VEGETATIONAL AND ENVIRONMENTAL VARIATIONS IN THE ECOSYSTEMS OF THE COASTAL WESTERN HEMLOCK ZONE by LASZLO ORLOCI S.F., University of British Columbia, Sopron Division, M.Sc, University of British Columbia, 1961 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF . ' DOCTOR OF PHILOSOPHY in the Department of • BIOLOG-Y AND BOTANY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA February, I96U In the requirements British mission for Columbia, I available for for an cation without of my Department this written of by for Biology V a n c o u v e r , 28 the Head and April I of i s understood financial Botany Columbia, 1964 the Library this permission*, The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada Date the of in partial degree at study., copying It thesis that and granted representatives. thesis advanced reference be this agree extensive p u r p o s e s may his presenting thesis my make i t agree for that copying shall not of of freely per- scholarly Department that gain University shall further fulfilment or or be by publi- allowed The U n i v e r s i t y o f B r i t i s h Columbia FACULTY OF GRADUATE STUDIES PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of LASZLO ORLOCI B.S.F., The U n i v e r s i t y o f B r i t i s h Sopron D i v i s i o n , 1958 M.Sc, Columbia, The U n i v e r s i t y o f B r i t i s h Columbia, .1961 IN ROOM 3332, BIOLOGICAL SCIENCES BUILDING TUESDAY, APRIL 28, 1964, at 2:30 P.M. COMMITTEE IN CHARGE Chairman: F.H. Soward R.J. Bandoni J.E. B i e r E.H. Gardner V.J. K r a j i n a External G.E. Rouse C A . Rowles W.B. S c h o f i e l d T.M.C. T a y l o r Examiner- Department J . Major of Botany, University of California, Davis VEGETATIONAL AND ENVIRONMENTAL V A R I A T I O N S I N THE ECOSYSTEMS OF THE COASTAL WESTERN HEMLOCK ZONE ABSTRACT T h i s t h e s i s d e s c r i b e s t h e b i o g e o c l i m a t i c z o n e s on the southwestern B r i t i s h Columbia mainland and g i v e s a detailed analysis of the vegetation-environmental p a t t e r n s w i t h i n t h e C o a s t a l w e s t e r n hemlock zone. Ecosystem c l a s s i f i c a t i o n s are proposed u t i l i z i n g coo r d i n a t i o n techniques and s t r a t i f i c a t i o n . The m a j o r u n d e r l y i n g c a u s e s o f v a r i a t i o n s i n t h e f l o r i s t i c s t r u c t u r e among i n d i v i d u a l e c o s y s t e m s a r e i d e n t i f i e d by f o u r environmental g r a d i e n t s : regional climate, parent m a t e r i a l , l o c a l climate (exposure), and s o i l - m o i s t u r e r e g i m e . The o r o g r a p h i c i n f l u e n c e o f V a n c o u v e r I s l a n d a n d t h e Coast Mountains r e s u l t s i n a r e g i o n a l c l i m a t i c gradient from low t o h i g h e l e v a t i o n s . N a t u r a l segments o f t h i s g r a d i e n t , r e c o g n i z e d on t h e b a s i s o f z o n a l ( c l i m a t i c climax) v e g e t a t i o n and mesic s o i l s , c o n s t i t u t e t h e b i o g e o c l i m a t i c zones and subzones. Land types a r e separated from w i t h i n the C o a s t a l w e s t e r n hemlock zone on t h e b a s i s o f p a r e n t m a t e r i a l s . The r o c k o u t c r o p l a n d t y p e i n c l u d e s a m o s a i c o f p e a k s , k n o l l s , and c r e v i c e s c h a r a c t e r i z e d by a c o i n c i d e n t pattern of the vegetation types. A l l glacial drift d e p o s i t s , e x c e p t t h o s e o f t h e swampy h a b i t a t s , b e l o n g to the g l a c i a l d r i f t land type. Maximum f l o r i s t i c v a r i a t i o n s i n the g l a c i a l d r i f t land type occur along a soil-moisture gradient, A lesser v a r i a t i o n i n the f l o r i s t i c structure i s attributed to a local climatic g r a d i e n t f r o m c o o l t o warm e x p o s u r e . These g r a d i e n t s s i g n i f y d i f f e r e n t sets of vegetation types i nthe d i f f e r e n t subzones o f t h e C o a s t a l western hemlock zone. The s p r i n g - w a t e r swamp l a n d t y p e i n c l u d e s w a t e r l o g g e d m i n e r a l s o i l s and w a t e r l o g g e d woody p e a t s i n the v i c i n i t y o f s p r i n g l i n e s . The v e g e t a t i o n o f t h e s p r i n g - w a t e r swamps h a s r e m a r k a b l e u n i f o r m i t y t h r o u g h out b o t h subzones. Narrow v a l l e y - l i k e depressions w i t h p e r m a n e n t o r s e m i p e r m a n e n t s t r e a m l e t s and i n t e r m i t t e n t overflow water c o n s t i t u t e the r a v i n e a l l u v i a l l a n d type. The v e g e t a t i o n o f t h e r a v i n e s shows l i t t l e v a r i a t i o n among t h e two s u b z o n e s . The f l o o d - p l a i n cornmunities of the Squamish a l l u v i a l p l a i n l a n d type, r e f l e c t t h e i n f l u e n c e o f o v e r f l o w w a t e r and p o s t - f l o o d drainage. The b a s i c u n i t o f c l a s s i f i c a t i o n u s e d i s t h e e c o s y s t e m t y p e , a segment i n a s i m p l e v e g e t a t i o n - e n v i r o n mental gradient. A vegetation-environmental gradient i s simple i f i t c o n s i s t s of a s i n g l e set of v e g e t a t i o n t y p e s a l o n g an e n v i r o n m e n t a l gradient. . E c o s y s t e m type mapping i n v o l v e d a p p r o x i m a t e l y 85 acres i n the southwestern p a r t of the U n i v e r s i t y o f B r i t i s h C o l u m b i a R e s e a r c h F o r e s t ; a map i s e n c l o s e d , ( i n the t h e s i s ) . GRADUATE STUDIES F i e l d of Study: Botany Forest Autecology Forest Synecology S e l e c t e d , R e a d i n g s i n ..American Ecology Advanced F o r e s t Pathology Taxonomy o f V a s c u l a r P l a n t s Other V.J. V.J. Krajina Krajina Schofield J.E. B i e r T.M.C. T a y l o r W.B Studies; Climatology S o i l G e n e s i s and C l a s s i f i c a t i o n Soil-Plant Relationships J o D. Chapman CA. Rowles J . Basaraba PUBLICATIONS 1961 - F o r e s t t y p e s o f t h e C o a s t a l w e s t e r n hemlock zone. M.Sc. t h e s i s . T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a . 1962 - F o r e s t t y p e m a p p i n g i n t h e C o a s t a l w e s t e r n h e m l o c k zone on t h e M a i n l a n d o f B r i t i s h C o l u m b i a . 1961 P r o g r e s s R e p o r t , N.R.C. G r a n t T - 9 2 : 10-1.6. 1963 - S t a n d a r d f o r m s u s e d f o r e c o s y s t e m s t u d i e s ( w i t h i a u t h o r s ) . 1962 P r o g r e s s R e p o r t , N.R.C. G r a n t No. T-92; 83-105. 1963 - E n v i r o n m e n t a l f a c t o r s a n d v e g e t a t i o n on t h e f l o o d p l a i n o f t h e S q u a m i s h R i v e r . 1962 P r o g r e s s R e p o r t N.R.C. G r a n t No. T - 9 2 : 3 5 - 5 5 . 1963 - B i o g e o c l i m a t i c f o r e s t z o n e s o n t h e L o w e r M a i n l a n d B r i t i s h C o l u m b i a ( w i t h c o - a u t h o r ) . 1962 P r o g r e s s R e p o r t , N.R.C. G r a n t No. T - 9 2 : 18-24. 1963 - I n d i c a t o r p l a n t s i n t h e C o a s t a l w e s t e r n h e m l o c k z 1962 P r o g r e s s R e p o r t , N.R.C. G r a n t No T - 9 2 : 2 5 - 3 4 . 1.964 - P r o b l e m s i n t h e c l a s s i f i c a t i o n o f e c o s y s t e m s . 1 9 ^ P r o g r e s s R e p o r t , N.R.C. G r a n t No. T - 9 2 : 3 9 - 4 8 . 1964 - A m a t h e m a t i c a l m o d e l o f p l a n t s u c c e s s i o n i n a f l o e p l a i n e c o s y s t e m . 1.963 P r o g r e s s R e p o r t , N.R.C. G r a n No,. T - 9 2 ; 4 8 - 5 5 . 1 Q ii ABSTRACT This thesis describes the biogeoclimatic southwestern B r i t i s h Columbia mainland analysis Coastal and g i v e s o f the vegetation-environmental a detailed patterns w i t h i n the. w e s t e r n hemlock zone. Ecosystem c l a s s i f i c a t i o n s a r e proposed u t i l i z i n g The co-ordination major u n d e r l y i n g structure climate "The techniques and s t r a t i f i c a t i o n . causes o f v a r i a t i o n s i n the f l o r i s t i c among i n d i v i d u a l e c o s y s t e m s a r e i d e n t i f i e d environmental gradients: local z o n e s on t h e regional climate, parent (exposure), and s o i l - m o i s t u r e material, regime. orographic' i n f l u e n c e o f Vancouver I s l a n d and the Coast Mountains r e s u l t s i n a r e g i o n a l c l i m a t i c g r a d i e n t high on elevations. Natural the basis soils, Land land o f zonal zone o n t h e b a s i s type includes glacial i n the g l a c i a l gradient. attributed drift drift gradient, from w i t h i n materials. western The r o c k outcrop o f peaks, k n o l l s , and c r e v i c e s o f the vegetation types. e x c e p t t h o s e o f t h e swampy h a b i t a t s , land land type. Maximum f l o r i s t i c type occur climatic gradient p o s u r e . These g r a d i e n t s and m e s i c the C o a s t a l along A l e s s e r v a r i a t i o n i n the f l o r i s t i c to a l o c a l recognized z o n e s and s u b z o n e s . by a c o i n c i d e n t p a t t e r n driftrdeposits, from low t o climax) vegetation o f parent a mosaic belong t o the g l a c i a l tions (climatic types are separated characterized All segments o f t h i s c o n s t i t u t e the biogeoclimatic hemlock by four signify a soil-moisture structure i s from c o o l different varia- t o warm ex- sets o f vegetation iii types i n the d i f f e r e n t subzones o f the C o a s t a l western z o n e . The s p r i n g - X i i a t e r swamp l a n d t y p e mineral soils spring l i n e s . remarkable like and and w a t e r l o g g e d includes woody p e a t s both waterlogged i n the v i c i n i t y . o f The v e g e t a t i o n o f t h e s p r i n g - w a t e r u n i f o r m i t y throughout hemlock subzones. swamps h a s Narrow valley- d e p r e s s i o n s w i t h permanent o r semi-permanent s t r e a m l e t s intermittent land o v e r f l o w water c o n s t i t u t e t y p e . The v e g e t a t i o n o f t h e r a v i n e s shows l i t t l e among t h e two s u b z o n e s . Squamish a l l u v i a l The p l a i n l a n d type r e f l e c t basic u n i t alluvial variation The f l o o d - p l a i n communities, o f t h e f l o w w a t e r and p o s t - f l o o d type, the ravine the i n f l u e n c e o f over- drainage. o f c l a s s i f i c a t i o n used i s t h e ecosystem a segment i n a s:Lmple v e g e t a t i o n - e n v i r o n m e n t a l g r a d i e n t . A v e g e t a t i o n - e n v i r o n m e n t a l g r a d i e n t i s simple a single s e t o f vegetation types Ecosystem t y p e mapping In the southwestern Research along an e n v i r o n m e n t a l involved approximately p a r t o f the U n i v e r s i t y F o r e s t ; a map i fi t consists of i s enclosed. V. J . Krajina gradient. 85 acres of British Columbia iv AC K3TOWLEDGEMENT I "wish to thank Dr. V. J . Krajina f o r h i s generous counsel and guidance i n a l l phases of my study. Thanks are extended to Dr. T. M. C. Taylor, Head of the Department of Biology and Botany, for h i s personal help and sustained interest i n my work. Many persons gave f r e e l y of advice and help including: Dr. ¥. B. Schofield, Department of Biology and Botany, Dr. J . E. Bier, Department of Biology and Botany, Dr. G. E. Rouse, Department of Biology and Botany, Dr. C. A. Rowles, Head of the Department of S o i l Science, Dr. E. H. Gardner, Department of S o i l Science, Dr. J . Basaraba, Department of S o i l Science, Mr. L. Farstad, Canada Department of Agriculture, Mr. J . F. Glennie, Department of C i v i l Engineering, Dr. J . Mackay, Department of Geography, Dr. L. Schwartz, Department of Mathematics, Mr. E. Macskasy, Department of Mathematics, Dr. H. Dempster U.B.C. Computing Centre, Dr. A. Kozak, Department of Forestry, and Mr. J . Walters, University Research Forest, Haney. Dr. V. J . Krajina, Dr. T. M. C. Taylor, Dr. W. B. Schofield, Messrs. J . W. Eastham and G. F. Otto helped with the i d e n t i f i c a t i o n of plants. I am g r a t e f u l to my fellow-students, G. Lesko and S. E i s , f o r t h e i r kind cooperation i n the f i e l d work; to A. C. Archer, M. A. M. B e l l R. C. Brooke, R. B. Smith, E. B. Peterson and W. Stanek f o r h e l p f u l discussions on the problems of t h i s present work; to my wife f o r prepar a t i o n of the synthesis tables and f o r her general assistance and encouragement. V F i n a l l y , I wish to express my indebtedness to the National Research Council of Canada, Ottawa, f o r financing t h i s study; to the Faculty of Forestry and the Greater Vancouver Water D i s t r i c t f o r providing assistance i n the f i e l d work. vi TABLE OF CONTENTS Page INTRODUCTION 1 Chapter I BIOGEOCLIMATIC ZONATION OF THE SOUTHWESTERN BRITISH COLUMBIA MAINLAND . . . Macrocliraate Mesic (zonal) s o i l s Climatic climax vegetation Biogeoclimatic regions, zones and subzones 3 3 6 7 8 II III IV V VI VII PROBLEMS IN THE CLASSIFICATION OF ECOSYSTEMS Sample p l o t D e f i n i t i o n s of s i m i l a r i t y C coordination Coenotic c l a s s i f i c a t i o n units Related concepts . Classification••.in- the ipresenty.v.ork... „o,-k. . . . 11 11 14 l6 19 19 21 THE ROCK OUTCROP LAND TYPE Rock types The vegetation-environmental pattern C l a s s i f i c a t i o n units 24 24 24 29 THE GLACIAL DRIFT LAND TYPE Dry subzone F l o r i s t i c variations i n the d i r e c t i o n of p r i n c i p a l axes . . The A axis The B axis The C axis C l a s s i f i c a t i o n units Wet subzone F l o r i s t i c variations i n the d i r e c t i o n of p r i n c i p a l axes . . The A axis The B axis The C axis C l a s s i f i c a t i o n units Development of plant communities 31 32 32 34 34 35 36 43 43 43 44 44 45 49 THE SPRING-WATER SWAMP LAND TYPE 53 THE RAVINE ALLUVIAL LAND TYPE 55 THE SQUAMISH ALLUVIAL PLAIN LAND TYPE Character of the stream Fluctuations of the water l e v e l Erosion, transportation, and deposition . . . . The vegetation-environmental pattern 56 56 56 60 6l vii A mathematical model of succession Hypothesis Application C l a s s i f i c a t i o n units VIII IX 6j 68 70 73 ECOSYSTEM TYPE MAPPING 75 SUMMARY AND CONCLUSIONS 79 REFERENCES 87 APPENDICES 94 viii LIST OF TABLES Table I-l 1-2 1-3 1-4 1-5 1-6 1-7 II-l 11-2 III-l IV-3 IV-4 IV-5 IV-6 IV-7 IV-8 IV-9 IV-10 IV-11 V-l VII-1 VII-2 VII-3 VII-4 VII-5 VII-6 VIII-1 IX-1 IX-2 IX-3 Page Station description Averages and length of recording Monthly p r e c i p i t a t i o n and t o t a l for 1961 Numerical values of a and b (see text) for the d i f f e r e n t observation periods . . . A l t i t u d i n a l occurrence of maximum p r e c i p i t a t i o n at the d i f f e r e n t observation periods . . . Zonal c l a s s i f i c a t i o n s with reference to southwestern B r i t i s h Columbia . . . Biogeoclimatic units on the southwestern B r i t i s h Columbia mainland Tabulation of point distances from reference points 11 and hj. . . A axis values Rock outcrop land type Correlations Correlations Average available soil-moisture i n selected stands. G l a c i a l d r i f t land type, dry subzone Correlations Correlations P r e v a i l i n g ecotopic c h a r a c t e r i s t i c s of ecosystem types i n d i f f e r e n t climates on slopes G l a c i a l d r i f t land type, wet subzone Successional (time) sequence of plant communities i n the g l a c i a l d r i f t land type and the r e l a t e d habitats . . . Spring-water swamp and ravine alluvium land type. . Explained variations i n gauge height readings To follow , page 4 4 4 5 5 8 10 19 19 30 33 33 39 42 4-3 4-3 46 48 52 55 (1956-1957) • 58 Some general s t a t i s t i c s Big Bend data Some s t a t i s t i c s of basic equations The a l l u v i a l - p l a i n land type, benches The a l l u v i a l - p l a i n land type, r i v e r scars Climatic data (U.B.C. Research FSrest) D i f f e r e n t i a t i n g combination of c h a r a c t e r i s t i c s f o r the separation of zonal and subzonal units i n mesic habitats Ecosystem types of rock outcrops Ecosystem types of the g l a c i a l d r i f t land type. . . 60 70 72 74 74 75 80 8l 83 ix LIST OF ILLUSTRATIONS Figure I-l • 1-2 Page II-2 Map of study area Long term averages of t o t a l p r e c i p i t a t i o n , snowfall and temperature . . . . T o t a l p r e c i p i t a t i o n as s p e c i f i e d Biogeoclimatic forest zones i n the southwestern B r i t i s h Columbia mainland. . Interpoint distance of two sample plots i n three-dimensional space . . . Determination of axis values IV-1 Point projections on the AB and AC plane IV-2 D i s t r i b u t i o n patterns of selected species on the AB plane D i s t r i b u t i o n diagrams of selected species and selected environmental f a c t o r s . . Point projections on the AB and AC plane D i s t r i b u t i o n diagrams of selected species and selected environmental factors. . Physical features on the a l l u v i a l p l a i n Diurnal changes of water l e v e l Average monthly gauge heights 1955-1959 Mean d a i l y gauge heights I 9 5 6 - I 9 5 7 Correlations (r) of the gauge height readings with the climatic elements. . . . Average number of overflow days Transects i n d i c a t i n g two d i s t i n c t examples of bench height increase. . Ecosystem type map 1-3 1-4 II-l IV-3 TJ-k IV-5 VII-1 VII-2 VII-3 Vll-k VII-5 VII-6 VII-7 VIII-1 To follow page 3 5 5 10 15 18 32 35 35 43 kk 56 5^ 57 57 59 60 73 77 1 INTRODUCTION In synecological studies, vegetation is frequently classified in either zonal or coenotic (community type) units. The zonal units have "been variously described as formations, associations, regions, or zones, and are defined mainly by the dominant vegetation and macroclimate (Warming 1895, 1909, Clements 1916, 1928,Tansley 1 9 3 9 ) . The classification concept has been broadened recently to include soils as the third main criterion for the establishment of biogeoclimatic zones (Krajina 1959, 1 9 6 2 ) . The zonal unit always has been a broad one and has contained greatly different habitats, each with a characteristic vegetation type, recurring in not only one but frequently in several zones. Coenotic classifications produced abstract units as types or associations. The concept of "type" was already known to Lorenz (1858) but became crystalized only later in the works of Nilsson ( 1 9 0 2 ) , Morozov (1903, 1 9 2 8 ) , Cajander (1909, 1926), Flahault and Schroter ( 1 9 1 0 ) , and Braun-Blanquet (1913, 1932, 1 9 5 1 ) . Types or associations were usually abstracted from large samples by grouping individual stands together on the basis of their apparent similarity. The classification c r i t e r i a varied dependent on the different schools and were thus ecotopic, biocoenotic, or ecosystematic (cf. Krajina i960). The zonal approach has been applied in classification of vegetation of the Pacific Northwest by Whitford and Craig (1918), Halliday (1937), Krajina (1959, 19&2), and Rowe ( 1 9 5 9 ) ' Forest types or associations were described from the same general geographic area by Ilvessalo ( 1 9 2 9 ) , Kujala (194$, Spilsbury and Smith (19V7), Krajina and Spilsbury ( 1 9 5 3 ) , McMinn Eis (1957), (I962), Mueller-Dombois Archer (1963), (1959), and Peterson (1961), Lesko Orloci 2 (1961), (1964). This thesis makes simultaneous application coenotic approach i n c l a s s i f i c a t i o n of ecosystems. of the zonal and General information from the Coastal western hemlock zone i s available from the work of Krajina Lesko (1961), Orloci contributed new (1961) and E i s (1962). (1959), The present work, however, information about the plant communities and t h e i r habitats through the analysis and interpretation of new data, p a r t i c u l a r l y i n the rock outcrop, a l l u v i a l p l a i n , spring-water swamp, and ravine alluvium land types. The chapter which treats mapping should also be mentioned i n t h i s respect. The investigation was conducted i n four steps: data, data processing to define the r e l a t i o n s h i p f i c a t i o n s , and mapping of c l a s s i f i c a t i o n units. c o l l e c t i o n of of the variables, classi- CHAPT. I 3 BIOGEOCLIMATIC ZONATION OF THE SOUTHWESTERN BRITISH COLUMBIA MAINLAND 1 This chapter deals with the zonation of climates, soils and vegetation. References are made not only to the Coastal western hemlock zone, but also to the adjacent zones occurring in the southwestern British Columbia mainland, thus making possible a comparative review. Macroclimate Kerr (1951) described three major climates from southwestern B r i t i s h Columbia: Cool Mediterranean, Transitional, and Maritime. The Cool Mediterranean climate is confined to Saanich Peninsula of Vancouver Island and to the Gulf Islands. It is designated as Csb (Chapman 1952) according to the Koppen classification and B^B-j^a (Kerr 1951) according 1 2 to the Thornthwaite classification. The Transitional climate includes a •4?he term "biogeoclimatic" was f i r s t applied by Krajina (1962) in a zonal classification. o Symbols in the Koppen classification: C = mesothermal rainy climates, average temperature of coldest month is less than 64.4°F but more than 2 6 . 6 ° F . f = driest month of summer with more than 1.2 i n . rain, s = summer dry climates, three times as much rain in the wettest winter month as in the driest summer month or more,^driest summer month with less than 1.2 i n . rain, b = average temperature of warmest summer month is less than 71«6°F. D = microthermal (cold, snowy forest climate), average temperature of coldest month below 2 6 . 6 ° F , average temperature of warmest month above 50°E« ET = tundra climate, average temperature of warmest month above 32°F, but below 50°F. c=less than 4. months over 50°F. Symbols in Thornthwaite classification: A = perhumid climatic type, Im (moisture index) 100 and above. B^ = humid climatic type, Im from 80 to 1 0 0 . B^ = humid climatic type, Im from 60 to 8 0 . B = humid climatic type, Im from 40 to 6 0 . B]_ = humid climatic type, Im from 20 to 4 0 . B-[ = coolest mesothermal, temperature efficiency index from 22.kk to 2 8 . 0 5 i n . r =' l i t t l e or no water deficiency, aridity index from 0 to 1 6 . 7 . s = moderate summer water deficiency, aridity index from 1 6 . 7 to 3 3 . 3 . a' = summer concentration below 48.0 per cent. bi| = summer concentration from 48.9 to $1.9 per cent, b^ = summer concentration from 51*9 to 5 6 . 3 per cent. S2=large summer water deficiency. 2 to follow page 3 A i l — Fig. I - l Map of study area. Black and white circles indicate the location of climatic stations and sampling centers respectively. narrow fringe of Fraser Valley at the Mainland Coast with climatic:.: stations classified as Csb and (BgB^B^) Bjsa'. k The lowland and the mountain slopes east and north of the Transitional climate belong to the Maritime climate. Localities below approximately 3500 f t . are mesothermal and are classified in the present dissertation as Cfb and AB/jr(b^ b^). The climatic types of high altitudes could not be accurately defined since climatic records were not adequate. It can be suggested only that altitudes above approximately 3500 f t . belong to a perhumid (snowy) microthermal climate (Dfb or Dfc), and the highest altitudes above timber line constitute a perhumid alpine tundra (ET). The Pacific air is lifted up by an orographic barrier and then begins its descent over the leeward side of Vancouver Island. air warms up and its relative humidity decreases. The descending The leeward slopes of Vancouver Island, and especially of the Gulf Islands close to the shore line, therefore, receive relatively low precipitation. The rainshadow effect is also responsible for the low precipitation of the Lower Mainland close to the Strait of Georgia. This effect, however, is gradually diminished in the proximity of the mountain slopes where the air again starts to ascend. In order to define the altitude at which maximum precipitation can be expected, mathematical manipulations were performed with long-term, annual and monthly data of selected stations (Figure I - l and Table I - l to 3)• Climatic data (Table 1-2 and 3, Figure 1-2 and 3) iridicates .iiat.maxjmum precipitation could occur on windward slopes or in valleys at relatively low altitudes. The lowest values are registered at stations of the Lower Mainland, and the stations at high elevations also show substantial reduction in precipitation i f compared to those in the narrow valleys or on the lower slopes. The relationship of precipitation and altitude can be anticipated to follow page k Table I - l STATION DESCRIPTIONS Station Latitude Longitude Burnaby Capitol H i l l Burnaby Mtn. Terminal Coquitlam Lake Grouse Mtn. * Haney East Haney U.B.C. Hollyburn Ridge Hollyrood Lynn Valley Lynn Upper Mosquito Creek ** New Westminster Seymour Falls Seymour Mtn. Vancouver A Vancouver U.B.C. White Rock 49° 17 16 23 22 12 18 22 21 21 21 21 12 26 26 11 16 02 1 2 2 ° 59 56 * discontinued in 19^0 123 122 123 122 123 122 t h9 05 34 35 12 05 02 02 03 57 58 57 10 15 50 Altitude 600 f t . 450 528 3625 100 550 3120 600 500 725 1130 250 660 2700 16 305 230 ** discontinued in i 9 6 0 to follow Table I - l Table 1-2 Station AVERAGES AND LENGTH OF RECORDING Mean annual Annual pre- Annual Recording temperature c i p i t a t i o n snowfall Temp. Prec. A l t i t u d e (°F) (in.) (in.) (years) (ft.) Coquitlam Lake Grouse Mtn. * Haney U.B.C. Hollyburn Ridge Mosquito Creek *** New Westminster Seymour F a l l s Seymour Mtn. White Rock 140.14 47 75-34 90.12 113.95 102.21 59.58 41** 48 42** 47 51 47** 44** 50 145.69 120.50 41.23 58.0 219.4 50.3 304.8 50.5 27.5 91.0 137.0 14.2 30 7 15 8 7 30 30 3 30 25 15 7 30 30 528 3625 550 3120 250 1130 660 2700 230 * discontinued 1940, ** extrapolations, *** discontinued i n I960 Table 1-3 MONTHLY PRECIPITATIONS AND TOTAL FOR 1961* Station January April July October Burnaby C a p i t o l H i l l Burnaby Mtn. Terminal Coquitlam Lake Haney East Haney U.B.C. Hollyburn Ridge Hollyrood Lynn Valley Lynn Upper New Westminster Seymour F a l l s Seymour Mtn. Vancouver A Vancouver U.B.C. White Rock 16.8 17.0 3-8 3-4 6.9 3.8 3.7** 1.5 1.6 12.0 * a random year in. 34.2 13.4 16.4 23.6 12.4 20.0 21.8 12.8 41.1 23.6 8.3 9.6 7-1 ** datum 8.1 1.2 0.7 0.9 2.2 11.4 25.3 9.5 13.9 20.2 0 4.9 5.7 3.0 7-3 1-3 1.5 1.6 1.5 13.3 2.0 21.2 1.9 2.4 2.2 1.5 7.1 0.8 1.6 1.2 from extrapolation 16.2 18.7 8.9 23.4 5.1 6.5 4.7 Annual 93.1 93.7 181.2 76.8 100.2 145-9 92.3 117.2 128.9 74.6 195.9 135.3 53.8 63.O 47.6 i n t h i s p a r t i c u l a r case as y = &xr + bx + c where y i s p r e c i p i t a t i o n , x i s a l t i t u d e , a and b are the constants of proportion and c i s the value of intercept on the y axis. The a l t i t u d e at which maximum p r e c i p i t a t i o n occurs corresponds to the vertex of the p r e c i p i t a t i o n curve. At the vertex = 2 ax + b = 0 from which the a l t i t u d e co-ordinate the f i r s t derivative dx of the vertex x = - ~ . The constants a and b were determined by the 2 a l e a s t squares method; the appropriate numerical values are compiled i n Table 1-4. Table 1-4 MJMERICAL VALUES OP a AND b (SEE TEXT) FOR THE DIFFERENT OBSERVATION PERIODS Observation period Long-term Constant a -0.1895 1961 -0.1101 January 1961 -0.32^3 October 1961 July 1961 -0.7031 -0.2102 10? 0.7798 Constant b 10 ' 0.5856 0.1550 0.6794 0.1033 10' icr 10 10' 3 Note: Computer programme and output data are stored at the Department of Biology and Botany, University of B r i t i s h Columbia. The a l t i t u d e s at which maximum p r e c i p i t a t i o n occurred during the d i f f e r e n t observationjperiods are compiled i n Table I-5« Table 1-5 Observation period Altitude (ft.) * random year ALTITUDINAL OCCURRENCE OF MAXIMUM PRECIPITATION AT THE DIFFERENT OBSERVATION PERIODS Long-term average 2057 1961* 2660 January 1961 2390 July 1961 October 1961 4830 2450 320 280 52 240 50 200 48 a •H l6o 160 £ 46 -p I U CD 120 § 120 80 80 42 40 40 4o m If 44 c+ o 1000 2000 3000 4ooo 1000 2000 3000 4000 Altitude ( f t . ) Altitude (ft.) O 1000 2000 3000 4000 £ Altitude (ft.) § •d P F i g . 1-2 Long-term averages of t o t a l p r e c i p i t a t i o n , s n o w f a l l and temperature. CD P r e c i p i t a t i o n (in.) •p- o H > c> t 0 0 Hct £P H H VO o\ t— O O - 1 CO o H H FO O o ON. ro O o o - ro o o -—^ o 1 • >—' o o o -p- o o o P r e c i p i t a t i o n (in.) ro o ' UJ o -p- o M > O I— O rt o H» ct TO 1 4 I H o ct VO ON H C ro o CD o o ^—v Hi c+ OJ • O -— o o P H -p- •i n> o o o o H•d H- • ct P c+ H- P r e c i p i t a t i o n (in.) ro o 01 p CO 01 CD o HHj H* fO P> > H I— ct H" ct H Pi CD ^S= 1 «<! M o O O c ro vo Ov H —x o o o t-b • o o o c t Co • -p- o o o PreC i p i t a t i o n ( i n . ) H o M o > H CD £ ro o o ct O 1— VO ON 1 ct Hc+ CD '—-v o o o o o Hi ct- OO • o o o -p- o o o 3-1 *3TdI AOIIOJ oq. H VJI ro o ro VJI VJI o 6 I t i s concluded that maxjjnum p r e c i p i t a t i o n may he expected to occur at an elevation lower than the maximum may Walker's (1961) 2700 f t . except during the summer months when occur at or near the highest a v a i l a b l e elevations. estimates are 4000 to 6000 feet. I t should he mentioned, however, that h i s estimates are based on the records of only two climatic stations (West Vancouver and Hollyburn). Snow and temperature data (Table 1-2)were analyzed and the appropriate graphs are given i n Figure 1-2.' '\ The d i s t r i b u t i o n of snow follows an almost l i n e a r pattern. The c r i t i c a l a l t i t u d e above which snow tends to accumulate s h i f t s upward and downward with the d i f f e r e n t seasons but always coincides with a minimum frequency of f r o s t y days as stated by Peterson a l t i t u d e i s at about 3000 feet (1964). This c r i t i c a l during most of the winter. In the v a l l e y s , t h i s may be s l i g h t l y lower. Mesic (zonal) s o i l s The e f f e c t of climate i s presumably most apparent i n s o i l s that have developed i n mesic (zonal) habitats. Therefore, a biogeoclimatic c l a s s i f i c a t i o n must deal p r i m a r i l y with these s o i l s and t h e i r properties. By d e f i n i t i o n , mesic s o i l s are not s i g n i f i c a n t l y affected by l a t e r a l l y translocated water and t h e i r drainage i s not impeded by heavy texture and concave r e l i e f shape or accelerated by very coarse texture and convex r e l i e f shape. Lower Mainland s o i l s which may f i t the mesic s p e c i f i c a t i o n were described as zonal upland s o i l s by Kelley and Spilsbury (1938)- According to these workers, the zonal upland s o i l s are well-drained, possessing a t h i n humus horizon, and an i n s i g n i f i c a n t ash-grey podzol horizon, underlain by a reddish-brown or brownish-yellow sandy loam horizon with gravel 7 and stones as w e l l as numerous i r o n (magnetic) concretions. These upland s o i l s belong 'to the concretionary brown group (sensu Report i960 of the National S o i l Survey Committee of Canada) confined to l o c a l i t i e s with less than 60 i n . p r e c i p i t a t i o n . Krajina (1962, 1964) has recognized the occurrence of a very weak l a t e r i z a t i o n i n the concretionary brown s o i l s . This view appears to be supported by the f i n d i n g of Clark et a l . , (1963) which indicate a d e f i n i t e trend of S i 0 2 increase and Fe2C>3 decrease from the top downwards i n the p r o f i l e of some well-drained concretionary brown s o i l s of southwestern B r i t i s h Columbia. Above the 60 i n . isohyetal l i n e , concretionary brown s o i l s are replaced by true podzols i n mesic habitats. Orterde and o r t s t e i n development are common, and where p r e c i p i t a t i o n exceeds 110 inches gleyed humic podzols become frequent within the mesothermal b e l t (Lesko 1961). In the microthermal b e l t , snow tends to accumulate i n large quantities. This keeps the s o i l s water-saturated through i t s prolonged and gradual melting. (Krajina 1959, 1964) Subalpine humus podzols have developed here and are characterized by strong gleyzation and strong podzolization which may be obscured by i n f i l t r a t i n g organic matter ( c f . Brooke 1964). At higher elevations, beyond the timber l i n e , podzol rankers were noted by Archer (1963) to be the c h a r a c t e r i s t i c mesic s o i l s i n the alpine zone. Climatic climax vegetation In the humid mesothermal climate of the Lower Mainland, mesic habitats are characterized by the Pseudotsuga menziesii - Gaultheria shallon - Eurhynchium oreganum climax. Pseudotsuga menziesii can reproduce here under i t s own shade but Tsuga heterophylla i s excluded from the dominant stratum of the community. 8 The and perhumid mesothermal c l i m a t e promotes raw humus a c c u m u l a t i o n s t r o n g p o d z o l i z a t i o n t h e r e b y c o n d i t i o n i n g t h e Tsuga h e t e r o p h y l l a - Plagiothecium undulatum c l i m a x a t low a l t i t u d e s and t h e Tsuga h e t e r o p h y l l a - Abies amabilis - Vaccinium alaskaense - Plagiothecium i n t h e b e l t o f maximum p r e c i p i t a t i o n . undulatum climax I n t h i s perhumid b e l t , Pseudotsuga m e n z i e s i i becomes d e f i n i t e l y shade i n t o l e r a n t on mesic s o i l s and i s perpetuated by f o r e s t f i r e s and c l e a r c u t t i n g . Tsuga m e r t e n s i a n a predominates and A b i e s a m a b i l i s i s p r e s e n t i n t h e c l i m a x v e g e t a t i o n o f t h e m i c r o t h e r m a l b e l t whereby Plagiothecium undulatum i s r e p l a c e d b y R h y t i d i o p s i s r o b u s t a b u t V a c c i n i u m a l a s k a e n s e remains dominant i n t h e shrub l a y e r . a l t i t u d e s as r e l i c "top c l i m a t e " . Mountain hemlock may o c c u r a t low s p e c i e s o f muskegs, or on h i l l t o p s as an i n d i c a t o r o f In the a l p i n e tundra b e l t 5000 (above f t . ) forests are r e p l a c e d by h e a t h e r communities on mesic h a b i t a t s i n which empetriformis and C a s s i o p e m e r t e n s i a n a dominate. Biogeoclimatic regions, Whitford f o r e s t inventory (1937) sections. zones and subzones and C r a i g i n B r i t i s h Columbia. Halliday Phyllodoce (1918) proposed t h e f i r s t They r e c o g n i z e d zonal classifications " c l i m a t i c f o r e s t types" mainly f o r on t h e b a s i s o f t h e predominant v e g e t a t i o n . More r e c e n t l y , d e s c r i b e d f o r e s t r e g i o n s and d i v i d e d them i n t o f o r e s t These s e c t i o n s , which were comparable t o t h e C l e m e n t s i a n association (1916), were v e g e t a t i o n a l l y and c l i m a t i c a l l y more heterogeneous than the c l i m a t i c f o r e s t types o f Whitford and C r a i g . m o d i f i c a t i o n s t o H a l l i d a y ' s c l a s s i f i c a t i o n (Table (1959) applied 1-6). Z o n a l c a t e g o r i e s were e s t a b l i s h e d by K r a j i n a three l e v e l s o f biogeoclimatic c l a s s i f i c a t i o n : Rowe (1959, 19^2) at r e g i o n , zone, subzone. to follow page 8 Table 1-6 ZONAL CLASSIFICATIONS WITH REFERENCE TO SOUTHWESTERN BRITISH COLUMBIA Whitford and Craig Halliday 1918 1937 Madrona - Oak transition section ( C l ) Rowe 1959 S t r a i t s of Georgia section ( C l ) Douglas-fir - Red cedar South type Pacific Red cedar - Southern Coast - Hemlock type Coast Section section (C2) Hemlock - (C2) Hemlock - Sitka spruce type 1959, 1964 Coastal Douglas-fir zone, Garry oak subzone Coastal Douglas-fir zone wet subzone Coastal western 1 hemlock zone, dry subzone Coastal western hemlock zone, wet subzone - Balsam type Coastal subalpine section The subalpine part of the subalpine and muskeg type Krajina Mountain hemlock zone Part of the Part of the Coastal western southern northern P a c i f i c hemlock zone, and c e n t r a l Coast sitka-spruce Coast , section ( C . 3 ) , subzone sections(Cl,C2.), and Queen Charand northern , l o t t e section Coast section (Ck) (After O r l o c i 1961). 9 Biogeoclimatic regions coincide with the main distribution area of particular dominant trees. The different biogeoclimatic zones are also distinct in their precipitation, proportionate snowfall, temperature, and zonal soils. Pseudotsuga menziesii and Tsuga mertensiana are the two climat i c a l l y most distinct tree species in the general locality. Snow tends to accumulate in the distribution area of Tsuga mertensiana but its duration becomes insignificant in the distribution area of Pseudotsuga menziesii. Heavy snow and prolonged melting keeps the zonal soils moisture- saturated and brings about strong gleyzation. This evidence was considered by Krajina (196U) to separate the Pacific coastal mesothermal forest region from the Pacific coastal subalpine forest region. by the Mountain hemlock zone. The latter is represented Localities above the forest line include the Alpine tundra which is hardly distinguishable as a continuous entity in the Coastal belt (cf. Brink 1959, Archer 1963). Pseudotsuga menziesii is the dominant species in the crown canopy and is potentially able to reproduce under its own shade in mesic habitats below the 50-60 i n . isohyet whereby podzolization is only weak in the soils. Tsuga heterophylla is the dominant species in the crown canopy as well as in the reproduction, and the soils are strongly podzolized in mesic habitats above the 60-70 i n . isohyet. Pseudotsuga menziesii is frequently present here but its establishment is entirely dependent on disturbing causes such as logging and forest f i r e s . This evidence may well substantiate al the separation of a Coast western hemlock and Coastal Douglas-fir zone. The Coastal western hemlock zone which is discussed in the subsequent chapters is subdivided into two subzones based on the presence or absence of Abies amabilis and Vaccinium alaskaense in mesic habitats. The presence of these species is characteristic for the wet subzone of the Coastal western hemlock zone. 10 The dry subzone is characterized by the lack of Abies amabilis and Vaccinium alaskaense in mesic habitats. A systematic description of these zonal units is found in Table 1-7 and the appropriate map in Figure I-k. Biogeoclimatic forest zones in the southwestern British Columbia mainland. Pine dots - Coastal Douglas-fir zone; coarse dots - Coastal western hemlock zone; shaded - Subalpine mountain hemlock zone. (After Krajina and Orloci 1963). Table 1-7 BIOGEOCLIMATIC UNITS ON THE Biogeoclimatic unit A. Climatic type Mean annual temperature (°P) SOUTHWESTERN BRITISH COLUMBIA MAINLAND* Annual precipitation (in.) Annual A l t i t u d e Zonal snow( f t . ) s o i l forming fall processes (in.) D i f f e r e n t i a t i n g combination of species f o r the of zonal and subzonal units A. i n mesic habitats B. i n hygric habitats C. separation i n x e r i c habitats P a c i f i c c o a s t a l mesothermal f o r e s t region 1. Douglas-fir zone 2. Western hemlock zone Humid mesathermal, transi t i o n a l between the c o o l mediterranean and perhumid maritime Perhumid mesothermal maritime 48-51 43-48 40-75 >75 15-30 >30 O-500 0-3000 Weak p o d z o l i zation, weak laterization, melanization Strong podzolization Pseudotsuga menziesii Pinus contorta Gaultheria shallon Holodiscus d i s c o l o r Lonicera c i l i o s a Mahonia nervosa Rosa gymnocarpa Viola orbiculata Linsaea b o r e a l i s Chimaphila umbellata Goodyera o b l o n g i f o l i a L i s t e r a cordata Eurhynchium oreganum Abies grandis Corylus c a l i f o r n i c a Osmaronia cerasiformis Achlys t r i p h y l l a Trautvetteria grandis Tiarella laciniata Disporum oreganum Mnium insigne Mnium menziesii Tsuga heterophylla ehimaphila menziesii C o r a l l o r h i z a maculata Cornus canadensis Goodyera o b l o n g i f o l i a Linnaea b o r e a l i s L i s t e r a caurina L. cordata Trientalis l a t i f o l i a Hylocomium splendens Plagiothecium undulatum Isothecium stoloniferum Menziesia ferruginea Tiarella trifoliata Blechnum spicant Streptopus roseus Bazzania t r i c r e n a t a Mnium insigne (Mnium menziesii) Arbutus.menziesii Pinus contorta Arctostaphylos columbiana A. uva-ursi Mahonia aquifolium Pachistima myrsinites Allotropa virgata Boschniakia hookeri Camptothecium megaptilum "Pilophoron cereolus c+ o Hi Fleurozium schreberi Eurhynchium oreganum £ Hylocomium splendens (Plagiothecium undulatum) JjJ H Table 1-7 (continued) Biogeoclimatic unit B. Climatic type Mean annual temperature (Op) Annual precipitation (in.) Zonal Annual Altitude snow( f t . ) s o i l forming processes fall (in.) a. Dry subzone k6~k8 75-110 30-80 b. Wet 1+3-46 >110 subzone >80 0-1200 D i f f e r e n t i a t i n g combination of species f o r the separation of zonal and subzonal units A. in mesic habitats B. i n hygric habitats C i n xeric habitats Strong podzol- Cornus n u t t a l l i i ization Mahonia nervosa Prunus emarginata Rubus v i t i f o l i u s Rosa gymnocarpa 600-3000 Strong podzolization, weak to moderate gleyzation Abies amabilis Vaccinium alaskaense Clintonia u n i f l o r a Rubus pedatus Rhytidiopsis robusta Pilophoron h a l l i i Usnea longissima Streptopus streptopoides P a c i f i c c o a s t a l subalpine forest region 3. Mountain Perhumid (snowy) <43 hemlock zone microthermal <175 >200 3000- 5000 Strong podzol- Tsitga mertensiana ization, Chamaecyparis nootkatensis Cladothamnus pyrolaeflorus Vaccinium membranaceum Valeriana sitchensis Pseudoleskea b a i l l e y i Rhododendron albiflorum Leptarrhena p y r o l i f o l i a Orthocaulis f l o e r k e i i Vaccinium deliciosum Andraea n i v a l i s Cassiope mertensiana Phyllodoce empetriformis Gaultheria humifusa Cornus canadensis Lycopodium annotinum Rubus pedatus Tiarella unifoliata Clintonia u n i f l o r a Rhytidiopsis robusta Table 1-7 (continued) Biogeoclimatic unit C. Climatic type Mean annual temperature (°F) Annual precipitation (in.) Differentiating combination of species for the separation of zonal and subzonal units Annual Altitude Zonal snow(ft.) soil forming fall processes (in.) A. in mesic habitats B. in hygric habitats C. in xeric habitats Mimulus lewisii M. t i l i n g i i Epilobium latifolium Saxifraga arguta Philonotis fontana Andraea nivalis Polytrichum norvegicum Anthelia juratzkana Festuca brachyphylla Penstemon menziesii Phyllodoce glanduliflora Rhacomitrium lanugihbsum (Abies lasiocarpa) (Chamaecyparis nootkatensis) (Pinus albicaulis) Alpine region 4. Coastal Perhumid alpine zone (alpine) tundra <35 >5000 Skeletal dis- Phyllodoce empetriformis integration, Cassiope mertensiana moderate pod- Lycopodium sitchense zolization and gleyzation 11 CHAPT. II PROBLEMS IN THE CLASSIFICATION OF ECOSYSTEMS The hypothesis that there are discrete natural units i n the vegetation that can be assigned to different phytocoenosis types, is implied i n the work of several phytosociological schools that have produced several wqrkable classification systems. The work of Gleason (1926), the Wisconsin school, and Goodall (1953, 195U) inter alia refute the existence of discrete natural units i n the vegetation. It should be mentioned, however, that these schools based their conclusions either on subjective sampling that promotes the appearance of natural units or on completely random sampling, including incomplete species l i s t s and limited environmental evaluations, that tend to diminish existing differences between natural units. The concepts which are considered in this chapter are: sample plot, definitions of similarity, co-ordination, and classification units. Sample plot Sample plots are understood here as ecosystem individua (biogeocoenoses, Sukachev 1944," 1954) particularly those of small extent. Each sample plot is described by a single set of values, totals or averages, of f l o r i s t i c and environmental characteristics. It is imperative in classification that each sample plot be ecotopically homogeneous and uniform in its past history whereby f l o r i s t i c variations are subject to random causes"" alone. 1 Non-random f l o r i s t i c variations within a sample plot always reflect gradients in the causal factors and may obscure the discontinuities among natural communities. At an extreme case of heterogeneity, the sample plot may combine mosaics of •^Causes which have equal chance to occur at any point of the sample plot. 12 sharp ecotopic and f l o r i s t i c between them. single c o n t r a s t w i t h c l e a r - c u t boundary When a h e t e r o g e n e o u s s a m p l e p l o t s e t o f t o t a l s o r averages, lines i s characterized by a t h e v a l u e o f t h a t sample p l o t , p u r p o s e o f c l a s s i f i c a t i o n , may b e a s s e s s e d i na t least three for the different ways: 1. The sample p l o t stages. combines mosaics o f c l o s e l y r e l a t e d The d i f f e r e n t averageable values o f a p a r t i c u l a r among t h e m o s a i c s . successional characteristic are logically T h e t o t a l s o r a v e r a g e s may p r o v i d e information about a f u t u r e stage i n t h e s u c c e s s i o n a l sequence. 2. combines mosaics o f ecosystems w h i c h a r e s e v e r a l The sample p l o t stages a p a r t i n t h e s u c c e s s i o n a l sequence. T h e y may d e v e l o p towards a common f u t u r e s t a g e b u t t h e c h a r a c t e r s o f t h a t common s t a g e a r e n o t o b v i o u s at t h e time of observation. Therefore, t h e t o t a l s o r a v e r a g e s do n o t r e f l e c t anything r e a l i n nature. 3- The sample p l o t combines mosaics o f ecosystems o f sharp c o n t r a s t a n d w i t h c l e a r - c u t b o u n d a r y l i n e s between them. values of a particular characteristic are not logically ecotopic The d i f f e r e n t averageable. When a s e t o f t o t a l s o r a v e r a g e s r e p r e s e n t b i o g e o c o e n o t i c t h a t never occur discarded. I f the values o f a p a r t i c u l a r the d i f f e r e n t the characteristics sample p l o t . occur i n n a t u r e , t h e sample p l o t i na single sample p l o t . c o u l d be a t t r i b u t e d t o w h i c h i t p e r t a i n s must be characteristic a r e not averageable, cannot be combined i n a s i n g l e This i sapparent, sense w i t h i n f o r i n s t a n c e , when t w o s o i l The a v e r a g e s i t e t o the properties of either This implies that this particular plot patterns types index, f o r instance, one o f t h e s e soil types. should be subdivided a c c o r d i n g t o s o i l s a n d t h a t e a c h homogeneous segment s h o u l d b e a n a l y z e d s e p a r a t e l y . In completely random sampling, variations within the sample plots are ignored. 13 Therefore, this sampling technique is not the most appropriate one i f classification is the goal. randomization in a somewhat restricted sense. Greig-Smith (1957) proposed He recommended division of the area into a number of small compartments of the same size but not necessarily of the same shape after which the. same number of samples would be taken at random from each compartment. Greig-Smith did not specify the c r i t e r i a for drawing boundary lines between the compartments. If the boundary lines coincided with physiographic and edaphic discontinuities, random sampling within these limits ought not to effect the homogeneity of sample plots, provided that the compartment had a uniform past history. According to Greig-Smith, a preliminary mapping of this sort should bring about such precise subdivisions that only one sample need be taken from each compartment. Mapping of small compartments can be practical in a small area but i t is impossible when thousands of hectares are sampled. In this latter case, homogeneous units are recognized but the boundary lines are not mapped, and each unit is sampled by a single sample plot. European phytosociologists refer to the homogeneous units of nature as "typical" stands (cf. Becking 1957, Whittaker 1962) and show that workable c l a s s i f i cation systems can be extracted from samples of "typical" stands. Transi- tions are rarely studied but are interpolated in both geographical and chronological sequences. When the boundaries of "typical" stands are drawn, their identity with Greig-Smith's "small blocks" becomes immediately apparent. The sample plot size varies most frequently from 1 to 100 sq.m. in non-forest communities and from 100 to 800 sq.m. in forests. The plot size should be selected so that the sample plots give maximum information about the ecosystem individua. It may be difficult to work with large 14 sample plots but they can provide more information than the small sample plots. (cf. The minimal-area is frequently determined by the species-area curve Braun-Blanquet 1951). Definitions of similarity Jaccard's (1912) coefficient of community can be expressed as 100 C = n where n c n~ 2— a+ b~ c n n is the number of species in common among two areas, n a is the number of species in one area, and n^ is the number species in the second area. If the two areas contained exactly the same species, C would be 100. Jaccard's coefficient can be used to compare individual stands (Guyot 1924) or associations (Braun-Blanquet 1932). Gleason's (1920) coefficient is based on the quantitative measures of the different species and can be expressed in the form later used by Motyka et a l . , (1950). a +b where w is the sum of the lesser value for those species which are common to two stands, a is the sum of values of the species in one stand, and b i s the similar sum for a second stand. If two stands had identical composition of species and identical values for the identical species, the coefficient C would be 1.00. If two stands had no species in common, C would equal zero. Bray and Curtis (1957) used relative values, such as that a + b is always 2.00 in every pair of stands. Therefore the similarity index C reduces to w, the sum of the lesser values of species which occur in both stands. 15 The s i m i l a r i t y index i s defined i n the present study as the r e c i p r o c a l of the distance between two points i n n-dimensional space. Each point represents a sample p l o t and i t s co-ordinates are the quantitative measures of the d i f f e r e n t species. An i d e n t i c a l set of species i s used i n the d e s c r i p t i o n of a l l sample p l o t s to be compared. Accordingly, the f i r s t column of the score sheet contains the l i s t of a l l species, and the quantitative measures of species abundance are compiled i n the subsequent columns, appropriate to the d i f f e r e n t sample p l o t s . Absences are registered as zeros. The general concept of the s i m i l a r i t y index may be explained through an example where sample plot a and b are compared on the basis of species 1, 2, and 3- Three species determine three orthogonal axes and s i x co-ordinates which define the p o s i t i o n of the two sample p l o t s as points i n space (Figure I I - l ) . 16 and are the quantitative measures of species 3 in sample plot aa. and andb respectively. D ' =y ( X la D' is the projection of D on the 1, 2 plane, hence, + ( X 2a - 2b X v ) 2 h e r e X la> X l b ' 2a> X a n dX 2b a r e t h e quantitative measures of species 1 and 2 in the two sample plots. D' in the equation of D, D=y( x l a " x l b ) + ( x 2 a + ( x 3 a Substituting -X^)' When the set contains n species i=n o D =\ 1- < ia - ib) X X i=l The reciprocal, —i—, is the index of f l o r i s t i c similarity. a practical expression because i t is a measure of distance. D is The D matrix pertains to a space of known dimensions, and therefore is convenient to use in geometric manipulations. It is in contrast to index C which is a relative number, and i t is d i f f i c u l t to determine the dimensionality of the space in which i t can be used as a distance to construct spatial models (cf. Torgerson 196g). The application of the D matrix is discussed in the subsequent paragraphs. Co-ordination The multitude of sample plots can be represented by a cluster of points in hyper-space. Since each point is defined by a set of f l o r i s t i c co-ordinates, the spread within the point cluster reflects differences among sample plots. floristic Interspecific correlations bring about unequal spread in the different directions. Correlations always indicate non-random variations due to interdependence of species as in symbiosis, parasitism, saprophytism, and epiphytism, or i t is the consequence of common ecotopic specificity of the different species. 