UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The absorption of mineral nutrients and their effect upon the metabolism of the plant with special reference… DesBrisay, Eileen 1934

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1934_A4 D3_A2.pdf [ 21.82MB ]
Metadata
JSON: 831-1.0105380.json
JSON-LD: 831-1.0105380-ld.json
RDF/XML (Pretty): 831-1.0105380-rdf.xml
RDF/JSON: 831-1.0105380-rdf.json
Turtle: 831-1.0105380-turtle.txt
N-Triples: 831-1.0105380-rdf-ntriples.txt
Original Record: 831-1.0105380-source.json
Full Text
831-1.0105380-fulltext.txt
Citation
831-1.0105380.ris

Full Text

THE ABSORPTION OF MINERAL NUTRIENTS AND THEIR EFFECT UPON THE METABOLISM OF THE PLANT WITH SPECIAL REFERENCE TO THE  TOMATO*  by E i l e e n DesBrisay,  A T h e s i s s u b m i t t e d f o r t h e Degree o f MASTER OF SCIENCE I N AGRICULTURE i n t h e Department of HORTICULTURE.  THE UNIVERSITY OF BRITISH COLUMBIA. April  1934.  CONTENTS. Page Introduction  1  .  Purpose o f t h e experiment » Review o f L i t e r a t u r e Calcium Magnesium Sulphate Nitrate P o t a s s i u m ........ Phosphate General  .  1 - 2 2 -19  3-" 5 5 ~ 6 .6 - 7 7 -10 ..11 -14 .14 - 1 7 l8 -19  P r e l i m i n a r y Experiments  20 - 2 o  M a t e r i a l and Methods .........20 -24 R e s u l t s t a b u l a t e d .... 25 - 2 6 27 - 5 1  Main Experiment  S e c t i o n I , A b s o r p t i o n E x p e r i m e n t ....... 28 - 3 2 M a t e r i a l s and Methods 28 -30 Results 30 - 3 2 S e c t i o n I I , N u t r i t i o n E x p e r i m e n t ....... 40 - £ 1 M a t e r i a l s and Methods ........40 -44 Results 44 - 5 1 S u b s i d i a r y Experiments  52 - 5 4  Discussion C a l c i u m ...................... 56 Magnesium 57 S u l p h a t e ..................... 58 Nitrate 59" 62 Potassium . 6 3 - 68 Phosphate ....................69- 72 Double C o n c e n t r a t i o n 73" 75 Complete S t a r v a t i o n ..........76- 77  55 - 7 7  Recommendations «...  78  Summary  79 ""82  ,  Acknowledgements ......................... 83 L i t e r a t u r e C i t e d ......................... 84 - 8 9 Appendix  THE ABSORPTION OF MINERAL NUTRIENTS AND THEIR EFFECT UPON THE .METABOLISM OF THE • PLANT -"WITH SPECIAL REFERENCE TO THE TOMATO INTRODUCTION. A backward g l a n c e over one hundred y e a r s shows t h a t S i r Humphrey Davy (9) found m i n e r a l  i n e a r l y work i n A g r i c u l t u r a l C h e m i s t r y  c o n s t i t u e n t s t o be e s s e n t i a l f o r p l a n t development.  L i e b i g , i n I85O, p r e s e n t e d h i s c l a s s i c a l Law o f the Minimum, showing t h a t c e r t a i n p a r t i c u l a r m i n e r a l s were n e c e s s a r y and t h a t the absence o f one o f them r e t a r d e d even though a l l o t h e r s a t Sotharnsted, and  o r p r e v e n t e d p l a n t growth  s h o u l d be p r e s e n t i n abundance.  Lawes,  f o l l o w e d L i e b i g , c o n t r a d i c t i n g on some p o i n t s  progressing  t o f u r t h e r f i n d i n g s on o t h e r s . W o l f f (53) i n  1871? and a g a i n  i n 1880, showed t h a t t h e q u a n t i t a t i v e composi-  t i o n o f one and t h e same p l a n t would v a r y a c c o r d i n g  t o the s o i l  i n w h i c h i t was grown.. Many - l a t e r w o r k e r s have d e n i e d , o r subs t i t u t e d f o r , or elaborated e a r l i e r ones.  upon t h e t h e o r i e s p r e s e n t e d by these  A t t h e end o f t h e c e n t u r y Loew (29) s t a t e d  that  p l a n t s a b s o l u t e l y r e q u i r e a c e r t a i n minimum o f each m i n e r a l  nut-  r i e n t ; and i n most cases t h e y take up n o t o n l y an excess o f these v a r i o u s compounds b u t a l s o s u b s t a n c e s w h i c h a r e perhaps useful-, but n o t a b s o l u t e l y n e c e s s a r y t o t h e p l a n t .  On these  t h e o r i e s o f W o l f f and Loew t h e i n t e n t i o n o f the p r e s e n t  inves-  t i g a t i o n i s based. PURPOSE OF THE DIVEST IC-AT ION. The  tomato, L y c o p e r s i c u m esculentum M i l l . , b e i n g a  p l a n t w e l l adapted t o n u t r i e n t c u l t u r e s , has been chosen f o r the i n v e s t i g a t i o n .  I t i s purposed t o f i n d when c e r t a i n i o n s  e n t e r t h e tomato p l a n t and t o l e a r n whether a w i t h h o l d i n g  of t h e s e i o n s a t c e r t a i n t i m e s w i l l have an e f f e c t upon the growth and f r u c t i f i c a t i o n o f t h e p l a n t .  I t was felly, t h a t  f e r t i l i z e r s may o f t e n be a p p l i e d when they a r e unnecessary? t h a t i s , as s u g g e s t e d by Loew, w h i l e the p l a n t absorbed these n u t r i e n t s , they might not be e s s e n t i a l and n o r m a l development might be o b t a i n e d  w i t h o u t them.  These elements m i g h t , t h e r e -  f o r e , be w a s t e f u l l y a p p l i e d , o r c o n v e r s e l y , might n o t be s u p p l i e d a t the c r u c i a l t i m e .  These n u t r i e n t m a t e r i a l s , as  has been i n d i c a t e d , e n t e r t h e p l a n t i n t h e i o n i c forms  for  i n s t a n c e when p o t a s s i u m n i t r a t e i s u s e d as a f e r t i l i z e r t h e K and NO^  i o n s a r e absorbed i n d e p e n d e n t l y .  concentrated  upon a r e Ca, Mg, SO4, NO^,  The a b s o r p t i o n  K,  The i o n s t o be PO4  o f t h e s e s i x i o n s has been f o l l o w e d  t h r o u g h o u t the l i f e o f the p l a n t i n t h e A b s o r p t i o n +  Experiment  of S e c t i o n I , and NO-^, K, and PO^ have been e s p e c i a l l y s t u d ied  i n the N u t r i t i o n E x p e r i m e n t of S e c t i o n I I . REVIEW  OP  LITERATURE.  P e t r i e (38) has r e c e n t l y p r e s e n t e d a summary o f the i n t a k e o f i o n s by t h e p l a n t and i t s r e l a t i o n t o t h e r e s p i r a t i o n o f t h e r o o t , and l i s t s as causes amongst o t h e r s f o r i o n absorption.: 1.  Chemical f i x a t i o n .  2.  Donnan e q u i l i b r i a i n t h e c y t o p l a s m  3.  The a c c u m u l a t i o n o f f r e e i o n s i n t h e v a c u o l e a t the expense o f energy rendered a v a i l a b l e i n r e s p i r a t i o n .  4.  Adsorption  "These mechanisms o p e r a t e i n each l i v i n g c e l l o f t h e p l a n t and t h e r a t e o f supply  o f i o n s t o the shoot w i l l he d e t e r m i n -  ed "within l i m i t s by t h e c o n c e n t r a t i o n s  that are maintained i n  the c e l l - s a p o f t h e r o o t c e l l s l y i n g i n t h e p a t h o f t h e t r a n s p i r a t i o n stream.  This w i l l , according  t o the h y p o t h e s i s ,  depend on t h e r a t e o f r e s p i r a t i o n o f these c e l l s ,  so t h a t  w i t h i n l i m i t s the rate of r e s p i r a t i o n of the root c e l l s determine t h e r a t e o f supply  of ions to the r o o t s .  will  Some  e x p e r i m e n t s w i t h o a t p l a n t s i n w h i c h t h e r o o t s were made t o r e s p i r e a t d i f f e r e n t r a t e s , and t h e r a t e o f i o n i n t a k e  there-  upon measured, were p e r f o r m e d , and were found t o conform w i t h the above h y p o t h e s i s . "  This i s i n t e r e s t i n g i n view of the  present i n v e s t i g a t i o n . A r e v i e w o f t h e t h e o r i e s and c o n s i d e r a t i o n s o f c e r t a i n i n v e s t i g a t o r s on t h e p a r t i c u l a r i o n s i s i l l u m i n a t i n g . ~Qa^di umv ;  C a l c i u m h a s . l o n g been r e g a r d e d as an e s s e n t i a l element.  I t s d e f i c i e n c y w i l l cause a y e l l o w i n g and d w a r f i n g  of a l l p a r t s o f t h e p l a n t . for  the formation  r o o t development. for  I t has been s a i d t o be n e c e s s a r y  o f c e l l y / a l l s and t h u s f o r normal l e a f and Some have c o n s i d e r e d  i t t o be n e c e s s a r y  t h e s y n t h e s i s o f f a t s and p r o b a b l y o f p r o t e i n s , due t o  i t s formation  o f p l a n t soaps.  Nightingale  (35)  experimenting  w i t h ample c a l c i u m and c a l c i u m d e f i c i e n t tomato p l a n t s , found t h a t i n t h e c a l c i u m d e f i c i e n t p l a n t s , n i t r a t e s were n o t absorbed? t h e r e was t h e r e f o r e a d e f i n i t e i n t e r f e r e n c e w i t h t h e formation  of proteins e s s e n t i a l to the protoplasts of l i v i n g  cells * was  The y e l l o w i n g and d w a r f i n g  thus a c c o u n t e d f o r .  S i n c e the a b s o r p t i o n of n i t r a t e s d i d  not t a k e p l a c e , t h e r e was He and  of c a l c i u m s t a r v e d p l a n t s  an a c c u m u l a t i o n o f  suggests t h a t calcuim i s present  carbohydrates.  i n the p l a n t as  "combined"  "uncombined" c a l c i u m , and t h a t the l a t t e r type i s d i r e c t l y  r e s p o n s i b l e f o r the c a l c i u m a c t i v i t i e s i n t h e p l a n t .  He  re-  e s t a b l i s h e s f a i r l y c o n c l u s i v e l y the f a c t of the p r e s e n c e of a middle l a m e l l a of c a l c i u m p i c t a t e .  Calcium d e f i c i e n t p l a n t s ,  he p o i n t s , o u t , are s h o r t - l i v e d , the c a l c i u m p r e s e n t c o n f i n e d t o t h e lower p a r t s of the p l a n t . migratory  being  I t i s thus a  non-  element and n e c e s s a r y at a l l t i m e s of growth.  Colby (5) c o r r o b o r a t e s N i g h t i n g a l e , f i n d i n g t h a t low  calcium  p l a n t s absorbed very l i t t l e n i t r a t e , t h a t calcium s t a r v a t i o n p r e v e n t e d a b s o r p t i o n of any  c o n s i d e r a b l e q u a n t i t y of any  and t h a t i t p r e v e n t e d r o o t growth e n t i r e l y , the r o o t i n v a r i a b l y dying.  The  ion,  tips  e f f e c t o f c a l c i u m i n antagonism  and  on c e l l p e r m e a b i l i t y would seem t o be apparent h e r e .  Dorothy  Day  the  (8) f i n d s c a l c i u m d e f i c i e n t p l a n t s t o be s h o r t e r ,  lower l e a v e s c h l o r o t i c , and  the youngest tough and  curled,  but the d i f f e r e n c e i s i n a v a r i a t i o n i n the amount o f t i o n , r a t h e r than i n the a n a t o m i c a l t h a t many s o l u t i o n s i n use may  structure.  She  elonga-  thinks  have more t h a n the "optimum  amount of c a l c i u m " , but u n d o u b t e d l y c e r t a i n p l a n t s are c a l cipfcLiles  and  others c a l c i p h o i e s .  on a " l i m e - i n d u c e d  W a l l a c e (47) has  reported  c h l o r o s i s " of f r u i t t r e e s growing i n  s o i l s c o n t a i n i n g l a r g e amounts of c a l c i u m c a r b o n a t e j  since  the t r o u b l e was  sulphate  c o r r e c t e d by a p p l i c a t i o n s of f e r r o u s  sprays  to the f o l i a g e , 'It would seem t h a t t h i s c h l o r o t i c  d i t i o n i s due  t o the u n a v a i l a b i l i t y o f i r o n " , due  an o v e r s u p p l y  of calcium.  Again,  c a l c i u m has  con-  i n t u r n to  been found t o  be  a co-enzyme, g r e a t l y f a c i l i t a t i n g p e c t a s e i n i t s f u n c t i o n s , Jiagne.B.iugu  Magnesium i s the o n l y m i n e r a l element i n the p h y l l m o l e c u l e , but as such i t h o l d s  the c e n t r a l p o s i t i o n and  is absolutely essential in i t s synthesis. element, t h a t i s , b e i n g not  timef  s i s w i l l appear, b e g i n n i n g more abundant, a c c o r d i n g  formation  migratory  but f i n a l l y a s p o t t e d  chloro-  f r o m the v e i n s outwards.  It is  t o Raber ( 4 0 ) , i n p a r t s u n d e r g o i n g  of n u c l e o - p r o t e i n s . i n some way  I t seems a l s o t o be to a f f e c t t h e i r  associated  synthesis.  c a t i o n s , c a l c i u m and magnesium, perhaps because of  s t r o n g l y a n t a g o n i s t i c e f f e c t s , are o f t e n l i n k e d Nightingale  may  i s t h e r e f o r e thought to be n e c e s s a r y f o r the  w i t h p l a n t o i l s and The  Being a  c a p a b l e of t r a n s l o c a t i o n , i t s l a c k  show f o r some l i t t l e  development, and  chloro-  (35> ) found t h a t t h e r e was  their  together.  110 marked excess nor  d e f i c i e n c y o f magnesium i n c a l c i u m d e f i c i e n t p l a n t s ; t h a t i s , the absence of a b s o r p t i o n of c a l c i u m d i d not magnesium, has  a f f e c t that  Tyson(46) s t a t e s t h a t i t appears t h a t "magnesium  an i n j u r i o u s e f f e c t on the p l a n t when i t i s taken up  amounts g q u a l to or g r e a t e r  than the amounts of c a l c i u m  s e n t , even though t h e r e are f a v o r a b l e c o n c e n t r a t i o n s of the o t h e r elements p r e s e n t ; " n a t u r e o f the s o i l and fer  of  and R i p p e l (39)  in pre-  and  ratios•  though t h i s w i l l depend on  the f e r t i l i z e r t r e a t m e n t s .  But  have shown t h a t i n oat p l a n t s , the  the  Pfeifratio  of magnesium t o c a l c i u m may  v a r y w i t h i n r a t h e r wide l i m i t s ,  w i t h no n o t i c e a b l e e f f e c t upon the p l a n t . noted the percentage  Tyson (46)  has  o f c a l c i u m i n l e a v e s of l a r g e b e e t s t o  be h i g h e r than the percentage  o f magnesium; whereas t h e p e r -  centage o f magnesium i n the l e a v e s of s m a l l b e e t s i s h i g h e r than t h a t of c a l c i u m .  Raber (40) c o n s i d e r s magnesium to be  n e c e s s a r y f o r the t r a n s p o r t a t i o n o f phosphorus and t h a t i t i s o n l y i n d i r e c t l y i n t h i s way s y n t h e s i s of f a t s .  suggests  a s s o c i a t e d w i t h the  I n t h i s c o n n e c t i o n Colby (5)  has  found  phosphate a b s o r p t i o n t o be more b a d l y a f f e c t e d by magnesium s t a r v a t i o n t h a n by p o t a s s i u m  or s u l p h a t e s t a r v a t i o n .  (471 i n s i s t s t h a t a p r o p e r p o t a s s i u m necessary  Wallace  : magnesium r a t i o i s  in plant n u t r i t i o n . S_ulphate» The  s u l p h a t e i o n i s t h e s l o w e s t moving o f t h e i o n s  a c c o r d i n g to Hoagland (19).  The n e c e s s i t y o f the element  s u l p h u r to p l a n t n u t r i t i o n , l i e s i n the f a c t t h a t i t e n t e r s i n t o the c o m p o s i t i o n o f p r o t e i n s . w i t h apip.es  o  Wallace  (47)  experimenting  and s m a l l f r u i t s , found the o m i s s i o n o f s u l p h a t e  t o produce i n t h e s e p l a n t s a c o n d i t i o n r e s e m b l i n g i n g e n e r a l t h a t caused by p a r t i a l n i t r a t e s t a r v a t i o n .  There was  a res-  t r i c t e d shoot growth, a p a l i n g and y e l l o w i n g o f the l e a v e s , f o l l o w e d by b r i l l i a n t c o l o r i n g and f i n a l l y e a r l y Colby  (5)  defoliation.  found t h a t a s u l p h a t e o m i s s i o n had a d e p r e s s i n g  e f f e c t on the a b s o r p t i o n o f a l l the o t h e r elements, i t was  l e a s t d e p r e s s i n g on n i t r a t e a b s o r p t i o n .  e x i s t i n g , however, might conform t o 'Wallace's  but t h a t  The c o n d i t i o n "partial nitrate  s t a r v a t i o n " and  t h e r e f o r e account f o r i t .  fficllurtry  (32)  des-  c r i b e s the v e i n s as b e i n g a l i g h t e r green t h a n the t i s s u e s between i n s u l p h a t e c h l o r o s i s .  Tomato seeds c o n t a i n a c o n s i d -  e r a b l e amount of s u l p h u r , but i n s u f f i c i e n t t o c a r r y the s e e d l i n g t o f u l l development.  new  I t s deficiency, i t i s believed  r e s u l t s i n a r e t a r d a t i o n o f c e l l d i v i s i o n and a h i n d r a n c e or suppression  of f r u i t i n g .  The  s l o w l y moving s u l p h a t e  an e f f e c t on the o t h e r i o n s i n s l o w i n g down t h e i r as Colby has  ion  has  absorption  shown. M..txatjag, r <  The  e s s e n t i a l nature  of n i t r a t e i n t h e s y n t h e s i s  p r o t e i n s and t h e r e f o r e of p r o t o p l a s m , i s w e l l r e c o g n i z e d the y e l l o w i n g and ture.  s t u n t i n g due  K r a u s and I t r a y b i l l (27)  and  to i t s l a c k i s a f a m i l i a r feahave d e m o n s t r a t e d t h a t a l a r g e  y i e l d of tomatoes i s a s s o c i a t e d w i t h an abundant s u p p l y b o t h n i t r o g e n and correct r a t i o .  carbohydrates,  and  i s of i m p o r t a n c e i n f r u i t i n g .  of  t h a t they must be i n the  -Basing h i s work on t h e i r s , Watts (51)  t h a t i t i s the a m i n o - n i t r a t e  of  finds  f r a c t i o n w i t h i n the p l a n t which The  p e r c e n t a g e of n i t r o g e n w i t h  s p e c i a l r e f e r e n c e t o the a m i n o - a c i d f r a c t i o n , d e c r e a s e s when t e m p e r a t u r e o r i n t e n s i t y o f l i g h t or d u r a t i o n o f t h e p h o t o s y n t h e t i c p e r i o d i s increased, thereby content.  i n c r e a s i n g the c a r b o h y d r a t e  A h i g h carbohydrate content,  especially starch, i s  u s u a l l y accompanied by a low a m i n o - n i t r a t e low c a r b o h y d r a t e content amino-nitrate  content.  content, while  a  i s accompanied by a h i g h to moderate Pruitfulness i s associated with  b a l a n c e d c a r b o h y d r a t e r a t i o , g i v i n g a moderate succulence  a to  - s the p l a n t •  He  therefore advises  the growers t h a t t o o b t a i n  g r e a t e s t f r u i t f u l n e s s , much n i t r a t e may  the  be used i n an abundance  o f l i g h t c o n d i t i o n s , such as i n the f i e l d ; whereas under l e s s l i g h t c o n d i t i o n s , such as i n the greenhouse, l e s s n i t r a t e i s needed.  Nightingale  (34) corroborates  t h i s work,emphasizing  t h a t i t i s t h e a s s i m i l a t e d s o l u b l e compounds, t h a t i s the aminoa c i d s , w h i c h a r e o f importance not the n i t r a t e n i t r o g e n as Murneek (33)  b e l i e v e s t h a t l a r g e q u a n t i t i e s of  such,  nit-  rogenous m a t e r i a l a r e n e c e s s a r y f o r the development of a l l p a r t s of the tomato p l a n t , i n c l u d i n g the f r u i t .  He  goes so f a r  as to s t a t e t h a t i n t h e tomato " v e g e t a t i v e growth i s c o n t r o l l e d by the f r u i t " . rogen" and  The  plant "apparently  does not  s t o r e much n i t -  "a c l o s e and d e l i c a t e b a l a n c e between a b s o r p t i o n  a s s i m i l a t i o n i s probably e s t a b l i s h e d " .  The  fruit  i n some  and way  i s a b l e t o m o n o p o l i z e p r a c t i c a l l y a l l the i n c o m i n g or  elabora-  ted n i t r o g e n , thus causing  strictly  an e v i d e n t  v e g e t a t i v e p a r t s of the p l a n t .  He  s h o r t a g e i n the  considers  carbohydrates  a l s o be s i m i l a r l y m o n o p o l i z e d by the f r u i t , a g a i n shortage.  T h i s s h o r t a g e of c a r b o h y d r a t e s and  m a t e r i a l s r e s u l t s i n c e s s a t i o n of v e g e t a t i v e Emmert (10)  shows t h e r e  He  nitrogenous growth.  i n the tomato p l a n t  that t h i s i s , i n turn, very c l o s e l y c o r r e l a t e d with y i e l d s . a l s o s t a t e s t hat an a l k a l i n e r e a c t i o n not o n l y  stimulates  n i t r i f i c a t i o n i n the s o i l , but a l s o s t i m u l a t e s b o t h and  a  i s a close c o r r e l a t i o n bet-  ween the n i t r a t e p r e s e n t i n t h e s o i l and and  causing  may  a s s i m i l a t i o n by the growing p l a n t s .  t o e s t o be heavy n i t r a t e f e e d e r s .  absorption  He t o o , f i n d s tomat  In an a l k a l i n e medium, as  - - 9  c o n t r a s t e d w i t h an a c i d one, w h i l e t h e r e i s more n i t r a t e i n the stems t h e r e i s l e s s i n t h e g r o w i n g p o i n t s , s i n c e i t i s so r a p i d l y u t i l i z e d "by t h e g r o w i n g t i p s .  I n c o n t r a s t t o Eraraert,  Ho ag l a n d (18) c l a i m s t h a t n i t r a t e , u s u a l l y one o f t h e s w i f t e r moving i o n s , e n t e r s t h e p l a n t more s l o w l y i n an a l k a l i n e medium. A l s o w o r k i n g w i t h tomatoes, M a c G i l l i v a r y (3'1)  found  a predominant s t o r a g e o f s t a r c h i n p l a n t s from w h i c h n i t r o g e n had "been w i t h h e l d .  