Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Intra-increment lignin content of five western Canadian coniferous woods Wu, Yeng-tsu 1964

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1964_A6 W8.pdf [ 3.97MB ]
Metadata
JSON: 831-1.0105472.json
JSON-LD: 831-1.0105472-ld.json
RDF/XML (Pretty): 831-1.0105472-rdf.xml
RDF/JSON: 831-1.0105472-rdf.json
Turtle: 831-1.0105472-turtle.txt
N-Triples: 831-1.0105472-rdf-ntriples.txt
Original Record: 831-1.0105472-source.json
Full Text
831-1.0105472-fulltext.txt
Citation
831-1.0105472.ris

Full Text

INTRA-INCREMENT LIGNIN CONTENT OF FIVE WESTERN CANADIAN CONIFEROUS WOODS by YENG-TSU WU B . S c , Chung-Shing U n i v e r s i t y (Formosa), 1959 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF FORESTRY i n the Department of F o r e s t r y We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1964 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of • B r i t i s h Columbia,, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study, I f u r t h e r agree that per-m i s s i o n f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood that, copying or p u b l i -c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission* Department of F o r e s t r y The U n i v e r s i t y of B r i t i s h Columbia, Vancouver 8, Canada Date A p r i l 2 8 . 1964  i ABSTRACT L i g n i n contents of e x t r a c t i v e - f r e e wood meals prepared from three adjacent r i n g s of mature wood, sampled at breast h e i g h t , of a m a b i l i s f i r , Douglas f i r , western red cedar, S i t k a spruce, and western hemlock were determined according t o the micro-method of Johnson, Moore and Zank. '. •) .;, Each of three r i n g s w i t h i n each species was d i v i d e d i n t o s i x p o s i t i o n s from earlywood to latewood. Wood meals of 40-80 mesh s i z e were ext r a c t e d s u c c e s s i v e l y with e t h y l ether, absolute e t h y l a l c o h o l and hot-water, and then s o l u b i l i z e d w i t h a c e t y l bromide and absorbence was c a l i b r a t e d against Klason l i g n i n values. Wood methoxyl content of these same samples had been st u d i e d previously.'^.../* L i g n i n contents were found to be h i g h l y s i g n i f i c a n t l y d i f f e r e n t w i t h i n p o s i t i o n s of growth increments f o r a m a b i l i s f i r , Douglas f i r , western red cedar and S i t k a spruee,. but no s i g n i f i c a n t d i f f e r e n c e was found f o r western hemlock. H i g h l y s i g n i f i c a n t d i f f e r e n c e was found between growth r i n g s f o r western red cedar and s i m i l a r l y s i g n i f i c a n t d i f f e r e n c e was . found f o r Douglas f i r . No s i g n i f i c a n t d i f f e r e n c e s were ob-t a i n e d between growth r i n g s f o r the other three species, a l -though a s l i g h t but d e f i n i t e i n c r e a s e i n l i g n i n content w i t h age was observed. H i g h l y s i g n i f i c a n t d i f f e r e n c e s were a l s o found between species and f o r t o t a l averages of each p o s i t i o n f o r the f i v e s p e c i e s . Earlywoods were higher i n l i g n i n content than latewood i n each species by: Douglas f i r , 2.27$; i i a m a b i l i s f i r , 2.06$; western red cedar, 1.28$; S i t k a spruce, 1.08$; and western hemlock, 0.46$. L i g n i n contents f o r i n d i v i d u a l species were i n the order of: western hemlock, 32.85$ (32.36-34.04$); western red cedar, 31.23$ (29<.:69-32.68$); a m a b i l i s f i r , 27.51$ (26.17-28.24$); Douglas f i r , 26.48$ (24.08-28.66$); and S i t k a spruce, 25.81$ (24.91-26.98$). The c o r r e l a t i o n c o e f f i c i e n t t e s t i n g a s s o c i a t i o n between l i g n i n and wood methoxyl was h i g h l y s i g n i f i c a n t f o r a m a b i l i s f i r (0.971), Douglas f i r (O.913) and western red cedar (0.684). N o n - s i g n i f i c a n t c o r r e l a t i o n occurred wi t h S i t k a spruce (0.467) and western hemlock (0.340). The r e l a t i o n s h i p between l i g n i n and wood methoxyl appeared independent of speci e s . The n o n - l i g n i n methoxyl contents f o r the f i v e species were estimated and the r e s u l t s showed tha t these were a l s o independent of speci e s . i x ACKNOWLEDGMENT The w r i t e r ' s g r a t i t u d e i s extended t o Dr. J.W. Wilson, A s s o c i a t e P r o f e s s o r , F a c u l t y of F o r e s t r y , f o r h i s s p e c i a l guidance and s u p e r v i s i o n from the p l a n n i n g and experimenta-t i o n phases t o the f i n a l p r e p a r a t i o n of t h i s t h e s i s . The w r i t e r i s a l s o i n d e b t e d t o Dr. R.W. Wellwood, P r o f e s s o r , and Dr. J.H.G. Smith, A s s o c i a t e P r o f e s s o r , F a c u l t y of F o r e s t r y , f o r r e v i e w i n g t h i s t h e s i s . V a l u a b l e h e l p , both i n a d v i s o r y and t e c h n i c a l a s s i s -tance, was obtained from G.M. Barton, Research Chemist, Vancouver L a b o r a t o r y of the F o r e s t Products Research Branch, and other s t a f f members of t h i s L a b o r a t o r y . Thanks are a l s o expressed to the F a c u l t y of A g r i c u l t u r e , U n i v e r s i t y o f B r i t i s h Columbia, and to the Vancouver F o r e s t 5X1*^4 £>K-2. Products L a b o r a t o r y f o r use of Beckman Model^spectrophoto-meters. F u r t h e r a s s i s t a n c e was giv e n by the Pulp Paper Research I n s t i t u t e o f Canada who supported the study through p r e p a r a t i o n of the wood samples used. The w r i t e r a l s o g r a t e f u l l y acknowledges f i n a n c i a l a s s i s t a n c e obtained from the F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, Canada, and the N a t i o n a l Research C o u n c i l of Canada. Continued encouragement from the w r i t e r ' s p arents has a l s o been very much a p p r e c i a t e d . i i i TABLE OP CONTENTS TITLE PAGE . . . ABSTRACT i TABLE OF CONTENTS i i i ACKNOWLEDGMENT . i x INTRODUCTION 1 LITERATURE REVIEW 3 A. L i g n i n i n the wood c e l l 4 B. L i g n i n i n earlywood and latewood 5 C. L i g n i n i n r e a c t i o n woods 6 D. L i g n i n i n sapwood and heartwood 7 E. L i g n i n i n the i n d i v i d u a l t r e e 3 EXPERIMENTAL 11 Sample 11 P r e p a r a t i o n of e x t r a c t i v e - f r e e samples 12 Apparatus - 13 Other equipment 13 Chemicals 14 Procedure 14 DISCUSSION OF, PROCEDURES 17 1. Theory of u l t r a v i o l e t spectroscopy 17 2. Determination by the m i c r o - l i g n i n method ... 18 A. Sample weight (volume of d i l u t i o n ) 18 B. E f f e c t of cooking time 19 C. E f f e c t of r e a c t i o n temperature .... 20 D. E f f e c t of elapsed time b e f o r e measurement 20 i v E. C a l c u l a t i o n of sample s i z e 21 3. Experimental e r r o r s 22 (1) Weighing of sample 22 (2) Chemicals 22 A. A c e t y l bromide 22 B. Sodium hydroxide 23 C. Hydroxylamine h y d r o c h l o r i d e 23 (3) Instrumental 23 A. Beckman Model DU spectrophotometer 23 B. S i l i c a c e l l 24 C. S l i t width 24 D. Reading of absorbence 25 (4) Number of sampler; measured 25 (5) Volume of' d i l u t i o n 25 4. Absorbence b e h a v i o r of wood l i g n i n 26 A. Between s p e c i e s 26 B. Between d i f f e r e n t t r e e s of the same s p e c i e s 26 C. W i t h i n an i n d i v i d u a l t r e e 26 D. L i g n i n f r a c t i o n s 27 5. Changes of a b s o r p t i o n s p e c t r a by chemical r e a c t i o n s 28 A. Hypsochromic s h i f t 29 B. .Bathochromic s h i f t 29 C. Hyperchromic e f f e c t 29 6. A c i d - s o l u b l e l i g n i n 30 7. Other i n t e r f e r i n g substances 31 8. R e p r o d u c i b i l i t y 31 V. RESULTS 32 1. D i s t r i b u t i o n of l i g n i n 32 2. R e l a t i o n s h i p s between l i g n i n and wood methoxyl 36 3. N o n - l i g n i n methoxyl content 37 4. Earlywood and latewood l i g n i n content 38 5. D i s c u s s i o n of r e s u l t s 38 CONCLUSIONS 41 REFERENCES ' 42 TABLES AND FIGURES 49 Table 1. Experimental and l i t e r a t u r e l i g n i n v a lues f o r the f i v e c o n i f e r o u s s p e c i e s 49 Tabl e 2A. A b s o r p t i v i t y of a m a b i l i s f i r l i g n i n (70-80 y r ) cooked a t 70°C f o r 30 min*. and absorbence read w i t h i n 2 hr. ,, a f t e r r e a c t i o n (200 ml d i l u t i o n ) 50' Table 2B. E f f e c t of cooking time on western hemlock l i g n i n (70±1°C) 50 Table 2C. Time i n t e r v a l e f f e c t on the re a d i n g of a m a b i l i s f i r l i g n i n absorbence 51 Table 2D. Western hemlock l i g n i n percentage and the c a l c u l a t i o n of r e p l i c a t e sample nombe i - 5 1 Table 3. L i g n i n percentages a c r o s s 78-80 y r growth increments of a m a b i l i s f i r sample 52 Table 4. L i g n i n percentages a c r o s s 64-66 y r growith increments of Douglas f i r sample 53 v i Table 5« L i g n i n percentages across 72-74 y r growth increments of western red cedar sample .... 53 Table 6. L i g n i n percentages across 69-71 y r growth increments of S i t k a spruce sample 5^ Table 7. L i g n i n percentages across gb-58 y r growth increments of western hemlock sample 5^-Table 8. Average l i g n i n percentages of the f i v e c o n i ferous species at each p o s i t i o n w i t h i n increments 55 Table 9. L i g n i n and wood methoxyl percentages across 78-80 y r growth increments of a m a b i l i s f i r sample 56 Table 10 L i g n i n and wood methoxyl percentages across 64-66 y r growth, increments of Douglas f i r sample 57 Table' 11. L i g n i n and wood methoxyl percentages across 72-7^ y r growth increments of western red cedar sample 57 Table 12. L i g n i n and wood methoxyl percentages across 69-71 y r growth increments of western hemlock sample gg Table 13. L i g n i n and wood methoxyl percentages across 56--58 y r growth increments of western hemlock sample 53 Table .14. A n a l y s i s of variance of a m a b i l i s f i r l i g n i n percentages z 59 Table IB- A n a l y s i s of variance, of Douglas f i r l i g n i n percentages 59 v i i T a ble 16. A n a l y s i s of v a r i a n c e of western r e d cedar l i g n i n percentages 59 Table 1-7. A n a l y s i s of v a r i a n c e of S i t k a spruce l i g n i n percentages 60 Table 18, A n a l y s i s of v a r i a n c e of western hemlock l i g n i n percentages 60 Tabl e 19» A n a l y s i s of v a r i a n c e of average l i g n i n percentages f o r the f i v e c o n i f e r o u s s p e c i e s 60 Tabl e 20. Duncan's t e s t of mean a m a b i l i s f i r l i g n i n percentages 61 Table 21* Duncan 1s t e s t of mean Douglas f i r l i g n i n percentages 6 l Table 22, Duncan's t e s t of mean western r e d cedar l i g n i n percentages 6l Tabl e 23. Duncan's t e s t of mean S i t k a spruce l i g n i n percentages 60) Table 24* Duncan's t e s t of average l i g n i n percentages of the f i v e c o n i f e r o u s s p e c i e s 62 Appendix I - O r i g i n a l data sheets ( F o r e s t r y L i b r a r y only) v i i i F i g . 1. Beckman Model DU s i n g l e beam manual spectrophotometer 63 F i g . 2. P a t t e r n s of l i g n i n percentages a c r o s s growth increments of f i v e c o n i f e r o u s s p e c i e s 64 F i g . 3« P a t t e r n s of average l i g n i n percentages f o r the f i v e c o n i f e r o u s s p e c i e s a c r o s s growth increments 65 F i g . 4. A m a b i l i s f i r l i g n i n v a l u e s y_s. wood methoxyl content 663 F i g . 5. Douglas f i r l i g n i n v a l u e s y_s_. wood methoxyl content 66 F i g . 6. Western r e d cedar l i g n i n v a l u e s v s . wood methoxyl content 67 F i g . 7. S i t k a spruce l i g n i n values vs.. wood methoxyl content 67 F i g . 