UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Penetrability of a western red cedar stem. Jurazs, Peter Ernest 1963

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1963_A6 J8 P3.pdf [ 6.71MB ]
Metadata
JSON: 831-1.0105424.json
JSON-LD: 831-1.0105424-ld.json
RDF/XML (Pretty): 831-1.0105424-rdf.xml
RDF/JSON: 831-1.0105424-rdf.json
Turtle: 831-1.0105424-turtle.txt
N-Triples: 831-1.0105424-rdf-ntriples.txt
Original Record: 831-1.0105424-source.json
Full Text
831-1.0105424-fulltext.txt
Citation
831-1.0105424.ris

Full Text

PENETRABILITY OP A WESTERN RED CEDAR STEM by PETER ERNEST JURAZS B.S.P., The U n i v e r s i t y of B r i t i s h Columbia, I 9 6 0 A TRESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF FORESTRY i n the Department of FORESTRY We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA October, 1963 In presenting t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e for reference and study. I further agree that per-mission for extensive copying of t h i s t h e s i s for s c h o l a r l y purposes may be granted by the Head of my' Department or by h i s representatives,. I t i s understood that copying, or p u b l i -c a t i o n of t h i s t h e s i s for f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission. Peter Ernest' Jurazs Department of F o r e s t r y The U n i v e r s i t y of B r i t i s h Columbia,, Vancouver 8 , Canada, Date 2 7 September, 1963. i i ABSTRACT P e n e t r a b i l i t y of a s i n g l e western red cedar (Thuja p l i c a t a Donn) stem was i n v e s t i g a t e d u s i n g t h r e e types of p r e s e r v a t i v e s , namely, c o a l - t a r c r e o s o t e , 5$ penta-c h l o r o p h e n o l s o l u t i o n , i n o i l and 2% Wolman s a l t (type A.) s o l u t i o n i n water. The r e t e n t i o n s of a l l three p r e s e r v a t i v e s i n the sapwood zone exceeded those i n the heartwood. The i n n e r , darker heartwood was s u p e r i o r i n p e n e t r a b i l i t y , r e t a i n -i n g on the average two to three times more p r e s e r v a t i v e s than d i d the o u t e r , straw-coloured heartwood. A m u l t i p l e l i n e a r r e g r e s s i o n technique was used to e v a l u a t e the importance of independent v a r i a b l e s as they a f f e c t e d the p e n e t r a b i l i t y of the western red cedar heartwood. The f o l l o w i n g independent v a r i a b l e s were c o n s i d e r e d : age, d i s t a n c e from the p i t h , growth r a t e , percentage of latewood, s p e c i f i c g r a v i t y , c o l o u r , hot-water s o l u b i l i t y , and e f f e c t i v e one per cent c a u s t i c soda s o l u b i l i t y (hot-water s o l u b i l i t y s u b t r a c t e d from 1% NaOH s o l u b i l i t y ) of the samples. The c o l o u r v a r i a b l e f o r creosote and p e n t a c h l o r o p h e n o l , and the age v a r i a b l e f o r Wolman s a l t were the most important v a r i a b l e s . Colour was measured u s i n g a Model "Pr' Agtron e l e c t r o n i c c o l o u r instrument which expressed the c o l o u r n u m e r i c a l l y on a continuous s c a l e . i i i No t h u j a p l i c i n s - natural preservatives - were found i n the p i t h region of the heartwood, nor i n the sap-wood. Around the ^O-year age mark thu j a p l i c i n s began to appear, and t h e i r content increased towards the bark, reaching a maximum of 0 . 8 3 ^ per cent i n the zone next to the sapwood. A fungal i n f e c t i o n , believed to be caused by one of the Fungi Imperfect! of the white rot type, was found spreading from the p i t h region outward i n the heartwood. In the region where t h u j a p l i c i n concentration reached O . 3 6 I to 0.5^9 per cent the fungal i n f e c t i o n was not found. i v TABLE OP CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 3 A. Anatomy of western red cedar 3 B. Chemical compostibh of western red cedar j$ 1.' C e l l u l o s e . k 2 . H o l l o c e l l u l o s e Ij. 3 . Hemicellikloses f? 4.. L i g n i n • • • 5 5 . E x t r a c t i v e s ... • 5 C. P e n e t r a t i o n and a b s o r p t i o n of p r e s e r v a t i v e s i n wood 9 MATERIALS AND METHODS' Ik A. M a t e r i a l • Ik B. Sampling'.".'.......".".". I4. C. S e l e c t i o n and p r e p a r a t i o n ; of specimens 15> D. Methods • • 17 1 . Determination of age 17 2 . D e t e r m i n a t i o n of d i s t a n c e from p i t h 17 3 . Determination of growth r a t e 17 [j.. D e t e r m i n a t i o n of latewood per cent 18 5. Determination of s p e c i f i c g r a v i t y 18 6. Colour measurements 18 7. Determination of hot-water s o l u b i l i t y and fchujaplicin content 20 8. Determination of one per cent c a u s t i c soda s o l u b i l i t y 2 3 9 . A b s o r p t i o n s t u d i e s 2 3 (a) C o n d i t i o n i n g 2 3 (b) Hot-water e x t r a c t i o n 2lj. (c) D u r a t i o n of a b s o r p t i o n treatment .... 2$ (d) P r e s e r v a t i v e s 26 (e) A b s o r p t i o n treatment 26 1 0 . M i c r o s c o p i c s t u d i e s 27 RESULTS 29 A. Age and d i s t a n c e from p i t h 29 B. Growth r a te ........ — 29 C. Percentage of latewood 29 D. S p e c i f i c g r a v i t y 30 V TABLE OP CONTENTS Page E. Colour T...... 30 P. Hot-water s o l u b i l i t y .......................... 31 G. Thujaplicin content ....". 31 H. One per cent "caustic soda' s o l u b i l i t y .......... 31 I. P r e s e r v a t i v e " a b s o r p t i o n ....................... 32 J. M i c r o s c o p i c s t u d i e s 32 DISCUSSION 33 A. A n a l y s i s ' of r e s u l t s ' . . . 33 3. 1 . Determination' of m u l t i p l e r e g r e s s i o n equations ~ .... ~ ......................... 35 (a) C r e o s o t e i " r e t e n t i o n ................. 36 (b) Pentachlorophenol r e t e n t i o n ........ 37 ( c ) W o l m a n s a T t r e t e n t i o n " .............. 38 B. P e n e t r a t i o n " o f " p r e s e r v a t i v e s "............ ...... I4.O 1. P e n e t r a t i o n of "creosote .................. lj.0 2". P e n e t r a t i o n of pen'tachlorophenol" ......... 43 3'. P e n e t r a t i o n of "Wolman s a l t .V....... ...... hJi Zj-V "Hot-water " e x t r a c t i o n and p e n e t r a b i l i t y ... ij.5> C. Fungal i n f e c t i o n and p e n e t r a b i l i t y I4.5 SUMMARY .. REFERENCES 50 52 v i TABLES Page Table 1. Age, "distance frbm"pith", growth rate", per cent latewood"values and s p e c i f i c " g r a v i t y (based'on overi-dry volume) of western r e d cedar specimens 58 Table 2 . Hot-water s o l u b i l i t y , one per cent c a u s t i c soda s o l u b i l i t y a n d " t h u j a p l i c i h ' content' of western red cedar specimens 61 Table 3« Creosote',' pentachlorophenol arid Wolman s a l t r e t e n t i o n s of western red cedar specimens .... 63 Table 4.. Per cent of water s o l u b l e s e x t r a c t e d from western r e d cedar specimen's d u r i n g a 1 0 -day e x t r a c t i o n i n b o i l i n g water 66 Table 5* Creosote, pentachlorophenol arid Wolman s a l t r e t e n t i o n s of western r e d c e d a r specimens following"a"1 0-day e x t r a c t i o n * i n " b o i l i n g water 68 Table 6 . C o r r e l a t i o n c o e f f i c i e n t s of c e r t a i n proper-t i e s and p r e s e r v a t i v e r e t e n t i o n s of a western r e d cedar stem (heartwood only) 70 v i i FIGURES Page F i g u r e 1. Method of marking sample s t i c k s 71 F i g u r e 2. Method of marking"sample cubes and the summary of s u c c e s s i v e treatments 72 F i g u r e 3' Apparatus f o r hot-water e x t r a c t i o n of wood meal 73 F i g u r e I4.. Apparatus f o r 1%' NaOH s o l u b i l i t y ' de t e r m i n a t i o n of wood meal 7U-F i g u r e 5« Apparatus f o r d e t e r m i n a t i o n of the a b s o r p t i o n time 75 F i g u r e 6. Rate of a b s o r p t i o n of creosote 76 F i g u r e ?• Rate of a b s o r p t i o n of 5 per cent pantachlorophanol s o l u t i o n 77 F i g u r e 8. Rate of a b s o r p t i o n of 2 per cent Wolman s a l t s o l u t i o n 78 F i g u r e 9. R e l a t i o n s h i p between growth r a t e and age from the p i t h 79 F i g u r e 10. R e l a t i o n s h i p between latewood percentage and age from the p i t h 80 F i g u r e 11. R e l a t i o n s h i p between s p e c i f i c g r a v i t y and age from the p i t h 8l F i g u r e 12. R e l a t i o n s h i p between c o l o u r and age from the p i t h 82 F i g u r e 13. R e l a t i o n s h i p between hot-water s o l u b i l i t y and age from the p i t h 83 v i i i Page F i g u r e IJL4-. R e l a t i o n s h i p between t h u j a p l i c i h content and age from the p i t h 8I4. F i g u r e 1 5 . R e l a t i o n s h i p between one per cent c a u s t i c soda s o l u b i l i t y and age from the p i t h 85 F i g u r e 16. D i s t r i b u t i o n of creosote r e t e n t i o n 86 F i g u r e 17. D i s t r i b u t i o n of pehtachlorophenol r e t e n t i o n 87 F i g u r e 18. D i s t r i b u t i o n of Wolman s a l t r e t e n t i o n 88 F i g u r e 19. Photomicrograph "of a r a d i a l s e c t i o n of western r e d cedar"showing'fungal i n f e c t i o n (lOOx) 89 F i g u r e 20. Photomicrograph of a r a d i a l s e c t i o n of y e l l o w cefdar i n f e c t e d w i t h one of the Fungi I m p e r f e c t l (lOOx) 89 F i g u r e 21. Photomicrograph of a t a n g e n t i a l s e c t i o n of western red cedar heartwood showing f u n g a l i n f e c t i o n (500) 90 F i g u r e 22. Photomicrograph of a r a d i a l s e c t i o n of western red"cedar heartwood'showing" f u n g a l i n f e c t i o n (500x) 90 i x ACKNOWLEDGEMENTS G r a t e f u l acknowledgements are due t o Dr. R. W. Wellwood f o r h i s guidance and su g g e s t i o n s , as w e l l as f o r the time which he and Dr. J. W.. W i l s o n , Dr. J. H. G. Smith, and Mr. L. V a l g gave i n r e a d i n g the f i r s t d r a f t of t h i s t h e s i s . I wish t o express my g r a t i t u d e t o Dr. J. A. P. Gardner, Superintendent, Vancouver L a b o r a t o r y of the F o r e s t Products Research Branch, Department of F o r e s t r y , Canada, f o r p e r m i t t i n g me t o use f a c i l i t i e s at the Vancouver Labora-t o r y . F u r t h e r , Mr. G. Br a m h a l l , Mr. J. T. Y e l f , Mr. H. MacLean and Mr. J. W. R o f f , s t a f f members of the Vancouver L a b o r a t o r y , generously a s s i s t e d and adv i s e d me d u r i n g the experimental stages of t h i s t h e s i s . S p e c i a l thanks are giv e n to Mr. A.. Kozak f o r h i s hel p i n programming the s t a t i s t i c a l a n a l y s i s , u s i n g the IBM 1$20 e l e c t r o n i c computer. The p e r m i s s i o n of Canadian Lab o r a t o r y S u p p l i e s L t d . (Canlab.) t o the Agtron e l e c t r o n i c c o l o u r instrument i s g r a t e f u l l y acknowledged. 1 INTRODUCTION Western red cedar (Thuja p l i c a t a Donn) has been con-s i d e r e d a d e c a y - r e s i s t a n t wood. However, c o n s i d e r a b l e v a r i -a t i o n has been evidenced i n i t s decay r e s i s t a n c e ; f o r example, some cedar r o o f s have l a s t e d more than f i f t y y e a r s , others not more than f i f t e e n . Recent i n v e s t i g a t i o n s have i n d i c a t e d t h a t the t h u j a -p l i c i n s present i n western red cedar heartwood are c h i e f l y r e s p o n s i b l e f o r i t s d u r a b i l i t y ( 5 2 ) . At the same time, i t has been shown t h a t t h u j a p l i c i n s are not d i s t r i b u t e d u n i f o r m l y throughout the stem and, s p e c i f i c a l l y , that the i n n e r , darker heartwood co n t a i n s none ( l j l l ) . I t i s c o n s i d e r e d , t h e r e f o r e , t h a t the v a r i a t i o n noted i n decay r e s i s t a n c e has been accoun-t e d f o r . F i n a l l y , i t has been e s t a b l i s h e d t h a t v a r i a t i o n i n d u r a b i l i t y may be o f f s e t i f the i n n e r , darker heartwood i s t r e a t e d w i t h p r e s e r v a t i v e s . On the other hand, a great d e a l remains to be estab-l i s h e d b e f o r e western red cedar heartwood can be both e f f e c -t i v e l y and e c o n o m i c a l l y t r e a t e d w i t h p r e s e r v a t i v e s . F o r example, i t must be e s t a b l i s h e d where, w i t h i n the stem, pr e -s e r v a t i v e r e t e n t i o n v a r i e s and what f a c t o r s a f f e c t that v a r i a t i o n . T h i s t h e s i s deals w i t h samples s e l e c t e d from a s i n g l e western red cedar stem. I t w i l l attempt t o d e l i n e a t e the zones where p r e s e r v a t i v e r e t e n t i o n s vary. I t w i l l a l s o attempt to show to what extent both amount of preservative retention and i t s v a r i a t i o n are affected by age, distance from the p i t h growth rate, percentage of latewood, s p e c i f i c gravity, colour hot-water s o l u b i l i t y , and e f f e c t i v e 1% NaOH s o l u b i l i t y (hot-water s o l u b i l i t y subtracted from 1% NaOH s o l u b i l i t y ) of the samples. Further, by applying a multiple l i n e a r regression technique, the above factors w i l l be s t a t i s t i c a l l y evaluated i n t h e i r order of importance. This study, however, has as i t s primary consideration factors r e l a t i n g to d u r a b i l i t y , or the resistance to decay. Therefore, part of the present study w i l l deal with thuja-p l i c i n s (which are the natural preservative of decay); and with the presence of decay i t s e l f - s p e c i f i c a l l y fungal i n -fections i n western red cedar heartwood. 3 LITERATURE REVIEW A. Anatomy of western r e d cedar The p h y s i o l o g i c a l l y a c t i v e t r a c h e i d s i n the sapwood t r a n s p o r t water and d i s s o l v e d s a l t s through the stem and com-municate w i t h each other by means of bordered p i t s . These bordered p i t s are r a t h e r e l a b o r a t e l y c o n s t r u c t e d . A p i t c l o s i n g membrane, c o n s i s t i n g of i n t e r c e l l u l a r substance and primary w a l l , has s m a l l but numerous p e r f o r a t i o n s and i s r e -i n f o r c e d by a primary t h i c k e n i n g i n the m i d d l e , the t o r u s . The p e r f o r a t i o n s of the p i t - c l o s i n g membrane may be d e s c r i b e d as the spaces between the c e l l u l o s i c f i l a m e n t s which r a d i a t e from the to r u s and extend to the margin of the p i t c a v i t y . These c e T l l u l o s i c f i l a m e n t s c o n s i s t of m i c r o f i b r i l s j o i n e d i n t o c o a r s e r strands (20,3i+» 35» k-3) • The secondary w a l l over-hangs the p i t c a v i t y as a border (hence bordered p i t ) l e a v i n g a s m a l l opening, the p i t a p e r t u r e , at the entrance i n t o the p i t c a v i t y . Bordered p i t s i n western red cedar occur i n one or two rows on a l l t r a c h e i d r a d i a l w a l l s ; on the t a n g e n t i a l w a l l s p i t t i n g Is presen t only i n the l a s t few rows of l a t e -wood t r a c h e i d s (16). B. Chemical composition of western r e d cedar 1. C e l l u l o s e I t i s g e n e r a l l y conceded that the m i c r o f i b r i l i s the s m a l l e s t n a t u r a l u n i t of c e l l u l o s e s t r u c t u r e which can be made v i s i b l e w i t h the instruments c u r r e n t l y a v a i l a b l e (54) • The m i c r o f i b r i l s as shown by an e l e c t r o n microscope appear to have o § a r e c t a n g u l a r c r o s s - s e c t i o n of ab out 100A x 200A and a l e n g t h of 600$. Prey-Wyssling, quoted i n (54)» has concluded that each m i c r o f i b r i l r e p r e s e n t s a s u p e r m i c e l l a r s t r u c t u r a l u n i t made up of a bundle of c r y s t a l l i n e r e g i o n s separated by amor-phous r e g i o n s . He p o s t u l a t e s t h a t each m i c r o f i b r i l c o n s i s t s of f o u r "elementary f i b r i l s " or m i c e l l a r strands each about o ~o _ 50A x 100A. These m i c e l l a r strands would c o n s i s t of a c r y s t a l -l i n e core (having a c r o s s - s e c t i o n of about 3 0 S x 70A) surroun-ded by an amorphous or p a r a c r y s t a l l i n e sheath (54) • 2. H o l o c e l l u l o s e H o l o c e l l u l o s e i s a term used to d e s c r i b e the e n t i r e carbohydrate f r a c t i o n of the e x t r a c t i v e - f r e e , c e l l - w a l l sub-stance. P r e s e n t l y , h o l o c e l l u l o s e assumes importance l a r g e l y as a r e s e a r c h t o o l i n s t u d i e s of alpha c e l l u l o s e , h e m i c e l l u l o s e and other carbohydrates c o n s t i t u e n t s of wood substance (17). 5 3» H e m i c e l l u l o s e s P o l y s a c c h a r i d e s other than c e l l u l o s e are known c o l l e c t i v e l y as h e m i c e l l u l o s e s , but no one d e f i n i t i o n s a t i s -f a c t o r i l y d e s c r i h e s a l l h e m i c e l l u l o s e (17). Pentosans (CcjHg Oj^) and hexosans (C£>%o°5^n o f wood h e m i c e l l u l o s e y i e l d the sugars, pentose and hexose r e s p e c t i v e l y , on h y d r o l y s i s w i t h a c i d s . 