UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The flotation of non-sulphide minerals Elfstrom, Roy Harold 1939

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1939_A7_E4_F4.pdf [ 32.23MB ]
Metadata
JSON: 831-1.0105574.json
JSON-LD: 831-1.0105574-ld.json
RDF/XML (Pretty): 831-1.0105574-rdf.xml
RDF/JSON: 831-1.0105574-rdf.json
Turtle: 831-1.0105574-turtle.txt
N-Triples: 831-1.0105574-rdf-ntriples.txt
Original Record: 831-1.0105574-source.json
Full Text
831-1.0105574-fulltext.txt
Citation
831-1.0105574.ris

Full Text

L t= 3 •'S? f 1 s"? ft ? •THE FLOTATION OF HOI-SULPHIDE M1FERALS by -Roy H a r o l d E l f s t r o m A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF APPLIED SCIENCE Iff THE DEPARTMENT OF METALLURGY THE UHIVSRSITY OF BRITISH COLUMBIA A p r i l 1939 CONTENTS, Ac know lodgements 3 Preamble ...•••••••••«•••••••• 4 C o n c l u s i o n s : (a) Quartz F l o t a t i o n .... 5 (To) B a r i t e F l o t a t i o n .... 6 (c) •Limestone F l o t a t i o n . . 8 P iecommendations 9 Reagents: (a) F r o t h e r s ............ 12 ("b) C o l l e c t o r s .......... 12 (c) A c t i v a t o r s .......... 14 (cl) D e p r e s s o r s .......... - 15 Theory of F l o t a t i o n (a) • Phases of the F l o t a t i o n System 18 (b) M & c h a n i c a l A s p e c t s . . 20 •(c) A d s o r p t i o n .......... 28 (d) T h e o r e t i c a l A c t i o n of Reagents (1) G o l i e (2) F r o t h i n g ........ 41 (3) A c t i v a t i o n ...... 46 (4 ) De pre s s i on ...... 49 P r e p a r a t i o n of the .Ore ........ 52 i 6 O G S e e « Q o » « o o e e « e D e e < r . O D « « 0 i > « GO AS i.Iy bllOClS © « e e © o © e « © « © e o e « » 1*^L2 Bi. 0 l i . OQ 3?Q pXl^ o e © o o « o e « « « 9 e e « o e l^L / Summary of T e s t s ............. 149 3 LIST OF ILLUSTRATIONS -APPARATUS • (2) (3) Pebble M i l l s . F l o t a t i o n Machine* Thermostatic Controlling Device, furnace© Page 56 57 58 59 GRAPHS -( I ) (2) (3) ( 4 ) ( 5 ) (S) Time of Grind and Grade, 92a - Recovery and Bulk® Pulp Density and. Grade* Recovery and Bulk. 94a Sodium Metaphosphate and Grades. Recovery 131a - and B u l k . Temperature and Grade * Recovery and. Bulk® 141a Grade of B a r i t e , Limestone and Quartz 149. - i n a l l Tests. R e c o v e r i e s * Bulk and Three Mineral Index 150 of a l l Tests. 3 - ACKHOY/LED GMBUTS -The writer wishes, to acknowledge his indebtedness to a l l those who have i n any way assisted i n the preparation of this thesis* To Professor G. A . G i l l i e s of the Department of Metallurgy of the University of B r i t i s h Columbia,, under whose supervision t h i s work was: carried out, the author wishes to express h i s sincerest thanks* A l l a n a l y t i c a l work was carried out under the guidance of Assistant Professor P. Ao Forward of the Department of Mining and Metallurgy, whose help was invaluable i n the assaying® F i n a l l y s but none the less sincerely the writer wishes to thank his colleague William A® Dayton f o r the stimulating encouragement and cooperation rendered by him throughout the course of the work* - PREAMBLE -A quarter of a century ago the concentration of ore by f l o t a t i o n was regarded as a remote p o s s i b i l i t y . Today, i t i s being universally practiced with an ever widening f i e l d of application^ I t s o r i g i n and growth have been concerned primarily with the separation of sulphide or metallic minerals from their associated non-metallic gangue minerals* In the last ten or f i f t e e n years, however, i t has been found possible to f l o a t almost any of the wide group of non-metallic substances, but selection of one. mineral from another has been accomplished i n only a few instances. It i s with the prospect of expanding the present supply of information concerning the selection between these substances, that the work carr i e d out i n the preparation of th i s thesis i s considered justified© - C 0 F G L U S I 0 1 S -In stating these conclusions I t must be noted that t h i s thesis should be considered as a preliminary report on the f l o t a t i o n of barite s. lime stone t and quartz.. The re s u l t s obtained from the various reagents used* are not conclusive regarding t h e i r a c t i o n s as time would not permit more than a cursbry examination of each oneS; except i n a few special cases%. notably sodium metaphosphate and aluminium - n i t r a t e . •Depression, of Sulphidesg. The I n h i b i t i o n of sulphides was. not complete. For further remarks see conclusions at the end of t e s t 6. Quartz Flotations ( 1 ) Quarts may be either flo a t e d or depressed according to the reagents used. Recoveries obtained varied between 1.8%" and 9 8 . 0 % . In the l a t t e r r the reduction r a t i o was - .1.7:1 from a feed of.2.5:£» With further cleaning I t i s highly probable that.this reduction r a t i o could be increased but there was i n s u f f i c i e n t time to v a r i f y t h i s point. (2) As an activator of quartz^ copper sulphate was the most satisfactory of the heavy metal salts used within the experimental pH range ( 7 . 5 - 9 . 7 5 ) (3) Lead n i t r a t e scted as an activator for barite and limestone rather than as an activator f o r quartz. In comparison 6 with copper sulphate,, lead n i t r a t e increases, the grade of limestone and decreases: the grade of s i l i c a * , Used i n higher concentrations lead nit r a t e activates harite s l i g h t l y but has no apparent difference in. the effect, on limestone or quartzo . (4) Sodium Alominate has a r e l a t i v e l y good, depressing, action on quartz and could therefore be used i n place of Sodium Silicate,, the standard reagent f o r t h i s purpose. Barite .Flotations (1) I t became apparent i n these tests that i t was d i f f i c u l t to s e l e c t i v e l y f l o a t b a r i t e and limestone with . reagents^other than Sodium Meta,phosphate and Imulsol Z.«-l». (2) Barite can be separated from limestone most e f f i c i e n t l y by the action of Sodium MetaEhosphate. as a limestone depressant. A series of tests conducted with varying concentrations of sodium metaphosphate indicates that 1.5#/ton of ore gives the best r e s u l t s when judged by the "Three Mineral Index*** (3) With the use of Sulphonated Castor O i l s i t would be possible to make a bulk concentrate containing 95% of the baritej, 90% of the; limestone and only 11% of the quartz 9 which with adjustments could be improved* • By the addition of sodium metaphosphate to the cleaner c e l l s , a p r a c t i c a l l y pure barite concentrate could be obtained. This i s supported by .test© 60 - 66 inclusivea The grade of t h i s concentrate could he improved by a judicious control of temperature* (4) The use of Heavy metal s a l t s as suggested by several investigators did not promote the b a r i t e . (5) The t e s t s suppo r t t he o p i n i o n of I . W e Wark t h a t t he t h e o r y f o r m u l a t e d hy P r o f e s s o r Tagga r t and h i s a s s o c i a t e s : r e g a r d i n g the s o l u b i l i t y of m i n e r a l f i l m s i s no t adequate i n a l l cases* I t i s r e c o g n i z e d t h a t the p r e sence of the lead, and copper s u l p h i d e s were p o s s i b l y d e t r i m e n t a l t o t he s e l e c -t i v e f l o t a t i o n s but t h i s i s n o t s u b s t a n t i a t e d by any o f the r e s u l t s * (6) A b e t t e r d i f f e r e n t i a l a c t i o n can be o b t a i n e d when u s i n g a s y n t h e t i c : o re by emp l oy i ng a c o a r s e r c e l l f eed* Th i s i s an e x p e r i m e n t a l c o n s i d e r a t i o n , as i n t he m a j o r i t y of o r e s i t i s i m p o s s i b l e to c o m p l e t e l y u n l o c k t he component m i n e r a l s when ground t o o n l y 42% - 200 mesh. (7) A h i g h e r p u l p d i l u t i o n g i v e s an imp roved b a r i t e l i m e s t o n e s e p a r a t i o n , but t h i s wou l d be cou.ntera.cted m a t e r -i a l l y by a subsequent l o w e r i n g o f c e l l c a p a c i t y . (8) The d e s l i m i n g of a p u l p p r e v i o u s to f l o t a t i o n s u b -s t a n t i a l l y i n c r e a s e s the ' s e l e c t i v i t y between b a r i t e and l i m e s t o n e . I t must, be n o t e d , however,, t h a t a p p r o x i m a t e l y 20% of the s o l i d s i s l o s t as s l i m e s . A s a t i s f a c t o r y f l o t a t i o n t r ea tmen t of t he s l i m e s c o u l d p o s s i b l y be e v o l v e d B r e n d e r i n g the process: e c o n o m i c a l l y p r a c t i c a l © (9) An i n c r e a s e i n t empe ra tu r e causes; the c h e m i c a l r e a c t i o n s t o go more n e a r l y t o c o m p l e t i o n . T h i s a p p l i e s e s p e c i a l l y to E m u l s o l X - l , r e s u l t i n g i n a l a r g e r b u l k c o n c e n t r a t e . The d e p r e s s i n g a c t i o n of sod ium metaphosphate on l i m e s t o n e i s g r e a t l y imp roved i n a h i g h e r t empe ra t u r e r ange . 8 ( 10 ) Variation i n the pH range haa apparently s l i g h t effect upon the f l o t a t i o n of b a r i t e , limestone* and quartz It may be noted here that a pH lower than 7 . 5 could not be obtained due to the s o l u b i l i t y of limestone i n an acid solution. Limestone Flotation? The f l o t a t i o n of Limestone was not covered i n thes tests due to i n s u f f i c i e n t time. - REG OMMBMATI PETS » (1) The sod ium s i l i c a t e used i n t h e s e t e s t s was i n the i n s o l u b l e a nh r y d r ou s form* Other f o rms such as the O r t h o s Meta , and Hydrous:, might be a d v an t a geou s l y emp loyed . ( 2 ) A s e r i e s o f t e s t s i n v e s t i g a t i n g Sod ium A l u m i n a t e as a q u a r t z d ep r e s s an t might be p r o f i t a b l y c a r r i e d o u t . ( 3 ) I f , i n f u t u r e t e s t i n g , o n l y the e x p e r i m e n t a l or t h e o r e t i c a l v i e w p o i n t i s c o n s i d e r e d , i t wou ld be advantageous t o use a c o a r s e r c e l l f e e d combined w i t h a p u l p of l e s s t h an 20% s o l i d s . (4) When endeavou r i ng t o o b t a i n a. p u r e r b a r i t e e: on cent r a t e , a s h o r t e r sk imming p e r i o d i s a d v i s a b l e . (5) I t has been s t a t e d p r e v i o u s l y , t h a t a d e s l i m e d c e l l f e e d would be d e s i r e a b l e i f such a g r e a t l o s s i n s l i m e s d i d not o c c u r . Development of a s a t i s f a c t o r y t r e a tmen t f o r t h e s e s l i m e s s h o u l d be s e r i o u s l y c o n s i d e r e d by f u t u r e i n v e s t i g a t o r s * (6 ) The use of heat i n many of t h e se t e s t s m igh t be of d e f i n i t e advan tage , as i l l u s t r a t e d by t he i n c r e a s e d s e l e c t i v e i n d e x when u s i n g a h i g h e r t empe ra t u r e w i t h sod ium metaphosphate as a l i m e s t o n e d e p r e s s a n t . (7) The f o l l o w i n g l i s t o f r e agen t s ba sed on t h e i r c ompa ra t i v e s o l u b i l i t i e s i s s ugges t ed f r o m a s t udy of s o l u b i l i t y t a b l e s t a ken f r o m S e i d e l l ' s " S o l u b i l i t i e s of I n o r g a n i c and O rgan i c Compounds". 10 D e s i r e d F i l m S o i u b i l i t y i n Water S o l u t i o n i n g m s / l i t e r M i n e r a l t o be f l o a t e d Reagent Sugges t ed . C a l c i u m B u t y r a t e Ba r i um B u t y r a t e 18 36 L imes tone B u t y r i c A c i d C a l c i u m Caproate Ba r i um Caproa te 22 3.9 L imes tone Gap r o i c A c i d C a l c i u m C h l o r a t e Ba r i um C h l o r a t e 640 i n s a t . s o l n . 250 i n s a t . s o l n . B a r i t e P o t a s s i um C h l o r a t e C a l c i u m C i t r a t e Ba r i um C i t r a t e 0*8 0 . 4 B a r i t e C i t r i c a c i d was f o u n d t o he s l i g h t l y s e l e c t -i v e C a l c i u m F l u o r i d e Ba r i um F l u o r i d e 0 .016 i n s a t . s o l n . 1*60 i n s a t . s o l n . L imes t one Sodium F l u o r i d e C a l c i um Formate 142 i n s a t . So ln* L imes tone Sodium Formate Ba r i um Formate 236 i n s a t . s o l n . C a l c i u m H y d r o x i d Ba r i um Hyd r o x i d e e 1*65 3*9 L imes t one M&OH had ILi."t "fc X © e f f e c t P o t a s s i u m Hyd r o x i d e E i c k e l Hyd . A l um. Hyd . C a l c i um H i t r a t e Ba r i um H i t r a t e 56Q i n s a t . s o l n * 84 i n s a t . s o l n . B a r i t e . Copper N i t r a t e Lead H i t . was s u c c e s -s f u l . A l u m -inum N i t r a t e Ba r i um S a l i c y l a t C a l c i u m S a l i c y l a -te 290 i n s a t . s o l n 22 .9 i n s a t . s o l n <-. : — -L imes tone S a l i c y l i c A c i d M o n o - a c e t i c S a l i c y l i c A c i d . 11 (8) If" i n l i m e s t o n e f l o t a t i o n , a s u i t a b l e b a r i t e dep re s san t i s u s ed , I t i s recommended t h a t t he s u l p h o n a t e d o i l s , p a r t i c u l a r l y c a s t o r o i l , bejused as a c o l l e c t o r * (9) Sod ium S u l p h a t e i n c o n j u n c t i o n w i t h P a l m e t i c A c i d f o r the f l o t a t i o n of l imes tones , w a r r a n t s f u r t h e r i n v e s t i g a t i o n * See t e s t 42* 12 EROTHERS t P i n e O i l - u sed as a f r o t h e r on ly , , hu t f gund t o have a s l i g h t c o l l e c t i n g a c t i o n f o r s u l p h i d e s ; t h e r e f o r e i t s use was d i s c o n t i n u e d i n l a t e r t e s t s * T e r p i n e o l » c o n s t i t u t i n g up t o 60% p i n e o i l one o f the most pure f r o t h e r s . H a v i n g s l i g h t c o l l e c t i n g a c t i o n i t was used i n a l l t e s t s r e q u i r i n g a f r o t h e r . COLLECTORSg L l s s o l a m i n e A - T r i -methy1~cetyL -ammon ium-bromide (Manu fac tu red hy C . I . L . ) Used as a c o l l e c t o r f o r s i l i c a . Has good f r o t h i n g p r o p e r t i e s . F o r f u r t h e r I n f o r m a t i o n r e g a r d i n g t h i s r eagen t see s e c t i o n am t h e o r y of c o l l e c t o r s . R e t a r d e r L .A . - c o m p o s i t i o n unknown-a p roduce of . C . I . L . , used a t T r a i l , B .C . , f o r the f l o t a t i o n of s i l i c a away f r om m a g n e s i t e . Pound t o be s l i g h t l y l e s s e f f e c t i v e t h an L l s s o l a m i n e A as a c o l l e c t o r of s i l i c a - a l s o r e q u i r e s a f r o t h e r . E m u l s o l X~ l - a s u l p h a t e d h i g h e r a l c o h o l manu f a c t u r ed by the E m u l s o l C o r p o r a t i o n o f Ch i cago 111 . Pound 13 t o be t he b e s t c o l l e c t o r of b a r i t e used i n t he se t e s t s . I t has a d e f i n i t e c o l l e c t i n g a c t i o n f o r l i m e s t o n e and r e q u i r e s no f r o t h e r * O l e i c A c i d - has a g e n e r a l c o l l e c t i n g a c t i o n f o r n o n -s u l p h i d e s as w e l l as s u l p h i d e s * Appears t o be t he most s u i t a b l e c o l l e c t o r f o r use i n a " r oughe r " c e l l * Has s l i g h t f r o t h i n g a c t i o n * F i s h O i l - a s o b t a i n e d f r om Gave & Co*, Vancouve r , B.C* Has a b e t t e r c o l l e c t i n g a p t i o n f o r b a r i t e and l i m e s t o n e t h an f o r s i l i c a * Requ i res a f r o t h e r * Su l phona t ed C a s t o r O i l - as o b t a i n e d f r om Cave & Co* , Vancouve r . B.C* I t i s a good c o l l e c t o r f o r b a r i t e and l i m e s t o n e h a v i n g , however , no s e l e c t i v e a c t i o n * T h i s reagent- wou ld p r o b a b l y be more s u i t a b l e i n a " r o ughe r " c e l l t han O l e i c A c i d due t o i t s l e s s e r c o l l e c t i n g a c t i o n on qua r t s * Su l phona t ed Cod O i l - as o b t a i n e d f r om Cave,& Co* , Vancouve r , B»G* I t ha s good c o l l e c t i n g a c t i o n f o r b a r i t e and l i m e s t o n e w i t h no appa ren t s e l e c t i v e a c t i o n . I n common w i t h s u l p h o n a t e d c a s t o r o i l and f i s h o i l , i t i n c r e a s e s t he g r ade of t he l i m e s t o n e * Sodium P l e a t e - a c o l l e c t o r o f t e n recommended i n the f l o t a t i o n of non s u l ph i d e s , , f o und i n the c a se of t h i s o re t o be an i n f e r i o r p r e f e r e n t i a l c o l l e c t o r t o t h a t of E m u l s o l X - l * The b a r i t e 14 grade was 20% l owe r „ l i m e s t o n e grade 8% h i g h e r and the q u a r t s g rade 10% h i g h e r . Due t o a 25% i n c r e a s e of b u l k t he b a r i t e r e c o v e r y was h i g h e r . The t e s t s i n d i c a t e t h a t i t i s a l s o i n f e r i o r t o Su l phona t ed C a s t o r O i l . T h i s r e agen t r e q u i r e d a f r o t h e r . p a l m i t i c A c i d - T h i s r eagen t was recommended by Gaud in and Hansen i n the s e p a r a t i o n of b a r i t e and l i m e s t o n e i n the p re sence o f Sodium S u l p h a t e as a l i m e s t o n e dep r e s s an t s I t was no t s a t i s -f a c t o r y i n t h i s ore as no s e l e c t i v e a c t i o n was e v i d e n c e d . The a d d i t i o n of TerpxLneol as a f r o t h e r was f ound t o be n e c e s s a r y . ACTIVATORSg Copper S u l p h a t e - g e n e r a l l y used as an a c t i v a t o r f o r q u a r t z . Fo;und i n t he se t e s t s to be more s u i t a b l e t h a n L e a d U i t r a t e . B e s t r e s u l t s o b t a i n e d i n a pH range of 6 - 1 1 . A l s o has a s l i g h t a c t i v a t i n g a c t i o n on b a r i t e and t o a l e a s e r e x t en t on l ime s t one* T h i s ag rees w i t h the r e s u l t s p u b l i s h e d by H a l b i c h i n Uber d i e Anwendungsmog l i c hke i t en e i n i g e r l e t z m i t t e l i n de r F l o t a t i o n . A luminum C h l o r i d e - used a s an a c t i v a t o r f o r b a r i t e ? but poor r e s u l t s were o b t a i n e d . T h i s ag rees w i t h the r e s u l t s o f H a l b i c l u 1 5 Lead N i t r a t e - u s ed as an a c t i v a t o r f o r qua r t z * I t i s les;s e f f i c i e n t t h an coppe r s u l p ha t e s * C i t r i c A c i d - f o und t o have s l i g h t a c t i v a t i n g a c t i o n f o r B a r i t e * I t was men t i oned by R» R a l s t o n i n The F l o t a t i o n and A g g l o m e r a t i o n o f Non M e t a l l i c s (U« S* Bureau of l i n e s ) * ' •DEPRESSORS t P o t a s s i u m Cyan i de and Z i n c S u l p h a t e - u sed j o i n t l y as a d ep r e s s o r of c h a l c o p y r i t e and p y r i t e * P o t a s s i um B i ch roma te - used as a dep r e s so r of g a l e n a and p y r i t e * Sodium S i l i c a t e - u sed as a d e p r e s s o r of q u a r t s i n wh i ch i t compares f a v o r a b l y w i t h S i l i c i c A c i d * As i t was q u i t e i n s o l u b l e i t was added i n a l l c a s e s t o t he m i l l * F o r c h e m i c a l a c t i o n see n o t e s on theory^ of dep r e s so r s* S i l i c i c A c i d - u sed as a d e p r e s s o r f o r q u a r t z * L e ad Chrornate - u s ed a s a d ep r e s s an t f o r l i m e s t o n e * The use o f ch romates was s ugge s t ed by t h e use of s o l u b i l i t y t a b l e s , the t h e o r y as s uppo r t e d by Wark, Rose & Macdona ld b e i n g t h a t i n s o l u b l e c o a t i n g s a r e l e s s amenable t o f l o t a t i o n * Po t a s s i um Chrornate - u sed as a l i m e s t o n e dep re s san t* R e s u l t s comparab le w i t h Lead Chrornate* Chromic A c i d - u sed as a l i m e s t o n e dep re s san t* R e s u l t s o b t a i n e d were u n s a t i s f a c t o r y * . Chromous Ox ide - used as a l i m e s t o n e dep re s san t* R e s u l t s o b t a i n e d were u n s a t i s f a c t o r y * T h i s r eagen t 1 6 cau sed an una c coun t ab l y h i g h pH v a l u e f o r the p u l p . A c e t i c A c i d - The use o f a c e t i c a c i d i s i e x p l a i n e d i n c o n c l u s i o n o f t e s t 4 8 . Sodium Oxa l a t e - and O x a l i c A c i d - u sed a s d e p r e s s a n t s f o r l i m e s t o n e . F o r a c t i o n see c o n c l u s i o n of t e s t 4 4 . A luminum N i t r a t e - used as a l i m e s t o n e dep res san t* B e s t r e s u l t s o b t a i n e d u s i n g o .5 # / t o n . F o r c h e m i c a l a c t i o n see c o n c l u s i o n t e s t 5 5 . Sodium A l um i n a t e - used, as a q u a r t z d ep r e s s an t f o r wh i ch p r o p e r t y i t may be compared f a v o u r a b l y w i t h Sodium S i l i c a t e . Sodium Su l pha t e - T h e use o f Sodium S u l p h a t e was s ugge s t e d as a t h e o r e t i c a l l i m e s t o n e dep re s san t bu t t e s t s i n d i c a t e the o p p o s i t e , i . e . i t has more of an a c t i v a t i n g a c t i o n on l i m e s t o n e w i t h no e f f e c t on b a r i t e f l o t a t i o n . See c o n c l u s i o n t e s t ' 4 2 . F e r r i c S u l p ha t e - T h i s r e agen t was u sed a s a l i m e s t o n e dep res san t^as a compa r i s on of a heavy me t a l s u l p h a t e w i t h Sodium Su l pha t e was d e s i r e d . R e s u l t s showed no d i f f e r e n c e between t h e two® S u l p h u r i c A c i d - used t o t e s t the e f f e c t of a low pH on the f l o t a t i o n of b a r i t e 4 l i m e s t o n e ^ a n d q u a r t z , and a l s o to f o rm a monomolecu la r s u l p h a t e c o a t i n g . No s a t i s f a c t o r y r e s u l t s o b t a i n e d . 17 Sodium Hydroxide - used to test the effect of a high pH on the f l o t a t i o n of barit?i limestone and quarts. Gaudin suggested a pH greater than IQ for the i n h i b i t i o n of c a l c i t e . No s a t i s -factory r e s u l t s were obtained due to the i n a b i l i t y of attaining a high pH. Argols -• (Potassium b i t a r t r a t e ) - used as a quartz depressant. Found! to have l i t t l e e f f e c t . Sodium Metaphosphate - used as a limestone depressant. This reagent was found to give the best res u l t s f o r limestone depression. For discussion of action see theory of depressors and for comparison of results of varying amounts see test 64. Sodium Hexametaphosphate - this reagent suggested by Rose and Macdonald i n U.S. Patent No.. 2S04Q,187 as an i n h i b i t o r of limestone. The .reagent-n showed a general depressing action. 18 ~ THEORY OF FLOTATION -The t h e o r e t i c a l f o u n d a t i o n of f l o t a t i o n i s based on t he b ehav i o u r of s u r f a c e s — bo t h l i q u i d and s o l i d * S u r f a c e phenomena w i l l , t h e r e f o r e , be r e v i e w e d under the f o l l o w i n g h e a d i n g s ; as r e l a t e d t o t h e p r o p e r t i e s o f the v a r i o u s r e agen t s u s e d , p a r t i c u l a r l y t h o s e p e r t a i n i n g t o n o n - s u l p h i d e m i n e r a l f l o t a t i o n * !