He a l s o o b t a i n e d h i g h e r sugars i n t h e  fruits* ,  McCool and Cook (30) o b t a i n e d a r a p i d r a t e o f t r a n s -  f o r m a t i o n o f n i t r a t e n i t r o g e n i n s m a l l g r a i n s and K e n t u c k y b l u e grass.  T h i s was i n d i c a t e d by a c o n s i d e r a b l e d e c r e a s e i n  n i t r a t e content source  o f t h e expressed  sap t h r e e h o u r s a f t e r t h e  o f s u p p l y was removed. H a r r i s o n : t l | ) • s h o w s ' i t : t o be p o s s i b l e t o k i l l Ken-  tucky blue grass p l a n t s , f r e q u e n t l y f e r t i l i z e d w i t h n i t r a t e s by r e p e a t e d  defoliations.  The r e a s o n f o r t h i s was t h a t r a p i d  growth exhausted t h e r e s e r v e c a r b o h y d r a t e t i o n prevented  s u p p l y and d e f o l i a -  a r e p l e n i s h i n g and t h e r e f o r e growth between  d e f o l i a t i o n s became l e s s and l e s s . I n "reference t o l i g h t r e l a t i o n s h i p s / l o t t i n g h a m and Stephens (45) found w i t h young wheat p l a n t s t h a t the n i t r a t e r a d i c l e was absorbed more f r e e l y from K M)^ i n n u t r i e n t s o l u t i o n t h a n from n i t r a t e s o f o t h e r common m e t a l s and t h i s absorpt i o n was promoted by i n c r e a s e s i n b l u e t o l o n g e r radiations.  ultraviolet  The f o r m o f r a d i a t i o n used, they p o i n t p u t , i s  d e f i c i e n t as r e g a r d s sunlight.  t h e s h o r t e r r a d i a t i o n s as compared w i t h  'i'ottingham and Lowsna (44) a l s o found r a d i a t i o n s  of t h e h i g h e s t f r e q u e n c y  i n t h e v i s i b l e spectrum and t h e l o w e s t  i n the u l t r a v i o l e t t o promote a b s o r p t i o n o f n i t r a t e s by young p l a n t s , but t h a t y e l l o w to v i o l e t rays increased the synthesis o f p r o t e i n , w h i l e l o n g u l t r a v i o l e t r a y s do n o t . Brazeale  (3) c o n s i d e r s t h e r e i s a d i r e c t  relation  between t h e a b s o r p t i o n o f p o t a s s i u m and n i t r a t e s : t h a t sium i s p r o b a b l y n e c e s s a r y  i n the process  p r o t e i n - l i k e compounds, a l t h o u g h chemical  composition.  potas-  of synthesis of  i t does n o t e n t e r i n t o  their  i f much n i t r o g e n i s a v a i l a b l e much  p o t a s s i u m w i l l be demanded; i f l i t t l e n i t r o g e n i s a v a i l a b l e l i t t l e p o t a s s i u m w i l l be demanded. Davidsen (6) found i n c e r t a i n f i e l d  experiments  t h a t p o t a s s i u m was h i g h e r i n p l a n t s from p l o t s t r e a t e d w i t h Ha NO^ t h a n were those f r o m t h e check p l o t s .  Here a g a i n i s  a l i n k a g e between t h e two* F i n a l l y i t i s i n t e r e s t i n g t o note t h a t K r a u s and K r a y b e l l (27) t h i n k t h a t n i t r a t e s "may a i d i n r a p i d growth and f o r m a t i o n o f new c e l l s w h i c h have r e l a t i v e l y t h i n n e r and l e s s . l i q u i f i e d w a l l s and a g r e a t e r p e r c e n t a g e o f  amphoteric sub-  s t a n c e s whose w a t e r h o l d i n g c a p a c i t y i s r e l a t i v e l y h i g h . " T h i s would account f o r t h e f a c t t h a t a h i g h n i t r a t e s u p p l y a h i g h degree o f s u c c u l e n c e .  gives  - 11 -  g.o:t.as.sl.urru.. C o n s i d e r a b l e research, upon t h e e f f e c t o f p o t a s s i u m on tomato p l a n t s has been c a r r i e d on by Jansen and B a r t h o l o mew and t h e y have i s s u e d s e v e r a l b u l l e t i n s and papers t h e r e o n . They f i n d s t h e r e i s e v i d e n c e t h a t p o t a s s i u m i s n e c e s s a r y f o r c e l l d i v i s i o n s that i n a potassium d e f i c i e n c y , i t i s t r a n s l o c a t e d and r e u t i l i z e d by t h e growing p a r t o f the p l a n t ; t o t a l and s o l u b l e n i t r o g e n i s much h i g h e r i n p o t a s s i u m d e f i c i e n t p l a n t s ; t h a t t h e r e i s an optimum p o t a s s i u m c o n c e n t r a t i o n w h i c h i s c o n d u c i v e t o t h e normal a s s i m i l a t i o n o f carboh y d r a t e compounds above and below w h i c h a s s i m i l a t i o n i s r e d uced; and t h e y suggest t h a t i n as much as h i g h n i t r o g e n and h i g h sugars a r e c o r r e l a t e d i n t h e blooming s t a g e o f l o w p o t a s s i u m plants« t h e absence o f good growth may have been due to  a l a c k o f c o n d e n s a t i o n o r p o l y m e r i z a t i o n o f t h e s e com-  pounds t o more complex forms due t o t h e p o t a s s i u m l a c k  (23)•  A g a i n (24) t h e y f u r t h e r suggest " t h a t r a p i d a b s o r p t i o n o f l a r g e amounts o f p o t a s s i u m by p l a n t s d u r i n g t h e i r s t a g e s o f growth w i t h a subsequent  early  t r a n s l o c a t i o n and r e u t i l i -  z a t i o n d u r i n g t h e l a t e r s t a g e s o f development i s , under some c o n d i t i o n s , . t h e p r o c e s s , b y w h i c h p l a n t s absorb p o t a s s i u m " . There t h e n f o l l o w e d a r e p o r t on experiments w i t h c o r n , cowpeas, soybeans,  o a t s and Soudan G r a s s .  I t i s noteworthy  that  i n one o f t h e s e experiments w i t h one l o t o f p l a n t s , p o t a s s i u m was absorbed v e r y s l o w l y f o r a time and then r a p i d l y whereas the next group absorbed i t more s t e a d i l y .  T h i s same i r r e g u -  l a r i t y was found i n t h e p r e s e n t i n v e s t i g a t i o n .  The n a t u r e  - 12 o f the c u l t u r e medium, whether water or s o i l c u l t u r e , d i d not a f f e c t the g e n e r a l r a t e of a b s o r p t i o n . worthy s u g g e s t i n g  This i s again  the p r a c t i c a b i l i t y o f w a t e r and  work to s o i l c o n d i t i o n s .  They m a i n t a i n  p o t a s s i u m r a p i d l y a t a l l stages  note-  sand c u l t u r e  t h a t p l a n t s take  up  of growth i f a good s u p p l y i s  a v a i l a b l e ; and t h a t when the c o n c e n t r a t i o n of the n u t r i e n t i s reduced p l a n t s q u i c k l y r e a d j u s t themselves t o f e e d on lower c o n c e n t r a t i o n .  They p o i n t out t h a t when  the  fertilizing  w i t h p o t a s s i u m , t h e r e i s no r e s i d u a l e f f e c t , s i n c e t h e w i l l absorb potassium i n such l a r g e c o n c e n t r a t i o n s present  i n the s o i l s o l u t i o n , but i f i t i s no  i f i t is  longer  t h e r e w i l l be t r a n s l o c a t i o n and r e u t i l i z a t i o n .  plant  supplied  They found no  d e f i n i t e r e l a t i o n s h i p s between the p e r c e n t a g e o f p o t a s s i u m i n the p l a n t s and the s i m p l e c a r b o h y d r a t e s and n i t r o g e n o u s  com-  pounds ( 2 p ) . P o t a s s i u m i s a r a p i d l y moving i o n .  I t i s known to  be r a d i o - a c t i v e : as such i t i s an energy p r o d u c e r and i t s uses t h e r e f o r e m a n i f o l d .  While sodium has  p l a c e p o t a s s i u m t o some e x t e n t field.of radio-activity.  been shown to r e -  (14) i t cannot do so i n t h i s  Hoagland (19) f i n d s the  absorption  o f p o t a s s i u m t o be d e p r e s s e d by sodium salts© James and P e n s t o n (22) found p o t a s s i u m to be needed for  greenhouse tomatoes i n d u l l weather.  i n c o n s i d e r i n g t h e work of S t o k l a s a ,  Haas and H i l l  (15)  s t a t e the r o l e of  p o t a s s i u m t o be p a r t l y i n d i r e c t and o n l y i n darkness does i t p l a y an i m p o r t a n t  p a r t i n p r o t e i n development.  a c t i v e q u a l i t y i s of i n t e r e s t i n t h i s connection  Its radioand w i l l  be  -  discussed  later.  13  -  Jansen and B a r t h o l o m e w ^ c o n v e r s e l y f o u n d  p o t a s s i u m t o "be t a k e n up "by p l a n t s as r e a d i l y by n i g h t as by day. W a l l a c e (49) and T i n c k e r  and D a r b y s h i r e  (42) and  numerous o t h e r w o r k e r s have n o t i c e d an abnormal r e q u i r e m e n t f o r water i n potassium starved p l a n t s .  This i s considered  i n the d i s c u s s i o n and t h e o r i e s o f such i n v e s t i g a t o r s as James (21) Weevers (52) and Warne(50) a r e p r e s e n t e d  there.  James and P e n s t o n (22) f o u n d p o t a s s i u m i n a l l r e g i o n s o f t h e p o t a t o p l a n t , and c o n s i d e r t h a t i t may be a h i g h percentage of the dry matter.  I t i s especially high  a c t i v e l y growing t i s s u e s , I.e., reproductive parts.  in a l l  i n stem, r o o t , s p r o u t and  They can d i s c o v e r no e v i d e n c e t h a t  p o t a s s i u m p r e c e d e s and provokes growth b u t i t i s r e l a t e d t o it.  That p l a n t s may c o l l e c t p o t a s s i u m they r e q u i r e f o r f u r -  t h e r growth t h e y s t a t e , i s a l l o w a b l e .  T h i s would be i n a c -  cordance w i t h J a n s e n and Bartholomew (24) who a l s o q u a l i f y the statement u s i n g the expression  "under some c o n d i t i o n s . "  James and P e n s t o n t h i n k t r a n s l o c a t i o n o f p o t a s s i u m i n t h e form o f s a l t s o f a m i n o - a c i d s o r p r o t e i n s i s n o t u n l i k e l y . This i s i n contrast to Brazeale  (3)  who t h i n k s n i t r a t e s and  p o t a s s i u m a r e n o t c h e m i c a l l y bound up b u t m e r e l y The  associated.  former workers base t h e i r o p i n i o n on t h e f a c t t h a t  potas-  sium and p r o t e i n s have a s i m i l a r d i s t r i b u t i o n i n t h e m e r i s tematic "The  t i s s u e s and appear t o be abundant i n s i e v e  tubes.  o l d e r l e a v e s c o n t i n u a l l y l o s e potassium w h i l e a t t h e  same t i m e theyjunger ones g a i n i t ,  and t h e work o f Ruhland and  ' - 14' W e t z e l quoted by Onslow ( 3 6 ) w i t h b e g o n i a s u g g e s t s a s i m i l a r movement f o r a m i n o - a c i d s .  K i s t o c h e m i c a l and  analytical  evidence c o n s i d e r e d t o g e t h e r suggest a c o n t i n u o u s James (21)  circulating."  has found p o t a s s i u m t o be p l e n t i f u l a t  the s u r f a c e o f the p l a s t i d s , i n the c e l l v a c u o l e s and  cyto-  plasm and suggests t h a t i n v i e w o f the marked e f f e c t o f p o t a s sium n u t r i t i o n on c a r b o h y d r a t e m e t a b o l i s m ,  the presence o f t h e  metal at the c h l o r o p l a s t surface i s i n t e r e s t i n g . D a r b y s h i r e (43)  T i n c k e r and  agree t h a t p o t a s s i u m i s p o s s i b l y a c a t y l i s t  f a c i l i t a t i n g t h e c o n d e n s a t i o n and h y d r o l y s i s of s t a r c h . In w o r k i n g w i t h c o r n s t a l k s , H o f f e r (20) r e p o r t s t h a t i n t h e absence o f p o t a s s i u m , t h e r e w i l l be an  accumula-  t i o n of i n s o l u b l e i r o n w h i c h k i l l s the p l a n t t i s s u e s .  In  a d d i t i o n t o the n e c r o t i c e f f e c t upon t h e t i s s u e s "would be the s u g g e s t i o n t h a t i r o n would not be p r e s e n t i n as l a r g e quant i t i e s i n i t s r o l e o f c a t y l i s t i n p h o t o s y n t h e s i s , i f i t were i n the i n s o l u b l e  form. Phosphate.. —•  'I  III III lltlfll-l ||  A t y p i c a l phosphorus and s t u n t i n g o f growth.  d e f i c i e n c y w i l l show a p u r p l i n g  W a l l a c e (47) has l a t e l y found  this  to be t r u e o f s u c h v a r i e d p l a n t s as s t r a w b e r r i e s , g o o s e b e r r i e s , r a s p b e r r i e s , apples-- and many workers have found i t t o be t r u e of tomatoes and o t h e r c r o p s .  I t has been c o n s i d e r e d t o  be n e c e s s a r y i n the s t o r a g e of c a r b o h y d r a t e s , f o r the synt h e s i s o f n u c l e o - p r o t e i n s and a l s o i t i s of consequence i n the a s s i m i l a t i o n of f a t s t h r o u g h the f o r m a t i o n o f phospholipords.  M a c G i l l i v a r y (31)  f i n d s phosphorus  t o be  essential  •  a t a l l stages  -  of g r o w t h .  15-  .  I f there i s a shortage,  there  "be a m i g r a t i o n of phosphorus to the g r o w i n g t i p , and utilization  of i t .  a re-  But, M a c G i l l i v a r y s t a t e s , "insomuch as  blossoms r e q u i r e c e l l d i v i s i o n f o r development" and nuclear materials  He  fresh  " i t would seem the l i m i t e d s u p p l y was  s u f f i c i e n t f o r a l l t h e o r g a n i c and necessary".  will  not  i n o r g a n i c phosphorus  r e p o r t s t h a t i n a l l p l a n t s , whether amply  s u p p l i e d w i t h phosphorus or not t h e r e i s a g r a d i e n t of more and more phosphorus from the base of the stem upward the f r u i t  until  i s reached, where t h e r e i s as much as i n the r e s t  of the p l a n t .  He  c o n t r a s t s t h i s f u n c t i o n o f phosphorus w i t h  t h a t o f n i t r o g e n , where the h i g h e s t i n the g r o w i n g t i p s ;  and  concentration  i s found  a g a i n , whereas n i t r a t e s move r a p i d l y  the movement o f phosphates i s s l o w .  I t has  been contended  t h a t phosphorus i s n e c e s s a r y f o r seed f o r m a t i o n .  MacGilli-  v a r y p r o t e s t s t h a t t h i s seems t o be t r u e of the f r u i t as a whole and  t h a t i t i s j u s t as e s s e n t i a l t o the f o r m a t i o n  p u l p as o f the seeds.  He p o i n t s o u t , however, the  of s e p a r a t i n g p u l p f r o m seed i n the tomato. i t i s n e c e s s a r y t o seed p r o d u c t i o n such p l a n t s as wheat and  of  difficulty  Statements t h a t  are based on a n a l y s i s of  c o r n ; but the o u t e r c o a t s o f these  i s a p o r t i o n of the c a r p e l w a l l and t h e r e f o r e t h e y a r e  fruits.  He p o i n t s out t h a t p u l p i s d e c r e a s e d i n amount b o t h i n the c a r p e l w a l l s and  i n the c e n t r a l p l a c e n t a r e g i o n and  that  the  d i f f e r e n c e s are so g r e a t t h a t one would expect a d i f f e r e n c e in variety. fewer and  F r u i t s grown w i t h a phosphorus d e f i c i e n c y had  s m a l l e r seeds than t h e ample phosphorus p l a n t s ,  but  the  seeds from both had  phosphorus. similar crease  i n the  pollination,  Phosphorus  percentage  and  a decrase  to  sized  This fruits  present  the  i n the  why  phosphorus.  (2  ) finds the  other  p l a n t s have  i t was soil  total  consistent,  phosphoric  badly  depressed  depressed  seem  supply  formation  a  of  essenphos-  i f good  a large proportion i s  (10)  r e p o r t s the  high and  the  total  of  amount  of content  phosphate phosphorus  content  at a s t r o n g l y a c i d  concentration,  medium i n a s o d i u m c a r b o n a t e of the f r u i t decreased  was  treated not  a p p l i e d to the  soil  acid  P h o s p h a t e a b s o r p t i o n was  d i d not.  starvation,  and  be  phosphorus  potassium  a phosphate' s t a r v a t i o n s e r i o u s l y  a b s o r p t i o n even c a u s i n g  very  i t somewhat,  by magnesium s t a r v a t i o n t h a n by  nitrate  phosphorus  t h a t t h i s may  a small t o t a l  phosphorus content  lime  while  sulphate  " i t would  e l e m e n t s and  such  the  The  (11)  b e n e f i t t e d by  that a r e u t i l i z a t i o n  of  soil.  Gericke  i s v e g e t a t i v e growth  a continuous  d e s i r e d " s i n c e such  tomato l e a v e s v a r i e d w i t h  i n a limed  that  during f r u i t  of  low  and  plant with  Emmert  soil;  was  growth,  M a c G i l l i v a r y p o i n t s out t h a t the •  same t i m e  g r e a t e r than w i t h  the r e a s o n  of  total  fruit.  Andre is  produced  o f s t a r c h e s and  quantity of f r u i t .  i n that there  i s necessary are  and  of  p l a n t s showed an i n -  that maturation  f r o m wheat  at the  supply  phate.  and  of phosphorus but  fruiting  tial  deficient  tests  o f c o a g u a b l e n i t r o g e n , and  s i z e , weight  tomato d i f f e r s and  same p e r c e n t a g e  of dry weight  w o r k i n g w i t h wheat, f e l t cessation  the  They gave s i m i l a r g e r m i n a t i o n  plants.  nitrogen  almost  a loss  from  the  more or  -  r o o t s l a t e i n the s e a s o n ,  The  17  -  Kentucky workers consider  a n a l y s i s o f the p l a n t t i s s u e s f o r phosphorus, n i t r o g e n p o t a s s i u m to he  and  of more v a l u e as an i n d i c a t o r of a v a i l a b l e  s o i l n u t r i e n t s t h a n i s an a n a l y s i s of t h e  soil itself.  have d e v e l o p e d a speedy t e c h n i q u e a p p l i c a b l e t o use field.  an  S i m i l a r work has  a n a l y s i s of corn,stalks  a l s o been c a r r i e d out  in  i n the  They the field  at Purdue U n i v e r s i t y ,  Of p a r t i c u l a r i n t e r e s t i n t h i s i n v e s t i g a t i o n are B r a z e a l e ' s f i n d i n g s t h a t the a b s o r p t i o n and  potassium increased  w h i c h t h e r e was  up  of b o t h phosphorus  to a c e r t a i n c o n c e n t r a t i o n  a sharp d e c l i n e .  after  -  18  -  In c o n c l u s i o n are quoted a few a d d i t i o n a l i n v e s t i g a t i o n s of i n t e r e s t . and  W a l l a c e (47)  whose e x p e r i m e n t s w i t h  apples,  sm9.ll f r u i t s i n sand c u l t u r e s have a l r e a d y been r e f e r r e d  t o , shows t h a t a d e f i c i e n c y o f n i t r a t e , p o t a s s i u m , phosphorus, c a l c i u m , magnesium and s u l p h u r produces c h a r a c t e r i s t i c e f f e c t s i n the v a r i o u s p l a n t s , a.nd the v i e w i s e x p r e s s e d t h e s e may Davis  t h a t some of  be o f use f o r d i a g n o s t i c purposes i n the  (7), c o n t i n u i n g W a l l a c e ' s  field.  type o f experiment w i t h  found the o m i s s i o n o f an element was  apples,  r e f l e c t e d by a low  centage o f t h a t element i n ash and dry m a t t e r ,  and  per-  demonst-  r a t e s a h i g h degree of c o r r e l a t i o n between symptoms e x h i b i t e d and the amount of the r e l a t e d element i n ash and d r y G r e g o r y and R i c h a r d s o n  (12)  c l a i m r e s p i r a t i o n t o be  matter. subnormal  when n i t r o g e n i s w i t h h e l d , normal when phosphorus i s w i t h h e l d , and  supernormal when p o t a s s i u m i s w i t h h e l d .  They a l s o show  the r a t e of a s s i m i l a t i o n to be d i s t u r b e d t h r o u g h t h e of these e l e m e n t s . presented  A number of i n t e r e s t i n g o b s e r v a t i o n s  by Tyson (46)  sugar b e e t s •  He has  omission are  as a r e s u l t of h i s e x p e r i m e n t s with,  found t h a t i n t h e e a r l y stages  o f growth  the r a t e o f a b s o r p t i o n of elements i s g r e a t e r t h a n t h a t of assimilation.  When the p l a n t i s making r a p i d growth t h e r e i s  a s m a l l e r p e r c e n t a g e o f the v a r i o u s n u t r i e n t s i n the matter,  i n d i c a t i n g t h a t now  sorption.  The  dry  a s s i m i l a t i o n i s greater than  l i f e processes  are more i n f l u e n c e d by the  and c o n c e n t r a t i o n than by a s u p p l y of any  one  element  abratio  other  -  than n i t r o g e n .  19>  He f i n d s l i g h t i n t e n s i t y to be i m p o r t a n t  in  the u t i l i z a t i o n of m i n e r a l n u t r i e n t s but not i n t h e i r a b s o r p t i o n : p l a n t s absorb j u s t as much i f they are shaded as unshaded,  N i t r a t e s i n c r e a s e d the a b s o r p t i o n o f phosphorus and a l l  p l a n t foods i n c r e a s e d the a b s o r p t i o n o f p o t a s s i u m , o f c a l c i u m was nitrates,  The  intake  not i n c r e a s e d by p o t a s s i u m , phosphates or  Hoagland (18)  f i n d s that with barley there w i l l  be  a b s o r p t i o n of n u t r i e n t m a t e r i a l s a t a l l s t a g e s , i f a s u i t a b l e c o n c e n t r a t i o n of i o n s be m a i n t a i n e d .  