Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Preparation and properties of nitrogen oxide trifluoride Passmore, Jack 1967

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1968_A1 P375.pdf [ 9.13MB ]
Metadata
JSON: 831-1.0104716.json
JSON-LD: 831-1.0104716-ld.json
RDF/XML (Pretty): 831-1.0104716-rdf.xml
RDF/JSON: 831-1.0104716-rdf.json
Turtle: 831-1.0104716-turtle.txt
N-Triples: 831-1.0104716-rdf-ntriples.txt
Original Record: 831-1.0104716-source.json
Full Text
831-1.0104716-fulltext.txt
Citation
831-1.0104716.ris

Full Text

The Univers i ty of B r i t i s h Columbia FACULTY OF GRADUATE STUDIES PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of JACK PASSMORE B.Sc. (Hons.), The Univers i ty of B r i s t o l THURSDAY, .DECEMBER 14, 1967, AT 3:30 P.M. IN ROOM 225, CHEMISTRY BUILDING COMMITTEE IN CHARGE External Examiner: H.C. Clark Department of Chemistry Univers i ty of Western Ontario London, Ontario Chairman: I. McT. Cowan E. Teghtsoonian J . P . Kutney W.R. Cul len C A . McDowell E. Aubke B.A. Dunell Research Supervisory N.L. Paddock THE PREPARATION .AND PROPERTIES OF OF NITROGEN OXIDE TRIFLUORIDE ABSTRACT Nitrogen oxide t r i f l u o r i d e was prepared in trace quant i t ies by the react ion of n i t r i c oxide and f l u o r i n e . Low, but improved y ie lds were obtained when n i t r o s y l f luor ide and f luor ine were heated together at 240°. I t was found that (NO)„NiF, was formed by the react ion of the walls of the Monel react ion vesse ls ; n i t r o s y l f l u o r i d e , and f l u o r i n e , and that pyro lys is of th is s a l t ( in 70 p . s . i . f luor ine at 350°) gave the new com-pound i n good y i e l d . The reactions of platinum and i r id ium hexafluoride with n i t r o s y l f luor ide were i n -vestigated as routes to 0NF^» Nitrogen oxide t r i f l u o r i d e was colourless in the s o l i d , l i q u i d , and gaseous phases, ( melting at o o -161 and b o i l i n g at - 8 7 . 5 . The vapour pressure was determined over the range 128° to -78°. The empir ical formula was establ ished by elemental ana lys is , molecu-lar weight determination and massrspectroscopy. The s t ructura l formula ONF was establ ished from the 19 3 F n .m. r . , and the inf rared spectrum of the compound. Nitrogen oxide t r i f l u o r i d e was found to be only moderately reac t i ve . There was no evidence that ONF^ could be protonated by strong ac ids . A 1 : 1 adduct .is forr.wd with AsF_. The chemical behaviour and inf rared spectrum of ONF^jAsF^ was consistant with the formulation ONF 2 + AsF 6 " . The empir ica l formula of (NO^NiF^. was estab-l i shed by elemental a n a l y s i s . I ts in f rared spectrum, and magnetic s u s c e p t i b i l i t y showed that i t contained +- 2— 6 the (ON) and (NiF,) ions , and a low spin d arrange-o ment for N i ( IV ) . The X- ray powder d i f f r a c t i o n patterns of (NO^NiF^ could be indexed on a hexagonal unit c e l l a = 5.524°A, £ = 5.097°A, except for f i ve d i f fuse l ines that varied in in tens i t y from sample to sample. Weissenberg (h k 0 , h k 1, h k 2, h k 3) photographs showed two sets of r e f l e c t i o n s . One sharp strong set that could be indexed on the same hexagonal c e l l as the l ines of the powder photograph, and a weak d i f fuse set of re f lec t ions that together with the strong re f lec t ions could be indexed on the hexagonal unit c e l l , j a = 4x5.524, £ = 5.097 J ? . A structure determination was car r ied out using the strong sharp set of r e f l e c t i o n s . The d i f f r a c t i o n data was consistant with various models, but the most 2-l i k e l y model consisted of (NiF t ) groups with the o f luor ine atoms in a regular octahedron around the n icke l atom and the N i -F bond distance equal to L.76 5 . The N-0 bond distance was very short , 0.88 and had associated with i t regions of electron density normal to the axis defined by the nitrogen and oxygen atoms. A similar situation for the 0„+ ion in CLPtF, was reported by Ibers and Hamilton, o At 200 chlorine pentafluoride and iridium hexa-fluoride reacted to give small quantities of a yellow compound which was characterised as ClF„+IrF, from elemental analysis, magnetic susceptibility measure-ments, and its infrared spectrum. A structural detejr-i.. mination was attempted from single crystal X-ray data. Preliminary results suggest that the iridium and chlo-rine atoms form interlocking a b face centred arrays, with the chlorine atoms almost in the centre of rec-tangular holes defined by the iridium atoms. GRADUATE STUDIES F i e l d of Study: Inorganic Chemistry Topics i n P h y s i c a l Chemistry Topics i n Organic Chemistry Topics i n Inorganic Chemistry Seminar i n Chemistry Spectroscopy and Molecular Structure C r y s t a l S t r u c t u r e Advanced Inorganic Chemistry Related Studies: L i n e a r Algebra Computer Programming J.A.R. Coope W.C. L i n D.E. McGreer L.D. H a l l F. McCapra W.R. C u l l e n R.C. Thompson N.L. Paddock H.C. C l a r k J.T. Kwan B.A. Dunell K.B. Harvey A. Bree S.A. Melzak J . T r o t t e r H.C. C l a r k W.R. C u l l e n B. Chang A.G. Fowler PUBLICATIONS N. B a r t l e t t , J . Passmore, and ( i n part) E.J. Wells N i t r o g e n Oxide T r i f l u o r i d e , Chem. Commun. 213 01966) THE PREPARATION AND PROPERTIES OF NITROGEN OXIDE TRIFLUORIDE by J. PASSMORE B.Sc. (Hons.), Bristol University, England, 1963 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of CHEMISTRY We accept this thesis as conforming to the required standard. THE UNIVERSITY OF BRITISH COLUMBIA December 1967 In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced d e g r e e at t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n -t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Depar tment n f The U n i v e r s i t y o f B r i t i s h C o l u m b i a V a n c o u v e r 8, Canada 27'iin i i ABSTRACT Supervisor: Professor N. Bartlett Nitrogen oxide trifluoride was prepared in trace quantities by the reaction of n i t r i c oxide and fluorine. Low, but improved yields were obtained when nitrosyl fluoride and fluorine were heated together at 220°. It was found that (N0>2NiFg was formed by the reaction of the walls of the Monel reaction vessels, with nitrosyl fluoride, and fluorine, and that pyrolysis of this salt (in 70 p.s. i . fluorine at 350°) gave the new compound in good yield. The reactions of platinum and iridium hexafluoride with nitrosyl fluoride were investi-gated as routes to ONF3. Nitrogen oxide trifluoride was colourless in the solid, liquid, and gaseous phases, melting at -161° and boiling at -87.5°. The vapour pressure was determined over the range -128° to -78°. The empirical formula was established by ele-mental analysis, and by determination of i t s molecular weight. 19 The structural formula ONF3 was established from the F n.m.r., and the infrared spectrum of the compound. Nitrogen oxide trifluoride was found to be only moderately reactive. There was no evidence that ONF3 could be protonated by strong acids. A 1:1 adduct was formed with AsF^. i i i The chemical behaviour and infrared spectrum of 0NF3,AsF5 was consistent with the formulation ONF2+AsFg". The empirical formula of (NO^NiFg was established by elemental analysis. Its infrared spectrum, and magnetic + 2-susceptibility showed that i t contained the (NO) and (NiFg) ions, and a low spin d^ arrangement for Ni(IV). The X-ray powder diffraction patterns of (NO) 2NiF 6 could be indexed on the basis of a hexagonal unit c e l l a = o o 5.524 A, c = 5.097 A, except for five diffuse lines that varied in intensity from sample to sample. Weissenberg (h k 0, h k 1, h. k 2, h k 3) photographs showed two sets of reflections. One sharp strong set that could be indexed on the basis of the same hexagonal c e l l as the lines of the powder photograph, and a weak diffuse set of reflections that together with the strong reflections could be indexed on the hexagonal unit c e l l , a = o 4x5.524, c = 5.097 A. A structure determination was carried out using the strong sharp set of reflections. The diffraction data were consistent with various models, but the most lik e l y model consisted of (NiFg)^" groups with the fluorine atoms in a regular octahedron around the nickel atom and the Ni-F bond distance equal o o to 1.76 A. The N-0 bond distance was very short, 0.88A, and had associated with i t regions of electron density normal to i v the axis defined by the nitrogen and oxygen atoms. A s i m i l a r s i t u a t i o n for the O2* ion i n O^PtFg was reported by Ibers and H a m i l t o n . ( 1 0 8 ) At 200° chlorine pentafluoride and iridium hexafluoride reacted to give small quantities of a yellow compound which was characterised as ClF2 +IrFg~ from elemental analysis, magnetic s u s c e p t i b i l i t y measurements, and i t s infrared spectrum. A s t r u c t u r a l determination was attempted from single c r y s t a l X-ray data. Preliminary results suggest that the iridium atoms form an ab face centred array, and the chlorine atoms are situated almost i n the centre of the square pyramidal holes defined by the iridium atoms. V TABLE OF CONTENTS Page Abstract i i Table of Contents v Li s t of Tables x i Li s t of Figures and Plates x i i i Acknowledgments xiv INTRODUCTION 1 CHAPTER I. GENERAL EXPERIMENTAL TECHNIQUES 1. Vacuum System and Parts 4 1*1. General Comments 4 1.2. Materials of Construction 4 1.3. Tubing and Connections 5 1.4. Valves 5 1.5. Metal Containers and Reaction Vessels 6 1.6. Pressure Measuring Apparatus 8 1.7. Infrared Gas Cell 10 1.8. General Purpose Vacuum Line 12 1.9. High Pressure Fluorine Vacuum Line 14 2. Experimental Techniques 2.1. Infrared Spectroscopy 16 2.2. X-Ray Powder Photography 16 2.3. Preparation and Handling of Reagents 17 v i CHAPTER Page II. THE PREPARATION AND PROPERTIES OF ONF3 Chapter Summary 24 1. Introduction 27 2. Experimental 29 1. The Preparation of ONF3 29 1.1. Reaction of Nit r i c Oxide with Fluorine 29 1.2. Reaction of Nitrosyl Fluoride and Fluorine 30 1.3. Pyrolysis of (NO) 2NiF 6 i n Fluorine 32 1.4. The Reaction of IrFg with ONF 34 1.5. The Reaction of PtFg with ONF 36 1.6. Purification of ONF3 38 1.7. Unsuccessful Attempts at ONF3 Synthesis 41 2. Physical Properties of ONF3 45 2.1. Molecular Weight Determination and Elemental Analysis 45 2.2. Mass Spectrum of ONF3 49 2.3. Physical Properties 49 19 2.4. F n.m.r. Spectrum of ONF3 66 2.5. The Infrared Spectrum of ONF3 68 2.6. The Ultraviolet Spectrum of ONF3 68 2 3. Chemical Properties of ONF3 69 3.1. General Chemical Behaviour 69 3.2. Reaction of ONF3 with AsF 5 72 3.3. Reaction of ONF3 with Strong Proton Donors 74 v i i CHAPTER Page II. (Continued) 4. The Properties of ONF3AsF6 78 4.1. Dissociation of ONF3ASF5 78 4.2. the Infrared Spectrum 78 4.3. X-ray Powder Diffraction Pattern 79 4.4. Reaction of O N F and CsF 79 4.5. Fluorination of ONF3ASF5 79 5. The Preparation and Characterisation of Pure (NO) 2NiF 6 81 5.1. Preparation of Pure (NO)2NiFg 81 5.2. Elemental Analysis of (NO) 2NiF 6 82 5.3. Infrared Spectrum of (NO) 2NiF 6 83 5.4. Magnetic Susceptibility of (NO) 2NiF 6 84 5.5. Action of Heat oh (NO) 2NiF 6 84 3. Discussion 85 3.1. Empirical Formula of ONF3 85 3.2. Preparation of ONF3 86 3.3. Physical Properties of ONF3 93 19 3.4. F n.m.r. Spectrum of ONF3 95 3.5. The Infrared Spectrum of ONF3 98 3.6. Ultraviolet Spectrum of ONF3 106 3.7. Kinetic Stability of ONF3 107 3.8. Reaction of ONF3 with Proton Donors 107 3.9. Structure and Properties of the Adduct ONF3 ASF5 109 3.10. The Bonding i n ONF3 113 3.11. The Salt (NO) 2NiF 6 116 v i i t CHAPTER Page III. THE CRYSTAL STRUCTURE OF (NO>2NiF6 Chapter Summary 117 1. Introduction 117 2. Experimental 118 1. X-ray Diffraction Photographs of a Single Crystal of (NO) 2NiF 6 118 2. X-ray Powder Photographs of (NO) 2NiF 6 121 3. Determination of the Structure of (NO) 2NiF 6 Based on the Strong Sharp Set of Reflections 124 3.1. Single Crystal Data 124 3.2. Structure Analysis 125 4. Discussion of Results 129 IV. THE REACTION OF IrFg WITH BROMINE AND CHLORINE PENTAFLUORIDE Chapter Summary 136 1. Introduction 137 2. Experimental 138 1.1. Reaction of BrF5 with IrFg at Room Temperature 138 1.2. Reaction of I r F 6 , BrF 5 and Fluorine 139 2.1. Reaction of C1F 5 and IrFg 139 2.2. Reaction of C1F 5, IrFg and F 2 140 2.3. Reaction of C1F 5 with I r F 5 140 2.4. Reaction of CIF3 with I r F 5 141 2.5. Chemical Analysis of ClF3,IrF5 141 ix CHAPTER Page IV. (Continued) 2.6. Physical Properties of C l F 3 , I r F 5 143 2.6.1. Melting Point 143 2.6.2. Infrared Spectrum 144 2.6.3. Magnetic Susceptibility Measurements 144 2.6.4. X-ray Powder Data for C l F 3 I r F 5 146 2.7. Attempted Fluorination of ClF 3,IrF5 146 3. Discussion 146 1. Reaction of IrFg with C1F 5 and BrF 5 146 2. The Adduct C l F 3 , I r F 5 149 V. THE CRYSTAL STRUCTURE OF C l F 2 , I r F 6 Chapter Summary 151 1. Introduction 152 2. Experimental 153 1. Preparation of Single Crystals of C l F 2 , I r F 6 153 2. X»ray@RaygDif if taction of Single 154 Crystals of ClF2,IrF 6 3. Crystallographic Data 155 3.3. Structure Analysis 157 3. Discussion 158 1. The Symmetry of the C1F 2* Ion 158 2. Structure of C l F 9 , I r F A 158 X Page Appendix 1 , 2 . 3 . 4 . 5 . Information Sheet (trade names). Information concerning apparatus, equipment, and materials that have been listed under trade names in the text 1 6 1 Calculation of the Ave N-0 Bond Dissociation Energy in ONF and O2NF 1 6 3 The Calculation of the Relationship Between RJJOI R'NF* a n d *B f o r 0 N F 3 1 6 4 Calculated and Observed Structure Factors for (NO) 2NiF 6 1 7 2 Observed Structure Factors for C l F 2 + I r F g ' 1 7 3 References 1 7 4 x i LIST OF TABLES TABLE Page 1. The b.p., m.p., Methods and Dates of the First Preparation of the Simple Fluoride and Oxyfluorides of Nitrogen and Phosphorus 28 2. Mass Spectrum of ONF3 50 3. Vapour Pressure Data for ONF3 56 4. The Best Straight Line Fits for Vapour Pressure Data of ONF3 59 5. ONF3 Vapour Pressures Calculated for Temperatures 146 - 190°K Using Parameters Obtained from the Best Straight Line Fits 64 6. Values of Heat of Evaporation, Entropy of Evapor-ation and Boiling Point for ONF3 65 7. X-ray Powder Data for 0NF3,AsF5 80 8. Methods of ONF3 Preparation 87 9. Products of Reaction of ONF with Third Transitional Metal Hexafluorides 91 10. Comparison of the Physical Properties of ONF3, NF3, 02NF, and ONF 93 19 11. The F Chemical Shifts and Nitrogen-Fluorine Coupling Constants for Some Nitrogen Fluorine Species 97 12. Infrared Data and Tentative Assignments, ONF3 99 13. A Comparison of the Infrared Data Found by Various Workers for ONF3 101 14. Assignments of the ONF, Infrared Spectra by Analogy with OPF3 102 x i i TABLE Page 15• Infrared Active Fundamental Modes of Vibration for Some Nitrogen-Oxygen-Fluorine Species 103 16. Assignments of the Fundamental Vibrations of ONF^ made by Fox and Curtis 105 17. A Comparison of the Infrared Spectra of 0NF3,AsFg and O C F 2 and AsFg" 111 18. Vibrational Frequencies, Stretching Force Constants, Bond Lengths, and Average NO, and NF Bond Dissociation Energies for Some N,0,F Containing Compounds 112 19. X-ray Powder Data for (N0) 2NiF g 119 20. Thermal and Positional Parameters for Various Models Used i n the (N0)2NiF$ Structure Determination 127 21. Comparison of Crystal Parameters of (N0)2NiFg and Some Related Compound 135 22. Some Isomorphous Nitrosyl and Potassium Salts 135 23. Chemical Analysis Results for ClF3,IrF 5 143 24. X-ray Powder Data for C l F 3 , I r F 5 147 25. Magnetic Data for Some d§ (MF6> Species 149 26. Parameters Obtained from Structural Analysis of C l F 2 + I r F 6 - (R = 0.24) 157 27. Values of Moment of Inertia I 5 Calculated for Various Values of B 166 28. Values of the R Np in O N F 3 Calculated for Various Values of R N Q and B 171 x i i i LIST OF FIGURES FIGURE Page 1. The Diaphram Gauge 9 2. The Infrared Gas C e l l 11 3. General Purpose Vacuum Line 13 4. A Vacuum Line for a Fluorine Supply 15 5. IrF^/ONF Reaction, Apparatus 35 6. Fixed Volume Apparatus Used i n Elemental Analysis of ONF3 47 19 7. F n.m.r. Spectrum of ONF3 67 8. The Infrared Spectrum of ONF3 69 9. A Projection of the ( N i F 6 ) 2 " group in (N0) 2NiF 6 along an Axis Normal to the xz Plane 128 10. A Projection of the (N0) 2NiF 6 Structure (Model IV) along the c Axis 133 11. The Arrangement of the Iridium and Chlorine Atoms i n Cl F ^ I r F g " 159 LIST OF PLATES PLATE Page 1. The h k 0 and h k 1 Weissenberg Photographs of (N0)2NiF6 122 2 The h k 2 and h k 3 Weissenberg Photographs of (N0) 2NiF 6 123 xiv ACKNOWLEDGMENTS I would like to thank Dr. N. Bartlett for the opportunity of working with him, for his guidance and encour-agement throughout this work, and for many stimulating dis-cussions and ideas. The crystallographic work presented i n this work was done in conjunction with Dr. F. Einstein, and I would like to thank him for his help and encouragement. I would also like to thank Mr. Emil Matter for making the metal apparatus used i n this work, and Mr. Borda of the analytical laboratory for his help with the chemical analysis. My thanks are due to Mr. A. Hardin for his assistance in recording infrared spectra and for discussions on the infrared spectrum of ONF3. I am indebted to my former colleagues, Drs. S. P. Beaton, N. K. Jha, R. P. Rao, and D. F. Stewart, from whom I learnt the many experimental s k i l l s needed to carry out work of this sort. Finally, I would like to thank Dr. F. Aubka and Professor N. L. Paddock for their help and encouragement while my supervisor was absent. I am grateful to Dr. Bartlett for financial assis-tance from his research grant for the years 1965 - 1967. 1 INTRODUCTION The purpose of t h i s investigation was to prepare and characterise the new oxy-fluoride of nitrogen, nitrogen oxide t r i f l u o r i d e . The probable existence of ONF3 was suggested by the following: a) Redwood and W i l l i s ^ reported the preparation of the tri-fluoromethoxides of the a l k a l i metals K, Rb and Cs i n 1965, and demonstrated the presence of the OCF3" ion i n these new compounds. Dr. B a r t l e t t recognised that the 0CF3~ ion would be i s o e l e c t r o n i c to ONF3. b) The highest formal oxidation state of an element i s often exhibited by the oxide or oxyfluoride rather than the f l u o r i d e . For example, FCIO3 and CI2O7 e x i s t whereas C I F 7 has not been reported. Again O2NF, and N2O5 are stable compounds, whereas NF5 does not appear to e x i s t . c) The compound (Cl^^NO exists and has been well characterised. Formal replacement of methyl groups by f l u o r -ine atoms leads to ONF3. The new oxyfluoride was expected to be a good f l u o r i n -ating and o x i d i s i n g agent. I t would also have a low molecular weight and could therefore be regarded as a potential oxidant 2 i n r o c k e t - p r o p e l l a n t s y s t e m s . T h i s was p r o b a b l y t h e m a i n m o t i v e f o r s e v e r a l p a r a l l e l i n v e s t i g a t i o n s c a r r i e d o u t i n d e -p e n d e n t l y f r o m t h i s r e s e a r c h . I t was e x p e c t e d t h a t t h e b o n d i n g i n ONF3 w o u l d be o f s p e c i a l i n t e r e s t . N i t r o g e n o x i d e t r i f l u o r i d e c o u l d p o s s i b l y p r e s e n t a n example o f p e n t a c o v a l e n c y * f o r a f i r s t r o w e l e m e n t ( L i t o N e ) . T h e o r e t i c a l e x p l a n a t i o n s o f t h e o b s e r v e d maximum c o v a l e n c y o f f o u r o f t h e s e e l e m e n t s h a v e i n v o k e d t h e n o n -a v a i l a b i l i t y o f t h e d - o r b i t a l s o f s u f f i c i e n t l y l o w e n e r g y , s t e r i c h i n d r a n c e , and e l e c t r o n e g a t i v i t y f a c t o r s . A l t h o u g h t h e r e a r e no examples o f g e n u i n e p e n t a o r h e x a c o v a l e n c y , a l a r g e number o f e x a m p l e s where f i r s t row 2 e l e m e n t s e x h i b i t c o o r d i n a t i o n numbers g r e a t e r t h a n f o u r a r e k n o w n . I n a l l c a s e s t h e bonds a r e n o t o f t h e two e l e c t r o n , two c e n t r e t y p e . E x a m p l e s i n c l u d e : (1) L i t h i u m and b e r y l l i u m m e t a l ( m e t a l l i c b o n d i n g ) . (2) I o n i c compounds, e . g . L i F , N a F , Na2<). (3) I n t e r s t i t i a l compounds e . g . C r N , M o C , VO ( t h e bonds i n t h e s e compounds a r e p r o b a b l y n o t f u l l c o v a l e n t b o n d s ( 2 > ) . A c o v a l e n t bond i s d e f i n e d as a two c e n t r e , two e l e c t r o n b o n d . 2 C o o r d i n a t i o n number i s d e f i n e d as t h e number o f n e a r e s t n e i g h b o u r s . 3 (4) A l k y l b r i d g e compounds e . g . ( B e C C H ^ ^ ^ ( t h r e e c e n t r e , two e l e c t r o n b o n d s ) . ( 5 ) H y d r o b o r a n e s and c a r b o r a n e s ( m u l t i - c e n t r e b o n d i n g ( l 3 4 ) ) . P e n t a c o v a l e n c y i s p o s s i b l e f o r t h e n i t r o g e n atom i n t h e n i t r o g e n y l i d s ( C H ^ N O and F N 0 2 . W i t t i g ^ s u g g e s t e d t h a t t h e b o n d i n g i n t h e n i t r o g e n y l i d s was b e s t d e s c r i b e d b y t h e G 2 N F V ' and ( C H ^ N C r ' a r e k n o w n , and t h e N - 0 bond d i s t a n c e s s u g g e s t bond o r d e r s o f 1 .5 and 1 r e s p e c t i v e l y . Many o f t h e d i f f i c u l t i e s i n h a n d l i n g f l u o r i n e and f l u o r i d e s t h a t were e n c o u n t e r e d by t h e e x p e r i m e n t e r f i f t e e n o r t w e n t y y e a r s ago h a v e now b e e n o v e r c o m e . These i m p r o v e m e n t s h a v e g r e a t l y s i m p l i f i e d t h e h a n d l i n g and c h a r a c t e r i s a t i o n o f v e r y r e a c t i v e f l u o r i r i e compounds. f o r m u l a t i o n R~N-C~H2 o n c h e m i c a l g r o u n d s . The s t r u c t u r e s o f 4 CHAPTER I GENERAL EXPERIMENTAL TECHNIQUES 1 1. VACUUM SYSTEM AND PARTS 1 . 