Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Vegetational and environmental variations in the ecosystems of the coastal western hemlock zone Orlóci, László 1964

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1964_A1 O7.pdf [ 24.93MB ]
Metadata
JSON: 831-1.0105377.json
JSON-LD: 831-1.0105377-ld.json
RDF/XML (Pretty): 831-1.0105377-rdf.xml
RDF/JSON: 831-1.0105377-rdf.json
Turtle: 831-1.0105377-turtle.txt
N-Triples: 831-1.0105377-rdf-ntriples.txt
Original Record: 831-1.0105377-source.json
Full Text
831-1.0105377-fulltext.txt
Citation
831-1.0105377.ris

Full Text

VEGETATIONAL AND ENVIRONMENTAL VARIATIONS IN THE ECOSYSTEMS OF THE COASTAL WESTERN HEMLOCK ZONE  by LASZLO ORLOCI S.F.,  University of British Columbia, Sopron Division, M.Sc,  University of British Columbia, 1961  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF . ' DOCTOR OF PHILOSOPHY  in the Department of • BIOLOG-Y AND BOTANY  We accept this thesis as conforming to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA February, I96U  In the  requirements  British  mission  for  Columbia, I  available  for  for  an  cation without  of my  Department  this  written  of  by  for  Biology  V a n c o u v e r , 28  the  Head  and  April  I  of  i s understood financial  Botany Columbia,  1964  the  Library  this  permission*,  The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada Date  the  of  in partial  degree at  study.,  copying  It  thesis  that  and  granted  representatives.  thesis  advanced  reference  be  this  agree  extensive  p u r p o s e s may his  presenting  thesis my  make i t  agree for  that  copying  shall  not  of  of freely per-  scholarly  Department  that  gain  University  shall  further  fulfilment  or or  be  by publi-  allowed  The U n i v e r s i t y o f B r i t i s h  Columbia  FACULTY OF GRADUATE STUDIES  PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  of  LASZLO  ORLOCI  B.S.F., The U n i v e r s i t y o f B r i t i s h Sopron D i v i s i o n , 1958 M.Sc,  Columbia,  The U n i v e r s i t y o f B r i t i s h Columbia, .1961  IN ROOM 3332,  BIOLOGICAL SCIENCES  BUILDING  TUESDAY, APRIL 28, 1964, at 2:30 P.M.  COMMITTEE IN CHARGE Chairman: F.H. Soward R.J. Bandoni J.E. B i e r E.H. Gardner V.J. K r a j i n a External  G.E. Rouse C A . Rowles W.B. S c h o f i e l d T.M.C. T a y l o r Examiner-  Department  J . Major  of Botany,  University of California,  Davis  VEGETATIONAL AND ENVIRONMENTAL V A R I A T I O N S I N THE ECOSYSTEMS OF THE COASTAL WESTERN HEMLOCK ZONE ABSTRACT  T h i s t h e s i s d e s c r i b e s t h e b i o g e o c l i m a t i c z o n e s on the southwestern B r i t i s h Columbia mainland and g i v e s a detailed analysis of the vegetation-environmental p a t t e r n s w i t h i n t h e C o a s t a l w e s t e r n hemlock zone. Ecosystem c l a s s i f i c a t i o n s are proposed u t i l i z i n g coo r d i n a t i o n techniques and s t r a t i f i c a t i o n . The m a j o r u n d e r l y i n g c a u s e s o f v a r i a t i o n s i n t h e f l o r i s t i c s t r u c t u r e among i n d i v i d u a l e c o s y s t e m s a r e i d e n t i f i e d by f o u r environmental g r a d i e n t s : regional climate, parent m a t e r i a l , l o c a l climate (exposure), and s o i l - m o i s t u r e r e g i m e . The o r o g r a p h i c i n f l u e n c e o f V a n c o u v e r I s l a n d a n d t h e Coast Mountains r e s u l t s i n a r e g i o n a l c l i m a t i c gradient from low t o h i g h e l e v a t i o n s . N a t u r a l segments o f t h i s g r a d i e n t , r e c o g n i z e d on t h e b a s i s o f z o n a l ( c l i m a t i c climax) v e g e t a t i o n and mesic s o i l s , c o n s t i t u t e t h e b i o g e o c l i m a t i c zones and subzones. Land types a r e separated from w i t h i n the C o a s t a l w e s t e r n hemlock zone on t h e b a s i s o f p a r e n t m a t e r i a l s . The r o c k o u t c r o p l a n d t y p e i n c l u d e s a m o s a i c o f p e a k s , k n o l l s , and c r e v i c e s c h a r a c t e r i z e d by a c o i n c i d e n t pattern of the vegetation types. A l l glacial drift d e p o s i t s , e x c e p t t h o s e o f t h e swampy h a b i t a t s , b e l o n g to the g l a c i a l d r i f t land type. Maximum f l o r i s t i c v a r i a t i o n s i n the g l a c i a l d r i f t land type occur along a soil-moisture gradient, A lesser v a r i a t i o n i n the f l o r i s t i c structure i s attributed to a local climatic g r a d i e n t f r o m c o o l t o warm e x p o s u r e . These g r a d i e n t s s i g n i f y d i f f e r e n t sets of vegetation types i nthe d i f f e r e n t subzones o f t h e C o a s t a l western hemlock zone. The s p r i n g - w a t e r swamp l a n d t y p e i n c l u d e s w a t e r l o g g e d m i n e r a l s o i l s and w a t e r l o g g e d woody p e a t s i n the v i c i n i t y o f s p r i n g l i n e s . The v e g e t a t i o n o f t h e s p r i n g - w a t e r swamps h a s r e m a r k a b l e u n i f o r m i t y t h r o u g h out b o t h subzones. Narrow v a l l e y - l i k e depressions w i t h  p e r m a n e n t o r s e m i p e r m a n e n t s t r e a m l e t s and i n t e r m i t t e n t overflow water c o n s t i t u t e the r a v i n e a l l u v i a l l a n d type. The v e g e t a t i o n o f t h e r a v i n e s shows l i t t l e v a r i a t i o n among t h e two s u b z o n e s . The f l o o d - p l a i n cornmunities of the Squamish a l l u v i a l p l a i n l a n d type, r e f l e c t t h e i n f l u e n c e o f o v e r f l o w w a t e r and p o s t - f l o o d drainage. The b a s i c u n i t o f c l a s s i f i c a t i o n u s e d i s t h e e c o s y s t e m t y p e , a segment i n a s i m p l e v e g e t a t i o n - e n v i r o n mental gradient. A vegetation-environmental gradient i s simple i f i t c o n s i s t s of a s i n g l e set of v e g e t a t i o n t y p e s a l o n g an e n v i r o n m e n t a l gradient. . E c o s y s t e m type mapping i n v o l v e d a p p r o x i m a t e l y 85 acres i n the southwestern p a r t of the U n i v e r s i t y o f B r i t i s h C o l u m b i a R e s e a r c h F o r e s t ; a map i s e n c l o s e d , ( i n the t h e s i s ) .  GRADUATE STUDIES  F i e l d of Study:  Botany  Forest Autecology Forest Synecology S e l e c t e d , R e a d i n g s i n ..American Ecology Advanced F o r e s t Pathology Taxonomy o f V a s c u l a r P l a n t s  Other  V.J. V.J.  Krajina Krajina  Schofield J.E. B i e r T.M.C. T a y l o r  W.B  Studies;  Climatology S o i l G e n e s i s and C l a s s i f i c a t i o n Soil-Plant Relationships  J o D. Chapman CA. Rowles J . Basaraba  PUBLICATIONS 1961  - F o r e s t t y p e s o f t h e C o a s t a l w e s t e r n hemlock zone. M.Sc. t h e s i s . T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a . 1962 - F o r e s t t y p e m a p p i n g i n t h e C o a s t a l w e s t e r n h e m l o c k zone on t h e M a i n l a n d o f B r i t i s h C o l u m b i a . 1961 P r o g r e s s R e p o r t , N.R.C. G r a n t T - 9 2 : 10-1.6. 1963 - S t a n d a r d f o r m s u s e d f o r e c o s y s t e m s t u d i e s ( w i t h i a u t h o r s ) . 1962 P r o g r e s s R e p o r t , N.R.C. G r a n t No. T-92; 83-105. 1963 - E n v i r o n m e n t a l f a c t o r s a n d v e g e t a t i o n on t h e f l o o d p l a i n o f t h e S q u a m i s h R i v e r . 1962 P r o g r e s s R e p o r t N.R.C. G r a n t No. T - 9 2 : 3 5 - 5 5 . 1963 - B i o g e o c l i m a t i c f o r e s t z o n e s o n t h e L o w e r M a i n l a n d B r i t i s h C o l u m b i a ( w i t h c o - a u t h o r ) . 1962 P r o g r e s s R e p o r t , N.R.C. G r a n t No. T - 9 2 : 18-24. 1963 - I n d i c a t o r p l a n t s i n t h e C o a s t a l w e s t e r n h e m l o c k z 1962 P r o g r e s s R e p o r t , N.R.C. G r a n t No T - 9 2 : 2 5 - 3 4 . 1.964 - P r o b l e m s i n t h e c l a s s i f i c a t i o n o f e c o s y s t e m s . 1 9 ^ P r o g r e s s R e p o r t , N.R.C. G r a n t No. T - 9 2 : 3 9 - 4 8 . 1964 - A m a t h e m a t i c a l m o d e l o f p l a n t s u c c e s s i o n i n a f l o e p l a i n e c o s y s t e m . 1.963 P r o g r e s s R e p o r t , N.R.C. G r a n No,. T - 9 2 ; 4 8 - 5 5 . 1  Q  ii  ABSTRACT  This  thesis describes  the biogeoclimatic  southwestern B r i t i s h Columbia mainland analysis Coastal  and g i v e s  o f the vegetation-environmental  a detailed  patterns  w i t h i n the.  w e s t e r n hemlock zone. Ecosystem c l a s s i f i c a t i o n s a r e  proposed u t i l i z i n g The  co-ordination  major u n d e r l y i n g  structure  climate  "The  techniques  and s t r a t i f i c a t i o n .  causes o f v a r i a t i o n s i n the f l o r i s t i c  among i n d i v i d u a l e c o s y s t e m s a r e i d e n t i f i e d  environmental gradients: local  z o n e s on t h e  regional climate, parent  (exposure),  and s o i l - m o i s t u r e  material,  regime.  orographic' i n f l u e n c e o f Vancouver I s l a n d and the Coast  Mountains r e s u l t s i n a r e g i o n a l c l i m a t i c g r a d i e n t high on  elevations. Natural  the basis  soils,  Land  land  o f zonal  zone o n t h e b a s i s  type  includes  glacial  i n the g l a c i a l  gradient. attributed  drift drift  gradient,  from w i t h i n  materials.  western  The r o c k  outcrop  o f peaks, k n o l l s , and c r e v i c e s o f the vegetation  types.  e x c e p t t h o s e o f t h e swampy h a b i t a t s , land land  type.  Maximum f l o r i s t i c  type occur  climatic gradient  p o s u r e . These g r a d i e n t s  and m e s i c  the C o a s t a l  along  A l e s s e r v a r i a t i o n i n the f l o r i s t i c to a l o c a l  recognized  z o n e s and s u b z o n e s .  by a c o i n c i d e n t p a t t e r n  driftrdeposits,  from low t o  climax) vegetation  o f parent  a mosaic  belong t o the g l a c i a l tions  (climatic  types are separated  characterized All  segments o f t h i s  c o n s t i t u t e the biogeoclimatic  hemlock  by four  signify  a soil-moisture  structure i s  from c o o l  different  varia-  t o warm ex-  sets o f vegetation  iii types  i n the d i f f e r e n t  subzones o f the C o a s t a l western  z o n e . The s p r i n g - X i i a t e r swamp l a n d t y p e mineral  soils  spring l i n e s . remarkable like and  and w a t e r l o g g e d  includes  woody p e a t s  both  waterlogged  i n the v i c i n i t y . o f  The v e g e t a t i o n o f t h e s p r i n g - w a t e r  u n i f o r m i t y throughout  hemlock  subzones.  swamps h a s Narrow  valley-  d e p r e s s i o n s w i t h permanent o r semi-permanent s t r e a m l e t s intermittent  land  o v e r f l o w water c o n s t i t u t e  t y p e . The v e g e t a t i o n o f t h e r a v i n e s shows l i t t l e  among t h e two s u b z o n e s . Squamish a l l u v i a l  The  p l a i n l a n d type r e f l e c t  basic u n i t  alluvial variation  The f l o o d - p l a i n communities, o f t h e  f l o w w a t e r and p o s t - f l o o d  type,  the ravine  the i n f l u e n c e  o f over-  drainage.  o f c l a s s i f i c a t i o n used  i s t h e ecosystem  a segment i n a s:Lmple v e g e t a t i o n - e n v i r o n m e n t a l g r a d i e n t .  A v e g e t a t i o n - e n v i r o n m e n t a l g r a d i e n t i s simple a single  s e t o f vegetation types  Ecosystem  t y p e mapping  In the southwestern Research  along  an e n v i r o n m e n t a l  involved approximately  p a r t o f the U n i v e r s i t y  F o r e s t ; a map  i fi t consists of  i s enclosed.  V. J . Krajina  gradient.  85 acres  of British  Columbia  iv AC K3TOWLEDGEMENT I  "wish to thank Dr. V. J . Krajina f o r h i s generous counsel  and guidance i n a l l phases of my study. Thanks are extended to Dr. T. M. C. Taylor, Head of the Department of Biology and Botany, for h i s personal help and sustained interest i n my work. Many persons gave f r e e l y of advice and help including: Dr. ¥. B. Schofield, Department of Biology and Botany, Dr. J . E. Bier, Department of Biology and Botany, Dr. G. E. Rouse, Department of Biology and Botany, Dr. C. A. Rowles, Head of the Department of S o i l Science, Dr. E. H. Gardner, Department of S o i l Science, Dr. J . Basaraba, Department of S o i l Science, Mr. L. Farstad, Canada Department of Agriculture, Mr. J . F. Glennie, Department of C i v i l Engineering, Dr. J . Mackay, Department of Geography, Dr. L. Schwartz, Department of Mathematics, Mr. E. Macskasy, Department of Mathematics, Dr. H. Dempster U.B.C. Computing Centre, Dr. A. Kozak, Department of Forestry, and Mr. J . Walters, University Research Forest, Haney. Dr. V. J . Krajina, Dr. T. M. C. Taylor, Dr. W. B. Schofield, Messrs. J . W. Eastham and G. F. Otto helped with the i d e n t i f i c a t i o n of plants. I am g r a t e f u l to my fellow-students, G. Lesko and S. E i s , f o r t h e i r kind cooperation i n the f i e l d work; to A. C. Archer, M. A. M. B e l l R. C. Brooke, R. B. Smith, E. B. Peterson and W. Stanek f o r h e l p f u l discussions on the problems of t h i s present work; to my wife f o r prepar a t i o n of the synthesis tables and f o r her general assistance and encouragement.  V  F i n a l l y , I wish to express my indebtedness to the National Research Council of Canada, Ottawa, f o r financing t h i s study; to the Faculty of Forestry and the Greater Vancouver Water D i s t r i c t f o r providing assistance i n the f i e l d work.  vi TABLE OF CONTENTS Page INTRODUCTION  1  Chapter I BIOGEOCLIMATIC ZONATION OF THE SOUTHWESTERN BRITISH COLUMBIA MAINLAND . . . Macrocliraate Mesic (zonal) s o i l s Climatic climax vegetation Biogeoclimatic regions, zones and subzones  3 3 6 7 8  II  III  IV  V VI VII  PROBLEMS IN THE CLASSIFICATION OF ECOSYSTEMS Sample p l o t D e f i n i t i o n s of s i m i l a r i t y C coordination Coenotic c l a s s i f i c a t i o n units Related concepts . Classification••.in- the ipresenty.v.ork... „o,-k. . . .  11 11 14 l6 19 19 21  THE ROCK OUTCROP LAND TYPE Rock types The vegetation-environmental pattern C l a s s i f i c a t i o n units  24 24 24 29  THE GLACIAL DRIFT LAND TYPE Dry subzone F l o r i s t i c variations i n the d i r e c t i o n of p r i n c i p a l axes . . The A axis The B axis The C axis C l a s s i f i c a t i o n units Wet subzone F l o r i s t i c variations i n the d i r e c t i o n of p r i n c i p a l axes . . The A axis The B axis The C axis C l a s s i f i c a t i o n units Development of plant communities  31 32 32 34 34 35 36 43 43 43 44 44 45 49  THE SPRING-WATER SWAMP LAND TYPE  53  THE RAVINE ALLUVIAL LAND TYPE  55  THE SQUAMISH ALLUVIAL PLAIN LAND TYPE Character of the stream Fluctuations of the water l e v e l Erosion, transportation, and deposition . . . . The vegetation-environmental pattern  56 56 56 60 6l  vii A mathematical model of succession Hypothesis Application C l a s s i f i c a t i o n units VIII IX  6j 68 70 73  ECOSYSTEM TYPE MAPPING  75  SUMMARY AND CONCLUSIONS  79  REFERENCES  87  APPENDICES  94  viii LIST OF TABLES Table I-l 1-2 1-3 1-4 1-5 1-6 1-7 II-l 11-2 III-l IV-3 IV-4 IV-5 IV-6 IV-7 IV-8 IV-9 IV-10 IV-11 V-l VII-1 VII-2 VII-3 VII-4 VII-5 VII-6 VIII-1 IX-1 IX-2 IX-3  Page Station description Averages and length of recording Monthly p r e c i p i t a t i o n and t o t a l for 1961 Numerical values of a and b (see text) for the d i f f e r e n t observation periods . . . A l t i t u d i n a l occurrence of maximum p r e c i p i t a t i o n at the d i f f e r e n t observation periods . . . Zonal c l a s s i f i c a t i o n s with reference to southwestern B r i t i s h Columbia . . . Biogeoclimatic units on the southwestern B r i t i s h Columbia mainland Tabulation of point distances from reference points 11 and hj. . . A axis values Rock outcrop land type Correlations Correlations Average available soil-moisture i n selected stands. G l a c i a l d r i f t land type, dry subzone Correlations Correlations P r e v a i l i n g ecotopic c h a r a c t e r i s t i c s of ecosystem types i n d i f f e r e n t climates on slopes G l a c i a l d r i f t land type, wet subzone Successional (time) sequence of plant communities i n the g l a c i a l d r i f t land type and the r e l a t e d habitats . . . Spring-water swamp and ravine alluvium land type. . Explained variations i n gauge height readings  To follow , page 4 4 4  5 5 8 10 19 19 30 33 33 39 42 4-3 4-3 46 48 52 55  (1956-1957) •  58  Some general s t a t i s t i c s Big Bend data Some s t a t i s t i c s of basic equations The a l l u v i a l - p l a i n land type, benches The a l l u v i a l - p l a i n land type, r i v e r scars Climatic data (U.B.C. Research FSrest) D i f f e r e n t i a t i n g combination of c h a r a c t e r i s t i c s f o r the separation of zonal and subzonal units i n mesic habitats Ecosystem types of rock outcrops Ecosystem types of the g l a c i a l d r i f t land type. . .  60 70 72 74 74 75 80 8l 83  ix LIST OF ILLUSTRATIONS Figure I-l • 1-2  Page  II-2  Map of study area Long term averages of t o t a l p r e c i p i t a t i o n , snowfall and temperature . . . . T o t a l p r e c i p i t a t i o n as s p e c i f i e d Biogeoclimatic forest zones i n the southwestern B r i t i s h Columbia mainland. . Interpoint distance of two sample plots i n three-dimensional space . . . Determination of axis values  IV-1  Point projections on the AB and AC plane  IV-2  D i s t r i b u t i o n patterns of selected species on the AB plane D i s t r i b u t i o n diagrams of selected species and selected environmental f a c t o r s . . Point projections on the AB and AC plane D i s t r i b u t i o n diagrams of selected species and selected environmental factors. . Physical features on the a l l u v i a l p l a i n Diurnal changes of water l e v e l Average monthly gauge heights 1955-1959 Mean d a i l y gauge heights I 9 5 6 - I 9 5 7 Correlations (r) of the gauge height readings with the climatic elements. . . . Average number of overflow days Transects i n d i c a t i n g two d i s t i n c t examples of bench height increase. . Ecosystem type map  1-3 1-4 II-l  IV-3 TJ-k IV-5 VII-1 VII-2 VII-3 Vll-k VII-5 VII-6 VII-7 VIII-1  To follow page 3 5 5 10  15 18 32 35 35 43 kk 56 5^ 57 57 59 60 73 77  1  INTRODUCTION In synecological studies, vegetation is frequently classified in either zonal or coenotic (community type) units.  The zonal units have  "been variously described as formations, associations, regions, or zones, and are defined mainly by the dominant vegetation and macroclimate (Warming 1895, 1909, Clements 1916, 1928,Tansley 1 9 3 9 ) .  The classification concept  has been broadened recently to include soils as the third main criterion for the establishment of biogeoclimatic zones (Krajina 1959, 1 9 6 2 ) . The zonal unit always has been a broad one and has contained greatly different habitats, each with a characteristic vegetation type, recurring in not only one but frequently in several zones. Coenotic classifications produced abstract units as types or associations.  The concept of "type" was already known to Lorenz (1858)  but became crystalized only later in the works of Nilsson ( 1 9 0 2 ) , Morozov (1903, 1 9 2 8 ) , Cajander (1909, 1926), Flahault and Schroter ( 1 9 1 0 ) , and Braun-Blanquet (1913, 1932, 1 9 5 1 ) .  Types or associations were usually abstracted from large samples by grouping individual stands together on the basis of their apparent similarity.  The classification c r i t e r i a varied dependent on the different  schools and were thus ecotopic, biocoenotic, or ecosystematic (cf. Krajina i960).  The zonal approach has been applied in classification of vegetation of the Pacific Northwest by Whitford and Craig (1918), Halliday (1937), Krajina (1959, 19&2), and Rowe ( 1 9 5 9 ) '  Forest types or associations were  described from the same general geographic area by Ilvessalo ( 1 9 2 9 ) , Kujala (194$, Spilsbury and Smith (19V7), Krajina and Spilsbury ( 1 9 5 3 ) ,  McMinn Eis  (1957),  (I962),  Mueller-Dombois  Archer  (1963),  (1959),  and Peterson  (1961),  Lesko  Orloci  2  (1961),  (1964).  This thesis makes simultaneous application coenotic approach i n c l a s s i f i c a t i o n of ecosystems.  of the zonal and General information from  the Coastal western hemlock zone i s available from the work of Krajina Lesko  (1961),  Orloci  contributed new  (1961)  and E i s  (1962).  (1959),  The present work, however,  information about the plant communities and t h e i r habitats  through the analysis  and  interpretation  of new  data, p a r t i c u l a r l y i n the  rock outcrop, a l l u v i a l p l a i n , spring-water swamp, and ravine alluvium land types.  The  chapter which treats mapping should also be mentioned i n t h i s  respect. The  investigation was  conducted i n four steps:  data, data processing to define the r e l a t i o n s h i p f i c a t i o n s , and mapping of c l a s s i f i c a t i o n units.  c o l l e c t i o n of  of the variables,  classi-  CHAPT. I  3  BIOGEOCLIMATIC ZONATION OF THE SOUTHWESTERN BRITISH COLUMBIA MAINLAND 1  This chapter deals with the zonation of climates, soils and vegetation.  References are made not only to the Coastal western hemlock  zone, but also to the adjacent zones occurring in the southwestern British Columbia mainland, thus making possible a comparative review. Macroclimate Kerr (1951) described three major climates from southwestern B r i t i s h Columbia:  Cool Mediterranean, Transitional, and Maritime.  The  Cool Mediterranean climate is confined to Saanich Peninsula of Vancouver Island and to the Gulf Islands.  It is designated as Csb (Chapman 1952)  according to the Koppen classification and B^B-j^a (Kerr 1951) according 1  2  to the Thornthwaite classification.  The Transitional climate includes a  •4?he term "biogeoclimatic" was f i r s t applied by Krajina (1962) in a zonal classification. o  Symbols in the Koppen classification: C = mesothermal rainy climates, average temperature of coldest month is less than 64.4°F but more than 2 6 . 6 ° F . f = driest month of summer with more than 1.2 i n . rain, s = summer dry climates, three times as much rain in the wettest winter month as in the driest summer month or more,^driest summer month with less than 1.2 i n . rain, b = average temperature of warmest summer month is less than 71«6°F. D = microthermal (cold, snowy forest climate), average temperature of coldest month below 2 6 . 6 ° F , average temperature of warmest month above 50°E« ET = tundra climate, average temperature of warmest month above 32°F, but below 50°F. c=less than 4. months over 50°F. Symbols in Thornthwaite classification: A = perhumid climatic type, Im (moisture index) 100 and above. B^ = humid climatic type, Im from 80 to 1 0 0 . B^ = humid climatic type, Im from 60 to 8 0 . B = humid climatic type, Im from 40 to 6 0 . B]_ = humid climatic type, Im from 20 to 4 0 . B-[ = coolest mesothermal, temperature efficiency index from 22.kk to 2 8 . 0 5 i n . r =' l i t t l e or no water deficiency, aridity index from 0 to 1 6 . 7 . s = moderate summer water deficiency, aridity index from 1 6 . 7 to 3 3 . 3 . a' = summer concentration below 48.0 per cent. bi| = summer concentration from 48.9 to $1.9 per cent, b^ = summer concentration from 51*9 to 5 6 . 3 per cent. S2=large summer water deficiency. 2  to follow page 3  A i l —  Fig. I - l  Map of study area. Black and white circles indicate the location of climatic stations and sampling centers respectively.  narrow fringe of Fraser Valley at the Mainland Coast with climatic:.: stations classified as Csb and (BgB^B^) Bjsa'.  k  The lowland and the mountain  slopes east and north of the Transitional climate belong to the Maritime climate.  Localities below approximately 3500 f t . are mesothermal and are  classified in the present dissertation as Cfb and AB/jr(b^ b^).  The  climatic types of high altitudes could not be accurately defined since climatic records were not adequate.  It can be suggested only that altitudes  above approximately 3500 f t . belong to a perhumid (snowy) microthermal climate (Dfb or Dfc), and the highest altitudes above timber line constitute a perhumid alpine tundra (ET). The Pacific air is lifted up by an orographic barrier and then begins its descent over the leeward side of Vancouver Island. air warms up and its relative humidity decreases.  The descending  The leeward slopes  of Vancouver Island, and especially of the Gulf Islands close to the shore line, therefore, receive relatively low precipitation.  The rainshadow  effect is also responsible for the low precipitation of the Lower Mainland close to the Strait of Georgia.  This effect, however, is gradually  diminished in the proximity of the mountain slopes where the air again starts to ascend. In order to define the altitude at which maximum precipitation can be expected, mathematical manipulations were performed with long-term, annual and monthly data of selected stations (Figure I - l and Table I - l to 3)• Climatic data (Table 1-2 and 3, Figure 1-2 and 3) iridicates .iiat.maxjmum precipitation could occur on windward slopes or in valleys at relatively low altitudes.  The lowest values are registered at stations of the Lower  Mainland, and the stations at high elevations also show substantial reduction in precipitation i f compared to those in the narrow valleys or on the lower slopes.  The relationship of precipitation and altitude can be anticipated  to follow page k  Table I - l  STATION DESCRIPTIONS  Station  Latitude  Longitude  Burnaby Capitol H i l l Burnaby Mtn. Terminal Coquitlam Lake Grouse Mtn. * Haney East Haney U.B.C. Hollyburn Ridge Hollyrood Lynn Valley Lynn Upper Mosquito Creek ** New Westminster Seymour Falls Seymour Mtn. Vancouver A Vancouver U.B.C. White Rock  49° 17 16 23 22 12 18 22 21 21 21 21 12 26 26 11 16 02  1 2 2 ° 59 56  * discontinued in 19^0  123 122 123  122  123 122  t  h9  05 34 35 12 05 02 02 03 57 58 57 10 15 50  Altitude 600 f t . 450 528 3625 100 550 3120 600 500 725 1130 250 660 2700 16 305 230  ** discontinued in i 9 6 0  to follow Table I - l  Table 1-2  Station  AVERAGES AND LENGTH OF RECORDING  Mean annual Annual pre- Annual Recording temperature c i p i t a t i o n snowfall Temp. Prec. A l t i t u d e (°F) (in.) (in.) (years) (ft.)  Coquitlam Lake Grouse Mtn. * Haney U.B.C. Hollyburn Ridge Mosquito Creek *** New Westminster Seymour F a l l s Seymour Mtn. White Rock  140.14  47  75-34 90.12 113.95 102.21 59.58  41** 48 42**  47 51 47** 44** 50  145.69  120.50 41.23  58.0 219.4 50.3 304.8 50.5 27.5 91.0 137.0 14.2  30 7 15 8 7 30 30 3 30  25 15 7 30 30  528 3625 550 3120 250 1130 660 2700 230  * discontinued 1940, ** extrapolations, *** discontinued i n I960  Table 1-3  MONTHLY PRECIPITATIONS AND TOTAL FOR 1961*  Station  January  April  July  October  Burnaby C a p i t o l H i l l Burnaby Mtn. Terminal Coquitlam Lake Haney East Haney U.B.C. Hollyburn Ridge Hollyrood Lynn Valley Lynn Upper New Westminster Seymour F a l l s Seymour Mtn. Vancouver A Vancouver U.B.C. White Rock  16.8 17.0  3-8 3-4 6.9 3.8 3.7**  1.5 1.6  12.0  * a random year  in.  34.2  13.4 16.4 23.6  12.4 20.0  21.8 12.8 41.1  23.6 8.3 9.6 7-1  ** datum  8.1  1.2  0.7  0.9 2.2  11.4  25.3 9.5 13.9 20.2  0 4.9 5.7 3.0 7-3  1-3 1.5 1.6 1.5  13.3  2.0  21.2  1.9 2.4 2.2  1.5  7.1  0.8 1.6 1.2  from extrapolation  16.2  18.7 8.9 23.4 5.1  6.5 4.7  Annual  93.1  93.7  181.2  76.8  100.2  145-9 92.3  117.2  128.9 74.6 195.9 135.3 53.8  63.O  47.6  i n t h i s p a r t i c u l a r case as y = &xr + bx + c where y i s p r e c i p i t a t i o n , x i s a l t i t u d e , a and b are the constants of proportion and c i s the value of intercept  on the y axis.  The a l t i t u d e at which maximum p r e c i p i t a t i o n  occurs corresponds to the vertex of the p r e c i p i t a t i o n curve.  At the vertex  = 2 ax + b = 0 from which the a l t i t u d e co-ordinate  the f i r s t derivative dx of the vertex x = - ~  . The constants a and b were determined by the  2 a  l e a s t squares method; the appropriate numerical values are compiled i n Table  1-4. Table 1-4 MJMERICAL VALUES OP a AND b (SEE TEXT) FOR THE DIFFERENT OBSERVATION PERIODS  Observation period  Long-term  Constant a  -0.1895  1961  -0.1101  January 1961 -0.32^3  October 1961  July 1961  -0.7031  -0.2102  10? 0.7798  Constant b  10 '  0.5856  0.1550  0.6794  0.1033  10'  icr  10  10'  3  Note: Computer programme and output data are stored at the Department of Biology and Botany, University of B r i t i s h Columbia. The a l t i t u d e s at which maximum p r e c i p i t a t i o n occurred during the d i f f e r e n t observationjperiods are compiled i n Table I-5« Table 1-5  Observation period  Altitude (ft.) * random year  ALTITUDINAL OCCURRENCE OF MAXIMUM PRECIPITATION AT THE DIFFERENT OBSERVATION PERIODS  Long-term average  2057  1961*  2660  January 1961  2390  July 1961  October 1961  4830  2450  320 280  52  240  50  200  48  a •H  l6o  160  £  46  -p  I  U  CD  120  § 120  80  80  42  40  40  4o  m  If  44  c+ o  1000 2000 3000 4ooo  1000 2000 3000 4000 Altitude ( f t . )  Altitude (ft.)  O  1000 2000 3000 4000 £ Altitude  (ft.)  § •d P  F i g . 1-2  Long-term averages  of t o t a l p r e c i p i t a t i o n , s n o w f a l l and  temperature.  CD  P r e c i p i t a t i o n (in.) •p-  o  H > c> t  0 0  Hct  £P H  H VO  o\ t—  O O  -  1  CO  o  H  H  FO O  o  ON.  ro O o  o -  ro o o -—^ o  1  •  >—'  o o o  -p-  o o o  P r e c i p i t a t i o n (in.) ro o  '  UJ  o  -p-  o  M  > O I— O rt o H» ct  TO  1  4 I  H  o ct  VO ON H  C ro o CD o o  ^—v Hi  c+ OJ • O  -— o o  P H  -p-  •i  n> o  o o o  H•d H- • ct P c+ H-  P r e c i p i t a t i o n (in.) ro  o  01  p  CO 01  CD o HHj  H* fO P>  >  H  I—  ct H" ct  H  Pi CD  ^S= 1  «<!  M  o O O  c ro  vo  Ov H  —x  o o o  t-b • o o o  c t Co  •  -p-  o o o  PreC i p i t a t i o n ( i n . ) H  o  M  o  > H  CD  £ ro o  o ct O  1— VO ON 1  ct Hc+  CD  '—-v  o o o o o  Hi ct- OO • o o  o  -p-  o o o  3-1  *3TdI AOIIOJ oq.  H  VJI  ro o  ro VJI  VJI  o  6 I t i s concluded that maxjjnum p r e c i p i t a t i o n may he expected to occur at an elevation lower than the maximum may Walker's  (1961)  2700  f t . except during the summer months when  occur at or near the highest a v a i l a b l e elevations. estimates are  4000  to  6000  feet.  I t should he mentioned,  however, that h i s estimates are based on the records of only two  climatic  stations (West Vancouver and Hollyburn). Snow and temperature data (Table 1-2)were analyzed and the appropriate graphs are given i n Figure 1-2.'  '\  The d i s t r i b u t i o n of snow follows an almost l i n e a r pattern.  The  c r i t i c a l a l t i t u d e above which snow tends to accumulate s h i f t s upward and downward with the d i f f e r e n t seasons but always coincides with a minimum frequency of f r o s t y days as stated by Peterson a l t i t u d e i s at about  3000 feet  (1964).  This c r i t i c a l  during most of the winter.  In the v a l l e y s ,  t h i s may be s l i g h t l y lower.  Mesic (zonal) s o i l s The e f f e c t of climate i s presumably most apparent i n s o i l s that have developed i n mesic (zonal) habitats.  Therefore, a biogeoclimatic  c l a s s i f i c a t i o n must deal p r i m a r i l y with these s o i l s and t h e i r properties. By d e f i n i t i o n , mesic s o i l s are not s i g n i f i c a n t l y affected by l a t e r a l l y translocated water and t h e i r drainage i s not impeded by heavy texture and concave r e l i e f shape or accelerated by very coarse texture and convex r e l i e f shape. Lower Mainland s o i l s which may  f i t the mesic s p e c i f i c a t i o n were  described as zonal upland s o i l s by Kelley and Spilsbury  (1938)-  According  to these workers, the zonal upland s o i l s are well-drained, possessing a t h i n humus horizon, and an i n s i g n i f i c a n t ash-grey podzol horizon, underlain  by a reddish-brown or brownish-yellow sandy loam horizon with gravel  7  and stones as w e l l as numerous i r o n (magnetic) concretions. These upland s o i l s belong 'to the concretionary brown group (sensu Report i960 of the National S o i l Survey Committee of Canada) confined to l o c a l i t i e s with less than 60 i n . p r e c i p i t a t i o n .  Krajina (1962, 1964) has recognized the  occurrence of a very weak l a t e r i z a t i o n i n the concretionary brown s o i l s . This view appears to be supported by the f i n d i n g of Clark et a l . , (1963) which indicate a d e f i n i t e trend of S i 0  2  increase and Fe2C>3 decrease from  the top downwards i n the p r o f i l e of some well-drained concretionary brown s o i l s of southwestern B r i t i s h  Columbia.  Above the 60 i n . isohyetal l i n e , concretionary brown s o i l s are replaced by true podzols i n mesic habitats.  Orterde and o r t s t e i n development  are common, and where p r e c i p i t a t i o n exceeds 110  inches gleyed humic podzols  become frequent within the mesothermal b e l t (Lesko 1961). In the microthermal b e l t , snow tends to accumulate i n large quantities.  This keeps the s o i l s water-saturated through i t s prolonged  and gradual melting. (Krajina 1959,  1964)  Subalpine humus podzols have developed here and are characterized by strong gleyzation and strong  podzolization which may be obscured by i n f i l t r a t i n g organic matter ( c f . Brooke 1964).  At higher elevations, beyond the timber l i n e , podzol  rankers were noted by Archer (1963) to be the c h a r a c t e r i s t i c mesic s o i l s i n the alpine zone. Climatic climax vegetation In the humid mesothermal climate of the Lower Mainland, mesic habitats are characterized by the Pseudotsuga menziesii - Gaultheria shallon - Eurhynchium oreganum climax.  Pseudotsuga menziesii can reproduce  here under i t s own shade but Tsuga heterophylla i s excluded from the dominant stratum of the community.  8 The and  perhumid mesothermal c l i m a t e promotes raw humus a c c u m u l a t i o n  s t r o n g p o d z o l i z a t i o n t h e r e b y c o n d i t i o n i n g t h e Tsuga h e t e r o p h y l l a -  Plagiothecium  undulatum c l i m a x a t low a l t i t u d e s and t h e Tsuga h e t e r o p h y l l a -  Abies amabilis  - Vaccinium alaskaense - Plagiothecium  i n t h e b e l t o f maximum p r e c i p i t a t i o n .  undulatum  climax  I n t h i s perhumid b e l t , Pseudotsuga  m e n z i e s i i becomes d e f i n i t e l y shade i n t o l e r a n t on mesic s o i l s and i s perpetuated  by f o r e s t f i r e s and c l e a r c u t t i n g .  Tsuga m e r t e n s i a n a predominates and A b i e s a m a b i l i s i s p r e s e n t i n t h e c l i m a x v e g e t a t i o n o f t h e m i c r o t h e r m a l b e l t whereby  Plagiothecium  undulatum i s r e p l a c e d b y R h y t i d i o p s i s r o b u s t a b u t V a c c i n i u m a l a s k a e n s e remains dominant i n t h e shrub l a y e r . a l t i t u d e s as r e l i c "top c l i m a t e " .  Mountain hemlock may o c c u r a t low  s p e c i e s o f muskegs, or on h i l l t o p s as an i n d i c a t o r o f  In the a l p i n e tundra b e l t  5000  (above  f t . ) forests are  r e p l a c e d by h e a t h e r communities on mesic h a b i t a t s i n which empetriformis  and C a s s i o p e m e r t e n s i a n a dominate.  Biogeoclimatic regions, Whitford  f o r e s t inventory  (1937)  sections.  zones and subzones  and C r a i g  i n B r i t i s h Columbia.  Halliday  Phyllodoce  (1918)  proposed t h e f i r s t  They r e c o g n i z e d  zonal  classifications  " c l i m a t i c f o r e s t types" mainly f o r  on t h e b a s i s o f t h e predominant v e g e t a t i o n .  More r e c e n t l y ,  d e s c r i b e d f o r e s t r e g i o n s and d i v i d e d them i n t o f o r e s t  These s e c t i o n s , which were comparable t o t h e C l e m e n t s i a n  association  (1916),  were v e g e t a t i o n a l l y and c l i m a t i c a l l y more heterogeneous  than the c l i m a t i c f o r e s t types o f Whitford  and C r a i g .  m o d i f i c a t i o n s t o H a l l i d a y ' s c l a s s i f i c a t i o n (Table  (1959)  applied  1-6).  Z o n a l c a t e g o r i e s were e s t a b l i s h e d by K r a j i n a three l e v e l s o f biogeoclimatic c l a s s i f i c a t i o n :  Rowe  (1959, 19^2)  at  r e g i o n , zone, subzone.  to follow page 8 Table 1-6  ZONAL CLASSIFICATIONS WITH REFERENCE TO SOUTHWESTERN BRITISH COLUMBIA  Whitford and Craig  Halliday  1918  1937 Madrona - Oak transition section ( C l )  Rowe  1959 S t r a i t s of Georgia section ( C l )  Douglas-fir - Red cedar South type Pacific Red cedar -  Southern  Coast  - Hemlock type  Coast  Section  section  (C2)  Hemlock -  (C2)  Hemlock - Sitka spruce type  1959, 1964 Coastal Douglas-fir zone, Garry oak subzone Coastal Douglas-fir zone wet subzone Coastal western 1 hemlock zone, dry subzone  Coastal western hemlock zone, wet subzone  - Balsam type  Coastal subalpine section  The subalpine part of the subalpine and muskeg type  Krajina  Mountain hemlock zone  Part of the Part of the Coastal western southern northern P a c i f i c hemlock zone, and c e n t r a l Coast sitka-spruce Coast , section ( C . 3 ) , subzone sections(Cl,C2.), and Queen Charand northern , l o t t e section Coast section (Ck)  (After O r l o c i 1961).  9  Biogeoclimatic regions coincide with the main distribution area of particular dominant trees.  The different biogeoclimatic zones are also  distinct in their precipitation, proportionate snowfall, temperature, and zonal soils. Pseudotsuga menziesii and Tsuga mertensiana are the two climat i c a l l y most distinct tree species in the general locality.  Snow tends  to accumulate in the distribution area of Tsuga mertensiana but its duration becomes insignificant in the distribution area of Pseudotsuga menziesii.  Heavy snow and prolonged melting keeps the zonal soils moisture-  saturated and brings about strong gleyzation.  This evidence was considered  by Krajina (196U) to separate the Pacific coastal mesothermal forest region from the Pacific coastal subalpine forest region. by the Mountain hemlock zone.  The latter is represented  Localities above the forest line include the  Alpine tundra which is hardly distinguishable as a continuous entity in the Coastal belt (cf. Brink 1959, Archer 1963). Pseudotsuga menziesii is the dominant species in the crown canopy and is potentially able to reproduce under its own shade in mesic habitats below the 50-60 i n . isohyet whereby podzolization is only weak in the soils. Tsuga heterophylla is the dominant species in the crown canopy as well as in the reproduction, and the soils are strongly podzolized in mesic habitats above the 60-70 i n . isohyet.  Pseudotsuga menziesii is frequently  present here but its establishment is entirely dependent on disturbing causes such as logging and forest f i r e s .  This evidence may well substantiate  al  the separation of a Coast western hemlock and Coastal Douglas-fir zone. The Coastal western hemlock zone which is discussed in the subsequent chapters is subdivided into two subzones based on the presence or absence of Abies amabilis and Vaccinium alaskaense in mesic habitats. The presence of these species is characteristic for the wet subzone of the  Coastal western hemlock zone.  10  The dry subzone is characterized by the lack  of Abies amabilis and Vaccinium alaskaense in mesic habitats.  A systematic  description of these zonal units is found in Table 1-7 and the appropriate map in Figure  I-k.  Biogeoclimatic forest zones in the southwestern British Columbia mainland. Pine dots - Coastal Douglas-fir zone; coarse dots - Coastal western hemlock zone; shaded - Subalpine mountain hemlock zone. (After Krajina and Orloci 1963).  Table 1-7  BIOGEOCLIMATIC UNITS ON THE  Biogeoclimatic unit  A.  Climatic type  Mean annual temperature (°P)  SOUTHWESTERN BRITISH COLUMBIA MAINLAND*  Annual precipitation (in.)  Annual A l t i t u d e Zonal snow( f t . ) s o i l forming fall processes (in.)  D i f f e r e n t i a t i n g combination of species f o r the of zonal and subzonal units A.  i n mesic habitats  B.  i n hygric habitats  C.  separation  i n x e r i c habitats  P a c i f i c c o a s t a l mesothermal f o r e s t region 1.  Douglas-fir zone  2. Western hemlock zone  Humid mesathermal, transi t i o n a l between the c o o l mediterranean and perhumid maritime  Perhumid mesothermal maritime  48-51  43-48  40-75  >75  15-30  >30  O-500  0-3000  Weak p o d z o l i zation, weak laterization, melanization  Strong podzolization  Pseudotsuga menziesii Pinus contorta Gaultheria shallon Holodiscus d i s c o l o r Lonicera c i l i o s a Mahonia nervosa Rosa gymnocarpa Viola orbiculata Linsaea b o r e a l i s Chimaphila umbellata Goodyera o b l o n g i f o l i a L i s t e r a cordata Eurhynchium oreganum  Abies grandis Corylus c a l i f o r n i c a Osmaronia cerasiformis Achlys t r i p h y l l a Trautvetteria grandis Tiarella laciniata Disporum oreganum Mnium insigne Mnium menziesii  Tsuga heterophylla ehimaphila menziesii C o r a l l o r h i z a maculata Cornus canadensis Goodyera o b l o n g i f o l i a Linnaea b o r e a l i s L i s t e r a caurina L. cordata Trientalis l a t i f o l i a Hylocomium splendens Plagiothecium undulatum Isothecium stoloniferum  Menziesia ferruginea Tiarella trifoliata Blechnum spicant Streptopus roseus Bazzania t r i c r e n a t a Mnium insigne (Mnium menziesii)  Arbutus.menziesii Pinus contorta Arctostaphylos columbiana A. uva-ursi Mahonia aquifolium Pachistima myrsinites Allotropa virgata Boschniakia hookeri Camptothecium megaptilum "Pilophoron cereolus  c+ o Hi Fleurozium schreberi Eurhynchium oreganum £ Hylocomium splendens (Plagiothecium undulatum) JjJ  H  Table 1-7  (continued)  Biogeoclimatic unit  B.  Climatic type  Mean annual temperature (Op)  Annual precipitation (in.)  Zonal Annual Altitude snow( f t . ) s o i l forming processes fall (in.)  a. Dry subzone  k6~k8  75-110 30-80  b. Wet  1+3-46  >110  subzone  >80  0-1200  D i f f e r e n t i a t i n g combination of species f o r the separation of zonal and subzonal units A.  in mesic habitats  B.  i n hygric habitats  C  i n xeric habitats  Strong podzol- Cornus n u t t a l l i i ization Mahonia nervosa Prunus emarginata Rubus v i t i f o l i u s Rosa gymnocarpa  600-3000 Strong podzolization, weak to moderate gleyzation  Abies amabilis Vaccinium alaskaense Clintonia u n i f l o r a Rubus pedatus Rhytidiopsis robusta Pilophoron h a l l i i Usnea longissima  Streptopus streptopoides  P a c i f i c c o a s t a l subalpine forest region 3. Mountain Perhumid (snowy) <43 hemlock zone microthermal  <175  >200 3000- 5000 Strong podzol- Tsitga mertensiana ization,  Chamaecyparis nootkatensis Cladothamnus pyrolaeflorus Vaccinium membranaceum Valeriana sitchensis Pseudoleskea b a i l l e y i Rhododendron albiflorum Leptarrhena p y r o l i f o l i a Orthocaulis f l o e r k e i i Vaccinium deliciosum Andraea n i v a l i s Cassiope mertensiana Phyllodoce empetriformis Gaultheria humifusa Cornus canadensis Lycopodium annotinum Rubus pedatus Tiarella unifoliata Clintonia u n i f l o r a Rhytidiopsis robusta  Table 1-7  (continued)  Biogeoclimatic unit  C.  Climatic type  Mean annual temperature (°F)  Annual precipitation (in.)  Differentiating combination of species for the separation of zonal and subzonal units  Annual Altitude Zonal snow(ft.) soil forming fall processes (in.) A.  in mesic habitats  B. in hygric habitats  C.  in xeric habitats  Mimulus lewisii M. t i l i n g i i Epilobium latifolium Saxifraga arguta Philonotis fontana Andraea nivalis Polytrichum norvegicum Anthelia juratzkana  Festuca brachyphylla Penstemon menziesii Phyllodoce glanduliflora Rhacomitrium lanugihbsum (Abies lasiocarpa) (Chamaecyparis nootkatensis) (Pinus albicaulis)  Alpine region 4. Coastal Perhumid alpine zone (alpine) tundra  <35  >5000  Skeletal dis- Phyllodoce empetriformis integration, Cassiope mertensiana moderate pod- Lycopodium sitchense zolization and gleyzation  11 CHAPT. II PROBLEMS IN THE CLASSIFICATION OF ECOSYSTEMS The hypothesis that there are discrete natural units i n the vegetation that can be assigned to different phytocoenosis types, is implied i n the work of several phytosociological schools that have produced several wqrkable classification systems. The work of Gleason (1926), the Wisconsin school, and Goodall (1953, 195U) inter alia refute the existence of discrete natural units i n the vegetation. It should be mentioned, however, that these schools based their conclusions either on subjective sampling that promotes the appearance of natural units or on completely random sampling, including incomplete species l i s t s and limited environmental evaluations, that tend to diminish existing differences between natural units. The concepts which are considered in this chapter are:  sample  plot, definitions of similarity, co-ordination, and classification units. Sample plot Sample plots are understood here as ecosystem individua (biogeocoenoses, Sukachev 1944," 1954) particularly those of small extent.  Each  sample plot is described by a single set of values, totals or averages, of f l o r i s t i c and environmental characteristics. It is imperative in classification that each sample plot be ecotopically homogeneous and uniform in its past history whereby f l o r i s t i c variations are subject to random causes"" alone. 1  Non-random f l o r i s t i c  variations within a sample plot always reflect gradients in the causal factors and may obscure the discontinuities among natural communities. At an extreme case of heterogeneity, the sample plot may combine mosaics of  •^Causes which have equal chance to occur at any point of the sample plot.  12 sharp  ecotopic and f l o r i s t i c  between them. single  c o n t r a s t w i t h c l e a r - c u t boundary  When a h e t e r o g e n e o u s s a m p l e p l o t  s e t o f t o t a l s o r averages,  lines  i s characterized by a  t h e v a l u e o f t h a t sample p l o t ,  p u r p o s e o f c l a s s i f i c a t i o n , may b e a s s e s s e d  i na t least three  for the  different  ways:  1.  The sample p l o t  stages.  combines mosaics o f c l o s e l y r e l a t e d  The d i f f e r e n t  averageable  values o f a p a r t i c u l a r  among t h e m o s a i c s .  successional  characteristic  are logically  T h e t o t a l s o r a v e r a g e s may p r o v i d e  information  about a f u t u r e stage  i n t h e s u c c e s s i o n a l sequence.  2.  combines mosaics o f ecosystems w h i c h a r e s e v e r a l  The sample p l o t  stages a p a r t i n t h e s u c c e s s i o n a l sequence.  T h e y may d e v e l o p  towards a  common f u t u r e s t a g e b u t t h e c h a r a c t e r s o f t h a t common s t a g e a r e n o t o b v i o u s at t h e time  of observation.  Therefore,  t h e t o t a l s o r a v e r a g e s do n o t  r e f l e c t anything r e a l i n nature.  3-  The sample p l o t  combines mosaics o f ecosystems o f sharp  c o n t r a s t a n d w i t h c l e a r - c u t b o u n d a r y l i n e s between them. values of a particular  characteristic  are not logically  ecotopic  The d i f f e r e n t averageable.  When a s e t o f t o t a l s o r a v e r a g e s r e p r e s e n t b i o g e o c o e n o t i c t h a t never occur discarded.  I f the values o f a p a r t i c u l a r  the d i f f e r e n t the  characteristics  sample p l o t .  occur  i n n a t u r e , t h e sample p l o t  i na single  sample p l o t .  c o u l d be a t t r i b u t e d  t o w h i c h i t p e r t a i n s must be  characteristic  a r e not averageable,  cannot be combined i n a s i n g l e  This i sapparent,  sense w i t h i n  f o r i n s t a n c e , when t w o s o i l  The a v e r a g e s i t e  t o the properties of either  This implies that this particular  plot  patterns  types  index, f o r instance, one o f t h e s e  soil  types.  should be subdivided a c c o r d i n g t o  s o i l s a n d t h a t e a c h homogeneous segment s h o u l d b e a n a l y z e d s e p a r a t e l y .  In completely random sampling, variations within the sample plots are ignored.  13  Therefore, this sampling technique is not the most  appropriate one i f classification is the goal. randomization in a somewhat restricted sense.  Greig-Smith (1957) proposed He recommended division of  the area into a number of small compartments of the same size but not necessarily of the same shape after which the. same number of samples would be taken at random from each compartment.  Greig-Smith did not specify  the c r i t e r i a for drawing boundary lines between the compartments.  If the  boundary lines coincided with physiographic and edaphic discontinuities, random sampling within these limits ought not to effect the homogeneity of sample plots, provided that the compartment had a uniform past history. According to Greig-Smith, a preliminary mapping of this sort should bring about such precise subdivisions that only one sample need be taken from each compartment.  Mapping of small compartments can be practical in a small  area but i t is impossible when thousands of hectares are sampled.  In  this latter case, homogeneous units are recognized but the boundary lines are not mapped, and each unit is sampled by a single sample plot.  European  phytosociologists refer to the homogeneous units of nature as "typical" stands (cf. Becking 1957, Whittaker 1962) and show that workable c l a s s i f i cation systems can be extracted from samples of "typical" stands.  Transi-  tions are rarely studied but are interpolated in both geographical and chronological sequences.  When the boundaries of "typical" stands are  drawn, their identity with Greig-Smith's "small blocks" becomes immediately apparent. The sample plot size varies most frequently from 1 to 100 sq.m. in non-forest communities and from 100 to 800 sq.m. in forests.  The plot  size should be selected so that the sample plots give maximum information about the ecosystem individua.  It may be difficult to work with large  14  sample plots but they can provide more information than the small sample plots. (cf.  The minimal-area is frequently determined by the species-area curve  Braun-Blanquet 1951).  Definitions of similarity Jaccard's (1912) coefficient of community can be expressed as 100  C = n  where n  c  n~  2—  a+ b~ c n  n  is the number of species in common among two areas, n  a  is the  number of species in one area, and n^ is the number species in the second area.  If the two areas contained exactly the same species, C would be 100.  Jaccard's coefficient can be used to compare individual stands (Guyot 1924) or associations  (Braun-Blanquet 1932).  Gleason's (1920) coefficient is based on the quantitative measures of the different species and can be expressed in the form later used by Motyka et a l . , (1950).  a +b where w is the sum of the lesser value for those species which are common to two stands, a is the sum of values of the species in one stand, and b i s the similar sum for a second stand.  If two stands had identical  composition of species and identical values for the identical species, the coefficient C would be 1.00.  If two stands had no species in common, C  would equal zero. Bray and Curtis (1957) used relative values, such as that a + b is always 2.00 in every pair of stands.  Therefore the similarity index  C reduces to w, the sum of the lesser values of species which occur in both stands.  15  The s i m i l a r i t y index i s defined i n the present study as the r e c i p r o c a l of the distance between two points i n n-dimensional  space.  Each  point represents a sample p l o t and i t s co-ordinates are the quantitative measures of the d i f f e r e n t species.  An i d e n t i c a l set of species i s used  i n the d e s c r i p t i o n of a l l sample p l o t s to be compared.  Accordingly,  the f i r s t column of the score sheet contains the l i s t of a l l species, and the quantitative measures of species abundance are compiled i n the subsequent columns, appropriate to the d i f f e r e n t sample p l o t s .  Absences are  registered as zeros. The general concept of the s i m i l a r i t y index may be explained through an example where sample plot a and b are compared on the basis of species 1, 2, and 3-  Three species determine three orthogonal axes and s i x co-ordinates  which define the p o s i t i o n of the two sample p l o t s as points i n space (Figure I I - l ) .  16  and  are the quantitative measures of species 3 in sample plot aa. and andb  respectively.  D  ' =y  ( X  la  D' is the projection of D on the 1, 2 plane, hence,  +  ( X  2a - 2b X  v  ) 2  h  e  r  e  X  la>  X  l b ' 2a> X  a  n  dX  2b  a  r  e t  h  e  quantitative measures of species 1 and 2 in the two sample plots. D' in the equation of D,  D=y(  x l a  "  x l b  )  + (  x 2 a  + (  x 3 a  Substituting  -X^)'  When the set contains n species i=n  o  D =\ 1- < ia - ib) X  X  i=l  The reciprocal, —i—, is the index of f l o r i s t i c similarity. a practical expression because i t is a measure of distance.  D is  The D matrix  pertains to a space of known dimensions, and therefore is convenient to use in geometric manipulations.  It is in contrast to index C which is a  relative number, and i t is d i f f i c u l t to determine the dimensionality of the space in which i t can be used as a distance to construct spatial models (cf. Torgerson 196g).  The application of the D matrix is discussed  in the subsequent paragraphs. Co-ordination The multitude of sample plots can be represented by a cluster of points in hyper-space.  Since each point is defined by a set of f l o r i s t i c  co-ordinates, the spread within the point cluster reflects differences among sample plots.  floristic  Interspecific correlations bring about  unequal spread in the different directions.  Correlations always indicate  non-random variations due to interdependence of species as in symbiosis, parasitism, saprophytism, and epiphytism, or i t is the consequence of common ecotopic specificity of the different species.  17  Hottelling's factor analysis was used by Goodall (195*0 in a study of f l o r i s t i c variation among different stands.  This method, known  also as the method of principal axes, includes calculation of the equation of a line from which the sum of the squared distances of the points is minimum.  