Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Some synecological problems in the alpine zone of Garibaldi Park. Archer, Anthony Clifford 1963

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1963_A6_7_A7 S6.pdf [ 10.08MB ]
Metadata
JSON: 831-1.0105475.json
JSON-LD: 831-1.0105475-ld.json
RDF/XML (Pretty): 831-1.0105475-rdf.xml
RDF/JSON: 831-1.0105475-rdf.json
Turtle: 831-1.0105475-turtle.txt
N-Triples: 831-1.0105475-rdf-ntriples.txt
Original Record: 831-1.0105475-source.json
Full Text
831-1.0105475-fulltext.txt
Citation
831-1.0105475.ris

Full Text

SOME SYNECOLOGICAL PROBLEMS OF  IN THE ALPINE ZONE  GARIBALDI PARK  by ANTHONY CLIFFORD ARCHER B.Sc, London U n i v e r s i t y , 1960  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF  MASTER OF SCIENCE  i n t h e Department of BIOLOGY AND  BOTANY  We a c c e p t t h i s t h e s i s as to the required standard  THE  conforming  UNIVERSITY OF BRITISH COLUMBIA J u n e , 1963  In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available f o r reference and study.  I further agree that  permission  for extensive copying of t h i s thesis f o r scholarly purposes may  be  granted by the Head of my Department or by his representatives. It i s understood that copying or publication of this thesis f o r f i n a n c i a l gain s h a l l not be allowed without my written  permission.  A n t h o n y C. A r c h e r  Department of  Biology  and  Botany  The University of B r i t i s h Columbia, Vancouver 3 , Canada.  i ABSTRACT E c o s y s t e m a t i c methods were used t o study problems i n the A l p i n e Zone o f G a r i b a l d i Park,  synecological British  Columbia. The and  i n f l u e n c e of snow pack and i t s e f f e c t s upon s o i l s  the d i s t r i b u t i o n of v e g e t a t i o n  are c o n s i d e r e d .  The  s u c c e s s i o n a l t r e n d o f p l a n t communities i n the subalpine a l p i n e ecotone and a l p i n e zone i s p r e s e n t e d . succession  The p l a n t  i s c l o s e l y r e l a t e d t o environmental changes,  p a r t i c u l a r l y t o the d u r a t i o n o f the snow pack and s o i l forming p r o c e s s e s .  The P h y l l o d o c e t o  - Cassiopetum  mertensianae can be regarded as the z o n a l community i n the A l p i n e Zone above 5,500 f e e t .  I t i s shown t h a t  zone ranges from 5,500 f e e t t o the h i g h e s t  alpine  summits over  8,000 f e e t . Environmental c o n d i t i o n s are c o r r e l a t e d w i t h u n i t s of v e g e t a t i o n which a l l o w the r e c o g n i t i o n o f twelve p l a n t associations.  The a s s o c i a t i o n s are arranged i n groups  which tend t o c h a r a c t e r i z e the h a b i t a t s i n which they are  found. The  a s s o c i a t i o n s are grouped as f o l l o w s : -  ii A.  Snow p a t c h g r o u p i)  Gymnomitrieto - P o l y t r i c h e t u m  norvegici  a. s u b - a s s o c . g y m n o m i t r i e t o - p o l y t r i c h e t u m b. sub-assoc. p o l y t r i c h e t o s u m ii)  Cariceturn  iii)  i)  group  Luetkeetum  iii)  pectinatae  Anaphaleto - Lupinetum  C. A l p i n e meadow  ii)  procumbentis  Caricetum s p e c t a b i l i s  ii)  i)  nigricantis  Sibbaldietum  B. C h o m o p h y t i c  piliferi  Mimuleto  arctici  group - Epilobietum  latifolii  Valerianetum sitchensis  D. R u p i c o l o u s g r o u p i) ii)  J u n i p e r e t o - Penstemonetum m e n z i e s i i Silenetum acaulis  E. A l p i n e h e a t h e r group i)  Phyllodoceto - Cassiopetum mertensianae  F . Krummholz i)  group  A b i e t e t o - Chamaecyparetum  G. P e a t b o g g r o u p i)  Sphagnum  nootkatensis  norvegici  ACKNOWLEDGEMENTS  The  author wishes  t o thank  t h e many i n d i v i d u a l s a n d  o r g a n i z a t i o n s who h e l p e d i n t h e c o m p l e t i o n o f t h i s S p e c i a l thanks  a r e due t o D r . V . J . K r a j i n a  g u i d a n c e a n d a d v i c e ; D r . T.M.C. T a y l o r , D e p a r t m e n t o f B i o l o g y and B o t a n y , Department o f S o i l K.C. 0.  McTaggart  o f t h e Department o f Geology;  Head C h a l e t ; M e s s r s . G. O t t o , J . T h o r p e , P e t e r s o n , R.C. B r o o k e ,  Research Council,  Messrs.  o f t h e Diamond L. O r l o c i ,  the National  Ottawa; t h e U n i v e r s i t y R e s e a r c h  t h e many o t h e r s who made  of the  M r s . A.C. A r c h e r ; The U n i v e r s i t y .  Computing C e n t r e , Department o f P h y s i c s ;  and  Head o f t h e  Mathews and  and E . B r a n d v o l d , and M i s s M. C r o w l e y  E.B.  for h i s  D r . H. G a r d n e r  S c i e n c e , D r s . W.H.  project.  contributions.  Grant,  iii TABLE OF  CONTENTS Page  I. II.  INTRODUCTION  1  REGION OF STUDY  4  1. GEOGRAPHY  4  A. V o l c a n i c  4  B. V i k i n g  6  Ridge  C. Mamquam M o u n t a i n 2. GEOLOGY  7 8  A. G a r i b a l d i V o l c a n i c s B. Q u a r t z - d i o r i t e s 3. PEDOLOGY  8 10 12  A. S e d e n t a r y s o i l s  12  B. T r a n s p o r t e d  12  soils  C. S o l i f l u c t i o n 4. CLIMATE  16 17  A. R e g i o n a l c l i m a t e  17  B. G l a c i a l  18  retreat  5. BRIEF HISTORY OF BOTANICAL INVESTIGATIONS I I I . METHODS OF STUDY  19 22  1. ORIENTATION  22  2. BASIS FOR SYNSYSTEMATIC UNITS  22  iv Page 23  3. CLIMATE 4. VEGETATION  25  A. A n a l y t i c a l p h a s e  25  B. S y n t h e t i c a l  28  C. L i f e  phase  forms  29  D. N o m e n c l a t u r e  30  5. SOILS  31  A. C h e m i c a l and p h y s i c a l  analyses  6. PETROLOGY Thin  .1.  33  sections  IV. MATERIALS  AND  31  33  RESULTS OF STUDY  34  CLIMATE  34  A. S n o w l i n e  34  B. M i c r o c l i m a t e  36  2. SOILS  41  A. S e m i - t e r r e s t r i a l s o i l s  44  B. T e r r e s t r i a l  46  i)  soils  Lithosols  46  Rankers  47  ii) iii)  Terrestrial  C. A, B s o i l s 3. VEGETATION  organic  soils  50 53 54  A.  Snow p a t c h i)  Page 55  group  Gymnomitrieto norvegici a.  b.  Polytrichetum 56  sub-assoc. gymnomitrieto polytrichetosum norvegici sub-assoc.  polytrichetosum  piliferi ii)  Caricetum  iii) B.  57 nigricantis  Sibbaldietum  58  procumbentis  Chomophytic group i)  Caricetum  ii)  spectabilis  63 64  Anaphaleto - Lupinetum a r c t i c i  C. A l p i n e meadow g r o u p i) ii)  Mimuleto - E p i l o b i e t u m Valerianecum  D. R u p i c o l o u s i) ii)  Silenetum  F.  latifolii  sitchensis  71  acaulis  73  group  75  Phyllodoceto  Abieteto  70 71  — C a s s i o p e t u r n m e r t e n s i a n a e 76  Krummholz i)  67  - Penstemonetum m e n z i e s i i  E. A l p i n e heather i)  66 67  group  Junipereto  60 " 62  Luetkeetum p e c t i n a t a e  iii)  57  77 - Chamaecyparetum n o o t k a t e n s i s  77  vi Page 80  G. Bog P e a t g r o u p V. DISCUSSION  81  1. SOIL  81  2. DEEIMITATION OF THE ALPINE ZONE  84  3. DISTRIBUTION OF VEGETATION  85  V I . SUMMARY AND  CONCLUSION  102  BIBLIOGRAPHY  105  APPENDIX I  _  113  Plant L i s t  113  APPENDIX I I  120  References  used  i n c o m p i l a t i o n o f check l i s t  APPENDIX I I I Chemical  120 121  Analysis  of Soils  121  Determination  of Organic Matter  121  Determination  of Nitrogen  12 3  Determination  o f Exchange C a p a c i t y  124  Determination o f Exchangeable  Cations  127  vii Page Figure  Figure  1  2  Frequency of minerals i n dacitic lava  13  Frequency of minerals i n d e v i t r i f i e d rhyodacite  14  Figure  3  R e t r e a t o f Warren G l a c i e r  21  Figure  4  A l t i t u d i n a l frequency of the region studied  37  C o m p a r i s o n o f snow d e p t h i n s u b a l p i n e f o r e s t and krummholz;  38  Comparison o f d a i l y minimum t e m p e r a t u r e upper l i m i t s o f t h e zone and t h e a l p i n e  40  Figure  Figure  Figure  Figures  Figure  Figure  Figure  5  6  7  8 & 9  10  11  12  maximum and between t h e subalpine zone.  Range o f t e m p e r a t u r e b e t w e e n a krummholz and a m o s s - l i c h e n community  42  Comparison o f t e x t u r e s between t h e v o l c a n i c and p l u t o n i c r o c k s  83  Altitudinal plots  86  frequencies  Generalized succession A l p i n e Zone on D a c i t i c  o f sample  i n the Lavas  G r a p h i c a l r e p r e s e n t a t i o n of the regression analysis  95 97  Figure  13  Quartz-diorite  Figure  14  A v e r a g e f r e q u e n c i e s o f snow f r e e d a y s t h r o u g h o u t a number o f associations  Figure  15  90  succession  Topography o f p l a n t s i n r e l a t i o n t o d u r a t i o n o f snow c o v e r  98.  101  viii Page TABLE I  TABLE I I  TABLE I I I  TABLE I V  A l t i t u d e o f low l i m i t s o f t h e i c e t o n g u e s - Summer 1962  34  C o m p a r i s o n o f . a c c u m u l a t e d and t o t a l d e g r e e s o f f r o s t between t h e upper l i m i t s o f t h e s u b a l p i n e and a l p i n e zones  36  Maximum and minimum t e m p e r a t u r e s Diamond Head C h a l e t  43  at  Chemical a n a l y s i s of the surface l a y e r o f Bog P e a t s  46  C h e m i c a l a n a l y s i s o f t h e s u r f a c e 6 cm . o f s e l e c t e d l i t h o s o l s f o r m i n g on superf i c i a l deposits  48  TABLE V I  Particle  49  TABLE V I I  Chemical a n a l y s i s o f t h e upper of rankers s o i l s  TABLE V  TABLE V I I I  size  of  lithosols surface  51  Chemical a n a l y s i s of t h e " s u r f a c e l a y e r of the o r g a n i c s o i l s  52  Analysis of organic s o i l s influenced by s e e p a g e f r o m m e l t i n g snow  53  TABLE X  Chemical  54  TABLE X I  Regression equations  PLATE I  Map  PLATE I I  Illustrations:  1, 2, 3, 4, 5,  6,  110  PLATE I I I  Illustrations:  7, 8, 9,10,11,12,  111  PLATE I V  Illustrations:  13,14,15,16,17,18.  112  TABLE I X  a n a l y s i s o f t h e A, B  soils  94  of study area  5  ix Page ASSOCIATION  TABLES  Gymnomitrieto  -. P o l y t r i c h e t u m  norvegici  56(a)  Caricetum n i g r i c a n t i s  58(a)  Sibbaldietum  60(a)  procumbentis  Caricetum s p e c t a b i l i s  63(a)  Luetkeetum p e c t i n a t a e  64(a)  A n a p h a l e t o - Lupineturn  arctici  66(a)  Mimuleto - E p i l o b i e t u m  latifolii  67(a)  Valerianetum Junipereto Silenetum  sitchensis  - Penstemoneturn m e n z i e s i i acaulis  Phyllodoceto  70(a) 71(a) 73(a)  - Cassiopetum mertensianae  76(a)  A b i e t e t o - Chamaecyparetum n o o t k a t e n s i s  77(a)  I.  The  s e v e r i t y of the climate  s e a s o n combined w i t h frequent It  neglect  originated  and t h e s h o r t  vegetative  arduous t e r r a i n has r e s u l t e d i n the  of vegetational  i s , therefore,  studies  not s u r p r i s i n g that  i n alpine  alpine  their  resources.  where r e l a t i v e l y livelihood  The t h r e e  large pastoral  directly  regions.  studies  i n t h e more p o p u l o u s m o u n t a i n r e g i o n s  European A l p s , derived  INTRODUCTION  of the  communities  from the n a t u r a l  pioneer phytosociologists  instru-  mental i n t h e r e c o g n i t i o n o f t h e narrow l i m i t a t i o n s o f true  alpine vegetation  and S c h r o t e r  were H e e r  (1926).  Their  (1836), K e r n e r (1863),  s t u d i e s were n o t o n l y o f  academic i n t e r e s t b u t had c o n s i d e r a b l e cularly, culture tion  when a p p l i e d  t o t h e transhumance  many p a r t s  parti-  pattern of  c h a r a c t e r i s t i c o f a l p i n e economy.  of grazing  The  combina-  and f o r e s t c l e a r i n g l e a d u l t i m a t e l y , i n  of the Alps,  The n e e d t o s t a b i l i z e resulted  application,  i n a number  t o the lowering of the timberline.  t h e f o r e s t r y and p a s t o r a l o f s t u d i e s b y Demontzey  economies  (1882),  t r a n s h u m a n c e - The movement o f h e r d s and f l o c k s f r o m t h e v a l l e y s t o t h e m o u n t a i n p a s t u r e s as t h e snow c l e a r s d u r i n g t h e summer months.  2 Flauhault and of and  (1901) , Reis.hauer  Schroter  ( 1 9 2 6 ) , t h a t were r e l a t e d t o t h e  these a l t i t u d i n a l edaphic  zones w i t h r e g a r d  limit  greater  of present  these day  that vegetation  philosophy  s i d e r e d by Moss  Cowles  Kerner  (1899) and  communities  not  ( 1 8 6 3 ) , Warming  in relation  a static  as  Clements  to  below a  the  e n t i t y but  to a  basis  vegetational  studies.  regards  of  succession  synecological  f o r example t h e  d e v e l o p m e n t and  succession  first  (1897), Graebner  con-  (1895)  expressed  as  of  by  plant  studies.  . Today  "Zurich-Montpellier  succession  i n a p h y t o s o c i o l o g i c a l . framework w h i l s t  School"  was  (1916) i n N o r t h A m e r i c a when  d e v e l o p m e n t and the  trends  i t l a t e r became f u l l y  some E u r o p e a n S c h o o l s ,  School", up  was  they l e d to  I t became e v i d e n t  of v e g e t a t i o n a l  (1907), b u t  they considered  in  climatic  one.  The  and  to b i o t i c ,  alpine regions,  severe a r c t i c - a l p i n e environment.  dynamic  delimitation  s t u d i e s were c a r r i e d o u t  understanding of v e g e t a t i o n  botanists  (1907)  influences.  A l t h o u g h many o f the  (1904), B r o c k m a n n - J e r o s c h  the  a framework f o r  i s bound  "Clemensian vegetational  Synecology has  i n the  Pacific  b e e n somewhat n e g l e c t e d  lity  of the  1931)  region.  carried  succession.  due  In the  a series  The  relationship,  v e g e t a t i o n was  two  most r e c e n t (1959).  only  of  superficially  climatic  climax  similar  community.  Brink  f l u c t u a t i o n s i n recent  more t h o r o u g h l y The  Krajina  a b i o c l i m a t i c b a s i s and  i n scope t o the i n the  present chapter  object of t h i s  McAvoy,  to p l a n t environment  considered.  Columbia"  changes which have t a k e n  climatic  region  The  (1959),.  (1959) i n h i s p u b l i c a t i o n on  f o r e s t - h e a t h ecotone", p a r t i c u l a r l y tional  B.C.  inaccessibi-  however, b e t w e e n  s t u d i e s were made h y Krajina  Zone on  Coola  studies related  " B i o c l i m a t i c Zones i n B r i t i s h Alpine  Mountains of  l a r g e l y t o the  Bella  out  and  Brink  Coast  study  considers  study,  to  i n response Brink's w i l l be  dealing with i s an  the subalpine  in relation  times.  the  d e l i m i t s the  s t u d i e d "The  place  and  vegetato  work,  reviewed  history.  attempt t o e l u c i d a t e  some s y n e c o l o g i c a l p r o b l e m s i n t h e A l p i n e Zone w i t h i n  a  localized  is  located 30 m i l e s i n the  area  of the  Pacific  Coast  Range..  The  area  i n the  southwest corner  of B r i t i s h  Columbia,  north  o f V a n c o u v e r and  represents  the A l p i n e  Coast  Mountains i n the  region.  some Zone  4 II.  1.  REGION OF  STUDY  GEOGRAPHY On  the b a s i s of physiography  into three sub-regions  t h e r e g i o n c a n be  (as shown on map  divided  o f s t u d y a r e a , page  5): A. V p l c a n i c B. V i k i n g C. Mamquam A.  Mountains  Volcanic sub-region The  volcanic  (8,787 f e e t ) It  Ridge  the  rocks culminate  i n the G a r i b a l d i  s e c o n d h i g h e s t summit w i t h i n t h e  i s from t h i s massif t h a t  t h e G a r i b a l d i Neve  and  forms a t i t s lower  ice  s l o p i n g o f f t o w a r d s t h e s o u t h e a s t , a t an  altitude along and  o f 5,400 f e e t .  level  a gently inclined  axis.  plain  V i k i n g Ridge, referred  In the n o r t h e a s t rises  I n t h e e a s t , where i t c o n t a c t s  t o as t h e B i s h o p G l a c i e r .  There  miles  t h e G a r i b a l d i Neve f o r m s a t o n g u e o f i c e  i c e h a s b e e n impeded b y Cone.  of  average  e a s t , i t i s c o n f i n e d by t h e V i k i n g Ridge w h i c h  t o c o v e r 6,800 f e e t .  Park.  originates  I t i s a p p r o x i m a t e l y 2.0  i t s northeast-southwest  Mountain  The  southern flow of  a v o l c a n i c v e n t known as t h e  i t has been s p l i t  Opal  t o f o r m an e a s t e r n and  5  Plate 1  -  Map  of the study  area.  62S Howe Sliect MU V A N C O U V E R 1, B C  44M  MAP NO  PS  •C  6 w e s t e r n tongue o f gresses the Pitt  ice.  In the  and  o v e r s p i l l s northeastward  Valley whilst  the  main f l o w t e r m i n a t e s  i c e tongue t o the  Toward t h e vations  south of  is Little  s o u t h by  a low  Lava Mountain The  part  of  rise  Squamish V a l l e y ,  The height of  ridge  6,500 f e e t .  composed o f  an  the  (5,800 f e e t )  and  whilst  (5,600  Diamond Head.  tongues of  ice.  feet)  This  of  Garibaldi  The  western  flowing  south i n t o  eastern  tongue a  number  drainage channels d r a i n  south-  from the  is  the  s o u t h w a r d s i n t o Skookum C r e e k .  Ridge  the  ele-  i s o l a t e d groups  southern part  t o R i n g Creek,  o f unnamed g l a c i o - f l u v i a l e a s t w a r d s and  Little  abuts the  Neve, d i v i d i n g i t i n t o two  Viking  lower  t h i s g r o u p i s O p a l Cone  east  cone t h a t  tongue g i v e s  Warren  I t i s connected to  Columnar Peak,  to  m i l e s due  a volcanic  the  (5,700 f e e t ) .  final  1.5  tuffs.  (5,300 f e e t ) , t o two  of p y r o c l a s t i c rocks,  into  north-west.  Diamond Head, 6,700 f e e t ,  col  trans-  i n the  G a r i b a l d i Mountain at  accumulation of v o l c a n i c  B.  ice  divide  Glacier  lying  n o r t h e a s t the  sub-region has  a northwest-southeast trend.  ridge, The  c o n s i s t i n g of  most n o r t h e r l y  three  summits,  The  average  is  summit i s c a p p e d by  a dome  7 of  i c e f r o m w h i c h a r i s e s a number o f i c e - a p r o n s  steep  i c e walls  on t h e n o r t h e a s t  headwaters o f t h e P i t t ridge  culminates  separated  River.  overlooking the  The h i g h e s t  i n t h e second  by a steep  face  forming  part of this  summit o v e r 6,800 f e e t ,  gap from t h e n o r t h e r l y p a r t  ridge.  The s o u t h e r n f a c e  inclined  rock  frequent  avalanches during  of this  of the  ridge consists of  slabs which are repeatedly thewinter,  swept c l e a n b y  s p r i n g a n d summer  months. C. Mamquam M o u n t a i n This east  sub-region  sub-region  corner  forms e x t e n s i v e  o f the area  studied.  highlands  i n the south-  These h i g h l a n d s  have  been d i v i d e d  i n t o two g r o u p s b y an e x t e n s i v e  The  g r o u p h a s a n o r t h e a s t - s o u t h w e s t t r e n d and  northern  consists  of ridges  that  are highly serrated with  gendarmes and a i g u i l l e s northwest face  of this  rising ridge  t o over  a number o f c i r q u e  vestiges  o f a f o r m e r more e x t e n s i v e  southern part  isolated  7,000 f e e t .  The  i s p r e c i p i t o u s and s t i l l  contains  The  cirque.  g l a c i e r s and i c e a p r o n s , valley  glaciation.  o f t h e Mamquams i s more e x t e n s i v e a n d  culminates  i n Mount Mamquam  originates  the extensive  (8,475 f e e t )  from which  Mamquam I c e f i e l d h a v i n g  an average  8 e l e v a t i o n o f over  7,000 f e e t .  eastwards i n t o the P i t t  River.  of these mountains s t i l l lying  i n the hollows  The o u t f l o w i s n o r t h a n d  contain small isolated  an e x t e n s i v e c o v e r o f i c e . sented by b o t h v o l c a n i c  of frost  glacierets  areas a r e emerging from The r o c k o u t c r o p s  and p l u t o n i c  They a r e s i t u a t e d  periphery of, the large by p i l e s  faces  of the cirques.  A p p a r e n t l y many o f t h e s e  groups.  The s o u t h a n d w e s t  are repre-  (quartz-diorite)  i n t h e midst>  icefields.  below  and on t h e  They a r e c h a r a c t e r i z e d  - shattered debris,  ice-eroded rock  p a v e m e n t s w i t h numerous i c e g o u g e s , a n d s h a l l o w  kettle  h o l e s between d e p r e s s i o n s .  2.  GEOLOGY A c c o r d i n g t o Mathews  (1958),  hensive g e o l o g i c a l  survey,  may be i n t e r p r e t e d  as f o l l o w s :  The  region consists  Volcanics and V i k i n g A.  who p u b l i s h e d a compre-  the geology  o f the study  area  o f two r o c k t y p e s t h e G a r i b a l d i  a n d t h e Q u a r t z - D i o r i t e s o f t h e Mamquam M o u n t a i n s Ridge.  The G a r i b a l d i V o l c a n i c s These v o l c a n i c s  a r e a p p a r e n t l y P l e i s t o c e n e i n age.  9 The main s o u r c e was Mountain. site  cone  material was  from the p r e s e n t s i t e  A c c o r d i n g t o Mathews from which was  a large  extruded.  lava,  extensive area of v o l c a n i c  (1958) t h i s was  avalanche of  This  l a r g e l y of d a c i t i c  of G a r i b a l d i  fragmented  pyroclastic material, accumulated t o form  debris  f r o m v o l c a n i c bombs t o f i n e t u f f s .  breccia  and d a c i t i c  Diamond Head M o u n t a i n s , Mountain  whilst  L a v a Peak and  range  Today,  f o r m t h e G a r i b a l d i and  which  an  with a textural  varying  lava  a compo-  tuff-  Little  Columnar  t o t h e s o u t h a r e o f a wide range o f p y r o c l a s t i c  debris. The  s o - c a l l e d R i n g Creek Lava e x t r u d e d from  Cone, a s m a l l tongue t o be be  symmetrical v o l c a n i c  o f t h e G a r i b a l d i Neve. of Pleistocene  Opal  cone n e a r t h e s o u t h e r n  These  lavas  o r i g i n and a n a l y s i s h a s  are  considered  shown them t o  dacitic. The  dacitic  lava  amorphous m a t e r i a l  consists  partially  o f a f i n e groundmass o f  devitrified  w i t h a number o f  s u b h e d r a l and e u h e d r a l p h e n o c r y s t s o f s i l i c a plagioclase  feldspars,  minerals,  ortho-pyroxenes, amphiboles  a c c e s s o r y m i n e r a l s mainly i n the form of magnetite. plagioclase  feldspars  range  from:  and The  10  The  Ab90  An 10  Ab70  An 30  Ab50  An 50  range o f t h e orthopyroxene The  i s E n 60-En 94.  amphiboles occur mainly  of hornblende.  Mathews  a s pseudomorphous g r a i n s  (1958) h a s l o c a t e d a number o f  z o n e s where t h e r e h a s b e e n a l t e r a t i o n by  molten v o l c a n i c emanations.  rocks  a r e low i n p o t a s h  of the q u a r t z - d i o r i t e s  Characteristically  and i r o n  and h i g h  i n alumina  these and  lime. The  frequency  of the chemical  r o c k s has been r e p r e s e n t e d The or  iron  streaked  schists  i n these  i n F i g u r e s 2 and 3.  q u a r t z - d i o r i t e s have been c o n v e r t e d  have b e e n a n a l y z e d who  constituents  and.rusty  by Barshad,  clays".  