1 . G e n e r a l Comments The compounds e n c o u n t e r e d i n t h i s w o r k p o s e d s e v e r a l d i f f i c u l t i e s . E l e m e n t a l f l u o r i n e and many v o l a t i l e f l u o r i d e s a r e p o w e r f u l o x i d i s i n g a g e n t s and r e a c t v i g o r o u s l y w i t h m a t e r i a l s commonly p r e s e n t i n t h e l a b o r a t o r y . They a r e v e r y o f t e n t o x i c and c a u s e s e r i o u s b u r n s i f t h e y a r e i n c o n -t a c t w i t h t h e s k i n . M o s t o f t h e compounds e n c o u n t e r e d a r e s e n s i t i v e t o m o i s t u r e . I t was t h e r e f o r e n e c e s s a r y t o h a n d l e t h e s e compounds e i t h e r i n a l e a k - t i g h t s y s t e m o r , i f i n v o l a -t i l e , i n t h e m o i s t u r e - f r e e a t m o s p h e r e o f a d r y b o x . 1 . 2 . M a t e r i a l s o f C o n s t r u c t i o n The m a n i f o l d was c o n s t r u c t e d u s i n g M o n e l m e t a l i n o r d e r t o p e r m i t r o u t i n e h a n d l i n g o f g a s e s a t p r e s s u r e s g r e a t e r t h a n t h r e e a t m o s p h e r e s , and t o o v e r c o m e t h e p r o b l e m s a s s o c i a t e d w i t h a t t a c k o f r e a c t i v e f l u o r i d e s o n t h e g l a s s and g r e a s e o f a c o n v e n t i o n a l vacuum s y s t e m . C o p p e r t u b i n g (%" O . D . ) was employed t o make c o n n e c t i o n s when f l e x i b i l i t y i n a A p p a r a t u s , e q u i p m e n t and m a t e r i a l s l i s t e d u n d e r t h e i r t r a d e m a r k s w i l l be d e n o t e d w i t h a n a s t e r i s k ( * ) . They w i l l be l i s t e d and t h e m a n u f a c t u r e r and t h e s u p p l i e r g i v e n i n a s e p a r a t e i n f o r -m a t i o n s h e e t ( s e e A p p e n d i x 1 . ) . 5 length of tubing was required. Both metals were made resis-tant to attack by fluorine and fluorides by the formation of an impervious layer of the difluoride, a process known as passivation. Kel-F* traps and tubing were used, and Teflon* was employed for making gaskets, ferrules, and reaction vessels. Valves and unions used to connect pieces of metal tubing were made of Monel, stainless steel or brass. 1.3. Tubing and Connections Monel or copper tubing, O.D., l/32« wall thick-ness was used to connect valves, pressure measuring devices, and containers (except for the lines i n the high pressure fluorine system, see section 1.1.9). Pieces of tubing were connected together using either silver-soldered socket weld fi t t i n g s , or Teflon or metal com-pression f i t t i n g s . Both were available i n the form of straight unions, T«s, and crosses (Swagelok* f i t t i n g s ) . Metal-glass connections were used, consisting of Swagelok pressure f i t t i n g s , d r i l l e d out on one side to receive 7 mm glass tubing. The high pressure part of the vacuum line was con-structed from Autoclave* tubing and connections. 1.4. Valves Hoke valves*; Hoke 431 Helium leak-tested valves 6 are brass bodied, bellows-sealed, valves with a metal V stem and seat. They were connected to Monel tubing by solder tube fi t t i n g s . The maximum pressure that these valves were exposed to was 200 p.s.i. Hoke valves were particularly useful as terminal valvesowing to their r e l i a b i l i t y i n main-taining a good vacuum. Whitey* valves: Monel metal Whitey valves were used with a Kel-F tipped stem. These valves could be disassembled and corroded layers cleaned. The valves were connected to Monel tubing with compression fi t t i n g s , whitey valves were used in the construction of apparatus that was in continual use, and where a high vacuum was not essential. Autoclave Engineering* valves: Autoclave Engineering valves are made of Monel, with a Teflon gasket seal. These valves were used in the high pressure fluorine line. They can withstand pressures of up to 30,000 p.s.i. and hold a vacuum over long periods of time. 1.5. Containers and Reaction Vessels 1.5.1. Metal Containers Monel metal containers, for handling and storing volatile compounds, were made from metal pipe and sheets. They were argon-arc welded and capable of withstanding pressures 7 of 400 p.s. i . , without leakage. Containers were made in two sizes, 16 cm.x 10 cm, referred to as w l l i t r e gas reactors" and 7 cm.x 5 cm, referred to as "100 ml gas reactors". To f a c i l i t a t e the handling of solids Monel vessels were constructed with a removable l i d , held to the main body by strong bolts and sealed with Teflon gaskets. This type of vessel w i l l be referred to as a "solid reactor". Such vessels of the dimension 3 x 5 cm-which together with a Hoke 431 valve weighed less than 200 gms. could be weighed on an analytical balance. This small solid reactor w i l l be called a "weighing vessel". 1.5.2. Kel-F Traps Kel-F traps were used as reaction vessels when a visual examination of the reaction was desirable, and in experiments where solids were formed. The Kel-F traps (com-mercially available from Argonne National Labs. Business Office) had a 3/4" SAE flare clamped against a tapered cone shaped Monel block. Tubing (%") connected to the block acted as a connection to a valve. 1.5.3. Dry Box The dry box used i n a l l experiments described in this thesis was a Vacuum Atmospheres Corporation Model HE-43-2 Dri-Lab. with a Model HE 93-B Dri-Train. Purified nitrogen 8 ( L grade) , was u s e d as t h e i n e r t a t m o s p h e r e . The a t m o s p h e r e was c i r c u l a t e d t h r o u g h t h e d r y i n g t r a i n e q u i p p e d w i t h L i n d e ' s " M o l e c u l a r S i e v e s " * . I f an o p e n v e s s e l c o n t a i n i n g ?2^5 r e ~ m a i n e d i n t h e d r y box f o r 24 h o u r s w i t h o u t t h e f o r m a t i o n o f a s l i g h t s k i n due t o a t t a c k b y m o i s t u r e , t h e a t m o s p h e r e was c o n s i d e r e d d r y . 1 . 6 . P r e s s u r e M e a s u r i n g A p p a r a t u s 1 . 6 . 1 . The M o d i f i e d B o o t h - C r o m e r P r e s s u r e T r a n s m i t t e r The B o o t h - C r o m e r T r a n s m i t t e r d i a p h r a g m g a u g e ^ was m o d i f i e d b y u s i n g a T e f l o n g a s k e t ( s e e F i g u r e 1 . ) . The gauge was c o n n e c t e d t o t h e vacuum l i n e t h r o u g h a s m a l l M o n e l r e s e r v o i r . The gauge was u s e d as a n u l l i n s t r u m e n t , b y b a l a n c i n g t h e p r e s s u r e o f gas i n s i d e t h e d e v i c e w i t h a n e q u a l p r e s s u r e o f a i r o n t h e u p p e r s i d e o f t h e d i a p h r a g m . The b a l a n c i n g p r e s s u r e o f a i r was m e a s u r e d d i r e c t l y o n a m e r c u r y manometer . The n u l l p o i n t was d e t e r m i n e d b y t h e m a k e - b r e a k a c t i o n o f t h e n i c k e l d i a p h r a g m and t h e f i x e d p l a t e i n c o n j u n c t i o n w i t h a n e l e c t r i c c i r c u i t . The a d j u s t a b l e c o n t a c t was p o s i t i o n e d b e f o r e u s e so t h a t a s m a l l d i s p l a c e m e n t ( a p p r o x . 0 . 0 5 mm H g . ) o f t h e b a l a n c i n g a i r p r e s s u r e w o u l d a l l o w e l e c t r i c a l c o n t a c t t o be made. The p r e s s u r e a c r o s s t h e d i a p h r a g m was k e p t as s m a l l as p o s s i b l e by a d m i t t i n g o r e v a c u a t i n g a i r b y means o f a two-way s t o p c o c k . 9 110V Inlet for gas or vapour the pressure of which is to be measured Figure 1. The Diaphragm Gauge 10 Large pressure differentials across the diaphragm of the gauge caused rupture or buckling of the thin nickel plate. 1.6.2. Bourdon Gauge* A Monel Bourdon gauge designed to measure pressures in the range 0 - 1000 mm,Hg. Abs., was used for routine pressure measurement. The accuracy of measurement was approx. - 3 tnm.Hg. 1.6.3. Crosby* High Pressure Gauge A Crosby gauge (0 - 600 p.s.i.) was used on the high pressure fluorine vacuum line to measure pressures of fluorine up to 400 p.s.i. The gauge, specified for use with oxygen, was found satisfactory for fluorine. 1.6.4. Thermocouple and Ionisatlon Gauges An N. R. C. Thermocouple gauge was used to -1 -3 measure pressure of 10" to 10" mauHg., and an Emission regu-lated Ion Gauge control (NRC Equipment Corporation, type 710 B), —3 —6 used for pressures of 10~ to 10" mm Hg. 1.7. Infrared Gas Cell The infrared c e l l was constructed of Monel metal and consisted of a cylindrical cavity with AgCl windows (see Figure 2.). The cavity had two outlets, at 90° to each other, one connected the c e l l to the vacuum line, and the other con-nected i t to a small (approx. 20 mis, capacity) reservoir. The 11 A g C l window f r o n t p l a t e back p l a t e Y T e f l o n r i n g 19 J c e l l c a v i t y body O t h r e a d e d f l a n g e ( t h r e a d s t o r e c e i v e b a c k p l a t e ) •3-60 74 1 1 1 ( I . D . ) 2 3 36 40 58 60 y t_ T . ! . „ . . . . . . . . . . J _ _ . J j | s i d e v i e w d e p r e s s i o n f o r A g C l window f r o n t p l a t e b a c k p l a t e t h r e a d e d f l a n g e end v i e w s F i g u r e 2 . I n f r a r e d Gas C e l l 12 r e s e r v o i r was s e p a r a t e d f r o m t h e c a v i t y b y a v a l v e . A l e a k -t i g h t s e a l between t h e 1 mm. t h i c k windows and t h e body o f t h e c e l l c a v i t y was made b y p r e s s i n g t h e p l a s t i c - l i k e s i l v e r c h l o r i d e p l a t e a g a i n s t a T e f l o n r i n g . A s i l v e r - c o a t e d p l a t e , ( f r o n t p l a t e i n F i g u r e 2 . ) , c o v e r e d by a p o l y e t h y l e n e s h e e t , s u p p o r t e d t h e s i l v e r c h l o r i d e p l a t e , and t h e T e f l o n r i n g was mounted i n a g r o o v e o n t h e t h i c k f l a n g e o f t h e c e l l c a v i t y b o d y . The f r o n t and b a c k p l a t e s were h e l d t o g e t h e r b y means o f s c r e w s . The b a c k p l a t e was t h e n s c r e w e d o n t o t h e f l a n g e o f t h e c e l l c a v i t y b o d y . The p a t h l e n g t h o f t h e a s s e m b l e d c e l l was 7 . 5 cm. The c e l l was c a p a b l e o f h o l d i n g p r e s s u r e s up t o 30 p . s . i . 1 . 8 . G e n e r a l P u r p o s e Vacuum L i n e A s c h e m a t i c d i a g r a m o f t h e m e t a l vacuum l i n e u s e d a g r e a t d e a l i n t h i s work i s shown i n F i g u r e 3 . A s i m i l a r m e t a l m a n i f o l d , b u t c o n t a i n i n g a B o o t h - C r o m e r p r e s s u r e t r a n s m i t t e r was c o n n e c t e d t o o u t l e t F . The a p p a r a t u s was c l a m p e d o n t o a m e t a l frame and k e p t i n a w e l l - v e n t i l a t e d fume h o o d . The vacuum pumps were p o s i t i o n e d b e l o w t h e work b e n c h o f t h e fume h o o d and t h e whole a p p a r a t u s c o u l d be i s o l a t e d f r o m t h e r e s t o f t h e room b y means o f s l i d i n g d o o r s . F i g u r e 3 , G e n e r a l P u r p o s e Vacuum L i n e 13 To r o u g h pump B o u r d o n Gauge I n l e t I n l e t J To good pump G l a s s m a n i f o l d I n l e t . To f l u o r i n e s u p p l y Jcu ~~\ = W h i t e y o r Hoke v a l v e s = = G l a s s - m e t a l c o m p r e s s i o n f i t t i n g J = V c o p p e r t u b i n g Cu = \ n M o n e l t u b i n g . ^ J L j . s S o c k e t w e l d c r o s s w e l d 14 A t w o - s t a g e W e l c h D u o - S e a l M e c h a n i c a l Pump was u s e d f o r r o u t i n e o p e r a t i o n s , and f o r pumping o f f c o r r o s i v e v a p o u r s i n t h e s y s t e m , w h i l e t h e s e c o n d pump, a s e c o n d t w o - s t a g e W e l c h D u o - S e a l M e c h a n i c a l Pump w i t h a n o i l d i f f u s i o n pump, was u s e d f o r o b t a i n i n g a h i g h vacuum. _3 I n r o u t i n e w o r k , a vacuum o f 5 x 10 mm.Hg. c o u l d be r e a d i l y o b t a i n e d i n a m e t a l vacuum s y s t e m . The b e s t _4 o b t a i n a b l e vacuum was 5 x 10 mm.Hg. The e x t e n t o f l e a k a g e t h a t c o u l d be t o l e r a t e d depended o n t h e r e a c t i v i t y o f t h e compounds b e i n g h a n d l e d , and t h e l e n g t h o f t i m e t h a t t h e y were l i k e l y t o be p r e s e n t i n t h a t p a r t o f t h e s y s t e m . 1 . 9 . H i g h P r e s s u r e F l u o r i n e Vacuum L i n e The h i g h p r e s s u r e f l u o r i n e l i n e i s shown s c h e m a t i -c a l l y i n F i g u r e 4 . The f l u o r i n e c y l i n d e r was a l w a y s k e p t c l o s e d when n o t i n u s e . The a p p a r a t u s was c o n s t r u c t e d so t h a t t h e r e were a l w a y s two c l o s e d A u t o c l a v e E n g i n e e r i n g v a l v e s b e t w e e n t h e o p e n f l u o r i n e c y l i n d e r and t h e l o w p r e s s u r e vacuum l i n e . Whenever f l u o r i n e was b e i n g h a n d l e d , t h e e x p e r i m e n t e r was p r o t e c t e d by a s b e s t o s g l o v e s and a f a c e s h i e l d . To roughing pump v i a CafOH^/NaOH trap D i rec t l y to roughing pump Crosby high pressure gauge To low pressure system To F 2 supply 4 * (cyl inder at 400 psi ) | |—j = Autoclave Engineering valve. | j = Autoclave Engineering tee or cross. = 3/8" O.'D.; 1/8" I.D. Autoclave Monel tubing. = 1/4" Monel or Cu tubing. ( , , high pressure | | ' out let (monel) threaded cap hand gr ip te f lon r ing .375' Figure 4. A Vacuum Line for a Fluorine Supply. 16 2 . EXPERIMENTAL TECHNIQUES 2 . 1 . I n f r a r e d S p e c t r o s c o p y The A g C l windows ( r o l l e d A g C l f r o m H a r s h a w C h e m i c a l s * ) p r o v e d t o be r e s i s t a n t t o m o s t r e a c t i v e f l u o r i d e s u s e d i n t h i s w o r k . I n f r a r e d s p e c t r a were o b t a i n e d o n a P e r k i n - E l m e r 137 N a C l and K B r S p e c t r o p h o t o m e t e r , c o v e r i n g t h e r a n g e s 4000 -- 1 - 1 670 cm , and 800 - 400 cm r e s p e c t i v e l y . I n f r a r e d s p e c t r a o f h i g h e r r e s o l u t i o n w e r e o b t a i n e d o n a P e r k i n - E l m e r 21 S p e c t r o p h o t o m e t e r ( 4 0 0 0 - 650 c m - 1 ) and t h e P e r k i n - E l m e r 421 ( 4 0 0 0 - 200 c m " 1 ) . 2 . 2 . X - r a y Powder P h o t o g r a p h y Sample P r e p a r a t i o n . Samples f o r X * r a y powder p h o t o g r a p h y were mounted i n 0 . 5 m m . q u a r t z c a p i l l a r i e s * . The c a p i l l a r i e s were h e a t e d i n an o v e n a t 200° o v e r n i g h t and t h e n i n t r o d u c e d i n t o t h e d r y b o x . The sample was g r o u n d , u s i n g a n a g a t e m o r t a r and p e s t l e i n s i d e t h e d r y b o x , and t h e n i n t r o d u c e d i n t o t h e c a p i l l a r y . The t o p o f t h e c a p i l l a r y was s e a l e d w i t h K e l - F g r e a s e and t h e s a m p l e f l a m e s e a l e d a f t e r r e m o v a l f r o m t h e d r y b o x . E x p o s u r e and Measurement o f Powder P h o t o g r a p h s X - r a y p h o t o g r a p h s w e r e o b t a i n e d u s i n g a G e n e r a l E l e c t r i c powder camera o f 1 4 . 3 2 cm d i a m e t e r , w i t h S t r a u m a n i s 17 l o a d i n g N i c k e l f i l t e r e d Cu YL-J X - r a y r a d i a t i o n . The f i l m was I l f o r d * " I l f e x s a f e t y b a s e , f o r u s e w i t h o u t i n t e n s i f y i n g s c r e e n " , s u p p l i e d i n s h e e t s 3 5 . 6 x 4 3 . 2 cm and c u t b e f o r e u s e i n t o s t r i p s 4 cm x 4 3 . 2 cm. A s l i t c o l l i m a t o r was u s e d o n t h e camera f o r r o u t i n e w o r k . P h o t o g r a p h s f o r measurement o f l i n e p o s i t i o n s w e r e o b t a i n e d u s i n g a p i n h o l e c o l l i m a t o r and l o n g e r e x p o s u r e t i m e s . X - r a y powder p h o t o g r a p h s were m e a s u r e d o n a l i g h t b o x p r o v i d e d w i t h a m e t e r s t i c k ( " F i l m I l l u m i n a t o r and M e a s u r i n g D e v i c e " , t y p e n o . 5 2 0 2 2 / 1 , P h i l i p s E l e c t r o n i c s I n c . ) . A com-(KG) p u t e r programme$IBFTC I n d e x a d a p t e d f r o m t h a t o f N . K . J h a v 7 / 2 was u s e d t o c o n v e r t t h e m e t e r s t i c k r e a d i n g s t o 1/d v a l u e s . 2 . 3 . P r e p a r a t i o n and H a n d l i n g o f R e a g e n t s 2 . 3 . 1 . H a n d l i n g o f E l e m e n t a l F l u o r i n e Thefc f l u o r i n e s u p p l i e d by M a t h e s o n & C o . L t d . c o n t a i n s 2% i m p u r i t i e s ( H F , 0 F 2 , C F ^ , and 0 2 ) . These s u b -s t a n c e s do n o t a f f e c t t h e r e a c t i o n s met w i t h i n t h i s work so t h e f l u o r i n e was u s e d s t r a i g h t f r o m t h e c y l i n d e r . F l u o r i n e h a s a v a p o u r p r e s s u r e o f a b o u t 350 mm.at l i q u i d n i t r o g e n t e m -p e r a t u r e , and c a n t h e r e f o r e be s e p a r a t e d f r o m any c o n d e n s a b l e gas by pumping o n t h e m i x t u r e a t - 1 9 6 ° t h r o u g h a s o d a - l i m e t r a p . The e l e m e n t a l f l u o r i n e r e a c t s w i t h t h e s o d a l i m e t o f o r m w a t e r and o x y g e n : 18 2 CaO + 2 F 2 = C a F 2 + 0 2 4 NaOH + 2 F 2 = 4 NaF + 2 H 2 0 + 0 2 R e a c t i o n s i n v o l v i n g h i g h p r e s s u r e f l u o r i n e (200 p . s . i . ) were c a r r i e d o u t i n c a r e f u l l y l e a k - t e s t e d M o n e l cans f i t t e d w i t h s o l d e r t u b e f i t t i n g s and Hoke 431 v a l v e s . F l u o r i n e was t a k e n d i r e c t l y f r o m t h e c y l i n d e r and t h e p r e s s u r e n o t e d o n t h e C r o s b y g a u g e . The M o n e l c a n v a l v e , t h e f l u o r i n e c y l i n d e r v a l v e , and t h e A u t o c l a v e e n g i n e e r i n g v a l v e n e x t t o t h e c y l i n d e r w e r e a l l c l o s e d ( s e e F i g u r e 4 . ) . The f l u o r i n e i n t h e r e s t o f t h e s y s t e m was pumped o f f t h r o u g h t h e s o d a - l i m e t r a p . The r e a c t i o n v e s s e l was t h e n removed f r o m t h e h i g h p r e s s u r e s y s t e m . I f t h e c a n was t o be h e a t e d , i t was p l a c e d i n a c y l i n d r i c a l h e a t e r , and t h e s t e m and v a l v e were c o o l e d w i t h c o m p r e s s e d a i r . F o r " s o l i d r e a c t o r s " , t h e m e t a l i n c o n t a c t w i t h t h e T e f l o n g a s k e t was c o o l e d b y c o m p r e s s e d a i r e n s u r i n g t h a t t h e r e was no g r o s s f l u o r i n a t i o n o f t h e T e f l o n . As a c o n s e q u e n c e o f t h e e x p e r i m e n t a l a r r a n g e m e n t , t h e r e was a l w a y s some p a r t o f t h e h e a t e d v e s s e l t h a t was a t a t e m p e r a t u r e o f p e r h a p s 40° o r l e s s . 2 . 3 . 2 . R e a g e n t s The p u r i t y o f v o l a t i l e r e a g e n t s was c h e c k e d by i n f r a r e d s p e c t r o s c o p y and v a p o u r p r e s s u r e m e a s u r e m e n t . They 19 w e r e s t o r e d i n p a s s i v a t e d c a n s , where p o s s i b l e i n t h e p r e s e n c e o f s;odium f l u o r i d e . The p u r i t y o f s o l i d s was r o u t i n e l y c h e c k e d b y X ^ r a y powder p h o t o g r a p h y . S o l i d s were s t o r e d i n s e a l e d P y r e x o r K e l - F t u b i n g , o r i n a s o l i d r e a c t o r . P u r c h a s e d R e a g e n t s Company M a t h e s o n & C o . ( C a n a d a ) L t d . A l l i e d C h e m i c a l C o r p . S u b s t a n c e  F 2 C 1 F 3 B r F 3 BF3 HF NO 0 F o % P u r i t y C l a i m e d b y M a n u f a c t u r e r 98 98 98 9 9 . 5 9 9 . 9 9 8 . 5 N o t g i v e n P e n i n s u l a r Chem. C o r p . ( G a i n s v i l l e ) F l o r i d a O P F 3 N o t g i v e n A i r P r o d u c t s C h e m i c a l s I n c . N 2 F 4 96 B r i t i s h D r u g House J o h n s o n , M a t h e y & C o . L t d . A l p h a I n o r g a n i c s I n c . A r s e n i c m e t a l NaF ( A . R . ) I r i d i u m m e t a l C s F N i F , 9 9 . 9 9 9 98 ( s p e c t r o -s c o p i c a l l y s t a n d a r d i s e d m a t e r i a l ) N o t g i v e n 20 S p e c i a l l y P r e p a r e d R e a g e n t s ASF5: A b o u t 1 gram o f a r s e n i c was i n t r o d u c e d i n t o a p a s s i v a t e d 1 l i t r e gas r e a c t o r i n t h e d r y b o x . E x c e s s f l u o r i n e was added and t h e c a n h e a t e d a t 250° f o r 12 h o u r s . The v e s s e l was c o o l e d t o - 1 9 6 ° and t h e e x c e s s f l u o r i n e pumped o f f . On w a r m i n g t o room t e m p e r a t u r e , some o f t h e m a t e r i a l was t r a n s f e r r e d t o a n i n f r a r e d c e l l . The i n f r a r e d s p e c t r u m o f t h e gas was c h a r a c t e r i s e d b y a v e r y i n t e n s e i n f r a r e d a b s o r p t i o n b a n d , c e n t r e d a t c a . 