UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The flotation of non-sulphide minerals Elfstrom, Roy Harold 1939

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1939_A7_E4_F4.pdf [ 32.23MB ]
Metadata
JSON: 831-1.0105574.json
JSON-LD: 831-1.0105574-ld.json
RDF/XML (Pretty): 831-1.0105574-rdf.xml
RDF/JSON: 831-1.0105574-rdf.json
Turtle: 831-1.0105574-turtle.txt
N-Triples: 831-1.0105574-rdf-ntriples.txt
Original Record: 831-1.0105574-source.json
Full Text
831-1.0105574-fulltext.txt
Citation
831-1.0105574.ris

Full Text

L t= 3 •'S? f 1 s"? ft ?  •THE FLOTATION OF  HOI-SULPHIDE  M1FERALS  by Roy H a r o l d  Elfstrom  A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF A P P L I E D SCIENCE Iff THE DEPARTMENT OF METALLURGY THE UHIVSRSITY OF B R I T I S H COLUMBIA April  1939  CONTENTS, Ac know l o d g e m e n t s  3  Preamble  4  ...•••••••••«••••••••  Conclusions: (a)  Q u a r t z F l o t a t i o n ....  5  (To)  B a r i t e F l o t a t i o n ....  6  (c)  •Limestone F l o t a t i o n . .  8  Piecommendations  9  Reagents: (a)  Frothers  ("b)  Collectors  ..........  12  (c)  Activators  ..........  14  (cl)  D e p r e s s o r s ..........  - 15  Theory  ............  12  of F l o t a t i o n  (a) • P h a s e s  of the F l o t a t i o n  System  18  (b)  M&chanical Aspects  ..  20  •(c)  Adsorption  ..........  28  (d)  Theoretical Action Reagents  of  (1) G o l i e (2) F r o t h i n g  ........  (3) A c t i v a t i o n  41  ......  46  (4 ) De pre s s i on ...... Preparation i  6  O  G S  AS Bi.  49  o f t h e .Ore ........  52  e e « Q o » « o o e e « e D e e < r . O D « « 0 i > «  i.Iy 0 l i . OQ  Summary  3?Q  bllOClS pXl^  © « e e © o © e « © « © e o e « »  o  e  ©  of Tests  o  o  «  o  e  «  «  «  9  e  e  «  o  e  .............  GO  1*^L2 l^L  /  149  3  LIST OF ILLUSTRATIONS APPARATUS •  Page Pebble M i l l s .  56  (2)  F l o t a t i o n Machine*  57  (3)  Thermostatic C o n t r o l l i n g Device,  58  furnace©  59  Time of Grind and Grade,  92a  GRAPHS (I)  - Recovery and Bulk® (2)  Pulp D e n s i t y and. Grade* Recovery and Bulk.  (3)  Sodium Metaphosphate and Grade . Recovery s  (  4  )  (5)  and  94a 131a  Bulk.  Temperature and Grade * Recovery and. Bulk®  141a  Grade of B a r i t e , Limestone and Quartz  149.  - i n a l l Tests. (S)  R e c o v e r i e s * Bulk and Three M i n e r a l Index of a l l T e s t s .  150  3  - ACKHOY/LED GMBUTS -  The w r i t e r wishes, to acknowledge h i s to a l l those who  have i n any way  of t h i s t h e s i s *  To P r o f e s s o r G. A . G i l l i e s  indebtedness  a s s i s t e d i n the p r e p a r a t i o n of the Department  of M e t a l l u r g y of the U n i v e r s i t y of B r i t i s h Columbia,, under whose s u p e r v i s i o n t h i s work was: c a r r i e d out, the wishes to express h i s s i n c e r e s t thanks* was  author  A l l a n a l y t i c a l work  c a r r i e d out under the guidance of A s s i s t a n t P r o f e s s o r  P. A o Forward of the Department of Mining and whose h e l p was  i n v a l u a b l e i n the assaying®  Metallurgy,  Finally  s  but none  the l e s s s i n c e r e l y the w r i t e r wishes to thank h i s c o l l e a g u e W i l l i a m A® Dayton f o r the s t i m u l a t i n g encouragement  and  cooperation rendered by him throughout the course of the work*  - PREAMBLE A quarter of a century ago the c o n c e n t r a t i o n of ore by f l o t a t i o n was regarded as a remote  possibility.  Today, i t i s being u n i v e r s a l l y p r a c t i c e d with an ever widening f i e l d of a p p l i c a t i o n ^  I t s o r i g i n and growth have been  concerned p r i m a r i l y w i t h the s e p a r a t i o n of sulphide or m e t a l l i c minerals from t h e i r a s s o c i a t e d n o n - m e t a l l i c gangue minerals* In the l a s t ten or f i f t e e n y e a r s , however, i t has been found p o s s i b l e t o f l o a t almost any of the wide group of n o n - m e t a l l i c substances, accomplished  but s e l e c t i o n of one. m i n e r a l from another i n only a few i n s t a n c e s .  of expanding the present s e l e c t i o n between these  has been  I t i s w i t h the prospect  supply of i n f o r m a t i o n concerning the substances,  that the work c a r r i e d out  i n the p r e p a r a t i o n of t h i s t h e s i s i s c o n s i d e r e d justified©  -  C0FGLUSI01S  -  In s t a t i n g these conclusions I t must be noted that t h i s t h e s i s should be considered as a p r e l i m i n a r y report on the f l o t a t i o n of b a r i t e . lime stone s  and quartz..  t  The r e s u l t s  obtained from the various reagents used* are not conclusive regarding t h e i r a c t i o n as time would not permit more than a s  cursbry examination  of each one  S;  except i n a few s p e c i a l  cases . notably sodium metaphosphate and aluminium - n i t r a t e . %  •Depression, of Sulphidesg. The I n h i b i t i o n of sulphides was. not complete. For f u r t h e r remarks see conclusions at the end of t e s t 6. Quartz F l o t a t i o n s (1)  Quarts may be e i t h e r f l o a t e d or depressed according  to the reagents used. 1.8%" and 9 8 . 0 % .  Recoveries obtained v a r i e d between  In the l a t t e r  from a feed of.2.5:£»  r  the reduction r a t i o  was-.1.7:1  With f u r t h e r cleaning I t i s h i g h l y  probable t h a t . t h i s reduction r a t i o could be increased but there was i n s u f f i c i e n t time to v a r i f y t h i s p o i n t . (2)  As an a c t i v a t o r of quartz^ copper sulphate was the  most s a t i s f a c t o r y of the heavy metal s a l t s used w i t h i n the experimental pH range (3)  (7.5 - 9.75)  Lead n i t r a t e scted as an a c t i v a t o r f o r b a r i t e and  limestone rather than as an a c t i v a t o r f o r quartz.  In comparison  6  with copper  sulphate,, l e a d n i t r a t e increases, the grade of  limestone and decreases: the grade of s i l i c a * ,  Used i n h i g h e r  c o n c e n t r a t i o n s l e a d n i t r a t e a c t i v a t e s h a r i t e s l i g h t l y but has no apparent  d i f f e r e n c e in. the effect, on limestone or  quartzo .  (4)  Sodium Alominate  has a r e l a t i v e l y good, depressing,  a c t i o n on quartz and could t h e r e f o r e be used i n p l a c e of Sodium S i l i c a t e , , t h e standard reagent f o r t h i s  purpose.  B a r i t e .Flotations (1) I t became apparent difficult  i n these t e s t s that i t was  to s e l e c t i v e l y f l o a t b a r i t e and limestone w i t h .  reagents^other than Sodium Meta,phosphate and I m u l s o l Z.«-l». (2) B a r i t e can be separated from limestone most by the a c t i o n of Sodium MetaEhosphate. as a limestone  efficiently depressant.  A s e r i e s of t e s t s conducted with v a r y i n g c o n c e n t r a t i o n s of sodium metaphosphate i n d i c a t e s that 1.5#/ton of ore g i v e s the best r e s u l t s when judged by the "Three M i n e r a l Index*** (3) With the use of Sulphonated  Castor O i l  s  i t would be  p o s s i b l e to make a b u l k concentrate c o n t a i n i n g 95% of the baritej, 90% of the; limestone and only 11% of the q u a r t z with adjustments  9  which  c o u l d be improved* • By the a d d i t i o n of  sodium metaphosphate to the cleaner c e l l s , a p r a c t i c a l l y pure b a r i t e concentrate could be obtained. .test© 60 - 66 i n c l u s i v e a  T h i s i s supported  by  The grade of t h i s concentrate c o u l d  he improved by a j u d i c i o u s c o n t r o l of  temperature*  (4) The use of Heavy metal s a l t s as suggested by s e v e r a l i n v e s t i g a t o r s d i d not promote the b a r i t e .  (5) The t e s t s  s u p p o r t t h e o p i n i o n of I . W e Wark t h a t  t h e o r y f o r m u l a t e d hy P r o f e s s o r r e g a r d i n g the s o l u b i l i t y a l l cases*  It  and copper  is  Taggart and h i s  associates:  of m i n e r a l f i l m s is not adequate  recognized that  t h e p r e s e n c e of  the  but  this  in  lead,  s u l p h i d e s were p o s s i b l y d e t r i m e n t a l t o t h e  tive flotations  the  selec-  i s n o t s u b s t a n t i a t e d b y any o f  the  results* (6) A b e t t e r  differential  a c t i o n can be o b t a i n e d when  u s i n g a s y n t h e t i c : o r e by e m p l o y i n g a c o a r s e r c e l l f e e d * is  an e x p e r i m e n t a l c o n s i d e r a t i o n ,  it  is  as i n t h e m a j o r i t y  i m p o s s i b l e t o c o m p l e t e l y u n l o c k t h e component  of  This ores  minerals  when g r o u n d t o o n l y 42% - 200 m e s h . (7) A h i g h e r p u l p d i l u t i o n g i v e s an i m p r o v e d b a r i t e limestone  s e p a r a t i o n , b u t t h i s w o u l d be c o u . n t e r a . c t e d m a t e r -  i a l l y by a subsequent l o w e r i n g of c e l l  capacity.  (8) The d e s l i m i n g of a p u l p p r e v i o u s stantially  i n c r e a s e s the ' s e l e c t i v i t y  limestone.  between b a r i t e  I t must, be n o t e d , however,, t h a t  20% of t h e s o l i d s i s treatment  to f l o t a t i o n  lost  as s l i m e s .  (9) An i n c r e a s e  A satisfactory  i n temperature  causes; t h e  rendering  chemical  This  e s p e c i a l l y to E m u l s o l X - l , r e s u l t i n g i n a l a r g e r  applies bulk  The d e p r e s s i n g a c t i o n o f s o d i u m m e t a p h o s p h a t e  on l i m e s t o n e i s range.  B  flotation  practical©  r e a c t i o n s t o go more n e a r l y t o c o m p l e t i o n .  concentrate.  and  approximately  of t h e s l i m e s c o u l d p o s s i b l y be e v o l v e d  the process: e c o n o m i c a l l y  sub-  g r e a t l y improved i n a higher  temperature  8  (10)  V a r i a t i o n i n the pH range haa apparently s l i g h t  effect upon the f l o t a t i o n of b a r i t e , limestone* and quartz It may be noted here that a pH lower than 7 . 5 could not be obtained due to the s o l u b i l i t y of limestone i n an a c i d solution. Limestone F l o t a t i o n ? The f l o t a t i o n of Limestone was not covered i n thes t e s t s due to i n s u f f i c i e n t time.  - REG OMMBMATI PETS » The s o d i u m s i l i c a t e  (1)  i n s o l u b l e a n h r y d r o u s form*  u s e d i n t h e s e t e s t s was i n Other forms such as the  M e t a , a n d Hydrous:, m i g h t be a d v a n t a g e o u s l y  Ortho  a q u a r t z d e p r e s s a n t m i g h t be p r o f i t a b l y  carried  t h e o r e t i c a l viewpoint  is  considered, i t  as  out.  If, i n f u t u r e t e s t i n g , only the e x p e r i m e n t a l  (3)  s  employed.  A s e r i e s of t e s t s i n v e s t i g a t i n g Sodium A l u m i n a t e  (2)  w o u l d be  or  advantageous  t o u s e a c o a r s e r c e l l f e e d c o m b i n e d w i t h a p u l p of l e s s 20%  the  than  solids. (4)  When e n d e a v o u r i n g t o o b t a i n a. p u r e r b a r i t e e: on c e n t r a t e ,  a s h o r t e r skimming p e r i o d i s (5)  I t has b e e n s t a t e d p r e v i o u s l y ,  f e e d w o u l d be d e s i r e a b l e not occur. slimes  advisable.  Development  if  that a deslimed  such a great  loss  of a s a t i s f a c t o r y  i n slimes  treatment f o r  s h o u l d be s e r i o u s l y c o n s i d e r e d b y f u t u r e  (6) definite  cell did these  investigators*  The u s e o f h e a t i n many o f t h e s e t e s t s m i g h t be of a d v a n t a g e , as i l l u s t r a t e d b y t h e i n c r e a s e d  selective  i n d e x when u s i n g a h i g h e r t e m p e r a t u r e w i t h s o d i u m m e t a p h o s p h a t e as a limestone (7)  depressant.  The f o l l o w i n g l i s t  comparative s o l u b i l i t i e s solubility  is  t a b l e s taken from  I n o r g a n i c and Organic  o f r e a g e n t s b a s e d on t h e i r suggested from a study Seidell's  Compounds".  of  "Solubilities  of  10  Desired Film  S o i u b i l i t y i n Water M i n e r a l t o be R e a g e n t Solution in gms/liter floated Suggested.  Calcium Butyrate Barium Butyrate  18 36  Limestone  Butyric Acid  C a l c i u m Caproate Barium Caproate  22 3.9  Limestone  Gaproic Acid  Barite  Potassium Chlorate  Barite  Citric acid was f o u n d t o he s l i g h t ly selective  Limestone  Sodium Fluoride  Limestone  Sodium Formate  Limestone  M&OH h a d ILi."t "fc X © effect Potassium Hydroxide E i c k e l Hyd. Alum. Hyd.  Barite.  Copper Nitrate Lead H i t . was s u c c e s s f u l . Aluminum N i t r a t e  Limestone  Salicylic Acid Mono-acetic Salicylic Acid.  C a l c i u m C h l o r a t e 640 i n s a t . B a r i u m C h l o r a t e 250 i n s a t . Calcium C i t r a t e Barium C i t r a t e  soln. soln.  0*8 0.4  Calcium F l u o r i d e 0.016 i n s a t . B a r i u m F l u o r i d e 1*60 in sat.  soln. soln.  Calcium Formate  142 i n s a t .  Soln*  Barium Formate  236 i n s a t .  soln.  C a l c i u m H y d r o x i de Barium Hydroxide  Calcium H i t r a t e Barium H i t r a t e  1*65 3*9  56Q i n s a t . 84 i n s a t .  soln* soln.  Barium S a l i c y l a t 290 i n s a t . s o l n C a l c i u m S a l i c y l a -te 2 2 . 9 i n s a t . s o l n  <-.  :  —  -  11  (8)  If" i n l i m e s t o n e f l o t a t i o n ,  depressant oils, (9) for  is  used, I t  particularly  a suitable  barite  is  recommended t h a t  the  sulphonated  castor  o i l , bejused a s a  collector*  Sodium S u l p h a t e i n c o n j u n c t i o n w i t h P a l m e t i c  the f l o t a t i o n of limestones, w a r r a n t s  investigation*  See t e s t  42*  further  Acid  12  EROTHERS t Pine O i l  -  used as a f r o t h e r slight  only,, hut fgund t o have a  collecting action for  therefore  its  sulphides;  u s e was d i s c o n t i n u e d i n  later  tests* Terpineol »  c o n s t i t u t i n g up t o 60% p i n e one o f  oil  t h e most p u r e f r o t h e r s . H a v i n g  collecting action i t  was u s e d i n a l l  slight tests  requiring a frother. COLLECTORSg Llssolamine A -  Tri-methy1~cetyL-ammonium-bromide  (Manufactured hy C . I . L . ) for  silica.  Used as a  Has good f r o t h i n g  properties.  For further Information regarding reagent Retarder L.A.  collector  s e e s e c t i o n am t h e o r y of  this collectors.  - c o m p o s i t i o n unknown-a p r o d u c e o f . C . I . L . ,  used at T r a i l ,  B.C. , f o r  the f l o t a t i o n  s i l i c a away f r o m m a g n e s i t e . slightly  less  as a c o l l e c t o r  effective of s i l i c a  of  P o u n d t o be  than Llssolamine A - also requires  a  frother. E m u l s o l X~l - a sulphated h i g h e r a l c o h o l manufactured by the E m u l s o l C o r p o r a t i o n of Chicago 111. Pound  13  t o be t h e b e s t these t e s t s . action for  collector  of b a r i t e u s e d  I t has a d e f i n i t e  collecting  l i m e s t o n e and r e q u i r e s no f r o t h e r *  O l e i c A c i d - has a g e n e r a l c o l l e c t i n g a c t i o n f o r s u l p h i d e s a s w e l l as s u l p h i d e s *  Fish Oil -  in  Appears  t h e most s u i t a b l e c o l l e c t o r  for  "rougher" c e l l *  frothing  Has s l i g h t  non-  use i n  a  action*  a s o b t a i n e d f r o m Gave & C o * , V a n c o u v e r , Has a b e t t e r  t o be  B.C*  collecting aption for barite  limestone than f o r  silica*  and  Requires a f r o t h e r *  S u l p h o n a t e d C a s t o r O i l - as o b t a i n e d f r o m Cave & C o * , V a n c o u v e r . B.C*  It  i s a good c o l l e c t o r  for  b a r i t e and l i m e s t o n e h a v i n g , however,  no  selective  probably  action*  be more s u i t a b l e A c i d due t o i t s  T h i s reagent- w o u l d  i n a "rougher" c e l l than lesser  collecting action  Oleic on  quarts* S u l p h o n a t e d Cod O i l - a s o b t a i n e d f r o m C a v e , & C o * , V a n c o u v e r , B»G*  I t h a s good c o l l e c t i n g  f o r b a r i t e a n d l i m e s t o n e w i t h no selective action.  I n common w i t h  castor  o i l and f i s h o i l , i t  of the  limestone*  Sodium P l e a t e - a c o l l e c t o r flotation of t h i s  apparent sulphonated  increases the  o f t e n recommended i n  to that  grade  the  of n o n s u l p h i d e s , , f o u n d i n t h e  o r e t o be an i n f e r i o r  collector  action  case  preferential  of E m u l s o l X - l *  The  barite  14  g r a d e was 20% l o w e r „ l i m e s t o n e g r a d e 8% h i g h e r a n d t h e q u a r t s g r a d e 10% h i g h e r .  Due  t o a 25% i n c r e a s e of b u l k t h e b a r i t e  recovery  was h i g h e r .  it  inferior  The t e s t s i n d i c a t e  that  to Sulphonated Castor O i l .  is  also  This  reagent r e q u i r e d a f r o t h e r . p a l m i t i c A c i d - T h i s r e a g e n t was recommended by  Gaudin  and Hansen i n the s e p a r a t i o n of b a r i t e limestone  i n the presence  o f Sodium S u l p h a t e  as a l i m e s t o n e depressants factory  in this  evidenced.  and  I t was n o t  o r e as no s e l e c t i v e  satis-  a c t i o n was  The a d d i t i o n o f TerpxLneol as a  f r o t h e r was f o u n d t o be  necessary.  ACTIVATORSg C o p p e r S u l p h a t e - g e n e r a l l y u s e d a s an a c t i v a t o r quartz.  Fo;und i n t h e s e t e s t s  suitable than Lead U i t r a t e .  for  t o be more Best  results  o b t a i n e d i n a pH r a n g e of 6 - 1 1 . A l s o h a s slight  a c t i v a t i n g a c t i o n on b a r i t e  leaser  extent  on l i m e s t o n e *  a  and t o  This agrees  t h e r e s u l t s p u b l i s h e d by H a l b i c h i n U b e r  a with die  Anwendungsmoglichkeiten e i n i g e r l e t z m i t t e l der  in  Flotation.  Aluminum C h l o r i d e  - u s e d a s an a c t i v a t o r f o r b a r i t e  poor r e s u l t s were o b t a i n e d . the r e s u l t s  of  Halbiclu  ?  This agrees  but with  15  Lead N i t r a t e  - used as an a c t i v a t o r f o r  efficient  than copper  It  is  les;s  sulphates*  C i t r i c A c i d - found t o have s l i g h t Barite*  quartz*  activating action  for  I t was m e n t i o n e d b y R» R a l s t o n i n The  F l o t a t i o n a n d A g g l o m e r a t i o n o f Non M e t a l l i c s (U« S* B u r e a u of l i n e s ) * ' •DEPRESSORS t P o t a s s i u m C y a n i d e and Z i n c S u l p h a t e - u s e d j o i n t l y as a depressor  of c h a l c o p y r i t e a n d p y r i t e *  P o t a s s i u m B i c h r o m a t e - u s e d as a d e p r e s s o r  of  galena  and p y r i t e * Sodium S i l i c a t e it  - used as a d e p r e s s o r  of q u a r t s i n  compares f a v o r a b l y w i t h S i l i c i c  was q u i t e i n s o l u b l e i t the m i l l * theory^ o f  Acid*  was a d d e d i n a l l  which As  cases  F o r c h e m i c a l a c t i o n see n o t e s  to  on  depressors*  S i l i c i c A c i d - used as a depressor f o r  quartz*  L e a d Chrornate - u s e d a s a d e p r e s s a n t f o r l i m e s t o n e * u s e o f c h r o m a t e s was s u g g e s t e d b y t h e u s e solubility  it  tables,  of  t h e t h e o r y as s u p p o r t e d b y W a r k ,  Rose & Macdonald b e i n g t h a t l e s s amenable t o  The  insoluble  coatings  are  flotation*  P o t a s s i u m Chrornate - u s e d a s a l i m e s t o n e  depressant*  R e s u l t s c o m p a r a b l e w i t h L e a d Chrornate* C h r o m i c A c i d - u s e d as a l i m e s t o n e d e p r e s s a n t * obtained were  Results  unsatisfactory*.  Chromous O x i d e - u s e d a s a l i m e s t o n e d e p r e s s a n t * o b t a i n e d were u n s a t i s f a c t o r y *  This  Results  reagent  16  c a u s e d an u n a c c o u n t a b l y h i g h pH v a l u e f o r  the  pulp. A c e t i c A c i d - The u s e o f a c e t i c c o n c l u s i o n of t e s t  a c i d isi e x p l a i n e d 48.  Sodium O x a l a t e - and O x a l i c A c i d - u s e d a s for limestone. test  in  depressants  F o r a c t i o n see c o n c l u s i o n  of  44.  Aluminum N i t r a t e - used as a l i m e s t o n e depressant* results  obtained u s i n g o.5 #/ton.  For  c h e m i c a l a c t i o n see c o n c l u s i o n t e s t  55.  S o d i u m A l u m i n a t e - used, a s a q u a r t z d e p r e s s a n t f o r property i t Sodium  Best  may be c o m p a r e d f a v o u r a b l y  which with  Silicate.  Sodium S u l p h a t e - T h e  u s e o f S o d i u m S u l p h a t e was  as a t h e o r e t i c a l l i m e s t o n e d e p r e s s a n t t e s t s i n d i c a t e the o p p o s i t e , i . e .  it  suggested but h a s more  o f an a c t i v a t i n g a c t i o n on l i m e s t o n e w i t h no effect  on b a r i t e f l o t a t i o n .  See  conclusion  test' 42. Ferric  S u l p h a t e - T h i s r e a g e n t was u s e d a s a  limestone  d e p r e s s a n t ^ a s a c o m p a r i s o n of a h e a v y m e t a l s u l p h a t e w i t h S o d i u m S u l p h a t e was R e s u l t s showed no d i f f e r e n c e S u l p h u r i c A c i d - used to t e s t the f l o t a t i o n and a l s o coating.  the e f f e c t  desired.  b e t w e e n t h e two® of a l o w pH on  of b a r i t e l i m e s t o n e ^ a n d 4  to form a monomolecular No s a t i s f a c t o r y r e s u l t s  quartz,  sulphate obtained.  17  Sodium Hydroxide  - used to t e s t  the e f f e c t of a h i g h pH  on the f l o t a t i o n of barit?i limestone and quarts.  Gaudin suggested a pH g r e a t e r than  IQ f o r the i n h i b i t i o n of c a l c i t e .  No  satis-  f a c t o r y r e s u l t s were obtained due to the i n a b i l i t y of a t t a i n i n g a h i g h A r g o l s -• (Potassium b i t a r t r a t e ) depressant.  pH.  - used as a quartz  Found! to have l i t t l e  effect.  Sodium Metaphosphate - used as a limestone depressant. This reagent was  found to give the best  r e s u l t s f o r limestone d e p r e s s i o n .  For  d i s c u s s i o n of a c t i o n see theory of depressors and f o r comparison of r e s u l t s amounts see t e s t  of v a r y i n g  64.  Sodium Hexametaphosphate - t h i s reagent Rose and Macdonald i n U.S.  suggested  by  Patent No.. 2 04Q,187  as an i n h i b i t o r of l i m e s t o n e .  S  The .reagent-n  showed a g e n e r a l d e p r e s s i n g a c t i o n .  