17 Hottelling's factor analysis was used by Goodall (195*0 in a study of f l o r i s t i c variation among different stands. This method, known also as the method of principal axes, includes calculation of the equation of a line from which the sum of the squared distances of the points is minimum. The line signifies the widest part of the point cluster, defining the direction of maximum spread. The distance to a point along the line is the value of the "factor" for the sample plot which corresponds to that point. Further factors can be extracted to account for a l l non- random variations. Each "factor" can be identified with the underlying cause which can be environmental or purely f l o r i s t i c . The principal obstacle to the use of Hottelling's factor analysis, as Goodall pointed out, is the heavy computation load. (1957) recognized the difficulty involved in handling Bray and Curtis 59 analysis and proposed a simpler technique of ordination. stands in factor These workers extracted a spatial pattern of stands from a matrix of relative values. The values were determined by inverting the estimates of stand similarity so that each estimate was subtracted from a maximum similarity value of 100. Their technique involved the extraction of orthogonal axes, starting from the one which lies in the direction of maximum spread. The extraction of axes was followed by the study of f l o r i s t i c as well as some environmental variations in the direction of the axes. The two and three dimensional models presented by Bray and Curtis could be visualized as projections of a hyper-space cluster of points (determined by the relative matrix) in lower space (determined by the extracted axes). Because the original placement of points is distorted by projection, the projection distances (or ordination distances in the work of Bray and Curtis) among points are not suitable for drawing conclusions concerning the spatial relationship of the points. This fact 18 became most obvious when B r a y and C u r t i s compared t h e r e l a t i v e of s i m i l a r i t y i n d i c e s t o the o r d i n a t i o n distance matrix. e x p l a i n only approximately 12 p e r cent (lOOr matrix They c o u l d ) o f the v a r i a t i o n i n the r e l a t i v e matrix by the v a r i a t i o n i n the o r d i n a t i o n distance When i n t e r s t a n d s i m i l a r i t y i s expressed matrix. as a d i s t a n c e , t h e d i m e n s i o n a l i t y o f t h e space t o which t h i s d i s t a n c e r e f e r s i s e q u a l t o t h e number o f s p e c i e s on t h e b a s i s o f which t h e d i s t a n c e was c a l c u l a t e d . The r e f e r e n c e p o i n t s which d e f i n e t h e d i r e c t i o n o f t h e maximum spread o f t h e p o i n t c l u s t e r a r e those w i t h t h e l o n g e s t i n t e r p o i n t d i s t a n c e . i s designated direction i n t h e p r e s e n t work as t h e A a x i s , e s t i m a t i n g t h e d i r e c t i o n o f t h e l o n g e s t diameter o f t h e h y p e r - s u r f a c e multitude. This The B a x i s i s o r t h o g o n a l which envelops t h e p o i n t t o t h e A a x i s and i t s d i r e c t i o n i s d e f i n e d by t h e two most d i s t a n t p o i n t s w i t h a common p r o j e c t i o n on t h e A axis. The C a x i s i s o r t h o g o n a l t o t h e AB p l a n e . a r e graduated i n u n i t d i s t a n c e s . ABC The axes so e x t r a c t e d The a x i s v a l u e s o f t h e p o i n t s i n t h e system can be c a l c u l a t e d , determined g r a p h i c a l l y or by t a b u l a t i o n on the b a s i s o f i n t e r p o i n t d i s t a n c e s as proposed i n t h e p r e s e n t dissertation. **3 Dl Fig. I I - 2 I f Pn and Po a r e t h e f i r s t and second r e f e r e n c e p o i n t s , and P i s a p o i n t o u t s i d e t h e P]_, P where h = 2K •. The 2 line ( F i g u r e I I - 2 ) , t h e a x i s value o f P 3 a r e a K c a n be determined by Heron' s equation K = ysCs-D^ (s-D ) 2 (s-Dg) where s = -(Vj+T>2+D?) • The i n t e r p o i n t d i s t a n c e s o f D w h i c h was d i s c u s s e d e a r l i e r D]_, D 2 , D3 a r e k n o w n f r o m t h e e q u a t i o n i n the text. A graphical representation i s provided i n Figure II-2. The t a b u l a t i o n table includes 62 plots are l i s t e d technique i s demonstrated i n Table I I - l . sample p l o t s of the g l a c i a l d r i f t i n the appropriate distance f r o m f e f e r e n c e p l o t 47 classes land type. along the A 12.1-14.0 c l a s s . 19 appears i n the 16.0-14.1 The i n t e r m e d i a t e c l a s s v a l u e The a x i s v a l u e s a r e c o m p i l e d i n T a b l e I I - 2 . sample p l o t s The a x i s correlated with matrix w i l l with plot has the A axis For c l a s s and t h e n i n t h e i s 10 o n t h e A a x i s s c a l e . The B a n d C a x i s v a l u e s o f a r e d e t e r m i n e d i n a manner s i m i l a r t o t h a t determine the A axis if axis i n t h e i n t e r m e d i a t e column between t h e two o c c u r r e n c e s . example, sample p l o t sample E a c h s a m p l e p l o t number w h i c h o c c u r r e d i n s e p a r a t e columns i n t h e two h a l v e s o f t h e t a b l e the The i n t h e upper h a l f , and t h e n from r e f e r e n c e 11 i n t h e l o w e r h a l f o f T a b l e I I - l . projection The used t o values. values characterize the t o t a l vegetation. species or environmental variables, indicate the relative respect t o vegetational the correlation importance of the d i f f e r e n t variations. Therefore, variables A p p r o p r i a t e examples a r e g i v e n i n Chapter IV. Coenotic c l a s s i f i c a t i o n units: Related concepts. at Brussels, the association v e g e t a t i o n types and ecosystem At the Third types International Botanical Congress was r e c o m m e n d e d a s t h e f u n d a m e n t a l u n i t i n Table I I - l 12 22 13 09 08 07 04 02 11 03 01 29 33 34 19 14 10 06 05 15 18 20 27 28 30 32 35 TABULATION OF POINT DISTANCES FROM REFERENCE POINTS 11 AND 47 16 17 21 23 24 25 26 31 57 6o 6l 62 6 12 11 13 34 38 39 41 42 46 51 53 55 56 48 50 54 59 10 "68 09 07 04 02 01 35 5.8 36 37 4o 43 44 45 i4 10 06 0328 30 33 ll 12 22 05 21 23 27 31 49 52 13 14 15 :.i6 17 18 19 16 18 20 24 25 26 29 32 37 39 15 17 36 38 4o 42 54 55 6l 62 41 57 Note: 20 Sample plot number 0 Distance from A axis scale hi Sample plot number 47 Table I I - l and 2 pertain to the g l a c i a l d r i f t land type i n the dry subzone. 43 45 46 48 50 51 52 53 56 58 6o 19 44 49 59 o o r- 1 Table II-2 5 02 6 69 7 03 13 34 08 07 33 35 04 01 A AXIS VALUES 8 22 9 53 10 19 11 57 13 60 14 JIB 15 59 14 12 51 27 29 18 20 21 23 31 32 15 24 25 26 16 62 39 38 42 54 37 50 36 55 58 40 43 45 10 06 30 28 41 17 16 17 4~4" 59 18 19 20 ^ A axis scale Sample plots 52 46 51 53 56 <+ o o H H § 1-3 & H H I 20 plant sociology (Flahault and Schroter 1910). The 1910 definition , 2 however, did not indicate how the association should be established. Braun-Blanquet (1932) interpreted the association to be an abstract vegetation type which combines individual stands of vegetation on the basis of f l o r i s t i c similarity. (fidel) He recognized associations by the characteristic species. The application of f i d e l species as the only objective criterion for community classification has been rejected by the different schools (cf. Whittaker 1962) following unsuccessful attempts to find such species in most communities. It was pointed out, however, that the absence of f i d e l species should not detract from the validity of the association (Krajina 1933, i 9 6 0 ) . The concept of f i d e l i t y has been broadened in the present work to include a minimum number of species on the basis of which classification units can be recognized. The association should be designated as the basic vegetation type. A definition involves the following concepts: Each association could be visualized as a cluster of points, representing sample plots in n-dimensional space. The points are fixed by n f l o r i s t i c co-ordinates and indicate a multivariate normal distribution. The enveloping surface may be a hyper-sphere (in the case of random f l o r i s t i c variations) or a hyper-ellipsoid (in the case of interspecific correlations). The pro- jections of the points f a l l in a normal frequency distribution along the axes. Multimodal distributions indicate the presence of several distinct s t a t i s t i c a l populations (Goodall 195^). Frequency distributions could be used to separate natural populations as classification units, provided that the sampling was random and the frequencies were sufficiently high. 2"Une association (Bestandestypus) est un groupement vegetal de composition floristique determinee presentant une physiognomie uniforme et croissant dans des conditions stationneles egalement uniformes. L'association est 1'unite fondamentale de l a Syn^cologie." C l a s s i f i c a t i o n techniques i n the present work. 21 Simple vegetation- environmental series are extracted from within the multitude of sample plots through successive s t r a t i f i c a t i o n on the basis of c e r t a i n variables. C l a s s i f i c a t i o n units are obtained by segmenting these simple series a t convenient i n t e r v a l s . The concepts which are implied i n s t r a t i f i c a t i o n are as follows: An edaphic gradient, as f o r instance a soil-moisture gradient, corresponds to d i f f e r e n t sets of vegetation types i n the d i f f e r e n t climates (Table IV-10). separated These d i f f e r e n t sets can be v i s u a l i z e d as point c l u s t e r s i n the d i r e c t i o n of a macroclimatic axis i n abstract space. Thus these c l u s t e r s can be r e a d i l y separated by s t r a t i f i c a t i o n on the basis of macroclimate. In t h i s vay, subzones are formed, and the influence of macroclimate i s p r a c t i c a l l y removed from vegetational v a r i a t i o n s . It i s conceivable that within each c l u s t e r further s p a t i a l separation can occur i n the d i r e c t i o n of the parent material axis as w e l l as the exposure a x i s . When sample p l o t s are s t r a t i f i e d on the basis of parent material, and when the warm exposures are separated from the cool exposures t h e i r influence w i l l be removed from vegetational v a r i a t i o n . I t i s shown i n Chapter IV that vegetational variations i n the point c l u s t e r at t h i s l e v e l of s t r a t i f i c a t i o n i s mainly the consequence of a s o i l moisture gradient. Each parent material group (or land type) when s t r a t i f i e d on the basis of warm and cool exposures contains only a single series of vegetation types along the s o i l moisture a x i s . Since an abstract concept i s implied i n the gradient i t s e l f i t s segments are also abstractions; each segment constitutes an ecosystem type. Each ecosystem type consists of a multitude of i n d i v i d u a l ecosystems of a common ecoclimate, f l o r i s t i c structure. s o i l properties, and 22 C e r t a i n ecosystem types are on the b a s i s formed. of t h e i r f l o r i s t i c similarity. C e r t a i n ecosystem types are r e s e m b l a n c e t o any combined w i t h other ecosystem I n t h i s way u n i q u e i n h a v i n g no other ecosystem types; they are types associations3 are significant floristic themselves c l a s s i f i e d as associations. An a s s o c i a t i o n may zonally separated parts are d e s i g n a t e d as the influence of the The The zonally separated classification unit w h i c h o c c u r on edaphic d i f f e r e n c e and therefore promote a and to floristic subassociations. the b a s i s o f e x p o s u r e and abstractions elevation, soils. f o l l o w i n g l a n d t y p e s were s e p a r a t e d from w i t h i n the w e s t e r n hemlock The i s compensatory "variant" applies to climatic a s s o c i a t i o n on similar zones. a s s o c i a t i o n always possess d i f f e r e n t s o i l s different climates, s e p a r a t e d f r o m w i t h i n an but o f an subassociations. r e s e m b l a n c e among t h e The belong to several biogeoclimatic Coastal zone: ^The c o n c e p t o f a s s o c i a t i o n t h a t ds i m p l i c i t i n t h e p r e s e n t w o r k was defined b y K r a j i n a (i960) a s "a d e f i n i t e u n i f o r m ( h o m o g e n e o u s ) p h y t o c o e n o s i s t h a t i s i n dynamic e q u i l i b r i u m w i t h a c e r t a i n complex of e n v i r o n m e n t a l f a c t o r s (ecotope); i t s f l o r i s t i c structure - i . e . s t r a t i f i c a t i o n ( l a y e r i n g ) , species s i g n i f i c a n c e ( A r t m a c h t i g k e i t , or abundance and dominance), s o c i a b i l i t y , c o n s t a n c y , f i d e l i t y , and v i g o u r o f t h e component s p e c i e s - l i e s w i t h i n l i m i t s g o v e r n e d n o t o n l y by t h e e c o t o p e ( c l i m a t e , s o i l , s u b s t r a t u m , t o p o g r a p h y , and b i o t i c e n v i r o n m e n t a l f a c t o r s ) , b u t a l s o by the h i s t o r i c a l f a c t o r s o f the v e g e t a t i o n a l development (the f o u r t h dimension or space-time f a c t o r ) . " A) Rock outcrops D) C) Glacial drifts^ 23 (not divided by subzones) a) Dry subzone b) Wet subzone**B) Ravine a l l u v i a l deposits E) A l l u v i a l plains a) Dry subzone b) Wet subzone a) Wet subzone b) Squamish River Spring-water swamps^ High moors** - (not divided by subzones) Sample plots were selected i n the l o c a l i t i e s indicated i n Figure I - l . Analysis of the sample plots has followed a standardized procedure proposed by Krajina (see Orloci 1961, Peterson ^Not 196k). considered i n the present work. 5Field data collected by Lesko (1961), O r l o c i (1961), and E i s (1962). 6study completed i n the thesis of Lesko (1961), Orloci (1961), and E i s (1962). 2k CHAPT. I l l THE ROCK OUTCROP LAND TYPE Rock outcrops lack a continuous s o i l cover. The ground surface i s a complex of knolls, peaks, crevices, and depressions. New outcrops are exposed continuously as the r e s u l t of erosion following forest f i r e s , logging operations, and road construction. Vegetational sampling included most developmental stages except the communities of the sharp peaks and shaded rock walls concerning which only general notes were taken. Sample p l o t s were located at low elevations at B r i t t a n i a , Cypress Creek, and Haney Forest. Rock types These are mainly a c i d i c intrusions i n the Coastal western hemlock zone, c h i e f l y of granodiorite and quartz d i o r i t e but also of granite, syenite, and monzonite (Geological Survey of Canada 1948). S o i l s which develop from these rocks are p o t e n t i a l l y r i c h i n potassium and phosphorus (mainly from granite and syenite), as w e l l as calcium and magnesium (mainly from d i o r i t e and monzonite) according to Wilde (1958). Krajina (1958-1964) pointed out that run-off water, which i s the source of seepage of the lower slopes, may carry plenty of nutrients from the weathering of these r i c h rock types. The frequent occurrence of g l a c i a l d r i f t materials i n the crevices and protected depressions indicated that rock outcrops were l o c a l l y influenced by g l a c i a l deposits which once could have covered the rock surface but have been l a t e r removed by erosion. The vegetation-environmental pattern The d i f f e r e n t habitats occur i n a mosaic pattern on rock outcrops; t h i s r e s u l t s i n a coincident pattern i n the vegetation. The steepest knolls and peaks are occupied by crustose and f o l i o s e lichens which are f i r m l y attached to the substrate and form only loosely 25 integrated colonies. Fry (1927) pointed out that crustose lichens cause a c e r t a i n amount of mechanical d i s i n t e g r a t i o n of rocks by the p u l l of the swelling, gelatinous t i s s u e s , and Schatz, et a l . , (1962) discussed tke significance of l i c h e n acids i n pedogenesis on rock outcrops. Their corrosive action, however, i s n u l l i f i e d by the immediate removal of a l l loosened p a r t i c l e s through wind, water, and gravity action. This stage, therefore, can be greatly prolonged as no e s s e n t i a l endogenic change can occur i n the ecosystem. The Rhacomitrium canescence community i s confined to k n o l l s with a r e l a t i v e l y low slope gradient. The colony expands upward on the rock surface, gradually replacing the crustose and f o l i o s e lichen communities. Rhacomitrium canescens i s only loosely attached to the substrate, therefore, i t s mat i s e a s i l y underwashed by rains and removed by erosion from the steep slopes i f i t s continuity i s disrupted. Rhacomitrium canescens does not inhabit rocks, but requires quartz sandy s o i l s . Its mat and the bed rock are always separated by a t h i n sand horizon of gray or blackish color. Rhacomitrium heterostichum on the other hand, i s attached d i r e c t l y to the rock surface s i m i l a r l y as Grimmia apOcaEpa. The community of f r u t i c o s e lichens (Cladonia r a n g i f e r i n a , £. p a c i f i c a , C. u n c i a l i s , C. g r a c i l i s ) and bryophytes (Polytrichum p i l i f e r u m , P. juniperinum, Dicranum scoparium, Rhacomitrium canescens) prevails on convex surfaceswith low slppe gradient. The organic matter i s crust mor (Wilde, 1958) and i s underlain by very t h i n sand or sandy loam horizon. The s o i l i s very a c i d . , 26 The community contains a great v a r i e t y of species and i t frequently appears as a t r a n s i t i o n between the Rhacomitrium canescens mat and the Gaultheria shallon thicket. The average slope gradient i s less, and the mineral s o i l horizon contains more f i n e particles-'- i n the CladoniaPolytrichum p i l i f e r u m community than those i n the Rhacomitrium canescens community. Weathering products are removed from the convex steep slope and accumulate i n the crevices and depressions, or are washed down onto the lower slopes. The r e l a t i v e frequency and size of the crevices and depressions are s i g n i f i c a n t i n the establishment of higher vegetation on rock outcrops (Gooper 1913> Oosting and Anderson 1939)• Shrubs and trees as w e l l as grasses and herbs are l a r g e l y confined with t h e i r root system to the r e l a t i v e l y deep s o i l s of crevices and depressions. The f i l l of the d r i e r crevices i s usually sand or loam with few rounded or angular stones. and strongly a c i d . The top s o i l horizon i s melanized S o i l a c i d i t y decreases with depth. (A^) or l e a c h , ( A ) , Danthonia spicata i s c h a r a c t e r i s t i c f o r the dry crevice, but Polytrichum piliferum, Rhacomitrium canescens as w e l l as fruticose lichens may also occur. of Gaultheria shallon at t h i s developmental The establishment stage indicates a t r a n s i t i o n a l stage between the Danthonia spicata and the Gaultheria shallon community. The accumulation of transported materials cannot exceed the downslope edge of the crevice. S o i l depth of the Danthonia communities, therefore, remains f a i r l y constant. Development of the Danthonia spicata community apparently leads to the establishment of Gaultheria shallon which forms the only available shrub community that colonizes dry crevices i n the Coastal western hemlock zone. The decreasing vigor of Gaultheria shallon with the growing distance from the forest edge apparently indicates that the encroachment of 1,. ... ,., ,., .. ,, „., Estimated by the "feel" or "harid-texturing" method. r e Gaultheria shallon onto dry crevices may depend l a r g e l y on the p a r t i a l 27 shading hy the forest edge. Wet crevices are colonized by Polytrichum commune. I t grows i n a thick tangled mat which i s d i f f i c u l t f o r other species to penetrate. Companion species, therefore, are none or very few. through the s o i l p r o f i l e . The r h i z o i d s penetrate S o i l depth i s comparable to that of the Danthonia spicata community but the texture i s f i n e and the s o i l i s strongly gleyed. Polytrichum commune thrives best at the center of the crevice which gives the surface s l i g h t l y convex appearance. The wet crevice i s comparable but not i d e n t i c a l with the "rock pools" that were described by Cooper ( 1 9 1 3 ) and Whitehouse ( 1 9 3 3 ) • were not encountered Rock pools with sedge, rush, or herbaceous communities i n the area. Development of the Polytrichum commune community apparently leads to the Gaultheria shallon thicket and t h i s i s brought about by mainly exogenic causes, such as accumulation of transported materials from the slopes, shading, f a l l e n wood, leaves, and perhaps creeping roots of shrubs and trees which tend to open the community f o r Gaultheria shallon invasion. The Gaultheria shallon community i s the f i r s t stage of succession on rock outcrops. I t s properties are very s p e c i f i c to the preceding develop- mental stages. There are three developmental to the Gaultheria shallon community: l i n e s which apparently lead k n o l l succession through the Cladonia - Polytrichum p i l i f e r u m community, dry crevice succession through the Danthonia spicata community, and wet crevice succession through the Polytrichum commune community. Stands of these three communities are r e s t r i c t e d to s p e c i f i c habitats i n a mosaic pattern. Development binds t h i s mosaic into a common complex with Gaultheria shallon. The root system of Gaultheria shallon i s not confined to any p a r t i c u l a r part of t h i s habitat complex. plant may spread i t s roots throughout the habitat complex. The i n d i v i d u a l Organic matter accumulates more r a p i d l y than i n any one of the preceding (or root mor) i s formed. 28 stages, raw humus The accumulation of raw humus and the increasing concentration of roots i n crevices within the Gaultheria community cause the destruction of the Dauthonia and Polytrichum colonies, and promote environmental and b i o t i c uniformity. The decomposition of the rock surface perhaps i s accelerated by humic acids and by mechanical root action. Fine p a r t i c l e s are moved out by l a t e r a l water movement following rains but the coarser products of weathering are r e l a t i v e l y w e l l protected against erosion. The coarse fragments accumulate, are bleached, and form a s o i l horizon which i s ashy gray i n colour. The s o i l p r o f i l e , hence consists of a t h i c k root underlain by an ashy gray sand horizon (A ) and the parent rock. g type was This s o i l described by Lesko (1961) as an eluviated l i t h o s o l . Establishment may mor of Pseudotsuga menziesii i n the Gaultheria community lead to the development of a l i t h o s o l i c f o r e s t . This community can also develop following p a r t i a l erosion of the s o i l p r o f i l e i n the g l a c i a l f o r e s t communities on convex slopes adjacent to rock till outcrops. Pseudotsuga menziesii can be self-perpetuating without f i r e or logging i n the l i t h o s o l i c f o r e s t association. Sample p l o t 230 (Appendix 111-12) i s an example of a mature stand with the occurrence of Pseudotsuga menziesii i n a l l s t r a t a of the community and i n a l l age classes. Thuja plicata•;-is a constant companion to Pseudotsuga menziesii i n t h i s association which can be accounted for on the basis of the richness of the substrata as suggested by Krajina (195§^-19&F)• However, Tsuga heter- ophylla thrivesmainly on decaying wood i n shaded l o c a l i t i e s . layer i s well-developed and lichens. The shrub and the ground i s heavily covered by bryophytes The occurrence of Camptothecium megaptilum, A n t i t r i c h i a curtipendula (on the rock), and Letharia vulpina (on bark) i s a unique feature of sample p l o t 230. Camptothecium megaptilum and Letharia vulpina are reported for the f i r s t time from the Coastal western hemlock zone. 29 The d i s i n t e g r a t i o n of the remnants of the l i c h e n and bryophytic stages i s nearly completed i n the l i t h o s o l i c forest by a combination and root a c t i o n . of shading Roots concentrate i n the crevices, thereby occupying the space of the extra s o i l which had accumulated i n the crevices and which conditioned the composition of vegetation during the development of the preGaultherietum stages. Xerarch development i s always most advanced on the lowest l e v e l s of a rock outcrop and l e a s t advanced on the peaks or steep k n o l l s . The shade and l i t t e r of the arboreal vegetation, which usually surrounds the early developmental stages, p a r t i c i p a t e i n the preparation of the ground for t h e i r own establishment. In t h i s way they may accelerate succession f a r beyond the endogenic potentials i n the l i c h e n or bryophytic stages. The sequence of primary succession on rock outcrops i s summarized i n the following diagram: Peaks and knolls Dry crevices Crustose, and f o l i o s e lichens Danthonia spicata I Wet crevices Polytrichum commune Rhacomitrium canescens I Fruticose lichens, and bryophytes I Gaultheria shallon, f r u t i c o s e lichens, and bryophytes Gaultheria shallon, and Danthonia spicata Gaultheria shallon, and Polytrichum commune I L i t h o s o l i c forest C l a s s i f i c a t i o n units It seemed appropriate t o d i s t i n g u i s h i n i t i a l l y between three groups of sample p l o t s : bryophytic and l i c h e n communities, non-woody communities 30 of crevices and depressions, and woody commiinities. These groups f l o r i s t i c a l l y as w e l l as environmentally are so d i f f e r e n t that no sample p l o t s of the d i f f e r e n t groups could be expected to f a l l into a common classification unit. Two associations were recognized i n the f i r s t group: Rhacomitrietum canescentis (Rh) and Cladonieto - Polytrichetum p i l i f e r i ( C l ) . The second group was divided into two associations: Danthonietum spicatae (Da), and Polytrichetum communis (Pc) on dry and wet crevices r e s p e c t i v e l y . The t h i r d group included the Gaultheria thicket and the l i t h o s o l i c forest which were c l a s s i f i e d as the Gaultherietum shallonis (Ga) and the Cladonieto - Pseudotsugetum menziesii (LG) r e s p e c t i v e l y . The Gaultherietum shallonis was too heterogeneous to be treated as a single e n t i t y . The remnants of the successionally preceding communities were considered i n the establishment of three subassociations: spicatae, polytrichetosum communis, and cladonietosum. described i n Table I I I - l and i n Appendix I I I - l to 1 2 . danthonietosum The associations are Table I I I - l Associations Rhacoraitrietum canescentis (Rh) Land form R e l i e f shape Slope g r a d i e n t Altitude f t . Macroclimate Hygrotope Permeable mineral s. depth cm. pH L-F A B C Humus form 0 Characteristic combination of species ROCK OUTCROP LAND TYPE Knoll Convex 27 (10-40) 620 (250-1000) Perhumid mesothermal Very dry 1.4 ( 0 . 5 - 3 . 0 ) 4.69 ( 4 . 3 2 - 5 . 0 9 ) 4.36 ( 4 . 0 4 - 4 . 9 8 ) Raw humus Rhacomitrium canescens Cladonieto - Polytrichetum (CI) Table Convex 16 (10-30) 610 (250-1000) Perhumid mesothermal Very dry 2.8 4.38 4.76 (0-5-0) (4.29-4.48) (4.65-4.87) Raw humus Cladonia p a c i f i c a Polytrichum p i l i f e r u m Polytrichum juniperinum Cladonia rangiferina Rhacomitrium canescens Dicranum scoparium Cladonia g r a c i l i s Danthonietum spicatae (Da) Crevice Concave 9 (3-21) 740 (250-1200) Perhumid mesothermal Very dry 23:.03 4.50 4.46 4.80 (13-33) (4.12-4.70) (4.10-4.61) (4.23-5.49) Duff mull Danthonia spicata Polytrichum p i l i f e r u m Polytrichum juniperinum Rhacomitrium canescens Cladonia p a c i f i c a Cladonia r a n g i f e r i n a Cladonia g r a c i l i s Rock Outcrop Land Type Table I I I - l , (continued) Associations Polytrichetum aoirtaunois". (Pc) Land form R e l i e f shape Slope g r a d i e n t Altitude f t . Macroclimate Hygrotope 1 Permeable mineral s o i l depth cm. L-F pH A B C Humus form S i t e index Douglas-fir f t . per lOOy w. hemlock w. redcedar 0 Characteristic combination of species Crevice Concave 7 (5-10) 730 (600-1000) Perhumid mesothermal Wet 21 (7-35) 4.42 5.02 5.41 Duff mull Polytrichum commune Gaultherietum shallonis (Ga) Cladonieto - Pseudotsugetum (LG) Complex Convex 10 (5-21) 690 (500-1000) Perhumid mesothermal Dry t o moist Upper-slope Convex 25 (8-40) 990 (540-1400) Perhumid mesothermal Dry 16 4.71 k.kh 5.17 (6-30) (4.41-4.88) (4.08-4.85) (4.34-5.91 Raw humus 9 (3-13) 3.82 ( 3 . 7 0 - 4 . 0 0 ) 3.64 ( 3 . 5 8 - 3 . 7 0 ) Raw humus 69 (60-78) 66 (64-67) 56 (54-69) Gaultheria shallon Danthonia spicata Polytrichum commune Pleurozium schreberi Rhacomitrium canescens Hylocomium splendens Eurhynchium oreganum Cladonia p a c i f i c a Cladonia r a n g i f e r i n a Polytrichum p i l i f e r u m Polytrichum juniperum Pseudotsuga menziesii Gaultheria shallon Eurhynchium oreganum Hylocomium splendens Cladonia p a c i f i c a Cladonia r a n g i f e r i n a Rhacomitrium canescens Polytrichum p i l i f e r u m Pleurozium schreberi 31 CHAPT. IV THE GLACIAL DRIFT LAND TYPE G l a c i a l d r i f t consists of materials transported and deposited by the moving g l a c i a l i c e or by the melt water issuing from g l a c i e r s . Glacial d r i f t s of the southwestern B r i t i s h Columbia mainland were c l a s s i f i e d by Armstrong (1956, 1957) o n "the basis of texture and assortment: G l a c i a l t i l l i s a compact unsorted mixture of sand, s i l t , clay, and stones deposited d i r e c t l y beneath g l a c i a l i c e . In most instances the compact t i l l i s covered by loose materials of d i f f e r i n g thickness. the loose materials indicates a g l a c i a l outwash o r i g i n . S t r a t i f i c a t i o n of Lacustrine deposits are of s i l t and clay with a l t e r n a t i n g l i g h t and dark colored l a y e r s . The stoney and clayey s i l t mixtures are glacio-marine sediments exposed a f t e r the ice melted and the land rose. Glacio-marine sediments occur at elevations up t o 1 , 0 0 0 f e e t . G l a c i a l d r i f t s originated on the southwestern B r i t i s h Columbia mainland during the Seymour, Semiamu, Vashon, and Capilano g l a c i a t i o n s . Seymour deposits are more than 3°,000 years o l d . are approximately The The Capilano sediments 11,000 years o l d . The g l a c i a l d r i f t land type i s discussed separately i n the dry and the wet subzones. In each subzone, the f l o r i s t i c variations are analyzed along the three p r i n c i p a l axes (see Co-ordination i n Chapt. I I ) . Following t h i s , the c l a s s i f i c a t i o n units are described, and then the successional trends i n ecosystem development are outlined. The g l a c i a l d r i f t land type does not include spring-water which frequently occur on g l a c i a l d r i f t substrata. swamps 32 Dry Floristic v a r i a t i o n s i n the Sample p l o t s a r e mental c h a r a c t e r i s t i c s . subzone d i r e c t i o n of p r i n c i p a l d e s c r i b e d on t h e b a s i s o f f l o r i s t i c Floristic d e s c r i p t i o n s include the f i c a n c e v a l u e s w h i c h i f used as c o - o r d i n a t e s sample p l o t i n an n - d i m e n s i o n a l space. An i n the d e s c r i p t i o n o f a l l sample p l o t s ; l i s t below) i n the present 1. 21. 3k. 56. 78. 910. l i . 12. 13lk. 1516. axes define the and environ- species exact place signiof i d e n t i c a l set of species this set contains 32 species each i s used 1 (see study. Abies amabilis Acer circinatum Athyrium f i l i x - f e m i n a Blechnum s p i c a n t Chamaecyparis nootkatensis Clintonia uniflora Dryopteris austriaca E u r h y n c h i u m oreganum Eurhynchium s t o k e s i i Gaultheria shallon Gymnocarpium d r y o p t e r i s Hookeria lucens Hylocomium splendens L y s i c h i t u m americanum Mahonia nervosa Mnium m e n z i e s i i 17. 18. 19. 20. 21. 22. 23. 2k. 25. 26. 27. 28. 29. 30. 3132. Mnium i n s i g n e Oplopanax h o r r i d u s P e l l i a sp. and Conocephallum P l a g i o t h e c i u m undulatum Pleurozium schreberi P o l y s t i c h u m munitum Rhytidiadelphus loreus Rhytidiopsis robusta Rubus p e d a t u s Rubus s p e c t a b i l i s Sambucus p u b e n s Sphagnum s q u a r r o s u m Streptopus a m p l e x i f o l i u s Streptopus streptopoides Tiarella trifoliata Vaccinium alaskaense conicum i T h e number o f s p e c i e s w h i c h c o u l d b e c o n s i d e r e d i n t h i s s p e c i f i c p r o b l e m i s l i m i t e d o n l y by the c a p a c i t y of the e l e c t r o n i c computer p r e s e n t l y a v a i l a b l e a t the U n i v e r s i t y of B r i t i s h Columbia Computing Centre. S p e c i e s have b e e n s e l e c t e d on t h e b a s i s ,of t h e i r i n d i c a t o r v a l u e t o s i g n i f y t h e c l i m a t i c , m o i s t u r e a n d humus q u a l i t y g r a d i e n t s i n t h e g l a c i a l d r i f t l a n d t y p e . It s h o u l d b e m e n t i o n e d t h a t the. c o n c l u s i o n s o f t h i s c h a p t e r p e r t a i n t o t h e s e l e c t e d s e t o f s p e c i e s a l o n e and t h e i r r e l e v a n c e t o t h e t o t a l v e g e t a t i o n r e m a i n s t o be s e e n . C a l c u l a t i o n s a r e b a s e d o n t h e d a t a o f A p p e n d i x 111-13 t o 22. Computor programme, i n p u t and o u t p u t d a t a a r e s t o r e d i n t h e Department o f B i o l o g y and B o t a n y , U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , B. C. 20 20 18 18 04*52 16 ©a " 1 16 ©§©l ©ft©^©" 8 s ©*©?i lk © © 0 0>«20 12 12 25 •H10 < 2 w © o£ M •fl 10 21 7 8 s6( ©57 ©?#© ©' e??efje © ©^©f to ©|U2 lk s 3o e ©i;©l©^ 32 8 ©5 0^05 6 6- olo' ©/3 3* k 2 k 2 - O" -i 6 1 8 B axis F i g . IV-1 1— .10 12 lk 16 09 o' of, 3 c+ o o /a O H H O" 6 8 C axis io 12 14 16 Point projections on the AB and AC plane. Black, h a l f white and white c i r c l e s indicate hygrophytic, mesophytic and xerophytic communities r e s p e c t i v e l y . I d e n t i f i c a t i o n numbers refer to computation reference numbers i n Appendix 111-13 to 22. % V P CW CO OJ ro The multitude of the sample plots can he v i s u a l i z e d as a point c l u s t e r i n hyper-space. 33 Since each point i s defined by the f l o r i s t i c co-ordinates, the spread of the point c l u s t e r r e f l e c t s f l o r i s t i c variations among the sample p l o t s . F l o r i s t i c variations are considered along the three p r i n c i p a l axes (see Co-ordination i n Chapter I I ) . The d i r e c t i o n of the A axis i s defined by points 11 - (Figure I V - l ) . the d i r e c t i o n of maximum spread of the point c l u s t e r . The A axis s i g n i f i e s The B and C axes are mutually orthogonal and correspond to points 17 - 62 and 39 - 6 l respectively (Figure I V - l ) . The spread of the point multitude i s unequal i n the d i f f e r e n t directions; t h i s r e f l e c t s the presence of i n t e r s p e c i f i c correlations. The r e l a t i v e importance of the d i f f e r e n t species i n the f l o r i s t i c variations along the three p r i n c i p a l axes and the r e l a t i v e importance of the d i f f e r e n t environmental factors as the underlying causes of the f l o r i s t i c variations are a n t i c i p a t e d on the basis of t h e i r correlations with the axis values. •The c o r r e l a t i o n matrix (Table IV-3 and h) was calculated on the basis of transformed and untransformed data. The two sets of c o r r e l a t i o n s do not differ significantly. Expected frequencies and chi-squares were calculated f o r normal, binomial, Poisson, and negative binomial d i s t r i b u t i o n s . The majority of species and environmental factors had negative binomial d i s t r i b u t i o n s , therefore, logarithmic transformations seemed appropriate. Computations were programmed by Kozak and Munro (1963). Table IV-3 CORRELATIONS* a •H S 3 -P o3 • H r-i o3 to D !> OJ OJ O ri u u ri 03 H 03 XJ ra 0) Q 03 ri H ri fit o3 -P 0 OJ ft to to & K Gaultheria shallon Mahonia nervosa Rubus s p e c t a b i l i s Blechnum spicant Athyrium f i l i x - f e m i n a Tiarella trifoliata Dryopteris austriaca Polystichum munitum Plagiothecium undulatum Eurhynchium oreganum Mnium insigne A axis B axis C axis S i t e index (Douglas-fir) -.357 -.281 .366 • 595 • 322 • 570 .496 .516 -.115 -.277 • 393 • 517 .446 .221 • 550 4l4 -.281 -•337 -•357 -.385 -.436 -.551 .107 .571 -.324 -.713 .058 -.418 -.615 s •P a oj 0 ri ft to 3 a xi 0 OJ H pq <u 1 X •H H •H CH 3 •SHH S3 -P < cd •P o3 •ri r-i O «H •H iH +2 H"1 1—1 O J JH 0 3 •ri EH 03 O 03 ri U -P M o3 w •H >H 0) -P ft O tH aj H -p *H Cl pi 3 3 • H O s X! O •H -P CO OJ •p 0 •H bD 03 r-i S3 >> r-i O PM PM -.175 - . 4 1 3 .507 .648 -.264 .655 .584 .536 .831 -.331 .671 .656 .616 .742 -.370 .684 .798 .596 .663 -.115 .575 . 2 2 1 -.189 -.208 -.143 -.129 -.085 -.125 . 3 2 6 . 2 5 8 -.276 -.402 .271 - . 3 4 1 - . 2 7 1 .618 A31 .282 .372 .534 -.127 .433 .580 .623 .613 .729 -.46o .785 .575 .440 .278 .264 .072 .592 .385 .509 . 100 .032 • 341 .018 .239 -.531 -.069 .768 .560 .628 -.388 .544 .627 .639 .021 -.456 -.143 -•393 .367 -.037 e.df.60 .05P .oip ^Transformed data .217 .302 Table IV-4 CORRELATIONS* H u •rH X CD CO •H X crj iW <; C H O O CQ to CD CO to CD cd a H W-Hfca W)O f l 3 ,M CD X C DO O C JCJ CO -p O -rl • 3 ^!rl EH co • H T H H PQ O CO < E H fl , 3 o o •ri -H kn ,—. <D X! EH E H cSHr3 <D a a hi • H J3 •p OJ ft H CD dcd O J rH rH CD a-H a -H !n U OO CD 1 0 PH PH C H W CO CD flfl fl fl O O • HH T -P 0 c2 o CD ?H 3 -p CQ -H I 1-3 « H O .2 W S ft O CO CO <j fl X O - H ,fl EH B axis C axis S i t e index (Douglas-fir) Thickness of A Thickness of Ah Permeable mineral s o i l depth Stoniness Moisture** pH of L-F Thickness of L-F Altitude e .134 .203 - . 0 2 4 .828 • 237 .236 -.446 - . 1 8 2 • 135 ••332 .429 - . 6 1 6 .202 - . 2 1 3 .431 .016 -.362 .810 .098 -.226 .071 -.001 .081 -.060 -.183 .249 .287 -.301 -.290 -.096 -.227 .202 .087 .106 •.365 .863 .299 •.134 .159 -.007 -.042 -355 - . 1 3 7 - . 2 5 9 - . 2 8 6 .454 - . 0 6 5 - . 3 0 3 - . 0 3 9 .209 - . 1 8 4 .004 .249 .321 - . 5 1 4 .104 .180 - . 2 3 9 - . 0 6 9 - . 1 2 9 .231 - . 1 9 2 .130 . 0 9 0 .114 - . 0 1 7 c+ o H , H H e.df. 37 .05P .01P ^Transformed data **See soil-moisture scale i n Appendix III, ^ .317 .408 8H ra 34 The A a x i s . d i r e c t i o n was The spread of the point c l u s t e r i n the A axis a t t r i b u t a b l e to two sets of highly s i g n i f i c a n t correlations between species and the axis values. One set included Polystichum munitum, Dryopteris austriaca, Athyrium f i l i x - f e m i n a , Mnium insigne, and Acer cireinaturn. The second set included Gaultheria shallon, Eurhynchium oreganum, and Mahonia nervosa. The A axis s i g n i f i e s a soil-moisture gradient. Substantial evidence f o r t h i s i s derived from indicator species (see the l i s t above) and from soil-moisture estimates which have shown s i g n i f i c a n t c o r r e l a t i o n with the A axis values. An important l i n e a r r e l a t i o n s h i p exists between Douglas-fir s i t e index and the A a x i s . I t should be mentioned, however, that t h i s l i n e a r r e l a t i o n s h i p could not be anticipated i f the sample plots were not s t r a t i f i e d on the basis of subzones and land types. (Aft) Melanization and gleyzation (Bg) occurs i n the sample plots at the high axis values. The thickness of the e l u v i a l horizon ( A ) , on the other hand, s i g n i f i c a n t l y e increases with the decrease of the axis values. S o i l depth does not appear as important as stoniness (see Table IV-4), the importance of which s i g n i f i c a n t l y decreases with the increase of the axis values. Organic matter thickness and reaction (pH) have shown l i t t l e non-random v a r i a t i o n , and the importance of a l t i t u d e i s also n e g l i g i b l e i n r e l a t i o n to f l o r i s t i c variations along the A a x i s . The B a x i s . was The spread of the point c l u s t e r i n the B axis d i r e c t i o n a t t r i b u t a b l e to s i g n i f i c a n t correlations between the axis values and following species: the T i a r e l l a t r i f o l i a t a , Blechnum spicant, Acer circinatum, Polystichum munitum, Dryopteris austriaca, Eurhynchium oreganum, Mnium insigne, and Plagiothecium undulatum. The f i n a l species was the only- 35 one with a highly s i g n i f i c a n t negative c o r r e l a t i o n . The l i s t of species includes no Gaultheria shallon or Mahonia nervosa due to t h e i r i n s i g n i f i c a n t c o r r e l a t i o n with the B a x i s . The r e l a t i v e importance of the species has also changed i f compared to those of the A axis c o r r e l a t i o n s . t r i f o l i a t a and Plagiothecium correlation. The two most important species are T i a r e l l a undulatum, with a negative interspecific T i a r e l l a t r i f o l i a t a i s a nitrophilous species (dependent upon habitats r i c h i n n i t r a t e s ) , and Plagiothecium undulatum i s a raw humus builder. The presumption that a moisture gradient i s the underlying environ- mental cause of f l o r i s t i c v a r i a t i o n along the B axis i s incorrect, because the soil-moisture estimates are not correlated s i g n i f i c a n t l y with the B axis values. I t i s more probable that f l o r i s t i c v a r i a t i o n along the B axis r e f l e c t s changes i n humus q u a l i t y from mull to raw humus. Nevertheless, i n the dry subzone humus q u a l i t y and soil-moisture are i n t e r r e l a t e d features. Mull development can be expected only on moist s o i l s that are r i c h i n nutrients. Species which produce r e a d i l y decomposing organic matter are c h i e f l y hygrophytic i n t h i s zone. This i s not so f o r the raw humus builders which may dominate x e r i c as w e l l as hygric habitats. For instance, Tsuga heterophylla can occur i n pure stands i n hygric habitats, and then i t promotes raw humus development and subsequent podzolization. .'. ; • ; ...The C a x i s . The spread i n t h i s d i r e c t i o n was a t t r i b u t a b l e to changes i n the quantities of Mahonia nervosa, Gaultheria shallon, Mnium insigne, Eurhynchium oreganum, Plagiothecium undulatum, and Blechnum spicant. to follow page 35 20 * 20 O 18- 18 i •16' 16 14 ik o 12 O ® 12 CO 10 IlO' o 8 • @ 8 ©© Polystichum munitum 6 4 0 r r —rr-^—-T 1 X 6 8 B axis 1 10 1 12 o O Ik 10 o ® • © 6 8 « Rubus spectabllls 4 r 2 2 4 -..713** A 1 i 1 8 i o 12 B axis 1 ik • e o © O O ® O 0 o • • • 9 O • © o ° 6 6 r O 12 A « o a * < 8-1 -i r 14 O 12 r V^l B .058 16 o © o ( o o 14 L 18 -| o © 16 f B o 18 -I •SlO H .785"""'"' A A .623** k 2 o© . .o o O O © • 0 o o Mahonla nervosa r A ru -.ij.60** .072 6 8 10 12 14 2 4 6 8 i o 12 14 B axis B axis F i g . I V - 2 D i s t r i b u t i o n patterns of selected species on the AB plane. C i r c l e diameters are proportionate to species significance values. Largest c i r c l e indicates species significance 9 - 10. Absences are indicated as dots. * ' . ' " to follow F i g . I V - 2 F i g . IV-3 D i s t r i b u t i o n diagrams of selected species and selected environmental f a c t o r s . The A axis indicates increasing soil-moisture. Changes i n humus q u a l i t y are the apparent causes of f l o r i s t i c variations along the B a x i s . The C axis i s apparently related to environmental changes from warm to cool aspects. Scores pertain to 6 2 sample plots f o r species, and 3 9 sample plots f o r environmental f a c t o r s . A axis A axis F i g . IV-3 Continued,' OJ 0) o a o fl cd o g 10 ij . 8 •H CH •ri •a •H CQ •H fl ' CD rjj •H h ^ o o 0J ^ CQ OJ •ri CJ OJ ft CO 6 10 18 fl cd o = .623""""' Tiarella trifoliataI r =.613 1 A axis A axis OJ CJ r €> 6 ft cn Rubus 8 p e c t a b l l i s OJ fl cd o Plagiothecium ?_= undulatum -.143 •ri •H tM •ri •H CQ CO OJ •H CO Q) • •H CJ OJ o OJ ft ft CO CO A axis A axis "Douglas-fir site r.= .8'28** 6 io A axis lk index. [Available soil-mo is ture • r = .810**.. 18 A axis Fig. IV-3. Continued A axis A axis Species Species significance significance •p- ON ro co o (ft ro ;I 5 I w <! i x U) as p. ^ r " I I '*ZZZZ*'"Zt -L-A..M•rA** Zu4ZL iZuZtZpZIZT X H- ; 1 H- O cn -Ml i vO j,! : ; i •_[_ LJZIZZZZZQZL CO O i "izJzzHzj _L i L O ;• ct! 2i Ctl i LiZL'Species •x significance •_ ! !_ • -x y - I i i i-9 I-* P: 4 CD x ! x 1 H M cn P> : AA .jvO Ct H* o I— p.; 1 fo ct o o cs c+ H£ CD Pi Fig. IV-3 2 Continued 6 10 lk 18 B axis Available B axis soil-moisture; B axis- • ' Permeable m i n e r a l so -.001 B axis Fig. IV-3 Continued 2 6 10 C axis C axis lk 18 Fig. IV-3 C o n t i n u e d The correlations "between species and axis values are negative 36 i n the case of the f i r s t four species and they are p o s i t i v e i n the case of the l a s t two species. Mahonia nervosa, Gaultheria shallon, Mnium insigne, and Eurhynchium oreganum are elements of the Coastal Douglas-fir zone with r e l a t i v e l y l o c a l i z e d d i s t r i b u t i o n at the higher a l t i t u d e s of the perhumid mesothermal b e l t i n the Coastal western hemlock zone. Plagiothecium undulatum and Blechnum spicant are elements of the Coastal western hemlock zone. These two groups of species appear' •.. to indicate the presence of a microclimatic gradient from warm to cool aspects along the C a x i s . The substantiating as evidence f o r t h i s i s exclusively f l o r i s t i c . none of the environmental factors of Table IV-k '.i& correlated s i g n i f i c a n t l y with C axis values. D i s t r i b u t i o n diagrams of selected species and selected environmental factors are given i n Figure IV-2 and 3. Note that the explanation of the moisture estimate scale i s given i n Appendix III I. C l a s s i f i c a t i o n units Sample plots were i n i t i a l l y assigned to three broad groups: ( l ) dominantly xerophytic species combinations, convex r e l i e f , mainly coarse s o i l s , low productivity; (2) mesophytic species combinations, s l i g h t l y concave to s l i g h t l y convex r e l i e f , deep s o i l s , medium productivity; dominantly hygrophytic (3) species combinations, concave r e l i e f , deep s o i l s , presence of seepage, high p r o d u c t i v i t y . Group ( l ) . Coarse s o i l s and convex slopes i n the Coastal western hemlock zone are characterized by the Tsuga heterophylla - Gaultheria . edaphic climax shallon/which i s comparable to the Pseudotsuga menziesii - Gaultheria shallon climatic climax (Krajina and Spilsbury 1953) Coastal Douglas-fir zone. on mesic s o i l s of the 37 The mesophytic and xerophytic Gaultheria shallon communities are so c l o s e l y r e l a t e d by t h e i r f l o r i s t i c structure that they should be considered as only subassociations of the same association, the Gaultherieto Pseudotsugetum menziesii: (a) pseudotsugetosum ( i n the Coastal Douglas-fir zone) and (b) tsugetosum heterophyllae ( i n the Coastal western hemlock zone). Pseudotsuga menziesii i s self-perpetuating i n subassociation (a) which i s explained by a somewhat warm and dry climate, l i m i t e d organic matter accumulation, and only weak podzolization i n the Coastal Douglas-fir zone. Organic matter accumulation and podzolization are strong i n subassociation which condition a Tsuga heterophylla climax. establishment (b) Pseudotsuga menziesii i s l a r g e l y the consequence of f o r e s t f i r e s and clear cutting i n subassociation (b). Subassociation (a) was proposed (Lesko I961, O r l o c i 1961) a l t e r n a t i v e category to include the following synonymous units: as an Gaultheria type (Kujala I 9 U 5 ) , Gaultheria s i t e type (Spilsbury and Smith 19^7), Pseudotsuga - Gaultheria association (Krajina and Spilsbury 1 9 5 3 ) , Gaultherieto - Pseudotsugetum (Becking 195*0 • Subassociation (b) i s s p e c i f i c to the-dry subzone of the Coastal western hemlock zone and has been described by Lesko ( 1 9 6 1 ) , O r l o c i ( 1 9 6 1 ) , and E i s ( 1 9 6 3 ) . Stands of the steep slopes and warm aspects large amounts of Mahonia nervosa. (S-W) contain Presence or absence of Mahonia i s used to recognize the two variations i n t h i s subassociation (b): Gaultheria, and the Gaultheria - Mahonia ecosystem type. The the orthic appropriate type characters are compiled i n Table IV-6 and Appendix I I I - 13 to 16. 38 The orthic Gaultheria (OG) as w e l l as the Gaultheria - Mahonia (G-M) types are confined to l o c a l i t i e s which are unaffected by l a t e r a l l y translocated water, because an adjacent upper-slope, c i e n t l y extensive to issue permanent seepage. strong podzol development. i f present, i s i n s u f f i - The s o i l s are coarse with Orterde formation i s occasionally observed at various l e v e l s i n the B s o i l horizon. Orterde and subsequent o r t s t e i n development could lead to the reduction of the e f f e c t i v e s o i l depth and subsequent d e t e r i o r a t i o n of p r o d u c t i v i t y . D e f i n i t e signs of fragipan formation were detected by Farstad (1963) i n one p r o f i l e of the OG type. Available s o i l moisture i s very low i n the Gaultheria types i f compared to the mesophytic or Hygrophytic types (Table IV-5)• The c h a r a c t e r i s t i c s of the OG and G-M but they d i f f e r considerably at the extremes. elevation w e l l above the G-M type. type overlap i n many respects The OG type extends i n The slope gradient i s greater and the s o i l s are deeper as w e l l as coarser i n the G-M type than i n the OG type. These differences are only r e f l e c t e d s l i g h t l y i n average p r o d u c t i v i t y but are w e l l indicated by the heavy cover of Mahonia nervosa as w e l l as Eurhynchium oreganum i n the G-M type, and by the absence of Mahonia and the r e l a t i v e abundance of Plagiothecium undulatum i n the OG Group ( 2 ) . type. Mesic s o i l s of straight, or s l i g h t l y convex r e l i e f are characterized by the Tsuga heterophylla - Plagiothecium undulatum climatic climax i n the Coastal western hemlock zone. This community i s comparable to the Tsuga heterophylla - Eurhynchium oreganum edaphic climax (Krajina and Spilsbury 1 9 5 3 ) Douglas-fir zone. o n moist (to moderately wet) s o i l s of the Coastal Table IV-5 ; Ecosystem type AVERAGE AVAILABLE SOIL-MOISTURE (GKh~ - l 3 * 0 atm.) IN SELECTED STANDS OF THE DIFFERENT ECOSYSTEM TYPES FOR THE PERIOD, JUNE 1 TO SEPTEMBER 30, AT HANEY FOREST. OBSERVATION PERIOD: 1952-1956. Orthic Gaultheria (OG) 39 Orthic Degraded Orthic Plagiothecium Polystichum Polystichum (0P1) (DPo) (OPo) Average a v a i l a b l e soil-moisutre (in.) Stand 1 2.4 3-8 5.0 Stand 2 2.7 4.8 5-9 Stand 3 2.8 8.2 After G r i f f i t h ( i 9 6 0 ) , pp. 2 4 - 2 5 , samples 1 to 8 . ( G r i f f i t h - I s sample p l o t s were assigned to the d i f f e r e n t ecosystem types by the author of t h i s thesis). The moist and mesic communities are recognized as two of the Tsugetum heterophyllae: subassocitions (a) eurhynchietosum oregani ( i n the Coastal Douglas-fir zone) and (b) plagiothecietosum undulati ( i n the Coastal western hemlock zone). ' Pseudotsuga menziesii i s confined to secondary stands i n both subassociations because i t s reproduction follows forest f i r e s and c l e a r cutting. Alnus rubra may dominate i n the i n i t i a l secondary stages i f the mineral surface i s exposed p r i o r to establishment. Precedents are found i n t h i s respect mainly on logged areas and i n the v i c i n i t y of wet habitats where Alnus rubra commonly occurs. Subassociation (a) belongs to the Coastal Douglas-fir zone but a v a r i a t i o n (E-M) which c l o s e l y resembles t h i s subassociation was 1958- recognized by Krajina (1964) i n the dry subzone of the Coastal western hemlock zone. This v a r i a t i o n occurs on s o i l s which are excessively drained i n the top horizons due to the coarseness of the s o i l materials but the subsoil i s 40 moist. The lesser vegetation r e f l e c t s the state of the top s o i l and c l o s e l y resembles the G-M type. The subsoil i s moist, due to temporary seepage, hence i t i s comparable to some s o i l s i n the Polystichum type. The productivity i s medium resembling the mesophytic communities. Subassociation (b) i s the climatic climax community i n the dry subzone of the Coastal western hemlock zone. Stands of the steep slopes and warm aspects contain large quantities of Mahonia nervosa. The presence or absence of Mahonia nervosa was the c r i t e r i o n used to recognize two variations i n the (b) subassociation: the orthic Plagiothecium (OPl) and the Plagiothecium - Mahonia (Pl-M) ecosystem type. The appropriate type characters are given i n Table IV-6 and i n Appendix III-17 to 20. The OPl as w e l l as the Pl-M variations are confined to middle slopes with considerable adjacent upper slope, or to outwash as w e l l as a l l u v i a l terraces with r e l a t i v e l y f i n e , deep well-drained s o i l s . Available s o i l - moisture i s r e l a t i v e l y high, although permanent seepage was not encountered i n these ecosystem types (see Table IV-5). The c h a r a c t e r i s t i c s of the OPl and Pl-M types overlap, but the OPl type extends higher with respect to a l t i t u d e , the average slope gradient i s much less, and the s o i l s are coarser than those i n the Pl-M type. However, the differences i n forest productivity are s l i g h t . Orterde and o r t s t e i n development i s more advanced i n the s o i l s of the PI types than i n the s o i l s of the G types. Group (3)> Hygrpphytic species combinations were c h a r a c t e r i s t i c on concave slopes with semi-permanent or permanent seepage. The spatial separation of the hygrophytic communities from the mesophytic and xerophytic groups i s most apparent i n t h e i r projections on the AB plane (Figure I V - l ) , kl and i s attributed to the abundant occurrence of Polystichum munitum, T i a r e l l a t r i f o l i a t a , Dryopteris austriaca, Athyrium f i l i x - f e m i n a , and t h e i r hygrophytic associating species ( c f . Table IV-6 and Appendix I I I - 21 to 22). Polystichum munitum communities of the Coastal western hemlock zone appear as extensions of these communities of the Coastal Douglas-fir zone. McMinn's (194-7) descriptions, however, indicate that the Polystichum communities of the l a t t e r zone are f l o r i s t i c a l l y much r i c h e r than those of the Coastal western hemlock zone. Considerable variations are observed among the Polystichum commun i t i e s within the Coastal western hemlock zone. Some stands are characterized by the abundant occurrence of such nitrophilous species as T i a r e l l a t r i f o l i a t a , Sambucus pubens and Athyrium f i l i x - f e m i n a . Some other stands, however, occur on podzols and without considerable quantities of the nitrophilous species. The Polystichum communities are divided among the three subassociations of the Polysticheto - Thujetum p l i c a t a e : (a) tiarelletosum l a c i n i a t a e , (b) tiarelletosum t r i f o l i a t a e and (c) tsugetosum heterophyllae. Subassociation (a) was variously designated as the T i a r e l l a Aspidium type (Kujala 1 9 4 5 ) , Polystichum s i t e type (Spilsbury and Smith 1 9 4 7 ) , Pseudotsuga - Thuja - Polystichum association (Krajina and Spilsbury 1953)> and Polysticheto - Pseudotsugetum tiarelletosum l a c i n i a t a e (Becking 195*0 • With the exception of the 1953 and 1954 publications, the references only p a r t i a l l y pertained to subassociation (a) and sample plots of various communities were also included i n the descriptions. Subassociation (b) or the orthic Polystichum ecostystem type i s s p e c i f i c to the dry subzone of the Coastal western hemlock zone. (OPo) Thuja k2 p l i c a t a dominates i n the primary stages. productive tree, hut Pseudotsuga logging. type. Pseudotsuga menziesii i s the most establishment i s related to forest f i r e s or Tsuga heterophylla occurs mainly i n the secondary stands of the OPo Tsuga heterophylla could become dominant i f organic matter accumulated the s o i l s were leached. and This seems least probable i n the undisturbed stands since the high water table would always condition a luxuriant lesser vegetation which would produce r e a d i l y decomposing organic matter. Disturbances, e s p e c i a l l y logging, could produce accumulation of decaying wood and, subse- quently, a pure Tsuga heterophylla stand would be established. Subassociation (c) or the degraded Polystichum type (DPo) i s characterized by a predominance of Tsuga heterophylla which could explain the.great accumulation of raw humus and intensive subsequent top mineral s o i l . leaching of the The nitrophilous species are lacking and Mnium insigne i s replaced by the raw humus formers such as Hylocomium splendens, Plagiothecium undulatum, and Rhytidiadelphus loreus. .''