8 0 0 cm"*". A t p a r t i a l p r e s s u r e s o f 20 mm, H g . o r l e s s i n a 7% cm c e l l , t h i s band was p a r t i a l l y r e s o l v e d i n t o two PQR b r a n c h e d peaks w i t h Q b r a n c h e s a t 815 and 790 cm"*". I r F g : T h i s was p r e p a r e d b y f l u o r i n a t i n g i r i d i u m m e t a l a t 300°C. I r F 5 : F l u o r i n e was h e a t e d w i t h i r i d i u m m e t a l i n t h e m o l a r r a t i o r e q u i r e d f o r s y n t h e s i s o f I r F 5 a t 2 5 0 ° . C r y s t a l s o f I r F 5 were formed o n t h e c o o l e d p o r t i o n s o f t h e l i d . The m a t e r i a l was i d e n t i f i e d as I r F 5 ^ ^ by i t s X-~ray powder p h o t o -g r a p h y . P t F g : P l a t i n u m h e x a f l u o r i n e was p r e p a r e d b y e l e c -t r i c a l l y h e a t i n g t h e m e t a l w i r e i n an a t m o s p h e r e o f f l u o r i n e i n ( 8) a n a d a p t a t i o n o f W e i s t o c k ' s m e t h o d . ' ( T h i s m a t e r i a l was k i n d l y p r e p a r e d by S . B e a t o n . ) ONF: N i t r o s y l f l u o r i d e was p r e p a r e d by m i x i n g n i t r i c o x i d e w i t h f l u o r i n e . A 1-1/4 l i t r e M o n e l c a n was p r e -21 h e a t e d w i t h f l u o r i n e a t 200°C. and washed s e v e r a l t i m e s w i t h n i t r o s y l f l u o r i d e a t room t e m p e r a t u r e s . A b o u t 30 p . s . i . o f n i t r i c o x i d e w e r e added t o t h e c a n d i r e c t l y f r o m t h e c y l i n d e r and c o o l e d w i t h l i q u i d n i t r o g e n . F l u o r i n e was added i n s m a l l a m o u n t s . The c o m p l e t i o n o f t h e r e a c t i o n was i n d i c a t e d by a p r e s s u r e i n c r e a s e o n a d d i n g f l u o r i n e t o t h e s y s t e m . A n h y d r o u s H F : A c o n v e n i e n t v o l u m e o f HF was c o n -d e n s e d i n t o a K e l - F t r a p , t h e n t r a n s f e r r e d t o a M o n e l c a n . F l u o r i n e t o a p r e s s u r e o f 200 p . s . i . was added and t h e c a n was s h a k e n f o r a week. The f l u o r i n e r e a c t e d w i t h t h e w a t e r t o g i v e o x y g e n and h y d r o g e n f l u o r i d e , a c c o r d i n g t o : 2 F 2 + 2 H 2 0 = 4 HF + 0 2 . N o n - c o n d e n s a b l e gases were pumped o f f a t l i q u i d n i t r o g e n t e m -p e r a t u r e . BrF5: B r o m i n e p e n t a f l u o r i d e was p r e p a r e d by h e a t i n g BrF3(10 p . s . i . ) w i t h f l u o r i n e (100 p . s . i . ) i n a M o n e l c a n a t 1 7 0 ° C . f o r t w e l v e h o u r s . E x c e s s f l u o r i n e was pumped o f f a t - 1 9 6 ° and t h e r e a c t i o n p r o d u c t s e x a m i n e d by i n f r a r e d s p e c t r o -( 9 ) s c o p y . I f t h e t r i f l u o r i d e was s t i l l p r e s e n t t h e f l u o r i n a t i o n p r o c e s s was r e p e a t e d . CIF5: C h l o r i n e p e n t a f l u o r i d e was p r e p a r e d i n a s i m i l a r manner t o t h a t o f BrF5, e x c e p t t h a t t h e CIF3 was h e a t e d i n f l u o r i n e a t 250°C. 22 2.3.3. Handling of Reagents Handling of Reactive Volatile Fluorides Before any highly reactive fluorides could be transferred, the vacuum line was leak-tested and passivated by heating with gaseous fluorine. The line was then exposed to a small amount of the material that was to be transferred. This was discarded before transfer of the bulk was effected. Handling of ONF Nitrosyl fluoride reacted with oxides in the metal line and formed N02 readily detectable in the infrared c e l l by i t s brown colour. This reaction took place even after the line and/or vessel had been previously fluorinated. Therefore before pure ONF was transferred, the line was passi-vated with ONF several times. A transfer was made only when no colour change was detected in the infrared c e l l which was included in the system. Handling of HF Hydrogen fluoride was found to react with trace quantities of oxides in the line to give water: X 0 + 2 HF = X F 2 + H20 Before any transfer of hydrogen fluoride was made, the line was fluorinated and then f i l l e d with anhydrous hydrogen fluoride. The line was then heated with a bunsen flame. The line was 23 f i n a l l y f i l l e d w i t h HF and l e f t o v e r n i g h t b e f o r e f i n a l t r a n s f e r . To c h e c k w h e t h e r t h e h y d r o g e n f l u o r i d e was f r e e f r o m i m p u r i t i e s , i t was c o n d e n s e d i n t o a p r e t r e a t e d K e l - F t r a p f o r i n s p e c t i o n . The a b s e n c e o f c o l o u r f o r t h e s o l i d and l i q u i d , and v a p o u r p r e s s u r e measurement were u s e d as c r i t e r i a o f p u r i t y . H y d r o g e n f l u o r i d e t r a n s f e r r e d t o a new K e l - F t r a p a p p e a r e d c o l o u r e d . A f t e r w a s h i n g o u t t h e t r a p s e v e r a l t i m e s w i t h HF i t was p o s s i b l e t o t r a n s f e r p u r i f i e d HF w h i c h r e m a i n e d c o l o u r l e s s . 24 CHAPTER I I PREPARATION AND PROPERTIES OF NITROGEN OXIDE TRIFLUORIDE C h a p t e r Summary The r e a c t i o n o f n i t r i c o x i d e a n d f l u o r i n e y i e l d e d t r a c e q u a n t i t i e s o f ONF3, n i t r o g e n o x i d e t r i f l u o r i d e . Low b u t i m p r o v e d y i e l d s were o b t a i n e d when n i t r o s y l f l u o r i d e and f l u o r i n e were h e a t e d t o g e t h e r a t 2 2 0 ° C . V a r y i n g t h e c o n d i t i o n s o f t h i s r e a c t i o n d i d n o t l e a d t o i n c r e a s e d y i e l d . I t was f o u n d h o w e v e r , t h a t ( N O ^ N i F g was formed by t h e r e a c t i o n o f t h e n i c k e l d i f l u o r i d e c o a t i n g o f t h e M o n e l r e a c t i o n v e s s e l s , n i t r o s y l f l u o r i d e and f l u o r i n e , and t h a t p y r o l y s i s o f t h i s s a l t ( i n 70 p . s . i . f l u o r i n e a t 350°) gave t h e new compound i n good y i e l d . N i t r o g e n o x i d e t r i f l u o r i d e was a l s o f o u n d b y t h e r e a c t i o n o f p l a t i n u m o r i r i d i u m h e x a f l u o r i d e w i t h n i t r o s y l f l u o r i d e . U n l i k e n i t r o s y l and n i t r y l f l u o r i d e , ONF3 d i d n o t r e a c t w i t h b o r o n t r i f l u o r i d e a t a m b i e n t t e m p e r a t u r e s and p r e s s u r e s . I t d i d h o w e v e r f o r m a 1:1 a d d u c t w i t h a r s e n i c p e n t a f l u o r i d e . P u r e ONF3 was o b t a i n e d b y i t s d i s p l a c e m e n t f r o m ONF3, A s F 5 b y t h e s t r o n g e r f l u o r i d e i o n d o n o r s c a e s i u m f l u o r i d e o r n i t r o s y l f l u o r i d e . 25 N i t r o g e n o x i d e t r i f l u o r i d e was f o u n d t o be c o l o u r l e s s i n t h e s o l i d , l i q u i d , and gaseous p h a s e s , m e l t i n g a t -161°, and b o i l i n g a t -87.5°. The v a p o u r p r e s s u r e was d e t e r m i n e d o v e r t h e t e m p e r a t u r e r a n g e -128° t o -78°. The e m p i r i c a l f o r m u l a was e s t a b l i s h e d b y e l e m e n t a l a n a l y s i s , m o l e c u l a r w e i g h t d e t e r m i n -a t i o n , and miass-spectroscopy. The s t r u c t u r a l f o r m u l a ONF3 was 19 e s t a b l i s h e d f r o m t h e F h Y m . r . , and i n f r a r e d s p e c t r u m o f t h e compound. N i t r o g e n o x i d e t r i f l u o r i d e was f o u n d t o be t h e r m a l l y s t a b l e a t room t e m p e r a t u r e and a p p e a r e d t o be o n l y m o d e r a t e l y r e a c t i v e , t h u s r e s e m b l i n g n i t r o g e n t r i f l u o r i d e r a t h e r t h a n n i t r o s y l o r n i t r y l f l u o r i d e . The new o x y f l u o r i d e c o u l d be h a n d l e d i n a g l a s s s y s t e m w i t h o u t d e c o m p o s i t i o n . T h e r e was no e v i d e n c e t h a t ONF3 c o u l d be p r o t o n a t e d by s t r o n g a c i d s . The c h e m i c a l b e h a v i o u r and i n f r a r e d s p e c t r u m o f t h e a d d u c t ONF3, ASF5 was c o n s i s t e n t w i t h t h e f o r m u l a t i o n ONF2 A s F 6 - . The i n t e r m e d i a t e i n t h e ONF3 p r e p a r a t i o n ( N D ^ N i F g was p r e p a r e d i n a p u r e s t a t e , and i t s e m p i r i c a l f o r m u l a was e s t a b l i s h e d b y e l e m e n t a l a n a l y s i s . I t s i n f r a r e d s p e c t r u m , and m a g n e t i c s u s c e p t i b i l i t y showed t h a t t h e compound c o n t a i n e d t h e (M5) + and ( N i F 6 ) 2 - i o n s > a l o w s p i n d6 a r r a n g e m e n t f o r N i ( l v ) . P o s s i b l e b o n d i n g a r r a n g e m e n t s i n t h e m o l e c u l e a r e d i s c u s s e d , b a s e d o n t h e a v a i l a b l e i n f o r m a t i o n o n t h e c h e m i c a l and p h y s i c a l p r o p e r t i e s o f ONF3. 27 CHAPTER I I THE PREPARATION AND PROPERTIES OF O N F 3 1. INTRODUCTION 1 . 1 . The F l u o r i d e s and O x y f l u o r i d e s o f N i t r o g e n and P h o s p h o r u s (27 28 29 10) The f l u o r i d e s and o x y f l u o r i d e s o f n i t r o g e n > > > ' and p h o s p h o r u s ^ ^ * 2 ^ have r e c e n t l y b e e n r e v i e w e d . T a b l e 1. g i v e s a l i s t o f t h e known s i m p l e f l u o r i d e s and o x y f l u o r i d e s o f n i t r o g e n and p h o s p h o r u s a t t h e commencement o f t h i s work w i t h t h e a d d i t i o n o f P 2 F 4 w h i c h was p r e p a r e d w h i l e t h e work was i n p r o g r e s s . No r e p o r t e d a t t e m p t s t o p r e p a r e ONF3 p r i o r t o t h e commencement o f t h i s work c o u l d be f o u n d i n t h e l i t e r a t u r e . H o w e v e r , r e a c t i o n s were r e p o r t e d t h a t c o u l d h a v e been p r e p a r a -t i v e r o u t e s t o t h e new o x y f l u o r i d e . F o r e x a m p l e , t h e r e a c t i o n b e t w e e n n i t r i c o x i d e and f l u o r i n e . T h i s r e a c t i o n h a d a l r e a d y ( 3 1 32) b e e n s t u d i e d as a p r e p a r a t i v e r o u t e t o n i t r o s y l f l u o r i d e , * ' ( 3 3 ) and Rapp and J o h n s t o n h a v e i n v e s t i g a t e d t h e k i n e t i c s o f ( 3 4 ) t h e r e a c t i o n . B e r t i n d e t e r m i n e d N ' t h e h e a t o f f o r m a t i o n o f n i t r o s y l f l u o r i d e , and r e p o r t e d t h e o c c u r r e n c e o f s e c o n d a r y r e a c t i o n s . The e m i s s i o n s p e c t r a o f ONF h a s been s t u d i e d f r o m a N O / F 2 f l a a n e ^ 3 5 \ W o l t z ^ 3 6 ^ e t a l . a t t e m p t e d t o p r e p a r e p u r e n i t r o s y l f l u o r i d e f o r an i n f r a r e d s t u d y b y t h e f l u o r i n a t i o n o f n i t r i c o x i d e j u s t above i t s m e l t i n g p o i n t and r e p o r t e d t h e 28 TABLE 1 The b p . , m p . . D a t e s and M e t h o d s o f F i r s t P r e p a r a t i o n o f t h e  S i m p l e F l u o r i d e s and O x y f l u o r i d e s o f N i t r o g e n and P h o s p h o r u s  mp. ONF - 1 3 2 . 5 O2NF - 1 6 6 ° FON02* - 1 7 5 ° NF3 - 2 0 6 . 8 ° N 2 F 4 N 2 F 2 c i ^ <-195 N 2 F 2 t r a n s . - 1 7 2 • 1 : A PN 3 - 1 5 4 * The h y p o f l u o r i t e has b e e n i n c l u d e d a l t h o u g h t h i s compound i s n o t s t r i c t l y an o x y f l u o r i d e ( 2 ) P h o s p h o r u s ( 2 1 ) <PO 2 F > K mm mm a mm P F 3 + 0 2 e l e c t r i c a l d i s c h a r g e - 7 5 ° C U.Wannagat 1957 ( 2 2 ) 0 P F 3 - 3 9 . 4 - 3 9 . 8 p 2 ° 5 + f l u o r i d e H . S c h u l z e 1880 ( 2 3 ) P F 3 - 1 5 1 . 5 - 1 0 1 . 5 L e a d f l u o r i d e + H . M o i s s a n 1884 c o p p e r p h o s p h i d e ( 2 4 ) P F 5 - 9 3 . 7 - 8 4 . 5 A s F 3 + PCI5 T . E . T h o r p e 1877 P 2 F 4 - 8 6 . 5 - c ;6.2< 2 5 > 2 Hg + 2 P F 2 I ( 2 6 ) R . W . P a r r y * 1966 * The compound^ was a l s o p r e p a r e d b y C o l b u r n e t a l . O r i g i n a l P r e p a r a -b p . t i v e M e t h o d ( l l ) do) <P 5 9 . 9 ON C l + A g F ( 2 5 0 C) ( 1 3 ) - 7 2 . 4 . 4 5 . 9 ° ( 1 6 ) • 1 2 9 . 0 1 - 73 ON + F 2 ( + p r o b . 0 2 ) - 1 8 3 ° F2 + 3 N . a q u e o u s H N 0 3 E l e c t r o l y s i s m o l t e n N H 4 + H 2 F " N F 3 + C u ( 3 7 5 ° ) ( 1 9 ) •105.7 ) T h e r m a l d e c o m p o s i t i o n n < n ) o f F N 3 • 111 ( 1 9 ) ) • 82 F 2 4- H N 3 ( 1 ) N i t r o g e n (11) O . R u f f 1 9 0 5 , , , s (14) H . M o i s s a n 1905 ( 1 5 ) G . H . C a d y 1934 ( 1 7 ) 0 . R u f f 1928 ( 1 8 ) C . B . C o l b u r n 1958 ( 2 0 ) J . F . H a l l e r 1942 ( 2 0 ) J . F . H a l l e r 1942 29 p r e s e n c e o f u n s p e c i f i e d i m p u r i t i e s . D i - n i t r o g e n t e t r a f l u o r i d e ( 3 7 ) i s r e p o r t e d t o r e a c t w i t h o x y g e n t o p r o d u c e ONF, and NF3. N i t r o g e n t r i f l u o r i d e has been r e a c t e d w i t h n i t r i c o x i d e by p a s s i n g t h e r e a c t a n t s t h r o u g h a h e a t e d t u b e a t a p p r o x i m a t e l y 6 0 0 ° C , t o g i v e ONF, and N 2 F ^ . N i t r o u s o x i d e was r e a c t e d w i t h f l u o r i n e a t 700°C. t o y i e l d n i t r o g e n t r i f l u o r i d e and n i t r o s y l f l u o r i d e / 3 9 ^ 2 . EXPERIMENTAL 2 . 1 . P r e p a r a t i o n o f N i t r o g e n O x i d e T r i f l u o r i d e 2 . 1 . 1 . R e a c t i o n o f N i t r i c O x i d e w i t h F l u o r i n e The r e a c t i o n o f n i t r i c o x i d e and f l u o r i n e p r o d u c e d n i t r o g e n o x i d e t r i f l u o r i d e i n t r a c e q u a n t i t i e s . I n a t y p i c a l r e a c t i o n , a b o u t 50 m l n i t r i c o x i d e a t a p r e s s u r e o f 51 mm.Hg. w e r e c o n d e n s e d i n t o t h e p o t o f t h e i n f r a r e d c e l l . The same v o l u m e o f f l u o r i n e a t a p r e s s u r e o f 27 mm H g . was t h e n a d d e d , and t h e m i x t u r e was a l l o w e d t o warm up f r o m - 1 9 6 ° C . t o room t e m p e r a t u r e . The i n f r a r e d s p e c t r u m showed t h e p r e s e n c e o f n i t r o s y l f l u o r i d e , n i t r o g e n d i o x i d e and l e s s t h a n 1% n i t r o g e n o x i d e t r i f l u o r i d e , d e t e c t e d by a v e r y s t r o n g a b s o r p t i o n a t 883 c m " 1 . V a r i o u s r a t i o s o f n i t r i c o x i d e t o f l u o r i n e were u s e d w i t h f l u o r i n e a l w a y s i n an e x c e s s . The t o t a l p r e s s u r e was 30 a l w a y s l e s s t h a n two a t m o s p h e r e s , and t h e maximum t e m p e r a t u r e b e l o w 2 5 ° . , No n o t i c e a b l e change i n t h e i n t e n s i t y o f t h e peak a t 883 c m " 1 was o b s e r v e d . 2 . 1 . 2 . R e a c t i o n o f N i t r o s y l F l u o r i d e and F l u o r i n e The i n t e r a c t i o n o f n i t r i c o x i d e and f l u o r i n e p r o d u c e d n i t r o g e n o x i d e t r i f l u o r i d e b u t t h e method was v e r y i n e f f i c i e n t . To p r o d u c e t h e new s p e c i e s i n g r e a t e r a m o u n t s , t h e n i t r o s y l f l u o r i d e - f l u o r i n e s y s t e m was s t u d i e d . F l u o r i n e a t h i g h t e m p e r a t u r e s and p r e s s u r e s was e m p l o y e d s i n c e t h e a t t e m p t e d r e a c t i o n w o u l d p r o c e e d w i t h a v o l u m e d e c r e a s e . ONF + F 2 " — ; 0 N F 3 N i t r o s y l f l u o r i d e ( a p p r o x i m a t e l y 7 p . s . i . ) was t r a n s f e r r e d i n t o a 150 m l M o n e l c a n , and e x c e s s f l u o r i n e added t o a t o t a l p r e s s u r e o f 45 p . s . i . The c a n was h e a t e d a t 220° o v e r n i g h t . A n i n f r a r e d s p e c t r u m o f t h e c o n d e n s a b l e g a s e s showed t h e p r e s e n c e o f n i t r o g e n o x i d e t r i f l u o r i d e . The y i e l d was a b o u t 3 mm.Hg, o f gas i n a v o l u m e o f 150 m l . The r e a c t i o n was r e -p e a t e d a t 380° w i t h a much l o w e r y i e l d . M o n e l cans u s e d f o r s o l i d s were c o n s i d e r e d s a f e a t p r e s s u r e s b e l o w 200 p . s . i . An e x p e r i m e n t a t i n c r e a s e d p r e s s u r e was c o n d u c t e d i n a h e a v y w a l l e d M o n e l r e a c t o r , o f i n t e r n a l v o l u m e 50 m l , e q u i p p e d w i t h a c o p p e r g a s k e t . One l i t r e o f 31 N i t r i c o x i d e a t a p r e s s u r e o f 5 p . s . i . and t h e n f l u o r i n e ( 1 l i t r e ) a t a p r e s s u r e o f 130 p . s . i . were c o n d e n s e d i n t o t h e c o n t a i n e r , g i v i n g r i s e t o a t o t a l p r e s s u r e o f a p p r o x . 2400 p . s . i . a t room t e m p e r a t u r e . The v e s s e l was h e a t e d a t 200° o v e r n i g h t . The t o t a l p r e s s u r e o f c o n d e n s a b l e gas i n a v o l u m e o f a p p r o x . 200 m l was f o u n d t o be 350 mm.Hg. w h i c h i n d i c a t e d a l a r g e u p t a k e o f n i t r o s y l f l u o r i d e . V e r y l i t t l e n i t r o g e n o x i d e t r i f l u o r i d e was o b s e r v e d i n t h e i n f r a r e d s p e c t r u m . The i n s i d e o f t h e r e a c t o r was f o u n d t o be c o a t e d w i t h a r e d s o l i d , l a t e r i d e n t i f i e d as n i t r o s y l h e x a f l u o r o - n i c k e l a t e ( I V ) ( s e e s e c t i o n 2 . 5 . ) . A t t e m p t s t o o b t a i n b e t t e r y i e l d s o f ONF^ b y p a s s i n g a m i x t u r e o f ONF and F 2 r e p e a t e d l y t h r o u g h a h o t r e a c t i o n z o n e , and c o n d e n s i n g o u t t h e v o l a t i l e p r o d u c t s , f a i l e d t o p r o d u c e any ONF3. The R o l e o f (N0 ) 2 N i F g i n t h e S y n t h e s i s o f ONF3 A q u a n t i t y o f t h e s a l t ( N 0 ) 2 N i F g was p r e p a r e d i n o r d e r t o c h a r a c t e r i s e i t ( s e e s e c t i o n 2 . 5 ) and t o i n v e s t i g a t e i t s p a r t as a p o s s i b l e i n t e r m e d i a t e i n t h e s y n t h e s i s o f ONF3. A n e x c e s s o f n i c k e l d i f l u o r i d e was p l a c e d i n s i d e a 100 m l " s o l i d r e a c t o r " , and 30 p . s . i . o f n i t r o s y l f l u o r i d e and 30 p . s . i . o f f l u o r i n e w e r e a d d e d . The v e s s e l was h e a t e d f o r 48 h o u r s a t 200°C. C o m p l e t e u p t a k e o f t h e gases was o b s e r v e d 32 and t h e r e s u l t i n g s o l i d was t h e n h e a t e d i n f l u o r i n e a t v a r i o u s t e m p e r a t u r e s . The v o l a t i l e g a s e s were e x a m i n e d by i n f r a r e d s p e c t r o s c o p y . I t was f o u n d t h a t t h e b e s t y i e l d s o f ONF3 were o b t a i n e d a t 3 5 0 ° . 2 . 1 . 3 . P y r o l y s i s o f (N0>2NiF6 i n F l u o r i n e ( p r e f e r e d method) I n many o f t h e r e a c t i o n s b e t w e e n ONF and F 2 t h e s tems o f the v e s s e l s became c l o g g e d w i t h ( N 0 ) 2 N i F g , and a t t h e same t i m e t h e w a l l s o f t h e r e a c t o r s became c o r r o d e d w i t h c o n s e -q u e n t l e a k a g e . 2 ONF + F 2 + N i F 2 ( w a l l s o f v e s s e l ) = ( N 0 ) 2 N i F 6 ( N O ^ N i F g s u b l i m e ^ c l o g g i n g i n c o o l e d s t e m . To o v e r c o m e t h i s p r o b l e m , a l a r g e e x c e s s o f n i c k e l d i f l u o r i d e was added so t h a t n i t r o s y l f l u o r i d e and f l u o r i n e r e a c t e d w i t h i t r a t h e r t h a n w i t h t h e w a l l s o f t h e v e s s e l . The t e m p e r a t u r e a t w h i c h ( N O ^ N i F g was formed was k e p t as l o w as p o s s i b l e t o m i n i m i s e s u b l i m a t i o n . I f t h e v e s s e l d i d g e t c l o g g e d i t was c o o l e d t o - 1 9 6 ° and t h e s t e m h e a t e d t o remove t h e s o l i d . N i t r o g e n o x i d e t r i f l u o r i d e was t h e n g e n e r a t e d by f a s t p y r o l y s i s o f t h e s o l i d a t h i g h t e m p e r a t u r e s . A b o u t 20 grams o f n i c k e l d i f l u o r i d e were p l a c e d i n t h e b o t t o m o f a p r e f l u o r i n a t e d 200 m l " s o l i d r e a c t o r " . A b o u t 75 p . s . i . o f n i t r o s y l f l u o r i d e w a s c o n d e n s e d i n t o t h e c a n and 33 f l u o r i n e was added t o a p r e s s u r e o f a p p r o x i m a t e l y 170 p . s . i . The c a n was t h e n h e a t e d f o r two days a t 1 7 0 ° • F l u o r i n e was added t o g i v e a t o t a l p r e s s u r e o f a b o u t 70 p . s . i . and t h e t e m p e r a t u r e was i n c r e a s e d t o 350° f o r 3 h o u r s . The c a n was r a i s e d up a b o u t 1 i n . o u t o f t h e h e a t e r w h i l e b e i n g h e a t e d , and t h e p o r t i o n j u s t b e l o w t h e l i d was c o o l e d by means o f a s t r e a m o f c o m p r e s s e d a i r , a l l o w i n g any v o l a t i l e m a t e r i a l t o c o n d e n s e i n t h i s a r e a and n o t i n t h e stem o f t h e c a n . N i t r o g e n o x i d e t r i f l u o r i d e and n i t r o s y l f l u o r i d e were d e t e c t e d b y t h e i r i n f r a r e d s p e c t r a as t h e gaseous p r o d u c t s . N i c k e l d i f l u o r i d e was d e t e c t e d by i t s X - r a y powder d i f f r a c t i o n p a t t e r n . The p y r o l y s i s r e a c t i o n c a n be f o r m u l a t e d : (N0 ) 9 N i F 6 3 5 ° ° •> ONF3 + ONF + N i F o + F 2 1 F 2 ( 7 0 p . s . i J I n o r d e r t o s e p a r a t e ONF3 f r o m e x c e s s ONF, and F^, t h e t e m p e r a t u r e was r e d u c e d t o 1 7 0 ° . N i t r o s y l f l u o r i d e and f l u o r i n e r e a c t e d w i t h n i c k e l d i f l u o r i d e a t t h i s t e m p e r a t u r e t o f o r m s o l i d ( N O ) 2 N i F 6 2 ONF + F 2 + N i F 2 = ( N O ) 2 N i F 6 . The l a t t e r r e a c t i o n was a l l o w e d t o p r o c e e d f o r two d a y s . N i t r o g e n o x i d e t r i f l u o r i d e d i d n o t i n t e r a c t w i t h n i c k e l d i f l u o r i d e a t t h i s t e m p e r a t u r e . The o v e r a l l r e a c t i o n gave r i s e 34 t o a b o u t 500 mm H g . o f n i t r o s y l t r i f l u o r i d e ( v o l u m e 200 m l ) i n a d d i t i o n t o t h e i m p u r i t i e s n i t r y l f l u o r i d e , n i t r o s y l f l u o r i d e and c a r b o n t e t r a f l u o r i d e . 2 . 1 . 4 . The R e a c t i o n o f I r i d i u m H e x a f l u o r i d e w i t h  N i t r o s y l F l u o r i d e B e a t o n f o u n d t h a t ONF3 was p r o d u c e d by t h e r e -a c t i o n o f n i t r o s y l f l u o r i d e and ? F t F g o r I r F g w h i l e i n v e s t i -( 4 0 ) g a t i n g t h e o x i d i s i n g ^ p r o p e r t i e s o f t h e s e h e x a f l u o r i d e s . T h e s e r e a c t i o n s were t h e r e f o r e s t u d i e d as p r e p a r a t i v e r o u t e s t o t h e new o x y f l u o r i d e . The a p p a r a t u s was a s s e m b l e d as i n d i c a t e d i n F i g u r e 5 . The w e i g h i n g v e s s e l was u s e d i n o r d e r t o f o l l o w t h e r e a c t i o n b y w e i g h t c h a n g e s . The I r F g was t r a n s f e r r e d t o t h e w e i g h i n g v e s s e l and t h e n e c e s s a r y ONF p r e s s u r e c a l c u l a t e d a c c o r d i n g t o t h e e q u a t i o n : 3 ONF + 2 I r F 6 = 2 (N0 ) I r F 6 +• ONF3 . The c a n c o n t a i n i n g n i t r o s y l f l u o r i d e was c o n n e c t e d a t A and t h e w e i g h i n g v e s s e l r e a t t a c h e d t o t h e l i n e . The l i n e was t h e n t r e a t e d w i t h ONF s e v e r a l t i m e s as d e s c r i b e d i n C h a p t e r I , s e c -t i o n 2 . 