4.. L i g n i n L i g n i n was d e f i n e d by Brauns (15) as t h a t i n c r u s t i n g m a t e r i a l of the p l a n t which i s b u i l t up mainly - i f not e n t i r e l y -of phenylpropane b u i l d i n g stones. The " b u i l d i n g stones" of l i g -n i n are phenylpropane monomers j o i n e d t o g e t h e r by a v a r i e t y of chemical l i n k a g e s . L i g n i n c a r r i e s the maijor p a r t of the methoxyl content of the wood. I t i s a brownish-white, crumbly, amorphous m a t e r i a l which f e e l s spongy and s o f t when wet. The m o l e c u l a r weight of l i g n i n i n wood i s c o n s i d e r a b l y g r e a t e r than 10,000 (28). 5. E x t r a c t i v e s The e x t r a c t i v e m a t e r i a l s of wood are very numerous and may be complex c h e m i c a l l y . E x t r a c t i v e s may i n f l u e n c e many of the p r o p e r t i e s of wood, such as: mechanical a n d c f i n i s h i n g c h a r a c t e r i s t i c s , odour, and d u r a b i l i t y . I n p a r t i c u l a r , the high d u r a b i l i t y of western r e d cedar i s a t t r i b u t e d t o c e r t a i n 6 of the e x t r a c t i v e s p r e s e n t i n i t s wood. I n v e s t i g a t i o n s of i s o l a t e d cedar e x t r a c t i v e s began as e a r l y as 1907, but i t was not u n t i l 1948 t h a t the chemical s t r u c -t u r e of any of the e x t r a c t i v e s was determined. Erdtman and Gripenberg (23) , working w i t h the acetone e x t r a c t i v e of western r e d cedar, i s o l a t e d I s o p r o p y l - t r o p o l o n e and o< - i s o p r o p y l -t r o p o l o n e . Anderson and Gripenberg (5) i s o l a t e d the t h i r d isomer $- i s o p r o p y l - t r o p o l o n e . They named these compounds # , e x , and /& t h u j a p l i c i n s r e s p e c t i v e l y . Tropolone i s the g e n e r i c term a p p l i e d to the unsaturated seven-membered, carbon r i n g compound ( 2 - h y d r o x y l - 2 , 4 > 6 - c y e l o h e p t a t r i e n — 1 - o n e ) and i t s d e r i v a t i v e s ( 3 6 ) . T o x i c i t y of the t h u j a p l i c i n s was t e s t e d by R e n n e r f e l t (48), who found t h a t they are as t o x i c as sodium pen-tachlorophenate. Erdtman and Gripenberg, i n 1949 (24), e s t a b l i s h e d the s t r u c t u r e of t h u j i c a c i d , which has a t r i p l y - u n s a t u r a t e d , seven-membered r i n g s i m i l a r t o t h a t of t h u j a p l i c i n s . A study of the chemistry of the e x t r a c t i v e s of western red cedar began i n 1949 at the Vancouver L a b o r a t o r y of the F o r e s t Products Research Branch, Department of F o r e s t r y , Canada. The f o l l o w i n g i s a resume of work done t h e r e . I n 1954 Barton and Gardner ( 8 ) yexamined the acetone e x t r a c t i v e of western red cedar and found t h a t the main p o r t i o n (80 t o 90 per cent) of t h i s e x t r a c t i v e was p h e n o l i c i n nature. Of t h i s main p o r t i o n r o u g h l y one-half was s o l u b l e i n c o l d water. T h i s c o l d - w a t e r - s o l u b l e f r a c t i o n was a complex mixture of p o l y -7 phenols of h i g h methoxyl content and contained u n e t h e r i f i e d p y r o c a t e c h o l groupings. These workers a l s o found that the t h u j a -p l i c i n s o ccurred t o a much g r e a t e r extent t h a t the 0 . 5 per cent l e v e l p r e v i o u s l y r e p o r t e d ( 2 3 ) . R o f f and A t k i n s o n ( 5 0 ) d e t e r -mined the t o x i c i t y of the above w a t e r - s o l u b l e , n o n - v o l a t i l e , p o l y p h e n o l i c f r a c t i o n from which the thii j a p l i c i n s had been care-f u l l y removed. They found t h a t a c o n c e n t r a t i o n of one per cent z i n c c h l o r i d e i n malt agar approximated the t o x i c i t y of the s o l u b l e p o l y p h e n o l i c cedar f r a c t i o n at a c o n c e n t r a t i o n of two per cent. They concluded t h a t the t h u j a p l i c i n s are not s o l e l y r e s p o n s i b l e f o r the t o x i c i t y of the aqueous e x t r a c t s , nor f o r the durable c h a r a c t e r of western r e d cedar heartwood. . C.r Gardner e t al_, i n 1957 (29) , i s o l a t e d and determined the s t r u c t u r e of ^ - t h u j a p l i c i n o l ( 7-hydroxy-l4.-isopropyltropolone) from western red cedar heartwood. Using paper chromatography, they a l s o determined t h a t i t occurred i n c o n c e n t r a t i o n s , o f 0 . 0 1 to 0 . 0 8 per cent. Roff and Whittaker ( 5 D found that its t o x i c i t y i s s i m i l a r t o t h a t of the t h u j a p l i c i n s i n r e s p e c t t o brown r o t s , but t h a t ^ b h u j a p l i c i n o l i s much l e s s e f f e c t i v e a gainst f u n g i of the white r o t type. S i n c e I t s content i n western r e d cedar i s approximately one-tenth t h a t of the t h u j a p l i c i n s , they con-cluded t h a t (2)»thujaplicinol c o n t r i b u t e d In onl y a minor degree to the d u r a b i l i t y . The t h u j a p l i c i n s , methyl t h u j a t e , t h u j i c a c i d , hydroxy-t h u j a p l i c i n , a r a b i n o s e , p l i c a t i c a c i d , s e v e r a l u n c h a r a c t e r i z e d phenols, and a p l a n t s t e r o l had been i s o l a t e d from the h e a r t -8 wood e x t r a c t i v e by 1958, as o u t l i n e d i n the review by Gardner and B a r t o n (30). Work done i n t h e i r l a b o r a t o r y showed that the c o n c e n t r a t i o n of the t h u j a p l i c i n s , the w a t e r - s o l u b l e phenols and the t o t a l hot-water s o l u b l e e x t r a c t s v a r i e d widely from t r e e t o t r e e and w i t h i n each t r e e . That i s , these c o n c e n t r a t i o n s d i f f e r e d , depending upon the p o s i t i o n of the sample i n the t r e e l o n g i t u d i n a l l y as w e l l as r a d i a l l y . C oncentrations of up to 1.2 per cent of the t h u j a p l i c i n s , and up to 23.3 per cent of the w a t e r - s o l u b l e phenols, were r e p o r t e d . Gardner and Barton a l s o noted t h a t methyl thu$ate i s mainly r e s p o n s i b l e f o r the c h a r a c t e r i s t i c smell of western red cedar. I n 1958, MacLean and Gardner (1+2) examined the n a t u r a l p r e s e r v a t i v e content of a " t a r g e t - p a t t e r n e d " western red cedar stem. The heartwood of t h i s stem e x h i b i t e d the u s u a l v a r i a t i o n of c o l o u r , changing from dark brown at the p i t h t o straw-coloured next to the sapwood. However, t h i s gradual c o l o u r change was i n t e r r u p t e d by c o n c e n t r i c bands of almost-w h i t e - c o l o u r e d wood. These almost-white-coloured bands were s i m i l a r i n appearance to sapwood, and were r e a d i l y d i s t i n g u i s h -a b l e from normal-straw-coloured heartwood. A chemical a n a l y s i s showed t h a t , i n f a c t , these bands were more c l o s e l y r e l a t e d t o sapwood than to heartwood. The hot-water s o l u b i l i t i e s of these bands were i d e n t i c a l w i t h those of sapwood (approximately l/3 the hot-water s o l u b i l i t y of the adjacent heartwood); t h e i r t h u j a p l i c i n and w a t e r - s o l u b l e phenol content was i n the same low range ( l / 3 the adjacent heartwood sample}-" 9 Ah amorphous heat- and l i g h t - s e n s i t i v e brown powder was i s o l a t e d from the mixture of polyoxyphenols present i n the aqueous e x t r a c t i v e of western red cedar i n 1959 by Gardner, Barton and MacLean (31)> T h i s powder gave p o s i t i v e t e s t s f o r p y r o c a t e c h o l , methoxyl, and c a r b o x y l groups. I n view of i t s a c i d i t y and source they named t h i s substance p l i c a t i c a c i d . T h i s a c i d i c e x t r a c t i v e was f u r t h e r c h a r a c t e r i z e d by a d d i t i o n a l s t r u c t u r a l s t u d i e s ( 3 2 ) . T h i s r e s e a r c h f i x e d the molecular p o s i t i o n s of the two methoxyl, and the three p h e n o l i c h y d r o x y l groups, and the mode of l i n k a g e of the two benzene r i n g s . - T h e i r evidence i n d i c a t e d t h a t p l i c a t i c a c i d Is probably a lign<?#. of the l^-aryltetrahydronaphthalene s e r i e s . C. P e n e t r a t i o n and a b s o r p t i o n of p r e s e r v a t i v e s i n wood Tiemann (60) , o b s e r v i n g the seasoning checks i n t r a c h e i d w a l l s , developed the hypothesis that these checks might p r o v i d e passages f o r p r e s e r v a t i v e l i q u i d s . Tiemann's hypothesis was f u r t h e r advanced by Weiss (62) who s t a t e d t h a t , by a p p l y i n g p r e s s u r e , c e l l w a l l s could be s p l i t open,thus c r e a t i n g channels through which creosote could pass from one c e l l t o another. As an a l t e r n a t i v e , he suggested t h a t i f the p i t s were broken down, a p r e s e r v a t i v e c o u l d be f o r c e d from one c e l l i n t o another. However, B a i l e y (6) shoxved t h a t Tiemann's hyp o t h e s i s could not account f o r the p e n e t r a t i o n of p r e s e r v a -t i v e s i n t o wood. He was the f i r s t to show t h a t , i n p a s s i n g through wood, l i q u i d s move p r i m a r i l y i n t o the c a v i t i e s of 10 c e l l s , and.pass from c e l l t o c e l l by means of the bordered p i t s . Bordered p i t s i n Douglas f i r (Pseudotsuga m e n z i e s i i (Mirb.) Franco) were s t u d i e d by G r i f f i n (34,35).. She found t h a t , i n both the unseasoned sapwood and heartwood of mountain-grown Douglas f i r specimens, a c o n s i d e r a b l e number of the l a t e -wood t o r i were a l r e a d y a s p i r a t e d . T h i s was not true i n the lowland specimens. A l a c k of p e n e t r a t i o n corresponded d i r e c t l y w i t h the number of p i t s a s p i r a t e d . P h i l l i p s (1+5) developed the theory that at l e a s t two p i t s i n each t r a c h e i d must remain open -one a c t i n g as an i n l e t , the other as an o u t l e t - i n order t o a l l o w a continuous passage of p r e s e r v i n g l i q u i d s through wood. F u r t h e r , he found upon s u c c e s s i v e observat ions t h a t the number of a s p i r a t e d p i t s i n c r e a s e d s l o w l y as the wood d r i e d ; n e a r l y a l l of the p i t s , i n the springwood t r a c h e i d s became a s p i r a t e d , but a c e r t a i n p r o p o r t i o n of the p i t s i n the summerwood t r a c h e i d s remained u n a s p i r a t e d even i n completely d r i e d wood. The true d e n s i t y of wood substance, and i t s apparent d e n s i t y i n d i f f e r e n t l i q u i d s and gases,was s t u d i e d by Stamm (58) i n 1929. He found t h a t the f i n e s t r u c t u r e of wood i s not permeable t o non-polar organic l i q u i d s ; and t h a t the p e r m e a b i l i t y of t h i s s t r u c t u r e i n c r e a s e d with an Increase i n the p o l a r i t y of the displacement l i q u i d . Stamm (57) a l s o determined the per-centage of a s p i r a t e d p i t s i n s e v e r a l softwoods and s t a t e d that i n western red cedar wood, 30 per cent of the p i t s i n a t r a c h e i d are not a s p i r a t e d . 11 D o u g l a s f i r s p e c i m e n s w e r e e x a m i n e d b y P l e i s h e r (27 ) . T h e s p e c i m e n s w e r e p r e s s u r e - t r e a t e d w i t h W o l m a n s a l t s i n w a t e r s o l u t i o n , u s i n g a f u l l - c e l l p r o c e s s . T h e s p e c i m e n s h a v i n g h i g h e r p r e s e r v a t i v e r e t e n t i o n h a d m o r e u n a s p i r a t e d p i t s . A s h e x a m i n a t i o n s i n d i c a t e d t h a t t h e t r e a t i n g s a l t s w e r e l o c a t e d i n o r o n t h e c e l l w a l l s , r a t h e r t h a n i n t h e c e l l c a v i t i e s . It w a s f o u n d t h a t b y f a r t h e g r e a t e s t a m o u n t o f t h e s a l t s w a s p r e s e n t i n t h e l a t e w o o d . A n e l e c t r o n m i c r o s c o p e s t u d y o f p i n e w o o d , i m p r e g n a t e d w i t h f l u o r i d e a n d s u b l i m a t e s o l u t i o n s ( 2 1 ) , s h o w e d t h a t p a r t i c l e s o f t h e i m p r e g n a t e d s a l t s w e r e c r y s t a l -l i z e d o n t h e c e l l w a l l s . T h e d e n s i t y o f t h e n u m b e r o f c r y s t a l s d e c r e a s e d f r o m t h e s u r f a c e t o w a r d s t h e c e n t r e o f t h e i m p r e g n a -t e d z o n e . A l t h o u g h t h e p r e s e r v a t i v e w a s . f o u n d i n c r y s t a l f o r m o n t h e c e l l w a l l s , t h e i n v e s t i g a t o r s d i d n o t e x c l u d e t h e p o s -s i b i l i t y t h a t t h e p r e s e r v a t i v e s o l u t i o n m a y e v e n h a v e p e n e t r a -t e d t h e c e l l w a l l s . P r e s t o n ( i + 6 , 1+7) s t u d i e d t h e l o c a t i o n o f t h e w a t e r -s o l u b l e p r e s e r v a t i v e , " T a n a l i t h C " , i n w o o d b y e x a m i n i n g m i c r o -s c o p i c a l s e c t i o n s o f w o o d . T h e s e s e c t i o n s s h o w e d q u i t e c l e a r l y t h a t t h e c o p p e r w a s d i s t r i b u t e d t h r o u g h o u t t h e w h o l e c e l l w a l l . P r e s t o n c o n c l u d e d t h a t , d u r i n g i m p r e g n a t i o n , t h e i m p r e g n a t i n g l i q u i d m u s t f l o w t h r o u g h t h e t r a n s i e n t c a p i l l a r i e s i n t h e c e l l w a l l . T h e r e f o r e , a n y p a r t i c u l a r b a r r i e r t o i m p r e g n a t i o n m u s t b e s o u g h t i n t h e c e l l w a l l s , n o t i n t h e c o n d i t i o n o f t h e p i t c l o s i n g m e m b r a n e s . 12 B a i l e y (7) meanwhile cautioned that the form of the bordered p i t s and the v i s i b l e s t r u c t u r e of t h e i r p i t membranes vary, not only i n d i f f e r e n t genera of c o n i f e r s , but a l s o w i t h i n the same t r e e , and at times i n n e i g h b o r i n g t r a c h e i d s of a smal l sample of wood. He f e l t t h a t such ranges of s t r u c t u r a l v a r i a b i l i t y deserve c a r e f u l c o n s i d e r a t i o n i n the i n t e r p r e t a t i o n of e l e c t r o n micrographs used i n experimental i n v e s t i g a t i o n s of the movement of l i q u i d s through c o n i f e r o u s woods. Douglas f i r b l o c k s t r e a t e d w i t h " T a n a l i t h C" were i n v e s t i g a t e d by B e l f o r d and Cook (10). They used o p t i c a l microscopy i n c o n j u n c t i o n w i t h a s t a i n , and e l e c t r o n micro^ scopy, as w e l l as e l e c t r o n and x-ray d i f f r a c t i o n t e c h n i q u e s , and showed that the p r e s e r v a t i v e was d e p o s i t e d i n the c e l l w a l l , p a r t i c u l a r l y i n the middle l a m e l l a . These authors came to the c o n c l u s i o n t h a t the p r e s e r v a t i v e must be o r i e n t e d w i t h r e s p e c t t o , and, presumably, adsorbed onto, the c e l l u l o s e m i c r o f i b r i l s . I n a f u r t h e r work, by means of a v a r i e t y of complementary techniques of e l e c t r o n microscopy, B e l f o r d and Cook (11) confirmed that the p r e s e r v a t i v e i s adsorbed by c e l l u l o s e m i c r o f i b r i l s . A new p r e s e r v i n g p r o c e s s based on copper formate and a u t o c l a v i n g was found by Smith et a l (55) . I n d i r e c t e v i -dence showed that the copper, i n i t s f i n a l form, was converted t o a c o p p e r - c e l l u l o s e complex-that r e s i s t e d removal by water, ammonia and c h e l a t i n g agents. B e l f o r d et a l (12), by means of 13 e l e c t r o n microscopy and e l e c t r o n d i f f r a c t i o n diagrams, proved c o n c l u s i v e l y the e x i s t e n c e of the c o p p e r - c e l l u l o s e complex. F u r t h e r , they were r a t h e r s p e c i f i c c o n c e r n i n g the l o c a t i o n of t h i s complex w i t h i n the c e l l u l o s e m i c r o f i b r i l s . They s t a t e d that at l e a s t a p r o p o r t i o n of the metal complexes w i t h the c e l l u l o s e of the p a r a c r y s t a l l i n e regions i n the m i c r o f i b r i l s , and that the r e s u l t i n g m e t a l - c e l l u l o s e complex i s h i g h l y o r i e n t e d . The p o s i t i o n of t o r i i n Scotch pine (Pinus s y l v e s -t r i s L.) was s t u d i e d by Buro and Buro (18). They suggested t h a t the p o s i t i o n of the torus i s not the onl y f a c t o r i n f l u -e n c i n g the p e n e t r a t i o n of p r e s e r v a t i v e s , but that the sub-stances d e p o s i t e d In the c e l l w a l l may i n f l u e n c e the penetra-t i o n as w e l l . Some sapwood specimens of r a d i a t a pine (Pinus r a d i a t a D. Don.) were s t u d i e d by Wardrop and Davies (61). These s p e c i -mens r e s i s t e d p e n e t r a t i o n by aqueous p r e s e r v a t i v e s , but were r e a d i l y penetrated by creosote o i l . Only a few p i t s of those specimens showed a s p i r a t i o n . A study of s t a i n i n g r e a c t i o n s , together w i t h e l e c t r o n microscopy., i n d i c a t e d the presence of a f a t t y m a t e r i a l l i n i n g the c e l l lumen and the p i t chambers of the t r a c h e i d s . 