UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Plant associations and succession in the vegetation of the sand dunes of Long Beach, Vancouver Island Kuramoto, Richard Tatsuo 1965

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1965_A6_7 K8.pdf [ 12.42MB ]
Metadata
JSON: 831-1.0105573.json
JSON-LD: 831-1.0105573-ld.json
RDF/XML (Pretty): 831-1.0105573-rdf.xml
RDF/JSON: 831-1.0105573-rdf.json
Turtle: 831-1.0105573-turtle.txt
N-Triples: 831-1.0105573-rdf-ntriples.txt
Original Record: 831-1.0105573-source.json
Full Text
831-1.0105573-fulltext.txt
Citation
831-1.0105573.ris

Full Text

PLANT ASSOCIATIONS AND SUCCESSION IN THE VEGETATION OF THE SAND DUNES OF LONG BEACH, VANCOUVER ISLAND by RICHARD TATSUO KURAMOTO B, Sc., The University of Hawaii, 1963 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of BOTANY We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH.COLUMBIA September, 1965 In presenting th i s thes i s in p a r t i a l f u l f i lmen t of the requirements for an advanced degree at the Un ivers i ty of B r i t i s h Columbia, I agree that the L ibrary sha l l make i t f r ee l y a va i l ab l e fo r reference and study. I fur ther agree that per-mission for extensive copying of th i s thes i s for scho la r l y purposes may be granted by the Head of my Department or by h i s representa t i ves v It i s understood that copying or p u b l i -ca t ion of th i s thes i s for f i n a n c i a l gain sha l l not be allowed Without my wr i t ten permiss ion. Department of B o t a n y  The Un ivers i ty of B r i t i s h Columbia Vancouver 8, Canada Date f t e p t f l m h e r 10. 1965 ABSTRACT The vegetation of the sand dunes on Long Beach, Vancouver Island, was studied on 116 sample plo t s . The purpose of t h i s study was to describe the f l o r i s t i c and edaphic c h a r a c t e r i s t i c s of the plant associations, to determine the major environmental factors c o n t r o l l i n g the d i s t r i b u t i o n of the plant communities and to study the successional trends of the vegetation. The vegetation was described using the a n a l y t i c a l and synthetical methods of the Zurich-Montpellier school of phyto-sociology. This thesis describes seven plant associations and four variants. The vegetation units are as follow: A. Foreshore habitats 1. Cakiletum edentulae B. Blowout habitats 2. Poetum macranthae a. poosum macranthae , b. abroniosum l a t i f o l i a e 3. Arctostaphyleto-Rhacomitrietum canescentis C. Habitats of the mobile dune ridge 4. Elymetum vancouverensis b. a. ammophilosum arenariae elymosum vancouverensis D. Habitats of the dune slack and stable dune ridge 5. Aireto-Ceratodontetum purpurei 6. Arctostaphyleto-Eurhynchietum oregani 7. Hetergenous communities i n moist dune slack habitats i i i E. The dune forest habitat 8. Piceeto-Gaultherieto-Maianthemetum d i l a t a t i Important environmental factors which control the d i s t r i -bution of these associations are the l e v e l of winter and storm t i d e s , wind, the amount of sand b u r i a l and blowout that occurs i n the habitat and the amount of available s o i l water. The f i r s t stages of succession begins i n the unstable habitats of the Elymetum vancouverensis and Poetum macranthae. With s t a b i l i z a t i o n of the habitat, these associations are suc-ceeded by the Aireto-Ceratodontetum purpurei and the Arctostaphyletum-Eurhynchietum oregani i n exposed habitats and the Arctostaphyleto-Rhacomitrietum canescentis i n habitats well protected from wind. A l l vegetation eventually reaches the climax Piceeto-Gaultherieto-Maianthemetum d i l a t a t i . ACKNOWLEDGEMENT I wish to thank Dr. V. J . Krajina for his guidance i n organizing t h i s research, his h e l p f u l discussion on many problems and his i d e n t i f i c a t i o n of many mosses, lichens and vascular plants. I would l i k e to thank the National Research Council f o r financing t h i s study, Dr. T. M. C. Taylor and Dr. G. H. N. Towers for providing working space i n the Department of Botany and Dr. W. B. Schofield and Dr. G. E. Rouse f o r t h e i r h e l p f u l comments on the thesis. Lastly, I am g r a t e f u l to my fellow-students, L e s l i e K. Wade who assisted i n the f i e l d work and provided many h e l p f u l - / suggestions, and Robert C. Brooke who read the manuscript. V TABLE OF CONTENTS CHAPTER Page I. INTRODUCTION 1 II. METHODS 3 A. Plot establishment and analysis 3 B. S o i l sampling and analysis 5 C. Synthesis of f l o r i s t i c data 7 I I I . DESCRIPTION OF THE STUDY AREA 9 A. Location and topography 9 B. Geology 13 C. Climate 15 D. Vegetation .v 15 IV. DESCRIPTION OF THE PLANT ASSOCIATIONS 18 A. The foreshore IB 1. Cakiletum| edentulae. 18 B. The blowouts 20 2. Poetum macranthae 20 2a. / poosum macranthae 22 , 2b. abroniosum l a t i f o l i a e 24 3. Arctostaphyleto-Rhacomitrietum canescentis 26 C. The mobile dune ridge. 28 4. Elymetum vancouverensis ; 28 4a. ammophilosum arenariae. . . • 28 4b. elymosum vancouverensis 29 D. The dune slack and stable dune ridge 31 5. Aireto-Ceratodontetum purpurei 31 6. Arctostaphyleto-Eurhynchietum oregani. . . 33 7. Wet habitats i n the dune slack 35 v i TABLE OF CONTENTS - Cont'd CHAPTER Page E. The dune f o r e s t . . 37 £. Piceeto-Gaultherieto-Maianthemetum d i l a t a t i 37 V. DESCRIPTION AND COMPARISON OF THE SOILS 41 A. Parent material 41 B. S o i l texture 41 C. Organic matter 42 D. pH 45 E. Cation exchange capacity 45 V F. Exchangeable cations . 45 G. Adsorbed phosphate 49 H. Discussion 49 VI. RELATIONSHIPS AND DEVELOPMENTAL TRENDS OF ASSOCIATIONS . . 51 A. The foreshore and mobile dune ridge 51 B. The dune slack and stable dune ridge 54 C. The dune forest 57 D. The blowouts 5# VII. SUMMARY 61 BIBLIOGRAPHY. . 64 APPENDIX I. I . . . . . 73 Explanation f o r Synthesis tables . . . . . . . . . 74 Synthesis tables I to VI 75 APPENDIX II ... . 82 Tables I to~V. S3 v i i FIGURES AND TABLES Figure Page 1 Map of the study area showing the various vegetation units . . 10 2 P r o f i l e section through A-A1 of Figure 1 showing the r e l a t i v e position of f i v e communities . . . . . 11 3 General view of the Long Beach sand dunes showing the h i l l y topography 12 4 An exposed r e l i c t beach i n a deep blowout 12 5 A wooden ramp i n the largest blowout 14 6 Average monthly temperatures, r e l a t i v e humidity. and p r e c i p i t a t i o n for the Long Beach area . . . . . 16 7 A community of Cakile edentula 19 8 A community of Poa macrantha showing the even spacing of the t u f t s . 19 9 A community of Abronia l a t i f o l i a 21 10 A Sitka spruce tree with i t s exposed root system. . 21 11 A vigorous t u f t of Poa macrantha growing on the f i r s t dune ridge. 23 12 A large colony of Carex Macrocephala 23 13 Polygonum paronychia showing vigorous growth. . . . 25 14 A community of Rhacomitrium canescens being invaded by Arctostaphylos uva-ursi 25 15 A well developed community of Elymus vancouverensis 30 / \ / i 16 • A community of Ceratodon purpureus• . . . \. . . . . 30 17 A community of Arctostaphylos uva-ursi 36 18 A view of the stable dune ridge showing the wind-swept Sitka spruce trees 36 19 pH mean and range of the s o i l s of various associations and variants. . . . . 47 v i i i TABLE OF CONTENTS - Cont'd Figure Page 20 Successional trends i n the sand dunes of Long Beach, Vancouver Island ' 52 21 The eroded ridge b u i l t on logs. 55 22 Arctostaphylos uva-^ursi colonizing bare sand i n a well-protected habitat 55 23 A community of Ceratodon purpureus being eroded by wind 60 / Tables I Mineralogical analysis of the parent material . . . 43 II Textural composition of the sands of various associations and variants . 43 CHAPTER I INTRODUCTION Sand dunes have been a popular subject of eco l o g i c a l studies since the beginning of ecology as a science. Much has been learned about the role of plants i n dune formation, the anatomical morphological and physiological adaptations of sand dune plants or psammophytes, the d i s t r i b u t i o n patterns of the vegetation and t h e i r causes, and the synecological aspects of sand dune plant communities. However, most of these studies have been done i n Europe because " i n a comparatively small country bordering the sea almost everyone i s aware of coastal phenomena, and i n p a r t i c u l a r , coastal sand dunes assume roles of great economic importance." (Cooper, 1958). Many studies, e s p e c i a l l y those concerned with the natural dune vegetation, have been done i n Great B r i t a i n , Holland, Denmark Germany, France and even i n A f r i c a ( A l g e r i a ) . A few among these are the studies by Warming (16*91), and Braun-Blanquet and Maire (1924), Emberger (1930, 1957), Pearsall.(1934), Ranwell (1959, I960), Van der Maarel and Westhoff (1964). Many studies have been done i n North America on the sand dunes on the east and west coasts, and around the Great Lakes but most of these were concerned primarily on the problem of s t a b i l i z i n g dunes whose movement threatened harbors, highways, or valuable land (Westgate, 1904; Arnst, 1942; McLaughlin and Brown, 1942; Brown and Hafenrichter, 1943). Outstanding eco-l o g i c a l studies on natural dune vegetation are the works by Cowles (18*99) on the Lake Michigan dunes and the work by Olson (195$) i n approximately the same area. Other works such as those by Wells and Shunk (1939), Oosting and B i l l i n g s (1942), Oosting (1945) and Boyce (1951b), and Dittmer (1959) on anatomical and morphological adaptations of sand dune plants have also contributed much to an understanding of the ecology of sand dunes. The only works on the P a c i f i c coast which are si m i l a r to the present study are those by Egler (1934) on the plant {fommunities and successional trends i n the vegetation of Coos Bay, Oregon and by Thomas (1957) on the plant communities of the sand dunes of Middleton Island i n the Gulf of Alaska. The purpose of the present study i s to provide edaphic and f l o r i s t i c information on the plant associations i n the study area, to discuss some environmental factors which control the d i s t r i b u t i o n of certain communities and to discuss the r e l a t i o n -ships and developmental trends of the plant associations. The important general features of the study area are presented i n Chapter I I . Chapter III describes the plant associations, Chapter IV describes and compares some important features of the s o i l s of .the various associations and variants and Chapter V discusses the relationship's and developmental j , trends/of the associations. ' \ CHAPTER II METHODS ,A. Plot establishment and analysis A reconnaissance of the study area was made i n September 1963 to note the types and extent of communities present. Most plots were established during the summer of 1964. F l o r i s t i c a l l y homogeneous areas were selected f o r plot establishment within each p r o v i s i o n a l l y recognized community. An area was considered to be f l o r i s t i c a l l y homogeneous when the constituent species appeared to be uniformly d i s t r i b u t e d throughout the p l o t . The plot size selected f o r each type of 1 community depended on the extent of the homogeneous area and the complexity of the community. Plot sizes varied from 4 m2 to 25 for the non-forested communities and 100 to 400 for the forested ones. Analysis of the plot included notes on the a l t i t u d e , general location, slope, exposure, topography and vegetation. The methods of the Zurich-Montpellier school (Braun-Blanquet, 1932; Krajina, 1933; Becking, 1957) were used to analyze the vegetation. The analysis consisted of an evaluation of species s i g n i f i c a n c e , s o c i a b i l i t y and vigor of each species i n the p l o t . \ A s l i g h t l y modified version of the combined cover-abundance scale (Krajina, 1933) was used i n determining species s i g n i f i c a n c e (see Mueller-Dombois, 1959). The scale of s o c i a b i l i t y (Domin-Krajina, 1933) was used i n estimating s o c i a b i l i t y or dispersion of each species. The scales f o r these a n a l y t i c a l c h a r a c t e r i s t i c s are presented i n Appendix I. In plots possessing more than one vegetation layer, each layer was analyzed separately as follows: A layer Plants over 10 feet t a l l A_ sublayer T a l l e s t trees, 80 feet or more A2 sublayer Intermediate trees, 35-80 feet A3 sublayer Trees and shrubs, 10-35 feet B layer Shrubs and saplings B^ Shrubs and saplings 5-10 feet i n height B2 Shrubs and saplings, 6 inches to 10 feet i n height C layer Herbaceous plants ( a l l ) and shrubs less than 6 inches i n height D layer Bryophytes and lichens D n .-•— Bryophytes and lichens growing on humus Byj Bryophytes and lichens growing on decaying wood E layer Epiphytes E^ Epiphytes i n the A layer Eg Epiphytes i n the B layer E c Epiphytes i n the C layer In forested p l o t s , the height of three of the dominant trees were measured with a relascope. Heights of other trees i n the plot were estimated by comparison with the measured trees. For determination of stand age, increment borings were taken from at leas t three of the dominant trees. I t was often impossible to get s a t i s f a c t o r y borings from some of the larger spruces, due to the contorted nature of the trunk or to rot. For t h i s reason some of the maximum ages reported may not represent the maximum age of the stand. The number of annual rings of a l l cores was' determined i n the laboratory using a binocular microscope. B. S o i l sampling and analysis S o i l p i t s were dug i n at least two plots of each type of community. In each p i t samples were collected at three fixed depths-in the mineral layer (since there was no recognizable horizon development) and from the organic layer when present. The f i r s t two samples from the mineral s o i l were coll e c t e d at depths where roots were abundant or common (0-5 cm or 5-10 cm and 30-35 cm) and the t h i r d sample was collected where roots were few (60-65 cm). The deepest root and the depth of maximum root concentration was also recorded. Selected samples were analyzed f o r the following properties: pH, organic matter, cation exchange capacity, t o t a l exchangeable cations, adsorbed phosphate, t o t a l nitrogen, s o i l conductivity and s o i l texture. The method used i n each analysis i s presented below. Unless otherwise stated, the analysis was done on material passing through a 2 mm screen. A l l samples were prepared i n a 1:1 soil:water mixture and allowed to stand overnight. pH was measured on a Beckmann Model N pH meter. The Walkley-Black wet combustion method (Jackson, 1964) was used to determine organic matter content. A l l analyses were done on samples which passed through a 0.208 mm screen. Cation exchange capacity was determined by the flame photo-meter method described by Swindale and Fieldes (1952). A Beckmann Model DU spectrophotometer with flame attachment was used i n the determinations. Exchangeable cations* were extracted with NH^Ac by a modified buchner funnel technique used by the S o i l Science Department, University of B r i t i s h Columbia. The cations were extracted by centrifugation instead of leaching through a buchner funnel. This technique was found to give better contact between a l l s o i l p a r t i c l e s and the leaching so l u t i o n than did the buchner funnel method. Cation concentration was determined with a Perkin-Elmer spectrophotometer. The Bray and Kurtz Method I (1945) was, used i n determining adsorbed phosphate. Twelve samples, including four of the most a l k a l i n e , were tested on a conductance bridge capable of measuring e l e c t r i c con-ductance from 0 . 1 to 10 millimhos/cm. Samples were prepared in (. a 1:1 and 1:5 soil:water extract (Metson 1961). The modified Kjeldahl method (Jackson, 1964) was used to determine t o t a l nitrogen. For organic samples only that portion which passed through a 0.208 mm screen was used, while f o r mineral samples only the portion which passed through a 0 .59 mm screen was used. Samples to be tested were f i r s t quartered and then sieved through the following screen s i z e s : 2 .0 mm, 0.589 mm, 0 .25 mm, 0.149 mm and 0.053 mm. The l i m i t s of the p a r t i c l e sizes f o r each f r a c t i o n i s based on the system established by the United States Department of Agriculture. The names of the fracti o n s are as follows: 2 . 0 - 0.59 mm very coarse to coarse sand 0 . 5 8 9 - 0 . 