8. Western hemlock l i g n i n v a l u e s v s . wood methoxyl content 68 - 1 -INTRODUCTION I t i s w e l l known t h a t l i g n i n i s a major wood com-ponent i n f l u e n c i n g mechanical p r o p e r t i e s , wood q u a l i t y , p u l p a b i l i t y , p e n e t r a b i l i t y , and a great many other f e a t u r e s of wood important i n u t i l i z a t i o n . Many i n v e s t i g a t i o n s have been c a r r i e d out to describe l i g n i n as regards species, i n d i v i d u a l t r e e , and other b i o l o g i c a l p r o p e r t i e s of wood, yet no complete reference i s a v a i l a b l e regarding the d i s t r i b u t i o n of l i g n i n across wood growth increments. I t i s known that the most pronounced d i f f e r e n c e s i n wood appearance and q u a l i t i e s f o r various uses are con-t r o l l e d by v a r i a t i o n s between earlywood and latewood. Therefore, the nature of differences•between earlywood and latewood i s a very important f a c t o r i n the u t i l i z a t i o n of wood. Several i n v e s t i g a t o r s have t r i e d to r e f e r wood methoxyl measurements back to l i g n i n content, but no agreement i n r e s u l t s has occurred p o s s i b l y due to l a c k of proper data or appropriate samples. Therefore, an e f f o r t was made i n t h i s study to f u r t h e r understanding of l i g n i n w i t h i n and between various coniferous woods. - 2 -The i n v e s t i g a t i o n of l i g n i n contents was made on the same samples which were p r e v i o u s l y s t u d i e d f o r wood methoxyl contents (72) i n order to examine r e l a t i o n s h i p between these two measurements on woods. I t i s a l s o hoped t h a t t h i s study w i l l be of some a s s i s t a n c e t o f u r t h e r understanding of the b a s i c nature of wood. - 3 -LITERATURE REVIEW In t h i s review, l i t e r a t u r e c i t e d i s r e l a t e d t o d i s t r i b u t i o n of l i g n i n from the i n d i v i d u a l c e l l to the mature t r e e . References r e g a r d i n g the d i s t r i b u t i o n of wood methoxyl and i t s r e l a t i o n s h i p t o l i g n i n are gi v e n i n the p r e v i o u s work (72). Wood was b e l i e v e d f o r a long time t o be of uniform chemical composition u n t i l Gay-Lussac and Thenard (19) f i r s t d i s p r o v e d t h i s by elementary wood a n a l y s i s . They found t h a t wood i s comprised of carbon, hydrogen and oxygen. Subsequently wood has been d i s c o v e r e d t o be a very complex b i o l o g i c a l m a t e r i a l . • Much r e s e a r c h has been c a r r i e d out on wood, but one of the most important wood components - l i g n i n - i s not y e t f u l l y understood. T y p i c a l l i g n i n values are shown i n Table 1. L i g n i n was f i r s t named as the i n c r u s t i n g m a t e r i a l i n the l i g n i f i e d p l a n t by Payen ( 4 6 ) and l a t e r by P. Schulze ( 5 8 ) . - 4 -A. L i g n i n i n the wood c e l l S c a r t h and co-workers (57) by u s i n g d i f f e r e n t s o l v e n t s , c o l o u r r e a c t i o n s , and s t a i n s , s t u d i e d s t r u c t u r e of the c e l l w a l l . They showed t h a t both i n softwood and hardwood, the middle, l a m e l l a i s the p o r t i o n h i g h e s t i n l i g n i n c o n t e n t . -The order of l i g n i n content f o r d i f f e r e n t woody t i s s u e s was a l s o r e p o r t e d . R i t t e r (52,53) found two forms of l i g n i n p r e s e n t i n wood. The "middle l a m e l l a l i g n i n " and " c e l l w a l l l i g n i n " , the former was a t about 75$ of the t o t a l and the l a t t e r about 25$. The c e l l w a l l l i g n i n i s thought t o be amor-phorus and has methoxyl content of 4.8$ and 4.3$ f o r red a l d e r and western white p i n e , whereas the middle l a m e l l a l i g n i n showed d e f i n i t e s t r u c t u r e and had 13.6$ and 10.8$ methoxyl r e s p e c t i v e l y . Dadswell (17) showed r a d i a l alignment of l i g n i n i n the c e l l -wall a f t e r treatment with 72$ s u l f u r i c a c i d . T h i s f i n d i n g was the same as t h a t of S c a r t h . T h e r e f o r e , Dadswell concluded t h a t r a d i a l alignment had a d e f i n i t e c o n n e c t i o n w i t h the d i s t r i b u t i o n of l i g n i n i n the c e l l w a l l . Lange (39) by a p p l y i n g m i c r o s p e c t r o g r a p h i c technique, s t u d i e d d i s t r i b u t i o n of l i g n i n i n the c e l l w a l l s of normal and r e a c t i o n woods. Spruce co n t a i n e d 73$ l i g n i n i n the . middle l a m e l l a and 16$ i n the c e l l w a l l . The c e l l w a l l s of hardwoods were l e s s l i g n i f i e d than those of spruce. - 5 -B a i l e y (4) f o l l o w i n g t e d i o u s m i c r o d i s s e c t i o n r e p o r t e d t h a t i n Douglas f i r , the middle l a m e l l a c o n t a i n e d 71.4$ of l i g n i n . B * L i g n i n i n earlywood and latewood R i t t e r and F l e c k (56) r e p o r t e d f o r numerous American woods t h a t springwood c o n t a i n e d a g r e a t e r p r o p o r t i o n of l i g n i n than summerwood, pro b a b l y because the middle l a m e l l a formed a l a r g e r p o r t i o n of the springwood substance. B a i l e y (4) showed t h a t i n Douglas f i r the l i g n i n was h i g h e r i n springwood, 35.<2$, than i n summerwood, 31.6$. Hata (28) determined l i g n i n content of a 35-year o l d Japanese r e d pi n e and r e p o r t e d t h a t springwood c o n t a i n e d more l i g n i n than summerwood. Jansons (32) made a thorough i n v e s t i g a t i o n of l i g n i n content i n a t r e e , and r e p o r t e d t h a t i n spruce, the l i g n i n content of s p r i n g - and summerwood was dependent t o some extent upon the p o s i t i o n w i t h i n the t r e e from which the sample was obtained. The l i g n i n content of summerwood a t the bottom of the trunk was lower, i n the middle p a r t equal t o , and a t the top of the trunk h i g h e r than t h a t of c o r r e s -ponding springwood. The l i g n i n content v a r i e d from 25.2$ to 29.5$ i n the springwood and from 22.3$ to 34.0$ i n the summerwood. 9 - 6 -Hagglund and Johnson (23), on the other, hand, r e p o r t e d t h a t no d i f f e r e n t l i g n i n content was found between spruce springwood and summerwood. Wardrop and Dadswell (68) r e p o r t e d t h a t most of the l i g n i n o c c u r r e d i n the i n t e r c e l l u l a r l a y e r and primary w a l l i n the c e l l w a l l of ray and v e r t i c a l parenchyma. Hale and Clermont (25) have r e c e n t l y r e p o r t e d t h a t the . l i g n i n content was h i g h e r i n earlywood than i n latewood both i n Douglas f i r and red p i n e . They a l s o s t a t e d t h a t the d i f f e r e n c e i n earlywood and latewood chemical and p h y s i c a l p r o p e r t i e s was due t o d i f f e r e n c e s i n c e l l - w a l l morphology. C. L i g n i n i n r e a c t i o n woods Hagglund ejt euL. (24,67) r e p o r t e d t h a t l i g n i n content was h i g h e r i n compression wood (38.0$) than i n normal wood (28.0$). Jayme and co-workers (33) showed t h a t beech t e n s i o n wood had a lower l i g n i n content than normal wood. Watson (69) r e p o r t e d t h a t t e n s i o n woods of Eu c a l y p t u s  regnans P.v.M. c o n t a i n e d 15.8$ l i g n i n , and onl y 10.3$ i n g o n i c o c a l y x P.v.M. as compared with 25.2$ f o r the normal wood. f ;gn!n Bland (8) concluded t h a t t e n s i o n wood Awas found t o have no abnormal c h a r a c t e r i s t i c except f o r being bound more c l o s e l y t o the polysaccharide"framework of the wood, whereas compression wood l i g n i n i s abnormal, owing t o the - 7 -o p e r a t i v e mechanism d u r i n g l i g n i n decomposition. He r e p o r t e d t h a t t e n s i o n woo'd con t a i n e d 13.8$ and compression wood, 34.4$ Klason l i g n i n . Hata (29) showed t h a t compression wood had 36.50$ l i g n i n with 12.74$ methoxyl content, whereas normal wood had 26.75$ l i g n i n w i t h 14.28$ methoxyl content. K l a u d i t z (36) r e p o r t e d t h a t red beech normal wood had h i g h e r l i g n i n content than reaction'- ' wood and t h a t narrow r i n g s have s l i g h t l y h i g h e r l i g n i n content than the wider r i n g r e a c t i o n wood (21.29:20.17$), whereas the normal wood had 22.68$ l i g n i n . Hale and co-workers (26) a l s o r e p o r t e d t h a t normal wood of both t r e m b l i n g aspen and white elm had h i g h e r l i g n i n content than the t e n s i o n woods. D. L i g n i n i n sapwood and heartwood R i t t e r and Fleck. (54, 55) s t a t e d t h a t i n a n a l y s i s of softwoods, c e r t a i n d e f i n i t e c o n c l u s i o n s may be drawn con-c e r n i n g r e l a t i o n s h i p between the v a r i o u s c o n s t i t u e n t s of the sapwood and heartwood, but i t i s q u i t e d i f f i c u l t t o g e n e r a l i z e i n the case of the hardwoods. They claimed, i n g e n e r a l , t h a t sapwood was h i g h e r i n l i g n i n than the c o r r e s p o n d i n g heartwood. Freeman and Peterson (18) s t a t e d t h a t any c o n c l u s i o n r e g a r d i n g r e l a t i o n s h i p between c o n s t i t u e n t s of heartwood - 8 -and sapwood of d i f f e r e n t s p e c i e s cannot be accepted w i t h -out some r e s e r v a t i o n , because c e r t a i n v i t a l f a c t o r s such as age, growing conditions"'and h a b i t a t are apparent and may be observed. In g e n e r a l , the e x t r a c t i v e s are h i g h e r i n the heartwood than i n the sapwood of the c o n i f e r o u s s p e c i e s , and the c e l l u l o s e and l i g n i n are l o w e r - i n the heartwood. Hata (27) a l s o observed t h a t the sapwood was h i g h e r than heartwood. in. l i g n i n content i n Japanese r e d p i n e . E. L i g n i n i n the i n d i v i d u a l t r e e C i e s l a r (15) s t u d i e d l i g n i n content on a number of softwoods and found t h a t l i g n i n decreased from the base towards the top of spruce t r e e s . L i g n i n content was- . h i g h e r a t p o s i t i o n s exposed to s t r o n g mechanical s t r e s s than elsewhere. Because he used the i n d i r e c t method (methyl number method) of Benedikt and Bamberger (7) f o r the d e t e r m i n a t i o n of l i g n i n , h i s r e s u l t s are not thought to be very r e l i a b l e . Narayanamuiti and Das (44) r e p o r t e d d i s t r i b u t i o n of l i g n i n throughout a number of t r e e s and found t h a t i t decreased towards the top (about 2%) and i n c r e a s e d from the sapwood towards the heartwood (about 5 $ ) . Klem (37) r e p o r t e d t h a t i n sprueewood the l i g n i n con-t e n t i n the lower trunk was h i g h e r than i t was i n the upper - 9 -trunk and t h a t such v a r i a t i o n s were r e s p o n s i b l e f o r v a r i a b l e pulp y i e l d . Hata (27) on the o t h e r hand r e p o r t e d l i g n i n content i n v a r i o u s p a r t s of the trunk of a 35-year o l d Japanese red pine and found t h a t l i g n i n i n c r e a s e d from the bottom towards the top of the t r e e , but was somewhat lower i n the heartwood than i n the sapwood. I t i s a l s o s t a t e d (14) t h a t methoxyl, l i g n i n and l i g n i n methoxyl i n c r e a s e d w i t h the formation of new r i n g s i n the twigs of Pinus t h u n b e r g i i P a r i , and R o b i n i a pseudoacacia L. Janson (32) r e p o r t e d t h a t In f i r t r e e s , maximum amount"of l i g n i n a t a c e r t a i n h e i g h t was flanked: by minimum amounts h i g h e r and lower. Maximum amounts of l i g n i n formed a s p i r a l l i n e p r o g r e s s i n g i n a c l o c k w i s e d i r e c t i o n upwards i n the trunk. H i g h e s t l i g n i n content with r e s p e c t to the whole trunk was found I n the wood samples taken j u s t below the crown. L i g n i n content i n the crown was r e l a t e d to the number of branches, the more branches the l e s s l i g n i n . Clermont and Schwartz (16) s t u d i e d chemical composition of a b l a c k spruce t r e e and r e p o r t e d t h a t l i g n i n content -did not show-any t r e n d of d i f f e r e n c e towards the top of" the t r e e , whereas wood methoxyl showed a d e f i n i t e decrease " (5.21 : - 4.89$) towards the top of the t r e e . - 10 -Morster and Sugiyama (71) r e p o r t e d t h a t l i g n i n con-t e n t of a western hemlock t r e e had no p a t t e r n of l i g n i n d i s t r i b u t i o n w i t h d i f f e r e n t h e i g h t l e v e l . They a l s o s t a t e d t h a t i n a number of western hemlock t r e e s , h i g h growth r a t e d i d not f a v o u r f o r m a t i o n of l i g n i n and x y l a n , but favoured f o r m a t i o n of hexosan and e s p e c i a l l y g l u c a n . Hale and Clermont (25) r e c e n t l y r e p o r t e d t h a t the l i g n i n measured h o r i z o n t a l l y a c r o s s a 430-year o l d Douglas f i r t r e e was h i g h e r i n the overmature wood p o r t i o n than i n the mature wood p o r t i o n . No d i f f e r e n c e s i n l i g n i n contents were n o t i c e d a c r o s s the mature wood p o r t i o n s . A c c o r d i n g t o Bland and H i r n j (11), Bower and co-workers (12), Beckman and co-workers (6), Norman (45), P h i l l i p s and co-workers (47), and Zeherebov (73), l i g n i n as w e l l as methoxyl content i n c r e a s e d with p l a n t m a t u r i t y . - 1 1 -EXPERIMENTAL  Sample In t h i s experiment samples of mature wood, a t b r e a s t h e i g h t were chosen from among the more important western Canadian woods. Sample t r e e s , except f o r S i t k a spruce, were from the U n i v e r s i t y of B r i t i s h Columbia Research F o r e s t , Haney, B.C. The S i t k a spruce was from T e r r a c e , B.C. These same samples were p r e v i o u s l y s t u d i e d f o r wood methoxyl contents ( 7 2 ) . The s p e c i e s i n c l u d e d : A m a b i l i s or P a c i f i c s i l v e r f i r (Abies A m a b i l i s (Dougl.) Forb.) -Douglas f i r (Pseudotsuga m e n z i e s i i (Mirb.) Franco.) S i t k a spruce ( P i c e a s i t c h e n s i s (Bong.) C a r r . ) Western hemlcok (Tsuga H e t e r o p h y l l a (Raf.) Sarg.) Itfestern red cedar (Thuja p l i c a t a D. Don.) The wood b l o c k s f o r each s p e c i e s were f i r s t s a t u r a t e d w i t h water and then cut i n t o t a n g e n t i a l s e c t i o n s of 1 2 0 -microns t h i c k n e s s . Three adjacent r i n g s from each s p e c i e s were s t u d i e d . The growth r i n g s i n c l u d e d : a m a b i l i s f i r , 7 8 - 8 0 y r ; Douglas f i r , 6 4 - 6 6 y r ; S i t k a spruce, 6 9 - 7 1 y r ; western hemlock, 5 6 - 5 8 y r ; and western red cedar, 7 2 - 7 4 y r . The t o t a l t a n g e n t i a l s e c t i o n s w i t h i n each r i n g were d i v i d e d i n t o