UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Corrosion behaviour of nickel and monel in aqueous fluoride media. Ney, Hugh Daniel Wallingford 1964-10-04

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
831-UBC_1964_A7 N4.pdf [ 5.38MB ]
Metadata
JSON: 831-1.0104914.json
JSON-LD: 831-1.0104914-ld.json
RDF/XML (Pretty): 831-1.0104914-rdf.xml
RDF/JSON: 831-1.0104914-rdf.json
Turtle: 831-1.0104914-turtle.txt
N-Triples: 831-1.0104914-rdf-ntriples.txt
Original Record: 831-1.0104914-source.json
Full Text
831-1.0104914-fulltext.txt
Citation
831-1.0104914.ris

Full Text

CORROSION BEHAVIOUR OF NICKEL AND MONEL' IN AQUEOUS FLUORIDE MEDIA by HUGH D. W. NEY \ A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN THE DEPARTMENT of METALLURGY We accept t h i s t h e s i s as conforming t o the required standard •Members of the Department of Metal lurgy THE UNIVERSITY OF BRITISH COLUMBIA February 196^  In presenting t h i s thesis i n p a r t i a l fulfilment of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It i s understood that copying or publication of this thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of M E T A L L U R G Y The University of B r i t i s h Columbia, Vancouver Canada. Date F e b r u a r y 1964  ABSTRACT The c o r r o s i o n behaviour of n i c k e l and monel i n aqueous f l u o r i d e so lut ions was s tudied by p o t e n t i o s t a t i c p o l a r i z a t i o n techniques and surface examination of the corroded specimens. N i c k e l does not e x h i b i t the u s u a l a c t i v e - p a s s i v e t r a n s i t i o n f o r 0 < pH •< 4.0 but corrodes r a p i d l y e s p e c i a l l y at the g r a i n boundaries . In the range k.O < pH < 6.5 the n i c k e l - p o l a r i z a t i o n curve contains two a c t i v e r e g i o n s . N i c k e l i s passive i n contaat w i t h a f l u o r i d e s o l u t i o n t w i t h 6.5 < pH < 12.0. P o l a r i z a t i o n curves of n i c k e l i n f l u o r i d e s o l u t i o n s of v a r i e d pH's and f l u o r i d e ion concentrations i n the range 4.0 < pH < 7.0 revealed that the current as a f u n c t i o n - o f p o t e n t i a l i n the f i r s t a c t i v e r e g i o n i s ' independent of f l u o r i d e ion concentrat ion but dependent on pH. -The c u r r e n t s ' i n the f i r s t passive and second a c t i v e regions are a f u n c t i o n of pH and f l u o r i d e i o n concentra t ion . Surface examinations showed that n i c k e l corrodes at the g r a i n boundaries i n the second a c t i v e r e g i o n . A mechanism has been proposed which accounts f o r c o r r o s i o n i n the second a c t i v e region by F adsorpt ion and p a s s i v a t i o n by e i t h e r H 20 or OH adsorpt ion on the a n o d i c a l l y p o l a r i z e d metal sur face . • A mathematical a n a l y s i s based on competitive adsorpt ion of these species as a f u n c t i o n of e lec t rode p o t e n t i a l i s shown t o be consis tent w i t h the experimental d a t a . Monel corrodes at: ^.ess than h a l f the. rate of n i c k e l at the mixed p o t e n t i a l i n f l u o r i d e s o l u t i o n s w i t h 0 < pH < 6.5 due to i t s l a r g e r hydrogen overvoltage. Monel e x h i b i t s a c t i v e - p a s s i v e behaviour s i m i l a r t o n i c k e l but w i t h the passive current up to 6 times as l a r g e . ACKNOWLEDGEMENT . The author wishes to express a p p r e c i a t i o n t o members of the Department of M e t a l l u r g y , p a r t i c u l a r l y to D r . E . Peters and M r . W . M. Armstrong, who d i r e c t e d t h i s work. S p e c i a l thanks are extended to Mrs. W. M. Armstrong f o r many h e l p f u l d i s c u s s i o n s . . F i n a n c i a l support from Aluminium Laborator ies L i m i t e d i n the form of a Fel lowship and from the N a t i o n a l Research C o u n c i l under Grant No. A-1463, i s g r a t e f u l l y acknowledged. TABLE OF CONTENTS Page INTRODUCTION . . . . 1 Previous Work . . . . . . . . . . . . . . . 1 • Potent i o s t a t i c - . P o l a r i z a t i o n 5 p H - P o t e n t i a l Diagram f o r N i - H 20 . . . . . 12 Purpose and Scope of Present I n v e s t i g a t i o n .• 14 APPARATUS AND EXPERIMENTAL . . . . . . . . . . 16 E l e c t r o c h e m i c a l C e l l and E l e c t r i c a l Apparatus . . . . . . 16 M a t e r i a l s ' 20 P o l a r i z a t i o n Curves V 21 Surface Examination . . . . . . . . . 23 RESULTS AND DISCUSSION 2k N i c k e l i n A c i d F l u o r i d e . S o l u t i o n s . 24 N i c k e l i n N e u t r a l F l u o r i d e Solut ions . . . . . . . . . . . 27 " N i c k e l i n Basic F l u o r i d e S o l u t i o n s . . . . 44 Mechanism of Nickel C o r r o s i o n i n F l u o r i d e Media . . . . . 46 Monel . 56 CONCLUSIONS: 60 i fl RECOMMENDATIONS FOR FUTURE INVESTIGATIONS 62 REFERENCES 63 APPENDIX A 65 LIST OF FIGURES Figure Page 1. T y p i c a l P o l a r i z a t i o n Curve of a Metal with an A c t i v e - Passive T r a n s i t i o n 4 2. Cathodic Curves w i t h D i f f e r e n t Redox Exchange Currents Superimposed' on an Anodic Curve . . . . . . . . . . . . . 9 3 . P o l a r i z a t i o n Curves Showing E f f e c t of Change i n Cathodic Redox Exchange Current . . . . . . . . . . . . . . . 10 4 . Anodic or Cathodic Rate C o n t r o l of the C o r r o s i o n Current H 5. Nickel-Water p H - P o t e n t i a l Diagram . . . . ' 13 6. E l e c t r o c h e m i c a l C o r r o s i o n C e l l 17 7. Schematic Diagram of E l e c t r i c a l Apparatus , 19 8 . P o l a r i z a t i o n Curve of N i c k e l i n F l u o r i d e S o l u t i o n at pH = 2 .2 2 5 9 . Mixed P o t e n t i a l versus pH . 26 10. Surfaces of N i c k e l Corroded i n F l u o r i d e s at Low pH . . 28 11. P o l a r i z a t i o n Curve of N i c k e l i n F l u o r i d e S o l u t i o n at pE = 6.2 . . . . 29 12. Exchange Current versus pH . 31 13. C r i t i c a l Anodic Current versus pH . . . . . . . . . . . . 31 14. . Logarithm of the Minimum Passive Current versus pH + pF 32 15. Current-Time Curves at Se lec ted Regions of N i c k e l P o l a r i z a t i o n Curve i n 0 .42 M NaF s o l u t i o n at pH = 6 .2 34 16. Surfaces of N i c k e l i n the F i r s t A c t i v e State Corroded i n 0 .42 M-NaF at pH = 6 .2 . . . . . . . . . . . . 35 17. Surfaces of N i c k e l i n the Passive State Corroded i n Solut ions of pH = 6 .2 36 18. P o t e n t i a l at the Second A c t i v e Peak versus .pH p l u s p F . 38 19. Log Current Densi ty at the Second A c t i v e Peak versus pH p l u s p F 38 2 0 . The P o t e n t i a l at the I n i t i a t i o n of the Second A c t i v e Region versus pH plus 2pF 39 L i s t of Figures . C o n t i n u e d . . . . Figure ^ Page 21; P o s i t i v e Slope i n Second A c t i v e Region versus pH +. pF . -^0 22. P o l a r i z a t i o n Curve of N i c k e l i n 0.2 M NaCl S o l u t i o n at pH = 6.1 hi 23. Surfaces of N i c k e l Corroded i n F l u o r i d e S o l u t i o n s - a t pH = 6.2 . . J . ^3 2k. P o l a r i z a t i o n Curve of N i c k e l i n 0.^2 M-NaF S o l u t i o n at pH = 11 J3 ^5 . 25. . P o t e n t i a l Funct ion of Ion i n V i c i n i t y of a Charged Elec t rode ? . . . . . . . . . 51 26. M i c r o - s t r u c t u r e ' of N i c k e l Showing Second Phase . . . . 5 2 .27. Flade P o t e n t i a l ' / E p , , and P o t e n t i a l at I n i t i a t i o n of Second A c t i v e Region versus pH . . . . 5^ 28. P o l a r i z a t i o n Curve of Mionel i n Q.k2 M NaF S o l u t i o n of pH = 6". 2 57 29. P o l a r i z a t i o n Curve of Monel i n 0.^2 M NaCl S o l u t i o n at pH = 6.2 59 LIST OF TABLES Table I . Experimental Condi t ions Table I I . P o l a r i z a b i l i t i e s and R e f r a c t i o n s of the H a l i d e Ions OH"" and H 2 0 Table I I I . Exchange^Currents of Monel and N i c k e l i n S i m i l a r Solut ions . . . . . INTRODUCTION .Previous.Work The c o r r o s i o n r e s i s t a n c e of n i c k e l and. n i c k e l a l l o y s t o f l u o r i n e , hydrogen f l u o r i d e and aqueous f l u o r i d e s i s w e l l known. A review"*" of •materials r e s i s t a n t t o f l u o r i n e and i t s ..compounds states that n i c k e l and' monel --(70$ n i c k e l , 30^ copper) are the most v e r s a t i l e . N i c k e l and n i c k e l a l l o y s are 2 used i n uranium f u e l d i f f u s i o n p l a n t s , uranium f u e l reprocess ing p l a n t s and i n a l k y l a t i o n p l a n t s , a l l of which use f l u o r i n e , hydrogen f l u o r i d e , or other f luorides ,•anhydrous, or aqueous. Some q u a l i t a t i v e researches. have been done on the c o r r o s i o n of k n i c k e l and i t s a l l o y s i n f l u o r i d e s . Takhtarova and Antonovskaya found monel and " n i c k e l to-be r e s i s t a n t to K F . H F , N H 4 F , N H 4 F . H F , HF i n l i q u i d and vapor phases i n the absence of oxygen. Of these , h y d r o f l u o r i c a c i d was the 5 6 most c o r r o s i v e . Both Schuss ler and Braun found monel t o be r e s i s t a n t t o aqueous, concentrated HF but that exposure t o the atmosphere r e s u l t e d i n severe a t t a c k . Braun a l s o found, that ga lvanic c o u p l i n g w i t h s i l v e r and . s i l v e r solders i n the presence of oxygen increased the a t tack on monel. Although none of t h e . p r e v i o u s work on n i c k e l c o r r o s i o n descr ibed p o l a r i z a t i o n s tudies i n f l u o r i d e s o l u t i o n s , some work has been-done on the e f f e c t of other halogen ions on the p o l a r i z a t i o n of n i c k e l i n sulphates . 7 ft Turner , u s i n g g a l v a n o s t a t i c p o l a r i z a t i o n techniques , found that c h l o r i d e ft This r e f e r s to the method: of a p p l y i n g a constant e x t e r n a l current t o an electrode and f o l l o w i n g the change i n e lec t rode p o t e n t i a l w i t h t ime. - 2 - ions increased the current that was required to pass ivate a n i c k e l e l e c t r o d e . This was a t t r i b u t e d to the f a c t that N i C l 2 i s more soluble than NiS04 which was suggested to be the f i r s t f i l m . f o r m e d i n the p a s s i v a t i n g mechanism. 8 More r e c e n t l y , Trueriipler a n d . K e l l e r , us ing p o t e n t i o s t a t i c p o l a r i z a t i o n techniques (holding electrode p o t e n t i a l constant independent of current and time) s tudied the a f f e c t of C l and Br on the p a s s i v a t i o n behaviour of n i c k e l i n sulphate s o l u t i o n . They too found that halogen ions increased the a c t i v i t y of n i c k e l (defined here as the anodic d i s s o l u t i o n current of n i c k e l i n a c t i v e p o t e n t i a l r e g i o n s , see F i g u r e ' 1 ) . The presence of halogen ions a l s o caused a second a c t i v e region above -300 mV. In both ++ a c t i v e regions the c o r r o s i o n process y i e l d e d N i i o n s . . H a l i d e ions have a l s o been reported t o produce a secondary a c t i v i t y 9 i n z i rconium, magnesium and aluminium s i m i l a r t o that found.by Truempler and K e l l e r except that the e lec t rode d i d not pass ivate a g a i n . T h i s second a c t i v e peak r e s u l t e d i n p i t t i n g c o r r o s i o n . The mechanism as expla ined by K o l o t y r k i n ^ w i l l be discussed l a t e r i n reference to the present work. B r i e f l y , he a t t r i b u t e s the second a c t i v e peak t o the adsorpt ion of the h a l i d e ions due to t h e i r p o l a r i z a b i l i t y at higher e lec t rode p o t e n t i a l s so that they replace the p a s s i v a t i n g oxygen at random s i t e s . The h a l i d e ions cause the n i c k e l to i o n i z e by forming complexes w i t h the n i c k e l atoms. The c r i t i c a l concentrat ion of h a l i d e i o n s " i s i n i t i a t e d and maintained at the d i s s o l u t i o n s i t e s as the h a l i d e ions carry the current to them. Other work has been done on n i c k e l i n sulphate e l e c t r o l y t e s . 