The line signifies the widest part of the point cluster,  defining the direction of maximum spread.  The distance to a point along  the line is the value of the "factor" for the sample plot which corresponds to that point.  Further factors can be extracted to account for a l l non-  random variations.  Each "factor" can be identified with the underlying  cause which can be environmental or purely f l o r i s t i c . The principal obstacle to the use of Hottelling's factor analysis, as Goodall pointed out, is the heavy computation load. (1957)  recognized the difficulty involved in handling  Bray and Curtis 59  analysis and proposed a simpler technique of ordination.  stands in factor These workers  extracted a spatial pattern of stands from a matrix of relative values. The values were determined by inverting the estimates of stand similarity so that each estimate was subtracted from a maximum similarity value of 100.  Their technique involved the extraction of orthogonal axes, starting  from the one which lies in the direction of maximum spread.  The extraction  of axes was followed by the study of f l o r i s t i c as well as some environmental variations in the direction of the axes. The two and three dimensional models presented by Bray and Curtis could be visualized as projections of a hyper-space cluster of points (determined by the relative matrix) in lower space (determined by the extracted axes).  Because the original placement of points is distorted  by projection, the projection distances (or ordination distances in the work of Bray and Curtis) among points are not suitable for drawing conclusions concerning the spatial relationship of the points.  This fact  18 became most obvious when B r a y and C u r t i s compared t h e r e l a t i v e of s i m i l a r i t y i n d i c e s t o the o r d i n a t i o n distance matrix. e x p l a i n only approximately  12 p e r cent  (lOOr  matrix  They c o u l d  ) o f the v a r i a t i o n i n the  r e l a t i v e matrix by the v a r i a t i o n i n the o r d i n a t i o n distance When i n t e r s t a n d s i m i l a r i t y i s expressed  matrix.  as a d i s t a n c e , t h e  d i m e n s i o n a l i t y o f t h e space t o which t h i s d i s t a n c e r e f e r s i s e q u a l t o t h e number o f s p e c i e s on t h e b a s i s o f which t h e d i s t a n c e was c a l c u l a t e d . The r e f e r e n c e p o i n t s which d e f i n e t h e d i r e c t i o n o f t h e maximum spread o f t h e p o i n t c l u s t e r a r e those w i t h t h e l o n g e s t i n t e r p o i n t d i s t a n c e . i s designated  direction  i n t h e p r e s e n t work as t h e A a x i s , e s t i m a t i n g t h e d i r e c t i o n  o f t h e l o n g e s t diameter o f t h e h y p e r - s u r f a c e multitude.  This  The B a x i s i s o r t h o g o n a l  which envelops t h e p o i n t  t o t h e A a x i s and i t s d i r e c t i o n i s  d e f i n e d by t h e two most d i s t a n t p o i n t s w i t h a common p r o j e c t i o n on t h e A axis.  The C a x i s i s o r t h o g o n a l t o t h e AB p l a n e .  a r e graduated i n u n i t d i s t a n c e s . ABC  The axes so e x t r a c t e d  The a x i s v a l u e s o f t h e p o i n t s i n t h e  system can be c a l c u l a t e d , determined g r a p h i c a l l y or by t a b u l a t i o n on  the b a s i s o f i n t e r p o i n t d i s t a n c e s as proposed i n t h e p r e s e n t  dissertation.  **3  Dl Fig. I I - 2 I f Pn and Po a r e t h e f i r s t and second r e f e r e n c e p o i n t s , and P i s a p o i n t o u t s i d e t h e P]_, P  where h =  2K •.  The  2  line  ( F i g u r e I I - 2 ) , t h e a x i s value o f P 3  a r e a K c a n be determined by Heron' s  equation  K = ysCs-D^  (s-D ) 2  (s-Dg)  where  s = -(Vj+T>2+D?) •  The i n t e r p o i n t d i s t a n c e s o f D w h i c h was d i s c u s s e d e a r l i e r  D]_, D 2 , D3 a r e k n o w n f r o m t h e e q u a t i o n i n the text.  A graphical  representation  i s provided i n Figure II-2. The t a b u l a t i o n table  includes  62  plots are l i s t e d  technique i s demonstrated i n Table I I - l .  sample p l o t s  of the g l a c i a l d r i f t  i n the appropriate distance  f r o m f e f e r e n c e p l o t 47  classes  land  type.  along the A  12.1-14.0 c l a s s .  19  appears i n the  16.0-14.1  The i n t e r m e d i a t e c l a s s v a l u e  The a x i s v a l u e s a r e c o m p i l e d i n T a b l e I I - 2 . sample p l o t s  The a x i s correlated with  matrix w i l l with  plot  has the A  axis  For  c l a s s and t h e n i n t h e  i s 10 o n t h e A a x i s s c a l e .  The B a n d C a x i s v a l u e s o f  a r e d e t e r m i n e d i n a manner s i m i l a r t o t h a t  determine the A axis  if  axis  i n t h e i n t e r m e d i a t e column between t h e two o c c u r r e n c e s .  example, sample p l o t  sample  E a c h s a m p l e p l o t number w h i c h  o c c u r r e d i n s e p a r a t e columns i n t h e two h a l v e s o f t h e t a b l e  the  The  i n t h e upper h a l f , and t h e n from r e f e r e n c e  11 i n t h e l o w e r h a l f o f T a b l e I I - l .  projection  The  used t o  values.  values characterize  the t o t a l vegetation.  species or environmental variables,  indicate the relative  respect t o vegetational  the correlation  importance of the d i f f e r e n t  variations.  Therefore,  variables  A p p r o p r i a t e examples a r e g i v e n  i n Chapter IV.  Coenotic c l a s s i f i c a t i o n units: Related concepts. at Brussels,  the association  v e g e t a t i o n types and ecosystem  At the Third  types  International Botanical  Congress  was r e c o m m e n d e d a s t h e f u n d a m e n t a l u n i t i n  Table I I - l  12 22 13 09 08 07 04  02 11  03 01 29 33 34  19 14 10 06 05 15 18 20 27 28 30 32 35  TABULATION OF POINT DISTANCES FROM REFERENCE POINTS 11 AND 47  16 17 21 23 24 25 26 31 57 6o 6l 62  6 12 11  13 34  38 39  41  42  46  51 53 55 56  48  50 54 59  10  "68 09 07 04 02 01 35  5.8 36 37 4o 43 44 45  i4  10 06 0328 30 33  ll  12 22 05 21 23 27 31  49  52  13  14  15 :.i6 17  18  19 16 18 20 24 25 26 29 32 37 39  15 17 36 38  4o  42  54 55 6l 62  41  57 Note:  20  Sample plot number 0 Distance from A axis scale  hi  Sample plot number  47  Table I I - l and 2 pertain to the g l a c i a l d r i f t land type i n the dry subzone.  43 45  46 48  50 51 52 53 56 58 6o  19  44 49 59  o o r-  1  Table II-2  5 02  6 69  7 03  13 34  08 07  33 35  04 01  A AXIS VALUES  8 22  9 53  10 19  11 57  13 60  14 JIB  15 59  14  12 51  27 29  18 20 21 23 31 32  15 24 25 26 16  62 39  38 42 54 37  50 36 55  58 40 43 45  10 06 30 28  41 17  16 17 4~4" 59  18  19  20 ^  A axis scale Sample plots  52  46 51 53 56  <+ o o H H  § 1-3 & H H  I  20  plant sociology (Flahault and Schroter 1910).  The 1910 definition , 2  however, did not indicate how the association should be established. Braun-Blanquet (1932) interpreted the association to be an abstract vegetation type which combines individual stands of vegetation on the basis of f l o r i s t i c similarity. (fidel)  He recognized associations by the characteristic  species. The application of f i d e l species as the only objective criterion  for  community classification has been rejected by the different schools  (cf. Whittaker 1962) following unsuccessful attempts to find such species in most communities.  It was pointed out, however, that the absence of  f i d e l species should not detract from the validity of the association (Krajina 1933, i 9 6 0 ) .  The concept of f i d e l i t y has been broadened in the  present work to include a minimum number of species on the basis of which classification units can be recognized. The association should be designated as the basic vegetation type.  A definition involves the following concepts:  Each association  could be visualized as a cluster of points, representing sample plots in n-dimensional space.  The points are fixed by n f l o r i s t i c co-ordinates  and indicate a multivariate normal distribution.  The enveloping surface  may be a hyper-sphere (in the case of random f l o r i s t i c variations) or a hyper-ellipsoid (in the case of interspecific correlations).  The pro-  jections of the points f a l l in a normal frequency distribution along the axes.  Multimodal distributions indicate the presence of several distinct  s t a t i s t i c a l populations (Goodall 195^).  Frequency distributions could be  used to separate natural populations as classification units, provided that the sampling was random and the frequencies were sufficiently high. 2"Une association (Bestandestypus) est un groupement vegetal de composition floristique determinee presentant une physiognomie uniforme et croissant dans des conditions stationneles egalement uniformes. L'association est 1'unite fondamentale de l a Syn^cologie."  C l a s s i f i c a t i o n techniques i n the present work.  21 Simple vegetation-  environmental series are extracted from within the multitude  of sample  plots through successive s t r a t i f i c a t i o n on the basis of c e r t a i n variables. C l a s s i f i c a t i o n units are obtained by segmenting these simple series a t convenient i n t e r v a l s . The concepts which are implied i n s t r a t i f i c a t i o n are as follows: An edaphic gradient, as f o r instance a soil-moisture gradient, corresponds to d i f f e r e n t sets of vegetation types i n the d i f f e r e n t climates (Table IV-10). separated  These d i f f e r e n t sets can be v i s u a l i z e d as point c l u s t e r s  i n the d i r e c t i o n of a macroclimatic  axis i n abstract space.  Thus  these c l u s t e r s can be r e a d i l y separated by s t r a t i f i c a t i o n on the basis of macroclimate.  In t h i s vay,  subzones are formed, and the influence of  macroclimate i s p r a c t i c a l l y removed from vegetational v a r i a t i o n s . It i s conceivable that within each c l u s t e r further s p a t i a l separation can occur i n the d i r e c t i o n of the parent material axis as w e l l as the exposure a x i s .  When sample p l o t s are s t r a t i f i e d on the basis of  parent material, and when the warm exposures are separated from the cool exposures t h e i r influence w i l l be removed from vegetational v a r i a t i o n . I t i s shown i n Chapter IV that vegetational variations i n the point c l u s t e r at t h i s l e v e l of s t r a t i f i c a t i o n i s mainly the consequence of a s o i l moisture gradient. Each parent material group (or land type) when s t r a t i f i e d on the basis of warm and cool exposures contains only a single series of vegetation types along the s o i l moisture a x i s .  Since an abstract concept i s implied  i n the gradient i t s e l f i t s segments are also abstractions; each segment constitutes an ecosystem type.  Each ecosystem type consists of a multitude  of i n d i v i d u a l ecosystems of a common ecoclimate, f l o r i s t i c structure.  s o i l properties, and  22 C e r t a i n ecosystem types are on  the b a s i s  formed.  of t h e i r f l o r i s t i c  similarity.  C e r t a i n ecosystem types are  r e s e m b l a n c e t o any  combined w i t h  other ecosystem  I n t h i s way  u n i q u e i n h a v i n g no  other ecosystem types;  they are  types  associations3  are  significant floristic  themselves c l a s s i f i e d  as  associations. An  a s s o c i a t i o n may  zonally separated parts are  d e s i g n a t e d as  the  influence  of the  The  The  zonally separated  classification unit  w h i c h o c c u r on  edaphic d i f f e r e n c e and  therefore  promote a  and to  floristic  subassociations.  the b a s i s  o f e x p o s u r e and  abstractions elevation,  soils.  f o l l o w i n g l a n d t y p e s were s e p a r a t e d from w i t h i n the  w e s t e r n hemlock  The  i s compensatory  "variant" applies to climatic  a s s o c i a t i o n on  similar  zones.  a s s o c i a t i o n always possess d i f f e r e n t s o i l s  different climates,  s e p a r a t e d f r o m w i t h i n an but  o f an  subassociations.  r e s e m b l a n c e among t h e The  belong to several biogeoclimatic  Coastal  zone:  ^The c o n c e p t o f a s s o c i a t i o n t h a t ds i m p l i c i t i n t h e p r e s e n t w o r k was defined b y K r a j i n a (i960) a s "a d e f i n i t e u n i f o r m ( h o m o g e n e o u s ) p h y t o c o e n o s i s t h a t i s i n dynamic e q u i l i b r i u m w i t h a c e r t a i n complex of e n v i r o n m e n t a l f a c t o r s (ecotope); i t s f l o r i s t i c structure - i . e . s t r a t i f i c a t i o n ( l a y e r i n g ) , species s i g n i f i c a n c e ( A r t m a c h t i g k e i t , or abundance and dominance), s o c i a b i l i t y , c o n s t a n c y , f i d e l i t y , and v i g o u r o f t h e component s p e c i e s - l i e s w i t h i n l i m i t s g o v e r n e d n o t o n l y by t h e e c o t o p e ( c l i m a t e , s o i l , s u b s t r a t u m , t o p o g r a p h y , and b i o t i c e n v i r o n m e n t a l f a c t o r s ) , b u t a l s o by the h i s t o r i c a l f a c t o r s o f the v e g e t a t i o n a l development (the f o u r t h dimension or space-time f a c t o r ) . "  A)  Rock outcrops  D)  C)  Glacial drifts^  23  (not divided by subzones)  a) Dry subzone b) Wet subzone**B)  Ravine a l l u v i a l deposits  E)  A l l u v i a l plains  a) Dry subzone b) Wet subzone  a) Wet subzone b) Squamish River  Spring-water swamps^  High moors**  -  (not divided by subzones) Sample plots were selected  i n the l o c a l i t i e s indicated i n  Figure I - l . Analysis of the sample plots has followed a standardized procedure proposed by Krajina (see Orloci 1961, Peterson  ^Not  196k).  considered i n the present work.  5Field data collected by Lesko (1961), O r l o c i (1961), and E i s (1962).  6study  completed i n the thesis of Lesko  (1961),  Orloci  (1961),  and E i s  (1962).  2k CHAPT. I l l  THE ROCK OUTCROP LAND TYPE  Rock outcrops lack a continuous  s o i l cover.  The ground surface  i s a complex of knolls, peaks, crevices, and depressions.  New outcrops are  exposed continuously as the r e s u l t of erosion following forest f i r e s , logging operations, and road construction. Vegetational sampling included most developmental stages except the communities of the sharp peaks and shaded rock walls concerning which only general notes were taken.  Sample p l o t s were located at low elevations  at B r i t t a n i a , Cypress Creek, and Haney Forest.  Rock types These are mainly a c i d i c intrusions i n the Coastal western hemlock zone, c h i e f l y of granodiorite and quartz d i o r i t e but also of granite, syenite, and monzonite (Geological Survey of Canada  1948).  S o i l s which develop from  these rocks are p o t e n t i a l l y r i c h i n potassium and phosphorus (mainly from granite and syenite), as w e l l as calcium and magnesium (mainly from d i o r i t e and monzonite) according to Wilde  (1958).  Krajina  (1958-1964)  pointed out  that run-off water, which i s the source of seepage of the lower slopes, may carry plenty of nutrients from the weathering of these r i c h rock types. The frequent occurrence of g l a c i a l d r i f t materials i n the crevices and protected depressions indicated that rock outcrops were l o c a l l y influenced by g l a c i a l deposits which once could have covered the rock surface but have been l a t e r removed by erosion. The vegetation-environmental  pattern  The d i f f e r e n t habitats occur i n a mosaic pattern on rock outcrops; t h i s r e s u l t s i n a coincident pattern i n the vegetation. The steepest knolls and peaks are occupied by crustose and f o l i o s e lichens which are f i r m l y attached to the substrate and form only loosely  25 integrated colonies. Fry (1927) pointed out that crustose lichens cause a c e r t a i n amount of mechanical d i s i n t e g r a t i o n of rocks by the p u l l of the swelling, gelatinous t i s s u e s , and Schatz, et a l . ,  (1962)  discussed tke significance of l i c h e n acids i n pedogenesis on rock outcrops. Their corrosive action, however, i s n u l l i f i e d by the immediate removal of a l l loosened p a r t i c l e s through wind, water, and gravity action. This stage, therefore, can be greatly prolonged as no e s s e n t i a l endogenic change can occur i n the ecosystem. The Rhacomitrium canescence community i s confined to k n o l l s with a r e l a t i v e l y low slope gradient. The colony expands upward on the rock surface, gradually replacing the crustose and f o l i o s e lichen communities. Rhacomitrium canescens i s only loosely attached to the substrate, therefore, i t s mat  i s e a s i l y underwashed by rains and removed by  erosion from the steep slopes i f i t s continuity i s disrupted. Rhacomitrium canescens does not inhabit rocks, but requires quartz sandy s o i l s . Its mat and the bed rock are always separated by a t h i n sand horizon of gray or blackish color. Rhacomitrium heterostichum on the other hand, i s attached d i r e c t l y to the rock surface s i m i l a r l y as Grimmia apOcaEpa. The community of f r u t i c o s e lichens (Cladonia r a n g i f e r i n a , £. p a c i f i c a , C. u n c i a l i s , C. g r a c i l i s ) and bryophytes (Polytrichum p i l i f e r u m , P. juniperinum, Dicranum scoparium, Rhacomitrium canescens) prevails on convex surfaceswith low slppe gradient. The organic matter i s crust mor  (Wilde, 1958)  and i s underlain by very t h i n sand or  sandy loam horizon. The s o i l i s very a c i d .  ,  26 The community contains a great v a r i e t y of species and i t frequently appears as a t r a n s i t i o n between the Rhacomitrium canescens mat and the Gaultheria shallon thicket.  The average slope gradient i s less,  and the mineral s o i l horizon contains more f i n e particles-'- i n the CladoniaPolytrichum p i l i f e r u m community than those i n the Rhacomitrium canescens community. Weathering products are removed from the convex steep slope and accumulate i n the crevices and depressions, or are washed down onto the lower slopes.  The r e l a t i v e frequency and size of the crevices and depressions  are s i g n i f i c a n t i n the establishment of higher vegetation on rock outcrops (Gooper 1913>  Oosting and Anderson 1939)•  Shrubs and trees as w e l l as  grasses and herbs are l a r g e l y confined with t h e i r root system to the r e l a t i v e l y deep s o i l s of crevices and depressions. The f i l l of the d r i e r crevices i s usually sand or loam with few rounded or angular stones. and strongly a c i d .  The top s o i l horizon i s melanized  S o i l a c i d i t y decreases with depth.  (A^) or l e a c h , ( A ) ,  Danthonia spicata  i s c h a r a c t e r i s t i c f o r the dry crevice, but Polytrichum piliferum, Rhacomitrium canescens as w e l l as fruticose lichens may also occur. of Gaultheria shallon at t h i s developmental  The establishment  stage indicates a t r a n s i t i o n a l  stage between the Danthonia spicata and the Gaultheria shallon community. The accumulation of transported materials cannot exceed the downslope edge of the crevice.  S o i l depth of the Danthonia communities, therefore, remains  f a i r l y constant.  Development of the Danthonia spicata community apparently  leads to the establishment of Gaultheria shallon which forms the only available shrub community that colonizes dry crevices i n the Coastal western hemlock zone.  The decreasing vigor of Gaultheria shallon with the growing  distance from the forest edge apparently indicates that the encroachment of  1,. ... ,., ,., .. ,, „., Estimated by the "feel" or "harid-texturing" method. r  e  Gaultheria shallon onto dry crevices may depend l a r g e l y on the p a r t i a l  27  shading hy the forest edge. Wet  crevices are colonized by Polytrichum commune.  I t grows i n  a thick tangled mat which i s d i f f i c u l t f o r other species to penetrate. Companion species, therefore, are none or very few. through the s o i l p r o f i l e .  The r h i z o i d s penetrate  S o i l depth i s comparable to that of the Danthonia  spicata community but the texture i s f i n e and the s o i l i s strongly gleyed. Polytrichum commune thrives best at the center of the crevice which gives the surface s l i g h t l y convex appearance.  The wet crevice i s comparable but  not i d e n t i c a l with the "rock pools" that were described by Cooper ( 1 9 1 3 ) and Whitehouse ( 1 9 3 3 ) • were not encountered  Rock pools with sedge, rush, or herbaceous communities i n the area.  Development of the Polytrichum commune community apparently leads to the Gaultheria shallon thicket and t h i s i s brought about by mainly  exogenic  causes, such as accumulation of transported materials from the slopes, shading, f a l l e n wood, leaves, and perhaps creeping roots of shrubs and trees which tend to open the community f o r Gaultheria shallon invasion. The Gaultheria shallon community i s the f i r s t stage of succession on rock outcrops.  I t s properties are very s p e c i f i c to the preceding develop-  mental stages.  There are three developmental  to the Gaultheria shallon community:  l i n e s which apparently lead  k n o l l succession through the Cladonia -  Polytrichum p i l i f e r u m community, dry crevice succession through the Danthonia spicata community, and wet crevice succession through the Polytrichum commune community.  Stands of these three communities are r e s t r i c t e d to s p e c i f i c  habitats i n a mosaic pattern.  Development binds t h i s mosaic into a common  complex with Gaultheria shallon.  The root system of Gaultheria shallon i s  not confined to any p a r t i c u l a r part of t h i s habitat complex. plant may spread i t s roots throughout the habitat complex.  The i n d i v i d u a l Organic matter  accumulates more r a p i d l y than i n any one of the preceding (or root mor)  i s formed.  28 stages, raw humus  The accumulation of raw humus and the increasing  concentration of roots i n crevices within the Gaultheria community cause the destruction of the Dauthonia and Polytrichum colonies, and promote environmental and b i o t i c uniformity.  The decomposition of the rock surface perhaps  i s accelerated by humic acids and by mechanical root action.  Fine p a r t i c l e s  are moved out by l a t e r a l water movement following rains but the coarser products of weathering are r e l a t i v e l y w e l l protected against erosion.  The  coarse fragments accumulate, are bleached, and form a s o i l horizon which i s ashy gray i n colour.  The s o i l p r o f i l e , hence consists of a t h i c k root  underlain by an ashy gray sand horizon (A ) and the parent rock. g  type was  This s o i l  described by Lesko (1961) as an eluviated l i t h o s o l . Establishment  may  mor  of Pseudotsuga menziesii i n the Gaultheria community  lead to the development of a l i t h o s o l i c f o r e s t .  This community can also  develop following p a r t i a l erosion of the s o i l p r o f i l e i n the g l a c i a l f o r e s t communities on convex slopes adjacent to rock  till  outcrops.  Pseudotsuga menziesii can be self-perpetuating without f i r e or logging i n the l i t h o s o l i c f o r e s t association.  Sample p l o t 230 (Appendix 111-12)  i s an example of a mature stand with the occurrence of Pseudotsuga menziesii i n a l l s t r a t a of the community and i n a l l age classes. Thuja plicata•;-is a constant companion to Pseudotsuga menziesii i n t h i s association which can be accounted for on the basis of the richness of the substrata as suggested by Krajina (195§^-19&F)•  However, Tsuga heter-  ophylla thrivesmainly on decaying wood i n shaded l o c a l i t i e s . layer i s well-developed and lichens.  The  shrub  and the ground i s heavily covered by bryophytes  The occurrence of Camptothecium megaptilum, A n t i t r i c h i a  curtipendula (on the rock), and Letharia vulpina (on bark) i s a unique feature of sample p l o t 230.  Camptothecium megaptilum and Letharia vulpina  are reported for the f i r s t time from the Coastal western hemlock zone.  29  The d i s i n t e g r a t i o n of the remnants of the l i c h e n and bryophytic stages i s nearly completed i n the l i t h o s o l i c forest by a combination and root a c t i o n .  of shading  Roots concentrate i n the crevices, thereby occupying the  space of the extra s o i l which had accumulated i n the crevices and which conditioned the composition of vegetation during the development of the preGaultherietum  stages.  Xerarch development i s always most advanced on the lowest l e v e l s of a rock outcrop and l e a s t advanced on the peaks or steep k n o l l s .  The  shade and l i t t e r of the arboreal vegetation, which usually surrounds the early developmental stages, p a r t i c i p a t e i n the preparation of the ground for  t h e i r own establishment.  In t h i s way they may accelerate succession f a r  beyond the endogenic potentials i n the l i c h e n or bryophytic stages. The sequence of primary succession on rock outcrops i s summarized i n the following diagram: Peaks and knolls  Dry crevices  Crustose, and f o l i o s e lichens  Danthonia spicata  I  Wet crevices Polytrichum commune  Rhacomitrium canescens  I Fruticose lichens, and bryophytes  I  Gaultheria shallon, f r u t i c o s e lichens, and bryophytes  Gaultheria shallon, and Danthonia spicata  Gaultheria shallon, and Polytrichum commune  I  L i t h o s o l i c forest C l a s s i f i c a t i o n units It seemed appropriate t o d i s t i n g u i s h i n i t i a l l y between three groups of sample p l o t s :  bryophytic and l i c h e n communities, non-woody communities  30 of crevices and depressions, and woody commiinities.  These groups  f l o r i s t i c a l l y as w e l l as environmentally are so d i f f e r e n t that no sample p l o t s of the d i f f e r e n t groups could be expected to f a l l into a common classification unit. Two associations were recognized i n the f i r s t group: Rhacomitrietum canescentis  (Rh) and Cladonieto - Polytrichetum p i l i f e r i ( C l ) .  The second group was divided into two associations: Danthonietum spicatae (Da), and Polytrichetum communis (Pc) on dry and wet crevices r e s p e c t i v e l y . The t h i r d group included the Gaultheria thicket and the l i t h o s o l i c forest which were c l a s s i f i e d as the Gaultherietum  shallonis (Ga) and the  Cladonieto - Pseudotsugetum menziesii (LG) r e s p e c t i v e l y . The Gaultherietum shallonis was too heterogeneous to be treated as a single e n t i t y .  The remnants of the successionally preceding communities  were considered i n the establishment of three subassociations: spicatae, polytrichetosum communis, and cladonietosum. described i n Table I I I - l and i n Appendix I I I - l to 1 2 .  danthonietosum  The associations are  Table I I I - l Associations  Rhacoraitrietum canescentis (Rh)  Land form R e l i e f shape Slope g r a d i e n t Altitude f t . Macroclimate Hygrotope Permeable mineral s. depth cm. pH L-F A B C Humus form 0  Characteristic combination of species  ROCK OUTCROP LAND TYPE  Knoll Convex 27 (10-40) 620 (250-1000) Perhumid mesothermal Very dry 1.4 ( 0 . 5 - 3 . 0 ) 4.69 ( 4 . 3 2 - 5 . 0 9 ) 4.36 ( 4 . 0 4 - 4 . 9 8 )  Raw humus  Rhacomitrium canescens  Cladonieto - Polytrichetum (CI)  Table Convex 16 (10-30) 610 (250-1000) Perhumid mesothermal Very dry 2.8 4.38 4.76  (0-5-0) (4.29-4.48) (4.65-4.87) Raw humus  Cladonia p a c i f i c a Polytrichum p i l i f e r u m Polytrichum juniperinum Cladonia rangiferina Rhacomitrium canescens Dicranum scoparium Cladonia g r a c i l i s  Danthonietum spicatae (Da)  Crevice Concave 9 (3-21) 740 (250-1200) Perhumid mesothermal Very dry 23:.03 4.50 4.46 4.80  (13-33) (4.12-4.70) (4.10-4.61) (4.23-5.49)  Duff mull Danthonia spicata Polytrichum p i l i f e r u m Polytrichum juniperinum Rhacomitrium canescens Cladonia p a c i f i c a Cladonia r a n g i f e r i n a Cladonia g r a c i l i s  Rock Outcrop Land Type  Table I I I - l , (continued) Associations  Polytrichetum aoirtaunois". (Pc)  Land form R e l i e f shape Slope g r a d i e n t Altitude f t . Macroclimate Hygrotope 1 Permeable mineral s o i l depth cm. L-F pH A B C Humus form S i t e index Douglas-fir f t . per lOOy w. hemlock w. redcedar 0  Characteristic combination of species  Crevice Concave 7 (5-10) 730 (600-1000) Perhumid mesothermal Wet 21 (7-35)  4.42 5.02  5.41  Duff mull  Polytrichum commune  Gaultherietum shallonis (Ga)  Cladonieto - Pseudotsugetum (LG)  Complex Convex 10 (5-21) 690 (500-1000) Perhumid mesothermal Dry t o moist  Upper-slope Convex 25 (8-40) 990 (540-1400) Perhumid mesothermal Dry  16 4.71 k.kh 5.17  (6-30) (4.41-4.88) (4.08-4.85) (4.34-5.91  Raw humus  9 (3-13) 3.82 ( 3 . 7 0 - 4 . 0 0 ) 3.64 ( 3 . 5 8 - 3 . 7 0 )  Raw humus 69 (60-78)  66 (64-67) 56 (54-69) Gaultheria shallon Danthonia spicata Polytrichum commune Pleurozium schreberi Rhacomitrium canescens Hylocomium splendens Eurhynchium oreganum Cladonia p a c i f i c a Cladonia r a n g i f e r i n a Polytrichum p i l i f e r u m Polytrichum juniperum  Pseudotsuga menziesii Gaultheria shallon Eurhynchium oreganum Hylocomium splendens Cladonia p a c i f i c a Cladonia r a n g i f e r i n a Rhacomitrium canescens Polytrichum p i l i f e r u m Pleurozium schreberi  31 CHAPT. IV  THE GLACIAL DRIFT LAND TYPE  G l a c i a l d r i f t consists of materials transported and deposited by the moving g l a c i a l i c e or by the melt water issuing from g l a c i e r s .  Glacial  d r i f t s of the southwestern B r i t i s h Columbia mainland were c l a s s i f i e d by Armstrong (1956, 1957)  o  n  "the basis of texture and assortment:  G l a c i a l t i l l i s a compact unsorted mixture of sand, s i l t , clay, and stones deposited d i r e c t l y beneath g l a c i a l i c e .  In most instances the compact  t i l l i s covered by loose materials of d i f f e r i n g thickness. the loose materials indicates a g l a c i a l outwash o r i g i n .  S t r a t i f i c a t i o n of  Lacustrine deposits  are of s i l t and clay with a l t e r n a t i n g l i g h t and dark colored l a y e r s . The stoney and clayey s i l t mixtures are glacio-marine sediments exposed a f t e r the ice melted and the land rose.  Glacio-marine  sediments occur at elevations  up t o 1 , 0 0 0 f e e t . G l a c i a l d r i f t s originated on the southwestern B r i t i s h Columbia mainland during the Seymour, Semiamu, Vashon, and Capilano g l a c i a t i o n s . Seymour deposits are more than 3°,000 years o l d . are approximately  The  The Capilano sediments  11,000 years o l d .  The g l a c i a l d r i f t land type i s discussed separately i n the dry and the wet subzones.  In each subzone, the f l o r i s t i c variations are analyzed  along the three p r i n c i p a l axes (see Co-ordination i n Chapt. I I ) .  Following  t h i s , the c l a s s i f i c a t i o n units are described, and then the successional trends i n ecosystem development are outlined. The g l a c i a l d r i f t land type does not include spring-water which frequently occur on g l a c i a l d r i f t substrata.  swamps  32 Dry  Floristic  v a r i a t i o n s i n the Sample p l o t s a r e  mental c h a r a c t e r i s t i c s .  subzone  d i r e c t i o n of p r i n c i p a l  d e s c r i b e d on t h e b a s i s o f f l o r i s t i c  Floristic  d e s c r i p t i o n s include the  f i c a n c e v a l u e s w h i c h i f used as c o - o r d i n a t e s sample p l o t i n an n - d i m e n s i o n a l  space.  An  i n the d e s c r i p t i o n o f a l l sample p l o t s ; l i s t below) i n the present 1.  21. 3k. 56. 78. 910. l i .  12. 13lk. 1516.  axes  define the  and  environ-  species  exact place  signiof  i d e n t i c a l set of species  this  set contains  32  species  each  i s used 1  (see  study.  Abies amabilis Acer circinatum Athyrium f i l i x - f e m i n a Blechnum s p i c a n t Chamaecyparis nootkatensis Clintonia uniflora Dryopteris austriaca E u r h y n c h i u m oreganum Eurhynchium s t o k e s i i Gaultheria shallon Gymnocarpium d r y o p t e r i s Hookeria lucens Hylocomium splendens L y s i c h i t u m americanum Mahonia nervosa Mnium m e n z i e s i i  17. 18. 19. 20. 21. 22. 23. 2k. 25. 26. 27. 28. 29. 30. 3132.  Mnium i n s i g n e Oplopanax h o r r i d u s P e l l i a sp. and Conocephallum P l a g i o t h e c i u m undulatum Pleurozium schreberi P o l y s t i c h u m munitum Rhytidiadelphus loreus Rhytidiopsis robusta Rubus p e d a t u s Rubus s p e c t a b i l i s Sambucus p u b e n s Sphagnum s q u a r r o s u m Streptopus a m p l e x i f o l i u s Streptopus streptopoides Tiarella trifoliata Vaccinium alaskaense  conicum  i T h e number o f s p e c i e s w h i c h c o u l d b e c o n s i d e r e d i n t h i s s p e c i f i c p r o b l e m i s l i m i t e d o n l y by the c a p a c i t y of the e l e c t r o n i c computer p r e s e n t l y a v a i l a b l e a t the U n i v e r s i t y of B r i t i s h Columbia Computing Centre. S p e c i e s have b e e n s e l e c t e d on t h e b a s i s ,of t h e i r i n d i c a t o r v a l u e t o s i g n i f y t h e c l i m a t i c , m o i s t u r e a n d humus q u a l i t y g r a d i e n t s i n t h e g l a c i a l d r i f t l a n d t y p e . It s h o u l d b e m e n t i o n e d t h a t the. c o n c l u s i o n s o f t h i s c h a p t e r p e r t a i n t o t h e s e l e c t e d s e t o f s p e c i e s a l o n e and t h e i r r e l e v a n c e t o t h e t o t a l v e g e t a t i o n r e m a i n s t o be s e e n . C a l c u l a t i o n s a r e b a s e d o n t h e d a t a o f A p p e n d i x 111-13 t o 22. Computor programme, i n p u t and o u t p u t d a t a a r e s t o r e d i n t h e Department o f B i o l o g y and B o t a n y , U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , B. C.  20  20  18  18  04*52  16  ©a " 1  16  ©§©l ©ft©^©" 8  s  ©*©?i  lk  © ©  0  0>«20  12  12 25  •H10 <  2  w  © o£ M  •fl 10  21  7  8  s6(  ©57  ©?#© ©' e??efje © ©^©f  to  ©|U2  lk  s  3o  e ©i;©l©^ 32  8  ©5 0^05  6  6-  olo' ©/3 3*  k 2  k 2 -  O" -i  6  1  8  B axis F i g . IV-1  1—  .10  12  lk  16  09 o'  of,  3  c+ o  o /a  O H H  O" 6  8  C axis  io  12  14  16  Point projections on the AB and AC plane. Black, h a l f white and white c i r c l e s indicate hygrophytic, mesophytic and xerophytic communities r e s p e c t i v e l y . I d e n t i f i c a t i o n numbers refer to computation reference numbers i n Appendix 111-13 to 22.  % V P  CW CO  OJ  ro  The multitude of the sample plots can he v i s u a l i z e d as a point c l u s t e r i n hyper-space.  33  Since each point i s defined by the f l o r i s t i c  co-ordinates, the spread of the point c l u s t e r r e f l e c t s f l o r i s t i c variations among the sample p l o t s .  F l o r i s t i c variations are considered along the  three p r i n c i p a l axes (see Co-ordination i n Chapter I I ) . The d i r e c t i o n of the A axis i s defined by points 11 -  (Figure I V - l ) .  the d i r e c t i o n of maximum spread of the point c l u s t e r .  The A axis s i g n i f i e s The B and C axes  are mutually orthogonal and correspond to points 17 - 62 and 39 - 6 l respectively (Figure I V - l ) . The spread of the point multitude i s unequal i n the d i f f e r e n t directions; t h i s r e f l e c t s the presence of i n t e r s p e c i f i c correlations. The r e l a t i v e importance of the d i f f e r e n t species i n the f l o r i s t i c variations along the three p r i n c i p a l axes and the r e l a t i v e importance of the d i f f e r e n t environmental  factors as the underlying causes of the f l o r i s t i c variations  are a n t i c i p a t e d on the basis of t h e i r correlations with the axis values.  •The c o r r e l a t i o n matrix (Table IV-3 and h) was calculated on the basis of transformed and untransformed data. The two sets of c o r r e l a t i o n s do not differ significantly. Expected frequencies and chi-squares were calculated f o r normal, binomial, Poisson, and negative binomial d i s t r i b u t i o n s . The majority of species and environmental factors had negative binomial d i s t r i b u t i o n s , therefore, logarithmic transformations seemed appropriate. Computations were programmed by Kozak and Munro (1963).  Table IV-3  CORRELATIONS* a  •H  S 3 -P o3 • H  r-i  o3 to D !>  OJ  OJ  O  ri  u  u  ri  03  H 03 XJ ra  0)  Q  03  ri  H ri fit  o3 -P 0 OJ ft to to & K  Gaultheria shallon Mahonia nervosa Rubus s p e c t a b i l i s Blechnum spicant Athyrium f i l i x - f e m i n a Tiarella trifoliata Dryopteris austriaca Polystichum munitum Plagiothecium undulatum Eurhynchium oreganum Mnium insigne A axis B axis C axis S i t e index (Douglas-fir)  -.357 -.281 .366 • 595 • 322 • 570 .496 .516 -.115 -.277 • 393 • 517 .446 .221 • 550  4l4 -.281 -•337 -•357 -.385 -.436 -.551 .107 .571 -.324 -.713 .058 -.418 -.615  s  •P a oj 0 ri  ft to  3 a xi  0 OJ H pq  <u  1  X •H H •H CH  3  •SHH S3  -P  <  cd •P o3 •ri  r-i  O «H •H iH  +2  H"1 1—1 O J JH 0 3 •ri EH  03 O 03 ri U  -P M o3 w •H >H 0) -P ft O tH  aj H -p  *H Cl  pi  3 3 • H O  s  X! O •H -P CO  OJ •p 0 •H bD 03 r-i S3  >>  r-i  O  PM  PM  -.175 - . 4 1 3 .507 .648 -.264 .655 .584 .536 .831 -.331 .671 .656 .616 .742 -.370 .684 .798 .596 .663 -.115 .575 . 2 2 1 -.189 -.208 -.143 -.129 -.085 -.125 . 3 2 6 . 2 5 8 -.276 -.402 .271 - . 3 4 1 - . 2 7 1 .618 A31 .282 .372 .534 -.127 .433 .580 .623 .613 .729 -.46o .785 .575 .440 .278 .264 .072 .592 .385 .509 . 100 .032 • 341 .018 .239 -.531 -.069 .768 .560 .628 -.388 .544 .627 .639  .021 -.456 -.143 -•393 .367 -.037  e.df.60  .05P .oip  ^Transformed  data  .217 .302  Table IV-4  CORRELATIONS*  H u  •rH X  CD  CO •H X crj  iW  <;  C H  O  O  CQ to CD  CO to CD  cd a H W-Hfca W)O f l 3 ,M CD X C DO O C JCJ CO -p O -rl • 3 ^!rl EH co • H  T H  H  PQ  O  CO  <  E H  fl , 3 o o •ri -H  kn  ,—.  <D  X!  EH E H  cSHr3 <D  a a  hi  • H  J3  •p OJ ft H CD dcd O J rH rH CD a-H a -H !n U OO CD 1 0 PH PH  C H  W CO CD  flfl fl fl O O • HH T  -P  0 c2 o  CD ?H 3 -p CQ -H  I 1-3 « H  O  .2  W  S  ft  O CO CO <j fl X O -  H  ,fl EH  B axis C axis S i t e index (Douglas-fir) Thickness of A Thickness of Ah Permeable mineral s o i l depth Stoniness Moisture** pH of L-F Thickness of L-F Altitude e  .134 .203 - . 0 2 4 .828 • 237  .236  -.446 - . 1 8 2 • 135 ••332 .429 - . 6 1 6 .202 - . 2 1 3 .431 .016 -.362 .810 .098 -.226 .071  -.001 .081 -.060 -.183 .249 .287 -.301 -.290 -.096 -.227 .202 .087  .106 •.365 .863 .299 •.134 .159  -.007 -.042 -355 - . 1 3 7 - . 2 5 9 - . 2 8 6 .454 - . 0 6 5 - . 3 0 3 - . 0 3 9 .209 - . 1 8 4 .004 .249 .321 - . 5 1 4 .104 .180 - . 2 3 9 - . 0 6 9 - . 1 2 9 .231 - . 1 9 2 .130 . 0 9 0 .114 - . 0 1 7  c+ o H ,  H H  e.df. 37 .05P .01P  ^Transformed data **See soil-moisture scale i n Appendix III,  ^ .317 .408  8H ra  34 The A a x i s . d i r e c t i o n was  The  spread of the point c l u s t e r i n the A axis  a t t r i b u t a b l e to two  sets of highly s i g n i f i c a n t correlations  between species and the axis values.  One  set included Polystichum munitum,  Dryopteris austriaca, Athyrium f i l i x - f e m i n a , Mnium insigne, and Acer cireinaturn. The  second set included Gaultheria shallon, Eurhynchium oreganum, and  Mahonia nervosa. The A axis s i g n i f i e s a soil-moisture gradient.  Substantial  evidence f o r t h i s i s derived from indicator species (see the l i s t above) and from soil-moisture estimates which have shown s i g n i f i c a n t c o r r e l a t i o n with the A axis values.  An important l i n e a r r e l a t i o n s h i p exists between  Douglas-fir s i t e index and the A a x i s .  I t should be mentioned, however,  that t h i s l i n e a r r e l a t i o n s h i p could not be anticipated i f the sample plots were not s t r a t i f i e d on the basis of subzones and land types. (Aft)  Melanization  and gleyzation (Bg) occurs i n the sample plots at the high axis values.  The thickness of the e l u v i a l horizon ( A ) , on the other hand, s i g n i f i c a n t l y e  increases with the decrease of the axis values.  S o i l depth does not appear  as important as stoniness (see Table IV-4), the importance of which s i g n i f i c a n t l y decreases with the increase of the axis values.  Organic  matter thickness and reaction (pH) have shown l i t t l e non-random v a r i a t i o n , and the importance of a l t i t u d e i s also n e g l i g i b l e i n r e l a t i o n to f l o r i s t i c variations along the A a x i s .  The B a x i s . was  The  spread of the point c l u s t e r i n the B axis d i r e c t i o n  a t t r i b u t a b l e to s i g n i f i c a n t correlations between the axis values and  following species:  the  T i a r e l l a t r i f o l i a t a , Blechnum spicant, Acer circinatum,  Polystichum munitum, Dryopteris austriaca, Eurhynchium oreganum, Mnium  insigne, and Plagiothecium  undulatum.  The f i n a l species was the only-  35  one with a highly s i g n i f i c a n t negative c o r r e l a t i o n . The l i s t of species includes no Gaultheria shallon or Mahonia nervosa due to t h e i r i n s i g n i f i c a n t c o r r e l a t i o n with the B a x i s . The r e l a t i v e importance of the species has also changed i f compared to those of the A axis c o r r e l a t i o n s . t r i f o l i a t a and Plagiothecium correlation.  The two most important species are T i a r e l l a undulatum, with a negative  interspecific  T i a r e l l a t r i f o l i a t a i s a nitrophilous species (dependent upon  habitats r i c h i n n i t r a t e s ) , and Plagiothecium  undulatum i s a raw humus  builder. The presumption that a moisture gradient i s the underlying  environ-  mental cause of f l o r i s t i c v a r i a t i o n along the B axis i s incorrect, because the soil-moisture estimates are not correlated s i g n i f i c a n t l y with the B axis values.  I t i s more probable that f l o r i s t i c v a r i a t i o n along the B axis  r e f l e c t s changes i n humus q u a l i t y from mull to raw humus.  Nevertheless, i n  the dry subzone humus q u a l i t y and soil-moisture are i n t e r r e l a t e d features. Mull development can be expected only on moist s o i l s that are r i c h i n nutrients.  Species which produce r e a d i l y decomposing organic matter are  c h i e f l y hygrophytic  i n t h i s zone.  This i s not so f o r the raw humus builders  which may dominate x e r i c as w e l l as hygric habitats.  For instance, Tsuga  heterophylla can occur i n pure stands i n hygric habitats, and then i t promotes raw humus development and subsequent podzolization. .'. ;  • ; ...The C a x i s .  The spread i n t h i s d i r e c t i o n was a t t r i b u t a b l e to  changes i n the quantities of Mahonia nervosa, Gaultheria shallon, Mnium insigne, Eurhynchium oreganum, Plagiothecium  undulatum, and Blechnum spicant.  to follow page 35 20 *  20  O  18-  18 i  •16'  16  14  ik  o  12  O  ®  12  CO  10  IlO' o  8  •  @  8  ©© Polystichum munitum  6 4 0  r r  —rr-^—-T 1 X 6 8 B axis  1 10  1 12  o O  Ik  10  o ® • ©  6  8  «  Rubus spectabllls  4  r 2  2  4  -..713**  A  1 i 1 8 i o 12 B axis  1 ik  •  e  o ©  O  O  ®  O  0 o  • • •  9  O  •  © o °  6  6  r  O  12 A  « o  a *  < 8-1  -i  r  14  O  12  r  V^l B .058  16  o © o ( o o  14  L  18 -|  o ©  16  f  B  o  18 -I  •SlO H  .785"""'"'  A  A  .623**  k  2  o© . .o o O O © • 0  o  o  Mahonla nervosa r  A  ru  -.ij.60** .072  6 8 10 12 14 2 4 6 8 i o 12 14 B axis B axis F i g . I V - 2 D i s t r i b u t i o n patterns of selected species on the AB plane. C i r c l e diameters are proportionate to species significance values. Largest c i r c l e indicates species significance 9 - 10. Absences are indicated as dots.  * ' . '  "  to follow F i g . I V - 2  F i g . IV-3 D i s t r i b u t i o n diagrams of selected species and selected environmental f a c t o r s . The A axis indicates increasing soil-moisture. Changes i n humus q u a l i t y are the apparent causes of f l o r i s t i c variations along the B a x i s . The C axis i s apparently related to environmental changes from warm to cool aspects. Scores pertain to 6 2 sample plots f o r species, and 3 9 sample plots f o r environmental f a c t o r s .  A axis  A axis  F i g . IV-3  Continued,'  OJ  0)  o a  o fl cd o  g 10  ij . 8  •H CH •ri  •a  •H CQ  •H fl  '  CD rjj •H  h ^  o  o  0J  ^  CQ OJ •ri CJ OJ ft CO  6  10  18  fl cd o  = .623""""'  Tiarella trifoliataI r =.613  1 A axis  A axis  OJ CJ  r  €>  6  ft cn  Rubus 8 p e c t a b l l i s  OJ  fl cd o  Plagiothecium ?_=  undulatum  -.143  •ri  •H  tM  •ri  •H CQ CO OJ •H  CO Q) • •H CJ OJ  o  OJ  ft  ft  CO  CO  A axis  A axis  "Douglas-fir  site  r.= .8'28**  6  io  A axis  lk  index.  [Available  soil-mo is ture  • r = .810**..  18 A axis  Fig. IV-3. Continued  A axis  A axis  Species  Species  significance  significance  •p- ON  ro  co o (ft  ro  ;I  5 I w  <! i  x  U)  as  p.  ^  r  "  I I '*ZZZZ*'"Zt -L-A..M•rA** Zu4ZL iZuZtZpZIZT  X H-  ;  1  H- O cn  -Ml  i  vO j,!  :  ; i •_[_  LJZIZZZZZQZL  CO  O  i  "izJzzHzj  _L i L  O ;• ct!  2i Ctl  i LiZL'Species  •x  significance  •_ ! !_  • -x y -  I i i  i-9 I-* P: 4 CD  x  !  x  1  H M  cn  P> :  AA  .jvO  Ct  H*  o I— p.; 1  fo  ct  o o cs  c+ H£ CD Pi  Fig.  IV-3  2  Continued  6  10  lk  18  B axis Available  B axis  soil-moisture;  B axis- •  '  Permeable m i n e r a l so -.001  B axis  Fig. IV-3 Continued  2  6  10  C axis  C axis  lk  18  Fig.  IV-3 C o n t i n u e d  The correlations "between species and axis values are negative  36  i n the case  of the f i r s t four species and they are p o s i t i v e i n the case of the l a s t  two  species. Mahonia nervosa, Gaultheria shallon, Mnium insigne, and Eurhynchium oreganum are elements of the Coastal Douglas-fir zone with r e l a t i v e l y l o c a l i z e d d i s t r i b u t i o n at the higher a l t i t u d e s of the perhumid mesothermal b e l t i n the Coastal western hemlock zone.  Plagiothecium  undulatum and  Blechnum spicant are elements of the Coastal western hemlock zone.  These  two groups of species appear' •.. to indicate the presence of a microclimatic gradient from warm to cool aspects along the C a x i s .  The  substantiating  as evidence f o r t h i s i s exclusively f l o r i s t i c . none of the environmental factors of Table IV-k '.i& correlated s i g n i f i c a n t l y with C axis values. D i s t r i b u t i o n diagrams of selected species and selected environmental factors are given i n Figure IV-2  and 3.  Note that the explanation of the  moisture estimate scale i s given i n Appendix III I. C l a s s i f i c a t i o n units Sample plots were i n i t i a l l y assigned to three broad groups: ( l ) dominantly xerophytic  species combinations, convex r e l i e f , mainly coarse  s o i l s , low productivity; (2) mesophytic species combinations, s l i g h t l y concave to s l i g h t l y convex r e l i e f , deep s o i l s , medium productivity; dominantly hygrophytic  (3)  species combinations, concave r e l i e f , deep s o i l s ,  presence of seepage, high p r o d u c t i v i t y . Group ( l ) .  Coarse s o i l s and convex slopes i n the Coastal western  hemlock zone are characterized by the Tsuga heterophylla - Gaultheria . edaphic climax shallon/which  i s comparable to the Pseudotsuga menziesii - Gaultheria  shallon climatic climax (Krajina and Spilsbury 1953) Coastal Douglas-fir zone.  on mesic s o i l s of the  37 The mesophytic and xerophytic Gaultheria shallon communities are so c l o s e l y r e l a t e d by t h e i r f l o r i s t i c structure that they should be considered as only subassociations of the same association, the Gaultherieto Pseudotsugetum menziesii:  (a) pseudotsugetosum ( i n the Coastal Douglas-fir zone) and (b) tsugetosum heterophyllae  ( i n the Coastal western hemlock zone).  Pseudotsuga menziesii i s self-perpetuating i n subassociation  (a)  which i s explained by a somewhat warm and dry climate, l i m i t e d organic matter accumulation, and only weak podzolization i n the Coastal Douglas-fir zone. Organic matter accumulation and podzolization are strong i n subassociation which condition a Tsuga heterophylla climax. establishment  (b)  Pseudotsuga menziesii  i s l a r g e l y the consequence of f o r e s t f i r e s and clear cutting  i n subassociation (b). Subassociation  (a) was  proposed (Lesko I961,  O r l o c i 1961)  a l t e r n a t i v e category to include the following synonymous units:  as an  Gaultheria  type (Kujala I 9 U 5 ) , Gaultheria s i t e type (Spilsbury and Smith 19^7), Pseudotsuga - Gaultheria association (Krajina and Spilsbury 1 9 5 3 ) , Gaultherieto - Pseudotsugetum (Becking 195*0 • Subassociation  (b) i s s p e c i f i c to the-dry subzone of the Coastal  western hemlock zone and has been described by Lesko ( 1 9 6 1 ) , O r l o c i ( 1 9 6 1 ) , and E i s ( 1 9 6 3 ) .  Stands of the steep slopes and warm aspects  large amounts of Mahonia nervosa.  (S-W)  contain  Presence or absence of Mahonia i s used  to recognize the two variations i n t h i s subassociation (b): Gaultheria, and the Gaultheria - Mahonia ecosystem type.  The  the orthic appropriate  type characters are compiled i n Table IV-6 and Appendix I I I - 13 to  16.  38  The orthic Gaultheria (OG) as w e l l as the Gaultheria - Mahonia (G-M)  types are confined to l o c a l i t i e s which are unaffected by l a t e r a l l y  translocated water, because an adjacent upper-slope, c i e n t l y extensive to issue permanent seepage. strong podzol development.  i f present, i s i n s u f f i -  The s o i l s are coarse with  Orterde formation i s occasionally observed at  various l e v e l s i n the B s o i l horizon.  Orterde and subsequent o r t s t e i n  development could lead to the reduction of the e f f e c t i v e s o i l depth and subsequent d e t e r i o r a t i o n of p r o d u c t i v i t y . D e f i n i t e signs of fragipan formation were detected by Farstad  (1963)  i n one p r o f i l e of the OG type.  Available  s o i l moisture i s very low i n the Gaultheria types i f compared to the mesophytic or Hygrophytic  types (Table IV-5)•  The c h a r a c t e r i s t i c s of the OG and G-M but they d i f f e r considerably at the extremes. elevation w e l l above the G-M  type.  type overlap i n many respects The OG type extends i n  The slope gradient i s greater and the  s o i l s are deeper as w e l l as coarser i n the G-M  type than i n the OG  type.  These differences are only r e f l e c t e d s l i g h t l y i n average p r o d u c t i v i t y but are w e l l indicated by the heavy cover of Mahonia nervosa as w e l l as Eurhynchium oreganum i n the G-M  type, and by the absence of Mahonia and the  r e l a t i v e abundance of Plagiothecium undulatum i n the OG Group ( 2 ) .  type.  Mesic s o i l s of straight, or s l i g h t l y convex r e l i e f  are characterized by the Tsuga heterophylla - Plagiothecium undulatum climatic climax i n the Coastal western hemlock zone.  This community i s comparable  to the Tsuga heterophylla - Eurhynchium oreganum edaphic climax (Krajina and Spilsbury 1 9 5 3 ) Douglas-fir zone.  o n  moist (to moderately wet)  s o i l s of the Coastal  Table IV-5  ; Ecosystem type  AVERAGE AVAILABLE SOIL-MOISTURE (GKh~ - l 3 * 0 atm.) IN SELECTED STANDS OF THE DIFFERENT ECOSYSTEM TYPES FOR THE PERIOD, JUNE 1 TO SEPTEMBER 30, AT HANEY FOREST. OBSERVATION PERIOD: 1952-1956.  Orthic Gaultheria (OG)  39  Orthic Degraded Orthic Plagiothecium Polystichum Polystichum (0P1) (DPo) (OPo) Average a v a i l a b l e soil-moisutre (in.)  Stand 1  2.4  3-8  5.0  Stand 2  2.7  4.8  5-9  Stand 3  2.8  8.2  After G r i f f i t h ( i 9 6 0 ) , pp. 2 4 - 2 5 , samples 1 to 8 . ( G r i f f i t h - I s sample p l o t s were assigned to the d i f f e r e n t ecosystem types by the author of t h i s thesis). The moist and mesic communities are recognized as two of the Tsugetum heterophyllae:  subassocitions  (a) eurhynchietosum oregani ( i n the Coastal  Douglas-fir zone) and (b) plagiothecietosum undulati ( i n the Coastal western hemlock zone). ' Pseudotsuga menziesii i s confined to secondary stands i n both subassociations because i t s reproduction follows forest f i r e s and c l e a r cutting.  Alnus rubra may  dominate i n the i n i t i a l secondary stages i f the mineral  surface i s exposed p r i o r to establishment.  Precedents are found i n t h i s  respect mainly on logged areas and i n the v i c i n i t y of wet habitats where Alnus rubra commonly occurs. Subassociation (a) belongs to the Coastal Douglas-fir zone but a v a r i a t i o n (E-M) which c l o s e l y resembles t h i s subassociation was 1958-  recognized  by Krajina (1964) i n the dry subzone of the Coastal western hemlock zone. This v a r i a t i o n occurs on s o i l s which are excessively drained i n the top horizons due to the coarseness  of the s o i l materials but the subsoil i s  40 moist.  The lesser vegetation r e f l e c t s the state of the top s o i l and  c l o s e l y resembles the G-M  type.  The subsoil i s moist, due to temporary  seepage, hence i t i s comparable to some s o i l s i n the Polystichum type.  The  productivity i s medium resembling the mesophytic communities. Subassociation (b) i s the climatic climax community i n the dry subzone of the Coastal western hemlock zone.  Stands of the steep  slopes and warm aspects contain large quantities of Mahonia nervosa.  The  presence or absence of Mahonia nervosa was the c r i t e r i o n used to recognize two variations i n the (b)  subassociation: the orthic Plagiothecium (OPl)  and the Plagiothecium - Mahonia (Pl-M) ecosystem type.  The appropriate  type characters are given i n Table IV-6 and i n Appendix III-17 to 20. The OPl as w e l l as the Pl-M variations are confined to middle slopes with considerable adjacent upper slope, or to outwash as w e l l as a l l u v i a l terraces with r e l a t i v e l y f i n e , deep well-drained s o i l s .  Available s o i l -  moisture i s r e l a t i v e l y high, although permanent seepage was not  encountered  i n these ecosystem types (see Table IV-5). The c h a r a c t e r i s t i c s of the OPl and Pl-M types overlap, but the OPl type extends higher with respect to a l t i t u d e , the average slope gradient i s much less, and the s o i l s are coarser than those i n the Pl-M type.  