. . . Forest stands which were c l a s s i f i e d by O r l o c i (1961) and Lesko (1961) as the Blechnum - Rubus type (B-R) are attached to the OPo type. The B-R type includes t r a n s i t i o n a l stands between the OPo type and the spring- water swamps as w e l l as the creek-edge Oplopanax stands. S o i l s of the B-R type are similar to the s o i l s of the Polystichum types, but they are wetter due to the high water table. The wetness of the s o i l i s r e f l e c t e d by the abundant occurrence of Blechnum spicant, and sporadic Oplopanax horridus, Lysichitum americanum, and Conocephalum conicum, as w e l l as Eurhynchium stokesii. An apparent v a r i a t i o n of the DPo type occurs on talus slopes possessing raw l i t h i c s o i l s . to be completed. A d e t a i l e d study of t h i s v a r i a t i o n remains Table IV-6 Associations GLACIAL DRIFT LAND TYPE, DRY SUBZONE Gaultherieto - Pseudotsugetum Orthic Gaultheria Gaultheria-Mahonia (OG) (G-M) Ecosystem type Land form R e l i e f shape Slope g r a d i e n t Altitude f t . Hygrotope Stoniness Permeable mineral s o i l depth (cm.) Endo-humus depth (cm). A Eluviated horizon depth (cm.) A pH L-F A B C Humus form Douglas-fir S i t e index f t per lOOy, western hemlock western redcedar 0 n e C h a r a c t e r i s t i c combination of species * Tsugetum heterophyllae Orthic Plagiothecium Plagiothecium-Mahonia (OPl) (Pl-M) Upper-slope Convex to straight Upper-slope Convex to straight Middle-slope Straight (to convex) Moderately dry (to mesic) Moderately dry (to mesic) Mesic (to mod. dry or moist) Mesic (to moderately dry) Nil Nil 12 (3-25) 1030 (750-1640) 4o (25-60) 62 (40-85) Nil 8 (3-18) 3-95 (3-40-4.52) 3.99 (3.70-4.30) 5.16 (5.00-5.50) 5.56 (5.46-5.65) Raw humus 109 (96-127) 102 (90-126) 84 (76-107) Tsuga heterophylla Pseudotsuga menziesii Gaultheria shallon Eurhynchium oreganum Hylocomium splendens Plagiothecium undulatum 31 (18-40) 750 (450-900) 60 (40-80) 98+ Nil 7 (5-8) 4.25 4.4o 5.65 1 Raw humus 93 (78-109) 86 (73-91) 73 (70-78) Tsuga heterophylla Pseudotsuga menziesii Gaultheria shallon Mahonia nervosa Eurhynchium oreganum Hylocomium splendens Plagiothecium undulatum 6 (1-17) 780 (200-1050) 31 (1-60) 71+ - 5 (1-13) 4.11 (3.40-4.50) 4.17 (3.75-4.70) 5.40 (5.25-5.60) 5-70 Raw humus 142 (114-157) 121 (83-143) 88 (70-132) Tsuga heterophylla Pseudotsuga menziesii Plagiothecium undulatum Rhytidiadelphus loreus Hylocomium splendens Eurhynchium oreganum Middle-slope Straight 18 (1-31) 540 (360-880) 2 125+ 5 4.00 4.10 5.50 5.45 Raw humus 138 (117-155) 109 (99-122) 84 (76-91) Tsuga heterophylla Pseudotsuga menziesii Mahonia nervosa Plagiothecium undulatum Hylocomium splendens Eurhynchium oreganum Table IV-6 - Continued Associations Tsugetum heterophyllae Eurhynchium-Mahonia (E-M) Ecosystem type Land form R e l i e f shape Slope g r a d i e n t Altitude f t . Hygrotope Stoniness Permeable mineral s o i l depth (cm.) Endo-humus depth (cm.) Ah Eluviated horizon depth (cm.) A pH L-F A B C Humus form Douglas-fir S i t e index f t . per lOOy. western hemlock western redcedar Characteristic combination of species 0 e Note: Middle-slope Straight 22 (2-33) 820 (450-950) Mesic (to moist) 45 (40-50) 45+ Nil 8 (0-15) 3.98 ( 3 . 9 5 - 4 . 0 1 ) 4.00 5.31 ( 5 . 6 0 - 5 . 0 1 ) 1 - Raw humus 131 (121-141) 103 (95-H8) 98 (90-108) Tsuga heterophylla Pseudotsuga menziesii Mahonia nervosa Eurhynchium oreganum Hylocomium splendens Plagiothecium undulatum * Polysticheto - Thujetum plicatae Orthic Polystichum Degraded Polystichum (OPO) (DPo) Lower-slope Concave 18 (6-35) 860 (430-1200) Moist (to wet) 31 (5-50) 60+ 9 (3-15) Nil 4.30 (3.70-5.50) 4.38 (3.70-5.20) 5.19 ( 4 . 7 0 - 5 . 5 7 ) (4.80-5.82) ^Duff mull 168 (145-192) 136 (109-157) 121 (90-165) Thuja p l i c a t a Tsuga heterophylla Pseudotsuga menziesii Rubus s p e c t a b i l i s Sambucus pubens Acer circinatum Polystichum munitum Tiarella trifoliata Dryopteris austriaca Athyrium f i l i x - f e m i n a Mnium insigne Blechnum spicant Data were compiled from the f i e l d notes of Lesko (1961), O r l o c i ( I 9 6 1 ) , pH was measured by Lesko ( 1 9 6 1 ) . Lower-slope Concave 16 (3-40) 84o (460-1740) Moist (to wet) 37 (0-75) 60+ Nil 3 (0-15) 4.28 (3.40-5.67) 4.17 (3.50-4.92) 5-32 ( 5 . 1 0 - 5 . 4 5 ) 5.69 ( 5 . 3 2 - 5 . 9 5 ) Raw humus 163 (143-180) 132 (102-180) 118 (96-170) Tsuga heterophylla Thuja p l i c a t a Pseudotsuga menziesii Acer circinatum Polystichum munitum Dryopteris austriaca Hylocomium splendens Plagiothecium undulatum Eurhynchium oreganum Rhytidiadelphus loreus and E i s ( 1 9 6 2 ) . 43 Wet subzone F l o r i s t i c variations i n the d i r e c t i o n of p r i n c i p a l axes F l o r i s t i c variations are considered i n the three p r i n c i p a l d i r e ctions. Points 4 - 4 4 s i g n i f y the A axis d i r e c t i o n ( F i g . IV-U). The B and C axes are mutually orthogonal and correspond to points 13 - 47 and 20 - 28 r e s p e c t i v e l y . Computations involved an i d e n t i c a l set of 32 species as l i s t e d i n connection with the dry subzone. Basic data are compiled i n Appendix 111-23 to 3 2 . The A a x i s . The spread of the point cluster i n the d i r e c t i o n of the A axis i s a t t r i b u t a b l e mainly to Abies amabilis, T i a r e l l a t r i f o l i a t a , Athyrium f i l i x - f e m i n a , Rubus s p e c t a b i l i s , Rubus pedatus, Blechnum spicant, Gaultheria shallon, Hylocomium splendens, and Rhytidiopsis robusta. The correlations with the axis values are p o s i t i v e i n the case of the f i r s t six species and they are negative i n the case of the l a s t three species. The A axis s i g n i f i e s a moisture gradient. This can be substanti- ated on the basis of indicator species and soil-moisture estimates which have shown s i g n i f i c a n t c o r r e l a t i o n with the A axis values (Table IV-7 and Figure I V - 5 ) . An important 8, l i n e a r r e l a t i o n s h i p e x i s t s between the s i t e index of Tsuga heterophylla and the A a x i s . constant to a l l samples i n the wet Pseudotsuga menziesii i s not subzone therefore Tsuga heterophylla s i t e index was used f o r comparisons. S o i l s are stonier at the high axis values than the s o i l s at the low axis values. Gleyzation i s most apparent at high axis values and the thickness of the Ae horizon increased i n the opposite d i r e c t i o n . The influence of a l t i t u d e appeared to have a n e g l i g i b l e e f f e c t i n r e l a t i o n to f l o r i s t i c v a r i a t i o n s along the A a x i s . a u o CO •H. Acer circinatum Chamaecyparis nootkatensis Gaultheria shallon Rubus s p e c t a b i l i s Sambucus pubens Vaccinium alaskaense Blechnum spicant Clintonia uniflora Athyrium f i l i x - f e m i n a Tiarella trifoliata Lysichitum americanum Gymnocarpium dryopteris Rubus pedatus Plagiothecium undulatum Hylocomium splendens Rhytidiopsis robusta A axis B axis C axis .052 -.147 -.691 .190 .282 -.310 .282 .104 .285 .365 -.016 .020 .271 .102 -•504 -.248 •751 -.240 -.152 -.164 .oo4 .305 -.058 -.277 .308 -.367 .220 .358 .086 .100 -.056 .094 .300 -.352 .068 .433 -.060 H <H •H CO .298 -.276 -.212 .080 -.306 .012 -.193 -.322 -.051 -.105 .019 -.096 .167 • 415 -.281 .027 .141 -.272 -.377 •555 .412 .006 -.146 .466 -.284 .099 -.349 .726 -.268 .708 -.081 .313 -.110 .364 -.129 .287 -.012 .087 .679 -.159 .236 -.375 -.712 .505 • 435 .049 .206 -.275 -.239 .118 .180 .507 .250 -.132 .012 .018 .005 -.415 -.208 .380 -.395 -.588 -.036 .166 .052 -.203 .391 -.239 .599 -.023 .386 .105 .369 .119 .415 -.007 .090 • 397' -.044 .292 -345 -.236 .460 0.000 .308 .547 -.147 .220 -.030 .047 .232 .502 -.292 -.396 .387 .332 -.342 -.021 .538 .307 .198 • 350 -.115 -.427 -.232 • 552 -.105 -.405 .457 • 315 .413 .068 -.194 -•553 .596 .404 -.334 .064 • 331 -.047 -.083 -.132 .247 .323 .158 .289 .127 -.373 .023 -.191 .128 -.183 .177 -.309 .195 .498 .035 .153 .236 .114 -.135 .004 .102 e.df.45 .05P .01P •^Logarithmically transformed data .288 • 372 to follow Table 17-7 CORRELATIONS* o CQ *H CQ -H te CO •H H a 0) Xi CO a a u •H CD tcou -P •H Js CO B axis -.087 C axis -.239 S i t e index (western hemlock) Thickness of A e co < Hcd J-H <D fl •H a o CQ CQ CO X! co -P rH ft XJ C -CiU 1—1 a u •H 0) OCQ PH O •H X! EH CQ CQ CD fl •H fl O -P CO CQ CQ ai ^ rH •rH O CO .722 - . 1 5 8 - . 2 8 8 -.349 -.013 .228 - . 3 4 3 •553 - . 0 3 6 - . 2 1 8 .589 - . 5 8 9 -.058 .504 - . 1 5 5 .275 Soil-moisture .834 - . 0 4 8 - . 2 8 8 .846 - . 4 7 1 .696 Thickness of L-F .235 - . 0 6 2 .162 .366 - . 2 5 3 .221 -.184 -.331 -.022 -.031 .100 .487 .068 - . 1 3 5 • 159 - . 3 0 6 .05P .0LP *Logarithmically transformed data .225 .292 -.041 e.df.42 .298 .379 <H O CO •H O .183 Permeable mineral s o i l depth Stoniness Altitude CO J-l tu O ea Table IV-8 <D O •H Xi EH 22 22 - i 0 20 20 18 18 16 Q o* © ofo*' of! u lk 12 lk 39 2 6 © '3 off 36 ©3sO'5-*-/ 12 - o e' e e§Se ©*' e' e* o ,v 10 16 5a 3 -I 7 38 w 9 7 10 37 737 2 7 0" o o'l 8 0 6 8 7 05 a o' o^ Q 6 - k o 5 03 5 Hi o k - H H O (-3 & o ^ —i— 8 10 -T— 12 6 8 10 F i g . IV-4 Point projections on the AB and A6 plane. Black, h a l f white and white c i r c l e s indicate hygrophytic, mesophytic and xerophytic communities respectively. I d e n t i f i c a t i o n numbers" refer to computation reference numbers i n Appendix 111-23 to 3 2 . 12 i 00 kk The B a x i s . The spread of the point cluster i n the B axis d i r e c t i o n was a t t r i b u t a b l e mainly to Hylocomium splendens, Gaultheria shallon, Acer circinatum, T i a r e l l a t r i f o l i a t a , Rhytidiopsis robusta, C l i n t o n i a u n i f l o r a , Sambucus pubens, and Abies amabilis. The correlations with the axis values were p o s i t i v e f o r the f i r s t four species but they were negative for the l a s t four species. The B axis values are s i g n i f i c a n t l y correlated to a l t i t u d e s . This s i g n i f i e s the presence of an a l t i t u d i n a l gradient along the B axis which, as discussed i n Chapter I, coincides with a c l i m a t i c gradient. The species correlations substantiate the presence of a climatic gradient along the B a x i s . The two contrasting groups with Hylocomium Gaultheria shallon, Acer circinatum, and T i a r e l l a t r i f o l i a t a i n the splendens, one, and Rhytidiopsis robusta, C l i n t o n i a u n i f l o r a , and Abies amabilis i n the other, are representatives of two climatic extremes but they overlap i n the wet subzone. The species of the f i r s t group do not r e g u l a r l y occur above the upper l i m i t of the wet subzone. The species of the second groupj., on the other hand, are subalpine elements and t h e i r lower l i m i t i s confined to the wet subzone. Sambucus pubens i s an exception i n the second group and i t s quantitative increase with increased a l t i t u d e i n the wet coincide with subzone does not expectations. S i g n i f i c a n t p o s i t i v e correlations of Lysiehitum americanum and Blechnum spicant with the B axis could indicate that these species abundantly occur at low elevations i n the wet subzone, most probably not due to climatic reasons but to the wet habitats which are very common i n valleys but are rare on high slopes. The C a x i s . The spread i n t h i s d i r e c t i o n of the point c l u s t e r s i g n i f i e d changes i n the quantities of Vaccinium alaskaense, Hylocomium to follow page kk F i g . IV^5 D i s t r i b u t i o n diagrams of selected species and selected environmental f a c t o r s . The A axis indicates increasing soil-moisture. Changes i n a l t i t u d e are the apparent causes of f l o r i s t i c variations along the B a x i s . • The C axis i s apparently r e l a t e d to changes i n humus q u a l i t y from raw humus to mull. Scores pertain t o kj sample p l o t s f o r species, and kk sample plots for environmental f a c t o r s . CD Abies amabills r .7^1^ ±i-J CJ § 10 o +J-U-! • f l a rt: o s o •H 6 <H •ri fll a MI • E**7 •ri CO 1)2 CQ, OJ •ri O •ri CO 6 ft CQ io 18 Ik CJ CL) P. CQ A axis A axis 1Tiarella trifoliata' "395"* OJ Hylocomium o r a cd o •ri splendens -,5t-l CH •ri fl ho •ri CQ CO OJ •ri O OJ Pi CQ A axis aj • A axis Rubu s s p e c t a b i l i s V — 7 5 0 ^ CJ •ri 21 •ri OJ Rhytidiopsis ^ •ri «H •ri as irb CQ CQ OJ o fl cd o Sir SB •ri 5 O OJ ft CQ A axis •ri CQ CQ CD •ri CJ OJ ft CQ I !>fct>?~ A axis -.396 robusta ^ 1 : Fig. IV-5 Continued 0) Blechnum o §10 Rubus spleant[ pedatus o £ 8 ffi? •ri bO 6 •Ft CO •ri -if 2 CJ Si* ±!± 0) PH CO 18 14 10 22 A axis A axis +3 rtxc.333 +2 ±i: 5g : +1 in ft 0' -2 -1 BE: ffl S o i l - m o i s fcure A axis ft. Vrrr Western hemlock index, r . 772 ^site cm. 150 125 i4o 120 4$ 75 80 50 m tiITT fcft m EE 5+ 100'' $n5 100 6o .Permeable m i n e r a l soil depth, r .£53""'* I • 25 i iff A axis A axis F i g . IV-5 Continued r :Stoniness, . 366""' T h i c k n e s s o f Aer - . 3U-9 100. cm. 80 ,:p: 60 4? 15 si ko 20 20 10 aw Pflfl mm i 6 io 14 18 A axis A axis ft. i: A l t i t u d e , -.l8lj. r mm 3000 1 2500 ft: 2000 1500 {fl •1000 fl Hr: ft •ffF ff ±tft •h- ft 500 A axis lecies significance Species significance ro • J=- as oo o OP <! i -H- -si-m. < P o o 1 . 0) L-pf: " H fB CQ p EH CD i±t CQ CD Species significance Species significance H T F : 3± 3& SSI I Co o p: CQ : CqcS :Cq vo o • "-o r o ! 4 : CQ O CQ H' CQ J pj CQ , c+ P: Fig. 17-5 Western hemlock index, r ft. FFFh •Soil-moisture r ..-^ 014-8 4ffl ttt site -.15>8 +3 +2 m FFF tffi +1 444+ m '\if- 0 i+t- -t-r-/S'4 Tfl mm +++- i m 10 ik 18 B axis B axis T Permeable m i n e r a l soil] d e p t h , r -.036 Stoniness, r 4 ,-p i 4- • 4 I 4 -r- K4 • i -F- 6o pR4 f- +\ :. -K 4^4 ft i+o TFf fl 20 fl "T ••{ TF fl B axis :+ 4- "jfl 4i'i -4; 44 47 CR7 M 1 H-H-h-rr 4- "T~i • i | j j O • -4 4JJ fl 4r4 444- 4*4 sS t - S 1 fl fl I ! JJJ. «*-! -j- j , i- 1 1 1 .14 -tr- TTfl "I 44-14- -4 7 # F ttt 3g | 80 1 ft 1 i 44 4f- 100 i s Si ±flp: —.25^3 i 4-14 444 t4 1 J tffr 444-44 fl4 II -J- -Ff-|-r , . . < 4J7± * f 4 -*-rt-r 4i4- 3 ft* B axis 4-i Fig. IV-5 Continued •ft. Altitude, • 331 «• 3000 T h i c k n e s s o f Ae ? -.Oil cm. 2500 20 2900 15 1500 10 1000 5§ ; - I 500 1 2 6 10 14 18 B axis B axis Western hemlock index, r - 288 e site; +3 ft. lUO Soil-moisture r - . 2 8 8 +2 :±! +1 120 Sir 100 -+ 80 60 C axis C axis Fig. cm. 150 125 IV-5 Continued Permeable m i n e r a l d e p t h . r= - . 2 1 8 ff. . . «r < ri •4 + 4 - 4" I J; 4 T -r 4 t . 100 T) -1- -H :"" --- 50 ->oJ#tr T44+ T | j •;- - 1 * - 4+ 4 T* • t1T 1 1 -r -r +4 -> j •i' + -4-1 60 6 40 4- •f it 44 tt 1 1 ±4_ H+ it* 20 1 + 4 U10 t T" 1 T J - .+ 44 1 1 1 4F T-M- i± r "Tl "tjt 44 ;j- 80 t -h -1- 4-i + 44+ lU 18 C axis C axis ' T h i c k n e s s o f Ae' r= . 2 2 8 ff ft. 3000 r= - . 0 2 2 Altitude, i 44 2500 cm. 2000 20 t-SR 15 1500 10 1000 itt -4 100 | I| 1 I 1 25 i4- + 4 ! || a T -i-oe-i- [ 1^4- 1± -1. - •n T*4 fjc- -4-1-1- TH 4- C Trta T T - 1 -r 4--rrt" III "MT + -f •H" tttr 1' 4I4+-rH-r -M-j-j- T - • KL 1 75 FF r= - . 0 5 8 . Stoniness, ! 1 -- 4- I • 4 44- tpt- -- soil 3i I W: 500 C axis C axis 45 splendens, Sambucus pubens, Athyrium f i l i x - f e m i n a , and T i a r e l l a t r i f o l i a t a . The f i r s t two species are prominent raw humus b u i l d e r s . The l a s t three species, on the other hand, indicate mull humus. On the basis of indicator plants, the presence of a humus quality gradient can be presumed. This may the C axis from raw humus to mull. involve a sequence of changes along The l a t t e r i s very rare i n the wet subzone. C l a s s i f i c a t i o n units Sample plots were assigned to three broad groups: xerophytic species combinations, ( l ) dominantly convex r e l i e f , shallow s o i l s , low produc- t i v i t y , (2) mesophytic species combinations, s l i g h t l y convex or straight r e l i e f , deep s o i l s , medium productivity, (3) dominantly hygrophytic species combinations, concave r e l i e f , seepage, high productivity. Group ( l ) . Shallow s o i l s of the convex slopes are characterized by the Tsuga heterophylla - Vaccinium alaskaense - Plagiothecium undulatum edaphic climax. is s i g n i f i c a n t i n t h i s group. - Gaultheria shallon - The presence of subalpine elements Species that should be mentioned i n t h i s connection are Tsuga mertensiana, Chamaecyparis nootkatensis, Rhytidiopsis robusta and C l i n t o n i a u n i f l o r a . The s o i l s are either l i t h i c AC p r o f i l e s or shallow g l a c i a l t i l l s . F l o r i s t i c d i f f e r e n t i a t i o n of the l i t h o s o l s and t i l l s are not d i s t i n c t as i n the dry subzone. This could be a t t r i b u t e d to the very high p r e c i p i t a t i o n in the wet subzone i n which the d i s t r i b u t i o n of lichens i s very l i m i t e d on the forest f l o o r . k6 The plant communities of t h i s group belong to a single association, the Gaultherieto - Tsugetum heterophyllae, represented hy two subassociations: (b) pleurozietosum (a) vaccinietosum alaskaensis (on shallow t i l l s ) 5 and schreberi (on l i t h i c soils). Subassociation (a) and (b) are designated respectively as the orthic and l i t h o s o l i c Vaccinium - Gaultheria type. Forest stands i n these types are of low commercial value but they play an important r o l e i n run-off and erosion c o n t r o l . sequence. They are f i n a l communities i n a d i s t i n c t geoclimatic This sequence r e l a t e s to the s h i f t of the Gaultheria communities from one habitat type to another i n the d i f f e r e n t climatic b e l t s (Table IV-10). (Appendix 111-23 to 2k). Group ( 2 ) . Deep s o i l s of straight t o s l i g h t l y concave topography are characterized by the Tsuga heterophylla - Abies amabilis - Vaccinium alaskaense - Plagiothecium undulatum climatic climax. This community belongs to the wet subzone and apparently forms a t r a n s i t i o n between the PI types of the low a l t i t u d e s and the Abieteto - Vaccinietum (Peterson 1963) of the subalpine zone. The present communities i n t h i s group belong to a single association, the Abieteto - Tsugetum heterophyllae, represented by two subassociations: (a) vaccinietosum alaskaensis, and (b) vaccinio - dryopterietosum austriacae. Subassociation (a) or the orthic Vaccinium - Plagiothecium ecosystem type (Table IV-11 and Appendix 111-25 to 26) includes stands of s u b s t a n t i a l l y higher p r o d u c t i v i t y than those of the V-G types. The s o i l s are generally deep, gleyed i n the lower horizons and with a t h i c k e l u v i a l horizon ( A ) . e The top of the B horizon v i s r i c h i n organic matter ( c f . Lesko 1 9 6 1 ) . Pedogenic cementation as orterde or o r t s t e i n was detected i n most p r o f i l e s . JThe Pseudotsuga - Tsuga - Gaultheria association (McMinn 1957) described from Vancouver Island i s f l o r i s t i c a l l y c l o s e l y r e l a t e d t o subassociation ( a ) . These two units could be fused at the association l e v e l . Table IV-9 PREVAILING ECOTOPIC CHARACTERISTICS OP ECOSYSTEM TYPES IN DIFFERENT CLIMATES ON SLOPES Humid (summer dry) mesothermal Concave r e l i e f , seepage near the s o i l surface Straight relief, mesic soils Convex relief, shallow tiUs or l i t h i c soils Note: Perhumid mesothermal Perhumid (snowy) mesothermal Polystichum - Adiantum Blechnum - Rubus (Springwater swamps) Polystichum - Tiarella Orthic Polystichum Blechnum - Streptopus Eurhynchium - Mahonia Degraded Polystichum Orthic Blechnum Gaultheria - Mahonia Plagiothecium or Plagiothecium - Mahonia Hygric Vaccinium - Plagiothecium Gaultheria - Lichen Orthic Gaultheria or Gaultheria - Mahonia Orthic Vaccinium - Plagiothecium Non-forest communities Lithosolic Gaultheria Orthic Vaccinium - Gaultheria Non-forest communities Lithosolic Vaccinium - Gaultheria (••.. The f l o r i s t i c a l l y closely related communities are arranged diagonally In the table. For example: Eurhynchium - Mahonia - Plagiothecium - Orthic Vaccinium - Plagiothecium. hi The raw humus of the 0V-P1 type differs.! from the raw humus of the 0P1 type as i t i s i thicker and of a somewhat greasy appearance, ; comparable t o the subalpine humus forms (Brooke 19&3)• being Clintonia uniflora, Rubus pedatus and Rhytidiopsis robusta are of greatest frequency on greasy raw humus. Subassociation (b) or the hygric Vaccinium - Plagiothecium ecosystem type (Table IV-11 and Appendix 111-28 t o 27) occurs on somewhat wet s o i l s of r e l a t i v e l y f i n e texture i f compared t o the s o i l s of the 0V-P1 type. Seepage was observed a t the time of sampling i n about 20 per cent of the p r o f i l e s (Lesko 1961). Gleyzation was apparently more advanced i n the HV-P1 type than i n the 0V-P1 type. The presence of Dryopteris austriaca, Athyrium f i l i x - f e m i n a , and Acer cireinaturn s i g n i f i e d the r e l a t i v e l y high moisture content of the s o i l . The HV-P1 type i s ecotopically equivalent t o the DPo type i n the wet subzone. Polystichum munitum may occur i n the HV-P1 type but with low vigour as i t i s probably a t the high a l t i t u d i n a l fringe of i t s d i s t r i b u t i o n . The HV-P1 type represents a t r a n s i t i o n between the 0V-P1 type and the hygrophytic communities of the concave slopes i n the wet subzone. Group ( 3 ) ' S o i l s of the concave slopes are characterized by hygrophytic species combinations (Table IV-11 and Appendix 111-29 t o 32) i n which the sporadic occurrence of Oplopanax horridus, Lysichitum americanum, Gymnocarpium dryopteris, Athyrium f i l i x - f e m i n a , and Habenaria saccata i s i n d i c a t i v e of an excessive s o i l moisture. Seepage was observed i n about 90 P I961). er cent of the p r o f i l e s (Leskok S o i l s are gleyed podzols or gleysols with a thick raw humus horizon of greasy appearance. Sustained dominance of Tsuga heterophylla promotes raw humus accumulation and deterioration of the s i t e s f o r Pseudotsuga menziesii kd and Thuja p l i c a t a . Abundant occurrence of Acer circinatum and Thuja p l i c a t a presumably could a l t e r humus quality toward a duff mull type. The plant communities i n t h i s group belong t o a single association, the Blechneto - Tsugetum heterophyllae. Variations i n a l t i t u d e (and therefore i n macroclimate) r e f l e c t f l o r i s t i c variations among the sample p l o t s . The occurrence or absence of Streptopus roseus i s considered i n the c l a s s i f i c a t i o n on the basis of which two variants are recognized within the Blechneto - Tsugetum heterophyllae: (a) abietosum, and (b) abieto-streptoposum r o s e i . Variant (a) or the orthic Blechnum ecosystem type i s s p e c i f i c t o the lower a l t i t u d e s . occurs above 2600 Variant (b) or the Blechnum - Streptopus ecosystem type feet and indicates a t r a n s i t i o n toward the Abieteto - Streptopetum (Peterson 196k) of the subalpine zone. The peaty Blechnum type (Lesko 1961, O r l o c i 196l) i s extracted from the Blechnum communities and attached t o the spring-water swamps, whereby i t now represents a t r a n s i t i o n to the OB or the BS type. Table IV-IO. Gaultherieto - Tsugetum heterophyllae L i t h o s o l i c Vaccinium Orthic Vaccinium Gaultheria (OV-G) Gaultheria (LV-G) Associations Ecosystem type Upper-slope Convex Land form R e l i e f shape Slope g r a d i e n t Altitude ( f t . ) Hygrotope Stoniness ($) Permeable mineral s o i l depth (cm.) Endo-humus depth (cm.) Ah Eluviated horizon depth (cm.) A pH L-F A B C Humus form S i t e index Douglas-fir f t . per lOOy. western hemlock western redcedar amabilis f i r yellow cedar 0 e Characteristic of species GLACIAL DRIFT LAND TYPE, WET SUBZONE combination s = single measurement 11 (8-16) 1730 (1450-2000)Dry 7 (5-io) 18 (15-21) Nil 9(7-10) 3.38 (3.26-3.50) 3.45 (3.40-3.49) 4.30 (4.oo-4.6o) 1 Raw humus 75 (70-79) 62 (53-69) 65 (48-84) 59 (s) 44 (s) Tsuga heterophylla Thuja p l i c a t a Pseudotsuga menziesii Pinus monticola Chamaecyparis nootkatensis Vaccinium alaskaense Gaultheria shallon Rhytidiopsis robusta Hylocomium splendens Plagiothecium undulatum Upper-slope or h i l l t o p Convex 7 (0-10) 1510 (59O-I8OO) Dry 2 (0-10) 10 (4-15) Nil 10 (4-15) : 3.67 (3.45-4.02) 3.57 (3.40-3.70) Nil 1 Raw humus 69 (60-80) 56 (39-75) 53 (38-81) 40 (s) 67 (s) Tsuga heterophylla Thuja p l i c a t a Pseudotsuga menziesii Pinus monticola Chamaecyparis nootkatensis Vaccinium alaskaense Gaultheria shallon Pleurozium schreberi Rhytidiopsis robusta Hylocomium splendens Plagiothecium undulatum * Abieteto - Tsugetum heterophyllae Orthic Vaccinium Hygric Vaccinium Plagiothecium (OV-Pl) Plagiothecium (HV-Pl) Middle-slope Straight 16 (5-30) 1680 (690-2330) Mesic 55 (40-80) 127 (90-145) Nil 3 (2-5) 3.80 (3.50-4.10) 3.93 (3.80-4.IO) 5.19 (4.97-5.70) Raw humus 123 104 (91-116) 100 (85-113) 94 (78-117) Nil Tsuga heterophylla Thuja p l i c a t a Abies amabilis Vaccinium alaskaense Blechnum spicant. Clintonia uniflora Plagiothecium undulatum Rhytidiadelphus loreus Rhytidiopsis robusta Middle-slope Straight t o s l i g h t l y concave 10 (0-18) 1100 (550-2100) Moist 16 (0-50) 4o+ Nil 2 (0-8) 3-57 (3.30-3.85) 3.81 ( 3 . 6 - 4 . 6 0 ) 5.17 (4.69-5.35) 5.35 (4.90-5.70) Raw humus 127 (118-135) 106 (88-134) 108 (85-148) 85 (73-129) Nil Tsuga heterophylla Thuja p l i c a t a Abies amabilis Vaccinium alaskaense (Acer circinatum) Blechnum spicant Tiarella trifoliata Dryopteris a u s t r i a c a (Athyrium f i l i x - f e m i n a ) (Streptopus amplexifolius) Plagiothecium undulatum Rhytidiadelphus loreus Table I V - 1 0 - Continued Associations Blechneto - Tsugetum heterophyllae Orthic Blechnum Blechnum - Streptopus (OB) (B-S) Ecosystem type Lower-slope Land form R e l i e f shape Concave Slope g r a d i e n t 7 (2-10) Altitude ( f t . ) 1370 (570-2730) Hygrotope, Wet 29 ( 0 - 6 0 ) Stoniness ($>) Permeable mineral s o i l depth 35+ Endo-humus depth ( cm.) 1 (0-15) Eluviated horizon depth (cm.) 5 (0-13) pH L-F 3 . 8 1 (3.17-4.1+0) A 3.82 (3.5I+-I+.05) B 4.84 ( 4 . 2 5 - 5 . 1 3 ) C 5.17 Humus form Raw humus Douglas-fir 125 (96-149) S i t e index western hemlock 118 (96-136) western redcedar 107 (85-149) amabilis f i r 115 (77-141) Nil yellow cedar Characteristic combination of Tsuga heterophylla Thuja p l i c a t a Abies amabilis Vaccinium ovalifolium Vaccinium alaskaense Rubus s p e c t a b i l i s Sambucus pubens (Oplopanax horridus) Blechnum spicant Tiarella trifoliata Athyrium f i l i x - f e m i n a Streptopus amplexifolius Dryopteris austriaca (Lysichitum americanum) (Polystichum munitum) Rhytidiadelphus loreus Hylocomium splendens ( P e l l i a sp.) (Conocephalum conicum) (Eurhynchium stokesii) 0 Note: Lower-.slope Concave' 8 (5-14) 2810 (2650-2950) Wet 34 (25-50) 18+ Nil 6 (0-13) 3.16 1 4.17 5.68 Greasy raw humus 108 (97-123) 112 109 (92-122) Nil" Tsuga heterophylla Thuja p l i c a t a Abies amabilis Vaccinium ovalifolium Vaccinium alaskaense Rubus spectabilis, Sambucus pubens (Oplopanax horridus) Blechnum spicant Tiarella trifoliata Streptopus amplexifolius Athyrium f,ilix-femina Rubus pedatus Streptopus roseus Dryopteris austriaca Cornus canadensis (Lysichitum americanum) Rhytidiadelphus loreus Rhytidiopsis robusta Plagiothecium undulatum Data were compiled from the f i e l d notes of Lesko ( 1 9 6 1 ) , O r l o c i ( 1 9 6 1 ) , and E i s ( 1 9 6 2 ) . 49 Development of plant communities Successional trends i n plant community development are outlined i n Table IV-11. Plant communities are arranged so that the rows i n the table show plant community successions r e l a t e d t o c l i m a t i c changes, and the columns indicate successions r e l a t e d to edaphic changes. Development implies vegetational and environmental changes i n an ecosystem which r e s u l t s i n a successional (time) sequence of plant communities and ecotopes at a p a r t i c u l a r point of the landscape. The successional sequence pertains to such plant communities and ecotopes which presently e x i s t i n the general region. successions No attempt i s made to evaluate i n which the magnitude of change exceeds the present environmental and vegetational amplitudes i n the Coast f o r e s t region. The successional trends i n plant community development can be anticipated on the basis of present vegetation-environmental patterns i n the region. The study technique involves extraction of environmental gradients from the e x i s t i n g environmental pattern and the i d e n t i f i c a t i o n of a plant community sequence along each gradient (see Chapter I I ) . The plant community sequence i s used to predict successional trends. I t should be stressed that a successional sequence of plant communities does not necessarily coincide with a geographic sequence, since a geographic sequence does not always s i g n i f y successional r e l a t i o n s h i p between neighbouring ecotopes or plant communities. Cowles (1901), These concepts are implied i n the works of Clements (19S&, 191$, 1928), Cooper (1913), and Braun (1916) i n t e r a l i a i n which succession i s always i d e n t i f i e d with a plant community sequence along a soil-moisture or a c l i m a t i c gradient. 50 According to the monoclimax theory, plant community succession converges t o a hypothetic climatic climax community i n each climax area (subzone). I t should be stressed as Cowles (1901) pointed out that i n convergence one variable approaches another variable. the climatic climax community i t s e l f i s a changing This implies that entity. Convergence i s the consequence of a trend i n habitat change toward a mesic status. Consequently, the mesic communities must be considered as the most advanced developmental u n i t s (Clements 1916, 1918). This evalu- ation of development i s r e l a t i v e since a plant community (sensu vegetation type) which i s mesic i n one climax area i s representing a hygric community i n a d r i e r adjacent climax area or a x e r i c community i n a wetter adjacent climax area (Table IV-9 ) • A vegetation type as applied i n the present work i s a much smaller unit than the Clementsian association. Therefore, successional convergence includes not only such events which lead t o the u n i v e r s a l establishment of a p a r t i c u l a r dominance type of forest vegetation i n a f o r e s t climate, but also such events which lead through a sequence of many d i f f e r e n t vegetation types within the forest i t s e l f t o a mesic state of vegetation as w e l l as habitats. While a trend of successional convergence i s recognized, i t does not mean that development must go through the complete successional sequence i n every l o c a l i t y of the landscape. In some l o c a l i t i e s , development i s very slow or p r a c t i c a l l y stagnates and i t would require substantial physiographic changes t o move toward a mesic status. Clements and h i s contemporaries ( e s p e c i a l l y Braun 1 9 l 6 ) u t i l i z e d the erosion cycle theory (sensu Davis 1909) to explain convergence of succession i n these p a r t i c u l a r cases. Explanation of the convergence of plant community successions on the basis of physiographic changes cannot be a p r a c t i c a l one i n mountainous t e r r a i n , because 51 t h i s involves a period of time f a r exceeding that required f o r substantial s o i l or c l i m a t i c changes. Each i n d i v i d u a l plant community can be v i s u a l i z e d as the endproduct of development that can be produced i n a p a r t i c u l a r habitat. plant community development requires a habitat change. i n d i v i d u a l community represents a habitat "climax" sensu Braun-Blanquet 1932). Any further In t h i s way, each (permanent community A pattern of the habitat climax communities (climax pattern sensu Whittaker 1953) appears as a cross section across the i n d i v i d u a l developmental l i n e s , evolving i n the d i f f e r e n t habitats. The postulate of convergence has been refuted i n the work of Tansley (1911, 1939) theory of polyclimax. and Nichols (1917) i n t e r a l i a who promoted the These workers assumed the presence of d i s t i n c t developmental trends and climax communities i n d i f f e r e n t habitats. The d i r e c t i o n of plant community succession depends on the nature of the environmental gradient. For example, change to a warmer and d r i e r climate i n the Coastal western hemlock zone could r e s u l t i n succession as indicated by the h o r i z o n t a l arrow;', from r i g h t to l e f t i n Table I V - 1 1 . This succession would lead to the establishment of the Coastal Douglas-fir zone i n the place of the Coastal western hemlock zone. I f the climate turned cooler than i t i s at the present, the Coastal western hemlock zone would change into the Mountain hemlock zone (indicated by arrow, from l e f t to r i g h t i n Table IV-1]). Plant community development i n the Coastal western hemlock zone i s influenced s i g n i f i c a n t l y by erosion, aggradation and s o i l processes. G l a c i a l t i l l s o i l s are very unstable on steep slopes. They are e a s i l y removed by erosion when the continuity of vegetation cover i s interrupted, e s p e c i a l l y a f t e r f i r e s . The trend indicates a p o s s i b i l i t y of 52 complete removal of g l a c i a l t i l l s o i l s from the steep and convex slopes, and a subsequent expansion of the l i t h o s o l i c Gaultheria and other rock outcrop communities. Accumulation of weathering products i s very slow i n the l i t h o s o l i c communities since the weathering rate of hard jock's-' i s very slow and the erosion p o t e n t i a l i n t h i s perhumid climate great. Materials which are removed from the upper slopes are deposited on the lower slopes or c a r r i e d further by the streams. s o i l depth and alter the soil-moisture regime. These deposits increase In t h i s way, aggradation i s a s i g n i f i c a n t source of succession on the lower slopes. G l a c i a l d r i f t i s r e l a t i v e l y young and l i t t l e altered material i n the coastal regions of B r i t i s h Columbia. Therefore, s o i l s originated from g l a c i a l d r i f t may change a great deal i n a r e l a t i v e l y short period of time. The perhumid mesothermal climate supports raw humus accumulation, leaching and subsequent o r t s t e i n development. various depths i n the s o i l p r o f i l e . The o r t s t e i n layer may develop at This i n e v i t a b l y reduces the e f f e c t i v e s o i l depth and a l t e r s the soil-moisture regime. In some habitats seepage may r i s e i n the s o i l p r o f i l e and succession may proceed towards the hygro- or hydrophytic communities. Ortstein development may also bring about a s h i f t toward x e r i c conditions i n those s o i l s which are intensively drained and lack seepage. Seepage w i l l contribute t o changes i n the ecosystems by causing sedimentation of f i n e materials i n the s o i l p r o f i l e which, i n turn, reduce aeration and impede drainage. Seepage water, enriched by nutrients, a f f e c t s the f l o r i s t i c structure of the plant community and consequently may also influence humus q u a l i t y . This r i c h seepage water may promote fast decompo- s i t i o n of the organic matter, thereby a f f e c t i n g soil-., and plant community development. Ta^le. IV-11 Coastal- Douglasf i r zone Wet subzone* Xeric Perhumid (snowy) * microthermal Gaultheria-Mahonia Gaultheria Plagiothecium-Mahonia Polystichum-Tiarella laciniata Lysichitum or Adiant;um. Lithosolic L i t h o s o l i c Gaultheria Gaultheria -Lichen Eurhynchium Hygric Mountain hemlock zone Lower subzone** Coastal western hemlock zone Wet subzone Dry subzone Humid (summer dry) mesothermal Rhacomitrium -Lichen Mesic SUCCESSIONAL (TIME) SEQUENCE OF PLANT COMMUNITIES IN THE GLACIAL DRIFT LAND TYPE AND THE RELATED HABITATS " Orthic •>.GaultheEia Orthic Vaccinium-Gaultheria Orthic Plagiothecium Degraded Polystichum Orthic Vaccinium-Plagiothecium Hygric Vaccinium-Plagiothecium Orthic Blechnum Orthic Polystichum Vaccinium - Lysichitum or Oplopanax - Adiantum * Communities were described by Krajina and Spilsbury ** A f t e r Peterson (1964) and Brooke (1964). Vaccinium-Gaultheria (1953)- Lithosolic Cladothamnus Hygric Cladothamnus Vaccinium Degraded Streptopus Blechnum-Streptopus C hamae cypar i s-Lysichitum or Abies-Oplopanax 53 CHAPT. V THE SPRING-WATER SWAMP LAND TYPE After water infiltrates the soils on the slopes, i t begins to move laterally under gravitational pressure over the impervious layer. If the impervious layer outcrops on the slope, then the overlying water comes to the surface at this point, saturates the soils downslope and a spring-water swamp is formed. Two pedogenically distinct types of spring- water swamps are encountered in the Coastal western hemlock zone: one on waterlogged mineral soils, and the other on waterlogged woody peats. Swamps with mineral soils are confined to concave slopes while woody peats occur in depressions. Spring-water swamps of the Coastal western hemlock zone are characterized by the Thuja-plicata - Vaccinium alaskaense - Lysichitum americanum edaphic climax. S o i l water reaction is usually below pH 5-5 (Lesko 1 9 6 1 ) . The Thuja plicata - Lysichitum americanum eaaphic climax characterizes the spring-water swamps in the Coastal Douglas-fir zone (McMinn 1957) where s o i l water reaction is close to neutral. The occurrence of Oenanthe sarmentosa, Mitella ovalis and Veronica americana as well as the absence of Vaccinium alaskaense readily separate the spring-water swamps of the Coastal Douglas-fir zone from those of the Coastal western hemlock zone. Spring-water swamps of the subalpine zone are acid or slightly alkaline (Brooke 1 9 6 4 ) . The combinations of Chamaecyparis nootkatensis, Vaccinium alaskaense, Lysichitum americanum and Coptis asplenifolia indicate an acid subalpine swamp. The neutral to slightly alkaline swamps are characterized by the presence of Leptarrhena pyrolifolia, Caltha leptosepala, and Petasites frigidus (Peterson 1 9 6 4 ) . 54 Spring-water swamps of the Coastal western hemlock zone are assigned to two associations: (a) Lysichiteto - Thujetum plicatae, and (b) Copteto - Thujetum plicatae. The appropriate association characters are compiled in Table VI-1 and Appendix 1 1 1 - 3 5 to 3 8 . The f l o r i s t i c structure of the spring-water swamps is remarkably uniform throughout the Coastal western hemlock zone. Site indices vary dependent on species but the better-drained areas support better growth than the low lying surface within spring-water swamps. Association (a) or the Vaccinium - Lysichitum ecosystem type (V-Ly) occurs on slopes on mineral soils as well as in depressions on woody peats. In both locations, the top s o i l is black muck (pitchy anmoor, Lesko 1 9 6 1 ) . Association (b) or the Lysichitum - Coptis ecosystem type (Ly-C) is confined to organic soils characteristically possessing a well-humified surface horizon underlain by woody peat. These soils occur at the margin of high moors, and are directly exposed to run-off water or seepage from the adjacent slopes. The Ly-C type appear§:i. as a transitional community between the spring-water swamps and the high moors. 55 CHAPT. VI . THE RAVINE ALLUVIAL LAND TYPE In the glossary of geology and related sciences (American Geological Institute I962), a ravine is defined as "a depression worn out hy running water, larger than a gully and smaller than a valley". This term is applied in the present work to narrow valLey-li^e -depressions which were cut by running water in the glacial drift substratum, and which usually contain permanent or semi-permanent streamlets or creeks. "Stream-edge forest" (from the German "Bachbegleitender Wald") seemsd appropriate to designate the Thuja plicata - Oplopanax horridus stands of the ravine a l l u v i a l land type. These forests are remarkably uniform throughout both subzones, and are therefore classified as a single association: Oplopanaceto - Thugetum plicatae. This association is also designated as the Oplopanax - Adianthum ecosystem type (0-A). The soils are bouldery, gravelly, sandy, and mucky with permanent moving water as seepage or overflow. Some type characteristics are given in Table VI-1 and In Appendix 111-33 to 34. Secondary stands can be formed by Alnus rubra. thrives on decaying wood. Tsuga heterophylla Pseudotsuga menziesii establishment following forest fires is limited to the side slopes or to the raised grounds in the ravine. The 0-A type extends into the subalpine zone in which Thuja plicata is replaced by Chamaecyparis nootkatensis, and Tsuga heterophylla gives way ftp Tsuga mertensiana (Peterson 1964). Table V - l SPRING-WATER SWAMP AND RAVINE ALLUVIUM LAND TYPE Lysichifceto - Thujetum p l i c a t a e Copteto - Thujetum p l i c a t a e Oplopanaceto - Thujetum plicatae Associations Vaccinium-Lysichitum (V-Ly) Ecosystem type Land form R e l i e f shape Slope g r a d i e n t Altitude f t . Hygrotope Ground water table pH 0 C Humus form S i t e index Douglas-fir f t . p e r lOOy. western hemlock western redcedar Characteristic combination of 0 Lower-slope and outwash terrace Concave Lysichitum-Coptis (Ly-C) Oplopanax-Adianturn Depression Straight Ravine Concave (0-A) 2 (0-10) 88o (700-160) 0 820 (700-1000) 6 (4-10) 906 (480-1800) Swampy Near sufface, moving Swampy Near surface, stagnant Swampy Near surface, intermittent overflc 4.26 (3.04-4.90) 5.31 (4.60-6.10) Anmoor or peat anmoor 102 (88-130) 101 (76-125) Thuja p l i c a t a (Picea sitchensis) Vaccinium alaskaense Rubus s p e c t a b i l i s Lysichitum americanum Blechnum spicant. Dryopteris austriaca Tiarella trifoliata Athyrium f i l i x - f e m i n a Conocephalum conicum Mnium punctatum Eurhynchium stokesii P e l l i a sp. Sphagnum squarrosum Peat anmoor 98 (80-129) 79 (70-98) Thuja p l i c a t a Pinus monticola Menziesia ferruginea Rubus s p e c t a b i l i s Vaccinium alaskaense Sambucus pubens Lysichitum americanum Coptis a s p l e n i f o l i a Coptis t r i f o l i a Mnium punctatum Sphagnum squarrosum 5.47 5.80 Anmoor or mull 136 (130-150) 137 (84-160) 121 (100-44) Thuja p l i c a t a Oplopanax horridus Ribes bracteosum Rubus s p e c t a b i l i s Vaccinium alaskaense Lysichitum americanum Adiantum pedatum Athyrium f i l i x - f e m i n a Blechnum spicant Viola glabella Circaea alpina Gymnocarpium dryopteris Tiarella trifoliata Dryopteris austriace Eurhynchium s t o k e s i i Conocephalum conicum P e l l i a sp. Sphagnum squarrosum Mnium punctatum Mnium menziesii o o H H PJ oq cu VJl VJl 56 CHAPT. VII THE SQUAMISH ALLUVIAL PLAIN LAND TYPE The Squamish a l l u v i a l - p l a i n i s located about kO miles north of Vancouver and includes an area of approximately 17,000 acres. An estimated two-thirds of the t o t a l area i s influenced by intermittent flood water. Character of the stream In the studied section, the average gradient of the Squamish River i s approximately 6 . 3 f t . per mile. wide meandering course (Figure V I I - l ) . The natural channel follows a The wide v a l l e y f l o o r and the rounded topographic forms on the facing side slopes indicate that the v a l l e y served as an important channel way f o r ice movement during the l a s t g l a c i a t i o n (Mathews 1 9 5 8 ) . Fluctuations of the water l e v e l are a t t r i b u t a b l e to surface underground run-off. or In t h i s respect, the water l e v e l of the stream i s i n d i r e c t l y controlled by the climate, s o i l s , orography, and vegetation the drainage area. of When fluctuations are considered f o r a r e l a t i v e l y short period of time, the c o n t r o l l i n g factors may be considered to be constant with the exception of the climatic elements which continuously change i n time. At gauging s i t e 8 GA-22"*", diurnal, seasonal, and i r r e g u l a r water l e v e l fluctuations are observed. Diurnal fluctuations (Figure V I I - 2 ) are a t t r i b u t a b l e to variations i n the i n t e n s i t y of surface run-off, controlled by diurnal temperature changes. The e f f e c t of temperature on the water l e v e l at the gauging s i t e i s registered 3 to 36 hours a f t e r i t s occurrence, depending on the season and the elevation of snow l i n e . maxima occur at about k a.m., Summer diurnal approximately 12 hours l a t e r than the diurnal "^The gauging s i t e i s located near Brackendale, B. C. Gauge height readings have been recorded by the Water Resources Branch, Vancouver regularly since August 1955Some observations are available also from December 1922 to June 1926. Fig. VII-1 P h y s i c a l f e a t u r e s on t h e a l l u v i a l plain temperature maximum. The summer diurnal minima occur at about k p.m. 57 The average amplitude in gauge height readings is approximately one foot. Winter diurnal maxima are registered at about 8 p.m. and the daily amplitude is less than one foot. Water level fluctuations are negligible for most parts of the day in winter. The annual climatic cycle is signi- fied by seasonal fluctuations in the water level, with a summer maximum and a winter minimum (Figure VII-3)• The irregular fluctuations of the water level are correlated with weather peaks, occurring in the drainage area (Figure VII-^-). Each gauge height reading can be partitioned as the baseflow (attributable to underground run-off) and the remaining portion of the flow (attributable to surface run-off). Both types of flow are related indirectly to rain or meltwater which can initiate run-off. Within the drainage area the average time lag between the occurrence of the rain or the snowmelt and the observed effect through surface run-off upon the water level of the main stream is approximately 2k hrs. underground run-off is presumably much longer. The time lag in Therefore each gauge height reading signifies the influence of two distinct sets of climatic events, one associated with surface run-off and the other related to underground run-off. Because of the time lag which exists between these two sets of climatic events, the gauge height readings cannot be correlated directly with temperature or precipitation, unless they were partitioned 2 by subtracting baseflow from the total gauge height. The standardized gauge height readings (the baseflow is subtracted from the total gauge height) were matched with the daily climatic readings so that each gauge height coincided with the temperature and %he hypothetical smooth curve connecting the lowest points of the polygon in Figure VII-4. AVERAGE MONTHLY GAUGE HEIGHTS 1955-1959 *et Mean summer water mark 10 5J Mean winter water mark 1: ( 1 1 ( 1 1 1 1 1 1 1 Nov. Dec. Jan. Febr. Mar. Apr. May June July Aug. Sept.Oct. Fig. VII-3 p r e c i p i t a t i o n readings of the previous day. In the computations, days with temperature maxima below 33°E were not included because on such days no surface run-off contributes to water l e v e l changes i n the main stream. The regression of mean d a i l y gauge heights on temperature maximum, temperature minimum, and r a i n f a l l was computed with automatic reduction i n a l i n e a r model to determine the r e l a t i v e importance of the climatic variables on the water l e v e l changes. The c l i m a t i c data originated from A l t a Lake (Station No. l ) f o r the period November 1, 1956 t o October 3 1 , 1957. The r e s u l t s are compiled i n Table V I I - 1 , and the c o r r e l a t i o n c o e f f i c i e n t s are p l o t t e d i n Figure V I I - 5 . Table V I I - 1 Period EXPLAINED VARIATIONS IN GAUGE HEIGHT READINGS (1956-1957) Source of Explained No. of variation variation observations (100R ) 2 November Tmax. + Tmin. + Rain Tmin. + Rain Tmin. alone 39-9 38.8 35-1 30 Tmax. + Tmin. + Rain Tmax. + Tmin. Tmin. alone 59-4 56.8 46.3 26 January and February Tmax. + Tmin. + Rain Tmax. + Rain Tmax. alone 29.4 28.8 27.3 11 March Tmax. + Tmin. + Rain Tmax. + Tmin. Tmin. alone 12.8 10.9 9-9 30 April Tmax. + Tmin. + Rain Tmax. + Rain Tmax. alone 58.2 51-9 34.8 30 May Tmax. + Tmin. + Rain Tmax. + Rain Tmax. alone 42.6 36.7 12.9 24 Tmax. + Tmin. + Rain Tmax. + Tmin Tmax. alone 47.7 38.7 31.3 26 December June 59 Table V I I - 1 - Continued Source of variation Period Explained variation (100 R ) Wo. of observations 2 July- Tmax. + Tmin. + Rain Tmin. + Rain Tmin. alone August September October kk.k 3k. 5 23-9 31 Tmax. + Tmin. + Rain Tmin. + Rain Rain alone 61.1+ 60.5 51.5 31 Tmax. + Tmin. + Rain Tmin. + Rain Rain alone 85.5 Qk.k 73-k 30 Tmax. + Tmin. + Rain Tmin. + Rain Rain alone 76.T 76.7 67.7 31 Gauge height readings are naturally considerably lower i n winter than i n summer. The proportion of the gauge height variations attributable to r a i n i s r e l a t i v e l y small i n winter; the main factor which controls the variance i s temperature. The r e l a t i v e importance of the climatic factors do not undergo substantial change u n t i l a f t e r June or July. At that time, the snow has disappeared from most parts of the drainage area and the importance of the r a i n i s proportionally increased. Gauge height readings are p o s i t i v e l y correlated to minimum temperature and negatively correlated to maximum temperature i n summer. The negative c o r r e l a t i o n coincides with clear days with high temperatures and decreased run-off. The p o s i t i v e c o r r e l a t i o n between minimum temperature and gauge height readings coincides with low temperatures and r a i n . As long as large amounts of snow l i e on the drainage area, there i s p o s i t i v e c o r r e l a t i o n between maximum temperature and gauge height reading. Storms passing over the drainage area may cause peaks i n gauge height readings i n summer, and the warmer weather or r a i n at low a l t i t u d e s may be responsible f o r winter peaks. Precipitation •8 •7 -| •6 Temperature minimum •5 _ •4 3 •2 •I _ 0 _ •I Temperature maximum - •2 _ •3 _ —r-—i Nov. Dec. J.-F. r Mar. I i Apr. May i June i July i Aug. I I Sept. Oct. F i g . VII-5 Correlations (r) of the gauge height readings with the c l i m a t i c elements. Strong l i n e s indicate s i g n i f i c a n t correlations at .05 P. Observation period: 1956 - 1 9 5 7 . . 6o The average number of overflow days f o r the period 1955 i s p l o t t e d against gauge height i n Figure VTI-6. - 1959 Line b of Figure VTI-6 can be computed as °days= ~ 86 -99 H . ft + k.lQ Sy = 16 days and F = 299 H|t. - 0.086 H? . t ( s i g n i f i c a n t at .005 + 519-5; P)? 