18  ~ THEORY OF FLOTATION  -  The t h e o r e t i c a l f o u n d a t i o n of f l o t a t i o n i s on t h e b e h a v i o u r  of  based  s u r f a c e s — b o t h l i q u i d and s o l i d *  S u r f a c e phenomena w i l l ,  t h e r e f o r e , be r e v i e w e d u n d e r  f o l l o w i n g h e a d i n g s ; as r e l a t e d t o t h e p r o p e r t i e s of various reagents used, p a r t i c u l a r l y non-sulphide mineral  the the  those p e r t a i n i n g  to  flotation*  !<•  Phases of the F l o t a t i o n  System*  2*  M e c h a n i c a l A s p e c t s of F r o t h F o r m a t i o n *  3*  Adsorption®  4*  Reagents.  PHASES OF THE FLOTATION SYSTEM; There e x i s t s  i n any f l o t a t i o n  phasesj gas, l i q u i d ,  and s o l i d ;  operation,  three  of which the l i q u i d  phase  a p p e a r s t o b e o f g r e a t e s t i m p o r t a n c e and t h e g a s p h a s e least  of  importance* The g a s e o u s p h a s e p r e s e n t s i t s  mechanism f o r l i f t i n g  importance, as  the segregated p a r t i c l e s *  Although  t h e c o m p o s i t i o n of t h e g a s , c o n s i d e r e d a s a p h a s e , little ability  difference,  it  of m i n e r a l s i f  can c o n s i d e r a b l y a f f e c t  the  makes float-  r e a c t i o n proceeds between the gas  m o l e c u l e s and t h e m i n e r a l s u r f a c e s , or the water i t s e l f *  the  or d i s s o l v e d  Thus, oxygen i s  o f t e n an  reagents  oxidizing  19  a g e n t , c a r b o n d i o x i d e f o r m s c a r b o n a t e s , and h y d r o g e n sulphide i s a strong s u l f i d i z i n g agent, play  a l l . o f w h i c h may  an important p a r t as such i n f l o t a t i o n  systems®  The l i q u i d p h a s e h a s a l w a y s b e e n a d i l w t e solution;  Why t h i s  s h o u l d be t h e c a s e i s q u i t e  when t h e p r o p e r t i e s  of w a t e r a r e c o n s i d e r e d *  u m i v e r s a l l y a v a i l a b l e and i n e x p e n s i v e , i t power, low e l e c t r i c a l c o n d u c t i v i t y ,  aqueous evident  Water  is  has great  yet great  solvent  ionizing  p o w e r , a n d h i g h p o l a r i t y w h i c h makes i t  suitable for  ation*  special  Other l i q u i d s  c o u l d be used f o r  i n v o l v i n g t h e r e c o v e r y of v a l u a b l e A factor  pulp*  flotation  products*  of g r e a t importance i n performance  f l o t a t i o n systems i s  flot-  of  the hydrogenkon c o n c e n t r a t i o n of  the  T h i s i s measured i n t h e l i q u i d phase and r e c o r d e d  a s t h e pE o r t h e l o g a r i t h m t o t h e b a s e 10 o f t h e concentration* alkilinity)  By c o n t r o l o f t h i s f a c t o r  of the p u l p , i t  is  In contract  to the f a c t  (i*e* a c i d i t y  possible to f l o a t  v a r i o u s s u l p h i d e and n o n - s u l p h i d e  hydrogenion  or  or  depress  minerals®  t h a t t h e r e i s b u t one gas  a n d one l i q u i d p h a s e , t h e number o f s o l i d p h a s e s may b e l a r g e a n d o f c o m p l e x a s s o c i a t i o n d e p e n d i n g u p o n t h e number of m i n e r a l s p e c i e s  present*  Most m i n e r a l s a r e u n i o n i z e d and i n s o l u b l e I o n i z e d s u b s t a n c e s h a v e much g r e a t e r and a r e t h e r e f o r e ^ r a r e r as m i n e r a l s * ?  b e i n g an i o n i z e d m i n e r a l *  solubility Calcite  is  i n water» in  water  an e x c e p t i o n ,  so  The p o l a r i t y  or n o n - p o l a r i t y  of m i n e r a l s ,  together  w i t h the c a p a c i t y of h y d r a t i o n w h i c h t r a n s f o r m s the  surface  of c e r t a i n otherwise non-polar m i n e r a l s i n t o p o l a r  areas  controls  their  t h e i r w e t t a b i l i t y by w a t e r and u l t i m a t e l y  f l o t a t i o n or n o n - f l o t a t i o n *  The s u r f a c e of a m i n e r a l  adsorbs  water molecules w h i c h forms a t r a n s i t i o n a l l a y e r between the c r y s t a l and t h e s o l u t i o n w h i c h cements w a t e r t o t h e m i n e r a l ^ The c a s e of a n o n - p o l a r totally different  s o l i d w h i c h c a n n o t be h y d r a t e d  is  - t h e p h a s e s must t h e n be b o u n d  discontinuously. MBGHAHOAL ASPECTS 03? EB.QTH FORMATION! A s t u d y of t h e m e c h a n i s m o f f r o t h i n g itself  resolves  into the r a t e at which mineral p a r t i c l e s  come  contact w i t h b u b b l e s , whether or not they adhere to b u b b l e on c o n t a c t , a n d b u b b l e  impossible to predict  as an a e r a t e d p u l p .  encounter  i n a complex system such  Much i n f o r m a t i o n c a n be g a t h e r e d h o w e v e r  f r o m t h e s t u d y of a s i m p l i f i e d system i t  the  formation*  The e x t e n t t o w h i c h b u b b l e s a n d p a r t i c l e s each o t h e r i s  into  system*  To r e p r e s e n t  i s assumed t h a t t h e b u b b l e i s  v e r t i c a l l y with uniform v e l o c i t y  spherical;  such a  rises  i n a perfect l i q u i d  which  the h a s no v i s c o s i t y a n d i s  infinitely  divisible.  which represents a bubble r i s i n g v e r t i c a l l y liquid  s  it  can. be s e e n t h a t  From diagram  in a  perfect  only p a r t i c l e s which l i e  t h e l i n e ZZ w i l l  come i n c o n t a c t w i t h t h e r i s i n g  Ideal conditions  such as t h i s  can not  exist  along  bubble.  i n an a e r a t e d  21  Flow L i n e s of Water around, a r i s i n g bubble*  22  pulp.  Here,  t h e r e i s r o t a t i o n of b u b b l e a n d  l a t e r a l movement, a n d n o n - s p h e r i c a l w i l l not* a l l o w  that  shape o f p a r t i c l e s ,  settling in a straight  f a c t o r s cause the c o l l i s i o n s existing i n a perfect  particle,  line*  All  of  these  t o be g r e a t e r i n number  system*  Therefore i t  than  w o u l d seem  t h a t a r a t h e r f i n e b u b b l e f r o t h w o u l d be d e s i r a b l e , p a r t i c l e s w o u l d be u n d e s i r a b l e a s f a c t o r s  which  and  in probability  fine of  encounter - hence f l o t a t i o n * G a s - s o l i d a t t a c h m e n t may b e s t be d i s c u s s e d u n d e r s e v e r a l headings - t y p e s of w e t t i n g , s e l e c t i o n i n attachment,  contact  angle,  and b u b b l e s t r u c t u r e and form*  The e s s e n t i a l c o n d i t i o n f o r f r o t h f l o t a t i o n i s a particle  c o m p l e t e l y w e t t e d b y w a t e r become a t t a c h e d t o  a i r bubble.  A p a r t i c l e may become w e t t e d i n e i t h e r  t h r e e ways - a s shown  (a) I  that  of  -  I  :  CONTACT WETTING  C  SPREADING WETTING  IMMERSIONAL WETTING. -  an  23  CONTACT ANGLE  -  The s t u d y of no. o t h e r s i n g l e p r o p e r t y o f h a s b e e n of s u c h g r e a t  significance  minerals  i n the t h e o r y  f l o t a t i o n a s t h e s t u d y of c o n t a c t a n g l e s .  It  of  i s t h e measure  of t h e t e n a c i t y o f a d h e s i o n b e t w e e n m i n e r a l a n d a i r ; is,  the tendency of a bubble to remain a t t a c h e d t o  mineral, thereby rendering i t  So/id  TS&  s  S u r f a c e t e n s i o n of A i r - W a t e r  TV/S  *  S u r f a c e t e n s i o n of W a t e r - S o l i d  TSA  -  Surface tension of S o l i d - A i r  ISA  2  In order that  TWS  +  an a i r  TSA  TWA  s o l i d i n t e r f a c e be  ^  TWA  TWS  s  (where W  ~+-  -+•  If  ~  TWA '  °( - 0 ° t h e n W  bubble to s t i c k .  ( 1  interface.  interface. (1)  established  TWS be  -  w o r k done p e r u n i t  s  s u b s t i t u t i n g i n equation W  TWA  interface.  Cos•<*...  h e n c e w o r k done t o p e r f o r m t h i s w i l l ¥  a  floatable.  •So/tcl  where  that  TSA area)  (l)  - COS <*)  0 and t h e r e i s no t e n d e n c y f o r  s  If  maximum o f a d h e s i o n  d = 180°,then W tenacity.  =  the  2 TWA,which i s  a  H4  Both which i s  Of  a n d TWA c a n b e m e a s u r e d e x p e r i m e n t a l l y ~  o b v i o u s l y of g r e a t importance i n f l o t a t i o n *  may be n o t e d t h a t n o t  every f a c t o r i n f l u e n c i n g  flotation  a l s o i n f l u e n c e s c o n t a c t a n g l e ; a l t h o u g h any f a c t o r contact angle influences f l o t a t i o n * the f a c t  This i s  t h a t f r o t h e r s h a v e no s i g n i f i c a n t  Attachment between m i n e r a l s  influencing  evidenced by  effect  a n g l e as t h e y l o w e r the s u r f a c e t e n s i o n o n l y SELECTIVE ATTACHMENT  It  on  slightly*  -  of p a r t i c l e s , t o b u b b l e s must be having d i f f e r e n t  f l o t a t i o n be s u c c e s s f u l *  surfaces  s  selective  i n order  that  If a p a r t i c l e having a non-polar  s u r f a c e e n c o u n t e r s an a i r b u b b l e  so t h a t  direct  of a i r a n d s o l i d e x i s t s a t a c e r t a i n i n s t a n t , a n g l e s t h a t become e s t a b l i s h e d a t t h e s o l i d  adherence  the  contact  surface  indicate  a tendency f o r t h e gas to d i s p l a c e the w a t e r a t the surface*  Similarly if  a p a r t i c l e having a polar  encounters an a i r bubble  ( w h i c h may b e d i f f i c u l t  solid*s  surface because  the hydrated i o n s r e s i d i n g at the surface of such a  the s o l i d ' s surface* to  T h u s , one o f  p a r t i c l e s w i l l t e n d t o p a s s i n t h e gas p h a s e and. t h e t o r e t u r n i n t h e aqueous phase*  of  particle)  the contact angles i n d i c a t e a tendency f o r the water d i s p l a c e the gas at  contact  to the other  35  R e t u r n of p a r t i c l e s  having a polar  surface to the  phase i s f a v o r e d by the a g i t a t i o n and subsequent  aqueous encounters  i n v o l v i n g t h e gas b u b b l e a n d b y t h e c r o w i n g e f f e c t  exerted  a t the b u b b l e s u r f a c e by o t h e r p a r t i c l e s w h i c h are  better  prepared to adhere t o the  (1)  Groudin F l o t a t i o n  gas  P98.  BUBBLE - STRUCTURE An a g g r e g a t e desixeable f r o t h i s sufficient  of b u b b l e s i s  a froth.  one i n w h i c h t h e b u b b l e s r i s e  v e l o c i t y to c a r r y over an abundant  y e t t r a v e l s l o w enough t o a l l o w d r a i n a g e back to the  The most with  concentrate,  of unwetted  material  pulp.  The b u b b l e s v a r y i n f o r m d u r i n g t h e i r  life due ;  several causes.(1)  e x t e n t o f m i n e r a l i z a t i o n of p u l p .  size  {3} s i z e  of p a r t i c l e s .  (2)  They f i r s t  appear  s p h e r i c a l i n s h a p e , b u t due t o l o a d i n g t h e y become  forced  together,where  of bubble.  to  some u n i t e t o f o r m l a r g e r b u b b l e s ,  eventually a t t a i n a polygonal  G a s  outline.  and  26  Existence  of a p o l y g o n a l f r o t h , p r o d u c e s a f i l t e r  w h i c h t h e gangue m a t e r i a l p a s s e s on i t s  through  downward drainage©  G o a r s e m a t e r i a l w o u l d t e n d t o become r e t a i n e d but t h i s c o u n t e r a c t e d by i t s f a s t  s e t t l i n g r a t e i n consequence  w h i c h i t w o u l d n o t a s l i k e l y be a t t h e t o p o f Pine particles,•due  their  flow with interbubble  is of  the f r o t h *  small descending v e l o c i t y  over-  water*  I n agreement w i t h t h e second law of  thermodynamics,  ( s u r f a c e energy t e n d s to be a minimum), p a r t i c l e s  adhere  t o a bubble w a l l w i t h the l a r g e s t  a r e a c o m p a t i b l e under  circumstances*  t h e b u b b l e s a r e l i n e d one  Due t o t h i s f a c t ,  l a y e r t h i c k a n d p r e s e n t a smooth i n n e r  surface*  Camera-lucida drawing of a dry bubble ( s e c t i o n ) X80*  the  27  S e v e r a l arguments have been put f o r t h size  of b u b b l e o  as t o t h e  correct  S m a l l ones, w h i l e t h e y have a g r e a t e r  s u r f a c e p e r u n i t v o l u m e , a n d more t e n d e n c y t o a t t a c h finest  c o s t more t o p r o d u c e * They may a l s o become  enough l o a d e d t o a t t a i n t h e same s p e c i f i c p u l p , t h e r e b y h a v i n g no l i f t i n g The c o r r e c t  theoretical  A Constant  <3  n  A c c e l e r a t i o n due t o  a  s  R a d i u s of  /  m*>  gravity  A Constant Viscosity  size to p a r t i c l e  t h e r a t i o ©fj 8*5  bubble gravity*  (0*0034 cm) o f medium* the best r a t i o  s i z e i n a p u l p of 1*25 f o r  si  -  of  bubble  e q u a t i o n and o t h e r d a t a , ^  Gaudin  from  (0*5)  Specific  b s  -  the  power*  ss  cS  (l)  of  .» • .  K  bubble  heavily  s i z e c a n be o b t a i n e d  A l l e n ' s Law -  Prom t h i s  gravity  to  Flotation  P104  of  calcite  88  - ABSORPTION A d s o r p t i o n I s the term used to, denote the of l a y e r s  of m o l e c u l e s a t t a c h e d t o ^or a t t r a c t e d , by/^a s o l i d  surface*  Selective flotation is  selective absorptive organic  d e p e n d a n t upon a  power o f m i n e r a l s u r f a c e f o r  certain  compounds.  The s u r f a c e : of a inter-molecular interior,  s o l i d or l i q u i d phase has an unbalanced  f o r c e , n o t p o s s e s s e d by t h e i n t e r i o r .  t h e c h e m i c a l a t t r a c t i o n o f a n atom i s  d i s t r i b u t e d among t h e s u r r o u n d i n g atoms* atomic a t t r a c t i v e f o r c e causing a d e f i n i t e space.  formation  on one s i d e e x i s t s  equally .  At the  surface  capable of h o l d i n g other  w h i c h come w i t h i n t h e z o n e of i n f l u e n c e > t o  a varying  (£)  Millard  -  P h y s i c a l Chemistry -  P.138.  extent?  Discussion  i s he-re d i v i d e d I n t o two p a r t s - a d s o r p t i o n a t l i q u i d surfaces.  into  molecules  d e p e n d i n g , i i pom t h e type, o f m o l e c u l e so a d s o r b e d .  and a d s o r p t i o n a t s o l i d  the  unsatisfied,  c h e m i c a l a t t r a c t i o n t o extend, out  This force i s  In the  surfaces  29  A d s o r p t i o n at L i q u i d Many o r g a n i c Its  Surfaces;  s u b s t a n c e s when d i s s o l v e d I n wa-fcer,  s u r f a c e ' t e n s i o n , w h i l e i n o r g a n i c s a l t s t e n d to  r a i s e the- s u r f a c e t e n s i o n * t h i s phenomenon i s  J . W i l l a r d Gibbs  i ) 1  slightly  states  due t o a h i g h e r c o n c e n t r a t i o n o f  be l o w e r t h a n t h e b u l k c o n c e n t r a t i o n * a r e s a i d t o he p o s i t i v e l y n e g a t i v e l y adsorbed*  Re  A  where  bulk,  s a l t s must  The o r g a n i c  substances  a d s o r b e d and t h e i n o r g a n i c  The amount i s  that  the  o r g a n i c ...substances a t t h e s u r f a c e l a y e r t h a n i n t h e whereas the s u r f a c e c o n c e n t r a t i o n of i n o r g a n i c  lower  salts  g i v e n by G i b b s '  equation «  ac  A  a  A d s o r p t i o n i n gm. m o l e c u l e s / c m ^  G  ts C o n c e n t r a t i o n i n % o r gram m o l e c u l e s  R  e  Gas c o n s t a n t  6  ts  A b s o l u t e temperature i n degrees Kelvin©  L a n g m u i r h a s shown t h a t  i n ergs per degree  cent*  Gibbs e q u a t i o n l e a d s to the  conclusion to)  that the adsorbed l a y e r i s  one i o n or m o l e c u l e t h i c k  t h i s unimolecular f i l m the organic molecules f i x o r i e n t a t i o n with respect to the s u r f a c e , d a n t upon t h e t y p e of m o l e c u l e * (1)  Work - The P r i n c i p l e s  (2)  Gaudin*  '•  v  their  the d i r e c t i o n  For example,organic  of F l o t a t i o n P*64*  In  depen-  compounds  30  such a s t h o s e employed as f r o t h e r s , and a n i n a c t i v e active  a r e made up o f a n  group, which o r i e n t themselves w i t h  group d i r e c t e d towards t h e v m t e r .  on t h e i n n e r a n d o u t e r w a l l s  causing, a l o w e r i n g of s u r f a c e  their  I n t h i s way t h e  a d s o r b e d m o l e c u l e s become c o n c e n t r a t e d a t t h e interface  active  of  air-water  the bubble,  tension©  Adsorption at Solid- Surfaces? Five different  types  of a d s o r p t i o n are c o n s i d e r e d  by  Kolthoff* 1*  A d s o r p t i o n b y a s a l t h a v i n g an i o n i n common w i t h  the  lattice© 2»  Exchange a d s o r p t i o n between l a t t i c e s u r f a c e and f o r e i g n i o n s f r o m the  3.  solution©  solution.  M o l e c u l a r a d s o r p t i o n of n o n - e l e c t r o l y t e a n d t r u e a d s o r p t i o n of  5*  the  Exchange between adsorbed ^ c o u n t e r - i o n s " and f o r e i g n i o n s i n the  4.  ions i n  Activated Type ( l )  is  determining ions|  salts*  adsorption* d e s c r i b e d , a s a d s o r p t i o n of such  as t h e a d s o r p t i o n o f h e a v y m e t a l  from s o l u t i o n by an e l e c t r o d e Type  potential-  (2) i s v e r y common*  ions  of t h e same h e a v y m e t a l * Baponen ( ) 2  found that  b a r i u m s u l p h a t e was s h a k e n w i t h l e a d c h l o r i d e ,  some o f  l e a d i o n s i n s o l u t i o n were r e p l a c e d q u a n t i t a t i v e l y (1)  Journal Physical Chemistry,  (2)  W a r t - The P r i n c i p l e s  40, 1027,  the  by b a r i u m  (1936)  o f F l o t a t i o n - P67*  if  31  Ions from the c r y s t a l l a t t i c e  but the c h l o r i d e i o n s were  unaffected* Ba S 0  4  -+• P h .  + +  ^-  pB S Q -+- B a 4  Type ( 3 ) i s made c l e a r by a n example* silver  i o d i d e when t h o r o u g h l y w a s h e d , s t i l l  of i o d i n e i o n s , a n d t h a t  it  atmosphere of hydrogen i o n s a dilute  is  We have s e e n r e t a i n s an  surround.ed by an  as c o u n t e r i o n s *  s o l u t i o n of l e a d n i t r a t e  that  excess  ionic  Lead i o n s  can r e p l a c e t h e s e  from  hydrogen  i o n s t h e m s e l v e s becoming the c o u n t e r i o n s a c c o r d i n g t o  the  ?  equation* 2(AgI......l)| H ^ + P b ^ ^ ^ A g l Type  J - ) \ Pb -*- 2H" ' ++  1  ( 4 ) ; S u c h s u b s t a n c e s a s w a t e r a n d a l c o h o l c a n be  adsorbed, by i o n i c  lattices*  T h e y may be f i r m l y h e l d *  For  example even i n a h i g h v a c u u m , c a l c i u m f l u o r i d e h o l d s , f a s t w a t e r a d s o r b e d f r o m t h e atmosphere*  The w a t e r c a n n o t  to  be  r e m o v e d e v e n by h e a t i n g t o 4 0 0 ° C , b u t h y d r o g e n f l u o r i d e  is  evolved, i n s t e a d * CaFg -+- H Q —<~Ca F ('OH) -t- HP 2  Kolthoff  considers that  e q u i v a l e n t n u m b e r s of  and c a t i o n s c a n be a d s o r b e d b y a n i o n i c lattice is  and a d s o r b e d s a l t  equivalent  lattice  if  the  h a v e no i o n i n common, t h i s  t o t h e a d s o r p t i o n of a s a l t *  Thus i t  c l a i m e d t h a t v a r i o u s s a l t s a r e a d s o r b e d on b a r i u m i n unimolecular  anions  process  has  been  sulphate  films*  Type (5) s A c t i v a t e d a d s o r p t i o n s  By a c t i v a t e d adsorp:-  OK  I s meant t h a t t h e a d s o r b e d m o l e c u l e i s  chemically  or s t r o n g l y d i s t o r t e d by t h e a d s o r p t i o n . makes i t ' p o s s i b l e ordinarily  This  changed  property  to react w i t h other substances  not  touched.  A d s o r p t i o n may be d i s t i n g u i s h e d f r o m c h e m i c a l I n p r a c t i c e t h e r e i s a c o n t i n u o u s range of  adsorption  phenomena f r o m t h e l o o s e v a n d e r Y / a a l s a d s o r p t i o n ?  indisputable chemical r e a t i o n .  Inasmuch as a l l  r e a c t i o n s must b e g i n a s a d s o r p t i o n o f i o n s o r a d s o r p t i o n c a n be c o n s i d e r e d a s c h e m i c a l  reaction®  to  chemical  molecules,  reaction.  33  - THEORETICAL ACTION OF REAGENTS  -  COLLECTIONi Collection is which comprises particles  element of a f l o t a t i o n  s e l e c t i v e attachment  t o bubbles®  collectors  that  of c e r t a i n  have been advanced.  Nearly a l l  have b e e n by v a r i o u s  of t h e so c a l l e d " c h e m i c a l " t h e o r y . 1  T a g g a r t , T a y l o r and  Knoll  a c t i o n on t h e t o - b e - f l o a t e d affect  or on t h e  affected".  i n t e n d e d t o embrace w i t h i n i t s agents, depressing agents, It is  by  "All by  not-to-be-floated  This hypothesis  generalization'}  is  collecting  and a c t i v a t i n g agents,, b o t h  i n the water of the  that  affect  T h i s l i m i t a t i o n however,, does n o t mean  c h e m i c a l r e a c t i o n h a s no p a r t i n t h e f u n c t i o n i n g of  o t h e r t y p e s of s u b s t a n c e .  Nor t h e c o n t r a r y .  The  Taggart Taylor & Knollf: Chemical Reactions Flotation.  organic  flotation  on t h e s o l i d p a r t i c l e s t h e r e i n , t o  their floatability.  (1)  either  s u b j e c t t o t h e one l i m i t a t i o n  t h e r e a g e n t must d i s s o l v e  that  I n a paper  of w e l l r e c o g n i z e d t y p e s b e t w e e n t h e  r e a g e n t and t h e p a r t i c l e  p u l p , and r e a c t  writers  t h e i r f l o a t a b i l i t y f u n t i o n by r e a s o n of  chemical reactions  and i n o r g a n i c .  of  dis-  i t was. p o s t u l a t e d t h a t  d i s s o l v e d reagents which, i n f l o t a t i o n pulps,  particles  mineral  S e v e r a l t h e o r i e s of the o p e r a t i o n  c r e d i t e d or d i s p r o v e d } w h o l l y o r i n p a r t , in favor  operation  T r a n s . A . I . M . E . 8 7 , 1 9 3 0 . P.  the  exclusion in  211.  34  s i m p l y narrows the f i e l d  of d i s c u s s i o n t o the e x t e n t  indicated,  C h e m i c a l r e a c t i o n between s o l u b l e f l o t a t i o n and t h e s o l i d p a r t i c l e s ; o f 1904  a n  cl periodically  reagent  t h e p u l p was s u g g e s t e d a s e a r l y supported since that  time.  as  The  (2)  e a r l y a l l aqueous d i f f e r e n t i a l - f l o t a t i o n p a t e n t s t o e f f e c t , b y d i g e s t i o n i n s t r o n g aqueous s u r f a c e changes s i m i l a r roasting processes.  