But i n t e n s e  d u r i n g l a t e r s t a g e s o f growth l e a d t o no i m p o r t a n t  absorption increases  i n c r o p y i e l d , which seem r a t h e r to be c o n d i t i o n e d i n a l a r g e measure by a fa.Yorg.ble s u p p l y and c o n c e n t r a t i o n i n the e a r l y stages,  Heydemann, however, (16) found w i t h tomatoes t h a t  the a s s i m i l a t i o n of n i t r o g e n , c a l c i u m , p o t a s s i u m , and  phos-  phate proceeded a t an e q u a l r a t e f o r a t i m e , a f t e r which p o t a s s i u m and n i t r a t e were used more r a p i d l y .  "° 20 **  PRELIMINARY EXPERIMENT S The purpose o f t h e s e e x p e r i m e n t s has a l r e a d y "been p o i n t e d outs t h a t i s , an endeavor was made t o l e a r n t h e e x a c t p e r i o d o f a b s o r p t i o n o f t h e i o n s Ca, Mg, SO4., N0^, K and PO4 i n t h e development o f t h e tomato, w i t h t h e o b j e c t o f l e a r n i n g the most s u i t a b l e time f o r f e r t i l i z e r a p p l i c a t i o n s .  Prelimi-  n a r y a b s o r p t i o n e x p e r i m e n t s were c a r r i e d out i n t h e greenhouse dur i n g  1931"32»  M a t e r i a l s ' a n d Methods» Three d i f f e r e n t s e t s o f p l a n t i n g s were worked w i t h i n these experiments. J a n u a r y 7* 1932*  The f i r s t r a n from November 18, 193 t o 1  On November 13 t w e l v e tomato p l a n t s o f an  average h e i g h t o f 5» 5 cm. were s e t up i n 2 q u a r t g l a s s and grown i n a n u t r i e n t s o l u t i o n .  jars  These were f i r s t t h o r o u g h l y  washed and r i n s e d w i t h d i s t i l l e d water and c o v e r e d w i t h d a r k paper t o p r e v e n t t h e growth o f a l g a e . cut  and a c o r k w i t h a 4 cm. bore f i t t e d  The m e t a l tops were i n t o t h e openings*  The r o o t s o f t h e p l a n t s were r i n s e d f r e e o f any s o i l from t h e seed bed, t h e stems were wrapped w i t h a s m a l l p i e c e o f a b s o r bent c o t t o n , and t h e p l a n t s were f i t t e d the j a r s .  t h r o u g h the c o r k s i n t o  Hoagland's N u t r i e n t s o l u t i o n o f t h e normal  concen-  t r a t i o n was made up and the j a r s almost f i l l e d w i t h i t .  A  few drops o f i r o n c i t r a t e wixt* added every few days and t h e s o l u t i o n s k e p t up t o volume w i t h d i s t i l l e d water. the n u t r i e n t s o l u t i o n was k e p t f o r t h e subsequent analysis.  A sample o f comparative  - 21 The p l a n t s were a l l o w e d t o grow f o r one week, when the s o l u t i o n s were poured o f f , measured, and t h o r o u g h l y and a sample t a k e n .  mixed,  Upon removing the used s o l u t i o n from t h e  j a r s , t h e p l a n t r o o t s were washed o f f and a f r e s h s o l u t i o n was g i v e n them.  T h i s procedure was c a r r i e d on w e e k l y .  The sample o f s o l u t i o n i n w h i c h t h e p l a n t had grown and  t h e sample o f unused s o l u t i o n were t a k e n t o t h e l a b o r a t o r y  and p a r a l l e l a n a l y s e s -  f •- —  i i O ^ , E, PO^.  r u n on them f o r t h e i o n s , - Ca, Mg,  S0 , A  S t a n d a r d s o l u t i o n s c o n t a i n i n g known p a r t s p e r  m i l l i o n of these  i o n s were a l s o a n a l y z e d  check and u s e d s o l u t i o n s .  and compared w i t h t h e  The p a r t s per m i l l i o n o f t h e v a r i o u s  i o n s absorbed by t h e p l a n t c o u l d thus be c a l c u l a t e d . were d e t e r m i n e d c o l o r i m e t r i c a l l y w i t h a K l e t t Top  The i o n s  Colorimeter:-  The p r o c e d u r e f o r the, n i t r a t e i o n -was ••the p h e n o l d i s u l p h o n i c method ( 1 ) , f o r t h e p o t a s s i u m i o n t h e method o u t l i n e d by Cameron and P a i l y e r (4)--, phosphates were d e t e r m i n e d by t h e ammonium molybdenum b l u e method o f P a r k e s and Pudge (37) > magnesium as o u t l i n e d by Hubbard (17), and t h e c a l c i u m and s u l p h a t e i o n s a c c o r d i n g t o t h e p r o c e d u r e s o f R i c h a r d and Wells (41). U n f o r t u n a t e l y t h i s f i r s t p l a n t i n g c o u l d not be . c o n t i n u e d ® n y l e n g t h of time. p l a n t s from w h i c h s e t - b a c k  A c o l d n i g h t caught t h e  they n e v e r g r e a t l y r e c o v e r e d .  In  a d d i t i o n i t was n o t r e a l i z e d a t t h i s p o i n t t h a t a e r a t i o n was r e q u i r e d i n t h e s o l u t i o n s t o p r o v i d e s u f f i c i e n t oxygen f o r the r o o t s .  By January 7 so much d i s i n t e g r a t i o n o f the r o o t s  was g o i n g on w i t h t h e consequent r e l e a s e of t h e i o n s t h a t i t  - 22 was d e c i d e d  t o abandon t h e s e p l a n t s .  T a b l e I , page 24, g i v e s  the p a r t s p e r m i l l i o n o f t h e i o n s absorbed d u r i n g t h i s p e r i o d . By J a n u a r y 7 a l l i o n s were b e i n g d i f f u s e d . Second p l a n t i n g s were s e t up i n t h e same manner as the f i r s t high.  The p l a n t s chosen were 8 cm.  Hoagland's s o l u t i o n was used f o r t h e f i r s t  Shive s 1  for  ones on January 22nd.  two weeks.  s o l u t i o n f o r t h e f o l l o w i n g t h r e e weeks and Hoagland's  t h e f i n a l week.  At t h e t i m e S h i v e ' s  s o l u t i o n was  substi-  t u t e d t h e q u e s t i o n o f a e r a t i o n was becoming u r g e n t and i t was felt  t h a t a change o f medium might a l l e v i a t e t h e n e c e s s i t y o f  arranging f o r the a e r a t i o n .  The p l a n t s were g i v e n a f r e s h  s o l u t i o n weekly as w i t h t h e p r e v i o u s p l a n t i n g , and were made.  A g a i n , u n l u c k i l y , t h e p l a n t s were c h i l l e d and  l i t t l e g r o w t h was b e i n g made. to  analyses  On F e b r u a r y 20, i t was  use a e r a t i o n on h a l f t h e p l a n t s .  decided  A system was s e t up as  f o l l o w s i - A pump was i n s t a l l e d and connected w i t h the j a r s by a system o f g l a s s and r u b b e r tubings,, ing  The amount o f a i r e n t e r -  each j a r was c o n t r o l l e d and k e p t u n i f o r m  rubber t u b i n g .  by c l a m p i n g the  "A d i s t i n c t improvement i n t h e .appearance- o f  the p l a n t s was apparent but i t was found t o be too l a t e t o s t i m u l a t e them t o n o r m a l growth, w i t h t h e hope o f r e a c h i n g m a t u r i t y i n t h e few weeks s t i l l  left.  C o n s e q u e n t l y two weeks  l a t e r , t h i s p l a n t i n g was a l s o d i s c a r d e d .  whereas c o n s i d e r a b l e  d i s i n t e g r a t i o n had been g o i n g on b e f o r e a e r a t i o n , as was i n d i c a t e d by t h e a n a l y s i s , t h e t e s t s r u n f o l l o w i n g i t s a p p l i c a t i o n showed a l o w e r c o n c e n t r a t i o n o f i o n s b e i n g d i f f u s e d out by t h e p l a n t .  The f i n a l week the s o l u t i o n s from t h e non -  »  2 3  -  a e r a t e d and t h e a e r a t e d p l a n t s were both compared w i t h t h e original*  A n a l y s i s showed those p l a n t s w h i c h h a d been a e r a -  t e d t o be, upon t h e whole, h e a l t h i e r than t h e n o n - a e r a t e d . A f u r t h e r d i f f i c u l t y w i t h a l l p l a n t i n g s was r o o t i n j u r y , due to  t h e weekly d i s t u r b a n c e and t h e washing o f t h e r o o t s w i t h  c o l d water. for  T a b l e I I , page 24, g i v e s t h e a n a l y s i s r e s u l t s  this planting.  I t i s n o t e d t h a t i n t h e p e r i o d March 4 -  11, t h e f i n a l week, a e r a t e d and n o n - a e r a t e d r e s u l t s a r e g i v e n . A t h i r d p l a n t i n g was made on March 1 8 .  S i x large  p l a n t s about t o b l o s s o m were s e t up i n g l a s s j a r s i n t h e manner p r e v i o u s l y employed. a e r a t i o n was i n s t a l l e d .  Hoagland's s o l u t i o n was used and  A g a i n d i f f i c u l t i e s were  i n maintaining, the continuous  experienced  f u n c t i o n i n g of. t h e pump, and  i n p r e v e n t i n g i n j u r y and b r e a k i n g o f t h e r o o t s when changing the s o l u t i o n s i n h a n d l i n g p l a n t s o f t h i s s i z e .  These p l a n t s  were grown f o r f i v e weeks, and as b e f o r e weekly a n a l y s e s were made.  V e r y l i t t l e growth took p l a c e , b u t some f r u i t was  obtained.  Table I I I , page 24, g i v e s t h e a b s o r p t i o n  t h i s period.  during  - 24 TABLE I, N u t r i e n t s absorbed i n p.p.m. by t h e f i r s t p l a n t i n g .  P e r i o d Nov,13-20  K PO  4  Hg ••• so :  4  Eov.20-27  0,0 16. 0.0 0.0 0.0 +  Nov .27-Dec.4  25. 21„ 30. 0.0 0.0  -  6.0 11.0 73-0 9.0  62. 0.00 1.0 49.0 i7»o 0.0  *  ...  Dec.4-11 Dec.11-18 30.0 8.0 . 1.0 7.0 0.0 -25.8  9.5 0*0  TABLE I I .  N u t r i e n t s absorbed i n p.p.m. by t h e second p l a n t i n g .  P e r i o d J a n . 2 2 - E e b . 5 E e b . 5 - 1 9 P e b . 1 9 - 2 6 Eeb.26-Mar.4 TSQ'i  K PO Oa Mg so  4  4  67  25.8 0 3 7.2 26.3  2*2  30.05  84.5 -13.9 -10.8 •.6 -11.5  -45. 38. -15.7 .1 -50.  TABLE I I I . .  9.3  27* -33» - 7.5 3. -  March 4 - 1 1 Aer. 100  -12.2 -53.6 - 9»2 10* -10.8  •"  N u t r i e n t s absorbed i n p.p.m. by t h e t h i r d p l a n t i n g  Period  NO. K $ PO. •C«T Mg 4 S 0  1 s t two weeks Average w e e k l y 97.5 46.3 • 0. 8l 8.5 2.75 e  3rd week  4 t h week  0.0 -16.8 11.3 -33.2 - 3.2 14.3  0.0 42.5 33-3 -33. 0.0 0.0  5th week  100. -23. 9.1 0.0 9.0 11.5  Non-Aer  228™*  0 -76.6 -32.4 - 6.6 -27.2  25  -  -  PJSSULTS. The  r e s u l t s of the f i r s t two  experiments  were  l a r g e l y n e g a t i v e , showing the a c t i o n o f an u n h e a l t h y r a t h e r than a normal h e a l t h y Ca, Mg,  and SO  4-  one.  were c o n s i s t e n t l y d i f f u s e d out o f  the p l a n t under the adverse absorbed  plant  conditions.  lfO^ c o n t i n u e d t o he  i n some degree a t a l l t i m e s , except on one  when the p l a n t s were d i s i n t e g r a t i n g r a p i d l y . not a c t w i t h any c o n s i s t e n c y . b u t t h e r e was o f the K i o n t h a n o f t h e PO4  occasion  K and PO4  did  less diffusing  out  from the u n h e a l t h y p l a n t s .  W i t h a e r a t i o n a n a l y s i s showed a d i s t i n c t l e s s e n i n g of d i s i n t e g r a t i o n . The blossoming  t h i r d p l a n t i n g , showing the p e r i o d between  and f r u i t i n g , gave the f o l l o w i n g g e n e r a l a b s o r p t i o n  results? ITO^ was  absorbed  a t f i r s t , but t h e n ceased.  I t was  noted  t h a t the p l a n t s made l i t t l e v e g e t a t i v e growth at t h i s w h i c h would c o r r e l a t e the l a c k Of 10^ a b s o r p t i o n . week, a b s o r p t i o n a g a i n o c c u r r e d .  The E i o n was  time,  The  absorbed  final in  l a r g e q u a n t i t i e s a l t e r n a t e l y w i t h none a t a l l or even a d i f f u s i o n out.  T h i s d i f f u s i o n was  e x p l a i n e d on the grounds t h a t  the r o o t s were i n a d v e r t e n t l y broken i n changing from week t o week.  The PO^  i o n was  absorbed  t i t y the t h i r d and f o u r week but v e r y l i t t l e There was  the s o l u t i o n s  i n same quanthe f i f t h week.  Ca a b s o r p t i o n the f i r s t two weeks and t h e r e a f t e r  a d i f f u s i o n out w h i c h was  a g a i n accounted  f o r by the b r e a k i n g  - 26 of t h e r o o t s , and consequent d i f f u s i n g out o f t h e i o n s .  There  was d i f f u s i o n out o f Mg when l a r g e amounts o f Ca were d i f f u s e d o u t , but t h i s d i f f u s i o n was f o l l o w e d by renewed S0  A  showed a f a i r l y c o n s i s t e n t  absorption®  absorption.  -  MAIN  2?  -  EXPERIMENT«  The P r e l i m i n a r y E x p e r i m e n t s were f o l l o w e d "by f u r t h e r a b s o r p t i o n and n u t r i t i o n i n v e s t i g a t i o n s i n 1932-1933* The A b s o r p t i o n E x p e r i m e n t concerned t h e i o n s d e a l t w i t h i n t h e p r e l i m i n a r y work which has been p r e s e n t e d , t h a t i s , Ca, Mg, SO4, NO^, K, PO4.  The m a t e r i a l s and methods used  and t h e r e s u l t s o b t a i n e d a r e p r e s e n t e d i n S e c t i o n I . The N u t r i t i o n E x p e r i m e n t concerned t h e e f f e c t o f a d e f i c i e n c y o f n i t r a t e , p o t a s s i u m and phosphate, a change i n c o n c e n t r a t i o n , and complete s t a r v a t i o n . methods used a r e g i v e n i n S e c t i o n I I .  The m a t e r i a l s and The r e s u l t s upon p l a n t  growth and f r u c t i f i c a t i o n , and a c h e m i c a l a n a l y s i s a r e p r e sented. S i n c e i n t e r e s t i n g c o r r e l a t i o n s were found t o o c c u r , d i s c u s s i o n o f t h e r e s u l t s o f t h e two e x p e r i m e n t s appears under one h e a d i n g .  VARIETY USED. R i v e r s i d e E a v o r i t e tomato seeds were p l a n t e d i n w e l l - w a s h e d n o n - n u t r i e n t sand, and vrettered w i t h d i s t i l l e d water only.  These s e e d l i n g s were "used i n b o t h t h e Absorp-  t i o n and N u t r i t i o n E x p e r i m e n t s .  -  28  -  SECTION I . ABSORPTION EXPERIMENT. M a t e r i a l s and Methods«> A new method was d e v i s e d ment.  f o r the absorption  experi-  A pump was no l o n g e r a v a i l a b l e , and s i n c e i t had been  shown i n t h e p r e l i m i n a r y e x p e r i m e n t s t h a t aeration.;, was essent i a l , w a t e r c u l t u r e s c o u l d not be u s e d . of. sand c u l t u r e s was s e t up.  sand.  i n f i v e inch c l a y pots of  Means were t a k e n t o p r e v e n t t h e sand  f r o m l e a c h i n g out o f t h e d r a i n a g e h o l e , an aluminum t h i m b l e  a series  On December 20, f o u r o f t h e  s e e d l i n g tomato p l a n t s were p l a n t e d w e l l washed q u a r t z  Accordingly  an i n c h i n d i a m e t e r .  by c o v e r i n g  i t with  The p l a n t s were  watered w i t h Hoagland's n u t r i e n t s o l u t i o n o f the r e g u l a r concentration. up.  A check pot o f sand w i t h no p l a n t i n g was a l s o s e t  The p o t s were p l a c e d upon p i n t s e a l e r s , t h a t any d r i p p i n g s  might be caught.  Brown paper was wrapped around the s e a l e r s  t o p r e v e n t a l g a e growth i n t h e d r i p p i n g s and d a r k paper was f i t t e d over t h e t o p s of t h e p o t s around t h e p l a n t s t o p r e v e n t a l g a e growth on t h e n u t r i e n t s a l t s i n the sand*  The amount o f  s o l u t i o n f e d t o each p l a n t was t a b u l a t e d and t h e check pot w a t e r e d w i t h an e q u a l amount.  P l a t e I , F i g . (a) (Appendix)  shows the arrangement o f t h e p o t s o f t h e mature p l a n t s upon the s e a l e r s . A f t e r seventeen days t h e s o l u t i o n s were withdrawn for analysis.  P r o c e d u r e was as f o l l o w s :  D i s t i l l e d water was  f l u s h e d t h r o u g h each pot t o wash out t h e s a l t s w h i c h were present there.  The washings were c o l l e c t e d i n c r o c k s and  -  29  -  measurement was made o f t h e s o l u t i o n w h i c h passed t h r o u g h each pot; to  s u f f i c i e n t w a t e r was used t o b r i n g t h i s measurement up t w i c e t h e volume o f t h e n u t r i e n t s o l u t i o n f e d t o t h e p l a n t .  The washings o f t h e f o u r p o t s were w e l l mixed and a sample was t a k e n .  The check pot was s i m i l a r l y t r e a t e d and a sample  t a k e n o f t h e washings from i t . the  I t was f e l t t h a t the use o f  check pot would p r o v i d e an adequate comparison as t h e  unused s o l u t i o n , s i n c e i t was r e a l i z e d t h a t t h e p o t s might a b s o r b n u t r i e n t s w h i c h must n o t be a t t r i b u t e d t o t h e p l a n t . The scheme f o r w a s h i n g o u t t h e s a l t s i s shown i n P l a t e I , Pig.  (b) ( A p p e n d i x ) . A f t e r washing t h e p l a n t s t h r o u g h i n  t h i s f a s h i o n i t was found n e c e s s a r y t o a l l o w them t o d r y out for  a day o r more b e f o r e f e e d i n g t h e new s o l u t i o n : o t h e r w i s e  i t would d r i p t h r o u g h t h e p o t s a t a l l p a r t s and c o n t r o l o f the  q u a n t i t i e s o f t h e s o l u t i o n would be l o s t •  The f r e s h s o l u -  t i o n was s u p p l i e d i n such a q u a n t i t y as t h e pot would t a k e without leakage.  D u r i n g t h e f i r s t p e r i o d , w h i c h was seventeen  days, each p l a n t r e c e i v e d ^00 c . c .  The amount f e d was g r a -  d u a l l y i n c r e a s e d u n t i l 20^0 c.c. was b e i n g g i v e n i n June, t h e f i n a l month.  The p o t s were washed t h r o u g h and a f r e s h s o l u -  t i o n g i v e n , as has been d e s c r i b e d .  A f t e r two three-week  p e r i o d s , and t h e r e a f t e r every two weeks, a n a l y s e s o f t h e used and unused s o l u t i o n s and comparison w i t h a known s t a n d a r d were made i n t h e manner o f the p r e l i m i n a r y e x p e r i m e n t s .  Measure-  ment o f growth was taken a t each change o f t h e s o l u t i o n . A l l s u c k e r s were removed and t h e p l a n t s kept t o one stem and staked.  A t t h e f o u r t h changing o f the s o l u t i o n on March 7 t h ,  -  30  -  the p l a n t s were t r a n s p l a n t e d t o 6 i n c h p o t s , t h e average h e i g h t a t t h i s time b e i n g 49,6 em.  They remained i n these  u n t i l t h e c l o s e o f the experiment on June 29th, when i t was c o n s i d e r e d v i t a l a c t i v i t y was c e a s i n g . Results. Tables  are presented  t o show t h e a b s o r p t i o n o f t h e  various ions: T a b l e I V . - Page 3 3 : The a b s o r p t i o n o f t h e n u t r i e n t s i n p a r t s per m i l l i o n  (p.p.m.) and i n m i l l i - e q u i v a l e n t s (m.e.) f o r t h e  p e r i o d s between a n a l y s i s . Table V. - Page 34: The a b s o r p t i o n of t h e n u t r i e n t s i n p.p.m. and m.e. d u r i n g v e g e t a t i v e growth, b l o s s o m i n g and f r u i t i n g . Chart I . - Page 2%8The a b s o r p t i o n o f t h e i o n s i n m i l l i - e q u i v a l e n t s c h a r t e d a g a i n s t growth i n c e n t i m e t e r s . I t i s n o t a b l e t h a t a l l t h e i o n s a r e absorbed  through-  out t h e l i f e o f t h e p l a n t , Mg o n l y , d e f i n i t e l y c e a s i n g t o e n t e r two weeks b e f o r e t h e o t h e r s  stopped.  At b l o s s o m i n g time t h e r e was a s l i g h t f a l l i n g o f f i n n i t r a t e a b s o r p t i o n , b u t d u r i n g an u n u s u a l l y f i n e p e r i o d i t went up a g a i n t o almost as h i g h a p o i n t as i t had reached d u r i n g t h e p e r i o d o f p u r e l y v e g e t a t i v e growth. showed a c o n t i n u o u s  Potassium  f l u c t u a t i o n i n absorption u n t i l the f i n a l  month o r more when i t dropped v e r y l o w . Phosphate a b s o r p t i o n i n c r e a s e d g r a d u a l l y u n t i l b l o s s o m i n g t i m e , when i t s u d d e n l y ceased f o r one p e r i o d , was low t h r o u g h b l o s s o m i n g time and increased again during f r u i t i n g .  Absorption of calcium i n -  c r e a s e d g r a d u a l l y as e a r l y growth was b e i n g made, a f t e r which  i t fluctuated.  3  l -  A r e f e r e n c e to Chart I , Page-1% however,  shows t h a t both c a l c i u m and n i t r a t e a b s o r p t i o n f a i r l y w e l l f o l l o w the growth c u r v e .  Ho  c a l c i u m was  absorbed e a r l y i n  June and t h e n l i k e the phosphate t h e r e was  suddenly a l a r g e  amount absorbed the l a t t e r p a r t of the monthj the f r u i t been, and  s t i l l was,  had  r i p e n i n g i n l a r g e q u a n t i t i e s . Magnesium  a b s o r p t i o n a l s o f l u c t u a t e d though t h e r e was  little  t i o n with calcium absorption.  absorbed i n the  S u l p h a t e was  correla-  l a r g e s t amount e a r l y i n the v e g e t a t i v e growth but was in  used  a f a i r l y u n i f o r m degree u n t i l h a r v e s t i n g of the p l a n t s . The  r e l a t i v e amounts of the s i x i o n s absorbed i n  m i l l i e q u i v a l e n t s i s a l s o i n d i c a t e d i n Chart I , Page- 29a. is  It  shown t h a t n i t r a t e s a r e absorbed i n the l a r g e s t amounts,  w i t h calcium next i n q u a n t i t y .  