i l l i n the area s t u d i e d .  i s the most w i d e s p r e a d e a r t h m a t e r i a l U s u a l l y i t I s of stony,  t e x t u r e hut commonly a l s o stony loam and are found, o f t e n i n t e r b e d d e d l a y e r s of t i l l  sandy loam  stony c l a y loam  tills  w i t h compact and c o n c r e t e - l i k e  r e f e r r e d t o as "hardpan".  Most s o i l s on t i l l s sandy loam t o loam t e x t u r e .  are stony or g r a v e l l y and The  compact t i l l  s u b s t r a t u m of such s o i l s e f f e c t i v e l y p r e v e n t s  forming  of  the  water from  moving downward so t h a t s o i l s i n low p l a c e s are s u b j e c t  to  f l o o d i n g d u r i n g the w i n t e r and those on h i g h e r ground are  not  as d r y i n summer as c o u l d be expected from t h e i r t e x t u r e . These u n m o d i f i e d t i l l  s o i l s are found on o n l y o u t s i d e  areas of marine submergence. merged the t i l l  the  I n the areas t h a t had been sub-  o f t e n forms the s u b s t r a t u m of the s o i l  but  the solum i t s e l f i s developed from marine sediments d e r i v e d from the  till. G r a v e l s and  sands d e p o s i t e d by g l a c i a l streams form  f l a t t e r r a c e s of u s u a l l y d r y s o i l s . fluvial  The most e x t e n s i v e  glaclo-  d e p o s i t s occur j u s t above the marine d e p o s i t s where  major v a l l e y s l e a d from the mountains on t o the l o w l a n d .  The  r i v e r t e r r a c e s are found a l o n g the v a l l e y s i d e s but u s u a l l y t h e y are not e x t e n s i v e .  The  r i v e r v a l l e y s but a d j a c e n t  d e l t a t e r r a c e s are o u t s i d e  t o them.  the  Most of the d e l t a and  r i v e r t e r r a c e d e p o s i t s are e x c e s s i v e l y d r a i n e d loamy sands and g r a v e l l y loamy sands and u n d e r l a i n by sands and ( F i g u r e s 1 and  2).  gravels  21 Bottomlands b o r d e r i n g river  mouths a r e b u i l t  the r i v e r s  o f g r a v e l and s a n d , b u t many o f them  bear a s u r f a c e  l a y e r o f loamy,  swampy o r g a n i c  material.  silty  Alluvial  streams a r e p r i n c i p a l l y  covered  by f i n e r m a t e r i a l are found of bigger  streams.  many o f t h e b o t t o m l a n d s summer t h e c o a r s e and  the f i n e r  substratum are d r i e r texture  mountainside  gravelly.  are subject alluvial  they  areas  on t h e f l o o d p l a i n s and In s p r i n g  t o f l o o d i n g , but i n soils  s o i l s which r e s t  are exceedingly dry  upon t h e c o a r s e  t h a n w o u l d be e x p e c t e d f r o m  fans  gullies  built  by streams f l o w i n g  a r e formed by e x c e e d i n g l y  sandy loams o r c o n s i s t a l m o s t e n t i r e l y places  Larger  with  their  1957).  (Armstrong, Alluvial  associated  ( e . g . Seymour R i v e r ) .  textured  textured  or clayey a l l u v i u m or  soils  smaller  deltas  and d e l t a s a t t h e  from  stony  of stones.  are d r y but elsewhere water flows  steep or grave  I n some  on t h e g r o u n d  surface. Occasionally lower marginal and  t h e base o f t h e s l o p e s  o f some f a n s  These f i n e  alternating  deposits  soils  sands  on t h e  commonly c o n s i s t o f  l a y e r s o f loamy o r c l a y e y m a t e r i a l and sand and  not contain Soils  living  textured  o r on t h e  and i n d e p r e s s i o n s ,  loams a r e f o u n d washed o u t f r o m c o a r s e r  slopes.  do  parts  along  l a r g e r stones  (Armstrong,  are the r e s u l t  o r g a n i s m s and s o i l  1956).  of the combination  moisture  operating  of climate,  on t h e p a r e n t  22 m a t e r i a l over a p e r i o d of t i m e .  S i n c e these f a c t o r s  differ  from p l a c e t o p l a c e so do t h e s o i l f o r m i n g p r o c e s s e s and t h e s o i l s developed.  At h i g h e r e l e v a t i o n s under t h e i n f l u e n c e of  c o o l c l i m a t e , g r e a t e r p r e c i p i t a t i o n and raw humus, p o d z o l s develop w i t h B r o w n - P o d z o l i c and peat as a s s o c i a t e d s o i l s o f l o c a l Importance.  I n mid a l t i t u d e s t h e p r i n c i p a l s o i l groups  are Reddish-Brown, B r o w n - P o d z o l i c and P o d z o l s and a s s o c i a t e d w i t h these i n l e s s w e l l d r a i n e d p o s i t i o n s a r e muck, peat and gleizolic soils.  At lower e l e v a t i o n s t h e most i m p o r t a n t  group i s t h e C o n c r e t i o n a r y Reddish-Brown.  Alluvial soils  soil occur  on t h e d e l t a s and f l o o d p l a i n s o f most of t h e r i v e r s . R e c e n t l y a s u r v e y was completed of  ( H o l l a n d e t a l , 1959)  P i t t Meadows M u n i c i p a l i t y i n t h e v i c i n i t y o f t h e U. B. C.  Forest.  I t appears t h a t t h e Alderwood  Sandy Loam i s c l o s e l y  r e l a t e d t o t h e m i d - a l t i t u d e s o i l s and i s c l a s s i f i e d as "belonging  t o t h e B r o w n - P o d z o l i c group.  I t has a compact and h a r d  p a r e n t m a t e r i a l composed o f g l a c i a l t i l l w h i c h i s i m p e r v i o u s to  water.  I n t h e area where t h e t i l l  i s c l o s e t o the surface  the r o o t i n g zone i s r e s t r i c t e d and summer droughts a r e frequent. In  t h e a r e a under s t u d y m a i n l y t h e a g r i c u l t u r a l  s o i l s were i n v e s t i g a t e d and t h e g e n e r a l r e g i o n was d e s c r i b e d as C o n c r e t i o n a r y - B r o w n .  These s o i l s have a r e l a t i v e l y  thin  o r g a n i c l a y e r on t h e s u r f a c e (Ao) d e r i v e d m a i n l y from c o n i f e r o u s v e g e t a t i o n and mosses.  A^ h o r i z o n i s formed by a  t h i n l a y e r o f m u l l (0.5 t o 2 Inches t h i c k ) .  A  c c  i sa  23  c o n c r e t i o n a r y h o r i z o n w i t h a r e l a t i v e l y h i g h content organic matter. or s t r o n g brown.  B i s d a r k r e d d i s h brown t o y e l l o w i s h brown I t i s h i g h l y c o n c r e t i o n a r y and of h i g h  p o r o s i t y and p e r m e a b i l i t y . concentrated  Free o x i d e s of Fe are u s u a l l y  In t h i s r e g i o n and the base exchange c a p a c i t y  i s g e n e r a l l y low i n r e l a t i o n t o c l a y c o n t e n t . lower t r a n s i t i o n a l p a r t of the p r o f i l e . p a r e n t m a t e r i a l i s o f t e n dense and meability.  of  B-C  i s the  C horizon -  of low p o r o s i t y and  As a consequence i n t e r n a l s o i l d r a i n a g e  per-  is  f r e q u e n t l y r e s t r i c t e d and l a r g e volumes of water move l a t e r ally  over these i m p e r v i o u s  horizons.  Lesko (1961) d e s c r i b e d s i x s o i l subgroups and d i v i d e d each i n t o s e v e r a l s o i l  types.  1. Subaqueous S o i l s - s o i l s covered permanently by w a t e r , h a v i n g o n l y A and C h o r i z o n . 2. Organic  soils.  a. Sphagnum p e a t , water s a t u r a t e d undecomposed Sphagna. b. P i t c h Peat Anmoor, p e a t decomposed on s u r f a c e and  converted  the  I n t o b l a c k muck.  c. S p r i n g L i n e P i t c h y Anmoor, b l a c k muck underlain  by p e r m a n e n t l y w a t e r l o g g e d g l e y h o r i z o n .  3. G l e y o s o l i c S o i l s . a. O r t h i c Dark Grey G l e y s o l , t h i n 0 h o r i z o n u n d e r l a i n by d a r k A^ h o r i z o n over layer.  gleyed  24  b. O r t h i c G l e y s o l , t h i c k ( l - 6 i n c h e s ) 0 h o r i z o n over t h i n Ah h o r i z o n u n d e r l a i n by s t r o n g l y gleyed l a y e r . 4 . Regosolic  soils.  a. A l l u v i a l R e g o s a l ,  new a l l u v i a l d e p o s i t s .  b. A c i d L i t h o s o l , e m b r i o n i c  s o i l s of a c i d r o c k  outcrop. c. E l u v i a t e d A c i d L i t h o s o l s , s o i l s w i t h C and A  e  h o r i z o n s developed on a c i d p a r e n t  5. B r u n i s o l i c  rock.  Soils.  a. Degraded C o n c r e t i o n a r y Brown. S o i l s w i t h 0 h o r i z o n and t h i n but c o n t i n u o u s w i t h grey c o n c r e t i o n s .  A  e  horizons  B concretionary,  r e d d i s h brown t o p a l e brown.  M o t t l i n g absent.  b. O r t h i c Brown P o d z o l i c , medium t o s t r o n g a c i d thick 0 horizon.  A^ t h i n o r l a c k i n g .  h o r i z o n g e n e r a l l y absent or t h i n .  A  e  B horizon  i s brown t o y e l l o w i s h brown, medium t o s t r o n g l y a c i d , w i t h low base s a t u r a t i o n w i t h no n o t i c e a b l e a c c u m u l a t i o n quioxides.  of c l a y or *ses-  S l i g h t mottling u s u a l l y present.  c. Modal A c i d Dark Brown.  Soils with greyish  brown t o b l a c k A^ h o r i z o n , low i n base s a t u r ation.  B r o w n i s h B h o r i z o n i s low i n base  s a t u r a t i o n and f r e e of m o t t l i n g .  25 6. P o d z o l i c S o i l s . a. Gleyed P o d z o l has o r g a n i c 0 h o r i z o n over A  e  eluvial  h o r i z o n on i l l u v i a l B h o r i z o n , w h i c h con-  t a i n s organic matter  and s e s q u i o x i d e s .  Mottling i n a l l mineral horizons. b. Orterde P o d z o l .  S i m i l a r t o Gleyed  but w i t h o u t m o t t l i n g . matter  Podzol  Accumulation  of organic  i n B h o r i z o n does not r e a c h 10 p e r  cent. c. M i n i m a l P o d z o l . (o),  Organic  surface horizon  t h i n l i g h t c o l o r e d Ae h o r i z o n , and an  i l l u v i a l B h o r i z o n , w h i c h c o n t a i n s accumulat i o n o f o r g a n i c m a t t e r and s e s q u i o x i d e s . D i s t i n c t Bh h o r i z o n i s a b s e n t . d. Orterde Humic P o d z o l c o n t a i n s m o d e r a t e l y thick 0 horizon, a d i s t i n c t acid A  e  horizon  and a f r i a b l e u s u a l l y t h i c k Bh h o r i z o n , c o n t a i n i n g over 10 p e r cent o f o r g a n i c and i r o n .  matter  T h i s i s u n d e r l a i n by a f r i a b l e  Bhf h o r i z o n . e. Humic P o d z o l .  S i m i l a r t o Orterde  Humic  P o d z o l but B^ h o r i z o n i s t h i n n e r than 3 i n c h e s . R e f e r e n c e s : Armstrong, 1954, 1956, 1957. B. C. A t l a s of Resources (1956); F o r r i s t a l e t a l (1953 - Washington); G r i f f i t h (19.60 - U. B. C. R e s e a r c h F o r e s t ) ; H i l l e t a l (1948 W a s h i n g t o n ) ; K e l l y and S p i l l s b u r y (1939)* Rowles, F a r s t a d and L a i r d (1956 - Lower F r a s e r R i v e r V a l l e y ; Lesko (1961).  26  Forest  Composition In  t h e " F o r e s t s o f B r i t i s h Columbia" W h i t f o r d and  C r a i g (1918) c l a s s i f y t h e area under study as b e l o n g i n g t o the " C o a s t a l B e l t " .  Under t h a t term t h e y mean a broader and  c l i m a t i c a l l y l e s s u n i f o r m r e g i o n than t h e C o a s t a l Western Hemlock Zone ( K r a j i n a , 1959).  The l a t t e r i n c l u d e s o n l y t h e  w e t t e r p a r t of t h e C o a s t a l B e l t , b u t w i t h o u t t h e s u b a l p i n e forest. W i t h i n t h e C o a s t a l B e l t , W h i t f o r d and C r a i g r e c o g nize f i v e forest types.  Because o f t h e broader meaning o f  the term, o n l y f o u r a r e i m p o r t a n t i n t h e area under  study.  The D o u g l a s - f i r - Red cedar t y p e , t h e Red cedar - Western Hemlock t y p e , t h e Western hemlock - Balsam type and t h e Hemlock - S i t k a spruce t y p e . deserves  t o be r e p e a t e d .  T h e i r d e s c r i p t i o n , though o l d ,  They d e s c r i b e t h e f o r e s t s as t h e y  e x i s t e d b e f o r e t h e l a r g e s c a l e l o g g i n g and i t can be assumed t h a t t h a t was t h e f o r e s t as i t e x i s t e d here over hundreds o f y e a r s , d i s t u r b e d o n l y by n a t u r a l causes. They wrote: 'Local s o i l and t o p o g r a p h i c c o n d i t i o n s , w h i c h v a r y so g r e a t l y i n a mountainous r e g i o n such as t h i s cause so many m o d i f i c a t i o n s i n t h e f o r e s t growth t h a t i t i s i m p o s s i b l e , except i n a g e n e r a l way t o i n d i c a t e t h e d i s t r i b u t i o n of each t y p e . D o u g l a s - f i r - Red cedar type t h e y d e s c r i b e d : In g e n e r a l i t may be s a i d t h a t t h i s type occurs i n r e g i o n s where t h e annual p r e c i p i t a t i o n i s l e s s than 75 i n c h e s n o t more than 5 p e r c e n t o f w h i c h i s m t h e form o f snow. D o u g l a s - f i r t h r i v e s b e s t on deep, r i c h , w e l l d r a i n e d s o i l s , but i t w i l l grow on steep r o c k y  27 s i t e s where the s u p p l y of s o i l m o i s t u r e i s not s u f f i c i e n t f o r cedar or hemlock. Red cedar t h r i v e s b e s t i n the more moist s i t u a t i o n s , but u s u a l l y grows wherever D o u g l a s - f i r does and m a i n t a i n s i t s v i g o r on h i g h e r and l e s s p r o p i t i o u s s i t e s . Western hemlock o c c u r s almost everywhere i n c r e a s i n g i n prominence a t the h i g h e r e l e v a t i o n s or on l e s s favourable s i t e s . I t i s u s u a l l y of b e t t e r q u a l i t y on h i g h e r s i t u a t i o n s , b e i n g on the l o w l a n d s , more s u b j e c t t o d e f e c t s though of l a r g e r s i z e . The two s p e c i e s of balsam are as a r u l e c o n f i n e d t o v i r g i n s t a n d s , t o e i t h e r the damper or the h i g h e r s i t e s ; the l o w l a n d f i r t o the former and the a m a b i l i s f i r t o the l a t t e r . S i t k a spruce o c c u r s I n t h i s type o n l y on the w e l l - w a t e r e d l a n d s a l o n g the v a l l e y bottoms or c l o s e t o the shore and i s seldom found a t more than 1000 f e e t above sea l e v e l . Western w h i t e p i n e i s a t y p i c a l s p e c i e s of t h i s t y p e , but seldom forms over 5 p e r c e n t of the s t a n d . I t o c c u p i e s r o c k y k n o l l s or edges of openings i n the f o r e s t . Cottonwood o c c u r s i n the same s i t e s as S i t k a spruce and i s t y p i c a l l y a p i o n e e r s p e c i e s on a l l u v i a l s o i l s , g r a d u a l l y b e i n g r e p l a c e d by c o n i f e r s . . . . G e n e r a l l y s p e a k i n g the n a t u r a l r e p r o d u c t i o n of the f i r and cedar i s b e i n g a c c o m p l i s h e d s a t i s f a c t o r i l y except where f i r e s occur r e p e a t e d l y . In o r d e r t o secure r e p r o d u c t i o n of these s p e c i e s a f t e r l o g g i n g , s l a s h b u r n i n g has been found n e c e s s a r y , t o remove not o n l y the r e s u l t i n g d e b r i s but the hemlock and balsam r e p r o d u c t i o n , w h i c h owing t o the shade-enduring c h a r a c t e r i s t i c s of these s p e c i e s u s u a l l y becomes e s t a b l i s h e d under the mature stands. Red  cedar - Western hemlock type t h e y c h a r a c t e r i z e  as f o l l o w s : As D o u g l a s - f i r d i s a p p e a r s from the stands i n the n o r t h or a t h i g h e r a l t i t u d e s , Red cedar becomes a p r e dominant s p e c i e s w i t h Western hemlock as second i n importance. In the s o u t h e r n p o r t i o n of c o a s t a l b e l t t h i s zone I s u s u a l l y a t an a l t i t u d e of from 1500 f e e t t o 3000 f e e t above the s e a . The c l i m a t i c c o n d i t i o n s of t h i s type are more severe than those of the Douglas f i r - Red cedar t y p e . Though the temperature i s o n l y s l i g h t l y l o w e r , the p r e c i p i t a t i o n i s h e a v i e r r a n g i n g from 90 Inches t o over 120 i n c h e s and a v e r a g i n g about 106 i n c h e s per annum. The percentage of snow a l s o i s much h i g h e r . Red cedar i s the most i m p o r t a n t s p e c i e s w i t h Western hemlock i n the second and Balsam i n the t h i r d p l a c e . S i t k a spruce forms o n l y a minute p o r t i o n of any s t a n d . Y e l l o w c y p r e s s  28 a t t a i n s i t s b e s t i n d i v i d u a l development i n t h i s type, but as a r u l e i t i s c o n f i n e d t o l e s s a c c e s s i b l e u p p e r l i m i t s of t h i s t y p e . Western hemlock - Balsam type o c c u p i e s a c l i m a t i c zone somewhat l e s s f a v o u r a b l e t h a n t h a t o f Red c e d a r Western hemlock t y p e . I t occurs e i t h e r i n higher a l t i t u d e s o r on more e x p o s e d o r w e t t e r s i t e s . Though n o t always p r e s e n t i n southern p o r t i o n of the p r o v i n c e , i t i s f o u n d t h e r e i n some l o c a l i t i e s above t h e C e d a r - Hemlock t y p e a t e l e v a t i o n s 1500 f e e t t o 3500 f e e t e x t e n d i n g i n some c a s e s as h i g h as 4000 f e e t d e p e n d i n g on t h e t o p o g r a p h y . ... Where t h i s t y p e o c c u r s t h e t o t a l p r e c i p i t a t i o n and t h e p e r c e n t a g e o f s n o w f a l l a r e g e n e r a l l y h i g h e r t h a n i n the p r e v i o u s l y d i s c u s s e d types or e l s e the temperature i s l o w e r . . . . W e s t e r n h e m l o c k and B a l s a m a r e p r e d o m i n a t i n g species. The c o m p o s i t i o n o f t h e s t a n d i s a p p r o x i m a t e l y as f o l l o w s : Hemlock 50$, B a l s a m 30$, Red c e d a r 15$, Y e l l o w c e d a r 5 $ . . . . L i t t l e damage has been done by f i r e and t h e f o r e s t s a r e s t i l l a w a i t i n g d e v e l o p m e n t . Western hemlock - S i t k a  spruce  type:  T h i s type i s t y p i c a l l y a l o w l a n d t y p e , seldom o c c u r r i n g i n a l t i t u d e s o f more t h a n 1000 f e e t above s e a l e v e l , u s u a l l y b e l o w 500 f e e t . T h i s type i s found m the damper s i t u a t i o n a l o n g t h e v a l l e y b o t t o m s i n b o t h D o u g l a s f i r - Red c e d a r t y p e and f u r t h e r n o r t h i n Red c e d a r Western hemlock t y p e , t h e r e f o r e w i t h i n t h i s range the relative precipitation also varies widely. In t h i s type t h e w e s t e r n h e m l o c k I s t h e most f r e q u e n t b u t t h e S i t k a s p r u c e most v a l u a b l e s p e c i e s . A s s o c i a t e d w i t h these are Red c e d a r , A m a b i l i s f i r and C o t t o n w o o d . The descriptions fir  - Red  four  cedar type, though  Zone - K r a j i n a , this  types d e s c r i b e d are  of the mature f o r e s t s  the e a s t e r n p a r t  in  forest  fires,  i t also includes  d e s c r i b e s the  area excluding t h e i r  frequent  of the p a s t .  of Vancouver I s l a n d 1959)  final  d i d not d e v e l o p .  forest  type  d e s c r i b e s the f i n a l  wetter  s u b z o n e up  (Coastal  Douglas-  of the due  of almost  as w e l l  3000  stands  to  cedar - Western in drier  of  Douglas-fir  stage which,  stage  The  the f o r e s t s  composition  Red  to the a l t i t u d e  excellent  feet.  hemlock as  29 Western hemlock - Balsam type limited  occurrence,  Hemlock - S i t k a alluvial  b e i n g more f r e q u e n t  spruce  tudinal  ranges  fectly;  the range  as w e l l  Craig. inal  type p i c t u r e s  agree  of the f o r e s t s  with results  Therefore  greatest  one must assume  data  a r e wrong.  the p u b l i c a t i o n  (1911, 125  altitude  altitude  45  feet)—existed  either stands  their  altitud-  had t h e  as they  the a l t i t u d e .  saw  them.  But b e f o r e  only three  1887,  and  or t h e i r  and C r a i g  the f o r e s t s  feet),  the present  meteorologi-  altitude  and Nanaimo  228  feet),  (1914,  on t h e c o a s t o f B r i t i s h  Columbia.  History It  i s g e n e r a l l y agreed  t h e most e f f e c t i v e  forests. position  factor  A particular of a f o r e s t  which a f f e c t a  that  (established  per-  g i v e n by W h i t f o r d  o f t h e i r b o o k i n 1918  stations—Victoria  alti-  study  disagrees with  Whitford  opportunity to study  Vancouver  and t h e g i v e n  of forest  T h e y c o u l d measure o r e s t i m a t e  is  altitudes. on t h e  of the present  of p r e c i p i t a t i o n  r a n g e and d e s c r i p t i o n s  Recent  the f o r e s t s  as w i t h t h e d e s c r i p t i o n  precipitation  cal  i n higher  i s of  floodplains. Descriptions  study  i n the area under study  that  geographically, climate  determining  climatic  factor  in a direct  the c h a r a c t e r of  may  determine  way p r o d u c i n g  conditions  t h e p h y s i o l o g y o f a s p e c i e s o r i t may  similar  effect  by i n d i r e c t  effective  direct  climatic  means.  control  t h e com-  accomplish  " I n t h i s r e g i o n t h e most  i s the temperature  and  30 length  of growing  altitude tudinal  and e l i m i n a t e s order....  of f o r e s t t r e e important  region  species  deal,  on t h e i r  i n a constant  alti-  local  distribution  (Abies  grandis,  Chamaecyparis nootkatensis,  and many o t h e r s  mainly  high p r e c i p i t a t i o n  (unpublished) disagrees  o f some t r e e s  Arbutus m e n z i e s i i ,  does n o t seem t o have an  has a c o m p a r a t i v e l y  Krajina  distribution  mertensiana  a great  effect  195t7).  (Schmidt,  lowland  increase of  P r e c i p i t a t i o n although i t a f f e c t s the v i g o r  species  direct  because t h i s  "The  s e a s o n as i t d e c r e a s e s w i t h  stating:  Abies  amabilis,  Tsuga  as A c e r m a c r o p h y l l u m ,  Prunus  emarginata e t c . ) i s g r e a t l y i n f l u e n c e d by the p r e c i p i t a t i o n distribution." The Vigor  differences i n opinion  of each species  from the h a b i t a t conditions growing  environmental topography. possible  as w e l l a s r e p r o d u c t i o n  i s the r e s u l t  that  the e f f e c t  i s in reality  factors  correlated with  stand  are dependent  the e f f e c t  on m a c r o c l i m a t e and  i t .  How  of another great  I t i s quite  until  one o r a g r o u p o f  i s the i n d i v i d u a l  o f e a c h o f them and e a c h e v e n t  are c o l l e c t e d .  other  t h a t we r e l a t e t o a n y o f t h e s e  i s only a matter of opinion  analysis  length of  i n s o l a t i o n and  They a l l a r e h i g h l y i n t e r c o r r e l a t e d .  factors  influence  or e l i m i n a t i o n  Temperature,  snow d e p t h , p r e c i p i t a t i o n ,  conditions  significant.  o f a l l n o r m a l and a b n o r m a l  e x i s t i n g i n the h a b i t a t .  season,  are very  i n the h i s t o r y of the data  p e r m i t t i n g the  31  In  spite  from the a n a l y s i s very important tree  of the p r e s e n t e d r e s e r v a t i o n s of c l i m a t i c  indirect  species through  o f minimum r a i n f a l l temperature 3,  4).  Low  highly  data that p r e c i p i t a t i o n  effect  d u r i n g summer months ( F i g u r e precipitation  Past  may  fires  and  in certain  have b e e n c a u s e d  railway  construction  The  of f o r e s t  of hunters  and  and  and  3, A p p e n d i c e s  2,  1,  account f o r  by t h e  lightning  activities  storm  when a t o t a l  since  i n Vancouver of  240  i n c r e a s e of white p o p u l a t i o n  fires;  pioneer land  p r o s p e c t o r s , camping,  transport,  clearing, smoking,  r a i l w a y l o g g i n g and  seem t o be  t h e most e f f e c t i v e  factor  revealed  o n l y i n h i g h e l e v a t i o n s and  that  o p e r a t i v e i n the p a s t .  t h e v a l l e y s were t r u l y  a l l aged  o f shade t o l e r a n t  the a r e a .  fire  season  seem t o have been w i d e -  environmental  in  The  other  causes. Fires  posed  forest  a r e more p r o b a b l e  o c c u r r e d i n J u l y 19^1  other causes  carelessness  minor  storms  years evidently  f i r e s were i g n i t e d . )  brought  a  litter.  (The most r e c e n t c r i t i c a l  Forest D i s t r i c t  fires.  h i g h temperature  of I n d i a n s a l t h o u g h l i g h t n i n g  forest  on f o r e s t  has  of  c o i n c i d e s w i t h maximum s u n s h i n e  forest  spread.  on t h e d i s t r i b u t i o n  i t s effect  inflammable  the f i r e s  i t appears  damage f o r o v e r  500  The  present  i n wet  stands found.  s p e c i e s o n l y and  Probably these  indirect  pockets i n  These a r e  are the o l d e s t  s t a n d s have n o t been  years.  In the absence  study  comstands  subject to  of f i r e  five  32 to s i x centuries  are  required  climax f o r e s t which according indicate  that  through the  fires  ages  The  and  (Munger,  majority  stand  and  1940j  of the  subsequent  stand  f o r wind-, snow and studied  and  light  seedlings  seed  t r a v e l over c o n s i d e r a b l e  Species  1957). control.  Seed bed  (Hanzlik,  condition  u n i f o r m age. colonize  i n the  upper  Because  the  t r e e s were  of  of  destroyed  regeneration.  g i v i n g due  allowance  majority  of  the  as  distances  and  early pines),  t h o s e whose into  burnt-over  those w i t h heavy  1914;  grows i n t h e  c a n o p y and  those w i t h  ( D o u g l a s - f i r and  Munger, 1913;  a l s o p r o d u c e d an  Where D o u g l a s - f i r  monly o c c u r s  destruction  damage, as w e l l  r e a d i l y destroyed  were a f f e c t e d a d v e r s e l y  layers  most e f f e c t i v e s e l e c t i v e  to withstand  areas.  tree  fires.  those able could  contain  the  demanding s p e c i e s ,  the  down  t o assume t h a t  damage, a g r e a t  a l s o have been t h e  favouring  frequent  f o r subsequent  present  drought-and h e a t - r e s i s t a n t  to  studied  some o f t h e  originated after  Fires factor,  Insect  would  layers a f t e r disturbances  sufficiently  J u d g i n g from the  o f a mature  1947).  Hansen,  plots  and  I t seems l o g i c a l  i n t e n s i t y , when o n l y  opened t h e  stands  to p o l l e n p r o f i l e s  l a y e r o r i g i n a t e d a f t e r a complete  previous lesser  development  have been w i d e s p r e a d  o f a l m o s t u n i f o r m age. oldest  f o r the  Schmidt,  important  study area  i s always of  o f i t s shade i n t o l e r a n c e  deep humus l a y e r s , i t i s l i k e l y  selective  i t comfairly  and  that  seed  inability  the  majority  To  follow  page  32  j J  1  33 of  stands  c o n t a i n i n g D o u g l a s - f i r o r i g i n a t e d on a r e a s  by  fire.  In the absence  of d i s t u r b a n c e ,  more  denuded  shade-tolerant  s p e c i e s r e p l a c e D o u g l a s - f i r and c o l o n i z e t h e h a b i t a t  per-  manently. In  order  to obtain at least  and  frequency  of f i r e s  the  t r e e l a y e r s was p l o t t e d i n F i g u r e  some i d e a  i n the studied area,  were more o f l o c a l  4.  the f i r e s  also  t h a t most o f t h e r e g i o n was a t one t i m e Also  r e g i o n a l extent but  damaging f o r e s t s i n c e r t a i n  s e v e r e l y than  i n others.  establishment  extensive  fire  a study  of data  i n the  fires  from other occurrence  Coquitlam  fire,  occurred  much more  i t i s p o s s i b l e from  l860's t h e r e was a v e r y  around  1830 1660,  localities throughout  and 1800  The g r a p h and t h r e e  and 1550.  Likewise,  indicates that  fires  the r e g i o n .  V a l l e y was d i s t u r b e d a r o u n d  1890, i860,  1690 and 1540. Mount Seymour was  1690  after  ones a r o u n d 1770,  were o f f r e q u e n t  1790,  years  i n t h e U. B. C. R e s e a r c h F o r e s t .  shows two s m a l l  more e x t e n s i v e  that  another  amount o f t i m e f o r t h e r e -  of the f o r e s t  4 t o conclude  Figure  also  certain  or  i t shows t h a t f i r e s  periodically,  Allowing  t h e age o f a l l  These d a t a i n d i c a t e  that  s e v e r e l y damaged by them.  than  of the extent  s e v e r e l y b u r n e d i n 1890,  w i t h p o s s i b l y a few s m a l l e r f i r e s I n V a n c o u v e r and v i c i n i t y  1880 and 1840.  1840,  between.  fires  occurred  around  34 As  new  fires,  l o g g i n g and o t h e r d i s t u r b a n c e s  t h e a r e a , t h e p a s t i s more and more d i f f i c u l t The  writer  figures.  fires  were damages o f a n o t h e r  data  to reconstruct.  t h e r e f o r e does n o t c l a i m any g r e a t a c c u r a c y f o r  these  of  cover  I t i s quite probable  i n a certain  year  that  k i n d or that  o c c u r r e d by  some  of the  suggested  the accumulation  chance.  These d a t a a r e i n g e n e r a l agreement w i t h d a t e s o f major f i r e s  already established  example, a t U. B. C. R e s e a r c h occurred  1900.  i n 1868,  1840,  from  other sources; f o r  Forest fires  and 1780,  a r e known  t o have  and a t Seymour M o u n t a i n i n  CHAPTER I I I  METHODS OF F I E L D WORK  The  field  work on t h e p r o j e c t  o f 27 months b e g i n n i n g May, In  summer, 1958,  with Dr. K r a j i n a , the  position their  after  general reconnaissance  shape o f c o n t o u r ,  importance  on t h e c o m p o s i t i o n of f o r e s t  V e g e t a t i o n was a n a l y z e d 1. in percent. 2.  The c o v e r  of the p l a n t  trees.  i n t h e f o l l o w i n g way: estimated  C - h e r b s , D-mosses and  lichens.  A l l plants within their respective layers description  sociability  of Braun-Blanquet  species  shape o f p r o f i l e ,  o f f o u r v e g e t a t i o n l a y e r s was  A - t r e e s , B-shrubs,  with numerical  significance,  grades  s u c h as  on s l o p e , and w i n d e x p o s u r e were d e s c r i b e d t o a s s e s s  community and t h e p r o d u c t i v i t y  Species  work  178.  reached  the g e n e r a l topography,  slope, aspect,  relative  listed,  a period  68 o n e - f i f t h a c r e p l o t s were a n a l y z e d and  In e a c h p l o t elevation,  over  1958.  b y t h e end o f summer, 1959  total  extended  (1928)  significance  giving their  and vigor, /  species  a c c o r d i n g t o t h e method  and m o d i f i e d b y K r a j i n a  (1933).  as w e l l as s o c i a b i l i t y were g i v e n  in a logarithmical  scale  so t h a t  11  seldom-occurring  c o u l d be more a c c u r a t e l y r e g i s t e r e d .  35  were  Species  36 significance: + 1. 2. 3. 4.  5. 6. 7. 8. 9.  10.  s o l i t a r y , w i t h v e r y s m a l l dominance s e l d o m , w i t h s m a l l dominance v e r y s c a t t e r e d , w i t h s m a l l dominance s c a t t e r e d , w i t h s m a l l dominance frequent, cover 5-10$ f r e q u e n t , c o v e r 10-20$ a n y number, c o v e r 20-33$ a n y number, c o v e r 33-50$ a n y number, c o v e r 50-75$ a n y number above 75$ "but l e s s t h a n c o m p l e t e dominance complete dominance.  Sociability: + 1. 2. 3.  4. 6. 7. 8. 9.  10. Vigor  i n d i v i d u a l , s o c i a b i l i t y none g r o u p s up t o 4 x 4 cm (3 s q . i n c h e s ) g r o u p s up t© 25 x 25 cm. (l s q . f o o t } g r o u p s up t o 50 x 50 cm. (4 s q . f e e t ) 1/3-2/3 m2 (4-7 s q . f e e t ) 2-10 m2 (20-100 s q . f e e t ) 10-50 m (100-500 s q . f e e t ) 50-200 m2 (500-2000 s q . f e e t ) 200-500 m (2000-5000 s q . f e e t ) above 500 m.2 2  2  o f s p e c i e s was g i v e n 0 1. 2. 3.  4 grades:  germinating but not s u r v i v i n g f e e b l e but able t o survive s t r o n g b u t n o t r e a c h i n g maximum v i g o r w i t h maximum v i g o r and d e v e l o p m e n t f o u n d in the s p e c i e s .  Vegetation  was d e s c r i b e d  S o i l was d e s c r i b e d file. the  and a n a l y z e d  from a r e p r e s e n t a t i v e  soil  pro-  F o r t h a t p u r p o s e a s o i l p i t , sometimes two, was dug i n  sample p l o t .  Agriculture Committee  Soil  T e r m i n o l o g y o f t h e U. S. D e p a r t m e n t o f S u r v e y Manual  (1951)  and t h e F o r e s t  Soil  o f t h e D o u g l a s - f i r r e g i o n was u s e d f o r d e s c r i p t i o n . D e p t h o f solum, t h i c k n e s s  texture  b y Mr. O r l o c i .  structure, consistency,  soil  of horizons, moisture,  color,  permeability,  parent material, Details  of s o i l The  in  and humus were  description  will  distinguishable  be p r e s e n t e d  A soil horizon  sample was f o r further  later  analysis.  seventeen  the a n a l y s i s site  ations  other v a r i a b l e s of the general  productivity.  many more  still  will  were s e l e c t e d  graphs; p l a n t  association,  realizes fully  recognizable or h i s t o r y  soil  productivity  for definite  reasons:  Genetic  could  photo-  conditions  are e a s i l y  i n the f i e l d . of the p l o t ,  The  from a e r i a l  and m o i s t u r e  features  and hence  the l i m i t T h e r e a r e many  and  fairly  variation,  or any o t h e r v a r i a b l e  n o t be m e a s u r e d a t a l l o r e s t i m a t e d w i t h i n on e v e r y p l o t ,  consideration  i n the f u t u r e .  are recognizable  together with topographical  microclimate  into  com-  e n v i r o n m e n t and i t s i n f l u e n c e  be f o u n d  factors  accurately  to plant  seventeen v a r i a b l e s .  Topographical  ivity  representative  known t o be i n f l u e n c i n g t h e s i t e  seventeen v a r i a b l e s  time  The pH o f  i n addition  were t a k e n  The w r i t e r  of the use of only  more f a c t o r s  could  of  each  a n a l y z e d b y Mr. L e s k o .  munity  and  noted  and s a m p l e s c o l l e c t e d , and  On a l l t h e e x a m i n e d p l o t s  on  were  were u n d e r t a k e n . S o i l s were d e s c r i b e d ,  for  later.  c o l l e c t e d from  t h e s a m p l e s and a c h e m i c a l a n a l y s i s  soils  described.  d e p t h and d i s t r i b u t i o n o f r o o t s  each s o i l p i t .  all  stoniness  whi  a reasonable  n o t be u s e d f o r p r o d u c t -  a s s e s s m e n t , were n o t c o n s i d e r e d .  The s e v e n t e e n  selected  variables  38  were: A. T o p o g r a p h i c a l  X  X  1. 2.  features  Mi c r ot op o g r a p h y :  1 2  Average  0 1 2 3 4  simple complex Slope:  (ridges,  humps)  5 6  0$ 0-0.5$ 0.6-2.0$ 2.1-5$ 5.1-9$  10-15$ 16-30$ 31-50$ 50-100$  7  8 9  more t h a n  X  3.  Elevation  X  4.  Azimuth r e a d i n g i n tens of degrees.  X  5.  Shape o f c o n t o u r s ( h o r i z o n t a l l i n e s o f t h e e a r t h surface) i n a r b i t r a r y scale of ten grades: 0 e x t r e m e l y convex 1 v e r y convex 2 m o d e r a t e l y convex 3 s l i g h t l y convex 4 a l m o s t s t r a i g h t , v e r y s l i g h t l y convex 5 almost s t r a i g h t , v e r y s l i g h t l y concave 6 s l i g h t l y concave 7 m o d e r a t e l y concave 8 v e r y concave 9 e x t r e m e l y concave  X  6.  Shape o f p r o f i l e ( v e r t i c a l In f i v e g r a d e s : 1 v e r y convex 2 m o d e r a t e l y convex 3 straight 4 m o d e r a t e l y concave 5 v e r y concave  X  7. P o s i t i o n  i n hundreds  on s l o p e  100$  of f e e t .  lines  of the earth  surface)  i n ten grades:  0 peak, r i d g e s l o p i n g t o s e v e r a l d i r e c t i o n s 1 j u s t b e l o w t h e p e a k o r r i d g e s l o p i n g t o one direction 2 f u r t h e r f r o m t h e p e a k o r edge o f t h e t e r r a c e 3 upper slope 4 u p p e r p a r t o f t h e 'mid s l o p e 5 lower p a r t of the mid s l o p e 6 lower slope  39 7 s l o p e s near the bottom of d e p r e s s i o n 8 g e n t l y s l o p i n g ground near the d e p r e s s i o n 9 f l a t bottom of the v a l l e y or the d e p r e s s i o n itself X  8.  Wind e x p o s u r e i n t e n g r a d e s : 0 extremely protected 1 very protected 2 moderately protected 3 slightly protected 4 very s l i g h t l y protected B.  X  9.  X 10.  Soil  1 2 3 4  Soil  and Water  parent m a t e r i a l i n nine rock outcrop glacial t i l l g l a c i a l outwash l o c a l outwash  Depth of the s o i l  0 1 2  3 4  0- 6" 6-12"  5 6 7 8 9  v e r y s l i g h t l y exposed s l i g h t l y exposed moderately exposed v e r y exposed e x t r e m e l y exposed  regime  groups: 5 a l l u v i a l gravel 6 a l l u v i a l sands 7 a l l u v i a l loam 8 lacustrine deposits 9 organic deposits  g r o u p e d by 6 i n c h e s  12-18"  18-24" 24-30"  5 6 7  8 9  30-36" 36-42-"-  42-48"  48-60"  more t h a n  X 11.  Stoniness i n percents  X 12.  P r e s e n c e o f seepage o r g r o u n d w a t e r 1 never, except immediately a f t e r the 2 s e l d o m and f o r s h o r t p e r i o d s 3 c ommon 4 f r e q u e n t and f o r c o n s i d e r a b l e t i m e 5 always  X 13.  Soil  X 14.  Soil  of volumes  of stones  m o i s t u r e at the time of e x c a v a t i o n dry 2 s l i g h t l y moist 3 moist 4 wet 5 water -saturated  1  1 2 3 4 5  60"  permeability excessive, extremely rapid w e l l p e r m e a b l e , movement o f w a t e r moderately permeable s l o w l y permeable not permeable  rain  of the s o i l p i t  rapid  4o X 15.  Thickness  X 16.  of o r g a n i c h o r i z o n s  0 1 2 3  0" 0-1" 1-2" 2-3"  4  3-4"  Thickness  o f Ae  ( L , F and H combined)  5 6 7 8  4- 5" 5- 7" 7- 9" 9-12"  9  more  than  12"  layer  0 1 2 3 4  none broken, t h i n b r o k e n , more t h a n 0.5 i n c h e s t h i c k c o n t i n u o u s up t o 0.5 i n c h e s t h i c k c o n t i n u o u s 0.5-1 inch 5 c o n t i n u o u s 1.0-1.5 i n c h e s 6 c o n t i n u o u s 1.5-2.0 i n c h e s 7 c o n t i n u o u s 2.0-3.0 i n c h e s 8 c o n t i n u o u s 3.0-5.0 i n c h e s 9 c o n t i n u o u s more t h a n 5 i n c h e s  C. S i t e  i n d e x as p r o d u c t i v i t y measure  Productivity of  t h e most i m p o r t a n t  dependent v a r i a b l e after  the f i e l d  Trees according Surveys tree  Y.  of the s i t e  s p e c i e s on t h e p l o t was I t was  work was  calculated  from  Sampling  quality class,  Manual  considered a the f i e l d  o f 3 i n c h e s were  (1954-1957).  crown c l a s s and t y p e  damage o f a l l i n d i v i d u a l t r e e s of several  were r e c o r d e d .  d o m i n a n t s and c o d o m i n a n t s  were m e a s u r e d and t h e age o f a l l d i s t i n c t l a y e r s were a l s o  recorded.  measured t o p e r m i t stand.  Index  data  terminated.  above t h e d i a m e t e r  Division,  previous  by s i t e  t o t h e s p e c i f i c a t i o n s o f t h e B. C. F o r e s t  class,  height  expressed  tallied Service,  Diameter, of v i s i b l e The age and  of each  secondary  species crown  A l s o a l l stumps and snags were  o f an e s t i m a t e  of p r o d u c t i v i t y  from the  41 It  Is important  t o note  that  e x c e p t i o n a l l y warm and d r y and t h a t as d e s c r i p t i o n as d r i e r  than  of s o i l  moisture  (Figure  3).  Climatic  measurements  May,  were e s t a b l i s h e d  1959  i s concerned  i n t h e seven  the r e g i o n .  One  most i m p o r t a n t  s t a t i o n was  established  S a l a l Vaccinium-Moss t r a n s i t i o n and  one o u t s i d e t h e f o r e s t  were d e s c r i b e d  almost  in  average  of nine m e t e o r o l o g i c a l s t a t i o n s  i n t h e U. B. C. R e s e a r c h  microclimate  was  as f a r  The summer 1959  work ended was  a total  No. 1-68  the p l o t s  they are i n normal y e a r s .  which t h i s p a r t of the f i e l d  In  t h e summer o f 1958  (without  F o r e s t t o study the plant  communities i n  i n the Vacciniumhygrothermograph)  t o s t u d y and compare c o n d i t i o n s i n  the d e f o r e s t e d a r e a . In high,  t h e snow a r o u n d  instruments exits  w i n t e r , where  t h e i n s t r u m e n t s was  e l e v a t e d above t h e snow l e v e l .  a l s o were t r a m p l e d  minimize  the p r o b a b i l i t y  the a r t i f i c i a l l y  was  exceptionally  trampled Where  down l e a d i n g t o l o w e r of abnormally  installed  b e c a u s e t h e a i m was  screen of approximately i n each  station,  necessary,  ground t o within  the instruments. standard  on t h e g r o u n d ,  to study the m i c r o c l i m a t e .  h o u s e d t h e R. F u e s s - t y p e  down o r t h e  low t e m p e r a t u r e s  c r e a t e d s h a l l o w b a s i n s around  A Stevenson's dimensions  snow c o v e r became  Each  screen  hygrothermograph of I d e n t i c a l  design  42 and  a t the b e g i n n i n g of the  thermometers. to  Wet  and  study a l s o  S i x - t y p e max-min.  d r y b u l b t h e r m o m e t e r s were  s t a n d a r d i z e the hygrothermographs.  m e t e r soon was  used  elsewhere,  its  r e a d i n g and  did  not  dry  b u l b t h e r m o m e t e r was  The  because  t h e r m o g r a p h was  max.min. thermo-  the d i f f e r e n c e  constant.  This  a f a n and  removed b e c a u s e  because the  large  between  difference  change d u r i n g t h e whole p e r i o d o f s t u d y .  without  installed  The  wet-and-  of i t s u s e l e s s n e s s  c o n t a i n e r of water,  con-  n e c t e d w i t h t h e b u l b by a s h o r t w i c k t r a n s m i t t e d s t o r e d to  the bulb d u r i n g p e r i o d s of h i g h humidity.  psychrometer almost  p e r i o d i c a l l y used.  ment and  comparison  agreed  of r e a d i n g s .  field.  instruments used  by  fibreglass  that  cent at a l l  o c c a s i o n a l checks  since instruments  with gener-  readings. were c a l i b r a t e d  b e f o r e use  and  their  t h e method recommended  in  coefficient  w r i t t e n on e a c h by  Thermometers were c h e c k e d  s u b m e r g i n g them i n a m i x t u r e  water of a p p r o x i m a t e l y  60  and  and  atmometers were c a l i b r a t e d  s o i l - u n i t s were c a l i b r a t e d  temperature. by  by  the manufacturer;  the manufacturer  points  per  found  Hygrothermographs i n completely s a t u r a t e d  a t m o s p h e r e were c a l i b r a t e d described  Only  were n e c e s s a r y  w i t h psychrometer  All the  100  sling  T h i s p o i n t p r o v i d e d a most u s e f u l means f o r a d j u s t -  s l i n g psychorometer  ally  Instead, a  L a t e r i t was  e v e r y week t h e h u m i d i t y r e a c h e d  stations.  a  was  energy  100°  F.  bulb;  the manufacturer and  compared a t  o f w a t e r and  by  for  three  i c e , and  43 Atmometers were r e c h e c k e d cleaned.  A l l instruments  the  work and  field  During  were a g a i n  readings  the  after  field  the  calibrated  all  I n t o the  and  readings  screen by  of cloudy  and  r a i n y weather.  u s e d and  a spare  placed p e r i o d i c a l l y with  the p l o t .  From t h e s e  prechecks,  end  drifts.  Agreement  of  high  especially  during  compare d a t a  on  max.-min. t h e r m o m e t e r one.of the  in-use,  of  thermographs  always v e r y  To  and  by p l a c i n g them  hours.  t h e r m o m e t e r was  t e m p e r a t u r e between p l o t s ,  is  f o r a few  t h e r m o g r a p h d i f f e r e n c e s were c o n s t a n t  periods  at the  work t h e r m o m e t e r s and  c o n s t a n t l y a g a i n s t each other,  temperature  summer  corrected for occasional  were c h e c k e d together  first  and  was  thermometers final  checks,  on i t  b e l i e v e d t h a t t e m p e r a t u r e measurements o f a l l i n s t r u m e n t s  a r e w i t h i n 1/2° The expansion from the  F.  of t r u e  values.  only problem with  drum f l a n g e d u r i n g  succeeding  a discrepancy  ture  i n humidity  up  t o 2$  were u n a v o i d a b l e During places  hygrothermograph  o f c h a r t s d u r i n g humid p e r i o d s and  c o u l d have c a u s e d and  the  the w i n t e r ,  i n each p l o t  These r e a d i n g s accumulation,  and  reading.  1 ° F.  were n o t  interrelationship  and  readings  m e l t i n g , but  between t e m p e r a t u r e  This  i n tempera-  checked  for a plot  snow  recorded.  o n l y about  a l s o about  and  daily.  measured a t s e v e r a l  p r o v i d e d u s e f u l i n f o r m a t i o n not settling  away  Such d i s c r e p a n c i e s  snow d e p t h was  average  shrinkage  dry p e r i o d s .  of about  when i n s t r u m e n t s  was  the  cover.  snow  44 Outside white bulb humidity placed  atmometers t© p r o v i d e  the data  o f t h e a i r and i t s movement.  a t random p o s i t i o n s 9 i n c h e s  was p l a c e d above t h e s h r u b have no d i r e c t ation  a t e a c h s t a t i o n were 6 L i v i n g s t o n  the screen  bearing  from the s o i l ,  relative  humidity  on e v a p o r a t i o n ,  Five  o f them were  f r o m t h e g r o u n d and one  vegetation.  Even i f t h e i r  on t r a n s p i r a t i o n  t h e i r main v a l u e  readings  of p l a n t s or evapor-  i s f o r comparison of  n e a r t h e g r o u n d between d i f f e r e n t  stations.  Atmometers h a d t o be removed d u r i n g t h e w i n t e r . Three n o n - s h e l t e r e d were u s e d  on e a c h s t a t i o n .  of a t r e e about bulbs  just  One p l a c e d  7 feet high,  covered  with  S i x - t y p e max.-min.  thermometers  on t h e n o r t h e r n  and two on t h e g r o u n d w i t h  a thin  layer  v i d e d maximum and minimum t e m p e r a t u r e s  of l i t t e r .  These  side their pro-  o f t h e g r o u n d o r humus  surface. Eight  rain  to eliminate l o c a l relative  effects.  precipitation  mate o f t h e r e l a t i v e rain  gauges i n e a c h p l o t were p l a c e d a t random These p r o v i d e d  not only data  r e a c h i n g t h e g r o u n d b u t a l s o an  d e n s i t y o f the canopy.  During  gauges were e l e v a t e d above t h e snow l a y e r  a d d e d so t h a t snow c o u l d r e a d i l y be measured  on  esti-  the winter  and s a l t  was  i n equivalent  amounts o f w a t e r . At  each of the e i g h t s t a t i o n s three  f i b r e g l a s s u n i t s were I n s t a l l e d temperature  data.  The u n i t s ,  to obtain s o i l  the manufacturer  s e t s o f Coleman moisture  and  claims, are  45 durable soil  and a c c u r a t e .  temperature  moisture for  their  ture  measurements t o he t a k e n  reading.  Procedures  installation,  and t e m p e r a t u r e  temperature  and s o i l  more work, w i l l  Description  calibration  of s o i l  moisture  which s t i l l  requires  be a t o p i c  study,  of a separate  stations,  s t a t i o n s were s i t u a t e d  occur predominantly  above P l a c i d  one a c o n t r o l  under the f o r e s t Lake,  I n t h e U. B. C.  cover.  Because  i n lower  is  certain plant  e l e v a t i o n s and d r i e r  situated  station  i n two t r a c t s .  The  i n t h e open, t h e o t h e r  At lower  lies  daily.  five four  e l e v a t i o n s , southwest of a l l i n the f o r e s t .  approximately  L o o n L a k e camp and A. E . M a r c ' s f a r m ,  stations  In the.most  and G w e n d o l i n e L a k e s i n c l u d e d  set-of plots  measurements a r e ^ t a k e n  Research  i n h i g h e r e l e v a t i o n s and i n  t h e r e were f o u r s t a t i o n s ,  This  these  paper.  stations  t h e s t a t i o n s were  upper t r a c t s  o f mois-  The r e s u l t s  h a b i t a t s and o t h e r s  habitats,  soil  manufacturer  and measurement  u n i f o r m p l a n t communities.  communities  Blaney  d e s c r i b e d by the  The a i m was t o s t u d y t h e m i c r o c l i m a t e  important  wetter  w i t h each  were f o l l o w e d .  of c l i m a t i c  All Forest.  They c o n t a i n a t h e r m i s t e r t h u s p e r m i t t i n g  halfway  between  where m e t e o r o l o g i c a l  I t s h o u l d be p o s s i b l e t o u s e  as r e f e r e n c e p o i n t s .  Loon Lake  a standard meteorological s t a t i o n with  max.-min. t h e r m o m e t e r i n t h e s h e l t e r  camp  station  hygrothermograph,  and a r a i n  gauge.  It  46 is  situated  elevation  on  the  northern  of approximately  e x a c t l y n o r t h from Blaney Marc's farm meteorological southerly  approximately  one  mile  1180  feet,  Lake t r a c t  i s a standard  station.  s l o p e a t an  slope f a c i n g  the  lake at  a b o u t 3/4  of a  an mile  plots. Department  It i s situated  e l e v a t i o n of about S20E f r o m B l a n e y  S on 550  of a  Transport  gentle  feet.  Lake T r a c t .  It i s  Table  1.  D e s c r i p t i o n of the m i c r o c l i m a t i c s t a t i o n s .  StationP l o t No. Association  Altitude  Wind exposure  P l a c i d Lake Control  1710  SW, S, SE, N  1820  Protected  1810 ~  NW, N, NE, E  1780  NE, E, SE, S  II.-52  VacciniumSalal  III.-49 Blechnum  IV.-54  Vacc.-Moss Vacc.-Salal Transition  1720  E,  Slope  SE  Azimuth  -  Tract  I.-108 VacciniumMoss  Sun exposure  Sunrise to 4 p.m. Sunrise t o 10 a .m.  0-60$  Shape of profile  W e t t e r Subzone all  convex  convex  Soil depth  Stocking Stand  Stations none  5$ regeneration  30$  Sunrise to 4 p.m.  0-25$  .Sunrise to 1 p.m.  30$  Sunrise to 3 p.m.  Shape of contours  0-5$  360° i4o-  250  80°  120°  concave  straight  48"  90$  mature  convex  convex  concave  straight  convex  straight  5-  14" 10-  24" 10-  24"  60$  mature  80$  mature  90$  younger mature  Table  1.  (continued)  StationP l o t No. Association  Altitude Blaney  V.-44 Moss  vi.-104 Salal  VII.-42 Polystichum  VIII.