to "silvery These c l a y s  a c c o r d i n g t o Mathews  (1958)  found: 30%  - 50% : m o n t m o r i l l o n i t e  15%  - 30% : h y d r o u s mica  35% - 4 0 % : k a o l i n i t e  or halloysite  B. The Q u a r t z - D i o r i t e s The this  origin  region they  of the q u a r t z - d i o r i t e s  i s plutonic.  a r e c o n s i d e r e d b y Mathews  In  (1958) t o be o f  11 two  different  age  groups.  The  which form the V i k i n g Ridge Cretaceous  age  and  form p a r t  The  o l d e r group  of pre-Upper  and  s o u t h Mamquam M o u n t a i n s .  younger  quartz-diorites  are probably of of the C a s t l e Cretaceous  post-Upper Towers  age  form the  Some n u n a t a k s ,  above t h e G a r i b a l d i Neve i n b o t h t h e c e n t r a l eastern p o r t i o n s of the  icefield,  batholith. north  protruding and  a r e composed o f  norththe  quartz-diorites. The  quartz-diorites  intrusive alteration  are e x t e n s i v e l y  on  along the c o n t a c t w i t h the c o u n t r y r o c k .  and p a r a g n e i s s .  The  biotite,  amphibolite,  t r e n d of these  a general northwest-southeast  intrusions i s  axis traversing  l e n g t h of the south f a c e of the V i k i n g Ridge i n t o t h e n o r t h and the q u a r t z - d i o r i t e s resistant  potash  s o u t h Mamquam M o u n t a i n s . are c o a r s e l y  to weathering  however, t h e lava,  latter  than the v o l c a n i c s .  rocks, mostly  and c o n t i n u i n g  and much more Chemically,  i n the form of  i r o n b u t h i g h i n l i m e and  the whole  Texturally  crystalline  a r e t h e same as t h e q u a r t z - d i o r i t e s , and  by  dykes o f m a t e r i a l t h a t underwent c o n s i d e r a b l e  T h e y a r e composed o f m i g m a t i t e , schist  contaminated  dacitic  b e i n g low  alumina.  in  12 3.  PEDOLOGY Soils  i n t h e G a r i b a l d i Park r e g i o n have n o t been  studied  t o date.  divided  into:  A.  Sedentary • This  Parent materials  A.  Sedentary  B.  Transported  C.  Solifluction  coarse angular  fragments devoid  rocks B.  The g r a d u a l  vegetation  Typical  material material  i s f o r m e d _in s i t u  accumulations o f rocks  by  c a n be  material  material  fields.  of the s o i l s  leads  and i s composed o f  of vegetation.  These  have been r e f e r r e d t o as b o u l d e r c o l o n i z a t i o n o f the rock  fragments  t o t h e development o f t h e f e l l - f i e l d s * .  fell-fields  c o n s i s t o f areas o f coarse  fragmented  i n t e r s p e r s e d with groups o f p l a n t s .  Transported  material  This material of o r i g i n ,  c a n be d i v i d e d - , d e p e n d i n g on t h e mode  i n t o s i x groups: i)  ii)  Glacial  deposits  Glacio-fluvial  deposits  *The t e r m " f e l l - f i e l d " i s synonymous w i t h S c h r o t e r ' s 1908) " G e s t e i n s f l u r e n " o r t h e term " F e l s e n - f l u r e n " .  (1904,  Frequency of m i n e r a l s i n the Dacitic  Lava of R i n g  Creek.  DACITE FLOW RING CREEK LAVA (DATA FROM MATHEWS)  % 40: A B C D E F G H I J  30-  20-  10B  D  E  F  H  ALBITE ANORTHITE QUARTZ HYPERSTHENE ORTHOCLASE MAGNETITE ILMENITE CORUNDUM APATITE H 0 2  14  F i g u r e 2.  Frequency of m i n e r a l s devitrified  i n the  rhyodacite.  D E V I T R I F I E D RHYODACITE EASTERN BASE OF LAVA PEAK (DATA FROM MATHEWS)  %  40 i  A B C D E F G H I  30 -  20  10 B  D  H  ALBITE QUARTZ ORTHOCLASE ANORTHITE HYPERSTHENE CORUNDUM MAGNETITE H 0 ILMENITE 2  15 iii) iv)  Alluvial Colluvial  v) A e o l i a n vi) i)  Glacial  deposits deposits  deposits  Volcanic  deposits  deposits  As most o f t h e r e g i o n under  the i n f l u e n c e  extensive. moraines  o l d e r moraines  because ii)  of i c e , g l a c i a l  a t one  deposits  They consist' o f t e r m i n a l  i n varying  shown t h a t  s t u d i e d was  and  compacted  and  are  lateral  degrees of compaction.  are h i g h l y  time  The  analysis  t h e y a r e b e c o m i n g p r o g r e s s i v e l y more a c i d  of leaching  Glacio-fluvial  of the b a s i c  elements.  deposits  Beyond t h e i c e f r o n t , g l a c i a l m e l t w a t e r quantities forms  iii)  of material  i n suspension.  o c c u r as o u t w a s h a p r o n s ,  trains,  braided  Alluvial  streams  and  fans,  carries  Depositional eskers,  valley  terraces.  deposits  In the a l p i n e rapidly  has  zone,  since  the water  table  f o l l o w i n g t h e thaw, many o f t h e w a t e r  are  seasonal.  Their  are  important i n that  deposits  drops courses  are not extensive  they frequently  support a  but  16 luxuriant hydrophytic iv)  Colluvial  deposits  These d e p o s i t s in  vegetation.  are subjected  t o mass movement  r e s p o n s e t o g r a v i t y and s o l i f l u c t i o n  very  unstable  Typical  and make  habitats f o r plant colonization.  o f those  deposits  are t a l u s slopes  a t the base  o f r o c k w a l l s where a l a r g e a s s o r t m e n t o f m a t e r i a l has  accumulated  v) A e o l i a n  the v i c i n i t y  of glaciers  vegetation  discussed  f i l m deposited  of dust on t h e  a t the margin of the g l a c i e r s .  Volcanic The  deposits  petrology  o f these  d e p o s i t s has been  u n d e r t h e s e c t i o n on g e o l o g y .  a wide t e x t u r a l range v a r y i n g  C.  particles  c a n be s e e n f r o m t h e c l o u d s  c a u s e d b y w i n d s and t h e f i n e  tuffs  fine  a r e t a k e n up b y w i n d s and r e d e p o s i t e d .  Evidence of t h i s  vi)  falls.  deposits  Within of rock  f r o m a v a l a n c h e s and r o c k  t o v o l c a n i c bombs  They have  from f i n e  s e v e r a l inches  p a r t i c l e s of i n diameter.  Solifluction* In.the  region  studied,  solifluction  is a  fairly  *The t e r m " s o l i f l u c t i o n " o r i g i n a l l y d e f i n e d b y A n d e r s o n (1906) i s mass f l o w o f w a t e r - s a t u r a t e d d e b r i s .  17 frequent  phenomenon o c c u r r i n g i n l o c a l i t i e s w i t h  textured  soil  particles  When t h e r e g o l i t h  d e v e l o p e d on i n c l i n e d  i s saturated with  movement o f t h e m a t e r i a l t a k e s ground.  the It  broader  mass  from h i g h e r  Solifluction i s characteristic  unconsolidated  terrain.  melt water,  place  fine  t o lower  of the fine  d e b r i s on O p a l Cone a n d a l s o a l o n g  inclined  i s common i n snow  ridges  i n t h e Mamquam  some o f  Mountains.  patches.  4. CLIMATE A. R e g i o n a l The  climate  climate  o f t h e A l p i n e Zone i n G a r i b a l d i  Provincial  P a r k , o n t h e b a s i s o f Koppen's c l a s s i f i c a t i o n , c a n be regarded  a s ET c l i m a t e ,  of snow-cover b u t s t i l l tundra  close proximity  precipitation  influences  the coast  However, t h i s on  area  t h e immediate  study  duration  a b l e t o d e v e l o p and m a i n t a i n  alpine-  ( K r a j i n a , 1959).  The a high  c h a r a c t e r i z e d by a long  of this  area  t o the coast  insures  f r o m t h e P o l a r M a r i t i m e a i r mass f o r most o f t h e y e a r  (Chapman, 1 9 5 2 ) .  i s b y no means t y p i c a l o f t h o s e  P a c i f i c Coast.  r e g i o n t e n d s t o be m o d i f i e d  that  The c l i m a t e  uplands  of this  by i t s leeward  situation  18 and  becomes t r a n s i t i o n a l  characterized  towards the  interior  c h i e f l y by more s e v e r e w i n t e r s  a l p i n e zone, and  lower,  snowfall. Practically  no  Mathews.(1951) h a s During 95"  and  10 y e a r s  mean a n n u a l Glacial  the annual  (4,900 f e e t  at G a r i b a l d i  Lake.  precipitation  was  48°F.  was  During  been r e c o r d e d  a.s.)  estimated  but  at  From 1952-1962  t o be  20  feet  - 2  climatic  produced  data are very  by W.C.  Taylor  scanty,  (1936,  glaciological  1938)  and  suggestive of c l i m a t i c  the p a s t t h r e e c e n t u r i e s .  g l a c i a l movements. b e t w e e n 1700 - 1890.  - 1712  The and  W.H.  fluctuations  Mathews c o r r e l a t e s  Using  a t any  r a t e s o f t r e e g r o w t h were 1830  - 1845  and  rates  o t h e r time  i n the  18th  and  reduced  glaciers  19th c e n t u r i e s  s i n c e waning of the Wisconsin  a i r p h o t o g r a p h s he  estimates  with  i n c r e a s e d between  Mathews c o n s i d e r s t h a t v a l l e y  attained a greater size than  the  feet.  o f t r e e g r o w t h a t t h e e a s t t o n g u e o f t h e Helm G l a c i e r  1875  the  retreat  Mathews , (1951) i s v e r y over  some f i g u r e s  approximate s n o w f a l l has  s n o w f a l l was  Although evidence,  data are a v a i l a b l e ,  t h e mean t e m p e r a t u r e  Diamond Head C h a l e t  B.  recorded  e l e v e n months i n 1933  - 100"  past  climatic  t h a t b e t w e e n 1911  Ice. -  1947  19 the  a b l a t i o n of the  t u d e o f 5,500 was r a t e of  ice  165  ±  25  a b l a t i o n o f 4.5  Figure  3 shows t h e  tongue.  T h i s has  b y Mathews and 41  s u r f a c e o f G a r i b a l d i Neve a t an  years.  o n l y one  glaciation  the  r e c e s s i o n o f the Warren G l a c i e r been p l o t t e d from d a t a the  area  5.  southeast  trated  as h i g h  BOTANICAL  i s evidence  as  area  surrounding  G.A.  Hardy  Park.  change i n t h e  e c o t o n e was  Brink  subalpine  c l u d e d t h a t the  and  7,200 f e e t  G a r i b a l d i Lake.  (1926) and  most r e c e n t work h a s  zone o f t h e  of  on  the  INVESTIGATIONS  c o l l e c t i o n s were made b y  u n d e r t a k e n by  past  Striations  J . Davidson,  p u b l i s h e d h i s f i n d i n g s i n 1913-1914.  The  the  e a r l i e s t b o t a n i c a l i n v e s t i g a t i o n s were  i n the  botanical  studied there  collected  o f Helm Peak.  BRIEF HISTORY OF The  r e c e s s i o n over  (Mathews, 1 9 5 1 ) .  e r r a t i c s have been r e c o r d e d ridge  t h e mean a n n u a l  feet.  represents  Within  feet with  alti-  taken  F.  Perry  place  a directional  change.  i n the  who was  subalpine  directional  short trees i n The  first  (1928).  forest-heath ecotone". of  The  L a t e r , work  (1959) s t u d i e d "A  establishment  concen-  He  con-  the  c h a n g e s may  possibly  h a v e b e e n due t o t h e g l a c i e r s u n d e r g o i n g a c c e l e r a t e d l o s i n volume  f o r a century  i n the f o r e s t - h e a t h nishing  snow  cover.  o r more.  e c o t o n e may  Changes t a k i n g be t h e r e s u l t  of a  place dimi-  21  Figure  3.  The  retreat  F r o n t over  o f t h e Warren G l a c i e r a 41 y e a r  period.  Ice  RETREAT  OF WARREN GLACIER  41 YEAR PERIOD  - GLACIER  I C E FRONT OVER A  (DATA FROM TAYLOR AND MATHEWS) SCALE 1" = 100 F E E T  1906  1928  1912 1922  100  1935  1936  1938  1947  \  200  400  300 FEET  500  600  III.  1.  METHODS OF STUDY  ORIENTATION As  tration  the success of the p r o j e c t of a r e l a t i v e l y  d e p e n d e d upon t h e p e n e -  inaccessible region,  was made i n December 1960 and l a t e r to consider  possible  Head s i d e . commenced, shing  In J u l y ,  into the region  September,  1961.  2. BASIS FOR  SYNSYSTEMATIC  the outset,  establishing  the region.  be  t h e same as t h a t  presenting  season s t a r t e d  during again  i n September o f t h e same y e a r .  UNITS  associations  The p l a n t defined  as r e p e a t e d l y  of  occurred  a s s o c i a t i o n c a n be r e g a r d e d t o a t the T h i r d  Congress i n B r u s s e l s  i s a plant  t h e end o f  p l o t s were s e l e c t e d w i t h an o b j e c t  such p l a n t  in  tion  and  Some c l i m a t i c d a t a were c o l l e c t e d  June 1962 and t e r m i n a t e d  Botanical  actually  for soil  Work c o n t i n u e d u n t i l  w i n t e r o f 1961-1962 and t h e f i e l d  At  f r o m t h e Diamond  1961, when t h e p r o j e c t  camps, w e a t h e r s t a t i o n s and p l o t s studies.  in  i n May o f 1961 i n o r d e r  two weeks were d e v o t e d t o p r o v i s i o n a l l y e s t a b l i -  vegetation  the  entry  a reconnaissance  International  i n 1910 v i z . : "An  community o f d e f i n i t e f l o r i s t i c  associacomposition  a u n i f o r m p h y s i o g n o m y , and g r o w i n g i n u n i f o r m  habitat  conditions.  u n i t o f synecology" t i o n may c o n t a i n edaphic b a s i s  The a s s o c i a t i o n i s t h e f u n d a m e n t a l (Whittaker,  further  1962).  A plant  associa-  subordinate units recognized  and t h u s r e g a r d e d  as s u b - a s s o c i a t i o n s  on an  or  as v a r i a n t s when t h e a s s o c i a t i o n d i f f e r s m i c r o c l i m a t i c a l l y (Drees,  3.  1953).  CLIMATE Owing t o t h e s h o r t  confine Brink  field  climatic studies  s e a s o n i t was d e c i d e d  to snowfall  (1959) and K r a j i n a  and t e m p e r a t u r e a s  (1960) c o n s i d e r e d  f a c t o r s t o be t h e most s i g n i f i c a n t  to  i n this  t h e s e two type o f  vegetation. Observations of various summers o f 1961 and 1962. collected end  during  fall  R e c o r d s o f one s t a t i o n were  t h e whole year  f r o m summer 1961 up t o t h e  o f summer 1962 (Diamond Head C h a l e t ) ..  s t a t i o n s were e s t a b l i s h e d the  phenomena were made i n t h e  alpine  i n the subalpine  Local climatic e c o t o n e and i n  zone a n d m a i n t a i n e d t h r o u g h o u t t h e summer a n d  months.  C o m p a r a t i v e d a t a were c o l l e c t e d f r o m :  Diamond Head'Lodge t u d e 4 9 ° 48' n o r t h ,  ( a l t i t u d e 4,900 f e e t , longitude  1 2 2 ° 49"  lati-  west).  24 The  summit o f O p a l Cone a t t h e h e a d  R i n g Creek  north,  Moraine  above Mamquam Lake  56  1  daily  longitude  west).  (altitude  5,200  longitude  122°  west).  range  on a n u n a t a k (altitude  latitude  1 2 2 ° 58*  l a t i t u d e 4 9 ° 50' n o r t h ,  o f t e m p e r a t u r e was  a krummholz community and  6,000feet,  circle  latitude  These  on t h e map  The m e t e o r o l o g i c a l  also  a moss l i c h e n  a t the n o r t h e r n p a r t  1 2 2 ° 58' w e s t ) . black  5,600 f e e t ,  4 9 ° 50'  feet,  The  (altitude  of  compared  between  community  of Garibaldi  4 9 ° 51' n o r t h ,  situated  Neve  longitude  s t a t i o n s h a v e b e e n marked w i t h a o f t h e s t u d y a r e a , page  5.  i n s t r u m e n t s , u s e d f o r t h e work,  were as. f o l l o w s : (1)  S i x ' s maximum and minimum  (2)  two  different  the  s m a l l type manufactured by G o e r t z w i t h  t h e 4"  types of  thermometer;  hygrothermographs;  c l o c k w o r k drum and t h e l a r g e r  more  a c c u r a t e type manufactured by F u e s s which . had I t was  an 8"  drum.  impossible  to calibrate  the instruments t o g e t h e r  25 in  a standardized  environment, because the  o v e r w h i c h t h e y were c a r r i e d b e f o r e the  s e t t i n g them  S t e v e n s o n s c r e e n would have n e u t r a l i z e d  bration.  were e n c o u n t e r e d  weather s t a t i o n . i n the  Such  c a l i b r a t i o n of  would have been d e t r i m e n t a l  within  precise  Hence a d j u s t m e n t s were made when t h e  were a c t u a l l y a t t h e as  rough t e r r a i n  instruments  inaccuracies  the  instruments  i f a b s o l u t e d a t a were  However, r e s u l t s showed t h a t  comparative  cali-  studies  required. between  s t a t i o n s were s i g n i f i c a n t .  4.  VEGETATION The  basic  vegetation  beginning of t h i s s e c t i o n . was  undertaken  the  s y n t h e t i c a l phase  A.  The  the  s e l e c t i o n of  basis  ment.  The  c r i t e r i a was present plant  were c o n s i d e r e d a t  The  study of  s t a g e s - the  the  the  vegetation  a n a l y t i c a l phase  (Braun-Blanquet,  and  1932).  a n a l y t i c a l phase  The on  i n two  units  of  a number o f p l o t s was  floristic  demarcation of  homogeneity i n a u n i f o r m the  plots  sometimes d i f f i c u l t .  i s undergoing the  communities are  delimited  last  according to The  environthese  whole r e g i o n  stage of d e g l a c i a t i o n ,  frequently  i n a state  of  flux.  at hence  I n t h e more s t a b i l i z e d  h e a t h e r and meadow c o m m u n i t i e s  100 s q u a r e m e t r e s was t h e a r e a  chosen.  b r o k e n t e r r a i n where t h e r u p i c o l o u s 2 - 6 The  c o m m u n i t i e s grow,  m e t r e s s q u a r e was t h e r a n g e g e n e r a l l y  selected.  e s t a b l i s h e d p l o t s were l a r g e enough t o i n c l u d e a l l  characteristic  species  association).  (species  It will  will  that  characterized the  be f o u n d , t h e r e f o r e ,  more homogeneous a p l a n t  community t h e more  that the uniform  be t h e s i z e o f p l o t s . The  dividing to  I n t h e more  life A  first  stage of vegetation  the plant  communities  analysis consisted of  into four  strata  according  form: layer -  arborescent  B layer -  plants  shrubby p l a n t s  ( < 10 m h i g h )  (<20 cm - >10 m h i g h )  C l a y e r - . herbaceous p l a n t s  ( > 20 cm h i g h )  D layer -  b r y o p h y t e s and l i c h e n s  The  on a p e r c e n t a g e b a s i s ,  cover,  a s s e s s e d and r e c o r d e d  f o r every p l o t .  a n a l y s i s was u n d e r t a k e n b y u s i n g a)  Species  b)  Sociability  c)  Vigor  three  significance  o f each l a y e r  was  The n e x t s t a g e o f scales:  S p e c i e s , s i g n i f i c a n c e b e i n g a measure o f p l e n t i f u l n e s s of  a s p e c i e s was a s s e s s e d b y an e l e v e n g r a d e  Domin  and K r a j i n a  expressed was  also  (Krajina,  1933).  the space r e l a t i o n s h i p  Sociability,  of individual  d e t e r m i n e d b y an e l e v e n g r a d e  Domin and K r a j i n a Vigor,  (Krajina,  grade  which  plants,  adapted  of a plant,  from  was  scale:  -  dead o r d y i n g  1  -  v i g o r low  2  -  healthy but not vigorous  3  -  vigorous  been e v a l u a t e d ,  used by  1933).  0  When t h e v e g e t a t i v e  c h a r a c t e r i s t i c s o f each s p e c i e s had  a record  was made o f t h e g e n e r a l  mental c h a r a c t e r i s t i c s o f the p l o t . as  scale  a measure o f t h e v i t a b i l i t y  a s s e s s e d on a f i v e  scale  environ-  T h e s e may be  listed  follows: i)  Region  ii)  Plot  iii)  Size  iv) v) vi)  vii) viii)  of plot  Slope or  gradient  D u r a t i o n o f snow Exposure  ix) x) xi) xii)  Wind  influence  Altitude Phy s i o g r aphy Hygrotope Parent Soil  material  type  28 B)  The  synthesis  Species enabled  were g r o u p e d  a test  accumulated  phase  t o be  data.  i n t o presence  made o f t h e h o m o g e n e i t y o f P r e s e n c e was  occurrence of a c e r t a i n species plots. used by  The  The  classes.  s c a l e a d o p t e d was  used  This the  as a measure o f  throughout the f i v e  a number o f  degree  scale  Braun-Blanquet: per cent  presence  -  80 p e r c e n t  presence  41  -  60 p e r  21  -  40 p e r c e n t  presence  1 -  20 p e r c e n t  presence  V  -  81  - 100  IV  -  61  III  -  II  -  I  -  concept of  Braun-Blanquet,  poor,  s p e c i e s was  In t h i s  species  5  region,  according  having a  rich  however, t h e f l o r a i s characteristic  (1932)  to five  determined classes of  fidelity:  species  Exclusive species, or  o r i g i n a t e d by  i n regions  Braun-Blanquet  A.Characteristic Fid.  species,  hence a combination o f  used.  characteristic  'character'  i s of great value  and v a r i e d f l o r a . relatively  cent presence  almost  confined  completely  c o m p l e t e l y t o one  community.  29 Fid.  4  Selective  species  found  frequently i n  more t h a n one community, though r a r e l y , i n other Fid.  3  P r e f e r e n t i a l species: in  several  but also, communities.  species  present  c o m m u n i t i e s more o r l e s s  abundantly but predominantly or with better  vitality  i n one c e r t a i n commu-  nity. B.  Companions Fid.  2  Indifferent species  found  i n many  communities w i t h o u t pronounced C.  Accidentals Fid.  1  Strange of  Finally, species  species,  a preceding  or intruders,  or r e l i c t s  community.  t h e average s i g n i f i c a n c e o f i n d i v i d u a l  throughout t h e p l o t s which formed t h e a s s o c i a t i o n  was c a l c u l a t e d .  This,  quency o f s p e c i e s  within  C. L i f e  affinities.  i n e f f e c t , was a measure o f f r e the a s s o c i a t i o n .  forms  This The b a s i s  i s a system o r i g i n a t e d by Raunkiaer for this classification  degree o f p r o t e c t i o n  afforded  (1905).  i s t h e p o s i t i o n and  t h e p e r e n n a t i n g bud  during  30 the unfavourable  growing  season.  o u t l i n e d by R a u n k i a e r  were n o t  those  are l i s t e d  t h a t were f o u n d  Pn  - Nanophanerophytes about  Ch  0.25  Ch(B+L)  found  life-forms  i n t h e A l p i n e Zone,  below:  (shrubs) p e r e n n a t i n g buds  - 2 m above t h e  - Chamaephytes buds j u s t  A l l the  ground.  (surface plants) with  above t h e  s u r f a c e of the  - Chamaephytes w h i c h a r e f o u n d These i n c l u d e the  perennating ground.  i n the D  c a r p e t mosses and  layer.  fruticose  lichens. H  - Hemicryptophytes, to the  H  (B+L)  very  close  ground.  ~ Hemicryptophytes include  p e r e n n a t i n g bud  which form the D l a y e r  the c r u s t o s e l i c h e n s  and  the  and  thalloid  bryophytes. When t h e a s s o c i a t i o n s h a d 0 form  s p e c t r a were c a l c u l a t e d b y  percentage the D.  and  the  determining both  the  a l s o the  l i f e - f o r m s per a s s o c i a t i o n  on  average  a percentage  cover  life-  of  basis.  Nomenclature The  new  of life-forms  been e s t a b l i s h e d ,  plant  associations described i n this  synsystematic units,  d e s c r i b e d by  study  the author.  are The  nomenclature f o l l o w s  the r u l e s , l a i d  B l a n q u e t and h i s f o l l o w e r s . designated of  by a t t a c h i n g  down b y B r a u n -  Thus, t h e a s s o c i a t i o n i s  the s u f f i x  - etum t o t h e stem  t h e g e n u s name, and a s p e c i f i c " name  i n the genitive The  adjective)  i s added t o t h e a s s o c i a t i o n name.  subasspciation  etosum  (mostly  i s i n d i c a t e d by a t t a c h i n g  t o t h e stem o f t h e g e n e r i c  name i n t h e g e n i t i v e  name and a  the s u f f i x  -  specific  i s added t o t h e s u b a s s o c i a t i o n  name.  5. SOILS The basis tion  object  forsoil  factors of the p l a n t  also to a greater  succession.  