14 MATERIALS AND METHODS A. M a t e r i a l A t h r e e - f o o t b o l t , 27 inches i n diameter, was cut from a 3 0 0 - y e a r - o l d , western r e d cedar t r e e which had been c s e l e c t e d from f a l l e n t r e e s at the U n i v e r s i t y of B r i t i s h Colum-h i a Research F o r e s t , Haney, B. C. , compartment 5>A, type 0 . G. , HCF, south of Gwendoline Lake ("elevation 1800 f e e t A. S. L.) , near Road X. The s e l e c t e d t r e e was mature, had b u t t r o t 6 inches i n diameter at the stump., was approximately 1 2 0 f e e t i n h e i g h t , and had a diameter of 3k inches a t b r e a s t h e i g h t . The t h r e e - f o o t b o l t was taken 22 f e e t from the b u t t i n a p a r t of the t r e e a p p a r e n t l y f r e e from decay. The c o l o u r of the sample v a r i e d i n the f o l l o w i n g ways: next t o the one-Inch t h i c k sap-wood l a y e r (almost white i n c o l o u r ) , there was a straw-coloured zone approximately three inches i n width. The straw-coloured zone was f o l l o w e d by a p a l e , reddish-brown t r a n s i t i o n zone one-i n c h i n width. The t r a n s i t i o n sone merged g r a d u a l l y i n t o chocolate-brown, i n n e r heartwood. Near the p i t h t h i s c h o c o l a t e -brown, i n n e r heartwood became somewhat l i g h t e r i n c o l o u r . B. Sampling The b o l t was marked on the top end i n a c r u c i f o r m p a t t e r n made up of 1 - i n c h by 1 - i n c h squares. However, when the b o l t was s p l i t r a d i a l l y , the p a t t e r n (due t o the knots) 15 had t o be rearranged and marked as shown i n F i g u r e 1. The b o l t having been s p l i t , s t i c k s c o r r e s p o n d i n g to the squares marked on the end s u r f a c e were sawn and planed to 3 / 4-inch by 3/4-inch dimensions* These s t i c k s were f u r t h e r cut i n t o cubes measuring 3 / 4 _ l n c n o n a s i d e . The cubes (samples) were marked as shown i n F i g u r e 2. C. S e l e c t i o n and p r e p a r a t i o n of specimens The v e r t i c a l columns or s t i c k s ( F i g u r e 1) r e p r e s e n -ted v a r i a t i o n from the p i t h towards the bark. The h o r i z o n t a l rows of samples (Figure 2) were used f o r d i f f e r e n t treatments. I n p r e p a r a t i o n of the samples, each column or s t i c k was handled s e p a r a t e l y . There were e l e v e n h o r i z o n t a l rows, marked A, B, C, D, E, F, G, H, J , K, and L (Figure 2 ) , i n each of which, the 8 samples or specimens contained as n e a r l y as p o s s i b l e the same annual r i n g s . From these 8 samples, 1+ were s e l e c t e d a t random (one i n each of the f o u r d i r e c t i o n s from the p i t h ) u s i n g a t a b l e of random numbers ( 5 9 ) . For.example, from N9 and N10, N9 was s e l e c t e d ; from E9 and E10, E10 was s e l e c t e d and so on. The treatments were a p p l i e d t o these s e l e c t e d samples. A f t e r b e i n g c o n d i t i o n e d the remaining samples (N10, E9, etc.) were used as dummies f o r moisture content determina-t i o n by the oven-dry method. 16 The f o l l o w i n g samples were s e l e c t e d randomly: Age group., years S e l e c t e d samples N l , SI N3, Ek, S3, Wk N|i E6, S5-, W6 N7, E8,S8, W8 M9 , E10,- 310,' W9 N12, E l l , S 1 2 , W l l Nik, E l k , S l k , W13 Nl5, E 1 5 , S15, Wl5 Nl8, E l 8 , S17, W17 N19, E19, S20, W19 N21, E21, S 2 1 , W21 N21+, E 2 3 , S23, W23 (sapwood) The treatments were a p p l i e d t o each h o r i z o n t a l row as f o l l o w s : 0 - 20 20 - 30 30 - ko 1+0 - 55 55 - 70 70 - 90 90 - 110 110 - 145 i k 5 - 185 185 - 220 220 - 270 270 - 285 Row A The samples were c o n d i t i o n e d t o 12 per cent moisture content (M.C.) and used f o r a b s o r p t i o n i t u d i e s w i t h c r e o s o t e . Row B The samples were- c o n d i t i o n e d to 12 per cent M.C, e x t r a c t e d i n hot water, c o n d i t i o n e d t o 12 per cent M.C., a g a i n , and used f o r a b s o r p t i o n s t u d i e s w i t h c r e o s o t e . Row C The treatment was s i m i l a r t o t h a t used f o r Row A, except t h a t a p r e s e r v a t i v e of 5$ pentachlorophenol d i s s o l v e d i n o i l was used i n the a b s o r p t i o n s t u d i e s . Row D The treatment was s i m i l a r t o t h a t of Row B, except t h a t a p r e s e r v a t i v e of $% pentachlorophenol d i s -s o l v e d i n o i l was used i n the a b s o r p t i o n s t u d i e s . Row E The treatment was s i m i l a r t o that of Row A, except t h a t the p r e s e r v a t i v e used i n the a b s o r p t i o n s t u d i e s was 2% Wolman s a l t (Type A) s o l u t i o n i n water. Row P The treatment was s i m i l a r £ 0 t h a t of Row B, except t h a t the p r e s e r v a t i v e used f o r a b s o r p t i o n s t u d i e s was a 2% Wolman s a l t (Type A) s o l u t i o n i n water. Row Gr The samples were used f o r det e r m i n a t i o n of growth r a t e and percentage of latewood. Row H The samples were u s e d f or determining s p e c i f i c g r a v i t y . 1 7 Row J The samples were c o n d i t i o n e d to 1 2 per cent M. C. and used i n p r e l i m i n a r y s t u d i e s t o determine the a b s o r p t i o n t i m e - r a t e . Row K The samples were cut 6 inches l o n g , then ground i n a Wiley m i l l . The r e s u l t i n g wood meal which passed a I4.O-mesh scr e e n but was r e t a i n e d on a 60-mesh sc r e e n was used f o r determining s o l u b i l i t y w i t h one per cent c a u s t i c soda and with hot water, and f o r d etermining t h u j a p l i c i n content. Wood meal whichTpassed a 60-mesh screen was used f o r measuring c o l o u r w i t h Agtron c o l o u r instrument. Row L The samples were used f o r m i c r o s c o p i c s t u d i e s . P. Methods 1 . Determination of age The p h y s i o l o g i c a l age of each specimen was d e t e r -mined by marking the center of each cube then c o u n t i n g the annual r i n g s from the p i t h to t h a t marked ce n t e r . 2 . Determination of d i s t a n c e from p i t h The specimen centers were marked as above and t h e i r d i s t a n c e from the p i t h measured to the nearest t e n t h - i n c h . 3. D e t e r m i n a t i o n of growth r a t e A l i n e p e r p e n d i c u l a r t o the annual r i n g s was drawn on the t r a n s v e r s e face of eachpspecimen. Annual r i n g s c r o s s i n g t h i s l i n e were counted, and t h e i r cumulative d i s t a n c e measured t o the nearest hundredth-inch a l o n g the l i n e . Growth r a t e was recorded as annual r i n g s per i n c h . 1 8 k. D e t e r m i n a t i o n of latewood per cent I n order t o determine percentage of latewood a c r o s s -s e c t i o n of each sample was p a i n t e d w i t h a mix'ture of equal p a r t s of m a l a c h i t e green and methylene b l u e , d i s s o l v e d i n a l c o h o l ( 6 3 ) . T h i s s t a i n c o l o u r e d the earlywood blue-greenj latewood was l i t t l e a f f e c t e d and remained brown. The Vancouver F o r e s t Products Laboratory's v e r s i o n of the Seaman latewood e s t i m a t o r (k°/) was then used t o determine the percentage of summerwood i n each sample. 5 . Determination of s p e c i f i c g r a v i t y S p e c i f i c g r a v i t y was determined by d r y i n g the unex-t r a c t e d b l o c k s at a temperature between 1 0 0 ° C and 1 0 5 > ° C u n t i l a constant weight was reached ( 1 7 ) • A f t e r weighing ( t o the nea r e s t 0 . 0 0 0 1 g) the volume of each b l o c k was measured -(to the nearest 0 . 0 0 1 c m 3 ) u s i n g an Amsler volume-meter ( k ) . S p e c i f i c g r a v i t y was c a l c u l a t e d as the r a t i o of the oven-dry weight of wood to oven-dry volume ( t o three decimal p l a c e s ) . 6 . Colour measurements The c o l o u r of t h i s western red cedar stem c r o s s -s e c t i o n v a r i e d from straw-yellow next to the sapwood, which was almost white, to dark chocolate-brown near the p i t h . I t was thought t h a t some c o r r e l a t i o n might be found between the c o l o u r of cedar wood and i t s r e t e n t i o n of p r e s e r v a t i v e s , i f the c o l o u r ofiulddbe expressed n u m e r i c a l l y . The Model nFn Agtron e l e c t r o n i c c o l o u r instrument i s used by a number of manufacturers i n the p r o d u c t i o n of uniform food products ( 2 ) . T h i s instrument i s provided w i t h a meter which i s c a l i b r a t e d from "0" to "lOO", and c o l o u r can be expres-sed n u m e r i c a l l y on a continuous s c a l e (1). The manufacturer's t e c h n i c a l d e s c r i p t i o n (1) of the i n s t r u -ment i s as f o l l o w s : The model " F n Agtron embodies a gas d i s charge tube l i g h t . s o u r c e f o r i l l u m i n a t i n g the sample, Corning g l a s s f i l t e r s f o r i s o l a t i n g a s e l e c -ted monochromatic l i n e of the l i g h t source, a phototube, and an e l e c t r o n i c a m p l i f i e r f o r measuring the r e f l e c t e d monochromatic i l l u m -i n a t i o n . The c o l o u r measurement i s made by p l a c i n g a sample cup c o n t a i n i n g the product i n a r e c e s s e d opening at the top of the i n -strument and measuring the product's mono-chromatic r e f l e c t a n c e . The instrument i s p r e v i o u s l y c a l i b r a t e d by s p e c i a l standard r e f l e c t a n c e s u r f a c e s i n order t h a t the r e -f l e c t a n c e of the sample can be compared w i t h known r e f l e c t a n c e l e v e l s . The i n s t r u -ment's numerical r e a d i n g i s a f u n c t i o n of a monochromatic r e f l e c t a n c e comparison of the sample and the r e f e r e n c e m a t e r i a l . Agtrons are manufactured f o r measurement i n the r e d , green and blue s p e c t r a l r e g i o n s . For red measurement the 61+0 m i l l i m i c r o n l i n e of neon i s used, f o r green the 51+6 m i l l i m i c r o n of mercury, and f o r the b l u e the i+36 m i l l i m i -cron l i n e of mercury. Each c o l o u r r e q u i r e s a d i f f e r e n t l i g h t s ource, f i l t e r combination, and consequently i s a matter of f a c t o r y assem-b l y . The p a r t i c u l a r assembly i s s e l e c t e d to p r o v i d e a r e f l e c t a n c e r e a d i n g i n the s p e c t r a l r e g i o n which i s ' c r i t i c a l t o the c o l o u r v a r i a -t i o n s o c c u r i n g w i t h i n the product. 20 The c o l o u r of the western red cedar samples was de-termined u s i n g sample "Row K" wood meal which passed a 60-mesh scre e n . P r i o r t o the c o l o u r measurements a l l the samples were c o n d i t i o n e d t o e q u i l i b r i u m moisture content (6.5$) at room c o n d i t i o n s . The procedure used i n sample p r e p a r a t i o n and pre -s e n t a t i o n was very s i m i l a r t o t h a t used by G i l l i s (33)» who evaluated the c o l o u r of f l o u r . The Red Ag t r o n instrument assembly was used. Zero was set on the #5007 r e f e r e n c e d i s c , and "TOO" was set on the #5077.5 r e f e r e n c e d i s c . 7« Determination of hot-water s o l u b i l i t y and t h u j a -p l i c i n content The t h u j a p l i c i n s were determined q u a n t i t a t i v e l y a c c o r d i n g t o the method developed by MacLean and Gardner (kO). In a d d i t i o n , hot-water e x t r a c t i o n of a 2g kO-mesh wood meal sample allowed a simultaneous d e t e r m i n a t i o n of hot-water s o l u -b i l i t y . ( This method i s s l i g h t l y d i f f e r e n t from the standard TAPPI method TIm-59)• The wood meal sample of known moisture content was e x t r a c t e d f o r 1 h r ^ w i t h 100 ml of d i s t i l l e d water i n a 250 ml Erlenraeyer f l a s k , which was pl a c e d i n a b o i l i n g water b a t h and f i t t e d w i t h a r e f l u x condenser (Figure 3). S i x analyses were done c o n c u r r e n t l y . A f t e r d e c a n t i n g the e x t r a c t through a t a r e d f i l t e r i n g c r u c i b l e , the e x t r a c t i o n was repeated w i t h 50 ml of d i s t i l l e d water f o r 1 h r , f o l l o w e d by 25 ml of d i s t i l l e d water f o r \ h r . The sample was then t r a n s f e r r e d to a c r u c i b l e and washed w i t h 25 ml of hot water, d r i e d t o a 21 c o n s t a n t w e i g h t a t 102 _ 5 ° C a n d w e i g h e d . H o t - w a t e r s o l u b i l i t y w a s c a l c u l a t e d a s a w e i g h t d i f f e r e n c e o f w o o d m e a l a n d e x -p r e s s e d a s a p e r c e n t w e i g h t l o s s o f t h e i n i t i a l m o i s t u r e - f r e e s p e c i m e n . T h e e x t r a c t s a n d w a s h i n g s w e r e c o m b i n e d , c o o l e d a n d b r o u g h t u p t o 200 m l b y a d d i n g d i s t i l l e d w a t e r . A 5 - m l a l i q u o t o f w a t e r e x t r a c t s w a s e x t r a c t e d t w i c e w i t h 5 - m l p o r t i o n s o f n - h e x a n e ( t e c h n i c a l g r a d e ) i n a 5 0 - m l s e p a r a t o r y f u n n e l . E a c h e x t r a c t i o n w a s s h a k e n f o r 1 m i n i n a B u r r e l l s h a k e r . T o t h e 10 m l h e x a n e e x t r a c t s , 10 m l o f c h l o r o -f o r m - a n d 5 rol o f f e r r i c a c e t a t e s o l u t i o n w e r e a d d e d . T h e f e r r i c a c e t a t e s o l u t i o n w a s m a d e b y d i s s o l v i n g e q u i m o l a r q u a n t i t i e s o f s o d i u m a c e t a t e a n d f e r r i c c h l o r i d e i n d i s t i l l e d w a t e r i n o r d e r t o p r o d u c e a f i n a l s o l u t i o n o f 1% i n i r o n . T h e p H o f t h i s s o l u t i o n w a s a d j u s t e d t o ij.,1 u s i n g s o d i u m a c e -t a t e o r f e r r i c c h l o r i d e . A f t e r a d d i t i o n o f t h e f e r r i c a c e t a t e s o l u t i o n t h e s a m p l e s w e r e s h a k e n f o r 5 m i n i n a s e p a r a t o r y f u n n e l u s i n g a B u r r e l l s h a k e r . T h e o r g a n i c l a y e r w a s f i l t e r e d i n t o a 2 5 - m l v o l u m e t r i c f l a s k , t h e a q u e o u s , l a y e r w a s w a s h e d w i t h a n a d d i t i o n a l 5 m l o f c h l o r o f o r m a n d t h e f i l t r a t e w a s b r o u g h t u p t o a f i n a l v o l u m e o f 25 m l b y a d d i n g c h l o r o f o r m . A b s o r b a n c e w a s m e a s u r e d i n a B e c k m a n m o d e l B s p e c -t r o p h o t o m e t e r , u s i n g a b l u e - s e n s i t i v e p h o t o t u b e (9) a t a w a v e - l e n g t h o f 1+25 m / ^ a n d u s i n g h e x a n e - c h l o r o f o r m (2:3) s o l v e n t a s a b l a n k . 22 F i v e ml of standard s o l u t i o n ( c o n t a i n i n g 0 .50 mg of the western red cedar t h u j a p l i c i n s ) i n hexane-chloroform s o l v e n t was t r e a t e d w i t h f e r r i c a c e t a t e s o l u t i o n by the method d e s c r i b e d above; and the r e s p e c t i v e spectrophotometer r e a d i n g was used In f u r t h e r c a l c u l a t i o n s of t h u j a p l i c i n con-t e n t i n the analysed samples. The t h u j a p l i c i n content was c a l c u l a t e d u s i n g the f o l l o w i n g equation: G = £ x C x | x l x l O O B E F where A = spectrophotometer r e a d i n g of the experimental ;„ sample s o l u t i o n , B - spectrophotometer r e a d i n g of the standard t h u j a -.. p l i c i n s o l u t i o n ( 0 . 7 0 0 ) , C = amount"of t h u j a p l i c i n s contained i n the standard • s o l u t i o n ( 0 . 5 0 mg) , D == t o t a l volume of water e x t r a c t s (200 m l ) , E = volume of e x t r a c t s used i n a n a l y s i s (5 ml), F = weight of m o i s t u r e - f r e e wood meal sample, G- = t h u j a p l i c i n content i n per cent. The values of B, C, D and E were kept constant throughout the analyses and t h e r e f o r e were c o n s i d e r e d as constants. By s i m p l i f i c a t i o n the equation was reduced t o the f o l l o w i n g : G = f x 2.857 F T h i a equation was used f o r a l l the c a l c u l a t i o n s of t h u j a p l i c i n content i n the samples examined. 