s i x equal groups r e p r e s e n t i n g s i x s e q u e n t i a l p o s i t i o n s a c r o s s a growth r i n g from earlywood t o latewood. These s e c t i o n s were a i r d r i e d , ground i n t o wood meal, c o l l e c t e d as 4 0 - 8 0 mesh, and homogenized. - 12 -P r e p a r a t i o n of e x t r a c t i v e - f r e e samples In order t o o b t a i n e x t r a c t i v e - f r e e samples t h a t had been g i v e n e q u i v a l e n t treatment/ 0.7 g p o r t i o n s of wood meal were s e a l e d s e p a r a t e l y i n 100-mesh 1.5"x 2.0" nylon bags with a s o l d e r i n g gun. In order t o c a l c u l a t e sample moisture content, earlywood and latewood samples from another source were used; i n t h i s case, the same'treatments were a p p l i e d t o the moisture c o r r e c t i o n samples, as w e l l as to those being prepared f o r l i g n i n d e t e r m i n a t i o n . A l l samples f o r each s p e c i e s were s u c c e s s i v e l y t r e a t e d i n the same Soxhlet c o n t a i n e r with e t h y l e t h e r and a b s o l u t e e t h y l alcohol"; They were then hot-water e x t r a c t e d a c c o r d i n g t o SP/E-1/62 (64). A f t e r e x t r a c t i v e treatments, the samples were a i r - d r i e d and c o n d i t i o n e d i n an Amineo c a b i n e t u n t i l the sample moisture content reached e q u i l i b r i u m . F o r moisture content d e t e r m i n a t i o n , earlywood and l a t e -wood samples were d r i e d i n an oven maintained a t 102"tl°C u n t i l constant weight was reached. The average of th r e e r e p l i c a t e s as s t a t e d i n AM/M-l/62 ( l ) was used f o r c a l -c u l a t i n g moisture c o n t e n t s . The moisture contents found were 8.80$ and 9.80$ f o r earlywood and latewood r e s p e c t i v e l y . These val u e s were used to c o r r e c t e x t r a c t e d experimental samples with moisture contents of the f i r s t - 13 -f o u r p o s i t i o n s i n a growth r i n g c o r r e c t e d by earlywood moisture content, w h i l e the remaining two p o s i t i o n s were c o r r e c t e d a c c o r d i n g to latewood moisture content. The e x t r a c t i v e - f r e e and moisture e q u i l i b r a t e d samples were then s t o r e d i n t i g h t l y c l o s e d g l a s s j a r s t o a v o i d f u r t h e r moisture changes. Apparatus A Beckman Model DK 2 double beam r e c o r d i n g spectrophoto-meter was used f i r s t i n s t u d y i n g a b s o r p t i o n s p e c t r a of c a l i b r a t i o n samples. A Beckman Model DU s i n g l e beam manual spectrophotometer was l a t e r used t o check a b s o r p t i o n s p e c t r a measured by ABeckman Model DK 2 and was then used i n the Csee F'5 -1) main study. Three quartz c e l l s with 10 mm path l e n g t h and A 1.5 ml volume were us e d . j • r - > V - . , • The r e a c t o r s used were g l a s s - s t o p p e r e d t e s t tubes w i t h o u t s i d e diameter of 19 mm, l e n g t h 150 mm, and c a p a c i t y 28 ml. Stoppers were notched to a l l o w escape of evolved gases. The hot water bath was r e g u l a t e d a t T O t l ^ C . Other equipment For Klason l i g n i n d e t e r m i n a t i o n s f i l t e r g l a s s c r u c i b l e s (C p o r o s i t y ) and 50 ml weighing b o t t l e s were used. For d i l u t i o n of wood meal s o l u t i o n s c a l i b r a t e d 200 ml v o l u m e t r i c f l a s k s were used. - 14 -Chemicals A. F o r Klason l i g n i n d e t e r m i n a t i o n : 1. S u l f u r i c a c i d (H 2S0i|): A reagent grade 72$ s u l f u r i c a c i d was used. B. F o r S p e c t r o m e t r i c l i g n i n d e t e r m i n a t i o n : 1. A c e t y l bromide (CH^COBr): A reagent grade a c e t y l bromide was used f o r the d i s s o l u t i o n of wood meal. 2. Sodium hyd r o x i d e : A 2 M sodium hydroxide (carbonate-.Soju+i'on f r e e ) was prepared by d i s s o l v i n g 160 g reagent grade A sodium hydroxide i n 2000 ml of b o i l e d and c o o l e d d i s t i l l e d water. 3. Hydroxylamine h y d r o c h l o r i d e (NH 20H«HCl): a reagent grade 7-5 M s o l u t i o n was used. Procedure In o r d e r t o p l o t a standard c a l i b r a t i o n curve of l i g n i n content a g a i n s t absorbence a t a g i v e n wavelength, l i g n i n content of a 0-10 y r wood meal sample from an a m a b i l i s f i r was determined by Klason's method (2) which f o l l o w s : 1. A wood meal sample (about 1 g a i r - d r i e d ) i s a c c u r a t e l y p l a c e d i n t o a t a r e d weighing b o t t l e . 2. The b o t t l e and sample are p l a c e d i n a water bath a t 19-1°C and 15 ml of c o l d s t a n d a r d i z e d s u l f u r i c a c i d i s added-?-slowly, with constant s t i r r i n g . Vigorous s t i r r i n g i s con-t i n u e d f o r 2 min. u n t i l a l l : , lumps are broken. S t i r r i n g i s c o n t i n u e d f o r 1 min. and i s repeated at 15 min. I n t e r v a l s - 15 -f o r 2 hours while m a i n t a i n i n g temperature a t 19±1°C. 3. A f t e r 2 hours the m a t e r i a l i s washed i n t o a Erlenmeyer f l a s k and d i l u t e d to 3$ a c i d c o n c e n t r a t i o n by adding 560 ml of d i s t i l l e d water. 4. The s o l u t i o n i s r e f l u x e d f o r 4 hours. 5- The i n s o l u b l e m a t e r i a l i s allowed t o s e t t l e o v e r n i g h t and i s then f i l t e r e d i n t o a t a r e d c r u c i b l e . 6. The r e s i d u e i n the c r u c i b l e . i s washed wit h 500 ml of hot d i s t i l l e d water t o d i s p o s e of the a c i d . 7. The c r u c i b l e and r e s i d u e are d r i e d a t 102tl°c f o r 2 hours, c o o l e d i n a d e s i c a t o r and weighed t o constant weight. L i g n i n content was c a l c u l a t e d as percentage based on e x t r a c t i v e - f r e e and m o i s t u r e - f r e e wood. The average l i g n i n content of 4 r e p l i c a t e s was 30.11$ with range of 1.0$. T h i s l i g n i n content was used f o r the c a l i b r a t i o n of l i g n i n a b s o r p t i v i t y . The procedure used f o r s p e c t r o m e t r i c l i g n i n determina-t i o n f o l l o w s : The wood meal specimen having an a c c u r a t e l y known weight of about 0.020 g (oven-?dry b a s i s ) was p l a c e d i n a s p e c i a l r e a c t i o n tube having a notched, f i t t e d g l a s s stopper, and 10 ml of 25$ a c e t y l bromide-acetic a c i d (reagent grade) was added. The tube was then p l a c e d i n a hot water bath maintained a t 70±1°C. Gentle s w i r l i n g - 16 -was done a t 10 min. i n t e r v a l s t o a s s i s t d i s s o l u t i o n . A f t e r 30 min. of h e a t i n g , the r e a c t i o n tube was p l a c e d i n a c o l d water bath maintained a t 13tl°C f o r 8-10 min. The c o o l e d l i q u o r was then t r a n s f e r r e d t o a 200 ml v o l u m e t r i c f l a s k i n t o which 9 ml of 2 M sodium hydroxide and 50 ml of a c e t i c a c i d had been p l a c e d . A minimum amount of a c e t i c a c i d ( c a . 5-10 ml) was used t o complete the t r a n s f e r from the r e a c t i o n tube, and 1 ml of 7.5 M hydroxylamine h y d r o c h l o r i d e was then added t o the f l a s k . The contents were mixed and d i l u t e d t o the 200 ml mark wi t h reagent grade a c e t i c a c i d . T h i s s o l u t i o n was c o o l e d under c o l d water b e f o r e measurement of absorbence was made. The s o l u t i o n absorbence was measured a t the maximum peak (Amax) of 282 m i l i m i c r o n . L i g n i n content was c a l c u l a t e d as: L i g n i n , % - Absorbence ( A b s o r p t i v i t y ;x Sample Wt.); where A b s o r p t i v i t y of a m a b i l i s f i r =23.2 Sample Wt. was based on e x t r a c t i v e - f r e e , m o i s t u r e - f r e e weight of wood. - 17 -DISCUSSION OF PROCEDURES 1. Theory of u l t r a v i o l e t s p ectroscopy The i d e n t i f i c a t i o n of. organic compounds has been much a s s i s t e d by i n t r o d u c t i o n of instruments which make p o s s i b l e q u ick and convenient measurement by u l t r a v i o l e t ( a l s o i n f r a -red) s p e c t r a of substances/ even with s m a l l amounts of m a t e r i a l . The u l t r a v i o l e t spectrum, q u i t e u n l i k e the i n f r a r e d or Raman, a r i s e s from e l e c t r o n i c e x c i t a t i o n of the molecule by the i r r a d i a t i n g l i g h t . The t o t a l energy of a molecule i s the sum of i t s e l e c t r o n i c o r b i n d i n g energy and i t s k i n e t i c energy. The e l e c t r o n i c o r b i n d i n g energy i s the l a r g e s t component of molecule t o t a l energy. Energy absorbed i n the u l t r a v i o l e t r e g i o n produces e l e c t r o n i c t r a n s i t i o n s w i t h i n the molecule. The r e l a t i o n s h i p s between the energy absorbed, i n an e l e c t r o n i c t r a n s i t i o n , and the frequency ( t^) or wavelength (x) of r a d i a t i o n producing the t r a n s i t i o n , i s expressed by: where, stands f o r Plank's constant and c v e l o c i t y - of l i g h t . ^E i s the energy absorbed i n b r i n g i n g about an e l e c t r o n i c t r a n s i t i o n i n a molecule from i t s lowest energy s t a t e (ground s t a t e ) t o an e x c i t e d s t a t e . The energy absorbed i s q u a n t i z e d . The s m a l l e r the energy d i f f e r e n c e - 18 -between the ground s t a t e and the e x c i t e d s t a t e , the longer-w i l l be the wavelength of a b s o r p t i o n . The important.. consequence of t h i s , from the view o f A s t r u c t u r a l chemist, i s t h a t spectra i n the u l t r a -v i o l e t region are d i a g n o s t i c of u n s a t u r a t i o n i n the absorbing molecule. I t i s a l s o understood that the u l t r a v i o l e t (and i n f r a r e d ) spectra are very important i n the determination of f u n c t i o n a l groups both q u a l i t a t i v e l y and q u a n t i t a t i v e l y . Q u a n t i t a t i v e a p p l i c a t i o n of spectroscopy i s based on the s o - c a l l e d Lambert-Beer law which s t a t e s : log-^Q I 0 / l = Kcb = A where K i s a constant c h a r a c t e r i s t i c of the s o l u t e ; c, c o n c e n t r a t i o n of s o l u t e ; b, path l e n g t h ; A, absorbence; St<\nci I Q and I A f o r i n t e n s i t y of i n c i d e n t and t r a n s m i t t e d r a d i a t i o n , , (59). 2. Determination by the m i c r o - l i g n i n method A. Sample" weight (volume of d i l u t i o n ) I t was d e s i r a b l e to determine an optimum minimal sample s i z e so t h a t f u r t h e r study could be c a r r i e d out w i t h small amounts of m a t e r i a l . Prom the r e s u l t s of Johnson, Moore and Zank (34), the c o n c e n t r a t i o n of s o l u t i o n ( l i g n i n or wood meal) which gives an optimum absorbence between 0.2 and 0.8 (5) i s 0.6 t o 4.0 mg l i g n i n per 100 ml d i l u t i o n . In other words, the weight of c o n i f e r o u s wood meal r e q u i r e d t o f a l l w i t h i n t h i s absorbence range would be 2.0 to 13.3 mg - 19 -per 100 ml d i l u t i o n . A c c o r d i n g to the method d e s c r i b e d (34), the minimum d i l u t i o n volume was 100 ml. With the l a r g e s t d i l u t i o n volume, 1000 ml, r e s u l t s were not d i f f e r e n t from those with s m a l l e r d i l u t i o n volumes, e.g. 100 and 200 ml. T h e r e f o r e , i t seemed unnecessary t o repeat the d i l u t i o n volume study to 1000 ml. I'riftiW experiments were c a r r i e d out with d i f f e r e n t d i l u t i o n volumes, e.g. 100, 200 and 250 ml. R e s u l t s showed t h a t the range of a b s o r p t i v i t y f o r a m a b i l i s f i r wood meal Uc/d of with 100 ml d i l u t i o n was too l a r g e , p r o b a b l y due to weighing A a c c u r a c y (weight of sample was about 0.0100 g ) . The range was s m a l l e r f o r 200 and 250 ml d i l u t i o n ; the mean a b s o r p t i v i t y the f o r 200 ml d i l u t i o n was 23.2, which i s the same a s A a v e r a g e a b s o r p t i v i t y of 23.1 r e p o r t e d f o r softwoods (34). T h e r e f o r e , d i l u t i o n volume was s e t t l e d a t 200 ml ( c a . 