2 5 mm medium sand * Determinations of exchangeable cations and adsorbed phosphate were done by the S o i l Science Department, University of B r i t i s h Columbia. -J 7 0.25 - 0.149 mm 0.149 - 0.053 mm 0.053 mm f i n e sand very f i n e sand s i l t and clay Results are expressed as percent of the t o t a l weight that a f r a c t i o n composes. C. Synthesis of f l o r i s t i c data Synthesis of the f l o r i s t i c data from a l l plots was the second phase i n the analysis of the vegetation. Plots were grouped into associations on the basis of f l o r i s t i c s i m i l a r i t y . Those plots which were analyzed as part of a pr o v i s i o n a l associa-t i o n but which, on synthesis, proved to be f l o r i s t i c a l l y hetero-geneous, were excluded from the f i n a l association. Presence, t o t a l and average cover value, and l i f e form were determined f o r each species and c h a r a c t e r i s t i c species were determined for each association. Presence i s an in d i c a t o r of the degree to which a species occurs i n an association. Species with a presence of 80% or more are referred to as constant species. Cover value i s a measure of dominance and i s derived from the species s i g n i f i c a n c e values. Brooke's (1965) scale for converting species s i g n i f i c a n c e values into equivalent cover values was used in t h i s study and i s presented i n Appendix I. Total cover value of a species i s the sum of the cover value of that species from a l l plots i n the association. Although t h i s value i s a good in d i c a t o r of the degree of dominance of a species i n an associa-t i o n , i t i s not a good c h a r a c t e r i s t i c to use i n making comparisons with other associations since i t varies with the number of p l o t s . Average cover value, which i s the t o t a l cover value divided by the number of p l o t s , i s a more us e f u l c h a r a c t e r i s t i c i n t h i s 8 respect. A constant species with an average cover value exceeding 10 percent of the plot area i s referred to as a constant dominant (Peterson 1964). Ch a r a c t e r i s t i c species are species which have a high degree of association with one type of community. Braun-Blanquet (1932) recognizes the following kinds of c h a r a c t e r i s t i c species: Exclusive species: species completely or almost completely confined to one community. Selective species: species which are found most frequently i n a certai n community. P r e f e r e n t i a l species: species present i n several communities more or less abundantly but predominantly or with better v i t a l i t y i n one certain community. Constant species and c h a r a c t e r i s t i c species, taken together, form the c h a r a c t e r i s t i c combination of species f o r the association. Each vegetation unit described i s given a l a t i n i z e d name. i The name of an association or variant i s formed by attaching the s u f f i x -etum or -osum, respectively, to the stem of the generic name of a dominant or c h a r a c t e r i s t i c species followed by the s p e c i f i c epithet i n the genitive (Braun-Blanquet, 1953). Where more than one' generic name i s used, the stem of the l a s t generic name ends i n -etum and the stem of a l l preceding generic names end i n -eto. Latinized names are used to f a c i l i t a t e the systema-t i c grouping of the vegetation units described in|to higher categories. V CHAPTER III DESCRIPTION OF THE STUDY AREA A. Location and topography The sand dunes of Long Beach l i e on the west coast of Vancouver Island at 126° 20' N l a t i t u d e and 49° W longitude. The dunes extend f o r a mile along the southeastern end of Wickaninnish Bay and occupies approximately 120 acres. The dunes consist of several p a r a l l e l ridges with three major blowouts separated by patches of forest (Fig. 1). The f i r s t seaward ridge i s present only i n the northwestern h a l f of the area and it,s height varies from 2 to 4 f e e t . Its south-easeastern section has been wind eroded r e s u l t i n g i n a bank 3 to 10 feet high. The second ridge occurs as a long arc stretching continuously from one end of the dune to the other except i n areas fronting blowouts where i t has been eroded away. It i s approxi-mately 10 to 15 feet high and, judging from the ages of the trees growing on i t s lee slope, i t s age ranges from 50 to 90 years. A dry dune slack occurs between these two ridges. A p r o f i l e section through A-A' of Figure 1 (Fig. 2) shows the r e l a t i v e p o s i t i o n of the features discussed above. Two older ridges about s i x t y feet high are present behind the blowouts. \ The blowouts consist of small h i l l s and depressions, (Fig. 3), some of which have been eroded so deeply that former beaches have been exposed (Fig. 4). The four long, p a r a l l e l , wooden structures Aireto-Ceratodontetum purpurei Arctostaphyleto-Eurhynchietuin oregani Scrub forest Normal forest Cakiletum edentulae Poetum macranthae elymosum vancouverensis ammophilosum arenariae Arctostaphyleto-Rhacomitrietum canescentis Western hemlock 0.16 m i l e s Fig. 1 Map »f the study area showing the various vegetation units. o Figure 2. P r o f i l e s e c t i o n through A-A» of Figure 1 showing the r e l a t i v e p o s i t i o n of f i v e communities. Foreshore Cakile edentula O CO 73 Dune slack Picea sitchensis Cerotodon Stable dune r idge Arctostaphylos uva-ursi Eurhynchium oreganum Scrub spruce fo res t Picea sitchensis Gaultheria shallon Maianthemum dilatatum Eurhynchium oreganum Isothecium stoloniferum Distance(ft) 12 Figure 3. General view of the Long Beach sand dunes showing the h i l l y topography. Figure 4. An exposed r e l i c t beach i n a deep blowout. !3 which are present i n the largest blowout (Fig. 5) appear to represent an attempt made i n the past to s t a b i l i z e these areas. B. Geology The work by Dolmage (1920) i s the only reference available to the geology of the area. He considered the area between Ucluelet and Clayoquot Sound and inland to Kennedy Lake as part of the Wreck Bay formation. This formation consists of layers of sand, gravel and clay which, Dolmage states, o v e r l i e s the Vancouver volcanics formed i n the Upper T r i a s s i c . Observations on a r a p i d l y eroding c l i f f bordering Wreck Bay, however, show that at least l o c a l l y the sedimentary layers o v e r l i e marine g l a c i a l t i l l (G. S. Rouse, personal communication). On Wreck and Long beaches, u p l i f t of the shoreline following g l a c i a l recession has apparently raised a former marine terrace approximately eighty feet. The oldest ridge on the southeast section of Long Beach appears to have been formed by the accumula-t i o n of sand along the wall of t h i s terrace. The sand necessary f o r dune formation appears to have originated from Sand H i l l Creek and from the terrace bordering Wreck Bay. In the l a t t e r case extensive layers of sand within the g l a c i a l outwash material of the terrace appears to have been eroded out by wave action (G. E. Rouse, personal communication), and to have been transported to Wickaninnish Bay by currents (W. H. Mathews, l e c t u r e ) . The crescent shape formed by Wickanin-nish Bay and some off-shore islands causes the currents to deposit much of t h e i r load of sand on the beach fronting the dunes. 1 4 15 C. Climate* The climate of the area i s mild and humid due to the proximity of the ocean. Mean annual temperature i s 49°F and extremes from th i s mean are rare. The absolute maximum and minimum temperatures recorded are 91°F and 19°F respectively. An annual average of 36 days with freezing temperatures has been recorded f o r the area. Average annual p r e c i p i t a t i o n i s heavy (122.4 inches) and i t s d i s t r i b u t i o n i s such that the major portion f a l l s i n the winter, whereas the summer months are considerably d r i e r . However, the summer months are wetter than those of many other areas i n B r i t i s h Columbia. Summer fogs are frequent, and l a s t from early morning to early afternoon. The combined effects of evaporation from the ocean, high r a i n f a l l , and frequent fogs r e s u l t i n a high humidity throughout the year.. Winds, the most important factors i n dune formation, are usually gentle (mean speed 7-10 mph) but occasionally reach gale force. The p r e v a i l i n g d i r e c t i o n s are southeast during the winter, and southeast and northwest during .the summer. Summaries of temperature, p r e c i p i t a t i o n , and r e l a t i v e humidity are graphically presented i n Figure 6. D. Vegetation The dominant vegetation of the west coast of Vancouver Island i s part of the Coastal Western Hemlock Zone (Krajina, 1959, 1965). The p r i n c i p a l tree species are western hemlock (Tsuga heterophylla, amabilis f i r (Abies amabilis) and western red cedar (Thuja p l i c a t a ) . * Climatic data are mostly eight year records from the Tofino Airport weather s t a t i o n . 16 Figure 6. Average monthly temperatures, relative humidity and precipitation for the Long Beach area 17 The f i r s t two trees are climax species f o r the zone while the t h i r d i s considered as an edaphic species. Shore pine (Pinus  contorta), yellow cypress (Chamaecyparis nootkatensis), western white pine (Pinus monticola), western yew (Taxus b r e v i f o l i a ) and Sitka spruce (Picea sitchensis) are other trees commonly found in t h i s coast fore s t . Although a l l the above named trees except amabilis f i r reach the coast, Sitka spruce i s the dominant tree i n a narrow s t r i p along the coast. I t forms a continuous f o r e s t along the front of the terrace, the upper beach and on basalt outcroppings along the shore and offshore. Much of the forest occurs as pure stands of Sitka spruce which averages 100-120 feet i n height and 2-4 feet i n diameter. The understory i s usually a t a l l thicket of s a l a l (Gaultheria shallon). Krajina (1959) considers t h i s spruce forest an edaphic climax community controlled by ocean spray. The study area includes such a f o r e s t . V I CHAPTER IV DESCRIPTION OF THE PLANT ASSOCIATIONS This section deals with the description of some of the important features of the vegetation units and i s b a s i c a l l y a summary of the Synthesis tables i n Appendix I. Seven associa-tions and four variants are described. The terminology used f o r the various dune areas i s b a s i c a l l y that used by B r i t i s h ecologists (Tansley, 1949; Salisbury, 1952). A map ( F i g . 1) showing the r e l a t i v e p o s i t i o n of each vegetation unit i s provided. A. The foreshore 1. Cakiletum edentulae (Cakile edentula association) /Reference: Synthesis table I Figure 7 C h a r a c t e r i s t i c combination of species Constant dominants Constants, not dominants Cakile edentula Elymus vancouverensis Exclusive species t Selective species Honckenya peploides Cakile edentula Along most of the length of Long Beach the upper» beach zone i s covered by driftwood and logs deposited by winter storms. In t h i s habitat vegetation i s sparse, due primarily to the annual inundation of the area by winter high tides and to the continual Figure 6*. A community of Poa macrantha showing the even spacing of the t u f t s . 20 sand b u r i a l and" b l a s t i n g that plants must to l e r a t e . The succulent annual, Cakile edentula, i s the only plant which grows i n t h i s habitat with good vigor. Its seeds germinate r e a d i l y but apparently few seedlings survive to maturity. Surviving seedlings grow very r a p i d l y often producing, when mature, a shoot system one to two feet wide. These shoots are capable of trapping much wind-blown sand, thus i n i t i a t i n g embryo dunes. However, since Cakile i s an annual t h i s e f f e c t i s only temporary. Perennials such as Elymus vancouverensis, Carex macrocephala. Ammophila arenaria, Lathyrus l i t t o r a l i s , Abronia l a t i f o l i a and Franseria chammisonis are common here but grow with poor vigor and never flowers. Elymus i s a constant species i n t h i s associa-tion but i s never present i n great abundance. Plants of t h i s species grow as is o l a t e d i n d i v i d u a l s instead of i n colonies as on the f i r s t ridge. Elymus apparently i s unable to spread by rhizomes i n the foreshore habitats. Honckenya peploides, a succulent perennial, i s an exclusive species i n t h i s association. S o i l s of t h i s association are very a l k a l i n e (pH 6*.0-6*.9) and contain very l i t t l e organic matter. B. The blowouts • • i 2. Poetum macranthae (Poa macrantha association) Reference: Synthesis table I Figure 8 and 9 Cha r a c t e r i s t i c combination of species , Constant dominant Constants, not dominant Poa macrantha Glehnia leiocarpa P r e f e r e n t i a l species Abronia l a t i f o l i a Figure 9. A community of Abronia l a t i f o l i a . Figure 1 0 . A Sitka spruce tree with i t s exposed root system. 22 The blowouts are the most conspicuous features of the dunes in the study area. The smaller blowouts of the dune ridge and slack are caused by constant treading on the vegetation by picnickers and probably by some animal borings i n the s o i l . The cause of the larger unstabilized areas i s unknown but may have been due to c l e a r i n g of small areas i n the forest as i s now being done i n the southeastern section of the dunes. Residents of the area suggested m i l i t a r y a c t i v i t i e s such as bombing as possible causes of the blowouts. The blowouts today are moving eastward into the forest k i l l i n g large spruce trees by burying them or by eroding the s o i l around t h e i r root systems. (Fig. 10). 2a. poosum macranthae (Poa macrantha variant) This variant occupies the major portion of the blowouts where s h i f t i n g sand subjects the plants to recurrent b u r i a l and uprooting. The texture of the sand i s primarily f i n e to very f i n e except i n deep blowouts where pebbles and coarse sand predominate. Organic matter i s present i n minute quantities and mineral nutrients are very low. pH of the s o i l tends to be s l i g h t l y acid (pH 6 . 4 - 7 . 3 ) . i Vegetation i n t h i s habitat covers an average of only 25% of the plot area. The dominant plant i s Poa macrantha which usually grows i n small, evenly spaced t u f t s and with considerably less vigor than i t does on the unstable dune ridge ( F i g . 11). Poa reproduces primarily by stolons that root at the node and produce new plants when buried (Arnst, 1942). However, reproduc-t i o n by seed i s also common although the majority of the plants Figure 12. A large colony of Carex macrocephala. 24 examined were male. P. macrantha i s a f a i r l y good s t a b i l i z e r which has been used extensively i n Oregon and Washington dunes i n intermediate stages of s t a b i l i z a t i o n following plantings of Ammophila arenaria or Elymus mollis.(Arnst, 1942) . This s t a b i l i z i n g capacity of Poa l i e s i n i t s extensive fibrous root system which extends l a t e r a l l y over a considerable area. Measurements from several t u f t s showed that the average length of the longest l a t e r a l i s 40 cm and the average maximum depth i s 20 cm. Kearney (1904) states that t h i s habit allows the plant to absorb nutrients from the maximum area of the s t e r i l e s o i l and to gain the firmest possible foothold i n the s h i f t i n g sand at the same time. This habit would doubtless also provide the plant with a means of high water uptake i n t h i s xeric habitat. Carex macrocephala i s another common plant i n the blowouts which has the a b i l i t y to s t a b i l i z e s h i f t i n g sand. In d r i e r areas of the blowouts Carex macrocephala i s not an e f f i c i e n t s t a b i l i z e r because i t s shoots grow i n straight l i n e s and are e a s i l y uprooted. However, i n wetter habitats i t grows i n f a i r l y large colonies i n which case the numerous leaves and shallow rhizomes and roots are eff e c t i v e i n s t i l l i n g the sand (Fig. 12). Glehnia leiocarpa and Polygonum paronychia (Fig. 13) are two other,plants that are common but have small dominance i n the poosum. ;' 2b . abroniosum l a t i f o l i a e (Abronia l a t i f o l i a variant) , This variant is~ f l o r i s t i c a l l y s i m i l a r to the poosum but i s separated from i t on the basis of the greater abundance of Abronia  l a t i f o l i a . Unlike the sparse vegetative cover of the poosum, thi s Figure 13. Polygonum paronychia showing vigorous growth. Figure 14. A community of Rhacomitrium canescens being invaded by A r c t o s t a p h y l o s ~ v a - u r s i . 26 variant has a cover of approximately 75%. The herb layer i s dominated by the succulent annual, A. l a t i f o l i a , whose numerous low-lying leaves form an e f f e c t i v e s t a b i l i z i n g cover f o r the sand beneath. However, only small areas are usually covered because the shoots usually grow upward b u i l d i n g a mound rather than spreading l a t e r a l l y over large areas. Abronia i s the only deep rooting species i n the area; i t s succulent roots often extend more than s i x feet below the s o i l surface. Other vegetative features which d i f f e r e n t i a t e t h i s variant from the poosum are the greater abundance and vigor of Glehnia  leiocarpa, the greater abundance of Polygonum paronychia and the small cover value of Poa macrantha. Both the poosum and abroniosum are edaphically very s i m i l a r except f o r the s l i g h t l y greater a c i d i t y of the abroniosum. This difference may be due to the acid (pH 4.0) decaying remains of Abronia roots. 