found that very d i l u t e  aimed  solutions,  to those e f f e c t e d by the  B u t when some of  '  t h e same  chemical  fractional-  investigators  s o l u t i o n of i n o r g a n i s substances  somewhat t h e same e f f e c t s  on t h e f l o a t a b i l i t y  of  certain  s u l p h i d e s as t h e s t r o n g s o l u t i o n s had., t h e y a p p a r e n t l y the c h e m i c a l - a c t i o n  i d e a , because w i t h d i l u t e  w e r e no r e a d i l y v i s i b l e affected.  s u r f a c e c h a n g e s on t h e  had  dropped  solutions,  there  mineral  T h e r e have f o l l o w e d , i n c o n s e q u e n c e , many t h e o r i e s * W» O s t w a l d h a s a d v a n c e d a t h e o r y o f t h e a c t i o n  soluble collectors,  an e s s e n t i a l p a r t  a r i n g of the c o l l e c t o r location tact. is  i s necessary f o r f l o t a t i o n ;  The p r o c e s s b y w h i c h t h i s  Its  held  such as potassium,  d r y i n g i m m e d i a t e l y on t h e t h e b u b b l e , and t h e  ethyl  which  adsorbs a t the s u r f a c e of b u b b l e s and s u l p h i d e  e x t e n d i n g i n t o the gas c a v i t y o f  eon-  t h e o r y i s b a s e d on t h e  c o n c e i v e d of a s a t h r e e l e g g e d m o l e c u l e  penetrates the bubble w a l l ,  of  r i n g i s a s s u m e d t o be  postulation that a soluble c o l l e c t o r xanthate i s  only  the  of t h e r i n g b e i n g t h e a i r - w a t e r - m i n e r a l l i n e  s t y l e d by h i m " a d l i n e a t i o n " .  first  of w h i c h i s t h a t  of  particles part three-  l e g g e d m o l e c u l e s s i m u l t a n e o u s l y jump i n t o p o s i t i o n a l o n g t h e l i n e of t h r e e - p h a s e c o n t a c t , w i t h one l e g e x t e n d i n g i n t o t h e one g a s , i n t o t h e l i q u i d and one a g a i n s t t h e s o l i d p h a s e . In the (1) Be B a v a y , U.S* P a t e n t 864597 (1904) ••(2) Ramage 9 6 7 6 7 1 ; W e n t w o r t h 970002;. & 9 8 0 0 3 5 ; M c G r e g o r 972.459; H o r w o o d 1Q2Q353; e t c *  35  compound p o t a s s i u m e t h y l x a n t h a t e C  H  2  0  5  -  C •  -  SK  Ostwald c o n c e i v e s the ethoxy group  as a i r - a v i d , t h e  double  bonded s u l p h u r a s m e t a l - a v i d , a n d t h e SK g r o u p as w a t e r - a v i d . This theory i s Wafk a n d C o x ,  i n o p p o s i t i o n to* t h a t a d o p t e d by  namely t h a t a monomolecular f i l m  a d s o r b e d by t h e s u r f a c e  is  of t h e m i n e r a l , a n d t h a t f o r  oleag-  i n o u s c o l l e c t o r s ^ a t h i n f i l m s p r e a d s on t h e s u r f a c e .  The  o n l y e v i d e n c e a d v a n c e d b y O s t w a l d i n o p p o s i t i o n t o wark a n d Cox i s  t h a t t h e amount of r e a g e n t s a d d e d seems t o be  icient  to form a u n i m o l e c u l a r f i l m .  Gaudin, Glover  insuffand  H a n s e n ^ ) d e m o n s t r a t e d t h a t t h e amount o f r e a g e n t was 1  sufficient.  Further,  the a d l i n e a t i o n theory i s not i n  accord  w i t h s e v e r a l e x p e r i m e n t a l f a c t s and a c c r e d i t e d p r i n c i p l e s surface physics.  (OS K  '  R a v i t z and P o r t e r a different b e h a v i o u r of float  angle.  ( ) 3  a t t a c k the chemical theory  Using the-investigations  i n the  a reagent,  they concluded that  s u p p o r t e d t h e o l d i d e a of i n h e r e n t  of c e r t a i n m i n e r a l s . that c o l l e c t o r s  This  their  statement  as a c l e a n s i n g  agent  (1) F l o t a t i o n F u n d a m e n t a l s P a r t 1 . U . o f U t a h 192.9 (2) G a u d i n G l o v e r & H a n s e n , J . P h y s , Chem. E a r . 1 9 3 3 . (3) R a v i t z a n d P o r t e r , A . I * - M . E . T e c h . P u b . 513  to  floatability  conclusion l e d to the  s u c h as x a n t h a t e ^ may a c t  from  flotation  " o x y g e n - f r e e " g a l e n a ^ i n w h i c h t h e y were a b l e  galena without  experiments  of  (1934)  P.815.  36  t o remove o x i d a t i o n s u r f a c e p r o d u c t s l e a v i n g t h e sulphide f r e e f o r the displacement  of w a t e r h y g a s .  A group of i n v e s t i g a t o r s , numbered Takakuwa  non-polar  and R a l s t o n  among whom may b e follow  Sullman  i n a s c r i b i n g f l o t a t i o n t o d i f f e r e n t i a l f l o c e u l a t i o n of particles that  t o be f l o a t e d « w i t h o u t  c o n t r o l s flocculatio>n*  deals w i t h the antecedent as. a  examining the  S i n c e the c h e m i c a l  the  mechanism theory  s t e p , t h e argument i s not  effective  theory. Another theory i s  suggesting that  the f l o t a t i o n  or non~sulphide, i s developementby particle,  a d v a n c e d b y O t i s D. W e l s c h of m i n e r a l p a r t i c l e s ,  the r e s u l t - o f  sulphide  buoyancy c r e a t e d by  c h e m i c a l means, a t t h e s u r f a c e o f  of a v o l a t i l e  substance.  the  He s u p p o r t s h i s t h e o r y  c i t i n g t h e w o r k s of s u c h w r i t e r s a s R» S* D e a n , A.Wo  by  Allen,  Taggert and o t h e r s . However, the t h e o r y as p r e s e n t e d does not  seem  convincing • ' The g e n e r a l l y a c c e p t e d " c h e m i c a l  1 1  theory  of  c o l l e c t i o n as s p o n s o r e d by T a g g a r t and G a u d i n , i n f e r s ; t h a t collector attaches i t s e l f reaction*  It  t o a m i n e r a l surfa.ee by  does n o t d e n y t h e f a c t  adsorbed as u n i m o l e c u l a r f i l m s - i t (1) (2:) (3) (4)  chemical  that c o l l e c t o r s employs the  are  properly  Takakuwaj P r o c . W o r l d E n g . C o n g r e s s , T o k i o * 1929, R a l s t o n ; T r a n s . A * I . M . E * ( 1 9 3 0 ) 87", P. 247* S u l m a n , T r a n s * I n s t * Min* 8c M e t . ( 1 9 1 9 ) 2 9 , 44* W e l s c h , E & M*J* O c t . 1 9 3 2 P. 52.9*  a  37  d e f i n e d and c l e a r l y understood d e f i n i t i o n  of a d s o r p t i o n  t h a t a d s o r p t i o n i s n o t h i n g more t h a n a c o n c e n t r a t i o n s o l u t e at an i n t e r f a c e may n o t be c h e m i c a l Collector a very s l i g h t l y  ( t h e mechanism of  of  c o n c e n t r a t i o n may o r  reaction). a g e n t s e m p l o y e d a r e c a p a b l e of  soluble  compound w i t h some  forming  intrinsic  compound o r s u r f a c e i o n o f t h e m i n e r a l t o be f l o a t e d .  They  have t h e c h a r a c t e r i s t i c  of b e i n g of a d u a l n a t u r e ; p a r t  t h e i r molecule i s polar  (and w a t e r - w e t t a b l e ) w h i l e  part i s non-polar  -  (and n o n - w a t e r - w e t t a b l e ) •  of  another  Thus, i n  the  c a s e o f s o d i u m x a n t h a t e , . t h e s o d i u m end i s p o l a r and t h e xanthate  (Alkyl)  precipitation,  end i s n o n - p o l a r .  Similarly,after  as t h e m e t a l l i c x a n t h a t e ,  the m e t a l l i c  end  o f t h e m o l e c u l e i s p o l a r w h i l e t h e x a n t h a t e end r e m a i n s n o n polar.  Their  o r i e n t a t i o n of  c a n be i l l u s t r a t e d a s f o l l o w s  x  x  x.  x  such reagents  (termed  heteropolar)  «  x  E  -  Alkyl inactive  X  -  Active  group.  Group.  I n c r e a s e d l e n g t h of t h e h y d r o c a r b o n c h a i n i n increased effectiveness  of  the c o l l e c t o r .  optimum h a s , h o w e v e r , b e e n e s t a b l i s h e d f o r c a r b o n atoms i n t h e n o n - p o l a r p a r t  Uo  results  definite  t h e number of  of the m o l e c u l e .  The  38  p r o p e r t y of n o n w e t t a b i l i t y molecule  is  i n the exposed p a r t  of  the  e s s e n t i a l to a s o l i d substance or i t s  t o be a m e n a b l e t o c o l l e c t i o n i n a f l o t a t i o n  coating,  froth*  Modern u s a g e h a s i n c l u d e d p r o m o t e r s i n t h e collectors. both  All  collectors  (therefore promoters)  contain  . p o l a r a n d n o n - p o l a r g r o u p s - a l l must be a d s o r b e d t o b  effective.  Those u s e d i n p r e s e n t  m a i n l y x a n t h a t e s and a e r o f l o a t s  day f l o t a t i o n p r a c t i c e  or t h e i r  derivatives.  of t h e s e r e a g e n t s r e l e a s e a c t i v e w a t e r - r e p e l l e n t dissociation  from a xant hate  R» 0  f r o m a n a e r o f l o a t R* 0 R; o  -  chains,  anions  on  and a c a t i o n M  X  +  P  and a c a t i o n H  s  s t r o n g l y adsorbed at a l l  owing t o t h e i r w a t e r r e p e l l a n t  hydrocarbon  and some come i n c o n t a c t w i t h t h e p a r t i c l e s  at every w a t e r - s o l i d i n t e r f a c e . s  Both  S  0"'  These a n i o n s a r e surfaces  are  y  atom (  term  S ) , or possibly  t h e whole, g r o u p  -  of  rendering  of them  only potassium and  sodium e t h y l , b u t y l and a m y l x a n t h a t e s a r e u s e d , w i t h p o t a s s i u m b e i n g i n p r e f e r e n c e t o t h e s o d i u m compounds.  than the higher a l k y l  l e s s p o w e r f u l b u t more  forms.  to  floatable*  Of t h e p o s s i b l e x a n t h a t e s ,  a r u l e t h e low x a n t h a t e i s  ore  *• a p p e a r s  to the surface  s u l p h i d e m i n e r a l s a n d some n a t i v e m e t a l s , and t h e r e f o r e  (R.O.)  The d o u b l e b o n d e d s u l p h y r  have t h e p r o p e r t y of a t t a c h i n g i t s e l f  water r e p e l l e n t  water  the As  selective  39  A e r o f l o a t s a r e made i n v a r i o u s g r a d e s upon t h e p e r c e n t a g e o f Pg  contained*  depending  They a r e n o t as  as higher xanthates i n a c t i o n , hut they are p r e f e r r e d f l o t a t i o n of p y r i t i c pyrite.  o r e s * due t o t h e i r  lesser  in  a c t i o n on t h e  B e c a u s e of t h e p r e s e n c e of f r e e c r e s y l i c a c i d ,  is a,frother  a e r o f l o a t has b o t h f r o t h i n g and  s  (or promoting)  strong  which  collecting  properties.  In a d d i t i o n t o the above mentioned p r o m o t e r s , c o n t a i n a g r o u p of t h e  which  type  ... •• .. ."^SM : t h e r e a r e o t h e r s w i t h s i n g l e or double sulphur T h i o c a r b a n i l i d e w i t h the s i n g l e  Hr — H — H C: H - H - N  sulphur group  groups. -  d,  C = S  6  5  or di-xanthogens w i t h double s u l p h u r group of the R.O.  —  type  C S I  R • 0 • •* are t y p i c a l .  C  ^ s * s  B o t h are l e s s employed t h a n a e r o f l o a t s  Xanthates, although they are q u i t e e f f e c t i v e particular  in their  or own  fields. A new c l a s s o f r e a g e n t h a s r e c e n t l y  I n t r o d u c e d ~ of w h i c h t h e a c t i v e w a t e r r e p e l l e n t contained i n the c a t i o n .  been part  is  The s u b s t i t u t e d q u a t e r n a r y ammonium  40  compound a s u s e d b y Wark ^  i n the f l o t a t i o n of  of the c a t i o n a c t i v e  He e m p l o y e d  class*  silica^is  tri-methyl-cetyl-  ammonium b r o m i d e ,  ( c o m m e r c i a l l y known a s L i s s o l a m i n e  which dissociates  into a cation  A),  CH,  '5  CH,  \  N  G% •••• . CH (QH ) 3  2  and an a n i o n  +  Br  1 5  Here, the a c t i v e i o n c a r r i e s a p o s i t i v e  charge i n  w i t h t h e n e g a t i v e c h a r g e on t h e a c t i v e i o n o f t h e a e r o f l o a t s and s i m i l a r  promoters*  contrast xanthates,  I t appears that  p r o p e r t y makes t h e compound a p r o m o t e r f o r  this  s i l i c a and  other  rock forming minerals* Many c a t i o n - a c t i v e properties  compounds, a r e known,  of w h i c h h a v e b e e n i n v e s t i g a t e d *  the  Most of  b r i n g up s u l p h i d e s a s w e l l a s n o n - s u l p h i d e s w i t h o u t a c t i o n ' — some w i l l f l o a t  (1) I* W* W a r k ,  them selective  t h e w h o l e o f an o r e *  "The P h y s i c a l C h e m i s t r y o f  J« of P h y s . Chem* V o l * 40 May 1 9 3 6 .  Flotation"  41  - FROTHING F r o t h i n g i s t h e most c o n s p i c u o u s o f t h e comprising the f l o t a t i o n process.  It  is  phenomena  of v i t a l  b e i n g the f a c t o r c o n t r o l l i n g o v e r f l o w ; hence  Importance  concentration.  The m e c h a n i s m o f t h e f o r m a t i o n of b u b b l e s b y f r o t h e r s  is  p u r e l y p h y s i c a l a n d i s b a s e d on one of t h e p r o p e r t i e s  of  liquids  - namely s u r f a c e J.  tension.  W i l l a r d Gibbs  ^)  h a s shown t h a t a  substance  l o w e r s the s u r f a c e t e n s i o n of a l i q u i d o n l y by a d s o r p t i o n . If  two l i q u i d s a r e t h e n m u t u a l l y s o l u b l e t h e r e c a n be no  adsorption.  In a l l probability,  soluble frothing oils than true  therefore,  are i n c o l l o i d a l  t h e so c a l l e d  suspensions  rather  solutions. The f r o t h i n g a g e n t s a r e f o u n d b y e x p e r i m e n t  c o n c e n t r a t e i n the bubble f i l m s , s u r f a c e t e n s i o n of w a t e r . the p r i n c i p l e  thereby lowering  This i s  to  the  i n complete accord w i t h  o f minimum e n e r g y , i n a s m u c h a s a n y  other  b e h a v i o u r of such substances would not produce a s t a t e • • „, minimum s u r f a c e  of  C2) energy.  A s t u d y of s u b s t a n c e s w h i c h l o w e r t h e t e n s i o n of w a t e r  shows t h a t  they a r e , p r a c t i c a l l y  e x c e p t i o n * organiE compounds, w h e r e a s the surface t e n s i o n are i n o r g a n i c (1)  Thermodynamische  (2)  Frothing,  surface without  substances which  raise  compounds.  Studien  G . R . M . d e l G u i d i c e j E &. M J? V o l 135  (1934)  42  Statistical molecules  analyses  ^\  of the s t r u c t u r e  of g o o d o r g a n i c f r o t h i n g a g e n t s h a s  a r e i n v a r i a b l y made up of two d i s t i n c t  shown t h a t  CO(Carbonyl),  COKH(Amide), H H ( a m i n o ) . t h a t the s o l u b i l i t y  COO(ester),  Further,  2  groupss  COOH(Carboxyl),  t h e a n a l y s i s has  The n e t e f f e c t  (hydrocarbon) group coupled w i t h a soluble  it  is  , carboxyl, carbonyl, etc.)  conceived that  substances i s  group.  the h y d r o x y l end of  length  then, i s that  f r o t h e r m o l e c u l e s must have an i n s o l u b l e w a t e r  (hyroxyl  shown  i n water decreases w i t h increase i n  of t h e h y d r o c a r b o n c h a i n .  they  groups - namely a  h y d r o c a r b o n g r o u p and some one o f t h e f o l l o w i n g OH ( h y d r o x y l ) ,  of  all  repellent  water-avid As a h y p o t h e s i s ,  the molecule of  a t t r a c t e d by and tends to d i s s o l v e ?  these  i n water,  the  (2) h y d r o c a r b o n end does n o t .  '(Without water repellence  h y d r o c a r b o n e n d , t h e s e m o l e c u l e s w o u l d be drawn i n t o interior result  o f the w a t e r . )  T h e s e two t e n d e n c i e s ,  of the  therefore  i n t h e a d s o r p t i o n of t h e r e a g e n t a t t h e w a t e r  surface  w i t h t h e h y d r o c a r b o n e n d of t h e m o l e c u l e away f r o m t h e  (1) A» F .  Taggart, T . C  T a y l o r , & C.R.  ( M i l l i n g M e t h o d s 28.5) 1 9 3 0 . (2) L a n g m u i r a n d H a r k n e s s .  '  the  Ince; Trans.  water.  A.I.M.E.  43  The f r o t h i n g a g e n t ,  due t o t h e w a t e r a v i d i t y  g r o u p , and the a i r i n the bubble  avidity  hydroxy  of the h y d r o c a r b o n group,  collects  film.  There i s  less  surface  i n the a i r - w a t e r - r e a g e n t interface  of the  energy or s t a t e  interface  than i n the  * hence bubble f o r m a t i o n .  of  tension*  water-reagent  I n o t h e r words,-  the  f o r m a t i o n of bubbles w i t h the f r o t h i n g agent i n t h e i r  films,  r e p r e s e n t s a r e s t o r a t i o n o f e q u i l i b r i u m i n a system by a decrease i n  tension.  The a t t a c h m e n t due t o t h e l e s s e r that  of t h e  e n e r g y of  solution-solid  interface there is presents  of m i n e r a l p a r t i c l e s  itself  the a i r - s o l i d i n t e r f a c e , interfaces  a certain tension.  a t the  At  of a r o u n d one g r a m p e r l i t r e R  content  m 4COC ^Q  0H  GO (COO  e q u a l t o about  the a i r - w a t e r  than  solution-solid bubble  compounds w i t h a of w a t e r ,  where R i s  six.  system. solub-  of the g e n e r a l i  a hydrocarbon w i t h a carbon  T h e s e compounds c o n c e n t r a t e  i n t e r f a c e and f u n c t i o n by c a u s i n g r a p i d  i n surface tension f o r  is  s u r f a c e , t h e t e n s i o n becomes l o w e r e d ,  Good f r o t h e r s a r e o r g a n i c  form  the  When a n a i r  t h e r e b y r e s t o r i n g the e q u i l i b r i u m of the  ility  to bubbles  relatively  s m a l l changes i n  (1)  A. J . Weinig & G.B. Carpenter?  (2)  G.R.M. d e l G u i d i c e ; F r o t h e r s ;  at  changes  concentration.  The T r e n d of F l o t a t i o n ; V o l * 32 ( 1 9 3 7 ) P . 2 1 . E & M.Jf  Apr.  (1934)  P.155.  4 4  Frothing tests of f r o t h i n g a g e n t frothing  effect  is  have f o u n d t h a t  already i n use,  if  little  may he e x p e c t e d b y f u r t h e r  a large  amount  increase  in  additions  of  reagento  8o  n  C  —-M?—  CD  c  70 GO  c  o ie 0  fi  es 0  \o  So  \<i>  4-0  ;.  30  \  •  20 IO  to  • i :  •- i 200  IOO  300  G o n e i n g . p . l . of w a t e r Surface t e n s i o n curve obtained by adding p r e p a r e d s o l u t i o n of o l e i c a c i d i n benzene to a given c l e a n s u r f a c e of water. I n most c a s e s f r a t h e r s a r e o i l s generally  d i s t i l l a t i o n products  or o i l y  of wood o r c o a l .  p r o d u c t s h a v e n o t b e e n f o u n d so e f f e c t i v e  r e a g e n t s on t h e m a r k e t a r e made t o f o r m  froths,  grading from " b r i t t l e  increasing  effect  bubbles.  upon the f r o t h ,  to  Fineness often  recoveries. Fine o i l s ,  and t h e i r  different  or q u i c k l y broken bubbles  the o t h e r extreme of voluminous' p e r s i s t e n t of g r i n d i n g has a s t a b i l i z i n g  Animal  f o r this, purpose.  Various  , l  substances,  p i n e t a r s , wood t a r s ,  coal tars,  creosotes  d e r i v a t i v e s have b e e n u s e d a s f r o t h i n g a g e n t s ,  some  45  of w h i c h a l s o have a c o l l e c t i n g action®  Modern p r a c t i c e  t u r n i n g towards steam d i s t i l l e d p i n e o i l , c r e s y l i c c o a l t a r d e r i v a t i v e s and h i g h e r a o c o h o i s . a r e v e r y s m a l l a n d must he i n d i v i d u a l l y  The  is  acid,  quantities  d e t e r m i n e d by  trial®  46  ~ ACTIVATION  -  A c t i v a t i o n agents are g e n e r a l l y i n o r g a n i c or cations floated,  anions  w h i c h r e a c t w i t h t h e s u r f a c e o f m i n e r a l s t o be  t h e r e b y m o d i f y i n g them, so t h a t  these  surfaces  may s u b s e q u e n t l y r e a c t w i t h c o l l e c t o r s  to form thereon,  adherent water r e p e l l e n t  g e n e r a l l y conceded  films.  It is  t h e mechanism of a c t i v a t i o n by h e a v y - m e t a l s a l t s ; m e t a t h e s i s between the a c t i v a t o r  that  involves  and a s u r f a c e i n g r e d i e n t  of  the m i n e r a l , r e s u l t i n g  i n t h e d e p o s i t i o n o f a compound of  the  m e t a l of the  at  a  activator  the m i n e r a l s u r f a c e .  t a b l e of water s o l u b i l i t i e s ,  an a c t i v a t o r  By use o f  c a n be c h o s e n ,  whose c a t i o n f o r m s w i t h t h e a n i o n o f t h e m i n e r a l t o be flaatSdy  a less soluble  compound t h a n t h a t f o r m e d b e t w e e n  same i o n a n d t h e c a t i o n o f  the mineral*.  A limitation is  t h e r e a c t i o n p r o d u c t between a c t i v a t o r and mineralumust be b o t h h i g h l y i n s o l u b l e a n d h i g h l y r e s i s t a n t  to  this that  not  chemical  reaction. The t y p e e x a m p l e of is  sulphide mineral  activator  copper s u l p h a t e i n c o n n e c t i o n w i t h s p h a l e r i t e .  s u l p h a t e changes t h e s u r f a c e which i s  of s p h a l e r i t e  r e a d i l y f l o a t a b l e with a xanthate Research i n the f i e l d  to  Copper  covellite  collector.  of n o n - s u l p h i d e  mineral  a c t i v a t i o n as c a r r i e d out by G a u d i n , H o L b i c h , K r a e b e r B e p p e l ; has: d e v e l o p e d a new c l a s s o f r e a g e n t s , active part i s  c o n t a i n e d i n t h e cation®  and  of which  Investigations  the  47  h a v e shown c a r b o n a t e and s i l i c a t e  m i n e r a l s may h a v e  their  s u r f a c e s so a l t e r e d b y h e a v y m e t a l s a l t s / t h a t t h e y c a n be f l o a t e d by  c o l l e c t o r s w h i c h f o r m e r l y had no e f f e c t  a b s e n c e of an  of t h e c a t i o n - a c t i v e  class.  c a l c i t e becomes c o a t e d w i t h a f i l m o f that i s  the  activator.  Cropper s u l p h a t e u s e d i n t h e f l o t a t i o n is typical  in  able to adsorb the c o l l e c t o r .  of  calcite  Here, presumably some l e s s  soluble  Gaudin and  the salt  others^^  a s s i g n t h i s a c t i v a t i o n by copper  (and a l s o by l e a d )  salts,  of c a l c i t e f l o a t e d w i t h s o a p , t o  exchange o f Ca w i t h Cu a n d  Pb. i o n s at the c a l c i t e p a r t i c l e  surfaces.  They a s s e r t  that  copper and l e a d soaps a r e l e s s s o l u b l e t h a n c a l c i u m  soaps.  ( I n g e n e r a l , t h e c o r r e s p o n d i n g a n i o n has no e f f e c t s  thus  manganese a n d chromium c h l o r i d e s a c t i v a t e  quartz but  p e r m a n g a n a t e a n d p o t a s s i u m d i s h r o r n a t e do n o t ) • Hansen ^ )  f o u n d t h a t n i t r a t e s and s u l p h a t e s  metals activate  calcite  decylic  Ho m e t a l l i c  acids.  c a l c i t e using oleic low s o l u b i l i t y insufficient  of o l e a t e s  oleic  the mineral  s a l t s w e r e found, t o  sevei-al  and u n -  activate  the  s h o u l d be n o t e d t h a t  an  almost i n v a r i a b l y leads to depression  of U t a h , Pub. 1  the  causing  a c i d to remain i n s o l u t i o n f o r It  heavy  due p r o b a b l y t o  of t h e h e a v y m e t a l s ,  p r o d u c t i o n o f a good f r o t h . e x c e s s of a c t i v a t o r  of  Gaudin and  f o r f l o t a t i o n by h e p t y l i c  a c i d as a c o l l e c t o r ,  potassium  >  (1)  Gaudin; Univ.  (1928)  (2)  A . M. G a u d i n , H . G l o v e r , M. S . H a n s e n , & C . W.  Orr;  F l o t a t i o n Fundamentals, P a r t 1. U n i v . o f Utah & U.S. B u r e a u o f M i n e s . T e c h . P a p e r # 1 . (1928)  of  48  W i t h t h e t e r v a l e n t M e t a l s more e f f e c t i v e  Flotation  than the  of c a l c i t e w i t h h e p t y l i c  bivalent  a c i d 12#/Ton  a  49  - DEPRESSION D e p r e s s o r s a r e u s u a l l y i n o r g a s n i c a n i o n s which, prevent  t h e " a d s o r p t i o n " o f a c o l l e c t o r b y some m i n e r a l s  not by o t h e r s .  I t has not y e t been e s t a b l i s h e d whether  d e p r e s s o r i s ads-orbed i t s e l f alter  the chemical nature  by the m i n e r a l ,  G a u d i n and h i s  e x c e s s of a n y h e a v y m e t a l s a l t  a n y m i n e r a l a n d t h a t many i n o r g a n i c high concentration, w i l l are  if  in  d e p r e s s most m i n e r a l s .  s e l d o m u s e d as d e p r e s s a n t s i n p r a c t i c e b u t  c o m b i n a t i o n of b o t h a n i o n and c a t i o n i s  they  collector  collaborators  depresses  anions,  the  or whether  of t h e s o l u t i o n so t h a t t h e  c a n n o t be a d s o r b e d f r o m i t . shown t h a t  but  have  almost sufficiently  Metallic  ions  occasionally  employed*  Wark a n d Cox (.•*-) hsiase done e x t e n s i v e r e s e a r c h work on t h e a c t i o n of c y a n i d e a s a d e p r e s s o r f o r sulphide minerals*  Plant  t h a t t h e most i m p o r t a n t particularly  p r a c t i c e and r e s e a r c h have  sulphide depressors are  l i m e and sodium c a r b o n a t e *  collector sufficient  alkalie w i l l  consequently s e l e c t i v e  copper and  iron  agreed  alkalies,  W i t h x a n t h a t e as  d e p r e s s any m i n e r a l ;  s e p a r a t i o n depends to a l a r g e  extent  on pH c o n t r o l * Although l i t t l e non-sulphides, i n use*  (1)  known a b o u t t h e d e p r e s s i o n  t h e r e a r e a few v a l u a b l e p r a c t i c a l  Sodium s i l i c a t e  depress s i l i c a .  is  Yferk a n d Cox,. A . I . M . E .  it  or  f o r m s a g e l on t h e  (1934) P . 1 8 9 ,  245.  of  reagents  c a n be r e g u l a t e d t o a c t i v a t e  W i t h an a c i d s a l t  a  a  50  the s u r f a c e  of q u a r t s *  Most  t h a t the sodium s i l i c a t e  investigators  produces a g e l a t i n o u s  of m e t a l o x i d e and s i l i c a , not -  quartz  supposing that the g e l i s attached to  a d s o r p t i o n t o be h y d r o l y t i c  s i l i c a . , adsorb® t h e b a s i s c o n s t i t u e n t  and l e a v e s t h e a c i d , i n s o l u t i o n * "activated  1 1  with oleic  Silica  1  is  surface  t h e n s a i d t o be  of i n s o l u b l e  depressor*.  Sodium s i l i c a t e  s h o u l d b e u s e d i n e x c e s s so  J u s t a s some s a l t s  c o l l o i d a l hydroxides,  In t h e i r have f o u n d t h a t  acid* insoluble  c e r t a i n other s a l t s which form  result  i n d e p r e s s i o n of are  investigations.  certain partially  hydrated phosphates  that  c o u n t e r a c t e d by  c a p a b l e of f o r m i n g  Chromium a n d a l l u m i n u m n i t r a t e s  flotation  is  o f soidium s i l i c a t e w i t h o l e i c  soaps a c t i v a t e c a l c i t e ,  of  a hydrous g e l w h i c h a c t s as a  a l l m e t a l i o n s . w i l l be t a k e n u p - t h i s interaction  forming  base-metal  The a d s o r b e d b a s e - m e t a l i o n s a r e a l s o c a p a b l e  f o r m i n g w i t h sodium s i l i c a t e  -  preferentially  because t h e a d s o r b e d i o n s a r e c a p a b l e of acid a floatable  the  Bart e l  1  and- o t h e r s h a v e shown t h i s  soap*.  combination  " b e c a u s e of r e l a t e d c h e m i c a l p r o p e r t i e s ' *  that i s ,  found  s i m p l y s i l i c a g e l a n d no  :  obvious reason f o r  (1) have  calcite®  typical* Rose a n d M a c d o n a l d ^  or i n c o m p l e t e l y  such as sodium n e t a p h o s p h a t e ,  of mon-sulphlde minerals,.  molecularly inhibit  Under s u i t a b l e  sodium metaphosphate b r o u g h t i n t o c o n t a c t w i t h  '  the  conditions,  limestone  (1) J * M* P a t e k ; Soap F l o t a t i o n ; ' E . & M . J . Mar* 1934 P* 125* (2) Rose & M a c d o n a l d ; U . S .  Patent No.  2,040,187.  51  (calcite)  coated with calcium oleate, w i l l  c o a t i n g of c a l c i u m o l e a t e as t o I n h i b i t limestone.  ;  If  the  the f l o t a t i o n  of  the sodium metaphosphate i s added f i r s t ,  f o r m a t i o n of the f l o a t a t i v e The s u r f a c e  so m o d i t y  of b a r i t e  minor e x t e n t a l l o w i n g  calcium oleate f i l m i s  is also  similarly  the  prevented.  e f f e c t e d , but to  the s e l e c t i v e f l o t a t i o n of  barite.  a  52  - PREPARATION OE.THE ORE The r e s e a r c h , o r e composed of A n o r e of t h i s it  as o r i g i n a l l y p l a n n e d , c a l l e d f o r  an  s e l e c t e d gangue m i n e r a l s f r o m a l o c a l minell. t y p e was o b t a i n e d , b u t a f t e r  became a p p a r e n t  that  several  tests  i t s . complex c o m p o s i t i o n would  d u c e f a c t o r s b e y o n d t h e s c o p e of t h e p r o p o s e d w o r k .  introConse-  q u e n t l y i t was d e c i d e d t h a t f u r t h e r w o r k w o u l d be more a d v a n t a g e o u s l y c a r r i e d out on a s y n t h e t i c The s y n t h e t i c barite,  ore m i n e r a l s  clear white marble,  grade..  c o n s i s t e d of  clean s i l i c a  composed of g a l e n a , c h a l c o p y r i t e  ore® crystalline  s a n d , and  and p y r i t e ;  all  of a v e r y  T h e s e m i n e r a l s were m i x e d i n t h e f o l l o w i n g  proportions  sulphides pure  approximate  Barite  -  20* 0  Limestone  -  25,0  Quartz  »  40cO  Sulphides  -  15*0 100%  A s e c o n d m i x t u r e was made u p w i t h o u t  the  sulphides,  when i t was d i s c o v e r e d t h a t t h e r e a g e n t s u s e d a l m o s t  invar-  i a b l y f l o a t e d t h e s u l p h i d e s b e f o r e t h e gangue m i n e r a l s . approximate proportions Barite Limestone Quartz  o f t h i s m i x was -  30*0 30»Q 40*0 100 %  -  The  53  E a c h o f t h e m i n e r a l s was c r u s h e d i n s t a g e s on a l a b o r a t o r y t y p e jaw c r u s h e r and r o l l s screened a f t e r was a l l  s  being  each r e d u c t i o n s t a g e u n t i l  - 14 m e s h .  mechanically  the f i n a l  The s e p a r a t e m i n e r a l s w e r e t h e n w e i g h e d  out a n d t h o r o u g h l y m i x e d i n t h e above p r o p o r t i o n s * s i m i l a r mixes were  product  prepared a s the s u p p l y i n each  Two case  became e x h a u s t e d * G r i n d i n g t e s t s were made t o d e t e r m i n e t h e t i m e suited for  a satisfactory grind*  From the r e s u l t s  a r e t a b u l a t e d below,, t h e 30 m i n u t e g r i n d was most  of  best which  considered  satisfactory* All  s c r e e n t e s t s w e r e c a r r i e d o u t on a m e c h a n i c a l  s c r e e n i n g m a c h i n e e a c h sample b e i n g s c r e e n e d f o r  MESH 10  P.M. PEED  GRIBDIHG TIMS 5 Min* 15 M i n .  .  25 m i n u t e s ,  30 M i n .  60 K i n .  0  0  0  0  0  10/14  Q  0  0  0  0  14/20  2*9  0  0  0  0  20/28  10*9  Q*8  0  0  0  28/35  12*6  2*1  0*3  Q  Q  35/48  18.9  10*0  X» 5  0  0  48/65  24.7  25.9  9.3  0  0  65/100  8.2  16 . 6  19*2  1*4  0  100/150  3.5  8.8  16*5  7.7  0*9  150/200  2.4  5.5  11.0  15*9  4.8  30*3 .  42*2  75*0  94.3  -200  15*7  54  Head S a m p l e s To o b t a i n a r e p r e s e n t a t i v e  sample f o r a head a s s a y ,  t h e m i x t u r e was c o n e d q u a r t e r e d . a n d s p l i t  on a J o n e s  u n t i l 60Q grams of t h e o r e was o b t a i n e d .  T h i s sample was  ]  f  then p u l v e r i z e d to enable i t  riffle  t o p a s s t h r o u g h a 100 mesh  s c r e e n , t h o r o u g h l y r o l l e d and sacked p r e p a r a t o r y t o a s s a y i n g by t h e method d e s c r i b e d i n t h e s e c t i o n Standard Test All  "Assay Methods".  Conditions?  tests unless s p e c i f i c a l l y  stated  were t r e a t e d under the f o l l o w i n g s t a n d a r d  otherwide,  coonditions*  ( a ) G r i n d i n g - c a r r i e d o u t i n (7-§x6" i n s i d e ) p o r c e l a i n pebble m i l l . C h a r g e - Ore ~ 500 grams* W a t e r * 500 g r a m s . I r o n f r e e p e b b l e s " 2950 g r a m s . S p e e d o f p e b b l e m i l l .«* 60 r p m . Time of g r i n d minutes. (b) C e l l P r o c e d u r e 5  0  The o r e f r o m t h e m i l l was w a s h e d i n t o Pagergren u n i t f l o t a t i o n  cell  a  (as i n photograph) and w a t e r  a d d e d u n t i l t h e p u l p d e n s i t y was. 4 s i .  Required  were added and the p u l p " c o n d i t i o n e d " f o r  reagents  3 minutes.  At  t h e e n d o f t h i s p e r i o d , t h e a i r was t u r n e d on and. r e g u l a t e d so t h a t  a s a t i s f a c t o r y f r o t h was p r o d u c e d f o r  the  ensuing  10 m i n u t e " s k i m m i n g * p e r i o d . On c o m p l e t i o n o f e a c h t e s t , of the c o n c e n t r a t e necessary) was x  (and t h e t a i l i n g where i t  t a k e n f o r a pH d e t e r m i n a t i o n ,  a. L e e d s ' a n d Isforthrup  Galvanometer.  a 50 c c was  sample  thought  o b t a i n e d on  55  Bote -  I n s o l u b l e r e a g e n t s were u s u a l l y added t o the  m i l l charge*  A l l c o n c e n t r a t e s and t a i l i n g s  stainless'steel  pebble  were d r i e d  In  pans,, w e i g h e d , s c r e e n e d t h r o u g h a 65 mesh  s c r e e n , t h o r o u g h l y r o l l e d , , s a c k e d and a s s a y e d f o r L i m e s t o n e , Q u a r t z a n d i n t h e c a s e of 5  the f i r s t  Barite  mix,  for  SulphideSo  C a l c u l a t i o n of  Recovery?  • Wt. of ;  Concentrate  Wt. of C o n c e n t r a t e  _  Wt. of  x 100 Tailing  C a l c u l a t i o n of Three M i n e r a l Recovery Sum o f t h e p e r e e n t r e c o v e r i e s and t h e r e m a i n i n g t a i l i n g s .  Temperature Test  Index? of  the d e s i r e d  T h i s number give-s a  i n d i c a t i o n of t h e g e n e r a l r e s u l t  % Recovery*  s  concentrate  convenient  of a t e s t .  Procedure?  S e v e r a l t e s t s were c a r r i e d out w i t h the o b j e c t d e t e r m i n i n g the. e f f e c t flotation  o f an i n c r e a s e d t e m p e r a t u r e on t h e  o f B a r i t e L i m e s t o n e and Q u a r t z .  f o l l o w e d was a s f o l l o w s . to the c e l l water.  of  The  procedure  A s t a n d a r d m i l l c h a r g e was a d d e d  and t h e p u l p d e n s i t y b r o u g h t  The p u l p was a d i t a t e d w h i l e a  down t o 4 s i  with  thermostatically  c o n t r o l l e d heater r e g u l a t e d the temperature  of t h a t  desired©  On o b t a i n i n g a c o n s t a n t t e m p e r a t u r e t h e r e a g e n t s w e r e a d d e d and s t a n d a r d p r o c e d u r e f o l l o w e d f r o m t h a t  point.  * mmm HILLS ASS TIMER *  Co  * FAffiSEGBEB" FLOTATION UNIT * A I D TIME CLOCK *  -  XHBRMOSTASIC  M  M  60  TEST 1» To t e s t t h e bromide  effect  of T r i m e t h y l c e t y l  ( L i s s o l a m i n e A ) on t h e f l o t a t i o n o f Charge  ammonium  non-sulphides*  to Pebble  Mill  Ore  -  Water  -  Grind  -  60 M i n s *  Added  -  Lissolamine A -  Cond*  *•  3 Mins*  Skim*  -  10 M i n s ,  -  8*30  1Q00 G-rs* 500  Grs.  CELL Concentrate  pH  I  •  Very high sulphide Concentrate  content  Q»16#/Ton  - fair  froth*  2  Added  >  Cond*  -  1 Min*  Skim*  -  5 Min*  PH  -  8*50  Copious but  Lissolamine A -  0*Q8#/Ton  slightly mineralized froth*  C o n c e n t r a t e 3, Added  -  Cond*  Lissolamine A -  0*08#/Ton  1 Min*  Skim  -  6 Min*  pH.  -  8*15  Concentrate & f r o t h s i m i l a r  t o N o . 2*  TEST  ASSAY BaSo^ C a C oo, S i 0  WT.  Feed 100.0 21.0 TIGI  8.6  2.5  G2  4 i  5.9  C 3  4 . 5 X.3 * S  T  82.6  2 4 .  Q  2  24.9 40.6 9*4  aa»a  RECOVERY S 4.2  2 3 . ? 2.5.5 2 7 .  6.  5 42.8  Fe  5 o 3?-  6*3*. 2 . 7  BaSo4 G a C o  3  % Si0  2  S  Fe  2 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1003  25*4 1 4 . 5  1 5 . 6 3 6 . 5 X3 e» 3  Conclusions See T e s t  %  0.7  1.0  3» 3  4.5  2 8 . 5 57.5  X*> 2  2.7  3.8  5 . 0 1Q.3  2.9  4.3  2. 9  5.6  94.9  SB. 7  88 . 8  5.7  6 0 . 9 26.5  62  TEST 2* To t e s t t h e e f f e c t of  o f R e t a r d e r L A . on t h e  flotation  non-sulphides. CHARGE ~  to Pebble  Mill  Ore  -  10QO G r s .  Water  -  500 Grs*  Grind  -  6Q M i n s .  CELL Concentrate 1 Added  -  R e t a r d e r L A . ~ 0.41#/Ton #5 P i n e O i l - Q.07#/Ton  Cond*  -  3 Mins.  Skim  -  10 M i n s .  pH  -  8.35  1  'lx  Gangue d i d n o t s t a r t  to f l o a t  of s u l p h i d e s had been t a k e n Concentrate  Peed 1  2  T  100 11.6 1.0 87.4  Added  ~  Retarder LA. -  Cond.  -  3 mins.  Skim  ~>  10 M i n s  pH  -  8.20  %  ASSAY BaS04 CaC03 S i 0  21. Q 12.2 21-* v) 21.3  Conclusions  24.9 23 © 3 36.4 24.7 -  off.  2  Weak, p o o r l y m i n e r a l i z e d TEST /° H o . :wt*  u n t i l most  2  froth.  RECOVERY S  40*6 4*26.9 12.3 17.3 4.0 44.9 3 ©• 2  S e e T e s t 6*  Fe  0.16#/Ton  %  BaSo^ CaGo.3 Si. Og  S  Fe  2.0 100 *Q 100*0 100*0 100*0 1005 7.4 6*9 11*3 l . e 33-«3 38*5 1.3- 1*1 1.5 0*4 0.9 0.6 1*4 92.0 87.2. 97*8 65.8 60*9  TEST 5 . To t e s t of n o n - s u l p h i d e s , CHARGE  the e f f e c t  of R e t a r d e r L A . on t h e  u s i n g , an i r o n r o d m i l l f o r - t o Rod  flotation  grinding.  Mill  Ore Water Grind -  1000 1000 10 M i n a .  CELL Concentrate  1  Added -  R e t a r d e r LA - Q.41#/Ton 3% P i n e O i l - Q.Q.7#/Ton 3 mine. IQ m i n s . 8.27  Cond. Skim pH -  P o o r f r o t h - s u l p h i d e s up a t Concentrate  first.  2  Added Cond. Skim. -  R e t a r d e r L A . - Q.16#/Ton 1 Min. 5 min.  Fair froth, l i t t l e  mineralization.'  RESULTSs a/ TEST 7° Kb. Wt.  F e e d 100  .• ASSAY % ^.. : B a S 0 4 CaCQg S i 0  Fe  24.9  40.6  16. a  12.8 1 1 * 7 7 . .6.  14. a  9. a  2  5« 3  16 .-a  79.9  S  21.0  1  T  2  RECOVERY  22. a  25.5  Conelusion: See T e s t 6  4.2. 2.0  28.7  3 o 2. 2*5  46.0  3* X. 1.0  %  BaSo^ CaCog S 1 0  2  S  Fe  1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1003  4.1; 88.8  10.2  4.8  5.8  3.8  84.0.  91.4  3 9 . 7 54.0 3.8  6.3  5 6 . 5 39.7  64  TEST .4. To d e p r e s s t h e s u l p h i d e s h y t h e use o f Zinc,  S u l p h a t e and P o t a s s i u m .  Cyanide,  Lichroniate & f l o a t  t h e gangue  only. CHARGE -  to Pebble  Mill  Ore — 1000 G r s . Water 500 G r s . KOT 2#/Ton Z i n c S u l p h a t e - 6#/Ton Grind 60 M i n s . CELL. Concentrate  1  Added Cond.. Skim. pH  Pot. Bichromate Retarder LA. 3- M i n s . » : 10 M i n s . - • 8*3,0  Chiefly  sulphide  Concentrate  -  l#/Ton 0.98#/Ton  concentrate*  2  Added  -  Cond* Skim. pH .  ~ ~  Retarder LA. #5 P i n e O i l 1 Min. 10 M i n * 8.23  Good f r o t h - s u l p h i d e up  - 0*41#/Toii «• 0 . 0 7 # / T o n  first.  Concentrate 5 Added  -  Cond. Skim. fH  -  Retarder LA. #5 P i n e O i l . 1 Min. 10 M i n . 8*1  Good f r o t h — l i t t l e  -  Q*41#/Ton 0*07#/Ton  mineralization.  RESULTS TES1 % No, W t . F e e d 100  ASSAY BaSOA CaCog S l o g  %  RECOVERY S  BaSQA CaCog S 1 0  2I;-Q  24.9  40.6  4 . 2 2..0  1.1  15.4  34.9  15.6  6.9  3.7  0.8  2  8. 3  16 a 6  43.9  13. 3  6*8 3 . 0  6*6  3  6»2  22«9  30.7  22.6  5 . 4 1.7  45.Q  3 . 6 1>6  84.4  21.Q  Conclusions See T e s t  6.  2  S  ?e  100.0 100.0 100.0 100.0 100.0  1  T  %  1.5  0.7  1*8  18*4  1 4 . 8 ••  2.7  14.0  12*0  6.8  8". 7  3© 5  8.4  5.0  85.8  76.0  7 5 . s|  64.6  93.5  66  TEST) 5.To I n h i b i t  the f l o t a t i o n of Galena & C h a l c o p y r i t e  by P o t a s s i u m Dichrornate & P o t a s s i u m Cyanide respectively;;  u s i n g O l e i c A c i d as t h e  CHARGE - To P e b b l e  - Zinc  Sulphate  collector*  Mill  Grind Ore Water KC1T ZnS0  ~ -  4  60 M i n * 1000 Gms;. 500 Gms. 2*Q#/T©n. 6*0#/Ton*  CELT, Concentrate  1  Added  -  Cond. Skim* pH  -  Potassium Dichromate ~ 2*Q#/Ton* O l e i c A c i d - Qv22#/Ton* 3 Min* 10 M i n * 8*25  L e a s t amount o f s u l p h i d e s i n f o r any t e s t up t o d a t e . Concentrate  concentrate  2  Added  -  Potassium Dichromate - l*Q#/Ton. O l e i c A c i d - 0 . 1 1 #/Ton*  RESULTS TEST No.  % wt.  ASSAY 5 BaSo  4  Peed 100.0 21.0  c  24.9  8* 3 19.8;  :  c T  GaGOg S i O p  .  BECOVERY S  Pe  .BaS>4 . CaCo^ SiOp  40*6 4*2 2* 0  100.0  1 1 * 1 5*5 3*8  7*9  10*8  29.0  15.4. 5*3 2*2  5.1  7>7  85*1 21.0  23*9  4 4 . 5 4*0 1*8  87*0  81*5  See T e s t  6.  ' S  Pe  100*0 100*0 10Q.0 1 0 0 . 0  6*6 16*0  Conclusion;  %  2*0  10**5  15*7  S* 4  7* 3  95 © 5 81*0  77*0  2.©- 5  TEST 6 . To i n h i b i t  the f l o t a t i o n  of  Galena & C h a l c o p y r i t e  p o t a s s i u m " D i c h r o m a t e and P o t a s s i u m C y a n i d e - Z i n c respectively; bromide)  by  Sulphate  u s i n g L l s s o l a m i n e A ( t r i - m e t h y l c e t y l ammemium  as the  CHARGE  ~  collector, to Pebble  Mill  Ore Water-  1000 G r s . 500 G r s . 2.0#/Ton. 6.0#/Ton. 60 M i n s .  KCF  Grind CELL Concentrate  1  Added  -  L i s s o l a m i n e A \%% C o l . ) 0.60#/Ton. P o t . B i c h r o m a t e - 2»Q#/T.on. #5 P i n e O i l - 0.132#/Ton.  F a i r l y l a r g e amount of s u l p h i d e s a t f i r s t l a r g e amount of f r o t h - t h e n d i e d down so more #5 P i n e O i l and L i s s o l a m i n e A a d d e d . Concentrate  2 Lissol. A 0.48#/Ton P o t . Dichrornate - l»0#/Ton 3 Min. 1.0 M i n .  Added Cond. Skim.  Good w e l l m i n e r a l i s e d  RESULTS TEST 7° Ho. Wt.  P e e d 100^0 21*0 CI  16 « fi 2 3 . 1  02  : 47.9 26. 3  T  froths  ASSAY % BaSo^  35e3  8.1  CaCOg S i O g 24.9  -  RECOVERY % S  40.6 4.2  Fe  BaSo  4  CaGOg  S i 0  2  S  Pe  2 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 lOO.O 1 0 0 . 0 2.6  26.4  15.4  X<*« !5 1 5 . 0 S- & 2 1 . 4  60.0  *2-5 & ^ 5 9 ; 6  55 © (C  38.8  IS. 6  58*9  18.1  -,. 2X ^ 5 1 7 * 8 7.2-  3 6 . 8 £4 3  2.7  7.5  32.9  26.7  5  48.4  68  CONCLUSIONS (I)  for tests 1 ~ 6 inclusive.  Regardless  sulphides f l o a t (2J  -  of t h e c o l l e c t o r  used,  more r e a d i l y t h a n t h e  the  metallic  non-sulphides.  The u s e o f P o t a s s i u m B i c h r o m a t e as, a d e p r e s s o r  g a l e n a , a n d a c o m b i n a t i o n of P o t a s s i u m C y a n i d e w i t h S u l p h a t e as t h e c h a l c o p y r i t e  for  Zinc  d e p r e s s a n t was m o d e r a t l y  successful.  They d i d n o t , h o w e v e r , g i v e a c o m p l e t e i n h i b i t i o n when a amount of t h e s e d e p r e s s a n t s : was u s e d .  large  The s u l p h j r r d r o p p e d f r o m  2 5 . 4 $ t o la.2.% and t h e i r o n f r o m 1 4 . 5 ^ t o 2»6% when compared with test (3}  1. T r i - m e t h y l - c e t y l - a m m o n i u m b r o m i d e and o l e i c a c i d h a v e  different  collecting actions.  t a b l e w h i c h compares t e s t COLLECTOR , BULK. Oleic  (1)  6 with test  shown i n t h e f o l l o w i n g , 5.  • Gr.RABE B a r i t e Limestone Quartz  Less: Lower  RECOMMENDATIONS  This i s  Higher  Lower  Iron  Sulphur  Higher.  Lower  -  The a d d i t i o n of a g r e a t e r amount of P o t a s s i u m D i c h -  romate and Z i n c S u l p h a t e w i t h P o t a s s i u m Cyanide might h e l p decrease the q u a n t i t y (2) for  of t h e  advantageous  sulphides.  Hydrogen S u l p h i d e used as the gaseous phase i s  depress s u l p h i d e s . depressant (4)  concentrate.  A l a r g e amount of Sodium S u l p h i d e m i g h t be  the i n h i b i t i o n (3)  of s u l p h i d e s i n the f i r s t  I t m i g h t t h e r e f o r e be t r i e d a s a  i n the f l o t a t i o n  A longer  and a s l i g h t  to  of n o n - s u l p h i d e s  in  sulphide  general.  c o n d i t i o n i n g time w i t h a shorter  v a r i a t i o n o f r e a g e n t s , m i g h t be  known t o  skimming p e r i o d  advantageous.  TEST 7 . To f l o a t  q u a r t z u s i n g L e a d N i t r a t e a s an a c t i v a t o r  T r l - m e t h y l - c e t y l - a m m o n i u m bromide CHARGE  - .to  Pebble  ( L i s s o l a m i n e A) as a  and  collector.  Mill  Grind Ore Water Lead N i t r a t e  30 M i n . 500 G r s . 500 G r s . - 0.5#/Ton.  CELL Added Cond. Skim. pH  . • ~  Lissolamine A 3 min. 10 M i n . 8.20  o.48#/Ton  Sulphides f l o a t e d f i r s t , quickly followed b y a d e f i n i t e non s u l p h i d e c o n c e n t r a t e * E r a t h voluminous w e l l m i n e r a l i z e d . RESULTS TEST . No. Wt.  ASSAY BaSo  RECOVERY  %  CaCog s i o  4  2  S  BaSo^ CaCOg  % Si0  E e e d 100.0 21.0 24.9  40.6 4.2  1 0 0 . 0 100 «G 10G.Q> 1 0 0 . 0  C  61.7  4*9, 1 1 . 7  6 3 . 7 3» 5  15.2  33.4  T  38.2 4 4 . 1 37.6  6.0 S & 3  84.8  66.6  CONCLUSION  -  On c o m p a r i s o n w i t h t e s t  selective flotation is  % w.t»  11  67.9  7  61.7  94.5^ 5 1 . 4 5» Q  is  245.8  48.6^  s e e n t h a t a more  p o s s i b l e w i t h t h e use of Lead N i t r a t e .  The c o m p a r a t i v e f i g u r e s Test No.  11, i t  INDEX  s  2  for  $BaSG4  4.9  .  the c o n c e n t r a t e s a r e  -  ^CaCo-  ^Si0  17.9  57.9  94.8  11.7  63.7  94.5  2  % Rec.  Si0  2  70  TEST. 8 . To f l o a t  Q u a r t z u s i n g Copper S u l p h a t e  and t r i m e t h y l - c e t y l - a m m o n i u m bromide CHARGE  -  to Pebble  as c o l l e c t o r  -  30 M i n . 500 G r s . 500 G r s . 0*5#/Ton* 8.50  CUSQK 4  Added Cond. Skim* PH -  CELL-  activator  Mill  Grind Ore Water PH  as  Lissolamine A 3 min. 10 m i n . 8.31  -  0.48"/Ton  F r o t h same a s i n p r e v i o u s t e s t b u t s t r o n g e r a n d more l a s t i n g i n t h e f i n a l a d d i t i o n of Lissolamine A. RESULTS  Test . F o . Wt*  ASSAY % BaSo^ ' C a C o  F e e d l O G l O 21* Q 2 4 . 9 C T  60.7  5«;Q  :  a. 4  \ 39.3 44.3 41.5  COFCLUSIOF -  3  RECOVERY %  Si0  S  2  EaSo  40.6  4.2  65.1  3.7  5.5  '  Copper s u l p h a t e i s  4  CaCo  3  Si0  s  2  INDEX  1 0 0 . 