0.020 g oven-dry weight wood meal). D i l u t i o n t o 250 ml showed no d i f f e r e n c e s from those t o 200 ml d i l u t i o n . R e s u l t s w i t h 200 ml d i l u t i o n are g i v e n i n Table 2A. B. E f f e c t of cooking time I t i s understood t h a t cooking time ( r e a c t i o n time) i s one important f a c t o r i n f l u e n c i n g b ehavior of r e a c t a n t s . In t h i s experiment the cooking time was set as 30 min. In order to study cooking time e f f e c t s , 40-60 mesh western hemlock (0-40 y r ) wood meal wi t h known moisture content - 20 -was used. R e s u l t s are g i v e n i n Table 2B. I t i s seen from these r e s u l t s , t h a t cooking time of 30*5 min. caused d i f -f e r e n c e of only ±1.5$ In r e l a t i v e l i g n i n c o ntent. T h i s shows t h a t the r e a c t i o n time i s not v e r y c r i t i c a l i n the 30 min. range. R e a c t i o n ( o r d i s s o l u t i o n ) i s almost complete i n t h a t time f o r a l l s p e c i e s s t u d i e d . T h i s r e s u l t i s v e r y s i m i l a r t o t h a t r e p o r t e d (34). C. E f f e c t of r e a c t i o n temperature The e f f e c t of cooking temperature on the l i g n i n d e t e r -m i n a t i o n i s not s i g n i f i c a n t at 70±1°C as found by Johnson, Moore and Zank (34), i n t h a t the change of a b s o r p t i v i t y w i t h r e a c t i o n temperature was, approximately 1$ per degree a t 70°C. An automatic r e g u l a t e d hot water bath very e a s i l y meets t h i s temperature requirement. D. . E f f e c t of elapsed time b e f o r e measurement I t was s t a t e d (34) t h a t the Douglas f i r . w o o d s o l u t i o n •showed no change i n absorbence f o r as l o n g as 5-hr storage a f t e r t r a n s f e r and d i l u t i o n t o g i v e n volume, but t h a t the time f a c t o r was more important with hardwood s o l u t i o n s . In o r d e r t o study the time factor,, absorbence was read at d i f f e r e n t time i n t e r v a l s a f t e r d i l u t i o n . The prepared s o l u t i o n was s t o r e d under running water a t 12 ,£l 0C. R e s u l t s are g i v e n i n T a b l e 2C. Under these c o n d i t i o n s i t seems t h a t the absorbence with c\m^brlis -fir wood-, does not - 21 - i change f o r 24 hr;-', a f t e r r e a c t i o n . When the s o l u t i o n was kept at room temperature (about 25°C), however, absorbence was only s t a b l e f o r 5 h r - : - a f t e r r e a c t i o n . I t seems tha t some other r e a c t i o n s occur, e s p e c i a l l y s i n c e the s o l u t i o n turns from l i g h t brown to "dark brown co l o u r , which i s accompanied by an abrupt change of absorbence. This could r e s u l t from some complex polybromide formation. Therefore, i t was decided th a t absorbence reading would be made w i t h i n 2 h r s . a f t e r completion of the cooking phase. E._ C a l c u l a t i o n of sample s i z e An experimental s e r i e s was c a r r i e d out on^0.020 g samples of western hemlock cooked at 70±1°C and measured w i t h i n 2 hr a f t e r r e a c t i o n . R esults are given i n Table 2D. According to the equation of S t e e l and T o r r i e (65), the number of r e p l i c a t e s f o r each p o s i t i o n i n a growth increment can be c a l c u l a t e d as: N = t 2 x s 2 / d 2 where, N = number of r e p l i c a t i o n s t = value from the t - t a b l e at n-1 degrees of freedom, and at the 95$ p r o b a b i l i t y l e v e l s 2= the sample variance d = (mean x 0.0p)/2, wi t h p$ of a l l o w a b l e e r r o r . - 22 -Prom data i n Table 2D, the number of necessary r e p l i c a t i o n s was c a l c u l a t e d t o be 1, "with c a l c u l a t i o n a l s o g i v e n i n Table 2D. T h i s r e p l i c a t i o n number, one ; Is based on ±2.0$ (4$) a l l o w a b l e e r r o r , I n order t o o b t a i n more r e l i a b l e r e s u l t s , two or th r e e replicates may be used. 3. Experimental e r r o r s Other f a c t o r s i n f l u e n c i n g experimental accuracy were a l s o c o n s i d e r e d and c o n t r o l l e d : ( 1 ) Weighing of sample: Sample"weight can be c o n s i d e r e d to be the most important f a c t o r , e s p e c i a l l y i n t h i s m i c r o - s c a l e l i g n i n d e t e r m i n a t i o n , because a r e l a t i v e 2 $ e r r o r i n r e a d i n g can be encountered e a s i l y a t the 0.020 g sample s i z e . Samples were weighed on a p i e c e of paper, with both paper and paper p l u s sample weighed at l e a s t twice, or u n t i l c onstant r e a d i n g s were ob t a i n e d . The paper used was p r e -c o n d i t i o n e d i n the surrounding atmosphere so t h a t e q u i l i b r i u m moisture was a t t a i n e d , thereby r e d u c i n g the l i k e l i h o o d of change i n weight d u r i n g weighing. During weighing, the automatic balance was turned on a couple of times t o r e l e a s e s t r a i n s developed i n the s c a l e . ( 2 ) Chemicals A. A c e t y l bromide A c e t y l bromide i s .a reagent w/ifch dissolves more than 99$ of the wood. T h i s chemical i s very r e a c t i v e and has - 23 -a b o i l i n g p o i n t of 76 C. I t fumes i n moist a i r by l i b e r a -t i o n of hydrogen bromide and the formation of a c e t i c a c i d . T h e r e f o r e , i n order to a v o i d changes"in chemical c o n c e n t r a -t i o n , the a c e t y l bromide was s e a l e d as 20 ml ampules t o prevent f u r t h e r r e a c t i o n b e f o r e use as occu r r e d with opened stock b o t t l e s . I t was a l s o n o t i c e d t h a t h i g h e r a b s o r p t i v i t y was encountered when an o l d a c e t y l bromide s o l u t i o n was used. B. Sodium hydroxide T h i s reagent i s used mostly f o r i t s b u f f e r i n g e f f e c t , but i t may have some other e f f e c t s on the l i g n i n molecule. In order to m a i n t a i n the same s t r e n g t h (2M) sodium hydroxide s o l u t i o n , a bulk s o l u t i o n (2000 ml) was prepared a n d . t h i s was s t o r e d " i n a b o t t l e equipped with a gas tube c o n t a i n i n g a s c r i t e f o r abs o r b i n g carbon d i o x i d e . T h i s prevented carbonate formation and thereby change i n s o l u t i o n c o n c e n t r a t i o n . The e f f e c t of sodium hydroxide on absorbence of the s o l u t i o n w i l l be d i s c u s s e d l a t e r . C. Hydroxylamine h y d r o c h l o r i d e T h i s s o l u t i o n was a l s o prepared i n ]arge amounts (300 ml) to m a i n t a i n the same s t r e n g t h of s o l u t i o n . T h i s reagent i s r e p o r t e d t o a r r e s t f u r t h e r r e a c t i o n of the s o l u b i l i z e d wood. (3) Inst r u m e n t a l A. Beckman Model DU spectrophotometer - 24 -The instrument used i n t h i s study was not equipped with c o o l i n g system. The instrument was warmed f o r a t l e a s t 3/4 of an hour b e f o r e absorbences were measured. T h i s i s r e q u i r e d f o r s t a b l e i n s t r u m e n t a l r e a d i n g . B. " S i l i c a c e l l Three s i l i c a c e l l s w i t h l i g h t path l e n g t h s of 10 mm and 1.5 ml c a p a c i t y were used i n t h i s study. These c e l l s were checked f o r t h e i r s i m i l a r i t y i n absorbence c h a r a c t e r -i s t i c s a t the d e s i r e d wavelength. Blank s o l u t i o n was f i r s t used f o r each c e l l and the d i f f e r e n c e s i n absorbence were re c o r d e d . Wood s o l u t i o n values were then measured and the d i f f e r e n c e s were r e c o r d e d . The r e s u l t s showed t h a t no s i g n i f i c a n t absorbence d i f f e r e n c e s o c c u r r e d i n e i t h e r case. The absorbence d i f f e r e n c e s ranged from 0.001 to 6.002. These amounts of absorbence are not c o n s i d e r e d t o be important. In each case of changing s o l u t i o n f o r measurement, the c e l l s were r i n s e d a t l e a s t 8 times (4 times i s c o n s i d e r e d to be s t a n d a r d ) . The o u t e r c e l l s u r f a c e s were cleaned'"and d r i e d w i t h l e n s paper, s i n c e o r d i n a r y t i s s u e s cause s c r a t c h i n g on the s u r f a c e of c e l l and thereby i n f l u e n c e absorbence. C. S l i t width The s l i t width used was 0.8 mm (5). Change of s l i t width, e s p e c i a l l y to a wider s l i t may cause some v a r i a t i o n i n t r a n s m i t t a n c e hence absorbence of the s o l u t i o n , because - 25 -the absorbence read i s the mean va l u e of absorbence a t the g i v e n range of wavelength. The wider the range measured the lower the absorbence. In f a c t , t h i s may not happen, because the commercial spectrophotometers are a c c u r a t e enough t o measure absorbence a t bandwidth of l e s s than 1 m i l i m i c r o n . S t i l l , the wider s l i t width may cause f u r t h e r disadvantage i n s t r a y l i g h t e f f e c t (5)J or d e f l e c t i o n from the s i d e s o f the c e l l o r lower s u r f a c e of the s o l u t i o n . D. Reading of absorbence Absorbence of a g i v e n s o l u t i o n was read a t l e a s t t h r e e times or u n t i l constant r e a d i n g was obt a i n e d . ( 4 ) Number of samples - measured Each batch c o n s i s t e d of s i x to nine samples. In any one such s e r i e s samples from d i f f e r e n t p o s i t i o n s w i t h i n one t o two growth increments were i n c l u d e d . A blank s o l u t i o n was i n c l u d e d with each batch i n order to p r o v i d e a g a i n s t v a r i a t i o n s caused by d i f f e r e n t batches of chemica l s . T h i s was e s p e c i a l l y n o t i c e a b l e w i t h a c e t i c a c i d . (5) Volume of d i l u t i o n I t i s known t h a t volume e r r o r s are caused mainly from d i f f e r e n c e s i n temperature and i n a c c u r a t e c a l i b r a t i o n of vo l u m e t r i c ware. In t h i s study the temperature of s o l u t i o n was kept almost constant d u r i n g a l l d i l u t i o n s so t h a t the - 26 -volume e r r o r was minimized. 4. Absorbence behaviour of wood l i g n i n The above mentioned f a c t o r s are those which c o u l d a r i s e d u r i n g the experiment. So f a r as the absorbence c h a r a c t e r i s t i c of wood s o l u t i o n i s concerned, t h e r e are many r e l a t e d f i n d i n g s and o p i n i o n s : A. Between s p e c i e s I t i s ve r y c l e a r t h a t the a b s o r p t i v i t y of l i g n i n from d i f f e r e n t s p e c i e s i s not the same. T h i s can be seen from the r e p o r t of Johnson and co-workers (34) t h a t the absorp-t i v i t y of softwood l i g n i n ranged from 22.6 i n western hemlock t o 24.0 i n Douglas f i r . Hardwood l i g n i n A f r o m 22.4 i n sweet gum to 24.5 In aspen and white ash. B. Between d i f f e r e n t t r e e s of the same s p e c i e s S i e g e l and co-workers (62) s t u d i e d the absorbence c h a r a c t e r i s t i c of woods from the same s p e c i e s . They r e p o r t e d t h a t the f o s s i l v a s c u l a r cryptogams had le-ss e x t r a c t a b l e l^mn u l t r a v i o l e t - a b s o r b i n g content than the l i v i n g p r o t o t y p e s . C. W i t h i n an i n d i v i d u a l t r e e I t i s understood t h a t l i g n i n obtained from d i f f e r e n t p a r t s of the t r e e do not have e x a c t l y the same c h a r a c t e r -i s t i c u l t r a v i o l e t a b s o r p t i o n s p e c t r a . Bland and H i r n j i ( 1 1 ) s t u d i e d v a r i a t i o n of l i g n i n - 27 -absorption spectra with r a d i a l p o sition i n the tree on a sample of Euc a l y p t u s regnamF.v.M. containing 90 growth rings. The spectra were found to vary systematically from the centre of the tree outwards. They found s h i f t of maximum from 272 mu at the p i t h to 262 mu i n the outer rings, decrease i n absorption at 230 mu r e l a t i v e to the maximum i n the 262-272 mu range, shallower minimum i n the 250-260 mu range, and the appearance of a weak band at 350 mu. Mugg (43) on the other hand reported that Braun's l i g n i n isolated"from p a r t i a l l y matured aspenwood resembled c l o s e l y that prepared from matured aspenwood with respect to i n f r a r e d and u l t r a v i o l e t spectra, methoxyl content and physical appearance. Bland (8, 9) i n studies of reaction woods reported that the u l t r a v i o l e t absorption spectra of the tension wood l i g n i n s had t h e i r maximum displaced toward the shorter wavelength and the minimum was shallower (both i n Eucaly p t u s gonicocalyx F.v.M. and E. regnans F.v.M.). No differences i n l i g n i n u l t r a v i o l e t absorption spectra was found among wood compression, normal sapwood and' heartwood of Pinus radiata D. Don. D. L i g n i n f r a c t i o n s Ishikawa and T a k a i c h i (31) showed that In Cryptomeria - 2 8 -species the molecular e x t i n c t i o n at A max 282 mu was p r o p o r t i o n a l to molecular weights of d i f f e r e n t phenol l i g n i n f r a c t i o n s . Bland and Gately (10) reported t h a t methanol e x t r a c t e d l i g n i n from -Eucalyptus regnans F.v.M. wood contained two main f r a c t i o n s and i m p u r i t i e s . The sum of the two e x t i n c t i o n s of the two f r a c t i o n s at 275 mu amounted to about two-thirds of the e x t i n c t i o n of the benzene-purified l i g n i n . & n d Gfttely - Bland A(10) f u r t h e r reported on absorption spectra f o r l i g n i n s separated chromatographically from methanol e x t r a c t s of Eucalyptus regnans P.v.M. taken along a l i n e from p i t h to bark. Two l i g n i n ...'fractions were produced, one of these was s u b s t a n t i a l l y the same from any p o s i t i o n between p i t h and sapwood, the other apparently changed p r o g r e s s i v e l y from p i t h t o sapwood. Rezanowich and co-workers (48) reported t h a t i n f o u r f r a c t i o n s of dioxane l i g n i n s prepared from white spruce there was a s m a l l , d e f i n i t e i n c r e a s e i n the u l t r a v i o l e t a b s orption and the r e f r a c t i v e index increment w i t h i n c r e a s e i n the molecular weight of the f r a c t i o n , although they were s i m i l a r i n the methoxyl content and i n t r i n s i c v i s c o s i t y . < 5. Changes of absorption spectra by chemical r e a c t i o n s I n general, the change i n u l t r a v i o l e t absorption spectra of l i g n i n may be summarized as f o l l o w s : - 29 -A. Hypsochromic s h i f t A hypsochromic s h i f t i s a change of spectrum from l o n g e r t o s h o r t e r wavelength due to s u b s t i t u t i o n or s o l -vent e f f e c t . T h i s may be due e i t h e r t o a change i n the l i g n i n complex on a c e t y l a t i o n or a c r o s s c o n j u g a t i o n phenomenon, such as a c e t y l a t i o n or m e t h y l a t i o n of l i g n i n as r e p o r t e d by Stevens and Nord (66). T h i s s h i f t can a l s o be caused by h y d r o l y s i s of l i g n i n i n N sodium hydroxide s o l u t i o n as r e p o r t e d by Smith)" (60, 6l). B. Bathochromic s h i f t T h i s s h i f t i s a change to l o n g e r wavelength owing to s u b s t i t u t i o n or s o l v e n t • e f f e c t . I o n i z a t i o n of the p h e n o l i c group i n l i g n i n as cause of bathochromic s h i f t was r e p o r t e d by Aulin-Edtman (3) and Ishikawa and Ide (30). C. Hyperchromic e f f e c t Hyperchromic e f f e c t s r e s u l t i n an i n c r e a s e i n a b s o r p t i o n i n t e n s i t y . T h i s e f f e c t i s p r o p o r t i o n a l t o the i n c r e a s i n g pH of the l i g n i n s o l u t i o n as r e p o r t e d by Aulin-F^dtman (3)., 21 Goldschmid (20^), and M a r a n v i l l e and Goldschmid (42). T h i s e f f e c t with l i g n i n i s In most cases accompanied by batho-chromic s h i f t . - 30 -In b i s u l f i t e cooking of l i g n i n the i n c r e a s e i n a b s o r p t i o n i n t e n s i t y a t ^ m a x 280 mu was a l s o found p r o p o r t i o n a l t o cooking time as was r e p o r t e d by Sobue and Hatano (6 3 ) . In g e n e r a l , the r e a c t i o n time and r e a c t i o n temperature of l i g n i n are p r o p o r t i o n a l t o hyperchromic e f f e c t . 