<• Phases o f t he F l o t a t i o n System* 2* M e c h a n i c a l A s p e c t s o f F r o t h F o r m a t i o n * 3* Adsorpt ion® 4* Reagen t s . PHASES OF THE FLOTATION SYSTEM; There e x i s t s i n any f l o t a t i o n o p e r a t i o n , t h r e e pha s e s j g a s , l i q u i d , and s o l i d ; o f w h i c h t he l i q u i d phase appea r s t o be o f g r e a t e s t impo r t an ce and the gas phase of l e a s t impor tance* The gaseous phase p r e s e n t s i t s importance, a s t h e mechanism f o r l i f t i n g the s e g r e g a t e d p a r t i c l e s * A l t h o u g h t h e c o m p o s i t i o n of the g a s , c o n s i d e r e d as a phase , makes l i t t l e d i f f e r e n c e , i t can c o n s i d e r a b l y a f f e c t t he f l o a t -a b i l i t y o f m i n e r a l s i f r e a c t i o n p r o ceeds between the gas m o l e c u l e s and the m i n e r a l s u r f a c e s , o r d i s s o l v e d r e a g e n t s or the wa te r i t s e l f * Thus , oxygen i s o f t e n an o x i d i z i n g 1 9 a g e n t , c a rbon d i o x i d e forms c a r b o n a t e s , and hyd rogen s u l p h i d e i s a s t r o n g s u l f i d i z i n g a g e n t , a l l . of w h i c h may p l a y an impo r t a n t p a r t a s such i n f l o t a t i o n systems® The l i q u i d phase has a lways been a d i l w t e aqueous s o l u t i o n ; Why t h i s s hou l d be the case i s q u i t e e v i d e n t when t he p r o p e r t i e s of w a t e r a r e c o n s i d e r e d * Wate r i s u m i v e r s a l l y a v a i l a b l e and i n e x p e n s i v e , i t h a s g r e a t s o l v e n t power , low e l e c t r i c a l c o n d u c t i v i t y , y e t g r e a t i o n i z i n g power , and h i g h p o l a r i t y wh i c h makes i t s u i t a b l e f o r f l o t -a t i o n * O the r l i q u i d s c o u l d be used f o r s p e c i a l f l o t a t i o n i n v o l v i n g the r e c o v e r y of v a l u a b l e p r odu c t s * A f a c t o r o f g r e a t impo r t ance i n pe r f o rmance of f l o t a t i o n sys tems i s t h e hydrogenkon c o n c e n t r a t i o n o f t he pu lp* T h i s i s measured i n t he l i q u i d phase and r e c o r d e d a s the pE or the l o g a r i t h m t o the base 10 o f t h e h yd r ogen i on c o n c e n t r a t i o n * By c o n t r o l o f t h i s f a c t o r ( i * e* a c i d i t y o r a l k i l i n i t y ) o f t he p u l p , i t i s p o s s i b l e t o f l o a t o r dep re s s v a r i o u s s u l p h i d e and n o n - s u l p h i d e minera ls® I n c o n t r a c t t o t he f a c t t h a t t h e r e i s b u t one gas and one l i q u i d pha se , t h e number of s o l i d phases may be l a r g e and of complex a s s o c i a t i o n depend ing upon t he number o f m i n e r a l s p e c i e s p r e sen t* Most m i n e r a l s a r e u n i o n i z e d and i n s o l u b l e i n water» I o n i z e d sub s t an ce s have much g r e a t e r s o l u b i l i t y i n wa te r and a r e ? t h e r e f o r e ^ r a r e r as m i n e r a l s * C a l c i t e i s an ex cep t i on , b e i n g an i o n i z e d m i n e r a l * so The p o l a r i t y o r n o n - p o l a r i t y o f m i n e r a l s , t o g e t h e r w i t h the c a p a c i t y o f h y d r a t i o n w h i c h t r a n s f o r m s the s u r f a c e o f c e r t a i n o t h e r w i s e n o n - p o l a r m i n e r a l s i n t o p o l a r a r e a s c o n t r o l s t h e i r w e t t a b i l i t y by wa t e r and u l t i m a t e l y t h e i r f l o t a t i o n o r n o n - f l o t a t i o n * The s u r f a c e of a m i n e r a l adso rbs wa t e r mo l e cu l e s w h i c h forms a t r a n s i t i o n a l l a y e r between t he c r y s t a l and t he s o l u t i o n wh i ch cements w a t e r t o t he m i n e r a l^ The ca se of a n o n - p o l a r s o l i d w h i c h canno t be h y d r a t e d i s t o t a l l y d i f f e r e n t - the phases must t h en be bound d i s c o n t i n u o u s l y . MBGHAHOAL ASPECTS 03? EB.QTH FORMATION! A s t udy of t h e mechanism of f r o t h i n g r e s o l v e s i t s e l f i n t o t he r a t e a t wh i c h m i n e r a l p a r t i c l e s come i n t o c o n t a c t w i t h b u b b l e s , whe the r o r no t t h e y adhere t o t he bubb l e on c o n t a c t , a n d bubb le f o r m a t i o n * The e x t e n t t o wh i ch b u b b l e s and p a r t i c l e s encoun te r each o t h e r i s i m p o s s i b l e t o p r e d i c t i n a comp lex system such as an a e r a t e d p u l p . Much i n f o r m a t i o n can be g a t h e r e d however f r o m the s t udy of a s i m p l i f i e d system* To r e p r e s e n t such a sys tem i t i s assumed t h a t t he bubb l e i s s p h e r i c a l ; r i s e s v e r t i c a l l y w i t h u n i f o r m v e l o c i t y i n a p e r f e c t l i q u i d w h i c h t he has no v i s c o s i t y and i s i n f i n i t e l y d i v i s i b l e . From d i ag ram wh i ch r e p r e s e n t s a bubb l e r i s i n g v e r t i c a l l y i n a p e r f e c t l i q u i d s i t can. be seen t h a t o n l y p a r t i c l e s w h i c h l i e a l o n g the l i n e ZZ w i l l come i n c o n t a c t w i t h t he r i s i n g b u b b l e . I d e a l c o n d i t i o n s such as t h i s can no t e x i s t i n an a e r a t e d 21 Flow Lines of Water around, a r i s i n g bubble* 22 p u l p . H e r e , t h e r e i s r o t a t i o n of bubb l e and p a r t i c l e , l a t e r a l movement, and n o n - s p h e r i c a l shape of p a r t i c l e s , w h i c h w i l l not* a l l o w s e t t l i n g i n a s t r a i g h t l i n e * A l l o f t h e se f a c t o r s cause the c o l l i s i o n s t o be g r e a t e r i n number t han t h a t e x i s t i n g i n a p e r f e c t system* T h e r e f o r e i t wou ld seem t h a t a r a t h e r f i n e bubb l e f r o t h wou l d be d e s i r a b l e , and f i n e p a r t i c l e s wou ld be u n d e s i r a b l e a s f a c t o r s i n p r o b a b i l i t y of encoun te r - hence f l o t a t i o n * G a s - s o l i d a t t achment may b e s t be d i s c u s s e d under s e v e r a l head ings - t y p e s o f w e t t i n g , c o n t a c t a n g l e , s e l e c t i o n i n a t t a c hmen t , and bubb l e s t r u c t u r e and form* The e s s e n t i a l c o n d i t i o n f o r f r o t h f l o t a t i o n i s t h a t a p a r t i c l e c o m p l e t e l y w e t t e d by wa t e r become a t t a c h e d t o an a i r b ubb l e . A p a r t i c l e may become w e t t e d i n e i t h e r of t h r e e ways - as shown -(a) I I : C CONTACT WETTING SPREADING WETTING IMMERSIONAL WETTING. -23 CONTACT ANGLE -The s t udy of no. o t h e r s i n g l e p r o p e r t y o f m i n e r a l s has been of such g r e a t s i g n i f i c a n c e i n the t h e o r y of f l o t a t i o n as the s t u d y of c o n t a c t a n g l e s . I t i s t h e measure of t he t e n a c i t y o f a d h e s i o n between m i n e r a l and a i r ; t h a t i s , the t endency o f a bubb l e t o rema in a t t a c h e d t o a m i n e r a l , t h e r e b y r e n d e r i n g i t f l o a t a b l e . •So/tcl So/id where TS& s S u r f a c e t e n s i o n of A i r - W a t e r i n t e r f a c e . TV/S * S u r f a c e t e n s i o n o f W a t e r - S o l i d i n t e r f a c e . TSA - S u r f a c e t e n s i o n o f S o l i d - A i r i n t e r f a c e . ISA 2 TWS + TWA Cos•<*... (1) I n o rde r t h a t an a i r s o l i d i n t e r f a c e be e s t a b l i s h e d TSA ^ TWA -+• TWS hence work done t o p e r f o rm t h i s w i l l be ¥ s TWS ~+- TWA - TSA (where W s work done pe r u n i t a r e a ) s u b s t i t u t i n g i n e q u a t i o n ( l ) W ~ TWA ' ( 1 - COS <*) I f °( - 0 ° t h en W s 0 and t h e r e i s no t endency f o r t h e bubb le t o s t i c k . I f d = 1 8 0 ° , t h e n W = 2 TWA,which i s a maximum of a dhe s i o n t e n a c i t y . H4 Bo t h Of and TWA can be measured e x p e r i m e n t a l l y ~ wh i c h i s o b v i o u s l y o f g r e a t impo r t an ce i n f l o t a t i o n * I t may be n o t e d t h a t no t e v e r y f a c t o r i n f l u e n c i n g f l o t a t i o n a l s o i n f l u e n c e s c o n t a c t a n g l e ; a l t h o u g h any f a c t o r i n f l u e n c i n g c o n t a c t a ng l e i n f l u e n c e s f l o t a t i o n * T h i s i s e v i d en ced by the f a c t t h a t f r o t h e r s have no s i g n i f i c a n t e f f e c t on c o n t a c t a ng l e as t h e y l owe r t he s u r f a c e t e n s i o n o n l y s l i g h t l y * SELECTIVE ATTACHMENT -A t tachment of p a r t i c l e s , to bubb l e s must be s e l e c t i v e between m i n e r a l s h a v i n g d i f f e r e n t s u r f a c e s s i n o r d e r t h a t f l o t a t i o n be s u c c e s s f u l * I f a p a r t i c l e h a v i n g a n o n - p o l a r s u r f a c e encoun te r s an a i r bubb l e so t h a t d i r e c t adherence of a i r and s o l i d e x i s t s a t a c e r t a i n i n s t a n t , t he c o n t a c t a n g l e s t h a t become e s t a b l i s h e d a t the s o l i d s u r f a c e i n d i c a t e a tendency f o r t h e gas to d i s p l a c e t he w a t e r a t t he s o l i d * s su r f a ce* S i m i l a r l y i f a p a r t i c l e h a v i n g a p o l a r s u r f a c e en coun t e r s an a i r bubb l e (wh i ch may be d i f f i c u l t because of t h e h y d r a t e d i o n s r e s i d i n g a t t h e s u r f a c e o f such a p a r t i c l e ) t h e c o n t a c t a n g l e s i n d i c a t e a t endency f o r t h e wate r to d i s p l a c e the gas a t the s o l i d ' s s u r f a c e* Thus, one of t he t o p a r t i c l e s w i l l t e nd t o pass i n the gas phase and. the o t h e r t o r e t u r n i n t h e aqueous phase* 35 R e t u r n of p a r t i c l e s h a v i n g a p o l a r s u r f a c e t o t he aqueous phase i s f a v o r e d by the a g i t a t i o n and subsequent en coun t e r s i n v o l v i n g t he gas bubb l e and by the c r ow i ng e f f e c t e x e r t e d a t the bubb l e s u r f a c e by o t h e r p a r t i c l e s wh i c h a re b e t t e r p r e p a r e d t o adhere t o t he gas (1) Groudin F l o t a t i o n P98 . BUBBLE - STRUCTURE -An agg rega te of b u b b l e s i s a f r o t h . The most d e s i x e a b l e f r o t h i s one i n w h i c h the bubb l e s r i s e w i t h s u f f i c i e n t v e l o c i t y to c a r r y ove r an abundant c o n c e n t r a t e , ye t t r a v e l s low enough t o a l l o w d r a i n age of unwet ted m a t e r i a l back t o t he p u l p . The b u b b l e s v a r y i n f o rm d u r i n g t h e i r l i f e ; d u e t o s e v e r a l c a u s e s . ( 1 ) e x t e n t o f m i n e r a l i z a t i o n of p u l p . (2) s i z e of p a r t i c l e s . {3} s i z e o f b u b b l e . They f i r s t appear s p h e r i c a l i n shape , but due t o l o a d i n g t h e y become f o r c e d t o g e t h e r ,whe r e some u n i t e t o f o rm l a r g e r b u b b l e s , and e v e n t u a l l y a t t a i n a p o l y g o n a l o u t l i n e . G a s 2 6 E x i s t e n c e of a p o l y g o n a l f r o t h , p r oduces a f i l t e r t h r o ugh w h i c h t he gangue m a t e r i a l p a s se s on i t s downward drainage© Goarse m a t e r i a l wou ld t e nd t o become r e t a i n e d but t h i s i s c o u n t e r a c t e d by i t s f a s t s e t t l i n g r a t e i n consequence of wh i c h i t wou l d no t a s l i k e l y be a t the t o p of the f r o t h * P i n e p a r t i c l e s , • d u e t h e i r s m a l l d e s c end i ng v e l o c i t y o v e r -f l o w w i t h i n t e r b u b b l e water* I n agreement w i t h t he second law of the rmodynamics , ( s u r f a c e energy t end s t o be a min imum), p a r t i c l e s adhe re t o a bubb l e w a l l w i t h the l a r g e s t a r e a c o m p a t i b l e under t h e c i r c ums t an ce s* Due t o t h i s f a c t , t he b u b b l e s a re l i n e d one l a y e r t h i c k and p r e s e n t a smooth i n n e r s u r f a c e * C a m e r a - l u c i d a d raw ing o f a d r y bubb l e ( s e c t i o n ) X80* 27 S e v e r a l arguments have been pu t f o r t h as t o the c o r r e c t s i z e of bubb leo S m a l l ones , w h i l e t hey have a g r e a t e r s u r f a c e pe r u n i t vo lume, and more t endency t o a t t a c h t o f i n e s t c o s t more t o produce* They may a l s o become h e a v i l y enough l o aded t o a t t a i n the same s p e c i f i c g r a v i t y of t he p u l p , t h e r e b y h a v i n g no l i f t i n g power* The c o r r e c t t h e o r e t i c a l s i z e can be o b t a i n e d f r om A l l e n ' s Law - .» • . K A C on s t an t (0*5) cS ss S p e c i f i c g r a v i t y of b ubb l e <3 n A c c e l e r a t i o n due to g r a v i t y * a s R ad i u s of bubb l e b s A Con s t an t (0*0034 cm) / m*> V i s c o s i t y of medium* Prom t h i s e q u a t i o n and o t h e r d a t a , ^ t he bes t r a t i o of bubb le s i z e t o p a r t i c l e s i z e i n a p u l p of 1*25 f o r c a l c i t e the r a t i o ©fj 8*5 s i ( l ) - Gaud in - F l o t a t i o n P104 88 - ABSORPTION -A d s o r p t i o n I s the t e rm used t o , denote t he f o r m a t i o n of l a y e r s of m o l e c u l e s a t t a c h e d t o ^ or a t t r a c t e d , by/^a s o l i d su r f a ce* S e l e c t i v e f l o t a t i o n i s dependant upon a s e l e c t i v e a b s o r p t i v e power of m i n e r a l s u r f a c e f o r c e r t a i n o r g a n i c compounds. The su r face : of a s o l i d or l i q u i d phase has an unba l anced i n t e r - m o l e c u l a r f o r c e , no t p o s s e s s ed by the i n t e r i o r . I n t h e i n t e r i o r , t he c h e m i c a l a t t r a c t i o n o f an atom i s e q u a l l y . d i s t r i b u t e d among the s u r r o u n d i n g atoms* A t the s u r f a c e t he a tomic a t t r a c t i v e f o r c e on one s i d e e x i s t s u n s a t i s f i e d , c a u s i n g a d e f i n i t e c h e m i c a l a t t r a c t i o n t o extend, out i n t o s pa ce . T h i s f o r c e i s c apab l e o f h o l d i n g o t h e r mo l e c u l e s wh i ch come w i t h i n the zone of i n f l u e n c e > t o a v a r y i n g e x t e n t ? depending, i i pom the type, o f m o l e c u l e so a d s o r b e d . D i s c u s s i o n i s he-re d i v i d e d I n t o two p a r t s - a d s o r p t i o n a t l i q u i d s u r f a c e s and a d s o r p t i o n a t s o l i d s u r f a c e s . (£) M i l l a r d - P h y s i c a l Chem i s t r y - P . 138 . 29 A d s o r p t i o n at L i q u i d S u r f a c e s ; Many o r g a n i c s ub s t an ce s when d i s s o l v e d I n wa-fcer, l owe r I t s s u r f a c e ' t e n s i o n , w h i l e i n o r g a n i c s a l t s t e n d to s l i g h t l y r a i s e the- s u r f a c e t e n s i o n * J . W i l l a r d G ibbs i 1 ) s t a t e s t h a t t h i s phenomenon i s due t o a h i g h e r c o n c e n t r a t i o n of the o r g a n i c ...substances a t the s u r f a c e l a y e r t h an i n t he b u l k , whereas t he s u r f a c e c o n c e n t r a t i o n of i n o r g a n i c s a l t s must be l o w e r t h an t h e b u l k c o n c e n t r a t i o n * The o r g a n i c s ub s t an ce s a r e s a i d to he p o s i t i v e l y ad so rbed and the i n o r g a n i c s a l t s n e g a t i v e l y adsorbed* The amount i s g i v e n by G i bb s ' e q u a t i o n « A R e ac where A a A d s o r p t i o n i n gm. m o l e c u l e s / cm ^ G ts C o n c e n t r a t i o n i n % or gram m o l e c u l e s R e Gas c on s t an t i n e rg s pe r degree cent* 6 ts A b s o l u t e t empe ra tu r e i n deg rees Ke lv in© Langmui r has shown t h a t G ibbs e q u a t i o n l e a d s t o t he c o n c l u s i o n to) t h a t t h e a d so r bed l a y e r i s one i o n or mo l e cu l e t h i c k v ' • I n t h i s u n i m o l e c u l a r f i l m the o r g a n i c m o l e c u l e s f i x t h e i r o r i e n t a t i o n w i t h r e s p e c t t o t he s u r f a c e , t he d i r e c t i o n depen -dant upon the t ype of mo l e cu l e* F o r e x amp l e , o r g an i c compounds (1) Work - The P r i n c i p l e s of F l o t a t i o n P*64* (2) Gaudin* 30 such a s t h o s e employed as f r o t h e r s , a r e made up of an a c t i v e and an i n a c t i v e g roup , w h i c h o r i e n t t h emse l v e s w i t h t h e i r a c t i v e group d i r e c t e d t owa rds t he v m t e r . I n t h i s way the adso rbed m o l e c u l e s become c o n c e n t r a t e d a t t h e a i r - w a t e r i n t e r f a c e on the i n n e r and o u t e r w a l l s of the b u b b l e , caus ing , a l o w e r i n g of s u r f a c e tens ion© A d s o r p t i o n a t So l i d - S u r f a c e s ? F i v e d i f f e r e n t t y pe s o f a d s o r p t i o n a r e c o n s i d e r e d by K o l t h o f f * 1* A d s o r p t i o n by a s a l t h a v i n g an i o n i n common w i t h the l a t t i c e © 2» Exchange a d s o r p t i o n between l a t t i c e i o n s i n the s u r f a c e and f o r e i g n i o n s f r om the so l u t i on© 3 . Exchange between adso rbed ^ c o u n t e r - i o n s " and f o r e i g n i o n s i n the s o l u t i o n . 4 . M o l e c u l a r a d s o r p t i o n of n o n - e l e c t r o l y t e and t r u e a d s o r p t i o n of s a l t s * 5* A c t i v a t e d a d s o r p t i o n * Type ( l ) i s desc r i bed , a s a d s o r p t i o n of p o t e n t i a l -d e t e r m i n i n g i o n s | such as the a d s o r p t i o n of heavy m e t a l i o n s f rom s o l u t i o n by an e l e c t r o d e of the same heavy me t a l * Type (2) i s v e r y common* Baponen ( 2 ) f ound t h a t i f b a r i u m s u l p h a t e was shaken w i t h l e a d c h l o r i d e , some of t he l e a d i o n s i n s o l u t i o n were r e p l a c e d q u a n t i t a t i v e l y by b a r i u m (1) J o u r n a l P h y s i c a l C h e m i s t r y , 4 0 , 1027 , (1936) (2) War t - The P r i n c i p l e s of F l o t a t i o n - P67* 31 Ions f r om the c r y s t a l l a t t i c e bu t the c h l o r i d e i o n s were u n a f f e c t e d * Ba S 0 4 -+• P h . + + ^ - pB S Q 4 -+- Ba Type (3) i s made c l e a r by an example* We have seen t h a t s i l v e r i o d i d e when t h o r o u g h l y washed, s t i l l r e t a i n s an exces s of i o d i n e i o n s , and t h a t i t i s surround.ed by an i o n i c atmosphere o f hydrogen i o n s as coun te r i o n s* Lead i o n s f r o m a d i l u t e s o l u t i o n o f l e a d n i t r a t e can r e p l a c e t h e s e hyd rogen i o n s ? t h e m s e l v e s becoming the c oun t e r i o n s a c c o r d i n g t o t he equa t i on* 2 (AgI . . . . . . l ) | H ^ + P b ^ ^ ^ A g l J - ) \ Pb + +-*- 2H" 1 ' Type ( 4 ) ; Such sub s t an ce s as wa t e r and a l c o h o l can be adsorbed, by i o n i c l a t t i c e s * They may be f i r m l y h e l d * F o r example even i n a h i g h vacuum, c a l c i u m f l u o r i d e holds, f a s t t o wa t e r ad so rbed f r om the atmosphere* The w a t e r can no t be removed even by h e a t i n g t o 400° C, bu t hyd rogen f l u o r i d e i s evo lved, i n s t e a d * CaFg -+- H 2Q —<~Ca F ('OH) -t- HP K o l t h o f f c o n s i d e r s t h a t e q u i v a l e n t numbers of a n i o n s and c a t i o n s can be adso rbed by an i o n i c l a t t i c e i f t he l a t t i c e and adso rbed s a l t have no i o n i n common, t h i s p r o c e s s i s e q u i v a l e n t t o t he a d s o r p t i o n of a s a l t * Thus i t has been c l a i m e d t h a t v a r i o u s s a l t s a r e ad so rbed on ba r i um s u l p h a t e i n u n i m o l e c u l a r f i l m s * Type (5) s A c t i v a t e d a d s o r p t i o n s By a c t i v a t e d adsorp:-OK I s meant t h a t t he ad so rbed mo l e c u l e i s c h e m i c a l l y changed o r s t r o n g l y d i s t o r t e d by t he a d s o r p t i o n . T h i s p r o p e r t y makes i t ' p o s s i b l e t o r e a c t w i t h o t h e r s ub s t an c e s no t o r d i n a r i l y t o u c h e d . A d s o r p t i o n may be d i s t i n g u i s h e d f r om c h e m i c a l r eac t i on® I n p r a c t i c e t h e r e i s a c o n t i n u o u s range of a d s o r p t i o n phenomena f r om t h e l o o s e van de r Y / a a l ? s a d s o r p t i o n t o i n d i s p u t a b l e c h e m i c a l r e a t i o n . Inasmuch as a l l c h e m i c a l r e a c t i o n s must b e g i n as a d s o r p t i o n o f i o n s o r m o l e c u l e s , a d s o r p t i o n can be c o n s i d e r e d as c h e m i c a l r e a c t i o n . 33 - THEORETICAL ACTION OF REAGENTS -COLLECTIONi C o l l e c t i o n i s t h a t e lement o f a f l o t a t i o n o p e r a t i o n wh i ch compr i s e s s e l e c t i v e a t t achment of c e r t a i n m i n e r a l p a r t i c l e s to bubbles® S e v e r a l t h e o r i e s of t he o p e r a t i o n of c o l l e c t o r s have been advanced . N e a r l y a l l have been d i s -c r e d i t e d or d i s p r o ved} w h o l l y or i n p a r t , by v a r i o u s w r i t e r s i n f a v o r of the so c a l l e d " c hem i c a l 1 " t h e o r y . I n a paper by T a g g a r t , T a y l o r and K n o l l i t was. p o s t u l a t e d t h a t " A l l d i s s o l v e d r e agen t s w h i c h , i n f l o t a t i o n p u l p s , e i t h e r by a c t i o n on t h e t o - b e - f l o a t e d o r on t he n o t - t o - b e - f l o a t e d p a r t i c l e s a f f e c t t h e i r f l o a t a b i l i t y f u n t i o n by r e a s o n of c h e m i c a l r e a c t i o n s of w e l l r e c o g n i z e d t y p e s between the r eagen t and t he p a r t i c l e a f f e c t e d " . T h i s h y p o t h e s i s i s i n t e n d e d t o embrace w i t h i n i t s g e n e r a l i z a t i o n ' } c o l l e c t i n g a g e n t s , d e p r e s s i n g a g e n t s , and a c t i v a t i n g agents , , bo t h o r g a n i c and i n o r g a n i c . I t i s s u b j e c t t o the one l i m i t a t i o n t h a t t he r eagen t must d i s s o l v e i n the wa t e r o f t h e f l o t a t i o n p u l p , and r e a c t on t he s o l i d p a r t i c l e s t h e r e i n , t o a f f e c t t h e i r f l o a t a b i l i t y . T h i s l i m i t a t i o n however,, does no t mean t h a t c h em i c a l r e a c t i o n has no p a r t i n t h e f u n c t i o n i n g of t he o t he r t y p e s of s u b s t a n c e . Nor t h e c o n t r a r y . The e x c l u s i o n (1) Tagga r t T a y l o r & Kno l l f : Chem i ca l R e a c t i o n s i n F l o t a t i o n . T r a n s . A . I . M . E . 8 7 , 1 930 . P. 2 1 1 . 