100 R= 2 98 % The equation can be used only i f H S 5 f t . Some general s t a t i s t i c s may be of interest as given i n Table VII-2. Table VII-2 SOME GENERAL STATISTICS Gauge height (feet) Discharge (cuf. sec.) Average summer water mark (May 1 - Oct. 31) 8.8 13200 Average winter water mark (Nov. 1 - Apr. 31) 3'5 2600 Mean water mark 6.5 78OO High water mark (Sept. 6, 1957) 18.7 Low water mark (Feb. 12, 1923) 0.7 The drainage area above Brackendale was Resources Branch, Vancouver, to be 765 786OO 388 estimated by the Water square miles. Erosion, transportation, and deposition depend l a r g e l y on the v e l o c i t y and turbulence of the flow. A great part of the load comes from the erosion of the high banks (Figure V I I - l ) where turbulence i s greatest. Large quantities of the transported material are dumped by the t r i b u t a r i e s into the Squamish River. The load, i n the form of a solution, as w e l l as c o l l o i d a l p a r t i c l e s , k i s more or less evenly d i s t r i b u t e d throughout the water p r o f i l e . Coarse sand i s c a r r i e d i n suspension i n the zone of greatest turbulence. Pebbles ^100 R2 = c o e f f i c i e n t of determination, Sy = standard error of estimate, F = variance r a t i o f o r regression. ^ h i s holds true generally f o r a l l streams according to Leet and Judson (1954). to follow page 60 F i g . VII-6 Average number of overflow days per annum (a) and, f o r the period, May 1 - September 30, (b). Observations pertain to the period, October" 1," ^1955 - September 30, 1959* are moved and rolled on the bottom. 6i Occasionally, boulders are dislodged also by the branches and roots of large snags which, as they are swept along in the current, plow the bottom of the channel. If flood water spills over the bank, i t w i l l lose its transporting power and the load is deposited gradually. horizontal and vertical gradients. directly along the channel edge. Deposits are sorted along Coarse particles are deposited f i r s t Fine particles are swept onto the high benches or further inland. The vegetation-environmental pattern. While the meander cuts away the bank where the velocity of the water is greatest, i t deposits sediment in the opposite bank where the velocity is least. This causes a migration of the meander in the flood plain and builds up a series of low sand ridges that are open to plant colonization. Additional deposits of sand w i l l raise the surface of the ridge above the average summer water mark. At this level, a tiny horizon of s i l t may accumulate on the surface from the withdrawing floods. On this suitable seed bed, Salix, Alnus rubra and Populus trichocarpa may regenerate. Successful establishment, however, requires the coincidence of several factors. At the time of seed dissemination, the flood should have retreated leaving a moist nutritive surface s o i l behind. After germination, a long flood-free period is required for successful development of the seedlings. If fresh deposits are in direct contact with an already colonized bench, plant propagation is frequently vegetative. In such situations, Equisetum arvense is the f i r s t species to establish i t s e l f . By its production of long rhizomes, this plant is an efficient colonizer of loose sand. A dense stand of Equisetum w i l l stabilize sand and promote aggradation. 62 The f i l l of the trough behind the low ridge (Figure VTI-l) i s at f i r s t mainly s i l t . r , " I f i t h e i t r o u g h i s f i l l e d up to the l e v e l of the ridge, no v i s i b l e s u r f i c i a l land mark would indicate i t s previous existence. The s o i l p r o f i l e s w i l l be d i s t i n c t , however, by the presence or absence of a s i l t or clay s u b s o i l horizon. Scirpus, Carex and Oenanthe. The early colonizers of such troughs are These plants can withstand long stagnation of water on poorly drained s o i l s . At or s l i g h t l y below the mean water mark, Scouleria aquatica and Hygrohypnum ochraceum form i n i t i a l colonies on s t a b i l i z e d boulders. Examples of t h i s community are r e l a t i v e l y rare but are w e l l developed at the edge of the Cheakamus Fan. Scouleria and Hygrohypnum are attached f i r m l y to the substratum and r e s i s t a strong current and long summer overflow. A surface which i s vegetated w i l l aggrade faster than the without vegetation. one This w i l l i n i t i a t e a process of d i f f e r e n t i a t i o n of l e v e l s on the f l o o d - p l a i n . Topographic forms which were produced by an even aggradation under stands of vegetation may be c a l l e d benches and they can be c l a s s i f i e d by t h e i r r e l a t i v e height above the zero water mark, a water l e v e l which coincides with the zero of the r i v e r gauge. The extent of a uniform bench coincides with a uniform even-aged stand of vegetation under which deposits were l a i d down by intermittent overflow i n a rate and extent l a r g e l y determined by the vegetation i t s e l f . Within these l i m i t s , s o i l s , conditions and p o t e n t i a l p r o d u c t i v i t y are the same. The d i f f e r e n t bench l e v e l s r e f l e c t v a r i a t i o n s i n the time of establishment and they v i r t u a l l y "grow" upward. A low bench may overflow of the i n i t i a l stand grow to the l e v e l of a high bench during the l i f e time of a single cottonwood generation. Benches are frequently fragmented as the consequence of the r i v e r erosion. It i s possible to d i s t i n g u i s h between the benches and the terraces i n spite of t h e i r s i m i l a r i t y i n form. Hefley (1937) c o r r e c t l y pointed out 63 that benches (or levels) are aggradation forms within the flood-plain and they are a t t r i b u t a b l e t o the action of overflow water, wind, and vegetation. Terraces, on the other hand, mark a former v a l l e y f l o o r l e v e l as stated by Thornbury (1958), n<i a a r e l a r g e l y the products of stream erosion rather then deposition (Gilbert 1&T7)• Individual benches d i f f e r i n t h e i r r e l a t i v e height and post-flood drainage which factors account f o r most vegetational variations on a f l o o d - p l a i n ( c f . Shelford 195^, Toth 1958, and Karpati and Toth 1962). D i f f e r e n t successional trends evolve on the d i f f e r e n t i n i t i a . At the upper l i m i t of the Scouleria - Hygrohypnum bench, the spaces among the boulders are f i l l e d with sand and the establishment of willows, red alder or black cottonwood may take place. After successful establishment, the new t h i c k e t w i l l decrease water v e l o c i t y and accelerate aggradation. become f u l l y or p a r t i a l l y covered by sand and the bryophytes gradually as they become buried. The boulders disappear The establishment of Elymus glaucus, Lonicera involucrata and Rubus s p e c t a b i l i s follows and willows are gradually shaded out by the rapid growth of Alnus rubra and Populus trichocarpa. Salix sitchensis and S a l i x scouleriana are the f i r s t to disappear followed by S a l i x lasiandra. As the deposits increase i n depth, the proportion of Lonicera 1 involucrata and Rubus s p e c t a b i l i s increases. At t h i s stage the stand i s 20 30 years o l d . Populus trichocarpa dominates with Picea sitchensis abundant i n the shrub layer. The s o i l i s from two t o three feet deep and consists of sand underlain by gravel and stones. On the sand ridges and on the Equiseturn bench, development leads also to the Lonicera - Rubus stage but t h i s i s preceded by an early stage of willow thicket i n which Equisetum arvense i s the dominating plant of the herb layer. The s o i l i s s i m i l a r to that described i n the preceding paragraph except that boulders are not present i n the subsoil and the sand i s somewhat deeper. 64 In the trough, the o r i g i n a l Sc irpus - Carex - Oenanthe community i s replaced "by the willow-alder-cottonwood t h i c k e t . With the completion of the f i l l of the shallow trough, drainage improves and the deposits w i l l be mainly of sand. Improved drainage i s i n h i b i t i n g f o r the available species of Carex, l e s s so f o r Scirpus microcarpus and the least f o r Oenanthe sarmentosa. Development leads to a Lonicera - Rubus stage i n which Oenanthe sarmentosa w i l l occur sporadically. clay. Here the top s o i l i s sand underlain by s i l t or The bottom s o i l horizon i s always gravel. The Lonicera - Rubus bench i s frequently flooded but the deposited sediments are f i n e r than before. Eventually, a loamy sand surface horizon accumulates and the proportion of Lonicera involucrata decreases. The establishment of Symphoricarpos r i v u l a r i s on t h i s bench l e v e l indicates that a gravel horizon i s close to the s o i l surface and follows a recent s h i f t i n the p o s i t i o n of the r i v e r bed. Good examples of the Symphoricarpos stage are common on the Cheakamus Fan. In several l o c a l i t i e s near Squamish, the Symphoricarpos stage has developed following a r t i f i c i a l excavations i n the i n t e r e s t of flood c o n t r o l . s p e c i f i c to deep loam s o i l s . Oplopanax horridus and Ribes bracteosum are In both the Symphoricarpos as w e l l as Ribes - Oplopanax communities Picea sitchensis and Populus trichocarpa dominates at the beginning, and subsequently, Picea sitchensis alone. On t h i s l e v e l , the overflow i s extremely rare and vegetation i s conditioned by underground movement of water which varies with the f l u c t u a t i o n of the water l e v e l of the stream. Development on the Symphoricarpos and Ribes - Oplopanax bench i s very slow and involves some s o i l p r o f i l e development as w e l l . \.. ,,• • ' .'. r If the habitat i s no longer affected by overflow but i n which seepage exists, the stand w i l l be r i c h i n deciduous trees and herbs. Theses conditions promote an e f f i c i e n t decomposition of the organic matter and melanization leading to the development of a h r u n i s o l i c p r o f i l e (sensu Report 1963 S o i l Survey Committee of Canada). 65 of the National I f no seepage i s present and the stand i s dominated hy coniferous trees, raw humus w i l l accumulate. p r o f i l e develops. A podzol B r u n i s o l i c s o i l s and seepage are associated with an abundant occurrence of Polystichum munitum, and podzols with raw humus plants. The ecosystem pattern of a flood-plain i s i n a continuous state of flux. As the meanders migrate from one side of the v a l l e y to the other, r . ' benches and.plant communities are destroyed along the outside bank. ; The production of new benches and new plant communities i s most c l e a r l y marked on the inside bank of a meander. ; An alternate channel can develop when a meander reaches a c r i t i c a l size. A new pattern of overflow and the post-flood drainage along the alternate channel can i n i t i a t e changes i n the ecosystems. The distance of the flow i s shortened by the alternate channel; t h i s increases the r i v e r gradient. A new equilibrium i s achieved by downcutting i n the r i v e r bed. If the break-through s i t u a t i o n can develop. downcutting occurs across a medium bench, a unique Overflow duration i s reduced on the benches (due to i n the bed which r e s u l t s i n the r e l a t i v e increase of bench height). S o i l depth i s not a l t e r e d substantially (because bench l e v e l i s increased by downcutting and not by sedimentation). The lesser vegetation w i l l undergo rapid changes but the crown canopy w i l l remain e s s e n t i a l l y unaltered f o r a c e r t a i n period of time depending on the stand age. The overflow pattern i n a unique s i t u a t i o n described i n the preceding paragraph resembles that of the Ribes - Oplopanax type. The soil p r o f i l e , which contains a gravel horizon close to the s o i l surface, i s similar to that of the Lonicera - Rubus type. The rate of sedimentation i s 66 low, and therefore no s i g n i f i c a n t increase of s o i l depth can be anticipated. The crown canopy consists of deciduous trees (as i n the Lonicera - Rubus type) in early developmental stages but these give way to the conifers l a t e r (as i n the Ribes - Oplopanax type). In the lesser vegetation Symphoricarpos r i v u l a r i s i s the most abundant species. A gravel horizon close to the surface i n the s o i l p r o f i l e accelerates post-flood drainage which could explain the presence of Symphoricarpos and the absence of Oplopanax horridus and Ribes bracteosum. The occurrence of a gravel horizon close to the s o i l surface on a high bench does not necessarily indicate an e a r l i e r downcutting i n the r i v e r bed. The t r i b u t a r y streams can dump gravel even on the high benches of the main stream. Bypassed by an alternate channel, the long h a i r p i n turns become meander scars (Figure V T I - l ) . The main current moves through the new and the f i l l of the scar begins. than i n the scar. The f i l l i s more intensive at the outlets Flood water s p i l l s over the high f i l l of the outlets and stagnates i n the scar. result. channel S i l t and clay are deposited and g l e y s o l i c s o i l s Periodic deposits r a i s e the bottom and i n the shallow water the establishment of hydrophytic plants s t a r t s . A gradient i n water depth from the inside bank toward the outside bank and from the straight stretches of the channel toward the curves r e s u l t s i n zonation i n the invading vegetation. If the l e v e l of the establishment of willows represented the zero reference mark, -6 feet would be the approximate l e v e l i n the establishment polysepalum, Sparganium simplex, and Potamogeton natans. of Nuphar This b e l t i s succeeded by a zone of Equisetum f l u v i a t i l e which i s a t r a n s i t i o n toward the zone of the d i f f e r e n t Carex species. stand of Spiraea menziesii follows. I f the slope i s small, a pure On the reference l e v e l , willows ( e s p e c i a l l y S a l i x lasiandra), Alnus rubra, Oenanthe sarmentosa, and 07 Lysichitum americanum are established. plays an important part. In the f i l l , the organic component Under Nuphar, Equisetum and Carex, g y t t j a develops. The s o i l s of the Spiraea and S a l i x b e l t s are "gleysols. Some parts of the scar grow f a s t e r than the others and subsequently oxbow lakes are formed i n the depressions true low moors i n t h i s region. l e f t behind. These are the only The water i s s l i g h t l y a c i d or neutral and they are s t i l l affected by intermittent floods. During the period of low discharge, the f l u c t u a t i o n i n water l e v e l i s independent of the r i v e r . But at approximately the lUft.water mark, overflow occurs which a f f e c t s most of the oxbow lakes i n the l o c a l i t y . The development of the oxbow lake can be traced up t o the l e v e l of the willow t h i c k e t . A mathematical model of succession In synecological studies, i t i s p a r t i c u l a r l y i n t e r e s t i n g to discover how vegetation reacts to changes i n the environment and how vegetation a f f e c t s the environment. The problems are always multivariate i n nature and i t i s possible to define them i n the manner of mathematical equations. For t h i s purpose, Jenny (19*4-1) proposed a general s o i l function, s = f ( c l , o, r , p, t . . . ) . By d e f i n i t i o n , the ^properties of s o i l s (s) are the function of climate ( c l ) , organisms (o), r e l i e f ( r ) , factors. parent material (p), time ( t ) , and the non-specified In a recent work, Jenny (1961) extended the f a c t o r equation to the complex of s o i l , vegetation, and animals. This function i s mathematically incorrect, since the variables are not a l l independent on the r i g h t hand side, unless they are r e s i d u a l matrices from which the e f f e c t of a l l i n t e r f e r i n g factors were removed. The interference i s most obvious with respect to time as the e f f e c t s of a l l other 68 factors are functions of time. R e l i e f could be the function of parent material, and climate i s greatly modified by r e l i e f . Influenced by Major's (1951) e f f o r t to apply calculus i n the d e f i n i t i o n of vegetation, an attempt i s made here to provide an e x p l i c i t d e f i n i t i o n of changes i n a f l o o d - p l a i n ecosystem. Hypothesis. The state of any vegetational property of a f l o o d - p l a i n ecosystem r e s u l t s from the state of overflow (P), land form (L), b i o t i c environment (B), climate (C) and time (T). At the i n i t i a l stage (T = V - f(F , L , B , Q Q 0 C ) Q 0), ...(1) The state of overflow i s characterized by i t s duration and by the amount and q u a l i t y of i t s sediment load. Overflow duration decreases with the increase of bench height above a reference l e v e l . gradients of the water p r o f i l e . The load i s sorted along v e r t i c a l Therefore, a bench receives f i n e r sediments during a low overflow than during a high overflow, and generally the deposits are f i n e r on a high bench than on a low bench at a comparable l o c a l i t y . The amount of sediment decreases with increase i n bench height. Land form i s interpreted here i n the sense of post-flood drainage. Benches and scars are most d i s t i n c t i n t h i s respect. The b i o t i c environment i s the source of b i o t i c i n f l u x thereby pre-determining the possible range of b i o t i c v a r i a t i o n i n ecosystems. The c l i m a t i c f a c t o r of the drainage area may be p a r t i t i o n e d into d i r e c t and i n d i r e c t components. The d i r e c t component defines the general type of b i o t a but i s not s u f f i c i e n t l y variable to explain v a r i a t i o n among ecosystems i n a l i m i t e d study area. The i n d i r e c t component i s expressed through the f l u c t u a t i o n i n water l e v e l which shows diurnal, annual, i r r e g u l a r cycles. and 69 Each factor on the right-hand side of equation ( l ) i s complex and a l l factors i n t e r a c t . As i t i s d i f f i c u l t to work with a number of i n t e r a c t i n g variables, the observations are s t r a t i f i e d on the basis of land form, and bench l e v e l (H) i s substituted f o r overflow. Bench l e v e l has a single parameter, i . e . height above the reference l e v e l . v H Q - ( o> V f F C o> » ( o > o> o ) f H B Thus, •••^ C i s the base l e v e l of establishment of pioneer trees. A f t e r a period of time AT, provided that aggradation continues and erosion does not occur, succession takes place. This i s indicated by increments i n the quantities of the variables (AV, A H, AB, A c ) . V +Av = f ( H +AH,B Q D +AB, C ..-(3) +AC) Q In a period of a few decades,AH becomes a s i g n i f i c a n t quantity i n comparison with H Q whereas A B andAC remain very small i n comparison with B respectively. equation 0 and C Q Therefore, equation (3) becomes approximately the same as (k). V +AV = f ( H + A H , B , C ) Q 0 Q ...(4) Equation (2) i s subtracted from equation (k) and divided through by A H. A V _ f ( H + A H)-f(H ) _ A f 0 Q Z\H A H ...(5) AH Thus the constant terms which are common t o both equations are eliminated. I f A H approaches a very small quantity, then the derivative, dV dH = df dH ...(6) 70 expresses the amount of vegetational f l u x per unit change of bench height at any p a r t i c u l a r value of height. The d e f i n i t e i n t e g r a l of equation i s an expression of succession with respect to bench height. (6) When the l a t t e r i s expressed as a function of time, the d e f i n i t e i n t e g r a l defines succession 1 with respect to time. Tr n Hn in V = | i i i . dH A 2£ dT V = ...(7) dT H Application. o T o Symbols refer to mathematical operations which, when performed, reveal new r e l a t i o n s h i p s between the f a c t o r s embodied i n the equation. " I f the variables cannot be expressed i n the form of operable equations then use of calculus symbols adds l i t t l e to our knowledge of the relationships between the variables" (Verduin 1952). A transect was selected and seven observation points were established i n the f i r s t growth stands consisting predominantly of red alder and black cottonwood, on the low bank of a r a p i d l y developing meander of the Squamish River at B i g Bend. F i e l d data (Table VTI-3) included r e l a t i v e bench height (H) (above the zero water mark) and depth of the alluvium (A) to the base l e v e l of establishment of f i r s t growth pioneer trees as w e l l as age of the trees (T) and floristic descriptions of the sample quadrats. The base l e v e l of establishment was determined by excavation of the trunk of at least one dominant red alder at each observation point. It became apparent by v i s u a l inspection of the f i e l d data that the rate of change i n the number of species (N) (per sample plot) gradually decreases with an increase i n time (T). There i s a sudden increase i n the number of species during the f i r s t two decades but then i t levels o f f soon after. Therefore i t seemed appropriate to express t h i s trend symbolically as Table V I I - 3 Observation Bench l e v e l Aggradation point ft. depth f t . (H) (A) BIG BEND DATA Tree age years (T) No. of species i n 100 sq. m. area (N) Plant community 1 10.5 0.4 3 2 Seedling stage 2 12.7 0.8 5 5 Low S a l i x - Populus 3 13-5 1.2 7 10 High S a l i x - Populus 4 16.5 3-5 16 23 Medium Lonicera - Rubus stage 5 17-5 5-0 22 20 High Lonicera - Rubus stage 6 18.0 4.5 25 21 Low Ribes - Oplopanax stage 7 21.5 8.0 89 34 High Ribes - Oplopanax stage stage stage 71 a_N ...(8) b = dT T dT where b i s the constant of proportion. E = b log After integration of dW « b T e + c ~ ...(9) The numerical values of the two constant terms (b and c) were calculated by the least-squares method (Steel and T o r r i e i 9 6 0 ) on the basis of the data i n Table V I I - 3 . Thus N = 9.60 l o g T - 8.56 e ,.'.'.''(10) Equation (10) gives - 0 0 at T = 0 . equation (10) can be adjusted to N = 0 corresponding to T = 0 , because when But with K = T + 2 . 5 substitution W = 0 = 9 . 6 0 log (T + x) - 8 . 5 6 and T = 0 , the constant of t r a n s l a t i o n x = 2.5- Equation (10) can be expressed also as N =[9. 60 l o g e K (11) K o Bench height increases with time, unless erosion occurs. The time factor i s approximated by the age of f i r s t growth pioneer trees. height increase has followed a similar pattern as N. Bench The regression of bench height (H) on time i s : H = 3.25 log e T + 7-28 With K = T + k substitution, equation (12) ...(12) i s adjusted to H = 12 f t . (the observed average base l e v e l f o r the abundant establishment of the f i r s t growth pioneer trees on the low bank of t h i s p a r t i c u l a r meander bend) 72 corresponding to T = 0 . Prom H = 12 = 3-25 log constant of t r a n s l a t i o n x = 4 . 0 when T = 0 . (T + x) + 7-28, Equation (12) the can he expressed also as H = At T = 33 (or KQ = 37) 3.25 log and T = 0 , ( K =• k), Q e f Kj ...(13) equation ( V i n d i c a t e s a bench height increase from 12 f t . to 19 f t . Under these conditions, equation ( l l ) gives approximately 26 units increase i n the number of species including trees, shrubs, herbs and humus inhabiting bryophytes (humophytes). to say that i n about three decades a low bench may That i s grow as much as seven feet and during t h i s same period succession may proceed from an i n i t i a l black cottonwood stand (with three or four companion species) to a complex stand of approximately 25 species at that p a r t i c u l a r meander bend of the Squamish River. Table VII-4 Equation no. SOME STATISTICS OP BASIC EQUATIONS Dependent variable Source of variation Explained variation (100 R ) Standard error of the estimate (Sy) 10 Number of species (N) Time (T) 96 + 12 Bench height (H) Time (T) 99 + 2 species 0.3 f t . Bench height increase can be p a r t i t i o n e d as absolute increase (due to aggradation) and r e l a t i v e increase (due to downcutting). :'..v„. Aggradation (A) i s equal to the depth of alluvium which has accumulated above the base l e v e l of establishment of the f i r s t growth pioneer trees. At present, the abundant establishment of these trees begins at about the 12 f t . l e v e l above the zero water mark. I f bench height increase were the r e s u l t of aggradation alone (A), H = A + 12 would hold true at any p a r t i c u l a r segment along the transect (Figure VII-7a). This would indicate that the base l e v e l of establishment was more or less horizontal beneath the alluvium of the low bank and that no downcutting had occurred i n the r i v e r bed as the channel moved l a t e r a l l y to i t s present p o s i t i o n . data (Table VII-3) revealed that H £ A + 1 2 , Inspection of the and that D = H - (A + 12) gradually increases with the distance from the r i v e r bed (Figure VII-7b). This s i g n i f i e s that downcutting has taken place i n the recent past during the development of the meander. But the values of D are very small and they may be associated with a c e r t a i n amount of error; t h i s could refute the v a l i d i t y of the preceding statement. substantiated by other evidence. 1 9 0 0 by a breakthrough Nevertheless downcutting An alternate channel was s t i l l appears formed around of the r i v e r across Big Bend approximately 300 yards downstream from the study s i t e . The new channel reduced the distance of the flow to about one t h i r d of the length of the o l d bed. has increased followed by downcutting which may The r i v e r gradient have proceeded upstream into the meander bend at the l o c a t i o n of the transect. The numerical equations p e r t a i n to the studied meander bend alone. Their relevance to other s i m i l a r :meanders remains to be seen. The basic concepts may have application, however, i n a somewhat wider sense. C l a s s i f i c a t i o n units Vegetational establishment starts at about the 5 f t . water mark on boulders and at a somewhat higher l e v e l i f the alluvium i s sand. Boulders are characterized by the Scouleria aquatica - Hygrohypnum ochraceum ecosystem F i g . VII-cf T r a n s e c t s a and b i n d i c a t e two d i s t i n c t examples o f t h e bench h e i g h t i n c r e a s e . A b s o l u t e i n c r e a s e i s a t t r i b u t a b l e t o a g g r a d a t i o n (A) a l o n e . R e l a t i v e i n c r e a s e i s t h e c o n s e q u e n c e o f d o w n c u t t i n g ( D ) . W h e r e t h e l a t e r a l movement ( L ) o f a m e a n d e r c o i n c i d e s w i t h d o w n c u t t i n g ( D ) , b e n c h h e i g h t (H) i n c r e a s e c a n b e p a r t i t i o n e d a s A a n d D. I n t h i s c a s e , t h e b a s e l e v e l o f e s t a b l i s h m e n t ( B ) o f f i r s t g r o w t h p i o n e e r trees slopes i n the d i r e c t i o n of the channel (C). Presently, the establishment s t a r t s a t t h e 12 f t . l e v e l a b o v e t h e z e r o w a t e r m a r k ( o ) . o Hi O H H cn co -3 . type (Hygrohypneto - Scoulerietum)• The sand deposits are occupied by the Equisetum arvense ecosystem type (Equisetetum arvensis). The establishment of the S a l i x - Scouleria and the S a l i x - Equisetum ecosystem type (Scoulerieto Salicetum and Saliceto - Populetum respectively) s i g n i f i e s the medium low benches. The medium benches are characterized by the Lonicera involucrata - Rubus s p e c t a b i l i s ecosystem type (Lonicereto - Populetum) within which two d i s t i n c t variations occur: one with a clay or s i l t horizon close to the s o i l surface (indicated by Oenanthe sarmentosa) and the other with a gravel horizon close to the s o i l surface. The high benches are s i g n i f i e d by the Ribes bracteosum - Oplopanax horridus ecosystem type (on deep s o i l s ) and by the Symphoricarpos r i v u l a r i s ecosystem type (with a gravel horizon close to the s o i l surface), which are designated as the Oplopanaceto - Piceetum and the Symphoricarpeto - Piceetum i n the synthesis tables. In the scars, the sequence of plant communities i s as follows: Nuphar poiysepalum ecosystem type (Nupharietum p o l y s e p a l i ) , Equisetum fluviatile ecosystem type (Equisetetum f l u v i a t i l i s ) , Carex ecosystem type (Magnocaricetum), Spirea menziesii ecosystem type (Spiraeetum menziesii), and the S a l i x lasiandra - Lysichitum americanum ecosystem type (Lysichiteto Salicetum). the Populus trichocarpa establishment may occur at the l e v e l of S a l i x - Lysichitum type provided that a gravel horizon i s close to the s o i l surface. The lesser vegetation i s characterized i n t h i s case by the Carex species. The plant community i s designated as the Populus - Carex ecosystem type (Cariceto - Populetum). Table VII-5. and 6, and i n Appendix I I I - The type characters are given i n 39 to $k. Table VII-5 Associations Bench height ( f t . ) Days o f o v e r f l o w p e r year D e p t h t o f i r s t g r a v e l h o r i z o n (cm.) S t a n d age ( y e a r s ) Characteristic combination o f species Associations Ecosystem type Bench h e i g h t ( f t . ) Days o f o v e r f l o w p e r y e a r D e p t h t o f i r s t g r a v e l h o r i z o n (cm.) Stand age ( y e a r s ) C h a r a c t e r i s t i c combination of s p e c i e s THE A L L U V I A L - P L A I N LAND T Y P E , BENCHES Hygrohypneto - Scoulerietum (H-S) 6.5 (5-8) 146 (102-190) 0 Equisetetum arvensis (E) Scoulerieto - Salicetum (S-S) 10 12 (11-13) 10 ( 4 - 1 8 ) 44 (33-60) 0 Equisetum L o n i c e r e t o - Populetum L o n i c e r a - Rubus t y p e (L-R) Oplopanaceto - Piceeturn R i b e s - Oplopanax type (R-0) (14-17-5) 2 ( u p t o 3) 104 (50-120) 19 (14-45) Populus t r i c h o c a r p a Alnus rubra Picea sitchensis (Thuja p l i c a t a ) Salix sitchensis Lonicera involucrata Rubus s p e c t a b i l i s Maianthemum d i l a t a t u m Osmorhiza c h i l e n s i s Equisetum arvense 19.6 Populus t r i c h o c a r p a Salix sitchensis Alnus rubra Salix lasiandra Equisetum arvense Salix sitchensis Alnus rubra Populus t r i c h o c a r p a Elymus glaucus Scouleria aquatica (18-21.5) less than 11.9 ( 1 0 - 1 3 . 5 ) 15 ( 3 - 4 2 ) 32 ( 0 - 9 5 ) 4 (2-7) 42 Scouleria aquatica Hygrohypnum ochraceum 15.5 arvense S a l i c e t o - Populetum (S-P) 1 125+ 66 (25=89) Picea sitchensis Populus t r i c h o c a r p a ( A l n u s rubra;)' (Acer macrophyllum) Thuja p l i c a t a Oplopanax h o r r i d u s Ribes bracteosum Rubus s p e c t a b i l i s Athyrium f i l i x - f e m i n a (Dryopteris filix-mas) (Polystichum andersonii) P o l y s t i c h u m munitum Maianthemum d i l a t a t u m Osmorhiza c h i l e n s i s Tiarella trifoliata Dryopteris austriaca Disporum oreganum Mnium i n s i g n e Symphoricarpeto - Piceetum Symphoricarpos type (S) 19.2 (18-21) less than 1 69 ( 6 0 - 8 5 ) 40 (27-55) Picea sitchensis (Acer macrophyllum). Thuja p l i c a t a Populus t r i c h o c a r p a Symphoricarpos rivularis D i s p o r u m oreganum P o l y s t i c h u m munitum Athyrium f i l i x - f e m i n a (Dryopteris filix-mas) Dryopteris austriaca Osmorhiza c h i l e n s i s ? a Mhium'Vihslghe. V . * • : - . cr o Hi o H era fD Table VII-6 Associations Ecosystem type Level Nupharietum polysepali (!) (ft.)* Soil profile Characteristic combination of species ..Gjrtt j a - l i k e sediments Nuphar polysepalum Sparganium simplex Potamogeton natans THE ALLUVIAL-PLAIN LAND TYPE, RIVER SCARS Magnocaricetum Equisetetum fluviatilis (Ef) -3 - -1 Gyttja-like sediments Gyttja-like sediments * Above or below the establishment l e v e l of S a l i x -1-0 Gleysol with gyttja-like subsoil Carex retrorsa Carex sitchensis Carex a q u a t i l i s Equisetum f l u v i a t i l e species. menziesii (sp) (Mc) -h - -3 Equisetum f l u v i a t i l e Sparganium simplex Carex r e t r o r s a Nuphar polysepalum Spiraeetum 1 Spiraea menziesii Oenanthe sarmentosa Carex retrorsa Lysichiteto Salicetum (Ly-Oe) 0 - 3 Gleysol with gyttja-like subsoil Salix lasiandra Salix sitchensis -Alnus rubra Oenanthe sarmentosa Lysichitum americanum Climacium dendroides Cariceto - Populetum (P-C) 0 - 3 Shallow gleysol with gravel subsoils Populus trichocarpa S a l i x lasiandra Alnus rubra S a l i x sitchensis Carex a q u a t i l i s Carex r e t r o r s a Oenanthe sarmentosa Climacium dendroides 75 CHAPT. VIII ECOSYSTEM TYPE MAPPING Mapping of ecosystem types i s desirable to r e g i s t e r the geographic d i s t r i b u t i o n of the ecosystem individua f o r current and future use. In defining mapping units, i d e n t i f i c a t i o n must be made of the reference types to which the d i f f e r e n t ecosystem individua (as mapping units) can be Such i d e n t i f i c a t i o n i s based on the s o i l s , orography, and assigned. vegetation. I d e n t i f i c a t i o n i s founded on selected observation points. The ecosystem boundaries are then extrapolated on the basis of vegetation and orography. The boundary l i n e s thus established are marked f o r surveying. U t i l i z i n g ecosystem types as a basis, approximately 85 acres were mapped and projected on a large scale map (FigureVIII-l). The selected map area i s located i n the southwestern portion of the University of B r i t i s h Columbia Research Forest, Haney, B. C. between a l t i t u d e s 200 - 5°0 f t . Climatic data are shown i n Table V i l l i 1 . Table VTII-1 Annual t o t a l precipitation In. CLIMATIC DATA (U.B.C. RESEARCH FOREST) Wettest month in. 2.8 13.9 91.7 Mean annual temperature °F. Driest month in. Mean monthly temperature Jan. July Op Op 32 47 The map 61 Annual t o t a l snowfall in. 60.3 Number of months above below 50°F 32°F Absolute max. min op 5 Nil 95 -5 area f a l l s within the Coastal western hemlock zone but the occurrence of Osmaronia cerasiformis, Corylus c a l i f o r n i c a and t r i p h y l l a i n the northwestern portion of the map to the Coastal Douglas-fir zone. Achlys area indicates a t r a n s i t i o n 76 A "brief description of the ecosystem types i s given to accompany the map i n Figure V I I I - 1 . A. Xeric ecosystem types 1) L i t h o s o l i c Gaultheria (LG). slopes i n the v i c i n i t y of rock outcrops. The LG type occupies convex The s o i l s are shallow l i t h o s o l s (residual AC p r o f i l e s ) less than 10 i n . deep, or truncated shallow t i l l s with recently exposed B and redeveloping L-F and Ae horizons. Site index-*- of Pseudotsuga menziesii i s 60 - 80 f t . 2) Orthic Gaultheria (OG) and Gaultheria - Mahonia (G-M). s o i l s are very coarse (stoniness over 6 0 $ ) , less than 30 i somewhat deeper (G-M). Q The ' deep (OG) or The s o i l s appear t r a n s i t i o n a l between the acid brown wooded and the minimal podzol s o i l groups with apparent fragipan development i n some p r o f i l e s . B. The s i t e index of Pseudotsuga menziesii i s 95 - 115 f t . Mesic ecosystem types 3) Orthic Plagiothecium (OPl) and Plagiothecium - Mahonia (Pl-M). The s o i l s are deep, r e l a t i v e l y f i n e textured minimal, orterde or o r t s t e i n podzols on gentle (OPl) or steep (Pl-M) slopes. Pseudotsuga menziesii s i t e index i s 120 - ihO f t . C. Hygric ecosystem types k) Degraded Polystichum (DPo). The s o i l s are deep minimal, orterde and o r t s t e i n podzols with seepage i n the lower s o i l p r o f i l e . The s i t e index of Pseudotsuga menziesii i s 160 - 180 f t . -'-The average height of dominant and codominant trees at a hundred years. LEGEM) TO ACCOMPANY MAP (Figure VTII-l) (1) Map area i s located i n the southwestern corner of the University of B r i t i s h Columbia Research forest, k- miles north of the v i l l a g e of Haney. (2) Ecosystem types: Ly 0-A B-R OP DP OPl Pl-M OG G-M LG L (3) Vaccinium - Lysichitum Oplopanax - Adiantum Blechnum - Rubus Orthic Polystichum Degraded Polystichum-' Orthic Plagiothecium Plagiothecium - Mahonia Orthic Gaultheria Gaultheria - Mahonia L i t h o s o l i c Gaultheria Non-forest rock outcrop Numbers indicate sample p l o t locations. Fig. V I I I - 1 Scale ECOSYSTEM TYPE MAP 1:33.60 or 1 i n . = 280 ft. 5) 78 Orthic Polystichum (OPo) and Blechnum - Rubus (B-R). Seepage occurs at medium depth (OPo) or close to the s o i l surface (B-R). The s o i l s are melanized and gleyed. The s i t e index of Pseudotsuga menziesii i s over 180 f t . 6) Oplopanax - Adiantum (0-A). The 0-A type i s confined t o narrow ravines along permanent or semi-permanent streamlets. The s i t e index of Pseudotsuga menziesii i s lk-0 -l60 f t . 7) Vaccinium - Lysichitum (V-Ly). The top s o i l i s black muck. 100 ft. Seepage i s at the s o i l surface. Site index of Thuja p l i c a t a i s approximately 79 CHAPT. IX SUMMARY AND CONCLUSIONS The main purposes of t h i s thesis were to study vegetational and environmental variations within the Coastal western hemlock zone, and to propose an ecosystem c l a s s i f i c a t i o n . References are made, however, not only to the Coastal western hemlock zone, hut also to the adjacent zones, thus making possible a comparative review. biogeoclimatic The main findings are summarized below: (l) The P a c i f i c pressure systems control the general climate of the southwestern B r i t i s h Columbia mainland. Local c l i m a t i c variations are a t t r i b u t a b l e t o orography which causes the P a c i f i c a i r t o descend over the leeward slopes of Vancouver Island and to r i s e over the windward slopes of the Coast Mountains. The rainshadow e f f e c t of Vancouver Island determines the r e l a t i v e l y dry climate of the Lower Mainland close to the S t r a i t of Georgia, but gradually i t s influence i s diminished a i r n: .1 again s t a r t s to r i s e . The orographic gradient from low to high elevations. mesothermal climate. further inland where the influence r e s u l t s i n a c l i m a t i c The lowland belongs to a humid The slopes are perhumid mesothermal below approximately 3500 f t . elevation, and perhumid (snowy) microthermal above that l i m i t . L o c a l i t i e s above 5000 f t . elevation belong to a perhumid (alpine) tundra. The c l i m a t i c gradient i s segmented into biogeoclimatic zones on the basis of vegetational and s o i l c h a r a c t e r i s t i c s . geographic e n t i t i e s . These zones are d i s t i n c t They are r e a d i l y recognizable on the basis of vegetational and environmental c h a r a c t e r i s t i c s i n mesic habitats (Table I X - l ) . The i n t e r a c t i o n of temperature and r a i n f a l l i s the main factor that separates the Coastal western hemlock zone from the Coastal Douglas-fir zone. The i n t e r a c t i o n of temperature and snowfall d i f f e r e n t i a t e s the Coastal western hemlock zone from the Mountain hemlock zone while the i n t e r a c t i o n of temperature and snow duration controls the d i s t r i b u t i o n of the Alpine tundra. 8o Table IX-1 DIFFERENTIATING COMBINATION OF CHARACTERISTICS FOR THE SEPARATION OF ZONAL AND SUBZONAL UNITS IN MESIC HABITATS Climatic climax vegetation Biogeoclimatic unit Macroclimate Zonal s o i l forming process Coastal Douglas-fir zone Humid mesothermal Weak podzolization, weak laterization Dry subzone of the Coastal western hemlock zone Perhumid mesothermal (precipitation less than 110 in.) Strong podzolization Wet subzone of the Coastal western hemlock zone Perhumid Strong podTsuga heterophyllamesothermal zolization, - Abies amabilis j(precipitation weak to mode-Vaccinium alaskaenserate gleyzation --Plagiothecium more than 110 i n O ) undulatum Mountain hemlock zone Perhumid (snowy) microthermal Coastal alpine zone Perhumid (snowy) tundra (2) Pseudotsuga menziesii' -Gaultheria shallon-Eurhynchium oreganum Tsuga heterophylla— -Plagiothecium undulatum Strong podTsuga mertensiana— zolization, -Abies amabilis-strong gleyzation -Vaccinium alaskaense -Rhytidiopsis robusta (lower subzone) or Tsuga mertensiana-Vaccinium membranaceum-Rhododentron albiflorum (upper subzone) . Skeletal d i s i n Phyllodoce tegration, mode- empetriformisrate podzolization, -Cassiope gleyzation mertensiana The d i f f e r e n t habitats p r e v a i l i n a mosaic pattern on rock outcrops which are marked by a coincident pattern of vegetation.Ecosystem types. and t h e i r d i f f e r e n t i a t i n g ecotopic c h a r a c t e r i s t i c s are l i s t e d i n Table IX-2. 81 Table IX-2 ECOSYSTEM TYPES OP ROCK OUTCROPS Landform Hygrotope Physiognomy Crustose and f o l i o s e lichens Peak Very dry Open l i c h e n synusium Rhacomitrium canescens (Rh) Knoll Very dry Moss carpet Cladonia - Polytrichum p i l i f e r u m (Cl) Table Very dry Moss --• - l i c h e n carpet Danthonia spicata (Da) Crevice Very dry Turf Polytrichum commune (Pc) Crevice Wet Moss carpet Gaultheria shallon (Ga) Complex Dry to most Thicket Lithosolic Gaultheria (LG) Upper slope, complex Dry L i t h o s o l i c forest Ecosystem type Vegetation types c l o s e l y coincide with the habitat types on a rock outcrop, e s p e c i a l l y at the early developmental stages. The greatest d i v e r s i t y occurs i n the Gaultheria t h i c k e t (Ga) whereby the fragments of the successionally preceding communities (Rh, C l , Da, Pc) remain recognizable. Gaultheria shallon promotes uniformity i n the habitat complex by the accumulation of raw humus, root action, and shading which r e s u l t i n a gradual d i s i n t e g r a t i o n of the d i f f e r e n t community fragments. The breaking-up of the successionally preceding communities i s completed i n the l i t h o s o l i c forest (LG). 82 Development i n the l i c h e n and bryophytic communities i s s i g n i f i cantly influenced by the adjacent arboreal communities by shading, root action, l i t t e r , seeds, f a l l e n wood, and modifications of the l o c a l climate. In t h i s way succession i s accelerated f a r beyond the endogenic potentials i n the early developmental (3) stages. A l l g l a c i a l deposits with the exception of swampy habitats are assigned to the g l a c i a l d r i f t land type. on the basis of subzones. The t o t a l sample i s s t r a t i f i e d In t h i s way, simple environmental gradients are extracted from the t o t a l sample, and a single plant community sequence i s obtained along each gradient. The multitude of sample plots can be v i s u a l i z e d as a hyper-space c l u s t e r of points. P r i n c i p a l axes are defined i n the c l u s t e r and each sample p l o t i s rescaled along these axes. When the set of new axis values of the sample plots i s correlated with the species significance or environmental values, the causes of the spread (or f l o r i s t i c variations) i n the point c l u s t e r can be a n t i c i p a t e d . Three important gradients of environmental factors were recognized i n the g l a c i a l d r i f t land type and these are apparently the underlying causes of three major types of f l o r i s t i c v a r i a t i o n s . In both dry and wet subzones soil-moisture i s s i g n i f i c a n t l y correlated with maximum f l o r i s t i c variation. Certain lesser f l o r i s t i c variations occur within each subzone along a climatic gradient caused by changing exposure or a l t i t u d e . Changes i n humus q u a l i t y from raw humus to mull s i g n i f y the d i r e c t i o n of c e r t a i n other lesser f l o r i s t i c variations i n both subzones. The ecosystem types of the g l a c i a l d r i f t land type, b r i e f l y described i n Table IX-3, represent successive segments along the major ecotopic gradients. 83 Table IX-3 ECOSYSTEM TYPES OF THE GLACIAL DRIFT LAND TYPE Landform Hygrotope Orthic Gaultheria (OG) Convex upper slope Dry Raw humus, podzolization Gaultheria - Mahonia (G-M) Convex (steep and warm) upper-slope Dry Raw humus, podzolization Orthic Plagiothecium (OPl) Straight middle slope Mesic Raw humus, podzolization Plagiothe c ium-Mahonia (Pl-M) Straight (steep and warm) middle slope Mesic Raw humus, podzolization Eurhynchium-Mahonia (E-M) Straight middle slope Mesic (with slight seepage)) Raw humus, podzolization Orthic Polystichum (OPo) Concave lower-slope Moist to wet Duff-mull, Degraded Polystichum (DPo) Concave, lower-slope Moist to wet Convex upper-slope Dry Raw humus, podzolization Convex Dry upper-slope ( l i t h i c s o i l s or very shallow t i l l s ) Raw humus, podzolization Ecosystem type Humus type, s o i l forming process Dry subzone: melanization, gleyzation Raw humus, podzolization, gleyzation Wet subzone: Orthic Vaccinium Gaultheria (OV-G) L i t h o s o l i c Vaccinium Gaultheria (LV-G) Orthic Vaccinium Plagiothecium (0V-P1) Straight middle slope Hygric Vaccinium Plagiothecium (HV-Pl) Straight t o s l i g h t l y concave middle slope Mesic Moist Raw humus, podzolization, weak gleyzation Raw humus, podzolization, moderate gleyzation 8U Table IX-3 > Continued - Ecosystem types of the g l a c i a l d r i f t land type Ecosystem type Landform Hygrotope Humus type, s o i l forming process Orthic Blechnum (OB) Concave lower-slope Wet Raw humus, podzolization strong gleyzation Blechnum - Streptopus (B-S) Concave, Wet lower-slope ( i n the subalpine ecotope) Raw humus, podzolization strong gleyzation Plant community development i s anticipated on the basis of the present vegetation-environmental patterns i n both subzones. Proposed successional trends are defined i n connection with climatic, edaphic and vegetational changes. (h) Two pedogenically d i s t i n c t types of spring-water swamps are encountered i n the Coastal western hemlock zone: one on waterlogged mineral s o i l s , and the other on waterlogged woody peats. Soil-water reaction i s always acid, and the surface s o i l layer i s a black muck. The Vaccinium - - Lysichitum ecosystem type occurs on slopes on mineral s o i l s as w e l l as i n depressions on woody peats. The Lysichitum - Coptis ecosystem type, on the other hand, i s confined to organic s o i l s a t the edge of high moors exposed to run-off water or seepage from the adjacent slopes. (5) The Thuja p l i c a t a - Oplopanax horridus stands of the ravine a l l u v i a l land type are remarkably uniform throughout both subzones; they are c l a s s i f i e d as the Oplopanax - Adiantum ecosystem type. The s o i l s are bouldery, gravelly, sandy, and mucky with permanent moving water as seepage or overflow. (6) The f l o o d - p l a i n ecosystems may change a g r e a t d e a l d u r i n g a r e l a t i v e l y s h o r t p e r i o d o f time. These changes, however, a r e always r e l a t e d to sedimentation, overflow, p o s t - f l o o d drainage, e r o s i o n , and species establishment. Overflow i s a t t r i b u t a b l e t o a f l u c t u a t i o n of water l e v e l i n the stream and drainage i s t h e r e f o r e i n d i r e c t l y c o n t r o l l e d by the c l i m a t i c elements o f the area. P o s t - f l o o d drainage r e f l e c t s how r a p i d l y the f l o o d - w a t e r is removed from an a r e a when t h e water l e v e l o f t h e stream s t a r t s t o f a l l . t h i s connection, the d i f f e r e n c e i s most marked between the benches ( a l o n g t h e a c t i v e channel) and in the s c a r s . In the s c a r s . Benches a r e ' w e l l - d r a i n e d but the water Overflow water l o s e s i t s t r a n s p o r t i n g power and the load i s deposited. stagnates sediment Benches grow by d e p o s i t i o n of sediments by t h e i n t e r m i t t e n t overflow. As the benches grow h i g h e r , the o v e r f l o w frequent. A s i m i l a r r e d u c t i o n o f o v e r f l o w f r e q u e n c i e s can occur as the sequence o f downcutting i n the r i v e r on them becomes l e s s con- bed. Where a bench i s b u i l t up above a c r i t i c a l water mark, t h e v e g e t a t i o n a l establishment begins on them. The r a t e o f sediment d e p o s i t i o n i s g r e a t e r on a s u r f a c e w i t h a v e g e t a t i o n a l cover than i t i s i n a comparable l o c a l i t y without vegetation. localities T h i s d i f f e r e n c e i n the r a t e o f d e p o s i t i o n a t t h e d i f f e r e n t r e s u l t s i n the d i f f e r e n c e s i n the l e v e l s on a f l o o d - p l a i n . The bench h e i g h t g r a d i e n t c o i n c i d e s w i t h a d e f i n i t e sequence o f p l a n t communities. . ' The lowest benches a r e v e g e t a t e d by the S c o u l e r i a a q u a t i c a - Hygrohypnum ochraceum ecosystem type type -' . . (on deep s a n d ) . (on b o u l d e r s ) Establishment or by the Equisetum arvense ecosystem o f shrubs and t r e e s s t a r t s above the average summer water mark, and slightly i t r e s u l t s i n the development o f t h e S a l i x - S c o u l e r i a a q u a t i c a and the S a l i x - Equisetum arvense ecosystem type. The p r o p o r t i o n s of Populus t r i c h o c a r p a and A l n u s h i g h i n b o t h communities. r u b r a are u s u a l l y Medium benches a r e o c c u p i e d by the L o n i c e r a i n v o l u c r a t a - Rubus s p e c t a b i l i s ecosystem t y p e . The occurrence o f Oenanthe sarmentosa i n t h i s community s i g n i f i e s t h e p r e s e n c e o f a c l a y or s i l t horizon beneath the shallow sand. 86 The Ribes bracteosum - Oplopanax horridus ecosystem type i s s p e c i f i c to deep s o i l s and high benches. The Symphoricarpos r i v u l a r i s ecosystem type i s c h a r a c t e r i s t i c f o r high benches with a gravel horizon close to the s o i l surface. The sequence of plant communities i n the scars coincides with a sequence of water depth and s o i l quality. The Nuphar polysepalum ecosystem type occurs i n the deep water more than k f t . below the establishment of the S a l i x species. The Equisetum f l u v i a t i l e and the Carex ecosystem type are c h a r a c t e r i s t i c f o r medium deep or shallow waters respectively. The Spiraea menziesii ecosystem type i s a semi-aquatic community of the deep gleysols. The highest l e v e l s i n the scar are occupied by the Salix lasiandra - Lysichitum americanum ecosystem type (on deep gleysols) and by the Populus trichocarpa - Carex ecosystem type (on shallow gleysols with a gravel horizon close to the s o i l surface). As the meanders swing from one side of the v a l l e y to the other side, the benches and plant communities are destroyed along the outside bank, but simultaneously new benches and new plant communities are established along the inside bank of the meander. (7) Ecosystem type mapping involved approximately 85 acres i n the University of B r i t i s h Columbia Forest. 87 REFERENCES A r c h e r , A. C. 1963Some s y n e c o l o g i c a l problems o f the A l p i n e zone i n G a r i b a l d i Park, M.Sc. T h e s i s , Dep. B i o l , and Bot., U n i v . o f B. C. Armstrong, J . E . Surv. Can. 1956. Paper . 1957- S u r f i c i a l geology o f Vancouver a r e a , B. C. G e o l . 55-40. S u r f i c i a l geology o f New B. C. G e o l . Surv. Can. Paper Westminster map-area, 57-5. B e c k i n g , R. W. 1954. S i t e i n d i c a t o r s and f o r e s t t y p e s o f the D o u g l a s - f i r r e g i o n o f w e s t e r n Washington and Oregon. Ph.D. T h e s i s . U n i v . o f Wash. . 1957. The Z u r i c h - M o n t p e l l i e r s c h o o l o f p h y t o s o c i o l o g y . Bot. Rev. 23:411-488. Braun, E . L. 1916. The p h y s i o g r a p h i c e c o l o g y o f the C i n c i n n a t i R e g i o n . Ohio B i o l . Surv. B u i . No. 7:115-211. The Ohio S t a t e U n i v . Braun-Blanquet, J . 1913D i e V e g e t a t i o n s v e r h a l t n i s s e der S c h n e e s t u f e i n den R a t i s c h - L e p o n t i s c h e n A l p e n . Schweiz. N a t u r f . G e s e l l . , Neue Denkschr. 48:1-347. . 1932. P l a n t s o c i o l o g y , the study o f p l a n t communities. ( T r a n s , by G. D. F u l l e r and H. S. Conard.) New York, M c G r a w - H i l l . . 2nd 1951. P f l a n z e n s o z i o l o g i e Grundzuge der Vegetationskunde ed. Wien, S p r i n g e r . Bray, J . R. and J . T. C u r t i s . 1957An o r d i n a t i o n o f the u p l a n d f o r e s t communities o f southern W i s c o n s i n . E c o l . Monog. 27:325-349Brooke, R. C. 1964. Ecotopes o f p l a n t communities i n t h e ecosystem c l a s s i f i c a t i o n o f the C o a s t a l s u b a l p i n e zone i n s o u t h e r n B r i t i s h Columbia. Ph.D. T h e s i s , Dep. B i o l , and B o t . U n i v . o f B. C. Cajander, A. K. . 1909. Uber Waldtypen.Acta 1926. The t h e o r y o f f o r e s t t y p e s . F o r . Fenn. Chapman, J . D. 1952. C l i m a t e o f B r i t i s h Columbia. Conference, V i c t o r i a , B. C. 1:1-175. A c t a F o r . Fenn. 5th B. C. Nat. 29. Res. C l a r k , J . S., J . E. Brydon, and L. F a r s t a d . 1963. C h e m i c a l and c l a y m i n e r o l o g i c a l p r o p e r t i e s o f t h e c o n c r e t i o n a r y brown s o i l s o f B r i t i s h Columbia, Canada. S o i l S c i . 95:344-352. 88 Clements, F. E. I 9 0 U . The development and structure of vegetation. Univ., Bot. Surv. Nebr. 7. Nebr. . 1916. Plant successions: analysis of the development of vegetation. Carnegie Inst. Washington, Publ. 2 4 2 : 1 - 3 8 8 . . 1928. Plant succession and indicators: A d e f i n i t i v e e d i t i o n of plant succession and plant i n d i c a t o r s . New York, Wilson. Cooper, W. S. 1 9 1 3 ' The climax forest of I s l e Royale, Lake Superior, and i t s development. Bot. Gaz. 5 5 : 1 - 4 4 , 115-140, 189-235. Cowles, H. C. 1 9 0 1 . The physiographic ecology!;/ of Chicago and v i c i n i t y ; a study of the o r i g i n , development and c l a s s i f i c a t i o n of plant s o c i e t i e s . Bot. Gaz. 31:108, 145-182. Davis, W. M. 1909* Geographical essays. New York. (Dover e d i t i o n 1954). E i s , S. 1962. S t a t i s t i c a l analysis of tree growth and some environmental factors of plant communities. Ph.D. Thesis, Dep. B i o l . and Bot., Univ. of B. C. Farstad, L. 1963. Personal communication. Flahault, C. and C. Schroter. 