11 Tronstad s tudied the f i l m s on n i c k e l by p o l a r i z e d l i g h t . He proposes that the p a s s i v i t y i s due to the formation of an oxide f i l m which grows - 3 - to a constant thickness of about kO A . M a c G i l l a v r y et a l . s tudied n i c k e l p o t e n t i a l s . i n s o l u t i o n s of v a r i o u s . f o r e i g n - i o n s . He proposed that d i s s o l u t i o n of n i c k e l i n the presence of 0 2 takes place by. the i n t e r a c t i o n of hydrogen ions wi th the oxide f i l m . 13 lk Vett.er and A r n o l d and Osterwald and U h l i g obtained s i m i l a r r e s u l t s f o r the p o t e n t i o s t a t i c p o l a r i z a t i o n of n i c k e l i n s u l p h u r i c a c i d . However,. they postula ted d i f f e r e n t mechanisms f o r the p a s s i v a t i n g process . V e t t e r fo l lows Evan's school i n proposing that the p a s s i v a t i o n r e s u l t s from oxide or hydroxide f i l m formation whereas U h l i g maintains that chemisorbed oxygen from water pass ivates the metal sur face . The question of. the mechanism,of metal p a s s i v a t i o n i s probably one 15 of d e f i n i t i o n as much as concept. Evans , in suggesting t h i s , has s tated that a. three-dimensional f i l m i s necessary f o r a metal to remain passive, under changing c o n d i t i o n s . .He r e a d i l y admits t h a t , upon a t t a i n i n g the Flade p o t e n t i a l (E-p i n Figure 1) l e s s than a monolayer of oxygen i s s u f f i c i e n t t o stop c o r  r o s i o n . The monolayer w i l l tend to grow to an oxide f i l m , the thickness depending on the p o t e n t i a l and character of the supporting e l e c t r o l y t e . 16 Bune a n d . K o l o t y r k i n have used, various , oxidants i n sulphate s o l u t i o n s to show that these produce', anodic currents which p o l a r i z e the n i c k e l i n the same way that a n i c k e l e lectrode can be p o l a r i z e d p o t e n t i o s t a t i c a l l y . They concluded that the d i s s o l u t i o n current of n i c k e l is. a f u n c t i o n of the electrode p o t e n t i a l o n l y . . This i s important as i t i n d i c a t e s that metals . can be chemi c a l l y pass ivated by the a d d i t i o n of o x i d i z i n g agents t o the c o r r o s i v e medium. P o t e n t i a l F i g u r e 1. T y p i c a l P o l a r i z a t i o n Curve of a Metal with an A c t i v e - P a s s i v e T r a n s i s t i o n . i i P o t e n t i o s t a t i c P o l a r i z a t i o n P o l a r i z a t i o n of metals i n s o l u t i o n has long been used as a method t o e l u c i d a t e c o r r o s i o n mechanisms and t o determine the p o s s i b i l i t i e s of anodic p r o t e c t i o n of the metal . However, i t i s only w i t h i n the past ten years that p o t e n t i o s t a t i c . techniques have been e x t e n s i v e l y . u s e d . Modern techniques are based on the use of an e l e c t r o n i c device c a l l e d a p o t e n t i o s t a t . T h i s instrument detects any v a r i a t i o n of the e lectrode p o t e n t i a l with respect to a reference e lec t rode which i s . i n the c i r c u i t . The p o t e n t i a l i s then brought back' to the preset value by a u t o m a t i c a l l y a d j u s t i n g - t h e current f lowing between the working e lec t rode and an a u x i l i a r y e lectrode (see .F igure 7 ) . 17 -23 Much has been w r i t t e n about p o t e n t i o s t a t i c p o l a r i z a t i o n methods The essence of these w i l l be b r i e f l y summarized here . P o t e n t i o s t a t i c t e c h  niques are u s u a l l y a p p l i e d t o the study of p a s s i v a t i n g e lec t rodes and i t i s i n t h i s connection they w i l l be d i s c u s s e d . F igure 1 shows t y p i c a l p o t e n t i o s t a t i c (a) and g a l v a n o s t a t i c (b) curves f o r a metal showing ah a c t i v e - p a s s i v e t r a n s i t i o n . The mixed or res t p o t e n t i a l of any electrode i n s o l u t i o n (no e x t e r n a l l y a p p l i e d current) i s that p o t e n t i a l at which the rate of the cathodic and anodic reac t ions occuring. . ; „ on i t s surface are e q u a l . In many instances the cathodic r e a c t i o n i s 2 H + + 2 e - H 2 , or i f oxygen i s present l / 2 0 2 + H 2 0 + 2e" 20H", a n d t h e anodic r e a c t i o n i s M —$>- M + + + 2e~. - 6 - I f the e lec t rode i s p o l a r i z e d c a t h o d i c a l l y , from t h e mixed p o t e n t i a l "by the a p p l i c a t i o n of an e x t e r n a l current the cathodic r e a c t i o n predominates and i t s rate increases w i t h f u r t h e r p o l a r i z a t i o n . . .S imilar considerat ions apply to anodic p o l a r i z a t i o n . .The r e l a t i o n between the logar i thm of current and the p o t e n t i a l of the e lec t rode i s known as the p o l a r i z a t i o n curve . I f the anodic r e a c t i o n increases as shown the electrode i s a c t i v e . However, .on f u r t h e r p o t e n t i o s t a t i c p o l a r i z a t i o n i n the anodic d i r e c t i o n the anodic current may f a l l sharply as the electrode becomes p a s s i v e . T h i s i s because the formation of a p r o t e c t i v e oxide or hydroxide f i l m becomes k i n e t i c - a l l y favourable or oxygen i s chemisorbed on the metal sur face . -As long as the passive state p e r s i s t s the anodic p o t e n t i a l causes no f u r t h e r increase i n c u r r e n t . The c o r r o s i o n rate i s . u s u a l l y c o n t r o l l e d by the rate of metal . ion d i f f u s i o n through the passive layer:. . , ••At some higher p o t e n t i a l i n the anodic d i r e c t i o n , the e lec t rode becomes t ranspassive ( i . e . the current begins t o r i s e s teeply) due t o f i l m breakdown or. the i n i t i a t i o n of another anodic r e a c t i o n . The p o l a r i z a t i o n curve can then be subdivided i n t o a . ca thodic region and an.anodic region with a c t i v e , passive and. t ranspassive p a r t s . C e r t a i n e l e c t r o c h e m i c a l parameters.may be determined from the p o l a r i z a t i o n curve which charac ter izes the meta l ' s c o r r o s i o n behaviour i n that p a r t i c u l a r medium. By e x t r a p o l a t i n g . t h e l i n e a r p o r t i o n s of the curve i n the a c t i v e r e g i o n , the c o r r o s i o n or mixed p o t e n t i a l s E m and the c o r r o s i o n or exchange c u r r e n t , i 0 , are determined by the i n t e r s e c t i o n , . F i g u r e 1. The exchange current i s the ra te of the anodic and cathodic r e a c t i o n s occuring on the e lectrode surface w i t h no e x t e r n a l l y a p p l i e d c u r r e n t . I f the anodic - 7 - current i s the o x i d a t i o n of the metal t o metal i o n s , then the,exchange 19 current gives the c o r r o s i o n rate . The slopes of the l i n e a r regions ( T a f e l slopes) are c h a r a c t e r i s t i c s of the anodic process , u s u a l l y metal d i s s o l u t i o n +n -M — M + ne and the cathodic process 2 H + + 2e~ — ^ H 2 or l / 2 0 2 .+ H 2 0 + 2e~ _ ^ 20H~ Linear regions of the p o l a r i z a t i o n curve i n d i c a t e an a c t i v a t i o n or concentrat ion c o n t r o l l e d , r e a c t i o n , both of which f i t the T a f e l - e q u a t i o n ' E - - E o = * l = a . + b l o g i where. E i s the p o t e n t i a l of the e l e c t r o d e , •E 0 i s . t h e r e v e r s i b l e p o t e n t i a l f o r the e lec t rode r e a c t i o n , % i s the overvoltage or p o l a r i z a t i o n , a and b are T a f e l constants , and i i s the current d e n s i t y . 2k The T a f e l equation can be derived, from t h e o r e t i c a l considerat ions . For an a c t i v a t i o n c o n t r o l l e d process i t can be shown that b = 2.$ RT c<n F and a = 2.3 RT l o g , i Q < X n F where R i s the u n i v e r s a l gas constant , •T i s the absolute temperature, n i s the number of e lec t rons being exchanged at the a c t i v a t i o n b a r r i e r F i s the Faraday constant and c< i s a factor .between o and 1 represent ing the symmetry of the a c t i v a t i o n b a r r i e r . -.8 - These r e l a t i o n s h i p s show,that measurement of the T a f e l slope permits the es t imat ion of n . I f n i s . known ( e . g . . i f the ra te -determining step i s i d e n t i c a l t o the o v e r a l l r e a c t i o n Ni —>• N i + + ' . + 2e~ i n which n = 2) then o< i s obtained. However, n may not be known because the number of e lec t rons t a k i n g part per molecule i n the ra te -determining step i s not n e c e s s a r i l y i d e n t i c a l with'the number i n . the o v e r a l l r e a c t i o n . I f i t can be assumed that i s approximately 0 . 5 , the number of e lec t rons i n the ra te -determining step may be a s c e r t a i n e d . I f b becomes i n f i n i t e then-the r a t e - c o n t r o l l i n g step i s not e l e c t r o c h e m i c a l . Thus an examination of the T a f e l p l o t of an e l e c t r o c h e m i c a l r e a c t i o n can sometimes r e v e a l the nature of the ra te -determining s tep . Three important parameters from the anodic p o l a r i z a t i o n curve of a metal showing an a c t i v e - p a s s i v e t r a n s i t i o n are the c r i t i c a l anodic current d e n s i t y , _"_ 1crit, the primary passive p o t e n t i a l Epp (the current d e n s i t y and p o t e n t i a l at the a c t i v e maximum) and the Flade p o t e n t i a l Ep (the most noble p o t e n t i a l at which an e lec t rode w i l l be s e l f - a c t i v a t e d a f t e r p a s s i v a t i o n ) . These i n d i c a t e the ease of p a s s i v a t i o n and s t a b i l i t y of the passive c o n d i t i o n of a metal . . Low values of : . i c r i t and a c t i v e values o f Bgp and-Ep lead; t o ease of p a s s i v a t i o n . An a c t i v e value of Ep a l s o i n d i c a t e s s table p a s s i v a t i o n i n unstable environments. A long range of p o t e n t i a l through which the metal remains passive and a smal l passive c o r r o s i o n rate i p , enhance the p o s s i b i l i t i e s f o r p r o t e c t i n g the metal, by anodic p o l a r i z a t i o n . . Th'is can be i l l u s t r a t e d by c o n s i d e r i n g d i f f e r e n t a c t i v a t i o n - c o n t r o l l e d reduct ion p o l a r i z a t i o n curves when superimposed on the anodic curve . Three such curves w i t h d i f f e r e n t redox 23 -exchange currents are shown i n Figure 2. - 9 - .!