-43 Vaccinium Lysichitum  Wind exposure  920  940  Slope  W,  E  S,SW,W, NW,N,NE  W, W  NW,  W,  E  Azimuth  -  Lake T r a c t  950  1040  Sun exposure  8  Shape of contours Drier  Shape of profile  Subzone  20$  210°  straight  a.m. to sunset  10$  260  convex  convex  12$  330°  concave  0$  27°  concave  11  11  a.m. to sunset  9 4  a.m. to p.m.  (o)  Stocking Stand  Stations  a.m. to p.m.  4  Soil depth  concave  3045"  2-  95$  mature  5$  14"  older immature  concave  2444"  mature  concave  3-  12"  60$  50$  mature  00  CHAPTER IV ANALYSIS OF THE DATA  Mathematical  approach  Without  exceptions  the purpose  o f any  study  i s to furnish a basis f o r generalization.  tical  terms i t I s t o p r o v i d e  while  a n a l y z i n g o n l y an u n b i a s e d  objects  there  objects  sample.  A certain  of items  items  vary  among t h e m s e l v e s  i n response t o the  to  o f t h e sample t h e v a l u e s  ( l ) the successive  items  but  a t random, so t h a t t h e chance  ation of  are  i n t h e sample,  successive  high  value (2)  being  i n regular of the  order, occurrence  i s t h e same i n e a c h s u c c e s s i v e there  observations,  observation  respect  i n t h e sample a r e n o t s e l e c t e d  p o r t i o n s of the universe  any p a r t i c u l a r  With  must be s e l e c t e d so  from d i f f e r e n t are picked  that  the universe the  a b o u t t h e same v a r i a b i l i t y .  the s e l e c t i o n  With  s u b j e c t 'to more o r l e s s  same c a u s e s w i t h  of  group of  i t h a s t o be assumed  c o n d i t i o n s and t h a t t h r o u g h o u t  individual  that  statis-  about t h e u n i v e r s e ,  o f t h e same k i n d .  t o t h e m a t e r i a l sampled,  i s a large universe  uniform  In  i s examined and f r o m t h e i r p r o p e r t i e s , a r e i n f e r r e d  the p r o p e r t i e s o f o t h e r respect  information  statistical  i s no r e l a t i o n  that  between t h e s i z e  i s , t h a t the chances o f a  f o l l o w e d by another  t h e same a s o f a low o r medium, (3)  49  observ-  high  observation  t h e sample i s n o t  selected  entirely  observations chance. to  In  are  the  p o r t i o n of the  s c a t t e r e d throughout  "stratified  represent  study  f r o m one  a s s o c i a t i o n s , the  filled  only  the  an  i f the  centration better  the  and  i n t o the  timber  was  o f low  and  probable  by  that  lower a l t i t u d e s are  than  the  the  the  different  area  into  i n t o areas  sampled  remains.  n e v e r be  that  where  returned of  bring very u s e f u l  At the  is  It i s quite  w o u l d be  i n the  of  a c e r t a i n amount  l a n d have r e p l a c e d  than they  above m o d i f i c a t i o n s  a n a l y s i s should  Con-  because  c a l c u l a t e d f r o m samples  the w r i t e r f e e l s  farm land w i l l  Realizing the  But  great  plots.  samples c o u l d have been t a k e n a l s o f r o m a r e a s farm l a n d .  ful-  q u a l i t y or i n s m a l l q u a n t i t i e s .  averages  the  requires  occurred  brings  more o f t e n  non-representative the  this  its limit-  (3)  l o c a t i o n of t h e  a c e r t a i n p o r t i o n of the  represented  and  Roads were c o n s t r u c t e d  lower e l e v a t i o n s other uses of forest  (l) is  Condition  However, t h i s  b e t t e r timber  in  samples t h r o u g h  local  p l o t s i n c e r t a i n areas  analysis.  selected  e.g.  e x t r a p o l a t i o n s performed with  the  by  chance.  i s considered  concerning  of the  bearing  by  is fulfilled.  accessibility.  of b i a s areas  study  (2)  Condition  explanation  universe,  that  purely  items are  following analysis, condition  ations recognized care.  o f the  d i s p e r s i o n of  sampled p o r t i o n must a l s o be  hut  the u n i v e r s e  s a m p l e s " where t h e  different portions  In  universe  i f the  now  used  area  to forest conditions results.  from  under  as study  production. ( l ) and  (3),  51 Before statistical  discussing  a v e r a g e must be,  meaning o f " r e l i a b l e " . sidered  the q u e s t i o n  I f , f o r example,  sample  would  agree e x a c t l y w i t h the average studied. within  But  ten feet,  sufficiently come w i t h i n how  i f we  accuracy,  o r how  a v e r a g e t h a t we About lie  within  one  the  sample.  the  site  much f a i t h already  c a n be  (The a v e r a g e  i t satisfies given  on e a c h  o b t a i n e d might  doing series  error  t o know  the  required  particular  side be  averages  o f t h e mean o f  any  of those i n  degree  of confidence which  average  c a n be  e s t i m a t e d by of s i m i l a r  can  computing averages,  o f t h e same number o f i t e m s  drawn f r o m t h e same u n i v e r s e .  standard  t o the  to  The  computed f r o m random samples  The  need  be  have.  standard deviation  on t h e d e p e n d a b i l i t y  index  would  s i x t y - e i g h t p e r c e n t o f t h e sample  i n a given  would  i s almost c e r t a i n  e s t i m a t e of the s t a n d a r d d e v i a t i o n  work and  t h e sample  We  a  association  t o know t h e s i t e  whether  the  i n d e x i s con-  index of the  of the t r u e average.  a normal d i s t r i b u t i o n . ) be p l a c e d  site  one whose a v e r a g e  i f i t s average  i s o u r sample,  a  i t i s obvious that  then f o r that purpose  ten feet  reliable  be  are i n t e r e s t e d  reliable  reliable  i t i s necessary to consider  as a measure o f p r o d u c t i v i t y ,  perfectly reliable  o f how  This affords  a useful  of r e s u l t s w i t h o u t r e p e a t i n g the o f new  field  samples.  standard deviation o f t h e mean may  check  be  of the averages or the calculated  by d i v i d i n g  the  52 estimated, of  standard  d e v i a t i o n by t h e s q u a r e r o o t  measurements i n t h e s a m p l e .  means o f s u c c e s s i v e close  random samples  t o a normal curve,  original  observations  Where t h e sample  size  I s l a r g e enough  per  of a l l such samples.  These we  confidence  approximation  intervals  ber  The  Interval M + 2  size  the d i s t r i b u t i o n  the p o s s i b i l i t y  as an  o f , s u c c e s s i v e parameters i s The  i n which the s t a t e d confidence  of u s i n g  value  The  interval  s m a l l e r t h e num-  of twenty-five  i s s i x t y - e i g h t p e r cent one  of s t a n d a r d  error  i t f o r -an e s t i m a t i o n  of our r e s u l t s u s i n g  I n a sample  twenty-five  t h e more s e r i o u s i s t h e d i f f e r e n c e .  parameter l i e s w i t h i n meter  samples.  confidence  sample  from the normal d i s t r i b u t i o n .  of o b s e r v a t i o n s ,  there  of such  i s s m a l l e r than  i n c l u d e t h e t r u e mean i s s m a l l e r .  sizes.  will  of the parameters of the u n i v e r s e .  o f samples  dependability  1959).  o r more) t h e  d e r i v e d from that  The most i m p o r t a n t in  (25  i n d i c a t e the degree of  in statistics  somewhat d i f f e r e n t proportion  of the  i n c l u d e t h e t r u e mean i n s i x t y - e i g h t  When t h e sample observations  i n a manner  (Kendall,  t h e t r u e mean i n n i n e t y - f i v e p e r c e n t  can p l a c e  will  are d i s t r i b u t e d  i s f a r from normal  M +  include  will  shown t h a t t h e  even i f t h e d i s t r i b u t i o n  interval cent  I t has been  o f a number  samples  of  p l o t s we  of the  different  can s a y t h a t  of p r o b a b i l i t y  standard  lies  t h a t the true  e r r o r o f o u r sample  and n i n e t y - f i v e p e r c e n t p r o b a b i l i t y  that i t l i e s  parawithin  53 two  standard  e r r o r s around  observations,  e i g h t y - s i x per  the  mean. I f we  c e n t w i t h i n two  analyze  a definite  and  advantage  i s a good l o g i c a l  curve  of the  of the Since  along  the  i t can  i n the  occur.  cases  free  portions  of the  curve  regarded are  as  be u s e d t o p r o v i d e  beyond t h e  the  the  real  mathematical But  a "law"  in  to state  independent v a r i a b l e ,  statistically  range of based  observed on  end  are  bulk  of  portion.  end  only, with  of  Only  those  p o r t i o n s of  a lesser  can  the  degree  of  t h a t these e x t r a p o l a t i o n s  data,  statistical  however l o g i c a l evidence,  and  -  have a  enough o b s e r v a t i o n s  justified,  noted  may  o r t h e volume  e x t r e m e o b s e r v a t i o n may  where t h e r e  i t  s e r i o u s i n complex c u r v e s  shape o f t h e  I t s h o u l d be  not  relation  of the  c e n t r a l p a r t s where t h e  rough approximations  confidence.  of  hand c u r v e .  graph r e p r e s e n t i n g the b a s a l area  on  are  the  This i s very  effect  look,  than  i n the  s t a n d where a s i n g l e  curve  In o t h e r  curve  o n l y when  type  expression  an  t h e number o f o b s e r v a t i o n s u s u a l l y d i f f e r s  material  be  then  relations.  be much more r e l i a b l e  the  i s the  one  e r r o r s from  graphically,  basis for a definite  a x i s r e p r e s e n t i n g the  observations  four  l i e within  a f r e e hand method  relationship.  relations  the nature  as  over  i s no more r e l i a b l e  definite  cent  of  or e s p e c i a l l y a c o m p l i c a t e d  the mathematical formula  nature  samples  standard  our r e l a t i o n s  exact mathematical l i n e  there  In  however, o n l y s i x t y p e r  and  has  t h e mean.  they  their  may  54 reasonableness rests statistics.  i n the realm of l o g i c s  rather  than  T h e r e f o r e , i n t h i s work, a l l t h e p o i n t s r e p r e s e n t -  ing  t h e f r e q u e n c e s have been l e f t  the  r e a d e r may d e t e r m i n e  i n on t h e g r a p h s ,  f o r himself  so t h a t  the value of the w r i t e r ' s  Interpretations. When t h e d e p e n d e n t or  a s e t of independent v a r i a b l e s  dependent  variable  proportions are  variable  n o t be i n e x p e c t e d  of the independent v a r i a b l e .  o b v i o u s l y due t o r e s i d u a l v a r i a t i o n  called  variability  These  i n the p a r t i c u l a r  i n the a n a l y s i s .  "residual variance"  o f t h e dependent  differences  i n t h e dependent  t o changes  of independent v a r i a b l e s used  proportion of  the estimated values ofthe  i n many c a s e s w i l l  v a r i a b l e w h i c h were u n r e l a t e d set  i s e s t i m a t e d f r o m one  This  g i v e s an e s t i m a t e  v a r i a b l e which  i s due t o  unknown c a u s e s and n o t a c c o u n t e d f o r . When t h e same c o n d i t i o n s p r e v a i l which  the f i e l d  d a t a o f t h e samples  s h o u l d be p o s s i b l e productivity  of the f o r e s t  the  p r o d u c t i v i t y might  under  were c o l l e c t e d , I t  t o estimate from the independent  the  sites.  To a c t u a l l y  variables measure  be i m p o s s i b l e i n c a s e s where t h e de-  sired  species  land,  and i f we have t o do t h e a s s e s s m e n t  from a e r i a l  as those  a r e m i s s i n g , i n young stands or i n d e f o r e s t e d  photographs  o f immature  stands  where we c a n n o t measure t h e age a n d  we have t o a s s e s s t h e p r o d u c t i v i t y m a i n l y f r o m p h y s i o g r a p h i c features. one  Here t h e knowledge o f r e s i d u a l v a r i a n c e  t o e s t i m a t e how c l o s e l y  allows  t h e new e s t i m a t e s a r e l i k e l y t o  55 approximate the our a  new  true  observations  s i m i l a r but  beyond t h e  not  applied  biological  stated  ones,  can  be  may  part  explained  of by  and  variance.  In  our  study, p a r t  variable,  the  height  by  the  plant  conditions, and  part  I t may  be  remaining  i s not due  to  be  i f the  the the  explained  causes are of  by  by  can  be  explained  by  group of v a r i a b l e s and  what p r o p o r t i o n  iable  i s not  of  or  this  -  study  the indication  correlations  the  the the  accounted  the  called  dependent  independent  residual  v a r i a t i o n i n the  the  trees,  are  is  or  by  at a l l .  variation  of the one,  v a r i a t i o n i n the  soil  largely inter-related,  a genetlcal One  depend-  explained  measured v a r i a b l e  most i m p o r t a n t  was  dependent  the for.  according  variability  to  of  determine  variable  to r e l a t i o n s  i n the  or  main p a r t s  p a r t i c u l a r independent v a r i a b l e  considered, of  the  physiography, part  any  chance f a c t o r s  of  came f r o m  conditions.  r e l a t i o n to  a l l these i n f l u e n c e s  study, p r o b a b l y the  what p r o p o r t i o n  same  variation m  many o t h e r known o r unknown c a u s e s . this  case  more t h a n a c l u e  growth of  community, p a r t and  m  where  above, i n most r e l a t i o n s , e s p e c i a l l y  variables,  ent  as  o b t a i n e d u n d e r new  only  the  instances  d a t a were c o l l e c t e d ,  give  differences  In  independent v a r i a b l e s  basic  does not  to data  As  variable  the  a r e a where t h e  t o what t h e  are  of  unknown y i e l d s .  i d e n t i c a l universe,  residual variance as  but  or  observed,  dependent  var-  56 Measurement relation  of t h e r e l a t i v e  between v a r i a b l e s  statistical  constant  than  calls the  importance  for a different  standard  error  Some measure s h o w i n g what p r o p o r t i o n o f t h e tion  has  been a c c o u n t e d  separates  each o r i g i n a l  value  the r e s i d u a l .  and  estimated and  value  then  into  I f the  i s g i v e n by  the u n e x p l a i n e d  squared,  f o r , i s needed. value  variation  Is the  accounted  I f we  large this  t o the in  o r i g i n a l v a r i a n c e , we  the dependent v a r i a b l e  the  independent  fitted,  straight-line  proportion  i s called The  mathematical t h e way values basis  the  cases  similar imated  o f the  cases w i t h i n the values  f o r cases  error  o f one  variable  f o r by  The  squared estimate the  line.  variation  the v a r i a t i o n  in  mathematically-  square  r o o t of  this  coefficient.  investigator  definite can  determine  variable  differ  differ.  It affords a  as  of the dependent v a r i a b l e variable  correlation  was  same u n i v e r s e . not  of  i n the  the r e g r e s s i o n  coefficients provide a  independent  i n which t h i s  variation  a c c o r d i n g t o the  f o r estimating values  estimated  get the p r o p o r t i o n of  by w h i c h an  related  regression line  e s t i m a t e d v a r i a n c e i s compared  accounted  i n which the v a l u e s of another  f o r by  correlation  correlation  varia-  l o g i c a l measure o f  relationship.  technique  given values from  variable,  estimate.  p a r t s , the  original  of  original  The  i n standard  amount o f v a r i a t i o n how  two  of  the  kind  i t s standard d e v i a t i o n  the d i f f e r e n c e  determine  of  the  from  by e x t r a p o l a t i n g determined  for  Whether s u c h  i n c l u d e d i n the  original  eststudy  57 can  Toe e x p e c t e d  t o agree  with the true values  depends on two  considerations. 1. solely  The m e a n i n g o f a g i v e n r e l a t i o n w i t h  t o the p a r t i c u l a r 2.  represent  the true r e l a t i o n s  s o t h a t as X  positive.  If this  (the values  line  has a p o s i t i v e  of the independent  increase, the c o r r e l a t i o n  I f the l i n e  negative.  has a n e g a t i v e  The c o e f f i c i e n t  o f t h e dependi s said  of c o r r e l a t i o n  of the p e r cent  takes linear  i t s f u n c t i o n does n o t f o l l o w a b i v a r i a t e  distribution coefficient  (see the s c a l e  on F i g u r e 25).  t h e r e f o r e must be r e g a r d e d  correlations  i n the u n i v e r s e  t o be  t h e same equation.  of slope i n t h i s  t h e X may be c o n s i d e r e d drawn a t random f r o m  universe  variable)  slope the c o r r e l a t i o n  as t h e c o n s t a n t b o f t h e c o r r e s p o n d i n g In t h e c a s e  while  line.  coefficient  i s found or  the values of Y (the estimated value  ent v a r i a b l e ) a l s o  sign  i n the u n i v e r s e .  between two v a r i a b l e s  assumed t o be a s t r a i g h t  is  existing  relations to  symbol r r e p r e s e n t s t h e c o r r e l a t i o n  where t h e r e l a t i o n s h i p  increases  f r o m w h i c h i t was drawn.  The d e p e n d a b i l i t y o f t h e c a l c u l a t e d  The  slope,  cases  regard  of values  The  a  study,  stable  normal  correlation  as an e s t i m a t e o f s c a l e d t h e same way.  Where b o t h X and Y a r e assumed t o be composed o f simple elements (  straight  line  of equal v a r i a b i l i t y  relations,  a s i n t h e case o f  a l l of which are p r e s e n t  i n Y but  2 some o f w h i c h a r e l a c k i n g  i n X, t h e n  r  measures t h e  58 proportion are  of the v a r i a b i l i t y  also present  i n X.  dependent v a r i a b l e  of a l l the elements i n Y which  For that  reason  i n c a s e s when t h e  i s known t o be p a r t l y r e l a t e d  to the  2 independent v a r i a b l e ination variance  in  an  o t h e r p a r a m e t e r s , means,  error,  standard  error  of u n i t s  of determination  number o f u n i t  line.  ( r ), s i n c e  independent v a r i a b l e .  Therefore,  which they are s t a t e d  but a l s o  only  on t h e u n i t s the s i t e  ones i n a r b i t r a r y u n i t s ,  each  kind). In  the height  t h i s study,  as w i l l  growth of t r e e s  be shown l a t e r ,  and t h e c o m p o s i t i o n  community a r e due t o a number o f b a s i c combined r e s u l t s others,  variable  i n the  ( t h e dependent v a r i a b l e ,  i n d e x i n feet,, t h e i n d e p e n d e n t  of  i t shows t h e a v e r a g e  i t s s i z e depends n o t  in  in  i s purely  measures the s l o p e  of a s p e c i f i c u n i t  t h e r e l a t i o n between t h e v a r i a b l e s ,  i t s own  the coef-  i n the dependent  on  of  are c a l c u l a t e d  i t i s a ratio,  means t h a t  or decrease  which occur w i t h increase  deviations,  measure.  This  increase  standard  of estimate  c o e f f i c i e n t of r e g r e s s i o n  regression  i n X.  as the o r i g i n a l data,  a r b i t r a r y mathematical The  the  of the percentage t o which the  i n Y i s d e t e r m i n e d by t h e v a r i a n c e  t h e same k i n d  ficient  i s c a l l e d the c o e f f i c i e n t o f determ-  and i t i s t h e measure  While standard  r  o f 17 d e s c r i b e d  factors.  variables  b o t h known and unknown, w h i c h c o u l d  the d i f f e r e n c e s of the p l a n t They a r e t h e  and p r o b a b l y many n o t be m e a s u r e d .  59 These a r e  d e a l t w i t h i n terms of m u l t i p l e r e g r e s s i o n r e l a t i o n -  ships.  T h i s p a r t o f t h e work was  approached  because  c o n d i t i o n s under which the  community f o r m e d , were c o m p l e t e l y changing  i n time  constant  over  place,  and  independent  a l l to a certain S y m b o l i c a l l y we  b e y o n d any  but  control,  others, others changing  degree  can  manner  t r e e s grew o r t h e p l a n t  of the  a p e r i o d of time  in this  some  remaining  from p l a c e  to  interdependent.  represent this  relation  by  the  equation Y = a + b-^X-^ + Xi^K.^ + where Y r e p r e s e n t s t h e represent the  the  constants  the u n i t s can  be  simple  dependent  similar  straight  variables,  on t h e  original  r e p r e s e n t e d by  relations,  dependent v a r i a b l e ,  independent  of the  a series  single  of the best  influences ascribe in  the  independent  of a l l the  t o the  independent  t o 31, fit.  The  variables  and  b^  independent variable  are  measured i n equation  a  b constants show t h e  are relation  e x c l u d i n g the a s s o c i a t e d  not  a l s o t h e v a r i a t i o n w h i c h i s due  independent  ....  X^  r e p r e s e n t e d by  variables. o n l y the  dependent v a r i a b l e which i s d i r e c t l y  them b u t  ....  2  linear regression  because they  variable  other  bg,  X  Graphically this  of simple  t o F i g u r e s 24  line  b^,  X^,  relationships  scale.  the net r e g r e s s i o n c o e f f i c i e n t s of the  ....... tojyX]y[  due  t o such  But  they  variation to each  of  other  c o r r e l a t e d w i t h them w h i c h have  not'  60  been s e p a r a t e l y there  i s any  considered  part  i n the  study.  associated  either with plant  graphy, the  regression  coefficient  include  associated  that part  has  find  no  regression  that  the  definite relation coefficient  b™. YX  shows t h e  average  and  Xg  will has  I f we  a very  effect  now  the  cluded  i n the  regression eliminate and that  slope)  on  o f Y on that part  X^  and  of  The  change  of  Y  the  coefficient  variability  but  of the  Xg  their  we  Therefore, can  b-,X  n  this  Y.  we  X^  correlated extent  in-  knowing the  c o r r e c t the  from  o f Y,  combined  Y values  v a r i a t i o n w h i c h i s due  values  X^  them  variable  highly  and  each of  i s a c t u a l l y to a great i n X^.  b^.^  e f f e c t of  r e m a i n i n g f l u c t u a t i o n t o X^.  s u b t r a c t i n g the  that  c h a n g e s o f Xg  Separately  significantly  o f Xg  fairly  coefficient  example t h e  l a r g e r than  variability  then r e l a t e the by  average  regression  i n our  large regression  variability  is  following  1  consider  slightly  the  (microtopography).  shows t h e  a different situation.  i s only  on  community) b u t  change o f Y w i t h u n i t  alone because they are and  t o Xg  the  ( l o c a l p o s i t i o n on  find  topo-  l a r g e r because " i t  growth of t r e e s  v a r i a t i o n (plant  changes i n X^,  on.  be  data presented  height  with unit  so  community o r  of g e n e t i c a l v a r i a t i o n which i s  examine t h e  c l o s e l y r e l a t e d t o X^ it  will  not  with i t . I f we  p a g e s we  example, i f  o f g e n e t i c a l v a r i a t i o n w h i c h was  considered,  will  For  We  to  net to  Xg  can  do  61  Because p r o d u c t i v i t y communities,  on d i f f e r e n t t o p o g r a p h y and d i f f e r e n t  it  i s insufficient  is  because t h e r e  plant can  changes i n d i f f e r e n t  t o use a s i n g l e  community,  f a c t o r approach.  the s o i l  and t h e t o p o g r a p h y ,  Therefore  the difference  w h i c h a p p e a r s t o be d i r e c t l y a s s o c i a t e d  due  or p l a n t  community, may r e f l e c t  t o topography.  In a d d i t i o n ,  g r o w t h due t o t o p o g r a p h y w i l l  be e x p l a i n e d  by  of s o i l s ,  i n part  reflect  how much by t h e p l a n t separately?  correlated  indicates  Fitting  a straight line  solving  each equation  set  of equations  extent the by  can  The q u e s t i o n  of f o r e s t  sites  communities,  how much  Because a l l these v a r i a b l e s a r e that  t h e i r e f f e c t s a r e mixed.  to the data  o f e a c h v a r i a b l e , and  i l l u s t r a t e s the may r e a l l y  though I t s Influence  of other v a r i a b l e s .  influence  may be c o n c e a l e d  For t h i s reason  also,  show no c o r r e l a t i o n does n o t mean w i t h  certainty that The l a c k  the d i f f e r e n c e s  of s o i l s .  f o r a l l the v a r i a b l e s ,  b e c a u s e two v a r i a b l e s  other.  i n height  f o r c o n s t a n t s a and b, and s o l v i n g t h e  dependent v a r i a b l e ,  absolute  the d i f f e r e n c e s  i n part  t o w h i c h one i n d e p e n d e n t v a r i a b l e  the presence  growth  b y t h e t o p o g r a p h y , how much b y t h e p r o p e r -  each v a r i a b l e  highly  i n height  with differences i n  t h e n r e m a i n s : how much o f t h e p r o d u c t i v i t y  ties  This  as l o g i c a l l y  the d i f f e r e n c e s  w h i c h a r e a c t u a l l y due t o p r o p e r t i e s  can  soils,  i s a v e r y h i g h i n t e r r e l a t i o n between t h e  be e x p e c t e d .  soil  plant  they are not associated  of c o r r e l a t i o n i n s t r a i g h t l i n e  be c o n c e a l e d b y c o m p e n s a t i n g  influences  with  each  relationships  o f one o r more  62  other  variables. The  equations f o r of  an  solve  computer w o u l d be  computer can  equations  study,  productivity  for  set  of  of  that  i s the  the  be  smallest  measured by  estimated  original  values.  relation  measures the  This  values  ratio,  the  combined  a means o f  that of  dividing  correlation As  coefficients  any  increases  stated  the  measure t h e  each of  the  residual  as  the  above, t h e  the  l i n e a r tendency of  obscure  and scope  exists.  relations.  the  of  of  the  multiple  in  the  i n each  error  cor-  independent  i t i s evident  case that  decreases.  correlation  between t h e  independent  i n the  of  considered,  several  dependent  factors  remaining independent  Thus,  of  standard  that  variation  partial  deter-  obtained.  differences  standard  correlation  several  the  In  estimate  c o e f f i c i e n t of  original variation  and  An  deviation be  s q u a r e d by  is  factor  help  the  a l l variables  I f the  compared w i t h t h e  can  importance  explaining  an  standard  dependent v a r i a b l e .  the  the  within  instructions  the  r e l a t i v e importance  when combined, may  as  seventeen  calculations  s e v e n t e e n unknowns g i v e  i n s u c h a way  The  factors  of  impossible.  number o f v a r i a b l e s  suitable  variation  deviation  set  assuming l i n e a r r e l a t i o n s , m a t h e m a t i c a l l y  mined e q u a t i o n s  residual  a  almost  p e r f o r m a l l the  f o r any  i t s memory i f a  this  o f w o r k i n g out  s e v e n t e e n unknown c o n s t a n t s w i t h o u t  electronic  electronic  of  procedure  present  eliminating  factors  study,  where  to  63 the p r o d u c t i v i t y  of f o r e s t  s i t e s m e a s u r e d by  c o r r e l a t e d w i t h a number o f i n d e p e n d e n t correlation  of s i t e  index with,  site  variables,  f o r example,  between s i t e the p l o t s  i n d e x and  i n the  on  s l o p e and  i n t e r p r e t a t i o n was  of the v a r i a b l e s . insufficient tial  to permit  correlation  sample f r o m  the  such  factor  i n p l a c e s where a l l  same s l o p e ,  other v a r i a b l e s .  i f computed f r o m  of t h e raw  between  r e l a t i o n may  associated with i t .  the  high,  because both  correlation  between  o f them a r e  correlated variable.  certain  data  certain  par-  larger  be  hidden  by  Or  i n the  opposite  in this  the  very s i g n i f i c a n t l y .  of s t o n i n e s s i s a s s o c i a t e d w i t h outcrop of s h a l l o w  appear  c o r r e l a t e d with another  From c o u n t l e s s examples  decreases  another  v a r i a b l e s may  ness  index  appear  variables,  I n V a c c i n i u m - S a l a l community w i t h d e c r e a s e d  consist  a  was  average  i t may  e.g.  decrease  A  combinations  I n d i c a t e d the p r o b a b l e  examination  correlation  case,  site  elevation,  subgroups b e i n g formed, the  subgroups,  such a p o s i t i v e  negative  be  same u n i v e r s e .  From t h e  because  variables,  made f o r a l l p o s s i b l e  coefficient  In these  t h e r e i s no  a l l the  partial  E v e n when t h e number o f o b s e r v a t i o n s  correlation  that  shape of c o n t o u r s  was  of  would p r o b a b l y  sample w o u l d have t h e  aspect, p o s i t i o n similar  correlation  the  shape  contours, w h i l e h o l d i n g c o n s t a n t a l l the o t h e r I n d i c a t e s what t h e a v e r a g e  index  organic deposits.  highly study  stoniBut soils  T h e r e f o r e , the  the which  decrease  64 of  tree  height  i s obviously  not the r e s u l t of decrease of  stoniness,  but the r e s u l t of shallow  out  t h e summer.  during  This  need m a t h e m a t i c a l a n a l y s i s discard ficant  t o be n o t i c e d ,  simple  correlation,would  result i n discarding  important  factors,  variables,  or a s p l i t t i n g  groups,  Logical  of large  one.  which i n turn  That p a r t i a l  s h o u l d ,be s t r e s s e d .  correlation  and t h e s m a l l e r  For certain  plant  The t e s t w h e t h e r a to the correlation other  are c o r r e l a t e d w i t h the  j u s t as a l l o t h e r  The l o w e r t h e m u l t i p l e  t h e sample, t h e l a r g e r w o u l d be samples.  the reasons explained,  of the true  each  c o r r e l a t i o n c o e f f i c i e n t s are  parameters,  of s u c c e s s i v e  sev-  i s correlated with  t o f l u c t u a t i o n due t o s a m p l i n g  variation  which  together,  may r e a l l y be r e l a t e d  independent v a r i a b l e  into  analyzing  even i f i t shows no a p p a r e n t  independent v a r i a b l e s dependent  of data  and t h e n a l l c o m m u n i t i e s  independent v a r i a b l e  i s whether t h a t  those  be m i s l e a d i n g .  groups  s h o u l d p r o v i d e more t r u s t w o r t h y r e s u l t s .  dependent v a r i a b l e ,  signi-  examination of  i n t h i s study a s s o c i a t i o n s ,  community s e p a r a t e l y  subject  that to  and t h e i r e f f e c t w o u l d be w r o n g l y  with other f a c t o r s .  the  indicates  as i n s i g n i f i c a n t the t r u l y  associated  given  which d r y  example, w h i c h does n o t  c o r r e l a t i o n , and t o u s e i n d i v i d u a l l y o n l y  could  eral  profiles,  a l l f a c t o r s w h i c h by t h e m s e l v e s do n o t have a  have t h e h i g h e s t It  simple  soil  correlations  we  c a n n o t be  absolutely  e x i s t i n g i n the universe  65 on  t h e b a s i s o f t h e c o r r e l a t i o n s shown  i n o u r sample, b u t  we  can e s t i m a t e  a given  t h e minimum v a l u e w i t h  b e i n g wrong, f o r example, t h a t in  our statement w i l l  one out o f t w e n t y o b s e r v a t i o n s  same u n i v e r s e . a probability correlation  I n a sample  as h i g h as .60  correlation  i s zero,  where t h e t r u e  correlation  i s .50  the  degree  also with the  that  t h e number  from  of cases  the'universe  a s h i g h as .81.  and t h e s i z e  The  v a r i e s not only  with  o f t h e sample, b u t  of independent v a r i a b l e s .  The  greater  i n e a c h sample, will  the g r e a t e r a r e the chances  be - o u t s i d e  the f i v e  per cent  B u t , i f o n l y a few i n d e p e n d e n t v a r i a b l e s a r e c h o s e n  possibility  study,  of the c o r r e l a t i o n  there  i s a much l a r g e r  coefficients  T h i s w o u l d happen i f a l a r g e number  v a r i a b l e s were c o n s i d e r e d showed t h e h i g h e s t  and o n l y t h o s e  correlation with  v a r i a b l e s should  basis  on a p r o p o r t i o n a l s i g n i f i c a n c e  than  coefficient.  In t h i s  study  r e t a i n e d i n the f i r s t  being  erroneously  of independent  were r e t a i n e d w h i c h  the dependent v a r i a b l e .  Therefore,  all  get a  and f r o m t h e u n i v e r s e  coefficients  the m u l t i p l e c o r r e l a t i o n  high.  shall  is still  o f i n d e p e n d e n t v a r i a b l e s u s e d and t h e s m a l l e r t h e  our o b s e r v a t i o n s  limit. in  of c o r r e l a t i o n  number  number  of c o r r e l a t i o n  from the  o f t e n measurements t h e r e  where t h e t r u e  reliability  be wrong  on samples t a k e n  o f one o u t o f t w e n t y t h a t we  coefficient  chance o f  be g r o u p e d more  on a  logical  of t h e i r  regression  t h e i n d e p e n d e n t v a r i a b l e s were  p a r t , and t h e n  grouped  into  66 physic-graphical  factors  and s o i l  factors, while  community r e m a i n e d a s an i n d i v i d u a l v a r i a b l e  the plant  i n both  cal-  culations . While Is  i t i s r e a l i z e d that  of assistance  ation  the mathematical  and p r o v i d e s u s w i t h r e l i a b l e g e n e r a l  case.  c a n p r o v i d e wrong i n f o r m a t i o n  I t may happen t h a t  may be b e t t e r  the s i t e  index of a p a r t i c u l a r  o r worse than t h e a n a l y s i s  of the s i t e  F o r example, m e a s u r a b l e v a r i a b l e s  a good  q u a l i t y while  site  of the p r o d u c t i v i t y ,  judgment a r e e s s e n t i a l .  local  certain  that  site  combination  Extrapolations  because these  factors  environment.  The same I s a l s o  outside  determine  adequate i n t e r p r e t a t i o n  of  the l o c a l  habitat  the region  when a l l t h e i r  Generally  and c l i m a t i c  the v a r i a t i o n true  i t can be  of vegetation  of the l o c a l community  of the p r o d u c t i v i t y . For i n any r e g i o n ,  a broad p e r s p e c t i v e factors.  a  factors,  f o r the p l a n t  i t i s c o n s i d e r e d as an i n d i c a t o r  necessary to obtain  f o r any  q u a l i t y i s f a i r l y uniform, within  of topographic  have  knowledge and good  a r e r e a l i z e d and checked.  though,  indicate  Therefore,  where d a t a were c o l l e c t e d can be done o n l y limitations  may  place  factors  one f a c t o r w h i c h may n o t even  been d e t e c t e d d e t e r m i n e s p o o r g r o w t h . estimation  this  about any i n d i v i d u a l  indicates.  if  inform-  a b o u t t h e d a t a a t hand, i t must be remembered t h a t  procedure  said  analysis  b a s e d upon  i t is analysis  67 Ecosystem analysis  stratification  was u s e d  i n the f o l l o w i n g  and p l o t s were p l a c e d i n t o a s s o c i a t i o n s  of g r e a t e s t s i m i l a r i t i e s (inclusive  i n both  t r e e s ) and e c o t o p e  their  floristic  (Krajina,  on t h e b a s i s structure  1959).  References: B a j z a k , I960; B a r n e t t , 1937; Coons, 1957; C o r n i s h , 19^0; E z e k i e l and Pox, 1959; K e n d a l l , 19^9; Moroney, 195^; N e d l e r , 195^; S m i t h , 1957, Wilkinson, 1957; Yates, 1933.  The  Climate  To p r e v e n t u n w i s e u s e o f t h e p r e s e n t e d tables,  certain  characteristics  to both temperature All sible in  errors  each  and p r e c i p i t a t i o n  t h e graphs  was  s h o u l d be  because  s t u d i e d and number  was n o t g r e a t , t h e r e f o r e t h e i r the r e a d i n g s .  sense,  noted.  certain  June  of instruments  l o c a t i o n may have  29th, 1959  to July  pos-  o n l y one p l o t  influenced  The d a t a r e p r e s e n t o n l y f i f t y - t h r e e  measurements f r o m  and  climates i n regard  and t a b l e s p r e s e n t e d  in a statistical  association  of mountain  graphs  weeks o f  3rd, i960.  Temperature That tude  temperature  decreases with i n c r e a s i n g  i s a g e n e r a l l y a c c e p t e d phenomenon.  of the average is usually course  lapse rate  taken  there  as 3.3°  alti-  The a c c e p t e d  on m o u n t a i n s o f t h e t e m p e r a t e P. p e r 1,000  feet  rise,  value zone  though of  i s c o n s i d e r a b l e v a r i a t i o n w i t h season and  between d i f f e r e n t  regions.  In the mountains o f the Western  68 United 1,000  States  ature very but  and o c c u r  sometimes t h e y  from t h i s  rapid  Sometimes t h e i n v e r s i o n s a r e  are frequent  i s a creep  i n enclosed  and i n v o l v e  nights  considerable  from ground  surfaces,  i t s d e n s i t y i n c r e a s e s and i n calm  of cold  depressions.  a i r down t h e s l o p e s  to col-  The c l e a r e r t h e s k y , t h e more  t h e c o o l i n g o f t h e ground; t h e calmer t h e atmosphere,  s t e a d i e r the descent  "cold  of cooled a i r .  l a k e s " i s most p r o m i n e n t  i n winter  v a l l e y b o t t o m s may be so much h e a t e d t h e warm a i r f a r i n t o  winter  and e a r l y s p r i n g i t i s not u n u s u a l  depressions  filled  with  cold  Effect  of these  f o r i n summer t h e  d u r i n g t h e day t h a t  retain  with  But temperature  o n l y d u r i n g a few b r i g h t summer  during the night  weather there  E. per  a v e r a g e and temper-  When t h e a i r , due t o r a d i a t i o n  cooled  the  F. i n J a n u a r y .  f r e q u e n t l y depart  local  lect  t h e r a t e a v e r a g e s 3-5°  i n v e r s i o n s a r e common.  areas. is  1944)  i n J u l y and 2.9°  feet  gradients  (Baker,  the short night.  f o g while  In l a t e  they  fall,  t o f i n d the  the slopes  are b r i g h t  t h e sun s h i n i n g f r o m c l e a r b l u e s k y . It  i s evident  between t e m p e r a t u r e average  o f 3.3°  elevation  that there  and a l t i t u d e .  F. d r o p  i s no c o n s t a n t The u s u a l l y  of temperature  i s m e r e l y a mean v a l u e  summits a r e u s u a l l y c o l d e r t h a n  f o r 1,000  relationship  accepted f e e t of  which seldom o c c u r s . valleys,  but during b r i g h t  weather the v a l l e y s a r e abnormally  warm and d u r i n g  nights abnormally  a i r temperature  cold.  Therefore  The  still gradient  69 is  s t e e p e r ' b y day  t h a n by n i g h t ,  i n summer t h a n  i n winter.  T h i c k n e s s o f t h e a t m o s p h e r e above t h e p l a c e o f o b s e r v a t i o n decrease with i n c r e a s i n g a l t i t u d e . the d e c r e a s e in  liquid  and  solid  the  due  to interception  incoming  impurities.  The  end  of the  relatively  low,  be  g r e a t l y heated.  of the heat h e l d radiation  spectrum  sun r a y s p a s s  while  I t i s especi s intercepted  moisture  through  the  being  solid  clear a i r  o b j e c t s on w h i c h t h e y f a l l  D u r i n g the n i g h t the  i n the ground  of h i g h l e v e l s  g r e a t e r heat  l o s s by  The  cooling  essentially and  outgoing  i n c r e a s e s as t h e  i s c o n s e q u e n t l y not  Temperature regime  day  but  may may  radiation  counterThe  o n l y more also  in i t s  night. as w e l l  as t h e h e a t i n g o f t h e  from the ground,  releasing  the  t h e r e f o r e the a i r temperature  extreme i n i t s h i g h e r heat r e c e p t i o n by  storing  losses  o f t h e a i r masses d e c r e a s e s w i t h a l t i t u d e .  microclimate  starts  decrease  as t h e  that  smoke, d u s t and  w i t h o u t much h e a t i n g e f f e c t be  increases,  than  d u r i n g the  o f the atmosphere d e c r e a s e .  atmosphere,  obstacles.  i s the  In c o n s e q u e n c e ,  solar radiation  the u l t r a v i o l e t  by t h e d e n s e r chief  f a r more r a p i d  i n t h i c k n e s s of the atmosphere  day  ially  But  the r a d i a t i o n  of a s t a t i o n  atmosphere  w h i c h a c t s as a energy  of the  i s the r e s u l t  condensor,  sun.  of i t s r a d i a t i o n  balance. The focusing  c l i m a t e of the f o r e s t  attention  on  the  can be u n d e r s t o o d  crown s u r f a c e , where  the  only  by  meteorological is  processes  i n t e r c e p t e d by  limited Trapp  (1938)  m e a s u r e d by  of the  on  definite  sun  forest  for a  place  forest  on  floor  woods, t h e  age  the  As  floor  Is f a i r l y  the  of the  stand  crown  relative  independent outside  depends t o a g r e a t  of the  of t r e e s i n the  and  amount o f  of the  light  extent  penetrates  on  i t s density,  the and  kind the  of d i f f e r e n c e i n a b s o r p t i o n  t o v a r i o u s wave l e n g t h b a n d s t h e  a b s o r b e d more t h a n g r e e n , b l u e  i l l u m i n a t i o n a f f o r d s an  radiation.  (Geiger,  important  1957)  W i t h i l l u m i n a t i o n below 16  (European l a t i t u d e s  40-50  berries  are  eration  of  the  the  found, spruce.  the  degrees) the  forest  and  a t a b o u t 30  There are Trapp  per  cent,  has  blue-  first  d e t e r m i n e d and  of i l l u m i n a t i o n throughout a stand  the  remains  a l s o d i f f e r e n c e s between  (1938)  that  cent  floor  the  and  and  showed  per  not  Orange  d e g r e e s mosses a p p e a r , above 22,  same s t a n d .  distribution  height  habitat factor for  ground v e g e t a t i o n .  Between 16-22  of  crown s p a c e a c t s  r e d wave l e n g t h  observations  the  of  a l s o to f i l t e r  Comparative  to  canopy.  a result  are  the  prevailing  o n l y t o weaken, b u t  within  80  O t h e r w o r k e r s have f o u n d t h a t  forest  bare.  floor.  means o f p h o t o c e l l s t h a t a b o u t caught  skya  sunny d a y s .  What f r a c t i o n  the  only  crown  weather.  violet.  and  i n the  received  leaves  of the  r a d i a t i o n reaches the  i n c i d e n t r a d i a t i o n was  radiation  the  Radiation  crowns o f t r e e s , c o n s e q u e n t l y  amount o f d i r e c t  percent space  the  occur.  by  regenareas mapped means  of  thousands o f s e p a r a t e measurements.  "Special  s i g n i f i c a n c e i s attached  coincide  c l o s e l y with vegetation  He s t a t e d  t o t h e s e maps I n t h a t maps."  That h i g h  e x i s t between t h e p l a n t  community and t h e d e n s i t y  stand,  consider  e s p e c i a l l y i f we  that:  the plant  they  correlations of the  community a t t h e  level  of subassociation  or v a r i a t i o n , i s obvious,  light  I s one o f t h e main f a c t o r s i n i t s d e v e l o p m e n t .  level  o f a s s o c i a t i o n , t o p o g r a p h y and w a t e r c o n d i t i o n s a r e  influencing  the density  development  of the v e g e t a t i o n .  The  of the tree  c o v e r as w e l l  r a d i a t i o n r e l a t i o n s h i p s determine  because At the  as t h e  the temperature  relationships.  I n t h e f o r e s t , t h e crown l a y e r f o r m s t h e  active  surface"  (Geiger.,  regime  i s dependent.  proceeds f i r s t nocturnal  1957)  on w h i c h t h e t o t a l  c o o l i n g i n a f o r e s t stand  composition  temperature  The o u t g o i n g r a d i a t i o n d u r i n g  e x c l u s i v e l y from t h i s  and d e n s i t y .  outer  surface,  i s a function  Below t h e crown l a y e r  the night therefore  of i t s  almost  uniform temperatures p r e v a i l at a l l l e v e l s throughout the night.  Not u n t i l  the- crown still  high  s p a c e b e g i n t o warm up, w h i l e  remains c o o l .  temperature strong  t h e sun i s f a i r l y  temperature  i n t h e s k y does the f o r e s t  o f t h e crown c a n o p y p r o d u c e s a  i n the tree  tops.  floor  o r more a f t e r s u n r i s e t h e  of the f o r e s t f l o o r begins t o i n c r e a s e .  heating  turbulence  Two h o u r s  The  vigorous  About m i d d a y t h e h i g h e s t  a n d t h e most u n s e t t l e d  temperature  "outer  conditions  72 a r e i n t h e crown the d i s q u i e t atmosphere  space.  decreases.  show a m a z i n g  e a r l y a f t e r n o o n hours t i o n s when i n p u t afternoon hours  fall  and  The  lowest layers  uniformity  of the  of s t a b l e  output are p r a c t i c a l l y  has n o t y e t b e g u n .  as w e l l  Cooling  the c o l d  down f r o m t h e crown layer--.  During condi-  e q u a l and  the  i n the a f t e r n o o n  a i r i s constantly  The  morning  h e a t i n g has  overcome t h e  stability  of the n o c t u r n a l  temperature  stratification.  By n i g h t  time temperature  differences  great. dense, ences If  I f t h e crown c a n o p y t h e c o o l a i r may cannot  i s u n i f o r m l y and  remain  the canopy  i s n o t u n i f o r m l y dense  s u f f i c i e n t l y deep, t h e c o o l the r e s u l t  above i t .  amount t o more t h a n a few  that  as  stand  of temperature.  there i s a period  i s more u n i f o r m , b e c a u s e  sinking to  Below, t h e t e m p e r a t u r e  sufficiently  But  these  tenths of a  and  are not  the  differdegree.  cooling  a i r s i n k s t h r o u g h t h e canopy  the lowest temperatures  a r e on  the  with  forest  floor. Prom t h e g r a p h s 6)  i t may  be  seen t h a t  low  (Figures  5 and  6,  summer maxima and  fairly  high  w i n t e r minima were g e n e r a l and  that  t h e d i f f e r e n c e s between w e e k l y  maxima and minima were  than  50°  F.  This  i s typical  even  5 and  Appendices  on t h e c o n t r o l  f o r the maritime  climate  less which  p r e v a i l e d most o f t h e t i m e , when t h e m o d i f y i n g i n f l u e n c e the  s e a was  carried  producing a mild  by t h e o n s h o r e  climate.  winds onto the  However, t h e i n f l u e n c e  plot  of  mainland of  continental  i c follow  page  72.  73 climate  c a n n o t "be e n t i r e l y  neglected.  a t u r e s were r e c o r d e d f r o m J u l y  The h i g h e s t  6th t o A u g u s t  3rd when  prevailed.  winds  i n t h e week o f November 9th t o t h e 16th  occurred the  first  severe drop o f the temperature  t o 14° P . ) .  December  28th  February  29th,  Spring,  occurred  25th  nated w i t h periods  frequent  25th  coinciding  weather - c o n d i t i o n s .  influence  f o r periods  t o January  from March  (control of several  of'easterly  days  and f r o m F e b r u a r y  from  18th t o  again with the lowest temperatures.  t o May  9th,  Heavy r a i n s  had v e r y  changeable  from w e s t e r l y winds  alter-  o f s u n s h i n e and c o l d n i g h t u n d e r t h e  of e a s t e r l i e s . during  the influence  easterly  winds  E a s t e r l y winds  S i m i l a r l y under  temper-  E a s t e r l y winds  t h e month o f June,  a l s o were  quite  coinciding with  clear  weather. Comparing Appendix that  5)  hygrothermograph  on t e m p e r a t u r e  the d i f f e r e n c e  records  i n the s h e l t e r  o f mean t e m p e r a t u r e  (Figure  5,  i t i s noteworthy  between t h e two g r o u p s  o f p l o t s was a p p r o x i m a t e l y 2° F., w h i c h a g r e e d c l o s e l y w i t h t h e a c c e p t e d v a l u e o f 3.3°  P. d e c r e a s e p e r 1000  feet of  altitude. Another  interesting  a t u r e s between d i f f e r e n t on t h e c o n t r o l The p l a n t found  station  communities  t o have a 1 °  of t h e p l o t s  f a c t was t h a t  communities  outside  seldom  on s e v e r a l  F . h i g h e r mean t e m p e r a t u r e  i n their  group.  temper-  o f t h e same g r o u p  the f o r e s t  of d r y s i t e s  t h e mean  and even  differed.  o c c a s i o n s were than the r e s t  74 Maximum and minimum t e m p e r a t u r e s Appendix  6)  differed  by t o p o g r a p h y , ground  density  vegetation.  received  from  station  Logically  from these f a c t o r s ,  That the g r e a t e s t  to station,  of the t r e e  difference  c o v e r and  a s l i g h t l y wider  range  being  the l e s s  and  the  stations  s e v e r e were t h e  between maxima and  of weekly  influenced  the shrub  t h e more p r o t e c t i o n  occurred d u r i n g c l e a r weather i s obvious. had  6,  (Figure  extremes.  minima  The u p p e r ' p l o t s  extremes  than  the  lower  plots. On ground ence  the c o n t r o l  station  i n summer, t h e c l o s e r  t h e measurements were t a k e n t h e g r e a t e r was  between maxima and m i n i m a .  of the  s t a n d , however, t h i s  closed  canopy the c l o s e r  With  increase  t r e n d was  t o the ground  the  of the  reversed.  to the differdensity  Under a  the narrower  was  the  range. Summer minima i n a l l t h e a s s o c i a t i o n s group  were n o t f a r a p a r t and  were m a i n l y due differences Winter  to differences  i n b o t h extremes  greatest  F.)  minima f r o m t h e j u s t made.  same  range Winter  were g e n e r a l l y n o t g r e a t .  This e f f e c t  2°  F. h i g h e r t h a n i n t h e  of c o l d  i n V a c c i n i u m - L y s i c h i t u m (2-3°  (1-2°  In the  i n maxima o b s e r v e d .  minima i n S a l a l were a b o u t  other three s t a t i o n s .  less  the d i f f e r e n c e s  of the  i n P o l y s t i c h u m and  Moss.  a i r drainage  F.)  and  Data  screen seemingly disagree with  on  was  slightly temperature  statements  I n P o l y s t i c h u m and V a c c i n i u m - L y s i c h i t u m  75 a s s o c i a t i o n the s c r e e n was  s t a n d i n g among the dense ground  v e g e t a t i o n which d i d not p e r m i t the c o o l a i r t o r e a c h the instruments.  The maximum-minimum thermometer t h r e e f e e t above  the screen r e c o r d e d on s e v e r a l o c c a s i o n s minima 5° P.  (Compare F i g u r e s 5  than the thermometer w i t h i n the s c r e e n . and  6.), In  d r a i n a g e was  h i g h e r a l t i t u d e p l o t s the e f f e c t of c o l d a i r not d e t e c t e d and V a c c i n i u m - S a l a l  had u s u a l l y lower minima than the o t h e r p l o t s . was  lower  the c o n t r o l s t a t i o n ; t h i s was  station An e x c e p t i o n  due t o i t s l a c k of t r e e  cover. The d o t t e d l i n e on F i g u r e 6 r e p r e s e n t s the tempera t u r e s a t the ground s u r f a c e .  