1910. Rapport sur l a nomenclature phytogeographique. Actes 3me Congr. I n t e r n a t l . Bot., Bruxelles, 1910, 1:131-164. Fry, E. J . 1927- The mechanical action of crustaceous lichens on substrata of shale, c h i s t , gneiss, limestone, and obsidian. Ann. Bot. 4 l : 4 3 7 - 4 6 0 . G i l b e r t , G. K. 1877. Report on the geology of the Henry Mountains. U.S. Geol. Geogr. Surv. of the Rocky Mountain Region (Powell) Washington: 120-127. Gleason, H. A. 1920. Some a p p l i c a t i o n of the quadrat method. Club, B u i . 4 7 : 2 1 - 3 3 - Torrey Bot. . 1926. The i n d i v i d u a l i s t i c concept of the plant association. Torrey Bot. Club, B u i . 5 3 : 7 - 2 6 . Greig-Smith, P. 1957- Quantitative plant ecology. London, Butterworths. G r i f f i t h , B. G. i 9 6 0 . Growth of Douglas-fir at the University of B r i t i s h Columbia Research Forest as related to climate and s o i l . Univ. of B. C. Fac. of For. B u i . No. 2 . 89 Goodall, D. W. 1953Objective methods f o r the c l a s s i f i c a t i o n of vegetation. I. The use of p o s i t i v e i n t e r s p e c i f i c c o r r e l a t i o n s . A u s t r a l i a n Jour. Bot. 1 : 3 9 - 6 3 . I I . F i d e l i t y and indicator value. Ibid. 1 : 4 3 4 - 4 5 6 . . 1954. Objective methods f o r the c l a s s i f i c a t i o n of vegetation. I I I . An essay i n the use of factor analysis. A u s t r a l i a n Jour. Bot. 2:304-324. Guyot, H. 1924. Association standard et c o e f f i c i e n t de communaute. Soc. Bot. Geneve, (fide Braun-Blanquet 1 9 3 2 . ) Halliday, W.E.D. 1937. A forest c l a s s i f i c a t i o n of Canada. Bui. 8 9 . Can. Dep. Mines and Res. Ottawa. Bui. For. Serv., Hansen, H. P. 1947Climate versus f i r e and s o i l as factors i n post g l a c i a l forest succession i n the Puget lowland of Washington. Am. Jour. S c i . 245:265-286. Hefley, H. M. 1937. E c o l o g i c a l studies of the South Canadian r i v e r floodp l a i n i n Cleveland County, Oklahoma. E c o l . Monog. 7 : 3 4 5 - 4 0 2 . Ilvessalo, Y. 1929. Notes on some forest ( s i t e ) types i n North America. Acta Fenn. 3 4 : 1 - 1 1 1 . Jenny H. 1941. Factors of s o i l formation. McGrawr-Hill, New York. . 1961. Derivation of state factor equations of s o i l s and ecosystems. S o i l S c i . Soc. Am. Proc. :385-388. Jaccard, P. 1912. New Phytol. The d i s t r i b u t i o n of the f l o r a i n the alpine zone. 11:37-50. Karpathy, I., and I. Toth. 1962. Az a r t e r i nyarasok erdotipusai. (Forest types of f l o o d - p l a i n poplar stands.) A nyarfa termesztes: 150-168. Mezogazdasagi Kiado, Budapest. Kelley, C. C. and R. H. Spilsbury, 1939. Valley, Can. Dep. Agr., Publ. 65O. S o i l survey of the Lower Fraser Kerr, D. P. 1951. The summer-dry climate of Georgia Basin, B r i t i s h Columbia. Trans. R. Can. Inst., XXIX: 2 3 - 3 1 . Kozak, A. and D. 0 . Munro, 1963. F i t the normal, Poisson, binomial and negative binomial d i s t r i b u t i o n s to observed data. U.B.C. Computing C ent^r-, Vane ouver. 90 Koppen, W. Climates of the earth, (fide Trewartha, G. T. 1954. duction to climate. 3ed> McGraw-Hill Book Co.). An i n t r o - Krajina, V. 1933Die Pflanzengesellschaften des Mlynica - Tales i n den Vysoke Tatry (Hohe Tatra). Mit besonderer Berucksichtigung der okologischen Verhaltnisse. Bot. Centralbl., Beih., Abt. 2, 50:744-957; 51: 1-224. . 1959Bioclimatic zones i n B r i t i s h Columbia. Bot';.L'Ser.'liN5.;ll;;ib Vancouver, B. C. Univ. of B. C, ! . i960. Can we f i n d a common platform f o r the d i f f e r e n t schools of forest type c l a s s i f i c a t i o n . S i l v a Fenn. Wo. 105:50-55. . 1962. Ecology of the forests of the P a c i f i c Northwest. Prog. Report, Nat. Res. Coun. Grant T - 9 2 , : 3 1 . 1961 . 1964. Ecology of the forests of the P a c i f i c Northwest. Prog. Report, Nat. Res. Coun. Grant T-92,:71-87 1963 . 1958-1964. Lecture notes and personal communications. . and L. O r l o c i . 1963. Biogeoclimatic forest zones on the lower mainland of B r i t i s h Columbia. Prog. Report, Nat. Res. Coun. Grant T-92:18-24. . and R. H. Spilsbury. 1953Forest associations on the East Coast of Vancouver Island. Forestry Handbook f o r B.C., :l42-l45- 2nd ed. 1959,: 582-585. Kujala, V. 1945Waldvegetationsuntersuchungen i n Kanada mit besonderer Berucksichtigung der Anbauanioglichkeiten kanadischer Holzarten auf naturlichen Waldboden i n Finnland. Acad. S c i . Fenn., Ann., ser. A, 4 B i o l . 7:1-434. Leet, L. D. and S. Judson. H a l l Inc. 1954. Physical geology. New York, Prentice- Lesko, G. I961. E c o l o g i c a l study of s o i l s i n the Coastal western hemlock zone. M.Sc. Thesis, Dep. B i o l , and Bot., Univ. of B. C. Lorenz, J . R. 1858. Algemeine Resultate aus der pflanzengeographischen und genetischen Untersuchung der Moore im praalpine Hugellande Salzburg 's. (fide Whittaker 1962). 1 9 Major, J . 1951' A functional, f a c t o r i a l approach to plant ecology. i Ecol. 32:392-412. Mathews, W. H. 1958- Geology of the Mount G a r i b a l d i map area, southwestern B r i t i s h Columbia. B u i . Geol. Soc. Amer. 6 9 : l 6 l - 1 9 8 . 1957' Water r e l a t i o n s i n the Douglas-fir region on Vancouver Ph.D. Thesis, Dep. B i o l . and Bot., Univ. of B. C. McMinn, R. G. Island. Morozov, G. F. 1903 • Issledovanije lesov voronezskoj gubernii. . 1928. Die Lehre vom Walde. Les. sh. Neudamm. Motyka, J . , B. Dobzanski, and S. Zawadzki. 1 9 5 ° . Preliminary studies on meadows i n the southeast of the province Lublin. (Pol. with Russ. and Engl, summ.) Univ. Mariae Curie-Sklodowska (Lublin), Ann., Sect. E5:367-4U7. Mueller-Dombois, D. 1959« The Douglas-fir f o r e s t associations on Vancouver Island i n t h e i r i n i t i a l stages of secondary succession. Ph.D. Thesis, Dep. B i o l . and Bot., Univ. of B. C. Nichols, G. E. 1917- The i n t e r p r e t a t i o n and a p p l i c a t i o n of c e r t a i n terms and concepts i n the e c o l o g i c a l c l a s s i f i c a t i o n of plant communities. Plant World 20:305-319, 341-353. Nilsson,_A.__1902. Svenska vaxtsamhallen. ( f i d e Whittaker 1962). Oosting, H. J . and L. E. Anderson, 1939* Plant succession on granite rock i n eastern North Carolina. Bot. Gaz. 100:750-768. O r l o c i , L. I961. Forest types of the Coastal western hemlock zone. Thesis, Dep. B i o l . and Bot., Univ. of B. C. M.Sc. Peterson, E. B. 1964. Plant associations i n the subalpine mountain hemlock zone i n southern B r i t i s h Columbia. Ph.D. Thesis, Dep. B i o l . and Bot., Univ. of B. C. Rowe, J . S. 1959' Forest regions of Canada. Dep. Nor. A f f . and Nat. Res. Ottawa. For. Br., B u i . 123. Can. Schatz, V., A. Schatz, G. S. Trelawny, and K. Barth, 1962. Significance of lichens as pedogenic (soil-forming) agents. Proc. Perms. Acad. S c i . XXX:62-69. 92 Shelford, V. E. 1954. Some lower M i s s i s s i p p i f l o o d - p l a i n h i o t i c communities; t h e i r age and elevation. E c o l . 35:126-14-2. Spilsbury, R. H. and D. S. Smith. 1947- Forest s i t e types of the P a c i f i c Northwest. B. C. For. Serv., Tech. Publ. T. 3 0 , B. C. Dep. Lands and For. Steel, R. G. D., and J . H. T o r r i e . i 9 6 0 . P r i n c i p l e s and procedures of s t a t i s t i c s . McGraw-Hill. New York. Sukachev, W. I. 1944. On p r i n c i p l e s of genetic c l a s s i f i c a t i o n i n biocoenology. (Russ. with Engl, summ.) Zhur. Obschch. B i o l . 5:213-227. Festschr. 1954. Die Grundlagen der Waldtypen. Aichinger 2 : 9 5 6 - 9 6 4 . Angew. Pflanzensoziol., Tansley, A. G. 1911. Types of B r i t i s h vegetation, by members of the c e n t r a l committee f o r the survey and study of B r i t i s h vegetation; ed. A. G. Tansley, Cambridge, Cambridge Univ. Press. . 1939. The B r i t i s h Island? and t h e i r vegetation. Cambridge, Cambridge Univ. Press. Thornthwaite, C. W. 1948. An approach toward a r a t i o n a l c l a s s i f i c a t i o n of climate. Geogr. Rev. 3 8 : 5 5 - 9 4 . Torgerson, W. S. 1 9 5 2 . Multidimensional s c a l i n g : Psychometrika 1 7 : 4 0 1 - 4 1 9 . I. Theory and method. Toth, I . 1 9 5 8 . Az Also - Dunaarter erdogazdalkodasa, a termohely es az erdo tipusok osszefuggese. (Forest management of the f l o o d - p l a i n of the Lower-Danube, and c o r r e l a t i o n between s i t e and forest types.) Erdeszeti Kutatasok,: 7 7 - l 6 0 . Mezogazdasagi Kiado, Budapest. Verduin, J . 1952. The calculus and the inoperable expressions. E c o l . 3 3 : l l 6 . Walker, E. R. I961. A synoptic climatology f o r parts of the western C o r d i l l e r a . McGill Univ., A r c t i c Meteorol. Res. Group, Publ. 35Warming, E. 1895- Plantesamfund. Kjc^benhavn, P h i l i p s e n s . Grundtraek af den j^kologiske Plantegeografi. . 1 9 ° 9 ' Oecology of plants: An introduction to the study of plant communities. Oxford, Oxford Univ. Press. 93 Wilde, S. A. 1958. silviculture. Forest s o i l s , t h e i r properties and r e l a t i o n to Ronald Press, New York. Whitehouse, E. 1933• 4:391-405. Plant succession on c e n t r a l Texas granite. Ecol. Whitford, H. N. and R. D. Craig, 1918. Forests of B r i t i s h Columbia. Commission of Conservation, Can., Ottawa. Whittaker, R. H. 1953A consideration of climax theory: a population and pattern. E c o l . Monogr. 23:41-78. . 28:1-239- 1962. the climax as C l a s s i f i c a t i o n of natural communities. Bot. Rev. APPENDIX I C h e c k l i s t of Species 95 Check l i s t includes species that are mentioned i n the text or i n the synthesis t a b l e s . Nomenclature and a u t h o r i t i e s f o r the names are those given i n the manuals l i s t e d i n Appendix I I . LICHENES CLADONIACEAE Cladonia b e l l i d i f l o r a (Ach.) Sch. Cladonia cariosa (Ach.) Spr. Cladonia coniocr.aea (Flk.) Sandst. Cladonia furcata (Huds.) Schrad. Cladonia g r a c i l i s (L.) W i l l d . Cladonia p a c i f i c a A n t i Cladonia m i t i s Sandst. Cladonia r a n g i f e r i n a (L.) Web. Cladonia squamosa (Scop.) Hoffm. Cladonia. subsquamosa Nyl. Cladonia u n c i a l i s (L.) Web. Pjdilophoron cereolus (Ach.) Nyl. Stereocaulon alpinum Laur. LECANORACEAE Icmadophila ericetorum (L.) Zahl. PARMELIACEAE Cetraria Cetraria Parmelia Parmelia Parmelia glauca (L.) Ach. h e r r e i Imshaug physodes (L.) Ach. tubulosa (Hag.) B i t t . v i t t a t a (Ach.) Rohl. PELTIGERACEAE P e l t i g e r a aphthosa (L.) W i l l d . P e l t i g e r a canina (L.) W i l l d . PERTUSARIACEAE Pertusaria ambigens (Nyl.) Tuck. SPHAEROPHORACEAE Sphaerophorus globosus (Huds.) Wainio STICTACEAE Lobaris pulmonaria (L.) Hoffm. USNEACEAE A l e c t o r i a jubata (L.) Ach. A l e c t o r i a sarmentosa Ach. Letharia vulpina (L.) Vain. Usnea h i r t a (L.) Wigg. Usnea longissima Ach. BRYOPHYTA MUSCI ANDREAEACEAE Andreaea n i v a l i s Hook. AULAC OMNIACEAE Aulacomnium palustre (W.& M.) Schw. BARTRAMIACEAE Philonotis fontana B r i d . BUXBAUMIACEAE Buxbaumia aphylla Hedw. DICRANACEAE D i c r a n e l l a c i r r h a t a (Hedw.) Lindb. Dicranum fuscescens Turn. Dicranum maius Smith Dicranum scoparium Hedw. Dicranoweisia c i r r h a t a (Hedw.) Lindb. FONTIWALACEAE F o n t i n a l i s kindbergii R. & C. GRIMMIACEAE Grimmia apocarpa Hedw. Rhacomitrium canescens B r i d . Rhacomitrium heterostichum (Hedw.) B r i d . Rhacomitrium lanuginosum (Hedw.) B r i d . Scouleria aquatica Hook. HOOKERIACEAE Hookeria lucens Sm. HYPNACEAE Camptothecium megaptilum S u l l . Climacium dendroides (Hedw.) W.& M. Eurhynchium oreganum ( S u l l . ) Jaeger & Sauerb. Eurhynchium s t o k e s i i (Turn.) Bry.Eur. Homalothecium n u t t a l l i i (Wils.) Grout Hygrohypnum ochraceum (Turn.) Loeske Hylocomium splendens (Hedw.) Bry.Eur. Hypnum c i r c i n a l e Hook. Hypnum subimponens Lesq. Plagiothecium denticulatum (Hedw.) Bry. Plagiothecium elegans (Hook.) S u l l . Plagiothecium sylvaticum (Brid.) Bry. Eur. Plagiothecium s e l i g e r i (Brid.) Lindb. Plagiothecium undulatum (Hedw.) Br. & Sch. Pseudisothecium stoloniferum (Hook.) Grout Rhytidialephus loreus (Hedw.) Warnst. Rhytidialephus squarrosus (Hedw.) Warnst. Rhytidialephus triquetrus (Hedw.) Warnst. Rhytidiopsis robusta (Hook.) Broth. LESKEACEAE Claopodium bolanderi Best Claopodium c r i s p i f o l i u m (Hook.) R.& C. Heterocladium heteropteroides Best Heterocladium procurrens (Mitt.) Rau & Herv. Pseudoleskea b a i l e y i Best & Grout MNIACEAE Mnium Mnium Mnium Mnium Mnium insigne M i t t . menziesii (Hook.) C;Muell. punctatum Hedw. c. 1. spinulosum Bry. Eur. venustum M i t t . WECKERACEAE Neckera douglasii Hook. Bfeckera menziesii Hook. ORTHOTRICHACEAE Ulota megalospora Vent. POLYTRICHACEAE Atrichum undulatum (Hedw.) Beauv. Pogonatum alpinum (Hedw.) Roehl. Polytrichum commune Hedw. Polytrichum juniperinum Hedw. Polytrichum p i l i f e r u m Hedw. Polytrichum norvegicum Hedw. SPHAGNACEAE Sphagnum fibriatum Wils. Sphagnum girgensohnii Russ. Sphagnum magellanicurn B r i d . Sphagnum papillosum Lindb. Sphagnum recurvum Beauv. Sphagnum robustum (Russ.) R o e l l . Sphagnum squarrosum Pers. Sphagnum tenellum Pers. HEPATICAE TETRAPHIDACEAE Tetraphis p e l l u c i d a Hedw. CALYFOGEIACEAE Calypogeia neesiana (M.& C.) K. Muell. Calypogeia suecica (A.& P.) K. Muell. Calypogeia trichomanis (L.) Corda CEPHALOZIACEAE Cephalozia bicuspidata (L.) Dum. Cephalozia lammersiana (Hueb.) Spruce Cephalozia media Lindb. CEPHALOZIELLACEAE Cephaloziella p a p i l l o s a (Douin) S c h i f f n FRULLANIACEAE F r u l l a n i a nisquallensis S u l l . HARPANTHACEAE Lophocolea cuspidata (Nees) Limpr. Lophocolea heterophylla (Schrad.) Dum. JUNGERMANWIACEAE Plectocolea rubra (Underw.) Buch LEPIDOZIACEAE Bazzania ambigua (Lindenb.) Trev. Bazzania denudata (Torr.) Trev. Bazzania nudicaulis Evans Bazzania t r i c r e n a t a (Wahl.) Trev. Lepidozia reptans (L.) Dum. LOPHOZIACEAE Lophozia i n c i s a (Schrad.) Dum. Orthocaulis f l o e r k i i (Web. & Mohr) Buch MARCHANTIACEAE Conocephalum conicum (L.) Wiggers MARSUPELLACEAE Marsupella sphacelata (Gieseke) Dum. METZGERIACEAE Metzgeria conjugata Lindb. Metzgeria furcata.l('L.',) 'Dumort. v '" vans Metzgeria pubescens (Schrank) Raddi P e l l i a columbiana Krajina & Braysha P e l l i a epiphylla (L.) Corda Riccardia palmata (Hedw.) Carruth. Riccardia sinuata (Dicks.) Trev. PLAGIOCHILACEAE P l a g i o c h i l a asplenioides (L.) Dum. PORELLACEAE P o r e l l a n a v i c u l a r i s (L.& L.) Lindb. P o r e l l a p l a t y p h y l l a (L.) Lindb. PTILIDIACEAE Anthelia juratzkana (Limpr.) Trev. Blepharostoma trichophyllum (L.) Dum. P t i l i d i u m californicum (Aust.) P t i l i d i u m pulcherrimum (Weber) Hampe RADULACEAE Radula complanata (L.) Dum. SCAPANIACEAE Diplophyllum taxifolium (Wahl.) Dum. Douinia ovata (Dicks.) Buch Scapania bolanderi Aust. TRACHEOPHYTA EQUISETACEAE Equisetum Equisetum Equisetum Equisetum Equisetum arvense L. f l u v i a t i l e L. hiemale L. telmateia Ehrh. variegatum Schleich. LYC OPODIACEAE Lycopodium Lycopodium Lycopodium Lycopodium Lycopodium Lycopodium annotinum L. clavatum L. complanatum L. obscurum L. selago L. sitchense Rupr. OPHIOGLOSSACEAE Botrychium multifidum (Gmel.) Rupr. POLYPODIACEAE Adiantum pedatum L. Athyrium f i l i x - f e m i n a (L.) Roth Blechnum spicant (L.) Roth Cryptogramma c r i s p a (L.) R.Br. Dryopteris austriaca (Jacq.) Woynar Dryopteris filix-mas (L.) Schott. Gymnocarpium dryopteris (L.) Newm. Polypodium vulgare L. Polystichum andersonii Hopkins Polystichum munitum (Kaulf.) P r e s l Pteridium aquilinum (L.) Kuhn Thelypteris phegopteris (L.) Slosson SELAGINELLACEAE S e l a g i n e l l a wallacei Hieron. CUPRESSACEAE Chamaecyparis nootkatensis (D.Don) Spach Thuja p l i c a t a Donn PINACEAE Abies amabilis (Dougl.) Forbes Abies grandis (Dougl.) L i n d l . Abies lasiocarpa (Hook.) Nutt. Picea sitchensis :(Bong.) Carr. Pinus a l b i c a u l i s Engelm. Pinus contorta Dougl. Pinus monticola Dougl. Pseudotsuga menziesii (Mirb.) Franco Tsuga heterophylla (Raf.) Sarg. Tsuga mertensiana (Bong.) Carr TAXACEAE Taxus b r e v i f o l i a Nutt ACERACEAE Acer circinatum Pursh Acer macrophyllum Pursh APOCYNACEAE Apocynum androsaemifolium L . ARACEAE Lysichitum americanum St. John ARALIACEAE Oplopanax horridus (Sm;i) Mig. ARISTOLOCHIACEAE Asarum caudatum Lindl. BERBER LDACEAE Achlys triphylla (Smith) DC Mahonia aquifolium (Pursh) Nutt. Mahonia nervosa (Pursh) Nutt. BETULACEAE Alnus crispa (Ait.) Pursh sp. sinuata (Regal) Hutten Alnus rubra Bong. Betula papyrifera Marsh. Corylus californica (A.DC.) Sharp CAPRTFOLIACEAE Linnaea borealis L . Lonicera ciliosa Poir. Lonicera involucrata Banks. Sambucus pubens Michx. Symphoricarpos rivularis Suks. Viburnum pauciflorum Raf. CARYOPHYLLACEAE StelLaria crispa C. & S. CELASTRACEAE Pachystima myrsinites (Pursh) Raf. COMPOSITAE Achillea millefolium L . Adenocaulon bicolor Hook. Anaphalis margaritacea (L.) B.& H. Cirsium edule Nutt. Hieracium albiflorum Hook. Hypochaeris radicata L . Lactuca "biennis (Meench.) Fern. Petasites frigidus (L.) Fries Senecio sylvaticus L . CCRNACEAE Cornus canadensis L . Cornus n u t t a l l i i Aud. Cornus occidentalis (T.& G.) Cov. CRUCIFERAE Cardamine breweri Wats. CYPERACEAE Carex aquatilis Wahl. Carex bolanderi Olney Carex hendersonii Bailey Carex leptopoda Mack. Carex retrorsa Schm. Carex r o s s i i Boott Carex sitchensis Presl Scirpus microcarpus Presl EMPETRACEAE Empetrum nigrum L . ERICACEAE Arbutus menziesii Pursh Arctostaphylos columbiana Piper Arctostaphylos uva-ursi (L.) Spreng. Cassiope mertensiana (Bong.) U.'.rDon Chimaphila menziesii (R.Br.) Spreng. Chimaphila umbellata (L.) Bart. Cladothamnus pyrolaeflorus Bong. Gaultheria humif.usa^Grab;) Rydb. Gaultheria shallon Pursh Menziesia ferruginea Smith. Moneses uniflora (L.) Gray Phyllodoce empetriformis (Smith) D. Don Phyllodoce glanduliflora (Hook.) Coville Pyrola?. asarifolia Michx. Pyrola secunda L . Rhododendron albiflorum Hook. Vaccinium alaskaense Howell Vaccinium deliciosum Piper Vaccinium membranaceum Dougl. Vaccinium ovalifolium Smith Vaccinium parvifolium Smith FAGACEAE Quercus garryana Dougl. FUMARIACEAE Dicentra formosa DC GRAMINEAE Agrostis alba L. Agrostis scabra W i l l d . Bromus vulgaris (Hook.) Shear Cinna l a t i f o l i a (Trev.) Griseb. Dactylis glomerata L. Danthonia spicata (L.) Beauv. Elymus glaucus Buckl.• Festuca brachyphylla Schult. Festuca o c c i d e n t a l i s Hook. G l y c e r i a e l a t a (Nash) Hitchc. Glyceria p a u c i f l o r a P r e s l Holcus lanatus L. Poa p a l u s t r i s L. Poa pratensis L. Poa t r i v i a l i s L. Trisetum cernuum T r i n . Festuca s u b u l i f l o r a Scribn. JUNCACEAE Luzula campestris Luzula p a r v i f l o r a (Ehrh.) Desv. LABIATAE Prunella vulgaris L. LILIACEAE C l i n t o n i a u n i f l o r a (Schult.) Kunth. Disporum oreganum (Wats.) B.& H. L i l i u m columbianum Hans. Maianthemum dilatatum (Wood) Nels. & McB. Smilacina racemosa (L.) Desf. Smilacina l i l i a c e a (Greene) Wynd. Streptopus amplexifolius (L.) DC Streptopus roseus Michx. Streptopus streptopoides (Ledeb.) F. & R. T r i l l i u m ovatum Pursh Veratrum v i r i d e A i t . MONOTROPACEAE A l l o t r o p a virgata T. & G. Hemistomes congestum Gray Monotropa lanuginosa Michx. Monotropa u n i f l o r a L. NAJADACEAE Potamogeton natans L. NYMPHAECEAE Nuphar polysepalum Engelm. ONAGRACEAE Circaea alpina L. Epilohium adenocaulon Haussk. Epilobium angustifolium L. Epilobium l a t i f o l i u m L. ORCHIDACEAE C o r a l l o r h i z a maculata Raf. Goodyera o b l o n g i f o l i a Raf. Habenaria saccata Greene L i s t e r a caurina Piper L i s t e r a cordata (L.) R.Br. OROBANCHACEAE Boschniakia hookeri Walp. PORTULACACEAE Montia s i b i r i c a L. PRIMULACEAE T r i e n t a l i s l a t i f o l i a Hook. RANUWCULACEAE Caltha leptosepala DC Coptis a s p l e n i f o l i a S a l i s b . Coptis t r i f o l i a S a l i s b . Ranunculus repens L. Trautvetteria grandis Nutt. RHAMNACEAE Rhamnus purshiana DC ROSACEAE Amelanchier a l n i f o l i a 'Nutt. Aruncus vulgaris Raf. Geum macrophyllum W i l l d . 105 Holodiscus d i s c o l o r (Pursh) Maxim. Malus d i v e r s i f o l i a (Bong.) Roem. Osmaronia cerasiformis (Torr. & Gray) Prunus emarginata Dougl. Rosa gymnocarpa Nutt. Rosa nutkana P r e s l Ruhus leucodermis Dougl. Rubus p a r v i f l o r u s Nutt. Rubus pedatus Smith Rubus s p e c t a b i l i s Pursh Rubus v i t i f o l i u s C. & S. Sorbus o c c i d e n t a l i s (Wats.) Greene Sorbus sitchensis Roem. Spiraea menziesii Hook. RUBIACEAE Galium t r i f l o r u m Michx. SALICACEAE Populus trichocarpa Torr. & Gray S a l i x hookeriana Benth. S a l i x lasiandra Benth. S a l i x scouleriana Barr. S a l i x sitchensis Sans. SAXIFRAGACEAE Leptarrhena p y r o l i f o l i a (D.Don) R.Br. M i t e l l a o v a l i s Greene Ribes bracteosum Dougl. Ribes divaricatum Dougl. Ribes sanguineum Pursh Saxifraga arguta D. Don Saxifraga ferruginea Grah. T i a r e l l a l a c i n i a t a Hook. T i a r e l l a t r i f o l i a t a L. T i a r e l l a u n i f o l i a t a Hook. Tolmiea menziesii (Pursh) T.& G. SCR OPHULARIACEAE Mimulus l e w i s i i Pursh Mimulus t i l i n g i i Regel Penstemon davidsonii Greene var. menziesii (Kek) Cronq. Veronica americana Schwein. SPARGANIACEAE Sparganium simplex Huds. UMBELLIFERAE Angelica genuflexa Nutt. Oenanthe sarmentosa P r e s l Osmorhiza c h i l e n s i s H.& A. URTICACEAE U r t i c a l y a l l i i Wats. VALERIANACEAE Valeriana sitchensis Bong. VIOLACEAE Viola Viola Viola Viola g l a b e l l a Nutt. orbiculata Geyer p a l u s t r i s L. sempervirens Greene APPENDIX II Manuals used for the I d e n t i f i c a t i o n of Plants 108 MANUALS USED FOR THE IDENTIFICATION OF PLANTS Abrams, L. 1955I l l u s t r a t e d f l o r a of the P a c i f i c States. and I I I . Stanford Univ. Press. Vols. I, II , and R. S. F e r r i s . 1959I l l u s t r a t e d f l o r a of the P a c i f i c States. Volume IV. Stanford Univ. Press. Davis, R. J . 1952. Eastham, J . W. 1947. ( J . K. Henry). F l o r a of Idaho. W. C. Brown Co., Dubuque, Idaho. Supplement to 'Flora of Southern B r i t i s h Columbia Spec. Pub. No. 1. B. C. Prov. Mus., V i c t o r i a , B. C. 1 Evans, A. W. 1940. L i s t of Hepaticae found i n the United States, Canada, and A r c t i c America. The B r y o l . 43: 133-138. Fink, B., 1935The Lichen f l o r a of the United States. Press, Ann Arbor, Mich. Frye, T. C. 21: 1918. 37-48. Univ. of Mich. I l l u s t r a t e d key to the western Sphagnaceae. The B r y o l . , and L. Clark. 1937-1947. Hepaticae of North America. of Wash. Publ. i n B i o l . V o l . 6 ( l - 5 ) . Univ. Galloe, 0. 1954. Natural h i s t o r y of the Danish lichens. O r i g i n a l Investigations based upon new p r i n c i p l e s . Part IX. Cladonia. Ejnar Munksgaard. Copenhagen. Grout, A. J . I928-I939. Moss f l o r a of North America, north of Mexico. Vols. I, I I , & I I I . Publ. by the Author. Newfane, Vermont. . 1940. The .Bryol. 43: L i s t of mosses of North America north of Mexico. 117-131. Hale, M. E. J r . , and W. L. Culberson, i960. A second c h e c k l i s t of the lichens of the continental United States and Canada. The B r y o l . 63: 137-172. Henry, J . K. 1915• F l o r a of southern B r i t i s h Columbia and Vancouver Island. W. J . Gage & Co., Toronto. Hitchcock, A. S. 1950. Manual of the grasses of the United States. Sec. ed. rev. by Agnes Chase. U.S. Dept. Agr. Misc. Pub. No. 200. Washington, D.C. Hitchcock, C. L., A. Cronquist, M. Owenby, and J . W. Thompson. 1955Vascular plants of the P a c i f i c Northwest. Part 5: Compositae. Univ. of Wash. Vascular plants of the P a c i f i c Northwest. Campanulaceae. Univ. of Wash. Press. Part 4: 1959. Ericaceae through 109 . Vascular plants of the P a c i f i c Northwest. Ericaceae. Univ. of Wash. Press. Howard, G. E. Press. Part 3 : 1 9 5 0 . Lichens of the State of Washington. 1961. • Saxifragaceae to Univ. of Wash. Peck, M. E. 1 9 4 l . A manual of the higher plants of Oregon. Mort. Porland, Oregon. Binfords & Szczawinski, A. F. 1 9 5 9 « The orchids of B r i t i s h Columbia. B. C. Prov. Mus., Dept. of Rec. & Cons., Handbook No. l 6 . V i c t o r i a , B. C. . I 9 6 2 . The heather family (Ericaceae) of B r i t i s h Columbia. B. C. Prov. Mus., Dept. of Rec. & Cons., Handbook No. 1 9 . V i c t o r i a , B. C. Taylor, T. M. C. 1 9 5 6 . The ferns and f e r n - a l l i e s of B r i t i s h Columbia. B. C. Prov. Mus., Dept. of E d u c , Handbook No. 1 2 . V i c t o r i a , B. C. . 1 9 5 9 . Notes f o r f i e l d t r i p No. 1 ( B r i t i s h Columbia). IX International Botanical Congress, Canada, 1 9 5 9 - Mim. Univ. of B. C , Vancouver, B. C. (Pages 14-19, A. F. Szczawinski and V. J . Krajina, used as a c h e c k l i s t f o r Lichenes; pages 2 0 - 3 1 , V. J . Krajina, used as a c h e c k l i s t f o r Bryophyta; and pages 32 - 6 2 , T. M. C. Taylor, used as a c h e c k l i s t f o r Tracheophyta). APPENDIX I I I Explanation and legend for synthesis tables Synthesis tables Ill EXPLANATION AND LEGEND FOR SYNTHESIS TABLES (1) Phytosociological nomenclature. Association names are derived from the generic and s p e c i f i c names of the climax species. Ecotopic terms or other adjectives, (e.g. l i t h o s o l i c , o r t h i c ) , designating q u a l i t a t i v e charact e r i s t i c s of the ecosystems, are also used i n the names of ecosystem types. In the association names, the generic name of the dominant species i s modified with the adjective s u f f i x - etum, and the s p e c i f i c name appears i n singular genitive. The generic name of the subordinate species i s modified with - eto ending (sensu Braun-Blanquet 1932, 1951)• Suffixes - etosum and - osum indicate subassociations or variants. (2) Computation reference number i d e n t i f i e s a sample p l o t i n the computor output data. (3) Exposure indicates compass readings from North i n clockwise direction. (4) Slope gradient i s the average i n c l i n a t i o n of the ground surface from the horizontal d i r e c t i o n . (5) Macroclimate symbols are i n accordance with the Koppen and the Thornthwaite c l a s s i f i c a t i o n explained i n footnote on pp. 3 Chapt. I. (6) Stratum coverage indicates the t o t a l area covered by a single stratum expressed as percentage of p l o t s i z e . Strata are designated as A (tree l a y e r ) , B (shrub layer), C (herb layer), and D (layer of bryophytes and l i c h e n s ) . The l e t t e r s h, dw, and e designate humus, decaying wood and bark inhabiting species respectively. (7) Humus, rock, mineral s o i l , or decaying wood coverage refers to the t o t a l area of each item expressed separately as percentage of plot size. (8) Land type, a macroscale c l a s s i f i c a t i o n , describes the surface materials and refers to the general surface forms, e.g. rock outcrop, a l l u v i a l plain, glacial d r i f t . (9) Land form, a mesoscale c l a s s i f i c a t i o n within a land type, describes the land surface i n the v i c i n i t y of a sample plot, e.g. upperslope, middle slope, lower-slope, depression. (10) R e l i e f shape, a microscale c l a s s i f i c a t i o n , pertains to the land surface shape within a sample p l o t , i . e . concave, straight, convex. (11) Parent material (C) refers to the consolidated or unconsolidated materials from which the solum develops. (12) Erosion p o t e n t i a l , the i n t e n s i t y of erosion that could occur, following the removal of the vegetation, i s evaluated by a descriptive scale as follows: 112 Erosion potential scale Description None Depressions or lower-slopes where the dominating process i s deposition. Slight Gentle slopes not exposed to run-off water from adjacent slopes. Moderate Straight or s l i g h t l y convex slopes with r e l a t i v e l y high slope gradient. Severe Convex steep slopes, e s p e c i a l l y those adjacent to rock outcrops. (13) as follows: Run-off i s estimated by the c r i t e r i a of a descriptive scale Run-off scale Description Pounded Depressions with stagnating water. Slow Lower and middle slopes with heavy vegetational cover. Medium Steep upper-slopes with vegetational cover. Rapid Rock outcrops. Agr. 1 9 5 1 . (lk) Drainage i s estimated i n accordance with the U.S. S o i l Survey Manual, pp. I69-I72. (15) Dep. Hygrotope classes are described i n the following table: 113 Hygrotope class Class value Description Very dry -3 Knolls and peaks of rock outcrops. Dry -2 L i t h i c s o i l s or rock outcrops, or shallow truncated t i l l s , less strongly convex r e l i e f . Moderately dry -1 Coarse stony g l a c i a l t i l l s , usually shallow, on convex r e l i e f or very coarse s o i l s without seepage on straight r e l i e f . Medium textured deep s o i l s , r e l i e f , without seepage. straight Mesic 0 Moist +1 Deep s o i l s with apparent signs of temporary seepage deep i n the p r o f i l e , straight or concave r e l i e f . Wet +2 Permanent seepage close to the s o i l surface, concave r e l i e f . Swampy +3 Spring-water swamps, muskegs, and stream-edge habitata, of concave slopes, depressions, or ravines. (16) Stoniness r e f e r s to the proportion of stones above 10 i n . diameter expressed as percentage of t o t a l s o i l volume. (17) Permeable mineral s o i l depth i s measured from the mineral s o i l surface down to the f i r s t impermeable layer. (18) Ecto-humus consists of drganic remains resting on the s o i l surface (sensu Wilde 1 9 5 8 ) . (19) Endo-humus consists of well-mineralized organic matter incorporated with the mineral s o i l (sensu Wilde 1 9 5 8 ) . (20) Eluviated horizon (A ) i s a podzolic horizon impoverished i n c o l l o i d s and iron and aluminum compounds. e (21) Melanized horizon (Ah) i s a p a r t l y mineral, p a r t l y organic horizon produced by i n f i l t r a t i o n of organic suspensions. 114 (22) I l l u v i a l Horizon (B) i s enriched i n c o l l o i d s and iron and aluminum compounds. (23) S o i l reaction (pH) measurements were taken on material f i n e r than 2 mm.,using a Beckman pH meter, Model N, i n a paste-like s o i l water mixture. (24) Humus form i s c l a s s i f i e d on the basis of o r i g i n and decomposition rate of the organic matter i n two major classes: subaquaeous forms (peat, anmoor, gyttja) and t e r r e s t r i a l forms (raw humus, duff-mull, earth mull). The layers i n t e r r e s t r i a l humus are designated as L ( l i t t e r ) , F (fermentation layer) and H (well-mineralized organic matter). (25) Site index i s the average height growth of dominant and codominant trees within a sample plot i n one hundred years. (26) Species ratings are given by three figures (e.g. 5-7-3 ov + . + .1) which represent species significance, s o c i a b i l i t y and vigor..'. The following scales were used f o r f l o r i s t i c evaluation as recommended by Krajina: Species Significance + 1 2 3 4 5 6 Very sparsely present, dominance very small Sparsely present, dominance small Very scattered, dominance small Scattered to p l e n t i f u l Often, dominance l / 2 0 to l / l O of plot Often, dominance l / 5 to l / 4 of plot Any no of individuals, dominance l / 4 to 1/3 rj tl II 1/3 to 1/2 8 " " 1/2 to 3/4 over 3/4 100$ of p l o t 10 Sociability Growing singly Grouped or tufted, groups up to l 6 sq. cm. Group larger, up to l / l 6 sq. m. Group, l / 8 to l / 4 sq. m. 1/3 to 2/3 1 to 2 sq. m. 5 to 20 " 25 to 50 " : ioo 200 to 250" 10 A t . l e a s t 500 sq. m. Vigo: 0 + 1 2 3 - none poor fair good excellent Table XLO. 1 Number of plots Jllot number Computation reference no. Date • Rhacom: :rietum canescentis 4 1 2 3 2U1 216 201 236 16 01 27 31 20/ll 15/5 18/11 23/6 196l 1961 1961 196l Plot size (sq.m.) Latitude 49°22 Longitude 123"°l4 Altitude ( f t . ) 66O Exposure (degree) j?60 Slope Gradient (degree) ;37 Macroclimate Koppen Thornthwaite Strata coverage (per cent) B .0 C .0 D 95 Humus coverage (per cent) 95 Rock coverage (per cent) ..5 Decaying wiood coverage (per cent) 0 Land type and Land form Parent material R e l i e f shape Profile Contour l i n e Erosion p o t e n t i a l Run-off Drainage Hygrotcpe Permeable mineral s o i l depth (cm.) ^2 Ecto-humus horizon depth (cm.) L-F ~5 Endo-humus horizon depth (cm.) Ah "0 Eluviated horizon depth (cm.) Ae ~2 pH L-F U.-67 Ah A 4.04 A-B B C Texture A Humus form e k$°22{ U9°l6| 123°ll+' 1 2 2 ° 3 5 ' 600 650 270 315 10 40 1 0 100 98 1 1 0 0 20 80 20 0 . 3 l 0 3 • 5.09 0.5 1 0 0.5 5 206 06 7/6 1961 1 k9°3Q] 49°17\ 6 210 10 8/6 1961 7 239 30 20/11 1961 8 217 17 8/6 1961 9 234 25 20/10 1961 U9°17) 49°l6' 49°17\ 49°36\ 122°35' 122°35' 700 1000 260J. 180 25 11 Cfb ABjrb^ 0 0 0 0 0 580 95 95 80 95 95 - 20 5 5 0 0 0 Rock outcrop - K n o l l G r a n i t i c rocks Convex Convex Severe Rapid :Excessive Very dry 1 1 0.5 1 3 0.5 l ... 0 0.5 0 1 0 122°35' 500 270 kO 122°35' 730 225 30 123°12' 250 225 123°12' 560 270 25 4.98 Sand Raw humus 0 10 70 80 20 0 0 15 100 100 0 0 1 0.5 0 1.0 3 1 2 1 4.32 3.95 4.06 2k 0 5 100 99 1 0 1 1 0 1 Mean Range 620 250-1000 SE-NW 27 10-40 k 91 91 9 0-1 0-15 70-100 80-100 0-20 0-1 1.4 0 . 5 - 3 1.6 0 . 5 - 5 0.4 0-2 l.l 0-3 4.69 4 . 3 2 - 5 . 0 9 3.95 4.36 4 . 0 4 - 4 . 9 8 Table no. 2 Number of plots Layer No. Plot no. i of Species Computation reference no. 1 2 3 4 5 6 7 8 9 10 li 12 13 14 15 16 17 18 C D Rhacomitrietum canescentis 1 2 3 4 5 6 201 236 24l 216 206 210 239 27 31 16 6 10 30 1 Cryptogramma c r i s p a Saxifraga ferruginea Luzula campestris Senecio sylvaticus Danthonia spicata +.4.1 Rhacomitrium canescens 10.6. 3 10.6.3 Polytrichum juniperinum + . 2 .3 2.3-3 Cladonia g r a c i l i s + . 2 . 3 +.3-3 Polytrichum p i l i f e r u m 4 . 2 . 3 2.3-3 Cladonia p a c i f i c a + .2.2 Cladonia r a n g i f e r i n a S e l a g i n e l l a wallacei Dicranum scoparium Pleurozium schreberi Eurhynchium oreganum Rhacomitrium heterostichum Grimmia apocarpa Polypodium vulgare 4.4.2 7 4.+.3 + . + „2 + . + .2 7.5.3 10.6.3 8 . 5 . 3 9.6.3 +.3.3 +.+.3 2.3.3 +.2.3 + .3.3 4.3.3 + .3.3 + .2.2 + .2.2 8.6.3 1.3.3 + .2.3 + .3.2 +.2.3 + .2.1 , 4.4.3 3.2.3 s ,. 8 .217 17 9 234 25 Species significance mean 5.+.3 2 . 4 . 3 1.2 3.4.2 .0.8 + . + .2 0.2 0.1 0.1 9.6.3 9 . 6 . 3 8.9 2 . 3 . 3 2 . 4 . 3 1.3 + .2.-3;,+ . 2 . 3 0 . 8 + . 3 . 3 1*3. J 1.4 +.2.2 0.3. - • •'-:•-+;.3.2 0 . 3 3 . 4 . 3 ' 6 . 5 . 3 1.0 0.4 3.5.3 + .4.3 0.1 0.1 0.4 0.3 +.4.1 0.1 Vigor Constancy range mean range 0-5 0-4 ©-+ 0-+ 0-+ 7-10 0-2 0.--+ 0-4' 0-+ 0-+ 0-6 ""<fc?30-+ 0-+ 0-4 0-3 0-+ 3 2 .2 2 1 3 3 3 3 2 2 3 3 3 i 3 3 l 3/9 2/9 2/9 1/9 1/9 9/9 8/9 7/9 6/9 3/9 3/9 2/9 2/9 1/9 1/9 1/9 1/9 1/9 ON Cladonie o - Polytrichetum p i l i f e r i 8 6 4 1 7 5 2 3 Mean 208 213 207 218 233 229 205 237 08 13 07 18 24 22 28 05 7/6 8/6 7/6 28/6 20/10 14/10 18/11 7/6 1961 1961 1961 1961 1961 1961 196l 1961 P l o t size (sq.m.) 1 U9°l6] 490.16] 4 9 ° 1 7 ; 4 9 ° 1 7 ] 49°17 J 4 9 ° i 6 | 49°38| l+9°22 \ Latitude 123°l4' 1 2 2 ° 3 5 ' 1 2 2 ° 3 5 ' 122°35 122°34 122°35 1 2 2 ° 3 5 ' 123°12 Longitude 611 250 650 1000 650 600 500 540 Altitude (ft.) 700 270 270 270 315 225 315 270 Exposure (degree) • 260 16 18 20 24 10 30 15 Slope gradient (degree) 7 5 Cfb Macroclimate Koppen ABjrbil Thornthwaite 2 0 0 1 0 0 1 2 5 Strata coverage (per cent) B 1 1 f) . 0 0 0 ' 1 1 C 5 '• 100 100 100 98 ' 100 100 90 100 D 95 100 100 100 100 100 99 100 90 100 Humus coverage (per cent) 0 0 0 . 0 10 0 0' 0 Rock coverage (per cent) Rock outcrop - Table Land type and Land form Granitic rocks Parent material Convex R e l i e f shape Profile Convex Contour l i n e Severe Erosion p o t e n t i a l Rapid Run-off Excessive Drainage Very dry Hygrotppe 2.8 .4 6 0 2 2 5 Permeable mineral s o i l depth (cm.) 2 1.5 l 2 1 1 0 . 5 Ecto-humus horizon depth (cm.) L-F 1.5 1 0.5 0.5 0 1 6 : 2 2 5 Endo-humus horizon depth (cm.) Ah 3 0 1-5 0 0 0.4 0 1 0 0 0 Eluviated horizon depth (cm.) A 2 4 . 3 8 4.48 4.29 pH L-F 4 . 7 6 4.65 4.87 Ah A A-B B C Loam * Sand Sand Texture A Raw humus Humus form Table So. 3 Number of plots P l o t Number Computation reference no. Date e e Range 250-1000 SW-NW 10-30 0-5 0-5 90-100 90-100 0-10 0-5 O.5-2 1.5-6 0-2^? I,.29-4.48 4.65-4.87 Table ho. 4 Number of plots No. of species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 1 2 3 4 5 6 7 8 237 229 218 213 205 208 207 233 22 18 13 05 08 07 24 Layer Plot no. Computation reference no, B C D .. Cladonieto - Polytrichetum p i l i f e r i ' c Gaultheria shallon Cryptogramma crispa Agrostis scabra Cladonia p a c i f i c a Polytrichum p i l i f e r u m Polytrichum juniperinum Cladonia r a n g i f e r i n a Rhacomitrium canescens Dicranum scoparium >1!G iadoffi.a^' grac i l i s Cladonia b e l l i d i f l o r a Cladonia cariosa Pleurozium schreberi Cladonia mitis Cladonia u n c i a l i s Tsuga heterophylla Thuja p l i c a t a Stereocaulon alpinum Danthonia spicata S e l a g i n e l l a wallacei Polytrichum commune Pseudotsuga menziesii Luzula p a r v i f l o r a Luzula campestris 'Tffubus v i t i t o l i u s Hypochaeris radicata Polypodium vulgare 28 +. + .1 + . + .1 + . + .2 + . + .2 3.4.3 3.4.3 3.5.3 5.6.3 4.5.3 4.5.3 2.3.3 3.4.3 + .2.3 4.2.3 +.2.3 2 . 2 . 3 7.5-3 3.2.3 4.3-3 3.3.3 8.5-3 2.4.3 2.3.3 ,+•. + .0 +V+vO 2 8.6.3 2.3.3 3.5.3 3.5.3 5.5.3 4.5.3 +.2.3 + .2.3 + .2.3 4.5.3 2.2.3 4.5.3 6.6.3 3.4.3 1.3.3 2.2.3 2.2.3 2.3.3 + .3.3 +. + .1 +.+.1 . 3 . 4 . 2 + . + .2 + . + .2 + . + .2 Species significance mean range 0.9 0.4 0-3 0-+ 0.9 2 3-9 +-3 2- 4 3- 6 0-8 0-5 0-4 0-2 0-2 0-5 0-2 0-7 0-+ 0-+ 0-3 3 3 3 3 3 3 3 3 3 3 3 3 0 6 . 6 . 3 . 9 . 6 . 3 9 . 6 . 3 5'.4'.3 6.4 + . 3 . 3 ' 1 . 3 . 3 1 . 2 . 3 3 . 3 . 3 2.0 2 . 4 . 3 2 . 3 . 3 2 . 3 . 3 3 . 5 . 3 2.9 5 . 5 . 3 3 . 5 . 3 3 . 4 . 3 6 . 5 . 3 4.3 3-3 2.4.3 2.3.3 2.4.3 3 . 4 . 3 5 • 5-3 5 . 5 . 3 4 . 3 . 3 3.3 + . 3 . 3 4 . 3 - 3 , , A-8 +.3.3 +.+.3 +.2.3 0'.9+.2.3 0.6" 3 . 5 . 3 3 - 4 . 3 5 . 5 . 3 1.4 2.4.3 0.8 1.6 7.6.3 4.5.3 0.2 +.+.0 0.2 +.+.1 0.5 3.3.3 +.3.2 + . + .1 + . + .1 +.+.1 + . + .1 + . + .1 +.+.1 Vig jcor Cons- |, tancy/ji mean range 0.5 3 1-2 0-1 5/8 3/8 8/8 8/8 8/8 8/8 7/8 7/8 7/8 6/8 4/8 3/8 3/8 3/8 2/8 2/8 2/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 IH bCO 1 119 Danthonietum spicatae 1 2 3 212 202 235 26 12 02 8/6 1/6 5/11 1961 196l 196l Table no.. !? Number b f / g l o ^ ^ i Plot number Computation reference no. Date P l o t size (sq.m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope gradient (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) 4 232 23 20/10 1961 Mean li9°17 2+9°22 U9°38, 1 2 2 ° 3 5 ' 123°llf' 123°12 122°35' 738 1000 500 250 1200 i4o 90 205 315 21 9 5 5 3 Cfb ABjrb^ 1 10 5 5 60 20 10 33 40 50 79 100 80 85 9k 100 100 Humus coverage (per cent) 80 95 0 6 Mineral s o i l coverage 0 20 5 Land type and Land form Rock outcrop - Crevice Parent material Transported R e l i e f shape Profile Straight to convex Straight Contour l i n e Moderate Erosion p o t e n t i a l Medium Run-off Excessive Drainage Dry to very dry Hygrotope 20 30 Stoniness (per cent) 15 5 5 Permeable mineral s o i l depth (cm.) ' "30 23.3 13 32.5 17.5 2.4 Ecto-humus horizon depth (cm.) L-F 2.5 0.5 5 1.5 . Endo-humus horizon depth (cm.) Aft 1 2 5.5 5 Eluviated horizon depth (cm.) A 0 0 2 • )21 o:i' 4.68 4.70 4.50 4.12 pH L-F 4.46 4.61 4.10 Ah 4.60 4.60 e A-B 4.80 B 4.63 4.23 5.49 . C * Sand Loam Loam A Texture Sand Loam Loam B * Duff mull Humus form If9°i8 ] e A 1 1 Table ho. 6 Number of p l o t s No. Layer of Species P l o t no. Computation reference no. 1 2 3 4 5 6 7 8 9 10 C n 12 13 14 15 16 17 18 19 20 21 22 23 2k 25 26 27 D . Gaultheria.y shallon . Pseudotsuga menziesii Rubus v i t i t o l i u s Holodiscus d i s c o l o r Danthonia spicataCryptogramma c r i s p a Saxifraga ferruginea L i l i u m columbianum Luzula campestris Polystichum munitum Senecio sylvaticus Agrostis scabra Festuca occidentalis Achillea millefolium Polytrichum p i l i f e r u m Rhacomitrium canescens Polytrichum juniperinum Cladonia p a c i f i c a Cladonia rangiferina Dicranum scoparium Cladonia b e l l i d i f l o r a Cladonia g r a c i l i s Selaginella wallacei Polytrichum commune Pleurozium schreberi Hylocomium splendens Cladonia coniocraea Danthonietum spicatae 1 ' 202 2 3-5.1 6.6.3 3^?*3 3.ft'. 3 2.+.2 2.4.3 2 3 4 212 235 232 12 26 23 mean + . + .1 +. + . 1 2.3 0.5 0.3 0.3 6.5 1.0 0.8 0.5 0.5 0.3 0.3 0.3 0.3 1.0 2.0 3-0 2.0 2.0 0.8 1.8 0.8 0.5 0.5 0.5 2.0 0.3 0.3 3.5.1 2 . 4 . 1 +.+.1 +.+.1 7.6.3 7.5.3 + . + .2 s%.3 +.+V3.. s +.+.1 1.+.2 2.3-3 6.6.3 2.3-3 2.4.3 1.3.3 2.3.3 +.3.3 +.2.3 1.3.3 +.2.3 3.4.3 1.3.3 3.4.3 4.3.3 5.4.3 4.3.3 3.4.3 +.3.3 +.3.3 +.4.3 4.4.2 1.3-3 1.3.3 2.4.3 2.3.3 2.3.3 2.3-3 2.5.3 8.6.3 +.3.1 +.1.3 : -Specie's'!'', significance Vigor' Constancy mean 1 1 1 2 3 3 3 2 3 l 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 4/4 2/4 1/4 1/4 4/4 2/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 4/4 3/4 4/4 3/4 3/4 3/4 2/4 1/4 1/4 1/4 1/4 3 1/4 l lA ro o 121 Table Ho. 7 Number of plots Plot number Computation reference no. Date Polytrichetum communis 1 2 3 211 209 219 11 09 19 28/6 8/6 7/6 1961 1961 1961 1 Plot size (sq. m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope gradient (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) U9°l6I 122°35 600 225 10 Mean u ° i 7 ; k9°l6' 9 122°35 122°35 600 1000 90 225 . 5' 5 Cfb AB-Jrb^ 5 0 1 95 100 100 100 .. 100 100 Humus coverage (per cent) Land type and L\and form Rock outcrops Crevice Parent material Transported R e l i e f shape Profile Concave Concave Contour l i n e Slight Erosion p o t e n t i a l Run-off Pounded Drainage Very Poor Hygrotope Wet Stoniness (per cent) 0 10 5 Permeable mineral s o i l depth (cm.) 20 7 35 Ecto-humus horizon depth (cm.) L-F 1 1 0.5 Endo-humus horizon depth (cm.) Aft 3 57 Eluviated horizon depth (cm.) A Ml Seepage depth (cm.) Nil 20 20 pH L-F 4.42 Ah A 5,-5Q A-B 5-02 B 5.41 C Loam Texture A Clay B Humus form Duff mull 733 6.7 2 98 100 5 20.7 0.8 5 e e 20 4.42 5> 50 5.02 5.4l Table ho. 8 1 2 3 219 211 209 Computation reference no. 19 11 9 Rubus v i t i f o l i u s Gaultheria shallon Apocynum androsaemifolium Luzula p a r v i f l o r a Saxifraga ferruginea Cryptogramma crispa Polytrichum commune Cladonia r a n g i f e r i n a + . + .2 3.+ .2 Number of plots No. of Species 1 2 3 k 5 6 7 8 Polytrichetum communis Layer Plot no. B C D +.+.2 +.+•3 + . + .2 + . + .3 9.5.3 10.5.3 10.5.3 + .3.3 Species Vigor Conssignificance tancy mean mean 0.3 1.0 0.3 0.3 0.3 0.3 9-7 0.3 2 2 2 3 2 3 3 3 1/3 1/3 1/3 ^? 3/3 1/3 Table no. 9 Number of plots Plot number Computation reference no. Date P l o t size (sq.m.) Latitude Longitude Altitude (ft.) Exposure (degree) Slope gradient (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) Gaultherietum shallonis 1 4 2 3 220 242 238 227 20 21 32 29 28/6 .18/11 6%. 23/6 1961 196l 1961 1961 1 20 10 490-17' 49°i6J 49°l6] 49°22' I 2 3 ° i 4 ' 1 2 2 ° 3 5 122°35' 122°35' 560 500 600 750 270 270 225 135 10 10 10 5 1 50 60 80 100 0 B C D Humus coverage (per cent) Decaying wood coverage (per c ent) Land type and Land form Parent material Transported 80 60 100 100 0 6 7 5 204 214 215 14 04 15 8/6 8/6 7/6 1961 1961 1961 . 40 40 25 49°l6\ 49°17; 49°17; 122°35 122°35 1 2 2 ° 3 5 ' 700 1000 700 225 260 225 21 10 5 Cfb 100 50 90 95 1 0 0 0 100 100 100 100 100 100 100 90 0 0 10 0 Rock outcrop - Complex ^Granitic rocks •Transported 100 0 100 100 0 Straight* Straight* Profile Contour l i n e Convex Convex ; e : : 75 5 100 100 0 Range 500-1000 SE-W 5-21 80 16 98 99 50-100 0-60 80-100 90-100 0-10 24 16.2 2-9 2.7 3-3 4.71 4.43 4.44 5.09 5.17 o46o *Granitic*Transrocks ported *Convex *Concave *Convex ^Straight * Straight * Straight Severe Erosion p o t e n t i a l Run-off Medium Well-drained Drainage Excessive •* Moist Hygrotope Dry 10 0 50 0 60 Stoniness (per cent) 50 15 6 16 Permeable mineral s o i l depth (cm.) 30 •23 15 23 9 1 1 Ecto-humus horizon depth (cm.) L-F 1 2. 5 6 5 3 4 0 4 2 Endo-humus horizon depth (cm.) A^ 2 5 .3 0 .4 12 0 0 Eluviated horizon depth (cm.) A 5 5 4.88 4.88. 4.65 L-F PH 5.06 4.22 Ah 4.08 4.4l 4.85 ' A A-B 5.09 B 5.91 5.27 Loam am A Sand Texture * * * Clay *Loam * N i l Loam B Nil * Duff Mull Humus form Duff Raw Mull Humus R e l i e f shape 8 203 Mean 03 2/6 1961 20 49°i6' 122°35' 700 689 180 10 5 10 7-5 3 1.5 0 4.41 4.00 e 4.34 * Clay 6.0-30 1.0-6 0-5 0-12 4.41-4.88 4.00-5.06 4.08-4.85 4.34-5.91 Table no. 10 Number of plots Wo. of Species Layer Plot no. Computation reference no. 1 2 3 4 5 6 7 8 9 10 B n 12 13 l4 15 16 17 18 19 20/. 21 22 23 2k 25 26 27 28 29 30 31 32 33 D Gaultheria shallon Vaccinium parvifolium Pseudotsuga menziesii Thuja p l i c a t a Rubus v i t i f o l i u s Tsuga Jaeteroffiylla. Holodiscus d i s c o l o r Amelanchier a l n i f o l i a Sorbus sitchensis Spiraea menziesii Festuca accidentalis Danthonia spicata Cryptogramma crispa Senecio sylvaticus Agrostis scabra Polypodium vulgare Pteridium aquilinum Pleurozium schreberi Cladonia p a c i f i c a Polytrichum commune Hylocomium spendens Eurhynchium oreganum Dicranum scoparium Cladonia b e l l i d i f l o r a Rhytidiadelphus loreus Rhacomitrium canescens Polytrichum p i l i f e r u m Cladonia g r a c i l i s Cladonia rangiferina Polytrichum juniperinum Cladonia cariosa Plagiothecium undulatum P e l t i g e r a aphthosa Gaultherietum shallonis 1 2 3 k 5 242 238 220 227 215 32 29 20 21 7.6.2 8.5.2 + . + .2 + . + .3 8.6.3 7.5.2 + . + .2 + . + .2 3.4.3 . + .2.2 + .1.3 6.5-3 6 . 4 . 3 3.4.3 2.3.3 1.2.3 6.4.3 2.3.3 4.5.3 + .2.3 15 -2l4 14 7 8 204 203 4 3 Species significance mean 9 . 6 . 2 8 . 6 . 2 1 0 . 7 . 3 8 . 6 . 2 IO.6.3 8 . 6 . 2 8 . 5 •: '+. + .1 0 . 9 +. + .2 + .+.2 4.5.3 6.6.2 + +.+.2 +.3.2 1.1 + .+.3 + . + .1 0.3 0.5 3 . 5 . 3 + .+.1 0.1 + .5.2 0.1 0.1 +.+.1 0.1 + .3.2 0.4 3.5.1 0.6 +. + .2 3.4.3 2.0 + . + .2 0.1 + . + .2 0.1 0.1 + . + .2 0.1 + .3.3 0.1 4.5.3 5.5.3 3.0 5.6.3 4 . 3 . 3 . 6.6.3 3.5.3 3 . 4 . 3 + . 3 . 3 +.3.3 4 . 5 . 3 1.8 3.4.3 7.6.3 5 . 6 . 3 8 . 7 . T •'5-6.3 9 . 6 . 3 4 . 3 8.6.3 4.5.2 2.0 +.3.2 3.5.3 2.3.2 2.4.3 1-3 5.5.3 +.2.3 3 . 3 . 3 1.4' 4.5.3 3.4.3 0.6 +.+.2 3 . 5 . 3 2.4.3 0.6 1.3.3 2 . 4 . 2 1.5 0.6 0.9 ' • .. 5 . 5 . 3 0 . 9 0.5 0.1 2.3.2 0.3 0.1 + . + .3 Vigor range mean 7-10 0-4 0-6 0-+ 0-3 0-+ 0-+ 0-+ 0-+ 0-3 0-3 0-8 0-+ 0-+ 0-+ 0-+ 0-+ 0-6 0-4 0-9 0-8 0-5 6-4 0-3 0-2 0-6 0-3 0-6 0-5 o-4 0-+ 0-2 0-+ Constancy range 2 , 3 ' 2^3' •8/8 1.8. 1-3 4/8 2.0 4/8 2.0 1-3 2/8 2.0 1-3 2/8 2.0 1/8 1/8 2.0 1/8 1.0 2.0 1/8 1/8 1.0 3/8 2.7 2-3 2.3 2-3 3/8 2.0 1/8 1/8 2.0 2.0 1/8 3.0 1/8 2.0 1/8 6/8 3.0 6/8 3-0 3-0 5/8 2-3 4/8 2.5 2.5 2-3 4/8 4/8 3-0 2.7 2-3 3/8 2-3 3/8 2.7 2/8 3.0 2/8 3-0 2/8 3.0 2/8 3.0 3-0 1/8 1/8 3.0 1/8 2.0 3-0 1/8 ro -t=- Table no. 11 Number o f plots P l o t no. Computation reference no. Date Cladonieto - Pseudotsugetum P l o t size (sq. m.) Latitude Longitude Altitude (ft.) ! Exposure (degree) Slope gradient (degree) Macroclimate KSppen Thornthwaite . S t r a t a coverage (per cent) Al A A 2 l B B C D Ddw Dr D B 2 h Humus coverage (per cent) Rock coverage (per cent) Decaying wood coverage (per cent) Land type and Land form R e l i e f shape Profile Contour l i n e Parent material Erosion p o t e n t i a l Run-off Drainage Hygrotope Stoniness -(per cent) Permeable mineral s o i l depth (cm.) Ecto-humus horizon depth (cm.) L-F 1 230 34 9/12 1961 400 49°17, 122°35 1200 205 32 45 60 70 10 80 80 1 90 1 4 95 95 4 l 15 10 •2 60 36 27/8 1958 3 231 37 menziesii 4 5 69 25 33 35 ll/7 5/10 12/10 1961 1958 1958 400 , 400 4oo 800 , 49 19 ' 49°l6 49 l8| 49°23, 122°35 122°35 :L22°35' 122°47 1250 540 l4oo 600 Top 90 180 180 40 30 15 8 0 Mean Range 0 20 25 Cfb AB 'rKj.k 20 50 70 5 75 1 24 100 99 50 30 60 20 90 100 0 60 15 0 75 75 25 55 60 20 50 60 5 90 10 0 100 90 25 55 65 15 60 65 5 80 20 0 100 80 1 25 10 20 11 6 13 5 40 Rock outcrop - Upper slopie Convex Convex Granitic rocks Severe Moderate Excessive Dry 40 40 30 3 • * -.5 0 10 5 990 540-1400 25 8-40 11 1-25 25 9 5 3-13 5-6 0-40 H ro vn Table no'. 11 ~ Continued CTadonietq Number of plots 1 Eluviated horizon depth (cm.) Ae 10 pH L-F 3.70 Ae 3.64 Humus form 1 S i t e index Douglas-fir ( f t . per lOOy.)Western hemlock Western redcedar 60 . Pseudotsugetum 2 3 11 3 4.00 3.80 menziesii 4 5 10 13 3.84 3.75 3 .58 3.70 Mean Range 9 3-13" 3.82 3.70-4.00 3.64 3.58-3.70 Raw humus 73 67 69 78 63 54 69 64 46 69 66 56 60-78 64-67"" 54-69 Table no. Cladonieto. -. Pseudotsugetum menz ies i i 12 Number of sample plots No. of Species Layer 1 2 3 4 5 230 60 231 69 25 Species significance 34 36 37 33 35 mean • Sample plot no. Computation reference no. Vigor Constancy range mean range Characteristic combination of species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Pseudotsuga menziesii 6.+ .2 4.+ .2 8.10.2 5.7.2 3.+ .2 5.2 Al 6.8.2:s+. + . l 5.8.2 5.8.2 2 3.4 4.7.2 2.8 THugaopMcata 3.7.2 4.7.2 1 3-4.2 6.9.2 5.7.2 5.8.2 7.10.2 4.6 2 Pseudotsuga menziesii 3.2 Bl 7.10.3 +. + .! 4.6.2 4. + .H6.6.2 2 Thuja p l i c a t a 4.6.3 5.7.2 1 3.4 5-7.1 3.7.2 3.6.2 4.5.2 2 1.4 9.10.2 6.8.2 9.10.2 7.8.2 8.10.2 7.8 Gaultheria shallon 2 Holodiscus discolor 1 + . + .2 + . + .2 + .+.2 0.6 ' Eurhynchium oreganum 6.6 6.8.3 4.7.3 7.9.3 9.10.3 7.8.3 Dh dw 2.3.3 1.2 2.3.3 2.3.3 Hylocomium splendens h 4.6.3 3-5.3 4.5.3 3.5.3 8.-9.3 4.4 dw :+.2.3. 2.4.3 4.3.3 1.4 Pseudotsuga menziesii h 0.4 1. + .3 h" Thuja p l i c a t a 1. + .3 +. + .2 + . + .2 0.6 dw + . + .2 + . + .2 0.4 h Pleurozium schreberi 2.4 3.6.3 5.6.3 416.3 Peltigera canina h 1.2 +.3.3 4.5.3 1.4.3 Polytrichum juniperinum h +.3.2 1.0 3.5.3 1.3.3 Cladonia rangiferina h 2.5.3 2.3.3 3.5.3 1.4 Cladonia p a c i f i c a h 2.0 2.5.3 4.5.3 2.4.3 h Rhacomitrium canescens . 6.8.3 +.3.3 1.4 Polytrichum commune h + .3.3 1.5.3 0.4 Rhacomitrium heterostichum' + .3.3 +.3.3 h 0.4 h Polytrichum p i l i f e r u m 1.4.3 +.3.3 -)0.4 Companion species Tsuga heterophylla + . + .2 4.6.3 -r«-'-,>•. 3»4".2 3.r.3 2.2 Al 2 2.+.2 +.+.2 3.7.2 3.+ .2 1.8 3-8 0-6 0-4 0-7 0-7 0-5 0-4 6-9 0-+ 4-9 0-3 3-8 0-4 0-1 0-1 0-+ 0-5 0-4 0-3 0-3 0-4, 0-6 0-1 Q-+ 0-1 0-4 0-3 2.0 1- •2 1.7 2.0 2.0 +--3 1.7 5/5 4/5 4/5 4/5 4/5 2.0 2.0 2.0 2.0 3.0 3-0 3.0 3.0 3.0 2.3 2.0 3.0 3-0 2.6 3.0 3.0 3-0 3.0 3-0 3-0 1- •3 4/5 2/5 2.7 2.0 2--3 / 3/5 5/ 5 2-•3 2--3 / 5 / 5 2/5 3/5 2/5 3/5 3/5 ? ? 2/5 3l 3/5 3l 2/5 2/5 2/5 4/5 V5 ro Table no). 12 - ©continued Ko. Layer Number of sample plots of Species 17 18 19 20 21 22 23 24 2.5 26 27 28 29 Bi 2 1 2 1 1 2 1 C % dw e dw e dw e e h dw 32 33 34 35 36 e h dw e dw dw hi:. h dw .Pseudotsugetum menziesii Vigor Species 3 significance mean range mean Sphaerophorus globosus Rhytidiadelphus loreus +.5-2 + . + .2 3 . 7 . 2 + . + .2 2.4.2 3.5.2 2.4.1 2.5.3 + . + .2 + . + .2 + . + .2 1.3.2 1.4.2 + .+.2 4 . 5 . 2 + . + .2 2.5.2 2.4.3 3.5.3 + . 2 . 3 + . 3 . 2 1.3.3 + . 2 . 3 +.3.3 + .2.3 + .2.2 +.3-2 +.2.3 + .2.2 + .2.2 + .3.3 + .2.2 + . 3 . 3 + .1.2 +.2.3 + . 3 . 3 + . 2 . 3 2.3.3 2.3.3 + .2.3 1.3.3 + .2.3 + .2.3 +.3.2 + . 2 . 3 +.2.3 + .4.2 1.4.2 Parmelia v i t t a t a Cephalozia media Cladonia b e l l i d i f l o r a Dicranum scoparium Isothecium stoloniferum + .2.3 + .1.3 + .3-3 1.2.3 + . 3 . 3 4 . 6 . 3 5-6.3 2.5-3 Tsuga heterophylla Vaccinium parvifolium Prunus emarginata Rosa gymnocarpa Vaccinium ovalifolium Menziesia ferruginea Pteridium aquilinum Plagiothecium undulatum Hypnum c i r e inale Scapania bolanderi Cladonia subsquamosa Parmelia physodes Dicranum fusces.cens • "S 30 31 Cladonieto 1 2 ho kl 42 k3 -.e •h dw e dw h dw e e Parmelia tubulosa Mnium punctatum Bazzania t r i c r e n a t a Cetraria herrei Usnea h i r t a 0-•3 0-•1 2.0 2.0 4/5 2/5 4.6.2 2.4 0.4 0.4 0.4 0.8 2.0 2.4 1.4 1.0 1.0 0.8 0.8 0.6 1.0 1.6 1.0 0.8 1.0 1.8 1.4 0.8 0.6 0.6 2.4 +-•4 0-•+ 0-•+ 0-•1 0-•3 +-.4 1-.4 +-•3 2 . 0 1-3 2.0 2.0 2.0 2 . 5 2-3 2.0 2 . 8 2-3 2 . 8 2-3 3.0 2 . 2 ;2-3 2.5 2-3 2 . 5 2-3 2 . 3 2-3 5/5 2/5 2/5 2/5 2/5 5/5 5/5 0-•4 0-•5 0-•+ 0-•+ 0-•1 0-•5 2.7 3,0 3.0 2.8 2.5 3.0 3.0 3.0 3.0 3.0 0.6 0.4 0.6 0.4 0.4 0-•2 0-•+ 0-•+ 0-• 1 0-•1 3.0 3.0 3.0 2.0 3.0 0.4 0-•+ 2.5 0.4 0.4 0-•+ 0-•+ 3.0 3.0 + . + .2 +.2.3 + .3.3 +.2.3 1.6 0.4 2.4.3 1.2.3 + .3.3 + .3.3 +. + . 3 + . + .2 1 . 1 . 2 + . 2 . 3 1.3.3 + .3.3 + .1.3 + .1.2 + . 2 . 3 +.2.3 Plagiothecium denticulatum Plagiothecium elegans 3.7.2 1.+.2 +. + .2 3.6.3 + .+.2 3.5.2 1.2.3 4.5.3 1.3.3 3.5.3 + . 3 . 3 +.1.3 2.1.2 1.2.3 + . 1 . 2 +.2.3 +.2.3 + .1.3 + . 2 . 3 +.4.3 2.4.3 2.4.2 1.2.3 2.2.3 + .2.3 + .2.3 + .2.3 + .2.3 4.5.3 3.5.3 2.3.3 5.4.3 + .2.3 + .2.3 + .1.3 + . 2 . 3 1.2.3 3.5.3 r*e 37 38 39 + . + .2 + .2.3 Constancy + .1.2 +.3.3 0-•+ 0-•+ 0-•+ 0-•2 0-•2 0-•+ 3>o 2-3 2-3 2-3 5/5 4/5 4/5 V5 5/5 V5 4/5 V5 5/5 4/5 2/5 4/5 3/ P 3/5 2/5 2/5 2/5 2/5 2-3 2/5 2/5 2/5 ro 00 Table- no). 12 - Continued 60 (1.+.2) Alnus s inuata Betula papyrifera Pinus monticola Sorbus sitchensis Vaccinium alaskaense Taxus b r e v i t o l i a Cornus n u t t a l l i i Rubus v i t i f o l i u s 60 231 69 25 25 25 231 230 (+.+.2) (+.+.2) (+.+.0) (+.+.2) (+.+.2) (3-5.3) (+.+.2) (+.+.2) Chimphila umbellata Goodyera oblongifolia Lycopodium selago Smilacina racemosa Polystichum munitum Linnaea borealis Festuca occidentalis 25 25 25 25 25 25 230 (+.+.3) (1.+.3) (+.+.3) (+.+.2) (+.+.1) (+.3.2) (+.3.2) kk Alnus rubra k5 k6 kl 48 k9 50 51 52 53 5k 55 56 57 58 59 COAdoMe:t^>:.^PseMdtsuge!tuaii< menziesii 60 61 62 63 6k 65 66 67 68 69 70 71 72 73 lk 60 Lophocolea cuspidata Bazzania ambigua 69 F r u l l a n i a misquallensis 25 Grimmia apocarpa 60 Marsupella sphacelata 60 P l a g i o c h i l a asplenioides 25 Rhytidiadelphus t.'riquetrus230 A l e c t o r i a sarmentosa 230 Cladonia furcata 60 230 Cladonia g r a c i l i s A n t i t r i c h i a curtipendula 230 Camptothecium megaptilum 230 Cladonia a l p e s t r i s 230 Cladonia cariosa 230 Letharia vulpina 230 (+.1.3)' (+.2.3) (+.1.3) (+.2.3) (+.+•3) (+.3.2) (2.5.3) (+.2.3) (2.5.3) (1.2.3) (2.5-3) (2.5.3) (2A.3) (1.2.3) (+.3.2) Gaultherieto .