However,  the differences i n forest productivity are s l i g h t . Orterde and o r t s t e i n development i s more advanced i n the s o i l s of the PI types than i n the s o i l s of the G types. Group (3)>  Hygrpphytic species combinations were c h a r a c t e r i s t i c  on concave slopes with semi-permanent or permanent seepage.  The  spatial  separation of the hygrophytic communities from the mesophytic and xerophytic groups i s most apparent i n t h e i r projections on the  AB plane (Figure I V - l ) ,  kl  and i s attributed to the abundant occurrence of Polystichum munitum, T i a r e l l a t r i f o l i a t a , Dryopteris austriaca, Athyrium f i l i x - f e m i n a , and t h e i r hygrophytic associating species ( c f . Table IV-6 and Appendix I I I - 21 to  22). Polystichum munitum communities of the Coastal western hemlock zone  appear as extensions of these communities of the Coastal Douglas-fir zone. McMinn's (194-7) descriptions, however, indicate that the Polystichum communities of the l a t t e r zone are f l o r i s t i c a l l y much r i c h e r than those of the Coastal western hemlock zone. Considerable variations are observed among the Polystichum commun i t i e s within the Coastal western hemlock zone.  Some stands are characterized  by the abundant occurrence of such nitrophilous species as T i a r e l l a t r i f o l i a t a , Sambucus pubens and Athyrium f i l i x - f e m i n a .  Some other stands,  however, occur on podzols and without considerable quantities of the nitrophilous species. The Polystichum communities are divided among the three subassociations of the Polysticheto - Thujetum p l i c a t a e :  (a) tiarelletosum l a c i n i a t a e ,  (b) tiarelletosum t r i f o l i a t a e and (c) tsugetosum heterophyllae. Subassociation (a) was variously designated as the T i a r e l l a Aspidium type (Kujala 1 9 4 5 ) , Polystichum s i t e type (Spilsbury and Smith 1 9 4 7 ) , Pseudotsuga - Thuja - Polystichum association (Krajina and Spilsbury 1953)> and Polysticheto - Pseudotsugetum tiarelletosum l a c i n i a t a e (Becking 195*0 • With the exception of the 1953 and 1954 publications, the references only p a r t i a l l y pertained to subassociation (a) and sample plots of various communities were also included i n the descriptions. Subassociation (b) or the orthic Polystichum ecostystem type i s s p e c i f i c to the dry subzone of the Coastal western hemlock zone.  (OPo)  Thuja  k2 p l i c a t a dominates i n the primary stages. productive tree, hut Pseudotsuga logging. type.  Pseudotsuga menziesii i s the most  establishment i s related to forest f i r e s or  Tsuga heterophylla occurs mainly i n the secondary stands of the OPo  Tsuga heterophylla could become dominant i f organic matter accumulated  the s o i l s were leached.  and  This seems least probable i n the undisturbed stands  since the high water table would always condition a luxuriant lesser vegetation which would produce r e a d i l y decomposing organic matter.  Disturbances,  e s p e c i a l l y logging, could produce accumulation of decaying wood and,  subse-  quently, a pure Tsuga heterophylla stand would be established. Subassociation (c) or the degraded Polystichum type (DPo) i s characterized by a predominance of Tsuga heterophylla which could explain the.great accumulation of raw humus and intensive subsequent top mineral s o i l .  leaching of the  The nitrophilous species are lacking and Mnium insigne  i s replaced by the raw humus formers such as Hylocomium splendens, Plagiothecium undulatum, and Rhytidiadelphus loreus.  .''. . .  Forest stands which were c l a s s i f i e d by O r l o c i (1961) and Lesko (1961) as the Blechnum - Rubus type (B-R) are attached to the OPo type. The B-R  type includes t r a n s i t i o n a l stands between the OPo type and the spring-  water swamps as w e l l as the creek-edge Oplopanax stands.  S o i l s of the B-R  type are similar to the s o i l s of the Polystichum types, but they are wetter due to the high water table.  The wetness of the s o i l i s r e f l e c t e d by the  abundant occurrence of Blechnum spicant, and sporadic Oplopanax horridus, Lysichitum americanum, and Conocephalum conicum, as w e l l as  Eurhynchium  stokesii. An apparent v a r i a t i o n of the DPo type occurs on talus slopes possessing raw l i t h i c s o i l s . to be  completed.  A d e t a i l e d study of t h i s v a r i a t i o n remains  Table IV-6  Associations  GLACIAL DRIFT LAND TYPE, DRY SUBZONE  Gaultherieto - Pseudotsugetum Orthic Gaultheria Gaultheria-Mahonia (OG) (G-M)  Ecosystem type Land form R e l i e f shape Slope g r a d i e n t Altitude f t . Hygrotope Stoniness Permeable mineral s o i l depth (cm.) Endo-humus depth (cm). A Eluviated horizon depth (cm.) A pH L-F A B C Humus form Douglas-fir S i t e index f t per lOOy, western hemlock western redcedar 0  n  e  C h a r a c t e r i s t i c combination of species  *  Tsugetum heterophyllae Orthic Plagiothecium Plagiothecium-Mahonia (OPl) (Pl-M)  Upper-slope Convex to straight  Upper-slope Convex to straight  Middle-slope Straight (to convex)  Moderately dry (to mesic)  Moderately dry (to mesic)  Mesic (to mod. dry or moist)  Mesic (to moderately dry)  Nil  Nil  12 (3-25) 1030 (750-1640) 4o (25-60) 62 (40-85) Nil  8 (3-18) 3-95 (3-40-4.52) 3.99 (3.70-4.30) 5.16 (5.00-5.50) 5.56 (5.46-5.65) Raw humus  109 (96-127) 102 (90-126) 84 (76-107) Tsuga heterophylla Pseudotsuga menziesii Gaultheria shallon Eurhynchium oreganum Hylocomium splendens Plagiothecium undulatum  31 (18-40) 750 (450-900) 60 (40-80) 98+ Nil  7 (5-8) 4.25 4.4o 5.65  1 Raw humus  93 (78-109) 86 (73-91) 73 (70-78) Tsuga heterophylla Pseudotsuga menziesii Gaultheria shallon Mahonia nervosa Eurhynchium oreganum Hylocomium splendens Plagiothecium undulatum  6 (1-17) 780 (200-1050) 31 (1-60) 71+ -  5 (1-13) 4.11 (3.40-4.50) 4.17 (3.75-4.70) 5.40 (5.25-5.60) 5-70 Raw humus  142 (114-157)  121 (83-143) 88 (70-132)  Tsuga heterophylla Pseudotsuga menziesii Plagiothecium undulatum Rhytidiadelphus loreus Hylocomium splendens Eurhynchium oreganum  Middle-slope Straight  18 (1-31) 540 (360-880) 2 125+  5 4.00 4.10 5.50 5.45 Raw humus  138 (117-155) 109 (99-122) 84 (76-91) Tsuga heterophylla Pseudotsuga menziesii Mahonia nervosa Plagiothecium undulatum Hylocomium splendens Eurhynchium oreganum  Table IV-6 - Continued Associations  Tsugetum heterophyllae Eurhynchium-Mahonia (E-M)  Ecosystem type Land form R e l i e f shape Slope g r a d i e n t Altitude f t . Hygrotope Stoniness Permeable mineral s o i l depth (cm.) Endo-humus depth (cm.) Ah Eluviated horizon depth (cm.) A pH L-F A B C Humus form Douglas-fir S i t e index f t . per lOOy. western hemlock western redcedar Characteristic combination of species 0  e  Note:  Middle-slope Straight 22 (2-33) 820 (450-950) Mesic (to moist) 45 (40-50) 45+ Nil 8 (0-15) 3.98 ( 3 . 9 5 - 4 . 0 1 ) 4.00 5.31 ( 5 . 6 0 - 5 . 0 1 ) 1 - Raw humus 131 (121-141) 103 (95-H8) 98 (90-108) Tsuga heterophylla Pseudotsuga menziesii Mahonia nervosa Eurhynchium oreganum Hylocomium splendens Plagiothecium undulatum  *  Polysticheto - Thujetum plicatae Orthic Polystichum Degraded Polystichum (OPO) (DPo) Lower-slope Concave 18 (6-35) 860 (430-1200) Moist (to wet) 31 (5-50) 60+ 9 (3-15) Nil 4.30 (3.70-5.50) 4.38 (3.70-5.20) 5.19 ( 4 . 7 0 - 5 . 5 7 ) (4.80-5.82) ^Duff mull 168 (145-192) 136 (109-157) 121 (90-165)  Thuja p l i c a t a Tsuga heterophylla Pseudotsuga menziesii Rubus s p e c t a b i l i s Sambucus pubens Acer circinatum Polystichum munitum Tiarella trifoliata Dryopteris austriaca Athyrium f i l i x - f e m i n a Mnium insigne Blechnum spicant  Data were compiled from the f i e l d notes of Lesko (1961), O r l o c i ( I 9 6 1 ) , pH was measured by Lesko ( 1 9 6 1 ) .  Lower-slope Concave 16 (3-40) 84o (460-1740) Moist (to wet) 37 (0-75) 60+ Nil 3 (0-15) 4.28 (3.40-5.67) 4.17 (3.50-4.92) 5-32 ( 5 . 1 0 - 5 . 4 5 ) 5.69 ( 5 . 3 2 - 5 . 9 5 ) Raw humus 163 (143-180) 132 (102-180) 118 (96-170) Tsuga heterophylla Thuja p l i c a t a Pseudotsuga menziesii Acer circinatum Polystichum munitum Dryopteris austriaca Hylocomium splendens Plagiothecium undulatum Eurhynchium oreganum Rhytidiadelphus loreus  and E i s ( 1 9 6 2 ) .  43 Wet  subzone  F l o r i s t i c variations i n the d i r e c t i o n of p r i n c i p a l axes F l o r i s t i c variations are considered i n the three p r i n c i p a l d i r e ctions.  Points 4 - 4 4  s i g n i f y the A axis d i r e c t i o n ( F i g . IV-U).  The B  and C axes are mutually orthogonal and correspond to points 13 - 47  and  20 - 28 r e s p e c t i v e l y . Computations involved an i d e n t i c a l set of 32 species as l i s t e d i n connection with the dry subzone.  Basic data are compiled i n  Appendix 111-23 to 3 2 . The A a x i s .  The spread of the point cluster i n the d i r e c t i o n of  the A axis i s a t t r i b u t a b l e mainly to Abies amabilis, T i a r e l l a t r i f o l i a t a , Athyrium f i l i x - f e m i n a , Rubus s p e c t a b i l i s , Rubus pedatus, Blechnum spicant, Gaultheria shallon, Hylocomium splendens,  and Rhytidiopsis robusta.  The  correlations with the axis values are p o s i t i v e i n the case of the f i r s t six species and they are negative i n the case of the l a s t three species. The A axis s i g n i f i e s a moisture gradient.  This can be substanti-  ated on the basis of indicator species and soil-moisture estimates which have shown s i g n i f i c a n t c o r r e l a t i o n with the A axis values (Table IV-7 and Figure I V - 5 ) .  An important  8,  l i n e a r r e l a t i o n s h i p e x i s t s between the s i t e  index of Tsuga heterophylla and the A a x i s . constant to a l l samples i n the wet  Pseudotsuga menziesii i s not  subzone therefore Tsuga heterophylla s i t e  index was used f o r comparisons. S o i l s are stonier at the high axis values than the s o i l s at the low axis values.  Gleyzation i s most apparent at high axis values and  the thickness of the Ae horizon increased i n the opposite d i r e c t i o n .  The  influence of a l t i t u d e appeared to have a n e g l i g i b l e e f f e c t i n r e l a t i o n to f l o r i s t i c v a r i a t i o n s along the A a x i s .  a u o  CO •H.  Acer circinatum Chamaecyparis nootkatensis Gaultheria shallon Rubus s p e c t a b i l i s Sambucus pubens Vaccinium alaskaense Blechnum spicant Clintonia uniflora Athyrium f i l i x - f e m i n a Tiarella trifoliata Lysichitum americanum Gymnocarpium dryopteris Rubus pedatus Plagiothecium undulatum Hylocomium splendens Rhytidiopsis robusta A axis B axis C axis  .052 -.147 -.691 .190 .282 -.310 .282 .104 .285 .365 -.016 .020 .271 .102 -•504 -.248 •751 -.240 -.152  -.164 .oo4 .305 -.058 -.277 .308 -.367 .220 .358 .086 .100 -.056 .094 .300 -.352 .068 .433 -.060  H <H •H  CO  .298 -.276 -.212 .080 -.306 .012 -.193 -.322 -.051 -.105 .019 -.096 .167 • 415 -.281 .027 .141  -.272 -.377 •555 .412 .006 -.146 .466 -.284 .099 -.349 .726 -.268 .708 -.081 .313 -.110 .364 -.129 .287 -.012 .087 .679 -.159 .236 -.375 -.712 .505 • 435 .049 .206 -.275  -.239 .118 .180 .507 .250 -.132 .012 .018 .005 -.415 -.208 .380 -.395 -.588  -.036 .166 .052 -.203 .391 -.239 .599 -.023 .386 .105 .369 .119 .415 -.007 .090 • 397' -.044 .292 -345 -.236 .460 0.000 .308 .547 -.147  .220 -.030 .047 .232 .502 -.292 -.396 .387 .332 -.342 -.021  .538 .307 .198 • 350 -.115 -.427 -.232 • 552 -.105 -.405  .457 • 315 .413 .068 -.194 -•553 .596 .404 -.334  .064 • 331 -.047 -.083 -.132 .247 .323 .158  .289 .127 -.373 .023 -.191 .128 -.183 .177 -.309 .195 .498 .035 .153 .236 .114 -.135 .004 .102 e.df.45  .05P  .01P •^Logarithmically transformed data  .288 • 372  to follow Table 17-7  CORRELATIONS*  o  CQ  *H  CQ  -H  te  CO  •H  H a 0) Xi CO a a u •H  CD tcou -P •H Js CO  B axis  -.087  C axis  -.239  S i t e index (western hemlock) Thickness of A e  co  <  Hcd  J-H  <D fl  •H a  o CQ CQ  CO  X! co -P rH ft XJ C -CiU 1—1 a u •H 0) OCQ PH  O •H X! EH  CQ CQ  CD fl •H  fl  O -P  CO  CQ CQ  ai  ^  rH •rH O  CO  .722 - . 1 5 8 - . 2 8 8 -.349 -.013  .228 - . 3 4 3  •553 - . 0 3 6 - . 2 1 8  .589 - . 5 8 9  -.058  .504 - . 1 5 5  .275  Soil-moisture  .834 - . 0 4 8 - . 2 8 8  .846 - . 4 7 1  .696  Thickness of L-F  .235 - . 0 6 2  .162  .366 - . 2 5 3  .221  -.184 -.331 -.022 -.031  .100  .487  .068 - . 1 3 5  • 159 - . 3 0 6  .05P .0LP  *Logarithmically transformed data  .225  .292 -.041  e.df.42 .298 .379  <H O  CO  •H O  .183  Permeable mineral s o i l depth Stoniness  Altitude  CO J-l  tu  O  ea  Table IV-8  <D  O •H Xi EH  22  22 -  i  0  20  20  18  18  16  Q  o* © ofo*' of! u  lk 12  lk  39  2 6  © '3  off 36 ©3sO'5-*-/  12 -  o e' e e§Se ©*' e' e* o ,v  10  16  5a  3  -I  7  38  w  9  7  10  37  737 2 7  0"  o o'l  8  0  6  8  7  05  a  o' o^ Q  6 -  k  o  5 03  5  Hi  o  k -  H H O  (-3 & o ^  —i—  8  10  -T—  12  6  8  10  F i g . IV-4 Point projections on the AB and A6 plane. Black, h a l f white and white c i r c l e s indicate hygrophytic, mesophytic and xerophytic communities respectively. I d e n t i f i c a t i o n numbers" refer to computation reference numbers i n Appendix 111-23 to 3 2 .  12  i  00  kk The B a x i s .  The spread of the point cluster i n the B axis  d i r e c t i o n was a t t r i b u t a b l e mainly to Hylocomium splendens,  Gaultheria  shallon, Acer circinatum, T i a r e l l a t r i f o l i a t a , Rhytidiopsis robusta, C l i n t o n i a u n i f l o r a , Sambucus pubens, and Abies amabilis.  The correlations with the  axis values were p o s i t i v e f o r the f i r s t four species but they were negative for the l a s t four species. The B axis values are s i g n i f i c a n t l y correlated to a l t i t u d e s .  This  s i g n i f i e s the presence of an a l t i t u d i n a l gradient along the B axis which, as discussed i n Chapter I,  coincides with a c l i m a t i c gradient.  The species correlations substantiate the presence of a climatic gradient along the B a x i s .  The two contrasting groups with Hylocomium  Gaultheria shallon, Acer circinatum, and T i a r e l l a t r i f o l i a t a i n the  splendens,  one,  and Rhytidiopsis robusta, C l i n t o n i a u n i f l o r a , and Abies amabilis i n the other, are representatives of two climatic extremes but they overlap i n the wet subzone.  The species of the f i r s t group do not r e g u l a r l y occur above the  upper l i m i t of the wet  subzone.  The species of the second groupj., on the  other hand, are subalpine elements and t h e i r lower l i m i t i s confined to the wet  subzone.  Sambucus pubens i s an exception i n the second group and i t s  quantitative increase with increased a l t i t u d e i n the wet coincide with  subzone does not  expectations.  S i g n i f i c a n t p o s i t i v e correlations of Lysiehitum americanum and Blechnum spicant with the B axis could indicate that these species abundantly occur at low elevations i n the wet  subzone, most probably not due to climatic  reasons but to the wet habitats which are very common i n valleys but are rare on high slopes.  The C a x i s .  The spread i n t h i s d i r e c t i o n of the point c l u s t e r  s i g n i f i e d changes i n the quantities of Vaccinium alaskaense, Hylocomium  to follow page kk F i g . IV^5 D i s t r i b u t i o n diagrams of selected species and selected environmental f a c t o r s . The A axis indicates increasing soil-moisture. Changes i n a l t i t u d e are the apparent causes of f l o r i s t i c variations along the B a x i s . • The C axis i s apparently r e l a t e d to changes i n humus q u a l i t y from raw humus to mull. Scores pertain t o kj sample p l o t s f o r species, and kk sample plots for environmental f a c t o r s .  CD  Abies amabills r .7^1^  ±i-J  CJ  § 10 o  +J-U-!  • f l  a  rt:  o  s  o •H  6  <H  •ri  fll  a MI •  E**7  •ri  CO  1)2  CQ, OJ  •ri O  •ri  CO  6  ft CQ  io  18  Ik  CJ CL)  P.  CQ  A axis  A axis  1Tiarella  trifoliata'  "395"*  OJ  Hylocomium  o  r  a  cd o •ri  splendens  -,5t-l  CH  •ri fl  ho •ri CQ  CO OJ  •ri O  OJ  Pi  CQ  A axis  aj •  A axis  Rubu s s p e c t a b i l i s  V  — 7 5 0 ^  CJ  •ri  21 •ri  OJ  Rhytidiopsis ^  •ri «H •ri  as irb  CQ CQ  OJ  o fl cd o  Sir  SB  •ri  5  O OJ  ft CQ  A axis  •ri  CQ  CQ CD •ri CJ OJ ft CQ  I !>fct>?~ A axis  -.396  robusta ^  1  :  Fig.  IV-5  Continued  0)  Blechnum  o  §10  Rubus  spleant[  pedatus  o  £  8  ffi?  •ri  bO  6  •Ft  CO  •ri  -if  2  CJ  Si*  ±!±  0)  PH CO  18  14  10  22 A axis  A axis  +3  rtxc.333  +2  ±i: 5g :  +1  in ft  0' -2 -1  BE:  ffl  S o i l - m o i s fcure  A axis  ft.  Vrrr  Western hemlock index, r . 772  ^site  cm. 150 125  i4o 120 4$  75  80  50  m  tiITT  fcft  m  EE  5+  100''  $n5  100  6o  .Permeable m i n e r a l soil depth, r .£53""'*  I  • 25  i  iff A axis  A axis  F i g . IV-5 Continued  r  :Stoniness,  . 366""'  T h i c k n e s s o f Aer - . 3U-9  100.  cm.  80  ,:p:  60  4?  15  si  ko 20  20  10  aw  Pflfl  mm  i 6  io  14  18  A axis  A axis  ft.  i: A l t i t u d e ,  -.l8lj.  r  mm  3000  1 2500  ft: 2000  1500 {fl  •1000  fl  Hr: ft •ffF  ff  ±tft  •h-  ft  500  A axis  lecies significance  Species significance  ro  • J=-  as oo o OP  <! i  -H-  -si-m.  < P o o  1  . 0)  L-pf:  " H fB CQ  p  EH  CD  i±t  CQ  CD  Species significance  Species significance  H T F  :  3±  3&  SSI I  Co o p: CQ  : CqcS :Cq  vo  o • "-o r o  !  4  : CQ  O CQ H' CQ  J  pj CQ , c+  P:  Fig.  17-5  Western hemlock index, r  ft.  FFFh  •Soil-moisture r ..-^ 014-8 4ffl ttt  site  -.15>8  +3  +2 m  FFF  tffi  +1  444+  m '\if-  0  i+t-  -t-r-/S'4  Tfl  mm  +++-  i  m 10  ik  18 B axis  B axis  T  Permeable m i n e r a l soil] d e p t h , r -.036  Stoniness, r 4 ,-p  i  4- •  4  I  4  -r-  K4  • i  -F-  6o  pR4  f-  +\ :.  -K  4^4  ft  i+o TFf fl  20  fl "T ••{  TF  fl  B axis  :+  4-  "jfl  4i'i  -4; 44  47  CR7  M  1 H-H-h-rr  4-  "T~i • i  | j  j  O •  -4 4JJ fl  4r4  444-  4*4  sS t  -  S  1  fl fl I !  JJJ. «*-!  -j-  j  , i-  1 1 1  .14  -tr-  TTfl  "I  44-14-  -4  7 # F ttt  3g  |  80  1  ft  1 i 44 4f-  100  i s Si  ±flp:  —.25^3  i  4-14 444  t4  1 J  tffr  444-44 fl4 II  -J-  -Ff-|-r , . . <  4J7±  * f 4 -*-rt-r 4i4-  3  ft*  B axis  4-i  Fig.  IV-5 Continued  •ft.  Altitude,  • 331  «•  3000  T h i c k n e s s o f Ae ? -.Oil  cm.  2500  20 2900  15 1500 10 1000 5§  ;  -  I  500  1  2  6  10  14  18 B axis  B axis  Western hemlock index, r - 288 e  site;  +3  ft.  lUO  Soil-moisture r - . 2 8 8  +2  :±!  +1  120 Sir  100  -+  80 60  C axis  C axis  Fig.  cm. 150 125  IV-5 Continued  Permeable m i n e r a l d e p t h . r= - . 2 1 8 ff. . . «r < ri •4 + 4 -  4"  I  J;  4 T  -r  4 t .  100  T)  -1-  -H  :""  ---  50  ->oJ#tr  T44+  T  |  j  •;-  -  1  *  -  4+  4 T*  • t1T 1  1  -r -r  +4  ->  j  •i'  +  -4-1  60  6  40  4-  •f  it  44 tt  1  1  ±4_ H+ it*  20  1  + 4  U10  t  T"  1  T J -  .+  44  1 1 1  4F T-M-  i±  r  "Tl  "tjt 44  ;j-  80  t  -h -1-  4-i  +  44+  lU  18 C axis  C axis  ' T h i c k n e s s o f Ae' r= . 2 2 8 ff  ft. 3000  r= - . 0 2 2  Altitude, i  44  2500 cm. 2000  20  t-SR  15  1500  10  1000 itt  -4  100  | I| 1  I  1  25  i4-  + 4  !  ||  a  T  -i-oe-i-  [ 1^4-  1±  -1.  -  •n  T*4 fjc-  -4-1-1-  TH  4-  C  Trta T T -  1  -r  4--rrt"  III  "MT  + -f  •H" tttr 1'  4I4+-rH-r  -M-j-j-  T  -  • KL  1  75  FF  r= - . 0 5 8 .  Stoniness,  ! 1 --  4-  I •  4 44-  tpt-  --  soil  3i  I  W: 500  C axis  C axis  45 splendens, Sambucus pubens, Athyrium f i l i x - f e m i n a , and T i a r e l l a t r i f o l i a t a . The f i r s t two species are prominent raw humus b u i l d e r s .  The l a s t three  species, on the other hand, indicate mull humus. On the basis of indicator plants, the presence of a humus quality gradient can be presumed.  This may  the C axis from raw humus to mull.  involve a sequence of changes along The l a t t e r i s very rare i n the wet  subzone.  C l a s s i f i c a t i o n units Sample plots were assigned to three broad groups: xerophytic species combinations,  ( l ) dominantly  convex r e l i e f , shallow s o i l s , low produc-  t i v i t y , (2) mesophytic species combinations,  s l i g h t l y convex or straight  r e l i e f , deep s o i l s , medium productivity, (3) dominantly hygrophytic species combinations,  concave r e l i e f , seepage, high productivity.  Group ( l ) .  Shallow s o i l s of the convex slopes are characterized by  the Tsuga heterophylla - Vaccinium alaskaense - Plagiothecium undulatum edaphic climax. is  s i g n i f i c a n t i n t h i s group.  - Gaultheria shallon -  The presence of subalpine elements  Species that should be mentioned i n t h i s  connection are Tsuga mertensiana,  Chamaecyparis nootkatensis, Rhytidiopsis  robusta and C l i n t o n i a u n i f l o r a . The s o i l s are either l i t h i c AC p r o f i l e s or shallow g l a c i a l t i l l s . F l o r i s t i c d i f f e r e n t i a t i o n of the l i t h o s o l s and t i l l s are not d i s t i n c t as i n the dry subzone.  This could be a t t r i b u t e d to the very high p r e c i p i t a t i o n  in the wet subzone i n which the d i s t r i b u t i o n of lichens i s very l i m i t e d on the forest f l o o r .  k6 The plant communities of t h i s group belong to a single association, the Gaultherieto - Tsugetum heterophyllae, represented hy two subassociations: (b) pleurozietosum  (a) vaccinietosum alaskaensis (on shallow t i l l s ) 5 and schreberi (on l i t h i c  soils).  Subassociation (a) and (b) are designated respectively as the orthic and l i t h o s o l i c Vaccinium - Gaultheria type.  Forest stands i n these  types are of low commercial value but they play an important r o l e i n run-off and erosion c o n t r o l . sequence.  They are f i n a l communities i n a d i s t i n c t geoclimatic  This sequence r e l a t e s to the s h i f t of the Gaultheria communities  from one habitat type to another i n the d i f f e r e n t climatic b e l t s (Table IV-10). (Appendix 111-23 to 2k). Group ( 2 ) .  Deep s o i l s of straight t o s l i g h t l y concave topography  are characterized by the Tsuga heterophylla - Abies amabilis - Vaccinium alaskaense  - Plagiothecium undulatum climatic climax.  This community belongs  to the wet subzone and apparently forms a t r a n s i t i o n between the PI types of the low a l t i t u d e s and the Abieteto - Vaccinietum  (Peterson 1963) of  the subalpine zone. The present communities i n t h i s group belong to a single association, the Abieteto - Tsugetum heterophyllae, represented by two subassociations: (a) vaccinietosum alaskaensis, and (b) vaccinio - dryopterietosum  austriacae.  Subassociation (a) or the orthic Vaccinium - Plagiothecium ecosystem type (Table IV-11 and Appendix 111-25 to 26) includes stands of s u b s t a n t i a l l y higher p r o d u c t i v i t y than those of the V-G types.  The s o i l s are generally  deep, gleyed i n the lower horizons and with a t h i c k e l u v i a l horizon ( A ) . e  The top of the B horizon v i s r i c h i n organic matter ( c f . Lesko 1 9 6 1 ) . Pedogenic cementation as orterde or o r t s t e i n was detected i n most p r o f i l e s . JThe Pseudotsuga - Tsuga - Gaultheria association (McMinn 1957) described from Vancouver Island i s f l o r i s t i c a l l y c l o s e l y r e l a t e d t o subassociation ( a ) . These two units could be fused at the association l e v e l .  Table IV-9  PREVAILING ECOTOPIC CHARACTERISTICS OP ECOSYSTEM TYPES IN DIFFERENT CLIMATES ON SLOPES Humid (summer dry) mesothermal  Concave r e l i e f , seepage near the s o i l surface  Straight relief, mesic soils  Convex relief, shallow tiUs or l i t h i c soils  Note:  Perhumid mesothermal  Perhumid (snowy) mesothermal  Polystichum - Adiantum  Blechnum - Rubus  (Springwater swamps)  Polystichum - Tiarella  Orthic Polystichum  Blechnum - Streptopus  Eurhynchium - Mahonia  Degraded Polystichum  Orthic Blechnum  Gaultheria - Mahonia  Plagiothecium or Plagiothecium - Mahonia  Hygric Vaccinium - Plagiothecium  Gaultheria - Lichen  Orthic Gaultheria or Gaultheria - Mahonia  Orthic Vaccinium - Plagiothecium  Non-forest communities  Lithosolic Gaultheria  Orthic Vaccinium - Gaultheria  Non-forest communities  Lithosolic Vaccinium - Gaultheria (••..  The f l o r i s t i c a l l y closely related communities are arranged diagonally In the table. For example: Eurhynchium - Mahonia - Plagiothecium - Orthic Vaccinium - Plagiothecium.  hi  The raw humus of the 0V-P1 type differs.! from the raw humus of the 0P1 type as i t i s i thicker and of a somewhat greasy appearance, ;  comparable t o the subalpine humus forms (Brooke 19&3)•  being  Clintonia uniflora,  Rubus pedatus and Rhytidiopsis robusta are of greatest frequency on greasy raw humus. Subassociation (b) or the hygric Vaccinium - Plagiothecium ecosystem type (Table IV-11 and Appendix 111-28 t o 27) occurs on somewhat wet s o i l s of r e l a t i v e l y f i n e texture i f compared t o the s o i l s of the 0V-P1 type.  Seepage was observed a t the time of sampling i n about 20 per cent of  the p r o f i l e s (Lesko 1961).  Gleyzation was apparently more advanced i n the  HV-P1 type than i n the 0V-P1 type.  The presence of Dryopteris austriaca,  Athyrium f i l i x - f e m i n a , and Acer cireinaturn s i g n i f i e d the r e l a t i v e l y high moisture content of the s o i l . The HV-P1 type i s ecotopically equivalent t o the DPo type i n the wet subzone.  Polystichum munitum may occur i n the HV-P1 type but with low  vigour as i t i s probably a t the high a l t i t u d i n a l fringe of i t s d i s t r i b u t i o n . The HV-P1 type represents a t r a n s i t i o n between the 0V-P1 type and the hygrophytic communities of the concave slopes i n the wet subzone. Group ( 3 ) '  S o i l s of the concave slopes are characterized by  hygrophytic species combinations  (Table IV-11 and Appendix 111-29 t o 32) i n  which the sporadic occurrence of Oplopanax horridus, Lysichitum americanum, Gymnocarpium dryopteris, Athyrium f i l i x - f e m i n a , and Habenaria saccata i s i n d i c a t i v e of an excessive s o i l moisture. Seepage was observed i n about 90 P I961).  er  cent of the p r o f i l e s (Leskok  S o i l s are gleyed podzols or gleysols with a thick raw humus horizon  of greasy appearance.  Sustained dominance of Tsuga heterophylla promotes  raw humus accumulation and deterioration of the s i t e s f o r Pseudotsuga menziesii  kd and Thuja p l i c a t a .  Abundant occurrence of Acer circinatum and Thuja  p l i c a t a presumably could a l t e r humus quality toward a duff mull type. The plant communities i n t h i s group belong t o a single association, the Blechneto - Tsugetum heterophyllae.  Variations i n a l t i t u d e  (and therefore i n macroclimate) r e f l e c t f l o r i s t i c variations among the sample p l o t s .  The occurrence or absence of Streptopus roseus i s considered  i n the c l a s s i f i c a t i o n on the basis of which two variants are recognized within the Blechneto - Tsugetum heterophyllae:  (a) abietosum, and (b)  abieto-streptoposum r o s e i . Variant (a) or the orthic Blechnum ecosystem type i s s p e c i f i c t o the lower a l t i t u d e s . occurs above  2600  Variant (b) or the Blechnum - Streptopus ecosystem type  feet and indicates a t r a n s i t i o n toward the Abieteto -  Streptopetum (Peterson 196k) of the subalpine zone. The peaty Blechnum type (Lesko 1961, O r l o c i 196l) i s extracted from the Blechnum communities and attached t o the spring-water swamps, whereby i t now represents a t r a n s i t i o n to the OB or the BS type.  Table IV-IO.  Gaultherieto - Tsugetum heterophyllae L i t h o s o l i c Vaccinium Orthic Vaccinium Gaultheria (OV-G) Gaultheria (LV-G)  Associations Ecosystem type  Upper-slope Convex  Land form R e l i e f shape Slope g r a d i e n t Altitude ( f t . ) Hygrotope Stoniness ($) Permeable mineral s o i l depth (cm.) Endo-humus depth (cm.) Ah Eluviated horizon depth (cm.) A pH L-F A B C Humus form S i t e index Douglas-fir f t . per lOOy. western hemlock western redcedar amabilis f i r yellow cedar 0  e  Characteristic of species  GLACIAL DRIFT LAND TYPE, WET SUBZONE  combination  s = single measurement  11 (8-16) 1730 (1450-2000)Dry 7 (5-io) 18 (15-21) Nil 9(7-10) 3.38 (3.26-3.50) 3.45 (3.40-3.49) 4.30 (4.oo-4.6o) 1 Raw humus 75 (70-79) 62 (53-69)  65 (48-84) 59 (s) 44 (s)  Tsuga heterophylla Thuja p l i c a t a Pseudotsuga menziesii Pinus monticola Chamaecyparis nootkatensis Vaccinium alaskaense Gaultheria shallon Rhytidiopsis robusta Hylocomium splendens Plagiothecium undulatum  Upper-slope or h i l l t o p Convex 7 (0-10) 1510 (59O-I8OO) Dry 2 (0-10) 10 (4-15) Nil 10 (4-15) : 3.67 (3.45-4.02) 3.57 (3.40-3.70) Nil 1 Raw humus 69 (60-80) 56 (39-75) 53 (38-81) 40 (s) 67 (s) Tsuga heterophylla Thuja p l i c a t a Pseudotsuga menziesii Pinus monticola Chamaecyparis nootkatensis Vaccinium alaskaense Gaultheria shallon Pleurozium schreberi Rhytidiopsis robusta Hylocomium splendens Plagiothecium undulatum  * Abieteto - Tsugetum heterophyllae Orthic Vaccinium Hygric Vaccinium Plagiothecium (OV-Pl) Plagiothecium (HV-Pl) Middle-slope Straight 16 (5-30) 1680 (690-2330) Mesic 55 (40-80) 127 (90-145) Nil 3 (2-5) 3.80 (3.50-4.10) 3.93 (3.80-4.IO) 5.19 (4.97-5.70) Raw humus 123 104 (91-116) 100 (85-113) 94 (78-117) Nil Tsuga heterophylla Thuja p l i c a t a Abies amabilis Vaccinium alaskaense Blechnum spicant. Clintonia uniflora Plagiothecium undulatum Rhytidiadelphus loreus Rhytidiopsis robusta  Middle-slope Straight t o s l i g h t l y concave 10 (0-18) 1100 (550-2100) Moist 16 (0-50) 4o+ Nil 2 (0-8) 3-57 (3.30-3.85) 3.81 ( 3 . 6 - 4 . 6 0 ) 5.17 (4.69-5.35) 5.35 (4.90-5.70) Raw humus 127 (118-135) 106 (88-134) 108 (85-148) 85 (73-129) Nil Tsuga heterophylla Thuja p l i c a t a Abies amabilis Vaccinium alaskaense (Acer circinatum) Blechnum spicant Tiarella trifoliata Dryopteris a u s t r i a c a (Athyrium f i l i x - f e m i n a ) (Streptopus amplexifolius) Plagiothecium undulatum Rhytidiadelphus loreus  Table I V - 1 0 - Continued Associations  Blechneto - Tsugetum heterophyllae Orthic Blechnum Blechnum - Streptopus (OB) (B-S)  Ecosystem type  Lower-slope Land form R e l i e f shape Concave Slope g r a d i e n t 7 (2-10) Altitude ( f t . ) 1370 (570-2730) Hygrotope, Wet 29 ( 0 - 6 0 ) Stoniness ($>) Permeable mineral s o i l depth 35+ Endo-humus depth ( cm.) 1 (0-15) Eluviated horizon depth (cm.) 5 (0-13) pH L-F 3 . 8 1 (3.17-4.1+0) A 3.82 (3.5I+-I+.05) B 4.84 ( 4 . 2 5 - 5 . 1 3 ) C 5.17 Humus form Raw humus Douglas-fir 125 (96-149) S i t e index western hemlock 118 (96-136) western redcedar 107 (85-149) amabilis f i r 115 (77-141) Nil yellow cedar Characteristic combination of Tsuga heterophylla Thuja p l i c a t a Abies amabilis Vaccinium ovalifolium Vaccinium alaskaense Rubus s p e c t a b i l i s Sambucus pubens (Oplopanax horridus) Blechnum spicant Tiarella trifoliata Athyrium f i l i x - f e m i n a Streptopus amplexifolius Dryopteris austriaca (Lysichitum americanum) (Polystichum munitum) Rhytidiadelphus loreus Hylocomium splendens ( P e l l i a sp.) (Conocephalum conicum) (Eurhynchium stokesii) 0  Note:  Lower-.slope Concave' 8 (5-14) 2810 (2650-2950) Wet 34 (25-50) 18+ Nil 6 (0-13) 3.16 1 4.17 5.68 Greasy raw humus 108 (97-123) 112 109 (92-122) Nil" Tsuga heterophylla Thuja p l i c a t a Abies amabilis Vaccinium ovalifolium Vaccinium alaskaense Rubus spectabilis, Sambucus pubens (Oplopanax horridus) Blechnum spicant Tiarella trifoliata Streptopus amplexifolius Athyrium f,ilix-femina Rubus pedatus Streptopus roseus Dryopteris austriaca Cornus canadensis (Lysichitum americanum) Rhytidiadelphus loreus Rhytidiopsis robusta Plagiothecium undulatum  Data were compiled from the f i e l d notes of Lesko ( 1 9 6 1 ) , O r l o c i ( 1 9 6 1 ) , and E i s ( 1 9 6 2 ) .  49  Development of plant communities  Successional trends i n plant community development are outlined i n Table  IV-11. Plant communities are arranged so that the rows i n the  table show plant community successions r e l a t e d t o c l i m a t i c changes, and the columns indicate successions r e l a t e d to edaphic changes. Development implies vegetational and environmental changes i n an ecosystem which r e s u l t s i n a successional (time) sequence of plant communities and ecotopes at a p a r t i c u l a r point of the landscape. The successional sequence pertains to such plant communities and ecotopes which presently e x i s t i n the general region. successions  No attempt i s made to evaluate  i n which the magnitude of change exceeds the present environmental  and vegetational amplitudes i n the Coast f o r e s t region. The successional trends i n plant community development can be anticipated on the basis of present vegetation-environmental patterns i n the region.  The study technique involves extraction of environmental  gradients from the e x i s t i n g environmental pattern and the i d e n t i f i c a t i o n of a plant community sequence along each gradient (see Chapter I I ) . The plant community sequence i s used to predict successional trends.  I t should be  stressed that a successional sequence of plant communities does not necessarily coincide with a geographic sequence, since a geographic sequence does not always s i g n i f y successional r e l a t i o n s h i p between neighbouring ecotopes or plant communities. Cowles  (1901),  These concepts are implied i n the works of  Clements (19S&, 191$,  1928),  Cooper  (1913),  and Braun (1916)  i n t e r a l i a i n which succession i s always i d e n t i f i e d with a plant community sequence along a soil-moisture or a c l i m a t i c gradient.  50 According to the monoclimax theory, plant community succession converges t o a hypothetic climatic climax community i n each climax area (subzone).  I t should be stressed as Cowles (1901) pointed out that i n  convergence one variable approaches another variable. the climatic climax community i t s e l f i s a changing  This implies that  entity.  Convergence i s the consequence of a trend i n habitat change toward a mesic status.  Consequently,  the mesic communities must be considered as  the most advanced developmental u n i t s (Clements 1916, 1918).  This evalu-  ation of development i s r e l a t i v e since a plant community (sensu vegetation type) which i s mesic i n one climax area i s representing a hygric community i n a d r i e r adjacent climax area or a x e r i c community i n a wetter adjacent climax area (Table IV-9 ) • A vegetation type as applied i n the present work i s a much smaller unit than the Clementsian association.  Therefore, successional  convergence includes not only such events which lead t o the u n i v e r s a l establishment of a p a r t i c u l a r dominance type of forest vegetation i n a f o r e s t climate, but also such events which lead through a sequence of many d i f f e r e n t vegetation types within the forest i t s e l f t o a mesic state of vegetation as w e l l as habitats. While a trend of successional convergence i s recognized, i t does not mean that development must go through the complete successional sequence i n every l o c a l i t y of the landscape.  In some l o c a l i t i e s , development i s  very slow or p r a c t i c a l l y stagnates and i t would require substantial physiographic changes t o move toward a mesic status.  Clements and h i s  contemporaries  ( e s p e c i a l l y Braun 1 9 l 6 ) u t i l i z e d the erosion cycle theory (sensu Davis 1909) to explain convergence of succession i n these p a r t i c u l a r cases.  Explanation  of the convergence of plant community successions on the basis of physiographic changes cannot be a p r a c t i c a l one i n mountainous t e r r a i n , because  51 t h i s involves a period of time f a r exceeding that required f o r substantial s o i l or c l i m a t i c changes. Each i n d i v i d u a l plant community can be v i s u a l i z e d as the endproduct of development that can be produced i n a p a r t i c u l a r habitat. plant community development requires a habitat change. i n d i v i d u a l community represents a habitat "climax" sensu Braun-Blanquet 1932).  Any further  In t h i s way,  each  (permanent community  A pattern of the habitat climax communities  (climax pattern sensu Whittaker 1953)  appears as a cross section across  the  i n d i v i d u a l developmental l i n e s , evolving i n the d i f f e r e n t habitats. The postulate of convergence has been refuted i n the work of Tansley  (1911, 1939)  theory of polyclimax.  and Nichols (1917) i n t e r a l i a who  promoted the  These workers assumed the presence of d i s t i n c t  developmental trends and climax communities i n d i f f e r e n t habitats. The d i r e c t i o n of plant community succession depends on the nature of the environmental gradient.  For example, change to a warmer and d r i e r  climate i n the Coastal western hemlock zone could r e s u l t i n succession as indicated by the h o r i z o n t a l arrow;', from r i g h t to l e f t i n Table I V - 1 1 . This succession would lead to the establishment  of the Coastal Douglas-fir  zone i n the place of the Coastal western hemlock zone.  I f the  climate  turned cooler than i t i s at the present, the Coastal western hemlock zone would change into the Mountain hemlock zone (indicated by arrow, from l e f t to r i g h t i n Table IV-1]). Plant community development i n the Coastal western hemlock zone i s influenced s i g n i f i c a n t l y by erosion, aggradation and s o i l  processes.  G l a c i a l t i l l s o i l s are very unstable on steep slopes.  They are  e a s i l y removed by erosion when the continuity of vegetation cover i s interrupted, e s p e c i a l l y a f t e r f i r e s .  The trend indicates a p o s s i b i l i t y of  52  complete removal of g l a c i a l t i l l s o i l s from the steep and convex slopes, and a subsequent expansion of the l i t h o s o l i c Gaultheria and other rock outcrop communities.  Accumulation of weathering products i s very slow i n  the l i t h o s o l i c communities since the weathering rate of hard jock's-' i s very slow and the erosion p o t e n t i a l i n t h i s perhumid climate great. Materials which are removed from the upper slopes are deposited on the lower slopes or c a r r i e d further by the streams. s o i l depth and alter the soil-moisture regime.  These deposits increase In t h i s way, aggradation i s  a s i g n i f i c a n t source of succession on the lower slopes. G l a c i a l d r i f t i s r e l a t i v e l y young and l i t t l e altered material i n the coastal regions of B r i t i s h Columbia.  Therefore, s o i l s originated from  g l a c i a l d r i f t may change a great deal i n a r e l a t i v e l y short period of time. The perhumid mesothermal climate supports raw humus accumulation, leaching and subsequent o r t s t e i n development. various depths i n the s o i l p r o f i l e .  The o r t s t e i n layer may develop at This i n e v i t a b l y reduces the e f f e c t i v e  s o i l depth and a l t e r s the soil-moisture regime.  In some habitats seepage may  r i s e i n the s o i l p r o f i l e and succession may proceed towards the hygro- or hydrophytic communities.  Ortstein development may also bring about a s h i f t  toward x e r i c conditions i n those s o i l s which are intensively drained and lack seepage. Seepage w i l l contribute t o changes i n the ecosystems by causing sedimentation of f i n e materials i n the s o i l p r o f i l e which, i n turn, reduce aeration and impede drainage.  Seepage water, enriched by nutrients, a f f e c t s  the f l o r i s t i c structure of the plant community and consequently may also influence humus q u a l i t y .  This r i c h seepage water may promote fast decompo-  s i t i o n of the organic matter, thereby a f f e c t i n g soil-., and plant community development.  Ta^le. IV-11  Coastal- Douglasf i r zone Wet subzone*  Xeric  Perhumid (snowy) * microthermal  Gaultheria-Mahonia  Gaultheria  Plagiothecium-Mahonia  Polystichum-Tiarella laciniata Lysichitum or Adiant;um.  Lithosolic  L i t h o s o l i c Gaultheria  Gaultheria -Lichen  Eurhynchium  Hygric  Mountain hemlock zone Lower subzone**  Coastal western hemlock zone Wet subzone Dry subzone  Humid (summer dry) mesothermal Rhacomitrium -Lichen  Mesic  SUCCESSIONAL (TIME) SEQUENCE OF PLANT COMMUNITIES IN THE GLACIAL DRIFT LAND TYPE AND THE RELATED HABITATS  " Orthic •>.GaultheEia  Orthic Vaccinium-Gaultheria  Orthic Plagiothecium  Degraded Polystichum  Orthic Vaccinium-Plagiothecium  Hygric Vaccinium-Plagiothecium Orthic Blechnum  Orthic Polystichum  Vaccinium - Lysichitum or Oplopanax - Adiantum  * Communities were described by Krajina and Spilsbury ** A f t e r Peterson (1964) and Brooke (1964).  Vaccinium-Gaultheria  (1953)-  Lithosolic Cladothamnus Hygric Cladothamnus  Vaccinium  Degraded Streptopus  Blechnum-Streptopus  C hamae cypar i s-Lysichitum or Abies-Oplopanax  53  CHAPT. V  THE SPRING-WATER SWAMP LAND TYPE  After water infiltrates the soils on the slopes, i t begins to move laterally under gravitational pressure over the impervious layer. If the impervious layer outcrops on the slope, then the overlying water comes to the surface at this point, saturates the soils downslope and a spring-water swamp is formed.  Two pedogenically distinct types of spring-  water swamps are encountered in the Coastal western hemlock zone:  one on  waterlogged mineral soils, and the other on waterlogged woody peats. Swamps with mineral soils are confined to concave slopes while woody peats occur in depressions. Spring-water swamps of the Coastal western hemlock zone are characterized by the Thuja-plicata - Vaccinium alaskaense - Lysichitum americanum edaphic climax.  S o i l water reaction is usually below pH 5-5  (Lesko 1 9 6 1 ) . The Thuja plicata - Lysichitum americanum eaaphic climax characterizes the spring-water swamps in the Coastal Douglas-fir zone (McMinn 1957) where s o i l water reaction is close to neutral.  The occurrence of  Oenanthe sarmentosa, Mitella ovalis and Veronica americana as well as the absence of Vaccinium alaskaense readily separate the spring-water swamps of the Coastal Douglas-fir zone from those of the Coastal western hemlock zone. Spring-water swamps of the subalpine zone are acid or slightly alkaline (Brooke 1 9 6 4 ) .  The combinations of Chamaecyparis nootkatensis,  Vaccinium alaskaense, Lysichitum americanum and Coptis asplenifolia indicate an acid subalpine swamp.  The neutral to slightly alkaline swamps are  characterized by the presence of Leptarrhena pyrolifolia, Caltha leptosepala, and Petasites frigidus (Peterson 1 9 6 4 ) .  54  Spring-water swamps of the Coastal western hemlock zone are assigned to two associations:  (a) Lysichiteto - Thujetum plicatae, and  (b) Copteto - Thujetum plicatae.  The appropriate association characters are  compiled in Table VI-1 and Appendix 1 1 1 - 3 5 to 3 8 . The f l o r i s t i c structure of the spring-water swamps is remarkably uniform throughout the Coastal western hemlock zone.  Site indices vary dependent on species but the  better-drained areas support better growth than the low lying surface within spring-water swamps. Association (a) or the Vaccinium - Lysichitum ecosystem type (V-Ly) occurs on slopes on mineral soils as well as in depressions on woody peats. In both locations, the top s o i l is black muck (pitchy anmoor, Lesko 1 9 6 1 ) . Association (b) or the Lysichitum - Coptis ecosystem type (Ly-C) is confined to organic soils characteristically possessing a well-humified surface horizon underlain by woody peat.  These soils occur at the margin  of high moors, and are directly exposed to run-off water or seepage from the adjacent slopes.  The Ly-C type appear§:i. as a transitional community  between the spring-water swamps and the high moors.  55  CHAPT. VI . THE RAVINE ALLUVIAL LAND TYPE In the glossary of geology and related sciences (American Geological Institute I962), a ravine is defined as "a depression worn out hy running water, larger than a gully and smaller than a valley".  This  term is applied in the present work to narrow valLey-li^e -depressions which were cut by running water in the glacial drift substratum, and which usually contain permanent or semi-permanent streamlets or creeks. "Stream-edge forest" (from the German "Bachbegleitender Wald") seemsd appropriate to designate the Thuja plicata - Oplopanax horridus stands of the ravine a l l u v i a l land type.  These forests are remarkably  uniform throughout both subzones, and are therefore classified as a single association:  Oplopanaceto - Thugetum plicatae.  This association  is also designated as the Oplopanax - Adianthum ecosystem type (0-A). The soils are bouldery, gravelly, sandy, and mucky with permanent moving water as seepage or overflow.  Some type characteristics are given in  Table VI-1 and In Appendix 111-33 to 34. Secondary stands can be formed by Alnus rubra. thrives on decaying wood.  Tsuga heterophylla  Pseudotsuga menziesii establishment following  forest fires is limited to the side slopes or to the raised grounds in the ravine. The 0-A type extends into the subalpine zone in which Thuja plicata is replaced by Chamaecyparis nootkatensis, and Tsuga heterophylla gives way ftp Tsuga mertensiana (Peterson 1964).  Table V - l  SPRING-WATER SWAMP AND RAVINE ALLUVIUM LAND TYPE Lysichifceto - Thujetum p l i c a t a e Copteto - Thujetum p l i c a t a e Oplopanaceto - Thujetum plicatae  Associations  Vaccinium-Lysichitum (V-Ly)  Ecosystem type  Land form R e l i e f shape Slope g r a d i e n t Altitude f t . Hygrotope Ground water table pH 0 C Humus form S i t e index Douglas-fir f t . p e r lOOy. western hemlock western redcedar Characteristic combination of 0  Lower-slope and outwash terrace Concave  Lysichitum-Coptis (Ly-C)  Oplopanax-Adianturn  Depression Straight  Ravine Concave  (0-A)  2 (0-10) 88o (700-160)  0 820 (700-1000)  6 (4-10) 906 (480-1800)  Swampy Near sufface, moving  Swampy Near surface, stagnant  Swampy Near surface, intermittent overflc  4.26 (3.04-4.90) 5.31 (4.60-6.10)  Anmoor or peat anmoor  102 (88-130) 101 (76-125) Thuja p l i c a t a (Picea sitchensis) Vaccinium alaskaense Rubus s p e c t a b i l i s Lysichitum americanum Blechnum spicant. Dryopteris austriaca Tiarella trifoliata Athyrium f i l i x - f e m i n a Conocephalum conicum Mnium punctatum Eurhynchium stokesii P e l l i a sp. Sphagnum squarrosum  Peat anmoor  98 (80-129) 79 (70-98) Thuja p l i c a t a Pinus monticola Menziesia ferruginea Rubus s p e c t a b i l i s Vaccinium alaskaense Sambucus pubens Lysichitum americanum Coptis a s p l e n i f o l i a Coptis t r i f o l i a Mnium punctatum Sphagnum squarrosum  5.47 5.80  Anmoor or mull  136 (130-150) 137  (84-160)  121 (100-44)  Thuja p l i c a t a Oplopanax horridus Ribes bracteosum Rubus s p e c t a b i l i s Vaccinium alaskaense Lysichitum americanum Adiantum pedatum Athyrium f i l i x - f e m i n a Blechnum spicant Viola glabella Circaea alpina Gymnocarpium dryopteris Tiarella trifoliata Dryopteris austriace Eurhynchium s t o k e s i i Conocephalum conicum P e l l i a sp. Sphagnum squarrosum Mnium punctatum Mnium menziesii  o o H H  PJ  oq cu VJl VJl  56 CHAPT. VII  THE  SQUAMISH ALLUVIAL PLAIN LAND TYPE  The Squamish a l l u v i a l - p l a i n i s located about kO miles north of Vancouver and includes an area of approximately 17,000 acres.  An estimated  two-thirds of the t o t a l area i s influenced by intermittent flood water. Character of the stream In the studied section, the average gradient of the Squamish River i s approximately 6 . 3  f t . per mile.  wide meandering course (Figure V I I - l ) .  The natural channel follows a The wide v a l l e y f l o o r and  the  rounded topographic forms on the facing side slopes indicate that the v a l l e y served as an important channel way  f o r ice movement during  the  l a s t g l a c i a t i o n (Mathews 1 9 5 8 ) . Fluctuations of the water l e v e l are a t t r i b u t a b l e to surface underground run-off.  or  In t h i s respect, the water l e v e l of the stream i s  i n d i r e c t l y controlled by the climate, s o i l s , orography, and vegetation the drainage area.  of  When fluctuations are considered f o r a r e l a t i v e l y short  period of time, the c o n t r o l l i n g factors may  be considered to be constant  with the exception of the climatic elements which continuously  change i n  time. At gauging s i t e 8 GA-22"*", diurnal, seasonal, and i r r e g u l a r water l e v e l fluctuations are observed.  Diurnal fluctuations (Figure V I I - 2 )  are  a t t r i b u t a b l e to variations i n the i n t e n s i t y of surface run-off, controlled by diurnal temperature changes.  The e f f e c t of temperature on the water  l e v e l at the gauging s i t e i s registered 3 to 36 hours a f t e r i t s occurrence, depending on the season and the elevation of snow l i n e . maxima occur at about k a.m.,  Summer diurnal  approximately 12 hours l a t e r than  the diurnal  "^The gauging s i t e i s located near Brackendale, B. C. Gauge height readings have been recorded by the Water Resources Branch, Vancouver regularly since August 1955Some observations are available also from December 1922 to June 1926.  Fig. VII-1  P h y s i c a l f e a t u r e s on t h e a l l u v i a l  plain  temperature maximum. The summer diurnal minima occur at about k p.m.  57  The average amplitude in gauge height readings is approximately one foot. Winter diurnal maxima are registered at about 8 p.m. and the daily amplitude is less than one foot.  Water level fluctuations are negligible  for most parts of the day in winter.  The annual climatic cycle is signi-  fied by seasonal fluctuations in the water level, with a summer maximum and a winter minimum (Figure VII-3)•  The irregular fluctuations of the  water level are correlated with weather peaks, occurring in the drainage area (Figure VII-^-). Each gauge height reading can be partitioned as the baseflow (attributable to underground run-off) and the remaining portion of the flow (attributable to surface run-off).  Both types of flow are related  indirectly to rain or meltwater which can initiate run-off.  Within the  drainage area the average time lag between the occurrence of the rain or the snowmelt and the observed effect through surface run-off upon the water level of the main stream is approximately 2k hrs. underground run-off is presumably much longer.  The time lag in  Therefore each gauge  height reading signifies the influence of two distinct sets of climatic events, one associated with surface run-off and the other related to underground run-off.  Because of the time lag which exists between these  two sets of climatic events, the gauge height readings cannot be correlated directly with temperature or precipitation, unless they were partitioned 2  by subtracting baseflow  from the total gauge height.  The standardized gauge height readings (the baseflow is subtracted from the total gauge height) were matched with the daily climatic readings so that each gauge height coincided with the temperature and %he hypothetical smooth curve connecting the lowest points of the polygon in Figure VII-4.  AVERAGE MONTHLY GAUGE HEIGHTS 1955-1959  *et  Mean summer water mark  10 5J  Mean winter water mark  1: (  1  1  (  1  1  1  1  1  1  1  Nov. Dec. Jan. Febr. Mar. Apr. May June July Aug. Sept.Oct. Fig.  VII-3  p r e c i p i t a t i o n readings of the previous day. In the computations, days with temperature maxima below 33°E were not included because on such days no surface run-off contributes to water l e v e l changes i n the main stream. The regression of mean d a i l y gauge heights on temperature maximum, temperature minimum, and r a i n f a l l was computed with automatic reduction i n a l i n e a r model to determine the r e l a t i v e importance of the climatic variables on the water l e v e l changes.  The c l i m a t i c data originated from  A l t a Lake (Station No. l ) f o r the period November 1, 1956 t o October 3 1 , 1957.  The r e s u l t s are compiled i n Table V I I - 1 , and the c o r r e l a t i o n  c o e f f i c i e n t s are p l o t t e d i n Figure V I I - 5 . Table V I I - 1 Period  EXPLAINED VARIATIONS IN GAUGE HEIGHT READINGS (1956-1957) Source of Explained No. of variation variation observations (100R ) 2  November  Tmax. + Tmin. + Rain Tmin. + Rain Tmin. alone  39-9 38.8 35-1  30  Tmax. + Tmin. + Rain Tmax. + Tmin. Tmin. alone  59-4 56.8 46.3  26  January and February  Tmax. + Tmin. + Rain Tmax. + Rain Tmax. alone  29.4 28.8 27.3  11  March  Tmax. + Tmin. + Rain Tmax. + Tmin. Tmin. alone  12.8 10.9 9-9  30  April  Tmax. + Tmin. + Rain Tmax. + Rain Tmax. alone  58.2 51-9 34.8  30  May  Tmax. + Tmin. + Rain Tmax. + Rain Tmax. alone  42.6 36.7 12.9  24  Tmax. + Tmin. + Rain Tmax. + Tmin Tmax. alone  47.7 38.7 31.3  26  December  June  59 Table V I I - 1 - Continued Source of variation  Period  Explained variation (100 R )  Wo. of observations  2  July-  Tmax. + Tmin. + Rain Tmin. + Rain Tmin. alone  August  September  October  kk.k 3k. 5 23-9  31  Tmax. + Tmin. + Rain Tmin. + Rain Rain alone  61.1+ 60.5 51.5  31  Tmax. + Tmin. + Rain Tmin. + Rain Rain alone  85.5 Qk.k 73-k  30  Tmax. + Tmin. + Rain Tmin. + Rain Rain alone  76.T 76.7 67.7  31  Gauge height readings are naturally considerably lower i n winter than i n summer.  The proportion of the gauge height variations attributable  to r a i n i s r e l a t i v e l y small i n winter; the main factor which controls the variance i s temperature.  The r e l a t i v e importance of the climatic factors  do not undergo substantial change u n t i l a f t e r June or July.  At that  time, the snow has disappeared from most parts of the drainage area and the importance of the r a i n i s proportionally increased. Gauge height readings are p o s i t i v e l y correlated to minimum temperature and negatively correlated to maximum temperature i n summer.  The negative c o r r e l a t i o n  coincides with clear days with high temperatures and decreased run-off.  The  p o s i t i v e c o r r e l a t i o n between minimum temperature and gauge height readings coincides with low temperatures and r a i n .  