3 . The r e q u i r e d q u a n t i t y o f ONF was c o n d e n s e d o n t o t h e I r F g . The w e i g h t o f t h e w e i g h i n g v e s s e l was t h e n d e t e r m i n e d . The t e m p e r a t u r e o f t h e w e i g h i n g v e s s e l n e v e r e x c e e d e d t h a t o f t h e l a b o r a t o r y . 35 B o u r d o n gauge pump and r e s t o f vacuum l i n e v a l v e -H " W e i g h i n g v e s s e l " I n f r a r e d C e l l I r F 6 F i g u r e 5. I r F g / O N F R e a c t i o n , A p p a r a t u s 36 A n e v a c u a t e d c a n c o n t a i n i n g m e r c u r y was p l a c e d i n t h e l i n e i n o r d e r to a b s o r b any f l u o r i n e p r e s e n t . (Oxygen does n o t r e a c t w i t h f l u o r i n e a t room t e m p e r a t u r e s . ) The r e -a c t i o n v e s s e l was c o o l e d down t o l i q u i d n i t r o g e n t e m p e r a t u r e , and opened up t o a g a u g e ; a v a p o u r p r e s s u r e o f c a . 3 0 0 mm H g . was o b s e r v e d . The gas i n t h e r e a c t i o n v e s s e l was expanded i n t o t h e c a n c o n t a i n i n g m e r c u r y . The p r e s e n c e o f a vacuum b e t t e r t h a n 1 mm H g . i n t h e m e r c u r y c a n a f t e r s h a k i n g i t f o r 24 h o u r s a t room t e m p e r a t u r e i n d i c a t e d t o t a l u p t a k e o f t h e n o n - c o n d e n s a b l e g a s . The r e s t o f t h e n o n - c o n d e n s a b l e gas was pumped o f f f r o m t h e r e a c t i o n v e s s e l and t h e v e s s e l was r e w e i g h e d . The i n f r a r e d s p e c t r u m o f t h e c o n d e n s a b l e r e a c t i o n p r o d u c t s showed t h e p r e s e n c e o f ONF3, and t r a c e q u a n t i t i e s o f n i t r o g e n d i o x i d e , n i t r y l f l u o r i d e , and c a r b o n t e t r a f l u o r i d e . A f t e r a l l gaseous r e a c t i o n p r o d u c t s were r e m o v e d , t h e w e i g h t o f t h e r e a c t i o n v e s s e l was r e d e t e r m i n e d . An X - r a y p i c t u r e o f t h e s o l i d formed i n t h e r e a c t i o n was i d e n t i c a l t o t h a t o f ( N O ) I r F g . R e s u l t s : W e i g h t ONF added = 0 . 1 6 2 5 gms. 3 . 3 2 m i l l i m o l e s W e i g h t I r F 6 = 0 . 7 4 5 1 gms. 2 . 4 3 W e i g h t ONF- = 0 . 0 7 2 8 gms. 0 . 8 4 « 37 W e i g h t F 2 p r o d u c e d = 0 . 0 3 0 1 gms. 0 .079 m i l l i m o l e s W e i g h t (N0 ) I r F 6 = 0 .8050 gms. 2.39 " The o v e r a l l r e a c t i o n c a n be f o r m u l a t e d a s : 3 I r F 6 • 4 ONF = 3 NO I r F 6 + F 2 / 2 ( ? ) + 0NF3 I n t e r a c t i o n o f IrF6 w i t h ONF3 The two g a s e s were m i x e d a t 20° i n an i n f r a r e d c e l l and i n f r a r e d s p e c t r a t a k e n a t v a r i o u s t i m e i n t e r v a l s up t o an h o u r showed no r e a c t i o n o f t h e two c o m p o n e n t s . The same o b -s e r v a t i o n was made when t h e gases were c o n d e n s e d i n an arm o f t h e c e l l and a s p e c t r u m was r u n a f t e r w a r m i n g t h e c o n d e n s e d m i x t u r e s l o w l y t o room t e m p e r a t u r e , t h u s s i m u l a t i n g t h e ONF + I r F g r e a c t i o n c o n d i t i o n s . 2.1.5. The R e a c t i o n o f PtF6 w i t h ONF The e x p e r i m e n t was c a r r i e d o u t i n an i d e n t i c a l way t o t h e i r i d i u m h e x a f l u o r i d e - n i t r o s y l f l u o r i d e r e a c t i o n d e s c r i b e d a b o v e . The d e t a i l s a r e i d e n t i c a l f o r b o t h r e a c t i o n s . R e s u l t s : W e i g h t ONF added = 0 .4146 gms. W e i g h t PtF6 added = 1 .6062 gms. 5.37 m i l l i m o l e s W e i g h t NOPtFg p r o d u c e d = 1.7597 gms. 5.35 W e i g h t F 2 g i v e n o f f = 0 . 1014 gms. 2 .67 " W e i g h t ONF u n r e a c t e d = 0 .1597 gms. T h e r e f o r e w e i g h t ONF r e a c t e d = 0 .2549 gms. 5.20 " ( O n l y a t r a c e o f ONF3 was p r o d u c e d . ) 38 The reaction can therefore be written 2 PtF$ + 2 ONF = 2 NO PtF6 + F 2 The condensable gaseous products of the reaction were identi-fied by their infrared spectra and i t was found that only a trace of nitrogen oxide trifluoride was produced. The non-condensable gas was totally absorbed by mercury at room temperature. The solid product formed in the reaction was identified by i t s X-ray powder diffraction pattern, and was found to be identical to (NO) P t F 6 / 4 0 ^ 2 . 1 . 6 . Purification of Nitrogen Oxide Trifluoride Nitrogen oxide trifluoride produced by the fluor-ination of the (NO)2NiFg salt contained approximately the following constituents: ONF3 approx. 757o by volume ONF 02NF " CF 4 « N20 " There appeared to be no great differences in the vapour pressures of ONF3, and the impurities that could be ex-ploited to separate the components easily by trap to trap d i s t i l l a t i o n . A chemical separation method was therefore dev-eloped. Nitrogen oxide trifluoride formed a weak adduct with 5% " 15% M 4% " 1% M 39 A s F 5 ( s e c t i o n 2 . 3 . 2 . ) , whereas 0 2 N F , and ONF formed v e r y s t a b l e a d d u c t s . The m i x t u r e c o u l d t h e r e f o r e be t r e a t e d w i t h A s F ^ , a l l f l u o r i d e i o n d o n o r s f o r m i n g s o l i d s , and t h e n o n - f l u o r i d e i o n d o n o r s (CF4, N 20) c o u l d be pumped o f f . The d i f f e r e n c e i n s t a b i l i t y o f t h e a d d u c t s c o u l d t h e n be e x p l o i t e d b y r e a c t i n g t h e m i x t u r e w i t h ONF, o r C s F . The " w e a k e s t " d o n o r i s t h e n d i s p l a c e d . O N F | y A s F 5 + C s F * ONF3 + CsAsF6 . Any ONF, o r 0 2 N F formed i m m e d i a t e l y d i s p l a c e s ONF3 f r o m t h e w e a k e r a d d u c t ONF3, A s F ^ . ONF3, A s F 5 + 0 2 N F • N 0 2 A s F 6 + ONF3 . I n o r d e r t o e n s u r e t h e a b s e n c e i n t h e gaseous phase o f ONF, o r 0 2 N F , i t was n e c e s s a r y t o d e m o n s t r a t e t h e p r e s e n c e o f some ONF3, A S F 5 . T h i s c o u l d be done by r e m o v i n g t h e gases and a l l o w i n g t h e r e a c t i o n t o c o n t i n u e . I f ONF3 was s u b s e q u e n t l y f o r m e d , i t showed t h a t ONF3, A S F 5 m u s t have b e e n p r e s e n t . CsF + ONF3, A s F 5 = ONF3 + C s A s F e . A " s o l i d r e a c t o r " was p r e f l u o r i n a t e d and a b o u t one gram o f a n h y d r o u s c a e s i u m f l u o r i d e was p l a c e d i n i t t o g e t h e r w i t h some n i c k e l b a l l s . N i t r o g e n o x i d e t r i f l u o r i d e and i m p u r i -t i e s were t h e n a d d e d . Any h y d r o g e n f l u o r i d e p r e s e n t was a b s o r b e d a c c o r d i n g t o : 40 C s F + HF = C s H F 2 A r s e n i c p e n t a f l u o r i d e was added t o t h e c a n i n o r d e r t o r e a c t w i t h a l l f l u o r i d e i o n d o n o r s . The t a p c o n n e c t i n g t h e n i t r o s y l t r i f l u o r i d e t o t h e A s F ^ was opened and a p r e s s u r e d r o p a l l o w e d s u c h t h a t t h e r e was now a s l i g h t e x c e s s o f As Fe-i n t h e c a e s i u m f l u o r i d e c a n . The f o l l o w i n g r e a c t i o n s t o o k p l a c e : ONF3 + A s F 5 = 0 N F 3 i A s F 5 ONF +• A s F 5 = NO A s F 6 0 2 N F +• A S F 5 = N O 2 A s F 6 The n o n - r e a c t i v e c l a s s o f i m p u r i t i e s , N 2 O and C F ^ and any e x c e s s o f A 8 F 5 , were q u i c k l y pumped o f f a t room t e m -p e r a t u r e . The b o t t o m o f t h e c a n was c o o l e d i n l i q u i d n i t r o g e n , and t h e s i d e s h e a t e d s l i g h t l y w i t h a b u n s e n b u r n e r f l a m e . The 0 N F 3 ' A s F ^ a d d u c t c o n d e n s e d t o t h e b o t t o m o f t h e c a n o n t o p o f t h e c a e s i u m f l u o r i d e . The r e a c t a n t s were t h e n s h a k e n o v e r n i g h t and n i t r o g e n o x i d e t r i f l u o r i d e was l i b e r a t e d , a c c o r d i n g t o : O N F 3 ; A s F 5 + C s F = ONF3 + C s A s F 6 . The r e a c t i o n was a l l o w e d t o p r o c e e d a f t e r t h e f i r s t q u a n t i t y o f p u r e ONF3 had been r e m o v e d . The p r e s e n c e o f ONF3 i n t h i s s e c o n d r u n showed t h a t e x c e s s 0 N F 3 > A s F 5 was p r e s e n t w h i l e t h e f i r s t s a m p l e o f ONF3 was b e i n g g e n e r a t e d . 41 The i n f r a r e d s p e c t r u m was t a k e n t o show t h a t no o t h e r known g a s e s were p r e s e n t . The gas was t h e n t r a n s f e r r e d t o a p r e f l u o r i n a t e d l e a k - t i g h t M o n e l c a n f o r s t o r a g e . T h i s p u r i f i c a t i o n t e c h n i q u e was f o u n d t o be t h e most c o n v e n i e n t means o f p u r i f y i n g n i t r o g e n o x i d e t r i f l u o r i d e . A s i m i l a r p u r i f i c a t i o n p r o c e d u r e , w h i c h r e p l a c e d c a e s i u m f l u o r i d e w i t h n i t r o s y l f l u o r i d e was a l s o u s e d s u c c e s s f u l l y . A n o t h e r method was t o t i t r a t e t h e i m p u r i t i e s w i t h b o r o n t r i f l u o r i d e , w h i c h l e f t ONF3 i n t h e gaseous p h a s e . ONF + BF3 = N O B F 4 O2NF 4- BF3 = NO2BF4 2 . 1 . 7 . Some U n s u c c e s s f u l A t t e m p t s a t N i t r o g e n O x i d e  T r i f l u o r i d e S y n t h e s i s The e x p e r i m e n t s d e s c r i b e d i n t h i s s e c t i o n were c o n d u c t e d i n o r d e r t o s y n t h e s i s e ONF3 more c o n v e n i e n t l y and i n l a r g e r q u a n t i t i e s . F l u o r i n a t i o n o f NOAsFg A n a t t e m p t was made t o f l u o r i n a t e n i t r o s y l h e x a -f l u o r o a r s e n a t e ( v ) F 2 • N O A s F 6 = O N F 2 A s F 6 O N F 2 A s F 6 = ONF3 + A s F 5 The compound NOASF5 was p r e p a r e d by t i t r a t i n g ASF5 w i t h ONF, and i d e n t i f y i n g i t by i t s known X - r a y powder 42 d i f f r a c t i o n p a t t e r n . A M o n e l w e i g h i n g b o t t l e c o n t a i n i n g NOAsFg and an e x c e s s o f f l u o r i n e was h e a t e d o v e r n i g h t a t 2 2 0 ° . No i n c r e a s e i n w e i g h t was o b s e r v e d a f t e r r e m o v a l o f a l l f l u o r i n e . The v a p o u r p r e s s u r e o f t h e p r o d u c t s a t room t e m p e r a t u r e was z e r o , w h i c h i n d i c a t e d t h e a b s e n c e o f any gaseous p h a s e . A n X -r a y powder d i f f r a c t i o n p a t t e r n o f t h e r e s i d u e p r o v e d t o be i d e n t i c a l w i t h t h a t o f t h e s t a r t i n g m a t e r i a l . The e x p e r i m e n t was r e p e a t e d a t 350°C. w i t h a s i m i l a r r e s u l t . The f l u o r i n a t i o n o f N O I r F g was a l s o t r i e d w i t h o u t s u c c e s s . R e a c t i o n o f N 2 F 4 w i t h OF? ( 4 1 ) I t was r e p o r t e d by C a d y N ' t h a t CF3OF r e a c t s w i t h N2F4 o r a c c o r d i n g t o t h e e q u a t i o n : CF3OF + N 2 F 4 = CF 30NF 2 + NF3 . Oxygen d i f l u o r i d e was r e a c t e d w i t h N2F4 i n a n a t t e m p t t o f o r m FONF2 ( t h e r e i s no r e p o r t o f t h i s s p e c i e s i n t h e l i t e r a t u r e ) w h i c h i t was hoped m i g h t r e a r r a n g e t o ONF3. N 2 F 4 + 0F 2 = NF3 + F0NF2 F0NF2 = ONF3 . A b o u t e q u a l q u a n t i t i e s o f N2F 4 and OF2 were c o n d e n s e d i n t o an i n f r a r e d c e l l t o a t o t a l p r e s s u r e o f 500 mm H g . A f t e r 12 h o u r s , t h e i n f r a r e d s p e c t r u m showed t h e p r e s e n c e o f u n r e a c t e d 43 s t a r t i n g m a t e r i a l s . The e x p e r i m e n t was r e p e a t e d by h e a t i n g t h e r e a c t a n t s i n a M o n e l c a n a t 200° f o r t w e l v e h o u r s . N i t r o -g e n , t r i f l u o r i d e , o x y g e n , and a t r a c e o f n i t r o s y l f l u o r i d e was f o r m e d . E q u a l q u a n t i t i e s o f N2F4 and OF2, t o a t o t a l p r e s s u r e o f a p p r o x . 15 p . s . i . i n t h e v o l u m e o f a q u a r t z v e s s e l , were e x p o s e d t o s u n l i g h t . A f t e r t w e n t y - f o u r h o u r s , t h e v e s s e l was h e a v i l y e t c h e d and a n o n - c o n d e n s a b l e gas was formed as w e l l as s i l i c o n t e t r a f l u o r i d e and n i t r o g e n t r i f l u o r i d e and u n r e a c t e d r e a c t a n t s . The e x p e r i m e n t was r e p e a t e d i n t h e p r e s e n c e o f a r s e n i c p e n t a f l u o r i d e i n o r d e r t o c o m p l e x t h e p o s s i b l e i n t e r m e d i a t e FONF2, as ONF3ASF5. E x c e s s a r s e n i c p e n t a f l u o r i d e was added t o d i n i t r o g e n t e t r a f l u o r i d e and o x y g e n d i f l u o r i d e i n a 100 m l M o n e l c a n , w h i c h was h e a t e d a t 1 8 0 ° C . f o r t h r e e h o u r s . The v a p o u r p r e s s u r e o f t h e p r o d u c t s a t - 1 9 6 ° C . was 150 mm H g . , w h i c h s u g g e s t e d t h a t o x y g e n was p r o d u c e d . The i n f r a r e d s p e c -t r u m showed t h e p r e s e n c e o f ASF5, NF3, and t r a c e OF2. The s o l i d formed i n t h e r e a c t i o n was i d e n t i f i e d as N O A s F s by i t s X - r a y powder d i f f r a c t i o n p a t t e r n . The N i t r o s y l f l u o r i d e o b s e r v e d i n p r e v i o u s r e a c t i o n s (27) was v e r y p r o b a b l y formed by t h e r e a c t i o n o f N2F4 and O2. N2?4 + 0 2 ~ 0 N F + N F3 4 4 In the presence of arsenic pentafluoride further reaction occurs to yield NOAsFg ONF + AsF 5 = NOAsFg . CsF + ONF + Fo Hypofluorites can be made by the addition of ( 4 2 ) fluorine to C - 0, or S - 0 double bonds, for example, FC(0)0F + F 2 C S F > F 2C(0F) 2 ( 4 3 ) . R.T. An analogous reaction was attempted in order to synthesise F0NF2. CsF ONF + F 2 ) F0NF2 > 0NF3 Nitrosyl fluoride was added to a 100 ml "solid reactor" which contained 1 gm CsF, to a pressure of 10 p.s.i. Fluorine was added to a total pressure of 55 p.s.i. The contents of the can were thoroughly mixed by shaking the can overnight at room temperature after adding nickel balls. The infrared spectrum of the condensable gaseous products indicated the presence of ONF, and traces of 02NF. The experiment was repeated at 150° and 300° with the same results. 45 2 . 2 . P h y s i c a l P r o p e r t i e s o f ONFq 2 . 2 . 1 . M o l e c u l a r W e i g h t D e t e r m i n a t i o n and  E l e m e n t a l A n a l y s i s G e n e r a l C h e m i c a l B e h a v i o u r o f ONF? G e n e r a l l y , ONF3 d i d n o t r e a c t w i t h c o p p e r , g l a s s , A p i e z o n g r e a s e , c a e s i u m i o d i d e w i n d o w s , a l k a l i , w a t e r v a p o u r o r m e r c u r y a t room t e m p e r a t u r e . I t d i d r e a c t s l o w l y w i t h n i t r i c o x i d e t o g i v e n i t r o s y l f l u o r i d e ( s e e s e c t i o n 2 . 3 . 1 . ) . The f a c t t h a t t h e m o l e c u l e was r e l a t i v e l y s t a b l e meant t h a t i t s m o l e c u l a r w e i g h t c o u l d be d e t e r m i n e d e a s i l y by c l a s s i c a l methods y e t t h i s s t a b i l i t y p r e s e n t e d p r o b l e m s i n t h e a n a l y s i s f o r n i t r o g e n and f l u o r i n e . As o n l y s m a l l q u a n t i t i e s o f ONF3 were a v a i l a b l e , m i c r o a n a l y t i c a l methods had t o be employed f o r i t s a n a l y s i s . A s a m p l e o f a b o u t . 1 2 grams o f p u r i f i e d ONF3 was p r e p a r e d . On t h i s s a m p l e t h e n i t r o g e n and f l u o r i n e a n a l y s i s , t h e m e l t i n g p o i n t , and m o l e c u l a r w e i g h t were d e t e r m i n e d . M o l e c u l a r W e i g h t D e t e r m i n a t i o n The p u r i t y o f t h e sample was c h e c k e d b y i t s i n -f r a r e d s p e c t r u m , 4000 c m " 1 t o 400 c m " 1 b o t h b e f o r e and a f t e r d e t e r m i n a t i o n s . I m p u r i t i e s s u c h as NO, N 0 2 , NOvjF, ONF, N 2 0 , N F 3 , N 2 F ^ and HF were a b s e n t . T r a c e q u a n t i t i e s o f CF^ may have been p r e s e n t ( e s t i m a t e d l e s s t h a n 1 mm H g . C F , f r o m t h e 46 i n t e n s i t y o f t h e p o s s i b l e C F 4 band i n t h e i n f r a r e d s p e c t r u m w h i c h was l e s s t h a n 1/300 o f t h e s a m p l e ) . The m o l e c u l a r w e i g h t was t h e n d e t e r m i n e d b y m e a s u r i n g t h e gas d e n s i t y o f ONF3 a s s u m i n g i d e a l gas b e h a v i o u r . The p r e s s u r e was m e a s u r e d o n a B o o t h - C r o m e r d i a p h r a g m g a u g e . The s a m p l e o f gas was w e i g h e d o u t i n a p y r e x m o l e c u l a r w e i g h t b o t t l e w i t h t h e t a p l u b r i c a t e d w i t h A p i e z o n N g r e a s e . The w e i g h t o f gas t a k e n was a p p r o x i m a t e l y 0 . 1 g r a m s . Found 8 7 . 6 5 C a l c u l a t e d 8 7 . 0 8 5 . 3 Ave 8 6 . 5 N i t r o g e n E l e m e n t a l A n a l y s i s The e x a c t v o l u m e o f t h e a p p a r a t u s shown i n F i g u r e 6 . was d e t e r m i n e d u s i n g m e r c u r y as a c a l i b r a n t . The a p p a r a t u s was t h e n a t t a c h e d t o t h e vacuum l i n e b y means o f a g l a s s t o m e t a l f i t t i n g a t P ; a p p r o x . 10 mgms. n i t r o g e n o x i d e t r i -f l u o r i d e were expanded i n t o t h e a p p a r a t u s and p r e s s u r e and t e m p e r a t u r e was r e c o r d e d . Tap B , w h i c h c o n n e c t e d t h e a p p a r a t u s t o t h e m a i n vacuum l i n e , was t h e n c l o s e d . The t u b e was t h e n c o n n e c t e d t o t h e s t a n d a r d a p p a r a t u s f o r m i c r o a n a l y t i c a l 47 B Figure 6. Fixed Volume Apparatus used in Elemental Analysis of ONF3 ( 4 4 ) nitrogen determination according to Dumas by the means of the glass tubing at S and P. Carbon dioxide forced out at-mospheric nitrogen in the tube at P. by turning the two-way tap to pass i t out to atmosphere at Q. The ONF3 was then swept over Cu/CuOv in a s i l i c a tube at 850° and the volume of the elemental nitrogen collected was determined. In a blank run the quantity of nitrogen in tap S. and in the open tube at S. was determined, and a correction made. 48 F l u o r i n e A n a l y s i s N i t r o g e n o x i d e t r i f l u o r i d e was m e a s u r e d i n t o t h e a p p a r a t u s d e s c r i b e d i n F i g u r e 6 . a t a known t e m p e r a t u r e and p r e s s u r e t o g i v e a t o t a l w e i g h t o f a b o u t 10 mgms. A s a m p l e o f n i t r i c o x i d e was c h e c k e d f o r t h e p r e s e n c e o f f l u o r i n e c o n t a i n -i n g s p e c i e s b y i n f r a r e d s p e c t r o s c o p y and t h e n added t o t h e a p p a r a t u s t o g i v e a t o t a l p r e s s u r e o f a p p r o x . 7 p . s . i . H y d r o -c h l o r i c a c i d ( m i c r o a n a l y t i c a l g r a d e B . D . H . ) was t h e n a l l o w e d t o r i s e i n t o t h e t u b e and t h e a p p a r a t u s was l e f t f o r 48 h o u r s . N i t r i c o x i d e r e a c t e d w i t h ONF3 t o f o r m n i t r o s y l f l u o r i d e w h i c h r e a c t e d i m m e d i a t e l y w i t h t h e aqueous p h a s e . The c o n t e n t s o f t h e r e a c t i o n v e s s e l were t r a n s f e r r e d t o a d i s t i l l a t i o n a p p a r a t u s , and c a r e was t a k e n t o wash o u t t h e r e a c t i o n v e s s e l t h o r o u g h l y s e v e r a l t i m e s w i t h a l k a l i . P e r c h l o r i c a c i d ( B . D . H . a n a l y t i c a l r e a g e n t ) was added t o t h e s o l u t i o n and HF and H2SiFg were s t e a m d i s t i l l e d o v e r a t 1 2 5 ° ( a n a d a p t a t i o n o f t h e method o f ( 4 5 ) W i l l a r d and W i n t e r ' ) . The f l u o r i n e was t h e n e s t i m a t e d by t i t r a t i o n w i t h t h o r i u m n i t r a t e , 0 . 0 2 N a t pH 3 . 0 . 7 49 R e s u l t s : N 1 6 . 1 F 6 7 . 1 f o u n d N 1 6 . 1 F 6 5 . 5 r e q u i r e d 2.2.2. Mass S p e c t r u m o f ONFq The mass s p e c t r u m was o b t a i n e d o n a A . E . I . M . S . 9 . by D r . C . B r i o n o f t h e c h e m i s t r y d e p a r t m e n t i n o r d e r t o c o n -f i r m t h e a n a l y t i c a l r e s u l t s . A sample was r u n w i t h K r y p t o n as ( 4 7 ) a c a l i b r a n t and i o n s were p r o d u c e d b y p h o t o i o n i s a t i o n . A n o t h e r s p e c t r u m was o b t a i n e d w i t h t h e i o n s g e n e r a t e d b y e l e c t r o n i m p a c t a t 70 e . v . 2.2.3. P h y s i c a l P r o p e r t i e s  V a p o u r P r e s s u r e o f ONFg P u r i t y o f ONF3: N i t r o g e n o x i d e t r i f l u o r i d e t h a t showed no i m p u r i t i e s i n t h e i n f r a r e d s p e c t r u m was t a k e n t o be p u r e m a t e r i a l . H o w e v e r , t h i s c r i t e r i o n may n o t h a v e been s t r i n g e n t e n o u g h . Sometimes s p e c t r o s c o p i c a l l y p u r e m a t e r i a l , when c o n d e n s e d o u t i n t o a g l a s s t u b e , gave a v e r y t h i n r e d c i r c l e o f m a t e r i a l above t h e m a i n body o f c o n d e n s e d s o l i d . I t was n o t p o s s i b l e t o remove t h i s " i m p u r i t y " by f r a c t i o n a l d i s -t i l l a t i o n o r by e x p o s u r e t o r e a c t i v e s u r f a c e s s u c h as m e r c u r y . On m e l t i n g t h e s o l i d gave a c o l o u r l e s s l i q u i d . H o w e v e r , o t h e r o t h e r s a m p l e s p r e p a r e d i n an i d e n t i c a l f a s h i o n gave a s o l i d t h a t was c o m p l e t e l y c o l o u r l e s s . 