3. Arctostaphyleto-Rhacomitrietum canescentis (Arctostaphylos uva-ursi Rhacomitrium canescens association) , Reference: Synthesis table V Figure 14 C h a r a c t e r i s t i c combination of species Constant dominants Constants, not dominants Arctostaphylos uva-ursi 1 Poa confinis Rhacomitrium canescens Hypochaeris radicata Aira praecox Exclusive species Peltigera aphthosa var. leucophlebia Stereocaulon tomentosum , Ceratodon purpureus Selective species Rhacomitrium canescens 27 This association occupies habitats i n the blowouts that are well protected from strong winds and deep sand b u r i a l . The s o i l i s quite acid (pH 5 .3-5 .8) , i t contains more organic matter than do other blowouts habitats, but i t i s s t i l l n u t r i t i o n a l l y very poor. -The association i s f l o r i s t i c a l l y very s i m i l a r to the Aireto-Ceratodontetum and appears to represent another successional l i n e through which a moss community can develop when the habitat i s s l i g h t l y changed. The sparse herb layer i s dominated by Arcto-staphylos uva-ursi which has an average cover of only 20%. Poa  c o n f i n i s , Hypochaeris radicata and Aira praecox are constant species but have considerably less cover value i n t h i s association than i n the Aireto-Ceratodontetum. Poa macrantha i s common but not abundant and always grows with poor vigor i n these communities. Seedlings of Picea sitchensis and Tsuga heterophylla are rare i n these communities probably because the thick moss layer hinders t h e i r successful germination. The extensive moss layer covers an average of 87% of the plot area.and i s dominated by the t a l l t u r f moss Rhacomitrium  canescens var. ericoides• Ceratodon purpureus i s a constant species but i t never i s abundant and i s invar i a b l y found on the perimeter of the communities. Rhacomitrium i s apparently a better competitor than Ceratodon i n these habitats where sand b u r i a l and wind erosion are n e g l i g i b l e factors. \Dicranum  scoparium and Polytrichum .juniperinum are other common mosses in t h i s association. Lichens are almost as numerous i n t h i s association as i n the Aireto-Ceratodontetum. Stereocaulon tomentosum i s the only species which becomes dominant i n some communities while Peltigera 28 aphthosa var. leucophlebia i s the only constant l i c h e n species. Leptogium palmatum and Cladonia lepidota are much less abundant i n t h i s association than i n the Aireto-Ceratodontatum. G. The mobile dune ridge 4 . Elymetum vancouverensis (Elymus vancouverensis association) Reference: Synthesis table II Figure 15 C h a r a c t e r i s t i c combination of species Constant dominants Constants, not dominant Elymus vancouverensis Poa macrantha Selective species P r e f e r e n t i a l s Franseria chamissonia Fragaria c h i l o e n s i s Ammophila arenaria Lathyrus .japonicus Elymus"vancouverensis This association occupies a narrow band along the low, unstable dune ridge. Two variants of t h i s association have been established on the basis of the difference i n dominance of Elymus vancouverensis. I t i s l i k e l y , however, that studies i n other dune areas on the west coast (e.g., the dunes of Oregon and Washington) w i l l show that the two variants are d i f f e r e n t enough to necessitate t h e i r separation into two associations. ! •I ,4a. ammophilosum arenariae (Ammophila arenaria variant) The li m i t e d extent of t h i s variant precluded the e s t a b l i s h -ment of a s u f f i c i e n t number of p l o t s . The recognition of t h i s variant i s therefore only tentative. The ammophilosum occupies the unstable areas f r o n t i n g the 29 largest blowout. The s o i l i s very unstable except i n concave habitats, i t i s al k a l i n e (pH 7.4-7.8) and i t contains very l i t t l e organic matter. The dominant plant i n the communities of th i s variant i s the European beachgrass, Ammophila arenaria. This grass has been long recognized as an e f f e c t i v e s t a b i l i z e r of s h i f t i n g sand and was f i r s t u t i l i z e d on the P a c i f i c coast to s t a b i l i z e the dunes i n the area that i s now Golden Gate Park, San Francisco (Lamson-Scribner, 1898). The a b i l i t y of Ammophilalis shoots to s t a b i l i z e s h i f t i n g sand i s due to i t s peculiar habit of stimulated growth and branching when p a r t i a l l y buried (Lamson-Scribner, 1989; Cowles, 1899; Waterman, 1919). Salisbury (1952) claimed that e t i o l a t i o n was the cause of t h i s stimulated growth. Ammophila grows i n t u f t s and spreads r a p i d l y through loose sand by numerous rhizomes. Between the t u f t s are usually found scattered i n d i v i d u a l plants of Poa macrantha, Elymus vancouver-ensis and Garex macrocephala. 4b. elymosum vancouverensis (Elymus vancouverensis variant) In the more stable areas of the f i r s t dune ridge, Elymus  vancouverensis becomes more abundant than Ammophila or only Elymus may be present. Many other species colonize the s o i l and a continuous, layer of vegetation i s eventually established so that the dune ridge achieves considerable s t a b i l i t y . Tansley (1949) refer s to th i s as the fixed dune stage but i n t h i s study the term w i l l be used f o r the second dune ridge. The s o i l i n these communities i s almost neutral i n the upper layers but becomes quite acid (pH 6.5) with increasing depth due 30 Figure 16 . A community of Ceratodon purpureus. mostly to the buried decaying Elymus shoots and sometimes to buried decaying wood. Organic matter, although low compared to most s o i l s , has increased considerably i n t h i s habitat. The dominant species i s Elymus vancouverensis which has an average cover value of 55% but i n communities at t h e i r l a t e s t stages of development, Elymus may a t t a i n a cover of 75%. Poa  macrantha i s a constant species i n t h i s association and usually grows only as single prostrate plants instead of tufted as i n the blowouts. In the early stages of these communities, P. macrantha, Carex macrocephala, Hypochaeris radicata and Polygonum paronychia are the plants most commonly associated with Elymus. Poa and Hypochaeris may reach t h e i r best development i n some of the more open Elymus communities but t h e i r cover i s usually small. Carex has l i t t l e dominance i n these open communities yet i n many open areas on the windward slope i n front of the ammophilosum, t h i s plant may cover extensive areas (Fig. 12). This occurrence appears to be anomalous as Carex may also grow vigorously i n the elymosum where the vegetation cover becomes very dense. In late stages of development i n the elymosum, Lathyrus .japonicus t c_. macrocephala, and Eragaria chiloensis become abundant and form an extensive ground cover. Fragaria and Lathyrus are very charac-t e r i s t i c plants f o r these communities/ \ D. The dune slack and stable dune ridge 5. Aireto-Ceratodontetum purpurei i (Aira praecox-Ceratodon purpureus association) Reference: Synthesis table III Figure 16 Ch a r a c t e r i s t i c combination of species Constant dominants Constants, not dominant Aira praecox  Hypochaeris radicata  Ceratodon purpureus Exclusive species Montia p e r f o l i a t a  Cephaloziella p a p i l l o s a . Bryum pallens  Cladonia pyxidata Tortula r u r a l i f o r m i s Polygonum paronychia  Cerastium viscosum  Poa confinis  Brachythecium albicans  Cladonia lepidota  Cladonia furcata  Cladonia chlorophaea  Leptogium palmatum Selective species Aira praecox Cerastium viscosum This association occurs primarily behind the f i r s t dune ridge i n areas which are not subject to much b u r i a l by sand. In the northwestern half of the dunes, communities of t h i s associa-t i o n occur as small patches or as larger colonies i n which Arctostaphylos uva-ursi i s becoming dominant. This association covers more extensive areas and reaches i t s best development i n the southeastern h a l f of,the dunes. The r e l a t i v e l y sparse herb layer covers an average of 55% of the plot area. Aira praecox, Hypochaeris radicata and Abronia l a t i f o l i a are dominant herbs i n th i s association. Abronia appears to be a r e l i c t from a former community because although abundant, i t always grows with poor vigor and never flowers. Montia p e r f o l i a t a , a small succulent annual, i s an exclusive i species. ' \ \ Bryophytes are the dominant plants and lichens, e s p e c i a l l y from the genera Cladonia and P e l t i g e r a . reach t h e i r maximum development i n t h i s association. These cryptogams form an almost continuous carpet over an average of 85% of the plot area. In most of these communities Ceratodon purpureus i s the dominant bryophyte but i n others Tortula r u r a l i f o r m i s may reach an equal 33 status or even become the dominant plant. The greater abundance of Tortula i n some communities may be due to two facto r s : : 1) These communities represent l a t e r stages i n succession, or 2) these communities occupy habitats that are covered by small amounts of sand. The l a t t e r i s suggested because Birse et a l (1957) have shown that Tortula i s less tolerant of sand b u r i a l than other pioneer mosses such as Ceratodon. Brachythecium  albicans i s a constant species which enters these communities as a secondary invader and may produce an extensive mat over the pioneer mosses. Two bryophytes exclusive to t h i s association are Bryum pallens and Cephaloziella p a p i l l o s a . Bryum occupies the small breaks i n the moss carpet where mineral s o i l i s exposed and moist. Such habitats often occur under the rosette leaves of Hypochaeris. On the other hand, Cephaloziella grows l a t e r a l l y through the c l o s e l y growing shoots of the dominant mosses. Lichens are abundant and sometimes become dominant plants i n c e r t a i n communities; Nine species occur i n t h i s association and of these Cladonia lepidota, 0 . furcata, C. chlorophaea and Leptogium palmatum are constants. Peltigera canina var. rufescens and P. apthosa var. leucophlebia are also commonly present. S o i l s of t h i s association are very s l i g h t l y acid to medium acid (pH 5.7-6.6) and have a r e l a t i v e l y high organic matter content (Maximum of 0.54%). , 6. Arctostaphyleto-Eurhynchietum oregani (Arctostaphylos uva-ursi - Eurhynchium oreganum association) ( Reference: Synthesis table I V Figure 17 : 34 C h a r a c t e r i s t i c combination of species Constant dominants Constant, not dominant Arctostaphylos uva-ursi Hypochaeris radicata Eurhynchium or'eganum Fragaria chiloensis Poa macrantha Exclusive species Tsuga heterophylla Picea sitchensis Tanaceturn camphoratum Pr e f e r e n t i a l species Arctostaphylos uva-ursi Communities of t h i s association cover the major portion of the windward slopes of the stable ridge and are also found to a lesser degree at the edges of blowouts. A s i m i l a r community was reported by Cowles (1899) f o r the Lake Michigan dunes. Although most of these communities are close to the sea and thus receive the f u l l force of the on-shore winds, the amount of sand blown into the habitat i s very small and thus a minor eco-l o g i c a l f a c t o r . The dense vegetation layer, the development of a thin humus layer, and the incorporation of organic matter into the mineral s o i l provide t h i s habitat with improved moisture and n u t r i t i o n a l conditions. These conditions allow the growth of trees and shrubs. The shrub (B^) layer has an estimated average coverage of only 10%. The main plants are small, scattered Sitka spruce trees mostly less than 2 feet high, and s a l a l (Gaultheria shallon) about 8 inches t a l l . 1 The dominant plant of the herb layer i s the ericaceous shrub, Arctostaphylos uva-ursi, which forms a dense mat often occupying over 90% of the plot area. This dense cover and low, creeping habit make i t an e f f e c t i v e s t a b i l i z e r . Seedlings of Picea s i t c h e n s i s and Tsuga heterophylla are constant and numerous i n t h i s association. A t a l l y taken i n plot 23 showed that there were 33 of the Picea and 32 of the Tsuga present. However, judging from the number of small trees present only a few seed-lings of the spruce and almost none of the hemlock survive. Elymus vancouverensis i s commonly present here but only as is o l a t e d plants and with poor vigor. Tanacetum camphoratum i s an exclusive species i n t h i s association. Eurhynchium oreganum i s the main humicolous species. I t forms a widespread, but seldom dense, mat beneath Arctostaphylos or i t sometimes acts as an epiphyte on the stems of t h i s plant. Eurhynchium forms i t s most dense growth under the canopy of the shrubs or shrubby trees where Arctostaphylos i s shaded out. Leptogium palmatum occurs frequently with high abundance and appears to be more vigorous than i n the Aireto-Ceratodontetum possibly because'. '•• ; i t i s less subject to desiccation here. Cladonia scabriuscula i s a p r e f e r e n t i a l species. S o i l s i n t h i s association are mostly very strongly acid to medium acid (pH 4.8-5.9) and have a f a i r l y high organic matter content (0.78%). » 7. Wet habitats i n the dune slack \ Habitats that are wetter than a l l other non-forested ones are present i n a few sheltered areas behind the f i r s t ridge. Since the vegetation i n these habitats i s heterogeneous, no de t a i l e d analysis was attempted. However, a few observations were made and are presented below i n order to f a c i l i t a t e the discussion on succession and to provide information on communi-t i e s i n a l l ava i l a b l e habitats. 36 Figure 18. A view of the stable dune ridge showing the wind-swept Sitka spruce trees. 37 The major plants of t h i s habitat are E. vancouverensis, V i c i a gigantea and Gaultheria shallon. Elymus i s s l i g h t l y l e s s abundant i n these communities than i n most of the elymosum communities. V i c i a gigantea replaces Lathyrus .japonicus i n these communities and l i k e Lathyrus japonicus i t s creeping stems produce a dense ground cover. Gaultheria grows as a shrub about a foot and a h a l f high. Herbs such as V i c i a hirsuta, Angelica  lucida, Poa pratensis, D a c t y l i s glomerata and Carex pansa are occasionally present and may be l o c a l l y dominant. Alnus rubra and Rubus s p e c t a b i l i s are also occasionally present. Scattered i n d i v i d u a l s of Picea s i t c h e n s i s , some up to s i x feet t a l l , are common i n t h i s habitat. Both Picea and Gaultheria are commonly associated and both established on decaying wood. As the tree develops a wide canopy, a moss layer resembling that of the forest develops. Observations beneath a f i v e foot spruce located behind the ridge along, the transect A-A' (see Figure 2) gave the following species: Eurhynchium oreganum, Scapania  bolanderi, Mnium glabrescens, Lophocolea bidentata, L. cuspidata, Scapania umbrosa, Dicranum scoparium and Cladonia f o l i a c e a . Gaultheria shallon grows abundantly around the tree but only a few i n d i v i d u a l s are found beneath the canopy. pH of the s o i l i n t h i s habitat was 5.5 and the s o i l contained large' amounts of organic matter, most of which are from decaying wood. 8. Piceeto-Gaultherieto-Maianthemetum d i l a t a t i (Picea sitchensis - Gaultheria shallon -Maianthemum dilatatum association) Reference: Synthesis table VI Figure 18 38 The c h a r a c t e r i s t i c combination of species i s not l i s t e d f or th i s association because of the large number of species which are found only i n the f o r e s t . The majority of the communities of t h i s association which were analyzed occupied the lee slopes of the stable dune ridge. Three plots (34, 7$, 9 1 ) i n the spruce forest behind the blowouts were also analyzed for comparison. The former forest communities were designated the "scrub" forest because of the poor tree growth, the contorted form of many trees, and the presence of many incompletely pruned branches; the l a t t e r forest with trees of the usual form has been designated the "normal" f o r e s t . Both types of forest communities are f l o r i s t i c a l l y very s i m i l a r . However, the normal forest has a well developed shrub layer and poor development of epiphytes whereas the scrub forest has a poorly developed shrub layer and abundant epiphytes. Tree cover i n t h i s association averages an estimated 8*5%. The dominant tree i s Picea s i t c h e n s i s . In the scrub f o r e s t , t h i s species never grows t a l l e r than 35 feet because s a l t spray k i l l s the buds on the terminal and seaward portion of the stem.