0 1 0 0 . 0 , 1 0 0 . 0 100 *G :  14.7  23.7  85*3  76.3  .94*8: 5  9>  50*9 256*4 49*1  2  ' a better  t h a n L e a d F i t r a t e when L i s s o l a m i n e A i s  activator for used as a  Quartz  collector*  TEST i 9 . To f l o a t q u a r t z u s i n g a r e l a t i v e l y Nitrate  a s 'an a c t i v a t o r CHARGE  l a r g e amount o f  Lead  and L i s s o l a m i n e A as a c o l l e c t o r * .  to Pebble  Mill  Grind Ore Water Lead N i t r a t e  30 m i n . 500 gms. 500 gms. 1.0#/Ton<  Added Cond. Skim. pH  Lissolamine A 3 min® 1,0 min» 8,30  CELL o.48#/Ton  P r o t h same a s i n c o r r e c p o n d i n g T e s t  7.  RESULTS. TEST ,No,  &.SSAY Wt*  ?t  RECOVERY  7°  BaSo^ CaCQg S i 0  S  2  BaSb  : 4  CaGog  Eeed 100. 0 21.0  24.9  40.6  4.2: 1 0 0 . 0 1 0 0 . 0  C  63.9  6.8  11.0  63.6  4.0  21.1  32.9  T .  36.1 45.2  39.8  3. 9  6.3  78.9  . 67 . 1  SiOg  S  INDEX  100.0 100.0 96.8  53.Q  3. 2  47.0  242.8  CONCLUSION: ~ There i s obtained i n t h i s  little  test  and t e s t  of L e a d N i t r a t e was u s e d . latter, Barite  but  this  recovery.  difference 7,  between t h e  results  i n which a smaller  amount  A s m a l l e r b u l k was o b t a i n e d i n  c a n be a c c o u n t e d f o r p r i n c i p a l l y by t h e  the lower  72  TEST;10. To compare t h e c o l l e c t i n g a c t i o n s w i t h L i s s o l a m i n e A i n the f l o t a t i o n Nitrate  as a n  of R e t a r d e r  L.A.,  of q u a r t z when u s i n g L e a d  activator©  CHARGE.  -  To P e b b l e  Mill  Grind Ore Water Lead N i t r a t e  30 M i n . 500 G r s . 500 G r s . Q.5#/Ton  a  CELL. Concentrate  1  Added Cond. Skim.  •— -  pi.  Retarder L.A. Terpineol 3 Min* 1.0 M i n * 8.30  -  Q.33#/Ton 0.16#/Ton  S u l p h i d e s came up f i r s t . F r o t h not- q u i t e as heavy as t h a t produced w i t h L i s s o l a m i n e A on t h e f i r s t a d d i t i o n b u t more d u r a b l e . Cone e n t r a t e 2 Added Cond. Skim. pH  ~ -  Retarder L.A. 3 min. 10 m i n . -8.36  -  1.15#/Ton  F r o t h good. Bubbles h e a v i l y loaded f o r s h o r t p e r i o d a f t e r each a d d i t i o n of collector*  a  RESULTS TEST No* 1ft.  R]BCOVERY %  ASSAY % BaSo^ C a C o  F e e d lOQ.Q 2 1 . 0 24*9 Cl  1 7 . 2 13*8 21*2  C2  43*1  T  3 9 . 7 4 3 . 3 38 . 2  1*9  6*7  3  Si0  2  .s : , B a So^ CaCOg  Sio  2  S  4*2.  100.0  100.0  8*7 X.2.& 2  11*6  16.8  ' 3 * 6 42*3  X.3 » 3  88*6  40*6  8 5 . 6 : •0.9  4.0:  6*2  84*4  8»2  69*9  ENDEX  1 0 0 . 0 100  7.8  7 . 8 49*9  246*5  .CONCLUSIOl'f T h e r e a p p e a r s t o "be a s l i g h t  d i f f e r e n c e between the  a c t i o n of t r i - m e t h y l - c e t y l - a m m o m i u m - b r o m i d e as q u a r t z c o l l e c t o r s * are compared  COLLECTOR Lissol. Retarder  I n the f o l l o w i n g t a b l e  % BaSo  38.3 39*7  LA  ^Si0  44.1  37.6  6.0  5.5  43.3  38 . 2  8.2-  7.8  A i s a more s a t i s f a c t o r y LA.  tailings  ^CaCog  4  E r o m t h e a b o v e i t , may be i n f e r r e d t h a t  Retarder  the  L.A.  -  - % Wt.  A.  and Retarder.  collector for  % Rec-  2  the  Si0  2  Lissolamine  q u a r t z than the  74  TEST' 1 1 * To s t u d y t h e use of L i s s o l a m i n e A aramonium-bYomide) i n the f l o t a t i o n CHARGE  (Tri-methyl-cetyl-  as a c o l l e c t o r w i t h no d e p r e s s o r of  quartz.  -  to Pebble  or  collector  Mill  Grind Ore Water  -  30 M i n . 500 gms. 500 gms©  Added  -  Cond. Skim. pH  — -  L i s s o l a m i n e A - 0*60 #/Ton Terpineol - 0.49#/Ton 3 min. 10 m i n . 8.3  CELL  P r o t h e r r e q u i r e d when u s i n g L i s s o l a m i n e A as a c o l l e c t o r of q u a r t z . On a d d i t i o n of T e r p i n e o l . t h e f r o t h became w e l l m i n e r a l i z e d tough and p e r s i s t e n t . RESULTS TEST Nov  ASSAY %  %  Wt.  EaSoA  Peed 100. 0 G T  3  2 X.  REC0VEB X %  CaGOg  SiOg  BaSO/  CaCog  S i ©£  2 7 . 4 ^ 29 © 5  43*6  100  100  100  22.1  17.9  39 + 3  53*9 ;  : 57.9 6.6  .  54.5  ..41.7  45.5  58.3  94.8  Index  198.6  15 «>• 2.  GOlfCLUSION T h i s c o l l e c t o r has a d e f i n i t e c o l l e c t i n g a c t i o n quartz  s  b u t a t t h e same t i m e f l o a t s  the other  for  too l a r g e a percentage  components when no f u r t h e r r e a g e n t s a r e a d d e d .  of  7&  TEST: -'12. To i n v e s t i g a t e flotation'of  the e f f e c t  o f a low pH v a l u e on t h e  quartz*  CHARGE  -  to Pebble  Mill  Grind — 30 m i n * Ore — 500 gms* Water 500 gms* Copper S u l p h a t e 0.5#/Ton pH 8.50 CELL Added  L i s s o l a m i n e A - 0.48"/Tan S u l p h u r i c A c i d - 2*06#/Ton 3 min* IQ m i n . 7.55  Cond* Skim. PH  S u l p h i d e up f i r s t . F r o t h strong* e f f e r v e s c e n c e o f p u l p on a d d i t i o n sulphoiric a c i d .  Slight of  RESULTS » ASSAY % CaCog S i O g  TEST % No. Wt.  BaSb  Head ICQ  21.0  24.9;  4  S  BaSo  40*6  4.2;  100  4  RECOVERY % CaCo SiOg 3  10 0  IHBEX  100  100 43 * 3 251*6  C  58.2  4.9  11.6  65.0  3.8  13*9 2 7 . 0  92. 5  T  41.8  42.7*  44*0  7.5  5.1  86.1 73.0  7.5  CONCLUSION  S  56* 6  -  The l o w e r pH h a d l i t t l e l o w e r i n g t h e b u l k of t h e  effect  concentrate.  other than  slightly  76  TEST 1 3 . 1  To i n v e s t i g a t e flotation  of'  the e f f e c t  o f a h i g h pH v a l u e on t h e  quartz.  CHARGE ' ' - • P e b b l e  Mill.  Grind 30 m i n . Ore 500 gms. Water - 500 gms. Copper S u l p h a t e 0.5#/Ton pH 8.50 CELL Added  ~  L i s s o l a m i n e A --0.48#/Ton • S o d i u m H y d r o x i d e 0.8C#/Ton Cond. — 3 min. Skim. - 10 m i n . pH 9.75 T a i l s pH 9.10 Sulphides floated f i r s t . i n previous tests.  P r o t h weaker  than  RESULTS ~  %  TEST No.  Wt.  ASSAY % BaS©4 C a C o . S i O g  - S  Peed  100  21.0  3  RECOVERY % BaS'Q^v C a C o SiOg  S  3  24.9  40.6  u z  1QQ  100  100  I1XEX  100  C  56.4  . B*.2l. 12*7;  53>5  3.9 16.6  28. 5  88.0  56.0  T  43.6  40.0  X X.»  4.0 83.4  71.7  12.0  44.0  41.8  243.1  CONCLUSION The h i g h e r pH h a d l i t t l e lower the concentrate  bulk.  effect  other than to  slightly  To i n v e s t i g a t e t h e a c t i o n of S o d i u m M e t a p h o s p h a t e a s Limestone  depressant,  CHARGE  -  to Pebble  Mill  Grind Ore Water CuSo pH.  -  Added  -  4  CELL  30 m i n , ' 500 gms* 500 gms* 0*5#/Ton 8*5  M s s o l a m i n e A - 0,48#/Ton Sodium Metaphosphate - 2.Q#/Tan. — 3 min. 10 min* - 8.15 8.15  Cond* Skim. pH T a i l s pH  F r o t h weaker & l e s s m i n e r a l i z e d t h a n previous tests w i t h Lissolamine A. RESULTS  a  in  -  TEST % ITo W t .  ASSAY % BaSo  4  Feed 100. 0 21.0 G  66.1  T  33.9 43.7  7.7  RECOVERY %  CaCog S i 0 2 24.9  40.6  14.4 60.5 45.1  S  2.9  4.2.: 4.5  QaCog  SI0  100  100  100  25.5  38 c 3  98.0 60.8  74.5  61*7  2.0 3 9 . 2  BaSb  4  2  S  INTJEX  100 234.2  COffCLUSIOF Copper s u l p h a t e i s n o t s u c c e s s f u l as a activator.  barite  The S o d i u m M e t a p h o s p h a t e i s n o t a s g o o d a d e p r e s s o r  of l i m e s t o n e when i n t h e p r e s e n c e o f C o p p e r S u l p h a t e a s i t when u s e d  alone.  is  78  TEST' 1 5 . To compare t h e e f f e c t i v e n e s s  o f Sodium H e x a m e t a p h o s p h a t e  w i t h S o d i u m M e t a p h o s p h a t e as a l i m e s t o n e CHARGE  -  to Pebble  depressant.  Mill  Grind Ore Water — Copper Sulphate PH -  30 m i n . 500 gms. 500 gms. - 0*5#/Ton 8.5  Added  Sodium Hexametaphosphate - 2.0#/Ton. Lissolamine A - 0.48"/Ton 3 min. 10 m i n . 8.30  Cond. Skim.  P r o t h p o o r - s u l p h i d e s d i d n o t come up d i r e c t l y as i n p r e v i o u s t e s t s . The b u b b l e s were l a r g e and f r a g i l e . Some s u l p h i d e s remained i n the t a i l i n g . RESULTS. TEST  ASSAY '%  Wt. or 7°  lb.  --  - :.  '• ~t  ':  0 . a  Si0  2  S  R]SCO VERY BaSo CaCo 4  3  %  Si0  S  2  INDEX  Peed 100. Q 21.0  24.9  40.6  4.2  100  19.0 14.0  21.8  29*7  8*0,  13.0  16*4  1 3 . 6 36*8: 1 8 4 . 2  • 81.0 21.9  25.9  43.9  3.2  87.0  83.6  86.4 63.2  -;C ;  T  CONCLUSION  100  above  100  -  S o d i u m H e x a m e t a p h o s p h a t e has a g e n e r a l action for  100  depressing  s u l p h i d e s a n d n o n - s u l p h i d e s when u s e d i n  concentration*  the  TEST 1 6 . To s t u d y t h e c o l l e c t i n g a c t i o n o f . E m u l s o l X - l when n o t  i n t h e p r e s e n c e of an a c t i v a t o r CHARGE  -  CELL ~~ '  to Pebble  Mill  Grind Ore Water  "- -  Added Cond. Skim. pH  -  depressor  or  Reagent, frother.  30 m i n . 5Q0 gms. 500 gms. Emulsol X - l 3 min. 10 m i n . 8.31  0.60#/Ton  W e l l m i n e r a l i z e d copious f r o t h . Very l i t t l e m i n e r a l i z a t i o n of bubbles d u r i n g l a s t 5 minutes of skimming p e r i o d . RESULTS  -  TEST 7° ,No.. W t . a/"  BaSQA  • ASSAY % - Ca.Co S i 0  P e e d 10Q.0 C  3  29 ©- 5  2  43.6  BaSo^  RECOVERY % CaCog S i o  100  10Q  100  40.9 58.8  32.0  9.6  90'. 2  43.8  9.6  59.1  28.4  63.0  9.8  56.2  90.4  4.-4  CONCLUSION -  2  INDEX  236.8  .  E m u l s o l X - l h a s a good c o l l e c t i n g a c t i o n f o r a n d l i m e s t o n e but n o t f o r q u a r t z . slightly  stronger for barite  Its  than f o r  collecting action limestone.  barite is  80  TEST 17,. To . f l o a t b a r i t e , , i n h i b i t i n g  the q u a r t z w i t h  sodium  silicate. CHARGE  to Pebble  Mill  Grind — ••30 m i n . Ore 500 g r s . Water 5Q0 g r s . Sodium S i l i c a t e - 0.25#/Ton.  .  CEIL" Added Cond. Skim. - PH  -  E m u l s o l X - l = Q»4-9#/Ton 3 min. 10 m i n i 8.18  Copious f r o t h — s l i g h t l y than, u s u a l . RESULTS TEST • % No. Wt.  T  mineralized  -  • .JISSAY t Ba.So,-4 CaCog S l o  2  S  BaSo^  P e e d 1QG.Q 2 1 . 0 24*9 . 4Q>6 4*2 e  less  ' 3 9 . 5 4 1 . 2 21f» 2 60.5  7.8  22^8  7.8: 8*9 61*8 1*4  100 :  RECOVERY % CaCo SiOg 3  S  100  100  100  77*6  43*8  7*6  81*4  22.4  56*2  92*4  18.6  INDEX  226*2  CONCLUSIONS ^ :  Sodium s i l i e a t e  i n s m a l l q u a n t i t i e s , has o n l y a  i n h i b i t i n g a c t i o n on q u a r t z .  slight  • To; . i n v e s t i g a t e Chloride  as q u a r t z CHARGE  -  ' • TEST 1 8 .  the use of Sodium S i l i c a t e  and A l u m i n u m  depressors.  --  to, P e b b l e  Mill.'  Grind 30 m i n . Ore 50Q g r s . Water 500 g r s . Sodium S i l i c a t e - 0.25#/Ton. CELL Added  •-  Cond. Skim. pH T a i l s pH.  «" -  Emulsol X - l Q.4S#/Ton Aluminum C h l o r i d e - 0 . 2 0 3 min* 10 min» 7.3 7.6 m  Sulphides floated f i r s t RESULTS  TEST . No.  #/Ton  i n good f r o t h .  -  Wt* : "BaSo^  ASSAY % CaCo-  S  l  G  2  P e e d 1 0 0 . 0 2.1.0  24.9  40.6 4 . 2  C  .38.2. 4 1 . 2  26.9  T .  61.8  24.0  8.8  RECOVERY % B a S o CaCbg s i o  S  4  100  100  7.2 8.3  74.4  41.0  60.9 1.4  25.6  59.0  :  ;  S  2  100  100  6.8  78.8  93.2:  21. 2  INDEX  226.6  CONCLUSION - .  The c o m b i n a t i o n o f S o d i u m S i l i c a t e  and A l u m i n u m  C h l o r i d e has a. s l i g h t l y b e t t e r I n h i b i t i n g a c t i o n on q u a r t s t h a n Sodium S i l i c a t e a l o n e  9  but-when used i n s m a l l  has not a v e r y great i n h i b i t i n g action.-  quantities  82  TEST 1 9 . To f l o a t citric  barite using Oleic  a c i d as a d e p r e s s o r f o r CHARGE  -  to Pebble  quarts  Water CELL"  and  (and limestone)©  Mill  Grind Ore  Citric  a c i d as a c o l l e c t o r ,  Acid  Added  -  Cond, Skim. PH  30 min» 500 g r s i 50Q g r s . 0.10#/Ton Oleic Acid Terpineol 3 min. 10 m i n . 8.15  ~ ~  0:. 28#/Ton 0.16#/Ton  Very s l i g h t froth:without t e r p i n e o l . On ' a d d i t i o n o f f r o t h e r r e s u l t i n g b u b b l e s were heavily loaded. S u l p h i d e s came up f i r s t . T a i l i n g pH - 8 . 1 0 . RESULTS TEST No.  of  7°  Wt.  E e e d 100 . C . T  ASSAY % .BaSQ.4: CaCo* o ' Si0  2  s . BaS-04  RECOVERY % CaCo S10 3  2  S  21.0 •  24.9  4 0 . 6 4 . 2 : [ 100  100 .  100 . 10O  61.7  32,.!  36 » 6  11.5 6 . 3  92;. 6  91.3 .  17.4 94.2  38.3 .  24,.  OR  87.0  7.4  8.7  a :  XT  Q..7  820 6  5.8  CONCLUSION Citric  a c i d has s l i g h t  and l i m e s t o n e when u s e d i n  d e p r e s s i n g a c t i o n on q u a r t s  small  amounts.  INDEX  183.9  TEST 2 0 . T o \ i n v e s t i g a t e the f e e c t i v e n e s s of a higher  concentra-  t i o n of c i t r i c a c i d (compared t o t e s t 1 9 ) as a depressor f o r • quartz and limestone,; I n the f l o t a t i o n of- b a r i t e * '  CHARGE  -  to Pebble M i l l * Grind" - ' 3 0 min* Ore 5 0 0 grs*: Water - ' •5-00.-.grs* C i t r i c A c i d - 0 * 4 #/Ton.  CELL. Added •  ,  - 0.28#/Ton - 0.16#/Ton  Oleic Acid Terpineol 3 min* 1 0 min* 7*0  Cond* Skim* PH  P r o t h more m i n e r a l i z e d than usual* Skimming time of 10 minutes i n s u f f i c i e n t f o r recovery of a l l the concentrate* RESULTS .TEST, "No*  ASSAY. %  wt*  Peed 1 0 0 , 0  :EaSo 21*0  4  CaCog 24*9  C  53*8: 3 5 * 8  3 6 * 6 •';  T  46*2  12*0  3«8  RECOVERY $  a  BaS04  CaCog  S10  4.0*6 4*2-  100  100  100  100  6*9 7*0  91*7  7 8 *Q  9*2  90*0 204*5  79*0 0*9  8*3  22*0  90*8  SiOg  S  2  INDEX  10*0  CONCLUSION C i t r i c Acid, i n moderate q u a n t i t i e s has a s l i g h t g e n e r a l d e p r e s s i n g a c t i o n , but when used i n high c o n c e n t r a t i o n s has a v e r y strong general depressing a c t i o n *  A t e s t was. cond-  ucted u s i n g l»5#/Ton of C i t r i c A c i d produced no concentrate, hence was discarded*  84  TEST 21» To f l o a t b a r i t e u s i n g Imuls:ol 1-1 as a c o l l e c t o r , w i t h Sodium S i l i c a t e and C i t r i c a c i d cas depressors f o r limestone and q u a r t s .  *  CHARGE  ~  to Pebble  Hill  Grind -» ,30 min. Ore — 500 g r s . Yfeter - 500 g r s . C i t r i c A c i d - 0.80 #/Ton Sodium S i l i c a t e - 0.50#/Ton.  -  CELL Added Cond. Skim. pH  - Emulsol X - l - 0.48'#/Ton - ...5 min. - 10 min. « .8.35  E r a t h weak. Bubbles very s l i g h t l y Ph of t a i l s - 8.30  loaded.  RESULTS. TEST. ;  Wt»  Peed 100.0  •C :  T  '  ASSAY %  %•  B a S 0 4 GaCo  3  RECOVERY % .  Sipg • B a S o  2.7V4: 29.5 ,43.6  100  5.5  63.4  22.8 13.9  12.7  , 94.5  25.2  2,9.7 40.2  87.3  sio  CaCQg  4  ! 100 4.2:  2  INDEX  100 . '2.1"  95.8  206.4  97.9  CONCLUSION The combination  of Sodium S i l i c a t e and C i t r i c , A c i d had  a very great depressing a c t i o n , probably due to the presence of a l a r g e q u a n t i t y of C i t r i c A c i d .  C i t r i c A c i d shows a  d i f f e r e n t i a l a c t i o n In d e p r e s s i n g limestone  preferentially.  TEST 22* To- i n v e s t i g a t e t h e u s e o f Sodium A l u m i n a t e a s quarts  a  depressant. CHARGE  ~  to Pebble  Mill  Grind 30 m i n . Ore 500 g r s . Water 500 g r s . S o d i u m A l u m i n a t e ~~ 0 . 2 # / T o n .  ' CELL-  Added Cond. Skim. pH T a i l s pH  -  Emulsol X - l 3 min. 10 m i n .  . • '-  -  Concentrate  Q*48#/Ton  s  a ; io.  7.90.  same as i n p r e v i o u s  test.  RESULTS TEST 'Ho-.  ASSAY %  f  Wt.  BaSo  Peed 100.0 21.0  4  CaCog 24.®  "C  35 * 3 42*9'  26.4  T  64.7  24.4  9.3  RECOVERY % Si0  2  40.6 4.1 , 61.Q  BaSo  A  CaCo  3  Si0  loo;  100  100  71*4 ;  37*1  3•5  28*6  62* S  96.5  2  IHEEX'  230*8  CONCLUSIQir This test  i n d i c a t e s t h a t S o d i u m A l u m i n a t e has  a  r e l a t i v e l y g o o d d e p r e s s i n g a c t i o n on q u a r t z and c o u l d t h e r e f o r e r e p l a c e Sodium S i l i c a t e  i n many i n s t a n c e s .  86  TEST '85;, To i n v e s t i g a t e the use of 'Copper Sulphate as an a c t i v a t o r f o r B a r i t e and Sodium S i l i c a t e as a quartz depressant. CHARGE  -  to-pebble-Mill. Grind - 30 min* Ore 500 grs. Water - 500 grs\. Sodium S i l i c a t e - 0*25 #/Ton CuSo - 0*5 #/Ton* 4  CELL Added Cond* Skim* PH T a i l s pH  -  Emu 1 s o l X - l 3 min* , 10 s i n . 6*92  -  0.48#/Ton«  (?)  8.10  Concentrate s i m i l a r to t h a t of previous t e s t * RESULTS TEST .:11b. Wt *  ASSAY % BtaS.04 CaCog. SiC g  Eeed 100*0: ,21*0. 24*9 G  T  \ 42*3 .. 40*5 57*7  6*8  .29..-9  '22. a.  40*6  RECOVERY % BaSo^ CaCog S i 0  2  100  100  100  8*2. 81*3  49*8  8*6  50.2  91.4  64.0  18*7  INDEX 222* 9  CONCLUSION Copper;Sulphate appears t o have no a c t i v a t i n g action on b a r i t e b u t r a t h e r i t has a depressing a c t i o n * 5  The '  depression-of.the quartz i s probably due to the Sodium S i l i c a t e ,  TEST 24. To i n v e s t i g a t e the use of Copper Sulphate and Sodium Aluminate as  B a r i t e a c t i v a t o r and quartz depressor, r e s p e c t i v e l y .  CHARGE  -  to P e b b l e  Mill  Grind - 30 m i n ; Ore ~ 500 grs* Water 4 500 g r s . CUS04 - Q.5#/Ton Sodium Aluminate — G«2$/Ton  •  CEJjL Added Cond. Skim., pH T a i l s pH  •  - E m u l s o l X ~ l - Q.48#/Ton. - 3 min. - 10 min. ~ 8.20 ~ S.Q5  F r o t h s i m i l a r to previous t e s t .  RESULTS TEST NQ«  Wt.  ASSAY % BaSo4 CaCo  Feed 100.0  21,0  : 38.3  40,. Q  C T  6.1.7  9.0=  3  : £4.9  SiOg 40..6  . 30,9 . 8. 2 21,9  63.0  RE pOvTSRY <fo '• CaCo BaSo Si0 4  ;ioo  3  100 :  2  INDEX  100  7/3.8  47.1  7.6  26.2  52,9  9^,4  219 .1  CONCLUSION The test, i n d i c a t e s that the combination of Sodium Aluminate and Copper Sulphate has l e s s d e p r e s s i n g a c t i o n on quarts than Sodium Aluminate alone, due t o the a c t i v a t i n g a c t i o n of the copper sulphate.  88  TEST 25V To d u p l i c a t e t e s t 17 w i t h a new batch, of ore, CHARGE  -  • • CELL  to Pebble M i l l Grind Ore Water Sodium S i l i c a t e  30 min* 500 grs* 500 grs* -Q*25#/Ton«  Added Cond* Skim* pH .  EmulsoX 3 min* 10: min* 8*4  -  -  0.49#/Ton.  F r o t h same as i n t e s t 17. Bubbles s l i g h t l y l o a d e d a t the end of the 10 minutes skim time.  RESULTS ASSAY % BaSQ4 CaCo  TEST No*  Wt*  Feed  100*0  27*4  29*5  C  33*8  64*0  27*8,  T  66*2  8*8  30*9  7°  3  i  SiO  g  43*6  RECOVERY % BaSo GaCo ' SiOg A  100  100  100  10*4; 78*7  30*7  9*1  53*4  69*3 ; 90*9  21.3  INDEX  238*9  TEST. 26. To, i n v e s t i g a t e the f l o t a t i o n of h a r i t e w i t h a very coarse c e l l f e e d and no reagents i n the m i l l . f  CHARGE . -  t o Pebble Grind . Ore Water  CELL  Mill •  '~  5 min. 500 gms<> 500 gms.  ~ -  Emulsol'X-X 3: min. 6 min. 8.35  1  —Added Cond. Skim. pH -  F r o t h same as u s u a l . RESULTS - • TEST % ITo. ,_ Wt.  - 0.60 #/Ton  -  • •  BaSo^  ASSAY CaCo  3  t SiQg  •REOOVERY <£ BaSo CaCo SiOg 4  Feed  lOQ.o;  27.9  -29.4  42.7  100  100  1Q0  C .  28.;L  67.3  28.5:  3.7  68,8  27.6  2.6  T  71.9  15.5  29.2  58.2  31LO 2  IEBEX  7  72.4  238.6  97.4  COHCBUSIOH The r e s u l t s of g r i n d i n g t e s t s are as f o l l o w s ; Time of Grind _ Minis. 5 15 30 •60^  %  Wt. 28 .1 36.3 40.9 42.8  GR ADE % BaSo CaCo-2 S i 0 4  67. 3 ' 63. 6 58.8 45.5  2  28. 5 . 3.7 30.4 6.7 32,0 9.6 38 o 2 16.4  RECOVERY % BaSo CaCo SiOg 4  68.8 86.6 90.2 72.3  3  27.6 2.6 37. Q 5.9 43.. 8 9.6 55.8 17.1  I t i s obvious from the above t a b l e that an i n c r e a s e d g r i n d i n g time decreases the average  s i z e of the p a r t i c l e s  they a r e s m a l l enough to allow f l o t a t i o n .  until  Evidently Barite i s  s u f f i c i e n t l y s o f t to.break e a s i l y before the limestone &  quartz  90  with, f u r t h e r g r i n d i n g , the limestone, and l a s t l y quartz, can be f l o a t e d , w i t h the b a r i t e * due  i n c r e a s i n g e f f i c i e n c y , and at the expense of  The recovery of the b a r i t e i n c r e a s e s , however,  to the i n c r e a s e d b u l k of the concentrate, i n a l l cases,  except the f i n e s t g r i n d , where the decrease i n grade more than o f f s e t s t h e i n c r e a s e d  bulk* r e s u l t i n g i n a lower o v e r a l l  recovery* The  r e s u l t s a l s o show that the B a r i t e f l o a t s more  r e a d i l y , and that Emu1sol X - l i s a f a i r l y r a p i d - a c t i n g reagent,  /  TEST' 2 7 . To i n v e s t i g a t e  ••  the f l o t a t i o n  of h a r i e t w i t h a  c e l l f e e d a n d no r e a g e n t s I n t h e b a l l . CHARGE  - : To P e b b l e  coarser  mill.  M i l  Grind Ore Water  — -  15 m i n . 500 gms. 500gms.  Added Cond. Skim. PH  ~ -  Emu1sol X - l 3 min 9 min 8.31  CELL -  0 . 6 0 # / T on  F r o t h as u s u a l .  RESULTS TEST". .'No.  -  %  Wt.  ASSAY % BaSo  4  CaCQg  Slog,  BaSo  29:. 5  43.6  100  100  •"•6*7 : 8 6 . 6  37.0  5*9  63.0  94.1  Feed  100*0 2 7 . 4  C .'  36 o 3 6 3 . 6  30.4,  T  63.7  29.5  5.6  CONCLUSION See T e s t  26.  RECOVERY %  61.1  13.4  4  CaCo„ 3  Si0  o  INDEX  10.0 243.7  92  TEST  28.  To i n v e s t i g a t e t h e f l o t a t i o n c e l l f e e d and no r e a g e n t s . CHARGE -  to Pebble Grind Ore Water  i n the  of b a r i t e w i t h a  fi  mill.  Mill 60 m i n . -.- 500 gms. 500 g m s . . ;  CELL Added Cond. Skim.  Emulsol X - l 3 min. 10 mine. 8.2:5  -_.Q»6Q#/Ton  E r o t h as u s u a l * RESULTS TEST 73Jq'.> ;  Feed  c T  ;  Wt. 100.0  .. ASSAY fa BaSo^ C a C o SiOg 3  RECOVERY BaSo* . CaCov. kJ  %  sio  2  27.4.  £9.5  43.6  42.8  45.5  38 » 2  16.4;  72.3  55.8  17.1  57.2  13.0  22.6 ;  5-9 »'&  27.7  44.a  82:. 9  CONCLUSION See T e s t  27.  1QQ  100  INDEX  . 10.0 199.4  TEST 2 9 . T© I n v e s t i g a t e dilution  of  the f l o t a t i o n  of B a r i t e  u s i n g a low  pulp  5  CHARGE - t o  Pebble  Mill  Two; s t a n d a r d c h a r g e s of 500 grams were individually  i n the, mills....  One c h a r g e was d r i e d , ' t h e  ground required  p o r t i o n - 150 g r s » was t a k e n , a d d e d t o t h e o t h e r c h a r g e , t h e whole added t o '-•.'CELL-  -  .  and  the c e l l .  •  Ore Water Pulp Density Added. Cond. Skim pH  -  :  650 g r s . 1625 g r s * 2.5si E m u l s o l X~I Q.6#/Ton 1 min.; w i t h no r e a g e n t 3 mins. with reagent. 10 m i n s . 8.25  F r o t h much more, m i n e r a l i z e d , t h a n u s u a l * RESULTS TEST ,lib. *  -  Wt.  Feed. 100.0 C  .53.4-  T  46.6  %  BaSo-4  ASSAY %' GaCdg S i 0  •27.9' .  29.4  42.7  100  50.0  35.6  14.2  95.7  64.6  18.0  2.6.  22.3-  74.3  4.3  35.4  82.0  of 7°  2  RECOVERY Ba;Sd GaCog 4  100,  Si0  2  INDEX  100  CONCLUSION The f o l l o w i n g t a b l e shows r e s u l t s variations  In pulp d i l u t i o n .  