23 8. Determination of one per cent c a u s t i c soda s o l u b i l i t y The samples were analysed f o r one per cent c a u s t i c soda s o l u b i l i t y of wood i n accordance w i t h TAPPI standard TlJm-59. An a i r - d r y sample of i+O-60-mesh wood meal - the e q u i v a l e n t of 2 * O.lg of m o i s t u r e - f r e e wood - was weighed t o the nearest O.OOOlg and p l a c e d i n a 2 $ 0 ml beaker a f t e r which 100 ml of 1% NaOH s o l u t i o n was added. The beaker was then covered w i t h a watch g l a s s and p l a c e d i n a b o i l i n g water b a t h , l e f t i n the b a t h f o r e x a c t l y 1 h r , the contents b e i n g s t i r r e d at p e r i o d s of 10, l£, and 2 $ min. The temperature of the b a t h was kept between 97 and 100°C. The experimental set-up i s shown i n F i g u r e 5*1 ""."v - ^ At the end of 1 hr the contents of each beaker were f i l t e r e d , by s u c t i o n , i n a t a r e d , f r i t t e d - g l a s s c r u c i b l e . The wood meal was washed b r i e f l y w i t h hot water, then w i t h 50 ml of 10$ a c e t i c a c i d , and then thoroughly with ' hot water. The c r u c i b l e and contents were d r i e d t o constant weight at 105~5°C, p l a c e d i n a t a r e d , stoppered weighing b o t t l e , cooled i n a des - s -s i c a t o r , and weighed. The weight of the d i s s o l v e d moisture-f r e e m a t e r i a l was c a l c u l a t e d and the r e s u l t s recorded t o the n e a r e s t 0.01 per cent based on the m o i s t u r e - f r e e wood. 9. A b s o r p t i o n s t u d i e s (a) C o n d i t i o n i n g Immediately a f t e r c u t t i n g , the sample blocks from A, B, C, D, E, F, and J rows (or s e r i e s ) were p l a c e d i n an Aminco-Air constant temperature and humidity c a b i n e t , where 2k they were c o n d i t i o n e d to a 19 per cent moisture content by s e t t i n g the dry-bulb temperature at 100°P and the r e l a t i v e h umidity a t 89 per cent. A l l the b l o c k s from the same h o r i -z o n t a l row were kept i n a net bag. (This f a c i l i t a t e d keeping the b l o c k s from the same row t o g e t h e r , and allowed a i r to c i r c u l a t e f r e e l y between the b l o c k s ) . A f t e r one week the e q u i l i b r i u m moisture content was changed t o 12 per cent by changing the r e l a t i v e humidity t o 68 per cent while keeping the dry bulb temperature at 100°F. T h i s s e t t i n g was maintained u n t i l the b l o c k s a t t a i n e d a constant weight (2 weeks). At the end of the 2-week c o n d i t i o n i n g p e r i o d B, D, and P s e r i e s of bl o c k s were e x t r a c t e d i n b o i l i n g water, whereas A, C, E and 3 s e r i e s were t r a n s f e r r e d t o the Vancouver F o r e s t Products Laboratory's humidity chamber where the dry-bulb temperature was maintained at 70°F and r e l a t i v e humidity a t 65 per cent. (b) Hot-water e x t r a c t i o n S e r i e s B, D and F b l o c k s , a f t e r b e i n g c o n d i t i o n e d t o 12 per cent moisture content and weighed, were p l a c e d i n three 2 - l i t e r round-bottom f l a s k s (each s e r i e s i n a separate f l a s k ) . The f l a s k s were f i l l e d w i t h d i s t i l l e d water, f i t t e d w i t h con-densers, p l a c e d on a hot p l a t e , and b o i l e d . The water i n a l l three f l a s k s was changed t h r e e times d a i l y u n t i l the y e l l o w i s h -brown c o l o u r (which i s c h a r a c t e r i s t i c of western r e d cedar wa-ter s o l u b l e e x t r a c t i v e s ) disappeared. The e x t r a c t i o n process 25 took 10 days. F o l l o w i n g the e x t r a c t i o n the b l o c k s were t r a n s -f e r r e d t o the Vancouver F o r e s t Products Laboratory's humidity chamber where they were c o n d i t i o n e d t o 12 per cent moisture content. From the assessed moisture content data, the weight of the oven-dried wood substance was c a l c u l a t e d b e f o r e and a f t e r the e x t r a c t i o n . The d i f f e r e n c e , or amount of hot-water s o l u b l e s e x t r a c t e d , was expressed as a per cent based upon the. weight of unextracted oven-dry wood. (c) D u r a t i o n ' o f a b s o r p t i o n treatment The method used t o determine the a b s o r p t i o n time was very s i m i l a r t o t h a t used by Koran (38). Four specimens f o r each of three p r e s e r v a t i v e treatments were s e l e c t e d i n such a way as to r e p r e s e n t the v a r i a t i o n from the p i t h t o the bark. Each specimen was attached to the arm of a t r i p l e beam balance and immersed i n p r e s e r v a t i v e , as shown i n F i g u r e 5« A weight r e a d i n g was taken immediately, then at 15-min i n t e r v a l s f o r the f i r s t hour, 30fmin i n t e r v a l s f o r the next two hours, then h o u r l y u n t i l the end of a t o t a l 10-hr p e r i o d . Since the weight of the specimen remained c o n s t a n t , the i n c r e a s e i n weight was equal t o the amount of p r e s e r v a t i v e absorbed. This amount was recorded and p l o t t e d a g a i n s t time. The graphs are presented i n F i g u r e s 6, 7 and 8. From these graphs a 6-hr t r e a t i n g p e r i o d was chosen. 26 (d) P r e s e r v a t i v e s Three types of p r e s e r v a t i v e s were used i n a b s o r p t i o n s t u d i e s , namely c o a l - t a r c r e o s o t e , 5> per cent p e n t a c h l o r o -phenol s o l u t i o n i n o i l , and 2 per cent fluor-chromate arsenate phenol (type A) s o l u t i o n i n water, commonly known as Wolman s a l t s o l u t i o n . C o a l - t a r c r e o s o t e was obtained from the Vancouver F o r e s t Products L a b o r a t o r y and conformed t o the American Wood Pr e s e r v e r ' s A s s o c i a t i o n (AWPA) standards (3, Ik)• Penta-c h l o r o p h e n o l s o l u t i o n was obtained from Timber P r e s e r v e r ' s L t d . , New Westminster, p r o d u c t i o n l i n e s . The o i l used by t h i s com-pany i s of a r e c y c l i n g type ( s i m i l a r t o d i e s e l o i l ) and a l s o conforms wi t h AWPA standards ( I 4 . J 4 . ) . The Wolman s a l t s o l u t i o n c o n s i s t e d of the f o l l o w i n g components (3): Sodium f l u o r i d e Sodium arsenate Sodium chromate D i n i t r o p h e n o l The above chemicals were d i s s o l v e d i n distil]© d water i n pro-p o r t i o n s t h a t produced a 2 per cent s o l u t i o n i n water. A 2 per cent s o l u t i o n was chosen because i t i s most commonly used by i n d u s t r y ( I 4 J 4 . ) • (e) A b s o r p t i o n treatment Dimensions of a l l b l o c k s used f o r a b s o r p t i o n s t u d i e s were measured to the nearest 0.01 cm and t h e i r volumes c a l c u -l a t e d . The bl o c k s of s e r i e s A (unextracted) and B (ex t r a c t e d ) NaF 2$% Na MsO^ 2$% Na PCr0. J?.$% d k ( N 0 2 ) 2 C 6 H 3 * 0 H 1 2 * ^ 27 were weighed and placed i n a f l a t - b o t t o m e d , r e c t a n g u l a r , g l a s s c o n t a i n e r . By p l a c i n g a weighted copper s c r e e n on top of them, and by p o u r i n g creosote i n t o the c o n t a i n e r , the bl o c k s were kept submerged f o r 6 hours. The same procedure was used f o r s e r i e s C, D, and E, P b l o c k s , u s i n g pentachlorophenol and Wolman s a l t s o l u t i o n r e s p e c t i v e l y . A f t e r the end of a 6-hr p e r i o d , the blocks were taken out of the p r e s e r v a t i v e , d r i e d w i t h a c l o t h and weighed. The amount of p r e s e r v a t i v e r e t a i n e d per sample was c a l c u l a t e d as grams of p r e s e r v a t i v e absorbed per cm^ of wood. However, whereas the amount of creosote r e t a i n e d was r e p o r t e d simply as a measured weight d i f f e r e n c e , the amount of p e n t a c h l o r o -phenol and Wolman s a l t r e t a i n e d was r e p o r t e d on a c a l c u l a t e d dry s a l t b a s i s . 10. M i c r o s c o p i c s t u d i e s Twenty-micron-thick t a n g e n t i a l and r a d i a l s e c t i o n s of each specimen were cut on a s l i d i n g microtome, s t a i n e d i n a d i l u t e s a f r a n i n s t a i n f o r 8 hrs and i n d i l u t e p i c r o a n i l i n e blueifbr another 8 h r s . The s e c t i o n s were then washed i n d i s -t i l l e d water, taken \ip the a l c o h o l s e r i e s , c l e a r e d i n x y l e n e , and mounted i n "Permount" mounting media. The s e c t i o n s were prepared, except f o r s t a i n i n g , i n accordance w i t h the o u t l i n e of microtechnique methods {6k.). 26 F i f t e e n r a d i a l and the same number of tangential sec-tions were cut from each sample block using a s l i d i n g microtome. From these sections, three r a d i a l and three tangential sections were mounted, and examined under the microscope f o r the presence of hyphae. I f , i n one of these six sections from each block, hyphae were seen, i t was considered that t h i s specimen block contained fungal i n f e c t i o n . 29 RESULTS A. Age and d i s t a n c e from p i t h Age i n y e a r s , and d i s t a n c e i n i n c h e s , from the p i t h to the c e n t e r of each specimen are presented i n Table 1. 5, Growth r a t e The growth r a t e i n annual r i n g s per Inch of each specimen i s presented i n Table 1. An average growth r a t e of d i f f e r e n t age groups was p l o t t e d , and i s shown i n F i g u r e 9. The growth r a t e decreased (more annual r i n g s per inch) as the t r e e grew o l d e r . The maximum number of annual r i n g s per i n c h appeared i n the outer, heartwood zone. I n the sapwood zone the growth r a t e i n c r e a s e d c o n s i d e r a b l y , t h a t i s , fewer annual r i n g s appeared per i n c h . C. Percentage of latewood The average of latewood per cent f o r each specimen i s presented i n Table 1, and values f o r the e n t i r e stem c r o s s - s e c t i o n are shown i n F i g u r e 10. An i n c r e a s e was noted t o about 80 y e a r s . Beyond t h i s age the percentage decreased s t e a d i l y , l e v e l l i n g o f f around the 200-year mark, and remaining constant from there t o the stem p e r i p h e r y . 3 0 D. S p e c i f i c g r a v i t y The s p e c i f i c g r a v i t y based on oven-dry volume of each specimen i s presented i n Table 1, and F i g u r e 11. No major t r e n d i n the d i s t r i b u t i o n of s p e c i f i c g r a v i t y can be d e t e c t e d . B» Colour A g tron c o l o u r measurements are presented i n Table 1, and F i g u r e 12. The measured values of c o l o u r f o l l o w e d the v i s i b l e observations very c l o s e l y . The c o l o u r of the wood c l o s e to the p i t h was brown. From there outward i t became da r k e r , r e a c h i n g chocolate-brown i n the 6 0 - to 8 0 - y e a r r e -g i o n , while the measured, num e r i c a l values of the c o l o u r decreased t o a minimum i n the dark chocolate-brown r e g i o n . Around the 8 0-year mark the c o l o u r s t a r t e d t o become l i g h t e r and reached straw-yellow i n the zone next t o the sapwood. The numerical values f o r c o l o u r i n c r e a s e d , and reached a maximum i n the sapwood, iirhich was almost v i s i b l y white. A c o l o u r t r a n s i t i o n zone, which was e a s i l y seen b e f o r e the stem was cut i n t o sample s t i c k s , was no longer d i s t i n g u i s h a b l e a t the time when the c o l o u r measurements were taken. G r i n d i n g and c o n d i t i o n i n g may have a f f e c t e d the p i n k i s h zone of the wood, s i n c e such a t i n g e could not be d e t e c t e d i n the wood meal. 31 P. Hot-water s o l u b i l i t y Hot-water s o l u b i l i t i e s are presented i n Table 2 , and F i g u r e 13. The hot-water s o l u b i l i t y i n c r e a s e d s t e a d i l y from the p i t h towards the bark, r e a c h i n g a maximum i n the straw-coloured wood. I n the sapwood, the hot-water s o l u -b i l i t y decreased very s h a r p l y , and the values i n t h a t r e g i o n were s i m i l a r t o the value s i n the p i t h r e g i o n . G. T h u j a p l i c i n content The r e s u l t s of the t h u j a p l i c i n analyses are pre -sented i n Table 2 , and F i g u r e Ik. No t h u j a p l i c i n s were found i n the heartwood up t o the age of 50 years. Around the 50-year mark, t h u j a p l i c i n s began t o appear, and the content i n -creased towards the bark, r e a c h i n g a^maximum i n the zone next t o the sapwood. No t h u j a p l i c i n s were found i n the sapwood. H. One per cent c a u s t i c soda s o l u b i l i t y R e s u l t s of the one per cent c a u s t i c soda s o l u b i l i t y a nalyses are presented i n Tsble 2 , and F i g u r e l£. Ninety-nine per cent of a 1% NaOH s o l u t i o n i s water. T h e r e f o r e , the de t e r m i n a t i o n of a r e a l 1% NaOH s o l u b i l i t y a l s o i n v o l v e s de-t e r m i n a t i o n of hot-water s o l u b i l i t y . Thus, i n order t o approximate the r e a l 1% NaOH s o l u b i l i t y , the known hot-x^ater s o l u b i l i t y was s u b t r a c t e d from the t o t a l measured 1% NaOH s o l u b i l i t y . • These data are presented a l s o i n Table 2 , and F i g u r e 15. 32 I. P r e s e r v a t i v e a b s o r p t i o n The c r e o s o t e , pentachlorophenol and Wolman s a l t r e t e n t i o n s of the unextracted b l o c k s ( s e r i e s A, C , a n d E) are presented i n Table 3. Curves of these r e t e n t i o n s were c a l c u -l a t e d with r e s p e c t t o specimen age f o r a l l three p r e s e r v a -t i v e s . The a g e - r e t e n t i o n r e l a t i o n s h i p curves were found t o be p a r a b o l i c f o r cr e o s o t e and p e n t a c h l o r o p h e n o l , but s t r a i g h t l i n e f o r Wolman s a l t . These curves and t h e i r R values are presented i n F i g u r e s 16, 17, and 1 8 . C r e o s o t e , pentachlorophenol and Wolman s a l t r e t e n -t i o n s of the e x t r a c t e d b l o c k s are presented i n Table $. J. M i c r o s c o p i c s t u d i e s Hyphae^were found i n every specimen of the micro-tome cut s e c t i o n s f r o m the p i t h outward t o , and i n c l u d i n g , specimens Wl5, El5» S l 5 , and ¥13. From these specimens out-ward to the edge of the heartwood, no motre hyphae were pre-sent; none were found i n the sapwood. Photomicrographs of t y p i c a l hyphae found are presented i n F i g u r e s 19, 21, and 22, and i n F i g u r e 20 of hyphae i n another s p e c i e s . 33 DISCUSSION A b s o r p t i o n s t u d i e s were performed on the s e l e c t e d specimens In such a way as t o r e p r e s e n t the v a r i a t i o n i n the p r e s e r v a t i v e r e t e n t i o n of the wood from the p i t h to the bark, i n c l u d i n g sapwood. Dur i n g the s e r i e s of experiments the sap-wood specimens were handled s e p a r a t e l y . The r e t e n t i o n s t u d i e s , T a b l e 3, and F i g u r e s 16, 17, 18, i n d i c a t e that the r e t e n t i o n s of c r e o s o t e , pentachlorophenol and Wolman s a l t i n the sapwood 2 E o n e g r e a t l y exceeded those i n the heatotwood. - There o b v i o u s l y i s no d i f f i c u l t y i n t r e a t i n g sap-Wood i n western red cedar.. B e a r i n g t h i s i n mind, i n the analyses and d i s c u s s i o n of r e s u l t s only the heartwood w i l l be c o n s i d e r e d , although a l l the t a b l e s and graphs i n c l u d e data f o r the sapwood as w e l l . A. A n a l y s i s of r e s u l t s I n the a b s o r p t i o n s t u d i e s , the d i f f e r e n c e s i n p r e -s e r v a t i v e r e t e n t i o n , t h a t i s , the dependent v a r i a b l e , y, may be a f f e c t e d by a number of independent v a r i a b l e s , x's (such as s p e c i f i c g r a v i t y , hot-water s o l u b i l i t y , c o l o u r , etc.) i n t e r a c t i n g between themselves, while at the same time a c t i n g on the dependent v a r i a b l e . The independent v a r i a b l e s w i l l , themselves, be c o r r e l a t e d i n v a r i o u s degrees. I n c a l c u l a t i n g the r e l a t i o n s h i p between the dependent v a r i a b l e and the 34 independent v a r i a b l e s , i t i s necessary t o take i n t o account those c o r r e l a t i o n s . The r e l a t i o n between the dependent v a r i -a b l e and independent v a r i a b l e s can be r e p r e s e n t e d by the m u l t i p l e r e g r e s s i o n equation: y = a + b-j_X]_ + b^x^j +-•••• + b ^ k The term '^multiple"' "is added t o i n d i c a t e that y i s e x p l a i n e d i n terms of two or more independent v a r i a b l e s x^, X£> x^, jX^. The c o e f f i c i e n t s b]_, b , b ^ ? . . . , b^ are termed net r e g r e s s i o n c o e f f i c i e n t s . The term "net" i s added to i n d i c a t e that these c o e f f i c i e n t s show the r e l a t i o n s h i p of x-^  t o x,>, t o x^, and so on; t h a t i s , the net of a s s o c i a t e d i n f l u e n c e s of the other independent v a r i a b l e s . The b e s t values f o r a, b-^, i>2* ^ 3 * • * • * y b^ l n the m u l t i p l e r e g r e s s i o n e quation can be determined by an e x t e n s i o n of the process used i n working out the values f o r an e s t i m a t i n g e q u a t i o n , where only one independent v a r i a b l e i s c o n s i d e r e d . The hand-computing methods used are d e s c r i b e d by E z e k i e l and Pox ( 2 5 ) , S t e e l and T o r r i e (59) and Snedecor ( 5 6 ) . Analyses of data were made w i t h the a i d of the Uni-v e r s i t y of B r i t i s h Columbia IBM 1620 computer. C o r r e l a t i o n matrixes were c a l c u l a t e d among a l l the v a r i a b l e s . The m a trixes l i s t values of c o r r e l a t i o n s e x i s t i n g between two v a r i a b l e s as though on l y those two had been c o n s i d e r e d . These c o r r e l a t i o n s are presented i n Table 6. The means and the standard d e v i a -t i o n s were a l s o c a l c u l a t e d and are presented i n Table 3 , 35 together with the maximum and minimum values of the dependent and independent v a r i a b l e s . 