I t shows on the c o n t r o l  s t a t i o n v e r y wide range of temperatures up t o 127° of was  F. and minima as low as 15°  w i t h maxima r e a c h i n g P.  Under the canopy  t r e e s i n the d i f f e r e n t a s s o c i a t i o n s the temperature  range  reduced depending on the d e n s i t y of the s t a n d , topo-  graphy and water regime of the s o i l s u r f a c e . F i r s t f r o s t i n the f a l l o c c u r r e d on a l l the p l o t s at  the same d a t e , November 4th,  d u r i n g the e a r l y morning  hours, a t w h i c h time the temperature 30°  f e l l to approximately  F. on t h e upper p l o t s , and j u s t below 32°  F. on  lower  p l o t s and a f t e r t h i s date a t a h e i g h t of s i x f e e t above the ground f r e e z i n g temperatures e v e r y week u n t i l March 21st.  were r e c o r d e d on a l l the p l o t s The l a s t f r e e z i n g  temperature  76 r e c o r d e d on t h e lower p l o t s was on A p r i l l6th and t h e upper p l o t s on A p r i l 22.  The l e n g t h o f t h e f r o s t - f r e e p e r i o d was  195 days on upper p l o t s and 201 days on t h e lower p l o t s .  The  measurements i n t h e s c r e e n among the v e g e t a t i o n i n P o l y s t i c h u m and V a c c i n i u m - L y s i c h i t u m a s s o c i a t i o n s were o n l y 33°F. on A p r i l l6th. The f i r s t snow was r e c o r d e d on November l6th, i n c h e s on t h e upper p l o t s and 3.5 on t h e lower ones. t h i s date snow f e l l  9.5  After  quite f r e q u e n t l y , but d i d not l a s t .  Between January 8th and 11th, 32 i n c h e s o f snow f e l l upper p l o t s and 20 i n c h e s on t h e lower p l o t s .  on t h e  T h i s snow  cover l a s t e d f o r e i g h t weeks and d u r i n g t h i s p e r i o d most o f the p r e c i p i t a t i o n r e c o r d e d was i n t h e form o f snow. However, the t o t a l snow depth was never h i g h e r than on January t h e 11th.  Prom the middle of March u n t i l t h e l a s t s n o w f a l l , on  A p r i l l8th, t h e r e was snow on t h e ground on s e v e r a l o c c a s i o n s but I t always m e l t e d w i t h i n a day o r two a f t e r i t f e l l .  Last  snow on t h e ground was r e c o r d e d on A p r i l 25th c o v e r i n g l e s s than 10 p e r cent of V a c c i n i u m - Moss and Blechnum p l o t . W i t h i n the two groups o f p l o t s no n o t i c e a b l e d i f f e r e n c e i n s n o w f a l l or  snow depth was d e t e c t e d .  However, when t h e snow m e l t e d ,  i t d i s a p p e a r e d e a r l i e r on sunny than on t h e shady s i t u a t i o n s . V e g e t a t i v e p e r i o d may be d e f i n e d as t h e p e r i o d between, in  s p r i n g t h e temperature a t w h i c h most seeds germinate, and  buds b r e a k dormancy and i n f a l l , ceases.  I f a mean temperature  t h e temperature a t w h i c h  of 43°P. and above i s taken  growth  77 as  standard  twenty-four  then  the upper p l o t s  weeks and  twenty-eight  lower  a v e g e t a t i v e p e r i o d of  plots probably  t h e p e r i o d between t h e killing  or  frost  i s even more l o o s e l y d e f i n e d .  last  killing  i n autumn.  frost  But  on what i s a " k i l l i n g  for  convenience,  c o n s i d e r i t t o be  the  frost  free period. frost  frost." F. and  consider 26°  Others  which,  32°  of c o u r s e ,  It is  i n s p r i n g and  there i s l i t t l e  among e c o l o g i s t s  a killing  twenty-seven  weeks.  Growing season  first  had  the  agreement  Some w r i t e r s refer  F.  t o i t as 19^9)  (Connor,  gives a longer  growing  season. An events  estimate  of the  growing season  d e p e n d s on what s p e c i e s o f p l a n t s i t i s b a s e d  vary widely.  Some d a t a were  approximation  of the b e g i n n i n g  of  the V a c c i n i u m  reach a height the  lower  o f two No  c o l l e c t e d w h i c h may  the  development  first  i n c h e s were r e c o r d e d differences  i n development  on  the  opening the  started  lower  plots  a t t a i n e d the  s i x days l a t e r .  and  on  the 2 5 t h  plots  the  as e v i d e n c e d  by  activity the  the  of the  On  to  same  l8th  on  the  of t h i s  on u p p e r p l o t s  o f h e m l o c k buds were r e c o r d e d . lower  On  of  an  Opening  March 2 8 t h  on  can  s e r v e as  Lysichitum leaves  n o t i c e a b l e among a l l f o u r p l o t s  about  and  of growth i n s p r i n g .  v e g e t a t i o n on t h e u p p e r p l o t s  of  on  buds and  plots.  v e g e t a t i o n was The  from c h r o n o l o g i c a l  group.  stage  of A p r i l the  the 2 5 t h  of  0  first April  cambium of D o u g l a s - f i r  ease a t w h i c h the b a r k  peeled.  78 1917; 1931;  References: B l i s s , 1924; B r i g g s , Lyman and Shantz, Hoare, 1938; Karman, 1937; P o w e l l , 1936; Richardson, Schmidt, 1935; S u t t o n , 1934, 1936, 1937. Precipitation Although  r a i n f a l l i n c r e a s e s w i t h a l t i t u d e i n the  mountains, the r a t e of i n c r e a s e v a r i e s so much t h a t c a l c u l a t e d average v a l u e has any s i g n i f i c a n c e . p r e c i p i t a t i o n continues of the mountains.  The  no  Usually  t o i n c r e a s e from the base t o the c r e s t c o r r e l a t i o n of p r e c i p i t a t i o n  and  e l e v a t i o n i s m o d i f i e d by t h r e e f a c t o r s : approach e f f e c t , shadow, and what may  rain  be c a l l e d a "canyon e f f e c t " .  When a mountain range l i e s a t h w a r t the wind the a i r masses are f o r c e d upward.  The  c o o l i n g e f f e c t so produced  r e s u l t s i n the i n c r e a s e of r a i n f a l l w i t h i n c r e a s e d  altitude.  T h i s e f f e c t f i r s t becomes noted some d i s t a n c e t o the windward of the mountains, e s p e c i a l l y i f t h e y are steep and The  high.  h e a v i e s t p r e c i p i t a t i o n i n any one r a i n o c c u r s i n the  a r e a where the c l o u d s f i r s t begin t o d e p o s i t r a i n , s i n c e the temperature t h e r e i s h i g h e s t and t h e r e f o r e f o r any ascent and c o o l i n g the c o n d e n s a t i o n l e v e l s where t e m p e r a t u r e s are  given  i s g r e a t e r than a t h i g h e r  lower.  On the l e e s i d e s , mountains have a r a i n shadow or zone where p r e c i p i t a t i o n i s reduced s i n c e the r a i n - b e a r i n g winds l o s e water i n t h e i r passage over the mountains. W i t h i n t h i s e n t i r e zone, r a i n f a l l u s u a l l y d e c r e a s e s w i t h d i s t a n c e from the mountain c r e s t and the a l t i t u d i n a l e f f e c t s are obscured.  The windward edge of the r a i n shadow may  coincide  To  follow  page  78.  79 w i t h the c r e s t of the mountain or may  be p a r t way  down the  l e e s i d e thus f u r t h e r o b s c u r i n g the a l t i t u d i n a l r e l a t i o n s of the l e e s l o p e s . R a i n f a l l recorded  i n the deep v a l l e y s may  be f a r  h e a v i e r than i s c h a r a c t e r i s t i c f o r the e l e v a t i o n . E x c l u d i n g approach e f f e c t , such r a i n f a l l i s s t r o n g l y i n f l u e n c e d by major s u r r o u n d i n g  the  r i d g e s t h a t have much h i g h e r a l t i t u d e f o r  i t i s these t h a t f o r c e the r a i n masses t o r i s e . d i s t r i b u t i o n p a t t e r n shown i n F i g u r e s 7 and  The (Appendix 7)  i n d i c a t e that there i s a decided  p r e c i p i t a t i o n northward c o r r e s p o n d i n g i n c r e a s e In a l t i t u d e .  The  8  increase i n  r o u g h l y w i t h the  increase i s probably  not  s i n c e i t i s i n f l u e n c e d by the l o c a l topography.  gradual,  Lower  a l t i t u d e p l o t s above Goose Lake, w h i c h are open from the west, appear t o have the same, or even s l i g h t l y  higher,  p r e c i p i t a t i o n than the s h e l t e r e d Loon Lake s t a t i o n . W i t h i n the two groups of p l o t s i t can be assumed t h a t the  total  amount of p r e c i p i t a t i o n r e c e i v e d on each p l o t a t the  level  above the canopy of t r e e s was  say  the same.  t h a t w h i l e the upper p l o t s r e c e i v e d 166 p r e c i p i t a t i o n a t Loon Lake was p l o t s 109,  106  inches,  can the  i n c h e s , on the  and on Marc's farm 83 i n c h e s .  f o r the lower p l o t s i s the c u m u l a t i v e one  Thus we  lower  (The 109  precipitation  inches of  can s t a n d i n g f r e e i n S a l a l a s s o c i a t i o n , w h i c h w i t h the  e x c e p t i o n of s t r o n g winds r e c e i v e d u n o b s t r u c t e d  rainfall.)  80 . R a i n i n the f o r e s t f i r s t wets the crowns of t r e e s . I f the r a i n i s l i g h t and of s h o r t d u r a t i o n , most of i t may r e t a i n e d by the canopy.  As soon as the crown g e t s t h o r o u g h l y  wet the water i s passed on. and branches  he  P a r t of i t i s conducted by t w i g s  t o the t r u n k and runs down t o the ground.  r e m a i n i n g f a l l s d i r e c t l y t o the ground.  The  T h e r e f o r e , the  e r r o r of measurements can be q u i t e l a r g e , s i n c e no  attempt  was made t o a s s e s s the amount of water conducted a l o n g the trunk.  The p o r t i o n w h i c h drops t h r o u g h the crowns i s u n e v e n l y  d i s t r i b u t e d w i t h i n the f o r e s t depending canopy and the a n g l e of the  on the d e n s i t y of the  branches.  I f we assume t h a t w i t h i n b o t h groups of p l o t s the amount of p r e c i p i t a t i o n w h i c h f e l l onto the canopy of the t r e e s i s the same then the d i f f e r e n c e s i n p r e c i p i t a t i o n are o b v i o u s l y due t o the d i f f e r e n t d e n s i t y and p r o p o r t i o n of d i f f e r e n t t r e e s p e c i e s i n the canopy.  The d i f f e r e n c e s i n  r a i n f a l l p r e s e n t e d on F i g u r e s 7 and 8 by t h e i r weekly  and  c u m u l a t i v e v a l u e i n p e r c e n t s amount t o : Upper p l o t s Control 100 p e r cent V a c c i n i u m S a l a l 98.0 p e r cent V a c c i n i u m Moss 90.0 p e r cent Blechnum 90.5 p e r cent As may  Lower p l o t s C o n t r o l can 100 per cent Salal 93-5 per cent Moss 87.5 p e r cent Polystichum 90.0 p e r cent V a c c i n i u m L y s i c h i t u m 98.0 p e r cent  be e x p e c t e d , the l i g h t e r the r a i n and the h i g h e r the  t e m p e r a t u r e , the g r e a t e r were the p r o p o r t i o n a l l o s s e s of water i n the canopy.  In w i n t e r t h e r e i s almost no l o s s of water  due t o r e t e n t i o n .  L o s s e s w h i c h occur d u r i n g t h a t  81 time are the r e t e n t i o n of snow.  These l o s s e s however are  o n l y temporary, s i n c e a t the l o w - w i n t e r temperatures  eva-  p o r a t i o n i s low and the snow f i n a l l y f a l l s t o the ground. I t was  c a l c u l a t e d t h a t from .24  i n c h e s of  rainfall  on J u l y 27th i n Moss a s s o c i a t i o n 63 per c e n t , i n P o l y s t i c h u m 50 p e r c e n t , i n S a l a l 20 p e r c e n t , and i n L y s i c h i t u m 4 p e r cent was  r e t a i n e d by the crowns.  The  upper group of p l o t s amounted t o .49  same r a i n i n the inches.  In V a c c i n i u m -  Moss 21 p e r c e n t , i n V a c c i n i u m - S a l a l 11 and Blechnum 16 per cent were l o s t .  I n December l o s s e s d u r i n g the r a i n of  2.11  i n c h e s amounted t o :  i n Moss 5 p e r c e n t , i n P o l y s t i c h u m  3.5,  S a l a l 2 and V a c c i n i u m - L y s i c h i t u m 1.5  per  cent.  R a i n s of v a r y i n g i n t e n s i t y and d u r a t i o n o c c u r r e d d u r i n g the p e r i o d of t h i s s t u d y .  These v a r i e d f r o m d r i z z l e  when the c l o u d s were f o r m i n g low, t o heavy downpours, thunderstorms  and h a i l s t o r m s on summer a f t e r n o o n s and snow  d u r i n g the w i n t e r .  Even i f the r a i n was  not f a l l i n g , l a r g e  amounts of water were o f t e n d e p o s i t e d on the v e g e t a t i o n from low c l o u d s and t h r o u g h c o n d e n s a t i o n . fog  A l t h o u g h no d a t a  were c o l l e c t e d i n t h i s study i t was  o c c a s i o n s t h a t w h i l e t h e r e was  on  noted on s e v e r a l  o n l y a dense f o g or low  c l o u d s o u t s i d e the f o r e s t , heavy drops of water were  falling  t o the ground from the canopy and t r a c e s of water were noted i n the r a i n g a u g e s .  In the w r i t e r ' s o p i n i o n , a l t h o u g h  " o c c u l t " p r e c i p i t a t i o n may  this  not o f t e n r e a c h the ground i n  82 measurable q u a n t i t i e s , i t may  account f o r s e v e r a l i n c h e s  of r a i n f a l l a t the canopy l e v e l . F i g u r e s 7 and 8 are condensed t o p r e s e n t  a general  p i c t u r e of a l l the p l a n t communities on one page so t h a t d i f f e r e n c e s can be seen r e a d i l y .  D e t a i l s of weekly  measurements are g i v e n i n t a b l e form i n Appendix  7.  I n t e r p r e t a t i o n of w e e k l y p r e c i p i t a t i o n from these must be done w i t h c a r e .  S i n c e , i f i t r a i n e d d u r i n g the day when  d a t a were c o l l e c t e d , the lower p l o t s have a p r o p o r t i o n a l l y h i g h e r r e a d i n g f o r the p r e c e d i n g week and lower f o r the f o l l o w i n g as compared w i t h the upper p l o t s .  The d i f f e r e n c e  i s the amount of r a i n which f e l l d u r i n g the time the ,data were c o l l e c t e d (about e i g h t h o u r s ) . As t y p i c a l f o r t h i s r e g i o n , the g r e a t e r p o r t i o n of the p r e c i p i t a t i o n f e l l i n w i n t e r .  On the upper p l o t s ,  the t h r e e months from November l 6 t h t o F e b r u a r y 15th t o t a l p r e c i p i t a t i o n was lower p l o t s r e c e i v e d 43.0 p e r i o d from May  31st  60.5  Inches.  inches.  was  inches.  almost r a i n l e s s .  upper p l o t s and  .24  d u r i n g t h i s period..  the  In the same time the  D u r i n g a t h r e e month  t o August 31st,  the upper p l o t s amounted t o o n l y 16.0 p l o t s t o 9.5  during  total precipitation i n c h e s and on the  A p e r i o d from J u l y 6th  i n c h e s on lower p l o t s was  inches  lower 5th  t o August  The p r e c i p i t a t i o n of .49  on  on  a l l recorded  83 The  graphs show t h a t t h e m a j o r i t y o f t h e r a i n s occur  over a l a r g e a r e a , and i n c r e a s e w i t h a l t i t u d e . however, a r e o f more l o c a l o c c u r r e n c e  Summer r a i n s ,  and even lower  alti-  tudes o c c a s i o n a l l y may r e c e i v e more r a i n than h i g h e r  alti-  tudes o n l y a few m i l e s d i s t a n t . References: B e n n e t t , 1934; B r u n t , 1939; Hartman, 1952; Humpreys, 1940; K i t t r e d g e , 19^8; Kroch, 19^0; S u t t o n , 1939; Wexler, 1936; Yamamoto, 1937. Relative  Humidity  R e l a t i v e h u m i d i t y i s governed p r i n c i p a l l y by t h e temperature,  wind and t r a n s p i r a t i o n o f t h e v e g e t a t i o n and  d i r e c t e v a p o r a t i o n from t h e ground.  The r e s t r i c t e d a i r  movement i n t h e t r u n k space r e t a i n s t h e water vapor so t h a t h i g h h u m i d i t y i s t h e most c h a r a c t e r i s t i c f e a t u r e o f t h e forest microclimate. Before  s u n r i s e h u m i d i t y i s h i g h i n a l l l a y e r s and  when dew i s p r e c i p i t a t e d , complete s a t u r a t i o n r e s u l t s . P a r t of t h e dew i s d e p o s i t e d i n t h e crown l a y e r , downward i n t o t h e s t a n d .  decreasing  As t h e sun g e t s h i g h e r , t h e wind  i n c r e a s e s , m i x i n g t h e o u t s i d e and t h e f o r e s t a i r . W h i l e the f o r e s t f l o o r p l a y s o n l y a s m a l l p a r t i n r e s p e c t t o temperature i t i s very important vapor.  f o r t h e t r a n s f e r o f t h e water  Temperature maximum o f t h e f o r e s t f l o o r was always  low, t h e h u m i d i t y maximum i s w e l l developed the f o r e s t f l o o r has a p l a n t c o v e r .  e s p e c i a l l y when  ig.  9-  Example  of  Summer  Hy g r o t h e r m o g r a p h  Records  To  ig.  10.  Example  of  Fall  follow  Hy g r o t h e r m o g r a p h  page  83.  Records  To  irteanoiaaf  F i g . 11.  Example  of  Winter  follow  page  Hygrothermograph  83  Record  84  The  d a i l y minimum of r e l a t i v e h u m i d i t y  coincides with  the temperature maximum, w h i c h occurs a t about 2:00  p.m.  I t appears from the data t h a t the a c t u a l amount of water vapor i n the a i r d u r i n g calm weather, below the f o r e s t canopy changes o n l y v a r y s l i g h t l y .  I t reaches a p o i n t  of complete or almost complete s a t u r a t i o n s e v e r a l times a week.  R e l a t i v e h u m i d i t i e s below t h i s p o i n t , where the  measurements are not c o l l e c t e d among a dense ground v e g e t a t i o n , are a f u n c t i o n of the temperature e x i s t i n g a t t h a t t i m e , more than of any o t h e r i n f l u e n c e .  C l o s e t o the s a t u r a t e d s o i l  r e l a t i v e h u m i d i t i e s are always h i g h .  the  T h i s i s e s p e c i a l l y so  among the dense i n t e n s i v e l y t r a n s p i r i n g ground v e g e t a t i o n , w h i c h a l s o g i v e s p r o t e c t i o n from the m i x i n g of d i f f e r e n t l a y e r s of the a i r .  To i l l u s t r a t e t h i s statement t h r e e weekly  r e c o r d s were s e l e c t e d and  shown on F i g u r e s 9, 10,  and  11.  R e f e r e n c e t o these f i g u r e s shows the c o i n c i d e n c e of temperat u r e maxima w i t h r e l a t i v e h u m i d i t y  minima.  I t i s i n t e r e s t i n g t o compare i n d i v i d u a l a s s o c i a t i o n s . As the h e a t i n g on the c o n t r o l s t a t i o n reached 90°  F. i n  F i g u r e 9 the r e l a t i v e h u m i d i t i e s f e l l t o about 33  percent.  During  c l e a r n i g h t s , as temperatures dropped c l o s e t o 50°  the r e l a t i v e h u m i d i t y cent.  increased to approximately  90  F.  per  Under the canopy of t r e e s d i f f e r e n c e s i n temperature  were l e s s , e s p e c i a l l y the c o o l i n g d u r i n g the n i g h t  and  t h e r e f o r e the h u m i d i t i e s i n c r e a s e d o n l y s l i g h t l y .  Therefore  85 mean r e l a t i v e h u m i d i t i e s f o r d r i e r a s s o c i a t i o n s were than f o r the s t a t i o n o u t s i d e the f o r e s t .  The  t h a t g r e a t e r temperature as w e l l as h u m i d i t y  lower  graphs a l s o show extremes  o c c u r r e d on h i g h e r p l o t s , p r o b a b l y due more t o the c l e a n e r atmosphere than t o the d i f f e r e n c e i n a l t i t u d e .  In  P o l y s t i c h u m and V a c c i n i u m - L y s i c h i t u m under p r o t e c t i o n of ground v e g e t a t i o n the t e m p e r a t u r e s changed l e s s than i n o t h e r communities.  Wet  ground s u r f a c e , t r a n s p i r a t i o n and r e s -  t r i c t e d a i r movement account f o r h i g h h u m i d i t i e s . In F i g u r e 10 t y p i c a l f a l l or s p r i n g c o n d i t i o n s are r e p r e s e n t e d .  The  f i r s t few days, except f o r s h o r t sunny  p e r i o d on Tuesday, t h e r e was The  a l i g h t but c o n t i n u o u s  t e m p e r a t u r e s as w e l l as the h u m i d i t i e s remained  constant.  C o n t r a r y t o g e n e r a l o p i n i o n , i t was  One  hundred p e r cent  h u m i d i t y o c c u r r e d o n l y when t h e r e was  an a c t u a l  s a t i o n of w a t e r i n a d d i t i o n t o r a i n .  The  cent relative  condensation  due t o drop of temperature as on Sunday or when the were so low d u r i n g the r a i n t h a t t h e r e was  fairly  found t h a t  the r e l a t i v e h u m i d i t y d u r i n g a r a i n i s not 100 p e r but u s u a l l y o n l y 95 p e r c e n t .  rain.  clouds  a l s o a condenf i r s t case i s more  common than the second. F i g u r e 11 r e p r e s e n t s a few w i n t e r days. and Saturday  t h e r e was  a light snowfall.  Monday  Tuesday and  F r i d a y were c l o u d y w i t h o n l y a few sunny p e r i o d s , Wednesday and Thursday were c l e a r .  m  fo  foliow  page  8 5  86  F i g u r e 12  (Appendix 8) p i c t u r e s w e e k l y means (top of  the bar) and minima (bottom of the bar) of r e l a t i v e in individual plots.  Maxima are not r e p r e s e n t e d  humidities  because i n  a l l the s t a t i o n s i n a l l the weeks v a l u e s reached c l o s e t o saturation.  W h i l e the h o u r l y v a l u e s r e f l e c t m a i n l y  changes, the w e e k l y v a l u e s are f a r more dependent on amount of water vapor content  absolute  In the a i r and are of g r e a t e r  v a l u e i n comparing the p l a n t communities. the i n f l u e n c e of s o i l m o i s t u r e  temperature  F i g u r e 12  shows  and abundance of ground  v e g e t a t i o n i n P o l y s t i c h u m and V a c c i n i u m - L y s i c h i t u m as compared w i t h d r y G a u l t h e r i a or i n t e r m e d i a t e Moss.  As  the  v e g e t a t i o n d i e s i n f a l l the d i f f e r e n c e s become dependent o n l y on the p r o t e c t i o n a g a i n s t a i r m i x i n g w h i c h i t s t i l l  offers.  S i m i l a r , but l e s s o b v i o u s ,  are the d i f f e r e n c e s between  higher a l t i t u d e s t a t i o n s .  A g a i n t h e y are comparable w i t h  d e n s i t y of the v e g e t a t i o n . F i g u r e s 13 and 14  (Appendix 9) p r e s e n t  ment of r e l a t i v e h u m i d i t i e s u s i n g atmometers. the r e l a t i v e h u m i d i t i e s a t two  the measureThey show  l e v e l s i n d i c a t i n g decrease  of r e l a t i v e h u m i d i t y w i t h h e i g h t .  T h i s t r e n d , though g e n e r a l ,  i s r e v e r s e d d u r i n g the hot c l o u d l e s s days i n the c o n t r o l s t a t i o n where h i g h t e m p e r a t u r e s of the ground r e s u l t e d i n low relative humidities.  87 Wind was  not i n c l u d e d i n the p r e s e n t  i n f l u e n c e s h o u l d not be f o r g o t t e n i n any climate.  The  study, but i t s  study of  micro-  b u f f l e a c t i o n of the stand causes a l a g of wind  f o r c e from the top downward accompanied by a r e d u c t i o n of i t s intensity.  "The  r e d u c t i o n of the wind speed i s p r i n c i p a l l y  i n the crown space.  From the lower l i m i t s of the crown down  t o o n l y a few f e e t from the ground p r e v a i l s an a s t o n i s h i n g l y u n i f o r m a i r movement.  C l o s e t o the ground t h e r e i s a n o t h e r  r e d u c t i o n b r i n g i n g the speed on the ground t o zero." 1957.)  (Geiger,  I n a m u l t i - l a y e r e d stand the p e n e t r a t i o n of wind i s  much slower than i n an evenaged f o r e s t . The  h i g h e r a l t i t u d e p l o t s - as compared w i t h the  altitude plots,  lower  had:  1.  Mean w e e k l y temperature a p p r o x i m a t e l y  2°  2.  D a i l y range of t e m p e r a t u r e s s u b s t a n t i a l l y g r e a t e r ;  F.  lower;  3. F r o s t f r e e p e r i o d a t l e a s t t h r e e weeks s h o r t e r consequently 4.  growing season s h o r t e r .  P r e c i p i t a t i o n of 166  i n c h e s on lower 5.  and  i n c h e s as compared w i t h  109  plots.  P e r i o d between the f i r s t s n o w f a l l and the time the  l a s t snow m e l t e d almost 6 weeks l o n g e r . 6.  R e l a t i v e h u m i d i t i e s d u r i n g the day lower, but  i n g the n i g h t u s u a l l y h i g h e r .  dur-  R e f e r e n c e s : B e s t , 1935; Cammerer, 1937; Cummings, 19^0; G r i f f i t h , 1933; H a r r i s and Robinson, 1916; Leighly, 1937; Lowry, 1956; M i l l a r , 1937; Penman, 1955; Ramdas, 1938; Ronke, 19^9; Rohwer, 1931, 1933; Stam, K r a t z and W h i t e , 1952; S t a p l e and Lehane, 19^0; Thut, 1938, 1939; Veihmayer, 1938; Wilson, 1939. S i t e Index on  Age  In a d d i t i o n to d i f f i c u l t i e s described  b r i e f l y i n the  i n t r o d u c t i o n c o n c e r n i n g the assessment of p r o d u c t i v i t y i n f o r e s t r y by the use  of s i t e i n d e x or h e i g h t - o v e r - a g e c u r v e s ,  t h e r e are a l s o many known f a c t o r s e f f e c t i n g the h e i g h t w i t h i n the same b a s i c e n v i r o n m e n t a l c o n d i t i o n s .  Under  s i m i l a r e n v i r o n m e n t a l c o n d i t i o n s t r e e h e i g h t may  differ  and  s i m i l a r growth may  due  t o i n f l u e n c e of compensating f a c t o r s .  growth  greatly  occur i n very d i f f e r e n t f o r e s t h a b i t a t s , S i t e index,  there-  f o r e , i n d i c a t e s o n l y i n a c c u r a t e l y the a c t u a l e n v i r o n m e n t a l c o n d i t i o n s e x i s t i n g i n the  stand.  S i t e i n d e x i s an e x p r e s s i o n of f o r e s t stands and  may  changes of p r i m a r y and may  be changed a c c o r d i n g secondary s u c c e s s i o n .  be g r e a t l y a f f e c t e d and  fire.  (Haddock and  of e x i s t i n g p r o d u c t i v i t y  These changes  speeded by f o r e s t management or  Smith, 1956;  Meyer, 1953.)  S i t e i n d e x i s , t h e r e f o r e , o n l y one w h i c h s h o u l d be a p p l i e d by anybody, who  of many t o o l s , wishes to c a r r y  the e c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t s . l i s h e d .)  t o the dynamic  out  ( K r a j i n a , unpub-  89 The  s e n s i t i v i t y o f h e i g h t t o i n c i d e n t s i n the h i s t o r y  of the stand, e s p e c i a l l y when change o f stand d e n s i t y i s i n v o l v e d , was noted by many e a r l y I n v e s t i g a t o r s . d a t a a v a i l a b l e c o n c e r n i n g the i n f l u e n c e o f stand  The o n l y density  on t h e h e i g h t growth o f D o u g l a s - f i r a r e o f S t e e l e (1955) c o l l e c t e d a t Wind R i v e r Experiment S t a t i o n i n t h e s t a t e o f Washington.  I t was found i n young stands o f D o u g l a s - f i r  that  as a r e s u l t o f removing twenty p e r cent o f t h e b a s a l a r e a of t h e stand from suppressed and i n t e r m e d i a t e  crown c l a s s e s ,  the h e i g h t growth o f r e m a i n i n g t r e e s s i g n i f i c a n t l y S p a c i n g e x p e r i m e n t s ( I s a a c , 1937; E v e r s o l e , 1959)  increased.  1955; Reukema,  i n d i c a t e t h a t i n c r e a s e d d e n s i t y o f the stand has a  r e t a r d i n g i n f l u e n c e on t h e average h e i g h t growth.  Eversole  even c o n c l u d e d t h a t "the a n a l y s i s c a s t s doubt on the use o f the h e i g h t  o f the average dominant and codominant t r e e s as a  t r u e i n d e x o f s i t e q u a l i t y i n young s t a n d s . "  L o r e n z and  Spaeth (1947) a f f i r m t h a t s i t e i n d e x c u r v e s may not g i v e a r e l i a b l e b a s i s f o r p r e d i c t i n g the growth o f c o n i f e r o u s p l a n t a t i o n s i n I l l i n o i s , but t h e y s t a t e d t h a t " d e n s i t y o f the stand has a l i t t l e  e f f e c t on the h e i g h t growth."  w o r k i n g i n immature stands o f l o d g e p o l e that height  Parker  (1942)  p i n e i n A l b e r t a found  o f dominants c o r r e l a t e d w i t h d e n s i t y as w e l l as  w i t h age i s a good measure o f s i t e q u a l i t y .  Lynch (1958)  worked out c o r r e c t i o n s f o r extremes i n d e n s i t y I n secondgrowth ponderosa p i n e s t a n d s .  I t i s also a recognized  fact  t h a t s i t e i n d e x o f any s p e c i e s i s i n f l u e n c e d by t h e type o f  90 s t a n d m i x t u r e and ground v e g e t a t i o n . act  E f f e c t o f t h i s may s t i l l  i n time when the v e g e t a t i o n changed o r the s p e c i e s  f o r m i n g former m i x t u r e d i s a p p e a r e d from the canopy ( K r a j i n a , unpublished). P r o p o r t i o n o f dominant and codominant crown c l a s s e s i s d i f f i c u l t t o d e f i n e a d e q u a t e l y and h e i g h t o f these may be averaged f o r diameter  i n one o f s e v e r a l ways g i v i n g d i f f e r e n t  r e s u l t s ( K e r , 1952).  C u r r e n t growth i n h e i g h t i s an i m p o r t a n t  but o f t e n n e g l e c t e d check on t o t a l h e i g h t and age i n d i c a t i n g a p o s s i b l e presence  of any s u b s t a n t i a l l y l i m i t i n g  factors  (Ker and Smith, 1957). Another weakness o f the c o n v e n t i o n a l s i t e i n d e x i s t h a t t h e y are based on age ( S p u r r , 1952). with d i f f i c u l t y  curves  Age i s measured  and w i t h c o n s i d e r a b l e e x p e n d i t u r e o f t i m e .  Above a l l , measurements a r e l e s s p r e c i s e than d e s i r a b l e ( S t o a t e and C r o s s i n , 1959).  D e r i v a t i o n o f the t o t a l age,  d a t i n g back t o the o r i g i n o f the t r e e , r e q u i r e s c o r r e c t i o n for  the h e i g h t o f b o r i n g , w h i c h v a r i e s w i t h the h e i g h t o f  b o r i n g , s i t e q u a l i t y and the methods o f e s t a b l i s h m e n t o f the  stand. F u r t h e r , measurement o f the h e i g h t of t r e e s i s n o t  o v e r l y a c c u r a t e , e s p e c i a l l y i n dense stands and on d i f f i c u l t mountainous t e r r a i n .  E r r o r s can be q u i t e l a r g e .  Also, d i f f -  e r e n t samples from the same stand do n o t g i v e i d e n t i c a l results.  The s m a l l e r the samples the g r e a t e r t h e i r  standard  91 d e v i a t i o n and s t a n d a r d  error.  Chapman and D e m e r i t t (1936) j u s t i f i a b l y c r i t i c i z e d the s i t e i n d e x c u r v e s :  " I n no case w i l l the average curve  show a c c u r a t e l y the p r o g r e s s o f h e i g h t growth f o r any one t r e e or s t a n d .  As the s u c c e s s i v e average h e i g h t on age are  found  from the t o t a l number o f dominant t r e e s a t each age and s i n c e t h i s number c o n s t a n t l y d i m i n i s h e s each s u c c e s s i v e average e x c l u d e s some o f the s l o w e r growing t r e e s found i n the p r e c e d i n g average."  Smith, Ker and Heger (i960) s t a t e d t h a t  an average o f two o f the t e n t a l l e s t t r e e s on a p l o t , r e p r e s e n t i n g each 10-year-age c l a s s were f i n a l l y c l a s s e d as codominants, and o n l y one t r e e o f the 132 s t u d i e d grew out o f what appeared to be an i n i t i a l l y codominant h e i g h t c l a s s .  Warrack (1952)  suggested t h a t f i f t e e n p e r cent o f the dominants decreased i n crown c l a s s between ages n i n e t e e n and t h i r t y - n i n e i n the unthinned  stand a t Cowichan Lake.  S i t e i n d e x i s not the answer t o e v e r y problem. and Ker (1959) a n a l y s e d volume as i n f l u e n c e d by s i x  Smith  independent  v a r i a b l e s , maximum h e i g h t , s i t e i n d e x , t o t a l age number of t r e e s per a c r e , b a s a l area per a c r e and average s t a n d d i a m e t e r , and found t h a t s i t e i n d e x gave the p o o r e s t of e x i s t i n g volume p e r a c r e . were the most i m p o r t a n t .  estimate  Maximum h e i g h t and b a s a l area  However, an e s t i m a t e o f s i t e  i s e s s e n t i a l i n p r e d i c t i o n o f growth.  quality  2 0 X 2.0 T O THE INCH KEUFFEL  __ .  FSSEB  a  Average  I  ,  Site  11  Indices  CJ  1  of  1  .  1  Jl  I  ,1  • J, 1  JL  ,*Mi  11  1  1  I  -.. PI  r  I  1  Individual  JL  II  Polyst ichum , 1 . . .  .  IL  •j .  . II j.l?..t  ILlfHii  1  I :  -  I  , 1 Vacc  1 ., 1  1  I  ,, 1  I  c ., i1: t  11 ., 11  II  - Moss . I 1 ii 1  II.  11  w.  1 II 1  I  , j ,  jl  ,  II  11 .. 11  II-..  1 , 1  •  1  '•  1I  11 ..11 1I.  1I  1 1, ,11 1  II , , ,  1  1 I 1 >  11 I  *— 1  0  m  0  1  I  1  o  in  if)  —  —  — •— t/i WI  </)  I  0  1  1  o  in  0  0  — l/>  1  F  I  I  Ribes  ".  1  . . i  1  1  1  - Douglas - fir,  I  .1  1 .. 1  II  . „ .  I  II  ...  : I  - Oplop.  Cy = yellow  cedar,  l H = S  hemlock. =  Cot = cottonwood, D = of B. C . F o r e s t Service.  Sitka alder, )  .  i  i  cedar, spruce, Mb  , :  JL  1  ,  1  1  I  . .. 1  I  I I . 1 ,, 1  j.  I  1  1  1  IL  .  l  .  1  1  tt M l  mm mm  1  wi  1  l  •  1  0  L.  mill  .  Xmm  ,  I L  L  Vacc. - Lys.  , 11 «  11  II  II  Blechnum  1 I 1  1  I  Communities.  ILtu II -  I  Vacc, - Gaulth.  1  •  ,  w w ii t h i n  • . I. - • '  I'  1 ,, 1  r  i  I  S  Present  JL  [ 'u t  1  Species  Gaultherio Cy I i ;  Hm I  ^1  i] ht  i  t.tl t  Tree  Mos  • Mi..  M i  1  Commercial  .. B I  «««««•*  .. i l l  -  11  all  115 P  •  11:  I...  0  I  LlL A 1 ,1 S i i i  I  *  fFiiga.  ,, H A  J..&L  I  * « D E IN U.S  _ •  F  3^9-10  CO  =  PI  .  1  Hm  =  I  .  mountain  = lodgepole p i n e ,  broadleaf  maple.  _  . Pw  1  1  . ..  —  I .  heml ock. = white  (Standard  •a  pine. -  03  abbreviations  1  1  i  •D  92 O n l y when we the use data  of s i t e  collected  realize  i n d e x we in this  those  study.  cedar,  balsam  analysis ties  the  and  spruce  and  standard errors i n F i g u r e s 16  the r e a l  growth of t r e e  the  indices  w i t h graphs  and  used.  They show a l s o  height-growth can be  at  fact  lower  altitudes.  The  f o u n d when a n a l y s i s  had  t o be  because  special  on  communi-  2.  do n o t n e c e s s a r i l y r e p r e s e n t association.  curves  Because  calculated  show m a i n l y  the t a b l e s  and  the  graphs  i n the  c o m m u n i t i e s as  the  logically  stands b e a r i n g timber  and  now  considered.  support  cedar,  and  of  only  T h i s may  most - s e r i o u s d i f f i c u l t y , of balsam,  are  standard  a s s o c i a t i o n were  the  that  site-index  Hand  following  account  i n the h e i g h t growth i n mature  was  based  Means,  there are d i f f e r e n c e s  s t a n d s must a l s o be  of the decrease  In the  are presented i n Table t o 19  was  f o r hemlock,  individual  of t r e e s .  q u a l i t y were l o g g e d f i r s t  immature part  The  and  (194-9) •  curves i n i n d i v i d u a l  expected.  highest  (194-9)  samples and  that  the  Tables f o r Douglas-fir  i n each  t a b l e s noted,  d i f f e r e n c e s between o u r  i n the F o r e s t r y  s p e c i e s i n each  of p l o t s  of  index of a l l s p e c i e s  index w i t h i n  t o t h e age  involved in  t o the a n a l y s i s  graphs  of Barnes  change i n s i t e  Curves  site  and  Meyer and B r u c e  i s correlated  deviation  Site  1959.  Columbia  of McArdle,  limitations  can p r o c e e d  c a l c u l a t e d u s i n g the t a b l e s Book f o r B r i t i s h  a l l the  for  timbers  however,  Sitka  spruce  c u r v e s c o n s t r u c t e d f o r hemlock,  curves f o r those  s p e c i e s do n o t  exist  as y e t .  Plant Reprss  180  160 140  120  100  80 60  40 Comparison 20  of  Site  (McArdle, with 50  100  Height Age  Growth  index  Meyer m 200  and  Cun -ves  of  Bruce,  Ind.vidual  Plant 250  Douglas - Fir  1949) Co  m m u nit ies 300  ID  350  o  o  cv  o o  o  CD  O 10  o  o  cv  93 Table 2.  S i t e i n d i c e s of i n d i v i d u a l t r e e s p e c i e s i n d i f f e r e n t p l a n t communities g i v i n g means, s t a n d a r d d e v i a t i o n s and s t a n d a r d e r r o r s of t h e mean.  F  H  C  B  Salal  96.8 19.6 4.9  90.5 18.8 4.7  84.0 20.9 5.3  Moss  143.0 13.5 2.8  118.3 14.7 3.0  97.6 16.8 3.5  Polystichum  162.6 14.1  3.0-  129.9 16.5 3.1  114.8 20.0 3.9  71.9 6.4 3.4  57.9 11.6 4.0  57.4 17.8 6.2  115.4 14.5 6.5  104.4 15.3 3.5  97.0 14.7 3.1  131.0 23.1 7.9  121.0 24.2 4.9  117.4 21.6 4.4  4.9 115.4 21.0 4.2  95.9 22.5 7.1  103.6 17.1 5.3  83.7 24.8 7.8  111.1 23.4 7.8  93.9 21.3 7.1  84.2 19.4 6.2  Vaccinium Salal  Vaccinium Moss  Blechnum  Vaccinium Lysichltum  Ribes Oplopanax  D  S  PW  -  103.1 12.5 3.1 77.5 16.1 6.6 92.6  -  22.9  88.7 5.1 1.7  139.3 26.5 8.9  S i t e i n d e x was c a l c u l a t e d from t h e average t o t a l h e i g h t of dominant and co-dominant or the h i g h e s t t r e e s o c c u r r i n g on the p l o t .  W i t h t h i s i n mind, the c u r v e s ( F i g u r e s 16 t o 19) s h o u l d he studied. I t becomes i m m e d i a t e l y obvious t h a t t h e r e are d i f f e r e n c e s between the t a b l e s and graphs used and the collected data.  D i f f e r e n t p l a n t communities  d i f f e r , as can  be e x p e c t e d , not o n l y by the a b s o l u t e v a l u e of the t r e e growth but a l s o by the d i s t r i b u t i o n of the growth d u r i n g the l i f e of the s t a n d (compare the s i g n s and v a l u e s of c o r r e l a t i o n c o e f f i c i e n t s e.g. f o r D o u g l a s - f i r , P o l y s t i c h u m v e r s u s Vacc i n i u m - Moss, S a l a l v e r s u s V a c c i n i u m - S a l a l and a l t i t u d e communities  low-  versus h i g h - a l t i t u d e communities).  In  S a l a l the growth i s b e t t e r i n immature stands but i t l e v e l s off early.  I n V a c c i n i u m - S a l a l immature growth i s slow, the  grand p e r i o d of growth i s r e a c h e d l a t e r and the s t a n d keeps i n c r e a s i n g i t s h e i g h t a t a time when growth i n S a l a l a l r e a d y stopped.  has  I n low a l t i t u d e communities where mature  stands a l s o e x i s t e d , most of the c o r r e l a t i o n c o e f f i c i e n t s f o r hemlock and cedar have a n e g a t i v e v a l u e , i n h i g h - a l t i t u d e communities  t h e y have a p o s i t i v e v a l u e i n d i c a t i n g a d i f f e r e n t  shape of the growth c u r v e .  Because the d i s t r i b u t i o n i s  a p p r o x i m a t e l y e q u a l l y on b o t h s i d e s of z e r o , I f these curves were averaged f o r a l l the communities the a c c e p t e d h e i g h t c l a s s e s .  t h e y would  approximate  Taking i n t o consideration that  D o u g l a s - f i r and cedar are p r e d o m i n a n t l y l o w - a l t i t u d e  species,  we have t o c o r r e c t the statement and say t h a t the growth of  95 b o t h s p e c i e s i n immature stands i s b e t t e r than average f o r B r i t i s h Columbia, but t h a t the s i t e i n d e x of mature stands i s p r o b a b l y u n d e r e s t i m a t e d because of the d e t e r i o r a t i o n a t maturity.  Almost a l l n e g a t i v e v a l u e s f o r hemlock can be  e x p l a i n e d i n two ways.  In l o w e r a l t i t u d e s hemlock was o f t e n  found o n l y below the dominant crown c l a s s and then e i t h e r i t had t o be used as such or not a t a l l . resulted i n a f a i r l y large difference. h e i g h t - over-age  T h i s c o u l d have The  shape of the  curve i s d i f f e r e n t f o r t r e e s of d i f f e r e n t  crown c l a s s and the shape of curve changes w i t h the p r o p o r t i o n of the s t a n d sampled ( S m i t h , Ker and Heger, i960).  On a l l  p l o t s , hemlock p r o b a b l y ends i t s h e i g h t growth i n t h i s r e g i o n e a r l i e r than i n o t h e r c o l d e r p a r t s of the c o a s t of B r i t i s h Columbia where hemlock grows l o n g e r on good s i t e s i n low altitudes.  Balsam i n h i g h e r a l t i t u d e s grows w e l l i n young  stands but increment i n h e i g h t i n mature f o r e s t s i s slow. In the f l o o d - p l a i n community, R i b e s - Oplopanax, a l l d a t a i n a c c e p t e d c u r v e s c o n c e r n i n g the h e i g h t growth of hemlock, cedar and balsam, inaccurate.  and t o a l e s s e r degree of s p r u c e , are v e r y The growth c u r v e s t h e r e show s t e a d y growth  of  a l l the t r e e s p e c i e s much l o n g e r i n t o the m a t u r i t y than i n any o t h e r a s s o c i a t i o n and a l l c a l c u l a t i o n s of s i t e  index  based on c o n v e n t i o n a l c u r v e s u n d e r e s t i m a t e the p r o d u c t i v i t y of these s i t e s .  White p i n e , w h i c h was  found o n l y i n the  V a c c i n i u m - S a l a l a s s o c i a t i o n i n numbers p e r m i t t i n g a n a l y s i s ,  96 grows w e l l when young, but s t o p s soon a f t e r i t reaches about 150 y e a r s and u s u a l l y d i e s soon t h e r e a f t e r .  A l d e r was found  t o f i t almost p e r f e c t l y t h e shape o f a c c e p t e d c u r v e s . Table, 3 compares c o r r e l a t i o n c o e f f i c i e n t s of s i t e i n d e x and age of i n d i v i d u a l t r e e s p e c i e s o c c u r r i n g i n each association.  Moss, t h e most common community a t lower  a l t i t u d e s , appears t o be w e l l r e p r e s e n t e d by t h e average c u r v e s f o r B r i t i s h Columbia.  T h i s I n d i c a t e s t h e random  s a m p l i n g used i n c o n s t r u c t i o n of these c u r v e s . H e i g h t c u r v e s as t h e c o r r e l a t i o n c o e f f i c i e n t s v e r i f y , are averages  constructed f o r d i f f e r e n t height classes.  That  s e v e r a l stands reached t h e same h e i g h t a t t h e same age or a t m a t u r i t y does n o t mean t h a t t h e h e i g h t was i d e n t i c a l a t a l l s t a g e s o f t h e development.  One may have grown f a s t soon a f t e r  i t s e s t a b l i s h m e n t , t h e o t h e r a f t e r slow i n i t i a l growth may have caught up w i t h i t i n i t s younger mature s t a g e .  Site  i n d e x curves a r e by t h e i r n a t u r e averages of an a r e a f o r w h i c h t h e y were c o n s t r u c t e d , t h e r e f o r e , i f we d i v i d e t h e f o r e s t i n t o d i f f e r e n t h a b i t a t s , we cannot expect t h a t t h e h e i g h t a t t h e same age w i l l be t h e same, n e i t h e r can we expect t h a t t h e h e i g h t growth f o l l o w e d t h e same m a t h e m a t i c a l curve.  F o r p r a c t i c a l purpose  i t has o f t e n been assumed  t h a t t h e shape of t h e s i t e i n d e x curve i s t h e same f o r a good s i t e as f o r a poor s i t e .  This approximation i s  g e n e r a l l y a c c e p t e d as one g i v i n g good r e s u l t s under  average  97  Table 3.  C o r r e l a t i o n c o e f f i c i e n t s , S i t e i n d e x on age f o r tree species.  P  H  C  Salal  -.23  -.48*  - .61  Moss  -.01  -.09  -.08  Polystichum  -.46'  -.22  - .11  Vaccinium Salal  .21  -.53  .80*  Vaccinium Moss  .14  Blechnum  .04  Vaccinium Lysichitum Ribes Oplopanax  * significant  -.57 -.53 -.45 .44  t o 5$ l e v e l .  B  D  S  PW  .06 .33  *  .46  - .20  *  .07  -.22  .25  -.46  .58*  * .67*  .03  .34  To  follow  97  Polyst ichu m  180r Comparison (McArdle, 160-  page  with in  of  Site  Meyer  Height  Different  over  and Age  Index  Curves  Bruce,  1949) P o l y s t &> M o s s Blechn u m  Curves  Plant  Communities 140  Douglas  Polyst  Fir  &  Moss  BI e c n n u m VGCC  -MOSS  So'aI Moss Biecnnum & Vacc - Moss  120-  S a I ai  100-  Vacc - Salal Vacc - Moss  Salal  80  Vacc  -Saial  Vacc  Saia I  60-  40  Site 20-  Index Full  Curves  Lines Fig  20  40  Age  80  100  20  98 conditions without being true.  L a t e l y , however, new  methods o f c a l c u l a t i n g h e i g h t - o v e r - a g e  curves give a d i f f e r e n t  shape o f the curve f o r each s i t e i n d e x ( S m i t h , K e r and Heger, i960).  The e x a c t shape o f s i t e - i n d e x curves cannot be d e r i v e d  by s t a n d a r d anamorphic methods from d a t a c o l l e c t e d on tempora r y sample p l o t s . •The curves i n F i g u r e s 16 t o 19 were c o n s t r u c t e d by p l o t t i n g s i t e - i n d i c e s over age f o r each a s s o c i a t i o n .  In  F i g u r e 20 h e i g h t s o f i n d i v i d u a l t r e e s c o r r e c t e d t o the v a l u e of the n e a r e s t s i t e - i n d e x c l a s s were p l o t t e d over age i n t h e system o f r e c t a n g u l a r c o - o r d i n a t e s .  Because o f the enormous  amount o f work i n v o l v e d i t was done o n l y f o r immature  Douglas-  f i r t o i l l u s t r a t e i n more d e t a i l the d i f f e r e n c e s i n h e i g h t growth curves i n d i f f e r e n t communities.  A b e t t e r approach t o  the problem would be t o a n a l y z e t h e s i t e index over age as the w r i t e r attempted  (Table 3), h u t o n l y t o the l e v e l o f  c o r r e l a t i o n c o e f f i c i e n t s , o r t o use a more a c c u r a t e method o f a n a l y z i n g f o r r e g r e s s i o n c o e f f i c i e n t s h e i g h t o f dominant and codominant t r e e s over s i t e index ( K e r , 1957; B r i t i s h F o r e s t r y Commission, 1928). Due  t o e m p i r i c a l s e l e c t i o n o f the p l o t s , p o r t i o n  of the s t a n d samples,  c l a s s e s o f t r e e s sampled and methods of  a n a l y s i s , p a r t of the v a r i a t i o n c o u l d have been i n t r o d u c e d i n t o the r e s u l t s .  Stem a n a l y s i s would p r o v i d e a v e r y u s e f u l  check o f the curves p r e s e n t e d .  The p r e s e n t e d t a b l e and  •  99 graph ( p r e s e n t i n g means, one and two s t a n d a r d d e v i a t i o n s around t h e mean and s t a n d a r d e r r o r ( F i g u r e 21, Table l ) are s e l f - e x p l a n a t o r y .  The data show i n most cases t h a t  we can a t t a c h t o them a h i g h degree o f c o n f i d e n c e . E x c e p t i o n s a r e D o u g l a s - f i r i n V a c c i n i u m Moss and Blechnum a s s o c i a t i o n s , where D o u g l a s - f i r o c c u r s r a r e l y i n mature s t a n d s , t h e c o n f i d e n c e t h a t we can a t t a c h t o f i g u r e s i n the t a b l e i s a l s o not h i g h .  S i t k a spruce growth was  a n a l y z e d i n R i b e s - Oplopanex and s i t e i n d e x ranged  from  99 t o 171 f e e t . Arguments a g a i n s t t h e use o f h e i g h t - a g e  curves  are based m a i n l y on t h e i n c o m p l e t e n e s s w i t h w h i c h  growth  i n height expresses p r o d u c t i v i t y .  No approach  can be  d e s i g n e d a t t h e p r e s e n t time t o g i v e a t o t a l measure and t h e b e s t one i s o n l y a poor e s t i m a t e of t h e p r e s e n t or p a s t y i e l d s , y e t we can f i n d no good s u b s t i t u t e f o r h e i g h t - a g e c u r v e s i n p r e d i c t i n g f u t u r e growth  (Smith  and Ker, 1959). S i t e i n d e x i s a d i r e c t measurement o f p r o d u c t i v i t y of t r e e s p e c i e s grown n a t u r a l l y on c e r t a i n s i t e s and p r e sumably s u i t a b l e f o r them, t h e r e f o r e no i n d i r e c t can g i v e b e t t e r r e s u l t s .  approach  Successful application i n forestry  of any o t h e r c l a s s i f i c a t i o n system independent  of t h e h e i g h t  100 growth depends on the degree t o w h i c h such a system can be c o r r e l a t e d w i t h s i t e index growth. E v e r y approach t o c l a s s i f i c a t i o n i n f o r e s t r y must r e a l i z e the n e c e s s i t y of easy and a c c u r a t e c o r r e l a t i o n of u n i t s w i t h i n and between r e g i o n s .  S i t e index f u l f i l s  this  need e x c e p t i o n a l l y w e l l i f the r e f e r e n c e age i s s t a n d a r d i z e d . "The g r e a t e s t advantage of the h e i g h t - a g e  approach i s i t s  s i m p l i c i t y and the p o s s i b i l i t y t o r e c o g n i z e any  reasonable  number of q u a l i t y c l a s s e s and the ease of c o n v e r s i o n t o any u n i t of measurement.  Height-age curves can be developed w i t h  a nominal amount of f i e l d work f o r a s i n g l e s p e c i e s or a group of s p e c i e s .  These can be used t o p r o v i d e an i n d e x of  q u a l i t y w i t h i n any f o r e s t s t r a t a , g i v i n g i n d i v i d u a l or average e s t i m a t e s f o r any s i z e of u n i t o r d e s i r e d degree of p r e c i s i o n (Smith, Ker, and Heger,  i960).  A n a l y s i s of t h e Environment In the f o l l o w i n g a n a l y s i s p r o d u c t i v i t y of the s i t e , expressed by s i t e i n d e x of the most i m p o r t a n t s p e c i e s on the p l o t , was c o n s i d e r e d dependent v a r i a b l e .  Where D o u g l a s - f i r  was p r e s e n t on the p l o t and the h a b i t a t was c o n s i d e r e d a b l e f o r i t s growth, the s i t e i n d e x of the p l o t was  suit-  based  m a i n l y on t h i s s p e c i e s even i f i t was p r e s e n t i n s m a l l numbers.  T h i s may i n c r e a s e the e r r o r i n e s t i m a t e of s i t e  i n d e x of D o u g l a s - f i r .  I n o t h e r communities hemlock  and  Table  4.  Summary o f e c o l o g i c a l c l a s s i f i c a t i o n s on t h e c o a s t o f B r i t i s h C o l u m b i a . F i g u r e s a r e means and s t a n d a r d d e v i a t i o n s f o r D o u g l a s - f i r i n c o m m u n i t i e s where i t o c c u r s . *  Present study  Salal  100 + 23  S p i l s b u r y and S m i t h 19^7  Gaultheria  127 + 18  Pol. -  Moss  143 + 19 Polystich.  