Soil  rhizosphere. from v a r y i n g  s t u d y was n o t t o draw up a  c l a s s i f i c a t i o n , but to obtain  on e d a p h i c  might lead  of the s o i l  some  communities,  informathat  understanding o f plant  s a m p l e s were t a k e n m a i n l y f r o m t h e  A total  of sixty  depths ranging  s a m p l e s were c o l l e c t e d  from t h e s u r f a c e  to 3 feet  below. A. C h e m i c a l and p h y s i c a l The  b a s i c p r o c e d u r e s u s e d were t h o s e d i s c u s s e d i n  Jackson's S o i l The  analyses.  C h e m i c a l A n a l y s i s , 1960.  s o i l s were a i r d r i e d and p a s s e d t h r o u g h a 1.0  mm  32 sieve,  and t h e n  analyzed  f o r the f o l l o w i n g chemical  properties: i) ii)  pH v a l u e ; t o t a l nitrogen content weight  iii)  total  basis); organic matter  weight iv)  total  (on a p e r c e n t d r y  (on a p e r c e n t d r y  basis); exchange c a p a c i t y (determined  i n m.e./100  grams o f s o i l ) ; v)  exchangeable C a of  Techniques  used  soil  + +  ,  KT" and N a 1  +  u s i n g the P e r k i n Elmer  i n the chemical  ( i n m.e./lOO grams spectrophotometer).  determination of the s o i l s  have been i n c l u d e d as Appendix I I . The  relatively  s i m p l e method o f s i e v i n g  fragments t o determine  particles  s u p e r f i c i a l ' d e p o s i t s was u s e d .  size  the rock  o f some o f t h e  The s i z e  c l a s s e s were  those p u b l i s h e d i n the U n i t e d S t a t e s Department o f Agriculture  Soil  Survey  Manual  Gravel  (1951),  and a r e a s f o l l o w s :  above 2 mm  Fine gravel  2  -  1 mm  Coarse  sand  1  -  0.5  Medium  sand  0.5  - 0.25  mm mm  33 F ine  sand  Very  fine  Clay  silt  0.25 - 0.1 sand  0.1  mm  - 0.05  0.05 - 0.002  mm mm  6. PETROLOGY Thin sections The  geology  of t h i s  b y W.H.  Mathews  of  samples from  rock  r e g i o n has been f u l l y  (1951, 1 9 5 8 ) .  However,  dealt  some t h i n s e c t i o n s  t h e p l o t s were p r e p a r e d  and an a p p r o x i -  mate v i s u a l e s t i m a t e o f t h e m i n e r a l s was d e t e r m i n e d a p e t r o l o g i c a l microscope.  During t h i s  a d v i c e was o b t a i n e d f r o m L . H i l l s , the Department o f Geology. many p l o t s were e s t a b l i s h e d deposits,  accumulated  By u s i n g Mathew's it  from  with  using  s t u d y a i d and  research student i n  T h i s study proved  u s e f u l as  on t r a n s p o r t e d s u p e r f i c i a l a l a r g e number  d a t a and t h o s e  of sources.  from t h e t h i n  sections,  was p o s s i b l e t o a s s e s s t h e p a r e n t m a t e r i a l o f t h e p l o t s .  34 IV. 1.  CLIMATE  A.  Snowline  MATERIALS AND RESULTS OF STUDY  P r e v i o u s workers is  h a v e shown t h a t g l a c i a l  general throughout the region.  season,  recession  I n 1961 - 1962 f i e l d  t h e lower l i m i t s o f i c e tongues  and g l a c i e r s  c i r q u e s were o b s e r v e d i n a number o f l o c a l i t i e s :  TABLE I - A l t i t u d e  o f lower l i m i t s o f t h e i c e tongues Summer 1962  Localities  Altitude (feet)  Bishop G l a c i e r G a r i b a l d i Neve E a s t Tongue G a r i b a l d i Neve West Tongue Enostuck Cirque Mamquam S o u t h - w e s t C i r q u e G l a c i e r e t s N o r t h Mamquam  For Portsch of  t h e d e t e r m i n a t i o n o f t h e s n o w l i n e Simony a n d (1927) u s e d  the lower  crest  4,500 5,200 5,400 6,400 6,500 6,600  an a r i t h m e t i c a l  mean b e t w e e n  altitude  l i m i t s o f t h e i c e and t h e average h e i g h t o f  above f i r n  .  On t h i s b a s i s t h e p r e s e n t a l t i t u d e  F i r n - l i n e - D e m a r c a t i o n i n a g l a c i e r s y s t e m where t h e b a l a n c e i n snow b e t w e e n a b l a t i o n and a c c u m u l a t i o n o c c u r s .  35 of the sea  snowline  level.  of the  region  the  found  t o be  the  altitudinal  no  data  altitude  d e p t h s o f snow..  concerning  total  However,  c a n n o t a l w a y s be Large areas  annual  radiation rays.  of  snow a r e  i s g r e a t e s t on  of the  insolation  the v e g e t a t i o n  The  nities,  of  30°.  i n the  those  i n Figure  and  the  Solar to the  sun's  o f 23^°  would  As  of  most  to  distribution  their  physiography  o f p l a n t commu-  Thus s t u n t e d  maintain  and  significance.  o f t h e krummholz.  5 represent  Two  i s confined to south  where snow c a n n o t a c c u m u l a t e t o any  o f t e n able to develop  upon  wind.  snow i n r e l a t i o n  growing season i s l o n g e r .  curves  with  greater  depth.  a slope  i s of considerable  importance  particularly  terrain, the  this  accumulation  of prime  one  above 6,000 f e e t  west exposures,  is  and  I n more n o r t h e r l y a l t i t u d e s  of  zone h a v e p r e c i p i t o u s  slopes perpendicular  r e c e i v e more r a d i a t i o n t h a n  snowfall  equated with  f a c t o r s w h i c h have c o n s i d e r a b l e e f f e c t  distribution  frequency  i n a number  t e r r a i n where snow c a n n o t a c c u m u l a t e t o any other  above  studied.  C o a s t a l A l p i n e Zone.  instances  6,500 - 6,600 f e e t  Figure 4 represents  There are in  was  On great  depth,  trees  are  growth.  snow d e p t h s and  steep  The  duration  of  36 snow c o v e r i n t h e u p p e r (altitude,  5,000 f e e t )  the  V i k i n g Ridge  are  related  limits  and on t h e s o u t h - w e s t  (altitude,  t o wind  of the subalpine  6,800 f e e t ) .  direction  wall of  Snow c o r n i c e s  and p h y s i o g r a p h y .  l a r g e b a n k s o f snow o f t e n p e r s i s t months, t h e m e l t w a t e r  forest  These  t h r o u g h o u t t h e summer  f r o m them s a t u r a t i n g n e i g h b o u r i n g  localities. B. M i c r o c l i m a t e One o f t h e m a j o r climate the  controlling  factors  i s the extent o f i c e sheets.  contrast  of the l o c a l  T a b l e I I shows  i n temperature between t h e s t a t i o n s  p r o x i m i t y t o t h e i c e f i e l d w i t h those i n t h e upper of  i n close limits  the s u b a l p i n e zone. TABLE I I - C o m p a r i s o n o f a c c u m u l a t e d and t o t a l d e g r e e s of f r o s t between t h e upper l i m i t s o f t h e s u b a l p i n e and a l p i n e zones.  Localities  Upper l i m i t s o f t h e s u b a l p i n e zone Mamquam M o r a i n e O p a l Cone NOTE:  Day d e g r e e s (F) Aug.l - Sept. 8 1961  T o t a l d e g r e e s (F) o f f r o s t A u g . 1 - S e p t . 20 1961  526° 339° 301°  Day d e g r e e s a r e a c c u m u l a t e d above 4 3 ° F .  3° 17° 32Q daily  mean  temperatures  T o t a l d e g r e e s o f f r o s t a r e t h e summation o f minimum t e m p e r a t u r e s b e l o w 32°F.  37  F i g u r e 4.  A l t i t u d i n a l Frequency of region  studied.  the  ALTITUDINAL FREQUENCY OF REGION STUDIED FREQUENCY  %  40 ,  30  20 "  10  0  4, 000  5,000  6,000 7,000 ALTITUDE IN F E E T  8,000  Comparison suba'lpine  of  snow  forest  depth  and  i n  krummholz  COMPARISON OF SNOW DEPTHS BETWEEN SUBALPINE FOREST AND VIKING KRUMMHOLZ JUNE/JULY 1962 FT. (Number o f d a y s i n d i c a t e t h e d u r a t i o n o f snow c o v e r . )  DAYS  39 Further  confirmation  when t h e t r e n d s  studied  (altitude  o f subalpine  (see F i g u r e  6).  5,600 f e e t ) s t a t i o n  zone  (altitude  extensive  localized Icefield  icefields  firn  winds.  During  using  centres  scale.  of small high  o f these  r e d u c e d as one g o e s h i g h e r The r a n g e  different Neve. shine  and l o w e r v a l l e y s  great  regularity at  this  on t h e B e a u f o r t  f i r n winds a r e g r a d u a l l y  above t h e s u r f a c e  o f t h e snow-  i n t e m p e r a t u r e was m e a s u r e d  i n two  p l a n t c o m m u n i t i e s on a n u n a t a k above G a r i b a l d i  During totals  s t a b l e weather c o n d i t i o n s w i t h h i g h  t h e maximum t e m p e r a t u r e  c a n o p y was g r e a t e r community.  pressure  Wind v e l o c i t i e s were c a l c u l a t e d  and t h e n r e p r e s e n t i n g  The e f f e c t s  field.  cooling  s t a b l e w e a t h e r c o n d i t i o n s when t h e  o f 3 - 8 m.p.h.  a flag  local  o r c o o l i n g under t h e i n f l u e n c e s o f  t h e f i r n winds w i l l blow w i t h  velocities  upon  of atmospheric  temperature g r a d i e n t between t h e i c e f i e l d is high,  and t h e  B o t h G a r i b a l i d Neve and Mamquam  form l o c a l i z e d  systems.  temperature  4,900 f e e t ) a r e  The c o o l i n g e f f e c t  t e m p e r a t u r e s may be p u r e l y t h e r e s u l t by  i s found  o f t h e d a i l y maximum and minimum  b e t w e e n O p a l Cone upper l i m i t s  o f c o n t r a s t i n g temperatures  sun-  i n t h e krummholz  t h a n t h a t i n an a d j a c e n t  moss-lichen  The minimum t e m p e r a t u r e s were n o t a p p r e c i a b l y  d i f f e r e n t b e t w e e n t h e two c o m m u n i t i e s .  40  Figure  6.  Comparison  of d a i l y  maximum and  minimum t e m p e r a t u r e b e t w e e n t h e upper zone  limits  of the  and t h e a l p i n e  subalpine zone.  COMPARISON OF DAILY MAXIMUM AND MINIMUM TEMPERATURES BETWEEN SUBALPINE PARKLAND AND -OPAL CONE  (ALPINE ZONE) - AUGUST/SEPTEMBER 1961  TEMPERATURE °F 90°-.  SUBALPINE PARKLAND OPAL CONE  (ALPINE . ZONE)  - -  41 The  variation  i n maximum t e m p e r a t u r e d i d , however,  result  i n t h e krummholz h a v i n g  a somewhat l a r g e r t e m p e r a t u r e  range  This  (see F i g u r e  evidence climate  7).  c o u l d be  considered  t h a t t h e krummholz community has than the  adjacent  i s more s h e l t e r e d f r o m t h e The  moss-lichen  subalpine  zone d u r i n g  1961  f o r the  - 1962  a warmer  community,  prevailing  temperature records  as  and  local  as i t winds.  upper l i m i t s  are  eco-  of  summarized  in  the Table  III.  2.  SOILS In the  of  C o a s t a l A l p i n e Zone, s u b j e c t e d  snow p a c k ,  soils  g r e a t e r p a r t of  are  the  areas  can  dry  developing The  on  soils  out,  may  be  f o r m e r s o i l s may  be  d r y i n g out  terrain  regarded  summer b y  as  short  snow, some are  substrate. broad  (Kubiena, those  divisions  1953).  which are  water from m e l t i n g  for a short period  the  with, s o i l s w h i c h  d i v i d e d i n t o two terrestrial  periods  water f o r a  i s c l e a r e d of  those  a h i g h l y permeable  and  late  However, d u r i n g  especially  semi-terrestrial  during  u s u a l l y s a t u r a t e d by  year.  g r o w i n g s e a s o n when t h e  to long  i n autumn.  inundated  snow, and The  The  possibly  terrestrial  42  Figure  7.  Range o f t e m p e r a t u r e krummholz community.  between a  and a m o s s - l i c h e n  RANGE OF TEMPERATURE BETWEEN A MOSS L I C H E N COMMUNITY AND A KRUMMICOMMUNITY OF YELLOW CEDAR - 12 J U L Y - 20 SEPTEMBER, 1 9 6 2 . KRUMMHOLZ MOSS L I C H E N  TABLE  III.  Maximum, minimum and mean t e m p e r a t u r e s a t Diamond Head C h a l e t , 4,900 f e e t ( S p e c i f i e d months, 1961-1962).  Months Max.  JanuaryFebruary March April May June July August September October November December  -  —  -  1961 Temperatures Min. Mean  -  -  --  --  .-  70.8  50.8  67.6 47.5 39.8  50.5 37.4 31.1  —  -—  -  -60.8 58.9 42.6 35.5  -—  Max.  22.2  -33.3 32.3  -  54.5 50.7 53.8 40.6 31.6 —  1962 Temperatures Min.  Mean  16.7  19.9.  27.7  -  27.6  45.2 42.3 43.5 33.1 25.7  -  30.5 29.9  -  49.8 46.5 48.6 36.8 28.6  -  soils.on  t h e o t h e r hand d e v e l o p  on  a highly  permeable  p a r e n t m a t e r i a l w i t h the water t a b l e w e l l below  the  surface. A.  Semi-terrestrial Two  One  was  soil  raw  soils  t y p e s were f o u n d t h a t b e l o n g  a very  communities.  shallow s o i l , Kubiena  (1953) h a s  as Snow B a s i n Rutmark. a c c o r d i n g t o Kubiena,  developed  The 1953)  to t h i s  b e l o w snow p a t c h  referred  other s o i l  class.  t o such  was  that developed  Bog  soils  Peats  (Moss-  i n depressions  b e l o w Sphagnum c o m m u n i t i e s on t h e u p l a n d p l a t e a u s . The ties  Snow B a s i n Rutmark was  s u b j e c t e d t o snow c o v e r p e r s i s t i n g  months o f t h e y e a r . occurred This  characteristic  soil  and  the  typical  4.9  were r e l a t i v e l y  of  groups of bryophytes  Bryum s p e c i e s , and a relatively  of  silt.  The  f o r over  usually  continually saturated.  The  The  composed o f P o h l i a  overlying  values  d r u m m o n d i i, which  a t h i n grey  c o n s i s t e d o f up  undecomposed o r g a n i c m a t t e r  pH  vegetation consisted  P o l y t r i c h u m norvegicum  profile  ten  o f r o c k pavements w h i c h have  low.  t h i c k mat  locali-  snow r e c e d e d p o n d i n g  recently deglaciated.  of  in  the  s u b s t r a t e was  t y p e was  been r e l a t i v e l y  As  of  f o l l o w e d by  grew accumulation  t o 3 - 5 mm 2 -  3 cm  of  of fine  45 grey of  silt  this  with  silt  particles  was  from d i r e c t  subsequent to m e l t i n g suspension  of organic matter.  and  The  quartz-diorite  silt  was  rocks.  were u n d e r l a i n b y  d e p o s i t i o n from the  i n t o t h e b a s i n and  the b a s i n .  reports  h i g h l y impermeable r o c k s .  In the A l p s  ground, the  fissures being  no  o f any  evidence  study  over and  an  basins  a l o w e r l i p a t one  Scandinavia  filled  patterned  insulating  re-  Outlet for  Kubiena  s o i l s were f o r m e d on  p o s s i b l y because of the  pack forming  in  being  I n many i n s t a n c e s , t h e s e  t h a t many o f t h e s e  snow  o v e r l y i n g a f r a c t u r e d hamada* o f  the water g e n e r a l l y o c c u r r e d of  origin  a l s o from m a t e r i a l c a r r i e d  by water r u n n i n g  deposited.  The  with  ground  ice.  i n the  long periods  layer.  side (1953)  patterned  There  was  region of  this  o f h e a v y snow  Solifluction  i s very  common. The  Bog  Peats  b e l o w an e x t e n s i v e  typical  of the V i k i n g Ridge are s i t u a t e d  snow c o r n i c e f r o m w h i c h a  flow of melt water maintains thoughout the averaging lation  10  summer months. - 12  cm  a h i g h degree of s a t u r a t i o n The  i n d e p t h and  o f undecomposed and  m a t t e r o f Sphagnum b o g  perpetual  profile  is  shallow  c o n s i s t s o f an  partially  accumu-  decomposed - o r g a n i c  moss o v e r l y i n g a n g u l a r q u a r t z - d i o r i t e .  *hamada = d e n s e s t o n e m a n t l e , o r stones (Kubiena, 1953).  single  layer of  separate  46 TABLE IV.  Chemical a n a l y s i s of o f Bog  Depth from surface Region cm 3  Viking Ridge  pH  3.9  * E.C.  Terrestrial i)  Total % N  83.80  1.06  Exchange  E.E.  B.  Organic matter %  T o t a l E.C.* m.e./lOO gms  E.E.**m.e,/l00 gms K+ Ca Na + +  175.58  1.25  18.50  capacity  Exchangeable  elements  Lithosols  little, soils  i f any,  are  deposits  are  the  They are are  textured  characteristic below the  generally therefore lithosols  susceptible  particularly The  most immature s o i l s and  differentiation  to  of a l l the  cushion  sparsely  c o l o n i z a t i o n by  plants  are  from the  c r e e p and  when s a t u r a t e d  lithosols  also along are  p r o n e t o mass movement.  soil  the  vegetation.  with  These  superficial  c o l o n i z e d by  developed  show  into horizons.  i c e f r o n t s and  r i d g e s where g r o u p s o f  are  layer  soils  Lithosols  and  the s u r f a c e Peats.  the  high  growing. vegetation The  volcanic  fine rocks  solifluction, snow m e l t w a t e r .  substrate Plant  f o r primary communities  of  +  1.80  47 these  lithosols  were r e p r e s e n t e d on  r o c k s by b r y o p h y t e s the  and  lichens  and  On  materials,  examples which are enumerated  arcticus,  ii)  i n Table  such  as  V,  Lupinus  Anaphalis margaritacea var. subalpina,  typical. and  Silene  transported coarse  neutrophilous plants,  Epilobium latifolium,  tion  sterile  groups of  acaulis.  b a s o p h i l o u s and  s e d e n t a r y and  the hard  and  T a b l e s V and V I particle  sizes  Senecio  subnudus,  show t h e  of these  are  chemical  composi-  soils.  Rankers These are s o i l s r e g a r d e d by Kubiena  being  s o i l s w i t h A and  tatively  suggested  here  C horizons only. that,  as  It i s ten-  i n t h e A l p i n e Zone  where t h e  soil  soil  i s a ranker with a h i g h l y peaty organic A  type  horizon.  profiles  (1953)  Chemical  analysis  showed t h a t  as  intensified  acidification  matter  soil  a r e so  immature, t h e  of the o r g a n i c m a t e r i a l  development p r o g r e s s e d and  zonal  accumulation  there  was  of organic  (see T a b l e V I I ) .  The  samples which have been enumerated  V I I were t a k e n  from  l o c a l i t i e s undergoing,  i n Table or that  had  TABLE V ..  Plot No.  1 9 16 32 55 59 77  C h e m i c a l a n a l y s i s o f t h e s u r f a c e 6 cm o f s e l e c t e d l i t h o s o l s f o r m e d on s e d e n t a r y and t r a n s p o r t e d p a r e n t m a t e r i a l s .  Region  Ring Creek R i n g Creek R i n g Creek R i n g Creek L i t t l e Diamond Head L i t t l e Diamond Head L i t t l e Diamond Head  Depth from surface cm  0 0 0 0 0 0 0  -  6 6 6 6 6 6 6  pH  4.60 6.00 6.70 5.70 5.80 6.70 5.90  Organic matter %  16.05 1.85 0.77 3.02 0.44 0.770 1.57  Total % N  0.099 0.082  T o t a l E.C. m.e./lOO gm  30.44 11.11 2.41 18.07 10.25 2.41 16.00  E . E . m.e./lOO gm K Ca Na +  0.118  0.125  -  + +  0.287 0.550 0.525 0.426 0.675 0.525 0.525  +  0.437 0.487 0.275 0.450 0.237 0.275 0.275  00  TABLE V I .  Particle  size of  Description  Gravel Fine gravel Coarse sand Medium s a n d F i n e sand V e r y f i n e sand Clay s i l t Organic matter  above 2 1 0.5 0.25 0.1 0.05 -  2 1 0.5 0.25 0.1 0.05 0.002  mm mm mm mm mm mm mm  l i t h o s o l s t a k e n from t h e upper - R i n g Creek  i 5 cms  Plot #9  Plot #16  Plot #55  Plot #59  %  %  °/°.  %  6.90 10.60 27.60 36.60 19.30' 1.850  60.54 13.31 3.80 6.24 9.33 7.03 0.93 0.770  34.30 27.10 18.00 9.30 8.70 15.90 0.83 0.440  29.45 24.13 11.04 8.30 14.10 6.90 6.00 0.770  50 undergone, p i o n e e r c o l o n i z a t i o n by plants.  A l l t h e p l o t s were on  inclined from  from  30° - 4 0 °  of these  The  s o i l s was  r a n g i n g f r o m 4.2  of  s l o p e s t h a t were  and were s u b j e c t e d t o  snow m e l t w a t e r s .  matter  groups  humus f o r m i n g t h e o r g a n i c  shown t o h a v e pH  t o 5.0.  values  Microscopic examination  o f t h e humus showed t h a t t h e r e were browned remains  p a r t i a l l y broken  well preserved c e l l  down b u t  structure.  still Such  decomposed humus h a s b e e n r e f e r r e d moder s i l i c a t e subalpine, deglaciated soils  humus.  alpine  At  ecotone,  lower  Acidification  Kubiena  altitudes  the r e g i o n has  o r g a n i c m a t t e r has  and  resulted  o f t h e moder s i l i c a t e  been  of time.  the accumulation  humus, i n t o a c i d  peaty  below the timber  line,  8 - 10  f i b r o u s p e a t forms the A h o r i z o n . from the  peat o f V i k i n g Ridge  semi-terrestrial  i n that  of  i n the t r a n s f o r m a t i o n  immediately  differs  The  at higher  A t 4,800 u n d e r a s t a n d o f T s u g a  matter  as  i n the  material.  acid  a  partially  t o by  for a considerable period  plant  with  a r e t h e r e f o r e more m a t u r e t h a n t h o s e  altitudes.  seepage  i t has  mertensiana,  cms  of  This organic sphagnum  developed  on  a  TABLE V I I .  Plot No.  35 46 70 73  Plant  Community  Chemical a n a l y s i s o f t h e upper s u r f a c e o f ranker s o i l s  Parent material  Krummholz Q.D. Luetkea p e c t i n a t a D.L. Luetkea p e c t i n a t a D.L. Luetkea p e c t i n a t a w i t h Lupinus a r c t i c u s D.L.  Note:  Depth from surface cm  pH  Organic matter  %  4 - 6 0 - 4 2 - 6  4.2 5.0 4.9  58.00 6.90 10.90  2 - 4  5.2  25.80  Total N %  Total E.C. m.e./lOO gm  E . E . m.e./lOO K  Ca  +  0. 158 0. 202  81.00 16.50 29.90  .450 .089  0. 706  63.10  .275  D.L.  Dacitic  lava  Q.D.  Quartz-diorite  -  + +  gm Na . +  4.750 .425 .425  1.500 .412 .400  .550  .587  h i g h l y permeable s u b s t r a t e , s h r u b s and o r g a n i c  debris  m a i n l y from  ericaceous  from t h e timber  (see Table  VIII). TABLE V I I I .  Depth from surface cm  2 4 10  pH  4.0 4.7 4,7  Chemical a n a l y s i s o f the surface layer of the organic s o i l s  Organic matter %  Total % N  1.13 1.02 0.177  88.00 60.00 3.05  I n some l o c a l i t i e s are  organic  T o t a l E.C. m.e./lOO gm  149.79  -  37.63  soils  E . E . m.e./lOO gm cations K Ca . Na +  1.100 0.900 0.187  of this  seepage water  11.25  are developing  i n f l u e n c e d by seepage water from m e l t i n g  effect  + +  i s t o maintain  snow. a  -  0.465  +  1.17  -  0.837  that The  relatively  h i g h b a s e s a t u r a t i o n and r e d u c e t h e e f f e c t s o f l e a c h i n g and podsolization by  (see Table  groups o f V a l e r i a n a  Epilobium  IX).  Such h a b i t a t s a r e c h a r a c t e r i z e d  s i t c h e n s i s , M i m u l u s l e w i s i i and  l a t i f o l i u m which are t y p i c a l p l a n t s  M o u n t a i n A l p i n e Meadows.  of the Coastal i  53  TABLE  IX.  Depth from surface pH cm 2 6 12  C.  5.0 5.4 5.6  A, B,  Organic matter  %  very  %  72.30 30.22 20.99  N  2.33 1.52 0.525  T o t a l E.C. m.e./lOO <jm 131.40 64.29 60.90  E.E. K  +  m.e./lOO cations .Ca  gm Na  + +  1.351 0.210 0.175  10.00 1.80  l o c a l i t i e s topography and p a r e n t m a t e r i a l may solum may  exceed 40 cms.  be  in such  Such i s  case on the South Ridge of L i t t l e Diamond Head where f i n e parent m a t e r i a l c o n s i s t i n g of v o l c a n i c t u f f s  has  r e s u l t e d i n the formation  of a r e l a t i v e l y deep p r o f i l e w i t h  well defined B horizon.  As the r e s u l t  of l e a c h i n g these  s o i l s are becoming p r o g r e s s i v e l y degraded. a p r o f i l e i n which l e a c h i n g has vegetation  Table XI shows  not been e x c e s s i v e .  The  c o n s i s t s of a l a r g e percentage,of a l p i n e grasses  such as Phleum alpinum, T r i s e t u m and  +  1.15 1.57 1.97  the a l p i n e s o i l s are extremely shallow but  t h a t the depth of the the  Total  soils  Generally, isolated  A n a l y s i s of o r g a n i c s o i l s i n f l u e n c e d by seepage from m e l t i n g snow.  spicatum,. Elymus h i r s u t u s  a low percentage of Phyllodoce  l e a c h i n g progresses,  glanduliflora.  . As  o r g a n i c matter accumulates and  the  54 heathers,  particularly  Phyllodoce  glanduliflora  #  become  dominant.  TABLE X.  Chemical a n a l y s i s o f the A, B s o i l s  Depth from surface cm PH .  1 10 15 20 30  3.  Organic matter  % 15. 10 5. 64. 6. 55  5 .10 5 .22 5 .42 5 .65 6.05  3. 06  2. 50  Total N % .  0. 0. 0. 0.  T o t a l E.C. m.e. /100 gm  155 202 159 090  25. 29. 23. 12.  65 80 90 16  gm m<,e ./100 cations Na Ca ++  E.E. K+  +  0.273  1. 0. 0. 0.  --  930 475 252 550  0 .445 0 .452 0 .337 0..282  VEGETATION The  geneity arranged are  plant  and g r e a t  similarity  i n groups t h a t  a r e b a s e d upon f l o r i s t i c o f environment.  characterize  homo-  They a r e t h e n  the habitats  where  they  found. The  closely  distributional pattern  i s well  teristic  of vegetation  c o r r e l a t e d with the duration  with the s o i l line  associations  characteristics. represented  o f t h e snow p a c k  The u p p e r l i m i t  by stunted  o f t h e krummholz.  i s more  contorted  than  of tree-  trees  charac-  The a l p i n e meadows h a v e a  55  v e r y low percentage few  of grasses.  species of forbs.  little  developed  structure The  They a r e dominated by a  The a l p i n e g r a s s l a n d s  on m e s i c h a b i t a t s .  of the vascular p l a n t s i s very reason  for this  simple  due t o t h e r e l a t i v e l y  to  t h e l o n g d u r a t i o n o f snow c o v e r .  of  the Interior,  s h o r t time  snowfall i s less,  the beginning  s h o r t e r growing season. soils soil  are saturated with temperature  summer  s i n c e d e g l a c i a t i o n , and In the h i g h and d i s a p p e a r s  o f August,  During  mountains i n May  and r e s u l t s  snow  in a  t h e m e l t i n g o f snow t h e  c o l d water t h a t maintains  and n e u t r a l i z e s t h e e f f e c t s  low  of the high  group  T h i s group i s c h a r a c t e r i s t i c under t h e i n f l u e n c e o f p r o l o n g e d tion  typical  Heer  (1836) who r e f e r r e d  o f such  localities  o f l o c a l i t i e s which are snow p a c k .  was f i r s t  p l a n t s growing under such  are a l s o able to t h r i v e  The  vegeta-  r e c o g n i z e d by  t o such h a b i t a t s as  "Schneetalchen".  conditions are chionophilous.  They a r e n o t o n l y a b l e t o w i t h s t a n d but  simple.  insolation.  A. Snow p a t c h  The  floristic  June, whereas i n t h e h i g h mountains o f t h e Coast,  remains u n t i l  very  structure of vascular plants  is  and  The  are also  prolonged  cover  o f snow,  owing t o l a c k o f c o m p e t i t i o n  from  56 s p e c i e s n o t a d a p t e d t o s u c h an e n v i r o n m e n t .  This  group  includes three associations: i)  Gymnomitrieto  - Polytrichetum norveqici  a. s u b - a s s o c . g y m n o m i t r i e t o -  polytrichetosum  norvegici b. sub-assoc. polytrichetosum ii) iii) i)  Caricetum n i g r i c a n t i s Sibbaldietum  Gymnomitrieto This  typical  snow b e f o r e  in  coarser  gymnomitrieto - polytrichetosum silts  t h a t have accumulated  i t melts.  from  piliferi  by  Sub-association i s more c h a r a c t e r i s t i c  of  s a n d s and g r a v e l s where i t i s d e v e l o p e d  h a b i t a t s where snow a c c u m u l a t e s  Characteristic Polytrichum  norvegici  and t h e d e p o s i t i o n o f m a t e r i a l t r a p p e d  polytrichetosum the  - Polytrichetum norvegici  of fine  solifluction wet  procumbentis  a s s o c i a t i o n has been s u b d i v i d e d e d a p h i c a l l y .  Sub-association is  piliferi  f o r long  combination of species  norvegicum  periods.  Presence IV  Gymnomitrium v a r i a n s  V  P o h l i a drummondii  I  Fidelity 3 3-4 5  56(a)  ASSOCIATION TABLE  : Gymnomitrieto - P o l y t r i c h e t u m norvegici  Ci V M N O M I T U I K T O - I' O I, V T l( I C II E T U M  K V O lI.N  Sl-A A i l K H R N IG Atm . NT. :i M(H  I  >L\Slf~~~*-  ~:t  1  Q  •1  OI S I'ANM <Mr  S / lE  :  MOPF.  DURA O TIN  (MONTHS)  tiin  0°  OF SNOW  WIND  ALTITUDE (FT.)  '• 0°  NOHV < i;t:ii:  NUNATAKS S I 47 40  5  &  &  0°  0°  2°  • 4600  10-1/2 "10-1/2  • 6400  10  •  .•  6300  6050  12  • 1 1°  10  76 4 0°  77  6 0 -6  1  66  5  5 '  si.  38  10  5  5  5  :  c:.':r  i-i i:  i ('?:.•<*,  i SHUT; Y  o 1° 10 Ift SE . . SE . . SE . . N.E. N 0°  0°-6°  0°  0  9-1/2  5  • ..  • 5'JOO  M H lA -SMw .:O 'lY .ITH n ir;IT :<M !M ! riuru: ' UTTLfl D A IM O N D HEADN U'NATAKS 78  WJiRACJ MC:::II ICANCI;  1010-1,1 101-/2 E W WN W .. NN W . .N W . .N W .. E  0-1/2  EXPOSURE N IFLUENCE .  0°  •t:l  TKI<:HI:T<TSUM  N O H V K f. I C I  6050  6000  tn  on  6000  5400  5325  6260  62O0  6255  Goon  P Y S O IG R AP Y IO IH R O TO P EHY MO S ITW E TM O S ITMO S ITMO S ITW E TW E TW E T MO S I!FRESHFRESH | FR E SH F R ESHFRESHFRESH MRENT MATER A IL OAC TIE ACT lriMA TI QUARTZ OUARTZ ' N IC DYKE VE D O IR TIE D O IR TIE TUFFS D O IR TIE U T O ILS O TYPE H B 30% 10% ol% 28^ 70% D PHYLLODOCE 3-2-1 ./'l EMPETR1FORM SI 11- 211 -2 .,i i Ch PH YLLODOCE i Ch •n GLANDUUFLORA FR IO A G A c 5AX L M 1-13 CAST S O IP E1EI U JNCM USERTEN 11 -2 n i H S A I'NA 2-1-2 LUN U L A , DRUMMOND II 31 -3 - 1-1-3 1-1-3 62 -2 H v 11 -2 - 22 -2 - -/l H P R O C U M D E N S CAREX 11 -2 1-1-3 33 -3 - 3-3-3 11 -2 - 11 -2 - 1 / 2 H N G IR C IANS CARE X I H P N A C DES A C iY M IREP S IA • /II H A T R U R P U R E A LUET K EO AP 3-3-3 3-13- 1-1-3 33 -2 -2 n i PECT N IATA l -H A R C T C IM US 'J-4-3 POLY TR C IR H U 2/3 -2 3-1-2 3-3-3 54 N O V E G C IUM POLY T R C I H U M P L F IERUM 13 -3 - 4-3-3 3-3-3 3-3-1 83 -2 - 73 -2 'II (B) MIG-  1% 20^ 'JOT, en  203.  PICA Tit  r  STRA  SOIL  COVER < 3 »  A  C . D  100;,  as.  90%  an  )  2-1-1  1-1-2  3-1-2  311 10%  tn  1-1-2  30%  2 <>r*  70%  a-.  II  1-1-1  2 2  2-1-1  2-1-2  3-2-2  1-1-1  PIPER]  10%  tn  4-3-2  2-2-3  1-1-2  2-1-2  3-3-2  1-1-2  4-2-2  it-  1-1-1  'll  1  ..S  in  CT.  !  n  :  II  3  V  2  \  SIBDALDIA  1-1-2  3-2-2  1-1-2  1-1-2  4-3-2  2-1-2  1-1-2  1-1-1  3-2-2  •73  1-1-2  1-1-8  2  2  1  5-3-3  Ch  1-2-2  2-2-1  LUPIN U S  4-3-2  ./5  3-2-2  2-2-2  1-1-2  2-2-1  1-1-2  K A IER A I A N D R E A E A F A CA A N V ILA L S IT  86 -3 -  4-2-3  B-5-3  11-6-3  1-1-1  86 -3 -  2-2-2  2-3-2  0-4-.1 0-4-3  6-.V2  3-3-2  4-3-2  4-3-2  2-3-3  1-1-8  c  \n.  h:i  .8/4  6-3-2  POIIUA  D R U M M O N G Y M N O M H M R ID IIII V A R 1A NS• STERH AU LON AO L N TC IU M  IV  1-1-2  2-2-2  It • r. 1 •  \  2  2  2-3  1/3  1-1-1  :  ,;  ",m  4  1  2-8-2  1-2-2  |  6-3-2  1-1-1  5-4-2  2-*1  1-1-2  3 '4  2-1-2  .1  V  1  :i-4 •  Life C  %  spectra  H  ^(B+L)  h  form  Ch  species  13  25  1  sub-assoc. This  developed  is typical  (Kubiena,  on  H  )  groups w i l l  the  of August.  quartz-dioritic  where t h e  the  1  where snow It is well  nunataks  accumulation  of  above silt  snow b a s i n  snow b a s i n complex,  t o l e r a t e more m o i s t u r e  P o h l i a d r u m m o n d i i and continuous  %  rutmark  1953).  Within  some b r y o p h y t i c than  sub-assoc. T h i s was  withstand  water w h i l s t Andreaea  grows v i g o r o u s l y i n snow m e l t  p e r m e a b l e s a n d s and  others.  Gymnomitrium v a r i a n s  ponding of melt  Polytrichum p i l i f e r u m  coarse  L  12  leads t o the development of the  b.  +  of depressions  t h e end  icefields,  nivalis  B  gymnomitrieto - polytrichetosum n o r v e g i c i  endures u n t i l  the  (  Average cover  62  a.  Ch  i s more t y p i c a l  channels. of the h i g h l y  grits.  polytrichetosum most t y p i c a l  sandy p a r t i c l e s .  piliferi  of depressions The  b a s i n s , due  with to  the  58 h i g h l y permeable s u b s t r a t e , unlike no  the  previous  sub-association,  water s a t u r a t i o n of the  from the  are w e l l drained  snow m e l t .  there  upper s o i l  D u r i n g the  two  disappeared  end  o f O c t o b e r t e m p e r a t u r e s were  low  to accumulate.  noted  already  for a relatively  Saxifraga  the  greater  t o l m i e i than the  possibly  to the  Saxifraga pioneers  the  and  was of  found  polytrichetosum due  snow m e l t  gravels  the  sub-association.  lose vigor,  ponding of the  grits  by  t o l m i e i were  t o l m i e i c o m m u n i t i e s were on  snow  abundance  typical  they appeared to  that  sufficiently  sub-assoc. gymnomitrieto -  norvegici,  the  sub-association  Although groups o f S a x i f r a g a in  horizon  i n mid=August b u t  This  is  summers  t h e s e h a b i t a t s were u n d e r o b s e r v a t i o n had  and  water.  frequent of the  coarser  deposits.  ii)  Caricetum This  plutonic  a s s o c i a t i o n has and  prolongation titive  nigricantis a w i d e r a n g e on b o t h  volcanic rocks. of  I t d e v e l o p s where  snow f r e e p e r i o d s  powers o f t h e  the  reduces the  b r y o p h y t e s and  results in  a  compethe  58(a)  ASSOCIATION TABLE : C a r i c e t u m  nigricantis  CAR! CETUM  Ring . Creek  Region  Plot  Diamond Head  (1) N u m a t a k  Viking  Ridge  57  84  61  82  56  N I C . R I C A N T IS  Average Sipnificancc  '  Lif«  Presence  Form  Fidelity  i  iI  !  Size of Plot ( M )  5M  2  Slope Duration of Snow (Months) Exposure Wind Influence  2  4M  35°  0°  9  9  S. E .  W  5M  2  2  *M  Z  0°  0°  9  9-1/2  9-1/2  S. E.  S. W.  S.W.  1  !  t  • j i j-  -'. •  '-  •  ,  •  1  4300  6300  6000  6400  6400  Physiography  Terrace  Ridge  Basin  Basin'  Basin  Moist  Moist  Moist  Moist  Moist  Parent M a t e r i a l  Dacitic Lava  Oacitic Tuffs  Quarts Diorite  Quarts' Diorite'  Quarts Diorite  Soil Type  Ranker.  Ranker  Ranker  Ranker  Ranker  95% 2%  90% 30%  95% 10%  2-2-1  2-1-2  j Cover %  A B C D  H  <  0! H  80% • 20%  glandulif l o r a  Cassiope mertensiana C a r e x nigricans  9-5-3  • /i  1  1-1-1  i  Ch  2  •/i  . i  Ch  2  8/8  V  H  •/4  I  H  •/l  II  .•/»  n  Ch  •/Z  II  H  • /1  i  H  •/l  II  H  •/l  i  H  2  •/2 '  i  Ch  4  H  2  5-4-3  9-4-3  6-4-3  9-4-3  \  1-2-1  Luzula p i p e r i Lupin us arcticus  1-1-2  C a r e x spectabilis  1-1-2''..'.'.  1-1-1  1-1-2  1-1-1  1-1-2  Juncus d r u m m o n d i i  1-1-1  Polytrichum norvegicum •  3-Z-Z  2  >/i  2-1-1  2-2-1  Ch  1-1-2  3-2-3  Saxif raga t o l m i e i  II  1-1-2  Luetkea pectinata  H i e r a c i u m gracile  1%  4-3-2  Antennaria alpina Deschampsia atropurpurea  1%  —'  -  Phyllodoce e m p e t r i f o r m i s Phyllodoce  5% 90%  ''  1-2-2  2-1-2  1-2-1  3-2-2  1-1-2  •  1/2 •/4  1-1-2  Gymnomitrium variana 3-2-2  Marsupella ustulata  2-2-2  Sphagnum com pac turn •  •/l  1-1-2 .  \  .  C h  i  C h  i  C h  (B)  C h  (B)  C h  (B,  II  »/2  , i  2, 2. 1  "  2 2  IV  ' »/2  2  H .  .  ui  'll  4-2-2  Rhacomitrium canescens  {  i ", ;:' •: •'  Altitude ( F t . )  <  o E  10M  0°  ^,  Hygrotope  7. O  2  (B) (B,  .  2  2 2 3-4  4-5 4-5  59 encroachment communities  and e v e n t u a l e s t a b l i s h m e n t o f homogenous o f Carex  Characteristic  nigricans.  combination of species  Presence  Carex n i g r i c a n s P o l y t r i c h u m norvegicum Life Ch  Ch( +L)  This species.  42  association  3  (  B  +  from the b r y o p h y t e s .  cover % 1  95  form Carex  nigricans,  from o t h e r s p e c i e s , Even  i n exposed  when t h e snow h a s c o m p l e t e l y gone t h e s t o c k y  effects the is  forms  espesituations  cespitose  a t h i c k mat t h a t d i m i n i s h e s t h e  o f d r y i n g winds  evaporation of s o i l typical  H  )  q u i c k l y reduces the l i g h t  competition  Carex n i g r i c a n s  L  i s c h a r a c t e r i z e d b y v e r y few  i t s v i g o r o u s growth,  cially  IV  +•  I n i t s most t y p i c a l  and e l i m i n a t e s  3  Ch  Average  29  with  Ch  species  29  V  spectra  H  B  %  form  Fidelity  and i n s o l a t i o n , moisture.  and r e d u c e s  This  association  o f snow p a t c h e s on t h e m i d d l e summit o f  V i k i n g Ridge.  I n summer, t h e c o m m u n i t i e s  by m e l t water  f r o m snow c o r n i c e s w h i c h  the  face.  northeast  are i r r i g a t e d  are overhanging  When d r a i n a g e becomes  impeded  60 there  i s a t r e n d towards t h e development o f l o c a l i z e d  h i g h moor c o m m u n i t i e s o f Sphagnum. hand, a d e c r e a s e  i n moisture  On t h e o t h e r  leads t o gradual  encroach-  ment o f t h e homogenous c o m m u n i t i e s o f C a r e x n i g r i c a n s by  species o f Cassiope  relatively soils the  thick vegetative  favour  cover,  the accumulation  Owing t o t h e  the cold  moist  o f organic matter  s u r f a c e , which i s o n l y undergoing p a r t i a l  position.  The r e s u l t  within the s o i l  iii)  and P h y l l o d o c e .  decom-  acidification  profile.  Sibbaldietum  procumbentis  The S i b b a l d i e t u m region being  i s a progressive  upon  i s n o t w e l l expressed  an a s s o c i a t i o n w h i c h  i n this  i s considerably  fragmented. Characteristic  combination  of species  Presence  S i b b a l d i a procumbens Antennaria  alpina  Polytrichum  Ch  Ch %  23  (  B  +  L  )  H  H  (  B  +  form  3  IV  2  V  2  L  )  spectra Ch  species 16  V  piliferum Life  45  Ch  ( B + L )  H  Average cover 16  Fidelity  10  5  26  H  (  B  % +  +  L  )  60(a)  ASSOCIATION TABLE  : Sibbaldietum  procumbentis  •S 1 II l\ A L O I E T U M  1'ROCUMHENTIS  Viking Ridge  Kenton Plot  5  Sizo of Plot ( M )  5M  2  Slope Duration of Snow Exposure  7 5M  2  5°  5°  0°-30° .  9-1/2  9-1/2  9  S.W.  N. E .  S  5500  6450  • •  5500 ICE  Hygrotope Parent Material  «  pnr.K  ERODED  Presence  Life Forms  Fidelity  2  0° 9 S. W .  11  5550  Average Significance  48 3M  2  3°  Wind Influence  Physiography.  74 8M  2  9-1/2 S  Attitude  27 5M  2  Mamquam Moraine  :  +•  5200  TrunArr  Moist  Moist  Moist  Migmatite  Migmatite  Migmatite  Moist  FreBh I  Quarts Diorite  • !  Soil Type '  Cove r  A B C D  • 35% 20%  40% 20% ,  5% 40% •  50% . 5%  10% .  Phyllodoce empetriformis 1-2-2  Sibbaldia pro cum bene  5-3 2  r  Antenna r i a alpina  1-1-2  Carex preeIii  1-1-2  Luzula piperi Carex nigricans , C a r e x spectabilis  ' •  5-3-2  6-3-2  - 1-1-2  3-2-2  ,  2-2-2  •  1-2-2  Lycopodium eitchenae  1-1-2  1-1-2  , . • • .  Polytrichum norvegicum  2-2-2  Polytrichum piliferum  4-J-l"  I_.ecidea granulosa!  2-2-2  2-2-2 r  . *-•.'  :  •  "1-2-2  Rhizocarpon geographicum U m b i l i c a r i a proboscidea  1-1-2 :•  1-1,-1  H  1/2  IV  H  2  W2  n  H  2  i  H  2  H  2  H  2  Wl.  i  Wl  in  ' y. • •••••  :  H  2  Ch  2  Wl  m  H  2  2/3  in  Ch  W2  i  2/2  V  ' -/l .  i  Wl ;  ^ I  W2 •  2-2-2  A-'  \ ..13  i  3-2-2  2-2-2  V  ,  2 2  i  1-2-2  1-1-2  Ch  Wl  3-2-2  1-1-2  \  Ch  I  Wl  1-1-2  .1  Rhacomitrium caneacens  >  •  1-2-2  3-2-1 :  \ 3-2-1  Luetkea pectinata  '• -. .  II  Wl •  1-2-2  1-2-2  2/4 Wl 5/5  1-1-1  ' V \ .  1  •V'  5-2-2  J-3-2  2-2-2  Juncus drummondii  i  1••  6-4-2  4-3-2.  r  Deschampsia atropurpurea  20%  i-i-z  Phyllodoce glanduliflora }  i  20% 65%  ,'  2 '  ( B )  2 2  ( U  H  C  h  (B)  m  H  (L)  II  H  (M 1  V  • _\  Ch  •  2 2 2 2  :  61 Fragments o f terraces  and  this association  exposed r i d g e s  the  Alpine  l e s s pure  The  point  affinities  of view of  with that  of  that both associations philous  plants.  between the teristic  not  frequent  two  i s that  i n the  accumulated of  the  of  Sibbaldietum  o r i g i n and  d e v e l o p m e n t and  that  excessive  by  chiono-  i s charac-  show l i t t l e  Sibbaldia  s a n d s and  i n t e r s t i c e s and  itself is  piliferum  g r i t s which have across  the  Once i t becomes  power t o emanate f r o m i t s  colonize  succession  of  new the  or  Sibbaldia  succeeds P o l y t r i c h u m  the  distinct  moisture that  rock pavements.  i t has  icefields.  difference  typical.Caricetum.  i n rock  established, place  main  Further,  c o l o n i z a t i o n of  typical  i t has  characterized  the  development.  t o l e r a t e the  the  surface  are  with  Caricetum n i g r i c a n t i s i n  However, t h e  procumbens u s u a l l y during  the  Zone.  communities  i s most  snow c o v e r  of very t h i n a c i d s o i l s  profile  will  association  q u a r t z - d i o r i t i c n u n a t a k s above t h e  From t h e  no  the  S i b b a l d i a procumbens e x i s t i n i s o l a t e d g r o u p s  Antennaria alpina. of  f o u n d on  throughout the  Under s u c h c i r c u m s t a n c e s more o r of  are  terrain.  The  Sibbaldietum  62 from the of  the  sub-association polytrichetosum.piliferi  Gymnomitrieto - P o l y t r i c h e t u m  d e p e n d s upon a r e d u c t i o n  i n the  norvegici  duration  of  the  snow p a c k .  B.  Chomophytic* This  group  group i s c h a r a c t e r i z e d  form pioneer boulder  and  studies  of  groups c o l o n i z i n g the fell-fields.  the  "groupement des Many o f  limiting  f a c t o r f o r the the  consist o f  permeability  of  the  (1954) i n h i s  such groups  as  snow i n s u r e s  been r e c e n t l y d e g l a c i a t e d leaching  and  to moisture,  an  and  base  gradual  of  obtained Hence  status.  g r o w i n g on  that, a  the  water have  the  full  such Weathering  accumulation of  chomophytic - p e r t a i n i n g t o p l a n t s rocks (Tansley, 1939).  be  However,  these areas  have not  acidification.  i n the  could  ample s u p p l y  Further,  h a b i t a t s have a r e l a t i v e l y h i g h gravity result  coarse material-,  growth of p l a n t s .  to c o l o n i z i n g communities.  and  which  eboulis".  their high  impact of  communities  fragmented rocks  referred to  these h a b i t a t s  of  plant  Braun-Blanquet  French Alps  owing t o  persistence  by  fine  fragmented  63 rock p a r t i c l e s  i n the  for  plants.  colonizing  growth  rock  The  moment t h e  loci  snow d i s a p p e a r s  commences.  T h i s group c o n s i s t s i)  three  associations: spectabilis  Luetkeetum  iii) Caricetum  of  Caricetum  ii)  i)  i n t e r s t i c e s which form  pectinatae  A n a p h a l e t o - Lupineturn  arctici  spectabilis  Characteristic  combination of  species  Presence  Fidelity  Carex s p e c t a b i l i s  V  3  Lupinus a r c t i c u s  V  2  Agoseris aurantiaca  I  3-4  Life Ch  Ch(B+ )  68  This association chomophytic h a b i t a t s p i l e s of  s l o p e s and of  the  Ch  (  B  +  L  H  )  Average cover  9  the  Ch  ..species  23  of  spectra  H  L  %  form  2  +  i s most t y p i c a l o f in that  i t is  56  the  characteristic  r o c k d e b r i s w h i c h a c c u m u l a t e on  i n the  association  depressions.  The  dominant  i s Carex s p e c t a b i l i s which  a very vigorous fibrous  root  %  system t h a t  the  species has  enables  ASSOCIATION TABLE : C a r i c e t u m  spectabilis  C A K I C  Kc giun  Columnar Mount  Plot Sine of Plot ( M )  19  20  11  9  10  10  5  5  5  40°  45°  8  8  W  S. E .  5700  Parent Material  STUATIflC  r-  D  Soil Type  20°  25°  40°  8-1/2  8-1/2  8-1/2  N. W.  N . W.  S. E .  S. W.  1  6000  6000  6100  Couloir  Couloir  Fell Held  Fell Field  Fell Field  Concave Slope  Moist  Moist  MoiBt  Moist  Moist  MoiBt  Dacitic Lava  Dacitic Lava  Quartz Diorite  Quartz Diorite  Dacitic Lava  Dacitic Lava  A B C D  1 . I T 14 O  90%  Q  C  60% 1%  70%  4-3-3  5-5-3  90% 5%  1-1-1  •12  III  Ch  II  Ch  2  2  ./2  I  Ch  1  •/l  I  Ch  2-3  3-4-2  3/3  V  H  2  1-1-2  1-1-2  »/l  II  H  2  Erigeron peregrinua  1-1-2  1-1-2  •/l .  II  H  2  Luetkea pectinata  4-4-2 >  1-1-2  1/3  III  Ch  2  CaBtilleja rhexifolia  1-1-2  3-2-2  4-3-2  4-2-2  3-2-2  1-1-2  3-2-2  •/l  I  ./2  I  H  2  3-3-2  */3  I  H  3  1-2-2  ./l  I  H  2  •/2 .  I  H  2  •/I  II  H  2  • /I  I  H  2  »/2  I  H  3-4  •/2  I  H  v.  2-2-2 \  •\  2-2-2 2-2-2  Carex nigricans  1-1-2 1-1-2  Trisetum spicatum  -  2-2-2  Agoscris aurantiaca  j  1/3  3-3-2  LupinuB arcticus  Phleum alpinum  |  1-1-2  Deschampsia atropurpurea  A r n i c a latifolia  i  Fid.: lily  90%  1-2-2  Sibbaldia procumbens  i  90%  2-3-2  mertenBiana  Campanula rotundifolia  i  Life Form  Presence  T H O S O j_  O  Phyllodoce empetriformis  Penstemon menzieeii  Avcragi: Significance  ;  !  6000  Phyllodoce glanduliflora  Caesiope  • !  5700  "7" " '  Cover %  20° 8-1/2  ~  Wind Influence  Hygrotope  Opal Cone  22  Exposure  Physiography  Little Diamond Head  Nunatak  5  Duration of Snow (Months)  (rt.)  S P E C T A B I L I S  3 2  Slope  Altitude  K T U M  Luzula piperi  2-2-2  Carex pyrenaica  2-2-2  Carex spectabilis  7-3-2  4-4-2  \  7-6-3  8-4-3  \ Anemone occidentalis  7-5-3  2-3  •/2  I  H  2  8-6-3  7/7  V  H  2  1-1-2  •/l  I  H  VI  II  ./l  I  3-  i-  \ D  Polytrichum piliferum  2-2-1  1-1-1  • 1  i  Rhacomitrium caneacenB  1-1-2  •  C  h  C h  <B)  2  (n)  •  64 the  plant The  few  to  sustain a hold  i n unstable  a s s o c i a t i o n i s composed o f  species.  a  habitats. relatively-  Carex s p e c t a b i l i s f r e q u e n t l y  c o n t i n u o u s c o m m u n i t i e s w h i c h compete so  forms pure  effectively  that  other  species  are  unable to e s t a b l i s h themselves.  This  i s frequently  the  c a s e on  where t h e rapid, rooting  and  weathering of the the  plants  system i n the  boulder-fields  are  a pioneer  of view of on  able  ii)  coarse  relatively vigorous  profile.  On  the  i n the  difficulty  coarse d e b r i s .  From  succession,  and  of  owing t o the  this  association is  c h o m o p h y t i c h a b i t a t s , where t h e r e the  leaching  association is restricted  to g r i t s  is  has  not  extensively.  Luetkeetum This  rocks  to develop a  dispersed  abundant a v a i l a b l e m o i s t u r e progressed  is  deep m i n e r a l  i n becoming e s t a b l i s h e d point  rocks  volcanic  formed from q u a r t z - d i o r i t e groups  Carex s p e c t a b i l i s are  the  the  pectinatae  s a n d s where i t f o r m s p i o n e e r  Characteristic  combination of  and  communities.  species  Presence  Luetkea p e c t i n a t a  V  Hieracium g r a c i l e  V  Fidelity 2 2-3  64 (a)  ASSOCIATION TABLE : L u e t k e e t u m  pectinatae  LUETKEETUM Little VIam quam Diamond Moraine Head  R«"Cion Plot •  Si/..- of Plot ( M )  2  Slop*.* Duration of Snow (Months) Exposure  70  71  73  10  10  5  5  5  10  30°  20°  40°  30°  35°  40°  B-l/2  9  8  9  8-1/2  8-1/2  W  S  N . W.  N. W.  S.  E. 1  +•  5375  Physiography  Fell Field  Fell Field  5300  Parent M a t e r i a l  Lithosol  Lithosol  Lithosol  Lithosol  Lithosol  Lithosol  1% 40%  2% 10%  65%  2% 70%  60%  10% 60%  1-1-1  1-1-2  Cassiope mertensiana  1-1-1  1-1-2  Vacciniurn membranaceum]  1-2-2  Fresh  Fresh  Fresh  Fresh  D A C I T I C ~ L A V A  2-2-2  4-3-2  1/2  IV  Ch  2  •/l  n  . Ch  2  I  Ch  3  •/I 4-4-2  i  Luetkea pectinata  6-5-2  Sibbaldia procumbens  1-1-2  Epilobium alpinum  1-1-2  ./l  Epilobium latifolium  1-1-2  Wl  Valeriana sitchensis  2-3-2  Deschampsia atropurpurea  2-2-2  Luzula piperi  2-2-2  E r i g e r o n peregrinus  2-2-2  _.  