(Boyce, 1954). The buds on the lee side of the stem grow landward r e s u l t i n g i n trees with a wind-swept appearance (Fig. 18). Picea may reach a height of 120 feet i n some habitats i n the normal for e s t . Thuja p l i c a t a and Tsuga heterophylla are often present i n both types of fo r e s t , but i n the scrub forest they generally occur on the extreme leeward edge, suggesting t h e i r intolerance to s a l t spray. Pinus contorta, Alnus rubra, Pyrus d i v e r s i f o l i a , Pinus monticola and Taxus b r e v i f o l i a are rare trees i n these communities. The cover of the shrub layer varies from 10-80% i n the scrub forest whereas i n the normal forest the cover i s 75-$5%. The density of the shrub layer i s controlled by the amount of l i g h t admitted into the forest (Day, 1957). Observations i n the scrub forest support t h i s : where the overlapping, wind-swept branches produce a t i g h t l y closed canopy, the shrub layer i s very sparse; but immediately adjacent areas s a l a l may grow abundantly i f a break occurs i n the canopy. This appears to be the case i n plots 78 and 79. S a l a l i s the dominant shrub of the association and Vaccinium ovaturn, V. parvifolium, Rosa nutkana and Lonicera  involucrata are associated shrubs with small cover. The herb layer i n a l l cases i s very poorly developed. Maianthemum dilatatum i s the only constant herb species i n t h i s association. Rosa nutkana, as seedlings, i s common i n these forest communities but i t s small number i n the shrub layer i n d i -cates the i n a b i l i t y of these seedlings to survive i n t h i s habitat. I t , too, apparently requires more l i g h t than i s obtained under the f o r e s t canopy since i t occurs commonly as a shrub along the forest edge. Other species commonly present i n the herb layer are Boschniakia hookeri, Blechnum spicant, Polystichum muniturn and L i s t e r a cordata. The well developed moss layer covers an average of 77% of the plot area. The dominant plant i n t h i s layer i s Eurhynchium  oreganum which grows most often on humus but i s sometimes found on decaying wood. Plagiothecium undulatum i s also quite common on humus. Isothecium stoloniferum i s the most common bryophyte growing on decaying wood but these pieces of wood have probably f a l l e n from the trees and Isothecium therefore should not be 40 considered a part of the D layer. Other species commonly found on decaying wood are Scapania bolanderi, Calypogeia trichomanis, PeItinera membranacea, Lophocolea bidentata, Blepharostoma  trichophyllum, Riccardia palmata and Mnium glabrescens. Other common species which grow.equally well on humus or decaying wood are Hylocomium splendens. Hookeria lucens and Rhytidiadelphus  loreus. The well developed epiphyte layer covers an estimated average of 62% of the t o t a l tree trunk area. Most of the epiphytes are bryophytes but a few lichens and vascular plants are also repre-sented. Isothecium stoloniferum i s the dominant epiphyte. Isothecium usually produces thick matted colonies on the trunk and dead branches i n the and Eg layers but i t s growth i s less dense i n the EQ layers. Two vascular plants, Polypodium  gly c y r r h i z a and P. s c o u l e r i , are common epiphytes i n the E^ and Eg layers. F r u l l a n i a n i s q u a l l e n s i s i s a constant species which i s most common i n the Eg layer. S o i l s i n t h i s association are strongly acid to very strongly acid i n the mineral layers (pH 4.5-5.9) and organic layers (pH 3 .8 -5 .4 ) . The f i r s t mineral layers of these s o i l s have a high (average 1.76%) organic matter content. \ CHAPTER V DESCRIPTION AND COMPARISON OF THE SOILS This chapter describes and compares a few of the important features of the s o i l s of the various vegetation units. Average values are used i n comparing the chemical properties of the mineral s o i l s . An average value f o r an association i s derived by adding the values of the f i r s t two mineral layers of a l l p r o f i l e s analyzed from the association and d i v i d i n g by the number of mineral layers used i n the c a l c u l a t i o n . These values are rated according to the scale given by Metson ( 1 9 6 1 ) . A. Parent material* , As i n many dunes the parent material of the s o i l s of the Long Beach dunes has a high percentage of quartz (Table I ) . But there i s also a r e l a t i v e l y high percentage of non-quartz minerals such as feldspars which makes t h i s parent material p o t e n t i a l l y capable of developing a f a i r l y r i c h s o i l . However, development of a s o i l from such porous and unstable material proceeds slowly. ' B. S o i l texture ( The f i n e sand"fraction composes the major portion of the * Analysis of the sand was done by Bruce Farquharson, a graduate student i n the Dept. of Geology, University of B r i t i s h Columbia. 42 s o i l s of a l l associations (Table I I ) . However, except i n communi-t i e s of the forest and the protected Arctostaphyleto-Rhacomitrie-turn canescentis, the very f i n e sand f r a c t i o n i s considerably greater i n communities with a greater vegetative cover. For example, communities of the Aireto-Ceratodontetum purpurei, Poetum macranthae abroniosum l a t i f o l i a e and Arctostaphyleto-Eurhynchietum oregani have s o i l s which contain 13.5, 14.6, and 17.6 per cent of the very f i n e sand f r a c t i o n r espectively whereas a less vegetated community such as one of the Elymetum vancouver-ensis ammophilosum arenariae contains only 3.0% of the very fine sand f r a c t i o n . This difference may be due to the greater e f f e c t of a larger vegetative cover i n 1) s t i l l i n g the wind immediately above i t causing deposition of the.lighter p a r t i c l e s (Olson, 1958) and i n 2) slowing the downward movement of these f i n e p a r t i c l e s with each r a i n . Another reason may be that the r e l a t i v e l y high organic -matter content i n a s o i l such as that of an Arctostaphylos  uva-ursi community causes aggregation of the very f i n e p a r t i c l e s . The reason for the small amounts of very f i n e p a r t i c l e s i n the forest s o i l s i s not apparent. Communities of the Cakiletum edentulae have the largest amounts of coarser material because the grading e f f e c t of the wind causes the smaller and l i g h t e r p a r t i c l e s to be blown further inland than the larger and heavier p a r t i c l e s . The difference i n s o i l texture should cause a d i f f e r -ence i n the water-holding capacity of the s o i l s and, to a lesser degree, a difference i n the exchange capacity of t h e ( s o i l s . C. Organic matter Organic matter generally increases with increasing s t a b i l i t y 43 Table I. Mineralogical analysis of the parent material Quartz 501 Greenstone 2% Plagioclase 15% . Hornblende 1% Na s i l i c a t e Ca s i l i c a t e 10% Serpentine 1% Orthoclase 5% Magnetite 1% Black C h e r t / a r g i l l i t e 6% D i o r i t i c rock fragments 1% Ultrabasic rock fragments 4% B i o t i t e trace Quartzite 3% Zircon trace Table I I . Textural composition of the sands of various associations and variants Vegetation unit Cakiletum ammophilosum elymosum -c poosum ! abroniosum ' Aireto-Ceratodontetum Arctostaphyleto-Rhacomitrietum Piceeto-Gaultherieto-Maianthemetum Very coarse to coarse sand '17.8 0.1 0.5 Medium sand 33.7 8.8 2.3 10.7 8.2 0.4 11.3 13.3 Fine sand 47.3 88,1 94.3 83.6 77.2 86.1 80.2 \ 77.9 Very f i n e sand 1.2 3.0 3.4 5.3 14.6 13.5 3.5 6.8 44 of the s o i l . S o i l s of the unstable habitats such as those of the Cakiletum, ammophilosum and Poetum have extremely low amounts of organic matter, mostly less than 0.1%. Organic matter i n the more stable s o i l s increases gradually from an average of 0 . 1 8 $ i n the Elymetum vancouverensis elymosum vancouverensis, to 0.51% i n the Aireto-Ceratodontetum, 0.57% i n the Arctostaphyleto-Rhacomi-trietum, 0.64% i n the Arctostaphyleto-Eurhynchietum and 1.76% i n the Piceeto-Gaultherieto-Maianthemetum d i l a t a t i . These concen-tra t i o n s are very low compared to most other s o i l s but as Salisbury (1952) points out such concentrations determined on a weight basis are misleading since substantial additions of organic matter add very l i t t l e to the weight of these sandy s o i l s . He suggests that concentration of organic matter on a volume basis would give more s i g n i f i c a n t r e s u l t s . Leaching of organic matter does occur deeper than 40 cm i n the nonforested s o i l s but i s detectable down to approximately 70 cm i n most of the forested s o i l s . The development of a humus layer occurs only i n the Arcto-staphyleto-Eurhynchietum and the spruce f o r e s t . Humus i n the s o i l s of the former association i s dark black i n color, acid (pH 4 . 8 - 5 . 2 ) and averages only 2 . 6 cm i n thickness. The humus layer of the forest s o i l s are very acid (pH 3 . 8 - 5 . 4 ) , black and averages 10 cm i n thickness. The extremely high\ G / N r a t i o s ( a l l values are over 26) indicate that these humus layers decay very slowly, thus immobilizing a great deal of the s o i l nitrogen supply (Black, 1957).... > ' ' 45 D. pH pH of the s o i l s changes from very a l k a l i n e i n the young dunes to very acid i n the stable habitats (Fig. 19). The young s o i l s of the Cakiletum edentulae and E. v. ammophilosum arenariae are basic f o r three reasons: 1) the sand blowing up from the beach i s salt-coated, 2) s h e l l fragments i n these s o i l s release small amounts of calcium carbonate and 3) the sparse vegetative cover adds l i t t l e acid organic matter to the s o i l . A c i d i t y of the s o i l increases with increasing development of the vegetation due to the incorporation of organic matter i n the s o i l and to the release of by plant roots. E. Cation exchange capacity In general, increasing s t a b i l i z a t i o n r e s u l t s i n an increasing cation exchange capacity i n the mineral s o i l s . However, a l l .of these s o i l s have a very low (< 6 me/lOOg) cation exchange capacity. The humus layer of the Arctostaphyleto-Eurhynchietum oregani has a considerably higher cation exchange capacity (10.9 me/lOOg) than the mineral s o i l s but t h i s cation exchange capacity i s s t i l l low compared to those of a g r i c u l t u r a l s o i l s . The humus layer of the^Piceeto-Gaultherieto-Maianthemetum d i l a t a t i ; h a s a high (30.8 me/lOOg) cation exchange capacity. v F. Exchangeable cations The mineral s o i l s of a l l associations have low to very low concentrations of exchangeable cations. However, differences i n concentration of exchangeable cations do occur between s o i l s of Piceeto-Gaultherieto-Maianthemetum d i l a t a t i PGM Arctostaphyleto-Eurhynchietum oregani AE Aireto-Ceratodontetum purpurei AC Poetum macranthae poosum macranthae P Elymetum vancouverensis elymosum vancouverensis Ev Poetum macranthae abroniosum l a t i f o l i a e A l Arctostaphyleto-Rhacomitrietum canescentis R Elymetum vancouverensis elymosum vancouverensis Ae Cakiletum edentulae C 47 POM I 1 I- -J- H L-F h J H 0-5 ci 4 H 30-35 cm AE AC I I I H Ev Al R Ae 1 4.0 5.0 6.0 7.0 PH 8.0 Fig. 19 pH mean and range of the soi ls of various associations and variants 9.0 4 * d i f f e r e n t associations. Younger s o i l s such as those of the Cakiletum and elymosum have a r e l a t i v e l y higher calcium concentration than s o i l s of the other associations or variants. The calcium concentration i n the s o i l s of the Cakiletum and elymosum averages 0.86 me/lOOg and 0.83 me/lOOg respectively, whereas the calcium concentration i n the mineral layers of the other associations ranges from 0.36 me/lOOg i n the Arctostaphyleto-Rhacomitrietum to 0.72 me/lOOg i n the Piceeto-Gaultherieto-Maianthemetum. The higher concentration of calcium i n the younger s o i l s i s due to the presence of f a i r l y large amounts of s h e l l s and to the f a c t that these s o i l s are leached less than the s o i l s of the other associations. The concentration of magnesium i n the s o i l s of a l l associa-tions i s s i m i l a r . The lowest average concentration occurs i n the s o i l s of the abroniosum (0.17 me/lOOg) and the highest average concentration occurs i n the s o i l s of the Cakiletum and Arctostaphyleto-Rhacomitrietum (0.32 me/lOOg). The magnesium concentration of the s o i l s of the other associations l i e between 0.24-0.27 me/lOOg. The concentration of potassium i n a l l s o i l s except those of the Cakiletum and elymosum vary from 0 . 0 4 me/lOOg i n the poosum to 0 . 0 9 me/lOOg i n the abroniosum. Potassium concentration i s considerably higher i n the young s o i l s of the Cakiletum (0.17 \ me/lOOg) and elymosum (0.13 me/lOOg). S o i l s possessing a humus layer are considerably i r i c h i n available cations. The humus layer of the Arctostaphyleto-Eurhynchietum contains 8.87, 4.23 and 0.72 of calcium, magnesium and potassium respectively. The humus layer of the Piceeto-49 Gaultherieto-Maianthemetum contains an average of 11.16, 5.88 and 1.67 me/lOOg of calcium, magnesium and potassium respectively. G. Adsorbed phosphate The organic layers, as well as the mineral layers, have a very low concentration of adsorbed phosphate. However, there i s a general trend of increasing phosphate concentration with increasing concentration of organic matter. H. Discussion In i t s i n i t i a l state, the s o i l s of a dune are n u t r i t i o n a l l y very poor; only the least demanding species are able to grow i n these s o i l s . The plants probably receive most of t h e i r nutrients from such sources as dust p a r t i c l e s and minerals dissolved i n r a i n i water, fogs and s a l t spray. Of these sources, s a l t spray probably contributes the most mineral nutrients. In experiments carried out at North Carolina, Boyce (1954) measured as much as 4.4 mg s a l t / s q dm/hr at a distance of 360 feet from mean t i d e . Salt concentration was determined as concentration of sodium chloride since t h i s s a l t composes the major portion of sea water. Sodium i s the main cation deposited by s a l t spray; but an average sea water, also contains small amounts of magnesium {3.69%), calcium (1.19%) and potassium (1.10%) (Metson, 1961). Therefore, i f Boyce's value i s correct, 1.4, 0.5 and 0.4 kg of magnesium, calcium and potassium respectively could t h e o r e t i c a l l y be deposited i n an acre of s o i l every day. Boyce's sa l t ' spray value may be too high f o r Long Beach because of the high r a i n f a l l 50 i n the area a f f e c t i n g the surface of the ocean. However, even i f the amount of s a l t spray deposited were only one-half Boyce's value, t h i s amount would s t i l l be considerable. Plants u t i l i z e some of these nutrients for t h e i r growth but most of i t i s probably leached out of these porous s o i l s . Parts of plants that die are decomposed and the nutrients are eventually returned to the s o i l to be used again by plants or are leached out of the s o i l . After many such cycles, the organic matter content gradually increases i n the mineral s o i l . Increasing organic matter r e s u l t s i n 1) an increasing cation exchange capacity which usually i s accompanied by an increase i n available cations, and 2) an increase i n the av a i l a b l e nitrogen and phosphate supply. In some of the habitats nitrogen i s also supplied to the s o i l by legumes such as Lathyrus japonicus, L. l i t t o r a l i s t V i c i a gigantea and V. h i r s u t a . The roots of these plants have the symbiotic bacteria, Rhizobium spp., which f i x nitrogen from the atmosphere and thus bring i t into the organic cycle. Since the s o i l also becomes quite acid with increasing organic matter content, greater weathering of the parent material may occur. Weathering of the non-quartz minerals described previously adds more nutrients to the s o i l . This biogeochemical cycle should eventually produce a f a i r l y r i c h podzolized s o i l . The frequent occurrence of such plants as Maianthemum dilatatum or Lonicera involucrata proves i t . V. CHAPTER VI RELATIONSHIPS AND DEVELOPMENTAL TRENDS OF THE ASSOCIATIONS Clements (1928) gives three methods which can be used i n studying succession: 1) by sequence using permanent quadrats, 2) by experimentation, and 3) by inference. The use of sequence and experimentation are the i d e a l methods but are not f e a s i b l e because of the short time a v a i l a b l e f o r a study such as t h i s . Inference based on t r a n s i t i o n between communities, s o i l pH and s o i l organic matter was therefore the only method used in' deriving the hypothetical trends. In most cases the d i r e c t i o n of development i s quite obvious so that only a minimum amount of speculation i s needed ,to demonstrate the trends. The successional trends of a l l vegetation units are diagrammatically summarized i n Figure 20. A question mark between two stages represents a presumed or not r e a d i l y apparent intermediate,stage. A. The foreshore and mobile dune ridge The general trend i n the f i r s t stages of dune development i s the build-up of the foreshore into embryo dunes which spread l a t e r a l l y and eventually fuse to form a mobile dune ridge (Tansley, 1949; Salisbury, 1952; Gimingham, 1964). Salisbury (1952) considers Cakile maritima, a foreshore species of some I n i t i a l condition Sandy foreshore Pioneer association Cakiletum edentulae Eroding surface Poetum macranthae abroniosum poosum l a t i f o l i a e macranthae Moist habitats Elymetum vancouverensis ammophilosurn arenariae Aireto-Ceratodontetum purpurei Arctostaphyleto-Rhacomitrietum canescentis e.v. elymosum vancouverensis Arctostaphyleto-Eurhynchietum oregani Climax association Piceeto-Gaultherieto-Maianthemetum d i l a t a t i 3 O >-i CD P> CO H-3 (ft CO cr fu cr H-M H" C+ Figure 20 Successional trends i n the sand dunes of Long Beach, Vancouver Island 53 B r i t i s h dunes, as an i n i t i a t o r of embryo dunes. As mentioned e a r l i e r , Cakile edentula of the Long Beach dunes i s also capable of i n i t i a t i n g embryo dunes but these formations are only temporary since t h i s plant i s an annual. Ammophila