34 s i m p l y nar rows the f i e l d of d i s c u s s i o n t o the e x t en t i n d i c a t e d , C hem i c a l r e a c t i o n between s o l u b l e f l o t a t i o n r e agen t and the s o l i d p a r t i c l e s ; of the pu l p was sugges t ed a s e a r l y as 1904 a n c l p e r i o d i c a l l y s uppo r t ed s i n c e t h a t t i m e . The (2) e a r l y a l l aqueous d i f f e r e n t i a l - f l o t a t i o n p a t e n t s ' a imed t o e f f e c t , by d i g e s t i o n i n s t r o n g aqueous s o l u t i o n s , c h e m i c a l s u r f a c e changes s i m i l a r t o t ho se e f f e c t e d by t he f r a c t i o n a l -r o a s t i n g p r o c e s s e s . But when some of the same i n v e s t i g a t o r s f ound t h a t v e r y d i l u t e s o l u t i o n o f i n o r g a n i s s ub s t ance s h ad somewhat t h e same e f f e c t s on t he f l o a t a b i l i t y of c e r t a i n s u l p h i d e s as t he s t r o n g s o l u t i o n s had., t h e y a p p a r e n t l y d ropped the c h e m i c a l - a c t i o n i d e a , because w i t h d i l u t e s o l u t i o n s , t h e r e were no r e a d i l y v i s i b l e s u r f a c e changes on t he m i n e r a l a f f e c t e d . There have f o l l o w e d , i n consequence , many t h e o r i e s * W» Os twa ld has advanced a t h e o r y of t he a c t i o n o f s o l u b l e c o l l e c t o r s , an e s s e n t i a l p a r t of w h i c h i s t h a t o n l y a r i n g o f the c o l l e c t o r i s n e c e s s a r y f o r f l o t a t i o n ; t he l o c a t i o n of the r i n g b e i n g t he a i r - w a t e r - m i n e r a l l i n e of e on -t a c t . The p r o c e s s by w h i c h t h i s r i n g i s assumed t o be h e l d i s s t y l e d by h im " a d l i n e a t i o n " . I t s t h e o r y i s based on the p o s t u l a t i o n t h a t a s o l u b l e c o l l e c t o r such as p o t a s s i u m , e t h y l x a n t h a t e i s c o n c e i v e d of as a t h r e e l e gged mo l e c u l e w h i c h f i r s t adso rbs a t the s u r f a c e of bubb l e s and s u l p h i d e p a r t i c l e s p e n e t r a t e s t he bubb l e w a l l , d r y i n g immed i a t e l y on t he p a r t e x t e nd i n g i n t o the gas c a v i t y o f the b u b b l e , and the t h r e e -l e g g e d mo l e cu l e s s i m u l t a n e o u s l y jump i n t o p o s i t i o n a l o n g t he l i n e of t h r e e - pha s e c o n t a c t , w i t h one l e g e x t e n d i n g i n t o the one g a s , i n t o the l i q u i d and one a g a i n s t the s o l i d pha se . I n the (1) Be Bavay , U.S* P a t e n t 864597 (1904) ••(2) Ramage 967671; Wentwor th 970002;. & 980035; McGregor 972.459; Horwood 1Q2Q353; e t c* 35 compound po t a s s i um e t h y l x a n t h a t e -C 2 H 5 0 - C • SK Os twa ld c o n c e i v e s t he e thoxy group as a i r - a v i d , t h e doub l e bonded s u l p h u r as m e t a l - a v i d , and t he SK g roup as w a t e r - a v i d . T h i s t h e o r y i s i n o p p o s i t i o n to* t h a t adop ted by Wafk and Cox , namely t h a t a monomolecu la r f i l m i s ad so rbed by t he s u r f a c e of t he m i n e r a l , and t h a t f o r o l e a g -i n o u s c o l l e c t o r s ^ a t h i n f i l m sp reads on the s u r f a c e . The o n l y e v i dence advanced by Os twa ld i n o p p o s i t i o n t o wark and Cox i s t h a t t he amount of r e a g e n t s added seems to be i n s u f f -i c i e n t to f o rm a u n i m o l e c u l a r f i l m . Gaud i n , G l o ve r and Hansen^ 1 ) demons t r a t ed t h a t t h e amount o f r e agen t was s u f f i c i e n t . F u r t h e r , t h e a d l i n e a t i o n t h e o r y i s no t i n a c c o r d w i t h s e v e r a l e x p e r i m e n t a l f a c t s and a c c r e d i t e d p r i n c i p l e s of (OS s u r f a c e p h y s i c s . K ' R a v i t z and P o r t e r ( 3 ) a t t a c k t he c h e m i c a l t h e o r y f r om a d i f f e r e n t a n g l e . U s i n g t h e - i n v e s t i g a t i o n s i n the f l o t a t i o n b e h a v i o u r of " o x y g e n - f r e e " ga lena^ i n wh i ch they were a b l e t o f l o a t g a l ena w i t h o u t a r e a g e n t , t hey c on c l u ded t h a t t h e i r e xpe r imen t s s uppo r t e d t h e o l d i d e a of i n h e r e n t f l o a t a b i l i t y of c e r t a i n m i n e r a l s . T h i s c o n c l u s i o n l e d t o t he s ta tement t h a t c o l l e c t o r s such as xanthate^ may a c t as a c l e a n s i n g agent (1) F l o t a t i o n Fundamenta l s P a r t 1 . U. of U tah 192.9 (2) Gaud in G l o v e r & Hansen , J . P h y s , Chem. E a r . 1 9 3 3 . P . 8 15 . (3) R a v i t z and P o r t e r , A . I*-M.E . Te ch . Pub . 513 (1934) 36 t o remove o x i d a t i o n s u r f a c e p r o d u c t s l e a v i n g the n o n - p o l a r s u l p h i d e f r e e f o r t he d i s p l a c emen t of w a t e r hy g a s . A group o f i n v e s t i g a t o r s , among whom may be numbered Takakuwa and R a l s t o n f o l l o w Su l lman i n a s c r i b i n g f l o t a t i o n t o d i f f e r e n t i a l f l o c e u l a t i o n o f the p a r t i c l e s t o be f l o a t e d « w i t h o u t exam in ing t he mechanism t h a t c o n t r o l s f l o c cu l a t i o>n* S i n c e the c h e m i c a l t h e o r y d e a l s w i t h t h e an t e ceden t s t e p , t he argument i s no t e f f e c t i v e as. a t h e o r y . A n o t h e r t h e o r y i s advanced by O t i s D. We l s ch s u g g e s t i n g t h a t the f l o t a t i o n o f m i n e r a l p a r t i c l e s , s u l p h i d e o r n on~su l ph i d e , i s the r e s u l t - o f buoyancy c r e a t e d by d e v e l o p e m e n t b y c h e m i c a l means, a t the s u r f a c e of t he p a r t i c l e , o f a v o l a t i l e s u b s t a n c e . He s u p p o r t s h i s t h e o r y by c i t i n g t h e works of such w r i t e r s as R» S* Dean, A.Wo A l l e n , Tagge r t and o t h e r s . However , the t h e o r y as p r e s en t e d does no t seem c o n v i n c i n g • ' The g e n e r a l l y a c c e p t e d " c h e m i c a l 1 1 t h e o r y of c o l l e c t i o n as sponso red by Tagga r t and Gaud i n , i n f e r s ; t h a t a c o l l e c t o r a t t a c h e s i t s e l f t o a m i n e r a l surfa.ee by c h e m i c a l r e a c t i o n * I t does not deny the f a c t t h a t c o l l e c t o r s a re adso rbed as u n i m o l e c u l a r f i l m s - i t employs the p r o p e r l y (1) Takakuwaj P r o c . Wo r l d E n g . Cong r e s s , Tok i o* 1929, (2:) R a l s t o n ; T r a n s . A* I .M .E* (1930) 87", P. 247* (3) Su lman, T rans* I n s t * Min* 8c Me t . (1919) 29 , 44* (4) W e l s c h , E & M*J* O c t . 1932 P. 52.9* 37 d e f i n e d and c l e a r l y unde r s t ood d e f i n i t i o n o f a d s o r p t i o n -t h a t a d s o r p t i o n i s n o t h i n g more t han a c o n c e n t r a t i o n of s o l u t e a t an i n t e r f a c e ( t he mechanism of c o n c e n t r a t i o n may o r may not be c h e m i c a l r e a c t i o n ) . C o l l e c t o r agen t s employed a re c apab l e of f o r m i n g a v e r y s l i g h t l y s o l u b l e compound w i t h some i n t r i n s i c compound o r s u r f a c e i o n o f t h e m i n e r a l t o be f l o a t e d . They have the c h a r a c t e r i s t i c of b e i n g of a d u a l n a t u r e ; p a r t of t h e i r m o l e c u l e i s p o l a r (and w a t e r - w e t t a b l e ) w h i l e a no t h e r p a r t i s n o n - p o l a r (and n o n - w a t e r - w e t t a b l e ) • Thus , i n t he c a se of sod ium xan tha te , . the sod ium end i s p o l a r and t he x a n t h a t e ( A l k y l ) end i s n o n - p o l a r . S i m i l a r l y , a f t e r p r e c i p i t a t i o n , as t he m e t a l l i c x a n t h a t e , t h e m e t a l l i c end of the m o l e c u l e i s p o l a r w h i l e the x a n t h a t e end remains n o n -p o l a r . T h e i r o r i e n t a t i o n of such r e a g e n t s ( te rmed h e t e r o p o l a r ) can be i l l u s t r a t e d a s f o l l o w s « x x x. x x E - A l k y l i n a c t i v e g r oup . X - A c t i v e Group . I n c r e a s e d l e n g t h of t he h yd r o ca r bon c h a i n r e s u l t s i n i n c r e a s e d e f f e c t i v e n e s s of the c o l l e c t o r . Uo d e f i n i t e optimum ha s , however , been e s t a b l i s h e d f o r t he number of ca rbon atoms i n t he n o n - p o l a r p a r t of the m o l e c u l e . The 38 p r o p e r t y of non w e t t a b i l i t y i n t h e exposed p a r t of t he mo l e cu l e i s e s s e n t i a l t o a s o l i d subs t ance o r i t s c o a t i n g , t o be amenable t o c o l l e c t i o n i n a f l o t a t i o n f r o t h * Modern usage has i n c l u d e d p romo te r s i n t h e t e rm c o l l e c t o r s . A l l c o l l e c t o r s ( t h e r e f o r e p romo te r s ) c o n t a i n b o t h . p o l a r and n o n - p o l a r g roups - a l l must be ad so r bed to b e f f e c t i v e . Those used i n p r e s en t day f l o t a t i o n p r a c t i c e a r e m a i n l y x a n t h a t e s and a e r o f l o a t s o r t h e i r d e r i v a t i v e s . Bo t h of t h e s e r eagen t s r e l e a s e a c t i v e w a t e r - r e p e l l e n t a n i o n s on d i s s o c i a t i o n -yS f r om a x a n t ha t e R» 0 - 0"' and a c a t i o n M f r o m an a e r o f l o a t R* 0 X + P and a c a t i o n H R; o s These an i on s a r e s t r o n g l y adso rbed a t a l l wa te r s u r f a c e s owing t o t h e i r wa t e r r e p e l l a n t h yd r o ca r bon (R .O . ) c h a i n s , and some come i n c o n t a c t w i t h t he p a r t i c l e s o f o r e a t e v e r y w a t e r - s o l i d i n t e r f a c e . The doub l e bonded s u l p h y r atom ( s S ) , o r p o s s i b l y the whole, group - *• appea r s t o have t he p r o p e r t y o f a t t a c h i n g i t s e l f t o the s u r f a c e of s u l p h i d e m i n e r a l s and some n a t i v e m e t a l s , r e n d e r i n g them wa te r r e p e l l e n t and t h e r e f o r e f l o a t a b l e * Of t h e p o s s i b l e x a n t h a t e s , o n l y p o t a s s i u m and sodium e t h y l , b u t y l and amy l x a n t h a t e s a r e u s e d , w i t h t h e p o t a s s i um b e i n g i n p r e f e r e n c e t o t he sod ium compounds. As a r u l e t he low x a n t h a t e i s l e s s p o w e r f u l bu t more s e l e c t i v e t han t he h i g h e r a l k y l f o r m s . 39 A e r o f l o a t s a r e made i n v a r i o u s g r ade s depend ing upon the pe r cen t age of Pg c on t a i n ed* They a r e not as s t r o n g as h i g h e r x a n t h a t e s i n a c t i o n , hu t t h e y a r e p r e f e r r e d i n f l o t a t i o n o f p y r i t i c o res* due to t h e i r l e s s e r a c t i o n on t h e p y r i t e . Because of the p r e sence of f r e e c r e s y l i c a c i d , w h i c h i s a , f r o t h e r s a e r o f l o a t has b o t h f r o t h i n g and c o l l e c t i n g (o r p romot i ng ) p r o p e r t i e s . I n a d d i t i o n t o the above men t i oned p r omo t e r s , w h i c h c o n t a i n a group of t h e t ype .. • .  ."^SM : t h e r e a r e o t h e r s w i t h s i n g l e or doub l e s u l phu r g r oup s . T h i o c a r b a n i l i d e w i t h the s i n g l e s u l p h u r g roup -d, Hr — H — H C = S C:6 H 5 - H - N o r d i - x an t hogen s w i t h doub l e s u l p h u r g roup of t he t y p e R.O. — C S I ^ s R • 0 • •* C * s a r e t y p i c a l . B o t h a r e l e s s employed t h a n a e r o f l o a t s o r X a n t h a t e s , a l t h ough t hey a r e q u i t e e f f e c t i v e i n t h e i r own p a r t i c u l a r f i e l d s . A new c l a s s o f r e agen t has r e c e n t l y been I n t r o d u c e d ~ of wh i ch the a c t i v e wa t e r r e p e l l e n t p a r t i s c o n t a i n e d i n t he c a t i o n . The s u b s t i t u t e d q u a t e r n a r y ammonium 40 compound a s u sed by Wark ^ i n the f l o t a t i o n of s i l i c a ^ i s of the c a t i o n a c t i v e c l a s s * He employed t r i - m e t h y l - c e t y l -ammonium b r om ide , ( c o m m e r c i a l l y known as L i s s o l a m i n e A), w h i c h d i s s o c i a t e s i n t o a c a t i o n CH, ' 5 CH , \ N + and an a n i o n B r G % •••• . C H 3 ( Q H 2 ) 1 5 He re , t h e a c t i v e i o n c a r r i e s a p o s i t i v e cha rge i n c o n t r a s t w i t h t he n e g a t i v e cha rge on the a c t i v e i o n of t h e x a n t h a t e s , a e r o f l o a t s and s i m i l a r p romote rs* I t appea r s t h a t t h i s p r o p e r t y makes the compound a p romote r f o r s i l i c a and o t h e r r o c k f o r m i n g m i n e r a l s * Many c a t i o n - a c t i v e compounds, a r e known, t h e p r o p e r t i e s of w h i c h have been i n v e s t i g a t e d * Most of them b r i n g up s u l p h i d e s as w e l l a s n o n - s u l p h i d e s w i t h o u t s e l e c t i v e a c t i o n ' — some w i l l f l o a t the who le of an ore* (1) I* W* Wark, "The P h y s i c a l C h e m i s t r y o f F l o t a t i o n " J« of Phys . Chem* V o l * 40 May 1936 . 41 - FROTHING -F r o t h i n g i s t h e most c on sp i c uou s of t h e phenomena c o m p r i s i n g t h e f l o t a t i o n p r o c e s s . I t i s o f v i t a l Impor tance b e i n g the f a c t o r c o n t r o l l i n g o v e r f l o w ; hence c o n c e n t r a t i o n . The mechanism of t h e f o r m a t i o n of b ubb l e s by f r o t h e r s i s p u r e l y p h y s i c a l and i s based on one of the p r o p e r t i e s of l i q u i d s - namely s u r f a c e t e n s i o n . J . W i l l a r d G ibbs ^ ) has shown t h a t a subs t ance l o w e r s the s u r f a c e t e n s i o n o f a l i q u i d o n l y by a d s o r p t i o n . I f two l i q u i d s a r e t h en m u t u a l l y s o l u b l e t h e r e can be no a d s o r p t i o n . I n a l l p r o b a b i l i t y , t h e r e f o r e , t he so c a l l e d s o l u b l e f r o t h i n g o i l s a r e i n c o l l o i d a l s u s p en s i o n s r a t h e r t h a n t r u e s o l u t i o n s . The f r o t h i n g agen t s a r e f ound by exper iment t o c o n c e n t r a t e i n the bubb le f i l m s , t h e r e b y l o w e r i n g the s u r f a c e t e n s i o n of w a t e r . T h i s i s i n comp le te a c c o r d w i t h t he p r i n c i p l e o f minimum ene rgy , inasmuch a s any o t h e r b e h a v i o u r o f such subs t ance s wou ld no t p roduce a s t a t e o f • • „, C2) minimum s u r f a c e ene r g y . A s t udy of s ub s t an ce s wh i c h l owe r t he s u r f a c e t e n s i o n of wa t e r shows t h a t t h e y a r e , p r a c t i c a l l y w i t h o u t e x c e p t i o n * organiE compounds, whereas subs t ances wh i c h r a i s e the s u r f a c e t e n s i o n a r e i n o r g a n i c compounds. (1) Thermodynamische S t u d i e n (2) F r o t h i n g , G .R.M. d e l G u i d i c e j E &. M J? V o l 135 (1934) 42 S t a t i s t i c a l a n a l y s e s ^ \ o f t he s t r u c t u r e of mo l e c u l e s of good o r g an i c f r o t h i n g agen ts has shown t h a t t h e y a r e i n v a r i a b l y made up of two d i s t i n c t g roups - namely a h yd r o c a r bon group and some one of the f o l l o w i n g g roupss OH ( h y d r o x y l ) , C O ( C a r b o n y l ) , C O O ( e s t e r ) , COOH(Ca rboxy l ) , COKH(Amide), H H 2 ( a m i n o ) . F u r t h e r , the a n a l y s i s has shown t h a t the s o l u b i l i t y i n wa t e r de c r ea se s w i t h i n c r e a s e i n l e n g t h of the h yd ro ca rbon c h a i n . The ne t e f f e c t t h e n , i s t h a t a l l f r o t h e r m o l e c u l e s must have an i n s o l u b l e wa t e r r e p e l l e n t (hyd roca rbon ) g roup c o u p l e d w i t h a s o l u b l e w a t e r - a v i d ( h y r o x y l , c a r b o x y l , c a r b o n y l , e t c . ) g r o up . As a h y p o t h e s i s , i t i s c o n c e i v e d t h a t the h y d r o x y l end of the m o l e c u l e o f t h e s e subs t ances i s a t t r a c t e d b y ? a n d t ends t o d i s s o l v e i n w a t e r , t h e (2) h yd r o ca r bon end does no t . ' ( W i t h o u t w a t e r r e p e l l e n c e of t he h yd ro ca rbon end , t he se m o l e c u l e s wou ld be drawn i n t o the i n t e r i o r o f the w a t e r . ) These two t e n d e n c i e s , t h e r e f o r e r e s u l t i n t he a d s o r p t i o n of t h e r eagen t a t t h e wa te r s u r f a c e w i t h t he h yd r o ca r bon end of t he mo l e cu l e away f r om the w a t e r . (1) A» F . T a g g a r t , T . C T a y l o r , & C .R . I n c e ; T r a n s . A . I . M . E . ( M i l l i n g Methods 28.5) 1930 . (2) Langmui r and H a r k n e s s . ' 43 The f r o t h i n g agen t , due to t he wa te r a v i d i t y of the h yd r o xy g roup , and the a i r a v i d i t y o f the h yd r o c a r b on g r oup , c o l l e c t s i n the b ubb l e f i l m . There i s l e s s s u r f a c e energy o r s t a t e of t e n s i o n * i n the a i r - w a t e r - r e a g e n t i n t e r f a c e t h an i n the w a t e r - r e a g e n t i n t e r f a c e * hence bubb l e f o r m a t i o n . I n o t h e r words,- the f o r m a t i o n o f bubb l e s w i t h the f r o t h i n g agent i n t h e i r f i l m s , r ep r e sen t s a r e s t o r a t i o n o f e q u i l i b r i u m i n a sys tem by a dec rease i n t e n s i o n . The a t tachment o f m i n e r a l p a r t i c l e s t o bubb l e s i s due t o the l e s s e r energy of the a i r - s o l i d i n t e r f a c e , t h an t h a t of the s o l u t i o n - s o l i d i n t e r f a c e s A t the s o l u t i o n - s o l i d i n t e r f a c e t h e r e i s a c e r t a i n t e n s i o n . When an a i r b ubb l e p r e s e n t s i t s e l f a t the s u r f a c e , t he t e n s i o n becomes l o w e r e d , t h e r e b y r e s t o r i n g the e q u i l i b r i u m of the s y s t em . Good f r o t h e r s a r e o r g a n i c compounds w i t h a s o l u b -i l i t y of a round one gram pe r l i t r e o f w a t e r , of t he g e n e r a l i f o rm -m COC GO (COO R 4^Q 0 H where R i s a h yd r o ca r bon w i t h a ca rbon c on t en t e q u a l t o about s i x . These compounds c o n c e n t r a t e a t t h e a i r - w a t e r i n t e r f a c e and f u n c t i o n by c a u s i n g r a p i d changes i n s u r f a c e t e n s i o n f o r r e l a t i v e l y s m a l l changes i n c o n c e n t r a t i o n . (1) A . J . W e i n i g & G .B . Ca rpen t e r ? The T rend of F l o t a t i o n ; V o l * 32 (1937) P . 2 1 . (2) G .R .M. d e l G u i d i c e ; F r o t h e r s ; E & M . J f A p r . (1934) P . 155 . 4 4 F r o t h i n g t e s t s have f ound t h a t i f a l a r g e amount of f r o t h i n g agent i s a l r e a d y i n u s e , l i t t l e i n c r e a s e i n f r o t h i n g e f f e c t may he e xpec t ed by f u r t h e r a d d i t i o n s o f r e a g e n t o CD c c 0 io e fi es 0 to 8o n C —-M?— 70 GO So \ o 4-0 \<i> 3 0 ;. \ • 2 0 IO • :i • - i IOO 2 0 0 300 G o n e i n g . p . l . of w a t e r S u r f a c e t e n s i o n cu r ve o b t a i n e d by a d d i n g p r e p a r e d s o l u t i o n of o l e i c a c i d i n benzene t o a g i v e n c l e a n s u r f a c e o f w a t e r . I n most c a se s f r a t h e r s a r e o i l s or o i l y s u b s t a n c e s , g e n e r a l l y d i s t i l l a t i o n p r o d u c t s of wood o r c o a l . A n i m a l p r o d u c t s have not been f ound so e f f e c t i v e f o r t h i s , p u r p o s e . V a r i o u s r e a g e n t s on the market a r e made t o f o rm d i f f e r e n t f r o t h s , g r a d i n g f r om " b r i t t l e , l o r q u i c k l y b r oken bubb l e s t o t he o t he r extreme of vo luminous ' p e r s i s t e n t b u b b l e s . F i n e n e s s of g r i n d i n g has a s t a b i l i z i n g e f f e c t upon the f r o t h , o f t e n i n c r e a s i n g r e c o v e r i e s . F i n e o i l s , p i n e t a r s , wood t a r s , c o a l t a r s , c r e o s o t e s and t h e i r d e r i v a t i v e s have been used as f r o t h i n g a g e n t s , some 45 of wh i c h a l s o have a c o l l e c t i n g act ion® Modern p r a c t i c e i s t u r n i n g towards steam d i s t i l l e d p i n e o i l , c r e s y l i c a c i d , c o a l t a r d e r i v a t i v e s and h i g h e r a o c o h o i s . The q u a n t i t i e s a r e v e r y s m a l l and must he i n d i v i d u a l l y d e t e rm ined by t r i a l ® 46 ~ ACTIVATION -A c t i v a t i o n agen t s a r e g e n e r a l l y i n o r g a n i c a n i o n s o r c a t i o n s w h i c h r e a c t w i t h t he s u r f a c e o f m i n e r a l s t o be f l o a t e d , t h e r e b y m o d i f y i n g them, so t h a t t h e s e s u r f a c e s may s ub s equen t l y r e a c t w i t h c o l l e c t o r s t o f o rm t h e r e o n , adhe ren t wa t e r r e p e l l e n t f i l m s . I t i s g e n e r a l l y conceded t h a t t h e mechanism of a c t i v a t i o n by h e a v y - m e t a l s a l t s ; i n v o l v e s m e t a t h e s i s between the a c t i v a t o r and a s u r f a c e i n g r e d i e n t of t he m i n e r a l , r e s u l t i n g i n t h e d e p o s i t i o n of a compound of t h e m e t a l of t he a c t i v a t o r a t the m i n e r a l s u r f a c e . By use o f a t a b l e o f w a t e r s o l u b i l i t i e s , an a c t i v a t o r can be chosen , whose c a t i o n f o rms w i t h t he a n i o n o f the m i n e r a l t o be f l a a t S d y a l e s s s o l u b l e compound than t h a t fo rmed between t h i s same i o n and t h e c a t i o n of the minera l* . A l i m i t a t i o n i s t h a t t h e r e a c t i o n p r odu c t between a c t i v a t o r and m ine ra lumus t no t be b o t h h i g h l y i n s o l u b l e and h i g h l y r e s i s t a n t t o c h e m i c a l r e a c t i o n . The t y p e example of s u l p h i d e m i n e r a l a c t i v a t o r i s copper s u l p h a t e i n c o n n e c t i o n w i t h s p h a l e r i t e . Copper s u l p h a t e changes t he s u r f a c e of s p h a l e r i t e t o c o v e l l i t e wh i c h i s r e a d i l y f l o a t a b l e w i t h a x a n t h a t e c o l l e c t o r . R e s e a r c h i n t he f i e l d of n o n - s u l p h i d e m i n e r a l a c t i v a t i o n as c a r r i e d out by Gaud i n , H o L b i c h , K r a ebe r and B e p p e l ; has: d e ve l oped a new c l a s s of r e a g e n t s , o f wh i c h t h e a c t i v e p a r t i s c o n t a i n e d i n t h e cat ion® I n v e s t i g a t i o n s 47 have shown c a r bona t e and s i l i c a t e m i n e r a l s may have t h e i r s u r f a c e s so a l t e r e d by heavy me t a l s a l t s / that t h e y can be f l o a t e d by c o l l e c t o r s wh i ch f o r m e r l y had no e f f e c t i n the absence of an a c t i v a t o r . Cropper s u l p h a t e used i n t he f l o t a t i o n of c a l c i t e i s t y p i c a l of t h e c a t i o n - a c t i v e c l a s s . H e r e , p resumab ly t he c a l c i t e becomes coa t ed w i t h a f i l m of some l e s s s o l u b l e s a l t t h a t i s a b l e t o ad so rb t he c o l l e c t o r . Gaud in and o t h e r s ^ ^ a s s i g n t h i s a c t i v a t i o n by coppe r (and a l s o by l e a d ) s a l t s , of c a l c i t e f l o a t e d w i t h soap , t o exchange of Ca w i t h Cu and Pb . i o n s a t the c a l c i t e p a r t i c l e s u r f a c e s . They a s s e r t t h a t copper and l e a d soaps a r e l e s s s o l u b l e t han c a l c i u m soap s . ( I n g e n e r a l , t he c o r r e s p o n d i n g a n i o n has no e f f e c t s t hu s manganese and chromium c h l o r i d e s a c t i v a t e q u a r t z > b u t p o t a s s i u m permanganate and p o t a s s i u m d i shrornate do n o t ) • Gaud in and Hansen ^ ) f o und t h a t n i t r a t e s and s u l p h a t e s of seve i - a l heavy m e t a l s a c t i v a t e c a l c i t e f o r f l o t a t i o n by h e p t y l i c and u n -d e c y l i c a c i d s . Ho m e t a l l i c s a l t s were found, t o a c t i v a t e c a l c i t e u s i n g o l e i c a c i d as a c o l l e c t o r , due p r o b a b l y t o t he low s o l u b i l i t y of o l e a t e s of t he heavy m e t a l s , c a u s i n g i n s u f f i c i e n t o l e i c a c i d to r ema in i n s o l u t i o n f o r the p r o d u c t i o n o f a good f r o t h . I t s hou l d be no t ed t h a t an e x ce s s of a c t i v a t o r a lmos t i n v a r i a b l y l e a d s t o d e p r e s s i o n of t h e m i n e r a l -(1) Gaud in ; U n i v . of U t a h , Pub . 