As long as large amounts of snow  l i e on the drainage area, there i s p o s i t i v e c o r r e l a t i o n between maximum temperature and gauge height reading. Storms passing over the drainage area may cause peaks i n gauge height readings i n summer, and the warmer weather or r a i n at low a l t i t u d e s may be responsible f o r winter peaks.  Precipitation  •8 •7 -| •6  Temperature minimum  •5 _  •4 3 •2 •I  _  0 _ •I  Temperature maximum  -  •2 _ •3 _  —r-—i Nov.  Dec. J.-F.  r Mar.  I  i  Apr. May  i June  i July  i Aug.  I  I  Sept. Oct.  F i g . VII-5 Correlations (r) of the gauge height readings with the c l i m a t i c elements. Strong l i n e s indicate s i g n i f i c a n t correlations at .05 P. Observation period: 1956 - 1 9 5 7 . .  6o The average number of overflow days f o r the period 1955 i s p l o t t e d against gauge height i n Figure VTI-6.  -  1959  Line b of Figure VTI-6  can be computed as °days= ~  86  -99  H . ft  + k.lQ  Sy = 16 days and F = 299  H|t. -  0.086  H? . t  ( s i g n i f i c a n t at .005  +  519-5; P)?  100  R= 2  98 %  The equation can be used  only i f H S 5 f t . Some general s t a t i s t i c s may be of interest as given i n Table VII-2. Table VII-2  SOME GENERAL STATISTICS Gauge height (feet)  Discharge (cuf. sec.)  Average summer water mark (May 1 - Oct. 31)  8.8  13200  Average winter water mark (Nov. 1 - Apr. 31)  3'5  2600  Mean water mark  6.5  78OO  High water mark (Sept. 6, 1957)  18.7  Low water mark (Feb. 12, 1923)  0.7  The drainage area above Brackendale was Resources Branch, Vancouver, to be 765  786OO 388  estimated by the Water  square miles.  Erosion, transportation, and deposition depend l a r g e l y on the v e l o c i t y and turbulence of the flow.  A great part of the load comes from  the erosion of the high banks (Figure V I I - l ) where turbulence i s greatest. Large quantities of the transported material are dumped by the t r i b u t a r i e s into the Squamish River. The load, i n the form of a solution, as w e l l as c o l l o i d a l p a r t i c l e s ,  k i s more or less evenly d i s t r i b u t e d throughout the water p r o f i l e .  Coarse  sand i s c a r r i e d i n suspension i n the zone of greatest turbulence. Pebbles ^100 R2 = c o e f f i c i e n t of determination, Sy = standard error of estimate, F = variance r a t i o f o r regression. ^ h i s holds true generally f o r a l l streams according to Leet and Judson (1954).  to follow page 60  F i g . VII-6 Average number of overflow days per annum (a) and, f o r the period, May 1 - September 30, (b). Observations pertain to the period, October" 1," ^1955 - September 30, 1959*  are moved and rolled on the bottom.  6i Occasionally, boulders are dislodged  also by the branches and roots of large snags which, as they are swept along in the current, plow the bottom of the channel. If flood water spills over the bank, i t w i l l lose its transporting power and the load is deposited gradually. horizontal and vertical gradients. directly along the channel edge.  Deposits are sorted along  Coarse particles are deposited f i r s t Fine particles are swept onto the high  benches or further inland. The vegetation-environmental pattern.  While the meander cuts away  the bank where the velocity of the water is greatest, i t deposits sediment in the opposite bank where the velocity is least.  This causes a migration  of the meander in the flood plain and builds up a series of low sand ridges that are open to plant colonization.  Additional deposits of sand w i l l raise  the surface of the ridge above the average summer water mark. At this level, a tiny horizon of s i l t may accumulate on the surface from the withdrawing floods.  On this suitable seed bed, Salix, Alnus rubra and Populus  trichocarpa may regenerate.  Successful establishment, however, requires  the coincidence of several factors.  At the time of seed dissemination, the  flood should have retreated leaving a moist nutritive surface s o i l behind. After germination, a long flood-free period is required for successful development of the seedlings. If fresh deposits are in direct contact with an already colonized bench, plant propagation is frequently vegetative.  In such situations,  Equisetum arvense is the f i r s t species to establish i t s e l f .  By its production  of long rhizomes, this plant is an efficient colonizer of loose sand. A dense stand of Equisetum w i l l stabilize sand and promote aggradation.  62 The f i l l of the trough behind the low ridge (Figure VTI-l) i s at f i r s t mainly s i l t . r , " I f i t h e i t r o u g h i s f i l l e d up to the l e v e l of the ridge, no v i s i b l e s u r f i c i a l land mark would indicate i t s previous existence.  The  s o i l p r o f i l e s w i l l be d i s t i n c t , however, by the presence or absence of a s i l t or clay s u b s o i l horizon. Scirpus, Carex and Oenanthe.  The early colonizers of such troughs are These plants can withstand long stagnation of  water on poorly drained s o i l s . At or s l i g h t l y below the mean water mark, Scouleria aquatica and Hygrohypnum ochraceum form i n i t i a l colonies on s t a b i l i z e d boulders.  Examples  of t h i s community are r e l a t i v e l y rare but are w e l l developed at the edge of the Cheakamus Fan.  Scouleria and Hygrohypnum are attached f i r m l y to the  substratum and r e s i s t a strong current and long summer overflow. A surface which i s vegetated w i l l aggrade faster than the without vegetation.  one  This w i l l i n i t i a t e a process of d i f f e r e n t i a t i o n of  l e v e l s on the f l o o d - p l a i n .  Topographic forms which were produced by an even  aggradation under stands of vegetation may be c a l l e d benches and they can be c l a s s i f i e d by t h e i r r e l a t i v e height above the zero water mark, a water l e v e l which coincides with the zero of the r i v e r gauge.  The extent of a uniform  bench coincides with a uniform even-aged stand of vegetation under which deposits were l a i d down by intermittent overflow i n a rate and extent l a r g e l y determined by the vegetation i t s e l f .  Within these l i m i t s , s o i l s ,  conditions and p o t e n t i a l p r o d u c t i v i t y are the same.  The d i f f e r e n t bench  l e v e l s r e f l e c t v a r i a t i o n s i n the time of establishment and they v i r t u a l l y "grow" upward.  A low bench may  overflow  of the i n i t i a l stand  grow to the l e v e l of a high  bench during the l i f e time of a single cottonwood generation.  Benches are  frequently fragmented as the consequence of the r i v e r erosion. It i s possible to d i s t i n g u i s h between the benches and the terraces i n spite of t h e i r s i m i l a r i t y i n form.  Hefley (1937) c o r r e c t l y pointed out  63  that benches (or levels) are aggradation forms within the flood-plain and  they are a t t r i b u t a b l e t o the action of overflow water, wind, and vegetation. Terraces, on the other hand, mark a former v a l l e y f l o o r l e v e l as stated by Thornbury  (1958), n<i a  a  r e l a r g e l y the products of stream erosion rather  then deposition (Gilbert 1&T7)•  Individual benches d i f f e r i n t h e i r r e l a t i v e  height and post-flood drainage which factors account f o r most vegetational variations on a f l o o d - p l a i n ( c f . Shelford 195^, Toth 1958, and Karpati and Toth  1962). D i f f e r e n t successional trends evolve on the d i f f e r e n t i n i t i a .  At  the upper l i m i t of the Scouleria - Hygrohypnum bench, the spaces among the boulders are f i l l e d with sand and the establishment of willows, red alder or black cottonwood may take place.  After successful establishment, the new  t h i c k e t w i l l decrease water v e l o c i t y and accelerate aggradation. become f u l l y or p a r t i a l l y covered by sand and the bryophytes gradually as they become buried.  The boulders  disappear  The establishment of Elymus glaucus,  Lonicera involucrata and Rubus s p e c t a b i l i s follows and willows are gradually shaded out by the rapid growth of Alnus rubra and Populus trichocarpa.  Salix  sitchensis and S a l i x scouleriana are the f i r s t to disappear followed by S a l i x lasiandra.  As the deposits increase i n depth, the proportion of Lonicera 1  involucrata and Rubus s p e c t a b i l i s increases. At t h i s stage the stand i s 20 30 years o l d .  Populus trichocarpa dominates with Picea sitchensis abundant  i n the shrub layer.  The s o i l i s from two t o three feet deep and consists of  sand underlain by gravel and stones. On the sand ridges and on the Equiseturn bench, development leads also to the Lonicera - Rubus stage but t h i s i s preceded by an early stage of willow thicket i n which Equisetum arvense i s the dominating plant of the herb layer. The s o i l i s s i m i l a r to that described i n the preceding paragraph except that boulders are not present i n the subsoil and the sand i s somewhat deeper.  64 In the trough, the o r i g i n a l Sc irpus - Carex - Oenanthe community i s replaced "by the willow-alder-cottonwood t h i c k e t .  With the completion of the  f i l l of the shallow trough, drainage improves and the deposits w i l l be mainly of sand.  Improved drainage i s i n h i b i t i n g f o r the available species of Carex,  l e s s so f o r Scirpus microcarpus and the least f o r Oenanthe sarmentosa. Development  leads to a Lonicera - Rubus stage i n which Oenanthe sarmentosa  w i l l occur sporadically. clay.  Here the top s o i l i s sand underlain by s i l t or  The bottom s o i l horizon i s always gravel. The Lonicera - Rubus bench i s frequently flooded but the deposited  sediments are f i n e r than before.  Eventually, a loamy sand surface horizon  accumulates and the proportion of Lonicera involucrata decreases.  The  establishment of Symphoricarpos r i v u l a r i s on t h i s bench l e v e l indicates that a gravel horizon i s close to the s o i l surface and follows a recent s h i f t i n the p o s i t i o n of the r i v e r bed.  Good examples of the Symphoricarpos stage  are common on the Cheakamus Fan.  In several l o c a l i t i e s near Squamish, the  Symphoricarpos stage has developed following a r t i f i c i a l excavations i n the i n t e r e s t of flood c o n t r o l . s p e c i f i c to deep loam s o i l s .  Oplopanax horridus and Ribes bracteosum are In both the Symphoricarpos as w e l l as Ribes -  Oplopanax communities Picea sitchensis and Populus trichocarpa dominates at the beginning, and subsequently, Picea sitchensis alone.  On t h i s l e v e l ,  the overflow i s extremely rare and vegetation i s conditioned by underground movement of water which varies with the f l u c t u a t i o n of the water l e v e l of the stream. Development  on the Symphoricarpos and Ribes - Oplopanax bench i s  very slow and involves some s o i l p r o f i l e development as w e l l . \.. ,,• • ' .'. r  If  the habitat i s no longer affected by overflow but i n which seepage exists,  the stand w i l l be r i c h i n deciduous trees and herbs.  Theses conditions promote  an e f f i c i e n t decomposition of the organic matter and melanization leading to  the development of a h r u n i s o l i c p r o f i l e (sensu Report 1963 S o i l Survey Committee of Canada).  65 of the National  I f no seepage i s present and the stand  i s dominated hy coniferous trees, raw humus w i l l accumulate. p r o f i l e develops.  A podzol  B r u n i s o l i c s o i l s and seepage are associated with an  abundant occurrence of Polystichum munitum, and podzols with raw humus plants. The ecosystem pattern of a flood-plain i s i n a continuous state of flux.  As the meanders migrate from one side of the v a l l e y to the other, r . '  benches and.plant communities are destroyed along the outside bank.  ;  The  production of new benches and new plant communities i s most c l e a r l y marked on the inside bank of a meander.  ;  An alternate channel can develop when a meander reaches a c r i t i c a l size.  A new pattern of overflow and the post-flood drainage along the  alternate channel can i n i t i a t e changes i n the ecosystems. The distance of the flow i s shortened by the alternate channel; t h i s increases the r i v e r gradient.  A new  equilibrium i s achieved by  downcutting  i n the r i v e r bed. If the break-through s i t u a t i o n can develop. downcutting  occurs across a medium bench, a unique  Overflow duration i s reduced on the benches (due to  i n the bed which r e s u l t s i n the r e l a t i v e increase of bench height).  S o i l depth i s not a l t e r e d substantially (because bench l e v e l i s increased by downcutting and not by sedimentation).  The lesser vegetation w i l l undergo  rapid changes but the crown canopy w i l l remain e s s e n t i a l l y unaltered f o r a c e r t a i n period of time depending on the stand age. The overflow pattern i n a unique s i t u a t i o n described i n the preceding paragraph resembles that of the Ribes - Oplopanax type.  The  soil  p r o f i l e , which contains a gravel horizon close to the s o i l surface, i s similar to that of the Lonicera - Rubus type.  The rate of sedimentation i s  66 low, and therefore no s i g n i f i c a n t increase of s o i l depth can be anticipated. The crown canopy consists of deciduous trees (as i n the Lonicera - Rubus type) in  early developmental stages but these give way to the conifers l a t e r  (as i n the Ribes - Oplopanax type).  In the lesser vegetation Symphoricarpos  r i v u l a r i s i s the most abundant species. A gravel horizon close to the surface i n the s o i l p r o f i l e accelerates post-flood drainage which could explain the presence of Symphoricarpos and the absence of Oplopanax horridus and Ribes bracteosum.  The occurrence  of a  gravel horizon close to the s o i l surface on a high bench does not necessarily indicate an e a r l i e r downcutting i n the r i v e r bed.  The t r i b u t a r y streams can  dump gravel even on the high benches of the main stream. Bypassed by an alternate channel, the long h a i r p i n turns become meander scars (Figure V T I - l ) .  The main current moves through the new  and the f i l l of the scar begins. than i n the scar.  The f i l l i s more intensive at the outlets  Flood water s p i l l s over the high f i l l of the outlets and  stagnates i n the scar. result.  channel  S i l t and clay are deposited and g l e y s o l i c s o i l s  Periodic deposits r a i s e the bottom and i n the shallow water the  establishment  of hydrophytic plants s t a r t s .  A gradient i n water depth from  the inside bank toward the outside bank and from the straight stretches of the channel toward the curves r e s u l t s i n zonation i n the invading vegetation. If  the l e v e l of the establishment  of willows represented the zero reference  mark, -6 feet would be the approximate l e v e l i n the establishment polysepalum, Sparganium simplex, and Potamogeton natans.  of Nuphar  This b e l t i s  succeeded by a zone of Equisetum f l u v i a t i l e which i s a t r a n s i t i o n toward the zone of the d i f f e r e n t Carex species. stand of Spiraea menziesii follows.  I f the slope i s small, a pure  On the reference l e v e l , willows  ( e s p e c i a l l y S a l i x lasiandra), Alnus rubra, Oenanthe sarmentosa, and  07 Lysichitum americanum are established. plays an important part.  In the f i l l , the organic component  Under Nuphar, Equisetum and Carex, g y t t j a develops.  The s o i l s of the Spiraea and S a l i x b e l t s are "gleysols. Some parts of the scar grow f a s t e r than the others and subsequently oxbow lakes are formed i n the depressions true low moors i n t h i s region.  l e f t behind.  These are the only  The water i s s l i g h t l y a c i d or neutral and  they are s t i l l affected by intermittent floods.  During the period of low  discharge, the f l u c t u a t i o n i n water l e v e l i s independent of the r i v e r . But at approximately the lUft.water mark, overflow occurs which a f f e c t s most of the oxbow lakes i n the l o c a l i t y . The development of the oxbow lake can be traced up t o the l e v e l of the willow t h i c k e t . A mathematical model of succession In synecological studies, i t i s p a r t i c u l a r l y i n t e r e s t i n g to discover how vegetation reacts to changes i n the environment and how vegetation a f f e c t s the environment. The problems are always multivariate i n nature and i t i s possible to define them i n the manner of mathematical equations.  For t h i s purpose,  Jenny (19*4-1) proposed a general s o i l function, s = f ( c l , o, r , p, t . . . ) . By d e f i n i t i o n , the ^properties of s o i l s (s) are the function of climate ( c l ) , organisms (o), r e l i e f ( r ) , factors.  parent material (p), time ( t ) , and the non-specified  In a recent work, Jenny (1961) extended the f a c t o r equation to  the complex of s o i l , vegetation, and animals. This function i s mathematically incorrect, since the variables are not a l l independent on the r i g h t hand side, unless they are r e s i d u a l matrices from which the e f f e c t of a l l i n t e r f e r i n g factors were removed. The interference i s most obvious with respect to time as the e f f e c t s of a l l other  68 factors are functions of time.  R e l i e f could be the function of parent  material, and climate i s greatly modified by r e l i e f . Influenced by Major's (1951) e f f o r t to apply calculus i n the d e f i n i t i o n of vegetation, an attempt i s made here to provide an e x p l i c i t d e f i n i t i o n of changes i n a f l o o d - p l a i n ecosystem. Hypothesis.  The state of any vegetational property of a f l o o d - p l a i n  ecosystem r e s u l t s from the state of overflow (P), land form (L), b i o t i c environment (B), climate (C) and time (T).  At the i n i t i a l stage (T =  V - f(F , L , B , Q  Q  0  C ) Q  0),  ...(1)  The state of overflow i s characterized by i t s duration and by the amount and q u a l i t y of i t s sediment load.  Overflow duration decreases with the increase  of bench height above a reference l e v e l . gradients of the water p r o f i l e .  The load i s sorted along v e r t i c a l  Therefore, a bench receives f i n e r sediments  during a low overflow than during a high overflow, and generally the deposits are f i n e r on a high bench than on a low bench at a comparable l o c a l i t y .  The  amount of sediment decreases with increase i n bench height. Land form i s interpreted here i n the sense of post-flood drainage. Benches and scars are most d i s t i n c t i n t h i s respect. The b i o t i c environment i s the source of b i o t i c i n f l u x thereby pre-determining  the possible range of b i o t i c v a r i a t i o n i n ecosystems.  The c l i m a t i c f a c t o r of the drainage area may be p a r t i t i o n e d into d i r e c t and i n d i r e c t components.  The d i r e c t component defines the general  type of b i o t a but i s not s u f f i c i e n t l y variable to explain v a r i a t i o n among ecosystems i n a l i m i t e d study area.  The i n d i r e c t component i s expressed  through the f l u c t u a t i o n i n water l e v e l which shows diurnal, annual, i r r e g u l a r cycles.  and  69 Each factor on the right-hand side of equation ( l ) i s complex and a l l factors i n t e r a c t .  As i t i s d i f f i c u l t to work with a number of  i n t e r a c t i n g variables, the observations are s t r a t i f i e d on the basis of land form, and bench l e v e l (H) i s substituted f o r overflow.  Bench l e v e l has  a single parameter, i . e . height above the reference l e v e l .  v  H  Q  - ( o> V f  F  C  o> » ( o > o> o ) f  H  B  Thus,  •••^  C  i s the base l e v e l of establishment of pioneer trees. A f t e r a period of time AT, provided that aggradation continues  and erosion does not occur, succession takes place.  This i s indicated by  increments i n the quantities of the variables (AV, A H, AB, A c ) .  V +Av = f ( H +AH,B Q  D  +AB, C  ..-(3)  +AC)  Q  In a period of a few decades,AH becomes a s i g n i f i c a n t quantity i n comparison with H  Q  whereas A B andAC remain very small i n comparison with B  respectively. equation  0  and C  Q  Therefore, equation (3) becomes approximately the same as  (k).  V +AV = f ( H + A H , B , C ) Q  0  Q  ...(4)  Equation (2) i s subtracted from equation (k) and divided through by A H. A V _ f ( H + A H)-f(H ) _ A f 0  Q  Z\H  A H  ...(5)  AH  Thus the constant terms which are common t o both equations are eliminated. I f A H approaches a very small quantity, then the derivative,  dV dH  =  df dH  ...(6)  70  expresses the amount of vegetational f l u x per unit change of bench height at any p a r t i c u l a r value of height.  The d e f i n i t e i n t e g r a l of equation  i s an expression of succession with respect to bench height.  (6)  When the l a t t e r  i s expressed as a function of time, the d e f i n i t e i n t e g r a l defines succession  1  with respect to time. Tr n  Hn  in  V = | i i i . dH  A  2£ dT  V =  ...(7)  dT H  Application.  o  T  o  Symbols refer to mathematical operations which, when  performed, reveal new r e l a t i o n s h i p s between the f a c t o r s embodied i n the equation.  " I f the variables cannot be expressed i n the form of operable  equations then use of calculus symbols adds l i t t l e to our knowledge of the relationships between the variables" (Verduin 1952). A transect was  selected and seven observation points were established  i n the f i r s t growth stands consisting predominantly  of red alder and black  cottonwood, on the low bank of a r a p i d l y developing meander of the Squamish River at B i g Bend.  F i e l d data (Table VTI-3) included r e l a t i v e bench height  (H) (above the zero water mark) and depth of the alluvium (A) to the base l e v e l of establishment of f i r s t growth pioneer trees as w e l l as age of the trees (T) and floristic descriptions of the sample quadrats.  The base l e v e l  of establishment was determined by excavation of the trunk of at least one dominant red alder at each observation point. It became apparent by v i s u a l inspection of the f i e l d data that the rate of change i n the number of species (N) (per sample plot) gradually decreases with an increase i n time (T).  There i s a sudden increase i n the  number of species during the f i r s t two decades but then i t levels o f f soon after.  Therefore i t seemed appropriate to express t h i s trend symbolically as  Table V I I - 3  Observation Bench l e v e l Aggradation point ft. depth f t . (H) (A)  BIG BEND DATA  Tree age years (T)  No. of species i n 100 sq. m. area (N)  Plant community  1  10.5  0.4  3  2  Seedling stage  2  12.7  0.8  5  5  Low S a l i x - Populus  3  13-5  1.2  7  10  High S a l i x - Populus  4  16.5  3-5  16  23  Medium Lonicera - Rubus stage  5  17-5  5-0  22  20  High Lonicera - Rubus stage  6  18.0  4.5  25  21  Low Ribes - Oplopanax stage  7  21.5  8.0  89  34  High Ribes - Oplopanax stage  stage stage  71 a_N  ...(8)  b  =  dT  T  dT where b i s the constant of proportion. E = b log  After integration of dW « b T  e  +  c  ~  ...(9)  The numerical values of the two constant terms (b and c) were calculated by the least-squares method (Steel and T o r r i e i 9 6 0 ) on the basis of the data i n Table V I I - 3 .  Thus N = 9.60 l o g  T - 8.56  e  ,.'.'.''(10)  Equation (10)  gives - 0 0 at T = 0 .  equation (10)  can be adjusted to N = 0 corresponding to T = 0 , because when  But with K = T + 2 . 5  substitution  W = 0 = 9 . 6 0 log (T + x) - 8 . 5 6 and T = 0 , the constant of t r a n s l a t i o n x = 2.5-  Equation (10)  can be expressed also as  N =[9. 60 l o g  e  K  (11) K  o  Bench height increases with time, unless erosion occurs.  The  time factor i s approximated by the age of f i r s t growth pioneer trees. height increase has followed a similar pattern as N.  Bench  The regression of  bench height (H) on time i s : H = 3.25  log  e  T + 7-28  With K = T + k substitution, equation (12)  ...(12)  i s adjusted to H = 12 f t .  (the observed average base l e v e l f o r the abundant establishment of the f i r s t growth pioneer trees on the low bank of t h i s p a r t i c u l a r meander bend)  72 corresponding to T = 0 .  Prom H = 12 = 3-25 log  constant of t r a n s l a t i o n x = 4 . 0 when T = 0 .  (T + x) + 7-28,  Equation (12)  the  can he  expressed  also as  H =  At T = 33 (or KQ = 37)  3.25  log  and T = 0 , ( K =• k), Q  e  f  Kj  ...(13)  equation ( V i n d i c a t e s a bench  height increase from 12 f t . to 19 f t . Under these conditions, equation ( l l ) gives approximately  26 units increase i n the number of species including  trees, shrubs, herbs and humus inhabiting bryophytes (humophytes). to say that i n about three decades a low bench may  That i s  grow as much as seven  feet and during t h i s same period succession may proceed from an i n i t i a l black cottonwood stand (with three or four companion species) to a complex stand of approximately  25 species at that p a r t i c u l a r meander bend of the  Squamish River. Table VII-4  Equation  no.  SOME STATISTICS OP BASIC EQUATIONS  Dependent variable  Source of variation  Explained variation (100 R )  Standard error of the estimate (Sy)  10  Number of species (N)  Time (T)  96  +  12  Bench height (H)  Time (T)  99  +  2 species 0.3 f t .  Bench height increase can be p a r t i t i o n e d as absolute increase (due to aggradation) and r e l a t i v e increase (due to downcutting).  :'..v„.  Aggradation (A) i s equal to the depth of alluvium which has accumulated above the base l e v e l of establishment of the f i r s t growth pioneer trees. At present, the abundant establishment of these trees begins at about the 12 f t . l e v e l above the zero water mark.  I f bench height increase were the  r e s u l t of aggradation alone (A), H = A + 12 would hold true at any p a r t i c u l a r segment along the transect (Figure VII-7a).  This would indicate that the  base l e v e l of establishment was more or less horizontal beneath the alluvium of the low bank and that no downcutting  had occurred i n the r i v e r bed as  the channel moved l a t e r a l l y to i t s present p o s i t i o n . data (Table VII-3) revealed that H £ A + 1 2 ,  Inspection of the  and that D = H - (A + 12)  gradually increases with the distance from the r i v e r bed (Figure VII-7b). This s i g n i f i e s that downcutting has taken place i n the recent past during the development of the meander.  But the values of D are very small and they  may be associated with a c e r t a i n amount of error; t h i s could refute the v a l i d i t y of the preceding statement. substantiated by other evidence. 1 9 0 0 by a breakthrough  Nevertheless downcutting  An alternate channel was  s t i l l appears  formed around  of the r i v e r across Big Bend approximately 300 yards  downstream from the study s i t e .  The new  channel reduced the distance of  the flow to about one t h i r d of the length of the o l d bed. has increased followed by downcutting which may  The r i v e r gradient  have proceeded upstream  into the meander bend at the l o c a t i o n of the transect. The numerical equations p e r t a i n to the studied meander bend alone. Their relevance to other s i m i l a r :meanders remains to be seen.  The basic  concepts may have application, however, i n a somewhat wider sense.  C l a s s i f i c a t i o n units Vegetational establishment starts at about the 5 f t . water mark on boulders and at a somewhat higher l e v e l i f the alluvium i s sand.  Boulders  are characterized by the Scouleria aquatica - Hygrohypnum ochraceum ecosystem  F i g . VII-cf T r a n s e c t s a and b i n d i c a t e two d i s t i n c t examples o f t h e bench h e i g h t i n c r e a s e . A b s o l u t e i n c r e a s e i s a t t r i b u t a b l e t o a g g r a d a t i o n (A) a l o n e . R e l a t i v e i n c r e a s e i s t h e c o n s e q u e n c e o f d o w n c u t t i n g ( D ) . W h e r e t h e l a t e r a l movement ( L ) o f a m e a n d e r c o i n c i d e s w i t h d o w n c u t t i n g ( D ) , b e n c h h e i g h t (H) i n c r e a s e c a n b e p a r t i t i o n e d a s A a n d D. I n t h i s c a s e , t h e b a s e l e v e l o f e s t a b l i s h m e n t ( B ) o f f i r s t g r o w t h p i o n e e r trees slopes i n the d i r e c t i o n of the channel (C). Presently, the establishment s t a r t s a t t h e 12 f t . l e v e l a b o v e t h e z e r o w a t e r m a r k ( o ) .  o Hi O H H  cn  co  -3  .  type (Hygrohypneto - Scoulerietum)•  The sand deposits are occupied by the  Equisetum arvense ecosystem type (Equisetetum arvensis).  The establishment  of the S a l i x - Scouleria and the S a l i x - Equisetum ecosystem type (Scoulerieto Salicetum and Saliceto - Populetum respectively) s i g n i f i e s the medium low benches.  The medium benches are characterized by the Lonicera involucrata -  Rubus s p e c t a b i l i s ecosystem type (Lonicereto - Populetum) within which two d i s t i n c t variations occur:  one with a clay or s i l t horizon close to the  s o i l surface (indicated by Oenanthe sarmentosa) and the other with a gravel horizon close to the s o i l surface.  The high benches are s i g n i f i e d by the  Ribes bracteosum - Oplopanax horridus ecosystem type (on deep s o i l s ) and by the  Symphoricarpos r i v u l a r i s ecosystem type (with a gravel horizon close to  the  s o i l surface), which are designated as the Oplopanaceto - Piceetum and  the  Symphoricarpeto - Piceetum i n the synthesis tables. In the scars, the sequence of plant communities i s as follows:  Nuphar poiysepalum ecosystem type (Nupharietum p o l y s e p a l i ) , Equisetum fluviatile  ecosystem type (Equisetetum f l u v i a t i l i s ) , Carex ecosystem type  (Magnocaricetum), Spirea menziesii ecosystem type (Spiraeetum menziesii), and the S a l i x lasiandra - Lysichitum americanum ecosystem type (Lysichiteto Salicetum). the  Populus trichocarpa establishment may occur at the l e v e l of  S a l i x - Lysichitum type provided that a gravel horizon i s close to the  s o i l surface.  The lesser vegetation i s characterized i n t h i s case by the  Carex species.  The plant community i s designated as the Populus - Carex  ecosystem type (Cariceto - Populetum). Table  VII-5. and  6,  and i n Appendix I I I -  The type characters are given i n  39  to $k.  Table VII-5  Associations  Bench height ( f t . ) Days o f o v e r f l o w p e r year D e p t h t o f i r s t g r a v e l h o r i z o n (cm.) S t a n d age ( y e a r s ) Characteristic combination o f species  Associations Ecosystem  type  Bench h e i g h t ( f t . ) Days o f o v e r f l o w p e r y e a r D e p t h t o f i r s t g r a v e l h o r i z o n (cm.) Stand age ( y e a r s ) C h a r a c t e r i s t i c combination of s p e c i e s  THE A L L U V I A L - P L A I N LAND T Y P E , BENCHES  Hygrohypneto - Scoulerietum (H-S)  6.5 (5-8) 146 (102-190) 0  Equisetetum arvensis (E)  Scoulerieto - Salicetum (S-S)  10  12 (11-13) 10 ( 4 - 1 8 ) 44 (33-60)  0  Equisetum  L o n i c e r e t o - Populetum L o n i c e r a - Rubus t y p e (L-R)  Oplopanaceto - Piceeturn R i b e s - Oplopanax type (R-0)  (14-17-5)  2 ( u p t o 3) 104 (50-120) 19 (14-45) Populus t r i c h o c a r p a Alnus rubra Picea sitchensis (Thuja p l i c a t a ) Salix sitchensis Lonicera involucrata Rubus s p e c t a b i l i s Maianthemum d i l a t a t u m Osmorhiza c h i l e n s i s Equisetum arvense  19.6  Populus t r i c h o c a r p a Salix sitchensis Alnus rubra Salix lasiandra Equisetum arvense  Salix sitchensis Alnus rubra Populus t r i c h o c a r p a Elymus glaucus Scouleria aquatica  (18-21.5)  less than  11.9 ( 1 0 - 1 3 . 5 ) 15 ( 3 - 4 2 ) 32 ( 0 - 9 5 ) 4 (2-7)  42  Scouleria aquatica Hygrohypnum ochraceum  15.5  arvense  S a l i c e t o - Populetum (S-P)  1  125+ 66 (25=89) Picea sitchensis Populus t r i c h o c a r p a ( A l n u s rubra;)' (Acer macrophyllum) Thuja p l i c a t a Oplopanax h o r r i d u s Ribes bracteosum Rubus s p e c t a b i l i s Athyrium f i l i x - f e m i n a (Dryopteris filix-mas) (Polystichum andersonii) P o l y s t i c h u m munitum Maianthemum d i l a t a t u m Osmorhiza c h i l e n s i s Tiarella trifoliata Dryopteris austriaca Disporum oreganum Mnium i n s i g n e  Symphoricarpeto - Piceetum Symphoricarpos type (S)  19.2  (18-21)  less than  1  69 ( 6 0 - 8 5 ) 40 (27-55) Picea sitchensis (Acer macrophyllum). Thuja p l i c a t a Populus t r i c h o c a r p a Symphoricarpos rivularis D i s p o r u m oreganum P o l y s t i c h u m munitum Athyrium f i l i x - f e m i n a (Dryopteris filix-mas) Dryopteris austriaca Osmorhiza c h i l e n s i s ? a Mhium'Vihslghe. V . * • : - .  cr  o  Hi  o H  era fD  Table VII-6  Associations Ecosystem type Level  Nupharietum polysepali (!)  (ft.)*  Soil profile  Characteristic combination of species  ..Gjrtt j a - l i k e sediments  Nuphar polysepalum Sparganium simplex Potamogeton natans  THE ALLUVIAL-PLAIN LAND TYPE, RIVER SCARS  Magnocaricetum  Equisetetum fluviatilis (Ef)  -3 - -1  Gyttja-like sediments  Gyttja-like sediments  * Above or below the establishment l e v e l of S a l i x  -1-0 Gleysol with gyttja-like subsoil  Carex retrorsa Carex sitchensis Carex a q u a t i l i s Equisetum f l u v i a t i l e  species.  menziesii  (sp)  (Mc)  -h - -3  Equisetum f l u v i a t i l e Sparganium simplex Carex r e t r o r s a Nuphar polysepalum  Spiraeetum  1  Spiraea menziesii Oenanthe sarmentosa Carex retrorsa  Lysichiteto Salicetum (Ly-Oe) 0  - 3  Gleysol with gyttja-like subsoil Salix lasiandra Salix sitchensis -Alnus rubra Oenanthe sarmentosa Lysichitum americanum Climacium dendroides  Cariceto  - Populetum  (P-C) 0  - 3  Shallow gleysol with gravel subsoils Populus trichocarpa S a l i x lasiandra Alnus rubra S a l i x sitchensis Carex a q u a t i l i s Carex r e t r o r s a Oenanthe sarmentosa Climacium dendroides  75 CHAPT. VIII  ECOSYSTEM TYPE MAPPING  Mapping of ecosystem types i s desirable to r e g i s t e r the geographic d i s t r i b u t i o n of the ecosystem individua f o r current and future use.  In  defining mapping units, i d e n t i f i c a t i o n must be made of the reference types to which the d i f f e r e n t ecosystem individua (as mapping units) can be Such i d e n t i f i c a t i o n i s based on the s o i l s , orography, and  assigned.  vegetation.  I d e n t i f i c a t i o n i s founded on selected observation points.  The ecosystem  boundaries are then extrapolated on the basis of vegetation and orography. The boundary l i n e s thus established are marked f o r surveying. U t i l i z i n g ecosystem types as a basis, approximately 85 acres were mapped and projected on a large scale map  (FigureVIII-l). The selected map  area i s located i n the southwestern portion of the University of B r i t i s h Columbia Research Forest, Haney, B. C. between a l t i t u d e s 200 - 5°0 f t . Climatic data are shown i n Table V i l l i 1 .  Table VTII-1  Annual t o t a l precipitation In.  CLIMATIC DATA (U.B.C. RESEARCH FOREST)  Wettest month in.  2.8  13.9  91.7  Mean annual temperature °F.  Driest month in.  Mean monthly temperature Jan. July Op Op 32  47  The map  61  Annual t o t a l snowfall in. 60.3  Number of months above below 50°F 32°F  Absolute max. min op  5  Nil  95  -5  area f a l l s within the Coastal western hemlock zone but  the occurrence of Osmaronia cerasiformis, Corylus c a l i f o r n i c a and t r i p h y l l a i n the northwestern portion of the map to the Coastal Douglas-fir zone.  Achlys  area indicates a t r a n s i t i o n  76 A "brief description of the ecosystem types i s given to accompany the map i n Figure V I I I - 1 .  A.  Xeric ecosystem types  1)  L i t h o s o l i c Gaultheria (LG).  slopes i n the v i c i n i t y of rock outcrops.  The LG type occupies convex The s o i l s are shallow l i t h o s o l s  (residual AC p r o f i l e s ) less than 10 i n . deep, or truncated shallow t i l l s with recently exposed B and redeveloping L-F and Ae horizons.  Site index-*- of  Pseudotsuga menziesii i s 60 - 80 f t . 2)  Orthic Gaultheria (OG) and Gaultheria - Mahonia (G-M).  s o i l s are very coarse (stoniness over 6 0 $ ) , less than 30 i somewhat deeper (G-M).  Q  The  ' deep (OG) or  The s o i l s appear t r a n s i t i o n a l between the acid brown  wooded and the minimal podzol s o i l groups with apparent fragipan development i n some p r o f i l e s . B.  The s i t e index of Pseudotsuga menziesii i s 95 - 115 f t .  Mesic ecosystem types 3)  Orthic Plagiothecium (OPl) and Plagiothecium - Mahonia (Pl-M).  The s o i l s are deep, r e l a t i v e l y f i n e textured minimal, orterde or o r t s t e i n podzols on gentle (OPl) or steep (Pl-M) slopes.  Pseudotsuga menziesii s i t e  index i s 120 - ihO f t .  C.  Hygric ecosystem types  k)  Degraded Polystichum (DPo).  The s o i l s are deep minimal, orterde  and o r t s t e i n podzols with seepage i n the lower s o i l p r o f i l e .  The s i t e index  of Pseudotsuga menziesii i s 160 - 180 f t . -'-The average height of dominant and codominant trees at a hundred years.  LEGEM) TO ACCOMPANY MAP  (Figure VTII-l)  (1) Map area i s located i n the southwestern corner of the University of B r i t i s h Columbia Research forest, k- miles north of the v i l l a g e of Haney. (2)  Ecosystem types: Ly 0-A B-R OP DP OPl Pl-M OG G-M LG L  (3)  Vaccinium - Lysichitum Oplopanax - Adiantum Blechnum - Rubus Orthic Polystichum Degraded Polystichum-' Orthic Plagiothecium Plagiothecium - Mahonia Orthic Gaultheria Gaultheria - Mahonia L i t h o s o l i c Gaultheria Non-forest rock outcrop  Numbers indicate sample p l o t locations.  Fig. V I I I - 1 Scale  ECOSYSTEM TYPE MAP 1:33.60 or  1 i n . = 280  ft.  5)  78 Orthic Polystichum (OPo) and Blechnum - Rubus (B-R).  Seepage occurs at medium depth (OPo) or close to the s o i l surface (B-R). The s o i l s are melanized and gleyed.  The s i t e index of Pseudotsuga menziesii  i s over 180 f t . 6)  Oplopanax - Adiantum (0-A).  The 0-A type i s confined t o  narrow ravines along permanent or semi-permanent streamlets. The s i t e index of Pseudotsuga menziesii i s lk-0 -l60 f t .  7)  Vaccinium - Lysichitum (V-Ly).  The top s o i l i s black muck.  100  ft.  Seepage i s at the s o i l surface.  Site index of Thuja p l i c a t a i s approximately  79  CHAPT. IX  SUMMARY AND CONCLUSIONS  The main purposes of t h i s thesis were to study vegetational and environmental variations within the Coastal western hemlock zone, and to propose an ecosystem c l a s s i f i c a t i o n .  References are made, however, not only  to the Coastal western hemlock zone, hut also to the adjacent zones, thus making possible a comparative review.  biogeoclimatic  The main findings are  summarized below:  (l)  The P a c i f i c pressure  systems control the general climate of  the southwestern B r i t i s h Columbia mainland.  Local c l i m a t i c variations are  a t t r i b u t a b l e t o orography which causes the P a c i f i c a i r t o descend over the leeward slopes of Vancouver Island and to r i s e over the windward slopes of the Coast Mountains.  The rainshadow e f f e c t of Vancouver Island determines  the r e l a t i v e l y dry climate of the Lower Mainland close to the S t r a i t of Georgia, but gradually i t s influence i s diminished a i r n: .1 again s t a r t s to r i s e .  The orographic  gradient from low to high elevations. mesothermal climate.  further inland where the  influence r e s u l t s i n a c l i m a t i c  The lowland belongs to a humid  The slopes are perhumid mesothermal below approximately  3500 f t . elevation, and perhumid (snowy) microthermal above that l i m i t . L o c a l i t i e s above 5000 f t . elevation belong to a perhumid (alpine) tundra. The c l i m a t i c gradient i s segmented into biogeoclimatic zones on the basis of vegetational and s o i l c h a r a c t e r i s t i c s . geographic e n t i t i e s .  These zones are d i s t i n c t  They are r e a d i l y recognizable on the basis of vegetational  and environmental c h a r a c t e r i s t i c s i n mesic habitats (Table I X - l ) . The i n t e r a c t i o n of temperature and r a i n f a l l i s the main factor that separates the Coastal western hemlock zone from the Coastal Douglas-fir zone. The  i n t e r a c t i o n of temperature and snowfall d i f f e r e n t i a t e s the Coastal western  hemlock zone from the Mountain hemlock zone while the i n t e r a c t i o n of temperature and snow duration controls the d i s t r i b u t i o n of the Alpine tundra.  8o Table IX-1  DIFFERENTIATING COMBINATION OF CHARACTERISTICS FOR THE SEPARATION OF ZONAL AND SUBZONAL UNITS IN MESIC HABITATS Climatic climax vegetation  Biogeoclimatic unit  Macroclimate  Zonal s o i l forming process  Coastal Douglas-fir zone  Humid mesothermal  Weak podzolization, weak laterization  Dry subzone of the Coastal western hemlock zone  Perhumid mesothermal (precipitation less than 110 in.)  Strong podzolization  Wet subzone of the Coastal western hemlock zone  Perhumid Strong podTsuga heterophyllamesothermal zolization, - Abies amabilis j(precipitation weak to mode-Vaccinium alaskaenserate gleyzation --Plagiothecium more than 110 i n O ) undulatum  Mountain hemlock zone  Perhumid (snowy) microthermal  Coastal alpine zone  Perhumid (snowy) tundra  (2)  Pseudotsuga menziesii' -Gaultheria shallon-Eurhynchium oreganum  Tsuga heterophylla— -Plagiothecium undulatum  Strong podTsuga mertensiana— zolization, -Abies amabilis-strong gleyzation -Vaccinium alaskaense -Rhytidiopsis robusta (lower subzone) or Tsuga mertensiana-Vaccinium membranaceum-Rhododentron albiflorum (upper subzone)  . Skeletal d i s i n Phyllodoce tegration, mode- empetriformisrate podzolization, -Cassiope gleyzation mertensiana  The d i f f e r e n t habitats p r e v a i l i n a mosaic pattern on rock  outcrops which are marked by a coincident pattern of vegetation.Ecosystem types. and t h e i r d i f f e r e n t i a t i n g ecotopic c h a r a c t e r i s t i c s are l i s t e d i n Table IX-2.  81  Table IX-2  ECOSYSTEM TYPES OP ROCK OUTCROPS  Landform  Hygrotope  Physiognomy  Crustose and f o l i o s e lichens  Peak  Very dry  Open l i c h e n synusium  Rhacomitrium canescens (Rh)  Knoll  Very dry  Moss carpet  Cladonia - Polytrichum p i l i f e r u m (Cl)  Table  Very dry  Moss --• - l i c h e n carpet  Danthonia spicata (Da)  Crevice  Very dry  Turf  Polytrichum commune (Pc)  Crevice  Wet  Moss carpet  Gaultheria shallon (Ga)  Complex  Dry to most  Thicket  Lithosolic Gaultheria (LG)  Upper slope, complex  Dry  L i t h o s o l i c forest  Ecosystem type  Vegetation types c l o s e l y coincide with the habitat types on a rock outcrop, e s p e c i a l l y at the early developmental stages.  The greatest  d i v e r s i t y occurs i n the Gaultheria t h i c k e t (Ga) whereby the fragments of the successionally preceding communities (Rh, C l , Da, Pc) remain recognizable. Gaultheria shallon promotes uniformity i n the habitat complex by the accumulation  of raw humus, root action, and shading which r e s u l t i n a gradual  d i s i n t e g r a t i o n of the d i f f e r e n t community fragments.  The breaking-up of the  successionally preceding communities i s completed i n the l i t h o s o l i c forest (LG).  82  Development i n the l i c h e n and bryophytic communities i s s i g n i f i cantly influenced by the adjacent arboreal communities by shading, root action, l i t t e r , seeds, f a l l e n wood, and modifications of the l o c a l climate. In t h i s way succession i s accelerated f a r beyond the endogenic potentials i n the early developmental  (3)  stages.  A l l g l a c i a l deposits with the exception of swampy habitats  are assigned to the g l a c i a l d r i f t land type. on the basis of subzones.  The t o t a l sample i s s t r a t i f i e d  In t h i s way, simple environmental gradients are  extracted from the t o t a l sample, and a single plant community sequence i s obtained along each gradient.  The multitude of sample plots can be v i s u a l i z e d  as a hyper-space c l u s t e r of points.  P r i n c i p a l axes are defined i n the  c l u s t e r and each sample p l o t i s rescaled along these axes.  When the set of  new axis values of the sample plots i s correlated with the species significance or environmental values, the causes of the spread (or f l o r i s t i c variations) i n the point c l u s t e r can be a n t i c i p a t e d . Three important gradients of environmental factors were recognized i n the g l a c i a l d r i f t land type and these are apparently the underlying causes of three major types of f l o r i s t i c v a r i a t i o n s .  In both dry and wet  subzones soil-moisture i s s i g n i f i c a n t l y correlated with maximum f l o r i s t i c variation.  Certain lesser f l o r i s t i c variations occur within each subzone  along a climatic gradient caused by changing exposure or a l t i t u d e .  Changes  i n humus q u a l i t y from raw humus to mull s i g n i f y the d i r e c t i o n of c e r t a i n other lesser f l o r i s t i c variations i n both subzones. The ecosystem types of the g l a c i a l d r i f t land type, b r i e f l y described i n Table IX-3, represent successive segments along the major ecotopic gradients.  83 Table IX-3  ECOSYSTEM TYPES OF THE GLACIAL DRIFT LAND TYPE  Landform  Hygrotope  Orthic Gaultheria (OG)  Convex upper slope  Dry  Raw humus, podzolization  Gaultheria - Mahonia (G-M)  Convex (steep and warm) upper-slope  Dry  Raw humus, podzolization  Orthic Plagiothecium (OPl)  Straight middle slope  Mesic  Raw humus, podzolization  Plagiothe c ium-Mahonia (Pl-M)  Straight (steep and warm) middle slope  Mesic  Raw humus, podzolization  Eurhynchium-Mahonia (E-M)  Straight middle slope  Mesic (with slight seepage))  Raw humus, podzolization  Orthic Polystichum (OPo)  Concave lower-slope  Moist to wet  Duff-mull,  Degraded Polystichum (DPo)  Concave, lower-slope  Moist to wet  Convex upper-slope  Dry  Raw humus, podzolization  Convex Dry upper-slope ( l i t h i c s o i l s or very shallow t i l l s )  Raw humus, podzolization  Ecosystem type  Humus type, s o i l forming process  Dry subzone:  melanization, gleyzation Raw humus, podzolization, gleyzation  Wet subzone: Orthic Vaccinium Gaultheria (OV-G) L i t h o s o l i c Vaccinium Gaultheria (LV-G) Orthic Vaccinium Plagiothecium (0V-P1)  Straight middle slope  Hygric Vaccinium Plagiothecium (HV-Pl)  Straight t o s l i g h t l y concave middle slope  Mesic  Moist  Raw humus, podzolization, weak gleyzation  Raw humus, podzolization, moderate gleyzation  8U  Table IX-3 > Continued - Ecosystem types of the g l a c i a l d r i f t land type  Ecosystem type  Landform  Hygrotope  Humus type, s o i l forming process  Orthic Blechnum (OB)  Concave lower-slope  Wet  Raw humus, podzolization strong gleyzation  Blechnum - Streptopus (B-S)  Concave, Wet lower-slope ( i n the subalpine ecotope)  Raw humus, podzolization strong gleyzation  Plant community development i s anticipated on the basis of the present vegetation-environmental patterns i n both subzones.  Proposed  successional trends are defined i n connection with climatic, edaphic and vegetational changes. (h)  Two pedogenically d i s t i n c t types of spring-water swamps are  encountered i n the Coastal western hemlock zone:  one on waterlogged  mineral s o i l s , and the other on waterlogged woody peats.  Soil-water reaction  i s always acid, and the surface s o i l layer i s a black muck.  The Vaccinium -  - Lysichitum ecosystem type occurs on slopes on mineral s o i l s as w e l l as i n depressions on woody peats.  The Lysichitum - Coptis ecosystem type, on the  other hand, i s confined to organic s o i l s a t the edge of high moors exposed to run-off water or seepage from the adjacent slopes.  (5)  The Thuja p l i c a t a - Oplopanax horridus stands of the ravine  a l l u v i a l land type are remarkably uniform throughout both subzones; they are c l a s s i f i e d as the Oplopanax - Adiantum ecosystem type.  The s o i l s are  bouldery, gravelly, sandy, and mucky with permanent moving water as seepage or overflow.  (6)  The  f l o o d - p l a i n ecosystems may  change a g r e a t d e a l d u r i n g a  r e l a t i v e l y s h o r t p e r i o d o f time.  These changes, however, a r e always r e l a t e d  to  sedimentation,  overflow,  p o s t - f l o o d drainage,  e r o s i o n , and  species  establishment. Overflow i s a t t r i b u t a b l e t o a f l u c t u a t i o n of water l e v e l i n the stream and drainage  i s t h e r e f o r e i n d i r e c t l y c o n t r o l l e d by the c l i m a t i c elements o f the  area.  P o s t - f l o o d drainage  r e f l e c t s how  r a p i d l y the f l o o d - w a t e r  is  removed from an a r e a when t h e water l e v e l o f t h e stream s t a r t s t o f a l l . t h i s connection,  the d i f f e r e n c e i s most marked between the benches ( a l o n g t h e  a c t i v e channel) and in  the s c a r s .  In  the s c a r s .  Benches a r e ' w e l l - d r a i n e d but the water  Overflow water l o s e s i t s t r a n s p o r t i n g power and the  load i s deposited.  stagnates  sediment  Benches grow by d e p o s i t i o n of sediments by t h e i n t e r m i t t e n t  overflow.  As the benches grow h i g h e r , the o v e r f l o w  frequent.  A s i m i l a r r e d u c t i o n o f o v e r f l o w f r e q u e n c i e s can occur as the  sequence o f downcutting i n the r i v e r  on them becomes l e s s con-  bed.  Where a bench i s b u i l t up above a c r i t i c a l water mark, t h e v e g e t a t i o n a l establishment  begins  on them.  The  r a t e o f sediment d e p o s i t i o n i s g r e a t e r  on  a s u r f a c e w i t h a v e g e t a t i o n a l cover than i t i s i n a comparable l o c a l i t y  without  vegetation.  localities  T h i s d i f f e r e n c e i n the r a t e o f d e p o s i t i o n a t t h e d i f f e r e n t  r e s u l t s i n the d i f f e r e n c e s i n the l e v e l s on a f l o o d - p l a i n .  The bench h e i g h t  g r a d i e n t c o i n c i d e s w i t h a d e f i n i t e sequence o f p l a n t communities. . ' The  lowest benches a r e v e g e t a t e d by the S c o u l e r i a a q u a t i c a - Hygrohypnum  ochraceum ecosystem type type  -' . .  (on deep s a n d ) .  (on b o u l d e r s )  Establishment  or by the Equisetum arvense ecosystem  o f shrubs and t r e e s s t a r t s  above the average summer water mark, and  slightly  i t r e s u l t s i n the development o f  t h e S a l i x - S c o u l e r i a a q u a t i c a and the S a l i x - Equisetum arvense ecosystem type.  The p r o p o r t i o n s of Populus t r i c h o c a r p a and A l n u s  h i g h i n b o t h communities.  r u b r a are u s u a l l y  Medium benches a r e o c c u p i e d by the L o n i c e r a  i n v o l u c r a t a - Rubus s p e c t a b i l i s ecosystem t y p e .  The  occurrence  o f Oenanthe  sarmentosa i n t h i s community s i g n i f i e s t h e p r e s e n c e o f a c l a y or s i l t  horizon  beneath the shallow sand.  86 The Ribes bracteosum - Oplopanax horridus ecosystem  type i s s p e c i f i c to deep s o i l s and high benches.  The Symphoricarpos r i v u l a r i s  ecosystem type i s c h a r a c t e r i s t i c f o r high benches with a gravel horizon close to the s o i l surface. The sequence of plant communities i n the scars coincides with a sequence of water depth and s o i l quality.  The Nuphar polysepalum ecosystem  type occurs i n the deep water more than k f t . below the establishment of the S a l i x species.  The Equisetum f l u v i a t i l e and the Carex ecosystem type  are c h a r a c t e r i s t i c f o r medium deep or shallow waters respectively.  The  Spiraea menziesii ecosystem type i s a semi-aquatic community of the deep gleysols.  The highest l e v e l s i n the scar are occupied by the Salix lasiandra -  Lysichitum americanum ecosystem type (on deep gleysols) and by the Populus trichocarpa - Carex ecosystem type (on shallow gleysols with a gravel horizon close to the s o i l surface). As the meanders swing from one side of the v a l l e y to the other side, the benches and plant communities are destroyed along the outside bank, but simultaneously new benches and new plant communities are established along the inside bank of the meander. (7)  Ecosystem type mapping involved approximately 85 acres i n  the University of B r i t i s h Columbia Forest.  87  REFERENCES  A r c h e r , A. C. 1963Some s y n e c o l o g i c a l problems o f the A l p i n e zone i n G a r i b a l d i Park, M.Sc. T h e s i s , Dep. B i o l , and Bot., U n i v . o f B. C. Armstrong, J . E . Surv. Can.  1956. Paper  .  1957-  S u r f i c i a l geology o f Vancouver a r e a , B. C. G e o l .  55-40.  S u r f i c i a l geology o f New  B. C. G e o l . Surv. Can.  Paper  Westminster  map-area,  57-5.  B e c k i n g , R. W. 1954. S i t e i n d i c a t o r s and f o r e s t t y p e s o f the D o u g l a s - f i r r e g i o n o f w e s t e r n Washington and Oregon. Ph.D. T h e s i s . U n i v . o f Wash. .  1957.  The Z u r i c h - M o n t p e l l i e r s c h o o l o f p h y t o s o c i o l o g y .  Bot. Rev. 23:411-488. Braun, E . L. 1916. The p h y s i o g r a p h i c e c o l o g y o f the C i n c i n n a t i R e g i o n . Ohio B i o l . Surv. B u i . No. 7:115-211. The Ohio S t a t e U n i v . Braun-Blanquet, J . 1913D i e V e g e t a t i o n s v e r h a l t n i s s e der S c h n e e s t u f e i n den R a t i s c h - L e p o n t i s c h e n A l p e n . Schweiz. N a t u r f . G e s e l l . , Neue Denkschr. 48:1-347. . 1932. P l a n t s o c i o l o g y , the study o f p l a n t communities. ( T r a n s , by G. D. F u l l e r and H. S. Conard.) New York, M c G r a w - H i l l . . 2nd  1951.  P f l a n z e n s o z i o l o g i e Grundzuge der  Vegetationskunde  ed. Wien, S p r i n g e r .  Bray, J . R. and J . T. C u r t i s . 1957An o r d i n a t i o n o f the u p l a n d f o r e s t communities o f southern W i s c o n s i n . E c o l . Monog. 