arenaria i s another plant which i s known to produce embryo dunes. However, although A. arenaria i s present i n the study area no such dune formation was observed. The reason f o r t h i s may be that at Long Beach the height from the foreshore to the top of the mobile dune ridge changes abruptly by as much as three feet. Winter storm tides are thus able to cover most of the foreshore but not the elevated dune ridge. Since A. arenaria i s intolerant of high s a l t concentrations (Tansley, 1949), i t i s unable to survive i n the foreshore habitats. The f i r s t dune ridge, therefore, i s not formed i n the usual manner; instead i t i s formed by the accumulation of sand on the numerous logs present on the upper beach (Fig. 20). The r e s u l t i s a bench high enough so that i t i s out of reach of most high t i d e s . The s c a r c i t y of Elymus i n the ammophilosum indicates that Ammophila i s the e a r l i e r pioneer of t h i s unstable habitat. Ammo-phila' s numerous and widespread system of rhizomes s t a b i l i z e the s o i l and i t s numerous stout stems impede the movement of d r i f t i n g sand causing the deposition and accumulation of considerable amounts. In experiments with a r t i f i c i a l plantings i n Oregon and Washington (McLaughlin and Brown, 1942), i t was shown that Ammophila i s capable of accumulating as much as two feet of sand annually. As the ridge i s b u i l t increasingly higher and as more logs accumulate i n front of the ridge, less sand i s blown into the 54 Ammophila community. Without t h i s recurrent b u r i a l to stimulate growth, Ammophila loses vigor and gives way to other plants (Lamson-Scribner, 1898; Cowles, 1899; Waterman, 1919). These r e l a t i v e l y stable habitats are invaded by E. vancouver-ensis and less often by Ceratodon purpureus. Like Ammophila, Elymus produces abundant rhizomes and numerous stems which further s t a b i l i z e the s o i l and help build up the ridge. Other species as Poa macrantha, Carex macrocephala, Polygonum paronychia and Hypochaeris radicata enter and further s t a b i l i z e the s o i l . In the l a s t stages of the elymosum, Lathyrus .japonicus and Fragaria chiloensis become prominent, producing a dense, continu-ous ground cover. B. The dune slack and stable dune ridge In many areas behind the f i r s t ridge, mosses such as Ceratodon purpureus, Brachythecium albicans and Tortula r u r a l i -formis invade the more stable habitats of the elymosum and the ammophilosum where recurrent b u r i a l i s only moderate. Investigations by Birse et a l (1957) have shown that charac-t e r i s t i c s important f o r moss pioneers such as Ceratodon are the a b i l i t y to survive b u r i a l and r e - e s t a b l i s h , the a b i l i t y to produce abundant r h i z o i d s , and the r a p i d i t y with which they can produce a short compact t u r f on emergence. They found that four centimeters was the maximum depth which most pioneers were able to survive. Most of the species of pioneer mosses i n the study area are i d e n t i c a l with those "reported from the B r i t i s h dunes and the successional sequence which they follow i s also quite s i m i l a r . The f i r s t pioneer i n the semi-stable habitats i s the short t u r f 55 F i g u r e 21. The eroded r i d g e b u i l t on l o g s . Ammophila a r e n e r i a growing on the top of the r i d g e . F i g u r e 22. A r c t o s t a p h y l o s u v a - u r s i c o l o n i z i n g bare sand i n a h a b i t a t w e l l p r o t e c t e d from s t r o n g wind. 56 moss G. purpureus. Bryum papillosum, another short t u r f moss, occurs frequently within the t u r f produced by Ceratodon but i t i s unable to colonize unstable sand as does Bryum pendulum of B r i t i s h dunes. The mat-forming moss, Brachythecium albicans, and the t a l l t u r f mosses, Tortula r u r a l i f o r m i s and Rhacomitrium  canescens, are usually secondary invaders growing over the con-tinuous mat formed by Ceratodon. However, Tortula may colonize bare sand i n some of the blowouts i n the slack where sand b u r i a l i s probably less intense. The development of the Arctostaphyleto-Eurhynchietum can occur i n two ways. In i t s windward habitats, A. uva-ursi sends out creeping stems which gain a foothold i n the moss carpet of the Aireto-Ceratodontetum. Only r a r e l y i s i t found growing d i r e c t l y on sand. The apparent necessity of the moss layer f o r the spread of Arctostaphylos may be due to two f a c t o r s : 1) i t i s capable of only li m i t e d upright growth and therefore w i l l not to l e r a t e much sand b u r i a l (Cowles, 1899), and 2) i t s stems are e a s i l y undermined when growing d i r e c t l y i n sand. This l a t t e r case i s evident i n small blowouts occurring i n some of the communities. Another trend through which t h i s association may develop occurs i n protected blowout areas. Arctostaphylos i n these habitats establishes and spreads out into the blowout over a t u r f of Rhacomitrium canescens or i t commonly invades,the sandy areas without the benefit of t h i s moss layer (Fig. 21). Arctostaphylos eventually produces i t s c h a r a c t e r i s t i c dense cover which eliminates most species of the former community. This increased density r e s u l t s i n an increase i n the humidity 57 near the ground surface which favors the development of Eurhynchium oreganum and provides a good seedbed for trees and shrubs. When the scattered shrubby trees ( e s p e c i a l l y spruce) produce a canopy, the Arctostaphylos growing beneath i s gradually shaded out and i n i t s place grow abundant E. oreganum and Rhytidiadelphus loreus. C. The dune forest The climax Sitka spruce forest may develop i n two ways. One way i s through invasion of the Arctostaphyleto-Eurhynchietum on the windward slopes as discussed e a r l i e r , and the second i s through colonization of the protected lee slopes of the ridges. Although at the present time no forest exists on the wind-ward slopes of the stable dune ridge, the trend of development i n these communities indicates that given s u f f i c i e n t time a forest may develop. 1 The second trend of development i s inferred from the presence of the spruce forest only on the lee slope of the stable dune ridge and to the presence of scattered Sitka spruce trees behind the f i r s t dune ridge. These habitats are wetter and thus can support tree growth without going through the other stages of succession. Once established, the climax forest i s believed to be main-tained by ocean spray (Day, 1957; Krajina, 1959) through i t s influence of supplying nutrients to the s o i l and by preventing species less tolerant to s a l t spray from becoming established over large areas. The n u t r i t i o n a l requirement of Sitka spruce for high amounts of calcium and magnesium i s suggested from greenhouse experiments by Krajina (1958). These experiments 58 show that the terminal portion of the shoots of this tree d i s p l a y chlorosis and extreme die-back with calcium and magnesium deficiency. Western hemlock was not affected much by deficiency o f these elements but western red cedar had extreme root rot when calcium was d e f i c i e n t and sometimes showed die-back of shoots. The low tolerance to s a l t spray of other major trees of the area i s suggested by the d i s t r i b u t i o n of these trees primarily on the protected habitats behind the scrub f o r e s t . Boyce (1954) has shown that the windward habitats exposed to the f u l l force of the on-shore winds may receive as much as ten times more s a l t spray than the leeward habitats. A climax community controlled by s a l t spray has also been described by Wells (1939). Oosting and B i l l i n g s (1942) have also shown how s a l t spray can a f f e c t the d i s t r i b u t i o n of plants. D. The blowouts Secondary succession i n blowouts follow d i f f e r e n t develop-mental trends depending on the size and l o c a t i o n of the blowout and on the s t a b i l i t y of the s o i l . Small blowouts occurring i n the Arctostaphylos communities o f the stable dune ridge and slack are quickly invaded by Cera-todon and Tortula whereas larger blowouts are colonized by Poa  macrantha. In the large blowouts where the sand i s constantly s h i f t i n g , the f i r s t colonizers are Poa macrantha, Carex macrocephala and Abronia l a t i f o l i a . w h i c h are the p r i n c i p a l plants of the poeetosum and abroniosum. The stage following these two variants i s not very evident because of the lack of clear t r a n s i t i o n s . However, the presence of remnants of former Ceratodon communities i n the 59 largest blowout (Fig. 2 2 ) f a r from t h e i r major area of concen-t r a t i o n along the ridge, indicates that some of the more protected communities of the poeetosum and abroniosum can be colonized by Ceratodon. Rhacomitrium canescens i s the major pioneer i n the blowout habitats well protected from strong winds. In i t s l a t t e r stages the Rhacomitrium communities are colonized by Arctostaphylos  uva-ursi followed by Eurhynchium oreganum and Gaultheria shallon. The l a s t stage of development i n thi s habitat i s communities s i m i l a r to that of the Arctostaphyleto-Eurhynchietum oregani. Trees are sparse but t h e o r e t i c a l l y these communities should terminate i n a Sitka spruce f o r e s t . V F i g u r e 23. A community o f Ceratodon purpureus being eroded by wind. Exposed t a p r o o t s are from Abronia l a t i f o l i a . CHAPTER VII SUMMARY In North America very l i t t l e published information i s available on the plant communities of sand dunes. Although sand dunes are numerous on the P a c i f i c coast, only two studies on sand 'dune plant communities have been published f o r t h i s area. This thesis provides edaphic and f l o r i s t i c information on seven plant associations and four variants and attempts to explain the d i s t r i b u t i o n and primary succession of these communities. The main findings of the study can be summarized as follows: (1) The supply of pand necessary for dune formation originates from g l a c i a l outwash material bordering Wreck Bay. Currents between Wreck and Wickaninnish Bay transport the sand to Long Beach where the crescent shape of the beach causes the currents to deposit much of t h e i r load on the beach area fronting the sand dunes. (2) The major unstable areas i n the dunes were probably caused by human inhabitants i n the past i n t h e i r attempt to clear forested areas for homes. M i l i t a r y exercises, such as bombing, during World War II possibly also caused i n s t a b i l i t y i n the dunes. The dunes are now expanding i n an easterly d i r e c t i o n at the expense of the spruce f o r e s t . (3) The f i r s t stages i n dune formation i n the study area are unlike those reported from other dune areas. Except f o r J the temporary dunes formed by Cakile edentula, embryo dunes were absent. The f i r s t seaward ridge always formed on d r i f t logs rather than being b u i l t upwards by dune plants. (4) The seaward l i m i t of the vegetation i s controlled by the inundation of much of the foreshore habitat by winter high tides and storm t i d e s . Other important factors c o n t r o l l i n g the d i s t r i b u t i o n of the vegetation were wind, s t a b i l i t y of the habitat and avai l a b l e s o i l moisture. (5) In the foreshore habitat which i s dominated by the succulent annual, Cakile edentula, the s o i l s were non-saline although showing a very a l k a l i n e reaction. Therefore, Cakile  edentula i s not considered a true halpphyte. (6) In the study area the Ammophila arenaria and Elymus vancouverensis communities were considered the e a r l i e s t stages i n dune formation. Ammophila and Elymus can tolerate deep sand b u r i a l and thus can cause sand to bu i l d upwards into high mounds. (7) Communities of Ceratodon purpureus and Arctostaphylos  uva-ursi were r e s t r i c t e d to habitats where only l i t t l e sand disturbance and deposition occurs. Communities of Rhacomitrium  canescens were only i n habitats well-protected against wind because Rhacomitrium canescens i s not only intolerant of sand b u r i a l but, when growing d i r e c t l y on sand, i s also e a s i l y blown away ,by wind. '• (8) Poa macrantha i s the p r i n c i p a l plant i n the blowout habitats while Abronia l a t i f o l i a i s only l o c a l l y dominant. Poa  macrantha i s a f a i r s t a b i l i z e r because of i t s extensive root system and i t s tolerance to sand b u r i a l , but the t u f t s of Poa  macrantha grow too f a r apart to produce a very stable habitat. 63 Abronia l a t i f o l i a i s an e f f e c t i v e s t a b i l i z e r because of the dense vegetative cover i t produces but i t i s not a s i g n i f i c a n t s t a b i l i z e r because i t s shoots never spread l a t e r a l l y over large areas. ( 9 ) Development of the vegetation leads to stable habitats dominated by Arctostaphylos uva-ursi and Eurhynchium oreganum. In i t s l a t e s t stages those Arctostaphylos uva-ursi - Eurhynchium oreganum association are invaded by the climax Picea sitchensis -Gaultheria shallon - Maianthemum dilatatum association. This community can also develop d i r e c t l y on moist s o i l s of the sheltered lee slopes of ridges. (10) Ocean spray i s considered an important factor i n maintaining Picea sitchensis and Maianthemum dilatatum as climax species. Sitka spruce i s common i n habitats exposed to the ocean whereas other trees such, as Tsuga heterophylla and Thu.ja p l i c a t a are found mostly i n wind-protected areas receiving l i t t l e s a l t spray. (11) Since, on an average, ocean water contains approxi-mately 1$ magnesium, i t i s believed that the ocean spray i s an important source of t h i s cation. (12) pH of the s o i l was shown to decrease gradually with increase i n s t a b i l i z a t i o n of the dunes. (13) The mineral layers of a l l s o i l s i n the sandy dunes were n u t r i t i o n a l l y very poor and with very low base exchange capacity. [11+) The humus horizon has considerably higher amounts of available cations but i t s phosphate concentration i s r e l a t i v e l y low. BIBLIOGRAPHY Arnst, A. 194-2. Vegetational s t a b i l i z a t i o n of Oregon dune areas. Northwest S c i . 16(3): 56-67. Becking, R.W. 1957. The Zurich-Montpellier school of phyto-sociology. Bot. Rev. 23: 411-488. Birse, E . L. and C. H. Gimingham. 1955. Changes i n the structure of bryophytic communities with the progress of succession on sand-dunes. Trans. B r i t , b r y o l . Soc. 2(4): 523-531., Birse, E . M., Landsberg, S. Y. and C. H. Gimingham. 1957. The effects of b u r i a l by sand on dune mosses. Trans. B r i t , bryol. Soc. 3(2): 285-301. Black, C. A. 1957. S o i l - p l a n t r e l a t i o n s h i p s . John-Wiley & Sons, Inc. New York. 332 pp. Boyce, S. G. 1954. The s a l t spray community. Ecol. Monog. 24: 29-67. Boyce, S. F. 1951b. Salt hypertrophy i n succulent dune plants. Science. 114: 544-545. Braun-Blanquet, J . 1932'. Plant Sociology. The study of plant communities. English trans, of Pflanzensoziologie. Ed. by G. D. F u l l e r and H. S. Conard. 439 pp. Braun-Blanquet, J. and R. Maire. 1924. Etudes sur l a vegetation et l a f l o r e marocaines. Mem. soc. sc. nat. Maroc. 8. Cited by Braun-Blanquet, J. 1964. Pflanzensoziologie. Springer-Verlag, Wein. 865 pp. Braun-Blanquet, J. 1964. Pflanzensoziologie. Springer-Verlag, Wein. 865 pp. Bray, R. H . and C. T. Kurtz. 1945. Determination of t o t a l , organic and available forms of phosphorus i n s o i l s . S o i l S c i . 59: 38-45. Brown, R. L. and A. L. Hafenrichter. 1948. Factors i n f l u e n c i n g the production and use of beach grass and dunegrass clones fo r erosion c o n t r o l . I I . Influence of density of planting. Jour. Amer. Soc. Agron. 40(6): 512-521. * Brooke, R. C . 1965. Ecbtopes of plant communities i n the eco-system c l a s s i f i c a t i o n of the coastal Subalpine Zone i n southern B r i t i s h Columbia. Ph. D. Thesis, Dept. B i o l , and Bot., Univ. of B. C. 65 Canada, Dept. Transport. 1956-1963. General summaries of hourly weather observations. Meteor. Br. Clements, F. E. 1928. Plant succession and i n d i c a t o r s . H. V/. Wilson Company, New York. Cooper, W. S. 1958b. Coastal sand dunes of Oregon and Washington. Geol. Soc. Am. Mem. 72 . 169 pp. Cowles, H. C. 1899. The e c o l o g i c a l r e l a t i o n s of the vegeta-t i o n on the aand dunes of Lake Michigan. Bot. Gaz. 21: 95-117, 167-202, 281-308, 361-391. Day, W. R. 1957. Sitka spruce i n B r i t i s h Columbia. Forestry Commission B u l l e t i n No. 28, London. Dittmer, H. J. 1959. A study of the root systems of certain sand dune plants i n New Mexico. Ecol. 40: 265-273. Dolmage, V. 1920. West coast of Vancouver Island between Barkley and Quatsino Sounds. Canada Dept. of Mines, Geol. Surv. Summ. Rpt. Egler, F. E. 1934. Communities and successional trends i n the vegetation of the Coos Bay sand dunes, Oregon. M. S. Thesis, Univ. of Minnesota, 39 pp. Cited by Cooper, W. 3. 1958b. Coastal sand dunes of Oregon and Washington. Geol. Soc. Am. Mem. 72. 