Lupin us arcticus  2-3-2  5-3-2  H  4  I  H  3  */l  III  H  3  1-1-2  •/l  V  H  2  «/2  II  H  2  2-2-2  2-2-2  «/2  III  H  2  ./I  II  H  2  •/3  I  Ch  4  1-1-2  1-1-2  3-4-2  1/2  III  H  2  3-3-2  3-2-2  2-2-2  1/2  UI  H  2  1-1-1  2-2-2  3-3-2 1-1-2 1-1-2  1-1-1  I  1-1-2  Dicranoweisia qrispula 2-1-2  3  1-1-2  1-1-21  Rhacomitrium canescens  2  H  1-1-2  3-3-2  Polytrichum piliferum  '  Ch  I  1-1-2  2-3-2  Rhacomitrium heterostlchum  V  6/6  1-1-2  Lycopodium alpinum  Lccidea granulosa  8-6-3  1-1-2  Castilleja rhexifolia Lycopodium sitchense  7-5-3  1-1-2 3-3-2  A r n i c a latifolia  7-5-3  2-2-2  Saxifraga tolmiei  Carex nigricans  8-7-3  •/I  1-1-2  Hieracium gracile  Fidelity  C: O L L U V I A L S L O P E  Soil Type  Phyllodoce empetriformis  Life ' Form  1  Fresh  A B C D  Presence  5100  Dacitic Tuffs  B  D  ;  11 5400  Moist  Cover %  C  ! 5300  Quarts Diorite  STRATI  y  46  5400  ION  <  Average Significance  C O N E  42  Altitude ( F t . )  Hygrotope  O P A L  28  S  Wind Influence  PECT1NATAE  1-1-1 1-1-2  1-1-2  •0  N  :  1/2  III  H  2  . n  I  H  4-5  •/2  I  Ch  2  •/3  I  Ch  3-4  • /I  II  C h  (B)  • /I  I  C h  (B)  • /2  I  C  /i • /I,  II II  h  Ch H  2 3  (B)  2'  ,  2  ( B  (L)  2  65 L i f e form Ch % 22  Ch  Ch (B+L)  H  spectra  species  Average cover % 21  57  The  Ch'(B+L)  H  3  36  +  a s s o c i a t i o n i s dominated by Luetkea  which i s a p l a n t w i t h great  pectinata  c o n s t r u c t i v e v a l u e i n the  c o n s o l i d a t i o n o f u n s t a b l e c o l l u v i a l m a t e r i a l of f i n e v o l c a n i c debris that i s subject r e l a t i v e l y steep g r a d i e n t s .  t o s o l i f l u c t i o n on  On the s u r f a c e  p l a n t forms widespread green c a r p e t s , the  surface  an e x t e n s i v e  this  w h i l s t below  s t o l o n i f e r o u s system r a m i f i e s  the d e b r i s w i t h c o n s i d e r a b l e  tenacity.  On steep  c o l l u v i a l slopes narrow f i n g e r s o f t h i s a s s o c i a t i o n can be seen p i o n e e r i n g lidated material.  upwards toward the unconso-  S u p e r f i c i a l l y i t would appear t h a t  communities o f Luetkea p e c t i n a t a are t y p i c a l p f d r y edaphic s i t e s . proximity melt. low  In f a c t , they are u s u a l l y i n c l o s e  t o r e a d i l y a v a i l a b l e moisture from snow  Hieracium g r a c i l e has a h i g h presence but  species  significance.  Thus, i t has no more than  a neutral e f f e c t i n successional plant s o c i o l o g i c a l development.  66 i i i ) - Anaphaleto - Lupinetum This on  arctici  i s an a s s o c i a t i o n w h i c h i s a t y p i c a l  the high  glacio-fluvial  terraces,  moraines, o u t -  wash a p r o n s and a l s o upon t h e b o u l d e r recently deglaciated subjected  localities  t o extensive  Characteristic  fields of  which have n o t been  leaching.  combination o f species  Presence  Lupinus a r c t i c u s  % 2  )  H  H  (  form B  +  L  Pn  )  13  2  spectra  species  7  The  B + L  5  V Life  Ch(  4  III  Carex s p e c t a b i l i s  Ch  Fidelity  V  A n a p h a l i s margari-tacea  Pn  pioneer  Ch  Ch  (  B  +  L  H  )  Average cover 76  association  2  +  1  +  H %  50  i s composed o f a r e l a t i v e l y  +  large  number o f C o m p o s i t a e w h i c h a r e w i d e l y d i s t r i b u t e d t h r o u g h o u t newly d e g l a c i a t e d  terrain.  subnudus , A c h i l l e a m i l l e f o l i u m , m a r g a r i t a c e a a r e common. typical  Thus,  which c h a r a c t e r i z e susceptible  These communities a r e  t h e open h a b i t a t s ,  t o competition  Senecio  and A n a p h a l i s  o f t h e b a s o p h i l o u s and n e u t r o p h i l o u s  plants  a n d become v e r y  from i n v a d e r s .  (  The two  B  +  L  )  66(a)  ASSOCIATION TABLE : A n a p h a l e t o - L u p i n e t u m  arctici  ,\ N A \> H A I. K T O - I.  r  U I'  I NBT U M  A !< C T I C I  DA Ii.l ti: V I ' O^ L N E HEA 'DNUNATAk C IM . I 1ii  Plot  U4.- tfion  Si/.*- of Plot ( M )  10  Co  i  39  83  44  26  8  30  15  10  10  10  10  10  10  5  5  5  5  35°  40°  30°  30°  10°  30°  10°  30°  20°  9  9-1/2  9  W  W  S. W.  6100  6400  FELL  FELL  Moist  Moist  9  8-1/2  8-1/2  8  8- 1/2  N. W.  W  si W.  W  W  4400  4400  ,.  1 4300  .* •  4500  I  5100  9 ,S.E.  9  E  4850  6000  ,,  4B0O  8  W  [  1 6000  I.I'J l';tl.l IV  I.::CI:  CANOI:  ii i  R E A LU ST ALUS B E )N ITM M O R A N IEM O R A N IEM O R A N IELAVA M O R A N IETOR O R A N IET S U T IE SLOI'E F E ILD F E I L D LEVEE DAC T C IM G IMA-VOLCAN. U n I (j DYKE TT IE  Physiogra phy Hygrotope  Fresh  Parent Material  Fresh  Fresh Fresh  Fresh  Fresh  Moi st  MoiBt  Fresh  TUFFS  Soil Type Cover %  P  32  5°  Wind Influence Altitude (Ft.)  18  5  Duration of Snow (Months) Exposure  16  2°  2  Slop,-  KN IG CREEK  A'.'LP.  INC.IMA'.'.UND KIIKIE HEAD  MOND  1 1.1 T1 H n <: r» i  A B C D  1% 70% •4%  1% 20%  Phyllodoce empetriformis  1-1-2  1-1-2  Cassiopc mertensiana  1-1-2  60% 10%  50%  Salix be 11a  95%  80%  6% • 3%  90%  2% 60%  10% 80% 5%  90% 10%  1- 1-2  •II  I  PN  2-3  •Ii  II  Ch  2  •n  I  Ch  2  1-1-2  3/4  V  H  5  Anaphalis margaritacea  7-4-2  3-2- 1  1-1-2  7-3-3  6-4-3  8-2-2  2-2-1  T-l-2  Lupinus arcticus  5-3-2  6-5-3  8-3-3  7-3-3  5-3-3- 6-5-2  4-2-2  9-7-3  6-5-3  7-8-3  7-5-3  6/6  V  H  2  2-1-2  3-4-3  6-2-3  1-1-2  2-1-2  1-2-2  1-1-2  6-8-3  2-2-2  2/3  V  H  2  2-3-2  1-1-2  2  Carex spectabilis Luetkea pectinata  3-2-2  1-1-2  Epilobium latifolium  2-2-2  3-3-2  Juncus drummondii  3-2-2  1-1-2  2-2-2  2-2-2  '2-1-2  2-1-2  Hieracium gracile Luzula piperi Deschampsia atropurpurea  1-1-2  Epilobium alpinum  1-1-2  _J  2-3-2  3-4-2  3-3-2  1-1-1 1-1-1  1-1-2  4-3-2  1-1-2  1-1-1  1-1-2  1-1-2  4-2-2  Saxifraga ferruginea -  2^-2  1-1-2  V  3-3-2  Saxifraga arguta Carex prcstii  2  •II  II  H  2  •Il  II  H  3-4  -/2  II  H  3  II  H  2  4-3-2  •IZ •II •IZ  1-1-2 1-1-2  1-1-2 1-1-2  1-2-2  3-3-2  I  H  2  III  H  2  •11  II  H  2-3  •n  I  H  3-4  •IZ  II  H  2  4-3-2  •/4  I  H  2  1-1-2  11  H  2  1- 1-2  • Izl •II •II  II  H  4-5  I  H  3  1-1-2  •1 1  I  H  2  • IZ  I  H  5  •11  I  H  4  1-1-2  • l\  1  H  2-3  5-4-2  •Ii  II  H  1  2-2-2  •IZ  I  H  2  •iy •ii  III  H  4-5  II  H  3  1-1-2  •n  I  H  3  1-1-2  3  1-1-2  Antenna r i a a l p i n a Trisetum spicatum  3-2-2 \  1-2-2 1-1-2  Penstcmon procerus Erigcron peregrinus  2-2-2  Senecio subnudus 1-1-2  Heuchera micrantha 1-1-2  Epilobium angustifolium Carex pyrenaica  Athyrium filix-fcmina  1-1-2  Athyrium alpestre  \  Cryptogramma crispa  1-1-2  1-1-2  Sagina saginoides  Kiaeria falcata  2-1-2  1-1-2 1-1-2  Cirsium edule 1-1-2  1-1-2  •i i  I  H  2-2-2  •IZ  1  11  1-1-2  •n  III  C h  •IZ  III  C  •ii  III  C I ,  (B)  •n  II  C h  (U)  3-3-2  Polytrichum piliferum Rhacomitrium cancscens Lescurca baileyi  1-1-2  1-1-1  3-2-1  Agoseris aurantiaca  1-1-2  1-1-2  1-1-2  2-2-2  1-1-2  1-1-2  1-1-2  1-1-2  2 2  '  Achillea millefolium  H H  1-1-2 1-1-2  III  H  Juncus mertensianus 1-1-2  3  -/l  IV  1-2-2  Arnica latifolia  H  III  1- 1-2 2-3-2  2-2-2  Valeriana sitchensis  Ch  III  •II  1-1-2 1-1-2  Carex nigricans  IV  -/2  1-1-2  1-2-2 1-1-2  1/2 •/2  •n  I  Stercocaulon alpinum  2-2-2  •IZ  I  Solorina crocea  1- 1-2  •n  1  1-1-2  Dicranum fusccscens  j  C  C  <B) <B>  z.r'  h  h  .<»> h  3 Z-S .  ( 1.)  "(1.1  -  3-4  Z-i  • 67  s p e c i e s w h i c h h a v e most c o n s t r u c t i v e e f f e c t development  and s u c c e s s i o n  Carex s p e c t a b i l i s , habitat  i n the  a r e L u p i n u s a r c t i c u s and  which c o n s o l i d a t e the unstable  and p r o d u c e a c o n s i d e r a b l e  amount o f o r g a n i c  matter.  C. A l p i n e meadow g r o u p Wet  community i s r e p r e s e n t e d b y : i)  Moist  Mimuleto - E p i l o b i e t u m  community i s r e p r e s e n t e d b y : ii)  Valerianetum  sitchensis  In c o n t i n e n t a l a l p i n e regions characteristic  t h e meadow g r o u p i s  o f more m e s i c c o n d i t i o n s where t h e g r a s s e s  and s e d g e s f o r m z o n a l a l p i n e g r a s s l a n d the  latifolii  communities.  In  C o a s t a l M o u n t a i n s however, t h e meadow g r o u p i s  represented  by hydrophytic  where t h e b a s e  status  water t h a t i s a t l e a s t groups o f p l a n t s extent  i s high  due t o a b u n d a n t  a p p r o a c h i n g base  seepage  saturation.  Such  a r e c h a r a c t e r i z e d by f o r b s and t o a l e s s e r  by sedges.  Wet i)  p l a n t s w h i c h grow i n h a b i t a t s  community Mimuleto - E p i l o b i e t u m The  latifolii  a s s o c i a t i o n i s represented  by communities  67(a)  ASSOCIATION TABLE : M i m u l e t o - E p i l o b i e t u m latifolii  M I M U L E T O - E P I L O I U E T U M I.AT [ FOI.I1  Mor.line Like  Uegion  Plot  92  St/...- of Plot (M)  10M  2  2  2-2-2  2/3  III  PH  5  1-1-1  •/l  I  Ch  2  29  5M  5M  9 2  SM  6 .  2  5M  2  0°  5°  ' 2°  10°  Duration of Snow (Months)  9  9  9  9  9-1/2  S. W.  E  W  •  •  N. W.  Wind Influence Altitude  5350  4300  4400  4600  5900  Physiography  Basin  Braided Stream  Braided Stream  Braided Stream  Terrace  Wet  Wet  Wet  Wet  Wet  Dacitic Lava  Dacitic Lava  Dacitic Lava  Dacitic Lava  Dacitic Lava  Lithosol  Lithosol  Lithosol  Lithosol  Lithosol,  30% 20% 70%  80% 10%  10% 60% 70%  30% 50%  20% 50%  Hygrotope  Parent Material ^TION  Fid-lily  0°  N.W.  Soil Type  ge  Li reforms  Slop.-  Exposure  A V C M  1'rcsonci;  Creek  66 2  Diamond llr.d S . E . Gully  Signifies nci:  Ring  STRATIF  U Cover %  B  Salix subcoerulea  A B C D  6-2-2  .  1-1-2  Phyllodoce empetriformis C  Mimulus lewisii Epilobium latifolium  5-3-2  Leptarrhena amplexifolia  1-1-2  8-2-3  7-2-3  2-2-3  1-2-2  4/5  IV  H .  5  7-2-3  7-2-2  4-1-2  4-2-3  6/4  V  H  3  3-1-2  3-1-2  1/3  III  H  5  1-1-2  •/l  I  H  2  2-1-2  •/l  II  H  2  1-1-2  1/2  II  H  2-3  •/2  I  H  4-5  I  H  4-5  Luzula piperi Arnica latifolia  \  .  1-1-2  \  Epilobium alpinum Athyrium filix-femina  4-3-2 2-1-2 1-1-2  Athyrium alpestre  '•'ll 1-1-2  Luetkea pectinata Saxifraga ferruginea  1-1-2  Saxifraga arguta  1-1-2  1-1-2 1-1-2  3-3-2  Juncus mertensianus  2-2-2  Mimulus tilingii  1-1-2  Valeriana sitchensis Hierac.um gracile  1-1-2  I  H  4  •/2  II  H  2  'll  III  H  3  'll  1  H  2  V  H  2 5 5  1-1-1  Rhacomitrium canescens  1-1-2  • / l \ •/I  1-1-2  X  \  I  C  h  (B)  11  C  h  (B)  2  (B)  3-4  •li  II  2/2  IV  •/2  I  1-1-2  •/I  II  1-1-2  •ll  I  1-1-2  3-2-1 2-2-2  1-2-2  1  t  •/2  H  Polytrtchum juniperinum  Dicranowcisia crispula  2-3  Ch  Marchantia polymorpha  l-l-2i  •/2  V  4-2-2  Kiacria blyttii  4-5  H  III  5-3-3  6-2-2  Kiacria starkei  H  I  2/5  6-3-2  2-1-2  II  3/5  2-2-2  3-2-2  ./l  7-3-3  6-6-3  Gymnomitrium varians  .2-3  1/1  1-2-2  Scapania undulata  H  •/l  1-1-2  2-1-2 ,  2  I  I .  1-1-2  1-1-2  Philonotis fontana  1  1-1-1  1  Juncus drummondii D  1-1-2  3-3-2  Carex spectabilis  Ch  •11  4-2-2  2  C  h  c h  (B)  5  (B)  3--i  (H)  3-1  C h  c  h  C h  ,n)  3  68 having a p r o l i f i c  growth,  thriving  supply o f water which o r i g i n a t e s snow b a n k s o r f r o m g r o u n d w a t e r Characteristic  i n a continual  either  from m e l t i n g  springs.  combination of species  Presence  Mimulus l e w i s i i Epilobium  Fidelity  III  latifolium  5  V  Leptarrhena amplexifolia  3  III  ;  5  Mimulus t i l i n g i i  I  5  Saxifraga arguta  II  5  III  5  Scapania undulata  IV  5  Philonotis  V  5  M a r c h a n t i a polymorpha  fontana Life  Pn  Ch  Ch %  4  8  (  B  +  L  H  )  H  form (  B  +  L  spectra  )  Pn  species 28  in  Ch  (  B  +  Average  56  4  +  T h i s a s s o c i a t i o n h a s two w e l l D layers.  Ch  The C l a y e r p l a n t  +  L  H  )  48  stratified  C and  c l o s e p r o x i m i t y t o a v a i l a b l e water,  a r e grouped  particularly  on t h e i n t e r f l u v e s b e t w e e n t h e b r a i d e d d r a i n a g e c h a n n e l s where t h e w a t e r b r y o p h y t e communities  table  i s high.  The d o m i n a n t  are those o f P h i l o n o t i s  (  B  cover %  25  communities  H  fontana  +  +  L  )  69 which can  be  s e e n as  a green-yellow patchwork  the  hillside  below the  the  establishment of bryophytic Mimulus l e w i s i i  be  r e g a r d e d as  tion.  The  habitats latter  the  melting  and  two  where t h e  snow b a n k s i n d i c a t i n g  latifolium  dominant p l a n t s is usually  water-table  seems t o be  flushes.  Epilobium  former p l a n t  able  confined  i s high,  tion  i s c h a r a c t e r i s t i c of  h a v e a- r e l a t i v e l y h i g h of the  the  more s h e l t e r e d  Alpine  water-table.  areas at  and  weeks l o n g e r . of  the  sites.  habitats.  A.  i c e t o n g u e s and  association  a l p e s t r e which  associawhich  It is typical  large  snow  supply of water  includes  i s o l a t e d f e r n c l u m p s , namely, A t h y r i u m  f e m i n a and  conditions  This  g r o w i n g s e a s o n i s a few  The  the  lower a l t i t u d e s i n  a c c u m u l a t i o n s where a c o n t i n u a l available  to  alluviated habitats  base s t a t u s .  Zone b e l o w t h e  associa-  whilst  to tolerate d r i e r  l o c a l i t i e s with a high  can  of the  E p i l o b i u m l a t i f o l i u m however f i n d s optimum in  across  days a  is or  number filix-  t h r i v e i n shaded  moist  Moist ii)  community  Valerianetum This  drained  sitchensis  i s an a s s o c i a t i o n  sheltered  Characteristic Valeriana  which i s t y p i c a l o f w e l l  s l o p e s and v a l l e y s .  combination o f species  Presence  sitchensis  Fidelity  V  3  Lupinus a r c t i c u s  V  2  Carex s p e c t a b i l i s  V  2  Life Ch  Ch  ( B + L  % 15  )  H  H  (  form B  +  L  spectra Ch  )  species  10  65  Ch(  Average cover 10  5  +  This  community d i f f e r s f r o m t h e p r e v i o u s  tion  o f t h e wet s e r i e s  i n that  association  In the areas o f v o l c a n i c  thus  insuring  moisture which p e r c o l a t e s lower s l o p e s . of  Table  this  75  association.  B  +  L  )  +  associa-  organic  rocks  this  seepage  from  an a b u n d a n t s u p p l y o f s u b - s u r f i c i a l l y t o be  IX, page 53, c o n t a i n s  the chemical c o n s t i t u t i o n  (  %  c a n be f o u n d a t a l t i t u d e s o f 5,200 -  5,400 f e e t on s l o p e s w h i c h r e c e i v e snow m e l t ,  H  i t i s more c h a r a c t e r i s t i c  o f hydromorphic s o i l s which have a h i g h content.  H  B + L )  of the s o i l  details  typical of  70(a)  ASSOCIATION TABLE : V a l e r i a n e t u m  sitchensis  V A I-F.H1ANETUM  SITCHENSIS  i O P A L 90  Viol  S u r of Plot (M>  5M  2  Slope Duration of Snow (months) Exposure  5M  2  .  25 5M  2  75 5M  2  40°  35°  9  9-1/2  9-1/2  9  ••  30° 9  S. W. 1  w  W  1  • 1  ..  4900  5300  5250  5300  5200  Physiography  Convex Slope  Concave - Slope  Concave Slope  Concave Slope  Concave Slope  Moist  Wet  Wet  Wet  Moist  Parent M a t e r i a l  Dacitic Lava  Dacitic Lava  Dacitic Lava  Dacitic Lava  Dacitic Lava  Soil Type  Organic Ranker  i Organic Ranker  Organic Ranker  •Organic Ranker  Organic Ranker  90 2  90 2  90  100  95  7-7-3  7-5-3  5-4-3  \'oi.n  . Cover %  AB C D  '<  '.Fidelity  2  Altitude (Ft.)  Hygrotope  Life Forma  \  1  .  5M  2  40°  S. W.  Presence  80  30°  S.W.  Wind Influence  6  50  Ave ra gc Significance  C O N E  '  * D  Phyllodoce  C  Valeriana sitchensis  empetriformis  -j 7-4-3  Antennaria alpina  •  8~5-2  D  l-i-i  A r n i c a latifolia  l-i-i.  Luetkea pectinata  4-3-2  Dcschampsia atropurpurea  1-1-2  Hicracium gracile  1-1-2  Carex nigricans |  4-2-2  Carex  1-1-2  spectabilis  Luzula piperi  1-1-2  Anemone occidentalis  2-2-2  Potentilla flabellifolia  1-1-2  Polytrichum p i l i f e r u m '  X  .  3-2-2  .  •  1-1-1  1-2-2  3-2-1  -  1-1-1  " \ .  .  •  :  •  "'.  ''  3-2-2 4-2-2  2-3-2  6-5-3  3-2-2  4-3-2  2-2-2  <  '  •  \  3  •/I  I  H  'll  I  H  12  H  2  H  2 .  2.11  III  Ch  2  'll  I  H  2  3-2-2  'll  II  H  2  5-4-2  2/4  III  H  2  2-2-2  3/3  V  H  2  4-4-2  'll  I  H  2.  2/3  III  H  3  'll  II  H  5  H  3-4  Ch  2  ''  1-1-1  ./1 ;  'll  '  ,1  l  '•  I N  I I  1-1-2 1-1-2  ->  "(HI c h  <n>  " (D 1-1-2  :  V  1-1-1  Solorina crocca  . 2  II  2-3-2  \  2  H  2/2  1-1-2  l-l-2  Ch  .  'll  2-2-2 \  I V  «/2 7/7  '  Rhacomitrium cancscens  Lc cidea granulosa  .  1-1-2  Lupinus arcticus  Lycopodium sitchense  •  1-1-2  "\  Phleum alpinum  Ranunculus eschscholtxli  2-2-2  ';  ,./1  II  H  (L)  3-4  '!  71 At found  lower a l t i t u d e s ,  on  alluvial  develop  association  fans which maintain  growth o f v e g e t a t i o n . drainage  this  The  i s unimpeded.  a  water-table  i s often  profuse i s high, b u t  Such h y d r o m o r p h i c s o i l s  on t h e a l l u v i u m a r e  largely  composed  that  of  o r g a n i c mucks.  D.  Rupicolous i)  group J u n i p e r e t o - Penstemonetum m e n z i e s i i  ii)  Silenetum  T h e s e two walls,  acaulis  a s s o c i a t i o n s were c h a r a c t e r i s t i c  r o c k p a v e m e n t s and  were f o u n d  e s t a b l i s h e d i n the  accumulations  i)  the  of fine  cracks of rocks or  d e b r i s i n pockets  and  rock  communities on  depressions.  J u n i p e r e t o - Penstemonetum m e n z i e s i i This association  and  r o c k r i d g e s where  of the  plutonic  of the  rock  Character  o c c u r s on b o t h  the v o l c a n i c  r o c k s where i t i s c o n f i n e d t o t h e  cracks  outcrops.  combination  of species  Presence  Fidelity  Juniper.us communis  V  3-4  Penstemon m e n z i e s i i  V  4-5  F e s t u c a brachyphy11a  III  3-4  Phyllodoce  glanduliflora  IV  2  71(a)  ASSOCIATION TABLE  : J u n i p e r e t o - Penstemonetum menziesii  J II N I I' K H r . T O - 1 K N S T K S.I U N K T II M  MK N Z I K S II  1  Columna r Mountain  •legion . I'lol  41 2M  Slope  50°  Exposure  HON STRATIFIC B  40°  E.  4 4M  2  50°  9 S.  8 S. W.  E.  I  Ave rn yi" Diamond North Si ijni Illlii...1 Mitmquittit eum'«  Ridge  2 ZM  2  ;  Wind Influence  <  3M  2  8 N.  Viking  21  Size of Plot (M)*  Duration of Snow (Months)  Nunat.ik  (.2 2M  2  45"  9  (t-1/2  R-l/2  S  S. W.  !  1  1!  5550  6000  6400  6500  6300  6900  Physiography" " •  Rock Wall  Rock Pavement  Rock Wall  Rock Pavement  Rock Wall  Rock Pavement  Fresh  Parent Material  Dacitic Lava  Dry Qua rtz Diorite  Freah Quartz Diorite  Soil Type  I  Cover  A B C D  70% 20% 10%  40% 1% 30%  Juniperus communis  6-3-3  6-3-2  Phyllodoce glanduliflora  2-2-3  3  i T ii n  30% 20%  Casaiope mertensiana  Penstemon menziesii  Dry Quarts Diorite c n  2-2-3  2-2-1  . C-ircx pyrenaica  Agrostis hum  Fresh  Fresh  Daclte  Mi gma• tite  i f  80%  95%  40%  10%  10%  10%  7-5-3  •IZ  2-2-1  2/3  IV  Ch  2  •/5  I  Ch  4-5  Ch  4-5  2  4-2-2  1-1-1  2- 1-1  Festuca brachyphylla  2-2-2 1-1-2  Carex spectabilis  2-2-2  Penstemon procerus  1-1-2  Saxifraga ferruginea  2-2-2  Heuchera micrantha^.  1-1-2  1-2-2 1-1-1  -"-'^  Rhacomitrium canescens  3-2-2  Rhacomitrium lanuginosum Andreaea nivalis Dicranoweiflia crispula Drepanocladus uncinatus Polytrichum pi life  rum  ; r  1-1-2  2-2-2  Lecidea granulosa  1-1-2  2-2-2  2  2-1-2 1-1-2  .  II  •ll  n  H  •IZ  i  Ch  5  •IZ  n  H  4-5  •IZ  II  •ll  II  •n •n  i  •ii  i  •n •n .  1-1-1  2-2-2  ;'  3-2-1  Cladonia impexa 2-2-2  2-2-2  2-2-2  • «/i  i  m in i  ' !  •IZ  1-2-2 2-2-2  2-1-2  3-2-2 2-2-2  1-2-1  1-1-2  2- 1-2 /'  (B)  4-5  Ch  (D)  4-5  (B)  4-5  Ch  (B)  4-5  Ch  (B)  C h  C  •n'  •li  B  " <L)  l  •/2\  2  ( .  C h  Ch  in  •ii  .1  (Ll  h  H  2  3-4 3-4  (U  2-3  (U  2-3  C h  i  C h  (U  i  C I  '(L)  C h  (L)  3-4  (U  3-4  • II  , . i in  C h  C h  •lz  i  c h  1-1-2  •IZ  IV  M  2-1-2  111  V  2<-2-2  Parmclia pubescens  Rhi/,ocarpom gcographicum  2  1-1-2  Cctraria islandica  Unibilicaria proboscidea  •ll  ' • IZ  Cladonia pyxidata  Thamnolia vermicularis  •  2-2-2  Cladonia chlorophaea  3--)  H  3  1-1-2  Cladonia gracilis var. ^chorda  H  II  3  '. i  Stereocaulon alpinum  in  3-4  2-2-2  1-1-1  •ll  •ll  1-1-1  1-1-2  2  H  1-1-2  Solorina crocea  J-4  H  } .  1-2-1  H  II  2-1-2  1-1-2  I  II  2-1-2  1-1-1  •ll  'll  1-1-2  ;  H  •ll  2-2-2 2-1-2  11  I  1-1-2  Silene acaulis Saxifraga bronchialis  I  •ll  1-1-2  \  1-1-1  •/l  H  1-1-2  \-.-2  V  1/1  1-1-2  Deschampsia atropurpurea  3-4  5-4-2  1-1-2  1-1-2 ill a  2  Pn  5-3-2  9-5-3  1-1-1  Ch  V  6-4-3  2-1-1  1  7/7  9-2-2  1-1-1  Carex preslii  D  !1  Altitude (Ft.)  Hygrotope  I'lil..!i!i  2  40°  S. W.  y..r,r,  :  (.5 2M  30°  ArctoBtapylos uva-ural  C  2  l.ilV  I T I J M I I I I •'  (L)  (U (L|  M(i.)  3-4 3--)  3-4 2-3 •  2  .  72 Life Pn  Ch  Ch  % 3  (  B  +  L  form  H  )  H  (  spectra B  +  L  Pn  )  Ch  species  14  Ch  (  B  +  L  Average cover  41  29  13  50  6  +  which weather v e r y  by  the soft f r i a b l e  in  the crevices.  on t h e  accumulating  frequently  maintain  associations.  f o r example, b e i n g  a c h a r a c t e r i s t i c chomophyte, i s  Carex s p e c t a b i l i s  found growing i n c l o s e p r o x i m i t y  t o Juniperus  communis. The rocks and  a s s o c i a t i o n i s found on t h e q u a r t z - d i o r i t e  along  t h e exposed r i d g e s  of the Viking  Mamquam M o u n t a i n s , where i t c o l o n i z e s  exposed d r i e r s i t e s  only  shrub,  few i n c h e s  menziesii  frequently  very  low t r a i l i n g  available crevice.  i s a short  Festuca  rising  Penstemon  shrub found  e x p o s e d r i d g e s where i t h a s t o o b t a i n any  t h e more  c l o s e l y matted,  above t h e s u b s t r a t e .  i s another  Ridge  o f r o c k pavements and w a l l s .  J u n i p e r u s communis, u n d e r s u c h c o n d i t i o n s , stunted  B  %  fragments o f other  often  (  r a p i d l y as witnessed  nature of the m a t e r i a l Such h a b i t a t s  H  •+ • +  J u n i p e r u s communis grows most v i g o r o u s l y v o l c a n i c rocks,  H  )  along  a root-hold i n  b r a c h y p h y l l a and  +  L  )  P h y l l o d o c e g l a n d u l i f l o r a grow on t h e t e r r a c e s r o c k p a r t i c l e s and o r g a n i c The  m a t t e r have accumulated.  two commonest b r y o p h y t e s , w h i c h f o r m  colonizers  on t h e f i n e r o c k d e b r i s ,  foliose lichens  groups. ties  i n such h a b i t a t s  These groups a r e c o n f i n e d  sheltered  lichens  The commonest  are Rhizocarpon  impexa,  include:  (  B  % 4  proboscidea. to sheltered Cladonia  and C e t r a r i a i s l a n d i c a .  