27:325-349Brooke, R. C. 1964. Ecotopes o f p l a n t communities i n t h e ecosystem c l a s s i f i c a t i o n o f the C o a s t a l s u b a l p i n e zone i n s o u t h e r n B r i t i s h Columbia. Ph.D. T h e s i s , Dep. B i o l , and B o t . U n i v . o f B. C. Cajander, A. K. .  1909.  Uber Waldtypen.Acta  1926.  The t h e o r y o f f o r e s t t y p e s .  F o r . Fenn.  Chapman, J . D. 1952. C l i m a t e o f B r i t i s h Columbia. Conference, V i c t o r i a , B. C.  1:1-175.  A c t a F o r . Fenn. 5th B. C. Nat.  29. Res.  C l a r k , J . S., J . E. Brydon, and L. F a r s t a d . 1963. C h e m i c a l and c l a y m i n e r o l o g i c a l p r o p e r t i e s o f t h e c o n c r e t i o n a r y brown s o i l s o f B r i t i s h Columbia, Canada. S o i l S c i . 95:344-352.  88  Clements, F. E. I 9 0 U . The development and structure of vegetation. Univ., Bot. Surv. Nebr. 7.  Nebr.  . 1916. Plant successions: analysis of the development of vegetation. Carnegie Inst. Washington, Publ. 2 4 2 : 1 - 3 8 8 . . 1928. Plant succession and indicators: A d e f i n i t i v e e d i t i o n of plant succession and plant i n d i c a t o r s . New York, Wilson. Cooper, W. S. 1 9 1 3 ' The climax forest of I s l e Royale, Lake Superior, and i t s development. Bot. Gaz. 5 5 : 1 - 4 4 , 115-140, 189-235. Cowles, H. C. 1 9 0 1 . The physiographic ecology!;/ of Chicago and v i c i n i t y ; a study of the o r i g i n , development and c l a s s i f i c a t i o n of plant s o c i e t i e s . Bot. Gaz. 31:108, 145-182. Davis, W. M.  1909*  Geographical essays.  New York.  (Dover e d i t i o n  1954).  E i s , S. 1962. S t a t i s t i c a l analysis of tree growth and some environmental factors of plant communities. Ph.D. Thesis, Dep. B i o l . and Bot., Univ. of B. C. Farstad, L.  1963.  Personal communication.  Flahault, C. and C. Schroter. 1910. Rapport sur l a nomenclature phytogeographique. Actes 3me Congr. I n t e r n a t l . Bot., Bruxelles, 1910, 1:131-164. Fry, E. J . 1927- The mechanical action of crustaceous lichens on substrata of shale, c h i s t , gneiss, limestone, and obsidian. Ann. Bot. 4 l : 4 3 7 - 4 6 0 . G i l b e r t , G. K. 1877. Report on the geology of the Henry Mountains. U.S. Geol. Geogr. Surv. of the Rocky Mountain Region (Powell) Washington: 120-127. Gleason, H. A. 1920. Some a p p l i c a t i o n of the quadrat method. Club, B u i . 4 7 : 2 1 - 3 3 -  Torrey Bot.  . 1926. The i n d i v i d u a l i s t i c concept of the plant association. Torrey Bot. Club, B u i . 5 3 : 7 - 2 6 . Greig-Smith, P.  1957-  Quantitative plant ecology.  London, Butterworths.  G r i f f i t h , B. G. i 9 6 0 . Growth of Douglas-fir at the University of B r i t i s h Columbia Research Forest as related to climate and s o i l . Univ. of B. C. Fac. of For. B u i . No. 2 .  89  Goodall, D. W. 1953Objective methods f o r the c l a s s i f i c a t i o n of vegetation. I. The use of p o s i t i v e i n t e r s p e c i f i c c o r r e l a t i o n s . A u s t r a l i a n Jour. Bot. 1 : 3 9 - 6 3 . I I . F i d e l i t y and indicator value. Ibid. 1 : 4 3 4 - 4 5 6 . . 1954. Objective methods f o r the c l a s s i f i c a t i o n of vegetation. I I I . An essay i n the use of factor analysis. A u s t r a l i a n Jour. Bot. 2:304-324. Guyot, H. 1924. Association standard et c o e f f i c i e n t de communaute. Soc. Bot. Geneve, (fide Braun-Blanquet 1 9 3 2 . ) Halliday, W.E.D. 1937. A forest c l a s s i f i c a t i o n of Canada. Bui. 8 9 . Can. Dep. Mines and Res. Ottawa.  Bui.  For. Serv.,  Hansen, H. P. 1947Climate versus f i r e and s o i l as factors i n post g l a c i a l forest succession i n the Puget lowland of Washington. Am. Jour. S c i . 245:265-286. Hefley, H. M. 1937. E c o l o g i c a l studies of the South Canadian r i v e r floodp l a i n i n Cleveland County, Oklahoma. E c o l . Monog. 7 : 3 4 5 - 4 0 2 . Ilvessalo, Y. 1929. Notes on some forest ( s i t e ) types i n North America. Acta Fenn. 3 4 : 1 - 1 1 1 . Jenny H.  1941.  Factors of s o i l formation.  McGrawr-Hill, New  York.  . 1961. Derivation of state factor equations of s o i l s and ecosystems. S o i l S c i . Soc. Am. Proc. :385-388. Jaccard, P. 1912. New Phytol.  The d i s t r i b u t i o n of the f l o r a i n the alpine zone. 11:37-50.  Karpathy, I., and I. Toth. 1962. Az a r t e r i nyarasok erdotipusai. (Forest types of f l o o d - p l a i n poplar stands.) A nyarfa termesztes: 150-168. Mezogazdasagi Kiado, Budapest. Kelley, C. C. and R. H. Spilsbury, 1939. Valley, Can. Dep. Agr., Publ. 65O.  S o i l survey of the Lower Fraser  Kerr, D. P. 1951. The summer-dry climate of Georgia Basin, B r i t i s h Columbia. Trans. R. Can. Inst., XXIX: 2 3 - 3 1 . Kozak, A. and D. 0 . Munro, 1963. F i t the normal, Poisson, binomial and negative binomial d i s t r i b u t i o n s to observed data. U.B.C. Computing C ent^r-, Vane ouver.  90  Koppen, W. Climates of the earth, (fide Trewartha, G. T. 1954. duction to climate. 3ed> McGraw-Hill Book Co.).  An i n t r o -  Krajina, V. 1933Die Pflanzengesellschaften des Mlynica - Tales i n den Vysoke Tatry (Hohe Tatra). Mit besonderer Berucksichtigung der okologischen Verhaltnisse. Bot. Centralbl., Beih., Abt. 2, 50:744-957;  51: 1-224.  . 1959Bioclimatic zones i n B r i t i s h Columbia. Bot';.L'Ser.'liN5.;ll;;ib Vancouver, B. C.  Univ. of B.  C,  !  . i960. Can we f i n d a common platform f o r the d i f f e r e n t schools of forest type c l a s s i f i c a t i o n . S i l v a Fenn. Wo. 105:50-55. . 1962. Ecology of the forests of the P a c i f i c Northwest. Prog. Report, Nat. Res. Coun. Grant T - 9 2 , : 3 1 .  1961  . 1964. Ecology of the forests of the P a c i f i c Northwest. Prog. Report, Nat. Res. Coun. Grant T-92,:71-87  1963  .  1958-1964.  Lecture notes and personal communications.  . and L. O r l o c i . 1963. Biogeoclimatic forest zones on the lower mainland of B r i t i s h Columbia. Prog. Report, Nat. Res. Coun. Grant  T-92:18-24.  . and R. H. Spilsbury. 1953Forest associations on the East Coast of Vancouver Island. Forestry Handbook f o r B.C., :l42-l45-  2nd ed. 1959,: 582-585.  Kujala, V. 1945Waldvegetationsuntersuchungen i n Kanada mit besonderer Berucksichtigung der Anbauanioglichkeiten kanadischer Holzarten auf naturlichen Waldboden i n Finnland. Acad. S c i . Fenn., Ann., ser. A,  4 B i o l . 7:1-434.  Leet, L. D. and S. Judson. H a l l Inc.  1954.  Physical geology.  New York, Prentice-  Lesko, G. I961. E c o l o g i c a l study of s o i l s i n the Coastal western hemlock zone. M.Sc. Thesis, Dep. B i o l , and Bot., Univ. of B. C. Lorenz, J . R. 1858. Algemeine Resultate aus der pflanzengeographischen und genetischen Untersuchung der Moore im praalpine Hugellande Salzburg 's. (fide Whittaker 1962). 1  9  Major, J .  1951'  A functional, f a c t o r i a l approach to plant ecology.  i  Ecol.  32:392-412.  Mathews, W. H. 1958- Geology of the Mount G a r i b a l d i map area, southwestern B r i t i s h Columbia. B u i . Geol. Soc. Amer. 6 9 : l 6 l - 1 9 8 . 1957' Water r e l a t i o n s i n the Douglas-fir region on Vancouver Ph.D. Thesis, Dep. B i o l . and Bot., Univ. of B. C.  McMinn, R. G. Island. Morozov, G. F.  1903 •  Issledovanije lesov voronezskoj gubernii.  .  1928.  Die Lehre vom Walde.  Les. sh.  Neudamm.  Motyka, J . , B. Dobzanski, and S. Zawadzki. 1 9 5 ° . Preliminary studies on meadows i n the southeast of the province Lublin. (Pol. with Russ. and Engl, summ.) Univ. Mariae Curie-Sklodowska (Lublin), Ann., Sect. E5:367-4U7. Mueller-Dombois, D. 1959« The Douglas-fir f o r e s t associations on Vancouver Island i n t h e i r i n i t i a l stages of secondary succession. Ph.D. Thesis, Dep. B i o l . and Bot., Univ. of B. C. Nichols, G. E. 1917- The i n t e r p r e t a t i o n and a p p l i c a t i o n of c e r t a i n terms and concepts i n the e c o l o g i c a l c l a s s i f i c a t i o n of plant communities. Plant World 20:305-319, 341-353. Nilsson,_A.__1902.  Svenska vaxtsamhallen.  ( f i d e Whittaker 1962).  Oosting, H. J . and L. E. Anderson, 1939* Plant succession on granite rock i n eastern North Carolina. Bot. Gaz. 100:750-768. O r l o c i , L. I961. Forest types of the Coastal western hemlock zone. Thesis, Dep. B i o l . and Bot., Univ. of B. C.  M.Sc.  Peterson, E. B. 1964. Plant associations i n the subalpine mountain hemlock zone i n southern B r i t i s h Columbia. Ph.D. Thesis, Dep. B i o l . and Bot., Univ. of B. C. Rowe, J . S. 1959' Forest regions of Canada. Dep. Nor. A f f . and Nat. Res. Ottawa.  For. Br., B u i . 123. Can.  Schatz, V., A. Schatz, G. S. Trelawny, and K. Barth, 1962. Significance of lichens as pedogenic (soil-forming) agents. Proc. Perms. Acad. S c i . XXX:62-69.  92  Shelford, V. E. 1954. Some lower M i s s i s s i p p i f l o o d - p l a i n h i o t i c communities; t h e i r age and elevation. E c o l . 35:126-14-2. Spilsbury, R. H. and D. S. Smith. 1947- Forest s i t e types of the P a c i f i c Northwest. B. C. For. Serv., Tech. Publ. T. 3 0 , B. C. Dep. Lands and For. Steel, R. G. D., and J . H. T o r r i e . i 9 6 0 . P r i n c i p l e s and procedures of s t a t i s t i c s . McGraw-Hill. New York. Sukachev, W. I. 1944. On p r i n c i p l e s of genetic c l a s s i f i c a t i o n i n biocoenology. (Russ. with Engl, summ.) Zhur. Obschch. B i o l . 5:213-227. Festschr.  1954. Die Grundlagen der Waldtypen. Aichinger 2 : 9 5 6 - 9 6 4 .  Angew. Pflanzensoziol.,  Tansley, A. G. 1911. Types of B r i t i s h vegetation, by members of the c e n t r a l committee f o r the survey and study of B r i t i s h vegetation; ed. A. G. Tansley, Cambridge, Cambridge Univ. Press. . 1939. The B r i t i s h Island? and t h e i r vegetation. Cambridge, Cambridge Univ. Press. Thornthwaite, C. W. 1948. An approach toward a r a t i o n a l c l a s s i f i c a t i o n of climate. Geogr. Rev. 3 8 : 5 5 - 9 4 . Torgerson, W. S. 1 9 5 2 . Multidimensional s c a l i n g : Psychometrika 1 7 : 4 0 1 - 4 1 9 .  I. Theory and method.  Toth, I . 1 9 5 8 . Az Also - Dunaarter erdogazdalkodasa, a termohely es az erdo tipusok osszefuggese. (Forest management of the f l o o d - p l a i n of the Lower-Danube, and c o r r e l a t i o n between s i t e and forest types.) Erdeszeti Kutatasok,: 7 7 - l 6 0 . Mezogazdasagi Kiado, Budapest. Verduin, J . 1952.  The calculus and the inoperable expressions. E c o l . 3 3 : l l 6 .  Walker, E. R. I961. A synoptic climatology f o r parts of the western C o r d i l l e r a . McGill Univ., A r c t i c Meteorol. Res. Group, Publ. 35Warming, E. 1895- Plantesamfund. Kjc^benhavn, P h i l i p s e n s .  Grundtraek af den j^kologiske Plantegeografi.  . 1 9 ° 9 ' Oecology of plants: An introduction to the study of plant communities. Oxford, Oxford Univ. Press.  93  Wilde, S. A. 1958. silviculture.  Forest s o i l s , t h e i r properties and r e l a t i o n to Ronald Press, New York.  Whitehouse, E. 1933• 4:391-405.  Plant succession on c e n t r a l Texas granite.  Ecol.  Whitford, H. N. and R. D. Craig, 1918. Forests of B r i t i s h Columbia. Commission of Conservation, Can., Ottawa. Whittaker, R. H. 1953A consideration of climax theory: a population and pattern. E c o l . Monogr. 23:41-78. . 28:1-239-  1962.  the climax as  C l a s s i f i c a t i o n of natural communities.  Bot. Rev.  APPENDIX I C h e c k l i s t of Species  95  Check l i s t includes species that are mentioned i n the text or i n the synthesis t a b l e s . Nomenclature and a u t h o r i t i e s f o r the names are those given i n the manuals l i s t e d i n Appendix I I .  LICHENES  CLADONIACEAE Cladonia b e l l i d i f l o r a (Ach.) Sch. Cladonia cariosa (Ach.) Spr. Cladonia coniocr.aea (Flk.) Sandst. Cladonia furcata (Huds.) Schrad. Cladonia g r a c i l i s (L.) W i l l d . Cladonia p a c i f i c a A n t i Cladonia m i t i s Sandst. Cladonia r a n g i f e r i n a (L.) Web. Cladonia squamosa (Scop.) Hoffm. Cladonia. subsquamosa Nyl. Cladonia u n c i a l i s (L.) Web. Pjdilophoron cereolus (Ach.) Nyl. Stereocaulon alpinum Laur. LECANORACEAE Icmadophila ericetorum (L.) Zahl. PARMELIACEAE Cetraria Cetraria Parmelia Parmelia Parmelia  glauca (L.) Ach. h e r r e i Imshaug physodes (L.) Ach. tubulosa (Hag.) B i t t . v i t t a t a (Ach.) Rohl.  PELTIGERACEAE P e l t i g e r a aphthosa (L.) W i l l d . P e l t i g e r a canina (L.) W i l l d . PERTUSARIACEAE Pertusaria ambigens (Nyl.) Tuck.  SPHAEROPHORACEAE Sphaerophorus globosus (Huds.) Wainio STICTACEAE Lobaris pulmonaria (L.) Hoffm. USNEACEAE A l e c t o r i a jubata (L.) Ach. A l e c t o r i a sarmentosa Ach. Letharia vulpina (L.) Vain. Usnea h i r t a (L.) Wigg. Usnea longissima Ach. BRYOPHYTA MUSCI ANDREAEACEAE Andreaea n i v a l i s Hook. AULAC OMNIACEAE Aulacomnium palustre (W.& M.) Schw. BARTRAMIACEAE Philonotis fontana B r i d . BUXBAUMIACEAE Buxbaumia aphylla Hedw. DICRANACEAE D i c r a n e l l a c i r r h a t a (Hedw.) Lindb. Dicranum fuscescens Turn. Dicranum maius Smith Dicranum scoparium Hedw. Dicranoweisia c i r r h a t a (Hedw.) Lindb. FONTIWALACEAE F o n t i n a l i s kindbergii R. & C. GRIMMIACEAE Grimmia apocarpa Hedw. Rhacomitrium canescens B r i d . Rhacomitrium heterostichum (Hedw.) B r i d . Rhacomitrium lanuginosum (Hedw.) B r i d . Scouleria aquatica Hook.  HOOKERIACEAE Hookeria lucens Sm. HYPNACEAE Camptothecium megaptilum S u l l . Climacium dendroides (Hedw.) W.& M. Eurhynchium oreganum ( S u l l . ) Jaeger & Sauerb. Eurhynchium s t o k e s i i (Turn.) Bry.Eur. Homalothecium n u t t a l l i i (Wils.) Grout Hygrohypnum ochraceum (Turn.) Loeske Hylocomium splendens (Hedw.) Bry.Eur. Hypnum c i r c i n a l e Hook. Hypnum subimponens Lesq. Plagiothecium denticulatum (Hedw.) Bry. Plagiothecium elegans (Hook.) S u l l . Plagiothecium sylvaticum (Brid.) Bry. Eur. Plagiothecium s e l i g e r i (Brid.) Lindb. Plagiothecium undulatum (Hedw.) Br. & Sch. Pseudisothecium stoloniferum (Hook.) Grout Rhytidialephus loreus (Hedw.) Warnst. Rhytidialephus squarrosus (Hedw.) Warnst. Rhytidialephus triquetrus (Hedw.) Warnst. Rhytidiopsis robusta (Hook.) Broth. LESKEACEAE Claopodium bolanderi Best Claopodium c r i s p i f o l i u m (Hook.) R.& C. Heterocladium heteropteroides Best Heterocladium procurrens (Mitt.) Rau & Herv. Pseudoleskea b a i l e y i Best & Grout MNIACEAE Mnium Mnium Mnium Mnium Mnium  insigne M i t t . menziesii (Hook.) C;Muell. punctatum Hedw. c. 1. spinulosum Bry. Eur. venustum M i t t .  WECKERACEAE Neckera douglasii Hook. Bfeckera menziesii Hook. ORTHOTRICHACEAE Ulota megalospora Vent. POLYTRICHACEAE Atrichum undulatum (Hedw.) Beauv. Pogonatum alpinum (Hedw.) Roehl. Polytrichum commune Hedw. Polytrichum juniperinum Hedw. Polytrichum p i l i f e r u m Hedw. Polytrichum norvegicum Hedw.  SPHAGNACEAE Sphagnum fibriatum Wils. Sphagnum girgensohnii Russ. Sphagnum magellanicurn B r i d . Sphagnum papillosum Lindb. Sphagnum recurvum Beauv. Sphagnum robustum (Russ.) R o e l l . Sphagnum squarrosum Pers. Sphagnum tenellum Pers. HEPATICAE  TETRAPHIDACEAE Tetraphis p e l l u c i d a Hedw.  CALYFOGEIACEAE Calypogeia neesiana (M.& C.) K. Muell. Calypogeia suecica (A.& P.) K. Muell. Calypogeia trichomanis (L.) Corda CEPHALOZIACEAE Cephalozia bicuspidata (L.) Dum. Cephalozia lammersiana (Hueb.) Spruce Cephalozia media Lindb. CEPHALOZIELLACEAE Cephaloziella p a p i l l o s a (Douin) S c h i f f n FRULLANIACEAE F r u l l a n i a nisquallensis S u l l . HARPANTHACEAE Lophocolea cuspidata (Nees) Limpr. Lophocolea heterophylla (Schrad.) Dum. JUNGERMANWIACEAE Plectocolea rubra (Underw.) Buch LEPIDOZIACEAE Bazzania ambigua (Lindenb.) Trev. Bazzania denudata (Torr.) Trev. Bazzania nudicaulis Evans Bazzania t r i c r e n a t a (Wahl.) Trev. Lepidozia reptans (L.) Dum. LOPHOZIACEAE Lophozia i n c i s a (Schrad.) Dum. Orthocaulis f l o e r k i i (Web. & Mohr) Buch  MARCHANTIACEAE Conocephalum conicum (L.) Wiggers MARSUPELLACEAE Marsupella sphacelata (Gieseke) Dum. METZGERIACEAE Metzgeria conjugata Lindb. Metzgeria furcata.l('L.',) 'Dumort. v '" vans Metzgeria pubescens (Schrank) Raddi P e l l i a columbiana Krajina & Braysha P e l l i a epiphylla (L.) Corda Riccardia palmata (Hedw.) Carruth. Riccardia sinuata (Dicks.) Trev. PLAGIOCHILACEAE P l a g i o c h i l a asplenioides (L.) Dum. PORELLACEAE P o r e l l a n a v i c u l a r i s (L.& L.) Lindb. P o r e l l a p l a t y p h y l l a (L.) Lindb. PTILIDIACEAE Anthelia juratzkana (Limpr.) Trev. Blepharostoma trichophyllum (L.) Dum. P t i l i d i u m californicum (Aust.) P t i l i d i u m pulcherrimum (Weber) Hampe RADULACEAE Radula complanata (L.) Dum. SCAPANIACEAE Diplophyllum taxifolium (Wahl.) Dum. Douinia ovata (Dicks.) Buch Scapania bolanderi Aust. TRACHEOPHYTA EQUISETACEAE Equisetum Equisetum Equisetum Equisetum Equisetum  arvense L. f l u v i a t i l e L. hiemale L. telmateia Ehrh. variegatum Schleich.  LYC OPODIACEAE Lycopodium Lycopodium Lycopodium Lycopodium Lycopodium Lycopodium  annotinum L. clavatum L. complanatum L. obscurum L. selago L. sitchense Rupr.  OPHIOGLOSSACEAE Botrychium multifidum (Gmel.) Rupr. POLYPODIACEAE Adiantum pedatum L. Athyrium f i l i x - f e m i n a (L.) Roth Blechnum spicant (L.) Roth Cryptogramma c r i s p a (L.) R.Br. Dryopteris austriaca (Jacq.) Woynar Dryopteris filix-mas (L.) Schott. Gymnocarpium dryopteris (L.) Newm. Polypodium vulgare L. Polystichum andersonii Hopkins Polystichum munitum (Kaulf.) P r e s l Pteridium aquilinum (L.) Kuhn Thelypteris phegopteris (L.) Slosson SELAGINELLACEAE S e l a g i n e l l a wallacei Hieron. CUPRESSACEAE Chamaecyparis nootkatensis (D.Don) Spach Thuja p l i c a t a Donn PINACEAE Abies amabilis (Dougl.) Forbes Abies grandis (Dougl.) L i n d l . Abies lasiocarpa (Hook.) Nutt. Picea sitchensis :(Bong.) Carr. Pinus a l b i c a u l i s Engelm. Pinus contorta Dougl. Pinus monticola Dougl. Pseudotsuga menziesii (Mirb.) Franco Tsuga heterophylla (Raf.) Sarg. Tsuga mertensiana (Bong.) Carr TAXACEAE Taxus b r e v i f o l i a Nutt  ACERACEAE Acer circinatum Pursh Acer macrophyllum Pursh APOCYNACEAE Apocynum androsaemifolium L . ARACEAE Lysichitum americanum St. John ARALIACEAE Oplopanax horridus (Sm;i) Mig. ARISTOLOCHIACEAE Asarum caudatum Lindl. BERBER LDACEAE Achlys triphylla (Smith) DC Mahonia aquifolium (Pursh) Nutt. Mahonia nervosa (Pursh) Nutt. BETULACEAE Alnus crispa (Ait.) Pursh sp. sinuata (Regal) Hutten Alnus rubra Bong. Betula papyrifera Marsh. Corylus californica (A.DC.) Sharp CAPRTFOLIACEAE Linnaea borealis L . Lonicera ciliosa Poir. Lonicera involucrata Banks. Sambucus pubens Michx. Symphoricarpos rivularis Suks. Viburnum pauciflorum Raf. CARYOPHYLLACEAE StelLaria crispa C. & S. CELASTRACEAE Pachystima myrsinites (Pursh) Raf. COMPOSITAE Achillea millefolium L . Adenocaulon bicolor Hook. Anaphalis margaritacea (L.) B.& H.  Cirsium edule Nutt. Hieracium albiflorum Hook. Hypochaeris radicata L . Lactuca "biennis (Meench.) Fern. Petasites frigidus (L.) Fries Senecio sylvaticus L . CCRNACEAE Cornus canadensis L . Cornus n u t t a l l i i Aud. Cornus occidentalis (T.& G.) Cov. CRUCIFERAE Cardamine breweri Wats. CYPERACEAE Carex aquatilis Wahl. Carex bolanderi Olney Carex hendersonii Bailey Carex leptopoda Mack. Carex retrorsa Schm. Carex r o s s i i Boott Carex sitchensis Presl Scirpus microcarpus Presl EMPETRACEAE Empetrum nigrum L . ERICACEAE Arbutus menziesii Pursh Arctostaphylos columbiana Piper Arctostaphylos uva-ursi (L.) Spreng. Cassiope mertensiana (Bong.) U.'.rDon Chimaphila menziesii (R.Br.) Spreng. Chimaphila umbellata (L.) Bart. Cladothamnus pyrolaeflorus Bong. Gaultheria humif.usa^Grab;) Rydb. Gaultheria shallon Pursh Menziesia ferruginea Smith. Moneses uniflora (L.) Gray Phyllodoce empetriformis (Smith) D. Don Phyllodoce glanduliflora (Hook.) Coville Pyrola?. asarifolia Michx. Pyrola secunda L . Rhododendron albiflorum Hook. Vaccinium alaskaense Howell Vaccinium deliciosum Piper Vaccinium membranaceum Dougl. Vaccinium ovalifolium Smith Vaccinium parvifolium Smith  FAGACEAE Quercus garryana  Dougl.  FUMARIACEAE Dicentra formosa DC GRAMINEAE Agrostis alba L. Agrostis scabra W i l l d . Bromus vulgaris (Hook.) Shear Cinna l a t i f o l i a (Trev.) Griseb. Dactylis glomerata L. Danthonia spicata (L.) Beauv. Elymus glaucus Buckl.• Festuca brachyphylla Schult. Festuca o c c i d e n t a l i s Hook. G l y c e r i a e l a t a (Nash) Hitchc. Glyceria p a u c i f l o r a P r e s l Holcus lanatus L. Poa p a l u s t r i s L. Poa pratensis L. Poa t r i v i a l i s L. Trisetum cernuum T r i n . Festuca s u b u l i f l o r a Scribn. JUNCACEAE Luzula  campestris  Luzula p a r v i f l o r a (Ehrh.) Desv. LABIATAE Prunella vulgaris L. LILIACEAE C l i n t o n i a u n i f l o r a (Schult.) Kunth. Disporum oreganum (Wats.) B.& H. L i l i u m columbianum Hans. Maianthemum dilatatum (Wood) Nels. & McB. Smilacina racemosa (L.) Desf. Smilacina l i l i a c e a (Greene) Wynd. Streptopus amplexifolius (L.) DC Streptopus roseus Michx. Streptopus streptopoides (Ledeb.) F. & R. T r i l l i u m ovatum Pursh Veratrum v i r i d e A i t . MONOTROPACEAE A l l o t r o p a virgata T. & G. Hemistomes congestum Gray Monotropa lanuginosa Michx. Monotropa u n i f l o r a L.  NAJADACEAE Potamogeton natans L. NYMPHAECEAE Nuphar polysepalum Engelm. ONAGRACEAE Circaea alpina L. Epilohium adenocaulon Haussk. Epilobium angustifolium L. Epilobium l a t i f o l i u m L. ORCHIDACEAE C o r a l l o r h i z a maculata Raf. Goodyera o b l o n g i f o l i a Raf. Habenaria saccata Greene L i s t e r a caurina Piper L i s t e r a cordata (L.) R.Br. OROBANCHACEAE Boschniakia hookeri Walp. PORTULACACEAE Montia s i b i r i c a L. PRIMULACEAE T r i e n t a l i s l a t i f o l i a Hook. RANUWCULACEAE Caltha leptosepala DC Coptis a s p l e n i f o l i a S a l i s b . Coptis t r i f o l i a S a l i s b . Ranunculus repens L. Trautvetteria grandis Nutt. RHAMNACEAE Rhamnus purshiana DC ROSACEAE Amelanchier a l n i f o l i a 'Nutt. Aruncus vulgaris Raf. Geum macrophyllum W i l l d .  105  Holodiscus d i s c o l o r (Pursh) Maxim. Malus d i v e r s i f o l i a (Bong.) Roem. Osmaronia cerasiformis (Torr. & Gray) Prunus emarginata Dougl. Rosa gymnocarpa Nutt. Rosa nutkana P r e s l Ruhus leucodermis Dougl. Rubus p a r v i f l o r u s Nutt. Rubus pedatus Smith Rubus s p e c t a b i l i s Pursh Rubus v i t i f o l i u s C. & S. Sorbus o c c i d e n t a l i s (Wats.) Greene Sorbus sitchensis Roem. Spiraea menziesii Hook. RUBIACEAE Galium t r i f l o r u m Michx. SALICACEAE Populus trichocarpa Torr. & Gray S a l i x hookeriana Benth. S a l i x lasiandra Benth. S a l i x scouleriana Barr. S a l i x sitchensis Sans. SAXIFRAGACEAE Leptarrhena p y r o l i f o l i a (D.Don) R.Br. M i t e l l a o v a l i s Greene Ribes bracteosum Dougl. Ribes divaricatum Dougl. Ribes sanguineum Pursh Saxifraga arguta D. Don Saxifraga ferruginea Grah. T i a r e l l a l a c i n i a t a Hook. T i a r e l l a t r i f o l i a t a L. T i a r e l l a u n i f o l i a t a Hook. Tolmiea menziesii (Pursh) T.& G. SCR OPHULARIACEAE Mimulus l e w i s i i Pursh Mimulus t i l i n g i i Regel Penstemon davidsonii Greene var. menziesii (Kek) Cronq. Veronica americana Schwein. SPARGANIACEAE Sparganium simplex Huds.  UMBELLIFERAE Angelica genuflexa Nutt. Oenanthe sarmentosa P r e s l Osmorhiza c h i l e n s i s H.& A. URTICACEAE U r t i c a l y a l l i i Wats. VALERIANACEAE Valeriana sitchensis Bong. VIOLACEAE Viola Viola Viola Viola  g l a b e l l a Nutt. orbiculata Geyer p a l u s t r i s L. sempervirens Greene  APPENDIX II Manuals used for the I d e n t i f i c a t i o n of Plants  108 MANUALS USED FOR THE IDENTIFICATION OF PLANTS  Abrams, L. 1955I l l u s t r a t e d f l o r a of the P a c i f i c States. and I I I . Stanford Univ. Press.  Vols. I, II  , and R. S. F e r r i s . 1959I l l u s t r a t e d f l o r a of the P a c i f i c States. Volume IV. Stanford Univ. Press. Davis, R. J .  1952.  Eastham, J . W. 1947. ( J . K. Henry).  F l o r a of Idaho.  W. C. Brown Co., Dubuque, Idaho.  Supplement to 'Flora of Southern B r i t i s h Columbia Spec. Pub. No. 1. B. C. Prov. Mus., V i c t o r i a , B. C. 1  Evans, A. W. 1940. L i s t of Hepaticae found i n the United States, Canada, and A r c t i c America. The B r y o l . 43: 133-138. Fink, B., 1935The Lichen f l o r a of the United States. Press, Ann Arbor, Mich. Frye, T. C.  21:  1918.  37-48.  Univ. of Mich.  I l l u s t r a t e d key to the western Sphagnaceae.  The B r y o l .  , and L. Clark. 1937-1947. Hepaticae of North America. of Wash. Publ. i n B i o l . V o l . 6 ( l - 5 ) .  Univ.  Galloe, 0. 1954. Natural h i s t o r y of the Danish lichens. O r i g i n a l Investigations based upon new p r i n c i p l e s . Part IX. Cladonia. Ejnar Munksgaard. Copenhagen. Grout, A. J . I928-I939. Moss f l o r a of North America, north of Mexico. Vols. I, I I , & I I I . Publ. by the Author. Newfane, Vermont. . 1940. The .Bryol. 43:  L i s t of mosses of North America north of Mexico.  117-131.  Hale, M. E. J r . , and W. L. Culberson, i960. A second c h e c k l i s t of the lichens of the continental United States and Canada. The B r y o l . 63: 137-172. Henry, J . K. 1915• F l o r a of southern B r i t i s h Columbia and Vancouver Island. W. J . Gage & Co., Toronto. Hitchcock, A. S. 1950. Manual of the grasses of the United States. Sec. ed. rev. by Agnes Chase. U.S. Dept. Agr. Misc. Pub. No. 200. Washington, D.C. Hitchcock, C. L., A. Cronquist, M. Owenby, and J . W. Thompson. 1955Vascular plants of the P a c i f i c Northwest. Part 5: Compositae. Univ. of Wash.  Vascular plants of the P a c i f i c Northwest. Campanulaceae. Univ. of Wash. Press.  Part 4:  1959.  Ericaceae through  109  .  Vascular plants of the P a c i f i c Northwest. Ericaceae. Univ. of Wash. Press. Howard, G. E. Press.  Part 3 :  1 9 5 0 . Lichens of the State of Washington.  1961. •  Saxifragaceae to  Univ. of Wash.  Peck, M. E. 1 9 4 l . A manual of the higher plants of Oregon. Mort. Porland, Oregon.  Binfords &  Szczawinski, A. F. 1 9 5 9 « The orchids of B r i t i s h Columbia. B. C. Prov. Mus., Dept. of Rec. & Cons., Handbook No. l 6 . V i c t o r i a , B. C. . I 9 6 2 . The heather family (Ericaceae) of B r i t i s h Columbia. B. C. Prov. Mus., Dept. of Rec. & Cons., Handbook No. 1 9 . V i c t o r i a , B. C. Taylor, T. M. C. 1 9 5 6 . The ferns and f e r n - a l l i e s of B r i t i s h Columbia. B. C. Prov. Mus., Dept. of E d u c , Handbook No. 1 2 . V i c t o r i a , B. C. . 1 9 5 9 . Notes f o r f i e l d t r i p No. 1 ( B r i t i s h Columbia). IX International Botanical Congress, Canada, 1 9 5 9 - Mim. Univ. of B. C , Vancouver, B. C. (Pages 14-19, A. F. Szczawinski and V. J . Krajina, used as a c h e c k l i s t f o r Lichenes; pages 2 0 - 3 1 , V. J . Krajina, used as a c h e c k l i s t f o r Bryophyta; and pages 32 - 6 2 , T. M. C. Taylor, used as a c h e c k l i s t f o r Tracheophyta).  APPENDIX I I I Explanation and legend for synthesis tables Synthesis tables  Ill EXPLANATION AND LEGEND FOR SYNTHESIS TABLES (1) Phytosociological nomenclature. Association names are derived from the generic and s p e c i f i c names of the climax species. Ecotopic terms or other adjectives, (e.g. l i t h o s o l i c , o r t h i c ) , designating q u a l i t a t i v e charact e r i s t i c s of the ecosystems, are also used i n the names of ecosystem types. In the association names, the generic name of the dominant species i s modified with the adjective s u f f i x - etum, and the s p e c i f i c name appears i n singular genitive. The generic name of the subordinate species i s modified with - eto ending (sensu Braun-Blanquet 1932, 1951)• Suffixes - etosum and - osum indicate subassociations or variants. (2) Computation reference number i d e n t i f i e s a sample p l o t i n the computor output data. (3)  Exposure indicates compass readings from North i n clockwise  direction. (4) Slope gradient i s the average i n c l i n a t i o n of the ground surface from the horizontal d i r e c t i o n . (5) Macroclimate symbols are i n accordance with the Koppen and the Thornthwaite c l a s s i f i c a t i o n explained i n footnote on pp. 3 Chapt. I. (6) Stratum coverage indicates the t o t a l area covered by a single stratum expressed as percentage of p l o t s i z e . Strata are designated as A (tree l a y e r ) , B (shrub layer), C (herb layer), and D (layer of bryophytes and l i c h e n s ) . The l e t t e r s h, dw, and e designate humus, decaying wood and bark inhabiting species respectively. (7) Humus, rock, mineral s o i l , or decaying wood coverage refers to the t o t a l area of each item expressed separately as percentage of plot size. (8) Land type, a macroscale c l a s s i f i c a t i o n , describes the surface materials and refers to the general surface forms, e.g. rock outcrop, a l l u v i a l plain, glacial d r i f t . (9) Land form, a mesoscale c l a s s i f i c a t i o n within a land type, describes the land surface i n the v i c i n i t y of a sample plot, e.g. upperslope, middle slope, lower-slope, depression. (10) R e l i e f shape, a microscale c l a s s i f i c a t i o n , pertains to the land surface shape within a sample p l o t , i . e . concave, straight, convex. (11) Parent material (C) refers to the consolidated or unconsolidated materials from which the solum develops. (12) Erosion p o t e n t i a l , the i n t e n s i t y of erosion that could occur, following the removal of the vegetation, i s evaluated by a descriptive scale as follows:  112 Erosion potential scale  Description  None  Depressions or lower-slopes where the dominating process i s deposition.  Slight  Gentle slopes not exposed to run-off water from adjacent slopes.  Moderate  Straight or s l i g h t l y convex slopes with r e l a t i v e l y high slope gradient.  Severe  Convex steep slopes, e s p e c i a l l y those adjacent to rock outcrops.  (13) as follows:  Run-off i s estimated by the c r i t e r i a of a descriptive scale  Run-off scale  Description  Pounded  Depressions with stagnating water.  Slow  Lower and middle slopes with heavy vegetational cover.  Medium  Steep upper-slopes with vegetational cover.  Rapid  Rock outcrops.  Agr. 1 9 5 1 .  (lk) Drainage i s estimated i n accordance with the U.S. S o i l Survey Manual, pp. I69-I72. (15)  Dep.  Hygrotope classes are described i n the following table:  113  Hygrotope class  Class value  Description  Very dry  -3  Knolls and peaks of rock outcrops.  Dry  -2  L i t h i c s o i l s or rock outcrops, or shallow truncated t i l l s , less strongly convex r e l i e f .  Moderately dry  -1  Coarse stony g l a c i a l t i l l s , usually shallow, on convex r e l i e f or very coarse s o i l s without seepage on straight r e l i e f . Medium textured deep s o i l s , r e l i e f , without seepage.  straight  Mesic  0  Moist  +1  Deep s o i l s with apparent signs of temporary seepage deep i n the p r o f i l e , straight or concave r e l i e f .  Wet  +2  Permanent seepage close to the s o i l surface, concave r e l i e f .  Swampy  +3  Spring-water swamps, muskegs, and stream-edge habitata, of concave slopes, depressions, or ravines.  (16) Stoniness r e f e r s to the proportion of stones above 10 i n . diameter expressed as percentage of t o t a l s o i l volume. (17) Permeable mineral s o i l depth i s measured from the mineral s o i l surface down to the f i r s t impermeable layer. (18) Ecto-humus consists of drganic remains resting on the s o i l surface (sensu Wilde 1 9 5 8 ) . (19) Endo-humus consists of well-mineralized organic matter incorporated with the mineral s o i l (sensu Wilde 1 9 5 8 ) . (20) Eluviated horizon (A ) i s a podzolic horizon impoverished i n c o l l o i d s and iron and aluminum compounds. e  (21) Melanized horizon (Ah) i s a p a r t l y mineral, p a r t l y organic horizon produced by i n f i l t r a t i o n of organic suspensions.  114 (22) I l l u v i a l Horizon (B) i s enriched i n c o l l o i d s and iron and aluminum compounds. (23) S o i l reaction (pH) measurements were taken on material f i n e r than 2 mm.,using a Beckman pH meter, Model N, i n a paste-like s o i l water mixture. (24) Humus form i s c l a s s i f i e d on the basis of o r i g i n and decomposition rate of the organic matter i n two major classes: subaquaeous forms (peat, anmoor, gyttja) and t e r r e s t r i a l forms (raw humus, duff-mull, earth mull). The layers i n t e r r e s t r i a l humus are designated as L ( l i t t e r ) , F (fermentation layer) and H (well-mineralized organic matter). (25) Site index i s the average height growth of dominant and codominant trees within a sample plot i n one hundred years. (26) Species ratings are given by three figures (e.g. 5-7-3 ov + . + .1) which represent species significance, s o c i a b i l i t y and vigor..'. The following scales were used f o r f l o r i s t i c evaluation as recommended by Krajina: Species Significance + 1 2 3 4 5 6  Very sparsely present, dominance very small Sparsely present, dominance small Very scattered, dominance small Scattered to p l e n t i f u l Often, dominance l / 2 0 to l / l O of plot Often, dominance l / 5 to l / 4 of plot Any no of individuals, dominance l / 4 to 1/3 rj tl II 1/3 to 1/2 8 " " 1/2 to 3/4 over 3/4 100$ of p l o t 10 Sociability Growing singly Grouped or tufted, groups up to l 6 sq. cm. Group larger, up to l / l 6 sq. m. Group, l / 8 to l / 4 sq. m. 1/3 to 2/3 1 to 2 sq. m. 5 to 20 " 25 to 50 " : ioo 200 to 250" 10 A t . l e a s t 500 sq. m.  Vigo: 0 + 1 2 3  -  none poor fair good excellent  Table XLO. 1 Number of plots Jllot number Computation reference no. Date •  Rhacom: :rietum canescentis 4 1 2 3 2U1 216 201 236 16 01 27 31 20/ll 15/5 18/11 23/6 196l 1961 1961 196l  Plot size (sq.m.) Latitude 49°22 Longitude 123"°l4 Altitude ( f t . ) 66O Exposure (degree) j?60 Slope Gradient (degree) ;37 Macroclimate Koppen Thornthwaite Strata coverage (per cent) B .0 C .0 D 95 Humus coverage (per cent) 95 Rock coverage (per cent) ..5 Decaying wiood coverage (per cent) 0 Land type and Land form Parent material R e l i e f shape Profile Contour l i n e Erosion p o t e n t i a l Run-off Drainage Hygrotcpe Permeable mineral s o i l depth (cm.) ^2 Ecto-humus horizon depth (cm.) L-F ~5 Endo-humus horizon depth (cm.) Ah "0 Eluviated horizon depth (cm.) Ae ~2 pH L-F U.-67 Ah A 4.04 A-B B C Texture A Humus form e  k$°22{  U9°l6|  123°ll+' 1 2 2 ° 3 5 ' 600 650 270 315 10 40 1 0 100 98 1 1  0 0 20 80 20 0  . 3 l 0 3 • 5.09  0.5 1 0 0.5  5 206 06 7/6 1961 1  k9°3Q] 49°17\  6 210 10 8/6 1961  7 239 30 20/11 1961  8 217 17 8/6 1961  9 234 25 20/10 1961  U9°17)  49°l6'  49°17\  49°36\  122°35' 122°35' 700 1000 260J. 180 25 11 Cfb ABjrb^ 0 0 0 0 0 580 95 95 80 95 95 - 20 5 5 0 0 0 Rock outcrop - K n o l l G r a n i t i c rocks Convex Convex Severe Rapid :Excessive Very dry 1 1 0.5 1 3 0.5 l ... 0 0.5 0 1 0  122°35' 500 270 kO  122°35' 730 225 30  123°12' 250 225  123°12' 560 270 25  4.98  Sand Raw humus  0 10 70 80 20 0  0 15 100 100 0 0  1 0.5 0 1.0  3 1 2 1 4.32 3.95 4.06  2k 0 5 100 99 1 0  1 1 0 1  Mean  Range  620 250-1000 SE-NW 27 10-40  k 91 91 9  0-1 0-15 70-100 80-100 0-20 0-1  1.4 0 . 5 - 3 1.6 0 . 5 - 5 0.4 0-2 l.l 0-3 4.69 4 . 3 2 - 5 . 0 9 3.95 4.36 4 . 0 4 - 4 . 9 8  Table no. 2 Number of plots Layer No. Plot no. i of Species Computation reference no. 1 2 3 4 5 6 7 8 9 10 li 12 13 14 15 16 17 18  C  D  Rhacomitrietum canescentis 1  2  3  4  5  6  201  236  24l  216  206  210  239  27  31  16  6  10  30  1  Cryptogramma c r i s p a Saxifraga ferruginea Luzula campestris Senecio sylvaticus Danthonia spicata +.4.1 Rhacomitrium canescens 10.6. 3 10.6.3 Polytrichum juniperinum + . 2 .3 2.3-3 Cladonia g r a c i l i s + . 2 . 3 +.3-3 Polytrichum p i l i f e r u m 4 . 2 . 3 2.3-3 Cladonia p a c i f i c a + .2.2 Cladonia r a n g i f e r i n a S e l a g i n e l l a wallacei Dicranum scoparium Pleurozium schreberi Eurhynchium oreganum Rhacomitrium heterostichum Grimmia apocarpa Polypodium vulgare  4.4.2  7  4.+.3  + . + „2 + . + .2 7.5.3 10.6.3 8 . 5 . 3 9.6.3 +.3.3 +.+.3 2.3.3 +.2.3 + .3.3 4.3.3 + .3.3 + .2.2 + .2.2  8.6.3 1.3.3 + .2.3 + .3.2 +.2.3 + .2.1  ,  4.4.3 3.2.3  s  ,.  8 .217 17  9 234 25  Species significance mean  5.+.3 2 . 4 . 3 1.2 3.4.2 .0.8 + . + .2 0.2 0.1 0.1 9.6.3 9 . 6 . 3 8.9 2 . 3 . 3 2 . 4 . 3 1.3 + .2.-3;,+ . 2 . 3 0 . 8 + . 3 . 3 1*3. J 1.4 +.2.2 0.3. - • •'-:•-+;.3.2 0 . 3 3 . 4 . 3 ' 6 . 5 . 3 1.0 0.4 3.5.3 + .4.3 0.1 0.1 0.4 0.3 +.4.1 0.1  Vigor  Constancy  range mean range 0-5 0-4 ©-+  0-+ 0-+ 7-10 0-2 0.--+ 0-4' 0-+ 0-+ 0-6 ""<fc?30-+ 0-+ 0-4 0-3 0-+  3 2 .2 2 1 3 3 3 3 2 2 3 3 3 i 3 3 l  3/9 2/9 2/9 1/9 1/9 9/9 8/9 7/9 6/9 3/9 3/9 2/9 2/9 1/9 1/9 1/9 1/9 1/9  ON  Cladonie o - Polytrichetum p i l i f e r i 8 6 4 1 7 5 2 3 Mean 208 213 207 218 233 229 205 237 08 13 07 18 24 22 28 05 7/6 8/6 7/6 28/6 20/10 14/10 18/11 7/6 1961 1961 1961 1961 1961 1961 196l 1961 P l o t size (sq.m.) 1 U9°l6] 490.16] 4 9 ° 1 7 ; 4 9 ° 1 7 ] 49°17 J 4 9 ° i 6 | 49°38| l+9°22 \ Latitude 123°l4' 1 2 2 ° 3 5 ' 1 2 2 ° 3 5 ' 122°35 122°34 122°35 1 2 2 ° 3 5 ' 123°12 Longitude 611 250 650 1000 650 600 500 540 Altitude (ft.) 700 270 270 270 315 225 315 270 Exposure (degree) • 260 16 18 20 24 10 30 15 Slope gradient (degree) 7 5 Cfb Macroclimate Koppen ABjrbil Thornthwaite 2 0 0 1 0 0 1 2 5 Strata coverage (per cent) B 1 1 f) . 0 0 0 ' 1 1 C 5 '• 100 100 100 98 ' 100 100 90 100 D 95 100 100 100 100 100 99 100 90 100 Humus coverage (per cent) 0 0 0 . 0 10 0 0' 0 Rock coverage (per cent) Rock outcrop - Table Land type and Land form Granitic rocks Parent material Convex R e l i e f shape Profile Convex Contour l i n e Severe Erosion p o t e n t i a l Rapid Run-off Excessive Drainage Very dry Hygrotppe 2.8 .4 6 0 2 2 5 Permeable mineral s o i l depth (cm.) 2 1.5 l 2 1 1 0 . 5 Ecto-humus horizon depth (cm.) L-F 1.5 1 0.5 0.5 0 1 6 : 2 2 5 Endo-humus horizon depth (cm.) Ah 3 0 1-5 0 0 0.4 0 1 0 0 0 Eluviated horizon depth (cm.) A 2 4 . 3 8 4.48 4.29 pH L-F 4 . 7 6 4.65 4.87 Ah A A-B B C Loam * Sand Sand Texture A Raw humus Humus form  Table So. 3 Number of plots P l o t Number Computation reference no. Date  e  e  Range  250-1000 SW-NW 10-30  0-5 0-5 90-100 90-100 0-10  0-5 O.5-2 1.5-6 0-2^? I,.29-4.48 4.65-4.87  Table ho. 4 Number of plots No. of species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  1  2  3  4  5  6  7  8  237  229  218  213  205  208  207  233  22  18  13  05  08  07  24  Layer Plot no. Computation reference no, B C D  ..  Cladonieto - Polytrichetum p i l i f e r i  ' c  Gaultheria shallon Cryptogramma crispa Agrostis scabra Cladonia p a c i f i c a Polytrichum p i l i f e r u m Polytrichum juniperinum Cladonia r a n g i f e r i n a Rhacomitrium canescens Dicranum scoparium >1!G iadoffi.a^' grac i l i s Cladonia b e l l i d i f l o r a Cladonia cariosa Pleurozium schreberi Cladonia mitis Cladonia u n c i a l i s Tsuga heterophylla Thuja p l i c a t a Stereocaulon alpinum Danthonia spicata S e l a g i n e l l a wallacei Polytrichum commune Pseudotsuga menziesii Luzula p a r v i f l o r a Luzula campestris 'Tffubus v i t i t o l i u s Hypochaeris radicata Polypodium vulgare  28  +. + .1 + . + .1 + . + .2 + . + .2 3.4.3 3.4.3 3.5.3 5.6.3 4.5.3 4.5.3 2.3.3 3.4.3 + .2.3 4.2.3 +.2.3 2 . 2 . 3 7.5-3 3.2.3 4.3-3 3.3.3 8.5-3  2.4.3 2.3.3 ,+•. + .0 +V+vO  2 8.6.3 2.3.3 3.5.3 3.5.3 5.5.3 4.5.3 +.2.3 + .2.3 + .2.3  4.5.3 2.2.3 4.5.3 6.6.3 3.4.3 1.3.3 2.2.3 2.2.3 2.3.3  + .3.3  +. + .1  +.+.1 . 3 . 4 . 2 + . + .2 + . + .2 + . + .2  Species significance mean  range  0.9 0.4  0-3 0-+  0.9 2  3-9 +-3 2- 4 3- 6 0-8 0-5 0-4 0-2 0-2 0-5 0-2 0-7 0-+ 0-+ 0-3  3 3 3 3 3 3 3 3 3 3 3 3 0  6 . 6 . 3 . 9 . 6 . 3 9 . 6 . 3 5'.4'.3 6.4 + . 3 . 3 ' 1 . 3 . 3 1 . 2 . 3 3 . 3 . 3 2.0 2 . 4 . 3 2 . 3 . 3 2 . 3 . 3 3 . 5 . 3 2.9 5 . 5 . 3 3 . 5 . 3 3 . 4 . 3 6 . 5 . 3 4.3 3-3 2.4.3 2.3.3 2.4.3 3 . 4 . 3 5 • 5-3 5 . 5 . 3 4 . 3 . 3 3.3 + . 3 . 3 4 . 3 - 3 , , A-8 +.3.3 +.+.3 +.2.3 0'.9+.2.3 0.6" 3 . 5 . 3 3 - 4 . 3 5 . 5 . 3 1.4 2.4.3 0.8 1.6 7.6.3 4.5.3 0.2 +.+.0 0.2 +.+.1 0.5 3.3.3 +.3.2  + . + .1 + . + .1 +.+.1 + . + .1 + . + .1 +.+.1  Vig jcor  Cons- |, tancy/ji  mean range  0.5 3  1-2  0-1  5/8 3/8 8/8 8/8 8/8 8/8 7/8 7/8 7/8 6/8 4/8 3/8 3/8 3/8 2/8 2/8 2/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8  IH bCO 1  119  Danthonietum spicatae 1 2 3 212 202 235 26 12 02 8/6 1/6 5/11 1961 196l 196l  Table no.. !? Number b f / g l o ^ ^ i Plot number Computation reference no. Date P l o t size (sq.m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope gradient (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent)  4 232 23 20/10 1961  Mean  li9°17 2+9°22 U9°38, 1 2 2 ° 3 5 ' 123°llf' 123°12 122°35' 738 1000 500 250 1200 i4o 90 205 315 21 9 5 5 3 Cfb ABjrb^ 1 10 5 5 60 20 10 33 40 50 79 100 80 85 9k 100 100 Humus coverage (per cent) 80 95 0 6 Mineral s o i l coverage 0 20 5 Land type and Land form Rock outcrop - Crevice Parent material Transported R e l i e f shape Profile Straight to convex Straight Contour l i n e Moderate Erosion p o t e n t i a l Medium Run-off Excessive Drainage Dry to very dry Hygrotope 20 30 Stoniness (per cent) 15 5 5 Permeable mineral s o i l depth (cm.) ' "30 23.3 13 32.5 17.5 2.4 Ecto-humus horizon depth (cm.) L-F 2.5 0.5 5 1.5 . Endo-humus horizon depth (cm.) Aft 1 2 5.5 5 Eluviated horizon depth (cm.) A 0 0 2 • )21 o:i' 4.68 4.70 4.50 4.12 pH L-F 4.46 4.61 4.10 Ah 4.60 4.60 e A-B 4.80 B 4.63 4.23 5.49 . C * Sand Loam Loam A Texture Sand Loam Loam B * Duff mull Humus form  If9°i8 ]  e  A  1  1  Table ho. 6 Number of p l o t s No. Layer of Species  P l o t no. Computation reference no.  1 2 3 4 5 6 7 8 9 10  C  n  12 13 14 15 16 17 18 19 20 21 22 23 2k  25 26 27  D  . Gaultheria.y shallon . Pseudotsuga menziesii Rubus v i t i t o l i u s Holodiscus d i s c o l o r Danthonia spicataCryptogramma c r i s p a Saxifraga ferruginea L i l i u m columbianum Luzula campestris Polystichum munitum Senecio sylvaticus Agrostis scabra Festuca occidentalis Achillea millefolium Polytrichum p i l i f e r u m Rhacomitrium canescens Polytrichum juniperinum Cladonia p a c i f i c a Cladonia rangiferina Dicranum scoparium Cladonia b e l l i d i f l o r a Cladonia g r a c i l i s Selaginella wallacei Polytrichum commune Pleurozium schreberi Hylocomium splendens Cladonia coniocraea  Danthonietum spicatae 1  '  202 2 3-5.1  6.6.3 3^?*3 3.ft'. 3 2.+.2 2.4.3  2  3  4  212  235  232  12  26  23  mean  + . + .1 +. + . 1  2.3 0.5 0.3 0.3 6.5 1.0 0.8 0.5 0.5 0.3 0.3 0.3 0.3 1.0 2.0 3-0 2.0 2.0 0.8 1.8 0.8 0.5 0.5 0.5 2.0 0.3 0.3  3.5.1 2 . 4 . 1 +.+.1 +.+.1 7.6.3  7.5.3  + . + .2 s%.3  +.+V3..  s  +.+.1 1.+.2  2.3-3 6.6.3 2.3-3 2.4.3 1.3.3 2.3.3 +.3.3  +.2.3 1.3.3 +.2.3 3.4.3 1.3.3 3.4.3  4.3.3 5.4.3 4.3.3 3.4.3 +.3.3  +.3.3 +.4.3 4.4.2 1.3-3 1.3.3  2.4.3 2.3.3 2.3.3  2.3-3 2.5.3 8.6.3 +.3.1 +.1.3  : -Specie's'!'', significance  Vigor' Constancy mean 1 1 1 2 3 3 3 2 3 l 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3  4/4 2/4 1/4 1/4 4/4 2/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 4/4 3/4 4/4 3/4 3/4 3/4 2/4 1/4 1/4 1/4 1/4  3  1/4  l  lA  ro o  121 Table Ho. 7 Number of plots Plot number Computation reference no. Date  Polytrichetum communis 1 2 3 211 209 219 11 09 19 28/6 8/6 7/6 1961 1961 1961 1  Plot size (sq. m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope gradient (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent)  U9°l6I  122°35 600 225 10  Mean  u ° i 7 ; k9°l6' 9  122°35 122°35 600 1000 90 225 . 5' 5 Cfb AB-Jrb^ 5 0 1 95 100 100 100 .. 100 100 Humus coverage (per cent) Land type and L\and form Rock outcrops Crevice Parent material Transported R e l i e f shape Profile Concave Concave Contour l i n e Slight Erosion p o t e n t i a l Run-off Pounded Drainage Very Poor Hygrotope Wet Stoniness (per cent) 0 10 5 Permeable mineral s o i l depth (cm.) 20 7 35 Ecto-humus horizon depth (cm.) L-F 1 1 0.5 Endo-humus horizon depth (cm.) Aft 3 57 Eluviated horizon depth (cm.) A Ml Seepage depth (cm.) Nil 20 20 pH L-F 4.42 Ah A 5,-5Q A-B 5-02 B 5.41 C Loam Texture A Clay B Humus form Duff mull  733 6.7 2 98 100  5 20.7 0.8 5  e  e  20 4.42  5> 50 5.02 5.4l  Table ho. 8  1  2  3  219  211  209  Computation reference no.  19  11  9  Rubus v i t i f o l i u s Gaultheria shallon Apocynum androsaemifolium Luzula p a r v i f l o r a Saxifraga ferruginea Cryptogramma crispa Polytrichum commune Cladonia r a n g i f e r i n a  + . + .2 3.+ .2  Number of plots No. of Species 1 2 3 k 5 6 7 8  Polytrichetum communis  Layer Plot no.  B C  D  +.+.2 +.+•3  + . + .2 + . + .3 9.5.3 10.5.3 10.5.3 + .3.3  Species Vigor Conssignificance tancy mean  mean  0.3 1.0 0.3 0.3 0.3 0.3 9-7 0.3  2 2 2 3 2 3 3 3  1/3 1/3 1/3  ^?  3/3 1/3  Table no. 9 Number of plots Plot number Computation reference no. Date P l o t size (sq.m.) Latitude Longitude Altitude (ft.) Exposure (degree) Slope gradient (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent)  Gaultherietum shallonis 1 4 2 3 220 242 238 227 20 21 32 29 28/6 .18/11 6%. 23/6 1961 196l 1961 1961 1 20 10 490-17' 49°i6J 49°l6] 49°22' I 2 3 ° i 4 ' 1 2 2 ° 3 5 122°35' 122°35' 560 500 600 750 270 270 225 135 10 10 10 5 1  50 60 80 100 0  B C D  Humus coverage (per cent) Decaying wood coverage (per c ent) Land type and Land form Parent material Transported  80 60 100 100 0  6 7 5 204 214 215 14 04 15 8/6 8/6 7/6 1961 1961 1961 . 40 40 25 49°l6\ 49°17; 49°17; 122°35 122°35 1 2 2 ° 3 5 ' 700 1000 700 225 260 225 21 10 5 Cfb  100 50 90 95 1 0 0 0 100 100 100 100 100 100 100 90 0 0 10 0 Rock outcrop - Complex ^Granitic rocks •Transported  100 0 100 100 0  Straight* Straight*  Profile Contour l i n e  Convex Convex  ;  e  :  :  75 5 100 100 0  Range  500-1000 SE-W 5-21  80 16 98 99  50-100 0-60 80-100 90-100 0-10  24 16.2 2-9 2.7 3-3 4.71 4.43 4.44 5.09 5.17  o46o  *Granitic*Transrocks ported *Convex *Concave *Convex ^Straight  * Straight * Straight Severe Erosion p o t e n t i a l Run-off Medium Well-drained Drainage Excessive •* Moist Hygrotope Dry 10 0 50 0 60 Stoniness (per cent) 50 15 6 16 Permeable mineral s o i l depth (cm.) 30 •23 15 23 9 1 1 Ecto-humus horizon depth (cm.) L-F 1 2. 5 6 5 3 4 0 4 2 Endo-humus horizon depth (cm.) A^ 2 5 .3 0 .4 12 0 0 Eluviated horizon depth (cm.) A 5 5 4.88 4.88. 4.65 L-F PH 5.06 4.22 Ah 4.08 4.4l 4.85 ' A A-B 5.09 B 5.91 5.27 Loam am A Sand Texture * * * Clay *Loam * N i l Loam B Nil * Duff Mull Humus form Duff Raw Mull Humus R e l i e f shape  8 203 Mean 03 2/6 1961 20 49°i6' 122°35' 700 689 180 10 5  10 7-5 3 1.5 0 4.41 4.00  e  4.34 * Clay  6.0-30 1.0-6 0-5 0-12 4.41-4.88 4.00-5.06 4.08-4.85 4.34-5.91  Table no. 10 Number of plots Wo. of Species  Layer Plot no. Computation reference no.  1 2 3 4 5 6 7 8 9 10  B  n  12 13 l4 15 16 17 18 19 20/. 21 22 23 2k 25 26 27 28 29 30 31 32 33  D  Gaultheria shallon Vaccinium parvifolium Pseudotsuga menziesii Thuja p l i c a t a Rubus v i t i f o l i u s Tsuga Jaeteroffiylla. Holodiscus d i s c o l o r Amelanchier a l n i f o l i a Sorbus sitchensis Spiraea menziesii Festuca accidentalis Danthonia spicata Cryptogramma crispa Senecio sylvaticus Agrostis scabra Polypodium vulgare Pteridium aquilinum Pleurozium schreberi Cladonia p a c i f i c a Polytrichum commune Hylocomium spendens Eurhynchium oreganum Dicranum scoparium Cladonia b e l l i d i f l o r a Rhytidiadelphus loreus Rhacomitrium canescens Polytrichum p i l i f e r u m Cladonia g r a c i l i s Cladonia rangiferina Polytrichum juniperinum Cladonia cariosa Plagiothecium undulatum P e l t i g e r a aphthosa  Gaultherietum  shallonis  1  2  3  k  5  242  238  220  227  215  32  29  20  21  7.6.2  8.5.2  + . + .2  + . + .3 8.6.3  7.5.2  + . + .2 + . + .2 3.4.3 . + .2.2 + .1.3 6.5-3 6 . 4 . 3 3.4.3 2.3.3 1.2.3 6.4.3 2.3.3 4.5.3 + .2.3  15  -2l4 14  7  8  204  203  4  3  Species significance mean  9 . 6 . 2 8 . 6 . 2 1 0 . 7 . 3 8 . 6 . 2 IO.6.3 8 . 6 . 2 8 . 5 •: '+. + .1 0 . 9 +. + .2 + .+.2 4.5.3 6.6.2 + +.+.2 +.3.2 1.1 + .+.3 + . + .1 0.3 0.5 3 . 5 . 3 + .+.1 0.1 + .5.2 0.1 0.1 +.+.1 0.1 + .3.2 0.4 3.5.1 0.6 +. + .2 3.4.3 2.0 + . + .2 0.1 + . + .2 0.1 0.1 + . + .2 0.1 + .3.3 0.1 4.5.3 5.5.3 3.0 5.6.3 4 . 3 . 3 . 6.6.3 3.5.3 3 . 4 . 3 + . 3 . 3 +.3.3 4 . 5 . 3 1.8 3.4.3 7.6.3 5 . 6 . 3 8 . 7 . T •'5-6.3 9 . 6 . 3 4 . 3 8.6.3 4.5.2 2.0 +.3.2 3.5.3 2.3.2 2.4.3 1-3 5.5.3 +.2.3 3 . 3 . 3 1.4' 4.5.3 3.4.3 0.6 +.+.2 3 . 5 . 3 2.4.3 0.6 1.3.3 2 . 4 . 2 1.5 0.6 0.9 ' • .. 5 . 5 . 3 0 . 9 0.5 0.1 2.3.2 0.3 0.1 + . + .3  Vigor  range mean 7-10 0-4 0-6 0-+ 0-3 0-+ 0-+ 0-+ 0-+ 0-3 0-3 0-8 0-+ 0-+ 0-+ 0-+ 0-+ 0-6 0-4 0-9 0-8 0-5 6-4 0-3 0-2 0-6 0-3 0-6 0-5 o-4 0-+ 0-2 0-+  Constancy  range  2 , 3 ' 2^3' •8/8 1.8. 1-3 4/8 2.0 4/8 2.0 1-3 2/8 2.0 1-3 2/8 2.0 1/8 1/8 2.0 1/8 1.0 2.0 1/8 1/8 1.0 3/8 2.7 2-3 2.3 2-3 3/8 2.0 1/8 1/8 2.0 2.0 1/8 3.0 1/8 2.0 1/8 6/8 3.0 6/8 3-0 3-0 5/8 2-3 4/8 2.5 2.5 2-3 4/8 4/8 3-0 2.7 2-3 3/8 2-3 3/8 2.7 2/8 3.0 2/8 3-0 2/8 3.0 2/8 3.0 3-0 1/8 1/8 3.0 1/8 2.0 3-0 1/8  ro  -t=-  Table no. 11 Number o f plots P l o t no. Computation reference no. Date  Cladonieto - Pseudotsugetum  P l o t size (sq. m.) Latitude Longitude Altitude (ft.) ! Exposure (degree) Slope gradient (degree) Macroclimate KSppen Thornthwaite . S t r a t a coverage (per cent) Al A A 2  l B B C D Ddw Dr D B  2  h  Humus coverage (per cent) Rock coverage (per cent) Decaying wood coverage (per cent) Land type and Land form R e l i e f shape Profile Contour l i n e Parent material Erosion p o t e n t i a l Run-off Drainage Hygrotope Stoniness -(per cent) Permeable mineral s o i l depth (cm.) Ecto-humus horizon depth (cm.) L-F  1 230 34 9/12 1961 400  49°17, 122°35 1200 205 32 45 60 70 10 80 80  1 90 1 4 95 95 4 l  15 10  •2 60 36 27/8 1958  3 231 37  menziesii  4 5 69 25 33 35 ll/7 5/10 12/10 1961 1958 1958 400 , 400 4oo 800 , 49 19 ' 49°l6 49 l8| 49°23, 122°35 122°35 :L22°35' 122°47 1250 540 l4oo 600 Top 90 180 180 40 30 15 8 0  Mean Range  0  20 25  Cfb AB 'rKj.k  20 50 70 5 75 1 24 100 99  50 30 60 20 90 100 0 60 15 0 75 75  25 55 60 20 50 60 5 90 10 0 100 90  25 55 65 15 60 65 5 80 20 0 100 80  1  25  10  20  11 6  13 5  40  Rock outcrop - Upper slopie Convex Convex Granitic rocks Severe Moderate Excessive Dry 40 40 30  3 • * -.5  0 10 5  990 540-1400  25  8-40  11  1-25  25 9 5  3-13 5-6  0-40  H  ro vn  Table no'. 11 ~ Continued CTadonietq Number of plots 1 Eluviated horizon depth (cm.) Ae 10 pH L-F 3.70 Ae 3.64 Humus form 1  S i t e index Douglas-fir ( f t . per lOOy.)Western hemlock Western redcedar  60  . Pseudotsugetum 2 3 11 3 4.00 3.80  menziesii 4 5 10 13 3.84 3.75 3 .58 3.70  Mean Range 9 3-13" 3.82 3.70-4.00 3.64 3.58-3.70  Raw humus 73 67 69  78  63 54  69 64 46  69 66 56  60-78 64-67"" 54-69  Table no.  Cladonieto. -. Pseudotsugetum menz ies i i  12  Number of sample plots No. of Species  Layer  1  2  3  4  5  230  60  231  69  25  Species significance  34  36  37  33  35  mean  •  Sample plot no. Computation reference no.  Vigor  Constancy  range mean range  Characteristic combination of species  1 2  3  4  5 6  7 8 9 10 11 12 13 14 15 16  Pseudotsuga menziesii 6.+ .2 4.+ .2 8.10.2 5.7.2 3.+ .2 5.2 Al 6.8.2:s+. + . l 5.8.2 5.8.2 2 3.4 4.7.2 2.8 THugaopMcata 3.7.2 4.7.2 1 3-4.2 6.9.2 5.7.2 5.8.2 7.10.2 4.6 2 Pseudotsuga menziesii 3.2 Bl 7.10.3 +. + .! 4.6.2 4. + .H6.6.2 2 Thuja p l i c a t a 4.6.3 5.7.2 1 3.4 5-7.1 3.7.2 3.6.2 4.5.2 2 1.4 9.10.2 6.8.2 9.10.2 7.8.2 8.10.2 7.8 Gaultheria shallon 2 Holodiscus discolor 1 + . + .2 + . + .2 + .+.2 0.6 ' Eurhynchium oreganum 6.6 6.8.3 4.7.3 7.9.3 9.10.3 7.8.3 Dh dw 2.3.3 1.2 2.3.3 2.3.3 Hylocomium splendens h 4.6.3 3-5.3 4.5.3 3.5.3 8.-9.3 4.4 dw :+.2.3. 2.4.3 4.3.3 1.4 Pseudotsuga menziesii h 0.4 1. + .3 h" Thuja p l i c a t a 1. + .3 +. + .2 + . + .2 0.6 dw + . + .2 + . + .2 0.4 h Pleurozium schreberi 2.4 3.6.3 5.6.3 416.3 Peltigera canina h 1.2 +.3.3 4.5.3 1.4.3 Polytrichum juniperinum h +.3.2 1.0 3.5.3 1.3.3 Cladonia rangiferina h 2.5.3 2.3.3 3.5.3 1.4 Cladonia p a c i f i c a h 2.0 2.5.3 4.5.3 2.4.3 h Rhacomitrium canescens . 6.8.3 +.3.3 1.4 Polytrichum commune h + .3.3 1.5.3 0.4 Rhacomitrium heterostichum' + .3.3 +.3.3 h 0.4 h Polytrichum p i l i f e r u m 1.4.3 +.3.3 -)0.4 Companion species Tsuga heterophylla + . + .2 4.6.3 -r«-'-,>•. 3»4".2 3.r.3 2.2 Al 2 2.+.2 +.+.2 3.7.2 3.+ .2 1.8  3-8 0-6  0-4  0-7 0-7 0-5  0-4  6-9 0-+ 4-9 0-3 3-8  0-4  0-1 0-1 0-+ 0-5  0-4  0-3 0-3  0-4,  0-6 0-1 Q-+ 0-1  0-4  0-3  2.0 1- •2 1.7 2.0 2.0 +--3 1.7  5/5 4/5 4/5 4/5 4/5  2.0 2.0 2.0 2.0 3.0 3-0 3.0 3.0 3.0 2.3 2.0 3.0 3-0 2.6 3.0 3.0 3-0 3.0 3-0 3-0  1- •3  4/5 2/5  2.7 2.0  2--3  / 3/5 5/  5  2-•3  2--3  /  5  /  5  2/5 3/5 2/5 3/5 3/5  ? ? 2/5 3l  3/5 3l  2/5 2/5 2/5  4/5  V5  ro  Table no). 12 - ©continued Ko. Layer Number of sample plots of Species 17 18 19 20 21 22 23 24 2.5 26 27 28 29  Bi 2 1 2 1 1 2 1 C  %  dw e dw e dw e e h dw  32 33 34 35 36  e h dw e dw dw hi:. h dw  .Pseudotsugetum menziesii Vigor Species 3 significance mean range mean  Sphaerophorus globosus Rhytidiadelphus loreus  +.5-2 + . + .2 3 . 7 . 2 + . + .2 2.4.2 3.5.2 2.4.1 2.5.3 + . + .2 + . + .2 + . + .2 1.3.2 1.4.2 + .+.2 4 . 5 . 2 + . + .2 2.5.2 2.4.3 3.5.3 + . 2 . 3 + . 3 . 2 1.3.3 + . 2 . 3 +.3.3 + .2.3 + .2.2 +.3-2 +.2.3 + .2.2 + .2.2 + .3.3 + .2.2 + . 3 . 3 + .1.2 +.2.3 + . 3 . 3 + . 2 . 3 2.3.3 2.3.3 + .2.3 1.3.3 + .2.3 + .2.3 +.3.2 + . 2 . 3 +.2.3 + .4.2 1.4.2  Parmelia v i t t a t a Cephalozia media Cladonia b e l l i d i f l o r a Dicranum scoparium Isothecium stoloniferum  + .2.3 + .1.3 + .3-3 1.2.3 + . 3 . 3 4 . 6 . 3 5-6.3 2.5-3  Tsuga heterophylla Vaccinium parvifolium Prunus emarginata Rosa gymnocarpa Vaccinium ovalifolium Menziesia ferruginea Pteridium aquilinum Plagiothecium undulatum Hypnum c i r e inale Scapania bolanderi Cladonia  subsquamosa  Parmelia physodes Dicranum fusces.cens  •  "S  30 31  Cladonieto 1 2  ho kl 42 k3  -.e •h dw e dw h dw e e  Parmelia tubulosa Mnium punctatum Bazzania t r i c r e n a t a  Cetraria herrei Usnea h i r t a  0-•3 0-•1  2.0 2.0  4/5 2/5  4.6.2  2.4 0.4 0.4 0.4 0.8 2.0 2.4 1.4 1.0 1.0 0.8 0.8 0.6 1.0 1.6 1.0 0.8 1.0 1.8 1.4 0.8 0.6 0.6 2.4  +-•4 0-•+ 0-•+ 0-•1 0-•3 +-.4 1-.4 +-•3  2 . 0 1-3 2.0 2.0 2.0 2 . 5 2-3 2.0 2 . 8 2-3 2 . 8 2-3 3.0 2 . 2 ;2-3 2.5 2-3 2 . 5 2-3 2 . 3 2-3  5/5 2/5 2/5 2/5 2/5 5/5 5/5  0-•4 0-•5 0-•+ 0-•+ 0-•1 0-•5  2.7 3,0 3.0 2.8 2.5 3.0 3.0 3.0 3.0 3.0  0.6 0.4 0.6 0.4 0.4  0-•2 0-•+ 0-•+ 0-• 1 0-•1  3.0 3.0 3.0 2.0 3.0  0.4  0-•+  2.5  0.4 0.4  0-•+ 0-•+  3.0 3.0  + . + .2  +.2.3 + .3.3 +.2.3  1.6 0.4  2.4.3 1.2.3 + .3.3 + .3.3 +. + . 3 + . + .2 1 . 1 . 2 + . 2 . 3 1.3.3 + .3.3 + .1.3 + .1.2  + . 2 . 3 +.2.3  Plagiothecium denticulatum Plagiothecium elegans  3.7.2 1.+.2  +. + .2 3.6.3 + .+.2 3.5.2 1.2.3 4.5.3 1.3.3 3.5.3 + . 3 . 3 +.1.3 2.1.2 1.2.3 + . 1 . 2 +.2.3 +.2.3 + .1.3 + . 2 . 