- Pseudfe'tsugetum- menz'iesilj tsugetosum heterophyllae 6 8 4 2 1 7 5 3 129 Mean 128 104 68 22/c 85 45 65 6 1 4 8 2 7 3 5 10/6 18/8 5/8 20/5 9/7 9/7 5/9 4/9 1958 1958 1958 1958 1959 1959 1959 1959 800 P l o t size (sq.m.) 49°20 ; U9°23] Latitude 4 9 ° 2 3 , 49°22] 49°17', 49°l8\ 4 9 ° 1 7 , 49°17| 122°35 Longitude 122°35 1 2 2 ° 3 5 ' 122°35 123°03 123°01 1 2 2 ° 5 7 ' 123°03 1030 960 1360 1000 l64o 650 810 1030 750 Altitude (ft.) 180 180 180 225 90 180 Exposure (degree) 45 45 12 12 18 4 Slope gradient (degree) 3 17 9 5 25 Cfb Macroclimate Koppen ABirbo.^ Thornthwaite S t r a t a coverage (per cent ) A i 30 ^5 15 30 30 25 15 5 4b" 40 60 4o 60 40 50 A 15 30 20 20 30 25 25 25 35 70 90 70 75 65 85 85 85 20 20 15 25 25 15 35 25 Bl 4o 60 30 10 20 50 70 B 80 40 90 20 60 50 50 15 B 1 1 10 2 10 5 5 3 C 4 60 80 80 30 35 45 75 D l 10 20 20 10 20 30 15 Ddw D 80 60 100 100 D 50 5 55 85 80 80 78 70 90 90 70 Humus coverage (per cent) , 75 65 20 20 22 10 10 30 Decaying wood coverage (per cent) 30 25 35 G l a c i a l d r i f t - Upper -slope Land type and Land form •Straight *Straig ht* Convex R e l i e f shape Profile Straight* Convex Straight Convex Contour l i n e Straight* Till Parent material *Slight Erosion p o t e n t i a l Slight * Moderate Run-off Slow Drainage Well-drained ModeratelyM6d * • • MSd«-dry Mesic Hygrotope -dry Mesic -dry 'dry * 40 60 Stoniness (per cent) 25 50 25 :62 68 Permeable mineral s o i l depth (cm.) 40 85 55 12 8 Ecto-humus horizon depth (cm.) L-F 10 3 27 Table no. 13 Number of plots P l o t no. Computation reference no. Date Range 750-1640 NE-SW 3-25 P 2 2 h r ; 65-90 10-35 25-60 40-85 8-27 00 o Tabiei rial, 13 - Continued Number of plots Eluviated horizonLdipth (cm.) pH ' L-F A B C Humus form > e S i t e index ( f t . per lOOy) Gaultherieto - Pseudotsugetum menziesii tsugetosum heterophyllae 4 6 8 2 7 18 5 3 5 4.05 3.82 3.4o 4.52 3.70 3.95 4.00 4.30 5.00 5.12 5.10 5.50 5 .46 5.65 Raw humus Douglas-fir 114 Western hemlock 114 Western redcedar 107 127 126 8l 94 90 80 96 94 76 100 90 80 117 122 77 122 87 90 100 90 80 Mean 8 3.95 3.99 5.l6 5.56 Range 3-18 3-40-4.52 3.70-4.30 5.00-5.50 5.46-5.65 109 102 84 96-127 90-126 76-IO7 1— 1 Table No. of Species no. 14 Al 2 3 1 2 3 ...1 2 3 2 3 B l 2 1 2 1 4 5 1 1 2 6 Dh dw h dw h dw h 7 8 9 10 11 12 1 2 C Pseudotsugetum m e n z i e s i i tsugetosum Number o f p l o t s 1 2 3 4 5 6 7 P l o t no. 65 104 68 45 128 85 22/c 2 8 1 Layer Computation r e f e r e n c e 1 Gaultherieto no. C h a r a c t e r i s t i c combination of species Pseudotsuga m e n z i e s i i Tsuga heterophylla 5 . + . 3 + . + .3 8.10.2 7.10.3 3.4.0 5 . 6 . 3 + . + .2 + . + .3 3.6.3 5.7.3 8.10.3 4.7.1 4. + .3 6.8.3 3.7.3 4 7 6.+ . 2 7 . 1 0 . 3 5-8.2 + . + . 2 4.6.0 + . + .1 4.7.2 5.8.3 6.9.3 5.7.3 4.7.2 5.7.1 Tsuga Thuja heterophylla plicata Pseudotsuga m e n z i e s i i Gaultheria shallon Vaccinium p a r v i f o l i u m Eurhynchium oreganum Hylocomium splendens Tsuga heterophylla Thuja p l i c a t a Companion s p e c i e s Rubus v i t i f o l i u s Menziesia ferruginea Pteridium aquilinum P o l y s t i c h u m munitum Linnaea b o r e a l i s 5 5.8.3 4.7.3 6.8.3 7.9.3 7.9.2 7.9.3 + . + .1 5 . 7 . 2 4 . 6 . 2 4.+.3 6.8.3 7.10.3 5 . 6 . 2 2.+ . 2 5 . 6 . 2 2.+ . 2 + . + . 0 5 . 8 . 3 3 . 7 . 3 4. + .2 6.7.2 5.7.2 5 . 6 . 2 1. + . 2 1.4.2 5 . 6 . 2 3-7-3 3 . 5 . 2 1. + . 2 2.+ .2 6.8.2 7.9.2 4.5.2 3 . 5 . 3 2 . 5 . 2 2.+ . 2 4.6.2 5.8.3 7.8.3 3.4.2 5.6.3 3.4.3 + .4.3 2.5.3 +.3.3 + .1.2 Species significance Vigor Average Range Avaragefting 4.9 6.2 3.5 2.2 3-9 3.4 0.3 2.5 4.5 2.7 +-•7 2-9 2.5 1.2 2.6 3.0 2.1 4.1 1.7 6.0 1.9 1.8 6.0 1.5 3.1 0.3 0.8 0.5 0.2 4-•8 0-•6 0- •5 3-•9 0- •5 0- •6 0- •+ 0-•3 0-•2 0-• + 2.0 2.4 2.0 2-9 2.8 3.0 3-0 2.4 2.0 2.0 0.8 .0.5 0.5 3-3.2 4.5.2 5 . 4 . 2 3 . 4 . 2 4 . 6 . 2 3- + .1 3 . 6 + . + .1 + . + .1 + . + . 2 + .+.1 0.8 2 . 5 . 2 V+.4.3 + . 3 - 2 2 . 5 . 3 0.8 0-•+ 0- •3 0- •3 2- •5 0-•+ 0-•2 1-7 2.5 2.5 1.8 1.5 2.5 7.9.2 8.10.2 4.5.2 6.5-3 2.4.2 + . + .2 7.9.3 5.4.3 9.10.3 1.3.3 4.6.3 6.7.3 4.4.3 + .3.3 + . 3 . 3 + . + .2 + . + .2 + . + .2 + . + . 2 -H-. + . 2 3.5.3 + . + .2 3 . 4 . 3 2.4.2 5 . 6 . 2 + . + .2 + . + .2 129 2.5 2.0 2.1 2.2 2.3 1.8 + . + .2 4 . 7 . 3 3.+ . 2 . 5 . 7 . 2 4 . 6 . 2 3-6.2 2.3.2 5.6.2 5.7.2 4.5.2 3.5.2 + . + •3 3 8. +- -8 +-•5 0- •5 0- •7 0- •5 0-•2 0- •5 0-•6 0-•5 0-•4 3-•5 0-•5 Thuja p l i c a t a + . + •3 6.9-2 2.+ .2 1.5.2 3.7.3 + . + .1 6 heterophyllae 2.+ . 2 6.8.2 3.7.2 4.7.2 5.7.2 4.5.3 4.5.3 5.6.3 5.5.2 5.8.2 7.10.2 2.5.2 2.4.1 5.4.3 6.9.3 6.7.3 2.3.2 4.5.3 4.7.3 + .1.2 3.2.3 2.3.2 + . + .1 +.+.1 1.5.2 3.6.2 :.i.o 1.0 2-•3 2-•3 0--3 2--3 1- •3 0--2 2-•3 2-•3 2-•3 2--3 1--2 2--3 1- •3 2-•3 2-•3 2-•3 +- •3 2--3 2-•3 1-•2 1--2 2--3 Table no. 14 No. Layer of Species 13 lh 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Dh dw dw e dw e dw e dw e h dw e dw e h dw e dw dw e. e e dw e dw e h dw e h dw r Continued Number of plotaO Plagiothecium undulatum Lepidozia reptans Dicranum fuscescens Hypnum c i r c i n a l e Scapania bolanderi Mnium punctatum Isothecium stoloniferum Rhytidiadelphus loreus Cephalozia media Cladonia subsquamosa Parmelia physodes Sphaerophorus globosus Bazz&nia t r i c r e n a t a Calypogeia suecica C e t r a r i a glauca Plagiothecium elegans P l a g i o c h i l a asplenioides Gaultherieto —•Pseudotsugetum menziesii tsugetosum heterophyllae Species Vigor s i g n i f i c a n c e 1 4 6 8 2 5 7 3 Average Range Average Ran 5.5.3 5.7.3 2.3-3 2.4.3 + .1.3 +.1.3 1 . 1 . 3 + .1.2 2.2.3 + .1.3 + .2.3 3.3.3 1.2.3 + .2.3 2.3.2 2.3.3 3.4.3 + .3.3 + .2.3 2.5.3 + .2.2 3.4.3 1.2.3 + . + .2 4.5.3 2.3.2 + .2.3 + .3.2 + .1.3 + .1.2 6.7.3 5.5.3 2.3.3 + .1.3 + . + .3 + .2.3 1.2.2 + .1.3 + .1.2 + .1.3 + . 1 . 2 + . + •3 + .1.3 + .1.3 4.5.3 3.5.2 • ~ +.1.3 +.2.3 +.1.3 2.3.3 +.2.3 2.3.3 +.1.3 2.4.3 2.3.2 3.5.3 + .3.2 3.4.3 + .2.2 3.6.3 3.4.3 2.3.3 +.3.3 + . 4 . 3 +.1.3 5.6.3 3.4.3 + .3.3 + .1.2 + .2.3 + .2.3 + .1.3 + .1.2 + .2.3 + .2.3 1.3-2 + .3-3 + .2.3 + .2.3 4.5.2 4.6.3 3.4.2 ^ » 5-6.3 3 . 5 . 2 + . 1 . 2 1 . 3 . 2 +.3.3 + .1.3 2 . 3 . 2 +.2.3 3 . 4 . 3 + . 2 . 2 +.1.2 3.5.3 2.3.3 2.3.3 + . 2 . 2 +.3.3 + . 2 . 3 2.3.2 3.4.3 4.5.3 + .1.2 +;2.3 + . + .2 3 . 4 . 3 3 . 3 . 2 4.5.3 3.4.3 +.2.3 + .2.2 2.4.3 + .2.2 + .2.2 + .1.2 + .2.3 +.2.2 + . 1 . 2 +.4.3 + .3.2 + .3.3 1 . 3 . 2 + .+.2 1.4.2 + .3.2 2.3.2 + .1.3 1.2.3 + . + .2 1.3.2 + . + .2 + .1.2 + .3.3 +.4.3 + .2.3 + .3.3 + .2.2 +.2.3 + . 2 . 2 +.2.3 + .2.3 + .2.3 1.4.3 + .1.3 +.3.2 1.2.2 3.5 1.5 0.6 0.5 1.6 0.6 2.2 1.1 2.5 0.8 1.5 1.7 0.1 1-5 0.7 0.9 2.8 0.6 0.7 0.7 0.5 0.5 0.5 0.2 0-5 0-5 0-1 0-1 +-3 0-+ 1-3 +-2 +-4 0-+ 0-3 0-4 0-+ 0-4 0-+ 0-1 0-6 0-2 0-1 0-1 0-+ 0-+ 0-+ 0-+ 2.5 2-7 2.6 3.0 2.5 2.6 3.0 2.5 2.7 2.5 2.5 3.0 2.0 2.8 2.6 2.4 2.5 2.7 2.8 2.3 2.5 2.7 2.7 3.0 0.5 0.3 0.2 0-1 0-+ 0-+ 2.2 3-0 3-0 0.2 0.1 0-+ 0-1 2.5 2.0 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 :2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 Constancy 7/8 4/8 5/8 4/8 8/8 5/8 8/8 8/8 8/8 7/8 6/8 5/8 1/8 5/8 6/8 7/8 7/8 3/8 6/8 6/8 4/8 4/8 4/8 2/8 4/8 3/8 2/8 2/8 1/8 T a b l e no. 14 - Continued 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 Acer c i r c i n a t u m Alnus rubra Alnus s i n u a t a Holodiscus discolor Mahonia nervosa Prunus emarginata Rosa gymnocarpa Salix scouleriana Taxus b r e v i f o l i a V a c c i n i u m alaskaense Blechnum s p i c a n t Cornus canadensis Trientalis latifolia T r i l l i u m ovatum C e p h a l o z i a lammersiana D i c r a n e l l a heteromalla Dicranum scoparium Diplophyllum taxifolium Frullania nisquallensis Lophocolea c u s p i d a t a Lophocolea h e t e r o p h y l l a P e r t u s a r i a ambigua Parmelia v i t t a t a Plagiothecium denticulatum G a u l t h e r i e t o .- Pseudotsugetum.menziesii tsugetosum h e t e r o p h y l l a e (1.+.2) (+.+.1) 85 (+.+.2) 65 (+.+.2) 85 129, i o 4 (+.+.2) ( + . 5 . 2 J 22/c (+.+.2) 45 22/c (+.+.2) (+.+.2) 22/c 22/c (+.+.1) (+.+.2) 4 5 , 85 ( 2 . 5 . 3 ) 104 ( * . + . 3 ) 85 (+.+.2) 65, 85 (+.3*2 85 22/c (1.+.2) (+.+.1) 45 (+.+.3) 65 (+.2.3) 45 68 (+.1.3) 104 (2.3.3) 128 (+.1.3) 65 (+.1.3) 129 (+.+.2) 68 (+.1.3) (+.+.3) 45 22/c, 45 ( + . 2 . 3 85 ( + . 2 . 3 ) 104 ( + . 1 . 3 ) 65 00 4=- Gaultherieto..:..- Pseudotsugetum menziesii tsugetosum heterophyllae mahoniosum nervosae Table no. 15 4 ' 1 2 Number of plots 5 3 Mean Range 106 2U3 1 1U7 105 P l o t no. 11 12 10 Computation reference no. 13 9 22/6 11/6 8/8 11/6 Date 23/7 1961 1958 1959 1959 1959 800 P l o t size (sq. m.) 49°22 ] 49°25\ Latitude, h9°n\ U9°l6] 1+9° IT \ 122°3U 122°34 1 2 2 ° 3 5 ' 123°IU 123°05 Longitude 450-900 900 U50 600 900 900 750 Altitude (ft.) SE-W 180 270 270 270 Exposure (degree) 135 26 18 Slope gradient (degree) 31 35 4o 18-40 35 Cfb Macroclimate Koppen ABjrb3_2| Thornthwaite 60 20 65 15 85 S t r a t a coverage (per cent) Aj_ 60 A 70 30 ko 20 25 15 3 80 80 A 70 85 85 80 20 20 5 5 l 70 80 B 65 85 70 80 100 80 B 90 10 1 1 C 5 15 80 80 60 25 85 Dh 10 10 10 15 Ddw 80 D 70 35 95 95 100 75-100 80 Humus coverage (per cent) 90 89 75 loo 20 0 10 20 11 Decaying wood coverage (per cent) 0-25 25 G l a c i a l d r i f t - Upper slope Land type and Land form Convex R e l i e f shape Profile Contour l i n e Straight Straight Convex Straight , Convex *0ut* Till Parent material - Till wash 1 2 A B 2 t Erosion p o t e n t i a l Drainage Hygrotope Stoniness (per cent) Permeable mineral s o i l depth (cm.) Ecto-humus horizon depth (cm.) L-F Eluviated horizon depth (cm.) A e Slow Well drained Moderately dry 20 120 10 8 •Mesic U0 98+ 10 5 60 98 10 7 40-80 5-8 OJ vn Table no. 15 Number of plots pH Gaultherieto - -•Ps eudot suget urn menziesii tsugetosum heterophyllae mahoniosum nervosae Mean- "Range, 5 1 3 L-F 4.25 k.ko A B 5.65 e Humus form S i t e index C Douglas-fir Western hemlock Western redcedar Raw humus 90 89 75 96 91 78 90 85 70 78 73 73 109 91 71 93 86 73 78-109 73-91 70-78 Table no. l6 Number of p l o t s No. Layer of Plot no. Species Computation reference no. 1 2 3 4 5 6 7 8 9 10 li M 2 3 1 2 3 1 2 3 Bl 2 1 2 1 1 1 2 1 Dh dw e h dw Bl 2 ...2 1 Gauitteriejtb. >• -Pseudbtsugetum- meinzxesat tsugetosum heterophyllae mahoniosum nervosae 2 105 106 243 1 11 12 13 9 Characteristic combination of species Pseudotsuga menziesii 3-4.3 8.9-3 Tsuga heterophylla Thuja p l i c a t a Tsuga heterophylla Thuja p l i c a t a Pseudotsuga menziesii Gaultheria shallon Vaccinium parvifolium Mahonia nervosa Eurhynchium oreganum Hylocomium splendens Companion species Cornus n u t t a l l i i 4 1. 3 5 . hi Species significance 10 Mean Rubus v i t i f o l i u s TaxUs h r e v i f o l i a 1. + .2 Pteridium aquilinum Linnaea b o r e a l i s Polystichum munitum Trientalis l a t i f o l i a 3.6.3 5.6.3 1.3.2 + . + .3 Constancy Range Mean Range t 7.IO.3 8.IO.3 6 . 8 . 3 6.9.2 7.10.3 5.6.2 + .+.2 4.6.3 5.7.3 55,7-3 + . + .3 2.6.2 7.8.3 5.6.3 6.9.3 5.7.3 3.6.3 : 5.7.3 4.7.2 3.7.2 3.+ .2 3.+ .2 + . + .2 4.7.2 5.7.2 4.7.2 6.8.2 2.5.2 3 . 5 . 3 1. + .2 4 . 6 . 3 2.+ .2 + .4.3 5.6.3 2.5.2 5.7.2 3.6.3 3.6.3 3.4.2 2.5.3 4.5.3 4.7.1 9.10.2 8.10.2 7 . 1 0 ^ 8 . 1 0 . 3 6.7.2 + . + .3 +.5.2 3 . 6 . 2 6.5.2 3.5.2 4.5.3 5.5.3 4.6.3 5.6.3 5.4.3 5.7.3 5.7.2 8.10.3 7.8.3 8.10.3 7.10.3 4.5.3 2.4.2 2.4.2 4.5.3 4.4.3 + .1.2 + .3.2 7.7.3 3.5.3 + .3.3 2.3.3 6.7.3 + . 3 . 3 4.3.3 1.3.3 + . + .3 Vij jor 4.7.3 8.9.3 + .6.2 + .4.2 + . + .2 + . + .3 2 . 5 . 2 5.6 5.8 3-8 6-8 3.0 2.7 3-2 4.0 2.6 1.4 2.2 3.0 2.0 1.6 2.6 1.8 0.8 7.6 1.0 3.6 4.8 6.8 +-5 0-7 0-5 0-4 2.8 2.7 3.0 2.0 -2.0 2,0 2.5 2.6 2.2 2.6 1.0 2.2 2.3 2.5 2.8 3.0 2.5 2.0 3-0 3.0 0-2 0-+ 0-1 0-+ 2.5 2.0 2.0 2.0 2-3 2-4 2.4 3.0 2.0 3.0 2-3 0-5 0-1 0-2 2.4 0.4 3.8 1.21.0 0.2 0.6 + . + .2 + . + .2 + .+.2 0.4 2.4.2 2.+.3 3.4.3 + . + .2 2.6 2.8 0.6 0.6 o-4 0-4 0-6 0-4 0-5 0-5 0-4 0-4 6-9 0-3 0-6 4-5 4-8 0-4 0-+ 2-7 2-3 5/5 V5 2-3 2-3 V5 2-3 2-3 2-3 2-3 2/5 4/5 3/5 4/5 3/5 4/5 3/5 2-3 2-3 2-3 2-3 2-3 ^? '? 3 5/5 I? 4/5 5/5 5/5 4/5 2/5 3 3/5 4/5 3l ? 2/5 O 12 13 14 15 Cl 4.5.2 4.6.3 + . + .2 2.+.3 2.4.2 2.5-3 5/5 4/5 3l ? 2/5 OJ Table no. l 6 - Continued No. Layer Number of plots of Species Plagiothecium undulatum 16 Dh dw Dicranum fuscescens dw 17 e Hypnum c i r c i n a l e 18 dw e Isothecium stoloniferum dw 19 e Scapania bolanderi 20 dw e 21 dw Lepidozia reptans e Cladonia subsquamosa 22 dw e Cephalozia media dw 23 e 24 h Rhytidiadelphus loreus dw Parmelia physodes e 25 Calypogeia suecica 26 dw e h Dicranum scoparium 27 dw 28 dw Calypogeia neesiana dw P t i l i d i u m californicum 29 dw Cladonia b e l l i d i f l o r a 30 dw Plagiothecium denticulatum 31 e Cetraria glauca 32 e Sphaerophorus globosus 33 dw Bazzania t r i c r e n a t a 3k h P l a g i o c h i l a asplenioides 35 dw Lophocolea cuspidata dw 36 e Gaultherieto 2.3-3 +.3-2 1.2.2 +.1.3 3-4.3 +.3-3 2.3.3 +.2.2 2.3.3 +.3.3 +.2.3 +.2.2 +.1.2 + .2.2 + .1.3 4.5.3 + .2.2 + .3.3 + .1.3 +.1.3 +.1.3 +.2.3 +.2.3 +.+.3 +.1.2 +.2.3 2.4.3 + .1.2 + .1.3 2.4.3 + .2.3 1.3.3 + .3.2 2.5.3 +.2.2 +.3-3 + .2.3 + .2.3 + .1.2 + .2.3 3.5.3 1.4.3 + .2.2 + .1.3 + .1.3 + .I.3 + .2.3 + .2.3 + .1.3 -Pseudo*sugeturn menzTesii' tsug'etosum heter ophyllae mahoniosum nervosae Vigor Species Cons5 significance tancy 3 4 Mean Range Mean Range 2 . 8 2-3 2.6 2-4 3.5.3 2 . 3 . 2 4 .6.3 5/5 2.3 0 . 6 0-1 2 . 6 2-3 1 . 3 . 3 +. 1.0 +-1 2 . 4 2-3 3 +.2.2 +.2.3 1. 2.3 2 . 6 2-3 +.2.3 +.1.2 +. 1.2 1.0 2.4 +-4 2 . 8 2-3 5/5 +.4.2 4 . 4 . 3 2 . 3.3 0.8 0-+ 2 . 7 2-3 + .3.2 +.3.3 4/8 1.2 0-2 2 . 7 2-3 2.3.2 +. 2.3 4/8 0.8 0-+ 2 . 2 2-3 +.2.2 +. 3.3 4/8 1.8 +-2 2 . 8 2-3 +.2.2 2 . 3 . 3 2 . 3 . 3 5/5 + .1.2 +.1.2 0 . 8 6-+ 2 . 2 2-3 4/5 0-2 3-0 4/5 2.3.3 +• 1.3 1.0 0.4 0-+ 2 , 5 2-3 2/5 0.8 0-1 2 . 7 2-3 4/5 +.2.3 1 . 2 . 3 1.0 * 1 2 . 4 2-3 +.2.2 +.1.3 +. 2.3 5/5 +.1.2 +.1.3 +. 2.3 0.6 0-+ 2 . 6 2-3 0.4 0-+ 3.0 2/5 3l 2 . 0 0-4 3 .0 3.5.3 0.6 0-2 3.0 2.4.3 2/5 0.8 0-+ 2 . 2 2-3 +.2.3 +. 3.2 4/5 3l 0-+ 3.0 +.+•3 +. 1.3 0 . 6 0.2 0-+ 3.0 1/5 0.4 0-1 2 . 5 2-3 1 . 2 . 2 + .2.3 2/5 0.4 0-+ 2 . 5 2-3 +.2.2 2/5 0 . 4 0-+ 3 .0 + .2.3 2/5 0.6 0-2 2 . 5 2-3 2/5 2.3.2 0.4 0-+ 3.0 2/5 + .2.3 0 . 4 0-+ 3.0 2/5 3l 0.6 0-+ 3.0 +. + .3 3l 0.6 0-+ 2 . 6 2-3 + .+•3 3l +.2.3 +. 3 . 3 0.6 0-+ 3.0 u 1. 3-3 0.2 0-1 3.0 0.2 0-+ 3.0 0.4 0-+ 2 . 5 2-3 +.1.3 +.1.2 2/5 0.2 0-+ 3.0 1/5 H 7 ? ? ? ? ? ? 00 Table no. 16 T Continued Gaultherieto - Pseudotsugetum.menziesii J tsugetosum heterophyllae mahoniosum nervosae 37 38 39 Arbutus menziesii Prunus emarginata S a l i x hookeriana 1 1 1 (+.+.2) (1.+.2) (+.+.2) kl kO C o r a l l o r h i z a maculata 1 (+.3.2) 45 k2 k3 kk ke ki kd Bazzania ambigua Dicranoweisia c i r r h a t a Frullania nisquallensis Heterocladium heteropteroides Lophocolea heterophylla Mnium punctatum Plagiothecium elegans Pogonatum alpinum 243 (+.2.3) 1 (+•1.3) 105 (+.1.2) 106 (+.3.3) 105 (+.2.3) 243 (2.4.3) 243. i (+.1.3) 106 (+.3.2) Tsugetum heterophyllae plagiothecietosum undulati Table no. 17 Number of plots 1 k 2 3 5 Plot no. 84 154/a 120 130 139 Computation reference no. 2k 20 18. 17 . 15 Date 16/7 9/7 2/7 9/5 31/7' 1959 Plot size (sq. m.) Latitude Longitude Altitude (ft-.) •Exposure (degree) Slope gradient (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) 'A l A ? ? 200 205 2 2 Bl' B B C 1959 h Ddw D 1959 r ( r 20 65 10 85 1 20 80 10 95 5 1 30 ko 15 55 80 20 5 1 20 39 50 50 50 Humus coverage (per cent) Decaying wood coverage (per cent) Land type and Land form R e l i e f shape Profile . Contour l i n e Parent material Marine Erosion p o t e n t i a l Nil Run-off Drainage Hygrotope Stoniness (per cent) 3 Permeable mineral s o i l depth (cm.) 71+ Ecto-humus horizon depth (cm.) L-F ' 3 Eluviated horizon depth (cm.) A 5 pH L-F A 1959- l+9°20 ' lf9°23 \ l+9°27, k9°23 k9°22 123°02' 123°00' 123°07 123°03 123°l4 530 500 1000 , 550 730 270 25O 225 225 135 1 5 2 k k 2 D 1959 6 2 21 25/7 1958 ko 50 16 95 10 5 15 5 20 30 50 60 ko 30 1+0 20 "85 10 3 10 5 25 30 35 ko Go 10 30 20 45 100 5 100 1 15 5 20 50 50 Glacial drift 55 25 70 35 30 60 5 50 20 70 55 45 - Straight Straight Outwash Slight 30 90+ 10 10 3.90 4.70 5.30 ; e e B C Mesic 50 90 5 2 Humus form S i t e index Douglas-• f i r (ft.per lOOy) Western hemlock -Western redcedar 138 129 132 130 103 97 i4i 107 112 145 138 100 150 128 72 134 83 70 141 7 121 19 2/7 1959 141 16 17/7 1959 9 46 14 18/8 1958 10 44 23 19/8 1958 11 143 27 21/7 1959 12 107 22 12/6 1959 13 116 25 26/6 14 124 26 3/7 1959 1959 800 49°21 ! 4 9 ° 2 3 ! 49O23! 49°17' 49°22' 49°21 49°17 29°17, 123°02 122°35 123°03 122°34 123°02 123°00 123°03 122°35 1010 1030 1030 1010 530 1050' 800 950 292 180 225 190 180 90 225 135 8 2 4 14 17 7 13 5 Cfb AB 1 40 30 Ho 50 50 25 45 5 60 60 60 60 60 50 30 • 25 20 20 20 20 10 20 30 . 90 90 70 90 95 85 97 75 10 2 1 10 40 15 5 5 10 5 3 5 5 5 20 1 10 40 5 15 15 15 10 2 10 1 5 5 5 5 20 30 50 50 70 30 25 5 40 40 20 30 30 10 20 25 80' 50 50 90 50 65" 95 15 60 70 80 60 70 50 75 55 40 30 30 20 40 50 25 45 Middle slope nvex * S t r a i g ;ht *Concave* Straight *Convex * Straight *Corivex* " S t r a i g h t * T i l l • *0utwash* Till *0utwash -^Moderate* Slight Slow *Mod.dry* Well--drained Mesic *Moist* Mesic 25 75 3 1 4.50 4.20 5-45 5.70 50 95 10 5 4.50 4.00 5.60 5.70 136 111 93 144 113 88 60 138 13 13 4.25 4.20 5.40 25 127+ 16 2 3.40 3-75 5-25 146 123 90 157 134 112 1 95+ 5 2 Mean Range 780 200E--NW 1- •17 6 61 39 31 71 8 5 4.11 4..17 5.40 40'--80 20- -60 1-60 3-16 1-13 3.40-4.50 3.75-4.7O 5.25-5.6O Raw humus 145 129 94 155 133 132 149 143 104 114 121 114 142 121 88 114-157 83-1U3 70-132 Table no. 18 Tsugetum heterophyllae plagiothecietosum 1 Number of plots No. Layer of p'ecies Al 2 l 3 2 3 2 3 .1 2 3 Bl 4 5 6 7 8 9 10 n 12 13 '! ! ; l4 15 16 17 18 19 20 21 22 \ 23 2k 25 26 27 28 29 30 31 32 2 1 2 Eh dw h dw e h dw e h dw A B 2 2 2 2 2 1 2 1 2 2 2 C Dh dw e dw e dw e dw e dw e dw e dw e h dw e dw e dw e dw e 3 4 5 : 6 - Plot no. Computation reference no. 1 2 undulati Characteristic combination of species Tsuga heterophylla Pseudotsuga menziesii Thuja p l i c a t a Tsuga heterophylla Thuja p l i c a t a Rhytidiadelphus Plagiothecium loreus undulatum •Eurhynchium oreganum Hylocomium splendens Companion species Alnus rubra Gaultheria shallon Vaccinium parvifolium Mahonia nervosa Vaccinium alaskaense Menziesia ferruginea 154/a 120 84 139 130 2 15 20 24 17 18 21 6.+.3 4.8.3 7.+.3. +.+.3 5.6.3 9.10.3 8.10.3 8.10.3 6.10.3 + .8.2 k. + .2 5.6.2 5.6.2 5.6.3 5.7.3 6.8.3 5-+.3 6.9.3 +.+•3 +. + .3 7.10.3 8.10.3 + .+.2 6.9.2 3.+.1 +.+.2 +.+.3 4.+.3 + .+.2 4.7.3 3.+.2 6.5.2 3-+ .2 +.+.2 4.+.2 +.+•3 4.6.3 3.5.2 4.+.2 10.10.3 • 4.7.3 2.5.3 +. + .2 6.5.2 3.6.2 3.5.2 +. + .2 +.+.3 5.8.3 +. + .2 + . + .2 4.7.3 2.4.3 3.4.3 + .3.3 2.5.3 2.3.3 +.3-3 2.3.3 1.3.3 2.3.3 7.8,3 5.6.3 6.5.3 4.5.3 3.5.3 6.8.3 4.5.2 5.6.3 6.6.3 5-6.3 5.6.3 +.2.3 + .+.2 +.+.3 + .3.3 + .5.3 2.5.3 3-4.2 +.4.3 +.3.3 °2v4;3 3.5.2 +.3.3 2.3.3 +.3.3 2.3.3 3.4.3 1.3.2 +.3.3 1.4.3 2.3.3 + .4.2 +.+.2 +. + .2 3-4.2 +.+.3 Acer circinatum Rubus s p e c t a b i l i s . Rubus v i t i f o l i u s Pteridium aquilinum Polystichum munitum Blechnum spicant Tiarella trifoliata Dryopteris austriaca ' Mnium punctatum +.3.3 +.1.3 Isothecium stoloniferum + .1.3 + .1.2 1.3.3 + .1.2 1.2.3 + .1.2 + .2.2 2.3.3 +.2.3 +.2.3 +.2.3 2.3.3 +.1.3 Lepidozia 2.3.3 +.3.3 2.3.3 + .1.2 +.1.2 +.2.3 Dicranum fuscescens Hypnum c i r c i n a l e reptans Cladonia subsquamosa Plagiothecium elegans Cephalozia media Lophocolea heterophylla Colypogeia suecica + . + .1 +.2.2 +.3.1 4.5.2 2.4.2 -2.4.2 :J.7.3 +.4.2 + . + .2 2. + .3 6.8.2 3.3.2 2.4.2 + . + .2 + .+.2 2.+.2 2.+.2 +.+.1 4.5.3 4.6.3 Scapania bolanderi +.+.2 3.5.2 2.+.2 +.+.3 + . + .2 + .5-3 + .5.3 + .4.2 3.5.2 + .+.2 + .+.1 2.4.2 + .4.2 +.+.1 2.3.3 3.5.2 +.1.2 3.5.3 +.2.3 2.3.3 +.2.3 1.3.3 +.2.3 +.3.2 +.4.3 2.4.3 +. + .2 2.3.2 2.4.3 +.1.2 + .2.3 + .2.2 +.2.2 + .1.2 1.3.3 + .2.3 + .2.2 + .2.3 + .1.3 +.1.2 +.2.3 +.4.3 2.3.3 + . + •3 +.1.3 +.2.3 + .3.3 +.2.3 2.3.3 + .2.3 +.1.3 +.2.3 +.2.3 +.1.3 + .2.3 + .1.2 + .+.2 + .1.3 +.1.3 + .2.3 + .1.3 + .1.2 1.5.2 +.1.3 4.5.3 + .3.2 5.5.3 1.2.3 2.3.2 +.2.3 +.2.2 +.2.3 1.2.3 +.3.3 1.2.3 3.5.3 +.2,2 + .3.3 +.2.3 +.2.3 +.+.3 + .3.2 1.1.2 +.1.2 1.3.3 143 7 8 121 141 46 19 16 14 9 +.+.3 5 . 8 . 3 +.+.3 8.10.3 8.10.3 6.8.2 5.6.2 5.7.2 3.7.3 5.+ .2 4 . + .3 6.8.3 + . + .0 7.9.3 7.10.3 3.+ .2 1. + ..+ + . + •3 5.5.2 ' 4.1.1 11 12 13 14 44 143 107 116 124' 23 27 22 25 26 26 + . + .3 + . + . 2 6.8.3 8.8.1 6.7.3 7 . 1 0 . 3 +.+.3 5.+ . 2 7 . 1 0 . 3 6.6.3 4.5.3 4.3.2 5.5.3 3.6.3 +.2.3 2.3.3 5.6.3 5.7.3 5.5.3 3.4.3 6.7.3 4.5.3 7.8.3 4.5.3 4.3.3 5.6.3 + . 2 . 3 ;•+.+. 2 +.3.2 4.4.3 2.3.3 3.5.3 3.4.3 + .2.3 3.5.3 2.3.3 2.3.3 4.5.3: .5.8.3 5.6.3 +.+.2 3.4.3 2.4.3 4.6.3 4.6.2 +.+.2 2.4.3 3.4.3 2.4.3 4.5.3 Mean 3.+.2 +.+.2 5.8.2 3.4.2 Species 5 . 7 . 3 7 . 9 . 3 +.+.3 4.'6.3"8..10.3 8.10.3 5.6.2 4.6.2 6 . 8 . 3 4.+.3 8 . 9 . 3 4.+.3 5.7.3 + . + .0 +.+.1 +.+.1 +.+.3 4 . 6 . 3 +.+.3 5.7.2 2.4.2 +.+.2 4 . 6 . 2 +.+.2 +.+.2 3 . 5 . 2 +.+.2 4 . 6 . 2 4.7.2 4.6.2 3. + .1 + .+.2 4.7.2 6.8.3 5.6.2 3.5.2 2.+ . 2 2.3.3 4.5.3 5.5.3 +.+.2 2.3.3 2.3.2 10 4.5.3 3.5.3 + . + •3 5.6.3 5.6.3 3-4.2 2.8 6.1 4.3 4.8 3.6 1.0 0.1 2.0 3.3 3.4 1.5 2.0 3.4.3 4.5.3 5.6.3 5.5.3 2.3 1.4 5.0 4.1 0.4 4 . 5 . 3 2.6 3 . 4 . 3 1.4 +.+.2 0 . 1 1.6 + .2.2 l . l Vigor ""Cons•tancy Range Mean Range 0-7 +-9 0-8 +-8 0-8 0-6 0-+ 0-6 0-6 0-10 0-6 0-5 3.0 2.8 2.2 2.9 2.4 1.3 1.5 '2.7 2.1 2.2 2.1 2.1 0-5 0-4 3-7 0-6 0-+ 0-6 0-4 0-+ 0-4 0-3 ' 3-0 2.9 3-0 2.9 2.5 2.7 2.8 2.5 2.9 2.9 11/14 2-•3 1-•3' 2-•3 0- •3 . 0 - •3 1-•2 2-•3 2- •3 1-•3 2-•3 2-•3 14/14 12/14 14/14 10/l4 6/14 2/14 12/14 11/14 13/14 10/14 ll/l4 2-•3 2-•3 2- •3 2- •3 2- •3 2- •3 2- •3 12/14 9/14 14/14 l2/l4 6/14 13/14 9/14 2/l4 9/14 9/14 1-•2 1-•2 14/14 .2- •3 14/14 2-•3 ->•• 5.7.2 + . + .1 M-. + .2 +.3.2 3.5.1 2.3.2 3.4.2 1.4.2 +.+.3 + .+.2 +.+.1 2.5.2 +. + .2 +.+„2 3.7.2 2.3.2 4.+ .2 4.3.2 3.4.6 3-+ .2 + . + .2 + .+.2 2.+ .2 + .4.3 1.3.2 1.4.3 4.5.3 2.5.3 +.1.2 2.3.3 1.5.1 +.4.2 3.5.3 + .1.2 +.3.3 + .3.3 +.3.3 +.2.3 2.3.2 +.3.2 +.2.2 2.4.2 + .2.2 +.5-2 +.2.3 2.2.3 + . + .2 +.1.3 + .1.2 + .3.3 +.3.3 +.2.3 + .1.3 +.2.3 + .2.3 + .1.3 +.1.3 +. + . 3 + .1.3 +.1.3 + .1.3 + .1.3 +.+.2 2.2.3 5.4.3 1.2.3 2.3.3 + .+.2 +.1.3 4.6.3 +.4.3 2.3.3 +.2.3 +.2.3 + . 3 . 3 3.4.2 +.1.2 2 . 3 . 3 +.2.2 +.2.3 +.3.3 +. + .2 +.1.3 2 . 3 . 3 +.2.3 +.3.3 +.2.2 1.1.2 +.1.3 + . + .2 +.+.3 ' 2.5.3 0.5 0-2 0-+ 0.4 0.1 0.4 -5.6.3 + . + .2 + . + .20.4 + .+.2 0.5 3.+ .2 4.+ .2 3 . 0 2.3.1 3-4.1 1.4 0.6 2.4.2 1.3.2 +.3.2 0.4 0.4 • . + .3.3 1.3.3 3.2.3 +.1.2 2.2.3 +.2.3 2.2 0.3 1 . 3 . 3 1.5 + .1.2 + .2.3 1.0 + .3.2 0 . 9 +.3.2 + .4.2 0 . 8 +.3.3 2 . 3 . 3 1.2 0.2 0.4 +.1.2 + .2.3 0 . 8 +.2.3 + .2.3 + .1.3 2 . 3 . 3 +.+.3 + .2.3 + .1.3 +.2.3 + . 3 . 3 1.7 + .2.3 2.3 + .2.3 0.9 + .2.2 1.1 + . + .2 + . + .21.0 + . + .3 0-5 +-4 +-4 0.3 7.8.2 0 . 9 + . + .3 + .1.3 0.5 2.4.2 2.0 2.+.2 2.1 2.3.3 4.6.3 +.2.3 2.2.3 +.2.3 +.5.3 + .+.2 +. + .2 4.3.2 4.5.2 2.6.2 2.+.2 1.4.2 1.2.2 +. + .1 +. + .1 3 . 5 . 3 + . 3 . 3 2.4.3 + .2.3 +. + .2 + . + .2 2.3.2 I.2.3 +.2.3 + . + .2 3.+ .2 5.6.3 + . + .3 2.4.3 +.+.2 + .+.2 3.3.3 +. + . 3 4.5.3 4.5.2 4.5.2 +. + .2 3.4.2 1.3.2 0.3 + . 3 . 3 0.7 0.3 3.2.3 1.0 0.2 0.3 0.2 + .1.3 0.4 0.1 0-2 1.5 1.8 2.1 3.0 1.8 3.0 0-+ 2.2 0-3 -2..TJ 0-5 0-+ 0-3 0-6 0-3 0-2 0-1 0-2 0-4 0-5 0-+ +-5 0-+ 0-2 0-+ 0-4.. 0-3 0-+ 0-2 0-+ 0-+ 0-+ 0-+ 0-2 0-+ 0-3 0-+ 0-+ 0-+ 0-+ 0-+ 2,5 2.4 2.2 1.9 -1.7 1.8 1.8 1.6 2.8 2.9 2.0 2-9 2.7 2.6 2.6 2.9 2.7 .2.1 • 2.5 •2.9 2.6 2.5 2,5 3.0 2.9. "' 3 . 0 3.0 3.0 3.0 2.5 2..8 •3.0 .1-•2 - -.2-•3 2-•3 .2-•3 2-•3 1-•2 1-•2 1-•2 1-•2 1-•2 2-•3 .2-•3 ,2-•3 2-•3 2-•3 2-•3 .2-•3 2-•3 2-•3 4/14 5/14 5/14 .1/14 5/14 4/l4 2/l4 5/14 4/14 13/14 11/14 6/14 5/14 5/14 13/14 12/14 4/l4 14/14 13/14 12/14 12/14 12/14 14/14 9/14 2-•3 2-•3 2-•3 2-•3 2-•3 12/14 2-•3 8/i4 12/14 3/14 6/14 11/14 5/14 5/14 ll/l4 4/i4 2-•3 2-•3 5/14 4/14 6/l4 2/14 T a b l e no. 18 - Continued-Tsugetum h e t e r o p h y i l a e p l a g i o t h e c i e t o s u m u n d u l a t i 33 dw Number o f p l o t s 1 Plagiothecium denticulaturn +.2.3 34 35 e dw dw B a z z a n i a ambigua C a l y p o g e i a trichomanes 36 37 e dw e dw Calypogeia neesiana Lophocolea cuspidata 2 Athyrium f i l i x - f e m i n a C o r a l l o r h i z a maculata Hemitomes congestum L i s t e r a cordata Moneses u n i f l o r a Monotropa l a n u g i n o s a Pyrola a s a r i f o l i a Trientalis latifolia T r i l l i u m ovatum Bazzania tricre.nata Cephalozia bicuspidata Diplophyllum t a x i f o l i u m Frullania nisquallensis Heterocladium heteropteroides Lophozia i n c i s a Metzgeria f u r c a t a Pore11a p l a t y p h y l l a Plagiochila asplenioides Ptilidium californicum Radula b o l a n d e r i Sphaerophorus globosus 116 2 (+.+.1) (2.+.3) 141, 124 2 46, 4 139 (+.+.3) (+.+.2) (+.+.3) 154/a 139 2 , 124 46, 141, ll6 46 84 44 .44 44 44, 44 2, 44 120 84 84 84 139 121 3 +.1.2 + .1.3 + .2.3 A b i e s amabalis Prunus emarginata Rhamnus p u r s h i a n a Sambucus pubens Taxus b r e v i f o l i a . (+.+.1) (+.+•3) 44 (+.+.3) 44 (+.+.3) (+.2.3) (2.4.2) (+.+•3) (+.+.2) (+.+.3) (3.4.2) 143 (+.+-3) (+.2.3) 143 (+.1.3) (+.2.3) (+.2.3) (+.3.3) (+.2.3) (+.1.3) (+.2.3) (+.1.3) 130 (+.1.2) (+.+.3) 5 6 7 2.4.3 +.1.3 8 9 10 +.2.3 +.1.2 +.+.2 11 +.2.3 2.3.3 1.3.2 1.2.2 1.3.3 +.1.3 +.1.3 12 +.+.3 +.1.3 13 + .2.3 1.4.3 + .2.3 + .1.3 14 145 Species Conssignificance Vigor tancy Mean . Range Mean- -Rant 0.2 "0-1 3.0 4/14 0.2 0-+ 2.6 3/14 2-3 0-2 2.8 0.5 5/14 2-3 0-1 2.6 2-3 5/14 0.3 0.1 0-+ 3.0 1/14 0.2 0-1 3.0 3/14 0.1 2/lJi 0-+ 2.5 2-3 0.2 0-+ 3.0 k/lh Tsugetum h e t e r o p h y l l a e plagiothecietosum undulati mahoniosum nervosae 1 2 3 T a b l e no. 19 Number o f p l o t s P l o t no. C o m p u t a t i o n r e f e r e n c e no. Date 152 29 2/l Plot size (sq.m.)c Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope gradient (degree) Macroclimate Koppen Thornthwaite S t r a t a coverage ( p e r cent) A l A 2 Bl B B C Dh Edw D 2 Humus coverage ( p e r cent) D e c a y i n g wood coverage ( p e r Sent Land t y p e and Land form R e l i e f shape Profile Contour l i n e Parent material Erosion potential Run-off Drainage Hygrotope Stoniness (per cent) Permeable m i n e r a l s o i l depth (cm •) Ecto-humus h o r i z o n depth (cm.) L- F 1959 99 31 1/6 1959 1U9 32 24/7 1959 . TaugettunUhet eEophy l l a e ..eur^ynahrietpsiam oregani 4 125 28 *r/7~ "1959 800 49038' 49°20' 49°24' 49°20 123°13' 123°0l' 123°03' 123°01 380 520 880 360 225 270 203 180 14 25 31 l t 5 50 20 80 15 20 35 5 75 20 95 80 20 t Cfb AB-,'rb4 rD i 3 - 4 60 65 50 40 25 40 85 95 60 25 10 30 5 2 8 10 70 30 60 2 2 3 .5 85 15 25 45 20 80 15 40 50 5 75 25 100 4o 60 G l a c i a l d r i f t - Middle slope Straight Straight Till * Qutvast*--* • S l i g h t * Moderate *Slight Slow Well-drained Mesic *Mod. Mesic dry 2 125+ 10 Mean 535 sw 18 1 150 30 24/7 1959 33 23/7 1959 3 111 34, 19/6 1959 4 22/6 35 4/8 1958 Mean 800 49°24' 49°24 49°2o; 49°2o; 123°03' 123°03' 123°02 122°57 940 950 950 450 315 315 125 180 31 33 2 20 35 40 69 31 2 148 20 75 50 20 60 5 30 45 75 55 45 Cfb AB-[rb f3-4 20 40 25 75 30 50 65 5 50 10 60 80 20 15 70 20 85 25 60 75 20 35 5 40 75 25 G l a c i a l d r i f t - Middle S t r a i gbt Straight .."Outwash * T Moderate ^Slight Slow Well-drained Mesic 50 88+ 22 820 wsw 22 25: 50 15; 75 15 85 95 15 35 20 55 75 25 29 slope ill ^Moderate •Moist 40 45 14 45 ' • ..18 3 £ °^ T a b l e no. 19 - Continued Number o f p l o t s E l u v i a t e d h o r i z o n depth (cm.) H • L-F • ;.y.x Tsugetum h e t e r o p h y l l a e plagiothecietosum undulati mahoniosum nervosae 1 A e 4 Mean 1 Raw humus Humus form S i t e index ( f e e t p e r lOOy) 3 Douglas-fir Western hemlock Western redcedar 2 5 4.00 4.10 5.50 5-45 e P A B C 2 Tsugetum h e t e r o p h y l l a e eurhynchietosum o r e g a n i 117 112 76 155 '99 88 134 104 81 . 3 15 3.95 4.00 5.60 4 Mean 0 4.01 8 3.98 5.01 5.31 Raw humus 150 122 9-1 138 109 84 133 97 95 141 118 108 130 121 95 90 131 103 98 -p- Table no. 20 •Number of plots Layer No. Plot no. of Species Computation reference no. 1 A l Tsuga heterophylla l Pseudotsuga menziesii l Thuja p l i c a t a 2 3 2 2 3 3 2 3 Bl 4 5 6 7 8 9 10 2 1 2 . .1 2 1 2 2 1 1 .2 ll ;.i 12 13 14 15 16 17 18 c Bh dw Tsuga heterophylla Thuja p l i c a t a Mahonia nervosa Vaccinium parvifolium Cornus n u t t a l l i i Gaultheria shallon Sambucus pubens Rubus v i t i f o l i u s Taxus b r e v i f o l i a 3 - 4 1 2 152 99 1^9 125 29 31 32 28 Species Vigor Conssignif i tancy cance mean mean 6.8.3 1.5 7.9.3 8.10.3 JQ'O 5.6.2 5.6.2 4.0 8.10.3 +. + .3 4.5 3.0 5.8.3 0.3 :4-^+.3 1.0 + . + .2 6.8.3 + . + .2 2.0 6.6.2 2.8 +.+.3 4.6.3 5.+.2 5.6.2 4.6.2 3.5 4.3.2 1.0 + . + .2 2.5.2 + . + .2 5.6.3 2.3 4.3.2 1.0 3.0, 2.8' 2.3" 3.0 2.7 2.0 3.0 2.3 3-0 2.0 2.0 2.3 1/4 4/4 3/4 4/4 3/4 1/4 4.6.3 2.8 2.0 2.3 2.0 2.0 4/4 1/4 4/4 2/4 4/4 0.3 2.0 1/4 0.5 + .+.2 0.5 + . + •3 0.3 1.5 2.0 3.0 2/4 2/4 1/4 + . + .2 0.3 + . + .2 3.4.2 + . + .2 3-+.2 2.0 3.6.2 2.+ .2 3.4,2 3.+ .2 2.8 3.0 2.0 2.0 •1/4 4/4 4/4 + .2.2 2.3.2 4.5.3 1.8 2.3.3 0.8 2.3 3.0 3/4 2/4 ! 3.5.3 7.10.3 3.3.2 4.3 + . + .2 0.3 3.5-3 4.5.2 4.5.2 4.5.2 3.8 + . + .2 + . + .2 .0.5 3.5.2 3.4.2 3.6.2 5.6.2 3.5 + .3.2 + . + .2 + .3.3 + . + .2 5 6 7 8 Species Vigor Conssignifitancy cance mean mean : 7-10.3 6.8.2 6.7.3 + .+.3 8.10.3 +. + .2 6.8.3 + . + .2 + Rosa gymnocarpa Monotropa lanuginosa Trientalis l a t i f o l i a C o r a l l o r h i z a maculata Pteridium aquilinum Polystichum munitum Linnaea borealis Eurhynchium oreganum Tsugetum heterophyllae eurhynchietosum oregani Tsugetum heterophyllae plagiothecietosum undulati mahoniosum nervosae iA 3/4 3/4 3/4 1/4 4/4 lA 7« •• : 7*10.3 7.10.3 4.6.3 4.6.3 7.9.3 5.+.3 5.+ .2 5.8.3 5.5 3.5 5.8 4.5 1.0 0.3 + .+.0 0.3 5.7.3 6.7.3 5.6.2 l ; + .2 4.3 7.9.3 4.6.3 5.4.2 + . + .1 4.3 2.4.3 0.5 4.5.3 3.5.2 5.4.2 1. + .2 3.3 3.4.2 3.4.3 1.5 .2.7 2.3 2.8 2.5 2.0 0 0 2.5 2.3 3.0 2.3 3.5 3/4 4/4 4/4 4/4 1/4 1/4 5.5.3 5.8.3 5.3 5.6.3 3.6.2 4.5 + . + .2 5.6.2 2.0 3.0 2.5 2.0 4/4 4/4 3/4 2.0 2.0 2.0 3.0 4/4 2/4 3/4 2/4 2.0 3-0 2.5 3.0 2.3'" 2.0 3.0 2.8 2.3 1/4 2/4 2/4 1/3 3/4 4/4 3/4 h& 3/4 3-4.3 M0.3 4.5.3 6.8.2 2.+ .2 8,10.2 -!-,•••, 5.+.2 +.+.1 5.8.3 6.+.2 +.+.2 7.10.3 4.7.2 + . + .0 3.3.2 4.5.2 6.8.2 8.10.2 1. + .2 1. + .2 + . + .2 3.3.2 4.7.2 + . + .3 + . + •3 + . + .3 + . + .3 + . + .3 + . + .3 2.8.2 5.4.3 3.5.2 3.+.2 + . + .2 3.4.3 4.4.3 •5.6.3 7.7.3 6.5.2 + .2.2 +.3.2 5-3 0.5 2.0 0.5 + .5.2 0.3 0.5 1. + .2 0.5 0.3 4.5.2 2.8 3.5.2 2.5 2.5.3 2.3 6.$.3 6.0 3-6.3 1.3 lA 4/4 4/4 1/4 4/4 2/4 T a b l e no. 20 - Continued No.' Layer Number of p l o t s 19 Hylocomium 21 h dw h dw dw 22 e dw Dicranum f u s c e s c e n s 23 e dw Hypnum 24 e dw Isothecium 25 e dw Lepidozia 26 dw C l a d o n i a subsquamosa 20 P l a g i o t h e c i u m undulatum splendens Scapania b o l a n d e r i circinale 29 30 31 e dw 2B 32 33 34 35 36 37 38 39 40 41 .10.3 5.6.3 6.5.2 3.5.3 +.2.3 + .2.2 1.3.3 + .2.2 2.3.3 + .3.3 stoloniferum reptans Q h dw h dw dw dw 27 Tsugetum h e t e r o p h y l l a e plagiothecietosum u n d u l a t i Species mahoniosum nervosae s i g n i f i - V i g o r Cons1 cance tancy 2 . 3 4 Mean Mean + .2.2 + .3.3 + .1.2 + .1.2 Mnium punctatum Rhytidiadelphus loreus + .2.3 3.5.3 2.3.3 C e p h a l o z i a media Calypogeia suecica Plagiothecium Acer c i r c i n a t u m Menziesia ferruginea Prunus emarginata Rhamnus p u r s h i a n a Rubus s p e c t a b i l i s Vaccinium alaskaense Blechnum s p i c a n t C h i m a p h i l a umbellata Cornus c a n a d e n s i s Dryopteris austriaca denticulatum 125 <[ 5 . 6 . 3 152 [+.+.2 22/b [ 3 . 7 - 2 22/b [+.+.2 125 ('+.+.2 125 ('+.4.2 150 ( + . + .2 22/b + .4.2 148 ( + . + .2 22/b( + .4.2 42 .43 44 45 46 47 48 49 50 51 2.3.3 + .3-3 + .4.3 +.4.2 +.2.2 +..1.3 + .1.2 •2.1.3 + .1.3 + .2.3 + . + .2 1.2.2 + .2.2 + .1.3 + .1.3 1.2.3 3.4.3 +.2.3 +.1.2 +.1.2 + .2.2 +.2.2 1.2.3 + . + .2 1.2.3 + . 1 . 2 + .2.3 + . + •3 1.2.3 + .1.2 + .3.2 + .2.3 7-7-3 5.5.3 6-70 4.5.3 2.3-3 + .2.2 +.2.2 +.+.2 +.2.2 +.3.2 2.4.3 + .3.3 + . + .2 + .1.2 + .2.2 5-6.3 4.6.3 2.3-3 4.8 3-0 3.5 1.8 1-3 0.8 1.5 1.0 1..3 1.0 ' 0.5 1.0 1.3 0.5 0.5 0.5 0.3 0.8 2.0 1-5 0.5 1.0 0.3 0.5 Hemitomes congestum Tiarella trifoliata Blepharostoma t r i c h o p h y l l u m Calypo^ ;eia trichomanes Calypog ;eia neesiana C e p h a l o z i a lammersiana Claopodium c r i s p i f o l i u m Dicranum scoparium Frullania nisquallensis Heterocladium p r o c u r r e n s 2.8 2.8 2.8 3-0 3-"02.0 3-0 2.5 2-5 2-3 2.0 2.0 3-0 3.0 2.0 2.0 2.0 2-7 3.0 3-0 2-5 3-0 2.0 1-3 148 111 152 152, 125 152 152 4/4 4/4 3/4 2/4 4/4 3/4 3/4 4/4 4/4 4/4 Tsugetum h e t e r o p h y l l a e eurhynchietosum o r e g a n i 5 6 7 8 5.6.3 3-4.2 4.5.3 3.5.3 + . + .2 1.2.2 + .2.2 4.5.3 5-5-2 + . + .2 1.3.3 2.4.3 2.3.2 3.5.3 + .1.2 3.5.3 + .3.3 1.2.3 2.3.2 + •3-3 + .1.3 2/4 4 A 4/4 2/4 + - + -3 + .2.2 + .1.3 2/4 + .1.3 + .2.2 1.2.3 2.3.3 + .1.2 + .3.3 4.3.2 2/4 1/4 3/4 2/4 2/k 3A 2.4.3 + .2.3 + .2.3 + .2.2 + -3-3 + .2.3 1.3.3 2.4.2 + .3.3 2.3-3 + .1.2 + . + .2 1.4.3 + .2.3 4.5.2 2.4.2 + -3-2 + . + .2 2.3-2 2/4 + .1.2 + ,2".. 3 + -2.3 + .2-3 + .2.3 + .2.3 + •3-3 Species s i g n i f i -Vigor Conscance tancy Mean Mean 3-5 0.5 3-8 0-5 1.0 O.3 1-5 1.0 1.5 0.8 0.3 1.0 0.8 2.8 2.0 2.8 2.0 2.8 2.0 2-3 2.8 3-0 2-7 • 3-0 2.8 3-0 1.00.8 1-3 1-3 0.8 1-3 0-5 0.5 2-5 2.3 2.5 2.3 2.0 2-5 3-0 2-5 4/4 1/4 4/4 2/4 4/4 lA 3A 4/4 3/4 3/4 1/4 4/4 3A 4/4 3/4 2/4 3/4 2/4 2/4 2/4 2/4 1/4 2/h ( +.+.3) ( + .+.3) ( + .1.3) 150 (+ (2.3.3) ( + -1.3) ( +. 2 . 3 ) 22/b(+ . 5 . 3 ) 152 ( + . 1 . 3 ) 152 ( + . 2 . 3 ) 52 53 54 55 56 57 58 59 60 61 Lophocolea c u s p i d a t a Lophocolea h e t e r o p h y l l a Mnium i n s i g n e Mnium spinulosum Neckera d o u g l a s i i Porella navicularis Porella platyphylla Plagiochila asplenioides P l a g i o t h e c i u m elegans Ptilidium californicum 125 125 152 152 152 152 152 150, 150 152 ( + •+ . 3 ) ( + •+ .2) ( + •3-2) ( + .2-3) ( + •2-3) ( + •2-3) ( + .2-3) 152 (+.2 + .2 . 3 ) ( + .2-3) > Table no. 21 Number of plots Plot no. Computation reference no. Date Polysticheto .- Thujetum plicatae I 2 4 3" 153 58 30/7 1959 Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope (degree) Macroclimate Koppen .Thornthwaite Strata coverage (per cent) A-j_ A k 145 55 22/7 1959 37 23/7 1958 3 A Bl B B C D Ddw D 2 h Humus coverage (per cent) Decaying wood coverage (per cent) Land type and land form R e l i e f shape Profile Contour l i n e Parent material Erosion potential Run-off Drainage Hygrotope Stoniness (per cent) Permeable mineral s o i l depth (cm.) Ecto-humus horizon depth (cm.) L-F Endo-humus horizon depth (cm.) Ah Eluviated horizon depth (cm.) e pH L-F Ah A B C Depth of seepage (cm.) Humus form 30 50 20 80 25 10 35" 65 5 5 10 80 20 15 4o 20 60 15 20 ko Go 5 20 25 60 ko 50 40 55 30 80. 10 15 20 70 5 10 15 80 15 75 15 20 30 46 4 6 10 80 20 * Outwash Slight 6 71 41' 5/9 1958 5 95; 25! 5 25 15 10 15 25 75 25 1 5 .. ;20 10 30 s 40 70 30 Glacial drift Concave Concave Till Moderate 75 90+ 8 0 3 20 118+ 20 0 3 . 40 75+ 1 .15 ' 0 3.72 4.80 e Douglas-fir Western hemlock Western redcedar 60 70 35 45 20 Well-drained A Site index (feet per lOOy) 5115 - 53 25/6 1959 l+9°20 \ U9°22\ 49°22 ' 49°23' 49°22j 49°i6 123°07.' 123°l4' 123°l4' 123°04 123°02 122°35 250 520 5I+0 850 1000 .760 180 160 20, . 225 160 270 8 8 28 16 20 15 2 A 3 36 23/7 1958 : 5.I9 Nil Raw humus l*+5 142 123 143 102 96 75 Nil Raw humus 163 111 98 Duff . mull k 177 142 110 151 131 120 40 90+ 5 0 5 3.87 21 67 72 4/8 1958 22 19 61 21/7 1958 24 98 50 1/6 1939., . 26 112 59 19/7 1959 16 18 25 23 14 ! 19 17 15 13 21 42 28 92 30 96 70 109 59 22/a . )4 48 46 40 44 62 38 45 51 39 47 5/9 20/8 27/8 29/5 15/7 27/5 .18/6 ' 19/9 19/9 29/5 4/8 1958 1958 1958 1958 1958 1958 1958 1959 1959 1959 1958 1959 800 k9°23' 49°l6' 49°i6' 49°2o' 49°23* 49°2i 49°15' 'i9°2i 49 22' ' ' ! 4 Q 0 ' U9°20 49 23 * ;-4§°22 49°17 49°20 k9°i j' 49°23' 49°23'49 17' 49°17' 123°04' 123°02' 122°57'l23°01 123°04 ' 122 35'l22 57'l22 35'l22 48'l23 00j^2°35'l22 35' 122°48' 122°35' 122°35' 122°57' 123°00' 123°0l' 122°34' 123°Ol' 46o 56O 1740 630 850 800 560 510 1200 430 1120 1200 1080 700 750 1200 900 900 1010 1000 90 225 ' 90 225 180 225 225 225 90 270 90 ,90 270 90 90 315 135. 200 225 90 10 24 6 6 40 7 4 30 11 35 13 13 20 20 35 6 3 12 Cfb ' 3 12 7 144 56 22/7 9 114 43 25/6 1959 11 149-; 54 17/7 1959 10 97 9 6 , o , 12 110 52 23/6 1959 1 r ! ! 0 f 2 2 V 25 30 20 70 40 30 6G 70 5 20 25 35 65 80 15 15 70 20 95 5 90 30 .lower slope 45 20 60 65 20 10 25 95 5 35 4o 20 20 4o 55 5 30 10 5 15 80 20 10 50 50 80 20 o o o ABjrb, 35 50 .15 85 15 . 20 30 -15 50 10 70 5 ' 15 20 95 90 20 7 10 90 10 20 10 30 80 3 70 25 85 15 65 70 50 15 10 25 60 40 25" J 40 30 65 10 15 20 85 5 15 20 75 25 o 10 15 45 • 70 20 45 60 20 15 45 60 70 o 0 25 4520 '85 50 20 65 45 -15 15 30 80 50 30 70 10 30 30 . .•85 4o .20 60 .21 JUlu'viaL,G l a c i a 1 d r i f t jower slope fen 25 30 15 45 10 5 10 50 15 20 "35 80 20 •••' 5 30 5 40 90 10 . 95 60 35 15 30 85 96+ 1 8 0 3.70 4.52 5.08 5.20 nil Duff mull Nil Raw humus 163 130 126 166 147 121 60 20 0 1 4.20 4.20 200+ 1 8 0 115+ 1 13 0 3.90 4.15 80 1 8 0 4.60 125+ 3 0 0 4.50 50+ 1 5 0 4.50 .80+ 1 10 0 .4.20 4.10 _ 5.43 5.90 5.45 5.70 nil Raw humus nilDuff mull 170 135 91 60 5 15 0 5.50 4.62 180 157 146 5.4l 5.00 nil 60 Duff Duff . -....mull;. •. mull. 146 119 133 175 130 127 162 149 90 5.32 5.20 5.65 5.20 100+ 23 0 4 145 115 122 145 103 103 162 129 93 174 159 165 , 3.40 ! 3.50 5.25 . 5.48 nil nil nil nil nil Raw Duff Duff Raw Duff mull. humus ... mull. ': .mu&lv-/humus 170 159 UO '20 40 15 75 - 20 25 45 65 30 20 50 80 20 20 45 50 60 70 30 5 30 60 70 15 85 75 25 90 1 9 10 15 4o 50 90 80 20 10 Al^vial* ••• • Concave Concave *AHuvium* Till Slight •Straight* *Straight* Concave *Straight* Till *Alluvlim*Outwash* Till *lacustrine*Outwash* Till Outwash* Moderate• *Slight* Moderate Slight Moderate.: S l i g h t * Slow Well-drained *Mod;dr.* Moist 30 20 60 70 30 40 45 30 35 5 3.92 5.10 5.60 149 139 125 20 66 57 4/9 1958 .. 50 100+ 5 3 40 105+ 5 0 3 4.45 0 3.80 3.70 Glacial drift r 40 70+ 3 0 95 Duff mull 168 113 101 20 95 15 5 20 . 30 30 20 50 60 4o 40 Lower slope 5 , 30 35 65 45 20 60 65 2 3 5 80 20 Mean Range 150 127 60 8/7 1959 49°2i' 123°0l' 370 770 250-1740 205 5 NNE-NW 2-40 .16 2 50 30 25 75 45 • 50 80 7-5 4o 30 70 60 4o 70 30- 35-90 IO-65 *Straight* Concave Outwash Slight *Moderate*Slight Moderately drained * Wet 0 150+ 8 0 0 2 70 25 60 60 75 20 90 75 35 30 65 60 : 5 125+ 1 7 0 4.60 5.20 5.40 nil 35 30 *LaCustrine* *Moderate* . 4.10 4.70 4.80 109 121 20 4o 30 75 4o 45 60 35 45 20 65 60 4o 27 5.57 5.82 145 nil 20 70+ 8 15 63+ 3 0 1 5.67 . 15 3.90 4.92 5.43 5.70 55 4.40 5-305-95 45 0 Raw humus Raw humus Raw humus Raw Raw Duff mull.-... .humus '- humus 177 • 131 120 157 162 153 170 110. 104- 192 132 103 180 180 170 34 0-75 60 + 6 1-23 4 0-15 2- 0-15 4.29 3.4o- 5.67 4.39 3.70- 5.20 4.17 3.50- 4.92 5.24 4.70- 5-57 5.56 4.80- 5.95 78 178 126 128 159 124 130 164 143-192 133 102-180 119 90-170 Polysticheto - Thujetum p l i c a t a e 151 Table no. 22 1 Number of plots of pecies Plot no. Computation reference no. 1 2 3 4 5 6 2 3 4 5 6 l 2 3 l 2 3 l 2 3 Bl 2 1 2 1 • .2 1 2 1 A C h a r a c t e r i s t i c combination of species Thuja ""plicata ;. Tsuga heterophylla Pseudotsuga menziesii Thuja p l i c a t a Tsuga heterophylla 153 3 4 145 115 • 71 58 36 37 55 53 41 +.+.3 6.7-3 5-7.3 5-+.3 6.+.2 4.6.2 5-+.3 3.6.2 5.6.2 3.5.2 4.5.2 2.+.2 Rubus s p e c t a b i l i s + .4.2 Sambucus pubens Acer circinatum +.+.1 4 . 4 . 3 1. + .2 5.7.3 3.7.2 +.+.3 5.6.3 7.10.3 +.+.3 +.+•3 5 . 8 . 3 4 . 7 . 3 3 . 7 . 2 5.6.3 7 . 9 . 3 5.8.3 5.6.2 4.8.3 4.+.3 5 . 8 . 3 7.10.3 +.+.3 8.10.3 4 . 6 . 2 4.+.3 3.+ .2 3-+.3 4.8.2 4.7.2 5.8.3 4 . 7 . 3 4 . 7 . 3 3.+ .2 1. + .2 3.7.3 4 . 7 . 3 2.+ .2 3.6.2 5.6.2 3.7.2 2 . 5 . 2 2.5-2 + . + .2 + .+.3 2 . 4 . 2 2.5.3 + .+.2 3.5.3 2.7.3 2 . 5 . 2 2.+ .2 +.5.2 + . + .2 1.5.2 o c 7 8 9 10 11 12 13 14 15 16 > 17 18 19 20 ! 7 8 9 144 114 226 56 43 • 11.7 Layer : NO. »h dw h dw h dw h dw h dw l 2 3 l 2 3 1 2 3 Bl 2 A Polystichum munitum Dryopteris austriaca Tiarella trifoliata Athyrium f i l i x - f e m i n a Blechnum spicant Mnium punctatum Plagiothecium undulatum Hylocomium splendens Rhytidiadelphus loreus Mnium insigne Companion species Alnus rubra Acer macrophyllum 8.10.3 7.9.3 6 . 8 . 3 8.10.3 5 . 5 . 3 5.5.3 4 . 7 . 2 4.7.2 2 . 3 . 3 4 . 4 . 3 +.3.2 + . + .2 3-+ .2 4 . 3 . 3 + . + .2 + . 3 . 3 4 . 3 . 2 +.3.3 2 . 4 . 3 2.+ .3 3 . 4 . 3 2.3.3 1.3-3 4 . 5 . 3 3.5.3 3.5.3 2.3.3 2 . 3 . 3 2.5.3 +.2.2 2 . 3 . 2 1.3.3 4.5.3 2.4.3 4.6.3 2 . 3 . 3 4.5-3 4 . 5 . 3 +.2.3 2 . 4 . 3 + . + .2 2 . 3 . 3 + . + .2 1.3.3 +.2.3 2.3.2 2 . 4 . 3 + . 2 . 3 2.3.3 +.4.3 2 . 4 . 3 3.5.3 2 . 4 . 3 + . 3 . 3 2 . 3 . 3 + . 2 . 3 6.9.3 + .+.3 7.8.3 5 . 9 . 3 3-8.2 2.6.3 6.7.2 3.2.3 2.4.3 + . + .2 5-+ .3 5.8.3 8.10.3 5.7.2 '5.'6?2 6.8.3 5.7.3 5.6.3 3.4.3 5.6.2 3.5.3 2.4.3 3.6.3 + . + .2 4.7.3 2.5.3 7.9.3 4.5.3 2.+ .2 2.4.3 4.5.3 2.3.3 4.5.3 3.5.3 + .2.3 4.5.3 110 21 42 28 92 109 59 49 54 52 39 40 38 46 51 45 +.+.3 +.+.3 4. +.3 +.+.3 5 . +.3 6.7.3 4.+.3 6.8.3 7.10.3 5.7.2 4.6.3 4.5.3 3.6.2 4.+.3 6.7.3 +.+.2 4 . 6 . 2 +.+.3 6 . 8 . 3 +.+.3 4.7.3 7.10.3 4.7.2 9.10.3 +.+.2 6 . 7 . 2 7.10.3 3.+ .2 + . + •3 6.7.3 +.+.2 5.9.3 3.7.2 4.8.2 3.7.2 2.7.2 l. + .l 5.5.2 2.4.2 15 +.+•3 5.7.3 7.9.2 3 . 4 . 2 4.+.2 6 . 9 . 2 +.+.2 +.+.3 +.+.2 4.+.3 7 . 9 . 3 6.7.2 5 . 7 . 3 6 . 7 . 3 6.+.3 4 . 8 . 3 + . + .2 20 21 22 23 24 25 26 27 30 66 67 19 96 98 70 112 127 44 57 42 61 48 50 62 59 60 19 4.+.3 4 . + . 3 5.7.3 + . + .2 + . + .2 5.8.3 7.9.3 +.+•3 + . + . 2 5 . 7 . 27.10.3 5 . 8 . 3 6.7-3 4.7.2 4.7.2 6.+.3 5 . 8 . 3 3 . 7 . 3 + . + .2 5 . 8 . 3 7 . i o ; x 7 . i o . 3 +.+.2 +.+-3 +.+.1 +.+.2 +.+.3 4.+.2 4.+.3 +.+.2 6.8.3 5.8.3 5 . 6 . 3 6.10.3 2.+.2 5.7.3 4.7-3 + . + .2 + .+•3 3.7.2 3.+.2 3 . 6 . 3 +.+.2 +.+.2 2 . 7 . 2 7-9.3 2 . 5 . 3 +.+.2 +.+.2 2.5.3 3.5.3 +.+-2 2.+.1 +.+.2 6.'5.3 2 . 5 . 2 +.4.2 + . + •3 + .+.2 1.+.2 4.6.3 4.7.3 5.8.3 2.5.2 3.5.2 2 . 4 . 3 2.5.3 4 . 6 . 3 6 . 8 . 3 7.7.3 7.9.3 2 . 4 . 3 3.5.3 5.4.3 2.5.3 4.5.3 2 . 3 . 2 3.4.3 + . + .2 2 . 4 . 3 4 . 5 . 3 2 . 4 . 2 4.6.3 2.4.3 5.6.3 5.4^3" 2.4'. 3 2.3.3 2.2.3 4.6.3 2.4.3 2.4.3 4.5.3 3.4.3 7.6.3 2.5.3 3.5.3 5.5.3 3.5.3 2.4.3 + .2.2 2.5.3 4.5.3 + .4.3 1.2.3 1.3.3 3.4.3 4.5.3 5.6.3 3 . 4 . 3 + . 4 . 3 3 . 4 . 3 1.2.3 + . 2 . 3 1.2.3 1.2.2 4.7.3 2.+.3 +.6.2 +.+.2 2.5.2 3 . 6 . 2 + . + . 2 6.7.3 3.7.3 2.5.2 + .+.2 5.6.3 5.6.3 3.4.3 5.6.3 4.5.3 1 + .+.2 2 . 4 . 2 3.5.3 9.10.3 + . 6 . 3 4.6.2 1.5.2 6.9.3 ' 7.9.3 4.5.2 2.5.2 +.+.2 4.3.3 + .+.3 5.5.2 1.5.3 2?5^33 4 . 6 . 3 4.5.3 1.3.2 4.6.3 2.4.3 2.3.3 3.5.3 5.6.3 2.5.3 3.3.3 3.5.3 . 4 . 6 . 3 3.4.3 j 3.3.3 4.6.3 1 + .+.1 6.7.2 4.6.2 8 . 9 . 3 3.+.2 3 . 4 . 3 2:4'. 2 3.4.3 2.4.2 2.3.2 2.+ .2 5.5.3 4.5.3 6.8.3 2 . 4 . 3 5.6.3 4 . 6 . 3 7.9.3 2.3.2 6.7.3 2.5.2 4.6.3 4.5.3 4.5.2 3.5.3 2 . 4 . 2 1.3.3 + . + •3 5.7.3 8.10.3 4.5.3 6 . 8 . 3 7.9.3 4.5.3 3.4.3 3-4.3 4 . 3 . 3 + .4.3 3.4.3 4 . 5 . 3 5-4.3 4.3.3 5.4.2 1.3.3 6.8.3 2.3.2 5.5.3 3.4.3 4 . 4 . 3 5.6.2 2.2.3 + .3.3 + .2.3 2.3-3 2 . 3 . 3 4.5.3 3.5.3 +.+.2 +.+.1 3.7.2 3- + .3 4.7.2 4.7.2 1 1.4 3.1 1.6 4.7.3 1.7 5 . 7 . 3 6.7.3 6 . 9 . 3 4.5 5.7.2 5.6.3 2.5 + . + •3 8.IO.3 3.6 2.0 + . + .2 0.3 5.6.2 3.5.3 4 . 6 . 3 2.4 3.4.3 3 . 4 . 3 1.6 4 . 6 . 2 4 . 6 . 3 5.7.3 3.1 3.4.3 3 . 4 . 3 1.3 1.3.2 2 . 3 . 2 0.3 4 . 4 . 2 3 . 5 . 3 2.1 2.4.2 4 . 5 . 2 0.7 0.8 2.3.1 5.6.2 2.8 4 . 6 . 2 7.7.3 4 . 3 . 3 4 . 5 . 3 1.6 4 . 5 . 2 3.5.3 5.5.3 6.2 1.3.2 5.3.3 5.5.3 3.3 +.3.3 2.3.3 5.3.3 2.5 1.3.2 5.3.3 1.7 5.6.3 8.10.3 6 . 5 . 3 3.0 5 . 6 . J T . 4 . 3 7 . 8 . 3 2.7 6.5.3 2.7 6 . 6 . 3 +.2.2 2.4.3 5.5.3 2.9 3 . 4 . 3 + . 2 . 3 4 . 3 . 3 2.5 3 . 4 . 3 2.0 5.5.3 4 . 4 . 3 1.3 2.3.3 3 . 4 . 3 1.7 + . 3 . 3 2 . 4 . 3 2.0 + .2.3 1.x 0.x +.+.3 5-+.3 + . + .2 3.+.3 + .+.2 + . + .2 +.+.3 + .+.2 6.8.2 5.8.3 3-6.2 3.5.3 3.5.2 3 . 4 . 3 4 . 5 . 3 4 . 5 . 2 3.3-2 +.+.2 +. + .2 +. + .2 I . 5 . 3 2 . 5 . 3 3-+.2 2 . 4 . 3 +.+.2 1.+.2 + .+.3 1.+.2 l . + . l 5.5.3 Species Vigor Constancy significance Mean - Range Mean . Range 5.7.3 + . + •3 +.+.3 4.+.3 + . + .2 2.+ .2 18 i4o 13 4.7.3 2.+.2 4 . 6 . 2 5.7.3 + . + . 3 6.7.3 2.4.3 3 . 4 . 3 3 . + . 3 2.5.2 5.5.3 2.5.2 1.2.3 4.7.3 + . + .2 5-8.3 3 . 4 . 3 3.5.3 4 . 5 . 3 3-3.2 2 . 4 . 2 2 . 6 . 3 3.5.3 +.+•3 2.5.3 3 . 4 . 3 + . + .2 2.5.3 +.+.3 4.7.3 + . + .3 5-6.3 3.5.3 + .+.2 3.5.3 4.8.3 5.6.2 8.10.3 9.10.3 8.10.3 7 . 9 . 3 7.9.3 7.10.3 3.3.2 6 . 8 . 3 +.+.2 4 . 5 . 3 4 . 5 . 3 3.4.2 2.5.2 2 . 3 . 2 3 . 4 . 3 2.+ .2 3-+ .2 4 . 5 . 3 1.5.3 5.7.2 + . 4 . 3 1.4.2 2 . 4 . 2 3 . 5 . 3 3 . 5 . 3 3 . 4 . 2 1.4.3 3.5.2 3 . 5 . 3 5.6.3 3 . 4 . 3 + . 4 . 3 4 . 5 . 2 1.2.3 4 . 4 . 3 1.3.2 3.5.3 + . 2 . 2 + .3.3 4.3.3 3.5.3 + .+.2 4 . 5 . 3 1.3.3 3 . 4 . 3 1.3.2 3 . 5 . 3 3-5*3 6.7.3 2.5.3 3.5.3 1.3.2 5.6.3 2.4.3 3 . 3 . 3 2 . 5 . 3 4.5.3 3.4.3 + .3.3 2.3.3 2.4.3 2.3.3 2.3.3 2.4.2 3.5.3 3.4.3 1.3.3 + .3.3 2.4.3 3-4.3 1.3-3 3.4.3 2.3.3 1.4.3 5.6.3 2 . 4 . 3 2 . 3 - 3 3.4.3 2.4.3 4 . 6 . 3 +.4.3 2.3.3 3.5.3 4 . 5 . 3 + . 2 . 3 4.5.3 2.3.3 6.8.2 17 97 5.7.3 4.7.3 +.+.3 f 16 12 +.+•3 + . + .1 Abies amabilis +. + .3 2.5.2 + . 2 . 3 1.4.2 3.5.2 1.3.2 1.3.3 2.4.3 +.4.3 2.3.3 2*4.2 2.5.3 2.5-3 2.3.3 +.3-3 +.+.3 4.7.3 6.7.3 v 6.9.3 Vaccinium parvifolium 4.7.3 +. + .2 2.3.2 1 14 11 10 +.4.3 2 . 4 . 2 4.5.2 1.3 1.4 0.6 0.2 0.5 0.1 0.1 0.2 0.1 0.4 2.0 0- 5 0- •7 0-•6 0- •7 0--8 0-•6 0- 8 0- •7 0- -5 0- •5 0- 6 0- 7 0- •5 0-•4 0- 6 0-•4 0- 3 2--3 0-•4 3-•9 +-•6 0- •5 0- •5 0- 8 0- •7 0- 6 0- 7 0- 5 0- 6 0- 4 0- 4 0- 5 0- 4 0- 4 0-9 • 0-7 0-6 0-4 0-6 0-2 0-+ 0-4 0-+ 0-3 0-5 .2.7 2.7 2.4 3.0 2.7 2.4 2.9 2.4 2.0 2.5 2.6 2.4 2.5 2.5 2.4 2.6 2.2 2.8 2.6 2.9 2.6 2..5 2.6 2.7 2.9 2.8 5.8 2.9 2.7 2.9 2.9 -2.9 3.0 2.7 2.6 2.2 2.1 2.5 2.6 1.5 3.0 2.6 2.5 2.0 2.4 1- 3 2- 3 2- 3 15/27 22/27 17/27 18/27 .2- 3 26/27 2- 3 17/27 .2- 3 22/27 2- 3 14/27 3/27 2- 3 20/27 2- 3 17/27 2- 3 25/27 2- 3 15/27 2- 3 4/27 1- 3 22/27 2- 3 8/27 1- 3 16/27 2- 3 16/27 2- 3 15/27 2- 3 27/27 2- 3 • 27/27 2- 3 25/27 2- 3 22/27 2- 3 23/27 2- 3 25/27 2- 3 26/27 2- 3 24/27 2- 3 24/27 2- 3 20/27 2- 3 16/27 2- 3 20/27 .2- 3 23/27 20/27 2- 3 4/27 2-3 1-3 2-3 2-3 2-3 .1-2 2-3 2-3 1-3 1-3 8/27 11/27 6/27 2/27 3/27 2/27 2/27 3/27 4/27 7/27 22/27 152 Polysticheto - Thujetum plicatae Table no. 22 - Continued No. Layer of Number of p l o t s Species Gaultheria shallon 2 21 2 Rubus v i t i f o l i u s 22 Mahonia nervosa 2 23 Sorbus sitchensis 2 24 1 Taxus brevifolia 25 0 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 5* d. 2 2 2 2 2 1 C Eh dw e dw e dw e dw e dw e dw e h dw dw e h dw e dw e dw e h dw e dw e Vaccinium alaskaense Rubus p a r v i f l o r u s Rhamnus purshiana Oplopanax horridus Menziesia ferruginea Cornus n u t t a l l i i Cornus canadensis Galium t r i f l o r u m Pteridium aquilinum Luzula p a r v i f l o r a Lactuca biennis Gymnocarpium dryopteris Carex bolanderi Trientalis l a t i f o l i a Streptopus amplexifolius T r i l i u m ovatum Eurhynchium oreganum Hypnum c i r c i n a l e 1 2 3.7.2 3 . 6 . 2 +.5.2 1 . 5 . 2 +.+.2 +.+.2 2.5.2 + . + .3 + . + .3 +.+.3 1. + . 2 1 . 6 . 2 3.6.2 + . + .2 + . + .2 + .3.2 2.3.2 2.3.3 1.2.3 + .1.3 Scapania bolanderi Isothecium stoloniferum Plagiothecium elegans + .2.3 + .4.3 + .1.3 + .2.2 Cephalozia media 4.5.3 3.4.3 2.3.3 3.4.3 + . 2 . 2 +.2.2 3.5.3 3.4.3 + .4.3 + .2.3 1.3.3 + .3.3 + .2.2 1.2.3 1.2.3 +.3.3 + . 2 . 2 1.3.2 3.5-3 +.5.3 + . 5 . 3 1.2.3 + .1.3 +.2.3 + . 2 . 3 + . 2 . 3 +.2.3 +.2.3 + .4.2 4.4.3 3.4.2 + . + .3 + . + .2 + . + .3 Lophocolea cuspidata 2.+.3 1. + . 2 +.+.3 + .2.3 1.3.3 + .2.3 + .2.3 + .2.3 + . + .2 +. + .*2 + . + .3 + . + .2 + . + .3 + . + . 2 + .3.3 9 2.5.2 2.5.2 +.+.2 : 3 . 7 . 3 1.4.2 +.+.2 2.5.2 3.5.3 2.4.3 2.4.3 + .3.3 1.3.3 2.2.3 + . 2 . 3 +.2.3 + .1.2 + .+.2 2 . 3 . 2 +.2.3 + .2.3 +.3.3 + . 3 . 3 + .3.2. + .2.3 2.3.3 + . + .3 1. + . 2 + . + .2 + . + .1 + . + .3 + .+.2 3.6.3 +.+.3 2.4.3 2.+.3 3.5.2 3.5.2 5.5.3 2.5.3 + .+.2 i J 2.4.3 +.•.2 +.+.2 3.4.2 1 2.3.3 +.1.2 +.+.3 1.2.3 +.1.2 +.5.3 1.2.3 +.2.2 +.1.3 +.2.3 +.2.3 +.3.3 +.+.2 2.3.3 +.3.3 +.3.3 +.3.3 +.1.3 +.3.3 +.3.3 +.1.3 +.1.3 +.2.3 + .2.3 2.4,3 1.3.3 +.3.2 +.2.3 +.1.3 3.4.3 +.3.3 +.3.3 13 4.6.2 3.6.3 +.+.2 3.5.2 +.+.3 +.2.3 2.3.3 +.3.3 +.1.3 +.1.3 1.2.3 +.1.3 i+.5?3 1.3.3 15 2.+.2 +.+.2 +.+.2 16 2.6.2 3 . 6 . 2 +.5.3 +.+.3 17 19 4.7.2 +.+.1 3.5.? 2.5.3 1.5.3 +.+.1 1.5.3 +.+.3 1.5.2 1.3.2 1.3.3 +.4.3 +.+.2 +.2,3 +.2.3 +.1.2 +.+.3 +.+.3 +.+.3 +.2.3 +.+.3 +.+.3 +.+.2 +.3.3 3.4.3 2.5.3 3.4.3 3.5.3 +.2.3 +.3.3 +.4.3 +.1.3 +.2.3 +.2.3 +.2.2 +.2.3 4.5.3 +.1.3 +.2.3 +.5.3 3.5.3 2.3.3 3.5.3 +.5.3 +.2.2 +.3.3 •.!"•+#3 +.+.2 1.3.3 1.2.3 +.2.2 2.4,3 +.3.3 1.4.3 +.3.3 +.3.3 +.2.3 +.2.3 +.2,3 +.3.2 +.3.3 +.2.3 +.+.2 3.4.3 24 3.5.2 4.5.2 2.4.3 3.5.3 2.4.2 2.3.3 +.2.3 3.4.3 2.5.2 1.+.2 +.2.2 1.+.3 +.+.2 1.3.3 2.4.3 + . + .3 6.7.3 + .+.2 1.+.3 +.+.3 5.7.3 +.+.3 3.5.2 3.4.2 + .2.3 1.2.3 + .1.2 3.4.3 2.3.3 + .3.3 2.3.3 3 . 5 . 2 +.2.3 +.3.2 1/2.2 2 . 3 . 2 + .2.2 2.4.3 + .5.3 2.4.3 + .4.2 +.3.3 + J+ + .2.3 3.5.3 +.+.3 +.2.3 2.3.3 +.2.3 4.3.3 1.2.3 +.2.3 +.3.3 +.2.3 +.3.3 +.2.3 +.3.3 1.3.3 +.2.3 +.3.3 1.2.3 + .+.3 4.6.3 3.+.3 4.6.3 4.5.3 +.+.2 1.+.2 1.2.3 +.2.3 23 + .+.2 +.+.1 3.3.2 2 . 5 . 3 +.4.3 +.+.3 +.+.3 +.2.3 22 +.3.1 2 . 5 . 2 1.+.3 +.4.2 +.+.2 1.3.2 2 . 3 . 3 +.3.3 +.3.1 1.+.2 +.4.2 +.3.3 + .+•2 2.3.2 +.3.3 +.+.3 +.4.3 3.4.3 4.6,3 +.+.2 1.3.3 2.3.3 +.3.3 +.+.3 +.2.3 1.2.3 +.2.2 +.1.2 2.3.3 3.2.3 +.2.2 + . 2 . 3 +.3.3 2.3.3 +.2.2 +.2.3 +.2.2 +.2.3 +.1.3 +.2.3 +.1.2 21 +.+.3 +.+.2 +.+.3 +.2.3 +.2.3 20 2.3.3 1.+.2 +.+.3 1.3.3 +.3.2 2 . 3 . 3 +.2.3 1.3.2 +.1.3 +.1.3 1.2.3 1.2.3 +.1.2 +.2.3 2.4.3 2.4.3 +.2.3 +.2.3 2.4.2 3 . 5 . 3 +•3.3 +.1.3 +.2.3 +.1.3 +.+.3 +.1.3 18 +.3.2 2.6.3 2.+.3 2.5.2 +.+.3 3.6.3 4 . 5 . 3 +.+.2 2.4.3 1.5.2 4.6.3 2.4.3 +.+.2 2 . 4 . 2 2.4.2 3.4.2 +.+.3 2.+.2 +.+.2 2.3.3 5.5.3 3.4.3 14 1.3.3 +.+.2 +.4.3 2.4.3 2.+.3 +.2*2 + .1.3 +.+.3 2.3.3 3.5.3 +.3.2 4.5.3 +.4.3 1.3.3 +.2.3 3.4.3 +.4.3 +.+.3 12 3.6.2 +.+.2 +. + . 3 + . 1 . 3 +.2.3 +.2.3 + . 2 . 3 + .2.3 3.4.3 11 4.7.3 2.6.3 + .2.2 +.+,2 +.2.3 + .2.3 10 2.4.3 +.+.3 • 4.6.3 3.5.3 +.2.3 + . 3 . 3 2.3.3 +.2.3 +.1.2 +.+ .2 + .1.2 + .2.2 2.3.3 + .2.3 3 . 4 . 3 j +.2.3 1 +.6.3 2.3.3 + .2.3 2.3.3 2.3.2 + .2.3 + .2.3 + .2.3 + .2.3 + .2.3 + .1.3 +.3.2 +.2.3 + .2.2 8 +.4.2 P l a g i o c h i l a asplenioides Bazzania ambigua 7 +.+.2 +.+.2 +.+.3 2.1.3 + .3.3 + .5.3 trichomanes 5 + . + .2 Plagiothecium denticulatum Calypogeia 4 + .5.3 + . + .2 + . + .3 Dicranum fuscescens Lepidozia reptans 3 .2 +.2.2 25 26 +.+.1 4 . 6 . 2 3.5.3 3 . 5 . 3 6.6.2 3.^.3 +. + .2 +.4.2 +.4.3 +.+.3 3.5.2 +.+.2 + .+.2 +.5.2 2.4.3 +.+.2 + .3.3 4.+.3 +.5.2 +.3.3 2 . 3 . 3 a.3.3 4.5.2 4 . 3 . 2 +.+.3 2.3.3 +.+.2 4.5.2 3.3.3 +.2.3 +.2.3 +.1.3 1 . 3 . 3 2.2,'3 + . 2 . 3 + .1.3 3.4.3 2.2.3 + . 4 . 3 + .2.3 2.3.3 2.3.3 + . 6 . 3 + .5-3 + .1.3 + .1.3 + .1.3 + .2.3 +.2.3 +.2.3 +.2.3 + .1.3 +.2.3 +.2.3 +.1.3 +.3.3 +.2.3 +.2.3 5.3.3 + .+.3 2.4.2 +. + .3 3.2.3 +. + .3 + .4.3 + .4.3 +.2.3 27 + .2.3 + .+.2 +.+.2 +.+»3 7.8.3 3.4.3 4.5.3 2.3.2 3.5.3 3.5.2 +.2.2 +.3.2 2.3.3 + .2.2 2.3.3 +.1.3 + .1.2 + .212 2.1.3 + .2.3 1.3.2 + .3.3 + . 2 . 3 2.3.3 +.2.3 2.5.3 + .1.2 + .2.2 4.5.3 1.3.3 + .2.2 + .3.3 + .3.2 + .2.2 2.2.3 + .1.2 + .2.3 + .1.3 +.3.3 +.1.3 2.2.3 +.2.3 +.1.3 +.+.3 +.3.3 +.2.3 +.2.3 +.2.3 + .2.3 +.1.3 Species Conssignificance tancy* Mean R» nge /. Mean; Range 2.0 1.4 0.6 0.2 0.4 0.4 1.1 0.4 0.2 '0.3 0.7 0.4 0.8 0.6 1.3 0.5 0.2 0.5 0.2 • 0.5 0.3 0.3 2.5 1.6 0.4 1.8 0.8 0.9 0.8 1.9 0.7 0.1 0.8' 0.8. 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.4 0.5 0.2 0.2 0.2 0.2 0.3 0.3 0.5 0.1 0-7 0-5 0-3 0-2 0-4 0-3 0-4 0-4 0-1 0-1 0-3 0-4 0-5 0-2 0-4 0-2. 0-+ 0-3 0-1 0-3 0-1 0-1 . 0*7 0-4 0-+ 0-4 0-+ 0-2 0-+ 0-3 0,+ 0-4 0-+ 0-2 0-1 0-2 0-2 0-+ 0-+ 0-2 •o-i o-3 0-+ 0.-+ 0-+" 0-+ 0-2 0-3 0-3 0-2 0-+ 2.0 2.6 2.5 2.4 3.0 2.5 2.5 2.1 2.8 1.7 2.8 2.3 2.5 2.4 2.2 2.6 1.8 2.8 2.5 2.4 .2.1 2.7 .2.9 2.8 2.3 2.8 2.8 2.7 2.5 2.9 2.7 2.9 2.7 2.9 .2.8 2.5 2.6 2.9 3.0 3.0 2.9 2.9 2.9 3.0 3.0 3.0 3.0 • 3.0 3.0 2.8 ' 3.0 1- 3 2- 3 2-3 2-3 19/27 17/27 19/27 5/27 6/27 2-3 9/27 2-3 13/27 2-3 •8/27 2-3 •5-/27 1- 3 8/27 2- 3 10/27 2-3 6/27 1-3 14/27 214/27 217/27 213/27 16/27 26/27 26/27 2-3 8/27 2-3 9/27 2-3 8/27 2-3 22/27 2-3 18/27 2-3 11/27 2-3 25/27 2-3 23/27 2-3 21/27 2-3 23/27 .2-3 24/27 2. 20/27 2v22/27 .221/27 219/27 29/27 29/27 2-3 8/27 2-3 .12/27 9/27 5/27 2-3 12/27 2-3 9/27 2-3 14/27 5/27 7/27 5/27 4/27 6/27 9/27 12/27 2-3 4/27 I 153 Polysticheto - Thujetum p l i c a t a e No. of Species 55 Continued Table no. 22 Layer Number of plots dw 1 Calypogeia suecica 2 4 3 + .2.3 5 7 +.1.3 60 e e dw e dw e dw 6l dw 59 F r u l l a n i a nisquallensis P o r e l l a plathyphylla Lophocolea heterophylla 10 + .2.3 +.2.3 + .1.3 +.3.3 +.3-3 +.2.3 +.+•3 +.2.3 +.+.3 + .2.3 +.1.3 + .2.3 + .1.3 Calypogeia neesiana 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 19 20 +.2.3 +.2.3 24 26 25 + .2.3 +.2.3 + . 1 .3 +.2.3 +.2.3 2.4, 3 2.4.3 1.3.3 + .2.3 +.2.3 + . + .2 + .2.3 +.6.3 + .3.2 .70 21 145 21 59 70 21 21 67 112 28 03 28 67 110 28 70 95 96 97 110 (+.+.3, 115 (+.+.2) .+.+.2) [+.+.2 y 04 [+.+•!] 42 ( + .3.2), 96 (2.3.3), HO 28 28 115 [+•+•2] 21 [+.+.2 > 1 19 (+.+-1) 28 k2 30 k2 (+.+.3); 71 110 59 04 + . + .3 ,,127 + .+.2 + . + .3 1. + .2 21 (+ + . + .3 + .3.3 + .2.3 + .1.3 , 115 +<3), (+.+.2) 30 (+.+.3), 115 (+.+;3), 115 (+.3.2) , 114 (+.+.3), 98 (+.+.3),. 109 (+.+.3) 98 99 100 101 97 21 28 21 + .1.3 , + .2.3 + . + .3 + .1.3 , 109 ( + . 2 . 3 ) , 140 (+.2.3) 102 103 Dicranoweisia cirrhata Diplophyllum taxifolium Heterpcladium heteropteroides H. p r o c u r e n s Homalothecium n u t t a l l i i Hookeria lucens 03 28 59 71 21 28 + .1.3 + . + .3 +.2.3 + .3.3 + .3.3 1. + .2 04 (+.2.3) 42 (+.+.3), 92 (+.+.3) 22/a, 96, 97 (+.3.3) 30 ( 2 . 3 . 3 ) 30 (+.3.3) 21 (+.3.3) 105 106 107 114 ( 1 . 3 . 3 ) , . 127 (+.+.2) , , , , , , , +.2.3 + .3.3 (+.+.2) C e p h a l o z a lammersiana Champtothecium l u t e s c e n s Claopodium b o l a n d e r i D I c r a n e l l a heteromala 104 > Pyrola a s a r i f o l i a Rubus p e d a t u s S m i l a c i n a racemosa Streptopus roseus T r i s e t u m cernuum 28 Viola glabella Viola orbiculata A n t i t r i c h i a curtipendula Cephalozia bicuspidata (+.2.3) I+.+.2' (3.5.3' 93 ! 9k (+.+.2) 1+.+.2) 3), 0 5.2.2-3), I J [+•+•3] [+.+.2; j+.+.l] > !+•+•!> ; 89 90 91 92 + .3.2 + .1.2 1.3-3 +.2.3 + .2.3 +.2.3 +.2.3 + .5.3 + .2.3 !