50 TABLE 2 Mass S p e c t r u m o f ONF3* P h o t o i o n i s a t i o n M/e 68 46 44 30 28 S c a l e x 1 Peak H e i g h t i n mm. 4 1 1 P o s s i b l e A s s i g n m e n t 0NF2 + N0 2 + N 2 0 * C0 2* NO* N „ + M/e 87 86 85 78 76 71 69 68 67 66 64 62 60 S c a l e x 30 S c a l e x 30 P h o t o i o n i s a t i o n E l e c t r o n Impact Peak H t . i n mm. Peak H t . i n mm. 2 1 1 11 1 1 2 6 1 O f f s c a l e 6 3 3 2 12 2 P o s s i b l e A s s i g n m e n t s f o r P e a k s X 1 mm. F3NO F 2N0 2 H ( ? ) NF3 H0NF2+ 0 N 1 5 F 2 + C F 3 + 0NF 2 + ? FNO2H* ? N0 3 + N202 + *The p e a k s a t t r i b u t a b l e t o t h e c a l i b r a n t , K r y p t o n h a v e been o m i t t e d . 51 TABLE 2 continued M/e S ° a l e . X 3 0 4 ?cale X 3? , Possible Assignments J_ Photoionisation Electron Impact £ o r P e a k s j m . Peak Ht. in mm. Peak Ht. in mm.  57 1 52 1 47 7 3 HN0 2 + 46 25 5 N02* 44 14 6 N 20 + C0 2 + 43 2 7 ? 42 1 41 1 1 39 1 32 10 1 0 2* 15 + 31 2 1 N i J0 2 30 Off scale Off scale N0+ 29 1 28 25 25 N 2 + 20 3 HF + 19 1 18 lOj 0H 2 + NH 4 + 15 1 14 1 52 Measurement o f T e m p e r a t u r e T e m p e r a t u r e was m e a s u r e d b y means o f a c o p p e r -c o n s t a n t a n t h e r m o c o u p l e t h a t was c a l i b r a t e d a g a i n s t a p l a t i n u m r e s i s t a n c e t h e r m o m e t e r . I n o r d e r t o m e a s u r e t h e E . M . F . a c c u r a t e l y t o . 0 0 1 mV, a G u i l d l i n e P o t e n t i o m e t e r t y p e 4363A was u s e d i n c o n j u n c t i o n w i t h a b a l i s t i c g a l v a n o m e t e r . The t e m p e r a t u r e was m e a s u r e d t o w i t h i n - 0 . 0 5 ° . P r e s s u r e Measurement A d i r e c t d e t e r m i n a t i o n o f t h e v a p o u r p r e s s u r e was n o t p o s s i b l e b e c a u s e o f a s l i g h t i n t e r a c t i o n w i t h t h e manometer m e r c u r y p r o b a b l y due t o t h e p r e s e n c e o f a s l i g h t i m p u r i t y i n e i t h e r t h e H g , o r t h e g a s . A l s o , t h e ONF3 s a m p l e d i s s o l v e d r e a d i l y i n f l u o r o l u b e o i l w i t h s l i g h t b u t d e f i n i t e a t t a c k o n t h e m e r c u r y w h i c h p r e v e n t e d t h e u s e o f a f l u o r o l u b e c o v e r e d m e r c u r y c o l u m n . A t t e m p t s w e r e made t o a d a p t t h e method o f K e l l o g and C a d y ^ 4 ^ so t h a t p r e s s u r e measurements c o u l d be made d i r e c t l y o n a m e r c u r y c o l u m n , b u t i t was d i f f i c u l t t o d e t e r m i n e t h e e x a c t b o i l i n g t e m p e r a t u r e when s m a l l q u a n t i t i e s ( a p p r o x . .3 g) o f m a t e r i a l were u s e d . T h e r e f o r e a M o n e l B o u r d o n gauge d e s i g n e d t o m e a s u r e p r e s s u r e s i n t h e r a n g e 0 - 1000 mm H g . A b s . . was c a l i b r a t e d a g a i n s t a m e r c u r y m&riomeiter and a c o r r e c t i o n c u r v e o b t a i n e d b e f o r e u s e i n t h e e x p e r i m e n t . 53 The e s t i m a t e d e r r o r i n p r e s s u r e m e a s u r e m e n t s ; 1% mm H g . ( z e r o c o r r e c t i o n ) , 1% mm H g . ( a c t u a l m e a s u r e m e n t ) , 2 mm ( e r r o r i n a p p l i e d c o r r e c t i o n ) , t h e r e f o r e t h e p r o b a b l e e r r o r was a b o u t 3% mm H g . A p p a r a t u s The a p p a r a t u s was c o n s t r u c t e d w i t h as s m a l l a v o l u m e as p o s s i b l e . The gauge was a t t a c h e d t o a M o n e l T p i e c e . Onto one arm o f t h e T , a W h i t e y v a l v e was a t t a c h e d c o n n e c t i n g t h e a p p a r a t u s t o t h e r e s e r v o i r o f ONF3, and t o t h e r e s t o f t h e m a i n vacuum l i n e . The s e c o n d arm o f t h e T was c o n n e c t e d t o a W h i t e y v a l v e w h i c h was a t t a c h e d t o a n 8 M g l a s s t u b e . A t h e r m o c o u p l e was s e c u r e d t o t h e g l a s s t u b e by means o f c o p p e r w i r e . The t h e r m o c o u p l e j u n c t i o n was p l a c e d j u s t above t h e b o t t o m o f t h e t u b e , and s u r r o u n d e d w i t h a l u m i n i u m f o i l t o r e d u c e t e m p e r a t u r e f l u c t u a t i o n s . E x p e r i m e n t a l P r o c e d u r e A b o u t .3 grams o f ONF3 was c o n d e n s e d i n t o t h e g l a s s t u b e f r o m t h e ONF3 s t o r a g e c a n w h i c h was h e l d a t - 1 2 5 ° b y means o f a m e t h y l c y c l o h e x a n e s l u s h b a t h . A one l i t r e s l u s h b a t h o f m e t h y l c y c l o h e x a n e was t h e n p l a c e d a r o u n d t h e g l a s s t u b e . The t u b e was k e p t 7 i n s . b e l o w t h e s u r f a c e o f t h e s l u s h b a t h i n o r d e r t o e l i m i n a t e e r r o r s i n t e m p e r a t u r e measurement a r i s i n g f r o m c o n d u c t i o n o f h e a t a l o n g t h e l e a d s t o t h e t h e r m o c o u p l e j u n c t i o n . P r e s s u r e s were d e t e r m i n e d a t t h e c o n s t a n t t e m p e r a t u r e o f t h e s l u s h b a t h . The b a t h was t h e n a l l o w e d t o warm up t o - 9 4 ° C . A v a l u e o f t e m p e r a t u r e was d e t e r m i n e d , f o l l o w e d i m m e d i a t e l y b y a p r e s s u r e r e a d i n g . The b a t h was r e p l a c e d by a t o l u e n e s l u s h b a t h a t - 9 4 ° and b y an e t h y l a c e t a t e b a t h a t - 8 3 . 5 ° C . The z e r o p r e s s u r e r e a d i n g o n t h e B o u r d o n gauge was r e c o r d e d a t e a c h change o f s l u s h b a t h . The t o t a l t i m e t a k e n f o r t h e t e m p e r a t u r e t o change f r o m - 1 2 8 ° t o - 8 3 . 6 ° was s e v e n h o u r s . A f t e r t h e e x p e r i m e n t t h e sample was c o n d e n s e d i n t o a n i n f r a r e d c e l l and t h e s p e c t r u m t a k e n . The s p e c t r u m was i d e n t i c a l t o t h a t o f t h e gas b e f o r e t h e e x -p e r i m e n t , d e s p i t e t h e f a c t t h a t t h e r e was s l i g h t e t c h i n g o f t h e g l a s s t u b e . T r e a t m e n t o f R e s u l t s The p r e s s u r e r e a d i n g s were c o r r e c t e d f o r t h e change o f z e r o o n t h e B o u r d o n gauge d u r i n g t h e e x p e r i m e n t . The m e r c u r y c o l u m n r e a d i n g s were c o r r e c t e d t o mm H g . a t 0 ° C , and t h e c o r r e c t i o n f o r d e v i a t i o n o f t h e B o u r d o n r e a d i n g f r o m t h a t o f a m e r c u r y c o l u m n was a p p l i e d . The room t e m p e r a t u r e change d u r i n g t h e c a l i b r a t i o n o f t h e gauge and d u r i n g t h e v a p o u r p r e s s u r e e x p e r i m e n t was l e s s t h a n 2 ° C . The E . M . F . r e a d i n g was c o n v e r t e d t o ° C b y means o f a c a l i b r a t i o n c h a r t , and t h e c o r r e c t i o n was a p p l i e d f o r 55 t h e d e v i a t i o n o f t h e t e m p e r a t u r e f r o m t h a t o f a p l a t i n u m r e s i s t a n c e t h e r m o m e t e r . The o b s e r v e d c o r r e c t e d v a l u e s o f t e m p e r a t u r e and p r e s s u r e a r e shown i n T a b l e 3 . V a l u e s o f L o g j i Q P (mm) were t h e n p l o t t e d a g a i n s t v a l u e s o f ( - ^ - ° K ) . These p o i n t s were f i t t e d to t h e b e s t s t r a i g h t l i n e b y t h e method o f l e a s t s q u a r e s u s i n g an a d a p t a t i o n o f D r . N . K . J h a ' s p r o g r a m , ( s e e T a b l e 4 ( i ) ) . The p r e s s u r e r e a d i n g s o b t a i n e d b y u s i n g t h e m e t h y l c y c l o h e x a n e and t o l u e n e s l u s h b a t h s f e l l o n t h e same s t r a i g h t l i n e as d i d t h e o t h e r p o i n t s f o u n d f o r t h e c h a n g i n g v a l u e s o f t e m p e r a t u r e and p r e s s u r e . H o w e v e r , t h e p r e s s u r e r e a d i n g s o b t a i n e d w i t h t h e e t h y l a c e t a t e s l u s h b a t h were v e r y much h i g h e r t h a n t h e s e r e a d i n g s a t s i m i l a r t e m p e r a t u r e s . T h i s s u g g e s t s t h a t t h e t e m p e r a t u r e o f ONF3 was l o w e r t h a n t h e t e m p e r a t u r e o f t h e w a r m i n g t o l u e n e s l u s h b a t h . I t i s a l s o n o t e d t h a t t h e gauge c o r r e c t i o n was d i s p r o p o r t i o n a t e l y more f o r r e a d i n g s o f p r e s -s u r e 700 mm H g . and h i g h e r . A l e a s t s q u a r e s f i t was done u s i n g a l l t h e d a t a w i t h t e m p e r a t u r e s up t o 184°K and u s i n g d a t a o b t a i n e d w i t h t h e e t h y l a c e t a t e s l u s h b a t h ( s e e T a b l e 4 ( i i ) ) . A t h i r d b e s t f i t . ? w a s o b t a i n e d f o r t h e r e a d i n g s o f t h e p o i n t s T«169 - 184°K ( T a b l e 4 ( i i i ) . The p e r c e n t a g e e r r o r i n t h e p r e s s u r e r e a d i n g s was c o n s i d e r e d t o be m i n i m a l i n t h i s r a n g e . T a b l e 5 . shows t h e v a r i o u s c a l c u l a t e d p r e s s u r e s f o r v a r i o u s t e m p e r a t u r e s u s i n g t h e c o n s t a n t s o b t a i n e d i n t h e b e s t s t r a i g h t l i n e f i t s f o r t h e d a t a . 56 TABLE 3 V a p o u r P r e s s u r e D a t a f o r ONF3 D i r e c t R e a d i n g D i r e c t M e a s u r e -o f p r e s s u r e o n ment o f temp. B o u r d o n gauge °C i n mm H g . z e r o 3 . 5 C o r r e c t e d P r e s s u r e R e a d i n g i n mm H g . C o r r e c t e d Temp. °C * 46 - 1 2 8 . 8 3 9 . 5 - 1 2 8 . 0 * 48 1 2 8 . 6 4 1 . 5 1 2 7 . 8 * 4 9 . 5 1 2 8 . 3 4 2 . 0 127 .5 * 5 9 . 5 1 2 5 . 8 5 1 . 0 1 2 5 . 0 64 1 2 4 . 8 5 5 . 5 1 2 4 . 0 69 1 2 4 . 2 60 1 2 3 . 4 7 1 . 5 1 2 3 . 5 61 122 .7 74 1 2 3 . 3 64 1 2 2 . 5 7 6 . 0 1 2 3 . 1 66 1 2 2 . 3 1 0 8 . 5 1 8 8 . 5 5 96 117 .85 1 1 0 . 0 118 .2 9 7 . 5 117.5 1 2 0 . 0 117.2 1 0 7 . 5 1 1 6 . 5 144 114.7 1 3 0 . 5 114 .0 150 1 1 4 . 1 1 3 6 . 5 113.5 155 113.7 141 .5 1 1 3 . 1 160 113 .2 146 .5 112.6 166 112 .5 1 5 2 . 5 111 .9 169 1 1 2 . 3 1 5 4 . 5 111.7 171 1 1 2 . 1 1 5 6 . 5 111.5 179 111.5 1 6 4 . 5 111.0 233 107 .7 218 1 0 7 . 1 2 4 5 . 5 1 0 7 . 0 2 2 9 . 5 1 0 6 . 4 281 1 0 4 . 5 2 6 3 . 5 1 0 4 . 0 290 1 0 4 . 4 2 7 2 . 5 1 0 3 . 9 2 9 3 . 5 1 0 4 . 3 274 1 0 3 . 8 300 1 0 4 . 1 2 8 2 . 5 1 0 3 . 6 301 1 0 4 . 0 2 8 4 . 5 1 0 3 . 5 355 1 0 1 . 4 3 3 6 . 5 1 0 0 . 9 360 1 0 1 . 1 341 1 0 0 . 6 361 1 0 1 . 0 3 4 1 . 5 1 0 0 . 5 412 9 8 . 9 3 9 1 . 5 9 8 . 4 419 9 8 . 6 3 9 8 . 5 9 8 . 1 429 9 8 . 2 4 0 8 . 5 9 7 . 7 436 9 7 . 9 4 1 5 . 5 9 7 . 4 445 9 7 . 6 4 2 4 . 5 9 7 . 1 457 9 7 . 2 4 3 6 . 5 9 6 . 7 528 9 4 . 8 506 9 4 . 3 535 9 4 . 6 513 9 4 . 1 TABLE 3 c o n t i n u e d D i r e c t R e a d i n g D i r e c t M e a s u r e - C o r r e c t e d C o r r e c l o f p r e s s u r e o n ment o f temp. P r e s s u r e R e a d i n g Temp. B o u r d o n gauge i n mm H g . ° C . i n mm H g . ° C . 542 - 9 4 . 4 520 - 9 3 . 9 550 9 4 . 2 528 9 3 . 7 z e r o 5 * 4 8 1 9 6 . 5 458 96 * 4 8 5 9 6 . 3 463 9 5 . 8 * 4 8 7 . 5 9 6 . 3 4 6 4 . 5 9 5 . 8 500 9 6 . 0 477 9 5 . 5 510 9 5 . 5 487 95 517 9 5 . 2 494 9 4 . 7 518 9 5 . 2 495 9 4 . 7 528 - 9 5 . 0 505 9 4 . 5 540 9 4 . 6 516 9 4 . 1 542 9 4 . 6 518 9 4 . 1 542 9 4 . 5 517 9 4 . 0 632 9 1 . 8 605 9 1 . 4 647 9 1 . 5 619 9 1 . 1 715 8 9 . 6 6 8 4 . 5 8 9 . 2 739 8 8 . 8 7 0 7 . 5 8 8 . 4 743 8 8 . 9 7 1 0 . 5 8 8 . 5 762 8 8 . 1 727 8 7 . 7 800 8 7 . 5 762 8 7 . 1 8 1 2 . 5 8 7 . 2 7 7 4 . 5 8 6 . 8 826 8 7 . 0 787 8 6 . 6 843 8 6 . 5 803 8 6 . 1 852 8 6 . 5 810 8 6 . 1 854 8 6 . 2 812 8 5 . 8 887 8 5 . 5 843 8 5 . 1 895 8 5 . 3 851 8 4 . 9 903 8 5 . 2 858 8 4 . 8 921 8 4 . 7 8 7 4 . 5 8 4 . 3 957 8 4 . 1 9 0 7 . 5 8 3 . 7 971 8 3 . 9 9 2 1 . 5 8 3 . 5 982 8 3 . 6 9 3 0 . 5 8 3 . 1 58 TABLE 3 c o n t i n u e d D i r e c t R e a d i n g D i r e c t M e a s u r e o f p r e s s u r e o n ment o f temp. B o u r d o n gauge o r x n mm H g . C o r r e c t e d P r e s s u r e R e a d i n g i n mm H g . z e r o 10 892 * 9 0 4 *912 - 8 5 . 8 8 5 . 4 8 5 . 2 +847 863 865 - 8 5 . 4 8 5 . 0 8 4 . 8 z e r o 9 . 5 * These p r e s s u r e s were m e a s u r e d a t t h e c o n s t a n t t e m p e r a t u r e s o f t h e s l u s h b a t h s - 1 2 8 t o - 9 4 . 2 M e t h y l c y c l o h e x a n e u s e d f o r c o o l i n g - 9 6 . 5 t o - 8 3 . 6 T a l u e n e u s e d f o r c o o l i n g - 8 5 . 8 t o - 8 5 . 2 E t h y l a c e t a t e s l u s h b a t h TABLE 4 ( i ) The B e s t S t r a i g h t L i n e F i t f o r V a p o u r P r e s s u r e  D a t a o f ONF3 ( i ) C o m p l e t e D a t a Temp °K P . o b s . ( m m ) P . c a l c . ( m m ) P . c a l c . < * 1 4 5 . 2 0 3 9 . 5 0 3 9 . 8 3 - 0 . 3 3 * 1 4 5 . 4 0 4 1 . 5 5 4 0 . 5 8 0 . 9 7 * 1 4 5 . 7 0 4 2 . 0 2 4 1 . 7 2 0 . 3 1 * 1 4 8 . 2 0 5 1 . 0 0 5 2 . 3 1 - 1 . 3 1 1 4 9 . 2 0 5 5 . 5 0 5 7 . 1 5 - 1 . 6 5 1 4 9 . 8 0 6 0 . 0 1 6 0 . 2 3 - 0 . 2 2 1 5 0 . 5 0 6 1 . 0 0 6 3 . 9 9 - 3 . 0 0 1 5 0 . 9 0 6 5 . 9 9 6 6 . 2 4 - 0 . 2 4 1 5 5 . 3 5 9 6 . 0 1 9 5 . 9 9 0 . 0 1 1 5 5 . 7 0 9 7 . 5 0 9 8 . 7 5 - 1 . 2 5 1 5 6 . 7 0 1 0 7 . 5 0 1 0 6 . 9 9 0 . 5 1 1 5 9 . 2 0 1 3 0 . 5 0 1 3 0 . 1 4 0 . 3 6 1 5 9 . 7 0 1 3 6 . 4 9 1 3 5 . 2 4 1.25 1 6 0 . 1 0 141 .52 1 3 9 . 4 4 2 . 0 8 1 6 0 . 6 0 1 4 6 . 4 9 1 4 4 . 8 4 1 .65 1 6 1 . 3 0 1 5 2 . 5 1 1 5 2 . 6 9 - 0 . 1 8 1 6 1 . 5 0 154 .49 155 .00 - 0 . 5 1 1 6 1 . 7 0 156 .50 1 5 7 . 3 4 - 0 . 8 5 1 6 2 . 2 0 1 6 4 . 5 1 163.32 1.20 1 6 6 . 1 0 2 1 8 . 0 2 2 1 6 . 7 3 1 .30 1 6 6 . 8 0 2 2 9 . 5 1 2 2 7 . 7 0 1 .81 1 6 9 . 2 0 2 6 3 . 5 1 2 6 8 . 8 8 - 5 . 3 6 1 6 9 . 3 0 2 7 2 . 5 2 2 7 0 . 7 2 1 .80 1 6 9 . 4 0 2 7 4 . 0 3 2 7 2 . 5 7 1 .46 1 6 9 . 6 0 2 8 2 . 4 9 2 7 6 . 3 1 6 .19 1 6 9 . 7 0 2 8 4 . 5 2 2 7 8 . 1 9 6 . 3 3 1 7 2 . 3 0 3 3 6 . 5 2 3 3 1 . 0 0 5 . 5 2 1 7 2 . 6 0 3 4 1 . 0 4 3 3 7 . 5 9 3 . 4 5 1 7 2 . 7 0 3 4 1 . 5 1 3 3 9 . 8 1 1 .70 1 7 3 . 0 0 3 4 9 . 5 5 3 4 6 . 5 5 3 . 0 0 1 7 4 . 8 0 3 9 1 . 4 8 3 8 9 . 3 1 2.17 175 .10 3 9 8 . 4 8 3 9 6 . 8 4 1 .64 1 7 5 . 5 0 4 0 8 . 4 2 4 0 7 . 0 7 1.35 1 7 5 . 8 0 4 1 5 . 4 4 4 1 4 . 8 8 0 . 5 6 176 .10 4 2 4 . 5 3 4 2 2 . 8 1 1.72 1 7 6 . 5 0 4 3 6 . 5 2 4 3 3 . 5 8 2 . 9 4 * 1 7 7 . 2 0 4 5 8 . 0 4 4 5 2 . 9 7 5 . 0 7 TABLE 4 ( i ) c o n t i n u e d Temp °K P . o b s . ( m m ) P . c a l c . ( m m ) P . c a l c . - P 177 .40 4 6 4 . 5 2 4 5 8 . 6 4 5 . 8 8 * 1 7 7 . 4 0 4 6 3 . 0 3 4 5 8 . 6 4 4 . 3 9 177 .70 4 7 6 . 9 9 4 6 7 . 2 5 9 . 7 3 1 7 8 . 2 0 4 8 6 . 9 7 4 8 1 . 9 0 5 . 0 7 1 7 8 . 5 0 4 9 3 . 9 8 4 9 0 . 8 7 3 . 1 1 1 7 8 . 5 0 4 9 5 . 0 0 4 9 0 . 8 7 4 . 1 3 1 7 8 . 7 0 5 0 5 . 0 2 4 9 6 . 9 2 8 . 1 0 1 7 8 . 9 0 5 0 6 . 0 6 5 0 3 . 0 3 3 . 0 3 179.10 5 1 2 . 9 9 5 0 9 . 2 1 3 . 7 8 179 .10 5 1 5 . 9 5 5 0 9 . 2 1 6 . 7 4 179.10 5 1 7 . 9 7 5 0 9 . 2 1 8 . 7 6 1 7 9 . 2 0 5 1 7 . 0 2 5 1 2 . 3 2 4 . 7 0 1 7 9 . 3 0 5 2 0 . 0 0 5 1 5 . 4 5 4 . 5 6 1 7 9 . 5 0 5 2 7 . 9 7 5 2 1 . 7 4 6 . 2 2 1 8 i . 8 0 6 0 5 . 0 7 5 9 8 . 8 1 6 . 2 6 1 8 2 . 1 0 6 1 9 . 0 2 6 0 9 . 5 1 9 . 5 1 1 8 4 . 0 0 6 8 4 . 3 9 6 8 0 . 9 6 3 . 4 3 1 8 4 . 8 0 7 0 7 . 4 7 7 1 3 . 0 1 - 5 . 5 4 1 8 4 . 9 0 710 .57 717 .10 - 6 . 5 3 1 8 5 . 5 0 7 2 6 . 9 5 7 4 2 ; 0 5 - 1 5 . 0 9 1 8 6 . 1 0 7 6 2 . 0 9 7 6 7 . 6 9 - 5 . 6 0 1 8 6 . 4 0 7 7 4 . 4 7 7 8 0 . 7 8 - 6 . 3 0 1 8 6 . 6 0 7 8 7 . 0 6 7 8 9 . 6 0 - 2 . 5 5 1 8 7 . 1 0 8 1 0 . 0 4 8 1 2 . 0 2 - 1 . 9 8 1 8 7 . 1 0 8 0 2 . 9 8 8 1 2 . 0 2 - 9 . 0 4 1 8 7 . 4 0 8 1 2 . 0 9 8 2 5 . 7 1 - 1 3 . 6 2 * 1 8 7 . 8 0 8 4 7 . 2 4 8 4 4 . 2 6 2 . 9 7 1 8 8 . 1 0 8 4 2 . 9 6 8 5 8 . 4 0 - 1 5 . 4 4 * 1 8 8 . 2 0 8 6 2 . 9 9 8 6 3 . 1 5 - 0 . 1 6 1 8 8 . 3 0 8 5 0 . 9 5 8 6 7 . 9 2 - 1 6 . 9 7 * 1 8 8 . 4 0 8 6 4 . 9 8 8 7 2 . 7 2 - 7 . 7 4 1 8 8 . 4 0 8 5 8 . 0 4 8 7 2 . 7 2 - 1 4 . 6 8 1 8 8 . 9 0 8 7 4 . 5 9 8 9 7 . 0 2 - 2 2 . 4 3 1 8 9 . 5 0 9 0 7 . 4 2 9 2 6 . 9 0 - 1 9 . 4 8 1 8 9 . 7 0 921^74 9 3 7 . 0 3 - 1 5 . 3 0 1 9 0 . 1 0 9 3 0 . 4 8 957;57 - 2 7 . 0 9 These p r e s s u r e s were m e a s u r e d a t t h e c o n s t a n t t e m p e r a t u r e o f t h e s l u s h b a t h s . TABLE 4 ( i i ) The B e s t S t r a i g h t L i n e F i t f o r V a p o u r P r e s s u r e D a t a o f O N F i ( i i ) P o i n t s o b t a i n e d f o r T = 145 - 184°K i n a d d i t i o n t o t h o s e w i t h e t h y l a c e t a t e s l u s h b a t h s Temp °K P . o b s . ( m m ) P . c a l c . ( m m ) P . c a l c . - P 1 4 5 . 2 0 3 9 . 5 0 3 9 . 5 0 - 0 . 0 0 1 4 5 . 4 0 4 1 . 5 5 4 0 . 2 5 1 .30 1 4 5 . 7 0 4 2 . 0 2 4 1 . 3 8 0 . 6 4 1 4 8 . 2 0 5 1 . 0 0 5 1 . 9 7 - 0 . 9 7 1 4 9 . 2 0 5 5 . 5 0 5 6 . 8 1 - 1 . 3 1 1 4 9 . 8 0 6 0 . 0 1 5 9 . 8 9 0 . 1 1 1 5 0 . 5 0 6 1 . 0 0 6 3 . 6 7 - 2 . 6 7 1 5 0 . 7 0 6 4 . 0 0 6 4 . 7 8 - 0 . 7 8 1 5 0 . 9 0 6 5 . 9 9 6 5 . 9 1 0 . 0 8 1 5 5 . 3 5 9 6 . 0 1 9 5 . 7 6 0 . 2 4 1 5 5 . 7 0 9 7 . 5 0 9 8 . 5 3 - 1 . 0 3 1 5 6 . 7 0 1 0 7 . 5 0 1 0 6 . 8 1 0 . 6 9 1 5 9 . 2 0 1 3 0 . 5 0 1 3 0 . 0 9 0 . 4 1 1 5 9 . 7 0 1 3 6 . 4 9 1 3 5 . 2 2 1.27 1 6 0 . 1 0 141 .52 1 3 9 . 4 5 2 . 0 7 1 6 0 . 6 0 1 4 6 . 4 9 1 4 4 . 8 9 1 .60 1 6 1 . 3 0 1 5 2 . 5 1 1 5 2 . 8 0 - 0 . 2 9 1 6 1 . 5 0 1 5 4 . 4 9 1 5 5 . 1 3 - 0 . 6 4 161 .70 156 .50 1 5 7 . 4 8 - 0 . 9 9 1 6 2 . 2 0 1 6 4 . 5 1 1 6 3 . 5 0 1 . 0 1 1 6 6 . 1 0 2 1 8 . 0 2 2 1 7 . 3 9 0 . 6 3 1 6 6 . 8 0 2 2 9 . 5 1 2 2 8 . 4 7 1 . 0 4 1 6 9 . 2 0 2 6 3 . 5 1 2 7 0 . 0 9 - 6 . 5 8 1 6 9 . 3 0 2 7 2 . 5 2 2 7 1 . 9 5 0 . 5 7 1 6 9 . 4 0 2 7 4 . 0 3 2 7 3 . 8 3 0 . 2 1 1 6 9 . 6 0 2 8 2 . 4 9 2 7 7 . 6 0 4 . 8 9 1 6 9 . 7 0 2 8 4 . 5 2 2 7 9 . 5 1 5 . 0 1 1 7 2 . 3 0 3 3 6 . 5 2 3 3 2 . 9 6 3 . 5 6 1 7 2 . 6 0 3 4 1 . 0 4 3 3 9 . 6 3 1 .41 1 7 2 . 7 0 3 4 1 . 5 1 3 4 1 . 8 8 - 0 . 3 7 1 7 3 . 0 0 3 4 9 . 5 5 3 4 8 . 7 0 0 . 8 4 1 7 4 . 8 0 3 9 1 . 4 8 3 9 2 . 0 4 - 0 . 5 6 175 .10 3 9 8 . 4 8 3 9 9 . 6 7 - 1 . 1 9 1 7 5 . 5 0 4 0 8 . 4 2 4 1 0 . 0 4 - 1 . 6 2 175 .80 4 1 5 . 4 4 4 1 7 . 9 6 - 2 . 5 3 176.10 4 2 4 . 5 3 4 2 6 . 0 1 - 1 . 4 8 TABLE 4 ( i i ) c o n t i n u e d Temp °K F . o b s . ( m m ) P . c a l c . ( m m ) P . c a l c . - : 1 7 6 . 5 0 4 3 6 . 5 2 4 3 6 . 9 4 - 0 . 4 1 1 7 7 . 2 0 4 5 8 . 0 4 4 5 6 . 6 1 1 .43 1 7 7 . 4 0 4 6 4 . 5 2 4 6 2 . 3 6 2 . 1 6 177 .40 4 6 3 . 0 3 4 6 2 . 3 6 0 . 6 6 177 .70 4 7 6 . 9 9 471 . 10 5 . 8 8 1 7 8 . 2 0 4 8 6 . 9 7 4 8 5 . 9 7 1 . 0 0 1 7 8 . 5 0 4 9 3 . 9 8 4 9 5 . 0 8 - 1 . 1 0 1 7 8 . 5 0 4 9 5 . 0 0 4 9 5 . 0 8 - 0 . 0 7 1 7 8 . 7 0 5 0 5 . 0 2 5 0 1 . 2 2 3 . 8 0 1 7 8 . 9 0 5 0 6 . 0 6 5 0 7 . 4 3 - 1 . 3 7 179 .10 5 1 2 . 9 9 5 1 3 . 7 0 - 0 . 7 1 179 .10 5 1 5 . 9 5 5 1 3 . 7 0 2 . 2 5 179 .10 5 1 7 . 9 7 5 1 3 . 7 0 4 . 2 7 1 7 9 . 2 0 5 1 7 . 0 2 5 1 6 . 8 6 0 . 1 6 1 7 9 . 3 0 5 2 0 . 0 0 5 2 0 . 0 4 - 0 . 0 3 1 7 9 . 5 0 5 2 7 . 9 7 5 2 6 . 4 3 1 .53 1 8 1 . 8 0 6 0 5 . 0 7 6 0 4 . 7 5 0 . 3 2 1 8 2 . 1 0 6 1 9 . 0 2 6 1 5 . 6 3 3 . 3 9 1 8 4 . 0 0 6 8 4 . 3 9 6 8 8 . 3 1 - 3 . 9 2 1 8 7 . 8 0 8 4 7 . 2 4 8 5 4 . 6 1 - 7 . 3 7 1 8 8 . 2 0 8 6 2 . 9 9 8 7 3 . 8 6 - 1 0 . 8 6 1 8 8 . 4 0 8 6 4 . 9 8 8 8 3 . 6 1 - 1 8 . 6 3 TABLE 4 ( i i i ) The B e s t S t r a i g h t L i n e f i t f o r V a p o u r P r e s s u r e D a t a o f ONF3 ( i i i ) P o i n t s o b t a i n e d T = 1 6 9 . 3 -J 184°K Temp °K P . o b s . ( m m ) P . c a l c . ( m m ) P . c a l c . - P 1 6 9 . 3 0 2 7 2 . 5 2 2 7 3 . 7 6 - 1 . 2 3 1 6 9 . 4 0 2 7 4 . 0 3 2 7 5 . 6 2 - 1 . 5 9 1 6 9 . 6 0 2 8 2 . 4 9 2 7 9 . 3 9 3 . 1 0 1 6 9 . 7 0 2 8 4 . 5 2 2 8 1 . 2 9 3 . 2 2 1 7 2 . 3 0 3 3 6 . 5 2 3 3 4 . 5 5 1 .96 1 7 2 . 6 0 3 4 1 . 0 4 3 4 1 . 2 0 - 0 . 1 6 1 7 2 . 7 0 3 4 1 . 5 1 3 4 3 . 4 4 - 1 . 9 3 1 7 3 . 0 0 3 4 9 . 5 5 3 5 0 . 2 3 - 0 . 6 8 1 7 4 . 8 0 3 9 1 . 4 8 3 9 3 . 3 4 - 1 . 8 6 175 .10 3 9 8 . 4 8 4 0 0 . 9 3 - 2 . 4 5 1 7 5 . 5 0 4 0 8 . 4 2 4 1 1 . 2 4 - 2 . 8 2 1 7 5 . 8 0 4 1 5 . 4 4 4 1 9 . 1 1 - 3 . 6 7 176 .10 4 2 4 . 5 3 4 2 7 . 1 0 - 2 . 5 8 1 7 6 . 5 0 4 3 6 . 5 2 4 3 7 . 9 6 - 1 . 4 4 1 7 7 . 2 0 4 5 8 . 0 4 4 5 7 . 5 0 0 . 5 5 177 .40 4 6 4 . 5 2 4 6 3 . 2 1 1 .31 1 7 7 . 4 0 4 6 3 . 0 3 4 6 3 . 2 1 - 0 . 1 8 177 .70 4 7 6 . 9 9 4 7 1 . 8 8 5 . 1 0 1 7 8 . 2 0 4 8 6 . 9 7 4 8 6 . 6 4 0 . 3 3 1 7 8 . 5 0 4 9 3 . 9 8 4 9 5 . 6 7 - 1 . 7 0 1 7 8 . 5 0 4 9 5 . 0 0 4 9 5 . 6 7 - 0 . 6 7 1 7 8 . 7 0 5 0 5 . 0 2 5 0 1 . 7 7 3 . 2 4 1 7 8 . 9 0 5 0 6 . 0 6 5 0 7 . 9 3 - 1 . 8 7 179 .10 5 1 2 . 9 9 5 1 4 . 1 5 - 1 . 1 7 1 7 9 . 1 0 5 1 5 . 9 5 5 1 4 . 1 5 1 .80 179.10 5 1 7 . 9 7 5 1 4 . 1 5 3 . 8 2 179 .20 5 1 7 . 0 2 5 1 7 . 2 9 - 0 . 2 7 1 7 9 . 3 0 5 2 0 . 0 0 5 2 0 . 4 3 - 0 . 4 3 1 7 9 . 5 0 5 2 7 . 9 7 5 2 6 . 7 8 1.19 1 8 1 . 8 0 6 0 5 . 0 7 6 0 4 . 4 0 0 . 6 8 1 8 2 . 1 0 6 1 9 . 0 2 615 .17 3 . 8 5 1 8 4 . 0 0 6 8 4 . 3 9 6 8 7 . 1 0 - 2 . 7 1 TABLE 5 O N F T V a p o u r P r e s s u r e s C a l c u l a t e d f o r T e m p e r a t u r e s 146- 190°K U s i n g P a r a m e t e r s O b t a i n e d f r o m B e s t S t r a i g h t L i n e F i t s P . c a l c . ( l ) : L o g 1 0 P ( m m ) = - 8 4 8 . 9 ( + 7 . 4 4 7 P . c a l c . ( 2 ) : L o g 1 0 P ( m m ) = - 8 5 4 . 6 ( £ ) «• 7 . 4 8 2 P . c a l c . ( 3 ) : L o g 1 0 P ( m m ) = - 8 4 6 . 9 ( i ) + 7 . 4 3 9 9 Temp °K P ( l ) c a l c . P ( 2 ) c a l c . P ( 3 ) c a l c . 1 4 6 . 0 0 4 2 . 8 8 4 2 . 5 5 4 3 . 5 5 1 4 8 . 0 0 5 1 . 3 9 5 1 . 0 5 5 2 . 1 7 1 5 0 . 0 0 6 1 . 2 8 6 0 . 9 5 6 2 . 1 9 1 5 2 . 0 0 7 2 . 7 5 7 2 . 4 4 7 3 . 7 9 1 5 4 . 0 0 8 5 . 9 7 8 5 . 7 0 8 7 . 1 7 1 5 6 . 0 0 101 . 16 1 0 0 . 9 5 1 0 2 . 5 3 1 5 8 . 0 0 118 .55 1 1 8 . 4 3 120.11 1 6 0 . 0 0 1 3 8 . 3 7 1 3 8 . 3 8 140.15 1 6 2 . 0 0 1 6 0 . 9 0 161.07 1 6 2 . 9 1 1 6 4 . 0 0 1 8 6 . 4 1 1 8 6 . 7 9 1 8 8 . 6 7 1 6 6 . 0 0 2 1 5 . 2 0 2 1 5 . 8 4 2 1 7 . 7 3 1 6 8 . 0 0 2 4 7 . 5 8 2 4 8 . 5 6 2 5 0 . 4 1 1 7 0 . 0 0 2 8 3 . 9 0 2 8 5 . 2 8 2 8 7 . 0 5 1 7 2 . 0 0 3 2 4 . 5 1 3 2 6 . 3 9 3 2 8 . 0 1 1 7 4 . 0 0 3 6 9 . 7 9 3 7 2 . 2 6 3 7 3 . 6 7 1 7 6 . 0 0 4 2 0 . 1 5 4 2 3 . 3 1 4 2 4 . 4 2 1 7 8 . 0 0 4 7 5 . 9 9 4 7 9 . 9 7 4 8 0 . 