1 (1928) (2) A . M. Gaud i n , H. G l o v e r , M. S . Hansen , & C. W. O r r ; F l o t a t i o n Fundamen ta l s , P a r t 1 . U n i v . o f U tah & U .S . Bu reau o f M i n e s . Te ch . Paper #1 . (1928) 48 W i t h t h e t e r v a l e n t M e t a l s more e f f e c t i v e t han the b i v a l e n t F l o t a t i o n o f c a l c i t e w i t h h e p t y l i c a c i d 12#/Ton a 49 - DEPRESSION -Dep r e s s o r s a r e u s u a l l y inorgasn ic a n i o n s which, p r e ven t t he " a d s o r p t i o n " of a c o l l e c t o r by some m i n e r a l s but no t by o t h e r s . I t has not y e t been e s t a b l i s h e d whether t he d ep r e s s o r i s ads-orbed i t s e l f by the m i n e r a l , or whe the r t h e y a l t e r the c h e m i c a l n a t u r e of the s o l u t i o n so t h a t the c o l l e c t o r cannot be adso rbed f r om i t . Gaud in and h i s c o l l a b o r a t o r s have shown t h a t e x ce s s of any heavy m e t a l s a l t dep re s se s a lmos t any m i n e r a l and t h a t many i n o r g a n i c a n i o n s , i f i n s u f f i c i e n t l y h i g h c o n c e n t r a t i o n , w i l l d ep r e s s most m i n e r a l s . M e t a l l i c i o n s a r e se ldom used as d e p r e s s a n t s i n p r a c t i c e but o c c a s i o n a l l y a c o m b i n a t i o n o f bo th a n i o n and c a t i o n i s employed* Wark and Cox (.•*-) hsiase done e x t e n s i v e r e s e a r c h work on the a c t i o n of c y an i d e as a d e p r e s s o r f o r copper and i r o n s u l p h i d e m i n e r a l s * P l a n t p r a c t i c e and r e s e a r c h have ag reed t h a t the most i m p o r t a n t s u l p h i d e d e p r e s s o r s a r e a l k a l i e s , p a r t i c u l a r l y l i m e and sod ium ca rbona te* W i t h x a n t h a t e as a c o l l e c t o r s u f f i c i e n t a l k a l i e w i l l dep ress any m i n e r a l ; c o n s e q u e n t l y s e l e c t i v e s e p a r a t i o n depends t o a l a r g e e x t en t on pH c o n t r o l * A l t h o u g h l i t t l e i s known about the d e p r e s s i o n of n o n - s u l p h i d e s , t h e r e a r e a few v a l u a b l e p r a c t i c a l r e a g e n t s i n use* Sodium s i l i c a t e can be r e g u l a t e d t o a c t i v a t e o r dep res s s i l i c a . W i t h an a c i d s a l t i t f o rms a g e l on the (1) Yferk and Cox,. A . I . M . E . (1934) P .189 , 245 . 50 the s u r f a c e of qua r t s * Most i n v e s t i g a t o r s (1) have f ound t h a t t he sod ium s i l i c a t e p roduces a g e l a t i n o u s c omb i n a t i o n of m e t a l o x i d e and s i l i c a , not : - s i m p l y s i l i c a g e l and no obv i ou s r e a s o n f o r s uppos i ng t h a t t he g e l i s a t t a c h e d t o t he q u a r t z "because of r e l a t e d c h e m i c a l p r o p e r t i e s ' 1 * B a r t e l and- o t h e r s have shown t h i s a d s o r p t i o n t o be h y d r o l y t i c -t h a t i s , s i l i c a . , adsorb® t h e b a s i s c o n s t i t u e n t p r e f e r e n t i a l l y and l e a v e s t he a c i d , i n s o l u t i o n* 1 S i l i c a i s t hen s a i d to be " a c t i v a t e d 1 1 because t he a d so r bed i o n s a r e c apab l e of f o r m i n g w i t h o l e i c a c i d a f l o a t a b l e s u r f a c e of i n s o l u b l e b a s e - m e t a l soap*. The adso rbed b a s e - m e t a l i o n s a r e a l s o c apab l e of f o r m i n g w i t h sod ium s i l i c a t e a hyd rous g e l wh i c h a c t s as a depressor*. Sodium s i l i c a t e s h ou l d be u sed i n exces s so t h a t a l l me t a l i o n s . w i l l be t a k e n up - t h i s i s c o u n t e r a c t e d by i n t e r a c t i o n o f soidium s i l i c a t e w i t h o l e i c a c i d * J u s t a s some s a l t s c apab l e of f o r m i n g i n s o l u b l e soaps a c t i v a t e c a l c i t e , c e r t a i n o t h e r s a l t s w h i c h f o r m c o l l o i d a l h y d r o x i d e s , r e s u l t i n d e p r e s s i o n of c a l c i t e® Chromium and a l l um i num n i t r a t e s a r e t y p i c a l * I n t h e i r i n v e s t i g a t i o n s . Rose and Macdonald^ ' have found t h a t c e r t a i n p a r t i a l l y or i n c o m p l e t e l y m o l e c u l a r l y h y d r a t e d phospha tes such as sod ium ne t apho spha t e , i n h i b i t the f l o t a t i o n o f mon - su l ph l de m ine ra l s , . Under s u i t a b l e c o n d i t i o n s , sodium metaphosphate b rough t i n t o c o n t a c t w i t h l i m e s t o n e (1) J * M* P a t e k ; Soap F l o t a t i o n ; ' E. & M . J . Mar* 1934 P* 125* (2) Rose & Macdona ld ; U . S . P a t en t No . 2 , 040 , 187 . 51 ( c a l c i t e ) c oa t ed w i t h c a l c i u m o l e a t e , w i l l so mod i t y t he c o a t i n g of c a l c i u m o l e a t e as t o I n h i b i t t he f l o t a t i o n o f l i m e s t o n e . ; I f the sod ium metaphosphate i s added f i r s t , t he f o r m a t i o n o f the f l o a t a t i v e c a l c i u m o l e a t e f i l m i s p r e v e n t e d . The s u r f a c e of b a r i t e i s a l s o s i m i l a r l y e f f e c t e d , bu t t o a m i no r e x t e n t a l l o w i n g the s e l e c t i v e f l o t a t i o n o f b a r i t e . 52 - PREPARATION OE.THE ORE -The r e s e a r c h , as o r i g i n a l l y p l a n n e d , c a l l e d f o r an ore composed of s e l e c t e d gangue m i n e r a l s f r om a l o c a l minell. An ore of t h i s t ype was o b t a i n e d , but a f t e r s e v e r a l t e s t s i t became apparen t t h a t i t s . complex c o m p o s i t i o n wou ld i n t r o -duce f a c t o r s beyond t h e scope of t he p roposed wo rk . Conse -q u e n t l y i t was d e c i d ed t h a t f u r t h e r work wou ld be more ad van t ageou s l y c a r r i e d out on a s y n t h e t i c ore® The s y n t h e t i c ore m i n e r a l s c o n s i s t e d of c r y s t a l l i n e b a r i t e , c l e a r w h i t e m a r b l e , c l e a n s i l i c a sand , and s u l p h i d e s composed of g a l e n a , c h a l c o p y r i t e and p y r i t e ; a l l of a v e r y pure grade.. These m i n e r a l s were mixed i n the f o l l o w i n g app rox ima te p r o p o r t i o n s -B a r i t e - 20* 0 L imes tone - 25 ,0 Qua r t z » 4 0 c O S u l p h i d e s - 15*0 100% A second m i x t u r e was made up w i t h o u t the s u l p h i d e s , when i t was d i s c o v e r e d t h a t t he r e a g e n t s used a lmos t i n v a r -i a b l y f l o a t e d the s u l p h i d e s b e f o r e t h e gangue m i n e r a l s . The app rox ima te p r o p o r t i o n s of t h i s mix was -B a r i t e - 30*0 L imes tone - 30»Q Qua r t z - 40*0 100 % 53 Each o f t he m i n e r a l s was c r u shed i n s t age s on a l a b o r a t o r y t y pe jaw c r u s h e r and r o l l s s b e i n g m e c h a n i c a l l y s c r eened a f t e r each r e d u c t i o n s t age u n t i l the f i n a l p r odu c t was a l l - 14 mesh. The s e p a r a t e m i n e r a l s were t h en we ighed out and t h o r o u g h l y m i xed i n the above p r o p o r t i o n s * Two s i m i l a r m i x e s were p r e pa r ed a s t he s u p p l y i n each case became exhaus ted* G r i n d i n g t e s t s were made to de te rm ine the t ime be s t s u i t e d f o r a s a t i s f a c t o r y g r i n d * From the r e s u l t s of wh i c h a re t a b u l a t e d below,, t h e 30 m inu t e g r i n d was c o n s i d e r e d most s a t i s f a c t o r y * A l l s c r e en t e s t s were c a r r i e d out on a m e c h a n i c a l s c r e e n i n g mach ine each sample b e i n g s c r e ened f o r 25 m inu tes , P .M. GRIBDIHG TIMS . MESH PEED 5 M in* 15 M i n . 30 M i n . 60 K i n . 10 0 0 0 0 0 10/14 Q 0 0 0 0 14/20 2*9 0 0 0 0 20 /28 10*9 Q*8 0 0 0 28/35 12*6 2*1 0*3 Q Q 35/48 18 .9 10*0 X » 5 0 0 48/65 2 4 . 7 25 .9 9 . 3 0 0 65/100 8 . 2 16 . 6 19*2 1*4 0 100/150 3.5 8 .8 16*5 7.7 0*9 150/200 2 .4 5.5 11 .0 15*9 4 .8 -200 15*7 30*3 . 42*2 75*0 94 . 3 54 Head Samples To o b t a i n a r e p r e s e n t a t i v e sample f o r a head a s s a y , the m i x t u r e was coned ] qua r t e red . f and s p l i t on a Jones r i f f l e u n t i l 60Q grams of the o re was o b t a i n e d . T h i s sample was then p u l v e r i z e d t o enab l e i t t o pas s t h r o ugh a 100 mesh s c r e e n , t h o r o u g h l y r o l l e d and sacked p r e p a r a t o r y t o a s s a y i n g by t he method d e s c r i b e d i n t he s e c t i o n "As say Me thods " . S t a n d a r d T e s t C o n d i t i o n s ? A l l t e s t s u n l e s s s p e c i f i c a l l y s t a t e d o t h e r w i d e , were t r e a t e d under t he f o l l o w i n g s t a nda r d coond i t ions* (a) G r i n d i n g - c a r r i e d out i n (7-§x6" i n s i d e ) p o r c e l a i n pebb l e m i l l . Charge - Ore ~ 500 grams* Water * 500 grams. I r o n f r e e p e b b l e s " 2950 grams. Speed o f p ebb l e m i l l .«* 60 r pm. Time of g r i n d - 5 0 m i n u t e s . (b) C e l l P r o c edu r e The ore f r o m the m i l l was washed i n t o a P a g e r g r e n u n i t f l o t a t i o n c e l l (as i n pho tog raph ) and wa t e r added u n t i l t h e p u l p d e n s i t y was. 4 s i . R e q u i r e d r eagen t s were added and the p u l p " c o n d i t i o n e d " f o r 3 m i n u t e s . A t the end of t h i s p e r i o d , the a i r was t u r ned on and. r e g u l a t e d so t h a t a s a t i s f a c t o r y f r o t h was p roduced f o r the en su i ng 10 m inu t e " sk imming* p e r i o d . On c o m p l e t i o n of each t e s t , a 50 cc sample o f the c o n c e n t r a t e (and the t a i l i n g where i t was thought n e c e s s a r y ) x w a s t a ken f o r a pH d e t e r m i n a t i o n , o b t a i n e d on a. L e e d s ' a n d Isforthrup Ga l vanomete r . 5 5 Bote - I n s o l u b l e r e a g e n t s were u s u a l l y added t o the pebb l e m i l l cha rge* A l l c o n c e n t r a t e s and t a i l i n g s were d r i e d I n s t a i n l e s s ' s t e e l pans,, we i ghed , s c r e ened t h r ough a 65 mesh s c r e e n , t h o r o u g h l y r o l l e d , , s a c ked and a s s a y e d f o r B a r i t e L imes tone , Q u a r t z 5 a n d i n the c a s e of the f i r s t m i x , f o r S u l p h i d e S o C a l c u l a t i o n of Recove ry? • Wt . of C on c en t r a t e ; _ x 1 0 0 s % Recovery* Wt . o f C o n c e n t r a t e Wt . o f T a i l i n g C a l c u l a t i o n of Three M i n e r a l Recove ry Index? Sum o f t he p e r e en t r e c o v e r i e s of the d e s i r e d concen t r a t e and the r e m a i n i n g t a i l i n g s . T h i s number give-s a c on v en i e n t i n d i c a t i o n of the g e n e r a l r e s u l t o f a t e s t . Temperature Te s t P rocedu re? S e v e r a l t e s t s were c a r r i e d out w i t h the o b j e c t of d e t e r m i n i n g the. e f f e c t o f an i n c r e a s e d t empe ra tu r e on the f l o t a t i o n of B a r i t e L imes tone and Q u a r t z . The p ro cedu re f o l l o w e d was as f o l l o w s . A s t a nda r d m i l l cha rge was added t o t he c e l l and the p u l p d e n s i t y b rough t down to 4 s i w i t h w a t e r . The p u l p was a d i t a t e d w h i l e a t h e r m o s t a t i c a l l y c o n t r o l l e d h e a t e r r e g u l a t e d the t empera tu re of t h a t des i red© On o b t a i n i n g a c on s t an t t empe ra tu r e t he r e a g e n t s were added and s t anda rd p rocedu re f o l l o w e d f r om t h a t p o i n t . * mmm HILLS ASS TIMER * Co * FAffiSEGBEB" FLOTATION UNIT -* AID TIME CLOCK * XHBRMOSTASIC M M 60 TEST 1» To t e s t t he e f f e c t of T r i m e t h y l c e t y l ammonium bromide ( L i s s o l a m i n e A) on t h e f l o t a t i o n o f n o n - s u l p h i d e s * Charge t o Pebb le M i l l Ore - 1Q00 G-rs* Water - 500 G r s . G r i n d - 60 M ins* CELL C o n c e n t r a t e I Added - L i s s o l a m i n e A - Q»16#/Ton Cond* *• 3 Mins* Skim* - 10 M i n s , pH • - 8*30 Ve r y h i g h s u l p h i d e con ten t - f a i r f r o t h * C o n c e n t r a t e 2 Added > L i s s o l a m i n e A - 0*Q8#/Ton Cond* - 1 M in* Skim* - 5 Min* PH - 8*50 Cop ious but s l i g h t l y m i n e r a l i z e d f r o t h * Con c en t r a t e 3, Added - L i s s o l a m i n e A - 0*08#/Ton Cond* 1 Min* Sk im - 6 Min* pH. - 8*15 Con cen t r a t e & f r o t h s i m i l a r to No . 2* TEST WT. ASSAY % RECOVERY % BaSo^ CaCo, o S i 0 2 S Fe BaSo4 GaCo 3 S i 0 2 S Fe F eed 100 .0 21 .0 24 .9 40 .6 4 . 2 2.0 100 .0 100.0 100 .0 100 .0 1003 TIGI 8 .6 2 .5 9*4 aa»a 25*4 14 . 5 1.0 3» 3 4 . 5 28 .5 57.5 G2 4 i 5.9 1 5 . 6 3 6 . 5 X3 e» 3 5 o 3?- X*> 2 2.7 3 .8 5.0 1Q.3 C 3 4.5 X.3 * S 2 3 . ? 2.5.5 6*3*. 2 .9 4 . 3 2 . 9 5.6 5 . 7 T 8 2 . 6 2 4 . Q 2 7 . 5 42 .8 2 . 7 0 . 7 94 .9 SB . 7 88 . 8 60.9 26.5 C o n c l u s i o n s See Te s t 6 . 62 TEST 2* To t e s t t h e e f f e c t o f R e t a r d e r LA . on t he f l o t a t i o n of n o n - s u l p h i d e s . CHARGE ~ t o Pebb l e M i l l Ore - 10QO G r s . Water - 500 Grs* G r i n d - 6Q M i n s . CELL C o n c e n t r a t e 1 Added - R e t a r d e r LA . ~ 0.41#/Ton #5 P i n e O i l - Q.07#/Ton Cond* - 3 M i n s . Sk im - 10 M i n s . pH 1 - 8 .35 'lx Gangue d i d no t s t a r t t o f l o a t u n t i l most o f s u l p h i d e s had been t a k en o f f . C on c en t r a t e 2 Added ~ Re t a r d e r LA . - 0.16#/Ton Cond. - 3 m i n s . Sk im ~> 10 M ins pH - 8 .20 Weak, p o o r l y m i n e r a l i z e d f r o t h . TEST Ho. /° :wt* ASSAY % RECOVERY % BaS04 CaC03 S i 0 2 S Fe BaSo^ CaGo.3 Si. Og S Fe Peed 100 21. Q 24.9 40*6 4*2- 2.0 100 *Q 100*0 100*0 100*0 1005 1 11.6 12.2 23 © 3 6.9 12.3 7.4 6*9 11*3 l.e 33-«3 38*5 2 1.0 21-* v) 3 6 . 4 17.3 4.0 1.3- 1*1 1.5 0*4 0.9 0.6 T 8 7 . 4 21.3 24.7 44.9 3 ©• 2 1*4 92.0 87.2. 97*8 65.8 60*9 C o n c l u s i o n s - See T e s t 6* TEST 5 . To t e s t the e f f e c t of R e t a r d e r L A . on t he f l o t a t i o n of n o n - s u l p h i d e s , us ing , an i r o n r o d m i l l f o r g r i n d i n g . CHARGE - t o Rod M i l l Ore - 1000 Water - 1000 G r i n d - 10 M i n a . CELL C o n c e n t r a t e 1 Added - R e t a r d e r LA - Q.41#/Ton 3% P i n e O i l - Q.Q.7#/Ton Cond . - 3 m ine . Sk im - IQ m i n s . pH - 8 . 27 Poo r f r o t h - s u l p h i d e s up a t f i r s t . C o n c e n t r a t e 2 Added - R e t a r d e r L A . - Q.16#/Ton Cond . - 1 M i n . S k i m . - 5 m i n . F a i r f r o t h , l i t t l e m i n e r a l i z a t i o n . ' RESULTSs TEST a/ .• ASSAY % .^. RECOVERY % 7° K b . Wt . : B a S 0 4 CaCQg S i 0 2 S Fe BaSo^ CaCog S 1 0 2 S Fe Feed 100 2 1 . 0 24 .9 4 0 . 6 4.2. 2 .0 100.0 100 .0 100 .0 100 .0 1003 1 14. a 9 . a 1 6 . a 12.8 11*7 7 . .6. 10.2 4 . 8 39 .7 54.0 2 5 « 3 16 .-a 28 .7 3 o 2. 2*5 4.1; 5 .8 3 .8 3.8 6.3 T 79 . 9 22. a 25 .5 46 .0 3* X. 1.0 88 .8 84.0. 9 1 . 4 56.5 39.7 C o n e l u s i o n : See Tes t 6 64 TEST .4. To dep r e s s t h e s u l p h i d e s hy the use of C y a n i d e , Z i n c , S u l p h a t e and P o t a s s i u m . L i c h r on i a t e & f l o a t t h e gangue o n l y . CHARGE - t o Pebb l e M i l l Ore — 1000 G r s . Wate r 500 G r s . KOT - 2#/Ton Z i n c S u l p h a t e - 6#/Ton G r i n d 60 M i n s . CELL. C o n c e n t r a t e 1 Added - P o t . B i c h r oma te - l# /Ton R e t a r d e r LA . - 0 .98#/Ton Cond.. - 3- M i n s . S k i m . » : 10 M i n s . pH - • 8*3,0 C h i e f l y s u l p h i d e c o n c e n t r a t e * C o n c e n t r a t e 2 Added - R e t a r d e r LA . - 0*41#/Toii #5 P i n e O i l «• 0 .07#/Ton Cond* - 1 M i n . S k i m . ~ 10 M in* pH . ~ 8 . 2 3 Good f r o t h - s u l p h i d e up f i r s t . C o n c e n t r a t e 5 Added - R e t a r d e r LA . - Q*41#/Ton #5 P i n e O i l . - 0*07#/Ton Cond. - 1 M i n . S k im . - 10 M i n . f H - 8*1 Good f r o t h — l i t t l e m i n e r a l i z a t i o n . RESULTS TES1 No, % Wt. ASSAY % RECOVERY % BaSOA CaCog S l o g S BaSQA CaCog S 1 0 2 S ?e F eed 100 2I;-Q 24 .9 40 .6 4 . 2 2..0 100 .0 100 .0 100 .0 100.0 100 .0 1 1 .1 1 5 . 4 34 .9 15 .6 6 .9 3 .7 0 .8 1.5 0 . 7 1*8 18*4 2 8 . 3 16 a 6 43 .9 1 3 . 3 6*8 3 .0 6*6 1 4 . 8 •  2 . 7 14 .0 12*0 3 6 » 2 22«9 3 0 . 7 22 .6 5 .4 1.7 6 .8 8". 7 3 © 5 8 .4 5.0 T 8 4 . 4 21.Q 45.Q 3.6 1>6 85 .8 76 .0 93 .5 7 5 . s| 64 .6 Conclusions See Te s t 6 . 66 TEST) 5.-To I n h i b i t the f l o t a t i o n o f Ga l ena & C h a l c o p y r i t e by P o t a s s i u m Dichrornate & P o t a s s i u m Cyan ide - Z i n c Su l pha t e r e s p e c t i v e l y ; ; u s i n g O l e i c A c i d as t he c o l l e c t o r * CHARGE - To Pebb l e M i l l G r i n d ~ 60 M in* Ore 1000 Gms;. Water - 500 Gms. KC1T - 2*Q#/T©n. ZnS0 4 - 6*0#/Ton* CELT, C o n c e n t r a t e 1 Added - P o t a s s i um D i ch romate ~ 2*Q#/Ton* O l e i c A c i d - Qv22#/Ton* Cond . - 3 M in* Sk im* - 10 M in* pH - 8*25 L e a s t amount o f s u l p h i d e s i n c o n c e n t r a t e f o r any t e s t up t o d a t e . C o n c e n t r a t e 2 Added - P o t a s s i um D i ch romate - l*Q#/Ton. O l e i c A c i d - 0 . 11 #/Ton* RESULTS TEST No . % wt. ASSAY 5 BECOVERY % B a S o 4 GaGOg S iOp S Pe .BaS>4 . CaCo^ SiOp ' S Pe P e e d 100 .0 21 .0 24 .9 40*6 4*2 2* 0 100 .0 100*0 100*0 10Q.0 100 .0 c : 8* 3 19.8; 1 1*1 5*5 3*8 7*9 10*8 2*0 10**5 15*7 c 6*6 16*0 29 .0 15.4. 5*3 2*2 5 . 1 7>7 2.©- 5 S* 4 7* 3 T . 85*1 21 .0 23*9 44 . 5 4*0 1*8 87*0 81*5 95 © 5 81*0 77*0 C o n c l u s i o n ; See Tes t 6 . TEST 6 . To i n h i b i t the f l o t a t i o n of Ga lena & C h a l c o p y r i t e by po t a s s i um"D i ch roma te and P o t a s s i u m Cyan ide - Z i n c Su l pha t e r e s p e c t i v e l y ; u s i n g L l s s o l a m i n e A ( t r i - m e t h y l c e t y l ammemium bromide) as t he c o l l e c t o r , CHARGE ~ t o Pebb l e M i l l CELL Ore Water-K C F G r i n d C o n c e n t r a t e 1 1000 G r s . 500 G r s . 2 .0#/Ton . 6 .0#/Ton . 60 M i n s . Added - L i s s o l a m i n e A \%% C o l . ) 0 .60#/Ton . P o t . B i c h r oma te - 2»Q#/T.on. #5 P i n e O i l - 0 .132#/Ton. F a i r l y l a r g e amount of s u l p h i d e s a t f i r s t -l a r g e amount of f r o t h - t hen d i e d down so more #5 P i ne O i l and L i s s o l a m i n e A added . C o n c e n t r a t e 2 Added Cond . S k im . L i s s o l . A - 0 .48#/Ton P o t . D ichrornate - l»0#/Ton 3 M i n . -1.0 M i n . Good w e l l m i n e r a l i s e d f r o t h s RESULTS TEST Ho . ASSAY % RECOVERY % 7° Wt. BaSo^ CaCOg S iOg S Fe BaSo 4 CaGOg S i 0 2 S Pe Peed 100^0 21*0 24 .9 40 . 6 4 . 2 2.0 100 .0 100 .0 100 . 0 lOO.O 100 .0 C I 16 « fi 2 3 . 1 -,. 2X ^  5 17*8 7.2- 2.6 2 6 . 4 1 5 . 4 7 . 5 26 .7 5 02 : 47 . 9 2 6 . 3 X<*« !5 15 .0 S- & 2 1 .4 60 .0 *2-5 & ^  59; 6 55 © (C T 3 5 e 3 8 . 1 38 .8 36 .8 £4 3 2.7 I S . 6 58*9 32 .9 18 .1 48 .4 68 CONCLUSIONS - f o r t e s t s 1 ~ 6 i n c l u s i v e . ( I ) R e g a r d l e s s of the c o l l e c t o r u sed , the m e t a l l i c s u l p h i d e s f l o a t more r e a d i l y t h an the n o n - s u l p h i d e s . (2J The use of P o t a s s i u m B i c h r oma te as, a d ep r e s s o r f o r g a l e n a , and a c omb i n a t i o n of P o t a s s i um Cyan i de w i t h Z i n c Su l pha t e as t h e c h a l c o p y r i t e d ep r e s s an t was mode r a t l y s u c c e s s f u l . They d i d n o t , however , g i v e a comp le te i n h i b i t i o n when a l a r g e amount of t h e se depressants : was u s e d . The su lph j r r dropped f r o m 25 . 4$ t o la.2.% and the i r o n f r om 14 .5^ t o 2»6% when compared w i t h t e s t 1 . (3} T r i - m e t h y l - c e t y l - a m m o n i u m bromide and o l e i c a c i d have d i f f e r e n t c o l l e c t i n g a c t i o n s . T h i s i s shown i n t he f o l l o w i n g , t a b l e wh i c h compares t e s t 6 w i t h t e s t 5 . COLLECTOR , BULK. • Gr. RABE B a r i t e L imes t one Qua r t z I r o n Su l phu r O l e i c Less: Lower H i g h e r Lower H i ghe r . Lower RECOMMENDATIONS -(1) The a d d i t i o n of a g r e a t e r amount of P o t a s s i um D i c h -romate and Z i n c S u l p h a t e w i t h P o t a s s i u m Cyan i de might h e l p t o de c r ea se the q u a n t i t y of s u l p h i d e s i n the f i r s t c o n c e n t r a t e . (2) A l a r g e amount of Sodium S u l p h i d e m igh t be advantageous f o r the i n h i b i t i o n of t h e s u l p h i d e s . (3) Hydrogen S u l p h i d e used as the gaseous phase i s known t o dep ress s u l p h i d e s . I t might t h e r e f o r e be t r i e d as a s u l p h i d e dep r e s s an t i n the f l o t a t i o n of n o n - s u l p h i d e s i n g e n e r a l . (4) A l o n g e r c o n d i t i o n i n g t ime w i t h a s h o r t e r sk imming p e r i o d and a s l i g h t v a r i a t i o n of r e a g e n t s , might be advan t ageous . TEST 7 . To f l o a t q u a r t z u s i n g Lead N i t r a t e as an a c t i v a t o r and T r l - m e t h y l - c e t y l - a m m o n i u m bromide ( L i s s o l a m i n e A) as a c o l l e c t o r . CHARGE - . t o Pebb l e M i l l G r i n d - 30 M i n . Ore - 500 G r s . Water - 500 G r s . L e ad N i t r a t e - 0 . 