>» -P •H CQ a a -p <D u u o o © ^ •—N © \ © ^ C 1 V A c t i v e Figure 2 . P o t e n t i a l Cathodic Curves w i t h D i f f e r e n t Redox Exchange Currents Superimposed on an 1 Anodic Curve . Noble For case 1 the rate of o x i d a t i o n equals the rate of r e d u c t i o n at point A i n d i c a t i n g that the electrode i s i n the a c t i v e state ( i . e . corrodes r a p i d l y ) at the r e s t p o t e n t i a l . For case 2 however there are three points where the anodic and cathodic rates are e q u a l . . I t can be shown that only p o i n t s B and D represent s table p o t e n t i a l s . Environmental and h i s t o r i c a l condi t ions of the e lec t rode w i l l govern whether the e lec t rode i s i n the a c t i v e or the passive c o n d i t i o n o r b o t h . In case 3 the e lec t rode i s pass ive and w i l l corrode at the rate indica ted , by the passive c u r r e n t . Obviously case 3 represents the most favourable c o n d i t i o n f o r c o r r o s i o n r e s i s t a n c e . This c o n d i t i o n i s most e a s i l y a t t a i n e d i f Epp and Ep are f a i r l y a c t i v e wi th respect to the r e v e r s i b l e hydrogen p o t e n t i a l and i f i-.^-crif i s s m a l l , i t is. most s table i f Ejp i s a c t i v e and. the p o t e n t i a l range of p a s s i v a t i o n i s extensive - 10 - and i t i s most r e s i s t a n t i f the passive current i s n e g l i g i b l e . P o t e n t i o  s t a t i c p o l a r i z a t i o n of e lec t rodes i n condi t ions represented, by the above cases y i e l d s curves as.shown i n Figures J a , b , and c . (dashed l i n e s i n d i c a t e cathodic current . ) -p • r l CO a P •P Ci QJ U U o O \ / / 1 \ / 1 \ / 1 \ / 1 \l ll \ J P o t e n t i a l P o t e n t i a l (a) Case 1. (b). Case 2. . P o t e n t i a l (c) Case 3• Figure 3• P o l a r i z a t i o n Curves Showing E f f e c t of Change i n Cathodic Redox Exchange C u r r e n t . P o l a r i z a t i o n curves are a l s o u s e f u l i n i n d i c a t i n g the r a t e - c o n t r o l l i n g r e a c t i o n at the" mixed p o t e n t i a l : that i s , they i n d i c a t e whether the rate of c o r r o s i o n i s c a t h o d i c a l l y , a n o d i c a l l y or j o i n t l y c o n t r o l l e d and i f - 11 - i n each case the r a t e - c o n t r o l l i n g step i s e lec t rochemical or p h y s i c a l . Four cases, i n which.the r a t e - c o n t r o l l i n g step i s . e i t h e r e l e c t r o c h e m i c a l a c t i v a t i o n or. d i f f u s i o n , are i l l u s t r a t e d . i n Figures 4 a , b , c, and d . P o t e n t i a l 4 a.). AnodLc...Actj P o t e n t i a l X o n t r o l - •-(-b) ~Oathodic_Act i v a t i o n . C o n t r o l P o t e n t i a l (c). Anodic D i f f u s i o n C o n t r o l P o t e n t i a l (d) Cathodic D i f f u s i o n C o n t r o l Figure 4. Anodic or Cathodic Rate C o n t r o l of the Corros ion C u r r e n t . There are c e r t a i n drawbacks t o the use of p o l a r i z a t i o n curves f o r the above purposes. One i s that e x t e r n a l currents only represent the sum of a l l e l e c t r o c h e m i c a l reac t ions occuring at the e lec t rode s u r f a c e . However, - 12 - the reaction•which, i s accounting f o r a l l or most of the current i s u s u a l l y known. The current at a set p o t e n t i a l i s n e a r l y always time-dependent and may take days t o become s t a b l e . .But wi th the passage of current and time the c o n d i t i o n of the e lec t rode surface and i t s environment change. Therefore the shape of the curve may greatly , depend on the technique used i n obta ining the p o t e n t i a l - c u r r e n t d a t a ^ . The above-mentioned change i n surface c o n d i t i o n i s e s p e c i a l l y s i g n i f i c a n t i f p i t t i n g occurs . Then the anodic current i s n e a r l y completely accounted f o r by the metal o x i d a t i o n at the p i t . Often the cathodic r e a c t i o n i s occuring on the non-corroding areas even when p o l a r i z e d a n o d i c a l l y so that the t rue anodic current i s greater than the apparent c u r r e n t ^ . p H - P o t e n t i a l Diagram f o r N i - H 2 0 The energy, r e l a t i o n s h i p s of a metal with aqueous environments may be summarized by means of a.. Pourbaix or p H - p o t e n t i a l diagram. The r e l a t i o n s h i p s i n d i c a t e the condi t ions of c o r r o s i o n , p a s s i v a t i o n or immunity. 27 Figure 5 . i s the p H - p o t e n t i a l diagram f o r n i c k e l i n water . The l i n e s represent e q u i l i b r i a between t h e . s o l i d phases and s e l e c t e d concentrat ions of n i c k e l d i s s o l v e d i n water. These concentrat ions may be u s e d . t o def ine condi t ions of p a s s i v i t y and n o b i l i t y , and i t has become a convention t o use 1 0 " 6 ,M d i s s o l v e d metal ions as the a r b i t r a r i l y d e f i n e d l i m i t of .corrosion). With f l u o r i d e s . i n the system the diagram i s changed very l i t t l e except that N i F 2 . ^ H 2 0 i s thermodynamically s table w i t h respect t o N i + + at concentrations greater than 1 0 ~ 6 M. The boundaries of i t s s t a b i l i t y are very s i m i l a r to N i + + i n pure H 2 0 . However i n most circumstances i t does not form an adherent f i l m on the n i c k e l s u r f a c e . The e f f e c t of f l u o r i d e i s t h e r e  fore disregarded i n d i s c u s s i n g the p H - p o t e n t i a l diagram. Figure 5 . Nickel-Water p H - P o t e n t i a l Diagram - 14 - N i c k e l i n a s o l u t i o n conta ining 10" . . M . .• N i should he passive at any p o t e n t i a l i n the pH range 9-12, according to the p H - p o t e n t i a l . d i a g r a m . This i s because N i (0H) 2 or higher oxides are s table i n that they have s o l u b i l i t i e s below 10~ 6 M and are considered t o form a p r o t e c t i v e f i l m . N i ( 0 H ) 2 forms at the res t p o t e n t i a l so that a s s o c i a t e d p o l a r i z a t i o n curves • i should s h o w , l i t t l e or no a c t i v i t y . At pH < 9 n i c k e l would not be expected t o p a s s i v a t e . , However,. t h i s i s not always the -case as. water molecules .or hydroxide ions may be adsorbed at p o t e n t i a l s above the res t p o t e n t i a l , and i n i t i a t e the formation of a hydroxide f i l m . , In t h i s case the p o l a r i z a t i o n curve u s u a l l y shows an a c t i v e r e g i o n , , the extent of which may depend on the ions i n s o l u t i o n . N i c k e l should corrode at s t i l l higher p o t e n t i a l s i n t h i s pH region due to the formation of hexavalent n i c k e l as N i o / . - N i c k e l would a l s o be expected to corrode i n aqueous s o l u t i o n s with a t.-UA.... pH y 12 t o f orm .Ni0 2 H instead of the p a s s i v a t i n g ' N i ( O H . ) 2 . Throughout the pH region 0 . to 12 higher oxides of n i c k e l are s table at s u f f i c i e n t l y noble p o t e n t i a l s . These may form an adherent f i l m but i f they are good e l e c t r o n i c and i o n i c conductors they w i l l not be p r o t e c t i v e . They w i l l probably ,be good i o n i c conductors i f t h e y have a defect s t r u c t u r e , 28 which the N i 0 2 l a t t i c e i s known t o have i Purpose and Scope of the Present I n v e s t i g a t i o n The purpose of t h i s i n v e s t i g a t i o n was t o examine . p o l a r i z a t i o n curves f o r n i c k e l and monel i n s o l u t i o n s of v a r y i n g pH and f l u o r i d e content f o r evidence of c o r r o s i o n - r e s i s t i n g p r o p e r t i e s and of p o s s i b l e c o r r o s i o n mechanisms of these metals i n t h i s range of environments. •• I n d i c a t i o n s were a l s o sought f o r methods of improving c o r r o s i o n r e s i s t a n c e i n those s o l u t i o n compositions where c o r r o s i o n rates may be considered excess ive . - 15 - I n i t i a l experiments e n t a i l e d p o l a r i z a t i o n s tudies at widely- varying pH i n b u f f e r e d e l e c t r o l y t e s . The curve i n a., f l u o r i d e e l e c t r o l y t e of pH = 6 .2 showed a second a c t i v e peak which was reported but not explained 8 by Truempler a n d - K e l l e r i n c h l o r i d e s o l u t i o n s . . F u r t h e r studies .were conducted i n an attempt to e x p l a i n t h i s anomaly. These c o n s i s t e d . o f p o l a r i z a t i o n s tudies at d i f f e r e n t f l u o r i d e and hydrogen i o n concentra t ions , current- t ime curves at constant p o t e n t i a l and surface examinations of corroded specimens. P o l a r i z a t i o n curves were a l s o obtained f o r n i c k e l i n c h l o r i d e s o l u t i o n , to determine any d i f f e r e n c e i n c o r r o s i o n behaviour with, other h a l i d e i o n s , and i n n i t r a t e s o l u t i o n as a halogen-free r e f e r e n c e . P o t e n t i o s t a t i c curves f o r monel i n f l u o r i d e s and c h l o r i d e s were obtained i n an attempt t o r e l a t e the behaviour of monel and n i c k e l . -.16 - APPARATUS AND EXPERIMENTAL E l e c t r o c h e m i c a l C e l l and E l e c t r i c a l Apparatus The h i g h l y corros ive nature o f . f l u o r i d e s g r e a t l y l i m i t e d the mater ials and thus the design of the t e s t c e l l . ' T e t r a f l u o r o e t h y l e n e (Teflon) was used because of i t s iner tness and h i g h temperature. (500°F) s t rength . The c e l l designed f o r the present work (Figure 6) i s s i m i l a r t o a c e l l 29 descr ibed by Weininger and Grams ^ and contains a l l the. e s s e n t i a l elements, which are 1. working, a u x i l i a r y and. reference e lec t rodes 2. c i r c u l a t i n g e l e c t r o l y t e 3. gas s a t u r a t i o n i n l e t and o u t l e t k. . p r o v i s i o n . f o r heat ing and temperature c o n t r o l . The c e l l design a l s o lends i t s e l f t o ease of changing the working e lec t rode and e l e c t r o l y t e . A l l parts are machined from .rod, bar and.tube stock T e f l o n suppl ied by the Crane Packing Company. The c e l l c o n s i s t s of a 2 i n c h I . D . , 3 inch O.D. T e f l o n c y l i n d e r (a) , with disks, or e lec t rode holders above (b) and below ( c ) . The c e l l i s sealed by O-rings and clamped together by bear ing p l a t e s and threaded rods , (p ) . . The working e lec t rode (d) i s wrapped w i t h T e f l o n . t a p e and. drawn i n t o place by t i g h t e n i n g the nut at the end of the s t a i n l e s s s t e e l b o l t (r) that a l s o acts as an e l e c t r i c a l connection and i s i n s u l a t e d . f r o m the bearing p l a t e by a b a k e l i t e washer. • The a u x i l i a r y e lec t rode (f ) i s a c i r c u l a r d i s k of the same metal as the working e l e c t r o d e , and i s h e l d i n