6 9 1 8 0 . 0 0 5 3 7 . 7 6 5 4 2 . 7 0 5 4 2 . 9 1 1 8 2 . 0 0 6 0 5 . 9 2 6 1 1 . 9 8 611 .55 1 8 4 . 0 0 6 8 0 . 9 5 6 8 8 . 3 0 6 8 7 . 0 9 1 8 6 . 0 0 7 6 3 . 3 6 7 7 2 . 1 9 7 7 0 . 0 3 1 8 8 . 0 0 8 5 3 . 6 5 8 6 4 . 1 8 8 6 0 . 8 9 1 9 0 . 0 0 9 5 2 . 3 9 9 6 4 . 8 4 9 6 0 . 2 2 65 R e s u l t s : The b e s t s t r a i g h t l i n e f i t s w e r e o b t a i n e d f o r t h e t h r e e s e t s o f d a t a , and v a l u e s o f t h e h e a t o f e v a p o r a t i o n ( A H v a p ) , e n t r o p y o f e v a p o r a t i o n ( A S v a p ) , and t h e t e m p e r a -t u r e a t w h i c h P= 760 mm H g . ( b p ) were o b t a i n e d . TABLE 6 V a l u e s o f H e a t o f E v a p o r a t i o n . E n t r o p y o f  E v a p o r a t i o n and B o i l i n g P o i n t f o r ONFq A l l D a t a D a t a 145 - 184°K D a t a 169 - 1 8 4 ° K ( P l u s p o i n t s o b -t a i n e d w i t h e t h y l a c e t a t e s l u s h b a t h ) A H ( v a p ) c a l s m o l e " 1 3885 3911 3875 A 5 ( v a p ) c a l s d e g " 1 m o l e " 1 2 0 . 8 9 2 1 . 0 0 2 0 . 8 7 bp °C - 8 7 . 4 5 - 8 7 . 5 - 8 7 . 5 2 . 2 . 3 . M e l t i n g P o i n t o f 0 N F 3 The s a m p l e was c o n d e n s e d i n t o a g l a s s t u b e w h i c h was immersed i n a s l u s h b a t h c o n t a i n e d i n a c l e a r d e w a r . The i s o p e n t a n e / p e t r o l e u m - e t h e r s l u s h b a t h was h e l d a t - 1 6 5 ° C . and a l l o w e d t o warm up s l o w l y . As s o o n as t h e s o l i d ONF^ o n t h e 66 s i d e s o f t h e t u b e began t o m e l t t h e t e m p e r a t u r e was r e c o r d e d o n a n u n c a l i b r a t e d c o p p e r - c o n s t a n t a n t h e r m o c o u p l e . The m e l t i n g p o i n t was f o u n d t o be - 1 6 1 ° . The c o p p e r - c o n s t a n t a n t h e r m o c o u p l e s were f o u n d t o be i n e r r o r a b o u t 1 ° C . a t - 1 6 0 ° by c a l i b r a t i o n w i t h a p l a t i n u m r e s i s t a n c e t h e r m o m e t e r . The E . M . F . d e v e l o p e d by t h e t h e r m o c o u p l e was m e a s u r e d o n a p o t e n t i o m e t e r ( b y G u i d e l i n e I n s t r u m e n t s L t d . , t y p e 3184D) t o an a c c u r a c y o f 0 . 0 1 MV w h i c h gave a n e r r o r i n t h e t e m p e r a t u r e measurement o f - , 3 ° C . T h e r e f o r e , t h e m e l t i n g p o i n t o f ONF3 was l 6 l ± i . 3 ° C . 2 . 2 . 4 . N u c l e a r M a g n e t i c R e c o n a n c e S p e c t r u m o f ONF3 19 The F n . m . r . s p e c t r a were o b t a i n e d a t 9 4 . 1 M c / s e c u s i n g a V a r i a n S p e c t r o m e t e r , m o d e l HA100. The f i e l d was e s t a b l i s h e d b y l o c k i n g i t o n t o an i n t e r n a l s t a n d a r d CCI3F. B o t h components were f o u n d t o be m i s c i b l e i n t h e l i q u i d p h a s e . No r e a c t i o n was o b s e r v e d i n e i t h e r t h e l i q u i d o r t h e gas p h a s e . A s o l u t i o n o f ONF3 i n CCI3F t o a p p r o x . 15 p e r c e n t by v o l u m e was p r e p a r e d b y c o n d e n s i n g b o t h g a s e s i n t o an n . m . r . t u b e a t - 1 9 6 ° . The t u b e was t h e n s e a l e d . The n . m . r . s a m p l e was a l l o w e d t o warm up t o - 6 9 . 5 ° and t h e n t h e s p e c t r u m r u n a t t h i s t e m p e r a t u r e . A 1:1:1 t r i p l e t s y m m e t r i c a l i n i i n t e n s i t y b u t n o t i n l i n e w i d t h was f o u n d c e n t r e d a t 3 6 5 . 7 1 0 . 2 p . p . m . d o w n f i e l d f r o m C C 1 3 F . The l i n e w i d t h o f t h e c e n t r a l l i n e was 6 c . p . s . 67 The d i a g r a m i s a t r a c e o f t h e F n . m . r . s p e c t r u m t a k e n a t - 8 0 ° C . 1 mm = 2 c . p . s . F i g u r e 7 . The F n . m . r . S p e c t r u m o f ONF 68 and t h e w i d t h o f t h e o u t e r : l i n e s was 8 c . p . s . a t a h a l f peak h e i g h t . The c o u p l i n g c o n s t a n t J j j - F w a s ^ o u n ^ t o be 1 3 5 . 5 -0 . 5 c . p . s . No o t h e r f l u o r i n e r e s o n a n c e was d e t e c t e d . On a n o t h e r o c c a s i o n t h e 1 9 F n . m . r . s p e c t r u m was t a k e n a t - 8 0 ° . The w i d t h o f t h e p e a k s ••<"'. were 13 - 0 . 5 c . p . s . a t h a l f peak h e i g h t . A t r a c e o f t h i s s p e c t r u m i s g i v e n i n F i g u r e 7 . 2 . 2 . 5 . The I n f r a r e d S p e c t r u m o f O N F i I n f r a r e d s t u d i e s w e r e c a r r i e d o u t w i t h s e v e r a l s a m p l e s o f ONFg f r o m d i f f e r e n t p r e p a r a t i o n s . I n f r a r e d s p e c -t r o s c o p y was a l s o u s e d as a r o u t i n e method o f c h e c k i n g t h e p u r i t y o f ONF3 s a m p l e s . I n f r a r e d s t u d i e s were c a r r i e d o u t u s i n g a P . E . 421 s p e c t r o m e t e r i n a 10 cm gas c e l l f i t t e d w i t h c a e s i u m i o d i d e w i n d o w s , w i t h t h e ONF3 a t p r e s s u r e s r a n g i n g f r o m a p p r o x i m a t e l y 1 mm H g . t o 250 mm H g . p r e s s u r e . T r a c e s o f t h e s p e c t r a o b -t a i n e d a r e g i v e n i n F i g u r e 8 . A l l t h e f e a t u r e s i n t h e s p e c t r a h a v e b e e n i n c l u d e d i n t h e t r a c e s e x c e p t a peak a t 1281 c m " 1 w h i c h was a b s e n t i n o t h e r ONF3 s p e c t r a . 2 . 2 . 6 . U l t r a - v i o l e t S p e c t r u m o f ONF^ The u l t r a - v i o l e t s p e c t r u m was t a k e n u s i n g a q u a r t z c e l l , o f 10 cm l e n g t h and 2 cm d i a m e t e r , w i t h t h e ends made o f q u a r t z o p t i c a l p l a t e s . The c e l l was c o n n e c t e d t o t h e 69 Figure 8. The Infrared Spectrum of ONF3 2420 2224 2205 4000 3000 2000 6 9 ( 1 ) vacuum l i n e v i a a W h i t e y v a l v e , and ONF3 was expanded i n t o i t . The s p e c t r u m was r u n o n a G a r y 14 S p e c t r o p h o t o m e t e r f r o m 600 t o 195 mu, w i t h ONF3 a t a p r e s s u r e o f 15 mmHg. The o n l y f e a t u r e o f t h e s p e c t r u m was a c o n t i n u o u s a b s o r p t i o n w h i c h i n c r e a s e d s t e a d i l y i n i n t e n s i t y f r o m a b o u t 240 mu t o t h e l i m i t o f t h e i n s t r u m e n t . The s p e c t r u m s u g g e s t e d t h a t t h e maximum a b s o r b a n c e was somewhere b e l o w 195 tryu. The gas was removed f r o m t h e c e l l and a s p e c t r u m o f t h e b l a n k c e l l was o b t a i n e d . N i t r o g e n o x i d e t r i f l u o r i d e was f o u n d t o be c o l o u r l e s s i n t h e g a s , l i q u i d , and s o l i d p h a s e s . 2 . 3 . C h e m i c a l P r o p e r t i e s o f ONF3 2 . 3 . 1 . G e n e r a l C h e m i c a l B e h a v i o u r  G l a s s N i t r o g e n o x i d e t r i f l u o r i d e c o u l d somet imes be h a n d l e d i n wet g l a s s w i t h o u t d e c o m p o s i t i o n . A sample o f ONF3 i n a g l a s s b u l b a t t a c h e d t o an i n f r a r e d c e l l was h e a t e d t o a b o u t 2 0 0 ° . A s p e c t r u m was o b t a i n e d . The i n t e n s i t y o f t h e ONF3 p e a k s i n t h e s p e c t r u m d e c r e a s e d b u t d i d n o t d i s a p p e a r . On t h e o t h e r o c c a s i o n s s l i g h t e t c h i n g o f t h e d r y g l a s s t o o k p l a c e a t room t e m p e r a t u r e ( s e e s e c t i o n 2 . 2 . 3 . ) . W a t e r V a p o u r A few mm H g . p r e s s u r e o f ONF^ were c o n d e n s e d i n t o a n i n f r a r e d c e l l and t h e s p e c t r u m was r e c o r d e d . The v a l v e o f 70 t h e c e l l was t h e n opened t o t h e a t m o s p h e r e . No d e c r e a s e i n t h e i n t e n s i t y o f t h e ONF3 p e a k s i n t h e i n f r a r e d s p e c t r u m was o b s e r v e d e i t h e r i m m e d i a t e l y o r a f t e r 24 h o u r s . W a t e r W a t e r was i n t r o d u c e d i n t o t h e p o t o f t h e i n f r a -r e d c e l l , and was t h e n pumped o n a t - 1 9 6 ° . The v a l v e w h i c h c o n n e c t e d t h e p o t t o t h e m a i n body o f t h e i n f r a r e d c e l l was c l o s e d and t h e p o t was warmed t o room t e m p e r a t u r e . The m a i n body o f t h e c e l l was t h e n f i l l e d w i t h ONF3 t o a p r e s s u r e o f a few mm H g . The i n f r a r e d s p e c t r u m was r e c o r d e d . The v a l v e w h i c h c o n n e c t e d t h e p o t t o t h e m a i n body o f t h e c e l l was opened and t h e w a t e r and ONF3 were a l l o w e d t o m i x . The i n f r a -r e d s p e c t r u m was t a k e n i m m e d i a t e l y and no n o t i c e a b l e d e c r e a s e i n t h e i n t e n s i t y o f t h e ONF3 p e a k s was o b s e r v e d . H o w e v e r , a s l o w r e a c t i o n d i d t a k e p l a c e and a f t e r 2% h o u r s o n l y a t r a c e o f ONF3 r e m a i n e d . The o n l y o t h e r gaseous p r o d u c t d e t e c t e d was w a t e r v a p o u r . A l k a l i and A c i d A s a m p l e o f ONF3 was c o n d e n s e d o n t o 10 m l »IN NaOH i n a g l a s s b u l b . The g a s e s w h i c h e v o l v e d w e r e t r a n s f e r r e d t o a n i n f r a r e d c e l l and a s p e c t r u m was r e c o r d e d . T h e r e was no r e -d u c t i o n i n t h e i n t e n s i t y o f t h e ONF^ p e a k s b u t o t h e r p e a k s showed t r a c e q u a n t i t i e s o f N«0. A s i m i l a r e x p e r i m e n t was c o n -71 d u c t e d o n a n o t h e r o c c a s i o n w i t h c o m p l e t e u p t a k e o f ONFg. I n a s i m i l a r e x p e r i m e n t n i t r o g e n o x i d e t r i f l u o r i d e r e a c t e d s l o w l y w i t h d i l u t e a c i d * M e r c u r y N i t r o g e n o x i d e t r i f l u o r i d e was e x p o s e d t o m e r c u r y i n t h e p o t o f t h e i n f r a r e d c e l l f o r f o u r h o u r s . A n i n f r a r e d s p e c t r u m was r u n w h i c h showed no d e c r e a s e i n t h e i n t e n s i t y o f t h e ONF3 p e a k s . The ONF3 was c o n d e n s e d i n t o a M o n e l c a n c o n -t a i n i n g m e r c u r y and was h e a t e d a t 1 3 5 ° o v e r n i g h t . A d r o p i n p r e s s u r e i n t h e c a n c o r r e s p o n d e d t o a l m o s t c o m p l e t e u p t a k e o f t h e g a s . The i n f r a r e d s p e c t r u m o f t h e r e s i d u a l g a s e s showed t h a t ONF3 was a b s e n t . On a n o t h e r o c c a s i o n ( s e e s e c t i o n 2 . 2 . 3 . ) , ONF3 r e a c t e d w i t h m e r c u r y u s e d i n a manometer a t a m b i e n t t e m p e r a t u r e s and formed a s o l i d . N i t r i c O x i d e N i t r o g e n o x i d e t r i f l u o r i d e a t a p r e s s u r e o f 80 mm U g . i n t h e l i n e (50 m l ) was t r a n s f e r r e d t o t h e i n f r a r e d c e l l and t h e s p e c t r u m was t a k e n . N i t r i c o x i d e was added t o t h e c e l l t o a t o t a l p r e s s u r e o f 600 mm H g . and t h e i n f r a r e d s p e c t r u m was t a k e n i m m e d i a t e l y . P e a k s b e l o n g i n g t o n i t r o s y l f l u o r i d e and t o ONF3 were s e e n i n t h e s p e c t r u m . A f t e r 15 m i n u t e s t h e i n t e n s i t y o f t h e ONF3 p e a k s h a d d e c r e a s e d and t h o s e o f ONF h a d i n c r e a s e d . C o m p l e t e r e a c t i o n o c c u r r e d a f t e r 15 h o u r s . A t t e m p t s were made t o t i t r a t e O N F , w i t h NO b y i n t e r a c t i n g e q u i - m o l a r q u a n t i t i e s o f 72 t h e g a s e s . The i n f r a r e d s p e c t r u m o b t a i n e d a f t e r t h e i n t e r -a c t i o n showed o n l y p e a k s a t t r i b u t a b l e t o ONF3 o r t o ONF, t h e r e f o r e t h e r e was no e v i d e n c e f o r t h e f o r m a t i o n o f t h e s p e c i e s ONF2, w h i c h m i g h t h a v e been formed a c c o r d i n g t o t h e r e a c t i o n : ONF3 + NO * ONF + O N F 2 . M i s c e l l a n e o u s G l a s s v e s s e l s f i t t e d w i t h t a p s l u b r i c a t e d w i t h A p i e z o n N g r e a s e d i d n o t c a u s e any change i n t h e i n f r a r e d s p e c t r u m o f ONF3. N i t r o g e n o x i d e t r i f l u o r i d e m u s t h a v e b e e n f a i r l y s t a b l e i n f l u o r i n a t e d M o n e l m e t a l c o n t a i n e r s up t o 350°C. as i t was p r e p a r e d a t t h i s t e m p e r a t u r e . The gas was a l s o s t a b l e i n t h e p r e s e n c e o f s i l v e r c h l o r i d e and c a e s i u m i o d i d e w i n d o w s , and t o w a r d s c a e s i u m f l u o r i d e a t room t e m p e r a t u r e s . 2 . 3 . 2 . R e a c t i o n o f O N F 3 w i t h A s F 5 2 . 3 . 2 . ( a ) ONF3 + BF3 A few mm H g . o f ONF3 was c o n d e n s e d i n t o an i n f r a -r e d c e l l , and t h e s p e c t r u m was t a k e n . B o r o n t r i f l u o r i d e was added t o t h e c e l l t o a t o t a l p r e s s u r e o f two a t m o s p h e r e s . A n i n f r a r e d s p e c t r u m showed t h a t t h e ONF3 peaks r e m a i n e d u n d i m i n i -s h e d i n i n t e n s i t y i n t h e p r e s e n c e o f t h e added BF3. 73 2 . 3 . 2 . ( b ) O N F 3 + A s F 5 A r s e n i c p e n t a f l u o r i d e i s a s t r o n g e r L e w i s a c i d t h a n b o r o n t r i f l u o r i d e , and forms a n a d d u c t w i t h n i t r o g e n o x i d e t r i f l u o r i d e . A t e n s i o m e t r i c t i t r a t i o n was c a r r i e d o u t between ONF3 and A S F 5 . The l i n e and t h e r e a c t i o n v e s s e l were p r e -t r e a t e d w i t h a r s e n i c p e n t a f l u o r i d e . N i t r o g e n o x i d e t r i f l u o r i d e a t 500 mm H g . i n t h e v o l u m e o f t h e l i n e and gauge was c o n d e n s e d i n t o a s m a l l r e a c t i o n v e s s e l . A r s e n i c p e n t a f l u o r i d e a t 700 mm H g . i n t h e same v o l u m e was c o n d e n s e d o n t o t h e ONF3. The r e s i d u a l p r e s s u r e o f t h e gas i n t h e s y s t e m was a b o u t 150 mm H g . The gas was i d e n t i f i e d as A S F 5 b y i t s i n f r a r e d s p e c t r u m . 500 mm H g . o f ONF3 r e a c t e d w i t h a p p r o x i m a t e l y 550 mm H g . o f ASF5. T h e r e f o r e a 1:1 a d d u c t was f o r m e d . A g r a v i m e t r i c e x p e r i m e n t was c a r r i e d o u t i n t h e M o n e l w e i g h i n g v e s s e l . N i t r o g e n o x i d e t r i f l u o r i d e c o n t a i n i n g a t r a c e i m p u r i t y o f CF4 was w e i g h e d o u t i n t o t h e M o n e l v e s s e l , and t h e n e x c e s s A S F 5 was a d d e d . The v e s s e l was c o o l e d t o - 7 8 ° . The v o l a t i l e g a s e s p r e s e n t i n t h e r e a c t i o n v e s s e l a t - 7 8 ° C . were c o n d e n s e d i n t o an i n f r a r e d c e l l h e l d a t - 1 9 6 ° . The i n f r a r e d s p e c t r u m o f t h e v o l a t i l e gases showed t h a t t h e y c o n s i s t e d m a i n l y o f ASF5. 74 gms. m o l e s Amount ONF3 t a k e n 0 . 0 5 1 8 0 . 5 9 5 4 Amount a d d u c t 0 . 1 6 1 0 0 . 6 2 5 ( a s s u m i n g a d d u c t ' t o be O N F 3 , A s F 5 ) R a t i o mmoles ONF3 1 « l 05 mmoles a d d u c t * * 2 . 3 . 2 . ( c ) OPF3 + A s F 5 P h o s p h o r y l t r i f l u o r i d e was r e a c t e d w i t h A s F ^ i n o r d e r t o compare t h e b e h a v i o u r o f OPF3 w i t h ONF3 t o w a r d s A s F 5 . A r s e n i c p e n t a f l u o r i d e was added t o 50 mm H g . o f OPF3, t o a t o t a l p r e s s u r e o f 1500 mm H g . i n t h e v o l u m e o f t h e i n f r a -r e d c e l l . A n i n f r a r e d s p e c t r u m was r u n and t h e i n t e n s i t y o f t h e p e a k s a s s o c i a t e d w i t h OPF3 were much d e c r e a s e d . H o w e v e r , t h e OPF3 was f o u n d t o be v e r y i m p u r e ( i m p u r i t i e s PF5, PF3). T h e r e was no r e a d i l y a v a i l a b l e p r o c e d u r e o f p u r i f y i n g t h e OPF3 s o t h e e x p e r i m e n t was d i s c o n t i n u e d . The e x p e r i m e n t was c o n -s i d e r e d t o be i n c o n c l u s i v e . 2 . 3 . 3 . R e a c t i o n o f ONF3 w i t h S t r o n g P r o t o n D o n o r s One p o s s i b l e b o n d i n g a r r a n g e m e n t i n ONF3 i s F 3 N + . 0 " i n w h i c h c a s e t h e o x y g e n atom w o u l d be e x p e c t e d t o be r e a d i l y p r o t o n a t e d . The r e a c t i o n o f ONF3 w i t h p r o t o n d o n o r s was t h e r e f o r e i n v e s t i g a t e d . 75 2 . 3 . 3 . ( a ) O N F 3 + HF N i t r o g e n o x i d e t r i f l u o r i d e was c o n d e n s e d o n t o a n h y d r o u s h y d r o g e n f l u o r i d e i n a K e l - F n . m . r . t u b e . I t was o b s e r v e d t h a t t h e ONF3 m e l t e d and formed d r o p l e t s w h i c h s a n k t o t h e b o t t o m o f t h e t u b e . The two l i q u i d s a p p e a r e d i m m i s c i b l e a t - 8 0 ° . The K e l - F t u b e was p l a c e d i n t o a s l i g h t l y l a r g e r g l a s s t u b e and c o o l e d t o - 1 9 6 ° . The l a r g e r g l a s s t u b e was h e a t e d a t an a p p r o p r i a t e p o i n t w i t h a b u n s e n f l a m e . The K e l - F t u b i n g c o l l a p s e d when warmed t o g i v e a l e a k - t i g h t s e a l . The 19 o F n . m . r . o f t h e l i q u i d i n t h e K e l - F t u b e was t a k e n a t - 8 0 a t 9 4 . 1 mc/sec o n a V a r i a n m o d e l HA 1 0 0 . A 1:1:1 t r i p l e t was o b s e r v e d c e n t r e d a t 5 5 3 . 1 p . p . m . d o w n f i e l d f r o m HF o n t o w h i c h t h e s i g n a l was l o c k e d . Jjj - F = 1 3 5 . 5 c . p . s . 2 . 3 . 3 . ( b ) HFSO3 + ONF3 F l u o r o s u l p h u r i c a c i d , a s t r o n g e r p r o t o n d o n o r t h a n h y d r o g e n f l u o r i d e , u s e d i n an a t t e m p t t o p r o t o n a t e ONF3. Two m i s o f f r e s h l y d i s t i l l e d f l u o r o s u l p h u r i c a c i d were q u i c k l y t r a n s f e r r e d i n a i r i n t o a K e l - F t r a p . The h y d r o l y s i s p r o d u c t s , HF and H2SO4, were p r e d i c t e d n o t t o i n t e r a c t w i t h ONF3. The t r a p was t h e n a t t a c h e d t o t h e vacuum l i n e and t h e f l u o r o s u l p h u r i c a c i d d e g a s s e d . N i t r o g e n o x i d e t r i f l u o r i d e a t a p r e s s u r e o f 500 mm H g . i n t h e v o l u m e o f t h e l i n e was c o n d e n s e d o n t o t h e a c i d , t h e t r a p was removed f r o m 76 the vacuum line, and the mixture was shaken for one hour. The Kel-F trap was opened to the gauge and gave a pressure reading that corresponded to about the same as the i n i t i a l quantity of ONF3. The infrared spectrum showed the presence of SO2F2. 2.3.3.(c) HF + ONF3,AsF5 It was found that the adduct ONF3,AsF5 dissolved readily i n anhydrous hydrogen fluoride. An attempt was made to crystallise the adduct out of solution by the addition of one molecule of hydrogen fluoride. HF + ONF3,AsF5 = HONF3AsF6 A solution was made up of ONF^AsF^ in anhydrous HF in a Kel-F trap. The hydrogen fluoride was then evaporated off at room temperature. An X-ray diffraction photograph of the solid showed only the presence of OJJtf^AsF^. An attempt was made to add hydrogen fluoride to 0NF3,AsF^ by heating the two species i n a Monel can at 180° overnight. The X-ray diffraction pattern of the product was relatively simple and did not correspond to 0NF3,AsF5, NdAsFg, N@2AsF6 or to NiCAsFg^. The infrared of the solid when using s i l v e r chloride plates gave peaks at 3495, 1625,815 v.m., 774 v.w., and 585 w. cm"1, and a peak at 690 cm'^CAsFg"). 77 The experiment was repeated at 100°C. The infrared spectrum of the gaseous phase showed the presence of HF and ONF3. An X-ray powder diffraction of the solid showed that i t contained ONF3,AsF5, and Ni(AsF^) 2. The experiment was repeated at 250°. The gaseous products were HF, ONF3 and Ni(AsF 6) 2. 2.3.3.(d) HF 4- BF3 4- ONF3 It has been shown that boron trifluoride does not react with ONF3 at ambient temperatures and pressures, but i t was possible that the acid HBF4 might protonate ONF3 and form the salt HONF3BF4. Equal quantities of BF3 and ONF3 were condensed into an infrared c e l l and then excess anhydrous HF was added. The infrared spectrum was taken and showed a l l three components to be present. The experiment was repeated in a Kel-F trap. The gases were added to the trap and some solid was seen to form. The volatile gases were removed into the infrared c e l l and a spectrum showed them to be HF,0NF3 and BF3. The X-ray d i f f -raction pattern of the solid was complex and did not correspond to N0!BF4 or to NQ21BF4. The solid partly dissolved in anhy-19 drous HF, the F n.m.r. of which revealed the presence of the BF4" ion. The infrared spectrum of the solid was identi-cal to NOBF/. 78 The e x p e r i m e n t was r e p e a t e d i n a w e i g h a b l e M o n e l c o n t a i n e r . The same r e s u l t was o b t a i n e d . The w e i g h t o f t h e s o l i d formed was 10 p e r c e n t o f t h e t o t a l w e i g h t o f m a t e r i a l a d d e d . 2 . 4 . The P r o p e r t i e s o f 0 N F 3 , A s F 5 2 . 4 . 1 . D i s s o c i a t i o n o f 0 N F 3 , A s F 5 The f l a k y w h i t e a d d u c t d i s s o c i a t e d a t room t e m p e r a t u r e , e x e r t i n g a d i s s o c i a t i o n v a p o u r p r e s s u r e o f a b o u t 2% mm H g . as m e a s u r e d o n a B o u r d o n g a u g e . The compound was p r e p a r e d i n t h e p o t o f t h e i n f r a r e d c e l l and e x c e s s g a s e s were pumped o f f a t - 7 8 ° . A f t e r warming t h e p o t o f t h e i n f r a r e d c e l l up t o room t e m p e r a t u r e a s p e c t r u m was t a k e n . The f u n d a m e n t a l s o f b o t h ONF3 and A s F ^ were v i s i b l e i n t h e s p e c t r u m . On a d d i n g e x c e s s o f one component t h e c o n c e n t r a t i o n o f t h e o t h e r d e -c r e a s e d , as shown by t h e i n f r a r e d s p e c t r u m . 2 . 4 . 