Silenetum  Ch  finds  c r u s t o s e and  Thamnolia v e r m i c u l a r i s ,  acaulis Life  Ch  i n scattered  mainly t o l o c a l i -  f r u t i c o s e forms which a r e c o n f i n e d  habitats  ii)  occur  geographicum,  P a r m e l i a p u b e s c e n s and U m b i l i c a r i a The  The f r u t i c o s e  f r o m w i n d s , o r where t h e l i c h e n  adequate anchorage. foliose  pioneer  a r e Rhacomitrium  c a n e s c e n s and P o l y t r i c h u m p i l i f e r u m . and  where  +  L  )  H  H  (  B  form +  L  )  spectra Ch  species  19  57  Unfortunately  Ch  (  B  +  L  )  H  Average cover 20  only  5  four  +  p l o t s were  H  (  B  %  2  +  established  owing t o t h e l i m i t e d d i s t r i b u t i o n o f t h i s  association  +  L  )  73(a)  ASSOCIATION TABLE : S i l e n e t u m  acaulis  SILSNETUM  Region  North Mamquam  North Mamquam  South Mamquam  South Mamquam  31  33  36  37  Plot Size of Plot ( M ) Slope  2M  2  ^  3M  2  2M  2  5°  15°  Duration of Snow (Months)  9  9  9  9  Exposure  E  S  Wind Influence  1 !  -,  6950  6700  Cclluvial Slope  Colluvial Slope  Rock Ridge  Colluvial Slope  Fresh  Fresh  Fresh,  Fresh  Quartz Diorite  Quartz Diorite  Migmatite  Quartz Diorite  LIT  bI O S O L  Soil Type A B C D  B  Penstemon menziesii  C  Silene acaulis Carex spectabilis  30% 1%  20%  "3-2-3 \  .  4-3-3  2-2-2  4-2-2  1-1-2 1-1-2  \-  Heuchera micrantha  1-1-2  Carex preslii ..  1-1-2 1-1-2  \-  Carex pyrenaica Polytrichum piliferum  2-2-2  2-2-2  1-1-1  Luzula piperi  -  S  Wl  Ch  3/3  Ch  1/1  H  Wl  H  Wl  Ch  1/2  H  Wl  i H  Wl  H  - 2-1-2  1-1-2  Wl  H  1-1-1  2-2-2  Wl  W  1-1-1  Ch  • Wl • -  2-2-2  1-1-2 1-1-2  pubescens  Rhizocarpon geographicum  1-1-1  1-1-1  2-2-2i  Saxifraga bronchialis  Umbilicaria proboscidea  1-1-1  1-1-1  Phacelia sericea  Parmelia  15%  10% .  2-1-2  Carex nigricans  Polytrichum norvegicum  1  6725  Parent Material  Cover %  I ,•  7000  Hygrotope  Life Form  S  N.W.  ;  Ave ra Si gnificance  2  5°  Physiography  D  3M  2  10°  Altitude (Ft.)  STRATIFICATION  ACAULIS  V 1-2-2 1-1-2  I-  Ch  . \  /  1  N  D  D  Wl  H  D  2-2-2  Wl  H  D  1-1-2  Wl  =  H  D  74 along  the  narrow r i d g e s  Mountains.  of the  It is typical  N o r t h and  of the  d e b r i s w h i c h i s a c c u m u l a t i n g on and  ridges.  d i o r i t e had w h i c h was  I n a number o f been i n t r u d e d  weathering  which S i l e n e considers plant. fine  the  exposed  instances  debris  colonizing.  a c a u l i s t o be  high  migmatite, onto  Griggs  (1956)  a most a g g r e s s i v e  s a t u r a t i o n of  The  sustain  itself  acaulis  c o l o n i z e s both the  vigorous  open ground.  evident  tap  root  the  pioneer  with  this  The  confined  this  digyna,  and  to t h e i r with  Phacelia  y e t has  leaching,  the  and  base  not  of the  more are  Silene  acaulis  isolated  sericea.  been s u b j e c t e d  status  plant  special  a s s o c i a t i o n i s a t y p i c a l pioneer  n o v a w h i c h as  melting  association  b r o n c h i a l i s , £[. f e r r u g i n e a ,  clumps o f O x y r i a  res-  Silene  r o c k c r e v i c e s and  Growing i n c o n j u n c t i o n  Saxifraga  p a r t i c l e s by  soils.  communities o f being  in  system enables the  i n these unstable  widely dispersed,  This  quartz-  where mass movement i s t a k i n g p l a c e  snow.  habitats.  summits  the  w i t h dykes of  S o l i f l u c t i o n phenomena a r e  ponse t o the  is  f i n e weathered  into a fine substrate,  a c a u l i s was  Silene  S o u t h Mamquam  to  on  terra extensive  substrate  was  to  75 still  r e l a t i v e l y high.  o f the h i g h tection it  exposed t e r r a i n ,  i n the  Compared w i t h latter  the  i t is  and  abundant m o i s t u r e Junipereto  characteristic  i t f i n d s adequate  l e e of rock b l u f f s  usually obtains  the  Although  pro-  couloirs  where  f r o m snow  melt.  - Penstemonetum m e n z i e s i i  i s more c h a r a c t e r i s t i c  of t h i n  podzolized  soils.  E. A l p i n e heather T h i s has It  group  b e e n r e f e r r e d t o as  i s d o m i n a t e d by  empetriformis, region  and  Cassiope  mertensiana,  Phyllodoce  s t u d i e d , due  undulating  plants  not  so w e l l d e v e l o p e d  altitudes  topography, these  a t 4,000 - 5,000 f e e t Zone.  the  Subalpine  the  o l d e r nunataks, p a r t i c u l a r l y  o f the V i k i n g Ridge, ciated  as t h o s e  and  groups  i n the  of organic matter r e s u l t s  o f the  dominance o f the  heathers.  i n the  of  of  typical  t h a t of the middle  a l s o i n the b a s i n s  paucity  lower  i n the upper l i m i t s  Heather communities are  and  the  c i r q u e s where p r o g r e s s i v e p o d z o l i z a t i o n and  accumulation and  In  to the p r e c i p i t o u s t e r r a i n  and  group because  Phyllodoce  glanduliflora.  of plateau are  the heather  of  summit deglathe  succession  76 i)  Phyllodoceto This  - Cassiopetum  mertensianae  a s s o c i a t i o n c a n be r e g a r d e d  community w i t h i n t h e A l p i n e  Zone.  Character  combination o f species  Phyllodoce  entpetriformis  Phyllodoce Cassiope  (  B  %  +  L  H  )  H  (  B  form +  L  3  II  3  V  3  spectra Ch  )  species 36  Fidelity  V  mertensiana  Ch  19  Presence  glanduliflora  Life Ch  as t h e z o n a l  Ch  (  B  +  L  )  H  H  . Average cover  36  9  16  1  snow c o v e r in  climatic  2  +  acidification  of organic matter.  analysis  o f the t y p i c a l heather  i n Table  VIII.  can  heavy  and a s h o r t g r o w i n g s e a s o n h a v e r e s u l t e d  leaching, progressive  accumulation  conditions,  The soils  and t h e chemical i s tabulated  The v i g o r o f t h e s h r u b  communities  be u s e d a s an i n d i c a t o r f o r t h e d u r a t i o n o f snow  cover. cover  The s h r u b s a r e v e r y  susceptible t o long  and i f t h e snow p a c k i s l a s t i n g  long  they  B  %  S u b s e q u e n t w e a t h e r i n g and c o l o n i z a t i o n b y p l a n t s i n f l u e n c e d by severe  (  snow will  +  L  )  76(a)  ASSOCIATION TABLE : P h y l l o d o c e t o - C a s s i o p e t u m mertensianae  IMI Y I. 1, O I) O C E T O - C A S S 1 O I' K T U M  Plot  Rono tn  Si/..Slopeof Plot (M|  M n si-m iTi L. PM vk ilN Gu . .OPAL  2  Duration Exposure of Snow (Month)  TION B  C  AVP A .'GI O U M U R IA A N IEVk lN lGL. > l . t> tl.. tt. t>.tt.SIGM11CANCLi'!'i.si:.ci t.tn:  35°  10°  9°  5°  8-1/2  8-1/2  8-1/2 S.W.  S 6550  1  6500  81 10M  67  2  35?  9  9  N.  S.W.  W.  I0M  8b  J  20°  3°  9  9  N. E:  .. 5300  5200  10M  Z  S. E .  58  68  69  5M2  5M2  10M2  3°  35°  35°  8-1/2  8-1/2  8- 1/2  S. E.  S. E.  S. W.  6100  6200  t  ii 5400  6600  6100  Parent Material Soil Type A  B •  C D  Wet  Wet  Moist  Moist  Moist  Moist  Fresh  Fresh  Fresh  Fresh  80% 10%  80% 10% 40%  75% 30% 1%  90% 10%  90% 10%  80% 5% 10%  50% 5% 40%  80% 10% 10%  30% 10% 25%  80% 10%  1-1-1  3-1-2  9-3-3  7T3-3  b-3-2  5-3-2  3/4  V.  Ch  8-7-3  6-5-3  8-7-3  2/6  If  Ch  2-2-1  1-2-1  3/4  V  Ch  • /I  I  Ch  •IZ • 12  I  Ch  3  I  Ch  4  IV  H  2  11  H  2  40%  Phyllodoce empetriformis  2-1-2  Phyllodoce"glanduliflora  2-1-2  Casstope mertensiana  9-3-2  9-3-3  6-3-3  1-1-2  3-2-1  Vaccinium deticiosum  1-1-1  Vaccinium mcmbranaceum  2-1-1  Vaccinium caespitosum  3-2-2  2-3-2  Carex spectabilis  1- 1-1  3-2-2  j  Carex preslii Carex nigricans  2-1-2  2-2-2  1-2-2  4-2- 1  2-1-2  1-1-1  1-2-1 1-1-1  • IZ 3-1-2  Erigeron peregrinus  3-1-2  3-2-2  3-2-1  1-2-1  1/2  3-3-1  1-1-1  •IZ •11 •II •11 •1* •Ii •IZ •IZ  1-1-2  1-2-2  1-1-2  1-1-2  1-1-1  1-1-1  1-2-1  1-1-2  Deschampsia atropurpurea  1-1-2  1-1-2  1-1-1  1-1-2  3-2-2  Phleum alpinum  4-1-2  Erigeron aureus  o  Agrostis humilis Sibbaldia procumbent  1-2-2  l-l-l  4-1-2  Lupinus arcticus 1-1-1  —  Luetkea pectinata  2-2-2  2-2-2 3-2-2  \ •  Hieracium gracile  1-2-  I  1-1-2  3-2-2" '3-2-2  Arnica latifolia  1/2 •/l  Penstemon procerus  2-1-2  2-2-1  Valeriana sitchensis  3-2-2  Anemone occidentalis  1-1-2  Lycopodium sitchense  1-2-2  !\  Lycopodium alpinum  1-1-2  * /1  •a • /i  4-3-2  •n  \  Sphagnum capillaceum  2-1-2  1-1-1  Sphagnum plumulosum  1-1-2  1-1-1  1-1-2  /  Rhacomitrium heterostlchum Kiacria blytii  4 -3-2 1-2-2  ./i 1/2  4-3-2  4-3-2 1-2-2  3-2-2  Gymnomitrium, varians ^.  3-2-2  1-1-2  \  Cladonia impexa  \  1-2-1  2-2-2  Cladonia chlorophaea  1-2-1  1-2-1  2-2-2 2-2-2  Stercocauton alpinum Solorina crocea  1-2-1 .  •l  1-1-1  •  2-2-2  2-2-2  1-1-2  \  2-2-2  Cctraria islandica  N  2-2-2  2-1-2  . 2-2-2  Cornicularis acuteata  2-2-2  Thamnolia vermicularis Rhiaocarpon geographicum  1-1-2  Umbilicaria proboscidea  1-1-2  Parmclia pubescens  •/3  2-2-1  x  Lcctdea granulosa  3-2-1  1-1-2  1-1-2  ;  f  1-1-2 1-1-2 1-1-2  3-4  H  2  H  2  H  4  H H  2  H  2  3  2  1-1-2  1-1-2  H  2  1-1-2  Rhacomitrium canescens  11  III I I II III III  H  Plagiothecium striatellum Polytrichum juniperinum  2  I II II I II  •IZ 3-2-2  3  H  •n •n  2-2-2 2-2-2  2  H  Ch  3-3-3  1  2  H  11  Dicranum muhlenbeckii Polytrichum piliferum  H  •IZ  1-1-2  1-2-2  1  III II III  •n  ./i \..  i  1-1-2  4-2-2 1-1-2  33  1-1-1  l-l\2  Pedicularis groenlandica  D  3-3-2  2- 1-2  Antennaria alpina 1  t I:H:I.ITT  CONCAVEC O N C A V ER O C K R1 X I7 E. R1DE C. R D IG E SLOPE SLOPE nL E IF PLATEAUR D IG ER D IG ER X IE ". OUARTi Q U A R T Z 0UART2Q U A R T Z D O IR TIEHOR TE I DAC TIEDAC TIEDAC TIED O IR TIED O IR TIEDAC TE I DAC TIEDAC TIE  Hygrotope  Cover %  10M2  6500  l^hy u iography  r-  79  5M2  2  !  Altitude (Ft. )  H W <•  53  5M  2  S.W.  Wind Influence  < o  91  6M  K  M A I .'  CONE  60  M K U TK N S I A N A  2-2-2 1-1-2  •11 •11 •11 •IZ • Ii • IZ • 11 • 11 •IZ • 12 •11 •IZ • IZ •11 • 11 •IV  II 1  3  H  5  H  3  Ch  2  Ch  3-4  (B) (B) Ch (B| (B) (B| (B) (B) (B) (B| (B)  4  1  II II III I III II II I I I III II II III II II I II III  H  CH  C H  5 2  C H  2  C H  .2 '  C H  4-5  C H  4-5  C H  3  C H  3-4  C H  3-4 2  "(U Ch  Ch , Ch C h  (  L )  L  )  Cl>  (L) (L) (l.)  "(M "(W Ch  3 4  (U  H  Ch  . 3  ( L )  (I.)  3-4 5  - •  -  3  77 be  eliminated.  Optimum c o n d i t i o n s f o r g r o w t h  found  c l o s e t o krummholz c o m m u n i t i e s o r on  south  and  early  i n the  w e s t s l o p e s where snow m e l t s summer.  more p r o l o n g e d fringe  of the  scattered  As  snow c o v e r shrub  isolated  for able  the  shrubs  moves t o h a b i t a t s o f  one  enters the  pioneer  form  groups v a r y i n g i n v i g o r .  many p l a n t s o f t h e s e the  steep  relatively  communities, which  y e a r s when summers a r e  As  one  c o o l and  isolated  the  to maintain themselves  In  snow p a c k  communities  become e s t a b l i s h e d t h e y  development of l i c h e n  are  persists,  are  form  killed.  a nodus  communities which  i n the  shelter  of  are  the  shrubs. It  i s p o s s i b l e t h a t the  mertensianae two  i n t h e A l p i n e Zone c a n be  associations,  empetriformis Alpine  Krummholz  and  one  d o m i n a t e d by  represented  Zone, t h e o t h e r b y  typically  Phyllodoceto -  evolved  at higher  divided  into  Phyllodoce  i n the  Cassiope  Cassiopetum  lower  p a r t s of  mertensiana,  more  altitude.  group  i ) A b i e t e t o - Chamaecyparetum This  association  nootkatensis  is characteristic  on  the  steep  77(a)  ASSOCIATION TABLE  : A b i e t e t o - Chamaecyparetum nootkatensis  A II I K T K T O - C It A M A E C Y P A R E T U M  NUNATAk  lt i* g i o n  2  Slope  17.  14  5x2M  10M  12 2  13  10M  2  5M  34 5M  2  35 2  52  I0M  5M  2  2  45°  35°  30°  45°  20°  35°  8-1/2  9  8-1/2  8-1/2  8-1/2  B-l/2  S. W.  S. W.  S. W.  S. E .  Altitude (Ft. )  6000  6100  Physiography  NUNATAK  RIDGCOl  Hygrotope  Fresh  MoiBt  TUFFS  QUARTZ DIORITE  Parent Material  I  S. W.  i  ! !  6150  6200  ROCK  ROCK  6350  Fresh  Fresh c.  Fresh  95% 1% 5%  90% 10%  90% .10%  70% 10%  5%  5%  , 10%  5%  2-1-2  Abies lasiocarpa  7-3-1  ChamaecypariB nootkatensis  8-4-2  Juniperus S. L . communis  1-1-1  Phyllodoce empetriformis  1-1-1  3-2-2  Phyllodoce glanduliflora Cassiope m e r t e n B i a n a  1  6400  8-3-1  8-3-2  8-3-1  6500  Moist  R O C K  Fresh  40° -. 9 E !  6600  O U T C R O P  Fresh  Q U A R T Z  Fresh  Fresh  D I O R I T E  80% 15%  70% 20%  95% 1%  90% 5%  90% 10%  5%  5%  3%  3%  5%  7-4-2  3-3-2  2-2-1  6-3-3  7-4-2  4-2-2  3-2-2  1-2-1  1-1-1  2-2-1  4-2-1  3-2-2  3-2-2  2-2-1  1-1-1  2-2-2  2-1-1  3-2-2  2-2-1  2-1-1  1-1-2  6-3-2  5-2-2  2-2-2  1-1-1  4-3-2  4-3-2  3-2-2  Heuchcra micrantha  2-2-2  Rhytidiopsis robusta  2-2- 1  6-3-2 2-2-2  2-2-1  1-1-2  LcBcurea b a i l e y i  1-1-2  Polytrichum piliferum  3-2-2  Kiaeria blyttii  1-1-2  2-2-1 1-1-2  Cladonia impexa  1-1-2  1-1-2  Stereocaulon alpinum  1-1-2  1-1-2  Ceiraria islandica  1-1-2  Thamnolia vermicularis  2-2-2 1-1-1  1-2-2  2-2-2  3-2-2 1-2-2  3-2-2  1-2-2  Umbilicaria proboscidea  2-2-2  Parmelia pubescens  1-2-2  2-2-1  1-1-2  2-2-2  2-2-2  Parmelia vittata Rhacomitrium canescens Rhacomitrium heterostichum  3-2-2 1-2-2  III  Ch  2  •li-  I  Ch  4  2  II  /3  V  1/2  C  h  (B)  3-4  •li  I  C  n  (B)  4  •ll  I  Ch  ( B )  Ch  ( B )  1-1-1  2-2-2  • ll  III  1/2  III  • ll  II  C  • ll  I  c  •li  I  •ll  II  2-2-2  1-2-2  1-1-2  II  •li •ll  2  h  (B)  3-4  h  (B)  3-4  (L)  5  C  h  Ch  (  h  <U  I  C  h  (L)  I  C  h  •12  II  •ll  I!  1 1  (L)  • ll  Ill  1 1  (U  1-2-2  3-2-2  '•12  V  11  (1.)  •ll  11  c  •IZ  11  C  •12  III  C  l •  •ll  3-4  2  Ch ( L)  2-2-2  1  3  5  ( U  1-1-2  2-1-1  2  (L)  C h  C  2-2-2  2-2-2  3  U  1-2-2  1-1-2  5 2  Ch (B)  2-2-2  1-1-2  ;  , I  • ll  5  (B)  C h  2-2-2  3-2-2  1-1-2  5  (B)  C h  2-2-2 1-1-2  2-3  IV  III  3-2-2  1-1-2  2-2-2  2-2-2  2  1/2  •ll  2-2-2  1-1-2  Khiaocarpon geographicum  Ch  .  1-1-2  1-1-2  III  2-2-2  / 1-1-2  2  1/2  1-2-2  2-2-2  2-1-2  1-1-2  3-4  Ch  2-2-2  1-2-2  2-2-2  PN  V  H  3-2-2  Lecidea granulosa  III  1/2  • ii  i  chordalis  1/2  3  2-2-2  :  5  4  1-1-2 1-1-2  Kiaeria starkei  PN  H  1-1-1  2-2- 1  II  H  2-2-2  2-2-2  2/7  I  1-1-2  2-2-2  5  I  2-2-2  Brachythecium reflexum  5  PN  • n  3-2-2  Mnium spinulosum  PN  V  • n  \  \  I  6/6  1-1-2 1-1-2  1-1-l' 3-2-1  ./4  1-1-2  1-1-2  1-2-2  1-1-2  6600  2  T E R R A C E S O N  1-1-2  Dicranum muhlenbeckii  6450  2-2-3  Saxifraga ferruginea  Dicranum fuscescens  I  2-1-1  ,'.  Festuca brachyphylla  1  5M  6-3-3  1-1-2  Vaccinium cacspitosum  »  i mn.trv  1  .907, 5%  Tsui:n mertensiana  W  DACITIC TUFFS  L A V A  Ranker A B C D  W  RIDGE  •UTCROP OUTCROP  D A C I T I C  Soil Type  Cladonia de gene rans  5M  2  40°  1 !  Cladonia gracilis  5M  2  8-1/2  W  MM:  88,  H9  30°  Wind Influence  Cornicularia aculeata  69  8-1/2  S  Avnt.  MT*.  8-1/2  Kxpottu re  Cover %  V I K I N G KIIX'.i:  0°-10°  Duration of Snow (Months)  SIS  MA:.?OI;AM  T M A M O N 1 ) nr.Al>  {>>  Plot Si/« of Plot ( M )  N O O T K A T E N  2  2  4-5  (L)  h  C h  2  (1-1  h  )  2  l  (13)  (IM  •  2  3  78 terrain  a n d r o c k y o u t c r o p where snow i s m e l t e d b y  the end o f June o r a t t h e b e g i n n i n g Character Abies  combination  of species  Presence  lasiocarpa  Chamaecyparis n o o t k a t e n s i s Juniperus  14  (  B  +  L  )  form  H  H  (  B  59  5  +  L  )  Pn  Ch  9  9  40  4  The  +  L  H  )  7  % -  It is  o n l y on t h o s e h a b i t a t s I t s h o u l d be community,  i n t h e A l p i n e Zone b e y o n d t h e f r i n g e o f i n the Subalpine  Zone.  Its  i n t h e a l p i n e zone a r e i n t r a z o n a l . t e r m i n a l shoots  generally withered lower  B  6,000 - 6,800 f e e t .  as fragments o f a f o r e s t  zonal d i s t r i b u t i o n  habitats  (  i n t h e A l p i n e Zone a t  s h o r t e s t d u r a t i o n o f snow c o v e r .  situated  Ch  Average cover  r a n g i n g from  considered here  its  3 - 4  spectra  species  a community w h i c h d e v e l o p s with  5  V  This a s s o c i a t i o n occurs altitudes  II  robusta  Ch %  9  5  V  Life Ch  Fidelity  V  communis  Rhytidiopsis  Pn  of July.  of Abies  lasiocarpa are  f r o m w i n d a n d snow b l a s t ,  l a t e r a l branches,  but the  p r o t e c t e d b y snow c o v e r ,  H  (  B  +  L  )  maintain  a vigorous  growth.  This represents  candelabrum form of growth. exposed s i t u a t i o n s  Chamaecyparis  produces cones, w h i l s t Abies quantities  Even  a  i n t h e most  nootkatensis  l a s i o c a r p a has  limited  o f c o n e s o n l y a t l o w e r , more s h e l t e r e d ,  elevations. A striking  characteristic  its highly localized junction. regarded 200 y e a r s  distribution  I n some c a s e s as r e l i c t s ago  of t h i s  these  from the l a s t  (Mathews, 1 9 5 1 ) .  the  5,800 f e e t  G a r i b a l d i Neve.  and s p a t i a l  communities  above  glacial  c a n be  o f the  s e e n on a  In other  instances  groups  re-seeding  trees.  From t h e p o i n t o f v i e w o f p h y s i o g n o m y , nities  c a n be  the northeast p o r t i o n of  o f krummholz h a v e b e e n e s t a b l i s h e d b y from n e i g h b o u r i n g  dis-  advance  Evidence  e x t i n c t i o n o f a former t r e e l i n e nunatak,  association i s  commu-  o f t h e krummholz show a v e r y h i g h d e g r e e o f  sociability.  E v e n on s t e e p  grown s t u n t e d t r e e s shade w h i c h a l l o w s moss-lichen  layer.  rocky  terrain  (up t o 2 m t a l l ) only a sparse  the c l o s e  c a s t a dense  v e g e t a t i o n i n the  Gaps w h i c h a p p e a r i n t h e  canopy  80 contain heather The  p l a n t s w h i c h show c o n s i d e r a b l e v i g o r .  s o i l s which are t y p i c a l  are t h i n A - C s o i l s , undecomposed  litter  humus h o r i z o n . is  indicated  G. Bog P e a t  o f t h e krummholz  groups  which have a w e l l d e f i n e d  h o r i z o n and a p a r t i a l l y  decomposed  The c h e m i c a l a n a l y s i s o f t h e s e  soils  i n Table V I I I .  group  Isolated  localities  o f b o g p e a t o c c u r on  t e r r a c e s below t h e V i k i n g Ridge, 6,200 - 6,500 f e e t .  large  varying i n altitude  T h i s bog peat develops  from  i n small  d e p r e s s i o n s w h i c h a r e s a t u r a t e d b y m e l t i n g snow w a t e r . The  c h e m i c a l a n a l y s i s o f these p e a t s has been  i n Table habitats,  IV, page 46.  T h i s group i s r e s t r i c t e d  approximately  c h a r a c t e r i z e d by such  recorded  1 square  active peat  to small  m e t r e i n a r e a and i s f o r m i n g mosses a s  S p h a g n u m . c a p i l l a c e u m , _S. p l u m u l o s u m and Sv compactum.  81 V. 1.  SOIL The  r e l a t i o n s h i p between p e d o g e n i c  p r o p e r t i e s has tion cl t  S =  b e e n e x p r e s s e d by  ^r(Cl/  = climate, = time.  o,  The  is  a f a c t o r of  snow as  localities,  where t h e  both vegetation soils  and  soil  the  i n the  of  Columbia  Because in  snow c o v e r prevails.  snow  this  controlling although This  modi-  snow,  drifted  i t s effect.  Coastal Alpine  r e s e m b l e s one  w h i c h has profiles  e f f e c t s of  material,  is  However, diminished,  This  affects  development.  g r e a t masses o f  immature.  climate.  or reduce  i n f l u e n c e d by  e x p l a i n s why  p = parent  i t s influence.  effect  property,  Zone o f B r i t i s h  a climatic factor s t i l l  The  soil  even i n i n t r a z o n a l h a b i t a t s ,  either increase  from o t h e r  even t h e r e ,  equa-  i t i s obvious that,  somewhat m o d i f y  f i c a t i o n may  (1941) i n an  Zone, snow i s a m a j o r a g e n t  formation, may  soil  t ) where S = any  a snowy t u n d r a  climate,  Coastal Alpine  relief  p,  Coastal Alpine  c h a r a c t e r i z e d by  soil  r,  Jenny  f a c t o r s and  o = organisms, r = r e l i e f ,  is  in  DISCUSSION  Zone a r e  so  strongly  snow t h a t t h e w h o l e  been r e c e n t l y d e g l a c i a t e d .  of alpine s o i l s  in this  region This  zone a r e  very  82 It so due  i s evident i n this  important  for soil  maturation,  t o the y e a r l y repeated The  similar,  v o l c a n i c and b u t due  of the d e v i t r i f i e d crystalline  shortened  rocks are c h e m i c a l l y  Compared t o p l u t o n i c  are undergoing  p h y s i c a l weathering,  i s seemingly  factor,  c o n t r a s t i n g mode o f o r i g i n ,  textures.  the v o l c a n i c rocks  time  d u r a t i o n o f snow m a s s e s .  plutonic  to the  widely d i f f e r i n g  r e g i o n t h a t the  largely  relatively  resulting  from  have  rocks,  rapid disintegration  g r o u n d mass w h i c h c o n t a i n s t h e more  phenocrysts.  F i g u r e s 8 and  9 show t h e  comparison of the  t e x t u r e s b e t w e e n t h e v o l c a n i c and  plutonic  From t h e p o i n t o f v i e w o f  rocks.  weathering and  these  a certain  analogy  volcanic rocks.  c a n be Hilger  showed t h a t s a n d s t o n e s  had  p h y s i c a l weathering.  T h i s was  t h e m a t r i x w h i c h bound t h e matrix  c a n be  compared w i t h  the v o l c a n i c rocks which in  the phenocrysts The  plutonic  holocrystalline  very  drawn b e t w e e n and  little due  physical  Erlangen  (1897)  resistence to  t o b r e a k i n g down d f  coarser grains together. the  devitrified  away.  are r e l a t i v e l y  very r e s i s t e n t  of  results  r o c k s composed o f q u a r t z - d i o r i t e s  and  The  groundmass  i s e a s i l y w e a t h e r e d and  breaking  sandstones  to  are  83  Figures  8 &  9.  Comparison o f t e x t u r e s the  v o l c a n i c and  between  plutonic  rocks.  QUARTZ-DIORITE PERCENTAGE OF MINERALS THE REGIONS  OF THE PARENT MATERIAL FORMING THE SOILS IN  OVERLYING THE VOLCANIC AND  DACITIC LAVA  PLUTONIC ROCKS  84 p h y s i c a l weathering. u s u a l l y of clase  partially  feldspars, biotite, It  soils  coarse,  is tentatively  t h a t the  of B horizon maturation  zonal  on  altered crystals  hornblende,  type  zonal  of the p r o f i l e Jenny  limestone  which i s produced i s  suggested  soil  i n these  h e a v y snow c o v e r . Alps  Debris  parent  and  i n the  quartz.  s e c t i o n under  i s a ranker.  soil  may  be  due  The  slow  owing t o the p r o l o n g a t i o n (1941) n o t e s t h a t m a t e r i a l the  i n the  "climax  Caricetum  B horizon.  European C o n t i n e n t a l A l p s  such climax  absence  to the  developed below the In the  of p l a g i o -  curvulae  has  of  Central  humus  a very  soils"  narrow  however,  s o i l s m a t u r e more r a p i d l y u n d e r c l i m a t i c  t i o n s where s n o w f a l l  i s less  and  the  a  vegetative  condi-  season i s  longer.  