place by the s t i f f •copper wire (h) that i s s o l d e r e d : t o i t . The reference e lec t rode (e) i s F i g u r e 6. E l e c t r o c h e m i c a l C o r r o s i o n C e l l - 18 - l o c a t e d i n a-..Teflon i n s e r t ( i ) f i l l e d w i t h saturated KC1. The bottom of the i n s e r t i s p e r f o r a t e d and f i l l e d wi th agar agar g e l of saturated-KC1 which i s i n contact with the e l e c t r o l y t e i n tube ( j ) . A small hole i n the top o f . t h e c e l l next to the working e lec t rode allows e l e c t r o l y t e i n t o t h i s tube. The e l e c t r o l y t e i s poured i n t o the f u n n e l at (k) and c i r c u l a t e s by the gas l i f t at ( 1 ) . . T h i s provides c i r c u l a t i o n through the c e l l and p a r a l l e l to the e lectrode f a c e s . This a l s o saturates the e l e c t r o l y t e with the p a r t i c u l a r gas used, i n t h i s case n i t r o g e n (< 0.7$ 0 2 ) from compressed ,gas tanks suppl ied by*Canadian L i q u i d A i r Company. A T e f l o n sheet (m) w i t h a small hole i n i t i s clamped over the f u n n e l and maintains small p o s i t i v e pressure of the sa tura t ing .gas over the e l e c t r o l y t e . This c e l l has the advantage of being f l e x i b l e i n use and simple i n design but does not permit the c e l l r e a c t i o n t o be observed. -A schematic diagram of the e l e c t r i c a l system i s shown i n Figure 7- .The p o t e n t i o s t a t i s a Duffers Model 600. Current i s suppl ied from a 12 v o l t center- taped Delco car b a t t e r y and i s measured b y a Simpson Model 29MC 50 microampere (uA) ammeter t o ' w h i c h is ' added shunts and a s h o r t i n g type r e v e r s i n g switch g i v i n g f u l l scale readings of 50 y&> 200 uA, ^00 uA, 2 mA 5 mA and.20 mA i n both d i r e c t i o n s . The ammeter i s i n the a u x i l i a r y e lec t rode l e a d . The p o t e n t i a l between the saturated calomel reference e lec t rode and the working electrode i s measured by a .Model 7569P Pye Potentiometer us ing a Beckman Model G . S . p H meter as a h i g h s e n s i t i v i t y , h i g h impedance n u l l d e t e c t o r . P o t e n t i o s t a t ©- Potentiometer -© 0- Reference E lec t rode -Working Elec t rode A u x i l i a r y Elec t rode N u l l . D e t e c t o r — © © - F i g u r e 7• Schematic Diagram, of E l e c t r i c a l Apparatus i h-1 VO - 20 - Unfor tunate ly the p o t e n t i o s t a t r e q u i r e d frequent-maintenance s e r v i c e . To overcome delays caused by-breakdowns, a " c l a s s i c a l " p o t e n t i o  s ta t was a l s o used. I t cons is ted of two 2.2 v o l t Hart D . H . S . 15 g lass wet c e l l s i n p a r a l l e l , from which a p o l a r i z i n g current i s drawn by a d j u s t i n g an Ohmite three-pole 8.5 ohm v a r i a b l e r e s i s t o r . The current was measured by. the modif ied Simpson ammeter but i n order t o f o l l o w the p o t e n t i a l d r i f t more c l o s e l y a Beckman "Zeromatic" pH meter was used, f o r measuring the p o t e n t i a l . This has . the r e q u i r e d . h i g h impedance but much lower s e n s i t i v i t y (± 10 mV). . M a t e r i a l s E lec t rodes (5 cm 2 i n area) were machined from rod supplied: by A . D . MacKay Inc . with s ta ted p u r i t i e s of 99.9$> f o r both monel and. n i c k e l . When i m p u r i t i e s were suspected. to be present i n the n i c k e l , i t was analyzed, wi th t h e . f o l l o w i n g r e s u l t s : :Sulphur 0.015 % Carbon 0.030 I ron ' 0.040 Copper 0.150 Cobalt O.35O The monel sheet f o r the a u x i l i a r y e lec t rode was a l s o s u p p l i e d by A . D . MacKay, :Inc. .The n i c k e l a u x i l i a r y e lectrode was s u p p l i e d by Mr.. V.- N. Mackiw of S h e r r i t t Gordon Mines L i m i t e d . - A l l reagents used i n . t h e e l e c t r o l y t e s were Baker and'Adamson reagent grade chemicals d i l u t e d i n d i s t i l l e d water. - The e l e c t r o l y t e s , were b u f f e r e d w i t h phosphate or s u c c i n a t e . - 21 - P o l a r i z a t i o n Curves The c o r r o s i o n specimen was mounted-in the t e s t c e l l a f t e r p o l i s h i n g w i t h l/2 g r i t emery'paper and c l e a n i n g with Chlorothane* -The specimen was aged dur ing n i t r o g e n s a t u r a t i o n of the e l e c t r o l y t e f o r about l/2 hour and then c a t h o d i c a l l y reduced f o r l/2 hour t o remove oxide f i l m . P o t e n t i a l se t t ings were made i n c r e a s i n g l y anodic beginning from t h i s cathodic region i n 10 t o 100 mV increments. At each s e t t i n g i n i t i a l current readings were made fol lowed by at l e a s t one a d d i t i o n a l reading a f t e r 5 o r 10 minutes ' to detect time-dependent current v a r i a t i o n s . The pH of the e l e c t r o l y t e was measured with s h o r t - r a n g e „ H y d r i o n pH paper before and a f t e r each r u n . The specimen was r e t a i n e d f o r subsequent examination of the s u r f a c e . Curves were obtained f o r n i c k e l and monel i n f l u o r i d e . s o l u t i o n s at widely v a r i e d pH. -Most work was.done on n i c k e l i n f l u o r i d e media i n . t h e pH range of 4 .0 to 7-0 because under these condi t ions secondary a c t i v a t i o n was e v i d e n t . Curves were a l s o obtained i n sodium n i t r a t e s o l u t i o n s as a reference and i n sodium c h l o r i d e s o l u t i o n s f o r comparison. . S e v e r a l experiments were made with n i c k e l i n f l u o r i d e s o l u t i o n s at pH = 6.2 t o determine the time-dependence of current at p o t e n t i a l s c o r  responding t o s e l e c t e d par ts of the p o l a r i z a t i o n curve . The growth of a i p r o t e c t i v e f i l m can u s u a l l y be i n t e r p r e t e d from decaying current v a l u e s . In these experiments the c o r r o s i o n specimens were l e f t at the se lec ted p o t e n t i a l s f o r one or more days during which time current readings were recorded at i n t e r v a l s . Experimental condi t ions f o r a l l runs are summarized i n Table I . A 1 ,1 ,1 - t r i c h l o r o e t h a n e - 22 - TABLE . I. Experimental Condi t ions Experiment Number Anode M a t e r i a l E l e c t r o l y t e • Concentrat ion B u f f e r pH 8 N i c k e l NaF 0 .39 • Phosphate 4 . 0 10 N i c k e l NaF 0.42 Phosphate 11.3 11 N i c k e l NaF 0 .45 NaOH >12 12 N i c k e l HF 0.1 HF 1.0 13 N i c k e l HF + NaF O .38 Phosphate 5-8 lk N i c k e l NaN03 0 .08 Phosphate 6 . 0 15 N i c k e l NaF 0.42 Succinate 5-2 16 N i c k e l HF 0 .08 Phosphate 2.2 17 N i c k e l NaF 0.41 Succinate 6 . 0 18 N i c k e l NaN03 0 .083 Succinate 4 . 8 19 N i c k e l NaCl 0.42 Phosphate h.9 20 N i c k e l NaCl 0.2 Phosphate 6 . 1 21 N i c k e l NaF 0.042 Phosphate 6 .2 22 N i c k e l NaF- 0.21 Phosphate 6 .2 23 N i c k e l NaF 0 .29 Phosphate 6.2 24 N i c k e l NaF 0.42 ' Phosphate 6 .2 25B N i c k e l NaF 0 .42 Phosphate 6 .2 26 N i c k e l NaF 0.42 Phosphate 6 .2 27B N i c k e l NaF 0 .42 Phosphate 6 .2 28 Monel NaF 0.42 Phosphate 6 . 0 29 Monel HF-+ NaF 0 .30 - 4 . 1 30 Monel NaF 0 .42 Phosphate 11.2 31 Monel NaCl 0.42 Phosphate 4 . 0 32 N i c k e l NaF 0.42 Phosphate 7 . 0 33 N i c k e l NaF 0.42 Phosphate 5.^ 34B N i c k e l HF 0.1 - 1.0 „55B N i c k e l NaF 0 .42 Phosphate 6 .2 36B N i c k e l NaF 0.42 Phosphate 6 .2 37B N i c k e l NaF 0 .42 Phosphate 6 .2 38B N i c k e l NaF 0.42 Phosphate 6 .2 39B N i c k e l NaN03 0.1 Phosphate 6 . 0 40B N i c k e l NaF 0.42 Phosphate 6 .2 B i n d i c a t e s current - t ime experiments. - 23 - Surface•Examinat ion i The surfaces of a l l corroded specimens were examined under a b i n o c u l a r microscope f o r c h a r a c t e r i s t i c s . p e c u l i a r to the c o r r o s i o n system. Specimens corroded at constant p o t e n t i a l over extended times were p a r t i  c u l a r l y s i g n i f i c a n t . Micrographs were made of these, u s i n g a Reicher t microscope and P o l a r o i d camera. - 2k - RESULTS AND DISCUSSION N i c k e l specimens p o l a r i z e d i n 0.08 M HF at pH = 2.2 and. i n 0.42 M NaF at pH = 6.2 and 11..3 each b u f f e r e d by phosphate gave p o l a r i z a t i o n curves as shown i n Figure 8, 11, and 22 r e s p e c t i v e l y . These curves show three d i s t i n c t types of behaviour of n i c k e l i n f l u o r i d e s as a f u n c t i o n of pH. N i c k e l i n A c i d F l u o r i d e S o l u t i o n s The curve at pH = 2.2 and another which was done i n unbuffered 0.1 M HF at pH = 1.0 show that n i c k e l does not passivate i n the presence of f l u o r i d e ions at low pH. In c o n t r a s t , V e t t e r " ^ , Uhlig"'"^ and Bune"^ found that n i c k e l pass ivates on a t t a i n i n g a p o t e n t i a l of about -90 mV i n s u l p h u r i c a c i d s o l u t i o n s . A The mixed p o t e n t i a l s are p l o t t e d versus pH w i t h other, data f o r n i c k e l i n phosphoric and s u l p h u r i c a c i d s o l u t i o n , F igure 9. The value of 310 mV at pH = 2.2 i s intermediate between the mixed potent ia ls , i n 1 N s u l p h u r i c a c i d and 0.1 M phosphoric a c i d . Presumably these f o r e i g n ions have some e f f e c t on the reac t ions on the n i c k e l e lec t rode s u r f a c e . The exchange current was determined t o be about 50 u A / c m 2 , i n d i c a t i n g a f a i r l y high c o r r o s i o n rate of 13Q mdd or 0.02 i p y . No t ime-current experiments were done u s i n g t h i s system. A See Appendix I f o r C a l i b r a t i o n of P o t e n t i a l s - 25 - +400 +200 0 -200 -^00 -600 P o t e n t i a l (mVr? versus SCE) Figure 8. P o l a r i z a t i o n Curve of N i c k e l i n 0.08 M NaF S o l u t i o n at pH = 2.2" rfnh * - 26 - +100 A +200 N i c k e l i n - S u l p h a t e , . Osterwald and U h l i g ^ O N i c k e l in-Phosphate,- M a c G i l l a v r y et a l 1 ^ D N i c k e l i n Phosphate and F l u o r i d e , present work •a w CO U -,CU •H -P OJ -P O P- T3 a; X •H s 1-300 +hoo +500 +600 • a +700 11 pH Figure 9- Mixed P o t e n t i a l versus pH - 27 - In making the readings f o r t h i s p o l a r i z a t i o n curve i t was noted that the change i n current w i t h time was small except f o r the p o t e n t i a l r e g i o n from + 100 t o 0 mV where there may have been some f i l m growth. . O p t i c a l examination of the specimen p o l a r i z e d i n the phosphate-buffered s o l u t i o n showed i n t e r f e r e n c e colours which may i n d i c a t e f i l m , format ion . The micrograph, Figure 10a..shows extensive i n t e r g r a n u l a r c o r r o s i o n . ..The mechanism, of the c o r r o s i o n which p r e f e r e n t i a l l y at tacks g r a i n 'boundaries w i l l be discussed l a t e r i n r e l a t i o n t o the r e s u l t s of n i c k e l c o r r o s i o n i n n e u t r a l f l u o r i d e s o l u t i o n s . Another specimen was corroded i n 0.1 M HF w i t h no a p p l i e d p o t e n t i a l , f o r 1 day. The micrograph Figure 10b. shows extensive p i t t i n g c o r r o s i o n and no general c o r r o s i o n or f