163 + 13 Vacc.  Salal  Vacc.  Moss  72 + 6  Gaulth.  151 + 15 Polystich.  161 +  14  G a u l t h . - Usnea  93 + 12  Becking 1954  Krajina-Spilsbury unpublished Coastal Douglasf i r zone  p  -P •H CD CD £ CD £ CH O M •H £ -P CO P 05 CD LT\ CO ?-t CD •H <U CO O CD OJ £1 rH CD P OJ h O T 3 •H C !h £ O CO CO P 0 P 0) CD O <D CO <U OhO- M P cO co [>— >> U rH CD T 3 > C <<H CO cO O  Schmidt 195^  Salal  Salal  Moss  Moss  115  150  Polystich.  180 Salal-Lichen  70  97  135  Polystich.  174  MuellerDombois t h e s i s 1959 Coastal Douglas-fir zone Salal  110  Moss  140  Polystich.  170  Salal-lichen  80  p s o rH <M  121 + 23  Blechnum  134 + 23  ( f r o m Smith,  K e r and Heger,  i960)  B e c a u s e t h e s e s t u d i e s were c o n d u c t e d i n d i f f e r e n t r e g i o n s and d i f f e r e n t b i o - c l i m a t i c z o n e s t h e c o m m u n i t i e s , a l t h o u g h t h e y may have t h e same name, may n o t be i d e n t i c a l .  102 c e d a r were u s e d . spruce.  Site  represented the  In a l l u v i a l  index  by  as  only  analysis.  should  He  emphasized  index  T h i s a p p r o a c h can  as  potential  be  only  placed  he  saw  by  only  on  species  one  one  as  or  in different This  number can  be  plots  s e l e c t e d v a r i a b l e s were a n a l y z e d community,  and  t h e n as  first one  kinds  Two  of a n a l y s i s of the  separately to  site  index  and  a m a t h e m a t i c a l a n a l y s i s computed  electronic  computer.  computation  correlation  This  coefficients  of the The  provide  as  a  as  they  on  statistical  and  regression  information  whole out.  r e l a t i o n s h i p of  each  the  community  and  ALWAC-III  program p r o v i d e s standard  for  deviations,  coefficients;  indicating  f o l l o w i n g tables provide  information  the  in  signi-  coefficients. a b o u t any  approximately  s e v e r a l examples  a  They a r e p r e s e n t e d  specific  problem  s h o w i n g how  the  to  concerning  among t h e s e v e n t e e n v a r i a b l e s a n a l y z e d .  of i t are  group f o r  results.  correlation  relations  site  were c a r r i e d  to plant  o f means, c o v a r i a n c e s ,  o t h e r words i t p r o v i d e s  end  data  a g r a p h i c a l a n a l y s i s p o r t r a y i n g the  thousand  of  considered  region.  ficance  and  estimate  between e n v i r o n m e n t a l f a c t o r s i n t h e  the  not  another.  correlations  (2)  of  because  t o whether or  species  appropriate.  i n each p l a n t  variable  Sitka  measure o f p r o d u c t i v i t y . All  (1)  on  in this part  r i g h t l y disputed  subjective opinion  different  expressed  occurred  f i g u r e i s used  p l a c e more e m p h a s i s  associations  e m p h a s i s was  a measure o f f o r e s t p r o d u c t i v i t y  one  the w r i t e r used h i s he  sites  At  data  the can  be  5.  Table  Means, s t a n d a r d d e v i a t i o n s and c o r r e l a t i o n variables.  Variable  Degrees  Salal  o f f r e e d o mL  l Microtopography X  x2 Steepness of slope X  3  Altitude H Aspect  X  5  Shape o f c o n t o u r s x  6  Shape o f p r o f i l e X  7  Position  on  slope  16  Moss  Polystichum  Vacc. Salal  28  28  7  c o e f f i c i e n t s of seventeen  Vacc. Blechnum Moss  23  21  Vacc. Lysich.  7  measured  Rib. Oplop.  All plots  7  168  1.24 .44 -.35  1.21 .42 .01  1.39 .50 -.20  i.6o  .52 .18  1.35 .49 -.49  1.30 .47 -.37  .48  -.54  1.11 .30 -.62  -.18  5.65 1.56 - .28  4.57 2.09 -.29  5.07 1.54 -.07  3.86 .86 -.24  4.91 1.65 .08  4.37 1.56 .01  1.61 1.36 -.10  1.23 1.09 .09  4.20 2.10 .02  9.06 3.13 -.19  7.37 3.09  15.63 4.23 -.43  13.78 7.63 -.11  12.85 8.33 -.56  10.75 7.55 -.75  7.00 .50 -.33  10.38 6\73 -.35  16.12 6.65 -.12  17.80 7.04 .08  7.30 3.79 .21 18.83 7.67 .18  18.38 5.18 .41  18.99 8.83 .47  21.35 7.96 .19  17.00 8.82 -.41  19.64  18.41 7.67 .23  6.24 .97 -.13  5.12 .80 -.26  3.41 .95 -.16  7.71 .50 -.16  4.83 1.03 -.35  3.27  3.44 .54 -.14  4.41  1.49 -.47  4.47 .51 .31  3.33 .88 -.09  2.26 .43 .02  4.01 .72 -.09  4.20 1.06 -.11  2.91 .73 - .06  2.39 .58 .14  2.32 .49 -.29  3.06 .99 .44  1.88 1.50 .17  4.40 2.52 .03  6.59 1.93 -.39  .75 1.12 .38  5.09 2.09 -.22  6.06 2.12 .14  8.56 .81 .12  5.32 2.92 .34  .64  1.23  .46  -.67 2.27 .40 .23 8.36 .79 .32  8.20 .39  1.32 .48  o  5.  Table  Salal  Moss  Polystichum  Vacc. Salal  Vacc. Blechnum Moss  exposure  7.41 1.00 -.08  7.21 1.37 -.28  3.75 1.36 -.03  7.65 .56 - .08  6.39 .99 -.13  9  1.59 .62 .14  3.50 1.91 .19  3.56 2.02 .01  1.12 .33 -.11  3.76 2.28 .04  5.08 1.36 .39  5.62 1.44 -.08  4.65 2.83 .04  4.14 2.91 -.25  1.18  ..39  8  x  Wind  X  Parent X  Soil  (continued)  material  10  depth  l l Per cent of stones X  X  12  ground water  x13 Soil  moisture  X  Soil  l4  permeability  Vacc. Lysich.  Rib. Oplop.  All plot:  4.36 1.23 -.05  3.04 .92 .29  3.64  1.27 .34  6.40  1.52 -.07  3.70 2.44  5.48  2.78  5.78  3.46  -.14  3.06 2.43 .11  .48  1.10  4.48  3.84  3.63 2.92 -.16  -.02 .65 .49 .42  2.35 2.08 .24  3.15 2.05 -.24  2.21 .82 .09  3.50 .53 .14  I.25 .52 .06  2.61 .89 .19  1.53 .72 .22  2.72 .60 .41  3.56 .50 -.34  1.33 .44 .03  1.24 .59  2.24 .78 .03  2.93 .69 -.03  1.35 .55 .42  .04  .14  .70  .48  .45  2.35 .24  1.49 .94 .21  5.98 1.98 -.08  4.21 2.11 .40  •l.6l  1.12  -.61  2.57 2.91 .24  2.98 2.69 - .08  4.04 .72 -.10  4.99 .09 .31  5.00 .09 .40  3.07 1.37 .38  3.17 .39 .25  3.70 .47 -.17  4.49 .05 .18  3.H  3.09 1.05 .42  3.04 .37 .04  4.30 .56 -.25  4.61 .74 -.18  1.33 .51  2.80 1.17 .19  1.65 .10  1.90 .07  .31 .47  .84  5.(concluded)  Table  X  15  T h i c k n e s s o f O.M.  X  16  Thickness of layer X  Site  17  index  A  e  Salal  Moss  Polystichum  Vacc. Salal  Vacc. Moss  Blechnum  Vacc. Lysich.  3.41 1.80 .53  2.74 1.42 .13  2.00 2.11 -.20  4.73 1.64  .86  6.22 2.65 -.27  3.42 2.68 -.55  8.11 1.73 .35  .32 .40 .21  3:622.87 -.36  5.00 2.56 .08  2.84  2.03 .01  1.34 1.49 - .20  6.98 2.91 .29  2.83 2.69 .04  2.99 2.80 -.05  .40 .52 -.40  .89 .42 -.13  2.71 2.72 -.33  96.5 19.5 1.0  141.8 14.9 1.0  160.7 15.9 1.0  106.4 15.5 1.0  125.1 22.8 1.0  - 102.0 18.5 1.0  137.9 27.1 1.0  126.4 32.9 1.0  Compare w i t h o r i g i n a l  64.4  8.4 1.0  scaling  Rib. Oplop.  All plots  and F i g u r e s 23 t o 31.  o  To  fellow  page Fig.  Distribution  of  al!  tne  Plot?  Altitude.  giving  Association,  Aspect  and  105. 22.  io6 used. but  Small, i n s i g n i f i c a n t  the f a c t  because  that  certain  t h e y were f o u n d  coefficients  correlations  t o be  have been l e f t  have n o t been  very small,  i s also  out,  included,  important  information. Microtopography  When a l l t h e p l o t s were a n a l y z e d as one was  found  graphy  that with decreased  the p r o d u c t i v i t y  increased  the a n a l y s i s  of i n d i v i d u a l  ficant  o n l y i n Blechnum  level  Oplopanax found  (-.62, .10).  t o be  see  Table  (.18).  individual  the microtopography  However, i n  t h i s reached  (-.37? .05) else  A positive  and  this  Ribes  -  correlation  value existed  For the r e s t  a signi- '  of the  was  only i n  correlations  was  communities  increase m  accompanied  complexity  of  by  Salal No  in  communities,  microtopo-  5. In  in  (-.18, .10)*.  Everywhere  insignificant.  Vaccinium - Salal  c o m p l e x i t y of the  group i t  significant  c o r r e l a t i o n s were  found,  Moss decrease  i n wind exposure  .33  .10  P In  polystichum ' i n c r e a s e i n steepness of slope .55 .01 i n c r e a s e i n c o n v e x i t y of the p r o f i l e .51 .01 increase i n s o i l depth .44 .02 The f i r s t number i s t h e c o r r e l a t i o n c o e f f i c i e n t , t h e second the p r o b a b i l i t y l e v e l . Where s e c o n d number i s m i s s i n g t h e p r o b a b i l i t y i s l a r g e , but below the s i g n i f i c a n t l e v e l . A  I  107 in Vaccinium S a l a l increase m s t e e p n e s s of s l o p e i n c r e a s e i n wind exposure i n V a c c i n i u m Moss increase in stoniness increase in thickness in  complexity  of  contours  p l o t s were c o n s i d e r e d  o f m i c r o t o p o g r a p h y was  increase increase increase increase  Steepness of  2  Steepness of with  as  one  accompanied  slope  slope  was  (Figure  slope  feet.  At  P r o d u c t i v i t y d i d not and  50  100  f e e t and  per  per  cent,  cent  above 100  poorly  drained  feet.  Table  5.  places  the  slope, per had  the  differ  site the  cent,  .37 .50  .10 .02  .61 .42 .57 .37  .01 .05 .01 .05  .56 .9^  .01  .65 .62 .62  .10 .10 .10  increase  in  by  .18 .31 .18 .21  .10 .01 .10 .05  25)  f o u n d t o have no c o r r e l a t i o n  p r o d u c t i v i t y when a l l t h e p l o t s were  together.  group,  i n steepness of the slope in altitude i n t h i c k n e s s of o r g a n i c m a t t e r in podzolisation  X  124  matter  R i b e s - Oplopanax increase in a l t i t u d e decrease i n wind exposure decrease i n s i t e index  When a l l t h e  of  organic  Blechnum increase i n a l t i t u d e outcrop parent m a t e r i a l increase i n podzolisation decrease i n p r o d u c t i v i t y  in Vaccinium - Lysichitum increase i n a l t i t u d e increase i n convexity in  of  .46 .49  between  . 5 pe^  index remaining at site  index decreased  t o 110  lowest  Correlations with  considered  feet.  site  other  The  index of  cent 132 to  level, only  variables in  92  108 individual index  on  associations w i l l  explain v a r i a b i l i t y  of s i t e  slope.  With i n c r e a s i n g steepness of slope: in  .  m  in  Salal frequency of s o l i d rock substratum increased s o i l moisture decreased s o i l permeability increased s i t e index decreased frequency of western aspects i n c r e a s e d  „»  in  increased  Polystichum complexity of the microtopography increased p r o f i l e became more c o n c a v e l o c a l p o s i t i o n on s l o p e i n c r e a s e d p o d z o l i s a t i o n ( A layer) decreased s o i l moisture increased Vaccinium - S a l a l g l a c i a l t i l l s o i l s were on s t e e p e r than outcrop s o i l s s o i l depth increased s o i l permeability increased  .05  V a c c i n i u m - Moss g l a c i a l t i l l s o i l s were on s t e e p e r slopes s o i l depth increased stoniness increased ground water i n c r e a s e d humus a c c u m u l a t i o n d e c r e a s e d ' Blechnum g l a c i a l t i l l s o i l s were on s t e e p e r than outcrop s o i l s convexity of contours increased convexity of p r o f i l e i n c r e a s e d wind exposure i n c r e a s e d s o i l permeability increased podzolisation increased  .49 .31 .26 .32 .29  .01 .10  .55 .33 .40 .26 .26  .01 .10 .05  .64 .91 .52  .10 .01  slopes  .32 .38 .35 .19 • .39  f  in  .10  *  Moss elevation increased frequency of g l a c i a l t i l l stoniness increased s o i l moisture decreased p r o d u c t i v i t y decreased  e  in  .24 .47 .27 .28 .55  slopes  .50 .58 .28 .35 .58 .39  .10  .10 .10 .10  .01 .01 .10 .01 .05  109 In  in  Vaccinium - Lysichitum altitude increased l o c a l p o s i t i o n on s l o p e i n c r e a s e d wind exposure i n c r e a s e d s o i l depth decreased ground water d e c r e a s e d s o i l permeability increased  significant  c o r r e l a t i o n s were  Considering a l l the p l o t s , slope  In coefficient indicates decrease 1250  i n c r e a s e i n steepness of  elevation  A t 1250  when a l l p l o t s ,  reason  feet  and s i t e  a t 250 f e e t  level.  than  average  index decreased  site  these p l o t s  .05 .01 .10 .01 .001 .001 .05 .001 .001 .01 .01 .02  .01) However, t h e  t o 126 f e e t a t  i s much l e s s  forrejecting  the t r a n s i t i o n  (.35,  index  elevation  even f r o m a s s o c i a t i o n s  Without  .10  the c o r r e l a t i o n  significant probability  139 f e e t  .18 .23 .25 .17 .35 .40 .52 .20 .37 .39 .31 .30 .15 .24  ( F i g u r e s 23 and 24)  of a l l the p l o t s ,  between a l t i t u d e  from  sidered.  Altitude  3  analysis  highly  feet  feet.  found.  i s related to: increase i n complexity of microtopography increase i n altitude i n c r e a s e i n c o n v e x i t y of contours i n c r e a s e of c o n v e x i t y of p r o f i l e h i g h e r l o c a l p o s i t i o n on s l o p e i n c r e a s e i n wind exposure o u t c r o p and g l a c i a l t i l l p a r e n t m a t e r i a l deeper s o i l s greater stoniness d e c r e a s e i n ground water decrease i n s o i l moisture increase i n s o i l permeability decrease i n t h i c k n e s s of organic matter increase i n podzolisation  X  to  .01 .10  .93 .65 .43 .49 .35  Ribes - Oplopanax no  The  .48  the decrease  rejected,  above  t o 92 were  t h e d e c r e a s e was t o 98  t h o s e p l o t s was t h a t  between s u b a l p i n e z o n e .  they  While  1250  feet con-  feet.  belonged  the decrease  110 in  site  it  reached  and  index  was a f a i r l y  the s i g n i f i c a n t  Vaccinium - Lysichitum  constant level  in  in  in  in  spread.  i n most a s s o c i a t i o n s ,  i n Blechnum  (-.56, .01),  two a s s o c i a t i o n s w h i c h In the r e s t  t h e c o r r e l a t i o n s were i n s i g n i f i c a n t  With increase in  only  (-.75, 05),  have a v e r y wide a l t i t u d i n a l associations  trend  of the (Table  5).  i n altitude:  Salal c o n t o u r s become more c o n v e x frequency of s o l i d rock substratum i n c r e a s ed stoniness increased frequency of ground water i n c r e a s e d s o i l permeability increased t h i c k n e s s of l a y e r of organic m a t e r i a l decreased p o d z o l i s a t i o n decreased p r o d u c t i v i t y decreased  .09 .75 .06  .01  .24 .44 .19  .10  Moss steepness of the slope increased frequency of g l a c i a l t i l l increased  .49 .17  .01  .54 .21  .01  Polystichum g l a c i a l t i l l as p a r e n t m a t e r i a l steepness of slope i n c r e a s e d  increased  .02  .24  Vaccinium - Salal steepness of slope i n c r e a s e d stoniness decreased s o i l moisture increased accumulation of organic m a t e r i a l decreased p r o d u c t i v i t y decreased  .52 .4-3  V a c c i n i u m - Moss steepness of slope i n c r e a s e d l o c a l p o s i t i o n on s l o p e i n c r e a s e d presence of g l a c i a l t i l l increased s o i l depth decreased stoniness increased ground water i n c r e a s e d podzolisation increased  .26 .55 .67 .47 .64 .35 .22  .43 .39 .42  .01 .01 .05 .01 .10  in  Blechnum c o m p l e x i t y of the m i c r o t o p o g r a p h y increased c o n v e x i t y of the contours i n c r e a s e d l o c a l p o s i t i o n on s l o p e i n c r e a s e d outcrop parent m a t e r i a l increased s o i l depth decreased stoniness increased podzolisation (A layer) increased t h i c k n e s s of organic m a t e r i a l i n c r e a s e d productivity decreased  .61 .20 .36 .4-9 .49 .25 .38 .35 .56  e  in Vaccinium - Lysichltum c o n t o u r s became l e s s c o n c a v e l o c a l p o s i t i o n on s l o p e i n c r e a s e d ground water decreased s i t e index decreased  .77 .63 .53 .75  i n R i b e s - Oplopanax c o m p l e x i t y of the m i c r o t o p o g r a p h y increased ground water l e v e l decreased  .65 .58  In a l l the p l o t s a n a l y z e d  as  one  group, w i t h  —.01  .10 .02 .02 .10 .10 .01 .05 .05  .10  increase  of  altitude the c o m p l e x i t y of the m i c r o t o p o g r a p h y increased steepness of the slope i n c r e a s e d c o n t o u r s became more convex l o c a l p o s i t i o n on s l o p e i n c r e a s e d wind exposure i n c r e a s e d o u t c r o p and g l a c i a l t i l l i n c r e a s e d s o i l depth decreased accumulation of o r g a n i c matter i n c r e a s e d podzolisation increased x  Before into out. the very  the  Because the  few  Aspect  proceeding  measurement  southern  4  of the  area  under  f r i n g e s of the  p l o t s had  northern  ( F i g u r e s 23  to the  and  was  .001 .01 .01 .01  introduced  must be  pointed  generally located  north-trending aspects.  .01 .05 .10 .01  24)  analysis, bias  azimuth readings study  .31 .20 .16 .26 .15 .40 .33 .28 .29  mountain  P l o t s were  at  ranges,  located  112 mostly all in  on w e s t e r n ,  azimuth  readings w i l l  and  regression  different,  a r e t h e means. coefficients  generally  distributed  important  lower  role  than  of the p l a n t than  Aspect very regular, the average  i f t h e p l o t s were I t i s believed  (.18,  the r e s u l t s  o f t h i s work  symmetrical  i n d e x was p l o t t e d  Higher  trend  except  where  (Table  the aspect more  showed a  ( i n F i g u r e 24  The h i g h e s t s i t e  index  on n o r t h e a s t s l o p e s  g r o w t h on t h e w e s t e r n  s l o p e s was .05),  found  but t h i s  i n V a c c i n i u m - L y s i c h l t u m was e v i d e n t e v e r y 5). V a c c i n i u m - Moss  R i b e s - O p l o p a n a x t h e r e was no s i g n i f i c a n t  between a s p e c t and o t h e r  with:  correlation  variables.  In o t h e r a s s o c i a t i o n s , associated  that  from the centre; F i g u r e  In P o l y s t i c h u m , V a c c i n i u m - S a l a l , and  equally  productivity  o n l y i n V a c c i n i u m - Moss (.43,  significant  be  indicate.  distribution.  on s o u t h w e s t and t h e l o w e s t  .05).  important  community p l a y s a much  shows means and s t a n d a r d d e v i a t i o n s . )  was f o u n d  f a r more  A l s o the values of c o r r e l a t i o n  correlated with site  almost  site  case  south  b e i n g the  r e g a r d i n g the aspect w i l l  on a l l t h e a s p e c t s .  the a n a l y s i s  approximately  The s t a n d a r d d e v i a t i o n s ,  of the spread, are i n t h i s  parameters than  23  therefore point  a l l the a s s o c i a t i o n s .  estimates  in  s o u t h e r n and e a s t e r n s l o p e s and t h e mean o f  western  a s p e c t s were  11-3 in  Salal l e s s convex c o n t o u r s l e s s convex p r o f i l e l o w e r l o c a l p o s i t i o n on s l o p e deeper s o i l s increase i n podzolisation  .41 .60 .55 .45 .42  .10 .01 .02 .10 .10  in  Moss l o w e r l o c a l p o s i t i o n on s l o p e more c o n c a v e c o n t o u r s more c o n c a v e p r o f i l e greater stoniness lower f r e q u e n c y of ground water greater s o i l permeability l e s s accumulation of organic matter  .29 .26 .31 .17 .23 .40 .34  .05 .10  in  Polystichum deeper s o i l s lower s o i l moisture higher p r o d u c t i v i t y  .30 .25 .28  in  Vaccinium - Salal steeper slopes l o w e r p o s i t i o n on s l o p e deeper s o i l s higher p r o d u c t i v i t y  .57 .35 .45 .41  in  V a c c i n i u m - Moss increase i n concavity of p r o f i l e productivity increased  .34 .47  in  Blechnum moreoconcave*.'Oontours more c o n c a v e p r o f i l e deeper s o i l s l e s s s o i l moisture ' l e s s accumulation of o r g a n i c decrease i n p o d z o l i s a t i o n i n c r e a s e i n s i t e index  in Vaccinium Lysichitum gentler slopes greater s o i l depth h i g h e r ground water drier soils greater'soil permeability greater podzolisation in  Ribes -^Oplopanax lower s t o n i n e s s greater productivity  ,  matter  .17 .35 .24 .26 .46 .30 .19 .65 .65 .28 .39 .82 .83 .65 .40  .05  .10 .02  .10 .10 .05 .05  114 On a l l t h e p l o t s w e s t e r n  a s p e c t s were a s s o c i a t e d w i t h  .22 .18 .20 .14  more c o n c a v e p r o f i l e more c o n c a v e c o n t o u r s deeper s o i l s more f r e q u e n t g r o u n d w a t e r  X,- Shape o f C o n t o u r s Of a l l t h e i n d e p e n d e n t contours with  site  while trend, the  was f o u n d index  the s i t e  contours,  (-.47, 10),  and V a c c i n i u m coefficients In contours in  f o r a l l the p l o t s ) .  index  increasing with  the s i g n i f i c a n t  (-.28, .10),  - Lysichitum see T a b l e individual  increasing  Vaccinium-  (-.58, .10).  level Moss  However,  only i n Salal  (-.35, .10), correlation  5. a s s o c i a t i o n s decreased  convexity of  was a s s o c i a t e d w i t h :  Salal decrease i n a l t i t u d e western aspects i n c r e a s e i n c o n c a v i t y of p r o f i l e l o w e r l o c a l p o s i t i o n on s l o p e increase i n s o i l depth decrease i n p o d z o l i s a t i o n ( A l a y e r ) increase i n s i t e index Moss western aspects i n c r e a s e i n c o n c a v i t y of p r o f i l e l o w e r l o c a l p o s i t i o n on s l o p e decrease i n t h i c k n e s s of organic i n c r e a s e i n ground water increase i n s o i l moisture increase i n productivity  .02 .42 .64  .71 .37 .36 .47 .26  matter  this  c o n c a v i t y of  For other  e  in  correlation  c o m m u n i t i e s t h e r e was no e x c e p t i o n f r o m  i t reached  Moss  t h e shape o f  t o have t h e most s i g n i f i c a n t  (-.47, .001)  i n individual  25)  (Figure  variables  .05 .10 .10  .10 .01 .01 .10  .64 .74  .001 .001  .46 .46  .02 .02  .30 .28  in  Polystichum glacial t i l l soils Increase i n stoniness increase i n productivity decrease i n s o i l p e r m e a b i l i t y  .24 .24 .16 .35  in  Vaccinium - S a l a l l o w e r l o c a l p o s i t i o n on s l o p e d e c r e a s e i n wind exposure increase i n stoniness i n c r e a s e i n ground water  .64 .81 .74 .57  I n V a c c i n i u m - Moss i n c r e a s e i n c o n c a v i t y of p r o f i l e l o w e r l o c a l p o s i t i o n on s l o p e decrease i n wind exposure i n c r e a s e i n frequency of g l a c i a l increase i n stoniness i n c r e a s e i n ground water increase i n s o i l moisture decrease i n s o i l permeability increase in productivity  .58 .27 .56 .21 .40 .23 .15 .34 .35  in  Blechnum decrease increase increase alluvial decrease decrease decrease  i n steepness of slope i n ground water i n c o n c a v i t y of p r o f i l e and outwash p a r e n t m a t e r i a l in stoniness in podzolisation in soil permeability  in Vaccinium - Lysichitum more complex m i c r o t o p o g r a p h y decrease i n e l e v a t i o n l o w e r p o s i t i o n on s l o p e greater s o i l depth greater p r o d u c t i v i t y in  Ribes - Oplopanax l o w e r p o s i t i o n on s l o p e lower s t o n i n e s s decrease i n t h i c k n e s s of A  In the group associated  till  e  .58 .44 .54 .27 .08 .27 .41 .94 .77 .39 .35 .67  layer  of a l l the p l o t s concave  .54 .47 .63 c o n t o u r s were  with:  decrease i n steepness lower a l t i t u d e s western aspects  o f 'Slope  .25 .16 .18  116 .75 .75 .38 .41 .29 .71 .72 .58 .42  concave p r o f i l e d e c r e a s e i n l o c a l p o s i t i o n on s l o p e d e c r e a s e i n wind exposure a l l u v i a l and outwash p a r e n t . m a t e r i a l increase i n s o i l depth i n c r e a s e i n ground water increase in s o i l moisture decrease in s o i l p e r m e a b i l i t y decrease in p o d z o l i s a t i o n  Xg Correlation indicates the  that  decrease ture still  Salal  this  V a c c i n i u m - Moss  (.03),  Lysichitum  (.28)  insignificant  (-.44, .01)  variables  considered,  (-.11),  of s i t e  index with As m o i s -  becomes i n s i g n i f i c a n t b u t  (-.08),  Vaccinium -  R i h e s - Oplopanax  (.10),  the c o r r e l a t i o n  In d r y  was s i g n i f i c a n t .  Moss  Blechnum  index  site  Increase  correlation  26)  (Figure  i n importance.  (-.37, .10),  shows t h e same t r e n d .  Polystichum  trend  was s e c o n d  i n convexity of p r o f i l e  increases,  (-.09), In  coefficient.iwith  from a l l the independent  shape o f p r o f i l e  communities,  Shape o f P r o f i l e  .001 .001 .01 .01 .01 .001 .001 .001 .01  (—.29).  and V a c c i n i u m -  coefficient  v a l u e , became p o s i t i v e .  Salal  while  still  of  In t h i s v a r i a b l e the  f r o m d r y t o wet i s r e m a r k a b l e . With i n c r e a s e d convexity of p r o f i l e :  in  Salal frequency of eastern aspects increased convexity of contours i n c r e a s e d l o c a l p o s i t i o n on s l o p e i n c r e a s e d s o i l depth decreased frequency of s o l i d r o c k substratum increased s o i l permeability increased s i t e index decreased  .60 .64 .82 .38 .14 .41 .39  .01 .01 .01  .10 .10  To  follow  page  116.  117 i n Moss c o n v e x i t y of c o n t o u r s i n c r e a s e d l o c a l p o s i t i o n on s l o p e i n c r e a s e d f r e q u e n c y of w e s t e r n a s p e c t s i n c r e a s e d s o i l moisture decreased a c c u m u l a t i o n of o r g a n i c m a t t e r i n c r e a s e d podzolisation (A layer) increased  .64 .77 .30 .45 .38  .001 .001 .02 .05  e  in  Polystichum c o m p l e x i t y of m i c r o t o p o g r a p h y i n c r e a s e d l o c a l p o s i t i o n on s l o p e i n c r e a s e d s o i l depth d e c r e a s e d podzolisation increased t h i c k n e s s of o r g a n i c m a t t e r d e c r e a s e d  .51 .32 .20 .15 .34"  .01 .10 .10  i n Vaccinium - S a l a l podzolisation increased  .57  i n V a c c i n i u m - Moss c o n v e x i t y of c o n t o u r s i n c r e a s e d l o c a l p o s i t i o n on s l o p e i n c r e a s e d wind exposure i n c r e a s e d f r e q u e n c y of g l a c i a l t i l l I n c r e a s e s stoniness increased ground water d e c r e a s e d s o i l moisture decreased s o i l permeability increased  /58 .41 .36 .26 .40 .26 .10 .32  i n Blechnum steepness of s l o p e i n c r e a s e d c o n v e x i t y of c o n t o u r s i n c r e a s e d p o s i t i o n on s l o p e i n c r e a s e d f r e q u e n c y of outcrop s o i l i n c r e a s e d s o i l d e p t h decreased  .28 .54 .29 .25 .13  in Vaccinium - Lysichltum ground water d e c r e a s e d p r o d u c t i v i t y increased  .76 .23  .05  i n R i b e s - Oplopanax f r e q u e n c y of f i n e a l l u v i a l loams increased s o i l depth i n c r e a s e d stoniness decreased s o i l p e r m e a b i l i t y decreased  .75 .4-9 .77 .51  .02  .01 .05 .10 .10  .01  .02  Considering a l l the p l o t s w i t h increase i n convexity of  profile  118 .17 .75 .69 .32 .34 .25 .67 .67 .57 .39  steepness of slope Increased convexity of contours increased l o c a l p o s i t i o n on s l o p e i n c r e a s e d wind exposure i n c r e a s e d o u t c r o p and g l a c i a l t i l l i n c r e a s e d s o i l depth decreased ground water d e c r e a s e d s o i l moisture decreased s o i l permeability increased podzolisation increased  L o c a l p o s i t i o n on s l o p e W h i l e t h e l o w e r p o s i t i o n s on s l o p e productivity than the an did  i n wet ones slope  (Table  reach  that with  5)•  depressions  the s i t e  I n no i n d i v i d u a l  between l o c a l  higher  associations  dropped  other  from  community,  p o s i t i o n on s l o p e  level  correlation with of l o c a l  index  and  site  of i n s i g n i f i c a n c e . v a r i a b l e s i t was  p o s i t i o n on  found  slope:  Salal c o n t o u r s became more c o n v e x p r o f i l e became more c o n v e x wind exposure i n c r e a s e d s o i l depth decreased stoniness decreased ground water decreased s o i l moisture decreased s o i l permeability increased p o d z o l i s a t i o n decreased and i n t e r e s t i n g l y S a l a l on e a s t e r n a s p e c t s was f o u n d on h i g h e r and more exposed  had  In communities a t the base o f  even 10 p e r c e n t  increase  26)  (Figure  i t was t r u e r i n d r i e r  t o 124 f e e t .  the c o r r e l a t i o n  In  in  .01),  and l o c a l  a v e r a g e 142  index  in  (.34,  .10 .001 .001 .01 .01 .02 .001 .001 .001 .01  sites  Moss convexity of contours increased convexity of p r o f i l e increased p o d z o l i s a t i o n (A l a y e r ) i n c r e a s e d frequency of western aspects decreased  .71 .82 .34 .4-5 .21 .46 .61 .48 .46  .01 .01  .10 .10 .10 .10  .55  .02  .74 .77 .44 .29  .001 .001 .02  .10  presence of ground water decreased s o i l moisture decreased accumulation of organic matter increased in  Polystichum s o i l depth decreased ground water decreased steepness of slope increased convexity of p r o f i l e i n c r e a s e d podzolisation decreased productivity increased  in  Vaccinium - Salal convexity of contours increased wind exposure i n c r e a s e d s o i l depth decreased stoniness Increased s o i l moisture decreased s o i l permeability increased o u t c r o p p a r e n t m a t e r i a l became more common  in  V a c c i n i u m - Moss altitude increased s o i l depth decreased s o i l moisture decreased c o n t o u r s became more c o n v e x p r o f i l e became more c o n v e x wind exposure i n c r e a s e d frequency of g l a c i a l t i l l i n c r e a s e d accumulation of organic matter increased podzolisation increased s i t e index decreased  In  Blechnum complexity of microtopography increased altitude increased frequency of rocky substratum increased s o i l depth increased stoniness increased s o i l moisture increased podzolisation increased s i t e index decreased  in  Vaccinium - Lysichltum the steepness of slope i n c r e a s e d altitude increased wind exposure i n c r e a s e d in s o i l depth increased stoniness increased ground water decreased  120 in  R i b e s - Oplopanax steepness of slope i n c r e a s e d altitude increased concavity of contours increased On a l l t h e p l o t s  slope  is  .52 .40 .54  -— -—  the higher l o c a l p o s i t i o n  on t h e  related to  steeper slopes higher a l t i t u d e s more c o n v e x shape o f c o n t o u r s more c o n v e x shape o f p r o f i l e g r e a t e r wind exposure o u t c r o p and g l a c i a l t i l l p a r e n t material decrease i n s o i l depth increase i n stoniness d e c r e a s e i n ground water decrease i n s o i l moisture increase In s o i l p e r m e a b i l i t y i n c r e a s e In p o d z o l i s a t i o n decrease of p r o d u c t i v i t y  Xg Wind e x p o s u r e  Wind E x p o s u r e  .01 .01 .001 .001 .01  .35  .26 .75  .69 .44  .01 .02 .10 .001 .001 .001 .01 .01  .49  .23 .18 .70 .64  .53 .47 .33  (Figure  27)  c a n h a r d l y be c o n s i d e r e d an  independent  variable  on i t s own a c c o u n t .  It results  combination  o f many t o p o g r a p h i c and c l i m a t i c  factors.  from the If-  this  i s c o n s i d e r e d , t h e c o r r e l a t i o n s have a s much v a l u e f o r  this  as f o r any o t h e r Correlations  variable. o f wind exposure  on a l l p l o t s  combined was f o u n d  significance  (-.07).  Salal,  the d r i e s t  with decrease (-.46, and  .10).  t o be b e y o n d  .10  In i n d i v i d u a l communities,  community,  productivity l e v e l of only i n  d i d the increase of p r o d u c t i v i t y  o f wind exposure  reach the s i g n i f i c a n t  I n wet c o m m u n i t i e s ,  R i b e s - Oplopanax  with site  level  Vaccinium - Lysichitum  (.35), t h e r e was an i n c r e a s e o f  (.29)  io  follow  pag~  120.  121 p r o d u c t i v i t y w i t h i n c r e a s e of wind exposure, hut i n b o t h cases not of s i g n i f i c a n t found i n t e r m e d i a t e  (Table  level.  Other communities were  5).  W i t h i n c r e a s e of wind exposure: In  Salal c o n v e x i t y of the p r o f i l e i n c r e a s e d the l o c a l p o s i t i o n on slope i n c r e a s e d presence of g l a c i a l t i l l and outcrop increased s o i l permeability increased s i t e index decreased  .21 .34 .62 .53 .46  .01 .02 .10  .23 .33 .29  .10  .12 .39 .41  .05 .05  i n Vaccinium - Salal c o n v e x i t y of the c o n t o u r s i n c r e a s e d l o c a l p o s i t i o n on s l o p e i n c r e a s e d stoniness decreased  .81 .69 .52  .01 .05  i n V a c c i n i u m - Moss c o n v e x i t y of c o n t o u r s i n c r e a s e d c o n v e x i t y of p r o f i l e i n c r e a s e d p o s i t i o n on s l o p e i n c r e a s e d s t o n i n e s s decreasdd s i t e Index d e c r e a s e d  .56 .36 .15 .11 .13  .01 .10  i n Blechnum stoniness increased l o c a l p o s i t i o n on s l o p e i n c r e a s e d t h i c k n e s s of o r g a n i c m a t t e r d e c r e a s e d  .33 .26 .45  in Vaccinium - Lysichitum steepness of the s l o p e i n c r e a s e d p o s i t i o n on s l o p e i n c r e a s e d s i t e index i n c r e a s e d  .65 .55 .29  i n Moss s o i l moisture decreased s o i l permeability increased s i t e Index decreased in  Polystichum f r e q u e n c y of ground water d e c r e a s e d s o i l permeability increased a c c u m u l a t i o n of o r g a n i c m a t t e r decreased  .02  122 in  R i b e s Oplopanax m i c r o t o p o g r a p h y became l e s s complex l o c a l p o s i t i o n on s l o p e i n c r e a s e d  On  a l l the  exposure  p l o t s analysed  i s accompanied  i n c r e a s e in increase in increase in i n c r e a s e in increase in o u t c r o p ;and i n c r e a s e in i n c r e a s e in i n c r e a s e in increase in decfease in decrease in  scale  was  group i n c r e a s e  Parent M a t e r i a l  parent  i n Figure  27  to devise materials  was  the  best  a r r a n g e m e n t w o u l d have been b e t t e r ation. no  Means and  meaning,  erally and  loams and  range  variety  of  outwash.  of t h e i r  of t h e i r  t h e i r poor  factors.  low  -  wind  .40 .15 .38 .32 .44 .22 .23 .38 .17 .29 .36 .32  consider-  v a r i a b l e have one.  had  Gen-  sands an  enormous  average  of  i n combination with soils  profile,  permeability  an  the  different  alluvial  feet with  Outcrop  Whether  a limited  till  .01 .01 .01 .05 .05 .01 .10 .01 .01 .01  quantitative  important  on  .01  27)  or w h e t h e r a  Glacial  177  shallow  drainage.  found.  found  i t s wide o c c u r r e n c e  other  because  because of  glacial  a simple  d e v i a t i o n of t h i s  p r o d u c t i v i t y was  o f p r o d u c t i v i t y (70  f e e t ) because  vity  standard  (Figure  i s an  correlation coefficients  highest  m  .10 .05  by:  impossible  for different  s c a l e used  one  steepness of slope altitude c o n v e x i t y of contours c o n v e x i t y of p r o f i l e l o c a l p o s i t i o n on s l o p e g l a c i a l t i l l parent material stoniness soil permeability accumulation of o r g a n i c matter podzolisation ground water s o i l moisture X„  It  as  .62 .67  and  had  a low  lacustrine organic  129  a  productisoils  soils  because  123  in  in  in  Salal O u t c r o p p a r e n t m a t e r i a l was a s s o c i a t e d w i t h higher altitudes greater s o i l permeability milder slopes more c o n v e x p r o f i l e lower p r o d u c t i v i t y g l a c i a l t i l l s o i l s were d e e p e r Moss g l a c i a l t i l l s were more s t o n y were f o u n d on s t e e p e r s l o p e s on l e s s c o n c a v e c o n t o u r s on l e s s c o n c a v e p r o f i l e h i g h e r ' p o s i t i o n on s l o p e were s h a l l o w e r have l o w e r f r e q u e n c y o f g r o u n d w a t e r lower s o i l moisture were more p o d z o l i s e d t h a n a l l u v i a l s o i l s and o u t w a s h e s Polystichum g l a c i a l t i l l i s found i n higher a l t i t u d e s on s t e e p e r s l o p e s had g r e a t e r s t o n i n e s s higher s o i l permeability higher s o i l moisture and was more p o d z o l i s e d t h a n a l l u v i a l s a n d s and loams  in Vaccinium - S a l a l o u t c r o p s o i l s were f o u n d on g e n t l e r s l o p e s h i g h e r l o c a l p o s i t i o n on s l o p e were s h a l l o w e r had l e s s s o i l m o i s t u r e had more p e r m e a b l e s o i l s in  V a c c i n i u m - Moss g l a c i a l t i l l was f o u n d on s t e e p e r s l o p e s in higher a l t i t u d e s on more c o n v e x c o n t o u r s on more c o n v e x p r o f i l e on h i g h e r p o s i t i o n on s l o p e had h i g h e r p e r c e n t a g e o f s t o n e s more g r o u n d w a t e r more s o i l m o i s t u r e was more p e r m e a b l e t h a n l a c u s t r i n e and outwash s o i l s  .24 .30 .24 .14 .14  .56 .17 .31 .25 .15 .32 .22 .43  .01  .10 .05  .10 .54 .19 .62 .35 .22 .22  .01  .64 .73 .78 .56 .51  .10 .05 .05  .32 .67 .21 .26 .43 .62 .35 .29 .34  .10  .01 .05 .01 .10  124 in  Blechnum o u t c r o p s o i l s had more complex microtopography .42 were on s t e e p e r s l o p e s .50 in higher a l t i t u d e s .49 had more c o n v e x c o n t o u r s .27 more c o n v e x p r o f i l e .25 greater stoniness .41 h i g h e r ground water .12 stronger podzolisation .24 lower s i t e index .11 t h a n g l a c i a l t i l l and l a c u s t r i n e d e p o s i t s  in Vaccinium - Lysichitum o r g a n i c p a r e n t m a t e r i a l was more f r e q u e n i n lower a l t i t u d e s on l o w e r p o s i t i o n on s l o p e w i t h h i g h e r ground water with higher s o i l moisture with greater accumulation of organic matter and h i g h e r p r o d u c t i v i t y in  R i b e s - Oplopanax a l l u v i a l f i n e sands w i t h c o r r e l a t e d w i t h i n c r e a s e in c o n c a v i t y of contours increase in concavity of p r o f i l e decrease in stoniness decrease in s o i l p e r m e a b i l i t y increase in productivity as compared w i t h a l l u v i a l g r a v e l s  On a l l t h e p l o t s , this  .61 .38 .68 .49  .05 .01 .01 r-.05  .10  .52 .48  .62 .75 .62  .43 .46  ".10 _ .05 .10  i f g e n e r a l i t i e s can be made a t a l l f r o m  a n a l y s i s , outcrop  and g l a c i a l  till  soils  are associated  with: steeper slopes higher a l t i t u d e s more c o n v e x c o n t o u r s more c o n v e x p r o f i l e h i g h e r p o s i t i o n on s l o p e g r e a t e r wind exposure shallower s o i l s greater stoniness d e c r e a s e i n ground water decrease i n s o i l moisture greater s o i l permeability greater podzolisation  .52  .40  .41 .34 .49 .22 .19  .46  .43 .43 .34 .37  .001 .01 .01 .01 .01 .05 .10 .01 .01 .01 .01 .01  125 Alluvial  and outwash p a r e n t  properties. lacustrine  There  i s no way  of a l l u v i a l  In t h i s  That  cantly  site  soils  .01").  index  Depth  form  only  "contamination"  (.40,  with decrease  .01),  deeper than  found  30  inches.  steep.  This  significant  Contrary to expectation, negative  and R i b e s  in soil  (.00).  e  layer)  and c o l l u v i a l p a r e n t m a t e r i a l i n stoniness i n accumulation of organic in site  index  In  correlation  but  insignifi-  In  Table  5.  d e p t h was a s s o c i a t e d w i t h :  Salal western aspects c o n c a v e shape o f c o n t o u r s c o n c a v e shape o f p r o f i l e l o w e r p o s i t i o n on s l o p e greater stoniness i n c r e a s e i n ground water increase i n podzolisation (A g l a c i a l t i l l parent m a t e r i a l Moss alluvial decrease increase matter increase  (-.08).  was  o n l y i n Moss  i n Vaccinium  - Oplopanax  t h e r e was no c o r r e l a t i o n  Increase  of s o i l  but the decrease  was v e r y  c o m m u n i t i e s was  28)  (Figure  decreased  the decrease  (-.28)  Polystichum  in  they  s m a l l c o r r e l a t i o n s were f o u n d  Lysichltum  in  Soil  1 Q  i f any, on s o i l s  individual  (.48,  to separate  material f o r correlation  analysis  i s generally valid  very slight,  in  analysis  deposits.  X  shallower  in this  and o r g a n i c p a r e n t  coefficient.  depth  m a t e r i a l had t h e o p p o s i t e  .45 .37 .38 .45 .68 .26 .60 .41  .10 .01  .32 .38  .10 .05  .17 .48  .01  .10  .01 .10  To  follow  page  125.  in  Polystichum decrease i n complexity of microtopography decrease i n stoniness . decrease i n a l t i t u d e western aspects concave p r o f i l e l o w e r p o s i t i o n on s l o p e drier soils lower s o i l p e r m e a b i l i t y  in Vaccinium - S a l a l increase i n steepness of slope western aspects d e c r e a s e i n p o s i t i o n on s l o p e glacial t i l l decrease.of•soil permeability i n V a c c i n i u m - Moss increase i n steepness of slope decrease i n a l t i t u d e more c o n c a v e p r o f i l e d e c r e a s e i n t h e p o s i t i o n on s l o p e increase i n s o i l moisture decrease i n p e r m e a b i l i t y decrease i n accumulation of organic matter in  Blechnum decrease increase increase decrease decrease decrease matter decrease increase  in of in in in of  altitude c o n c a v i t y of contours c o n c a v i t y of p r o f i l e l o c a l p o s i t i o n on s l o p e s o i l moisture accumulation of organic  i n podzolisation i n s i t e index  in  Vaccinium - Lysichitum decrease i n steepness of slope i n c r e a s e i n c o n c a v i t y of c o n t o u r s l o w e r p o s i t i o n on s l o p e greater stoniness lower s o i l moisture lower accumulation of o r g a n i c matter  in  R i b e s - Oplopanax increase i n altitude i n c r e a s e i n c o n c a v i t y of p r o f i l e decrease i n stoniness decrease i n ground water  '  127 On  a l l the p l o t s  soil  depth  increased with  i n c r e a s e i n steepness of s l o p e decrease i n a l t i t u d e western aspects c o n c a v e shape o f c o n t o u r s c o n c a v e shape of p r o f i l e l o w e r l o c a l p o s i t i o n on s l o p e increase i n stoniness a l l u v i a l and outwash p a r e n t m a t e r i a l decrease i n accumulation of o r g a n i c matter decrease i n p o d z o l i s a t i o n increase i n s i t e index  X. 11  Stoniness  .20 .33 .20 .29 .25 .23 .15 .18  .05 .01 .05 .01 .02 .02  .30 .18  .01 .10 .01  .10  .40  (Figure  28)  S t o n i n e s s , when a l l t h e p l o t s were c o n s i d e r e d , found of  t o have v e r y l i t t l e  the  a s s o c i a t i o n s t h e r e was  with decrease (.42) with of  effect  of s t o n i n e s s .  -  Salal  this  and  to  There,  fact  and  These  Vaccinium  productive stony.  are soils  mid  slopes.  - Moss a r e  occur mainly  and  explained. a s s o c i a t i o n s of  on u p p e r  slopes are  formed  on  glacial  lower  till  On  of  - Oplopanax the  the  fires.  s l o p e s , more  are  those  and  formed  a r e d e e p e r and  slopes, s o i l s  a r e more p r o d u c t i v e t h a n In Ribes  d e s t r o y e d by  unproductive.  Salal  ecological habitat  material, soils  c l i m a t e are not  shallow  In B l e c h n u m on  outwash; t h e y  e a s i l y be  -  increased  o r g a n i c d e p o s i t s , which because  g e n e r a l l y wet  soils  can  outcrop parent  a g r e a t e x t e n t by  cool  of  on  in productivity  where p r o d u c t i v i t y  C o n s i d e r i n g the  h i g h e r a l t i t u d e s where t h e y ridges.  Increase  In most  E x c e p t i o n s were V a c c i n i u m  increase in stoniness.  each a s s o c i a t i o n  site productivity.  a slight  - Moss ( . 2 4 )  and V a c c i n i u m  Vaccinium  on  was  on  formed  more on  glacial  till  g r a v e l i s covered  in  128 time w i t h  more and more sand and s i l t  productive. found  Vaccinium - Lysichltum  on o r g a n i c  soils,  i n higher  s o i l s w h i c h were more s t o n y . usually  in  in  in  in  in  Salal increase increase increase  i n lower a l t i t u d e s  altitudes  a l s o on  In lower a l t i t u d e s  on humps and h a d h i g h e r Increase  and becomes more  of stoniness  site  index.  mineral  trees  (Table  i s associated  i n s o i l depth In ground water i n s o i l moisture  was  grew  5.)  with: .68 .34 .44  .01 .10  Moss western aspects i n c r e a s e of steepness of slope g l a c i a l t i l l parent m a t e r i a l decrease i n s o i l depth decrease i n s o i l moisture d e c r e a s e i n ground water increase i n s o i l permeability  .17 .26 .56 .38 .42 .25 .34  Polystichum glacial t i l l decrease i n s o i l depth increase i n podsolisation i n c r e a s e i n steepness of slope  .62 .20 .23 .27  .001  .74 .49 .61  .05  Vaccinium - Salal i n c r e a s e i n c o n c a v i t y of contours l o w e r p o s i t i o n on s l o p e decrease i n s o i l p e r m e a b i l i t y greater accumulation of organic • matter . stronger p o d z o l i s a t i o n greater p r o d u c t i v i t y V a c c i n i u m - Moss increase i n complexity of microtopography i n c r e a s e i n steepness of slope increase in a l t i t u d e i n c r e a s e in convexity of contours increase in convexity of p r o f i l e g l a c i a l •t i l l i n c r e a s e i n ground water Increase i n s o i l moisture decrease in s o i l p e r m e a b i l i t y increase in productivity  .01 .05 .05 .10  .10  .50 .48 .42  .19 .35 .64  .40 .40 .62 .35 .26 .28 .24  .10 .01 .05 .05 .01 .10  To  follow  page  12 8 .  129 in  in  Blechnum Increase m altitude i n c r e a s e i n c o n v e x i t y of c o n t o u r s h i g h e r p o s i t i o n on s l o p e i n c r e a s e i n f r e q u e n c y of g l a c i a l t i l l and c o l l u v i a l m a t e r i a l decrease i n s o i l moisture increase in s o i l permeability decrease i n s i t e index  .25 .08 .20 .41 .20 .14 .24  Vaccinium - Lysichitum increase i n s o i l depth decrease i n s o i l moisture decrease i n p r o d u c t i v i t y  .41 .61 .61  in  R i b e s - Oplopanax i n c r e a s e i n c o n v e x i t y of p r o f i l e increased frequency in a l l u v i a l gravels decrease i n s o i l depth decrease i n s o i l water  On  a l l the p l o t s increase in increase in increase in outcrop and i n c r e a s e of decrease i n increase in increase in  no  a l l the  index a l s o increased  cant  value,  very  n a r r o w r a n g e and  a n a l y s i s may Salal  and  probably  little. be  seepage  p l o t s , with  i n d i v i d u a l community d i d t h i s  varies very  .02 .10 .10  .20  Considering site  .77 .62 .59 .4-0  i n c r e a s e i n s t o n i n e s s was c o r r e l a t e d t o s t e e p n e s s of s l o p e .37 l o c a l p o s i t i o n on s l o p e .18 wind exposure .22 g l a c i a l t i l l parent material .46 s o i l depth .14 ground water .19 soil permeability .21 podzolisation  G r o u n d w a t e r and  water the  .05  of  because  Vaccinium -  Salal,  ground In  signifi-  i n d i v i d u a l c o m m u n i t i e s have a i n d i v i d u a l communities  d e t a i l s w h i c h came out  interest.  of  However,  c o r r e l a t i o n reach  seepage w i t h i n A few  (.38,.01).  .10 .05 .05  29)  (Figure increase  .01 .10 .05 .01  The  driest  showed t h e  of  the  communities, lowest c o r r e l a t i o n  130 (-.04, and  .06  respectively) probably  g r o u n d w a t e r was  so r a r e .  Lysichitum  was  at  (.21)  a l l times.  probably  the  communities,  c o u l d be  as  productivity with see  site  in  in  in  in  index  Table  of  of water  community, w i t h  increased  a  (-.10).  For  decrease  A l l other  showed i n c r e a s e  seepage.  of  i n Vaccinium -  c a u s e d by p r e s e n c e  expected,  increase  With increase in  correlation  In Blechnum, a wet  of ground water  coefficients  Low  because presence  of  correlation  5of  seepage  i t was  found  that:  Salal altitude increased l o c a l p o s i t i o n on s l o p e d e c r e a s e d s o i l depth increased stoniness increased s o i l moisture increased s o i l p e r m e a b i l i t y decreased  .35 .46 .26 .34 ,J6 .65  .01 .01  Moss l o c a l p o s i t i o n on s l o p e d e c r e a s e d c o n c a v i t y of contours i n c r e a s e d s o i l moisture increased s o i l p e r m e a b i l i t y decreased  .42 .46 .57 .65  .05 .05 .01 .001  .14 .34 .20  .10  Polystichum f r e q u e n c y of western a s p e c t s s o i l moisture increased s o i l p e r m e a b i l i t y decreased  increased  .10  Vaccinium - Salal c o n v e x i t y of c o n t o u r s d e c r e a s e d p o d z o l i s a t i o n decreased  .62 .59  .10  V a c c i n i u m - Moss altitude increased c o n c a v i t y of contours i n c r e a s e d c o n c a v i t y of p r o f i l e i n c r e a s e d g l a c i a l t i l l as p a r e n t m a t e r i a l stoniness increased s o i l moisture increased soil permeability decreased productivity increased  .35 .23 .26 .35 .35 .60 .33 .19  .10  increased  — .10 .10 .01  131 in  Blechnum s o i l moisture increased s o i l p e r m e a b i l i t y decreased p o d z o l i s a t i o n decreased  .52 .56 .36  in Vaccinium - Lysichitum steepness of slope decreased a l t i t u d e decreased s o i l depth decreased In  .49 .53 .18  R i b e s - Oplopanax a l t i t u d e decreased s o i l depth i n c r e a s e d productivity increased  On a l l t h e p l o t s  .01 .01 .10  .48 .54 .40  i n c r e a s e i n ground water  showed  correlations  with: w e s t e r n .a s p e c t s decrease i n steepness of slope increase in c o n c a v i t y of contours i n c r e a s e i n c o n c a v i t y of p r o f i l e d e c r e a s e i n l o c a l p o s i t i o n on s l o p e decrease i n wind exposure o r g a n i c , l a c u s t r i n e and a l l u v i a l p a r e n t material increase in s o i l moisture decrease in p o d z o l i s a t i o n  X^^ The  Soil  correlation  moisture  (Figure  coefficient  with site  already highly  .001)  when t h e swampy p l a c e s were e x c l u d e d f r o m  In  still  d r y c o m m u n i t i e s and R i b e s - O p l o p a n a x  Increase  of s o i l  increased.  moisture,  .43 .81 .43  .01 .001 ' .01  the a n a l y s i s .  (sandy  soils)  fered with aeration  of s i t e  Table  5.  index  Blechnum  moisture  See  with  the s i t e  Polystichum,  i n decrease  (.51,  \  and V a c c i n i u m - L y s i c h i t u m , i n c r e a s e o f s o i l and r e s u l t e d  (.42,  index  increased  a s c a n be e x p e c t e d ,  I n t h e wet c o m m u n i t i e s ,  .01 .001 .001 .001 .01 '  29)  .01),  significant,  .14 .39 .71 .67 .70 .36  interindex.  132 In  individual  communities  increase  is  correlated  in  Salal i n c r e a s e of slope increase concavity i n contours increase concavity i n p r o f i l e d e c r e a s e i n l o c a l p o s i t i o n on s l o p e increase i n s o i l depth increase i n stoniness i n c r e a s e i n ground water s o i l permeability decreased increase i n s i t e index  in  in  in  in  moisture  with:  Moss decrease i n steepness of slope increase of concavity i n contours i n c r e a s e of c o n c a v i t y i n p r o f i l e l o w e r l o c a l p o s i t i o n on s l o p e a l l u v i a l anc I outwash p a r e n t m a t e r i a l decrease i n stoniness i n c r e a s e i n ground water decrease i n s o i l p e r m e a b i l i t y decrease m podzolisation increase i n productivity Polystichum increase i n slope eastern aspects glacial t i l l parent-material increase i n s o i l depth i n c r e a s e i n ground water decrease i n p o d z o l i s a t i o n decrease i n p r o d u c t i v i t y Vaccinium - Salal increase i n altitude l o w e r p o s i t i o n on s l o p e g l a c i a l t i l l parent m a t e r i a l Vaccinium increase increase increase increase increase increase decrease increase  in soil  Moss i n c o n c a v i t y of contours in concavity of p r o f i l e in frequency of g l a c i a l t i l l in s o i l depth in stoniness i n ground water in permeability in p r o d u c t i v i t y  .47 .46  .37  .10 .10  .41  .10 .10 .10 .01 .01  .32  .34 .41  .10 .05 .05 .05 .05 .05 .01 .01 .10 .05  .26 .25 .22 .16 .34 .36 .34  .10 .10 .10  .43 .44 .76 .60 .22 .46  .45 .40 .43 .42 .57 .48  .42 .46 .56  .15 .10 .28 .15 .26 .60 .58 .25  .01 .01  To  follow  page  132.  133 in  Blechnum l o w e r p o s i t i o n on s l o p e decrease i n s o i l depth i n c r e a s e i n ground water decrease i n s o i l p e r m e a b i l i t y  .19 .50 .52 .33  in  Vaccinium - Lysichitum organic parent m a t e r i a l decrease i n s o i l depth decrease i n stoniness decrease i n s o i l p e r m e a b i l i t y  .48 .55 ,6l .53  in  R i b e s - Oplopanax decrease i n s o i l increase in site  permeability index  .54 .47  a l l the  moisture  on  plots soil  decrease increase increase decrease decrease alluvial, parent increase decrease decrease  of  soil  is  30  i t can  sites with  site  Soil  Permeability  p l o t s i t was the  site  probability level  f a r from simple.  Figure on  a l l the  permeability  V e r y low  be  found  seen t h a t  on  soil  from there  the  permeability  decreased.  the  r e l a t i o n s h i p was  not  the  .01 .001 .001 .001 .01  .43 .81 .80 .38  .01 .001 .001 .01  decrease  (.19,  the  lower p r o d u c t i v i t y  permeability.  the  greater  site  Also same.  .10).  this correlation  graphical presentation  sites with  and  found t h a t w i t h  index increases  .31 .72 .67 .64 .32  30)  (Figure  indicates that  From t h e  excessive  i n d e x was  permeability  with:  i n s t e e p n e s s of s l o p e i n c o n c a v i t y of c o n t o u r s i n c o n c a v i t y of p r o f i l e i n l o c a l p o s i t i o n on s l o p e i n wind exposure o r g a n i c , l a c u s t r i n e and outwash material i n ground water in s o i l permeability in podzolisation X-^  On  increased  .01 .01 .10  in was  The  highest  than  average  index decreased  as  in individual associations In d r y  associations  134 with  normally  increased  h i g h l y permeable  as the p e r m e a b i l i t y  R i b e s - Oplopanax  (.84,  .01).  a s s o c i a t i o n s where t h e s o i l the  correlation  became  Vaccinium - Salal stichum  (-.18)  (-.07) there  3  soils,  decreased, As s o i l  was i n c r e a s e  (-.25)  .10),  increased i n  i s u s u a l l y not high  (.07),  i n Moss  and V a c c i n i u m . -  i n Blechnum  (.41,  Salal  moisture  permeability  insignificant;  (.42)  the p r o d u c t i v i t y  (.04).  Moss  and V a c c i n i u m -  of p r o d u c t i v i t y with  In PolyLysichitum  Increase  in soil  permeability. Correlating variables in  in  in  i t was f o u n d  the s o i l that  permeability  soil  with  permeability  Salal decrease i n a l t i t u d e decrease i n convexity of p r o f i l e with increased frequency of g l a c i a l increase i n steepness of slope i n c r e a s e i n ground water increase i n s o i l moisture increase i n s i t e index Moss eastern slopes decrease i n wind exposure i n c r e a s e i n ground water increase i n s o i l moisture decrease i n stoniness Polystichum decrease i n wind exposure g l a c i a l t i l l parent m a t e r i a l decrease of s o i l depth increase m accumulation of organic matter  in Vaccinium - Salal increase i n steepness of the slope d e c r e a s e i n l o c a l p o s i t i o n on s l o p e increased s o i l depth increase i n stoniness i n c r e a s e i n humus a c c u m u l a t i o n increase i n productivity  till  other  decreases .06 .41 .30 .27 .65 .60 .34  with:  .10 .01 .01  .40 .33 .65 .48 .34  .05 .10 .001 .01 .10  .39 .35 .35  .05 -10 .10  .41  .05  .52 .62 .71 .61 .40 .42  .10 .05  135 in  in  V a c c i n i u m - Moss more c o n c a v e c o n t o u r s more c o n c a v e p r o f i l e s d e c r e a s e i n p o s i t i o n on s l o p e g l a c i a l t i l l parent m a t e r i a l increase i n s o i l depth increase i n stoniness i n c r e a s e i n ground water increase i n s o i l moisture Blechnum decrease increase decrease increase increase  .34 .32 .17 .34 .11 .28 .33 .59  i n steepness of slope In c o n c a v i t y o f c o n t o u r s in stoniness i n ground water in thickness of organic matter  in Vaccinium - Lysichitum western aspects increase i n podzolisation in  R i h e s - Oplopanax - i n c r e a s e i n c o n c a v i t y of p r o f i l e increase i n s o i l moisture increase i n productivity  Considering decrease  a l l the p l o t s ,  soil  .58 .41 .14 .33 .41  .01 —.05  .82 .60  .05  .10 .05  .51 .50 .84  permeability  .01  was f o u n d t o  with  decrease in increase in increase in lower l o c a l decrease in increase in increase in increase in decrease i n  steepness of slope concavity contours c o n c a v i t y of p r o f i l e p o s i t i o n on s l o p e wind exposure stoniness ground water t h i c k n e s s of organic podzolisation  X^,- T h i c k n e s s Thickness  of organic  combined) showed a v e r y trees  (-.036, .01),  plant  associations.  soils,  .01  with  low t o t a l  material  of Organic M a t e r i a l  material  significant  but there  .30 .58 .57 .53 .38 .21 .69 .33 .26  ( L ; F and H relation  i s a distinct  In those w i t h water h o l d i n g  .01 .001 .001 .001 .01 .05 .001 .01 .01  (Figure  30)  horizons  t o the growth of d i f f e r e n c e between  typically capacity,  shallow  outcrop  the s i t e  136 index increased  with  material  .43 a l m o s t  .86,  (Salal  .01).  Also  a slight  Lysichitum  (.35),  increased  the s o i l  Oplopanax  (.21)  older  sites,  Blechnum  of organic  of s i t e  matter,  but s i g n i f i c a n t  of organic  Index w i t h  slight  (-.55, .01).  indicated  and w i t h  (-.13)  greater  associations  a decrease  i n V a c c i n i u m - Moss  An i n c r e a s e d a c c u m u l a t i o n  In R i b e s -  A l l other  i n Moss  Salal  material  material  above t h e r i v e r  i n the s o i l .  organic  i n Vaccinium -  d e p t h above t h e w a t e r t a b l e .  material  of  and V a c c i n i u m -  was f o u n d  where t h e i n c r e a s e  showed an I n c r e a s e  (-.20),  significant  accumulation  of o r g a n i c  of accumulation  increase  more e l e v a t e d  amount o f f i n e  ation  an i n c r e a s e  i n accumul-  and  (-.46,  Polystichum  .02)  and  ' i n organic  m a t e r i a l was  correlated  with: in  in  in  Salal increase increase  i n podzolisation i n s i t e Index  Moss eastern aspects more c o n v e x p r o f i l e h i g h e r l o c a l p o s i t i o n on s l o p e deeper s o i l s lower s o i l p e r m e a b i l i t y increase i n podzolisation Polystichum more c o n c a v e p r o f i l e decrease i n wind exposure increase i n s o i l depth decrease i n s o i l p e r m e a b i l i t y increase i n podzolisation  .48 .43  .05  .34 .31  .10  .46  .17 .05 .40 .34 .41 .30 .41 .49  .02 .05 .10 .05 .05 .01  137 in Vaccinium - Salal w i t h lower a l t i t u d e s l o w e r p o s i t i o n on s l o p e increase m c o n c a v i t y of contours increase i n stoniness decrease i n s o i l p e r m e a b i l i t y increase i n productivity  '  i n V a c c i n i u m - Moss increase i n microtopography decrease i n slope h i g h e r p o s i t i o n on s l o p e decrease i n s o i l depth decrease i n p r o d u c t i v i t y in  .52 .61 .40 .50 .40 .86  .10  .01  .50 .39 .18 .58 .46  -  .02 .10 .01 .10  Blechnum increase  .26  in altitude  eastern aspects decrease i n wind exposure decrease i n s o i l depth decrease i n p r o d u c t i v i t y in Vaccinium - Lysichitum no c o r r e l a t i o n s o f any s i g n i f i c a n c e were in  R i b e s - Oplopanax i n c r e a s e i n wind exposure increase i n podzolisation  On  a l l the p l o t s a c c u m u l a t i o n  .43 .45 .30  .05 .02  .55  .01  found .49 .40  of organic  material  increased  with: .16 .28 .30 .33 .23 .36  decrease i n steepness of slope increase i n elevation decrease i n s o i l depth decrease i n s o i l p e r m e a b i l i t y increase i n podzolisation and d e c r e a s e i n s i t e i n d e x  X^g  Podzolisation  (Figure  31)  From t h e a n a l y s i s o f a l l t h e p l o t s i t can stated  t h a t w i t h an  decreases  increase  (-.33, .01).  associations  of p o d z o l i s a t i o n the  While  except Vaccinium  t h i s was - Moss  true  (.12),  .10 .01 .01 .01 .02 .01  be  site  index  i n a l l the nowhere d i d i t  To  follow  page  13 7.  138 reach a s i g n i f i c a n t  level.  See T a b l e 5.  Correlations  g e n e r a l l y were l o w . In  individual  associations podzolisation  increases  with: in  in  in  Salal lower a l t i t u d e s more c o n v e x c o n t o u r s increase i n s o i l depth (j) increase i n accumulation of organic western aspects Moss more c o n v e x more c o n v e x increase i n decrease i n increase i n  contours profile l o c a l p o s i t i o n on s l o p e s o i l moisture accumulation of organic  Polystichum decrease i n steepness of slope l o w e r p o s i t i o n on s l o p e increase i n stoniness decrease i n s o i l moisture increase i n accumulation of organic decrease i n p r o d u c t i v i t y  matter  matter  matter  .44 .36 ,6o  —.10  .42  .02 .10 .10  .29 .38 .44 .34 .40  .05 .02 .10 .05  .48  .26 .21 .23 .36 .49 .20  ' .10 .01  in Vaccinium - S a l a l i n c r e a s e i n complexity of the increase increase decrease  microtopography .46 In c o n v e x i t y of the p r o f i l e .57 i n stoniness .48 o f ground water .58  in  V a c c i n i u m - Moss increase i n complexity of microtopography increase i n altitude h i g h e r p o s i t i o n on s l o p e increase i n accumulation of organic matter  in  Blechnum increased increase increase increase increase decrease decrease  complexity of microtopography in steepness of slope in altitude of c o n v e x i t y of c o n t o u r s i n p o s i t i o n on s l o p e i n s o i l depth i n ground water  .33 .22 .17 .30  .57 .39 .38 .27 .27 .28 .36  .01 .05 .10 .10  139 in  Vaccinium western  in  Lysichitum .83  aspects  R i b e s - Oplopanax decrease i n the slope increase convexity i n contours increase i n s o i l permeability i n c r e a s e i n humus a c c u m u l a t i o n  .50 .63 .40 .39  On a l l t h e p l o t s p o d z o l i s a t i o n i n c r e a s e d  Site  .21 .24 .29 .42 .39 .47 .22 .37 .18 .20 .43 .39 .26 .23 .33  topographic,  operating trees.  climatic, soil,  on a c e r t a i n s i t e  biotic  during  While i t i s r e a l i z e d  .05 .02 .01 .01 .01 .01 .05 .01 .10 .05 .01 .01 .01 .02 .01  index  Forest p r o d u c t i v i t y i s the r e s u l t all  .10  with  i n c r e a s e d In complexity of microtopography increase i n steepness of slope increase i n a l t i t u d e more c o n v e x c o n t o u r s more c o n v e x p r o f i l e i n c r e a s e i n l o c a l p o s i t i o n on s l o p e i n c r e a s e i n wind exposure g l a c i a l t i l l and o u t c r o p p a r e n t m a t e r i a l decrease i n s o i l depth increase i n stoniness d e c r e a s e i n ground water decrease i n s o i l moisture increase i n s o i l permeability increase i n accumulation of organic matter decrease i n s i t e index Y.  .05  that  of i n t e r a c t i o n of  and h i s t o r i c  the l i f e t i m e  factors  of e x i s t i n g  t h e p o t e n t i a l and e x i s t i n g  p r o d u c t i v i t y may be d i f f e r e n t  one must r e l y m a i n l y on  indicators.  of r e s e a r c h ,  selected best  height  direct  fairly  A f t e r many y e a r s  i n d e x as t h e  measurement o f f o r e s t p r o d u c t i v i t y b e c a u s e  Morozov of the t o t a l  f o r e s t e r s have  o f t r e e s and e s p e c i a l l y t h e s i t e  independent  of stocking  (1928)  influence  writes  present  i t is  and age o f t h e s t a n d . that:  of a l l s i t e  "a c l e a r  conditions  representation gives  t h e average  140  height the  o f t h e stand a t a c e r t a i n age.  algebraic  different  total  and r e p r e s e n t s  influences  pertaining  The B r i t i s h that  Forestry  a growth o f any s p e c i e s  expressed:  " t h e combined  This  i s , so t o s a y ,  t h e components  of a l l  to the s i t e . " Commission  of trees  (1928)  on a g i v e n  considers site  e f f e c t of a l l f a c t o r s which  influence  growth."  (1953)  Meyer too  many and t o o complex  single site the  quantitative  index?),  the s i t e  b u t he s t a t e d :  of the s i t e  f a c t o r s were  integrated quality  into a  (as i s the  "Among many d i f f e r e n t p r o p o s a l s  as a s i t e  i n d e x has w i t h s t o o d t h e  o f t i m e and i n f a c t h a s p r o v e d t o be b y f a r t h e most  satisfactory  index."  Height their vigor,  certain  of trees  environment.  i s the product  plant  community  index a l s o cation,  a t a c e r t a i n age I s t h e  their suitability  trees  great  that  t o be c o m p l e t e l y  expression  e a r l y use of height  test  of  believed  or the s o i l  t  and compensates a l l the p l o t s ,  other v a r i a b l e s ,  increased  development p r o c e s s e s , a type  of the  position  of e c o l o g i c a l  the s i t e classifi-  Itsrelative simplicity i s a f o r a l l i t s disadvantages. site  index,  correlated  with  with:  decrease i n a l t i t u d e western slopes convex c o n t o u r s more c o n v e x p r o f i l e lower l o c a l  or vigor  o f a l l i n t e r a c t i n g f a c t o r s as I s t h e  even i f i n c o m p l e t e .  In  and a d a p t a b i l i t y t o a  And b e c a u s e t h e h e i g h t  can be c o n s i d e r e d  asset  expression  on s l o p e  .35 .23 .4-7 .44  .01 .02 .01 .01  .34  .01  141 outwash and increase i n increase i n increase i n decrease i n decrease i n decrease i n In  a l l u v i a l parent material s o i l depth ground water s o i l moisture permeability accumulation of organic matter podzolisation  individual  index i s c o r r e l a t e d in  in  in  in  associations  significant  .24 .40 .38 .42 .19 .36 .33  .02 .01 .01 .01 .05 .01 .01  increase of s i t e  with:  Salal decrease i n steepness of slope decrease In c o n v e x i t y of p r o f i l e decrease In a l t i t u d e l o w e r p o s i t i o n on s l o p e increase i n s o i l moisture ' decrease i n s o i l p e r n e a b i l i t y i n c r e a s e i n l a y e r of organic matter  .28 .31 .19 .17 .22 .41 .43  .10 .10  Moss decrease i n the steepness of slope western aspects decrease i n convexity of contours w i t h i n c r e a s e i n s o i l depth increase i n s o i l moisture  .29 .18 .26 .48 .41  .01 .05  Polystichum decrease i n s o i l moisture decrease i n p o d z o l i s a t i o n w i t h i n c r e a s e of the p o s i t i o n  .34 .20 .39  on s l o p e  Vaccinium - S a l a l decrease i n a l t i t u d e l o w e r p o s i t i o n on s l o p e increase i n stoniness increase i n s o i l moisture decrease i n s o i l p e r m e a b i l i t y i n c r e a s e i n accumulation of organic matter  .43 .41 .42 .40 .42 .86  i n V a c c i n i u m - Moss western aspects decrease i n a l t i t u d e increase i n concavity of contours i n c r e a s e i n ground water increase i n s o i l moisture increase i n stoniness decrease i n accumulation of organic matter  .47 .17 .35 .19 .25 .24 .46  .10 .05  .01 .05 .10  ,.05  142 in  in  in  Blechnum decrease decrease decrease increase decrease decrease decrease decrease  in in of in in in in in  .37 .56 .14 .07 .24 .17 .55 .05  complexity of microtopography altitude t h e p o s i t i o n on s l o p e s o i l depth stoniness s o i l moisture a c c u m u l a t i o n of o r g a n i c matter podzolisation  Vaccinium - Lysichitum more complex m i c r o t o p o g r a p h y decrease i n a l t i t u d e i n c r e a s e In c o n c a v i t y of c o n t o u r s increase i n s o i l depth increase i n stoniness decrease i n s o i l moisture  .54 .75 .67 .21 .61 .18  R i b e s - Oplopanax l e s s complex m i c r o t o p o g r a p h y decrease i n s o i l p e r m e a b i l i t y i n c r e a s e i n ground water increase i n s o i l moisture  .62 .84 .40 .47  .10 .01  --r  .01  .05 .10 .10  .10 .01  Prom t h e t a b l e s p r e s e n t e d on p r e c e d i n g p a g e s i t i s possible any  to f i n d  individual  discussed.  selected  outlined  the  must be b a s e d region  o r any  As  mathematics,  i n f o r m a t i o n about  on  studied.  group  briefly  interpretation logics, There  c o r r e l a t i o n s were f o u n d  and  may  be  samples,  the p l o t s .  case,  the  of the  some knowledge  where one  would  communities  hence a c e r t a i n  correlation  o t h e r v a r i a b l e w o u l d be  analysis  the expect are  variable  value  coefficient zero.  with  of the  examples i n w h i c h  selected plant and  involves  dealing  community c o u l d have i d e n t i c a l  In t h i s  v a r i a b l e w i t h any  section  of the r e s u l t s  insignificant  v e r y narrow s t r a t i f i e d the p l a n t  i n the  a few  The  which  from the seventeen v a r i a b l e s  at least  them t o be v e r y h i g h .  within  any p r o b l e m  on a l l of  If, in a  this  143 theoretical been f o u n d  example, t o be  a l l the p l o t s  e q u a l l y dry,  site  index would i n d i c a t e  dent  of s o i l  be  the  moisture.  limiting  factor  the  i n the  Salal  correlation  discussed  i s zero.  i n the  S o i l moisture  i n the  f o r t r e e growth.  The  section  on  of  contours.  most  c o r r e l a t e d w i t h the environmental the  Salal  material,  o b s c u r i n g the  and  analyzed,  the  i n the  average  e x p r e s s i o n of s o i l  d e p t h s and  Vaccinium matter  was  of a l l the  of s o i l  significant  - Salal, found  moisture,  water  which i s c l o s e t o the  only decrease  moisture  t o the  soil  and  ten per  cent  most i m p o r t a n t ,  other f a c t o r s .  optimum o f t r e e position  level. of  In  organic  obscuring the  effect  In t h r e e communities,.Vaccinium  wide range  altitude  Importance.  parent  and  - Lysichitum, which occur  great  In  partly  Moss, B l e c h n u m and V a c c i n i u m of a l t i t u d e s ,  the  Decrease  was  found  of organic•matter  with  regime.  depth,  higher  increase i n accumulation  t o be  shape  habitat.  s l o p e , a l l t h r e e i n f l u e n c i n g and  relief.  s l o p e was  i n c r e a s e of  f a c t o r s were t h e  soil  on  sufficiently  f a c t o r s w h i c h were  I n t h e Moss a s s o c i a t i o n ,  growth,  the  c o r r e l a t e d w i t h the  t h e most i m p o r t a n t  In P o l y s t i c h u m ,  Salal  increase i n productivity varied  conditions existing  relief  chance i s  a s s o c i a t i o n s the  largest  association  hence  may  statistics.  significantly  In d i f f e r e n t  with  community  w i t h i n the  and  had  indepen-  Salal  But  r o l e p l a y e d by  C o n s i d e r i n g a l l the p l o t s p r o d u c t i v i t y was  coefficient  t h a t t h e p r o d u c t i v i t y was  community a l l t h e p l o t s were e q u a l l y d r y , correlation  association  t o be  was  very  over of  a  144 significant better  i n Blechnum, w h e r e a s a l l f a c t o r s ,  d r a i n a g e and s o i l  Important  depth  above t h e w a t e r t a b l e ,  i n the Vaccinium - Lysichitum.  p e r m e a b i l i t y and i n c r e a s e i n s o i l important  factors  on a l l u v i a l  emphasizing  Decrease  moisture  soils  were  in soil  a r e t h e most  i n t h e R i b e s - Oplopanax  community. If, tivity of  f o r example,  of the f o r e s t  humus, one n e e d  cients  of  on s i t e  cedar.  communities  communities  In S a l a l ,  is still  increases  accumulation  identical"  h e m l o c k and c e d a r  Blechnum  Index o f hemlock  I n Moss a s s o c i a t i o n  (.13).  similar In  a r e deep and seepage common, t h e i n p l a c e s w h i c h have l o w e r  (-.20).  the c o r r e l a t i o n  In Vaccinium - S a l a l ,  We  than  c a n draw  coefficients i n p r o d u c t i v i t y of  i n c r e a s e s with i n c r e a s e of accumulation of  .01).  I n V a c c i n i u m - Moss (.27,  (-.55* .01)  i t decreases  a n a l y s i s u n f o r t u n a t e l y cannot due  on s i t e  of organic matter  the h i g h e r ' a l t i t u d e s .  and  matter.  i n c r e a s e s as t h e t h i c k n e s s  (.33).  better  c o n c l u s i o n s from  (.86,  coeffi-  of lower ' a l t i t u d e s i s  detectable but i s i n s i g n i f i c a n t  p r o d u c t i v i t y was f o u n d average  Is based  productivity  P o l y s t i c h u m where t h e s o i l s  humus  out the c o r r e l a t i o n  i n d e x o f D o u g l a s - f i r , whereas p r o d u c t i v i t y o f  organic matter  trend  c h a n g e s w i t h changes o f t h i c k n e s s  only t o f i n d  of the plant  higher altitude and  i n how t h e p r o d u c -  of p r o d u c t i v i t y w i t h t h i c k n e s s of organic  Productivity based  site  one i s i n t e r e s t e d  t o the presence  insignificant)  significantly.  show w h e t h e r t h i s  of a t h i c k l a y e r  This  decrease  was  o f humus i s o l a t i n g t h e  soil and we  from the  a i r o r w h e t h e r i t i s due  unavailability accept  fire  the  fact  does n o t  do  humus l a y e r . tion  and  If  t h a t wood i s m a i n l y  a  damage by  From the  Salal,  communities at  o f m i n e r a l s bound i n o r g a n i c m a t e r i a l .  burning  least  Moss and  i t does n o t  not  by  carbohydrate,  wood, b u t  by  then  burning  a n a l y s i s i t appears t h a t the  o f o r g a n i c m a t e r i a l by  Salal  t o slow m i n e r a l i z a t i o n  fire  i s detrimental  Vaccinium  loss  In t h e  Fire  sites with  other  burning  may  fire  the p r o d u c t i v i t y of s i t e  on  be  deep s o i l s ,  more i m p o r t a n t  organic matter. considered. with  From t h e  thickness  that while  Especially  a l l good c o n s e r v a t i o n i s t s  i m p r o v e s as  the  except  where t h e  entire  s o l u m as  i n the  different  environmental  the  results  the  effect  coefficients i t a l s o may  has  of Vaccinium the  of  must  be  of p r o d u c t i v i t y be  concluded  decreases,  Increase  of  based  on  accumulated  - L y s i c h i t u m means g r e a t e r  s o l u m above t h e p e r m a n e n t w a t e r t a b l e w h i c h i n greater p r o d u c t i v i t y  (.31).  the  - Salal association.  same c o r r e l a t i o n  conditions.  matter i n Vaccinium  slash  o r g a n i c m a t e r i a l , i t s growth  of o r g a n i c matter  case  in  d e s t r u c t i o n of  o r g a n i c m a t e r i a l forms a g r e a t e r p a r t of  - Lysichitum  of  but  f o r or a g a i n s t  danger of w i l d f i r e s  grow on  thickness  Vaccinium  organic  c a u s e d by  of o r g a n i c matter,  h e m l o c k can  reasons  to c o n s i d e r than  correlation  other  may  know t h a t p r o t e c t i o n o f f o r e s t s f r o m Aire i s e s s e n t i a l , moist  -  of p r o d u c t i v i t y ,  d e s t r u c t i o n of o r g a n i c m a t t e r .  damage f o r e s t s i n many o t h e r ways and  destruc-  i n Vaccinium  - Lysichitum.  seem t o c a u s e any  the  volume  logically  In the Ribes  -  Oplopanax  146 community, w h i c h i s s t i l l no its  significant  under p e r i o d i c  accumulation  correlation  w i t h any  o f humus was  other f a c t o r  A n o t h e r example may productivity hy  is and  In Table  Y,  correlated with i n Moss (.41,  moisture can  in different we  conclude  .05)  can  sites  conclude  h e m l o c k and  cedar,  drier variation  may  and  occurrence  It  may  southwestern slope  (.55?  convex r e l i e f slope relief  (.29? (.28,  not not  .02);  in  figures  l e s s p r o d u c t i v e than  be  drier.  i n Table  In the  Y and  a l r e a d y t o o wet  soil we  those same  that  f o r the  growth of  i s best  on  the  association.  i s interested  deeper  (.59?  and  the data  i n the  effect  plant associations.  t h a t i n the  .02),  (.22)  decrease  From t h e s e  alti-  index  in Salal  that their productivity  are  of lower  C o a s t a l W e s t e r n Hemlock Zone some  of Blechnum  aspects  the  studied i s influenced  i s correlated with  of d i f f e r e n t  found  t o show how  s o i l moisture  (-.34, .10).  from  low.  increase in site  b e t t e r a e r a t e d and  Suppose one on  In  floods,  therefore,  p l a n t communities  a r e v e r y wet  Blechnum a s s o c i a t i o n  be  but  t h a t i n the  which are r e l a t i v e l y we  instructive  t h a t the  Increase  i n Polystichum  Polystichum  way  find  found,  i s very  of D o u g l a s - f i r i n the area  s o i l moisture  tudes.  he  i n f l u e n c e of  Salal  lower  (.45?  and  .10)  i n Moss, w i t h  significant significant  but but  aspect  From T a b l e  a s s o c i a t i o n , western  correlated with soils  of  lower  l a r g e ) and large).  on  less  position  w i t h more In  and  positions with  X^  on  concave  Polystichum  147 and  Vaccinium - Lysichitum,  position t o the  of the  e f f e c t of  community.  One  i n s o l a t i o n of  d r i e r than i n i d e n t i c a l p o s i t i o n s  positions  day,  communities  the  occur  surface  on  on  on  the  slopes  layers  of t h e  eastern  soil  slopes,  and  on  Similar  western  aspects than  eastern.  correlations  i n high  a l t i t u d e communities  are  due  during  deeper s o i l s  on  suggesting influence  influence  southwestern  are  dry  the  no  conclude that probably  hottest  the  of  can  the  that  part  a s p e c t had  and  lower  less definite  o f h i g h e r p r e c i p i t a t i o n and  cooler  climate. It factors  i s equally  together,  e f f e c t of  m a t t e r on p o d z o l i s a t i o n  and  productivity.  is  known (and  there  that with increase podzolisation  was  no  increases. the  site  ations  5.)  In  Table  of  accumulation  with increase  I t seems l o g i c a l  ficial  e f f e c t o f humus on  greater  sation. plant not  The  than the  the of  organic  material  (For  Salal association, organic  the  m a t t e r was  as w e l l  therefore  to  as  greater  p r o d u c t i v i t y , we  for  correlated of  of the find  on  the  bene-  podzoli-  Similarly, in  humus l a y e r  that  site  growth i s  increased  growth.  correl-  example,  conclude that  e f f e c t of  increase  both  increase  w a t e r r e g i m e and  detrimental  result is s t i l l  the  of  It  i n t h i s work)  index decreases.  c o m m u n i t i e s where t h i c k n e s s  increase  found  three  accumulation  I t i s a l s o known t h a t w i t h  of p o d z o l i s a t i o n  index.  far  exception  of a c c u m u l a t i o n  of p o d z o l i s a t i o n  increase  or  the  organic  see  combine two  f o r example,  of  as,  i n t e r e s t i n g to  does  podzolisation  148 does d e c r e a s e p r o d u c t i v i t y , U s i n g the few  examples,  w i t h any soil  the  other,  and  data  or w i t h any  and  position  associations Attention  using  selected  slope  f o r the  shape o f either  correlations, are  and  considered  to  the  of  correlations  Plant  previous  from  basis  for  to  soil  of  exposure  organic  moisture,  describe  more  selected  to  the  reader to  for additional  etc. than  simple",  c o r r e l a t i o n s when  i t is left  matter,  factors refer  examples  among f a c t o r s .  Communities  discussed  on  the  analysis  the  the  of  combination  of  the  p r e v i o u s pages,  w h i c h summarize  ally  of  individual  the  thousand  correlation tables  From t h e  plant  shape  G r e a t e r wind  decrease i n  one  e.g.  simultaneously.  These are  from innumerable  i n groups,  In  i n accumulation  from approximately  factors  correlation coefficients  Because i t i s p h y s i c a l l y Impossible examples,  of  contours,  or  whole r e g i o n .  in podzolisation,  these  i n a g e n e r a l way  plots  the  plots.  correlated with Increase  increase  group  or more t a b l e s  drawn t o  in  compare t h e s e v e n t e e n f a c t o r s  f o r a l l the  f o r a l l the  generalizations is  on  two  s h o u l d be  calculated  to  seepage w i t h  summarized  insignificantly.  c o r r e l a t i o n c o e f f i c i e n t s , as  i t i s possible  moisture  profile  though only  and  from graphs,  results, i t i s possible the  seventeen  community d e v e l o p s . distributed,  environmental  occurring  Most In  to  factors and  reconstruct  f a c t o r s under which of  these f a c t o r s  a l l o r most o f  tables  the  are  each gener-  communities,  149 and  I t Is mainly  development specific of  their  of the  in their  specialized  q u a n t i t a t i v e value which a f f e c t s  association. occurrence  types  resulting  of p l a n t  age  the  s i n c e the  changes i n the  total  establishment  composition  and  or c l i m a x  of  and  acre  the  for  a l l s p e c i e s combined.  ing  description  the  stage  In view  red  observations w i l l  cedar  plotted  Proportionate of the  followed.  of the  for  were  stand  Number  calculated  above, t h e  follow-  i s s h o r t and  only  a n a l y s i s and  a  few  discussed.  stands,  red  and  most o f t h e tops.  nutritionally  Prom t h e  cedars  raw  had  dead  humus i s b e c o m i n g  more e x p l o i t e d , s h o r t a g e i n dieback  a n a l y s i s of the  greenhouse experiments  i s more s e n s i t i v e  found  Krajina explains i t stating  when t h e  magnesium r e s u l t s  conifers.  acre  studied, i n a great proportion  cedar."  several  the  In t h e whole r e g i o n  "In o l d e r stands,  c i u m and  stand.  be  of the p l a n t communities  candelabra-shaped  thicker  depict  volume p e r  average diameter  be  that:  and  can  additional  and  33  development  of the  mature  and  of the  t h e more i n t e r e s t i n g r e s u l t s  of  development  f o r a l l s p e c i e s combined  towards I t s f i n a l trees per  more  t r e e species i n each  T h e y show b a s a l a r e a  e a c h s p e c i e s and over  t o 32f  o f t h e most i m p o r t a n t  association.  i n the  are  communities.  G r a p h s i n F i g u r e s 32a development  Other f a c t o r s  the  i t can  to mineral  of  cal-  phenomena o f w e s t e r n l e a v e s and be  from  concluded  deficiencies  that  than  most  150 Table  6.  C o m p a r i s o n o f t h e n o m e n c l a t u r e o f t h e p r e s e n t work and c l a s s i f i c a t i o n o f O r l o c i (1961) and L e s k o  (1961)  P r e s e n t work Association  O r l o c i and L e s k o Association  Subassociation 1.  Salal or G a u l t h e r i a  Pseudotsugetum menziesii  tsuget"asum heterophyllae 2. lithosolicum 3. m a h o n i e t o s u m  Moss  Tsugetum heterophyllae  1. 2.  muscosum mahonietosum  Polystichum  Thujeto-Polystichetum  1. 2.  brunizolicum podzolicum  Vaccinium Salal  Tsugeto Gaultherieturn  1. 2.  typicum lithosolicum  Vaccinium Moss  A b i e t o - Tsugetum heterophyllae  1. 2.  clintoniosum aceretum circinati  Blechnum  Thujeto Blechnetum  1. 2. 3. 4.  typicum gleysolicum turfosum rubetosum vitifolii  Vaccinium Lysichitum  Piceeto Lysichitetum  Ribes Oplopanax  Piceeto Oplopanacetum  Table  7.  Soil properties  i n individual associations.  (1961)  Summary o f t h e r e s u l t s o f L e s k o  d  rH crj H CO  CO CO 0  75  143  184  .200  14695*  210 34o 206 79  712 542 416 112  co Organic matter tons/acre T o t a l exchange c a p a c i t y equivalents/100 sq.meters Exchangeable m lbs/acre Available  pH  cations  Ca Mg K  P lbs/acre  0  A B Organic matter  %  E x c h a n g e c a p a c i t y fo Ca  %  195* 125 85*  Distribution Horizon  (means)  0  A B  0  A B  0  A B  0 •H -p CO >> rH O PM  s  S  •H G •H rH O CO O rH CO . cO CO  >  3.8 4.0 5.5 23 2 75 8 2 90 94 4 2  3.4 4.4 5.4 39 2 59 13 2 85 42 18 40  >  S  195  1797 170 90 187 11  3.5 3.5 4.5 70 30  -48  52  -53 47  -  G ,G O 0 rH pq  CO co O  64  of chemical p r o p e r t i e s  3.8 4.0 5.1 52 1 47 20 2 78 99 1 0  •H G •H O O CO  .  -p •rl .G O •H CO  •H G •H O O CO  r4  >  K  CO CD  &  •H  cO G •CO  ft  O rH  ft O  358  185  100  8440  21306  4816  10580  840 287 173 29  507 522 312 92  2022 370 104 4  1734 904 524 155  3.6 3.9 5.1 63 4 33 27 2 71 100 0 0  4.6  i n horizons  3.5 3.7 5.2 58 1 48  34 5 61 97 3 0  100 100  -  -  100  -  -  4.8  (c)5.2  -20  (c)  80  (c)  57  (c)  87  -43  -  H Ul h-  1  T a b l e 7.  (Continued) s  rH CO rH  CO CO  Mg K  P  0  %  48  A B  40  0  %  0  %  A B  single  51 1  A B  59 1 5  tr.  95  o •H P ra o S  10 7 83 23 5 72 6 4 90  CO >5  rH o i9  7 74 12 3 82 4 1 95  s  0  •H  •H  •H rH O CO O rH CO CO £> CO  •H  52 48  -  68 32  -  45 55  -  C O O  s CQ CQ  CO O s> s  54 2 44 54 8 38 30 2 68  o CD rH PQ  40 8 52 32 7 61 70 4 89  X c CO co ft CD O rQ rH •H ft Pi o CO  3 P> •H -H C ^! •H O O -H O CQ CO >a t> P i  100  -  -  (c)  100  (c)  -  (c)  100  -  14 86  -  11 89  -  8 92  measurement.  M Ul ro  o  <oJ  •  •  o  CO 03  < 03  o  o  CQ CQ  tri o  o  03  CQ C+  o  CQ CQ  r-J 03 H  H-  O £*  P  3  03  r-  CO 03  s  1  O  K -prCAVJIVJl  -0 GOOD  o>  OJ  O O J O J V J I vo  E l u v i a l Acid Lithosol  CAVJ1  H  M  -Or- !1  Degraded C o n c r e t i o n a r y Brown  1  C O O H  M r— C O M -pr OOOJ -pr M h- hH H H (J - p r V J l S r-  M  1  1  O  CAVJ1 - p r V O S  1  1  CAS H 4="  CA o (BOW O C O H  VO H  1  Orterde Podzol  h-  Orterde Podzol  vo oo ro o s ro  1— ro vji  I—• I—  1  r—  1  1  1  S V D H  -<1 CO CO O  1 l_i |_i |_i  V D O H H OJ vo o cr H  oo ro OM  i  Humic  t—  M H H V Q OJ CA S O W  coo  o  r-1 l - 1 M VO VJl VJl  Podzol  1  Minimal  vo ro o vovji ro H H P M ro CA  Humic  r-  1  vovo ro vo vo ro OVJI ro  Podzol  •  OVJI M  O r t h i c Brown Podzolic Modal A c i d D a r k Brown Gley  Podzol  Orthic  Pitchy  Gleysol  Peat  O r t h i c Dark Gleyosol  Alluvial  Anmoor Grey  Regosol  o si  t-< <  cy CO E » 3 £D O H  «<!  P  H-  O  w  H CD O  C Oo O 3* • c 3+  CD  133  H-  ><!  U w tcJ o K  M Offi4 3 E l u v i a l Acid Lithosol Degraded C o n c r e t i o n a r y Brown  i  ro r o ^ COr-  oo  1  Orterde Podsol  IVOVO O U J vo  Orterde Podzol  -P=-VQ ro  Humic  r— r—' r— h 1  1  1  ro h- ro -p" 1  O h-  Humic  CTNOVJI  rouj roui o>coro-<i 1  Minimal Orthic Podzol  r— r—' f—  1  Podzol  1  Podzol Brown  Modal A c i d D a r k Brown Gley  i—1—• i— 1  1  I  Podzol  I— r— r—' [Ul r— O 1  1  1  I I o rovo r— rhU J 00 O H UJ 1  1  1  h-' h - 1— O O O ro -f=--T-r I 1  -<l C 0 V O L O VQ r—  '  1  rM UJ  1  0 0 U J V O VO H|VO U J U l -pr H  1  r— h r— O UJU1  I  1  1  H O VD  1  1  I  Orthic  Gleyosol  Pitchy Anmeor  Peat  O r t h i c Dark Gleyosol Alluvial  Grey  Regosol  155 Table  9.  C o n s t a n t d o m i n a n t and c h a r a c t e r s p e c i e s i n i n d i v i d u a l a s s o c i a t i o n s ( O r l o c i , 196l).  X  0  •H  CO  rH crj  o-  5/2 5/2 5/2  5/2 5/2 5/2  CO  Pseudotsuga m e n z i e s i i Thuja p l i c a t a Tsuga h e t e r o p h y l l a Abies amabilis Picea sitchensis Chamaecyparis nootkatensis Pinus monticola Populus t r i c h o c a r p a Acer c i r c i n a t u m Sorbus s i t c h e n s i s Cornus n u t t a l l i i Sambucus pubens Ribes bracteosum Oplopanax h o r r i d u s Menziesia ferruginea Mahonia n e r v o s a Gaultheria shallon Rubus s p e c t a b i l i s Vaccinium alaskaense Vaccinium parvifolium Hplodiscus d i s c o l o r Chimaphila m e n z i e s i i T r i Hum ova turn Linnaea b o r e a l i s L i s t e r a cordata L i s t e r a caurina Streptopus roseus Cornus c a n a d e n s i s Tiarella trifoliata Tiarella unifoliata Osmorhiza c h i l e n s i s Circaea alpina Goodyera o b l o n g i f o l i a Lysichitum americanum  03 CQ  -P CO  >J rH O PM  5/2 5/2 5/2  s s •H •H C C •H rH •H O CO O CO 0 co O rH  CO CO > co  5/2 5/2  CO O  >s  5/2 5/2 5/2  s c  x: 0 CD  rH PQ  5/2 5/2 5/2  3-p  •H -H C £ •H O O -H  X  CO  C  CO CO ft CD O  O CO CO >3  X? rH •H ft cn 0  5/2  5/2 5/2 5/2  >^  5/2  V5  4/5  5/2 4/2  5/2 2/3  2/3  5/2 5/2 5/3  5/3  5/1  5/2 1/3  5/2  5/3 5/2  5/2  5/2  5/2  2/3  5/2  5/2 5/2  5/2 5/2  5/2 5/2  5/2  5/2  5/3  5/2  5/5 5/3 3/3 3/3  5/2 5/4  5/3 5/2 5/4 5/2 5/3  156 Table  9.  (continued) S  rH 03  rH 03  CO  Rubud p e d a t u s Maianthemum d i l a t a t u m Tolmiea m e n z i e s i i Hemitomes c o n g e s t u m Veratrum v i r i d e Viola glabella Smilacina s t e l l a t a T r i s e t u m cernuum Ciraa l a t i f o l i a Poa p a l u s t r i s Equisetum telmateia Boykinia elata Thelypteris phegopteris Dryopteris austriaca P o l y s t i c h u m munitum Pteridium aquilinum 5/3 Blechnum s p i c a n t Athyrium f i l i x femina Gymnocarpium dryopteris Plagiothecium undulatum Rhytidiadelphus loreus Mnium p u n c t a t u m Rhytidiadelphus squarosus Rhytidiopsis robusta Eurhynchium s t o k e s i i P e l l i a sp. Mnium i n s i g n e Conocephalum conicum Sphagnum s q u a r r o s u m Sphagnum p a p i l l o s u m  o •H -P  ra m o  S s 0  s  CQ  >» rH o OH  •H C •H rH O 03 O rH  03 05 > CO  •rH •H  O CQ O CQ 03 O  -P •H -H C ,2 •H O O >H  c  o  CD  rH PH  O CQ CO >5  >  ^  5/3 1/3  2/3  5/1  5/2 5/3 5/2  5/2 5/2  CO  a  O  P rH •H ft O  5/2 5/4 4/3 5/2 5/3 3/3 3/3 5/3 5/5 2/3 5/2  5/2 5/3  5/2 5/2  5/2 5/2  5/2 5/2 5/4 5/2  5/2 5/2  5/2  5/2  5/2 5/2 5/2  5/2 5/2  5/2  5/2 5/2 5/2 5/2 5/2  5/2 5/2 5/2 5/2  5/2  C  CQ CD  5/3 5/2  5/1  5/3  X CO  3  5/2 5/4  5/3 5/3 5/3 5/4 5/3  5/2  157  Table  9.  (Concluded)  5/  constant  4/  subconstant  /5  Plant  /4  Plant with strong preference f o r a s p e c i f i c vegetation u n i t , but i n f r e q u e n t l y o c c u r r i n g a l s o i n other u n i t s .  /3  P l a n t o c c u r r i n g f r e q u e n t l y i n s e v e r a l u n i t s but optimum d e f i n i t e l y i n a s p e c i f i c u n i t .  /2  Plant  / l  P l a n t rare or a c c i d e n t a l , with considered vegetation u n i t .  exclusively restricted  species without  3/  common  2/  to certain vegetation  a definite  infrequent unit.  with  preference.  definite  optimum o u t s i d e  the  158 Communities  o f t h e D r i e r Subzone  1. G a u l t h e r i a a s s o c i a t i o n Gaultheria  a s s o c i a t i o n i s the d r i e s t  munity i n the r e g i o n .  I t occurs  or r i d g e s and on u p p e r  slopes  The is  most t y p i c a l the shallow  feature  outcrop  formed by o r g a n i c  soils  glacial  bility, those  on r i d g e s . on a s o l i d  activity.  a r e c o n s i d e r a b l y deeper  of t h e h i g h p e r c e n t a g e and s t e e p n e s s  of stones,  These s o i l s a r e rock,  in  other  present  Rainfall  sites  sites  i s f u r t h e r reduced  evaporation.  The e f f e c t  on s o u t h e r n  the slope  covers  com-  o f w a t e r by result  than  f o r the dryness.  of t h i s  on d e e p e r  and on l e s s  the s o i l  by h i g h e r  and s o u t h w e s t e r n  a s s o c i a t i o n was f o u n d on  of t h i s  a s s o c i a t i o n s , t h e r e f o r e i t must be t h e g r e a t e r  association  seen  Because  i s the d i r e c t  s m a l l amount o f w a t e r r e t a i n e d by t h e s o i l s  be  a r e as d r y as  h e r e i s no l o w e r  of water by r u n - o f f which accounts  and  usually  two f e e t ) b u t b e c a u s e  m u n i t y do n o t r e c e i v e any a d d i t i o n a l s u p p l y  of the p r e c i p i t a t i o n .  community  summer months.  on t h e s l o p e  s e e p a g e , and a l l t h e m o i s t u r e  of t h i s  feet.  s a n d y t e x t u r e , h i g h permea-  of the slope, these  high local position  peaks  Below t h e r i d g e t h e  (averaging  on r i d g e s d u r i n g t h e r a i n l e s s  of t h e i r  on e x p o s e d  of the environment  soils  com-  a t e l e v a t i o n s b e l o w 1400  accumulation  smoothed b y r e c e n t  typically  forest  soils  on t h e f l a t  tops  The  of t h i s  transpiration  latter  i n f l u e n c e can  s l o p e s , where  this  and i n a l o w e r  convex r e l i e f .  loss  position  D r y raw humus  thickly  a s w e l l a s on t h e s l o p e s ,  159 and  I s one  of the  interesting  t o note t h a t  community was more c o n c a v e In fir, the  important  not  on  the  c a u s e s of p o d z o l i s a t i o n .  the flat  the  Salal  of the  the  s t a n d s o f any  fastest  growing,  contributes  pine  and  alder  f o r m an  were a b s e n t  i n the  Rhamnus, P r u n u s and disappear  gets e s t a b l i s h e d of the  solid  standing, rocks. soils  only  rock.  insignificant majority  or remain  with  and  for  full  most o f t h e immature  portion  basal  stands.  of the plots.  Salix, young  soon as  Taxus,  r e m a i n s an  White  stand  common i n v e r y  hemlock c l o s e s .  i n these h a b i t a t s ,  Douglas-  approximately  i n o p e n i n g s as  the  i f i t  unimportant  of a l l s p e c i e s a very  Here and  e x c e p t i o n a l l y dry  year  elimin-  from places  soil  is  shallow l a y e r of there,  an  general  elimination  happens u s u a l l y when t h e  of  trees  where  organic  occasional  with i t s roots penetrating  This  slopes  this  Douglas-fir,  of a n a l y z e d  only  o c c u r r e n c e o f an  most t r e e s  f o r m e d by  in  stand.  The ates  older  Cornus, a l l f a i r l y  canopy of D o u g l a s - f i r  at  composition.  volume i n Immature and  part  the  numbers t o p r o v i d e  and  stands,  on  c e d a r become e s t a b l i s h e d  area  and  but  a s s o c i a t i o n i t appears t h a t  same t i m e i n s u f f i c i e n t  being  tops,  podzolisation  relief.  h e m l o c k and  stocking  greatest  It i s  tree  i n t o the trees are  matter  remains  cracks  from these only  above  a few  in  the  shallow feet  high.  160  By t h i s time the seed t r e e s , which s u r v i v e d f i r e by b e i n g i n more s h e l t e r e d p l a c e s , are u s u a l l y damaged by wind or f u n g a l infections.  I f seed i s p r e s e n t , t h i s s h o r t time c y c l e i s  r e p e a t e d p e r i o d i c a l l y , c o v e r i n g the openings w i t h d i f f e r e n t k i n d s o f woody v e g e t a t i o n .  I n t e n s i t y of the summer drought  and depth of t h e s o i l d e c i d e how ,far these openings  will  extend. Even i f t h e canopy i s a l r e a d y c l o s e d , t h e r e does not seem t o be any e l i m i n a t i o n of t r e e s i n n o r m a l l y wet y e a r s . In e x c e p t i o n a l l y d r y y e a r s hemlock, due t o i t s s h a l l o w r o o t system and lower drought r e s i s t a n c e , i s the f i r s t t o s u f f e r and i t s numbers decrease more r a p i d l y than those of Douglasf i r or cedar. At t h e age of a p p r o x i m a t e l y 30-40 y e a r s of age, stands i n t h e S a l a l a s s o c i a t i o n seem t o be composed p r i m a r i l y of  t h r e e s p e c i e s ; D o u g l a s - f i r , hemlock and cedar.  Develop-  ment o f the stands and changes i n t h e i r c o m p o s i t i o n are p r e s e n t e d i n g r a p h i c a l form i n F i g u r e 32. for  The p r o b a b l e h e i g h t  any age can be r e a d i n F i g u r e s 16 t o 20. At the age of about 200 y e a r s the s t a n d s t a r t s t o  break up, a l l o w i n g more l i g h t t o r e a c h t h e ground, and r e g e n e r a t i o n of hemlock and cedar w i t h an o c c a s i o n a l Douglasf i r takes p l a c e .  I t i s not u n u s u a l a t t h i s stage t o f i n d a  v e r y dense r e g e n e r a t i o n of pure hemlock i n t h i c k e t s , where the c o m p e t i t i o n i s so i n t e n s e t h a t a l l the t r e e s are s t a g n a n t . I t seems t h a t i n most c a s e s , snow damage ends the l i f e o f  . Change  in  t  161  this  growth.  usually tion  On b e t t e r  find  less  sites,  regeneration  even i n S a l a l a s s o c i a t i o n ,  of several  species,  in this  regenerate in  mature  of v e r y  association,  t h e crown, stand,  will  frequent  occurrence  material  (rocks)  this  soils  region  Thuja p l i c a t a calcium  ating  found,  however,  Among them  Krajina  a strong  diorites,  feldspars,  was  explains  i n f l u e n c e upon  diorites,  they permit  requires  Because r o c k s  the establishment  r e l a t i v e l y very  great  here, being  of  rich of  quantities  coniferous  would always o b t a i n  c h a n c e t o become d o m i n a n t .  grow i n h e i g h t  rather  monzonites) are  where t h e d e c a y i n g  the f o r e s t f l o o r ,  hardly  were  proportion  and magnesium.... W e s t e r n h e m l o c k e a s i l y  stands a great  to  at l e a s t i n diameter  (frequently mostly organic).  that  short-  o f c e d a r by t h e e f f e c t o f "... p a r e n t  e s p e c i a l l y there  covering  will  Those  Douglas-fir.  w h i c h have  (quartz  in plagioclase  of  cedars.  inability  canopy o f hemlock w i t h a lower  c e d a r and i n f r e q u e n t  shallow  owing t o t h e i r  the l a r g e s t t r e e s , be  are probably  low q u a l i t y , and w i t h dead t o p s .  f o u n d an a l l - a g e d of  competi-  severe. B e c a u s e h e m l o c k and D o u g l a s - f i r  lived  and t h e  we  regenerwood i s  i n a l l aged  Western r e d cedar  greatly affected  by  dieback."  2. Moss a s s o c i a t i o n The community considered  Moss a s s o c i a t i o n i s t h e most  and f r o m t h e monoclimax a c l i m a t i c climax  point  community  common  plant  o f v i e w i t can be of the d r i e r subzone.  162 It  i s a mesic  middle  slopes  usually exist  i n spring  o f l a t e r a l l y moving w a t e r . except during  alluvial  i s glacial  s a n d s and l o a m s .  accumulation  site  graphical  analysis  association  low.  The  productivity  i n t h e f o r m o f d r y raw  4 and  i n Table  i n Figures  23 t o 31?  i t c a n be s e e n  that  h a l f way between t h e  The g r o w t h o f t r e e s  mean 142 f e e t ,  sites.  On s o u t h e r n  association  Here  on deep s o i l s  this  association,  regime.  high.  presented  of these  this  factor  i s s t r o n g and  i s generally  extends a l s o  t h r o u g h i t s e f f e c t on  Steeper  influence  slopes  onto areas  as i n t h e p r e c e d i n g the tree  soil  on t h e  support  and s o u t h w e s t e r n  seepage o c c u r s q u i t e  influencing  i s moderately  s . d . 15 f e e t ) .  m o i s t u r e , has the g r e a t e s t  lower q u a l i t y .  water  commonly,  f o r this association i s  Wind e x p o s u r e  shape o f c o n t o u r s ,  d e p t h and s o i l  droughts.  S a l a l and Mahonia, and t h e m o i s t 'Poly-  (Douglas-fir,  direct  summer  moist  analysis  stichum a s s o c i a t i o n .  of  Typical  i s i n every respect  associations,  high  S o i l s are u s u a l l y  Where raw humus o c c u r s , p o d z o l i s a t i o n  Prom t h e s t a t i s t i c a l  dry  I s no c o n c e n -  and, l e s s  of organic matter  index u s u a l l y  this  t h o u g h t h e seepage may  long-lasting till,  l o w e r and  C o n t o u r s and p r o f i l e a r e  and a f t e r t h e r a i n , t h e r e  Parent material  humus.  on g e n t l e  a t lower a l t i t u d e s .  the time,  the  occurring  s t r a i g h t , which suggests that  tration all  community  stands  exposures,  of concave frequently.  