The  phosphates i o n s e n t e r i n  the s m a l l e s t amounts. T a b l e V I , Page y% p r e s e n t s d a t a on the r e l a t i o n o f the a b s o r p t i o n of n i t r a t e and p o t a s s i u m t o the r a t i o of suns h i n e t o p o s s i b l e s u n s h i n e and t o the s o l a r r a d i a t i o n as measured by a b l a c k b u l b thermometer.  D a t a was  obtained  from  the Dominion M e t e o r o l o g i c a l S e r v i c e and i s t h e r e f o r e r e l i a b l e , but i t i s p o i n t e d out t h a t complete s t a t i s t i c s were not a v a i l a b l e f o r the e a r l y months of the y e a r . however, are f e l t to be r e p r e s e n t a t i v e . very l i t t l e  The  averages,  There seems to be  c o r r e l a t i o n between the elementary a b s o r p t i o n  and s o l a r r a d i a t i o n , but w i t h the r a t i o o f sunshine t o poss i b l e sunshine t h e r e i s a n o t a b l e  correlation.  During  per-  i o d s of g r e a t e r s u n s h i n e t h e r e i s g e n e r a l l y g r e a t e r n i t r a t e  -  32  -  a b s o r p t i o n , and i n p e r i o d s of l e s s e r s u n s h i n e t h e r e i s l e s s e r p o t a s s i u m absorption,,  -'33.'-  TABLE IV The absorption of the nutrients .in iparts .per m i l l i o n and m m i , V for the periods between analyses.- «uiion and .milli- equivalents  Hons - 3  ;  2  * H>  p.p.m. m.e. p.p.m. in.e. p.p.m. m.e. /•pv-pim."''.'mVei'p.p.m.''m.e.  2  5  .  3 . 6 3 436.8  2  32.5 4  ca Ii. _?V  4.  9  0.83  19.4  1.59  67.16 1.4Q  7  «7.oo  0.13  .43.6-2.18  , , o  113.6 7.15  225,0  3.63  0.69  4 5 . 6 , 1.14  C337  26.li  .68  123.3  5  .58  95.7 ;i.?9  0.825 6.16  19.5,1.64 44.25  .92  208.00  , - 3 ? 440.  7,9  30.0 : . 8 ; , 8 . 6 0  0 ,  9  69.6  a.45  o,?5  ,90.3 4 . o 5  4.50; 0 . 3 5 .: i 6 .  2  9  7  .  3  4. oo  C  7  0.73. . ^ 6 0  2  0 , 0 " 5.1  22.10,i.ao  p.p.m. m.e.  7  1.40  32.5  ,68  :  :  , 1 9 . 5 0 6.77 R  1.89 ,  ;8. o 0 , 8 . 3  62.60 ' 1,30  ;  :  ; :  ;  2  7  7  , c  .^••V;n; *.^5 V: W  1.90 0 , 6 37.80  p.p.m. m.e. p.p.m. m.e. p.p.m. m^e. ' p;p.m; Ae/ p.pra." m.;e. p.pm.'m.e;  3.3c 0.13  ^.20  ,.  7  7  97,C  M  6 0.00 0 . 0 c  V*.54 ••.:3o: ^ .77^ 3-80 , , 0 , 0 0 , 0 M  12.3 0.39  i > 3 0 0.48  6 5 , 5 3.25 Y. 6 9 . 0 . 3 . 4 5  72.253.61  ,2.100.17  13.5 i . i i  79.30 1.69  6 0 . 5 1.26  19.160,600,00,024.700.78 31.10 1.55 o , : 0 , 0 0  l > 3 0 1.42; 0.00 0.00 0 , 0 0.00 7  3  9-95  0.00 0.00 0.000.00  27.86 1.39 0,0 0,0  . 8 3 ^ 5 . 6 0 a a 6 9 . o o 1,64 7 1 , 0 1.49 ;  7  -  3 4  S SO-  &  »  o  •P *> o U 0) C0  J •H  i-i r-l  -H g  :  CQ!  3  bO 8 a> - H pi  cu += S • •> <H  ON  bOvH CD - P  CD g boi pj A 1-3 - H -P I -H PS  Id 3 hO X S  O fn CD O rH •ri <H |> h S r-i P4-P rH - 3 •> P i o cS f| cd - P -H cd <» , 3 W CD p4 - H +3 -H  no ^  S  R  ttO  li>l rH PQ <j EH  CQ -P fl CD •H rH -p  pi S  +5 -p Cd o rH - P bO  -P -H  . -P  en  r-l Cd . « H co a)  -P  O <H  J> Ct5 £  bQrH  aa .a  •H CH eg K «d CD bo •r! C D D -Cj p •H CQ - P •CQ H -CP Pi O 60 g co -P CD CD O O © pi !> - P CQ r H O CQ P ,d o  • jI ON  Pi *  : ft  "1XN 00  CM  <D e  a  »  1  1  I  ' «  ON ITS ON CO  m  CX)  on • H bOl  NO«  NO o-  NO on  lr\ H O H  «  on  CO  H  CO  «  rH  \T\ NO IfN CO 4)  ON  CO o  NO IfN (>-  O  co  NO  1r\ OJ rH  I—1  O9N  O ON 9  \T\  OJ  vO  H  6 CM  ®  CO  1 ! !  • •  a  o  "U*N c\l o  r-i  rH PI'  .pi C•Q O  o o  «  ft 4 ft  o S •  03 O CD - P O - P •P CD CQ S3 CQ - p Fk cd o 3 xn O cd rH ft ftrH C| -P CD Pi -H  1^  o  ©  •rt H rH Pi  bO g  «  I XTN  a  OJ  g '-ri (S (8 o cd -p JEj o •H a> -i-i •  r  a  rH ' H Cfi - P - p ft! o U EH O ,  ON  CD  ON  a  •  e  H  rH  o m  "=t  NO o  o ITS  rH  NO  '  O ON » •LCN CM NO on o OJ • OJ  co  rH  O« O  O  ©  ON  me  NO  CO o «  CM  on CO on  co  ON  rH  «{ S o I CQ CO o- o • I—II  a  '  ©  © o  ft « u raj ft  ©  no Cs-  cd  rH et>-  CD O  rH  « o rH  CO  ON CM  CM  0 CM  rH  o  O VTN  CM  ON  «  r  bO  rH C  3  ri cd & T>. O h rl < W r-t o 'Tj +s ' H - P •r-i CO CQ - H O (5 rH -P •JJt-p PfrHQ rH rH Pi o CQ CD ^ | 03 6 CD CQ rH - H pi o o rQ td Cd - P •H S t> CO +3 ^ o CD • H - p fl: cd Cf+••> O +3 rH E H CD <rj O cd ft  r. ^ O- -P * ^1 rH O f cd  rH NO  ITS on  (0 CD?  P  bd  CD  a! « ft  !  ft i  O o  »  ON o rH  IfN rH  •  NO rH  NO  H  u\  • >| O Til ro-pl « cSl o +>l  rH  rH  O NO  "LfN ON  rH  rH  CM O on  O  NO oCM  o  cd  bD  on rH  «  »  "3  o  •H U <D PH  o  on o  i4  St-", o CQ  O  CD  S  X)  -rt  0)  o-  ro  CM  O CM  O  ®  e  ON  •d «^CO  S3  •H CO - p  -rt <d o s3  -P  H  S'S  §  o o CM  ra  IPI  a  <  H CO • P fj' •H P CO O  »  <! H mo  H \D  • « M ft ft  S  H  H  o3 ft <S o ra tN-O  •rt  sS  no tr\  r-i u u  -pro  a  CM  o ra  (3  O •rt -P  <H O  O 05 -rt rH - P  ,a> ai PI H  rH  ©  GTN  o  H  O CO  ®  ro  r-i  lf\  O O  O ITS  oON  CO CM  ro  O NO  oro  co  CM O  '  *  O O  O O  S  o r>-H  CM  O  rrt  O  ON  ITS  O  NO  O  rO  ta Q )-}h>  «  M  O  r-i  O O CO  CM CM  CO  o  ©  1r\  CM O  r-i O  ro  s  l> •rt  +3 «3 H  ®  to  CO O CM  ON  on ©  , Q rO CD <D  O  O O  ©  10) eg  0)  O  ©  -P  0) «rt  vo  CM  CM  .Sift  O  o  O  H r>-  H  ®  O  oCM  O O  a  3  o ra •rt ra +3 o ft, ft  co  CM  © •  o  O  CM  CM  •ra  O 0N  *  «  to ro  H  O  e  ON  •CMe» ©  CM  rrt rrt  rO  o-  (4  H  o o co -p  O O  o ft CtS  H  a  -P -ri  •  CO  O +>  0)  O  g  CM  *  m CM  a  •rt  ra m (8 +^ o  ft  >> !>>  C m  •rt H 02 O  •d  H  o  s  <&  54  o  O CO  ©  !:>> a s ^  g  O  O O  ON  •rt;  O  4  O O  1-3  'Hi  o  Irv  r-1  o  co  O O  O O  ro  CM  O CM  O  e  &  CO  o-  O-  rOrrt * » o a  G  CO NO CM  e  a) a5  ©  ®  CM  ro  CM CM  NO  «  ON  t>-  a  •rt rt  •rt  ra  to ra S3 3 a)  ra  •d  o  •rt  M 0)  « H -rt  o ra ra o o •rt ft 03 O  ro O  M  o  O  S  o •rt  ft  PH  ft ft  ?H O  • ft  o •rt .p  ra  •  0  Pi » o ft ra  rt O •rt -P CS •rt  •d  a CI3  r-i O  - 36,-  TABES vji  :  R E S U L T S OS  1  NUTRITl6:ir  EXPERIMEHT;  — — s h o w i n g ; size atiH, vrei^ht. Av.Ht.of Plant at Change of Treatment Mar. 4.  Series  E f f e c t on the plant first visible  First Fruit  Average height at harvesting in feet.  Average' ' Average • Average - Total " length ." ? ?x H r e e r . : -green of root's weight weight i n inches •weight of tops, of roots, i n grs g r  6  :  Average -Average  I lot of tops  I.  l u l l Nutrient  I I . -Nitrate Deficiency  34.375  May 14  32.75•  Mar. 23 Yellowing  I I I . Potassium Deficiency  '27.1  Bronzing  IV. Phosphate Deficiency  33-1  V. VI.  2 x Concentration  33-75  Complete Starvation  32.00  16.75'  • 4.80  .12.60  • 6.75  20.50  • 7 ..10  •21.00  May 9  • 7*25  22.25  May 4  • 4.55  13.00  May  16  May 19th Purple Mottling May 2 •  Mar. 23  • 7*20  Percentage • Average,' 'Average ' ^Average  ^ t of roots  485.20  88.80  574.0  • 149.-00 -  33.00  182,5  24.50  333.75  54.50  388.2  77.7  477.38  69.25  546.6  83.20  16.25  429.25  92.5  522.0  102.50  137.25  35.25  I72.5  26.75  110.00 , 22.00  -  t " per plant per -fruit in grs. ; plant .:' 58.0  40.6  .20.7 5  23.9  1550.4^  27.0  57.4  .82.58  1402.3  34.75  40.2  .14.25  76.12  2269.8  36.3  54.2 .  4.50  80.55  407.8  15.0  27.2  77.33  4.10  83.56  .00  76.66  2354.8 460.8 .  X - The treatment was changed i n these plants at an e a r l i e r date. -  ^  ^  ^  » l l e those cf the-Potassi™ deficiency show a larger average sized f r u i t , there was consid.ra,!,  . -TABLE VIII. -  Series LEAVES  STEMS  free reduc- Total" •-Starch i T o t a l C a ? ~ ^ Sugars' ' V.r.o^H-,.-.^ •-^ree^edu-o- '-Total .i,Stardg?Total^Ca7 S  !. 1 1  P u l l Hutrlent • titrate Deficiency  I I I . Potassium Deficiency IV. Phosphorus Deficiency V. VI.  2 x Concentration Complete Starvation  M  a  E  §  2.70.  6.4.6  5.10  11.50  1.60  2.70  2.70  5.00  ~7.7Q  3.04  £.6o  6.85  6.80  13.65  3.05  3.05  6.42  0.47  -3-50  4.60  6.75  2.50  2.50  4:. 25.  :  'percentage proteins . in oven-dry weiphta  • "Y;' '}.'•'•'-  ROOTS  ;  A.  >ree reduc-,Total - . .Starch' Total Oar" m g sugars- Sugars ./ hohvrtr t. | Leaves Stems- Roots 1.48 1.49 5.75 7.24 12.66 7.35 .12.125 7  a  10.24 8.99 .  1.35  8.56 -  1.81  9.42  9 . 3 6 ; . 19.80 I6.72  25.71  PS  1.33  2.20  14.00  15.2Q  O.90  0  17.70  10.66  14.00  9.25  15.25  .8.200 2.895  4.375  '8.22-  16.78  12.00  .31.82  0.73  1.12  10.00  11.12  16.25  .8.62  14.75  11.62  8.25  19.81  .§•375 3.45-  19.45  10 . 7.5  1.45  12.72  10.95  83.67  2.14  2.36  4.14  6,60  6.75  2.22  11.20  14.72  25.92  1.40  1.47  14.40  15.87  - 39 T-  CHEMICAL  Series  p.H.  ;Total Aoidity i n • •'" Terms of C i t r i c Acid. ..512  I.  F u l i Hutrien't  4.86  II.  titrate Deficiency  4.7?  I I I . Potassium Deficiency IV. V. VI.  -^osphorus Deficiency ' 2 x Concentration Complete Starvation  Specific Gravity  2.00  1.033  i.8p:  ,512  1.0378  1.6,3  4.85  •5376-  1.0271  1.7  4.96  .512 "  1.059  2.20  5-3  .704  1.057  4.85  :  Of  THE:. T^tTTT.  Free Reducing/Sugars' Percentage Extracted.... Green - ,';-:JDry.; . Juice .'. Weight. 'Weight  1.0747  1.64  ANALYSIS  1 .?6  .Total Sugars in Percentage Extracted;- Sreen . .Dry. ' Juice Weight. Weight  Total Proteins in Percentage Extracted Ureen ...Dry Juice,; Weight "Weight!  Percent Dry' Wt. of Fruit.  Percent 'Moisture in Fruit"  l,8i  16.36  2.19  17.08  • 3725  .323  2.92  1.58  18.12  I..92  19.2.6  .454  •399  4*70  8.72  91.28  1.44  16.21  I.83  1,63  1B..35  .818-  .722  8.02  8.88  91.12  1-5  17.52  2.08  1.82  .21.26  .716  .628  7.33  8.56  91.44  1.85  18.60  2.3I  1.97  19.60  .5691  .486  4.8  10.05  89.95.  1.50  15.18  l.'ftn  T FT:)  T n"  A  Q  3  11.06 . 88.94.  - 40 -  SECTION I I .  NUTRITION EXPERIMENT.  • M a t e r i a l s and Methods. N u t r i t i o n experiments were commenced on November 8. Twenty-four young tomato p l a n t s of a: h e i g h t of 4.5  cm. -were  p l a n t e d i n f i v e i n c h p o t s of well-washed q u a r t z sand.  They  were t o be d i v i d e d i n t o s i x s e r i e s which were to be t r e a t e d ag follows: I.  P u l l n u t r i e n t throughout growth and  fruiting.  II.  E u l l n u t r i e n t u n t i l b l o s s o m i n g time and then a nitrogen omission.  I I I . Potassium d e f i c i e n c y treatment. IV.  P u l l n u t r i e n t u n t i l b l o s s o m i n g time and then a phosphate o m i s s i o n .  V.  E u l l n u t r i e n t t h r o u g h o u t , but f e d t w i c e t h e c o n c e n t r a t i o n once a week i n s t e a d of t h e r e g u l a r c o n c e n t r a t i o n t w i c e a week.  VI.  P u l l n u t r i e n t u n t i l b l o s s o m i n g time and then an o m i s s i o n of a l l n u t r i e n t s . A l l p l a n t s were watered w i t h Hoagland's s o l u t i o n ,  f o u r t i m e s the r e g u l a r c o n c e n t r a t i o n b e i n g used f o r the f i r s t two w a t e r i n g s . III)  P o r the p o t a s s i u m d e f i c i e n c y s e r i e s  (Series  sodium was s u b s t i t u t e d f o r some of t h e p o t a s s i u m .  Series  I , I I , I I I , IV and V I were f e d the s o l u t i o n s t w i c e a week and S e r i e s V once a week w i t h the double c o n c e n t r a t i o n .  Further  w a t e r i n g s were g i v e n w i t h d i s t i l l e d water as seemed n e c e s s a r y . Por s e v e r a l weeks the normal c o n c e n t r a t i o n o f t h e s a l t s g i v e n u n t i l , on January 3, the  was  i t was doubled and was kept so f o r  remainder of the experiment.  The amount o f s o l u t i o n g i v e n  each p l a n t was g r a d u a l l y i n c r e a s e d from 5° c. c. to 150  c.c  - 41 The p l a n t s were kept t o a s i n g l e stem and a l l s u c k e r s were removed. On January 20, the p o t s w i t h the p o t a s s i u m d e f i c i e n c y t r e a t m e n t ( S e r i e s I I I ) were w e l l washed through w i t h d i s t i l l e d water and a l l p o t a s s i u m was o m i t t e d from t h a t time on. . Subs t i t u t i o n was made w i t h sodium a c c o r d i n g to Hoagland's d e f i ciency solutions.  A t t h i s time t h e p l a n t s averaged 16 cm. i n  height. By January 3 1 , the f i v e s e r i e s o f n u t r i e n t p l a n t s had r e a c h e d an average h e i g h t o f 23.3 cm. and the potassium d e f i c i e n c y p l a n t s a h e i g h t o f 17 cm.  They were thereupon  t r a n s p l a n t e d t o 10 i n c h p o t s , 14 o f the pots b e i n g g l a z e d and 10 c l a y .  The p l a n t s were s t a k e d and 250 c c . o f t h e n u t r i e n t  solutions given.  T h i s q u a n t i t y o f s o l u t i o n was f e d f o r  s e v e r a l w a t e r i n g s and was then g r a d u a l l y brought up t o 400 c c . at which i t was m a i n t a i n e d f o r t h e d u r a t i o n o f t h e experiment. W a t e r i n g s w i t h d i s t i l l e d water were g i v e n as r e q u i r e d , the c l a y p o t s e v a p o r a t i n g c o n s i d e r a b l y more than the g l a z e d . The f i r s t week i n March i t was f e l t blossoming time had a r r i v e d , a t w h i c h p o i n t t h e treatment was t o be changed. March 7 t h e pots were w e l l washed t h r o u g h w i t h hose water and f i n a l l y w i t h d i s t i l l e d water, so t h a t a l l t r a c e s of s a l t s might be removed.  Measurement o f t h e p l a n t s was t a k e n .  On  March 10 w a t e r i n g s were g i v e n a c c o r d i n g t o the s e r i e s outl i n e d above.  Hoagland's d e f i c i e n c y s o l u t i o n s b e i n g used f o r  the o m i s s i o n t r e a t m e n t s .  400 c c . o f s o l u t i o n , o f t w i c e the  normal c o n c e n t r a t i o n was g i v e n t w i c e a week as b e f o r e the  change o f treatment?  s e r i e s V r e c e i v e d f o u r times t h e con-  c e n t r a t i o n once a week. P o l l i n a t i o n was s e c u r e d , p a r t l y by hand and p a r t l y by t a p p i n g t h e s t a k e s ; a l l p l a n t s , however, were g i v e n i d e n tical  treatment. O b s e r v a t i o n s were made as t o the subsequent be-  h a v i o r o f the s i x s e r i e s as r e g a r d s amount o f growth, d i s c o l o r a t i o n o f f o l i a g e , time o f f r u i t r i p e n i n g .  The f r u i t s  were p i c k e d as t h e y r i p e n e d and r e c o r d s o f s i z e and weight were k e p t • P l a t e s I I , P i g . (a) and ( b ) , ( A p p e n d i x ) , show the s t a n d o f p l a n t s i n t h e greenhouse a t m a t u r i t y . On June 20 the p l a n t s were h a r v e s t e d .  Top and  r o o t measurements and w e i g h t s were taken and the p l a n t s were spread out t o d r y on the greenhouse benches.  Throughout t h e  summer they were c o n t i n u a l l y t u r n e d i n order t o become thoroughly a i r - d r i e d . stored.  'Shen q u i t e d r y they were weighed and  T o t a l w e i g h t s o f the f r u i t produced were r e c o r d e d  and r e p r e s e n t a t i v e samples were p r e s e r v e d , some i n a l c o h o l and o t h e r s by s t e r i l i z a t i o n i n q u a r t  jars.  Chemical ...Analysis.. C h e m i c a l a n a l y s e s were made i n t h e l a b o r a t o r y upon o v e n - d r i e d samples o f l e a v e s , stems and r o o t s f o r r e d u c i n g s u g a r s , t o t a l s u g a r s , s t a r c h e s and p r o t e i n s .  The p.H. and  t o t a l a c i d i t y o f t h e f r u i t s were t a k e n and they a l s o were a n a l y z e d f o r r e d u c i n g s u g a r s , t o t a l sugars, s t a r c h e s and proteins.  - 43 The  e x t r a c t i o n of t h e sugars from l e a v e s , stems,  and r o o t s was accomplished  i n t h e f o l l o w i n g manner?  Samples  which ranged from 10 t o 2 5 grams were p l a c e d i n Erlenmeyer f l a s k s , and 1 0 0 c . c , o f a l c o h o l p l u s 1.5 gram o f Ca 0 0 ^ were added.  These were b o i l e d f o r 1 5 minutes when t h e c l e a r  l i q u i d was d e c a n t e d o f f .  T h i s was repeated t w i c e by adding  f u r t h e r 5 ° c . c . p o r t i o n s o f a l c o h o l and a g a i n d e c a n t i n g the liquid.  A f t e r t h e t h i r d e x t r a c t i o n t h e r e s i d u e was t r a n s -  f e r r e d t o a S a x h l e l t e x t r a c t e r ; 2 0 0 c.c. o f a l c o h o l w i t h 1 gram o f Ca C0^ was used f o r t h e e x t r a c t i o n which f o r s e v e r a l h o u r s u n t i l the l i q u i d siphoned  over  continued  colorless.  T h i s Was added t o t h e l i q u i d p r e v i o u s l y decanted and d i s t i l l e d down t o about 7 5 c.c.  2 0 0 c.c. o f d i s t i l l e d water  were added, t h e m i x t u r e s were p l a c e d on a, h o t p l a t e and a g a i n brought down t o about 1 0 0 c . c , care b e i n g taken  both  a t t h i s p o i n t and d u r i n g d i s t i l l a t i o n not t o l e t t h e temp e r a t u r e go beyond 9 0 ° C.  The a l c o h o l s now h a v i n g been  d r i v e n o f f t h e m i x t u r e of sugars and water was s t r a i n e d through  c h e e s e - c l o t h , and the f i l t r a t e was c l e a r e d w i t h  n e u t r a l l e a d a c e t a t e and deleaded w i t h sodium o x a l a t e . A c t u a l d e t e r m i n a t i o n o f sugars was made by t h e Lane and Eynon Method ( 2 8 ) by t h e use o f P e h l i n g ' s S o l u t i o n and methylene b l u e as an i n d i c a t o r . cellent  T h i s was found t o g i v e ex-  results. T o t a l sugars were found by i n v e r t i n g 50 c.c. o f  the sugar s o l u t i o n w i t h 5 g r s . o f p i c r i c a c i d .  The m i x t u r e  was b o i l e d e x a c t l y 10 m i n u t e s , was c o o l e d , and n e u t r a l i z e d  - 44 w i t h 207* Ma OH, and t h e n t h e sugars determined. S t a r c h e s were determined by b o i l i n g the p u l p remaining  from t h e sugar e x t r a c t i o n s i n 20 c c . o f c o n e H G l d i l u -  t e d . t o 2 50 c c . f o r 2|- h o u r s .  The m i x t u r e was a l l o w e d t o  s t a n d , was n e a r l y n e u t r a l i z e d w i t h Ha OH and f i l t e r e d . mination  Deter-  o f t h e r e s u l t i n g sugars was a g a i n made by t h e Lane  and Eynon Method. Determination  o f t h e sugars o f the s t e r i l i z e d  fruit  was made by s t r a i n i n g o u t t h e p u l p through a c o t t o n sack and squeezing  i t v e r y d r y , then c l e a r i n g t h e j u i c e w i t h l e a d  te and d e l e a d i n g w i t h sodium o x a l a t e .  D e t e r m i n a t i o n was  made as' w i t h t h e v e g e t a t i v e p a r t s . The K j e l d a h l Method o f p r o t e i n a n a l y s i s was used for  l e a v e s , stems, r o o t s and f r u i t . The  p.H. o f t h e f r u i t was taken by the quinhydrone  method; and t o t a l  a c i d i t y was determined by t i t r a t i o n  against  Ma OH u s i n g p h e n o l t h a l e i n as an i n d i c a t o r . Results. Complete r e c o r d s o f the m o r p h o l o g i c a l  changes i n  the p l a n t s as a r e s u l t o f t h e s i x d i f f e r e n t treatments kept.  were  A r e p o r t a t t h e end o f t h r e e and a h a l f weeks i s quoted: "The  P u l l N u t r i e n t p l a n t s show good healthy growth  w i t h an abundance o f f r u i t f o r m i n g .  The E i t r a t e  omission  p l a n t s a r e now showing t h e e f f e c t s .  Y e l l o w i n g o f t h e lower  l e a v e s commenced w i t h i n t e n days o f t h e change o f the t r e a t ment .  The v e g e t a t i v e p a r t of t h e p l a n t i s l o s i n g i t s suc-  c u l e n c e , though t h e r e i s growth from t h e upper p a r t .  - 4-5 Blossoms a r e s t i l l a p p e a r i n g  and f r u i t i s b e i n g s e t , but  h a r d l y more t h a n i s t h e case w i t h p l a n t s d e p r i v e d o f a l l n u t rients.  P o t a s s i u m d e f i c i e n t p l a n t s have made almost as good  growth as t h e f u l l n u t r i e n t , but t h e y l o o k s l i g h t l y l e s s v i r i l e and s l i g h t l y l e s s f r u i t i s b e i n g borne.  Blossoms  appeared q u i t e as e a r l y as w i t h the o t h e r s e r i e s . omission  So f a r the  o f phosphorus i s n o t n o t i c e a b l e i n any way.  p l a n t s a r e h e a l t h y , growing and f r u i t i n g w e l l .  