i l m . f o r m a t i o n between the p i t s . O b v i o u s l y , the anodic areas are s t a t i o n a r y producing p i t s while the cathodic r e a c t i o n occurs, on the res t of the s u r f a c e . From these observations i t i s evident that n i c k e l i s s u b j e c t . t o extensive c o r r o s i o n by f l u o r i d e s at low pH independent of the a p p l i e d p o t e n t i a l . . N i c k e l i n N e u t r a l . F l u o r i d e S o l u t i o n s Figure 11 shows that n i c k e l i s a c t i v e i n contact wi th a s o l u t i o n containing f l u o r i d e s at pH = 6 .2. On r a i s i n g i t s . p o t e n t i a l n i c k e l has a t y p i c a l a c t i v e - p a s s i v e t r a n s i t i o n . . F u r t h e r i n the anodic d i r e c t i o n there 8 i s a second a c t i v e region s i m i l a r to that found b y Truempler and K e l l e r i n sulphate s o l u t i o n s conta ining c h l o r i d e s and. bromides. This behaviour "P5 12 was not found by V e t t e r ^ or U h l i g working with n i c k e l i n pure sulphates . (a) At noble p o t e n t i a l s pH = 2.2 X §00 (b) At mixed p o t e n t i a l pH = 1.0 X 300 Figure 10. Surfaces of N i c k e l Corroded i n F l u o r i d e s at Low pH - 29 - +500 E F 0 E- c -500 -1000 Potential (mV versus SCE) V Figure 11. P o l a r i z a t i o n Curve of N i c k e l i n F l u o r i d e •andNitrate S o l u t i o n at pH = 6.2 Auh - 3 0 _ The cathodic r e g i o n , the exchange c u r r e n t , the mixed p o t e n t i a l and the f i r s t a c t i v a t i o n peak are funct ions of pH; o n l y . . I t was not p o s s i b l e to obtain an accurate value of the exchange current because the T a f e l p l o t i s not l i n e a r and therefore does not permit accurate e x t r a p o l a t i o n to the mixed p o t e n t i a l . This i s i l l u s t r a t e d i n Figure 11. However ah approximate value was obtained by e x t r a p o l a t i n g . t h e cathodic curve t o the mixed p o t e n t i a l . Figure 12 i s a p l o t of the estimated exchange current versus. pH at v a r y i n g f l u o r i d e ion concentra t ions . This i n d i c a t e s . that n i c k e l becomes f a i r l y passive i n f l u o r i d e s o l u t i o n s above pH 6.5- The exchange current at pH = 7 .0 i s 0.3 uA/cm 2 which corresponds t o a c o r r o s i o n rate of 0.17 mdd.or 27 X 10" 6 i p y . At low pH's the mixed p o t e n t i a l E m f o l l o w s the equation Em••= 0.2O0 t 0.050 pli as shown i n Figure 9. The abrupt change i n p o t e n t i a l at about pH = 6.5 i s due to a.change from a c t i v a t i o n t o ohmic overvoltage of the anodic r e a c t i o n w i t h the p a s s i v a t i o n of the e l e c t r o d e . Two experiments . (Nos. 15 and 17) u s i n g succinate as a b u f f e r gave much more a c t i v e mixed and Flade p o t e n t i a l s , probably, because n i c k e l complexes w i t h succinate which i s a c h e l a t i n g i o n . The p a s s i v a t i o n of n i c k e l i n aqueous s o l u t i o n at pH = 6.5 i s not p r e d i c t e d by the p H - p o t e n t i a l diagram. Even i f the concentrat ion o f N i - ^ " i n s o l u t i o n i s 10" M/i., or 1.5 mg of d i s s o l v e d n i c k e l , the n i c k e l would not be expected to form a:...hydroxide f i l m , u n t i l a pH of 8 .0 a t t a i n e d . The c r i t i c a l anodic: current f o r p a s s i v a t i o n i s not a f f e c t e d by widely v a r y i n g f l u o r i d e i o n concentrat ions , at constant pH as shown by ex experiments numbered Ik, 21, 22 and 23 . The c r i t i c a l anodic current i s Figure l j . C r i t i c a l Anodic Current Densi ty versus pH 60jik/cm i n each case. On the other hand Truempler and K e l l e r found that an a d d i t i o n of 0.05 M of c h l o r i d e i o n increased the c r i t i c a l anodic current from 30 mA/cm 2 to 100 mA/cm 2 . However, the c r i t i c a l anodic current i s d e f i n i t e l y ,a . : funct ion of pH as shown i n Figure 13. The Flade p o t e n t i a l fo l lows the e q u a t i o n : : E p = . * 0.240 + 0.065 pH which compares w i t h the r e l a t i o n given by U h l i g a s : E F = -0.120 +O.O59 pH The presence of f l u o r i d e ions i n s o l u t i o n lessens the r e s i s t a n c e of pass ivated n i c k e l to c o r r o s i o n . This e f f e c t i s increased w i t h increase i n hydrogen i o n concentrat ion as i l l u s t r a t e d i n Figure 14, where pF i s the negative logar i thm of f l u o r i d e i n i o n c o n c e n t r a t i o n . In c o n t r a s t , changes h 6 8 10 pH + pF Figure 14. Minimum Passive Current Densi ty versus pF + pH. - 33 - i n pH have l i t t l e e f f e c t on the p a s s i v a t i n g c h a r a c t e r i s t i c s of n i c k e l i n . , . -13,.14 sulphuric a c i d Current - t ime curves shown i n Figure 15, (a) and (b) i n d i c a t e f i l m growth i n the passive r e g i o n . Curve (a) at +200.mV gives a f i n a l current densi ty of about 0.5 nA/cm 2 a f t e r 2 hours as compared to the value df 8 |iA./cm2 a f t e r 5-10 minutes i n d i c a t e d on the p o l a r i z a t i o n curve . This emphasizes that the p o l a r i z a t i o n curve current readings i n t h i s region are f a r from the steady-state v a l u e s . The gradual ly s l o p i n g curve i n the a c t i v e - passive t r a n s i t i o n may be more accurate as a v e r t i c a l l i n e on the b a s i s of . f i n a l s teady-state c u r r e n t s . The f i n a l current at +200 mV i s l e s s than the f i n a l current at -I50 mV, curve ( b ) . This agrees w i t h the t rend shown i n the p o l a r i z a t i o n curves , f o r the current to increase w i t h the a p p l i e d p o t e n t i a l i n the passive r e g i o n . Figure 16 (a) and (b) , and Figure 17ajr ' show photomicrographs o f ' n i c k e l specimens.corroded at constant p o t e n t i a l s i n 0.42 M sodium f l u o r i d e s o l u t i o n at a pH of 6.2. The specimen corroded at the mixed p o t e n t i a l f o r 1.25 days, F i g u r e s .l6a, shows a large amount of general c o r r o s i o n which has n e a r l y o b l i t e r a t e d the p o l i s h s t r i a t i o n s . . T h i s . c o n f i r m s an expected h i g h rate of corrosion-suggested by the exchange current measurement. The specimen, corroded i n the a c t i v e r e g i o n at a p o t e n t i a l of +300 mV f o r i day, Figure l6b, i s c h a r a c t e r i z e d by both p i t t i n g and general c o r r o s i o n . Figure. 17a, i s the surface of a specimen corroded i n the passive region f o r 1.75 days. This shows.less general c o r r o s i o n . Nevertheless c o r r o s i o n i s s t i l l apparent, while another specimen, • Figure 17b h e l d i n the passive region w i t h n i t r a t e r e p l a c i n g f l u o r i d e as the e l e c t r o l y t e shows no c o r r o s i o n . This confirms that - 3h - 1000 10 ,100 Log Time (minutes) Figure 15. Current-Time Curves at Selec ted Regions of N i c k e l P o l a r i z a t i o n Curve i n 0.^2 JVPNaF S o l u t i o n at pH =6.2 (a) At the mixed p o t e n t i a l X 300 Figure 1 6 . Surfaces of N i c k e l i n the F i r s t A c t i v e State Corroded i n F l u o r i d e Solut ions at pH = 6 . 2 (a) At - 1 5 0 mV i n 0 .42 M NaF X 300 (b) At -200 mV i n 0.1 M NaN03 (Comet-l ike marks are p o l i s h s t r i a t i o n s ) X 3 0 0 Figure 17. Surface of N i c k e l i n the Passive State Corroded i n S o l u t i o n s of pH = 6 . 2 - 3 7 - f l u o r i d e ions cause n i c k e l t o corrode even when apparently p a s s i v e . The mechanism whereby f l u o r i d e produces t h i s c o r r o s i o n i s not c l e a r . P o s s i b l y f l u o r i d e ions are incorporated i n t o the l a t t i c e of the hydroxide f i l m causing i t to become an i o n i c conductor. A l t e r n a t i v e l y , f l u o r i d e s may cause the hydroxide f i l m t o d i s s o l v e by complexing wi th the n i c k e l ions i n the l a t t i c e of the f i l m . The f a c t that f l u o r i d e causes c o r r o s i o n of n i c k e l i n the passive s tate helps e x p l a i n the photomicrograph of r, n i c k e l corroded i n . t h e a c t i v e 30 s t a t e , F igure 16b. U . F . Franck has explained p i t t i n g c o r r o s i o n i n the a c t i v e state as being due to the existence of a c t i v e and passive s i t e s on the same p o l a r i z e d e l e c t r o d e . The d i f f e r e n c e i n p o t e n t i a l i s caused by e l e c t r o l y t e r e s i s t a n c e . Thus the p i t s are presumed to be a c t i v e s i t e s and the areas of general c o r r o s i o n are " p a s s i v e " s i t e s . . Both p o s i t i o n and extent of the second a c t i v e region are f u n c t i o n s of f l u o r i d e and hydrogen or hydroxide i o n concentra t ions . The p o t e n t i a l of the a c t i v e peak, F igure 18 and the logar i thm of the current at the peak, Figure 19, are p l o t t e d as f u n c t i o n s of pH plus p F . In both cases the dependence appears to be l i n e a r . . The p o t e n t i a l at the i n i t i a t i o n of the second a c t i v e region i s p l o t t e d versus pH plus 2pF,, i n Figure 20. This seems t o give the best l i n e a r f i t of the d a t a . Figure 21 i s a p l o t of the p o s i t i v e T a f e l slope of the second a c t i v e region versus pH p l u s . p F . The l a t t e r i n d i c a t e s a change i n the r a t e ^ c o n t r o l l i n g step at a .pH plus pF equal t o 6.5 s ince below t h i s value the T a f e l slope i s constant of 135 mV, g i v i n g an o< n value of 0 A 5 , while at higher values the T a f e l slope increases s h a r p l y . - 38 - h'y 5 6 7 8 9 pF +..pH Figure 18. P o t e n t i a l at Second A c t i v e Peak ' versus - pH plus p F . k 5 6 7 8 9 .pF + pH Figure 19. Log 'Current Densi ty at the Second A c t i v e Peak versus pj? plus pH. - 39 - pH + 2pF Figure 20. P o t e n t i a l at the I n i t i a t i o n of the Second A c t i v e R e g i o n / E versus pH .