2. DELIMITATION OF The  Alpine  above t i m b e r l i n e  THE  ALPINE ZONE  Zone i s u s u a l l y r e g a r d e d (Daubenmire,  1943,  as  that  Braun-Blanquet,  C l i m a t o l o g i s t s h a v e e q u a t e d t i m b e r l i n e as limit  of t r e e growth.  Koppen  o f t r e e growth c o i n c i d e s w i t h warmest month.  Miller  region  the  1954). thermal  (1931) p r o p o s e d t h a t t h e the  isotherm  (1957) r e g a r d e d  of  50OF f o r  50°F as  highly  limit the  85 significant, reflect by  but  three  c o n d i t i o n s more t r u l y .  summing up  expressing close  considered  the  the  months above 43°F w o u l d He  accumulated  temperatures,  d e g r e e s above 43°F f o r e a c h month  value  i n "month d e g r e e s " .  He  and  found  c o r r e s p o n d e n c e b e t w e e n 18 month d e g r e e s and  a  the  timberline. Within of  the  region  s t u d i e d the  sample p l o t s c o u l d be  the  altitudinal  10).  The  used to give  Alpine  Zone s h o u l d  ( G a r i b a l d i Mountain, translocated  Zone, t h i s are tion  latter  characteristic c o u l d be  subalpine  be  some i n d i c a t i o n o f  considered  t o the  8,787 f e e t ) .  from the  the  the  by  Zone.  (Figure  include a l l summits  result  Zone i n t o t h e  zone i s p e n e t r a t e d of the A l p i n e  to  highest  As  Alpine  i n t e r p r e t e d as  of  snow  Subalpine  communities t h a t Such a  .  penetra-  a l p i n e ecotone of  the  zone.  3. DISTRIBUTION OF The  frequencies  r a n g e o v e r w h i c h p l o t s were l o c a t e d  e l e v a t i o n s above 5,500 f e e t up  being  altitudinal  three  i m p a c t upon t h e Pleistocene  VEGETATION  m a j o r f a c t o r s t h a t have had distribution  of the  v o l c a n i c i n t r u s i o n s , the  the  vegetation  most  important  are  geographical  situation,  86  Figure  10.  Altitudinal sample  frequencies  plots.  of  ALTITUDINAL FREQUENCY OF SAMPLE PLOTS  10  5  4,000  4,500  5,000  5,500 FEET  6,000  6,500  7,000  87 which i s t r a n s i t i o n a l between the  C o a s t a l and  regions,  The  and  recent  glaciation.  impact o f  P l e i s t o c e n e v o l c a n i c i n t r u s i o n s upon t h e v e g e t a t i o n has Black  been p r o b a b l y  Tusk R e g i o n ,  are  types  Although the  largely dacitic,  soil  types  on  the  on  the  regions,  owing t o the  form of Pinus  G a r i b a l d i Lake,  area  r e p o r t e d by  fact  Coastal  (Prosild,  1958).  g l a c i a t i o n upon t h e northeast  in  rocks.  effect  soil  formation  corner  Vegetational  a l b i c a u l i s krummholz Brink  (1959),  and  to  the  evidence  can  lee be  above  also  Abies  t o the C o r d i l l e r a n  Evidence of the  p a t t e r n of vegetation  of the  and  t h a t i t i s i n the  l a s i o c a r p a both of which species belong element  side  i s somewhat m o d i f i e d  zone b e t w e e n t h e  Coastal Mountains. i n the  i n the  was  of c o l o n i z i n g p l a n t s .  form a t r a n s i t i o n a l  found  the  variation  therefore, considerably  The,macroclimate of t h i s  of the  Diamond Head  older plutonic  v e g e t a t i o n a l development p a r t i c u l a r l y  Interior  of  most s t r o n g l y i n  i s a considerable  compared t o t h o s e  the k i n d s  pattern  (from b a s a l t s t o d a c i t e s )  rocks  there  These e x t r u s i o n s w i l l ,  and  the  n o r t h w e s t o f G a r i b a l d i M o u n t a i n , where  a wide range o f r o c k extruded.  felt  Interior  effects  of  i s f o u n d on  G a r i b a l d i Neve', where a  former  the  88 treeline  once o v e r r i d d e n by  t h e d e c a y e d wood i s f o u n d Further evidence  of  i c e , has  been r e v e a l e d  adjacent to pockets  ice retreat  i s found  on  and  of o l d  some o f  s m a l l e r n u n a t a k s above G a r i b a l d i Neve where t h e r e fragments o f p l a n t communities h a v i n g d i s t i n c t with those  o f lower  angustifolium,  and  altitudes.  F o r example,  Calamagrostis  canadensis  t h e d i v i d e b e t w e e n Diamond Head and Churchill habitat  and  factors  Hanson  s o i l moisture, factors, Alpine  the  grow b e l o w Lake. primary  two  most i m p o r t a n t  Zone i n d e t e r m i n i n g i n the  the  form  agents  Of  i n the  succession of o f snow and  and  temperature,  wind exposure.  these  Coastal phytocoenoses  the d u r a t i o n of  snowbeds. P i o n e e r p l a n t communities,  on  affinities  f o r the determination of gradients  are p r e c i p i t a t i o n the  occur  (1958) c o n s i d e r t h a t t h e  snowbeds and  the  Epilobium  Garibaldi  p a t t e r n s of v e g e t a t i o n , are p r e c i p i t a t i o n ,  soil.  just maintaining  themselves  the very t h r e s h o l d of e x i s t e n c e , are s u s c e p t i b l e t o  environmental will  tend  t o be  Microclimate, factors  changes. due  Hence d e v e l o p m e n t and  to allogenic  factors  p a r e n t m a t e r i a l and  t h a t l a r g e l y determine  the  (Tansley,  physiography course  succession  are  1939). allogenic  of pioneer  succession.  89 Once t h e l o c a l  environment i s s u i t a b l e f o r p l a n t s t o  c o l o n i z e e x t e n s i v e l y , then autogenic succession  can take  t i e s b y one a n o t h e r the  i s largely  succession The  parent  1939.)  The r e p l a c e m e n t o f communidue t o c h a n g e s i n d u c e d  environment by the v e g e t a t i o n On d a c i t i c  by  place.  (Tansley,  itself.  m a t e r i a l t h e sequence o f p l a n t  goes a c c o r d i n g  t o t h e f o l l o w i n g scheme:  debris of coarse  dacitic  fragments  i s colonized  the chomophytic a s s o c i a t i o n o f Anaphaleto -  arctici, tuffs,  w h i l s t the f i n e r  textured material of  e t c . , b y the Luetkeetum p e c t i n a t a e .  acidifcation  rankers.  Further  ment b y a c i d o p h i l o u s of Phyllodoce  soil  ericaceous  and C a s s i o p e .  Phyllodoceto profile  relatively  Progressive  of the l i t h o s o l s  species, notably,  This wilj. result of the zonal  of  into  w i l l be c h a r a c t e r i z e d b y o r g a n i c  deep a c i d o r g a n i c  species  i n the  communities  - Cassiopetum mertensianae.  In t h e upper ' l i m i t s established  dacitic  p o d z o l i z a t i o n w i l l lead to encroach-  d e v e l o p m e n t and s u c c e s s i o n the  Lupineturn  w i l l u l t i m a t e l y lead t o the accumulation  o r g a n i c m a t t e r and t h e t r a n s i t i o n the  in  The  forming zonal  ranker  with  horizon.  of the subalpine  on i n s o l a t e d h i l l o c k s ,  zone, t r e e s a r e  where snow  recedes  90  Figure  11.  Generalized Alpine  succession  Zone on  Dacitic  in  the  Lavas.  GENERALIZED SUCCESSION IN THE ALPINE ZONE ON VOLCANIC DACITIC LAVAS  Luetkeetum p e c t i n a t a e ( P i o n e e r on f i n e d e b r i s )  Anaphaleto - Lupinetum a r c t i c i (Pioneer stage Chomophytic habitats)  Phyllodoceto - Cassiopetum mertensianae (Organic ranker) (Zonal type)  Carex n i g r i c a n s Carex s p e c t a b i l i s (stage)  R e d u c t i o n o f snow c o v e r subalpine f o r e s t (Dry e d a p h i c )  Valerianetum s i t c h e n s i s (Hydromorphic s o i l s )  Mimuleto - E p i l o b i e t u m latifolii (Seepage s i t e s ) N o t e : T h i s s u c c e s s i o n t a k e s p l a c e i n a l t i t u d e s between 4,800-6,000 f e e t . S u b a l p i n e f o r e s t community d e v e l o p s up t o a b o u t 5,500 f e e t . Thus p a r t o f t h i s s u c c e s s i o n i s p e r t a i n i n g t o t h e a l p i n e e c o t o n e o f t h e S u b a l p i n e Zone.  91 rapidly  and t h e g r o w i n g  season  i s longer.  a l t i t u d e s where snow i s a c o n t r o l l i n g growth and d i s t r i b u t i o n must be r e g a r d e d  of l i f e  c a n assume t h a t  expand t o become  factor  forms,  such  f o r the communities  as t o p o g r a p h i c a l l y c o n t r o l l e d .  cover p r o g r e s s i v e l y decreases we  In the higher  these  I f snow  d u r i n g the succeeding  isolated  groups o f t r e e s  the z o n a l communities.  years  will  However,  i f the  d u r a t i o n o f t h e snow p a c k i n c r e a s e s , n a t u r a l r e g e n e r a t i o n will  be g r a d u a l l y e l i m i n a t e d , a s a r e s u l t  growing cease  season,  and u l t i m a t e l y t h e s e t r e e  groups  will  to exist. The  h y d r o p h y t i c s u c c e s s i o n commences  Epilobietum  latifolii.  This association  by b a s o p h i l o u s communities Progressive accumulation  growing  accumulation  o f o r g a n i c matter  o f o r g a n i c matter  depend upon t h e s o u r c e  organic matter. the Valerianetum Caricetum  habitats.  will  lead to Subsequent  and a c i d i f i c a t i o n  will  I f accumulation sitchensis w i l l  nigricantis  i s characterized  sitchensis.  o f seepage w a t e r .  summer thaw, f l o o d w a t e r s  w i t h the Mimuleto -  i n seepage  the development o f t h e V a l e r i a n e t u m  the  of the shortened  Usually during  remove a l l v e s t i g e s o f i s able t o take p l a c e ,  be s u p e r s e d e d  by the  and u l t i m a t e l y b y t h e z o n a l  P h y l l o d o c e t o — Cassiopetum  will  mertensianae.  association,  Statistical  a n a l y s i s was  carried  out  to determine  the  s i g n i f i c a n c e between p r o g r e s s i v e a c i d i f i c a t i o n measured t e r m s o f pH philus  and  the  succession  communities.  characterized spectabilis  from b a s o p h i l o u s  Phyllodoce  randomly s e l e c t e d from the  empetriformis.  The:regression  of the  computed.  I t was  found  spectabilis  and  was  two  s p e c i e s had  with of the  decreasing  pH  high pH  frequency  Ten  p l o t s were  a  frequencies  not  significant,  correlation  on pH  the  coefficients.  a reduction i n  Whereas, w i t h  increased with  but  was Carex other Thus,  frequency  Phyllodoce  a decrease  the  linear  t h a t r e g r e s s i o n between  t h e r e was  Lupinus a r c t i c u s .  Carex  a s s o c i a t i o n t a b l e s , and  f r e q u e n c i e s o f e a c h s p e c i e s c a l c u l a t e d on scale.  acido-  T h r e e s p e c i e s were s e l e c t e d w h i c h  the extremes: Lupinus a r c t i c u s ,  and  to  in  i n the  empetriformis pH.  94 TABLE X I .  Regression  equations  % 100  R  S  y  Lupinus arcticus 25.0839 pH - 1.166062 56062 p H 123.1031  84  ± 14.15  Carex s p e c t a b i l i s 16.5517 pH - 51.18568 p H - 52.47042  27  + 31.93  1.6  Phyllodoce empetriformis 33.71045 pH - 1.21240 p H - 2.309014  77  ± 28.20  7.20**  2 z  19.26***  2  2  ***Significant **Significant where -  F Sy df MS 100R2  Succession rocks  takes  — -  a t 0.005 P w i t h d f 7,2 a t 0.025 P w i t h d f 7,2  Variance r a t i o Standard e r r o r o f r e g r e s s i o n degree o f freedom Mean s q u a r e Coefficient of determination  at higher  altitudes  a somewhat d i f f e r e n t  on t h e q u a r t z - d i o r i t i c  course  ( s e e F i g u r e s 13 and  14) : On t h e h i g h p l a t e a u s stages  c a n be  (1)  three  pioneer  recognized:  Snow p a t c h the  above 6,000 f e e t ,  communities,  i n l o c a l i t i e s where  snow p a c ^ h a s r e d u c e d  the length of  g r o w i n g s e a s o n t o a minimum'  Figure  12.  Graphical the  representation  regression  analysis.  REGRESSION ANALYSIS OF LUPINUS AND PHYLLODOCE  96 (2)  a stage dominated by Rhacomitrium on g r i t s a c c u m u l a t i n g  (3)  is  by  resistent  f i r s t two  the Caricetum  tion  pavements;  of s o i l  and  to weathering i s very  and  nigricantis.  to the  s u c c e s s i o n of p l a n t s are  erode  accumulated  the t h i n m i n e r a l p r o f i l e s . localities, moisture,  particularly  organic matter The  Caricetum  soils. result the  nigricantis  and  development forma-  always situa-  organic matter less  from  exposed abundance  the accumulation  of  of  l e a d s t o h i g h moor f o r m a t i o n . i s t y p i f i e d by  Further accumulation  zonal heather  mineral  exposed  i n depressions, the  ultimately  i n more m e s i c  On  However, on  impermeable s t r a t a  rock  C o n d i t i o n s f o r the  e x t r e m e upon t h e s e h i g h l a n d p l a t e a u s . t i o n s winds u s u a l l y  the  The  shallow.  pioneer stages lead  the  charac-  species of Polytrichum.  soil profile  of  rock  the dry rock outcrop pioneer stage terized  The  on  species  shallow organic  of organic matter  c o n d i t i o n s and  the  will  succession of  communities which are t y p i c a l of  P h y l l o d o c e t o - Cassiopetum succession of the Caricetum  the  mertensianae.  During  the  nigricantis  i f drainage  Figure  13.  Quartz-diorite  succession.  QUARTZ - DIORITE SUCCESSION  Gymnomitrieto - P o l y t r i c h e t u m norvegici (Accumulated s i l t )  Rhacomitrium  species  Bryophytes Lichens {Rock o u t c r o p s )  Gradual reduction o f snow c o v e r Caricetum Excess water snow m e l t  nigricantis  from Carex n i g r i c a n s Sphagnum s t a g e  Accumulation of organic matter Sphagnum A p p r o a c h t o more mesic c o n d i t i o n s  stage  V Phyllodoceto - Cassiopetum mertensianae  Krummholz .(Dry e d a p h i c )  1 - R e d u c t i o n i n snow c o v e r 2 - Increase  i n snow c o v e r  98  Figure  14.  Average free  frequencies  o f snow  d a y s t h r o u g h o u t a number  of - associations.  120 110 100  1 GYMNOMITRIETO  - POLYTRICHETUM NORVEGICI  2 CARICETUM N I G R I C A N T I S  s  Q W 60  3 PHYLLODOCETO  - CASSIOPETUM MERTENSIANAE  g b  4 ABIETETO - CHAMAECYPARETUM  NOOTKATENSIS  5 JUNIPERETO - PENSTEMONETUM  MENZIESII  CO  40  4 COMPARISON OF SNOW FREE DAYS THROUGHOUT A NUMBER OF ASSOCIATIONS  99 becomes impeded, a c c u m u l a t e d o r g a n i c m a t t e r acidification will The crops  l e a d t o h i g h moor  b r y o p h y t i c and  i s f o l l o w e d by  and  progressive  formation.  lichen pioneer  stage  the development o f  of rock  out-  krummholz  communities, which a t the h i g h e r  altitudes  to  a l r e a d y been s t a t e d the  steep rock  Abieteto  outcrops.  - Chamaecyparetum n o o t k a t e n s i s  of dry edaphic The  three  the  treeline  and  Abies  s i t e s maintained  are Tsuga mertensiana,  lasiocarpa.  6 feet  Of  the  7,000 f e e t .  i n areas  three,  With the  nootkatensis  communities not  more  approaching i t appears  i s succeeded by  accumulation  leaching Abies  form  Chamaecyparis  F r o m a number o f o b s e r v a t i o n s  lasiocarpa.  Tsuga  r e g i o n which  at altitudes  t h a t Chamaecyparis n o o t k a t e n s i s  progressive  is characteristic  Chamaecyparis  grow i n s m a l l i s o l a t e d square  confined  upon p r e c i p i t o u s t e r r a i n .  species i n this particular  nootkatens i s than  I t has  are  Abies  of organic matter  lasiocarpa i s followed  and  by  mertensiana. It  i s on  altitudes vegetation  the  relatively  flat  terrain  t h a t t h e p r e s e n t p a t t e r n and indicates a gradual  Within the v i c i n i t y  of the  at these  succession  r e d u c t i o n i n snow  treeline,  heather  higher of  cover.  communities  100 of  considerable  upwards a l o n g  v i g o r grow f r o m t h e  the  slopes.  of the  They r e p r e s e n t  snow p a t c h  the  initial  communities  scheme o f d e s c r i p t i o n i n t h e  succession,  the  sequence  c h a n g e s f r o m snow p a t c h Phyllodoceto  i n t o the  r e l a t i o n s h i p of the  Figure  14).  Figure  Reversing  actual plant the  15  successional  zonal  Such a  d e v e l o p where snow d o e s n o t  long duration.(see  cover.  communities  indicating  - Cassiopetum mertensianae.  community w i l l  snow  sense of the  i s obtained  are  vegetational units  d e v e l o p e d , where snow d o e s n o t become p e r e n n i a l . this  trees  Above t h i s h e a t h e r a s s o c i a t i o n ,  where snow masses l i e l o n g e r , developed.  periphery  persist  zonal for a  summarises  p l a n t communities t o the  duration  the of  101  Figure  15.  Topography of p l a n t s  in  relation  of  snow  to duration  cover.  102  VI.  Twelve p l a n t A.  SUMMARY AND CONCLUSION  a s s o c i a t i o n s were  established:  Snow p a t c h g r o u p (1)  Gymnomitrieto - P o l y t r i c h e t u m  norvegici  a. s u b - a s s o c . g y m n o m i t r i e t o - p o l y t r i c h e t o s u m norvegici b. sub-assoc. polytrichetosum (2)  Caricetum n i g r i c a n t i s  (3)  Sibbaldietum  B. C h o m o p h y t i c  piliferi  procumbentis  group  (4)  Caricetum s p e c t a b i l i s  (5)  Luetkeetum  (6)  A n a p h a l e t o - Lupineturn  C. A l p i n e meadow  pectinatae arctici  group  (7)  Mimuleto  - Epilobietum  (8)  Valerianetum sitchensis  latifolii  D. R u p i c o l o u s g r o u p (9) (10)  J u n i p e r e t o - Penstemonetum Silenetum acaulis  menziesii  103 E. A l p i n e h e a t h e r (11)  F.  G.  mertensianae  - Chamaecyparetum  nootkatensis  group  Sphagnum  most i m p o r t a n t  present  - Cassiopetum  group  Abieteto  P e a t bog (13)  The  Phyllodoceto  Krummholz (12)  group  single  distribution patterns,  succession  of v e g e t a t i o n  snow c o v e r  and  The  factor  thickness  responsible  development  i n the A l p i n e  and  p e r s i s t e n c e of  establishment  upper p a r t s is  The  developed  of the  of the  plant  Subalpine  i n the  Pioneer  altitudes  stages  ecotone  Zone.  The  above 5,500  the  Progressive  in  in  results the  Alpine  are  characterized  do  not  of  Zone  feet.  p l a n t communities  h i g h b a s e e x c h a n g e c a p a c i t y and soils.  Zone i s  summer,  communities which r e q u i r e s o i l s  leached  and  snow p a c k ,  Alpine  s u c c e s s i o n a l t r e n d of the  presented.  the  i t s duration.  c e r t a i n h a b i t a t s i n the middle of the i n the  for  is  by  relatively  tolerate  leaching results  in  the depauperation and an  a gradual accumulation  o f o r g a n i c matter,  increase i n the.carbon/nitrogen  soil of  o f t h e base s t a t u s i n t h e s o i l s  ratio.  changes a r e i n d i c a t e d by a g r a d u a l  more a c i d o p h i l o u s s p e c i e s , u n t i l  ment o f P h y l l o d o c e t o - C a s s i o p e t u m w h i c h c o u l d be r e g a r d e d  There i s evidence,  These  increase  the e s t a b l i s h mertensianae  as t h e z o n a l  (climax)  type.  i n d i c a t e d by changes i n t h e  p a t t e r n o f the v e g e t a t i o n , t h a t over d e c a d e s snow c o v e r  with  i s b e i n g reduced  the l a s t  few  (Brink, 1959).  105 BIBLIOGRAPHY  Anderson, J.G. 14:91-112.  1906.  Solifluction.  J o u r n a l o f Geology  Becking, R. 1957. Z u r i c h - M o n t p e l l i e r School of Phytosocioiogy. B o t a n i c a l Review 23:411-488. Bennett, J.G. 1934. Some a l p i n e p l a n t s o f B r i t i s h Columbia. J o u r n a l of the Royal H o r t i c u l t u r a l S o c i e t y LIX P a r t 3. 346-353. Braun-Blanquet, J . 1932. by G.D. F u l l e r and H.S. & Conard. 1st Ed.  Plant sociology. Translated Conard. Publishers: F u l l e r  1954. La v e g e t a t i o n a l p i n e e t n i v a l e des A l p e s f r a n c a i s e s . Communication No.125, S t a t i o n I n t e r n a t i o n a l e de Geobotanique Mediterraneenne e t Alpine, Montpellier. Brink, V.C. 1959. A d i r e c t i o n a l change i n the suba l p i n e f o r e s t heath ecotone i n G a r i b a l d i Park, B.C. Ecology 40:10-16. Brockman-Jerosch, H. 1907. Pflanzengesselschaften.  Die F l o r a des Puschlav i h r Leipzig.  Carpenter, C. 1956. An e c o l o g i c a l g l o s s a r y . P u b l i s h i n g Company.  Hafner  Chapman, J.D. 1952. The c l i m a t e of B r i t i s h Columbia. Paper p r e s e n t e d a t the 5th B.C. N a t u r a l Resources Conference. C h u r c h i l l , E.D. and H.C. Hanson. 1958. The concept of climax i n A r c t i c and A l p i n e v e g e t a t i o n . Botanical Review 24:127-191. Clements, F.E. 1916. Plant succession. I n s t i t u t e of Washington.  Carnegie  106 C o w l e s , H.C. 1899. E c o l o g i c a l r e l a t i o n s of the veget a t i o n o f the sand dunes o f Lake M i c h i g a n . Bot. Gaz. 27:95-391. D a u b e n m i r e , R.F. 1943. V e g e t a t i o n a l zonation i n the Rocky Mountains. B o t a n i c a l R e v i e w 9:325-393. Davidson, J . 1913-1914. B o t a n i c a l E x p l o r a t i o n of the G a r i b a l d i Mountain Region. 1st Annual Report of t h e B o t a n i c a l O f f i c e , B.C. 50-76. Demontzey, J . 1882. B i o t i c timberline evident of v e s t i g e of t r e e growth. T r a i t e P r a t i q u e du R e b o i s e m e n t e t du Gazonnement des M o n t a g n e s . 2nd Paris.  Ed.  D r e e s , E.M. 1953. A t e n t a t i v e design f o r r u l e s of P h y t o s o c i o l o g i c a l Nomenclature. Vegetatio, Acta G e o b o t a n i c a V o l . I V , f a s c 4, Den Haag, 205-214. F l a h a u l t , C. 1901. L e s l i m i t e s s u p e r i e u r e s de l a vegetation forestiere et les prairies pseudo-alpines en F r a n c e . Rev. des E a u x e t des F o r e t s . . G e i g e r , R. 1959. The c l i m a t e n e a r t h e U n i v e r s i t y P r e s s , Cambridge, M a s s . G r a e b n e r , P. 1895. Studien Engler Jahrb, 20.  ground.  liber d i e Norddeutsche  G r i g g s , R.F. 1956. C o m p e t i t i o n and s u c c e s s i o n on Rocky Mountain F e l l - F i e l d . E c o l o g y 37:8-20. Hanson, H.C. 1961. The p l a n t community. Books o f B i o l . S c i e n c e .  Harvard  Heide.  a  Rheinhold  H a r d y , G.A. 1926. R e p o r t on a c o l l e c t i n g t r i p t o G a r i b a l d i P a r k , B.C. Report of the P r o v i n c i a l Museum o f N a t u r a l H i s t o r y . 15-38. H e e r , 0. 1836. . D i e V e g e t a t i o n s v e r h a l t n i s s e des s u d o s t l i c h e n T e i l e s des Kantons G l a r u s . Mitt. •I " Theoret. Erdkunde. F r o b e l und H e e r , Z u r i c h .  Geb.  107 H i l g e r , A. and E r l a n g a n W. 1897. Uber V e r w i t t e r u n g s v o r g a n g e b e i K r y s t a l l i n i s c h e n und S e d i m e n t a r g e s t e i n e n . Landw. J a h r b . 8:1-11. J a c k s o n , M.L. 1960. Soil H a l l , Englewood C l i f f s , J e n n y , H. Hill,  chemical analysis. N.J.  1941. Factors of s o i l New Y o r k .  K e r n e r , v o n M a r i l a u n A. 1863. Donaulander. Insbruck.  Prentice  f o r m a t i o n . McGraw  Das  Pflanzenleben der  Koppen, W. 1931. G r u n d r i s s d e r Klimakunde:; . Company, B e r l i n .  