2 . I n f r a r e d S p e c t r u m To p r e p a r e t h e s i l v e r c h l o r i d e p l a t e s t h e s u r -f a c e s were c l e a n e d w i t h d i l u t e ammonia, and t h e n g r o u n d w i t h s u c c e s s i v e l y f i n e g r a d e s o f emery c l o t h and t h e n j e w e l l e r s r o u g e . The s o l i d a d d u c t was g r o u n d as f i n e l y as p o s s i b l e and p l a c e d between t h e p l a t e s w h i c h were t h e n h e l d t o g e t h e r b y means o f p l a s t i c t a p e . P e a k s were o b s e r v e d a t 1850, 1150, 900 and 692 c m " 1 . 79 2 . 4 . 3 . X - r a v Powder D i f f r a c t i o n P a t t e r n The a d d u c t gave a r e l a t i v e l y s i m p l e powder 2 p a t t e r n . The 1/d v a l u e s a r e l i s t e d i n T a b l e 7 . 2 . 4 . 4 . R e a c t i o n w i t h ONF and C s F N i t r o g e n o x i d e t r i f l u o r i d e was expanded i n t o an i n f r a r e d c e l l t o a p r e s s u r e o f 50 mm H g . and t h e i n f r a r e d s p e c t r u m was r e c o r d e d . E x c e s s ASF5 was t h e n a d d e d , t h e c e l l was warmed up t o room t e m p e r a t u r e and e x c e s s AsFtj was removed a t - 7 8 ° . An e x c e s s o f ONF was added and t h e i n f r a r e d s p e c t r u m r e c o r d e d . The i n t e n s i t y o f t h e peaks a t t r i b u t a b l e t o n i t r o g e n o x i d e t r i f l u o r i d e was f o u n d t o be t h e same as a t t h e s t a r t o f t h e e x p e r i m e n t . When s o l i d ONF3ASF3 was c o n d e n s e d o n t o c a e s i u m f l u o r i d e i n a M o n e l v e s s e l and s h a k e n o v e r n i g h t , i t was o b s e r v e d t h a t ONF3 was l i b e r a t e d . O N F 3 A s F 5 + ONF = NOAsFg + ONF3 + C s F = C s A s F g • ONF3 2 . 4 . 5 . F l u o r i n a t i o n o f ONF^AsFs A n a t t e m p t was made t o f l u o r i n a t e O N F 3 A S F 5 i n o r d e r t o p r e p a r e N F 4 A s F g . ^ 5 0 ^ I n two s e p a r a t e e x p e r i m e n t s t h e a d d u c t was h e a t e d a t 100° and 200° i n 70 p . s . i . f l u o r i n e f o r e i g h t h o u r s . I n b o t h c a s e s t h e X - r a y powder p a t t e r n o f t h e p r o d u c t was i d e n t i c a l t o t h a t o f t h e s t a r t i n g m a t e r i a l . TABLE 7 X rav Powder Data for ONF?«AsF 2 1/d obs. I/Io u£ Ulo 0.0340 vs 0.4151 w 0.0377 vs 0.4335 w 0.0529 vs 0.4469 w 0.0596 vs 0.4668 w 0.0843 vs 0.4763 w 0.0879 m 0.4869 w 0.0938 vw 0.4933 vw 0.0987 vs 0.5083 vw 0.1094 w 0.5192 w 0.1363 m 0.5300 w 0.1434 vw 0.5377 w 0.1514 m 0.5498 mw 0.1658 in 0.5742 vw 0.1896 s 0.6000 w 0.1987 w 0.6305 w 0.2348 ms 0.6499 w 0.2455 ms 0.6809 vw 0.2564 ms 0.6902 vw 0.2840 mw 0.7366 vw 0.3055 s 0.7460 w 0.3201 w 0.7940 vw 0.3359 mw 0.8304 vw 0.3473 mw 0.8668 vw 0.3616 mw 0.9371 vw 0.3684 vw 0... 0.3821 w 0.9500 vw 0.3861 vw 0.3990 w 81 2 . 5 . The P r e p a r a t i o n and C h a r a c t e r i s a t i o n o f P u r e ( N O ) g N l F ^ 2 . 5 . 1 . P r e p a r a t i o n o f P u r e ( N O ) Q N J F A A r e d compound was r e a d i l y formed when N i F 2 was h e a t e d i n e x c e s s ONF, and f l u o r i n e . P y r o l y s i s o f t h i s com-pound i n F 2 a t 350° y i e l d e d ONF3 ( s e e s e c t i o n 2 . 1 . 3 . ) . I t was t h e r e f o r e o f i n t e r e s t t o d e t e r m i n e t h e n a t u r e o f t h i s i n t e r m e d i a t e i n t h e ONF3 s y n t h e s i s . A n a l y s i s , m a g n e t i c s u s -c e p t a b i l i t y m e a s u r e m e n t s , and X - r a y powder p h o t o g r a p h s o f t h e compound gave d i f f e r e n t r e s u l t s e a c h t i m e a new p r e p a r a t i o n was u n d e r t a k e n , w h i c h i n d i c a t e d t h a t t h e m a t e r i a l was i m p u r e . Some o f t h e m a t e r i a l s u b l i m e d o n t o t h e l i d o f t h e c o o l e d r e -a c t i o n v e s s e l as a p o w d e r . T h i s m a t e r i a l was a l s o f o u n d t o be i m p u r e ( n o n c o n s i s t e n t e l e m e n t a l a n a l y s e s ) . The i m p u r e m a t e r i a l was h e a t e d a t 250° t o 270° i n a n a t m o s p h e r e o f 0NF(20 p . s . i . ) and F 2 ( 7 0 p . s . i . ) f o r s e v e r a l d a y s i n a 200 m l " s o l i d r e a c t o r " . N e e d l e l i k e c r y s t a l s o f t h e compound were o b s e r v e d t o f o r m o n t h e c o o l e d p o r t i o n o f t h e c a n . T h i s compound somet imes c l o g g e d i n t h e s tem o f t h e M o n e l c a n . To remove t h e s o l i d , t h e c a n was c o o l e d i n l i q u i d n i t r o -gen and t h e c l o g g e d p a r t h e a t e d t o a d u l l r e d h e a t w i t h a bunsen fcurnear f l a m e . The v o l a t i l e m a t e r i a l was removed f r o m t h e r e a c t o r and t h e c a n t a k e n i n t o t h e d r y box where t h e c r y s t a l s w e r e r e m o v e d . 82 2 . 5 . 2 . C h e m i c a l A n a l y s i s o f (ON)oNiF 6  N i t r o g e n A n a l y s i s A g l a s s t u b e , 5 " l o n g 3 mm O . D . , was l o a d e d w i t h magnesium m e t a l ( a p p r o x . 3 " o f i t s l e n g t h ) , and c o p p e r ( % " ) , w h i c h was s e c u r e d i n p l a c e w i t h g l a s s w o o l . The t u b e was d r i e d and t h e n w e i g h e d o n a m i c r o a n a l y t i c a l b a l a n c e . A b o u t 11 mgs o f c r y s t a l s o f ( N O ^ N i F g were added i n t h e d r y b o x and t h e t u b e was c o n n e c t e d t o a vacuum l i n e b y means o f a W h i t e y v a l v e a n d e v a c u a t e d . The t u b e was t h e n s e a l e d o f f a b o u t 1" above t h e c r y s t a l s , w i t h o u t h e a t i n g t h e s a m p l e . The e x t e r i o r p o r t i o n s o f t h e t u b e were c l e a n e d and w e i g h e d . I n o r d e r t o c o n v e r t n i t r o g e n t o magnesium n i t r i d e and f l u o r i n e t o magnesium f l u o r i d e , t h e s e a l e d t u b e was h e a t e d t o 8 0 0 ° C . ^ ^ The t u b e was opened i n a f l a s k and t h e c o n t e n t s d i s s o l v e d i n d i l u t e s u l p h u r i c a c i d . The s o l u t i o n was t h e n made a l k a l i n e ( 5 2 ) and t h e ammonia d e t e r m i n e d b y K j e l d a h l ' s m e t h o d . F l u o r i n e A n a l y s i s A 7 mm g l a s s t u b e was d r a w n o u t a t one end i n t o a c a p i l l a r y and t h e n w e i g h e d . A b o u t 6 mgs o f c r y s t a l s were i n t r o d u c e d i n t o t h e b o t t o m o f t h e t u b e i n t h e d r y b o x . Any m a t e r i a l c l i n g i n g t o t h e s i d e s o f t h e t u b e , above t h e c r y s t a l s , was removed by means o f a p i p e c l e a n e r . The t u b e was t h e n 83 a t t a c h e d t o a W h i t e y v a l v e and e v a c u a t e d . The c a p i l l a r y was s e a l e d o f f and t h e w e i g h t o f t h e s a m p l e d e t e r m i n e d . The c a p i l l a r y was p l a c e d i n s i d e t h e s i l i c a t u b e o f a p y r o h y d r o l y s i s ( 5 3 49) a p p a r a t u s ' and b r o k e n by means o f a g l a s s r o d . Steam was p a s s e d o v e r t h e s a m p l e a t a t e m p e r a t u r e o f 200°C. The t e m p e r a t u r e was t h e n r e d u c e d a n d t h e c o n t e n t s c r u s h e d as much as p o s s i b l e and t h e n r e i n t r o d u c e d i n t o t h e a p p a r a t u s . Steam was a g a i n p a s s e d o v e r t h e sample a t t e m p e r a t u r e s up t o 7 0 0 ° , f o l l o w e d b y h y d r o g e n . The d i s t i l l a t e s were c o l l e c t e d b y means o f a c o n d e n s e r . The f l u o r i n e was e s t i m a t e d i n t h e d i s t i l l a t e ( 5 4 ) by t i t r a t i o n w i t h t h o r i u m n i t r a t e . ' N i c k e l A n a l y s i s A few mgs o f s a l t was w e i g h e d o u t i n a s e a l e d t u b e as d e s c r i b e d a b o v e . The t u b e was t h e n b r o k e n u n d e r w a t e r and t h e n i c k e l e s t i m a t e d by p r e c i p i t a t i n g t h e d i m e t h y l g l y o x i m e c o m p l e x . R e s u l t s i n % N F N i Found 1 2 . 3 4 9 . 3 2 5 . 2 C a l c u l a t e d f o r ( N O ) 2 N i F 6 1 2 . 0 4 9 . 0 2 5 . 2 2 . 5 . 3 . I n f r a r e d S p e c t r u m o f ( N 0 ) 2 N i F 6 The i n f r a r e d o f t h e s o l i d b e t w e e n s i l v e r c h l o r i d e p l a t e s showed a peak c e n t r e d a t 650 c o T ^ s e e s e c t i o n 2 . 4 . 2 . f o r 84 d e t a i l s o f t e c h n i q u e ) . The s p e c t r u m was a l s o o b t a i n e d u s i n g F l u o r o l u b e o i l as a m u l l i n g a g e n t and s i l v e r c h l o r i d e p l a t e s . The F l u o r o -l u b e o i l was f i r s t h e a t e d a t 70° u n d e r vacuum f o r s e v e r a l h o u r s t o remove any m o i s t u r e . I n a d d i t i o n t o a s t r o n g peak c e n t r e d a t 635 c m " 1 and t h o s e p e a k s a t t r i b u t a b l e t o t h e F l u o r o -l u b e o i l , a peak c e n t r e d a t 2313 c m " 1 was o b s e r v e d . 2 . 5 . 4 . M a g n e t i c S u s c e p t i b i l i t y o f (N0)«>NiF,; Samples o f c r y s t a l s were s e n t t o D r . N . B a r t l e t t a t P r i n c e t o n , N . J . i n s e a l e d K e l - F t u b e s f o r d e t e r m i n a t i o n o f t h e m a g n e t i c s u s c e p t i b i l i t y o n t h e m i l l i g r a m s c a l e - I n a p r i v a t e c o m m u n i c a t i o n B a r t l e t t r e p o r t s t h a t t h e m a t e r i a l i s d i a m a g n e t i c a t 3 5 ° . The F a r a d a y t e c h n i q u e was e m p l o y e d . M e a s u r e m e n t s were c o n d u c t e d f r o m 4°K t o 300°K. 2 . 5 . 5 . The P v r o l v s i s o f ( N O ) 2 N i F 6 The p y r o l y s i s o f (N0 ) 2 N i F 6 i n f l u o r i n e a t 350° h a s been d e s c r i b e d ( s e c t i o n 2 . 1 . 3 . ) . The s a l t was h e a t e d i n v a c u o t o d e t e r m i n e i f ONF3 was a l s o l i b e r a t e d i n t h e a b s e n c e o f f l u o r i n e . The s a l t was h e a t e d s l o w l y i n a M o n e l c a n . The t e m p e r a t u r e was d e t e r m i n e d b y means o f a c o p p e r - c o n s t a n t a n t h e r m o c o u p l e , and t h e p r e s s u r e measured o n a B o u r d o n gauge . A t 1 6 5 ° t h e p r e s s u r e d e v e l o p e d was 8 mm H g . a t 220° a f t e r a p p r o x . 1/2 h o u r t h e psressi ire was 30 mm H g . The gas was 85 expanded i n t o an i n f r a r e d c e l l and t h e s p e c t r u m i n d i c a t e d t h e p r e s e n c e o f n i t r o s y l f l u o r i d e . The t e m p e r a t u r e o f t h e h e a t e d r e a c t o r was i n c r e a s e d and a n o t h e r v e s s e l c o o l e d t o - 1 9 6 ° was i n c l u d e d i n t h e l i n e . A p r e s s u r e o f 340 mm H g . d e v e l o p e d a t - 1 9 6 ° w h i c h i n d i c a t e d t h e p r e s e n c e o f e l e m e n t a l f l u o r i n e . T h i s was pumped o f f p e r i o d i c a l l y . When no f u r t h e r gas was e v o l v e d t h e i n f r a r e d s p e c t r u m o f t h e c o n d e n s a b l e gases was t a k e n and showed o n l y t h e p r e s e n c e o f ONF. A n X - r a y powder d i f f r a c t i o n p a t t e r n o f t h e s o l i d i d e n t i f i e d i t as n i c k e l d i f l u o r i d e . 3 . DISCUSSION 3 . 1 . E m p i r i c a l F o r m u l a o f O N F i The e l e m e n t a l a n a l y s i s and m o l e c u l a r w e i g h t d e t e r -m i n a t i o n e s t a b l i s h e d t h e e m p i r i c a l f o r m u l a o f t h e h i t h e r t o u n r e p o r t e d o x y f l u o r i d e o f n i t r o g e n as ONF^. T h i s m o l e c u l e was f o u n d t o be p e r f e c t l y s t a b l e and o n l y o f m o d e r a t e c h e m i c a l r e a c t i v i t y . Two s e t s o f mass s p e c t r u m r e s u l t s were o b t a i n e d b u t t h o s e u s i n g t h e p h o t o i o n i s a t i o n t e c h n i q u e s were p r e f e r r e d . The h i g h e r e n e r g y a s s o c i a t e d w i t h t h e e l e c t r o n i m p a c t method f a v o u r s t h e p y r o l y t i c and c h e m i c a l d e c o m p o s i t i o n o f t h e m o l e -c u l e . 86 The main fragments detected in the mass spectrum are M/e = 68 (F2NO)* and 30 (N0) +. It is probable that the peak at M/e » 87 is the parent ion peak (0NF3>+. Most of the other fragments can be rationalized in terms of H, 0, N, and F con-taining species. F o x ^ ^ reports principal fragments in the mass spectrum of ONF3 to be F 2N0 +, FN0+, N0+, NF+. Experimental conditions are not reported. 3.2. Preparation of ONFT, The discharge reactions and the C102,HNF2 reaction shown in Table 8 w i l l not be discussed due to the absence of detailed information. The remaining reactions can be divided into two main groups: (1) Reactions which can be formulated as proceeding directly. 2 ON + 3 F 2 ^ 2 ONF3 ONF 4- F 2 £=y ONF3 (2) Reactions that involve transitional metal compounds as intermediates. 87 TABLE 8 R e a c t a n t s NO * F 2 NO + F 2 -ONF + F 2 ONF + F 2 ONF + F 2 (NO) 2NiF6+F 2 ONF + O s F 6 ONF + I r F 6 ONF + P t F 6 'NF3 + 0 2 A i r : F 2 (10 C 1 0 2 + H N F 2 M e t h o d s o f ONF3 P r e p a r a t i o n T e m p e r a t u r e ( ° C ) P r e s s u r e i n S p e c i a l C o n - ( p . s T i . ) d i t i o n s o f R e a c t i o n - 1 9 6 ° t o 2 5 ° 14 R e a c t i o n i n c o n t i n u o u s f l a m e 200 - 380° 200 350 H i g h U . V . r a d i a t i o n 350 70 25 5 25 90 25 180 E l e c t r i c d i s -c h a r g e -196 E l e c t r i c d i s c h a r g e Y i e l d R e f e r e n c e T r a c e ( A ) Up t o 20% ( 5 6 ) v . s m a l l A l m o s t q u a l i -t a t i v e 100% f a i r * 50% T r a c e 10-15% ( A ) ( 5 6 ) ( 5 6 ) ( A ) ( 4 0 ) ( 4 0 ) ( A ) ( 4 0 ) ( A ) ( 5 7 ) ( 5 8 ) ( 5 8 ) * I n a s e r i e s o f r e a c t i o n s o n l y one gave any d e t e c t a b l e q u a n t i t y o f ONF3. The u n d e r l i n e d r e a c t a n t was i n e x c e s s . E x p e r i m e n t a l d e t a i l s a r e n o t g i v e n f o r r e f e r e n c e s ( 5 7 ) , ( 5 6 ) , and ( 5 8 ) . ( A ) d e n o t e s t h i s work 88 ( 1 ) N i t r o s y l f l u o r i d e and f l u o r i n e do n o t r e a c t a t a m b i e n t t e m p e r a t u r e s and p r e s s u r e s . N i t r o g e n o x i d e t r i f l u o r i d e f o r m a t i o n f r o m n i t r o s y l f l u o r i d e and f l u o r i n e i s a c c o m p a n i e d by a v o l u m e d e c r e a s e , t h e r e a c t i o n i s t h e r e f o r e f a v o u r e d b y h i g h p r e s s u r e s . The t e m p e r a t u r e dependence o f ONF3 s y n t h e s i s s u g g e s t s t h a t t h e f o r m a t i o n o f h i g h e n e r g y i n t e r m e d i a t e s p r o -b a b l y p r o c e e d s t h e f o r m a t i o n o f ONF3. S u c h i n t e r m e d i a t e s * ft c o u l d be F « , F 2 , ON F , and O N F 2 . F« A t 200° and a t 200 p . s . i . t h e c o n c e n t r a t i o n - 2 ( 5 9 ) o f f l u o r i n e atoms i s i n t h e o r d e r o f 10 % . F l u o r i n e atoms c a n a l s o be g e n e r a t e d by u l t r a v i o l e t r a d i a t i o n o f a p p r o x . 2900 A w a v e l e n g t h / 6 0 * * F 2 F l u o r i n e m o l e c u l e s i n an e x c i t e d e l e c t r o n i c s t a t e a r e p r o d u c e d by t h e r e c o m b i n a t i o n o f f l u o r i n e atoms o f ( 611 h i g h e n e r g y . ' As t h e c o n c e n t r a t i o n o f f l u o r i n e atoms i s ft r e l a t i v e l y l o w , t h e c o n c e n t r a t i o n o f F 2 i s p r o b a b l y n e g l i g i b l e . * FNO S t u d i e s o f t h e f o r m a t i o n o f ONF f r o m NO and F 2 v i a e m i s s i o n s p e c t r o s c o p y h a v e l e d t o t h e d e t e c t i o n o f a l o w l y i n g ( 2 . 4 e V above t h e g r o u n d s t a t e ) t r i p l e t s t a t e o f ( 621 ONF. ' T h i s s t a t e has been i n v o k e d as a p o s s i b l e i n t e r m e -( 5 6 ) d i a t e by F o x . v ' A l s o a s i n g l e t s t a t e e x i s t s a t a h i g h e r e n e r g y (3.8 e V ) . < 6 2 > 89 F2NO. The radical ONF2' presents a possible intermediate i n some reaction sequences leading to ONF3. Its existence as well as i t s participation in the formation of ( 56^ ONF3 has been reported by Fox on the basis of E.S.R. s tudies. The available information does not permit a definite determination of the mechanism of the formation of ONF3. However, a chain mechanism can be suggested involving the re-* active species F», and ONF tr i p l e t in the i n i t i a l reaction step and ONF2 as an intermediate. Formation of F- (1) F 2 = 2 F» Also 2a, 3a, 4a. Formation of *ONF (2) NO 4- F = *ONF (2a) NO + F 2 = *ONF 4- F« * Formation of ONF2' (3) *ONF + F = 0NF 2- (or ONF2« + Wv ) (3a) *ONF +• F 2 =ONF2« 4- F* (or F 4-Kv) (3b) ONF + F = 0NF2 * Formation of ONF3 (4) ONF2» + F = ONF3 (4a) ONF2. + F 2 = ONF3 + F A one step reaction can also be formulated as: ONF + F 2 = ONF3 + 9 0 (2) The f o r m a t i o n o f t h e compound NOMFy ( M , I r , P t , ) ( 4 0 6 3 ) h a s been p r o p o s e d * as t h e f i r s t s t e p i n t h e r e a c t i o n b e t w e e n t h e h e x a f l u o r i d e s and n i t r o s y l f l u o r i d e . The NOMFy i n t e r m e d i a t e c a n t h e n p r o v i d e f l u o r i n e a t o m s : -NOMFy = NOMFg + F The s y n t h e s i s o f ONF3 c a n t h e n p r o c e e d i n t h e manner i n d i c a t e d i n r e a c t i o n ( 1 ) . The t e n d e n c y f o r t h e h e x a f l u o r i d e s t o be r e d u c e d ( 4 0 ) i n c r e a s e s f r o m t u n g s t e n t o p l a t i n u m . A s i m i l a r t r e n d e x i s t s f o r t h e NOMFy compounds so f a r i s o l a t e d . The s p e c i e s NOOsFy i s s t a b l e a t room t e m p e r a t u r e , whereas t h e a d d u c t s N O I r F y , and NOPtFy h a v e n o t been i s o l a t e d ( s e e T a b l e 9 ) . The p l a t i n u m i n t e r m e d i a t e w o u l d t h e r e f o r e g i v e o f f f l u o r i n e atoms a t a g r e a t e r r a t e t h a n t h e i r i d i u m compound. The r a t e o f f o r m a t i o n o f f l u o r i n e m o l e c u l e s i s p r o p o r t i o n a l t o t h e s q u a r e o f t h e c o n c e n t r a t i o n o f f l u o r i n e a t o m s . The r a t e o f f o r m a t i o n o f (•F2NO) i s p r o p o r t i o n a l t o t h e p r o d u c t o f t h e c o n c e n t r a t i o n o f n i t r o s y l f l u o r i d e m o l e c u l e s and f l u o r i n e a t o m s . R a t e o f F o r m a t i o n o f F2 <L- ^ ( F O 0NF2 «sC ( F O ( F N O ) T h e r e f o r e , t h e s y n t h e s i s o f ONF3 w o u l d be f a v o u r e d by t h e more s t a b l e N O I r F y , and t h e f o r m a t i o n o f F2 by N O P t F y . I t i s 91 observed that a 50% mixture of F2/ONF3 was produced in the IrFg/ONF reaction, and almost quantitative yield of F 2 in the PtF6/ONF reaction (see Table 9.). TABLE 9 Products of Reaction of ONF with Third  Transitional Metal Hexafluorides MF, WF, ReF, OsF, IrF, PtF, Products Solid NOWF7 (NO)2WF8 (NO)2ReFg N00sF6 NOOSF7 NOIrF6 NOPtF. Gaseous Trace ONF3 F 2 + ONF2 F 2 4- Trace ONF, Reference (40) (40) (40) (40)(A) (40)(A) Another mechanism has been proposed ' to explain the formation of ONF3 and F 2 via the intermediate NCMF7. It was suggested that ONF3 is produced by the interaction of ONF with NOMF7 (presumably via the intermediate (N0)2MFg,) and fluorine by molecular elimination from the solid 2 (NOMF7) 2 NOMF5 +• F 2 92 The m e c h a n i s m i n v o l v i n g d i r e c t f l u o r i n a t i o n o f n i t r o s y l f l u o r i d e b y t h e h e x a f l u o r i d e does n o t r e a d i l y e x p l a i n t h e d i f f e r e n c e i n F2, and ONF3 y i e l d s by t h e r e a c t i o n s o f I r F g , and P t F g w i t h ONF. The p y r o l y s i s o f ( N O ^ N i F g i n f l u o r i n e a t 350° l e a d s t o t h e f o r m a t i o n o f ONF, ONF3, F2, and NiF2« I t i s p o s s i b l e * t h a t r e a c t i v e i n t e r m e d i a t e s ( » F , ONF2. ONF) a r e p r o d u c e d o n i n i t i a l d e c o m p o s i t i o n o f t h e n i c k e l s a l t , g i v i n g r i s e t o ONF3, ( s e e s e c t i o n 1 ) . I t i s a l s o p o s s i b l e t h a t s p e c i e s s u c h as N 1 F 3 , and N i F 4 ( t h e s e compounds have n o t been r e p o r t e d ) a r e formed and t h a t t h e y p r o v i d e a s t e a d y s o u r c e o f f l u o r i n e a t o m s . The s a l t ( N 0 ) 2 N i F ^ was p r o b a b l y a l w a y s p r e s e n t i n t h e M o n e l v e s s e l s t h a t c o n t a i n e d FNO and F 2 above 1 7 0 ° . I t i s t h e r e f o r e p o s s i b l e t h a t t h e n i t r o s y l c o m p l e x t o o k p a r t i n t h e r e a c t i o n o f FNO and F2 t o g i v e ONF3. A l l t h e mechanisms p r o p o s e d f o r ONF3 f o r m a t i o n h a v e i n common t h a t t h e y e i t h e r i n v o l v e gaseous i n t e r m e d i a t e s ( F » , ONF, 0 N F 2 * ) $ o r s o l i d s p e c i e s c a p a b l e o f g i v i n g r i s e t o them ( NGMF7, N i F 4 ) . The I r F 6 / 0 N F * , and p y r o l y s i s o f ( N O ^ N i F g r e a c t i o n p r o v e d t o be t h e b e s t method o f p r e p a r i n g ONF3 i n t h i s w o r k . H o w e v e r , t h e q u a n t i t i e s t h a t c o u l d be p r o d u c e d i n any one r e a c t i o n were l o w (max. 0 . 3 g ) . 93 3 . 3 . P h y s i c a l P r o p e r t i e s o f ONFg TABLE 10 C o m p a r i s o n o f t h e P h y s i c a l P r o p e r t i e s o f  0NF?. NF3. 0 ? N F . and ONF Compound m . p t . ° C . b p . °C ( v a p ) A 4 ( v a p ) c a l s m o l e " 1 c a l s d e g " 1 m o l e " ONF3 -161 ±1.3 -87.5+0.05 3890- 20 20.97 to.07 NF3 -206.8 -129.01 (16) 2769 1 9 . 2 < 2 8 > 0 2 N F -166 - 72.4 <13> 4300 21.2 < 1 0 ) ONF -132.5 - 59.9 4607 2 1 . 6 ( 1 0 > F o x ^ " 5 ^ r e p o r t e d a m . p . o f - 1 6 0 ° , and b . p . o f - 8 5 ° f o r 0 N F 3 . The d i f f e r e n c e o f 1 ° i n t h e s e m e l t i n g p o i n t s i s c o v e r e d by o u r e r r o r o f 1 . 3 ° . The r e p o r t e d e r r o r s i n t h e o t h e r ONF3 p a r a m e t e r s a r e t h o s e o b t a i n e d f r o m c o m p a r i n g t h e r e s u l t s g i v e n b y t h e t h r e e b e s t s t r a i g h t l i n e f i t s f o r t h e v a p o u r p r e s s u r e d a t a ( s e e s e c t i o n 2 . 