6. A c i d - s o l u b l e l i g n i n In t h i s study, i t i s a l s o c o n s i d e r e d t h a t l i g n i n content obtained may not i n c l u d e so c a l l e d " a c i d - s o l u b l e l i g n i n " , because the standard l i g n i n a b s o r p t i v i t y (23 .2) used i n the c a l c u l a t i o n of l i g n i n content does not i n c l u d e the a c i d - s o l u b l e wood f r a c t i o n . I n o t h e r words, t h i s a b s o r p t i v i t y was obtained from absorbence of a m a b i l i s f i r wood s o l u t i o n c a l i b r a t e d t o Klason l i g n i n . T h e r e f o r e , l i g n i n content c a l c u l a t e d a c c o r d i n g to t h i s a b s o r p t i v i t y would r e l a t e o n l y to Klason l i g n i n c o n t e n t . T h i s author a l s o t r i e d to measure a b s o r p t i o n of a 3$ K l a s o n l i g n i n f i l t r a t e . A A m at 278 mu with absorbence of 0.420 f o r Sample 4 and 0.335 f o r Sample 5 was found i n the Klason l i g n i n d e t e r m i n a t i o n of western hemlock samples. These val u e s when, converted t o l i g n i n content by the method used i n t h i s study gave 2 .30 $ and 2 .23$ l i g n i n r e s p e c t i v e l y . Data were not used i n c o r r e c t i o n of l i g n i n content f o r t h i s study, because the a c i d - s o l u b l e l i g n i n i s not y e t f u l l y understood. The a b s o r p t i o n of t h i s a c i d -s o l u b l e f r a c t i o n may a l s o g i v e . r i s e t o the h y d r o l y s i s of - 31 -carbohydrate p o r t i o n of wood as was r e p o r t e d by R i c h t z e n -h a i n and D r y s e l i u s (50) i n t h a t spruce, beech and aspen wood h y d r o l y z a t e s c o n t a i n e d very s m a l l amounts of l i g n i n &s measu-ed V spectrophotometric mea;*;meansV' ^  A s o l u t i o n of glucose, a f t e r b e i n g t r e a t e d with 72$ s u l f u r i c a c i d and then d i l u t e d t o 3%, showed o n l y i n s i g n i f i c a n t u l t r a v i o l e t a b s o r p t i o n ; however on b o i l i n g , a d e f i n i t e a b s o r p t i o n spectrum of hydroxymethyl f u r f u r a l developed. X y l o s e was a l s o found to behave i n a s i m i l a r way. 7. Other i n t e r f e r i n g substances Substances o t h e r than l i g n i n such as flavanones, f u r a n , phlobaphenes and carbohydrate degradation products such as f u r f u r a l and hydroxymethyl f u r f u r a l are a l s o known to have a b s o r p t i o n s p e c t r a a t the wavelength e x h i b i t e d by l i g n i n o r l i g n i n d e r i v a t i v e s (13, 14). In t h i s study and a l s o from the r e p o r t of Johnson and co-workers (34)/ the a b s o r p t i o n a t ^ m a x 282 mu and 280 mu are p r o p o r t i o n a l t o Klason l i g n i n c o ntent. T h e r e f o r e , these large i n t e r f e r i n g substances are of no Aimportance i n l i g n i n d e t e r m i n a t i o n by the method .used i n t h i s study. 8. R e p r o d u c i b i l i t y I t i s a l s o understood t h a t the experimental r e s u l t s are in c o h s i s t a n t : from person to person and from machine t o machine. T h e r e f o r e , i n the comparison of r e s u l t s , these f a c t o r s should a l s o be taken i n t o c o n s i d e r a t i o n . - 32 -RESULTS R e s u l t s of l i g n i n content d e t e r m i n a t i o n s on f i v e c o n i f e r o u s s p e c i e s are g i v e n i n Tables 3-8 and are f u r t h e r p l o t t e d In F i g . 2-3. S t a t i s t i c a n a l y s es of these data A are g i v e n i n Tables 14^24.;, - ; R e l a t i o n s h i p s between l i g n i n contents and r e l a t e d wood methoxyl contents (72) f o r these f i v e s p e c i e s are g i v e n i n T a bles 9-13 and f u r t h e r p l o t t e d i n F i g . 4-8. C o r r e l a t i o n c o e f f i c i e n t s between l i g n i n and wood methoxyl contents are a l s o g i v e n f o r each s p e c i e s . N o n - l i g n i n methoxyls were c a l c u l a t e d based on the assumption t h a t l i g n i n methoxyl was 15$. Tables 9 - )3. are g i v e n f o r n o n - l i g n i n methoxyl contents of the f i v e c o n i f e r o u s s p e c i e s . 1. D i s t r i b u t i o n of l i g n i n From r e s u l t s of l i g n i n d e t e r m i n a t i o n s , i t appears t h a t : (1) L i g n i n content d i f f e r s " between s p e c i e s , from p o s i -t i o n t o p o s i t i o n w i t h i n growth r i n g s , and may also Abetween r i n g s ( T a b l e s 3-8, I 4-'9). (2) L i g n i n contents f o r i n d i v i d u a l s p e c i e s were i n the or d e r of: western hemlock, 32.85$ (32.36-34.04$); western r e d cedar, 31.23$ (29.69-32.68$); a m a b i l i s f i r , 27.51$ (26.17-28.24$); Douglas f i r , 26.48$ (24.08-28.66$); and S i t k a spruce, 25.81$ (24.91-26:98$). - 33 -T h i s order does not e x a c t l y f o l l o w t h a t of wood methoxyl contents (72). (3) Except f o r western hemlock, earlywood had h i g h e r obvious l i g n i n content than d i d the latewood i n the same s p e c i e s (Pig.2-3). (4) Three p a t t e r n s of l i g n i n content a c r o s s growth r i n g s were shown among these f i v e s p e c i e s : A. L i g n i n contents were h i g h l y s i g n i f i c a n t l y d i f f e r e n t w i t h i n the p o s i t i o n s of growth r i n g s f o r a m a b i l i s f i r , Douglas f i r and western red cedar (T a b l e s 14-16). L i g n i n i n c r e a s e d from P o s i t i o n 1 t o P o s i t i o n 2 i n the earlywood and then decreased toward the latewood. Among these t h r e e s p e c i e s P o s i t i o n 2 had the h i g h e s t l i g n i n content i n the growth r i n g ( F i g . 2-3). T h i s p a t t e r n of d i s t r i b u t i o n w i t h i n growth r i n g s i s . the same as t h a t shown f o r wood methoxyl i n Douglas f i r and a m a b i l i s f i r (72). B. Amounts of l i g n i n were a l s o h i g h l y s i g n i f i c a n t l y d i f f e r e n t among growth r i n g p o s i t i o n s f o r S i t k a spruce (Table 17). L i g n i n decreased p r o g r e s s i v e l y from P o s i t i o n 1 i n the earlywood toward P o s i t i o n 6 i n the latewood. A c t u a l values show l i g n i n h i g h e s t a t P o s i t i o n 1 i n the earlywood and lowest i n the t r a n s i t i o n zone wood (Fig.2-3). C. L i g n i n contents were not s i g n i f i c a n t l y d i f f e r e n t w i t h i n growth r i n g p o s i t i o n of western hemlock (Table 18). L i g n i n reached h i g h e s t amount a t P o s i t i o n 2 i n the earlywood and remained about constant t h e r e a f t e r among P o s i t i o n s 3-6 ( F i g . 2-3). - 3 4 -(5) I t can a l s o be seen from the average l i g n i n content f o r t h r e e adjacent r i n g s i n a g i v e n s p e c i e s t h a t t h e r e appears to be a tendency f o r i n c r e a s e i n l i g n i n content with the i n c r e a s e of age: A. L i g n i n contents were h i g h l y s i g n i f i c a n t l y d i f f e r e n t among the growth r i n g s of western r e d cedar (Table 16). L i g n i n i n c r e a s e d l i n e a r l y from Ring 72 t o Ring 74. B. L i g n i n contents were s i g n i f i c a n t l y d i f f e r e n t among the growth r i n g s of Douglas f i r (Table IS). L i g n i n i n -cre a s e d from Ring 64 to 65, but t h e r e a f t e r decreased t o Ring 66. C. L i g n i n contents were not s i g n i f i c a n t l y d i f f e r e n t among the growth r i n g s of a m a b i l i s f i r , S i t k a spruce and western hemlock (Tables J4, 17^-18). L i g n i n i n c r e a s e d almost l i n e a r l y w i t h age, but d i f f e r e n c e s were too smal l to be s i g n i f i c a n t . (6) Regressions between l i g n i n contents (Y) and p o s i t i o n s w i t h i n growth r i n g s (X) are giv e n i n F i g . 3 . These r e g r e s -s i o n s were computed based on i n d i v i d u a l values from Tables 3-7. The r e s u l t s showed t h a t the c o r r e l a t i o n c o e f f i c i e n t between l i g n i n and p o s i t i o n was h i g h l y s i g n i f i c a n t f o r each of the f i v e s p e c i e s s t u d i e d . I t appears t h a t two p a t t e r n s of r e g r e s s i o n can be observed: ^. The r e l a t i o n between l i g n i n and p o s i t i o n was best f i t t e d io a f i r s t order ( s t r a i g h t l i n e ) r e g r e s s i o n f o r a m a b i l i s f i r , Douglas f i r and western hemlock ( F i g . 3 ) . - 3i> -B. The r e l a t i o n between l i g n i n and p o s i t i o n was best f i t t e d on a second order (parabola) r e g r e s s i o n f o r western r e d cedar and S i t k a spruce ( F i g . 3 ) • Western r e d cedar showed a convex curve, whereas S i t k a spruce showed a concave curve. I t i s a l s o c o n s i d e r e d , from these r e s u l t s , t h a t the lower c o r r e l a t i o n c o e f f i c i e n t ( r ) and h i g h e r standard e r r o r of estimate ( S E e ) ( i n comparison with those of a m a b i l i s f i r and S i t k a spruce) f o r Douglas f i r and western r e d cedar are due to s i g n i f i c a n t l y d i f f e r e n t l i g n i n contents among thr e e adjacent r i n g s as 'noted 1 abbve-;-ir • Western hemlock s h o w e d ^ r e l a t i v e l y lower r e l a t i o n s h i p between l i g n i n and p o s i t i o n ^ bui its c o r r e l a t i o n c o e f f i c i e n t i s h i g h l y s i g n i f i c a n t . I t seems:- t h a t these r e g r e s s i o n s c o u l d be used f o r mature wood the e s t i m a t i o n of l i g n i n content a c r o s s growth rings f o r A these f i v e s p e c i e s . (7) Tables 20-24 give^' Duncan's t e s t s of s i g n i f i c a n t l y d i f f e r e n t l i g n i n c o ntents among p o s i t i o n s and growth r i n g s i n Tables 3 - 8 - The l i g n i n contents are arranged i n order of magnitude r a t h e r than p o s i t i o n or r i n g . The main groupings which c o n t r i b u t e t o the s i g n i f i -cance of l i g n i n a c r o s s o r w i t h i n growth increment.can be put r o u g h l y i n t o t h r e e c a t e g o r i e s : A. . The s i g n i f i c a n c e of l i g n i n content a c r o s s growth increments f o r a m a b i l i s f i r and S i t k a spruce i s c o n t r i b u t e d t o by two main l i g n i n groups, earlywood and latewood and - 36 -may i n c l u d e t r a n s i t i o n wood, P o s i t i o n 4 (Tables 20,23). In a m a b i l i s f i r , these two groups can s t i l l be s u b - d i v i d e d i n t o two sub-groups. B. The s i g n i f i c a n c e of l i g n i n content a c r o s s growth increments of Douglas f i r and average of f i v e s p e c i e s i s c o n t r i b u t e d t o by f o u r s u b s e q u e n t i a l sub-groups from h i g h e r to lower l i g n i n contents (Tables 21,24: ). C. The s i g n i f i c a n c e of l i g n i n content a c r o s s growth increments f o r western r e d cedar i s c o n t r i b u t e d t o by th r e e groups, namely one i s o l a t e , one main and one sub-.;, group (Table 22,). D. The s i g n i f i c a n c e of l i g n i n " c o n t e n t among growth increments f o r Douglas f i r (Table 2,1 ) and western r e d cedar (Table 22.) i s from two groupings. E. The s i g n i f i c a n c e of l i g n i n content f o r i n d i v i d u a l s p e c i e s (Table 24) i s c o n t r i b u t e d to by each I s o l a t e d l i g n i n c o ntent. 2. R e l a t i o n s h i p between l i g n i n and wood methoxyl Wood methoxyl contents were obtained from p r e v i o u s m a d e b v i h e w r f h o r s t u d y ^ ( 7 2 ) . Methoxyl values f o r these f i v e s p e c i e s and r e l a t e d l i g n i n contents are l i s t e d i n Tables 9-13 and are f u r t h e r shown i n , P i g . 