169 pp. Emberger, L. 1930. La,vegetation de l a region mediterraneene. Essai d'une c l a s s i f i c a t i o n des groupements vegetaux. Rev. gen. Bot. Cited by Braun-Blanquet, J. 1964. Pflanzensoziologie. Springer-Verlag, Wein. 865 pp. . 1957. Les etudes phytosociologiques entreprises en Afrique du Nord sous le controle s c i e n t i f i q u e et technique du service de l a Carte des Groupements Vegetaux de France B u l l , du Serv. de l a Carte phytogeogr. Serie B. Cited by Braun-Blanquet, J. 1964. Pflanzensoziologie. Springer-Verlag, Wein. 865 pp. Gimingham, C. H. 1964. Maritime and sub-maritime communities. In: The Vegetation of Scotland. O l i v e r and Boyd Ltd., Edinburgh. Jackson, M. L. 1964. Soil.chemical analysis. Prentice-Hall, Inc. 498 pp. Kearney, T. H. 1904. Are plants of sea beaches and dunes true halophytes? Bot. Gaz. 37: 424-436. Krajina, V. J. 1933. Die pflanzengesellschaften des Mlynica-Tales i n den Vysoke Tatry (Hohe Tatra). Beihefte zum Botanischen C e n t r a l l b l a t t . , Bd. 50, Abtlg. II, 774-957 (I. T e i l ) : Bd. 51, Abtlg. II, 1-224 (II T e i l ) . 66 . 1 9 5 8 . E c o l o g i c a l requirements of Douglas-fir, western hemlock, Sitka spruce and western redcedar. Presented at the meetings of the Royal Soc. of Canada. June 1 9 5 8 . . 1 9 5 9 . Bioclimatic zones i n B r i t i s h Columbia. Univ. of B.C. Bot. Series 1 . 4 7 pp. . 1 9 6 5 . Biogeoclimatiz zones and biogeocoenoses of B r i t i s h Columbia. In: Ecol. Western N. Amer. 1 : 1 - 1 7 . Lamson-Scribner, F. 1 8 9 8 . Sand-binding grasses. In: Yearbook of the Department of Agriculture, 1 8 9 8 . Gov't P r i n t i n g O f f i c e , Washington. Leach, W. 1 9 3 1 . The importance of some mosses as pioneers on unstable s o i l s . J . Ecol. 1 9 : 9 8 - 1 0 2 . McLaughlin, W. T. and R. L. Brown. 1 9 4 2 . C o n t r o l l i n g coastal sand dunes i n the P a c i f i c Northwest. U. S. Dept. Agric. C i r c . 6 6 0 : I - 4 6 . Mueller-Dombois, D. 1 9 5 9 . The Douglas-fir forest associations on Vancouver Island i n t h e i r i n i t i a l stages of secondary succession. Ph. D. Thesis, Dept. B i o l , and Bot., Univ. of B. ,-C. Metson, A. J. 1 9 6 1 . Methods of chemical analysis for s o i l survey samples. R. E. Owen, Government Printer, Wellington, New Zealand. 208 pp. Olson, J . S. 1 9 5 8 . Rates of succession and s o i l changes on southern Lake Michigan sand dunes. Bot. Gaz. n<U125 -170. Olsson-Seffer, P. 1 9 0 9 . Relation of s o i l and vegetation on sandy sea shores. Bot. Gaz. 4 7 : 8 5 - 1 2 6 . Oosting, H. J . and V/. D. B i l l i n g s . 1 9 4 2 . Factors e f f e c t i n g vegetational zonation on coastal dunes. Ecol. 2 3 : 1 3 1 - 1 4 2 . Oosting, H. J. 1 9 4 5 . Tolerance to s a l t spray of plants of coastal dunes. Ecol. 2 6 : 8 5 - 8 9 . P e a r s a l l , W. H. 1 9 3 4 . North Lancashire sand dunes. Nat u r a l i s t 7 0 4 : 2 0 1 - 2 0 5 . Peterson, E. B. 1 9 6 4 . Plant associations i n the Subalpine Mountain Hemlock Zone in southern B r i t i s h Columbia. Ph. D. Thesis, Dept. B i o l , and Bot., Univ. of B. C. Purer, E. 1 9 3 6 . Studies of c e r t a i n coastal sand dune plants of southern C a l i f o r n i a . Ecol. Monog. 6 : 1 - 8 7 • Ranwell, D. 1 9 5 9 . Newborough Warren Anglesey. I. The dune system and dune slack habitat. J . Ecol. 4 7 : 5 7 1 - 6 0 1 . 67 . I960. Newborough Warren, Anglesey. I I . Plant associes and succession cycles of the sand dunes and dune slack vegetation. J . Ecol. 48: 117-140. Richards, P. W. 1929. Notes on the ecology of the bryophytes and lichens at Blakeney Point, Norfolk. J . Ecol. 17: 127-140. Salisbury, E. J . 1952. Downs and dunes. B e l l & Sons, Ltd., London. Swindale, M., King, P., Richardson, J . P. and L. D. Swindale. 1951. Estimation of exchangeable cations i n s o i l using the Beckmann flame spectrophotometer. S o i l S c i . 72: 219-232. Tansley, A. G. 1949. The B r i t i s h Islands and t h e i r vegetation. The University Press, Cambridge. Thomas, J . H. 1957. The vascular f l o r a of Middleton Island, Alaska. Contrib. Dudley Herbarium 5: 39-56. Cited by Huesser, C. J . I960. Late-Pleistocene environments of North P a c i f i c North America. Amer; Geograph. Soc. , New York. 308 pp. Van der Maarel, E. and V. Westhoff. 1964. The vegetation of the dunes near Oostvoorne (The Netherlands) with a vege-t a t i o n map. North-Holland Publishing Company, Amsterdam. 61 pp. Warming E. 1891. De psammophile vormationer i Danmark Medd. Naturh. For. Kobenhavn. Cited by Olson, J . S. 1958. Rates of succession and s o i l changes on southern Lake Michigan sand dunes. Bot. Gaz. 118: 125-170. Westgate, J . M. 1904. Reclamation of Cape Cod sand dunes. U. 5. Dept. Agric. B u l l . no. 65. Waterman, V/. G. 1919. Development of root systems under dune conditions. Bot. Gaz. 68: 22-53. Wells, B. W. and I. V. Shunk. 1937. Seaside shrubs: wind forms vs. spray forms. Torrey Bot. Club. B u l l . 65: 485-492. Wells, B. W. 1939. A new forest climax; the s a l t spray climax of Smith Island, North Carolina. Torrey Bot. Club. B u l l . 66: 629-634. W i l l i s , A. J . 1959. Braunton Burrows: The dune system and i t s vegetation. Part I. J . Ecol. 47(1): 1-24. 68 BIBLIOGRAPHY OF PUBLICATIONS USED FOR IDENTIFICATION OF PLANTS Vascular Plants Hitchcock, A. S. 1950. Manual of the grasses of the United States. U. S. Gov't P r i n t i n g O f f i c e , Washington. 1051 pp. Hitchcock, A. 3 . , A. Cronquist, M. Owenby and J. W. Thompson. 1955. Vascular plants of the P a c i f i c Northwest. Part k-Ericaceae through Campanulaceae. Univ. of Wash. Press. 510 pp. . - - — * 1 9 6 1 , Vascular plants of the P a c i f i c Northwest. Part 3 : Saxifragaceae to Ericaceae. Univ. of Wash. Press. 510 pp. Peck, M. E. 1941. A manual of the higher plants of Oregon. Binfords and Mort. 866 pp. Taylor, T. M. C. 1956. The ferns and f e r n - a l l i e s of B r i t i s h Columbia. B. C. Prov. Mus., Dept. of Educ., Handbook N. 12. V i c t o r i a , B. C Bryophytes Conard, H. S. 1956. How to know the mosses and liverworts. Wm. C. Brown Company, Iowa. 226 pp. Dixon, H. N. 1954. The students handbook of B r i t i s h mosses. Sumfield and Day, Ltd., London. 582 pp. Frye, T. C. and L. Clark. 1949. Hepaticae of North America, v o l . 6. nos. 1-5. 1018 pp. Grout, A. J. 1903. Mosses with the hand-lens and microscope. A non-technical handbook of the more common mosses of the northeastern United States. Publ. by the Author. Brooklyn. 416 pp. \ Macvicar, S. M. 1926. The students handbook of B r i t i s h hepatics. Sumfield, London. 464 pp. \ Lichens Ahti, T. 1 9 6 1 . Taxonomic studies on reindeer lichens (Cladonia, sub-genus Cladina). Societas Zoologica Botanica Fennica 'Vanamo'. Hel s i n k i . 1 6 0 pp. Evans, A. W. 1 9 3 0 . The Cladoniae of Connecticut. Trans, of the Connecticut Acad. Arts and S c i . 3 0 : 3 5 7 - 5 1 0 . Hale, G. E. 1 9 5 0 . Lichens of the State of Washington. Univ. Wash. Press. 1 9 1 pp. Lamb, I. M . 1 9 6 3 . Index nominum lichenum. The Ronald Pres Company, New York. 8 0 9 pp. Thomson, J. W. 1 9 5 0 . The species of Peltigera of North America North of Mexico. The Amer. Midi. Nat. 4 4 ( 1 ) : 1 i CHECKLIST OF SPECIES Mosses and lichens Blepharostoma tricophyllum (L.) dum. Brachythecium albicans B. & G. Bryum pallens Swartz Calypogeia trichomanis (L.) Corda Cephalozia lammersiana (Hueben.) Spruce Cephalozia leucantha Spruce Cephalozia media Lindb. Cephaloziella p a p i l l o s a (Douin) S c h i f f n . Ceratodon purpureus Brid. Cladonia chlorophaea (Flk.) Spreng. Cladonia coniocraea (Flk.) Spreng. Cladonia furcata (Huds.) Schrad. Cladonia lepidota Nyl Cladonia macilenta Hoffm. Cladonia pyxidata (L.) Fr. Cladonia scabriuscula (Del.) Sandst. Dicranum fuscescens Turn. Dicranum scoparium Hedw. Diplophyllum albicans (L.) Dum. Eurhynchium oreganum Sull.) J. & S. F r u l l a n i a n i s q u a l l e n s i s S u l l . Hookeria lucens (Hedw.) Smith Hylocomium splendens B. 8c S. Isothecium stoloniferum (Hook.) Brid. Lepidozia reptans (L.) Dum. Leptogium palmatum (Huds.) Mont. Lobaria oregana (Tuck.) Mull. Lophocolea bidentata (L.) Dum. Lophocolea cuspidata (Nees) Limpr. Lophozia i n c i s a (Schrad.) Dum. Metzgeria cohjugata Lindb. Mnium glabrescens Kindb. Neckera douglasii Hook. Peltigera aphthosa var. leucophlebia Nyl Peltigera canina var. rufescens (Weis.) Mudd. Peltigera canina var. spuria (Ach.) Schaer. Peltigera membranacea (Ach.) Nyl. emend. Thorns. Peltigera polydactyla (Neck.) Hoffm. Plagiothecium elegans S u l l . Plagiothecium undulatum B. & S. Polytrichum juniperinum W i l l d . Radula bolanderi Gottsche Rhacomitrium canescens Brid. Riccardia l a t i f r o n s -Lindb. Riccardia m u l t i f i d a (L.) S. F. Gray Riccardia palmata (Hedw.) Carruth. Rhytidiadelphus loreus (Hedw.) Warnst. Scapania bolanderi Aust. Scapania umbrosa (Schrad.) Dum. Stereocaulon tomentosum Fries Tortula r u r a l i f o r m i s Dixon Ulota obtusciuscula C. M. & Kindb. Usnea p l i c a t a (L.) Wigg. Vascular Plant Abronia l a t i f o l i a Esch. A c h i l l e a millefolium L. Agrostis diegoensis Vasey Agrostis tenuis Sibth. Aira praecox L. Alnus rubra Bong. Ammophila arenaria (L.) Link Anaphalis magaritacea (L.) B. & H. Arctostaphylos uva-ursi (L.) Spreng. Blechnum spicant (L.) Toth. Boschniakia hookeri Walp. Cakile edentula (Bigel.) Hook. Carex macrocephala W i l l d . C a s t i l l e j a r h e x i f o l i a Rydb. Cerastium viscosum L. Cornus canadensis L. Elymus vancouverensis Vasey Fragaria chiloensis (L.) Duch. Franseria chamissonis Less. Galium t r i f l o r u m Michx. Gaultheria shallon Pursh!. Glehnia leiocarpa Math. Goodyera o b l o n g i f o l i a Raf. Holcus lanatus L. Honckenya peploides (L.) Ehrh. Hypochaeris radicata L. Lathyrus .japonicus Willd'.' Lathyrus l i t t o r a l i s (Nutt.) Endl. Linnaea bore'alis (Forbes) Rehder. L i s t e r a cordata (L.) R. Br. Lonicera involucrata (Rich.) Banks Luzula campestris (L.) DC. Luzula p a r v i f l o r a (Ehrh.) Desv. Maianthemum dilatatum (Wood) Abrams Montia p e r f o l i a t a (Donn.) How. Poa confinis Vasey Poa macrantha Vasey Poa pratensis L. Polygonum paronychia C. & S. Polypodium g l y c y r r h i z a D. C. Eaton Polypodium s c o u l e r i Hook. & Grev. Polystichum muniturn-(Kaulf.) P r e s l . Picea sitchensis (Bong.) Carr. Plantago lanceolata L. Rosa nutkana P r e s l . R u b u s s p e c t a b i l i s P u r s h . Rumex a c e t o s e l l a L . S t r e p t o p u s a m p l e x i f o l i u s (L.) D.C. T a n a c e t u m c a m p h o r a t u m D. C. T h u j a p l i c a t a D o r m . T i a r e l l a t r i f o l i a t a L . T r i s e t u m c e r n u u m T r i n . T r i f o l i u m r e p e n s L . T s u g a h e t e r o p h y l l a ( R a f . ) S a r g . V a c c i n i u m o v a t u m P u r s h . V a c c i n i u m parvifolium Smith V i c i a g i g a n t e a Hook. / APPENDIX I Explanation and Legend f o r Synthesis tables Synthesis tables I to VI E x p l a n a t i o n and Legend f o r S y n t h e s i s t a b l e s Landforms a r e coded as f o l l o w s : c v - concave cx - convex u - u n i f o r m s l o p e 1 - l e v e l c p x - complex S p e c i e s r a t i n g s a r e g i v e n b y t h r e e f i g u r e s ( e . g . U./.2 o r 6.7.3) w h i c h r e p r e s e n t , s p e c i e s s i g n i f i c a n c e , s o c i a b i l i t y and v i g o r . The f o l l o w i n g s c a l e s were u s e d f o r f l o r i s t i c e v a l u a t i o n : S p e c i e s s i g n i f i c a n c e / s o l i t a r y , w i t h s m a l l dominance 1 seldom, w i t h s m a l l dominance 2 v e r y s c a t t e r e d , w i t h s m a l l dominance 3 s c a t t e r e d , w i t h s m a l l dominance k o f t e n , w i t h l/20 t o l / l O dominance 5 o f t e n , w i t h l / l O t o 1/5 dominance 6 any number, w i t h l / 5 t o l / 3 dominance 7 any number, w i t h l / 3 t o l / 2 dominance 8 any number, w i t h l / 2 t o 3/U dominance 9 any number, w i t h dominance more t h a n 3/U b u t l e s s t h a n complete 10 any number, w i t h c o m p l e t e dominance C o r r e s p o n d i n g c o v e r v a l u e i n % 0.1 0.5 1 5 10 20 33 50 75 95 S o c i a b i l i t y / 1 2 3 U 5 6 7 6 9 10 i n d i v i d u a l , s o c i a b i l i t y none up t o h x U cm 2 25 x 25 cm2 ; 50 x 50 cm2 1/3 - 2/3 m 2 : 1 - 2 m 2 5 m2 ' 25 - 50 m2 100 m2 200 - 250 m 2 a t l e a s t 500 m 2 V i g o r 0 - none / - poor 1 - f a i r 2 - good 3 - e x c e l l e n t F i v e p r e s e n c e c l a s s e s are u s e d : 5 - s p e c i e s w h i c h o c c u r i n 80-100$ o f t h e p l o t s ( c o n s t a n t s ) h - s p e c i e s w h i c h o c c u r i n 60-80$ o f the p l o t s 3 - s p e c i e s w h i c h o c c u r i n 1*0-60$ o f t h e p l o t s 2 - s p e c i e s w h i c h o c c u r i n 20-U0$ o f the p l o t s ^ i - s p e c i e s w h i c h o c c u r i n l e s s t h a n 20% o f t h e p l o t s An x d e n o t e s t h a t a s p e c i e s was f o u n d when specimens were examined i n t h e l a b o r a t o r y . These p l a n t s were n o t r a t e d . 75 Syn thes i s t a b l e Caki1etum edentu lae P l o t number 65 70 81 69 77 64 72 98 76 66 P l o t s l z o («2) 16 16 16 16 16 16 16 16 16 16 Date 8/21/ 8/21/ 8/26/ 6/21/ 8/23/ 8/21/ 8/22/ 9/5/ 8/17/ 8/21/ 64 64 64 64 64 64 64 64 64 64 Ex tent of type (m2) 48 32 32 Topography u 1 u u 1 1 1 1 1 1 A l t i t u d e ( f t . ) 8 5 , 8 8 5 8 8 5 5 5 Aspect w w SH S lope (•) 3 3 25 $ coverage By v e g e t a t i o n l a y e r : C 15 30 10 25 5 25 25 20 25 6 By Hood: 20 50 30 5 10 2 75 2 By minera l s o i l : 70 25 70 80 90 80 80 20 80 95 L i f e form C l a y e r 1 T C a k i l e eden tu l a 5.4.1 6.+.3 4.3.2 6.5.3 3.+.2 6.5.2 6.2.2 5/3.2 6.5.2 4.+.2 2 H Elymus vancouverens i s 1.+.+ +.+.1 1.+.1 +.+.1 1.+.1 1.+.+ 2.1.1 1.1.1 3 H Carex macrocephala +.+.+ 4 H Ammophila a r e n a r i a 1.+.+ +.+.1 1.+.+ 2.1.1 5 H La thy ru s l i t t o r a l Is +.+.+ 6 H Abron ia l a t i f o l i a +.+.+ +.1.1 +.+.+ 7 C F r a n s e r l a chamlsson l s +.+.+ +.+.+ +.+.+ B H r W k t n f l fifltl6lt +.+.1 +.+.1 9 H Gal ium t r l f l o r u m +.+.3 10 H G lehn l a l e l o c a r p a +.+.+ 11 C Lathyrus j apon l cu s +.+.1 Total s pec i e s 8 6 6 6 5 4 3 3 2 1 P r e s - Cover val ue e n c e Tota l Ave V 230.0 23.0 V 3.7 IV 2.3 III 2.1 III 1.4 11 0.3 [1 0.3 II 0.2 1 0.1 I 0.1 1 0.1 L i f e form C H T P r o p o r t i o n by S p e c i e s : Number 2 8 1 ! 18.2 72.7 9.1 Total c o v e r : 2 cover 0.4 10.2 230.0 % 4.2 95.6 S yn the s i s t a b l e 1. Poetum macranthae foQosum macranthae Abroniosum l a t l f o l l a e P l o t number 94 48 62 58 50 63 57 56 115 47 113 49 116 114 P l o t s i z e (m 2 ) 16 16 16 16 16 .16 16 16 4 4 4 4 4 4 Date 9/4/ 7/25/ 7/31/ 7/30/ 7/25/ 7/31/ 7/30/ 7/27/ 9/10/ 7/25/ 9/10/ 7/25/ 9/10/ 9/10/ Ex tent of type (m 2 ) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 32 32 46 32 60 160 80 160 6 6 6 6 6 8 Topography 1 cx 1 cx u cx 1 1 cx u u u 1 A l t i t u d e ( f t . ) 20 45 30 20 35 25 20 10 20 15 60 40 Aspect SE NNII NE S S» II S lope ( ° ) 6 16 10 25 40 % coverage By v e g e t a t i o n l a y e r : C 55 25 20 25 ' 20 20 15 8 85 60 75 60 85 80 By decayed wood: 25 fly minera l s o i l : 45 80 80 75 80 80 85 65 L i f e Ave cover Ave cover P r e s . Cover va lue form C l a y e r va lue va l ue ence Tota l Ave 1 H Poa macrantha 6.2.2 5.2.2 5.1.2 5.2.2 5.1.2 5.2.2 5.2.2 4.2.2 20.4 3.+.2 3.2.2 4.1.2 2.+.2 2.+.2 3.7 V 175.0 12.5 2 H G l ehn l a l e l o c a r p a 2.+.2 2.1.2 2.+.2 2.+.2 1.+.1 +.+.1 +.+.1 +.+.1 5.2.3 1.2.3 2.+.3 4.+.2 5.3 V 35.8 2.6 3 H Ab ron i a l a t i f o l i a 1.5.2 1.+.+ 1.2.2 3.2.2 8.3.2 7.5.3 8.4.2 7.5.3 8.4.3 9.4.2 70.0 IV 426.1 30.4 4 C Polygonum paronych ia 4.+.2 3.2.2 2.+.1 2.2.2 1.+.1 +.2.2 2.2 4.2.2 +.+.1 1.3.3 6.3.2 +.+.1 7.3 IV 61.3 4.4 5 6 H T Carex macrocephala C a k i l e eden tu l a 1.+.2 1.+.2 2.+.2 •.+.2 2.+.1 +.+.1 2.+.2 +.+.+ 1.+.3 II 4.7 0.5 7 8 H X La thy ru s l i t t o r a l i s Hypochaer i s r a d i c a t a 1.+.2 +.+.2 +.+.1 ! 0.5 0.2 9 K P lan tago l a n c e o l a t a +.+.2 i 0.1 Tota l s pec ie s L i f e form C H T P r o p o r t i o n by S p e c i e s : Number 1 7 1 J 11.1 77.8 11.1 Tota l c o v e r : £ cove r 61.3 642.4 0.5 8.7 91.2 76 Synthesis table Elymetum vancouverensis elymosum vancouverensis ammophi1osum arenarlae P lot number 29 32 31 61 30 59 86 75 05 51 35 60 P lot s ize («2) 25 16 25 16 16 16 16 16 9 25 25 16 Date 6/8/ 6/9/ 6/9/ 7/31/ 6/8/ 7/30/ 8/28/ 8/4/ 8/25/ 7/25/ 6/10/ 7/31/ 64 64 64 64 64 64 64 64 63 64 64 64 Extent of type (m?) 250 160 375 160 80 32 32 27 125 50 32 Topography 1 cx cx cx cx 1 cpx 1 1 cx 1 cpx A l t i tude ( f t . ) 20 20 20 15 20 15 15 15 10 15 15 15 Aspect H Slope C) 25 % coverage By vegetation l ayer : B2 3 3 C Ec 80 75 80 60 90 1 70 85 75 90 50 70 65 By decayed wood: 5 5 35 5 By mineral s o i l : 60 40 25 45 15 35 60 20 10 60 60 50 L i f e -form B2 layer • 1 Pn Gaultheria shal lon C layer 2.3.1 2.3.1 Ave cover value Ave cover value Pres-ence Cover value Total Ave 2.0 0.2 2 H Elymus vancouverensis 7.4.2 8.6.2 6.4.1 8.2.2 7.2.3 8.5.2 7.5.3 6.2.2 55.1 6.5.2 1.2.3 1.+.1 2.+.2 13.0 V 476.0 39.7 3 H Poa macrantha 3.+.1 2.2.1 4.2.2 2.+.2 1.+.2 3.1.2 5.3.3 3.2.2 5.9 3.2.2 1.1.1 1.4 V 53.0 4.4 4 C Lathyrus japonlcus 6.3.3 4.2.2 5.3.2 +.1.2 5.3.3 +.+.2 3.2.2 11.0 1.2.2 IV 88.7 7.4 5 H Carex macrocephala 4.2.1 2.1.2 3.2.2 4.+.1 4.2.2 3.2.2 9.0 1.+.1 1.+.1 2.2.2 IV 74.0 6.2 6 H Fragar la ch i loens l s 4.2.3 3.2.2 3.2.2 +.1.2 1.+.2 3.2.3 6.3.3 7.3 4.3.2 2.5 IV 68.6 5.7 7 H Ammophila arenaria 6.2.3 4.1 7.6.2 7.5.3 8.4.2 8.3.3 62.5 III 283.0 23.6 8 C Polygonum paronychia 1.2.2 1.