The  Those p l a n t s  w i t h which the c o n c e n t r a t i o n o f t h e s o l u t i o n was v a r i e d ( S e r i e s V) f r o m t h e b e g i n n i n g  showed s l i g h t l y the best growth.  There a r e many f r u i t s w h i c h a r e somewhat f u r t h e r advanced than those o f t h e P u l l N u t r i e n t S e r i e s i n which t h e same amount was f e d , but i n two p e r i o d s  i n s t e a d o f one©  Within a  week t h e Complete S t a r v a t i o n p l a n t s were showing some y e l l o w ing*  There has been l i t t l e i f any f u r t h e r growth.  Blossom-  i n g and f r u i t i n g i s c o n t i n u i n g though t h e f r u i t s a r e n o t m a t u r i n g as r a p i d l y as i n t h e P u l l N u t r i e n t S e r i e s .  The  whole v e g e t a t i v e p a r t o f t h e p l a n t i s l i f e l e s s i n appearance." Table V I I , P a g e g i v e s e f f e c t ' o f the v a r i o u s  the f i n a l  morphological  treatments.  P l a t e I I I , f i g . ( a ) , ( b ) , ( c ) , ( d ) , ( e ) , and ( f ) (Appendix),  p o r t r a y t h e t y p i c a l mature p l a n t o f each s e r i e s  contrasted w i t h a t y p i c a l plant of the P u l l N u t r i e n t S e r i e s . In a l l photographs t h e P u l l N u t r i e n t p l a n t s a r e d e s i g n a t e d "C" - Complete. . A comparison o f t h e l e a v e s o f a l l s e r i e s i s g i v e n i n P l a t e IV (Appendix).  Unfortunately  they a r e not i n c o l o r  - 46 b u t , i n t h a t they were photographed from t h e same s p o t , the comparison i n s i z e i s a t r u e one.  The f r a g i l e n a t u r e o f the  a i t r a t e d e f i c i e n c y and t h e Complete S t a r v a t i o n (-ALL) p l a n t s is visible.  A l l l e a v e s were c u t from the same p o s i t i o n on  the p l a n t and were r e p r e s e n t a t i v e ones. P l a t e V (Appendix) shows t y p i c a l r o o t s o f the p l a n t s of the s i x s e r i e s . T a b l e V I I I , Page 37, p r e s e n t s t h e d a t a o b t a i n e d by c h e m i c a l a n a l y s i s o f l e a f , stem,and r o o t ^ a n d Table I X , Page 39, p r e s e n t s t h e d a t a o b t a i n e d by c h e m i c a l a n a l y s i s o f t h e f r u i t s . The l e a v e s o f t h e N i t r o g e n d e f i c i e n c y p l a n t s cont i n u e d t o y e l l o w throughout  t h e t r e a t m e n t and f i n a l l y  whitened  u n t i l by June 2 0 , t h e date o f h a r v e s t i n g , they had become v e r y f r a g i l e , w i t h t h e v e i n s prominent and a p u r p l i s h c a s t . erence  Ref-  t o Table V I I , Page 3&, and P l a t e I I I , f i g . ( a ) , (Appen-  d i x ) , shows growth, green and d r y w e i g h t s , t h e amount and s i z e of t h e f r u i t s t o have been much l e s s than t h a t o f t h e F u l l Nutrient plants. poor r o o t growth.  The l e a v e s a r e s m a l l e r and t h e r e was  None of the f r u i t s were l a r g e r than 6 cm.  i n d i a m e t e r b u t they were u s u a l l y w e l l shaped. of m o i s t u r e  i n t h e tops was r e l a t i v e l y h i g h .  The  percentage  Chemical  analy-  s i s showed t h e v e g e t a t i v e p a r t s t o be h i g h i n c a r b o h y d r a t e s ; e s p e c i a l l y so were t h e stems and r o o t s where l a r g e q u a n t i t i e s o f s t a r c h were p r e s e n t ; r e d u c i n g sugars were h i g h i n t h e sterns. In t h e f r u i t s , t h e p.H. was 4 . 7 5 more a c i d than any o f the other s e r i e s .  T o t a l a c i d i t y was 1.64 ( i n terms of C i t r i c  w h i c h was t h r e e times as g r e a t as t h a t of any of t h e o t h e r  Acid)  47 -  s e r i e s except the S t a r v a t i o n p l a n t s t w i c e as g r e a t .  s  i n which case i t was  S p e c i f i c G r a v i t y was lower than t h a t of- the  P u l l N u t r i e n t f r u i t s i n d i c a t i n g a l e s s e r amount o f m i n e r a l and v o l a t i l e matter,,  The d r y weight i s a l s o l o w e r .  Total  sugars were s l i g h t l y h i g h e r than i n t h e check p l a n t s . P r o t e i n s were r a t h e r h i g h e r i n t h e f r u i t s hut low i n l e a v e s , stems and roots. In t h e P o t a s s i u m d e f i c i e n c y s e r i e s a b r o n z i n g gradu a l l y made i t s appearance on t h e l e a v e s .  By June 6 a y e l l o w -  i n g had appeared around t h i s b r o n z i n g and by h a r v e s t time many of t h e l e a v e s so a f f e c t e d had s h r i v e l l e d .  The e f f e c t o f t h e  p o t a s s i u m o m i s s i o n was t h e r e f o r e g r a d u a l .  The p l a n t s were .  s c a r c e l y l e s s t a l l than those o f the P u l l N u t r i e n t S e r i e s but t h e green and d r y weight was l e s s and t h e r e was l e s s f r u i t produced.  P l a t e I V , ( A p p e n d i x ) , shows t h e l e a v e s to be some-  what l e s s v i g o r o u s than those o f S e r i e s I .  The r o o t s show an  i n t e r e s t i n g c o n d i t i o n i n b e i n g l o n g and s p i n d l i n g , and l e a t h ery w i t h few r o o t h a i r s ;  they were dark brown i n c o l o r .  The  average s i z e and weight o f t h e f r u i t s was c o n s i d e r a b l y g r e a t e r than those o f any o t h e r s e r i e s , t h e r e b e i n g more f r u i t s measu r i n g 6 . 5 - 7 cm. i n d i a m e t e r ; b u t , as has been noted t h e t o t a l f r u i t p r o d u c t i o n was l o w e r .  Chemical a n a l y s i s showed a  h i g h r e d u c i n g sugar c o n t e n t i n t h e l e a v e s .  The r o o t s have a  low p r o p o r t i o n o f b o t h r e d u c i n g and t o t a l s u g a r s , but s t a r c h e s are p a r t i c u l a r l y h i g h , g i v i n g a h i g h c a r b o h y d r a t e f i g u r e .  The  p.H. and t o t a l a c i d i t y o f the f r u i t j u i c e s was much as i n the c o n t r o l p l a n t s , the p.H. b e i n g 4 . 8 5 and t h e a c i d i t y . 5 1 2 .  - 48  The S p e c i f i c G r a v i t y a g a i n was somewhat low. The percentage of d r y weight o f t h e f r u i t was l e s s than t h a t of the P u l l N u t r i e n t f r u i t s , so t h a t w h i l e t o t a l sugars were somewhat h i g h e r i n t h e P o t a s s i u m d e f i c i e n c y s e r i e s when c a l c u l a t e d t o dry w e i g h t , they were s l i g h t l y lower i n t h e e x t r a c t e d j u i c e . P r o t e i n content was found t o be h i g h i n l e a f , stem, r o o t and fruit* No e f f e c t o f Phosphorus s t a r v a t i o n was apparent i n the S e r i e s IV p l a n t s u n t i l May 9 when a p u r p l e m o t t l i n g o r b l o t c h i n g appeared on t h e l e a v e s o f t h e lower h a l f o f one of the p l a n t s .  A week l a t e r i t had made i t s appearance on two  of t h e o t h e r s . the f o u r t h . then h a l t e d .  Only j u s t b e f o r e h a r v e s t i n g d i d i t appear on  T h i s m o t t l i n g c r e p t upwards t o some degree and A s t r o n g c o r r e l a t i o n was o b t a i n e d here w i t h t h e  Absorption Experiment.  A t no time was t h e r e a s e v e r e ' e f f e c t ;  the p l a n t s were o t h e r w i s e  p e r f e c t l y h e a l t h y and f r u i t i n g went  on i n an a p p a r e n t l y normal manner.  A study o f Table and  P l a t e s , however, shows t h e average d r y weight o f the tops t o be low and t h e m o i s t u r e  content to be h i g h .  Pruit  production  i s c o n s i d e r a b l y l o w e r , t h e average s i z e i s t h e same b u t the number o f f r u i t s produced per p l a n t i s much l e s s .  Like the  P o t a s s i u m d e f i c i e n c y p l a n t s t h e r e was much i r r e g u l a r i t y i n s i z e w h i c h ranged f r o m 4 t o 7 cm.  T h i s same i r r e g u l a r i t y , ,  however, was found i n p l a n t s g i v e n t h e P u l l N u t r i e n t t r e a t ment.  P l a t e IV, f i g . ( d ) , (Appendix),  d i f f i c u l t t o d i s c o v e r any b l o t c h i n g s t r o n g e r t h a n t h e "K" l e a f .  shows t h e l e a f ;  i t is  and i t i s a p p a r e n t l y  The r o o t s were u s u a l l y l e s s  _  4 9  -  e x t e n s i v e t h a n those of t h e complete f e e d i n g , as P l a t e V, f i g . (d),  (Appendix) i n d i c a t e s , and t h e r e were r e l a t i v e l y fewer  root h a i r s .  These r o o t s , t o o , were brown i n c o l o r .  Analysis  showed no s i g n i f i c a n t d i f f e r e n c e between these phosphorus d e f i c i e n t p l a n t s and t h e check p l a n t s i n t o t a l and r e d u c i n g  sugars  Reducing sugars were s l i g h t l y h i g h e r i n the l e a v e s and lower in  t h e r o o t s o f p l a n t s w i t h t h e phosphorus l a c k .  The stems  showed t h e same r e l a t i v e i n c r e a s e of t o t a l over r e d u c i n g ars i n both s e r i e s .  sug-  S t a r c h e s were h i g h i n b o t h stems and r o o t  The f r u i t j u i c e s showed no v a r i a t i o n i n p.H. but the t o t a l a c i d i t y was s l i g h t l y h i g h e r . j u i c e s was lower  The S p e c i f i c G r a v i t y of the  than f o r any o f t h e o t h e r s e r i e s and the per-  centage o f t h e d r y weight o f t h e f r u i t was a l s o lower. w i l l be d i s c u s s e d l a t e r .  This  B o t h r e d u c i n g and t o t a l sugars were  found t o be a l i t t l e h i g h e r t h a n the check p l a n t s when c a l c u l a t e d t o d r y w e i g h t but lower on the green weight b a s i s .  Pro-  t e i n s were n o t a b l y h i g h i n r o o t , l e a f and f r u i t , but were not found so i n t h e stem. The p l a n t s o f S e r i e s V, double t h e c o n c e n t r a t i o n f e d h a l f as o f t e n , have been r e p o r t e d as making s l i g h t l y b e t t e r growth t h a n t h e S e r i e s I check p l a n t s . healthy plants.  Both c o n t i n u e d  strong  At h a r v e s t i n g some o f t h e l e a v e s had become  a p a l e r g r e e n o r t h e normal dark green had become somewhat b l o t c h e d and r e c e n t l y formed blossoms on both were s h r i v e l l i n g . The t a b l e s and p l a t e s show l i t t l e d i f f e r e n c e i n any r e s p e c t except i n f r u i t p r o d u c t i o n .  The amount produced was almost  the same, b u t t h e average number of f r u i t s on t h e S e r i e s I  50  -  p l a n t s was  -  g r e a t e r than on the S e r i e s V p l a n t s , but t h o s e of  the l a t t e r s e r i e s were l a r g e r t h a n those of the former. reducing  and  Both  t o t a l sugars t a k e n f o r the p l a n t as a whole, t h a t  i s l e a f p l u s stem p l u s r o o t , were i n a p p r o x i m a t e l y the same p e r c e n t a g e i n both s e r i e s .  The  F u l l N u t r i e n t p l a n t s showed  a s l i g h t l y h i g h e r t o t a l sugar c o n t e n t i n the l e a f , and double c o n c e n t r a t i o n  p l a n t s i n stem and r o o t .  h i g h t o t a l sugars i n the stem. 4.96.  w h i l e o f S e r i e s Y i t was was  the same.  The  P r o t e i n content was  higher plants5  The  i t was  The  and  slightly  i n the leaves  S p e c i f i c G r a v i t y of the j u i c e s and  •weight of the f r u i t s of the two  4.86,  nevertheless  i n the r o o t s  i n the stems of t h i s s e r i e s but h i g h e r  Series I.  Both showed  of S e r i e s I was  Total acidity,  f r u i t s of the d o u b l e - c o n c e n t r a t i o n higher  p.H.  the  the  of  dry  s e r i e s approximated each o t h e r .  Complete S t a r v a t i o n p l a n t s e x h i b i t e d a c o n t i n -  uous y e l l o w i n g , w i t h c e s s a t i o n of growth. d e v e l o p e d brown l e s i o n s and b r o n z e d and p u r p l e d and  spots.  Some of the  fruits  L a t e r the f o l i a g e became  f i n a l l y c o l o r l e s s , with a blue  cast  about the v e i n s , much as the f o l i a g e of the N i t r a t e d e f i c i e n c y plants.  A comparison of t h e s e two  I I I , f i g . ( b ) , (Appendix).  The  s e r i e s i s shown i n P l a t e  T a b l e s and P l a t e s show t h a t  p l a n t s which have been s t a r v e d of a l l n u t r i e n t s r e f l e c t  the  t r e a t m e n t i n a much r e s t r i c t e d growth of r o o t , stem and  leaf,  and  a small f r u i t production.  a n a l y s i s evidenced reducing  On the o t h e r hand, the  chemical  and t o t a l sugar content to  be  e q u a l t o t h a t of the f u l l y f e d p l a n t s i n r o o t , stem and and  almost so i n the f r u i t , w i t h the e x c e p t i o n  o n l y of a  leaf, low  - 51  -  i n v e r t sugar content i n t h e l e a f o f the s t a r v e d p l a n t .  Since  the l e a v e s o f t h e s t a r v a t i o n p l a n t s had hegun t o w i t h e r , i t i s p o s s i b l e t h e i n v e r t sugars had passed from t h e l e a v e s t o the stem.  The percentage  o f m o i s t u r e i n t h e tops of these  p l a n t s , n e v e r t h e l e s s , was g r e a t e r than t h a t i n t h e P u l l Nutr i e n t ones.  P r o t e i n s were h i g h e r i n r o o t s and f r u i t s of t h e  s t a r v e d p l a n t s , and h i g h e r i n t h e stem and l e a v e s o f the w e l l n o u r i s h e d ones.  The p.H. of the j u i c e s was h i g h e r f o r the  s t a r v a t i o n p l a n t s , but t o t a l a c i d i t y was g r e a t e r . f i c G r a v i t y o f t h e j u i c e s and the percentage  The S p e c i -  of dry weight of  the f r u i t were a l i t t l e l e s s f o r t h e s t a r v a t i o n s e r i e s , i n d i c a t i n g a lower m i n e r a l and v o l a t i l e m a t t e r  content.  -  52  -  SUBSIDIARY EXPERIMENTS. (a) Complete P o t a s s i u m Omission Seeds o f p l a n t s which had been grown i n 1932 no p o t a s s i u m whatever were p l a n t e d .  with  P l a n t (a) of P l a t e V I ,  ( A p p e n d i x ) , r e c e i v e d no p o t a s s i u m throughout i t s l i f e t i m e , whereas p l a n t (b) was f e d p o t a s s i u m i n the u s u a l amounts from blossoming time.  The d i f f e r e n c e i n h e i g h t i s n o t a b l e , though  n e i t h e r a t t a i n e d any g r e a t s i z e .  B o t h , however, bore f r u i t  as i s e v i d e n c e d i n the photograph. top o f p l a n t (a) was  The green weight of the  14.2 grams, and t h a t of p l a n t (b)  31.5  grams• (b) Seed Experiment Seeds f r o m a l l s e r i e s o f the N u t r i t i o n Experiment, from t h e A b s o r p t i o n E x p e r i m e n t , from the 1932  P o t a s s i u m omis-  s i o n seeds, and seeds from p l a n t (a) o f the S u b s i d i a r y E x p e r i ment (a) were p l a n t e d i n 1933*  G e r m i n a t i o n t e s t s were r u n by  p l a n t i n g t h e seeds i n f l a t s of w e l l washed q u a r t z sand and w a t e r i n g w i t h d i s t i l l e d water o n l y .  A d e s c r i p t i o n of the  seeds and t h e p e r c e n t a g e o f g e r m i n a t i o n o b t a i n e d i s g i v e n i n Table X, page 53• A second s e r i e s of f l a t s was p l a n t e d s i m i l a r l y , but was f e d a complete n u t r i e n t s o l u t i o n .  These p l a n t s were c a r e d  f o r i n t h e manner o f the N u t r i t i o n Experiment t e n i n c h g l a z e d and c l a y p o t s .  and are now i n  P l a n t s whose p a r e n t s and  g r a n d - p a r e n t s had no p o t a s s i u m a r e s l i g h t e r stemmed  and  -  -  53 ~  T A B L E  X s  D e s c r i p t i o n and Percentage G e r m i n a t i o n o f geeds i n S u b s i d i a r y x p e r j m e ^ t J ^ E  D e s c r i p t i o n and S i z e  Percentage Germination  Pull Nutrient  t a k e n as normal  58  2 x Concentration  as F u l l N u t r i e n t but more w r i n g l e d  81  Potassium deficiency  as P u l l N u t r i e n t but depressed  54  Potassium omiss i o n 193 seeds  s l i g h t l y smaller but u n i f o r m i n s i z e  68  Potassium omission 1933 seeds  s m a l l e r than 1932 p a r e n t s and more v a r i a b l e  65  Phosphate deficiency  s l i g h t l y smaller and l e s s u n i f o r m  49  Nitrate deficiency  s m a l l e r and l e s s u n i f o r m i n s i z e and shape  66  Complete starvation  s m a l l e r and l e s s u n i f o r m i n s i z e and shape  77  Absorption Plants  s m a l l e r than F u l l N u t r i e n t but u n i f o r m  74  2  - 54 r a t h e r l e s s v i g o r o u s than t h o s e whose p a r e n t s o n l y were d e p r i v ed, and t h e s e l a t t e r i n t u r n , are o n l y s l i g h t l y l e s s so than the p l a n t s from t h e seeds o f the P o t a s s i u m d e f i c i e n c y p l a n t s o f the N u t r i t i o n Experiment.  The p l a n t s from the seeds of the o t h e r  g i v e s e r i e s o f t h e N u t r i t i o n Experiment show a more o r l e s s u n i f o r m growth.  S e e d l i n g s from t h e A b s o r p t i o n Experiment had  a much b e t t e r r o o t system t h a n any o t h e r s , and i t i s n o t i c e a b l e t h a t t h e p l a n t s a r e making b e t t e r growth.  The e f f e c t o f s t a r -  v a t i o n i n one g e n e r a t i o n has l i t t l e permanent e f f e c t . ( c ) Phosphate and P o t a s s i u m ^ O m i s s i o n S e e d l i n g tomatoes from seeds o f p l a n t s c o m p l e t e l y s t a r v e d o f phosphates and from seeds o f p o t a s s i u m d e f i c i e n t p l a n t s a r e b e i n g grown. nutrient i n question.  They a r e b e i n g e n t i r e l y s t a r v e d o f t h e  H i s t o l o g i c a l e x a m i n a t i o n s o f these and  the p o t a s s i u m range i n Experiment (b) are b e i n g c a r r i e d on. (d) I r o n D e t e c t i o n i n Potassium.; S t a r v e d P l a n t s A t e s t f o r i r o n d e p o s i t s i n the t i s s u e s o f p l a n t s t r e a t e d w i t h a p o t a s s i u m o m i s s i o n a c c o r d i n g to the method desc r i b e d by H o f f e r (20) were performed.  P l a n t s from seeds o f t h e  P o t a s s i u m d e f i c i e n c y s e r i e s o f t h e N u t r i t i o n Experiment which were f e d no p o t a s s i u m were used.  I n the absence o f potassium,  i r o n i s b e l i e v e d t o accumulate i n t h a t i t becomes i n s o l u b l e . v e r y d i s t i n c t browning o f t h e t i s s u e s r e s u l t e d i n d i c a t i n g accumulation.  this  when seeds o f t h e v a r i o u s p o t a s s i u m d e f i c i e n t  t r e a t m e n t s b e i n g grown i n S u b s i d i a r y Experiment ( b ) , now b e i n g f e d a complete n u t r i e n t were t e s t e d , no brown d i s c o l o r a t i o n appeared.  A  - 55  -  DISCUSSION. The  f i n d i n g s of the i n v e s t i g a t i o n would seem to i n -  d i c a t e t h a t P e t r i e (38)  i s c o r r e c t i n h i s t h e o r y t h a t the r a t e  o f r e s p i r a t i o n o f the r o o t c e l l s o f the p l a n t w i l l determine the r a t e of a b s o r p t i o n of the i o n s . to  Evidence points  clearly  the f a c t t h a t the p l a n t absorbs the n u t r i e n t s which i t s  metabolism r e q u i r e s .  I t i s i m p o s s i b l e to agree w i t h Loew ( 2 9 )  t h a t i n most cases they t a k e up not o n l y an excess, but a l s o s u b s t a n c e s which are "perhaps u s e f u l , but not a b s o l u t e l y neces-. s a r y t o the p l a n t " . A b s o r p t i o n of the i o n s s t u d i e d was  found to take  p l a c e t h r o u g h o u t the l i f e of the p l a n t , and a s t r o n g t i o n was ments.  o b t a i n e d between the A b s o r p t i o n  and N u t r i t i o n E x p e r i -  A d i s c u s s i o n of the i n d i v i d u a l i o n s i s p r e s e n t e d , when  these c o r r e l a t i o n s w i l l be p o i n t e d o u t . and  correla-  Calcium, magnesium  s u l p h a t e were worked w i t h o n l y i n the a b s o r p t i o n e x p e r i -  ment so t h a t statements cannot be made r e g a r d i n g t h e i r t i a l nature.  There were no p l a n t s i n the N u t r i t i o n Experiment  which-were w i t h h e l d these was  essen-  ions.  o b t a i n e d between the two  But such a s t r o n g  correlation  experiments i n r e g a r d t o the  o t h e r i o n s t h a t i t would seem p e r m i s s i b l e t o suppose t h a t these too were p r o b a b l y b e i n g absorbed i n o n l y the r e q u i r e d amounts.  - pb Calcium. In t h e P r e l i m i n a r y E x p e r i m e n t s 1 and 2, t h e d i f f u s i o n of c a l c i u m i n t o t h e s o l u t i o n i s accounted f o r by the d i s i n t e g r a t i o n o f t h e p l a n t s , when t h e c e l l s i n s e p a r a t i n g would r e l ease t h e c a l c i u m o f the m i d d l e  lamella.  In the t h i r d  Prelimi-  nary E x p e r i m e n t , t h e e a r l y a b s o r p t i o n d u r i n g growth would be expected  s i n c e c a l c i u m i s r e q u i r e d i n t h e b u i l d i n g up process  and i s o f importance i n t h e a b s o r p t i o n o f t h e o t h e r elements ( C o l b y ) ,  essential  when these p l a n t s began to d i s i n t e g r a t e  t h e r e was a g a i n a d i f f u s i o n o u t . I n t h e Ma.in A b s o r p t i o n Experiment t h e r e was a g r a d u a l i n c r e a s e o f a b s o r p t i o n d u r i n g e a r l i e r growth.  The c a l c i u m was  r e q u i r e d f o r t h e d i v i s i o n of t h e c e l l i n t h e f o r m a t i o n of the middle l a m e l l a , and f o r normal r o o t and l e a f growth.  The e f f e c t  of c a l c i u m on n i t r a t e a b s o r p t i o n i s an i n t e r e s t i n g p o i n t . I t i s noted  t h a t D o r o t h y Day (8) t h i n k s t h e r e t o be t o o much c a l -  cium i n some n u t r i e n t s o l u t i o n s . However t h e importance o f c a l c i u m i n c e l l p e r m e a b i l i t y , through  i t s e f f e c t on o t h e r i o n s ,  and as a c o r r e c t o r o f poor s o i l c o n d i t i o n s , cannot be overestimated.  No c a l c i u m was absorbed e a r l y i n June when growth  had reached  i t s maximum, but t h e renewed a b s o r p t i o n i n l a r g e  q u a n t i t i e s when f r u i t i n g was a t t h e maximum opens up an i n t e r esting f i e l d .  One wonders i f c a l c i u m i s present  amounts i n t h e f r u i t s , and i t i s suggested a n a l y s i s o f the f r u i t ing  i n large  that a mineral  f o r c a l c i u m would be o f v a l u e i n e x p l a i n -  t h i s renewed a c t i v i t y i n t h e a b s o r p t i o n of c a l c i u m .  Such  i s l a t e r shown t o be t h e case i n r e g a r d t o phosphates a l s o .  -  57  -  Magnesium* D u r i n g t h e adverse P r e l i m i n a r y Experiments  c o n d i t i o n s of t h e f i r s t two  t h e r e was a d i f f u s i n g out which would  he a c c o u n t a b l e t o b r e a k i n g down o f t h e c e l l s and d i s i n t e g r a t i o n of chlorophyll,,  When a b s o r p t i o n d i d o c c u r , as i t d i d  i n s e v e r a l p e r i o d s , magnesium e n t e r e d i n f a i r l y l a r g e amounts to be u t i l i z e d i n t h e b u i l d i n g up p r o c e s s . P r e l i m i n a r y Experiment,  I n the t h i r d  magnesium a b s o r p t i o n f l u c t u a t e d : i t  was d i f f u s e d out when c a l c i u m was d i f f u s e d out i n l a r g e quantities.  Whether t h e r e i s a l i n k a g e here i s u n c e r t a i n .  In t h e M a i n A b s o r p t i o n Experiment, a f l u c t u a t i o n i n magnesium a b s o r p t i o n .  t h e r e was a g a i n  One might hope t o  e x p l a i n i t on t h e grounds of c h l o r o p h y l l development i n the p h o t o s y n t h e t i c r e a c t i o n s , but t h e r e appears t o be no c o r r e l a t i o n w i t h s u n l i g h t , as one would e x p e c t , i f such were the cause.  The c o r r e l a t i o n o f growth and magnesium  absorp-  t i o n , however, i s f a i r l y w e l l d e f i n e d , as a r e f e r e n c e t o Chart I (Pag-£...29a), w i l l show.  I n the e a r l y stages o f  growth more p r o p o r t i o n a t e l y was r e q u i r e d t h a n a t any o t h e r time.  R e c a l l i n g t h e m i g r a t o r y q u a l i t y o f magnesium t h i s  would seem r e a s o n a b l e .  -  58  -  Sulphate. L i k e c a l c i u m and magnesium, t h e s u l p h a t e i o n , on the whole, was c o n s i s t e n t l y d i f f u s e d out o f the p l a n t under t h e c o n d i t i o n s o f P r e l i m i n a r y E x p e r i m e n t s 1 and 2.  Indeed i t was  even more c o n t i n u o u s l y d i f f u s e d o u t . I n t h e t h i r d  Preliminary  E x p e r i m e n t i t was, i n a l l hut one p e r i o d , c o n s i s t e n t l y absorbed. I n t h e M a i n A b s o r p t i o n Experiment s u l p h a t e was absorbed f a i r l y u n i f o r m l y throughout t h e whole p e r i o d o f growth and f r u c t i f i c a t i o n .  The l a r g e s t amount of a b s o r p t i o n  o c c u r r e d d u r i n g v e g e t a t i v e growth, however, and a g a i n the heavy r i p e n i n g o f f r u i t s .  during  Since i t e n t e r s i n t o t h e com-  •\"f  p o s i t i o n of p r o t e i n s , i t would be c o n s t a n t l y r e q u i r e d as l o n g as growth was going on. present  The l i t e r a t u r e has shown i t t o be  i n t h e seed, and i t would seem t h a t the f r u i t must  contain a considerable quantity.  Again a chemical a n a l y s i s  of t h e f r u i t would be v a l u a b l e ; t h e p e r s i s t e n t a b s o r p t i o n o f s u l p h a t e through a l l phases o f development and i n f r u i t i n g , would suggest t h a t i t must be p r e s e n t fruit.  i n some q u a n t i t y i n t h e  59  -  -  gitrates, N i t r a t e s , i t would seem from the d a t a of both the N u t r i t i o n and A b s o r p t i o n E x p e r i m e n t s , are b e i n g  constantly  u t i l i z e d by t h e p l a n t as l o n g as growth and f r u i t i n g i s progressing.  I f the l i f e  p r o c e s s e s of the tomato are s i m i l a r t o  those o f t h e s m a l l g r a i n s , and the r a t e of t r a n s f o r m a t i o n  of  n i t r a t e n i t r o g e n i n the p l a n t i s v e r y r a p i d as shown by McCool and Cook ( 3 0 ) , i t would l o g i c a l l y f o l l o w t h a t a c o n s t a n t ply  of n i t r a t e must be m a i n t a i n e d  b u i l t up.  The  sup-  t h a t p r o t o p l a s m might be  consequences of the w i t h h o l d i n g of n i t r a t e  from the S e r i e s I I p l a n t s , t h e r e f o r e , were the expected ones in  l a c k of growth and d i s c o l o r a t i o n of the f o l i a g e .  have l o s t t h e power o f c h l o r o p h y l l f o r m a t i o n . the f r a g i l e p a l e l a v e n d a r  The  leaves  In contrast to  of the l e a f of the tomato i n the  f i n a l s t a g e s , MacMurtrey ( 3 2 ) w i t h the tobacco p l a n t  obtained  a y e l l o w i n g f o l l o w e d by a " f i r i n g " of the lower l e a v e s t o a b r i g h t brown c o l o r . and  Cook and  N i g h t i n g a l e ( 3 4 ) i n c o n t r a s t t o McCool  t o Murneek, t h i n k s n i t r a t e s may  be s t o r e d w i t h i n  the p l a n t u n t i l the p r o p e r c o n d i t i o n s a r i s e f o r s y n t h e s i s to o t h e r forms of n i t r o g e n .  I f t h i s i s so the c e s s a t i o n of n i t -  r a t e a b s o r p t i o n i n the t h i r d p l a n t i n g of the P r e l i m i n a r y Exp e r i m e n t c o u l d be a c c o u n t e d f o r . d u r i n g two  There was  little  growth  p e r i o d s , p o s s i b l y <doae to adverse c o n d i t i o n s ,  l i t t l e n i t r a t e was  needed.  and  As f r u i t i n g commenced more n i t r a t e s  would be r e q u i r e d , a c c o r d i n g t o Murneek ( 3 3 ) , and t h e r e a f u r t h e r a b s o r p t i o n o f them.  was  - 60 The  l i t e r a t u r e c i t e d i n the i n t r o d u c t i o n by T o t t i n g -  ham and Stephens (4-5) and Tottingham and Lowsna (44) on t h e i n f l u e n c e of s h o r t e r l i g h t rays i s of intense i n t e r e s t i n r e f e r e n c e t o t h e i n c r e a s e d a b s o r p t i o n o f n i t r a t e s on b r i g h t days, T a b l e V I , page 35»  I t has been mentioned t h a t  utiliza-  t i o n o f n i t r o g e n i s v e r y r a p i d ; we know p h o t o s y n t h e s i s  t o be  c o n t i n u a l l y g o i n g on; and have o f t e n observed, t h e r a p i d i t y and suddenness o f growth almost and i n t r u t h o v e r n i g h t , f o l l o w i n g sunny weather, when t h e r e would, be much carbohydrate t u r e d and much n i t r a t e e n t e r t h e p l a n t .  manufac-  I t would seem, t h e r e -  f o r e , t h a t t h e r e i s an immediate response i n metabolism t o an adequate n i t r a t e and carbohydrate  supply.  The p o t a s s i u m  and n i t r a t e r e l a t i o n s h i p i s i n t e r e s t i n g i n t h i s  connection,  i n t h a t l e s s p o t a s s i u m i s absorbed on b r i g h t days• be more f u l l y  This w i l l  d i s c u s s e d under p o t a s s i u m , but i t i s suggested  h e r e t h a t p o t a s s i u m p o s s e s s e s some k i n e t i c o r e l e c t r i c a l energy a k i n t o l i g h t r a y s , which make i t s a b s o r p t i o n i n l a r g e amounts u n n e c e s s a r y d u r i n g b r i g h t weather.  Brazeale's  (3)  c l a i m that the supply of n i t r o g e n i s the l i m i t i n g f a c t o r i n the a b s o r p t i o n o f p o t a s s i u m would s t i l l be a v a l i d one under t h i s h y p o t h e s i s , though l e s s e r amounts would be r e q u i r e d during sunshine.  That n i t r a t e s s h o u l d be more r e a d i l y  avail-  a b l e from a KNO^ s o l u t i o n t h a n from o t h e r n i t r a t e s o l u t i o n s i s an i n t e r e s t i n g p o i n t .  Both K and NO-^ however a r e r a p i d l y  moving i o n s and would have some e f f e c t one upon t h e o t h e r . We o b t a i n e d l i t t l e c o r r e l a t i o n between temperature and n i t r a t e and p o t a s s i u m a b s o r p t i o n as evidenced  by S o l a r R a d i a t i o n ,  - 61 Table V I , page 35,  -  while Tottingham d i d .  As i s c o n s i s t e n t w i t h Kraus and K r a y b i l l ' s work, f r u i t p r o d u c t i o n was  v e r y low, but the percentage o f moisture was  atively high.  The h i g h s t a r c h content o f stems and r o o t s would  a l s o - b e i n a c c o r d w i t h ltraus and K r a y b i l l ' s t h e o r y . m u l a t i o n of t h e s e c a r b o h y d r a t e s  would be due  accu-  to the n o n - u t i l i z a -  t i o n of t h e manufactured sugars o f the l e a v e s , now s t a r c h i n stem and r o o t ,  The  rel-  s t o r e d as  P r o t e i n s n a t u r a l l y were low.  Here  t h e r e i s a low p r o t e i n c o n t e n t , which would i n d i c a t e a lowamino n i t r a t e c o n t e n t , b a l a n c e d  against a high  carbohydrate  s u p p l y , w h i c h has r e s u l t e d i n a low f r u i t p r o d u c t i o n . e r e s t a t t h i s p o i n t i s H a r r i s o n ' s work (13)  to  supply  s t i l l m a i n t a i n i n g a h i g h n i t r a t e s u p p l y , Kentucky Blue  Grass p l a n t s were a c t u a l l y k i l l e d . ply  int-  already referred  to where, by f r e q u e n t l y c u t t i n g o f f the carbohydrate and  Of  By l o w e r i n g the n i t r a t e sup-  and t h e r e b y k e e p i n g a b e t t e r balance the p l a n t s c o n t i n u e d send up rhizomes w h i c h t i l l e r e d . Murneek's c l a i m t h a t the f r u i t of the tomato draws  on t h e n i t r a t e and  carbohydrate  Though f r u i t p r o d u c t i o n was  s u p p l y i s p r o b a b l y a v a l i d one«  low, they c o n t i n u e d t o  develop  a f t e r n i t r a t e s were w i t h h e l d , and were q u i t e as h i g h i n prot e i n s and sugars  as were the P u l l N u t r i e n t p l a n t s .  The h i g h a c i d i t y i n the f r u i t s might be  considered  to be due to a p o s s i b l e c a l c i u m - n i t r a t e r e l a t i o n s h i p . been shown by N i g h t i n g a l e and h i s co-workers (3^) are not absorbed i n the absence of " f r e e " c a l c i u m . the o p p o s i t e c o n d i t i o n may  a l s o be t r u e .  The  I t has  that n i t r a t e s Possibly  "free calcium"  m i g h t have a n e u t r a l i z i n g e f f e c t on the o r g a n i c a c i d s .  An  - 6 2a n a l y s i s o f the f r u i t s f o r c a l c i u m would he of i n t e r e s t , i n order to l e a r n i f a n i t r o g e n d e f i c i e n t plant also contains less  calcium.  —  63  "  Potassium. The has  r e l a t i o n s h i p of n i t r a t e and p o t a s s i u m  absorption  a l r e a d y been d i s c u s s e d and r e f e r e n c e made to Table V I , page  3!?> showing the e f f e c t of s u n l i g h t on t h e i r a b s o r p t i o n ; has  it  been p o i n t e d out t h a t l e s s e r amounts of p o t a s s i u m are  absorbed on b r i g h t days.  This corroborates  James and  Penston's  f i n d i n g s , though r e f u t i n g those of Jansen and Bartholomew ( 2 4 ) . It may  i s suggested t h a t the reason f o r t h i s i r r e g u l a r  absorption  be found i n the f a c t t h a t p o t a s s i u m i s r a d i o - a c t i v e , and  t h a t an i m p o r t a n t  p a r t of i t s f u n c t i o n i n the p l a n t i s such,  when t h e sun s u p p l i e s t h i s energy, l e s s e r amounts of p o t a s s i u m are r e q u i r e d .  The  p l a n t has  adjusted  i t s e l f to t h i s  situation.  I n f a c t , i t would seem t h a t p l a n t s are not m e r e l y the of c a s u a l c i r c u m s t a n c e ,  creatures  a b s o r b i n g m a t e r i a l s whether t h e y are  u s e f u l or not as i s sometimes t h o u g h t , but t h a t t h e y have d e v e l oped d u r i n g t h e i r l o n g e x i s t e n c e a w o r k i n g r e l a t i o n s h i p toward outward c o n d i t i o n s .  T h i s , and o t h e r phases o f the  Absorption  E x p e r i m e n t which w i l l be p o i n t e d out l a t e r most c l e a r l y p o i n t t o the p l a n t a b s o r b i n g  o n l y the n u t r i e n t s which i t r e q u i r e s .  I t was - shown i n the A b s o r p t i o n Experiment t h a t growth and r a t e a b s o r p t i o n were s t r o n g l y c o r r e l a t e d and E x p e r i m e n t bore t h i s out.  Now  nit-  the N u t r i t i o n  a c o n s i d e r a t i o n of potassium  i t s r a d i o - a c t i v e q u a l i t y evidences t h a t the t h r i f t y  plant  and  ab-  sorbs l e s s p o t a s s i u m i n f i n e weather.  Temperature, as r e c o r -  ded by the b l a c k b u l b thermometer, was  without  effect.  l i t e r a t u r e shows, however, t h a t James and Penston (22) Jansen and Bartholomew (24) t h i n k t h a t p l a n t s may  The and  collect  and  - 64 store potassium.  They b o t h q u a l i f y t h e i r s t a t e m e n t s , however.  Undoubtedly t h e absorbed p o t a s s i u m must be r e u t i l i z e d as w i l l be shown l a t e r . This p e c u l i a r r a d i o - a c t i v e q u a l i t y of potassium i s a l s o o u t s t a n d i n g i n c o n s i d e r a t i o n of the water-holding q u a l i t ies  of plants.  Many workers have n o t e d t h a t p o t a s s i u m d e f i c i e n t  p l a n t s r e q u i r e much more water than do those w i t h a normal supply.  The water i s q u i c k l y t r a n s p i r e d and t h e l e a v e s soon w i l t .  A d i g r e s s i o n a t t h i s p o i n t to a c o n s i d e r a t i o n o f a r e c e n t paper by Shu11 (42) i s i l l u m i n a t i n g :  He p o i n t s out t h a t t h e r e l a -  t i o n between r o o t and s o i l and s o i l water i s a dynamic one, and t h a t i t i s i n t h e w a t e r i t s e l f t h a t t h i s dynamic f o r c e principally resides.  A water d e f i c i t which reduces vapor p r e s -  sure o f t h e c e l l c o l l o i d s by 7% below t h a t o f pure water i s b e l i e v e d t o d e v e l o p f o r c e s c l o s e t o 100 atmospheres. "The c e l l may n o t , f o r some r e a s o n d e v e l o p s u f f i c i e n t l y h i g h f o r c e s t o a t t r a c t t h e w a t e r , which passes on up t h e t r a n s p i r a t i o n stream." A water d e f i c i t may e x i s t i n t h e r o o t when t h e t e n s i o n a l p u l l of t h e w a t e r column i n t h e t r a c h e a e draws t h e water more r a p i d l y from t h e l i v i n g c e l l s i n t h e xylem than i t can be s u p p l i e d by t r a n s f e r o f t h e w a t e r from t h e e p i d e r m i s a c r o s s the i n t e r vening c e l l s to the p e r i c y c l e . of  o s m o t i c d i f f u s i o n and t h e h i n d r a n c e s o f the c e l l w a l l and  protoplasm. the  T h i s p u l l may exceed t h e f o r c e  The f o r c e s which a r e i m p o r t a n t i n d e t e r m i n i n g  osmotic pressure of the c e l l are p h y s i c a l , chemical, c o l -  l o i d a l , or e l e c t r i c a l .  I m b i b i t i o n a l s o p l a y s an important  r o l e i n s u p p l y i n g t h e p l a n t w i t h water and i n the t r a n s f e r o f  -  water i n t h e p l a n t .  65 •-  " I t i s suggested t h a t i n t h e absence o f  p o t a s s i u m , the e l e c t r i c a l p r o p e r t i e s o f t h e c e l l a r e l e s s e n e d , and t h a t t h e osmotic f o r c e s a r e t h e r e f o r e reduced,  resulting  i n a d e c r e a s e d a b i l i t y on t h e p a r t o f p o t a s s i u m d e f i c i e n t c e l l s t o draw water from t h e stream.  A c e r t a i n osmotic f o r c e  would s t i l l e x i s t due t o c o l l o i d a l m a t t e r , sugars and such l i k e , and i m b i b i t i o n would p l a y i t s p a r t .  An abundance o f  water would, t h e r e f o r e , be r e q u i r e d by p o t a s s i u m s t a r v e d p l a n t s James (21)  c o r r o b o r a t e s t h i s t h e o r y i n p o i n t i n g out t h a t the  p o t a s s i u m p r e s e n t i s i n many cases capable o f e x e r t i n g a conside r a b l e p o r t i o n o f t h e o s m o t i c p r e s s u r e r e c o r d e d by D i x o n , and t h a t a h i g h e r c o n c e n t r a t i o n o f potassium w i l l r e s u l t i n a g r e a t e r a b i l i t y on t h e p a r t o f t h e c e l l t o m a i n t a i n i t s t u r gidity.  E s p e c i a l l y w i l l t h i s be t h e case, i f as r e c o r d e d by  Eotyschew and E l i a s b e r g [26), c e l l e x i s t s i n an i o n i c form. seem t o be t h e predominant case w i t h tomatoes.  a l l o f t h e potassium i n t h e I n many p l a n t s potassium s a l t s  s o l u b l e s a l t s , and t h i s may be t h e  Warne (50) has shown, w i t h p o t a t o e s , t h e r e  i s a w i t h d r a w a l o f p o t a s s i u m from t h e a s s i m i l a t i n g areas r e mote from t h e main v e i n s , and suggests t h e r e may be as a consequence l e s s p h o t o s y n t h e s i s i n those a r e a s ; t h e carbohydrate c o n c e n t r a t i o n w i l l be reduced i n those s p o t s , w i l t i n g  will  f o l l o w due t o a reduced osmotic p r e s s u r e and d i s c o l o r a t i o n and scorch w i l l r e s u l t ,  i t i s suggested t h a t t h e b r o n z i n g o f the  l e a v e s o f p o t a s s i u m d e f i c i e n t tomato p l a n t s may be a l s o i n p a r t due t o t h i s .  The l i n k a g e o f t h e b r o n z i n g w i t h an i r o n  a c c u m u l a t i o n a l s o forms an i n t e r e s t i n g s p e c u l a t i o n .  MacMurtrey  -  (32)  has  66  -  a l s o found a l o c a l i z a t i o n of p o t a s s i u m s t a r v a t i o n  effect. ' A s t u d y of T a b l e V I I , page 36,  shows the S e r i e s I I I  p l a n t s t o have produced l e s s growth and  f r u i t t h a n d i d those  o f S e r i e s I w h i c h were f e d the normal amount of s o l u t i o n . sen and Bartholomew (23)  and  James (21)  l e s s c a r b o h y d r a t e s are m a n u f a c t u r e d and fewer p r o t e i n s are s y n t h e s i z e d . f o r e , would be  expected.  have b o t h shovm t h a t James (21)  has  shown  An absence of growth,  there-  Chemical a n a l y s i s shows a h i g h  centage o f s t a r c h t o be s t o r e d i n t h e r o o t s , and t h a t are h i g h i n a l l p a r t s .  E v i d e n t l y a h i g h percentage of t h e  i n turn a v a i l a b l e nitrogenous matter.  t o o , were h i g h i n r e d u c i n g  The  and  leaves,  sugars w h i c h have n e i t h e r been  a s s i m i l a t e d nor t r a n s l o c a t e d . sen and  per-  proteins  c a r b o h y d r a t e s w h i c h were manufactured were not u t i l i z e d t h e r e was  Jan-  T h i s i s i n accordance w i t h  Bartholomew's f i n d i n g s t h a t i n the absence of  potas-  sium t h e r e w i l l not be an a s s i m i l a t i o n of c a r b o h y d r a t e s of s o l u b l e n i t r a t e s ; and  Jan-  and  r e c a l l s h i s statement t h a t h i g h  pro-  t e i n s and h i g h sugars f o u n d i n the absence of good growth fruiting  i n p o t a s s i u m d e f i c i e n t p l a n t s are l i k e l y due  l a c k of p o l y m e r i z a t i o n  o f these to h i g h e r  to a  compounds.  