+.+.3 [+•+•3] ' > (•f . + . 2 , 19 [+.+.2] > (3.6.2: 70 67 ( + .-K 2 ) , 30 [l.k.2] 71 + .2.3 + .1.2 + .2.2 Claopodium c r i s p i f o l i u m Atrichum undulatum +.2.2 +.2.2 + .4.3 109 (+.+.3), 127 (+.2.3) 27 +.1. 3 +.+.3 +.2.3 scoparium Lycopodium clavatum L. selago Moneses u n i f l o r a Prunella v u l g a r i s 23 + .2.3 +.2.3 +.3.3 Bazzania denudata Betula p a p y r i f e r a Populus trichocarpa Prunus emarginata Rosa gymnocarpa Salix sitchensis Vaccinium o v a l i f o l i u m Achlys t r i p h y l l a Actaea arguta Anaphalis margaritacea Aruncus v u l g a r i s Dicentra formosa Epilobium angustifolium Equisetum telmateia Festuca s u b u l i f l o r a Goodyera o b l o n g i f o l i a Heuchera glabra Hieracium a l b i f l o r u m L i l i u m columbianum Linnaea b o r e a l i s 22 + .2.3 + .2.3 + .3.3 + .2.3 + .2.3 Dicranum 21 + .1.3 + .2.3 (2.3.3) 85 86 87 88 18 + .2.3 + .2.3 + .1.3 + .2.3 +.2.3 Bazzania t r i c r e n a t a 17 + .1.3 +.1.3 +.+.3 +.2.3 +.2.3 +.3.3 + .2.3 + .2.2 + .2.3 P t i l i d i u m californicum <~\ h dw e h 16 15 + .3.3 + .2.3 +.2.3 +.1.3 tr e dw 14 13 +.1.3+.2.3 + .1.2 12 +.1.3 Ci 62 11 +.2.3 +.2.3 56 57 58 8 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 +.3.3 Metzgeria furcata M. pubescens Mnium menziesii M. spinulosum M. venustum Neckera d o u g l a s i i N. menziesii Pogonatum alpinum Porella navicularis Porotrichum neckeroides Plagiothecium sylvaticum Radula bolanderi R. <£omplanata Rhytidiopsis robusta Sphagnum robustum Sphagnum papillosum Ulota megalospora C e t r a r i a glauca Cladonia subsquamosa P e l t i g e r a canina Sphaerophorus globosus Tetraphis p e l l u c i d a 109 109 ConsSpecies Vigor tancy significance Mean. Range Mean . Range 0.3 0.1 0.3 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.3 0.1 0.0 0.1 0.1 0.1 0.2 0.2 0-+ 0-+ 0-+ 0-+ 0-+ 0-+ 0-+ 0-+ 0-+ 0-+ 0-2 0-+ 0-+ 0-+ 0-+ 6-1 . 0-+ 0-+ 3.0 3.0 3-0 3.0 3.0 3.0 2.7 3-0 3.0 3.0 3.0 3.0 2.5 2.6 2.2 3.0 2.6 140 ( +.2.3) (+.1.3) , (+.2.3) 96 ( 4 . 5 - 3 ) , 22/a ( + . 3 . 3 ) , 190 67 ( +.2.2), (+.2.3) , (+.2.3) (+.2.3) , 30 (+.3.3) 22/a, 96, 97 ( + • 3-3) 59 21 21 04 59, 30 (1.3.3) 21, 97, 98 ( +.2.3)59 (2.5.3) (+.2.2) 71 59 (+.2.3) 28 (+.2.3) 28 (1.2.3) 28 (+.1.2) 70 (+.+•3) 96 (+•+•3) (+.+.2) 67 66 ( +.1J3) 97, 115 (+.2.3, 127 (+.3.3) 66 (+.1.3) 97, 115 (+.s . 3 ) , 04 (+.1.3) , 22/a (+.2.3) 2-3 2-3 2-3 2-3 2-3 8/27 3/27 10/27 9/27 6/27 2/27 3/27 7/27 3/27 3/27 6/27 2/27 1/27 4/27 3/27 4/27 7/27 5/27 Gaultherieto - Tsugetum heterophyllae Gaultherieto - Tsugetum heterophyllae pleurozietosum schreberi 1 4 2 Number of plots 1 2 3 5 3 Mean 62 56 P l o t no. 52 103 37 47 57 54 h 1 2 6 8 Computation reference no. 5 7 3 26/8 21/8 8/6 22/8 28/8 26/8 Date 25/8 9/9 1958 1958 1958 1958 1958 1958 1958 1959 800 800 P l o t size (sq. m.) k9°i9\ Latitude 9°19[ •+9°19] k9°i9' •49°251 49°19 -+9°19 1 2 2 ° 3 5 ' 122°35 122°35 122°47 122°35 Longitude 122°35 122°35 122°35 1800 1690 1800 1680 Altitude (ft.) 1450 2000 1730 590 1730 180 180 90 180 Hilltop Hilltop 180 Exposure (degree) 257 10 16 11 8 10 Slope (degree) 5 5 Cfb Cfb Macroclimate Koppen AB-(rb4 ABjrb^ Thornthwaite 20 S t r a t a coverage (per cent) A l 30 20 50 15 25 25 45 40 60 A 50 30 ko 15 15 35 20 10 A3 10 20 25 15 80 70 A 60 60 50 75 75 55 20 20 10 20 30 25 25 35 l 80 40 . 4o. B 30 50 50 65 55 60 60 40 60 80 B 50 70 85 1 1 10 C 1 5 5 5 5 90 90 Dh 90 35 75 85 85 95 10 10 5 5 5 5 15 Aiw 40 100 80 D 100 100 100 90 91 90 80 88 Humus coverage (per cent) 90 90 90 90 95 95 10 10 10 10 Decaying wood coverage (per cent) 20 10 12 5 5 Rock outcrop - Upper-slope G l a c i a l d r i f t ^Upper-slope Land type and Land form Convex Convex R e l i e f shape Profile Convex Contour Convex Granitic rocks Parent material Till Severe Severe Erosion p o t e n t i a l Medium Run-off Medium Excessive Excessive Drainage Dry Dry Hygrotope 0 0 0 10 0 Stoniness (per cent) 10 5 5 7 10 Permeable mineral s o i l depth (cm.) 21 18 k 15 13 17 15 5 10 20 Ecto-humus horizon depth (cm.) L-F 20 13 9 17 15 17 5 10 4 10 Eluviated horizon depth (cm. ) Ae 10 15 13 5 7 9 Table no. 23 h Mean Range 1510 590-1800 i 2 B 2 91 9 90-95 5-10 2 10 12 10 0-10 4-15 5-13 4-15 •-- T a b l e no. 2 3 - C o n t i n u e d Number o f p l o t s pH L-F Ah A e B G a u l t h e r i e t o - Tsugetum h e t e r o p h y l l a e 1 3.50 2 3.26 Mean 3.40 4.00 3.49 4.60 3.45 4.30 3.38 1 Gaultherietp -Tsugetum heterophyllae pleurozietosum schreberi 2 3 4 5 Mean Range 3.45 3.60 4.02 3.52 3.67 3.45-U.02 3.70 3.40 3.57 3.40-3.70 C Raw humus Humus type Douglas f i r S i t e index ( f t . p e r 100y)Western hemlock Western r e d cedar Amabilis f i r Y e l l o w cedar 69 85 Raw humus 79 63 70 53 63 48 59 44 75 •65 59 44 67 39 38 60 47 38 70 72 59 54 80 75 81 58 52 69 56 53 40 40 63 67 60-80 39-75 38-81 Table no. 24 No. of Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 P l o t no. 62 103 54 6 8 7 Computation reference no. 1 2 Bl 2 1 2 1 2 1 2 2 1 2 1 2 1 2 C 2 Number of p l o t s Layer Al 2 3 1 2 3 1 2 1 2 C h a r a c t e r i s t i c combination of species Tsuga. heterophylla Thuja p l i c a t a Pseudotsuga menziesii Pinus monticola Chamaecyparis 3 5.*°3'. . 5 . + . 2 7-9-2 7 . 1 0 . 3 5.7.2 4.5.2 6 . + . 3 5.+ . 2 5.+..2 5 . 6 . 2 + . + .2 5.+ .2 +. + . 3 5.6.2 4.5.2 Thuja p l i c a t a Vaccinium alaskaense ferruginea Gaultheria shallon Chamaecyparis nootkatensis + . + .2 + . + .2 : Vaccinium o v a l i f o l i u m 2.5.3 2.5.2 1. + . 3 + . + .2 + . + .3 Species Vigor Constancy significance Mean .• ..1 Mean. ; 1.6 2.6 2.3 2.0 2.5 2.0 2.0 2.0 1.0 2.0 3-6 6.0 4.6 3.6 3.6 0.6 3/3 3/3 3/3 2/3 3/3 2/3 1/3 2/3 1.6 2.0 4.6 4.0 1.3 3-0 2.0 2.3 2.3 2.0 1/3 1/3 3/3 3/3 1/3 0.3 6.3 1.7 1.7 5.0 2.0 2.6 2.0 2.0 2.0 1/3 3/3 3/3 2/3 3/3 + . + . 3 + . + .2 0 . 6 1.5.2 . 0.3 1.0 3.+ .2 2.5 2.0 2.0 2/3 1/3 1/3 3.5.2 4.5.3 4.5.2 5-+ .3 6.8.2 6.7.3 4.6.2 1.5.2 6.7.3 8.10.3 .7.9.2 +.5.2 2 . 4 . 2 2 . 5 . 2 2,5.2 3.5.2 6.7.2 4.5.2 5.6.2 Abies amabilis Linnaea b o r e a l i s Blechnum spicant Goodyera o b l o n g i f o l i a Chimaphila menziesii C o r a l l o r h i z a maculata +.+.3 4.7.2 5.9.2 2. + .1 nootkatensis Tsuga heterophylla Menziesia Gaultherieto - Tsug'etum .heterophyllae'; pleurozietosum Gaultherieto- --Tsugetuiifheterophyllae + . + .2 +-.-+. 1 + . + .2 1. + .2 1.0 1.0 0.6 0.6 0.3 2.5 1.5 2.5 2.0 3.0 2/3 2/3 2/3 2/3 1/3 l 2 3 57 52 56 37 47 4 3 5 l 2 Meani 6.8.3 4.7.2 7.9.2 4.7.2 7.9.3 4.+ .2 4.7.2 4. + . 1 5. + .1 5.0 5-0 2.2 2.4 4.8 1.2 0.4 1.8 1.4 0.8 0.4 1.0 4.4 2.6 .2.8. 0.4 .1.-6 5-2 0.4 2.4 4.8 1.0 1.0 1.0 •1.0 0.4 1.0 2.4 2.4 1.0 1.2 0.6 5.8.2 5.+.2 5.+.1 3-+.0 3.6.2 3.5.2 7.8.2 4 5-+.3 7.9.3 4.7.2 4.+ .2 4.7.2 6.8,2 5.7.2 +'. + .2 4.+ .2 + . + .2 + . + .2 + . + .3 5.7.2 5.8.2 4.6.2 2.5.3 5.6.2 + . + .2 6.10.2 7.9.2 + .5.2 2.4.2 3.5.2 2.4.2 7.8.2 6.10.1 4 . 5 . 1 +.+.3 + .5.3 1.5.2 2.3.3 2.4.2 + . + .3 + . + .3 + . + .3 5 6.9.2 3.8.2 4. + . 3 4.9.2 + . + .2 + . + .2 + . + .2 5.8.3 +, + . 3 5-8.2 4.7.2 3.6.2 + . + .3 2^2 6.7.2 3.5.3 1.3.2 3.5.2 +.3.3 +.+.2 + .3.3 2.4.2 1.2.3 2.3.3 + . + .3 schreberi "2.5.3 6.9.3 7.10.3 +. + •3 1.4.3 2.5.3 4.6.2 3.6.2 ,4.6.2 + . + .2 2.5.2 2. + .3 3 . 6 . 2 2.6.2 3,6.2 .2.6.3 2.6.3 5.6.3 3.3.3 2.5.2 3.5.2 1 . 3 . 3 +.2.2 1. + .3 + .+.2 + . + .2 Species significance Vijgor Constancy Range; Meani. JXange 0-7 4-7 0-4 0-4 4-6 0-5 0-+ 0-5 0-5 "0-3 0-+ 0-5 3-5 0-4 00-7 ' 6-2 0-6 0-7 0-+ 1-3 3-7 0-4 0-2 "0-3 . 0-3; 0-2 0-3+-5 2-3 +-1 +-1 0-+ : 2.7 2.2 2.0 2.0 1.8 2.0 2.0 2.0 1-7 1.0 3-0 2.0 2.2 2.0 2.2 2.0 2.5 2.5 2.5 2.4 1.6 2.5 2.2 2.5 2.0 2-3 2-3 1-3 1-2 ^? 5/5 1-2 0-2 2/5 2/5 2/5 3/5 2/5 2/5 1/5 2-3 2-3 • V5 V5 ^ 2/5 5 2-3 2-3 2-3 2-3 1-2 2-3 2-3 2-3 3,0 3-0 2.8 2.0 2.8 2.6 1.6 4/5 5/5 3/5 h/5 2/5 5/5: 5/5 ' 2/5 V.5 2/5 . 2/5 2/5 2-3 2-3 2-3 2-3 ^ 5/5 5/5 5/5 3/5 5 H 0^ Table no. 24 - Continued No. Layer Number of p l o t s of ipecies 16 17 18 19 20 21 Dh dw h dw e h dw h h h h dw l 2 2 C B 22 23 24 25 26 27 28 29 . 30 31 32 33 3k 35 36 37 Daw e dw e dw e dw e dw e e dwe e Hylocomium splendens Rhytidiadelphus Plagiothecium loreus undulatum Gaultherieto -Tsugetum 1 9-10.3 '.4.5-3 5.5-3 3.4.3 4.5.3 Rhytidiopsis robusta Pleurozium schreberi P e l t i g e r a canina Tsuga heterophylla Companion species Taxus b r e v i f o l i a Acer circinatum Cornus canadensis Pteridium aquilinum L i s t e r a cordata L i s t e r a caurina Polystichum munitum Dryopteris austriaca C l i n t o n i a uniflora Dicranum fuscescens Scapania bolanderi Hypnum c i r c i n a l e Ifsothecium stoloniferum Cladonia subsquamosa 1.+.3 2 3 heterophyllae Vigor Species significance . Mean :Mean 6.7.3 4.5.3 + .2.3 5.5.3 7.6.3 + .2.3 4.4.3 + . + .3 +. + .2 4.4.3 6.8.3 6.3 1.6 5.6 2.6 0.6 5.0 3-0 3.0 3.0 - 3.0 2.5 3.0 3/3 2/3 3/3 3/3 2/3 3/3 3.4.3 4.6.3 2.3 3.0 2/3 + . + .2 0.6 + . Q..3 1.5.3 0.3 + . + .2 00.3 2.0 3.6.3. 3.3.2 + . + .2+ . + .2 0.7 \ 1. + .3 + . + •3 0.7 2.+ .2 + . + .3 1.0 +.+.1 + . + .1 0.7 0.3 1.3.1 + . + .2 0.3 + .2.3 0.3 + .1.2 0.6 +.2.2 3.2.2 + .2.3 2.3.3 2.3 0.6 + .2.3 + .2.3 2.2.3 + .3.2 1.3.3 1.3 +..' + .4.3 + .2.3 0.6 4.5.3 + .2.2 + .3.2 2.0 + .2.2 0.6 + .3.3 1.1.2 0.3 + .2.3 + . + .2+ . + .2 1.0 A . + .3 A l e c t o r i a sarmentosa Parmelia physodes Porella platyphylla + .3.3 Gaulthegieto-Tsugetum heterophyllae pleurozietosum schreberi 5Species VigorCons;y 1 2 3 4 5 significance tancy Mean Range Mean Range + .2.3 0.6 +.+.1 -2.5 3^0 3-0 2.0 2.5 2.0 3.0 2.5 1.0 1.0 2.0 3-0 2.0 2.6 3-0 2.6 3.0 2.3 - 2.5 2.0 2.3 3.0 7.10. +.3. 3.4. +.4. + .2. 3.4. 2.3. 6.8. 6.7. 1/3 H H 2/3 3 3 2/3 2/3 2/3 2/3 H H H 2/3 3 3 3 3/3 2/3 3/3 2/3 3/3 2/3 H 3/3 3 2/3 2.5.2 +.+.1 5.8.3 5.6.3 9.10.3 6.9.3 5.5.3 4.6.3 5.6.3 +.3-3 3.2.2 4.5.3 2.3.3 1.3.2 6.8.3 8.9.3 +.+.3 1.+.2 5.6.3 1.2.2 +.2.2 2.3.2 1.3.2 +.2.3 1.+.2 1.3.3 4.3.2 1.3.2 1.4.3 2.3.3 + .+.2 +.+.2 1. + .2 3.5.2 4.5.3 2.4.2 2.4.2 2.3.3 1.6.2 +. + •3 + .+.3 +. + •3 + . + .3 + . + .2 1.3.2 1.3.2 + .2.2 1.3.3 +.3.2 2.1.3 2.2.3 + .2.2 + .2.2 + .2.2 + .2.3 1.2.3 4.5-3 1.3.3 + .4.3 + .3.3 + .3.3 3.5.3 2.3.3 2.5.3 +.5.3 + .4.3 + .2.3 + .2.3 +.3.3 2.3.3 + .3.3 + .3.2 + .2.3 1. + .2 +.3.3 + .2.3 + .2.2 + .2.3 + .2.3 + .2.3 + .2.3 +.3.3 + .2.3 + .2.3 + . + .2 + . + .3 + .3.3 + .2.3 + .2.3 + .3.3 1.3.2 +.2.2 2.3.3 3.4.3 + .3.2 3.4.3 +.4.3 +.1.2 + .3.2 +.2.3 +.2.3 +.1.3 6.4 0.2 4.4 0.4 0.6 3-2 1.4 3.0 3.0 0/8 o .4 0.4 5-9 0-+ 3-5 0-1 0-+ 2-4 0-2 +-6 0-8 0-2 0-1 0-+ 3.0 3-0 3.0 2.5 2.3 2.4 2.5 2.8 2.6 3.0 2.0 1.5 0.2 0-1 0.6 0-3 2.0 . 0-4 0.8 0-2 0.4 9++ 0.4 0-+ 0.4 0-1 0.2 0-1 0.2 0-+ 1.4 +-2 1.0 1.6 0-4 0.6 0-+ 2.0 0-3 1.0 1.2 0-3 0-+ 0.8 0.8 0-1 1.0 1.0 0.4 0-+ 0.4 0-+ 0-+ 0.8 2.0 2.0 2.5 1.6 3.0 3.0 2.0 2.0 2.0 2.8 2.2 3.0 3-0 3.0 2.8 3.0 2.7 2.5 2.8 3.0 2.5 3-0 3.0 ; 1/5 2-3 2/5 •3 •3 -3 •3 5/5 4/5 3l ? p 3l 3l ? ? 2/5 3 / 2/5 1/5 1/5 2-•3 -.4/5 1-•2 3/5 2/5 2/5 . 2/5 1/5 1/5 2-•3 5 2-•3 5/5 4/5 £ 4/5 3l 2-•3 2-•3 2-•3 ? 4/5 4/5 5 £ 5/5 2-•3 2/5 2/5 & 4/5 ^ Table no. 24 - Continued No. Layer Number of p l o t s of Species^" 38 39 4o hi h2 h3 hh 45 h6 hi 48 h9 50 dw e e h dw e dw e h dw dw h dw v, n e h dw e Gaulthejiieto - Tsugetum heterophyllae Gaultherieto Species Vigor Constancy 1 1 2 3 significance Mean Mean +.2.3 +-5.3 Sphaerophorus globosus +,2.3 +.2.3 C e t r a r i a glauca Eurhynchium oreganum P M l i d i u m californicum Lepidozia reptans P l a g i o c h i l a asplenioides +.2.3 1.2.3 Calypogeia suecica Sphagnum recurvum Cephalozia media 0.3 00.6 1.0 3.0 3-0 3.0 2/3 1/3 +.1.2 + .+.2 1 . 2 . 3 0.3 0.6 2.0 2.5 H + .2.3 0.6 0.3 0.3 1.0 0.3 0.6 0.3 0.3 0.3 +.2.3 3-2.3 +.1.3 3.6.2 +.1.3 Parmelia v i t t a t a Plagiothecium denticulatum Lophocolea heterophylla Lobaria pulmonaria + .2.3 + .2.3 +.2.3 +.+.3 + .3-3 51 52 53 Rubus v i t i f o l i u s Sambucus pubens Sorbus sitchensis 62 62 37 (+.+.2) (+.+.1) (1.5.2) 54 55 56 57 Athyrium f i l i x - f e m i n a Luzula p a r v i f l o r a Lycopodium clavatum Rubus pedatus 37 62 62 54 (1.3.2) (3.4.3) (1.3.+) (+.+.2) 58 59 60 61 62 63 64 65 Tsugetum heterophyllae pleurozietosum schreberi Species Vigor Cons3 4 5 significance tancy Mean Range Mean Range +.3.3 2.3.3 +.1.2 +.1.2 3 3.5.3 +.1.2 +.2.3 +.3.3 1.2.3 +.2.2 +.1.3 2/3 +.2.3 3.0 3-0 3.0 2.a 3.0 2/3 1.3.3 1.2.3 3.0 3.0 3.0 3.0 2/3 Bazzania denudata Calypogeia neesiana Camptothecium lutescens D i c r a n e l l a heteromala Diplophyllum t a x i f o l i u m Plectocolea rubra Pogonatum alpinum Porella navicularis H 1/3 3 +.1.3. 1/3 1/3 3.5.3 + .2.3 +.2.3 +.1.3 +.2.3 H H 1/3 3 3 1.2.2 +.5.3 +.2.3 +.2.3 +.1.3 +.2.3 + .2.3 1.3.3 1.4.3 +.2.3 + .+.2 37 54 47 37 52 47 37 52 (+.3.3) (+.1-3) (+.2.3) (+.1.3) (+.2.3) (+.1-3) (+.3.2) (+.+.2) 0.6 0.6 0.6 1.2 0.4 0.4 0.4 0.2 0.4 0.2 0.2 0.8 0.4 0.2: 0.2 0.2 0.2 0.2 0-1 0-+ 0-+ 0-3 0-+ 0-+ 0-+ 0-+ 0-1 0-1 0-+ 0-3 0-+ 0-+ 0-+ 0-1 0-+ 0-+ 2.3 3.0 3.0 3.0 2.0 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 66 Sphagnum robustum 37 (2.4.3) 67 Parmelia tubulosa 37 (+.3.2) 2-3 ? ? ? ? 2/5, 3l 3l 3l 3l 2-3 2/5 2/5 2/5 2/5 2/5 2/5 H 5 lf U p P 1/5 00 159 Abieteto - Tsugetum heterophylla Table no. 25 Number of plots P l o t no. Computation reference no. Date k . 2 3 5 48 Mean Range 108 88 53 9 15 11 10 16/6 22/5 22/8 21/8 1959 1959 1958 1958 800 U9°22 ' U9°19' 49°25 ' 49°19' 1+9°19' 123°02 '122°35' 123°00 T22°35 122°35' 2330;, 2000 690 1690 1700 1680 ENE-N 180 360 225 67 67 5 25 5 30 13 16 5-30 1 131 12 7/6 1959 Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent ) A l A ! 30 80 20 85 35 45 65 25 20 15 35 80 20 2 A3 A Bl B B C Dh Dw D 2 35 4o 30 80 15 60 . 70 15 60 30 90 70 30 Cfb AB-frbi 20^ 60 25 85 50 ko 70 10 65 25 90 70 30 •-- 20 ko 25 70 15 ' 50 55 30 35 10 45 90 10 25 30 20 65 25 50 70 15 50 20 70 80 20 . Humus coverage (per cent) Decaying wood coverage (per cent) Land type and Land form G l a c i a l d r i f t - Middle slope R e l i e f shape Profile Straight Concave* Straight Contour l i n e Straight Parent material . Till *0utwash* Till Erosion p o t e n t i a l Slight Moderate Slight * Moderate Run-off Slow Drainage Well-drained Hygrotope Mesic 40 Stoniness (per cent) 80 60 40 Permeable mineral s o i l depth (cm.) 145 133 138 90 Ecto-humus horizon depth (cm.) L-F 18 10 25 22 Eluviated horizon depth (cm.) A 3 5 2 3 pH L-F 4.10 3.70 3.50 3.90 Ah A 4.10 3.80 3.90 B 5.70 4.97 5.10 . 4.99 p Humus form Raw humus e e S i t e index ( f t . per lOOy) Douglas-fir. Western hemlock Western redcedar Amabilis f i r 107 85 90 116 101 78 107 113 117 123 91 90 92 123 97 111 78 70-90 22 10-30 55 40-80 .127 90-145 19 10-25 ;3 2-5 3.80 3.5-4.: 3.93 3.8o 4 5.19.4.97-5 T 104 91-116 100 85-113 94 78-117 Table no. 2 6 Abieteto - Tsugetum heterophyllae Number of plot No. Layer of Plot no. Species Computation reference no. 1 Characteristic combination of species Tsuga heterophylla Al 131 108 12 9 7 . 8 . 3 8 . 1 0 . 3 3 5-7.2 Thuja p l i c a t a Tsuga heterophylla . Thuja p l i c a t a Abies amabilis 7 8 9 lCll 12 13 Dh dw e .h dw e h dw Vaccinium ovalifolium Menziesia furruginea Blechnum spicant Clintonia uniflora Rubus pedatus Cornus canadensis Plagiothecium undulatum 3.0 7 . 9 . 3 5 - 8 2 . 8 2-3 4 . 7 - 3 6 . 7 . 2 5 . 7 . 2 6 . 8 . 3 5.2 4-6 2 . 4 2-3 4 . 5.8.2 2.0 0-5 2 . 6 2-3 4 . + . 2 6 . + . 2 2 . 6 +-6 2 . 2 2-3 "5/5 +.+.1 +.+.2 2 . 4 0-6 1.7 1-2 4/5 1.4 0-5 3.0 1.4 0-7 3.0 1.4 0-6 2/5 +.+.3 5 . 9 . 3 6.8.3 +. + .2 5 . 6 . 3 4 . 6 . 3 + . 3 +.+.3 2 . 5 2-3 4 . 7 . 2 6 . 7 . 2 5.0 4-6 2 . 6 2-3 5/5 5 . 7 . 2 3.4.3 3 . 5 . 2 3.0 0-5 2 . 5 2-3 4/5 1.2 0-3 2 . 3 2-3 4 . 6 . 2 1.8 0-4 2.0 1.+.2 3.0 0-6 2 . 2 2 . 8 0-5 3.0 3 . 6 . 2 0 . 6 0-3 2.0 6.9.2 6 . 9 . 2 6.0 4-8 2 . 6 2-3 5/5 3 . 5 . 3 2 . 6 . 2 1.6 0-3 2 . 7 2-3 4 / 5 +.5.3 4 . 5 . 2 2 . 6 . 2 2 . 2 +-4 2 . 6 2-3 4 . 5 . 2 3.8 2 - 5 2 . 2 2-3 1.4 0-4 2 . 7 2-3 4/5 2.0 0-4 2 . 7 2 - 3 4/5 +.+.3 2.+.2 3.6.2 +.+.2 +.+.2 3 . 5 . 2 6 . 7 . 2 3.+.2 5 . 7 . 3 5 . 6 . 3 2.+.3 4 . 7 . 3 6.9.3 8 . 1 0 . 3 +.5.3 2 . 3 . 3 1.5.3 3.4.3 loreus Rhytidiopsis robusta 3 . 5 . 3 4 . 6 . 3 2 . 3 . 2 4.3.3 4 . 5 . 2 5 . 6 . 2 4.4.3 1.+.3 + +.2.3 .+.2 1/5 2 . 3 . 3 3.4.3 3 . 5 . 3 3 . 3 . 3 4 . 5 . 3 2 . 4 . 3 2 . 4 0-4 3.0 3.4.3 7 . 8 . 3 8 . 1 0 . 3 5 . 7 . 3 4 . 6 . 2 5,4 3-8 2 . 8 2 - 3 3.4.3 4 . 5 . 3 5 . 5 . 3 1.3.2 2 . 4 . 2 3.0 1-5 2 . 6 2-3 +.2.2 0.4 0-+ 2 . 5 2-3 5 . 6 . 3 4 . 0 0-5 3.0 2 . 4 . 3 2 . 8 2 - 4 3.0 0 . 6 0-+ 2 . 3 2-3 2 . 2 0-5 2 . 7 2-3 0 . 8 0-3 3-0 5 . 5 . 3 6.6.3 4 . 5 - 3 4 . 5 . 3 3 . 5 . 3 2 . 4 . 3 3.4.3 +.+.2 + +.3.2 3.4.3 3 . 5 . 3 I.3.3 .4.3 2 . 3 . 3 +.+.2 4/5 4/5 4.6.3 .3.3 .2.2 4/5 2-3 + 5 . 6 . 3 5/5 6.9.3 + Rhytidiadelphus Range Mean Range +-7 Vaccinium alaskaense 2 2 Mean 6 . 2 4 . 5 . 3 2 C 10 7 . 1 0 . 3 2 6 11 Constancy 3 . 2 +.+.3 3 2 15 Vigor 5.8.2 6 . 7 . 2 Bl 5 Species significance -+.+•3 4 . + . 2 1 48 6 . 1 0 . 3 o 4 53 :+;+.34 3 1 88 +.+.2 Abies amabilis 5 5 . 9 . 3 +.+.2 1 4 +.+.3 +.+.2 2 3 6.8.3 2 l 3 2 2 1 2 1 4 / 5 2/5 4 / 5 4 / 5 2/5 ON O Table no. 26 - Continued Layer Number of plot No. of Species Companion species Vaccinium parvifolium Gaultheria shallon 15 Taxus b r e v i f o l i a 16 Sorbus sitchensis 17 L i s t e r a caurina 18 C Tiarella trifoliata 19 Linnaea borealis Maianthemum dilatatum Coptis a s p l e n i f o l i a Goodyera o b l o n g i f o l i a Scapania bolanderi %w e Hypnum c i r c i n a l e dw e dw Dicranum fuscescens e Isothecium stoloniferum dw e Cladonia subsquamosa dw e h Mnium punctatum dw h Hylocomium splendens dw h Tsuga heterophylla dw dw P l a g i o c h i l a asplenioides e Calypogeia neesiana dw e Sphaerophorus globosus e dw Bazzania ambigua 3k e Thuja p l i c a t a h dw F r u l l a n i a nisquallensis e 14 20 21 22 23 24 25 26 27 28 29 30 31 32 33 35 36 B2 2 1 2 Abieteto - Tsugetum heterophyllae Species Vigor Constancy significance Range Mean Range Mean +.4.2 2.5.2 1.0 4.6.2 2.6.1 1.8 +.+.2 + .+<20.4 +.+.2 + .+•30.4 +.+.3 +. + .3 +.+. 03 .6 +•+•3 +.+.3 3.3.2 1.0 3.4.3 2.4.3 +.3.3 1.2 1.2.3 2.3.2 2.5.3 1.0 2.+.3 +.+.2 0.6 +.+.3 + .2.23.4.3 0.4 1.2.3 1.3.3 + .1.2 3.4.2 1.8 +.2.3 + .3.2+.4.2 0.6 3.3.3 1.2.3 + .1.32.4.3 1.4.3 1.6 +.3.3 +.3.3 +.3-2 +.2.2 0.8 1.2.3 +.2.3 2.3.3 2.4.3 1.2 +.2.3 +.2.3 0.4 3.4.3 0.6 +.+.2 +.2.3 + .6.3+.3-3 +.3.3 1.0 1.2.2 0.2 +.+.3 +.+.3 + .2.2+.1.2 + .2.11.0 4.5.3 2.3.2 2.4.3 2.4.2 2.0 +.2.3 3.5.3 3-5.2 1.4 2.4.3 3.5.3 4.6.2 5.7.3 2.8 -2.4.3"2.4.3 2.+.2 1.3.3 1.0 3.4.3 T.+.3 1.2.2 1.4 4.3.3 +*+.3 2.5.2 1.4 +.2.2 + .1.20.4 +.2.3 +.2.3 0.4 +.+.3 +.2.3 1.2.3 I.3.2 0.8 +.+•3 +.3.2 0.4 +.1.2 +.4.3 1.5-3 +.5-„3 0.8 2.3.3 3.4.3 1.0 +.1.2 +.2.3 + .3.3 0.6 +.+.2 + .+.2+ .+.20.6 +.+.2 + .+.20.4 + .2.3+.2.3 + .2.3 0.6 2.5.2 3.5.2 0-2 0-4 0-+ 0-+ 0-+ 0-+ 0-3 0-2 0-2 0-+ +-3 0-+ +-3 0-+ 0-2 0-+ 0-3 0-1 0-4 0-3 0-5 0-2 0-3 0-4 0-+ 0-+ 0-1 0-+ 0-1 0-3 0-+ 0-+ 0-+ 0-+ 2.0 1.6 1-2 2.0 2.5 2-3 3.0 2.6 2-3 3.0 2.6 2-3 2.5 2-3 2.5 2-3 2.6 2-3 2.3 2-3 3.0 2.5 2-3 3.0 3.0 3.0 2.8 2-3 2.0 2.2 1-3 2.5 2-3 2.6 2-3 2.7 2-3 3.0 2.5 2-3 2.6 2-3 2.0 3.0 2 .7 2-3 2.5 2-3 2.7 2-3 3.0 2.6 2-3 2.0 2.0 3.0 3/5 2/5 2/5 3/5 3l ? 3/5 3/5 2/5 2/5 5/5 5/5 4/5 4/5 2/5 P ±f ? 5/5 U/ 5 / 5 4/5 3/5 4/5 3/5 4/5 •3/5 2/5 2/5 4/5 2/5 4/5 2/5 3l ? 3/5 2/5 3/5 ON Table no. 26 - Continued Layer No. Number of plot of; Species Lepidozia reptans dw 37 38 39 Uo 4i 42 43 e dw h dw h dw h dw dw e e Lophocolea heterophylla 1 2 1.2.3 1.1.3 +.1.3 2.2.3 3.2.3 Dicranum scoparium 4 3 +. + . 3 + . + .2 +. + . 3 + .2.2 + .3.2 +.3.3 Eurhynchium oreganum Abies amabilis +.3.3 1.1.3 +.3.3 + .+.2 Cephalozia bicuspidata P t i l i d i u m californicum Parmelia physodes 44 Pseudotsuga menziesii 45 46 Rubus spectabilis Sorbus occidentalis 47 48 49 50 51 52 53 54 Abieteto - Tsugetum heterophyllae C o r a l l o r h i z a maculata Dryopteris austriaca L i s t e r a cordata Polystichum munitum Pyrola secunda Streptopus roseus • Streptopus streptopoides Tiarella unifoliata 48 + .2.3 +.1.3 (+.+.3) 48 108 (2.5.2) ( + . + .3) 131 88 108 88 131 108 131 48 $+.3.3) (2.5.2) ( 2 . + .3) ( + .+ .1) (+.2.3) ( + .+ .2) (3.4.3) ( + .+ .3) 55 56 57 "58 59 60 61 62 Species significance Mean Range 0.4 0-1 0.2 0-+ 0.4 0-1 0-+ 0.2 0.6 0-2 0.6 0-3 0.2 0-+ 0-+ +.2.2 0 . 4 0-1 1.3,3 0.2 0-+ 0.2 0.4. 0-1 0 . 4 " t>-+ ._+.!.2 0 . 4 0-+ Vigor 5 A n t i t r i c h i a curtipendula Bazzania t r i c r e n a t a Calypogeia.suecica •Gephalozia- lammersiana'- .:• Cephalozia macounii Neckera menziesii Porella navicularis Porella platyphylla 63 64 Sphagnum robustum Sphagnum squarrosum 65 66 A l e c t o r i a sarmentosa Lobaria pulmonaria Mean Ran§ 3.0 2.0 3.0 3-0 2-3 2.5 3.0 2.0 2.5 2-3 3,0 3-0 3-0 3.0 2.0 - Constancy 2/5 2/5 2/5 1/5 2/5 X/ ? 2/5 2/5 2/5 "48 48 108 88 88 (+.3.2 (1.2.3 (+.2.3 (+.2.3 (+.3.3 (+.1.2 (+.3.3 (+.2.3 48 48 (1.5.3 (+.3.3 131 131 (+.1.2 (+.+.3 131 108 131 . Abieteto - Tsug;etum heterophyllae dryopterietosum 1 2 u 6 5 3 Table no. 2 ? Number of plots Plot no. Computation reference no. Date Plot size (sq.ft.) Latitude Longitude. Altitude ( f t . ) Exposure (degree) Slope (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) Aj_ A 23/5 1959 1959 ' 123°00' 760 1 135 3 2 3 0 20 50 25 85 5 10 50 35 25 15 5 25 35 60 50 50 h Ddw D Humus coverage (per cent) Decaying wood coverage (per cent) Land type and land form R e l i e f shape Profile j Contour l i n e parent material Erosion p o t e n t i a l Run-off 7/8 1958 k9°2k\ A Bi B B C O 29 23/5 22/f 21 123°00 660 2 A 90 89 18 90 50 20 70 10 30 30 60 65 35 k9°21\ 122°57' 1790 225 16 30 45 15 80 5 15 20 • .5 35 25 60 65 35 119 17 27/6 1959 k9°22[ 18 19 21/7 1958 k9°21' 123°02' 1 2 2 ° 5 7 1100 1735 205 135 18 3 30 50 20 30 50 25 -80 10 85 15 20 5 10 5 45 25 70 70 30 Convex Straight Concave* Convex * Outwash Lacustrine T i l l Outwash Slight Moderate •30 5 15 65 80 20 80 32 26 11/8 1958 k9°22' 122°U8 550 270 7 U0 50 20 80 60 30 75 15 20 15 35 70 30 Glacial drift Straight Till Outwash* Slight 1 Drainage Hygrotope Stoniness (per cent) Permeable mineral s o i l depth' (cm.) Ecto-humus horizon depth (cm.) L-F Eluviated horizon depth (cm.) A L-F pH Ah A B C Humus form e e Site index . ( f t . per lOOy) U0 70+ Uo 8 3.52 0 UQ+ 25 0 50 125 7 0 10 5 80+ 25 50+ 90 17 1 13 5 19 5 135 13U 100 85 129 136 101 3.5.8 3.85 3.30 U.85 5.30 U.79 5.U0 5.20 120 89 109 105 79 120 U.60 5.23 5-35 Douglas-fir Western hemlock 10U Western redcedar Amabilis f i r 117 96 12U 164 austriacae " 8 26 7 22/g 22 ' 8/8 1958 9 27 ' 23 Ann •10/9 1958 ouu 24 15/8 19.58 10 31 25 12/8 1958 11 36 28 11/9 1958 12 32/a 27 14/8 1958 49°2l' 49°22| 49°22 ' 49°27 ] 49°22' ' 49°22, 122°57' 122°47 122°47 122°48' 122°47' 122°48' ' 886 : 1800 610 57b 550 580 157 270 27b 270 270. lb 11 4 ' 15 16 7 14 13 113 16 23/6 1959 22/e 20 7/8 1958 1 40 ' 40 20 75 60 4o 70 15 40 20 60 45 55 J 25 • 35 20 70 50 3b 75 2b 5b 25 . 75 •75 ' 25 4b 45 25 85 3b 25 5b 15 15 30 45 70, 30 Middle slope 35 4b 40 85 25 5 30 2 15 20 25 80 20 •Concave* Straight Till •Lacus^* •Moderate* S i l g h t * Moderate Slow Well-drained 1 Moist 25 83 4 2 3.64 3.63 4.69 4.90 15 123 i'3 2 3.52 3.60 5.30 5.70' Raw humus • 30 70 23 2 3.40 0 108 26 2 50 20 . 25 7b 3b 40 '.• 60 15 4b 20 60 65 35 Outwash 10 197+ 4 2 3.70 5.-35 , 5.. 40 10l' 101 88 104 104 77 15 60 35 95 . 5 10 15 5 70 30 100 65 35 45 35 20 75 6 4 10 10 15 15 30 30 70 59 20-80 4 l 20-80 *Laepg£ * T i l l Slight •Moderate g 0 85 17 2 3.42 5 90+ 8 1 3.45 15 90+ 3 .0 3.85 3^65 4.77 5.62' 5.10 5.45 5.09 5.52 • •96 112, 78 2100 245. 5 Straight 3.80 3.70 4.82 4.90 55 55 20 80 30 15 40 5 20 10 30 65 35 Range 49°2l| 122°57' 1780 1100 550-2100 NNE-W 205 10 0-18 ip ( Cfb AB,'rb^ Mean 106. 148' 80 95 • 103 73. 118 111 95 84 122 104 80 16 4o ' 15 2 0-50 3-40 0-8 3-57 3.30-3.85 3.8l 5.17 5.35 4.69-5.35 4.90-5.70 127 106 108 •85 3.60-4.60 118-135 88-134 85-148 73rl29 •Table no. 28 Abieteto - Tsugetum heterophyllae dryopterietosum austriacae Number of plots No. Layer of Plot no. Species Computation reference no. 1 2 Al 2 3 1 2 3 3 I B 2 3 l 2 I 2 1 2 1 2 5 6 7 8 9 10 11 12 13 — 14 15 16 17 18 19 20 I 2, O D h dw e h dw h dw h dw h dw Characteristic combination of species Tsuga heterophylla Thuja p l i c a t a Abies amabilis Tsuga heterophylla Thuja p l i c a t a Abies amabilis Vaccinium alaskaense Acer circinatum Blechnum spicant Tiarella trifoliata Dryopteris austriaca Athyrium f i l i x - f e m i n a Cornus canadensis Streptopus amplexifolius Plagiothecium undulatum Rhytidiadelphus loreus ,Tsuga heterophylla Thuja p l i c a t a 1 2 3 4 5 6 89 90 22/f 119 18 32 18 29 21 17 19 26 6.+i 3 8.10.3 5-7.2 4 . 7 . 2 5.+*-3 4.+ .2 6.10.3 7.9.3 7.10.3 7.9.2 4.8.2 4.7.3 5.8.2 5.8.2 3-+ -2. 6.+.3 3-+.2 + . + .2 +4-+. 2 2.+ . 2 5.8.2 4.7.3 7-8.3 7.8.3 3.+.3 +.+.3 4.+.2 6 . 8 . 3 5 . 8 . 2 6.+.3 4.7.3 2.+ . 2 4.7.2 4 . + . 2 5-7.3 +.+.3 3 . 7 . 2 3.+.2 7 . 1 0 . 2 4.-7.0 5 . 6 . 2 4 . 7 . 2 7 . 1 0 . 2 + . + .2 . 2 . 4 . 2 3 . 4 . 3 + . + .2 4 . 5 . 2 5.7.2 + . + .2 + . + .2 1.+.2 2 . 6 , 2 +.3.2 3-+ .2 +. + .2 3 . 7 . 2 + J+J3 + . + .2 5 . 8 . 3 + . + .1 + . + .2 3.5.2 2.6.3 5.6.2 3.6.2 5.6.2 2.5.2 5.5.2 4.7.3 4.8.3 +.5.3 4.7.2 2.4.2 2.3.2 + .3-2 4.6.3 + .4.2 3.5.2 + .+.2 2 . 3 . 2 +.3.2 + . + .2 4.5.3 2 . 4 . 2 + . + .2 +.1.3 1. + .2 1 . 3 . 2 2.4.2 + . + .1 + . + .2 + . + .2 2.+ . 2 + .4,3 + .4.2 4.5.3 +.+.2 + .+.2 6 . 7 . 2 . 3 . 5 . 2 5.6.3 5.7.3 6.5.3 4.5.3 5.6.3 6,5.3 4.7.3 5.4.3 7.7.3 +.3.2 + .2.3 + .2.2 2.4.2 2 . 4 . 3 4 . 4 . 3 - 4 . 3 , 3 1.3.3 5.3.3 4.6.3 4.6.3 1.2.3 3.4.3 2.3.3 2.+.2 2 . 3 . 3 2.3.2 2.+.2 +.+•3 2 . 3 . 2 1.+.2 +.+.3 2.3.3 5.8.3 6.8.2 +. + . 1 + . + .2 Abies amabilis Companion species Vaccinium parvifolium B2 2 . Rubus s p e c t a b i l i s Gaultheria shallon 2 2 Sambucus • pubens 2 Menziesia ferruginea l" Taxus b r e v i f o l i a 2 C Polystichum munitum +. + .2 +.+•3 +.+.1 + .5.2 +. + .2 + .4,2 + . + .1 +. + .1 2.5.2 2.4.2 2.3.1 2.4.3 l. + .l 1.5.2 2.5.2 +.4,1 2.3.2 +.+.2 + . + .2 + .+.2 l. +.l +.+.3 1.4.2 7 .8 22/g 26 27 22 23 24 7-+.3 +.+•3 3.+.2 +.+.1 9 10 13 14 Species 22/e significance ' 31 32/a 113 25 28 27 16 +.+.2 5.7.2 6.8.2 '.10.3 7.9.2 7-8.2 3.+.2 + .+•3 3.8.3 5.8.3 6.8.3 3.8.2 7.9.2 7.9.2 2.6.3 5.7.2 5.9.2 + . + .3 5.7.2 4.7.2 4.7.2 1.5.2 + . + .2 + . + .2 4. 7.3 7.10.3 4.6.3 I.+.2. 3-7.2 3.5.3 1.-5.3 5.6.3 3.5.3 4.7.3 3.-6.3 1.4.2 5.7.2 5.7.3 3.7.3 3 . 4 . 3 1.2.2 2 . 4 . 2 2 . 4 . 2 +.4.2 3 . 5 . 3 1.4.2 + . + .2 2 . 4 . 2 1.4.2 3.5.2 1. + .2 + . + .2 6.8.3 6.8.3 4.6.3 5 . 8 . 3 3 . 4 . 2 3.-5-2 + .2.2 +.2.3 2.3.2 I.3.2 3.5.3 2.4.2 2.5.3 2.3.2 2 . 3 . 2 i . 3 . 2 1. + .2 2.+ .2 1. + . 3 +.+.3 + . + .2 3-6.2 2.6.2 3.6.3 2.5.3 6.7.3 2.6.2 3.4.1 2. + .1 2.3.3 5.9.3 5.9.3 4.8.3 6.9.3 2.6.2 12 36 6.+.3 4.8.2 2.+ .3 5.7.3 3.15.2 7-9.2 5.8.2 8.IO.3 7.10.3 11 + . + .2 7.8.3 5.6.2 + . + .2 5.6.2 4.6.2 +.+.3 +.+.3 +.+.2 +. + .2 5 . 8 . 2 + .+.2 6 . 9 . 3 2.+ .2 3 . 5 . 2 4.7.2 3.4.2 3.4.2 3.5.2 +.+•3 3 . 6 . 3 1. + .2 5.8.3 3.6.2 2 . 6 . 2 4.3.2 +.+.3 6.8.3 2.6.2 3.5.3 6.7.2' 2.+ .2 3.5.2 3.6.3 + .2.3 3.3.2 3.6.3 1.2.2 2.3.2 + . + .2 +.+.3 + . + .2 + . + .2 +.+.3 + . + .2 2.5.3 2.5.2 + .4.2 3-6.2 2.6.3 3.5.2 1 . 5 . 2 +.3-2 + . + . 1 + .5.1 +.4.1 1.+.2 + . + .1 2.4.3 + . + .2 + . + .2 + . + .2 l . + . l Mean 5.+ .2 6.8.2 5.7.2 6.3.2 4.+ . 2 2.+.2 +.+.3 + . + .2 +. + .2 4.7.1 3.8 5.8 4.5 1.8 0.8 0.7 3.0 3-5 2.9 4.8 3..00.6 0.7 3.0 1.6 0.4 3.8 1.5 0.9 3.1 1.8 1.3 0.7 1.3 0.4 4.8 3-6 0.5 2.9 2.3 1.3 l.l 0.1 0.2 0.1 0.3 0-7 +-8 2-6 0-7 0-5 0-4 0-7 0-7 0-5 2-8 0-7 '0-3 0-3 0-7 0-4 0-3 2-6 0-6 0-4 +-6 0-4 0-3 0-2 0-4 0-1 3-6 0-7 0-+ +-5 0-4 0-3 0-3 0-+ 0-+ 0-+ 0-+ 1.6 1.0 0.5 0.9 0.8 0.2 0.1 0.9 0-3 0-2 0-+ 0-3 0-3 0-+ 0-1 0-3 2.+ .2 2.+..2 2.6.2 3 . 5 . 2 4.6.3 2.4.2 5-8.3 3.4.3 5 . 6 . 2 +.+.3 5 . 6 . 2 2.4.2 +.+.2 3 - 5 . 2 +. + . 1 - 2.4.2 20 . - 2.5.2 1.5.2 4.5.2 2.4.2 +.+.2 + . + .2 4.7.3 5.4.2 5 . 6 . 3 4.5.3 3**5.3 3 . 6 . 3 •V + .3.2 5.6.3 3.6.3 5-6.3 + .5.3 4 . 6 . 3 2.4.3 4.4.3 + . + .2 3.4.3 + . + .2 3.4.3 + . + .2 +. + .2 + . + .3 6.8,3 + . 1 . 3 3 . 5 . 3 + . + .2 2.4.2 + . + . 1 + . + .1 + . + .1 + . + .1 3 . 5 . 3 + . 2 . 2 3.4.3 + .+.2 1.+.3 + . + .2 3.4.2 3-5.2 +. + .2 +.+.1 3.5.2 3-4.2 Vigor Constaney Range Mean Range 2.5 • 2.5 2.1 2.3 2.0 2.0 2.9 2.3. 2.3 2.0 2.1 2.1 2.1 2.4 2.1 3.0 2.5 2.8 2.4 2.2 2.0 2.1 1.6 2.2 2.0 2.7 2.8 2.4 2.7 2.7 2.2 2.5 2.0 2.2 2.0 2.4 2.4 1.6 1.2 1.5 2.3 2.0 3-0 1-7 2-•3 2--3 2--3 1-•3 2-•3 2-•3 2-•3 0-•3 2--3 2-•3 2-•3 2--3 1-•3 2-•3 2-•3 2--3 1--3 1--3 1-•3 1--2 2-•3 2--3 2-•3 2--3 2-•3 2-•3 2--3 2-•3 1--3 2-•3 2-•3 1-•3 1-•2 1-•2 1-•3 1-•2 12/14 14/14 14/14 7/14 3/14 5/14 12/14 12/14 13/14 14/14 13/14 6/14 7/14 13/14 11/14 3/14 14/14 6/14 5/14 14/14 13/14 12/14 8/14 8/14 6/14 14/14 12/14 7/14 14/14 12/14 12/14 10/14 l/l4 4/14 2/14 5/14 12/14 11/14 8/14 8/l4 6/l4 3/14 2/l4 9/14 T a b l e -rib. 28 - Continued A b i e t e t o -Tsugetum h e t e r o p h y l l a e d r y o p t e r i e t o s u m No. Layer of Number o f p l o t s 1 4 2 3 5 Species i' Pteridium aquilinum 21 +.+.1 + . + .2 +.+.2 22 Rubus pedatus + .3.2 Linnea b o r e a l i s 23 24 Scapania b o l a n d e r i +.2.3 3.4.3 1 . 2 . 3 2.3-3 •e + .2.3 1.3.3 +.2.3 Mnium punctatum b + . + .2 1.3.2 25 4.7.3 dw ..3.5.2 4.6.3 3 . 6 . 3 +.1.3 4 . 5 . 3 26 dw Dicranum f u s c e s c e n s + .2.2 2.3.2 3.3.2 e +.1.2 +.2.2 +.+.3 h Hylocomium splendens +.+.1 27 3.4.3 2.3.3 dw +.3.2 + . + .2 2.5.2 28 Hypnum c i r c i n a l e 2.4.3 dw 2.4.3 2 . 1 . 3 e + . 2 . 3 +.2.3 + . 3 . 3 dw isothecium stoloniferum + .+.2 29 +.3.3 2 . 3 . 3 e +.5.3 +.+•3 +.5-3 +.5.3 dw C l a d o n i a subsquamosa +.1.2 30 e +.1.2 +.2.2. + . + .3 h Plagiochila asplenioides 31 dw + .+•2 +.2.3 L e p i d o z i a reptans +.2.2 dw 32. +.2.3 2.3.3 +.1.2 +.1.3 e + .2.3 dw 2 . 3 . 2 + . + .2 P l a g i o t h e c i u m elegans 33 e + .2.3 +.3-3 dw B a z z a n i a ambigua 2.2.3 34 2.3-3 'e +.2.3 C a l y p o g e i a neesiana dw 35 + .1.3 + .1.2 e +.1.3 Calypogeia suecica dw 36 e +.2.3. 1.1.3 + . + .2 Eurhynchium oreganum h 37 dw + .+.2 +.+.3 Dicranum scoparium h 38 dw +.1.2 - +.2.3 dw Lophocolea h e t e r o p h y l l a +.1.3 39 40 41 Pseudotsuga m e n z i e s i i .Sorbus o c c i d e n t a l i s ~ 5 22c, 42 43 44 45 46 47 Galium t r i f l o r u m Habenaria saccata Listera caurina L i s t e r a cordata Maianthemum' d i l a t a t u m Moneses u n i f l o r a 22f 18 113 113 . 22g 113 (+.+.2)13 22g (+,. + .2) (+.3.3) (+.+•3) (+.+.3) (+•+.3) (1.3.2) (+.2.3) (+.+.3) austriacae 6 2.5.2 +.3.2 3.5.2 + .4.2 3.5.3 4.7.3 2-3,2 + .3.2 3.5.3 2.3.3 + .3.2 + .4.3 + .2.2 2.2.3 1.1.2 + . + .2 1.1.2 + .2.2 + . + .3 7 8 ? 10 11 12 13 +. + . 2 +.5.2 1.5.2 1.3.2 + .4.3 5-6.3 5.7-3 4.5-3 +.3.2 1.3.2 2.3.2 4.4.2 +.3.2 2.4.3 +.2.3 + .1.2 +.1.2 1.3.2 1.2.2 4.5-2 +.3.2 +.3-2 3-5.3 5.6,3 5.6.3 2.3.2 +.2.2 4 . 6 . 3 3-5-3 1.2.2 3-5.3 3.4.2 3.2.3 3.5.2 1.2.1 1.1.2 3-5.2 2.4.2 1.3-3 1 . 4 . 3 + . 2 . 3 + .+.2 +.4.2 + . 3 . 2 2.5.2 +.5-3 + . 6 . 3 +.4.3 1.2.2 + .1.2 +.1.2 2.1.3 2.2.3 1.1.3 +.1.2 +.2.3 2.3.3 +.4.3 6.8.3 +.2.3 1.1.2 +.2.3 2.5.3 2.3.3 + .2.2 1.4.2 + .3.3 1.2.3 1.2.2 1.3.2 + .2.3 +.2.3 + . 1 . 3 3.5-3 5.6.3 2.4.2 4.5.3 3.5-3 + . 2 . 3 + .3.2 4.5.3 2.3.3 +.6.3 + . 3 . 3 + .1.3 2.1.3 2.3.3 2.2.3 2.3.3 + .2.3 + . + •3 2.4.3 +.1.3 +.1.3 + .+.3 +.2.3 +.2.3 +.2.3 1.1.2 + .1.3 2.3.3 + .2.3 + .2.3 +.1.3 + .1.3 +.+.2 +.+.3 + . + .2 +.+.2 + .2.3 + . + .2 Species Vig;or significance Mean Range Mean Range 0-2 1.6 1-2 2.+.I. 0 . 4 2.0 0-2 0.3 2.3 0.3 0-3 2-3 0-4 1.9 2-3 2.3.3 2.5 0-1 2.6 2-3 +.1.3 0..5 1.8 0-5 2.7 2-3 3.5.3 4 . 5 . 3 3.0 2-3 o-5 2.7 o-4 1-3 2.3.3 1.5 2.3 0-1 +.2.3 0 . 8 2-3 2.5 2.4 0-6 2.6 1-3 0-4 1.1 2-3 2.3 o-4 1.4 2-3 3.5.3 2.9 2.4 0-+ 2-3 + .3.3 0.8 0-4 2.6 1.0 2-3 .0.8 0-+ 3.0 0-+ 2.2 0.3 2-3 0.4 0-+ 2 . 1 2-3 0.8 0-2 2.8 2-3 0-2 2.6 2-3 0.7. 0-2 . 2 . 1 2-3 +.2.3 0 . 5 0.2 0-+ 2.7 2-3 0-2 2.4 0.5 2-3 0-+ 3.0 + .1.3 0.4 0.6 0-2 3.0 +.1.3 0.1 3.0 0-+ 0-1 2.4 2-3 0.3 0.1 0-+ 3.0 0-+ 3.0 +.2.3 0 , 1 0.1 0-1 3.0 2.2 0-+ 2-3 0.3 0.2 0-+ 2.3 2-3 0.1 0-+ 2-3 2.5 0-+ 0.1 2-3 2.5 0-+ 3-0 +.2.3 0 . 2 14 .48 ~ 49 50 51 Antiitr i c h i a curtipendula Blepharostoma trichophyllum Calypogeia trichomanes Cephalozia bicuspidata 113 (+.2.3) 89 (+.+.3) 22c (+.1.3) 89, 27 (+.+.3) 52 53 54 55 56 57 F r u l l a n i a nisquallensis Hookeria lucens Metzgeria furcata Mnium insigne Plagiothecium s e l i g e r i P t i l i d i u m californicum 113, 119 (+.2.3) 27 (+.1.2) 89 (+.2.3) 22e (3.4.3) 31 (+.+.3) 22e (+.2.3) Constancy 5/14 3/14 3/14 13/14 8/14 l0/l4 13/14 11/14 11/14 11/14 8/14 10/l4 11/14 8/14 12/14 5/14 6/14 6/14 8/14 7/14 4/l4 5/14 6/14 7/14 2/14 5/14 2/l4 2/14' 2/14 4/l4 3/14 2/14 2/14 3/14 Blechneto - Tsugetum heterophyllae " ::. .e \ . , Table no. 29 Number of plots Plot no. Computation reference no. Date 1 23 35. 8/9 1958 Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) A l A 3 .20 36 24/7 1958 4 117 38 26/7 1959 5 83 31 19/5 i960 6 101 33 5/6 1959 49°23! i+9°2i; 49°2l', 49°22J 49°28,' 49°25 122°46 122 57 122°57 123°02 122°57 122°59 570 1800 1760 1000 920 750 270 315 135 90 315 270 10 10 . 7 10 12 2 10 50 20 2 A 2. 17 37 21/7 1958 3 A 70 45 20 60 50 Bl B B C Dh Ddw D 2 40 25 65 65 35 40 40 80 10 15 20 25 40 50 90 30 35 15 70 5 10 15 15 60 20 80 75 25 25 60 15 95 5 7 10 15 5 15 20 4o 35 10 75 30 45 60 75 25 25 50 65 35 i4o 112 85 .94 115 138 100 132 149 96 111 131 20 35 15 70 . 30 45 65 45 50 30 80 70 30 Humus coverage (per cent) 40 70 Decaying wood coverage (per cent) 60 30 Land type and L.and form Glacial drift R e l i e f shape Profile Contour l i n e Parent material Outwash * • T i l l - ' * Till ^Alluvial Srosion p o t e n t i a l Run-off Moderately Moderately drained*Well-dr* Drainage *Moist* Hygrotope Wet 60 Stoniness (per cent) 10 30 40 25 0 Permeable mineral, s o i l depth ( ;m.) 120+ 95 50 105+ 103+ 100+ Ecto-humus horizon depth (cm.) L-F 15 5 25 8 10 50 Endo-humus horizon depth (cm.) A 0 15 0 0 0 0 Eluviated horizon depth (cm.) 0 0 5 5 0 13 pH Ecto-humus horizon 3.32 3.17 4.07 A 3.54 A B 4.72 5.01 5.10 C 5.72 5.20 Nil Depth of seepage (cm.) 50 88 100 58 100 Raw * Duff * Humus form mull humus h h e S i t e indexDouglas-fir f t . per Western hemlock lOOy) Western redcedar Amabilis f i r 90 149 111 136 121 141 142 116 115 8 7 "l4 lk 18/7 1958 8oo, i+9°2i 122°57' 2510 225 5 Cfb ABjrb4 '80 f 11 9 245 34 ?l/7 1959. 47 40 15/5 1962 28/8 1958 49 30 22/8 1958 12 13 13 16/7 1958 49°22] 49°17,' 49°l8* 49°19' 49°2l 123°04 122°35 122°35 122°57 122°35 1200 1450 1680 750 2730 90 225 225 135 45 12 4 6 5 5 10 55 20 75 10 65 30 75 25 35 40 60 70 20 90 50 50 80 40 30 30 35 60 50 20 40 5 55 20 5 10 75 59 75 25 50 Lower slope Concave Concave Till Outwash Lacustrine Slight Slow drained Wet 30 5 70+ 50 25 7 0 0 7 9 70 96 118 89 77 10 61 142 40 Raw humus 129 107 103 136 25 30 15 60 15 55 60 70 20 4o 60 50 50 25 40 20 70 15 35 40 60 35 25 60 50 50 Till 60 95 7 0 3 50 50 20 60 70 20 5 10 15 70 30 * Till 13 91 32 26/5 1959 49°23; 123°00 700 225 2 45 15 25 75 15 50 60 65 30 20 50 65 . 25 Mean 1370 2-10 61 39 40-75 25-60 Lacustrine 4.40 0. 128+ 17 0 1 3.80 29 35 19 15 5 3.81 3.90 4.25 4.80 63 30 4.05 4.84 4.95 68 3.80 5.13 5.20 120 3.82 4.84 5.17 72 113 113"" 106 124 118 103 96 105 129 94 123 570-2730 E-NW 60 70+ 25 0 8 4.10 30 35 28 0 8 Range 125 136 125 118 107 115 O-60 5-50 O-13 3.17-4.40 3.54-4.05 4.25-5.13 Nil-120 96-149 96-136 85-149 77-l4l Blechneto - Tsugetum heterophyllae Table no. 30 No. of Number of plots 1 2 3 % 5 6 Plot no. 23 . 17 20 117 83 101 Computation reference no. 35 37 36 38 31 33 4.9.3 5.8.3 5.+ .3 7.10.3 5-6.2 +.+.3 Layer 3pecies Al 2 4 5 3 l 2 3 l 2 3 Bl 2 1 2 2 1 2 1 2 7 8 9 10 11 12 13 1 2 ? C 14 15 16 17 18 19 20 21 22 23 2h Bh dy e h dw e h dw e h dw h dw Characteristic combination of species Tsuga heterophylla Thuja p l i c a t a r 7.9-3 5.7.2 7.10.2 4.8.2 +.+.3 +,+.2 +.+.2 5 . 7 . 3 6.8.3 7.10.3 4.7.2 5.6.2 3-+.2 5.9.2 Abies amabilis Abies amabilis Tsuga heterophylla Vaccinium alaskaense Rubus spectabilis 6.9.3 5.8.3 4.7.3 4.6.3 5.8.3 3.5.2 4.7.3 3.6.3 Sambucus pubens 2.6.3 Thuja p l i c a t a Oplopanax horridus Blechnum spicant Tiarella trifoliata Cornus canadensis Athyrium f i l i x - f e m i n a Streptopus amplexifolius Dryopteris austriaca Lysichitum americanum Polystichum munitum Rubus pedatus Gymnocarpium dryopteris Habenaria saccata Viola glabella Mnium punctatum Rhytidiadelphus loreus 1.5.2. 7.10.3 5.5.3 3.5.3 2.4.2 + . + .2 3-4.2 1.5.2 3.6.3 + . + .2 +.3.2 2.+.2 1.+.3 3.7.2 3.5.2 4.7.3 3.5.2 + .+.2 1. + .2 2.5.3 5.7.3 2.4.2 + .3.1 + . + .2 2.4.2 1.3.1 1.3.2 5.8.3 5.7.3 3.7.3 +.+.2 1.+.2 3.+ .3 3.6.2 2.5.3 2.6.3 5.8.3 + .+.2 2.+ .2 + . + .2 + . + .1 3.5.3 3.5.2 2.5.3 3.4.2 + .2.3 2.3.2 3.5.2 2.+.2 +. + .2 + . + .3 6.8.3 2.+ .2 + . + .2 5.7.3 + . + .3 3.5.3 + . + .3 6 . 1 0 . 3 5.7.3 2.3.3 6.9.3 4.7.3 + . + .3 3.5.3 5.6.3 4.6.3 + .3.3 6.9.3 4.5.3 Hylocomium splendens 4.5.3 3.4.2 1.2.3 5.7.3 4.5.2 +.3.2 4.5.3 3.5.2 7.8.3 4.5.3 +.2.2 1.3.2 1.2.2 + .2.3 2.4.3 4.6.2 4.5.3 3.4.3 3.5.3 + . + .3 3.5.2 1.4.3 3.5.3 4.6.3 3.5.3 6.8.3 5.6.2 + .2.2 + .3.3 +.+•3 5.7.3 4.6.3 4.+.3 2.4.3 4.5.3 5.6.3 5.5.3 + .5.3 + .+.2 + . + •3 +.2.3 Plagiothecium undulatum Hookeria lucens 4.8.3 3.+.2 3.4.3 5.5.3 + . + .3 3.5.2 6.6.3 5.5.3 5.5.3 + .4.3 5.5.3 + . + .2 4.5.2 4.5.3 4.4.3 +.2.3 + .3.3 3.5.3 +.2.3 3.5.3 3.5.3 +.3.3 5.6.3 3.4.3 +.2.3 3.5.3 1.3.3 + .+.2 6.4.3 4.4.3 2.3.3 4.5.3 2.+.3 4.4.3 + .3.2 4.3.3 4.3.3 5.6.3 5.6.3 + .1.3 2.3.3 + .2.3 6.6.3 5.5.3 + .3.3 + .2.3 + .2.3 7 8 9 14 142 245 6l kg 13 91 lit 34 47 40 30 13 32 1.10.3 + . + . 3 7.9.3 3.6.2 2.+ .2 + . + . 3 6.8.3 5.6.2 + . + .1 6.9.3 6.8.2 +.+.3 6.8.2 5.7.2 +.+.3 + .2.3 5.7.2 5.7.2 2.+ . 2 6 . 5 . 2 3.6.2 3.5.3 4.8.3 3.5.3 +. + . 1 5.7.3 2.+.2 4 . 5 . 3 2.+ . 2 3 . 4 . 3 + .5.2 2.3.2 6,7.3 1.3.2 5-3.2 1.3.2 +.4.3 3.5.2 2.3.2 + . + .2 1.3.2 2.+.2 4.4.2 2 . + .1 4 . 4 . 3 5.6.2 6.7.3 5.7-3 4.6.2 +.5.3 7.9.3 5.6,3 4.5.3 3.5.3 4.5.3 2.5.2 +.5.2 6.7,3 2.+ . 2 4 . 5 . 3 6 . 7 , 3 3.4.3 2.3.3 4.3.3 7.8.3 4.6.-3 2.3.3 5.6.3 1.2.3 4 . 3 . 3 + .2.3 + .2.3 5.5^3 3.5.3 + .2.3 7.8.3 4.5.-3 7.8.3 5-6.3 10 11 12 13 +.+.3 7 . 9 . 3 + . + .3 4.+.3 6.8.3 6.7.2 4.7.2 6.8.3 +.+.3 4 . + . 2 7 . 9 . 3 6.JJO.3 7 . 1 0 . 3 3.+.2 +.+.3 5.8.3 4.7.3 7.9,3 4.+ .2 +.+.2 +.5.3 5.7.3 4.6.2 +.+.3 1. + . 2 5 . 7 . 3 5.7.3 3.5.3 4.6.3 4.7.3 4,7-3 4.7.3 3.5.2 3-4.2 4.6.2 6.8.3 6.9.3 7.9.3 6.7.3 1.5.2 4.7.2 2.5.3 4.6.3 3.7.3 2.5.3 3.6.3 +.+.3 3.4.2 3.5.3 1.5.3 2.5.2 3 . 5 . 2 +.+.3 1.6.2 +.+.2 4.6.3 4 . 6 . 3 7.9.3 7.7.3 7.8.3 3.3-3 4.5.3 5.7.3 ' 4 , 7 - 3 5,7.3 3.4.3 1.4.2 4 . 5 . 3 3.5.3 +.3.3 +.+.3 +.+.3 +.+.3 2.5.2 +.+.2 3 . 4 . 2 5 . 5 . 3 +.+.1 +.4.2 +k5«2 3 . 4 . 2 1 . 3 . 2 5.6.3 5.7.3 4.7.3 5.6.3 4.6.3 2.+.3 + .2.2 +.4.3 3 . 2 . 2 4.6.3 4 . 6 . 3 +.5.3 2.4.3 4.5-3 3.5.3 +.1.3 3.5.3 5.6.3 2.3.3 2.4.3 4.5.3 3.4.3 2.1.2 3.4.3 +.2.3 +.3.3 4.6.3 4.3.3 5.6.3 3.5.3 2.5.3 5.5.3 +.2.3 +.3.3 4.4.3 2.4.3 6.7.3 6.6.3 2.4.3 1.2.3 +.3.3 Species Vigor Conssignificance tancy Mean R a n g e Mean R a n g e 2.8 4.5 3.2 2.1 2.3 1.1 2.1 2.8 0-•9 0--7 0--6 0--6 0--7 0--5 0--7 0-,6 01.7 •'5 0--'5 1.7 1.6 0-•5 0--6 3.7 0--6 2.7 4.6 2--7 1.2 0--4 2.6 0--5 0-•3 0.7 1.2 0-•5 1.2 . . .0.--4 1.0 0--3 0--3 0.7 25-2 3.6 0--7 0-•5 2.7 2.3 Q---4 0--2 0.7 +-•5 2.7 l . l 0--4 +2.3 -5 0--6 2.2 1.0 0--4 0--2 0.3 0.2 0--+ 0--6 3.0 0--5 2.9 0--+ 0.3 0--7 2.9 2.1 0--4 0--+ 0.3 4.82-•7 0--5 3-2 0-+ 0.5 2.6 0-•7 0--6 1.7 0.4 0-• l 0.1 0--+ 2.9 2.8 2.1 2.6 2.6 2.2 2.7 2.7 2.6 2.5 2.9 2.6 2.3 2.9 2.5 3.0 2.4 2.5 2.4 2.5 2.0 2.9 2.6 2.7 2.6 2.6 2.3 1.7 2.2 2.8 2.7 3.0 2.6 2.8 2.8 2.7 3.0 2.8 3.0 3.0 2.9 2.8 2.8 2.7 3.0 3.0 2-•3 2-•3 2-•3 2-•3 2-•3 2-•3 1- •3 2-•3 2-•3 2-•3 2-•3 2-•3 2-•3 2-•3 2-•3 1- •3 2-•3 2-•3 2-•3 1- •3 2-3 2-•3 1- •3 2-•3 2-•3 2-•3 1- •2 1- •3 2-•3 2-•3 2-•3 2- 3 2-•3 2-•3 2-•3 2-•3 2-•3 2-•3 2-•3 9/13 10/13 9/13 11/13 5/13 5/13 8/13 7/13 8/13 9/13 9/13 12/13 10/13 13/13 6/13 9/13 7/13 7/13 7/13 7/13 8/13 13/13 12/13 12/13 12/13 8/13 13/13 9/13 13/13 7/13 4/13 3/13 3/13 12/13 11/13 4/13 10/13 10/13 4/13 13/13 11/13 7/13 10/13 8/13 6/13 1/13 Table no. 30 - Continued No. Layer of Number of plots Species h Abies amabilis dw h . Thuja p l i c a t a dw h P e l l i a sp. 25 h 26 Sphagnum squarrosum h Conocephalum" conicum 27 h Sphagnum recurvum 28 dw h Eurhynchium s t o k e s i i 29 , 30 Al 2 3 31 32 33 34 35 2 1• 2 1 2 2 2 36 37 38 39 Uo Ui U2 U3 UU 45 C U6 47 U8 49 50 51 52 53 5U 55 . dw e dw e dw e dw e dw e dw e dw e dw h dw e h dw dw e Blechneto - Tsugetum . . 1 2 +.+.2 Rubus p a r v i f l o r u s Sorbus sitchensis Streptopus roseus Linnea borealis Luzula p a r v i f l o r a Galium t r i f l o r u m Clintonia uniflora Lycopodium selago Maianthemum dilatatum Scapania bolanderi. 1.2.3 l.U.3 3.6.3 2.3.3 2.U.2 2.4.2 Cephalozia media Plagiochila asplenioides 7.10.3 +.+.3 +.+.3 U.5.3 +.+.2 +.3.2 Plagiothecium 2.4.3 + .+.2 3.5.3 +.+.3 5.6.3 + .+.2 4.6.3 3.4.3 3.4.3 +.3.3 + . + .2 +.3.3 + .+ .2 + . + .2 3.5.3 2.5.3 1.3.3 +.2.3 +.1.2 +.2.2 +.2.3 +.3.3 2.3.3 +.3.3 2.1.3 2.5.3 +.U.3 + . 3 . 3 2.3.2 2.3.2 +.2.2 + .2.2 +.3.3 • + . 2 . 3 +.2.2 +.3.2 +.2.3 . + . 2 . 3 1.3.2 + .+.3 2.2.3 +.2.3 +.2.3 + .2.2 +.2.3 +.+.2 2.3.3 +.2.3 2.U.3 +.2.2 +.2.3 2.3-3 +.1.2 1.2.3 + .1.3 Eurhynchium oreganum +.2.3 3.5.3 +.5.2 +.+.2 1.3.3 subsquamosa 1.3.3 +.5.2 +.2.2 ambigua Cladonia +.+•3 l.U.3 +.2.3 +.+.3 + .3.3 +.2.3 1.3.2 + .+.2 Bazzania reptans 6 :+.+.3 + .+.2 fuscescens Lepidozia 1 +. + . 3 2.5.3 2.U.2 +.+.2 2.5.3 3-7.3 Dicranum Isothecium stoloniferum 5 + .+•3 3.7.3 2.7.2 1.2.3 +.U.3 +.1.2 +.2.3 2.2.3 Hypnum c i r c i n a l e u 1.2.2 +. + .2 +.+.2 Companion species Pseudotsuga menziesii Vaccinium parvifolium Gaultheria shallon Taxus b r e v i f o l i a Menziesia ferruginea Acer circinatum 3 heterophyllae +.2.3 +.1.3 denticulatum + .2.3 +.2.3 +.2.3 3.6.3 +.5.3 1.3.3 +.3.3 1.4.3 +.5.3 3.6.3 +.4.3 1.3.3 +.3.3 +.2.3 +.2.3 +.1.3 +.2.3 3.5.3 +.4.3 1.2.3 +.1.3 2.2.3 +.3.3 2.2.3 2.4.3 + .2.3 +.2.3 1.2.3 + .2.3 2.3.3 +.6.3 +.1.3 + .1.3 + .+.2 +. + . 2 +.1.3 7 8 9 10 + . + .2 + . + .2 1. + .2 11 12 •13 2.3.2 +.3.2 + .3.2 + . + .2 2.4.3 5.7.3 + .3-3 .. + .4.3 2.5.3 2.3.3 - + •3-3 6.+.3 + . + •3 +.+.2 +.+.3 +.+.3 2.+.3 3 . 5 . 3 3.5-2 4 . 6 . 3 + .+..2 2.5.3 3.5.3 5.7.3 4 . 6 . 3 2.+.2 +.+.2 + .+.3 2.U.3 1.3.3 1. + .2 +.3.2 2 . 3 . 3 + . + .2 1.2.3' +.2.2 +.2.3 +.3.3 3 . 2 . 3 +.2.3 + .1.2 2.2.3 - 2.5.3 4.6.2 2.5.3 1.6.3 3-5*3 4.5-3 +.3.3 +.5.3 +.3.3 5.6.3 .-5,.3 3 . 5 . 3 +.3.3 2.3.3 +.3-3 +.2.3 2 . 4 . 3 +.2.3 u +.2.3 + . 2 . 2 +.6.3 5.6.3 + . 2 . 3 +.2.3 +.5.3 + . 2 . 3 +.2.3 2 . 5 . 3 + .2.3 + .1.2 2 . 3 . 3 +.+.1 +.2.3 +.2.3 +.2.3 +.1.3 1.3.3 / + .3.3 / 1.2.3 +.2.3 +.3.3 4.5.3 3.5.3 +.3.3 2.4.2 3-6.2 +.+.2 1.5.3 3-+.3 1.5.2 + . + .2 + . + .2 4.5.3 3.6.3 + . + .2 5.8.3 3.5.3 + .4.3 3.5.3 + .3.3 2.3.2 + .1.3 2.4.3 + .4.3 1.3.3 + .+•3 3.2.2 3.3.3 + .3.3 + .2.3 4.3.2 + .3.3 2.3.3 +.3.3 + .2.3 3.1.2 +.3.3 1.3.3 +.3-3 2.3.3 + .3.3 + .4.3 + .2.3 +.2.3 + .2.3 2 . 3 . 2 2.1.2 + .1.3 +.2.2 + .2.2 + .2.3 +.2.3 +.3.3 1.2.3 + .2.3 +.3.3 1.4.3 + .3.2 1.3.2 + .2.3 Species Vig ;or significance Mean Range Mean Range 0.4 2.0 0-2 0.1 0-+ 2.5 2-3 0-+ 2.2 2-3 0.3 0.2 0-1 2.3 2-3 0-2 3.0 0.5 0.5 3-0 0-5 0-1 3.0 0.3 0.6 2.8 0-3 2-3 0-2 3.0 0.3 0.2 0-2. 2.5 2-3 1.4 0.3 0.1 2.0 1.3 0.9 0.7 1.3 0.4 0.1 0.1 0.4 1.0 0.3 0.3 0.8 0.1 1.1 2.0 0.7 1.6 0.7 1.6 0.6 1.2 0.3 1.2 0.7 1.0 0.3 1.0 0.7 0.7 0.3 0.3 0.5 0.6 0.3 0.1 0.2 0-7 .0-2 0-+ 0-4 0-4 0-5 0-3 o-5 0-3 0-+ 0-+ 0-3 o-4 0-+ 0-1 0-3 0-+ 0-5 +-4 0-+ 0-4 0-+ 0-3 0-+ 0-3 0-+ 0-5 0-+ 0-2 0-+ 0-2 0-+ 0-2 0-+ 0-2 0-+ o-4 0-3 0-+ 0-+ 3-0 2.0 2.0 2.8 2.1 2.1 2,8 2.8 2.3 2.0 2.5 2.5 2.8 2.5 2.5 2.7 2.5 2.8 2.9 2.9 2.7 3.0 2.6 2.6 3.0 2.7 2.8 2.9 3.0 3.0 2.2 2.5 2.9 2.8 3.0 3-0 2.8 2.6 3.0 3.0 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3\ 2-3V 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 1-3 2-3 2-3 2-3 2-3 2-3 , Constancy 5/13 2/13 4/13 3/13 5/13 3/13 Vl3. 5/13 2/13 2/13 6/13 3/13 2/13 11/13 7/13 7/13 5/13 6/13 3/13 2/13 2/13 4/13 5/13 4/13 4/13 4/13 2/13 5/13 13/13 10/13 12/13 IO/13 11/13 8/13 10/13 4/13 9/13 9/13 11/13 5/13 10/13 9/13 9/13 5/13 4/13 7/13 5/13 3/13 2/13 3/13 Blechheto - Tsugetum heterophyllae Table no. 30 - Continued No. Layer of Number of plots 4 2 5 Species 56 ' h Plagiothecium elegans + .2.2 1.5.3 dw +.2.3 e +.2.3 +.1.2 Calypogeia trichomanes 57 + .2.3 + .1.3 e + .+.3 + .+.2 +.1.3 dw Cephalozia bicuspidata +.2.3 +.2.3 +.2.3 58 dw Calypogeia suecica 59 +.2.3 + . 1 . 3 + .+.2 dw Dicranum scoparium 60 +.2.3 +.2.3 2.4.3 dw 61 Bazzania t r i c r e n a t a 3.4.3 e + .2.3 +.2.3 + . 2 . 3 dw 62 Blepharostoma trichophyllum + .2.3 Atrichum undulatum h63 + .3.3 64 Cephalozia lammersiana dw 1.4.3 +.1.3 Calypogeia neesiana dw 65 + .1.3 66 Rhytidiadelphus triquetrus +.2.3 h.. +.3.3 Sphaerophorus globosus dw +.1.3 67| e 68 F r u l l a n i a nisquallensis +.2.3 e +.1.3 Diplophyllum taxifolium 69+ .1.3 dw 7C' Ribes braceteosum 71 72 73 74| 75 76 77 78 79 80 81 82 83 Carex bolanderi Circaea alpina Coptis a s p l e n i f o l i a Epilobium angustifolium Goodyera o b l o n g i f o l i a L i s t e r a caurina L i s t e r a cordata Moneses u n i f l o r a Poa t r i v i a l i s Pteridium aquilinum Tiarella unifoliata V i o l a sempervirens Dicranum majus Metzgeria furcata Mnium spinulosum Neckera douglasii Neckera menziesii P o r e l l a navicularis P o r e l l a platyphylla P t i l i d i u m californicum 84 85 86 87 88 89 90 83 (2.5.3) 20 20 49 .61 .49 49 83 49 20 142 83 245 23 83 101 101 83 142 101 83 (1.3.3) (+.+.3) (+.+.3) (+.+.2) (2.3.3) (•+•+.3) (+.2.3) (+.+.3) (+•+•3) (+.+.2) (+.3.3) (2.5.3) (+.1.3) (+.2.3) (+.1.2) (+•3.2) (+.3.2) (+.1.3) (+.2.3) (+.2.2) 6 +.+.3 +.+.3 +.1.3 +.1.3 +.1.3 +.1.3 +.2.3 7 8 9 10 11 12 13 + . + .2 +.2.3 +.3-2 1.2.3 +.1.3 1.3-3 1.2.3 1.3-3 +.2.3 +.1.3 +.3.3 + .2.3 +.2.3 + .1.3 + .2.3 1.2.3 1.5.3 ' +.1.3 +.4.3 +.1.3 +.1.3 +.1.3 +.1.3 +.1.3 +.1.3 +.+.3 + . 2 . 3 +.2.3 +.2.3 +.2.3 +.1.2 + .1.3 ies Vig;or sign: icance Mean Range Mean Range 0-1 0.2 2 . 3 2-3 0-+ 0.3 2 . 7 2-3 0.1 0-+ 2 . 5 2-3.0-1 3.0 0.3 0-+ 2 . 8 2-3 0.3 0.4 . 0-1 ' 3 . 0 0-1 2 . 8 2-3 0.5 0.4 0-2 3.0 0.4 3-0 0-3 0-+ 3.0 0.3 0.2 0-+ 3.0 0.2 0-+ 3-0 0-1 3.0 0.3 0.4 0-+ 3.0 0.2 0-+ 3.0 0.2 0-+ 3.0 0.1 0-+ 3.0 0.4 0-+ 2 . 8 2-3 0.1 0-+ 3.0 Constancy 3/13 4/13 2/13 4/13 5/13 6/13 7/13 5/13 Vl3 5/13 3/13 3/13 4/13 5/13 3/13 3/13 l/l3 6/13 2/13 - Tsugetum heterophyllae streptoposum r o s e i Table no. 31 Number of plots P l o t no. Computation reference no. Date 2 11 42 18/7 1958 135 10 35 30 20 70 20 35 50 P 2 Bl B B C 2 D ill 39 16/6 1958 5 6 43 15/7 1958 315 180 k 1 Mean Range 1959 80Q l+9°22' i4-9°23' 49^22' 49°22' 122°57' 123°02' 122°57' 122°57' 2890 265O 2950 2880 2810 2650-2950 P l o t size (sq. m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) AQ_ A -3 132 44 40 h Bdw D Humus coverage (per cent) Decaying wood coverage (per cent) Land type and land form R e l i e f shape Profile Contour l i n e Parent material Erosion p o t e n t i a l Run-<pff Drainage Hygrptope Stoniness (per cent) Permeable mineral s o i l depth (cm. Ecto-humus horizon depth (cm.) L E l u v i a t e d horizon depth (cm.) A E 20 30 50 70 30 225 5 Cfb ABjrb-i 5 4o 25 65 15 50 60 20 .50 20 70 70 30 6 30 4o 20 70 5 60 60 85 5 10 15 80 20 6 30 75 23 5 SSE-NW 5-14 50 10 5 6 40 35 70 70 10 10 20 70 30 G l a c i a l d r i f t - Lower slope Concave Concave Till Slight Slow Moderate Wet 50 45 23 13 8 25 55+ 9 4 74 26 70-80 20-30 34 18 18 6 25-50 0-13 Blechneto - Tsugetum heterophyllae streptoposum r o s e l Table no. 31 - Continued Number of plots pH L-F Ah A B C e Depth of seepage Humus form S i t e index Western hemlock Western redcedar Amabilis f i r 1 3.16 4 . 17 5.6S 12 5 50 43 55 Mean Range 40 12-55 Raw humus 123 113. io4 112 . 111 98 97 116 92 106 122 108 112 109 97-123 92-122 Blechneto - Tsugetum h e t e r o p h y l l a e streptoposum rosea T a b l e no. 32 No. of Species Number o f p l o t s 1 2 3 4 5 Plot 15 11 132 7 6 41 42 44 39 43 Layer no. Mean Computation r e f e r e n c e no. Al C h a r a c t e r i s t i c combination of s p e c i e s Tsuga h e t e r o p h y l l a 6.8.3 2 3 l 2 3 1 2 3 Bl 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 4 5: 6 7 8 10 11 12 13 14 15 16 Species significance C Abies amabilis 5.8.3 4.7.3 + .1.2 6.+.3 •5.8.2 4.7.2 Thuja p l i c a t a 3-+ .2 4 . 7 . 3 4.8.2 Abies 4.6.3 amabilis Tsuga h e t e r o p h y l l a 4.7.2 Rubus 1.3.2 spectabilis Vaccinium Vaccinium 4.7.2 3.7.3 +.+.3 3 . + . 3 5.8.3 5.7.3 6.7.3 4.7.2 5-+.3 7.10.2 5.8.3 5.6.1 5.7.2 3.7.3 4.6.3 3.5.3 4.6.3 4.5.3 2.5.3 4.6.3 6.7.3 6.7.3 7.9.3 alaskaense ovalifolium 6.8.2 4.6.3 Sambucus pubens Menziesia ferruginea Oplopanax h o r r i d u s Thuja p l i c a t a Blechnum s p i c a n t Streptopus a m p l e x i f o l i u s Athyrium f i l i x - f e m i n a Rubus pedatus S t r e p t o p u s roseus Clintonia uniflora Streptopus streptopoides 2.5.2 2.5.2 2.5.3 +.+.1 5.3.3 + . + .2 + . + .2 4.7.3 2.+ .2 3.6.3 1. + .2 4.8.3 4.8.3 3.6.3 2.5.2 1. + .2 3.5.3 5.6.2 5.7.2 4.6.2 + .+.2 +.+.3 +.+.3 + . + .2 + .4.2 3.+.2 2.6.3 3.4.3 2. + .3 + .+.3 4.7.3 3.4.3 3.4.3 2.4.3 4.5.3 3.4.3 5.4.3 6.8.3 5.5.3 6.5.3 +.3.3 3.5.3 + 5.3.3 i-+.2 + .+•3 + .+.2 8J.O.3 8 . 9 . 3 2.2.3 2.3.3 2.3.2 2.4.2 5.8.3 5.5.3 2.4.2 3.4 2.8 3.0 2.4 0.6 1.2 1.4 4.6 1.8 1.2 1.0 0.6 0.6 0.4 0.6 0.4 3.6 1.8 2.0 6.0 2.8 3.4 2.8 1 Vigor' Range Mean 5 . 7 . 3 :.4,2 + +-6 4 . + . 3 5.0 . 4-6 2.4.2 '0-6 3.2 0-6 6 . 7 . 3 2.4 4.+.2 4.0 0-7 3.4.2 4.0 3-5 0.8 0-4 5.8.3 4.7.2 4.7.2 3.6.3 1.4.2 ; 4- •5 0-•4 0-•4 0-•4 0-•1 0-•4 0- •7 0--6 0- •5 0-•4 0- -3 0-•2 0-•2 0- •+ 0- •3 0-•2 3-•5 +- •3 +- •5 4- •8 2- •5 2- •6 +- •5 Constancy Range 3.0 5/5 2.8 2- •3 5/5 2- •3 2.5 4/5 2,6 2- •3 3/5 2.. 2 ' _2- •3 4/5 2.0 1- •3 . - 5/5 2.0 1/5 2.8 2.7 2.5 2.7 2.0 3.0 3-0 2.5 2.5 2.0 2.6 2.5 2.5 1.5 2/0 3.0 3.0 2.6 2.4 3.0 2.8 2.6 2.8 2- -3 2- -3 2- -3 2- -3 ' 2- -3 2- -3 5/5 4/5 4/5 4/5 3 £ 2/5 1/5 4/5 2/5 2/5 2- •3 2- -3 2- •3 1--2 2/5 2/5 2/5 2- -3 2- •3 5/5 2- •3 2- -3 2- •3 5/5 5/5 ^? 5/5 —-3 VO Table no. 32 - Continued Layer Number of p l o t s No. of Species 17 18 19 20 21 Dh dw h 22 dw e h dw h dw h 23 h 24 dw h 25 dw 26 27 28 29 30 31 32 33 Bl 2 C Ddw e dw e dw e dw e h :dW 3k 35 36 37 e dw e dw e dw Dryopteris a u s t r i a c a Tiarella trifoliata Cornus canadensis Lysichitum americanum Mnium punctatum Rhytidiadelphus loreus Tsuga heterophylla Abies amabilis P e l l i a sp. Rhytidiopsis robusta Plagiothecium undulatum Blechneto - Tsugetum heterophyllae streptoposum r o s e i ; •> ••• Species Vi*gor... 4 significance 1 2 3 5 Mean Range Mean Range 0-4 2.0 + .k.2 4 . 4 , 3 3 . 6 . 3 2 . 3 . 3 2.7 2-3 2.8 2.3.2 2.3-3 0-5 2.5 2-3 5.5.3 2.5.2 2.4 0-4 2.2 3-5-2 4 . 3 . 2 4.4.3 1.3.2 2-3 2.0 1.2 1. + .2 3.6.2 2.6.2 0-3 4.0 3.0 4.4.3 4.7.3 3-5 5.6.3 4.5.3 3.4.3 2.8 3-0 3.5.2 1.2.3 5.6.3 3.5.3 2.3.3 2-3 1-5 2.8 3-0 5.4.3 1.3.3 2.4.3 1-5 2-3 5.6.3 2.3.2 1-4 2.2 3-k. 3 2 . 3 . 2 4.4.3 2.3.3 2.7 2-3 +.3.2 +.3.3 + . 3 . 3 .0.8 :o++ 2 , 7 +.2.3 2-3 0.4 3.0 1.+.3 4 . 5 . 3 + . + . 3 1. + . 3 1.4 + . + . 2 5 . 4 . 3 1 . 3 . 3 2.+ . 3 1.8 0-5 2.7 2-3 0-2 3-0 2.3.3 + . + .3 0.8 +.+.3 0.2 0-+ 3-0 +.+.3 1.0 0-2 3-0 2 . 3 . 3 2.5.3 1.4.3 2.8 0-4 2-3 2.7 4.5.3 4.5.3 2.3.3 4.5.2 2.4 0-4 3.0 k. 5 . 3 2 . 3 . 3 3.5.3 3.5.3 2.2 0-4 2 . k. 3 3 . 2 . 2 2.5 2-3 4.5.3 2.3.2 2.0 0-4 . 2.7 3 . k. 3 + . 4 . 2 4 . 3 . 3 2 . 3 . 3 2-3 Companion species Chamaecyparis nootkatensis 2.+ . 2 Sorbus o c c i d e n t a l i s 1.3.3 L i s t e r a caurina +. + •3 Scapania bolanderi 1.2.3 + .2.3 + .2.3 Hypnum c i r c i n a l e 3.5.3 4.4.3 +.k.3 + . 3 . 3 Cladonia subsquamosa + .2.3 + . + .3 +.2.3 + . + . 2 Dicranum fuscescens 1.2.3 2.3.2 +.2.3 + . 2 . 3 Plagiothecium elegans +.2.3 + . 2 . 3 P t i l i d i u m californicum + .3.3 Lepidozia reptans +.1.3 2.+ . 2 1.5.2 +.+.3 + . + . 2 2.3.3 1.3.3 +.2.3 3.4.3 2.5.3 +.2.2 + . 2 . 3 + .2.3 +. + .2 + . 2 . 3 + .3.3 2.3.3 + .3.3 2.3.3 4.3.3 + .2.3 + .2.3 + .3-3 3.2.3 + .3.3 + .2.2 Isothecium stoloniferum Calypogeia trichomanes +.3.3 +.3.3 + .3.3 3.4.3 + .2.3 + .1.3 2.3.3 + .2.3 + .2.3 2.3.3 + .2.3 1.3.3 + .2.3 + .3.3 + .2.3 + .2.3 + .2.3 0.8 0.4 0.6 1.0 0.6 3-0 1.0 0.6 1.0 1.6 0.8 0.6 1.8 0.8 1.2 0.2 0.2 0.4 0.4 0.4 0-2 0-1 0-+ 0-1 0-+ 2-4 0-+ +-2 0-+ 0-2 +-4 0-+ 0-3 0-+ 0-+ 0-+ 0-+ 0-+ 2.0 2.5 2.7 3.0 3-0 3.0 2,8 3.0 2.6 2.8 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 3.0 2-3 2-3 2-3 2-3 2-3 Constancy 4/5 4/5 4/5 3/5 5/5 5/5 4/5: 4/5 4/5 4/5 3 ^ ^ 4/5 4/5 4/5 4/5 2/5 2/5 3/5 4/5 5/5 5/5 5/5 5/5 4/5 2/5 5/5 4/5 4/5 ^1? ^} 2/5 2/5 2/5 Co o Blechneto - Tsugetum heterophyllae streptoposum rosei Table no*. 32 - Continued No. Layer Number of plots of Species dw Cephalozia media 38 e 39 e Plagiothecium denticulatum dw Calypogeia suecica 4o e dw Dicranum scoparium kl e Sphaerophorus globosus k2 dw Cephalozia bicuspidata 43 dw Lophocolea cuspidata kk dw Lophocolea heterophylla 45 e A l e c t o r i a sarmentosa k6 kl k8 k9 50 51 52 53 54 55 56 57 58 59 60 6l 62 63 6k 65 66 67 68 Taxus b r e v i f o l i a Vaccinium membranaceum Epilobium angustifolium Luzula p a r v i f l o r a Maianthemum dilatatum Pyrola secunda Smilacina s t e l l a t a Tiarella unifoliata A n t i t r i c h i a curtipendula Bazzania t r i c r e n a t a Blepharostoma trichophyllum Hookeria lucens Metzgeria furcata Mnium menziesii Mnium spinulosum Neckera menziesii P i a g i o c h i l a asplenioides P o r e l l a platyphylla Radula complanata C e t r a r i a glauca Lobaria pulmonaria Parmelia physodes 1 2 +.2.3 +.1.3 +.2.3 +.2.3 +.4.3 +.1.3 +.1.3 +.1.3 +.1.3 +.1.3 +.2.3 15 (+.+.2 (+.4.2 6 132 11 11 11 132 7 6 11 7 132 132 11 132 132 (+.+.2 (+.3.2 (1.3.3 (1.3.3 (3.4.2 (+.+.3 (+.3.3 (+.5.3 (+.2.3 (+.2.3 (+.3.3 (4.3-3 (+.2.3 (+.3.3 (+.2.3 (+.2.3 (+.2.3 (+.2.3 (+.+•3 (+.2.3 ll ll •6 7 7 6 3 4 5 2.4.3- + .2.3 +.+.3 +.1.3 -1-+.2.3 1.2.3 +.1.3 +.1.3 4.3.3 +.2.3 +.5.3 +.5.3 3.3.3 +.2.3 ConsVigor Species tancy significance Range Mean Range Mean 1.0 0.4 0.6 0.6 0.4 1.2 0.6 0.8 0.4 0.4 +.+.3 + .+•3 0.4 _ 0-2 3.0 0-+ 3.0 0-+ 3.0 0-1 3.0 0-1 3.0 0-4 3.0 0-+ . 3.0 0-3 3.0 0-+ 3.0 0-+ 3.0 0-+ 3.0 3/5 2/5 2/5 3/5 2/5 2/5 2/5 2/5 Oplopanaceto - Thujetum plicatae _] ' • • • ••;".'• • Mean U 1 2 3 5 22U 225 222 •' 221 157 8/8 8/8 19/8 7/8 3/7 1961 19.61 1961 196l 1959 200 400 . 