5#/Ton . CELL Added - L i s s o l a m i n e A - o .48#/Ton Cond . . - 3 m i n . S k i m . - 10 M i n . pH • ~ 8 .20 S u l p h i d e s f l o a t e d f i r s t , q u i c k l y f o l l o w e d by a d e f i n i t e non s u l p h i d e c on cen t r a t e * E r a t h vo lum inous w e l l m i n e r a l i z e d . RESULTS TEST . N o . ASSAY % RECOVERY % INDEX Wt . BaSo 4 CaCog s i o 2 S BaSo^ CaCOg S i 0 2 s E e e d 100 .0 21 .0 24 .9 4 0 . 6 4 . 2 100 .0 100 «G 10G.Q> 100 .0 C 61 .7 4*9, 11 .7 6 3 . 7 3» 5 1 5 . 2 3 3 . 4 94.5^ 5 1 . 4 245.8 T 38.2 4 4 . 1 37 .6 6 .0 S & 3 8 4 . 8 66 .6 5 » Q 48.6^ CONCLUSION - On compar i son w i t h t e s t 1 1 , i t i s seen t h a t a more s e l e c t i v e f l o t a t i o n i s p o s s i b l e w i t h t h e use of Lead N i t r a t e . The c ompa r a t i v e f i g u r e s f o r the c o n c e n t r a t e s a r e -Tes t No . % w.t» $BaSG4 ^CaCo- ^ S i 0 2 % R e c . S i 0 2 11 67 .9 17 .9 57 .9 94 .8 7 61 .7 4 . 9 . 1 1 . 7 63 . 7 94 .5 70 TEST. 8 . To f l o a t Qua r t z u s i n g Copper Su l p ha t e as a c t i v a t o r and t r i m e t h y l - c e t y l - a m m o n i u m bromide as c o l l e c t o r -CHARGE - t o Pebb l e M i l l CELL-G r i n d Ore Water CUSQK PH 4 Added Cond. Skim* PH -30 M i n . 500 G r s . 500 G r s . 0*5#/Ton* 8 .50 L i s s o l a m i n e A - 0 . 48 " /Ton 3 m i n . 10 m i n . 8 . 3 1 F r o t h same as i n p r e v i o u s t e s t bu t s t r o n g e r and more l a s t i n g i n the f i n a l a d d i t i o n of L i s s o l a m i n e A . RESULTS Te s t . F o . ASSAY % RECOVERY % Wt* BaSo^ ' CaCo 3 S i 0 2 S E a S o 4 CaCo 3 S i 0 2 s INDEX Feed lOGlO 21* Q 24 .9 40 . 6 4 . 2 100 .0 100.0 , 100.0 100 *G C 60 .7 5«;Q : a. 4 6 5 . 1 3 .7 : 1 4 . 7 23 .7 .94*8: 50*9 256*4 T \ 39 .3 4 4 . 3 41 . 5 5.5 85*3 76 . 3 5 9> 2 49*1 COFCLUSIOF - ' ' Copper s u l p h a t e i s a b e t t e r a c t i v a t o r f o r Quar t z t h an Lead F i t r a t e when L i s s o l a m i n e A i s used as a c o l l e c t o r * TEST i 9 . To f l o a t q u a r t z u s i n g a r e l a t i v e l y l a r g e amount of Lead N i t r a t e as 'an a c t i v a t o r and L i s s o l a m i n e A as a c o l l e c t o r * . CHARGE CELL t o Pebb l e M i l l G r i n d - 30 m i n . Ore 500 gms. Water - 500 gms. L ead N i t r a t e 1.0#/Ton< Added Cond . S k i m . pH L i s s o l a m i n e A - o.48#/Ton 3 min® 1,0 min» 8 ,30 P r o t h same as i n c o r r e c p o n d i n g Test 7 . RESULTS. TEST ,No, Wt* &.SSAY 7° RECOVERY ? t BaSo^ CaCQg S i 0 2 S BaSb 4: CaGog S iOg S INDEX Eeed 100 . 0 21 .0 24 .9 40 .6 4.2: 1 00 . 0 100 . 0 100 .0 100.0 C 63 . 9 6 . 8 1 1 . 0 63 . 6 4 . 0 2 1 . 1 32 .9 96 . 8 53.Q 242.8 T . 3 6 . 1 45 .2 3 9 . 8 3 . 9 6 .3 78 .9 . 67 . 1 3 . 2 47 .0 CONCLUSION: ~ There i s l i t t l e d i f f e r e n c e between t h e r e s u l t s o b t a i n e d i n t h i s t e s t and t e s t 7 , i n wh i ch a s m a l l e r amount of Lead N i t r a t e was u sed . A s m a l l e r b u l k was o b t a i n e d i n t he l a t t e r , but t h i s can be a c coun ted f o r p r i n c i p a l l y by t he l owe r B a r i t e r e c o v e r y . 72 TEST;10 . To compare the c o l l e c t i n g a c t i o n s of R e t a r d e r L . A . , w i t h L i s s o l a m i n e A i n the f l o t a t i o n of q u a r t z when u s i n g Lead N i t r a t e as an a c t i v a t o r© CHARGE. - To Pebb l e M i l l G r i n d -Ore -Water -Lead N i t r a t e CELL. C o n c e n t r a t e 1 Added Cond . •— S k i m . -p i . S u l p h i d e s came up f i r s t . F r o t h not- q u i t e as heavy as t h a t p roduced w i t h L i s s o l a m i n e A on the f i r s t a d d i t i o n but more d u r a b l e . Cone ent r a t e 2 Added - R e t a r d e r L . A . - 1.15#/Ton Cond. - 3 m i n . S k im . ~ 10 m i n . pH - -8.36 F r o t h good . Bubb l e s h e a v i l y l o a d e d f o r a s h o r t p e r i o d a f t e r each a d d i t i o n o f c o l l e c t o r * RESULTS TEST No* ASSAY % R] BCOVERY % ENDEX 1ft. BaSo^ CaCo 3 S i 0 2 .s : , Ba So^ CaCOg S i o 2 S Feed lOQ.Q 21 .0 24*9 40*6 4*2. 100 .0 100 .0 100.0 100 C l 17 .2 13*8 21*2 8*7 X.2.& 2 11*6 16 .8 ' 3 * 6 42*3 246*5 C2 43*1 1*9 6*7 8 5 . 6 : •0.9 4.0: X.3 » 3 88*6 7 . 8 T 39 .7 43 . 3 38 . 2 8 » 2 6*2 84*4 69*9 7 .8 49*9 30 M i n . 500 G r s . 500 G r s . Q.5#/Ton a Re t a r d e r L . A . - Q.33#/Ton T e r p i n e o l - 0.16#/Ton 3 M in* 1.0 Min* 8 .30 .CONCLUSIOl'f There appea r s t o "be a s l i g h t d i f f e r e n c e between the a c t i o n of t r i -me t h y l - c e t y l - ammom ium-b r om i de and Re ta rde r . L . A . as q u a r t z c o l l e c t o r s * I n the f o l l o w i n g t a b l e the t a i l i n g s a re compared -COLLECTOR - % Wt . % B a S o 4 ^CaCog ^ S i 0 2 % Rec - S i 0 2 L i s s o l . A . 38 . 3 4 4 . 1 37 .6 6.0 5.5 R e t a r d e r LA 39*7 43 . 3 38 . 2 8.2- 7.8 Erom the above i t , may be i n f e r r e d t h a t t he L i s s o l a m i n e A i s a more s a t i s f a c t o r y c o l l e c t o r f o r q u a r t z t han the R e t a r d e r LA . 74 TEST' 11* To s t udy the use of L i s s o l a m i n e A ( T r i - m e t h y l - c e t y l -aramonium-bYomide) as a c o l l e c t o r w i t h no d ep r e s s o r o r c o l l e c t o r i n t he f l o t a t i o n o f q u a r t z . CHARGE - t o P e b b l e M i l l G r i n d - 30 M i n . Ore - 500 gms. Water - 500 gms© CELL Added - L i s s o l a m i n e A - 0*60 #/Ton T e r p i n e o l - 0 .49#/Ton Cond . — 3 m i n . S k im . - 10 m i n . pH - 8 . 3 P r o t h e r r e q u i r e d when u s i n g L i s s o l a m i n e A as a c o l l e c t o r o f q u a r t z . On a d d i t i o n of T e r p i n e o l . t he f r o t h became w e l l m i n e r a l i z e d t ough and p e r s i s t e n t . RESULTS TEST Nov % Wt. ASSAY % REC0VEB X % Index EaSoA CaGOg S iOg BaSO/ CaCog S i ©£ Peed G T 100 . 0 3 2 X. 2 7 . 4 ^ 2 2 . 1 3 9 + 3 29 © 5 17 .9 53*9 ; 43*6 : 57 .9 6 .6 100 . 54 .5 45 .5 100 ..41.7 5 8 . 3 100 94 . 8 15 «>• 2. 198 .6 GOlfCLUSION T h i s c o l l e c t o r has a d e f i n i t e c o l l e c t i n g a c t i o n f o r q u a r t z s but a t the same t ime f l o a t s t oo l a r g e a pe r cen t age of t he o t he r components when no f u r t h e r r e a g e n t s a r e added . 7& TEST: -'12. To i n v e s t i g a t e the e f f e c t of a low pH v a l u e on t h e f l o t a t i o n ' o f qua r t z * CHARGE - to P ebb l e M i l l G r i n d — 30 min* Ore — 500 gms* Water - 500 gms* Copper S u l p h a t e - 0 .5#/Ton CELL pH Added Cond* S k i m . PH - 8 .50 L i s s o l a m i n e A - 0.48"/Tan S u l p h u r i c A c i d - 2*06#/Ton 3 min* IQ m i n . 7 .55 S u l p h i d e up f i r s t . F r o t h s t r ong* S l i g h t e f f e r v e s c e n c e of pu l p on a d d i t i o n of s u l pho i r i c a c i d . RESULTS » TEST % ASSAY % RECOVERY % No . Wt . B a S b 4 CaCog S iOg S B a S o 4 CaCo 3 SiOg S IHBEX Head ICQ 21 .0 24.9; 40*6 4.2; 100 10 0 100 100 C 58 . 2 4 . 9 11 . 6 65 .0 3 . 8 13*9 27 .0 9 2 . 5 43 * 3 251*6 T 4 1 . 8 42.7* 44*0 7 .5 5 .1 8 6 . 1 73 .0 7 . 5 56* 6 CONCLUSION -The l ower pH had l i t t l e e f f e c t o t he r t han s l i g h t l y l o w e r i n g the b u l k of t he c o n c e n t r a t e . 76 TEST1 1 3 . To i n v e s t i g a t e the e f f e c t of a h i g h pH v a l u e on the f l o t a t i o n of ' q u a r t z . CHARGE ' ' - • P e b b l e M i l l . G r i n d - 30 m i n . Ore - 500 gms. Wate r - 500 gms. Copper S u l p h a t e - 0 .5#/Ton pH - 8 .50 CELL Added ~ L i s s o l a m i n e A - - 0 . 48#/Ton • Sodium Hyd r o x i d e 0.8C#/Ton Cond. — 3 m i n . S k im . - 10 m i n . pH - 9 .75 T a i l s pH - 9 .10 S u l p h i d e s f l o a t e d f i r s t . P r o t h weaker t h an i n p r e v i o u s t e s t s . RESULTS ~ TEST % ASSAY % RECOVERY % No . Wt. BaS©4 CaCo 3 . S iOg - S BaS'Q v^ CaCo 3 S iOg S I1XEX Peed 100 21 .0 24 .9 4 0 . 6 u z 1QQ 100 100 100 C 56 .4 . B*.2l. 12*7; 53>5 3.9 16 .6 28 . 5 88 .0 56.0 2 4 3 . 1 T 43 . 6 4 0 . 0 4 1 . 8 X X.» 4 .0 83 . 4 71.7 12 .0 44 .0 CONCLUSION -The h i g h e r pH had l i t t l e e f f e c t o t h e r than t o s l i g h t l y l ower the c o n c e n t r a t e b u l k . To i n v e s t i g a t e t he a c t i o n of Sodium Metaphosphate as a L imes tone d e p r e s s a n t , CHARGE - t o Pebb l e M i l l G r i n d - 30 m i n , ' Ore - 500 gms* Water - 500 gms* CuSo 4 - 0*5#/Ton pH. - 8*5 CELL Added - M s s o l a m i n e A - 0 ,48#/Ton Sodium Metaphosphate - 2 .Q#/Tan. Cond* — 3 m i n . S k im . - 10 min* pH - - 8 .15 T a i l s pH - 8 . 15 F r o t h weaker & l e s s m i n e r a l i z e d t h an i n p r e v i o u s t e s t s w i t h L i s s o l a m i n e A . RESULTS -TEST ITo % Wt. ASSAY % RECOVERY % B a S o 4 CaCog S i 0 2 S B a S b 4 QaCog S I 0 2 S INTJEX Feed G T 100. 0 6 6 . 1 33 .9 21.0 7 .7 43 . 7 24 .9 14 . 4 4 5 . 1 40.6 60 .5 .: 2.9 4.2-4 . 5 100 2 5 . 5 74 . 5 100 38 c 3 61*7 100 98 .0 2.0 100 60 .8 3 9 . 2 234 .2 COffCLUSIOF Copper s u l p h a t e i s no t s u c c e s s f u l as a b a r i t e a c t i v a t o r . The Sodium Metaphosphate i s no t as good a d e p r e s s o r of l i m e s t o n e when i n t he p resence o f Copper Su l p ha t e as i t i s when used a l o n e . 78 TEST' 1 5 . To compare t he e f f e c t i v e n e s s of Sodium Hexametaphosphate w i t h Sodium Metaphosphate as a l i m e s t o n e d e p r e s s a n t . CHARGE - t o Pebb le M i l l G r i n d 30 m i n . Ore - 500 gms. Water — 500 gms. Copper S u l p h a t e - 0*5#/Ton P H Added Cond . S k im . - 8 . 5 Sodium Hexametaphosphate - 2 .0#/Ton . L i s s o l a m i n e A - 0 . 48 " /Ton 3 m i n . 10 m i n . 8 .30 P r o t h poo r - s u l p h i d e s d i d not come up d i r e c t l y as i n p r e v i o u s t e s t s . The bubb l e s were l a r g e and f r a g i l e . Some s u l p h i d e s r ema ined i n t he t a i l i n g . RESULTS. TEST Wt . or 7° ASSAY '% R] SCO VERY % l b . -- - :. '• ~t 0 ': . a S i 0 2 S B a S o 4 CaCo 3 S i 0 2 S INDEX Peed 100 . Q 21 .0 24 .9 4 0 . 6 4 . 2 100 100 100 100 ;-;C 19 . 0 14 .0 21 . 8 29*7 8*0, 13 .0 16*4 13 .6 36*8: 184 .2 T • 81 . 0 21 .9 25 .9 43 .9 3 . 2 87 .0 8 3 . 6 8 6 . 4 6 3 . 2 CONCLUSION -Sod ium Hexametaphosphate has a g e n e r a l d e p r e s s i n g a c t i o n f o r s u l p h i d e s and n o n - s u l p h i d e s when used i n t he above c o n c e n t r a t i o n * TEST 16 . To s t udy t h e c o l l e c t i n g a c t i o n o f . Emu l so l X - l Reagen t , when not i n t h e p re sence of an a c t i v a t o r dep r e s so r or f r o t h e r . CHARGE - t o P ebb l e M i l l G r i n d " - 30 m i n . Ore - - 5Q0 gms. Water - 500 gms. CELL ~~ ' Added - E m u l s o l X - l - 0 .60#/Ton Cond . - 3 m i n . S k i m . - 10 m i n . pH - 8 . 31 W e l l m i n e r a l i z e d c op i o u s f r o t h . V e r y l i t t l e m i n e r a l i z a t i o n o f bubb l e s d u r i n g l a s t 5 m inu te s o f sk imming p e r i o d . RESULTS -TEST ,No.. a/" 7° • ASSAY % RECOVERY % INDEX Wt . BaSQA - Ca.Co 3 S i 0 2 BaSo^ CaCog S i o 2 Peed 10Q.0 29 ©- 5 4 3 . 6 100 10Q 100 C 40 .9 5 8 . 8 32 .0 9 .6 90'. 2 4 3 . 8 9 . 6 236 .8 5 9 . 1 4.-4 2 8 . 4 63 .0 9 . 8 56 . 2 90 .4 CONCLUSION - . E m u l s o l X - l has a good c o l l e c t i n g a c t i o n f o r b a r i t e and l i m e s t o n e but no t f o r q u a r t z . I t s c o l l e c t i n g a c t i o n i s s l i g h t l y s t r o n g e r f o r b a r i t e t han f o r l i m e s t o n e . 80 TEST 17,. To . f l o a t b a r i t e , , i n h i b i t i n g the q u a r t z w i t h sod ium s i l i c a t e . CHARGE t o P e b b l e M i l l G r i n d — ••30 m i n . . Ore - 500 g r s . Water - 5Q0 g r s . Sodium S i l i c a t e - 0 .25#/Ton . CEIL" Added - E m u l s o l X - l = Q»4-9#/Ton Cond . - 3 m i n . S k im . - 10 m in i - PH - 8 .18 Cop i ou s f r o t h — s l i g h t l y l e s s m i n e r a l i z e d than, u s u a l . RESULTS -TEST • % - • .J ISSAY t RECOVERY % No. Wt . Ba.So,-4 CaCog S l o 2 S BaSo^ CaCo 3 S iOg S INDEX Peed 1QG.Q 21 .0 24*9 . 4Q>6 4*2 100 100 100 100 e ' 3 9 . 5 4 1 . 2 21f» 2 7.8: 8*9 : 77*6 43*8 7*6 81*4 226*2 T 60 .5 7 .8 22^8 61*8 1*4 22 .4 56*2 92*4 18 .6 CONCLUSIONS :^ Sod ium s i l i e a t e i n s m a l l q u a n t i t i e s , has o n l y a s l i g h t i n h i b i t i n g a c t i o n on q u a r t z . • - ' • TEST 1 8 . To; . i n v e s t i g a t e the use o f Sodium S i l i c a t e and Aluminum C h l o r i d e as q u a r t z d e p r e s s o r s . CHARGE - - to, P ebb l e M i l l . ' G r i n d - 30 m i n . Ore - 50Q g r s . Water - 500 g r s . Sodium S i l i c a t e - 0 .25#/Ton . CELL Added •- E m u l s o l X - l - m Q.4S#/Ton Aluminum C h l o r i d e - 0 . 2 0 #/Ton Cond. «" 3 min* S k i m . - 10 min» pH - 7 . 3 T a i l s pH. - 7 .6 S u l p h i d e s f l o a t e d f i r s t i n good f r o t h . RESULTS -TEST . No . Wt* : ASSAY % RECOVERY % INDEX "BaSo^ CaCo- S l G 2 S B a S o 4 CaCbg s i o 2 S Peed 100 .0 2.1.0 24 .9 40 .6 4 . 2 : 100 100 100 100 C .38.2. 4 1 . 2 26 .9 7 . 2 8 . 3 74 . 4 41 .0 ; 6 . 8 7 8 . 8 226.6 T . 61 .8 8 . 8 24 .0 60 .9 1.4 25 .6 59 .0 93.2: 2 1 . 2 CONCLUSION - . The c omb i n a t i o n o f Sodium S i l i c a t e and Aluminum C h l o r i d e has a. s l i g h t l y b e t t e r I n h i b i t i n g a c t i o n on qua r t s t h an Sodium S i l i c a t e a l o n e 9 bu t -when used i n s m a l l q u a n t i t i e s has no t a v e r y g r e a t i n h i b i t i n g a c t i on . -82 TEST 1 9 . To f l o a t b a r i t e u s i n g O l e i c a c i d as a c o l l e c t o r , and c i t r i c a c i d as a d e p r e s s o r f o r q u a r t s (and l imes tone)© CHARGE - t o Pebb l e M i l l CELL" G r i n d Ore Water 30 min» 500 g r s i 50Q g r s . C i t r i c A c i d - 0 .10#/Ton Added -Cond, Sk im . PH O l e i c A c i d T e r p i n e o l 3 m i n . 10 m i n . 8 .15 ~ 0:. 28#/Ton ~ 0.16#/Ton V e r y s l i g h t f r o t h : w i t h o u t t e r p i n e o l . On ' a d d i t i o n of f r o t h e r r e s u l t i n g b u b b l e s were h e a v i l y l o a d e d . S u l p h i d e s came up f i r s t . T a i l i n g pH - 8 . 1 0 . RESULTS -TEST of 7° ASSAY % RECOVERY % No. Wt. .BaSQ.4: CaCo* o ' S i 0 2 s . BaS-04 CaCo 3 S 1 0 2 S INDEX Eeed 100 . 21 .0 • 24 .9 4 0 . 6 4 . 2 : [ 100 100 . 100 . 10O C 61 . 7 32 , . ! 36 » 6 11 . 5 6 . 3 92;. 6 91 .3 . 17 . 4 94 .2 183 .9 . T 3 8 . 3 . 2 4 , . a : OR XT 87 .0 Q . . 7 7 . 4 8 . 7 8 2 0 6 5.8 CONCLUSION -C i t r i c a c i d has s l i g h t d e p r e s s i n g a c t i o n on qua r t s and l i m e s t o n e when used i n s m a l l amounts . TEST 2 0 . To\investigate the feectiveness of a higher concentra-tion of c i t r i c acid (compared to test 1 9 ) as a depressor f o r • quartz and limestone,; In the f l o t a t i o n of- barite* ' CHARGE - to Pebble M i l l * Gr i nd - " - '30 min* Ore - 5 0 0 grs*: Water - ' •5-00.-.grs* C i t r i c Acid - 0 * 4 #/Ton. CELL. Added • , Cond* Skim* PH Proth more mineralized than usual* Skimming time of 10 minutes i n s u f f i c i e n t for recovery of a l l the concentrate* RESULTS -.TEST, "No* wt* ASSAY. % RECOVERY $ I N D E X :EaSo4 CaCog SiOg S BaS04 CaCog S 1 0 2 a Peed 1 0 0 , 0 21*0 2 4 * 9 4.0*6 4*2- 1 0 0 1 0 0 1 0 0 100 C 53*8: 35*8 3 6 * 6 •'; 6*9 7*0 9 1 * 7 7 8 *Q 9 * 2 9 0 * 0 2 0 4 * 5 T 4 6 * 2 3 « 8 1 2 * 0 7 9 * 0 0 * 9 8 * 3 2 2 * 0 9 0 * 8 10*0 CONCLUSION -C i t r i c Acid, i n moderate quantities has a s l i g h t general depressing action, but when used i n high concentrations has a very strong general depressing action* A test was. cond-ucted using l»5#/Ton of C i t r i c Acid produced no concentrate, hence was discarded* Oleic Acid Terpineol 3 min* 1 0 min* 7*0 - 0.28#/Ton - 0.16#/Ton 84 TEST 21» To f l o a t barite using Imuls:ol 1-1 as a co l l e c t o r , with Sodium S i l i c a t e and C i t r i c acid cas depressors f o r limestone and quarts. * CHARGE ~ to Pebble H i l l Grind -» ,30 min. Ore — 500 grs. Yfeter - 500 grs. C i t r i c Acid - 0.80 #/Ton Sodium S i l i c a t e - 0.50#/Ton. -CELL Added - Emulsol X - l - 0.48'#/Ton Cond. - ...5 min. Skim. - 10 min. pH « .8.35 Erath weak. Bubbles very s l i g h t l y loaded. Ph of t a i l s - 8.30 RESULTS. -TEST. ; %• Wt» ASSAY % RECOVERY % . INDEX BaS04 GaCo3 Sipg • BaSo 4 CaCQg sio 2 Peed 100.0 2.7V4: 29.5 ,43.6 100 ! 100 100 •C ' 5.5 63.4 22.8 13.9 12.7 4.2: . '2.1" 206.4 :T , 94.5 25.2 2,9.7 40.2 87.3 95.8 97.9 CONCLUSION The combination of Sodium S i l i c a t e and Citric, Acid had a very great depressing action, probably due to the presence of a large quantity of C i t r i c Acid. C i t r i c Acid shows a d i f f e r e n t i a l action In depressing limestone p r e f e r e n t i a l l y . TEST 22* To- i n v e s t i g a t e t he use o f Sodium A l u m i n a t e as a q u a r t s d e p r e s s a n t . CHARGE ~ t o Pebb l e M i l l G r i n d - 30 m i n . Ore - 500 g r s . ' Water - 500 g r s . Sodium A l um i na t e ~~ 0 . 2 #/Ton. CELL-Added - E m u l s o l X - l s Q*48#/Ton Cond . - 3 m i n . S k im . - 10 m i n . pH . • '- a ; io. T a i l s pH - 7 . 9 0 . C o n c e n t r a t e same as i n p r e v i o u s t e s t . RESULTS -TEST 'Ho-. f Wt. ASSAY % RECOVERY % IHEEX' B a S o 4 CaCog S i 0 2 BaSo A CaCo 3 S i 0 2 Peed 100 .0 21 .0 24.® 4 0 . 6 loo; 100 100 "C 35 * 3 42*9' 26 . 4 4 . 1 , 71*4 ; 37*1 3 • 5 230*8 T 64 .7 9 . 3 24 .4 61.Q 28*6 62* S 96 .5 CONCLUSIQir -T h i s t e s t i n d i c a t e s t h a t Sodium A l um i n a t e has a r e l a t i v e l y good d e p r e s s i n g a c t i o n on q u a r t z and c o u l d t h e r e f o r e r e p l a c e Sod ium S i l i c a t e i n many i n s t a n c e s . 86 TEST '85;, To investigate the use of 'Copper Sulphate as an activator for Barite and Sodium S i l i c a t e as a quartz depressant. CHARGE - t o - p e b b l e - M i l l . CELL - 30 min* 500 grs. Grind Ore Water - 500 grs\. Sodium S i l i c a t e - 0*25 #/Ton CuSo4 - 0*5 #/Ton* Added Cond* Skim* PH Tai l s pH - Emu 1sol X - l - 3 min* , 10 s i n . - 6*92 ( ? ) - 8.10 0.48#/Ton« Concentrate s i m i l a r to that of previous test* RESULTS TEST ASSAY % RECOVERY % .:11b. Wt * BtaS.04 CaCog. SiC g BaSo^ CaCog S i 0 2 INDEX Eeed 100*0: ,21*0. 24*9 40*6 100 100 100 G \ 42*3 .. 40*5 .29..-9 8*2. 81*3 49*8 8*6 222* 9 T 57*7 6*8 '22. a. 64.0 18*7 50.2 91.4 CONCLUSION -Copper;Sulphate appears to have no activating action on barite 5but rather i t has a depressing action* The ' depression-of.the quartz i s probably due to the Sodium S i l i c a t e , TEST 24. To investigate the use of Copper Sulphate and Sodium Aluminate as Barite activator and quartz depressor, respectively. CHARGE - to P e b b l e M i l l Grind - 30 m i n ; Ore ~ 500 grs* • Water 4 500 grs. CUS04 - Q.5#/Ton Sodium Aluminate — G«2$/Ton CEJjL Added - Emulsol X ~ l - Q.48#/Ton. • Cond. - 3 min. Skim., - 10 min. pH ~ 8.20 T a i l s pH ~ S.Q5 Froth similar to previous t e s t . RESULTS -TEST ASSAY % RE pOvTSRY <fo '• NQ« Wt. BaSo4 CaCo 3 SiOg B a S o 4 CaCo 3 S i 0 2 INDEX Feed 100.0 21,0 : £4.9 40..6 ;ioo 100 : 100 C : 38.3 40,. Q . 30,9 . 8. 2 7/3.8 47.1 7.6 219 .1 T 6.1.7 9.0= 21,9 63.0 26.2 52,9 9^,4 CONCLUSION -The test, indicates that the combination of Sodium Aluminate and Copper Sulphate has less depressing action on quarts than Sodium Aluminate alone, due to the activating action of the copper sulphate. 88 TEST 25V To duplicate test 17 with a new batch, of ore, CHARGE - to Pebble M i l l • Grind - 30 min* Ore - 500 grs* • Water - 500 grs* Sodium S i l i c a t e -Q*25#/Ton« CELL -Added - EmulsoX - 0 .49#/Ton. Cond* - 3 min* Skim* - 10: min* pH . - 8*4 Froth same as i n test 17. Bubbles s l i g h t l y loaded at the end of the 10 minutes skim time. RESULTS -TEST No* 7° Wt* ASSAY % RECOVERY % INDEX BaSQ4 CaCo 3 S i O g BaSo A GaCo ' SiOg Feed 100*0 27*4 29*5 i 43*6 100 100 100 C 33*8 64*0 27*8, 10*4; 78*7 30*7 9*1 238*9 T 66*2 8*8 30*9 53*4 21.3 69*3 ; 90*9 TEST. 26. To, investigate the f l o t a t i o n of harite with a very coarse c e l l f f e e d and no reagents i n the m i l l . CHARGE . - to Pebble M i l l Grind . • 1 5 min. Ore ' ~ 500 gms<> Water 500 gms. CELL —-Added ~ Emulsol ' X -X - 0.60 #/Ton Cond. - 3: min. Skim. - 6 min. pH - - 8.35 Froth same as usual. -RESULTS - • • • TEST % ASSAY t •R EOOVERY <£ ITo. , _ Wt. BaSo^ CaCo 3 SiQg BaSo 4 CaCo7 SiOg IEBEX Feed lOQ.o; 27 .9 -29.4 4 2 . 7 100 100 1Q0 C . 28.;L 6 7 . 3 28.5: 3.7 68 ,8 27 . 6 2 .6 238.6 T 71 .9 15 . 5 29 .2 58 . 2 31LO 2 72 .4 97 . 4 COHCBUSIOH -The r e s u l t s of grinding tests are as follows; Time of Grind _ Minis. % Wt. GR ADE % RECOVERY % BaSo 4 CaCo-2 S i 0 2 BaSo 4 CaCo3 SiOg 5 15 30 •60^  28 .1 36.3 40.9 42.8 67. 3 ' 63. 6 58.8 45.5 28. 5 30.4 32,0 38 o 2 . 3.7 6.7 9.6 16.4 68.8 86.6 90.2 72.3 27.6 37. Q 43.. 8 55.8 2.6 5.9 9.6 17.1 It i s obvious from the above table that an increased grinding time decreases the average size of the p a r t i c l e s u n t i l they are small enough to allow f l o t a t i o n . Evidently Barite i s s u f f i c i e n t l y soft to.break e a s i l y before the limestone & quartz 90 with, further grinding, the limestone, and l a s t l y quartz, can be floated,with increasing e f f i c i e n c y , and at the expense of the b a r i t e * The recovery of the barite increases, however, due to the increased bulk of the concentrate, i n a l l cases, except the f i n e s t grind, where the decrease i n grade more than offsets the increased bulk* r e s u l t i n g i n a lower overa l l recovery* The r e s u l t s also show that the Barite f l o a t s more readily, and that Emu1sol X - l i s a f a i r l y rapid-acting reagent, / TEST' 2 7 . •  To i n v e s t i g a t e the f l o t a t i o n of h a r i e t w i t h a c o a r s e r c e l l f e e d and no r e agen t s I n t he b a l l m i l l . . CHARGE - : To P ebb l e M i l G r i n d — 15 m i n . Ore - 500 gms. Water - 500gms . CELL Added Cond. - 3 m in Sk im . - 9 m i n PH - 8 . 3 1 F r o t h as u s u a l . ~ Emu1so l X - l - 0.60#/T on RESULTS -TEST". .'No. % Wt. ASSAY % RECOVERY % INDEX B a S o 4 CaCQg Slog, B a S o 4 CaCo„ 3 S i 0 o Feed 100*0 2 7 . 4 29:. 5 43 .6 100 100 10.0 C .' 36 o 3 6 3 . 6 3 0 . 4 , •"•6*7 : 8 6 . 6 37 .0 5*9 243.7 T 63.7 5.6 29 .5 6 1 . 1 1 3 . 4 63.0 94 . 1 CONCLUSION -See Te s t 26 . 92 T E S T 2 8 . To i n v e s t i g a t e t he f l o t a t i o n o f b a r i t e w i t h a f i c e l l f e e d and no r e agen t s i n the m i l l . . CHARGE - t o P ebb l e M i l l G r i n d - 60 m i n . Ore -.