+.2 +.+.1 6.5.2 4.3 2.2.2 III 35.1 35.1 9 H Hypochaerls rad icata +.+.2 +.+.3 +.+.2 1.+.3 3.2.2 +.+.1 1.3 III 5.9 10 H Lathyrus l i t t o r a l Is 4.+.2 +.+.2 1.+.1 1.3 11 10.6 11 C Franserla chamlssonis 4.+.1 1.+.1 1.3 +.+.1 II 10.6 12 c Vlcea gigantea +.2.1 1.2.1 6.5.2 8.2 II 10.6 13 T Rumex acetose l la 3.+.2 +.1.1 1.+.1 II 5.6 14 H Abronla 1 a i l f o l 1 a 2.1.2 1.2.3 2.2.2 II 2.5 15 H Poa pratensls 3.2.3 5.3.3 I 25.0 16 H Plantago lanceolata 3.1 4.3.3 +.1.2 2.5 I 10.1 17 H Ach i l l e a mi l le fo l ium 3.2.2 2.5 I 10.0 18 H Agrost is tenuis 4.2.2 2.5 I 10.0 19 H Agrost i s dlegonensis 1.+.2 1 0.5 20 C Arctostaphylos uva-ursi 1.+.2 1 0.5 21 T Cerastlum viscosum 1.+.3 1 0.5 22 Hoicus lanatus 1.2.2 1 0.5 23 T Cak i le edentula +.+.1 +.+.1 1 0.2 24 Glehnla le locarpa +.+.2 1 0.1 25 T Monti a pe r f o l i a t e +.+.3 1 0.1 26 T A l ra praecox +.+.2 1 0.1 Ec layer 27 8 Eurhynchium oreganum 1.2.2 1 0.5 Total species 12 10 9 8 8 7 7 6 12 8 5 4 L i f e form Pn C H T E Proportion by Species: Number 1 5 15 5 1 i 3.7 18.5 55.5 18.5 3.7 Total cover: E cover 2.0 145.5 1029.8 6.5 0.5 i 0.1 12.2 86.9 0.5 77 Synthesis table I I I . Aireto-Ceratodontetum purpurel P lot number 12 06 24 33 09 19 17 01 10 11 53 Plot s i ze d 2 ) 4 4 4 4 4 9 9 4 4 4 4 Date 7/25/ 8/25/ 5/29/ 6/9/ 5/17/ 5/24/ 5/22/ 8/20/ 5/17/ 5/17/ 7/26/ Extent of type (ID2) 64 63 64 64 64 64 64 63 64 64 64 6 8 16 8 80 36 27 50 8 16 6 Topography u 1 cx u cv cx cx cx cx u A l t i t ude ( f t . ) 25 30 30 30 25 30 30 25 25 50 25 Aspect NNW USW S NNW SS» « S« » 1 II Slope (o) 20 30 30 5 5 30 10 5 25 25 t coverage By vegetation layer : C 60 85 65 55 35 75 40 50 60 50 60 0 95 98 98 •95 95 90 85 98 70 90 95 By mineral s o i l : 5 2 2 5 5 10 10 2 10 5 5 L i f e Pres- Cover value form C layer ence Total Ave 1 T A i ra praecox 3.1.1 6.2.2 6.2.2 4.1.2 5.2.2 8.2.2 6.2.1 4.1.1 6.1.2 6.2.3 4.1.1 V 395.0 35.9 2 H Hypochaeris radicata 3.2.2 1.+.1 7.2.1 5.+.2 5.2.2 4.2.2 3.2.2 6.2.2 5.1.2 4.2.2 2.+.1 V 174.5 15.8 3 C Polygonum paronychia 2.2.1 1.+.1 4.1.1 6.3.1 4.2.1 2.2.1 +.+.1 1.+.1 3.2.1 4.2.2 V 71.1 6.5 4 T Cerastium viscosum 2.1.2 6.1.2 1.+.1 3.+.1 3.2.+ 1.+.+ 1.1.2 1.+.+ 1.1.1 1.1.+ V 48.0 4.3 5 H Poa con f ln l s 2.+.1 3.+. 2 2.1.1 3.+.1 1.+.2 4.1.2 3.+.2 3.1.2 4.+.2 V 42.5 3.9 6 H Abronia l a t i f o l i a 6.3.2 7.2.1 5.2.1 2.1.1 4.2.1 1.+.1 7.4.2 IV 164.5 14.9 7 H Ach i l l e a mi l le fo l ium 5.2.2 2.1.1 +.+.1 2.2.1 3.2.1 III 27.1 2.5 6 H Luzula campestris 1.+.1 1.+.1 3.+.1 1.+.1 1.+.1 3.+.2 III 12.0 1.1 9 T Montia pe r f o l i a t a 3.1.1 1.+.+ 1.+.2 2.1.1 2.+.2 III 7.5 10 H Poa macrantha 1.+.1 +.+.+ 3.+.1 1.+.2 1.1.2 1.+.+ III 7.1 11 C Arctostaphylos uva-ursi 2.2.1 1.2.1 2.3.2 +.+.1 1.2.1 III 3.1 12 T Rumex acetose l la 2.+.1 2.2.1 3.+.2 II 11.0 1.0 13 H Fragar iach l loens l s 1.+.+ +.+.1 II 1.1 14 H Carex macrocephala 3.+.1 1.1.1 1 5.5 15 C Lathyrus japonicus 3.1.1 1 5.0 16 H Elymus vancouverensis 1.+.+ 1 0.5 17 H Glehnla le locarpa 1.+.1 1 0.5 18 H Poa pratensls 1.+.1 1 0.5 19 C Picea s i tchens i s +.+.2 1 0.1 D layer 20 t Ceratodon purpureus 9.5.3 8.5.2 7.3.2 5.4.2 8.5.1 8.5.1 6.5.2 7.5.2 7.5.1 8.5.2 6.5.2 V 1216.0 110.5 21 Mr Brachytheclum albicans 1.1.2 4.2.2 1.+.1 4.2.1 2.1.2 6.2.1 1.2.1 5.2.2 4.3.1 V 85.5 7.8 22 L Cladonia lep ldota 1.1.2 2.+.1 4.1.2 3.4.2 4.2.2 4.2.2 4.2.2 1.1.2 4.1.2 3.2.2 2.1.2 V 63.0 5.7 23 L Cladonia furcata 2.1.2 4.1.2 3.1.2 3.1.2 4.2.2 2.2.2 3.1.1 3.1.1 3.1.2 V 42.0 3.8 24 L Cladonia chlorophaea 2.+.2 2.+.2 3.1.2 3.1.2 3.1.2 1.+.2 +.+.1 1.+.2 1.1.2 1.+.2 1.+.2 V 14.6 1.3 25 L Leptogium palmatum 1.1.2 1.1.2 2.1.2 2.1.1 3.1.1 2.2.1 2.1.1 2.1.1 4.2.1 2.1.1 1.1.1 V 12.5 1.1 26 To Tortula ru ra l i f o rmi s 1.1.2 7.4.2 7.3.1 7.4.2 1.1.2 1.1.1 3.1.2 7.4.2 IV 260.5 23.7 27 Te Dicranum scoparium 2.1.2 3.2.2 3.2.1 1.1.1 1.1.2 III 12.0 1.1 28 L Pe l t i ge ra cantna 1.1.1 1.+.1 1.+.1 1.2.1 1.+.2 3.2.2 III 7.5 var. rufascons 29 L Pe l t i ge ra aphthosa 1.+.1 2.2.2 1.1.2 1.2.2 1.1.1 III 3.0 var. leucophlebla 30 Mt Cephaloz ie l la pap l l l o sa 3. .2 1. .2 3. .2 3. .2 II 15.5 1.4 31 t Bryum pal lens 2.1.2 2.1.2 3.+.2 II 6.0 32 L Cladonia pyxldata 1.+.2 2.1.2 2.1.2 1.+.2 II 2.5 33 Te Rhacomitrium canescens 2.1.2 1.1.1 1 1.5 34 Mr Eurhynclum oreganum 2.2.1 1 1.0 35 L Cladonia scabrluscula 1.1.2 1 0.5 36 L Pe l t i ge ra canina X var. spur ia Total species 22 21 20 20 19 18 17 16 16 16 15 L i f e form C H T 8 L Proportion by Species: Number 4 11 4 8 9 i 11.1 30.6 11.1 22.2 25.0 Total cover: 2 cover 79.3 435.8 460.5 1598.0 145.6 i 2.9 16.0 16.9 58.8 5.4 Growth form of bryophytes Te t Mr l it Proportion by to ta l cover: 2 cover 240.0 1222.0 86.5 15.5 $ 17.1 76.5 5.4 1.0 73 Synthesis table IV. Arctostaphyleto-Eurhynchietum oreganj P lot number 14 18 07 22 44 46 25 23 85 13 P lo t s i ze (m2) 9 9 9 9 9 9 9 9 9 9 Date 5/19/ 5/22/ 7/4/ 5/27/ 7/22/ 7/23/ 5/29/ 5/27/ 8/28/ 5/19/ 64 64 64 64 64 64 64 64 64 64 Extent of type («2) 135 90 45 45 18 27 90 90 45 18 Topography cv u cv cpx cpx u cv u u cv A l t i tude ( f t . ) 45 40 30 35 35 35 40 20 25 40 Aspect SB NE SE II SSE SS« ISO S II Slope (o) 20 20 5-12 0-16 20-45 12 0-15 30 3 0 ' 15 I coverage By vegetation l ayer : B2 25 4 5 35 5 5 2 10 4 C 100 98 98 90 95 98 95 95 98 100 D 100 10 15 70 95 80 3 7 5 75 By humus: 100 90 100 100 100 100 90 90 100 100 By mlneral sol 1: 10 10 10 L i f e Sub- Pres- Cover value form B layer layer ence Total Ave 1 Pn Picea s i tchens i s 2 4.+.1 1.+.1 6.+.1 3.+.1 3.1.1 1.2.1 4.+.2 3.+.1 69.0 6.9 2 Pn Gaultheria shal lon 2 5.2.1 3.3.1 1.2.1 1.2.1 26.0 2.6 3 Pn Tsuga heterophylla 2 4.+.1 1.+.2 10.5 1.1 4 Pn Vacclnlum ovatum 2 1.+.1 I 0.5 C layer 5 C Arctostaphylos uva-ursi 9.6.1 9.6.2 8.6.2 9.6.2 8.6.1 9.6.2 9.6.2 9.6.2 9.6.2 9.6.3 V 910.0 91.0 6 H Hypochaerts rad lcata 2.2.1 2.+.2 3.2.1 2.+.2 5.2.2 5.2.2 2.+.1 5.1.2 2.+.2 3.2.2 V 75.5 7.6 7 H Fragarla ch l loens l s 3.2.2 1.1.2 3.2.1 3.2.2 +.+.2 3.2.2 1.1.1 2.2.2 3.2.2 V 27.1 2.7 8 H Poa macrantha 2.2.1 1.+.2 1.2.1 1.-.1 2.2.2 1.2.2 3.+.1 3.1.2 2.+.1 2.+.1 V 15.5 1.6 Pm Tsuga heterophylla 2.+.2 1.+.2 2.+.2 1.+.2 2.+.2 2.+.2 3.+.2 1.+.2 V 10.0 1.0 Pm Picea s i tchens i s 1.+.2 1.+.2 1.+.2 2.+.2 1.+.2 1.1.2 2.+.2 2.+.2 1.+.2 V 6.5 Pn Gaultheria shal lon 4.2.1 2.+.1 3.2.1 5.3.1 4.2.1 2.+.1 IV 47.0 4.7 9 H Poa conf in l s 1.1.2 1.*.2 3.2.1 +.+.2 3.+.3 III 11.1 1.1 10 H Luzula campestrls 1.+.2 +.+.1 1.+.1 3.+.2 III 5.6 11 H Elymus vancouverensis 1.+.1 +.+.1 +.+.1 2.+.2 +.+.1 III 2.2 12 Pm Thuja p l l c a t a +.+.1 1.+.2 +.+.2- 1.+.2 III 1.2 13 C Linnaea boreal Is 1.1.1 4.2.2 II 10.5 1.1 14 H Poa pratensls 2.+.1 1.+.2 1.+.1 II 2.0 15 H Ach i l l ea mi l le fo l ium 1.+.1 2.+.1 II 1.5 16 H C a s t i l l e j a r h e x l f o l l a 2.+.2 1.+.2 II 1.5 17 H Tanacetum camphoratum 2.2.2 1.+.1 II 1.5 18 C Tr i fo l lum repens 1.1.2 1.2.2 II 1.0 19 G Maianthemum dilatatum 4.2.1 I 10.0 20 T A l ra praecox 1.1.2 I 0.5 21 H Holcus lanatus 1.+.2 I 0.5 22 C Lathyrus Japonlcus 1.+.1 I 0.5 23 T Rumex acetose l la 1.2.1 1 0.5 0 layer 24 Mr Eurhynchium oreganum 8.6.2 3.2.2 5.3.1 8.5.2 8.6.1 8.6.2 2.+.1 2.2.2 8.6.3 V 402.0 40.2 25 L Leptoglum palmatum 4.2.3 2.1.2 4.1.3 2.1.2 6.1.2. 4.1.2 3.1.3 IV 70.0 7.0 26 Te Dlcranum scoparlum 1.2.2 1.2.1 1.1.2 1.1.1 2.2.2 1.1.1 IV 3.1 27 L Cladonla scabrluscula 5.3.2 2.1.2 1.1.1 1.1.1 1.1.2 III 22.5 2.3 28 To Polytrlchum junlperlnum 2.2.2 1.1.2 4.2.2 II 11.6 1.2 29 II Rhytldladelphus loreus 2.3.2 4.2.2 II 11.0 1.1 30 L Pe l t i ge ra canlna 1.2.2 1 cr.5 var. leucophlebia Total species 21 17 16 14 14 13 12 10 10 8 L i f e form Pm Pn C H T G B L Groith form of bryophytes Te to Mr II Proportion by Proportion by Species: Number 3 2 4 11 2 1 4 3 Total cover: I 10.0 6.7 13.3 36.7 6.7 3.3 13.3 10.0 S cover 3.1 11.6 402.0 11.0 % 0.7 2.7 94.0 2.6 Total cover: Z? cover 97.2 73 922.0 144.0 1.0 10.0 427.7 93.0 t 5.5 4.1 52.2 8.1 0.1 0.6 24.2 5.3 Synthesis table V. Arctostaphyleto-Rhacomitrietura canescentls Plot number 97 96 111 95 117 93 112 90 92 Plot size w 4 4 4 4 4 4 4 4 4 Date 9/4/ 9/4/ 9/10/ 9/4/ 9/10/ 9/3/ 9/10/ 9/3/ 9/3/ 64 64 64 64 64 64 64 64 64 Extent of type (nr) 16 40 12 12 12 40 8 8 40 Topography u cv u cx 1 1 cx cx 1 Altitude (ft.) 20 20 20 20 20 15 20 25 15 Aspect NE « Nil Slope (o) 10 5 % coverage 8y vegetation layer: C 30 25 40 30 30 15 10 25 10 D 85 85 90 90 70 85 95 90 90 By mineral so i l : 10 10 10 10 20 10 10 5 .5 Life Pres- Cover val ue form C layBr ence Total Ave 1 C Arctostaphylos uva-ursi 5.1.2 6.3.2 6.3.2 6.3.2 6.3.2 +.1.2 4.2.2 3.2.2 V 172.1 19.1 2 H Poa conflnls 3.+.2 1.+.2 2.1.2 3.+.2 3.2.2 3.+.1 2.+.1 2.+. 2 3.+.2 V 23.5 2.6 3 H Hypochaerls radlcata 2.+.1 1.+.1 2.+.2 1.+.1 2.+.1 4.1.1 2.+.1 1.+.1 4.1.1 V 25.5 2.8 4 T Alra praecox 1.+.2 3.1.3 2.+.1 2.1.2 3.1.3 1.1.3 1.1.3 2.+. 2 V 14.5 1.6 5 H Poa macrantha +.+.1 1.+.1 +.+.+ +.+.+ 4.+.2 IV 11.3 1.3 6 H Luzula campestrls 1.+.2 2.+.2 1.+.2 1.+.2 1.+.1 III 3.0 7 T Rumex acetosella 3.+.1 2.+.+ II 6.0 8 Pm Picea sitchensis +.+ +.+ II 0.2 9 H Achillea millefolium 4.1.1 I 10.0 1.1 10 C Polygonum paronychia +.+.1 I 0.1 11 Pm Tsuga heterophylla +.+ 1 0.1 D layer 12 Te Rhacomitrium canescens 9.5.2 8.5.2 8.2.2 7.5.2. 7.5.2 9.5.2 9.5.2 9.5.3 9.5.2 V 725.0 80.6 13 L Peltlgera aphthosa 2.+.1 3.+.1 2.1.1 2.+.1 3.1.1 1.+.1 1.1.1 3.+.1 1.+.1 V 19.5 2.2 var. leucophlebla 14 t Ceratodon purpureus 1.1.1 2.1.2 3.1.2 2.1.2 3.1.2 1.1.1 1.1.1 1.1.2 V 14.0 1.6 15 L Cladonla furcata 2.+.1 3.1.2 3.+.2 3.+.1 2.+.2 1.+.1 IV 17.5 1.9 16 Te Oicranum scoparlum 1.1.2 1.1.2 2.+.2 1.+.+ 1.+.2 1.1.1 1.1.1 IV 4.0 17 L Stereocaulon tomentosum 3.1.2 4.2.2 1.1.2 7.2.2 1.1.1 III 66.0 7.3 18 to Polytrichum junlperlnum 1.+.2 1.+.2 1.+.2 1.+.2 1.+.1 III 2.5 19 L Cladonla chlorophaea 3.+.3 1.+.1 1.1.1 II 6.0 20 L Leptoglum palmatum 1.+.1 2. .1 IT 1.5 21 Mr Eurhynclum oreganum 1.+.+ 1.+.1 11 1.0 22 L Cladonla lepldota 2.1.1 1 1.0 23 L Peltlgera canlna 2.1.1 var. rufescens Total species 14 14 16 13 11 10 11 14 7 Life form Pm C H T B L Proportion by Species: Number 2 2 5 2 5 7 i 8.7 8.7 21.7 8.7 21.7 30.4 Total cover: E cover 0.2 172.2 73.3 20.5 746.5 112.5 i 15.3 6.5 1.8 66.3 1.0 Groith form Te t to Mr of bryophytes Proportion by total cover: £ cover 729.0 14.0 2.5 1.0 i 97.7 1.9 0.3 0.1 80 Synthesis table VI. Piceeto-Gaultherfeto-Ualanthenetum d i l a t a t i Plot number 36 54 41 27 79 37 80 110 28 71 91 78 34 Plot size (m2) 100 100 100 100 100 100 100 100 100 100 400 100 100 Date 6/12/ 7/26/ 7/1/ 6/5/ 8/26/ 6/12/ 6/26/ 9/10/ 6/5/ 8/22/ 9/3/ 8/25/ 6/10/ 64 64 64 64 64 64 64 64 64 64 64 64 64 Extent of type (ra2) 300 200 300 200 100 100 100 100 150 900 300 300 Topography cv u cv u cv u u u cv cv cv u cx Altitude ( f t . ) 30 30 30 40 30 30 30 40 40 40 25 65 70 Aspect N N « 1 Slope ( ° ) 0-5 25 0-25 15 10 0-10 0-5 5 17 % coverage By vegetation layers: A A1 80 80 A2 10 5 25 5 A3 90 90 90 80 85 90 75 80 95 80 2 60 10 A 90 90 90 90 85 90 75 80 95 80 80 75 85 B1 15 5 5 5 1 1 10 10 3 15 80 10 50 B2 60 30 5 25 15 50 80 10 7 5 10 75 40 B 70 30 10 30 15 50 80 20 10 15 85 80 90 C 15 20 10 5 15 10 15 5 3 10 10 10 5 Dh 60 90 80 80 85 60 25 90 75 30 30 30 30 Dd> 25 20 10 20 10 25 15 10 15 10 40 15 45 D 85 95 90 100 95 85 40 100 90 40 70 40 75 EA 80 85 80 5 85 80 80 75 70 60 10 45 35 EB 60 85 80 30 85 85 85 70 75 70 30 50 40 k 30 30 30 20 30 20 30 20 30 20 20 40 20 E 70 85 80 25 85 80 80 70 70 60 25 45 35 By humus: 70 80 85 80 90 75 75 90 75 90 75 90 90 By- decayed wood: 30 20 15 20 10 25 25 10 25 10 50 15 50 Life Sub- Pres- Cover form A laver layer ence Total 1 Pm Picea sitchensis 1 8.7.3 8.7.3 150.0 2 4.5.2 6.6.2 3.+.Z 48.0 3 9.7.1 9.7.1 9.7.2 1.+1 8.7.2 9.7.1 8.7.2 8.7.2 9.7.1 9.7.1 8.7.2 +.+.2 870.6 No. of trees 28 23 12 7 14 9 15 21 6 21 12 23 10 Age range BO-90 69-80 95 40-70 30-47 50-58 36-55 127- 70 89-182 140 2 Pm Tsuga heterophylla 1 4.+.3 II 10.0 2 3.5.2 +.+.1 1.+.3 3.+.2 10.6 3 8.7.1 1.+.2 +.+,1 1.+.3 3.+.2 81.8 No. trees 2 4 1 26 4 1 4 5 5 Age range 58 50 45-53 73 72-80 3 Pm Thuja piIcata 1 3.+.3 5.0 2 ' +.+.2 0.1 3 1.+.1 1.+.1 3.5.2 1.+.2 4.+.2 16.5 No. trees 1 2 8 4 1 2 Age range 40-53 4 Pm Alnus rubra 3 1.+.1 0.5 5 Pm Pinus contorts 3 +.+.1 0.1 6 Pm Pyrus d l v e r s l f o l i a 3 +.+.2 0.1 B laver 7 Pn Gaultherla shallon 1 2.+.2 4.6.1 4.5.2 2.1.2 3.4.2 +.+.1 B.7.2 4.4.3 7.7.3 V 161.1 2 6.7.2 2.4.2 4.4.1 7.6.2 7.5.2 4.4.1 3. 1 2.+.1 4.5.2 8.6.2 7.6.3 323.0 B Pn Vaccinium ovatum 1 1.+.3 2.+.2 III 1.5 2 +.•.2 1.+.2 1.+.2 5.+.2 1.+.1 2.+.2 1.+.2 23.1 Pm Picea sitchensis 1 +.+.2 4.+.1 4.6.2 20.1 9 Pn Rosa nutkana 2 +.+.2 1.+.1 2.+.2 2.+.1 2.+.1 3.6 10 Pn Vaccinium parviflorum 1 2.+.2 1.+.2 1.+.2 IV 2.0 2 1.+.2 1.+.2 +.+.2 1.1 Pn Tsuga heterophylla 1 +.+.2 +.+.2 0.2 2 2.+.1 1.0 11 Pn Lonlcera Involuerata 2 +.+.1 1.+.2 0.6 12 Pn Rubus spectabllls 2 1.+.2 0.5 value Ave 11.4 3.7 67.0 1.3 12.4 24.8 1.8 1.6 C laver 13 6 Irialanthemum dllatatum 4.2.1 3.4.2 4.2.1 2.4.2 2.2.1 4.2.3 3.+.2 1.+.1 1.+.1 S.+.2 3.+.2 2.+.1 V 54.0 Pn Lonlcera Involuerata 2.+.2 3.+.2 3.+.2 2.+.2 2.+.2 3.+.2 1.+1 1.+.2 IV 19.0 Pn Vaccinium parviflorum 1.+.1 2.+.2 3.+.2 1.+.1 3.+.2 2.+.2 2.+.2 1.+.2 14.5 Pn Gaultherla shallon 1.2.2 3.5.2 3.2.2 4.2.2 2.3.2 1.+.2 2.+.2 33.0 14 G Boschnlakla hookerl +.+.1 3.1.1 3.+.2 1.+.2 +.+.1 2.1.2 1.+.2 III 12.2 15 H Blechnum splcant +.+.1 1.+.3 +.+.1 1.+.1 +.1.1 4.+.3 1.2.3 III 11.8 Pn Rosa nutkana 1.+.2 +.+.2 2.+.2 2.+.1 +.+.1 3.+.2 III 7.7 16 H Polystichum munitum +.+.1 2.+.3 +.+.1 1.+.1 2.+.3 2.5.3 III 3.7 17 G Llstera cordata 2.+.1 1.+.1 1.+.2 1.+.2 +.+.2 2.+.2 III 3.6 Pn Vaccinium ovatum 1.1.1 2.+.2 1.+.1 2.0 Pm Thuja pi icata 2.+.2 3.+.2 2.+.2 II 7.0 18 H Trisetum cernuum 3.2.2 +.+.2 +.+.1 1.+.1 1.+.1 II 6.2 19 C Llnnaea boreal i s 2.+.1 1.+.2 +.+.1 2.+.2 2.2.2 II 3.6 20 H Corpus canadensis +.+. 1 2.2.2 2.+.2 II 2.1 Pm Picea sitchensis +.+.1 1.+.2 2.+.2 1.+.2 2.1 Pm Tsuga heterophylla. +.•.2 +.+.2 2 . * . 2 1.+.2 1.7 21 6 Streptopus amplexlfollus +.+.2 1.+.1 +.+.2 II 0.7 22 H Goodyera oblonglfolia +.+.1 1.+.2 1.+.2 II 1.1 23 H Galium trlflorum 1.+.2 1 0.5 24 H Luzula parvlflora 1.+.2 1 0.5 25 H Tlarella t r i f o l i a t a 1.+.2 1 0.5 4.2 1.5 1.1 2.6 81 26 Mr Eurhynchlun oreganuo 27 Isothecluo stolon.ferno 26 Ms Plagtotheciuia undulatun 29 t Scapania bolanderl 30 Us Calypogela trichooanls 31 L Peltlgera aembranacea 32 Mt Lophocolea bldentata 33 Mt Blepharostona trlchophyllun 34 Th Rtccardia palmata 35 W Hyloconluia splendens 36 Us Kookerla lucens 37 I Rhytldladslphus loreus 38 Ms Lepodozla reptans 39 to Mnlum glabrescens 45 to 46 Mt 47 Bt 48 Mt 52 Th 53 Ms Lophozla Inclsa Dlcranum scopart um 01 piophyl 1 um albicans Peltlgera polydactyla Plaglochlla asplenoldes Bauxbairala piper! Cephalozla oedla Cephalozla laaraersiana Caphalozla laucantha D1cranum fuscescens Lophocolea cuspidata Riccardla latifrons Riccardla multlflda Scapania umbrosa di 3.2.2 2.2.2 2.1.2 2.1.2 2.1.1 3.2.2 4.3.2 3.1.2 V 29.0 2.2 h 7.5.3 6.5.3 7.6.3 8.6.3 8.6.3 7.6.2 6.3.3 8.5.2 8.6.3 6.5.2 6.3.2 6.3.2 6.6.2 690.0 53.1 df 3.2.2 2.2.2 5.5.2 2.2.2 4.3.2 5.3.2 5.2.2 4.3.2 4.2.2 4.1.2 2.2.2 2.1.2 3.2.2 114.0 8.8 di 4.2.2 4.1.2 3.2.2 2.2.2 2.2.2 1.1.2 2.1.2 28.5 2.2 2.2.2 4.2.3 6.2.3 4.2.2 3.2.2 2.2.2 2.1.2 1.1.1 3.2.2 66.5 5.1 di 2.2.3 4.1.3 2.1.2 1.1.2 2.1.2 4.2.3 2.1.2 2.1.2 1.3.2 3.1.2 2.2.2 2.2.2 IV 33.0 2.5 di 5.2.2 2.1.2 2.1.3 3.1.2 1.1.2 3.2.2 2.1.2 3.2.2 2.1.2 3.1.3 3.2.2 39.5 3.0 di 3.2.2 2.2.3 3.2.2 2.2.2 3.*.2 3.2.2 1.1.2 2.2.2 1.+.2 1.1.2 1.2.3 25.0 1.9 3.2.2 3.4.3 2.+.2 11.0 dt 3.+. 2 1.1.2 3.1.2 1.+.2 2.1.2 1.1.2 1.1.2 2.1.2 14.0 1.1 d» 4.2.3 1.1.2 2.1.2 1.1.2 3.1.2 1.1.2 2.+.2 2.1.2 111 19.5 1.5 di 3.2.2 3.1.2 3.1.2 2.1.2 +.1.2 1.1.2 1.1.2 17.1 1.3 di 1.3.2 1.1 III 1.0 1.1.3 2.2.2 1.2.1 4:2.1 12.0 di 1.1.2 1.2.3 2.1.3 III 2.0 3.1.3 3.*.3 1.1.2 10.5 di 1.2.2 1.1.2 1.0 +.2.2 1.+.1 1.1.2 1.3.1 1.6 di 1.+.2 1.1.2 1.1.2 2.1.3 2.5 di 1.2.2 1.1.2 2.1.3 3.2.3 1.+.3 7.5 1.2.2 0.5 di 2.2.2 .1.1.2 1.2.3 1.1.2 2.5 di +.1.3 1.1.3 2:1.2 1.1.2 II 2.1 de 2.2.2 X 1.+.2 X II 1.5 di 4.1.2 3.1.2 15.0 1.2 di 3.1.2 5.0 di +.+.3 1 0.1 di X X X X X di X X X di di X X X di X de X X Vascular plants 54 E Polypodia glycyrrhlza 2.*.2 2.*.2 1.+.2 1.2.2 1.2.2 3.2.2 Pal ypodl um Seoul erl Polystlchun munltun Vacclntun ovatun lonicera Involucrata Blechnun splcant Gaultheria shallon Maianthemum dllatatum BrvnnhvtBS S lichens 2.+.+ 1.1.2 1.2.1 •.•.1 •.1.2 •.•.2 •.1.2 3.*.2 1.+.2 1.+.2 1.1.2 +.•.2 1.1.2 3.1.2 2.1.2 E Isothecluo stotonlferun A 9.3.3 8.3.2 8.2.3 2.3.2 8.3.3 8.3.3 8.3.3 8.2.3 B 7.4.1 8.4.2 8.3.3 5.3.2 9.3.3 8.3.3 8.3.3 8.2.3 C 5.3.1 5.2.2 6.2.2 2.2.2 6.3.2 4.2.2 5.2.2 5.2.3 56 E Frullanla nlsquallensls A • * • • • • 8 3.2.2 6.2.2 3.2.3 2.2.1 3.1.1 4.2.2 4.2.2 3.1.3 C 2.2.2 1.+.1 4.1.2 3.2.3 E Scapania bolanderl 8 2.2.2 2.2.2 2.2.3 3.2.2 2.1.2 C 3.2.2 4.1.2 4.2.3 2.1.2 E Plaglothecl un undulatun B 1.2.2 C 4.3.2 2.2.3 1.2.2 2.1.2 2.1.2 3.2.2 E Calypogela trlchomanls B 2.1.2 C 3.2.2 2.1.2 1.1.2 3.1.2 57 E Neckera douglasll B 2.1.2 E Eurhynchlua oreganua C 3.2.1 1.2.2 E Peltlgera neabranacea B 1.+.2 1.+.2 3.1.2 1.1.2 C 1.+.2 58 E Cladonla conlocrasa B 1.1.2 1.1.2 C 1.1.2 2.2.2 E Lepldozla reptans C 1.2.2 2.2.3 E Blepharoetoaa t r lchophy l luD C 2.2.2 E Lophocolea bl dentata C 2.1.2 2.1.2 59 E Ulota obtuse) uscul a A 1.1.2 B 1.1.3 60 E Radula bolanderl B 2.2.2 E Kookerla lucens C 61 E Usnea plicata A +.+.2 62 E lobar! a oregana A 63 E Peltlgera canlna B 1.2.1 var. spuria 64 E Metzgerla conjugate B X 65 E Plaglotheclum elegans B X Total species 39 32 31 31 30 28 25 22 Life torn Pn Pn C H G 6 L E Prnportlon by Species: Nuaber 6 6 1 6 4 32 4 t 9.8 9.8 1.6 13.0 Total cover: ZJ cover 1225.4 592.7 3.6 26.4 70.5 1089.2 51.0 2075.9 i 40.1 19.4 0.1 0.9 2.3 35.6 1.7 3.