OPTIMIZATION AND C O N F I G U R A T I O N OF CONDUCTOR SHAPES OF CONDUCTOR BUNDLES VOLTAGE FOR H I G H TRANSMISSION by Gustav B. S c . ( E n g . ) , A THESIS THE Strom Christensen U n i v e r s i t y o f A l b e r t a , 1958 S U B M I T T E D I N P A R T I A L F U L F I L M E N T OF REQUIREMENTS MASTER in FOR T H E D E G R E E OF A P P L I E D OF SCIENCE t h e Department of Electrical We accept standards degree this Engineering thesis as conforming required from of Master candidates of Applied tothe f o r the Science. Members o f t h e D e p a r t m e n t of E l e c t r i c a l Engineering THE U N I V E R S I T Y OF B R I T I S H April, 1960 COLUMBIA In the presenting requirements f o r an of B r i t i s h Columbia, it freely available agree that for that copying gain shall Department advanced degree a t or not his University s h a l l make f o r reference and study. I for extensive be copying granted representatives. by of Columbia, of the It i s of t h i s t h e s i s a l l o w e d w i t h o u t my The U n i v e r s i t y o f B r i t i s h V a n c o u v e r $, C a n a d a . Date the of Library publication be fulfilment the p u r p o s e s may o r by in partial I agree that permission scholarly Department this thesis further this Head o f thesis my understood for financial written permission. ABSTRACT This field Two thesis intensity separate with on conductor per phase, conductors per phase. conductor to of the uniform this when particular bundled the boundary to less i t i s found that a cylinder d e n s i t y on to line solution in i f electric Also a consists i n such the only perin a manner cylinder charges. exists when determine variation essentially case with contours conductors. circular surface charge is Using in one case. considering,several conductors, the form field phase. Transmission mined by a i d of sults obtained bundle intensity treated. the are conductors normally electric are investigated which lines transmission lines Some circular a conductors. transmission phase. i t i s placed parallel symmetrical bundles two, provide of electric considered f o r the are i s developed electric method In the are mapping shapes and One, f o r each d e n s i t y than method perturbing that such charge turbation i s used conformal conductors surface conductors the transmission line considered. one subject power are Non-circular only electric m i n i m i z a t i o n of cases one several discusses the The Alwac phase, configuration used exists lines per with on indicated. i i the i s changed same a l l conductors three optimum III-E until and four configuration digital that i s , computer from maximum of the same conductor was deter- and the re- TABLE OP CONTENTS page Abstract i i Acknowledgement . . . . . . . . . . v i 1. Introduction 1 2. Some B a s i c 4 2-1. 2- 2, 3. 6. Bundled 6- 1. 6-2. 6- 3. 7. 10 C a s s i n i a n Oval E l l i p t i c C y l i n d e r a n d two L i n e C h a r g e s A p a r t i c u l a r n o n - c i r c u l a r C y l i n d e r and two L i n e C h a r g e s Method I Appendix II 12 . . . 15 17 22 . . 29 Conducting Cylinder Conducting C y l i n d e r and Line Charge . . . . C o n d u c t i n g C y l i n d e r a n d two L i n e C h a r g e s . . Numerical Computations 29 31 40 46 Conductors 52 Transmission per Phase Transmission per Phase Some G e n e r a l Line with . . . Line with three Conductors 53 four Conductors . . . . . . . . . . Considerations . Recommendations f o r Future Work . . . . . . 63 65 67 References Appendix 10 15 Conclusions 7- 1. 4 5 Phase Contours A Perturbation 5- 1. 5-2. 5-3. 5- 4. Intensity with . . . . Determination o f L i n e Charges . . . . . . . Determination o f t h e Phase Angle a t which Maximum E l e c t r i c F i e l d I n t e n s i t y O c c u r s . Non-circular 4- 1. 4-2. 4- 3. 5. L i n e Charges and D i p o l e L i n e s Conducting C y l i n d e r and Line Charge Variation of Electric Field Angle and Phase Spacing 3- 1. 3- 2. 4. Problems . 67 69 73 77 i i i LIST OP ILLUSTRATIONS Figure page 2-1. Line Charge to f o l l o w 4 2-2. D i p o l e Line to f o l l o w 5 2- 3. L i n e Charge and Conducting C y l i n d e r to f o l l o w 5 3- 1. Ungrounded three-phase Transmission Line to f o l l o w 10 3- 2. Conducting C y l i n d e r and two ... Line Charges 12 4- 1. C a s s i n i a n Oval 4-2. Charge D i s t r i b u t i o n on C a s s i n i a n 4-3. C i r c u l a r C y l i n d e r and two Charges E l l i p t i c C y l i n d e r and two 4-4. . . . . to f o l l o w 15 to f o l l o w 17 to f o l l o w 17 to f o l l o w 17 Line Line Charges 4-5. Charge D e n s i t y V a r i a t i o n to f o l l o w 21 4-6. C i r c u l a r C y l i n d e r and L i n e Charge . . . . to f o l l o w 22 4-7. Deformed C y l i n d e r and L i n e Charge . . . . to f o l l o w 22 4-8. Charge Density V a r i a t i o n to f o l l o w 25 4- 9. C i r c u l a r C y l i n d e r and two Charges Deformed C y l i n d e r and two Charges to f o l l o w 27 to f o l l o w 27 to f o l l o w 28 to f o l l o w 28 4-10. 4-11. 4-12. Line Line Conductor Shape as a Function Spacing ( S i n g l e Phase) of Conductor Shape as a F u n c t i o n of Spacing (Three Phases) . 5- 1. Conducting C y l i n d e r 30 5-2. Conducting C y l i n d e r and Line Charge 31 5-3. Conducting C y l i n d e r and two L i n e Charges 41 5-4. Conducting C y l i n d e r and Line Charges 45 iv two LIST OP ILLUSTRATIONS Figure page 2-1. Line 2-2. Dipole 2- 3. Line 3- 1. Ungrounded Line three-phase Conducting Cylinder 3- 2. Charge Line Charge and Conducting Cylinder . . . to follow 4 to follow 5 to follow 5 to follow 10 Transmission and two Line Charges 12 4- 1. Cassinian Oval 4-2. Charge 4-3. Circular Cylinder Charges and two Line 4-4. Elliptic and two Line Distribution Cylinder on Cassinian . . . . Charges to follow 15 to follow 17 to follow 17 follow 17 to follow 21 . . . t o 4-5. Charge 4-6. Circular Cylinder and Line Charge . . . . to follow 22 4-7. Deformed Cylinder and Line Charge . . . . to follow 22 4-8. Charge . t o follow 25 4- 9. Circular Cylinder Charges and to follow 27 Deformed C y l i n d e r Charges and to follow 27 to follow 28 to follow 28 4-10. 4-11. 4-12. Density Variation Density Variation two two Line Line Conductor Spacing Shape as a F u n c t i o n (Single Phase) of Conductor Shape of Spacing (Three as a Function Phases) 5- 1. Conducting Cylinder 30 5-2. Conducting Cylinder and Line 5-3. Conducting Cylinder and two Line Charges 5-4. Conducting Cylinder and two Line Charges iv Charge 31 41 . . . . . 45 Figure page 5-5. Conducting Cylinder 5- 6. Charge D e n s i t y 6- 1. Three-phase T r a n s m i s s i o n L i n e 6-2. Charge p e r U n i t L e n g t h v e r s u s Parameter b 6-3. 6-4. 6-5. and two Line Variation F i e l d Intensity versus Parameter b Q ^ Thiee Phase T r a n s m i s s i o n L i n e 6-7. Charge p e r U n i t L e n g t h Bundle Spacing I-l. V a r i a t i o n of s Spacing . . f . 0A . ? 49 to f o l l o w 54 to f o l l o w 58 to follow 62 to,follow 60 to f o l l o w 62 to follow 63 follow 65 to follow 65 to follow 73 the and . 6-6. 6-8. -fco f o l l o w and w i t h Phase B u n d l e Spacing* *. 47 the Three Conducting C y l i n d e r s two L i n e C h a r g e s V a r i a t i o n of b Charges versus . . . . t o w i t h Phase . Three Conducting C y l i n d e r s v ACKNOWLEDGEMENT The Research This work done Council i nthis t h e s i s was w r i t t e n couragement from which velopment held with for for acknowledged gratitude f o radvise 1959=-196Q„ vi and en- the dethesis. discussions J Fo Szablya Electric Company c thesis. t o The N o r t h e r n o f Canada Frank received i n this and Dr„ i n this 0 The a u t h o r with enlightening f o r the session Council here. described D r . G\> W a l k e r of Dr guidance i n connection method t h e work done granted Research thesession Moore, i s indebted a fellowship National 0 with author continual wishes t o acknowledge Dr. A„D connection by t h e N a t i o n a l the supervision with i n particular of the perturbation the author The the author h i s sincere E.V. Bohiij Also in under i s gratefully t o express Dr,, i s supported o f Canada,, N o a k e s who p r o v i d e d wishes thesis 1958-1959 and t o f o ra Studentship the granted OPTIMIZATION AND C O N F I G U R A T I O N OP CONDUCTOR OF CONDUCTOR VOLTAGE 1. In order mission have over been long BUNDLES FOR H I G H TRANSMISSION INTRODUCTION to facilitate very SHAPES economic distances increased appreciably electric transmission power line transvoltages since t h e second World 1 2 In some c a s e s extensive order gated up t o 400 k ? . a r e employed experimental t o study mission have voltages lines the possibility voltages„ Corona by a i d o f these been test published have been o f employing lines ' , and constructed i n even h i g h e r indicating and s e v e r a l s the results 0 3 9 i s one o f t h e phenomena test War trans- investi- papers^'^ ^ 9 obtained from y such studieso Corona be i s one o f t h e more i m p o r t a n t considered i n connection transmission. should be k e p t incurred, tion a t a mlnimum from electric both high voltage a r e two main 0 a n d two, t h e h i g h arising The gated There with Corona power theoretically be a p p r e c i a b l e f o r l o n g time t h e high frequency reasons electric that frequency this power power loss radia- 0 due t o C o r o n a has been and e x p e r i m e n t a l l y ^ transmission lines radiation resulting D extensively^ ^ ^^' being that interferes 9 with 9 9 ^ 9 9 investiand can At the present from Corona i s investigated rather radiation must effect electromagnetic being this which One, t h e e l e c t r i c discharges loss effects 1 1 0 public The reason communication 2 networks, especially strengths generally As has be follows designed lines starts at that the of a i r varies with at 25° and to 76 cm surface charge given tensity area can One, by more surface be to than ductors. giving has The less been lines ' one adopted ' This to at has the It there- systems should occur on the Corona electric dielectric dielectric a value of 29.8 known t h a t the reside be per a on field strength strength kv.peak/cm the ways per for a reactance extent surface electric A but surface per point large of area, phase for high in- surface line system. or using two, bundled by con- advantage the voltage former, the case of one of and transmission . thesis treats both for cross- added than area sufficient i . e . , using the under field transmission phase, phase, electric is proportional larger decreased. a l t e r n a t i v e has some surface the particular providing required conductor inductive effect Basically The conducting i n two latter not when t h e reaches but to may the line do conductor. conductor provide one by charge obtained using section Hence, at detrimental conditions. density of the discharges i t i s well off a amount signal pressure. electrostatics consideration. a the Hg. just where transmission. conductor density, intensity the a power surface a i r surrounding Prom field of is a transmission operating o f f the of C. Corona Corona surface just out electric that areas low. i n general normal the intensity are with such under sparsely populated been pointed when a s s o c i a t e d fore in conductor per 3 phase form and s e v e r a l of circular lines; these conductor cylinders p e r phase In this treatment so that this field circular tensity used the circumference variation i s minimized, intensity occurring i s decreased. conductors p e r phase the resulting on each conductor o f t h e same p h a s e one circular electric o f each i s made t o f i n d i nt h e f o r transmission Using i n a non-uniform an attempt field Conductors or stranded. results around p e r phase. are generally may b e s m o o t h distribution mum conductors phase field conductor. conductor o r so t h a t With shapes t h e maxi- several maximum bundle field in- i s generally 12 not equal with the each than i s due t o u n e q u a l conductor of a bundle of earth, capacitance and t o t h e charge The c a p a c i t a n c e i s o f c o u r s e t h e two o t h e r phases optimum position f o r two c a s e s . t h e one a t w h i c h mately f o rthe individual equal on a l l c o n d u c t o r s field residing bundle intensity i n one p h a s e on due t o t h e In this The optimum p o s i t i o n t h e maximum associated and conductors t h e o n e c o n s i d e r e d o f t h e same p h a s e . indicated as This other>phases. presence the . other thesis conductors i s i s .defined i s approxi- bundle. 4 2. Electric SOME BASIC PROBLEMS transmission long that they may be lines are considered electric the conductors i s i n general respect to the conductors. cient the to consider to due the line dimensional flow however, s u f f i c i e n t two portant i s kept reference along Gauss Law Dipole thus the the case, of suffithat i s , an intrinsic c a s e may potential line by re- is this be treated decrease neglected, approach. some s i m p l e , but im- Lines a c e r t a i n amount o f along magnitude of q d e s i g n a t e s the electric 2 c o u l . /new. field an the intensity charge p l a c e d may Q be = q found from coul./m infinite strength electric straight of the E at a d i s t a n c e i n a medium o f 2 m 2itre E or This i s obtained charge designates meters from such a l i n e Q surface concepts. The e carries transmission c h a r g e , q coul./m, c o n c e n t r a t e d vity and sections following w i l l describe A line By with purposes i t i s length. the accuracy of negligible electrostatic p r o b l e m , and 2 - 1 . L i n e C h a r g e s and line. completely length at a c e r t a i n p o t e n t i a l with charge per u n i t to current The equivalent dimension. to the component n o r m a l t o t h e some s p e c i f i e d electrostatic a two component p a r a l l e l Hence, f o r a l l p r a c t i c a l transmission spect as field sufficiently i n f i n i t e i n one A l s o the line field generally line. r permitti- P i g . 2-3 L i n e Charge and Conducting C y l i n d e r 5 E = 2 l t | volts/m r o = volts/in (2-1) where k = 2ne i n r a t i o n a l i z e d m.k.s. u n i t s which a r e used o throughout. See P i g . 2-1. The e l e c t r o s t a t i c f i e l d i s con- s e r v a t i v e , t h a t i s , t h e work done on u n i t charge i n moving i t from one p o i n t t o another i s independent of p a t h . gradient Hence, (Potential) = -(Electric f i e l d intensity). designate Let V t h e p o t e n t i a l a t some p o i n t , t h e n grad V = - E, and s i n c e by symmetry V i s independent o f t h e a n g l e 6 t h e p o t e n t i a l d i f f e r e n c e between two p o i n t s P and P^ i s r V - V_ = - J | ] r |£ = | (In r x - In r) volts. (2-2) l A d i p o l e l i n e c o n s i s t s o f two l i n e charges each o f s t r e n g t h q, b u t of o p p o s i t e p o l a r i t y p l a c e d a s h o r t s, a p a r t . U s i n g equation due t o a d i p o l e l i n e i s in (r + + V = | 2g 2 Q In ( r + 2 J - - distance, 2-2 i t f o l l o w s t h a t t h e p o t e n t i a l cos 6)2 j- v o l t s . |2£ cos (2-3) 6 ) 2 From F i g , 2-2 i t i s e v i d e n t t h a t r ^ = r + |j- cos 6 and s rg = r - 77 cos 6. Then e q u a t i o n V « £ I n (1 + f cos 6 ) A | 3-1 becomes s c ; s 6 13 volts. (2-4) The q u a n t i t y (^.) i s denoted t h e s t r e n g t h of t h e d i p o l e 2T2. line. Conducting C y l i n d e r and L i n e Charge C o n s i d e r t h e i s o l a t e d system shown i n F i g . 