- 500 gms. ; Water - 500 gms. . CELL Added Cond . S k i m . E r o t h as u s u a l * RESULTS TEST .. ASSAY fa RECOVERY % ;73Jq'.> Wt. BaSo^ C a C o 3 S iOg BaSo* . CaCov. kJ sio 2 INDEX Feed 100 .0 27 .4 . £9 . 5 43 .6 1QQ 100 . 10.0 c ; 4 2 . 8 45 . 5 38 » 2 1 6 . 4 ; 7 2 . 3 55 .8 1 7 . 1 199 .4 T 57 . 2 13 .0 22 .6 ; 5-9 »'& 27 . 7 4 4 . a 82:. 9 CONCLUSION -E m u l s o l X - l -_.Q»6Q#/Ton 3 m i n . 10 mine. 8.2:5 See Te s t 2 7 . TEST 2 9 . T© I n v e s t i g a t e the f l o t a t i o n of B a r i t e u s i n g a low pu l p d i l u t i o n of 5 CHARGE - t o Pebb l e M i l l Two; s t a n d a r d c ha r ge s of 500 grams were g round i n d i v i d u a l l y i n the, mills.... One charge was d r i e d , ' t he r e q u i r e d p o r t i o n - 150 g rs» was t a k e n , added t o t he o t h e r cha rge , and the who le added t o the c e l l . • '-•.'CELL- -Ore - 650 g r s . Water - 1625 grs* P u l p D e n s i t y 2 . 5 s i Added. - E m u l s o l X~I Q.6#/Ton Cond . - 1 min.; w i t h no r eagen t . 3 m i n s . w i t h r e a g e n t . Sk im - 10 m i n s . pH : - 8 .25 F r o t h much more, m i n e r a l i z e d , t han u s u a l * RESULTS -TEST , l i b . * of 7° Wt . ASSAY %' RECOVERY % INDEX BaSo-4 GaCdg S i 0 2 Ba;Sd 4 GaCog S i 0 2 Feed . 100 .0 •27.9 ' . 2 9 . 4 42 .7 100 100, 100 C .53.4- 50 .0 35 .6 1 4 . 2 95 .7 64 . 6 18 .0 T 46 .6 2.6. 22.3- 7 4 . 3 4 . 3 35 . 4 82 .0 CONCLUSION -The f o l l o w i n g t a b l e shows r e s u l t s o b t a i n e d f o r t h r e e v a r i a t i o n s I n p u l p d i l u t i o n . . P u l p D e n s i t y % Wt, GRADE %' RECOVERY t "BaSo 4 Cacog S i 0 2 BaS04 CaCOg S lOg 2 . 5 : 1 53 .4 50 .0 35.6' 1 4 , 2 95 .7 64 .6 18 .0 4 : 1 . 40 .9 58 . 8 32 .0 9 .6 90 . 2 43 .8 9 .6 6>1 45 . 4 61 .0 31 . 1 9 .0 98 .0 4 9 , 1 9 .6 CONCLUSIONS ~ I t wou l d be advantageous to r un a s e r i e s of t e s t s v a r y i n g t he p u l p d i l u t i o n i n a range of 2 .0 t o 8 . 0 . A l t h o u g h e i t h e r ext reme wou l d not be e c o n o m i c a l l y or m e t a . l l u r g i c a l l y e f f i c i e n t ^ a. compromise m igh t be r ea ched w i t h i n t h e s e l i m i t s . The l owes t p u l p d e n s i t y h e r e i n g i v e s t oo l a r g e a c o n c e n t r a t e w i t h a low b a r i t e grade* at the same t ime u n d e s l r e a b l y i n c r e a s i n g t he g rades of t he l i m e s t o n e and q u a r t s r e s p e c t i v e l y . The h i g h e s t p u l p d e n s i t y , oh t he o t h e r hand , g i v e s t he h i g h e s t b a r i t e grade and r e c o v e r y ! a t t h e same t i m e c a u s i n g a d e s i r e a b l e l o w e r i n g of the l i m e s t o n e and q u a r t z r e c o v e r i e s . TEST 30* To i n v e s t i g a t e t h e p o s s i b i l i t i e s of b a r i t e f l o t a t i o n u s i n g a h i g h e r p u l p d i l u t i o n * CHARGE - t o Pebb l e M i l l 30 min* 500 gms* 500 gms* Ore 350 grams Water 2150 grams P u l p d e n s i t y - 6$1 E m u l s o l X - l - - Q*60#/Ton w i t h o u t c o l l e c t o r - 2 min* w i t h c o l l e c t o r - 3 min* T o t a l - 5 min* 7 m i n . 8*34 f r o t h ' a s 'usual*'' W e l l m i n e r a l i z e d d u r i n g f i r s t 3 min* RESULTS -TEST Ho* Wt . ASSAY % . RECOVERY % INDEX B a S o 4 CaCog S iOg BaS 0.4 CaCo- S iOg Peed 100*0 29*4 42*7 100 1.00 100 C 45 . 4 61*0 31*1 9.0: 98 .0 49*1 9 .6 239*3 T 54 .6 i * i 2.6*8 70*2: 2*0 50 .9 90*4 CONCLUSION -CELL G r i n d Ore T/ater Added Cond. Sk im pH See t e s t 29* 96 TEST '51» To i n v e s t i g a t e the advan tages o f a s h o r t e n ed and v a r i a b l sk imming p e r i o d . CHARGE - t o P ebb l e M i l l G r i n d - 30 m i n . Ore - 500 gms. Water - 500 gms. Sodium S i l i c a t e - 0 .50#/Ton CELL C o n c e n t r a t e 1 Added - E m u l s o l - 0..24#/Ton Cond . — 3 m i n . S k i m . - 1 m i n . pR - 8 .70 E r o t h h e a v i l y m i n e r a l i z e d and copious«» C o n c e n t r a t e 2 Added - E m u l s o l ~ Q.12#/Ton Cond . - 1 M i n . S k i m . - 2 M i n . pH ~ 8 . 70 E r o t h l e s s m i n e r a l i z e d but s t i l l c o p i o u s . C o n c e n t r a t e 3 - Added , - E m u l s o l - Q.24#/Ton Con do - I m i n . S k i m . «- 5 m i n . pH - 8 .70 E r o t h s l i g h t l y m i n e r a l i z e d a t end o f 5 m i n . sk imming p e r i o d . RESULTS » TEST AS£ >AY % RECOVERY % .Ho. Wt.1 BaS 04 CaCo„. 0 S i 0 2 BaSo 4 CaC o 3 S i 0 2 I H D E X Eeed 100.0 2.7.4 29 . 5 43*6 100 100 100 CL 23 .9 65 .5 2.5.3 10. S 56 .5 20*8 5.9 C2 " 10.6 62*5 27 . 6 10.0 23* 7 10 *Q 2 © 5 224 .2 C3 12 .6 25 .5 48 ,9 23 * 5 11.5 2X.» <2 7*1 7: 52 .9 4 . 2 26 . 3 66 . 1 8 . 3 48*0 84*5 COUCLUSIOH * " The r e s u l t s f r om t h i s t e s t c o n f i r m t ho s e o f Tes t 26 . i n w h i c h i t - i s i n d i c a t e d t h a t t he B a r i t e i s more e a s i l y f l o a t a b l e w i t h the c o l l e c t o r E m u l s o l X - l . Most of I t I s f l o a t e d a t o n c e f f o l l o w e d by the rema inder i n d e c r e a s i n g g r a d e s . The L imes t one and Qua r t z grades, however, i n c r e a s e s u c c e s s i v e l y w i t h each c o n c e n t r a t e . 98 TEST 1 52 . To i n v e s t i g a t e t he e f f e c t i v e n e s s of a low pH v a l u e i n t he f l o t a t i o n of b a r i t e , CHARGE - t o Pebb l e M i l l . G r i n d - 30 m i n . Ore - 500 gms. Wate r ~ 500 gms. Sod ium S i l i e a t e - 0 . 5#/Ton . CELL Added - E m u l s o l - 0 .6#/Ton . S u l p h u r i c A c i d - 2 .94#/Ton. Cond . - 3 m i n . S k i m . - IQ m i n . pH - 7 . 68 pH T a i l s - 7 .78 "Froth same as i n p r e v i o u s t e s t s . RESULTS -TEST ITo* % ASSAY Z RECOVERY % I1DEX EaSo^ . CaCo-, o S i o 2 BaSo^ CaCo 3 S iOg F eed 100 .0 27 . 4 29 . 5 43 .6 100 100 100 C 4Q.8 53 . 6 32.. 8 11 . 5 : :79.2; 4 5 . 9 •LX* 6 221.7 T 59 . 2 9 .8 2.6.7 60 o 3 20 ,8 5 4 . 1 8 8 . 4 CONCLUSION -The l owe red h y r d r ogen i o n c o n c e n t r a t i o n had l i t t l e e f f e c t o t h e r t h an l o w e r i n g c o n s i d e r a b l y the b a r i t e r e c o v e r y . TEST '33* To i n v e s t i g a t e t h e a a t l o n of O l e i c a c i d as a c o l l e c t i n t he f l o t a t i o n of b a r i t e . - CHARGE - t o P e b b l e M i l l G r i n d - 30 la in* Ore - 500 'gms. Water - 500 gms. Sod ium S i l i c a t e - 0*5#/Ton. CELL * Added - O l e i c A c i d T e r p i n e o l Cond . - 3 m i n . S k i m . ..- 10 m i n . pH ~ 8 . 1 2 F r o t h w e l l m i n e r a l i z e d t h r o u g h o u t , bu t p a r t i c u l a r l y w e l l m i n e r a l i z e d d u r i n g t he f i r s t q u a r t e r of the sk imming p e r i o d . RESULTS -TEST . No* % Wt. , ASSAY % RECOVERY %. INDEX BaS 04 Ca,Co 3 S iOg BaSo.. CaCo 5 S iOg Peed 100*0;. 27* 4 43 .6 100 100 100 C 6 9 . 6 38*1 41*7 19 .4 98:* 6 97*8 33*0 167*8 T 30 . 4 1*3 - 2*2. 90 .3 1*4 2 .2 67 .0 CONCLUSION ~ O l e i c A c i d r educed the grade of the b a r i t e c o n c e n t r a t e bu t i n c r e a s e d t he grade of the l i m e s t o n e and q u a r t z . The r e c o v e r i e d f o r each m i n e r a l were i n c r e a s e d c o n s i d e r a b l y due t o the l a r g e bu l k* T h i s i s compared w i t h Te s t 17* T h i s t e s t i n d i c a t e s t h a t O l e i c a c i d wou l d be a good reagen t f o r a b u l k f l o t a t i o n i n a r oughe r c e l l * ~ O..14#/Ton - O . l 6#/Ton 100 TEST 3 4 . To i n v e s t i g a t e the a c t i o n of "Fish O i l as a c o l l e c t o r f o r non s u l p h i d e s , u s i n g sod ium s i l i c a t e as a d e p r e s s o r f o r q u a r t z . ••CHARGE t o P ebb l e M i l l i f r i n d - 30 m i n . Ore - 500 g r s . Water - 500 g r s . Sodium S i l i c a t e - 0 .25#/Ton . CELL -Added - F i s h O i l - 0 .60#/Ton T e r p i n e o l » Q.49#/Ton Cond® - 3 m i n . S k i m . - 10 m i n . pH - 8:. 3 F i s h O i l a l o n e has o n l y s l i g h t f r o t h i n g a c t i o n n e c e s s i t a t i n g use of a f r o t h e r . Bubb l e s h e a v i l y l o a d e d . RESULTS -TEST 'He. /o Wt>. ASSAY % RECOVERY % INDEX BaS:Q4 CaCo 3 SiOg BaSo A CaCo 3 Feed 1Q0.Q 2:7.4 29 . 5 43 .6 100 100 100 C 20*6 42*5 42 . 7 14 .0 33® 3 29 .6 7 . 3 206 .4 T 7 9 . 4 23 »> 2 2 6 . 3 4 5 . 9 67 .7 70 .4 92 .7 CONCLUSION ~ ; C o n c e n t r a t e g rades o f a l l m i n e r a l s a r e h i g h e r , l i m e -s t one i n p a r t i c u l a r . Due t o a l owe r b u l k , however, the r e c o v e r i e s i n each case a r e l ower \ when compared ' t o Tes t 17 . TEST '35. . To i n v e s t i g a t e t he use of Su lphonated. C a s t o r G i l a s a c o l l e c t o r f o r non s u l p h i d e s , u s i n g Sodium S i l i c a t e as a d ep r e s s o r f o r -quartz* CHARGE - t o Pebb l e M i l l G r i n d - 30 m i n . Ore » 500 g r s . Water - 500 g rs* Sod ium S i l i c a t e - 0*25"/Ton* CELL Added - Su l phona t ed C a s t o r O i l ~ 0*63#/Ton* Gond. • • - 3 min* S k im . - 10 m i n . pH - 8*34 Bubb l e s f a i r l y w e l l l o a d e d . ¥ o f r o t h e r r e q u i r e d * RESULTS -TEST cr/ ASSAY % RECOVERY % . No. Wt* BaSb 4 CaCo 3 S iOg BaSG4 CaCo 3 SiO £ INDEX Peed 100*0 27*4 29*5 43*6 100 100 100 a ; 57*3 44 . 4 4 6 . 3 8*0 94*5 89 * 6 10*9, 1934* Q T 42*7 . •'• 3*5 7 . 1 86*9 5*5 10*4 89*1 CONCLUSION -C o n c e n t r a t e g r ade s of a l l m i n e r a l s a re h i g he r * l i m e -s tone i n p a r t i c u l a r , i n d i c a t i n g t ha t t he c o l l e c t i n g a c t i o n of S u l p hona t ed C a s t o r O i l and P i s h f o r l i m e s t o n e i s s t r o n g e r t han t h a t of E m u l s o l X - l as u sed i n Tes t 17* R e c o v e r i e s a l s o I n c r e a s e d due t o the l a r g e r b u l k . 102 TEST 1 36 , To f l o a t b a r i t e u s i n g Su l phona t ed God O i l as a c o l l e c t o r j w i t h sod ium s i l i c a t e as a d ep r e s s o r f o r quartz© CHARGE - t o Pebb l e M i l l G r i n d - 30 m i n . Ore - 500 g r s . Water - 500. g r s . Sodium S i l i c a t e - 0 .25#/Ton . CELL Added - S u l p hona t ed Cod O i l -1 .47#/Ton, Cond, - 3 m i n . S k im , - 10 m i n , pH - 8 ,35 Most h e a v i l y l a d e n f r o t h of t e s t s c a r r i e d out t o t h i s p o i n t . A t end of 10 m inu t e s sk imming p e r i o d the l a r g e bubb l e s were w e l l d r a i n e d - c l e a n an top bu t s l i g h t l y l o a d e d on t he s i d e s , E r o t h no t p e r s i s t e n t - t e r p i n e o l recommended f o r f u t u r e t e s t s * RESULTS : TEST a/ ASSAY % REGOYERY % ¥6® Wt , B a S o 4 . CaGo-o S i 0 2 BaS:o 4 G 3»C 0^ S i 0 2 ISDEX Eeed 100 . 0 27 .4 29 . 5 43.6. 100 100 100 .. C 38.-1 54.9 4a . 5 4 .6 ; 77 .5 53.9 4 .5 219 .1 T , , 61 , 9 9 . 8 21 .7 60 .0 22 .5 46 .1 95* 5 . GOUCLUSIQHS -The t e s t i n d i c a t e s t h a t Su l phona t ed Cod O i l i n c r e a s e s t he r e c o v e r i e s of b a r i t e and l i m e s t o n e as compared t o Tes t 17 , TEST J3?» To use. Sod ium S i l i c a t e and Su l phona t ed . God O i l a s d ep r e s s o r f o r q u a r t z and c o l l e c t o r f o r "ba r i t e r e s p e c t i v e l y * CHARGE - t o P e b b l e M i l l G r i n d - 30 min* Ore - 500 g r s . Water - 500 g r s . Sodium S i l i c a t e - 0.-5#/Ton. CE IL Added Cond* S k i m s PH - Su l phona t ed Cod O i l - l »76#/Ton T e r p i n e o l - 0»82#/Ton. - 3 min® - 10 m i n . - 8 .7 W e l l m i n e r a l i z e d f i n e b ubb l e f r o t h . Bubb l e s became (much l a r g e r by end of 10 m inu te sk imming period© A t end of 6 m inu tes wa t e r was added t o b r i n g the l e v e l up t o t h a t n e c e s s a r y f o r s a t i s -f a c t o r y sk imming . T h i s d i l u t i o n had no app -a r e n t e f f e c t on t h e . m i n e r a l i z a t i o n of the b u b b l e s . RESULTS -Te s t . ITo* % ASSAY % ' RECOVERY % Wt* BaS:Q4 CaGo 3 S i 0g • B a S o 4 CaCog S i 0 2 INLEX P e e d 100 . Q 2 7 . 4 29*5 43*6 100 100 1Q0 € 85*2 32 .8 32*4 98*0; 94*5 68*1 135 .4 T 14 . 8 5*0 1 . 1 •'• 94*1 2*0 5 © 5 31*9 coa - c L u s i o i : -T h i s t e s t i s e s s e n t i a l l y t he same as the p r e v i o u s t e s t excep t t h a t i t shows the e f f e c t of a l a r g e f r o t h * The f r o t h e r ( T e r p i n e o l ) has no c o l l e c t i n g a c t i o n , i t s mechanism b e i n g p u r e l y p h y s i c a l i n f o r m i n g more bubb l e s wh i ch p r e s en t a g r e a t e r a dhe s i o n s u r f a c e* 104 TEST' 5 8 , To f l o a t b a r i t e w i t h Su l phona t ed Cod O i l ? u s i n g Sod ium Metaphosphate as a l i m e s t o n e d e p r e s s a n t , CHARGE - t o P ebb l e M i l l G r i n d - 30 m i n . Ore - 500 gms© V/ater - 500 gms. Sodium S i l i c a t e - 0 ,5#/Ton Sodium Metaphosphate ' - 2>0#/Ton, CELL Added Cond* S k im , PH - Su l phona t ed Cod O i l -1.32#/Ton - 3 m i n , - 10 m i n , - 8 , 4 1 E r o t h as u s u a l . RESULTS TEST ASSAY % RECOVERY % . No , Wt . BaS 04 CaCog S iOg B a S o 4 CaCo-2 S i 0 2 INDEX S e e d 100 ,0 ,'27.4 2.9*5 •.: 43. 6 100 100 100 • c .; 45,0 55.5 39,9 : 5 .7 93.8 60.9 6 .2 226.7 T 55.Q 3.0 20,8 7 0 . 2 6.2. 39,1 93.8 CONCLUSION -As compared v/ i th T e s t s 65 -GRADE RECOVERY B a r i t e B e t t e r Same L ime s t one T a i l s h i g h e r S m a l l e r Qua r t z Lower B e t t e r BULK Le s s L e s s L e s s TEST :39> To f l o a t b a r i t e u s i n g Su lphonated. Cod O i l a s a c o l l e c t o r , and a r e l a t i v e l y l a r g e amount of Sodium Metaphosphate a s a l i m e s t o n e depressant® CHAB/Gjjj » t o Bebble. M i l l G r i n d - 30 mine Ore - 500 gms. Water - 500 gms 0 . Sodium S i l i c a t e - 0 .5#/Ton Soidium Metaphospha te - 2»5#/Ton» CELL Added - Su l phona t ed God O i l - 1.32#/Ton Sodium Metaphosphate - 0 .5#/Ton Cond® — 5 min© S k i m . - 10 m i n . pH - So 32 A d d i t i o n a l Sod ium Metaphosphate t o c e l l due to d e c i s i o n t h a t 2.5# was i n s u f f i c i e n t . F r o t h as u s u a l . RESULTS -TEST . Ho . Of 7° wt . . ASSAY % RECOVERY % INDEX BaS© a C a C o 3 S 1 0 2 BaS.Q^ CaCo 3 8 i 0 2 Feed 100 .0 27 . 9 29*4 42»7 100 100 100 C 43«>2: 58 .9 32 • 8 9 . 5 .91. 0 4 9 . 7 9 .8 231.+ 5 T 56 . 8 4 . 4 - 25+3 6 5 . 2 9.Q; 50 .3 . 9 0 . 2 CONCLUSION: -The Sodium Metaphosphate had l i t t l e e f f e c t o t h e r t han t o r educe the b u l k , by i t s g e n e r a l d e p r e s s i n g a c t i o n - p a r t i c u l -a r l y i n t h e c a se of l i m e s t o n e . 106 TEST 4 0 . To compare S i l i c i c A c i d w i t h Sodium S i l i c a t e as a d e p r e s s o r f o r q u a r t z . CHARGE ~ t o - P e b b l e M i l -G r i n d - 30 m i n . Ore - 500 g r s . Water - 500 g r s . S i l i c i c A c i d - 0 .5#/Ton CELL Added Cond. Skim© pH ~ E m u l s o l X - l - 0.72#/Ton - 3 m i n . - 10 m i n . - 8 . 5 E r o t h s i m i l a r t o p r e v i o u s t e s t s . S m a l l f r a g i l e bubb l e s a t f i r s t * wh i ch l a t e r d e v e l o p ed i n t o the r e l a t i v e l y s t r o n g t y oe as i n o the r t e s t s . RESULTS -Tes t .. No . Eeed G T 7o Wt. I O Q O Q 39 .7 60 . 3 BaSo, 27 . 4 59 .6 6 .0 ASSAY % CaCo. 30 .4 28 .8 SlOr 4 5 . 6 9»4 6 2 . 3 B a S o A 100 86 .8 RECOVERY % CaCo-; 100 41 . 3 58 » 7 SiOc 10Q 9*1 90.9 I1TBEX 236*4 C0HCLUSI01~~ S i l i c i c A c i d appears t o be l e s s e f f i c i e n t as a q u a r t z d ep r e s s an t but a p p a r e n t l y r a i s e s the grade of t he b a r i t e . TEST i 4 1 . To i n v e s t i g a t e t he e f f e c t i v e n e s s o f Sodium Su l pha t e as d ep r e s s an t f o r L i m e s t o n e . CHARGE - Pebb l e M i l l G r i n d * - 30 min© Ore - ' 500 gms. Water - 500 gms© Sod ium S i l i c a t e - Q*5#/Ton Sodium Su l p h a t e - IL.@#/T'on«> GELL Added - E m u l s o l X - l - 0.60#/Ton Cond . ~ 3 m i n . S k im . - 10 m i n . pH - 8 .38 F r o t h same as i n p r e v i o u s t e s t s . RESULTS » T e s t of /o ASSAY RECOVERY No . Wt. BaS 04 CaCog S i 0 2 B a S o 4 CaCog S i 0 2 IM)EX Peed 100*0 2 7 . 4 29*5 43*6 100 100 100 c 42*6 34*0; 9*1 86*1 . 4 9 •a 9*6 227.5 T 5 7 . 4 6*6 26 * 2 63*8 13*9 51*0 90*4 CONCLUSION -A c c o r d i n g t o t h e o r i e s sponso red by I . ~W» Wark, c a l c i u m s u l p h a t e , b e i n g more s o l u b l e t h an ba r i um s u l p h a t e , s h o u l d be l e s s amenable t o f l o t a t i o n . T h i s t e s t does n o t s uppo r t t h a t t h e o r y but shows t h a t Sodium Su l pha t e has a s l i g h t a c t i v a t i n g a c t i o n f o r b a r i t e when u s i n g E m u l s o l X - l as a c o l l e c t o r * loe TEST- 4 2 . To, i n v e s t i g a t e t h e use o f Sodium S u l p h a t e as a d ep r e s s o r f o r L imes tone when P a l m i t i c A c i d i s u sed as a c o l l e c t o r . CHARGE - to Pebb l e M i l l G r i n d - 30 m i n . Ore - 50Q gma. Water - 500 gms. Sodium S i l i c a t e - 0 .5#/Ton Sodium Su l p h a t e » 1 . 0 , l /Ton CELL - • • Added - P a l m i t i c A c i d - 0.16#/Ton - T e r p i n e o l - Q.49#/Ton Cond . - 3 m i n . S k i m . - 10 m i n . pH - 8 . 32 E r o t h c o p i o u s and w e l l m i n e r a l i z e d i n i t i a l l y bu t on second and t h i r d p o r t i o n s of p a l m i t i c a c i d became c o n s i d e r a b l y l e s s m i n e r a l i z e d . On t he t h i r d a d d i t i o n of p a l m i t i c a c i d t he f r o t h became v e r y s h a l l ow so t h a t wa t e r had t o be added t o b r i n g the f r o t h up t o a p r a c t i c a l sk imming l e v e l . M S U L T S -TEST % ASSAY % RECOVERY % Ho* Wt. BaSo4, OaCog S i 0 2 BaSo^ S i O g IHDEX Peed 100 .0 27**4 29 . 5 43 . 6 100 100 100 ., C 37 .9 3 9 . 7 4 8 . 2 1 0 . 2 55*9 62*7 183 .7 T 62»1 19 . 5 17*5 58 .8 44 . 6 37 # 3 90 .5 G0MCLUSI0¥ — T h i s t e s t does not suppo r t the t h e o r y o f Gaud in and Hansen who s t a t e t h a t sodium s u l p h a t e i s a d ep r e s s an t f o r c a l c i t e when c o l l e c t o r s of the t ype H e p t y i i c A c i d a r e u s e d . B o t e - P a l m i t i c A c i d i s f o u r members h i g h e r t han H e p t y l i c A c i d i n t h e same homalogeous s e r i e s * The t e s t shows t h a t Sodium Su l pha t e i s an a c t i v a t o r • r a the r than a d ep r e s s o r f o r l i m e s t o n e * 110 TEST '43* To f l o a t "ba r i t e u s i n g f e r r i c S u l p h a t e as a l i m e s t o n e a c t i v a t o r s . CHARGE - t o Pebb l e M i l l G r i n d - 30 min* Ore ~ 500 gms* Wate r «• 500 gms. Sodium S i l i c a t e - 0 .5#/Ton F e r r i c S u l p h a t e - l*Q#/Ton CELL . . Added - E m u l s o l X - l 0.60#/Ton Cond . - 3 m i n . Skim* - 10 min® pH - 8*33 F r o t h a s u s u a l * RESULTS -T®ST Kb* Ol 7° Wt.*--: A> 3 SAY % REC OTERY % ' . • I1BEX BaS.6.4 CaGOg S iOg Bas©4 GaCo 3 SiOg. Feed T • 10Q.0 44:. 3: 55.7 : 27*4 56*1 4 .2 29*5 • 34*5 : 26*4 43*6 8 » 3 67*5 100 90*8 9>2 : : 100 5 0 0 2 49*8. IQ'Q 8*9 90*1 230*7 COHCLUSIQIf T h i s t e s t i n d i c a t e s t h a t F e r r i c S u l p h a t e has the same a c t i o n ass t h a t of Sod ium Su l pha t e ( Te s t 41) i * e » , as an a c t i v a t o r f o r l i m e s t o n e TEST; 4$, To i n v e s t i g a t e the use o f Sodium' O xa l a t e as a L i m e s t d ep r e s s an t when P a l m i t i c A c i d i s u sed as the c o l l e c t o r . CHARGE ~ t o P ebb l e M i l l G r i n d - 30 m i n . Ore 500 gms. Water *- 500 gmsv Sod ium S i l i c a t e - 0 .5#/Ton Sod ium Oxa l a t e - 1.0#/Ton P a l m i t i c A c i d * - ( ( d i s s o l v e d i n e t h y l : a l c o h o l ) - 0 . L6#/Ton T e r p i n e o l ,-. Q»33#/Tan 3 m i n . 10 m i n . 8 .39 E r o t h i n i t i a l l y w e l l m i n e r a l i z e d . A d d i t i o n o f second p o r t i o n o f p a l m i t i c a c i d d e s t r o y e d f r o t h . T h i s appea red t o be a r e s u l t o f a g r e a t l y l owe r ed s u r f a c e t e n s i o n c a u s i n g r u p t u r e o f b u b b l e s . W i t h a f r o t h e r ( t e r p i n e o l t h e f r o t h became cop i ou s and w e l l m i n e r a l i z e d . . RESULT Tes t • ASSAY % - RECOVERY % No. Wt . BaSo^; . CaGog S i 0 Q BaSo^ CaCog S iOg INDEX Eeed 100 .0 2 7 . 4 ' ; :£9 ; .g 43 . 6 100 100 100 G 4 2 . 1 41.2JJ :45*4 xx* & 63 .6 65 .9 1 3 . 6 184*1 • T 57 .9 1 7 . 1 61 .5 3 6 . 4 34 .1 8 6 . 4 CONCLUSION ~ T h i s t e s t does no t suppor t the t h eo r y of r educed f l o a t a b i l i t y due t o i n c r e a s e d s o l u b i l i t y o f m i n e r a l f i l m s . C a l c i u m O x a l a t e i s more s o l u b l e t han Ba r i um Oxa l a t e a c c o r d i n g t o the s o l u b i l i t y t a b l e s . CELL Added C o n d . S k i m . m l i s TEST '45 s- " To. i n v e s t i g a t e t h e e f f e c t i v e n e s s of O x a l i c A c i d as a d ep r e s s o r of c a l c i t e ; , i n t he f l o t a t i o n of b a r i t e . CHARGE CELL t o Pebb l e M i l l G r i n d - 30 m i n . Ore - 500 g r s . Wate r •- 500 g r s . Sodium S i l i c a t e - 2.0#/Ton Added Cond. S k i m . PH. E m u l s o l X - l •* 0*60#/Ton O x a l i c A c i d - i n two p a r t s o f o*5#/Ton each t o t a l - 1 .0#/Ton. 3 m i n . 10 m i n . 8*30 P r o t h same as i n p r e v i o u s t e s t s , RESULTS -TEST .So* 7° . Wt* A .SSAY %. RECOVERY € BaSo 4 ; , CaCc , 3 S i 0 2 BaSo A GaCo 3 S i o 2 INDEX P eed 100*0 ; 2 7 * 4 29 .5 43*6 100 100. 100 C ' • , 43*8 55*5 32*5 11*1 89*6 48*5 12*0 229 »1. ,T. 56*2 5*0 26 .9 63 .4 10*4 5 *L & 5 88*0 CONCLUSION *• . O x a l i c A c i d i s a b e t t e r a c t i v a t o r of b a r i t e t han Sodium O x a l a t e - (Tes t 44) TEST , ' 4 6 » To i n v e s t i g a t e t he e f f e c t i v e n e s s of L ead Chromate as a d e p r e s s o r f o r l i m e s t o n e ( c a l c i t e ) and S i l i c i c A c i d as a d e p r e s s o r f o r q u a r t z 9 i n "bar i te f l o t a t i o n , CHARGE - t o Pebb l e M i l l G r i n d - 30 m i n . Ore - 500 g rs* Water — 500 g r s . S i l i c i c A c i d - 0 .5#/Ton Lead Chromate - 0 .8#/Ton CELL Added ~ E m u l s o l X - l - Q.60#/Ton Cond , - 3 m i n , S k im , 10 m i n , pS - 8 . 2 5 E r o t h s i m i l a r t o t h a t p roduced i n p r e v i o u s t e s t s - w e l l m i n e r a l i z e d s m a l l bubb l e f r o t h RESULTS ~ TEST ASSAY t RECOVERY ti f S o . Wt, BaSo^ CaCog Si. Og B a S o 4 CaCo 3 S iOg INDEX Feed 100*0 •29.5 4 3 . 6 100 100 100 • G 43 . 0 51*Z 3 3 , 2 9 . 5 87 » 2 4 9 . 3 10*2; , 228*7 T 57 ,0 6 , 4 26 .0 63 .5 12 .8 5 0 . ? 90 .8 CONCLUSION" -The use o f Chromates was sugges t ed by the s o l u b i l i t y o f C a l c i u m and Ba r i um Chromates s . the f o rmer b e i n g more s o l u b l e t h an the l a t t e r . There i s no apparen t e f f e c t . 