A t t e n t i o n i s drawn to t h e brown l e a t h e r y r o o t s the p o t a s s i u m d e f i c i e n t p l a n t s , w i t h a s u g g e s t i o n 0rgan.  and  of a  of storage  T h i s i s i n t e r e s t i n g i n v i e w of the l a r g e amount of  s t a r c h p r e s e n t i n them. h a i r s , but absorbing  I t i s r e c a l l e d t h a t t h e r e are few  these r o o t s a r e , n e v e r t h e l e s s ,  very e f f i c i e n t  root  as  a g e n t s , f o r l a r g e q u a n t i t i e s o f water were t r a n s p i r e d .  - 6? -  .  W h i l e f r u i t p r o d u c t i o n was low i n q u a n t i t y , t h e r e were many l a r g e f r u i t s .  These though were apt t o be  irregu-  l a r i n shape.  B o t h sugar and p r o t e i n c o n t e n t was h i g h i n  these f r u i t s .  P r o b a b l y the a v a i l a b l e potassium was  utilized  by the e a r l i e r formed f r u i t s o f a c l u s t e r and from them t h e r e would be no r e - t r a n s l o c a t i o n .  Then t h e abundance of u n u t i l i z -  ed n i t r o g e n o u s m a t t e r and sugars would be r e a d i l y a v a i l a b l e t o s w e l l the s i z e o f the f r u i t s . due t o an improper b a l a n c e .  I r r e g u l a r i t y i n shape might  be  The l a t e r f r u i t s formed i n the  c l u s t e r would n e c e s s a r i l y be s m a l l e r .  The average weight o f  the f r u i t s , n e v e r t h e l e s s , was h i g h . The dry w e i g h t s o f t h e t o p s and f r u i t s were l e s s and the S p e c i f i c G r a v i t y of t h e j u i c e s was l e s s i n these p o t assium d e f i c i e n c y p l a n t s than t h o s e r e c e i v i n g P u l l N u t r i e n t , thus i n d i c a t i n g t h a t t h e r e i s l e s s m i n e r a l and matter.  volatile  Sugars and p r o t e i n s b e i n g h i g h e r , the percentage of  o t h e r dry m a t t e r would be s t i l l l e s s .  I t i s r e c a l l e d that  James and Penston (22) c o n s i d e r p o t a s s i u m t o make up a l a r g e p a r t of t h e d r y w e i g h t o f p l a n t s , and t h e r e f o r e i n the absence of potassium from the plant food there i s a n o t i c e a b l e d i f ference i n dry weight. The p r e l i m i n a r y experiments i n S e c t i o n I showed l e s s d i f f u s i o n out o f p o t a s s i u m i n the f i r s t two experiments  and  t h e n the same i r r e g u l a r i t y o f a b s o r p t i o n i n the t h i r d e x p e r i ment w h i c h was  o b t a i n e d i n the main experiment.  The s u c c e s s i n growing p l a n t s from seeds whose p a r e n t s had no p o t a s s i u m f o r two g e n e r a t i o n s would l e n d s t r o n g  - 68 support t o the t h e o r y of the t r a n s l o c a t i o n of p o t a s s i u m i n potassium d e f i c i e n t plants, the  I t must undoubtedly be s t o r e d i n  seed and then be r e u t i l i z e d  r e p e a t e d l y i n t h e new  plant.  These seeds, as T a b l e X, page 53 > shows a r e s m a l l e r i n s i z e than normal seeds and become more so each y e a r of c o n t i n u e d potassium s t a r v a t i o n . p l a n t s of 1933  The seeds from t h e p o t a s s i u m d e f i c i e n c y  showed l i t t l e d i f f e r e n c e from the F u l l N u t r i e n t  seeds; t h o s e from the complete p o t a s s i u m o m i s s i o n grown i n 1932 were c o n s i d e r a b l y s m a l l e r ; whi1e the 1933  complete p o t a s -  sium o m i s s i o n seeds whose f o r e b e a r s had r e c e i v e d no potassium f o r two g e n e r a t i o n s were f u r t h e r d e c l i n e d i n s i z e and showed greater v a r i a t i o n . to  They d i d , however, c a r r y enough potassium  ensure a r e a s o n a b l e development  germination t e s t .  t o the new s e e d l i n g i n the  A l l p l a n t s from, seeds of even the second  g e n e r a t i o n of o m i s s i o n when f e d a complete n u t r i e n t a r e making good growth and f r u i t i n g ' though, as was p o i n t e d out under  " R e s u l t s " t h e y are l e s s v i g o r o u s . ;  -  69  -  Phosphate• That a s m a l l t o t a l amount o f phosphates  is. reauired  f o r p l a n t growth (Andre) would he i n accordance w i t h the f i n d i n t s i n t h e A b s o r p t i o n Experiment where l e s s phosphate was abs o r b e d i n m i l l i - e q u i v a l e n t s t h a n any o t h e r i o n .  The  gradual  a b s o r p t i o n d u r i n g t h e growing p e r i o d and then t h e sudden cessat i o n about b l o s s o m i n g t i m e , f o l l o w e d  1  by an a b s o r p t i o n o f s m a l l  q u a n t i t i e s , and t h e l a t e r i n c r e a s e d u r i n g f r u i t i n g i s i n t e n s e l y i n t e r e s t i n g i n view of the c o r r e l a t i o n i n t h e N u t r i t i o n E x p e r i ment.  I t i s n o t a b l e t h a t no e f f e c t o f phosphate s t a r v a t i o n  appeared i n S e c t i o n I I Phosphate d e f i c i e n c y p l a n t s u n t i l n e a r l y two months a f t e r t h e o m i s s i o n  from t h e f e e d i n g s .  The p l a n t s of  the two s e c t i o n s were about two weeks a p a r t i n growth At t h e time c o r r e s p o n d i n g  processes.  t o the development of the N u t r i t i o n  p l a n t a t w h i c h phosphates were w i t h h e l d , i t ceased t o be absorbed by t h e p l a n t o f t h e A b s o r p t i o n Experiment.  A p p a r e n t l y the  p l a n t had a l l t h a t i t r e q u i r e d f o r i t s present needs o r was r e u t i l i z i n g what i t d i d have.  There was none b e i n g absorbed and  the p l a n t o f t h e N u t r i t i o n Experiment showed no e f f e c t of i t s omission.. and,  L a t e r , i n b l o s s o m i n g , s m a l l amounts were absorbed  f i n a l l y , as f r u i t i n g became more p r o l i f i c , l a r g e r amounts  were used.  I t was o n l y a t t h i s p o i n t t h a t t h e N u t r i t i o n E x p e r i -  ment p l a n t developed t h e p u r p l i n g which i s a c c e p t e d as an i n d i c a t i o n o f a phosphate l a c k .  Brazeale  (3),  i t has a l r e a d y been men-  t i o n e d , found a l s o , t h a t phosphate a b s o r p t i o n by wheat p l a n t s i n c r e a s e d up t o a c e r t a i n c o n c e n t r a t i o n a f t e r which t h e r e was a sharp d e c l i n e  -  According  -  70  t o K a c G i l l i v a r y ( 3 1 ) , phosphate i s neces-  s a r y f o r c e l l d i v i s i o n and t h e r e f o r e but  f o r a l l stages of growth;  i f t h e r e i s a shortage t h e r e w i l l be t r a n s l o c a t i o n and  reutilization.  T h i s was p r o b a b l y t h e case -with our p l a n t s *  He  a l s o p o i n t s out t h a t l a r g e q u a n t i t i e s o f phosphorus are used i n the f r u i t : fruit".  " h a l f t h e phosphorus of the p l a n t i s i n the  I t i s a t t h i s stage t h a t the S e c t i o n I p l a n t s  again  absorbed l a r g e q u a n t i t i e s o f phosphates, and t h a t the S e c t i o n I I p l a n t s showed i t s l a c k .  T a b l e V I I , page 3 6 , and P l a t e I I I ,  (appendix) show t h e growth of the phosphorus d e f i c i e n c y p l a n t s to be v e r y s i m i l a r t o t h a t of the P u l l N u t r i e n t p l a n t s . f u r t h e r study of the t a b l e , n e v e r t h e l e s s ,  i n d i c a t e s a lower  dry weight o f tops and a d i s t i n c t l y lower f r u i t T h i s would s u p p o r t the t h e o r y  A  production,  of M a c G i l l i v a r y again,  that  phosphates a r e n e c e s s a r y i n t h e s y n t h e s i s o f n u c l e o - p r o t e i n s , and t h a t phosphorus i s h i g h i n t h e f r u i t s .  The a c t i v i t y main-  t a i n e d would be due t o the t r a n s l o c a t i o n and r e u t i l i z a t i o n * The M c G i l l i v a r y p l a n t s were t r e a t e d w i t h an e n t i r e phosphate o m i s s i o n from t h e s e e d l i n g stage and where h i s p l a n t s showed a v e r y d e c i d e d e f f e c t i n decreased growth and f r u c t i f i c a t i o n ours showed a r e l a t i v e l y  slight  one.  p l a n t can manage w i t h a r e l a t i v e l y  I t would seem t h a t the  s m a l l amount of phosphorus.  The p u r p l i n g of the l e a v e s would be due to a d i s c o n tinuance  of c h l o r o p h y l l p r o d u c t i o n s  accompanied by other  changes as y e t unaccounted f o r : p o s s i b l y accumulations o f end p r o d u c t s due to a d i s o r g a n i z a t i o n o f the c e l l , on account of a derangement i n f u n c t i o n i n g , d e c o m p o s i t i o n o f c h l o r o p h y l l ,  -  or some obscured r e a s o n . mulation and  71  -  •  M a c G i l l i b r a r y suggests t h a t an accu-  of sugars would stop a f u r t h e r s y n t h e s i s o f  sugars,  i t i s u n l i k e l y c h l o r o p h y l l would be formed i f i t were not  g o i n g to be used. The brown.  r o o t s of the M a c G i l l i v a r y p l a n t s were a dark  Curs a l s o were d a r k e r than t h o s e of the P u l l N u t r i e n t  feeding.  Whether t h i s i s an i n d i c a t i o n o f h i g h s t a r c h  storage  i s a l o g i c a l q u e s t i o n , f o r a s i m i l a r but more pronounced e f f e c t was  found i n the r o o t s of the p o t a s s i u m d e f i c i e n t p l a n t s  where s t a r c h e s were i n an even h i g h e r p e r c e n t a g e .  The  phos-  phorus d e f i c i e n t p l a n t s d i d not l a c k r o o t h a i r s to any  great  e x t e n t as d i d the p o t a s s i u m d e f i c i e n t s e r i e s . s t a r c h content nucleo-proteins  of the r o o t s would be due  The  high  to the f a c t t h a t  are not formed i n the absence of phosphorus  and the c a r b o h y d r a t e s are not  utilized.  I t seemed e a r l y , t h a t t h e r e would be f r u i t product i o n e q u a l t o the P u l l N u t r i t i o n p l a n t s , f o r t h e r e were an e q u a l number of f l o r a l buds.  M a c G i l l i v a r y t o o , found t h i s ,  but s u g g e s t s t h a t t h e r e i s l a t e r a f a l l i n g o f f .  The  earlier  buds p o l l i n a t e d would draw on the phosphorus and c o n t i n u e grow at the l o s s o f the l a t e r ones.  As was  to  p o i n t e d out i n  the case o f the p o t a s s i u m d e f i c i e n c y p l a n t s , t h i s would account f o r the i r r e g u l a r i t y of s i z e .  While we d i d not  obtain  the pronounced d i f f e r e n c e i n amount of pulp and d i f f e r e n c e i n seed s i z e , our r e s u l t s r a n f a i r l y p a r a l l e l w i t h h i s . lower dry weight and the lower S p e c i f i c G r a v i t y of the  The fruit  i s a c c o u n t e d f o r by the f a c t t h a t phosphate i s c o n s i d e r e d make up such a l a r g e p a r t of the tomato f r u i t .  to  P r o t e i n and  -  72  -  sugar c o n t e n t of the f r u i t s were h i g h .  Since nucleo-proteins  and p h o s p h o l i p o i d s a r e not formed i n the absence o f phosphorus and the c a r b o h y d r a t e s are not u t i l i z e d , l a r g e r amounts of n i t r o g e n o u s m a t t e r and sugars would be a v a i l a b l e .  With  an  i n c r e a s e d d e p l e t i o n o f phosphorus, M a c G i l l i v a r y o b t a i n e d a h i g h e r percentage  o f c a r b o h y d r a t e s and t o t a l n i t r o g e n i n l e a f  and stem a l s o .  H i s r e c o r d s throughout a r e extreme i n t h e  l i g h t of ours.  E v i d e n t l y a s m a l l amount of phosphorus w i l l  have v e r y e f f e c t i v e  results.  Seeds grown i n the S u b s i d i a r y Seed Experiment  (b)  are shown by Table X, page 5 3 ? t o be o n l y s l i g h t l y s m a l l e r than the F u l l N u t r i e n t seeds and g i v e a s i m i l a r g e r m i n a t i o n test.  A g a i n , i t i s p o i n t e d out t h a t the p l a n t s of t h i s i n -  v e s t i g a t i o n were not so g r e a t l y s t a r v e d f o r phosphorus as were M a c G i l l i v a r y ' s .  Seeds o f the S u b s i d i a r y Experiment ( c ) ,  on the o t h e r hand, which were from p a r e n t s w h i c h had no phosphate f e d , and a r e now b e i n g f e d none/have produced  a seedling,  a t p r e s e n t 12 i n c h e s h i g h , which d i f f e r s i n l e a f shape from the parent>, so t h a t here one would indeed "expect a d i f f e r e n c e in variety".  T h i s same e f f e c t o f a phosphorus o m i s s i o n has  been found by o t h e r workers  i n the U n i v e r s i t y .  A genetical  study and chromosome count show no d i f f e r e n c e i n such I t seems t o be a c y t o l o g i c a l m u t a t i o n .  cases.  -  Do u b l e Hoagland (18)  73  -  G o n e e n t r a t i on.  has s a i d t h a t y i e l d s seem to he  deter-  mined by a f a v o r a b l e s u p p l y and c o n c e n t r a t i o n i n the e a r l y stages  of growth, r a t h e r than by i n t e n s e a b s o r p t i o n i n the  l a t e r stages.  Tyson, (46)  has  s t a t e d t h a t the l i f e  processes  are more i n f l u e n c e d by the r a t i o and c o n c e n t r a t i o n of the n u t r i e n t s t h a n by a s u p p l y of any  one  bably r e f e r r i n g to a well-balanced t i o n i n t h a t sense.  The  two  element*  Both are  s o l u t i o n and to  pro-  concentra-  statements are o n l y a p p l i c a b l e to  t h i s i n v e s t i g a t i o n i n a g e n e r a l way.  Nevertheless,  the chang-  i n g of the c o n c e n t r a t i o n i n S e r i e s V, g i v i n g double the conc e n t r a t i o n , but o n l y h a l f the f e e d i n g s , undoubtedly gave interesting results. fruiting well.  The p l a n t s were normal i n every  way,  They d i d , however, seem t o make s l i g h t l y more  s u c c u l e n t growth than the S e r i e s I , P u l l N u t r i e n t p l a n t s | the f r u i t s were somewhat l a r g e r i n average s i z e , but s i n c e p r a c t i c a l l y the same t o t a l w e i g h t o f f r u i t was n e c e s s a r i l y fewer i n numbers.  produced, they were  T o t a l sugars were s l i g h t l y  h i g h e r i n the l e a f of the P u l l N u t r i t i o n p l a n t , but i n the double c o n c e n t r a t i o n they were h i g h e r i n stem and r o o t . the t o t a l sugars were p r a c t i c a l l y the same f o r the two  Since types  of p l a n t s taken as an e n t i t y , i . e . , r o o t p l u s stem p l u s l e a f , i t i s probable  t h a t the Double C o n c e n t r a t i o n  p l a n t s may  have  been a l i t t l e more advanced t h a n the checks and the sugars were p a s s i n g out of the l e a f t o the stem and r o o t . s t a r c h e s were i d e n t i c a l i n the two  series.  Total  P r o t e i n s were much  h i g h e r i n the r o o t s and somewhat so i n the f r u i t s .  These  _ 74 d i f f e r e n c e s i n p r o t e i n content  are unaccounted f o r , but i t  would seem the d i f f e r e n c e i n c o n c e n t r a t i o n may  have produced  a s l i g h t l y more s u c c u l e n t v e g e t a t i v e growth, perhaps w i t h more nitrogenous  m a t t e r w h i c h has  resulted also i n larger f r u i t s .  I n c o n s i d e r i n g the q u e s t i o n of c o n c e n t r a t i o n ,  atten-  t i o n i s drawn t o the S u b s i d i a r y Experiment ( b ) , where seeds from the A b s o r p t i o n Experiment p l a n t s were grown.  In the Ger-  m i n a t i o n E x p e r i m e n t , the r o o t s were c o n s i s t e n t l y l a r g e r and more v i g o r o u s .  Those p l a n t s from the A b s o r p t i o n P l a n t seeds  w h i c h are b e i n g f e d a complete n u t r i e n t now,  are making n o t i c e -  a b l y b e t t e r growth t h a n those from the P u l l N u t r i e n t seeds. I t i s p o s s i b l e the q u e s t i o n o f a b a l a n c e of s a l t s may i n t h i s connection.  enter  In the A b s o r p t i o n E x p e r i m e n t , the p l a n t s  were washed t h r o u g h w i t h d i s t i l l e d water f o r t n i g h t l y , thus k e e p i n g the r o o t s washed c l e a n .  The  f r e s h n u t r i e n t s absorbed  would be u n a f f e c t e d by any d e p o s i t of unused m a t e r i a l s . the p l a n t was  If  t h u s a b l e the more r e a d i l y to keep the b a l a n c e i t  d e s i r e d , the advantage might be r e f l e c t e d i n the seed. p l a n t s are b e i n g k e p t under o b s e r v a t i o n , and they w i l l  These be  f o l l o w e d t o m a t u r i t y and compared w i t h the p l a n t s from S e r i e s I seeds. I t i s suggested t h a t the more f r e q u e n t d i s t i l l e d water w h i c h the Double C o n c e n t r a t i o n  waterings  with  p l a n t s would  r e c e i v e over the o t h e r S e r i e s might perform the f u n c t i o n of k e e p i n g the r o o t s washed.off.  I t i s noted t h a t the r o o t s of  S e r i e s Y p l a n t s were not s u p e r i o r to those of S e r i e s I .  In-  deed i t cannot be s a i d t h a t the p l a n t s as a whole were s u p e r i o r .  -  75  -  But seemingly a change i n c o n c e n t r a t i o n does have an e f f e c t . I t i s pointed, out elsewhere t h a t t h i s i n v e s t i g a t i o n seems t o show t h a t p l a n t s absorb o n l y those n u t r i e n t s which they r e q u i r e and w i l l u s e .  There may, however, be an a l t e r a t i o n i n these  r e q u i r e m e n t s i n response t o a change of environment.  - 76 Oo^Elg-t g  Starvation  Plants«  The change o f c o l o r i n the l e a v e s i s an p o i n t i n the Complete S t a r v a t i o n p l a n t s .  intriguing  N i t r a t e omission  r e s u l t e d i n a y e l l o w i n g and f i n a l l y a w h i t e n i n g w i t h a p u r p l e c a s t ; p o t a s s i u m o m i s s i o n produced d e f i c i e n c y gave a p u r p l i n g .  a b r o n z i n g ; a n d phosphate  I t would seem t h a t the symptoms  of a l l t h r e e t y p e s o f s t a r v a t i o n were p r e s e n t here i n some degree,  though t h a t o f the n i t r a t e s t a r v a t i o n was most apparent.  In the Complete S t a r v a t i o n p l a n t s a y e l l o w i n g f i r s t and l a t e r  appeared,  a b r o n z i n g and p u r p l i n g , u n t i l f i n a l l y they became  c o m p l e t e l y c o l o r l e s s and  fragile.  That growth and f r u i t i n g  s h o u l d be l e s s would be  expected i n t h a t the p l a n t had o n l y t h e m a t e r i a l s w i t h i n to draw upon.  itself  That f r u i t i n g s h o u l d occur would be i n c o n f o r -  m i t y w i t h t h e law t h a t r e p r o d u c t i o n w i l l t e n d to o c c u r when an organism i s d e p r i v e d of i t s accustomed growth environment. this  In  case, however, t h e n u t r i e n t s were not cut o f f u n t i 1 the  blossoms had formed. the p e r c e n t a g e  S i n c e growth was  so g r e a t l y  decreased,  of sugars t o weight d i d not v a r y g r e a t l y  the P u l l N u t r i e n t p l a n t s %  from  though the percentage o f dry weight  of stems and f r u i t s and the S p e c i f i c G r a v i t y o f the f r u i t s was  slightly  l e s s , i t i s p r o b a b l e the m i n e r a l content would not  v a r y t o any g r e a t e x t e n t e i t h e r . roots.  S t a r c h e s were h i g h i n t h e  B e f o r e the l e a v e s began t o y e l l o w , p h o t o s y n t h e s i s would  be c o n t i n u i n g and i f the c a r b o h y d r a t e s were not b e i n g u t i l i z e d i n growth t h e r e would be an a c c u m u l a t i o n .  A p p a r e n t l y these  -  were s t o r e d  i n the roots.  77  -  The p r o t e i n s  i n t h e p l a n t as an  e n t i t y , were e q u a l t o those of t h e check p l a n t s , hut "by f a r the l a r g e s t amount was i n t h e r o o t . A c i d i t y was s l i g h t l y h i g h e r i n t h e f r u i t s of t h e f u l l y starved p l a n t s . greater?  Organic a c i d c o n t e n t must have been  t h i s i s n o t accounted f o r .  Ebte Regarding P o t s i Two t y p e s of l a r g e p o t s were used i n the N u t r i t i o n Experiment, glazed  and c l a y .  