2-3. The c o n d u c t i n g c y l i n d e r c a r r i e s a charge o f - q coul,/m, and t h e line to charge has determine image the radius a charges V p and at = - £ k Considering plane ference k this points together point P this at centre o P In 2 the + t — plane From charges at same are (2-6) charge of rr and is well arrangement of the boundary In Pg an this the equipotential cylin- - 2r = a o6 ) equation (-) a unit radius, coul./m a, the and also p o t e n t i a l of placed parallel two of line i t is evident re- (2-6) surface as the produces Pg to as becomes that an the encylin- line equipotential 15 ' . Hence conducting a required conducting i t follows a that constant as v (2-5) 1 6)2 cos length centre, these in / (2-5) = considerations together surface a c t u a l l y serves equipotential per shown 2 i n F i g . 1-3 - § In j& to line (2-2). 1 5^ a_2 - 0 0 Two r e s p e c t i v e l y as 2<srs r s cc oo ss 2 r A known. p o t e n t i a l due -- + - the Pg 2 r = charge represents -q of p o t e n t i a l on 14 surface way aid that the satisfied. the p o t e n t i a l and For symmetry P^ an such equation A A zero and The / a 4 ( ^ s~2 i t i s noted der. hand produce 4 f o r Vp. the found simplest i s by means t h a t problem i s from (i ss i s at closes The cylinder i s that P^ 0. Vp Further the be at coul„/m. constant. placed will must condition s o l u t i o n to 2-3 +q basically problem boundary The Fig. the is of p o t e n t i a l of charges of surface charges strength This line conditions der the theory. discrete case a similar Equation cylinder with conducting c y l i n d e r w i t h charge +q coul./m. 2 T> 2 Prom P i g . 2-3 t h e d i s t a n c e s = 2m + — and m = - — 1 ® 2 2 S u b s t i t u t i o n f o r s i n Equation Then s I - i<§>2 (1-6) yields Vp = - J I n (2-7) D 2a For a s i n g l e phase t r a n s m i s s i o n l i n e D i s t h e d i s t a n c e ween c e n t r e s of t h e c o n d u c t o r s . so t h a t e q u a t i o n However, i n g e n e r a l betD»a (2-7) becomes T h i s i s e q u i v a l e n t t o assuming the image charge a t p o i n t P^ i n F i g . 1-3 i s p o s i t i o n e d a t p o i n t 0, and f o r D > 1 0 a t h e e r r o r i n Vp i s l e s s than 1$. The e l e c t r i c f i e l d i n t e n s i t y a t t h e s u r f a c e o f t h e con- d u c t i n g c y l i n d e r shown i n F i g . 2-3 may be found as f o l l o w s . Consider Equation (2-5). •| I n ( s + r 2 2 - 2 r s cos 6) = i n s - | i n (1 - f e ^ ) ( l - § e^' ) 6 and 1 a 2* I n (~2 + 2 4 1 8 = In r But i n g e n e r a l a ™ 2r — r 7j In 2 cos 6) -* (1 . iL36 sr e I n ( l - z) = -s ) ( 1 „ a sr 2 3 z 3 for Therefore X CO 2 2 v~ I n (s + r - 2 r s cos 6) = I n s - )_ i* i i X (—) — cos n6 z < 1, and 4 2 i In (\ + r f for 2 1 0 - 0 - 2r f - cos 6) = I n r and - Jk 2 ( ~ r ) ~ cos n6 n — < 1, sr S u b s t i t u t i o n i n E q u a t i o n (1-5) t h e n Vp* = Y eo I n ir + Jk IY yields ±n cos n6 | ( s' £) n - s( ^r -') L e t o denote s u r f a c e charge d e n s i t y i n coul./m electric f i e l d intensity (2-8) n x . Then the E must s a t i s f y the e q u a t i o n E = - — o 0 e at the boundary between a c o n d u c t i n g medium and a d i e l e c t r i c medium of p e r m i t t i v i t y e . Q The e l e c t r i c f i e l d i n t e n s i t y medium, hence grad (V ) p'r=a (E)'r=a Then from E q u a t i o n - dV (-j-^) dr r=a = - (E)r=a v (2-8) ( E )I . _ „ =- a. S r=a becomes v 6 i s normal t o a c o n d u c t i n g (i(k a + 2 <>© n-1 I a— cos n6) or ^r=a 1 + 2 ~ ~ ka when a = - r^— 1 1 + 2 2ita s Y 1 Y 1 (—) (—) 8 n n cos n6 j v o l t s / m (2-9) (2-10) cos n6i coul./m* which i s the e l e c t r i c charge d e n s i t y on the s u r f a c e of the c o n d u c t i n g c y l i n d e r shown i n F i g . 1-3. E q u a t i o n (2-9) may be put i n t o a d i f f e r e n t , form as f o l l o w s . The but e q u i v a l e n t expansion z + ... i s v a l i d f o r •s 1 = 1 + z + 7?— 1 — z £ < 1. Let z = Be*' where 6 ^ 1 - Re 0t R < 1 = 1 + Re^ + R 6 then J 2 e 2 + 6 o o o 16 Consider the expression 1 - R cos 6 1 - 2 R cos 6 + R 1 2 (1 - R e ^ ) = 2 1 2 (1 - Re~^ ) 6 5 = | (1 + R e ^ + . . . ) + | (1 + Re""J + ...) 6 6 or CO * - 1 + I R 1 - 2 R cos 6 + R 1 E q u a t i o n (2-11) may be w r i t t e n 1 R c o s 6 2 R cos 6 - R 1 - 2R cos 6 + R cos n6. n (2-11) oo £ n 1 = R c o g n 6 ( 2 _ 1 2 ) When a d d i t i o n of E q u a t i o n s (2-11) and (2-12) y i e l d s i n " 2 =1 + 2 1 - 2 R cos 6 + R ^ Z R n cos nfi (2-13) 1 Comparison o f E q u a t i o n s (2-9) and (2-13) shows t h a t w i t h R = — 1 .(*) ( E ) r=a = " k r=a Ka ~ 2 2 7^2 ( 2 ~ 1 4 ) - cos 6 + (~r s s which i s t h e e x p r e s s i o n u s u a l l y g i v e n f o r t h e case of a l i n e 13 charge p l a c e d p a r a l l e l t o a c o n d u c t i n g c y l i n d e r ; x „ 2 T h i s p a r t i c u l a r problem has been t r e a t e d i n d e t a i l i n s p i t e o f t h e f a c t t h a t i t s s o l u t i o n appears i n p r a c t i c a l l y every t e x t b o o k on e l e c t r o m a g n e t i s m ^ ' H o w e v e r , this problem forms t h e b a s i s f o r most of t h e work t o f o l l o w and i t was t h e r e f o r e thought w o r t h w h i l e t o c o n s i d e r t h i s s i m p l e case r a t h e r thoroughly„ 10 3. VARIATION OP ELECTRIC FIELD INTENSITY WITH PHASE ANGLE AND PHASE SPACING In a three-phase system t h e charge on each conductor v a r i e s w i t h t i m e , hence i n order t o determine t h e maximum f i e l d intensity o c c u r r i n g on any one conductor t h i s time de- pendence must be t a k e n i n t o account. F u r t h e r one would ex- p e c t t h e phase angle a t which t h i s maximum f i e l d intensity occurs t o be dependent on t h e geometric c o n f i g u r a t i o n of a t r a n s m i s s i o n l i n e system. termine these Hence t h e o b j e c t here i s t o de- relations. F i g . 3-1 shows a three-phase system w i t h ungrounded neutral. F o r t h e purpose o f computing t h e p o t e n t i a l s o f t h e conductors i n terms of t h e unknown charges, t h e conductors and t h e geometry of t h e system one can make t h e f o l l o w i n g approximation. The s p a c i n g s i s s u f f i c i e n t l y l a r g e t h a t t h e p o t e n t i a l s e x t e r n a l t o the conductors can be produced by l i n e charges p o s i t i o n e d a t t h e c e n t r e o f t h e c o n d u c t o r s . a c t u a l l y i m p l i e s t h a t one assumes t h e p o t e n t i a l This contribution due t o one phase conductor t o be c o n s t a n t over t h e s u r f a c e of t h e o t h e r two. The e r r o r committed by u s i n g t h i s f o r a s i n g l e phase l i n e has been mentioned a l r e a d y . procedure See s e c - t i o n 2-2. 3-1. D e t e r m i n a t i o n o f L i n e Charges The three-phase t r a n s m i s s i o n l i n e shown i n F i g . 3-1 i s assumed ungrounded and s u f f i c i e n t l y f a r removed from ground t h a t t h i s has no i n f l u e n c e on t h e e l e c t r i c f i e l d configuration Phase 2 Phase 1 V^ = V cos ojt V 2 = V cos (w-t-120) Phase 3 Vg = V cos(cot-240) F i g . 3-1 Ungrounded three-phase T r a n s m i s s i o n L i n e Phase 1 Phase 2 Phase 3 *1 F i g . 3-2 Conducting C y l i n d e r and two L i n e Charges 11 around t h e c o n d u c t o r s . Hence one can w r i t e q f o r any phase a n g l e . q. + 2 = 21 0 1 = ^ (ln J (3-1) (2-2). I n £ + £i I n - + £3 a k s k k = 0 3 A l s o , making use of t h e a p p r o x i m a t i o n mentioned above and E q u a t i o n V q. + 2 2s a l n - l n 2) + ™ I (In - l n 2) (3-2) where k = 2ite o Similarly V 2 3 = IT f ( l n + f l n IT } + ( l n " 2 l n f } (3™3) A d d i t i o n of E q u a t i o n (3-2) and (3-3) y i e l d s , 3 q V V 21 + V 23 = V 23 = TT 2 s q f - IT l n 2 l n 2 ° But V 21 + ~ c o s 1 2 °) " V c o s wt + V cos (cat - 120) - V cos (wt - 240) = 3 cos (wt - 120). Hence one may s o l v e f o r q q and 2 k V cos (cot - 120) _ , = -—™ f — — coulo/m /„ „\ (3-4) L 0 ^ ln I -i ln 2 Further 12 = ^ and V l l 3 = TT 2 q v (In „_ ( l n f + I n 2) + ^ S s . + l n 2 ) + „ x (ln T . *2 IT l n I 2s + l n 2) (3-5) ^" 3 6) 12 But + ^ = Then s u b s t i t u t i n g f o r q c o s t i o n (3-4) and s o l v i n g f o r q^. 1 k(V I n |cos art - V3~2 I n 2 s i n wt) q, = =—-j— — — o r ( I n - - i I n 2) I n ±1 a 3 a 1 2 from Equa- eoul./m (3-7) Then one may f i n d q^ from E q u a t i o n (3-1) q. = - ( q + ^ 3 j . 2 k j v I n | cos (wt - 240) + V 3 ~ I n 2 s i n (wt - 240)) _ r-— —o~— ( i n f - | I n 2 ) ( i n §S) 2 coul./m (3-8) 3-2. D e t e r m i n a t i o n o f t h e Phase Angle a t which Maximum E l e c t r i c F i e l d I n t e n s i t y Occurs The r e l a t i o n s h i p between t h e maximum f i e l d i n t e n s i t y on phase conductor 1, phase angle wt and s p a c i n g s w i l l f i r s t be determined. As shown i n F i g . 3-2 phase c o n d u c t o r s 2 and 3 are c o n s i d e r e d l i n e charges of s t r e n g t h q purpose. See Appendix I . and q^ f o r t h i s 2 Then u s i n g E q u a t i o n ( I - l ) one can determine t h e s u r f a c e charge d e n s i t y on conductor 1 from t h e equation ° ! <«•«« - 5sr - i § f <t> <">* n n 6 - £ \ <fe> n c ° s n 6 C l e a r l y t h e maximum charge d e n s i t y w i t h r e s p e c t t o 6 occurs a t 5 = 0° when co Y ^ co v (*) s' n = s-a and Y ^ ( f - ) .= ^ ± 2s' 2s - a n v F u r t h e r t h e maximum v a l u e o f o^ w i t h r e s p e c t t o wt i s found from <-> 3 9 do, ^dwV 6-0 = 0 dq. dq. a na 2s-a d&)t a ^2 na s-a dwt ~ 2na dwt S u b s t i t u t i o n o f t h e v a l u e s of q^, q^ and q^ from Equations ( 3 - 4 ) , (3-7) and (3-8) y i e l d s t a n (art) 1 - •*i •n ,I„n S£ &o a, B In — + a 1 1 In 2 a 32 2s a 3 , + In — 1 2s-a S™9» 3* 32 2 a In 2 In 2 a 2s-a 1 32 s a (3-10) To o b t a i n a r e p r e s e n t a t i v e v a l u e o f art l e t a = 1 i n c h and s = 25 f t . Then t a n (art)^ = -.073 o r a)t = 4.2° Prom E q u a t i o n (3-7) i t i s noted t h a t f o r a = 1 i n c h s = 25 f t . occurs a t *1 max t a n (wt) ^ = - ^ l n 2 — or wt = -4.0° 32 i n 300 Hence the charge on conductor 2 and 3 have n e g l i g i b l e i n f l u e n c e on t h e phase angle o f o"^. An e q u a t i o n s i m i l a r t o (3-10) may be d e r i v e d f o r t h e centre conductor. 1 t a n (wt), 2 !n 3 2 -T For l n i„ 2 Z" 2 3 x T + 2a i s + a. s 1 x 1 + n ! Q, 1 t a n ( w t ) = -1.76 (s + a) 3 a ~ 3 2 3 a s - a (s - a) s = 2 5 f e e t one f i n d s or (wt)g = 119.6 a s - a ln 2 £L In 2 2a l n 2 a = 1 inch 2 U s i n g t h e same procedure as f o r conductor '. ( ln SL a l n - (3-11) a 14 I t may be noted t h a t i s i n phase w i t h Vg. See E q u a t i o n (3-2). F o r p r a c t i c a l t r a n s m i s s i o n l i n e s l n ( - ) l i e s i n t h e narrow 19 range 5.3 t o 6.4 . T h e r e f o r e , t h i s q u a n t i t y cannot cause much v a r i a t i o n i n t h e phase angles (ojt)-^ and (cot);,. s p a c i n g between l i n e s i s g e n e r a l l y determined The by t h e i n s u l a - t i o n l e v e l r e q u i r e d , t h a t i s , t h e magnitude of t h e o v e r v o l t a g e s expected t o occur i n t h e system. The u s u a l spacings range from 10 t o 12 i n c h e s f o r each 10 kv rms. between l i n e s w i t h a 22 minimum s p a c i n g o f about 20 i n c h e s . e x p r e s s i o n s determined Hence c o n s i d e r i n g t h e f o r (oot)^ and (ootjg i t i s e v i d e n t t h a t f o r a l l p r a c t i c a l purposes one can assume t h a t t h e maximum f i e l d i n t e n s i t y and charge p e r u n i t l e n g t h occurs on any one cond u c t o r when i t s phase v o l t a g e ' h a s i t s peak v a l u e . This pro- cedure i s f o l l o w e d i n t h e a n a l y s i s c a r r i e d out i n chapter 4 and 12 13 19 5. I t has, been p o i n t e d out by s e v e r a l a u t h o r s ' ' that the maximum charge occurs on t h e c e n t r e phase f o r t h e c o n f i g u r a t i o n shown i n F i g . 3-1, equations T h i s f a c t can be v e r i f i e d from ( 3 - 4 ) , (3-7) and ( 3 - 8 ) . 15 4. NON-CIRCULAR CONTOURS In t h i s c h a p t e r some s p e c i f i c , n o n - c i r c u l a r conductor shapes a r e c o n s i d e r e d , t h e o b j e c t b e i n g t o determine conductors used i n a three-phase i f such t r a n s m i s s i o n l i n e would p r o - v i d e a f i e l d c o n f i g u r a t i o n around each conductor o f g r e a t e r u n i f o r m i t y than i s obtained w i t h c i r c u l a r conductors. For t h i s purpose t h e phase conductors a d j a c e n t t o t h e one cons i d e r e d a r e t r e a t e d as l i n e charges; 4-1. C a s s i n i a n Oval R e f e r t o F i g . 4-1. Two p o s i t i v e l i n e charges each o f s t r e n g t h ^ coul./m a r e p l a c e d a t p o i n t s (s,0) and (-s,0) respectively. I t f o l l o w s t h a t t h e p o t e n t i a l a t any p o i n t P i s g i v e n by t h e e q u a t i o n 1 V p = 2k l n ( r + s 2 2 1 - 2 r s cos 6 ) + | g l n ( r 2 2 + s +K where k = 2ite and K o o 2 o + 2 r s cos 6 ) (4-1) i s a constant reference p o t e n t i a l . the e q u i p o t e n t i a l s produced Also by these two l i n e charges a r e gov- erned by t h e e q u a t i o n r where c i s a c o n s t a n t . and r 4 l 2 r 2 2 = 4 C S u b s t i t u t i o n of the values f o r r ^ yields + s 2 - 2r s 2 2 cos 26 = c 2 (4-2) 4 20 21 which i s t h e e q u a t i o n of a C a s s i n i a n Oval ' f o r c > a. From image t h e o r y (see s e c t i o n 2-2) any one o f these contours P i g . 4-1 C a s s i n i a n Oval P i g . 4-2 Charge D i s t r i b u t i o n on C a s s i n i a n Oval 16 may be c o n s i d e r e d a c o n d u c t i n g s u r f a c e . Hence one can f i n d the s u r f a c e charge d i s t r i b u t i o n on a conductor h a v i n g t h i s shape by d e t e r m i n i n g grad from E q u a t i o n ( 4 - 1 ) . F u r t h e r , when a conductor i s p l a c e d s i n g l y i n space and i s kept a t a c e r t a i n potential w i t h r e s p e c t t o some r e f e r e n c e t h e s u r f a c e charge on the conductor w i l l assume a s p e c i f i c d i s t r i b u t i o n depending on t h e shape o f t h e conductor. T h i s charge d i s t r i b u t i o n i s termed "the f r e e charge d e n s i t y " i n what In p o l a r co-ordinates tgrad V P p (^£)2 follows. 1 (1 ^ £ ) 2 2 + (4-3) Then u s i n g E q u a t i o n (4-1) op q / r - s cos 5 „ = V o + dr N 2 r + s cos 6\ o k 1 o'p r 06^ q 2k /S s i n 5 (4-4) > s s i n 6\ •1 4 (4-5) 2 Hence e v a l u a t i n g E q u a t i o n (4-3) by a i d of (4-4) and (4-5) _ _2£. ' kc grad V The f r e e charge d e n s i t y , o(6) = e o(6) = (4-6) 2 2ite grad V o coul./m Choosing t h e v a l u e s s = 0.75 cm hence (4-7) 2 c = 1.00 cm one may p l o t t h e contour shown i n F i g . 4-1 by u s i n g t h e e q u a t i o n r = s 2 cos 26 + ( s c o s 4 2 26 - s 4 1 1 + c )^' 2 2 A l s o , t h e f r e e charge d e n s i t y was computed f o r t h i s (4-8) contour 17 by a i d of E q u a t i o n (4-7). See F i g . 4-2 . From the charge d i s t r i b u t i o n o b t a i n e d i t appears t h a t a conductor shape as shown i n F i g . 