114 as a Ac id , t e s t TEST 4 7 . To compare t he use of Sodium O l ea t e w i t h E m u l s o l X - l c o l l e c t o r f o r b a r i t e s u s i n g Lead Ghromate and S i l i c i c as d e p r e s s o r s f o r L imes tone and QuartSo As i n p r e c e e d i m CHARGE CELL t o P ebb l e M i l l G r i n d - 30 m i n . Ore - 500 g r s . Water - 500 g r s . S i l i c i c A c i d - 0*5#/Ton L e a d Chromate - 0*8#/Ton Added Cond, Skim* Sodium O l ea t e T e r p i n e o l 3 min* 10 min* 8 .30 0.24#/Ton 0*16#/Ton P r o t h same as i n p r e v i o u s t e s t s RESULTS TEST Kb. Peed C T Wt. 1.00.0 67 .5 32<& 5 ASSAY % BaSo, 2 7 . 4 37 .8 6 . 3 CaCog 2:Q & 5 41*2 4 , 4 S iO 2 43 .6 88*0 RECOVERY t BaS 04 100 95 .0 5*0 CaCog 100 94*4 5*6 S iO 2 100 32*0. 68*0 IHBEX 168 .6 CONCLUSION ~ Sodium O l e a t e gave a l a r g e r bu lk* under t he same c o n d i t i o n s as E m u l s o l X - l . The b a r i t e g rade was l owe r w h i l e t h a t o f l imes tone , and s i l i c a was h i g h e r . R e c o v e r i e s i n a l l c a se s were h i g h e r due t o t he i n c r e a s e d bu l k* TEST; 48* To i n v e s t i g a t e the f l o t a t i o n o f b a r i t e u s i n g S i l i c i c A c i d a s a q u a r t z dep r e s san t and Lead Chromate i n an A c e t i c a c i d s o l u t i o n * CHARGE . - t o Pebb le M i l l G r i n d - 30 mint. Ore — 500 gms. Water - 500 gms* S i l i c i c A c i d - 0*5#/Ton Lead Chromate - Q»8#/Ton A c e t i c A c i d •» 8oO#/Ton CELL Added Cond , S k im , PH '. . T a i l s pH E m u l s o l X - l 0*60#/Ton 3 m i n , 10. m in , 7 , 62 7*70 Some r e a c t i o n between a c i d and l i m e s t o n e v i s i b l e * RESULTS TEST % .: ASSAY fn m 3C07ERY % . l b * . Wt* BaSo4- CaCog S iOg BaSo 4 GaCo 3 S iOg INDEX Peed 100*0 27*4 29 & 5 43*6 100 1QQ 100 C 40*0 ' 57*0 34*6 8*6 84*5 , 48*0 8*5 228*0 T 60 ,0 7.0 25 » 3 62.0 !L 5 » 5 52*0 9 JL & 5 CONCLUSION -The use of a weak A c e t i c A c i d s o l u t i o n was sugges t ed by S c o t t r s " M e t a l l u r g i c a l A n a l y s i s " w h i c h s t a t e s t h a t Ba r i um Chromate was l e s s s o l u b l e t han C a l c i u m Chromate i n an A c e t i c A c i d s o l u t i o n * A s l i g h t d i f f e r e n c e i n b u l k and l i m e s t o n e grade was no t ed when compared w i t h Te s t 46* 116 TEST '49 . To f l o a t b a r i t e u s i n g an i n c r e a s e d amount of Lead Chromate as a l i m e s t o n e d e p r e s s a n t , and S i l i c i c A c i d as a qua r t 2 d e p r e s s a n t . CHARGE - t o Pebb l e M i l l G r i n d - 30 m i n , Ore - 500 gms. Water ~ 500 gms. S i l i c i c A c i d - 0*5#/Ton Lead Chromate - 1.6#/Ton CELL -Added - E m u l s o l X - l - 0*6Q#/Ton Cond . - 3 m i n . Sk im . - 10 min* pH - 8 .28 E r o t h same as u s u a l . RESULTS ~ TEST ,B"o* % Wt. ASSAY % RECOVERY % I1BEX B a S o 4 CaCo 3 S i 0 2 RaS04 CaCo 3 S i 0 2 Eeed 100 .0 2 7 . 4 29 .5 43*6 100 100= 100 C 4 3 . 1 56* 3 33© 5 11*7 87 . 6 49 .5 1 2 . 4 235*7 T 56 .9 6*2 26 , 2 63 .5 12 , 4 50 .5 87 ,6 CQivfCLUSIOI - -An i n c r e a s e d amount of L ead Chromate has a p p a r e n t l y no e f f e c t . TEST |50* To i n v e s t i g a t e t h e advan tages o f s h o r t e n i n g the sk imming t ime i n the f l o t a t i o n of b a r i t e when u s i n g Lead Ghrornate as a l i m e s t o n e d e p r e s s a n t . CHARGE '- t o P e b b l e M i l l G r i n d - 30 M i n , Ore - 500 g r s . Water ** 500 g r s . Sod ium S i l i c a t e - l , 0# /Ton Lead Chromate - Q.8$/Ton CELL Added ~ E m u l s o l X - l o .60#/Ton Cond , - 3 m i n . S k im , - 5 min© pH - 8 .45 P r o t h same as i n p r e v i o u s t e s t s . RESULTS -Tes t % ASSAY % RECOVERY % No, Wt* BaS'o^. CaCo 3 S iOg B a S o 4 CaCo 3 SiOg IKDEX Peed ; i p o * o 27*4 29*5 43*6 100 10Q 100 C 39 . 6 59*7 3010 XX®> 3 84*0 41*0 XX & 0 233*0 T 6 0 , 4 7*6 28*3 60*0 16 .0 59*0 89.Q CONCLUSION A s h o r t sk im t ime i n c r e a s e s the g rade of t he b a r i t e c o n c e n t r a t e but d e c r e a s e s t he r e c o v e r y a p p r o x i m a t e l y t e n pe rcen t ' . 118 TESTJ 5 1 . To i n v e s t i g a t e t he e f f e c t i v e n e s s o f Po t a s s i um romate a s a d ep r e s so r f o r l i m e s t o n e and S i l i c i c A c i d d e p r e s s o r f o r q u a r t z i n the f l o t a t i o n of b a r i t e . CHARGE - t o Pebb l e M i l l G r i n d - ' 30 m i n . Ore •» 500 g r s . -Water - 500 g r s . S i l i c i c A c i d - 0 .5#/Ton P o t a s s i u m Chromate -» Q«8#/Ton CELL ~ Added - Emu lsoX 'X-I a.6Q#/Tan Cond . - 3 m i n . S k im . -•• 10 min* pH 8 . 2 RESULTS -» TEST No » A R R A Y RECOtfEW <€, Wt. BaSQ4 C a C o 3 SiOg BaSo 4 CaCo 3 SiOg INDEX Peed 100 .0 •27*.4 29 5 43 . 6 100 100 100 C 4 1 . 0 55:»9 3 3» 3 8. 3 7 9 . 0 4 7 . 0 89.5 223 <» 5 T 59 .0 1 0 . 4 26~.2 61 .5 21 .0 53*0 91 .5 CONCLUSION — There i s l i t t l e d i f f e r e n c e between the e f f e c t i v e n e s s o f P o t a s s i u m and Lead Chromates as l i m e s t o n e d ep r e s s an t s e x c ep t t h a t the g rade o f b a r i t e and qua r t z d ropped s l i g h t l y a l o n g w i t h t he b u l k . 119 TEST 1 52* To i n v e s t i g a t e t h e e f f e c t i v e n e s s o f Su l phona ted Cod O i l as a c o l l e c t o r of b a r i t e , emp loy ing sod ium S i l i c a t e and P o t a s s i u m Chromate as d e p r e s s o r s f o r q u a r t s and l i m e s t o n e . CHARGE- ~ t o P ebb l e M i l l G r i n d - 30 m i n . Ore - 500 g r s . Wa te r - 500 g r s . Sodium S i l i c a t e - Q.25#/Ton Po t a s s i um Chromate - G*8#/Ton CELL Added - Su l phona t ed Cod O i l - l »4?#/Ton T e r p i n e o l - Q»66#/Ton Cond . - 3 m i n . S k i m . - 10 m i n . pH - 8 .45 W e l l m i n e r a l i z e d f i n e bubb l e f r o t h f o r f i r s t 5 m i nu t e s - s u b s equen t l y p oo r , i r r e s p e c t i v e o f amount of Cod O i l o r T e r p i n e o l added . RESULTS -TEST .No . % Wt. .-. ASSAY fo RECOVERY IHDEX BaSQ4 CaCog S i ° 2 B a S o 4 CaCo 3 S iOg 'Peed XQG.Q 2 7 . 4 2 9 . 5 '•  43V6 100 100 100 C- : 59.* 6 ' 4 2 . 4 ' 4 5 . 7 10*9 93 .8 93 .0 15*7 1 85 . 1 4 0 . 4 4 . 2 5 .2 8 6 , 6 6 .2 7 . 0 84*3 COHCLUSION -Su l phona t ed Cod O i l has a good c o l l e c t i n g a c t i o n f o r b o t h b a r i t e and c a l c i t e w i t h no e v i d e n t s e l e c t i v e a c t i o n . I t c o n f i r m s p r e v i o u s s t a t emen t s r e g a r d i n g i n c r e a s e d l i m e s t o n e grade w i t h the use of P i s h O i l s as c o l l e c t o r s . 120 TEST, 5 5 . To i n v e s t i g a t e t he e f f e c t i v e n e s s of Chromium Ox ide (Org Og) as a d ep r e s s o r f o r l i m e s t o n e i n t he f l o t a t i o n of b a r i t e 4. CHARGE - t o Pebb l e M i l l G r i n d - 30 m i n . Ore - 500 g r s . Water 500 g r s . Chromium Ox ide (GrgQg) - 3.2#/Ton Sodium S i l i c a t e . - 2.0#/Ton CELL - Added ~ E m u l s o l X~ l - Q.6Q#/Ton Cond. - 3 m i n . S k im . 10 min* pH - 1Q.32 • T a i l s pR - 9 .80 E r o t h a s u s u a l . RESULTS -TEST . No . % Wt, A S S A Y % R E C O V E R Y ? ? INDEX BaS.04 CaCQg SIO 2 BaSo 4 S i 0 2 Peed X O Q . Q 27 • 4 29 » 5 43 . 6 100 100 100 C . 4 6 • 6" 5 3 . 7 ' 2 9 . 5 16 .9 89 ,7 47.4 19* S 223 0 T 53 . 4 5 © 3 28 ,6 62 .8 1 0 . 3 52 . 6 80 .7 CONCLUSION ~ Chromium Ox ide (Gr^Og) has a s l i g h t g e n e r a l a c t i v a t i n g a c t i o n p a r t i c u l a r l y t owa rds b a r i t e and q u a r t z , t h e r eb y i n c r e a s i n g the b u l k . Note - The h i g h pH v a l u e i s i n e x p l i c a b l e as Chromic Ox ide s h o u l d h y d r o l y z e t o Chromic A c i d . TEST' 54V T o f l o a t "bar i te u s i n g Chromic A c i d a s a l i m e s t o n e d e p r e s s a n t . CHARGE - t o Pebb l e M i l l G r i n d - 30 m i n . Ore - 500 gms. Water - 500 gms. Sodium S i l i c a t e - 0 .5#/Ton Chromic A c i d - l * Q # / T o n C E L L Added Cond . S k im . , PH - E m u l s o l X - l 0.60#/Ton - 3 m i n . ** 10 m i n . - 8 a 21 P u l p appea red -ye l l ow when t a k en f r om m i l l . P r o t h as u s u a l . RESULTS -TEST . No . Wt* ASSA^ RECOVERY . % • INDEX BaSiO-A GaGCz o S iOg BaS 64 CaCog S 1 0 2 Peed C T 1 0 0 * 0 5 t * 5 6 2 . 5 7 7 . 4 1 1 . 2 2 9 . 5 3 6 . 0 : 2 5 * 4 4 3 * 6 9 * 0 . 5 9 * 2 1 0 0 7 3 * 9 2 6 * 1 1 0 Q 4 6 * 0 5 4 * 0 1 Q 0 8 * 2 9 1 * 8 2 1 9 * 7 CONCLUSION ' Chromic A c i d has a g e n e r a l a c t i v a t i n g a c t i o n , p a r t i c u l a r l y t owa rds b a r i t e and l ime s t one* Compared t o Chromic Ox i de , Chromic A c i d i s a s t r o n g e r a c t i v a t o r of l i m e s t o n e . 122 TEST'' 5 5 . To f l o a t b a r i t e u s i n g Aluminum N i t r a t e as a l i m e s t o n e depressant , . CHARGE - t o Pebb l e M i l l G r i n d - 30 m i n . Ore •— 500 gms. Water . - 500. gms. Sodium S i l i c a t e - 0»5#/Ton Aluminum N i t r a t e - Q*2#/Ton CELL Added ~ E m u l s o l X - l ~ 0.6Q#/Ton Cond* - 3 /m i n . S k im . - 10 m i n . PH » 8 .48 E r o t h as u s u a l RESULTS «-TEST : Wt . A SSAY % RECOVERY % .Ho . BaSc4 .- CaCOg- s i a 2 BaS0 A CaCQg S iOg INDEX Eeed xoo.o 27/. 4 29 * 5 43 . 6 : 100 100 100 G 4 0 . 9 5 8 . 3 3X.» 2 9 . 1 93 .9 42.7' 9*2' 242.0 T 5 9 . 1 t 2 Qr T 29 .0 62 .5 6*1 5 T . 3 90*8 G O N C L U S I Q N ' " Aluminum N i t r a t e i s a s t r o n g e r a c t i v a t o r f o r b a r i t e t h an f o r l i m e s t o n e . Th i s t e s t was sugges t ed by a s ta tement of Gaud in t h a t s a l t s wh i c h f o rm c o l l o i d a l h y d r o x i d e s a c t as l i m e s t o n e d e p r e s s a n t s . TEST' 56 . To I n v e s t i g a t e t he e f f e c t i v e n e s s o f A luminum N i t r a t e as a d ep r e s s o r f o r l i m e s t o n e , CHARGE to P ebb l e M i l l G r i n d - • 30 m i n . Ore ~ 500 g r s . Water - 500 g r s . S i l i c i c A c i d ~ G.i5#/Ton Aluminum N i t r a t e - 0»5#/Ton CELL Added - E m u l s o l X - l * 0*6Q#/Ton Cond, - 3 m i n . Skim* - 10 m i n , pH - 8:»32 P r o t h as u s u a l . RESULTS ~ TEST 7° ASSAY % K 3C0VERY .No , Wt . B a S 0 4 CaC0 3 SiOg. BaS|0 4 CaC0 3 S iOg INDEX Peed 100 .0 : 27*4 29*5 43*6 100 100 100 C 40*5 59 & 3 29*4 1.1*4 86*8; 40*7 10*3 235 * 8 •T 59 *5 6*5 30;* o 62 .0 X.3 » 2 59*3 89*7 CONCLUSION -I n c r e a s e d amount of Aluminum N i t r a t e g i v e s an i n c r e a s e d s e l e c t i v i t y between b a r i t e and l imes t one* 124 TEST 57V To i n v e s t i g a t e t h e e f f e c t i v e n e s s of a h i g h e r c o n c e n t r a t i o n o f A luminum N i t r a t e as a l i m e s t o n e dep re s san t . CHARGE CELL t o Pebb l e M i l l G r i n d - 30 m i n . Ore - 500 g r s . Water — 500 g r s . Sodium S i l i c a t e - Q»5#/Ton A luminum N i t r a t e - 1 .0#/Ton Added Cond . Sk im , PH - E m u l s o l X - l * 0*60#/Ton ~ 3 m i n . 16 min* - 8 , 4 1 E r o t h same as i n p r e v i o u s t e s t s . RESULTS -. TEST . No* % Wt* ASSAY % .: RECOVERY & INDEX B a S 0 4 CaCOg S i 0 2 BaS04 CaCOg S iOg Eeed 100 .0 27*4 2-9*5 43*6 100 100 100 G 48*2 53*4 j 34 ,5 . 9 .0 9 6 . 2 56*3 10*5 229 .4 T - 51 . 8 2*0 24*7 70 ,8 3.8 43 .7 8.9*5 CONCLUSION -T h i s o f a c t i v a t o r t e s t i l l u s t r a t e s u s u a l l y l e a d s to t he p r i n c i p l e t h a t an a. dep re s s i ng , a c t i o n . excess TEST i 58 . To i n v e s t i g a t e t he e f f e c t i v e n e s s of Lead N i t r a t e as d e p r e s s o r of l i m e s t o n e i n t h e f l o t a t i o n of b a r i t e * CHARGE - t o Pebb l e M i l l G r i n d - SO min* Ore — 500 gms. Wate r 500 gms* Sodium S i l i c a t e - 0 .5#/Ton Lead t i t r a t e ~ l»25#/Ton CELL - -• ;. •• Added- - E m u l s o l X - l - Q.60#/Ton Cond* - 3 min* Skim* -*• 10 min* pH - 8*4 P r o t h s i m i l a r t o p r e v i o u s t e s t s . RESULTS -• TEST . No* /» Wt. ASSAY % RECOVERY % INDEX BaSQ 4 : C aC0 3 s i o 2 BaSOj. CaCQ, S i 0 2 Peed 100 .0 27*4 29 .5 43 .6 100 100. 100 C 4 4 . 8 5 6 . 4 3 2 . 8 1 1 . 5 92*0 4.9*6. 12*5 230.9 T 5 5 & 2. , 3 © Q 26 * 8 64 .8 8*0 50*4 87*5 CONCLUSION -L ead N i t r a t e has l i t t l e e f f e c t , o t he r t han t o s l i g h t l y I n c r e a s e the bu l k* 136 TEST '59* To . . i n v e s t i g a t e t h e e f f e c t i v e n e s s of A r g o l s ( Po ta s s i um b i t a r t r a t e ) as a d ep r e s s o r f o r q u a r t z I n t h e f l o t a t i o n of b a r i t e . CHARGE t o Pebb l e M i l l CELL G r i n d Ore Water A r g o l s Added Cond . S k im . pH 30 m i n . 500 g r s . 500 g r s * Q*5#/lon E m u l s o l X - l 3 m i n . 10 m i n . 8 .5 0*72#/Ton W e l l m i n e r a l i z e d f i n e bubb l e f r o t h much same as i n p r e v i o u s t e s t s . . RESULTS -TEST 7" ASSAY % RECOVERY % ITo. Wt . BaSQ 4 GaCO, S i 0 2 B a S 0 4 CaC03 SiOp INDEX Eeed 100 .0 27*4 2.9'. 5 .43*6 100 100 100 C " 4 1 . 7 58 .9 \ 2 8 . 7 1 0 . 3 90 . 3 41 .0 10*3: 2.390 T 58 o 3 4 .5 29 .5 6 4 . 1 9*7 59 .0 89o7 CONCLUSION -A r g o l s has l i t t l e e f f e c t . TEST 60 . T o : . i n v e s t i g a t e the f l o t a t i o n o f B a r i t e u s i n g Sodium Metaphospha te as a L imes tone depressan t , . CHARGE - t o Pebb le M i l l G r i n d — 30 m in . Ore - 500 gms» Water - 500 gms* Sodium S i l i c a t e - 0»5,f/Ton Sodium Metaphosphate - 0«5$/Ton CELL Added - E m u l s o l - Q.6#/Ton Cond i — 3 min* Skim* ' - 10 m i n . pH ~ 8*5-F r o t h as u s u a l * RESULTS -TEST l b • % Wt* ASSAY % RECOVERY % I1MDEX B a S 0 4 CaC0~ o S iOg BaS0 4 CaCQg S iOg F e e d 100 oO 27*4 ,29*5 43*6 100 100 100 C 40*1 .62*9'. 26*8 10*9 92* 3 36*5 10*7 245*1 T 59 .9 5*6 3X & X 60*6 7*7 63*5 89 . 3 COHGLUSIOB" «• See Tes t 64 . 128 TEST 6 1 . To i n v e s t i g a t e t he consumpt ion of Sodium Metaphosphate when used as a dep r e s so r of l i m e s t o n e I n the f l o t a t i o n of b a r i t e . CHARGE - to Pebb l e M i l l , G r i n d :;—.' 30 m i n . Ore - 500 gms* Water - 50Q gms. Sodium Metaphosphate •- 1.Q$/Ton Sodium S i l i c a t e ' - 0»'5#/Ton CELL .:, . Added Cond. S k im . PH RESULTS -TEST No . Wt. ASSAY % RECOVERY % IEDEX RaS04 CaC0 3 S I Q 2 BaS0 4 CaC0 3 S i 0 2 Peed 100 . 0 •• 2-7.4 2,9.5 43 .6 100 100 100 G 3 5 . 4 66 . 4 22*' 5 1 0 . 2 87 . 9 26 .6 8 . 9 252.4 T 64 .6 5.0 33 .9 57 .4 X.2e X. 73 . 4 91 .1 CONCLUSION -E m u l s o l X**l' Q*6Q#/Ton 3 m i n . 10. m i n . S ee /Te s t -. 64 . TEST« 62* To i n v e s t i g a t e t he consumpt i on o f Sodium Metaphos -pha te when used as: a d ep r e s s o r of l imes tone . , i n the f l o t a t i o n of b a r i t e . CHARGE - to Pebb le M i l l G r i n d - 30 m i n . Ore - 500 gms* Water - 500 gms* Sod ium Metaphosphate - l *5#/Ton Sodium S i l i c a t e - 0*5#/Ton CELL Added - Emu l so l . X - l - 0 .60#/Ton Cond. - 3 m i n . Skim* - 7 min* pH - 8*4. S m a l l e r c o n c e n t r a t e t han u s u a l , due t o t he g e n e r a l d e p r e s s i n g a c t i o n of t he •sodium metaphosphate . RESULT TEST No* 7° ¥ t o. ' - ASSAY.% RECOVERY % INDEX BaS0 A CaC0, 7 S i 0 2 BaS0 4 CaC0 3 SiOg Peed 100 *Q 27*4 29*5 4.3*6 100 10Q 100 C 25*1 82*7 12*6 6*7 75*9 10*7 261*1 T 74*9 8*8 3 5 & 1 53*0 24*1 89*3 95*9 CONCLUSION -See Test 64* 130 TEST '65. To .investigate, the effectiveness of a high concent-ra t i o n of Sodium Metaphosphate as a depressor of limestone i n the f l o t a t i o n of b a r i t e . CHARGE - to Pebble Mill., Grind - 30 . m i n . Ore <- 500 gms. Water — 500 gms. Sodium S i l i c a t e - 0.50#/Ton Sodium Metaphosphate - 2»Q#/Ton CELL Added Cond . S k im . pH - Emu.lsoX - Q.60#/Ton - 3 min. - 6 min. —- 8.11 Mineralization of.froth very s l i g h t , becoming negl i g i b l e after 6: minutes of skimming.. RESULTS TEST ASSAY % RECOVERY / ' .No. Wt, BaS0 4. CaC0 3 S i 0 2 BaS0 A CaCQ3 S i 0 2 I1TDEX Feed ' 100.0 2? U 29.5 43.6 100. 100 100 C . 19.7 '87r»l 8.2 : 3.7 62.9? 5 ® 5 1.8 255® 6 T 80,3. X.2^  5 34,8 49.8 37 ,1 94.5 98,2 CONCLUSION ~ See Test 64, TEST * 64. To 'float barite using a large amount of. Sodium Metaphosphate as a limestone depressant. CHARGE - to Pebble M i l l Grind - 30 min. Ore - 500 gms. Water ~ 500 gms. Sodium S i l i c a t e - •'Q,5#/Ton :" Sodium Metaphosphate - 2.5#/Ton CELL -Added - Emulsol X-l. Q.60#/Ton Cond. - 3 min. Skim* - 10 min. pH - 8.35 Erath strong but poorly mineralised. Bubble column shorter than usual. Bubbles larger and very persistent* Small amount of concentrate. RESULTS -TEST . No* % • ASSAY % RECOVERY % INDEX Wt* - BaS0 4 CaGO^ o SiOg BaS'Q4 CaC03 SiOg Peed 10Q.0: ;27.4 29*5 43*6 ICQ 100 100 • C 16*9 75* 8 13>*9: 8.0 49*G: 7*9 Go- 3 237*8 T 83*1 16*0 32*7 48*4 51*0 92*1: 96 ,7 CONCLUSION. -The following table summarizes the results of varying amounts of Sodium Metaphosphate. as a. limestone depressant AMOUNT NaP03 % Weight ASSAY % : RECOVERY % BaS0 4 GaCQ-o SiOg BaSG 4 CaCOg SiOg &*5 40 .1 62*9 26.8 10*9 92*3 36*5 10.7 1.0 35.4 66*4 22 0-5 10*2, 87*9 26*6 8.9 1.5 25*1 82.7; 12.6 6.7 75*9 1.0*7 4*1 2*Q: 19.7 8:7*1 8,2 3*7 62*9 5*5 1*8 2* 5 16*9 75.8 13.9 8.0 49.0 7*9 3,3 LOO.-. 90„ 80. TO 4:0. SO. 20_ GRAPH SHOWING RELATION BETWEEN CONCENTRA T/ON n/= AND (TRADE. RECOWEQY O-S Zip />S~ 2\0 S:S CONCENJ^AT/DNLO.E.SODIUM ..META\ PHOSPHATE joS/fa 132 TEST '65. To f l o a t "barite with Oleic Acid using Sodium Metaphosphate as a limestone depressant, CHARGE - to Pebble M i l l Grind - 30 min* Ore - 500 gms. Water - 500 gms. Sodium S i l i c a t e ~ Q»5#/Ton Sodium Metaphosphate - 2. CELL Added Cond, Skim), PH on - Oleic Acid - 0,11 ///Ton Terpineol - 0.33.$/Ton 3 min. - 10 min* » 8.30 Well mineralised froth, RESULTS TEST ITo. % • Wt e : ASSAY % . . . " RECOVERY fa IKDEX Ra:S04 C a C 0 3 . . s io 2 BaS0 4 C&CQ7 6 SiQj, Eeed 100.0 £7.4 29,5 43.6 100 100 100 e 63. 8 -39,. 5 •40,4 18.1 95.5 87.8 27,8 179.9 T 36.2 Ofr 3 10. 3 82.6 4.5 72.2 CONG LUST ON Oleic. Acid i s useful mainly as a collector In a' rougher .ce l l , as i t tends to f l o a t the entire pulp. TEST) 66* To investigate the f l o t a t i o n of "barite with a coa c e l l feed!* and Sodium Metaphosphate to depress: the limesto CHARGE: - to Pebble M i l l Grind - 15 min. Ore - 500 gms„ Water - 500 gms. Sodium S i l i c a t e - Q.5#/Ton Sodium Metaphosphate ~ loO#/Ton CELL -Added - Emulsol X - l G.6Q#/Ton Cond. - 3 min. Skim* ~ 10 min* pH ~ 8,36 Concentrate and f r o t h same as usual. RESULTS -TEST % ASSAY t • . . . RECOVERY % No. ¥ t . BaSQ4 CaC0 3 S i 0 2 BaS0 4 CaC0 3 s i o 2 INDEX Eeed 100.0 m» 9 29.4 42 * 7 100 . 100 100 » c 30.8 73.6 20^8 7.0 7'9.5 : 22. 2 5 ® Q 25 2 o 3 T 69.2 • 8.4 : 3-2-* 5 58.6 20 ©- 5 77.8 95.0 CONCLUSION -The coarser c e l l feed gives a better selective f l o t a t i o n by increasing the grade of the barite and decreasing the grade of the limestone. Recoveries are lower due to the smaller bulk. ' 134 TEST 67* To f l o a t barite using a cleslimed o e l l f e e s and no reagents'in mill,.. FEED CELL Two standard 500 gram-charges were in d i v i d u a l l y deslimed after the usual grind* Loss due to slimes - 18*1.5% Assay of deslimed ore Barite - -25*Q# , Limestone - 28*5?? Quarts - 46*5% The ore was dssied and 500 grams used as c e l l charge* Added Cond. Skim. ~ Emulsol X - l Gs48#/Ton - fa) Before, adding c o l l e c t o r - 5 (b) With c o l l e c t o r - 3 - 5 min. 8*35 Froth same as. usual. RESULTS TEST" So. % • Wt...; ASSAY % RECOVERY INDEX BaSQ4 G'aCQ3 SiQ 2 BaSQ4 CaC0 3 S10 2 Feed XOQvO 25* 0 28.5 46*5 10 0 100 100 C 33*0 66*5 25 » 2 8*2 88*0 29*0. 6*4 252*6 T 67*0 4.5 30*6 59*4 12*0 71*0 93*6 CONCLUSION A deslimed c e l l feed results i n a greater s e l e c t i v i t y between the f l o t a t i o n of barite and limestone than that found i n a standard c e l l feed. 136 slimes might be evolved but t h i s point was not investigated by the authors. TEST l68. To float, barite using a deslimed c e l l feed* with .Sodium' Metaphosphate as a limestone depressant. EEED - Two standard 500 gram charges were i n d i v i d -u a l l y deslimed aft e r the usual grind. Loss clue to Slimes - 19.1% . Assay of deslimed ore Barite - 26.5% Limestone - < 25.6% Quartz - 47.9% The ore was dried and. 500 grams used as the c e l l charge. CELL -Added - Emulsol X - l - 0»6Q#/Ton Sodium Metaphosphate - 1.0#/Ton Gond. (a) With Sodium Metaphosphate but no col l e c t o r ~ 10 min. (b) With co l l e c t o r - 5 min. 15 min. Skim. - 5 min. pE > 8.30 Most of concentrate came up i n the f i r s t minute. Good f r o t h throughout» but no mineralization i n l a t t e r stages. RESULTS -TEST No. % Vft," ASSAY % RECOVERY % INDEX ;BaSQ4 CaG03 SiO 2 BaS0 4 CaC03 S i 0 2 Feed 100.0 26.5 2.5- & & 47.9 100 100 100 0 23'. 1 8 8 . 5 7.4 4.9 76.8 6.7 2. 7 267.4 T 76.9 8.0 30 © 5 57.0 23" ©- 2- 93.3 97.3 CONCLUSION -This test has given the best selective action between the f l o t a t i o n - o f barite and limestone to date. However, i t may be noted that t h i s test may not be p r a c t i c a l due to the loss of slimesf A satisfactory method of treatment of the TEST'69* To.investigate the f l o t a t i o n of Barite at a temperature of 40: degrees Centigrade* CHARGE CELL to Pebble M i l Grind Ore Water Added Cond* Skim* PH. Temp* - 30 min* - , 500 gms© - 500 gmse - Bmuls:ol X - l Q . 6 0 f / T o a - 3 mint, -• 10 min* - 7*95 - 40° C* •Froth much same as usual* Larger bulk of concentrate* * RESULTS TEST Ho* % Wt e ASSAY % . . RECOVERY % IHDEX BaS0 4 GaC0 3 sio 2 BaS0 4 CaGO,, 0 S i 0 2 Feed 100*0 27*9 2-9*4 42*7 1Q0 100 100 G 53*:4: 50*7 36* 2 13*7 97*9 67*1 17*3 213*3" T 46*6' 1*7 20*4 75*2 2*1 32*9 82*7 GOHCLUSIOff -See Test 70* 138 TEST 1 70 To. i n v e s t i g a t e the f l o t a t i o n o f B a r i t e a t a t empe ra tu re of 6Q degrees C e n t i g r a d e , CHARGE - t o E ebb l e M i l l CELL G r i n d Ore Wat e r Added Cond , Skim, 1 pH Temp. 30 m i n . - 500 gms. 500 gms. E m u l s o l X - l Q.6Q#/Ton 3 m i n . 10 m in , 8 .40 60° C . C on c en t r a t e much same as u s u a l . E r o t h appea red to be l i g h t e r t e x t u r e than I n p r e v i o u s t e s t s . RESULTS TEST .No.; : \ % - ASSAY RECOVERY INDEX BaSG 4: .CaCQ3 S iOg B aS0 4 CaCQj S iOg F e ed 100 . Q 27.9 2.9.4 4 2 . 7 : 100 100 100 C 52*3. 5 0 . 4 36 .6 96 .0 65 .7 14 .3 216.0 ? 47 .7 2 » 2 2X* X. 7 6 . 1 4 . 0 34 .3 85 ,7 CONCLUSION ~ The f o l l o w i n g t a b l e summarizes the r e s u l t s of v a r y i n g t empe ra tu r e on t he f l o t a t i o n o f b a r i t e l i m e s t o n e and q u a r t z . Temp. % AE SAY % . RECOVERY % °C. Weight BaSQ 4 CaC0 3 S iOg BaS0 4 CaCOg SIO 2 20 ."40*9 58 . 8 32 .0 9 .6 90 . 2 43 . 8 9 .6 40 •: 53*4 ,. 5 0 . 7 3 6 . 2 13.7 97 .9 6 7 . 1 1 7 . 3 60 5 2 . 3 50 . 