1. d e t e r m i n a t i o n of m u l t i p l e r e g r e s s i o n equations I n c a l c u l a t i n g m u l t i p l e r e g r e s s i o n equations f o r p r e s e r v a t i v e r e t e n t i o n , a technique was adopted by which the l e a s t important independent v a r i a b l e was e l i m i n a t e d a f t e r s e t t i n g up the e q u a t i o n , and a new equation was computed with-out t a k i n g t h a t v a r i a b l e i n t o c o n s i d e r a t i o n (56). This was repeated u n t i l only one - the most important- independent v a r i a b l e remained i n the simple r e g r e s s i o n equation. The r e l i a b i l i t y of c o e f f i c i e n t s of m u l t i p l e c o r r e l a -t i o n ; (R) v a r i e s , not o n l y w i t h the c o r r e l a t i o n and the s i z e of sample, but a l s o w i t h the number of independent variables... As the v a r i a b l e s which c o n t r i b u t e d the l e a s t t o the r e g r e s s i o n were dropped, a new R value was c a l c u l a t e d i n each case. E z e k i e l and Pox (25) p r o v i d e d a simple method of e s t i m a t i n g a minimum value f o r a t r u e c o r r e l a t i o n which takes i n t o account up to 8 independent v a r i a b l e s . Using t h e i r t a b l e , the R co-e f f i c i e n t s were t e s t e d and found t o be h i g h l y s i g n i f i c a n t . T h i s means t h a t a l l the d e r i v e d m u l t i p l e l i n e a r r e g r e s s i o n equations t r u l y r e p r e s e n t the data. The f o l l o w i n g are the computed m u l t i p l e l i n e a r r e g r e s -s i o n equations ( f o r p r e s e r v a t i v e r e t e n t i o n s ) and t h e i r m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t s (R): 3 6 (a) Creosote r e t e n t i o n (y-^) i ) a l l independent v a r i a b l e s y = 0 . 3 0 1 3 - 0 . 0 0 0 8 x +- 0 . 0 0 8 5 x 2 + O.OOI9X3 -- 0 . 0 0 2 2 x 1 ^ - 0.6960rX5- 0 . 0 0 0 2 x 6 -- 0 . 0 0 2 9 x 7 + 0 . 0 0 6 6X Q i i ) x^, growth r a t e , e l i m i n a t e d y 1 = 0 . 2 5 0 3 - 0 . 0 0 0 2 X ! + 0 . 0 0 0 7 x 2 ' - 0 . 0 0 7 X K --O .I4.667X5 - 0.0007x6 - O . O O O 2 X 7 +• Q.OOblxg i i i ) X 2 > d i s t a n c e from p i t h , e l i m i n a t e d y-, = 0 . 2 i | 8 8 - 0 . 0 0 0 2 x 1 - 0 . 0 0 0 6 x h - 0 . " 4 . 6 7 4 x 5 -- 0 . 0 0 0 7 x 6 - O . O O O 2 X 7 + 0 . 0 0 6 2 x g i v ) x , % of latewood, e l i m i n a t e d 4 y, « 0 . 2 3 7 9 - 0 . 0 0 0 2 X - . - O.I)-5l4-lxt - 0 . 0 0 0 7 x , -• -O . O O O 3 X 7 +- O.OObOxg v) X 7 , hot^water s o l u b i l i t y , e l i m i n a t e d y n = O.2I4I4.I - 0 . 0 0 0 2 X - , - 0 . l4-703x^ - 0 . 0 0 0 7 x , + * 0 . 0 0 5 9 x 3 6 v i ) X 5 , s p e c i f i c g r a v i t y , e l i m i n a t e d y x = 0,1110 - 0 . 0 0 0 2 ^ - 0 . 0 0 1 0 x 6 + 0 . 0 0 5 5 X Q . . v i i ) xg, e f f e c t i v e lfo NaOH s o l u b i l i t y , e l i m i n a t e d f ! = 0 . 1 9 3 7 - 0 , 0 0 0 2 x - O . . O O l 5 * 6 v i i i ) x^, age, e l i m i n a t e d y_^  = 0 . 1 9 1 8 - 0 . 0 0 2 3 x 6 ( c o l o u r remains) The f o l l o w i n g m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t s (R) were computed from the above equations: 37 ( i ) ( i i ) ( i i i ) ( i v ) (v) ( v i ) ( v i i ) ( v i i i ) P r o p o r t i o n s of v a r i a n c e i n y-^, accounted f o r by x-^g x l I . O 4 O 0.278 0.237 0.232 O.264 0.273 0.261 x 2 - 0.lj.13--0.03I+ X 3 - 0 . 6 0 9 X 4 - 0 . 0 3 4 • -0.011 -0.010 x 5 . 0.156 0.101+ 0.101+ 0.102 0.105 x 6 0.05.8 0.172 0.178 0.163 0.170 0.21+6 0.365 0.558 x ? . 0.356 0.027 0.023 O.Ol+l x 8 0.11+6 0.134 0.138. 0.132 0.131 0.120 R 2 R SEe 0.700 0.837 0.0232 0.670 0.670 0.819 0.819 0.0242 0.021+1 0.670 0.670 0.639 0.819 0.819 0.799 0.021+1 0.021+1 0.0250 0.626 0.558 0.791 0 .7U7 0.02511 0.0275 (b) Pentachlorophenol r e t e n t i o n ( y 2 ) i ) a l l independent v a r i a b l e s y 2 = 0.009257 - 0 . 0 0 0 0 3 6 x 1 +-.0.00051+9x2 + + 0.0000763x 3 - 0.000099x^ - 0.019l50x£ -~ 0 . 0 0 0 0 0 8 x 6 - 0 .000113x 7 + O .OOOl53x Q i i ) x^, growth r a t e , e l i m i n a t e d y 2 = 0.007225 - 0.000012X-L +- 0 . 0 0 0 2 3 8 x 2 -- 0.000039.x^ - 0 .0100l8x^ - 0 .000027x 6 -- 0.000006xy + 0 . 0 0 0 1 3 0XQ i i i ) x 2 , d i s t a n c e from p i t h , e l i m i n a t e d y 2 = O.OO6724 - . 0 . 0 0 0 0 0 2X 1 - O.OOOOOgx^ -- 0.010232x5 - 0 . 0 0 0 0 3 5 x 6 + 0 . 0 0 0 0 0 8 x 7 •* + 0.000190x (cj i v ) Xy,hot-water s o l u b i l i t y , e l i m i n a t e d y 2 = 0.006551+ - O.OOOOOlx-,^ - 0.000007x^ -- 0.009837x^ - 0 . 0 0 0 0 3 4 x 6 +- 0 .000190x 8 v) x^, % of latewood, e l i m i n a t e d y 2 = O .OO6458 - 0 . 0 0 0 0 0 1 ^ - O . O O 9 7 6 6 X 5 -- 0.000034X6 + 0.000187x8 3 8 v i ) x-^, age, e l i m i n a t e d y 2 = 0 . 0 0 6 6 2 9 - 0 . 0 0 9 9 9 2 x ^ - 0 . 0 0 0 0 3 9 x 6 + +- 0.000l80xg v i i ) x^, s p e c i f i c g r a v i t y , e l i m i n a t e d y 2 = 0.0038lk - 0.0000k6x 6 + O.OOOl68x 8 v i i i ) X Q , e f f e c t i v e 1% NaOH s o l u b i l i t y , e l i m i n a t e d y 2 = O . O O 6 3 6 7 - 0.00006lx 6 ( c o l o u r remains) The f o l l o w i n g m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t s (R) were computed from the above equations: ( i ) ( i i ) ( i i i ) ( i v ) (v) ( v i ) ( v i i ) ( v i i i ) P r o p o r t i o n s of v a r i a n c e i n y 2 accounted f o r by x l - 8 X l 1 . 0 5 3 0 . 3 5 9 0 . 0 5 1 0 . 0 3 k 0 . 0 3 5 x 2 - 0 . 5 3 9 • - 0 . 2 3 5 x 3 - 0 . 5 5 1 x k - 0 . 0 5 k • - 0 . 0 2 1 • -O .051 -• 0 . 0 0 k x 5 0 . 1 1 k 0 . 0 6 0 0 . 0 6 1 0 . 0 5 8 O . 0 5 8 0 . 0 6 0 x 6 0 . 0 5 7 0 . 1 9 1 0 . 2 k 2 0 . 2 3 8 0 . 2 3 2 0 . 2 7 0 0 . 3 2 2 0 . 4 2 1 x ? 0 . 3 2 9 0 . 0 1 7 0 . 0 2 3 * 8 0 . 1 0 2 O.O87 0 . 1 2 7 0 . 1 2 7 0.128 0 . 1 2 0 0 . 1 1 2 R 2 0 . 5 1 1 0 . k 5 8 0 . 4 5 3 0 . 4 5 3 0 . 4 5 3 0 . 4 5 0 0 . 4 3 4 0 . 4 2 1 R O . 7 1 5 O . 6 7 8 0 . 6 7 3 0 . 6 7 3 " 0 . 6 7 3 0 . 6 7 1 0 . 6 5 9 0 . 6 4 9 SEe 0 . 0 0 0 9 0 . 0 0 0 9 0 . 0 0 0 9 0 . 0 0 0 9 0 . 0 0 0 9 0 . 0 0 0 9 0 . 0 0 0 9 0 . 0 0 0 9 (c) Wolman s a l t r e t e n t i o n (y^) i ) a l l independent v a r i a b l e s y 3 = 0 . 0 0 9 1 9 5 - 0 . 0 0 0 0 l 8 x 1 + 0 . 0 0 0 1 1 2 + O .OOOOI9X3 - 0.000066x1^ +- 0 . 0 0 0 0 6 3 8 x 5 + + O .OOOOI5X5 - 0 . 0 0 0 0 k 5 x y + 0 . 0 0 0 0 8 9 X Q i i ) ' x 2 , d i s t a n c e from p i t h , e l i m i n a t e d y 3 = 0 . 0 0 2 8 8 5 - 0 . 0 0 0 0 1 2 x 2 ^ + 0 . 0 0 0 0 1 5 x 3 -- o.oooo5ox^ + 0 . 0 0 1 0 4 6 x 5 + 0 . 0 0 0 0 1 1 x 6 -- 0 . 0 0 0 0 3 3 x ? + 0 . 0 0 0 1 1 2 x 8 3 9 i i i ) x^, growth r a t e , e l i m i n a t e d x 3 •• 0.002617 - 0.000010X2 - 0.0000l+6x^ + + O . O O 2 8 7 8 X 5 + 0.000009x6 - O.OOOOl6x7 + *- 0;000092Xg i v ) x^, c o l o u r , e l i m i n a t e d * 0.003398 - 0.000010x1 - 0.000058x, + . + 0.002964x5 - 0.000003x7 + 0.000057x8 v) X 5 , s p e c i f i c g r a v i t y , e l i m i n a t e d y 2 = O.OOi+361 - 0.000011^ - O . O 0 0 0 6 3X J , • ¥ • + 0.000010x7 + 0.000059x8 v i ) x 7 , hot-water s o l u b i l i t y , e l i m i n a t e d y y = O.OOi+414 - O . O O O O I O X - L - 0.000063x^ + + O.OOOO5I+X8 v i i ) x^, % of latewood, e l i m i n a t e d ' . 7 3 = 0.00i+236 - O . O O O O l ^ - O . O O O O O I X Q v i i i j X 8 , e f f e c t i v e 1% NaOH s o l u b i l i t y , e l i m i n a t e d y^ = O.OOi4.2l5 - 0.000011x2 ( a g e remains) The f o l l o w i n g m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t s (R) were computed from the above equ a t i o n s : ( i ) ( i i ) ( i i i ) ( i v ) (v) ( v i ) ( v i i ) ( v i i i ) P r o p o r t i o n s of v a r i a n c e i n y^ accounted f o r by x-^ _8 .838 0.860 0.858 x l 1.1405 0.958 O.806 0.837 0.901 x2 -O.387 x 3 -O-.36I -•0.280 xl+ -0i006 -•0i00l+ --OiOOii -•0i006 -•0.006 x 5 -0.001+ -•0.006 --0,017 • -0.017 x 6 -0.11+3 -•0.101+ --0.088 x ? 0.313 c 0.233 0.111 ( 30Q019--•0V067 *8 0.071 0.089 0.073 0.01+1+ 0.01+6 R 2 0.888 0.886 0.881 0.877 • 0.936 0.871+ R 0.91+2 0.91+1 ." 0.939 0.935 SEe 0.0003 0.0003 0.0003 0.0003 0.0003 0.858 0.926 B. " P e n e t r a t i o n of p r e s e r v a t i v e s 1. P e n e t r a t i o n of creosote When a m u l t i p l e l i n e a r r e g r e s s i o n technique was used t o evaluate the importance of independent v a r i a b l e s , as they a f f e c t creosote r e t e n t i o n i n western red cedar, the c o l o u r v a r i a b l e was the l a s t i n order of i n c r e a s i n g importance t o be e l i m i n a t e d . When R, the m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t , f o r a l l e i g h t of the v a r i a b l e s was p a r t i t i o n e d , o n l y 6% of the t o t a l v a r i a t i o n , of the J0% which was b e i n g c o n s i d e r d , could be ex-p l a i n e d by the c o l o u r v a r i a b l e . However, f o l l o w i n g the e l i m i n a -t i o n of a l l seven of the other v a r i a b l e s , t h i s value i n d i c a t e d that $6% of the v a r i a t i o n i n creosote r e t e n t i o n could be ex-p l a i n e d by the c o l o u r v a r i a b l e alone. The heartwood of western r e d cedar v a r i e s i n c o l o u r more than does the heartwood of any other softwood species of B r i t i s h Columbia. This v a r i a t i o n i n c o l o u r was i n v e s t i g a t e d by Eades and Alexander i n 193U- (22). I n t h e i r study two kinds of t e s t s were made; m e c h a n i c a l - s t r e n g t h t e s t s , t o determine t o what extent c o l o u r a t i o n i n western red cedar heartwood a f f e c t s the s t r e n g t h of the wood; and c u l t u r a l t e s t s combined w i t h m i c r o s c o p i c examinations, t o determine t o what extent wood d e s t r o y i n g f u n g i were prese n t w i t h i n the wood. The s t r e n g t h t e s t s showed t h a t there were no d i f f e r e n c e s i n the s t r e n g t h p r o p e r t i e s of l i g h t and dark heartwood. The c u l t u r a l t e s t s showed that the l i g h t heartwood contained no micro-organsims i l l of any kind. On the other hand, the dark heartwood contained an abundance of micro-organisms i n the form of moulds, bacteria and yeasts. A similar i n v e s t i g a t i o n was carried out by Findlay and P e t t i f o r i n 19kl (26). They observed that fungal hyphae were present i n the darker wood and were absent i n the l i g h t -coloured wood. In contradiction to Eades and Alexander, Pind-lay and P e t t i f o r found that the dark-coloured wood was sof t e r , weaker, and less tough i n compression than was the l i g h t -coloured heartwood. Investigations at the Vancouver Forest Products Laboratory of the chemistry of the extractives of western red cedar (8, 3 0 , l+l, 42) , Indicated that the wood colour change from l i g h t to dark coincided with a reduction i n hot-water s o l u b i l i t y and natural preservative content. A recent study by Roff et a l (£l) showed that the change i n colour of the wood from brown to straw was associatediwLth a sharp change i n i t s extractive content, and a corresponding increase i n i t s d u r a b i l i t y . The present study (Figures 12, 16 and Tables 1, 3) indicates that the maximum creosote absorption coincides with the aft^e-stfe Agtron colour reading. The darker heartwood ab-sorbed three times more creosote than did the outer, straw-coloured heartwood. These observations, supported by s t a t i s -t i c a l analyses, indicate that a colour-measuring instrument (Agtron or similar) probably could be used to predict the creosote absorption of western red cedar heartwood. Further, 1+2 an experienced operator probably would be a b l e t o s o r t wood (tha t i s to be treated) i n t o s i m i l a r p e n e t r a b i l i t y groups merely by examining the wood v i s u a l l y . The second most Important v a r i a b l e of the s t a t i s -t i c a l analyses was found t,o, be the age of the sample o r , s p e c i f i c a l l y , the number bf annual r i n g s from the p i t h t o the ce n t e r of the specimen. S i x t y - t h r e e (an i n c r e a s e of 7) per cent of the v a r i a t i o n i n creosote r e t e n t i o n c o u l d be ex p l a i n e d by u s i n g two v a r i a b l e s , c o l o u r and age. The c o r r e l a t i o n (Table 6) between c o l o u r and age, and a l s o between age and r e t e n t i o n , was found t o be h i g h l y s i g n i f i c a n t . When three independent v a r i a b l e s , c o l o u r , age and e f f e c t i v e 1% NaOH s o l u b i l i t y were c o n s i d e r e d , s i x t y - f o u r per cent (an i n c r e a s e of 1%) of the v a r i a t i o n I n creosote r e t e n t i o n was e x p l a i n e d . The term ' ' s p e c i f i c g r a v i t y " r e f e r s t o the apparent s p e c i f i c g r a v i t y of a p i e c e of wood, i n c l u d i n g i t s v o i d volume and i n t h i s case i t s e x t r a c t i v e s . When wood i s reasonably d r y , i t s d e n s i t y i n d i c a t e s the approximate amount of a i r space ( c e l l c a v i t i e s ) a v a i l a b l e f o r h o l d i n g l i q u i d s . Consequently, the g r e a t e r the volume of these c a v i t i e s ( i . e . the lower the s p e c i f i c g r a v i t y , the grea t e r the a b s o r p t i o n c a p a c i t y . The r e g r e s s i o n c o e f f i c i e n t s (b) f o r s p e c i f i c g r a v i t y (x£) i n the m u l t i p l e r e g r e s s i o n equations were nega-t i v e , meaning that with an i n c r e a s e i n s p e c i f i c g r a v i t y , the r e t e n t i o n of creosote was a f f e c t e d n e g a t i v e l y . 43 When more than f o u r independent v a r i a b l e s were used i n the m u l t i p l e r e g r e s s i o n e q u a t i o n , the r e l i a b i l i t y of the equ a t i o n d i d not i n c r e a s e a p p r e c i a b l y u n t i l a l l e i g h t indepen-dent v a r i a b l e s were c o n s i d e r e d together. 2. P e n e t r a t i o n of pentachlorophenol The p a t t e r n of pentachlorophenol r e t e n t i o n was s i m i l a r to t h a t of creosote ( F i g u r e s 16 and 17). Creosote o i l s and mi x t u r e s , and o i l - b o r n e p r e s e r v a t i v e s , do not penetrate or pass through the substance c o n s t i t u t i n ^ t h e c e l l w a l l s of wood, but move from c e l l t o c e l l through communicating p i t s (37). The most important independent v a r i a b l e a f f e c t i n g the p e n t a c h l o r o -phenol r e t e n t i o n was found t o be c o l o u r ( s i m i l a r t o cre o s o t e r e t e n t i o n ) . C o n s i d e r i n g c o l o u r s. alone as an independent v a r i -a b l e , k2 per cent of the v a r i a t i o n i n m u l t i p l e l i n e a r r e g r e s -s i o n was e x p l a i n e d . When e f f e c t i v e 1% NaOH s o l u b i l i t y and s p e c i f i c g r a v i t y were c o n s i d e r e d , an i n c r e a s e of 3 per cent making a t o t a l of 45 per cent was obtained. When more than t h r e e independent v a r i a b l e s were used, the v a r i a t i o n remained almost the same. With a l l e i g h t independent v a r i a b l e s b e i n g c o n s i d e r e d , $1 per cent of the v a r i a t i o n could be e x p l a i n e d by m u l t i p l e l i n e a r r e g r e s s i o n - an i n c r e a s e of 9 per cent over the percentage noted when only one v a r i a b l e was used. kk 3. P e n e t r a t i o n of Wolman s a l t Wolman s a l t s belong t o the water-borne p r e s e r v a t i v e group (3). Since water-borne p r e s e r v a t i v e s can ent e r the c e l l w a l l s t r u c t u r e (12, 21, 27, 1+6, kit 55) they p e n e t r a t e wood d i f f e r e n t l y than do creosote o i l s and o i l - b o r n e p r e s e r v a t i v e s . I n the presen t study, when the creosote and penta-chl o r o p h e n o l r e t e n t i o n s were p l o t t e d over age, p a r a b o l i c curves were formed (Fi g u r e s 16, 17). The Wolman s a l t r e t e n t i o n curve, i n s t e a d of be i n g p a r a b o l i c , was a s t r a i g h t l i n e ( F igure 18). D i f f e r e n c e s between types of ourve may have o r i g i n a t e d i n the passages i n the heartwood a v a i l a b l e to p r e s e r v a t i v e s . Those passages may have been r e s t r i c t e d i n the p i t h r e g i o n when creo-sote and pentadhlorophenol were used. The p e n e t r a t i n g flow of a Wolman s a l t s o l u t i o n i s not r e s t r i c t e d t o such passages i n the c e l l w a l l s and, t h e r e f o r e , i t s p a t t e r n of a b s o r p t i o n d i f f e r s from t h a t of creosote or pentachlorophenol. When a m u l t i p l e l i n e a r r e g r e s s i o n technique was used to evaluate the importance of independent v a r i a b l e s , the age v a r i a b l e remained while a l l the other v a r i a b l e s were e l i m i n a t e d . C o n s i d e r i n g the age v a r i a b l e , a l o n e , 86 per cent of the Wolman s a l t p e n e t r a t i o n v a r i a t i o n c o u l d be ex p l a i n e d by l i n e a r r e g r e s -s i o n . When a l l e i g h t independent v a r i a b l e s were considered t o g e t h e r , 89 per cent of the v a r i a t i o n was e x p l a i n e d (an i n -crease of 3 per c e n t ) . B e a r i n g t h i s i n mind, i t can be c o n c l u -ded t h a t , w i t h an i n c r e a s e i n age (number of annual r i n g s from the p i t h ) , the Wolman s a l t r e t e n t i o n of western red cedar heartwood w i l l decrease. 