4-1 might be s u i t a b l e f o r the c e n t r e conductor of a three-phase t r a n s m i s s i o n l i n e w i t h f l a t s p a c i n g , t h a t i s , w i t h t h e o t h e r two phase conductors p l a c e d e q u i d i s t a n t from the c e n t r e conductor on the p o s i t i v e and n e g a t i v e y - a x i s r e spectively. However, the C a s s i n i a n Oval w i l l not be considered any f u r t h e r h e r e . 4-2. E l l i p t i c C y l i n d e r and two L i n e Charges. 25 C o n s i d e r the f u n c t i o n 13 ' w = z + — z (4-9) Here w i s seen t o be an a n a l y t i c f u n c t i o n of z w i t h s i n g u l a r i t i e s o n l y a t z = 0 and z =oo. Further TO- -? ^° 1 except a t z = - d. Hence a mapping performed by u s i n g would not be conformal a t these two p o i n t s . R e f e r t o the c i r c u l a r c o n t o u r , 4-3. (4-9) See Appendix I I . z = ae** , shown i n F i g . I f t h i s contour i s mapped onto the W-plane by a i d of Equation (4-9) i t i s e v i d e n t W = ae j 6 + ^Lr ae (4-10) J By e q u a t i n g r e a l and imaginary p a r t s and e l i m i n a t i n g 6 from (4-10) i t i s found t h a t F i g . 4-3 C i r c u l a r C y l i n d e r and two L i n e Charges u F i g . 4-4 E l l i p t i c C y l i n d e r and two L i n e Charges 18 which i s t h e e q u a t i o n 4-4. of an e l l i p s e i n t h e W-plane. See F i g . Here d i s chosen such t h a t d < a, t h a t i s , t h e two p o i n t s (-d,0) and (d,0) a r e i n s i d e t h e c i r c u l a r contour i n the Z-plane. Hence t h e mapping i s conformal f o r a l l p o i n t s i n the r e g i o n z j 5> a. A l s o i t i s noted from E q u a t i o n (4-9) >" a t h a t t h e mapping i s one t o one between t h e Z-plane f o r and t h e W-plane f o r t h e r e g i o n e x t e r n a l t o t h e e l l i p t i c t o u r g i v e n by E q u a t i o n con- (4-11). F i g . 4-3 shows a c o n d u c t i n g c y l i n d e r w i t h charge q coul./m p l a c e d p a r a l l e l t o two l i n e charges each of s t r e n g t h coul./m. T h i s system i s analogous t o t h e one t r e a t e d i n s e c t i o n 2-2 and can a l s o be s o l v e d by image t h e o r y . P l a c i n g two image l i n e 2 2 charges a t p o i n t s P- (0, ) and P (0» - ~ ) r e s p e c t i v e l y i n ft L 2 F i g . 4-3 t h e complex p o t e n t i a l , Q = V + j U , a t p o i n t P i n t h e Z—plane i s g i v e n by .a-2 (4-12) =, .a z + j — s 2 z - j ~ where K o i s a constant r e f e r e n c e p o t e n t i a l and k = 2ize o . Here the complex p o t e n t i a l i s used o n l y f o r convenience. The r e a l potential V P = Re (Q ) i . e . P , l n r + s . - 2 r s s i n 6 + ,l,n —r — + s + 2 r s sin§ 4k 2 a _ a . . 2 a _ a . r + -TT + 2 r — sm6 r + —TT - 2 r — s i n 6 \ d s £ s s s ( -13) 2 p 2 4 2 n 2 4 2 2 K 4 or (V N ) = i p'r=a 2k therefore V P 2 l n 5. + K a o i s a constant on t h e c i r c u l a r (4-14) contour as r e q u i r e d . 19 Mapping t h e system shown i n F i g . 4-3 i n t o t h e W-plane by a i d of t h e elliptic f u n c t i o n (4-9) i t f o l l o w s t h a t one o b t a i n s an c y l i n d e r p l a c e d p a r a l l e l t o two l i n e charges i n t h e W-plane. See F i g . 4-4. on t h e c i r c u l a r From E q u a t i o n (4-14) t h e p o t e n t i a l c y l i n d e r i n F i g . 4-3 i s c o n s t a n t . that the e l l i p t i c T h i s means c y l i n d e r i n t h e W-plane has t h e same c o n s t a n t p o t e n t i a l s i n c e t h a t boundary c o n d i t i o n i s unchanged by a c o n formal transformation. See Appendix I I . F u r t h e r , t h e two image l i n e charges p l a c e d a t p o i n t s P^ and Pg i n t h e Z-plane may w e l l be p o s i t i o n e d o u t s i d e t h e e l l i p t i c contour i n t h e W-plane, e.g., when s » a /x 2 d . s .d s a 2 However, t h e s e l i n e charges a r e not s i n g u l a r i t i e s region z ^ a which i s c o n s i d e r e d h e r e . f o r the As p o i n t e d out e a r l i e r t h e mapping i s one t o one f o r t h e e x t e r n a l a r e a s , hence the l i n e charges a t p o i n t s Pg and P^ i n t h e Z-plane map i n t o the p o i n t s Pg and P^ i n t h e W-plane. U s i n g E q u a t i o n ( I I - 8 ) which i s r e w r i t t e n here f o r con- venience E w = E z dz dw (H-8) one can t h e n determine t h e charge d e n s i t y on t h e e l l i p t i c c y l i n d e r shown i n F i g . 4-4. For t h i s purpose dV — £ must be determined from E q u a t i o n ( 4 - 1 3 ) . dr grad (Q ) p I t i s evident t h a t t h e e x p r e s s i o n o b t a i n e d w i l l be analogous t o t h e one der i v e d i n s e c t i o n 2-2 f o r t h e case of a c i r c u l a r c y l i n d e r and one l i n e charge. See E q u a t i o n ( 2 - 1 4 ) . 20 Then / d V dr I / aq T >P\ 'poa 2ka L \ " ( fs> a _ | s s 1 + 2 ( ) 2 2 g i <l> s 1 n 6 1 + ( a 2 } + 2 s | g i n 6 2 s or E z=aeJ = fa "I 4 " % 2 ~ s + a + 2a s cos 26 6 ( 4 " 1 5 ) F u r t h e r , d i f f e r e n t i a t i n g E q u a t i o n (4-9) w i t h r e s p e c t t o w 1 _ 5L2. dw o d_ dz z2 dw Hence dz dw a (a 4 + d 4 2 (4-16) T - 2a d 2 2 cos 2 6 ) ^ S u b s t i t u t i o n o f E q u a t i o n s (4-15) and (4-16) i n E q u a t i o n ( I I - 8 ) t h e n y i e l d s t h e e l e c t r i c f i e l d i n t e n s i t y normal t o t h e s u r f a c e of t h e e l l i p t i c cylinder \ s4 - a4 4 I 7 2 2 17 s + a + 2a s cos 26 E (a 4 + d 4 - 2a d 2 cos 2 6 ) / 2 2 The s u r f a c e charge d e n s i t y thus becomes _ q_ / °" ~ * I s 2 s - a + 2a s 4 + a 4 4 2 4 2 \/ cos 26 ' a (a 4 +• d 4 . - 2a d 2 2 \ * cos 2 6 ) I coul./m 2 (4-17) 2 A l s o i t can be seen from E q u a t i o n s (4-15) and (4-16) t h a t t h e f r e e charge d e n s i t y on t h e e l l i p t i c c y l i n d e r i s g i v e n by CL, « coul./m S (a 4 + d 4 : - 2a d 2 2 r 2 (4-18) cos 2 6 ) 2 2 To c o n s i d e r a n u m e r i c a l case l e t d 2 = 1.40 cm ., a = 2 cm. 009 a .008 6 i n degrees P i g . 4-5 Charge D e n s i t y V a r i a t i o n 21 p and s = 4.68 cm. The v a l u e s chosen f o r d and s a r e such t h a t o* e v a l u a t e d from E q u a t i o n (4-17) has equal magnitude a t w 6 = 0 ° and 6 = 90°. P i g . 4-5 shows a as a f u n c t i o n of t h e ° w angle 6. In order t o determine t h e improvement o b t a i n e d i n t h e charge d i s t r i b u t i o n by u s i n g an e l l i p t i c c y l i n d e r i n p l a c e o f a c i r c u l a r c y l i n d e r one must i n v e s t i g a t e an e q u i v a l e n t system of a c i r c u l a r c y l i n d e r and two l i n e charges. used here t o determine t h e dimensions The c r i t e r i a o f t h i s system a r e . t h e following: i ) Equal p e r i m e t e r s of t h e e l l i p t i c and t h e c i r c u l a r c y l i n d e r i i ) A l l l i n e charges must be t h e same d i s t a n c e from t h e geometric centre of the conducting cylinders. 26 The p e r i m e t e r , S, o f an e l l i p s e i s g i v e n by 2ll ! S = b j (1 - | e s i n o ) ^ da 0 2 1 2 (4-19) where b = major a x i s e-^ = e c c e n t r i c i t y . Prom e q u a t i o n (4-11) and t h e v a l u e s a l r e a d y chosen f o r t h e c o n s t a n t s one f i n d s 2 b = 2.70 and e^ = .768. Hence expanding t h e r a d i c a l i n E q u a t i o n (4-19) and i n t e g r a t i n g the f i r s t t h r e e terms S = 13.08 cm. Therefore the radius of the equivalent c i r c u l a r c y l i n d e r i s r i = 1 i i ^= 2 0 8 c m - 22 F u r t h e r , from Equations (4-9) and (4-11) and t h e v a l u e s chosen o above f o r d , a and s t h e d i s t a n c e O'P^ i n F i g . 4-4 i s °' 3 " * " = 4.38 cm P ( 4 6 8 C m which i s t h e d i s t a n c e s i n F i g . 4-3 f o r t h e e q u i v a l e n t E v a l u a t i o n of t h e change d e n s i t y on t h e e q u i v a l e n t system. circular c y l i n d e r from E q u a t i o n (4-15) w i t h a = 2.08 cm and s = 4.38 cm y i e l d s t h e curve shown i n F i g . 4-5. Comparing t h e curves shown i n F i g . 4-5 i t i s c l e a r t h a t the e l l i p t i c c y l i n d e r provides t h e b e t t e r charge d i s t r i b u t i o n . One can, . for ' f o r i n s t a n c e , compare t h e q u a n t i t i e s a max - o"min the two c a s e s . Thus f o r t h e c i r c u l a r c y l i n d e r a - a . max min J .454 as opposed t o .112 f o r t h e e l l i p t i c cylinder. Hence i t would be o f advantage t o use an e l l i p t i c c y l i n d e r f o r t h e c e n t r e conductor i n a t r a n s m i s s i o n l i n e system w i t h f l a t s p a c i n g . 4-3. A p a r t i c u l a r n o n - c i r c u l a r C y l i n d e r and two L i n e Charges. The case of a c i r c u l a r c y l i n d e r p l a c e d p a r a l l e l t o a l i n e charge was t r e a t e d i n s e c t i o n 2-2. From E q u a t i o n (2-9) t h e maximum f i e l d i n t e n s i t y occurs a t 6 = 0°, and i t was f e l t that t h i s f i e l d i n t e n s i t y c o u l d be decreased by f l a t t e n i n g t h e c i r c u l a r c y l i n d e r i n the region 6 = 0 ° . See F i g . 2-3. To i n v e s t i g a t e t h i s t h e f u n c t i o n g i v e n by (4-9) was used t o map t h e c i r c u l a r c o n t o u r , z = j y + ae^ , shown i n F i g . 4-6 Q i n t o t h e W-plane. The e q u a t i o n g o v e r n i n g t h i s contour i n t h e W-plane becomes w = jy + ae j 6 + jy o ^ + ae (4-20) J U F i g . 4-6 C i r c u l a r C y l i n d e r and L i n e Charge V ^ \ I 0« r l W-plane / i u ,-q. P i g . 4-7 Deformed C y l i n d e r and L i n e Charge 23 or s e p a r a t i n g r e a l and imaginary u = a coso + c a 2 d a coso 2 + y + 2ay Q parts sin6 Q 2 t • c x d (a s m 6 + y ) v = a sin6 + y 5 o ~ ' + y~ + y ~ S O "o To determine t h e shape of a p a r t i c u l a r contour l e t (4-21) A a a = 2.0, d 2 =0.50 2 a and y s i n =0.50 o computing t h e u and v c o - o r d i n a t e s from (4-21) one o b t a i n s t h e curve shown i n P i g . 4-7, and i t i s e v i d e n t t h a t a c y l i n d e r i s o b t a i n e d which i s deformed i n t h e d e s i r e d manner. Prom s e c t i o n 4-2 i t f o l l o w s t h a t one can o b t a i n a conformal mapping o f t h e system shown i n F i g . 4-6 by a i d o f t h e f u n c t i o n (4-9). A l s o t h e g e n e r a l d i s c u s s i o n g i v e n i n s e c t i o n 4-2 r e - g a r d i n g t h e mapping f u n c t i o n and t h e mapping i t s e l f a p p l i e s t o t h i s s e c t i o n as w e l l . R e f e r t o F i g . 4-6. The case of a conducting cylinder p l a c e d p a r a l l e l t o a l i n e charge has a l r e a d y been t r e a t e d i n s e c t i o n 2-2. Hence t h e complex p o t e n t i a l , Q = V + j U , a t a point P i s 2 = S P l n z + j(s - y ) 2 — o • /a \ z + o(— - y ) + K < 4 2 2 ) 0 where K Q i s a constant r e f e r e n c e p o t e n t i a l and k = 2 i t e . o Then mapping t h i s system i n t o t h e W-plane one o b t a i n s t h e c o n f i g u r a t i o n shown i n F i g . 4-7. on t h e t r a n s f o r m e d (II-8). I t f o l l o w s t h a t t h e charge d e n s i t y c y l i n d e r can be determined from Hence e v a l u a t i n g Equation 24 E z from E q u a t i o n E ~ dz ' v v dz ; (4-22) z=jy H-ae**" 0 k s a 2 s2 - a2 + a + 2as s i n 6 (4-23) 2 F u r t h e r , from E q u a t i o n (4-9) _2 dz dw z2 - d 2 but i n t h i s case z = j y + a eJ o , t h e r e f o r e J Q dz dw (jy 0 (jy 0 J6x2 .+ a e ) J + aeJ ) 6 2 - d 2 when dz dw 2 a 2 + y^ o + 2ayo w (a 2 + y 2 Q + 2ay s i n 6 ) - 2 d ( a c o s 2 6 - y - 2 y a sin6) + d 2 Q sin8 2 2 2 Q 4 o (4-24) S u b s t i t u t i o n o f E q u a t i o n s (4-23) and (4-24) i n E q u a t i o n (II-8) yields E w ka a 2 2 (a + y + 2 a y Q Q 2 sin6) + y 2 2 Q - 2d + ay 2 Q sin6 2 2 (a cos 2 6 - y - 2 y a s i n 6 ) + d 41 2 Q Q = — oa s 2 2 s + a + 2as s i n 5 2 2 Hence t h e s u r f a c e charge d e n s i t y can be determined from (4-25) 25 2na a2 + y 2 + 2 a y Q (a + y 2 2 Q + 2ay = — ao s s2 + a 2 + 2as 2 Q sin6) 2 - 2d (a cos 2 2 Q sin6 2 6 - y - 2 y a sin6) + d 2 Q 4 o 2 (4-26) s mco To c o n s i d e r a s p e c i f i c n u m e r i c a l example l e t a = 2 cm, 2 2 y Q = .0625 cm, d = .0625 cm , s = 60 cm. Using these values i n E q u a t i o n (4-26) one o b t a i n s t h e curve shown i n F i g . 4-8. Then, t o determine t h e charge d e n s i t y v a r i a t i o n on t h e e q u i v a l e n t c i r c u l a r c y l i n d e r (see s e c t i o n 4-2) one must f i n d t h e d i s t a n c e 0'P| and t h e p e r i m e t e r of t h e deformed contour. F i g . 4-7. See The l e n g t h O'PJ can be found from E q u a t i o n ( 4 - 9 ) . Thus O'P' = s - y 1 o J j2 - — s - y Q or O'P^ = 59.94 A l s o from F i g . 4-6 OP-j^ = 60 cm. T h e r e f o r e O'P^ = 0 P 1 i n this case. The f o l l o w i n g procedure was used t o determine t h e p e r i meter, S, of t h e deformed c o n t o u r . w l e t |w = oy, + a e ^ + From E q u a t i o n (4-20) .2 d< jy Q 3* + ae' = B t h e n e v a l u a t i n g t h e r i g h t hand s i d e of t h i s e q u a t i o n .0057 a . 0045' -90 -70 -50 • \-30 ' -10 10 • 30 6 i n degrees P i g . 4-8 Charge D e n s i t y V a r i a t i o n » 50 • 70 90 I R = 2 a + yO 2 26 12 2 2 \— Tjd +a co s 2 6 - y -2y a s i n 6 \ 2 2 Q + 2y O a sin§ + 2d d _ d + y a ft . c • + 2y a s i n 6 (4-27) The p e r i m e t e r , S, can t h e n be found from 271 S = p R 2 + o The integral ,dRx2 W 1 d6 2 (4-28) was (4-28) e v a l u a t e d n u m e r i c a l l y by a i d of Le27 gendre-Gauss Quadrature and the ALWAC I I I - E d i g i t a l computer. 2 Thus f o r the v a l u e s chosen above f o r a, y , d S = 12.57345 and s cm. as compared t o t h e p e r i m e t e r S of the o r i g i n a l c i r c u l a r con- c tour, S = 2Tta = 12.56637 cm. c Hence t h e d i f f e r e n c e between S and S i s negligible. Therefore c the charge d e n s i t y on the e q u i v a l e n t c y l i n d e r was E q u a t i o n (4-23) w i t h a = 2.0 t a i n e d i s shown i n P i g . cm s = 60.0 cm. computed from The curve ob- 4-8. Comparison of the two curves shown i n F i g . 4-8 indicates t h a t b o t h the maximum and minimum f i e l d i n t e n s i t y on the deformed contour i s l e s s t h a n on t h e c i r c u l a r c y l i n d e r . Specifically, t h e d i f f e r e n c e between the two f i e l d i n t e n s i t i e s a t 6 = i s 3.5$ f o r t h i s case. shape shown i n F i g . 4-11 -90° T h e r e f o r e , u s i n g a c y l i n d e r of the f o r the o u t e r conductors i n a three- phase system w i t h f l a t s p a c i n g would p r o v i d e some improvement i n t h e s u r f a c e charge d i s t r i b u t i o n . In o r d e r t o r e p r e s e n t an a c t u a l three-phase system w i t h f l a t s p a c i n g an a d d i t i o n a l l i n e charge must be p l a c e d p a r a l l e l 27 t o t h e c y l i n d e r i n P i g . 4-6. Therefore, consider a c i r c u l a r c y l i n d e r w i t h charge q coul./m p l a c e d p a r a l l e l t o two l i n e charges each of s t r e n g t h —1> coul./m as shown i n P i g . 4-9. system can be mapped i n t o t h e W-plane u s i n g t h e same procedure employed f o r a c i r c u l a r c y l i n d e r and one l i n e charge. the charge d e n s i t y on t h e deformed conductor This Further, shown i n F i g . 4-10 i s g i v e n by the e q u a t i o n f (w) 2%& 2 2 a + y + 2ay / Q (a + y ^+ 2 a y 2 Q / X 2 sin6 s i n 6 ) - 2 d ( a c o s 2 & - y - 2 y a sin6)+ d 2 Q Q 2 2 2 Q 2 s - i a " ' 2 2 . , . 