The c l a y p o t s r e q u i r e d more w a t e r i n g , but  no apparent d i f f e r e n c e i n growth was o b t a i n e d . mixed throughout t h e s e r i e s .  The pots were  -  -  7 8  MogmssmATt It  i s recommended  must he k e p t growth. ever.  CMS  t h a t i n growing tomatoes,  "While  nitrates  a s t o t h e s u p p l y may he made, how-  a r e needed throughout  amount may he s u p p l i e d i n t h e f i e l d a r e a t t h e maximum, t h a n conditions.  used.  applied  Potassium  indication It  this and  these  t o an annual  crop  n e e d n o t be since there i s a  nutrients.  t e s t s upon t h e p l a n t s t h e m s e l v e s  a r e an e x c e l -  o f the a v a i l a b l e n u t r i e n t s i n the s o i l .  i s suggested content  investigation, a sulphate  seem t o he r e q u i r e d  and phosphate f e r t i l i z e r s  treatments  such  i n regard to of the  a s were c a r r i e d  with a d d i t i o n a l treatments  omission  and v a l u e .  t h a t an i n v e s t i g a t i o n  o f t h e p l a n t , and p a r t i c u l a r l y  under o m i s s i o n  interest  light  o f t h e p l a n t , b u t s m a l l amounts a r e a c t u a l -  of both  Field  fruit,  conditions  i n t h e greenhouse under poorer  i n large quantities  the m i n e r a l  where l i g h t  Magnesium and s u l p h a t e s  the l i f e  reutilization  lent  growth, a l a r g e r  The v a l u e o f c a l c i u m i s t o o w e l l known t o r e q u i r e  stressing here.  ly  soils  s u p p l i e d w i t h m i n e r a l n u t r i e n t s a t a l l s t a g e s of  Some q u a l i f i c a t i o n s  throughout  %  out i n  of a calcium,  o r d e f i c i e n c y , w o u l d be o f c o n s i d e r a b l e  -  79  -  •  SUMMARY.  Ic  I n v e s t i g a t i o n s were c a r r i e d out w i t h the tomato p l a n t , L y c o p e r s i c u m esculentum M i l l . , as to; - (a) the p e r i o d development a t which the n u t r i e n t i o n s Ca, Mg, and PQ^ w e r e a b s o r b e d ! and  of  S 0 , NO^,  K,  4  (b) the e f f e c t the p a r t i a l w i t h -  h o l d i n g of n i t r a t e , p o t a s s i u m , and phosphorus, a change i n concentration  of the i o n s , and a complete s t a r v a t i o n might  have on the growth, f r u c t i f i c a t i o n , and  sugar and  protein  c o n t e n t of the v e g e t a t i v e p a r t s o f the p l a n t and the 2.  The methods employed and t h e r e s u l t s o b t a i n e d the two  f o r e ach  of  p a r t s of the i n v e s t i g a t i o n are g i v e n s e p a r a t e l y  S e c t i o n I and  reserved therefore  as  S e c t i o n I I , but s i n c e i n t e r e s t i n g c o r r e l a -  t i o n s developed between the two  3.  fruit.  experiments, d i s c u s s i o n i s  u n t i l the f i n d i n g s o f b o t h are p r e s e n t e d , and  is  general.  I n S e c t i o n I , w h i c h i s nominated, A b s o r p t i o n  Experiment,  the p l a n t s were grown i n n u t r i e n t c u l t u r e s and  a n a l y s i s of  the c u l t u r e was made f o r t n i g h t l y t o f i n d the a b s o r p t i o n the d e s i g n a t e d 4.  ions during that  In Section I I , designated  for  period.  as N u t r i t i o n Experiment, the  p l a n t s were grown i n n u t r i e n t sand c u l t u r e s and  s i x series  o f t r e a t m e n t s were g i v e n as f o l l o w s : - I E u l l N u t r i e n t , I I N i t r a t e o m i s s i o n from b l o s s o m i n g time. I I I Potassium d e f i c i e n c y t h r o u g h o u t , I v Phosphorus d e f i c i e n c y from b l o s soming t i m e , V Double the c o n c e n t r a t i o n  of S e r i e s I , but  -  80  -  f e d once a week i n s t e a d of tvri.ce, V I Complete S t a r v a t i o n from b l o s s o m i n g 5-  time.  T a b l e s , p l a t e s and d e s c r i p t i o n s a r e g i v e n t o show t h a t t h e elements, c a l c i u m , magnesium, s u l p h u r , n i t r o g e n , potassium and phosphorus a r e e s s e n t i a l t o normal p l a n t growth, and t h a t t h e i r o m i s s i o n causes a t y p i c a l s t a r v a t i o n e f f e c t .  6.  C a l c i u m , magnesium and s u l p h a t e s  a r e absorbed a t a l l stages  of growth and f r u i t i n g , but t h e e f f e c t o f t h e i r omis s i o n was not s t u d i e d . 7®  N i t r a t e s a r e n e c e s s a r y a t a l l stages o f growth, blossoming and  8.  f r u i t i n g ; more a r e u t i l i z e d d u r i n g b r i g h t weather.  P o t a s s i u m i s absorbed throughout t h e l i f e of the p l a n t . I t seems t o have a :. r a d i o - a c t i v e o r e l e c t r i c a l q u a l i t y and i s n o t r e q u i r e d i n as l a r g e q u a n t i t i e s i n s u n l i g h t as i n d u l l weather.  I n i t s absence t h e r e wi11 be a r e u t i l i z a t i o n  of t h e p o t a s s i u m a l r e a d y p r e s e n t . completely generation,  starved of potassium to continue  i n t o the t h i r d  w i t h o u t b e i n g s u p p l i e d any, g i v e s s t r o n g sup-  p o r t t o the t h e o r y 9„  The a b i l i t y of p l a n t s  of r e u t i l i z a t i o n .  Phosphorus i s needed f o r both growth and f r u i t i n g . as e v i d e n c e d by a c e s s a t i o n o f a b s o r p t i o n time,  But,  a t blossoming  c o r r e l a t e d w i t h an i n d i f f e r e n c e t o i t s o m i s s i o n a t  t h a t t i m e , i t would seem n o t t o be e s s e n t i a l , a t l e a s t i n added q u a n t i t i e s a t t h a t p o i n t .  S i n c e i t i s more abundant  i n the growing p a r t s o f t h e p l a n t , i t i s p o s s i b l e there i s  -  81  -  a r e u t i l i z a t i o n at that time.  S t o r i n g w o u l d he a p o s s i b i -  l i t y , but the evidence o f t h i s i n v e s t i g a t i o n does not to a s t o r a g e o f m i n e r a l n u t r i e n t s by 10.  A change i n c o n c e n t r a t i o n growth and  plants.  gave s l i g h t l y more  a l a r g e r average s i z e of f r u i t .  fewer f r u i t s , but the t o t a l weight was  11.  point  succulent There were  almost equal t o t h a t  produced by the P u l l N u t r i e n t  check p l a n t s .  amount of i o n s f e d i n the two  s e r i e s was  A complete s t a r v a t i o n of a l l n u t r i e n t s and  The  total  identical. of n i t r a t e s only  produced s i m i l a r r e s u l t s . 12.  The  amount of f r u i t produced i n a l l o m i s s i o n s e r i e s  considerably  l e s s than i n the check p l a n t s : i n the P o t a s - •  sium d e f i c i e n c y i t was  60%  of the check, i n t h e Phosphate  o m i s s i o n from b l o s s o m i n g i t was s i o n from b l o s s o m i n g i t was vation 13.  20/»,  65%> and  i n the N i t r a t e omisi n the Complete S t a r -  18/b.  A n a l y s e s were made of the l e a f , stem, r o o t and a l l s e r i e s i n S e c t i o n I I , f o r c a r b o h y d r a t e s and and  was  t a b l e s are g i v e n p r e s e n t i n g  14. A h i g h s t o r a g e of s t a r c h was  fruit  proteins  the f i n d i n g s .  found i n the r o o t s of  p l a n t s of a l l o m i s s i o n t r e a t m e n t s , and  the  of p r o t e i n s i n the  r o o t s of the P o t a s s i u m d e f i c i e n c y , Phosphate o m i s s i o n Complete S t a r v a t i o n 15.  The  of  and  plants.  v a r i a t i o n s i n s u g a r , s t a r c h and p r o t e i n content are  discussed  in detail.  -  l6  e  82  -  Sugars were found not to v a r y to any  g r e a t extent  i n the  f r u i t s ; p r o t e i n s v a r i e d r a t h e r more. 17.  A c i d i t y was  found not t o v a r y t o any  extent  except i n the  N i t r a t e omission s e r i e s . 18.  Seedlings  grown f r o m seeds o f t h e A b s o r p t i o n  p l a n t s had  Experiment  a more e x t e n s i v e r o o t system than had  the o t h e r s , and  19.  The  seedling  I t i s suggested t h a t a b e t t e r b a l a n c e of  was m a i n t a i n e d i n washing the r o o t s o f the plants  of  t h i s i s r e f l e c t e d i n a somewhat b e t t e r  growth they are making over the E u l l N u t r i e n t plants.  any  salts  Absorption  fortnightly.  r e s u l t s of the i n v e s t i g a t i o n s t r o n g l y suggest t h a t  p l a n t s absorb o n l y those n u t r i e n t s which they r e q u i r e will  and  utilize.  20. I t i s recommended t h a t a m i n e r a l a n a l y s i s of the  fruits  o f s i m i l a r l y grown p l a n t s , w i t h a C a l c i u m d e f i c i e n t and a S u l p h a t e d e f i c i e n t s e r i e s added, would be of 21.  value.  I t i s f u r t h e r recommended t h a t a l l m i n e r a l n u t r i e n t s must be kept c o n t i n u a l l y s u p p l i e d t o the growing p l a n t , t h a t o t h e r t h a n c a l c i u m and n i t r a t e they need not s u p p l i e d i n l a r g e amounts.  but be  - 83 -  ACKNOY/L1SDGMENT S  Sincere for- a v e r y k i n d  thanks are rendered  consideration  t o B e a n F. M. C l e m e n t  and i n t e r e s t *  To D r . A. 3 7 . B a r s s f o r h i s k i n d l y and s y m p a t h e t i c attitude  towards  t h e work, t h e w r i t e r i s i n d e b t e d .  G r a t e f u l acknowledgment and a p p r e c i a t i o n  i s ex-  p r e s s e d t o D r . G. H. H a r r i s , who s u g g e s t e d t h e i n v e s t i g a t i o n and whose a d v i c e a n d a s s i s t a n c e ciously  and g e n e r o u s l y  were a t a l l t i m e s most  given.  Thanks a r e a l s o extended many c o u r t e s i e s  a t the  gra-  greenhouse.  t o Mr. Frank G a r n i s h f o r  84 LITERATURE (1)  CITED  American A s s o c i a t i o n o f A g r i c u l t u r a l Chemists Washington, D.C.  (A.O.A.C.)  (2) " Andre G. • I918 R e p a r t i t i o n des elements minereaux e t 1 ' a z o t e chez l e T e g e t a t etoile.Comp. Rend. Acad. S c i . (Paus) 167.1004 - 1006. (3)  Brazeale, J . I . 1928. E f f e c t s o f one element o f p l a n t food upon t h e a b s o r p t i o n by p l a n t s o f a n o t h e r element. Univ. A r i z . A g r . Exp. L t a . Tech, B u i . 1 9  (4)  Cameron and P a i l y e r . J o u r . Arner. Chem. Soc.  (5)  1068.  C o l b y , H a r o l d L. 1933* S e a s o n a l a b s o r p t i o n o f n u t r i e n t s a l t s by t h e F r e n c h prune grown i n s o l u t i o n c u l t u r e s . Plant Physiol. 8 (l)s I-34'  (6) . D a v i d s o n , J e h i e l . 1933• The p o s s i b l e e f f e c t o f H i o n c o n c e n t r a t i o n on the a b s o r p t i o n of p o t a s s i u m and phosphorus under f i e l d c o n d i t i o n s . J o u r . A g r i c . Res. 46 ( 5 ) :  (7)  449-506.  D a v i s , M.B. I93O. Some e f f e c t s o f t h e d e f i c i e n c i e s o f n i t r o g e n , p o t a s s i u m , c a l c i u m and magnesium w i t h s p e c i a l r e f e r e n c e t o the b e h a v i o r o f c e r t a i n v a r i e t i e s o f apple t r e e s . J o u r . Pomo1. and H o r t . S c i . - V o l . 8 N o . 4 ,  (8)  Day, D o r o t h y . 1929.  Some e f f e c t s o f c a l c i u m d e f i c i e n c y on Pisum sativum.  (9)  P l a n t P h y s i o l . 4 ( 4 ) : 493-506.  Davy, S i r Humphrey. l 8 l 4 . Elements o f A g r i c u l t u r a l Chemistry.  - 85 (10)  Ernmert, E.K. 1931  (11)  (12)  8  The  '  e f f e c t of s o i l r e a c t i o n on the growth of tomatoes, and l e t t u c e , and on the n i t r o g e n , phosphorus and manganese content of the s o i l and p l a n t . U n i v . K e n t . , A g r i c . E x p . S t a . Res. B u i . 314'.  Gericke,  W.E.  . 1924.  b e n e f i c i a l e f f e c t to wheat growth due t o d e p l e t i o n of a v a i l a b l e phosphorus i n the c u l t u r e media , S c i e n c e (IT.S.) 60s 2 9 7 - 8 .  The  G r e g o r y , P.Q.  and R i c h a r d s o n ,  I929* P h y s i o l o g i c a l S t u d i e s Ann. Bot. X L I I I : (13)  Harrison, 1934.  (14)  (16)  Responses of Kentucky B l u e Grass to v a r i a t i o n s i n t e m p e r a t u r e , l i g h t , c u t t i n g s , and f e r tilizing. P l a n t P h y s i o l . 9: 8 3 - I O 5 .  T n e  S.C.  v a l u e of sodium when p o t a s s i u m i s i n s u f f i c i e n t . Rhode. I s . S t a t e C o l l e g e . Agr.ExpsSta.Bul.177o  1922• An  I n t r o d u c t i o n to P l a n t  Products.  Heydemann, P. The  Hibbard,  n u t r i t i o n o f the tomato. Gartenbaumw e i s s e n s h a f t E.S.R. - J . J . P.L.  Methods of Chemical A n a l y s i s , U n i v .  Koagland, 1919.  (19)  M.  Hill,  1923. (18)  P.J.  i n Plant N u t r i t i o n . 119.  Haas and  1929. (17)  Carter  H a r t w e l l , L and Damon, 1919•  (15)  -  The  Calif.  D.R. r e l a t i o n of the c o n c e n t r a t i o n and r e a c t i o n o f t h e n u t r i e n t medium to growth and absorpt i o n o f the p l a n t . J o u r . Agr. Res. 18: 7 3 - I I 7 .  Hoagland.Vf£oid Mart i n , J . C. 1923.  E f f e c t s o f s a l t s on the i n t a k e of i n o r g a n i c elements-iron the b u f f e r system of the p l a n t . U n i v . G a l . Tec. Paper Ho.8.  -  (20)  Hoffer,  86  -  G.N.  1930. T e s t i n g c o r n - s t a l k s c h e m i c a l l y t o a i d i n d e t e r m i n i n g t h e i r p l a n t needs. Purdue U n i v . Agr. E x p . S t a . B u i . 298. (21)  Jamesj  W.D.  1930. S t u d i e s o f t h e p h y s i o l o g i c a l importance o f the mineral nutrients i n plants I . Relation of p o t a s s i u m t o t h e p r o p e r t i e s and f u n c t i o n of the l e a f . Ann. B o t . XLIV; 173-98. (22)  James, W.D.  and P e n s t o n , 1\T.L.  1933* S t u d i e s o f mineral tative potato (23)  t h e p h y s i o l o g i c a l importance o f the elements i n p l a n t s I V . The q u a n t i d i s t r i b u t i o n o f p o t a s s i u m i n the p l a n t . Ann. B o t . X L V I l s 279-93.  Jansen, G. and Bartholomew,  R.P.  I929. T r a n s l o c a t i o n of p o t a s s i u m i n tomato p l a n t s and i t s r e l a t i o n t o t h e i r c a r b o h y d r a t e and n i t r a t e d i s t r i b u t i o n . J o u r . A g r . Res. 381 447 - 65* (24)  Jansen, G. and Bartholomew,  R.P.  1929. L u x u r y consumption o f p o t a s s i u m by p l a n t s and i t s s i g n i f i c a n c e . J o u r . Amer. Soc. Agron. 21: 751-765* (25)  Jansen, G. and Bartholomew,  R.P.  1931. The r a t e o f a b s o r p t i o n of p o t a s s i u m by p l a n t s , and i t s p o s s i b l e e f f e c t on t h e p o t a s s i u m r e m a i n i n g i n s o i l from a p p l i c a t i o n s o f potassium f e r t i l i z e r s . Univ. Ark. C o l l . A g r i c . A.E.S. B u i . 265. (26)  Kostyschew, 1920.  (27)  S. and E l i a s b e r g , P.  Ueber d i e Porm d i e l l a l i u m - verbindungen i n lebenden P f l a n z e n geweben. Z e i t s c h . P h y s i o l . Chem. 110 (228).  K r a u s , S . J . and K r a y b i l l ,  R.H.  1918. V e g e t a t i o n and r e p r o d u c t i o n w i t h s p e c i a l r e f e - . rence t o t h e tomato. Ore. Agr. E x p . S t a . B u i . 149.  - 87 (28)  Lane, J . Henry and Eynon, L e w i s . I923. The  (29)  and Cook,  R.L.  Rate o f i n t a k e , a c c u m u l a t i o n and t r a n s f o r m a t i o n of n i t r a t e n i t r o g e n by s m a l l g r a i n s and Kentucky b l u e g r a s s . J o u r . Amer. Soc. Agron. 2 2 . ( 9 ) : 757-64.  M a c G i l l i v a r y , J.H. 1927-  (32)  P h y s i o l o g i c a l r o l e of n u t r i e n t s . U.S. D e p a r t . A g r i c . D i v i s i o n of Vegetables. Physiology and P l a n t B u l l e t i n 18.  McCool, M.M. 1930.  (31)  d e t e r m i n a t i o n of r e d u c i n g sugars "by means of E e h l i n g ' s s o l u t i o n w i t h methylene b l u e as an i n t e r n a l i n d i c a t o r . J o u r . Soc. Ghem. I n d . 421 32.  Loew, Oscar. 1899.  (30)  -  E f f e c t of phosphate on the c o m p o s i t i o n o f the tomato p l a n t . J o u r , Agr, Res. 34; 97°  McMurtrey, J.E., J r . 1932* D i s t i n c t i v e e f f e c t s o f the d e f i c i e n c y o f c e r t a i n e s s e n t i a l elements on the growth o f tobacco p l a n t s i n s o l u t i o n c u l t u r e s . U.S.A. Dept. A g r i c . • Tech.Bui. 34O1 1-42.  (33)  Murneek, A.E. 1926.  (34)  The  and  chemical composition of p l a n t s i n r e l a t i o n t o p h o t o p e r i o d i c changes. U n i v . Wis. Agr. Exp. S t a . Res. B u i . 74.  N i g h t i n g a l e , G.T., hum, ¥.R. 1931.  (36)  E f f e c t s of C o r r e l a t i o n between v e g e t a t i v e r e p r o d u c t i v e f u n c t i o n s i n a tomato. P l a n t Phys. 1: 3-56.  N i g h t i n g a l e , Gr.. T. 1927.  (35)  :  Addoms, R.M.,•Bobbins Scharmer-  E f f e c t s o f c a l c i u m d e f i c i e n c y on n i t r a t e absorpt i o n and on m e t a b o l i s m i n the tomato. P l a n t P h y s i o l . 6: 6 0 5 - 3 0 .  Onslaw, il.W. I93I.  The P r i n c i p l e s o f P l a n t B i o c h e m i s t r y .  - 88 (37)  ' Parkes  and Pudge,  irnnonium molybdenum b l u e m e t h o d f o r d e t e r m i n i n g phosphate. (38)  Petrie, Arthur 1 9 3 3 *  (39)  T  he  Pfeiffer, 1920.  i n t a k e o f i o n s by t h e p l a n t and i t s r e l a t i o n to r e s p i r a t i o n o f the r o o t . Australian J o u r . E x p . B i o l , and Med. S c i . 1 1 1 2 5 - 3 4 . T. a n d R i p p e l , A,  D e r e i n f l u s s Ton k a l k u n d m a g n e s i a a u d das wa eh s t u m d e r p f l a n z e r . J o u r . Bandy/. 6 8 :  (40)  H.K.  5  -  3 9 .  Raber. I 9 2 8 . .  Principles  of Plant  Physiology.  (41) R i c h a r d and W e l l s . American Jour. Chemistry (42)  :.;Shull, C h a r l e s I 9 3 O .  F.V.  S t u d i e s on .the f o r m a t i o n o f t u b e r s and o t h e r storage organs. The i n f l u e n c e u p o n t r a n s l o c a t i o n o f t h e p e r i o d o f l i g h t and t h e supply of potassium. Ann. Bot X L V I I : 2 7 - 5 1  E f f e c t s o f l i g h t upon n i t r a t e a s s i m i l a t i o n i n wheat. J o u r . Amer. Chem. S o c . 5 0 • 4 3 6 .  T o t t i n g h a m , W.E., 1934.  (46)  4 5 9 - 7 1 .  T o t t i n g h a m , v7.E. and L o w s n a , H e n r y . 1928:  (45)  A.  T i n c k e r , M.A.H. and D a r b y s h i r e , 1933.  (44)  4 5 9 *  A b s o r p t i o n o f w a t e r by p l a n t s and t h e f o r c e s involved. J o u r . Amer. S o c . A g r o n . 2 2 :  (43)  2 7 :  Tyson,  S t e p h e n s , H.S.  and L e a s e , E . J .  I n f l u e n c e o f s h o r t e r l i g h t r a y s upon a b s o r p t i o n o f n i t r a t e by t h e y o u n g wheat p l a n t . Plant Physiol. 9 : 127-42. James.  I 9 3 O . The i n f l u e n c e o f s o i l c o n d i t i o n s , f e r t i l i z e r t r e a t m e n t s , a n d l i g h t i n t e n s i t y on g r o w t h , c h e m i c a l c o m p o s i t i o n and e n z y m i c a c t i v i t y  -  89  -  o f sugar b e e t s . Mich.. S t a t e C o l l . Agr. Exp. S t a . Tech. B u i . 108. (47)  W a l l a c e , T. 1925» E x p e r i m e n t s on the manuring o f f r u i t t r e e s . I I . J o u r . Pomol. and H o r t . S c i . V. Ho. 1.  (48)  W a l l a c e , T. and Mann, C.E.T. 1926. I n v e s t i g a t i o n s on the c h l o r o s i s o f f r u i t J o u r . Pomol. and H o r t . S c i . V. Ho.2  (49)  trees.  W a l l a c e , T. 1928.  Experiments  on t h e manuring of f r u i t  trees.  J o u r . Pomol. and H o r t . S c i . V I I . H o . l (5*0)  Warne, L.G.G.  (51)  1934. The d i s t r i b u t i o n o f p o t a s s i u m i n normal and s c o r c h e d f o l i a g e . Ann. B o t . X L V I I I : 5 7 - 67. Watts, W.M* I93I. Some f a c t o r s which i n f l u e n c e growth and f r u i t i n g of t h e tomato. U n i v . A r k . Agr. Exp. S t a . B u i . 267.  (52)  Weevers, T. I 9 I I . Untersucheengenuber d i e L o c a l i s a t i o n und E u n k t i o n des Kaliurn i n d e r P f l a n z e . Rec. Trav. B o t . H e e r l a n d . V I I I .  (53)  WooIf, E. I87O. Ashen A n a l y s i s .  - b -  - f) „  PLATE I V .  Showing V a r i a t i o n i n l e a v e s .  - f  "PLATE V. S h o w i n g v a r i a t i o n  i n roots.  PLATE V I . The P o t a s s i u m . O m i s s i o n P l a n t s o f S u b s i d i a r y E x p e r i m e n t ( a ) , s h o w i n g on t h e l e f t t h e p l a n t w h i c h h a s h a d no p o t a s s i u m f o r two g e n e r a t i o n s . The one on t h e r i g h t was f r o m t h e same s e e d s b u t was f e d p o t a s s i u m at blossoming.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105380/manifest

Comment

Related Items