+ 2pF. - ko - 600 ^0/ *** /o 4"00 / a *r~t / CJ ft % u H CO 200 1 1 1 1 5.0 6.0 7.0 8.0 pH + pF , Figure 21. P o s i t i v e Slope i n Second A c t i v e Region versus pH plus p F . The second a c t i v e region was absent i n those two experiments done i n . n i t r a t e s o l u t i o n s wi th no f l u o r i d e ions present , as shown i n F igure 11. The minimum passive current was'Tower i n these p o l a r i z a t i o n curves but i n a l l other respects they resembled experimental curves f o r f l u o r i d e - c o n t a i n i n g s o l u t i o n s . On.the other hand 0.2 M c h l o r i d e s o l u t i o n s , - F i g u r e 22, showed a 8 second a c t i v e region i n agreement wi th observations by other i n v e s t i g a t o r s . This curve shows that smaller concentrations of c h l o r i d e i o n s . i n d u c e greater c o r r o s i o n rates than f l u o r i d e i o n s . In f l u o r i d e s o l u t i o n s the n i c k e l became passive again at p o t e n t i a l s more noble than about -950 mV. In c h l o r i d e s o l u t i o n s t h i s probable f i n a l passive region was not observed because the current d e n s i t y i n the second a c t i v e region was so.much l a r g e r that i t was impossible to p o l a r i z e the electrode to the p o t e n t i a l of maximum c u r r e n t . - kl - -p •Potential (mV versus SGE) Figure 22. P o l a r i z a t i o n of N i c k e l i n 0 .2 'M NaCl S o l u t i o n at pH = 6 .1 ^un - k2 - Current- t ime curves at p o t e n t i a l s i n the region of secondary a c t i v a t i o n show i n i t i a l decreases i n current fol lowed by a . s m a l l r i s e , Figure 15. I t i s p o s s i b l e these represent f i l m growth i n passive areas i n competi t ion w i t h the i n c r e a s i n g area of the d i s s o l u t i o n s i t e s . A photomicrograph of a.specimen used i n the t ime-current experiments, - F igure 23a, shows that the d i s s o l u t i o n s i t e s are gra in boundaries . Interference colours on b i n o c u l a r examination of the specimens are i n t e r p r e t e d t o i n d i c a t e f i l m growth between the g r a i n boundaries . C o r r o s i o n between the g r a i n boundaries i s a l s o apparent but t h i s i s s i m i l a r t o the c o r r o s i o n of n i c k e l i n the passive r e g i o n , Figure 17a. C o r r o s i o n i n the second passive region shows general c o r r o s i o n over the whole surface w i t h s l i g h t g r a i n boundary e t c h i n g , F igure 23b. This a l s o i s s i m i l a r to t h e . c o r r o s i o n by f l u o r i d e s . i n the f i r s t passive r e g i o n . Specimens p o l a r i z e d i n sodium c h l o r i d e s o l u t i o n s were extremely p i t t e d . The above observations i n d i c a t e that n i c k e l cannot be protected by anodic p o l a r i z a t i o n i n f l u o r i d e s o l u t i o n s w i t h [F-] ) 0.G1 and at pH ^ 6.5, because the second a c t i v e . r e g i o n predominates at p o t e n t i a l s where n i c k e l wdul&u o r d i n a r i l y be p a s s i v e . At pH ) 6.5 n i c k e l i s pass ive i '£ no strong o x i d i z i n g agent i s present . The c o r r o s i o n current i n the .second a c t i v e region at \[F~] { . 0.01 M i s . small enough so that n i c k e l could be protected at pH ^6.5 by anodic p o l a r i z a t i o n , e i t h e r a p p l i e d by a chemical oxidant or by an e x t e r n a l current . (a) At the second a c t i v e peak, -700 mV X 300 (b) In the second passive r e g i o n , - IO5O mV X 300 Figure 25. Surfaces of N i c k e l Corroded i n F l u o r i d e S o l u t i o n s at pH = 6.2 - kk 'Nickel i n B a s i c : F l u o r i d e S o l u t i o n s The p o l a r i z a t i o n curve, Figure 2k, i n d i c a t e s that n i c k e l i s passive i n contact with an aqueous s o l u t i o n of f l u o r i d e s at high pH. This curve i s an example of the type drawn i n Figure 3(c) and would be p r e d i c t e d from the p H - p o t e n t i a l diagram, Figure 5- (The small a c t i v e peak i n Figure 2k would probably be e l i m i n a t e d w i t h longer times at constant p o t e n t i a l ) . I f the f i l m i s assumed t o be N i ( O H ) 2 , then the two reac t ions occuring on the surface of the e lec t rode w i t h no e x t e r n a l l y a p p l i e d current are probably 2H • + 2e~ ~ ^ H 2 and • N i + 20H~ —>- N i ( O H ) 2 + 2e~ Thus the abrupt change i n mixed p o t e n t i a l as a f u n c t i o n of pH (Figure 9) i s explained by a change i n the state of the o x i d i z e d n i c k e l which would l e a d to a change i n r a t e - c o n t r o l . In the a c t i v e state the rate i s c o n t r o l l e d by the cathodic r e a c t i o n as i l l u s t r a t e d i n F igure 4{b), whereas i n the passive region the r e a c t i o n i s probably c o n t r o l l e d by d i f f u s i o n of the n i c k e l ions through the oxide as i n Figure kfc). The-exchange current i s very low (0.3 uA/cm 2) confirming' that n i c k e l i s s e l f - p a s s i v a t e d i n the pH. range 6.5 to 12.0. The f i r s t t ranspassive region i s probably due to the formation of N i 0 2 . K o l o t y r k i n and Knyasheva"^ obtained the same behaviour w i f h n i c k e l i n potassium sulphate , . solut ions w i t h a T a f e l slope of "JO mV which compares very w e l l w i t h the value of 80 mV i n t h i s work. They explained the phenomena as due to the formation of N i 0 2 on the e lec t rode surface . 28 Presumably the f i l m would have a n i c k e l defect l a t t i c e and thus higher n i c k e l i o n c o n d u c t i v i t y . The f i n a l r i s e i n current at about -1200 mV i s due to the e v o l u t i o n 1000 U5 -p S 100 Figure 2k. P o l a r i z a t i o n Curve f o r N i c k e l i n 0.k2 M NaF S o l u t i o n at pH = 11.3 - 46 - of oxygen and i s not n e c e s s a r i l y accompanied by r a p i d c o r r o s i o n . Mechanism of N i c k e l C o r r o s i o n i n F l u o r i d e Media. The mechanism whereby c h l o r i d e i o n s , i n s o l u t i o n i n i t i a t e a second ac t ive region on the p o l a r i z a t i o n curve of zirconium,., magnesium and aluminum has been proposed by Kolotyrkin" '"^ . The r e s u l t s on which t h i s mechanism i s based are very s i m i l a r to the r e s u l t s obtained i n the present work f o r n i c k e l 8 i n f l u o r i d e and c h l o r i d e s o l u t i o n s and, the r e s u l t s of Truempler and K e l l e r f o r n i c k e l i n c h l o r i d e and bromide s o l u t i o n s . The c o r r o s i o n mechanism might therefore be expected to be the same i n a l l . c a s e s . K o l o t y r k i n ' s mechanism i s . b a s e d on the premise that h a l i d e ions adsorb on z i rconium, e t c , p r e f e r e n t i a l l y to hydroxide ions or water molecules at p o t e n t i a l s above E c , but not below,, because of t h e i r greater p o l a r i z a b i l i t y . C h l o r i d e , bromide and i o d i d e ions i n f a c t have l a r g e r p o l a r i z a b i l i t i e s 1 i; \ than e i t h e r H 20 or OH (Table II) but f l u o r i d e ions have a smaller p o l a r i z a b i l i t y and nevertheless give r i s e to a s i m i l a r though l e s s extensive second a c t i v e r e g i o n . Therefore t h i s , mechanism must be i n v a l i d at l e a s t f o r c o r r o s i o n by f l u o r i d e s . TABLE I I . Species P o l a r i z a b i l i t y o ^ o X 10 2 4 c m 3 Gram Ioni c Refrac t i on . R cm 3 F " 0.99 2.60 C l " 3.02 9.03 Br 4.17 12.60 I " 6.28 19.00 OH" 1.80 A 5.10 0 2.76 - H 20 1,44 — A Value extrapolated f r o m . R e f r a c t i v e Index. A new mechanism i s proposed that accounts f o r c o r r o s i o n by a l l h a l i d e ions i n the second a c t i v e r e g i o n . - 47- The f o l l o w i n g mechanism i s based on the premise that the surface charge on n i c k e l , z i rconium e t c . . i s negative at t h e i r r e v e r s i b l e p o t e n t i a l s - ^ . The negative surface charge a r i s e s from the d i s s o l u t i o n of p o s i t i v e metal ions from an e l e c t r i c a l l y i n s u l a t e d metal i n s o l u t i o n thus l e a v i n g a negative charge on the s u r f a c e . T h i s i s c a l l e d the e l e c t r o l y t i c s o l u t i o n e f f e c t and i s opposed by the e l e c t r o s t a t i c a t t r a c t i v e f o r c e , the force of a t t r a c t i o n between the d i s s o l v e d p o s i t i v e ions and. t h e . s u r f a c e , and the .osmotic e f f e c t which i s e f f e c t i v e l y - the sum of a l l other forces tending towards d e p o s i t i o n of the cat ions on the metal sur face . The osmotic and e l e c t r o s t a t i c a t t r a c t i v e forces are considered to be greater than the e l e c t r o l y t i c s o l u t i o n e f f e c t only f o r very noble metals l i k e plat inum and g o l d , g i v i n g r i s e to a net p o s i t i v e charge on the s u r f a c e . i n such cases . N i c k e l i s considered t o be a c t i v e enough t o maintain a negative charge on i t s surface at i t s r e v e r s i b l e redox p o t e n t i a l producing a p o t e n t i a l f i e l d at the m e t a l - s o l u t i o n i n t e r f a c e of unknown v a l u e . T h e r e f o r e , the e lectrode repulses negative ions at the nickel -hydrogen mixed p o t e n t i a l , which, i n i n d i f f e r e n t e l e c t r o l y t e s , i s . c lose to i t s r e v e r s i b l e redox p o t e n t i a l i n the pH range c o n s i d e r e d , . F i g u r e 5. Only water molecules would, be adsorbed under-these c o n d i t i o n s . As the p o t e n t i a l of the electrode i s made more noble , , n i c k e l i o n i z e s more r e a d i l y , h y d r o l y z i n g or forming h a l i d e complexes away from the n i c k e l sur face . . This , gives, r i s e to the f i r s t a c t i v e region i n . t h e p o l a r i z a t i o n curve . Thus the c o r r o s i o n mechanism i n t h i s region i s : H 2 0 H 2 0 a d s . . . . . ( l a ) N i ( H 2 0 ) 2 a d s — N i + + ( H 2 0 ) 2 .+ . 2e~ ( lb) ++ + Ni ( H 2 0 ) 2 — N i ( O H ) 2 + -2H . . . . . ( l c ) the l a s t step occurringaaway from the surface . At even more noble p o t e n t i a l s , the e l e c t r i c f i e l d i n i t i a t e s h y d r o l y s i s of the o x i d i z e d n i c k e l near the s u r f a c e ; - 48 - the more p o s i t i v e the. charge on the surface , , the c l o s e r to the surface i s the h y d r o l y s i s r e a c t i o n u n t i l i t occurs c lose enough to form an adherent f i l m . o n . the e l e c t r o d e . . T h i s mechanism p r e d i c t s the pH dependence of the Flade p o t e n t i a l Ep., the p o t e n t i a l at which the h y d r o l y s i s r e a c t i o n r e s u l t s i n an adherent f i l m . As noted p r e v i o u s l y the data of the Flade p o t e n t i a l as a f u n c t i o n of pH f i t s the r e l a t i o n : . E F = - 0 . 2 4 0 : + O.O65 PH . - (2 ) This mechanism a l s o p r e d i c t s that the f i r s t a c t i v e region i s independent of the f l u o r i d e ion c o n c e n t r a t i o n . This i s confirmed by, the r e s u l t s of the present work,, Figures 12 and 1 3 . • As the e lectrode surface i s : made more p o s i t i v e , the e l e c t r i c . f i e l d a t t r a c t s n e g a t i v e l y charged ions such as OH ,• C l and F which compete with water molecules f o r adsorpt ion s i t e s . This adsorpt ion i n aqueous f l u o r i d e s o l u t i o n s may be descr ibed q u a n t i t a t i v e l y b y the-Langmuir adsorpt ion isotherm, Qjr. = K l t F ~] ....