40.0 P l o t size (sq.m.) Uoo , 800 , 49°17 Latitude ;U9°17 '..U9 17'.". U 9 ° l 6 . ; :.U9°19, Longitude 1 2 2 ° 3 5 ' 1 2 2 ° 3 5 ' 122°3U' 1 2 2 ° 3 5 ' 1 2 2 ° 3 5 ' U80 1800 906 850 650 Altitude ( f t . ) 750 360 180 180 180 180 Exposure (degree) U 10 6 Slope gradient (degree) 5 5 5 Cfb KSppen Macroclimate ABjrbo^ Thornthwaite 80 40 A Strata coverage (per cent) 65 65 75 80 100 .70 B 70 90 UO 60 60 C 70 65 60 80 25 45 U5 Dh 20 20 '20 25 Uo dw 100 100 D 50 65 65 6U 60 60 80 70 Humus coverage (per cent) 50 UO U0 20 30 36 Decaying wood coverage (per cent) 50 Alluvial Ravine Land type and Land form Sediments Parent material Concave Profile R e l i e f shape Concave Contour l i n e Poorly drained Drainage Swampy Hygrotope Near surface. - intermittent overflow Seepage L-F pH 5.^7 5.85 h 5.80 C Mull Anmoor Mull Anmoor Anmoor Humus form Table no. 33 Number of plots P l o t no. Date Range ( ( , I Q U80- •1800 S-•N U-• 10 D 50- •80 20- •50 A S i t e index ( f t . per lOOy) Douglas f i r Western hemlock Western redcedar 130 1U0 150 156 1UU 135 1U3 120 160 8U 100 138 137 121 130- • 150 8U- l 6 0 100-•1UU OplopanacetOj; _ Bwojetuni plicatae Table no. 34 1. 2 Number of .plots No. iayer Plot no. ""• • 221. 222 of Species • Characteristic combination of species Thuja: p l i c a t a 1 A . +-+.3 1 - 8 . 3 Tsuga heterophylla 2 . 6.8.2 Pseudotsuga menziesii +•+-3 +.+.1 3 Oplopanax. horridus 4 B Ribes^bracteosum 3 -6„3 - * . 6 - 3 •5 6 Rubusyspectabilis 7-8-3 6-8-3 Thuja p l i c a t a 3-5-3 4.5-3 Tsuga heterophylla Vaccinium- alaskaense 6 . 8 . 3 5-6-3 7 Sambucus pubens 8 + . 6 . 3 +.5-3 Ac er ••,elrc inatum 9 5-1-3 +.6-3 Vaccinium ovalifolium 10 5-6.3 4-6.3 11 Lysichitum americanum C 3 - 6 . 3 5-1-2 Athyrium f i l i x - f e m i n a 12 6-1-3.4.6.3 Adiantum pedatum 13 +-5.-3 +-5-3 14 Blechnum spicant ^f-c 5-6-3 5-6.3 , V i o l a glabella ;."•'•'; 2 . 4 . 3 +.4-3 15 16 Circaea alpina . 4-5-3 3.4.3 Gymnocarpium dryopteris 17 4-5-3 5-5-3 Tiarella trifoliata 18 4-5-3 4.5-3 ,Galium. t r i f l o r u m +.3.3 +.4.3 19 Polystichum' munitum 20 4.5-3 4.5-2 Dryopteris' austriaca 21 5«6„3 5»6»3 Tolmlea ;'menziesii 22 3-4-3.2-5-3 Streptopus amplexifolius 23 2"!»Hf-«3 2•"ft"*3 Maianthemum dilatatum £4 Eurhynchium s t o k e s i i 25 % 5-5-3 dw 2 . 3 - 3 +.4.3 h Conocephalum conieum 6 . 6 . 3 5-6-3 25 dw 2-4.3 3-4-3 h P e l l i a sp. 26 dw 1.3-3 2 . 4 . 3 h • Sphagnum squarrosum 27 5-6.3 3.5.3 dw 2.5-3 2.5-3 5-7-3 8.9-3 7-9*3 ; 4 .f-3 -5-6-3 3-5-3 3 4 5 22% 225 157 8 . 9 - 3 - 4 . 7 - 3 8.10.3 6 . 8 . 3 ..6.8.3 5-7.2 +.+•3 7-8*3 7 . 9 . 3 7-9.3 * . + « 2 -3*5*3 +.+.2 6.8.3 6.8.3 6.6.3 4 . 5 . 2 ,2.5.2 4.6.3 4 . 5 . 2 5.5.2 3 . 6 . 2 4.7-3 3-5.3. 3.5.3 +.5.3 2 . 6 . 3 5 - 7 - 3 5.6.3.. 4.6.3 2.5.3 6 . 7 . 2 6 . 6 . 3 6.7.3 3.5-3 4.5-3 3.5.3 +.4.3" +,+.3 +.+.3 5 . 6 . 3 5 - 6 . 3 4.5-3 2 . 3 . 3 +.4.3 3.4.3 2-3-3-3.-5.-jL +.3-3 3 . 5 . 3 3«5-«3 3 - 4 . 3 2 . 5 - 3 -5-6.3 5.4.3 +.+.1 1.4.3.2.4.3 2.+-2 3 . 6 . 3 3 . 5 - 3 4 . 5 . 3 2.5-3 , 2.5.3 2.+.3 —-2-3-3 1-3.3 2-5-3 2 . 3 - 3 3 - 4 . 3 +.+.2 6.7.3 6.7.3 4.5.3 3-5-2 2 . 5 . 3 2 . 4 . 3 5.6.3 ; 5.-60 -- . 2.5-3 5^6.3 3.5.3 '. -Constancy ;Mean Range Mean.Range 5.6 5.6 0.6 7.2 +-8 1.8 6.2 3.4 4.2 4.2 1.0 5-6 7-8 +-3 6-7 2-4 3-5 3-6 0-2 3.2 3.0 5.2 4.0 1.0 0-5: 4.8 4-5 +-3 1.8 2.6 3.6 4*0 1.2 2.6 3.8 1.4 1.2 0.4 3.2 1.8 5.4 2.4 4.8 0.6 . 3 - 5 - 3 3-5-3 Species 7 Vigor significance " 3.4 2.2 0-5 3-6 3-6 3.0 .2.6 2.3 3.6 2.6 3.0 2.6 2.4 3.0 3.0 3.0 3.0 2.6 3.0 2-3 1- 3 2- 3 2-3 2-3 2-3 +-4 3-5 2-5 +-2 0-4 2-5 0-3 0-2 0-2 1-5 +-3 4-6 2-3 4-5 0-2 3-5 0^5 / 3 5 5/5 5/5 5/5 4/5 4/5 4/5 P 5/ / 5/5 5 370 3.0 3.0 3.0 3.0 3.0 2.6 2.5 3.0 3.0 3-0 3.0 3.0 2.8 3.0 2.8 3,0 3.0 3.0 3-0: 5/5 -5/5 5 5/5 5/5 5/5" 5 1- 3 2- 3 / 5 5/5 4/5 5 / 5 / 3/5 3 2-3 2-3 5 -1/5 5/5 5/5 5/5 5/5 2/5 5/5 4/5 CD UO 18k CO O fl fl O - P CU bO o bD o o o o o o o o oooooooooooooooo cu CD U bO Cl fl^O 1 A 4 CM f O H f O H co cd cd i i i i i i i i CD O K - 4 - O H O O O O O •H iH O !+H CU - H ft fl fl CO b O t d O C O C V J C V J ^ t V O C V U •ri J) i i • c Q g U ^ r H O J H H O H O -p OO cd • o •H rH ft • • l f-VD • cd ft o • • • • • • • • • • • OJ rH OJ OOOOOOOOOOOOOOOO • • • • « • • • VOLfNL^OOOJOJCrNLrN H & • • • • • • • • VO -4" -4" OJ + O L/Nt— O V O LTV LTN LT\ O + I + H U A + OO + OO + 0 I I 0 0 I 0 I 0 I I 0 I 0 I 0 H O O O r H O O O O 000000 00 + + OJ r-i + + + + + • + OJ 0 0 0 0 + • • • OJ LTN OO Lf\ • + + + OO O LT\ OJ IT\ OJ I I I I O <VH S 0 CO av OJ 00 + + I 0 I + • • • • • + + +* H 00 0000 + VO VO Lf>VO LTNVO OJ - 4 - r-i OJ OO + u\ v\ CM v\ CM ir\ + + + + + + + OOOOOOOO 0 0 0 0 0 0 0 0 0 0 OO OO OO 0O0O • • • • VDVD 1 A 1 A • • • • • • • • 1 A O J H L A O J P O H O J • * OJrH : OJ. -4+ • • • • • • • • • • • • • • • • • • • OO OO • CT\ OJ + LTV OO OO OO 0 O + + 0 J + H + H + + 0000000000 00000000000000000000 • • • • • • • • • • U-NVO LfvvO Lf\ 4(M40OfAIHrO(\IC\IC\l O J O O H O J H + + H + + • • • • • • • • • • • • OO Lf\Lr\Lr\^-U-NJ-0OrH0OOOOJ • + + H OOOOOOOOOOOOOOOOOOOOOO CQ - 4 - O J O J O -P J + 0 J H + 0 J + + CO cu cd r-i CO 0 •H rH Xi cu xi r( <U cd 0 CO CO cu ti •H r-i cu ,d cd 0 CQ . CQ rH 0 r-i •H 0 CU CH cd 0 <u •H •H cd cd N •H •H -P O 0 O T3* O H •H •H cd cd cd 0 0 bD -P xi r-i c d cd 0 •H H cu •!»• 0 AH CO 0 fl ft « ts o OJ 0 O - 4 LT\VO t ^ C O OV O r-i cn cn cn cn cn cn cn r o 4 4 cu xi OO -4- ft p 4d-ti P OJ -4- + -4-4- LTN -4" cu xi vo t>- + • • • • 0OOJ0OOJ H • • • CQ• + a> rH cd fl •H a u •H O S w CO -4" + C +U fl cd e CO 0 fl Xi cd 0 •p -H ft rf CU - P cd •H tsl O fl |s Is cu r d cu xi -4". + OOOOOOOO fl fl fl fl ft u r I 0 00000000 ft Xi U H I + 00 00 00 00 x> > o + OJ + I I • • • « • « fl . ' O iJ-'D ,fl Xi CQ CU •H O CO OJ a> ft > H OJ I 000000000000 • U CU M > ^3 O OJ o o W cd cd En P O + CU O r-i CD U r-i <D O + fl O fl O OJ cu ft O O J + - 4 ' L r v o j P O O J + O J CO -4 OO O ooojoooooooooooooooooo fl cd -P o fl O 0 0 + xl CD O o O - 4 " OJ OJ • -p O + OO a •H -p a O + + 00 + OOrH O - 4 " OJ L / \ V D - 4 " ITS cn OJ OO OO rH OJ • • • • • OJ OO + LT\ • • + rH OO OO 00 0 0 OO + LT\VO • • • + 00 + + lf\^t • « • + r-i r-i LT\ LT\ I O o O O J O J O O H O J H H H H H O H O r H r H OO OOOJ O 0000000000000000000000000000 V D c 0 4 4 ( \ I U ) O O V 0 0 0 4 a i v O O O O OO + O O J + r H O J O O O OJ + C I • • + O OOOJ O05C0C0C0VDC0-4-C0.4- + LT\ 0O-4- -4" LTN LTV I OJ HOJOJOJOOOJCMOJCVJOO 0 LTN LTN LT\ LP\ OJ CTV OO LTV LTV 00 I VO • • LTV + + + V O U A O J H O O r H H H OO OO OO OO o • • • IT\ -4/ -4" v I OJ OJ OJ OJ + + oooooooooooooooo O -P • a; I I 4- J LTV Lf\ LT\ LT\ OO OO OO LT\ I OJ OJ OJ OJ OO OJ ••• • OJ OJ H co I H -4" r o oo oo c o • • • • LTN^f CO OJ • I H H • OO • OJ cn • r-i co • LTN -P CD •r-D C OO cn • • ir\ LT\ LT\ LT\ LT\ LTN LT\ LT\ LP\ LTV LPV LP\ LT\ LT\ L / \ LP\ , 4 OO OO O J OJ OJ OJ LT\ I cd g ir\if\Lr\u-\ir\ir\ir\ir\u-\Lr\ OO OO OO OO cd > .fl E-i u"NOjLrv.4--4^oooooj a ri a; a3; • is\u\u\u~\ir\u\\r\\r\ -tf cd -H 0) bD O ft K •H H <u cd P Ei) ft |S > cu xi xi ov 0 - 4 " LTV Oplopanaceto - Thujetum p l i c a t a e No. of Species 51 Table no. 34 - Continued Layer Number of plots 2 dw Isothecium stoloniferum 52 53 54 55 e dw dw dw dw Plagiothecium denticulatum Calypogeia suecica Bazzania ambigua Cladonia subsquamosa 56 57 e e dw e Sphaerophorus globosus Bazzania t r i c r e n a t a +.3.3 1.2.3 2.3.3 58 59 60 61 62 63 64 65 Abies amabilis Acer macrophyllum Alnus rubra Chamaecyparis nootkatensis Cornus n u t t a l l i i Menziesia ferruginea Picea sitchensis Rubus parviflorus 157 25 24 157 25 157 157 25 (+.+.3) (+.+.2) (+.+.2) (+.+.2) (+.6.3) (1.+.3) (+.+.0) (+.+.2) 66 67 68 69 70 71 72 73 74 75 Adenocaulon b i c o l o r Carex leptopoda Coptis a s p l e n i f o l i a Habenaria saccata L i s t e r a cordata Moneses u n i f l o r a Oenanthe sarmentosa Pteridium aquilinum Streptopus roseus Veratrum v i r i d e 21 21 157 157 157 157 25 24 24 157 (+.+.3) (+.3.3) (4.5.3) (3.+.3) (+.+.3) (+.+.3) (+.5.3) (+.+.2) (+.+.2) (+.+.3) 4 3 +.4.3 +.5.3 +.4.3 3.5.3 +.1.2 +.2.3 + .1.3 2.5.3 5 +.2.3 +.4.3 +.2.3 1.2.3 3.5.3 +.1.3 +.+.3 + .+.2 + .2.3 +.5.3 Species significance Range Mean 0-+ 0.4 JUO 0.8 0-3 0-1 0.4 1.0 0-3 0-+ 0.4 0.4 0-+ 0-+ 0.4 0.6 0-2 0-+ 0.2 . A n t i t r i c h i a curtipendula Bazzania denudata Bazzania nudicaulis Claopodium c r i s p i f o l i u m Dicranum majus . F r u l l a n i a niaquallensis Metzgeria furcata Mnium insigne 84 . Neckera menziesii P l a g i o c h i l a asplenioides 85 Porella navicularis 86 P t i l i d i u m pulcherrimum 87 Sphagnum papillosum 88 76 77 78 79 80 81. 82 83 Constancy lor Mean Range 3.0 2/5 3.0 3.0 2/5 3.0 2/5 3.0 2/5 2.5 2-3 2/5 3.0 2/5 2.5 2-3 2/5 3.0 2/5 3.0 1/5 157 157 157 24 157 157 157 25 25 157 157 157 24 (+.2.3 (+.2.3 (+.2.3 (+.2.3 (+.4.3 (+.1.3 (+.+•3 (+.4.3 (+.3.3 (+.2.3 (+.1.3 (+.2.3 (1.3.4 OO vn Table no. 35 Number.of plots P l o t no. Date Copteto - Thujetum plicatae ~\ P l o t size (sq.m.) Latitude Longitude Altitude ( f t . ) Slope gradient (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) A B C D 1 226 18/8 1961 koo l+9°l8] 122°3k' 1000 0 h dw D D Humus coverage (per cent) Decaying wood coverage (per cent) Land type and Land form 95 10 30 90 10 100 80 20 ' 2 : 223 7/8 1961 1+00 k9°n; 122 34 760 . 0' 0 Cfb AB-[rb4_ '186 3• 86 20/5 1959 800 l+9°22j 122°01' 700 0 k 90 20 15 5 15 20 95 5 88 12 80 70 129 98 98 79 Drainage Hygrotope Seepage Humus form S i t e index Western hemlock ( f t . per 100y)Western redcedar 8k 70 R e l i e f shape * Profile Contour l i n e 820 0 95 30 50 90 10 100 90 10 Spring-water swamp, high moor t r a n s i t i o n Cumulous deposits Straight Straight Very poorly drained Swampy Near surface Peat anmoor Parent material Mean :I8T Copteto - Thujetum p l i c a t a e Wo. of Species • Table no. 36 Layer Number of plots 226 Plot number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4o hi h2 1+3 44 45 A B C Eh dw h dw h dw h ' dw h dw dw e dw e dw h dw e . dw h dw dw e Thuja p l i c a t a Pinus monticola Tsuga heterophylla Pinus contorta Gaultheria shallon Thuja p l i c a t a Tsuga heterophylla Menziesia ferruginea Rubus s p e c t a b i l i s Sambucus pubens Vaccinium alaskaense Vaccinium parvifolium Vaccinium o v a l i f o l i u m Rhamnus purshiana Taxus b r e v i f o l i a Rubus v i t i f o l i u s Acer circinatum Malus d i v e r s i f o l i a Lysichitum americanum Coptis a s p l e n i f o l i a Athyrium f i l i x - f e m i n a Blechnum spicant Coptis t r i f o l i a Polystichum munitum Dryopteris austriaca Cornus canadensis Moneses u n i f l o r a Rubus pedatus Pteridium aquilinum Maianthemum dilatatum L i s t e r a cordata Plagiothecium undulatum Hylocomium splendens Rhytidiadelphus loreus Mnium punctatum Sphagnum squarrosum Dicranum fuscescens Scapania bolanderi Eurhynchium oreganum Conocephalum conicum Bazzania t r i c r e n a t a Isothecium stoloniferum Hypnum c i r c i n a l e Sphagnum papillosum Lepidozia reptans Cephalozia media P t i l i d i u m californicum 223 86 8.IO.3 8.IO.3 9.10.3 + . + .1 + . + .2 + .+.2 . 6.8.2 '5.8.2 7.8.3 4. + .0 + .5.1 + .5.1 5.6.2 3-6.2 4.7.2 + .+.2 + .+.2 6.8.2 + . + .2 + .5.1 + .+.2 +.+..3 + .+.2 + . + .1 + . + .2 + . + .2 + .+.1 + . + .2 + .+.2 + .5.2 + .5.2 + . + .1 + .5.2 2.5.2 + .5.2 2.5.2 + .+.1 + .+.1 + .5.2 + .+..2 5.6.3 + . + .2 6.7.1 7.9.2 +.4.3 1.3.3 +. + .1 + . + .2 + . + .1 2.+ .3 2.5.3 + . + .1 6.8.3 5.7.3 4.5.3 + .4.3 3.-5.3 + . + .2 5.6.3 3.6.3 2.5.3 + . + •3 7.9.2 + .4.3 7.8.2 4.5.2 5.7.2 3.4.2 5.6.3 2.5.3 + .3.3 + .2.3 + .1.2 1.6.3 +.2.3 2.3.3 + .2.2 2.4.3 + .2.3 + .4.3 4.5.3 2.5.3 +.1.3 1.3.3 + .4.3 5.7.2 + .3.2 3.4.2 3-5.2 2.5.3 2. + .1 3.5.2 2.3.2 4.5.3 2.4.. 3 +.4.3 5.6,3. +.4.3 + .3.3 + .2.3 2.4.3 + .2.3 2.3.3 +.4.3 +.2.3 1.3.3 1.3.3 +.2.3 Species s i g n i f i - Vigor Conscance tancy Mean Mean ^8.3 1.0 6.0 1.3 2.3 2.6 2.6' 1.0 1.0 1.0 1.0 1.3 1.0 1.0 0.6 1.6 1.0 -6.0 1.0 1.3 1.3 0.6 0.6 1.0 0.6 0.6 0.6 0.3 0.3 .0.3 ' 4.3 3.3 3.6 2.3 2.3 1.6 3.3 3.3 1.0 0.3 1.3 1.0 ; 1.6 1.0 0.6 1.3 0.3 0.3 1.9. 0.6 0.6 0.3 0.3 j 3.0 1.6 2.3 0.0 1.3 2.0 2.0 2.0 1.6 1.6 2.0 1,6 2.0 1.0 2.0 3-0 2.0 1.6 2.6 1-5 2.0 3-0 1.0 2.0 2.0 3.0 3.0 1.0 1.0 3.0 2.5 3.0 2.5 2.6 2.5 2.3 3.0 3-0 3.0 3.0 3.0 2.3 3.0 3.0 3.0 3.0 3-0 3.0 3.0 3.0 3.0 3.0 3.0 3/3 3/3 3/3 H 3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 2/3 2/3 2/3 H H 3/3 3 3 3/3 2/3 2/3 H H H H H H H H/ 3 3 3 3 3 3 3 3 l7 3 2/3 3/3 2/3 3/3 2/3 3/3 2/3 3/3 2/3 1/3 3/3 3/3 3/3 3/3 1/3 H H 1/3 3 3 2/3 2/3 l Table no, 37 Number of plots Plot no.• Date k Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope (degree) Macrocliaate Koppen Thornthwaite Strata coverage (per cent) A^ i 3 Bl B B C Dh D 2 - Land type and Land form Parent material Relief shape profile contour line Drainage Hygrotope Seepage depth pH Anmoor horizon C Humus form Site index ( f t . per lOOy) vaccinietosum alaskaensis 5 6 7 8 Mean Range 10 9 43 24 22/h 246 50 138 20/8 10/9 9/9 15/5 25/8 16/7 1958 1958 1958 1962 1958 1959 800 , U9°2l[ h9°25[ -A9°23J 49°l8] 49°17] 49°23| 49°20 ' 49°l8, 49°27, 49°19 123°0l' 122°59' 123°00' 122°35' 122°35' 122°45' 122°57' 122°35 123°0T 122°35 1040 900 750 1050 700 1600 884 7OQ-160 330 750 620 1100 180 225 180 225 135 90 1 1 1 0 10 0-10 .2 2 4 0 0 Cfb AB'rb . 20 40 40 10 30 30 30 15 25 °20 40 20 30 30 25 60 50 . 25 25 -30 15 20 15 20 20 25 15 65 50 50 60 50 30 75 95 70 75 20 30 20 45 55 20 30 20 25 35 40 40 40 30 30 50 70 90 80 60 *>6o 50 60 65 90 95 50 100 50 80 80 100 70 10 60 85 65 55 55 95 40 80 50 35 60 60 35 35 65 45 40 20 20 20 30 50 10 25 25 25 60 100 60 90 80 100 70 60 85 65 Spring-water swamp - Slope and terrace .cust-Alluvial CumulOusAlluviaieumulous Lacustrine; U i l l Lacust- C\unulous Cumuli rine Concave Concave Poorly drained Swampy Near surface 4.26 3.04-4.90 4.5O 4.75 3.04 3.98 4.15 4.90 4.50 4.60 6.10 5.50 5.24 4.60 6.00 5.10 5.31. 4.^60-6.10 Peat Anmoor Anmoor Anmoor Anmoor Anmoor Anmoor Anmoor Anmoor anmoor i§or arum Lysichiteto. -- Thujetum' plicatae 1 2 3 126 95 93 58 8/7 28/5 27/5 27/8 1959 1959 1959 1958 Western hemlock Western redcedar ( t Pe 110 105 88 89 130 124 97 115 91 98 96 125 104 76 90 95 87 105 104 102 101 88-130 76-125 Table no. 38 Number of plots No. Layer of Plot no. Species Characteristic combination of species Tsuga heterophylla 1 Al 2 3 Thuja p l i c a t a 2 1 2 3 Picea sitchensis l 3 2 3 4 Abies amabilis 1 2 3 Alnus rubra 1 5 2 3 Tsuga heterophylla Bl 6 7 8 9 10 ll 1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 1 Lysichiteto T Thujetum p l i c a t a e 1 2 3 4 5 6 7 8 9 126 95 93 58 43 24 22/h 246 138 5.8.2 + . + .2 5.8.3 6.IO.3 5.7.3 + . + .2 6 . 7 . 3 7.8.2 7.10.3 4.7.3 5.7.3 6.7.3 1.7.3 4.+.2 + . + .3 +.+.3 5.9.3 5.8.3 8.10.3 8.IO.3 4.8.3 +.+.3 5.8.3 4.7.2 +.+.3 6.8.3 +.+.3 +.+•3 4.+.3 4.+.3 6.+.3 6.8.2 3-+.2 6.8.2 3.8.2 6.+.3 +.+.2 +.+.1 3-+.3 +.+.3 +.+.3 4.5.3 Vaccinium alaskaense Rubus s p e c t a b i l i s 6.6.3 +.4.3 Thuja p l i c a t a + . + .2 + . + .3 4.5.3 6.7.3 3.7.3 5.6.3 4.5.2 Abies amabilis 3.6.3 4.5.3 +.+.3 4.5.3 Oplopanax horridus 1.5.3 2.4.3 1.6.2 3-+ . 2 4.7.2 3.6.3 4.6.2 4.7.3 5.6.3 8.10.3 1.5.2 3.5.2 + . + .2 +.+.3 + . + .3 1.5.3 4.5.3 4.6.3 +.5.3 2.5.2 1 . 5 . 3 +.5.2 4 . 5 . 3 +.5.3 3.6.3 + . + •3 4.5.3 Vaccinium o v a l i f o l i u m Ribes bracteosum Alnus rubra Picea sitchensis 3.+.3 3.7.2 5.8.3 + .+.2 -5-7.2 3.7.2 +.+•3 + . + .2 + . + .3 2.6.3 4.7.2 4.5-3 4.5.3 Sambucus pubens vaccinietosum alaskaensis 3.+.3 2.7-2 4.7-3 1.5.2 3-6.3 8.10.3 1.6.3 1.5.2 +.+.2 +.+.2 +.+.2 6.8.2 + . + .2 5.7.2 3.5.2 5.7.2 5.6.3 5-6.3 2.6.3 5.7.3 1. + . 2 2.+ . 2 4.6.2 2.5.2 7.9.3 2.5.2 +.5.3 +.+.3 4.7.2 2.6.3 3.6.3 50 6.+.3 4.8.2 5.8.2 5.+ .2 3-6.2 4.+ . 2 3.5.2 3.6.2 7.9.3 10 6.7.3 6.8.2 4.+.2 + .+.2 4 . 5 . 3 5.8.2 4.5.3 4.7.2 6.IO.3 7-10-3 ;+.+.2 + . + .2 3-+ . 2 + . + .2 4.6.3 + . + .2 3.6.3 + . + .2 3-7.2 3-6.3 + . + .2 Species V i i ;or significance Mean Range Mean Range 2.1 4.5 3.7 3-0 3.9 2.1 0.9 0.6 0.1 0.2 1.1 0.7 0-5 +-6 0-6 0-8 0-8 0-4 0-6 0-4 0-+ 0-2 0-4 0-2 0.3 0.7 4.2 2.3 2.6 3-3 1.5 3-5 1.5 0.8 1.8 1.2 0.7 1.6 0.2 0.4 0.8 0.5 0.4 . 0.1 0-3 0-4 3-5 0-4 0-7 0-8 0-6 0-7 0-4 0-3 0-4 0-4 0-3 0-4 0-1 0-2 0-4 0-4 0-3 0-+ 2.8 -.2.5 2.6 2.6 2.4 2.3 3.0 2.3 1.0 3.0 2.5 2.5 2.5 .2.0 2.5 2.5 2.3 3-0 2.8 .2.8 2.9 2.1 2.4 2.1 2.8 2.8 2.6 3.0 2.0 2.7 3.0 2.0 3.0 2-3 2-3 2-3 2-3 2-3 2-3 2.-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 Constancy 6/10 10/10 8/10 8/10 7/10 6/10 4/10 3/io 1/10 1/10 4/10 6/10 1/10 2/10 10/10 7/io 5/io 6/10 6/10 7/io 7/10 5/io 6/10 5/10 5/10 6/10 2/10 3/io 2-3 4/10 2/10 2/10 1/10 Table no. 38 - Continued Layer Number of plots No. of Species C 13 Lysichitum americanum Blechnum spicantDryopteris austriaca Tiarella trifoliata Athyrium f i l i x - f e m i n a Streptopus amplexifolius Rubus pedatus Carex bolanderi Galium t r i f l o r u m Viola glabella Gymnocarpium dryopteris Maianthemum dilatatum Habenaria saccata S t e l l a r i a crispa Circaea alpiha Cardamine breweri Equisetum telmateia Epilobium adenocaulon Co.nocephalum conicum Mnium punctatum lh 15 16 17 18 19 20 21 22 23 2h 25 26 27 28 29 30 31 32 h dw h dw h h h h h h 33 3h 35 36 37 38 39 1+0 1+1 B2 1 2 1+2 43 1+1+ 45 C Eurhynchium s t o k e s i i P e l l i a sp. Sphagnum squarrosum Mnium menziesii Hookeria lucens Mnium insigne Sphagnum papillosum - Companion species G a u l t h e r i a shallon Taxus b r e v i f o l i a Vaccinium parvifolium Menziesia ferruginea Cornus canadensis Polystichum munitum Lysichiteto.. H>Thujet um' plicatae.. vaccinietosum ; alaskaensis 7 7.9.3 5.6.3 4.5.3 5.4.3 2.4.3 +.+.3 3-4.2 9.10.3 9.10.3 3.5.3 +.. + . 2 2.5.3 3.5.3 4.5.3 3.4.3 2.5.3 4.5.3 +.+.3 2.3.3 2.4.3 2.3.3 + . + •3 +.2.3 2.5.3 5.4.3 3.4.3 2.+ .2 + . + .2 4.5.3 5.6.3 6.5.3 5-6.3 + .3.3 3.4.3 4.6.3 + .3.3 + .2.3 + .3.3 4.3.3 6.5.3 5.5.3 5.5.3 +.2.3 2.4.3 4.5.3 5.5.3 +.+.3 + . + .2 3.+.3 3.5.3 +. + •3 4.3.3 4.5.3 8.9.3 +.4.3 3.5.3 5.5.3 4.5.3 7.8.3 4.6.3 2.4.3 2.5.3 1.4.2 +.+.3 +.3.1 1.3.3 1.5.3 1.4.2 1.+.3 2.3.3 2.4.3 3.5.2 2.4.3 7.8.3 4.5-3 3.5.3 3.4.2 4.5.3 2.+ .3 1.4.2 3.4.3 6.7.3 6.8.3 4.5.3 +.5.3 3.5.3 +.+•3 6.7.3 9 4.4.2 4.5.2 +.+.2 +.4.3 +.+.2 +.+.2 +.+.2 + . + .2 +.3.2 5.6.3 + . + .2 +.3.3 3.4.3 + . + .2 2.+.3 1.4.2 + . + •3 3-4. 3-6. 4.6. 3.5. +.2. 5.6. 4.6. 4.51.2. 1.5.1 +.+.3 + .4.2 3.4.3 2.4.3 2.3.3 + . + .3 2.3.3 2.3.3 2.3.3 4.4.3 4.5-3 5-6.3 3.4.3 1.3.2 2.3.3 5.5.3 3.6.2 7.8.3 7.9.3 4.6.3 4.5.3 3.6.3 1.+.3 +.3.3 4.6.1 + .7.2 2.4.2 8.10.3 4.5.3 2.5.2 4.4.2 1.5.3 +. + •3 3.5.3 +.3.2 8 5.8.2 3.6.3 + . + .2 5.7.3 + . + .1 5.4.3 5.6.3 2.5.3 .4-3 • 5.3 . + .3 • 5.3 .7.3 • 7.3 • 5.3 3.6.3 6.7.3' 5.6.3 3.5.3 .6.3 • 5.3 4.6.3 4.6.3 2.3.3 1.3.3 3.4.3 2.3.2 3.5.3 3.5.3 + . + .3 3.6.3 3.5.3 3.5.3 2.5.2 2.5.3 4.6.2 5.7.3 3.5.3 4.6.3 4.5.2 1. + .2 Species significance Mean Range 6.7 3.5.2 3-9 4.4 6.7.3 +-7 +-4 4.5.3 2.9 +-6 6.6.3 3-5 2.4.2 +-4 2.3 0-2 + . + •3 1.1 2.4 5.6.2 0-6 0.6 0-3 0.7 0-3 0-2 1.5.3 0.7 0-1 0.3 2.2 0-5 5.7.3 0.6 0-3 0-1 0.3 0.8 0-3 0.4 -0-3 0.4 0-2 0.2 0-+ + . + •3 3-2 +-5 4.4 2-6 6.6.3 0-6 3.0 4.5.3 0-8+ . 3 . 2 3-3 0.4 0-+ 3-0 3.5.3 0-5 5.5.3 3-7 0-5 _ 0-4 1.2 0.8 1.3-3 0-3 0-1 . 0.3 0.6 0-3 - Constancy 10 2.5.2 3.5.2 2.5.2 3.5.2 2.5 1.2 0.9 0-5 2.3 0.8 0-5 0-5 0-3 0-3 0-5 0-3 Mean Range 2.8 2-3 2.8 2-3 .2.8 2-3 2.8 2-3 2.7 2-3 2-3 2.9 2.4 1-3 2.7 2-3 2.7 2-3 2.6 2-3 2.6 2-3 3.0 2.7 2-3 2.3 2-3 3.0 2-3 •2.5 2.3 2-3 2.5 2-3 3.0 2.9 2-3 3.0 2-3 2.9 3.0 3.0 3.0 3.0 3.0 2-3 2.7 3.0 1.8 2.6 2.2 2.5 2.7 2.0 1-3 2-3 2-3 2-3 2-3 1-3 10/10 10/10 10/10 10/10 10/10 9/10 9/10 4/10 4/10 5/10 3/10 5/10 4/10 3/10 3/10 2/10 3/10 2/10 10/10 10/10 7/10 9/10 4/10 9/10 9/10 4/10 5/10 3/10 •37io 7/10 5/10 5/10 2/10 9/10 4/10 vo o Table no. 38 - Continued Layer No. Number of plots of Species Linnaea borealis 46 Luzula p a r v i f l o r a 47 L i s t e r a cordata 48 Lycopodium selago 49 Rhytidiadelphus loreus 50 dw Hylocomium splendens h 51 dw Plagiothecium undulatum h 52 dw Scapania bolanderi dw 53 e' dw Cladonia subsquamosa 54 e Lepidozia reptans dw 55 e P l a g i o c h i l a asplenioides h 56 dw e Dicranum fuscescens dw 57 e dw Isothecium stoloniferum 58 e Dicranum scoparium h 59 dw Hypnum c i r c i n a l e 60 dw e Bazzania ambigua 61 dw e h Eurhynchium oreganum 62 e dw Calypogeia suecica 63 Cephalozia media dw 64 dw Bazzania denudata 65 Bazzania t r i c r e n a t a dw 66 Frullania nisquallensis e 67 Porella navicularis e 68 Cephalozia lammersiana e 69 Lysichiteto. 1 + .3.3 + . + .3 2 Thujetunv p l i c a t a e 4 3 + .2.3 -i + .2.3 +.2.3 + .3.3 1.2.3 1.2.3 + .2.3 2.4.3 + .2.3 + .4.3 3.4.3 1.2.3 +.1.3 2.3.3 + .2.3 + .2.3 +.2.3 + .3.3 + . + .3 4.5.3 2.3.3 + .3.3 3.4.3 1.2.3 + .3-3 2.4.3 + .3.3 + .2.3 + .1.3 + .1.3 + .2-3 1.3.3 +.2.3 2.3-3 + .2.3 +.2.3 + .3.3 + .3.3 4.5-3 + .2.3 +.2-3 + .2.2 + .+ . 3 + .2.3 + .2.3 2.5.3 + . + .3 + . + .3 1.+.3 6.7.3 2.5.3 1.5.3 .1.3.3 + .3.3 2.3.3 + .3.3 + .2.3 + .1.3 +.1.3 +.2.3 1.3.3 +.3.3 +.2.3 1.2.2 +.5.3 + .2.3 6 + . + .2 + .+ . 3 4.5.3 3.5.2 2.5.3 3.3.2 4.5.3 + .3.3 + . + .2 + . + .2 + .2.3 + .1.2 4.3.3 2.2.3 + .1.3 + .2.3 + .2.3 + .2.3 8 7 2.5.2 1.2.3 - .. 3.6.3 +.2.3 2.4.3 2.4.3 2.5.3 4.5.3 3.5.3 5.5.3 1.2.3 2.3.3 3.2.3 + .4.3 1.1.3 + .1.2 + .2.3 +.1.3 1.3.3 +.1.3 +.2.3 2.1.3 1.3.3 1.2.3 + .3.2 3.5.3 + .3.3 r.2.3 + .3.3 +.2.3 +.3.3 + .1.2 +.2.3 +.1.3 + .1.3 5 2.5.2 + .3.3 + . + .3 2.3.2 2.5-3 3-4.3 2.3.3 3.4.3 5.3.3 2.3.3 + .3.3 + .1.2 + . + .2 3.5.3 + .2.3 vaccinietosum alaskaensis 4.6.3 +.+.3 2.5.3 5.6.3 6.7.3 6.7-3 7.6.3 5-6.3 5.6.3 4.3.3 +.2.3 4.6.3 + .2.3 1.3.2 + .1.3 + .3.3 1.3.3 2.3.3 3.5.3 + .2.3 2.5.3 3.5.3 + .3.3 5.5.3 1.3.3 2.1.2 + .2.3 +.+.3 +.+.3 +.+.3 +.2.3 + .1.3 + .2.3 1.1.3 +.1.3 2.3.3 + .1.3 +.2.3 2.3.3 Species Vi£2jor significance Mean Range Mean Range 2.3.2 0-2 2.4 .0.8 2-3 0.4 0-1 3.0 0-+ 2.6 0.3 2-3 0.6 0-2 3.0 2.4.3 2.8 0-7 4.3.3 7.9.3 3-1 2-3 0-6 3.0 5.6.3 2.3 1.2.1 2.8 .+-6. 2.6 2.3.2 1-3 + . + .2 2 . 0 2.8 0-7 2-3 2.1 3.0 7.8.3 0-7 2.8 1 . 5 . 2 2.7 4.5.3 +-5 2-3 + .2.2 2.3.2 0-4 .2.8 2.3 2-3 3.0 + . 1 . 3 + . 5 . 3 1.0 + . + .2 + .1.2 0.6 0-1 2.3 2-3 0-+ 2.6 2-3 + . + .3 0 . 8 0-4 3.0 + . 2 . 3 + . 1 . 3 1.4 0-+ 2.8 + . 1 . 3 + . 2 . 3 0.7 2-3 0-4 0.7 ,3-0 0-2 3.0 0.7 0-+ 3.0 0.3 + .3.2 3.2.2 1.1 0-3 2.5 2-3 + . + .2 + . 2 . 3 0 . 6 0-+ 2.5 2-3 + . 2 . 3 + . 2 . 3 0.7 '0-3 - 2 . 8 2-3 + . 4 . 3 + .4.3 0.9 0-+ 3.0 0-2 3.0 0.3 0-3 0.9 2.5 2-3 2.4.3 3-0 0-3 1.3.3 0.7 + . 1 . 2 + . 3 . 2 0.7 0-1 2.7 2-3 0.6 3.0 + .2.3 3.5.3 0-3 0-+ 3.0 + . 5 . 3 0.5 3.0 0-5 1 . 2 . 3 0 . 9 2.3.3 2 .6 0-3 0.5 0-2 2.8 0.7 2-3 0-+ 3.0 + . + •3 0.5 0-2 3.0 0.7 0-2 3.0 + .2.3 0.5 0-+ 3.0 0.3 0.4 0-+ 3.0 0.2 0-+ 3.0 9 10 Constancy 5/10 4/10 3/10 4/10 8/10 7/10 10/10 7/10 7/10 10/10 9/10 10/10 6/10 8/10 9/10 7/10 3/10 6/10 3/10 8/10 6/10 5/10 9/10 2/10 6/10 4/10 7/10 3/10 5/10 4/10 3/10 5/10 5/10 5/10 4/10 3/10 4/10 2/10 Table no. 38 - Continued L y s i c h i t e t o , - Thujetum p l i c a t a e . vaccinietosum alaskaensis No. Layer Number of plots of 6 7 8 9 1 2 3 4 5 Species 70 dw. Plagiothecium denticulatum + .2.3 +.2.3 P t i l i d i u m californicum e + .2. 3 71 Plagiothecium elegans + .2.3 e +.1.3 +.2.3 72 A n t i t r i c h i a curtipendula e + .2.3 +.3.2 + .2.3 73 Neckera menziesii e +.1.3 + .1.3 74 Metzgeria f u r c a t a e + .1. 3 +.+.3 75 Calypogeia neesiana + .1.2 dw +.1.3 ^ 76 +.1.3 Lophocolea heterophylla e + .1.3 +.+•3 77 Sphaerophorus globosus e 78 + . + .2 P o r e l l a platyphylla e +.3.3 + .1.3 79 Metzgeria conjugata e 80 +.+.3 R i c c a r d i a sinuata 81 +.1.3 +.2.3 e 1 82 83 84 85 86 87 Cornus occidentalis Lonicera involucrata Malus d i v e r s i f o l i a Physocarpus capitatus Pseudotsuga m e n z i e s i i Ribes divaricatum 43 58 58 58 126 58 (+•+.3) (+.5-3) (+.7.2) (3.6.3) 88 89 90 91 92 Actaea arguta Epilobium alpinum L i s t e r a caurina Pteridium aquilinum Trisetum cernuum 58 58 43 126 (2.5.3) (+.+.2) (1.+-3) (+.+.2) (+.+.2) 22/h (+.+.2) 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 Aulacomnium palustre Calypog ;eia trichomanes Claopodium bolanderi C. c r i s p i f o l i u m Douinia ovata F o n t i n a l i s kindbergii Heterocladium heteropteroides I-cmadophila ericetorum Lophozia i n c i s a Pohlia cruda Radula complanata Sphagnum fimbriatum S. girg;ensonii S. recurvum S. tenellum Species jor .-. V i significance Mean Range Mean Ran ge { 10 1.2.2 0.3 0-1 0.1 0-+ + .2.3 0.4 0-+ 0.3 0-+ 0.2 0-+ 0.2 0-+ + .3.2 0.4 0.-+ 0.2 0-+ + .1.3 0.2 • 0-+ 0.2 0-+ 0.1 0-+ 0.2 0-+ 58 126 43 43 24 43 2.6 3.0 3-0 2.6 3.0 3.0 2.5 3.0 2.5 3.0 3-0 3.0 2- 3 2-3 2-3 2-3 ••Constancy 3/10 1/10 4/10 3/10 2/10 2/10 4/10 2/10 2/10 2/10 l/lO 2/10 (,+•4.3) ('+.+•3) ([+.1-3) ('+.1.3) ([+•1.3) ([+.1.3) 22/h (>-l-3) 24 ( +.2.3) (>. + -3) ('+•+•3) ([+.1.3) 2k (:+.3.3) 22/h ([1.4.3) 2k ([2.5.3) 95 ([3.5.3) 93 58 126 rq. Table no. 39 Number of plots Plot no. Date Hygrohypneto - Scoulerietum aquaticae 1 256 26 A 1963 Plot size (sq.m.) Latitude Longitude Altitude (ft*) Ko'ppen Macroclimate Thornthwaite Strata coverage (per cent) Plot size (sq.m.) Latitude Longitude Altitude Macroclimate Koppen Thornthwaite Strata coverage (per cent) A B C D Land type and Land form Bench height (ft.) Days of overflow per year Depth to first'gravel horizon Mean 23A 1963 1 49°47! Cfb 10 75 90 Alluvial bench 6 162 0 5 190 0 7 130 0 8 60 102 0 6-5 1 4 6 0 Hygrohypneto - Scoulerietum aquaticae Species Vigor Cons1 2 3 4 .signifitancy cance 256 253 257 25k Mean Mean Scouleria aquatica Hygrohypnum ochraceum Fontinalis sp. . . Agrostis sp. Salix sitchensis Rhacomitrium canescens Equisetum arvense Dicentra formosa Maianthemum dilatatum Carex sp. Table no. 4 l Number of plots Plot no. Date 1963 25k 123°ll Table no. 40 Layer No. Number of plots of Species Plot no. D 23A 4' 3 257 26A 1963 90 - 100 Land type and Land form Bench height (ft.) Days of overflow per year Depth to f i r s t gravel horizon (cm.) 1 2 3 4 5 6 7 8 9 10 2 253 4.3.3 8.5.3 8.5.3 7.5.3 6*7 +.2.3 2.3.3 4.+.2 4.3.3 2.7 + .1.3 •1. + .2 +. + .2 0.5 +.+.1 0.2 +.+.2 0.2 +.+.2 0.2 +.+.1 0.2 +.+.1 0.2 +.+.2 0.2 Equisetetum arvensis 1 251 23/4 1963 2 258 26/4 1963 1, 49°50, 123°13 100 3 274 10/5 1963 Cfb AB-^rb^ 90 0 11 18 33 90 0 85 0 12 9 60 13 4 58 Alluvial bench 12 10 44 3.0 3.0 2.0 1.0 2.0 2.0 1.0 1.0 2.0 Table no. 42 No. Layer of Number of plots Species 1 2 3 4 5 6 7 19% Equisetetum arvensis 1 2 3 Equisetum arvense 8.5-3 Equisetum variegatum 3-4.3 Scirpus microcarpus +.4.3 Elymus glaucus 3 . +.3 S a l i x sitchensis 4. +.3 4 . + . 3 Alnus rubra ) + .+•3 regeneration Populus trichocarpa) 3-+.3 Species Vigor Conssignificance tancy Mean Mean 8.3 1.0 3.0 3.0 3/3 1/3 1.0 2.6 0.3 1.0 3.0 3.0 3-0 3-0 2/3 1/3 1/3 Table no. 43 Scoulerieto - "Salicetum Table no. 44 Scoulerieto - Salicetum No. Layer 1 Number of plots Number of plots 320 of P l o t no. Species 8/6 Date Plot no. i960 P l o t size (sq.m.) . o • 49°17, 1 A Alnus rubra Latitude Populus trichocarpa 2 Longitude 123°13 Acer macrophyllum Altitude ( f t . ) 100 3 S a l i x sitchensis 4 Macroclimate Koppen S a l i x lasiandra Thornthwaite 5 80 Strata coverage (per cent) A Acer circinatum B 6 B 80 C Cornus occidentalis 35 7 Rhamnus purshiana D 8 5 Rubus s p e c t a b i l i s Land type and Land form Alluvial 9 Thuja p l i c a t a 10 bench Pseudotsuga menziesii Bench height ( f t . ) 11 10 Abies grandis 12 Days of overflow per year 42 Symphoricarpos r i v u l a r i s Depth to f i r s t gravel horizon 13 Physocarpus capitatus (cm.) 14 0 Lonicera involucrata 15 S a l i x sitchensis Alnus sinuata 16 Spiraea menziesii 17 Acer macrophyllum Rubus p a r v i f l o r u s 18 Sambucus pubens 19 Betula pa.pyrifera 20 21 22 23 320 7.10.3 5.9.3 + . + .3 + • + .3 4.6.3 +. + •3 +.5.3 + .+•3 + .4.3 4.5.3 5.+ .2 + . + •3 -+.5.3 + .5.3 2.5.3 + . + •3 3-+ .3 3.4.3 3.5.3 + .5.3 + .+ .3 + . + •3 C Elymus glaucus. Aruncus vulgaris Bromus vulgaris Poa p a l u s t r i s Osmorhiza c h i l e n s i s Geum macrophyllum Lactuca muralis Dactylis glomerata Polystichum munitum Smilacina racemosa 6.7.3 + . + .3 3.4.3 3.5.3 + . + .2 + . + .3 + . + .3 + . + •3 + . + .1 + . + .3 D Scouleria aquatica Hygrohypnum ochraceum Rhytidiadelphus triquetrus Mnium insigne Rhacomitrium canescens 2.4.3 + .3.3 + .2.3 + .3.3 + .3.3 24 25 26 27 28 29 30 31 32 33 34 35 1 Table no. 45 Number of p l o t s P l o t no. Date P l o t size (sq.m.) Latitude Longitude Altitude (ft.)"; Macroclimate Koppen Thornthwaite S t r a t a coverage (per cent) Saliceto - Populetum trichocarpae 4 1 2 3 5 270 272 271 273 259 26/4 10/5 10/5 10/5 10/5. 1963 1963 1963 1963 1963 25 49°54' i+9°l+7' 123°15' 123°11' 90 - 120 Cfb AB-^rbjj A B C D Land type and Land form Bench height ( f t . ) Days of overflow per year Depth t o f i r s t gravel horizon (cm) Stand age (years) Table no. 46 Layer No. Number of plot of Species Plot no. 1 2 3 4 5 6 7 8 9 10 ll 12 13 14 B S a l i x sitchensis Alnus rubra Populus trichocarpa S a l i x lasiandra Rubus spectabilis Acer macrophyllum Lonicera involucrata Thuja p l i c a t a Equisetum arvense •Equisetum hyernale Elymus glaucus Scirpus microcarpus Angelica genuflexa Maianthemum dilatatum 75 30 13.5 2.5 95 3 100 35 25 l 12.5 6 30 4 A l l u v i a l bench 10 10.5 12.0 26 42. 9 0 50 5 2 4 3 Saliceto 259 10 6 264 27A 1963 7 262 27A 1963 90 15 40 10 10 10 10.5 26 13 3 13.5 2.5 35 7 8 263 Mean Range 27A 1963 80 15 12.7 5 24 5 11.9 15 32 4 .10-13.5 2.5-42 0-95 2-7 Populetum trichocarpae 270 3 4 5 6 7 8 271 272 273 264 262 263 8 . 7 . 3 3 . 5 . 3 4.+ .2 +. + .2 ..2.+ . 3 +.+.3 5 . 6 . 3 +.+.2 +.+.2 +.+.3 8 . 7 . 3 5.+.2 4 , + . 2 3.+.2 + . + .3 + . + .2 6.7.3 6.7.3 +.+.3 3 . 4 . 3 +.+.3 +.+.3 + . + •3 + .4.2 + . + .2 +. + . 2 + . + . 2 4 . 5 - 3 8.7.3 6.7.3 7.7.3 4.+.2 5-7.3 +.+.3 3.+.3 +.+•3 4.5.3 6.7.3 2.+.3 4 . 5 . 3 3.5.3 +.4.3 +.5.3 4.+.3 3.+.3 ""•' Species^*'"" significance Vigor Mean Range Mean Range 2.7 2.7 4.6 0.1 0.2 0.3 0.1 0.1 3-2 1.6 0.6 0.1 +-8 0-8 +-8 0-+ 0-+ 0-3 -0-+ 0-+ 0-6 o-4 0-3 0-+ 2.5 2.6 2.5 3.0 2.5 3-0 3.0 3.0 3.0 3.0 3.0 3.0 2-3 2-3 2-3 0.2 0-+ 2.5 2-3 2-3 Constancy 8/8 6/8 8/8 1/8 2/8 1/8 1/8 1/8 5/8 5/8 3/8 1/8 2/8 vo Lonicereto - Populetum trichocarpae 4 5 1 2 3 265 314 316 306 313 14/6 11/6 10/6 7/6 2TA i 9 6 0 i 9 6 0 i960 i960 1963 Table no. 47 Number of plots Plot no. Date P l o t size (sq.m.) Latitude Longitude Altitude (ft.) Mac-roc limate Koppen. (per cent ) Az 4 0 60 85 65 A2 A E l B' 2 B C D Land type and Land form Bench height ( f t . ) Days, of overflow per year Depth to> f i r s t gravel horizon Stand age (years) 65 70 14.5 2 (cm.) 50 15 Table no. 4 8 No., Layer of Number of plots Species P l o t no. 1 2 3': 4 l 2 1 2 1 2 Bl 2 A 10 7 261 26/4 1963 8 268 28/4 1963 9 269 28/4 1963 75 10 75 60 25 80 90 90 70 60 100 1 90 75 95 50 70 90 30 5' 90 20 60 90 17 1 210 45 17.5 l 156 22 15 2 65 14 14 3 55 16 250 23/4 1963 Mean Range 400 4 °56; - 123°15 50 - 150 Cfb 49°44 123°10 Tnorntnwai-ce Strata coverage 6 260 26/4 1963 Populus trichocarpa Alnus rubra Picea sitchensis Rubus s p e c t a b i l i s 80 10 85 15 55 60 75 50 60 80 30 75 90 70 15 2 55 14 15 2 53 15 : 80 80 20 70 80 65 14.5 2 88 17 9 75 5 75 65 80 80 80 80 65 60 35 5 A l l u v i a l bench I6.5 16,5 1 1 180 • 125 16 17 70 60 15.5 2 104 19 14-17. 1-3 50-210 14-45 Lonicereto - Populetum trichocarpae l 2 3 4 5 6 7 8 9 10 Species significance 306 313. 316 314 265 260 261 268'- 269 250 Mean Range v[ean Rang 5.7.3 7.9.3 9.10.3 •7.9.3 6.6 0.4 5.8 1.7 4-9 0-4 0-9 0-8 3-0 2.0 2.7 3.0 7.6.3 9.10.3 6.8.3 0.4 5.5 1.3 0-4 0-9 0-7 2.0 3.0 3.0 6.8.3 8.9.3' 7 . 8 . 3 7.9.3 4.+.3 5.7.3 4.+.2 8.IO.3 6 . 8 . 3 6.8.3 8.9.3 9.10.3 7.8.3 4.+.2 7.8.3 7.9.3 5.7.3 6.8.3 7.8.3 7.8.3 8.9-3 9-10.3 5.8.1 8.9.3 7.8.3 Vigor 1-3 Constancy 10/10 2/10 8/10 2/10 2/10 8/10 2/10 VO 197 q q q o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o to ^ a ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ o o I I CD Cd o w I—1 cn I OJ M fl ^ ^ ^ ^ ^ H r—Ir—Ir—Ir—IrHrHr—IrHH I cn OJ I I I I—I I—t cn CM oo I I H OJ OJ ro cn cn cn I I I O J O J C M ro ro I I OJ OJ i OJ cn cn I I OJOJ A O O O O O O a D O I > - O L r N O O O L r \ v O O V O O L r \ L r \ o O O r — O r —O t ^ O O O O O n O - 4 cd • • • • • . . . . . . . . <D r o oo no r o m r o oj r o o j r o o j r o r o r o H CM r o o j OJ OJ OJ OJ r o r o o j o o o j c o o j r o r o r o r o oo w OJ <D a > o bo fl d V D C O I A LTNVO -=t Lf\_4- VO CJN LTN f — LT\-4" c o d CD O f r j O O O O O O O ^ coc^co(^co(^ocuoooot^ooaj(jococ^ c d c i i i i i + i i o + i i 00 + i i + LTVCO -4" OJ + i i i ^ © 0 i i 0 i 0 i 0 i 0 + i 0 LTN + + + CO OJ OO i 0 i 0 i 0 i 0 + O J r O + OOOJOO i i i i i i 0 0 0 0 0 0 i i 0 i 0 i 0 i 0 i 0 0 0 CH CL) - H c ftfla CQ c f l n j O W H O M A O J O O f - O J C O r H H OOVO t — ON CT\VO OOOJ OJ -4" ON t ON CM -4" OOOJ OOCO r o LTN.H- O N •H <D C Q g r O O J O J O O J H r O O r O L T v c v j J - O J O O H O J O O O O O O O O O r H O O O O O O O O O oo * t— • OO • + • + ro • LT\ • -4- OJ • + • + CM OO OO r o r o • • • • • + o + LTWD • r-i • • • + • + rojCO OO • + • + oo • + • + CO VO • LTV OJ oo r o r o • mm • + CO LT\ + • • • • + r - ooLTN OO OO • • + + • • oo oo oo • + • OJ OO • + • + oo • + • + oo • VO • LT\ OJ oo oo r o r o • • • • • + C- + + -4• • • • • + VO OJ LTN + ro ro • • + ON • • + CO ro « LT\ • ro oo • Lf\ • + oo • t— • VO OO • LTN • OJ oo oo r o oo r o r o • • • LTN O VO r — t—vo • H • • • • • LT\ LTN LTN ON ro r o • • VO vo • • ro • LTV • ro oo • + • ro oo • + • + OO • vo • -4" ro r o r o ro • • • • LTN LTN + VO • • • • -4- -4" + CM OO • • + LTN • • + OO ro • VO « ro ro • + • oo oo • LTN • + OO OO CM r o m LTN LTN + c— • • • • r o oo + vo -4" ON CO f- Cl) cd p. VO ro • + • M cd o o LTN xi o « LT\ • + -4- •ri fn -P OO • CO • 0) =1 ft O P-. ro o -P 0) CD •H fl ... H • + ro r o ro r o r o oo CM OO oo oo • • • • • • t — C—-4- + r - + • * • • • • LTN OO OO + r o + . + VO • • ro • + oo OO oo CM r o r o OJ r o oo tvo LTV vo + LTN LTN_4 LTN -dr LT\ + VO LTN OJ r o LTN t— + • ro ! ro • + • + OJ • oo • + ro • -4• ro OO OO CM OJ • • • • + + -4/ • « • • + + CM OO oo oo oo r o • • • • IT\ OO + + » • • • r o OJ CM + oo oj oo OJ r o r o r o • • • • • • m LTN + + + + + LTN • • • • • • o -4" + + + + + CM OJ r o • • + + • • + + OJ OJ • • + + • • + + + • + oo • ro • ro ro • + • + oo OJ r o oo • « • • + + + vo m • • • + + + LTN ... OJ • + • + o oo + • + OJ • + • ro r o r o r o OJ « LTN + + m m m• .4- + + OJ LTN O- VO LON CO + + + + • • • • • • • • • -4" LT\ J - r o r - + J - + + oo • LTN « ro oo + co + oo r o r o oo r o CM r o r o r o ro • + • + ro • LT\ • + • • • • r o + VO + ro-4 -4- -4- ro-4- vo OJ CM -4- r o oo • • + + • • ro + ro • + • ro OO OO OJ • • • vo ON f - V O • • • • J - CO LTN LTN OJ o ... oo r o r o oo oo o CO • U t — .. ro • + • + ro • oo • + LT\-3- OO oo oo r o r o oo r o CM CO oo • • • • • • « LTN + LTN LTNVO LTN C + + VO c— -P rH o ro • + * ro oo oo OO • • • vo oo + • OO OJ rH r o oo • • CM OJ • • + + oo r o r o oo • • • • + -4- + + • • • OO + + + OJ OJ • • rH rH • • + + CM r o r o CM OO oo oo r o ro ro + LTN + + + + + -4- LTN + -4- rO-4- + + + OJ + + ro O CQ CQ O iH 3 •H -P fl O O u o 3 CO -p rH O > fl •H O rH ft CH cd U CL) <D •ri O o U O O CQ •ri r9 O fl ti fl O •3 u CD o o H U P 0) cd !>, fl CD Xl O +> •ri CQ cd CD o •ri PH cd cd CD cd r-i •H C J CQ rH •ri CQ •ri p fl CQ •H CQ r-i •ri r-i 0) fl cd P CQ CQ r-i <D -ri r-i Xi CD o fl CD •rl > r-i cd fl CH cd •r-i cd ft fl CD X> X! U -ri cd CD •rl Xi o -p -p O Cd rH cd Xi cd ftu flS3 fl Xi u 3 cd cd 3 Q p u o V o o CD 3 •ri +> o cd ft CQ £> r-i 6 cd S c d •rl •p •ri u -P S fl CQ 3 fafjCD N •rl o r-i •ri r-i C J CD fl u •rl cd CQ CQ CQ •ri -p H u Xi Xi 3 ft ft cd O o CQ CQ -p Xi CD CO cd CQ X r-i u CQ Cd cd X cd 3 3 fl •rl •o u US u 3 u •ri O cd Q •ri r-i 3 p •H •H flCD r-i U 3 -H r-i a. B fl . 0) rH o cd cd r-i r-i cd CQ a* B Xi cd xi o CQ ft CQ W W CQ EH C Q EH < EH C Q < ! < C Q CD CQ 3 £ a o <c rH CM r H rH •era CO -4 O +> fl CD CQ •ri CQ CQ •ri CQ ci CD 3 fl +> cd -P cd rH CQ •H 3 T3 V ea cd -P cd ti o CM CM «: PQ •H rH O cd fl •rl s U cd CH •ri CD 3 cd X CT CQ X 1 cd CQ CQ CQ rH •H CH fl cd O 3 H 3 bO XI CD x CD cd flCD u ft >> r-i fl -H xi CQ M CD 5H o rH fl bD <D fl r-i CQ Xi hO O CH CD •H rH 3 CD *H CQ rH cd -Cl 3 •ri CH p 3 cd fl ft r-icd > cd £q cd •ri •ri x> _+ 1 O w ft U o 3H -P t ) CQ •H CD •P CQ •H cd cd 3 rH O fl ft p •ri CD r-i r-i 0 <D ftCD •H M CQ O O o 3. U •ri-•ri o • H H fl xi fl •ri Cn 4^ w C Q > > PQ P P K r-i CQ CD cd rH CH •d CD CD CQ cd •ri ft a rH -PU cd e R CQ CD O S CH O o CD ft CQ LTN VO r- OO ON O r-H CM r O J / LTN VO t — CO ON O r-i OJ OO LTNVO t—CO ON O rH CM OO CMOJOJOJOJCMCMOJOJCMOOOOOOOO Table no. 48 - Continued Lonicereto - Populetum trichocarpae 3k grandis leucodermis bracteosum lasiandra 306 306 268 316 (+•+•3) (+•+•3) (5.6.3) (4.7.3) 50 51 Asarum caudatum Carex leptopoda Circaea alpina Epilobium angustifolium Habenaria saccata Lycopus uniflorus Montia s i b i r i c a Oenanthe sarmentosa Poa p o l u s t r i s Poa pratensis Prunella vulgaris Smilacina :racemosa Trautvetteria grandis Trientalis l a t i f o l i a 26l 306 26l 313 316 314 260 250 306 313 314 306 261 269 (1.3.3) (+.+.3) (2.+.3) (+.+•3) (+•+•3) (+.+.3) (+.+•3) (2.3.2) (4.5-3) (+.1.2) (+.4.3) (+•+•3) (3.5.3) (+•+•3) 52 53 54 Dicranum fuscescens Hypnum c i r c i n a l e Mnium punctatum 316 316 316 (+.+.2) (+.+.2) (+.3.2) 35 36 37 38 39 ko kl 42 k3 kk 45 kG kl. kQ k9 Abies Rubus Ribes Salix Table no. 49 250 (+.+.1) Oplopanaceto - Piceetum sitchensis populosum trichocarpae Number of plots Plot no. Date Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Macroclimate Ko'ppen Thornthwaite Strata coverage (per cent) A l A A Bl B B C D Land type and Land form Bench height ( f t . ) Days of overflow per year Depth to f i r s t gravel horizon (cm.) Stand age (years) 2 2 1 311 9/6 i960 2 303 7/6 i960 4 3 266 267 27/4 27/4 1963 1963 800 * 4oo 49°44' - 49 56 ' 123°10 - 123°15 120 60 100 90 0 Mean ( 1 Cfb 35 80 90 75 75 70 50 20 1 125 80 AB Tl i °k' 40 10 50 85 80 75 80 80 60 90 65 80 . 70 15 80 90 1 65 90 30 19 1 195 70 18 1 150 25 21.5 30 A l l u v i a l bench l 250 89 93 19.6 l 125 66 Table no. 50 Ko. Layer of Number of plots Species Plot no. 1 2 3 4 5 6 7 8 9 Ai 2 1 2 1 2 1 2 1 2 B 10 11 12 13 C Ik 15 16 17 18 19 20 21 22 23 2k 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Dfo Oplopanaceto 1 2 311 303 Populus trichocarpa + . + .3 6.8.3 Picea sitchensis Alnus rubra 199 Piceetum sitchensis populosum trichocarpae Species Vigor Cons3 4 signifitancy cance 266 267 Mean Mean 5.+.3 6.8.3 8.10.3 8.10.3 + . + .2 L 8.+.3 + . + .3 + . + .3 5.7 0.2 3.5 1.7 3.0 2.0 3.0 3.0 + . + .2 6.9.I 7.8.1 3.5 1,3 6.7.3 + . + •3 4.2 2.2 1.7 2.6 3.0 3.0 3/4 4/4 1/4 6.8.3 6.8.3 7.8.3 5.6.3 2.+ .3 + . + •3 4.6.3 6.0 5.0 5-5 2.2 2.2 0.5 2.0 1.2 1.2 0.2 4.5 6.2 3.7 2.2 4.2 4.2 1,5 1.5 1.2 1.2 0.5 0.7 1.2 3.0 3.0 3.0 3.0 3-0 3-0 3-0 3-0 3-0 2.0 3-0 3-0 3-0 4/4 4/4 4/4 4/4 2/4' 2/4 2/4 2/4 1/4 1/4 4/4 , 4/4 4/4 Acer macrophyllum ThUja p l i c a t a 5.8.2 + . + .3 6.7.3 7.9.3 7.8.3 L Oplopanax horridus 8 . 1 0 . 3 9 . 1 0 . 3 + .+.3 Ribes bracteosum 4.6.3 5.6.3 5.7.3 Rubus s p e c t a b i l i s 3-5-3 6 . 7 . 3 6.8.3 Sambucus pubens 2.5«3 +.+. 3 + •+•3 Acer macrophyllum 7.8.3 Thuja p l i c a t a + .+.3 Acer circinatum 4.6.3 Picea sitchensis 4.5-3 +-+.3 Rubus p a r v i f l o r u s Lonicera involucrata + . + .2 Athyrium f i l i x - f e m i n a 3.5.3 6.7.3 5.6.3 Maianthemum dilatatum 5.5.3 9.10.3 3.4.3 Osmorhiza c h i l e n s i s 5.+ .3 3-4.3 4.5.3 Tiarella t r i f o l i a t a + . 3 . 3 + . + .2 6.6.3 Dryopteris austriaca 4.5.3 + .4.3 4.5.3 Disporum oreganum 4.5.3 2.4.3 + . + .3 Viola glabella 2.4.3 1.3.3 Gymnocarpium dryopteris + .4.3 4.6.3 Smilacina s t e l l a t a + .4.3 4.5.3 Polystichum munitum + .+•3 +.+.2 Poa p a l u s t r i s 2.3.3 Streptopus amplexifolius + . + .3 + .+.3 Galium t r i f l o r u m 2.3-3 2.3.3 Circaea a l p i n a 3.5.3 3.5.3 4.+.3 Tiarella unifoliata +.+.3 2.4.3 Tolmiea menziesii +.+.3 Boykinia e l a t a +. + .3 Veratrum v i r i d e + .+•3 Montia s i b i r i c a +.+.3 2.+.3 Trisetum cernuum +.+.3 Cinna l a t i f o l i a +.+.3 Dryopteris filix-mas Polystichum andersonii Streptopus roseus 4.5.3 Asarum caudatum S t e l l a r i a media Equisetum arvense 5-+.3 Bromus vulgaris Dicentra formosa 3.5.3 Lactuca muralis Streptopus roseus +. + .3 4.5.3 L i l i u m columbianum Tiarella laciniata Mnium insigne + .3.3 3.5.3 7.8.3 Mnium punctatum +.4.3 + . + .3 3.5-3 Rhytidiadelphus loreus 2.4.3 Rhytidiadelphus squarrosus + .3.3 Mnium menziesii 3.4.3 .Eurhynchium s t o k e s i i +.4.3 5.6.3 4.5.3 8.9.3 3-+-3 + . + .3 4.5.3 6.7-3 3-4.3 + .4.3 3.5.3 +.+.3 1.+.3 +. + .3 2.+.3 3-+-3 3-6.3 4.5-3 2.+.32.3.3 3-+-3 4.6.3 + .+.3 + . + •3 2. + .3 4.5.3 3.4.3 4/4 1/4 4/4 2/4 4/4 2.5 1.0 0.2 0.2 0.2 1.2 0.2 1.0 0.7 "1.0 1.0 0.5 0.5 2.0 2.7 3.0 3-0 3.0 3-0 3.0 2- 7 3.0 3- 0 3.0 3.0 3.0 3-0 3.0 3-0 3.0 3-0 3.0 3-0 3.0 3.0 3.0 3.0 3-0 1.7 0.2 1.2 0.2 0.5 3.7 2.0 0.5 0.2 0.7 0.2 3-0 3-0 3-0 3-0 3-0 3-0 3-0 3-0 3-0 3-0 3-0 2/4 1/4 2/4 1/4 1/4 4/4 4/4 1/4 1/4 1/4 1/4 4/4 4/4 3/4 3/4 2/4 3/4 1/4 3/4 3/4 3/4 3/4 1/4 1/4 1/4 3/4 1/4 2/4 1/4 1/4 1/4 1/4 1/4 2/4 1 I t i Symphoricarpeto 1 2 308 307 8/6 8/6 i960 i960 Table no. 51 Number of plots P l o t no. Date (sq. m.) P l o t size Latitude Longitude Altitude ( f t . ) Macroclimate Koppen Thornthwaite Strata coverage (per cent) Al A A Bl B B C D Land type and Land form Bench height ( f t . ) Days of overflow per year (cm.) Depth to f i r s t gravel horj Stand age (years) 2 2 - Piceetum sitchensis 5 3 U 305 312 317 8/6 9/6 9/6 i960 i960 i960 800 49043; . 49047;. 123°10 123°15 60 80 80 70 Cfb 30 UO 60 80 , 20 60 75 80 ' 1 18 1 65 U2 . 10 100 50 80 100 70 50 30 60 50 75 70 30 65 10 5 1° A l l u v i a l bench 21 18.5 18.5 1 1 1 78 57 • 85 U6 30 55 50 80 85 60 Mean. 6U Range 30-80 70 UO 85 80 80 60 5 20 1 60 27 19.2 1 69 UO 18-21 60-85 27-55 ro o o- Symphoricarpeto - P i c e e t u m T a b l e no. 52 No. Layer Number o f p l o t s of Species P l o t no. 1 2 ' 3 5 6 7 8 Al 10 li 12 13 14 A c e r macrophyllum Picea l Populus t r i c h o c a r p a 2 2 3 2 3 1 2 2 3 . 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 sitchensis Alnus rubra 3 4 5 307 312 317 305 7.8.3 5.7.3 7.8.3 6.8.3 2 308 2 3 1 2 3 •Bl 9 1 5.8.3 +.+.3 6.8.3 7-9.3 4.7.3 5-+.3 +.+•3 + .+.2 +.+.2 sitchensis 6.8.3 + . + •3 + . + •3 -• + . + .3 8.10.3 7.9.3 + . + .2 + . + .3 Abies grandis 4.+ Tsuga h e t e r o p h y l l a .3 + . + •3 + .+•3 Acer c i r c i n a t u m Thuja 6.7.3 plicata Acer c i r c i n a t u m 4.+.3 7.10.3 9.10.3 + . + .3 5.6.3 6.7.3 8.10.3 5.6.2 7.10.3 4.5.3 Symphoricarpos 7.9.3 rivularis 6.8.3 Rubus p a r v i f l o r u s - 6.7.3 6.8.3 3.5.3 4.5.3 4.5.3 Thuja plicata Lonicera 4.6.2 3.5.3 + .+.2 + .+..2 + . + .2 involucrata + .5.2 5.6.3 4.5.2 Oplopanax h o r r i d u s + . + .3 4.5.3 0.2 0.8 0.2 0.2 1.2 3.2 0.2 1.0 6.0 0.8 3.8 2.2 0.8 2.4 + . + .3 0.4 2.5.1 1.5.2 Ribes divaricatum 1.8 3-2 1.6 1.6 3.5.3 + . + .3 5.5.3 Rubus s p e c t a b i l i s 0.4 1.4 4.4 2.4 6.7.3 4.5.3 Mean • 2.6 + . + . 3 .2.4 + . + •3 + . + •3 7.8.3 7.10.3 4.6.3 + . + .3 + . + .3 Species significance 3.5.3 1.0 0.2 1.2 1.0 1.2 0.2 0.8 0.8 Vigor Constancy Rang;e Mean Rang?e 0-7 0-6 0-+ 0-6 0-7 0-4 +-8 0-7 0-6 0-+ 0-4 0-+ 0-+ 0-6 0-9 0-+ 0-5 4-8 0-4 0-7 0-6 0-4 0-4 0-4 0-3 0-+ 0-+ 0-5 0-5 0-4 0-1 0-3 0-4 3.0 3-0 3-0 3.0 3.0 3.0 3.0 3.0 2.3 3.0 3-0 3-0 3.0 3-0 3.0 3.0 3.0 2.8 3.0 3-0 3-0 3-0 3.0 2.5 2.3 2.5 2.0 3-0 3.0 1.5 2.0 3.0 3.0 2/5 4/5 2/5 2/5 4/5 3/ 2- •3 p 5/5 2/5 3/5 ^P <P ^P ^P P X X 2/5 p ^p x/ 2- •3 5/5 ^p P 3 2/5 ^p 2- •3 2- •3 2- •3 • 1/5 2/5 3/5 2/5 X >P •2/5 1-•2 ^P 2/5 X P 2/5 1/5 ro o T a b l e no. 52 - Continued Layer No. Number o f p l o t s of Species 1 Sambucus pubens 15 1 Cornus o c c i d e n t a l i s 16 2 1 1 2 1 C 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 : Dh dw h h dw dw dw dw Picea sitchensis A c e r macrophyllum Tsuga h e t e r o p h y l l a Abies grandis Disporum oreganum P o l y s t i c h u m munitumAthyrium f i l i x - f e m i n a Dryopteris austriaca Osmorhiza c h i l e n s i s Lactuca muralis Galium t r i f l o r u m Smilacina s t e l l a t a Maianthemum d i l a t a t u m Mbntia s i b i r i c a ' :, Bromus v u l g a r i s Aruncus v u l g a r i s Equisetum arvense D i c e n t r a formosa Festuca s u b u l i f l o r a Clintonia uniflora Dryopteris filix-mas Mnium i n s i g n e Rhytidiadelphus triquetrus Eurhynchium s t o k e s i i . Symphoricarpeto - P i c e e t u m 1 2 3 4 + . + .3 5-7.2 +•+.3 +.+•3 5.6.3 + .+•3 5-6.3 + . + .2 2.5.3 2.5.3 4.5.3 + . + .3 + .+.3 2.4.3 3.5.3 2. + .3 + .+.2 +. + . 3 6.5.3 + . + .2 + . + .3 +. + •3 2.+.3 + . + •3 1. + . 3 4.5.3 5.7.3 + . + .2 9.10.3 +.+.3 + .4.3 6.5.3 + . + .2 •3.5.3 + .3.3 3.5.3 3.4.3 3.4.3 2.+.3 +.+.3 4.5.3 + .+.3 + . + .3 2.4.3 5.4.3 + . + .3 2.+ . 3 4.6.3 + .+.2 +.+.3 + . + .3 4.5.3 + . + •3 4.5.3 + .3.3 4.5.3 2.3.3 5 + .+.3 + . + .2 + . + •3 5-+.3 2.+.3 4.5.3 3.5-3 2.3.3 + .+.3 sitchensis + . + .2 3.5.3 + . + .2 + . + .3 4.5.3 + .5.3 5.4.3 + .5.3 3.5.3 + .4.3 3.4.3 2.4.3 +.3.3 + .3.3 Rhytidiadelphus squarrosus Mnium m e n z i e s i i Hylocomium splendens + .3-3 +.3.3 +.4.3 + .3.3 + .3.3 + .4.3 Species Vigor Conssignificance tancy Mean Range Mean Range 0.4 0.2 0.2 1.4 2.0 0.2 0.4 5.4 1.2 2.1 2.0 2.8 1.0 1.2 2.2 3.2 0.8 0.6 0.4 0.4 1.6 0.4 1.6 0.4 2.0 1.2 1.0 0.2 0.2 0.4 0.4 0.4 0-+ 0-+ 0-+ 0-5 0-5 0-+ 0-+ 5-6 +-2 +-4 +-3 2-4 0-2 0-2 0-4 0-9 0-2 0-+ 0-+ 0-+ o-4 0-+ 0-4 0-+ 0-5 0-3 0-2 0-+ 0-+ 0-+ 0-+ 0-+ 2.5 3.0 3.0 2.6 3.0 2.0 3.0 3.0 2.4 3.0 3-0 3.0 3.0 3.0 3.0 3.0 3.0 2.3 3.0 2.5 3.0 2.5 3.0 3.0 3-0 3.0 3-0 3.0 3.0 3.0 3-0 3.0 2-3 2-3 2/5 1/5 1/5 3/5 2/5 ^? 2-3 2/5 5/5 5/5 5/5 V5 2-3 2-3 2-3 4/5 4/5 3/5 3/5 3/5 2/5 2/5 2/5 2/5 2/5 2/5 2/5 3/5 1/5 ^ 2/5 2/5 2/5 5 40 Pseudotsuga m e n z i e s i i 312 (+.+.3)> 4 l Rhamnus p u r s h i a n a 307 ( + . + . 3 ) ; 42 Ribes bracteosum 308 ( + . + . 3 ) , 43 R. sanguineum 317 (+.+.3)> 44 Rubus v i t i f o l i u s 312 ( 2 . 4 . 3 ) , 4-5 A c t a e a a r g u t a 317 ( + . + . 3 ) , 46 Asarum caudatum 317 ( + . + . 3 ) , 47 B o t r y c h i u m v i r g i n i a n u m 317 ( + . 5 . 3 ) , 48 C i r c a e a a l p i n a 308 ( 2 . 3 . 2 ) , 49 Equisetum hiemale 307 ( 5 . + 50 Gymnocarpium d r y o p t e r i s 312 ( + . + . 3 ) , 51 Pteridum a q u i l i n u m 312 ( + . + . 3 ) , 52 S m i l a c i n a racemosa 305 ( + . + . 3 ) ? 53 S t r e p t o p u s roseus 312 ( + . + . 2 ) , 54 T r a u t v e t t e r i a g r a n d i s 308 ( 2 . 3 . 2 ) , 55 Dicranum f u s c e s c e n s 307 ( + . 3 . 3 ) , 56 Mnium punctatum 307 ( 3 . 4 . 3 ) , 57 P l a g i o t h e c i u m undulatum 317 ( + . 3 . 3 ) , 5o R h y t i d i a d e l p h u s l o r e u s 305 ( 1 . 4 . 3 ) Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Macroclimate Koppen Thornthwaite Strata coverage (per cent) 400 49°49 ] 49°53 ' 123°10' - 123°15 100 - 150 Cfb AB-rb^ 60 UO ( Al Ao 65 l B B C D 50 B 1 2 •3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Salix 60 ...25 80 90 50 10 2 Table no. 54 No. Layer of Number of plots Species Plot no. Al 2 1 2 1 2 1 1 Bl 2 1 2 1 2 1 2 1 2 1 1 . 1 1 C 50 4 60 60 60 70 65 1 1 River scar 50 100 1 Land type and Land form 1 .203 Lysichiteto - Salicetum lasiandrae; 1 4 2 3 302 310 315 309 10/6 9/6 9/6 9/5 i960 i960 i960 i960 Table no. 53 Number of plots P l o t no. Date lasiandra Lysichiteto -• Salicetum lasiiandraeSpecies Vigor Cons signifitanc; 1 2 4 3 cance Mean Mean 302 310 315 309 5.7.3 4.6.3 4.8.3 + .+.3 + . + .2 4.7.3 Picea sitchensis 4.7.3 Alnus rubra 7.8.3 Thuja p l i c a t a Salix sitchensis Lonicera involucrata + . + .3 5-6.3 6 . 8 . 3 5.6.3 4.5.3 S a l i x sitchensis 3-+.3 + . + .2 7 . 1 0 . 3 Rubus s p e c t a b i l i s 4.5.3 4.5.3 5.7.3 Cornus occidentalis 3.6.3 + .+ . 3 3.5.3 Salix lasiandra + .5-3 5 . 6 . 3 Sambucus pubens Spiraea menziesii Thuja p l i c a t a Picea sitchensis Lysichitum americanum Oenanthe sarmentosa Glyceria p a u l i f l o r a Athyrium f i l i x - f e m i n a Angelica genuflexa Maianthemum dilatatum Scirpus microcarpus +. + . 2 5.5.3 + .+•3 + . + .3 9.10.3 7.7.3 6.7.3 7.6.3 4.5.3 4.5.3 2.5.3 2.5.3 3.5.3 3.4.3 + .5.3 2.4.3 + .3.3 2.3.3 + . + .2 + . + .2 +. + .3 6.7.3 4.6.3 3.5.3 4.5.3 5.6.3 4.5.3 9-10.3 5.6.3 4.5-3 5.6.3 3.5.3 4.5.3 3.5.3 7.8.3 6.5.3 5.6.3 4.5.3 3.5.3 2.5.3 2.5.3 6.5.3 5.5.3 3.4.3 3.4.3 3.4.3 4.5.3 4.0 1.0 1/5 0.2 1-7 3-0 3.0 2.6 2.0 3-0 3/4 1/4 3/4 1/4 1/4 0.5 3.0 2/4 4.2 1.0 4.0 1.0 3.2 2.2 3.0 1.0 2.7 0.7 1.2 2.0 0.2 0.2 7-2 6.0 4.0 2.7 3.0 2.2 1.2 3.0 3-0 2.7 3-0 3.0 3-0 3.0 3-0 3-0 3.0 2.5 3-0 3-0 3.0 3.0 3-0 3.0 3.0 3-0 3.0 3.0 4/4 1/4 4/4 1/4 3/4 1/4 4/4 1/4 3/4 1/4 2/4 2/4 1/4 1/4 4/4 4/4 4/4 4/4 4/4 4/4 3/4 20kj Table no. 54 - Continued No. Layer of Number of plots Species 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 UO kl Dh h dw dw Veronica americana Equisetum f l u v i a t i l e Carex leptopoda Carex r e t r o r s a Epilobium adenocaulon Viola palustris Mont i a s ib i r i c a . c . Climacium denroides Eurhynchium s t o k e s i i AuJacomnium palustre Alnus rubra Mains d i v e r s i f o l i a Aruncus vulgaris Bromus vulgaris ^Carex a q u a t i l i s Carex sitchensis Galium t r i f l o r u m Habenaria saccata Isothecium stoloniferum Mnium insigne ••' Mnium punctatum Plagiothecium elegans Rhytidiopsis robusta Rhytidiadelphus triquetrus Lysichiteto - Salicetum lasiandrae Species Vigor significance Mean Mean 3.0 + .+.3 + . + . 3 0.5 3.0 2 . 2 3-4.3 3.4.3 3 . 5 . 3 3.0 + .3.3 0.7 1..2 4 . 5 - 3 +.+.3 3-1 3.0 +.+•3 0.5 3.0 + .+.3 2 . 3 . 3 0.7 +.+.3 + . + . 2 2.5 0.5 +.3.3 + . 2 . 3 3.0 0.7 3.0 1.0 3.5.3 +.3.3 3.0 1.2 5.4.3 3 .0 0.7 + .3.3 2.5.3 315 302 (4.6.3 (+.+.3 302 302 315 315 310 310 (+.+.2 (+.+.2 (+.+.3 (3.5.3 (+•+.3 (+.+•3 302 302 310 310 302 302 (+•3.3 (+.3.3 (+.2.3 (+.2.2 (+.4.3 (+.3.3 Constancy 2/k 3/4 2/k 2/k 2/k 2/k 2/k 3/4 2A iA 2/k
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Vegetational and environmental variations in the ecosystems...
Open Collections
UBC Theses and Dissertations
Featured Collection
UBC Theses and Dissertations
Vegetational and environmental variations in the ecosystems of the coastal western hemlock zone Orlóci, László 1964
pdf
Page Metadata
Item Metadata
Title | Vegetational and environmental variations in the ecosystems of the coastal western hemlock zone |
Creator |
Orlóci, László |
Publisher | University of British Columbia |
Date Issued | 1964 |
Description | This thesis describes the biogeoclimatic zones on the southwestern British Columbia mainland and gives a detailed analysis of the vegetation-environmental patterns within the Coastal western hemlock zone. Ecosystem classifications are proposed utilizing coordination techniques and stratification. The major underlying causes of variations in the floristic structure among individual ecosystems are identified by four environmental gradients: regional climate, parent material, local climate (exposure), and soil-moisture regime. The orographic influence of Vancouver Island and the Coast Mountains results in a regional climatic gradient from low to high elevations. Natural segments of this gradient, recognized on the basis of zonal (climatic climax) vegetation and mesic soils, constitute the biogeoclimatic zones and subzones. Land types are separated from within the Coastal western hemlock zone on the basis of parent materials. The rock outcrop land type includes a mosaic of peaks, knolls, and crevices characterized by a coincident pattern of the vegetation types. All glacial drift deposits, except those of the swampy habitats, belong to the glacial drift land type. Maximum floristic variations in the glacial drift land type occur along a soil-moisture gradient. A lesser variation in the floristic structure is attributed to a local climatic gradient from cool to warm exposure. These gradients signify different sets of vegetation types in the different subzones of the Coastal western hemlock zone. The spring-water swamp land type includes waterlogged mineral soils and waterlogged woody peats in the vicinity of spring lines. The vegetation of the spring-water swamps has remarkable uniformity throughout both subzones. Narrow valley-like depressions with permanent or semipermanent streamlets and intermittent overflow water constitute the ravine alluvial land type. The vegetation of the ravines shows little variation among the two subzones. The flood-plain communities of the Squamish alluvial plain land type reflect the influence of overflow water and post-flood drainage. The basic unit of classification used is the ecosystem type, a segment in a simple vegetation-environmental gradient. A vegetation-environmental gradient is simple if it consists of a single set of vegetation types along an environmental gradient. Ecosystem type mapping involved approximately 85 acres in the southwestern part of the University of British Columbia Research Forest; a map is enclosed (in the thesis). |
Subject |
Vegetation and climate. Botany -- British Columbia. |
Genre |
Thesis/Dissertation |
Type |
Text |
Language | eng |
Date Available | 2011-10-27 |
Provider | Vancouver : University of British Columbia Library |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
DOI | 10.14288/1.0105377 |
URI | http://hdl.handle.net/2429/38347 |
Degree |
Doctor of Philosophy - PhD |
Program |
Botany |
Affiliation |
Science, Faculty of Botany, Department of |
Degree Grantor | University of British Columbia |
Campus |
UBCV |
Scholarly Level | Graduate |
Aggregated Source Repository | DSpace |
Download
- Media
- 831-UBC_1964_A1 O7.pdf [ 24.93MB ]
- Metadata
- JSON: 831-1.0105377.json
- JSON-LD: 831-1.0105377-ld.json
- RDF/XML (Pretty): 831-1.0105377-rdf.xml
- RDF/JSON: 831-1.0105377-rdf.json
- Turtle: 831-1.0105377-turtle.txt
- N-Triples: 831-1.0105377-rdf-ntriples.txt
- Original Record: 831-1.0105377-source.json
- Full Text
- 831-1.0105377-fulltext.txt
- Citation
- 831-1.0105377.ris
Full Text
Cite
Citation Scheme:
Usage Statistics
Share
Embed
Customize your widget with the following options, then copy and paste the code below into the HTML
of your page to embed this item in your website.
<div id="ubcOpenCollectionsWidgetDisplay">
<script id="ubcOpenCollectionsWidget"
src="{[{embed.src}]}"
data-item="{[{embed.item}]}"
data-collection="{[{embed.collection}]}"
data-metadata="{[{embed.showMetadata}]}"
data-width="{[{embed.width}]}"
async >
</script>
</div>

http://iiif.library.ubc.ca/presentation/dsp.831.1-0105377/manifest