2 1 2 . s + a + 2as s i n e s + ^ a + as s m o S 2 a 2 4 0 (4-29) 1 K Numerical computations t h a t t h e two parameters y Q 4 o j based on E q u a t i o n (4-26) i n d i c a t e 2 and d s h o u l d be such t h a t t h e charge d e n s i t y on t h e deformed contour v a r i e s i n t h e manner shown i n F i g . 4-8. The reason b e i n g t h a t t h i s p r o v i d e s the best charge d i s t r i b u t i o n o b t a i n a b l e w i t h t h e p a r t i c u l a r contour t r e a t e d i n 2 this section. These v a l u e s of y and d are t h e r e f o r e cono s i d e r e d optimum. I t was thought of i n t e r e s t t o determine the optimum v a l u e s 2 of y Q and d f o r a s e r i e s of phase s p a c i n g s , s. For t h i s pose a programme was w r i t t e n f o r t h e ALWAC I I I - E d i g i t a l pur- com- p u t e r such t h a t Equations (4-26) and (4-29) c o u l d be e v a l u a t e d 2 f o r v a r i o u s v a l u e s of a, y , d and s. Thus, h a v i n g chosen a 2 p a r t i c u l a r phase s p a c i n g , s, and r a d i u s , a, y Q and d c o u l d be P i g . 4-9 C i r c u l a r C y l i n d e r and two L i n e Charges v V W-plane V / < u >i 1 P i g . 4-10 Deformed C y l i n d e r and two L i n e Charges 28 determined 4-12, by t r i a l and error. The v a r i a t i o n s o b t a i n e d are i n d i c a t e d i n P i g s . 4-11 and and i t w i l l be noted t h a t o n l y one v a l u e of a was 2 used. C o n s i d e r i n g the v a l u e s o b t a i n e d f o r y Q and d i t i s clear that the d e f o r m a t i o n r e q u i r e d f o r l a r g e v a l u e s of s i s v e r y s m a l l , f o r both the s i n g l e and three-phase system. F i g , 4=11 Conductor Shape as a F u n c t i o n of Spacing ( S i n g l e Phase) .14 0 30 60 90 120 150 180 210 240 Spacing s i n cm P i g . 4=12 Conductor Shape as a F u n c t i o n of Spacing (Three Phases) 29 5. A PERTURBATION METHOD I t was shown i n the p r e v i o u s chapter t h a t u s i n g the c i r c u l a r conductors c o n s i d e r e d t h e r e d i d p r o v i d e some improve- ment i n the s u r f a c e charge d i s t r i b u t i o n on a l l phase however, these shapes are of course not optimum. conductor non- The conductors, optimum shapes b e i n g d e f i n e d here as those p r o v i d i n g u n i f o r m charge d i s t r i b u t i o n around the p e r i m e t e r of each conductor a three-phase system. of a t t a c k was developed. in For t h i s reason a more d i r e c t method T h i s method c o n s i s t s e s s e n t i a l l y of a p p l y i n g a f i r s t order p e r t u r b a t i o n t o the boundary of a c u l a r c y l i n d e r p l a c e d p a r a l l e l to l i n e charges. cir- At the same time the shape o b t a i n e d must s a t i s f y the c o n d i t i o n of u n i f o r m s u r f a c e charge d e n s i t y on the deformed c y l i n d e r . The three s e c t i o n s f o l l o w i n g d e s c r i b e i n d e t a i l the method and the r e sults obtained, 5-1. Conducting The Cylinder c i r c u l a r c y l i n d e r shown i n Fig„ 5-1 i s placed singly i n space and i s kept a t a p o t e n t i a l V w i t h r e s p e c t to some reference. C o n s i d e r the p o t e n t i a l a t p o i n t P on the con- ductor surface. The p o t e n t i a l at t h a t p o i n t due t o a s m a l l charge element a t p o i n t N i s o =• s u r f a c e charge d e n s i t y i n coul„/m where k = 2ite a + a l * dS = ad6 2 r 2 - 2a 2 c o s ( a - 6) 30 For convenience the r e f e r e n c e p o t e n t i a l has here been assumed equal f o r a l l p o i n t s on the c y l i n d e r and i d e n t i c a l l y y zero. P F i g . 5-1 Conducting C y l i n d e r Then i n t e g r a t i o n of (5-1) g i v e s the p o t e n t i a l a t p o i n t P due t o the t o t a l charge on the c o n d u c t o r , or 2% (5-2) d6 but l n 2a l n r, 2 - 2a 2 cos(a-6) 1 2 cos(a-6) 2 = l n a + In A l s o a i s c o n s t a n t i n t h i s case and can t h e r e f o r e be removed from under the i n t e g r a l s i g n , hence (5-2) becomes 2lt V p = It / a (27taa) 2% l n a d 6 + 1 / a l n [ 2 - 2 cos(a-6)|d6 ln a s i n c e the second i n t e g r a l i s equal t o z e r o . (5-35)). (5-3) (See E q u a t i o n The q u a n t i t y (2nao) i s the charge q per u n i t l e n g t h of the c o n d u c t i n g c y l i n d e r , t h e r e f o r e 31 (5-4) This expression i s i d e n t i c a l a circular t o the one g e n e r a l l y o b t a i n e d f o r c y l i n d e r by other methods, and f o r the purpose a t hand does i n f a c t correspond t o the case of a l i n e charge of s t r e n g t h -q coul./m p l a c e d p a r a l l e l to the c y l i n d e r , but i n f i n i t e l y f a r removed from i t . Hence d e t e r m i n i n g the poten- t i a l i n t h i s manner g i v e s the c o r r e c t answer f o r t h i s simple case. 5-2. Conducting Fig. 5-2 C y l i n d e r and L i n e Charge shows a c o n d u c t i n g c y l i n d e r w i t h charge q coul./m p l a c e p a r a l l e l t o a l i n e charge of s t r e n g t h -q coul./m. The p o t e n t i a l at p o i n t P i s P Fig. 5-2 Conducting C y l i n d e r and L i n e Charge (5-5) S where a — s u r f a c e charge d e n s i t y i n coul./m' k = 2ne 2 = r6 2 o + r a 2 (5-6) 32 T n 2 2 2 „ = r + s - 2r s cos a ct X d» dS = ( r s + r ' ) d6 2 2 6 2 >a A l s o t h e r e f e r e n c e p o t e n t i a l has been assumed i d e n t i c a l l y zero. F i r s t c o n s i d e r the conductor shown i n F i g . 5-2 a c i r c u l a r c y l i n d e r of r a d i u s a. To e v a l u a t e f o r a(6) from E q u a t i o n (5-5) one can s u b s t i t u t e (2-10) and i t f o l l o w s t h e p o t e n t i a l a t point P i s = f l n (-) V I? (See E q u a t i o n (2-6)) (5-7) ^ Now l e t the s u r f a c e of t h e c i r c u l a r c y l i n d e r be p e r t u r b e d by a s m a l l amount so t h a t the p o l a r r a d i u s a t t h e angle 6 becomes r = a + h 6 ( h « a) 6 6 where hg i s a f u n c t i o n of 6. ^ h i s n o t a t i o n i s used throughout i n the d i s c u s s i o n f o l l o w i n g . Hence, s u b s t i t u t i n g f o r r r i n (5-6) 6 P v p o = (a + h ) 1 r and + (a + h ) fi 2 2 = (a + h ) a 2 ff + s - 2 ( a + h g ) ( a + h ) cos(a-6) ff (5-8) 2 - 2 s ( a + h ) cos a fl Expanding (5-8) and r e t a i n i n g o n l y terms of f i r s t order i n h Ct and hg (5-8) becomes r r l 2 cos(a-6) a 2 + a ( h + hg) a (5-9) 2 0 d* 2-2 = a 2 + 2ah CL + s 2 S u b s t i t u t i n g Equation - 2as cos a - 2sh Ct (5-9) i n (5-5) cos a 33 2Y p = £ k ln(a + 2aha + s 2 In 2 - 2 L 2 - 2as cos a - 2sha cos a) - cos(a-6)| | a + a ( h + hg) a dS (5-10) At t h i s p o i n t i t w i l l be r e q u i r e d i )' 2V p . = k o = c o n s t a n t w i t h r e s p e c t t o the angle 6 ii) iii) l n —a = c o n s t a n t 2n r (5-11) h d6 = 0 R o i v ) q = charge per u n i t l e n g t h i s c o n s t a n t . A l s o from (5-6) dS = ( r 2 6 + r£ ) 2 (a + h ) fi 1 x 1 2 d6 i J i _ 2 a + h + 2 + + + d6 E = (a + hg)d6 t o f i r s t order. (5-12) dh where h£ = ~ c w I t then f o l l o w s j a 4 dS = q or a = 2rca Substituting (5-12) and (5-13) i n E q u a t i o n (5-10) one o b t a i n s 2Vp = ^k l n ( a + 2aha + s - 2as cos a - 2ash a cos a) ' - 2% 27cak 2 ^ J I n 2 - 2 cos(a-6) 0 J 0 d n a)(a + h )d6 6 (a + hg)d6 - 34 2TC fek / ( < ln a + a h V] + 0 ( a V + (5-14) d6 The t h r e e i n t e g r a l s w i l l now be c o n s i d e r e d i n d i v i d u a l l y I f [ ln i) 0 2 - cos(a-6)]j (a + h ) d 6 = 2 6 * ' 2TC l n | 2 - 2 cos(a-6)] 1 0 hg d6 (5-15) 2rc since J 0 a l n [ 2 - 2 cos(a-6)] d6 = 0 2ll ii) / (See E q u a t i o n (5-35)) 2Tt ( l n a)(a + h )d6 = / a ( l n a)d6 0 = 2na l n a g (5-16) J7C J 0 since ( l n a)hg d6 = 0 (See E q u a t i o n (5-11)) 5 Tt 2TC Jln(a + h iii) J a + hg) (a + hg)d6 = I a ln(a + h hg I n ( a + h + hg)d6 + 0 2TC J a a + hg)d6 (5-17) 0 But ln(a+ h G h + h.) = I n a + l n ( l + — + h-) O €t h „ . = ln a + since i n general 2 l n ( l + z) = (z - 7 j 2 z + + ha - , h + h. i/_a 6\2 , o - TJA — ) + ... (5-18) 3 3 — ) f o r ,| z| < 1 T h e r e f o r e r e t a i n i n g o n l y the f i r s t term i n t h e s e r i e s (5-18) and s u b s t i t u t i n g f o r l n ( a + hg + h ) i n (5-17) a 2TC J 0 271 (ln(a+h ' 4a hg) (a + hg)d6 = J 0 , a l n a d6 + 2lt , . J 0 35 2lt 2TC 6 o hg l n a dfi + a d6 0 or 2n ln(a + h r from h J since a + h ) ( a + h ) d 6 = 2ita l n a + 2ith 6 a K he + h. n he r +J l n a d6 § Equation (5-11). h- (— Also ln(a 2 + 2ah CC 2 ln a + ln 1 the f i r s t + i s a constant -T + ( f Equation ) 2 i n this integra- o r d e r i n hg i s n e g l e c t e d . i n Equation - 2as cos a - 2 s h (5-14) c a n be w r i t t e n cos a) = - | ^ cos a - ^ | h a a cos al (5-14) by a i d o f ( 5 - 1 5 ) , (5-20) (5-16), (5-20) , ~ a = f ln 1 + 2 h 2V term a OL 2 Hence r e w r i t i n g (5-19) and 2 + s £)d6 = 0 6 t i o n and a l l t e r m s o f s e c o n d Further, (5-19) l K + /S\2 (~) 2s 2s - f^- cos a - — h a — 2q , cos a + P In a 2-K 2uak ln 2-2 cos(a-6)|hg d6 - J I n a 3, i n a - f k k a But (5-21) h « a , t h e r e f o r e t h e two a ' be n e g l e c t e d i n t h e f i r s t tuting factors for V from Equation , 2 ln - = ln 1 + a 1 2na 2% h terms 2 — a term 2 of (5-21). (5-11) and c a n c e l l i n g g and - — a h — cos a c a n a Further, substi- common terms and (5-21) becomes /S\2 2s \ (—) - r — cos al - EL ln CV I cL a — - 2 cos(a-6)jhg d6 (5-22) 36 Also ln / s \2 2s 1 + (f ) cos a = 2 l n - + In a T — ct ct 1 + (f) - r* « 2 cos t h e r e f o r e (5-22) can be w r i t t e n It in 2 - 2 h a + i 2 u/ 0 /9-\2 a l n 1 + (—) s n c o s ( a - 6 ) hg d6 = a - 2— cos a s (5-23) 0 which i s an i n t e g r a l e q u a t i o n of t h e second k i n d w i t h t h e symmetric k e r n e l , K(a,6) = l n 2 - 2 cos(a-6) The i n t e g r a l E q u a t i o n 2 8 ' 2 9 ' (5-23) can be s o l v e d d i - 3 0 -I /&\2 n& r e c t l y by expanding h , hg and l n 1 + (—) - 2— cos a i n s s terms of t h e o r t h o g o n a l f u n c t i o n s , e^ e*~*' ^. T h e r e f o r e ft r na h h a c +00 Y A n = + co = YA , , /a\2 a - 2— cos a l n 1 + (—) s s n (5-24) a jm6 (5-25) CO (5-26) /_ n + O0 — oo e OO + 0 cos(a-6) J — &o — ln 2 - 2 e +CO — jna e =j*o (5-27) co The c o e f f i c i e n t s , f , i n (5-26) can be found as f o l l o w s In 1 + <f) -f*=os . ) - l n 1 - £ 1 - £ e~J s 2 s I ± ( f ) .***n co I a |(f) n e~J n a (5-28) s i n c e (^)< 1. Further, the c o e f f i c i e n t s K by n r i n E q u a t i o n (5-27) a r e d e f i n e d 37 2TC K = nr 211 f e I 2TC ^ r 6 d6 2%~ i f l n j 2 - 2 cos(a-6)| e ~ J d a I I (5-29) n a 2TC The i n t e g r a l , I = J 0 be d e t e r m i n e d . ln 2-2 cos(a-6) e"*' " da w i l l first 11 F o r t h i s purpose l e t ,2TI | l n s i na-6 1 = 2 J e^ da n a 0 2TC = 2 | ( l n s i n 2=2) e' da + 2 / (ln sin da (5-30) ^)e' 0 Let b = e , t h e n s u b s t i t u t i o n of t h e e x p o n e n t i a l form of t h e J s i n e f u n c t i o n i n (5-30) y i e l d s 6 In 2 + j f + j f - j f + l n ( l - b e " ^ ) I « 2 J e-J 0 n a da + 2TE 2/ e^ n a l n 2 - j f + j f - of + l n ( l - b e " J ) a da 0 C a r r y i n g out t h e i n t e g r a t i o n s I = - 2we-J n + 2 J e0< *l n ( l - b e ~ 0 N5 n 27t 2 e" i n d i c a t e d an s i m p l i f y i n g j n a J(X ) da + (5-31) l n ( l - b e ^ ) da a N e i t h e r of t h e two i n t e g r a l s i n (5-31) e x i s t s a t a = 6 s i n c e b = e ^ , however, c o n s i d e r i n g t h e two i n t e g r a l s a l o n e one can write .6 e 2TC J n a 0 lim l n ( l - b e ^ ) da + j 6 a e~ o J j n a e~^ na l n ( l - b e ~ ) da + j a l n ( l - b e " J ) da = a 38 2rc / e - j n a l n ( l - b e " ) da lim (5-32) 3 a Then i f one can l e t g-^O and p-"-0 a f t e r the i n t e g r a t i o n has been c a r r i e d out and t h e r e s u l t remains f i n i t e the proper 39 40 v a l u e of t h e i n t e g r a l s has been o b t a i n e d ' . Thus carrying out p a r t i a l i n t e g r a t i o n of (5-32) and s i m p l i f y i n g the r e s u l t e J' I lim n n a l n ( l - a e " ^ ) da + a l n ( l - a e ~ ) da = 2lt n I| l iim m n P e~ J n j a -i-6-p " 0 lim g-0 n-1 b - e -j(n-l)a l n ( l _ -ja a e } d a + 0 2n lim p—0 n-1 f ~J b 6-p ( n e - 1 ) a l n ( l - a e ~ J ) da a Which f o r n = 1 i s i d e n t i c a l l y z e r o . v a l u e of n (n / 0) 6 2tt [ e- ' l n ( l - b e " J ) da + f e ^ 0 6 J na a I t f o l l o w s t h a t f o r any ln(l - be^ ) n a a da = 0 T h e r e f o r e E q u a t i o n (5-31) becomes I = - e^ 2TC n and s u b s t i t u t i n g f o r I i n E q u a t i o n 2TC K nr - ~ jijrrSo ee_~^J— (5-33) (5-29) n 6 1 2TI n 6 d 6 J T h i s i n t e g r a l i s non-zero o n l y when r = n, hence K nr = - n (5-34) 39 and E q u a t i o n (5-27) becomes C O 2 - 2 cos(a-6) = 1 - 1 ln 1 e n J - n ( a + 6 ) £ 1 - - n e -J n ( a - 6 ) (5-35) C o n s i d e r E q u a t i o n (5-23) which can now be s o l v e d by a i d o f (5-24), (5-25), (5-28) and (5-35). +oo + - Thus C O 1_ 2TC . + 0 0 271 -oo oo - a I . oo £ _ I Jn(a-6) e 1 m n £ + n _ 1 -jn(a-6) e n 1 d6 = oo I(f) n s n eJ n a - a I |(f) e^ n (5-36) n a but t h e i n t e g r a l i s non-zero o n l y when m = n, t h e r e f o r e + C O i- n e + C O - a £ 1 oo Y eJ + oo I -— na - — Y n l na = n C O e^ " - a I 1 11 n*s " " e-3 ±{±) n' s' n e" (5-37) j n a E q u a t i o n (5-37) c o n s t i t u t e s 2n + 1 equations i n 2n + 1 unknowns which are t h e complex F o u r i e r c o e f f i c i e n t s of h . ft Thus t h e n t h , - n t h and Oth equations a r e A n a/a\n n " n = " nV - or s o l v i n g f o r A ^ - ~ . or s o l v i n g f o r A -n A A -n ~ = -n o = (5-38) n-lV A—n _ a/a_\n n ~ ~ n s' - 0 ^ ( N£ ) n - 1 s' n (5-39) (5-40) 40 Prom E q u a t i o n s (5-38) and 1 ~ 1-1V -1 ~ (5-39) - T h i s s t a t e of a f f a i r s i s p e r m i s s i b l e J 0 l n 1 + ln 1 + a2 N * - 2 f cos a e 29 41 ' i f da = 0 3 a and 2TC s 0 t h a t i s , i f e~^ tion a - 2 - cos a e " s I J U da = 0 i s o r t h o g o n a l t o the r i g h t hand s i d e of Equa- (5-23); however, E q u a t i o n (5-28) c l e a r l y i n t e g r a l s cannot be equal t o z e r o . t h a t E q u a t i o n (5-23) has no shows t h a t t h e s e T h e r e f o r e one can s t a t e solution. Thus i t appears t h a t t h e r e i s no s o l u t i o n t o the problem of a c y l i n d r i c a l conductor and one l i n e charge. That i s , no c y l i n d r i c a l conductor shape e x i s t s which has u n i f o r m s u r f a c e charge d e n s i t y i n the presence of a l i n e charge. The method employed here i s a f i r s t order p e r t u r b a t i o n , and i t seems r e a s o n a b l e t o expect t h a t such an approach would p r o v i d e the solution for s » a i f such a s o l u t i o n d i d i n f a c t exist. 5-3. Conducting C y l i n d e r and two L i n e Charges Even though no s o l u t i o n appears t o e x i s t f o r the unsymm e t r i c a l problem t r e a t e d i n the l a s t s e c t i o n i t seems l i k e l y t h a t a s o l u t i o n does e x i s t f o r the system c o n s i s t i n g of a cond u c t i n g c y l i n d e r and two l i n e charges p l a c e d s y m m e t r i c a l l y w i t h r e s p e c t t o the c y l i n d e r . Such a system i s t h e r e f o r e gated i n t h e p r e s e n t s e c t i o n . investi- 41 Pig. 5-3 shows a c o n d u c t i n g c y l i n d e r w i t h charge q coul./m c o u l . / im. p l a c e d p a r a l l e l t o two l i n e charges, each of s t r e n g t h The p o t e n t i a l a t p o i n t P i s V P = § k l n 2 r + f k l n 3 - J r f l n r l (5-41) d S S 2 2 2 r„ = r + s + 2 r s cos a o a a where ~ 2 — _ A * — — ' .. / •» v o Pig. i f a Q "? -, ' u 5-3. Conducting C y l i n d e r and two L i n e Charges and t h e o t h e r symbols have t h e v a l u e s i n d i c a t e d by E q u a t i o n (5-6). I n i t i a l l y l e t t h e conductor shown i n F i g . 