1*5 Ij.. Hot-water e x t r a c t i o n and p e n e t r a b i l i t y Retentions f o r the e x t r a c t e d western red cedar b l o c k s ace g i v e n i n Table 4. and p l o t t e d i n F i g u r e s 16, 17 and 1 8 . Retentions f o r the e x t r a c t e d and unextracted blocks were com-pared s t a t i s t i c a l l y . Analyses of v a r i a n c e showed a s i g n i f i c a n t d i f f e r e n c e i n creosote and pentachlorophenol r e t e n t i o n at a 9 9 per cent l e v e l of p r o b a b i l i t y , and a s i g n i f i c a n t d i f f e r e n c e i n Wolman s a l t r e t e n t i o n a t a 9 5 per cent l e v e l of p r o b a b i l i t y . The h o t - w a t e r - s o l u b l e e x t r a c t i v e s removed by b o i l i n g (Table I4.) d i f f e r e d by approximately 10% from the hot-water s o l u b i l i t y (Table 2 ) , the l a t t e r b e i n g lower. I t appears that the pro-longed b o i l i n g of the b l o c k s i n water not only.removed the hot-water s o l u b l e e x t r a c t i v e s , but p a r t i a l l y h y d r o l y s e d the wood as w e l l . H a r r i s , i n Wise and Jahn ( 6 5)j s t a t e d t h a t a treatment of wood with water a t e l e v a t e d temperatures s o l u b i l i z e d 10 - 3 0 per cent of the wood weight, and t h a t h e m i c e l l u l o s e was the main wood component to be converted to w a t e r - s o l u b l e products. T h e r e f o r e , i t cannot be s a i d here t h a t the hot-water s o l u b l e e x t r a c t i v e s are r e s p o n s i b l e f o r an i n c r e a s e i n the p e n e t r a b i l i t y of western r e d cedar. G. Fungal i n f e c t i o n and p e n e t r a b i l i t y When the r a d i a l and t a n g e n t i a l s e c t i o n s of western red cedar were examined under a microscope, some hyphae were found p a s s i n g d i r e c t l y from c e l l t o c e l l and some through p i t membranes. Hyphae c r o s s e d the t r a c h e i d s at r i g h t a n g l e s , only o c c a s i o n a l l y sending o f f a branch which extended up or down a lumen. The l a r g e hyphae, where they passed through the c e l l w a l l s , were s h a r p l y c o n s t r i c t e d . The g e n e r a l appearance of the hyphae was s i m i l a r t o t h a t of Deuterornycetes (13) and resembled that seen i n y e l l o w cedar (Chamaecyparis n o o t k a t e n s i s (D. Don) Spach) t e s t m a t e r i a l i n f e c t e d w i t h t h i s c l a s s of f u n -gus (F i g u r e s 19 and 20). Deuterornycetes may not cause decay damage but c e r t a i n s p e c i e s have been found to reduce decay r e s i s t a n c e of wood by r e d u c i n g the t o x i c e x t r a c t i v e content (52). Mycelium of t h i s coarse l i n e a l type may o f t e n be found adjacent t o a c t u a l decay and,owing t o t h e i r size,may o f t e n tend t o obscure the f i n e , o f t e n h y a l i n e hyphae produced i n the e a r l y stages of a t t a c k by the wood-destroying organism (53)* The f a c t t h at the b u t t of the sample t r e e was r o t t e n i n f e r s t h a t the a c t u a l sample area might a l s o be i n f e c t e d with decay. Observation showed a l i g h t e r area about the p i t h and such a c o l o u r a t i o n i s a s s o c i a t e d w i t h i n c i p i e n t decay of the white r o t type which i s commonly found i n t h e t r e e (53)• T h e two main types of f u n g a l decomposition of wood have been d e s c r i b e d as brown r o t s and white r o t s . I n a brown r o t the c e l l u l o s e and i t s a s s o c i a t e d pentosans are a t t a c k e d , w h i l e the l i g n i n i s l e f t i n a more or l e s s unchanged c o n d i t i o n ; i n a white r o t a l l the components of the wood, i n c l u d i n g the l i g n i n , are decomposed (19). 47 L l e s e and Schmid (39) i n v e s t i g a t e d the growth of a blue s t a i n f u n g i i n n a t u r a l l y b l u e - s t a i n e d pine and spruce sapwood. They observed t h a t the hyphae growing through the bordered p i t s f i r s t e n ter through an open t o r u s , and then, without b e i n g c o n s t r i c t e d , break through the next torus or penetrate the p i t w a l l w i t h f i n e - b o r e hyphae. The bore holes showed no evidence of c e l l - w a l l - d i s s o l v i n g enzymes. Since creosote and o i l - b o r n e .^preservatives move from c e l l to c e l l . . . . . through the communicating p i t s (37), the bore holes l e f t by hyphae may i n c r e a s e the a v a i l a b l e number of passages i n the c e l l w a l l s . During the present study, i n order t o i n d i c a t e the presence and extent of f u n g a l i n f e c t i o n i n western red cedar, one per cent c a u s t i c soda s o l u b i l i t i e s of the specimens were determined. Although the e f f e c t i v e 1% NaOH s o l u b i l i t y was only 3 per cent higher i n the f u n g a l i n f e c t i o n zone than i n the sound wood ( F i g u r e 15), the c o r r e l a t i o n s between e f f e c t i v e 1% NaOH s o l u b i l i t y of wood and the r e t e n t i o n s of a l l three p r e s e r v a t i v e s were found t o be s i g n i f i c a n t at the 99 per cent l e v e l of p r o b a b i l i t y (Table 6). This means that the e f f e c t i v e 1% NaOH s o l u b i l i t y i s a good i n d i c a t o r of the p e n e t r a t i o n of p r e s e r v a t i v e s i n t o the western red cedar heartwood. I n brown r o t s , a 1% NaOH s o l u b i l i t y i s roughly pro-p o r t i o n a l t o the c e l l u l o s e d e p l e t i o n - t h a t i s , the a l k a l i n e -s o l u b i l i t y i n c r e a s e s markedly w i t h decay. I n white r o t s the a l k a l i - s o l u b i l i t y i n c r e a s e s only s l i g h t l y or not at a l l , as the decay proceeds (65). The three per cent h i g h e r e f f e c t i v e 48 1% NaOH s o l u b i l i t y found i n the f u n g a l i n f e c t i o n zone ( F i g u r e 15) would i n d i c a t e that the i n f e c t i o n was of a white r o t type. The i n v e s t i g a t i o n s by R o f f et a l (52) showed a v a r i e d p a t t e r n f o r the decay r e s i s t a n c e of western red cedar heartwood. I t was found t h a t the r a d i a l p o s i t i o n i n the t r e e was u s u a l l y the d e c i d i n g f a c t o r , m a t e r i a l n e a r e s t to the p i t h b e i n g lowest and that at the p e r i p h e r y h i g h e s t i n decay r e s i s -tance. C o l o u r a t i o n was a l s o an i n d i c a t i o n of p o t e n t i a l dura-b i l i t y , straw-coloured wood be i n g s u p e r i o r t o brown wood. I n the present study, no t h u j a p l i c i n s were found i n the p i t h r e g i o n . Around the 50-year mark, t h u j a p l i c i n s began to appear and t h e i r content i n c r e a s e d from here to the p e r i -phery. On the other hand, hyphae were found i n every s p e c i -men from the pith-outward t o , and i n c l u d i n g specimens Nl5, El5, Sl5, and W13. From these f o u r specimens, c o n t a i n i n g f u n g a l i n f e c t i o n , the h i g h e s t t h u j a p l i c i n content - , 0 . 3 6 1 per cent - was found i n sample Sl5. The next specimen i n the same r a d i a l d i r e c t i o n , S17, contained 0,54-9 per cent of t h u j a p l i -c i n s on the average, and had no f u n g a l i n f e c t i o n . T h i s i n d i -cates t h a t the f u n g a l i n f e c t i o n ceased to e x i s t i n western r e d cedar heartwood c o n t a i n i n g t h u j a p l i c i n s somewhere between 0 . 3 6 1 to 0.549 per cent. The present study, and others (8, 3 0 , 4.2, 52),, have shown that the t h u j a p l i c i n content i n the western red cedar stem i n c r e a s e s i n the d i r e c t i o n from the p i t h to the p e r i p h e r y . P robably, no p r e s e r v a t i v e treatment would be r e q u i r e d outward from the zone containing t h u j a p l i c i n s somewhere between 0.360 to 0.550 per cent. Of course, additional observations or ex-periments would be required to e s t a b l i s h t h i s borderline more clo s e l y . The present study also showed that when the speci-mens were treated under similar conditions, the inner, darker heartwood was superior i n p e n e t r a b i l i t y , r e t a i n i n g on the average 2 to 3 times more preservatives than the outer, straw-coloured heartwood. This difference i n p e n e t r a b i l i t y could be an advantage i n the commercial treatment of western red cedar heartwoodjwith preservatives. 50 S U M M A R Y 1. The r e t e n t i o n s of c r e o s o t e , pentachlorophenol and Wolman s a l t i n the sapwood zone exceeded those i n the heartwood. 2. When the heartwood specimens were t r e a t e d under s i m i l a r c o n d i t i o n s , the i n n e r , Sarker heartwood was s u p e r i o r i n p e n e t r a b i l i t y , r e t a i n i n g on the average 2 t o 3 times more p r e s e r v a t i v e s than d i d the o u t e r , straw-coloured heartwood. 3. When a m u l t i p l e l i n e a r r e g r e s s i o n technique was used t o evaluate the importance of independent v a r i a b l e s such as age, d i s t a n c e from the p i t h , growth r a t e , latewood per-centage, s p e c i f i c g r a v i t y , c o l o u r , hot-water s o l u b i l i t y and e f f e c t i v e 1% NaOH s o l u b i l i t y as they a f f e c t e d p r e s e r -v a t i v e r e t e n t i o n i n the western red cedar heartwood, the c o l o u r v a r i a b l e f o r creosote and pentachlorophenol s o l u -t i o n , and the age v a r i a b l e f o r Wolman s a l t s o l u t i o n were the l a s t ones i n order of importance t o be e l i m i n a t e d . k. The hot-water s o l u b i l i t y was 1 . 0 per cent i n the p i t h r e g i o n and i n c r e a s e d s t e a d i l y towards the perphery of the stem, r e a c h i n g a maximum of 21»5 per cent i>n the o u t e r , straw-coloured heartwood. -In the sapwood, the hot-water-s o l u b i l i t y was found t o be 2.]| per cent on the average. 5. Pre-treatment w i t h hot water i n order t o remove hot-water-s o l u b l e e x t r a c t i v e s improved the p e n e t r a b i l i t y of the western red cedar heartwood. However, i t i s b e l i e v e d '^ipr t h a t prolonged b o i l i n g not only removed the hot-water 51 s o l u b l e e x t r a c t i v e s , but hyd r o l y z e d the wood as w e l l . T h e r e f o r e , i t cannot be concluded that the removal of the hot-water s o l u b l e e x t r a c t i v e s was r e s p o n s i b l e f o r i n c r e a s e i n the p e n e t r a b i l i t y of the heartwood. 6 . No t h u j a p l i c i n s were found i n the sapwood or i n the p i t h r e g i o n of heartwood. Around the 5 0-year mark t h u j a p l i c i n s began t o appear and t h e i r content i n c r e a s e d from t h i s r e g i o n t o the p e r i p h e r y r e a c h i n g a maximum of 0 . 8 3 5 P © r cent i n the straw-coloured outer heartwood. 7. A f u n g a l i n f e c t i o n , b e l i e v e d t o be one of the Fungi  I m p e r f e o t i of the white r o t c l a s s , was found s p r e a d i n g from the p i t h r e g i o n towards the p e r i p h e r y i n the west-ern r e d cedar heartwood. In the r e g i o n where t h u j a p l i -c i n c o n c e n t r a t i o n reached 0 , 3 6 1 to 0.5i|-9 per cent the f u n g a l i n f e c t i o n was not found. 5 2 REFERENCES 1. Agtron Company, T h e ' e l e c t r o n i c c o l o u r instrument f o r q u a l i t y c o n t r o l . M o d e r " F M Agtron t e c h n i c a l de-s c r i p t i o n . Agtron Company, Monterey, C a l . 2pp. 2. Agtron Company. "A l i s t of some users showing versa-t i l i t y of Agtrons on s p e c i f i c p roducts. Agtron Company, Monterey, C a l . 5pp« 3. American Wood-Preservers' A s s o c i a t i o n . 1962. Manual of recommended p r a c t i c e . AWPA. Washington, D. C. 1+. Amsler, A.J. & Co. 19i | 7 . Amsler wolurae-meter. D e s c r i p -t i o n No. 501. A l f r e d J. Amsler & Go. Schaffhouse ( S w i t z e r l a n d ) . 2pp. 5 . Anderson, A.B. and J. Gripenberg. I9I48. A n t i b i o t i c substances from the heartwood of Thuja p l i c a t a D. Don. A c t a Chem. Scand. 2: 61+14.-650. 6. Bailey", I.W. 1913' The p r e s e r v a t i v e treatment of wood. L a n d I I . F o r e s t r y Quart. 11: 12-20. 7. B a i l e y , I.W. . 1 9 5 7 . The s t r u c t u r e of the p i t membranes i n the t r a c h e i d s of c o n i f e r s . Holz Roh - Werkstoff 1 5 ( 5 ) ; 210-213. Commonwealth S c i e n t i f i c and Indus-t r i a l Research O r g a n i z a t i o n T r a n s . 3639. 8. B a r t o n , G.M. and J.A.F. Gardner. 1951t- The chemical nature of the acetone e x t r a c t i v e of western red cedar. Pulp Paper Mag. Can. 5 5 ( 1 0 ) : 132-137. 9. Beckman' Instruments, Inc. 1950. Operating i n s t r u c t i o n s f o r the .Beckman model B" spectrophotometer. B u l l . 206-C. Beckman Insturments, Inc. South Pasadena, C a l . 12pp. 10. B e l f o r d , D.S. and C D . Cook. 1959. The d i s t r i b u t i o n of s a l t s i n timber p r e s s u r e t r e a t e d w i t h a water-borne p r e s e r v a t i v e . Wood, London 2l+(10) : I 4.ll - I 4.i2. 11. Belford", D.S. arid C D . Cook. i 9 6 0 . Research on a water-borne p r e s e r v a t i v e . Wood, London. 2 5 ( 8 1 : 330-332. 12. B e l f o r d , *0.S. , R.D. P r e s t o n , Cook, D.D. and ELH. Nevard. 1957. Timber preservat i o n by copper compounds, Nature 180(1^92): IO80-IO83. 1 •» 53 13. Boyce,~J."S. 19k8. F o r e s t Pathology. McGraw-Hill Book Co., Inc. New York. 550pp. Ik. Bramhall," G." 1962. E f f e c t of marine" b o r e r s on wooden s'tructiores i n B r i t i s h ' C o l u m b i a waters. "Project V - l l k , Prog. Rep. No. 2. For. Prod. Lab of Can. Unpublished.:, 8pp. 15. Brauna",""F'.E. "1952. The Chemistry" of L i g n i n . Academic Press I n c . , New York. 808pp. 16. Brown, H.P. , A.J.Panshih and C . C . F o r s a i t h . 19k9. Textbook of Wood Technology, V o l . I . McGraw-Hill Book Co., I n c . , New York. 652pp. 17. Brown, H.P., A.J.Panshih and C.C. F o r s a i t h . 1952.' Textbook of Wood Technology, V o l . I I . McGraw-H i l l Book Co., I n c . , New York. 783pp. 18. Buro, A. and E.A.Buro. 1959. B e l t r a g zur Kenhtnis der Eindrihgwege f u r F l u s s i g k e i t e n i n K i e f e r n -I B O I Z . H o l z f o r s c h . 13(8): 71-77. 19. C a r t w r i g h t , K. St.G. and W.P.Flndlay. 1958. Decay of Timber and i t s P r e v e n t i o n . Her Maj. S t . O f f . London. 332pp. 20. Cote, W.A. and W.Liese. 1958. E l e c t r o n microscope s t u d i e s of p i t membrane s t r u c t u r e . F o r e s t Prod. J. 8(10): 296-301. 21. D'Ans, A.M. and B.Schulzev. 1956. E l e c t r o n - m i c r o s c o p -i c a l i n v e s t i g a t i o n s of impregnated woods. Holz Roh - Wejcstoff. lk(7): 252-256. U.S.D.A. For. Prod. Lab. Trans. No. 322. 22. Eades, H.W. and J.B.Alexander. 193k. Western r e d cedar: S i g n i f i c a n c e of i t s heartwood c o l o u r a t i o n s . Dept. of I n t e r i o r , Can. For. Serv. C i r c u l a r k l . 17pp. 23. Erdtman, H. and Gripenberg, J. 19k8. A n t i b i o t i c sub-stances from the heartwood of Thu.fa p l i c a t a D. Don. Acta Chem, Scand. 2: 625-6k3. 2k. Erdtman, H. and Gripenberg, J . 19k9. S t r u c t u r e of f h u j i c a c i d . Nature 16k: 316. 25. E z e k i e l , M. and K.A.Fox. 1959. Methods of C o r r e l a t i o n and R e g r e s s i o n A n a l y s i s . John Wiley and Sons, Inc. New York. 5k8pp. 54 26. P i n d l a y , W.P.K. and C.B. P e t t i f o r . 