-(3) 1 - S i - e 2 where 0 X and Q 2 are the proport ions of the surface covered by f l u o r i d e and hydroxide i o n s , : l i . ^ ,0^. - 0 2 i s the p r o p o r t i o n of surface covered by water molecules , and K n i s an e q u i l i b r i u m constant . K i n e t i c considerat ions of adsorpt ion and desorpt ion show that A H K 1 V . = k e ~RT • (4) where k i s a constant and ^ H i s ^ t h e enthalpy of a d s o r p t i o n . The enthalpy may'be w r i t t e n : A H i . = A H Q I - £ n- F. E '(5) _ k9 - where A. H 0 i s . t h e standard enthalpy with no a p p l i e d f i e l d , E i s the a p p l i e d f i e l d , n i s the charge on the i o n moving i n the e l e c t r i c f i e l d , /& i s the p r o p o r t i o n of the a p p l i e d p o t e n t i a l through-which the ion moves when adsorbed, and F i s . the Faraday constant . From t h i s i t fo l lows that AEQl - /9FE •9,, = . [F-] ,k e . . ,(6) 1 - 0! - 9 2 A s i m i l a r equation can be. obtained, f o r adsorpt ion of hydroxide ions which when added t o the above r e l a t i o n gives ••(7) _01_+_02_ = / [F~] k x e ~ R T ~ + [ 0 H - ] k 2 e ~ W ] e ^ 1 - ©! - ©2 where Q±, 02, [ F ~ ] / [OH ] and E are considered v a r i a b l e s . However, the f l u o r i d e and hydroxide ions a l s o compete with each other f o r adsorpt ion s i t e s , OH" •+. F ^ d s " .JL (0H") a d s +:-F" . . . . . ( 8 ) with K " 0X [OH - ] ( y j which w i t h equation (7) y i e l d s •[OH"] • . • • -£FE 0X (1 + K " f r T ) : = i [ F _ ] e x + [OH"] e 2 } e RT l - e i ( l - K l f | ) ' •••••<10> ^ H where e 1 > 2 = kx,2 e RT From t h i s i t fo l lows that : [OH"] ' -/?FE 0x (1 + K " [ F T ) e ~ W = — : [0H"12 .[F*]ex + [OH ]e 2 - © J F " ^ - O i [ O H ~ ] e 2 - KOxlOH ]e±-- KQ± [g- j - e g (11) - 50 - The f o u r t h and s i x t h terms i n the denominator are n e g l i g i b l e because K i s considered large and [0H~] i s i n - t h e order .of I O - 7 or l e s s . Thus, by i g n o r i n g these terms, 1 _K * - _ £ F E Q i (UK~-+.TT=1)  e RT = [ F ~ 1 mrr 61 + 62 (1 -KOl) a n d : t a k i n g logarithms .(12) -2,3 = l o S ° i + l o g (0H= + F=) " 1 ° S [ jJiPT e i + e 2 (1 - K Q i ) ] (13) I t may be assumed that a c r i t i c a l concentrat ion of adsorbed f l u o r i d e ions tira necessary to i n i t i a t e the c o r r o s i o n which r e s u l t s i n . the second a c t i v e r e g i o n on the p o l a r i z a t i o n curve and thus 9^ may be considered a constant, Qi c r i t . Four l i m i t i n g c a s e s ; a r e considered to a s c e r t a i n the pH and pF dependence of E c , the p o t e n t i a l at the i n i t i a t i o n of the second 1 >>>> K a c t i v e r e g i o n . In case 1. i t i s assumed that \-.bf[QH_J [F J a n d IF"] e (1 - K OjJ'eg.- >> [OH~ J . T h i s r e s u l t s i n the r e l a t i o n : - 2.3/fF E ' = l o g Qi c r i t - PH - l o g (1 - K 0crit):„ . . . . , ( 1 4 ) RT which shows no dependence of E c on f l u o r i d e concentrat ion and therefore i s 1 >„>,. K i n c o n s i s t e n t w i t h experimental evidence . Case 2 a p p l i e s when [QH"] . and lf e a » (1 - K 0,' e 2 and. y i e l d s [OH ] ~2"51S E c = l o g Oj. c r i t - l o g e r ' + pF ,....(15) This shows no dependence of E c on pH and i s a l s o i n c o n s i s t e n t w i t h experiment. K 1 [F~] S i m i l a r l y ^ ! ' case 3, -rp=] > > T Q I T ] a n d " K Q) e £ ^ ToITT y i e l d s n o K 1 pH-dependence and may be d i s r e g a r d e d . Case 4^  [p1-] ^ [0H~ J a n c ^ - 51. - — F — e - , \> > ( 1 - K 0) e 2 r e s u l t s i n the expression [OH ] V 7 2 f - 2 . 3 ^ E c = l o g Oi c r i t + l o g K + pF - l o g e i + pF .+. pH ( 16) i n which E c i s a f u n c t i o n of ,pH + 2pF. T h i s . i s . i n accordance w i t h the experimental r e s u l t s , • F i g u r e 20, and may be r a t i o n a l i z e d , by c o n s i d e r i n g K very l a r g e . . The above express ion , when w r i t t e n i n the form E c = G " ' 537 t i°s =RLT - _ J | ( P H + 2 P F ) ( 1 7 ) RT i n d i c a t e s that a p l o t of E c versus pH p l u s -2pF would have a. slope of y . ^ — or 59 . I mV. In Figure 20 the slope i s approximately 230 mV which agrees w i t h that p r e d i c t e d f o r the above mechanism i f ^ = 0.26. • The energy of adsorpt ion is. only a p r o p o r t i o n of the t o t a l energy of an i o n moving through the t o t a l a p p l i e d p o t e n t i a l , as i l l u s t r a t e d i n Figure 25. Elec t rode Double Surface Layer Distance from Elec t rode Surface Figure 25. P o t e n t i a l - Funct ion of Ion i n V i c i n i t y of a.Charged E l e c t r o d e - 52 - f? i s def ined as the change i n the energy of adsoption with change i n the E a p p l i e d p o t e n t i a l ( i . e . = a d s ^ a p p l i e d Adsorpt ion of f l u o r i d e ions occurs at r e l a t i v e l y a c t i v e p o t e n t i a l s i f pH and pF are s m a l l , that i s , i f there i s smal l hydroxide ion and large f l u o r i d e ion concentration. : as p r e d i c t e d by equation ( 17) Recent w o r k ^ with plat inum i n c h l o r i d e s o l u t i o n s has shown that adsorpt ion of c h l o r i d e ions i s favoured by low pH and large c h l o r i d e i o n concentra t ions . I t was a l s o found that c h l o r i d e adsorpt ion i n h i b i t s coverage of the surface by adsorbed oxygen. Adsorpt ion of f l u o r i d e ions can be expected t o occur at weak spots i n the n i c k e l hydroxide f i l m . In such places as g r a i n boundaries and d i s  l o c a t i o n s i t e s , the metal i s probably slowly d i s s o l v i n g . As f l u o r i d e ions carry • current to these s i t e s , f l u o r i d e adsorpt ion w i l l occur there most r a p i d l y . In the present work, n i c k e l sulphide has been i d e n t i f i e d at the g r a i n boundaries , F igure 2 6 . Any p a s s i v a t i n g f i l m i s l i k e l y to be p a r t i c u l a r l y weak on the sulphide phase and therefore c o r r o s i o n w i l l be i n i t i a t e d p r e  f e r e n t i a l l y at the g r a i n boundaries . Figure 2 6 . M i c r o - s t r u c t u r e of N i c k e l Showing Second Phase. The adsorbed, f l u o r i d e ions w i l l form a soluble n i c k e l - h a l i d e complex, probably N i F 3 , and. thus i n i t i a t e a c o r r o s i o n r e a c t i o n . The mechanism i s N i ( H 2 0 ) n a d s + 5 F " N 1 < F 3 ) ! d s + n H 2 ° N i ( F 3 ) a d s MF3 • + 2 e" . Hal ide ions car ry par t of the current t o these s i t e s - a n d thus maintain a s u f f i c i e n t concentrat ion f o r the r e a c t i o n t o proceed at these l o c a l i z e d s i t e s , g r a i n boundaries i n t h i s c a s e , - F i g u r e 22a. .The increase i n current w i t h p o t e n t i a l w i l l f i t the T a f e l equation i f the rate -control,--is 1 a c t i v a t i o n : . o f the n i c k e l o x i d a t i o n s tep . This i s the case at large f l u o r i d e i o n concentrat ions and low pH (Figure 21). The slope 1J5 m v y i n d i c a t e s an o x i d a t i o n process i n which one e l e c t r o n at a time i s exchanged. At higher pF and pH hydroxide adsorpt ion i n t e r f e r e s and the rate i s c o n t r o l l e d - b y competit ion between the two adsorbing anions . At h i g h ;pF and low pH the rate may a l s o be c o n t r o l l e d by d i f f u s i o n of t h e ' f l u o r i d e ions t o the s i t e . The above mechanism which gives r i s e t o , t h e second a c t i v e region i n n e u t r a l s o l u t i o n s can be a p p l i e d t o c o r r o s i o n processes at anodic p o t e n t i a l s up. to -800 mV i n ac id , f l u o r i d e s o l u t i o n s , (Figure 8). The p l o t s . o f the Flade p o t e n t i a l and the c r i t i c a l - h a l i d e adsorpt ion potential ; ; ;versus pH show that f l u o r i d e ions adsorb at more a c t i v e p o t e n t i a l s than the Flade p o t e n t i a l at pH = 3> ;5Figure 27. A d d i t i o n a l support i s found i n Figure 10a, which shows extensive g r a i n boundary c o r r o s i o n on a,specimen subjected t o c o r r o s i o n at anodic p o t e n t i a l s i n a c i d f l u o r i d e s , apparent ly i d e n t i c a l w i t h c o r r o s i o n i n the second a c t i v e r e g i o n i n n e u t r a l s o l u t i o n s - (F igure 27). - Thus, n i c k e l corrodes - 54 - 2 4 6 pH Figure 2 7 . Flade P o t e n t i a l , • E F , and P o t e n t i a l at I n i t i a t i o n of Second A c t i v e Region versus pH -55 i n low p H . s o l u t i o n s at a l l anodic p o t e n t i a l s "by complexing wi th f l u o r i d e i o n s . The g r a d u a l l y s l o p i n g p o l a r i z a t i o n curve at noble p o t e n t i a l i n a c i d f l u o r i d e s o l u t i o n s i n d i c a t e s that the rate i s c o n t r o l l e d . b y mixed concentrat ion p o l a r i z a t i o n and d i f f u s i o n of f l u o r i d e ions to the d i s s o l u t i o n s i t e s . - S i n c e these s i t e s are s p e c i f i c , the anions must t r a v e l p a r t l y perpendicular t o the p o t e n t i a l f i e l d . T h i s . p a r t of t h e i r movement w i l l be p o t e n t i a l independent and gives r i s e t o a l a r g e r T a f e l s l o p e . .The p o l a r i z a t i o n curve f o r n i c k e l i n n e u t r a l f l u o r i d e s o l u t i o n s shows that n i c k e l i H p a s s i v e , a t p o t e n t i a l s between -950 and -1100 mV. K o l o t y r k i n " ^ has suggested that oxygen p r e f e r e n t i a l l y adsorbs to metal atoms w i t h bonds corresponding t o t h e i r highest o x i d a t i o n s t a t e . This i r e a c t i o n can be expected t o occur as the e lectrode p o t e n t i a l i s made more p o s i t i v e and therefore d i s p l a c e s h a l i d e i o n a d s o r p t i o n . Iron i s known t o d i s s o l v e f r o m . p i t s i t e s as d i v a l e n t ions and'-from passive areas as t r i - 29 valent i o n s , i n c h l o r i d e and bromide s o l u t i o n s . In a d d i t i o n , the ..pH- - p o t e n t i a l diagram (Figure 5) p r e d i c t s that M2O3 would form at p o t e n t i a l s more noble than -750 mV i n . t h e absence of h a l i d e i o n s . The second passive region f o r n i c k e l i s therefore concluded t o r e s u l t from oxygen adsorpt ion to n i c k e l t o . f o r m a t r i v a l e n t oxide f i l m which i s s table even i n the presence of ha l ide i o n s . - 5 6 Monel P o l a r i z a t i o n s t u d i e s . o n monel i n f l u o r i d e s o l u t i o n s b u f f e r e d at pH = 4.0, 6.2 (Figure 28) and 11.3 showed behaviour s i m i l a r t o n i c k e l . However,•monel has a higher overvoltage f o r the cathodic r e a c t i o n : . 2 H + + - 2e~ — ^ H 2 The r e s u l t i n g exfchange currents are lower than f o r n i c k e l (see Table I I I ) •TABLE. I I I . .Exchange. Current f o r Monel and N i c k e l i n S i m i l a r S o l u t i o n s pH Monel N i c k e l 4,0 6 uA/cm 2 16 uA/cm 2 6.0 2 uA/cm 2 8 uA/cm 2 11.0 0.3 uA/cm 2 0.6 uA/cm 2 These d a t a . i n d i c a t es that monel i s more r e s i s t a n t than n i c k e l t o f l u o r i d e s i n 5 a c i d s o l u t i o n . .The exchange or c o r r o s i o n current of monel i n f l u o r i d e s i s c o n t r o l l e d by the cathodic r e a c t i o n as i l l u s t r a t e d i n Figure ^b). • Any environmental change which increases the ra te of . t h e . c a t h o d i c r e a c t i o n w i l l increase the c o r r o s i o n of monel. •At pH = 4 monel does, not passivate i n the presence, of f l u o r i d e s . The shape of the anodic curve i s very s i m i l a r to the anodic curve f o r n i c k e l i n f l u o r i d e s at low pH. In n e u t r a l f l u o r i d e s o l u t i o n , pH = 6 the anodic current decreases s l i g h t l y on r a i s i n g the p o t e n t i a l past the a c t i v e peak,•Figure 28. The " p a s s i v e " current was about 12 pA/cm. 2 as compared t o 2 pA/cm 2 f o r n i c k e l . - 57' - 1000 0 -500 -1000 P o t e n t i a l (mV versus-SCE) Figure 2 8 . P o l a r i z a t i o n Curve of M o n e l ' i n O.H^-M. NaF S o l u t i o n at pH = 6.0 A'«» ?