4 - 8 . C o r r e l a t i o n c o e f f i c i e n t s are a l s o c a l c u l a t e d . I t appears t h a t the r e l a t i o n s h i p s between l i g n i n and wood methoxyl can be c l a s s i f i e d i n t o two groups: - 37 -A. The c o r r e l a t i o n c o e f f i c i e n t i s h i g h l y s i g n i f i c a n t between l i g n i n and wood methoxyl f o r a m a b i l i s f i r (0.971), f o r Douglas f i r (0.913), and f o r western red cedar (0.684). B. The c o r r e l a t i o n c o e f f i c i e n t i s not s i g n i f i c a n t f o r l i g n i n and wood methoxyl i n S i t k a spruce, 0.467, and western hemlock, 0.340. Prom these r e s u l t s , i t i s concluded t h a t the degree of a s s o c i a t i o n between l i g n i n and wood methoxyl depends upon the s p e c i e s . F o r s p e c i e s , such as a m a b i l i s f i r and Douglas f i r w i t h h i g h c o r r e l a t i o n c o e f f i c i e n t between l i g n i n and wood methoxyl cont e n t s , the l i g n i n contents c o u l d be c a l c u l a t e d d i r e c t l y from wood methoxyl c o n t e n t s . A m a b i l i s f i r l i g n i n content can be c a l c u l a t e d from the r e g r e s s i o n , Y = 9.652 + 3.520X, and t h a t of Douglas f i r from Y = 8.693 + 3.474X, where Y stands f o r l i g n i n content and X f o r wood methoxyl c o n t e n t . These r e s u l t s c l a r i f i e d the i s s u e t h a t wood methoxyl e i t h e r can or cannot be used f o r the c a l c u l a t i o n of r e l a t i v e l i g n i n content (72). A p p l i c a t i o n depends mainly on the A s p e c i e s being examined. 3. N o n - l i g n i n methoxyl content N o n - l i g n i n methoxyl contents of the f i v e s p e c i e s a re gi v e n i n Tables 9-13. These n o n - l i g n i n methoxyls were c a l c u l a t e d based on the assumption t h a t l i g n i n c o n t a i n s 15$ methoxyl ([native l i g n i n has been r e p o r t e d t o c o n t a i n - 38 -14.8$ methoxyl (13)}. I t appears t h a t n o n - l i g n i n methoxyls are i n the order of: western r e d cedar, 22.64$; Douglas f i r , 22.46$; S i t k a spruce, 20.21$; a m a b i l i s f i r , 18.54$; and western hemlock, 10;53$. Average f o r the f i v e s p e c i e s i s 18.88$. N o n - l i g n i n methoxyl I s r e l a t i v e l y c onstant a c r o s s growth increment f o r the average of f i v e s p e c i e s . The values from P o s i t i o n 1 to 6 ar e : 19.26$, 19.25$, 19.01$, 18.30$, 18.51$ and 18.62$. F o r i n d i v i d u a l s p e c i e s the n o n - l i g n i n methoxyls are r e l a t i v e l y h i g h e r i n earlywood than i n latewood. 4. Earlywood and latewood l i g n i n content Earlywood and latewood l i g n i n contents f o r the f i v e s p e c i e s s t u d i e d are g i v e n i n Table 1. Earlywood l i g n i n s were c a l c u l a t e d by averaging the f i r s t t h r e e p o s i t i o n s w i t h i n growth r i n g s , w h ile the latewood l i g n i n s were c o n s i d e r e d as the l a s t two p o s i t i o n s , the f o u r t h p o s i t i o n s were regarded as t r a n s i t i o n between e a r l y - and latewood. The d i f f e r e n c e of l i g n i n content between earlywood and latewood i s i n the order o f : Douglas f i r , 2.27$; a m a b i l i s f i r , 2.06$; western r e d cedar, 1.28$; S i t k a spruce, 1.08$; and western hemlock, 0.46$. 5. D i s c u s s i o n of r e s u l t s I t was c o n s i d e r e d by R i t t e r and F l e c k (56) t h a t the h i g h e r l i g n i n content i n earlywood and lower l i g n i n content - 39 -i n latewood was due t o the f a c t t h a t the middle l a m e l l a , e n r i c h e d i n l i g n i n , makes up a l a r g e r p o r t i o n of the earlywood than of the latewood t i s s u e . T h i s p r o p o s i t i o n may be i n p a r t t r u e , except some m o d i f i c a t i o n may be needed, s i n c e , i f the wood i s c o n s i d e r e d i n terms of s p e c i f i c g r a v i t y (weight) the middle l a m e l l a undoubtedly makes up a l a r g e r p o r t i o n of the earlywood than of the latewood, but when the wood i s c o n s i d e r e d i n terms of volume, I t i s u n l i k e l y t h a t the amount of middle l a m e l l a i s l a r g e r i n earlywood than i n the latewood. U n f o r t u n a t e l y , no r e f e r e n c e i s a v a i l a b l e r e g a r d i n g the area or volume of middle l a m e l l a between wood c e l l s . T h e r e f o r e , no p r e c i s e c r i t e r i o n can be s e t f o r l i g n i n content d i f f e r e n c e between earlywood and latewood, because the degree of d i f f e r e n c e between earlywood and latewood l i g n i n content i s independent of s p e c i e s . I t has a l s o been r e p o r t e d •:• v o l u m e t r i c a l l y that t e n s i o n wood l i g n i n content was p r a c t i c a l l y the same as t h a t of normal wood, but on the weight b a s i s the l i g n i n content was lower i n t e n s i o n wood than i n normal wood. From Arecent study by Green and W o r r a l l (22) i t i s shown t h a t the p a t t e r n s of i n t r a - i n c r e m e n t a l pe^fcent voids ( o r s o l i d s ) were d i f f e r e n t between s p e c i e s . In viewing the p a t t e r n s of per/Cent v o i d s a c r o s s growth increments, t h e r e seems to be some s i m i l a r i t y with the p a t t e r n s of l i g n i n contents found i n t h i s study. T h e r e f o r e , t h i s a u t h o r would l i k e t o propose t h a t i n f u r t h e r study, i t - 40 -would be v a l u a b l e t o attempt r e l a t i o n of wood s o l i d substances t o wood chemistry. Since i t i s c o n s i d e r e d t h a t as a sta n d i n g t r e e or a d i f f e r e n t s p e c i e s , the d i f f e r e n c e i n e x t e r n a l morphology i s a l s o r e l a t e d t o i n t e r n a l anatomy, and t h a t the e x t e r n a l and i n t e r n a l morphology i s r e l a t e d t o the b i o l o g i c a l f u n c t i o n of wood, thereby the formation of earlywood and latewood r e l a t e t o f u n c t i o n of wood w i t h i n the stem. I t i s c o n s i d e r e d t h a t earlywood and latewood d i f f e r e n c e s are a good p l a c e t o r e l a t e wood q u a l i t y t o wood a n a t o m i c a l f e a t u r e s . - 41a -CONCLUSIONS The conclusions of t h i s study are as f o l l o w s : 1. L i g n i n content v a r i e d s i g n i f i c a n t l y between species: western hemlock, 32.85$ (32.36-34.04$); western red cedar, 31.23$ (29.69-32.68$); a m a b i l i s f i r , 27.51$ (26.17-28.24$); Douglas f i r , 26.48$ (24.08-28.66$); and S i t k a spruce, 25.81$ (24.91 - 26.98$). 2. L i g n i n content i n c r e a s e d a small amount with the age across three adjacent r i n g s of mature wood. This was i n the order of: a m a b i l i s f i r , 0.92$; western red cedar, 0.64$; western hemicok, 0.41$; Douglas f i r , 0.23$; and S i t k a spruce, 0.17$. S i g n i f i c a n t d i f f e r e n c e s i n l i g n i n content between growth r i n g s was found f o r western red cedar and Douglas f i r , whereas the other three species showed no s i g n i f i c a n t d i f f e r e n c e s . 3. L i g n i n content a l s o d i f f e r e d s i g n i f i c a n t l y w i t h i n growth increments f o r each of the f i v e s p e c i e s . In most cases, earlywood was higher i n l i g n i n content than latewood. The average d i f f e r e n c e between earlywood and latewood l i g n i n content f o r i n d i v i d u a l species was: Douglas f i r , 2.27$; a m a b i l i s f i r , 2.06$; western red cedar, 1.28$; S i t k a spruce, 1.08$; and western hem-lo c k , 0.46$. - 41b -4. The c o r r e l a t i o n c o e f f i c i e n t between l i g n i n content and p o s i t i o n w i t h i n growth increment was h i g h l y s i g n i f i c a n t f o r each of the f i v e s p e c i e s s t u d i e d . The r - v a l u e s were: a m a b i l i s f i r , 0.899; S i t k a spruce, 0.866; Douglas f i r , 0.8l6; western r e d cedar, 0.722; and western hemlock, O.516. I t i s c o n s i d e r e d t h a t l i g n i n content w i t h i n growth increments can be estimated by r e g r e s s i o n . 5. The degree of a s s o c i a t i o n between l i g n i n and wood methoxyl content depended on s p e c i e s . The c o r r e l a t i o n c o e f f i c i e n t between l i g n i n and wood methoxyl was h i g h l y s i g n i f i c a n t f o r a m a b i l i s f i r (O.971), Douglas f i r (O.913) and western r e d cedar (0.684), but was n o n - s i g n i f i c a n t f o r S i t k a spruce (0.468) and western hemlock (0.340). T h e r e f o r e , i t i s suggested t h a t w i t h some s p e c i e s , wood methoxyl content can be used f o r d i r e c t e s t i m a t i o n of l i g n i n , whereas with other s p e c i e s wood methoxyl should not be used f o r t h i s purpose. 6. The n o n - l i g n i n methoxyl content was dependent on s p e c i e s and r e l a t i v e l y constant w i t h i n growth increments. The averages of s i x p o s i t i o n s from earlywood t o latewood f o r a l l f i v e s p e c i e s were: 19.26$, 19.25$, 19.01$, 18.30$, 18.30$, 18.51$, and 18.62$. F o r each of the f i v e s p e c i e s the n o n - l i g n i n methoxyl was r e l a t i v e l y h i g h e r i n earlywood than latewood. - 4lc -7. A c i d - s o l u b l e l i g n i n may e x i s t In the s u l f u r i c a c i d f i l t r a t e of Klason l i g n i n . F o r western hemlock t h i s a c i d - s o l u b l e l i g n i n was found to be about 2% of wood (oven-dry weight b a s i s ) by spectrophotometric measurement. 8 . In g e n e r a l , l i g n i n content, wood methoxyl content, n o n - l i g n i n methoxyl content, and the a s s o c i a t i o n between l i g n i n and wood methoxyl are dependent on the c o n i f e r o u s s p e c i e s s t u d i e d . - 42 -REFERENCES 1. AM/M-l/62. 1962. Moi s t u r e content of wood meal ( g r a v i m e t r i c ) . F a c u l t y of F o r e s t r y , Univ. of B r i t i s h Columbia, Vancouver, B.C. 2. AM/L-l/62. L i g n i n i n wood ( K l a s o n ) . F a c u l t y of . F o r e s t r y , Univ. of B r i t i s h Columbia, Vancouver, B.C. 3. Aulin-Erdtman, G. 19:53. S p e c t r o g r a p h s c o n t r i b u t i o n to l i g n i n c h e m i s t r y IV. A method f o r the e l u c i d a t i o n and e s t i m a t i o n of p h e n o l i c elements. Svensk P a p p e r s t i d n . 56:287-291. 4. B a i l e y , A . J . 1936. L i g n i n i n Douglas f i r . Composition of the middle l a m e l l a . Ind. Eng. Chem. ( A n a l . ) . 8:52-55-5. Beaven, G.H., E.A'. Johnson, H.A. W i l l i s and R.G.J. M i l l e r , 196l. „ M o l e c u l a r spectroscopy. Method and a p p l i c a t i o n s i n che m i s t r y . Heywood and Co. L t d . , London., pp. 60-84. 6. Beckman, E., 0. L i e s c h and F. Lehman. 1923. Q u a l i t a t i v e and q u a n t i t a t i v e d i f f e r e n c e s in" l i g n i n s from s e v e r a l v a r i e t i e s of wood and straw. Biochem. Z. 139:491-508. 7. Benedikt, R. and M. Bamberger. I 8 9 O . A q u a n t i t a t i v e r e a c t i o n of l i g n i n . Monatsh. 11:260-267. 8. Bland, D.E. 1958. The chem i s t r y of r e a c t i o n wood. P a r t I . The l i g n i n s of E u c a l y p t u s . g o n i c o c a l y x and Pinus r a d i a t a . H o l z f o r . 12:36-43. 9. • 1958. S p e c t r a of r e a c t i o n wood l i g n i n s - i n r e l a t i o n to m a t u r i t y . H o l z f o r . 12:115-116. 10. . and F.M. G a t l e y . 1954. F r a c t i o n of l i g n i n by chromatography. Nature 173:32. 11. and B. H i r n j . 1957. V a r i a t i o n i n l i g n i n '• l a i d down by Eucalyp t u s regnans a t d i f f e r e n t stages of growth. Nature 179:529-530. 12. Bower, J.R., L.M. Cooke and H. H i b b e r t . 1943. L i g n i n a n d . r e l a t e d compounds LXXI.. The course o f forma-t i o n of n a t i v e l i g n i n i n spruce buds. J.Am. Chem. Soc. 65-1195-1198. - 43 -13. Brauns, F.E. 1952. The chemistry of l i g n i n . Academic P r e s s , N.Y., pp. 51-53, 668. 14. and D.A. Brauns. i960. The chemistry of l i g n i n . Supplemental volume. Academic P r e s s , N.Y. pp.28, 138. 15. C i e s l a r , A. 1897. Amount of l i g n i n i n the wood of t r e e s with a c i c u l a r l e a v e s . M i t t , f o r s t l . Versuchwesen. O e s t e r r e i c h s Heft r23• 16. Clermont, L.P. and H. Schwartz. 1951. The chemical composition of Canadian woods. Pulp Paper Mag. Can. 52 (13): 103-105. 17. Dad swell-, H.E. 1931. The d i s t r i b u t i o n of l i g n i n i n the c e l l w a l l of wood. J . Coun. S c i . Ind. Res. Aust.. ; 4:185-186. . . ' 18. Freeman, R.D. and F.C. P e t e r s o n . 194l. Proximate a n a l y s i s of the heartwood and sapwood of some American hardwoods. Ind. Eng. Chem. (Anal.) 13:803-805. . .. . 19. Gay-Lussac, J.L. and L . J . Thenard ( C i t e d by B r o n g n i a r t , A., J . Pelouze and J.B. Dumas). 1839. Rapport s ur un Memoire^de M. Payen, r e l a t i f a l a composition de l a matiere l i g n e u s e . Compt. rend. 8:51-53. 20. Goldschmid, 0. 1953. The e f f e c t of a l k a l i and stro n g a c i d on the u l t r a v i o l e t a b s o r p t i o n spectrum of l i g n i n and r e l a t e d compounds. J . Am. Chem. Soc. 75:3780-3783. 21. . . 1954. Dete r m i n a t i o n of the p h e n o l i c h y d r o x y l content of l i g n i n p r e p a r a t i o n s by u l t r a v i o l e t spectrophotometry. A n a l . Chem. 26:1421-1423. 