*.2 1.*.2 2.2.1 IV 15.0 1.2 1.+.2 2.*.2 1.1.2 13.0 1.0 1.+.2 IV 2.6 1.+.2 1.+.2 2.1 0.6 0.6 1.+.1 0.6 1.+.1 0.5 0.5 0.1 8.5.3 8.2.2 7.2.3 6.3.3 779.0 55.9 8.3.2 6.2.2 5.2.2 7.3.3 4.3.2 728.0 56.0 6.3.2 3.3.2 6.1.3 228.0 17.5 • • V 2.1.2 5.1.2 3.2.2 5.1.2 110.0 8.5 3.2.2 3.11 2.1.2 2.1.2 28.5 2.2 3.1.2 2.2.3 15.0 1.2 2.1.2 3.1.2 32.0 2.5 1.1.2 6.0 1.2.2 2.2.2 3.1.2 20.0 1.5 2.1.2 2.0 2.1.2 3.2.2 17.5 1.3 2.+.2 4.1.2 II 12.0 3.2.2 10.5 2.+.2 1.21 3.0 6.0 2.1.2 II 2.0 2.1.2 3.0 2.1.2 3.0 2.1.2 2.0 2.0 3.1.2 II 5.5 2.+.2 1.6 I 1.0 1.1.2 0.5 I 0.5 0.1 I 0.5 21 16 29 23 21 Growth torn «r Us lit Te t Th I to of bryophytes Proportion by total cover: £ cover 719.0 182.5 33.5 2.1 9.0 17.1 15.6 8.1 J 72.8 18.4 3.4 0.2 0.9 1.7 1.5 0.6 APPEHDZX II Soil data Table I A s s o c i a t i o n : C a k i l e t u m e d e n t u l a e P l o t n o . 76 65 69 64 Date c o l l e c t e d 8/27/64 9/5/64 8/27/64 8/26/64 Root d i s t r i b u t i o n max. d e p t h (cm) 25 30 25 30 main c o n e , t o (cm) 15 Chemical a n a l y s e s : O r g a n i c T o t a l Adsorbed E x c h a n g e a b l e c a t i o n s P l o t Depth pH m a t t e r N i t r o g e n phosphate CEC (me/IOOq)  n o . (cm) ( ? ) ($) (ppm) (me/lOOg) Ca Mg K Na 76 5-10 8 . 0 0 . 0 3 n i l 0.1 1 . 0 0 0 . 3 2 0 . 2 8 0 . 0 6 2 5 - 3 0 8 . 2 0 . 0 3 n i l n i l 0 . 4 0 0 . 4 0 0 . 2 0 0.11 60-65 8 . 3 1 . 1 8 0 . 3 2 0 . 1 8 65 5-10 8 . 0 n i l 0 . 9 6 1 . 2 4 0 . 3 7 0 . 2 0 2 5 - 3 0 8 . 2 n i l 0 . 4 6 1 . 7 0 0 . 3 3 0 . 2 0 6 0 - 5 5 8 . 6 1.21 0 . 2 9 0.21 69 5-10 8 . 2 0 . 4 1 . 0 7 0 . 3 5 0 . 1 9 2 5 - 3 0 8 . 2 0 . 2 0 . 4 3 0.41 0 . 2 6 6 0 - 6 5 8 . 9 0 . 1 0 0.21 0.11 0 . 0 8 0 . 0 9 0 . 3 0 0 . 2 5 0.21 A s s o c i a t i o n : A r c t o s t a p h y l e t o - R h a c o m i t r i e t a m c a n e s c e n t i s P l o t n o . Date c o l l e c t e d 90 9/3/64 95 9/4/64 Chemical a n a l y s e s : P l o t Depth pH n o . (cm) O r g a n i c T o t a l Adsorbed m a t t e r N i t r o g e n phosphate CEC (I) ($) (ppm) (me/lOOg) E x c h a n g e a b l e c a t i o n s (me/IOOq) Ca Mg K Na 90 0 - 5 3 0 - 3 5 5 . 3 5 . 8 0 . 5 6 0 . 1 7 0 . 0 2 0 . 6 0 . 6 0 . 5 0 0 . 3 6 0 . 3 2 0 . 3 2 0 . 3 5 0 . 1 0 0 . 0 5 0 . 0 5 0 . 0 5 0 . 0 4 95 0 - 5 3 0 - 3 5 5 . 4 5 . 8 0 . 5 8 0 . 1 0 0.01 0 . 6 0 . 3 0 . 4 6 0 . 2 0 0 . 5 0 0 . 3 0 0 . 2 2 0 . 1 2 0 . 0 6 0 . 0 5 0 . 0 4 0 . 0 4 T a b l e II A s s o c i a t i o n : Elymetum v a n c o u v e r e n s i s v a r i a n t : elymosum v a n c o u v e r e n s i s P l o t no. 75 86 59 Date c o l l e c t e d 8/10/64 8/28/64 8/11/64 Root d i s t r i b u t i o n max. d e p t h (cm) 120 120 main c o n e , t o (cm) 45 50 30 Chemical a n a l y s e s : O r g a n i c T o t a l Adsorbed E x c h a n g e a b l e c a t i o n s P l o t Depth pH m a t t e r N i t r o g e n phosphate CEC (me/1 OOg)  n o . (cm) ( ? ) ( ? ) (ppm) (me/1OOg) Ca Mg K Na 75 0-5 6 . 9 0 . 3 4 0.01 0 . 2 0 . 7 0 . 9 8 0.31 0 . 1 5 0 . 0 9 30-35 6 . 6 0 . 3 7 0 . 2 1.1 0 . 6 4 0 . 2 2 0.11 0 . 0 8 6 0 - 6 5 6 . 5 0 . 0 3 0 . 6 1 . 6 4 0 . 6 9 0.14 0.41 86 5-10 7 . 3 0 . 0 2 n i l 0 . 4 0 . 6 0 . 6 5 0 . 2 5 0 . 1 5 0.-06 2 5 - 3 0 6 . 9 0 . 3 7 0 . 3 1 . 0 1 . 0 5 0 . 1 9 0.11 0 . 0 5 ' 6 0 - 6 5 6 . 8 1 . 0 0 . 6 4 0 . 1 0 0 . 1 2 0 . 0 4 59 0 - 5 7.1 3 0 - 3 5 6 . 8 v a r i a n t : ammophilosum a r e n a r i a e P l o t n o . 60 35 51 Date c o l l e c t e d 8/17/64 8/14/64 8/17/64 Root d i s t r i b u t i o n max. d e p t h (cm) 120 150 70 main c o n e , t o (cm) 50 45 25 Chemical a n a l y s e s : O r g a n i c T o t a l P l o t Depth pH m a t t e r N i t r o g e n n o . (cm) ( ? ) ( ? ) 60 5-10 7 . 7 3 0 - 3 5 7 . 8 6 0 - 6 5 7 . 5 0 . 0 3 0 . 0 7 n i l 35 5-10 7 . 8 3 0 - 3 5 7 . 7 60-65 7.1 0 . 1 0 0 . 0 3 n i l 51 5-10 7 . 4 2 5 - 3 0 6 . 9 T a b l e 111 A s s o c i a t i o n : Poeetum macranthae v a r i a n t : poosum macranthae P l o t n o . 50 57 97 Date c o l l e c t e d 8/14/64 8/14/64 9/4/64 Root d i s t r i b u t i o n max. d e p t h (cm) 60 45 70 main c o n e . t o (cm) 30 30 20 Chemical a n a l y s e s : O r g a n i c T o t a l Adsorbed E x c h a n g e a b l e c a t i o n s P l o t Depth pH m a t t e r N i t r o g e n phosphate CEC (me/IOOq) n o . (cm) ( ? ) ( ? ) (ppm) (me/1OOg) Ca Mg K Na 50 5-10 6 . 4 0 . 1 0 n i l 0 . 2 0 . 4 8 0 . 3 9 0 . 2 7 0 . 0 6 0 . 0 6 2 5 - 3 0 6 . 4 0 . 0 2 0 . 4 0 . 7 8 0 . 4 3 0 . 1 9 0 . 0 6 0 . 0 7 6 0 - 6 5 6 . 6 0 . 9 6 0 . 4 6 0 . 1 9 0 . 0 6 0 . 0 7 57 5-10 6 . 8 0 . 0 9 0 . 6 1 . 0 0 0 . 2 2 0 . 1 7 0 . 0 4 0 . 0 5 2 5 , 3 0 7 . 0 . 1 . 0 0 0 . 3 0 0 . 1 7 0 . 0 4 0 . 0 5 6 0 - 6 5 7 . 0 94 5-10 7 . 3 0 . 0 2 0.01 0 . 5 0 . 5 6 0 . 6 0 0 . 2 7 0 . 0 9 0 . 1 0 2 5 - 3 0 6 . 5 0 . 2 1 . 9 6 1 . 3 0 0 . 5 4 0 . 0 5 0 . 1 3 6 0 - 6 5 6 . 4 v a r i a n t : a b r o n i o s u m l a t i f o l i a e P l o t n o . 114 116 Date c o l l e c t e d 9/10/64 9/10/64 Chemical a n a l y s e s : O r g a n i c T o t a l E x c h a n g e a b l e c a t i o n s P l o t Depth pH m a t t e r N i t r o g e n (me/1O0q) n o . (cm) ( ? ) ( ? ) Ca Mg K Na 114 0 - 5 6 . 2 0 . 1 0 0.01 0 . 4 3 0 . 1 8 0 . 0 8 0 . 0 4 2 5 - 3 0 6.1 0 . 1 0 0 . 4 3 0 . 1 4 0 . 0 8 0 . 0 6 116 0-5 6 . 5 0.01 0 . 6 8 0 . 1 6 0 . 0 7 0 . 0 4 2 5 - 3 0 6 . 3 0 . 7 0 0 . 2 0 0 . 1 3 0 . 0 6 T a b l e IV A s s p c i a t i o n : A i r e t o - C e r a t o d o n t e t u m p u r p u r e i P l o t n o . Date c o l l e c t e d Root d i s t r i b u t i o n max. d e p t h (cm) main c o n e , t o (cm) 11 8/11/64 70 06 8/11/64 90 33 8/10/64 ' 70 30 Chemical a n a l y s e s : O r g a n i c T o t a l Adsorbed Exchangeabl e c a t i o n s P l o t Depth pH m a t t e r N i t r o g e n phosphate CEC (me/100q) n o . (cm) ( ? ) (%) (ppm) (me/lOOg) Ca Mg K Na • 11 0 - 5 5 . 7 0 . 4 8 0 . 0 3 0 . 2 1 .24 0 . 2 6 0 . 2 7 0 . 0 6 0 . 0 8 3 0 - 3 5 5 . 9 0 . 1 7 0 . 2 0 . 5 6 0 . 2 9 0.21 0 . 0 6 0 . 0 8 6 0 - 6 5 6 . 3 0.81 0 . 4 5 0 . 1 8 0 . 0 9 0 . 0 8 06 0 - 5 6 . 6 0 . 5 4 0.01 0.1 0 . 6 6 0 . 7 8 0 . 2 6 0 . 0 9 0 . 0 8 3 0 - 3 5 6 . 4 0 . 0 2 0 . 4 0 . 4 6 0 . 4 0 0 . 1 4 0.11 0 . 0 8 6 0 - 6 5 6 . 3 0 . 2 0 0.51 0 . 1 7 0 . 1 0 0 . 0 7 33 0 - 5 6.1 0 . 0 3 0 . 4 0 . 9 6 0 . 7 7 0 . 3 0 0 . 0 8 0 . 0 7 30-35 6 . 4 0 . 3 6 0 . 1 7 0 . 0 7 0 . 0 7 6 0 - 6 5 6 . 4 A s s o c i a t i o n : A r c t o s t a p h y l e t o - E u r h y n c h i e t u m o r e g a n i P l o t n o . 85 Date c o l l e c t e d 8/28/64 T h i c k n e s s of humus (cm) 1 Root d i s t r i b u t i o n max. d e p t h (cm) 120 main c o n e , t o (cm) 30 22 8/11/64 1 . 5 15 18 8/11/64 3 90 10 23 8/11/64 4 90 38 Chemical a n a l y s e s : 0-5 30-35 O r g a n i c T o t a l C_ Adsorbed E x c h a n g e a b l e c a t i o n s P l o t Depth pH m a t t e r N i t r o g e n N phosphate CEC (me/1OOq) n o . (cm) ( ? ) ($) (ppm) (me/100g) Ca Mg K Na 85 '.10-5 5 . 6 0 . 7 8 0 . 0 3 0 . 4 1 . 2 0 . 9 0 0 . 4 8 0 . 1 2 0 . 0 6 3 0 - 3 5 5 . 8 0 . 1 4 0 . 7 1 . 0 0 . 2 5 0 . 1 7 0 . 0 7 . 0 . 0 7 6 0 - 6 5 5 . 7 0 . 5 0 . 3 6 0 . 2 0 0 . 0 8 0 . 0 6 22 L-F 4 . 8 9.11 0 . 2 0 2 6 . 0 2 . 2 1 0 . 9 8 . 8 7 4 . 2 3 0.71 1.81 0-5 5 . 5 0 . 7 2 0 . 0 2 1 . 2 1 . 4 0 . 8 2 0 . 4 4 0 . 0 7 0 . 0 9 3 0 - 3 5 5 . 9 0 . 4 0 . 3 0 . 2 9 0 . 1 0 0 . 0 6 0 . 0 4 18 L-F 5 . 2 6 . 8 3 0 . 1 2 3 4 . 2 0 - 5 6 . 0 0 . 4 3 0.01 0 . 3 0 . 6 0 . 4 0 0 . 3 0 0 . 1 0 0 . 0 8 30-35 6 . 4 0 . 0 9 0 . 5 0 . 2 5 0.14 0 . 0 5 0 . 0 7 23 L-F 5 . 0 1 0 . 1 8 0.21 28.1 5 . 8 5 . 7 T a b l e V A s s o c i a t i o n : P i c e e t o - G a u l t h e r i e t o - M a i a n t h e m e t u m d i l a t a t i P l o t n o . 36 79 34 78 54 80 Date c o l l e c t e d 8/11/64 8/28/64 9/4/64 8/26/64 8/14/64 8/28/64 T h i c k n e s s of humus (cm! ) 10 10 15 8 6 ; 11 Root d i s t r i b u t i o n max. d e p t h (cm) 90 60 105 main c o n e , t o (cm) 15 i n 15 25 45 humus Chemical a n a l y s e s : O r g a n i c T o t a l C Adsorbed E x c h a n g e a b l e c a t i i P l o t Depth pH m a t t e r N i t r o g e n N phosphate CEC (me/1OOq) n o . (cm) (%) {%) (ppm) (me/100g) Ca Mg K 36 L-F 4 . 6 3 8 . 1 0 0 . 5 3 42.1 4 . 2 3 6 . 0 1 0 . 8 7 6 . 7 8 1 . 4 9 3 . 9 2 0 - 5 4 . 5 1 . 2 6 0 . 0 2 0 . 4 2 . 5 0 . 5 9 0 . 6 2 0.11 0 . 3 3 3 0 - 3 5 5 . 6 0 . 3 7 0 . 3 0 . 9 0 . 3 0 0 . 3 7 0 . 0 8 0 . 1 5 60-65 5 . 9 1 . 0 0 . 2 2 0 . 2 7 0 . 0 7 0 . 1 3 79 L-F 5.1 4 2 . 4 5 0 . 8 6 2 8 . 6 6 . 2 3 2 . 2 8 . 2 5 6 . 2 4 0 . 9 7 3 . 4 2 0-5 5 . 4 2.31 0 . 0 9 1 . 7 3 . 5 0 . 3 0 0 . 2 8 0 . 0 5 0.11 3 0 - 3 5 6 . 4 0 . 2 4 0 . 6 1 . 0 2 . 0 2 0 . 7 0 0 . 1 4 0 . 3 6 34 L-F 3 . 8 5 7 . 6 2 1 . 0 8 3 1 . 0 1 0 . 2 2 4 . 3 1 0 . 0 0 6.01 2.11 5 . 7 9 0-5 5.1 0 . 7 8 2 . 8 1 . 5 0 . 3 2 0.51 0 . 0 4 0 . 2 2 3 0 - 3 5 5 . 6 0 . 2 7 0 . 4 0 . 7 0 . 1 8 0 . 2 7 0 . 0 4 0 . 1 3 6 0 - 6 5 0 . 2 0 0 . 2 0 0 . 2 4 0 . 0 4 0 . 1 2 78 L-F 5 . 4 2 . 0 1 5 . 5 0 4 . 5 8 2 . 1 4 1 . 0 4 0 - 5 5 . 3 2 . 0 9 3.1 1 . 5 2 0 . 3 2 0 . 1 2 0 . 2 2 3 0 - 3 5 5 . 8 0 . 2 0 1 . 6 1 . 0 0 . 5 5 0 . 4 4 0 . 0 4 0.11 54 L-F 4 . 2 5 8 . 9 6 0 . 5 8 5 9 . 0 0 - 5 4 . 8 3 0 - 3 5 5 . 8 80 L-F 4 . 4 5 2 . 2 6 0-5 4 . 9 2 . 3 5 3 0 - 3 5 4 . 7 APPENDIX II .Soil data T a b l e I A s s o c i a t i o n : C a k i l e t u m e d e n t u l a e P l o t n o . Date c o l l e c t e d Root d i s t r i b u t i o n max. d e p t h (cm) main c o n e , t o (cm) 76 8/27/64 25 65 9/5/64 30 69 8/27/64 25 64 8/26/64 30 15 Chemical a n a l y s e s : P l o t Depth pH n o . (cm) O r g a n i c T o t a l Adsorbed m a t t e r N i t r o g e n phosphate ( ? ) ( ? ) CEC (me/100g) Ca E x c h a n g e a b l e c a t i o n s (me/lOOg) Mg K Na 76 5-10 8 . 0 0 . 0 3 n i l 0.1 1 . 0 0 0 . 3 2 0 . 2 8 0 . 0 6 2 5 - 3 0 8 . 2 0 . 0 3 n i l n i l 0 . 4 0 0 . 4 0 0 . 2 0 0.11 6 0 - 6 5 8 . 3 1 . 1 8 0 . 3 2 0 . 1 8 65 5-10 8 . 0 n i l 0 . 9 6 1 . 2 4 0 . 3 7 0 . 2 0 2 5 - 3 0 8 . 2 n i l 0 . 4 6 1 . 7 0 0 . 3 3 0 . 2 0 6 0 - 5 5 8 . 6 1.21 0 . 2 9 0.21 69 5-10 8 . 2 0 . 4 1 . 0 7 0 . 3 5 0 . 1 9 2 5 - 3 0 8 . 2 0 . 2 0 . 4 3 0.41 0 . 2 6 6 0 - 6 5 8 . 9 0 . 1 0 0.21 0.11 0 . 0 8 0 . 0 9 0 . 3 0 0 . 2 5 0.21 A s s o c i a t i o n : A r c t o s t a p h y l e t o - R h a c o m i t r i e t a m c a n e s c e n t i s P l o t n o . Date c o l l e c t e d 90 9/3/64 95 9/4/64 Chemical a n a l y s e s : P l o t Depth pH n o . (cm) O r g a n i c T o t a l Adsorbed m a t t e r N i t r o g e n phosphate CEC ( ? ) ( ? ) (ppm) (me/lOOg) E x c h a n g e a b l e c a t i o n s (me/109q) Ca Mg K 90 0 - 5 3 0 - 3 5 5 . 3 5 . 8 0 . 5 6 0 . 1 7 0 . 0 2 0 . 6 0 . 6 0 . 5 0 0 . 3 6 0 . 3 2 0 . 3 2 0 . 3 5 0 . 1 0 0 . 0 5 0 . 0 5 0 . 0 5 0 . 0 4 95 0 - 5 3 0 - 3 5 5 . 4 5 . 8 0 . 5 8 0 . 1 0 0.01 0 . 6 0 . 3 0 . 4 6 0 . 2 0 0 . 5 0 0 . 3 0 0 . 2 2 0 . 1 2 0 . 0 6 0 . 0 5 0 . 0 4 0 . 0 4 T a b l e 11 A s s o c i a t i o n : Elymetum v a n c o u v e r e n s i s v a r i a n t : elymosum v a n c o u v e r e n s i s P l o t n o . 75 86 59 Date c o l l e c t e d 8/10/64 8/28/64 8/11/64 Root d i s t r i b u t i o n max. depth (cm) 120 120 main c o n e , t o (cm) 45 50 30 Chemical a n a l y s e s : O r g a n i c T o t a l Adsorbed E x c h a n g e a b l e c a t i o n s P l o t Depth pH m a t t e r N i t r o g e n phosphate CEC (me/1 OOg) n o . (cm) {%) (1) (ppm) (me/1OOg) Ca Mg K • 0-5 6 . 9 0 . 3 4 0.01 0 . 2 30-35 6 . 6 0 . 3 7 0 . 2 60-65 6 . 5 0 . 0 3 5-10 7 . 3 0 . 0 2 n i l 0 . 4 2 5 - 3 0 6 . 9 0 . 3 7 0 . 3 6 0 - 6 5 6 . 8 0-5 7.1 3 0 - 3 5 6 . 8 0 . 7 0 . 9 8 0.31 0 . 1 5 0 . 0 9 1.1 0 . 6 4 0 . 2 2 0.11 0 . 0 8 0 . 6 1 . 6 4 0 . 6 9 0 . 1 4 0.41 0 . 6 0 . 6 5 0 . 2 5 0 . 1 5 0 . 0 6 1 . 0 1 . 0 5 0 . 1 9 0.11 0 . 0 5 1 . 0 0 . 6 4 0 . 1 0 0 . 1 2 0 . 0 4 v a r i a n t : ammophilosum a r e n a r i a e P l o t n o . Date c o l l e c t e d Root d i s t r i b u t i o n max. d e p t h (cm) main c o n e , t o (cm) 60 8/17/64 120 50 35 8/14/64 150 45 51 8/17/64 70 25 Chemical a n a l y s e s : P l o t Depth pH n o . (cm) O r g a n i c T o t a l m a t t e r N i t r o g e n 60 5 - 1 0 7 . 7 3 0 - 3 5 7 . 8 6 0 - 6 5 7 . 5 0 . 0 3 0 . 0 7 n i l 35 5-10 7 . 8 3 0 - 3 5 7 . 7 6 0 - 6 5 7.1 0 . 1 0 0 . 0 3 n i l 51 5-10 2 5 - 3 0 7 . 4 6 . 9 T a b l e III A s s o c i a t i o n : Poeetum macranthae v a r i a n t : Poeetosum macranthae P l o t n o . 50 57 97 Date c o l l e c t e d 8/14/64 8/14/64 9/4/64 Root d i s t r i b u t i o n max. d e p t h (cm) 60 45 70 main c o n e , t o (cm) 30 30 20 Chemical a n a l y s e s : O r g a n i c T o t a l Adsorbed E x c h a n g e a b l e c a t i o n s P l o t Depth pH m a t t e r N i t r o g e n phosphate CEC (me/lQ0q)  n o . (cm) (I) (I) (ppm) (me/lOOg) Ca Mg K Na 50 5-10 6 . 4 0 . 1 0 n i l 0 . 2 0 . 4 8 0 . 3 9 0 . 2 7 0 . 0 6 0 . 0 6 2 5 - 3 0 6 . 4 0 . 0 2 0 . 4 0 . 7 8 0 . 4 3 0 . 1 9 0 . 0 6 0 . 0 7 6 0 - 6 5 6 . 6 0 . 9 6 0 . 4 6 0 . 1 9 0 . 0 6 0 . 0 7 57 5-10 6 . 8 0 . 0 9 0 . 6 1 . 0 0 0 . 2 2 0 . 1 7 0 . 0 4 0 . 0 5 2 5 , 3 0 7 . 0 1 . 0 0 0 . 3 0 0 . 1 7 0 . 0 4 0 . 0 5 6 0 - 6 5 7 . 0 94 5-10 7 . 3 0 . 0 2 0.01 0 . 5 0 . 5 6 0 . 6 0 0 . 2 7 0 . 0 9 0 . 1 0 2 5 - 3 0 6 . 5 0 . 2 1 . 9 6 1 . 3 0 0 . 5 4 0 . 0 5 0 . 1 3 6 0 - 6 5 6 . 4 v a r i a n t : Abroniosum l a t i f o l i a e P l o t n o . 114 116 Date c o l l e c t e d 9/10/64 9/10/64 Chemical a n a l y s e s : O r g a n i c T o t a l E x c h a n g e a b l e c a t i o n s P l o t Depth pH m a t t e r N i t r o g e n (me/100q)  n o . (cm) (%) (%) Ca Mg K Na 114 0-5 2 5 - 3 0 6 . 2 6.1 0 . 1 0 0 . 1 0 0.01 0 . 4 3 0 . 4 3 0 . 1 8 0 . 1 4 0 . 0 8 0 . 0 8 0 . 0 4 0 . 0 6 116 0 - 5 6 . 5 2 5 - 3 0 6 . 3 0.01 0 . 6 8 0 . 7 0 0 . 1 6 0 . 2 0 0 . 0 7 0 . 1 3 0 . 0 4 0 . 0 6 T a b l e IV A s s p c i a t i o n : A i r e t o - C e r a t o d o n t e t u m p u r p u r e i P l o t n o . 11 06 33 Date c o l l e c t e d 8/11/64 8/11/64 8/10/64 Root d i s t r i b u t i o n max. d e p t h (cm) 70 90 ' 70 main c o n e , t o (cm) 30 Chemical a n a l y s e s : O r g a n i c T o t a l Adsorbed E x c h a n g e a b l e c a t i o n s P l o t Depth pH m a t t e r N i t r o g e n phosphate CEC (me/100q)  n o . (cm) ( ? ) ( ? ) (ppm) (me/lOOg) Ca Mg K Na 11 0 - 5 5 . 7 0 . 4 8 0 . 0 3 0 . 2 1 .24 0 . 2 6 0 . 2 7 0 . 0 6 0 . 0 8 30-35 5 . 9 0 . 1 7 0 . 2 0 . 5 6 0 . 2 9 0.21 0 . 0 6 0 . 0 8 6 0 - 6 5 6 . 3 0.81 0 . 4 5 0 . 1 8 0 . 0 9 0 . 0 8 06 0 - 5 6 . 6 0 . 5 4 0.01 0.1 0 . 6 6 0 . 7 8 0 . 2 6 0 . 0 9 0 . 0 8 3 0 - 3 5 6 . 4 0 . 0 2 0 . 4 0 . 4 6 0 . 4 0 0 . 1 4 0.11 0 . 0 8 60-65 6 . 3 0 . 2 0 0.51 0 . 1 7 0 . 1 0 0 . 0 7 33 0 - 5 6.1 0 . 0 3 0 . 4 0 . 9 6 0 . 7 7 0 . 3 0 0 . 0 8 0 . 0 7 30-35 6 . 4 0 . 3 6 0 . 1 7 0 . 0 7 0 . 0 7 6 0 - 6 5 6 . 4 A s s o c i a t i o n : A r c t o s t a p h y l e t o - E u r h y n c h i etum o r e g a n i P l o t n o . 85 22 18 23 Date c o l l e c t e d 8/28/64 8/11/64 8/11/64 8/11/64 T h i c k n e s s of humus (cm ) 1 1 . 5 3 4 Root d i s t r i b u t i o n max. d e p t h (cm) 120 90 90 main c o n e , t o (cm) 30 15 10 38 Chemical a n a l y s e s : O r g a n i c T o t a l C. Adsorbed E x c h a n g e a b l e c a t i o n s P l o t Depth P H m a t t e r N i t r o g e n N phosphate CEC (mt i/100q) n o . (cm) ( ? ) ( ? ) (ppm) (me/100g) Ca Mg K Na 85 'J0-5 5 . 6 0 . 7 8 0 . 0 3 0 . 4 1 . 2 0 . 9 0 0 . 4 8 0 . 1 2 0 . 0 6 30-35 5 . 8 0 . 1 4 0 . 7 1 . 0 0 . 2 5 0 . 1 7 0 . 0 7 0 . 0 7 6 0 - 6 5 5 . 7 0 . 5 0 . 3 6 0 . 2 0 0 . 0 8 0 . 0 6 22 L-F 4 . 8 9.11 0 . 2 0 2 6 . 0 2 . 2 1 0 . 9 8 . 8 7 4 . 2 3 0.71 1.81 0 - 5 5 . 5 0 . 7 2 0 . 0 2 1 . 2 1 . 4 0 . 8 2 0 . 4 4 0 . 0 7 0 . 0 9 3 0 - 3 5 . 5 . 9 0 . 4 0 . 3 0 . 2 9 0 . 1 0 0 . 0 6 0 . 0 4 18 L-F 5 . 2 6 . 8 3 0 . 1 2 3 4 . 2 0-5 6 . 0 0 . 4 3 0.01 0 . 3 0 . 6 0 . 4 0 0 . 3 0 0 . 1 0 0 . 0 8 30-35 6 . 4 0 . 0 9 0 . 5 0 . 2 5 0 . 1 4 0 . 0 5 0 . 0 7 23 L-F 5 . 0 1 0 . 1 8 0.21 28.1 0-5 5 . 8 30-35 5 . 7 T a b l e V A s s o c i a t i o n : P i c e e t o - G a u l t h e r i e t o - M a i a n t h e m e t u m d i l a t a t i P l o t no. 36 79 34 78 54 80 Date c o l l e c t e d 8/11/64 8/28/64 9/4/64 8/26/64 8/14/64 8/28/64 T h i c k n e s s of humus (cm! ) 10 10 15 8 6 ; 11 Root d i s t r i b u t i o n max. d e p t h (cm) 90 60 105 main c o n e , t o (cm) 15 i n 15 25 45 humus Chemical a n a l y s e s : O r g a n i c T o t a l C. Adsorbed E x c h a n g e a b l e c a t i i P l o t Depth pH m a t t e r N i t r o g e n N phosphate CEC (roe/IOOq) n o . (cm) ( ? ) ( ? ) (ppm) (me/1OOg) Ca Mg K 36 L-F 4 . 6 3 8 . 1 0 0 . 5 3 42.1 4 . 2 3 5 . 0 1 0 . 8 7 6 . 7 8 1 . 4 9 3 . 9 2 0 - 5 4 . 5 1 . 2 6 0 . 0 2 0 . 4 2 . 5 0 . 5 9 0 . 6 2 0.11 0 . 3 3 3 0 - 3 5 5 . 6 0 . 3 7 0 . 3 0 . 9 0 . 3 0 0 . 3 7 0 . 0 8 0 . 1 5 60-65 5 . 9 1 . 0 0 . 2 2 0 . 2 7 0 . 0 7 0 . 1 3 79 L-F 5.1 4 2 . 4 5 0 . 8 6 2 8 . 6 6 . 2 3 2 . 2 8 . 2 5 6 . 2 4 0 . 9 7 3 . 4 2 0-5 5 . 4 2.31 0 . 0 9 1 . 7 3 . 5 0 . 3 0 0 . 2 8 0 . 0 5 0.11 3 0 - 3 5 6 . 4 0 . 2 4 0 . 6 1 . 0 2 . 0 2 0 . 7 0 0 . 1 4 0 . 3 6 34 L-F 3 . 8 5 7 . 6 2 1 . 0 8 3 1 . 0 1 0 . 2 2 4 . 3 1 0 . 0 0 6.01 2.11 5 . 7 9 0-5 5 . 1 . 0 . 7 8 2 . 8 1 . 5 0 . 3 2 0.51 0 . 0 4 0 . 2 2 3 0 - 3 5 5 . 6 0 . 2 7 ' 0 . 4 0 . 7 0 . 1 8 0 . 2 7 0 . 0 4 0 . 1 3 6 0 - 6 5 0 . 2 0 0 . 2 0 0 . 2 4 0 . 0 4 0 . 1 2 78 L-F 5 . 4 2 . 0 1 5 . 5 0 4 . 5 8 2.14 1 . 0 4 0 - 5 5 . 3 2 . 0 9 3.1 1 . 5 2 0 . 3 2 0 . 1 2 0 . 2 2 3 0 - 3 5 5 . 8 0 . 2 0 1 . 6 1 . 0 0 . 5 5 0 . 4 4 0 . 0 4 0.11 54 L-F 4 . 2 5 8 . 9 6 0 . 5 8 5 9 . 0 0-5 4 . 8 3 0 - 3 5 5 . 8 80 L-F 4 . 4 5 2 . 2 6 0 - 5 4 . 9 2 . 3 5 3 0 - 3 5 4 . 7 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105573/manifest

Comment

Related Items