3 +.4.3 2.4.3 2.4.2 1.2.3 2.2.3 + .2.3 + .2.3 + .2.3 + .2.3 4.5.3 3.5.3 2.3.3 5.4.3 + .2.3 + .2.3 + .1.3 + . 2 . 3 1.2.3 3.5.3  r*e  37 38 39  + . + .2  + .2.3  Constancy  + .1.2 +.3.3  0-•+ 0-•+ 0-•+ 0-•2 0-•2 0-•+  3>o  2-3  2-3 2-3  5/5 4/5 4/5 V5 5/5 V5 4/5 V5 5/5 4/5 2/5 4/5 3/  P  3/5 2/5 2/5 2/5 2/5 2-3  2/5 2/5 2/5  ro 00  Table- no). 12 - Continued 60  (1.+.2)  Alnus s inuata Betula papyrifera Pinus monticola Sorbus sitchensis Vaccinium alaskaense Taxus b r e v i t o l i a Cornus n u t t a l l i i Rubus v i t i f o l i u s  60 231 69 25 25 25 231 230  (+.+.2) (+.+.2) (+.+.0) (+.+.2) (+.+.2) (3-5.3) (+.+.2) (+.+.2)  Chimphila umbellata Goodyera oblongifolia Lycopodium selago Smilacina racemosa Polystichum munitum Linnaea borealis Festuca occidentalis  25 25 25 25 25 25 230  (+.+.3) (1.+.3) (+.+.3) (+.+.2) (+.+.1) (+.3.2) (+.3.2)  kk  Alnus rubra  k5 k6 kl  48 k9 50 51 52  53  5k 55 56 57 58 59  COAdoMe:t^>:.^PseMdtsuge!tuaii< menziesii 60 61 62 63  6k 65 66 67 68 69 70 71 72 73 lk  60 Lophocolea cuspidata Bazzania ambigua 69 F r u l l a n i a misquallensis 25 Grimmia apocarpa 60 Marsupella sphacelata 60 P l a g i o c h i l a asplenioides 25 Rhytidiadelphus t.'riquetrus230 A l e c t o r i a sarmentosa 230 Cladonia furcata 60 230 Cladonia g r a c i l i s A n t i t r i c h i a curtipendula 230 Camptothecium megaptilum 230 Cladonia a l p e s t r i s 230 Cladonia cariosa 230 Letharia vulpina 230  (+.1.3)' (+.2.3) (+.1.3) (+.2.3) (+.+•3) (+.3.2) (2.5.3) (+.2.3) (2.5.3) (1.2.3) (2.5-3) (2.5.3) (2A.3) (1.2.3) (+.3.2)  Gaultherieto .- Pseudfe'tsugetum- menz'iesilj tsugetosum heterophyllae 6 8 4 2 1 7 5 3 129 Mean 128 104 68 22/c 85 45 65 6 1 4 8 2 7 3 5 10/6 18/8 5/8 20/5 9/7 9/7 5/9 4/9 1958 1958 1958 1958 1959 1959 1959 1959 800 P l o t size (sq.m.) 49°20 ; U9°23] Latitude 4 9 ° 2 3 , 49°22] 49°17', 49°l8\ 4 9 ° 1 7 , 49°17| 122°35 Longitude 122°35 1 2 2 ° 3 5 ' 122°35 123°03 123°01 1 2 2 ° 5 7 ' 123°03 1030 960 1360 1000 l64o 650 810 1030 750 Altitude (ft.) 180 180 180 225 90 180 Exposure (degree) 45 45 12 12 18 4 Slope gradient (degree) 3 17 9 5 25 Cfb Macroclimate Koppen ABirbo.^ Thornthwaite S t r a t a coverage (per cent ) A i 30 ^5 15 30 30 25 15 5 4b" 40 60 4o 60 40 50 A 15 30 20 20 30 25 25 25 35 70 90 70 75 65 85 85 85 20 20 15 25 25 15 35 25 Bl 4o 60 30 10 20 50 70 B 80 40 90 20 60 50 50 15 B 1 1 10 2 10 5 5 3 C 4 60 80 80 30 35 45 75 D l 10 20 20 10 20 30 15 Ddw D 80 60 100 100 D 50 5 55 85 80 80 78 70 90 90 70 Humus coverage (per cent) , 75 65 20 20 22 10 10 30 Decaying wood coverage (per cent) 30 25 35 G l a c i a l d r i f t - Upper -slope Land type and Land form •Straight *Straig ht* Convex R e l i e f shape Profile Straight* Convex Straight Convex Contour l i n e Straight* Till Parent material *Slight Erosion p o t e n t i a l Slight * Moderate Run-off Slow Drainage Well-drained ModeratelyM6d * • • MSd«-dry Mesic Hygrotope -dry Mesic -dry 'dry * 40 60 Stoniness (per cent) 25 50 25 :62 68 Permeable mineral s o i l depth (cm.) 40 85 55 12 8 Ecto-humus horizon depth (cm.) L-F 10 3 27  Table no. 13 Number of plots P l o t no. Computation reference no. Date  Range  750-1640 NE-SW 3-25  P 2  2  h  r  ;  65-90 10-35  25-60 40-85 8-27  00 o  Tabiei rial, 13 - Continued Number of plots Eluviated horizonLdipth (cm.) pH ' L-F A B C Humus form >  e  S i t e index ( f t . per lOOy)  Gaultherieto - Pseudotsugetum menziesii tsugetosum heterophyllae 4 6 8 2 7 18 5 3 5 4.05 3.82 3.4o 4.52 3.70 3.95 4.00 4.30 5.00 5.12 5.10 5.50 5 .46 5.65 Raw humus  Douglas-fir 114 Western hemlock 114 Western redcedar 107  127 126 8l  94 90 80  96 94 76  100 90 80  117 122 77  122 87 90  100 90 80  Mean 8 3.95 3.99 5.l6 5.56  Range 3-18 3-40-4.52 3.70-4.30 5.00-5.50 5.46-5.65  109 102 84  96-127 90-126 76-IO7  1— 1  Table  No. of Species  no. 14  Al  2 3 1 2 3 ...1 2 3  2  3  B  l  2 1 2  1 4 5  1 1 2  6  Dh dw h dw h dw h  7  8 9 10 11 12  1 2 C  Pseudotsugetum m e n z i e s i i tsugetosum  Number o f p l o t s  1  2  3  4  5  6  7  P l o t no.  65  104  68  45  128  85  22/c  2  8  1  Layer  Computation r e f e r e n c e  1  Gaultherieto  no.  C h a r a c t e r i s t i c combination of species Pseudotsuga m e n z i e s i i  Tsuga  heterophylla  5 . + . 3 + . + .3 8.10.2 7.10.3 3.4.0 5 . 6 . 3 + . + .2 + . + .3 3.6.3  5.7.3 8.10.3 4.7.1 4. + .3 6.8.3 3.7.3  4  7  6.+ . 2 7 . 1 0 . 3 5-8.2 + . + . 2 4.6.0 + . + .1 4.7.2 5.8.3 6.9.3 5.7.3 4.7.2 5.7.1  Tsuga Thuja  heterophylla plicata  Pseudotsuga m e n z i e s i i Gaultheria shallon Vaccinium p a r v i f o l i u m Eurhynchium oreganum Hylocomium splendens Tsuga  heterophylla  Thuja p l i c a t a Companion s p e c i e s Rubus v i t i f o l i u s Menziesia ferruginea Pteridium aquilinum P o l y s t i c h u m munitum Linnaea b o r e a l i s  5  5.8.3 4.7.3 6.8.3 7.9.3 7.9.2 7.9.3 + . + .1 5 . 7 . 2 4 . 6 . 2 4.+.3 6.8.3 7.10.3 5 . 6 . 2 2.+ . 2 5 . 6 . 2 2.+ . 2 + . + . 0 5 . 8 . 3 3 . 7 . 3 4. + .2 6.7.2 5.7.2 5 . 6 . 2 1. + . 2 1.4.2 5 . 6 . 2 3-7-3 3 . 5 . 2 1. + . 2 2.+ .2 6.8.2 7.9.2 4.5.2 3 . 5 . 3 2 . 5 . 2 2.+ . 2 4.6.2 5.8.3 7.8.3 3.4.2 5.6.3 3.4.3 + .4.3 2.5.3 +.3.3 + .1.2  Species significance  Vigor  Average Range Avaragefting  4.9 6.2 3.5 2.2 3-9 3.4 0.3 2.5 4.5 2.7  +-•7  2-9 2.5 1.2 2.6 3.0 2.1  4.1 1.7  6.0 1.9 1.8 6.0 1.5 3.1 0.3 0.8 0.5 0.2  4-•8 0-•6 0- •5 3-•9 0- •5 0- •6 0- •+ 0-•3 0-•2 0-• +  2.0 2.4 2.0 2-9 2.8 3.0 3-0 2.4 2.0 2.0  0.8 .0.5 0.5 3-3.2 4.5.2 5 . 4 . 2 3 . 4 . 2 4 . 6 . 2 3- + .1 3 . 6 + . + .1 + . + .1 + . + . 2 + .+.1 0.8 2 . 5 . 2 V+.4.3 + . 3 - 2 2 . 5 . 3 0.8  0-•+ 0- •3 0- •3 2- •5 0-•+ 0-•2  1-7 2.5 2.5 1.8 1.5 2.5  7.9.2 8.10.2 4.5.2 6.5-3 2.4.2 + . + .2 7.9.3 5.4.3 9.10.3 1.3.3 4.6.3 6.7.3 4.4.3 + .3.3 + . 3 . 3 + . + .2 + . + .2 + . + .2 + . + . 2 -H-. + . 2  3.5.3 + . + .2 3 . 4 . 3 2.4.2 5 . 6 . 2 + . + .2 + . + .2  129  2.5 2.0 2.1 2.2 2.3 1.8  + . + .2 4 . 7 . 3 3.+ . 2 . 5 . 7 . 2 4 . 6 . 2 3-6.2 2.3.2 5.6.2 5.7.2 4.5.2 3.5.2  + . + •3  3  8.  +- -8 +-•5 0- •5 0- •7 0- •5 0-•2 0- •5 0-•6 0-•5 0-•4 3-•5 0-•5  Thuja p l i c a t a  + . + •3 6.9-2 2.+ .2 1.5.2 3.7.3 + . + .1  6  heterophyllae  2.+ . 2 6.8.2 3.7.2 4.7.2  5.7.2 4.5.3 4.5.3 5.6.3 5.5.2  5.8.2 7.10.2 2.5.2 2.4.1 5.4.3 6.9.3 6.7.3 2.3.2 4.5.3 4.7.3 + .1.2  3.2.3 2.3.2  + . + .1  +.+.1  1.5.2  3.6.2  :.i.o  1.0  2-•3 2-•3 0--3 2--3 1- •3 0--2 2-•3 2-•3 2-•3 2--3 1--2  2--3 1- •3 2-•3 2-•3 2-•3  +- •3  2--3 2-•3 1-•2 1--2 2--3  Table no. 14 No. Layer of Species 13  lh 15 16 17 18  19 20 21 22 23 24 25 26 27 28  29  Dh dw dw e dw e dw e dw e h dw e dw e h dw e dw dw e. e e dw e dw e h dw e h dw  r  Continued  Number of plotaO Plagiothecium undulatum Lepidozia reptans Dicranum fuscescens Hypnum c i r c i n a l e Scapania bolanderi Mnium punctatum Isothecium stoloniferum Rhytidiadelphus loreus Cephalozia media Cladonia subsquamosa Parmelia physodes Sphaerophorus globosus Bazz&nia t r i c r e n a t a Calypogeia suecica C e t r a r i a glauca Plagiothecium elegans  P l a g i o c h i l a asplenioides  Gaultherieto —•Pseudotsugetum menziesii tsugetosum heterophyllae Species Vigor s i g n i f i c a n c e 1 4 6 8 2 5 7 3 Average Range Average Ran 5.5.3 5.7.3 2.3-3 2.4.3 + .1.3 +.1.3 1 . 1 . 3 + .1.2 2.2.3 + .1.3 + .2.3 3.3.3 1.2.3 + .2.3 2.3.2 2.3.3 3.4.3 + .3.3 + .2.3 2.5.3 + .2.2 3.4.3 1.2.3 + . + .2 4.5.3 2.3.2 + .2.3 + .3.2 + .1.3 + .1.2 6.7.3 5.5.3 2.3.3 + .1.3 + . + .3 + .2.3 1.2.2 + .1.3 + .1.2 + .1.3 + . 1 . 2 + . + •3 + .1.3 + .1.3  4.5.3 3.5.2  • ~  +.1.3 +.2.3 +.1.3 2.3.3 +.2.3 2.3.3 +.1.3 2.4.3  2.3.2 3.5.3 + .3.2 3.4.3 + .2.2 3.6.3  3.4.3 2.3.3 +.3.3 + . 4 . 3 +.1.3 5.6.3 3.4.3 + .3.3 + .1.2 + .2.3 + .2.3 + .1.3 + .1.2 + .2.3 + .2.3 1.3-2 + .3-3  + .2.3  + .2.3  4.5.2 4.6.3 3.4.2 ^ » 5-6.3 3 . 5 . 2 + . 1 . 2 1 . 3 . 2 +.3.3 + .1.3 2 . 3 . 2 +.2.3 3 . 4 . 3 + . 2 . 2 +.1.2 3.5.3 2.3.3 2.3.3 + . 2 . 2 +.3.3 + . 2 . 3 2.3.2 3.4.3 4.5.3 + .1.2 +;2.3 + . + .2 3 . 4 . 3 3 . 3 . 2 4.5.3 3.4.3  +.2.3 + .2.2 2.4.3 + .2.2 + .2.2 + .1.2  + .2.3 +.2.2 + . 1 . 2 +.4.3 + .3.2  + .3.3 1 . 3 . 2 + .+.2 1.4.2 + .3.2 2.3.2  + .1.3 1.2.3 + . + .2 1.3.2 + . + .2 + .1.2 + .3.3 +.4.3 + .2.3 + .3.3 + .2.2 +.2.3 + . 2 . 2 +.2.3 + .2.3 + .2.3 1.4.3 + .1.3 +.3.2 1.2.2  3.5 1.5 0.6 0.5 1.6 0.6 2.2 1.1 2.5 0.8 1.5 1.7 0.1 1-5 0.7 0.9 2.8 0.6 0.7 0.7 0.5 0.5 0.5 0.2  0-5 0-5 0-1 0-1 +-3 0-+ 1-3 +-2 +-4 0-+ 0-3 0-4 0-+ 0-4 0-+ 0-1 0-6 0-2 0-1 0-1 0-+ 0-+ 0-+ 0-+  2.5 2-7 2.6 3.0 2.5 2.6 3.0 2.5 2.7 2.5 2.5 3.0 2.0 2.8 2.6 2.4 2.5 2.7 2.8 2.3 2.5 2.7 2.7 3.0  0.5 0.3 0.2  0-1 0-+ 0-+  2.2 3-0 3-0  0.2 0.1  0-+ 0-1  2.5 2.0  2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 :2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3  Constancy 7/8 4/8 5/8 4/8 8/8 5/8 8/8 8/8 8/8 7/8 6/8 5/8 1/8 5/8 6/8 7/8 7/8 3/8 6/8 6/8 4/8 4/8 4/8 2/8 4/8 3/8 2/8  2/8 1/8  T a b l e no. 14 - Continued 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  47 48  49 50 51 52 53  Acer c i r c i n a t u m Alnus rubra Alnus s i n u a t a Holodiscus discolor Mahonia nervosa Prunus emarginata Rosa gymnocarpa Salix scouleriana Taxus b r e v i f o l i a V a c c i n i u m alaskaense Blechnum s p i c a n t Cornus canadensis Trientalis latifolia T r i l l i u m ovatum C e p h a l o z i a lammersiana D i c r a n e l l a heteromalla Dicranum scoparium Diplophyllum taxifolium Frullania nisquallensis Lophocolea c u s p i d a t a Lophocolea h e t e r o p h y l l a P e r t u s a r i a ambigua Parmelia v i t t a t a Plagiothecium denticulatum  G a u l t h e r i e t o .- Pseudotsugetum.menziesii  tsugetosum h e t e r o p h y l l a e  (1.+.2) (+.+.1) 85 (+.+.2) 65 (+.+.2) 85 129, i o 4 (+.+.2) ( + . 5 . 2 J 22/c (+.+.2) 45 22/c (+.+.2) (+.+.2) 22/c 22/c (+.+.1) (+.+.2) 4 5 , 85 ( 2 . 5 . 3 ) 104 ( * . + . 3 ) 85 (+.+.2) 65, 85 (+.3*2 85 22/c (1.+.2) (+.+.1) 45 (+.+.3) 65 (+.2.3) 45 68 (+.1.3) 104 (2.3.3) 128 (+.1.3) 65 (+.1.3) 129 (+.+.2) 68 (+.1.3) (+.+.3) 45 22/c, 45 ( + . 2 . 3 85 ( + . 2 . 3 ) 104 ( + . 1 . 3 ) 65  00  4=-  Gaultherieto..:..- Pseudotsugetum menziesii tsugetosum heterophyllae mahoniosum nervosae Table no. 15 4 ' 1 2 Number of plots 5 3 Mean Range 106 2U3 1 1U7 105 P l o t no. 11 12 10 Computation reference no. 13 9 22/6 11/6 8/8 11/6 Date 23/7 1961 1958 1959 1959 1959 800 P l o t size (sq. m.) 49°22 ] 49°25\ Latitude, h9°n\ U9°l6] 1+9° IT \ 122°3U 122°34 1 2 2 ° 3 5 ' 123°IU 123°05 Longitude 450-900 900 U50 600 900 900 750 Altitude (ft.) SE-W 180 270 270 270 Exposure (degree) 135 26 18 Slope gradient (degree) 31 35 4o 18-40 35 Cfb Macroclimate Koppen ABjrb3_2| Thornthwaite 60 20 65 15 85 S t r a t a coverage (per cent) Aj_ 60 A 70 30 ko 20 25 15 3 80 80 A 70 85 85 80 20 20 5 5 l 70 80 B 65 85 70 80 100 80 B 90 10 1 1 C 5 15 80 80 60 25 85 Dh 10 10 10 15 Ddw 80 D 70 35 95 95 100 75-100 80 Humus coverage (per cent) 90 89 75 loo 20 0 10 20 11 Decaying wood coverage (per cent) 0-25 25 G l a c i a l d r i f t - Upper slope Land type and Land form Convex R e l i e f shape Profile Contour l i n e Straight Straight Convex Straight , Convex *0ut* Till Parent material - Till wash 1  2  A  B  2  t  Erosion p o t e n t i a l Drainage Hygrotope Stoniness (per cent) Permeable mineral s o i l depth (cm.) Ecto-humus horizon depth (cm.) L-F Eluviated horizon depth (cm.) A e  Slow Well drained Moderately dry 20 120 10 8  •Mesic U0 98+ 10 5  60 98 10 7  40-80  5-8 OJ  vn  Table no. 15 Number of plots pH  Gaultherieto - -•Ps eudot suget urn menziesii tsugetosum heterophyllae mahoniosum nervosae Mean- "Range, 5 1 3 L-F 4.25 k.ko A B 5.65 e  Humus form S i t e index  C  Douglas-fir Western hemlock Western redcedar  Raw humus 90 89 75  96 91 78  90 85 70  78 73 73  109 91 71  93 86 73  78-109 73-91 70-78  Table no.  l6  Number of p l o t s No. Layer of Plot no. Species Computation reference no.  1 2  3  4 5 6 7 8  9 10 li  M  2 3 1 2 3 1 2 3 Bl 2 1 2 1 1 1 2 1 Dh dw e h dw  Bl 2 ...2 1  Gauitteriejtb. >• -Pseudbtsugetum- meinzxesat tsugetosum heterophyllae mahoniosum nervosae 2  105  106  243  1  11  12  13  9  Characteristic combination of species Pseudotsuga menziesii 3-4.3 8.9-3 Tsuga heterophylla Thuja p l i c a t a Tsuga heterophylla Thuja p l i c a t a Pseudotsuga menziesii Gaultheria shallon Vaccinium parvifolium Mahonia nervosa Eurhynchium oreganum Hylocomium splendens Companion species Cornus n u t t a l l i i  4  1.  3  5 .  hi  Species significance  10  Mean  Rubus v i t i f o l i u s TaxUs h r e v i f o l i a  1. + .2  Pteridium aquilinum Linnaea b o r e a l i s Polystichum munitum Trientalis l a t i f o l i a  3.6.3 5.6.3 1.3.2 + . + .3  Constancy  Range Mean Range  t  7.IO.3 8.IO.3 6 . 8 . 3 6.9.2 7.10.3 5.6.2 + .+.2 4.6.3 5.7.3 55,7-3 + . + .3 2.6.2 7.8.3 5.6.3 6.9.3 5.7.3 3.6.3 : 5.7.3 4.7.2 3.7.2 3.+ .2 3.+ .2 + . + .2 4.7.2 5.7.2 4.7.2 6.8.2 2.5.2 3 . 5 . 3 1. + .2 4 . 6 . 3 2.+ .2 + .4.3 5.6.3 2.5.2 5.7.2 3.6.3 3.6.3 3.4.2 2.5.3 4.5.3 4.7.1 9.10.2 8.10.2 7 . 1 0 ^ 8 . 1 0 . 3 6.7.2 + . + .3 +.5.2 3 . 6 . 2 6.5.2 3.5.2 4.5.3 5.5.3 4.6.3 5.6.3 5.4.3 5.7.3 5.7.2 8.10.3 7.8.3 8.10.3 7.10.3 4.5.3 2.4.2 2.4.2 4.5.3 4.4.3 + .1.2 + .3.2 7.7.3 3.5.3 + .3.3 2.3.3 6.7.3 + . 3 . 3 4.3.3 1.3.3 + . + .3  Vij jor  4.7.3 8.9.3  + .6.2 + .4.2 + . + .2  + . + .3 2 . 5 . 2  5.6 5.8  3-8 6-8  3.0 2.7  3-2 4.0 2.6 1.4 2.2 3.0 2.0 1.6 2.6 1.8 0.8 7.6 1.0 3.6 4.8 6.8  +-5 0-7 0-5  0-4  2.8 2.7 3.0 2.0 -2.0 2,0 2.5 2.6 2.2 2.6 1.0 2.2 2.3 2.5 2.8 3.0 2.5 2.0 3-0 3.0  0-2 0-+ 0-1 0-+  2.5 2.0 2.0 2.0  2-3  2-4  2.4 3.0 2.0 3.0  2-3  0-5 0-1 0-2  2.4 0.4 3.8 1.21.0 0.2 0.6  + . + .2 + . + .2  + .+.2  0.4  2.4.2  2.+.3 3.4.3 + . + .2  2.6 2.8 0.6 0.6  o-4 0-4  0-6  0-4 0-5 0-5  0-4 0-4  6-9 0-3 0-6 4-5 4-8  0-4 0-+ 2-7  2-3  5/5 V5  2-3 2-3  V5  2-3 2-3 2-3 2-3  2/5 4/5 3/5 4/5 3/5 4/5 3/5  2-3 2-3 2-3 2-3 2-3  ^?  '?  3  5/5 I? 4/5 5/5 5/5 4/5 2/5 3  3/5 4/5 3l  ?  2/5  O  12 13 14 15  Cl  4.5.2 4.6.3 + . + .2 2.+.3  2.4.2 2.5-3  5/5 4/5 3l  ?  2/5  OJ  Table no. l 6 - Continued No. Layer Number of plots of Species Plagiothecium undulatum 16 Dh dw Dicranum fuscescens dw 17 e Hypnum c i r c i n a l e 18 dw e Isothecium stoloniferum dw 19 e Scapania bolanderi 20 dw e 21 dw Lepidozia reptans e Cladonia subsquamosa 22 dw e Cephalozia media dw 23 e 24 h Rhytidiadelphus loreus dw Parmelia physodes e 25 Calypogeia suecica 26 dw e h Dicranum scoparium 27 dw 28 dw Calypogeia neesiana dw P t i l i d i u m californicum 29 dw Cladonia b e l l i d i f l o r a 30 dw Plagiothecium denticulatum 31 e Cetraria glauca 32 e Sphaerophorus globosus 33 dw Bazzania t r i c r e n a t a 3k h P l a g i o c h i l a asplenioides 35 dw Lophocolea cuspidata dw 36 e  Gaultherieto  2.3-3 +.3-2 1.2.2 +.1.3 3-4.3 +.3-3 2.3.3 +.2.2 2.3.3 +.3.3 +.2.3 +.2.2 +.1.2 + .2.2 + .1.3 4.5.3 + .2.2 + .3.3 + .1.3 +.1.3 +.1.3 +.2.3 +.2.3 +.+.3 +.1.2 +.2.3  2.4.3 + .1.2 + .1.3 2.4.3 + .2.3 1.3.3 + .3.2 2.5.3 +.2.2 +.3-3 + .2.3 + .2.3 + .1.2 + .2.3 3.5.3 1.4.3 + .2.2  + .1.3 + .1.3 +  .I.3  + .2.3 + .2.3 + .1.3  -Pseudo*sugeturn menzTesii' tsug'etosum heter ophyllae mahoniosum nervosae Vigor Species Cons5 significance tancy 3 4 Mean Range Mean Range 2 . 8 2-3 2.6 2-4 3.5.3 2 . 3 . 2 4 .6.3 5/5 2.3 0 . 6 0-1 2 . 6 2-3 1 . 3 . 3 +. 1.0 +-1 2 . 4 2-3 3 +.2.2 +.2.3 1. 2.3 2 . 6 2-3 +.2.3 +.1.2 +. 1.2 1.0 2.4 +-4 2 . 8 2-3 5/5 +.4.2 4 . 4 . 3 2 . 3.3 0.8 0-+ 2 . 7 2-3 + .3.2 +.3.3 4/8 1.2 0-2 2 . 7 2-3 2.3.2 +. 2.3 4/8 0.8 0-+ 2 . 2 2-3 +.2.2 +. 3.3 4/8 1.8 +-2 2 . 8 2-3 +.2.2 2 . 3 . 3 2 . 3 . 3 5/5 + .1.2 +.1.2 0 . 8 6-+ 2 . 2 2-3 4/5 0-2 3-0 4/5 2.3.3 +• 1.3 1.0 0.4 0-+ 2 , 5 2-3 2/5 0.8 0-1 2 . 7 2-3 4/5 +.2.3 1 . 2 . 3 1.0 * 1 2 . 4 2-3 +.2.2 +.1.3 +. 2.3 5/5 +.1.2 +.1.3 +. 2.3 0.6 0-+ 2 . 6 2-3 0.4 0-+ 3.0 2/5 3l 2 . 0 0-4 3 .0 3.5.3 0.6 0-2 3.0 2.4.3 2/5 0.8 0-+ 2 . 2 2-3 +.2.3 +. 3.2 4/5 3l 0-+ 3.0 +.+•3 +. 1.3 0 . 6 0.2 0-+ 3.0 1/5 0.4 0-1 2 . 5 2-3 1 . 2 . 2 + .2.3 2/5 0.4 0-+ 2 . 5 2-3 +.2.2 2/5 0 . 4 0-+ 3 .0 + .2.3 2/5 0.6 0-2 2 . 5 2-3 2/5 2.3.2 0.4 0-+ 3.0 2/5 + .2.3 0 . 4 0-+ 3.0 2/5 3l 0.6 0-+ 3.0 +. + .3 3l 0.6 0-+ 2 . 6 2-3 + .+•3 3l +.2.3 +. 3 . 3 0.6 0-+ 3.0 u 1. 3-3 0.2 0-1 3.0 0.2 0-+ 3.0 0.4 0-+ 2 . 5 2-3 +.1.3 +.1.2 2/5 0.2 0-+ 3.0 1/5  H  7  ? ?  ? ? ? ?  00  Table no. 16  T  Continued  Gaultherieto - Pseudotsugetum.menziesii J tsugetosum heterophyllae mahoniosum nervosae  37 38 39  Arbutus menziesii Prunus emarginata S a l i x hookeriana  1 1 1  (+.+.2) (1.+.2) (+.+.2)  kl  kO  C o r a l l o r h i z a maculata  1  (+.3.2)  45  k2 k3  kk  ke ki kd  Bazzania ambigua Dicranoweisia c i r r h a t a Frullania nisquallensis Heterocladium heteropteroides Lophocolea heterophylla Mnium punctatum Plagiothecium elegans Pogonatum alpinum  243 (+.2.3) 1 (+•1.3) 105 (+.1.2) 106 (+.3.3) 105 (+.2.3) 243 (2.4.3) 243. i (+.1.3) 106 (+.3.2)  Tsugetum heterophyllae plagiothecietosum undulati Table no. 17 Number of plots 1 k 2 3 5 Plot no. 84 154/a 120 130 139 Computation reference no. 2k 20 18. 17 . 15 Date 16/7 9/7 2/7 9/5 31/7'  1959  Plot size (sq. m.) Latitude Longitude Altitude (ft-.) •Exposure (degree) Slope gradient (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) 'A l A  ? ?  200 205 2  2  Bl' B B C  1959  h Ddw D  1959 r  (  r  20 65 10 85 1  20 80 10 95 5  1 30 ko 15 55 80 20  5 1 20 39 50 50 50  Humus coverage (per cent) Decaying wood coverage (per cent) Land type and Land form R e l i e f shape Profile . Contour l i n e Parent material Marine Erosion p o t e n t i a l Nil Run-off Drainage Hygrotope Stoniness (per cent) 3 Permeable mineral s o i l depth (cm.) 71+ Ecto-humus horizon depth (cm.) L-F ' 3 Eluviated horizon depth (cm.) A 5 pH L-F A  1959-  l+9°20 ' lf9°23 \ l+9°27, k9°23 k9°22 123°02' 123°00' 123°07 123°03 123°l4 530 500 1000 , 550 730 270 25O 225 225 135 1 5 2 k k  2  D  1959  6 2 21 25/7 1958  ko 50 16 95 10 5 15 5 20 30 50 60 ko  30 1+0 20 "85 10 3 10 5 25 30 35 ko Go  10 30 20 45 100 5 100 1 15 5 20 50 50  Glacial drift  55 25 70 35 30 60 5 50 20 70 55 45  -  Straight Straight Outwash Slight  30 90+ 10 10 3.90 4.70 5.30  ;  e  e  B  C  Mesic  50 90 5 2  Humus form S i t e index Douglas-• f i r (ft.per lOOy) Western hemlock -Western redcedar  138 129 132  130 103 97  i4i 107 112  145 138 100  150 128 72  134 83 70  141 7 121 19 2/7 1959  141 16 17/7 1959  9 46 14 18/8 1958  10 44 23 19/8 1958  11 143 27 21/7 1959  12 107 22 12/6 1959  13 116 25 26/6  14 124 26 3/7 1959  1959 800 49°21 ! 4 9 ° 2 3 ! 49O23! 49°17' 49°22' 49°21 49°17 29°17, 123°02 122°35 123°03 122°34 123°02 123°00 123°03 122°35 1010 1030 1030 1010 530 1050' 800 950 292 180 225 190 180 90 225 135 8 2 4 14 17 7 13 5 Cfb AB 1 40 30 Ho 50 50 25 45 5 60 60 60 60 60 50 30 • 25 20 20 20 20 10 20 30 . 90 90 70 90 95 85 97 75 10 2 1 10 40 15 5 5 10 5 3 5 5 5 20 1 10 40 5 15 15 15 10 2 10 1 5 5 5 5 20 30 50 50 70 30 25 5 40 40 20 30 30 10 20 25 80' 50 50 90 50 65" 95 15 60 70 80 60 70 50 75 55 40 30 30 20 40 50 25 45 Middle slope nvex * S t r a i g ;ht *Concave* Straight *Convex * Straight *Corivex* " S t r a i g h t * T i l l • *0utwash* Till *0utwash -^Moderate* Slight Slow *Mod.dry* Well--drained Mesic *Moist* Mesic 25 75 3 1 4.50 4.20 5-45 5.70  50 95 10 5 4.50 4.00 5.60 5.70  136 111 93  144 113 88  60 138 13 13 4.25 4.20 5.40  25 127+ 16 2 3.40 3-75 5-25  146 123 90  157 134 112  1 95+ 5 2  Mean  Range  780  200E--NW 1- •17  6  61 39  31 71 8 5 4.11 4..17 5.40  40'--80 20- -60  1-60 3-16 1-13 3.40-4.50 3.75-4.7O 5.25-5.6O  Raw humus 145 129 94  155 133 132  149 143 104  114 121 114  142 121 88  114-157 83-1U3 70-132  Table no. 18  Tsugetum heterophyllae plagiothecietosum  1  Number of plots No. Layer of p'ecies  Al  2  l  3  2 3  2 3 .1 2 3 Bl  4 5 6 7  8 9 10 n  12 13 '! ! ;  l4 15 16 17 18 19 20 21 22 \  23 2k  25 26 27 28 29 30 31 32  2 1 2  Eh dw h dw e h dw e h dw  A B  2 2  2 2 2 1 2 1 2 2 2  C  Dh dw e dw e dw e dw e dw e dw e dw e h dw e dw e dw e dw e  3  4  5  : 6  -  Plot no. Computation reference no.  1  2  undulati  Characteristic combination of species Tsuga heterophylla  Pseudotsuga menziesii Thuja p l i c a t a Tsuga heterophylla Thuja p l i c a t a Rhytidiadelphus Plagiothecium  loreus  undulatum  •Eurhynchium oreganum  Hylocomium splendens  Companion species Alnus rubra Gaultheria shallon Vaccinium parvifolium Mahonia nervosa Vaccinium alaskaense Menziesia ferruginea  154/a  120  84  139  130  2  15  20  24  17  18  21  6.+.3 4.8.3 7.+.3. +.+.3 5.6.3 9.10.3 8.10.3 8.10.3 6.10.3 + .8.2 k. + .2 5.6.2 5.6.2 5.6.3 5.7.3 6.8.3 5-+.3 6.9.3 +.+•3 +. + .3 7.10.3 8.10.3 + .+.2 6.9.2 3.+.1 +.+.2 +.+.3 4.+.3 + .+.2 4.7.3 3.+.2 6.5.2 3-+ .2 +.+.2 4.+.2 +.+•3 4.6.3 3.5.2 4.+.2 10.10.3 • 4.7.3 2.5.3 +. + .2 6.5.2 3.6.2 3.5.2 +. + .2 +.+.3 5.8.3 +. + .2 + . + .2 4.7.3 2.4.3 3.4.3 + .3.3 2.5.3 2.3.3 +.3-3 2.3.3 1.3.3 2.3.3 7.8,3 5.6.3 6.5.3 4.5.3 3.5.3 6.8.3 4.5.2 5.6.3 6.6.3 5-6.3 5.6.3 +.2.3 + .+.2 +.+.3 + .3.3 + .5.3 2.5.3 3-4.2 +.4.3 +.3.3 °2v4;3 3.5.2 +.3.3 2.3.3 +.3.3 2.3.3 3.4.3 1.3.2 +.3.3 1.4.3 2.3.3  + .4.2 +.+.2 +. + .2 3-4.2  +.+.3  Acer circinatum Rubus s p e c t a b i l i s . Rubus v i t i f o l i u s Pteridium aquilinum Polystichum munitum Blechnum spicant Tiarella trifoliata Dryopteris austriaca ' Mnium punctatum  +.3.3 +.1.3  Isothecium stoloniferum  + .1.3 + .1.2 1.3.3 + .1.2 1.2.3 + .1.2 + .2.2  2.3.3 +.2.3 +.2.3 +.2.3 2.3.3 +.1.3  Lepidozia  2.3.3  +.3.3 2.3.3 + .1.2  +.1.2  +.2.3  Dicranum  fuscescens  Hypnum c i r c i n a l e  reptans  Cladonia subsquamosa Plagiothecium  elegans  Cephalozia media Lophocolea heterophylla Colypogeia  suecica  + . + .1 +.2.2 +.3.1 4.5.2 2.4.2 -2.4.2 :J.7.3 +.4.2 + . + .2  2. + .3 6.8.2 3.3.2 2.4.2 + . + .2 + .+.2 2.+.2 2.+.2 +.+.1 4.5.3 4.6.3  Scapania bolanderi  +.+.2 3.5.2 2.+.2 +.+.3  + . + .2 + .5-3  + .5.3  + .4.2 3.5.2 + .+.2 + .+.1 2.4.2 + .4.2  +.+.1 2.3.3 3.5.2 +.1.2 3.5.3 +.2.3 2.3.3 +.2.3 1.3.3 +.2.3 +.3.2 +.4.3 2.4.3  +. + .2 2.3.2 2.4.3 +.1.2 + .2.3 + .2.2 +.2.2 + .1.2 1.3.3 + .2.3 + .2.2 + .2.3 + .1.3  +.1.2 +.2.3 +.4.3 2.3.3  + . + •3 +.1.3 +.2.3 + .3.3 +.2.3  2.3.3 + .2.3 +.1.3 +.2.3 +.2.3 +.1.3 + .2.3 + .1.2 + .+.2 + .1.3 +.1.3  + .2.3 + .1.3 + .1.2  1.5.2 +.1.3 4.5.3 + .3.2 5.5.3 1.2.3 2.3.2 +.2.3 +.2.2 +.2.3 1.2.3 +.3.3 1.2.3 3.5.3 +.2,2 + .3.3 +.2.3  +.2.3 +.+.3  + .3.2 1.1.2 +.1.2  1.3.3  143 7  8  121  141  46  19  16  14  9  +.+.3 5 . 8 . 3 +.+.3 8.10.3 8.10.3 6.8.2 5.6.2 5.7.2 3.7.3 5.+ .2 4 . + .3 6.8.3 + . + .0 7.9.3 7.10.3 3.+ .2 1. + ..+ + . + •3 5.5.2 ' 4.1.1  11  12  13  14  44  143  107  116  124'  23  27  22  25  26 26  + . + .3 + . + . 2 6.8.3 8.8.1 6.7.3 7 . 1 0 . 3 +.+.3 5.+ . 2 7 . 1 0 . 3 6.6.3  4.5.3 4.3.2 5.5.3 3.6.3 +.2.3  2.3.3  5.6.3  5.7.3 5.5.3  3.4.3  6.7.3 4.5.3  7.8.3 4.5.3 4.3.3 5.6.3 + . 2 . 3 ;•+.+. 2 +.3.2 4.4.3 2.3.3  3.5.3  3.4.3 + .2.3  3.5.3 2.3.3 2.3.3 4.5.3: .5.8.3 5.6.3  +.+.2  3.4.3  2.4.3  4.6.3  4.6.2  +.+.2  2.4.3 3.4.3 2.4.3  4.5.3  Mean  3.+.2  +.+.2 5.8.2  3.4.2  Species  5 . 7 . 3 7 . 9 . 3 +.+.3 4.'6.3"8..10.3 8.10.3 5.6.2 4.6.2 6 . 8 . 3 4.+.3 8 . 9 . 3 4.+.3 5.7.3 + . + .0 +.+.1 +.+.1 +.+.3 4 . 6 . 3 +.+.3 5.7.2 2.4.2 +.+.2 4 . 6 . 2 +.+.2 +.+.2 3 . 5 . 2 +.+.2 4 . 6 . 2  4.7.2 4.6.2 3. + .1 + .+.2 4.7.2  6.8.3 5.6.2 3.5.2  2.+ . 2  2.3.3 4.5.3 5.5.3 +.+.2 2.3.3 2.3.2  10  4.5.3 3.5.3  + . + •3 5.6.3 5.6.3 3-4.2  2.8 6.1 4.3 4.8 3.6 1.0 0.1 2.0 3.3 3.4 1.5 2.0  3.4.3 4.5.3 5.6.3 5.5.3  2.3 1.4 5.0 4.1 0.4 4 . 5 . 3 2.6 3 . 4 . 3 1.4 +.+.2 0 . 1 1.6 + .2.2 l . l  Vigor  ""Cons•tancy  Range Mean Range  0-7 +-9 0-8 +-8 0-8 0-6 0-+ 0-6 0-6 0-10 0-6 0-5  3.0 2.8 2.2 2.9 2.4 1.3 1.5 '2.7 2.1 2.2 2.1 2.1  0-5 0-4 3-7 0-6 0-+ 0-6 0-4 0-+ 0-4 0-3  ' 3-0 2.9 3-0 2.9 2.5 2.7 2.8 2.5 2.9 2.9  11/14 2-•3 1-•3' 2-•3 0- •3 . 0 - •3 1-•2 2-•3 2- •3 1-•3 2-•3 2-•3  14/14  12/14 14/14 10/l4  6/14  2/14 12/14 11/14 13/14 10/14 ll/l4  2-•3 2-•3 2- •3 2- •3 2- •3 2- •3 2- •3  12/14 9/14 14/14 l2/l4 6/14 13/14 9/14 2/l4 9/14 9/14  1-•2 1-•2  14/14  .2- •3  14/14  2-•3  ->••  5.7.2 + . + .1 M-. + .2 +.3.2 3.5.1 2.3.2 3.4.2 1.4.2  +.+.3  + .+.2  +.+.1 2.5.2  +. + .2 +.+„2 3.7.2  2.3.2 4.+ .2 4.3.2 3.4.6 3-+ .2 + . + .2 + .+.2 2.+ .2 + .4.3 1.3.2 1.4.3 4.5.3 2.5.3 +.1.2 2.3.3  1.5.1 +.4.2  3.5.3 + .1.2 +.3.3  + .3.3  +.3.3  +.2.3  2.3.2 +.3.2 +.2.2 2.4.2 + .2.2 +.5-2 +.2.3 2.2.3  + . + .2 +.1.3 + .1.2 + .3.3 +.3.3  +.2.3  + .1.3 +.2.3 + .2.3 + .1.3 +.1.3  +. + . 3  + .1.3 +.1.3 + .1.3 + .1.3  +.+.2  2.2.3  5.4.3 1.2.3 2.3.3  + .+.2 +.1.3 4.6.3 +.4.3 2.3.3 +.2.3 +.2.3 + . 3 . 3 3.4.2 +.1.2 2 . 3 . 3 +.2.2 +.2.3 +.3.3 +. + .2 +.1.3 2 . 3 . 3 +.2.3 +.3.3 +.2.2 1.1.2 +.1.3  + . + .2 +.+.3  '  2.5.3 0.5  0-2 0-+  0.4 0.1  0.4 -5.6.3 + . + .2 + . + .20.4 + .+.2 0.5 3.+ .2 4.+ .2 3 . 0 2.3.1 3-4.1 1.4 0.6 2.4.2 1.3.2 +.3.2 0.4 0.4 • .  + .3.3 1.3.3  3.2.3 +.1.2 2.2.3 +.2.3  2.2  0.3  1 . 3 . 3 1.5  + .1.2 + .2.3 1.0 + .3.2 0 . 9 +.3.2 + .4.2 0 . 8 +.3.3 2 . 3 . 3 1.2 0.2 0.4 +.1.2 + .2.3 0 . 8 +.2.3  + .2.3 + .1.3 2 . 3 . 3 +.+.3 + .2.3 + .1.3 +.2.3  + . 3 . 3 1.7  + .2.3 2.3 + .2.3 0.9 + .2.2 1.1 + . + .2 + . + .21.0  + . + .3  0-5  +-4 +-4  0.3 7.8.2 0 . 9  + . + .3  + .1.3  0.5  2.4.2 2.0 2.+.2 2.1  2.3.3  4.6.3  +.2.3 2.2.3 +.2.3  +.5.3  + .+.2  +. + .2 4.3.2 4.5.2 2.6.2 2.+.2 1.4.2 1.2.2 +. + .1 +. + .1 3 . 5 . 3 + . 3 . 3 2.4.3  + .2.3 +. + .2 + . + .2 2.3.2 I.2.3 +.2.3  + . + .2  3.+ .2  5.6.3  + . + .3  2.4.3 +.+.2  + .+.2  3.3.3  +. + . 3  4.5.3  4.5.2 4.5.2 +. + .2 3.4.2  1.3.2  0.3 + . 3 . 3 0.7 0.3 3.2.3 1.0  0.2 0.3  0.2 + .1.3 0.4 0.1  0-2  1.5 1.8 2.1 3.0 1.8  3.0  0-+  2.2  0-3  -2..TJ  0-5 0-+ 0-3 0-6 0-3  0-2 0-1 0-2  0-4 0-5 0-+ +-5 0-+ 0-2 0-+  0-4.. 0-3 0-+ 0-2 0-+ 0-+ 0-+ 0-+  0-2 0-+ 0-3 0-+ 0-+ 0-+ 0-+ 0-+  2,5  2.4 2.2 1.9  -1.7  1.8 1.8 1.6 2.8 2.9 2.0 2-9 2.7 2.6 2.6 2.9 2.7  .2.1 • 2.5 •2.9  2.6 2.5 2,5 3.0 2.9. "' 3 . 0 3.0 3.0 3.0 2.5 2..8 •3.0  .1-•2 -  -.2-•3 2-•3 .2-•3 2-•3 1-•2 1-•2 1-•2 1-•2 1-•2 2-•3 .2-•3 ,2-•3 2-•3 2-•3 2-•3 .2-•3 2-•3 2-•3  4/14 5/14  5/14 .1/14 5/14  4/l4 2/l4 5/14 4/14  13/14 11/14 6/14 5/14 5/14  13/14 12/14 4/l4 14/14 13/14  12/14  12/14 12/14  14/14 9/14  2-•3 2-•3 2-•3 2-•3 2-•3  12/14  2-•3  8/i4  12/14 3/14 6/14 11/14 5/14 5/14  ll/l4 4/i4 2-•3 2-•3  5/14 4/14  6/l4 2/14  T a b l e no. 18 - Continued-Tsugetum h e t e r o p h y i l a e p l a g i o t h e c i e t o s u m u n d u l a t i  33  dw  Number o f p l o t s 1 Plagiothecium denticulaturn +.2.3  34 35  e dw dw  B a z z a n i a ambigua C a l y p o g e i a trichomanes  36 37  e dw e dw  Calypogeia  neesiana  Lophocolea  cuspidata  2  Athyrium f i l i x - f e m i n a C o r a l l o r h i z a maculata Hemitomes congestum L i s t e r a cordata Moneses u n i f l o r a Monotropa l a n u g i n o s a Pyrola a s a r i f o l i a Trientalis latifolia T r i l l i u m ovatum Bazzania tricre.nata Cephalozia bicuspidata Diplophyllum t a x i f o l i u m Frullania nisquallensis Heterocladium heteropteroides Lophozia i n c i s a Metzgeria f u r c a t a Pore11a p l a t y p h y l l a Plagiochila asplenioides Ptilidium californicum Radula b o l a n d e r i Sphaerophorus  globosus  116 2  (+.+.1) (2.+.3)  141, 124 2  46,  4  139  (+.+.3)  (+.+.2)  (+.+.3)  154/a 139 2 , 124 46, 141, ll6 46 84 44 .44 44 44, 44 2, 44 120 84 84 84 139 121  3  +.1.2 + .1.3  + .2.3  A b i e s amabalis Prunus emarginata Rhamnus p u r s h i a n a Sambucus pubens Taxus b r e v i f o l i a  .  (+.+.1) (+.+•3) 44  (+.+.3)  44  (+.+.3)  (+.2.3)  (2.4.2) (+.+•3)  (+.+.2) (+.+.3)  (3.4.2) 143  (+.+-3)  (+.2.3) 143  (+.1.3)  (+.2.3) (+.2.3) (+.3.3)  (+.2.3) (+.1.3)  (+.2.3) (+.1.3)  130  (+.1.2)  (+.+.3)  5  6  7  2.4.3 +.1.3  8  9  10 +.2.3  +.1.2 +.+.2  11 +.2.3 2.3.3  1.3.2  1.2.2 1.3.3  +.1.3 +.1.3  12  +.+.3 +.1.3  13 + .2.3 1.4.3 + .2.3 + .1.3  14  145 Species Conssignificance Vigor tancy Mean . Range Mean- -Rant 0.2 "0-1 3.0 4/14 0.2 0-+ 2.6 3/14 2-3 0-2 2.8 0.5 5/14 2-3 0-1 2.6 2-3 5/14 0.3 0.1 0-+ 3.0 1/14 0.2 0-1 3.0 3/14 0.1 2/lJi 0-+ 2.5 2-3 0.2 0-+ 3.0 k/lh  Tsugetum h e t e r o p h y l l a e plagiothecietosum undulati mahoniosum nervosae 1 2 3  T a b l e no. 19 Number o f p l o t s P l o t no. C o m p u t a t i o n r e f e r e n c e no. Date  152 29  2/l  Plot size (sq.m.)c Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope gradient (degree) Macroclimate Koppen Thornthwaite S t r a t a coverage ( p e r cent) A l A 2  Bl B B C Dh Edw D 2  Humus coverage ( p e r cent) D e c a y i n g wood coverage ( p e r Sent Land t y p e and Land form R e l i e f shape Profile Contour l i n e Parent material Erosion potential Run-off Drainage Hygrotope Stoniness (per cent) Permeable m i n e r a l s o i l depth (cm •) Ecto-humus h o r i z o n depth (cm.) L- F  1959  99 31 1/6 1959  1U9 32 24/7 1959  . TaugettunUhet eEophy l l a e ..eur^ynahrietpsiam oregani  4 125  28 *r/7~  "1959 800 49038' 49°20' 49°24' 49°20 123°13' 123°0l' 123°03' 123°01 380 520 880 360 225 270 203 180 14 25 31 l t  5 50 20 80 15 20 35 5 75 20 95 80 20  t  Cfb AB-,'rb4 rD  i 3 - 4 60 65 50 40 25 40 85 95 60 25 10  30 5 2 8 10  70 30  60 2 2 3 .5 85 15  25 45 20 80 15 40 50 5 75 25 100 4o 60  G l a c i a l d r i f t - Middle slope Straight Straight Till * Qutvast*--* • S l i g h t * Moderate *Slight Slow Well-drained Mesic *Mod. Mesic dry  2 125+ 10  Mean  535  sw  18  1 150 30 24/7 1959  33 23/7 1959  3 111 34, 19/6 1959  4 22/6 35 4/8 1958  Mean  800 49°24' 49°24 49°2o; 49°2o; 123°03' 123°03' 123°02 122°57 940 950 950 450 315 315 125 180 31 33 2 20 35  40  69 31  2  148  20 75 50 20 60 5 30 45 75 55 45  Cfb AB-[rb f3-4  20 40 25 75 30 50 65 5 50 10 60 80 20  15 70 20 85 25 60 75 20 35 5  40  75 25  G l a c i a l d r i f t - Middle S t r a i gbt Straight .."Outwash * T Moderate ^Slight Slow Well-drained Mesic  50 88+  22  820  wsw  22  25: 50 15; 75 15 85 95 15 35 20 55 75 25  29  slope  ill ^Moderate  •Moist 40  45 14  45 ' • ..18  3  £ °^  T a b l e no. 19 - Continued  Number o f p l o t s E l u v i a t e d h o r i z o n depth (cm.) H • L-F • ;.y.x  Tsugetum h e t e r o p h y l l a e plagiothecietosum undulati mahoniosum nervosae  1 A  e  4  Mean  1  Raw humus  Humus form S i t e index ( f e e t p e r lOOy)  3  Douglas-fir Western hemlock Western redcedar  2  5 4.00 4.10 5.50 5-45  e  P  A B C  2  Tsugetum h e t e r o p h y l l a e eurhynchietosum o r e g a n i  117 112 76  155 '99 88  134 104 81  .  3 15 3.95 4.00 5.60  4  Mean  0 4.01  8 3.98  5.01  5.31  Raw humus  150 122 9-1  138 109  84  133 97 95  141 118 108  130  121 95 90  131 103 98  -p-  Table no. 20 •Number of plots Layer No. Plot no. of Species Computation reference no.  1  A  l  Tsuga heterophylla  l  Pseudotsuga menziesii  l  Thuja p l i c a t a  2 3  2  2 3  3  2 3 Bl  4 5 6 7 8 9 10  2 1 2 . .1 2 1 2 2 1 1 .2  ll  ;.i  12 13 14 15 16 17 18  c  Bh dw  Tsuga heterophylla Thuja p l i c a t a Mahonia nervosa Vaccinium parvifolium Cornus n u t t a l l i i Gaultheria shallon Sambucus pubens Rubus v i t i f o l i u s Taxus b r e v i f o l i a  3 - 4  1  2  152  99  1^9  125  29  31  32  28  Species Vigor Conssignif i tancy cance mean mean  6.8.3 1.5 7.9.3 8.10.3 JQ'O 5.6.2 5.6.2 4.0 8.10.3 +. + .3 4.5 3.0 5.8.3 0.3 :4-^+.3 1.0 + . + .2 6.8.3 + . + .2 2.0 6.6.2 2.8 +.+.3 4.6.3 5.+.2 5.6.2 4.6.2 3.5 4.3.2 1.0 + . + .2 2.5.2 + . + .2 5.6.3 2.3 4.3.2 1.0  3.0, 2.8' 2.3" 3.0 2.7 2.0 3.0 2.3 3-0 2.0 2.0 2.3  1/4 4/4 3/4 4/4 3/4 1/4  4.6.3  2.8 2.0 2.3 2.0 2.0  4/4 1/4 4/4 2/4 4/4  0.3  2.0  1/4  0.5 + .+.2 0.5 + . + •3 0.3  1.5 2.0 3.0  2/4 2/4 1/4  + . + .2 0.3 + . + .2 3.4.2 + . + .2 3-+.2 2.0 3.6.2 2.+ .2 3.4,2 3.+ .2 2.8  3.0 2.0 2.0  •1/4 4/4 4/4  + .2.2 2.3.2 4.5.3 1.8 2.3.3 0.8  2.3 3.0  3/4 2/4  !  3.5.3 7.10.3 3.3.2 4.3 + . + .2 0.3 3.5-3 4.5.2 4.5.2 4.5.2 3.8 + . + .2 + . + .2 .0.5 3.5.2 3.4.2 3.6.2 5.6.2 3.5 + .3.2 + . + .2  + .3.3  + . + .2  5  6  7  8 Species Vigor Conssignifitancy cance mean mean  :  7-10.3 6.8.2 6.7.3 + .+.3 8.10.3 +. + .2 6.8.3 + . + .2  +  Rosa gymnocarpa Monotropa lanuginosa Trientalis l a t i f o l i a C o r a l l o r h i z a maculata Pteridium aquilinum Polystichum munitum Linnaea borealis Eurhynchium oreganum  Tsugetum heterophyllae eurhynchietosum oregani  Tsugetum heterophyllae plagiothecietosum undulati mahoniosum nervosae  iA  3/4 3/4 3/4 1/4 4/4  lA  7« •• :  7*10.3 7.10.3 4.6.3 4.6.3 7.9.3 5.+.3 5.+ .2 5.8.3  5.5 3.5 5.8 4.5 1.0 0.3 + .+.0 0.3 5.7.3 6.7.3 5.6.2 l ; + .2 4.3 7.9.3 4.6.3 5.4.2 + . + .1 4.3 2.4.3 0.5 4.5.3 3.5.2 5.4.2 1. + .2 3.3 3.4.2 3.4.3 1.5  .2.7 2.3 2.8 2.5 2.0 0 0 2.5 2.3 3.0 2.3 3.5  3/4 4/4 4/4 4/4 1/4 1/4  5.5.3 5.8.3 5.3 5.6.3 3.6.2 4.5 + . + .2 5.6.2 2.0  3.0 2.5 2.0  4/4 4/4 3/4  2.0 2.0 2.0 3.0  4/4 2/4 3/4 2/4  2.0 3-0 2.5 3.0 2.3'" 2.0 3.0 2.8 2.3  1/4 2/4 2/4 1/3 3/4 4/4 3/4 h& 3/4  3-4.3 M0.3 4.5.3 6.8.2 2.+ .2  8,10.2 -!-,•••, 5.+.2 +.+.1 5.8.3 6.+.2 +.+.2 7.10.3 4.7.2 + . + .0  3.3.2 4.5.2 6.8.2 8.10.2 1. + .2 1. + .2 + . + .2 3.3.2 4.7.2 + . + .3 + . + •3 + . + .3 + . + .3 + . + .3 + . + .3 2.8.2 5.4.3 3.5.2 3.+.2 + . + .2 3.4.3 4.4.3 •5.6.3 7.7.3 6.5.2 + .2.2 +.3.2  5-3 0.5 2.0 0.5  + .5.2 0.3 0.5 1. + .2 0.5 0.3 4.5.2 2.8 3.5.2 2.5 2.5.3 2.3 6.$.3 6.0 3-6.3 1.3  lA  4/4 4/4 1/4 4/4 2/4  T a b l e no. 20 - Continued  No.'  Layer Number of p l o t s  19  Hylocomium  21  h dw h dw dw  22  e dw  Dicranum f u s c e s c e n s  23  e dw  Hypnum  24  e dw  Isothecium  25  e dw  Lepidozia  26  dw  C l a d o n i a subsquamosa  20  P l a g i o t h e c i u m undulatum splendens  Scapania b o l a n d e r i  circinale  29 30 31  e dw  2B  32 33 34 35 36 37 38 39 40 41  .10.3 5.6.3 6.5.2 3.5.3 +.2.3 + .2.2 1.3.3 + .2.2 2.3.3 + .3.3  stoloniferum reptans  Q  h dw h dw dw dw  27  Tsugetum h e t e r o p h y l l a e plagiothecietosum u n d u l a t i Species mahoniosum nervosae s i g n i f i - V i g o r Cons1 cance tancy 2 . 3 4 Mean Mean  + .2.2 + .3.3 + .1.2 + .1.2  Mnium punctatum Rhytidiadelphus  loreus  + .2.3 3.5.3 2.3.3  C e p h a l o z i a media Calypogeia suecica Plagiothecium  Acer c i r c i n a t u m Menziesia ferruginea Prunus emarginata Rhamnus p u r s h i a n a Rubus s p e c t a b i l i s Vaccinium alaskaense Blechnum s p i c a n t C h i m a p h i l a umbellata Cornus c a n a d e n s i s Dryopteris austriaca  denticulatum  125 <[ 5 . 6 . 3 152 [+.+.2 22/b [ 3 . 7 - 2 22/b [+.+.2 125 ('+.+.2 125 ('+.4.2 150 ( + . + .2 22/b + .4.2 148 ( + . + .2 22/b( + .4.2  42 .43 44 45 46 47 48 49 50 51  2.3.3 + .3-3 + .4.3  +.4.2 +.2.2  +..1.3 + .1.2 •2.1.3 + .1.3 + .2.3 + . + .2 1.2.2 + .2.2 + .1.3 + .1.3  1.2.3 3.4.3 +.2.3 +.1.2 +.1.2 + .2.2 +.2.2 1.2.3  + . + .2 1.2.3 + . 1 . 2 + .2.3 + . + •3 1.2.3 + .1.2 + .3.2 + .2.3  7-7-3 5.5.3 6-70 4.5.3 2.3-3 + .2.2 +.2.2 +.+.2 +.2.2 +.3.2 2.4.3 + .3.3 + . + .2 + .1.2 + .2.2 5-6.3 4.6.3 2.3-3  4.8 3-0 3.5 1.8 1-3 0.8 1.5 1.0 1..3 1.0 ' 0.5 1.0 1.3 0.5 0.5 0.5 0.3 0.8 2.0 1-5 0.5 1.0 0.3 0.5  Hemitomes congestum Tiarella trifoliata Blepharostoma t r i c h o p h y l l u m Calypo^ ;eia trichomanes Calypog ;eia neesiana C e p h a l o z i a lammersiana Claopodium c r i s p i f o l i u m Dicranum scoparium Frullania nisquallensis Heterocladium p r o c u r r e n s  2.8 2.8 2.8 3-0 3-"02.0 3-0 2.5 2-5 2-3 2.0 2.0 3-0 3.0 2.0 2.0 2.0 2-7 3.0 3-0 2-5 3-0 2.0 1-3 148 111 152 152, 125 152 152  4/4 4/4 3/4 2/4 4/4 3/4 3/4 4/4 4/4 4/4  Tsugetum h e t e r o p h y l l a e eurhynchietosum o r e g a n i  5  6  7  8  5.6.3  3-4.2  4.5.3  3.5.3 + . + .2 1.2.2 + .2.2  4.5.3  5-5-2 + . + .2 1.3.3  2.4.3 2.3.2 3.5.3  + .1.2 3.5.3 + .3.3  1.2.3 2.3.2 + •3-3 + .1.3  2/4  4 A 4/4 2/4  + - + -3  + .2.2 + .1.3  2/4  + .1.3 + .2.2 1.2.3 2.3.3  + .1.2  + .3.3  4.3.2  2/4 1/4 3/4 2/4  2/k  3A  2.4.3 + .2.3 + .2.3 + .2.2 + -3-3 + .2.3 1.3.3  2.4.2 + .3.3 2.3-3  + .1.2 + . + .2  1.4.3 + .2.3 4.5.2 2.4.2 + -3-2  + . + .2 2.3-2  2/4  + .1.2  + ,2".. 3  + -2.3 + .2-3  + .2.3 + .2.3  + •3-3  Species s i g n i f i -Vigor Conscance tancy Mean Mean  3-5 0.5 3-8 0-5 1.0 O.3 1-5 1.0 1.5 0.8 0.3 1.0 0.8  2.8 2.0 2.8 2.0 2.8 2.0 2-3 2.8 3-0 2-7 • 3-0 2.8 3-0  1.00.8 1-3 1-3 0.8 1-3 0-5 0.5  2-5 2.3 2.5 2.3 2.0 2-5 3-0 2-5  4/4 1/4 4/4 2/4 4/4  lA  3A  4/4 3/4 3/4 1/4 4/4  3A 4/4 3/4 2/4 3/4 2/4 2/4 2/4 2/4  1/4  2/h  ( +.+.3) ( + .+.3) ( + .1.3) 150 (+ (2.3.3) ( + -1.3) ( +. 2 . 3 ) 22/b(+ . 5 . 3 ) 152 ( + . 1 . 3 ) 152 ( + . 2 . 3 )  52 53 54 55 56 57 58 59 60 61  Lophocolea c u s p i d a t a Lophocolea h e t e r o p h y l l a Mnium i n s i g n e Mnium spinulosum Neckera d o u g l a s i i Porella navicularis Porella platyphylla Plagiochila asplenioides P l a g i o t h e c i u m elegans Ptilidium californicum  125 125 152 152 152 152 152 150, 150 152  ( + •+ . 3 ) ( + •+ .2) ( + •3-2) ( + .2-3) ( + •2-3) ( + •2-3) ( + .2-3)  152 (+.2  + .2 . 3 ) ( + .2-3) >  Table no. 21 Number of plots Plot no. Computation reference no. Date  Polysticheto .- Thujetum plicatae I 2 4 3"  153 58 30/7 1959  Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope (degree) Macroclimate Koppen .Thornthwaite Strata coverage (per cent) A-j_ A  k  145 55 22/7 1959  37 23/7 1958  3  A Bl B B C D Ddw D 2  h  Humus coverage (per cent) Decaying wood coverage (per cent) Land type and land form R e l i e f shape Profile Contour l i n e Parent material Erosion potential Run-off Drainage Hygrotope Stoniness (per cent) Permeable mineral s o i l depth (cm.) Ecto-humus horizon depth (cm.) L-F Endo-humus horizon depth (cm.) Ah Eluviated horizon depth (cm.) e pH L-F Ah A B C Depth of seepage (cm.) Humus form  30 50 20 80 25 10 35" 65 5 5 10 80 20  15 4o 20 60 15 20  ko Go  5 20 25 60 ko  50 40  55 30  80. 10 15 20 70 5 10 15 80 15  75 15 20 30 46  4 6 10 80 20  *  Outwash Slight  6 71  41'  5/9 1958  5  95; 25! 5 25 15 10 15 25 75 25  1  5 .. ;20 10 30  s  40  70 30  Glacial drift Concave Concave Till Moderate  75 90+ 8 0 3  20 118+ 20 0 3  . 40 75+ 1 .15 ' 0 3.72 4.80  e  Douglas-fir Western hemlock Western redcedar  60 70  35 45 20  Well-drained  A  Site index (feet per lOOy)  5115 - 53 25/6 1959  l+9°20 \ U9°22\ 49°22 ' 49°23' 49°22j 49°i6 123°07.' 123°l4' 123°l4' 123°04 123°02 122°35 250 520 5I+0 850 1000 .760 180 160 20, . 225 160 270 8 8 28 16 20 15  2  A  3 36 23/7 1958 :  5.I9 Nil Raw humus  l*+5 142 123  143 102 96  75  Nil Raw humus  163 111 98  Duff . mull  k  177 142 110  151 131 120  40  90+ 5 0 5 3.87  21 67 72 4/8 1958  22 19 61 21/7 1958  24 98 50 1/6 1939.,  . 26 112 59 19/7 1959  16 18 25 23 14 ! 19 17 15 13 21 42 28 92 30 96 70 109 59 22/a . )4 48 46 40 44 62 38 45 51 39 47 5/9 20/8 27/8 29/5 15/7 27/5 .18/6 ' 19/9 19/9 29/5 4/8 1958 1958 1958 1958 1958 1958 1958 1959 1959 1959 1958 1959 800 k9°23' 49°l6' 49°i6' 49°2o' 49°23* 49°2i 49°15' 'i9°2i 49 22' ' ' ! 4 Q 0 ' U9°20 49 23 * ;-4§°22 49°17 49°20 k9°i j' 49°23' 49°23'49 17' 49°17' 123°04' 123°02' 122°57'l23°01 123°04 ' 122 35'l22 57'l22 35'l22 48'l23 00j^2°35'l22 35' 122°48' 122°35' 122°35' 122°57' 123°00' 123°0l' 122°34' 123°Ol' 46o 56O 1740 630 850 800 560 510 1200 430 1120 1200 1080 700 750 1200 900 900 1010 1000 90 225 ' 90 225 180 225 225 225 90 270 90 ,90 270 90 90 315 135. 200 225 90 10 24 6 6 40 7 4 30 11 35 13 13 20 20 35 6 3 12 Cfb ' 3 12 7 144 56 22/7  9  114 43 25/6 1959  11 149-; 54 17/7 1959  10 97  9  6  ,  o  ,  12 110 52 23/6 1959  1  r  !  !  0  f  2 2  V  25 30 20  70 40  30  6G  70 5 20  25 35  65  80 15  15 70  20 95 5  90 30  .lower slope  45 20  60  65  20 10 25 95  5 35 4o  20 20  4o 55  5  30 10 5 15 80 20  10  50 50  80  20  o  o  o  ABjrb,  35  50 .15 85 15 . 20  30  -15 50 10  70 5 '  15  20  95  90  20  7 10 90 10  20 10 30 80  3  70 25  85 15 65 70 50 15 10  25 60 40  25"  J  40  30 65 10 15 20 85 5 15 20 75 25  o  10 15 45 • 70 20 45 60 20 15 45 60 70  o  0  25 4520 '85 50 20 65 45 -15 15 30 80  50 30 70 10 30 30 . .•85 4o .20 60 .21  JUlu'viaL,G l a c i a 1 d r i f t jower slope fen  25 30 15 45 10 5 10 50 15 20 "35 80 20  •••' 5 30 5 40  90  10 .  95 60 35 15 30 85  96+ 1 8 0 3.70  4.52  5.08 5.20 nil Duff mull  Nil Raw humus  163 130 126  166 147 121  60 20 0 1 4.20 4.20  200+ 1 8 0  115+ 1 13 0  3.90  4.15  80 1 8 0 4.60  125+ 3 0 0 4.50  50+ 1 5 0  4.50  .80+ 1 10 0 .4.20 4.10  _  5.43  5.90  5.45 5.70  nil Raw humus  nilDuff mull  170 135 91  60 5 15 0 5.50 4.62  180 157 146  5.4l  5.00  nil 60 Duff Duff . -....mull;. •. mull.  146 119 133  175 130 127  162 149 90  5.32  5.20 5.65  5.20  100+ 23 0 4  145  115 122  145 103 103  162 129 93  174 159 165  ,  3.40 !  3.50 5.25 .  5.48 nil nil nil nil nil Raw Duff Duff Raw Duff mull. humus ... mull. ': .mu&lv-/humus  170 159 UO  '20 40 15 75 - 20 25 45 65 30 20  50 80 20  20 45  50 60  70 30 5 30 60 70 15 85 75 25  90 1 9 10 15 4o 50 90 80 20  10  Al^vial* ••• • Concave Concave *AHuvium* Till Slight  •Straight* *Straight* Concave *Straight* Till *Alluvlim*Outwash* Till *lacustrine*Outwash* Till Outwash* Moderate• *Slight* Moderate Slight Moderate.: S l i g h t * Slow Well-drained *Mod;dr.* Moist 30 20 60 70 30 40 45 30 35 5  3.92 5.10 5.60  149 139 125  20 66 57 4/9 1958 ..  50 100+ 5 3  40 105+ 5 0 3 4.45  0  3.80 3.70  Glacial drift r  40 70+ 3 0  95  Duff mull  168 113 101  20 95 15 5 20 . 30 30 20 50 60 4o  40 Lower slope  5 , 30 35 65 45 20 60 65 2 3 5 80 20  Mean Range  150  127 60 8/7 1959 49°2i' 123°0l' 370 770 250-1740 205 5 NNE-NW 2-40 .16 2 50 30 25 75 45 • 50 80 7-5 4o 30 70 60 4o  70 30-  35-90 IO-65  *Straight* Concave Outwash Slight *Moderate*Slight Moderately drained * Wet  0  150+ 8 0 0  2  70  25 60  60 75 20 90 75 35 30 65 60  :  5 125+ 1 7 0  4.60 5.20  5.40  nil  35 30  *LaCustrine* *Moderate* .  4.10  4.70 4.80  109 121  20 4o 30 75 4o 45 60 35 45 20 65 60 4o  27  5.57 5.82  145  nil  20 70+ 8  15 63+ 3 0 1 5.67 .  15 3.90  4.92 5.43 5.70 55  4.40 5-305-95 45  0  Raw humus  Raw humus  Raw humus  Raw Raw Duff mull.-... .humus '- humus  177 • 131 120  157 162 153  170 110. 104-  192 132 103  180 180 170  34 0-75 60 + 6 1-23 4 0-15 2- 0-15 4.29 3.4o- 5.67 4.39 3.70- 5.20 4.17 3.50- 4.92 5.24 4.70- 5-57 5.56 4.80- 5.95 78  178 126 128  159 124 130  164 143-192 133 102-180 119 90-170  Polysticheto - Thujetum p l i c a t a e  151  Table no. 22 1  Number of plots of pecies  Plot no. Computation reference no.  1 2 3  4 5 6  2  3  4  5  6  l 2 3 l 2 3 l 2 3 Bl 2 1 2 1 • .2 1 2 1 A  C h a r a c t e r i s t i c combination of species Thuja ""plicata ;. Tsuga heterophylla Pseudotsuga menziesii Thuja p l i c a t a Tsuga heterophylla  153  3  4  145  115  • 71  58  36  37  55  53  41  +.+.3 6.7-3 5-7.3 5-+.3 6.+.2 4.6.2 5-+.3 3.6.2 5.6.2 3.5.2 4.5.2 2.+.2  Rubus s p e c t a b i l i s + .4.2 Sambucus pubens Acer circinatum  +.+.1 4 . 4 . 3 1. + .2 5.7.3 3.7.2  +.+.3 5.6.3 7.10.3 +.+.3 +.+•3 5 . 8 . 3 4 . 7 . 3 3 . 7 . 2 5.6.3 7 . 9 . 3 5.8.3 5.6.2 4.8.3 4.+.3 5 . 8 . 3 7.10.3 +.+.3 8.10.3 4 . 6 . 2 4.+.3 3.+ .2 3-+.3 4.8.2 4.7.2 5.8.3 4 . 7 . 3 4 . 7 . 3 3.+ .2 1. + .2 3.7.3 4 . 7 . 3 2.+ .2 3.6.2 5.6.2 3.7.2 2 . 5 . 2 2.5-2 + . + .2 + .+.3 2 . 4 . 2 2.5.3 + .+.2 3.5.3 2.7.3 2 . 5 . 2 2.+ .2 +.5.2 + . + .2 1.5.2  o  c  7 8 9  10 11 12 13 14 15 16 >  17 18 19 20  !  7  8  9  144  114  226  56  43  • 11.7  Layer  : NO.  »h dw h dw h dw h dw h dw  l 2 3 l 2 3 1 2 3 Bl 2 A  Polystichum munitum Dryopteris austriaca Tiarella trifoliata Athyrium f i l i x - f e m i n a Blechnum spicant Mnium punctatum Plagiothecium undulatum Hylocomium splendens Rhytidiadelphus  loreus  Mnium insigne Companion species Alnus rubra Acer macrophyllum  8.10.3 7.9.3 6 . 8 . 3 8.10.3 5 . 5 . 3 5.5.3 4 . 7 . 2 4.7.2 2 . 3 . 3 4 . 4 . 3 +.3.2 + . + .2 3-+ .2 4 . 3 . 3 + . + .2 + . 3 . 3 4 . 3 . 2 +.3.3 2 . 4 . 3 2.+ .3 3 . 4 . 3 2.3.3 1.3-3 4 . 5 . 3 3.5.3 3.5.3 2.3.3 2 . 3 . 3 2.5.3 +.2.2 2 . 3 . 2 1.3.3 4.5.3 2.4.3 4.6.3 2 . 3 . 3 4.5-3 4 . 5 . 3 +.2.3 2 . 4 . 3 + . + .2 2 . 3 . 3 + . + .2 1.3.3 +.2.3 2.3.2 2 . 4 . 3 + . 2 . 3 2.3.3 +.4.3 2 . 4 . 3 3.5.3 2 . 4 . 3 + . 3 . 3 2 . 3 . 3 + . 2 . 3  6.9.3 + .+.3 7.8.3 5 . 9 . 3 3-8.2 2.6.3  6.7.2  3.2.3  2.4.3  + . + .2 5-+ .3 5.8.3 8.10.3 5.7.2 '5.'6?2 6.8.3 5.7.3 5.6.3 3.4.3 5.6.2 3.5.3 2.4.3 3.6.3 + . + .2 4.7.3 2.5.3 7.9.3 4.5.3 2.+ .2 2.4.3 4.5.3 2.3.3 4.5.3 3.5.3 + .2.3  4.5.3  110  21  42  28  92  109  59  49  54  52  39  40  38  46  51  45  +.+.3  +.+.3 4. +.3 +.+.3 5 . +.3 6.7.3 4.+.3 6.8.3 7.10.3 5.7.2 4.6.3 4.5.3 3.6.2  4.+.3 6.7.3 +.+.2 4 . 6 . 2 +.+.3 6 . 8 . 3 +.+.3 4.7.3 7.10.3 4.7.2  9.10.3 +.+.2 6 . 7 . 2 7.10.3 3.+ .2 + . + •3  6.7.3 +.+.2  5.9.3 3.7.2 4.8.2 3.7.2  2.7.2  l. + .l  5.5.2  2.4.2  15  +.+•3 5.7.3 7.9.2 3 . 4 . 2 4.+.2 6 . 9 . 2 +.+.2 +.+.3 +.+.2 4.+.3 7 . 9 . 3 6.7.2 5 . 7 . 3 6 . 7 . 3 6.+.3 4 . 8 . 3 + . + .2  20  21  22  23  24  25  26  27  30  66  67  19  96  98  70  112  127  44  57  42  61  48  50  62  59  60  19  4.+.3 4 . + . 3 5.7.3 + . + .2 + . + .2 5.8.3 7.9.3 +.+•3 + . + . 2 5 . 7 . 27.10.3 5 . 8 . 3 6.7-3 4.7.2 4.7.2 6.+.3 5 . 8 . 3 3 . 7 . 3 + . + .2 5 . 8 . 3 7 . i o ; x 7 . i o . 3 +.+.2  +.+-3 +.+.1 +.+.2 +.+.3 4.+.2 4.+.3 +.+.2 6.8.3 5.8.3 5 . 6 . 3 6.10.3 2.+.2 5.7.3 4.7-3  + . + .2  + .+•3  3.7.2 3.+.2 3 . 6 . 3 +.+.2 +.+.2 2 . 7 . 2 7-9.3 2 . 5 . 3 +.+.2 +.+.2 2.5.3 3.5.3 +.+-2 2.+.1 +.+.2 6.'5.3 2 . 5 . 2 +.4.2 + . + •3 + .+.2 1.+.2 4.6.3 4.7.3 5.8.3 2.5.2 3.5.2 2 . 4 . 3 2.5.3 4 . 6 . 3 6 . 8 . 3 7.7.3 7.9.3 2 . 4 . 3 3.5.3 5.4.3 2.5.3 4.5.3 2 . 3 . 2 3.4.3 + . + .2 2 . 4 . 3 4 . 5 . 3 2 . 4 . 2 4.6.3 2.4.3 5.6.3 5.4^3" 2.4'. 3 2.3.3 2.2.3 4.6.3 2.4.3 2.4.3 4.5.3 3.4.3 7.6.3 2.5.3 3.5.3 5.5.3 3.5.3 2.4.3 + .2.2 2.5.3 4.5.3 + .4.3 1.2.3 1.3.3 3.4.3 4.5.3 5.6.3 3 . 4 . 3 + . 4 . 3 3 . 4 . 3 1.2.3 + . 2 . 3 1.2.3 1.2.2  4.7.3  2.+.3 +.6.2  +.+.2  2.5.2 3 . 6 . 2 + . + . 2 6.7.3  3.7.3 2.5.2  + .+.2 5.6.3  5.6.3 3.4.3 5.6.3 4.5.3  1  + .+.2 2 . 4 . 2  3.5.3  9.10.3 + . 6 . 3 4.6.2 1.5.2 6.9.3 ' 7.9.3 4.5.2 2.5.2 +.+.2 4.3.3 + .+.3 5.5.2 1.5.3 2?5^33 4 . 6 . 3 4.5.3 1.3.2 4.6.3 2.4.3 2.3.3 3.5.3 5.6.3 2.5.3 3.3.3 3.5.3 . 4 . 6 . 3 3.4.3 j 3.3.3 4.6.3 1  + .+.1 6.7.2 4.6.2 8 . 9 . 3 3.+.2 3 . 4 . 3 2:4'. 2 3.4.3 2.4.2 2.3.2 2.+ .2 5.5.3 4.5.3 6.8.3 2 . 4 . 3 5.6.3 4 . 6 . 3 7.9.3 2.3.2 6.7.3 2.5.2 4.6.3 4.5.3 4.5.2 3.5.3 2 . 4 . 2 1.3.3  + . + •3 5.7.3 8.10.3 4.5.3 6 . 8 . 3 7.9.3 4.5.3 3.4.3 3-4.3 4 . 3 . 3 + .4.3 3.4.3 4 . 5 . 3 5-4.3 4.3.3 5.4.2 1.3.3 6.8.3 2.3.2 5.5.3 3.4.3 4 . 4 . 3 5.6.2 2.2.3 + .3.3 + .2.3 2.3-3 2 . 3 . 3 4.5.3  3.5.3  +.+.2 +.+.1  3.7.2  3- + .3 4.7.2  4.7.2  1  1.4 3.1 1.6 4.7.3 1.7 5 . 7 . 3 6.7.3 6 . 9 . 3 4.5 5.7.2 5.6.3 2.5 + . + •3 8.IO.3 3.6 2.0 + . + .2 0.3 5.6.2 3.5.3 4 . 6 . 3 2.4 3.4.3 3 . 4 . 3 1.6 4 . 6 . 2 4 . 6 . 3 5.7.3 3.1 3.4.3 3 . 4 . 3 1.3 1.3.2 2 . 3 . 2 0.3 4 . 4 . 2 3 . 5 . 3 2.1 2.4.2 4 . 5 . 2 0.7 0.8 2.3.1 5.6.2 2.8 4 . 6 . 2 7.7.3 4 . 3 . 3 4 . 5 . 3 1.6 4 . 5 . 2 3.5.3 5.5.3 6.2 1.3.2 5.3.3 5.5.3 3.3 +.3.3 2.3.3 5.3.3 2.5 1.3.2 5.3.3 1.7 5.6.3 8.10.3 6 . 5 . 3 3.0 5 . 6 . J T . 4 . 3 7 . 8 . 3 2.7 6.5.3 2.7 6 . 6 . 3 +.2.2 2.4.3 5.5.3 2.9 3 . 4 . 3 + . 2 . 3 4 . 3 . 3 2.5 3 . 4 . 3 2.0 5.5.3 4 . 4 . 3 1.3 2.3.3 3 . 4 . 3 1.7 + . 3 . 3 2 . 4 . 3 2.0 + .2.3 1.x 0.x +.+.3 5-+.3 + . + .2 3.+.3  + .+.2  + . + .2  +.+.3  + .+.2 6.8.2  5.8.3  3-6.2 3.5.3  3.5.2 3 . 4 . 3 4 . 5 . 3 4 . 5 . 2 3.3-2  +.+.2 +. + .2  +. + .2  I . 5 . 3 2 . 5 . 3 3-+.2 2 . 4 . 3 +.+.2 1.+.2  + .+.3  1.+.2 l . + . l  5.5.3  Species Vigor Constancy significance Mean - Range Mean . Range  5.7.3  + . + •3  +.+.3 4.+.3 + . + .2  2.+ .2  18  i4o  13  4.7.3 2.+.2 4 . 6 . 2 5.7.3 + . + . 3 6.7.3 2.4.3 3 . 4 . 3 3 . + . 3 2.5.2 5.5.3 2.5.2 1.2.3 4.7.3 + . + .2 5-8.3 3 . 4 . 3 3.5.3 4 . 5 . 3 3-3.2 2 . 4 . 2 2 . 6 . 3 3.5.3 +.+•3 2.5.3 3 . 4 . 3 + . + .2 2.5.3 +.+.3 4.7.3 + . + .3 5-6.3 3.5.3 + .+.2 3.5.3 4.8.3 5.6.2 8.10.3 9.10.3 8.10.3 7 . 9 . 3 7.9.3 7.10.3 3.3.2 6 . 8 . 3 +.+.2 4 . 5 . 3 4 . 5 . 3 3.4.2 2.5.2 2 . 3 . 2 3 . 4 . 3 2.+ .2 3-+ .2 4 . 5 . 3 1.5.3 5.7.2 + . 4 . 3 1.4.2 2 . 4 . 2 3 . 5 . 3 3 . 5 . 3 3 . 4 . 2 1.4.3 3.5.2 3 . 5 . 3 5.6.3 3 . 4 . 3 + . 4 . 3 4 . 5 . 2 1.2.3 4 . 4 . 3 1.3.2 3.5.3 + . 2 . 2 + .3.3 4.3.3 3.5.3 + .+.2 4 . 5 . 3 1.3.3 3 . 4 . 3 1.3.2 3 . 5 . 3 3-5*3 6.7.3 2.5.3 3.5.3 1.3.2 5.6.3 2.4.3 3 . 3 . 3 2 . 5 . 3 4.5.3 3.4.3 + .3.3 2.3.3 2.4.3 2.3.3 2.3.3 2.4.2 3.5.3 3.4.3 1.3.3 + .3.3 2.4.3 3-4.3 1.3-3 3.4.3 2.3.3 1.4.3 5.6.3 2 . 4 . 3 2 . 3 - 3 3.4.3 2.4.3 4 . 6 . 3 +.4.3 2.3.3 3.5.3 4 . 5 . 3 + . 2 . 3 4.5.3 2.3.3  6.8.2  17  97  5.7.3 4.7.3 +.+.3  f  16  12  +.+•3  + . + .1  Abies amabilis +. + .3 2.5.2 + . 2 . 3 1.4.2 3.5.2  1.3.2 1.3.3 2.4.3 +.4.3 2.3.3 2*4.2 2.5.3 2.5-3 2.3.3 +.3-3  +.+.3 4.7.3 6.7.3  v  6.9.3  Vaccinium parvifolium  4.7.3 +. + .2 2.3.2  1  14  11  10  +.4.3 2 . 4 . 2  4.5.2  1.3 1.4 0.6 0.2 0.5 0.1 0.1 0.2 0.1 0.4 2.0  0- 5 0- •7 0-•6 0- •7 0--8 0-•6 0- 8 0- •7 0- -5 0- •5 0- 6 0- 7 0- •5 0-•4 0- 6 0-•4 0- 3 2--3 0-•4 3-•9 +-•6 0- •5 0- •5 0- 8 0- •7 0- 6 0- 7 0- 5 0- 6 0- 4 0- 4 0- 5 0- 4 0- 4 0-9 • 0-7 0-6 0-4 0-6 0-2 0-+ 0-4 0-+ 0-3 0-5  .2.7 2.7 2.4 3.0 2.7 2.4 2.9 2.4 2.0 2.5 2.6 2.4 2.5 2.5 2.4 2.6 2.2 2.8 2.6 2.9 2.6 2..5 2.6 2.7 2.9 2.8 5.8 2.9 2.7 2.9 2.9 -2.9 3.0 2.7 2.6 2.2 2.1 2.5 2.6 1.5 3.0 2.6 2.5 2.0 2.4  1- 3 2- 3 2- 3  15/27 22/27 17/27 18/27 .2- 3 26/27 2- 3 17/27 .2- 3 22/27 2- 3 14/27 3/27 2- 3 20/27 2- 3 17/27 2- 3 25/27 2- 3 15/27 2- 3 4/27 1- 3 22/27 2- 3 8/27 1- 3 16/27 2- 3 16/27 2- 3 15/27 2- 3 27/27 2- 3 • 27/27 2- 3 25/27 2- 3 22/27 2- 3 23/27 2- 3 25/27 2- 3 26/27 2- 3 24/27 2- 3 24/27 2- 3 20/27 2- 3 16/27 2- 3 20/27 .2- 3 23/27 20/27 2- 3 4/27 2-3 1-3 2-3 2-3 2-3 .1-2 2-3 2-3 1-3 1-3  8/27 11/27 6/27 2/27 3/27 2/27 2/27 3/27 4/27 7/27 22/27  152  Polysticheto - Thujetum plicatae Table no. 22 - Continued No. Layer of Number of p l o t s Species Gaultheria shallon 2 21 2 Rubus v i t i f o l i u s 22 Mahonia nervosa 2 23 Sorbus sitchensis 2 24 1 Taxus brevifolia 25 0  26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  48 49 50 51 52 53 5*  d.  2 2 2 2 2 1 C  Eh dw e dw e dw e dw e dw e dw e h dw dw e h dw e dw e dw e h dw e dw e  Vaccinium alaskaense Rubus p a r v i f l o r u s Rhamnus purshiana Oplopanax horridus Menziesia ferruginea Cornus n u t t a l l i i Cornus canadensis Galium t r i f l o r u m Pteridium aquilinum Luzula p a r v i f l o r a Lactuca biennis Gymnocarpium dryopteris Carex bolanderi Trientalis l a t i f o l i a Streptopus amplexifolius T r i l i u m ovatum Eurhynchium oreganum Hypnum c i r c i n a l e  1  2  3.7.2 3 . 6 . 2 +.5.2 1 . 5 . 2 +.+.2 +.+.2 2.5.2 + . + .3 + . + .3  +.+.3 1. + . 2 1 . 6 . 2 3.6.2 + . + .2  + . + .2 + .3.2 2.3.2 2.3.3 1.2.3 + .1.3  Scapania bolanderi Isothecium stoloniferum  Plagiothecium elegans  + .2.3 + .4.3 + .1.3 + .2.2  Cephalozia media  4.5.3 3.4.3 2.3.3 3.4.3 + . 2 . 2 +.2.2 3.5.3 3.4.3 + .4.3 + .2.3 1.3.3 + .3.3 + .2.2 1.2.3 1.2.3 +.3.3 + . 2 . 2 1.3.2 3.5-3 +.5.3 + . 5 . 3 1.2.3 + .1.3 +.2.3 + . 2 . 3 + . 2 . 3 +.2.3 +.2.3  + .4.2 4.4.3 3.4.2 + . + .3 + . + .2 + . + .3  Lophocolea cuspidata  2.+.3  1. + . 2  +.+.3  + .2.3 1.3.3 + .2.3 + .2.3 + .2.3  + . + .2 +. + .*2 + . + .3 + . + .2 + . + .3 + . + . 2  + .3.3  9  2.5.2 2.5.2 +.+.2 : 3 . 7 . 3 1.4.2 +.+.2 2.5.2  3.5.3 2.4.3 2.4.3 + .3.3 1.3.3 2.2.3 + . 2 . 3 +.2.3 + .1.2 + .+.2 2 . 3 . 2 +.2.3 + .2.3 +.3.3 + . 3 . 3 + .3.2. + .2.3 2.3.3  + . + .3 1. + . 2 + . + .2 + . + .1  + . + .3 + .+.2 3.6.3  +.+.3 2.4.3  2.+.3  3.5.2  3.5.2 5.5.3 2.5.3  + .+.2  i J  2.4.3  +.•.2 +.+.2  3.4.2  1  2.3.3 +.1.2 +.+.3 1.2.3 +.1.2 +.5.3 1.2.3  +.2.2 +.1.3  +.2.3  +.2.3 +.3.3 +.+.2 2.3.3 +.3.3 +.3.3 +.3.3 +.1.3 +.3.3 +.3.3 +.1.3 +.1.3 +.2.3  + .2.3  2.4,3 1.3.3 +.3.2 +.2.3 +.1.3 3.4.3 +.3.3 +.3.3  13 4.6.2 3.6.3 +.+.2  3.5.2  +.+.3  +.2.3  2.3.3 +.3.3 +.1.3 +.1.3 1.2.3 +.1.3 i+.5?3 1.3.3  15  2.+.2 +.+.2 +.+.2  16  2.6.2 3 . 6 . 2 +.5.3 +.+.3  17  19  4.7.2  +.+.1 3.5.? 2.5.3  1.5.3  +.+.1 1.5.3  +.+.3  1.5.2 1.3.2 1.3.3  +.4.3  +.+.2  +.2,3 +.2.3  +.1.2 +.+.3 +.+.3 +.+.3 +.2.3 +.+.3  +.+.3 +.+.2 +.3.3 3.4.3 2.5.3 3.4.3 3.5.3 +.2.3 +.3.3 +.4.3 +.1.3 +.2.3 +.2.3 +.2.2 +.2.3 4.5.3 +.1.3 +.2.3 +.5.3 3.5.3 2.3.3 3.5.3 +.5.3 +.2.2 +.3.3 •.!"•+#3 +.+.2  1.3.3 1.2.3 +.2.2 2.4,3 +.3.3 1.4.3 +.3.3  +.3.3 +.2.3  +.2.3  +.2,3 +.3.2 +.3.3  +.2.3  +.+.2  3.4.3  24  3.5.2  4.5.2 2.4.3  3.5.3  2.4.2  2.3.3 +.2.3  3.4.3 2.5.2 1.+.2 +.2.2 1.+.3 +.+.2 1.3.3 2.4.3  + . + .3 6.7.3  + .+.2 1.+.3 +.+.3 5.7.3 +.+.3 3.5.2  3.4.2 + .2.3 1.2.3 + .1.2 3.4.3 2.3.3 + .3.3  2.3.3 3 . 5 . 2 +.2.3 +.3.2 1/2.2 2 . 3 . 2 + .2.2 2.4.3 + .5.3 2.4.3 + .4.2 +.3.3 + J+  + .2.3  3.5.3  +.+.3  +.2.3  2.3.3 +.2.3 4.3.3 1.2.3 +.2.3 +.3.3 +.2.3 +.3.3 +.2.3 +.3.3 1.3.3 +.2.3  +.3.3 1.2.3  + .+.3  4.6.3 3.+.3 4.6.3 4.5.3  +.+.2  1.+.2  1.2.3  +.2.3  23  + .+.2  +.+.1  3.3.2 2 . 5 . 3 +.4.3  +.+.3 +.+.3 +.2.3  22  +.3.1 2 . 5 . 2 1.+.3  +.4.2  +.+.2  1.3.2 2 . 3 . 3 +.3.3 +.3.1 1.+.2 +.4.2 +.3.3 + .+•2 2.3.2 +.3.3 +.+.3  +.4.3 3.4.3 4.6,3 +.+.2 1.3.3 2.3.3 +.3.3 +.+.3 +.2.3 1.2.3 +.2.2 +.1.2 2.3.3 3.2.3 +.2.2 + . 2 . 3 +.3.3 2.3.3 +.2.2 +.2.3 +.2.2 +.2.3 +.1.3 +.2.3  +.1.2  21  +.+.3 +.+.2 +.+.3  +.2.3  +.2.3  20  2.3.3  1.+.2 +.+.3 1.3.3 +.3.2 2 . 3 . 3 +.2.3 1.3.2 +.1.3 +.1.3 1.2.3 1.2.3 +.1.2 +.2.3 2.4.3 2.4.3 +.2.3 +.2.3 2.4.2 3 . 5 . 3 +•3.3 +.1.3 +.2.3 +.1.3 +.+.3  +.1.3  18  +.3.2  2.6.3 2.+.3 2.5.2 +.+.3 3.6.3 4 . 5 . 3 +.+.2 2.4.3 1.5.2 4.6.3  2.4.3 +.+.2 2 . 4 . 2 2.4.2 3.4.2 +.+.3 2.+.2 +.+.2 2.3.3  5.5.3 3.4.3  14  1.3.3  +.+.2 +.4.3 2.4.3  2.+.3  +.2*2  + .1.3 +.+.3  2.3.3  3.5.3 +.3.2 4.5.3 +.4.3 1.3.3 +.2.3 3.4.3 +.4.3  +.+.3  12  3.6.2  +.+.2  +. + . 3 + . 1 . 3 +.2.3 +.2.3 + . 2 . 3 + .2.3 3.4.3  11  4.7.3  2.6.3  + .2.2 +.+,2 +.2.3 + .2.3  10  2.4.3  +.+.3  •  4.6.3 3.5.3 +.2.3 + . 3 . 3 2.3.3 +.2.3 +.1.2 +.+ .2 + .1.2 + .2.2 2.3.3 + .2.3 3 . 4 . 3 j +.2.3 1 +.6.3 2.3.3  + .2.3 2.3.3 2.3.2 + .2.3 + .2.3 + .2.3 + .2.3 + .2.3 + .1.3  +.3.2  +.2.3 + .2.2  8  +.4.2  P l a g i o c h i l a asplenioides Bazzania ambigua  7  +.+.2 +.+.2 +.+.3  2.1.3 + .3.3 + .5.3  trichomanes  5  + . + .2  Plagiothecium denticulatum  Calypogeia  4  + .5.3 + . + .2 + . + .3  Dicranum fuscescens  Lepidozia reptans  3  .2  +.2.2  25  26  +.+.1 4 . 6 . 2 3.5.3 3 . 5 . 3  6.6.2 3.^.3  +. + .2 +.4.2 +.4.3  +.+.3 3.5.2 +.+.2 + .+.2 +.5.2 2.4.3  +.+.2 + .3.3 4.+.3  +.5.2 +.3.3 2 . 3 . 3 a.3.3 4.5.2 4 . 3 . 2 +.+.3  2.3.3 +.+.2  4.5.2 3.3.3  +.2.3 +.2.3 +.1.3 1 . 3 . 3 2.2,'3 + . 2 . 3 + .1.3 3.4.3 2.2.3 + . 4 . 3 + .2.3 2.3.3 2.3.3 + . 6 . 3 + .5-3 + .1.3 + .1.3 + .1.3 + .2.3 +.2.3 +.2.3 +.2.3  + .1.3  +.2.3 +.2.3 +.1.3  +.3.3 +.2.3 +.2.3  5.3.3 + .+.3 2.4.2 +. + .3 3.2.3  +. + .3  + .4.3 + .4.3 +.2.3  27  + .2.3  + .+.2  +.+.2 +.+»3 7.8.3 3.4.3 4.5.3 2.3.2 3.5.3 3.5.2 +.2.2 +.3.2 2.3.3 + .2.2 2.3.3 +.1.3 + .1.2 + .212 2.1.3 + .2.3 1.3.2 + .3.3 + . 2 . 3 2.3.3 +.2.3 2.5.3 + .1.2 + .2.2 4.5.3 1.3.3 + .2.2 + .3.3 + .3.2 + .2.2 2.2.3 + .1.2 + .2.3 + .1.3 +.3.3 +.1.3 2.2.3 +.2.3 +.1.3 +.+.3  +.3.3  +.2.3 +.2.3 +.2.3  + .2.3 +.1.3  Species Conssignificance tancy* Mean R» nge /. Mean; Range  2.0 1.4 0.6 0.2 0.4 0.4 1.1 0.4 0.2 '0.3 0.7 0.4 0.8 0.6 1.3 0.5 0.2 0.5 0.2 • 0.5 0.3 0.3 2.5 1.6 0.4 1.8 0.8 0.9 0.8 1.9 0.7 0.1 0.8' 0.8. 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.4 0.5 0.2 0.2 0.2 0.2 0.3 0.3 0.5 0.1  0-7 0-5 0-3 0-2 0-4 0-3 0-4 0-4 0-1 0-1 0-3 0-4 0-5 0-2 0-4 0-2. 0-+ 0-3 0-1 0-3 0-1 0-1 . 0*7 0-4 0-+ 0-4 0-+ 0-2 0-+ 0-3 0,+ 0-4 0-+ 0-2 0-1 0-2 0-2 0-+ 0-+ 0-2  •o-i o-3 0-+ 0.