5-3 be a c i r c u l a r c y l i n d e r o f r a d i u s a. The p o t e n t i a l a t p o i n t P can then be determined from E q u a t i o n s (5-41) and (4-15). follows V P It t h e n becomes Vp = % k l n a1 (See E q u a t i o n (4-14)) (5-42) The boundary o f t h e c i r c u l a r c y l i n d e r i s now p e r t u r b e d by t h e method developed i n s e c t i o n 5-2., Hence t h e equations de- termined i n t h a t s e c t i o n f o r the expression r s l d s 42 can be u t i l i z e d d i r e c t l y h e r e . ln r o Q = ln(r a 2 + s 2 + 2r a Therefore 1 2 s cos consider (5-43) a) where r a hence s u b s t i t u t i n g f o r r f i r s t order terms i n h 2 = l n ( a + 2ah ln r o a = a + h a i n (5-43), and n e g l e c t i n g a l l but on expansion 2 + s + 2 as cos a + 2 sh Ct Combining E q u a t i o n s cos a) (5-44) CC (5-44), (5-21) and (5-41) t h e f o l l o w i n g expression i s obtained =8 2V P k l n a l n a + + k ln 2k l n L 1 + 2-2 a + (s\2 1) + a h 1 + 2-2 h + (£)<* + 2 | cos a + 2 | -2 cos o 2 a cos a - 2^ - 2 a a cos a 0 - M n a - ^k l n a - fk — k a 2it 2nak ln 2 - 2 (5-45) cos(a-6) hg d& S i n e h ct<C< a t h e terms i n —2 a are n e g l e c t e d i n the l o g a r i t h m i c e x p r e s s i o n s i n (5-45). F u r t h e r , s u b s t i t u t i n g f o r V from P E q u a t i o n (5-42) and c a n c e l l i n g common terms and f a c t o r s one obtains a l + h J 2TC In 2 - 2 cos(a-6)]h de = J l n 1 + ( f ) - 2 f cos a] + 2 6 1 + (sf ) + 2 s| cos a 2 (5-46) which a l s o i s an i n t e g r a l e q u a t i o n of t h e second k i n d w i t h symmetric k e r n e l , 43 cos(a-6) K (6,a) = l n 2 - 2 I t f o l l o w s t h a t (5-46) can be s o l v e d by t h e method employed for (5-23) i n s e c t i o n 5-2. Hence t h e s e r i e s expansions deve- l o p e d t h e r e can be used f o r s o l u t i o n of (5-46). However, con- sider ln (1 + ( | ) + 2 | cos a ) = 2 in ( l + f J a e ) ( l + f e-J ) = eJ n a a CO Z CO (-D n + 1 £(f) n I + (-l) n + 1 i(f) (5-47) n S i n c e •§ s< 1 Then s u b s t i t u t i n g from (5-24), (5-25), (5-28), (5-35) and (5-47) i n E q u a t i o n -J I - -co f 1 / \ oo . CO I (5-46) d6= 1 oo + X f (-l) X n + 1 'i(f) n e -J n a (5-48) I t i s seen t h a t t h e i n t e g r a l i n (5-48) i s non-zero o n l y when m = n. F u r t h e r a l l odd terms i n n c a n c e l on t h e r i g h t hand s i d e of t h i s e q u a t i o n . + oo - ao _ a A co ZK + I - 3* ^ eJn<X 1 CO I Therefore ( + 51 - ±=£ e ^ CO 1_ | ) 2 n 2na,„ e3 ft . £ na 1 l_ £)2n - j 2 n a ( e = ( 5 _ 4 9 ) Which determines t h e complex F o u r i e r c o e f f i c i e n t s of h . r a From (5-49) t h e 2nth and Oth c o e f f i c i e n t s can be d e t e r mined from *> A A 2n 1 2 n ~ 2n~ ~ " or s o l v i n g f o r A /axil V 2n a 44 2 N A 2n = " < ^ T ) ( | ) Ao (5-50) 2 n =0 (5-51) F u r t h e r a l l the odd c o e f f i c i e n t s determined r e p r e s e n t e d by the f o l l o w i n g equation " % T *2n-l by (5-49) can be " <" > 0 5 52 hence A 3 = A 5 = *** = A 2n-1 = 0 b u t , f o r n = 1 E q u a t i o n (5-52) becomes A A l " l l 1 - 0 and t h i s r e p r e s e n t s a s p e c i a l case because A^ i s i n d e t e r m i n a t e 29 and n : 1 i s an e i g e n v a l u e of the k e r n e l . However, from the r i g h t hand s i d e of E q u a t i o n (5-49) i t f o l l o w s J I 0 1 1_ ( |)2n ( e 3 T h e r e f o r e A^ may 2na + e -j2na } 0 -j« d a = Q be a s s i g n e d any v a l u e c o n s i s t e n t w i t h the p h y s i c s of t h e problem. I n t h i s case a c o s i n e v a r i a t i o n , t h a t i s , a v a r i a t i o n of the form C cos 6 (C = constant) i s e v i d e n t l y not d e s i r a b l e , hence A^ i s g i v e n t h e v a l u e z e r o . Thus from (5-50) the F o u r i e r expansion of h oo h = -a Y. s f l T f ' ( a 0 0 3 2 n a i s g i v e n by ( 5 _ 5 3 ) 45 and the e q u a t i o n of the contour r e q u i r e d r a = a + h = a - a a oo Y. (s~ ) 2n-l 2 n c o s N 2nd (5-54) Hence i n o r d e r t h e s u r f a c e charge d e n s i t y i s u n i f o r m on the c o n d u c t i n g c y l i n d e r shown i n P i g . 5-3 the shape of the c y l i n d e r must be t h a t g i v e n by E q u a t i o n (5-54). I t was thought of i n t e r e s t t o t r e a t though b r i e f l y a d d i t i o n a l case i n t h i s Pig. 5-4. one section. Conducting C y l i n d e r and two L i n e Charges. C o n s i d e r P i g . 5-4. Here the two l i n e charges have both been d i s p l a c e d from t h e h o r i z o n t a l a x i s by a c o n s t a n t angle 8. The p o t e n t i a l a t p o i n t P i s V P •k ln 2 2 s + r - 2r s 1 E l n s tt tt r 2 + r l d S 2 CL cos(a-B) + 2r s cos(a+8) Cl (5-55) 46 S i n c e the form of t h i s e q u a t i o n i s e q u i v a l e n t t o (5-41) the s o l u t i o n i s w r i t t e n without f u r t h e r explanation. Therefore the e q u a t i o n d e t e r m i n i n g the complex F o u r i e r c o e f f i c i e n t s of h^ i n t h i s case becomes (See E q u a t i o n (5-48)) + eo ?i— A n eJ - oo Q a n a 2 + co IV 1 . - -H n CO e* . 0 0 + n a . £V 1 - ±=S n "J e n a = CO j - l ^ a ^ n J n ( a - B ) _ a j - l ^ a ^ n -jn(a-0) ^ xx s 2 ^ xx s e e a Y_ (-l) 2 ^ I(2:) us n+1 + A or w r i t i n g the n t h _ A 0h( P) + £ £ e 2 n a + B ^ (5-56) n N e n = ^ ( f ) ns i n n E E ; P i s not f i n i t e , ( 5 J t h i s problem has no s o l u t i o n u n l e s s 8 = 0 i d e n t i c a l to F i g . 5-r4. N u m e r i c a l - and f u r t h e r i t i s noted t h a t e"" o r t h o g o n a l t o the r i g h t hand s i d e of E q u a t i o n The ~J ^ n e SL i (*) r -J P _ J $ ) n n ~ 2 n V or s o l v i n g f o r Thus ^ ^ n equation A A i(-) a+ n (5-56). Hence 5-3. Computations c o n f i g u r a t i o n s shown i n F i g s . 5-2 and 5-3 were i n flat Hence i t i s o n l y p o s s i b l e to s p e c i f y an optimum shape f o r the c e n t r e phase c o n d u c t o r / that Equation In order to v e r i f y (5-54) does i n f a c t g i v e the c o r r e c t shape f o r t h a t case the s u r f a c e charge d e n s i t y was for i s not when F i g . 5-4 i s v e s t i g a t e d w i t h a view towards a three-phase system w i t h spacing. 5 7 ) the c y l i n d e r shown i n F i g . 5-3. The computed n u m e r i c a l l y e q u a t i o n used f o r 47 t h i s purpose can be d e r i v e d as follows. Tangent F i g . 5-5 Conducting C y l i n d e r and two L i n e Charges R e f e r r i n g t o F i g . 5-5 the p o t e n t i a l a t p o i n t P i s V P «k l n r k + 3 ln / 4^ - 2 r l n i r d S s Hence t h e e l e c t r i c f i e l d i n t e n s i t y on the s u r f a c e i n t h e r ffl d i r e c t i o n i s g i v e n by r i _ - s cos a „ 2k 2 2k r \ 4^ -—— r J 2 3 r r - s cos a _ £_ _ a r ~ cos(a-6) - R T s + 2 <-> ds 55 8 l r and i n t h e a d i r e c t i o n E a = , r q = 2k a^a s sin a r 1S q ~~2 . 3 ^ L _ a _ r l s sin 2 2k" . r d s 6 , + 2 ( 5 _ 5 9 ) 48 L e t t h e a n g l e 8 be such t h a t §g „ . . . . „ . . .in £ t h e n t h e normal f i e l d i n t e n s i t y , E , a t p o i n t P on t h e s u r f a c e n is E n = E sin 8 - E r a a cos 8 But t h e s u r f a c e charge d e n s i t y , a(6) = 2 e E , t h e f a c t o r , 2, o c c u r r i n g because E^ i s on t h e s u r f a c e i t s e l f ; t h e r e f o r e substituting for E and E from (5-58) and (5-59) r & a r s i n 8 + s sin(a+8) r s i n 8 - s s i n (B+a) / v 2q a 2q a ( ) _ § 4i~ 2 Q v 0 a v n 9 = r „ r v + f f e( ~ J 3 r sin 8 - r " s R s i n ( a - 6 + 8) ^2 r 2 ~ d S ( 5 6 0 ' l where o(6) has been t a k e n out from under t h e i n t e g r a l s i g n because i t i s assumed c o n s t a n t f o r t h e purpose o f n u m e r i c a l computations . I t may be n o t e d t h a t f o r a c i r c u l a r c y l i n d e r of r a d i u s a E q u a t i o n (5-60) reduces t o s4 - a4 • x , Z.ii2 L ° ° f f c s"* 4x +, a"* ,-4 + 2a s" cos 26 <- > 3 6 61 Comparison of E q u a t i o n s (4-15) and (5-61) shows t h a t t h e same e x p r e s s i o n i s o b t a i n e d f o r , o, i n both c a s e s . However, t h i s i s o f course not t r u e i n g e n e r a l , s i n c e (5-60) a c t u a l l y s t i t u t e s an i n t e g r a l con- e q u a t i o n i n o. The i n t e g r a l i n (5-60) was e v a l u a t e d by a i d o f Legendre Gauss Quadrature. T h i s n u m e r i c a l method o f I n t e g r a t i o n i s based on t h e e q u a t i o n 49 (5-62) b where 27 number of p o i n t s c o n s i d e r e d i n the i n t e r v a l m a. predetermined l (b,c). coefficients. predetermined v a l u e of the independent variable. E r r o r i n c u r r e d by a p p r o x i m a t i n g an i n t e g r a l by (5-61). R•m(f) The i n t e r v a l (0, 2TC) was d e v i d e d i n t o t e n p a r t s and e q u a t i o n (5-61), w i t h m s 12, was then a p p l i e d t o each p a r t i n t u r n . A d d i t i o n of t h e r e s u l t s thus gave the t o t a l v a l u e of the i n t e g r a l i n (5-60). The n u m e r i c a l example chosen here i s a = 0.50 r =s 0.50 cm s = 10 cm, thus from E q u a t i o n (5-54) - (.0025 cos 2a + .00000208 cos 4a + Thus r e t a i n i n g o n l y the f i r s t two terms r f l ...) i s determined t o a t l e a s t f i v e s i g n i f i c a n t f i g u r e s and t h i s was c o n s i d e r e d s u f f i c i e n t f o r the purpose a t hand. T h e r e f o r e E q u a t i o n (5-60) was e v a l u a t e d by a i d of the ALWAC I I I - E d i g i t a l computer w i t h r a = 0.50 - .0025 cos 2a. F i g . 5-5 shows c(a) as a f u n c t i o n of the angle a b o t h f o r the deformed c y l i n d e r and the e q u i v a l e n t c i r c u l a r c y l i n d e r . It f o l l o w s t h a t E q u a t i o n (5-54) does g i v e the c o r r e c t shape f o r the centre conductor. I t was thought of i n t e r e s t t o make an a n a l y t i c a l compari- son of the contours g i v e n by E q u a t i o n s (5-54) and (4-11). The p o l a r e q u a t i o n of an e l l i p s e i s g i v e n by the w e l l known f o r m u l a .02015 a bo u cd .01985 .01980 I 0 . 10 . 20 . 30 . 40 . 50 . 60 . 70 6 i n degrees P i g . 5-6 Charge D e n s i t y V a r i a t i o n . 80 — 90 1 b (1 - e r ) 2 2 ' = 5 0 1 ( l - e^ sin 6) 1 , /, 2x2/, , 1 = b (1 - e ) (1 •g2 2 f 1 where 2 2 . 2 3 4.4,. x s i n & + Qi o •••) C e s i n b = major a x i s e^ = e c c e n t r i c i t y or i n s p e c t i o n o f t h e s e r i e s above i n d i c a t e s C O r = Ao + where'A Vj ~ Bn cos 2n6 and B^ a r e c o n s t a n t s . A l t h o u g h i t does not appear p o s s i b l e t o e v a l u a t e these c o n s t a n t s i t i s seen t h a t t h e form of (5-62) i s e q u i v a l e n t t o t h a t o f ( 5 - 5 4 ) . For comparison l e t t h e conductor shown i n F i g . 5-3 be an e l l i p t i c c y l i n d e r w i t h minor a x i s a t 6 = 0. The n u m e r i c a l example chosen here i s t h e same as above, namely a = 0.50 cm 2 s = 10 cm and d = .00125. From E q u a t i o n (4-11) i t i s seen 2 that t h i s p a r t i c u l a r value of d .4975 cm. the r e s u l t s i n a minor a x i s o f Hence u s i n g E q u a t i o n (4-17) t h e charge d e n s i t y on e l l i p t i c c y l i n d e r was computed. T h i s computation i n d i - c a t e d t h a t t h e charge d e n s i t y on t h e e l l i p t i c conductor agrees w i t h t h a t o b t a i n e d by u s i n g E q u a t i o n (5-54) t o w i t h i n f i v e significant figures. T h i s c o n c l u d e s t h e work done i n t h i s t h e s i s on d e t e r m i n ing t h e optimum shape f o r t h e conductors o f a three-phase system. From t h e method employed here i t appears t h a t t h e optimum shapes i n n e a r l y a l l cases cannot be determined d i rectly. However, i t i s seen t h a t some improvement can be 51 o b t a i n e d by u s i n g t h e conductor two c h a p t e r s . shapes c o n s i d e r e d i n the l a s t On the other hand i t i s noted t h e r e q u i r e d change i n shape i s v e r y s m a l l f o r a l l systems w i t h l a r g e s p a c i n g between phase c o n d u c t o r s . 52 6. BUNDLED CONDUCTORS U s i n g s e v e r a l conductors conductors f o r each phase, t h a t i s , bundled i n s t e a d of one conductor f o r each phase o f f e r s some d i s t i n c t advantages, such as decreased i n d u c t i v e r e a c t a n c e , i n creased c a p a c i t i v e r e a c t a n c e and a lower v o l t a g e g r a d i e n t a t the s u r f a c e of the t r a n s m i s s i o n l i n e c o n d u c t o r s . t u r e s become q u i t e important These as t r a n s m i s s i o n v o l t a g e s fea- and d i s t a n c e s i n c r e a s e , and s i n c e , as mentioned e a r l i e r , t h i s i s the t r e n d i n e l e c t r i c power t r a n s m i s s i o n i t f o l l o w s t h a t the 6 9 12 c h a r a c t e r i s t i c s of such systems have been i n v e s t i g a t e d . ' ' 35 ' Prom the p o i n t of view of m i n i m i z i n g corona on a t r a n s m i s s i o n l i n e the v o l t a g e g r a d i e n t i s the more important f a c t o r to be c o n s i d e r e d . S e v e r a l papers have been p u b l i s h e d r e c e n t l y which d e a l w i t h the d e t e r m i n a t i o n of v o l t a g e g r a d i e n t s on threephase systems u s i n g bundled c o n d u c t o r s . For most cases the c o n f i g u r a t i o n i n v e s t i g a t e d i s t h a t of f l a t s p a c i n g , and i t f o l l o w s t h a t the c e n t r e phase conductors t h e n i n h e r e n t l y have the l a r g e r charge per u n i t l e n g t h as was a l s o found to be case when o n l y one conductor per phase was 3-2. used. the See s e c t i o n For t h i s r e a s o n the v o l t a g e g r a d i e n t on the c e n t r e phase conductor i s g e n e r a l l y regarded the l i m i t i n g f a c t o r f o r such a transmission l i n e system. ' ^ A l s o the charges on the 8 v i d u a l conductors 3 indi- of the c e n t r e phase are g e n e r a l l y found t o be v e r y n e a r l y equal p r o v i d e d these conductors are arranged s y m m e t r i c a l l y w i t h r e s p e c t t o the outer phases. 34 As has been p o i n t e d out i t would be of advantage t o 53 have a l l p a r t s of a t r a n s m i s s i o n l i n e system s t r e s s e d c a l l y t o t h e same degree. I n order to achieve t h i s electriobjective i t has been suggested t h a t l a r g e r s i z e d c o n d u c t o r s be used f o r the c e n t r e phase t h a n f o r t h e o u t e r phases. As a matter of f a c t t h i s procedure has been used i n one i n s t a n c e . c u s s i o n o f Ref. 34. See d i s - F o r a t r a n s m i s s i o n l i n e u s i n g two con- d u c t o r s p e r phase, one conductor p l a c e d d i r e c t l y above t h e o t h e r , t h e charges per u n i t l e n g t h a r e equal on t h e s e two con34 d u c t o r s t o w i t h i n .lfo. Hence t h e maximum g r a d i e n t s w i l l a l s o be a p p r o x i m a t e l y e q u a l , and one can thus s p e c i f y a l l d u c t o r s t o be o f t h e same s i z e f o r t h e o u t e r phases. con- How- ever, when t h r e e o r f o u r conductor bundles a r e used t h e cond u c t o r s i n t h e o u t e r phases must be g i v e n a s p e c i f i c configu- r a t i o n i n o r d e r t o o b t a i n equal maximum v o l t a g e g r a d i e n t on a l l c o n d u c t o r s o f one phase. The o b j e c t of t h i s c h a p t e r i s t o determine t h i s c o n f i g u r a t i o n f o r t h r e e and f o u r conductor bundles. 