one, t h e most  growth i s s t i l l  relief. In important the s o i l  163 This  association  does n o t have a n y s i g n i f i c a n t  species  among t h e g r o u n d v e g e t a t i o n , h u t c o n t a i n s  of both  the dry S a l a l  The  difference  Since these vigor  and m o i s t  Polystichum  In species s i g n i f i c a n c e  o f the h y d r o p h y t i c elements  g r e a t l y reduced  even I n o p e n i n g s ,  associations.  i s only  h a b i t a t s are g e n e r a l l y without  elements  quantitative.  seepage,  c o v e r and  of the v e g e t a t i o n are compared w i t h t h e P o l y s t i c h u m  association. Stand  composition  Figures  32b and 33.  in  than  this  because selected  I t appears  that  i n other a s s o c i a t i o n s .  of the biased s e l e c t i o n i n s u c h a way t h a t  composed o f m o s s e s . because  and g r o w t h can be r e a d i l y  Krajina  h e m l o c k i s more  important  T h i s c o u l d have  happened  of the p l o t s .  They were  t h e g r o u n d v e g e t a t i o n was (unpublished)  of high s t o c k i n g i n these  states:  i s i n this  W e s t e r n Hemlock Zone g r e a t l y p r o m o t e d h e r e ,  oreganum, H y l o c o m l u m s p l e n d e n s ,  and D i c r a n u m  w h i c h a r e t h e raw humus b u i l d e r s . do e l i m i n a t e by t h e i r  t h e main r e a s o n  mainly Coastal  supports  ( P l a g i o t h e c i u m undulatum, R h y t i d i a d e l p h u s l o r e u s ,  mainly  "... p a r t l y  stands, but a l s o  b e c a u s e t h e raw humus d e v e l o p m e n t t h a t  mosses t h a t  seen i n  mosses  Eurhynchium  fuscescens)  These v i g o r o u s l y g r o w i n g c o m p e t i t i o n many h e r b s a r e  of a r e l a t i v e l y poor  development  of  herbaceous  layer." Also  i t i s very important  t h e Moss a s s o c i a t i o n  t o note  that  stands of  have t h e g r e a t e s t b a s a l a r e a and v o l u m e .  I f we u s e t h e b a s a l a r e a and volume a s a measure o f s t a n d  density,  these  communities  stands  studied.  shade t o l e r a n t  have t h e The  of f o r e s t  poplar-spruce-to  spruce  percentage mixed  of cover  stands  Betula  o n l y two and  m  p o p l a r - to spruce  of  these  of  newly d e f o r e s t e d areas  the of  non-commercial  area very  seems l o g i c a l  I f the p r e v i o u s  first  years  no  rest  the  26  Salix, on  these  seed  observation the  Therefore s t a n d when  of the v e g e t a t i o n .  t h a t , i n v e r y young stands  o n l y one  Remains of  this  fairly  o f Moss  association  t o make any p r e d i c t i o n s  stand development.  generation  and  mature p l o t  i t i s very d i f f i c u l t  seems t o be  o f age  .infection  stands  l o g g i n g or f i r e . from  On of  Prom t h e  presence  a l d e r i s q u i t e common.  analysed,  association  one  s p e c i e s appear i n  soon a f t e r  dead a l d e r s i n d i c a t e  about the p r o b a b l e  the  these  that they disappeared  Because was  shade.  ones, t h e r e was  species present.  canopy c l o s e d , w i t h the  association,  to increasing  dead t r e e s o f P r u n u s and  p l o t s were as d e n s e as t h e p r e s e n t  it  a b r u p t l y as  s p e c i e s i n the v e r y young s t a n d s .  almost  to  states that  c o n t r i b u t e d by mosses r i s e s due  the  speaking  Manitoba from p o p l a r -  Taxus were f o u n d .  deforested  (1956)  Rowe  s p e c u l a t i o n s can be made r e g a r d i n g t h e  non-commercial  plots  d e n s i t y , t h e more  favoured.  change t o s p r u c e ,  Only of  h i g h e r the  s p e c i e s are  about t r a n s i t i o n  h i g h e s t s t o c k i n g of a l l the  Douglas-fir in  long-lived.  of hemlock p r o b a b l y  this  Culmination  occurs  a t about  of 250  when m a t u r e t r e e s become v i c t i m s o f f u n g a l d i e , opening  the  canopy.  New  r e g e n e r a t i o n of  165 h e m l o c k and be  less  frequent  start.  There w i l l  also  more f r e q u e n t g r o u n d v e g e t a t i o n c o n t a i n i n g e l e m e n t s o f  dry S a l a l  association  where m i n e r a l 3.  tudes  The  small  impervious  o r even  are  a few  feet  independent  of a s p e c t  plots  months, b u t the  also a certain  growth of t r e e s . 9.5  layers  again  either  of  insolation.  decomposes  accumulation.  The  terraces,  The  minerals needed (mean  decomposition  depth  therefore  Because of  sheltered position,  seepage  summer  v e r y p e r m e a b l e and  of t h i s  completely  permanent  a r e u s u a l l y deep  impeded.  soil  being  is  high  organic  s u f f i c i e n t l y w e l l to prevent result  and  i n the permeable  amount o f d i s s o l v e d Soils  clay.  f l o w s down i n  o f seepage w a t e r ,  i n c h e s ) and  usually  assoc-  steeper slopes  below t h e r i v e r  o f t h e r o o t zone i s n o t and  alti-  seepage w a t e r  o n l y a d d i t i o n a l water d u r i n g the d r y  moisture  material  i n lower  T h i s p l a n t community,  greater effect  i n c h e s , s.d.  aeration  on  s u r f a c e and  and  the  or impervious  a few  below.  by  i n places  o f compacted b l u i s h - g r a y  convex c o n t o u r s  conditioned  soil  concentrates  horizons  seeps t o the  s u p p l i e s not  develops  g e n t l e r s l o p e s , u s u a l l y below t h e Moss  s t r e a m l e t s or d i s a p p e a r s  material  for  association  (ortstein'—^'Krajina)  where w a t e r  especially  association  Polystichum  only exceptions  straight  Polystichum  both  exposed.  where c o n c a v e r e l i e f  moving over hardpan  moist  be  Polystichum  on l o w e r  iation,  and  soil will  The  39  cedar w i l l  any  great  i s a duff  mull  166 humus, u n d e r w h i c h l e a c h i n g s e l d o m o c c u r s . ation  of o r g a n i c matter  in this  a s s o c i a t i o n was  i n p l a c e s w h i c h were c o n c a v e and This association  has  sible  and  shrubs  is first  and p r o b a b l y by  16  f e e t ) hut  due  pos-  soon a f t e r  of the next  the  of d i r e c t  forest  shading but  heavy l e a v e s of f e r n s , cover the  ground  are e i t h e r slightly  second  broken  y e a r by  and  seed  chances  P o l y s t i c h u m and  I t i s not  commer-  damage.  as t h e y d i e d u r i n g f a l l  o f good Large  of the Large and  effect and  winter,  a l l the young s e e d l i n g s  or " s u f f o c a t e d . " Trees are u s u a l l y  youngest  does  other f e r n s are  o n l y because  a l s o mechanical  Acer.  some-  of  stand are r a t h e r poor.  so d e n s e l y t h a t  seedlings i n their  shrubs  a l d e r and  I f the  e l e v a t e d g r o u n d where v i g o r  minimum o f l i g h t .  i s t h e most  Rhamnus, V a c c i n i u m  the d i s t u r b a n c e , the  trees.  the  shade-intolerant Douglas-fir,  d e n s e l y c o v e r e d by  u s u a l l y without  after  c o v e r e d by dense g r o w t h o f  b r o a d l e a f maple.  species, especially  patches  starts  i t i s n o t uncommon t o f i n d  c o t t o n w o o d and  stocking  and  s.d.  o f t h e p r e v i o u s s t a n d , as  the ground  herbs  not a r r i v e  on  feet,  as Rubus, Sambucus, C o r n u s ,  W i t h the  cial  wet.  the P o l y s t i c h u m a s s o c i a t i o n  destruction  common c a s e ,  times  only  figure.  complete  such  found  s t o c k i n g t h e volume i s u s u a l l y w e l l below t h e  If  ferns  very  accumul-  the h i g h e s t p r o d u c t i v i t y i n  t h e whole r e g i o n ( S . I . mean l 6 l t o low  Greater  stage  of f e r n s i s  get  the  located lower  necessary  I f these p l a c e s are a l r e a d y covered  by  167 shrubs,  v i n e maple or a l d e r ,  possible  f o r many y e a r s  immediately  after  survive  competition  the  the  t h e r e may  t o come.  I f the  commercial  m e t e r and  o f f e r n s and  trees i s very  height  stand  in  mineral nutrients.  due  stands  The sented will 500  probably  Because f i r w i l l ing  t r e e s and  ultimately rotation 100  plant  The  100  not  and  survive,  o f seepage w a t e r  volume p e r  33.  in this  800  hemlock.  E i r in this than  under the  stand.  climax  The  cedars w i l l  cedar w i t h  o c c a s i o n a l balsam.  dominant  grow i n  and  a l d e r about  in  class  be  with  have d i a m e t e r s  up  40  inches.  class w i l l  be  formed  some a l d e r i n t h e w e t t e s t  Hemlock w i l l  this  over  r a r e l y be  dominant  exist-  shrubs" i t w i l l  of f o r e s t  i n the  i n c h e s whereas hemlock w i l l  sharper.  canopy o f the  have c e d a r oldest  around  be much  Cedar w i l l  type  i s pre-  association-  cedar,  y e a r s , h e m l o c k a b o u t 400  c a n o p y below t h e  rich  acre i n  association  i t s decline w i l l  the  ground,  high.  regenerate  from  number  especially  better aerated  to d e c l i n e e a r l i e r  o f age  community w i l l  by h e m l o c k and and  resultant  and  T h e r e f o r e , the  all-aged  growth both  i n c o m p e t i t i o n w i t h f e r n s and  of about  infrequent to  32b,32e  disappear  years.  The  i s usually  start  years  in dia-  supply  e v o l u t i o n of stands  in Figures  o r 600  t o a permanent  some s e e d l i n g s  But  e l e v a t e d and  very rapid  o f t r e e s comes  the  slightly  is  seed  of Polystichum,  t r e e s w h i c h do  they  Polystichum  on  small.  regeneration  shrubs.  of those  if  no  disturbance, at l e a s t  E v e n i n v e r y young s t a n d s of  be  places  t h e most numerous.  168 Commercial v a l u e of these over-mature stands w i l l he f a r below t h e i r v a l u e when D o u g l a s - f i r was p r e s e n t i n l a r g e numbers and the s t a n d was h e a l t h y i n i t s younger mature s t a g e . Communities of t h e W e t t e r Subzone Communities o f t h e d r i e r subzone, where t h e new s t a n d u s u a l l y s t a r t s a f t e r t h e complete d e s t r u c t i o n of t h e old,  c h a r a c t e r i s t i c a l l y have a u n i f o r m t r e e canopy.  In the  w e t t e r subzone f o r e s t s , due t o g r e a t e r p r e c i p i t a t i o n and c o o l e r c l i m a t e , a l a r g e r p r o p o r t i o n o f t h e sampled stands were mature and appeared a l l aged.  But f i r e a t these  altitudes  i s a l s o v e r y common as s c a r s on t r e e s and c h a r c o a l i n t h e humus l a y e r i n d i c a t e .  Most o f them, however, a r e l e s s  severe  and o n l y o f l o c a l e x t e n t , b u r n i n g m a i n l y d r y raw humus and l i t t e r w i t h o u t c a u s i n g a g r e a t d e a l of d i r e c t damage t o t h e stand.  Roots on t h e s u r f a c e a r e damaged as t h e s u r f a c e l a y e r  of humus i s d e s t r o y e d but o n l y . a few i n d i v i d u a l s a r e s e v e r e l y damaged.  I t appears t h a t t h e stand was o n l y l o c a l l y  c o m p l e t e l y d e s t r o y e d by f i r e .  Very p r o b a b l y f i r e caused o n l y  the p r i m a r y or p a r t i a l damage and t h e r e m a i n i n g t r e e s were then k i l l e d  by wind, i n s e c t s , f r o s t damage o r f u n g i .  There-  f o r e , u n i f o r m i t y o f age and hence o f f o r e s t physiognomy i n these a l t i t u d e stands i s l e s s  common.  4. V a c c i n i u m - G a u l t h e r i a a s s o c i a t i o n S i m i l a r t o t h e low a l t i t u d e G a u l t h e r i a a s s o c i a t i o n , t h i s community occurs on t h e wind exposed peaks and r i d g e s  169 a d j a c e n t s l o p e s , a t a l t i t u d e s u s u a l l y between 1,000 feet.  and 2,500  I t s most s i g n i f i c a n t f e a t u r e i s t h e v e r y s h a l l o w out-  crop s o i l .  On t h e r i d g e s and peaks l i e l a r g e f l a t b o u l d e r s ,  covered o n l y by a t h i n l a y e r o f o r g a n i c m a t e r i a l overgrown by mosses and low growth o f V a c c i n i u m and S a l a l .  I f trees  become e s t a b l i s h e d here, t h e i r growth i s v e r y slow and they u s u a l l y p e r i s h i n the f i r s t d r y year.  I n d e p r e s s i o n s between  the b o u l d e r s and r i d g e s a c c u m u l a t i o n o f o r g a n i c m a t e r i a l I s greater.  Below t h e r i d g e s and covered by raw humus l a y e r , a  s h a l l o w m i n e r a l s o i l i s common (mean s o i l depth 12 i n c h e s s.d. 7 i n c h e s ) on w h i c h t h e t r e e s a r e a b l e t o s u r v i v e , but growth i s slow ( s i t e i n d e x , hemlock, 70 f e e t , s.d. 8.4).  Occasion-  a l l y on s o u t h e r n s l o p e s where t h i s a s s o c i a t i o n extends on stony s o i l s of g l a c i a l t i l l exceed  lower  o r i g i n , t h e s i t e i n d e x may  80 f e e t . Although t h i s a s s o c i a t i o n occurs m  w h i c h have c o n s i d e r a b l e r a i n f a l l , d u r i n g the growing  season  factor l i m i t i n g tree  higher a l t i t u d e s  t h e a v a i l a b i l i t y of water  i s p r o b a b l y t h e most i m p o r t a n t  growth.  In V a c c i n i u m - G a u l t h e r i a o n l y mature stands were found.  Some of them s t i l l r e t a i n e d a s m a l l p o r t i o n of shade-  i n t o l e r a n t D o u g l a s - f i r and w h i t e p i n e . s t a r t e d e i t h e r a f t e r a complete  These t r e e s must have  o r almost complete d e s t r u c t i o n  of t h e p r e v i o u s f o r e s t or some of them r e g e n e r a t e d around openings which I n t h i s a s s o c i a t i o n a r e numerous. young p i n e s or D o u g l a s - f i r s were found d u r i n g t h i s  S i n c e no, study,  and,  t h e r e f o r e , the  In the  Salal  shallow rock.  extreme  red  a l l the  cedar  is  remains,  regeneration  organic  soil,  regeneration  killed  summer d r o u g h t , h u t  a p p e a r s more  periodically  same s p e c i e s  a  very  overlying solid  of y e l l o w  w i t h i n a year,  of the  logical.  o p e n i n g s a r e u s u a l l y on  1 inch)  than  such s i t e s  h e m l o c k and  explanation  a s s o c i a t i o n these  (often less In  first  cedar,  during  the  among t h e  dry  starts  a new  short  cycle. In t h i s  a s s o c i a t i o n the  subalpme  amabilis,  Chamaecyparis n o o t k a t e n s i s  meet w i t h  s p e c i e s from lower e l e v a t i o n s .  probably  t h e most i m p o r t a n t  species  and  on  From t h e  be  species form a f a i r l y area  as w e l l as  more f r e q u e n t  stated that significant  of the  volume.  i n young  stands.  Stand h i s t o r y presented of t h i s  on  ated cedar  and  and  the  with  32c  a b o u t 400  and  be  cedar  years, be  of the too  of the  33.  these  two  basal  species  When t h e  completely  yellow  be  are  stands  i t is likely  o f b a l s a m and  found  seems t o  composed o f o n l y h e m l o c k  a small proportion  yellow  Douglas-fir  proportion  later Douglas-fir w i l l  stand w i l l  stands,  b a l s a m and  and  proportions  graphs i n F i g u r e  community r e a c h  white pine  and  mertensiana  i n young s t a n d s  Yellow  Abies  Hemlock i s  cedar,  remnants of w h i t e p i n e  t h e p l o t s i t can  Tsuga  i n the young  f o l l o w e d by D o u g l a s - f i r , w h i t e p i n e , cedar.  species,  that  eliminand cedar.  171  5. V a c c i n i u m - Moss a s s o c i a t i o n T h i s a s s o c i a t i o n o c c u r s throughout a wide range of a l t i t u d e s but i t i s commonest a t e l e v a t i o n s above one f e e t (mean a l t i t u d e 1335 f e e t ) .  thousand  At lower e l e v a t i o n s t h i s  community I s f r e q u e n t i n deep, c o o l mountain v a l l e y s where the growing  season i s much s h o r t e r than i n the c o r r e s p o n d i n g  a l t i t u d e s o u t s i d e the mountains.  The m i c r o c l i m a t e and grow-  i n g c o n d i t i o n s i n these v a l l e y s are p r o b a b l y s i m i l a r t o s i t u a t i o n s s e v e r a l hundred f e e t h i g h e r on the mountain s l o p e s . In s p i t e of the f a c t t h a t a g r e a t e r number of the p l o t s were on s o u t h e r n exposures, the l a r g e s t a n d a r d d e v i a t i o n ( F i g u r e s 23 and 24) i n d i c a t e s t h a t t h i s a s s o c i a t i o n i s p r o b a b l y e q u a l l y common on a l l a s p e c t s .  T y p i c a l l y t h i s community i s  found on steep s l o p e s and on s t r a i g h t c o n t o u r s and  profiles.  I t s o c c u r r e n c e on m i d - s l o p e s i s most common.  exposure  i s moderate.  Wind  This association i s relatively equally fre-  quent on a l l p a r e n t m a t e r i a l s and i t s more f r e q u e n t l o c a t i o n on g l a c i a l t i l l  ( F i g u r e 27) i s due t o the f a c t t h a t most of  the a r e a under s t u d y i s covered by g l a c i a l m a n t l e .  Consider-  i n g the h i g h a l t i t u d e and steepness of the s l o p e , the  soils  are v e r y deep (average almost 3 f e e t ) and not t o o s t o n y . Ground water i s common u n t i l l a t e s p r i n g , e s p e c i a l l y on l o n g s l o p e s , and f o r a l o n g time a f t e r each r a i n , but d r i e s out e v e n t u a l l y d u r i n g the r a i n l e s s summer monthsi  S o i l s were  found t o be not t o o permeable and always m o i s t .  Accumulation  172 u s u a l l y v e r y h i g h (mean almost 6  of o r g a n i c m a t e r i a l was inches) due  hut p o d z o l i s a t i o n not too s e v e r e .  S i t e i n d e x i s low  to generally high a l t i t u d e s . V a c c i n i u m - Moss i s the commonest a s s o c i a t i o n at  higher-elevations  i n t h i s zone.  Here Douglas f i r i s r a r e ,  seldom c o n s t i t u t i n g a s i g n i f i c a n t p a r t of the f o r e s t . young stands are composed m a i n l y of hemlock and i f D o u g l a s - f i r occurs, trees present. stands and  cedar.  But  i t i s u s u a l l y the t a l l e s t of a l l the  Balsam i s not f r e q u e n t  i n f u l l y stocked  young  seems t o i n c r e a s e i n importance i n mature stands  o n l y as the canopy s t a r t s t o h r e a k up. t h e r e may  Ev,en  At h i g h e r a l t i t u d e s ,  he an o c c a s i o n a l mountain hemlock and y e l l o w  at l o w e r a l t i t u d e s , an o c c a s i o n a l v i n e maple and  cedar;  Taxus.  Stands u s u a l l y have good s t o c k i n g from the youngest stage.  E l i m i n a t i o n of t r e e s o c c u r s m a i n l y i n the  canopy and p r o g r e s s e s r a t h e r r a p i d l y .  T h e r e f o r e we  lower  can  assume t h a t the l i g h t i s the l i m i t i n g f a c t o r , more i m p o r t a n t than r o o t c o m p e t i t i o n  or water r e l a t i o n s .  Changes o c c u r r i n g i n the stands can be f o l l o w e d F i g u r e s 32c,  32f  and 33.  A f t e r the f i n a l d i s a p p e a r a n c e of  D o u g l a s - f i r the s t a n d w i l l be composed m a i n l y of hemlock w i t h lower p r o p o r t i o n 6.  of cedar and  balsam.  Blechnum a s s o c i a t i o n The  Blechnum a s s o c i a t i o n i s a t y p i c a l p l a n t com-  m u n i t y of h i g h e r a l t i t u d e s but b e i n g one  t h a t i s dependent  on the permanent seepage water c l o s e t o the s o i l  surface,  on  173  i t a l s o o c c u r s i n t h e c o l d shaded v a l l e y s i n t h e mountains. I t i s e q u a l l y f r e q u e n t on a l l t h e a s p e c t s . u s u a l l y moderate. concentrating  The s l o p e i s  The shape o f c o n t o u r i s t y p i c a l l y concave  t h e seepage w a t e r , but shape of p r o f i l e was  found b o t h concave and s t r a i g h t .  As w i t h t h e P o l y s t i c h u m ,  the Blechnum a s s o c i a t i o n i s commonest on t h e l o w e r p o s i t i o n on s l o p e , e s p e c i a l l y a t l o w e r a l t i t u d e s but a t h i g h  alti-  tudes l a r g e s t a n d a r d d e v i a t i o n i n d i c a t e s t h a t i t can occur anywhere except on t h e r i d g e .  T h i s community was found  u s u a l l y on s o i l s w i t h lower p e r m e a b i l i t y s t r a t a were c l o s e t o t h e s u r f a c e . u s u a l l y shallow.  or where impermeable  T h e r e f o r e t h e s o i l s were  I n s i t u a t i o n s where t h i s a s s o c i a t i o n  occurred  on l e d g e s o f s o l i d r o c k , t h e s o i l m a t e r i a l was e i t h e r a l a y e r o f o r g a n i c m a t t e r ( b l a c k muck) o r a v e r y s h a l l o w mantle of g l a c i a l t i l l  covered e i t h e r by b l a c k muck o r raw humus,  depending on t h e c o n f i g u r a t i o n  of the t e r r a i n .  T h i s p l a n t community was u s u a l l y s h e l t e r e d high winds.  from  A c c u m u l a t i o n of o r g a n i c m a t e r i a l and t h e  r e s u l t a n t p o d z o l i s a t i o n was moderate b u t t h i c k n e s s layer varied considerably.  of t h e A  P r o d u c t i v i t y of t h i s a s s o c i a t i o n  was found t o be h i g h e r than any o t h e r h i g h a l t i t u d e p l a n t community  studied. Blechnum a s s o c i a t i o n I s i n many r e s p e c t s  similar  t o V a c c i n i u m - Moss, from w h i c h i t i s o f t e n not r e a d i l y distinguishable.  B e i n g a h i g h a l t i t u d e community, t h i s  a s s o c i a t i o n contains stands.  e  Douglas-fir,.  o n l y r a r e l y , even i n young  174 As can Toe seen from the graph ( F i g u r e 32c),  hemlock  and cedar are the most i m p o r t a n t s p e c i e s a t any age of the stand.  As i n the V a c c i n i u m - Moss a s s o c i a t i o n , balsam i n  the Blechnum a s s o c i a t i o n i s i n f r e q u e n t i n young stands but appears I n g r e a t e r numbers as the stand opens a t m a t u r i t y . Because b o t h of these communities  u s u a l l y regenerate to  hemlock"and cedar, balsam c o u l d have been e l i m i n a t e d from dense immature stands because of i t s s l o w e r In  growth.  the mature stands s t u d i e d balsam o f t e n was  younger than the o t h e r t r e e s , s u g g e s t i n g i t s l a t e r  arrival.  In v e r y young s t a n d s , p r o b a b l y one would f i n d a v e r y good s t o c k i n g of hemlock and c e d a r .  I n f r e q u e n t seed  y e a r s and heavy seed may account f o r s c a r c e r e g e n e r a t i o n of (Schmidt, 1957). a s s o c i a t i o n may  balsam  At lower a l t i t u d e s , where o c c a s i o n a l l y t h i s be found, e i t h e r due t o h i g h e r p r e c i p i t a t i o n  i n mountain v a l l e y s (Seymour Dam  144  i n c h e s ) , or on s l o p e s  where seepage water moves c l o s e t o the s u r f a c e , one  may  encounter o c c a s i o n a l D o u g l a s - f i r , more commonly a l d e r and sometimes a b r o a d l e a f maple.  V i n e maple i s l o c a l l y p r e s e n t  i n l a r g e numbers i n young s t a n d s , Taxus i s i n f r e q u e n t but p e r s i s t s t o the m a t u r i t y .  At the age of about 30 y e a r s the  s t a n d s t a r t s t o c l o s e and e l i m i n a t e the s l o w e r species.  growing  D o u g l a s - f i r i f p r e s e n t w i l l be the t a l l e s t  tree,  but n o r m a l l y hemlock w i l l form the dominant c l a s s i n immature s t a n d s .  Hemlock w i l l be the most i m p o r t a n t s p e c i e s  i n a l l the o t h e r l a y e r s as w e l l , but i n those cedar or balsam  175  may  be a l s o q u i t e f r e q u e n t .  I n c l o s e d young s t a n d s ,  competi-  t i o n appears t o a f f e c t balsam more s e v e r e l y than o t h e r s p e c i e s , p r o b a b l y because i t has the s l o w e s t I n i t i a l growth. The F i g u r e s 32d  development of the stands  and  can be f o l l o w e d on  33.  At m a t u r i t y as the s t a n d a l l o w s more l i g h t t o the f o r e s t f l o o r , new  reach  r e g e n e r a t i o n of shade t o l e r a n t s p e c i e s  s t a r t s , and from t h i s s t a g e , as i n the V a c c i n i u m - Moss a s s o c i a t i o n , a few s t u n t e d t r e e s occur w h i c h w i l l never have any commercial v a l u e . the i m p r e s s i o n  give  of a t r u l y a l l - a g e d f o r e s t w i t h cedar and hem-  l o c k e q u a l l y important g r e a t e r age  At lower a l t i t u d e s such s t a n d w i l l  in a l l layers.  and d i a m e t e r .  Cedar u s u a l l y reaches  In h i g h e r a l t i t u d e s cedar i s  I n f r e q u e n t and the stands are composed almost e n t i r e l y of hemlock and 7.  balsam.  Vaccinium - Lysichitum a s s o c i a t i o n T h i s a s s o c i a t i o n d e v e l o p s i n two d i f f e r e n t h a b i t a t s ;  i n poorly drained depressions cave r e l i e f where i m p e r v i o u s  or on g e n t l e s l o p e s w i t h conh o r i z o n s are so c l o s e t o the  s u r f a c e t h a t seepage water permanently s a t u r a t e s the whole soil profile.  The  s o i l i n depressions  i s formed by deep  o r g a n i c d e p o s i t s w h i c h have g r a d u a l l y f i l l e d up former s m a l l l a k e s ; on s l o p e s the l a y e r of o r g a n i c m a t e r i a l i s u s u a l l y o n l y a few i n c h e s t h i c k , b e i n g u n d e r l a i n by s h a l l o w till  or superimposed d i r e c t l y on s o l i d r o c k or an  gley horizon.  glacial impervious  Because t h i s p l a n t community depends on  local  176  topographic  c o n d i t i o n s , i t i s e q u a l l y common a t b o t h h i g h and  low a l t i t u d e s .  Slope i s v e r y g e n t l e o r none, r e l i e f i s  concave, aspect has no s i g n i f i c a n c e .  Depth o f s o i l above t h e  permanent water t a b l e v a r i e s w i t h season but i s always v e r y shallow.  Trees grow o n l y on humps o f o r g a n i c m a t e r i a l w h i c h  are s u f f i c i e n t l y e l e v a t e d t o p r o v i d e a e r a t e d r h i z o s p h e r e . S t o n i n e s s depends on t h e o r i g i n of t h e s o i l m a t e r i a l .  On  s l o p e p l o t s a h i g h degree o f s t o n i n e s s was n o t uncommon. stones o c c u r r e d i n d e p r e s s i o n s . detectable. low.  No  P o d z o l i s a t i o n was r a r e l y  P r o d u c t i v i t y of t h i s a s s o c i a t i o n was g e n e r a l l y  Because t h e r o o t zone i s l i m i t e d and t r e e s grow m a i n l y  on humps, s t o c k i n g r a r e l y exceeds f i f t y p e r c e n t .  Since  community o c c u r s on a v e r y wide range of a l t i t u d e s ,  this  altitude  was found t o have t h e h i g h e s t c o r r e l a t i o n w i t h p r o d u c t i v i t y , p r o b a b l y due t o t h e d i f f e r e n c e s i n t h e l e n g t h o f growing season, temperature and r a i n f a l l . P i r e seldom damages t h e V a c c i n i u m - L y s i c h i t u m a s s o c i a t i o n because t h i s community occurs i n d e p r e s s i o n s and because a p r o g r e s s i n g ground f i r e s t o p s as i t r e a c h e s t h e wet  o r g a n i c d e p o s i t s overgrown by r i c h h y g r o p h y t i c v e g e t a t i o n .  T h e r e f o r e , u n l e s s d e s t r o y e d by some o t h e r means, these are l i k e l y t o be t h e o n l y a l l - a g e d stands found. g e n e r a l l y v e r y low.  stands  Stocking i s  The water t a b l e i s v e r y h i g h and r o o t s  of t h e t r e e s a r e g e n e r a l l y i n s e c u r e l y anchored.  The t a l l e s t  and h e a v i e s t t r e e s a r e e a s i l y windthrown, l i f t i n g up masses of o r g a n i c m a t e r i a l and o f t e n k n o c k i n g down s e v e r a l t r e e s s t a n d i n g  near by.  New r e g e n e r a t i o n s t a r t s on these u p t u r n e d humps,  w h i l e o v e r t u r n e d t r e e s add t o t h e a c c u m u l a t i o n o f o r g a n i c material.  The l a r g e areas f l o o d e d f o r a l o n g p e r i o d a f t e r  each r a i n , Sphagna and L y s i c h i t u m dominate and t r e e s a r e absent. F i g u r e s 32d and 3^ r e p r e s e n t p r o b a b l e development o f stands i n t h i s p l a n t community. In  a s e l f p e r p e t u a t i n g f o r e s t a t lower a l t i t u d e s  i n t h i s a s s o c i a t i o n , cedar w i l l form t h e dominant crown c l a s s . Hemlock and cedar, w i t h o c c a s i o n a l s p r u c e , balsam and a l d e r , w i l l form a l l o t h e r l a y e r s i n p r o b a b l y a c o n s t a n t p r o p o r t i o n . D o u g l a s - f i r may o c c a s i o n a l l y r e g e n e r a t e , because t h e stands are f a i r l y  open.  Only those t r e e s which a r e on v e r y l a r g e  humps w i t h a s o l i d support w i l l r e a c h m a t u r i t y and l a r g e  size.  In h i g h e r a l t i t u d e s t h e r e w i l l be a g r e a t e r p r o p o r t i o n o f hemlock and balsam and t h e p r o p o r t i o n o f cedar w i l l  decrease  correspondingly. 8.  R i b e s - Oplopanax a s s o c i a t i o n  R i b e s - Oplopanax a s s o c i a t i o n o c c u r s o n l y on t h e a l l u v i a l d e p o s i t s of l a r g e r streams where t h e r i v e r meanders through the v a l l e y f l o o r .  I n s p r i n g t h e ground i s u s u a l l y  f l o o d e d and new l a y e r s of sand and s i l t a r e d e p o s i t e d . D u r i n g t h e v e g e t a t i v e p e r i o d these s i t e s a r e n o r m a l l y w e l l above t h e water t a b l e o f t h e r i v e r .  I n t h e a r e a under s t u d y  t h i s a s s o c i a t i o n was found w e l l developed o n l y i n Seymour valley.  The s t a t i s t i c a l  analysis i s therefore rather biased  as f a r as t h e e n v i r o n m e n t a l c o n d i t i o n s a r e concerned.  The  178 a l t i t u d e f o r example i s v e r y u n i f o r m (700 + 50 f e e t ) . In t h i s a s s o c i a t i o n t h e s l o p e was always found v e r y g e n t l e and t h e c o n t o u r s and p r o f i l e u s u a l l y concave.  Because  of t h e p o s i t i o n on t h e v a l l e y f l o o r t h e wind exposure i s e x t r e m e l y low.  S o i l s a r e deep, of f i n e loamy-sand t e x t u r e on  the s u r f a c e w i t h coarse sands a t depth, u n d e r l a i n by l o o s e , coarse g r a v e l s .  Ground water i s always p r e s e n t a t t h e l e v e l  of t h e r i v e r , u s u a l l y a t t h e depth o f f o u r o r f i v e  feet.  Because of t h e g r e a t p e r m e a b i l i t y of these sandy s o i l s ,  their  upper l a y e r s a r e much d r i e r d u r i n g t h e summer than would be e x p e c t e d from t h e i r p o s i t i o n .  Decomposition  of organic  m a t e r i a l i s r a p i d and a c c u m u l a t i o n o f humus i s a b s e n t .  Very  young s o i l s , u s u a l l y s t i l l under I n f l u e n c e of f l o o d s , show no signs of p o d z o l i s a t i o n .  S i t k a spruce i s t h e most i m p o r t a n t  tree species i n t h i s association.  P r o d u c t i v i t y o f these  sites  had t h e h i g h e s t c o r r e l a t i o n w i t h s o i l p e r m e a b i l i t y and s o i l moisture.  The s m a l l a r e a i n w h i c h t h i s community was found  had a v e r y u n i f o r m environment  so t h a t t h e s m a l l q u a n t i t a t i v e  d i f f e r e n c e s between p l o t s c o u l d not y i e l d s t a t i s t i c a l of any major  results  importance.  In c o n t r a s t t o t h e o t h e r communities,  the Ribes -  Oplopanax a s s o c i a t i o n d e v e l o p s on r e c e n t a l l u v i a l d e p o s i t s , p r o b a b l y n o t more than a few hundred y e a r s o l d .  I t Is pre-  ceded by pure a l d e r stands on coarse g r a v e l d e p o s i t s , o f t e n not more than a few i n c h e s above t h e summer water l e v e l o f t h e river.  D u r i n g t h e f o l l o w i n g y e a r s sand and loam a r e d e p o s i t e d ,  179  depending on the speed of the moving f l o o d w a t e r .  Organic  d e b r i s are a l s o caught among the s t a n d i n g a l d e r s and the i s b u i l t up. balsam appear. f l o o d , but new  At f i r s t , t r e e s of s p r u c e , hemlock, cedar  soil and  They are u s u a l l y d e s t r o y e d d u r i n g the next t r e e s appear a n n u a l l y .  As the d e p o s i t s  i n c r e a s e and the r i v e r c u t s i t s bed deeper,  the p e r i o d s  d u r i n g w h i c h these s i t e s are submerged become s h o r t e r , u n t i l f i n a l l y the t r e e s s u r v i v e .  Spruce w i l l  of  L i g h t i s not a l i m i t i n g  a l d e r and p e n e t r a t e i t .  soon r e a c h the canopy factor,  because t h i s community never c o v e r s c o n t i n u o u s l a r g e a r e a s , and b e i n g i n t e r r u p t e d n o r m a l l y by o l d arms of the r i v e r or by the r i v e r i t s e l f , r e c e i v e s a d d i t i o n a l s i d e l i g h t and  light  r e f l e c t e d from the w a t e r . Because t h i s a s s o c i a t i o n n o r m a l l y i s preceded  by  pure a l d e r stands i t p r o b a b l y does not e x i s t i n stands younger than about f i f t y y e a r s , u n l e s s the o l d stand was  destroyed,  i n w h i c h case a l l the t r e e s p e c i e s and many shrubs may at may  the same t i m e .  start  Under t h e s e c o n d i t i o n s , D o u g l a s - f i r  "  be a l s o p r e s e n t i n the s t a n d and p r o p o r t i o n of a l d e r  would be much l o w e r . The p r o b a b l e development of the s t a n d i n the R i b e s - Oplopanax a s s o c i a t i o n i s shown by F i g u r e s 32d  and  33. S i t k a spruce i s of v e r y h i g h q u a l i t y i n t h i s a s s o c i a t i o n and d e s e r v e s s p e c i a l n o t i c e .  Almost 500 y e a r o l d t r e e s ,  though w i t h dead tops u s u a l l y show no s i g n of decay anywhere e x c e p t a few f e e t below the t o p .  180 Below t h e open spruce canopy i n mature f o r e s t s u s u a l l y an a l l - a g e d o r m u l t i - l a y e r e d growth composed of shadet o l e r a n t hemlock, balsam and cedar.  Spruce was n o t found t o  r e g e n e r a t e i n t h i s a s s o c i a t i o n , t h e r e f o r e i t can be assumed t h a t a t t h e age o f about 700 y e a r s , spruce would d i s a p p e a r from t h e s t a n d .  A f t e r t h a t t h e stands w i l l be formed by a l l  t h r e e s p e c i e s , hemlock, cedar, and balsam, hemlock b e i n g t h e most numerous. M u l t i p l e Regression A n a l y s i s In t h e f o l l o w i n g a n a l y s i s an attempt was made t o a s s e s s t h e degree of a c c u r a c y I n e s t i m a t i n g t h e p r o d u c t i v i t y as e x p r e s s e d by h e i g h t over age curves by u s i n g p l a n t communi t y and t h e e n v i r o n m e n t a l f a c t o r s . independent  F o r t h a t purpose t h e  v a r i a b l e s were used i n f i v e d i f f e r e n t  groups:  1. The p l a n t community and a l l t h e seventeen v a r i a b l e s measured.  These p r o b a b l y i n c l u d e a l l t h a t can be  measured o r e s t i m a t e d on each p l o t w i t h o u t a g r e a t e x p e n d i t u r e of work o r t i m e . 2. P l a n t community and l a n d form f e a t u r e s t o g e t h e r , e x c l u d i n g s o i l and m o i s t u r e  regime.  3. S o i l and m o i s t u r e regime, l e a v i n g out p l a n t community and l a n d form. 4.  P l a n t community a l o n e .  5. Land form a l o n e .  181 In t h i s p a r t of the a n a l y s i s the s c a l i n g of s e v e r a l v a r i a b l e s was  changed,  so t h a t a s t r a i g h t l i n e would r e p r e s e n t  b e s t the r e l a t i o n s h i p between the dependent variables.  and independent  T h i s s c a l i n g i s based on the assumption t h a t  each v a r i a b l e v a r i e s i n d e p e n d e n t l y of o t h e r v a r i a b l e s . Theref o r e , f o r example, p l a n t communities of the w e t t e r subzone, as a f u n c t i o n of s o i l m o i s t u r e , w i l l have a f o l l o w i n g  sequence,  from d r y t o wet; V a c c i n i u m - S a l a l , V a c c i n i u m - Moss, Blechnum,Vaccinium - L y s i c h i t u m .  The same communities, as a  f u n c t i o n of s o i l depth, l o g i c a l l y w i l l have a d i f f e r e n t sequence; V a c c i n i u m - L y s i c h i t u m , V a c c i n i u m - S a l a l ,  Blechnum,  V a c c i n i u m - Moss, and so on f o r each v a r i a b l e . By r e g r e s s i o n a n a l y s i s was  calculated:  1. Degree of v a r i a b i l i t y i n s i t e i n d e x accounted f o r by each of the f i v e groups of the independent v a r i a b l e s . 2. P r o p o r t i o n of v a r i a b i l i t y i n s i t e i n d e x a s s o c i a t e d w i t h each i n d i v i d u a l v a r i a b l e , l e a v i n g out the e f f e c t of a l l remaining v a r i a b l e s . '3.  Percentage of sum squares removed by r e g r e s s i o n  f o r the two main groups of v a r i a b l e s , the l a n d form f e a t u r e s , d i s t i n g u i s h a b l e on a e r i a l photographs, and s o i l and m o i s t u r e f a c t o r s w h i c h appear t o have the g r e a t e s t e f f e c t on p r o d u c t i v i t y and t o g e t h e r w i t h l a n d form are e a s i l y r e c o g n i z a b l e i n the  field.  T h i s was done by g r a d u a l l y removing the f a c t o r  h a v i n g the l a r g e s t n e g a t i v e or the s m a l l e s t p o s i t i v e  Fig Percentage of  and  of  Variance  Single  in  To  34  Site  Index  Accounted  follow  for  page  by  Groups  Variables Single  Variables  Topographic  Soil  and  Moisture  1 0 0 °/o Total  6) O. O  Variability o. o l_ en o a o +J o L. U  o CL  in cy C  Q. Crf Cy  X  •o  o  CD Q. in  Cy  c c o  <  +J LO  in 0  0  o m  o  <-  r-  o  0  0 0  0) ro  0  o G)  CD  I-  0  o ro  *—  s  m io  Groups  of  0 o 0 0 CM CM  o  ro CM  0 0  tO  0 0 o 0 0 0  o  CM  x—  rCM  ro CM  0  o r-  <£> <—  0 0 <-  0 0 co T—  CM  CM  Variables  in —  a i_ o  m  >  0  o0  o •o cy +J c -J o o uo  n a  L O  >  o o  o  o0  o  o0  iD  Q O a> ro  lO ro  iD ro  ro  o "O  c o  "O  c o  cy  cy c o  c n  cy a  E  O  en  o  E E E E x> o o u  c o  o  LO  c o  o cn  O a.  o !_ O  cy  E cy  rr  ro CM  m i_  Cy  o  > o  Cy i_  rj m o a x  a.  c o  co CM  CD  > o  E Cf  o  c  cy Q. m  cy  cy  > o  a  > o  E E cy cy  cr  cr  o c o o  o a.  cy a. a  sz in  cy •a D  C> i CL  a .c  m  cy a. O m  c o c o •»->  in  O Q.  cy i_ cn  cy T3  •a c 3  O  cn  181  182 regression c o e f f i c i e n t .  In t h a t way the f a c t o r was omitted,  the omission of which gave the s m a l l e s t decrease i n the percentage remaining  of v a r i a b i l i t y i n s i t e  index accounted f o r by  variables. A l l three r e s u l t s are presented i n F i g u r e 34.  comparing the upper and lower p a r t of the graph,  By  one can note  the v a r i a b i l i t y a s s o c i a t e d w i t h each i n d i v i d u a l v a r i a b l e , and the e f f e c t of i t s removal  on the remaining p r o p o r t i o n of the  v a r i a b i l i t y i n s i t e index accounted f o r . I t can be concluded from the r e s u l t s that some o f the v a r i a b l e s have a h i g h i n d i v i d u a l c o r r e l a t i o n w i t h s i t e index, but when combined w i t h other v a r i a b l e s , t h e i r e f f e c t i s i n s i g n i f i c a n t .  This  e f f e c t Is a l r e a d y i n c l u d e d i n the e f f e c t of other v a r i a b l e s w i t h which t h a t p a r t i c u l a r v a r i a b l e i s c o r r e l a t e d . f o r e , by removal  There-  of t h i s s i n g l e v a r i a b l e , the percentage of  the remaining accountable v a r i a b i l i t y i n s i t e index does not decrease.  V a r i a b i l i t y of ground water, f o r example, i s  a l r e a d y c o n t a i n e d i n the succeeding v a r i a b l e s so t h a t the removal  of the e f f e c t of ground water does not change the  t o t a l v a r i a b i l i t y accounted f o r . I t can be concluded t h a t , among the t o p o g r a p h i c a l f e a t u r e s , p o s i t i o n on slope, shape of contours, a l t i t u d e , shape of p r o f i l e and aspect account f o r 39 p e r cent of the total variability.  A l l the remaining v a r i a b l e s account f o r  o n l y one a d d i t i o n a l p e r cent of the v a r i a b i l i t y and, t h e r e f o r e , can be omitted i n p r a c t i c a l c o n s i d e r a t i o n s of s i t e  Fig Percentage  of  by  of  Groups  100  Variance and  in  To  Plant  Single  Communities  follow  page  Accounted  182  for  Variables  °/o  Tota 1  Single  V a n ability  Variables  Topographic  Soil  and  Moisture  0 0  L.  IOSL  o  CD TJ c  o  >  0  D >  n i_ o t—  OJ Groups  0  o  o  o  o  ro LO ro  of  o  o  o  o  OJ  D  0  CO  Variables  ro in  —  CD i_  Z3 +-»  in o E  XI c o —  o l/l  X) /—  t_ o  X o>  "O c  CD I/)  CD c /->  co ro  E  x> c  •a o _l  o  c m CL in CD CD c c" o o l/l LO 0  o  ro  o  0  o  —  CD CD -*-> a O  +-*  E  E  u +J o c c N " o ' - CD T> CT1f_ o L D CL O CL 0  o  CO ro T—  o  OJ  o  0  ro  o  0  0  0 0  o  CD lO  o  0  o o  0  ro  LO  0  o  C\J  LO  o  0  C\J LO  0  0 O  0  GO N  o CL CD o Q  CD > o  CD  £  o  ro ro LO m  CD i_ m o  O i_ o  o  o  E  Cd  CD CCD L o l_ CL  CO  o  u  »*-  O  CD CL  O  sz  in  CD in i_  O  in  m  >•—  O  a -> CD  in  Z3  o co o o  CD  shap  C a  0  op  0  on  en  i on  (_ o  hy  E  po  o o t-  CO  0  de  —  1  alt  >  o  SD  i_ o  i_ u  !_  o u  CD c o C cD TJ o CD " a " -t-» 3 ' -»-» CD CL CD Q. o CD in O CO L+J O < CL O .C o C  ness  O O  o  o  ve  >>  ro  o  exp  o o u o  CO  o  Re  ZJ  u 6) Q  c o  O  E  re  nt  X3 CD  +-»  0  ro in  'OtO|  u.  As|  lO iD  n a  Bod  in CD  0  <  " CD" in a.  tio  rap 1"  ft)  CD a CD O in r i_° i O a l/l l/l o  th  r-  >  ntou  CD  slo  O  ste  00  oto p  o  mi  0  35.  C  Z3  o  183 index s t u d i e s . In one  t h e same way, when s o i l  needs t o a p p l y  layer,  soil  only s o i l  moisture,  any s i g n i f i c a n t  relationships  simplifying  aspects  making f i e l d  of f i e l d  work s u c h  is  one.  of accuracy. important f o r  a s m a p p i n g and  economical.  a n a l y s i s was done, u s i n g t h e p l a n t com-  munity as a dependent v a r i a b l e independent  loss  are considered very  a s s e s s m e n t s more  Similar  variables  t h i c k n e s s o f humus  p e r m e a b i l i t y and p a r e n t m a t e r i a l and c a n omit  other f a c t o r s without Both these  and w a t e r a r e c o n s i d e r e d ,  and t h e s i t e  index  a s an  In other r e s p e c t s the groups of  r e m a i n e d t h e same.  t a b u l a t e d as the p r e v i o u s  The r e s u l t  independent  of the a n a l y s i s  one and i s p r e s e n t e d  on F i g u r e  35. It  i s p o s s i b l e t o conclude  form  f e a t u r e s , shape o f c o n t o u r s ,  tude  and s t e e p n e s s  was a c c o u n t e d any  accuracy  f o r and t h e a d d i t i o n a l t o the r e s u l t s .  i s very probable  analysis  a p p e a r t o be r e a l l y and s o i l  account  on s l o p e ,  alti-  four factors  I t i s necessary  which  d i d n o t add  to re-  i n t h e measurements o f a s p e c t .  that aspect plays greater r o l e  than  this  indicates. From s o i l  ity  position  among t h e l a n d  of slope contain a l l the v a r i a b i l i t y  emphasize t h e b i a s c o n t a i n e d It  t h a t from  and water regime, important:  moisture.  f o r J6  p e r cent  only three  ground water,  When combined, t h e s e of the v a r i a b i l i t y  factors  soil  permeabil-  three  i n plant  factors  Fig Percentage of  the  To  36  of  Variance  in  Plant  Communities  Drier  Subzone  Accounted  for  by  follow  page  ( Ecosystem  Groups  and  183 Units)  Single  Variables  Single  Factors  Topographic  Soil  o 0 o o o 0 o o co ,_ ro LO m CM CM  .CO  ro  ui  Cy  n o £_ o >  ro  CM  r-  0 o 0 o t— CM cy XI +-> ZJ U  cy  <Ul < —  o  Groups  cy  L. Ul Z>  o X fc) CL  "O c —  ul " l_- cy a. o >1 o 4— c o CL £1 Ul o CL O c 4— u Lcn _ o o O 4— H— CL ul o O O c Ul cy cy cy CL cy C L Q . cy o D u Ul + -> O a. to to to —  of  o  u u o  o  cy E  en cy i_ cy o E  o  o  I-  o  •o  c  o  cy c o  X cy "O c  n o  CO  c  CO  a  co ro  0 o O o 0 0 D o CO 0 01 0> LO o CO cO 10 If) cy Ul cy C L cy a o o o > ui +J JZ ui c o CL o O o u Q. !_ c cn o O ui 4— 4c ul o O o c cy cy Cl' o acy C L a L o 1/1 cy c o o .c x: 2 0_ i/i to to —  cy i_ ZP ui O a X cy  do  c  o  a  c  s  n  o  •o  —  TJ  c  ^~  o  0  cn  r  —  -*-»  ~  L. LCO M cy cy n o +-> o a . cy. E E  ul  i c C Ul o c o o - £_O). +-» to o M  Ul Ul cy l_ c cy c o  Ul  o E  JZ CL  c>y u c  cy •o  o  o  —  or  O  ui  cn cy i_ E  E  cy CL  0 0 o o o t— <CO CD CO  •(-'  Moisture  0> ro CM CM  Factors  o  cy +-> c 3  o o  cy a o Ul  CO  1t1o  co  rot  cD  and  184 association.  A l l additional  the t o t a l  variability  that  and m o i s t u r e  soil  plant  explained. regime  need n o t  variables. be  taken  Importance  1947;  similar  included  separately.  Because the w e t t e r  at  elevations,  assessment drier in  of p l a n t  subzone  f o r 8l  accounted  combined, f o r 73 p e r Only t h r e e l a n d profile,  soil  total  cent.  and  regime  84 p e r  soil  ground  study  subzone area  subzone  i t s significance for subzones.  variability  land  This  occurs i n the  the d r i e r  cent.  cent; s i t e  c e n t and  literature  the d r i e r  In  accounted Soil  i n d e x and  and  steepness water,  land  for  form per  cent.  They were  shape  of s l o p e .  soil  the  moisture  f o r m a l o n e f o r 72  f o r m f e a t u r e s were i m p o r t a n t .  and m o i s t u r e  per  per  water.  done w i t h a l l t h e  subzone  lost  shape o f c o n t o u r s ,  podzolization 8l  36)  (Figure  and  support.  community w i t h i n b o t h  t h e d e p e n d e n t v a r i a b l e was  regime  of  altitude  index  variability  i960).  i n t h e w e t t e r and  s t u d y u s u a l l y a t h i g h e r and  lower  of s o i l  a n a l y s i s was  associations  under  their  McMinn,  in  f o r by a l l t h e  suggestions mathematical  Finally,  discovery i s  recognized in earlier  Daubenmire,  gave t h e e a r l i e r  accounted  in variability  to  a l l the v a r i a b i l i t y  consideration;  o f w a t e r was  1950;  (Baker,  Significant  cent  T o p o g r a p h i c a l f e a t u r e s or s i t e  into  already included  only 2 per  add  explain  community w h i c h c o u l d be  seventeen  is  factors  From  moisture,  p e r m e a b i l i t y accounted  f o r 79  out  of  Fig Percentage of  the  of  Wetter  Variance  in  Subzone  To  37 Plant  Communities  Accounted  f o r  by  follow  page  184  ( Ecosystem  Groups  and  Units) Single  Variables  Factors  Topographic  CO OJ  o oo  CM a  o  CD  CO  n a  0  o  i_  lO  o >  W  0  o  LO T  ID  —  x • n  TJ C  CD  TJ 3  C D L.  !_  tn o  a o  3  cn O CL O -»->  i/i »*wi O • CD"C D  u  (_  CD •»->  CL  o  CD CL  CO  TJ C —  C CL  u>  c  o  **-  o  C C D CD L CL CD a CD t/i SIO -t-> CO  I/)  a o  i/)  —  CO  <  o a.  CO  0  0  o  0  o  Is  OJ  —  o  (_ CD  O ulI W  CD  C  r-  CO  0  0  o  CD CD  O a X  o  0  OJ  LO  Of  in  SI  Moisture  0  o  ro  —  and  E  +->  0  a  o  o o o ro LO OJ CM  0  o  1^-  oo OJ  o  >>  CM  <_  CD  co -I-  -t-»  SL  +-> - CL"  Oj 1  n E  —  i_ C D CD n (_ 3 +-> o Ul  CD _ u. O TJ TJ E O c C  ~ N "  c CD N L. TJ " 0O _ " CO L  —  o  CO  o  CO l_ 0o1  o  O  o i_ o >  TJ  h-  0  in o «— to 5  o  o  *—  5  o  o 01 LO  rj> in  o  m  0  o  0  o  oo oo oo ro OJ CO CO  co  1_  3 +-> </> —  o E  TJ c  TJ C D — —  O  CO  cv —  o  TJ c CD +J  10  E o  TJ  O  CD CL  LO  OJ x  CD •TJ-  O  CD  +->  o  CD  I-  CL  a i_  3  U)  cn  O O +->  X CD  CL  C  CD  CD •«->  o E  o L.  CJ  u  TJ  O  CL  C  CD  —  CO  CL  _J  >  2  </>  <  ~"  $  u>  CD  o  Ul  I_  O CL c o w> U) *— CD o c C o a CD CL CD  CD +-> CO  U) sz o co a. O  U)  U) U) CD  c c  L. 3  o o CD  a a CO  o  1->  U)  a  u CD  •*-»  o E  E  CD  CC  o M o TJ  o  CL  CL  CL  O  CD  CD  a  3  o  E  CD TJ  c  a  N  CD L.  CD  *->  c o —  CD  AO  a o  0  C  —  -»->  0  nt  >»  CD  o  o  *f—  Factors  onto  o u u o  of  ope  c 3  cn CD t_  <_  po  •»-»  E  Groups  E  itu d  TJ CP  CD  ex  o  »*—  O  00  cn L.  o  5 o E  TJ C 3  o CO  CD E  c  CO  rt L.  o  per  o  0  o  con tour  o  on  o o GO CO  Soil  toi  Single  o  185 In t h e w e t t e r subzone ( F i g u r e 37) t o t a l e x p l a i n e d was 88 p e r c e n t . for  variability  S o i l and m o i s t u r e regime  accounted  84 p e r c e n t ; s i t e i n d e x and l a n d form f o r 66 p e r cent  and l a n d form a l o n e f o r 6l.5 p e r c e n t . p o s i t i o n on s l o p e , shape o f p r o f i l e  Shape o f c o n t o u r s ,  and steepness o f s l o p e  accounted f o r 6l p e r c e n t , which was p r a c t i c a l l y  the t o t a l  v a r i a b i l i t y e x p l a i n e d by a l l t h e l a n d form f e a t u r e s . s o i l and m o i s t u r e regime  From  s o i l p e r m e a b i l i t y , ground water,  soil  m o i s t u r e and a c c u m u l a t i o n o f o r g a n i c m a t e r i a l accounted f o r 82 out o f t h e t o t a l  o f 84 p e r c e n t .  When each subzone was  t r e a t e d s e p a r a t e l y t h e r e was a s u b s t a n t i a l improvement i n t h e t o t a l explained v a r i a b i l i t y .  T h i s suggests t h a t t h e two sub-  zones a r e d i f f e r e n t groups o f d a t a and t h a t d i v i s i o n subzones was j u s t i f i e d  into  ( K r a j i n a , 1959)•  R e f e r e n c e s : B a j z a k , i960; Barnes, 1949; G r i f f i t h , i960; P a c i f i c Northwest F o r e s t and Range E x p e r i m e n t a l S t a t i o n , i960; Smith and B a j z a k , 1961.  