obtained for .  three  Pulp Density  %  GRADE %' Cacog S i 0  RECOVERY t CaCOg SlOg  Wt,  "BaSo  53.4  50.0  35.6'  14,2  95.7  64.6  18.0  4:1.  40.9  58.8  32.0  9.6  90.2  43.8  9.6  6>1  45.4  61.0  31.1  9.0  98.0  49,1  9.6  2.5:1  4  2  BaS04  CONCLUSIONS ~ I t w o u l d be a d v a n t a g e o u s  to run a s e r i e s  v a r y i n g t h e p u l p d i l u t i o n i n a r a n g e of 2 . 0 t o  of  tests  8.0.  A l t h o u g h e i t h e r e x t r e m e w o u l d n o t be e c o n o m i c a l l y meta.llurgically w i t h i n these  efficient^  a. c o m p r o m i s e m i g h t be  or reached  limits.  The l o w e s t p u l p d e n s i t y h e r e i n g i v e s t o o l a r g e a c o n c e n t r a t e w i t h a l o w b a r i t e g r a d e * a t t h e same t i m e u n d e s l r e a b l y i n c r e a s i n g t h e g r a d e s of t h e l i m e s t o n e quarts  and  respectively. The h i g h e s t  highest barite  pulp density,  oh t h e o t h e r h a n d , g i v e s  g r a d e and r e c o v e r y ! a t t h e same t i m e  a d e s i r e a b l e l o w e r i n g of t h e l i m e s t o n e a n d q u a r t z  the  causing  recoveries.  TEST 30* To i n v e s t i g a t e t h e p o s s i b i l i t i e s using a higher pulp CHARGE  -  of b a r i t e  flotation  dilution*  to Pebble  Mill  Grind Ore T/ater  30 m i n * 500 gms* 500 gms*  Added  O r e 350 grams W a t e r 2150 grams P u l p d e n s i t y - 6$1 E m u l s o l X - l - - Q*60#/Ton w i t h o u t c o l l e c t o r - 2 min* with collector - 3 min* Total - 5 min* 7 min. 8*34  CELL  Cond. Skim pH  f r o t h ' a s 'usual*'' f i r s t 3 min* RESULTS  Well mineralized  during  ASSAY % .  TEST Ho*  Wt.  Peed  100*0  BaSo  4  RECOVERY %  CaCog  SiOg  BaS 0.4  CaCo-  29*4  42*7  100  1.00  100  SiOg  C  4 5 . 4 61*0  31*1  9.0:  98 . 0  49*1  9.6  T  54.6  2.6*8  70*2:  2*0  50.9  90*4  i*i  CONCLUSION See t e s t  29*  INDEX  239*3  96  TEST'51» To i n v e s t i g a t e  t h e a d v a n t a g e s o f a s h o r t e n e d and v a r i a b l  skimming p e r i o d . CHARGE  -  to Pebble  Mill  Grind 30 m i n . Ore 500 gms. Water 500 gms. Sodium S i l i c a t e - 0.50#/Ton CELL Concentrate  1  Added Cond. Skim. pR  — -  Emulsol 3 min. 1 min. 8.70  -  0..24#/Ton  E r o t h h e a v i l y m i n e r a l i z e d a n d copious«» Concentrate  2  Added Cond. Skim. pH  ~  Emulsol 1 Min. 2 Min. 8.70  ~  Q.12#/Ton  E r o t h l e s s m i n e r a l i z e d but s t i l l Concentrate  3  - Added Con do Skim. pH  ,  «-  Emulsol I min. 5 min. 8.70  -  copious.  Q.24#/Ton  Eroth s l i g h t l y mineralized at skimming p e r i o d .  end o f 5 m i n .  RESULTS » AS£>AY % BaS 04 CaCo„.  Si0  E e e d 100.0  2.7.4  29.5  43*6  100  100  100  CL  23.9  65.5  2.5.3  10. S  56.5  20*8  5.9  C2 "  10.6  62*5  27.6  10.0  23* 7  10 *Q  2© 5  C3  12.6  25.5  48,9  23 * 5  11.5  2X.» <2  7*1  7:  52.9  4.2  26.3  66.1  8.3  TEST .Ho.  Wt.  1  0  COUCLUSIOH *  4  2  48*0  test  grades.  224.2  84*5  indicated that  c o n f i r m those of Test  the B a r i t e  f l o a t a b l e w i t h the c o l l e c t o r E m u l s o l X - l . f l o a t e d at once  IHDEX  3  "  The r e s u l t s f r o m t h i s i n which it- i s  RECOVERY % BaSo CaC o Si02  f  i s more  concentrate.  Is  decreasing  The L i m e s t o n e and Q u a r t z grades, h o w e v e r ,  s u c c e s s i v e l y w i t h each  easily  Most of I t  f o l l o w e d by the r e m a i n d e r i n  26.  increase  98  TEST 5 2 . 1  To i n v e s t i g a t e t h e f l o t a t i o n of CHARGE  -  the e f f e c t i v e n e s s  of a l o w pH v a l u e  in  barite, to Pebble  Mill.  Grind 30 m i n . Ore 500 gms. Water ~ 500 gms. Sodium S i l i e a t e 0.5#/Ton. CELL Added  -  Cond. Skim. pH pH T a i l s  -  Emulsol - 0.6#/Ton. S u l p h u r i c A c i d - 2.94#/Ton. 3 min. IQ m i n . 7.68 7.78  " F r o t h same a s i n p r e v i o u s RESULTS TEST ITo*  tests.  -  %  Feed 100.0  ASSAY Z EaSo^ . CaCo-, o Si o 27.4 29 . 5 43.6  2  BaSo^  RECOVERY % CaCo SiOg  100  3  100  100  C  4Q.8  53.6  32.. 8  1 1 . 5 : :79.2;  45.9  •LX* 6  T  59.2  9.8  2.6.7  60 o 3  54.1  88.4  20,8  I1DEX  221.7  CONCLUSION The l o w e r e d h y r d r o g e n i o n c o n c e n t r a t i o n h a d effect  other than lowering considerably  the b a r i t e  little recovery.  TEST'33* To i n v e s t i g a t e t h e a a t l o n o f O l e i c a c i d a s a i n the f l o t a t i o n - CHARGE  of  -  collect  barite.  to Pebble  Mill  Grind 30 lain* Ore 500'gms. Water 500 gms. Sodium S i l i c a t e - 0*5#/Ton. CELL * Added  -  Cond. Skim. pH  ..~  Oleic Acid Terpineol 3 min. 10 m i n . 8.12  ~ -  O..14#/Ton O.l6#/Ton  F r o t h w e l l m i n e r a l i z e d throughout, but p a r t i c u l a r l y w e l l m i n e r a l i z e d during the f i r s t q u a r t e r of the skimming p e r i o d . RESULTS TEST . No*  -  %  Wt.  , ASSAY % BaS 04 Ca,Co SiOg 3  P e e d 100*0;. 27* 4 C  69.6  T  30.4  38*1 1*3 -  RECOVERY %. BaSo.. CaCo SiOg 5  43.6  100  100  100  41*7  19.4  98:* 6  97*8  33*0  2*2.  90.3  1*4  2.2  67.0  INDEX  167*8  CONCLUSION ~ O l e i c A c i d reduced the grade of the b a r i t e b u t i n c r e a s e d t h e g r a d e of  concentrate  the l i m e s t o n e and q u a r t z .  The  r e c o v e r i e d f o r e a c h m i n e r a l were i n c r e a s e d c o n s i d e r a b l y t o the l a r g e bulk* This test  This is  due  compared w i t h T e s t 17*  i n d i c a t e s t h a t O l e i c a c i d w o u l d be a g o o d  reagent f o r a b u l k f l o t a t i o n i n a rougher  cell*  100  TEST 3 4 . To i n v e s t i g a t e non s u l p h i d e s ,  the  a c t i o n of "Fish O i l a s a c o l l e c t o r  u s i n g sodium s i l i c a t e  ••CHARGE  to Pebble  as a d e p r e s s o r f o r  quartz.  Mill  ifrind 30 m i n . Ore 500 g r s . Water 500 g r s . Sodium S i l i c a t e - 0.25#/Ton. CELL  Added  -  Cond® Skim. pH  -  Fish Oil Terpineol » 3 min. 10 m i n . 8:. 3  0.60#/Ton Q.49#/Ton  F i s h O i l a l o n e has o n l y s l i g h t f r o t h i n g a c t i o n n e c e s s i t a t i n g use o f a f r o t h e r . Bubbles heavily loaded. RESULTS  -  TEST 'He.  Wt>.  Feed  1Q0.Q  2:7.4  29.5  43.6  100  100  C  20*6  42*5  42.7  14.0  33® 3  29.6  7.3  T  79.4  23 »> 2 2 6 . 3  45.9  67.7  70.4  92.7  /o  ASSAY % BaS:Q CaCo 4  3  SiOg  RECOVERY % BaSo CaCo A  INDEX  3  100 206.4  CONCLUSION ~ ; Concentrate  grades of a l l m i n e r a l s are h i g h e r ,  stone i n p a r t i c u l a r . recoveries  Due t o a l o w e r b u l k ,  i n each case a r e lower\  however,  for  limethe  when c o m p a r e d ' t o T e s t  17.  TEST ' 3 5 . . To i n v e s t i g a t e  t h e use of Sulphonated. C a s t o r G i l  as  a c o l l e c t o r f o r non s u l p h i d e s , u s i n g S o d i u m S i l i c a t e as depressor f o r  a  -quartz*  CHARGE  -  to Pebble  Mill  Grind 30 m i n . Ore » 500 g r s . Water 500 g r s * Sodium S i l i c a t e - 0*25"/Ton* CELL Added  -  Gond. Skim. pH  • •-  Sulphonated Castor O i l ~ 0*63#/Ton* 3 min* 10 m i n . 8*34  Bubbles f a i r l y w e l l loaded.¥o required* RESULTS TEST cr/ . N o . Wt*  -  BaSb  4  ASSAY % CaCo SiOg 3  RECOVERY % BaSG4 C a C o SiO £  29*5  43*6  100  57*3 4 4 . 4  46.3  8*0  94*5  89 * 6  10*9,  7.1  86*9  5*5  10*4  89*1  T  ;  42*7 . ••' 3*5  INDEX  3  P e e d 100*0 27*4 a  frother  100  100 1934* Q  CONCLUSION C o n c e n t r a t e g r a d e s of a l l m i n e r a l s are h i g h e r * stone i n p a r t i c u l a r ,  indicating  that the c o l l e c t i n g a c t i o n  S u l p h o n a t e d C a s t o r O i l and P i s h f o r l i m e s t o n e i s that  lime-  stronger  of E m u l s o l X - l as u s e d i n T e s t 17* Recoveries also  I n c r e a s e d due t o t h e l a r g e r  bulk.  of than  102  TEST 3 6 , 1  To f l o a t collectorj  b a r i t e u s i n g S u l p h o n a t e d God O i l a s a  with  CHARGE  -  sodium s i l i c a t e to Pebble  as a d e p r e s s o r f o r  quartz©  Mill  Grind 30 m i n . Ore 500 g r s . Water 500. g r s . Sodium S i l i c a t e - 0.25#/Ton. CELL Added  -  Cond, Skim, pH  -  S u l p h o n a t e d Cod O i l 1.47#/Ton, 3 min. 10 m i n , 8,35  M o s t h e a v i l y l a d e n f r o t h of t e s t s c a r r i e d out t o t h i s p o i n t . A t end o f 10 m i n u t e s skimming p e r i o d the l a r g e bubbles were w e l l d r a i n e d - c l e a n an t o p b u t s l i g h t l y l o a d e d on t h e s i d e s , E r o t h not p e r s i s t e n t - t e r p i n e o l recommended f o r f u t u r e t e s t s * RESULTS : TEST ¥6®  ..  a/  ASSAY % B a S o . CaGo-o  Si0  E e e d 100 . 0  27.4  29.5  43.6.  100  100  100  C  38.-1  54.9  4a. 5  4.6;  77.5  53.9  4.5  T,,  61,9  9.8  21.7  22.5  46.1  95* 5 .  Wt,  GOUCLUSIQHS  4  2  60.0  BaS:o  4  REGOYERY % G 3»C 0^ S i 0  2  ISDEX  219.1  -  The t e s t the r e c o v e r i e s  indicates  t h a t S u l p h o n a t e d Cod O i l  increases  of b a r i t e a n d l i m e s t o n e as compared t o T e s t  17,  TEST 3?» J  To use. S o d i u m S i l i c a t e depressor f o r CHARGE  a n d S u l p h o n a t e d . God O i l  quartz and c o l l e c t o r f o r "barite -  to Pebble  as  respectively*  Mill  Grind 30 min* Ore 500 g r s . Water 500 g r s . S o d i u m S i l i c a t e - 0.-5#/Ton. CEIL  Added  -  Cond*  -  Skims  PH  S u l p h o n a t e d Cod O i l - l » 7 6 # / T o n Terpineol - 0»82#/Ton. 3 min® 10 m i n . 8.7  Well m i n e r a l i z e d f i n e bubble f r o t h . Bubbles became (much l a r g e r b y end o f 10 m i n u t e s k i m m i n g period© A t end of 6 m i n u t e s w a t e r was a d d e d t o b r i n g t h e l e v e l up t o t h a t n e c e s s a r y f o r s a t i s f a c t o r y skimming. T h i s d i l u t i o n h a d no a p p a r e n t e f f e c t on t h e . m i n e r a l i z a t i o n of t h e bubbles. RESULTS Test . ITo*  ASSAY %  %  Wt*  BaS:Q  P e e d 100. Q  €  85*2  T  14.8  coa-cLusioi:  CaGo  4  27.4  5*0  3  '  RECOVERY %  S i 0g • B a S o  29*5  43*6  100  32.8  32*4  98*0;  94*1  2*0  1 . 1 •'•  4  CaCog  Si0  100  1Q0  94*5  68*1  5©5  2  INLEX  135.4  31*9  -  This test  is  essentially  shows t h e e f f e c t  t h e same as t h e p r e v i o u s  except that  it  of a l a r g e f r o t h *  (Terpineol)  h a s no c o l l e c t i n g a c t i o n , i t s  The f r o t h e r  mechanism b e i n g  p u r e l y p h y s i c a l i n f o r m i n g more b u b b l e s w h i c h p r e s e n t a adhesion  surface*  test  greater  104  TEST' 5 8 , To f l o a t  b a r i t e w i t h S u l p h o n a t e d Cod O i l ?  S o d i u m M e t a p h o s p h a t e as a l i m e s t o n e CHARGE  -  to Pebble  using  depressant,  Mill  Grind 30 m i n . Ore 500 gms© V/ater 500 gms. Sodium S i l i c a t e 0,5#/Ton S o d i u m M e t a p h o s p h a t e ' - 2>0#/Ton, CELL  Added  -  Cond* Skim,  -  PH  -  Eroth  S u l p h o n a t e d Cod O i l 1.32#/Ton 3 min, 10 m i n ,  -  8,41  as u s u a l .  RESULTS TEST . No, Seed c  T  .;  ASSAY % Wt. 100,0  BaS 04  CaCog  RECOVERY %  SiOg  BaSo  4  CaCo-2  Si0  '27.4  2.9*5 •.: 43. 6  100  45,0  55.5  39,9  5.7  93.8  60.9  6.2  55.Q  3.0  20,8  70.2  6.2.  39,1  93.8  ,  :  100  2  100  CONCLUSION A s c o m p a r e d v / i t h T e s t s 65 GRADE  RECOVERY  BULK  Barite  Better  Same  Less  Limestone  T a i l s higher  Smaller  Less  Quartz  Lower  Better  Less  INDEX •  226.7  TEST 39> :  To f l o a t  barite  and a r e l a t i v e l y limestone  u s i n g S u l p h o n a t e d . Cod O i l a s a  collector,  l a r g e amount o f S o d i u m M e t a p h o s p h a t e a s a  depressant®  CHAB/Gjjj  »  t o Bebble.  Mill  Grind 30 mine Ore 500 gms. Water 500 gms . Sodium S i l i c a t e 0.5#/Ton Soidium M e t a p h o s p h a t e - 2»5#/Ton» 0  CELL Added  -  S u l p h o n a t e d God O i l - 1 . 3 2 # / T o n Sodium Metaphosphate - 0.5#/Ton — 5 min© 10 m i n . So 3 2  Cond® Skim. pH  A d d i t i o n a l S o d i u m M e t a p h o s p h a t e t o c e l l due t o d e c i s i o n t h a t 2 . 5 # was i n s u f f i c i e n t . F r o t h as u s u a l . RESULTS TEST . Ho.  ASSAY %  Of  7°  wt..  Feed 100.0 C  43«>2:  T  56.8  BaS© a  CaCo  27.9  29*4  58.9 4. 4 -  RECOVERY % S10  BaS.Q^  CaCo  42»7  100  100  32 • 8  9.5  .91. 0  49.7  9.8  25+3  65.2  9.Q;  50.3.  90.2  3  2  3  8i0  2  INDEX  100 231.+ 5  CONCLUSION: The S o d i u m M e t a p h o s p h a t e h a d l i t t l e reduce the b u l k ,  by i t s  a r l y i n t h e c a s e of  effect  other than to  general depressing action -  limestone.  particul-  106  TEST 4 0 . To compare S i l i c i c depressor f o r CHARGE  A c i d w i t h Sodium S i l i c a t e  as a  quartz. ~  CELL  to-Pebble M i l Grind Ore Water S i l i c i c Acid -  30 m i n . 500 g r s . 500 g r s . 0.5#/Ton  Added Cond. Skim© pH  Emulsol X - l 3 min. 10 m i n . 8.5  ~ -  0.72#/Ton  Eroth similar to previous tests. Small f r a g i l e bubbles a t f i r s t * which l a t e r developed i n t o the r e l a t i v e l y s t r o n g tyoe as i n other t e s t s . RESULTS  Test .. N o .  -  ASSAY  7o  Wt.  Eeed IOQOQ  BaSo,  CaCo.  27.4  %  RECOVERY SlOr 4 5 .  BaSo  A  %  CaCo-;  SiOc  6  100  100  86.8  41.3  9*1  58 » 7  90.9  G  39.7  59.6  30.4  9»4  T  60.3  6.0  28.8  62. 3  I1TBEX  10Q 236*4  C0HCLUSI01~~ Silicic  A c i d a p p e a r s t o be l e s s  depressant but a p p a r e n t l y r a i s e s  efficient  as a quartz  the grade of the b a r i t e .  TEST 4 1 . i  To i n v e s t i g a t e as d e p r e s s a n t CHARGE  for -  the e f f e c t i v e n e s s  of Sodium S u l p h a t e  Limestone. Pebble  Mill  Grind * Ore -' Water Sodium S i l i c a t e Sodium S u l p h a t e  30 min© 500 gms. 500 gms© - Q*5#/Ton - IL.@#/T'on«>  Added Cond. Skim. pH  Emulsol X - l 3 min. 10 m i n . 8.38  GELL ~ -  F r o t h same a s i n p r e v i o u s  -  0.60#/Ton  tests.  RESULTS » Test No.  of /o  Wt.  P e e d 100*0  c  42*6  T  57.4  BaS 0 4  ASSAY CaCog  Si0  27.4  29*5  43*6  100  34*0;  9*1  86*1  .49  •a  9*6  26 * 2  63*8  13*9  51*0  90*4  6*6  2  RECOVERY BaSo CaCog 4  100  Si0  IM)EX  2  100 227.5  CONCLUSION According to t h e o r i e s sulphate, less  s p o n s o r e d b y I . ~W» W a r k ,  b e i n g more s o l u b l e t h a n b a r i u m s u l p h a t e ,  amenable t o f l o t a t i o n .  t h e o r y b u t shows t h a t  This test  calcium  s h o u l d be  does n o t s u p p o r t  Sodium S u l p h a t e has a s l i g h t  a c t i o n f o r b a r i t e when u s i n g E m u l s o l X - l as a  that  activating  collector*  loe  TEST- 4 2 . To, i n v e s t i g a t e t h e u s e o f S o d i u m S u l p h a t e a s  a  d e p r e s s o r f o r L i m e s t o n e when P a l m i t i c A c i d i s u s e d a s  a  collector. CHARGE  -  to Pebble  Mill  Grind Ore Water Sodium S i l i c a t e Sodium S u l p h a t e CELL  - •  30 m i n . 50Q gma. 500 gms. - 0.5#/Ton » 1.0 /Ton , l  • Added  - Palmitic Acid -Terpineol - 3 min. - 10 m i n . - 8.32  Cond. Skim. pH  -  0.16#/Ton Q.49#/Ton  E r o t h c o p i o u s and w e l l m i n e r a l i z e d i n i t i a l l y b u t on s e c o n d and t h i r d p o r t i o n s o f p a l m i t i c a c i d became c o n s i d e r a b l y l e s s m i n e r a l i z e d . On t h e t h i r d a d d i t i o n o f p a l m i t i c a c i d t h e f r o t h became v e r y s h a l l o w so t h a t w a t e r h a d t o be a d d e d t o b r i n g t h e f r o t h up t o a p r a c t i c a l skimming l e v e l . MSULTS TEST Ho*  -  %  Wt.  Peed 100.0  ASSAY %  RECOVERY %  BaSo4,  OaCog  Si0  27**4  29 . 5  43.6  100  100  2  BaSo^  SiO  ., C  37.9  39.7  48.2  10.2  55*9  62*7  T  62»1  19.5  17*5  58.8  44.6  37 # 3  g  IHDEX  100 183.7 90.5  G0MCLUSI0¥ — This test  does not support  H a n s e n who s t a t e t h a t  the t h e o r y of Gaudin and  sodium s u l p h a t e i s  c a l c i t e when c o l l e c t o r s  of  a depressant  for  the t y p e H e p t y i i c A c i d a r e u s e d .  Bote -  P a l m i t i c A c i d i s f o u r members h i g h e r t h a n  A c i d i n t h e same h o m a l o g e o u s The t e s t  Heptylic  series*  shows t h a t S o d i u m S u l p h a t e i s a n  •rather than a depressor f o r limestone*  activator  110  TEST '43* To f l o a t " b a r i t e u s i n g f e r r i c  Sulphate as a limestone  activators. CHARGE  -  t o Pebble  Mill  Grind 30 min* Ore ~ 500 gms* Water «• 5 0 0 g m s . Sodium S i l i c a t e 0.5#/Ton F e r r i c Sulphate l*Q#/Ton CELL . .  Added Cond. Skim* pH  -  Emulsol X - l 3 min. 10 min® 8*33  0.60#/Ton  Froth a s usual* RESULTS T®ST Kb* Feed  T•  Ol 7°  A>3 SAY % Wt.*--: BaS.6.4 CaGOg 10Q.0 : 27*4  29*5 •  44:. 3: 5 6 * 1  34*5 :  55.7  26*4  4.2  REC OTERY % ' . • GaCo SiOg.  SiOg  Bas©4  43*6  100  8»3 67*5  3  90*8 9>2  :  :  100  IQ'Q  500 2  8*9  49*8.  90*1  I1BEX 230*7  COHCLUSIQIf This test a c t i o n ass t h a t  indicates that F e r r i c of Sodium S u l p h a t e  activator f o r limestone  S u l p h a t e h a s t h e same  (Test 41) i * e » ,  as a n  TEST; 4$,  To i n v e s t i g a t e  t h e u s e o f Sodium' O x a l a t e as a L i m e s t  d e p r e s s a n t when P a l m i t i c A c i d i s u s e d a s t h e CHARGE  ~  to Pebble  CELL  collector.  Mill  Grind Ore Water *Sodium S i l i c a t e Sodium O x a l a t e  30 m i n . 500 gms. 500 gmsv - 0.5#/Ton - 1.0#/Ton  Added  P a l m i t i c Acid *-((dissolved i n ethyl: a l c o h o l ) -0.L6#/Ton T e r p i n e o l ,-. Q»33#/Tan 3 min. 10 m i n . 8.39  Cond.  Skim.  m  Eroth i n i t i a l l y w e l l mineralized. Addition of second p o r t i o n of p a l m i t i c a c i d d e s t r o y e d froth. T h i s a p p e a r e d t o be a r e s u l t o f a g r e a t l y lowered surface tension causing rupture of bubbles. With a f r o t h e r (terpineol t h e f r o t h became c o p i o u s a n d w e l l m i n e r a l i z e d . . RESULT • ASSAY % BaSo^; . CaGog S i 0  - RECOVERY % BaSo^ CaCog S i O g  Test No.  Wt.  Eeed  100.0  2 7 . 4 ' £9 .g  43.6  G  42.1  41.2JJ :45*4  xx* &6 3 . 6  65.9  13. 6  • T  57.9  17.1  61.5  34.1  86.4  ;:  ;  Q  100  36.4  100  INDEX  100 184*1  CONCLUSION ~ This test floatability  does not  s u p p o r t t h e t h e o r y of  due t o i n c r e a s e d s o l u b i l i t y  C a l c i u m O x a l a t e i s more s o l u b l e to the s o l u b i l i t y  tables.  reduced  of m i n e r a l  than Barium Oxalate  films. according  lis  TEST '45 s- " To. i n v e s t i g a t e depressor  the effectiveness  of c a l c i t e ; , i n t h e f l o t a t i o n  CHARGE  to Pebble  of O x a l i c A c i d as a of  barite.  Mill  Grind 30 m i n . Ore 500 g r s . Water •- 500 g r s . Sodium S i l i c a t e - 2.0#/Ton CELL Added  Emulsol X - l •* 0*60#/Ton O x a l i c A c i d - i n two p a r t s o f o*5#/Ton e a c h t o t a l - 1.0#/Ton. 3 min. 10 m i n . 8*30  Cond. Skim. PH.  P r o t h same as i n p r e v i o u s RESULTS  -  TEST 7° .So* . Wt* Peed  tests,  A.SSAY %. B a S o , C a C c 3, Si0 ;  4  100*0 ; 2 7 * 4  2  RECOVERY € BaSo GaCo Sio A  3  29.5  43*6  100  100.  2  100  C' • ,  43*8  55*5  32*5  11*1  89*6  48*5  12*0  ,T.  56*2  5*0  26.9  63.4  10*4  5 *L & 5  88*0  CONCLUSION *• . Oxalic Acid is a better activator Sodium O x a l a t e -  (Test  44)  INDEX  of b a r i t e  than  229 »1.  TEST , ' 4 6 » To i n v e s t i g a t e t h e e f f e c t i v e n e s s as a d e p r e s s o r f o r l i m e s t o n e a depressor f o r quartz CHARGE  -  9  (calcite)  i n "barite  to Pebble  of L e a d C h r o m a t e and S i l i c i c  A c i d as  flotation,  Mill  Grind 30 m i n . Ore 500 g r s * Water — 500 g r s . S i l i c i c Acid 0.5#/Ton L e a d Chromate 0.8#/Ton CELL Added Cond, Skim, pS  ~ -  Emulsol X - l 3 min, 10 m i n , 8.25  -  -  Q.60#/Ton  E r o t h s i m i l a r to that produced i n previous t e s t s - w e l l m i n e r a l i z e d s m a l l bubble f r o t h RESULTS ~ TEST fSo.  Wt,  BaSo^  F e e d 100*0  ASSAY t CaCog Si. Og •29.5  43.6  • G  43.0  51*Z  33, 2  9.5  T  57,0  6,4  26.0  63.5  RECOVERY ti BaSo CaCo SiOg 4  100  3  100  INDEX  100  87 » 2  49.3  10*2; , 228*7  12.8  50.?  90.8  CONCLUSION" The u s e o f C h r o m a t e s was s u g g e s t e d b y t h e  solubility  o f C a l c i u m a n d B a r i u m C h r o m a t e s . t h e f o r m e r b e i n g more s  s o l u b l e than the l a t t e r .  T h e r e i s no a p p a r e n t  effect.  114  TEST 4 7 . To compare t h e u s e of S o d i u m O l e a t e w i t h E m u l s o l as  a collector for barite  s  u s i n g L e a d Ghromate and  A c i d , a s d e p r e s s o r s f o r L i m e s t o n e and Q u a r t S o A s i n  X-l  Silicic preceedim  test CHARGE  to Pebble  Mill  Grind 30 m i n . Ore 500 g r s . Water 500 g r s . S i l i c i c Acid 0*5#/Ton L e a d Chromate 0*8#/Ton CELL Added  Sodium O l e a t e Terpineol 3 min* 10 min* 8.30  Cond, Skim*  P r o t h same a s i n p r e v i o u s  0.24#/Ton 0*16#/Ton  tests  RESULTS TEST  Kb.  Wt.  P e e d 1.00.0 C  67.5  T  32<& 5  ASSAY % BaSo, CaCog  SiO 2  27.4  2:Q & 5  43.6  37.8  41*2  6.3  4,4  88*0  RECOVERY t BaS 04 CaCog S i O 2 100  100  100  95.0  94*4  32*0.  5*0  5*6  68*0  IHBEX  168.6  CONCLUSION ~ Sodium O l e a t e gave a l a r g e r bulk* c o n d i t i o n s as E m u l s o l X - l . that  u n d e r t h e same  The b a r i t e g r a d e was l o w e r  o f l i m e s t o n e , a n d s i l i c a was h i g h e r .  c a s e s were h i g h e r  due t o t h e i n c r e a s e d  Recoveries  bulk*  in  while all  TEST; 48* To i n v e s t i g a t e  the f l o t a t i o n of b a r i t e u s i n g  Silicic  A c i d a s a q u a r t z d e p r e s s a n t a n d L e a d C h r o m a t e i n an A c e t i c acid  solution* CHARGE . -  t o Pebble  Mill  Grind 30 mint. Ore — 500 gms. Water 500 gms* S i l i c i c Acid 0*5#/Ton Lead Chromate Q»8#/Ton Acetic Acid •» 8oO#/Ton CELL  Added Cond, Skim, PH '. . T a i l s pH  Emulsol X - l 3 min, 10. m i n , 7,62 7*70  0*60#/Ton  Some r e a c t i o n b e t w e e n a c i d and l i m e s t o n e visible* RESULTS TEST % l b * . Wt*  .: ASSAY f BaSo4- CaCog  P e e d 100*0  m  n  27*4  29 & 5  SiOg 43*6  C  40*0 ' 57*0  34*6  8*6  T  60 , 0  25 » 3  62.0  7.0  BaSo  4  100  3C07ERY GaCo 3  1QQ  8 4 * 5 , 48*0 !L 5 » 5  52*0  %  .  