1941 . Dark c o l o u r a -t i o n i n western r e d cedar i n r e l a t i o n t o c e r t a i n mechanical p r o p e r t i e s . Erap. F o r e s t J . 2 0 ( 1 ) : 6 4 - 6 9 . 27. F l e i s c h e r , " H . O . 1950. An anatomical comparison of r e f r a c t o r y and e a s i l y t r e a t e d Douglas f i r heartwood. Proc. AWPA. 4 6 : 1 5 2 - 1 5 6 . 2 8 . Freuderiberg, K. I 9 6 0 . The fo r m a t i o n of wood and l i g n i n . Paper presented at F i f t h World F o r . Congr* S e a t t l e , Wash. 1 2 p p . 29. Gardner, J.A.P. , G.M.Barton arid H.MacLean. 1957 . ' Occurrence of 2 , 6-dihydroxy-Ijf.-isopropyl-2 , " 4 . , 6 c y c l o h e p t a t r i e r i - l - o r i e (7-hydroxy-LL-isopropyltropo-ldne) i n western r e d cedar (Thuja p l i c a t a Donn). c a n J . Chem. 3 5 : 1 0 3 9 - 1 0 4 8 . 3 0 . Gardner, J.A.F. and G.M.Barton. 1 9 5 8 . The. extraneous components of western r e d cedar. F o r e s t Prod. J. 8 ( 6 ) : 1 8 9 - 1 9 2 . 31. Gardner, J.A.P. , G.M.Barton arid H. MacLeari. 1 9 5 9 . The polyoxyphenols of western red cedar (Thuja  p l i c a t a Donn). I. I s o l a t i o n arid p r e l i m i n a r y c h a r a c t e r i z a t i o n of p l i c a t i c a c i d . Can. J. Chem. 3 7 : 1 7 0 3 - 1 7 0 9 . 3 2 . Gardner, J.A.F., B.F.MacDonald and H.MacLean. i 9 6 0 . The "polyoxyphenols of western r e d cedar (Thuja .. p l i c a t a Donn). I I . Degradation s t u d i e s of p l i c a -t i c a c i d , a p o s s i b l e l i g n i n a c i d . Can. J. Chem. ,. 3 8 : 2 3 8 7 - 2 3 9 4 . 33. G i l l i s , John A . 1 9 6 3 " . P h o t o e l e c t r i c method of determin-i n g f l o u r c o l o u r . ' R e p r i n t from C e r e a l Science Today. 8(2). 7pp. 3 4 . G r i f f i n , G.T. 1 9 1 9 . " B o r d e r e d p i t s i n Douglas f i r : A study o f the p o s i t i o n of the torus i n mountain and low-land specimens i n r e l a t i o n of creosote penetra-t i o n . J. F o r e s t , 17(1)5 8 1 3 - 8 3 3 . 3 5 . : G r i f f i n , G.T. 1 9 2 4 . F u r t h e r note on the p o s i t i o n of t h e " t o r i i n bordered p i t s i n r e l a t i o n t o p e n e t r a t i o n of p r e s e r v a t i v e s . J . F o r e s t . 22 ( 6 ) : 8 2 - 8 8 . 3 6 . H i l l i s , W .E.1962. Wood E x t r a c t i v e s and t h e i r S i g n i f i c a n c e t o the." Pulp and Paper I n d u s t r i e s . Academic P r e s s , New York & London. 5 l 3 p p . 3 7 . Hunt, G.M.'and G.A. G a r r a t t . 1 9 5 3 . Wood P r e s e r v a t i o n . McGraw-Hill Book Co., Inc. New York. 417 pp. 55 Koran, Z. I960. P e r m e a b i l i t y of a mountain-type Douglas f i r stem c o n t a i n i n g i n c l u d e d sapwood bands. Univ. of B r i t . C o l . Unpublished. M.P. T h e s i s , 6 l p p . L i e s e , ¥. and R.Schmld." 1961. L i c h t - u h d e l e c t r o n e n -mikroskopische Untersuchungen uber das'Wachsturn von Blau e p l T z e n i n K i e f e r n - u n d ' F i c h t e n h o l z . H o l z H Roh-Werkstoff. 19 ( 9 ) : 3 2 9 - 3 3 7 . MacLean, H". and J.A.P. Gardner. 1 9 5 6 . D i s t r i b u t i o n of f u n g i c i d a l e x t r a c t i v e s ( t h u j a p l i c i n ' a n d water-s o l u b l e phenols) i n western r e d cedar heartwood. F o r e s t Prod. J . 6 ( 1 2 ) : 510-516. MacLean, H. and J.A.F. Gardner. 1 9 5 6 . A n a l y t i c a l method f o r t h u j a p l i c i n s . A n a l . Chem. 28(k_): 509-512. MacLean, H., and J.A.F. Gardner. 1 9 5 8 . D i s t r i b u t i o n of f u n g i c i d a l e x t r a c t i v e s i n "target p a t t e r n heartwood of western red cedar. F o r e s t . Prod. J . 8(3_): 1 0 7 -1 0 8 . Marts, a.C." 1 9 5 5 .Some s t r u c t u r a l d e t a i l s of Douglas f i r p i t membranes by phase c o n t r a s t . Proc. F o r e s t . Prod. Res. Soc. 5(5): 3 8 I - 3 8 2 . P a t e r s o n , A.L. 1 9 6 3 . P e r s o n a l communications. P h i l l i p s , E.W.T. I933. Movement of p i t membrane i n coniferous" wood wit h s p e c i a l r e f e r e n c e t o p r e s e r -v a t i v e treatment. F o r e s t r y 6 ( 1 ) : 1 0 9 - 1 2 0 . P r e s t o n , R.D. 1 9 5 9 . The f i n e ' s t r u c t u r e of wood wit h r e f e r e n c e t o impregnation. Timber Techn. 6 7 ( 2 2 k j ? ) : k 5 9 - k 6 k . P r e s t o n , R . D . 1 9 5 9 . The f i n e s t r u c t u r e of wood wit h r e f e r e n c e t o impregnation - 2 . Timber Techn. 67(2214.6) : 5 0 3 ^ 5 0 8 . Rennerf e l t , E. " I9I4.8. I n v e s t i g a t i o n s of t h u j a p l i c i n , a f u n g i c i d a l substance i n the heartwood of Thuja p l i c a t a D. Donw. P h y s i o l . Plantarum. 1 : 2 k 5 - 2 5 k . Rochester, G.H. 1 9 3 3 . The mechanical p r o p e r t i e s of Canadian woods. Can. For. Prod. Lab. 8 8 p p . R o f f , J.W. and J.M. At k i n s o n . I 9 5 k . T o x i c i t y t e s t s of a wa t e r - s o l u b l e p h e n o l i c f r a c t i o n " ( t h u j a p l i c i n f r e e ) of western r e d cedar. Can. J. Botany. 3 2 : 3 0 8 - 3 0 9 . 56 5 1 . R o f f , J.W. and E.I. Whittaker. 1959 . T o x i c i t y t e s t s of a new t r o p o l o h e , p - t h u j a p l i c i n o l (7-hydroxy - 4 -i s o p r o p y l t r o p o l o n e ) o c c u r r i n g i n western red cedar. Can. J. Botany. 3 7 : 1132-1134. 5 2 . R o f f / J.W., E.I.Whittaker and J.W. Eades. 1 9 6 3 . Decay r e s i s t a n c e of western red cedar. Can. Dept. of For. , For. p r o d . Res. Br. T e c h n i c a l Note No. 3 2 . 19pp. 5 3 . R o f f , J.W. 1 9 6 3 . P e r s o n a l communications. 5 4 . R o l l i n s , M.L. and V.W. "Tripp. I 9 6 I . The" a r c h i t e c t u r e of c e l l u l o s e : a m i c r o s c o p i c review. F o r e s t Prod.-J. 1 1 ( 1 1 ) : 4 9 3 - 5 0 4 . 5 5 . Smith, F.G., R.R. Bottoms, E. Abrams and S.M. M i l l e r . 1956. A new method f o r l o n g term p r e s e r v a t i o n of wood by chemical m o d i f i c a t i o n . F o r e s t Prod. J. . • 6 ( 9 ) : 3 4 0 - 3 4 5 . 5 6 . Snedcor, G.W. 1 9 5 6 . S t a t i s t i c a l Methods. Iowa State C o l l . -Press, Ames, Iowa. 534pp« 5 7 . Stamm, A.J. 1 9 2 9 . The c a p i l l a r y s t r u c t u r e of softwoods. J. Agr. Res. 3 8 ( 1 ) : 2 3 - 6 7 . 5 8 . Stamm, A.J. 1929. D e n s i t y of wood substance, adsorp-t i o n ' by wood , and p e r m e a b i l i t y of wood. J. Phys. Chem. 33(1) : 398 -414/ 5 9 . S t e e l , G.D., and J.H. T o r r i e . I960. P r i n c i p l e s and' Procedures of S t a t i s t i c s . McGraw-Hill Book Co., Inc. , New York. k 6 T p p . 6 0 . Tiemann, H.D. 1910 . The p h y s i c a l s t r u c t u r e of wood i n r e l a t i o n t o i t s p e n e t r a b i l i t y by p r e s e r v a t i v e f l u i d s . Am. Ry. Eng. and Maint. of Way Ass. B u l l . 1 2 0 ( 1 1 ) : 7 H - 7 9 6 . ~ 6 1 . Wardrop, A.B. and G.W. Davies. 1 9 5 8 . Some anatomical f a c t o r s r e l a t i n g to the p e n e t r a t i o n of water i n t o xylem of gymnosperms. A u s t r a l . J. Bot. 6 (2) : 9 6 - 1 0 2 . 62. Weiss, H.F. 1912. S t r u c t u r e of commercial woods i n r e l a t i o n to the i n j e c t i o n of p r e s e r v a t i v e s . Proc. AWPA. ' 8 : 1 5 8 - 1 8 7 . 6 3 . W i l s o n , J.W. 1 9 6 3 . D i f f e r e n t i a t i n g wood s p e c i e s , wood zones and"growth zones by c o l o u r t e s t s . Univ. of B r i t . C o l . Unpublished. 12pp. £>\\. W i l s o n , J.W. 1 9 5 1 . An o u t l i n e of microtechnique methods f o r the wood t e c h n o l o g i s t . Univ. of B r i t . C o l . Unpublished. 26pp. 6 5 . Wise, L.E. and'E.G. J a h i i . 1 9 5 2 . Wood Chemistry. . V o l . 1 & 2. Reinhold Publ. Corp. New York. 13i|.3pp. TABLE 1 Age, d i s t a n c e from p i t h , growth r a t e , per cent latewood values and s p e c i f i c g r a v i t y (based on oven-dry volume) of western red cedar specimens Specimen Age, Dist a n c e Growth Ave-. S p e c i f i c C o l o u r , No. from r a t e , L a t e - G r a v i t y A g tron p i t h , i n . p i n g s / i n . wood ,% Un i t s NI 14 1.6 9.9 11 0.324 30.0 SI 12 1 . 4 9.2 12 0.317 27.0 Ave. 13 1 .5 9 . 6 1 1 . 5 0.320 28.50 N3 22 ' 2 . 4 10.5 13 0.322 24.0 Etj. 27 3 .1 11 .7 13 0.324 24.0 S3 22 2.e7 10.5 16 0.^18 24.5 Wlj. 21 2.3 12.0 12 0.320 26 .5 Ave. 23 2.6 11 .2 13.5 O.32I 24.75 W5 32 3 .4 12.3 16 0.323 18.5 E6 37 4 .0 10.0 13 0.313 21.0 S5 36 4 . 1 9.3 13 0.291 20.5 ¥6 " 38 3.7 9.6 13 0.321 24.0 Ave. 36 3.8 10.3 13.8 0.312 21.00 N7 47 4. 7 12.7 14 0.285 12.5 E8 47 5 .0 I K 2 16 0.303 14.0 S8 '44 4 .8 10.1 15 0.3H l4.0 ¥ 8 46 4 . 6 J2.1 16 0.285 20.0 Ave. 46 4 .8 12.1 15.2 0.296 15.25 N9 62 516 i 6 ; 6 16 0.298 1 4 . 5 E10 59 5 .8 18.0 16 O.298 12.0 S10 58 5 . 7 15.3 18 0.300 11.0 ¥9 '57 5 . 4 18.0 19 0.285 14.5 Ave. 59 5 . 6 17.0 17.2 0.295 13.00 N12 85 7 .2 1 7 . 4 5-9 0.291 14.0 E l l 83 7 . 1 25.2 18 O.315 12.0 S12 76 6 .9 18 . 8 17 0.305 13.0 ¥11 72 6.3 19*6 15 0.295 13.0 Ave. 79 6.9 20*3 17.2 0.301 13.00 Nl4 103 8.1 21.8 18 0.314 13.0 Ellj. 98 7.9 ' 36.0 16 0.314 16 . 5 S l i i 96 8.0 29.6 18 0.331 18.5 ¥13* 100 7 . 7 33.1 16 0.320 13-5 Ate. 99 7.9 30.1 17.0 0.320 15.38 59 TABLE 1. (continued) Specimen Age, Distance Growth Ave. " . S:pe:c4/f i o Colour No. from r a t e , L a t e - A g t r o n p i t h , i n . r i n g s / i n . wood ,% Un i t s B l 5 131 9.0 29*0 14 0.328 13.0 E15 136 9.0 29.5 15 0.319 1 5 . O si5 132! 8*9 35.2 16 0.322 16.0 ¥ 1 5 136 8.6 28e7 14 0.319 18.0 Ave. 134 8.9 30.6 14.8 0 . 322 15.50 N18 158 10.2 29.1 13 0.300 34 .5 E l 8 166 10.2 41.7 14 0.328 44.0 S17 I6I4. 9.9 37.5 16 O.322 30.0 W17 16£ 9.6 43.6 13 0.309 18.0 Ave. 163 10.0 38.0 14.0 O.314 31.62 N19 200 10.9 67.3 14 0.381 4 4 . 5 E19 200 11.6 56.2 15 0.352 4 7 . 5 S20 199 11.1 48.2 13 0,315 23.0 ¥19" 200 10 . 7 54.3 12 0.332 46.0 Ave. 200 11.1 56 .5 13 .5 0 .345 40.50 N21 246 11. 9 71.2 14 0.316 51.0 E2I 247 12 . 9 48.9 14 0.311 52.0 S21 250 12.0 60.1 13 0.307 54.0 ¥21 252 12.1 72.9 13 0.332 51.0 Ave. 249 12.2 63.3 13 . 5 0.317 53.00 N2k 276 13.1 31.6 13 0*258 64.0 E23 276 14.O 23.5 12 0 .259 71.5 S 2 3 276 12 . 9 25 .3 14 0 .255 72.0 ¥23'" 278 I3.O 27.0 13 0.262 68.0 Ave. 276 13.2 26 . 9 13.0 0 .259 68.87 60 TABLE fy. (continued) Age, D i s t a n c e Growth Ave. S p e c i f i c C o l o u r , y r . from r a t e , L a t e - G r a v i t y A g t r o n p i t h , i n . r i n g s / i n . wood,$ -. U n i t s Means, standard d e v i a t i o n s , maximum and minimum values f o r a l l heartwood specimens. Mean 101+.1 7.1 ^ 28.0 14.8 0.315 24-40 S.D. 73.2 3-2 18.6 2.0 0.018 13.19 Max. 252.0 12.9 72.9 19.0 0.352 54-00 Min. 12.0 1.4 9.2 11.0 0.285 12.00 Means, standard d e v i a t i o n s , maximum and minimum values f o r a l l heartwood specimens. Mean 119.1 7-6 27-9 14-7 0.310 28.27 S.D. 85.2 3.5 17.7 2.0 0.023 17.82 Max: 278.0 14.0 72.9 19.0 0.352 72.00 Min. 12.0 1.4 9.2 11.0 0.255 12.00 61 TABLE 2 ^ot-water s o l u b i l i t y , one per cent c a u s t i c soda s o l u b i l i t y and t h u j a p l i c i n content of western red cedar specimens Spec. Hot-water" Wo. s o l u b i l i t y , % R e p l i c a t e s 1% NaOH s o l -u b i l i t y , ' % R e p l i c a t e s T h u j a p l i c i n "content, % R e p l i c a t e s 1st 2nd 1st 2nd 1st 2nd 3rd 4th NI 1.53 .1.19 13.49 12.44 0 0 _ Si'"' 1.08 ' 1.10 13.11 " 13.62 - - - -Ave. 1.22 13.16 0 N3 2.06 1.90 15.28 14.14 0 0 Eft l.l+l 1.57 13.01 13.48 - - - -S3 1.72 1.47 13.41 14.28 - - - -wij. 1.28 l.i+7 14.26 " 13.95 - - - -Ave. 1.61 13.98 0 N5 1.94 1.88 15.80 16.02 0 0 E6 1.80 2.11 l4.54 15.06 - - - -S5 2.17 2.08 17.32 16.53 - - 0 0 W6 1.77 1.86 15.41 15.01 -' - - -Ave. 1.95 15.71 0 N'7 4.37 3.96 18.12 17.63 0 0 _ E8 3 .14 3.48 16.31 16.75 - - - -S8 3.30 3.60 18.49 17.68 0 0 0 0 W8 ' 3.20 3.51 16.o4 ' 16.72 - - - -Ave. 3.57 17.22 0 N9 3.30 3.86 18.58 17.79 0 0 0 0 E10 4.14 4.43 17.80 18.06 - ' ' - ' -810 4.42 4.38 18.96 17.96 0.011 0.011 0.011 0.014 W9 3.80 4.04 17.93 18.25 - - - -Ave. 4.05 ' 18.17 0.003 N12 3 ..37 3.73 18.88 18.20 ' 0 0 0 0 E l l 5.85 5.70 20.78 20.75 0.021 0.021 0.014 0.017 S12 6.51 5.46 19.91 20.35 0.075 0.069 0.092 0.086 W l l 5.89 ' 6.23 19.81 ' 20.02 0.011 0.009 0.014 0.011 Ave. 5.34. 18.17 0.027 Nl4 7.32 7.52 22.40 21.52 0.232 0.225 0.215 0.218 Eli+ 7-58 7.30 21.97 22;25 0.131 0.117 0.137 0.120 si4 8.50 8.05 21.50 21.32 0.333 0.266 0.353 0.349 W13 8.65 '8.69 22.10 22.63 0.071 0.069 0.069 0.071 Ave. 7.95 21.96 0. 192 TABLE 2 (continued) Spec. Hot-water 1% NaOH s o l - T h u j a p l i c i n c o n t e n t , % No. s o l u b i l i t y u b i l i t y , % R e p l i c a t e s R e p l i c a t e s R e p l i c a t e s 1st 2nd 1st 2nd 1st 2nd 3rd 4th Nl5 7,56 7-59 23.61 22185 0.105 0.091 0.108 0.098 E15 11.06 10.95 25.57 24.89 0.234 0.237 0.226 0.231 S15 8.54 • 8.87 22/26 22.01 0.352 0.361 0.334 0.326 W15 9.39 9.78 23.10 23.48 0.174 0.169 0.171 0.169 Ave. 9.22 .23.47 0.212 N18 10.46 10.56 22.84 23.29 0.536 0.556 0.597 0.583 E18 14.50 14.42 28.26 21?,. 86 0.494 0.497 0.494 0.503 S17 l i : i l 11.25 22.76 23.21 0.533 0.526 0.563 0.574 W17" 12.93" 13.72 25.96 24.92 O.36O 0.357' 0.354 0.351 Ave. .. 12.37 . 2 4 . 8 9 0.492 N19 21.62 23.67 33.33 33.50 0.421 0.418 0.454 0.457 E19 22.96 22.64 35.29 34.11 0.534 0.529 0.517 0.523 520 10:8l I O . 7 I 22.77 23.13 0.386 0.490 0.507 0.507 W19" 21.15" 20.95 32.73 32.50 0.446 0.437 0.454 0.451 Ave. ..19.06 30.92 0.477 N21 20.76 2 i : o i 31.20 31.54 0.746 0.731 0.760 0.774 E21 19.16 19:98 30.20 30.68 0.820 0.814 0.829 O.835 521 20.21 20.07 30.43 30.14 0.650 0.642 0.669 0.666 W21. 21.37 "21.64 31.83 31.48 0.674 0.677 0.680 O.683 Ave. .. 20.52 30.94 0.728 N 2 4 2.42 2.40 .II2.38 12.16 E23 2.41 2.38 11.56 11.65 S23 2.38 2..43 9.09 9.89 W23' 2.39 ' 2.52' 11.98 ' 11*.68 Ave. 2.42 11.30 0 Means, standard d e v i a t i o n s , maximum and minimum values f o r a l l heartwood specimens. Mean .8.22 20.78 0.203 S.D. 6.73 6.09 0 8259 Max, 22,96 35.29 0*835 Min e 1.08. 12.44 0.000 Means, standard d e v i a t i o n s , maximum and minimum values f o r a l l specimens (heartwood and sapwood) Mean 7.71 19.99 0.185 S.D. 6.63 6.50 0.253 Max". 22.96 35.29 0.835 Min a 1,08 9.09 0.000 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 3 TABLE 3 C r e o s o t e / p e n t a c h l o r o p h e n o l and Wolman s a l t r e t e n t i o n s of western r e d cedar specimens. S p e c . Age, Creosote, Penta, Wolman No. g/cm-^  g/cm3 s a l t s , dry s a l t g/cm^ b a s i s dry s a l t b a s i s NI 14 0.132 0.0047 , 0.0042 SI 12 0.128 0.0043 o.oo4o Ave. 13 0.130 0.0045 o.oo4i N3 '22 0.136 0.0044 . 0.0040 E L L 27 O . I 4 4 o.oo46 0.0041 S3 22 0.1ii2 0.0051 0.0037 w4 " 21 0.152 0.0050 0.0043 Ave. 23 0.144 0.0048 o.oo4o N5 32 0.150 0.0049 0.0041 E6 37 0.156 0.0049 o.oo4i S5 36 0.174 0.0051 o.oo4i W6 38. 0.152 0.0051 0.0038 Ave. . 3* 0.158.. 0.0050 0.0040 N7 47 0.166 0.0048 0.0036 E8 kl 0.166 0.0048 0.0035 S8 kk 0.177 0.0052 O . O O 3 7 W8 " 46 0.178 0.0074 0.0043 Ave. 46 0.167 0.0055 0.0038 N9 62 0.273 0.0085 0.0035 E10 59 0.156 0.0052 0.0033 s i o 58 0.145 o;->oo49 0.0035 W9" '• 57 0.175 0.0059 0.0032 Ave. 59 O . I 8 7 0.0061 0.0034 N12 85 0.16.6 0.0051 0.0038 E l l 83 0.155 0.0060 0.0034 S12 76 0.134 0.0049 0.0030 W l l 72 0.146 0.0049 0.0028 Ave. , 79 0.150 0.0052 0.0032 NUj. 103 0.123 0.0047 0.'002:6 Ell f 98 0.195 0.0084 0.0036 SII4. 96 - 0.118 0.0047 0.0026 W 1 3 100 0.115 0.0048 0.0028 Ave. 99 O . I 3 8 0.0056 0.0029 6k TABLE 3 (continued) Spec. Age, Creosote Penta, ¥olman No. g/ C I l P g/cm-> s a l t s , dry s a l t g/cra3 b a s i s dry s a l t b a s i s Nl"5 131 0.122 0 .0047 0.0026 E15 136 0 . 139 0.0060 0.0032 s i 5 132 0 .150 0 .0047 0.0028 ¥15 136 0.106 0.00^6 O.OO24 Ave. 134 0 .129 0 .0050 0.0027 NI8 158 0.110 0 .0045 0.0026 E18 166 0.112 0 .0047 0 .0030 517 16k 0 .139 0 .0054 0.0025 ¥17 163 0.163 0.0065 0 . 0 0 2 8 Ave. 163 0 . 131 0Q00553 O.OO27 N19 200 O.087 0.0036 0.0026 E19 200 0.063 0 .0030 0.0020 S20 199 0.112 0.0046 0.0023 w 1 9 - 200 0.086 0.0038 0.0023 Ave. 200 0 .087 0.0037 0 . 0 0 2 3 N21 2k6 0 .057 0 . 0 0 2 5 0.0013 N21 2k7 0 .059 0.0029 0.0012 S2I 250 0 . 0 6 2 0 .0030 0.0013 ¥21" 252 0 . 0 6 1 • 0.0028 0.0015 Ave. 2k9 0 . 0 6 0 0 . 0 0 2 8 0.0013 N2k 276 0 .252 0.0101 O.OO84 E23 276 0 . 2 9 k 0.0121 Oi02tG3 S23 276 0 .327 0.0135 0.0106 ¥23 278 0.296 0.0108 0 . 0 0 8 4 Ave. 276 0 . 2 9 0 0.(3116 0 . 0 0 9 4 Means, standard d e v i a t i o n s , maximum and minimum values f o r a l l heartwood specimens Mean 104.1 0.135 0.0049 0.0031 S.D. 73.2 0.041 0.0012 0.0008 Max. 252.0 0.273 0.0085 0.0043 Min. 12.0 0.051 0.0025 0.0012 65 TABLE 3 (continued) Age, Greosote Penta, Wolman yr. g/cm3 g/cm3 s a l t s , dry s a l t g/cmr basis dry s a l t basis Means, standard deviations, maximum and minimum values for a l l specimens (heartwood and sapwood) Mean 119.1 O.llj.8 0.0055 0.0036 S.D. 85.2 0.059 0.0023 0.0020 Max. 278.0 0.337 0.0135 0.0106 Min. 12.0 0.057 0.0025 0.0012 TABLE 4 Per cent of water solubles extracted from western red cedar specimens during a .10-day extraction i n b o i l i n g water Spec. Age, Series B Series D Series F Ave. of •No. yr. blocks blocks blocks B, D and F Nl 14 11 .76 12.81 14 .75 13 .11 SI * 12, 12.92 12 .73 13 .98 13.21 Ave. 13 12 . 