CHAPTER V CONCLUSIONS From t h e that  there are  material,  analytical part  high  soil  correlations  forming  for forest  one  combination  of these  satisfactory  results.  o r any  arrive  at  the worker's a b i l i t y acy  same, one  can  seventeen  variables,  can  be  soil  and  land  see  accounted  moisture  could  o n l y 55  than  community, and  per  success  classification  cent  cent.  I f the  of v a r i a b i l i t y  65  per  areas.  the  soil per  Into d e f i n i t e  and  cent;  this  study  considered.  in productivity  K r a j i n a (unpublished)  186  and  are probably  considers  much work  were  units according to their  t r a n s i t i o n s were n o t omitted  m  index  without  o f t h i s method t o g e n e r a l f i e l d  because the p l o t s used  on  accur-  in site  l a n d form  cent;  These r e s u l t s  as  any  and  depend  plant  Transitions  assessment i n  f o r e s t work, s i n c e i n t h e w r i t e r ' s o p i n i o n t h e y may large  growth;  which uses a l l  c e n t ; p l a n t community 62  per  c a n n o t be  will  work i s a c c e p t e d  characteristics per  tree  factors  interpretation.  f o r ; u s i n g . v e g e t a t i o n and  40  to f a l l  mosaics  67  application  achieve,  selected  t h a t i n the  moisture  form alone  higher  and  The  i n a l l p a r t s of the p r e s e n t  parent  i t i s p o s s i b l e t o use  environmental  i  i t i s evident  v e g e t a t i o n and  classification  for their  study  among l a n d f o r m ,  processes,  therefore,  of t h i s  cover  transitions  g e o g r a p h i c a l l y v e r y narrow. of one  They may  he degraded v a r i a t i o n s  community or b e t t e r v a r i a t i o n of a n o t h e r , or perhaps  an a s s o c i a t i o n t h a t needs t o be s e p a r a t e d  and i n t e r p o l a t e d i n  the s u c c e s s i o n a l sequence. D o u b t l e s s any approach, i n the hands of an experi e n c e d w o r k e r , w i l l g i v e good and u s e f u l r e s u l t s .  Which  approach i s the b e s t f o r a p a r t i c u l a r f o r e s t area w i l l on the i n t e n s i t y of the f o r e s t management, the  depend  accuracy  r e q u i r e d , a c c e s s i b i l i t y of the a r e a , q u a l i f i e d l a b o u r and means a v a i l a b l e .  the  A l l approaches w i l l have m e r i t s as w e l l as  limitations. I f we  c o n s i d e r , f o r example, the v e g e t a t i o n w i t h a l l  i t s l a y e r s : s t a n d d e n s i t y b e i n g the same, s i t e s  having  d i f f e r e n t e n v i r o n m e n t a l c o n d i t i o n s support d i f f e r e n t v e g e t a tion.  The  v e g e t a t i o n r e f l e c t s the e n v i r o n m e n t a l c o n d i t i o n s  above the ground as w e l l as i n the r h i z o s p h e r e . the t r e e s occupy d i f f e r e n t volumes of a i r and  But because  soil,  a s s o c i a t e d p l a n t s i n d i c a t e o n l y a p a r t of the t r e e ment, except d u r i n g the f i r s t stages  the environ-  of the t r e e growth.  However, the concept of p l a n t communities i s v e r y u s e f u l , because t h e r e u s u a l l y e x i s t s a good c o r r e l a t i o n between d i f f e r e n t l a y e r s , a t l e a s t under average c o n d i t i o n s . v e g e t a t i o n appears t o r e a c t m a i n l y t o m o i s t u r e .  Ground  Therefore,  on d r y sandy and d r y c l a y e y s o i l s , on w h i c h the p l a n t cover may  be almost i d e n t i c a l , the t r e e s may  differ greatly in their  v i g o r , r e a c h i n g w i t h t h e i r r o o t s i n t o the deep m o i s t l a y e r s  188 i n sandy s o i l s and r e m a i n i n g c l o s e t o t h e s u r f a c e i n c l a y soils.  Hence, p e r f e c t agreement between ground  vegetation  and t r e e growth cannot be e x p e c t e d except i n a g e n e r a l way. S p i l s b u r y and Smith (19^7) d e s c r i b e d concept o f f o r e s t c l a s s i f i c a t i o n .  their  " B i o l o g i c a l concept o f s i t e  i n d e x i s based on t h e assumption t h a t t h e n a t u r a l a f t e r a p e r i o d of c o m p e t i t i o n the complex o f growth f a c t o r s . ( d e f i n e d as p o s s e s s i n g  vegetation,  approaches an e q u i l i b r i u m w i t h S p e c i f i c p l a n t communities  u n i f o r m i t y of t h e dominant  of t h e l e s s e r v e g e t a t i o n )  vegetation  species  a r e t h e r e s u l t o f t h e same growth  f a c t o r s that characterize d i f f e r e n t s i t e s .  These p l a n t  communities when c o r r e l a t e d w i t h t h e volume o r h e i g h t e x i s t i n g stand,  of t h e  serve as an independent b a s i s f o r c l a s s i f y i n g  s i t e s i n t h e term of growth c a p a c i t y f o r any s p e c i e s of t r e e s i n d i g e n o u s t o those s i t e s .  Each p l a n t community i s a q u a l i t y  c l a s s and i s c a l l e d a f o r e s t s i t e Braun-Blanquet r e c o g n i z e s  type." a l s o t h a t "... a g i v e n  p l a n t community may occur i n many l o c a l i t i e s .  But i t e x i s t s  u s u a l l y i n one o r a few w e l l d e f i n e d and e c o l o g i c a l l y c h a r a c t e r i s t i c h a b i t a t s . . . . the e f f e c t i v e e x t e r n a l f a c t o r s are numerous and t h e i r c o m b i n a t i o n manyfold and o v e r l a p p i n g so frequent...."  Therefore,  i t cannot be e x p e c t e d t h a t a d i s t r i -  b u t i o n o f p l a n t communities, s o i l t y p e s o r t r e e growth w i l l show p e r f e c t c o r r e l a t i o n w i t h g r a d i e n t i n t h e i n t e n s i t y o f any p a r t i c u l a r f a c t o r , as compensatory i n f l u e n c e s i n t h e environment and v a r i a b l e e c o l o g i c a l t o l e r a n c e s w i l l c o n c e a l many o f t h e s e r e l a t i o n s h i p s .  tend t o  189 To r e j e c t t h e v a l u e  of t h e ground v e g e t a t i o n i n  c l a s s i f i c a t i o n o f f o r e s t p r o d u c t i v i t y would be a f a i l u r e t o recognize  the a b i l i t y  o f p l a n t s t o grow a c c o r d i n g  adaptability i n different ecological habitats.  to their  Also there i s  no doubt t h a t t h e p l a n t communities a r e s i g n i f i c a n t l y r e l a t e d t o t h e growth o f t r e e s and p r o d u c t i v i t y of f o r e s t s o i l i n general.  They a l l a r e p r o d u c t s o f t h e same b a s i c f a c t o r s ,  c l i m a t e and s u b s t r a t u m as m o d i f i e d  by l a n d form.  Turnover o f  o r g a n i c m a t t e r , k i n d of humus, degree o f l e a c h i n g , depth, d e p t h o f r o o t p e n e t r a t i o n ,  soil  ground w a t e r , s o i l  moisture,  m i n e r a l n u t r i e n t s and a l l t h e o t h e r f a c t o r s a r e r e l a t e d t o c e r t a i n c o m b i n a t i o n s o f c l i m a t e , l a n d form and s u b s t r a t u m . F o r t y p e r cent o f t h e v a r i a b i l i t y i n s i t e i n d e x was accounted f o r by topography and 55 p e r cent by s o i l and water regime.  These groups o f f a c t o r s have l i m i t a t i o n s  s i m i l a r t o the v e g e t a t i o n ; g e n e r a l l y they give u s e f u l r e s u l t s , but i n any p a r t i c u l a r case may f a i l t o p r o v i d e  an  estimate  of d e s i r a b l e a c c u r a c y . Lesko (1961) d i v i d e d each a s s o c i a t i o n i n t o s e v e r a l subgroups a c c o r d i n g  t o t h e s o i l c h a r a c t e r i s t i c s . From h i s  work i t appears t h a t v e g e t a t i o n soils. estimate  i s only l o o s e l y r e l a t e d to  S u r f a c e c h a r a c t e r i s t i c s and v e g e t a t i o n of the p r o p e r t i e s of s o i l .  water regime f o r e s t i m a t i o n  g i v e o n l y an  Hence use o f s o i l and  of f o r e s t h a b i t a t s and s i t e  p r o d u c t i v i t y i s l i m i t e d by t h e e x t e n t t o w h i c h one can examine t h e a c t u a l p r o p e r t i e s o f t h e s o i l s and s o i l m o i s t u r e (Figure  7).  190 I t i s h a r d l y p r o b a b l e t h a t we s h a l l e v e r e v o l v e a system o f c l a s s i f i c a t i o n t h a t w i l l be c o m p l e t e l y s u f f i c i e n t . The p r o b l e m r e s o l v e s i t s e l f i n t o s e l e c t i n g one w h i c h b e s t meets t h e r e q u i r e m e n t s of t h e problem a t hand. Of g r e a t e s t p r a c t i c a l importance i s t h a t t h e c l a s s i f i c a t i o n be i n t e r p r e t a b l e on a i r photographs and be u s a b l e and a p p l i c a b l e on a broad as w e l l as on a d e t a i l e d  level.  T h e r e f o r e , f o r p r a c t i c a l p u r p o s e s , t h e c l a s s i f i c a t i o n can use b e s t t h e p h y s i c a l f e a t u r e s o f s i t e w h i c h can be i n t e r p r e t e d from topography and from t h e elements of v e g e t a t i o n o n l y those w h i c h can be a l s o r e a d i l y o b s e r v e d .  Swamps and  a l l u v i a l s i t e s , r i d g e s and v a l l e y f l o o r s can be e a s i l y d i s t i n g u i s h e d , b u t many o t h e r s need a p r e l i m i n a r y s t u d y and cons t a n t c h e c k i n g on t h e ground. t h e i r s u c c e s s i o n a l development,  E c o l o g y of f o r e s t  communities,  cannot be s t u d i e d any o t h e r  way than by a n a l y t i c a l and s y n t h e t i c a l e c o l o g i c a l s t u d y , t h a t must be done d i r e c t l y on t h e ground.  F o r any f o r e s t  district,  t h e r e f o r e , i t w i l l be n e c e s s a r y t o e v a l u a t e t h e r e l a t i o n s h i p s of t h e p l a n t communities and s o i l s t o topography.  These w i l l  have t o be d e s c r i b e d i n d e t a i l i f one w i s h e s t o make t h e b e s t use o f t h e a e r i a l p h o t o g r a p h s . U s i n g s i t e s based on p h y s i o g r a p h i c f e a t u r e s i s a v e r y good b a s i s t o b u i l d on, and v e r y v a l u a b l e f o r f o r e s t management i n g e n e r a l . practical. sured.  The b a s i c p r i n c i p l e s a r e s i m p l e and  I t s p a t t e r n can be seen, and o b j e c t i v e l y mea-  Hence, r e s u l t s o f d i f f e r e n t workers i n d i f f e r e n t  191 regions  s h o u l d be  climate, on  soils,  comparable.  moisture  v e g e t a t i o n may  sites  vity  forest  of the  wide v a r i e t y used  by  are  closely related  stands.  data  from  The  o f f o r e s t e d and  any  kind of f o r e s t  Another question  be  readily  one  locality  same d e g r e e e v e r y w h e r e same h a b i t a t ?  a different present  study  can  altitude  use  except  c o n d i t i o n s , and  still  arises.  How  data  decreases.  I t reaches  (-.56, .01)  and V a c c i n i u m  from  when a p p l y i n g d a t a another.  the  topography  has  In  the one  In a l l communities site  index  l e v e l ;in Blechnum  (-.75? .05)?  i n wide a l t i t u d i o n a l and  to  a l a r g e r e g i o n , but  - Lysichitum  Therefore, both understanding  the  Does a  growth of t r e e s .  to latitude.  significant  frequent  are  does i t d e s c r i b e e x a c t l y  changes, the  on v e g e t a t i o n and  communities,  reliable  w i t h the p r o d u c t i v i t y  i t o c c u r s , and  as a n a l o g o u s  can  o r l a n d management.  Polystichum with increase i n a l t i t u d e  edaphic  i s needed.  f o r work i n a l a r g e r e g i o n ?  t h e r e a r e no  entered  to p o t e n t i a l producti-  non-forested  As m a c r o c l i m a t e  effect  eco-  method i s a p p l i c a b l e u n d e r a  g i v e n p l a n t community c o r r e s p o n d  the  f e a t u r e s of  t h i s p h y s i o g r a p h i c framework i f g r e a t e r d e t a i l  Topographic  be  and  Corresponding  great  c a u t i o n are  on p l a n t c o m m u n i t i e s f r o m  one  two range. needed  area  to  CHAPTER V I SUMMARY From t h e s t u d y o f environment and t r e e growth, c a r r i e d out i n t h e s o u t h w e s t e r n p a r t of t h e Vancouver f o r e s t district,  i t was c o n c l u d e d t h a t : 1. I n t h e p a s t , f i r e s had heen so e f f e c t i v e and  so f r e q u e n t t h a t t h e s u c c e s s i o n of v e g e t a t i o n i n t h e d r i e r subzone o f t h e r e g i o n s t u d i e d seldom p r o g r e s s e d beyond t h e stage i n w h i c h p i o n e e r t r e e s p e c i e s formed a s u b s t a n t i a l p a r t of the stand.  I n t h e w e t t e r subzone, f i r e s ,  though not  a b s e n t , have been l e s s severe ( F i g u r e 4 ) . 2. C l i m a t i c  factors  a) Mean t e m p e r a t u r e s (9 i n c h e s above the ground i n t h e s h e l t e r ) among t h e a s s o c i a t i o n s o f e i t h e r t h e w e t t e r or  t h e d r i e r subzone, v a r i e d seldom more than 1° F.  Their  i n f l u e n c e on t h e d i s t r i b u t i o n of v e g e t a t i o n o r r a t e of growth i s t h e r e f o r e c o n s i d e r e d  insignificant.  b) Temperature maxima had much w i d e r range than minima.  B o t h a r e i n f l u e n c e d by t h e temperature of t h e s o i l  s u r f a c e , w h i c h , i n t u r n , i s c o n t r o l l e d by t h e d e n s i t y o f t h e canopy, v e g e t a t i o n , k i n d o f t h e s u r f a c e s o i l l a y e r s and t h e i r moisture content. the  ( F i g u r e s 5 and 6.)  In the f o r e s t ,  denser t h e canopy, and t h e c l o s e r t o t h e ground, t h e  measurements were t a k e n , t h e narrower was t h e range temperature maxima and minima.  between  Outside the f o r e s t , 192  193 the c l o s e r t o t h e ground t h e w i d e r was the range. c) Extremes of temperatures c o i n c i d e d w i t h barom e t r i c p r e s s u r e maxima and e a s t e r l y w i n d s . d) F o r e s t cover and ground v e g e t a t i o n o f f e r s a very e f f e c t i v e protection against f r o s t . e) Dense f o r e s t canopy may account f o r s u b s t a n t i a l water l o s s even i n zones o f h i g h p r e c i p i t a t i o n . f ) R e l a t i v e h u m i d i t y of t h e a i r i s a f u n c t i o n of the temperature a t t h e time of the measurement. t o 11.)  (Figures 9  R e l a t i v e h u m i d i t i e s e v e r y week reached a p o i n t o f  saturation.  D u r i n g the r a i n , u n l e s s t h e c l o u d s were low and  c o n d e n s a t i o n t o o k p l a c e as w e l l the r e l a t i v e h u m i d i t i e s were c l o s e t o 95 p e r c e n t . 3. Tree  growth  a) D i f f e r e n c e s i n t r e e growth e x i s t among i n d i v i d u a l p l a n t communities,  not only i n the absolute v a l u e s ,  but a l s o i n t h e d i s t r i b u t i o n of t h e growth. G e n e r a l l y i n communities  (Table  3.)  of t h e d r i e r subzone t h e growth  was more r a p i d i n immature s t a n d s , b u t l e v e l l e d o f f soon after.  I n w e t t e r subzone communities,  a f t e r slow r a t e i n  young f o r e s t s , growth p e r s i s t e d l o n g i n t o m a t u r i t y . b) Accepted h e i g h t - o v e r - a g e curves u n d e r r a t e g r e a t l y the growth i n f l o o d p l a i n communities.  (Figures  16 t o 19.) c) Growth of D o u g l a s - f i r i n immature stands i s u n d e r r a t e d by s t a n d a r d h e i g h t - o v e r - a g e c u r v e s .  The younger  the s t a n d and t h e lower t h e s i t e p r o d u c t i v i t y , the g r e a t e r  is  the  difference. d)  of  site  indices 4.  The  Chance p l a y s an in individual effect  of t r e e b)  had  very  areas  little  role  associations.  of the  environment  a) M i c r o t o p o g r a p h y estimation  important  had  i n the  range 21.)  (Figure on  site  very l i t t l e  index  value f o r  growth.  Steepness  o f s l o p e between 0.5  i n f l u e n c e on  o f no m e a s u r a b l e  site  index.  Steeper  slope  supported  stands  c) A t a l t i t u d e s  b e l o w 1200  feet  50  and  per  slopes  of poor  cent and  growth  25).  (Figure  site  creased only s l i g h t l y with  increased elevation.  altitudes  more r a p i d  the decrease d)  was  Southwestern aspects  growth, n o r t h e a s t e r n a s p e c t s  index At  ( F i g u r e s 23 supported  of lowest  growth  de-  higher 24).  and  stands  of  best  ( F i g u r e s 23  and  24) . e) W i t h i n c r e a s e i n c o n c a v i t y o f c o n t o u r s index  increased (Figure f)  straight index.  25).  Change o f shape o f p r o f i l e  coincided with From s t r a i g h t  only a s l i g h t  t o convex the  from  decrease  decrease  g) Lower p o s i t i o n s  in  was  on  to  site rapid  s l o p e , w i t h the  f l a t , i m p e r f e c t l y drained basins, supported  growth  concave  26).  (Figure  of  site  (Figure h)  moderately  exception  stands  of  26). G r e a t e s t p r o d u c t i v i t y was  exposed t o winds.  Great  found  as w e l l as  on low  sites wind  higher  195 27).  exposure s u p p o r t e d stands of lower growth ( F i g u r e  i ) P r o d u c t i v i t y d e c r e a s e d p r o g r e s s i v e l y from s o i l s of a l l u v i a l o r i g i n  t o s o i l s of g l a c i a l t i l l  s o i l s t o s o i l s of o r g a n i c o r i g i n  (Figure  to  outcrop  27).  j) P r o d u c t i v i t y increased very steeply w i t h i n c r e a s e i n s o i l depth up t o 28 i n c h e s . e f f e c t on s i t e i n d e x  (Figure  Greater  depth had  28).  k) P r o p o r t i o n of stones had no i n f l u e n c e on index.  P l o t s w i t h low p e r c e n t a g e of stones i n c l u d e d  stands as w e l l as p o o r e s t origin  no  best  stands on s a t u r a t e d s o i l s of  and i m p e r v i o u s l a c u s t r i n e c l a y s ( F i g u r e l ) W i t h i n c r e a s e of seepage and  site  organic  28).  soil  moisture,  s i t e i n d e x i n c r e a s e d , but i n s a t u r a t e d s o i l s p r o d u c t i v i t y was a l s o v e r y low ( F i g u r e m)  29).  S i t e Index i n c r e a s e d w i t h i n c r e a s e of permea-  b i l i t y and h i g h e s t p r o d u c t i v i t y was soils.  found on v e r y permeable  Extreme p e r m e a b i l i t y , however, r e s u l t e d i n v e r y  s i t e s w i t h low s i t e i n d e x  (Figure  dry  30).  n) P r o d u c t i v i t y i n c r e a s e d w i t h decrease of t h i c k n e s s of o r g a n i c m a t e r i a l , except i n d r y p l a n t communities  (Figure  30). o) W i t h i n c r e a s e d p o d z o l i s a t i o n s i t e  decreased (Figure 5.  index  31).  a) I n c r e a s e  i n t h i c k n e s s of o r g a n i c m a t t e r  was  found c o r r e l a t e d w i t h i n c r e a s e d p r o d u c t i v i t y i n a l l d r y communities.  In m o i s t and wet  communities t h i s c o r r e l a t i o n  was  negative.  capacity  Growth o f t r e e s depends on  of o r g a n i c m a t t e r  damaging e f f e c t , While it  may  i n former, hut  impending a e r a t i o n i n controlled  cause l i t t l e  fire  damage on m o i s t  g r o w t h i s b e t t e r on m i n e r a l  holding  a p p e a r s t o have a  latter.  i s detrimental  b) W h i l e h e m l o c k can its  the water  on  dry  sites,  sites.  grow on  organic material,  soils.  c) P r o d u c t i v i t y o f D o u g l a s - f i r i s h i g h e s t transition  o f Moss and  Polystichum apparently  sites. are  e s p e c i a l l y the d) and  cedar  t o o wet  In the  humus l a y e r on  (  c a p a c i t y exceeds the  dry  drier  Polystichum  growth of D o u g l a s - f i r .  subzone c o m m u n i t i e s ,  site  - Moss and  v i g o r of  the  There  i s at i t s best.  In the wetter highest  a s s o c i a t i o n , o r on  best  f o r best  v i g o r of cedar  between V a c c i n i u m  of the  Sites with  have t h e  e)  Polystichum  on  index  on  the  hemlock  transition  Blechnum a s s o c i a t i o n .  communities,  the  growth t h r o u g h i t s detrimental effect  beneficial  effect  water-holding  of reduced  producti-  v i t y through increased p o d z o l i s a t i o n . f ) Dry  communities  occupy a lower p o s i t i o n deeper these  soils sites  reflect may  dry  still  than  on  find  the  n o r t h and  i s greater, surface  on  soil  on  southern  slope east  suggesting  and  and  extend  aspects. that lesser  conditions, while  a v a i l a b l e water at g r e a t e r  western  aspects  f a r t h e r on  to  P r o d u c t i v i t y of vegetation  deep-rooted depth.  may  trees  197 6.  Basal area a)  area under stands to  Hemlock a p p e a r s t o be v e r y  study.  canopies  i n mature f o r e s t s ,  trees suffer  s p e c i e s i n young  d r y p l a n t communities,  b a s a l a r e a a n d volume o f t h e e n t i r e Older  s h o r t - l i v e d o i n the  I t i s t h e most a b u n d a n t  i n a l l except  lower  and volume  but i t i s l i m i t e d  and i t s p r o p o r t i o n o f stand  i s u s u a l l y not g r e a t . ( F i g u r e s 32 and  f r o m a t t a c k by p a t h o g e n s  33). b) mature  stands,  In the d r i e r and c e d a r  subzone, D o u g l a s - f i r , i n younger  i n older forests,  are forming the  ( F i g u r e s 32 and  g r e a t e s t p r o p o r t i o n of timber  c) A l l s p e c i e s a r e l o n g e r - l i v e d than  i n the Wetter  i n t h e D r i e r Subzone. 7.  Multiple regression analysis a) Due t o h i g h i n t e r r e l a t i o n s  variables  considered,  correlation with a very  site  high Individual  index,  account  when combined,  b) variability  i n site  i s p o s s i b l e t o omit  consideration without  any l o s s  index.  index  f o r only  (Figure  34).  s e v e r a l v a r i a b l e s from  of accuracy.  Land form alone  i n site  among a l l t h e  some v a r i a b l e s h a v i n g  small part of v a r i a b i l i t y It  for  33).  accounts  f o r 40 p e r c e n t o f  P l a n t community- a l o n e  accounts  50 p e r c e n t ; p l a n t community and l a n d f o r m combined f o r  60 p e r c e n t ; seventeen  soil  and m o i s t u r e  v a r i a b l e s accounted  variability  i n site  index.  r e g i m e f o r 55 p e r c e n t . A l l f o r 6j p e r c e n t  of the t o t a l  198 c) S o i l cally  land form  for  76  plant for  72  78  combined,  accounted  per cent f o r 66  accounts f o r p r a c t i -  f o r i n the  (Figure  35);  site  per cent; land  plant index  and  form alone f o r  cent. d)  ground  m o i s t u r e regime  a l l the v a r i a b i l i t y  community - t o t a l  54 p e r  and  water,  Three soil  variables  of seventeen, i . e . ,  p e r m e a b i l i t y , and  p e r c e n t out o f t h e 80 community a c c o u n t e d per  out  per  for.  soil  moisture  account  cent of v a r i a b i l i t y  Ground w a t e r  alone  accounted  cent. e) D i v i s i o n  statistically  o f t h e zone i n t o  justified  ( F i g u r e s 36  and  two  subzones  37).  in  is  REFERENCES Aikman, J . M. 1941. The e f f e c t o f a s p e c t o f s l o p e on c l i m a t i c f a c t o r s . Iowa S t a t e C o l l . J o u r . S c i . 15?  161-167.  A l e x a n d e r , G. W. 1930. F i r e weather and f i r e Monthly Weather Rev. 58: 370-372.  climate.  Armstrong, J . E. 1954. P r e l i m i n a r y map, Vancouver n o r t h , B r i t i s h Columbia. Canada, Dept. o f Mines and T e c h n i c a l Surveys, Paper 53-28. . 1956. S u r f a c i a l geology o f Vancouver a r e a , B r i t i s h Columbia. Canada, Dept. o f Mines and T e c h n i c a l Surveys, Paper 55-40. . 1957. S u r f a c i a l geology of New Westminster map-area, B r i t i s h Columbia. Canada, Dept. of Mines and T e c h n i c a l S u r v e y s , Paper 57-5. B a j z a k , D. i960. An e v a l u a t i o n of s i t e q u a l i t y from a e r i a l photographs o f t h e U n i v e r s i t y of B. C. Research F o r e s t , Haney. U n i v e r s i t y o f B. C , F a c . o f F o r e s t r y , M. F. t h e s i s . Baker, F. S. 1944. Mountain c l i m a t e s of t h e w e s t e r n S t a t e s . E c o l o g i c a l monographs 14. 225-245.  United  Barnes, C. H. 1949. S i t e c l a s s i f i c a t i o n f o r even-aged stands of w e s t e r n hemlock. U.S.D.A. Pac. N. W. F o r . Range E x p t . S t a . Res. Note 50. B a r t l e t t , M. S. 1937. Some examples of s t a t i s t i c a l methods of r e s e a r c h i n a g r i c u l t u r e and a p p l i e d b i o l o g y . J . Roy. S t a t . Soc. S u p p l . , 4: 137-170. B a t c h e l o r , L. D. and F. L. West. 1915. V a r i a t i o n i n minimum temperature due t o t h e topography o f a mountain v a l l e y i n i t s r e l a t i o n t o f r u i t g r o w i n g . Utah Agr. C o l l . Exp. S t a . B u l l . 141. B e c k i n g , R. W. 1954. S i t e i n d i c a t o r s ^ and f o r e s t type c l a s s i f i c a t i o n of t h e D o u g l a s - f i r r e g i o n o f w e s t e r n Washington and Oregon. Ph.D. t h e s i s , U n i v e r s i t y of Washington. .  1957.  Phytocenology.  The Z u r i c h - M o n t p e l l i e r S c h o o l o f  The B o t a n i c a l Review.  199  23 (7):4l2-488.  B e n n e t t , M. G. atmosphere. 3-14.  1934. The c o n d e n s a t i o n o f water i n t h e Roy. Met. Soc. [London] Q u a r t . J o u r . 50,  B e s t , H. C. 1935. T r a n s f e r o f heat and momentum i n t h e l o w e s t l a y e r s o f t h e atmosphere. [ G t . B r i t . ] Met. O f f . , Geophys. Mem. 65. 66 pp. B l i s s , G. S. 1924. F r o s t on t h e c r a n b e r r y bogs o f New J e r s e y . Month. Weath. Rev. 52. 212-214. B l i s s , L. C. 1956. A comparison o f p l a n t development i n m i c r o e n v i r o n m e n t s o f a r c t i c and a l p i n e t u n d r a s . E c o l . Monogr. 26: 303-337. B r a u n - b l a n q u e t , J . 1928. Berlin. 436 pp.  Pflanzensoziologie.  Springer,  Brayshaw, T. C. 1955- An e c o l o g i c a l c l a s s i f i c a t i o n o f t h e ponderosa pine stands m t h e southwestern i n t e r i o r o f B r i t i s h Columbia. Ph.D. t h e s i s , Dept. o f B i o l o g y and Botany, U. B. C. B r i g g s , Lyman T. and H. L. Shantz. 1917. The water r e q u i r e m e n t s o f p l a n t s as i n f l u e n c e d by environment. 2nd Pan Amer. S c i . Cong. P r o c . (1915-1916) 3: 95-107. B r i t i s h Columbia A t l a s o f R e s o u r c e s . Nat. Res. Conf. T r a n s .  1956.  N i n t h B. C.  B r i t i s h F o r e s t r y Commission. 1928. Growth and y i e l d o f c o n i f e r s i n Great B r i t a i n . B u l l . No. 10. 187 PP. B r u n t , D a v i d . 1939. P h y s i c a l and d y n a m i c a l Ed. 2. Cambridge, E n g l . 428 pp.  meteorology.  Burnes, T. I . 1953. S m a l l s c a l e t o p o g r a p h i c e f f e c t s on p r e c i p i t a t i o n d i s t r i b u t i o n i n San Dimas E x p e r i m e n t a l F o r e s t s . Amer. Geoph. Union T r a n s . 3 4 : 761-767. C a i n , S. A. 1939. The c l i m a x and i t s c o m p l e x i t i e s . American M i d i . N a t u r a l i s t 21: l 4 6 - l 8 l . . 1947. C h a r a c t e r i s t i c s o f n a t u r a l areas and f a c t o r s i n t h e i r development. E c o l o g i c a l Monographs  17. 185-200.  Cammerer, T. S. 1937. D i e Messung d e r L u f t f e u c h t i g k e i t d u r c h Thermoelemente i n ruhender L u f t . M e s s t e r c h n i k  13, 21-23.  Canada, Department o f T r a n s p o r t . Reports f o r 1958, 1959? and i960. C l i m a t e o f B r i t i s h Columbia. Dept. o f A g r i c u l t u r e , P r o v i n c e o f B r i t i s h Columbia. C a n t l o n , J . E. 1953. V e g e t a t i o n and m i c r o c l i m a t e s on n o r t h and s o u t h s l o p e s o f Cueketunk Mountain, New J e r s e y . E c o l . Monographs 23, 241-270. Carmean, W. H. 1955. S i t e q u a l i t y f o r D o u g l a s - f i r i n Southwestern Washington and i t s r e l a t i o n s h i p t o p r e c i p i t a t i o n , e l e v a t i o n and p h y s i c a l s o i l p r o p e r t i e s . S o i l S c i . Soc. o f Amer. P r o c . 19: 384-389. Chapman, J . D. 1952. The c l i m a t e o f B r i t i s h Columbia. B. C. N a t i o n a l Resources Conference. 170 pp. Chapman, H. H. and D. B. D e m e r i t t . 1936. Elements o f f o r e s t mensuration. 2nd e d i t i o n . W i l l i a m s P r e s s , I n c . , P u b l i s h e r s , Albany, N. Y. 451 pp. Chase, C. D. 1959. P h y s i o g r a p h i c s i t e c l a s s i f i c a t i o n . Lake S t a t e s F o r e s t Experiment S t a t i o n . 12 pp. mimeo. Choate, J . A. 1958. P l a n f o r a study o f the e v a l u a t i o n of s i t e q u a l i t y through the use o f a e r i a l p h o t o g r a p h s . D i v . o f F o r . Econ. Research P a c . Northwest^ F o r . and Range E x p e r . S t . , U. S. F o r e s t S e r v i c e . Unpublished research plan. Clements, F. E. 1905. R e s e a r c h methods i n e c o l o g y . U n i v . P u b l i s h . Co., L i n c o l n , Nebraska. 334 pp. . 1909. P l a n t f o r m a t i o n s and f o r e s t t y p e s . Soc. Am. F o r . P r o c . 4, 50-63. C l i m a t o l o g i c a l d a t a , Washington. Bureau.  1959.  U. S. Weather  Conner, A. J . 1949. The f r o s t - f r e e season i n B r i t i s h Columbia. Canada, Dept. o f T r a n s p o r t , M e t e o r o l o g i c a l D i v . , Toronto. 20 pp. Coons, T. 1957. The a n a l y s i s o f c o v a r i a n c e as a m i s s i n g p l o t t e c h n i q u e . B i o m e t r i c s 13: 387-405. C o r n i s h , E. A. 1940. The e s t i m a t i o n o f m i s s i n g v a l u e s i n i n c o m p l e t e randomized b l o c k e x p e r i m e n t s . Ann. Eug. 10:  112-118.  202 Cowles, H. C. 1899. The e c o l o g i c a l r e l a t i o n s of t h e v e g e t a t i o n on t h e sand dunes of Lake M i c h i g a n .  B o t . Gaz. 27: 95-116, 167-202, 281-308, 361-391.  Cox, H. T.  1910.  F r o s t and temperature c o n d i t i o n s i n t h e  c r a n b e r r y marshes of W i s c o n s i n , U.S. .  1922.  Weath. B u r . B u l l .  1.  Thermal b e l t s and f r u i t growing i n N o r t h  C a r o l i n a . Month. Weather. Rev. S u p p l . No. 19. Cummings, N. W. 194-0. The e v a p o r a t i o n - e n e r g y e q u a t i o n s and t h e i r p r a c t i c a l a p p l i c a t i o n . Amer. Geophys. Union F r a n s . 21: 512-522. C u r t i s , J . T. 1955. A p r a i r i e continuum i n W i s c o n s i n . E c o l o g y 36: 558-566. . 1957- An u p l a n d f o r e s t continuum i n t h e p r a i r i e - f o r e s t b o r d e r r e g i o n o f W i s c o n s i n . E c o l o g y 32:  476-496.  Dansereau, P. 1957. Biogeography, an e c o l o g i c a l p e r s p e c t i v e . X I I I . Ronald P r e s s Co., New Y o r k . 394 pp. Daubenmire, R. F. 1936. The " b i g woods" o f M i n n e s o t a : I t s s t r u c t u r e and r e l a t i o n t o c l i m a t e , f i r e and s o i l s . E c o l . Monogr. 6: 233-268. . 1943. S o i l temperature v e r s u s drought as a f a c t o r determining a t t i t u d i n a l l i m i t s of trees i n the Rocky Mountains. The B o t a n i c a l G a z e t t e 105 ( l ) . 1-13. .  1947.  P l a n t s and environment.  and Sons I n c . , New York.  John W i l e y  424 pp.  .  1952. F o r e s t v e g e t a t i o n o f N o r t h e r n Idaho and a d j a c e n t Washington and i t s b e a r i n g on concepts o f v e g e t a t i o n c l a s s i f i c a t i o n . E c o l o g i c a l Monographs 22:  301-331.  Day, T. H., L. F a r s t a d and D. G. L a i r d . 1959. S o i l Survey of s o u t h e a s t Vancouver I s l a n d and G u l f I s l a n d s , B r i t i s h Columbia. Canada, Dept. o f A g r i c u l t u r e . R e p o r t No. 6 B r i t i s h Columbia S o i l Survey. Du R i e t z , E. 1921. Zur methodologishen Grundlagen d e r modernen P f l a n z e n s o c i o l o g i e . Acad. Abhandl. U p p s a l a . 272 pp.  203 E l l e n b e r g , H. 1939. D i e Z u s a m m e n s e t z u n g , S t a n d o r t und S t o f f - p r o d u c t i o n b o d e n f e u c h t e r E i c h e n und Buchen M i s c h v a l d g e s e l l s h a f t e n Nordwest D e u t s c h l a n d s . Mitt d. f l o r i s t . - s o z i o l . Arbeitsgemeinshaft. N i e d e r s a c h s e n . 5:1-135. Hannover. E v e r s o l e , K. R. plantation.  1955. Forest  Spacing t e s t i n a D o u g l a s - f i r S c i e n c e 1: 14-18.  E z e k i e l , M. and K. A . F o x . 1959. Methods o f c o r r e l a t i o n and r e g r e s s i o n a n a l y s i s . New Y o r k , J o h n W i l e y and S o n s . 548 p p ; F o r e s t S o i l Committee o f t h e D o u g l a s - f i r R e g i o n . 1957. An i n t r o d u c t i o n t o f o r e s t s o i l s o f t h e D o u g l a s - f i r r e g i o n of the P a c i f i c Northwest. U n i v e r s i t y of Washington. F o r e s t r y Handbook f o r B r i t i s h C o l u m b i a . C l u b , U n i v e r s i t y o f B. C . '  1959.  The  Forest  F o r r i s t a l , F. F. et a l . 1953. S o i l p r o p e r t i e s r e l a t e d to s o i l c o v e r t y p e and p r o d u c t i v i t y on t h e Lee F o r e s t , Snohomish C o u n t y , W a s h i n g t o n . S o i l S c i . S o c . Am. P r o c .  19:3. P P . 384-389.  F u l l e r , G. D. :1912. vegetation. Bot.  E v a p o r a t i o n and t h e G a z . 54: 424-426.  Gast,  Stickel.  P.  R.  and P.  W.  1929.  stratification  Solar  radiation  r e l a t i v e h u m i d i t y i n r e l a t i o n t o d u f f m o i s t u r e and f i r e hazard. M o n t h l y W e a t h e r R e v . 57: 466-467. Geiger,  Rudolf.  1936.  of  and forest  M i c r o c l i m a t i s h e Beschreibung der  W a r m e s c h i c h t u n g am B o d e n .  Met.  Zeitschrift  53: 357-360.  . 1937. M i c r o c l i m a t i s h e Beschreibung der W a r m e s c h i c h t u n g am B o d e n . M e t . Z e i t s c h r i f t 54: 133-138;  278-284.  . University Gessel,  S.  P.  1957.  The c l i m a t e  near the  Press.  482  1949.  C o r r e l a t i o n between  ground.  Harvard  pp. certain  soil  c h a r a c t e r i s t i c s and s i t e f o r D o u g l a s - f i r i n n o r t h w e s t e r n Washington. S o i l S c . S o c . Am. P r o c . 1 4 : 333-337.  Graham, S. A . 1939. C l i m a x f o r e s t s o f t h e Upper of M i c h i g a n . E c o l . 22: 355-362.  Peninsula  204 G r a s o v s k y , A. 1929. Some a s p e c t s Yale Univ. Sch. F o r e s t r y B u l l . Griffith,  Braham G.  University to c l i m a t e  i960.  Growth  of l i g h t i n the f o r e s t . No. 23. 54 p p . of D o u g l a s - f i r at the  o f B r i t i s h Columbia R e s e a r c h F o r e s t as r e l a t e d and s o i l . U.B.C. F o r e s t r y B u l l . No. 2. 64 p p .  G r i f f i t h s , E . 1933. The Measurement o f h u m i d i t y i n c l o s e d spaces. F o o d I n v e s t i g a t i o n B o a r d s p e c i a l r e p o r t No. 8. H. M. S t a t i o n e r y O f f i c e . Haddock P. G. and J.H.G. S m i t h .  V o l . 54.  404-405.  1956.  Journal  9f F o r e s t r y ,  H a l l i d a y , ¥ . E . D. 1937. A forest classification f o r Canada. Canada, D e p t . o f Mines and R e s o u r c e s . F o r . S e r v i c e B u l l . 89. Ottawa, O n t . 50 p p . Hansen, H. P. 1947. C l i m a t e v e r s u s f i r e and s o i l a s f a c t o r s i n p o s t g l a c i a l f o r e s t s u c c e s s i o n i n t h e Puget Lowland o f Washington. Amer. J o u r n a l o f S C i e n c e . V o l . 245. 265-286. H a n z l i k , E . T. 1914. A study o f t h e growth and y i e l d o f D o u g l a s - f i r on v a r i o u s s o i l q u a l i t i e s i n w e s t e r n Washington and Oregon. F o r e s t r y Q u a r t e r l y R e v . v o l . 12.  440-441.  Harris, the  F . S. and R o b i n s o n , T. A. 1916. Factors affecting evaporation of moisture from the s o i l . Jour. Agr.  Res. 7: 439-461.  H a r s h b u r g e r , J . W. 1919. S l o p e e x p o s u r e and t h e d i s t r i b u t i o n of p l a n t s i n e a s t e r n Pennsylvania. Geogr. Soc. P h i l a . B u l l . 17: 53-62. Hartmann, F . 1952. Forstoekologie. Co., W i e n . 460 p p .  Verlag  George  Fromme u n d  Hartmann, F . K. 1932. Anfbau, V e r b r e i t u n g and H a u s h a l t naturlicher Fichtenwaldgesellshaften. Forstarchiv 8 Hannover. 367 PP. .  1933.  Zur s o c i o l o g i s h  C h a r a c t e r i s t i k der Waldbestande. .  1934.  (l-2).  ocologicshen  Silva  21: 161-168.  Berlin.  Zur s o c i o l o g i s h ocologicshen  C h a r a c t e r i s t i k der Waldbestande. S i l v a 22: 241-247, 250318. B e r l i n . Hawley, L . F . 1926. T h e o r e t i c a l c o n s i d e r a t i o n s r e g a r d i n g f a c t o r s which i n f l u e n c e f o r e s t f i r e s . J o u r n . F o r e f s t r y 24: 756-763. H a y e s , G. L . 194l. I n f l u e n c e o f a t t i t u d e a n d a s p e c t on d a i l y v a r i a t i o n s i n f a c t o r s of f o r e s t f i r e danger. U.S.D.A. C i r c . 591.  205 Heimburger, C. C. 1 9 4 1 . F o r e s t S i t e c l a s s i f i c a t i o n and s o i l i n v e s t i g a t i o n on Lake Eduard F o r e s t Experiment A r e a . Canada, Dept. o f Mines and Resources S i l v i c u l t u r a l R e s e a r c h Note No. 6 6 . H i l l , W. W., A. A r n s t and R. M. Bond. 1 9 4 8 . Methods of c o r r e l a t i n g s o i l s and D o u g l a s - f i r s i t e q u a l i t y . J o u r n a l of F o r e s t r y 4 6 . 835-841. H i l l s , G. A. 1 9 5 2 . The c l a s s i f i c a t i o n and e v a l u a t i o n o f s i t e f o r f o r e s t r y . R e s e a r c h Report No. 24. Division of R e s e a r c h , Dept. o f Lands and F o r e s t s , O n t a r i o . t  . 1959. A ready r e f e r e n c e t o t h e d e s c r i p t i o n o f the l a n d of O n t a r i o . D i v . of R e s e a r c h , Ont., Dept. of Land and F o r e s t s . Hoare, F. E. 1938. London. 307 PP.  A textbook  o f thermodynamics.  Ed. 2 .  H o l l a n d e t a l . 1 9 5 8 . S o i l survey o f P i t t Meadows M u n i c i p a l i t y . B. C. Dept. o f A g r i c u l t u r e , Kelowna, R e p o r t No. 5, 48 pp. Hough, A. F. 1 9 4 5 . F r o s t p o c k e t and o t h e r m i c r o c l i m a t e s i n f o r e s t s of the northern Allegheny P l a t e a u . E c o l . 2 6 : 235-250.  H u f f a k e r , C. B. 1 9 4 2 . V e g e t a t i o n c o r r e l a t e d w i t h vapor p r e s s u r e d e f f i c i t e and r e l a t i v e h u m i d i t y . Amer. M i d l a n d N a t . 28:486-500. Humphreys, W. J . 1940. P h y s i c s o f t h e a i r . Ed. 3. Y o r k and London. 676 pp.  New  Husch, B.** and ¥. H. L y f o r d . 1 9 5 6 . White p i n e growth and s o i l r e l a t i o n s h i p i n S o u t h e a s t e r n New Hampshire. S t a . Tech. B u l l . , N. H. A g r i c . E x p t . S t a . No. 9 5 . PP. 350358.  I s a a c , L. A. 1 9 3 7 . F a c t o r s a f f e c t i n g e s t a b l i s h m e n t of D o u g l a s - f i r s e e d l i n g s . U. S. Dept. of A g r i c u l t u r e C i r c u l a r No. 4 8 6 , Washington, D. C. . 1 9 4 3 . R e p r o d u c t i v e h a b i t s of D o u g l a s - f i r . C h a r l e s L a t h r o p and Pack F o r e s t r y F o u n d a t i o n , Washington, D. C. . 1 9 4 6 . Fog d r i p and r a i n i n t e r c e p t i o n i n c o a s t a l f o r e s t s . P a c i f i c Northwest E x p e r . S t a t i o n F o r e s t R e s e a r c h Notes No. 3 4 .  206 I s a a c , L . A. and H. G. H o p k i n s . 1937. The f o r e s t s o i l o f t h e D o u g l a s - f i r r e g i o n and c h a n g e s wrought upon i t by l o g g i n g and s l a s h b u r n i n g . E c o l o g y 8: 264-279. J a r v i s , J . M. 1958. Airphoto interpretation f o r forest management. C a n a d i a n P u l p and P a p e r I n d u s t r y 11 (3):  8-14.  J a m i s o n , J . M. 1934. The s i g n i f i c a n c e o f t h e e f f e c t o f s t a n d d e n s i t y upon t h e w e a t h e r b e n e a t h t h e c a n o p y . J o u r n a l o f F o r e s t r y 32: 446-451. Karman, T h . v o n . 1937. Turbulence. J o u r . 41: 1109-ll4l.  Roy. A e r o n a u t . S o c .  K e l l e y , C. C. and R. H. S p i l s b u r y . 1939. S o i l survey of the lower F r a s e r V a l l e y . D o m i n i o n o f Canada, D e p t . o f Agriculture Publ. 650. K e n d a l l , M. G. 1949. The a d v a n c e d t h e o r y C. G r i f f i n . V o l . 1. 457. V o l . 2. 519. 1952.  K e r , J . W.  estimating  An e v a l u a t i o n site  28 (3) 63-74.  index  of S t a t i s t i c s .  London,  o f s e v e r a l methods o f  o f immature  stands.  F o r . Chron.  K e r , J . W. and J . H. G. S m i t h . 1957. Sampling f o r h e i g h t diameter r e l a t i o n s h i p s . J o u r . F o r . 55(3) 295-307. K i t t r e d g e , J . 1948. Forest New Y o r k , 508 p p .  influences.  McGraw-hill.  Koppen, W l a d i m i r . 1918. K l a s s i f i k a t i o n der Klimate nach T e m p e r a t u r , N i e d e r s c h a g und J a h r l a u f . Petemanns M i t t , aus J u s t u s P e r t h e s G e o g r . A n s t . 6 4 : 193-203; 1  243-248.  K r a j i n a , V . J . 1933. D i e P f l a n z e n g e s e l l s h a f t e n des M l y n i c a - T a l e s i n den V y s o k e T a t r y (Hohe T a t r a ) . I. T e i l BBC. 50(2): 774-957, T a f . 9-13; I I . T e i l BBC. 51(2): 1-224, T a f . 1-4. .  1959.  University  Bioclimatic  of B r i t i s h  zones i n B r i t i s h C o l u m b i a .  C o l u m b i a , B o t . S e r . No.  1.  i960 ( l ) . Can we f i n d a common p l a t f o r m f o r the d i f f e r e n t s c h o o l s of f o r e s t type c l a s s i f i c a t i o n . S i l v a F e n n i c a 105: PP. 50-55. . Silva  i960 (2).  Fennica  105:  Ecosystem c l a s s i f i c a t i o n pp.  107-H0, 123-138.  of  forests.  207 Kramer, P. J . and J . P. Decker. 1944. R e l a t i o n between l i g h t i n t e n s i t y and r a t e o f p h o t o s y n t h e s i s o f l o b l o l l y p i n e and c e r t a i n hardwoods. P l a n t P n y s i o l o g y 19:  350-358.  Kraus, Gregor. 1911. Jena, F i s h e r . Kroch, August.  275-278.  L a r s e n , J . A.  1940. 1929.  Boden und K l i m a a u f K l e i n s t e m Raum. E c o l o g y 21:  A micro-climate recorder.  F i r e s and f o r e s t s u c c e s s i o n on t h e  B i t t e r w o o d Mountains o f N o r t h e r n Idaho. E c o l . 10: 67-76. L e i g h l y , J . 1937. A note on e v a p o r a t i o n . E c o l o g y 18:  180-198.  Lemmon, P. E. 1955. F a c t o r s a f f e c t i n g p r o d u c t i v i t y of some l a n d s i n t h e W i l l a m e t t e b a s i n o f Oregon f o r D o u g l a s - f i r t i m b e r . J o u r n a l o f F o r e s t r y 53: 323-330. Lesko, G. L. 1961. E c o l o g i c a l study of s o i l s i n t h e C o a s t a l Western Hemlock Zone. Dept. o f B i o l o g y , U n i v e r s i t y o f B. C , M. Sc. T h e s i s . L i v i n g s t o n , B. E. 1935. Atmometers of porous p o r c e l a i n and paper, t h e i r use i n p h y s i o l o g i c a l e c o l o g y . Ecology  16(3): 438-472. .  1938.  from p l a n t l e a v e s .  Influences that affect  transpiration  Sigma X i Q u a r t . 26: 88-101.  Logan, K. T. 1959. Some a s p e c t s of l i g h t on growth o f w h i t e p i n e s e e d l i n g s . Canada, Dept. o f N o r t h e r n A f f a i r s and N a t u r a l Resources, F o r e s t r y Branch. Tech. Note. No. 82. L o r e n z , R. W. and J . N. Spaeth. 1947. The growth of c o n i f e r s on p r a i r i e s o i l . J o u r . F o r e s t r y 45: 253-257. Losee, S. T. B. 1942. A i r photographs and f o r e s t F o r . Chron. 18(3): 129-144 and (4) 169-181.  sites.  Lowry, G. L. and Youngberg, C. T. 1955- The e f f e c t o f c e r t a i n s i t e and s o i l f a c t o r s on t h e e s t a b l i s h m e n t o f Douglas f i r on t h e T i l l a m o o k Burn. S o i l S c i . Soc. Am. P r o c . 19:  378-380.  208 L i i d i , W.  1921.  Die Pflanzengesellshaften der  L a u t e r b r u n n e n t a l e s und i h r e S u k z e s s i o n . B e i t r . 2. L a n d e s a u f . 9. P f l a n z e n g e o g r a p h . Komm. d . S o h w e i z . Naturforsh. Gesellsch. 364 p p . L u n d e g a r d h , H. 1931. E n v i r o n m e n t and p l a n t Edward A r n o l d a n d Co., L o n d o n .  geobot.  development.  L u t z , H. J . a n d A. P. C o p r a s o . 1958. I n d i c a t o r s of f o r e s t land classes i n air-photo i n t e r p r e t a t i o n of the Alaska Interior. A l a s k a F o r e s t R e s e a r c h C e n t r e , USDA, F o r . S e r v i c e , Tuneau, A l a s k a . S t a t i o n P a p e r No. 10. 31 p p . L u t z , H. J . a n d R. F . C h a n d l e r . 1955. Forest John W i l e y a n d Sons I n c . , New Y o r k .  soils.  L y n c h , D. W. 1958. E f f e c t o f s t o c k i n g on s i t e measurement and y i e l d o f s e c o n d g r o w t h P o n d e r o s a p i n e i n I s l a n d Empire. I n t e r m o u n t a i n F o r . a n d Range E x p t . S t n . , Res. P a p . No. 56. M c A r d l e r , R. E . , Meyer, W. H. a n d B r u c e , D. 1949. The y i e l d of Douglas f i r i n the P a c i f i c Northwest, R e v i s e d . U. S. D e p t . o f A g r i c . T e c h n . B u l l . 201, 12 p p . M c M i l l a n , C. 1956. The s t a t u s o f p l a n t geography. E c o l o g y 37' 600-602.  e c o l o g y and p l a n t  McMlnn, R. G. 1957. Water r e l a t i o n s i n t h e D o u g l a s - f i r r e g i o n on V a n c o u v e r I s l a n d . Ph.D. t h e s i s , D e p t . o f B i o l o g y a n d B o t a n y , U. B. C. Meyer, H. A. 1953. lishers, Inc.,  Forest mensuration. P e n n s . V a l l e y PubState College, Pennsylvania.  M i l l a r , F . Graham. 1937. E v a p o r a t i o n from f r e e water faces. Canad. Met. Mem. 1: 43-65.  sur-  M i t c h e l l , G. A. 1929. Forest f i r e hazard. A g r i c . Exp. U n i v . o f W i s c o n s i n , R e s e a r c h B u l l . 91: 1-26. Moroney, M. J . 1954. Facts from f i g u r e s . Harmondsworth, M i d d l e s e x .  Penguin  Morozov, G. F .  1926.  Uczenie  o lese.  I z d . 3-e*«  .  1928.  Uczenie  o lese.  Izd.  Sta.,  Books,  4-e.  Mueller-Dombois, D i e t e r . 1959. The D o u g l a s - f i r f o r e s t a s s o c i a t i o n s on V a n c o u v e r I s l a n d i n t h e i r i n i t i a l s t a g e s of s e c o n d a r y s u c c e s s i o n . U n i v e r s i t y o f B. C. Ph.D. thesis.  209 Manger, T. T. 1913. S h a l l t h e p h y s i c a l c o n d i t i o n s o r t h e d e n d r o l o g i c a l m i x t u r e be t h e b a s i s f o r f o r e s t t y p i n g . P r o c . Soc. o f Am. F o r e s t e r s 8:62-68. .  1940.  T h i r t y y e a r s growth i n Douglas f i r .  Timberman ( J u n e ) . 17 pp. N e l d e r , J . A. 1954. A note on m i s s i n g p l o t v a l u e s . B i o m e t r i c s 10: 400-401. Odum, E. P. 1953. Fundamentals o f e c o l o g y . X I I . W. B. Saunders Co., P h i l a d e l p h i a and London. 384 pp. O o s t i n g , H. J . 1956. The study o f p l a n t communities. W. H. Freeman and Co., San F r a n c i s c o . O r l o c i , L a s z l o . 1961. F o r e s t types o f t h e C o a s t a l Western Hemlock Zone. Dept. o f B i o l o g y , U n i v e r s i t y o f B. C. M. Sc. t h e s i s . P a r k e r , H,. A. 1952. Dominant h e i g h t and average d i a m e t e r as a measure o f s i t e . F o r e s t r y C h r o n i c l e 18: 152-156. Peech, M., L. T. A l e x a n d e r , L. A. Dean and J . F. Reed. 1947. Methods o f s o i l a n a l y s i s f o r s o i l f e r t i l i t y i n v e s t i g a t i o n s . U. S. Dept. o f Agr. C i r c u l a r No. 757, Washington, D. C. Penman, H. L.  1955.  Humidity.  I n s t i t u t e o f P h y s i c s , London.  P i e r c e , L. T. 1934. Temperature v a r i a t i o n a l o n g a f o r e s t e d s l o p e i n t h e Bent Creek E x p e r i m e n t a l F o r e s t . Month. Weath. Rev. 62: 8-12. Pogrebniak, P. S. 1929. Uber d i e Methodik d e r Standortsuntersuchungen i n V e r b i n d u n g m i t Waldtypen. V e r h . I I . I n t . Kongr. f o r s t l . V e r s u c h u n g s a n s t a l t e n .  455-471.  Pogrebniak, P. S. e t a l . 1944. Osnovy l e s n o j t i p o l o g i i . U r k g o s t e k h p r o m i z h d a t . I z d . 1-e. AN USSR. K i e v . .  1955.  Osnovy l e s n o j  tipologii.  U r k g o s t e k h p r o m i z h d a t . I z d . 2-e. AN USSR. K i e v . P o t z g e r , J . E. 1939. M i c r o c l i m a t e and a n o t a b l e case o f i t s i n f l u e n c e on a r i d g e i n c e n t r a l I n d i a n a . E c o l . 20: 29-37. P o w e l l , R. W. 1936. The use o f thermocouples f o r P s y c h r o m e t r i c p u r p o s e s . [London] Phys. Soc. P r o c .  48:  406-414.  210 Ramdas, L. A. 1938. The v a r i a t i o n w i t h h e i g h t of t h e water vapor c o n t e n t o f t h e a i r l a y e r s near t h e ground, a t Poona. Met. Z t s c h r . [Braunschweig] B i o c l i m a t i s h e B e i h l .  5: 30-34.  Reukema, D. L. 1959. Some r e c e n t developments i n the Wind R i v e r Douglas f i r p l a n t a t i o n t e s t s . PNW F o r e s t and Range E x p t . S t a . , Res. Note. l6j. 7 pp. Richardson, Burt.  1931.  E v a p o r a t i o n as a f u n c t i o n o f  i n s o l a t i o n . Amer. Soc. C i v . E n g i n . T r a n s . 95: 996-1019. Rohwer, C a r l . 1931. E v a p o r a t i o n from f r e e water s u r f a c e s . U. S. Dept. of Agr. Tech. B u l l . 271. 96 pp. . 1933. E v a p o r a t i o n from s a l t s o l u t i o n s and from o i l - c o v e r e d water s u r f a c e s . J o u r . A g r . Res. 4 6 .  715-729.  Rouke, E. 1949. The measurement of h u m i d i t y . Manual. U n i t e d Trade P r e s s L t d .  