SiOg  INDEX  100 8*5  228*0  9 JL & 5  CONCLUSION The u s e of a weak A c e t i c A c i d s o l u t i o n was s u g g e s t e d by Scott s r  " M e t a l l u r g i c a l A n a l y s i s " which states that  Chromate was l e s s Acid  Barium  s o l u b l e t h a n C a l c i u m Chromate i n an A c e t i c  solution* A slight  difference  i n b u l k and l i m e s t o n e g r a d e was n o t e d  when compared w i t h T e s t 46*  116  TEST'49 . To f l o a t Chromate quart2  barite  u s i n g an i n c r e a s e d amount of  as a l i m e s t o n e  depressant,  and S i l i c i c  Lead  A c i d as a  depressant. CHARGE  -  t o Pebble  Mill  Grind 30 m i n , Ore 500 gms. Water ~ 500 gms. S i l i c i c Acid 0*5#/Ton Lead Chromate 1.6#/Ton CELL  Added Cond. Skim. pH  -  Emulsol X - l 3 min. 10 m i n * 8.28  -  0*6Q#/Ton  E r o t h same as u s u a l . RESULTS ~ ASSAY % CaCo  Si0  Eeed 100.0 2 7 . 4  29.5  43*6  100  C  4 3 . 1 56* 3  33© 5  11*7  87.6  49.5  12.4  T  56.9  26,2  63.5  12,4  50.5  87,6  TEST ,B"o*  %  Wt.  BaSo  6*2  4  3  2  RECOVERY % RaS04 CaCo Si0 3  100=  2  I1BEX  100 235*7  CQivfCLUSIOI - A n i n c r e a s e d amount o f L e a d Chromate has no  effect.  apparently  TEST |50* To i n v e s t i g a t e  the advantages of s h o r t e n i n g  the  s k i m m i n g t i m e i n t h e f l o t a t i o n o f b a r i t e when u s i n g L e a d Ghrornate a s a l i m e s t o n e CHARGE  '-  depressant.  to Pebble  Mill  Grind 30 M i n , Ore 500 g r s . Water ** 500 g r s . Sodium S i l i c a t e l,0#/Ton Lead Chromate Q.8$/Ton CELL Added Cond, Skim, pH  ~ -  Emulsol X - l 3 min. 5 min© 8.45  P r o t h same a s i n p r e v i o u s RESULTS Test No,  o.60#/Ton  tests.  -  %  Wt*  ASSAY % BaS'o^. C a C o  SiOg  BaSo  27*4  29*5  43*6  100  10Q  59*7  3010  XX®> 3 84*0  41*0  XX & 0  7*6  28*3  60*0  59*0  89.Q  3  Peed ; i p o * o C  39 .  T  60,4  6  16.0  4  RECOVERY % CaCo SiOg  IKDEX  3  100 233*0  CONCLUSION A short  s k i m t i m e i n c r e a s e s t h e g r a d e of t h e  barite  c o n c e n t r a t e but decreases the recovery a p p r o x i m a t e l y percent'.  ten  118  TESTJ 5 1 . To i n v e s t i g a t e  the e f f e c t i v e n e s s  of  Potassium  romate a s a d e p r e s s o r f o r l i m e s t o n e a n d S i l i c i c d e p r e s s o r f o r q u a r t z i n t h e f l o t a t i o n of CHARGE  -  to Pebble  Acid  barite.  Mill  Grind - ' 30 m i n . Ore •» 500 g r s . Water 500 g r s . S i l i c i c Acid 0.5#/Ton P o t a s s i u m C h r o m a t e -» Q«8#/Ton CELL  ~ Added Cond. Skim. pH  - E m u l s o X 'X-I 3 min. -•• 10 min* 8.2  a.6Q#/Tan  RESULTS -» TEST No »  ARRAY  Wt.  BaSQ4  CaCo  Peed 100.0  •27*.4  29 5  C  41.0  55:»9  3 3» 3  T  59.0  10.4  26~.2  3  RECOtfEW <€, CaCo SiOg  SiOg  BaSo  43.6  100  100  100  8. 3 7 9 . 0  47.0  89.5  53*0  91.5  61.5  21.0  4  3  INDEX  223 <» 5  CONCLUSION — There i s l i t t l e  difference  between t h e  of P o t a s s i u m and Lead Chromates as l i m e s t o n e except that  effectiveness depressants  t h e g r a d e o f b a r i t e and q u a r t z d r o p p e d  along w i t h the  bulk.  slightly  119  TEST 52* 1  To i n v e s t i g a t e O i l as a c o l l e c t o r  the effectiveness  of b a r i t e ,  employing sodium S i l i c a t e  P o t a s s i u m C h r o m a t e as d e p r e s s o r s f o r CHARGE-  ~  to Pebble  o f S u l p h o n a t e d Cod and  q u a r t s and l i m e s t o n e .  Mill  Grind 30 m i n . Ore 500 g r s . Water 500 g r s . S o d i u m S i l i c a t e - Q.25#/Ton P o t a s s i u m C h r o m a t e - G*8#/Ton CELL Added  -  Cond. Skim. pH  -  S u l p h o n a t e d Cod O i l - l » 4 ? # / T o n Terpineol - Q»66#/Ton 3 min. 10 m i n . 8.45  W e l l m i n e r a l i z e d f i n e bubble f r o t h f o r f i r s t 5 minutes - subsequently poor, i r r e s p e c t i v e o f amount o f Cod O i l o r T e r p i n e o l a d d e d . RESULTS TEST .No.  -  %  W t . .-. BaSQ4  ' P e e d XQG.Q C- :  ASSAY CaCog  fo  Si°2  RECOVERY BaSo CaCo 4  3  SiOg  27. 4  29.5  ••' 43V6  100  100  59.* 6 ' 4 2 . 4  '45.7  10*9  93.8  93.0  15*7  5.2  86,6  6.2  7.0  84*3  40.4 COHCLUSION  4.2  IHDEX  100 185.1  -  S u l p h o n a t e d C o d O i l has a good c o l l e c t i n g a c t i o n both b a r i t e  and c a l c i t e w i t h no e v i d e n t  selective action.  confirms previous statements regarding increased g r a d e w i t h t h e u s e of P i s h O i l s  as  for  collectors.  limestone  It  120  TEST, 5 5 . To i n v e s t i g a t e  the effectiveness  o f Chromium O x i d e  (Org Og) a s a d e p r e s s o r f o r l i m e s t o n e i n t h e f l o t a t i o n  of  b a r i t e 4. CHARGE  -  to Pebble  Mill  Grind Ore Water Chromium O x i d e Sodium S i l i c a t e CELL  -  Added Cond. Skim. pH • T a i l s pR Erothas  RESULTS  3.2#/Ton 2.0#/Ton  ~ Emulsol X~l - 3 min. 10 min* - 1Q.32 9.80  Q.6Q#/Ton  usual.  -  TEST % . N o . Wt, Peed  30 m i n . 500 g r s . 500 g r s . (GrgQg) . -  . 4 6 • 6"  T  53.4  %  RECOVERY??  BaS.04  CaCQg  SIO  27 • 4  29 » 5  43.6  100  100  53.7'  29.5  16.9  89,7  47.4  19* S  5 © 3 28 , 6  62.8  10.3  52.6  80.7  XOQ.Q  C  ASSAY  2  BaSo  Si0  4  2  INDEX  100 223 0  CONCLUSION ~ Chromium O x i d e action particularly  (Gr^Og) h a s a s l i g h t  general  towards b a r i t e and q u a r t z ,  activating  thereby  i n c r e a s i n g the bulk. Note  -  The h i g h pH v a l u e i s i n e x p l i c a b l e  s h o u l d h y d r o l y z e t o Chromic  Acid.  as Chromic  Oxide  TEST' 54V To f l o a t  "barite u s i n g Chromic A c i d a s a l i m e s t o n e  depressant. CHARGE -  t o Pebble  Mill  Grind 30 m i n . Ore 500 gms. Water 500 gms. Sodium S i l i c a t e 0.5#/Ton Chromic A c i d l*Q#/Ton Added Cond. Skim., PH  CELL  **  Emulsol X - l 3 min. 10 m i n .  0.60#/Ton  - 8 21 a  P u l p a p p e a r e d - y e l l o w when t a k e n mill. P r o t h as u s u a l . RESULTS  from  -  TEST . No.  Wt*  Peed  100*0  C  5t * 5  T  62.5  CONCLUSION  BaSiO-A 77.4  11.2  ASSA^ GaGCz o  RECOVERY . % • CaCog S10  SiOg  BaS 64  29.5  43*6  100  36.0  9*0.  73*9  46*0  8*2  59*2  26*1  54*0  91*8  : 25*4  10 Q  1Q0  t o w a r d s b a r i t e and l i m e s t o n e *  action,  Compared t o  Chromic Oxide, Chromic A c i d i s a s t r o n g e r a c t i v a t o r limestone.  219*7  '  Chromic A c i d has a g e n e r a l a c t i v a t i n g particularly  INDEX  2  of  122  TEST'' 5 5 . To f l o a t  b a r i t e u s i n g Aluminum N i t r a t e  as a l i m e s t o n e  depressant,. CHARGE  -  t o Pebble  Mill  Grind 30 m i n . Ore •— 500 gms. Water . - 500. gms. Sodium S i l i c a t e 0»5#/Ton Aluminum N i t r a t e Q*2#/Ton CELL  Added Cond* Skim. PH  ~ »  E r o t h as  Emulsol X-l 3/min. 10 m i n . 8.48  ~  0.6Q#/Ton  usual  RESULTS «TEST .Ho. : Eeed  A  Wt.  SSAY %  B a S c 4 .- CaCOg-  xoo.o  27/. 4  29 * 5  G  40. 9  58.3  3X.»  T  59.1  t  2 T Qr  sia  2  43.6 :  RECOVERY % BaS0 CaCQg S i O g  INDEX  A  100  100  2  9.1  93.9  42.7'  29.0  62.5  6*1  5T.3  100 9*2'  242.0  90*8  GONCLUSIQN'" Aluminum N i t r a t e than f o r  barite  limestone. This  that  i s a stronger activator f o r  t e s t was s u g g e s t e d b y a s t a t e m e n t  of  s a l t s w h i c h f o r m c o l l o i d a l h y d r o x i d e s a c t as  depressants.  Gaudin limestone  TEST' 5 6 . To I n v e s t i g a t e as a d e p r e s s o r f o r CHARGE  the e f f e c t i v e n e s s  of Aluminum N i t r a t e  limestone, to Pebble  Mill  Grind - • 30 m i n . Ore ~ 500 g r s . Water 500 g r s . S i l i c i c A c i d ~ G.i5#/Ton A l u m i n u m N i t r a t e - 0»5#/Ton CELL Added Cond, Skim* pH  -  P r o t h as  Emulsol X-l* 3 min. 10 m i n , 8:»32  0*6Q#/Ton  usual.  RESULTS ~ TEST .No,  Wt.  BaS0  Peed  100.0  : 27*4  C  40*5  •T  59 *5  7°  CONCLUSION  ASSAY CaC0  %  K  3C0VERY CaC0  SiOg.  BaS|0  29*5  43*6  100  100  59 & 3  29*4  1.1*4  86*8;  40*7  10*3  6*5  30;* o  62.0  X.3 » 2  59*3  89*7  4  3  4  3  SiOg  INDEX  100 235 * 8  -  I n c r e a s e d amount of A l u m i n u m N i t r a t e g i v e s i n c r e a s e d s e l e c t i v i t y between b a r i t e  and l i m e s t o n e *  an  124  TEST 57V To i n v e s t i g a t e t h e e f f e c t i v e n e s s  of a h i g h e r  c o n c e n t r a t i o n of Aluminum N i t r a t e as a l i m e s t o n e CHARGE  to Pebble  depressant.  Mill  Grind 30 m i n . Ore 500 g r s . Water — 500 g r s . Sodium S i l i c a t e Q»5#/Ton Aluminum N i t r a t e 1.0#/Ton CELL  Added Cond. Skim, PH  ~ -  Emulsol X - l * 3 min. 16 min* 8,41  E r o t h same as i n p r e v i o u s RESULTS . TEST . No* Eeed  tests.  ASSAY %  %  Wt*  BaS0  100 . 0  27*4  G  48*2  T -  51 . 8  CONCLUSION  4  2*0  .: RECOVERY & CaCOg S i O g  CaCOg  Si0  2-9*5  43*6  100  100  9.0  96.2  56*3  10*5  70,8  3.8  43.7  8.9*5  53*4 j 3 4 , 5 . 24*7  2  BaS04  INDEX  100 229.4  -  This test of  0*60#/Ton  i l l u s t r a t e s the p r i n c i p l e  activator usually leads  that  an e x c e s s  t o a. d e p r e s s i n g , a c t i o n .  TESTi58. To i n v e s t i g a t e  the e f f e c t i v e n e s s  d e p r e s s o r of l i m e s t o n e CHARGE  -  of L e a d N i t r a t e  i n the f l o t a t i o n  to Pebble  of  as  barite*  Mill  Grind SO m i n * Ore — 500 gms. Water 500 gms* Sodium S i l i c a t e 0.5#/Ton Lead t i t r a t e ~ l»25#/Ton CELL • ;. ••  -  AddedCond* Skim* pH  -*• -  Emulsol X - l 3 min* 10 min* 8*4  Proth similar to previous RESULTS  -  Q.60#/Ton  tests.  -  • TEST . No*  Wt.  Peed  100.0  27*4  29.5  43.6  100  100.  100  C  44.8  56.4  32. 8  11.5  92*0  4.9*6.  12*5  T  5 5 & 2. , 3 © Q  26 * 8  64.8  8*0  50*4  87*5  /»  BaSQ : 4  ASSAY % sio CaC0 3  2  RECOVERY % BaSOj. CaCQ, S i 0  2  CONCLUSION L e a d N i t r a t e has l i t t l e slightly  Increase the  bulk*  effect, other than  to  INDEX  230.9  136  TEST '59* To . . i n v e s t i g a t e t h e e f f e c t i v e n e s s bitartrate)  as a d e p r e s s o r f o r  of A r g o l s  (Potassium  quartz In the f l o t a t i o n  of  barite. CHARGE  to Pebble  CELL  Mill  Grind Ore Water Argols  30 m i n . 500 g r s . 500 g r s * Q*5#/lon  Added Cond. Skim. pH  Emulsol 3 min. 10 m i n . 8.5  X-l  0*72#/Ton  Well m i n e r a l i z e d f i n e bubble f r o t h much same a s i n p r e v i o u s t e s t s . . RESULTS  ASSAY % GaCO, Si0  RECOVERY % BaS0 CaC0 3 SiOp  TEST ITo.  Wt.  Eeed  100.0  27*4  2.9'. 5  .43*6  100  100  C  " 41.7  58.9 \ 28.7  10.3  90.3  41.0  10*3:  T  58 o 3  64.1  9*7  59.0  89o7  7"  CONCLUSION  BaSQ  4  4.5  29.5  2  4  -  A r g o l s has l i t t l e  effect.  INDEX  100  2.390  TEST 6 0 . To:.investigate the f l o t a t i o n of B a r i t e u s i n g Metaphosphate as a Limestone CHARGE  -  to Pebble  Sodium  depressant,. Mill  Grind — 30 m i n . Ore 500 gms» Water 500 gms* S o d i u m S i l i c a t e - 0»5,f/Ton Sodium Metaphosphate - 0«5$/Ton CELL Added Condi Skim* pH  - Emulsol — 3 min* ' - 10 m i n . ~ 8*5-  -  Q.6#/Ton  F r o t h as u s u a l * RESULTS  -  %  ASSAY %  TEST lb •  Wt*  BaS0  Feed  100 oO  RECOVERY %  CaC0~o  SiOg  BaS0  27*4  ,29*5  43*6  100  4  4  CaCQg  SiOg  100  100  C  40*1  .62*9'.  26*8  10*9  92* 3  36*5  10*7  T  59.9  5*6  3X & X  60*6  7*7  63*5  89.3  COHGLUSIOB" «• See T e s t  64.  I1MDEX  245*1  128  TEST 6 1 . To i n v e s t i g a t e  t h e consumption of Sodium Metaphosphate  when u s e d a s a d e p r e s s o r  of l i m e s t o n e I n t h e f l o t a t i o n  of  barite. CHARGE  -  ,  Pebble  Mill  Grind —.' 30 m i n . Ore 500 gms* Water 50Q gms. S o d i u m M e t a p h o s p h a t e •- 1 . Q $ / T o n Sodium S i l i c a t e ' - 0»'5#/Ton :;  CELL .:, .  RESULTS TEST No.  to  Added Cond. Skim. PH  E m u l s o l X**l' Q*6Q#/Ton 3 min. 10. m i n .  ASSAY % Wt.  RaS04  CaC0  3  SIQ  RECOVERY % 2  BaS0  4  CaC0  3  Si0  P e e d 1 0 0 . 0 •• 2-7.4  2,9.5  43.6  100  100  100  G  35.4  66.4  22*' 5  10.2  87.9  26.6  8.9  T  64.6  5.0  33.9  57.4  X.2e X.  73.4  91.1  CONCLUSION  -  S e e / T e s t -. 6 4 .  2  IEDEX  252.4  TEST« 62* To i n v e s t i g a t e  t h e c o n s u m p t i o n of Sodium Metaphos-  p h a t e when u s e d as: a d e p r e s s o r o f l i m e s t o n e . , i n t h e of  flotation  barite. CHARGE  -  to Pebble  Mill  Grind 30 m i n . Ore 500 gms* Water 500 gms* Sodium Metaphosphate - l*5#/Ton Sodium S i l i c a t e - 0*5#/Ton CELL Added Cond. Skim* pH  -  Emulsol. X - l 3 min. 7 min* 8*4.  - 0.60#/Ton  S m a l l e r c o n c e n t r a t e t h a n u s u a l , due t o t h e g e n e r a l d e p r e s s i n g a c t i o n of t h e •sodium m e t a p h o s p h a t e .  RESULT ' - ASSAY.%  RECOVERY %  TEST No*  ¥ t o.  BaS0  Peed  100 *Q  27*4  29*5  4.3*6  100  10Q  C  25*1  82*7  12*6  6*7  75*9  10*7  T  74*9  8*8  53*0  24*1  89*3  7°  A  CONCLUSION -  See Test 64*  CaC0,  7  35&1  Si0  2  BaS0  4  CaC0  3  SiOg  INDEX  100 261*1 95*9  130  TEST '65. To .investigate, the e f f e c t i v e n e s s of a h i g h concentr a t i o n of Sodium Metaphosphate as a depressor of limestone i n the f l o t a t i o n of b a r i t e . CHARGE  -  to  Pebble M i l l . ,  Grind 30. m i n . Ore <- 500 gms. Water — 500 gms. Sodium S i l i c a t e - 0.50#/Ton Sodium Metaphosphate - 2»Q#/Ton CELL  Added Cond. Skim.  -  Emu.lsoX  —-  6 min. 8.11  -  pH  3 min.  -  Q.60#/Ton  M i n e r a l i z a t i o n o f . f r o t h very s l i g h t , becoming n e g l i g i b l e a f t e r 6: minutes of skimming..  RESULTS TEST ' .No.  Wt,  Feed ' 100.0  ASSAY % BaS0 . CaC0  Si0  2? U  43.6  4  C.  19.7  '87 »l  T  80,3.  X.2^ 5  r  CONCLUSION ~ See Test 64,  3  29.5 8.2 : 34,8  2  RECOVERY / BaS0 CaCQ Si0 A  3  2  100.  100  100  3.7  62.9?  5®5  1.8  49.8  37 ,1  94.5  98,2  I1TDEX  255® 6  TEST * 64. To 'float b a r i t e using a l a r g e amount of. Sodium Metaphosphate as a limestone CHARGE  -  to Pebble M i l l Grind - 30 min. Ore - 500 gms. Water ~ 500 gms. Sodium S i l i c a t e - •'Q,5#/Ton Sodium Metaphosphate - 2.5#/Ton  " :  CELL  depressant.  Added Cond. Skim* pH  - Emulsol X-l. - 3 min. - 10 min. - 8.35  Q.60#/Ton  E r a t h strong but p o o r l y m i n e r a l i s e d . Bubble column shorter than u s u a l . Bubbles l a r g e r and very p e r s i s t e n t * Small amount of concentrate. RESULTS TEST . No* Peed  %  ASSAY %  •  Wt* - BaS0  4  CaGO^ o  SiOg  RECOVERY % BaS'Q  CaC0 100  4  SiOg  3  10Q.0: ;27.4  29*5  43*6  ICQ  • C  16*9 75* 8  13>*9  8.0  49*G  7*9  Go- 3  T  83*1 16*0  32*7  48*4  51*0  92*1:  96 ,7  :  :  INDEX  100 237*8  CONCLUSION. The f o l l o w i n g t a b l e summarizes the r e s u l t s of v a r y i n g amounts of Sodium Metaphosphate. as a. limestone  %  AMOUNT NaP0  Weight  BaS0  &*5 1.0 1.5 2*Q: 2* 5  40 .1 35.4 25*1 19.7 16*9  62*9 66*4 82.7; 8:7*1 75.8  3  4  ASSAY % : SiOg GaCQo 26.8 22 0-5 12.6 8,2 13.9  10*9 10*2, 6.7 3*7 8.0  depressant  RECOVERY % CaCOg BaSG  SiOg  92*3 87*9 75*9 62*9 49.0  10.7 8.9 4*1 1*8 3,3  4  36*5 26*6 1.0*7 5*5 7*9  LOO.-. GRAPH  SHOWING  BETWEEN  CONCENTRA AND  90„  RELATION T/ON  (TRADE.  n/=  RECOWEQY  80.  TO  4:0.  SO.  20_  O-S  Zip  CONCENJ^AT/DNLO.E.SODIUM  />S~ ..META\  2\0 PHOSPHATE  SS :  joS/fa  132  TEST '65. To  f l o a t "barite w i t h O l e i c A c i d u s i n g  Sodium  Metaphosphate as a limestone depressant, CHARGE  -  to Pebble M i l l Grind - 30 min* Ore - 500 gms. Water - 500 gms. Sodium S i l i c a t e ~ Q»5#/Ton Sodium Metaphosphate - 2.  CELL  Added  -  Cond, Skim), PH  »  Oleic Acid Terpineol  on - 0,11 ///Ton - 0.33.$/Ton  3 min. 10 min* 8.30  Well mineralised froth, RESULTS TEST  %  ITo. • Wt e  Ra:S0  Eeed 100.0  £7.4  4  : ASSAY % CaC0 . . sio2 3  . . . " RECOVERY fa BaS0 C&CQ SiQj, 6 4  7  29,5  43.6  100  100  100  e  63. 8 -39,. 5 •40,4  18.1  95.5  87.8  27,8  T  36.2  82.6  4.5  Ofr 3  10. 3  IKDEX  179.9  72.2  CONG LUST ON Oleic. A c i d i s u s e f u l mainly as a c o l l e c t o r In a' rougher . c e l l , as i t tends to f l o a t the e n t i r e pulp.  TEST) 66* To i n v e s t i g a t e the f l o t a t i o n of "barite w i t h a coa c e l l feed!* and Sodium Metaphosphate to depress: the l i m e s t o CHARGE:  -  to Pebble M i l l Grind - 15 min. Ore - 500 gms„ Water - 500 gms. Sodium S i l i c a t e - Q.5#/Ton Sodium Metaphosphate ~ loO#/Ton  CELL  Added Cond. Skim* pH  ~ ~  Emulsol X - l 3 min. 10 min* 8,36  G.6Q#/Ton  Concentrate  and f r o t h same as u s u a l .  RESULTS TEST No.  %  ¥t.  Eeed 100.0 »  BaSQ  4  ASSAY t CaC0 Si0 3  2  9  29.4  42 * 7  73.6  m»  • . . . RECOVERY % BaS0 CaC0 sio 4  100 .  c  30.8  20^8  7.0  7'9.5  T  69.2 • 8.4 : 3-2-* 5  58.6  20 ©- 5  :  3  100  2  INDEX  100  22. 2  5 Q  77.8  95.0  ®  25 2 o 3  CONCLUSION The c o a r s e r c e l l f e e d g i v e s a better s e l e c t i v e f l o t a t i o n b y i n c r e a s i n g the grade of the b a r i t e and decreasing the grade of t h e limestone. smaller bulk.  Recoveries  are lower due to the '  134  TEST 67* To f l o a t b a r i t e u s i n g a cleslimed o e l l f e e  s  and no  r e a g e n t s ' i n mill,.. FEED  Two standard 500 gram-charges were i n d i v i d u a l l y deslimed a f t e r the u s u a l grind* Loss due t o s l i m e s Assay of deslimed ore Barite Limestone Quarts -  18*1.5% -25*Q# , 28*5?? 46*5%  The ore was dssied and 500 grams used as c e l l charge* CELL  Added Cond.  ~ Emulsol X - l G 48#/Ton - fa) Before, adding c o l l e c t o r - 5 (b) With c o l l e c t o r - 3 5 min. 8*35 s  Skim.  F r o t h same as. u s u a l . RESULTS TEST" % So. •• Wt...; BaSQ Feed XOQvO  ASSAY %  RECOVERY BaSQ CaC0  S10  G'aCQ  SiQ  25* 0  28.5  46*5  10 0  100  100 6*4  4  3  2  4  3  C  33*0  66*5  25 » 2  8*2  88*0  29*0.  T  67*0  4.5  30*6  59*4  12*0  71*0  2  INDEX  252*6  93*6  CONCLUSION A deslimed c e l l f e e d r e s u l t s i n a g r e a t e r s e l e c t i v i t y between the f l o t a t i o n of b a r i t e and limestone than that found i n a standard c e l l f e e d .  136  slimes might be evolved but t h i s point was not investigated by the authors.  TEST 68. l  To float, b a r i t e using a deslimed c e l l feed* with .Sodium' Metaphosphate as a limestone depressant. EEED  -  Two standard 500 gram charges were i n d i v i d u a l l y deslimed a f t e r the usual g r i n d . Loss clue to Slimes Assay of deslimed ore Barite Limestone - < Quartz -  .  19.1% 26.5% 25.6% 47.9%  The ore was d r i e d and. 500 grams used as the c e l l charge. CELL  Emulsol X - l - 0»6Q#/Ton Sodium Metaphosphate - 1.0#/Ton Gond. (a) With Sodium Metaphosphate but no c o l l e c t o r ~ 10 min. (b) With c o l l e c t o r 5 min. 15 min. Skim. - 5 min. pE > 8.30  Added  -  Most of concentrate came up i n the f i r s t minute. Good f r o t h throughout» but no m i n e r a l i z a t i o n i n l a t t e r stages. RESULTS TEST No.  % Vft," ;BaSQ  4  Feed 100.0 0  23'. 1  T  76.9  26.5  ASSAY % CaG0 SiO 3  2.5- & &  88. 5  7.4  8.0  30 © 5  2  47.9 4.9 57.0  BaS0  4  RECOVERY % CaC0  100 76.8 23" ©- 2-  S i 0  3  100  INDEX  100 2. 7  6.7 93.3  2  267.4  97.3  CONCLUSION This t e s t has given the best s e l e c t i v e a c t i o n between the f l o t a t i o n - o f b a r i t e and limestone to date. may  be noted that t h i s t e s t may  l o s s of slimesf  However, i t  not be p r a c t i c a l due to the  A s a t i s f a c t o r y method of treatment of the  TEST'69* T o . i n v e s t i g a t e the f l o t a t i o n of B a r i t e at a temperature of 40: degrees Centigrade* CHARGE  to Pebble M i l  CELL  Grind Ore Water  - 30 min* - , 500 gms© - 500 gms  Added  - Bmuls:ol X - l - 3 mint, -• 10 min* - 7*95 - 40° C*  e  Cond*  Skim*  PH.  Temp*  •Froth much same as usual* concentrate*  Q.60f/Toa  Larger bulk of *  RESULTS TEST Ho*  % Wt e  ASSAY % BaS0  Feed 100*0 27*9  4  GaC0  3  . . RECOVERY %  sio  2  BaS0  4  CaGO,,  2-9*4  42*7  1Q0  100  0  S i 0  2  100  G  53*:4: 50*7  36* 2  13*7  97*9  67*1  17*3  T  46*6' 1*7  20*4  75*2  2*1  32*9  82*7  GOHCLUSIOff See Test 70*  IHDEX  213*3"  138  TEST 70 1  To. i n v e s t i g a t e o f 6Q d e g r e e s  the f l o t a t i o n of B a r i t e at a temperature  Centigrade,  CHARGE  -  to Eebble  Mill  Grind Ore Wat e r CELL  30 m i n . 500 gms. 500 gms.  -  Added Cond, Skim, pH Temp.  Emulsol X - l 3 min. 10 m i n , 8.40 60° C .  1  Q.6Q#/Ton  C o n c e n t r a t e much same a s u s u a l . Eroth a p p e a r e d t o be l i g h t e r t e x t u r e t h a n I n previous t e s t s . RESULTS TEST : \ .No.;  ASSAY .CaCQ  SiOg  1 0 0 . Q 27.9  2.9.4  4 2 . 7 : 100  C  52*3. 5 0 . 4  36.6  ?  47.7  2X* X.  Feed  %  -  BaSG : 4  2» 2  3  76.1  BaS0  4  RECOVERY CaCQj S i O g 100  100  96.0  65.7  14.3  4.0  34.3  85,7  INDEX  216.0  CONCLUSION ~ The f o l l o w i n g t a b l e temperature Temp. °C.  summarizes the r e s u l t s  on t h e f l o t a t i o n  %  Weight  AE SAY % BaSQ CaC0  20  ."40*9  58.8  40  • 53*4  60  52.3  :  of  of b a r i t e l i m e s t o n e and q u a r t z . SiOg  . RECOVERY % BaS0 CaCOg  SIO  32.0  9.6  90. 2  43.8  9.6  ,. 5 0 . 7  36.2  13.7  97.9  67.1  17.3  50.4  35.6  11.5  96.0  65,7  14.3  4  varying  3  4  2  Temperature has noticeable  l i t t l e e f f e c t above 40° C.  The most  e f f e c t of Increased temperature i s the r e l a t i v e l y  l a r g e i n c r e a s e i n the recovery of lime stone»  140  TEST 7 1 . To i n v e s t i g a t e t h e f l o t a t i o n o f B a r i t e a t a temperature  of 40 d e g r e e s C e n t i g r a d e u s i n g Sodium M e t a p h o s -  phates as a limestone CHARGE  -  to Pebble  • CELL ;  depressant.  .  Mill  Grind • Ore Yfeter  -  Added  -  Cond. Skim. pE Temp  -.  -  30"min. 500 gms. 500 gms. Emulsol 2-1 Q*6Q#/Ton Sodium Metaphosphate. - 1.0#/Ton 5 min. 10. • m i n . 7.95 40°  P r o t h . v e r y much t h e t s a m e a s u s u a l d u r i n g t h e f i r s t h a l f of skimming p e r i o d . Later f r o t h was l i g h t e r i n t e x t u r e & more c o p i o u s . RESULTS Test Kb.  ASSAY %  Wt.  BaS0  Peed 100.0  4  GaC0  3  R]SCO VERY % SiOg  BaS0  27.9  29.4  42.7  100  4  GaC0  3  Si0  2  100  100 5*2  C  31.8  76.9  16. 2  7.0  86.8  17*4  T  68.2  6.Q  35.7  59.7  13 . 2  82. 6  IHBEX  2.64*0  94*8  -G0ECLUSI0U ~ The f o l l o w i n g t a b l e s u m m a r i z e s t h e r e s u l t s flotation  of b a r i t e  s i l i c a and q u a r t z u s i n g Sodium  Metapho/sphate; a s a d e p r e s s o r of l i m e s t o n e u n d e r conditions  of  o f 20° C» a n d 40° C .  temperature  141  Temp °c  EEASBBT  7o  Weight  s  ASSAY % BaS0  4  GaG0  RECOVERY % 3  SiOg  BaS0  87*9 :  26 . 