3 4 12 . 7 7 14 .37 13.16 N3 22 12 .34 13 .25 14 .35 13.31 E4 27 12 .59 13.09 13 .95 13.21 S3 22 11 ,95 12 .53 13.60 12 .59 W4 ' 21 12 .59 13 .67 15.08 13 .78 Ave. 23 12 .37 13.14 14 .24 13 .25 N5 32 12 .29 12. $2 13.73 12.96 E 6 37 12 .75 13.3$ 13 .73 13 .29 S5 36 ' 12.82 13 .93 14 .63 13 . 79 ¥6 38 13 .29 1 4 . 4 5 1 5 . 2 4 1 4 . 3 3 Ave. 36 12 .29 13 .64 14 .35 13 .59 N7 47 J 14 .73 15 .83 1 6 . 4 1 15 .66 E8 47 13 .84 15.11 14.96 14 .64 S3 • 44 14 .50 I 5 . 3 O 16.07 15 . 2 9 W8 ? 46 14.82 15 .53 16 .45 15.60 Ave?. 46 14 .47 15.44 15 .97 15 . 3 0 N9 62 15.26 15 ; i 7 15 .93 15 .45 E10 59 "15:54 15.46 1 6 . 3 6 15 . 79 S10 58 15.22 15.40 •15 . 3 3 15 .50 ¥ 9 ' 57 16.00 16 .02 17 . 6 9 16 .57 Ave. 59 15.50 15.51 1 6 . 4 7 15 .83 N12 85 15.13 15.37 1 6 . 5 9 15 .86 E l l 83 1 6 . 7 3 ' 17.61 1 7 . 9 2 17 .42 •S12 76 16 . 2 0 16 .57 17 .49 16 .75 w u 72 1 6 . 5 5 17 .33 18.28 . 17 . 3 9 Ave. 79 1 6 . 1 5 1$.$3 17 .57 16 .86 N14 103 17 .73 19 .72 19 .25 1 8 . 9 0 E14 98 17.90 18.41 18.85 18 .39 SI 4 96 19 : * 3 13 .83 19.26 19.31 W13 100 19 .95 2 0 . 2 5 20 .65 20.28 Ave. 99 13.35 19 .30 19 . 50 19.22 TABLE 4 (Continued) Spec. Age, Series B Series D Series F Ave. of No. yr. blocks blocks blocks B, D and F N15 131 21.27 22.43 22 .40 22.03 E15 136 21.27 222033 21.72 21.67 S15 13-2 20.84 21 .38 21.44 21.22 W15' 136 22 .54 23.46 23.05 23.02 Ave. 134 21.48 2 2 . 3 3 22.15 21. 99 NIS- 15 8 23.00 2 3 . 3 4 2 3 . 9 2 2 3 . 4 2 EIS 166 24.76 25 .24 25.93 25 .31 S17 164 23.01 2 3 . 3 0 23.88 23.40 W17' 163 25.08 24 .91 25.02 25.OO Ave . 163 23.96 24.20 24.69 24.28 NI9 200 30.74 32.17 33.28 32.06 E19 200 31.49 32.80 33 .78 32.69 S20 199 22.76 2 3 : 8 1 24 .38 23.65 W19" 200 30.69 30.69 30.20 30.53 Ave. 28.92 29.87 30.41 29.73 N21 246 32.97 33.76 34.27 33.67 E2I 247 31.55 32.51 33.02 32.36 S21 250 31.93 32.58 33.08 32.53 W21" 252 32.81 33.26 34.14 33.40 Ave. 249 32.32 33.03 33.63 32.99 N24 276 16:95 17.34 18.40 17.56 E2-3 276 14.75 14.56 16.56 15 .29 S2-3 276 14.51 15.18 16.75 15.48 ¥23 ' 278 13.85 15.15 17.70 15.57 Ave . 276 15.02 15.56 17.35 15.98 Means, standard deviations, maximum ancfeninimum values for a l l . heartwood specimens Mean 1 0 4 . 1 1 9 - 3 3 19 .95 20.60 19-96 S.D. 7 3 . 2 6 . 7 5 ' 6 . 8 3 $.$0 $ . 7 4 Max. 2 5 2 . 0 3 2 . 9 7 3 3 . 7 6 3 4 . 2 7 3 3 . 6 7 Min. 1 2 . 0 1 1 . 7 6 1 2 . 7 3 13.60 1 2 . 6 9 Means, standard deviati ons, maximum and minimum values f o r a l l specimens (heartwood and sapwood) Mean 119 .1 1 8 . 9 6 19 .58 2 0 . 3 0 1 9 . 6 l S.D; 8 5 . 2 6 . 5 7 6.60 6 . 4 0 6 . 5 2 Max. 278.O. 3 2 . 9 7 3 3 . 7 6 3 4 . 2 7 3 3 . 6 7 Min. 1 2 . 0 1 1 . 7 6 1 2 . 7 3 13.6O 1 2 . 6 9 TABLE 5 Creosote, pentachlorophenol and Wolman s a l t retentions of westefn red cedar specimens following a 10-day extraction i n b o i l i n g water Spec. No. Age, yr. Creosote, g/ cm3 Pent a., g/ cm.3 dry s a l t basis Wolman s a l t s , g/cfip dry s a l t basis NI s i •' Ave. 14 12 13 0.143 0.152 0.147 0 .0054 O.OO56 O.OO55 0 .0037 O.OO36 O .OO36 N3 E4 S3 W4"' Ave. 22 ' 27 22 21 23 0.171-0 .166 0 .189 0.166 0.173 O.OO56 0 .0059 0 .0064 0.0061 0.0060 O.OO35 0 .0040 O.OO39 0.0037 0 .0038 N5-£6 S5 W6- • Ave. 32 37 36 38 36 0.179 0.173 0 .201 0 .171 0 .181 0.0062 0 .0064 0 .0070 0 .0065 0.0065 0.0037 0 .0037 0.0037 •O.OO38 0.0037 N7 E8 S8 w8 •' Ave. 47 47 44 46 46 0.217 0.213 0 .209 0 .223 0.215 0.0072 0.0071 0 .0072 0 .0074 0.0Q72 O.OO34 O.OO38 O.OO.38 0.00 44 0 .0038 N9 ElO SIO W9 ' Ave. 62 59 58 57 59 0.269 0 .250 0 .231 0.282 0 .25£ 0 .0090 0.0087 0.0075 0 .0094 0.0086 O.OD34 0.0037 0.0035 O.OO38 0.00,36 N12 E l l S12 W I T Ave. 85 83 76 72 79 O.244 0 .224 0 .201 0 .24S 0 .229 0 .0084 0 .0078 0 .0071 0.0086 0 .0080 0.00 37' 0 . 00 3 4 0.0031 O.OO34 0.00 3 4 N H E H Ave. 103 98 96 100 99 0 . l 8 l 0 .263 ° « 1 % 0.188 0 .201 0 .0064 0.0079 0.0059 0.0067 0 .0067 0.00 26 0 .0031 0.0026 0.0027 0.(2027 69 TABLE 5 (continued) Spec. Age, Creosote, Penta, ¥olman No. yr. g/ cm3 g/ cm3 sa l t s , dry salt g/ cm? basis dry" s a l t basis N15 131 0 . 2 3 0 0 . 0 0 7 8 0.0028 E I 5 1 3 6 0 . 2 3 2 0.0080 0 . 0 0 2 9 S15 1 3 2 0 . 2 2 1 0 . 0 0 7 0 0 . 0 0 2 4 ¥15 1 3 6 0 . 2 0 2 0.0068 0 . 0 0 2 5 Ave. 1 3 4 0 . 2 2 1 0 . 0 0 7 4 0.0026 N 1 8 153 0 . 1 8 5 0 . 0 0 6 4 0 . 0 0 2 5 E l d 1 6 6 0 . 1 9 4 0 . 0 0 6 7 0 . 0 0 2 5 SI? 1 6 4 0 . 2 0 9 0 . 0 0 7 2 0 . 0 0 2 5 W17 1 6 3 0 . 2 7 0 0 . 0 0 7 8 0.0026 Ave. 1 6 3 . 0.1214 0 . 0 0 7 0 0 . 0 0 2 5 N19 2 0 0 0 . 2 1 9 0 . 0 0 7 6 0 . 0 0 3 1 E19 2 0 0 0.191 0 . 0 0 6 7 0.0026 S 2 0 1 9 9 0 . 1 8 8 0.0066 0 . 0 0 26 ¥ 1 9 ' 2 0 0 0 . 1 9 5 0 . 0 0 6 9 0 . 0 0 3 0 Ave . 2 0 0 0 . 1 9 8 0 . 0 0 7 0 0.0028 N21 2 4 6 0 . 1 7 6 0 . 0 0 6 1 0 . 0 0 2 1 E21 2 4 7 0 . 1 7 4 0 . 0 0 6 1 0 . 0 0 2 3 S 2 1 25O 0.193 0 . 0 0 6 6 O .OO29 ¥ 2 1 2 5 2 0 . 1 9 0 0 . 0 0 6 9 0 . 0 0 2 5 Ave. 2 4 9 0 . 1 8 3 0 . 0 0 6 4 0 . 0 0 2 5 N 2 4 2 7 6 0 . 3 3 0 0 . 0 1 2 5 0 . 0 0 4 3 E23 2 7 6 0 . 3 7 4 0 . 0 1 3 4 O . O O 4 8 S23 2 7 6 0 . 3 9 9 0.0141 0 . 0 0 4 5 ¥ 2 3 2 7 8 0 . 3 6 3 0 . 0 1 2 5 0 . 0 0 3 9 Ave. 2 7 6 O.-366 0 . 0 1 3 1 0 . 0 0 4 4 Means, standard deviations, maximum and minimum values for a l l heartwood specimens. Mean 0 . 2 0 5 0.0070 O.OO32 S.D. 0 . 0 3 3 0.0000 0.0006 Max. 0.282 0.0094 0.0044 Min. 0.143 0 . 0 0 5 4 0.0021 Means, standard deviations, maximum and minimum values for a l l specimens (heartwood and sapwood) Mean 0.219 O .O76 0.0033 S.D. 0 . 0 5 7 0.0006 O.OOO.7 Max. 0.399 0.0141 0.0048 Min. 0.143 0.0054 0.0021 T A B L E 6 70 Correlation coefficients of certain properties and preservative retentions of a western red cedar stem, (heartwood only). h X2 X3 X, "8 ;1 1.000 X2 X 3 X4 X 5 X 6 Xy X8 Y l Y2 Y3 0.968 * * 0,955 * * -0.155 * 0.377 0.704 -JBJ- 0,956 ^0.518 -0.711 ** 0.490 -SHS- 0.926 ** 1.000 0.902 ** 0.025 N.S 0.314 •5BJ- 0.547 -JHf 0.911 -0.336 -0.616 -0.375 •sat -0.910 1.000 - 0.714 * 0.512 •»* 0.730 0.964 -0.567 •K-K- r0,?06 -0.485 •5BJ- -0.866 1,000 -0.285 •«-«• -0,508 -3H*- -0.187 0.529 0.317 •K-K- 0.339 •JHf 0.037 N.s 1.000 0.482 0,500 -0.352 -0.522 -0.416 -0.282 ** 1.000 0.772 •=0.797 -0.747 0.649 -X-K- -0.600 ** 1.000 -0.566 -0.74S -0.537 *# -0.880 ** 1,000 0.647 •3SS- 0.587 -X-ifr 0.478 1.000 0,885 0.733 ** 1.000 0.565 ** 10000 N D.F, = r'05 * r'01 ~ 168 166 0.152 0.199 *1 X 2 *3 X age, years distance from pith, inches growth rate, ann.rings/in, latewood,••' 5 specific gravity * significant at the 95$ lev e l of probability ** significant at the 99$ lev e l of probability N.S. not significant X^ color, Agtron-units Xy Hot-water solubility, % X,. effective 1% NaOH solubility, 3 Yn creosote retention, g/cm Y^ penta retention, g/cm Y„ Wolman salt retention, g/cm3 FIGURE I. METHOD OF MARKING SAMPLE STICKS N O T E 1 A N N U A L R I N G S 2 7 0 - 2 8 5 R E P R E S E N T S A P W O O D 72 A T s T c ^> T D TH C O N D I T I O N I N G TO 12 P E R C E N T M O I S T U R E C O N T E N T ( M . C ) , A B S O R P T I O N S T U D I E S W I T H C R E O S O T E C O N D I T I O N I N G T O 12 P E R C E N T M . C , H O T - W A T E R E X T R A C T I O N , C O N D I T I O N I N G T O 12% M . C , A B S O R P T I O N S T U D . W I T H C R E O S O T E C O N D I T I O N I N G T O 12% M . C , A B S O R P T I O N S T U D I E S WITH P E N T A C H L O R O P H E N O L C O N D I T I O N I N G TO 12% M . C , H O T - W A T E R E X T R A C T I O N , C O N D I -T I O N I N G T O 12% M . C , A B S O R P T I O N S T U D . WITH P E N T A C H L O R O P H E N O L C O N D I T I O N I N G T O 12% M . C , A B S O R P T I O N S T U D I E S W I T H W O L M A N S A L T CONDITIONING TO 12% M . C , H O T - W A T E R E X T R A C T I O N , C O N D I T I O N I N G T O 12% M . C , A B S O R P T I O N S T U D I E S W I T H W O L M A N S A L T D E T E R M I N A T I O N O F G R O W T H R A T E A N D S U M M E R W O O D P E R C E N T -A G E D E T E R M I N A T I O N O F S P E C I F I C G R A V I T Y CONDITIONING TO 12% M . C , D E T E R M I N A T I O N O F A B S O R P T I O N T I M E - R A T E K P R E P A R A T I O N O F 4 0 — M E S H WOOD M E A L , W H I C H W A S T H E B A S I S FOR T H E F O L L O W I N G T E S T S •" COLOR M E A S U R E M E N T S , D E T E R M I N A T I O N O F 1% N a O H S O L U B I L I T Y , D E T E R M I N A T I O N O F H O T - W A T E R S O L U B I L I T Y , D E T E R M I N A T I O N O F T H U J A P L I C I N C O N T E N T P R E P A R A T I O N O F M I C R O S C O P I C S L I D E S . FIGURE 2. METHOD OF M A R K I N G S A M P L E C U B E S A N D T H E S U M M A R Y OF S U C C E S S I V E T R E A T M E N T S 7 3 F I G U R E 3 . A P P A R A T U S F O R H O T - W A T E R E X T R A C T I O N O F WOOD M E A L . S I X 2 5 0 m l E R L E N M E Y E R F L A S K S W E R E P L A C E D IN A B O I L I N G W A T E R B A T H A N D F I T T E D W I T H R E F L U X A I R C O N D E N S E R S . Ik 1 1 i J 1 1 M| ( FIGURE 4 . A P P A R A T U S FOR I % N a O H S O L U B I L I T Y D E T E R M I N A T I O N OF W O O D M E A L . E I G H T 2 5 0 ml B E A K E R S W E R E P L A C E D IN A B O I L I N G W A T E R B A T H A N D C O V E R E D WITH W A T C H G L A S S E S . 75 1 FIGURE 5 . APPARATUS FOR DETERMINATION OF THE ABSORPTION TIME. A SPECIMEN WAS ATTACHED TO THE ARM OF A TRIPLE BEAM BALANCE AND IMMERSED IN PRE-SERVATIVE. 7 6 7 7 SAMPLE E 2 2 _ J L 4 6 T I M E , H O U R S 8 10 F I G U R E 8 . R A T E O F A B S O R P T I O N O F 2 P E R C E N T W O L M A N S A L T S O L U T I O N 79 FIGURE 9. RELATIONSHIP BETWEEN GROWTH RATE AND AGE FROM THE PITH D 5 0 100 150 2 0 0 2 5 0 AGE IN YEARS FIGURE 10. RELATIONSHIP BETWEEN LATEWOOD P E R -CENTAGE AND AGE FROM THE PITH UJ .4 00 _ l O > >-or t 9< z UJ .300 > o Q o UJ 200 cn < CD >-(-> < cc o .100 o il o UJ CL .000 100 150 AGE IN YEARS. 200 250 FIGURE RELATIONSHIP BETWEEN SPECIFIC GRAVITY AND AGE FROM THE PITH. N O T E - FOR T H E C O L O U R M E A S U R E M E N T S T H E R E D A G T R O N I N S T R U -M E N T A S S E M B L Y W A S U S E D . Z E R O W A S SET O N T H E N o . 5 0 0 7 R E F E R E N C E D I S C , A N D " 1 0 0 " W A S S E T ON T H E No. 5 0 7 7 . 5 R E F E R E N C E DISC. 83 Q LU £ 3 0 co z AGE IN YEARS FIGURE 13. RELATIONSHIP BETWEEN HOT-WATER SOLUBI-LITY AND AGE FROM THE PITH 8k .8001 1 r AGE IN YEARS FIGURE 14. RELATIONSHIP BETWEEN THUJAPLICIN CONTENT AND AGE FROM THE PITH 85 4 0 z o o UJ co <i CO 3 0 ± 2 0 ca o o ^ CO x £ o o O I z z UJ 10 0 1% N a O H S O L U B I L I T Y E F F E C T I V E 1% N a O H S O L U B I L I T Y F U N G A L . I N F E C T I O N i ^ 5 0 100 150 A G E IN Y E A R S 2 0 0 2 5 0 FIGURE 15. RELATIONSHIP BETWEEN ONE PER CENT CAUSTIC SODA SOLUBILITY AND AGE FROM THE PITH N O T E - ' E F F E C T I V E l % N o O H S O L U B I L I T Y W A S C A L C U L A T E D B Y S U B -T R A C T I N G H O T - W A T E R S O L U B I L I T Y F R O M l % N a O H S O L U -B I L I T Y . 8 6 0 5 0 100 150 2 0 0 2 5 0 A G E , Y E A R S F R O M T H E PITH FIGURE 16. DISTRIBUTION OF C R E O S O T E R E T E N T I O N N O T E : T H E P A R A B O L I C C U R V E W A S C A L C U L A T E D F O R H E A R T -W O O D O N L Y . 87 , X 0 0 4 z UJ h-or .002 . 0 0 0 EXTRACTED BLOCKS U N E X T R A C T E D BLOCKS Y= 0 .00 4 4 9 6 + 0 . 0 0 0 0 22 5 x - 0 . 0 0 0 0 0 0 1 2 x' R= 0 . 6 8 3 _L _L 50 100 150 2 0 0 AGE, YEARS FROM T H E PITH 250 FIGURE 17. DISTRIBUTION OF PENTACHLOROPHENOL RETENTION NOTE: THE PARABOLIC C U R V E WAS C A L C U L A T E D FOR HEARTWOOD ONLY. 88 .010 . 0 0 8 < CD LU CC . 0 0 0 E X T R A C T E D B L O C K S U N E X T R A C T E D B L O C K S Y = 0 . 0 0 4 2 1 5 - 0 . 0 0 0 0 1 0 8 x R= 0 . 9 2 8 0 5 0 100 150 2 0 0 A G E , Y E A R S F R O M T H E P I T H 2 5 0 FIGURE 18. DISTRIBUTION OF WOLMAN SALT RETENTION N O T E « T H E S T R A I G H T L I N E W A S C A L C U L A T E D F O R H E A R T W O O D O N L Y . FIGURE 19. P H O T O M I C R O G R A P H OF A R A D I A L SECTION OF W E S T E R N R E D C E D A R SHOWING F U N G A L I N F E C T I O N . T H E H Y P H A E C R O S S THE T R A C H E I D S AT RIGHT A N G L E S , ONLY O C C A S I O N A L L Y SENDING O F F A B R A N C H E X T E N D I N G U P OR DOWN A L U M E N . ( 100 X ) F I G U R E 20. PHOTOMICROGRAPH OF A RADIAL SECTION OF Y E L L O W CEDAR I N F E C T E D WITH ONE OF T H E FUNGI I M P E R F E C T I . THJS F U N G U S W A S I S O L A T E D A N D L A T E R R E I N T R O D U C E D INTO Y E L L O W C E D A R WOOD. T H E L A R G E H Y P H A E A R E S H A R P L Y C O N S T R I C T E D IN PASSING THROUGH T H E C E L L W A L L S . (100 X) C O U R T E S Y OF V A N C O U V E R F O R E S T P R O D U C T S L A B O R A T O R Y . 90 FIGURE 21. PHOTOMICROGRAPH OF A T A N G E N T I A L SECTION OF W E S T E R N RED CEDAR HEARTWOOD SHOWING F U N G A L I N F E C T I O N . HYPHA CROSSES A N U M B E R OF T R A C H E I D S AT RIGHT A N G L E S A N D P A S S E S FROM C E L L TO C E L L D I R E C T L Y T H R O U G H THE C E L L W A L L S A N D THROUGH THE B O R D E R E D PIT M E M B R A N E . A B O R E H O L E IS PRESENT IN T H E LOWER PART OF •"HE S E C O N D T R A C H E I D F R O M THE L E F T . ( 5 0 0 X) FIGURE 22 . P H O T O M I C R O G R A P H OF A RADIAL S E C T I O N OF W E S T E R N RED C E D A R H E A R T W O O D SHOWING F U N G A L I N F E C T I O N . T H E H Y P H A C R O S S E S T H E C E L L W A L L S AT RIGHT A N G L E S A N D IS S H A R P L Y C O N S T R I C T E D IN P A S S I N G T H R O U G H T H E C E L L W A L L S . ( 5 0 0 X ) FIGURE S. METHOD OF MARKING SAMPLE STICKS NOTE1 ANNUAL RINGS 270-285 REPRESENT SAPWOOD A T B Tc TD H CONDITIONING TO 12 PER CENT MOISTURE CONTENT ( M.C), ABSORPTION STUDIES WITH CREOSOTE CONDITIONING TO 12 PER CENT M . C , HOT-WATER EXTRACTION, CONDITIONING TO 12 % M.C, ABSORPTION STUD. WITH CREOSOTE CONDITIONING TO 12% M . C , ABSORPTION STUDIES WITH PENTACHLOROPHENOL CONDITIONING TO 12% M . C , HOT-WATER EXTRACTION, CONDI-TIONING TO 12% M.C, ABSORPTION STUD. WITH PENTACHLOROPHENOL CONDITIONING TO 12% M.C, ABSORPTION STUDIES WITH WOLMAN SALT. CONDITIONING TO 12% M.C, HOT-WATER EXTRACTION, CONDITIONING TO 12% M.C , ABSORPTION STUDIES WITH WOLMAN SALT. DETERMINATION OF GROWTH RATE AND SUMMERWOOD PERCENT-AGE DETERMINATION OF SPECIFIC GRAVITY CONDITIONING TO 12% M.C, DETERMINATION OF ABSORPTION TIME - R A T E K PREPARATION OF 4 0 - M E S H WOOD ME A L , WHICH WAS THE BASIS FOR THE FOLLOWING TESTS: COLOR MEASUREMENTS, DETERMINATION OF 1% NaOH SOLUBILITY, DETERMINATION OF HOT-WATER SOLUBILITY, DETERMINATION OF THUJAPLICIN CONTENT PREPARATION OF MICROSCOPIC SLIDES FIGURE 2. METHOD OF M A R K I N G S A M P L E C U B E S A N D S U M M A R Y OF S U C C E S S I V E T R E A T M E N T S T H E 0 2 4 6 8 10 TIME, HOURS FIGURE 6. RATE OF ABSORPTION OF CREOSOTE 0 2 4 6 8 10 TIME, HOURS FIGURE 7. RATE OF ABSORPTION OF 5 PER CENT PENTACHLOROPHENOL SOLUTION , w . — . _ 1 0 2 4 6 8 10 TIME, HOURS FIGURE 8. RATE OF ABSORPTION OF 2 PER CENT WOLMAN SALT SOLUTION FIGURE,9. RELATIONSHIP BETWEEN GROWTH RATE AND AGE FROM THE PITH FIGURE 10. RELATIONSHIP BETWEEN LATEWOOD P E R -CENTAGE AND AGE FROM THE PITH FIGURE II. RELATIONSHIP BETWEEN SPECIFIC GRAVITY AND AGE FROM THE PITH. 70.0 AGE IN YEARS FIGURE 12. RELATIONSHIP BETWEEN COLOUR AND AGE FROM THE PITH NOTE' FOR THE COLOUR MEASUREMENTS THE RED AGTRON INSTRU-MENT ASSEMBLY WAS USED. ZERO WAS SET ON THE No. 5007 REFERENCE DISC, AND " 100" WAS SET ON THE No. 5077.5 REFERENCE DISC. 0 50 100 150 200 250 AGE IN YEARS FIGURE 13. RELATIONSHIP BETWEEN HOT-WATER SOLUBI-LITY AND AGE FROM THE PITH 0 50 100 150 200 250 AGE IN YEARS FIGURE 14. RELATIONSHIP BETWEEN THUJAPLICIN CONTENT AND AGE FROM THE PITH 40 o LU CO < GO Z 30 f 20 m CP 3 = o 5 i o o 10 > cc o I z LU > o 0 1% NaOH SOLUBILITY EFFECTIVE 1% NaOH SOLUBILITY FUNGAL INFECTION 0 FIGURE 50 100 150 AGE IN YEARS 200 250 15. RELATIONSHIP BETWEEN ONE PER CENT CAUSTIC SODA SOLUBILITY AND AGE FROM THE PITH NOTE: EFFECTIVE 1% NaOH SOLUBILITY WAS CALCULATED BY S U B -TRACTING HOT-WATER SOLUBILITY FROM 1% NaOH S O L U -BILITY. A G E , Y E A R S F R O M T H E PITH FIGURE 16. DISTRIBUTION OF CREOSOTE RETENTION N O T E • T H E P A R A B O L I C C U R V E W A S C A L C U L A T E D F O R H E A R T -W O O D O N L Y . .014 — EXTRACTED BLOCKS — UNEXTRACTED BLOCKS UJ or .002f-.000 Y= 0.00 4496 + 0.000022 5 x -0 .00000012 x 2 R= 0.683 _L 1 50 100 150 200 AGE,YEARS FROM THE PITH 250 FIGURE 17. DISTRIBUTION OF PENTACHLOROPHENOL RETENTION NOTE; THE PARABOLIC CURVE WAS CALCULATED FOR HEARTWOOD ONLY. .010 .008 cn t/j CD ••006 < tn or Q >° E-004 o v. I-LU or 002 .000 EXTRACTED BLOCKS UNEXTRACTED BLOCKS Y= 0.004215 - 0 . 0 0 0 0 I 0 8 X R= 0.928 50 100 150 200 AGE, YEARS FROM THE PITH 250 FIGURE 18. DISTRIBUTION OF WOLMAN SALT RETENTION - NOTE ! THE STRAIGHT LINE WAS CALCULATED FOR HEARTWOOD ONLY. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105424/manifest

Comment

Related Items