Instrument  Rowe, J . S. 1956. Uses o f undergrowth p l a n t s p e c i e s i n f o r e s t r y . E c o l o g y 37: 3: 361-473. .  1959.  F o r e s t r e g i o n s o f Canada.  Canada, Dept.  of N o r t h e r n A f f . and Nat. Res., F o r . B r a n c h , B u l l 123. 58 pp. Rowles, C. A., L. F a r s t a d and D. G. L a i r d . 1956. Soil r e s o u r c e s of B r i t i s h Columbia-. 9th B r i t i s h Columbia N a t u r a l Resources Conference, V i c t o r i a , B r i t i s h Columbia. 4l pp. Schmidt, R. L. 1954. A method o f e s t i m a t i n g s i t e q u a l i t y o f l o g g e d l a n d i n t h e c o a s t a l D o u g l a s - f i r f o r e s t b e l t of B r i t i s h Columbia. B. C. F o r e s t S e r v i c e , R e s e a r c h note No. 27. 34 pp. . 1955. Some a s p e c t s of w e s t e r n r e d cedar r e g e n e r a t i o n i n t h e c o a s t a l f o r e s t s o f B r i t i s h Columbia. B. C. F o r e s t S e r v i c e , R e s e a r c h Note No. 29. 28 pp. . 1957. The s i l v i c s and p l a n t geography of the genus A b i e s i n t h e C o a s t a l F o r e s t s o f B r i t i s h Columbia. B. C. F o r e s t S e r v i c e , Dept. of Lands and F o r e s t s . T e c h n i c a l p u b l i c a t i o n No. 4 6 . 42 pp.  211 Schmidt, W i l h e l m . 1935. Turbulence near t h e ground. Aeronaut. Soc. J o u r . 39: 355-376.  Roy.  S c o t t , D. R. M. 1957. F o r e s t e c o l o g y as r e l a t e d t o w h i t e p i n e s i l v i c u l t u r e i n C e n t r a l O n t a r i o . P r o c . Soc. Amer.  For.  72-74.  . 1957. Amount and c h e m i c a l c o m p o s i t i o n o f the o r g a n i c m a t t e r c o n t r i b u t e d by o v e r s t o r y and u n d e r s t o r y v e g e t a t i o n t o f o r e s t s o i l . Y a l e U n i v e r s i t y School o f F o r e s t r y B u l l e t i n No. 62. New Haven, Conn. S c o t t , D. and D. P. Duncan. 1959. Height growth of young r e d p i n e p l a n t a t i o n s i n S o u t h e a s t e r n Minnesota as r e l a t e d t o c e r t a i n s i t e f a c t o r s . Minnesota School of F o r e s t r y , F o r e s t r y Notes No. 6 4 . 6 pp. Sisam, J . ¥. B. 1938. S i t e as a f a c t o r i n s i l v i c u l t u r e — i t s d e t e r m i n a t i o n w i t h s p e c i a l r e f e r e n c e t o t h e use o f p l a n t i n d i c a t o r s . Canada Dominion F o r e s t S e r v i c e S i l v i c u l t u r a l Research Note No. 54. 12 pp. Smith, H. F.  1957.  13: 115-118.  Missing plot estimates.  Biometrics,  Smith, J . H. Cr. and D. B a j z a k . A p r i l 196l. Photo I n t e r p r e t a t i o n p r o v i d e s a good e s t i m a t e of s i t e i n d e x of f i r , hemlock and cedar. J o u r , o f F o r . 59 (4).pp.261-264. Smith, J . H. G. and J . W. Ker. 1956. Some problems and approaches i n c l a s s i f i c a t i o n o f s i t e i n j u v e n i l e stands of D o u g l a s - f i r . F o r e s t r y C h r o n i c l e 32(h): 417-428. encountered  . 1957. Some d i s t r i b u t i o n s i n sampling f o r e s t s t a n d s . F o r e s t S c i e n c e  3(2): 137-144.  . 1959. E m p i r i c a l y i e l d equat i o n s f o r young f o r e s t growth. B. C. Lumberman. v o l . 43 j 421 ''pp, Smith, J . H. G., J . W. K e r and L. Heger. i960. N a t u r a l and c o n v e n t i o n a l h e i g h t - a g e curves f o r D o u g l a s - f i r and some l i m i t s t o t h e i r r e f i n e m e n t . World F o r e s t r y Congress, S e a t t l e , SP/78/l-Canada. Smith, J . W. 1920. A g r i c u l t u r a l meteorology. M a c M i l l a n Co., N. Y.  The  212 S m i t h e r s , L. A. 1956. Assessment of s i t e p r o d u c t i v i t y i n dense l o d g e p o l e p i n e s t a n d s . Canada, Dept. of Northern A f f a i r s . F o r e s t Research D i v i s i o n T e c h n i c a l Note No. 30. 28 pp. S o c i e t y of American F o r e s t e r s , Committee on f o r e s t t y p e s . 1954. F o r e s t cover t y p e s of N o r t h A m e r i c a . Soc. of Am. F o r e s t e r s , Washington, D. C. 20 pp. S o i l Survey S t a f f . 1951S o i l Survey Manual. A g r i c u l t u r e handbook No. 18. 503 pp.  U. S. D.  A.  S p i l s b u r y , R. H. and D. S. Smith. 1947. F o r e s t s i t e types of the P a c i f i c Northwest. Dept..of Lands and F o r e s t s . B. C. F o r e s t S e r v i c e , T e c h n i c a l P u b l i c a t i o n T30. 46 pp. S p u r r , S. H. 1948. A e r i a l photographs i n f o r e s t r y . The Ronald P r e s s Co., New York, 340 pp. S p u r r , S. H. 1952. Forest inventory. Company, New Y o r k . 476 pp.  The Ronald P r e s s  Stam, 'p. B., P. F. K r a t z and H. J . W h i t e . 1952. The s w e l l i n g of human h a i r i n water and water v a p o r . T e x t i l e Res. T. 22: 448-461. S t a p l e , W. J . and J . J . Lehane. 1940. The response of the L i v i n g s t o n e atmometer t o s i n g l e , m e t e o r o l o g i c a l f a c t o r s .  S c i . Agr. 20: 308-310.  S t a r r , W. A. e t a l . 1955. E v a l u a t i n g and mapping mountain l a n d f e a t u r e s f o r f o r e s t management p u r p o s e s . Wash. A g r i c . E x p t . S t a t i o n C i r c . No. 271. 18 pp. S t e e l e , R. W. 1955. Growth a f t e r p r e c o m m e r c i a l t h i n n i n g i n two s t a n d s of D o u g l a s - f i r . U.S. F.S. P a c i f i c N o r t h west F o r e s t and Range Exp. S t a . Res. Note 117. 11 pp. S t i c k e l , P. W. 1931. The measurement and i n t e r p r e t a t i o n of f o r e s t f i r e weather i n the w e s t e r n A d i r o n d a c s . B u l l . New York S t a t e C o l l . F o r e s t r y N, Tech. Pub. 34. S t o a t e , T.N. and E.C. C r o s s i n . 1959. Site quality d e t e r m i n a t i o n i n young Douglas f i r . F o r . Chron. 3 5 ( l ) :  22-29.  S t o u t , Benjamin B. 1952. S p e c i e s d i s t r i b u t i o n and s o i l s i n the H a r v a r d F o r e s t . Harvard F o r e s t B u l l e t i n No. 24. 86 pp.  213 Sukachev, V. I . 1955. 0 l e s n o j b i o c e n o l o g i i i j e j e osnovnykh zadaczach. B o t . zhurn. 4o(3): 327-338. 1958. G e n e r a l p r i n c i p l e s and p r o c e d u r e i n t h e study of f o r e s t t y p e s . I n t . Union o f F o r e s t Research O r g a n i z a t i o n s . Z u r i c h . 1958. L e s n a j a b i o c e n o l o g i a i j e j o l e s o k h o z a j s t v e n n o e z n a c z e n i c . I n s t , l e s a AN USSR 1-15. Moskra. S u t t o n , 0. G. 1934. Wind s t r u c t u r e and e v a p o r a t i o n i n a t u r b u l e n t atmosphere. Roy. Soc. London, P r o c ,  Ser. A. 146: 701-722.  . 1936. near t h e ground.  The l o g a r i t h m i c l a w o f wind s t r u c t u r e Roy. Met. Soc. [London] Q u a r t . J o u r .  . 1937. near t h e ground.  The l o g a r i t h m i c law o f wind s t r u c t u r e Roy. Met. Soc. [London] Q u a r t . J o u r .  62:  63:  124-127.  105-107.  1939. Atmospheric t u r b u l e n c e . [London] 74: 97-102.  Met. Mag.  Tamm, 0. 1950. N o r t h e r n c o n i f e r o u s f o r e s t s o i l s . S c r i v e n e r P r e s s , Oxford. 25 pp.  The  T a r r a n t , R. F. 1948. The r o l e o f o r g a n i c m a t t e r as a source of n i t r o g e n i n D o u g l a s - f i r f o r e s t s o i l s . P a c i f i c Northwest F o r e s t and Range E x p e r . S t a t i o n , P o r t l a n d , Ore. R e s e a r c h Note No. 4 8 . 14 pp. 1949. fertility.  D o u g l a s - f i r s i t e q u a l i t y and s o i l  J o u r , o f F o r . 47(9)  716-720.  1950. A r e l a t i o n between topography and D o u g l a s - f i r s i t e q u a l i t y . J o u r . F o r e s t r y 49: 723-724. T h o r n t h w a i t e , C. Warren. 1931. The c l i m a t e s o f N o r t h America a c c o r d i n g t o new c l a s s i f i c a t i o n . Geog. Rev. 21: 633-655. .  1940.  Atmospheric m o i s t u r e i n  r e l a t i o n t o e c o l o g i c a l p r o b l e m s . E c o l o g y 21: 17-28. T h o r n t h w a i t e , C. Warren and B. Holzman. 1939. The d e t e r m i n a t i o n of e v a p o r a t i o n from l a n d and water s u r f a c e s . U.S. Monthly Weather Rev. 67. 4-11.  214 T h o r n t h w a i t e , C. Warren and B. Holzman. 1939. The r o l e of e v a p o r a t i o n i n the h y d r o l o g i c c y c l e . Amer. Geophys. Union T r a n s . 20:680-685. . 1940. A y e a r o f e v a p o r a t i o n from a n a t u r a l l a n d - s u r f a c e . Amer. Geophys. Union T r a n s . 21: 510-511. . 1942. Measurement of e v a p o r a t i o n from l a n d and water s u r f a c e s . U. S. Dept. o f A g r i c u l t u r e Tech. B u l l . No. 817. pp.55-94. T h o r n t h w a i t e , C.W. and J . R. Mather. 1955. The water b a l a n c e . D r e x e l I n s t , o f Technology, Lab C l i m a t o l o g y P u b i s . C l i m a t o l o g y 8 ( l ) 104pp. Thut, Hiram P. 1938. R e l a t i v e h u m i d i t y v a r i a t i o n s a f f e c t i n g t r a n s p i r a t i o n . Am. J o u r . B o t . 25: 589-595. . 1939. The r e l a t i v e h u m i d i t y g r a d i e n t o f s t o m a t a l t r a n s p i r a t i o n . Amer. J o u r n . B o t . 26: 315-319. Tourney, J . W. 1947. F o u n d a t i o n o f s i l v i c u l t u r e upon an e c o l o g i c a l b a s i s . 2nd ed. r e v . John W i l e y and Sons I n c . , New Y o r k . 468 p p . Trapp, E. 1938. U n t e r s . ue. d. V e r t e i l u n g d. H e l l i g k e i t i n einem Buchenbestand. B i o k l . B. 5, 153-158. T r e l o a r , L. R. G. 1952. A b s o r p t i o n o f water by h a i r and i t s dependence o f a p p l i e d s t r e s s . T r a n s . Faraday Soc. 4 8 :  567-576.  V a a r t a j a , 0. 1954. Temperature and e v a p o r a t i o n a t and near ground l e v e l on c e r t a i n f o r e s t s i t e s . Canad. J o u r n . o f Botany 32: 76O-783. Veihmayer, F. J . 1938. E v a p o r a t i o n from s o i l s and t r a n s p i r a t i o n . Am. Geophys. Union T r a n s . 19: 612-619. Warrack, G. 1952. Comparative o b s e r v a t i o n s o f the changes i n c l a s s e s o f a t h i n n e d and n a t u r a l s t a n d o f immature D o u g l a s - f i r . F o r . Chron. 28(2) 46-56. Warren, H. V. and C. R. Matheson. June 1949. Some r e l a t i o n s h i p s between g e o l o g y and f o r e s t growth. e r n M i n e r . 52-54.  West-  Washington A g r i c u l t u r a l Experiment S t a t i o n . 1955. E v a l u a t i n g and mapping mountain l a n d f e a t u r e s f o r f o r e s t management p u r p o s e s . S t a t i o n c i r c u l a r No. 271. 38 pp.  215 Weaver and Clements. 1938. Plant ecology. Co. Inc. New York and London. 601 pp.  McGraw-Hill Book  Westveld, M. 1954. Use of p l a n t i n d i c a t o r s as an index t o site quality. N o r t h e a s t e r n F o r e s t Exp. S t . Paper No. 69. 12 pp. Wexler, H. 1936. C o o l i n g i n the lower atmosphere and the s t r u c t u r e of p o l a r c o n t i n e n t a l a i r . U. S. Monthly Weather Rev. 6 4 : 122-136. Whitford, H. N. and R. D. C r a i g . Columbia. Ottawa. 486 pp. Wilde, S. A. 1958. Forest s o i l s . New York. 538 pp.  1918.  F o r e s t s of B r i t i s h  The Ronald Press Co.,  W i l k i n s o n , G. N. 1957. The a n a l y s i s of c o v a r i a n c e w i t h incomplete d a t a . B i o m e t r i c s 13: 363-372. Wilson, J . D. 1939* E v a p o r a t i o n s t u d i e s I I I . Ten Years of e v a p o r a t i o n at Wooster as measured w i t h b l a c k and white atmometers. Ohio Agr. Exp. S t a . Bimo. B u i .  24, 11-25.  W i t t i c h , Walter, i960. C l a s s i f i c a t i o n , mapping and i n t e r p r e t a t i o n of s o i l s f o r f o r e s t r y purposes. Fifth World F o r e s t r y Congress, S e a t t l e , Washington. 9 pp. Wolfe, J . N. et a l . 1949. M i c r o c l i m a t e s and macroclimate of Neotoma, a small v a l l e y i n c e n t r a l Ohio. B u l l . Ohio. " B l o l o g . Survey 8, No. 1. Yamamoto, J . 1937. On the r a t e of condensation of Geophys. Mag. [Tokyo] 11: 91-96.  dew.  Yates, F. 1933. Tae a n a l y s i s of r e p l i c a t e d experiments when the f i e l d r e s u l t s are incomplete. Emp. J . Exp.  A g r i c . 1: 129-142.  Young, F. D. 1920. E f f e c t of topography on temperature d i s t r i b u t i o n i n Southern C a l i f o r n i a . Monthly Weather  Rev. 4 8 : 462-463.  APPENDIX 1 Extremes, Annual and Monthly Mean Temperatures for the year 1958 and 1959 and Averages for the Period shown. (  J  °F)  F  M  A  M  J  J  A  S  O  N  D  Annual mean  Coquitlam Lake 1958 Extr. maxima Monthly mean temp. Extr. minima  49 ' 39 27  50 42 30  56 41 24  66 47 32  86 57 36  88 63 46  89 69 50  88 64 50  79 55 32  66 49 34  54 39 24  54 39 26  50  1959 Extr. maxima Monthly mean temp. Extr. minima  46 35 8  50 36 26  50 39 28  68 45 31  80 50 32  78 55 40  86 63 48  76 58 42  70 54 38  66 50 24  66 39 18  48 38 29  47  20 years averages  33  35  39  45  52  57  61  61  57  49  41  37  47  U.B.C. Forest 1958 Extr. maxima Monthly mean temp. Extr. minima  54 41 28  58 45 • 29  65 44 28  67 49 40  86 60 39  91 64 48  98 70 49  89 66 50  85 58 37  69 51 33  56 41 22  55 40 24  52  1959 Extr. maxima C Monthly mean temp. Extr. minima  51 42 7  53 38 24  56 41 28  71 47 31  88 52 42  82 59 42  92 64 45  80 60 45  76 55 38  64 49 34  62 40 13  57 38 25  49  10 years averages  32  36  39  45  53  57  61  61  57  48  40  36  47  Mosquito Creek 1958 Extr. maxima Monthly mean temp. Extr. minima  49 40 31  53 43 31  59 41 30  66 46 33  85 58 37  88 63 48  91 69 48  87 65 49  81 56 36  68 50 32  53 39 24  50 40 26  51  1959 Extr. maxima Monthly mean temp. Extr. minima  48 35 8  52 36 25  51 39 28  67 45 32  81 50 33  81 57 39  88 64 45  77 59 41  71 54 40  64 48 33  58 39 17  48 37 25  47  6 years averages  34  35  38  44  52  55  61  60  56  48  40  37  47  APPENDIX 2 Monthly and Annual Total Precipitation for the year 1958 and 1959 and Averages for the Period shown.  M  J  J  A  28.69 14. 67 4.11 7.75 15.62 10. 79 16. 98 18.36  7.58 4.26  2. 45 6. 28  0.00 1.97  4. 15 5. 60 4. 00 15. 25  14. 02 16. 32 20. 88 12. 23 19.81 17.59  120. 82 143. 18  19.86 15. 34 14.46  9. 19  6.55  4. 56  2.90  3. 20  7.06  15. 08 17.53 22.40  138. 13  1958  15.76  8. 60  5.94  3.44  1. 91  0.00  2. 36  3. 48  11. 49  10. 85 13.31  80.59  1959  11.50  8. 38 10.47 11.56  5.65  5. 16  1.91  2. 56  9. 37  7. 73  12. 63 10.02  96. 95  8. 43  11.80 13.97  91.77  J Coquitlam Lake  1958 1959  41 years average U.B.C. Forest  10 years average Mosquito Creek  F  M  3.46  A  S  O  N  D  Annual  13.07 10. 48  9.77  6.16  3.97  4. 27  2. 87  3. 22  3.76  1958  23.29 11. 58  6.00  7.78  2.35  1. 92  0.07  3. 42  4. 94  11. 15 13.80 16.58  102. 87  1959  12.51 11. 80 13.53  9.70  4.01  7. 37  1.67  1. 82 11.05  6. 86 14. 11 11.96  106.39  11.80  6. 88  3. 35  5. 93  2.72  2. 82  6 years average  9; 74 10. 67  6.63  10. 56 15.43  17.11  103. 64  APPENDIX 3 Monthly and Annual Hours of Bright Sunshine for the years 1958 and 1959  Vancouver City  J  F  M  A  M  J  J  A  S  O  N  D  Annual Total  1958  23  38  132  197  309  221  365  287  164 "  115  51  11  1912  1959  44  56  77  183  236  220  332  219  129  93  72  32  1693  46  79  126  167  238  219  282  254  177  109  53  36  1786  13 years average  APPENDIX 4  Annual Percentage Frequency of Winds N Vancouver Airport  3  NE 6  E 32  SE  S  19  6  SW  W  NW  Calm  6  11  15  2  ro i— —a j  >  Co •8 oo  ci  OJ J>  VD  00  O  4*- 4- cn oo 4s  s  OJ  to oo Ci >J>  J> >J> cn O -vl OJ  •I  ro o  ro vi  ro 4S  4* Cn  ci  4*. cn vi 4> cn vi OJ i— ro 1  ^1-^4*.  O OJ I*•  4^ Cn cn 4^- ^ Ci  4^ OJ OJ  cn Ci ro  s  ro vo  Cn  4^  s  cn  OJ  Cn VI Cn c i  ci  oo  4>- cn Vl oo c i ro  4* cn fvt Cn vi oo  Cn vo 4^ Ci 00 Cn vo O Ci 4*. VI 4^  4*- cn Ui ro ro vo  4S  Ci VO  4^  oi  4^  oo  Cn  Cn vi 4> J>  4  S  Cn Ci  Ul  H* K  4^ 4S  S  s  Cn cn c i t— Ci OJ 1  4^.  4 Ci VI Cn vi VD OJ Ci s  cn ci  00 00  Ci  Ci VO  cn c i v) ro oo cn  rfv Cn oo oo o  CnciOO  4^cnvj vjvocn  VI  4 - cn c i Cn4i.cn s  cn oi i— Ci  cn cn oi ro oo  Cn vl 4^ cn ci 4 O co Ci oo  4>- cn vo. 4* cn oo vj vl O Ci V0 4 -  4^ Ci 00 vioji-^  O U I K  cn  4^ Cn Cn cn ro oo  Cn oi OJ 4  4^-  cn d Ci Ci Cl  4^ Ci vi vi o Cn  4> ci vi 4^- Cn o i vo ro 4> J> oo oo 4>- Cn Ci  Ci  O  s  s  4^  vi  cn Ci ro  4^  s  4^ Cn V]  vj  4*- Cn 4^- 4>  ci VO  4- *> ro  Ci  s  There was no shelter on this plot  S  4- cn cn s  4* 4*  Cn cn OJ vo  4> Cn Ci 4^ 4 OJ s  J> Cn Ci 4  S  OJ  Cn Ci  44 - OJ 4 S S  S  4- Cn 4^ s  00  ci  OJ  Cn ci 4^ Cn Oi cn ro 4 - vj OJ O 4s  s  cn oi Ci vi  Cn d Ci Ci  Cn cn  4S  VO 4* Cn Cn 0 J o Cn  4^ Cn cn vl OJ cn  4^ Cn Ci cn4i.r0  cn vo OJ 4^  ci  )-»•  Cn cn Ci cn ci  ci  i—^ vj cn  Cn Ci V]  JiUlOl 00 00 V O  4- Cl V! s  S  Vacciniumsalal  Blechnum Vacc. moss Vacc. salal Transition  cn ci vi  Cn oi vi ro J> cn  4^-CiOO V04^0  CnCiVi Ji oi N 4*- Cn vj >-•• 4> vo viooo Vidro  Salal  CnCiVi 4 Cn Ci w ^ K vo vo vo  4* Cn Ci vicncn  Polystichum  Cn ci v] 4i cn ci ro OJ i— vo vo oo  4> cn a vj cn OJ  Vaccinium Lysichitum  O  4*  VI  oo o vo  cn Ci ci oo oo oo vo VI O o 4  Vaccinium moss  00  4^-  44- O S  £>• Cn cn cn ci Oi ro oo 4- Cn < ro  Ci  4*. Cn cn 4 - Cn cn ro o ci Cn OJ oo  Control  oo cn oo  -  4- Cn cn 4* Cn Ci ro OJ cn OJ H* oo  4*- 4*-  44^  Cl vi  O O O K  iMn OI Ci Cl Cl  Moss  J>  Cn cn ci 4^ cn ci ro vi 4^ VOOOCi  CnciVi cncivi K O * . i—ojcn  s  O ^ K  4  S  Cn cn  OJ 1— OJ  4-  Ci S  Cn cn Ci  OJ  4* 4S  cn  ci  O  4-  oo S  cn Ci o  OJ  4^ cn Ci cn ci VD 4>- i— Ci OJ  Cn cn ci 4> cn Ci J> cn vi O vi cn oo oo Cn vo vo ro  Cn ci V] O ro OJ  o  o < w  ro oo  o  o  ro  ro  OJ  ro OJ 4> *o 4p>. OJ  ro OJ cn ro oo 4^ oo -o. 4* CTI cn 4>  N W * . -g 4* cn  ro OJ cn vjr»ro  OJ 4=oo oo -o.  cnO^J  to OJ cn SIVD ^  ojrfi.cn rowo>  OJ 4> cn vo a i 4i-  OJ 4> ai oiMw  OJ 4> cn KWOD  OJ 4* d VO OO  w w ^ Orf^o  OJ OJ 4> O^JOO  roojrfivo cn 4=.  OJ OJ 4i. ^ 00 00  ro OJ 4*. KtJi*.  OJ 4* -o o to  OJ OJ 4> o to 00  u> 4*- cn 01 w ^  4?. J> cn ro CN cu  4i. 4^ cn o^jcn  OJ J> 4^ * N in  4* 4^ OI roooro  M W  vo 4i-  ^  ro OJ OJ vo 4* 00  ro OJ cn  ro OJ 4i10 tn R  ro OJ 4^  ro OJ 4>  OJ OJ cn  t o u ^  OJ 4*  10 S O  ~o. Cn OJ  10 4> Cn  O00O  OOiSi  oiOro  ro OJ J> m ui u  ro OJ 4> 00 4* >-*  N c« *• vo4i.ro  OJ OJ 4> 00000  ro OJ 4> o w w  ro OJ ~o vo vo  Control  Vaccinium moss  vo vo 00  UII»H>  OJ^UI  4i.4i.cn  OJ 4=- cn  vo v] Cn  w w K  w ^ o i  4^ J> cn  Vaccinium"salal  w w *> I D M ^  OJ 4^ 4* cn OJ VO  OJ 4* 01 vooiro  0j4i.cn vo c\ ro  OJ 4^OJ ^ 00  4i.4i.cn i-* t-*  Blechnum  M u  ^  i-> Cl OJ  00 Cn  Vacc. moss Vacc. salal Transition  There was no shelter on this plot  OJOJ 4>  OJ OJ cn  OJ OJ 4^  n-^-jtji  i-^^jrfi.  OJ OJ 4^  OJ OJ cn  ro OJ 4^  OJ 00 00  vo ^ ro  O O O M  OJ OJ 4^  OJ 4* cn  o> 4^ cn  4i.4i.cn  OJ J> on  4> 4=- O  OJ o m  4i. cn cn  Moss  OJOJ 4^ O010J  OJ OJ cn K K I O  rooj4^ iccioi  OJ OJ 4i. o - J o>  0j4i.cn O o !->•  roojj> ro ~j vj  OJ 4A 00 O to  OJ OJ 4> O W S  0J4i.cn  vi cn ro  4*- 4^ Cn OJ 00 4^  4>- 4* On  OJ 4> cn  4* 4^ On OJ vo Cn  Salal  OJOJ 4A OJ--J OJ  OJ OJ cn  0J  OJ 4^  OJ 0 J 4> OJ 00 4*  OJ 4> Cn OJ  tow*-  ro OJ 4> ro ro ro  OJ OJ * » OJ VD  vj  OJ 4* cn  4* 4=- Cn 4>. vo cn  4i- 4> Cn  OJOJ J>  OJ OJ 4^ cn vo ON  OJ 4i OJ ~ J Ol  OJ OJ 4=>  0J4i.cn OJ O O  roojrficn 00 4*-  ro OJ 4^ ^ Ni-  OJ vo 00  OJ OJ 4=-  4^ 4^ Cn  4* 4> Cn oj 00 ro  J> cn K 0 0 O  O o  ro  4^oo ro  K O O O  0J  4> 00 4*-  h^ioH  4* VD 0>  OJ 4*  o  cn OJ  VD ON 1—  O O O  wioui  0101-'  O 0 0 H  ro vo ro  Ul^M  OJ4i-cn  00 cn i-*  4>- 4* on cn vo 4*  OJ 4*- 4*  4> 4* on  00 cn 00  Polystichum  Vaccinium Lysichitum  to 00  ro vo  o cu a ro 4*^ ro 4^rocwJ> roooo ro o a ro ro ro vo oH oiooi— ooocn  cu 4*. cn  CD  rro o  o crn  a*  oo oo 4*.  O I W H  I— ai  OJ co 4i  K U T I -  ro OO o cnH-*cu a o^o rovooo  OJ O J 4^-  CO  VI  i-* ro oo Control vo ro 4 >- vo roO covjyj  ro ro oo  Vaccinium ww* ro cu ro ww^cnro oo r*^ o cuoivon rorocoUJ ro OJ vo oo CUCOJ> •->• J> rorooroo-voOJ po^ oisw h-oro ooo jo oororocuaoo R ooW - o Jo cu ro acotcoo4>nino OO I-»ro oo 4> rv Hro cu moss Vacciniumoo-J>oroo oo rooo -* r ro oroccnu -or.ocooococn ^ cn cocuro ooa4^ . OJOJ>J> cnoro n ojo oo -oi o oconoo^ o ro p^cnpo rorooj oo rororco ucuvo rorouicuvororocucu - J salal ro ojJ>cn  OJOJOJ  H  s cJ> u00cu ^iV0rJo oI V i— r waw 4>i — cn oo NrO orO oK cu rorocu cn rovro oo cu rM oroM cuO Ci4- ro cu 4 O >rocV J o c^oV]rorooj oo VI — i 00 OOlfJl to Blechnum POOJOJ  V O O J O  OJOJOJ  OJOJOJ  I—  O J V D O  Vacc. moss Vacc. salal Transition  There was no shelter on this plot  c u4i.c4 n^ co oo 4^vorooo roro oo vorocvu o rocuoo POOJOJ  K - J V O  W K O I  OJOJOJ O ^ O O  oo  OJ N OI M  4* cnooo ooo4^ cnrov ro on oo j ro cuo^oooroc ro ooo4* rc oo cu vo no vo oro  OJ OJ OJOOOJ  OJ  Moss  4^ cn 00 cn v roocru oo o 1 r— oro0 c00 u0 roojoj OJOJ4> cu oo00 4^.a rao cnoo 4^ rocumojo wrocuo o o-s voSalal soioi oo ro vo roojoj vo 4 = >0 0 cu viO JroO J * MN*00 1—r0o 0roo4 00 OJ  W O J  OJ  4 > 4i cn0u 00 00 00 c0 nO00 o ro 00 oooo 00ro cu crn O a 4s c 4* O VD OJ  OJ OJ  OJ  Co  ro o1 00 0 0 0 *> 4> ro cu v c u0 4rio0 4u ^ c0 Cu n 004>00SOOl o0 o0 r0 o0c O - r0o 40 *0 0 •c ro 00 00 OJ  Polystichum  O J O H  4 oooo 0o00*cn 00 aiCrn o coco* oj--)* KWM rUI OoMrocVIuoto o VI0000r0 o0cn0v OJOJOJ  OJ  O J O J *  00 04 cu o*curo00Or0 o0cucu00 — 0 ojoo VI Vaccinium a0 >. 4^ 0.00r0 100000 ro ro HKH o I— Lysichitum  ro v)  4A cn v i ON * . oo  4^ cn v i i — i — cn  ro  to  o o  4A 4* cn oo oo  ro cn  Cl  OJ Cn v i vo OJ ro  4=- Cn d i — ro Cn  OJ 4^ c i VD 00 0 J  OJ 4> Cn OJ i-> Ifa  00 4A V ] cn v i ro  OJ 4^ cn oi oi VI  OJ 4A ON VI oo Cn  OJ 4* Cn  OJ O J 4^ O ON V I  OJ 4^ ON O Ol V I  OJ *• ON f-*  4A Cn oi Cl ^ ^  ^ f oi i — O OJ  V? °4 Oilmen  £ S ?! >-* i-* v i  4^ cn oi ON 4=- ro  4* cn ^ O  4^ u i i-> v ] O  o  O  Control  J> cn cn OJ l - ' V I  oo 4^ cn VOOl*.  OJ 4A 4A  00 O 4A  OJ 4> cn V | Ol VD  OJ 4A 4 i v i cn oo  OJ 4* Cn 00 00 Ol  OJ O J 4A t-* VO v }  OJ O J 4A  OJ 4^ Cn  OJ OJ 4*-  Vaccinium moss  to Cn ON  VO VO  4* Cn i-»vioJ  JACnoi i—OJ  4^ On cn ro vo  oJ4ACn vo d cn  OJ 4=- 4*OJ O Oi  OJ4AOi v i ON cn  OJ4ACn v i cn o  OJ 4A On vo oo vo  OJOJJA vo vo  oo oo 4»O cn o  OJ 4=- On i — on vo  OJ OJ cn H V O P  Vaccimurnsalal  4=-rf* Cn l-ONO  4ACnoi roroi-'  4i. cn on H O M  oJ4^-Cn vo ON 4>-  OJOJ4A OJ 10 JA  OJ 4A cn vicnoo  OJ4A4^ v i 4*. vo  OJ 4A Cn oovicn  OJOJ4A OOO-J  OJOJ4A O C n o  OJ 4* On 4A On  OJ OJ JA  Blechnum  oo oo  Vacc. moss Vacc. * salal Transition  4^ cn ON vo Oi Cn  4A Cn ON 4A OJ cn  4A4* Cn OJVO OJ  4^ On o i OJ 4^ 4»  4^ cn oi vo ON 0 0  4^ Cn OJ OJ  o  4A4A cn O J 0 0 Cn  Cn cn o i O ON OJ  cn OJ OJ  Cn cn OI o i ro  JA VI  4 i on on 4A OJ VO  4A 4* Cn OJ vo Ol  OJ 4^ cn o i OJ OJ  4^ 4^- Ol OJ vo 4A  4^ On v i JA Cn  4* Oi ON 4*- OJ  4> 4A Cn OJ vo 0 0  oo 4>- cn ON O J OJ  OJ 4A Ol vo 0 0 Cn  V* 4*4* oi cn envo 4A  4^ Cn o i cn 4A OJ  4^ On cn Oi OJ vo  4A 4A Cn cn vo Cn  OJ 4A Cn 00 OJ l —  OJ 4^ Ol VJ VI  cn ON OJ t o  4A*»Cn Civo 4A  4>- cn ON On 4^ I-*  4* On on oo OJ oo  4» Cn Ol VO 4A  OJ 4^ vo OJ oo  4ArfiOi ro oo  o  o  o  Moss  OJ 4A ON OJ V I  oo 4> cn 4A O 4 i  Salal  OJ OJ 4* OJ oo OJ  OJ 4A Cn cn v i v i  OJ 4^ Cn 0 0 to OJ  Polystichum  OJ oo 4i4A oo OJ  OJ 4^ cn ON v i o i  oo 4A cn v i to ro  Vaccinium Lysichitum  4* 4* ON to vo  0J4i.cn 4^ ro  OJ OJ 4^ to oo OJ  oo 4A Cn OJ v i oo  oo4i.cn VD Ol O J  4 i Cn ON  OJ 4A cn OJ ro OJ  OJ OJ 4* H- oo OJ  o  4i4i.cn ON to  4 i 4^ Cn OJ vo vo  oo * • cn  o  4=* 4* On to Oi ro  4 irficn 4 i vo oo  OJ 4A 4 i  . 4A Cn ) ON 00  Ol h-" VO  1  o  oo 4> cn cn oo  APPENDIX 6  Weekly maxima and minima temperature at 6 feet and at ground surface  Control  Vaccinium moss  c  Vaccinium salal  Blechnum  n  IT!  I  Vacc-moss Vacc-salal Transition  TV  Moss  Salal  Polystichum  Lysichitum  v*  vT  vn  viii  July 6  76 112  44 46  66 58  42 47  69 71  43 46  67 56  43 46  68 64  44 45  68 64  45 47  82 83  46 48  68 67  45 48  69 63  45 49  13  83 44  43 44  72 61  44 46  78 78  44 45  71 63  45 47  78 70  44 47  75 67  48 48  90 88  48 53  75 70  46 50  75 67  47 50  20  90 ' 126  49 48  77 67  50 51  83 82  50 51  78 63  51 50  81 74  50 51  82 79  46 53  83 88  52 55  79 73  52 52  79 70  52 52  27  88 127  44 47  77 68  47 50  88 84  49 49  77 63  48 50  80 75  46 50  82 74  47 51  84 89  49 50  80 77  49 53  80 76  48 53  Aug. 3  95 121  45 39  79 68  45 45  85 80  47 41  82 63  46 45  84 78  46 44  82 77  49 49  85 85  47 49  82 74  48 49  83 70  47 52  10  79 114  46 44  67 60  46 49  69 72  47 47  69 59  48 49  71 67  47 48  73 67  48 48  73 75  47 49  72 65  47 50  75 66  47 52  17  76 108  50 49  62 56  48 49  66 70  49 49  64 58  49 49  77 65  49 50  82 66  47 51  79 71  51 52  77 65  50 52  78 65  50 54  24  76 92  48 44  65 57  46 49  68 67  46 46  68 57  47 48  69 66  46 47  70 64  47 48  77 68  48 49  68 65  47 50  71 66  47 50  31  74 82  43 43  60 54  45 48  64 63  44 45  68 55  46 48  64 63  45 46  70 61  47 47  68 65  47 49  65 60  47 48  66 62  46 51  Sept. 7  78 78  42 43  62 56  44 46  67 65  47 45  68 54  44 47  68 63  45 46  67 61  47 47  69 64  46 49  64 60  46 47  65 63  47 50  14  78 90  41 40  62 57  43 45  66 65  40 42  67 55  42 45  67 54  41 43  66 62  45 45  66 62  42 46  64 60  43 44  65 60  43 48  21  71 79  42 41  57 51  42 48  58 59  42 46  61 53  54 47  61 57  48 45  65 57  42 47  62 58  45 49  59 58  46 47  58 58  45 49  28  67 74  39 38  53 50  40 45  58 56  39 40  56 49  40 44  58 55  39 41  57 56  41 42  57 57  42 45  57 56  41 43  56 55  40 44  ro ro ro  Appendix 6 (continued)  c Oct.  i  n  41 40  53 49  40 43  56 55  12  60 71  32 32  50 47  43 39  19  70 72  36 36  54 49  26  59 55  36 38  2  29 60  9  y_  yj  yn  vm  57 49  49 43  58 56  40 43  57 55  42 44  57 55  43 44  56 54  41 44  55 54  42 45  51 52  33 36  51 47  36 40  54 51  33 37  54 52  36 40  53 52  38 40  51 50  37 40  52 51  36 43  40 43  59 52  39 40  56 49  41 42  59 44  39 51  54 53  38 42  56 53  42 43  55 51  40 42  53 52  40 44  53 52  40 43  53 53  39 41  53 52  41 43  56 55  41 43  57 56  41 44  55 53  42 44  56 54  41 44  55 54  42 45  33 32  50 49  35 38  52 50  34 37  42 50  36 39  53 51  34 37  55 54  46 49  55 52  38 40  56 50  36 40  52 51  35 41  57 53  28 30  50 48  30 33  48 47  29 33  48 45  30 35  51 47  29 32  48 53  31 33  51 48  31 35  50 47  30 33  50 47  30 36  16  47 53  13 21  46 42  18 28  48 46  18 27  44 40  17 32  51 45  16 29  50 54  18 29  55 44  19 28  53 52  , 17 30  46 47  16 32  23  49 48  24 25  46 41  21 30  46 43  20 29  46 41  24 32  49 45  25 30  47 48  23 31  48 46  24 30  47 45  22 31  46 44  24 33  30  59 55  29 28  49 46  31 34  50 48  30 33  47 45  31 36  52 50  30 33  43 51  30 34  52 51  31 35  52 50  31 34  52 46  30 35  Dec. 7  50 48  28 30  47 42  29 32  57 43  29 31  46 42  30 34  47 45  29 33  47 46  30 37  47 45  31 33  46 46  30 32  50 44  30 34  14  44 42  27 31  43 39  29 33  44 40  28 32  44 40  30 32  45 42  29 33  47 47  30 32  46 45  33 33  47 45  30 32  46 44  27 33  21  58 47  27 30  47 43  30 31  51 44  29 31  51 42  31 34  48 44  30 31  56 50  31 34  46 47  32 34  51 46  31 33  50 45  31 34  28  45 40  25 29  43 37  29 32  42 40  26 32  43 39  30 34  45 42  29 33  47 44  30 33  45 43  30 33  44 41  30 31  44 41  29 33  4  35 33  18 23  35 33  23 30  35 33  21 28  33 33  24 31  34 35  24 30  36 36  25 30  33 34  24 29  34 34  24 32  34 32  23 28  31 32  25 30  34. 32  23 29  31 32  26 31  33 34  26 32  33 34  26 31  32 32  25 32  32 33  25 32  Jan.  65 71  ry_  40 42  Nov.  5  in  11  "  60  <u a  +J Vi  rt i  Q  ro ro  Appendix 6 (continued)  <-  i  ii  in  rv  v  vi  viii  VII  18  37 32  18 30  34 32  25 30  38 30  20 30  35 32  26 31  35 34  25 31  27 33  26 32  34 33  24 32  33 34  23 32  25  42 32  16 30  40 32  24 31  30 32  19 30  38 32  22 31  46 38  25 31  45 37  26 31  38 35  25 31  36 36  23 32  1  46 37  19 30  42 33  26 31  34 35  23 30  42 33  24 32  54 47  27 31  57 48  27 31  51 45  28 31  48 43  26 33  8  51 57  31 30  47 36  32 30  49 40  32 31  46 37  32 34  53 43  31 31  50 45  29 30  52 46  37 33  50 44  32 33  46 43  32 34  15  41 41  32 30  38 35  31 32  40 39  31 32  39 36  32 32  44 41  31 32  42 41  30 32  53 43  32 33  50 40  32 33  46 39  32 33  22  49 47  25 27  37 33  28 32  37 35  27 31  45 33  27 32  42 36  38 32  42 39  31 31  54 40  32 32  40 40  27 31  41 41  29 33  29  41 55  16 17  36 34  20 26  38 35  19 27  33 33  20 29  42 35  20 28  40 39  23 27  41 40  30 28  38 36  22 27  39 39  22 30  7  47 52  24 17  36 32  21 21  36 33  21 20  37 33  17 25  40 34  17 22  46 38  22 25  42 35  24 27  43 36  21 26  43 33  20 29  14  53 32  21 30  38 32  18 31  39 32  15 30  41 32  18 32  40 33  38 29  43 32  30 32  44 36  30 32  41 35  30 31  41 45  29 32  21  70 52  29 31  54 32  30 32  58 32  30 32  51 32  30 32  56 32  30 31  56 49  32 32  61 51  32 32  54 47  31 31  51 46  30 32  28  71 68  33 30  50 41  34 33  54 44  34 31  50 43  34 32  52 43  34 32  58 52  37 32  59 55  39 38  56 51  35 36  56 50  35 37  4  60 79  33 31  53 46  33 52  45 47  32 32  55 48  32 32  53 53  33 33  55 55  35 36  57 60  35 36  56 52  34 35  55 53  34 37  11  70 86  30 31  58 51  32 34  52 56  30 32  59 50  31 33  64 59  31 34  63 57  34 34  64 69  34 36  60 55  33 36  60 55  33 35  18  58 70  31 31  48 44  32 33  41 47  31 32  47 43  31 33  50 46  31 33  48 46  33 32  55 62  32 32  49 49  31 31  45 48  31 34  25  58 75  33 30  49 43  31 33  50 50  31 32  49 45  31 33  52 46  31 33  55 50  34 35  56 53  36 35  55 51  33 34  50 50  31 37  ro ro  Appendix 6 (concluded) C  I  II  III  IV.  V  VI  VII  VIII  2  66 106  39 34  58 51  40 39  50 63  39 38  58 54  39 40  61 56  40 40  64 58  42 42  69 67  42 43  61 58  41 41  62 61  41 38  9  62 105  37 34  50 48  36 39  53 59  36 37  50 49  37 39  55 50  37 38  58 55  40 41  62 58  40 41  62 57  39 40  57 50  44 41  16  76 97  38 34  63 53  38 39  67 65  37 37  62 53  37 38  68 57  37 39  68 62  40 40  73 69  40 41  66 58  40 40  66 48  39 42  24  56 83  36 31  45 44  33 36  49 64  33 32  48 44  33 36  54 54  33 36  57 50  37 39  60 58  36 38  58 56  37 39  59 50  36 40  31  64 91  40 36  55 50  40 41  58 67  40 39  55 49  40 42  59 60  41 41  60 55  40 43  60 55  40 43  58 56  42 43  59 55  43 45  6  71 89  41 39  58. 55  42 42  61 65  42 42  58 56  42 45  63W  61  42 44  64 62  44 45  72 78  45 47  63 59  44 47  63 60  44 47  13  74 121  40 38  64 58  42 43  68 77  39 39  63 57  39 44  67 67  41 43  ' 67 62  43 44  78 86  45 44  68 62  43 46  67 62  43 47  20  63 87  40 39  54 51  40 43  55 65  39 41  52 51  40 45  58 55  40 42  57 56  43 45  62 65  43 45  57 56  42 45  58 68  42 47  27  78 97  42 41  66 61  42 43  72 78  42 42  65 55  42 45  70 62  42 44  62 64  44 46  84 90  44 47  69 70  44 46  70 63  43 47  3  76 129  46 43  66 61  46 47  68 78  46 46  63 58  46 47  67 66  46 47  68 66  50 50  80 90  49 49  69 63  49 50  70 63  48 50  %  ro ro  226 APPENDIX 7 Weekly average precipitation m permanent sample plots  Date July  Aug.  Sept.  Oct.  Nov.  Dec.  Jan.  Feb.  Mar.  Apr.  May  June  July  6 13 20 27 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25 1 8 15 22 29 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 3  C  I  II  3. 14 0.01 0.00 0.49 0.00 2. 27 1.94 0.51 2. 58 6. 63 1.48 3.91 5. 33 0.00 5.73 2.72 5.80 0.00 5. 27 1. 38 9. 36 3. 99 4. 72 6. 13 6. 11 2.47 0.21 6. 35 3.00 3. 74 4.02 4.27 6. 29 1.69 0.00 2.08 4. 18 5.40 2. 33 5.92 2. 63 4. 17 3. 66 0.00 2. 18 3. 65 4.85 6. 19 0.33 0.00 4.54 1.43 0.00  2. 85 0.00 0.00 0. 38 0.00 1.81 1.91 0.47 2.53 6.16 1.78 3.56 4. 90 0.00 5.06 2. 54 6.01 0.00 4. 60 0. 80 7. 28 3.86 3.78 5.09 6. 44 1.92 0.05 5. 20 3.00 3.65 3. 60 3.95 5.59 1.70 0. 00 1.93 4.33 4.07 2. 29 6 . 11 2. 17 4. 13 3.80 0.00 1. 67 2.44 4.55 5.81 0.51 0.00 3.92 1.46 0.00  3.05 0.05 0. 00 0.45 0.00 2. 24 2.00 0.45 2. 77 6.62 1.73 3.68 5.79 0.00 6.06 3.07 6. 14 0.00 5.57 0.81 8. 30 4. 30 4. 38 5.70 6.61 2. 26 0. 11 5. 85 3.48 4.44 3.71 4.40 6.44 1.88 0.00 2.05 4. 68 4. 23 2.03 6. 24 2. 25 4.47 3. 89 0. 00 1.74 2.64 4.64 6.06 0.56 0. 00 4. 14 1.68 0.00  Meteorological station number IV V m 3.16 0.00 0.00 0.41 0.00 1.88 1.72 0.40 2.47 6.47 1. 74 3.96 5.35 0.00 5.18 2.61 5.49 0.00 4.75 0.80 7. 23 3.76 4. 10 5.23 5. 64 1. 95 0.04 5. 20 3.81 3. 87 3.85 4. 18 5.65 1.54 0.00 1.97 4.09 3. 80 2. 18 5. 27 2. 22 3.61 3.55 0.00 1. 88 2.87 4.55 5. 39 0.44 0.00 3. 89 1.33 0.00  2. 69 0.10 0.00 0.44 0.00 1.36 1.76 0.36 2. 18 5.50 1.54 3.57 4.33 0.00 5.28 2.03 4. 97 0.00 5.25 0. 65 7.70 3. 87 3.99 5.03 5. 85 1.85 0.03  0.00 2. 14 4.00 3.65 1.97 5. 13 1.97 3. 38 3. 17 0.00 1.76 2.78 4. 15 4.91 0. 35 0.00 3.71 1. 12 0.00  0.97 0.00 0.00 0.09 0.00 0. 89 0.61 0.04 1. 14 4.07 0. 82 2.03 3. 84 0.00 3.78 1.77 3.10 0.00 3.46 0.50 7. 74 2.14 2. 55 4.43 3.89 0. 90 0.00 3. 36 1.33 2.89 2. 36 3.80 3. 27 1.07 0.00 1.69 2. 85 1.09 1.02 2.96 1.63 2.49 1.68 0.00 1.31 1.97 2.65 3. 32 0. 14 0.00 2.50 1.01 0.00  VI  VII  VII  0. 68 0.00 0.00 0. 20 0. 00 1. 18 0. 94 0.03 1.21 4.68 0. 80 2. 80 4.03 0.00 4. 15 1.81 3.01 0.00 3. 29 0.42 7. 92 2.21 2.47 4. 55 3.86 1. 14 0.00 3. 13 1. 29 3.51 2.47 4.00 3.56 1.07 0.00 1.78 2. 22 0.93 1.47 3.36 1.58 2. 65 1.82 0.00 1.71 2. 19 2. 99 3.53 0. 20 0.00 3.09 0. 99 0.00  1.07 0.01 0.00 0.12 0.00 1. 16 0. 83 0.02 1. 13 4.46 0.72 2.58 3. 84 0.00 3.82 1.57 3.06 0. 00 3. 32 0.40 7.84 2.02 2.28 4.31 3.53 0.94 0.00 3.27 1. 34 3.50 2. 33 3.85 3.71 1.00 0.00 1.58 2. 21 0. 92 1.30 3.05 1.71 2.38 1.61 0.00 1. 39 2.36 2.58 3. 32 0. 13 0. 00 2. 86 0. 83 0. 00  1.53 0. 00 0.00 0. 23 0.00 1.21 0. 98 0.03 1. 35 5. 18 0. 77 3. 12 4.46 0.00 4. 28 1.97 3. 75 0.00 3. 77 0.50 7.74 2. 35 2.51 5. 35 3.01 1. 27 0.02 2.99 1.22 3. 82 2.55 4. 34 3. 67 1.03 0.00 1.63 2.71 0.97 1.29 3.36 1.96 2.63 2.03 0.00 1. 63 2.72 2.51 3.52 0, 15 0.00 3.08 0. 89 0.00  APPENDIX 8 Relative humidity--averages and minima  July  Oct.  Nov.  C  I  II  III  V  VI  VII  VII  6  84 40  88 58  85 43  90 60  88 50  86 48  91 51  92 61  13  63 35  80 48  65 38  81 53  80 . 49  77 43  88 55  92 67  20  72 41  80 52  73 40  83 57  81 55  80 55  86 60  93 72  27  74 44  85 57  77 46  87 59  83 54  81 54  88 54  91 69  3  75 34  79 36  75 30  82 44  76 44  76 42  82 46  91 63  10  77 44  86 59  81 51  85 61  85 54  84 57  90 63  91 70  17  87 45  89 60  87 52  91 60  88 55  88 57  91 63  93 70  24  85 46  88 53  87 48  89 60  88 54  86 56  91 63  93 75  31  85 ' 45  89 63  87 52  90 64  89 58  87 56  92 62  94 82  7  86 49  92 73  90 57  93 77  92 66  89 65  94 78  94 91  14  83 50  90 58  87 56  93 69  90 66  88 58  95 82  96 94  21  92 54  93 67  92 49  93 68  91 58  88 48  94 74  96 94  28  .93 68  94 84  94 80  95 92  94 84  93 83  95 93  97 95  5  86 52  92 73  90 "64  95 75  92 66  90 65  96 74  97 93  12  91 51  93 53  92 57  93 64  93 72  92 73  91 76  97 92  19  90 52  92 60  90 58  93 74  93 87  92 72  96 95  97 96  26  .92 71  93 74  93 75  95 90  94 85  93 64  95 92  97 96  2  91 58  93 73  94 77  95 85  94 86  93 77  97 94  97 95  9  84 43  87 48  85 48  90 72  91 71  88 50  95 86  97 85  16  78 38  79 38  79 41  82 48  80 47  80 48  86 57  86 54  23  91 52  91 52  91 53  92 65  92 70  91 70  94 70  93 78  30  90 47  91 52  90 49  92 63  93 65  91 52  94 73  95 94  '  '  228  Appendix 8 (continued)  Dec.  Jan.  Feb.  Mar.  Apr.  C  I  II  III  V  VI  VII  VIII  7  92 65  92 64  92 70  95 81  93 80  92 64  96 88  96 95  14  94 70  95 85  95 76  97 90  95 90  94 71  96 90  96 94  21  87 45  88 45  87 45  91 65  91 52  90 52  95 73  95 95  29  91 56  91 57  91 70  92 76  91 70  91 55  95 88  95 94  4  89 55  88 62  88 52  90 70  88 63  88 56  92 74  92 73  11  93 89  93 88  93 88  93 89  93 90  93 89  93 92  93 92  18  93 65  93 70  93 80  94 89  93 80  93 65  93 83  93 83  25  88 56  89 69  88 82  92 88  89 67  87 60  92 75  93 80  1t  91 45  91 63  91 50  93 71  90 55  89 50  92 68  93 88  8  90 43  90 45  90 55  92 65  91 63  90 45  93 73  93 87  15  92 65  93 51  93 75  93 92  92 83  29 53  94 73  94 93  22  87 44  89 50  88 59  91 69  91 75  88 58  92 79  94 90  29  73 38  68 38  70 40  72 46  72 42  70 40  76 41  81 47  7  65 37  68 37  68 37  72 44  70 40  66 37  71 39  73 43  14  92 65  92 73  92 86  93 87  92 70  91 64  93 85  95 90  21  87 38  89 69  89 66  90 73  89 70  89 59  91 76  93 92  28  87 55  90 76  89 65  92 81  91 70  88 66  93 71  96 88  4  92 58  93 85  93 89  94 92  93 79  92 77  95 91  96 92  11  83 34  86 40  85 40  90 57  88 60  86 53  92 68  96 76  18  92 47  94 75  93 59  95 84  94 60  93 67  94 65  96 88  25  85 44  87 47  87 50  89 54  89 53  88 50  93 56  91 66  229 Appendix 8 (concluded)  May-  June  July  C  I  II  III  V  VI  VII  VIII  2  75 35  78 36  79 37  85 44  80 42  78 36  83 43  85 48  9  88 50  89 58  89 57  92 66  91 65  89 54  93 65  94 76  16  87 35  89 52  88 36  90 49  90 59  89 47  90 47  93 70  23  88 43  91 55  92 59  93 64  92 48  92 50  95 75  95 90  30  84 36  85 42  86 41  90 51  88 46  86 44  93 57  94 67  6  87 50  89 52  89 54  91 61  89 55  88 54  92 59  93 71  13  73 42  81 55  79 50  84 58  82 54  79 50  83 54  89 65  20  87 50  89 51  89 53  92 62  90 60  91 62  94 64  94 88  27  87 43  91 60  87 50  93 66  91 63  89 55  93 67  93 82  3  85 50  90 64  88 63  92 69  89 64  88 60  94 65  95 80  230  APPENDIX 9 Average weekly evaporation from atmometers above the ground vegetation (upper figure) and 9" above the ground (Coef 0.79)  Date July  Aug.  Sept.  Oct.  Nov.  Apr.  C  I  II  III  IV  V  VI  VII  VII  99 77  20 17  26 20  19 14  28 32  36 29  40 28  23 18  23 10  13  185 155  102 59  178 102  92 50  121 65  96 59  125 73  94 40  48 25  20  220 203  117 72  182 117  118 60  112 87  93 69  123 85  110 55  68 29  27  134 126  75 47  112 68  72 39  87 53  70 56  86 54  76 36  44 22  3  178 143  123 73  107 57  117 70  118 74  126 82  106 47  51 26  10  137 122  56 37  92 61  57 30  87 54  64 41  82 46  69 30  42 17  17  58 52  28 16  38 25  26 13  38 21  36 23  36 24  35 14  16 8  24  61 54  33 20  47 29  37 12  41 21  41 25  50 26  39 16  19 9  31  70 63  26 15  47 30  23 11  46 19  38 23  44 24  34 14  15 6  7  36 33  15 9  25 11  16 8  27 12  17 10  22 11  16 6  10 6  14  75 67  33 20  55 36  30 13  41 19  21 13  37 18  23 8  7 3  21  26 20  16 9  18 10  10 5  14 7  18 9  27 14  15 6  6 2  28  17 13  5 3  8 4  4 2  7 3  6 3  6 4  5 1  3 1  5  57 46  20 11  34 22  19 8  31 15  22 13  33 19  20 9  7 4  12  22 20  9 6  14 8  7 4  10 5  10 5  13 7  10 3  4 2  19  31 19  16 10  26 18  14 7  16 5  10 4  15 6  8 3  3 2  26  8 7  4 2  7 5  3 1  4 2  5 4  7 5  4 2  2  20 18  13 10  17 13  9 3  12 9  10 6  14 8  9  42 27  12 8  14 9  8 5  14 7  17 12  36 14  10 4 20 10  3 1 4 2 7 3  18  64 60 92 76  27 14 36 19  28 12 41 19  16 8 37 14  20 10 31 16  21 13 31 17  28 25 46 34  18 12 35 10  15 7 18 8  6  25  161 100  231 Appendix 9 (continued)  C  Sept.  I  II  III  rv  V  VI  VII  VIII  2  145 92  59 48  90 68  58 30  58 38  70 44  95 65  72 47  40 20  9  67 63  27 14  28 12  16 8  20 10  21 11  33 19  18 10  8 3  16  57 48  30 16  38 22  23 15  33 16  27 15  32 16  21 13  11 6  23  42 27  12 8  15 9  8 5  14 7  18 9  23 14  17 9  6 4  30  81 64  40 26  52 34  28 16  26 15  39 20  48 31  36 16  13 7  6  74 62  30 19  32 27  25 12  40 21  36 21  40 26  32 17  15 7  13  164 151  81 58  121 85  90 42  110 68  84 58  102 69  90 43  40 25  20  50 42  27 22  38 23  21 17  38 23  31 23  34 25  33 22  20 10  27  72 57  24 16  37 26  23 11  39 20  28 17  36 23  27 12  12 8  3  100 85  40 32  60 41  43 20  57 34  48 33  60 38  46 13  25 14  6  99 77  20 17  26 20  19 14  28 12  36 29  40 28  23 18  23 10  13  284 232  122 76  204 122  111 64  149 77  132 88  165 101  117 58  71 35  20  504 435  239 148  386 239  229 80  261 164  225 157  288 186  227 113  139 64  27  638 561  314 195  498 307  301 119  348 217  295 213  374 240  303 149  183 86  3  816 704  437 268  659 407  408 176  465 287  413 287  500 322  409 196  234 112  10  953 826  493 309  751 468  465 206  552 341  477 328  582 368  478 226  276 129  17  1011 878  521 321  789 493  491 219  590 362  513 351  618 392  513 240  292 137  24  1972 932  554 341  836 522  528 231  631 383  554 376  668 418  552 256  311 146  31  1142 995  580 356  883 552  551 242  677 402  592 399  712 442  7  1178 1028  595 365  908 563  567 250  704 414  609 409  734 453  586 270 602 276  326 152 336 158  14  1253 1095  628 385  963 599  597 263  745 433  630 422  771 471  625 284  343 161  232 Appendix 9 (continued) Date Sept.  Oct.  Nov.  Apr.  May-  June  July  C  I  II  III  IV  V  VI  VII  VIII  21  1279 1115  644 394  981 609  607 268  759 440  648 431  798 485  640 290  349 163  28  1296 1128  649 397  989 613  611 270  766 443  654 434  804 489  645 291  352 164  5  1353 1174  669 408  1023 635  629 278  797 458  676 447  837 508  665 300  359 168  12  1375 1194  678 414  1037 643  636 282  807 463  686 452  850 515  675 303  363 170  19  1406 1213  694 424  1063 661  650 289  823 468  696 456  865 521  683 305  366 172  26  1414 1220  698 426  1070 666  653 290  827 470  701 460  872 526  687 308  369 173  2  1434 1238  711 436  1087 679  662 293  839 479  711 466  886 534  697 312  373 175  9  1476 1265  723 444  1102 688  670 298  853 486  728 478  922 548  717 322  380 178  18  1540 1325  750 458  1130 700  686 306  873 496  749 491  950 573  735 334  395 185  25  1642 1411  796 487  1181 729  723 324  914 522  790 518  1006 617  780 354  -423 200  2  1787 1503  855 535  1271 797  781 360  972 560  860 562  1101 682  852 401  463 220  9  1854 1566  882 549  1299 809  797 368  992 570  881 573  1134 701  870 411  471 223  16  1911 1614  912 565  1337 831  820 383  1025 586  908 588  1166 716  891 424  482 229  23  1953 1641  924 573  1352 840  828 388  1039 593  926 -597  1189 731  908 433  488 233  30  2034 1705  964 599  1404 874  856 404  1065 608  965 617  1237 762  944 449  501 240  6  2108 1767  994 618  1436 901  881 416  1105 629  1007 638  1277 788  776 466  516 247  13  2272 1918  1075 676  1557 986  971 458  1215 697  1085 696  1379 857  1066 509  556 272  20  2312 1950  1092 688  1585 999  982 465  1243 710  1106 709  1403 872  1089 521  566 277  27  2384 2007  1117 704  1622 1025  1005 476  1282 730  1134 726  1439 895  1116 533  578 282  3  2484 2092  1157 736  1682 1066  1048 496  1339 764  1182 739  1499 933  1162 546  603 293  10 X 10 TO THE CM. K E U F F E L  Temperature  Maxima,  &  E S S E R  Means  CO.  359-14  MADEINU.S.A.  and J ujnn e e  Minima  six  29, 1959  MM  Inches  Above  the  "Willi ft) u I y 3, 1 9 6 0 .  Ground  in  the  Shelter  Average  Weekly  Precipitation  in  Fig.  Inches  Transition e  Blechnum  Vacc-  Moss  Vacc-  Gaulth  M  O S S  5 -C  2  I H -  1  11  6  5  Gaultheria  m  Polystichum  V a c c - Lys  7  Weekly  c cf. Si? Ul  3  O UJ  3£8 >. > ^  - X *  lO  X  IO T O T H E C M .  KEUFFEL a Easts CO.  3 5 9 - 1 4 G M A D E IN U . S . A .  follow Average Six  Feet Inches  Weekly  Above  Evaporation  the  Above  page  the  Ground Ground  from  F  id  -ii  Atmometers.  -  Above  the  Line,  -  Below  the  Line.  Control  Nine  Vacc-  Gaulth.  V a c c .- M o s s ,  Blechnum  Vacc. - Gaul th.  Moss  Transition  i  ___„—-J^-i—-  Polystichum  Gaultheria  llil  ||||I..IH..I  • lul  1 mm 1  Vacc. -  = 10  cm*  oef f i c ents  Hi Hrm r H m ^ Jm-lUl  Periods:  June  29  to  November  April  11  to  July  3.  of 9  Atmometers  Lys.  Hill  7 9  14.  Cumulative Six  Average  rTeerp[£^=J--  !  qnd  Weekly Nine  Evaporation  from  A t m ome t e r s  359-10  Fig. te  Average  H  I  Jl  '  „d(  I,  .111  I  of  '  all  B  Commercial  Species  Gaultheri a  Hm |  1  Tree  Cy  I  '  Moss i  »]!:  ' I I  i  ndices  Present  —  I  I  i  I  within  i  I  Individual  Pw  Cot  I  •i  .  .  I  j  I  .  15.  Communities.  Mb 1  I  .  I  -  .  «»•»»#  V.  I  j • i  Polyst ichum  I  i  I  i  I  I  !: t  Vacc. i  i  Gaulth.  I  i  i , i  .. i  BB  |  ft*  1  Ida i  .£ I  .sta.  t  . »*it  ... 4  i m i  I  i .  .  O  O  O  m  o  io  I  .  I  .  ,  I  ,  1  —  Blechnum  i  i  1  JiLL Vacc. - Lys.  .  i  1  .  I  ,  i  l  .  .  ' ' ' JL___JL  i  I  i  .  fflSL I  si  i  I  ... «  1  i«t«i.  _t  .1  t  ' «... s »»..»  »  i  *?, '  Vacc. - Moss  i  i  o o o m o in  l  I  F  = Douglas - fir,  Cy = y e l l o w cedar, Cot = cottonwood, of  B.C.Forest  Ribes - Oplop  l  i  i  H =  i  l  l  hemlock,  )  l  l  C  = cedar,  I  i  I  I  S = Sitka D = alder,  Service.  i  Hm  = mountain  I  I  I  i  hemlock,  spruce, PI = l o d g e p o l e p i n e , Pw = white pine, ( Standard abbreviations Mb = broadleaf maple, J  nttz  Plant Represe  180  160  140  120  100  80 60  40 Comparison 20  of  Site  (McArdle, with 50  100  Height Age  Growth  Index  Meyer in 200  and  Curves  of  Bruce,  Individual  Plant 250  Douglas-Fir  1949) Communities. 300  35C  Plant  Communities  Represented  by  Means  Plant  Communities  Represented  by  Means.  160  140  120  100  80 60  40  20  ( Barnes  with  H  e i g h t  G  r  o  w  t  h  ,„  G.  l n d j v i c | u a ]  H.  1949. ) p  |  a  n  j  C  o  m  m  u  n  i  t  j  ^  Polystichum  i80r Comparison (McArdle, 160-  with in  of  Site  Meyer  Height  over  and Age  Index  Curves  Bruce,  1949) Polyst. & M o s s Blechnum  Curves  Different  Communities. 140 -  Polyst. & Douglas  Fir.  Moss  Blechnum Vacc.-M oss  Salal M oss Blechnum & Vacc- Moss  120"  Salal  100-  Vacc. - Salal V a c c . - M oss  Salal  80  Vacc.-Salal  60-  Vacc.  Salal  40  Site 20-  Index Full  Curves  Lines Fig.  20  40  Age  80  100  20.  F i  D i s t r i b u t i o n M e a n s ,  of  S t a n d a r d  S i t e  9-  ||ff  I n d i c e s  D e v i a t i o n s  To in a n d  P l a n t  f o l l o w  C o m m u n i t i e s .  S t a n d a r d  E r r o r s .  p a g e  V  =  s = p = Polystichum ei = E l y m u s  I = Lysichitum c  lo = L y s i c h i t u m -  •  =  Coptis  Oenanthe  Ir  rio = Ribes =  Lonicera  - Oplopanax  - Rubus  b =  Blechnum  Fig. Altitude given  and in  Vaccinium  Aspect  Frequencies,  - Gaultheria  of  the Means  Plots and  Vaccinium -  Gaultheria  Polystichum  in  Individual  Standard  Moss  23  Communities  Deviations.  Blechnum  Moss  Vaccinium -  Lysichitum  Ribes - Oplopanax  follow Average on  Site  page Fig.  Index  Site  Aspect-  Index  on  Aspect  Site  tion  Plant  24.  Community  index on  200  Elevation.  10 X 10 TO THE K E U F F E L  a  E S S E R  CM. CO.  3 S 9 - 1 4 MADE IN U. 6. A.  Polystichum V a c c .-Salal  S  - Vacc.-Moss  -mst—  Blechnum  -a-  Vacc.-Lys.  St*  Rib.-Opl.  m  SEMI-LOGARITHMIC  3 5 9 - 6 3  00  *o  p  SEM ! - LOGARITHM IC irfl"""(Se  3 5 9 - 6 3  K E U F F E L ft E S S E R C O . MADE IN U . S . A . 2 C Y C L E S X 140 D I V I S I O N S  3 5 9 - 6 3 IADE IN U . S . A .  SEMI-LOGARITHMIC K E U F F E L a ESSER ; CYCLES X  CO. 140  3 5 9 - 6 3 MADE IN U . S . A . DIVISIONS  Fig. Percentage  of  by  of  Groups  and  Single  Topogr aphic  to  Ct  Moisture  X  0 0  ro  10  o a.  0  ro  ro *~  CM  If)  co  c  $  +J u Ci)  Q.  c  Cl)  Ci)  > o E  CD  CC  > o E  Cl)  > CL  o I_  o u  CD  o i_ a  in  <n  o Cl) CL  cCL  in  o  a o  o Ci) •n (J  CD  .—  +J in  o co o 4—  o  Cl)  c o a N  o  N TJ O  Q.  a o_  0 o  CM  lO  I_  O  o  Variables.  ro cn ro CM in in LO LO  mate  ntous  o 0  tion  th o  00  o  <n  CD  c a  00  c c" o +J oo  3  TJ  TJ  0  m m Cl)  >i  a  •— L.  Ci)  o £- rt <-> 3 o +-> a CD E m E aCi) " No " o lCD_ u E CL +-• c o c N ' O) o" _ CL_D TJ  urs  ro  o  CO  slope de *—  on  CD  c o  TJ O  o  shap  o  o 0 CM  on  TJ C  0 o  Cl) [_  TJ  n 00  po  a >  and  0  Bo  L,  E  0 LO  o  a.  o  0 0  Ct) CL  <  alt  rt a  O  +->  o  +->  lope  3  a  Z3 ' +->  c o  ess  Cl)  oo  _  ste  o o  ro  LO  a  file  (J  O o  CL  of  top  o  a  0  TJ C  - CL Cl) Cl)  ro ro  CM  Groups  E o. o  0 o  mi  Ct)  o  0 o CM  Cl)  00  —  as|  c  ro  o  expo  a) £  O  CO  i  «*O  nes  Win ro in  o  CL  c o  w  OS  rof ile  TJ  Ct)  As  0)  slo  raphy  IOSL  Bod  CL  'OtOj  J-  LX "X'  o >  Z3  Soil  CL  ID  TJ Cl)  for  Cl)  cv  1_  Accounted  Variables.  00  in c>> n a  Communities  page 1 8 2 .  Variables.  Single  Variability  o  Plant  follow  "lo  Total  O co  in  To  of  100  Variance  35-  o o  o  o  00  in  0 0  o o CO iO  CD  t. CD  +-* r-l  $ TJ  c o c o 3  0 o «—  Fig. Percentage of  and  of  Variance  Single  in  To follow  34.  Site  Index  Accounted  Variables  Topographic  Variability  CL  O *J O  CV)  c  CL Cv) Cv) -*-» CO  Cv)  in <  CO TJ 13  CV) CL  o  co  m  in  0  0  o  o  o  o  If)  to cO  Groups  CM  cO  o o 0)  CO  of  Cv)  <  CD  o Cv)  CO  0 o  0>  c  4—  0 o  slo  c  4-  TJ C  CL o  dD  o  X  dD  i_  CL  CV CL  *—  m in cv c c o  o a.  co  0 0  ro  o c o  siti  O in  m c  Ci)  in  tou  o  Cv) C-  CO  O  LGl  cO  Moisture  Cv) CL  a. a  iO  and  ° / o  ro  Total  Soil  c  a cn  L.  o  o o  o  CM ro CM CM  0  0  o  o  o  iO  OJ  0  o  0  0  *—  rv  ro  cd  CM  o  0 o t—  o  OJ  CM  00  iri ro  Variables  —  n  a i_ a >  in in  CD  o o o a>  c  o  o  TJ  a  o  Z3  u u  C  co c o  E cn  i_  a > a o  E E  E E  o o  o  O E  TJ C  c o  o  o co  Cv) c o  E o TJ c  a  m  4-  CD o  u  cv  cv  E cv  cv  c  i cv  >  >  >  cv  cv  cv  O E  o E  o E  cc cc cc  o  ro  m oCL X  i— TJ Qcv cv  o  1_ Z3  CM  cv  cv cv I_  TJ  m  cv  o cn  no  a  c  a  OJ  n  c  >  -C CL  o  cv  OJ  [_  +-» in  CO CM  CL  Cv>  Cv)  0  cv  +J  o  CL  CL  a  o u  4—  o cv  m  cv  >  o £ cv  cr  4-  O  cv CL  o  -C in  c  4—  cv  TJ Z> •*-> -4->  a  o cv  CL  o  m  CL  on  Ci)  to ro  in ro o  CV)  C  o  irs  TJ  CD  O  TJ  less  o  St  L.  0 o  ro  o  to DO  n  ro  E  c o  m o  CL  cn TJ  c  Z3  181.  Groups  Variables. Single  100  f o r by  page  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105632/manifest

Comment

Related Items