-+ 0-+" 0-+ 0-2 0-3 0-3 0-2 0-+  2.0 2.6 2.5 2.4 3.0 2.5 2.5 2.1 2.8 1.7 2.8 2.3 2.5 2.4 2.2 2.6 1.8 2.8 2.5 2.4 .2.1 2.7 .2.9 2.8 2.3 2.8 2.8 2.7 2.5 2.9 2.7 2.9 2.7 2.9 .2.8 2.5 2.6 2.9 3.0 3.0 2.9 2.9 2.9 3.0 3.0 3.0 3.0 • 3.0 3.0 2.8 ' 3.0  1- 3 2- 3 2-3 2-3  19/27 17/27 19/27 5/27 6/27 2-3 9/27 2-3 13/27 2-3 •8/27 2-3 •5-/27 1- 3 8/27 2- 3 10/27 2-3 6/27 1-3 14/27 214/27 217/27 213/27 16/27 26/27 26/27 2-3 8/27 2-3 9/27 2-3 8/27 2-3 22/27 2-3 18/27 2-3 11/27 2-3 25/27 2-3 23/27 2-3 21/27 2-3 23/27 .2-3 24/27 2. 20/27 2v22/27 .221/27 219/27 29/27 29/27 2-3 8/27 2-3 .12/27 9/27 5/27 2-3 12/27 2-3 9/27 2-3 14/27 5/27 7/27 5/27 4/27 6/27 9/27 12/27 2-3 4/27  I  153  Polysticheto - Thujetum p l i c a t a e No. of Species 55  Continued Table no. 22 Layer Number of plots dw  1  Calypogeia suecica  2  4  3  + .2.3  5  7  +.1.3  60  e e dw e dw e dw  6l  dw  59  F r u l l a n i a nisquallensis P o r e l l a plathyphylla Lophocolea heterophylla  10  + .2.3 +.2.3 + .1.3 +.3.3 +.3-3 +.2.3 +.+•3 +.2.3 +.+.3  + .2.3  +.1.3  + .2.3  + .1.3  Calypogeia neesiana  63  64 65  66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83  84  19  20  +.2.3  +.2.3  24  26  25  + .2.3  +.2.3  + . 1 .3  +.2.3  +.2.3  2.4, 3 2.4.3  1.3.3 + .2.3  +.2.3  + . + .2  + .2.3 +.6.3  + .3.2  .70  21 145 21  59  70 21 21 67  112 28 03 28 67  110 28  70  95 96 97  110  (+.+.3,  115  (+.+.2)  .+.+.2) [+.+.2 y  04  [+.+•!]  42  ( + .3.2),  96  (2.3.3),  HO  28 28 115  [+•+•2]  21  [+.+.2  >  1  19  (+.+-1)  28 k2 30 k2 (+.+.3); 71 110 59 04  + . + .3 ,,127 + .+.2 + . + .3 1. + .2 21 (+ + . + .3 + .3.3 + .2.3 + .1.3  ,  115  +<3),  (+.+.2)  30 (+.+.3), 115 (+.+;3),  115 (+.3.2)  ,  114 (+.+.3), 98  (+.+.3),. 109 (+.+.3)  98 99 100 101  97 21 28 21  + .1.3 , + .2.3 + . + .3 + .1.3 ,  109 ( + . 2 . 3 ) , 140 (+.2.3)  102 103  Dicranoweisia cirrhata Diplophyllum taxifolium Heterpcladium heteropteroides H. p r o c u r e n s Homalothecium n u t t a l l i i Hookeria lucens  03 28 59 71 21 28  + .1.3 + . + .3 +.2.3 + .3.3 + .3.3 1. + .2  04 (+.2.3) 42 (+.+.3), 92 (+.+.3) 22/a, 96, 97 (+.3.3) 30 ( 2 . 3 . 3 ) 30 (+.3.3) 21 (+.3.3)  105 106 107  114 ( 1 . 3 . 3 ) ,  .  127 (+.+.2)  ,  , , , , , ,  +.2.3 + .3.3  (+.+.2)  C e p h a l o z a lammersiana Champtothecium l u t e s c e n s Claopodium b o l a n d e r i D I c r a n e l l a heteromala  104 >  Pyrola a s a r i f o l i a Rubus p e d a t u s S m i l a c i n a racemosa Streptopus roseus T r i s e t u m cernuum 28 Viola glabella Viola orbiculata A n t i t r i c h i a curtipendula Cephalozia bicuspidata  (+.2.3)  I+.+.2' (3.5.3'  93  ! 9k  (+.+.2)  1+.+.2)  3), 0 5.2.2-3),  I  J  [+•+•3] [+.+.2;  j+.+.l] > !+•+•!>  ;  89 90 91 92  + .3.2  + .1.2  1.3-3 +.2.3  + .2.3 +.2.3 +.2.3  + .5.3  + .2.3  !+.+.3 [+•+•3] ' > (•f . + . 2 , 19 [+.+.2] > (3.6.2: 70 67 ( + .-K 2 ) , 30 [l.k.2] 71  + .2.3  + .1.2  + .2.2  Claopodium c r i s p i f o l i u m Atrichum undulatum  +.2.2 +.2.2  + .4.3  109 (+.+.3), 127 (+.2.3)  27 +.1. 3  +.+.3  +.2.3  scoparium  Lycopodium clavatum L. selago Moneses u n i f l o r a Prunella v u l g a r i s  23  + .2.3 +.2.3 +.3.3  Bazzania denudata  Betula p a p y r i f e r a Populus trichocarpa Prunus emarginata Rosa gymnocarpa Salix sitchensis Vaccinium o v a l i f o l i u m Achlys t r i p h y l l a Actaea arguta Anaphalis margaritacea Aruncus v u l g a r i s Dicentra formosa Epilobium angustifolium Equisetum telmateia Festuca s u b u l i f l o r a Goodyera o b l o n g i f o l i a Heuchera glabra Hieracium a l b i f l o r u m L i l i u m columbianum Linnaea b o r e a l i s  22  + .2.3  + .2.3 + .3.3 + .2.3  + .2.3  Dicranum  21  + .1.3  + .2.3  (2.3.3) 85 86 87 88  18  + .2.3 + .2.3  + .1.3  + .2.3 +.2.3  Bazzania t r i c r e n a t a  17  + .1.3 +.1.3 +.+.3 +.2.3 +.2.3 +.3.3  + .2.3 + .2.2 + .2.3  P t i l i d i u m californicum  <~\  h dw e h  16  15  + .3.3 + .2.3 +.2.3  +.1.3  tr  e dw  14  13  +.1.3+.2.3  + .1.2  12  +.1.3  Ci  62  11  +.2.3 +.2.3  56 57 58  8  108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129  +.3.3  Metzgeria furcata M. pubescens Mnium menziesii M. spinulosum M. venustum Neckera d o u g l a s i i N. menziesii Pogonatum alpinum Porella navicularis Porotrichum neckeroides Plagiothecium sylvaticum Radula bolanderi R. <£omplanata Rhytidiopsis robusta Sphagnum robustum Sphagnum papillosum Ulota megalospora C e t r a r i a glauca Cladonia subsquamosa P e l t i g e r a canina Sphaerophorus globosus Tetraphis p e l l u c i d a  109 109  ConsSpecies Vigor tancy significance Mean. Range Mean . Range 0.3 0.1 0.3 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.3 0.1 0.0 0.1 0.1 0.1 0.2 0.2  0-+ 0-+ 0-+ 0-+ 0-+ 0-+ 0-+ 0-+ 0-+ 0-+ 0-2 0-+ 0-+ 0-+ 0-+ 6-1 . 0-+ 0-+  3.0 3.0 3-0 3.0 3.0 3.0 2.7 3-0 3.0 3.0 3.0 3.0 2.5 2.6 2.2 3.0 2.6  140 ( +.2.3) (+.1.3) , (+.2.3) 96 ( 4 . 5 - 3 ) , 22/a ( + . 3 . 3 ) , 190 67 ( +.2.2), (+.2.3) , (+.2.3) (+.2.3) , 30 (+.3.3) 22/a, 96, 97 ( + • 3-3)  59 21 21 04 59, 30 (1.3.3) 21, 97, 98 ( +.2.3)59 (2.5.3) (+.2.2) 71 59 (+.2.3) 28 (+.2.3) 28 (1.2.3) 28 (+.1.2) 70 (+.+•3) 96 (+•+•3) (+.+.2) 67 66 ( +.1J3) 97, 115 (+.2.3, 127 (+.3.3) 66 (+.1.3) 97, 115 (+.s . 3 ) , 04 (+.1.3) , 22/a (+.2.3)  2-3  2-3 2-3 2-3 2-3  8/27 3/27 10/27 9/27 6/27 2/27 3/27 7/27 3/27 3/27 6/27 2/27 1/27 4/27 3/27 4/27 7/27 5/27  Gaultherieto - Tsugetum heterophyllae Gaultherieto - Tsugetum heterophyllae pleurozietosum schreberi 1 4 2 Number of plots 1 2 3 5 3 Mean 62 56 P l o t no. 52 103 37 47 57 54 h 1 2 6 8 Computation reference no. 5 7 3 26/8 21/8 8/6 22/8 28/8 26/8 Date 25/8 9/9 1958 1958 1958 1958 1958 1958 1958 1959 800 800 P l o t size (sq. m.) k9°i9\ Latitude 9°19[ •+9°19] k9°i9' •49°251 49°19 -+9°19 1 2 2 ° 3 5 ' 122°35 122°35 122°47 122°35 Longitude 122°35 122°35 122°35 1800 1690 1800 1680 Altitude (ft.) 1450 2000 1730 590 1730 180 180 90 180 Hilltop Hilltop 180 Exposure (degree) 257 10 16 11 8 10 Slope (degree) 5 5 Cfb Cfb Macroclimate Koppen AB-(rb4 ABjrb^ Thornthwaite 20 S t r a t a coverage (per cent) A l 30 20 50 15 25 25 45 40 60 A 50 30 ko 15 15 35 20 10 A3 10 20 25 15 80 70 A 60 60 50 75 75 55 20 20 10 20 30 25 25 35 l 80 40 . 4o. B 30 50 50 65 55 60 60 40 60 80 B 50 70 85 1 1 10 C 1 5 5 5 5 90 90 Dh 90 35 75 85 85 95 10 10 5 5 5 5 15 Aiw 40 100 80 D 100 100 100 90 91 90 80 88 Humus coverage (per cent) 90 90 90 90 95 95 10 10 10 10 Decaying wood coverage (per cent) 20 10 12 5 5 Rock outcrop - Upper-slope G l a c i a l d r i f t ^Upper-slope Land type and Land form Convex Convex R e l i e f shape Profile Convex Contour Convex Granitic rocks Parent material Till Severe Severe Erosion p o t e n t i a l Medium Run-off Medium Excessive Excessive Drainage Dry Dry Hygrotope 0 0 0 10 0 Stoniness (per cent) 10 5 5 7 10 Permeable mineral s o i l depth (cm.) 21 18 k 15 13 17 15 5 10 20 Ecto-humus horizon depth (cm.) L-F 20 13 9 17 15 17 5 10 4 10 Eluviated horizon depth (cm. ) Ae 10 15 13 5 7 9 Table no. 23  h  Mean  Range  1510  590-1800  i  2  B  2  91 9  90-95 5-10  2 10 12 10  0-10 4-15 5-13 4-15  •--  T a b l e no. 2 3 - C o n t i n u e d Number o f p l o t s pH  L-F Ah A e  B  G a u l t h e r i e t o - Tsugetum h e t e r o p h y l l a e  1 3.50  2 3.26  Mean  3.40 4.00  3.49 4.60  3.45 4.30  3.38  1  Gaultherietp -Tsugetum heterophyllae pleurozietosum schreberi 2 3 4 5 Mean Range  3.45 3.60  4.02  3.52  3.67 3.45-U.02  3.70  3.40  3.57  3.40-3.70  C Raw humus  Humus type Douglas f i r S i t e index ( f t . p e r 100y)Western hemlock Western r e d cedar Amabilis f i r Y e l l o w cedar  69  85  Raw humus  79 63  70 53  63  48  59  44  75 •65 59 44  67 39 38  60 47 38 70  72 59 54  80 75 81  58 52  69 56 53  40  40  63  67  60-80 39-75 38-81  Table no. 24 No. of Species  1  2  3 4 5  6 7 8  9 10 11 12 13 14  15  1  P l o t no.  62  103  54  6  8  7  Computation reference no.  1  2 Bl 2 1 2 1  2 1 2 2 1 2 1 2 1 2 C  2  Number of p l o t s Layer  Al 2 3 1 2 3 1 2 1 2  C h a r a c t e r i s t i c combination of species Tsuga. heterophylla Thuja p l i c a t a Pseudotsuga menziesii Pinus  monticola  Chamaecyparis  3  5.*°3'. . 5 . + . 2 7-9-2 7 . 1 0 . 3 5.7.2 4.5.2 6 . + . 3 5.+ . 2 5.+..2 5 . 6 . 2 + . + .2 5.+ .2 +. + . 3  5.6.2 4.5.2  Thuja p l i c a t a Vaccinium alaskaense ferruginea  Gaultheria shallon Chamaecyparis nootkatensis  + . + .2 + . + .2  :  Vaccinium o v a l i f o l i u m 2.5.3 2.5.2 1. + . 3 + . + .2 + . + .3  Species Vigor Constancy significance Mean  .• ..1  Mean. ;  1.6  2.6 2.3 2.0 2.5 2.0 2.0 2.0  1.0  2.0  3-6 6.0 4.6 3.6 3.6 0.6  3/3 3/3 3/3 2/3 3/3 2/3 1/3 2/3  1.6 2.0 4.6 4.0 1.3  3-0 2.0 2.3 2.3 2.0  1/3 1/3 3/3 3/3 1/3  0.3 6.3 1.7 1.7 5.0  2.0 2.6 2.0 2.0 2.0  1/3 3/3 3/3 2/3 3/3  + . + . 3 + . + .2 0 . 6 1.5.2 . 0.3 1.0 3.+ .2  2.5 2.0 2.0  2/3 1/3 1/3  3.5.2 4.5.3 4.5.2  5-+ .3 6.8.2 6.7.3 4.6.2  1.5.2 6.7.3 8.10.3 .7.9.2 +.5.2 2 . 4 . 2 2 . 5 . 2 2,5.2 3.5.2 6.7.2 4.5.2 5.6.2  Abies amabilis  Linnaea b o r e a l i s Blechnum spicant Goodyera o b l o n g i f o l i a Chimaphila menziesii C o r a l l o r h i z a maculata  +.+.3 4.7.2 5.9.2  2. + .1  nootkatensis  Tsuga heterophylla  Menziesia  Gaultherieto - Tsug'etum .heterophyllae'; pleurozietosum  Gaultherieto- --Tsugetuiifheterophyllae  + . + .2 +-.-+. 1 + . + .2 1. + .2  1.0 1.0 0.6 0.6 0.3  2.5 1.5 2.5 2.0 3.0  2/3 2/3 2/3 2/3 1/3  l  2  3  57  52  56  37  47  4  3  5  l  2  Meani  6.8.3 4.7.2  7.9.2 4.7.2  7.9.3 4.+ .2 4.7.2 4. + . 1 5. + .1  5.0 5-0 2.2 2.4 4.8 1.2 0.4 1.8 1.4 0.8 0.4 1.0 4.4 2.6 .2.8. 0.4 .1.-6 5-2 0.4 2.4 4.8 1.0 1.0 1.0 •1.0 0.4 1.0 2.4 2.4 1.0 1.2 0.6  5.8.2 5.+.2 5.+.1 3-+.0 3.6.2 3.5.2 7.8.2  4  5-+.3 7.9.3 4.7.2  4.+ .2 4.7.2 6.8,2 5.7.2 +'. + .2 4.+ .2 + . + .2 + . + .2 + . + .3 5.7.2 5.8.2 4.6.2 2.5.3 5.6.2 + . + .2  6.10.2 7.9.2 + .5.2 2.4.2 3.5.2 2.4.2 7.8.2 6.10.1 4 . 5 . 1 +.+.3 + .5.3 1.5.2  2.3.3 2.4.2 + . + .3 + . + .3 + . + .3  5  6.9.2 3.8.2 4. + . 3 4.9.2 + . + .2 + . + .2  + . + .2  5.8.3  +, + . 3 5-8.2 4.7.2 3.6.2  + . + .3  2^2  6.7.2  3.5.3 1.3.2 3.5.2 +.3.3 +.+.2  + .3.3 2.4.2 1.2.3 2.3.3 + . + .3  schreberi  "2.5.3 6.9.3 7.10.3 +. + •3 1.4.3 2.5.3 4.6.2 3.6.2 ,4.6.2 + . + .2 2.5.2 2. + .3 3 . 6 . 2 2.6.2 3,6.2 .2.6.3 2.6.3 5.6.3 3.3.3 2.5.2 3.5.2 1 . 3 . 3 +.2.2 1. + .3 + .+.2 + . + .2  Species significance  Vijgor  Constancy  Range; Meani. JXange  0-7 4-7 0-4 0-4 4-6 0-5 0-+ 0-5 0-5  "0-3  0-+ 0-5 3-5 0-4 00-7  ' 6-2  0-6 0-7 0-+ 1-3 3-7 0-4 0-2 "0-3 . 0-3; 0-2 0-3+-5 2-3 +-1 +-1 0-+  :  2.7 2.2 2.0 2.0 1.8 2.0 2.0 2.0 1-7 1.0 3-0 2.0 2.2 2.0 2.2 2.0 2.5 2.5 2.5 2.4 1.6 2.5 2.2 2.5 2.0  2-3 2-3 1-3 1-2  ^? 5/5  1-2 0-2  2/5 2/5 2/5 3/5 2/5 2/5 1/5  2-3 2-3  •  V5 V5 ^ 2/5 5  2-3 2-3 2-3 2-3 1-2 2-3 2-3 2-3  3,0  3-0 2.8 2.0 2.8 2.6 1.6  4/5 5/5 3/5  h/5  2/5  5/5:  5/5 ' 2/5 V.5 2/5 . 2/5 2/5  2-3 2-3 2-3 2-3  ^ 5/5 5/5 5/5 3/5 5  H  0^  Table no. 24 - Continued No. Layer Number of p l o t s of ipecies 16 17 18 19 20 21  Dh dw h dw e h dw h h h h dw l 2 2 C  B  22 23 24 25 26 27 28 29 . 30 31 32 33  3k 35 36 37  Daw e dw e dw e dw e dw e e dwe e  Hylocomium splendens Rhytidiadelphus Plagiothecium  loreus  undulatum  Gaultherieto -Tsugetum 1  9-10.3 '.4.5-3 5.5-3 3.4.3 4.5.3  Rhytidiopsis robusta Pleurozium schreberi P e l t i g e r a canina Tsuga heterophylla Companion species Taxus b r e v i f o l i a Acer circinatum Cornus canadensis Pteridium aquilinum L i s t e r a cordata L i s t e r a caurina Polystichum munitum Dryopteris austriaca C l i n t o n i a uniflora Dicranum fuscescens Scapania bolanderi Hypnum c i r c i n a l e Ifsothecium stoloniferum Cladonia  subsquamosa  1.+.3  2  3  heterophyllae Vigor Species significance . Mean :Mean  6.7.3 4.5.3 + .2.3 5.5.3 7.6.3 + .2.3 4.4.3 + . + .3 +. + .2 4.4.3 6.8.3  6.3 1.6 5.6 2.6 0.6 5.0  3-0 3.0 3.0 - 3.0 2.5 3.0  3/3 2/3 3/3 3/3 2/3 3/3  3.4.3 4.6.3  2.3  3.0  2/3  + . + .2  0.6  + . Q..3 1.5.3 0.3 + . + .2 00.3 2.0 3.6.3. 3.3.2 + . + .2+ . + .2 0.7 \ 1. + .3 + . + •3 0.7 2.+ .2 + . + .3 1.0 +.+.1 + . + .1 0.7 0.3 1.3.1 + . + .2 0.3 + .2.3 0.3 + .1.2 0.6 +.2.2 3.2.2 + .2.3 2.3.3 2.3 0.6 + .2.3 + .2.3 2.2.3 + .3.2 1.3.3 1.3 +..' + .4.3 + .2.3 0.6 4.5.3 + .2.2 + .3.2 2.0 + .2.2 0.6 + .3.3 1.1.2 0.3 + .2.3 + . + .2+ . + .2 1.0  A . + .3  A l e c t o r i a sarmentosa Parmelia physodes Porella platyphylla  + .3.3  Gaulthegieto-Tsugetum heterophyllae pleurozietosum schreberi 5Species VigorCons;y 1 2 3 4 5 significance tancy Mean Range Mean Range  + .2.3  0.6  +.+.1  -2.5 3^0 3-0 2.0 2.5 2.0 3.0 2.5 1.0 1.0 2.0 3-0 2.0 2.6 3-0 2.6 3.0 2.3 - 2.5 2.0 2.3 3.0  7.10. +.3. 3.4. +.4. + .2. 3.4. 2.3. 6.8. 6.7.  1/3  H H 2/3  3 3  2/3 2/3 2/3 2/3  H H H 2/3  3  3 3  3/3 2/3 3/3 2/3 3/3 2/3  H 3/3  3  2/3  2.5.2 +.+.1  5.8.3 5.6.3 9.10.3  6.9.3  5.5.3 4.6.3  5.6.3  +.3-3 3.2.2 4.5.3 2.3.3 1.3.2 6.8.3 8.9.3 +.+.3 1.+.2  5.6.3 1.2.2 +.2.2 2.3.2 1.3.2 +.2.3 1.+.2 1.3.3  4.3.2 1.3.2 1.4.3 2.3.3 + .+.2  +.+.2 1. + .2 3.5.2 4.5.3 2.4.2 2.4.2  2.3.3 1.6.2 +. + •3 + .+.3 +. + •3 + . + .3 + . + .2 1.3.2 1.3.2 + .2.2 1.3.3 +.3.2 2.1.3 2.2.3 + .2.2 + .2.2 + .2.2 + .2.3 1.2.3 4.5-3 1.3.3 + .4.3 + .3.3 + .3.3 3.5.3 2.3.3 2.5.3 +.5.3 + .4.3 + .2.3 + .2.3 +.3.3 2.3.3 + .3.3 + .3.2 + .2.3 1. + .2 +.3.3 + .2.3 + .2.2 + .2.3 + .2.3 + .2.3 + .2.3 +.3.3 + .2.3 + .2.3 + . + .2 + . + .3 + .3.3 + .2.3 + .2.3 + .3.3  1.3.2 +.2.2 2.3.3 3.4.3 + .3.2 3.4.3 +.4.3 +.1.2 + .3.2 +.2.3 +.2.3 +.1.3  6.4 0.2 4.4 0.4 0.6 3-2 1.4 3.0 3.0 0/8 o .4 0.4  5-9 0-+ 3-5 0-1 0-+ 2-4 0-2 +-6 0-8 0-2 0-1 0-+  3.0 3-0 3.0 2.5 2.3 2.4 2.5 2.8 2.6 3.0 2.0 1.5  0.2 0-1 0.6 0-3 2.0 . 0-4 0.8 0-2 0.4 9++ 0.4 0-+ 0.4 0-1 0.2 0-1 0.2 0-+ 1.4 +-2 1.0 1.6 0-4 0.6 0-+ 2.0 0-3 1.0 1.2 0-3 0-+ 0.8 0.8 0-1 1.0 1.0 0.4 0-+ 0.4 0-+ 0-+ 0.8  2.0 2.0 2.5 1.6 3.0 3.0 2.0 2.0 2.0 2.8 2.2 3.0 3-0 3.0 2.8 3.0 2.7 2.5 2.8 3.0 2.5 3-0 3.0  ;  1/5 2-3  2/5  •3 •3 -3 •3  5/5 4/5  3l  ?  p 3l 3l  ? ? 2/5 3 /  2/5 1/5 1/5 2-•3 -.4/5 1-•2 3/5 2/5 2/5 . 2/5 1/5 1/5 2-•3 5 2-•3 5/5 4/5  £  4/5 3l  2-•3 2-•3 2-•3  ?  4/5 4/5 5  £  5/5 2-•3 2/5 2/5 & 4/5 ^  Table no. 24 - Continued No. Layer Number of p l o t s of Species^" 38 39 4o hi  h2 h3 hh 45  h6 hi  48  h9 50  dw e e h dw e dw e h dw dw h dw v, n e h dw e  Gaulthejiieto - Tsugetum heterophyllae Gaultherieto Species Vigor Constancy 1 1 2 3 significance Mean Mean +.2.3 +-5.3  Sphaerophorus globosus +,2.3 +.2.3  C e t r a r i a glauca Eurhynchium oreganum P M l i d i u m californicum Lepidozia reptans P l a g i o c h i l a asplenioides  +.2.3 1.2.3  Calypogeia suecica Sphagnum recurvum Cephalozia media  0.3 00.6 1.0  3.0 3-0 3.0  2/3 1/3  +.1.2 + .+.2 1 . 2 . 3  0.3 0.6  2.0 2.5  H  + .2.3  0.6 0.3 0.3 1.0 0.3 0.6 0.3 0.3 0.3  +.2.3 3-2.3  +.1.3  3.6.2  +.1.3  Parmelia v i t t a t a Plagiothecium denticulatum Lophocolea heterophylla Lobaria pulmonaria  + .2.3 + .2.3 +.2.3 +.+.3 + .3-3  51 52 53  Rubus v i t i f o l i u s Sambucus pubens Sorbus sitchensis  62 62 37  (+.+.2) (+.+.1) (1.5.2)  54 55 56 57  Athyrium f i l i x - f e m i n a Luzula p a r v i f l o r a Lycopodium clavatum Rubus pedatus  37 62 62 54  (1.3.2) (3.4.3) (1.3.+) (+.+.2)  58 59 60 61 62 63  64 65  Tsugetum heterophyllae pleurozietosum schreberi Species Vigor Cons3 4 5 significance tancy Mean Range Mean Range  +.3.3 2.3.3 +.1.2 +.1.2  3  3.5.3  +.1.2 +.2.3 +.3.3 1.2.3  +.2.2  +.1.3  2/3  +.2.3  3.0 3-0 3.0 2.a 3.0  2/3  1.3.3 1.2.3  3.0 3.0 3.0 3.0  2/3  Bazzania denudata Calypogeia neesiana Camptothecium lutescens D i c r a n e l l a heteromala Diplophyllum t a x i f o l i u m Plectocolea rubra Pogonatum alpinum Porella navicularis  H 1/3  3  +.1.3.  1/3 1/3  3.5.3 + .2.3  +.2.3 +.1.3 +.2.3  H H 1/3  3 3  1.2.2 +.5.3 +.2.3  +.2.3 +.1.3 +.2.3 + .2.3 1.3.3  1.4.3 +.2.3 + .+.2  37 54 47 37 52 47 37 52  (+.3.3) (+.1-3) (+.2.3) (+.1.3) (+.2.3) (+.1-3) (+.3.2) (+.+.2)  0.6 0.6 0.6 1.2 0.4 0.4 0.4 0.2 0.4 0.2 0.2 0.8 0.4 0.2: 0.2 0.2 0.2 0.2  0-1 0-+ 0-+ 0-3 0-+ 0-+ 0-+ 0-+ 0-1 0-1 0-+ 0-3 0-+ 0-+ 0-+ 0-1 0-+ 0-+  2.3 3.0 3.0 3.0 2.0 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0  66  Sphagnum robustum  37  (2.4.3)  67  Parmelia tubulosa  37  (+.3.2)  2-3  ? ? ? ? 2/5, 3l 3l 3l 3l  2-3  2/5 2/5 2/5 2/5 2/5 2/5  H  5  lf U  p P  1/5  00  159  Abieteto - Tsugetum heterophylla  Table no. 25 Number of plots P l o t no. Computation reference no. Date  k . 2 3 5 48 Mean Range 108 88 53 9 15 11 10 16/6 22/5 22/8 21/8 1959 1959 1958 1958 800 U9°22 ' U9°19' 49°25 ' 49°19' 1+9°19' 123°02 '122°35' 123°00 T22°35 122°35' 2330;, 2000 690 1690 1700 1680 ENE-N 180 360 225 67 67 5 25 5 30 13 16 5-30  1 131 12 7/6 1959  Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent ) A l A  !  30 80 20 85 35 45 65 25 20 15 35 80 20  2  A3 A Bl B B C Dh Dw D 2  35 4o 30 80 15 60 . 70 15 60 30 90 70 30  Cfb AB-frbi  20^ 60 25 85 50 ko  70 10 65 25 90 70 30  •--  20  ko  25 70 15 ' 50 55 30 35 10 45 90 10  25 30 20 65 25  50  70  15 50 20 70 80 20 .  Humus coverage (per cent) Decaying wood coverage (per cent) Land type and Land form G l a c i a l d r i f t - Middle slope R e l i e f shape Profile Straight Concave* Straight Contour l i n e Straight Parent material . Till *0utwash* Till Erosion p o t e n t i a l Slight Moderate Slight * Moderate Run-off Slow Drainage Well-drained Hygrotope Mesic 40 Stoniness (per cent) 80 60 40 Permeable mineral s o i l depth (cm.) 145 133 138 90 Ecto-humus horizon depth (cm.) L-F 18 10 25 22 Eluviated horizon depth (cm.) A 3 5 2 3 pH L-F 4.10 3.70 3.50 3.90 Ah A 4.10 3.80 3.90 B 5.70 4.97 5.10 . 4.99 p Humus form Raw humus e  e  S i t e index ( f t . per lOOy)  Douglas-fir. Western hemlock Western redcedar Amabilis f i r  107 85 90  116 101 78  107 113 117  123 91 90 92  123 97 111  78 70-90 22 10-30  55 40-80 .127 90-145 19 10-25 ;3 2-5 3.80 3.5-4.: 3.93 3.8o 4 5.19.4.97-5 T  104 91-116 100 85-113 94 78-117  Table no. 2 6  Abieteto - Tsugetum heterophyllae  Number of plot No. Layer of Plot no. Species Computation reference no.  1  Characteristic combination of species Tsuga heterophylla  Al  131  108  12  9  7 . 8 . 3 8 . 1 0 . 3  3  5-7.2  Thuja p l i c a t a  Tsuga heterophylla .  Thuja p l i c a t a Abies amabilis  7 8 9  lCll  12  13  Dh dw e .h dw e h dw  Vaccinium ovalifolium Menziesia furruginea Blechnum spicant Clintonia uniflora Rubus pedatus Cornus canadensis Plagiothecium undulatum  3.0  7 . 9 . 3  5 - 8  2 . 8  2-3  4 . 7 - 3  6 . 7 . 2  5 . 7 . 2  6 . 8 . 3  5.2  4-6  2 . 4  2-3  4 .  5.8.2  2.0  0-5  2 . 6  2-3  4 . + . 2  6 . + . 2  2 . 6  +-6  2 . 2  2-3  "5/5  +.+.1  +.+.2  2 . 4  0-6  1.7  1-2  4/5  1.4  0-5  3.0  1.4  0-7  3.0  1.4  0-6  2/5  +.+.3  5 . 9 . 3  6.8.3  +. + .2  5 . 6 . 3  4 . 6 . 3  +  . 3  +.+.3  2 . 5  2-3  4 . 7 . 2  6 . 7 . 2  5.0  4-6  2 . 6  2-3  5/5  5 . 7 . 2  3.4.3  3 . 5 . 2  3.0  0-5  2 . 5  2-3  4/5  1.2  0-3  2 . 3  2-3  4 . 6 . 2  1.8  0-4  2.0  1.+.2  3.0  0-6  2 . 2  2 . 8  0-5  3.0  3 . 6 . 2  0 . 6  0-3  2.0  6.9.2  6 . 9 . 2  6.0  4-8  2 . 6  2-3  5/5  3 . 5 . 3  2 . 6 . 2  1.6  0-3  2 . 7  2-3  4 / 5  +.5.3  4 . 5 . 2  2 . 6 . 2  2 . 2  +-4  2 . 6  2-3  4 . 5 . 2  3.8  2 - 5  2 . 2  2-3  1.4  0-4  2 . 7  2-3  4/5  2.0  0-4  2 . 7  2 - 3  4/5  +.+.3  2.+.2  3.6.2  +.+.2  +.+.2  3 . 5 . 2  6 . 7 . 2  3.+.2  5 . 7 . 3  5 . 6 . 3  2.+.3  4 . 7 . 3  6.9.3  8 . 1 0 . 3  +.5.3  2 . 3 . 3  1.5.3  3.4.3  loreus  Rhytidiopsis robusta  3 . 5 . 3  4 . 6 . 3  2 . 3 . 2  4.3.3  4 . 5 . 2  5 . 6 . 2  4.4.3  1.+.3  +  +.2.3  .+.2  1/5  2 . 3 . 3  3.4.3  3 . 5 . 3  3 . 3 . 3  4 . 5 . 3  2 . 4 . 3  2 . 4  0-4  3.0  3.4.3  7 . 8 . 3  8 . 1 0 . 3  5 . 7 . 3  4 . 6 . 2  5,4  3-8  2 . 8  2 - 3  3.4.3  4 . 5 . 3  5 . 5 . 3  1.3.2  2 . 4 . 2  3.0  1-5  2 . 6  2-3  +.2.2  0.4  0-+  2 . 5  2-3  5 . 6 . 3  4 . 0  0-5  3.0  2 . 4 . 3  2 . 8  2 - 4  3.0  0 . 6  0-+  2 . 3  2-3  2 . 2  0-5  2 . 7  2-3  0 . 8  0-3  3-0  5 . 5 . 3  6.6.3  4 . 5 - 3  4 . 5 . 3  3 . 5 . 3  2 . 4 . 3  3.4.3  +.+.2  +  +.3.2  3.4.3  3 . 5 . 3  I.3.3  .4.3  2 . 3 . 3  +.+.2  4/5 4/5  4.6.3  .3.3  .2.2  4/5 2-3  +  5 . 6 . 3  5/5  6.9.3  +  Rhytidiadelphus  Range Mean Range  +-7  Vaccinium alaskaense  2  2  Mean  6 . 2  4 . 5 . 3  2  C  10  7 . 1 0 . 3  2  6  11  Constancy  3 . 2  +.+.3  3  2  15  Vigor  5.8.2  6 . 7 . 2  Bl  5  Species significance  -+.+•3  4 . + . 2  1  48  6 . 1 0 . 3  o  4  53  :+;+.34  3  1  88  +.+.2  Abies amabilis  5  5 . 9 . 3  +.+.2  1  4  +.+.3  +.+.2  2  3  6.8.3  2  l  3  2  2  1  2  1  4 / 5  2/5 4 / 5  4 / 5 2/5  ON O  Table no. 26 - Continued Layer Number of plot No. of Species Companion species Vaccinium parvifolium Gaultheria shallon 15 Taxus b r e v i f o l i a 16 Sorbus sitchensis 17 L i s t e r a caurina 18 C Tiarella trifoliata 19 Linnaea borealis Maianthemum dilatatum Coptis a s p l e n i f o l i a Goodyera o b l o n g i f o l i a Scapania bolanderi %w e Hypnum c i r c i n a l e dw e dw Dicranum fuscescens e Isothecium stoloniferum dw e Cladonia subsquamosa dw e h Mnium punctatum dw h Hylocomium splendens dw h Tsuga heterophylla dw dw P l a g i o c h i l a asplenioides e Calypogeia neesiana dw e Sphaerophorus globosus e dw Bazzania ambigua 3k e Thuja p l i c a t a h dw F r u l l a n i a nisquallensis e  14  20 21 22 23 24 25 26 27 28 29 30  31 32 33 35 36  B2 2 1 2  Abieteto - Tsugetum heterophyllae Species Vigor Constancy significance Range Mean Range Mean  +.4.2 2.5.2 1.0 4.6.2 2.6.1 1.8 +.+.2 + .+<20.4 +.+.2 + .+•30.4 +.+.3 +. + .3 +.+. 03 .6 +•+•3 +.+.3 3.3.2 1.0 3.4.3 2.4.3 +.3.3 1.2 1.2.3 2.3.2 2.5.3 1.0 2.+.3 +.+.2 0.6 +.+.3 + .2.23.4.3 0.4 1.2.3 1.3.3 + .1.2 3.4.2 1.8 +.2.3 + .3.2+.4.2 0.6 3.3.3 1.2.3 + .1.32.4.3 1.4.3 1.6 +.3.3 +.3.3 +.3-2 +.2.2 0.8 1.2.3 +.2.3 2.3.3 2.4.3 1.2 +.2.3 +.2.3 0.4 3.4.3 0.6 +.+.2 +.2.3 + .6.3+.3-3 +.3.3 1.0 1.2.2 0.2 +.+.3 +.+.3 + .2.2+.1.2 + .2.11.0 4.5.3 2.3.2 2.4.3 2.4.2 2.0 +.2.3 3.5.3 3-5.2 1.4 2.4.3 3.5.3 4.6.2 5.7.3 2.8 -2.4.3"2.4.3 2.+.2 1.3.3 1.0 3.4.3 T.+.3 1.2.2 1.4 4.3.3 +*+.3 2.5.2 1.4 +.2.2 + .1.20.4 +.2.3 +.2.3 0.4 +.+.3 +.2.3 1.2.3 I.3.2 0.8 +.+•3 +.3.2 0.4 +.1.2 +.4.3 1.5-3 +.5-„3 0.8 2.3.3 3.4.3 1.0 +.1.2 +.2.3 + .3.3 0.6 +.+.2 + .+.2+ .+.20.6 +.+.2 + .+.20.4 + .2.3+.2.3 + .2.3 0.6 2.5.2 3.5.2  0-2 0-4 0-+ 0-+ 0-+ 0-+ 0-3 0-2 0-2 0-+ +-3 0-+ +-3 0-+ 0-2 0-+ 0-3 0-1 0-4 0-3 0-5 0-2 0-3 0-4 0-+ 0-+ 0-1 0-+ 0-1 0-3 0-+ 0-+ 0-+ 0-+  2.0 1.6 1-2 2.0 2.5 2-3 3.0 2.6 2-3 3.0 2.6 2-3 2.5 2-3 2.5 2-3 2.6 2-3 2.3 2-3 3.0 2.5 2-3 3.0 3.0 3.0 2.8 2-3 2.0 2.2 1-3 2.5 2-3 2.6 2-3 2.7 2-3 3.0 2.5 2-3 2.6 2-3 2.0 3.0 2 .7 2-3 2.5 2-3 2.7 2-3 3.0 2.6 2-3 2.0 2.0 3.0  3/5 2/5 2/5 3/5 3l  ?  3/5 3/5 2/5 2/5 5/5 5/5 4/5 4/5 2/5  P  ±f  ? 5/5  U/ 5  /  5  4/5 3/5 4/5 3/5 4/5 •3/5 2/5 2/5 4/5 2/5 4/5 2/5 3l  ?  3/5 2/5 3/5  ON  Table no. 26 - Continued Layer No. Number of plot of; Species Lepidozia reptans dw 37 38 39  Uo  4i 42 43  e dw h dw h dw h dw dw e e  Lophocolea heterophylla  1  2  1.2.3 1.1.3 +.1.3 2.2.3 3.2.3  Dicranum scoparium  4  3  +. + . 3 + . + .2 +. + . 3 + .2.2 + .3.2 +.3.3  Eurhynchium oreganum Abies amabilis +.3.3 1.1.3 +.3.3 + .+.2  Cephalozia bicuspidata P t i l i d i u m californicum Parmelia physodes  44  Pseudotsuga menziesii  45 46  Rubus spectabilis Sorbus occidentalis  47 48 49 50 51 52 53 54  Abieteto - Tsugetum heterophyllae  C o r a l l o r h i z a maculata Dryopteris austriaca L i s t e r a cordata Polystichum munitum Pyrola secunda Streptopus roseus • Streptopus streptopoides Tiarella unifoliata  48  + .2.3 +.1.3  (+.+.3)  48 108  (2.5.2) ( + . + .3)  131 88 108 88 131 108 131 48  $+.3.3) (2.5.2) ( 2 . + .3) ( + .+ .1) (+.2.3) ( + .+ .2) (3.4.3) ( + .+ .3)  55 56 57 "58 59 60 61 62  Species significance Mean Range 0.4 0-1 0.2 0-+ 0.4 0-1 0-+ 0.2 0.6 0-2 0.6 0-3 0.2 0-+ 0-+ +.2.2 0 . 4 0-1 1.3,3 0.2 0-+ 0.2 0.4. 0-1 0 . 4 " t>-+ ._+.!.2 0 . 4 0-+  Vigor  5  A n t i t r i c h i a curtipendula Bazzania t r i c r e n a t a Calypogeia.suecica •Gephalozia- lammersiana'- .:• Cephalozia macounii Neckera menziesii Porella navicularis Porella platyphylla  63 64  Sphagnum robustum Sphagnum squarrosum  65 66  A l e c t o r i a sarmentosa Lobaria pulmonaria  Mean Ran§ 3.0 2.0 3.0 3-0 2-3 2.5 3.0 2.0 2.5 2-3 3,0 3-0 3-0 3.0 2.0  -  Constancy 2/5 2/5 2/5 1/5 2/5 X/  ?  2/5 2/5 2/5  "48 48  108 88 88  (+.3.2 (1.2.3 (+.2.3 (+.2.3 (+.3.3 (+.1.2 (+.3.3 (+.2.3  48 48  (1.5.3 (+.3.3  131 131  (+.1.2 (+.+.3  131 108 131 .  Abieteto - Tsug;etum heterophyllae dryopterietosum 1 2 u 6 5 3  Table no. 2 ? Number of plots Plot no. Computation reference no. Date Plot size (sq.ft.) Latitude Longitude. Altitude ( f t . ) Exposure (degree) Slope (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) Aj_ A  23/5  1959  1959  ' 123°00' 760  1  135  3  2  3  0  20 50 25 85 5 10  50 35 25  15 5 25 35 60 50 50  h  Ddw D Humus coverage (per cent) Decaying wood coverage (per cent) Land type and land form R e l i e f shape Profile j Contour l i n e parent material Erosion p o t e n t i a l Run-off  7/8 1958  k9°2k\  A Bi B B C O  29  23/5  22/f 21  123°00 660  2  A  90  89 18  90 50 20 70 10 30 30 60 65 35  k9°21\ 122°57' 1790 225 16  30 45 15 80 5 15 20 • .5 35 25 60 65 35  119 17 27/6 1959  k9°22[  18 19 21/7 1958  k9°21'  123°02' 1 2 2 ° 5 7 1100 1735 205 135 18 3  30 50 20  30 50 25  -80 10  85 15 20  5 10 5 45 25 70 70 30  Convex Straight Concave* Convex * Outwash Lacustrine T i l l Outwash Slight Moderate  •30 5 15 65 80 20 80  32 26 11/8 1958  k9°22' 122°U8 550 270 7  U0 50 20 80 60 30 75 15 20 15 35 70 30  Glacial drift Straight Till Outwash* Slight  1  Drainage Hygrotope Stoniness (per cent) Permeable mineral s o i l depth' (cm.) Ecto-humus horizon depth (cm.) L-F Eluviated horizon depth (cm.) A L-F pH Ah A B C Humus form e  e  Site index . ( f t . per lOOy)  U0 70+  Uo 8 3.52  0  UQ+ 25 0  50 125 7 0  10  5 80+  25 50+  90  17 1  13 5  19 5  135 13U  100  85 129  136 101  3.5.8  3.85  3.30  U.85 5.30  U.79 5.U0  5.20  120 89  109 105  79  120  U.60 5.23 5-35  Douglas-fir Western hemlock 10U Western redcedar Amabilis f i r 117  96 12U  164  austriacae  " 8 26  7  22/g  22 ' 8/8 1958  9 27  ' 23 Ann  •10/9 1958  ouu  24  15/8 19.58  10 31 25 12/8 1958  11 36 28 11/9 1958  12  32/a  27 14/8 1958  49°2l' 49°22| 49°22 ' 49°27 ] 49°22' ' 49°22, 122°57' 122°47 122°47 122°48' 122°47' 122°48' ' 886 : 1800 610 57b 550 580 157 270 27b 270 270. lb 11 4 ' 15 16 7  14  13 113 16 23/6 1959  22/e  20 7/8 1958  1  40 '  40  20 75 60 4o 70 15  40  20 60 45 55  J  25 • 35 20 70 50 3b 75 2b 5b 25 . 75 •75 ' 25  4b 45 25 85 3b 25 5b 15 15 30 45 70, 30  Middle slope  35 4b 40 85 25 5 30 2 15 20 25 80 20  •Concave* Straight Till •Lacus^* •Moderate* S i l g h t * Moderate Slow Well-drained 1 Moist 25 83 4 2  3.64 3.63 4.69 4.90  15 123  i'3  2 3.52 3.60 5.30  5.70' Raw humus •  30 70 23 2 3.40  0 108 26 2  50 20 . 25 7b 3b 40 '.• 60 15 4b 20 60 65 35  Outwash  10 197+ 4 2 3.70  5.-35 , 5.. 40  10l'  101  88  104  104  77  15 60 35 95 . 5 10 15 5 70 30 100 65 35  45 35 20 75 6 4 10 10 15 15 30 30 70  59 20-80 4 l 20-80  *Laepg£ * T i l l Slight •Moderate g  0 85 17 2  3.42  5 90+ 8 1 3.45  15 90+ 3 .0 3.85  3^65 4.77 5.62'  5.10 5.45  5.09 5.52  •  •96 112, 78  2100 245. 5  Straight  3.80  3.70 4.82 4.90  55 55 20 80 30 15 40 5 20 10 30 65 35  Range  49°2l| 122°57' 1780 1100 550-2100 NNE-W 205 10 0-18 ip  (  Cfb AB,'rb^  Mean  106. 148' 80  95 • 103 73.  118 111 95  84  122 104 80  16  4o '  15 2  0-50  3-40 0-8  3-57  3.30-3.85  3.8l 5.17 5.35  4.69-5.35 4.90-5.70  127 106 108 •85  3.60-4.60  118-135 88-134  85-148 73rl29  •Table no. 28  Abieteto - Tsugetum heterophyllae dryopterietosum austriacae  Number of plots No. Layer of Plot no. Species Computation reference no.  1  2  Al 2 3 1 2 3  3  I  B  2 3 l 2  I  2 1 2 1 2 5 6 7 8 9 10 11 12  13  —  14 15 16 17 18 19 20  I  2, O  D  h  dw e h dw h dw h dw h dw  Characteristic combination of species Tsuga heterophylla  Thuja p l i c a t a  Abies amabilis  Tsuga heterophylla Thuja p l i c a t a Abies amabilis Vaccinium alaskaense Acer circinatum Blechnum spicant Tiarella trifoliata Dryopteris austriaca Athyrium f i l i x - f e m i n a Cornus canadensis Streptopus amplexifolius Plagiothecium undulatum  Rhytidiadelphus  loreus  ,Tsuga heterophylla Thuja p l i c a t a  1  2  3  4  5  6  89  90  22/f  119  18  32  18  29  21  17  19  26  6.+i 3 8.10.3 5-7.2  4 . 7 . 2 5.+*-3 4.+ .2 6.10.3 7.9.3 7.10.3 7.9.2 4.8.2 4.7.3 5.8.2 5.8.2 3-+ -2. 6.+.3 3-+.2 + . + .2 +4-+. 2 2.+ . 2 5.8.2 4.7.3 7-8.3 7.8.3 3.+.3 +.+.3 4.+.2 6 . 8 . 3 5 . 8 . 2 6.+.3 4.7.3 2.+ . 2 4.7.2 4 . + . 2 5-7.3 +.+.3 3 . 7 . 2 3.+.2 7 . 1 0 . 2 4.-7.0 5 . 6 . 2 4 . 7 . 2 7 . 1 0 . 2 + . + .2 . 2 . 4 . 2 3 . 4 . 3 + . + .2 4 . 5 . 2 5.7.2 + . + .2 + . + .2 1.+.2 2 . 6 , 2 +.3.2 3-+ .2 +. + .2 3 . 7 . 2 + J+J3 + . + .2 5 . 8 . 3 + . + .1 + . + .2 3.5.2 2.6.3 5.6.2 3.6.2 5.6.2 2.5.2 5.5.2 4.7.3 4.8.3 +.5.3 4.7.2 2.4.2 2.3.2 + .3-2 4.6.3 + .4.2 3.5.2 + .+.2 2 . 3 . 2 +.3.2 + . + .2 4.5.3 2 . 4 . 2 + . + .2 +.1.3 1. + .2 1 . 3 . 2 2.4.2 + . + .1 + . + .2 + . + .2 2.+ . 2 + .4,3 + .4.2 4.5.3 +.+.2 + .+.2 6 . 7 . 2 . 3 . 5 . 2 5.6.3 5.7.3 6.5.3 4.5.3 5.6.3 6,5.3 4.7.3 5.4.3 7.7.3 +.3.2 + .2.3 + .2.2 2.4.2 2 . 4 . 3 4 . 4 . 3 - 4 . 3 , 3 1.3.3 5.3.3 4.6.3 4.6.3 1.2.3 3.4.3 2.3.3 2.+.2 2 . 3 . 3 2.3.2 2.+.2 +.+•3 2 . 3 . 2 1.+.2 +.+.3 2.3.3 5.8.3 6.8.2  +. + . 1 + . + .2  Abies amabilis  Companion species Vaccinium parvifolium B2 2 . Rubus s p e c t a b i l i s Gaultheria shallon 2 2 Sambucus • pubens 2 Menziesia ferruginea l" Taxus b r e v i f o l i a 2 C Polystichum munitum  +. + .2  +.+•3  +.+.1  + .5.2 +. + .2 + .4,2 + . + .1 +. + .1  2.5.2 2.4.2 2.3.1  2.4.3 l. + .l  1.5.2 2.5.2 +.4,1  2.3.2 +.+.2  + . + .2  + .+.2 l. +.l  +.+.3 1.4.2  7  .8  22/g  26  27  22  23  24  7-+.3 +.+•3 3.+.2 +.+.1  9  10  13  14 Species 22/e significance  ' 31  32/a  113  25  28  27  16  +.+.2 5.7.2 6.8.2 '.10.3  7.9.2 7-8.2 3.+.2 + .+•3  3.8.3 5.8.3 6.8.3 3.8.2 7.9.2 7.9.2 2.6.3 5.7.2 5.9.2  + . + .3 5.7.2 4.7.2 4.7.2 1.5.2  + . + .2 + . + .2 4. 7.3 7.10.3 4.6.3 I.+.2. 3-7.2 3.5.3 1.-5.3 5.6.3 3.5.3 4.7.3 3.-6.3 1.4.2 5.7.2 5.7.3 3.7.3 3 . 4 . 3 1.2.2 2 . 4 . 2 2 . 4 . 2 +.4.2 3 . 5 . 3 1.4.2 + . + .2 2 . 4 . 2 1.4.2 3.5.2 1. + .2 + . + .2 6.8.3 6.8.3 4.6.3 5 . 8 . 3 3 . 4 . 2 3.-5-2 + .2.2 +.2.3 2.3.2 I.3.2 3.5.3 2.4.2 2.5.3 2.3.2 2 . 3 . 2 i . 3 . 2 1. + .2 2.+ .2 1. + . 3 +.+.3  + . + .2 3-6.2 2.6.2 3.6.3 2.5.3 6.7.3 2.6.2 3.4.1 2. + .1 2.3.3  5.9.3 5.9.3 4.8.3 6.9.3 2.6.2  12  36  6.+.3 4.8.2 2.+ .3 5.7.3 3.15.2  7-9.2 5.8.2 8.IO.3 7.10.3  11  + . + .2 7.8.3 5.6.2 + . + .2 5.6.2 4.6.2 +.+.3 +.+.3 +.+.2 +. + .2 5 . 8 . 2 + .+.2 6 . 9 . 3 2.+ .2 3 . 5 . 2 4.7.2 3.4.2 3.4.2 3.5.2 +.+•3 3 . 6 . 3 1. + .2 5.8.3 3.6.2 2 . 6 . 2 4.3.2 +.+.3 6.8.3 2.6.2 3.5.3 6.7.2' 2.+ .2  3.5.2 3.6.3 + .2.3 3.3.2 3.6.3 1.2.2 2.3.2  + . + .2 +.+.3 + . + .2 + . + .2 +.+.3 + . + .2 2.5.3 2.5.2 + .4.2 3-6.2  2.6.3 3.5.2 1 . 5 . 2 +.3-2 + . + . 1 + .5.1 +.4.1 1.+.2 + . + .1 2.4.3  + . + .2  + . + .2 + . + .2 l . + . l  Mean  5.+ .2 6.8.2 5.7.2 6.3.2 4.+ . 2 2.+.2 +.+.3 + . + .2 +. + .2 4.7.1  3.8 5.8 4.5 1.8 0.8 0.7 3.0 3-5 2.9 4.8 3..00.6 0.7 3.0 1.6 0.4 3.8 1.5 0.9 3.1 1.8 1.3 0.7 1.3 0.4 4.8 3-6 0.5 2.9 2.3 1.3 l.l 0.1 0.2 0.1 0.3  0-7 +-8 2-6 0-7 0-5 0-4 0-7 0-7 0-5 2-8 0-7 '0-3 0-3 0-7 0-4 0-3 2-6 0-6 0-4 +-6 0-4 0-3 0-2 0-4 0-1 3-6 0-7 0-+ +-5 0-4 0-3 0-3 0-+ 0-+ 0-+ 0-+  1.6 1.0 0.5 0.9 0.8 0.2 0.1 0.9  0-3 0-2 0-+ 0-3 0-3 0-+ 0-1 0-3  2.+ .2 2.+..2 2.6.2  3 . 5 . 2 4.6.3 2.4.2 5-8.3  3.4.3  5 . 6 . 2 +.+.3 5 . 6 . 2  2.4.2 +.+.2 3 - 5 . 2  +. + . 1 -  2.4.2  20  . -  2.5.2 1.5.2  4.5.2 2.4.2  +.+.2 + . + .2 4.7.3 5.4.2 5 . 6 . 3 4.5.3 3**5.3 3 . 6 . 3 •V + .3.2 5.6.3 3.6.3 5-6.3 + .5.3 4 . 6 . 3 2.4.3 4.4.3 + . + .2 3.4.3 + . + .2 3.4.3 + . + .2 +. + .2 + . + .3 6.8,3  + . 1 . 3 3 . 5 . 3 + . + .2 2.4.2 + . + . 1 + . + .1 + . + .1 + . + .1 3 . 5 . 3 + . 2 . 2 3.4.3 + .+.2 1.+.3 + . + .2 3.4.2  3-5.2 +. + .2 +.+.1 3.5.2  3-4.2  Vigor  Constaney  Range Mean Range  2.5 • 2.5 2.1 2.3 2.0 2.0 2.9 2.3. 2.3 2.0 2.1 2.1 2.1 2.4 2.1 3.0 2.5 2.8 2.4 2.2 2.0 2.1 1.6 2.2 2.0 2.7 2.8 2.4 2.7 2.7 2.2 2.5 2.0 2.2 2.0 2.4 2.4 1.6 1.2 1.5 2.3 2.0 3-0 1-7  2-•3 2--3 2--3 1-•3 2-•3 2-•3 2-•3 0-•3 2--3 2-•3 2-•3 2--3 1-•3 2-•3 2-•3 2--3 1--3 1--3 1-•3 1--2 2-•3 2--3 2-•3 2--3 2-•3 2-•3 2--3 2-•3 1--3 2-•3 2-•3 1-•3 1-•2 1-•2 1-•3 1-•2  12/14 14/14 14/14 7/14 3/14 5/14 12/14 12/14 13/14 14/14 13/14 6/14 7/14  13/14 11/14 3/14 14/14 6/14 5/14 14/14 13/14 12/14 8/14 8/14 6/14 14/14 12/14 7/14 14/14 12/14 12/14 10/14 l/l4 4/14 2/14 5/14 12/14 11/14 8/14 8/l4 6/l4 3/14 2/l4 9/14  T a b l e -rib. 28 - Continued A b i e t e t o -Tsugetum h e t e r o p h y l l a e d r y o p t e r i e t o s u m No. Layer of Number o f p l o t s 1 4 2 3 5 Species i' Pteridium aquilinum 21 +.+.1 + . + .2 +.+.2 22 Rubus pedatus + .3.2 Linnea b o r e a l i s 23 24 Scapania b o l a n d e r i +.2.3 3.4.3 1 . 2 . 3 2.3-3 •e + .2.3 1.3.3 +.2.3 Mnium punctatum b + . + .2 1.3.2 25 4.7.3 dw ..3.5.2 4.6.3 3 . 6 . 3 +.1.3 4 . 5 . 3 26 dw Dicranum f u s c e s c e n s + .2.2 2.3.2 3.3.2 e +.1.2 +.2.2 +.+.3 h Hylocomium splendens +.+.1 27 3.4.3 2.3.3 dw +.3.2 + . + .2 2.5.2 28 Hypnum c i r c i n a l e 2.4.3 dw 2.4.3 2 . 1 . 3 e + . 2 . 3 +.2.3 + . 3 . 3 dw isothecium stoloniferum + .+.2 29 +.3.3 2 . 3 . 3 e +.5.3 +.+•3 +.5-3 +.5.3 dw C l a d o n i a subsquamosa +.1.2 30 e +.1.2 +.2.2. + . + .3 h Plagiochila asplenioides 31 dw + .+•2 +.2.3 L e p i d o z i a reptans +.2.2 dw 32. +.2.3 2.3.3 +.1.2 +.1.3 e + .2.3 dw 2 . 3 . 2 + . + .2 P l a g i o t h e c i u m elegans 33 e + .2.3 +.3-3 dw B a z z a n i a ambigua 2.2.3 34 2.3-3 'e +.2.3 C a l y p o g e i a neesiana dw 35 + .1.3 + .1.2 e +.1.3 Calypogeia suecica dw 36 e +.2.3. 1.1.3 + . + .2 Eurhynchium oreganum h 37 dw + .+.2 +.+.3 Dicranum scoparium h 38 dw +.1.2 - +.2.3 dw Lophocolea h e t e r o p h y l l a +.1.3 39  40 41  Pseudotsuga m e n z i e s i i .Sorbus o c c i d e n t a l i s  ~ 5 22c,  42 43 44 45 46 47  Galium t r i f l o r u m Habenaria saccata Listera caurina L i s t e r a cordata Maianthemum' d i l a t a t u m Moneses u n i f l o r a  22f 18 113 113 . 22g 113  (+.+.2)13 22g (+,. + .2) (+.3.3) (+.+•3) (+.+.3) (+•+.3) (1.3.2) (+.2.3)  (+.+.3)  austriacae  6  2.5.2 +.3.2 3.5.2 + .4.2  3.5.3 4.7.3 2-3,2 + .3.2 3.5.3 2.3.3 + .3.2 + .4.3  + .2.2 2.2.3 1.1.2 + . + .2 1.1.2  + .2.2  + . + .3  7  8  ?  10  11  12  13 +. + . 2  +.5.2 1.5.2 1.3.2 + .4.3  5-6.3 5.7-3 4.5-3 +.3.2 1.3.2 2.3.2 4.4.2 +.3.2 2.4.3 +.2.3 + .1.2 +.1.2 1.3.2 1.2.2  4.5-2 +.3.2 +.3-2 3-5.3 5.6,3 5.6.3 2.3.2 +.2.2 4 . 6 . 3 3-5-3  1.2.2  3-5.3 3.4.2 3.2.3  3.5.2 1.2.1 1.1.2 3-5.2 2.4.2 1.3-3 1 . 4 . 3 + . 2 . 3 + .+.2 +.4.2 + . 3 . 2 2.5.2 +.5-3 + . 6 . 3 +.4.3 1.2.2 + .1.2 +.1.2 2.1.3 2.2.3 1.1.3 +.1.2 +.2.3  2.3.3 +.4.3 6.8.3  +.2.3 1.1.2 +.2.3  2.5.3 2.3.3 + .2.2 1.4.2 + .3.3 1.2.3 1.2.2 1.3.2 + .2.3 +.2.3 + . 1 . 3 3.5-3 5.6.3 2.4.2 4.5.3 3.5-3 + . 2 . 3 + .3.2 4.5.3 2.3.3 +.6.3 + . 3 . 3 + .1.3  2.1.3 2.3.3 2.2.3 2.3.3 + .2.3 + . + •3  2.4.3  +.1.3 +.1.3 + .+.3 +.2.3 +.2.3  +.2.3  1.1.2  + .1.3 2.3.3 + .2.3 + .2.3  +.1.3 + .1.3 +.+.2 +.+.3 + . + .2  +.+.2 + .2.3  + . + .2  Species Vig;or significance Mean Range Mean Range 0-2 1.6 1-2 2.+.I. 0 . 4 2.0 0-2 0.3 2.3 0.3 0-3 2-3 0-4 1.9 2-3 2.3.3 2.5 0-1 2.6 2-3 +.1.3 0..5 1.8 0-5 2.7 2-3 3.5.3 4 . 5 . 3 3.0 2-3 o-5 2.7 o-4 1-3 2.3.3 1.5 2.3 0-1 +.2.3 0 . 8 2-3 2.5 2.4 0-6 2.6 1-3 0-4 1.1 2-3 2.3 o-4 1.4 2-3 3.5.3 2.9 2.4 0-+ 2-3 + .3.3 0.8 0-4 2.6 1.0 2-3 .0.8 0-+ 3.0 0-+ 2.2 0.3 2-3 0.4 0-+ 2 . 1 2-3 0.8 0-2 2.8 2-3 0-2 2.6 2-3 0.7. 0-2 . 2 . 1 2-3 +.2.3 0 . 5 0.2 0-+ 2.7 2-3 0-2 2.4 0.5 2-3 0-+ 3.0 + .1.3 0.4 0.6 0-2 3.0 +.1.3 0.1 3.0 0-+ 0-1 2.4 2-3 0.3 0.1 0-+ 3.0 0-+ 3.0 +.2.3 0 , 1 0.1 0-1 3.0 2.2 0-+ 2-3 0.3 0.2 0-+ 2.3 2-3 0.1 0-+ 2-3 2.5 0-+ 0.1 2-3 2.5 0-+ 3-0 +.2.3 0 . 2 14  .48 ~ 49 50 51  Antiitr i c h i a curtipendula Blepharostoma trichophyllum Calypogeia trichomanes Cephalozia bicuspidata  113 (+.2.3) 89 (+.+.3) 22c (+.1.3) 89, 27 (+.+.3)  52 53 54 55 56 57  F r u l l a n i a nisquallensis Hookeria lucens Metzgeria furcata Mnium insigne Plagiothecium s e l i g e r i P t i l i d i u m californicum  113, 119 (+.2.3) 27 (+.1.2) 89 (+.2.3) 22e (3.4.3) 31 (+.+.3) 22e (+.2.3)  Constancy 5/14 3/14 3/14 13/14 8/14 l0/l4 13/14 11/14 11/14 11/14 8/14 10/l4 11/14 8/14 12/14 5/14 6/14 6/14 8/14 7/14 4/l4 5/14 6/14 7/14 2/14 5/14 2/l4 2/14' 2/14 4/l4 3/14 2/14 2/14 3/14  Blechneto - Tsugetum heterophyllae " ::. .e \ . ,  Table no. 29 Number of plots Plot no. Computation reference no. Date  1 23 35. 8/9 1958  Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) A l A  3 .20 36 24/7 1958  4 117 38 26/7 1959  5 83 31 19/5 i960  6 101 33 5/6 1959  49°23!  i+9°2i; 49°2l', 49°22J 49°28,' 49°25 122°46 122 57 122°57 123°02 122°57 122°59 570 1800 1760 1000 920 750 270 315 135 90 315 270 10 10 . 7 10 12 2 10 50 20  2  A  2. 17 37 21/7 1958  3  A  70  45 20 60 50  Bl B B C Dh Ddw D 2  40  25 65 65 35  40 40  80 10 15 20 25 40  50 90  30 35 15 70 5 10 15 15 60 20 80 75 25  25 60 15 95 5 7 10 15 5 15 20  4o 35 10 75 30 45 60 75 25 25 50 65 35  i4o 112 85 .94  115 138 100 132  149 96 111 131  20 35 15 70 . 30 45 65 45 50 30 80 70 30  Humus coverage (per cent) 40 70 Decaying wood coverage (per cent) 60 30 Land type and L.and form Glacial drift R e l i e f shape Profile Contour l i n e Parent material Outwash * • T i l l - ' * Till ^Alluvial Srosion p o t e n t i a l Run-off Moderately Moderately drained*Well-dr* Drainage *Moist* Hygrotope Wet 60 Stoniness (per cent) 10 30 40 25 0 Permeable mineral, s o i l depth ( ;m.) 120+ 95 50 105+ 103+ 100+ Ecto-humus horizon depth (cm.) L-F 15 5 25 8 10 50 Endo-humus horizon depth (cm.) A 0 15 0 0 0 0 Eluviated horizon depth (cm.) 0 0 5 5 0 13 pH Ecto-humus horizon 3.32 3.17 4.07 A 3.54 A B 4.72 5.01 5.10 C 5.72 5.20 Nil Depth of seepage (cm.) 50 88 100 58 100 Raw * Duff * Humus form mull humus h  h  e  S i t e indexDouglas-fir f t . per Western hemlock lOOy) Western redcedar Amabilis f i r  90  149  111  136 121 141  142 116 115  8  7 "l4  lk  18/7 1958 8oo, i+9°2i 122°57' 2510 225 5 Cfb ABjrb4 '80  f  11  9 245  34 ?l/7 1959.  47  40  15/5 1962  28/8 1958  49  30 22/8 1958  12 13 13 16/7 1958  49°22] 49°17,' 49°l8* 49°19' 49°2l 123°04 122°35 122°35 122°57 122°35 1200 1450 1680 750 2730 90 225 225 135 45 12 4 6 5 5 10 55 20 75  10 65 30 75 25 35 40 60 70 20 90 50 50  80 40 30 30 35 60 50 20 40 5 55 20 5 10 75 59 75 25 50 Lower slope Concave Concave Till Outwash Lacustrine Slight Slow drained Wet 30 5 70+ 50 25 7 0 0 7 9  70  96 118 89 77  10 61  142  40 Raw humus  129 107 103  136  25 30 15 60 15 55 60 70 20 4o 60 50 50  25 40 20 70 15 35 40 60 35 25 60 50 50  Till  60 95 7 0 3  50  50 20 60 70 20 5 10 15 70 30  * Till  13 91 32 26/5 1959 49°23; 123°00 700 225 2  45 15 25 75 15 50 60 65 30 20 50 65 . 25  Mean  1370  2-10  61 39  40-75 25-60  Lacustrine  4.40  0. 128+ 17 0 1 3.80  29 35 19 15 5 3.81  3.90 4.25 4.80 63  30  4.05 4.84 4.95 68  3.80 5.13 5.20 120  3.82 4.84 5.17 72  113 113"" 106  124 118 103 96  105 129 94 123  570-2730 E-NW  60 70+ 25 0 8 4.10  30 35 28 0 8  Range  125 136  125 118 107 115  O-60 5-50 O-13 3.17-4.40 3.54-4.05 4.25-5.13 Nil-120  96-149 96-136 85-149 77-l4l  Blechneto  - Tsugetum heterophyllae  Table no. 30 No. of  Number of plots  1  2  3  %  5  6  Plot no.  23  . 17  20  117  83  101  Computation reference no.  35  37  36  38  31  33  4.9.3 5.8.3  5.+ .3 7.10.3 5-6.2 +.+.3  Layer  3pecies  Al  2  4 5  3 l 2 3 l 2 3 Bl 2 1 2 2 1 2 1  2  7 8 9 10 11 12 13  1 2 ? C  14 15  16 17 18 19 20  21  22  23 2h  Bh dy e h dw e h dw e h dw h dw  Characteristic combination of species Tsuga heterophylla Thuja p l i c a t a  r 7.9-3 5.7.2 7.10.2 4.8.2 +.+.3 +,+.2  +.+.2 5 . 7 . 3 6.8.3 7.10.3 4.7.2 5.6.2 3-+.2  5.9.2 Abies amabilis Abies amabilis Tsuga heterophylla Vaccinium alaskaense Rubus spectabilis  6.9.3 5.8.3 4.7.3 4.6.3 5.8.3 3.5.2 4.7.3 3.6.3  Sambucus pubens 2.6.3  Thuja p l i c a t a Oplopanax horridus Blechnum spicant Tiarella trifoliata Cornus canadensis Athyrium f i l i x - f e m i n a Streptopus amplexifolius Dryopteris austriaca Lysichitum americanum Polystichum munitum Rubus pedatus Gymnocarpium dryopteris Habenaria saccata Viola glabella Mnium punctatum  Rhytidiadelphus  loreus  1.5.2. 7.10.3 5.5.3 3.5.3 2.4.2 + . + .2 3-4.2 1.5.2 3.6.3 + . + .2 +.3.2  2.+.2 1.+.3  3.7.2  3.5.2 4.7.3 3.5.2  + .+.2 1. + .2 2.5.3 5.7.3 2.4.2 + .3.1 + . + .2 2.4.2 1.3.1 1.3.2  5.8.3 5.7.3 3.7.3 +.+.2 1.+.2 3.+ .3 3.6.2 2.5.3 2.6.3 5.8.3 + .+.2 2.+ .2 + . + .2 + . + .1 3.5.3 3.5.2 2.5.3 3.4.2 + .2.3 2.3.2 3.5.2 2.+.2  +. + .2 + . + .3 6.8.3 2.+ .2  + . + .2 5.7.3 + . + .3 3.5.3 + . + .3 6 . 1 0 . 3 5.7.3 2.3.3 6.9.3 4.7.3 + . + .3  3.5.3 5.6.3 4.6.3 + .3.3 6.9.3 4.5.3  Hylocomium splendens  4.5.3 3.4.2 1.2.3  5.7.3 4.5.2 +.3.2 4.5.3 3.5.2 7.8.3 4.5.3 +.2.2 1.3.2 1.2.2 + .2.3  2.4.3 4.6.2  4.5.3 3.4.3 3.5.3 + . + .3 3.5.2  1.4.3 3.5.3  4.6.3 3.5.3 6.8.3 5.6.2 + .2.2 + .3.3  +.+•3 5.7.3 4.6.3 4.+.3 2.4.3 4.5.3 5.6.3 5.5.3 + .5.3 + .+.2  + . + •3  +.2.3  Plagiothecium undulatum  Hookeria lucens  4.8.3 3.+.2  3.4.3 5.5.3  + . + .3 3.5.2 6.6.3 5.5.3 5.5.3 + .4.3 5.5.3 + . + .2 4.5.2 4.5.3 4.4.3 +.2.3 + .3.3 3.5.3 +.2.3 3.5.3 3.5.3 +.3.3 5.6.3 3.4.3 +.2.3 3.5.3 1.3.3  + .+.2 6.4.3 4.4.3 2.3.3 4.5.3 2.+.3 4.4.3 + .3.2 4.3.3 4.3.3 5.6.3 5.6.3 + .1.3 2.3.3 + .2.3 6.6.3 5.5.3 + .3.3 + .2.3 + .2.3  7  8  9  14  142  245  6l  kg  13  91  lit  34  47  40  30  13  32  1.10.3 + . + . 3 7.9.3 3.6.2 2.+ .2 + . + . 3 6.8.3 5.6.2 + . + .1  6.9.3 6.8.2 +.+.3 6.8.2 5.7.2 +.+.3  + .2.3 5.7.2 5.7.2 2.+ . 2 6 . 5 . 2 3.6.2 3.5.3 4.8.3 3.5.3 +. + . 1 5.7.3 2.+.2 4 . 5 . 3 2.+ . 2 3 . 4 . 3 + .5.2 2.3.2 6,7.3 1.3.2 5-3.2 1.3.2 +.4.3 3.5.2 2.3.2 + . + .2 1.3.2 2.+.2 4.4.2 2 . + .1 4 . 4 . 3  5.6.2 6.7.3 5.7-3  4.6.2 +.5.3 7.9.3 5.6,3 4.5.3 3.5.3 4.5.3 2.5.2 +.5.2 6.7,3  2.+ . 2 4 . 5 . 3 6 . 7 , 3 3.4.3 2.3.3 4.3.3 7.8.3 4.6.-3 2.3.3 5.6.3 1.2.3 4 . 3 . 3 + .2.3 + .2.3 5.5^3 3.5.3 + .2.3  7.8.3 4.5.-3 7.8.3 5-6.3  10  11  12  13  +.+.3 7 . 9 . 3 + . + .3 4.+.3 6.8.3 6.7.2 4.7.2 6.8.3 +.+.3 4 . + . 2 7 . 9 . 3 6.JJO.3 7 . 1 0 . 3 3.+.2 +.+.3 5.8.3 4.7.3 7.9,3 4.+ .2 +.+.2 +.5.3 5.7.3 4.6.2 +.+.3 1. + . 2 5 . 7 . 3 5.7.3 3.5.3 4.6.3 4.7.3 4,7-3 4.7.3 3.5.2 3-4.2 4.6.2 6.8.3 6.9.3 7.9.3 6.7.3 1.5.2 4.7.2 2.5.3 4.6.3 3.7.3 2.5.3 3.6.3 +.+.3 3.4.2 3.5.3 1.5.3 2.5.2 3 . 5 . 2 +.+.3 1.6.2 +.+.2 4.6.3 4 . 6 . 3 7.9.3 7.7.3 7.8.3 3.3-3 4.5.3 5.7.3 ' 4 , 7 - 3 5,7.3 3.4.3 1.4.2 4 . 5 . 3 3.5.3 +.3.3 +.+.3 +.+.3 +.+.3 2.5.2 +.+.2 3 . 4 . 2 5 . 5 . 3 +.+.1 +.4.2 +k5«2 3 . 4 . 2 1 . 3 . 2 5.6.3 5.7.3 4.7.3 5.6.3 4.6.3 2.+.3 + .2.2 +.4.3 3 . 2 . 2 4.6.3 4 . 6 . 3 +.5.3 2.4.3 4.5-3 3.5.3 +.1.3 3.5.3 5.6.3 2.3.3 2.4.3 4.5.3 3.4.3 2.1.2 3.4.3 +.2.3 +.3.3 4.6.3 4.3.3 5.6.3 3.5.3 2.5.3 5.5.3 +.2.3 +.3.3 4.4.3 2.4.3 6.7.3 6.6.3 2.4.3 1.2.3 +.3.3  Species Vigor Conssignificance tancy Mean R a n g e Mean R a n g e  2.8 4.5 3.2 2.1 2.3 1.1 2.1 2.8  0-•9 0--7 0--6 0--6 0--7 0--5 0--7 0-,6 01.7 •'5 0--'5 1.7 1.6 0-•5 0--6 3.7 0--6 2.7 4.6 2--7 1.2 0--4 2.6 0--5 0-•3 0.7 1.2 0-•5 1.2 . . .0.--4 1.0 0--3 0--3 0.7 25-2 3.6 0--7 0-•5 2.7 2.3 Q---4 0--2 0.7 +-•5 2.7 l . l 0--4 +2.3 -5 0--6 2.2 1.0 0--4 0--2 0.3 0.2 0--+ 0--6 3.0 0--5 2.9 0--+ 0.3 0--7 2.9 2.1 0--4 0--+ 0.3 4.82-•7 0--5 3-2 0-+ 0.5 2.6 0-•7 0--6 1.7 0.4 0-• l 0.1 0--+  2.9 2.8 2.1 2.6 2.6 2.2 2.7 2.7 2.6 2.5 2.9 2.6 2.3 2.9 2.5 3.0 2.4 2.5 2.4 2.5 2.0 2.9 2.6 2.7 2.6 2.6 2.3 1.7 2.2 2.8 2.7 3.0 2.6 2.8 2.8 2.7 3.0 2.8 3.0 3.0 2.9 2.8 2.8 2.7 3.0 3.0  2-•3 2-•3 2-•3 2-•3 2-•3 2-•3 1- •3 2-•3 2-•3 2-•3 2-•3 2-•3 2-•3 2-•3 2-•3 1- •3 2-•3 2-•3 2-•3 1- •3 2-3 2-•3 1- •3 2-•3 2-•3 2-•3 1- •2 1- •3 2-•3 2-•3 2-•3 2- 3 2-•3 2-•3 2-•3  2-•3 2-•3 2-•3 2-•3  9/13 10/13 9/13 11/13 5/13 5/13 8/13 7/13 8/13 9/13 9/13 12/13 10/13 13/13 6/13 9/13 7/13 7/13 7/13 7/13 8/13 13/13 12/13 12/13 12/13 8/13 13/13 9/13 13/13 7/13 4/13 3/13 3/13 12/13 11/13 4/13 10/13 10/13 4/13 13/13 11/13 7/13 10/13 8/13 6/13 1/13  Table no. 30 - Continued No. Layer of Number of plots Species h Abies amabilis dw h . Thuja p l i c a t a dw h P e l l i a sp. 25 h 26 Sphagnum squarrosum h Conocephalum" conicum 27 h Sphagnum recurvum 28 dw h Eurhynchium s t o k e s i i 29 ,  30  Al 2 3  31 32 33 34 35  2 1•  2 1 2  2 2  36 37 38 39 Uo Ui U2 U3 UU 45  C  U6 47 U8 49 50 51 52 53 5U 55  .  dw e dw e dw e dw e dw e dw e dw e dw h dw e h dw dw e  Blechneto - Tsugetum . . 1  2  +.+.2  Rubus p a r v i f l o r u s Sorbus sitchensis Streptopus roseus Linnea borealis Luzula p a r v i f l o r a Galium t r i f l o r u m Clintonia uniflora Lycopodium selago Maianthemum dilatatum Scapania bolanderi.  1.2.3 l.U.3 3.6.3 2.3.3  2.U.2  2.4.2  Cephalozia media Plagiochila asplenioides  7.10.3  +.+.3  +.+.3 U.5.3 +.+.2  +.3.2  Plagiothecium  2.4.3  + .+.2 3.5.3  +.+.3  5.6.3 + .+.2 4.6.3 3.4.3  3.4.3 +.3.3  + . + .2  +.3.3 + .+ .2  + . + .2  3.5.3  2.5.3 1.3.3 +.2.3 +.1.2 +.2.2 +.2.3  +.3.3 2.3.3 +.3.3 2.1.3 2.5.3 +.U.3 + . 3 . 3 2.3.2 2.3.2 +.2.2 + .2.2 +.3.3 • + . 2 . 3 +.2.2 +.3.2 +.2.3 . + . 2 . 3 1.3.2 + .+.3 2.2.3 +.2.3  +.2.3 + .2.2  +.2.3 +.+.2 2.3.3 +.2.3 2.U.3 +.2.2 +.2.3 2.3-3 +.1.2 1.2.3  + .1.3 Eurhynchium oreganum  +.2.3  3.5.3  +.5.2  +.+.2  1.3.3  subsquamosa  1.3.3  +.5.2  +.2.2  ambigua  Cladonia  +.+•3 l.U.3 +.2.3  +.+.3 + .3.3 +.2.3 1.3.2  + .+.2  Bazzania  reptans  6  :+.+.3  + .+.2  fuscescens  Lepidozia  1  +. + . 3 2.5.3 2.U.2  +.+.2 2.5.3 3-7.3  Dicranum  Isothecium stoloniferum  5  + .+•3  3.7.3 2.7.2  1.2.3 +.U.3 +.1.2 +.2.3 2.2.3  Hypnum c i r c i n a l e  u 1.2.2  +. + .2 +.+.2  Companion species Pseudotsuga menziesii Vaccinium parvifolium Gaultheria shallon Taxus b r e v i f o l i a Menziesia ferruginea Acer circinatum  3  heterophyllae  +.2.3 +.1.3  denticulatum  + .2.3 +.2.3  +.2.3  3.6.3 +.5.3 1.3.3 +.3.3 1.4.3 +.5.3 3.6.3 +.4.3 1.3.3 +.3.3 +.2.3 +.2.3 +.1.3 +.2.3  3.5.3 +.4.3 1.2.3 +.1.3 2.2.3 +.3.3 2.2.3  2.4.3 + .2.3 +.2.3  1.2.3 + .2.3  2.3.3 +.6.3 +.1.3 + .1.3 + .+.2 +. + . 2 +.1.3  7  8  9  10 + . + .2 + . + .2 1. + .2  11  12  •13 2.3.2  +.3.2  + .3.2 + . + .2 2.4.3 5.7.3  + .3-3 ..  + .4.3 2.5.3  2.3.3  -  + •3-3 6.+.3 + . + •3 +.+.2  +.+.3 +.+.3 2.+.3 3 . 5 . 3 3.5-2 4 . 6 . 3 + .+..2 2.5.3 3.5.3 5.7.3 4 . 6 . 3 2.+.2 +.+.2 + .+.3  2.U.3  1.3.3  1. + .2 +.3.2 2 . 3 . 3 + . + .2 1.2.3' +.2.2 +.2.3 +.3.3 3 . 2 . 3 +.2.3 + .1.2 2.2.3  -  2.5.3 4.6.2 2.5.3 1.6.3  3-5*3 4.5-3 +.3.3 +.5.3 +.3.3 5.6.3 .-5,.3 3 . 5 . 3 +.3.3 2.3.3 +.3-3 +.2.3 2 . 4 . 3 +.2.3 u  +.2.3  + . 2 . 2 +.6.3 5.6.3 + . 2 . 3 +.2.3 +.5.3 + . 2 . 3 +.2.3 2 . 5 . 3 + .2.3 + .1.2 2 . 3 . 3 +.+.1 +.2.3 +.2.3 +.2.3 +.1.3 1.3.3 / + .3.3 / 1.2.3 +.2.3 +.3.3 4.5.3 3.5.3 +.3.3  2.4.2 3-6.2 +.+.2 1.5.3  3-+.3 1.5.2 + . + .2  + . + .2 4.5.3 3.6.3 + . + .2 5.8.3 3.5.3 + .4.3 3.5.3 + .3.3 2.3.2 + .1.3 2.4.3 + .4.3 1.3.3  + .+•3  3.2.2 3.3.3 + .3.3 + .2.3 4.3.2  + .3.3 2.3.3 +.3.3 + .2.3  3.1.2  +.3.3 1.3.3 +.3-3 2.3.3 + .3.3 + .4.3 + .2.3 +.2.3 + .2.3 2 . 3 . 2 2.1.2 + .1.3 +.2.2 + .2.2 + .2.3 +.2.3 +.3.3 1.2.3 + .2.3 +.3.3 1.4.3 + .3.2 1.3.2 + .2.3  Species Vig ;or significance Mean Range Mean Range 0.4 2.0 0-2 0.1 0-+ 2.5 2-3 0-+ 2.2 2-3 0.3 0.2 0-1 2.3 2-3 0-2 3.0 0.5 0.5 3-0 0-5 0-1 3.0 0.3 0.6 2.8 0-3 2-3 0-2 3.0 0.3 0.2 0-2. 2.5 2-3 1.4 0.3 0.1 2.0 1.3 0.9 0.7 1.3 0.4 0.1 0.1 0.4 1.0 0.3 0.3 0.8 0.1 1.1 2.0 0.7 1.6 0.7 1.6 0.6 1.2 0.3 1.2 0.7 1.0 0.3 1.0 0.7 0.7 0.3 0.3 0.5 0.6 0.3 0.1 0.2  0-7 .0-2 0-+ 0-4 0-4 0-5 0-3  o-5 0-3 0-+ 0-+ 0-3  o-4  0-+ 0-1 0-3 0-+ 0-5 +-4 0-+ 0-4 0-+ 0-3 0-+ 0-3 0-+ 0-5 0-+ 0-2 0-+ 0-2 0-+ 0-2 0-+ 0-2 0-+  o-4  0-3 0-+ 0-+  3-0 2.0 2.0 2.8 2.1 2.1 2,8 2.8 2.3 2.0 2.5 2.5 2.8 2.5 2.5 2.7 2.5 2.8 2.9 2.9 2.7 3.0 2.6 2.6 3.0 2.7 2.8 2.9 3.0 3.0 2.2 2.5 2.9 2.8 3.0 3-0 2.8 2.6 3.0 3.0  2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3\ 2-3V 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 1-3 2-3 2-3 2-3 2-3 2-3 ,  Constancy 5/13 2/13 4/13 3/13 5/13 3/13  Vl3. 5/13 2/13 2/13  6/13 3/13 2/13 11/13 7/13 7/13 5/13 6/13 3/13 2/13 2/13 4/13 5/13 4/13 4/13 4/13 2/13 5/13 13/13 10/13 12/13 IO/13 11/13 8/13 10/13 4/13 9/13 9/13 11/13 5/13 10/13 9/13 9/13 5/13 4/13 7/13 5/13 3/13 2/13 3/13  Blechheto - Tsugetum heterophyllae Table no. 30 - Continued No. Layer of Number of plots 4 2 5 Species 56 ' h Plagiothecium elegans + .2.2 1.5.3 dw +.2.3 e +.2.3 +.1.2 Calypogeia trichomanes 57 + .2.3 + .1.3 e + .+.3 + .+.2 +.1.3 dw Cephalozia bicuspidata +.2.3 +.2.3 +.2.3 58 dw Calypogeia suecica 59 +.2.3 + . 1 . 3 + .+.2 dw Dicranum scoparium 60 +.2.3 +.2.3 2.4.3 dw 61 Bazzania t r i c r e n a t a 3.4.3 e + .2.3 +.2.3 + . 2 . 3 dw 62 Blepharostoma trichophyllum + .2.3 Atrichum undulatum h63 + .3.3 64 Cephalozia lammersiana dw 1.4.3 +.1.3 Calypogeia neesiana dw 65 + .1.3 66 Rhytidiadelphus triquetrus +.2.3 h.. +.3.3 Sphaerophorus globosus dw +.1.3 67| e 68 F r u l l a n i a nisquallensis +.2.3 e +.1.3 Diplophyllum taxifolium 69+ .1.3 dw 7C'  Ribes braceteosum  71 72 73 74| 75 76 77 78 79 80 81 82 83  Carex bolanderi Circaea alpina Coptis a s p l e n i f o l i a Epilobium angustifolium Goodyera o b l o n g i f o l i a L i s t e r a caurina L i s t e r a cordata Moneses u n i f l o r a Poa t r i v i a l i s Pteridium aquilinum Tiarella unifoliata V i o l a sempervirens Dicranum majus Metzgeria furcata Mnium spinulosum Neckera douglasii Neckera menziesii P o r e l l a navicularis P o r e l l a platyphylla P t i l i d i u m californicum  84  85 86 87 88 89 90  83  (2.5.3)  20 20 49 .61 .49 49 83 49 20 142 83 245 23 83 101 101 83 142 101 83  (1.3.3) (+.+.3) (+.+.3) (+.+.2) (2.3.3) (•+•+.3) (+.2.3) (+.+.3) (+•+•3) (+.+.2) (+.3.3) (2.5.3) (+.1.3) (+.2.3) (+.1.2) (+•3.2) (+.3.2) (+.1.3) (+.2.3) (+.2.2)  6  +.+.3  +.+.3  +.1.3 +.1.3 +.1.3 +.1.3  +.2.3  7  8  9  10  11  12  13 + . + .2  +.2.3 +.3-2 1.2.3 +.1.3 1.3-3 1.2.3  1.3-3 +.2.3  +.1.3  +.3.3  + .2.3 +.2.3 + .1.3 + .2.3 1.2.3  1.5.3 ' +.1.3 +.4.3 +.1.3  +.1.3 +.1.3  +.1.3  +.1.3 +.1.3 +.+.3 + . 2 . 3  +.2.3 +.2.3 +.2.3  +.1.2 + .1.3  ies Vig;or sign: icance Mean Range Mean Range 0-1 0.2 2 . 3 2-3 0-+ 0.3 2 . 7 2-3 0.1 0-+ 2 . 5 2-3.0-1 3.0 0.3 0-+ 2 . 8 2-3 0.3 0.4 . 0-1 ' 3 . 0 0-1 2 . 8 2-3 0.5 0.4 0-2 3.0 0.4 3-0 0-3 0-+ 3.0 0.3 0.2 0-+ 3.0 0.2 0-+ 3-0 0-1 3.0 0.3 0.4 0-+ 3.0 0.2 0-+ 3.0 0.2 0-+ 3.0 0.1 0-+ 3.0 0.4 0-+ 2 . 8 2-3 0.1 0-+ 3.0  Constancy 3/13 4/13 2/13 4/13 5/13 6/13 7/13 5/13 Vl3 5/13 3/13 3/13 4/13 5/13 3/13 3/13 l/l3 6/13 2/13  - Tsugetum heterophyllae streptoposum r o s e i Table no. 31 Number of plots P l o t no. Computation reference no. Date  2 11 42  18/7 1958  135  10  35 30 20 70 20 35 50  P 2  Bl B B C 2  D  ill  39 16/6 1958  5 6 43 15/7 1958  315  180  k  1  Mean  Range  1959 80Q l+9°22' i4-9°23' 49^22' 49°22' 122°57' 123°02' 122°57' 122°57' 2890 265O 2950 2880 2810 2650-2950  P l o t size (sq. m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) AQ_  A  -3 132 44  40  h  Bdw D Humus coverage (per cent) Decaying wood coverage (per cent) Land type and land form R e l i e f shape Profile Contour l i n e Parent material Erosion p o t e n t i a l Run-<pff Drainage Hygrptope Stoniness (per cent) Permeable mineral s o i l depth (cm. Ecto-humus horizon depth (cm.) L E l u v i a t e d horizon depth (cm.) A E  20 30 50 70 30  225  5  Cfb ABjrb-i  5 4o 25 65 15 50 60 20 .50 20 70 70 30  6  30 4o 20 70 5 60 60 85 5 10 15 80 20  6  30 75 23 5  SSE-NW 5-14  50 10 5 6 40  35 70 70 10 10 20 70 30  G l a c i a l d r i f t - Lower slope Concave Concave Till Slight Slow Moderate Wet  50 45 23 13  8  25 55+ 9 4  74 26  70-80 20-30  34 18 18 6  25-50 0-13  Blechneto - Tsugetum heterophyllae streptoposum r o s e l Table no. 31 - Continued Number of plots pH  L-F  Ah A B C e  Depth of seepage Humus form S i t e index  Western hemlock Western redcedar Amabilis f i r  1 3.16  4 . 17 5.6S 12  5  50  43  55  Mean  Range  40 12-55  Raw humus 123 113.  io4 112 . 111  98  97  116  92  106  122  108 112 109  97-123 92-122  Blechneto  - Tsugetum h e t e r o p h y l l a e  streptoposum  rosea  T a b l e no. 32  No. of Species  Number o f p l o t s  1  2  3  4  5  Plot  15  11  132  7  6  41  42  44  39  43  Layer no.  Mean Computation r e f e r e n c e no.  Al  C h a r a c t e r i s t i c combination of s p e c i e s Tsuga h e t e r o p h y l l a 6.8.3  2 3 l  2 3 1 2 3 Bl  2 1 2 1 2 1 2 1 2 2 1 2 2 1 2  4  5:  6 7 8  10 11 12 13 14  15 16  Species significance  C  Abies  amabilis  5.8.3 4.7.3 + .1.2  6.+.3 •5.8.2  4.7.2 Thuja p l i c a t a  3-+ .2 4 . 7 . 3 4.8.2  Abies  4.6.3  amabilis  Tsuga h e t e r o p h y l l a  4.7.2  Rubus  1.3.2  spectabilis  Vaccinium Vaccinium  4.7.2 3.7.3  +.+.3 3 . + . 3 5.8.3 5.7.3 6.7.3 4.7.2 5-+.3 7.10.2 5.8.3 5.6.1 5.7.2  3.7.3  4.6.3 3.5.3 4.6.3 4.5.3  2.5.3  4.6.3  6.7.3  6.7.3  7.9.3  alaskaense ovalifolium  6.8.2 4.6.3  Sambucus pubens Menziesia ferruginea Oplopanax h o r r i d u s Thuja p l i c a t a Blechnum s p i c a n t Streptopus a m p l e x i f o l i u s Athyrium f i l i x - f e m i n a Rubus pedatus S t r e p t o p u s roseus Clintonia uniflora Streptopus streptopoides  2.5.2 2.5.2  2.5.3 +.+.1  5.3.3 + . + .2 + . + .2 4.7.3 2.+ .2 3.6.3 1. + .2  4.8.3 4.8.3 3.6.3 2.5.2 1. + .2  3.5.3  5.6.2  5.7.2 4.6.2 + .+.2 +.+.3 +.+.3 + . + .2  + .4.2 3.+.2 2.6.3 3.4.3 2. + .3 + .+.3 4.7.3 3.4.3 3.4.3 2.4.3  4.5.3 3.4.3 5.4.3 6.8.3 5.5.3 6.5.3 +.3.3  3.5.3 +  5.3.3  i-+.2 + .+•3  + .+.2 8J.O.3 8 . 9 . 3 2.2.3 2.3.3 2.3.2 2.4.2 5.8.3 5.5.3 2.4.2  3.4 2.8 3.0 2.4 0.6 1.2 1.4 4.6 1.8 1.2 1.0 0.6 0.6 0.4 0.6 0.4 3.6 1.8 2.0 6.0 2.8 3.4 2.8  1 Vigor'  Range Mean  5 . 7 . 3 :.4,2 + +-6 4 . + . 3 5.0 . 4-6 2.4.2 '0-6 3.2 0-6 6 . 7 . 3 2.4 4.+.2 4.0 0-7 3.4.2 4.0 3-5 0.8 0-4  5.8.3 4.7.2 4.7.2 3.6.3 1.4.2  ;  4- •5 0-•4 0-•4 0-•4 0-•1 0-•4 0- •7 0--6 0- •5 0-•4 0- -3 0-•2 0-•2 0- •+ 0- •3 0-•2 3-•5 +- •3 +- •5 4- •8 2- •5 2- •6 +- •5  Constancy  Range  3.0 5/5 2.8 2- •3 5/5 2- •3 2.5 4/5 2,6 2- •3 3/5 2.. 2 ' _2- •3 4/5 2.0 1- •3 . - 5/5 2.0 1/5 2.8 2.7 2.5 2.7 2.0 3.0 3-0 2.5 2.5 2.0 2.6 2.5 2.5 1.5 2/0 3.0 3.0 2.6 2.4 3.0 2.8 2.6 2.8  2- -3 2- -3 2- -3 2- -3 '  2- -3 2- -3  5/5 4/5 4/5 4/5 3  £  2/5 1/5 4/5 2/5 2/5  2- •3 2- -3 2- •3 1--2  2/5 2/5 2/5  2- -3 2- •3  5/5  2- •3 2- -3 2- •3  5/5 5/5  ^? 5/5 —-3  VO  Table no. 32 - Continued Layer Number of p l o t s  No. of Species 17 18 19 20 21 Dh dw h 22 dw e h dw h dw h 23 h 24 dw h 25 dw 26 27 28 29 30 31 32 33  Bl 2 C Ddw e dw e dw e dw e h :dW  3k 35 36 37  e dw e dw e dw  Dryopteris a u s t r i a c a Tiarella trifoliata Cornus canadensis Lysichitum americanum Mnium punctatum Rhytidiadelphus loreus Tsuga heterophylla Abies amabilis P e l l i a sp. Rhytidiopsis robusta Plagiothecium undulatum  Blechneto - Tsugetum heterophyllae streptoposum r o s e i ; •> ••• Species Vi*gor... 4 significance 1 2 3 5 Mean Range Mean Range 0-4 2.0 + .k.2 4 . 4 , 3 3 . 6 . 3 2 . 3 . 3 2.7 2-3 2.8 2.3.2 2.3-3 0-5 2.5 2-3 5.5.3 2.5.2 2.4 0-4 2.2 3-5-2 4 . 3 . 2 4.4.3 1.3.2 2-3 2.0 1.2 1. + .2 3.6.2 2.6.2 0-3 4.0 3.0 4.4.3 4.7.3 3-5 5.6.3 4.5.3 3.4.3 2.8 3-0 3.5.2 1.2.3 5.6.3 3.5.3 2.3.3 2-3 1-5 2.8 3-0 5.4.3 1.3.3 2.4.3 1-5 2-3 5.6.3 2.3.2 1-4 2.2 3-k. 3 2 . 3 . 2 4.4.3 2.3.3 2.7 2-3 +.3.2 +.3.3 + . 3 . 