22. Green, H.V. and J . W o r r a l l . 1963. Wood q u a l i t y s t u d i e s Part.I._ A scanning micrqphotometer f o r a u t o m a t i c a l l y measuring and r e c o r d i n g c e r t a i n wood c h a r a c t e r i s t i c s . Pulp Paper Res. I n s t . Can. Tech. Rep. No. 331. 23. Hagglund, E. and T. Johnson. 1947. Pentosan content i n springwood. and summerwood from spruce.' Z e l l s t o f f u. P a p i e r 7:49. 24. and S. Ljungren. 1933. Composition o f red p i n e wood. Svensk Kern. T i d . 45:123-129. - 44 -25. Hale, J.D. and L.P. Clermont. 1963. I n f l u e n c e of prosenchyma.. c e l l - w a l l morphology on b a s i c p h y s i c a l and chemical c h a r a c t e r i s t i c s of wood, J . Polymer S c i . P a r t C, 2:253-261. 26. , E. Perem and L.P. Clermont. 1961. Importance; of compression wood and t e n s i o n wood i n a p p r a i s i n g wood quality^, F o r . Prod. Res. Branch (Ottawa Lab.), Canada: 0-18. . 27. Hata, K. 1950. Pulp of Pinus d e n s i f l o r a wood. Chemical composition of the wood. J . Japan F o r . Soc. 32:8-12. 28. . 1950. Pulp of Pinus d e n s i f l o r a wood. Chemical composition of the s p r i n g and summer-woods. J . Japan F o r . Soc. 32:257-260. 29. . 1951. Pulp of Pinus d e n s i f l o r a wood. The chemical composition and pulp of compression wood. J . Japan F o r . Soc. 33:136-140. 30. Ishikawa, H. and C. Ide. 1955« S t u d i e s on l i g n i n -"'l7] A b s o r p t i o n of phenol l i g n i n . J . Japan F o r . Soc. 87 (7):288-297. . . 31. and K. T a k a i c h i . 1954. L i g n i n and l i g n i f i c a t i o n -?3 *: • A new q u a n t i t a t i v e method of l i g n i n by a b s o r p t i o n spectrum. -J. Japan F o r . Soc. 36:294-300. . . 32. Jansons, N. 1950. L i g n i n content of s p r i n g and summerwood of f i r s . Trudy. I n s t . Lesokhoz. Problem. Akad. Nauk. L a t r . SSR. 2:217. 33. Jayme, G., M. Ha r d e r s - S t e i n h a u s e r and W. Mohrleg. 1951. I n f l u e n c e o f the t e n s i o n wood p o r t i o n on the t e c h n o l o g i c a l and chemical u t i l i z a t i o n of p o p l a r woods. Das P a p i e r 5:411-417, 445-447, 504-507. 34. Johnson, D.B., W.E. Moore and L.C. Zank. 1961. The s p e c t r o p h o t o m e t r y d e t e r m i n a t i o n o f l i g n i n i n . sm a l l wood samples. Tappi 44 ' ; : 793-798. 35. K i f e r , H.J. and E.F. Kurth. 1953. The chemical composition o f . t h e bast f i b e r s of Douglas f i r bark, Tappi 36:14-20. _ -45 -36. K l a u d i t z , W. 1948. C e l l u l o s e content and chemical composition of r e d beechwood grown under c o n d i t i o n s of t h i n n i n g . H o l z f o r . 3:1-5. 37. Klem, G.G. 1945. Spruce wood i n c o n n e c t i o n w i t h mechanical and s u l f i t e pulp cooking experiments. Medd. Norske, Skogforsoksv. 9(31): 1-127. 38. Kurth, E.F. 1948. Chemical a n a l y s i s of western' woods. Paper Trade J . 126 (6): 56-57. 39. Lange, P.W. 1944. The nature and d i s t r i b u t i o n of the l i g n i n i n spruce wood. Svensk P a p p e r s t i d n . 47 (11): 262-265. 40. Lewis, H.F.1950. The s i g n i f i c a n t chemical components of western hemlock, Douglas f i r , western r e d cedar, l o b l o l l y p i n e , and b l a c k spruce. Tappi 33:299-301. 41. L e p o l d , B. and I.L. Malmstrom. 1952. L i g n i n IV. I n v e s t i g a t i o n , of the n i t r o b e n z y n e o x i d a t i o n products of l i g n i n from d i f f e r e n t woods by paper p a r t i t i o n chromatography. A c t a . Chem. Scand. 6:49-54. 42. M a r a n v i l l e , L.F. and 0. Goldschmid. 1954. U l t r a v i o l e t a b s o r p t i o n s p e c t r a as a measure of p h e n o l i c h y d r o x y l group content i n p o l y p h e n o l i c t a n n i n -l i k e m a t e r i a l s . A n a l . Chem. 26:1423-1427. 43. Mugg, J.B. 1959. M e t h a n o l - e x t r a c t a b l e m a t e r i a l s i n newly formed aspenwood. Tappi 42:289-294. 44. Narayanamurti, D. and N.R. Das. 1955. The dependence of the chemical composition of some In d i a n woods on the l o c a t i o n of the trunk of the t r e e . H o l z , Roh- ,;/ Werkstoff 13:52-56. 45. Norman, A.G. 1933. A p r e l i m i n a r y i n v e s t i g a t i o n of the development of s t r u c t u r a l c o n s t i t u e n t s i n the b a r l e y p l a n t . J . Agr. S c i . 23:216-217. 4:6. Payen, A. 1838. Memoire sur l a composition du t i s s u propre des p l a n t e s et du l i g n e u x . Comp. rend. 7:1052-1056. 47. P h i l l i p s , J . , J . J . Goss, B.L. Davis and H. Stevens. 1939. .Composition of the v a r i o u s p a r t s of the oat p l a n t at s u c c e s s i v e stages of growth wi t h s p e c i a l r e f e r e n c e to the f o r m a t i o n of l i g n i n . J . Agr. Res. 59:319-366. - 46 -48. Rezanowich, A., W.Q. Yean and D.A.I. Goring. 1963. The m o l e c u l a r p r o p e r t i e s of m i l l e d wood and dioxane l i g n i n : sedimentation, " d i f f u s i o n , v i s c o s i t y , r e f r a c t i v e index increment and u l t r a -v i o l e t a b s o r p t i o n . Svensk P a p p e r s t i d n . 66: 141-149. 49. R i c h t e r , G.A. 1948. D e l i g n i f i c a t i o n . Pulp Paper Ind. 22 (4): 48, 50, 52. 50. R i c h t z e n h a i n , H. and E. D r y s e l i u s . 1953. An i n v e s t i -g a t i o n of the e x i s t e n c e of a c i d - s o l u b l e . l i g n i n . Svensk P a p p e r s t i d n . 56:324-327. 51. R i t t e r , G.J. 1923. Chemistry of wood V I I . R e l a t i o n between methoxyl and l i g n i n i n wood. Ind. Eng. Chem. 15:1264-1266. 52. . 1925. D i s t r i b u t i o n of l i g n i n i n wood. M i c r o s c o p i c a l study of changes i n wood s t r u c t u r e upon s u b j e c t i o n t o standard methods o f - i s o l a t i n g c e l l u l o s e and l i g n i n . J . Ind. Eng. Chem. 17:1194-1197. 53. . 1934. S t r u c t u r e o f the c e l l w a l l of wood f i b e r s . Paper Ind. 16:178-183. 54. and L.L. F l e c k . 1923. Chemistry of wood VI . R e s u l t o f . a n a l y s i s of heartwood and sapwood of some American woods. Ind. Eng. Chem. 15: 1055-1056. ,. ' 55* a n ( 3 ^ . 1926. Chemistry of wood V I I I . F u r t h e r s t u d i e s of sapwood and heartwood. Ind. Eng. Chem. 18: 576-577. 56. and . 1926. Chemistry of wood IX. F u r t h e r s t u d i e s of springwood and summerwood. Ind. Eng. Chem. 18:608-609. 57. S c a r t h , G.W., R.D. Gibbs and J.L. S p i e r . 1929. St u d i e s of the c e l l u l o s e in.wood I . The s t r u c t u r e of the w a l l and the l o c a l d i s t r i b u t i o n of the chemical c o n s t i t u e n t s . T rans. Roy. Soc. Can. S e c t i o n V. B i o l . S c i . T h i r d S e r i e s 23 (2): 269-279. 58. Schulze, F. 1857. B e i t r a g zur Kenntniss des L i g n i n s . -._ Chem. ...Centr. 2:321-325. - 47 -59. S i l v e r s t e i n , . R . M . and G.C. B a s s l e r . 1963. Spe c t r o -m e t r i c i d e n t i f i c a t i o n of organic compounds. John Wiley & Sons Inc., N.Y. 60. Smith, D.C.C. 1955. E s t e r groups i n l i g n i n . Nature 176:267-268. 61. __. 1955. p-hydroxybenzoate groups i n the l i g n i n of aspen (Populus t r e m u l a ) . J . Chem. Soc. 2347-2351. , 62. S i e g e l , S.M., B. LeFevre, J r . and R. Bor c h a r d t . 1958. Ultraviolet-absorbing-components, of f o s s i l and modern p l a n t s i n r e l a t i o n t o thermal a l t e r n a t i o n of l i g n i n s . Am. J . S c i . 256:48-53. 63. Sobue, H. and A. Hatano. 1955.- S u l f i t e cooking of red. p i n e . J.. Chem. Soc. Japan Ind. (Chem. Seci:) 58:198-200. . - .. . . . 64. SP/E-l/62. 1962. E x t r a c t i v e - f r e e wood ( e t h e r , a l c o h o l , hot w a t e r ) . F a c u l t y of F o r e s t r y , Univ. of B r i t i s h Columbia,,.. Vancouver, B.C. 65. S t e e l , R.G.D. and J.H. T'orrie. i960. P r i n c i p l e s and procedures of s t a t i s t i c s . McGraw-Hill Book Co., Inc., N.Y., pp. 8 6 - 8 7 . 66. Stevens, G. de. and F.F. Nord. 1951. L i g n i n and l i g n i f i c a t i o n V I I I . I s o l a t i o n a n d . c h a r a c t e r i z a t i o n of bagasse n a t i v e . l i g n i n . J . Am. Chem. Soc. 73:4622-4625. 67. Stockman, L. and E. Hagglund. 1948. The sprueewood pol y o s e s and t h e i r behaviour on h y d r o l y s i s . Svensk P a p p e r s t i d n . 51:269-274. 68. Wardrop, A.B. and H.E. Dadswell. 1952. The c e l l W a l l s t r u c t u r e of xylem parenchyma. A u s t . . J . S c i . Res. B5, 223-236. 69. Watson, A . J . 1956. P u l p i n g c h a r a c t e r i s t i c s of eu c a l y p t t e n s i o n wood. Aust. Pulp Paper Ind. Tech. Assoc. Proc. 10:43-54.. 70. Wilson, J.W. 1963. Report of wood che m i s t r y l a b o r a t o r y . F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C., unp u b l i s h e d . - 48 -71. Worster, H. and B.K. Sugiyama, 1962. The carbo-hydrate content and composition of some western woods r e l a t e d t o growth f a c t o r s . Pulp Paper Mag. Can. 63 (8): 395-401. 72. ¥u, Yeng-tsu. 1963. I n t r a - i n c r e m e n t methoxyl content of f i v e western Canadian woods. F a c u l t y of F o r e s t r y , Univ. of B r i t i s h Columbia, Vancouver, B.C. unpublished paper. 73. Zherebov, L.P. and A.M. P a l e e v . 1936. Chemical composition of rye straw. Bumaz. Prom. 15(3): 16-24. . .. _ _ 49 -Table 1 Experimental and l i t e r a t u r e l i g n i n values f o r the f i v e c o n i f e r o u s s p e c i e s SPECIES A m a b i l i s f i r Douglas f i r S i t k a spruce Western hemlock Western r e d cedar 26.90 27.70 -30.II 32.98 27.51* 26.70 29.35 30.63 31.62 33.50 33.92 26.48* 26.18^ 26.60 26.70 26.94 27.39 25.87* 28.80" 29.43 31.40 32.57 32.92 33.06 32.85* 31.06 32.23 33.20 33.93 31.23* 31.2 32.61 35.1 27.50* 33.08* 31.79* i n 28.41* 26.35* 28.1 29.20 31.6 25.23* 26.35* 25.33* 32.62* 30.51* L i g . , $ SOURCE Wilson Wilson Wilson Wilson 70 70 TO] Lewis (40) K i f e r ( 3 5 ) ^ ^ Wilson.(70) Wilson (.70) Richter..(49) Wilson (70), Hale (25) ., R i t t e r (56) B a i l e y (4). Wilson (70; Wilson (70; Lewis (40) Wilson (70] Wilson (70; Lewis (40) Wilson.(70) Richter.(49) Wilson (70] Wilson (70 Wilson (.70 Wilson (70) Wilson (70) Leopold.(41) Wilson (70) l i g n i n . p e r c entage earlywood l i g n i n % latewood l i g n i n l i g n i n percentage obtained i n t h i s study - 50 -23.2 TABLE 2A A b s o r p t i v i t y of a m a b i l i s f i r l i g n i n (70-80 y r ) cooked at 70°C f o r 30 min^ and absorbence ,„ read w i t h i n 2 hr> #, a f t e r r e a c t i o n (200 ml d i l u t i o n ) S a m p l e Wt.a.d. Wt.o.d. L i g . , $ A. Ab. Ab. (S) (m) 0.0277 0.02457 30.11 0.884 23.35 0.0107 0.00946 30.11 O.661 23.21 O.OO79 0.00700 30.11 0.490 23.30 o.oo4l 0.00360 30.11 0.250 23.11 Wt.a.d.- a i r - d r y weight of sample Wt.o.d.- oven-dry weight of sample L i g . , $ - Klason l i g n i n content of sample A. - Absorbence Ab. - A b s o r p t i v i t y of l i g n i n Ab.(m) - mean a b s o r p t i v i t y of l i g n i n . TABLE 2B E f f e c t of cooking time on western hemlock l i g n i n (70±1°C) Re a c t i o n time, C a l c u l a t e d l i g n i n , Change, % min. •% 5 20.78 65.16 10 26.93 84.45 20 31.42 98.53 25 31.69 99.37 27.5- 31.46 98.65 30 31.89 100.00 32.5 31.97 100.25 35 31.95 100.19 40 32.26 101.16 - 51 -TABLE 2C Time i n t e r v a l e f f e c t on the re a d i n g of a m a b i l i s f i r l i g n i n absorbence Time, .h"t 1.25 1.50 2.00 3.00 4.50 1 A 2 1.000 1.010 1.000 1.000 0.990 0.542 0.542 0.543 0.541 0.542 Time, h>- :• 9.50 24.0 48.0 72.0 147 1 A 2 0.988 0.990 0.990 1.000 1.000 0.535 0.541 O.560 0.544 0.541 A - Absorbences f o r Sample 1 and 2 TABLE 2D Western hemlock l i g n i n percentage and the c a l c u l a t i o n of r e p l i c a t e sample number Sample L i g n i n , % 1 '31.42 2 31.69 3 31.46 4 31.89 5 31.97 6 31.95 N N = t 2 x s 2 / d 2 t = 2.571 t 2 = 6.610 s 2 = 0.06044 i f a l l o w a b l e e r r o r = ± 2$, then d 2 = 0.4027 = 6.610 x 0.06044 / 0.04027 - 0.992 ( one be used ) TABLE 3 L i g n i n percentages a c r o s s 78-80 y r v growth increments of a m a b i l i s f i r sample 1 2 3 4 5 6 78 28.67 29.35 28.32 28.36 27.79 27.50 26.58 26.67 26.38 25.95 26.28 26.20 a. 29.01 28.34 27.65 26.63 26.17 26.24 27.34 79 27.75 . 27.86 29.02 28.98 27.96 27.66 27.29 27.14 26.37 26.76 26.45 26.02 a. 27.81 29.00 27.81 ' 27.22 26.57 26.24 27.44 80 28.86 28.49 29.10 29.20 28.20 28.26 27.62 27.55 26.59 26.38 26.21 26.54 a. 28.68 29.15 28.23 27.59 26.49 26.38 27.75 28.50 28.83 27.90 27.15 26.41 26.29 27.51 P o s i t i o n s 1 to 6 stands f o r earlywood to latewood w i t h i n a growth Increment. a* average of two r e p l i c a t e s . Values are based on e x t r a c t i v e - f r e e and m o i s t u r e - f r e e wood samples. - 53 -TABLE 4 L i g n i n percentages a c r o s s 64-66 yr.- growth increments of Douglas f i r sample 1 2 3 4 5 6 64 27.15 27.37 26.43 26.22 26.01 25.19 27.36 27.88 26.44 26.48 25.85 '25.22 26.45 a. 27.26 27.63 26.44 26.35 25.80 25.21 26.45 65 28.35' 28.67 27.83 26.52 25.97 25.28 28.66 28.65 27.45 26.50 25.92 25.24 a- 28.51 28.66 27.64 26.51 25.95 25.26 27.09 ,66 27.06 28.26 25.93 24.74 24.19 25.20 27.14 28.62 25.79 25.26 23.97 24.93 a. 27.10 28.44 25.86 25.00 24.08 25.07 25.93 27.62 28.24 26.65 25.95 25.28 25.18 P o s i t i o n s , b a s i s and averages as Table 3, TABLE 5 L i g n i n percentages across 72-74 yr.