W.  de G r u y t e r  Krajina, V.J. 1933. D i e P f l a n z e n g e s e l l s c h a f t e n des M l y n i c a - R a l e s i n den V y s o k e T a t r y (Hohe T a t r a ) . B e i h e f t e zum B o t a n i s c h e n C e n t r a l b l a t t . , Bd. L., Abtlg.  Columbia.  1959. B i o c l i m a t i c zones i n B r i t i s h B o t a n i c a l S e r i a l N o . l , U.B.C. 1-47.  1961. Ecosystem c l a s s i f i c a t i o n of f o r e s t s : Summary. Recent Advances i n Botany. The U n i v e r s i t y o f T o r o n t o P r e s s . 1599-1603. K u b i e n a , W.L. London. McAvoy, B. region.  1953.  The  soils  of Europe.  T.  Murby,  1931. E c o l o g i c a l surveys of B e l l a Coola B o t a n i c a l G a z e t t e 92:141-171.  Mathews, W.H. 1951. H i s t o r i c and p r e h i s t o r i c f l u c t u a t i o n s o f a l p i n e g l a c i e r s i n t h e Mount G a r i b a l d i map area, southwestern B r i t i s h Columbia. Jour. Geol. 59:357-380. 1958. G e o l o g y o f t h e Mount G a r i b a l d i map-area, s o u t h w e s t e r n B r i t i s h C o l u m b i a , C a n a d a . B u l l , of the G e o l o g i c a l Society of America. 69:161-178 ( p a r t 1 ) , 179-198 ( p a r t 2 ) .  108 Millar,  A.  1957.  Climatology.  Moss, C.E. 1907. Succession Britain. B r . A s s o c . Adv.  Methuen,  London.  of plant formation S c i . Rp.906.  in  P e r r y , F. 1928. E c o l o g i c a l n o t e s on p l a n t l i f e i n G a r i b a l d i R e g i o n o f B.C. Museum N o t e s 3 ( 2 ) : 5 - l l . P o r s i l d , A.E. 1958. Geographical d i s t r i b u t i o n of some e l e m e n t s i n t h e f l o r a o f C a n a d a . Geographical B u l l e t i n No.11, 57-77. R a u n k i a e r , C. botanique.  1905. Types b i o l o g i q u e s pour l a B u i . A c a d . S c i . Denmark.  geographie  R e i s h a u e r , W. 1904. Hoehengrenzen der V e g e t a t i o n den S t u b a i e r A l p e n . L e i p z i g , Bd. V I . S e h r o t e r , C. Zurich.  1904-8.  Raustein,  Das  Pflanzenleben  der  Alpen.  1926. Pflanzenleben der Alpen. Zurich.  Simony, J . and F . P o r t s c h . 9 (423):22-249.  1927.  in  G e o g r . Ann..  Albert  Stockh.  T a n s l e y , A.G. 1939. B r i t i s h I s l a n d s and t h e i r v e g e t a tion. Cambridge U n i v e r s i t y P r e s s , C a m b r i d g e . T a y l o r , W. 1936. 103-108.  Canadian A l p i n e Club Jour.  24:  1938.  Canadian A l p i n e Club Jour.  25:  117-127. U.S.  Department o f A g r i c u l t u r e . manual. S o i l Survey S t a f f .  1951. S o i l survey Handbook No.18.  109 Warming, E . Press,  1897. Oxford.  Ecology of Plants.  Clarendon  W h i t t a k e r , R.H. 1962. C l a s s i f i c a t i o n of natural communities. B o t a n i c a l Review, N o . l Jan.-March.  110  )  )  )  PLATE  II  „  )  (  Luetkea p e c t i n a t a largely  colonizing  of q u a r t z - d i o r i t e  (Weather  Station,  a moraine  composed  and d a c i t i c l a v a .  above Mamquam Lake)  I n v a s i o n o f Carex n i g r i c a n s  community  by  groups of P h y l l o d o c e g l a n d u l i f l o r a . (Nunatak,  above  Garibaldi  Neve)  Mimuleto - E p i l o b i e t u m  latifolii  I n v a s i o n o f snow p a t c h  communities  empetrif ormis, mertensiana.  (Upper R i n g C r e e k )  by  Phyllodoce  P_. g l a n d u l i f l o r a and C a s s i o p e  (Viking  Ridge)  C a r i c e t u m n i g r i c a n t i s (Nunatak,  above  Garibaldi  Neve).  Snow m e l t c h a n n e l w i t h A n d r e a e a n i v a l i s in  c h a n n e l bed,  on t h e s i d e  growing  and g r o u p s o f C a r e x s p e c t a b i l i s  (Nunatak,  above  Garibaldi  NeVe).  3  4  5  6  Ill  1  PLATE  i  III  i  Gymnomitrieto - P o l y t r i c h e t u m (Nunatak, N.W.  norvegici  Mamquam L a k e ) .  G r o u p s o f P o h l i a d r u m m o n d i i and colonizing Garibaldi  a snow p a t c h  (Nunatak,  above  Nev£).  Anaphaleto Garibaldi  Carex n i g r i c a n s  - Lupinetum a r c t i c i  (Nunatak,  above  Neve).  Valerianetum  sitchensis,  of Phyllodoce  p e n e t r a t e d by c o l o n i e s  empetriformis  (South Face,  Opal  Cone).  F i n g e r s of Luetkea slopes of d a c i t i c Opal  pectinata colonizing p a r e n t m a t e r i a l (West  colluvi Face,  Cone).  Hygrophytic fluvial Creek).  groups of p l a n t s c o l o n i z i n g  deposits  ( i n the  Subalpine  Zone)  glacio(Ring  1 ]  12  112  PLATE  )  IV  •13.  P h y l l o d o c e t o - Cassiopeturn (South Face,  14.  Opal  mertensianae  Cone).  J u n i p e r e t o - Penstembneturn m e n z i e s i i ( R i d g e b e l o w G a r i b a l d i M o u n t a i n on  the  southern  exposure).  15.  Groups o f P h y l l o d o c e e m p e t r i f o r m i s , mertensiana Viking  16.  Cassiope  and krummholz c o m m u n i t i e s on  the  Ridge.  Groups o f A b i e s  lasiocarpa  forming  treeline  b e l o w Diamond Head M o u n t a i n .  17.  A b i e t e t o - Chamaecypartetum n o o t k a t e n s i s n u n a t a k above G a r i b a l d i Neve  (with a  on  climatic  station).  18.  Tsuga mertensiana, (5,400 f e e t  forming  subalpine  above Mamquam L a k e ) .  timberline  APPENDIX I PLANT  LIST  Lichens Buellia  stigmaea  Tuck.  Caloplaca eleqans  (Link.)  Cetraria  islandica  Cladonia  chlorophaea  Cladonia  coniocraea  Cladonia  gracilis  (L.) A c h . (Florke) (Florke)  Spreng. Sandst.  var. chordalis  C l a d o n i a degenerans Cladonia  Th.Fr.  (Florke)  Schaer.  Spreng.  impexa Harm.  Cladonia pyxidata  (L.)  Lecidea  (Enrh.) Ach.  granulosa  Lepraria  Fr.  c h l o r i n a Ach.  Ochrolechia  inaequatula  (Nyl.)  Omphalodiscus decussatus Parmelia  pubescens  Parmelia  vittata  Placopsis  gelida  Rhizocarpon  (L.) Wain  (Ach.) N y l . (L.)  (Ram.)  Sarcogyne p r u i n o s a crocea  Zahlbr.  (Vill.)  Nyl.  geographicum  Sarcogyne c l a v u s  Solorina  (Flk.)  (L.) DC. Krempelh.  (Sm.) K o r b e r  (L.) A c h .  Scholander  114 Stereocaulon albicans F r . Stereocaulon alpinum Thamnolia Toninia  Laur.  vermicularis  Candida  (Sw.) A c h .  (Web.) T h . F r .  Umbilicaria  c y l i n d r i c a (L.)  Del.  Umbilicaria  deusta  Umbilicaria  mammulata  Umbilicaria  p r o b o s c i d a (L.) Schrad.  ( L . ) Baumg. (Ach.)  Tuck.  Bryophytes Andreaea  nivalis  Brachythecium  Hook.  g l a c i a l e reflexum  Dicranum  fuscescens Turn.  Dicranum  muhlenbeckii  Bry.Eur.  Dicranoweisia crispula Drepanocladus Kiaeria  (Starke) Bry.Eur.  (Hedw.) L i n d b .  uncinatus  (Medw.) W a r n s t .  f a l c a t a (Hedw.) G r o u t .  Kiaeria b l y t t i i  (Bry.Eur.)  Kiaeria  (Wed. & Mohr.) G r o u t .  starkei  Gymnomitrium v a r i a n s Lescurea b a i l e y i  Marsupella ustulata ' — ' 'Mil  -..,^»^^^.PI.W»  TttllMj|MJ  .. J | l .l|l . |  r|  |  (Lindb.) S c h i f f n .  Best & Grout.  M a r c h a n t i a polymorpha  1  Grout.  )  )|  ff  ^  L. (Hueb.)  Spruce.  Mnium s p i n u l o s u m Plagiothecium Philonotis Pogonatum Pohlia  Bry.Eur.  striatellum  fontana alpinum  drummondii  (Brid.)  (Hedw.) (Hedw.)  Lindb  Brid. Roehl.  (CM) A . L . A n d r .  P o l y t r i c h u m j u n i p e r i n u m Hedw. P o l y t r i c h u m norvegicum Polytrichum piliferum  Hedw. Hedw.  Rhacomitrium  cancescens  Rhacomitrium  h e t e r o s t i c h u m (Hedw.)  Rhacomitrium  lanuginosum  Rhytidiopsis  robusta  Scapania undulata  Brid.  (Hedw.)  Brid.  (Hook.) B r o t h .  ( L . ) Dumort.  Sphagnum c a p i l l a c e u m (Weiss.)  Schrank.  Sphagnum compactum D.C. Sphagnum p l u m o l o s u m  Roell.  Ferns Athyrium  alpestre  Athyrium  filix-femina  Crypotogramma  (Hoppe.)  crispa  Rylands.  (L.) Roth. (L.)  R.Br.  Lycopodium alpinum L. Lycopodium s i t c h e n s e L. Polystichum  Brid  lonchitis  (L.) Roth.  Abies  lasiocarpa  (Hook.)  Nutt.  Chamaecyparis nootkatens i s Tsuga mertensiana  (Bong.)  (Lamb.)' S p a c h . Sarg.  Shrubs A r c t o s t a p h y l o s u v a - u r s i (L.) Cassiope mertensiana G a u l t h e r i a humifusa J u n i p e r u s communis  Spreng.  Bong. (Grah.) Rydb.  L.  L i n n a e a b o r e a l i s L. v a r . americana  (Forbes)  Penstemon m e n z i e s i i P i p e r . Phyllodoce  empetriformis  Phyllodoce g l a n d u l i f l o r a Ribes  sanguineum  (Sm.)  D.Don.  (Hook.)  Cov.  Pursh.  Salix bella Piper. Salix  subcoerulea Piper.  Vaccinium  caespitosum  Michx.  Vaccinium  deliciosum Piper.  Vaccinium  membranaceum  Dougl.  Herbs Achillea millefolium Agoseris  (L.) Y a r r o w .  a u r a n t i a c a (Hook.) G r e e n e .  Rehder.  1X7 Agrostis humilis  Vas.  A n a p h a l i s m a r g a r i t a c e a v a r . s u b a l p i n a (L.) B. Anemone o c c i d e n t a l i s Antennaria Arnica  alpina  latifolia  Calamagrostis  Wats.  (L.)  Goertn.  Bong.  candadensis  Campanula r o t u n d i f o l i a Carex  nigricans  CA.  Carex  preslii  Carex  p y r e n a i c a Wahl.  Carex  spectabilis  (Michx.)  Beauv.  L. Mey.  Steud.  Desv.  Castilleja'rhexifolia  Rydb.  Cirsium edule Nutt. Collinsia  parviflora  Dougl.  Deschampsia a t r o p u r p u r e a Elymus h i r s u t u s  Presl.  Epilobium alpinum  L.  Epilobium angustifolium Epilobium Erigeron  latifolium aureus  (Whal.) S c h e e l e .  L.  L.  Greene.  E r i g e r o n p e r e g r i n u s (Pursh.)  Greene.  Festuca brachyphylla (Schult.) Heuchera  micrantha  Dougl.  Piper  &  H.  Hieracium g r a c i l e  Hook.  Juncus  drummondii  (E.)  Juncus  mertensiansus  Mey.  Bong.  Leptarrhena amplexifolia Luetkea p e c t i n a t a Lupinus  arcticus  Luzula p i p e r i  (Sternb.)  ( P u r s h . ) Hook. Wats.  Cov.  Mimulus  c a e s p i t o s u s Greene  Mimulus  lewisii  Parnassia  Pursh.  fimbriata  Konig.  Pedicularis  racemosa  Pedicularis  g r o e n l a n d i c a (Beth.)  Penstemon p r o c e r u s Phacelia  sericea  Phleum a l p i n u m  Dougl.  Sagina  Gray.  L. Hook.  eschscholtzii Schlecht.  s a g i n o i d e s (L.) D a l l a  Saxifraga  Piper  Dougl.  Potentilla 'flabellifolia Ranunculus  Ser  a r g u t a D.Don.  Saxifraga bronchialis  L.  Saxifraga  ferruginea  Grah.  Saxifraga  tolmiei  &  T.  Sedum d i v e r g e n s W a t s .  G.  - Torre.  Senecio  subnudus  DC.  S e n e c i o t r i a n g u l a r i s Hook. Sibbaldia Silene  procumbens  acaulis  L.  Trisetum spicatum Valeriana  L.  (L.) R i c h t .  sitchensis  Bong.  APPENDIX I I . REFERENCES  120 USED IN THE COMPILATION  OF THE CHECK L I S T  Abrams, L., 1940. I l l u s t r a t e d f l o r a of the P a c i f i c Vol.1. Stanford University Press.  States.  -• Vol.2.  1944. I l l u s t r a t e d f l o r a of the P a c i f i c Stanford University Press.  States.  1951. I l l u s t r a t e d f l o r a of the P a c i f i c Stanford University Press.  States.  Vol.3.  C o n a r d , H.S. 1944. How t o know t h e m o s s e s . Co., Dubuque, Iowa. Fink,  B., 1935. The L i c h e n U n i v e r s i t y of Michigan  Frye,  T.C. & L . C l a r k , 1937. H e p a t i c a e U n i v e r s i t y of W a s h i n g t o n , S e a t t l e ,  Wm.  C. Brown  f l o r a of the United States. P r e s s , Ann A r b o r , M i c h . of North America. Washington.  G l e a s o n , H.A., 1952. The new B r i t t e n and Brown I l l u s t r a t e d f l o r a o f t h e n o r t h e a s t e r n U n i t e d S t a t e s and a d j a c e n t Canada. Vol.1. New Y o r k B o t a n i c a l G a r d e n s . 1952. The new B r i t t e n and Brown I l l u s t r a t e d f l o r a o f t h e n o r t h e a s t e r n U n i t e d S t a t e s and a d j a c e n t Canada. Vol.2. New Y o r k B o t a n i c a l G a r d e n s . 1952. The new B r i t t e n and Brown I l l u s t r a t e d f l o r a o f t h e n o r t h e a s t e r n U n i t e d S t a t e s and a d j a c e n t Canada. Vol.3. New Y o r k B o t a n i c a l G a r d e n s . G r o u t , A . J . (Ed.) Moss f l o r a o f N o r t h A m e r i c a . P u b l . b y t h e E d . Newfane, V t .  Vol.1.  •— Moss f l o r a o f N o r t h A m e r i c a . P u b l . b y t h e E d . Newfane, V t .  Vol.2.  Moss f l o r a o f N o r t h A m e r i c a . . V o l . 3 . P u b l . b y t h e E d . Newfane, V t . Peck, M.E. 1941. A M a n u a l o f t h e h i g h e r B i n f o r d s & Mort, P o r t l a n d , Oregon.  p l a n t s o f Oregon.  121  APPENDIX I I I .  CHEMICAL ANALYSIS Soil and p a s s e d  samples  used  OF  SOILS  f o r c h e m i c a l a n a l y s i s were a i r d r i e d  t h r o u g h 1.0 mm  sieve.  D e t e r m i n a t i o n o f pH Apparatus:  Beckman pH m e t e r M o d e l N 25 m l b e a k e r s .  Procedure:  S o i l was m i x e d w i t h d i s t i l l e d w a t e r i n a 25 m l b e a k e r  until  a thick  c o n s i s t e n c y was o b t a i n e d . v a l u e was  then determined  paste-like The  soil  pH  using the  Beckman pH m e t e r . Determination of o r g a n i c matter I g n i t i o n method f o r o r g a n i c m a t t e r  determination f o r peats:  Owing t o t h e h i g h o r g a n i c c o n t e n t o f t h e p e a t s impossible  t o u s e t h e wet c o m b u s t i o n  m a t t e r was  ignited  method.  i t was  The o r g a n i c  i n a m u f f l e f u r n a c e and b u r n t o f f l e a v i n g  an a s h r e s s i d u e .  The o r g a n i c m a t t e r was  then c a l c u l a t e d  a percentage  i n weight  sample.  loss  The wet c o m b u s t i o n  of the peat  on  method  Reagents (1)  N - Potassium Dissolve to  (2)  Dichromate  98.06 gm o f K^Ct^Oy  i n water  and  2 litres.  sulphuric  acid,  cone,  (not l e s s  than  96%)  dilute  122: (3)  0.5  N Ferrous  Dissolve 80 ml (4)  278  sulphate gm.  FeSC>4.7H20 i n w a t e r and  c o n e . H2SO4, c o o l and  (Ortho)  Phenanthroline  dilute  Ferrous  to 2  add litres.  Sulphate I n d i c a t o r .  Procedure Weigh o u t in  0.5  organic matter  be h i g h  and  acid.  flask.  0.25  of s o i l  gm and  N e x t add  Shake f o r a b o u t 15  30 m i n u t e s w i t h o u t drops  cator. colour  of  (Ortho)  f l a s h e s from  solution  and  standard The  taken  to  oxidation.  as t h e  dichromate  low  thought  ml  to  Erlenmeyer  of N dichromate  and  of concentrated s u l p h u r i c  s e c o n d s and Then add  l e t stand 30 ml  Ferrous  f o r about  of water, Sulphate  and  Indi-  ferrous sulphate u n t i l  the  to gray or brown-red. • I f the 0.5  ml more o f t h e  again dropwise to a l i g h t  i s a reasonably s t a b l e  standard. Hence,  daily  mate s o l u t i o n  add  for soils  t o be  dichromate gray  endpoint  ferrous sulphate.  dichromate  be  10 ml  standard  green  i s over-run, titrate  5 ml  Phenanthroline  Titrate with  suspected  p l a c e i n a 250  shaking.  endpoint  with  for soils  A c c u r a t e l y measure o u t  to the  two  of s o i l  i n o r g a n i c matter  flask. add  gm  as  The  ferrous sulphate  i t s h o u l d be  ml  flask,  add  and  may  i s subject  standardized against  f o l l o w s : P l a c e 5 ml  i n a 250  solution  the  of standard d i c h r o -  10 ml  of  concentrated  123 sulphuric and  acid  and m i x ; t h e n  two d r o p s o f t h e ( O r t h o )  phate  Indicator.  light  gray  calculate %  add 30 ml o f d i s t i l l e d Phennanthroline  Titrate with  endpoint.  sulphate.  o r g a n i c m a t t e r = ml o f 1 N '^Ct^'O'y x  by  g of s o i l  and t r a n s f e r  swirling  10 gms  the glask.  Add 2 - 3  Mix i n g r e d i e n t s  Cool  Shake w e l l .  and  Cool  solutions  and l o s s  apparatus  immediately  again.  Now  o f NH3.  to prevent  (40%),  mixing  of  Connect t o t h e d i s t i l l i n g  and t h e n  s w i r l the f l a s k  D i s t i l l into  a graduate  add  .5 gm o f g r a n u l a t e d  a 300 m l .  c o n t a i n i n g 25-50 m l o f s a t u r a t e d b o r i c  measured w i t h  add g r a d u a l l y  (90 ml) o f c o n e . NaOH s o l u t i o n .  down t h e s i d e o f t h e f l a s k  the contents.  continue  and t h e n  about 1 t e a s p o o n f u l o f g l a s s beads and/or  pouring  o f 10  selenized granules.  i s clear  f o r twenty minutes.  and an e x c e s s  approximately  (1 t s p ) o f a m i x t u r e  the s o l u t i o n  300 ml o f t a p H2O.  flask  using folded Add  a n h y d r o u s Na2S04 and 1 p a r t CUSO4.  digestion  mix  (gm)  p a p e r t o a n 800 m l K j e l d a h l f l a s k .  Digest u n t i l  Zn  0.69  determination  30-40 ml c o n e . H2SO4, parts  to the  A s s u m i n g t h e d i c h r o m a t e t o be IN,  the normality of the ferrous  Weigh o u t f i v e filter  Ferrous S u l -  ferrous sulphate  wt o f sample Nitrogen  water,  (50 m l o f b o r i c  acid  gently to  Erlenmeyer acid  solution,  takes  care of  124 95 mg o f N a s N H 3 ) . of  Bromocresol  distilling acid  A l s o add 4 d r o p s  green  and m e t h y l  apparatus  titrate  the b o r i c  of NH3.  acid  A blank  a slight  correction.  amount o f a c i d  on t h e complex w i t h s t a n d a r d N/14  s h o u l d be r u n i n e v e r y case as t h e r e i s Substract the blank  required  of acid wt  from t h e t o t a l  f o r t h e sample.  x n o r m a l i t y x .014 x 100  =  %N  o f sample  D e t e r m i n a t i o n o f exchange a)  from t h e  a p p r o x i m a t e l y 150 ml o f t h e d i s t i l l a t e and  H2SO4.  ml  The t u b e  indicator  must e x t e n d b e l o w t h e s u r f a c e o f t h e  t o prevent loss Collect  red.  o f a mixed  capacity  Reagents IN -  NH4OAC,  pH=7.0  70 ml N H 0 H 4  - 58 ml c o n e . HOAc - make t o 1 1 and a d j u s t pH t o e x a c t l y adding e i t h e r 95% pure NaCl,  of the constituents  C H OH 2  5  CP.  NaOH s o l u t i o n ,  approx.  Standard  0.2 N H 2 S 0  Standard  0.1 N NaOH  IN, t e c h .  4  (C0 -free) 2  7.00 b y  Methyl r e d i n d i c a t o r A n t i f o a m agent  (spray)  Apparatus 1 - 125  ml E r l .  flask  1 - 500  ml E r l .  flask  1 - Buckner  funnel,  (wide mouth)  70  mm.  1 - 100  ml g r a d u a t e  cylinder  1 - 250  ml g r a d u a t e  cylinder  1 - 400  ml b e a k e r  1 - 50 ml b u r e t t e 1 - 25 ml p i p e t t e #42  filter  paper  (70 mm)  Procedure NOTE:  Analyze  samples  i n duplicate  a reagent blank w i t h each Place  for  i n a 125 ml E r l .  add 50 m l o f NH4OAC s t o p p e r f l a s k .  s e v e r a l minutes  hours  set of determination.  20 gm o f a i r d r y s o i l  flask,  and i n c l u d e  Shake  and a l l o w t o s t a n d f o r s e v e r a l  or overnight.  Transfer a disc  t o a Buchner f u n n e l ,  of f i l t e r paper.  filtrator beaker.  the s o i l  and c o l l e c t  containing  F i t the funnel t o the  the f i l t r a t e  i n a 400 m l  126 Leach  t h e sample w i t h  NH4OAC,  an  additional  using gentle suction  P l a c e the  filtrate  on  ^-hour).  a steam b a t h or h o t  evaporate  for  d e t e r m i n a t i o n of exchangeable the  ml  (take about  and  Leach  150  to dryness.  plate  Retain dry residue cations.  s o i l with approximately  80 ml  of  C2H5OH i n s e v e r a l p o r t i o n s t o remove a l l t h e acetate.  Discard  Transfer  soil  flask.  Add  NaCl  and 400  (sponful),  filtrate. filter  ml  paper  H 0, a few  Zn-granules  been sprayed w i t h a n t i f o a m Pipette  a c c u r a t e l y 25 ml  organic  soil)  500  ml  Add  and  apparatus  to collect  To  gm  w h i c h have  for highly  drops  of methyl  a red  distillation  NH3. ( s t e p 6)  add  approximately  IN NaOH.  Connect f l a s k ratus  flask  10  N H2SO4 i n t o  p l a c e under K j e l d a h l  the K j e l d a h l  25 ml  ( o r 50 ml  3-5  indicator  Kjeldahl  agent.  o f s t a n d a r d 0.2  flask.  a  approximately  2  and  into  and  immediately  apply heat.  to d i s t i l l a t i o n  (Make s u r e t h e  appa-  condenser  .is c o o l e d w i t h r u n n i n g tap water.) Distill NHo,  approximately  i n t o the  acid  200  ml  (step 7).  of l i q u i d , I f the  containing  indicator  127 in  the acid turns yellow,  ml  more H 2 S O 4 .  immediately  R e c o r d e x a c t amount  add 10 - 20 of-acid  used. Titrate  excess a c i d with  end-point to  i s reached  s t a n d a r d 0.1 NaOH  (colour  changes from  pink  yellow).  T a b u l a t e r e s u l t s and c a l c u l a t e capacity d)  until  t h e exchange  a s meq/100 gm o f a i r d r y s o i l ,  Calculation The  calculations  are performed  i n meq  units;  t h u s t h e number o f meq's o f e x c h a n g e a b l e is  e q u a l t o t h e number o f meq's o f a c i d  lized  during  distillation.  mined b y t h e d i f f e r e n c e  This  cations neutra-  number  i s deter-  between a l l t h e a c i d  provided  and t h e a c i d n e u t r a l i z e d  with  NaOH.  Finally,  t h e answer i s c o n v e r t e d t o t h e number o f  meq/100 gm o f a i r d r y s o i l . Determination o f exchangeable a)  Stock  cations  solutions  180 meq/1 L i (7.6315 gm L i C l  p e r 1.  solution)  100 meq/1 Na  (5.8448 gm N a C l p e r 1.  solution)  100 meq/1 K  (7.4557 gm K C l p e r 1.  100 meq/1 Ca (5.0045 gm C a C 0 HCl,  3  solution)  dissolved  t h e n made t o volume o f 1 1.)  i n 15 ml c o n e .  128 NOTE:  These s t o c k oven d r i e d  Standard The  solutions  s h o u l d be made up  salts.  solutions  standard  solutions  are prepared  f r o m t h e above  stock  solutions  curve  from which t o determine t h e c o n c e n t r a t i o n  unknown All  by  standard  solutions  a standard of  contain  5 ml o f t h e L i - s t o c k  and a r e t h e n made t o volume o f 250 m l .  quantities the d i l u t i o n  For  f o r t h e purpose o f o b t a i n i n g  solutions.  solution The  using  of stock ratio  s o l u t i o n s used a r e c a l c u l a t i o n  o f stock  t o standard  solution.  Na and K:  prepare solutions  f o rthe following  concentrations:-  0, O i l , 0.25, 0.5, 1.0, 2.5 meq/1 F o r Ca: prepare  solutions  of the following  concentrations:-  0, 1.0, 2.5, 5.0, 10.0, 25.0 meq/1 Reagents f o r t h e p r e p a r a t i o n 1:1 H2O2, r e a g e n t  o f t h e unknown s a m p l e s  grade  Cone. HCI Cone. HNO3 1:1 HCI Preparation NOTE;  o f unknown s a m p l e s  Use t h e e v a p o r a t e d exchangeable  filtrate  cations.  containing the  129 Add  a p p r o x i m a t e l y 5 ml c o n e .  (aqua r e g i a ) , Add  5 ml. 1:1 B.2°2  several Add  and e v q p o r a t e a n <  HNO3 and 1 m l c o n e . H C l to dryness.  3 h e a t g e n t l y on t h e h o t p l a t e f o r  hours.  5 m l 1:1 H C l and e v a p o r a t e  until  (repeat  residue i s free of organic matter).  D i s s o l v e r e s i d u e i n 2 ml cone. and  t o dryness  rub beaker  walls with rubber-tipped s t i r r i n g rod.  Filter  solution  beaker  and f i l t e r  accurately  H C l , a d d some w a t e r  i n t o t h e 250 ml v o l u m e t r i c , w a s h i n g paper  s e v e r a l times w i t h H 0. 2  5 ml o f L i - S t o c k s o l u t i o n  Add  and t h e n make t o  volume w i t h H 2 O . Keep s o l u t i o n  s t o p p e r e d i n a 250 m l E r l .  flame p h o t o m e t r i c a n a l y s i s  flask for  and E D T A - t i t r a t i o n .  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105475/manifest

Comment

Related Items