6-1. T r a n s m i s s i o n L i n e w i t h t h r e e Conductors p e r Phase The three-phase system t r e a t e d i n chapter 3 was ungrounded, t h e r e f o r e i t was p e r m i s s i b l e t o use E q u a t i o n (3-1) t o determine the charge p e r u n i t l e n g t h o f each phase c o n d u c t o r . However, t h e systems t r e a t e d i n t h i s c h a p t e r a r e assumed t o be grounded and a d i f f e r e n t approach i s then r e q u i r e d i n t h a t E q u a t i o n (3-1) i s i n v a l i d f o r l i n e s w i t h grounded n e u t r a l . On t h e o t h e r hand, f o r t h e purpose of computing p o t e n t i a l s i t w i l l a g a i n be assumed t h a t n e g l i g i b l e e r r o r r e s u l t s from assuming t h e charge 54 on each conductor t o be c o n c e n t r a t e d a t i t s c e n t r e . I t was shown i n s e c t i o n (2^-2) t h a t two equal and l i n e charges p l a c e d a c e r t a i n d i s t a n c e a p a r t w i l l opposite together produce a p l a n e of zero p o t e n t i a l midway between the two charges. line Hence i f the s u r f a c e of the ground i s regarded a p e r f e c t l y c o n d u c t i n g plane a t zero p o t e n t i a l i t f o l l o w s t h a t an overhead t r a n s m i s s i o n l i n e and ground may be r e p l a c e d by an e q u i v a l e n t system c o n s i s t i n g of the t r a n s m i s s i o n l i n e i t s image. Thus the e f f e c t of ground on the e l e c t r i c and field c o n f i g u r a t i o n around the t r a n s m i s s i o n l i n e conductors i s t a k e n i n t o account. I t w i l l be noted t h a t t h i s e f f e c t was i n the system t r e a t e d i n chapter F i g . 6-1 neglected 3. shows a three-phase transmission l i n e with f l a t s p a c i n g and t h r e e conductors per phase. A l s o the image con- d u c t o r s are i n c l u d e d , and these are p o s i t i o n e d a d i s t a n c e , H, below the ground plane e q u i v a l e n t t o the h e i g h t of the a c t u a l conductors above ground. L e t the phases be denoted A, B and C and the i n d i v i d u a l conductors 1, 2, 3 e t c . as i n d i c a t e d . Then the e q u a t i o n d e t e r m i n i n g the p o t e n t i a l of the n t h cond u c t o r can be w r i t t e n V n = m = 9 q_ V m = 1 k Y s• l n -SS s nm (6-1) where q^ = charge i n coul./m on conductor m ( s ' ) / = d i s t a n c e between conductor n and the image of conductor :m m d i s t a n c e between conductor n and conductor m Phase A Phase B P i g . 6-1 Three-phase T r a n s m i s s i o n Phase C Line 55 (s*nm )n=m = d i s t a n c e bet-ween conductor n and i t s own image *» (s nm ) n=m = r a d i u s of conductor n v k = 2ite . o I f one t h e n l e t s n t a k e on t h e v a l u e s 1 t o 9 i n s u c c e s s i o n i t f o l l o w s t h a t n i n e simultaneous equations a r e o b t a i n e d . Putti these e q u a t i o n s i n m a t r i x form P P l l P 12 13 14 15 16 17 18 19 P P P P P P P *1 21 22 23 24 25 26 27 28 29 P P P P P P P *2 P (6-2) _ 91 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 P P P where (P ) / = P P q In q_ (P ) * nm n=m It follows that P 3 P P *9 P s' -ss (6-3) nm s I n -SB 1 (6-4) k P = P . nm mn The c o e f f i c i e n t s P_ were i n t r o d u c e d by Maxwell and a r e therenm " 13 37 39 f o r e termed Maxwell's p o t e n t i a l c o e f f i c i e n t s »°'»' . U J The charges q^ t o q^ can be determined by i n v e r s i o n o f E q u a t i o n (6-2) so t h a t 56 3 C, *1 C ^2 C c. c. c, c. c, c. 3 c. J V 2 0 e (6-5) 0 o © 3d )j where (c ) = (-i) nm n=m ^ 2 n ' x (6-6) A M (6-7) and M nn , NInm and -A denote minors and d e t e r m i n a n t r e s p e c t i v e l y i n E q^ u a t i o n ( 6 - 2 ) . The c o e f f i c i e n t s (Cnm )n=m and (C ) / nm'n^m t 1 r v are J v termed Maxwells c o e f f i c i e n t s of s e l f - i n d u c t i o n and mutual induction respectively. F u r t h e r (C ) i s the d i r e c t capaci. nm n=m tance between conductor n and ground w h i l e -(C ) / i s the nm n^m 13 37 c d i r e c t c a p a c i t a n c e between conductors n and m C o n s i d e r phase A i n F i g . 6-1. Conductors 1, 2 and 3 are p l a c e d e q u i l a t e r a l l y and are a l l kept a t t h e same p o t e n t i a l above ground, namely the phase v o l t a g e V^. Then i f the d i s - •france H i s s u f f i c i e n t l y l a r g e the e f f e c t due t o ground w i l l be v e r y s l i g h t and the d i f f e r e n c e i n the magnitude of the charges q.^, ^2 small. a n d ^3 d u e *° ^ n e P r e s e n c e °^ ground w i l l be q u i t e However, i t i s e v i d e n t t h a t the d i r e c t c a p a c i t a n c e s to t h e c o n d u c t o r s of the o t h e r phases w i l l be l a r g e r f o r 57 conductor 3 than f o r 1 and 2. Hence conductor 3 w i l l neces- s a r i l y c a r r y a l a r g e r charge per u n i t l e n g t h than 1 and 2. It f o l l o w s t h a t an i d e n t i c a l argument h o l d s f o r conductor 9 i n phase C. From t h e c o n f i g u r a t i o n shown i n F i g . 6-1 i t seems r e a s o n - a b l e t o expect t h a t the charge on conductors 3 and 9 w i l l crease i f the d i s t a n c e s s ^ g , 23» 9 8 s slightly. s a n d s 97 a r e de- decreased To i n v e s t i g a t e t h i s a programme was w r i t t e n f o r t h e ALWAC I I I - E d i g i t a l computer. The p o t e n t i a l coefficients i n E q u a t i o n (6-2) were then a l l e v a l u a t e d and arranged i n m a t r i x form by a i d of t h i s programme, and a s t a n d a r d s u b r o u t i n e f o r m a t r i x i n v e r s i o n was u t i l i z e d t o compute the c a p a c i t i v e c o e f f i c i e n t s i n Equation (6-5). F u r t h e r , the phase v o l t a g e s were g i v e n the v a l u e s V^ = 1 cos cot V fi = 1 cos(wt - 120) V c = 1 cos (art - 240) so t h a t on d e t e r m i n i n g q^ t o qg from E q u a t i o n (6-5) the i n stantaneous v a l u e s of the charge i n c o u l . / m - v o l t were o b t a i n e d . R e f e r t o F i g . 6-1. The g e n e r a l procedure f o l l o w e d i n o p t i m i z i n g the d i s t a n c e s s ^ g , S g g , Sgg and S g ^ f o r d i f f e r e n t phase s p a c i n g s , D, and bundle s p a c i n g s , i c , was i ) The conductor diameter, d, was i i ) The phase s p a c i n g , D, was i i i ) The bundle s p a c i n g , c, was chosen chosen chosen i v ) The h e i g h t above ground, H, was chosen 1 v) The d i s t a n c e s b = s g - ( | ) and b = 2 as f o l l o w s : 2 2 s 98 2 ~ v ,ds2 2 ; 1 58 were decreased s i m u l t a n e o u s l y u n t i l the charge q_ s m a l l e r t h a n q^ and was q . 2 The r e s u l t of such a s e r i e s of computations appears i n F i g . 6-2. I n t h i s p a r t i c u l a r case d = 1 inch D = 20.0 f t . c = 1.50 ft. H = 40 f t . and i t w i l l be noted t h a t a l i n e a r v a r i a t i o n w i t h the p a r a meter b i s o b t a i n e d . T h i s was found t o be t r u e i n p r a c t i c a l l y a l l cases f o r t h e range of b i n v e s t i g a t e d h e r e . v a l u e s i n d i c a t e d f o r q^, q charges. 2 A l s o the and q^ are t h e magnitudes of t h e s e The phase angle between them was found t o be l e s s t h a n one degree and t h i s was c o n s e q u e n t l y n e g l e c t e d . At the same time the charges were found t o l a g the phase v o l t a g e by a p p r o x i m a t e l y s i x degrees. I n o r d e r t o determine the v a r i a t i o n of the optimum v a l u e of b w i t h phase s p a c i n g , D, and bundle s p a c i n g , c, a s e r i e s of computations was c a r r i e d out. The n u m e r i c a l v a l u e s chosen f o r t h i s purpose were as f o l l o w s : d 1.0 inch D c H 20.0 f t . 1.25 f t . 40.0 f t . 1.0 " 20.0 it 1.50 it 40.0 1.0 " 25.0 •i 1.25 it 40.0 it 1.0 " 25.0 n 1.50 1.0 " 30.5 it 1.25 •i 40.0 it 1.0 " 30.5 it 1.50 it 40.0 it II II 40.0 it Thus a curve s i m i l a r to the one shown i n F i g . 6-2 was o b t a i n e d f o r each s e t of v a l u e s l i s t e d above. .088 0) a .086 CM a ,084 o o ,082 ce o ,080 .90 1.00 1.10 1.20 1.30 1.40 1.50 b in ft. P i g . 6-2 Charge per U n i t Length v e r s u s t h e Parameter b CD CM ~ -p o I 2.40 > •p \ 2.30 3 max (0 •f> rH O J> 2.20 fl •rl >> -P •rl « 2.10 a CO +» M *d i—i a> •H 2.00 .90 1.00 1.10 1.20 1.30 1.40 1.50 b in ft. P i g . 6-3 F i e l d I n t e n s i t y v e r s u s t h e Parameter b 59 The optimum v a l u e of b i s d e f i n e d here as t h a t v a l u e a t which t h e maximum e l e c t r i c f i e l d i n t e n s i t i e s 2 and 3 a r e a p p r o x i m a t e l y e q u a l . on conductors 1, Hence h a v i n g o b t a i n e d t h e v a r i a t i o n o f t h e charges w i t h t h e parameter b as o u t l i n e d above one can compute t h e e l e c t r i c f i e l d on each conductor f o r a s e r i e s o f v a l u e s of b and thus determine t h e optimum p o s i t i o n f o r conductor 3. For t h e purpose of computing t h e e l e c t r i c f i e l d intensity on conductors 1, 2 and 3 t h e f o l l o w i n g assumptions a r e made, i ) The s p a c i n g s s^g, s g and s ^ a r e s u f f i c i e n t l y l a r g e t h a t 2 the 2 two conductors a d j a c e n t t o t h e one c o n s i d e r e d can be r e p r e s e n t e d as l i n e c h a r g e s . See Appendix I . i i ) The h e i g h t H above ground i s such t h a t t h e image charges have no e f f e c t on t h e s u r f a c e charge d i s t r i b u t i o n on any of t h e c o n d u c t o r s , i i i ) The phases B and C a r e s u f f i c i e n t l y d i s t a n t t h a t each can be r e p r e s e n t e d as a l i n e charge p l a c e d a t t h e geometric c e n t r e of each phase. F i g . 6-4 shows t h r e e c o n d u c t i n g c y l i n d e r s p l a c e d p a r a l l e l t o two l i n e c h a r g e s . T h i s system i s e q u i v a l e n t t o t h e t h r e e - phase t r a n s m i s s i o n l i n e i n F i g . 6-1 when one i n t r o d u c e s t h e s i m p l i f y i n g assumptions o u t l i n e d above. The charge p e r u n i t l e n g t h o f t h e l i n e charges i s - q ^ coul./m and - q ^ coul./m r e s p e c t i v e l y , and t h e s e a r e equ!al i n magnitude t o t h e t o t a l charge on phases B and C. Hence from E q u a t i o n s (2-9) and ( I - l ) the e l e c t r i c f i e l d i n t e n s i t i e s E^, E 2 and Eg a t t h e s u r - f a c e o f conductors 1, 2 and 3 r e s p e c i t v e l y a r e 60 q 2q f i g I1 E 2q ( — ) B1 2 0 0 0 cos n ( a + 9 0 - 6 ) + 9 co n • E 2q n S X * 2q 0 0 cx I " <^>"— »<-«» " E 2 £ (4> •» "<«-l>i> n + C O •B £ (-£-) X a 2q __C S cos n ( a - 9 0 + B ) + n 9 B2 0 0 J" _ a _ n X C2 q 2q =E ^ " E ' I ( } c o g n ( a _ 9 0 + p ) 3 ( 6 _ 1 0 ) 0 0 E c 1 3 2q co trI ka X3 0 (s ^ ) 2 x 2 3 co 2q E T Ka n I (^-) s n x C 3 n ° s n(6-180 + P l ) 2q„ cos 11(6-180-8, ) + 1 K.a co 1 I s(-^-J f i 3 11 cos n6 + cos n6 .(6-11) where k = 2Tte s Bn a n d S Q Cn r e P r e s e n "k * n e d i s t a n c e s from l i n e charges q^ and q^ t o t h e c e n t r e s o f conductors 1, 2 and 3 w i t h n = 1, 2 or 3. At t h i s p o i n t some f u r t h e r a p p r o x i m a t i o n s a r e made. Since the i n s t a n t o f maximum charge on phase A i s c o n s i d e r e d here the charges q^ and q^ a r e a p p r o x i m a t e l y equal t o - ^ q A l s o t h e f i r s t order terms i n • s — — « — 2 L - where m and n = 1 Bn mn s s 9 a r e such t h a t Bn 2 or 3 and m ^ n. 3 coul./m. Phase A Phase B P i g . 6-4 Three Conducting C y l i n d e r s and two L i n e Charges Phase C 61 Hence s i n c e i t i s o n l y d e s i r e d t o o b t a i n a f i r s t order a p p r o x i mation t o t h e e l e c t r i c f i e l d i n t e n s i t y t h e l a s t two terms can be n e g l e c t e d i n each of t h e E q u a t i o n s ( 6 - 8 ) , (6-9) and ( 6 - 1 0 ) . T h e r e f o r e r e t a i n i n g o n l y t h e f i r s t terms i n each o f t h e remaining s e r i e s the f o l l o w i n g expressions are obtained 2q 2q ^ — cos(a+8 ) cos (a+90) '31 '21 q.o 2q, 2q 2 = ka- " k i ^ cos(a-90) - ^ 2 os(a- ) 3 E, = 1 ka E 1 C E 3 ~ ka 2q, - cos(6-180+p ) - 2q 1 13 P l 0 008(6-180-^) 23 (6-12) (6-13) (6-14) i I t w i l l be noted t h a t E q u a t i o n (6-10) a c t u a l l y r e p r e s e n t s t h e e l e c t r i c f i e l d i n t e n s i t y on a c o n d u c t i n g c y l i n d e r w i t h charge q^ coul./m p l a c e d i n two u n i f o r m e l e c t r i c f i e l d s o f i n t e n s i t y ks and 31 ks. ""21 volts/m r e s p e c t i v e l y . I t follows that a similar statement can be made about E q u a t i o n s (6-11) and (6-12). The a n g l e s a t which t h e maximum f i e l d i n t e n s i t y occurs on conductors 1, 2 and 3 can now be determined by d i f f e r e n t i a t i o n . Let t h e s e a n g l e s be denoted a ^ , a n < m l 6 g r e s p e c t i v e l y , then m from t h e e q u a t i o n s 5cT a* - ° it a ml and = 0 follows = a r c * ' <12 '31 a n s2 1 2i 4 ' 2 / 2 V 3 1 S s s 32 s i 12x2 ~ "4" 2 / 2 ^ 32 ( s 2l\ 3 "21 2s S (6-15) 2 x S = arctan 21 q s ) S 12 (6-16) 62 s 12 m3 = a r c t a n 6 (6-17) s 32 Therefore s u b s t i t u t i n g a m l , a m 2 and 5 m 3 i n E q u a t i o n s (6-10) (6-11) and (6-12) r e s p e c t i v e l y one can compute t h e maximum f i e l d i n t e n s i t y on each conductor., The r e s u l t of such a s e - r i e s of computati ons i s shown i n F i g . 6—3. t h e r e a r e based on t h e v a l u e s of b, q^, q Fig. 6-2. the The curves shown a 2 n d <lg i n d i c a t e d i n A l s o comparison of F i g s . 6-2 and 6-3 i n d i c a t e s t h a t p o i n t a t which q_ = q^ g i v e s v e r y n e a r l y t h e optimum v a l u e 2 of t h e parameter b. The assumptions made i n d e r i v i n g E q u a t i o n s (6-12), and (6-14) i n t r o d u c e d e r r o r s i n t h e e l e c t r i c f i e l d computed. (6-13) intensities To i n v e s t i g a t e t h e magnitude o f t h e s e e r r o r s con- s i d e r a system w i t h phase s p a c i n g o f 20 f t . and bundle s p a c i n g of 15 i n c h e s . The t h e f i r s t o r d e r terms due t o t h e presence 3 1 of phase B=^- q x = .075q and t h e second o r d e r terms due t o o the presence of t h e a d j a c e n t bundle conductors = q x y^=.03q. In t h i s p a r t i c u l a r case q = .08 hence t h e e r r o r = ,01 = T^& s i n c e E max = 2.0. The procedure o u t l i n e d above f o r computing t h e maximum e l e c t r i c f i e l d was t h e n used t o compute E, , E and * 1 max 2 max 0 9 Eo m o v (6-8). f o r each s e t o f n u m e r i c a l v a l u e s g i v e n by E q u a t i o n Thus a s e t o f curves was o b t a i n e d each b e i n g s i m i l a r i n form t o F i g . ( 6 - 3 ) . Hence, by a i d o f t h e s e curves t h e optimum v a l u e o f b c o u l d be p l o t t e d as a f u n c t i o n o f phase s p a c i n g , D, w i t h bundle s p a c i n g , c, as a parameter. See 1.40 1.30 1.20 f c = 1.50 f t . 