*'*-8 At higher pH, monel behaves, s i m i l a r l y t o n i c k e l but again the " p a s s i v e " current d e n s i t y i s much l a r g e r . The exchange current i s about 0.6 uA/cm 2 and the f i r s t a c t i v e region i s m i s s i n g . The f i r s t t ranspassive region s t a r t s at a p o t e n t i a l of -700 mV compared t o -600.mV f o r n i c k e l . O p t i c a l examination of the specimens showed more p i t t i n g and large c a v i t i e s . .No. experiments to a s c e r t a i n time dependence of the current at a f i x e d p o t e n t i a l were done. ' Monel was a l s o p o l a r i z e d i n c h l o r i d e s o l u t i o n at pH- = 6> F igure 29. The ' . resul t ing.curve was;;.very::.,similar.-.to that obtained for. n i c k e l i n . c h l o r i d e s but with a decreased T a f e l slope i n the second a c t i v e r e g i o n , 75 m V a s compared t o 180 mV. f o r n i c k e l . A l l o y i n g copper to n i c k e l produces a l a r g e r hydrogen qvervoltage and t h i s accounts f o r the lower exchange c u r r e n t . However, i t a l s o reduces the extent of p a s s i v a t i o n at more noble p o t e n t i a l s . . T h i s may be caused by 23 breakdown of the f i l m due to copper d i s s o l u t i o n . A r a i has found t h a t . i n n i c k e l - c o p p e r a l l o y s c o n t a i n i n g more than about 50$ copper, f i l m breakdown occurs due t o the formation of CuO at a f a s t e r rate than N i ( 0 H ) 2 . U h l i g h a s . i n d i c a t e d that increases i n copper content increase the " p a s s i v e " current of n i c k e l - c o p p e r a l l o y s when p o l a r i z e d i n s u l p h u r i c a c i d . He explains the decrease i n the r e s i s t a n c e as a r e s u l t of the f i l l i n g of the n i c k e l d - o r b i t a l s by e lec t rons from copper which i s . n o t a t r a n s i t i o n element. This decreases the s u s c e p t a b i l i t y of the a l l o y t o oxygen a d s o r p t i o n and therefore decreases i t s a b i l i t y t o p a s s i v a t e . - 5 9 - ——I : . -LJ I I • I +300 +200 +100 0 - 1 0 0 - 2 0 0 •Potential (mV versus-SCE) Figure 2 9 . - P o l a r i z a t i o n Curve of Monel i n 0.42 NaCl S o l u t i o n at pH = /fu/\ ^SJ - 60 - CONCLUSIONS 1. N i c k e l does not passivate i n a c i d f l u o r i d e s o l u t i o n s and i s p r e f e r e n t i a l l y corroded at the g r a i n boundaries at anodic p o t e n t i a l s up to -800 mV (versus SCE) . 2. The p o l a r i z a t i o n curve f o r n i c k e l i n n e u t r a l f l u o r i d e s o l u t i o n s shows an a c t i v e region at anodic p o t e n t i a l s s l i g h t l y above the mixed p o t e n t i a l . . N i c k e l i s thought to corrode by forming aquo-complexes i n t h i s region i n which f l u o r i d e ions have no e f f e c t . 3 . N i c k e l becomes passive i n n e u t r a l s o l u t i o n s at p o t e n t i a l s E F , according t o the r e l a t i o n E F = -0.240 + 0.065; pH by h y d r o l y s i s of the aquo-complexes at the surface to form an adherent hydroxide f i l m . F l u o r i d e ions i n s o l u t i o n increase the c o r r o s i o n current i n the passive r e g i o n . 4. F l u o r i d e ions i n n e u t r a l s o l u t i o n i n i t i a t e a second a c t i v e r e g i o n on the n i c k e l p o l a r i z a t i o n curve at p o t e n t i a l s which are more a c t i v e with i n c r e a s i n g f l u o r i d e i o n and decreasing hydroxide i o n concentra t ions . A mechanism i s proposed whereby the c o r r o s i o n i s i n i t i a t e d by the adsorpt ion of f l u o r i d e at s u f f i c i e n t l y noble p o t e n t i a l s . These ions compete w i t h hydroxide ions so that by c o n s i d e r i n g the Langmuir adsorpt ion isotherm, a r e l a t i o n between the c r i t i c a l h a l i d e adsorpt ion p o t e n t i a l , E c , and pH and pF (the negative logar i thm of f l u o r i d e ion concentra t ion) , E c = C - -5| ( log G l b r i t +PH + 2pF) - 61 - i s d e r i v e d . The mechanism f o r c o r r o s i o n i n the second a c t i v e region i s N i ( H 2 0 ) n a d s + : 3 F N i ( F 3 ) a d s ' + n H 20 N i ( F 3 ) 3 " ads N i F 3 + 2e 5. N i c k e l becomes passive at p o t e n t i a l s more noble than -950 mV i n n e u t r a l f l u o r i d e s o l u t i o n s , probably due t o the formation of a . p a s s i v e f i l m ( N i 2 0 3 or higher o x i d e ) . 6. N i c k e l i s passive i n contact wi th f l u o r i d e s s o l u t i o n s wi th 7. Monel corrodes l e s s r a p i d l y at the mixed p o t e n t i a l i n aqueous f l u o r i d e s o l u t i o n s because of i t s higher hydrogen overvol tage . However, at anodic p o t e n t i a l s , • monel does not r e a l l y p a s s i v a t e . 8. . N i c k e l and monel corrode more r a p i d l y i n c h l o r i d e s o l u t i o n s than i n f l u o r i d e at a l l anodic p o t e n t i a l s . 6-5 < PH < 12. - 62 - RECOMMENDATIONS FOR FUTURE INVESTIGATIONS V 1. The c o r r o s i o n of n i c k e l i n f l u o r i d e media could be s tudied as a f u n c t i o n of temperature t o e s t a b l i s h the temperature range over which the c o r r o s i o n mechanisms may be a p p l i c a b l e , and t o obta in more d e t a i l e d v thermodynamic r e l a t i o n s h i p s . 2 . . P o l a r i z a t i o n s tudies of n i c k e l i n s o l u t i o n s of c h l o r i d e , bromide and i o d i d e would r e v e a l the extent t o which the mechanism f o r c o r r o s i o n by f l u o r i d e s i n the second a c t i v e . r e g i o n a p p l i e s t o other h a l i d e i o n s . 3 . P o l a r i z a t i o n techniques i n which a square wave a l t e r n a t i n g current i s superimposed on the a p p l i e d p o t e n t i a l are u s e f u l i n determining the p r o p e r t i e s of the p a s s i v a t i n g f i l m and the double l a y e r . These may be a p p l i e d to n i c k e l c o r r o s i o n i n h a l i d e s o l u t i o n s , e x p e c i a l l y i n passive r e g i o n s . k. C o r r o s i o n s tudies of metals such as z i r conium, aluminum, and magnesium i n f l u o r i d e s o l u t i o n s t o e s t a b l i s h the r e l a t i o n s h i p s of c o r r o s i o n mechanisms on.these metals (which were found t o y i e l d a second a c t i v e r e g i o n i n c h l o r i d e ) t o the mechanisms of n i c k e l c o r r o s i o n , would be v a l u a b l e . - 63 - REFERENCES 1. . G . C . - W M t t a k e r , . - C o r r o s i o n , 6 ,-.= 283 (1950). 2. F . Maness, U . S . - Atomic Energy Comm. Report HW-68426 ( 1 9 6 l ) . 3. . J . Bergman and G.- W. C . MacDonald, C o r r o s i o n , 17, 9 and 12 ( I 9 6 I ) . 4 . E . I . Antonovskaya and L . V . . Takhtarova,• Zhur . Vsesoyuz... Khim. . Obshohestva im D . I . Mendeleeva, 6,. 477 ( 1 9 6 l ) . ( C A . 5_6:292g) 5. M. S c h u s s l e r , , I n d . . Eng. . Chem. 4j_, 133 (19,55). 6. W. J . Braun, F . W . . F i n k and G.•Lee E r i c k s o n , U.S.•Atomic Energy Comm.Report BMI-1237 (1957). 7. D. R. Turner , J . Electrochem. S o c , , . 98 , 434 (1951). 8. . G . Truempler and R. K e l l e r , H e l v . Chim. • Acta 44,.I69I ( I 9 6 I ) . 9. Y. . K o l o t y r k i n and G. W. G i l m a n , - D o k l . Akad. Nauk. • SSSR, 13_7_, 642 ( I 9 6 I ) . 10. Y . . K o l o t y r k i n , " F i r s t I n t e r n a t i o n a l Congress on M e t a l l i c C o r r o s i o n " 1961, Butterworths, . London, 1 9 6 2 , - p . 10. 11. . L . Tronstad,- T r a n s . Faraday Soc . 2<?, 502 (1933) • 12. . D. H . M a c G i l l a v r y , J . H . . Rosenbaum and R. W.Stevenson, J . Electrochem. Soc . 89, 22 (I952.)... . 13. . K. J . V e t t e r and K. A r n o l d , Z . E lekt rochem. , 6k, 244 ( i 9 6 0 ) . 14. . J . Osterwald and H . H . U h l i g , J . Electrochem. . S o c . , 108, 515 ( I 9 6 I ) . 15. U . R . - E v a n s , " F i r s t I n t e r n a t i o n a l Congress on M e t a l l i c C o r r o s i o n " I96I, Butterworths, - London, 1962, p . 3- 16. N. Ya. Bune and Y. K o l o t y r k i n , Zhur . F i z . . Khim, 3J>, 1543 (I96I). 17. . N . D . Greene, C o r r o s i o n , 15_, 369 (1959). 18. M. Stern and A . L . . Geary, J . Electrochem. S o c , 104, 56, 559 and 645 (1957) . 19. ,M.. . S t e r n , C o r r o s i o n , 14, 440t ( I 9 5 8 ) . 2 0 . W . - A . M u e l l e r , C o r r o s i o n , 18, 349 . (1962). 21 . V . C h i k a l and M. • Prazak,• J . I ron and S t e e l I n s t . .193, 36O ( I 9 5 9 ) . . 2 2 . - T . . P . H o a r , - J . A p p l . Chem., 11, 121 ( i 9 6 0 ) . 23. N . D. Greene, C o r r o s i o n , 18, 136t (1962). - 64 - .24. T . P.. Hoar, "Anodic-Behaviour of Metals" in w Modern Aspects of E l e c t r o c h e m i s t r y , I I , e d . J . . O'M. B o c k r i s , Butterworths, London, 1959, p . 272. .25. I b i d , p . 325. 26. R. L i t t l e w o o d , . C o r r o s i o n Science 3, 99 ( I 9 6 3 ) . .27. M. Pourbaix, " A t l a s - D . ; E q . u i l i b r e s Electrochimiq_ues", G a u t h i e r - V i l l a r s , • P a r i s , p . 333, (1963). .28. A r a i Y o s h i , Kogyo Kagaku Z a s s h i , 6k, 600 (I96I). 29. . J . . L . Weininger and W. .R. Grams, J . -Electrochem. - Soc . 109, 9&k ( I 9 6 2 ) . .30- U . . F . . Franck, • " F i r s t I n t e r n a t i o n a l Congress on M e t a l l i c Corrosion', ' 1961, Butterworths, London, 1962, p . 113. 31. Y. K o l o t y r k i n and V . M. Knyasheva/ Zhur . F i z . . C h i m . 3_0, 1990 (1956). 32.. . R. J . H a r t m a n , " C o l l o i d Chemis t ry" , Houghton " M i f f l i n Company, Cambridge, 1 9 4 7 , p . .222-229. 33. N. Hackerman and M. C . Banta, J . . Electrochem... Soc . I l l , 114 (1964). - 6 5 APPENDIX A . P o t e n t i a l S t a n d a r d i z a t i o n The standard calomel reference e lec t rode used i n a l l of the experiments was checked against the cadmium-cadmium sulphate h a l f - c e l l . •A 99*999$ cadmium elec t rode was f i t t e d i n the working electrode holder a f t e r ageing i n s u l p h u r i c a c i d ; A O .9O7 molar cadmium sulphate s o l u t i o n was introduced i n t o the c e l l and saturated wi th n i t r o g e n . - The p o t e n t i a l between the reference e lec t rode and cadmium electrode was read on the Pye potentiometer a f t e r 30 minutes and 60 minutes to be 680 mV. The standard e lec t rode p o t e n t i a l of Cd —>• C d + + + 2e~ i s 0.4-03 v o l t s on the hydrogen scale as reported i n Latimer . Using-an a c t i v i t y c o e f f i c i e n t of 0.05, and the Nernst equation RT r c d + + 1 i C d T E = E 0 - ~p In [Cd ] Cd the e lectrode p o t e n t i a l f o r the above system was 0.433 v o l t s versus the hydrogen electrode or 0.684 versus- the saturated calomel . The experimental value of 0.680 v o l t s is ' w e l l w i t h i n experimental accuracy. A L a t i m e r / W . M . / ' O x i d a t i o n P o t e n t i a l s " Englewood C l i f f s / Prent ice Hall , .1952. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0104914/manifest

Comment

Related Items