- growth increments of western r e d cedar sample 1 2 3 4 5 6 72 31.30 31.14 32.14 32.16 30.99 30.80 30.78 30.68 30.26 30.10 29.87 29.63 a. 31.22 32.15 30.90 30.73 30.17 29.80 30.83 73 31.55 31.75 . 32.79 32.56 31.49 31.56 30.69 30.29 30.61 30.82 29.76 29.62 a.. 31.65 32.68 31.53 30.49 30.72 29.69 31 .13 74 31.42 31.44 32.68 32.50 31.90 32.03 31.86 31.72 31.16 31.53 31.26 31.29 a. 31.43 32.59 31.97 31.79 31.35 31.28 31 .74 31.43 32.47 31.47 31.00 30.75 30.26 31 .23 P o s i t i o n s , b a s i s and averages as Table 3. - 54 -TABLE 6 L i g n i n percentages a c r o s s 69-71 y r . growth increments of S i t k a spruce sample 1 2 3 4 5 6 69 26.70 26.17 25.60 24.80 25.41 25.23 26.45 26.46 25.62 25.20 24.93 25.57 a- 26.58 26.37 25.61 25.00 25.39 25.35 25.72 70 26.56 26.05 25.49 25.01 25.51 25.40 26.87 26.-22 25.67 24.77 25.31 25.64 a. 26.72 26.14 25.58 24.91 25.41 25.52 25.71 71 27.00 26.51 26.67 25.37 25.05 24.93 26.95 26.67 26.54 25.49 25.65 24.99 a. 26.98 26.59 26.61 25.43 25.35 24.96 25.95 26.76 26.37 25.93 2 5 . l l 25.38 25.28 25.81 P o s i t i o n s , b a s i s and averages as Table 3-TABLE 7 L i g n i n percentages a c r o s s 56-58 yr,. growth increments of western hemlock sample 1 2 3 4 5 6 56 32.35 33.20 32.44 32.83 32.40 32.53 32.42 33.38 32.93 32.69 32.86 32.65 32.86 32.61 32.69 33.08 32.50 32.45 a- 32.54 33.06 32.69 32.87 32.59 32.54 32.72 57 33.09 33.70 32.45 32.68 32.99 32.86 33.43 34.16 32.75 32.03 32.03 32/20 33.84 34.25 33.35 32.37 32.37 32.66 a- 33.^5 34.04 32.85 32.36 32.46 32.57 32.96 58 33.26 32.97 32.53 32.72 33.36 32.46 33.41 33.10 32.76 32.80 33.08 32.03 32.90 33.41 32.95 32.68 32.86 32.80 a- 33.19 33.16 32.75 32.73 33.10 32.43 32.89 33-06 33.42 32.76 32.65 32.72 32.51 32.85 P o s i t i o n s and b a s i s as Table 3. a. Average of th r e e r e p l i c a t e s . - 55 -TABLE 8 Average l i g n i n percentages of the f i v e c o n i f e r o u s s p e c i e s at each p o s i t i o n w i t h i n increment 1 2 3 4 5 6 AP 28.50 28.83 27.90 27.15 26.41 26.29 27.51 DF 27.62 28.24 26.65 25.95 25.28 25.18 26.48 WRC 31.43 32.47 31.47 31.30 30.75 30.26 31.23 SS 26.76 26.37 25.93 2 5 . l l 25.38 25.28 25.81 WH 33.06 33.42 32.76 32.65 32.72 32.51 32.80 v., 29.47 29.87 28.94 28.43 28.11 27.90 AF - a m a b i l i s f i r DF - Douglas f i r WRC - western r e d cedar SS - S i t k a spruce WH - western hemlock - 56 TABLE 9 L i g n i n and wood methoxyl percentages a c r o s s 78-80 y r , growth increments of a m a b i l i s f i r sample 1 2 3 4 5 6 78 m 5.50 5.54 5.26 5.00 4.76 4.76 5.12 1 29.01 28.34 27.65 26.63 26.17 26.24 273? nlm 1.15 1.29 1.11 1.01 0.83 0.82 1.02 nml$ 20.91 23.29 21.10 20.20 17.44 17.23 1<T92 79 ifl 5.21 5.29 5.03 4.96 4.82 4.75 5.01 1 27.81 29.00 27.81 27.22 26.57 26.24 27744" nlm 1.04 0.94 0.86 0.88 O.83 0.8l O.89 nml$ 19.96 17.77 17.10 17.74 17.20 20.56 17775 80 m 5.24 5.47 5.21 4.92 4.90 4.71 5.08 1 28.68 29.15 28.23 27.59 26.49 26.38 27775 nlm 0.94 1.10 O.98 O.78 O.93 0.75 0.92 nlm$ 17.94 20.11 18.81 15.85 18.98 15.92 18TTT • m 5.32 5-43 5.17 4.96 4.83 4.74 5.07 1 2o r3u 2or783" 27790" 27715 2F^T 2'5T2"9 2731 nlm ' 1.'04 1.11 0.98 O.89 0.87 0.80 0.94 n l m % J-9.55 27J74"4" lBT^o~ 177^ 4" lBTOT lFTScJ 18754" m - wood methoxyl content c i t e d from p r e v i o u s study (72). 1 - l i g n i n content obtained i n t h i s study . nlm - n o n - l i g n i n wood methoxyl content m - (1 x 15.0$). nlm$ - n o n - l i g n i n wood methoxyl content i n terms of % x ( nlm/m x 100 ) P o s i t i o n s 1 t o 6 stand f o r earlywood t o latewood w i t h i n a growth increment. - 57 -TABLE 10 L i g n i n and wood methoxyl percentages a c r o s s 64-66 yr< growth increments of Douglas f i r sample 64 m 1 nlm nlm$ 66 5.50 27.26 1.41 25.64 5.56 27.63 1.42 25.54 5.05 26.44 1.08 21.39 4.94 26.35 0.99 20.04 5 25 1 22 m 5.61 5.69 5.14 4.80 4 .98 4,97 5.20 1 28.51 28.66 27.64 26.51 25 .95 25.26 27.O9 nlm 1.33 1.39 0.99 0.82 1 .09 1.18 1.14 nlm$ 23.71 24.43 19.26 17.08 21 .89 23.74 21.92 m 5.29 5.68 4.85 4.86 4 .61 4.62 4.99 1 27.10 28.44 25.86 25.00 24 .08 25.07 25.93 nlm 1.22 1.35 0.97 1.11 1 .00 0.86 1.10 nlm$ 23.06 23.77 20.00 22.84 21 .69 18.61 22.04 m 5.47 5.64 5.01 4.87 4.87 4.87 5.12 1 27.62' 28.24 26.65 25.95_ 25 .28- 25.18 26.48 nlm 1.33 1.40 1.01 O.98 1 .08 I.O9 1.15 nlm$ 24.31 24.82 20.16 20.12 22 .18 22.38 22.4b 01 80 14 75 5.01 25.21 1.23 24.55 5.18 2~bT4~5  1.21 2J36" P o s i t i o n s and a b b r e v i a t i o n s as Table 9. TABLE 11 L i g n i n and wood methoxyl percentages a c r o s s 72-74 yr,, growth increments of western r e d cedar sample 72 m 1 ~ nlm nlm$ 73 m 1 nlm nlm$ 74 m 1 nlm nlm$ . . m 1 nlni nlm$ 6.35 31.22 I.67 26.30 6.05 31.65 1.30 21.49 6.48 31.43 1.77 27.31 6.28 32.15 1.46 23.25 6.11 32.68 1.21 19.80 6.37 32.59 1.48 23.23 6.29 6.25 3T743 "T38J 25TT2 32747 22T08-6.27 30.90 1.63 26.00 5.83 31.53 1.10 18.87 6.12 31.97 1.32 21.57 6.07 31^+7 22.24 6.02 30.73 1.41 23.42 5.86 30.49 1.29 22.01 6.06 31.79 1.29 21.29 5.98 5.86 3T70"0 22.24 5.63 29.80 1.16 20.60 5.82 29.69 1.37 23.54 5.99 31.28 1.30 21.70 5.81 30.75 3^ 726" ~T723 - T - w r 2T733 2X715-6 5.70 30.17 1.17 20.53 5.84 30.72 1.23 21.06 6.03 31.35 1.33 22.06 6.04 31XB3  1.42 23751 5.92  3TTT3 1.25 2TTTT 6.18 3TTT4" 1.42 6.05  31.23 ~T757 22.64 P o s i t i o n s and a b b r e v i a t i o n s as Table 9, - 58 -TABLE 12 L i g n i n and wood methoxyl percentages a c r o s s 69-71 yr,, growth increments of S i t k a spruce sample 69 70 71 fri 1 nlm nlm$ m 1 nlm nlm$ m 1 nlm nlm$ m 1 nlm nlm$ 5.27 26.58 1.28 24.29 4.77 26.72 0.76 15.93 4.79 26.98 0.74 15.45 4.94 2F776" 1Q7O3 5.05 26.37 I.09 21.58 4.80 26.14 0.88 18.33 4.82 26.59 0.83 17.22 4.89 2F3T -0793 19702" 4 25 1 21 91 61 07 79 4 4.65 25.00 O.90 19.35 4.62 25.39 0.81 17.53 4.81 25.35 1.01 21.00 4.89 25T72 1.03 2X706 4.85 4.65 4.77 4 .80 4.77 25.58 24.81 25.41 25 .52 25.71 1.01 0.91 O.96 0 .97 0.91 20.82 19.57 20.13 20 .21 19.08 4.98 4.93 4.88 4 .93 4.89 26.61 25.43 25.35 24 .96 25.95 0.99 1.12 1.08 1 .19 1.00 19.88 22.72 22.13 24. .14 20.45 4.91 4.74 4.76 4 .85 4.85 25.93 25.-H 25.38 25 .28 25.81 1.02 0.97 0.95 1 .06 O.98 20.77 20.46 19.96 21.86 20.21 P o s i t i o n s and a b b r e v i a t i o n s as Table 9. TABLE 13 L i g n i n and wood methoxyl percentages a c r o s s 56-58 y r . growth increments of western hemlock sample 56 57 58 m 5.32 5.60 1 32.54 33.06 nlm 0.44 0.64 nlmfo 8.27 11.43 m 5.41 5.58 1 33.45 34.04 nlm 0.39 0.47 nlm$ 7.21 8.42 m 5.53 5.50 1 33.19 33.16 nlm 0.55 0.53 nlm$ 9.95 9.64 m 5.42 5.56 1 33.06 33.42 nlm 0.46 - 0.55 nlm$ 8.49 9.89 3 5.87 32 .69 0 .97 16 .52 5 .53 32 .85 0 .60 10 .85 5. -53 32. 75 0. 62 11. .24 5. 64 32.76 4 5.73 32.87 0.80 13.96 5.42 32.36 0.57 10.52 5.33 32.73 0.42 7.88 5.49 327^5 "0759-5.58 32.59 0.69 12.37 5.27 32.46 0.40 7.59 5.72 33.10 0.75 13.11 5.52  3"27T2~ o.bl 5.36 32.54 0.48 8.96 5.31 32.57 0.42 7.91 5.62 32.43 O.76 13.52 5.43  3231 "0755 5.58  32.72 "0757 l~2TUT 5.42  32795  0.48 5.54 32789 o.bl TT70T 5.51 3^735 "0758" 12794 10.75 11.05 10.13 10.53 P o s i t i o n s and a b b r e v i a t i o n s as Table 9. - 59 -TABLE 14 A n a l y s i s of v a r i a n c e of a m a b i l i s f i r l i g n i n percentages F ( t a b . ) 0.05 0.01 df SS MS F P o s i t i o n s 5 17.1317 3.4264 25.684** Rings 2 0.5566 O.2783 2.086"" P x R 10 1.3344 O.1334 T o t a l 17 19.0027 N.S. df - degree of freedom SS - sum of square MS - mean of the sum of square p_ _ F-^values c a l c u l a t e d F(tab.-) - F-values from F - t a b l e H.S. -** - h i g h l y s i g n i f i c a n t l y d i f f e r e n t N.S. - not s i g n i f i c a n t l y d i f f e r e n t TABLE '15 A n a l y s i s of v a r i a n c e of Douglas f i r l i g n i n percentages F ( t a b . ) 0.05 0.01 d f SS MS F P o s i t i o n s 5 23.5783 4.7157 16.206** Rings 2 4.074 2.0369 7.000* P x R 10 2.9098 0.2910 T o t a l 17 30.5618 * - S.D. - s i g n i f i c a n t d i f f e r e n c e TABLE 16 A n a l y s i s o f v a r i a n c e of western r e d cedar l i g n i n percentages df SS MS _F F ( t a b . ) 0.05 0.01 P o s i t i o n s 5 8.6268 1.7254 11.496** 3733 5754" H.S. Rings 2 2.5622 1.2811 8.536** 4.10 7.56 H.S. P x R 10 1.5008 0.1501 T o t a l 17 12.6898 •- 6o -TABLE I:?. A n a l y s i s of v a r i a n c e of S i t k a spruce l i g n i n percentages df SS MS • F F ( t a b . ) 0.05 0.01 P o s i t i o n s 5 6.5379 1.3076 14.577** 3-33 5 7 5 7 H.S. Rings 2 0.2952 0.1476 1 . 6 4 5 4.10 7.56 N.S. P x R 10 O.8969 0.0897 T o t a l 17 7.7300 TABLE ),8 A n a l y s i s Of v a r i a n c e of western hemlock l i g n i n percentages df SS MS F F( t a b . ) 0.05 0.01 P o s i t i o n s 5 I.6385 0.3277 2.631 3.33 5754" N.S. Rings 2 0.1864 0.0932 . O.760 4.10 7-56 N.S. P x R 10 1.2263 0.1226 T o t a l 17 3.0512 TABLE 1 9 A n a l y s i s of v a r i a n c e of average l i g n i n percentages f o r the f i v e c o n i f e r o u s s p e c i e s P o s i t i o n s 5 15.1349 3.0267 15.380** 2.71 4.10 H.S. Species 4 231.3372 57.8343 293.873** 2.87 4.43 H.S. P x R 20 3.9364 O.1968 T o t a l 29 250.4085 - 61 -TABLE 20 Duncan's t e s t o f mean a m a b i l i s f i r l i g n i n percentages D i f f e r e n c e i n P o s i t i o n s P o s i t i o n 2 1 3 4 6 5 L i g n i n 28.83 28 .50 27.90 27.15 26.62 26.41 no s i g n i f i c a n t d i f f e r e n c e between values under l i n e d TABLE 2:i: Duncan's t e s t o f mean Douglas f i r l i g n i n percentages D i f f e r e n c e i n P o s i t i o n s P o s i t i o n 2 1 3 4 5 6 L i g n i n 28.24 27.62 26.65 25.95 25.28 25.18 D i f f e r e n c e i n Rings Ring 65 64 66 L i g n i n 27.09 26.45 25.93 TABLE 22 Duncan's t e s t of mean western red cedar l i g n i n percentage D i f f e r e n c e i n P o s i t i o n s P o s i t i o n 2 3 1 4 5 6 L i g n i n 32.47 31.47 31.43 31.00 30.75 30.26 D i f f e r e n c e i n Rings Ring 74 73 72 L i g n i n 31.74 31.13 30.83 TABLE 23 Duncan's t e s t of mean S i t k a spruce l i g n i n percentages D i f f e r e n c e i n P o s i t i o n s P o s i t i o n 1 2 3 5 6 4 L i g n i n 26.76 26.37 25.93 25.38 25.28 25.11 - 62 -TABLE 2 : 4 Duncan's t e s t of average l i g n i n percentages of f i v e c o n i f e r o u s s p e c i e s D i f f e r e n c e i n P o s i t i o n s P o s i t i o n 2 1 3 4 5 6 L i g n i n 29.87 29.47 28.94 28.43 28.11 27.90 D i f f e r e n c e i n Species Species WH WRC AP DF SS L i g n i n 32.85 31.23 27.51 2 6 . 4 8 25.81 WH ' - western hemlock WRC - western red cedar AP - a m a b i l i s f i r DF - Douglas f i r SS - S i t k a spruce - 63 -Figure 1 Beckman Model DU s i n g l e beam manual spectophotometer - 6'-i -— , , r . T r — i — r — r i t 1—T ' -T i i 34.0 -33 .0 / \ w H / \ " 32.0 / \ W R C 3 1.0 / 30 .0 -29.0 - V 28.0 27.0 » \ \ \ » \ J \ \ r ^^^^ \ # i A V \ f * \ / * \ J r v \ 7 A . * v . / / / \ \ l i y \ / \ \ ' » \ -/ / \ \ s s \ ^ \ ~ ~ x —-'' / X V I / X N / X \ » \ \ \ \ \ \ \ 1 \ V 26-0 \ * ' \ x i \ ^ '/ X * It / X . * i r X \ t X * r \ x J' \ s— \ V 25.0 DF\ / " S / \ / » . 24.0 i I I i i i i i i i V i i i i i . 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 POSITIONS WITHIN GROWTH RINGS, (X) Fig. 2. Patterns of lignin percen tages a c r o s s g r o w t h i n c r e m e n t s of the five co n i f e r o u s s p e c i e s WH - Wes te rn h e m l o c k ( 5 6 - 5 8 yr) — WRC- Wes te rn red cedar ( 7 2 - 74 y r ) — AF - Amabi l is f i r ( 7 8 - 8 0 y r ) - — DF - Doug las f i r ( 6 4 - 6 6 y r ) SS - S i t k a spruce ( 6 9 - 7 1 y r ) ( P o s i t i o n 1 f i r s t formed earlywood ..Position 6 l a s t formed latewood) l 1 r n r 34.0 33.0 -32.0 -3 1.0 -Z 30.0 * z 29.0 z 3 28.0 27.0 26.0 25.0 24.0 I Fig. 1 2 3 4 5 6 POSITION WITHIN GROWTH RING, (X) 3. Pat terns of ave rage l i g n i n p e r c e n t a g e s f o r the f i v e c o n i f e r o u s spec ies across growth i n c r e m e n t Y WH = 33. 3 5 0 - 0. 1 4 1 5 X r = 0.5 1 6 S Ee = 0.4 I 5 % YWRC = 3 1. 6 0 0 + 0.2583 X - 0 . 0 8 4 2 9 X2 r = 0.7 2 2 SEe = 0. 5 9 6 % Y A F = 2 9. 42 3 - 0.5461 X r = 0.8 9 9 SEe = 0. 4 6 1 % YDF = 2 8. 66 0 - 0.6 1 94X r = 0.8 1 6 SEe = 0. 7 6 5 % YSS = 27. 6 5 4 - 0.8752X + 0 .07914 X* r = 0 . 8 6 6 SE e = 0. 3 4 0 V. SEe = S tandard e r r o r of e s t i m a t e ( P o s i t i o n s as F i g . 2) - 66 -i Y= 9.652 + 3.520X 3 1.0 -r* 0.971 > 30.0 SEe = 0 .601% / -29.0 - 4- -\ / z / + o 28.0 y -_( 27.0 -4 +-i 5.0 6.0 WOOD METHOXYL, %, (X) Fig. 4. A m a b i l i s f i r l i g n i n va lues vs. wood methoxyl content 29.0 Y = 1 1 1 8.6 93-»-3473 X r = 0.9 1 3 *y 28.0 -* SEe = 0.550^1. / + z 27.0 6NI + 7 26.0 +/ / ++ 25.0 + 4- i . i WOOD METHOXYL, (X) Fig. 5 . Douglas f i r l i g n i n vs. w o o d methoxy l v a l u e s content - 6v _ I • 1 I I I 1—I 5.0 6.0 7.0 WOOD METHOXYL, %, (X) F i g . 6. W e s t e r n r e d c e d a r l i g n i n v a l u e s vs.. w o o d m e t h o x y l c o n t e n t 29.0 > 28.0 * z * 2 7.0 z o - 26.0 25.0 4.0 5.0 6.0 70 WOOD METHOXYL , %,{X) F i g . 7. S i t k a s p r u c e l i g n i n v a l u e s vs . w o o d m e t h o x y l c o n t e n t - SB -• i i i T — r 1 1 1 3 5 . 0 Y = 2 9 . 2 6 7 + 0 . 6 5 I X r = 0 . 3 4 0 -> 3 4 . 0 " SEe= 0 . 3 9 8 % +" S -* + / z 3 3 . 0 A -L 1 6 N1 3 2 . 0 ' A -3 1 . 0 i i i i i , i i i 2 . 0 4 . 0 6 . 0 ao I O . O W O O D M E T H O X Y L , % , ( X ) Fig. 8. W e s t e r n hemlock l i g n i n v a l u e s vs. w o o d methoxyl c o n t e n t 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105472/manifest

Comment

Related Items