1.10 1.00 :] c = 1.25 f t . .90 .80 15.0 20.0 25.0 30.0 35.0 Phase Spacing i n f t . F i g . 6-5 V a r i a t i o n of b .j. w i t h Phase and Bundle Spacing 63 P i g . 6-5. The p o i n t a t which t h e charge p e r u n i t l e n g t h of conductor 3, q^, i s equal t o t h e charge p e r u n i t l e n g t h of cond u c t o r 2, q , i s i n c l u d e d f o r comparative purposes, i t i s e v i 2 dent t h a t f o r p r a c t i c a l purposes one can assume E„ = o max E 2 max w h e n *2 = V 6-2. T r a n s m i s s i o n L i n e w i t h f o u r Conductors p e r Phase C o n s i d e r t h e three-phase t r a n s m i s s i o n l i n e shown i n P i g . 6-6. I n t h i s case f o u r conductors a r e used f o r each phase and t h e o b j e c t i s t o determine t h e optimum p o s i t i o n f o r t h e conductors i n t h e o u t e r phases. F o r t h i s purpose t h e charge per u n i t l e n g t h on each conductor must be determined, and i t f o l l o w s t h a t t h e procedure o u t l i n e d i n d e t a i l i n s e c t i o n 6-1 can be used here as w e l l . nth conductor i s m=12 q T h e r e f o r e t h e p o t e n t i a l of t h e s' \~ I r " r m=l <- > 6 18 nm where a l l symbols have t h e same meaning as i n E q u a t i o n ( 6 - 1 ) . In t h i s case n = 1 t o 12 so t h a t t w e l v e simultaneous equations are obtained. I n v e r t i n g t h e s e e q u a t i o n s one f i n d s t h e charge per u n i t l e n g t h on t h e n t h conductor q„ = m=12 I C Y m=1 nm m (6-19) T h i s corresponds t o one o f t h e E q u a t i o n s g i v e n by (6-5) i n the p r e v i o u s s e c t i o n . C o n s i d e r i n g t h e c a p a c i t a n c e a s s o c i a t e d w i t h each cond u c t o r i n phase A, P i g . 6-6, i t i s e v i d e n t t h a t t h e charge Phase A Phase B Phase C ffl P i g . 6-6 Three-phase T r a n s m i s s i o n Line 64 per u n i t l e n g t h of conductors 2 and 4 w i l l be g r e a t e r t h a n t h a t of 1 and 3 f o r the c o n f i g u r a t i o n shown. S i m i l a r l y the charge per u n i t l e n g t h of conductors 9 and 12 i s g r e a t e r than t h a t on 10 and 11 i n phase C. However,, i n t h i s case i t i s not r e a d i l y seen how t h e c o n f i g u r a t i o n should be changed i n order t o e q u a l i z e t h e charges on the conductors i n t h e outer phases. T h e r e f o r e E q u a t i o n s (6-18) and (6-19) were e v a l u a t e d by a i d of the ALWAC I I I - E d i g i t a l computer. The programme used f o r t h i s purpose was w r i t t e n such t h a t the c o n f i g u r a t i o n of t h e outer phases c o u l d be v a r i e d t o some extent from t h a t shown i n P i g . 6-6. U s i n g t h i s procedure i t was found t h a t d e c r e a s i n g t h e d i s t a n c e Sg^ s y m m e t r i c a l l y , that i s 9 decreasing s£ a n 2 d in- c r e a s i n g s ^ by t h e same amount had t h e d e s i r e d e f f e c t . f o l l o w s t h a t t h e d i s t a n c e Sg ^ The e f f e c t o b t a i n e d w a s decreased simultaneously. by i n t r o d u c i n g t h i s v a r i a t i o n i n the con- f i g u r a t i o n of t h e outer phases i s shown i n F i g . 6-7. be noted t h a t t h e v a r i a t i o n o b t a i n e d for It It will i n t h e charges are l i n e a r t h e range of s ^ i n v e s t i g a t e d . 2 I n order t o o b t a i n t h e v a r i a t i o n of t h e optimum v a l u e of s 2 4 "-* P w: out. n n a s e s p a c i n g a s e r i e s of computations were c a r r i e d The n u m e r i c a l following. d values chosen f o r t h i s purpose were t h e See F i g . 6-6, D c H 1.0 i n c h 25.0 f t . 1.50 f t . 1.50 f t . 40,0 f t . 1.0 " 30.0 " 1.50 " 1.50 " 40.0 " 1.0 " 35.0 1.50 " 1.50 " 40.0 " .069 .067 ,065 3 o o a •rt .063 0) b0 U .061 1.10 1.20 1.30 Spacing s P i g . 6-7 1.40 1.50 1.60 in f t . 2 4 Charge per u n i t Length v e r s u s Bundle Spacing 1.50 1.40 I a a 1.30 I c = 1.50 f t , •rl -P P< O 1.20 CM (0 1.10 I* 22.5 25 30 35 Phase S p a c i n g i n f t . F i g . 6-8 V a r i a t i o n of S g ^ ^, w i t h Phase S p a c i n g 65 The r e s u l t o b t a i n e d from these computations i s shown i n F i g . 6-8. I n t h i s case t h e optimum c o n f i g u r a t i o n i s based on equal charge on t h e conductors of t h e o u t e r phases r a t h e r t h a n on: e q u a l .maximum' e l e c t r i c f i e l d i n t e n s i t i e s . as shown i n sjactinn 6-1 b o t h c r i t e r i a However, give approximately the same answer. 6-3. Some G e n e r a l C o n s i d e r a t i o n s I t was mentioned i n the i n t r o d u c t i o n t o t h i s chapter that the c e n t r e phase conductors have a l a r g e r charge p e r u n i t l e n g t h t h a n those o f t h e o u t e r phases. T h i s f a c t was v e r i f i e d i n t h e computations c a r r i e d out h e r e . Thus f o r t h e system w i t h t h r e e conductor bundles t h e charge was found t o be 8 - 10$ g r e a t e r on t h e c e n t r e phase t h a n on t h e o u t e r phases. Fur- t h e r i n d i s p l a c i n g conductors 3 and 9 (See F i g . 6-1) i n t h e manner i n d i c a t e d i n s e c t i o n 6-1 t h e charge on each c e n t r e phase conductor was n o t i c e d t o decrease by a p p r o x i m a t e l y For t h e system u s i n g f o u r conductor bundles t h e d i f f e r e n c e i n charge on t h e c e n t r e and o u t e r phases was about 7$. However, d i s p l a c i n g conductors 2, 4, 9 and 12 (See F i g . 6-6) as des c r i b e d i n s e c t i o n 6-2 had p r a c t i c a l l y no e f f e c t on t h e charge on t h e c e n t r e phase c o n d u c t o r s . When t h e p o s i t i o n of con- d u c t o r 3 i n F i g . 6-1 i s changed by d e c r e a s i n g s ^ g and S g g s y m m e t r i c a l l y and k e e p i n g t h e phase s p a c i n g , D, c o n s t a n t t h e f l u x l i n k i n g phase A w i l l i n c r e a s e . However, as p o i n t e d out above t h e charge on t h e c e n t r e phase conductors decreases by u s i n g t h i s procedure. I f i n s t e a d one decreased t h e phase 66 s p a c i n g , D, s i m u l t a n e o u s l y w i t h s ^ 3 and s 2 3 , thus k e e p i n g con- d u c t o r 3 f i x e d i n p o s i t i o n , but d i s p l a c i n g 1 and 2 i t f o l l o w s the i n d u c t i v e r e a c t a n c e of phase A d e c r e a s e s , w h i l e the charge on the c e n t r e phase conductors i n c r e a s e s . Hence the p r o - cedure t h a t s h o u l d by used w i l l depend upon which e f f e c t i s the more i m p o r t a n t i n a p r a c t i c a l c a s e . I t i s evident that the c a p a c i t i v e r e a c t a n c e i s a l s o changed by a l t e r i n g the bundle c o n f i g u r a t i o n , however, t h i s e f f e c t i s c o n s i d e r e d t o be n e g l i g i b l e here s i n c e the a c t u a l change i n bundle s p a c i n g i s q u i t e small. T h i s c o n c l u d e s the work done on bundled conductors i n this thesis. The methods used t o determine t h e optimum con- f i g u r a t i o n f o r the o u t e r phase bundles i n a three-phase system w i t h f l a t s p a c i n g are of course not g e n e r a l . However, t o de- termine the optimum c o n f i g u r a t i o n a n a l y t i c a l l y d i d not appear p o s s i b l e due t o the c o m p l e x i t y of the problem. 67 7. The optimum a investigation shape direct most analytical that f o r the centre conductor the outer on the centre solution considered lution, jected i n section Such A conductor 4-3 m i g h t mapping while Hence intensity an a n a l y t i c a l uniform provides of a different considered using conductor i t i s made well provide three- was o b - the f i e l d an arrangement i f the contours t o conformal 5-3. field fora solution phases that not exist i n and t h e deformed i s decreased i n section however, phase 4-3 f o r t h e o u t e r here. indicates i n t h e f o l l o w i n g way conductor conductor. regarding the i n the electric An e x a c t conductors obtained does spacing. f o r the centre i n section on that flat thesis conductors some i m p r o v e m e n t c a n be o b t a i n e d system with treated out i n t h i s apparently solution However, configuration tained carried f o r transmission line cases. phase CONCLUSIONS the best shape than a better so- cannot be approach sub- i s very cum- bersome. The results transmission maximum can obtained lines electric with field used. practice, would have to device changes i n order a method actually required. per length varies with carried indicate on t h e o u t e r t o make The r e a s o n the conductor conductors configuration use of t h i s to chapter f o r determining being outf o r that the phase i n t h e bundle i n the introduction diameter unit conductors intensity However, as o u t l i n e d the computations bundled be e q u a l i z e d by s m a l l normally from the fact i n 6, o n e conductor that the diameter used. charge 68 7-1. Recommendations f o r F u t u r e Work I t appears t h a t u s i n g an e x p e r i m e n t a l method would be t h e e a s i e s t way t o determine t h e optimum shape f o r a conductor p l a c e d p a r a l l e l t o a l i n e charge. An e l e c t r o l y t i c tank would p r o b a b l y p r o v i d e t h e b e s t means f o r t h i s purpose s i n c e one t h e n would be a b l e t o determine t h e f i e l d v a r i a t i o n from t h e p o t e n t i a l contours o b t a i n e d . directly However, i n t h a t case some p l i a b l e , c o n d u c t i n g m a t e r i a l would be r e q u i r e d f o r t h e conductors t h e m s e l v e s . The change i n c u r r e d i n i n d u c t i v e and c a p a c i t i v e r e a c t a n c e by a l t e r i n g the bundle c o n f i g u r a t i o n was not computed i n chapt e r 6. However, even though t h e s e changes a r e s m a l l , t h e change i n i n d u c t i v e r e a c t a n c e might r e q u i r e c o n s i d e r a t i o n i n a long transmission l i n e . F u r t h e r , as mentioned above, t h e conductor diameter a c t u a l l y r e q u i r e d f o r t h e o u t e r phases must be determined. The e q u a t i o n d e t e r m i n i n g t h e g r a d i e n t on each conductor c o u l d be used f o r t h i s purpose, however, one would a t t h e same time r e q u i r e t h e charge on each conductor as a f u n c t i o n of i t s d i a m e t e r . T h i s procedure appears q u i t e cumbersome, b u t i t might be p o s s i b l e t o i n t r o d u c e some s i m p l i f y i n g assumptions. 69 REFERENCES 1. G l o y e r , H., and V o g e l s a n g , T., "380 KV. T r a n s m i s s i o n L i n e s i n Western Germany", The I n t e r n a t i o n a l Conference on Large E l e c t r i c Systems (C.I .G.R.-E.), V o l . I l l , No. 401, 1958, pp. 1-13. 2. Akopjan, A.G., Burgsdorv, V.V., B u t k e v i t c h , V.V., G e r t z i k , A.K., G r u n t a l , V.L., R o k o t j a n , S.S., and S o v a l o v , S.A., "The Development of 400-500 KV. Systems i n t h e S o v i e t Union", The I n t e r n a t i o n a l Conference on Large E l e c t r i c Systems (C.I.G.R.E.), V o l . I l l , No. 410, 1958, pp. 1-29. 3. von G e i j e r , G., Jancke, G., and Holmgreen, B., "Choice of I n s u l a t i o n L e v e l i n Networks C o n t a i n i n g Long High V o l t a g e Power L i n e s " , The I n t e r n a t i o n a l Conference on Large E l e c t r i c System's (C.I.G.R.E.), V o l . I l l , No. 414, 1958, pp. 1-19. 4. L l o y d , B.L., and N a e f f , 0., "Corona Loss Measurements on Bundle Conductors - 500 KV. Test P r o j e c t of the American Gas and E l e c t r i c Company", The T r a n s a c t i o n s of the American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 76, December 1957, pp. 1164-1172. 5. Bogdanova, N.B., G e r t z i k , A.K., Emeljanov, N.P., Kolpakova, A . I . , M a r k o v i t c h , I.M., Popkov, V . I . , S o v a l o v , S.A., S l a v i n , G.A., "Some R e s u l t s of S t u d i e s conducted i n the S o v i e t Union on Extra-Long D i s t a n c e 600 KV. T r a n s m i s s i o n Systems", The I n t e r n a t i o n a l Conference on Large E l e c t r i c Systems (C.I.G.R.E.), V o l . I l l , No. 411, 1958, pp. 1-18. 6. Cahen, F., " R e s u l t s of T e s t s C a r r i e d out a t the 500 KV. Experimental S t a t i o n at C h e v i l l y , France, e s p e c i a l l y on Corona B e h a v i o r of Bundle Conductors", T r a n s a c t i o n s of the American I n s t i t u t e of E l e c t r i c a l Eng i n e e r s , V o l . 67, P a r t I I . 1948, pp. 1118-27. 7. Peek J r . , F.W., D i e l e c t r i c Phenomenon i n H i g h - V o l t a g e Eng i n e e r i n g , New York, M c G r a w - H i l l , 1929. 8. M i l l e r , J r . , C.J., "Mathematical P r e d i c t i o n of Radio and Corona C h a r a c t e r i s t i c s of Smooth, Bundles Cond u c t o r s " , T r a n s a c t i o n s of the American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 75, P a r t I I I , 1956, pp. 1029-37. 9. Adams, G.E., "An A n a l y s i s of the R a d i o - I n t e r f e r e n c e Char a c t e r i s t i c s of Bundled Conductors", T r a n s a c t i o n s of the American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 76, P a r t I I I , 1957, pp. 1569-85. 70 10. L i a o , T.W., and L a f o r e s t , J . J . , " R e l a t i o n s h i p between Corona and Radio Noise on T r a n s m i s s i o n L i n e s " , T r a n s a c t i o n s of the American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 78, October 1959. pp. 706-712. 11. L i a o , T.W., "Radio I n f l u e n c e V o l t a g e s caused by S u r f a c e I m p e r f e c t i o n s on S i n g l e and Bundle Conductors' ^ T r a n s a c t i o n s of the American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 78, December 1959. pp. 1038-46. 1 12. Temoshok, M., " R e l a t i v e S u r f a c e V o l t a g e G r a d i e n t s of Grouped Conductors", T r a n s a c t i o n s of the American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 67, P a r t I I , 1948, pp. 1583-89. 13. Weber, E., E l e c t r o m a g n e t i c F i e l d s , V o l I . , New W i l e y and Sons I n c . 1957. York, John 14. Peck, E.R., E l e c t r i c i t y and Magnetism, New H i l l Book Company I n c . , 1953. 15. Attwood, S.S., E l e c t r i c and Magnetic F i e l d s , New John W i l e y and Sons, 1949. 16. S t e w a r t , C.A., Advanced C a l c u l u s , London, Methuen and L t d . , 1940. 17. Dwight, H.B. "The D i r e c t Method of C a l c u l a t i o n of Capac i t a n c e of Conductors", T r a n s a c t i o n s of the American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 43, 1924, pp. 1034-39. 18. Dwight, H.B., and S c h e i d l e r , F.E., "Capacitance and Surf a c e V o l t a g e G r a d i e n t of T r a n s m i s s i o n L i n e s " , T r a n s a c t i o n s of the American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 71. P a r t I I I . 1952. pp. 563-566. 19. Dwight, H.B. E l e c t r i c a l Elements of Power T r a n s m i s s i o n L i n e s , New York, M c M i l l a n Company, 1953. 20. Batemann, H., P a r t i a l D i f f e r e n t i a l E q u a t i o n s , Cambridge, The U n i v e r s i t y P r e s s , 1932. 