3 .0.8 :o++ 2 , 7 +.2.3 2-3 0.4 3.0 1.+.3 4 . 5 . 3 + . + . 3 1. + . 3 1.4 + . + . 2 5 . 4 . 3 1 . 3 . 3 2.+ . 3 1.8 0-5 2.7 2-3 0-2 3-0 2.3.3 + . + .3 0.8 +.+.3 0.2 0-+ 3-0 +.+.3 1.0 0-2 3-0 2 . 3 . 3 2.5.3 1.4.3 2.8 0-4 2-3 2.7 4.5.3 4.5.3 2.3.3 4.5.2 2.4 0-4 3.0 k. 5 . 3 2 . 3 . 3 3.5.3 3.5.3 2.2 0-4 2 . k. 3 3 . 2 . 2 2.5 2-3 4.5.3 2.3.2 2.0 0-4 . 2.7 3 . k. 3 + . 4 . 2 4 . 3 . 3 2 . 3 . 3 2-3  Companion species Chamaecyparis nootkatensis 2.+ . 2 Sorbus o c c i d e n t a l i s 1.3.3 L i s t e r a caurina +. + •3 Scapania bolanderi 1.2.3 + .2.3 + .2.3 Hypnum c i r c i n a l e 3.5.3 4.4.3 +.k.3 + . 3 . 3 Cladonia subsquamosa + .2.3 + . + .3 +.2.3 + . + . 2 Dicranum fuscescens 1.2.3 2.3.2 +.2.3 + . 2 . 3 Plagiothecium elegans +.2.3 + . 2 . 3 P t i l i d i u m californicum + .3.3 Lepidozia reptans +.1.3  2.+ . 2 1.5.2 +.+.3 + . + . 2 2.3.3 1.3.3 +.2.3 3.4.3 2.5.3 +.2.2 + . 2 . 3 + .2.3 +. + .2 + . 2 . 3 + .3.3 2.3.3 + .3.3 2.3.3 4.3.3 + .2.3 + .2.3 + .3-3 3.2.3 + .3.3 + .2.2  Isothecium stoloniferum Calypogeia  trichomanes  +.3.3 +.3.3  + .3.3 3.4.3 + .2.3 + .1.3 2.3.3 + .2.3 + .2.3 2.3.3 + .2.3 1.3.3 + .2.3  + .3.3 + .2.3 + .2.3 + .2.3  0.8 0.4 0.6 1.0 0.6 3-0 1.0 0.6 1.0 1.6 0.8 0.6 1.8 0.8 1.2 0.2 0.2 0.4 0.4 0.4  0-2 0-1 0-+ 0-1 0-+ 2-4 0-+ +-2 0-+ 0-2 +-4 0-+ 0-3 0-+ 0-+ 0-+ 0-+ 0-+  2.0 2.5 2.7 3.0 3-0 3.0 2,8 3.0 2.6 2.8 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 3.0  2-3 2-3  2-3 2-3 2-3  Constancy 4/5 4/5 4/5 3/5 5/5 5/5 4/5: 4/5 4/5 4/5 3  ^  ^ 4/5 4/5 4/5 4/5 2/5 2/5 3/5 4/5 5/5 5/5 5/5 5/5 4/5 2/5 5/5 4/5 4/5  ^1? ^} 2/5 2/5 2/5 Co o  Blechneto - Tsugetum heterophyllae streptoposum rosei Table no*. 32 - Continued No. Layer Number of plots of Species dw Cephalozia media 38 e 39 e Plagiothecium denticulatum dw Calypogeia suecica 4o e dw Dicranum scoparium kl e Sphaerophorus globosus k2 dw Cephalozia bicuspidata 43 dw Lophocolea cuspidata kk dw Lophocolea heterophylla 45 e A l e c t o r i a sarmentosa k6  kl k8 k9  50 51 52 53 54 55 56 57 58 59 60 6l 62 63  6k  65 66 67 68  Taxus b r e v i f o l i a Vaccinium membranaceum Epilobium angustifolium Luzula p a r v i f l o r a Maianthemum dilatatum Pyrola secunda Smilacina s t e l l a t a Tiarella unifoliata A n t i t r i c h i a curtipendula Bazzania t r i c r e n a t a Blepharostoma trichophyllum Hookeria lucens Metzgeria furcata Mnium menziesii Mnium spinulosum Neckera menziesii P i a g i o c h i l a asplenioides P o r e l l a platyphylla Radula complanata C e t r a r i a glauca Lobaria pulmonaria Parmelia physodes  1  2  +.2.3 +.1.3  +.2.3  +.2.3 +.4.3 +.1.3  +.1.3 +.1.3  +.1.3 +.1.3 +.2.3 15  (+.+.2 (+.4.2  6 132 11 11 11 132 7 6 11 7 132 132 11 132 132  (+.+.2 (+.3.2 (1.3.3 (1.3.3 (3.4.2 (+.+.3 (+.3.3 (+.5.3 (+.2.3 (+.2.3 (+.3.3 (4.3-3 (+.2.3 (+.3.3 (+.2.3 (+.2.3 (+.2.3 (+.2.3 (+.+•3 (+.2.3  ll  ll  •6  7 7 6  3  4  5  2.4.3- + .2.3 +.+.3 +.1.3 -1-+.2.3 1.2.3 +.1.3 +.1.3 4.3.3 +.2.3 +.5.3 +.5.3 3.3.3 +.2.3  ConsVigor Species tancy significance Range Mean Range Mean  1.0 0.4 0.6 0.6 0.4 1.2 0.6 0.8 0.4 0.4 +.+.3 + .+•3 0.4 _  0-2 3.0 0-+ 3.0 0-+ 3.0 0-1 3.0 0-1 3.0 0-4 3.0 0-+ . 3.0 0-3 3.0 0-+ 3.0 0-+ 3.0 0-+ 3.0  3/5 2/5 2/5 3/5 2/5 2/5 2/5 2/5  Oplopanaceto - Thujetum plicatae _] ' • • • ••;".'• • Mean U 1 2 3 5 22U 225 222 •' 221 157 8/8 8/8 19/8 7/8 3/7 1961 19.61 1961 196l 1959 200 400 . 40.0 P l o t size (sq.m.) Uoo , 800 , 49°17 Latitude ;U9°17 '..U9 17'.". U 9 ° l 6 . ; :.U9°19, Longitude 1 2 2 ° 3 5 ' 1 2 2 ° 3 5 ' 122°3U' 1 2 2 ° 3 5 ' 1 2 2 ° 3 5 ' U80 1800 906 850 650 Altitude ( f t . ) 750 360 180 180 180 180 Exposure (degree) U 10 6 Slope gradient (degree) 5 5 5 Cfb KSppen Macroclimate ABjrbo^ Thornthwaite 80 40 A Strata coverage (per cent) 65 65 75 80 100 .70 B 70 90 UO 60 60 C 70 65 60 80 25 45 U5 Dh 20 20 '20 25 Uo dw 100 100 D 50 65 65 6U 60 60 80 70 Humus coverage (per cent) 50 UO U0 20 30 36 Decaying wood coverage (per cent) 50 Alluvial Ravine Land type and Land form Sediments Parent material Concave Profile R e l i e f shape Concave Contour l i n e Poorly drained Drainage Swampy Hygrotope Near surface. - intermittent overflow Seepage L-F pH 5.^7 5.85 h 5.80 C Mull Anmoor Mull Anmoor Anmoor Humus form Table no. 33 Number of plots P l o t no. Date  Range  (  (  ,  I  Q  U80- •1800 S-•N U-• 10  D  50- •80 20- •50  A  S i t e index ( f t . per lOOy)  Douglas f i r Western hemlock Western redcedar  130 1U0  150 156 1UU  135 1U3 120  160  8U 100  138 137 121  130- • 150 8U- l 6 0 100-•1UU  OplopanacetOj; _ Bwojetuni plicatae Table no. 34 1. 2 Number of .plots No. iayer Plot no. ""• • 221. 222 of Species • Characteristic combination of species Thuja: p l i c a t a 1 A . +-+.3 1 - 8 . 3 Tsuga heterophylla 2 . 6.8.2 Pseudotsuga menziesii +•+-3 +.+.1 3 Oplopanax. horridus 4 B Ribes^bracteosum 3 -6„3 - * . 6 - 3 •5 6 Rubusyspectabilis 7-8-3 6-8-3 Thuja p l i c a t a 3-5-3 4.5-3 Tsuga heterophylla Vaccinium- alaskaense 6 . 8 . 3 5-6-3 7 Sambucus pubens 8 + . 6 . 3 +.5-3 Ac er ••,elrc inatum 9 5-1-3 +.6-3 Vaccinium ovalifolium 10 5-6.3 4-6.3 11 Lysichitum americanum C 3 - 6 . 3 5-1-2 Athyrium f i l i x - f e m i n a 12 6-1-3.4.6.3 Adiantum pedatum 13 +-5.-3 +-5-3 14 Blechnum spicant ^f-c 5-6-3 5-6.3 , V i o l a glabella ;."•'•'; 2 . 4 . 3 +.4-3 15 16 Circaea alpina . 4-5-3 3.4.3 Gymnocarpium dryopteris 17 4-5-3 5-5-3 Tiarella trifoliata 18 4-5-3 4.5-3 ,Galium. t r i f l o r u m +.3.3 +.4.3 19 Polystichum' munitum 20 4.5-3 4.5-2 Dryopteris' austriaca 21 5«6„3 5»6»3 Tolmlea ;'menziesii 22 3-4-3.2-5-3 Streptopus amplexifolius 23 2"!»Hf-«3 2•"ft"*3 Maianthemum dilatatum £4 Eurhynchium s t o k e s i i 25 % 5-5-3 dw 2 . 3 - 3 +.4.3 h Conocephalum conieum 6 . 6 . 3 5-6-3 25 dw 2-4.3 3-4-3 h P e l l i a sp. 26 dw 1.3-3 2 . 4 . 3 h • Sphagnum squarrosum 27 5-6.3 3.5.3 dw 2.5-3 2.5-3  5-7-3 8.9-3 7-9*3 ;  4 .f-3 -5-6-3  3-5-3  3  4  5  22%  225  157  8 . 9 - 3 - 4 . 7 - 3 8.10.3 6 . 8 . 3 ..6.8.3 5-7.2 +.+•3 7-8*3 7 . 9 . 3 7-9.3 * . + « 2 -3*5*3 +.+.2 6.8.3 6.8.3 6.6.3 4 . 5 . 2 ,2.5.2 4.6.3 4 . 5 . 2 5.5.2 3 . 6 . 2 4.7-3 3-5.3. 3.5.3 +.5.3 2 . 6 . 3 5 - 7 - 3 5.6.3.. 4.6.3 2.5.3 6 . 7 . 2 6 . 6 . 3 6.7.3 3.5-3 4.5-3 3.5.3 +.4.3" +,+.3 +.+.3 5 . 6 . 3 5 - 6 . 3 4.5-3 2 . 3 . 3 +.4.3 3.4.3 2-3-3-3.-5.-jL +.3-3 3 . 5 . 3 3«5-«3 3 - 4 . 3 2 . 5 - 3 -5-6.3 5.4.3 +.+.1 1.4.3.2.4.3 2.+-2 3 . 6 . 3 3 . 5 - 3 4 . 5 . 3 2.5-3 , 2.5.3 2.+.3 —-2-3-3 1-3.3 2-5-3 2 . 3 - 3 3 - 4 . 3 +.+.2 6.7.3 6.7.3 4.5.3 3-5-2 2 . 5 . 3 2 . 4 . 3 5.6.3 ;  5.-60  --  .  2.5-3  5^6.3  3.5.3  '. -Constancy  ;Mean  Range Mean.Range  5.6 5.6 0.6 7.2  +-8  1.8  6.2 3.4 4.2 4.2  1.0  5-6 7-8 +-3 6-7  2-4  3-5 3-6 0-2  3.2 3.0 5.2 4.0 1.0  0-5:  4.8  4-5 +-3  1.8  2.6 3.6  4*0 1.2 2.6  3.8 1.4  1.2  0.4 3.2  1.8 5.4 2.4  4.8 0.6  .  3 - 5 - 3 3-5-3  Species 7 Vigor significance "  3.4 2.2  0-5 3-6 3-6  3.0 .2.6 2.3 3.6 2.6 3.0 2.6  2.4  3.0 3.0 3.0 3.0 2.6 3.0  2-3 1- 3 2- 3 2-3 2-3  2-3  +-4 3-5 2-5 +-2  0-4  2-5 0-3 0-2 0-2 1-5 +-3 4-6 2-3 4-5 0-2 3-5 0^5  /  3  5  5/5  5/5 5/5 4/5 4/5 4/5  P  5/  / 5/5 5  370 3.0 3.0 3.0 3.0 3.0 2.6 2.5 3.0 3.0 3-0 3.0 3.0 2.8 3.0 2.8 3,0 3.0 3.0 3-0:  5/5 -5/5  5  5/5 5/5  5/5" 5  1- 3 2- 3  /  5  5/5 4/5 5  /  5  / 3/5  3  2-3 2-3  5  -1/5 5/5 5/5 5/5 5/5 2/5 5/5 4/5  CD UO  18k  CO  O  fl  fl  O - P  CU bO  o  bD  o o o o o o o o oooooooooooooooo cu  CD U bO Cl fl^O 1 A 4 CM f O H f O H co cd cd i i i i i i i i CD O K - 4 - O H O O O O O •H iH O !+H CU - H ft fl fl CO b O t d O C O C V J C V J ^ t V O C V U •ri J) i i • c Q g U ^ r H O J H H O H O  -p  OO  cd • o •H rH ft  •  •  l  f-VD  •  cd  ft o  • • • • • • •  •  • • • OJ rH OJ OOOOOOOOOOOOOOOO • • • • « • • • VOLfNL^OOOJOJCrNLrN  H  &  •  • • • • • • •  VO -4" -4" OJ +  O  L/Nt— O V O LTV LTN LT\ O  + I  + H U A + OO + OO + 0  I  I  0  0  I  0  I  0  I  I  0  I  0  I  0  H  O  O  O  r  H  O  O  O  O  000000 00  + + OJ r-i +  +  +  +  +  • +  OJ 0 0 0 0 + • • • OJ LTN OO Lf\ • + + + OO  O  LT\ OJ IT\ OJ I  I  I  I  O  <VH  S  0  CO  av OJ  00  +  +  I  0  I  +  • • • •  •  +  +  +* H  00  0000  +  VO VO Lf>VO LTNVO  OJ - 4 - r-i OJ  OO  +  u\ v\ CM v\ CM ir\  + + + +  +  + +  OOOOOOOO  0 0 0 0 0 0 0 0 0 0 OO OO OO  0O0O  • • • • VDVD 1 A 1 A  • • • • • • • • 1 A O J H L A O J P O H O J  • * OJrH  : OJ. -4+  •  • • • •  •  • • • • • • • •  • • • • •  OO  OO  • CT\  OJ +  LTV OO OO OO 0 O + + 0 J + H + H + + 0000000000 00000000000000000000  • • • • • • • • • •  U-NVO LfvvO Lf\  4(M40OfAIHrO(\IC\IC\l  O J O O H O J H  + + H  +  +  •  • • • • • • • • • • •  OO  Lf\Lr\Lr\^-U-NJ-0OrH0OOOOJ  • +  + H  OOOOOOOOOOOOOOOOOOOOOO  CQ - 4 - O J O J O -P J + 0 J H + 0 J + + CO cu cd r-i CO 0 •H rH Xi cu xi r( <U cd 0 CO CO cu ti •H r-i cu ,d cd 0 CQ . CQ rH 0 r-i •H 0 CU CH cd 0 <u •H •H cd cd N •H •H -P O 0 O T3* O H •H •H cd cd cd 0 0 bD -P xi r-i c d cd 0 •H H cu •!»• 0 AH CO 0  fl  ft  «  ts o  OJ 0 O - 4 LT\VO t ^ C O OV O r-i cn cn cn cn cn cn cn r o 4 4  cu  xi  OO -4-  ft  p  4d-ti P  OJ -4-  +  -4-4-  LTN -4"  cu xi  vo  t>-  +  • • • • 0OOJ0OOJ H  • • • CQ• +  a>  rH cd  fl •H a  u  •H O  S  w  CO -4"  +  C +U  fl cd e CO 0 fl Xi  cd 0 •p -H ft rf CU - P cd •H tsl O  fl  |s Is cu r d cu xi  -4".  +  OOOOOOOO  fl  fl  fl fl ft u  r  I  0  00000000  ft  Xi U  H  I  +  00 00 00 00  x>  >  o  + OJ + I  I  • • • « • «  fl  . ' O iJ-'D ,fl Xi  CQ CU •H O CO OJ  a> ft  >  H  OJ  I  000000000000  •  U CU M  >  ^3  O  OJ  o o W  cd cd En P  O  +  CU O r-i  CD U r-i <D  O  +  fl  O fl  O  OJ  cu  ft  O  O J + - 4 ' L r v o j P O O J + O J  CO  -4 OO  O  ooojoooooooooooooooooo  fl  cd -P o fl  O  0 0 +  xl CD  O o  O  - 4 " OJ OJ  •  -p  O  +  OO  a •H -p a  O  +  + 00  + OOrH  O  - 4 " OJ L / \ V D - 4 " ITS cn OJ OO OO rH  OJ  •  • • • • OJ OO  + LT\ • • + rH OO OO 00 0 0 OO + LT\VO • • • + 00 + + lf\^t • « • + r-i r-i  LT\ LT\ I  O  o O O J O J O O H O J H H H H H O H O r H r H  OO  OOOJ  O  0000000000000000000000000000  V D c 0 4 4 ( \ I U ) O O V 0 0 0 4 a i v O O O  O  OO  +  O  O J + r H O J O O O  OJ  +  C  I  • • +  O  OOOJ  O05C0C0C0VDC0-4-C0.4-  +  LT\ 0O-4- -4" LTN LTV  I  OJ  HOJOJOJOOOJCMOJCVJOO  0  LTN LTN LT\ LP\ OJ CTV OO LTV LTV  00  I  VO  • • LTV + + +  V O U A O J H O O r H H H OO OO OO OO o • • • IT\ -4/ -4"  v  I  OJ OJ OJ OJ  + +  oooooooooooooooo  O -P • a;  I I  4- J  LTV Lf\ LT\ LT\  OO OO OO LT\  I  OJ OJ  OJ OJ OO OJ  ••• • OJ OJ H  co  I  H  -4"  r o oo oo c o • • • • LTN^f CO OJ  •  I  H  H  • OO • OJ  cn • r-i  co • LTN  -P CD •r-D C  OO  cn  • •  ir\ LT\ LT\ LT\ LT\ LTN LT\ LT\ LP\ LTV LPV LP\ LT\ LT\ L / \ LP\  , 4 OO OO O J OJ OJ OJ  LT\  I  cd  g  ir\if\Lr\u-\ir\ir\ir\ir\u-\Lr\  OO OO OO OO  cd  >  .fl E-i  u"NOjLrv.4--4^oooooj  a  ri  a; a3; •  is\u\u\u~\ir\u\\r\\r\  -tf  cd -H 0) bD O ft  K  •H H <u cd P Ei)  ft  |S > cu xi xi  ov 0 - 4 " LTV  Oplopanaceto - Thujetum p l i c a t a e No. of Species 51  Table no. 34 - Continued Layer Number of plots  2  dw  Isothecium stoloniferum  52 53 54 55  e dw dw dw dw  Plagiothecium denticulatum Calypogeia suecica Bazzania ambigua Cladonia subsquamosa  56 57  e e dw e  Sphaerophorus globosus Bazzania t r i c r e n a t a  +.3.3 1.2.3 2.3.3  58 59 60 61 62 63 64 65  Abies amabilis Acer macrophyllum Alnus rubra Chamaecyparis nootkatensis Cornus n u t t a l l i i Menziesia ferruginea Picea sitchensis Rubus parviflorus  157 25 24 157 25 157 157 25  (+.+.3) (+.+.2) (+.+.2) (+.+.2) (+.6.3) (1.+.3) (+.+.0) (+.+.2)  66 67 68 69 70 71 72 73 74 75  Adenocaulon b i c o l o r Carex leptopoda Coptis a s p l e n i f o l i a Habenaria saccata L i s t e r a cordata Moneses u n i f l o r a Oenanthe sarmentosa Pteridium aquilinum Streptopus roseus Veratrum v i r i d e  21 21 157 157 157 157 25 24 24 157  (+.+.3) (+.3.3) (4.5.3) (3.+.3) (+.+.3) (+.+.3) (+.5.3) (+.+.2) (+.+.2) (+.+.3)  4  3  +.4.3 +.5.3 +.4.3 3.5.3 +.1.2 +.2.3 + .1.3 2.5.3  5 +.2.3 +.4.3 +.2.3 1.2.3 3.5.3 +.1.3 +.+.3 + .+.2 + .2.3 +.5.3  Species significance Range Mean 0-+ 0.4 JUO 0.8 0-3 0-1 0.4 1.0 0-3 0-+ 0.4 0.4 0-+ 0-+ 0.4 0.6 0-2 0-+ 0.2  . A n t i t r i c h i a curtipendula Bazzania denudata Bazzania nudicaulis Claopodium c r i s p i f o l i u m Dicranum majus . F r u l l a n i a niaquallensis Metzgeria furcata Mnium insigne 84 . Neckera menziesii P l a g i o c h i l a asplenioides 85 Porella navicularis 86 P t i l i d i u m pulcherrimum 87 Sphagnum papillosum 88  76 77 78 79 80 81. 82 83  Constancy  lor  Mean Range 3.0 2/5 3.0 3.0 2/5 3.0 2/5 3.0 2/5 2.5 2-3 2/5 3.0 2/5 2.5 2-3 2/5 3.0 2/5 3.0 1/5 157 157 157  24  157 157 157 25 25 157 157 157 24  (+.2.3 (+.2.3 (+.2.3 (+.2.3 (+.4.3 (+.1.3 (+.+•3 (+.4.3 (+.3.3 (+.2.3 (+.1.3 (+.2.3 (1.3.4  OO  vn  Table no. 35 Number.of plots P l o t no. Date  Copteto - Thujetum plicatae ~\  P l o t size (sq.m.) Latitude Longitude Altitude ( f t . ) Slope gradient (degree) Macroclimate Koppen Thornthwaite Strata coverage (per cent) A B C D  1 226 18/8 1961 koo l+9°l8] 122°3k' 1000 0  h  dw D D  Humus coverage (per cent) Decaying wood coverage (per cent) Land type and Land form  95 10 30 90 10 100 80 20  ' 2 : 223 7/8 1961 1+00 k9°n;  122 34 760 . 0' 0  Cfb AB-[rb4_  '186  3• 86 20/5 1959 800 l+9°22j 122°01' 700 0  k  90 20 15 5 15 20 95 5  88 12  80 70  129 98  98 79  Drainage Hygrotope Seepage Humus form S i t e index Western hemlock ( f t . per 100y)Western redcedar  8k 70  R e l i e f shape  *  Profile Contour l i n e  820 0  95 30 50 90 10 100 90 10  Spring-water swamp, high moor t r a n s i t i o n Cumulous deposits Straight Straight Very poorly drained Swampy Near surface Peat anmoor  Parent material  Mean  :I8T  Copteto - Thujetum p l i c a t a e Wo. of Species  • Table no. 36 Layer Number of plots  226  Plot number  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4o hi  h2 1+3  44 45  A  B  C  Eh dw h dw h dw h ' dw h dw dw e dw e dw h dw e . dw h dw dw e  Thuja p l i c a t a Pinus monticola Tsuga heterophylla Pinus contorta Gaultheria shallon Thuja p l i c a t a Tsuga heterophylla Menziesia ferruginea Rubus s p e c t a b i l i s Sambucus pubens Vaccinium alaskaense Vaccinium parvifolium Vaccinium o v a l i f o l i u m Rhamnus purshiana Taxus b r e v i f o l i a Rubus v i t i f o l i u s Acer circinatum Malus d i v e r s i f o l i a Lysichitum americanum Coptis a s p l e n i f o l i a Athyrium f i l i x - f e m i n a Blechnum spicant Coptis t r i f o l i a Polystichum munitum Dryopteris austriaca Cornus canadensis Moneses u n i f l o r a Rubus pedatus Pteridium aquilinum Maianthemum dilatatum L i s t e r a cordata Plagiothecium undulatum Hylocomium splendens Rhytidiadelphus  loreus  Mnium punctatum Sphagnum squarrosum Dicranum  fuscescens  Scapania bolanderi Eurhynchium oreganum Conocephalum conicum Bazzania t r i c r e n a t a Isothecium stoloniferum Hypnum c i r c i n a l e Sphagnum papillosum Lepidozia reptans Cephalozia media P t i l i d i u m californicum  223  86  8.IO.3 8.IO.3 9.10.3  + . + .1 + . + .2 + .+.2 . 6.8.2 '5.8.2 7.8.3 4. + .0 + .5.1 + .5.1 5.6.2 3-6.2 4.7.2 + .+.2 + .+.2 6.8.2 + . + .2 + .5.1 + .+.2 +.+..3 + .+.2 + . + .1 + . + .2 + . + .2 + .+.1 + . + .2 + .+.2 + .5.2 + .5.2 + . + .1 + .5.2 2.5.2 + .5.2 2.5.2 + .+.1 + .+.1 + .5.2 + .+..2 5.6.3 + . + .2 6.7.1 7.9.2 +.4.3 1.3.3 +. + .1 + . + .2  + . + .1  2.+ .3 2.5.3 + . + .1  6.8.3 5.7.3 4.5.3 + .4.3 3.-5.3 + . + .2 5.6.3 3.6.3 2.5.3  + . + •3 7.9.2 + .4.3 7.8.2 4.5.2 5.7.2 3.4.2 5.6.3 2.5.3 + .3.3  + .2.3 + .1.2 1.6.3 +.2.3  2.3.3 + .2.2 2.4.3 + .2.3  + .4.3  4.5.3  2.5.3 +.1.3 1.3.3 + .4.3  5.7.2 + .3.2 3.4.2 3-5.2 2.5.3 2. + .1 3.5.2 2.3.2  4.5.3 2.4.. 3 +.4.3 5.6,3. +.4.3 + .3.3 + .2.3 2.4.3 + .2.3 2.3.3 +.4.3 +.2.3 1.3.3 1.3.3 +.2.3  Species s i g n i f i - Vigor Conscance tancy Mean Mean  ^8.3 1.0 6.0 1.3 2.3 2.6 2.6' 1.0 1.0 1.0 1.0 1.3 1.0 1.0 0.6 1.6 1.0 -6.0 1.0 1.3 1.3 0.6 0.6 1.0 0.6 0.6 0.6 0.3 0.3 .0.3 ' 4.3 3.3 3.6 2.3 2.3 1.6 3.3 3.3 1.0 0.3 1.3 1.0 ; 1.6 1.0 0.6 1.3 0.3 0.3 1.9. 0.6 0.6 0.3 0.3  j  3.0 1.6 2.3 0.0 1.3 2.0 2.0 2.0 1.6 1.6 2.0 1,6 2.0 1.0 2.0 3-0 2.0 1.6 2.6 1-5 2.0 3-0 1.0 2.0 2.0 3.0 3.0 1.0 1.0 3.0 2.5 3.0 2.5 2.6 2.5 2.3 3.0 3-0 3.0 3.0 3.0 2.3 3.0 3.0 3.0 3.0 3-0 3.0 3.0 3.0 3.0 3.0 3.0  3/3 3/3 3/3  H  3  3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 2/3 2/3 2/3  H H 3/3  3 3  3/3 2/3 2/3  H H H H H H H H/  3 3 3 3  3 3  3 3  l7  3  2/3 3/3 2/3 3/3 2/3 3/3 2/3 3/3 2/3 1/3 3/3 3/3 3/3 3/3 1/3  H H 1/3  3 3  2/3 2/3  l  Table no, 37 Number of plots Plot no.• Date  k  Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Exposure (degree) Slope (degree) Macrocliaate Koppen Thornthwaite Strata coverage (per cent) A^  i  3  Bl B B C Dh D 2  -  Land type and Land form Parent material Relief shape  profile contour line  Drainage Hygrotope Seepage depth pH Anmoor horizon C Humus form Site index ( f t . per lOOy)  vaccinietosum alaskaensis 5 6 7 8 Mean Range 10 9 43 24 22/h 246 50 138 20/8 10/9 9/9 15/5 25/8 16/7 1958 1958 1958 1962 1958 1959 800 , U9°2l[ h9°25[ -A9°23J 49°l8] 49°17] 49°23| 49°20 ' 49°l8, 49°27, 49°19 123°0l' 122°59' 123°00' 122°35' 122°35' 122°45' 122°57' 122°35 123°0T 122°35 1040 900 750 1050 700 1600 884 7OQ-160 330 750 620 1100 180 225 180 225 135 90 1 1 1 0 10 0-10 .2 2 4 0 0 Cfb AB'rb . 20 40 40 10 30 30 30 15 25 °20 40 20 30 30 25 60 50 . 25 25 -30 15 20 15 20 20 25 15 65 50 50 60 50 30 75 95 70 75 20 30 20 45 55 20 30 20 25 35 40 40 40 30 30 50 70 90 80 60 *>6o 50 60 65 90 95 50 100 50 80 80 100 70 10 60 85 65 55 55 95 40 80 50 35 60 60 35 35 65 45 40 20 20 20 30 50 10 25 25 25 60 100 60 90 80 100 70 60 85 65 Spring-water swamp - Slope and terrace .cust-Alluvial CumulOusAlluviaieumulous Lacustrine; U i l l Lacust- C\unulous Cumuli rine Concave Concave Poorly drained Swampy Near surface 4.26 3.04-4.90 4.5O 4.75 3.04 3.98 4.15 4.90 4.50 4.60 6.10 5.50 5.24 4.60 6.00 5.10 5.31. 4.^60-6.10 Peat Anmoor Anmoor Anmoor Anmoor Anmoor Anmoor Anmoor Anmoor anmoor i§or arum  Lysichiteto. -- Thujetum' plicatae 1 2 3 126 95 93 58 8/7 28/5 27/5 27/8 1959 1959 1959 1958  Western hemlock Western redcedar  (  t  Pe  110 105  88 89  130 124  97 115  91 98  96 125  104 76  90  95 87  105 104  102 101  88-130 76-125  Table no. 38 Number of plots No. Layer of Plot no. Species Characteristic combination of species Tsuga heterophylla 1 Al 2 3 Thuja p l i c a t a 2 1 2 3 Picea sitchensis l 3 2 3 4 Abies amabilis 1 2 3 Alnus rubra 1 5 2 3 Tsuga heterophylla Bl 6 7  8 9  10 ll  1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 1  Lysichiteto  T  Thujetum p l i c a t a e  1  2  3  4  5  6  7  8  9  126  95  93  58  43  24  22/h  246  138  5.8.2 + . + .2  5.8.3 6.IO.3 5.7.3 + . + .2 6 . 7 . 3 7.8.2 7.10.3 4.7.3  5.7.3 6.7.3 1.7.3 4.+.2 + . + .3  +.+.3 5.9.3 5.8.3 8.10.3 8.IO.3 4.8.3 +.+.3  5.8.3 4.7.2 +.+.3 6.8.3  +.+.3  +.+•3 4.+.3 4.+.3 6.+.3 6.8.2 3-+.2  6.8.2 3.8.2 6.+.3  +.+.2 +.+.1  3-+.3 +.+.3  +.+.3  4.5.3  Vaccinium alaskaense Rubus s p e c t a b i l i s  6.6.3  +.4.3  Thuja p l i c a t a  + . + .2 + . + .3  4.5.3  6.7.3  3.7.3 5.6.3 4.5.2  Abies amabilis  3.6.3 4.5.3 +.+.3 4.5.3  Oplopanax horridus 1.5.3  2.4.3 1.6.2  3-+ . 2 4.7.2 3.6.3  4.6.2 4.7.3 5.6.3 8.10.3 1.5.2 3.5.2 + . + .2 +.+.3 + . + .3 1.5.3 4.5.3 4.6.3 +.5.3 2.5.2 1 . 5 . 3 +.5.2 4 . 5 . 3 +.5.3 3.6.3 + . + •3 4.5.3  Vaccinium o v a l i f o l i u m Ribes bracteosum Alnus rubra Picea sitchensis  3.+.3 3.7.2 5.8.3 + .+.2 -5-7.2 3.7.2 +.+•3  + . + .2  + . + .3 2.6.3  4.7.2 4.5-3 4.5.3  Sambucus pubens  vaccinietosum alaskaensis  3.+.3 2.7-2  4.7-3 1.5.2 3-6.3 8.10.3 1.6.3 1.5.2 +.+.2  +.+.2 +.+.2  6.8.2  + . + .2  5.7.2 3.5.2  5.7.2  5.6.3  5-6.3 2.6.3 5.7.3 1. + . 2 2.+ . 2 4.6.2 2.5.2  7.9.3  2.5.2  +.5.3  +.+.3 4.7.2 2.6.3 3.6.3  50  6.+.3 4.8.2 5.8.2 5.+ .2 3-6.2  4.+ . 2  3.5.2 3.6.2  7.9.3  10  6.7.3 6.8.2  4.+.2 + .+.2  4 . 5 . 3 5.8.2 4.5.3 4.7.2 6.IO.3 7-10-3 ;+.+.2 + . + .2 3-+ . 2  + . + .2 4.6.3  + . + .2  3.6.3 + . + .2 3-7.2 3-6.3 + . + .2  Species V i i ;or significance Mean Range Mean Range  2.1 4.5 3.7 3-0 3.9 2.1 0.9 0.6 0.1 0.2 1.1 0.7  0-5 +-6 0-6 0-8 0-8 0-4 0-6 0-4 0-+ 0-2 0-4 0-2  0.3 0.7 4.2 2.3 2.6 3-3 1.5 3-5 1.5 0.8 1.8 1.2 0.7 1.6 0.2 0.4 0.8 0.5 0.4 . 0.1  0-3 0-4 3-5 0-4 0-7 0-8 0-6 0-7 0-4 0-3 0-4 0-4 0-3 0-4 0-1 0-2 0-4 0-4 0-3 0-+  2.8 -.2.5 2.6 2.6 2.4 2.3 3.0 2.3 1.0 3.0 2.5 2.5 2.5 .2.0 2.5 2.5 2.3 3-0 2.8 .2.8 2.9 2.1 2.4 2.1 2.8 2.8 2.6 3.0 2.0 2.7 3.0 2.0 3.0  2-3 2-3 2-3 2-3 2-3 2-3 2.-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3  Constancy  6/10 10/10 8/10 8/10 7/10 6/10 4/10  3/io  1/10 1/10 4/10 6/10 1/10 2/10 10/10  7/io 5/io  6/10 6/10  7/io 7/10  5/io  6/10 5/10 5/10 6/10 2/10  3/io  2-3  4/10 2/10 2/10 1/10  Table no. 38 - Continued Layer Number of plots  No. of Species C 13  Lysichitum americanum Blechnum spicantDryopteris austriaca Tiarella trifoliata Athyrium f i l i x - f e m i n a Streptopus amplexifolius Rubus pedatus Carex bolanderi Galium t r i f l o r u m Viola glabella Gymnocarpium dryopteris Maianthemum dilatatum Habenaria saccata S t e l l a r i a crispa Circaea alpiha Cardamine breweri Equisetum telmateia Epilobium adenocaulon Co.nocephalum conicum Mnium punctatum  lh  15 16 17 18 19 20 21 22 23  2h  25 26 27 28 29 30 31 32  h dw h dw h h h h h h  33  3h 35 36 37 38 39  1+0 1+1  B2  1 2  1+2  43 1+1+  45  C  Eurhynchium s t o k e s i i P e l l i a sp. Sphagnum squarrosum Mnium menziesii Hookeria lucens Mnium insigne Sphagnum papillosum  -  Companion species G a u l t h e r i a shallon Taxus b r e v i f o l i a Vaccinium parvifolium Menziesia ferruginea Cornus canadensis Polystichum munitum  Lysichiteto.. H>Thujet um' plicatae.. vaccinietosum ;  alaskaensis  7 7.9.3 5.6.3 4.5.3 5.4.3 2.4.3 +.+.3 3-4.2  9.10.3 9.10.3 3.5.3 +.. + . 2 2.5.3 3.5.3 4.5.3 3.4.3 2.5.3 4.5.3 +.+.3 2.3.3 2.4.3 2.3.3 + . + •3 +.2.3 2.5.3 5.4.3 3.4.3  2.+ .2 + . + .2 4.5.3 5.6.3 6.5.3 5-6.3 + .3.3 3.4.3 4.6.3 + .3.3 + .2.3 + .3.3  4.3.3 6.5.3 5.5.3 5.5.3 +.2.3 2.4.3 4.5.3  5.5.3 +.+.3 + . + .2 3.+.3 3.5.3 +. + •3 4.3.3 4.5.3 8.9.3 +.4.3 3.5.3 5.5.3 4.5.3  7.8.3 4.6.3 2.4.3 2.5.3 1.4.2 +.+.3 +.3.1 1.3.3 1.5.3 1.4.2 1.+.3 2.3.3  2.4.3 3.5.2  2.4.3  7.8.3 4.5-3 3.5.3 3.4.2 4.5.3 2.+ .3 1.4.2 3.4.3  6.7.3 6.8.3 4.5.3 +.5.3 3.5.3 +.+•3 6.7.3  9 4.4.2 4.5.2 +.+.2 +.4.3 +.+.2 +.+.2 +.+.2  + . + .2 +.3.2 5.6.3 + . + .2  +.3.3 3.4.3 + . + .2  2.+.3  1.4.2  + . + •3 3-4. 3-6. 4.6. 3.5. +.2. 5.6. 4.6. 4.51.2.  1.5.1  +.+.3 + .4.2  3.4.3 2.4.3 2.3.3 + . + .3  2.3.3 2.3.3 2.3.3 4.4.3 4.5-3 5-6.3 3.4.3 1.3.2 2.3.3  5.5.3 3.6.2  7.8.3 7.9.3 4.6.3 4.5.3 3.6.3  1.+.3  +.3.3 4.6.1 + .7.2 2.4.2  8.10.3 4.5.3 2.5.2 4.4.2 1.5.3 +. + •3 3.5.3 +.3.2  8  5.8.2 3.6.3 + . + .2 5.7.3 + . + .1  5.4.3 5.6.3 2.5.3 .4-3 • 5.3  . + .3 • 5.3 .7.3 • 7.3 • 5.3  3.6.3 6.7.3' 5.6.3 3.5.3  .6.3 • 5.3  4.6.3 4.6.3  2.3.3 1.3.3  3.4.3 2.3.2  3.5.3 3.5.3  + . + .3 3.6.3 3.5.3 3.5.3  2.5.2 2.5.3  4.6.2 5.7.3 3.5.3 4.6.3  4.5.2  1. + .2  Species significance Mean Range 6.7 3.5.2 3-9 4.4 6.7.3 +-7 +-4 4.5.3 2.9 +-6 6.6.3 3-5 2.4.2 +-4 2.3 0-2 + . + •3 1.1 2.4 5.6.2 0-6 0.6 0-3 0.7 0-3 0-2 1.5.3 0.7 0-1 0.3 2.2 0-5 5.7.3 0.6 0-3 0-1 0.3 0.8 0-3 0.4 -0-3 0.4 0-2 0.2 0-+ + . + •3 3-2 +-5 4.4 2-6 6.6.3 0-6 3.0 4.5.3 0-8+ . 3 . 2 3-3 0.4 0-+ 3-0 3.5.3 0-5 5.5.3 3-7 0-5 _ 0-4 1.2 0.8 1.3-3 0-3 0-1 . 0.3 0.6 0-3 -  Constancy  10  2.5.2 3.5.2 2.5.2 3.5.2  2.5 1.2 0.9 0-5 2.3 0.8  0-5 0-5 0-3 0-3 0-5 0-3  Mean Range 2.8 2-3 2.8 2-3 .2.8 2-3 2.8 2-3 2.7 2-3 2-3 2.9 2.4 1-3 2.7 2-3 2.7 2-3 2.6 2-3 2.6 2-3 3.0 2.7 2-3 2.3 2-3 3.0 2-3 •2.5 2.3 2-3 2.5 2-3 3.0 2.9 2-3 3.0 2-3 2.9 3.0 3.0 3.0 3.0 3.0 2-3 2.7 3.0 1.8 2.6 2.2 2.5 2.7 2.0  1-3 2-3 2-3 2-3 2-3 1-3  10/10 10/10 10/10 10/10 10/10 9/10 9/10 4/10 4/10 5/10 3/10 5/10 4/10 3/10 3/10 2/10 3/10 2/10 10/10 10/10 7/10 9/10 4/10 9/10 9/10 4/10 5/10 3/10  •37io 7/10 5/10 5/10 2/10 9/10 4/10  vo o  Table no. 38 - Continued Layer No. Number of plots of Species Linnaea borealis 46 Luzula p a r v i f l o r a 47 L i s t e r a cordata 48 Lycopodium selago 49 Rhytidiadelphus loreus 50 dw Hylocomium splendens h 51 dw Plagiothecium undulatum h 52 dw Scapania bolanderi dw 53 e' dw Cladonia subsquamosa 54 e Lepidozia reptans dw 55 e P l a g i o c h i l a asplenioides h 56 dw e Dicranum fuscescens dw 57 e dw Isothecium stoloniferum 58 e Dicranum scoparium h 59 dw Hypnum c i r c i n a l e 60 dw e Bazzania ambigua 61 dw e h Eurhynchium oreganum 62 e dw Calypogeia suecica 63 Cephalozia media dw 64 dw Bazzania denudata 65 Bazzania t r i c r e n a t a dw 66 Frullania nisquallensis e 67 Porella navicularis e 68 Cephalozia lammersiana e 69  Lysichiteto. 1 + .3.3 + . + .3  2  Thujetunv p l i c a t a e 4  3  + .2.3  -i  + .2.3 +.2.3 + .3.3 1.2.3 1.2.3 + .2.3 2.4.3 + .2.3 + .4.3 3.4.3 1.2.3 +.1.3 2.3.3 + .2.3 + .2.3 +.2.3  + .3.3 + . + .3 4.5.3  2.3.3  + .3.3 3.4.3 1.2.3 + .3-3  2.4.3 + .3.3  + .2.3 + .1.3 + .1.3  + .2-3  1.3.3 +.2.3 2.3-3 + .2.3 +.2.3 + .3.3 + .3.3  4.5-3  + .2.3  +.2-3  + .2.2 + .+ . 3 + .2.3 + .2.3 2.5.3 + . + .3 + . + .3  1.+.3 6.7.3 2.5.3 1.5.3 .1.3.3 + .3.3 2.3.3 + .3.3 + .2.3 + .1.3  +.1.3 +.2.3 1.3.3 +.3.3 +.2.3  1.2.2  +.5.3  + .2.3  6  + . + .2 + .+ . 3 4.5.3 3.5.2 2.5.3 3.3.2 4.5.3 + .3.3 + . + .2 + . + .2 + .2.3 + .1.2 4.3.3 2.2.3 + .1.3 + .2.3 + .2.3 + .2.3  8  7 2.5.2 1.2.3  -  ..  3.6.3 +.2.3 2.4.3 2.4.3 2.5.3  4.5.3 3.5.3 5.5.3 1.2.3 2.3.3 3.2.3 + .4.3 1.1.3 + .1.2 + .2.3  +.1.3 1.3.3 +.1.3 +.2.3  2.1.3 1.3.3  1.2.3  + .3.2 3.5.3 + .3.3  r.2.3  + .3.3 +.2.3  +.3.3  + .1.2  +.2.3  +.1.3 + .1.3  5 2.5.2  + .3.3 + . + .3  2.3.2 2.5-3 3-4.3 2.3.3 3.4.3 5.3.3 2.3.3 + .3.3 + .1.2 + . + .2 3.5.3 + .2.3  vaccinietosum alaskaensis  4.6.3  +.+.3 2.5.3 5.6.3 6.7.3 6.7-3 7.6.3 5-6.3 5.6.3 4.3.3 +.2.3 4.6.3 + .2.3  1.3.2 + .1.3 + .3.3 1.3.3 2.3.3 3.5.3 + .2.3  2.5.3 3.5.3  + .3.3 5.5.3 1.3.3 2.1.2 + .2.3  +.+.3 +.+.3 +.+.3 +.2.3  + .1.3 + .2.3  1.1.3 +.1.3  2.3.3 + .1.3 +.2.3  2.3.3  Species Vi£2jor significance Mean Range Mean Range 2.3.2 0-2 2.4 .0.8 2-3 0.4 0-1 3.0 0-+ 2.6 0.3 2-3 0.6 0-2 3.0 2.4.3 2.8 0-7 4.3.3 7.9.3 3-1 2-3 0-6 3.0 5.6.3 2.3 1.2.1 2.8 .+-6. 2.6 2.3.2 1-3 + . + .2 2 . 0 2.8 0-7 2-3 2.1 3.0 7.8.3 0-7 2.8 1 . 5 . 2 2.7 4.5.3 +-5 2-3 + .2.2 2.3.2 0-4 .2.8 2.3 2-3 3.0 + . 1 . 3 + . 5 . 3 1.0 + . + .2 + .1.2 0.6 0-1 2.3 2-3 0-+ 2.6 2-3 + . + .3 0 . 8 0-4 3.0 + . 2 . 3 + . 1 . 3 1.4 0-+ 2.8 + . 1 . 3 + . 2 . 3 0.7 2-3 0-4 0.7 ,3-0 0-2 3.0 0.7 0-+ 3.0 0.3 + .3.2 3.2.2 1.1 0-3 2.5 2-3 + . + .2 + . 2 . 3 0 . 6 0-+ 2.5 2-3 + . 2 . 3 + . 2 . 3 0.7 '0-3 - 2 . 8 2-3 + . 4 . 3 + .4.3 0.9 0-+ 3.0 0-2 3.0 0.3 0-3 0.9 2.5 2-3 2.4.3 3-0 0-3 1.3.3 0.7 + . 1 . 2 + . 3 . 2 0.7 0-1 2.7 2-3 0.6 3.0 + .2.3 3.5.3 0-3 0-+ 3.0 + . 5 . 3 0.5 3.0 0-5 1 . 2 . 3 0 . 9 2.3.3 2 .6 0-3 0.5 0-2 2.8 0.7 2-3 0-+ 3.0 + . + •3 0.5 0-2 3.0 0.7 0-2 3.0 + .2.3 0.5 0-+ 3.0 0.3 0.4 0-+ 3.0 0.2 0-+ 3.0 9  10  Constancy 5/10 4/10 3/10 4/10 8/10 7/10 10/10 7/10 7/10 10/10 9/10 10/10 6/10 8/10 9/10 7/10 3/10 6/10 3/10 8/10 6/10 5/10 9/10 2/10 6/10 4/10 7/10 3/10 5/10 4/10 3/10 5/10 5/10 5/10 4/10 3/10 4/10 2/10  Table no. 38 - Continued L y s i c h i t e t o , - Thujetum p l i c a t a e . vaccinietosum alaskaensis No. Layer Number of plots of 6 7 8 9 1 2 3 4 5 Species 70 dw. Plagiothecium denticulatum + .2.3 +.2.3 P t i l i d i u m californicum e + .2. 3 71 Plagiothecium elegans + .2.3 e +.1.3 +.2.3 72 A n t i t r i c h i a curtipendula e + .2.3 +.3.2 + .2.3 73 Neckera menziesii e +.1.3 + .1.3 74 Metzgeria f u r c a t a e + .1. 3 +.+.3 75 Calypogeia neesiana + .1.2 dw +.1.3 ^ 76 +.1.3 Lophocolea heterophylla e + .1.3 +.+•3 77 Sphaerophorus globosus e 78 + . + .2 P o r e l l a platyphylla e +.3.3 + .1.3 79 Metzgeria conjugata e 80 +.+.3 R i c c a r d i a sinuata 81 +.1.3 +.2.3 e 1  82 83 84 85 86 87  Cornus occidentalis Lonicera involucrata Malus d i v e r s i f o l i a Physocarpus capitatus Pseudotsuga m e n z i e s i i Ribes divaricatum  43 58 58 58 126 58  (+•+.3) (+.5-3) (+.7.2) (3.6.3)  88 89 90 91 92  Actaea arguta Epilobium alpinum L i s t e r a caurina Pteridium aquilinum Trisetum cernuum  58 58 43 126  (2.5.3) (+.+.2) (1.+-3) (+.+.2) (+.+.2)  22/h  (+.+.2)  93 94 95 96 97 98 99 100 101 102 103 104  105 106 107  Aulacomnium palustre Calypog ;eia trichomanes Claopodium bolanderi C. c r i s p i f o l i u m Douinia ovata F o n t i n a l i s kindbergii Heterocladium heteropteroides I-cmadophila ericetorum Lophozia i n c i s a Pohlia cruda Radula complanata Sphagnum fimbriatum S. girg;ensonii S. recurvum S. tenellum  Species jor .-. V i significance Mean Range Mean Ran ge {  10  1.2.2 0.3 0-1 0.1 0-+ + .2.3 0.4 0-+ 0.3 0-+ 0.2 0-+ 0.2 0-+ + .3.2 0.4 0.-+ 0.2 0-+ + .1.3 0.2 • 0-+ 0.2 0-+ 0.1 0-+ 0.2 0-+ 58 126 43 43 24  43  2.6 3.0 3-0 2.6 3.0 3.0 2.5 3.0 2.5 3.0 3-0 3.0  2- 3 2-3 2-3 2-3  ••Constancy  3/10 1/10 4/10 3/10 2/10 2/10 4/10 2/10 2/10 2/10 l/lO  2/10  (,+•4.3) ('+.+•3) ([+.1-3) ('+.1.3) ([+•1.3) ([+.1.3)  22/h (>-l-3) 24  ( +.2.3) (>. + -3) ('+•+•3) ([+.1.3) 2k (:+.3.3) 22/h ([1.4.3) 2k ([2.5.3) 95 ([3.5.3)  93 58 126  rq.  Table no. 39 Number of plots Plot no. Date  Hygrohypneto - Scoulerietum aquaticae  1 256 26 A 1963  Plot size (sq.m.) Latitude Longitude Altitude (ft*) Ko'ppen Macroclimate Thornthwaite Strata coverage (per cent)  Plot size (sq.m.) Latitude Longitude Altitude Macroclimate Koppen Thornthwaite Strata coverage (per cent) A B C D Land type and Land form Bench height (ft.) Days of overflow per year Depth to first'gravel horizon  Mean  23A  1963  1 49°47! Cfb  10  75  90  Alluvial bench  6 162 0  5 190 0  7  130 0  8  60 102 0  6-5 1 4 6  0  Hygrohypneto - Scoulerietum aquaticae Species Vigor Cons1 2 3 4 .signifitancy cance 256 253 257 25k Mean Mean  Scouleria aquatica Hygrohypnum ochraceum Fontinalis sp. . . Agrostis sp. Salix sitchensis Rhacomitrium canescens Equisetum arvense Dicentra formosa Maianthemum dilatatum Carex sp.  Table no. 4 l Number of plots Plot no. Date  1963  25k  123°ll  Table no. 40 Layer No. Number of plots of Species Plot no. D  23A  4'  3 257 26A 1963  90 - 100  Land type and Land form Bench height (ft.) Days of overflow per year Depth to f i r s t gravel horizon (cm.)  1 2 3 4 5 6 7 8 9 10  2 253  4.3.3 8.5.3 8.5.3 7.5.3 6*7 +.2.3 2.3.3 4.+.2 4.3.3 2.7 + .1.3 •1. + .2 +. + .2 0.5 +.+.1 0.2 +.+.2 0.2 +.+.2 0.2 +.+.1 0.2 +.+.1 0.2 +.+.2 0.2  Equisetetum arvensis  1 251 23/4 1963  2 258 26/4 1963 1, 49°50, 123°13 100  3 274 10/5 1963  Cfb AB-^rb^  90 0 11 18 33  90 0  85 0  12 9 60  13 4 58  Alluvial bench  12 10 44  3.0 3.0 2.0 1.0 2.0 2.0 1.0 1.0 2.0  Table no. 42 No. Layer of Number of plots Species 1 2 3 4 5 6 7  19%  Equisetetum arvensis 1  2  3  Equisetum arvense 8.5-3 Equisetum variegatum 3-4.3 Scirpus microcarpus +.4.3 Elymus glaucus 3 . +.3 S a l i x sitchensis 4. +.3 4 . + . 3 Alnus rubra ) + .+•3 regeneration Populus trichocarpa) 3-+.3  Species Vigor Conssignificance tancy Mean Mean 8.3 1.0  3.0 3.0  3/3 1/3  1.0 2.6 0.3 1.0  3.0 3.0 3-0 3-0  2/3 1/3 1/3  Table no. 43 Scoulerieto - "Salicetum Table no. 44 Scoulerieto - Salicetum No. Layer 1 Number of plots Number of plots 320 of P l o t no. Species 8/6 Date Plot no. i960 P l o t size (sq.m.) . o • 49°17, 1 A Alnus rubra Latitude Populus trichocarpa 2 Longitude 123°13 Acer macrophyllum Altitude ( f t . ) 100 3 S a l i x sitchensis 4 Macroclimate Koppen S a l i x lasiandra Thornthwaite 5 80 Strata coverage (per cent) A Acer circinatum B 6 B 80 C Cornus occidentalis 35 7 Rhamnus purshiana D 8 5 Rubus s p e c t a b i l i s Land type and Land form Alluvial 9 Thuja p l i c a t a 10 bench Pseudotsuga menziesii Bench height ( f t . ) 11 10 Abies grandis 12 Days of overflow per year 42 Symphoricarpos r i v u l a r i s Depth to f i r s t gravel horizon 13 Physocarpus capitatus (cm.) 14 0 Lonicera involucrata 15 S a l i x sitchensis Alnus sinuata 16 Spiraea menziesii 17 Acer macrophyllum Rubus p a r v i f l o r u s 18 Sambucus pubens 19 Betula pa.pyrifera 20 21 22 23  320 7.10.3 5.9.3 + . + .3 + • + .3 4.6.3 +. + •3 +.5.3 + .+•3 + .4.3 4.5.3 5.+ .2 + . + •3 -+.5.3 + .5.3 2.5.3 + . + •3 3-+ .3 3.4.3 3.5.3 + .5.3 + .+ .3 + . + •3  C  Elymus glaucus. Aruncus vulgaris Bromus vulgaris Poa p a l u s t r i s Osmorhiza c h i l e n s i s Geum macrophyllum Lactuca muralis Dactylis glomerata Polystichum munitum Smilacina racemosa  6.7.3 + . + .3 3.4.3 3.5.3 + . + .2 + . + .3 + . + .3 + . + •3 + . + .1 + . + .3  D  Scouleria aquatica Hygrohypnum ochraceum Rhytidiadelphus triquetrus Mnium insigne Rhacomitrium canescens  2.4.3 + .3.3 + .2.3 + .3.3 + .3.3  24  25 26 27 28 29 30 31 32 33 34 35  1  Table no. 45 Number of p l o t s P l o t no. Date P l o t size (sq.m.) Latitude Longitude Altitude (ft.)"; Macroclimate Koppen Thornthwaite S t r a t a coverage (per cent)  Saliceto - Populetum trichocarpae 4 1 2 3 5 270 272 271 273 259 26/4 10/5 10/5 10/5 10/5. 1963 1963 1963 1963 1963 25 49°54' i+9°l+7' 123°15' 123°11' 90 - 120 Cfb AB-^rbjj A B C D  Land type and Land form Bench height ( f t . ) Days of overflow per year Depth t o f i r s t gravel horizon (cm) Stand age (years) Table no. 46 Layer No. Number of plot of Species Plot no. 1 2 3 4 5 6 7 8 9 10 ll 12 13 14  B  S a l i x sitchensis Alnus rubra Populus trichocarpa S a l i x lasiandra Rubus spectabilis Acer macrophyllum Lonicera involucrata Thuja p l i c a t a Equisetum arvense •Equisetum hyernale Elymus glaucus Scirpus microcarpus Angelica genuflexa Maianthemum dilatatum  75 30  13.5 2.5 95 3  100 35  25 l  12.5 6 30 4  A l l u v i a l bench 10 10.5 12.0 26 42. 9 0 50 5 2 4 3  Saliceto  259  10  6 264 27A 1963  7 262 27A 1963  90 15 40  10  10 10  10.5 26 13 3  13.5 2.5 35 7  8 263  Mean  Range  27A  1963  80 15 12.7 5 24 5  11.9 15 32 4  .10-13.5 2.5-42 0-95 2-7  Populetum trichocarpae  270  3  4  5  6  7  8  271  272  273  264  262  263  8 . 7 . 3 3 . 5 . 3 4.+ .2 +. + .2 ..2.+ . 3 +.+.3 5 . 6 . 3 +.+.2 +.+.2 +.+.3 8 . 7 . 3 5.+.2 4 , + . 2 3.+.2 + . + .3 + . + .2  6.7.3 6.7.3 +.+.3 3 . 4 . 3 +.+.3 +.+.3 + . + •3 + .4.2 + . + .2  +. + . 2 + . + . 2 4 . 5 - 3 8.7.3 6.7.3 7.7.3 4.+.2 5-7.3 +.+.3 3.+.3 +.+•3  4.5.3 6.7.3 2.+.3 4 . 5 . 3 3.5.3 +.4.3  +.5.3 4.+.3 3.+.3  ""•' Species^*'"" significance  Vigor  Mean  Range Mean Range  2.7 2.7 4.6 0.1 0.2 0.3 0.1 0.1 3-2 1.6 0.6 0.1  +-8 0-8 +-8 0-+ 0-+ 0-3 -0-+ 0-+ 0-6 o-4 0-3 0-+  2.5 2.6 2.5 3.0 2.5 3-0 3.0 3.0 3.0 3.0 3.0 3.0  2-3 2-3 2-3  0.2  0-+  2.5  2-3  2-3  Constancy  8/8 6/8 8/8 1/8 2/8 1/8 1/8 1/8 5/8 5/8 3/8 1/8 2/8 vo  Lonicereto - Populetum trichocarpae 4 5 1 2 3 265 314 316 306 313 14/6 11/6 10/6 7/6 2TA i 9 6 0 i 9 6 0 i960 i960 1963  Table no. 47 Number of plots Plot no. Date P l o t size (sq.m.) Latitude Longitude Altitude (ft.) Mac-roc limate Koppen. (per cent ) Az  4 0  60 85 65  A2 A  E  l  B'  2  B C D Land type and Land form Bench height ( f t . ) Days, of overflow per year Depth to> f i r s t gravel horizon Stand age (years)  65 70 14.5 2 (cm.) 50 15  Table no. 4 8 No., Layer of Number of plots Species P l o t no. 1 2 3': 4  l 2 1 2 1 2 Bl 2 A  10  7 261 26/4 1963  8 268 28/4 1963  9 269 28/4 1963  75 10 75 60  25 80 90 90  70  60 100 1  90 75 95 50 70 90 30 5'  90 20  60 90  17 1 210 45  17.5 l 156 22  15 2 65 14  14 3 55 16  250 23/4 1963  Mean  Range  400 4 °56; - 123°15 50 - 150 Cfb  49°44 123°10  Tnorntnwai-ce Strata coverage  6 260 26/4 1963  Populus trichocarpa Alnus rubra Picea sitchensis Rubus s p e c t a b i l i s  80 10 85 15 55 60 75  50 60 80 30 75 90 70  15 2 55 14  15 2 53 15  :  80 80 20 70 80 65  14.5  2 88 17  9  75 5 75 65  80 80 80  80 65 60 35 5 A l l u v i a l bench I6.5 16,5 1 1 180 • 125 16 17  70 60  15.5 2 104 19  14-17. 1-3 50-210 14-45  Lonicereto - Populetum trichocarpae l  2  3  4  5  6  7  8  9  10  Species significance  306  313.  316  314  265  260  261  268'-  269  250  Mean  Range v[ean Rang  5.7.3  7.9.3  9.10.3  •7.9.3  6.6 0.4 5.8 1.7  4-9 0-4 0-9 0-8  3-0 2.0 2.7 3.0  7.6.3 9.10.3  6.8.3  0.4 5.5 1.3  0-4 0-9 0-7  2.0 3.0 3.0  6.8.3 8.9.3' 7 . 8 . 3 7.9.3 4.+.3 5.7.3 4.+.2 8.IO.3 6 . 8 . 3 6.8.3 8.9.3 9.10.3 7.8.3 4.+.2 7.8.3  7.9.3 5.7.3 6.8.3  7.8.3  7.8.3  8.9-3 9-10.3 5.8.1 8.9.3 7.8.3  Vigor  1-3  Constancy  10/10 2/10 8/10 2/10 2/10 8/10 2/10 VO  197  q q q o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o  to  ^  a  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  o o  I  I CD  Cd  o  w  I—1  cn I OJ  M fl  ^  ^  ^  ^  ^  H  r—Ir—Ir—Ir—IrHrHr—IrHH  I  cn OJ  I  I  I  I—I  I—t  cn  CM oo I I H OJ  OJ  ro  cn cn cn I I I O J O J C M  ro ro I I OJ OJ  i  OJ  cn cn I I OJOJ  A O O O O O O a D O I > - O L r N O O O L r \ v O O V O O L r \ L r \ o O O r — O r —O t ^ O O O O O n O - 4 cd • • • • • . . . . . . . . <D r o oo no r o m r o oj r o o j r o o j r o r o r o H CM r o o j OJ OJ OJ OJ r o r o o j o o o j c o o j r o r o r o r o oo w OJ <D a > o bo  fl d V D C O  I A LTNVO -=t Lf\_4- VO CJN LTN f — LT\-4"  c  o  d  CD  O f r j O O O O O O  O  ^  coc^co(^co(^ocuoooot^ooaj(jococ^  c  d  c  i  i  i  i  i  +  i  i  o +  i  i  00 +  i  i +  LTVCO -4" OJ +  i  i  i  ^  ©  0  i  i 0  i 0  i 0  i 0  + i  0  LTN + +  + CO OJ OO i  0  i 0  i 0  i 0  + O J r O + OOOJOO  i  i  i  i  i  i  0  0  0  0  0  0  i  i 0  i 0  i 0  i 0  i 0  0  0  CH  CL) - H  c  ftfla  CQ c f l n j O W H O M A O J O O f - O J C O r H H OOVO t — ON CT\VO OOOJ OJ -4" ON t ON CM -4" OOOJ OOCO r o LTN.H- O N •H <D C Q g r O O J O J O O J H r O O r O L T v c v j J - O J O O H O J O O O O O O O O O r H O O O O O O O O O oo * t— •  OO • + • +  ro • LT\ •  -4-  OJ • + • +  CM OO OO r o r o • • • • • + o + LTWD • r-i • • • + • + rojCO  OO • + • +  oo • + • +  CO VO • LTV  OJ oo r o r o • mm • + CO LT\ + • • • • + r - ooLTN  OO OO • • + + • • oo oo  oo • + • OJ  OO • + • +  oo • + • +  oo • VO • LT\  OJ oo oo r o r o • • • • • + C- + + -4• • • • • + VO OJ LTN +  ro ro • • + ON • • + CO  ro « LT\ • ro  oo • Lf\ • +  oo • t— • VO  OO • LTN • OJ  oo oo r o oo r o r o • • • LTN O VO r — t—vo • H • • • • • LT\ LTN LTN ON  ro r o • • VO vo • •  ro • LTV • ro  oo • + • ro  oo • + • +  OO •  vo • -4"  ro r o r o ro • • • • LTN LTN + VO • • • •  -4- -4" +  CM OO • • + LTN • • + OO  ro • VO «  ro  ro • + • oo  oo • LTN • +  OO OO CM r o m LTN LTN + c— • • • • r o oo + vo  -4"  ON  CO  f-  Cl) cd p.  VO  ro • + •  M  cd o  o  LTN  xi  o  «  LT\ • +  -4-  •ri fn -P  OO • CO •  0)  =1  ft O P-.  ro  o -P 0) CD  •H  fl  ...  H  • +  ro r o  ro r o  r o oo CM OO oo oo • • • • • • t — C—-4- + r - + • * • • • • LTN OO OO + r o +  .  + VO • •  ro • +  oo  OO  oo  CM  r o r o OJ r o oo  tvo  LTV  vo  +  LTN LTN_4 LTN  -dr  LT\  +  VO LTN OJ r o LTN  t—  + • ro  ! ro • + • +  OJ • oo • +  ro •  -4• ro  OO OO CM OJ • • • • + + -4/ • « • • + + CM OO  oo oo oo r o • • • • IT\ OO + + » • • • r o OJ CM + oo oj oo OJ r o r o r o • • • • • • m LTN + + + + + LTN • • • • • • o -4" + + + + + CM  OJ r o • • + + • • + + OJ OJ • • + + • • + +  + • +  oo • ro • ro  ro • + • +  oo OJ r o oo • « • • + + + vo m • • • + + + LTN  ...  OJ • + • +  o  oo  + • + OJ • + • ro  r o r o r o OJ « LTN + + m m m• .4- + + OJ  LTN O- VO LON CO + + + + • • • • • • • • • -4" LT\ J - r o r - + J - + +  oo • LTN « ro  oo  + co +  oo r o r o oo r o CM r o r o r o  ro • + • +  ro • LT\ • +  • • • • r o + VO +  ro-4 -4- -4- ro-4- vo OJ CM -4-  r o oo • • + + • • ro +  ro • + • ro  OO OO OJ • • •  vo ON f - V O • • • • J - CO LTN LTN  OJ  o  ...  oo r o r o oo  oo o CO •  U  t — ..  ro • + • +  ro • oo • +  LT\-3-  OO oo oo r o r o oo r o CM CO oo • • • • • • « LTN + LTN LTNVO LTN C + + VO  c—  -P  rH  o  ro • + * ro  oo oo OO • • • vo oo + • OO OJ rH  r o oo • • CM OJ • • + +  oo r o r o oo • • • • + -4- + + • • • OO + + +  OJ OJ • • rH rH • • + +  CM  r o r o CM OO  oo oo r o  ro  ro  +  LTN + +  +  + + -4-  LTN  +  -4-  rO-4- +  +  +  OJ  +  + ro  O CQ  CQ  O iH  3  •H -P fl O O  u o  3  CO  -p  rH O > fl •H  O rH ft CH  cd  U  CL)  <D  •ri O  o  U  O  O  CQ  •ri  r9  O fl  ti  fl O  •3 u  CD  o o  H U  P 0)  cd !>,  fl CD Xl O +> •ri CQ cd CD  o  •ri PH  cd cd CD cd r-i •H C J CQ rH •ri CQ •ri p fl CQ •H CQ r-i •ri r-i 0) fl cd P CQ CQ r-i <D -ri r-i Xi CD o fl CD •rl > r-i cd fl CH cd •r-i cd ft fl CD X> X! U -ri cd CD •rl Xi o -p -p O Cd rH cd Xi cd ftu flS3 fl Xi u 3 cd cd 3 Q p u o V o o CD 3 •ri +> o cd ft CQ £> r-i 6 cd S c d •rl •p •ri u -P S fl CQ 3 fafjCD N •rl o r-i •ri r-i C J CD fl u •rl cd CQ CQ CQ •ri -p H u Xi Xi 3 ft ft cd O o CQ CQ -p Xi CD CO cd CQ X r-i u CQ Cd cd X cd 3 3 fl •rl •o u US u 3 u •ri O cd Q •ri r-i 3 p •H •H flCD r-i U 3 -H r-i a. B fl . 0) rH o cd cd r-i r-i cd CQ a* B Xi cd xi o CQ ft CQ W W CQ EH C Q EH < EH C Q < ! < C Q CD CQ  3  £  a o  <c  rH CM r H rH  •era  CO -4  O  +> fl CD  CQ •ri CQ  CQ •ri CQ  ci  CD  3 fl  +> cd -P cd rH CQ •H 3 T3 V  ea  cd -P cd  ti  o  CM CM «: PQ  •H rH O  cd fl •rl  s  U  cd  CH  •ri CD  3  cd  X  CT CQ  X  1  cd CQ CQ CQ rH •H CH fl cd O 3 H 3 bO XI CD x CD cd flCD u ft >> r-i fl -H xi CQ M CD 5H o rH fl bD <D fl r-i CQ Xi hO O CH CD •H rH 3 CD *H CQ rH cd -Cl 3 •ri CH p 3 cd fl ft r-icd > cd £q cd •ri •ri x> _+ 1 O w ft U o 3H -P t ) CQ •H CD •P CQ •H cd cd 3 rH O fl ft p •ri CD r-i r-i 0 <D ftCD •H M CQ O O o 3. U •ri-•ri o • H H fl xi fl •ri Cn 4^ w C Q > > PQ P P K r-i CQ CD cd rH CH  •d  CD  CD  CQ  cd •ri ft a rH -PU cd  e  R  CQ CD O S  CH  O  o  CD  ft CQ  LTN  VO  r-  OO ON O r-H CM r O J /  LTN VO t — CO ON  O r-i OJ OO LTNVO t—CO ON O rH CM OO CMOJOJOJOJCMCMOJOJCMOOOOOOOO  Table no. 48 - Continued  Lonicereto - Populetum trichocarpae  3k  grandis leucodermis bracteosum lasiandra  306 306 268 316  (+•+•3) (+•+•3) (5.6.3) (4.7.3)  50 51  Asarum caudatum Carex leptopoda Circaea alpina Epilobium angustifolium Habenaria saccata Lycopus uniflorus Montia s i b i r i c a Oenanthe sarmentosa Poa p o l u s t r i s Poa pratensis Prunella vulgaris Smilacina :racemosa Trautvetteria grandis Trientalis l a t i f o l i a  26l 306 26l 313 316 314 260 250 306 313 314 306 261 269  (1.3.3) (+.+.3) (2.+.3) (+.+•3) (+•+•3) (+.+.3) (+.+•3) (2.3.2) (4.5-3) (+.1.2) (+.4.3) (+•+•3) (3.5.3) (+•+•3)  52 53 54  Dicranum fuscescens Hypnum c i r c i n a l e Mnium punctatum  316 316 316  (+.+.2) (+.+.2) (+.3.2)  35 36 37 38 39  ko kl  42 k3 kk  45  kG kl. kQ k9  Abies Rubus Ribes Salix  Table no. 49  250  (+.+.1)  Oplopanaceto - Piceetum sitchensis populosum trichocarpae  Number of plots Plot no. Date  Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Macroclimate Ko'ppen Thornthwaite Strata coverage (per cent) A l A A Bl B B C D Land type and Land form Bench height ( f t . ) Days of overflow per year Depth to f i r s t gravel horizon (cm.) Stand age (years) 2  2  1 311 9/6 i960  2 303 7/6 i960  4 3 266 267 27/4 27/4 1963 1963 800 * 4oo 49°44' - 49 56 ' 123°10 - 123°15 120 60 100 90 0  Mean  (  1  Cfb  35 80 90 75 75 70 50 20 1 125 80  AB Tl i °k' 40 10  50 85 80  75 80  80 60 90 65  80 . 70 15  80 90 1  65 90 30  19 1 195 70  18 1 150 25  21.5  30  A l l u v i a l bench  l  250 89  93  19.6 l  125 66  Table no.  50  Ko. Layer of Number of plots Species Plot no. 1 2 3 4 5 6 7 8 9  Ai 2 1 2 1 2 1 2 1 2 B  10 11 12 13  C  Ik 15 16 17 18 19 20 21 22 23 2k 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51  Dfo  Oplopanaceto  1  2  311  303  Populus trichocarpa  + . + .3  6.8.3  Picea sitchensis Alnus rubra  199 Piceetum sitchensis populosum trichocarpae Species Vigor Cons3 4 signifitancy cance 266 267 Mean Mean  5.+.3 6.8.3  8.10.3 8.10.3 + . + .2 L 8.+.3 + . + .3 + . + .3  5.7 0.2 3.5 1.7  3.0 2.0 3.0 3.0  + . + .2  6.9.I  7.8.1  3.5  1,3  6.7.3 + . + •3  4.2 2.2 1.7  2.6 3.0 3.0  3/4 4/4 1/4  6.8.3 6.8.3 7.8.3 5.6.3 2.+ .3 + . + •3 4.6.3  6.0 5.0 5-5 2.2 2.2 0.5 2.0 1.2 1.2 0.2 4.5 6.2 3.7 2.2 4.2 4.2 1,5 1.5 1.2 1.2 0.5 0.7 1.2  3.0 3.0 3.0 3.0 3-0 3-0 3-0 3-0 3-0 2.0 3-0 3-0 3-0  4/4 4/4 4/4 4/4 2/4' 2/4 2/4 2/4 1/4 1/4 4/4 , 4/4 4/4  Acer macrophyllum ThUja p l i c a t a  5.8.2 + . + .3  6.7.3 7.9.3 7.8.3  L  Oplopanax horridus 8 . 1 0 . 3 9 . 1 0 . 3 + .+.3 Ribes bracteosum 4.6.3 5.6.3 5.7.3 Rubus s p e c t a b i l i s 3-5-3 6 . 7 . 3 6.8.3 Sambucus pubens 2.5«3 +.+. 3 + •+•3 Acer macrophyllum 7.8.3 Thuja p l i c a t a + .+.3 Acer circinatum 4.6.3 Picea sitchensis 4.5-3 +-+.3 Rubus p a r v i f l o r u s Lonicera involucrata + . + .2 Athyrium f i l i x - f e m i n a 3.5.3 6.7.3 5.6.3 Maianthemum dilatatum 5.5.3 9.10.3 3.4.3 Osmorhiza c h i l e n s i s 5.+ .3 3-4.3 4.5.3 Tiarella t r i f o l i a t a + . 3 . 3 + . + .2 6.6.3 Dryopteris austriaca 4.5.3 + .4.3 4.5.3 Disporum oreganum 4.5.3 2.4.3 + . + .3 Viola glabella 2.4.3 1.3.3 Gymnocarpium dryopteris + .4.3 4.6.3 Smilacina s t e l l a t a + .4.3 4.5.3 Polystichum munitum + .+•3 +.+.2 Poa p a l u s t r i s 2.3.3 Streptopus amplexifolius + . + .3 + .+.3 Galium t r i f l o r u m 2.3-3 2.3.3 Circaea a l p i n a 3.5.3 3.5.3 4.+.3 Tiarella unifoliata +.+.3 2.4.3 Tolmiea menziesii +.+.3 Boykinia e l a t a +. + .3 Veratrum v i r i d e + .+•3 Montia s i b i r i c a +.+.3 2.+.3 Trisetum cernuum +.+.3 Cinna l a t i f o l i a +.+.3 Dryopteris filix-mas Polystichum andersonii Streptopus roseus 4.5.3 Asarum caudatum S t e l l a r i a media Equisetum arvense 5-+.3 Bromus vulgaris Dicentra formosa 3.5.3 Lactuca muralis Streptopus roseus +. + .3 4.5.3 L i l i u m columbianum Tiarella laciniata Mnium insigne + .3.3 3.5.3 7.8.3 Mnium punctatum +.4.3 + . + .3 3.5-3 Rhytidiadelphus loreus 2.4.3 Rhytidiadelphus squarrosus + .3.3 Mnium menziesii 3.4.3 .Eurhynchium s t o k e s i i +.4.3  5.6.3 4.5.3 8.9.3 3-+-3 + . + .3 4.5.3 6.7-3 3-4.3 + .4.3 3.5.3 +.+.3 1.+.3 +. + .3  2.+.3 3-+-3 3-6.3 4.5-3 2.+.32.3.3 3-+-3 4.6.3 + .+.3 + . + •3 2. + .3 4.5.3 3.4.3  4/4 1/4 4/4 2/4  4/4  2.5 1.0 0.2 0.2 0.2 1.2 0.2 1.0 0.7 "1.0 1.0 0.5 0.5 2.0  2.7 3.0 3-0 3.0 3-0 3.0 2- 7 3.0 3- 0 3.0 3.0 3.0 3-0 3.0 3-0 3.0 3-0 3.0 3-0 3.0 3.0 3.0 3.0 3-0  1.7 0.2 1.2 0.2 0.5 3.7 2.0 0.5 0.2 0.7 0.2  3-0 3-0 3-0 3-0 3-0 3-0 3-0 3-0 3-0 3-0 3-0  2/4 1/4 2/4 1/4 1/4 4/4 4/4 1/4 1/4 1/4 1/4  4/4 4/4 3/4 3/4 2/4 3/4 1/4 3/4 3/4 3/4 3/4 1/4 1/4 1/4 3/4 1/4 2/4 1/4 1/4 1/4 1/4 1/4 2/4  1 I t  i Symphoricarpeto 1 2 308 307 8/6 8/6 i960 i960  Table no. 51 Number of plots P l o t no. Date (sq. m.) P l o t size Latitude Longitude Altitude ( f t . ) Macroclimate Koppen Thornthwaite Strata coverage (per cent) Al A A Bl B B C D Land type and Land form Bench height ( f t . ) Days of overflow per year (cm.) Depth to f i r s t gravel horj Stand age (years) 2  2  - Piceetum sitchensis 5 3 U 305 312 317 8/6 9/6 9/6 i960 i960 i960 800 49043; . 49047;. 123°10 123°15 60 80 80 70 Cfb  30  UO  60 80 , 20 60 75 80 ' 1 18 1 65 U2  .  10 100 50 80 100 70 50 30 60 50 75 70 30 65 10 5 1° A l l u v i a l bench 21 18.5 18.5 1 1 1 78 57 • 85 U6 30 55 50 80 85 60  Mean.  6U  Range  30-80  70  UO 85 80  80 60 5 20 1 60 27  19.2 1 69  UO  18-21 60-85 27-55  ro o o-  Symphoricarpeto - P i c e e t u m  T a b l e no. 52 No. Layer Number o f p l o t s of Species P l o t no.  1 2  ' 3  5 6 7 8  Al  10  li  12 13 14  A c e r macrophyllum  Picea  l  Populus t r i c h o c a r p a  2 2 3 2 3 1 2 2 3 . 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2  sitchensis  Alnus rubra  3  4  5  307  312  317  305  7.8.3 5.7.3  7.8.3 6.8.3  2  308  2 3 1 2 3  •Bl  9  1  5.8.3 +.+.3 6.8.3 7-9.3 4.7.3 5-+.3 +.+•3 + .+.2 +.+.2  sitchensis  6.8.3  + . + •3 + . + •3 -• + . + .3 8.10.3 7.9.3 + . + .2  + . + .3  Abies grandis  4.+  Tsuga h e t e r o p h y l l a  .3  + . + •3 + .+•3  Acer c i r c i n a t u m Thuja  6.7.3  plicata  Acer c i r c i n a t u m  4.+.3  7.10.3 9.10.3 + . + .3 5.6.3 6.7.3 8.10.3 5.6.2 7.10.3 4.5.3  Symphoricarpos  7.9.3  rivularis  6.8.3 Rubus p a r v i f l o r u s  -  6.7.3  6.8.3  3.5.3  4.5.3  4.5.3 Thuja  plicata  Lonicera  4.6.2 3.5.3  + .+.2  + .+..2 + . + .2  involucrata  + .5.2 5.6.3 4.5.2  Oplopanax h o r r i d u s  + . + .3 4.5.3  0.2 0.8 0.2 0.2 1.2 3.2 0.2 1.0 6.0 0.8 3.8 2.2 0.8 2.4  + . + .3  0.4  2.5.1  1.5.2 Ribes divaricatum  1.8 3-2 1.6 1.6  3.5.3  + . + .3  5.5.3  Rubus s p e c t a b i l i s  0.4 1.4 4.4  2.4  6.7.3 4.5.3  Mean  • 2.6 + . + . 3 .2.4 + . + •3 + . + •3  7.8.3 7.10.3 4.6.3 + . + .3 + . + .3  Species significance  3.5.3  1.0 0.2 1.2 1.0 1.2 0.2 0.8 0.8  Vigor  Constancy  Rang;e Mean Rang?e  0-7 0-6 0-+ 0-6 0-7 0-4  +-8 0-7 0-6 0-+ 0-4  0-+ 0-+ 0-6 0-9 0-+ 0-5 4-8 0-4  0-7 0-6 0-4 0-4 0-4  0-3 0-+ 0-+ 0-5 0-5  0-4  0-1 0-3 0-4  3.0 3-0 3-0 3.0 3.0 3.0 3.0 3.0 2.3 3.0 3-0 3-0 3.0 3-0 3.0 3.0 3.0 2.8 3.0 3-0 3-0 3-0 3.0 2.5 2.3 2.5 2.0 3-0 3.0 1.5 2.0 3.0 3.0  2/5 4/5  2/5 2/5 4/5 3/  2- •3  p  5/5 2/5 3/5  ^P <P ^P ^P P X  X  2/5  p ^p x/  2- •3  5/5  ^p P 3  2/5  ^p  2- •3 2- •3 2- •3  • 1/5 2/5 3/5 2/5 X  >P  •2/5  1-•2  ^P  2/5 X  P  2/5 1/5  ro o  T a b l e no. 52 - Continued Layer No. Number o f p l o t s of Species 1 Sambucus pubens 15 1 Cornus o c c i d e n t a l i s 16  2 1 1 2 1 C  17 18 19 20 21 22 23 24  25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  :  Dh dw h h dw dw dw dw  Picea sitchensis A c e r macrophyllum Tsuga h e t e r o p h y l l a Abies grandis Disporum oreganum P o l y s t i c h u m munitumAthyrium f i l i x - f e m i n a Dryopteris austriaca Osmorhiza c h i l e n s i s Lactuca muralis Galium t r i f l o r u m Smilacina s t e l l a t a Maianthemum d i l a t a t u m Mbntia s i b i r i c a ' :, Bromus v u l g a r i s Aruncus v u l g a r i s Equisetum arvense D i c e n t r a formosa Festuca s u b u l i f l o r a Clintonia uniflora Dryopteris filix-mas Mnium i n s i g n e Rhytidiadelphus triquetrus Eurhynchium s t o k e s i i .  Symphoricarpeto - P i c e e t u m  1  2  3  4  + . + .3 5-7.2  +•+.3  +.+•3 5.6.3  + .+•3 5-6.3 + . + .2 2.5.3 2.5.3 4.5.3 + . + .3 + .+.3 2.4.3 3.5.3 2. + .3 + .+.2  +. + . 3 6.5.3 + . + .2 + . + .3 +. + •3 2.+.3 + . + •3 1. + . 3 4.5.3  5.7.3 + . + .2  9.10.3 +.+.3  + .4.3  6.5.3 + . + .2 •3.5.3  + .3.3 3.5.3  3.4.3 3.4.3  2.+.3 +.+.3 4.5.3 + .+.3 + . + .3  2.4.3  5.4.3  + . + .3  2.+ . 3 4.6.3 + .+.2  +.+.3 + . + .3 4.5.3 + . + •3 4.5.3 + .3.3  4.5.3 2.3.3  5  + .+.3  + . + .2 + . + •3  5-+.3 2.+.3 4.5.3 3.5-3 2.3.3 + .+.3  sitchensis  + . + .2 3.5.3 + . + .2  + . + .3  4.5.3 + .5.3 5.4.3  + .5.3 3.5.3 + .4.3  3.4.3 2.4.3  +.3.3 + .3.3  Rhytidiadelphus squarrosus Mnium m e n z i e s i i Hylocomium splendens  + .3-3 +.3.3 +.4.3  + .3.3 + .3.3 + .4.3  Species Vigor Conssignificance tancy Mean Range Mean Range  0.4 0.2 0.2 1.4 2.0 0.2 0.4 5.4 1.2 2.1 2.0 2.8 1.0 1.2 2.2 3.2 0.8 0.6 0.4 0.4 1.6 0.4 1.6 0.4 2.0 1.2 1.0 0.2 0.2 0.4 0.4 0.4  0-+ 0-+ 0-+ 0-5 0-5 0-+ 0-+ 5-6 +-2 +-4 +-3 2-4 0-2 0-2 0-4 0-9 0-2 0-+ 0-+ 0-+  o-4  0-+ 0-4 0-+ 0-5 0-3 0-2 0-+ 0-+ 0-+ 0-+ 0-+  2.5 3.0 3.0 2.6 3.0 2.0 3.0 3.0 2.4 3.0 3-0 3.0 3.0 3.0 3.0 3.0 3.0 2.3 3.0 2.5 3.0 2.5 3.0 3.0 3-0 3.0 3-0 3.0 3.0 3.0 3-0 3.0  2-3  2-3  2/5 1/5 1/5 3/5 2/5  ^?  2-3  2/5 5/5 5/5 5/5  V5  2-3 2-3 2-3  4/5 4/5 3/5 3/5 3/5 2/5 2/5 2/5 2/5 2/5 2/5 2/5 3/5 1/5 ^ 2/5 2/5 2/5 5  40 Pseudotsuga m e n z i e s i i 312 (+.+.3)> 4 l Rhamnus p u r s h i a n a 307 ( + . + . 3 ) ; 42 Ribes bracteosum 308 ( + . + . 3 ) , 43 R. sanguineum 317 (+.+.3)> 44 Rubus v i t i f o l i u s 312 ( 2 . 4 . 3 ) , 4-5 A c t a e a a r g u t a 317 ( + . + . 3 ) , 46 Asarum caudatum 317 ( + . + . 3 ) , 47 B o t r y c h i u m v i r g i n i a n u m 317 ( + . 5 . 3 ) , 48 C i r c a e a a l p i n a 308 ( 2 . 3 . 2 ) , 49 Equisetum hiemale 307 ( 5 . + 50 Gymnocarpium d r y o p t e r i s 312 ( + . + . 3 ) , 51 Pteridum a q u i l i n u m 312 ( + . + . 3 ) , 52 S m i l a c i n a racemosa 305 ( + . + . 3 ) ? 53 S t r e p t o p u s roseus 312 ( + . + . 2 ) , 54 T r a u t v e t t e r i a g r a n d i s 308 ( 2 . 3 . 2 ) , 55 Dicranum f u s c e s c e n s 307 ( + . 3 . 3 ) , 56 Mnium punctatum 307 ( 3 . 4 . 3 ) , 57 P l a g i o t h e c i u m undulatum 317 ( + . 3 . 3 ) , 5o R h y t i d i a d e l p h u s l o r e u s 305 ( 1 . 4 . 3 )  Plot size (sq.m.) Latitude Longitude Altitude ( f t . ) Macroclimate Koppen Thornthwaite Strata coverage (per cent)  400  49°49 ] 49°53 ' 123°10' - 123°15 100 - 150 Cfb AB-rb^ 60 UO (  Al Ao  65  l B B C D  50  B  1  2 •3 4 5 6  7 8  9 10 11 12 13 14 15 16 17  Salix  60  ...25 80 90 50 10  2  Table no. 54 No. Layer of Number of plots Species Plot no. Al 2 1 2 1 2 1 1 Bl 2 1 2 1 2 1 2 1 2 1 1 . 1 1 C  50  4  60  60 60 70 65 1 1 River scar  50 100 1  Land type and Land form  1  .203  Lysichiteto - Salicetum lasiandrae; 1 4 2 3 302 310 315 309 10/6 9/6 9/6 9/5 i960 i960 i960 i960  Table no. 53 Number of plots P l o t no. Date  lasiandra  Lysichiteto -• Salicetum lasiiandraeSpecies Vigor Cons signifitanc; 1 2 4 3 cance Mean Mean 302 310 315 309 5.7.3  4.6.3  4.8.3  + .+.3  + . + .2  4.7.3  Picea sitchensis  4.7.3  Alnus rubra  7.8.3  Thuja p l i c a t a Salix sitchensis Lonicera involucrata  + . + .3 5-6.3 6 . 8 . 3 5.6.3 4.5.3  S a l i x sitchensis  3-+.3  + . + .2 7 . 1 0 . 3  Rubus s p e c t a b i l i s  4.5.3  4.5.3  5.7.3  Cornus occidentalis  3.6.3  + .+ . 3  3.5.3  Salix  lasiandra  + .5-3 5 . 6 . 3  Sambucus pubens Spiraea menziesii Thuja p l i c a t a Picea sitchensis Lysichitum americanum Oenanthe sarmentosa Glyceria p a u l i f l o r a Athyrium f i l i x - f e m i n a Angelica genuflexa Maianthemum dilatatum Scirpus microcarpus  +. + . 2 5.5.3 + .+•3 + . + .3 9.10.3 7.7.3 6.7.3 7.6.3 4.5.3 4.5.3 2.5.3 2.5.3 3.5.3 3.4.3 + .5.3 2.4.3 + .3.3 2.3.3  + . + .2  + . + .2 +. + .3 6.7.3 4.6.3  3.5.3 4.5.3 5.6.3 4.5.3 9-10.3 5.6.3 4.5-3 5.6.3 3.5.3  4.5.3  3.5.3 7.8.3 6.5.3 5.6.3 4.5.3 3.5.3 2.5.3 2.5.3  6.5.3 5.5.3 3.4.3 3.4.3 3.4.3 4.5.3  4.0 1.0 1/5 0.2 1-7  3-0 3.0 2.6 2.0 3-0  3/4 1/4 3/4 1/4 1/4  0.5  3.0  2/4  4.2 1.0 4.0 1.0 3.2 2.2 3.0 1.0 2.7 0.7 1.2 2.0 0.2 0.2 7-2 6.0 4.0 2.7 3.0 2.2 1.2  3.0 3-0 2.7 3-0 3.0 3-0 3.0 3-0 3-0 3.0 2.5 3-0 3-0 3.0 3.0 3-0 3.0 3.0 3-0 3.0 3.0  4/4 1/4 4/4 1/4 3/4 1/4 4/4 1/4 3/4 1/4 2/4 2/4 1/4 1/4 4/4 4/4 4/4 4/4 4/4 4/4 3/4  20kj Table no. 54 - Continued No. Layer of Number of plots Species 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 UO kl  Dh h dw dw  Veronica americana Equisetum f l u v i a t i l e Carex leptopoda Carex r e t r o r s a Epilobium adenocaulon Viola palustris Mont i a s ib i r i c a . c . Climacium denroides Eurhynchium s t o k e s i i AuJacomnium palustre  Alnus rubra Mains d i v e r s i f o l i a Aruncus vulgaris Bromus vulgaris ^Carex a q u a t i l i s Carex sitchensis Galium t r i f l o r u m Habenaria saccata Isothecium stoloniferum Mnium insigne ••' Mnium punctatum Plagiothecium elegans Rhytidiopsis robusta Rhytidiadelphus triquetrus  Lysichiteto - Salicetum lasiandrae Species Vigor significance Mean Mean 3.0 + .+.3 + . + . 3 0.5 3.0 2 . 2 3-4.3 3.4.3 3 . 5 . 3 3.0 + .3.3 0.7 1..2 4 . 5 - 3 +.+.3 3-1 3.0 +.+•3 0.5 3.0 + .+.3 2 . 3 . 3 0.7 +.+.3 + . + . 2 2.5 0.5 +.3.3 + . 2 . 3 3.0 0.7 3.0 1.0 3.5.3 +.3.3 3.0 1.2 5.4.3 3 .0 0.7 + .3.3 2.5.3 315 302  (4.6.3 (+.+.3  302 302 315 315 310 310  (+.+.2 (+.+.2 (+.+.3 (3.5.3 (+•+.3 (+.+•3  302 302 310 310 302 302  (+•3.3 (+.3.3 (+.2.3 (+.2.2 (+.4.3 (+.3.3  Constancy 2/k 3/4 2/k 2/k 2/k 2/k 2/k 3/4 2A  iA 2/k  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0105377/manifest

Comment

Related Items