4 35 .6 11 .5 96 .0 65,7 14 .3 Temperature has l i t t l e n o t i c e a b l e effect of Increased large increase i n the recovery effect above 40° C. The most temperature i s the r e l a t i v e l y of lime stone» 140 TEST 71 . To i n v e s t i g a t e t he f l o t a t i o n o f B a r i t e a t a t empe ra t u r e of 40 deg rees C e n t i g r a d e u s i n g Sodium Metaphos -pha t e s a s a l i m e s t o n e d e p r e s s a n t . CHARGE - t o Pebb l e M i l l G r i n d 30 "m in . • • Ore - 500 gms. Yfeter - 500 gms. CELL ; . Added - E m u l s o l 2 - 1 Q*6Q#/Ton Sodium Metaphosphate . - 1.0#/Ton Cond . - 5 m i n . S k im . - 10. •min. pE - 7 .95 Temp -. 40° P ro th . v e r y much thetsame as u s u a l d u r i n g t h e f i r s t h a l f of sk imming p e r i o d . L a t e r f r o t h was l i g h t e r i n t e x t u r e & more c o p i o u s . RESULTS -Te s t Kb . Wt . ASSAY % R] SCO VERY % IHBEX B a S 0 4 GaC0 3 S iOg BaS0 4 GaC0 3 S i 0 2 Peed C T 100 . 0 31 .8 6 8 . 2 27 .9 76 .9 6.Q 29 . 4 1 6 . 2 35 . 7 42 .7 7 .0 59 .7 100 86 .8 13 . 2 100 17*4 8 2 . 6 100 5 * 2 94*8 2.64*0 -G0ECLUSI0U ~ The f o l l o w i n g t a b l e summarizes the r e s u l t s o f f l o t a t i o n of b a r i t e s i l i c a and qua r t z u s i n g Sodium Metapho/sphate; a s a d ep r e s s o r of l i m e s t o n e under t empera tu re c o n d i t i o n s o f 20° C» and 40° C. 141 Temp EEASBBT 7o ASSAY % RECOVERY % °c s Weight B a S 0 4 GaG0 3 S iOg BaS0 4 CaC0 3 S iOg 20 Ifa PQ 3 35*4 66 .4 22 .5 1 0 . 2 87*9 : 26 . 6 8*9 40 l a P 0 3 31*8 76.9 1 6 . 2 7*0 86*8 17*4 5 .2 40 53 ,4 50 .7 36 .2 13 .7 97*9 6 7 . 1 17*3 A t 40° C* a b e t t e r s e l e c t i v e f l o t a t i o n between b a r i t e and c a l c i t e i s o b t a i n ed than t h a t at 20° C« Bo th t e s t s c onduc t ed w i t h use of Sodium Metaphosphate a r e b e t t e r t han t h a t c onduc t ed a t 40° C* w i t h o u t Sodium Metaphosphate* ./P.O., 90_ SO,. JS.O. L40.. 20„ Be Ann GR^DE , RECOVER YAND BoLJK ! Je nf_L/rnesfone 20 30 40 ! TEMPERS -ru&£ go /n D&yhees Gen-f-i<yr<yo/e 142 - ASSAY METHODS -The unique character of the ore allowed development of o r i g i n a l assay procedures based on standard commercial methods. Results obtained were recorded to the nearest tenth only - further figures would have been meaningless* The methods outlined are divided into two parts, one f o r each type of ore? 9 (1) Part A - Assay of ore containing (a) Barite (b) C a l c i t e (c) Quarts (d) Sulphides® (2) Part B — Assay of ore containing (a) Barite (b) C a l c i t e (c) Quartz PART A -ASSAY OP ORE CONTACTING BARITE CALCITE Q.UARTZ AND SULPHIDES  Section (I) Weigh out one half gram of ore into a 120 c.c* beaker; add 10 cc HC1, cover with a watch glass and place on hot plate* When violent action ceases, add 5 cc HN03 and b o i l u n t i l brown fumes, are a l l off* Place beaker on a low platej rinse off cover glass, and take assay to dryness* 143 Bake at 120 ~C for 1/2 hour, cool, add 10 cc HOT and 40 cc water, b o i l t i l l clear, f i l t e r through a 12 1/2 cm rapid f i l t e r and wash alternating with b o i l i n g water and.1:1 HOL u n t i l yellow f e r r i c chloride i s a l l out of the paper; then with water four times* Reserve the residue f o r determin-ation of s i l i c a , and hariura* Section (2) - (a) Determination of Iron. Make the f i l t r a t e ammoniacal; then 5 cc i n excess* Baal, f i l t e r and wash with b o i l i n g water* Reserve the f i l t r a t e for determination of calcium as i n section (3)» Dissolve the precipitate of iron hydroxide with 1:1 IICL; then 5 cc i n excess* Add 25 cc water and b o i l t i l l c lear* While s t i l l hot add Sn CLg drop by drop u n t i l the yellow color of Peg CL g disappears and add one drop i n excess* Cool thoroughly add 10-15 cc of mercuric chloride to neutralize excess Sn GLg, and t i t r a t e with standard potassium dichromate solution, - using potassium ferricyanide (KgEe (ClT)g) as an Indicator* Section (3) Determination of Calcium* To the from the iron hydroxide precipitate (Section 2 ) , add HCL t i l l acid, then 1 cc i n excess* Add 3 gms. ammonium oxalate, bring to b o i l and add ammonia drop by drop t i l l alkaline* (The calcium oxalate w i l l be coarse and easily washed)* Allow the precipitate to settle out for 1/2 hour, decant the solution through the f i l t e r , wash precipitate into 1 4 4 f i l t e r and rinse beaker out well to remove any remaining ammonium oxalate, (at least 8 times) Wash precipitate into o r i g i n a l beaker, f o l d paper over edge of beaker, add 100 cc hot water and 5 cc 1:1 H 2S0 4» Heat to about 60°C, t i t r a t e to pink color with KMh04, add the f i l t e r paper and f i n i s h t i t r a t i o n . Section (4) - Determination of Barium. Thoroughly mix the f i n a l residue from Section (1) with 5 grams of Ha 2G0 3 i n a platinum crucible and fuse at 950°C t i l l the melt i s cl e a r . Pour the fused material into the cover of the crucible immerse both crucible and cover, together with the contents, i n a beaker of hot water. Digest fo r 10 min., remove cover and crucible, scrub and rinse well. When solution i s complete, f i l t e r through 12 1/2 cm #1 Whatman f i l t e r , wash we l l with hot water. Reserve the f i l t r a t e for determination of Silica® Wash the residue back into o r i g i n a l beaker. Dissolve cautiously.with 1:1 HGL adding 10 cc of free HG1 i n excess. B o i l f o r 10 min. Add 4 cc of H 2S0 4 i n 20 cc of H 20 to the hot barium chloride solution. Cover the beaker, place on a medium plate and allow to s e t t l e f o r 20-45 min. Decant the solution into a f i l t e r , wash the precipitate i n beaker with hot water, wash into f i l t e r , wash the precipitate at least 8 times with b o i l i n g water. Ignite and weigh as barium sulphate. Section (5)- Determination of S i l i c a A c i d i f y f i l t r a t e of Section 4 as there Identified, 145 with HCL; then 20 cc i n excess., Evaporate to dryness and hake for 1/2 hour at 120°C. Add 15 cc 1:1 HCL, 150 cc water, digest 10 min. F i l t e r , and wash the residue. To the f i l t r a t e , add 10 cc HCL and again evaporate to dryness. F i l t e r through the same f i l t e r paper. Wash 6 times with b o i l i n g water. Ignite and weigh as SI Og, PART B -ASSAY OF ORE CONTAINING BARITE CALCITE AMD Q.UART2  Section (1) — Determination of Barite and quartz. Fuse 1 gram of the ore with 5 gms of Nag CO3 In a platinum crucible at 950°C, and proceed as i n Section 4 and subsequently i n Section 5 f o r quartz determination,. Section (2) - Determination of 'Calcite* The determination of lime may be made from either the f i l t r a t e from Section 4 Part A after removal barite as barium sulphate precipitate or may be made on a separate sample. The l a t t e r procedure was used f o r the sake of speed. t Weigh out 1 gram of ore into a beaker, bring into solution as i n Section 1 Part A, remove iron as a hydroxide as i n Section 2 Part A, and proceed, as i n Section 3 Part A. (Notes) (1) Some s i l i c a may be contained i n the barium carbonate residue, hence i n the high s i l i c a s such as the tailings., the f i l t r a t e from the barium sulphate f i l t r a t i o n i s best further a c i d i f i e d and taken to dryness, dissolved i n 15 cc 1:1 HCL made up to 150 cc with water, 146 f i l t e r e d Ignited and the result s i l i c a obtained, added to the regular sil i c a , assay* ( 2 ) Large excesses of sodium carbonate should be avoided i n fusions® SULPHURs Weigh out 1 / 2 gram of sample into a 150 cc beaker* Wet with 40 cc water and 30 cc n i t r i c chlorate mixture. Keep on a low plate u n t i l the solution is complete - preferably over night. Take to dryness and bake at 120°C for 10 minutes. Cool, add 5 cc water and 1 cc HCL, digest for a few minutes. Add excess la^COg and 25 cc water. Boil for 10 minutes. Make up to 75 cc with water and bo i l again, taking care to avoid heating too fast lest bumping results. P i l t e r using #1 Whatman paper. Wash 4 or 5 times with hot water. Add 2 drops of phenolphthalien to f i l t r a t e . Redissolve precipitate with water and HCL. Digest t i l l clear.. Add 2Ta£ COg u n t i l brown precipitate is. reformed* P i l t e r into .first f i l t r a t e * Acidify f i l t r a t e with HCL adding 3. cc i n excess. B o i l * Add boiling Ba CLg in excess and boil for 10 minutes or u n t i l Ba SO4 precipitates, settles out* •Pilter through #1 P paper* Wash 10 times wi th boiling water and 4 times with cold water* Ignite, slowly at f i r s t , then at a high temperature. Cool and weigh* Wt of Ba S0A X Q . 1 5 7 5 x ^ m f o s f o S o Wt. of sample 147 - BIBLIOGRAPHY -PATENTS g -Be Bavay 864,597 (1904) Ho rwo o d 1,0 20 ? 35 3 McGregor 972,459 Ramage 976*761 E , -Eo Rose and W. T. MacDona ld 2 ,040 ,18? Wentworth 970 ,002 and 980,035 PERIODICALS: E n g i n e e r i n g and M i n i n g J o u r n a l (McG r aw -H i l l ) - New Y o r k , U.S.-A. G, R. M. d e l G u l d i c e , "Frotfa. ing% P „ l 5 3 j X 9 3 4 , J . M» Pa t e k , "Soap E l o a t i o n " , March 1934, 0 , D, Y /e l s ch , " C o l l e c t i o n " ' , . O c t . 1932 , J o u r n a l of P h y s i c a l C h e m i s t r y , New Yo r k , U<>S»A, A , M,' Gaud in , H. G lover* and M, S, Hansen, March 1933 1, W. Wark "The P h y s i c a l Chem i s t r y of F l o t a t i o n " * - V o l . 4 0 , May 1936, T ransac t i ons A , I® M. E . , New Yo rk s U .S ,A , A . F . T agga r t , T . C. T a y l o r & K n o l l "Chem i ca l - R e a c t i o n s i n F l o t a t i o n " 87 , 1930, A, F , T a g g a r t , T . C. T a y l o r & C* R. Ince ( S a i l i n g . Methods 285) 1930 , R a l s t o n 87 , 1930 . R a v i t z and P o r t e r , Pub, 513 , 1934 . Su lmanj 24 , 44} 1919 . ¥ a r k and Cox? 245 , 1934 . 148 P r o c e e d i n g s of the Wo r l d E n g i n e e r i n g Cong res s , - T o k i o , 1929® Takakuwa, 1929 o U n i v e r s i t y of U tah and U . S . Bureau of M i n e s , Tech.-- Pub . I o , 1 . (1928) A , Ms Gaud i n , H. G l o v e r , M© S© Hansen and C. W* O r r . TEXTS g A , M. Gaud i n , P l o t a t i o n , (McG r aw -H i l l ) New Yo r k , 1932, I . W. Wark, P r i n c i p l e s of F l o t a t i o n , Me l bou rne , - A u s t r a l i a , , 1938 . A . J * W e i n i g and C . B, C a r p e n t e r , The Trend of - F l o t a t i o n . C o l o . S c h o o l of M i n e s , Golden C o l o . — 1937 . P.- Rabone, F l o t a t i o n P l a n t P r a c t i c e , London E n g l a n d . - 1939. A , S e i d e l l , S o l u b i l i t i e s o f I n o r g a n i c and Organ i c - Compounds, Hew Yo r k , 1919 . A . M® Comey and B. A . Hahn , A D i c t i o n a r y of Chem i ca l - S o l u b i l i t i e s I n o r g a n i c ; Hew Y o r k 1921 . 1 : k ft I. \ a .* 1 I k I ST 1 | 1 0 si 1 1 I \ k I X REAGENTS TO 1*1 ILL #/TOH . PEAQENTS TO Csu t/roM Ass A ys % RECOVER/SO % CJ 0 >< <* i5 1 1 1 0 1 1 ! 9 1 i % \ t Cj? i 5 ? I 1 <§ \ I 1 K 1 J I t ."3 \ \ B 1 \ 'i'r, 1 210 249 406 42 2-0 / 1000 soo 60 9-63 ci 6C-4-«•« j io » 8-30 OS 25 9S 208 264 M-S 14) 3-3 44 C2_ C3 T 42-6 4-2 / s 9.SO WW 6-9 /S-6 36-4 OS S3 /•2 2-7 36 SO 103 4S-7 4-6 / 6 9:15 0-08 13-2 S3-7 2s:5 6-2 2-7 2-9 4-3 23 S--7 6-7 R2S-7 B26 24.0 S7S 42-a 2-7 0.7 94.3 69-7 33* SO& Z6-6 _2_ CI IOOO soo to 1164 11,6 3 10 70 4=1 833 04I 0.07 12-2 238 6-9 123 74 6-9 //•3 1-8 33.3 383 cz T 10-2 t-o / s 8-20 0.16 2IS 36-4 17-3 4* 13 /•/ /•S 0.9 0-6 sw-s #74 21-3 24-7 443 3-2 /•4 92J) 97-2 m SS-6 10-9 0 •s. <» _3_ £1. cs IOOO IOOO IO isoo 148 3 to 20 4:/ 8-27 0-41 O-07 9-8 /68 128 //7 7-6 7-1 10-2 48 39-7 64.0 £3S S3 / s 8-/o 076 ts-9 27-S 23-7 3-2 zS 4J S-8 8-8 3-8 6-3 T 911./ 73-9 238 25-5 •>4-0 3./ /•o 38-8 94X) 914 $6-5 99-7 _4_ CI logo soo 60 s-o 6-0 9 /OS /•I 3 10 70 41/ 8-30 0-98 AO IS-4 349 IS6 69 3-6 o-3 /•S 07 /•8 18-4 C2 833 93 1 10 9-23 041 0-0/ /6i 433 133 68 30 C6 748 2-7 /2-o C3 61-7 £>2 / 10 9-10 04/ 0-07 22.9 30-7 22.6 6S 1-7 6.8 77 3S S-4- SO 7" 943-4 S4-4 2/-o 22-2 4S-0 3-6 1-6 963 76-0 936 rse 64.0 s IOOO soo 60 2-0 6-o :c/ B3o 83 a 10 20 4:1 3-26 0-22 £.0 /98 32.S /!•/ SS 3-3 7-9 /08 20 10-6 /5-7 eto 6.6 / 10 9/7 0-11 i-0 /6-0, 29.0 /S-4 6-3 22. SI 7-7 2S 3-4- 7-3 j : 7* 863-3 SSI 3tO 23-9 44-5 4o /•S 87o 9/6 953 9/4 77-0 >'6 1000 soo SO 2-0 60 1 CI 168-3 /63 3 7o 20 4:/ 9-32 0-60 0-/3 2.o Z31 21-S 17-8 7-2 2.6. 26-4 /S-4 7-S 2£-7 22-6 CZ 432-7 4-7-9 / /o 923 0-4£ /•O 263 I2S So.0 6-Z /•4 Coo 267. 596 £5-2 2$./ T 3S&I 35-3 8-/ SS8 363 23 2-7 '3-6 68-3 32-9 /£/ 494 7* SDO soo so 20 823 OS 245-8 C 307-9 6/7 3 to 8-20 4Q 117 63-7 3S 1S-2 33-4 946 S/-4-7* Z9/.7 333 B/S 44-1 37 & 6.0 &3 84G 66-6 66 4S& 3 SUO soo 30 ffs OS 2S64 C 302M &>-7 3 to 20 4:1 8-31 0-4f so 34 6S-1 3-7 /47 23-7 943 SO-9 T 196-0 33-3 44-3 413 SS fs 363 76-3 £Z 49./ 9 600 soo SO 3 830 /•o 2428 C 3186 63-0 10 20 4:1 8-30 046 i-8 I/O 63-6 4.0 Zl-t 323 963 $3-0 T 1733 36-1 43-2 3$-S 33 e-3 733 6,7-1 32 47.0 IO 600 soo 30 8-SO OS 210 24.9 40-6 4-2 2.465 a k 0 CI 17-2 3 to 20 4:1 8.43 p-3* o./C 13-8 2./-2 8-7 122 1/6 16-8 3-6 42-3 cz 2/4.2. 43-1 3 to 8-36 /.IS 1-9 6-7 85-6 0.9 4-0 133 7-8 T 199-6 337 433 38-2. S-2 62 844 69-9 73 434 II: soo SOO SO 274 29S 434 1986 — -§ 0 c 33J-6 67-9 3 to 20 4-1 8-3o 0-49 22.1 /i.g 673 S4-S 4/7 943 T /S8-J 32/ 393 633 6-6 466 S83 6-2 12 600 soo SO 3-6 OS 210 24$ 40-6 42 C 290-9 3 10. 20 411 7.66 0.4a 4-9 11-6 6S-0 38 /3-9 27.0 926 43-3 2516 T 206-9 427 44:0 76- S-/ 36/ 73-0 7-6 S&7 13 600 Soo 30 8-so o-s 243-1 C 3822 664 3 to 20 4:1 976 afia 6.1 12-7 63S 3-9 /66 283 880 S4-0 T 218-7 43-6 9-10 40.0 4/8 H-7 4-o 83-4 7/7 120 44-0 14- 500 SOO 30 8-50 OS 2342 C 331-2 661 3 10 20 4:1 81$ 0-4* 20 7-7 14.4 60* 3-6 2SS 3?3 98-0 &OS T 170-2. 33-9 8-tS 437 46-/ 2-9 4S 746 6/-7 2-0 IS SOO soo 30 a-so OS 2IO 243 401, 4-2 I C 34-7 19.0 3 10 20 4:1 8-3o 0-4. 2.0 140 2/8 237 80 1/3-0 764 73-6 184-2 T 4oSO 81-0 8-3o 2/9 269 433 3-2 87.0 83-6 864 63-2 16 500 500 30 274 29S 43-6 C 204.3 41.0 3 e 20 4/ 831 0C0 388 32-0 9-6 902 438 96 2368 T 296-7 S90 4-4 23-4 63-0 9-3 S62 9M s • 17 soo soo 30 210 243 40-6 4-2 C , 199S 393 3 10 20 4:1 820 0-2S 0-43 41-2 272 78 8-9 776 433 76 8/4 2262 T ioS-S 60S 818 78 223 61.8 1-4 2i</ 924 /£•& m soo soo 30 — e — c 191-7 38-2 3 to 20 4:1 7-3 0.?5 0-43 0-2 41-1 2C-9 7.2. 83 74-4 470 63 7S-3 226-6 r io9S 418 7-6 88 24J> 69£> 14 23-6 69.0 932 2/2 19 SOO SOO 30 330 183-9 C 300-2 il-7 3 io 20 4:i 8/6 o-l 0-23 32.1 »6 ll-S 63 92C 913 174 94i Lo <?/e T 192-2 333 8-to 42. S-7 87-o o-T 7-4 37 82.6 S-8 20 SOO soo SO 2IO 249 40-i 4-2 204-5 w C 338 3 10 20 4V 7-0 04 023 a/6 3S-8 3C6 6-9 7.0 9/-7 780 92 9ao Hi T 331.S 46-2 7-2 38 IB-O 79* 0-9 8-3 23-0 906 CIT Zl soo soo 30 fi-SO 080 27-4 29S 434 c 27s S-S s /o 20 4.7 ass 0-4& 63~f 22S 13-9 12-7 4-2 2-/ 206-4 T 47SS 94S 8-30 2S-2 29-7 40-2 87-3 963 973 22 soo soo 30 0-2 210 24i 401 42 IS ts: c 175-6 3S-3 3 /o I* 4:1 3-1 i4S 413 26-4 41 S-o 714 371 3-6 2306 T 313-6 £4-7 7-9 9-3 24-t 6/.o 7-6 28-6 (23 9i m si? 23 soo soo 30 OS OSS 2/0 m 40t C 2/1-6 41-3 3 /o 18 4:1 6-9 0-4S • 4a-i 29$ 3-2 8/3 493 36 222i T 3877 377 81 &8 22-t. 64& 187 60-2 9/4 t ' 2* soo soo 30 0-2 2J.C 241 401 C 192-6 383 3 /o 18 4-7 8*0 o-s Mi 4Ct 80S Si 733 47-7 7-6 S19-I T. 30SS 61-7 S-°6 21.9 68-/ 1&2 623 t 25 soo SOO 30 OtlS 274 129i 4ft C I70.S 333 3 to 13 4:1 8-4 041 64L 1 371 J /o-t 1 737 3o-7 91 238i T 333S 66-2 S-4- 8t 693 Q0-9 ..... ... !• k } i~ n X i t 1 REAGENTS TO MILL #/TON REAGENTS TO CEIL 4T 7TVN ASSAY %\ ?£CO LIE*-) fi s ?5. k : i P wcr> ' •0 1 O t % 1 Ri 0 w I $ 1 9 0 <> 3* Is F S 4 CP ft $ \ "0 tt 1. ?EM-t AKKS - 2 7-9 i 94 < -2$ ' -00 6 ••oo s S8( 1 C 1 37-8 . 78-1 3' 6 SO 4.'/ 1 16C & 73 i »S 3-7 t 'SS 2 '76 * ?6 Z 9 T isxa 71-9 / S-Si Wi &2 I V-2 '/ &4S 7-4 "I" 27 i lOOi roo /5 — 437 c§ C I 80-6 36-3 3 9 to ( 3-3/ £ r6c t 34- 10-4 (>7 \36-6 -17-0 . 5-9 2 T mo S3-7 •>9-51 ',/-/\l3-4-1 %30i 14-7 16 - •XlOi UX3 30 366 CQ C ?04J 40-9 3 /O 1-3/ C >6c m. 120 9-6 . t-3S 9-Cy 2 T 29S-7 59/ < 1-4 < 2?-4i 3-0 9# 1 Vi-2 5 fO-4 2a . soot 500 SO _> c ?lt-7 428 3 ro 204.7 1-P.f, I obo < / ss. 3-0 i 18-21 ?2-6l 6-4- ~> 59-5 i 12-3 i ?7-71 14-2 i f7-7 * ?2-9 99-4 I T 29 t SOI &21 289-7. S7-2 30 V31 C 349-1 53-4 4- /0 9-25 o-ic '0-C. 1S-6i 4Z . 1S-7 Z4.6 18-0 l T 304-S 44.6 12-3 ; *4-3 4-3 9S-4~i °Z-0 30 140 1 V4i So c 154-5 45-4 S T 70 6:1 3-34 • 060 t i/.o /•I . 31-1 268 9-0 70-2 980 • 2-o SO-9 9-6 90-4 ?3&1 T SI •S6-0 S44, 3o 774. •29-S • 43-6 Cl . soo iOO 119-0 23-9 3 1 20 4U S70 0-5 1-24 1 25-3 '0-3 Si-S 208 S-9 cz S3-7 /0-6 I Z 8-70 0-12 t 276 I0O 23-7 '00 2S C3 63-4 /2-i I S 8-70 9-24 25-S m 23-5 IIS 27-2 7/ T 263-2 52-9 42 Zi-3 8-3 48-0 84S 3Z . ssoL soo 3o 721-7 c 2044 40-3 3 /O 20 4:/ 7-68 0-50 MC 2-94 !34 323 US 79-2 4S-9 77-6 T 296-7 59-2 7-7S 9-8 267 iO-3 208 S47 88-4 33 s» 53d 30 | 167-3 c 350-5 69-6 3 /0 20 4:/ 8-IZ OSO 0/6 0-14 %•/ 41-7 19-4 9g& 978 33O 7" 152-6 30-4 73 2-2. 90-3 7-4-2-2 67-0 34- soo soo 30 2064 103-3 20- 6 S IO 20 4:/ 8-30 025 0-4$ 42-i 42-7 14.0 33-3 29-6 7-3 T~ S99-2 79-4 23-2 263 4S-9 67-7 70-4 92-7 ^1 36~ soo soo 30 1940 c 287A 57-3 3 /o 20 4:/ 3-34 0-26 44-3 8-0 945 89& 10-9 y~ 214-5 4-2-7 3-5 7-1 86-9 •S-5 70-4 89-/ 9C 500 soo So 0-2S 219-1 197-9 38/ 3 /0 2Q4-I f?-SS 1-47 549 42-5 4^.6 77-S 539 4S 7~ 3/20 61-9 9-8 217 6O0 22-5 46-1 9SS - - J 37 soo *m 10 OSO I3H '6 w*-v 4-29-2 85-2 3 /o 20 4:1 8-70 0-8Z l-7(, 32-i 32-8 32-4 980 94S 681 f 72-9 /4-S £0 7-J 94-1 ZO £-•£ 37-9 QQ soo soo So OS) 2-0 22m 22&-I 4-5.0 $ /o 20 4:1 8-41 132 SS-S 39-9 S-7 93-8 &O0 6-2. c j~ 2766 SS-C 3-0 20-8 70-2 6-2 39-1 99-8 Soo Soo SO 0-SC • 2S 27-9 294 42-7 c 217-9 43Z & /a 204:1 8-32 1-32 0-50 Sg-9 32-8 9-5 97-0 497 9-8 2315 287-3 Si-S 44 253 6S-2 9-0 S03 90-2 4-0 Soo soo 30 0-5C 2B/-7 39-1 3 /O Z)4:l g-SC 0-7Z S9-i 304 9-4- S6 :8 413 91 23(-T AJ 3ol-2 &o& io 28-8 62-3 13-2 587 9o-<-. J soo soo 30 0-SC to 774 29-S 43 6 213-4 42-L 3 /o io 4:1 $•38 ou 55-3 34M 9-1 861 49-c 9-6 227-288-S S7-1 6-6 2(2 63-8 73-9 s/.o 9o-4 I i 42 soo soc 30 /•o 27-4 29-S 43-i k r *T /9o-5 - 37-i 3 io 23 4:1 8-3i 0-4. 1 0:/( 39-- 482 10-2 62-7 9-S 183/ T 3/2-9 £21 m I9i 17-S S8-6 44-1 '•>373 0: 5 43 Soc Sot 222-f-44-3c ; 3 /c 20 4u 1 S-Si "j IU S(r 34-i S-3 906 iso-i 8-9 230 "7" 44 £tx > nt 278-7 211-8 'SS-7 49-30 3 ft •204:1 8-3S an ) y3i 44L 26--j 145-*. 1 675 % ll-S 9Z 63-1 49-i ,6s-i ' 90-1 113-6 184/ i C T 45 SM Soc 29/-C )22.0-S7-S 1 sc 10 4:/ 8-3C % 1 l-o SS 17-1 }S2-i &/-S - 11-1 36,4 891 -34.1 . 48-5 86--72-C f 223 r 782' f 561 0-6 St 1 26-S 63-4 -10-4 - SIS 88c 1 . 46 Q fXx. 7 SOt 5 215-t4U 3c ? 3 /c 20 4'-i '8-2. OS 0 S7-t'33-i 9-S 87-2 49~ t 70-2 228 7 r 284* 1 £7- 0 -64 l 2C-C 1 63-i ' '2-i ? S07 ' 9ot ? c So a 5bx 1 328-1 ? &7i 3C 3 IC J 20 4:i S-3t 3 0-5 9-2^ 104 37, 344i Z/9-9 9SC ~t-~32i 016S-& (0 l 32-i ? 4-4 L88-C S-C ? S-6 68C 7" •! si ? 0 TO 0 3t OS 0 0& 08c 20/ (,4C 0 3 ic i W4: ' 74 ?. 06 0 57 c34. 84> 548< 7 8-6 ' 238 6 S $01-? 60 0 7-7C 7 9 2S-. 162-C y 75: > S2< 7 91-S 0 sc 0 50 0 S<- OS 0 1-6 c 217 ' 4^-1 J_lc 1 20 4: 1 8-Z s Oi C Si 1 33 5 117 87. 6 49- y is-4 235 7 5: 0 -jr 284 4s& 9 e Z 26 Z &3i - 12-£ so-587-t 5< 0 so 0 so 0 3C l-c at c 199-1 39- $ ic 1X> 4. '8-4 5 0-i z Si •7 30-0 I/-: 1 84-0 4J-C 0 lit 1 233 0 \7 SOS o&> 4 1 7. 6 28 3 60-0_f6;i 7.SL 0.89- 2 — 1 1 • « .N. 1 :. -or ! X t to R EA % TC 'MILL #/FOA 1 REAGENTS TO CELL rfk » ASSAY % \RCCOVERY, if • i < j (T 1 1 8 ph c5 ' cS y 0° 0 & -5? 1 1 a! 1 | •d Hi •£ H I \ <* 1 G->< 1 REMAR 27.4 29-i ~43-d SI SOO 50C 30 c 206-6 4lo 3 10 2C 4:1 8-2C OS OS 0-6 553 33'- 3-3 79c ->47.c 1 85 , J ~ 5 2 soo SOC 297-2 6 9 - 0 /o4 26-2 6/5 2/C 1 S3( 0 9/i. r 223-i ) ( 0 . C 2984 59-6 DC 3 10 20 4:1 3-4i 0-25 •147 424 45-7 ZO-9 93-t ? 93-0/5-7 T S3 soo soo 202-5 404 So 1 4-2 52 86-6 6-2 ' 70 84i ; 185/ !• 0. C 233-2 46-6 3 IO 20 4-U I03Z £•0 ? \o-6 53-7 29-5 /6-9 89', 7474 l /9-3 T 266-8 53-4 93 5-3 28-6 628 /OS S2-{ '0807 - 223 0 a-54 Soo soo 30 0-5 /•O :c 1872 37-S 3 IO 2n 4:/ S-21 0<o 53-2 36-C 9-0 7Z.6 46c T 55 soo 5oo 312-1 62-5 11-2 2S-4 59-2 26-t ' 54t 19/8 - 2/91 r-C 207-8 40-9 JU 3 10 20 4^1 b-5 0-2 ae, 58-3 31-2. 91 93-9 > 42/ r 01.2 T SG. soo Soo 299-5 91 2-7 29-C 62-5 61 57-3 ~=-=-AZ4Z-i 1 9031 0 C 2029 405 ou 3 IO PO 4:1 8-32. OS 0-6 59-3 29-4 //•4-86-6 40~/ '/O-S •srT 7~ 288-2 59s 6-5 3oo 620 /S-2 59-5 89-7 - 23S-1 3 S7 soo SOO So "as /•o r C 2404 48-2 3 IO 20 4-:l 8-4! Of, 53-4 34.6 9-0 962 SC3 /OS 7~ 5"<? Soo 2595 S/-8 2-0 247 70-8 3-8 43-7 895 229-soo 30 05 1-25 C 223-9 44-8 3 10 20 4:1 8-40 o-6 56-4 32-8 //•S 92-0 49-6. '1 72-S 7~ 2/88 55-2 3-9 263 &4-8 S-O So-4 875 230S > 5"9 SOO SOO 30 '0-5) C . 2o8s 41-7 3 10 so 4:1 SSO 0-72 S8-9 ?8-7 103 963 4/0 /0-3 T. 292-7 58-3 4-S 29S 64/ 97 590 89-7 239-C 16 Soo soo 30 C Z04.8 40-9 3 10 20 4--I. S-31 060 58-8 ,3?-0 9-6 90-2 43-8 9-6 1 295-7 59-1 4-4 28-4 63-0 9-8 S6-2 90-4 23(,8 TESI 66 SCO SOO So o-s o-s C 20I-2 4ol 3 10 20 4:i 8-50 06c 629 26-8 /o-9 923 365 /0-7 r 301-6 £9-9 3-6 31/ 6,0-6 7-7 635 89-3 245-/ k Soo. SOO 30 0-5 10 c 177-3 35-4 3 lo 20 4:1 8-30 0-6 644 225 /0-2 87-9 266 8-9 7" 323-9 64-6 5-0 334 574 /2-I 734 9/-/ 252-4 Q. soo. soo 30 o-s /•5 O C I2S-6 2S-I 3 7 20 4-1 840 O-G 82-7 /2-6 &7 759 70-7 4-1 26/./ r 373-2 74-9 S-8 35-1 53-0 24-1 893 959 (,3 SOO . soo 30 p-s 20 c 981 19-7 3 6 20 4-1' 8/1 0-6 87-1 8-2 3-7 62-9 55 /•8 2s~5<o T 4-oo-o 86-3 125 34-8 49-8 371 945 982 64-500 I TOO 3o 0-5 25 — C 84-4 16-9 3 m 20 •4:1 3-3S 0-6 7S-8 73-9 8-0 49-0 7-9 3-3 237-8 T 93-1 /6-0. 32-7 48-4 5/0 92/ 967 — ^ ~ 65 500 soo So OS 2-0 27-4 29S 43i, c 319-1 63-8 3 IO 20 4:1 9-30 1-33 an 39-S 4<>4 /<?•/ 9S-S 87-8 27-8 T I8/-3 36-2 3-3 /0-3 82- 6 4-5 /2-2 72-2 179-9 0 66 500 i TOO 05 /•O 27-9 7Q-4 42-7 c 151-3 30-8 3 10 20 4:1 $•36 06, 73-6 2o-8 7-0 795 22-2 S-O 'T 500 i soo 340-7 £9-2 3o 8-4-32-5 S8-6 20-S 77-8 950 252-3 c 163-8 33-O 8 s 20 4:1 9-3S 0-48 2SO 66-S 28S 2S-Z 46-S 8'2 980 290 6-4 2S2-6, t T 332-0 67-0 4-s 30-6 594 I20 7/-0 93 • 6, 68 Sbo. soo 3o 26-S 47-9 — ':c 114-9 23/ 13 s , 20 4-1 f-30 060 l-O 88-S 7-4 4-9 76-8 6-7 2-7 X. 69 500 i too 984-2 76-9 so 8-0 lo-s S70 * 23-2 93-3 97-3 267-4-c 267-1 53-4 i 1 6 < io 4--I -T-9S 0-G 27-9 SO-7 294 • 36-2 42-7 13.7V 179 67/ 17-3 t T Soo ' soo 232-7 46-6 So /•7 20-4 ZS-21 2/ 32-9 < 92-7 ' 2/3-3 c 2US 52-3 i / 0 i » -1:1 t w ( 0-6 SO-4. I/-5 « ^60 i 0S-7 / '43 T 71 500 i soo 237-6 47-7 30 2-2 > ?/•/ ; 76./. < t o . 34-3 £ 7/6-0 1 c 156-7 31-8 S 1 to < 4--I 7 9S . c 76 -o 76-9 / 6-2 70 t ?68 / 7-4 'TP . 1 336-3 68-2 60 i S-7 i '9-7 / 32 6 '2-6 <, J jC s 148^ '64 0 • K i 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105574/manifest

Comment

Related Items