6  8*9  4  CaC0  SiOg  3  20  Ifa P Q  3  35*4  66.4  22.5  10.2  40  la  3  31*8  76.9  16.2  7*0  86*8  17*4  5.2  53,4  50.7  36.2  13.7  97*9  67.1  17*3  P0  40  A t 40° C* a b e t t e r and c a l c i t e  is  s e l e c t i v e f l o t a t i o n between b a r i t e  obtained than that  a t 20° C«  Both  tests  c o n d u c t e d w i t h u s e of S o d i u m M e t a p h o s p h a t e a r e b e t t e r that  c o n d u c t e d a t 40° C* w i t h o u t  Sodium Metaphosphate*  than  ./P.O.,  90_  Be Ann  SO,.  GR^DE  , RECOVER  BoLJK !  JS.O.  L40..  Je  nf_L/rnesfone  20„  20 !  30  TEMPERS  40  -ru&£  go /n D&yhees  Gen-f-i<yr<yo/e  YAND  142  - ASSAY METHODS The unique c h a r a c t e r of the ore allowed development of o r i g i n a l assay procedures based on standard methods.  commercial  R e s u l t s obtained were recorded to the nearest t e n t h  only - f u r t h e r f i g u r e s would have been meaningless* The methods o u t l i n e d are d i v i d e d i n t o two p a r t s , one f o r each type of ore? 9 (1) Part A - Assay of ore c o n t a i n i n g (a) B a r i t e (b) C a l c i t e (c) Quarts (d) Sulphides® (2) P a r t B — Assay of ore c o n t a i n i n g (a) B a r i t e (b) C a l c i t e (c) Quartz PART A ASSAY OP ORE CONTACTING BARITE CALCITE Q.UARTZ AND SULPHIDES S e c t i o n (I) Weigh out one h a l f gram of ore i n t o a 120 c.c* beaker; add 10 cc HC1, cover w i t h a watch g l a s s and place on hot p l a t e *  When v i o l e n t a c t i o n ceases, add 5 cc HN0 and  b o i l u n t i l brown fumes, are a l l o f f *  3  Place beaker  on a low  p l a t e j r i n s e o f f cover g l a s s , and take assay t o dryness*  143  Bake a t 120 ~C f o r 1/2 hour, c o o l , add 10 cc HOT and 40 cc water, b o i l t i l l filter  clear, f i l t e r  through a 12 1 / 2 cm r a p i d  and wash a l t e r n a t i n g w i t h b o i l i n g water and.1:1 HOL  u n t i l yellow f e r r i c chloride w i t h water f o u r times*  i s a l l out of the paper; then  Reserve the r e s i d u e f o r determin-  a t i o n of s i l i c a , and hariura* S e c t i o n ( 2 ) - (a) Determination of I r o n . Make the f i l t r a t e ammoniacal; then 5 cc i n excess* B a a l , f i l t e r and wash w i t h b o i l i n g water* Reserve the f i l t r a t e f o r determination of calcium as i n s e c t i o n ( 3 ) » D i s s o l v e the p r e c i p i t a t e of i r o n hydroxide w i t h 1 : 1 IICL; then 5 cc i n excess* clear*  till  While s t i l l hot add Sn CLg drop by drop u n t i l the  yellow c o l o r of Peg C L excess*  Add 25 cc water and b o i l  g  disappears and add one drop i n  Cool thoroughly add 10-15 cc of mercuric  to n e u t r a l i z e  chloride  excess Sn GLg, and t i t r a t e w i t h standard  potassium dichromate  s o l u t i o n , - u s i n g potassium f e r r i c y a n i d e  (KgEe (ClT)g) as an I n d i c a t o r * Section (3) Determination of Calcium* To the from the i r o n hydroxide p r e c i p i t a t e 2),  add HCL t i l l  a c i d , then 1 cc i n excess*  (Section  Add 3 gms.  ammonium o x a l a t e , b r i n g to b o i l and add ammonia drop by drop till  alkaline*  (The calcium oxalate w i l l be coarse and e a s i l y  washed)* Allow the p r e c i p i t a t e t o s e t t l e out f o r 1/2 hour, decant the s o l u t i o n through the f i l t e r , wash p r e c i p i t a t e i n t o  144  f i l t e r and r i n s e beaker out w e l l to remove any remaining ammonium oxalate,  (at l e a s t 8 times) Wash p r e c i p i t a t e  into  o r i g i n a l beaker, f o l d paper over edge of beaker, add 100 cc hot water and 5 cc 1:1 H S 0 » 2  Heat to about 60°C, t i t r a t e  4  to pink c o l o r w i t h KMh0 , add the f i l t e r 4  paper and f i n i s h  titration. S e c t i o n (4) - Determination of Barium. Thoroughly mix the f i n a l r e s i d u e from Section (1) w i t h 5 grams of H a G 0 2  950°C t i l l the  3  i n a platinum c r u c i b l e and fuse at  the melt i s c l e a r .  Pour the fused m a t e r i a l i n t o  cover of the c r u c i b l e immerse both c r u c i b l e and cover,  together w i t h the contents, i n a beaker of hot water. for  10 min., remove cover and c r u c i b l e , scrub and r i n s e  When s o l u t i o n i s complete, f i l t e r  well.  through 12 1/2 cm #1  Whatman f i l t e r , wash w e l l w i t h hot water. for  Digest  Reserve the f i l t r a t e  d e t e r m i n a t i o n of Silica® Wash the r e s i d u e back i n t o o r i g i n a l beaker.  Dissolve  c a u t i o u s l y . w i t h 1:1 HGL adding 10 cc of f r e e HG1 i n excess. B o i l f o r 10 min. Add 4 cc of H S 0 2  hot  barium c h l o r i d e  solution.  4  i n 20 cc of H 0 2  to the  Cover the beaker, place on a  medium p l a t e and allow t o s e t t l e f o r 20-45 min.  Decant the  s o l u t i o n i n t o a f i l t e r , wash the p r e c i p i t a t e i n beaker w i t h hot water, wash i n t o f i l t e r , wash the p r e c i p i t a t e at l e a s t 8 times w i t h b o i l i n g water.  I g n i t e and weigh as barium  sulphate. S e c t i o n (5)- Determination of S i l i c a A c i d i f y f i l t r a t e of S e c t i o n 4 as there I d e n t i f i e d ,  145  w i t h HCL; then 20 cc i n excess.,  Evaporate to dryness and  hake f o r 1/2 hour at 120°C. Add 15 cc 1:1 HCL, 150 cc water, d i g e s t 10 min.  Filter,  and wash the r e s i d u e .  To the  f i l t r a t e , add 10 cc HCL and again evaporate to dryness. F i l t e r through t h e same f i l t e r paper. b o i l i n g water.  Wash 6 times w i t h  I g n i t e and weigh as SI Og,  PART B ASSAY OF ORE CONTAINING BARITE CALCITE AMD Q.UART2 S e c t i o n (1) — Determination of B a r i t e and quartz. Fuse 1 gram of the ore w i t h 5 gms of Nag CO3 In a platinum c r u c i b l e at 950°C, and proceed as i n Section 4 and subsequently i n S e c t i o n 5 f o r quartz determination,. Section  (2) - Determination of 'Calcite* The d e t e r m i n a t i o n of lime may be made from e i t h e r the  f i l t r a t e from S e c t i o n 4 P a r t A a f t e r removal b a r i t e as barium sulphate p r e c i p i t a t e or may be made on a separate sample.  The l a t t e r procedure was used f o r the sake of speed. t  Weigh out 1 gram of ore i n t o a beaker, b r i n g i n t o s o l u t i o n as i n S e c t i o n 1 Part A, remove i r o n as a hydroxide as i n S e c t i o n 2 Part A, and proceed, as i n S e c t i o n 3 Part A. (Notes)  (1) Some s i l i c a may be contained i n the barium carbonate r e s i d u e , hence i n the high  silicas  such as the tailings., the f i l t r a t e from the barium sulphate f i l t r a t i o n i s best f u r t h e r a c i d i f i e d and taken to dryness, d i s s o l v e d i n 15 cc 1:1 HCL made up to 150 cc with water,  146  f i l t e r e d Ignited and the result s i l i c a obtained, added to the regular s i l i c a , assay* (2)  Large excesses of sodium carbonate should be avoided i n fusions®  SULPHURs  Weigh out 1 / 2 gram of sample into a 1 5 0 cc beaker* Wet with 4 0 cc water and 3 0 cc n i t r i c chlorate mixture. Keep on a low plate u n t i l the solution i s complete - preferably Take to dryness and bake at 120°C for 10 minutes.  over night.  Cool, add 5 cc water and 1 cc HCL, digest for a few minutes. Add excess la^COg and 2 5 cc water.  Boil f o r 10 minutes.  Make up to 7 5 cc with water and b o i l again, taking care to avoid heating too fast lest bumping results. P i l t e r using #1 Whatman paper. with hot water.  Wash 4 or 5 times  Add 2 drops of phenolphthalien to f i l t r a t e .  Redissolve precipitate with water and HCL. Digest t i l l clear.. Add 2Ta£ COg u n t i l brown precipitate is. reformed* P i l t e r into . f i r s t f i l t r a t e * 3. cc i n excess. B o i l *  Acidify f i l t r a t e with HCL adding  Add boiling Ba CLg i n excess and b o i l  for 10 minutes or u n t i l Ba SO4 precipitates, settles out* •Pilter through #1 P paper* and 4 times with cold water* at a high temperature. Wt  of Ba  S0  A  Wash 1 0 times wi th boiling water Ignite, slowly at f i r s t , then  Cool and weigh* X Q.1575  Wt. of sample  x  ^  m  f  o  s  f o S o  147  - BIBLIOGRAPHY  -  PATENTS g Be B a v a y  864,597  Ho rwo o d  (1904)  1,0 20 35 3 ?  McGregor  972,459  Ramage  976*761  E , -Eo R o s e a n d W. T . M a c D o n a l d Wentworth  970,002  and  2,040,18? 980,035  PERIODICALS: E n g i n e e r i n g and M i n i n g J o u r n a l ( M c G r a w - H i l l ) New Y o r k , U.S.-A. G, R. M. d e l G u l d i c e , " F r o t f a . i n g % P „ l 5 3 j X 9 3 4 , J.  M» P a t e k ,  "Soap E l o a t i o n " ,  March 1934,  0 , D, Y / e l s c h , " C o l l e c t i o n " ' , . O c t .  1932,  J o u r n a l of P h y s i c a l C h e m i s t r y , New Y o r k , U<>S»A, A , M,' G a u d i n , H . G l o v e r * *  a n d M, S, H a n s e n , M a r c h 1933  1, W. W a r k "The P h y s i c a l C h e m i s t r y o f F l o t a t i o n " - V o l . 4 0 , May 1 9 3 6 ,  T r a n s a c t i o n s A , I® M. E . ,  New Y o r k s  U.S,A,  A. F.  T a g g a r t , T. C. T a y l o r & K n o l l " C h e m i c a l - R e a c t i o n s i n F l o t a t i o n " 87, 1930,  A, F,  T a g g a r t , T . C. T a y l o r & C* R. I n c e ( S a i l i n g . Methods 285) 1930,  Ralston  87,  1930.  R a v i t z and P o r t e r , Sulmanj  Pub, 513, 1934.  2 4 , 44} 1 9 1 9 .  ¥ a r k a n d Cox?  245,  1934.  148  P r o c e e d i n g s of  the World E n g i n e e r i n g Congress, - T o k i o , 1929®  T a k a k u w a , 1929 o U n i v e r s i t y of U t a h and U . S . Bureau of M i n e s , Tech.- Pub. I o , 1. (1928) A , Ms G a u d i n , H . G l o v e r , M© S© Hansen a n d C. W* O r r . TEXTS g A , M. G a u d i n , P l o t a t i o n , I . W. W a r k , P r i n c i p l e s  (McGraw-Hill)  New Y o r k ,  1932,  of F l o t a t i o n , M e l b o u r n e , - A u s t r a l i a , , 1938.  A . J * W e i n i g a n d C . B, C a r p e n t e r , The T r e n d of - F l o t a t i o n . C o l o . S c h o o l of M i n e s , G o l d e n C o l o . — 1937. P.- R a b o n e , F l o t a t i o n P l a n t  Practice,  London E n g l a n d . - 1939.  A , S e i d e l l , S o l u b i l i t i e s o f I n o r g a n i c and O r g a n i c - Compounds, Hew Y o r k , 1 9 1 9 . A . M® Comey a n d B . A . H a h n , A D i c t i o n a r y of C h e m i c a l - S o l u b i l i t i e s Inorganic; Hew Y o r k 1 9 2 1 .  I. 1  1  \  a  k  :  ft .* /  I  ci  j  I  I  833 93 61-7 £>2  »  io /  /  R2S-7B26  to 1164 11,6 cz 10-2 t-o T sw-s #74 _3_IOOO IOOO IO £1. isoo 148 cs £3S S3 T 911./ 73-9 _4_ logo soo 60 CI /OS /•I C2  1  REAGENTS  k  60  4-2  C3 T  1  1  6C-4-«•« 42-6 4S-7 4-6  _2_ IOOO soo CI  si  I ST |  1000soo  C2_  0\  1  k  s  6  0  X CJ  CI CZ T  1 i5 1  9:15  C  13 600 Soo  /  0-98 04/  0-07  0-22  £.0  0-11  i-0  17 soo C , T m soo c  245-8  0-4f  so 34 6S-1 3-7 44-3 413 SS fs  /47 23-7 943 SO-9 363 76-3£Z 49./  2S64  046  i-8 I/O 63-64.0 43-23$-S 33 e-3 210 24.9 40-6 4-2 13-82./-28-7 122 1-9 6-7 85-6 0.9  Zl-t 323 963$3-0 733 6,7-132 47.0  2428  k 2.465 0  433 38-2.S-2 62  1/6 16-83-6 42-3 4-0 133 7-8 844 69-9 73 434  274 29S 434 22.1 /i.g 673 393 633 6-6  S4-S4/7 943 466 S83 6-2  1986  210 24$ 40-6 42 4-9 11-66S-0 38 427 44:0 76- S-/  /3-9 27.0926 43-3 36/ 73-0 7-6 S&7  2516  /66 283 880 S4-0  243-1  o./C  /.IS  0.4a  afia 6.1 12-763S 3-9 40.0 4/8 H-7 4-o  20 SOO soo  T 22 soo c  soo  23 soo  175-63S-3 313-6£4-7  soo soo  2.0  831  10204:1 820  3  to 20 4:1 7-3 7-6  7-7 14.4 60* 3-6 437 46-/ 2-9 4S 2IO 243 401, 4-2 140 2/8 237 80 2/9 269 433 3-2 274 29S 43-6 388 32-0 9-6  2SS 3?3 98-0&OS 746 6/-7 2-0 I  2342  1/3-0764 73-6 87.083-6864 63-2  184-2  902 438 96 9-3 S62 9M  2368  210 243 40-6 4-2 41-2272 78 8-9 78 223 61.8 1-4  776 433 76 8/4 2i</ 924 /£•&  2262  41-1 2C-9 7.2. 83 88 24J>69£> 14  74-4470 63 7S-3 23-6 69.0 932 2/2  226-6  32.1 »6 ll-S 63 42. S-7 87-o o-T 2IO 249 40-i 4-2  92C 913 174 94i 7-4 37 82.6 S-8  3S-8 3C6 6-9 7.0 38 IB-O 79* 0-9  9/-7 780 92 9ao 8-3 23-0906  27-4 29S 434 63~f22S 13-9  12-74-2 2-/  2S-2 29-7 40-2  87-3963 973  210 24i 401 42 413 26-4 41 S-o 9-3 24-t 6/.o 7-6  714 371 3-6 28-6 (23 9i m si?  2306  4a-i 29$ 3-2 &8 22-t. 64&  8/3 493 36 187 60-29/4t '  222i  Mi  2J.C 241 401 4Ct 80S Si 21.9 68-/  733 47-77-6 t 1&2 623  S19-I  041  274 129i 4ft J /o-t1 64L1 371 8t  737 3o-791 693 Q0-9 .....  238i  0-2S  0-43  0.?5  0-43  s• —e—  3  330 io 20 4:i 8/6 8-to  o-l  0-23  3  10 204V  04  023  s  /o 20 4.7 ass  7-0 7-2  a/6  fi-SO080 0-4& 0-2 3 /o I* 4:1 3-1 7-9  30 3877 377  -  83-4 7/7 120 44-0  4-4 23-4 63-0  0C0  30  2/1-6 41-3 soo  0-4.  8-30  soo  C T  20 4/  30 27s S-S 47SS 94S  T  20  SO 338 331.S46-2  soo  e  3  30 300-2 il-7 192-2333  C T  0-4*  818  19 SOOSOO  C T  —  § 0  30 191-738-2 io9S 418  r  a  8-so o-s  30  soo  j 1  1S-233-4946 S/-484G 66-6 66 4S&  p-3*  3-6 OS 3 10.20 411 7.66  3  199S 393 ioS-S 60S  9  4Q 117 63-73S 44-137 & 6.0 &3  30  soo  3-6 o-3 /•S 07 /•8 18-4 /2-o 30 C6 748 2-7 1-7 6.8 77 3S S-4- SO 1-6 963 76-0936rse 64.0  Z31 21-S17-8 7-2 2.6. 26-4 /S-4 7-S2£-7 22-6 263 I2S So.0 6-Z /•4 Coo 267.596£5-2 2$./ 8-/ SS8 363 23 2-7 '3-6 68-3 32-9/£/ 494  0-49  IS SOOsoo  204.3 41.0 296-7 S90  •s.  <»  /98 32.S /!•/ SS 3-3 7-9 /08 20 10-6/5-7 7-7 2S 3-4- 7-3 /6-0,29.0 /S-4 6-3 22. SI 3tO 23-9 44-5 4o /•S 87o 9/6 9539/4 77-0  0-/32.o /•O  0-60 0-4£  30 a-so OS 34-7 19.0 3 10 20 4:1 8-3o 8-3o 4oSO 81-0  i4S OS  OSS 0-4S • 0-2  8*0 o-s S-°6 OtlS 8-4 S-4-  0-2  2/0  3 /o 184:1 6-9 81  30 192-6383 3 /o 184-7 30SS 61-7 T. 25 soo SOO 30 I70.S 333 3 to 13 4:1 T 333S 66-2  C  0-0/  218-743-6  C T  0  2-0 60  3 to 20 4:1 976 9-10 30 14- 500 SOO 8-50 OS C 331-2 661 3 10 20 4:1 81$ 170-2. 33-9 T 8-tS  2* C  IS-4 349 IS6 69 /6i 433 133 68 22.9 30-7 22.6 6S 2/-o 22-2 4S-0 3-6  AO  041  to 204-1 8-3o  30  16 500 500  14) 3-3 44 /•2 2-7 36 SO 103 2-9 4-3 23 S--7 6-7 94.3 69-7 3 3 * SO&Z6-6  2-0 6-o  3822 664  Zl c  9S 208 264 M-S 6-9 /S-6 36-4 OS S3 13-2 S3-7 2s:5 6-2 2-7 24.0 S7S 42-a 2-7 0.7  'i'r,  s-o 6-0 3 10 7041/ 8-30 1 10 9-23 / 10 9-10  C T  C T  2-0  ."3  9-8 /68 128 //7 7-6 7-1 10-248 39-764.0 ts-9 27-S 23-7 3-2 zS 4J S-8 8-8 3-8 6-3 3./ /•o 38-8 94X)914$6-599-7 238 25-5 •>4-0  3 SO  I  25  SO  290-9 206-9  T  J  210 249 406 42  7  12 600 soo  1  O-07  OS  33J-667-9 /S8-J 32/  1  \ B\ \1 1  0-41 076  to 204:/ 8-27 s 8-/o  30 8-SO 17-2 3 to 204:1 8.43 2/4.2. 43-1 3 to 8-36 199-6 33  c T  <§  t  3  /•o  T  1  K  %  12-2 238 6-9 123 74 6-9 //•3 1-8 33.3383 0.9 0-6 2IS 36-4 17-3 4* 13 /•/ /•S 21-3 24-7 443 3-2 /•4 92J) 97-2m SS-610-9  SO 168-3 /63 3 7o 204:/ 9-32 432-7 4-7-9 / /o 923 3S&I 35-3  II: soo SOO  5?  \ I  RECOVER/SO  0.07  SO 3 830 10 204:1 8-30 3186 63-0 1733 36-1  soo  i  ys %  04I 0.16  9 600 soo  cz  i  t  I  A  3 10 704=1833 / s 8-20  OS  IO 600 CI  % \  C? j  OS WW 0-08  9.SO  7* SDO soo so 20 823 C 307-96/7 3 to 8-20 7* Z9/.7 333 B/S 3 SUO soo 30 ffs OS 302M &>-7 C 20 4:1 8-31 3 to T 196-0 33-3 C T  !1  1  0  Ass  t/roM  9  1  1  <*  9-63 8-30  C3 7" 943-4S4-4 s IOOO soo 60 :c/ B3o 83 a 10 204:1 3-26 eto 6.6 / 10 9/7 : 7* 863-3 SSI  >6 ' 1000soo  ><  TO Csu  TO 1*1 ILL #/TOH . PEAQENTS  m  183-9 Lo <?/e 204-5 Hi w  CIT 206-4  IS ts:  40t  ...  } i~ n ! • fi s k -2$ '-00 6••oo T  27  137-8 .78-1  i lOOi roo  isxa 71-9  T  I80-6 36-3 mo S3-7  C T  ?04J 40-9 29S-7 59/  c  ?lt-7 428  C  16 - •XlOiUX3 2a .soot 500  T 29 t  SOI &21  C  T 30  c  140 1V4i  it  k :  ?5.  C  X  289-7.S7-2 349-1 53-4 304-S 44.6 154-5 45-4  P 1 wcr> '  i  •0 O  s 3'  /5  6  -  9  3* Is  0  4  \  ft $ "0  FS  tt  ?EM- AKKS  1.t  CP  <>  27-9 i94 < &73 i »S / S-Si Wi  16C  ( 3-3/  3-7 t'SS 2 '76 *?6 ZS8( &2 I V-2 '/&4S 7-4  437 t 34- 10-4 (>7 \36-6 -17-0 .5-9 2 •>9-5 ',/-/\l3 1 -4-1 %30i 14-7  £r6c  120 9-6 . t-3S 9-Cy <1-4 < 2?-4i3-0 9# 1Vi-2 5 fO-4  3 ro 204.7 1-P.f,  Iobo  <  4- /0  o-ic  1-3/  9-25  So  "j 3c 3 /c 20 4u 1 S-Si 222- f-44; 278-7'SS-7 "7" an ) 30 44 £tx> nt 3 ft •204:18-3S 211-8 49C 29/-C S7-S1 T sc SM Soc) 45 10 4:/ 8-3C 22.0782' f 561 r 46 fXx.7 SOt OS 5 t4U ? 3c 3 /c 20 4'-i'8-2. Q 215284*1 £7r 03C So a 5bx 1 0-5 3 IC J 20 4:i S-3t3 ? &7i c 328-1 l 32-i OS0 7"? 0 T O0 3t 3 ici W4: ' 74?. 20/ (,4C 0 •! si 7-7C $01-? 600 OS0 sc 0 500 S<J_lc 1 20 4:1 8-Zs 217 ' 4^-1 c -jr 284 4s& 9 l-c 3C 5<0 so0 so0 $ ic1X> 4. '8-4 5 199-1 39c SOS o&> 4 \7  S  1  I  4.'/ 1  S T 70 6:1 3-34 T •S6-0S44, 3o SI Cl .soo iOO 119-0 23-9 3 1 20 4U S70 0-5 S3-7 /0-6 8-70 I Z cz C3 63-4 /2-i 8-70 I S T 263-2 52-9 3Z .ssoLsoo 3o c 2044 40-3 3 /O 20 4:/ 7-68 0-50 T 296-7 59-2 7-7S 33 s» 53d 30 c 350-5 69-6 3 /0 20 4:/ 8-IZ OSO 7" 152-6 30-4 30 34- soo soo S IO 20 4:/ 8-30 025 103-3 20- 6 S99-2 79-4 T~ ^1 soo soo 30 36~ 3 /o 20 4:/ 3-34 0-26 c 287A 57-3 y~ 214-5 4-2-7 0-2S So 9C 500 soo 3 /0 2Q4-I f?-SS 197-9 38/ 3/20 61-9 7~ OSO 37 soo *m 10 w*-v 3 /o 20 4:1 8-70 4-29-285-2 f 72-9 /4-S 2-0 OS) QQ soo soo So $ /o 20 4:1 8-41 22&-I 4-5.0 c 2766 SS-C j~ Soo Soo 0-SC • 2S SO & /a 204:1 8-32 217-9 43Z c 287-3 Si-S 0-5C 30 4-0 Soo soo 3 /O Z)4:l g-SC 2B/-7 39-1 3ol-2 &o& T 0-SC to 30 AJ soo soo 3 /o io 4:1 $•38 213-4 42-L 288-S S7-1 i soo soc 30 /•o 42 3 io 23 4:18-3i /9o-5 - 37-i 3/2-9 £21 T 43 Soc Sot  $  w  C>6c  3 /O  30  1  0  —  3 9 to  30  SO  SO  t  Ri  %  T  LIE*-) %\?£CO  ASSAY  TO CEIL 4 7TVN  REAGENTS  1REAGENTS TO MILL #/TON  •  m.  /  12-3 i ss. 18-216-4- ~>  1-24 0-12 9-24  "I" CQ  366  _>  I  f  980 • 9-6 2-o SO-9 90-4 Si-S 23-7 IIS 8-3  c§  2  7-7 * 99-4 ?2-6l 59-5 i ?7-7114-2 i?2-9 3-0 i V31 '0-C.1S-6i 4Z .1S-7 Z4.6 18-0 l 12-3 ; *4-3 4-3 9S-4~i°Z-0  ti/.o 31-1 9-0 /•I 268 . 70-2 43-6 • 774.•29-S 25-3 '0-3 1 t 276 I0O 25-Sm 23-5 42 Zi-3  060  1 9  ?3&1  208 S-9  '00 2S 27-2 7/ 48-0 84S  2-94 !34 323 US 79-2 4S-9 77-6 721-7 9-8267 iO-3 208 S47 88-4  MC  |%•/  0/6 0-14  73  41-7 19-4 9g& 978 33O 2-2. 90-3 7-4-2-2 67-0  167-3  2064 42-i 42-7 14.0 33-3 29-6 7-3 23-2263 4S-9 67-7 70-4 92-7  0-4$  3-5  0-8Z  1-47  549 42-5 4^.6 77-S 539 4S 219-1 9-8 217 6O0 22-5 46-1 9SS  l-7(,  32-i 32-8 32-4 980 94S 681 I3H £0 7-J 94-1 ZO  132  SS-S39-9 3-0 20-8 27-9294 Sg-9 32-8 44 253  1-32 0-50  0-7Z  S-7 70-2 42-7 9-5 6S-2  S9-i 304 9-4io 28-8 62-3 77429-S 43 6 55-3 34M 9-1 6-62(2 63-8 27-429-S 43-i 39-- 482 10-2 I9i 17-S S8-6  ou 0-4.1  1940 44-3 8-0 945 89& 10-9 7-1 86-9 •S-5 70-4 89-/  0:/(  m IU  37-9  £-•£  - -J  '6  93-8 &O0 6-2. 22m 6-2 39-1 99-8 97-0 497 9-8 2315 9-0 S03 90-2 S6 8 413 91 23(J 13-2 587 9o-<-. :  861 49-c 9-6 22773-9 s/.o 9o-4I 62-7 9-S 183/r  44-1'•>373 30:  5  906 iso-i 8-9 230 44L 26--j 675 9Z 49-i ' 90-1  k *T  S(r 34-i S-3 1  l-o  %1 0-6  SS }S2-i - 11-1 891 . 48-5 72-C 223 St 1 26-S63-4-10-4- SIS 88c  37,344i Z/9-9 9SC  104 9-2^  ? 4-4 88-C L  0& 08c  57c34.  060  at  Oi C 0-i z  1  S7-t'33-i 9-S 87-2 49~ t 70-2 228 7 ? 64l 2C-C 1 63-i ' '2-i? S07' 9ot  0  1-6  i  % ll-S63-1,6s-i 113-6 184/ 145-*. 17-1 &/-S 36,4 -34.1 86-- f  y3i  1  ~t-~32i 016S-&  S-C? S-6  (0  68C  84> 548< 7 8-6' 238 6  y 75:> S2<7 91-S 7 9 2S-.162-C  0  Si 1 33 5 117 87.6 49- y is- 4 235 7 e Z 26 Z &3i- 12-£ so- 587-t  0  Si •7 30-0 I/-: 1 84-0 4J-C0 lit 1 2330 7.6 28 3 60- 0_f6;i7.SL 0.89- 2 —  5:  .  or  1  1  •«  • i  if  !  SI SOO 50C c 206-64lo ,J~ 297-2 6 9 - 0 5 2 soo SOC C  T  soosoo  t  <  j  .N.  1  30 DC  2984 59-6 202-5 404  (T  R EA  to  1 1  8  C  2029405 288-2 59s  7~  c5' cS 0°  ph  0  C  240448-2  7~  2595S/-8  5"<?Soosoo  TC 'MILL  #/FOA1 REAGENTS TO CELL rfk»  3 102C 4:1 8-2C  &1  a!  1  -5?  OS OS  ou  3 IO PO 4:1 8-32. "as  1  ?  05  223-9 44-8 3 10 20 4:1 8-40 2/88 55-2 SOO SOO 30 C . 2o8s 41-7 3 10so 4:1 SSO T. 292-758-3  5"9  30 16 Soo soo Z04.8 40-9 C 3 10 20 4--I.S-31 295-7 59-1 1 So 66 SCO SOO o-s C 20I-2 4ol 3 10 20 4:i 8-50 301-6£9-9 Soo. SOO 30 0-5 3 lo 20 4:1 8-30 177-3 35-4 323-9 64-6 7"  r  c  o-s  30 I2S-6 2S-I 373-274-9  . (,3 SOO soo c 981  3  7 20 4-1 840  30  p-s 3 6 20 4-1' 8/1 19-7 T 4-oo-o 86-3 0-5 3o 64-500 I TOO C 84-416-9 3 m 20 •4:1 3-3S T 93-1 So OS 65 500 soo 319-1 63-8 3 IO 20 4:1 9-30 c I8/-3 36-2 T i 05 66 500 TOO 3 10 20 4:1 $•36 c 151-3 30-8 £9-2 'T 340-7 3o 500 isoo 163-8 33-O 8 s 20 4:1 9-3S c 332-0 67-0 T 3o 68 Sbo. soo 13 s ,20 4-1 ':c 114-9 23/ 984-2 76-9 X. 500 itoo so 69 267-1 53-4 c io 4--I i 16 < 232-7 46-6 T Soo 'soo So 2US 52-3 i / 0 i» -1:1 c T 237-647-7 71 500 isoo 30 156-7 31-8 S1 c 336-3 68-2  \RCCOVERY,  \<*  Hi •£  HI  1  G-  f-30  REMAR  1 )  (0 .  ? 93-0/5-7 424 45-7ZO-9 93-t ' 70 84i ; 185/ 4-2 52 86-6 6-2  147  !•  53-729-5 /6-9 89',474l /9-3 0 '0807 - 223 5-3 28-6628 /OS S2-{ 7  0.  a-  9-0  0<o  7Z.6 46c 53-236-C - 2/91 11-22S-4 59-226-t ' 54t19/8  ae,  58-331-2.91 93-9 > 42/ 01.2 ~=-=-AZ4Z-i 0 2-7 29-C 62-5 61 57-3 1 9031  0-6  59-329-4 //•4- 86-6 40~/'/O-S - 23S-13 6-5 3oo 620 /S-2 59-5 89-7  0-2  r-  r  OS •srT  r  /•o Of,  53-434.6 9-0 962 SC3 /OS 2-0 247 70-8 3-8 43-7 895  o-6  56-432-8 //•S 92-0 49-6.'1 72-S 230S 3-9 263 &4-8 S-O So-4875  0-72  S8-9 ?8-7 103 4-S 29S 64/  229-  1-25 >  '0-5) 963 4/0 /0-3 97 590 89-7  239-C  58-8 ,3?-0 9-6 90-2 43-8 9-6 23(,8 4-4 28-4 63-0 9-8 S6-2 90-4  TESI  06c  629 26-8 /o-9 923 365 /0-7 245-/ 3-6 31/ 6,0-6 7-7 635 89-3  k  0-6  644 225 /0-2 87-9 266 8-9 252-4 5-0 334 574 /2-I 734 9/-/  060 o-s  10  Q.  /•5  O  O-G  82-7 /2-6 &7 759 70-7 4-1 S-8 35-1 53-0 24-1 893 959  0-6  87-1 8-2 3-7 62-9 55 /•8 2s~5<o 125 34-8 49-8 371 945 982  0-6  7S-8 73-9 8-0 49-0 7-9 3-3 237-8 /6-0. 32-7 48-45/0 92/ 967 — 27-4 29S 43i, 9S-S 39-S 4<>4 /<?•/ 87-8 27-8 179-9 3-3 /0-3 82- 4-5 /2-2 72-2 27-9 7Q-4 42-7  26/./  20  —  25  2-0 1-33 an  ^  6  /•O 06,  0-48  060  T - -9S  0-G  t w  (0-6  4--I 7 to < 9S .  ><  /•O  3 IO 20 4-:l 8-4!  C  C  %  553 33'- 3-3 79c->47.c 1 85 /o4 26-26/5 2/C 1 S3(0 9/i.r 223-i  \o-6  7~  r  ASSAY  •d  0-6  0-25• 3 1020 4:1 3-4i  30  soo.soo  |  1  27.4 29-i~43-d  So  S7 soo SOO  %  y  So £•0 233-2 46-6 3 IO 20 4-U I03Z T 266-8 53-4 93 30 54 Soosoo 0-5 :c 187237-S 3 IO 2n 4:/ S-21 T 312-1 62-5 55 soo5oo JU b-5 C 207-8 40-9 3 1020 4^1 T 299-5 591 SG. sooSoo S3 C  -  :.  X  c76  l-O  I/-5 2-2 >?/•/ ;76./.  -o  0  73-6 2o-8 7-0 795 22-2 S-O 252-3 8-4-32-5 S8-6 20-S 77-8950 2SO 28S 46-S 66-S 2S-Z 8'2 980 290 6-4 2S2-6, 4-s 30-6 594 I20 7/-0 93 • 6, 26-S 47-9 88-S 7-4 4-9 76-8 6-7 2-7 267-48-0 lo-s S70 * 23-2 93-3 97-3 27-9 294 •42-7 SO-7 36-2 13.7V179 67/ 17-3 2/3-3 /•7 20-4 ZS-21 2/ 32-9 92-7 < ' SO-4.  « ^60 i0S-7 /'43 t< o . 34-3 £  7/6-0  76-9 /6-2 70 t ?68 / 7-4 'TP '64 0 60 iS-7 i '9-7 / 32 6'2-6 <, J 148^  jC s  ~  t  — t  .• 1K1 i  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105574/manifest

Comment

Related Items