21. Edwards, J . , I n t e g r a l C a l c u l u s , London, M c M i l l a n and 1930. 22. C h r i s t i e , C.V., E l e c t r i c a l E n g i n e e r i n g , New H i l l Book Co., 1952. 23. C h u r c h i l l , R.V., I n t r o d u c t i o n t o Complex V a r i a b l e s and A p p l i c a t i o n s , McGraw-Hill Book Co.. 1948. York, McGrawYork, Co. Co., York, McGraw- 71 24. Copson, E.T., Theory of F u n c t i o n s of a Complex V a r i a b l e , O x f o r d , The C l a r e n d o n P r e s s , 1955. 25. Rauscher, M., I n t r o d u c t i o n to A e r o n a u t i c a l Dynamics, York, John W i l e y and Sons, 1953. 26. B y e r l y , W.E., Elements of t h e I n t e g r a l C a l c u l u s , l o r k , G.E. S t e c h a r t and Co., 1926. 27. H i l d e b r a n d , P.B., I n t r o d u c t i o n t o N u m e r i c a l A n a l y s i s , New York, M c G r a w - H i l l Book Co., 1956. 28. Page, C. H., P h y s i c a l Mathematics, New York, D. Nostrand Co., 1955. 29. Margenau, H., and Murphy, G.M., The Mathematics of Phys i c s and C h e m i s t r y , New York, D. Van N o s t r a n d Co., 1957. 30. S e h m e i d l e r , W., I n t e g r a l g l e i c h u n g e n m i t Anwendungen i n P h y s i k und T e c h n i k , L e i p z i g , Akademische V e r l a g s g e s e l l s c h a f t , 1955. 31. Neumann, E.R., Ueber d i e Konforme A b b i l d u n g Komplimentarer G e b i e t e , Mathematische Annalen, V o l . 116, 1938/ 1939, pp. 664-695. 32. M o r r i s , R.M., Two-Dimensional P o t e n t i a l Problems, P r o ceedings of the Cambridge P h i l o s o p h i c a l S o c i e t y , V o l . 33, 1937, pp. 474-484. 33. Wrinch, D.M., Some Problems of Two-Dimensional E l e c t r o s t a t i c s , P h i l o s o p h i c a l Magazine, S e r . 6, V o l . 48, J u l y - Dec. 1924, pp. 692-703. 34. Dwight, H.B., S u r f a c e V o l t a g e G r a d i e n t on Power T r a n s m i s s i o n L i n e s , T r a n s a c t i o n s of t h e American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 76, 1957, pp. 1217-1220. 35. Gross E.T.B., and S t e n s l a n d , L.R., C h a r a c t e r i s t i c s of Twin Conductor Arrangements, T r a n s a c t i o n s of t h e American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 77, P a r t I I I , 1958, pp. 721-725. 36. Reichman, J . , Bundled Conductor V o l t a g e G r a d i e n t C a l c u l a t i o n , T r a n s a c t i o n s of the American I n s t i t u t e of E l e c t r i c a l E n g i n e e r s , V o l . 78, 1959, pp. 598-607. 37. C l a r k e , E., C i r c u i t A n a l y s i s of A-C Power Systems, V o l . I , New York, John W i l e y and Sons I n c . , 1950. New New Van 72 38. Adams, G.E., V o l t a g e G r a d i e n t s on H i g h - V o l t a g e Transm i s s i o n L i n e s , T r a n s a c t i o n s of t h e American I n s t i t u t e o f E l e c t r i c a l E n g i n e e r s , V o l . 74, 1955, pp. 5-11. 39. Woods, F.S., Advanced C a l c u l u s , New York, Ginn and Company, 1934. 40. H i l d e b r a n d , F.B., Advanced C a l c u l u s f o r E n g i n e e r s , New York, P r e n t i c e H a l l I n c . , 1949. 41. Courant, R., and H i l b e r t , D«, Methods of Mathematical P h y s i c s , New York, I n t e r s c i e n c e P u b l i s h e r s I n c . , 1953. 73 APPENDIX I . THREE PARALLEL CONDUCTING CYLINDERS 17 Equation (2-10) C O 2na 1 + 2 ° Y. ( ~ ) cos n6 1 n s coul./m (2-10) 2 r e f e r s t o t h e case of a c o n d u c t i n g c y l i n d e r w i t h charge -a, coul./m p l a c e d p a r a l l e l t o a l i n e charge of s t r e n g t h +q coul./m. I f t h e charge on t h e c o n d u c t i n g c y l i n d e r and t h e l i n e charge b o t h a r e p o s i t i v e i t f o l l o w s t h a t E q u a t i o n (2-10) becomes CO ~ 27ta a 1~2 Y. ( f " ) 1 nc o s n s S coul./m (I-l) R e f e r t o t h e i s o l a t e d system shown i n P i g . I - l . The t h r e e c o n d u c t i n g c y l i n d e r s may be c o n s i d e r e d an ungrounded three—phase t r a n s m i s s i o n l i n e w i t h charges and p o t e n t i a l s as indicated. The p o t e n t i a l s V^, Vg and Vg a r e s p e c i f i e d w i t h r e s p e c t t o t h e ungrounded n e u t r a l o f t h e e q u i v a l e n t s t a r connection. I t i s d e s i r e d t o determine t h e s u r f a c e charge d e n s i t y on each c o n d u c t o r , and f o r t h i s purpose an " i t e r a t i v e " method w i l l be employed as f o l l o w s . At t h e o u t s e t t h e t h r e e conductors a r e assumed t o have u n i f o r m s u r f a c e charge d e n s i l 2 3 /2 °1 = 2 i a » °2 = 2^ °3 = 2wa" °/ respectively. a t i e s 4 q a n d c o u l Then a f i r s t c o r r e c t i o n , 0-^2' ^ a * o u n d * O T m "^ ne charge d e n s i t y of conductor 1 due t o t h e presence of t h e u n i f o r m charge 2 on conductor 2. S i m i l a r l y a f i r s t c o r r e c t i o n , o*^g, i s found f o r conductor 1 due t o t h e presence o f t h e u n i f o r m q charge on conductor 3. Thus t h e f i r s t s u b s c r i p t r e f e r s t o 74 the conductor t o which t h e c o r r e c t i o n i s t o be a p p l i e d and t h e second s u b s c r i p t t o t h e conductor g i v i n g r i s e t o t h e c o r r e c tion. I t f o l l o w s t h a t one s i m i l a r l y must f i n d o" ^, °23 a n d 2 0*31' egg• Then h a v i n g determined t h e f i r s t c o r r e c t i o n one may f i n d t h e second c o r r e c t i o n > ^ { 3 e t c . which depend on the f i r s t c o r r e c t i o n s ov,^, 0 g * « e c 2 C o n s i d e r a d i f f e r e n t i a l l i n e element o f charge a t p o i n t N on conductor 2. q 2 / / x d-8 coul./m and from E q u a t i o n ( I - l ) i t f o l l o w s a *aia dcNo = - (fera 12 ~ ~ 2™ But cos n a, d This element i s a l i n e charge o f s t r e n g t h 5 ^ a dB ) (1-2) d P2> n = £1 k =00 1 + I 1 _1 n =co n 9 C 0 S n + k - 1 (|) k n ( 6 k - »> a cos k 6 2 (1-3) and sin na k = co n + , v k = 1 0 n s d k - 3| ( | ) s i n k 8 k 2 is. (1-4) E q u a t i o n s (1-3) and (1-4) a r e t h e n s u b s t i t u t e d i n E q u a t i o n (1-2) above and t h e r e s u l t i n g e x p r e s s i o n r e s p e c t t o 8. i s integrated with C o l l e c t i n g terms one o b t a i n s <1 2 '12 0 0 1 NB' 0 0 s n6 I t f o l l o w s t h a t a s i m i l a r procedure used f o r conductor 3 r e sults i n q „ 00 3 H J 13 then 'l-K-St' CO 28' (f ) n cos -6 - g I (fc>» cos n6 oo (1-5) 75 For conductors 2 and 3 one a l s o f i n d s 2 = ozr2 ~ 2na q l *y /axn L (-) cos nB, na * j *s' q - 3 "~ 2lta L \ 2 o n (-) V 1 cos n6 (1-6) /a n x (1-7) Q 1 From F i g . 1-1 ( T C - 6) = 8 *1 c t&\Ti C O oo V" l oo V" 3 — — H a L Q C O (|) I or 9 6 = (it - 8 ) . q„ cos n 8 n 2 Hence 0 co ^3 I -— {=£) cos n 8 n 2 P r o c e e d i n g i n t h e same manner as b e f o r e d o i = 2 t ,( f s' ) n cos ~ tea q V~ ° n 0 s=co } C S ^2 n = 1 n = 1 m = ©2 2 _ ( f ) cos m(6 - a ) m = 1 q, n =oo q. n =co l v /a \n o X (g.) cos nB. Tea n = £1( J ) n = 1 m =co m na n adB, n P 2 Tta (1-8) m 2 2 u cos n 8 n adB, 3 7ta m = I] 1 (f) cos m (6 - ct«J (1-9) S u b s t i t u t i n g Equations (1-3) and (1-4) i n (1-8) and ( 1 - 9 ) , and i n t e g r a t i n g t h i s expression with respect to 8 4i '12 A,l cos 6 + A„& cos 26 + ... + A n cos n6 + ... +! na ^3 B^ cos 6 + B Tta where A n In n=co 2 cos 26 + ... + B (?)*" D|) cos n 8 = 2 ' n=l' S k=co n s 2 ~ k=l (* + * - cos n6 + n ...+ D ( f ) cos k B k 2 2 +n k (f) n = + k o o o k ( | ) " ( - f <?>! x( dB f(J) f + (f>r + ^(f) + ... + ( - ^(f)" + 0 a\n B 2 tii J + + k - 1\ /a\k ) (-) a\2/n <!>'< ^* + 1\/a\2 2 + + ... + /-a\ k 2 76 and m has been r e p l a c e d by n. 0"^ r i v e d f o r o^g S i m i l a r e x p r e s s i o n s may be de- o^g e t c . w i t h i n c r e a s i n g l y complex ex- pressions r e s u l t i n g . I t i s noted t h a t the lowest order terms i n (—) due t o t h e s second c o r r e c t i o n i s of 3 r d o r d e r , i . e . , (—) . For a p r a c s t i c a l t r a n s m i s s i o n l i n e a = 1 i n c h s = 30 f e e t hence (—)^ i s s completely n e g l i g i b l e . (1-6) and ( 1 - 7 ) . However, c o n s i d e r Equations These were d e r i v e d on t h e assumption t h a t the charge on conductors o t h e r than t h e one c o n s i d e r e d c o u l d be r e p r e s e n t e d as l i n e charges cylinders. (1-5), a t the c e n t r e of the c i r c u l a r Hence one then has a good e s t i m a t e of the e r r o r i n c u r r e d i n t h e charge d e n s i t y by t r e a t i n g the a d j a c e n t d u c t o r s as l i n e charges. con- 77 APPENDIX I I . CONFORMAL MAPPING OP HARMONIC FUNCTIONS L e t z = x + j y and w = u + j v r e p r e s e n t two complex p l a n e s which w i l l be denoted t h e Z-plane and W-plane i n t h e d i s c u s s i o n following. Consider the f u n c t i o n w = f ( z ) . For a l l points df (z) where f (z) i s a n a l y t i c and ^ ' £ 0 t h e f u n c t i o n f (z) i s s a i d t o g i v e a conformal mapping o f those p o i n t s from t h e Z-plane 23 z onto t h e W-plane . Hence one can map a r e g i o n o f t h e Z-plane onto t h e W-plane c o n f o r m a l l y i f t h e mapping f u n c t i o n f ( z ) s a t i s f i e s t h e c o n d i t i o n s s p e c i f i e d above. A f u n c t i o n which s a t i s f i e s L a p l a c e e q u a t i o n i s termed a harmonic f u n c t i o n . L e t V represent a p o t e n t i a l f u n c t i o n , then i n a charge f r e e r e g i o n , dV n *x V C o n s i d e r a t r a n s f o r m a t i o n o f t h i s e q u a t i o n t o u and v c o - o r d i n a t e s where u = u ( x , y ) , v = v ( x , y ) and w = u + j v . one can w r x.t.e1 3 2 + Then _ bV £u £V ^ v £x ~ >>u c\x <yr a v _bv 2 tt£ ^L(^)2.$v 6 2 d + X 2 2 W 2 u )2 d v,hX + r + d dx 2 + ^2 > . t 1 1 v " ' 1 Similarly 5 ^ - ^u + ^ 2 W j V + u + d 2 V U I 2 ) v A d d i t i o n o f E q u a t i o n s ( I I - l ) and ( I I - 2 ) y i e l d s A 2 u x + -\ 2 ~ °y V TT2 ^u + A 2' u v (^) 2 + (S*> | 2 S i n c e t h e Cauchy Riemann e q u a t i o n s s t a t e (H-3,) 78 and $H = - = ox by by Hence L a p l a c e b* e q u a t i o n i s i n v a r i e n t t o conformal mappings, t h a t i s , harmonic f u n c t i o n s remain harmonic when s u b j e c t e d t o conformal transformations. However, i t i s c l e a r t h a t one r e - q u i r e s t h e mapping f u n c t i o n t o s a t i s f y t h e c o n d i t i o n s laid down above s i n c e (|f) <^> 2 2 dw dz + Any conducting s u r f a c e kept a t a p o t e n t i a l V i s an e q u i - potential surface. Hence i f t h e conducting surface i s p o s i - t i o n e d i n t h e Z-plane i t f o l l o w s t h a t V(x,y) = c (II-4) where c i s a c o n s t a n t . Under a conformal transformation from t h e Z-plane t o t h e W-plane t h e c o - o r d i n a t e s x and y a r e represented as f u n c t i o n s o f u and v , t h e r e f o r e i n t h e W-plane V(x,y) = V x(u,v), Therefore y(u,v) j = c (H-5) t h e boundary c o n d i t i o n g i v e n by E q u a t i o n (II-4) i n the Z-plane remains unchanged i n t h e W-plane. The e l e c t r i c f i e l d i n t e n s i t y i n t h e Z-plane i s g i v e n by A l s o i n t h e W-plane t h e e l e c t r i c f i e l d i n t e n s i t y i s g i v e n by E + u " j J E v „ - 51 - bu J -j 2£ « - ( M ) * bv *n (H-7) where Q i s a complex p o t e n t i a l f u n c t i o n w i t h Q = V + j U and U being t h e harmonic conjugate t o V„ a l s o be w r i t t e n Equation ( I I - 7 ) may 79 U " V Hence i t f o l l o w s E E dz dw Equation (II-8) obviates (II-8) the n e c e s s i t y of e v a l u a t i n g the poten- t i a l f u n c t i o n i n t h e W-plane i f one i s i n t e r e s t e d o n l y i n t h e magnitude of t h e e l e c t r i c f i e l d intensity. Only a b r i e f d i s c u s s i o n o f conformal mapping has been g i v e n here, however, the f e a t u r e s mentioned a r e the more i m p o r t a n t ones. considered See References 13,23*24.
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Optimization of conductor shapes and configuration...
Open Collections
UBC Theses and Dissertations
Featured Collection
UBC Theses and Dissertations
Optimization of conductor shapes and configuration of conductor bundles for high voltage transmission Christensen, Gustav Strom 1960
pdf
Page Metadata
Item Metadata
Title | Optimization of conductor shapes and configuration of conductor bundles for high voltage transmission |
Creator |
Christensen, Gustav Strom |
Publisher | University of British Columbia |
Date Issued | 1960 |
Description | This thesis discusses the minimization of the electric field intensity on electric power transmission line conductors. Two separate cases are considered. One, transmission lines with one conductor per phase, and two, transmission lines with several conductors per phase. Non-circular conductors are considered for the case when only one conductor is used for each phase. Some contours subject to conformal mapping are investigated to determine if conductors of such shapes provide less variation in electric surface charge density than circular conductors. Also a perturbation method is developed which essentially consists in perturbing the boundary of a circular cylinder in such a manner that the electric surface charge density on the cylinder is uniform when it is placed parallel to line charges. Using this method it is found that a solution exists only in one particular case. In considering, several conductors per phase, that is, bundled conductors, the bundle configuration is changed from the symmetrical form normally used until the same maximum electric field intensity exists on all conductors of the same phase. Transmission lines with three and four conductor bundles are treated. The optimum configuration was determined by aid of the Alwac III-E digital computer and the results obtained are indicated. |
Subject |
Electric conductors |
Genre |
Thesis/Dissertation |
Type |
Text |
Language | eng |
Date Available | 2011-12-08 |
Provider | Vancouver : University of British Columbia Library |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
DOI | 10.14288/1.0105039 |
URI | http://hdl.handle.net/2429/39544 |
Degree |
Master of Applied Science - MASc |
Program |
Electrical and Computer Engineering |
Affiliation |
Applied Science, Faculty of Electrical and Computer Engineering, Department of |
Degree Grantor | University of British Columbia |
Campus |
UBCV |
Scholarly Level | Graduate |
Aggregated Source Repository | DSpace |
Download
- Media
- 831-UBC_1960_A7 C4 O6.pdf [ 4.67MB ]
- Metadata
- JSON: 831-1.0105039.json
- JSON-LD: 831-1.0105039-ld.json
- RDF/XML (Pretty): 831-1.0105039-rdf.xml
- RDF/JSON: 831-1.0105039-rdf.json
- Turtle: 831-1.0105039-turtle.txt
- N-Triples: 831-1.0105039-rdf-ntriples.txt
- Original Record: 831-1.0105039-source.json
- Full Text
- 831-1.0105039-fulltext.txt
- Citation
- 831-1.0105039.ris
Full Text
Cite
Citation Scheme:
Usage Statistics
Share
Embed
Customize your widget with the following options, then copy and paste the code below into the HTML
of your page to embed this item in your website.
<div id="ubcOpenCollectionsWidgetDisplay">
<script id="ubcOpenCollectionsWidget"
src="{[{embed.src}]}"
data-item="{[{embed.item}]}"
data-collection="{[{embed.collection}]}"
data-metadata="{[{embed.showMetadata}]}"
data-width="{[{embed.width}]}"
async >
</script>
</div>

http://iiif.library.ubc.ca/presentation/dsp.831.1-0105039/manifest