3 . ) . S y s t e m a t i c e r r o r s ( f o r example t h e p r e s e n c e o f v o l a t i l e i m p u r i t i e s ) w o u l d i n c r e a s e t h e s e e r r o r s . The v a p o u r p r e s s u r e i n t h e t e m p e r a t u r e r a n g e 145 -190°K i s g i v e n b y t h e e q u a t i o n : l o g 1 0 P(mm) = - 8 5 0(1) 4- 7 . 4 6 0 T 94 The p h y s i c a l p r o p e r t i e s o f ONF3 s u g g e s t t h a t i t i s n o n - a s s o c i a t e d i n t h e l i q u i d s t a t e and t h e y a r e n o t d i s s i m i l a r t o t h o s e o f NF3, ONF, and 0 2 N F . 3 . 3 . 1 . S t r u c t u r a l F o r m u l a o f ONF3 Two p o s s i b l e i s o m e r s e x i s t f o r a compound o f e m p i r i c a l f o r m u l a ONF3: 0 The h y p o f l u o r i t e s a r e g e n e r a l l y v e r y r e a c t i v e compounds and o n l y e x i s t i n compounds where t h e c e n t r a l atom i s i n i t s h i g h e s t f o r m a l o x i d a t i o n s t a t e . I t w o u l d be v e r y u n l i k e l y t h a t a compound o f s t r u c t u r e ( i i ) w o u l d h a v e t h e m o d e r a t e l y i n e r t f c h e m i c a l b e h a v i o u r o b s e r v e d f o r t h e new o x y f l u o r i d e . S t r u c t u r e 19 ( i ) was s u b s e q u e n t l y c o n f i r m e d by F n . m . r . , and i n f r a r e d s p e c t r o s c o p y . 95 19 3 . 4 . F n . m . r . S p e c t r u m o f ONF3 3 . 4 . 1 . D e t e r m i n a t i o n o f t h e S t r u c t u r e o f ONF? 19 f r o m F n . m . r . S p e c t r u m The f l u o r i n e atoms h a v e one c h e m i c a l e n v i r o n -ment i n s t r u c t u r e ( i ) . The n i t r o g e n atom h a s a n u c l e a r s p i n o f 1, t h e r e f o r e s p i n c o u p l i n g o f t h e n i t r o g e n and f l u o r i n e n u c l e i i w o u l d be a n t i c i p a t e d g i v i n g r i s e t o a 1:1:1 t r i p l e t i n 19 t h e F n . m . r . s p e c t r u m . T h i s i s what i s o b s e r v e d s u g g e s t i n g t h e m o l e c u l e h a s t h e Cyj s t r u c t u r e . A much more c o m p l i c a t e d s p e c t r u m w o u l d be e x p e c t e d f o r s t r u c t u r e ( i i ) . I t i s p o s s i b l e , h o w e v e r , t h a t t h e o x y f l u o r i d e has s t r u c t u r e ( i i ) and t h a t i n t e r o r i n t r a - m o l e c u l a r exchange r e n d e r s a l l f l u o r i n e atoms e q u i v a l e n t . The q u a d r u p l e moment o f t h e N i t r o g e n n u c l e u s w h i c h has a s p i n 1 c a n g i v e r i s e t o b r o a d e n i n g o f t h e p e a k s a s s o c i a t e d w i t h t h e f l u o r i n e atoms bonded t o t h e n i t r o g e n i n t h e 19 F n . m . r . s p e c t r u m . The d e g r e e o f b r o a d e n i n g i s r e l a t e d t o t h e asymmetry o f t h e e l e c t r i c f i e l d g r a d i e n t a r o u n d t h e n i t r o g e n a t o m . A t a g i v e n t e m p e r a t u r e t h e more s y m m e t r i c t h e f i e l d g r a d i e n t a r o u n d t h e n i t r o g e n n u c l e u s , t h e s h a r p e r t h e 96 t r i p l e t a s c r i b a b l e t o t h e n e i g h b o u r i n g f l u o r i n e a t o m s . When t h e t e m p e r a t u r e i s r a i s e d t h e t r i p l e t s h a r p e n s , as i s t h e c a s e f o r NF3 o v e r t h e t e m p e r a t u r e r a n g e - 1 8 0 t o 4 - 2 0 ° / 6 6 ^ A t 2 5 ° t h e 19 h a l f peak h e i g h t s o f t h e 1:1:1 t r i p l e t i n t h e F n . m . r . s p e c -4> t r u m o f NF4 i n h y d r o g e n f l u o r i d e s o l u t i o n a r e r e p o r t e d t o be l e s s t h a n 10 c . p . s . ^ ^ The l i n e w i d t h a t h a l f peak h e i g h t s f o r ONF3 w e r e 6 , 8 , and 6 c . p . s . a t - 6 9 . 5 ° f o r ONF3, w h i c h i m -p l i e d t h a t t h e e l e c t r i c f i e l d g r a d i e n t a t t h e n i t r o g e n atom was s y m m e t r i c . T h i s i s c o n s i s t a n t w i t h t h e f o r m u l a t i o n f o r ONF3 3 . 4 . 2 . The F C h e m i c a l S h i f t i n ONF3 19 The c h e m i c a l s h i f t f o r F i n ONF3 i s 151 .5 p . p . m . 4. f u r t h e r d o w n f i e l d t h a n t h a t o f N F ^ , a l t h o u g h t h e f o r m a l c h a r g e o n t h e n i t r o g e n atom i s i d e n t i c a l i n b o t h s p e c i e s . T h e r e i s no o b v i o u s r e a s o n why t h e f l u o r i n e i n ONF3 s h o u l d be any l e s s s h i e l d e d t h a n i n N F ^ * . The v e r y l o w c h e m i c a l s h i f t r e -p o r t e d f o r ONF has been e x p l a i n e d as a r i s i n g f r o m t h e p a r a m a g n e t i c 97 c o n t r i b u t i o n o f t h e l o w l y i n g t r i p l e t s t a t e ^ 7 0 ^ w h i c h h a s been s u g g e s t e d t o e x i s t f r o m t h e e m i s s i o n s p e c t r u m o f ONF. However no d e t a i l e d c a l c u l a t i o n s h a v e been r e p o r t e d t o c o n f i r m t h i s s u g g e s t i o n . T h e r e i s no s t r o n g a b s o r p t i o n i n t h e u l t r a -v i o l e t s p e c t r u m o f ONF^ above 200 mu. H o w e v e r , a s i m i l a r p a r a m a g n e t i c c o n t r i b u t i o n m i g h t a r i s e f r o m a s i m i l a r e x c i t e d s t a t e o f ONF3 t h u s c a u s i n g t h e l o w c h e m i c a l s h i f t . TABLE 11 19 The F C h e m i c a l S h i f t s , and N i t r o g e n F l u o r i n e C o u p l i n g  C o n s t a n t s f o r Some N i t r o g e n F l u o r i n e S p e c i e s N F 3 < 6 8 > N F 4 + < 6 7 > O N F 2 + < 5 7 > ONF3 F < 6 9 > O N F ( 7 0 ) f ( p . p . m . ) - 1 4 6 . 9 - 2 1 3 . 5 - 3 3 1 - 3 6 5 - 4 2 0 -476 I I n t . S t . . H F . s o l n . HF s o I n . I n t . s t . E x . s t . I n t . S t . J N F 155 234 250 1 3 3 . 5 — N o t ( c . p . s . ) r e p o r t e d <f(p .p . m . ) r e l a t i v e t o C C l o F L a r g e r n e g a t i v e numbers i n d i c a t e l o w e r f i e l d 3 . 4 . 3 . The N i t r o g e n - F l u o r i n e C o u p l i n g C o n s t a n t >%F i n ONF3 R e e v e s ( 7 1 ) f o u n d a l i n e a r r e l a t i o n s h i p between t h e a t o m i c number o f t h e c e n t r a l atom and ( - 1 ) ^ j ^ ( f o r t h e 98 - J x Y s p e c i e s BF4", CF4, and NF4 ) j = j p J f Y J X X = c o u P l i n § c o n " s t a n t b e t w e e n X and Y , 2f = ^ , /* = n u c l e a r m a g n e t i c moment, I = n u c l e a r s p i n . N i t r o g e n t r i f l u o r i d e and n i t r o g e n o x i d e t r i f l u o r i d e do n o t f a l l o n t h e l i n e d e f i n e d by t h e o t h e r t h r e e p o i n t s . Reeves s u g g e s t e d t h a t a p o s s i b l e r e a s o n f o r t h e d e v i a t i o n o f NF3, and ONF3, f r o m l i n e a l i t y m i g h t be t h e d i f f e r -e n c e i n d e n s i t y o f S e l e c t r o n s a t t h e c e n t r a l atom i n t h e s e m o l e c u l e s compared t o BF4", CF4, and NF4*. The FNF a n g l e i s N F 3 i s 1 0 2 . 5 ° / 7 2 ^ w h i c h w o u l d i m p l y t h a t t h e NFN a n g l e i n ONF3 i s £ l 0 8 ° . 3 . 5 . The I n f r a r e d S p e c t r u m o f ONF3 3 . 5 . 1 . D e t e r m i n a t i o n o f t h e Symmetry o f ONFg f r o m t h e  I n f r a r e d S p e c t r u m I t i s e x p e c t e d t h a t t h e C3V i s o m e r o f ONF3 h a s ( 7 3 ) s i x i n f r a r e d a c t i v e modes i n t h e i n f r a r e d s p e c t r u m . The h i g h e s t symmetry p o s s i b l e f o r t h e h y p o f l u o r i t e i s o m e r i s C s . N i n e i n f r a r e d a c t i v e f u n d a m e n t a l modes o f v i b r a t i o n w o u l d be a n t i c i p a t e d f o r t h i s s p e c i e s . A l l t h e bands o b s e r v e d i n t h e i n f r a r e d s p e c t r u m o f t h e gas c a n be a c c o u n t e d f o r o n t h e b a s i s o f f i v e f u n d a m e n t a l s ( s e e F i g u r e : 8 . ) . Of the s i x f u n d a m e n t a l s e x p e c t e d f o r t h e C3 V i s o m e r , t h r e e a r e e x p e c t e d t o be A modes , and t h r e e E modes. O n l y one f u n d a m e n t a l ( 8 8 3 c m " 1 ) c a n be a s s i g n e d as an E mode by i n s p e c t i o n TABLE 12 99 Infrared Data and Tentative Assignments. ONFq Observed Frequency Tentative Assignment in cm"l (see section 3.5t3.) I (obs) 3430 v 3423' vw 883 x 2 4 1690= 3456? 2V 4 3339 w 1690 x 2 = 3380 2*1 2420 vw 1690 4 744 = 2434 v i 4 v 2 2317 vw 883 x 2 4 527 = 2303 2V 4 • Vj 2224. 2205; vw 1690 4 527 = 2217 * x 4 V 3 1770 s 883 x 2 = 1766 2V 4 1690 vs Fundamental V l 1624 w 883 4 744 = 1627 v4 + V2 1412 w 883 4 527 = 1410 v 4 4 y 3 1265 w 744 4 527 = 1271 V2 4 V 3 1060 w 2 x 527 = 1054 2V3 934 w 527 4 398 = 925 V3 4 V 6 883 vs Fundamental *4 805 w 1690 - 883 = 807 V i - v 4 795 w 2 x 398 = 796 2V6 744 s Fundamental *2 527 s Fundamental V 3 398 w Fundamental V6 100 o f t h e band c o n t o u r s ( s e e F i g u r e 8 ) . A s i m i l a r m o l e c u l e t o t h e C3 V i s o m e r o f ONF3 i s FCIO3. The i n f r a r e d s p e c t r u m o f t h i s m o l e c u l e showed P . Q . R . b r a n c h i n g o f modes t h a t w e r e a s s i g n e d ( 7 4 ) as p e r p e n d i c u l a r b a n d s . I t was s u g g e s t e d by L i d e ' t h a t t h i s f e a t u r e i m p l i e d n e a r TQ symmetry f o r FCIO3. The i n f r a r e d s p e c t r u m i s t h e r e f o r e c o n s i s t e n t w i t h a n e a r T<j symmetry f o r ONF3. 3 . 5 . 2 . I d e n t i f i c a t i o n o f t h e S i x t h F u n d a m e n t a l i n t h e I n f r a r e d S p e c t r u m o f ONF3 I t was n o t p o s s i b l e f r o m o u r i n f r a r e d s p e c t r a t o a s s i g n a s i x t h f u n d a m e n t a l . O t h e r w o r k e r s ( s e e T a b l e 1 3 . ) r e p o r t a band a t a b o u t 558 c m " 1 w h i c h t h e y a s s i g n as a f u n d a -m e n t a l mode o f v i b r a t i o n . ( 5 7 , 7 5 ) N q Raman s p e c t r u m h a s y e t been r e p o r t e d f o r ONF3. I t i s n o t e d t h a t none o f t h e c o m b i n a t i o n bands i n t h e s p e c t r u m o f ONF3 i s : compounded f r o m t h i s f u n d a -m e n t a l , w i t h t h e p o s s i b l e e x c e p t i o n o f t h e band a t 1060 c m " 1 ( 5 2 8 x 2 = 1054 c m " 1 , o r , 528 + 555 = 1083 c m " 1 ) . 3 . 5 . 3 . A s s i g n m e n t s o f t h e F u n d a m e n t a l s o f O N F i 3 . 5 . 3 . ( a ) By C o m p a r i s o n w i t h OPF3 I f t h e s i x t h f u n d a m e n t a l o f ONF3 i s a c c e p t e d as t h e band r e p o r t e d a t 555 c m " 1 , t h e n t h e f o l l o w i n g a s s i g n m e n t s c a n be made b y c o m p a r i s o n w i t h OPF3. 101 TABLE 13 T h i s Work A C o m p a r i s o n o f I n f r a r e d D a t a Found  by V a r i o u s W o r k e r s f o r ONF3 . (57) F o x C u r t i s ( O b s ) c m " 1 I ( o b s ) _1 (Obs)cm I ( O b s ) (Obs)cm 3430 . 3423 ' vw 3339 w 3345 (m) 3350 2420 vw 3435 (m) 2317 vw 2224 . 2205 ; vw 1770 s 1772 ( s ) 1771 1690 v s 1687 ( v s ) 1691 1624 w 1622 (w) 1625 1412 w 1410 (m) 1420 1265 w 1267 1060 w 1055 (m) 1060 934 w 929 (w) 938 883 v s 887 ( w s ) 883 805 w 801 (w) 801 795 w 744 s 743 ( s ) 743 558 (vw) a p p r o x 558 527 s 528 ( s ) 528 398 w 398 (w) 400 ( 7 5 ) -1 102 TABLE 14 A s s i g n m e n t o f t h e ONF? I n f r a r e d S p e c t r u m  b y A n a l o g y w i t h OPF3 0NF3 OPF3 A s s i g n m e n t g i v e n f o r OPF3 by Gutowsky and L i e h r ( 7 6 ) 1690 - 1 cm 1415 cm V]_ P - 0 s t r e t c h 883 -1 cm 990 cm V 4 P F ^ a s y m m e t r i c s t r e t c h 744 - 1 cm 873 cm V 2 PF3 s y m m e t r i c s t r e t c h 527 - 1 cm 473 cm V5 PF3 s y m m e t r i c bend (555 c m " 1 ) 485 cm V 3 P F ^ a s y m m e t r i c bend 398 - 1 cm 345 cm v 6 PF3 r o c k i n g The 883 cm band i n t h e ONF3 s p e c t r u m i s an E mode b y i n s p e c t i o n o f t h e band c o n t o u r s , and t h e r e f o r e c a n be a s s i g n e d r e a s o n a b l y u n a m b i g u o u s l y as t h e a s y m m e t r i c a l s t r e t c h -i n g mode. T h i s t h e n f i x e s t h e a s s i g n m e n t o f t h e 744 c m " 1 band as t h e s y m m e t r i c s t r e t c h i n g mode o f v i b r a t i o n . I f i t i s assumed t h a t t h e o r d e r o f t h e s y m m e t r i c and a s y m m e t r i c b e n d i n g modes i s t h e same i n ONF3 and OPF3, t h e n t h e band a t 528 c m " 1 c a n be f i x e d as V5, and 555 c m " 1 as 1*3. When t h e p o s i t i o n o f t h e s i x t h f u n d a m e n t a l i s i n d o u b t , t h e r e i s l e s s c e r t a i n t y i n t h e a s s i g n m e n t o f t h e s p e c t r u m o f ONF3 o n t h e b a s i s o f c o m p a r i s o n o f t h e s p e c t r a o f 0PF» and 103 ONF3. (No a u t h o r has p u b l i s h e d a s p e c t r u m w h i c h shows c l e a r l y t h e o u t l i n e o f t h e 555 c m " 1 f u n d a m e n t a l . ) 3 . 5 . 3 . ( b ) By C o m p a r i s o n w i t h O t h e r N i t r o g e n -O x y g e n - F l u o r i n e S p e c i e s TABLE 15 I n f r a r e d A c t i v e F u n d a m e n t a l Modes o f V i b r a t i o n  o f Some N i t r o g e n - O x y g e n - F l u o r i n e S p e c i e s (61) (77) ( 7 8 ) ( 3 6 ) ( 7 9 ) ( 6 7 ) A s s i g n m e n t N 1 4 0 1 6 N 0 2 0 2 N F ONF NF3 N F 4 + N - 0 s y m m e t r i c s t r e t c h 1 8 7 6 . 1 1318 1312 1844 N - 0 a s y m m e t r i c s t r e t c h 1613 1793 0N0 s y m m e t r i c bend 750 460 0N0 a s y m m e t r i c bend 570 ONF bend 521 N - F s y m m e t r i c s t r e t c h 822 766 1032 813 N - F s y m m e t r i c bend 742 647 488 N - F a s y m m e t r i c s t r e t c h 905 1159 N - F a s y m m e t r i c bend 493 611 N . B . A l l f r e q u e n c i e s o f v i b r a t i o n i n c m " 1 . 104 T a b l e 15 shows t h a t : 1) y (NO) i s a t h i g h e r wave numbers t h a n $ ( N F ) . 2) V ( N F ) , and Y(NO) a s y m m e t r i c a l b e n d i n g and s t r e t c h i n g v i b r a t i o n s a r e a t h i g h e r wave numbers t h a n t h e c o r r e s p o n d i n g s y m m e t r i c a l v i b r a t i o n s ( w i t h t h e e x c e p t i o n o f NF3). 3) S t r e t c h i n g v i b r a t i o n s a r e a t a h i g h e r f r e q u e n c y t h a n b e n d i n g v i b r a t i o n s . A s s i g n m e n t s c a n be s u g g e s t e d f o r t h e ONF3 s p e c t r u m i f a n ONF b e n d i n g v i b r a t i o n i s a t a h i g h e r f r e q u e n c y t h a n an FNF b e n d . 1690 c m " 1 N - 0 s t r e t c h 883 cm 1 N - F a s y m m e t r i c a l s t r e t c h 744 - 1 cm N - F s y m m e t r i c a l s t r e t c h (555 c m " 1 ) "5 0 - N F a s y m m e t r i c a l bend 527 c m " 1 »3 ONF s y m m e t r i c a l bend 398 c m " 1 *6 FNF a s y m m e t r i c a l bend Any n o r m a l c o o r d i n a t e i n v o l v e s movement b e s i d e s t h a t i n d i c a t e d by t h e l a b e l o f t h e f u n d a m e n t a l mode. The l a b e l l i n g o f t h e n o r m a l c o o r d i n a t e i s t h e r e f o r e somewhat a r b i t r a r y . The n o m e n c l a t u r e has been changed f r o m t h a t o f Gutowsky t o c o n f o r m w i t h F o x and C u r t i s . The a s s i g n m e n t s made above a r e b a s e d o n t h e assump-t i o n t h a t t h e s i x t h f u n d a m e n t a l i s a t 555 c m " 1 . I f t h e p o s i t i o n 105 o f t h e s i x t h f u n d a m e n t a l was i n d o u b t t h e n t h e 527 c m " 1 w o u l d be a s s i g n e d as ^ 3 o r V^* 3 . 5 . 3 . ( c ) N o r m a l C o o r d i n a t e s A n a l y s i s L i s t e d i n T a b l e 16 a r e t h e a s s i g n m e n t s r e p o r t e d by F o x e t a l ^ 7 ^ o n t h e b a s i s o f a c o m p l e t e n o r m a l c o o r d i n a t e s a n a l y s i s . ( A t t h e t i m e o f w r i t i n g , t h e d e t a i l s o f t h e c a l c u -l a t i o n h a v e n o t y e t been p u b l i s h e d , September 1967J C u r t i s e t a j . ( 7 5 ) a l s o made a s s i g n m e n t s , b u t t h e y b a s e d them o n q u a l i -t a t i v e a r g u m e n t s . TABLE 16 A s s i g n m e n t s o f t h e F u n d a m e n t a l V i b r a t i o n s o f ONF3 made b y F o x and C u r t i s F o x C u r t i s 1690 cm V 1 1 883 cm 744 cm y 2 555 cm" V3 v 5 527 cm" 398 em" V 6 V 6 106 C a m p b e l l and B a r t l e t t ^ 0 ^ have r e c e n t l y c o m p l e t e d a n o r m a l c o o r d i n a t e s a n a l y s i s o f t h e s p e c t r u m o f 0 ^ N F 3 and 0 1 8 N F 3 . 3 . 5 . 4 . Bond D i s t a n c e s i n ONF3 E s t i m a t e d f r o m t h e  Moment o f I n e r t i a C u r t i s e t a l r e p o r t e d t h a t t h e y r e s o l v e d t h e f i n e s t r u c t u r e o n t h e P and R b r a n c h e s o f t h e 744 c m " 1 band o f ( 7 5 ) ONF3. ' They assumed t h a t t h e n i t r o g e n - o x y g e n d i s t a n c e i s t h a t B = 0 . 1 9 cm and t h a t a l l i n t e r a t o m i c a n g l e s a r e 1 0 9 . 2 8 . They r e p o r t e d t h a t t h e i r c a l c u l a t i o n s gave a n i t r o g e n -f l u o r i n e bond d i s t a n c e o f 1.48A*. The c a l c u l a t i o n was r e p e a t e d i n o r d e r t o o b t a i n a r e l a t i o n s h i p between t h e N - 0 , and N - F bond d i s t a n c e s , and t o e s t i m a t e t h e s e n s i t i v i t y o f t h e c a l c u l a t i o n t o t h e v a l u e o f B ( s e e A p p e n d i x 2 . ) . 3 . 6 . U l t r a v i o l e t S p e c t r u m o f ONF? The u l t r a v i o l e t s p e c t r u m o f ONF3 i s s i m i l a r t o t h a t o f NF3 and c o m p l e t e l y u n l i k e t h a t o f t h e h y p o f l u o r i t e s . N i t r o g e n t r i f l u o r i d e has a f e a t u r e l e s s a b s o r p t i o n i n t h e vacuum ( 81) u l t r a v i o l e t , 7 w i t h a maximum a t 96 mp, and e x t e n d i n g up t o a b o u t 180 mp. Oxygen d i f l u o r i d e a b s o r b s u l t r a v i o l e t r a d i a t i o n f r o m 540 mp downwards w i t h d e c o m p o s i t i o n . O t h e r h y p o f l u o r i t e s 107 a b s o r b u l t r a v i o l e t r a d i a t i o n , e . g . C F 3 0 F / 8 2 ^ S F 5 O F ^ 8 3 ^ a l s o w i t h d e c o m p o s i t i o n . Thus t h e u l t r a v i o l e t s p e c t r u m o f ONF3 i s c o n s t a n t w i t h a f o r m u l a t i o n f o r ONF3. 3 . 7 . K i n e t i c S t a b i l i t y o f ONF3 The i n c o n s i s t e n t b e h a v i o u r o f ONF3 t o w a r d s a l k a l i , wet g l a s s and o t h e r r e a c t i v e m a t e r i a l s s u g g e s t s t h a t r e a c t i o n i s d e p e n d e n t o n a c a t a l y s t . H o w e v e r , compared t o t h e o t h e r o x y f l u o r i d e s o f n i t r o g e n , ONF3 i s r e m a r k a b l y i n e r t . T h e r e f o r e , i t i s p r o b a b l e t h a t ONF3 i s k i n e t i c a l l y r a t h e r t h a n t h e r m o -d y n a m i c a l l y s t a b l e . L i k e o t h e r k i n e t i c a l l y s t a b l e m o l e c u l e s , i t has i t s c e n t r a l atom s h i e l d e d b y c l o s e p a c k e d l i g a n d s . T h i s b e h a v i o u r i s r e f l e c t e d i n i t s a b i l i t y t o d i s s o l v e i n CCI3F, c o n t r a s t e d w i t h i t s i m m i s c i b i l i t y i n H F . 3 . 8 . R e a c t i o n o f ONF3 w i t h P r o t o n D o n o r s 3 . 8 . 1 . HF 4 ONF3 N i t r o g e n o x i d e t r i f l u o r i d e i s i m m i s c i b l e w i t h a n h y d r o u s HF a t a p p r o x . - 8 0 ° s u g g e s t i n g t h a t ONF3 i s n o t r e a d i l y 19 p r o t o n a t e d a t t h i s t e m p e r a t u r e . The F n . m . r . o f t h e ONF3/HF m i s t u r e i s c o n s i s t a n t w i t h t h e l a c k o f i n t e r a c t i o n a t t h i s t e m -19 p e r a t u r e . The s e p a r a t i o n o f t h e F r e s o n a n c e s a t t r i b u t a b l e t o ONF3 and HF was o b s e r v e d a t 553 p . p . m . The c h e m i c a l s h i f t o f H F ^ 6 9 ^ a t room t e m p e r a t u r e i s 4-211 p . p . m . ( e x t . r e f . ) and ONF3 i s - 3 6 5 p . p . m . ( e x t . r e f . ) b o t h r e l a t i v e t o CCI3F, and t h e i r c a l c u l a t e d s e p a r a t i o n i s 108 577 p.p.m. If , therefore, exchange processes of the type: HF* 4 (H0NF 3) + ^=5 HF + (H0NF 2F*) + 19 are taking place, i t is only to a small extent. The F n.m.r. evidence excludes appreciable but not slight dissolution of ONF3 in HF. It is relatively d i f f i c u l t to obtain pure HF. Impurities in either Gutowsky's or our hydrogen fluoride might well account for the difference between the theoretical and observed chemical shifts. 3.8.2. HF 4- ONF2.AsF6 The infrared of the material obtained by the re-action of ONF3ASF5 with HF at 180° suggested the presence of 0-H, (3495 cm"1) N-0 (1625 cm"1) N-F (815 cm"1), (774 cm"1), F-N-0 bend (585 cm"1), stretching frequencies. The material may have been partly hydrolysed F2N0 AsFg. The experiment could not be repeated. In these attempts ONF3, and Ni(AsFg) 2 was produced, presumably by a displacement reaction: 0NF 2AsF 6 ONF3 4- AsF 5 NiF 2 4 2AsF5 = Ni (AsF 6) 2 0NF 2 AsF 6 + NiF 2 = Ni (AsF 6) 2 4 ONF3 109 3 . 8 . 3 . HF 4 B F 3 4 ONF3 The r a t h e r c o n f u s i n g e v i d e n c e p o i n t s t o a t l e a s t one c e r t a i n t y , t h a t t h e r e i s no s t r a i g h t f o r w a r d r e a c t i o n t o p r o d u c e HONF3* B F ^ " . The s o l i d formed c o n t a i n e d a B F ^ " i o n 19 s p e c i e s ( F n . m . r . ) and a p p e a r e d t o c o n t a i n some N 0 B F 4 , ( I . R . ) . 3 . 8 . 5 . I m p l i c a t i o n s f o r B o n d i n g i n ONF3 The l a c k o f p r o t o n a t i o n o f ONF3 i s i n marked c o n t r a s t t o t h e r e l a t e d s p e c i e s (CH3)3N0 w h i c h i s r e a d i l y p r o -t o n a t e d t o f o r m s a l t s ( C H 3 ) 3 N O 4 HC1 = ( C H 3 ) 3 N 0 H + C l " . o « (5) The compound ( C H 3 ) 3 N O has a l o n g N - 0 bond o f 1 .36 A w h i c h 4 -s u g g e s t s t h e f o r m u l a t i o n ( C H 3 ) 3 N - 0 f o r t h e m o l e c u l e . The b e h a v i o u r o f ONF3 t o w a r d s p r o t o n d o n o r s r e s e m b l e s t h a t o f OPF3. ( T h e r e i s no r e p o r t o f t h e p r o t o n a t i o n o f 0 P F 3 . ) T h i s s u g g e s t s t h a t t h e b o n d i n g i n ONF3 i s n o t w e l l r e p r e s e n t e d - 4 b y t h e f o r m u l a t i o n O-NF3, b u t r a t h e r i m p l i e s some d o u b l e bond c h a r a c t e r i n t h e 0 N b o n d . 3 . 9 . S t r u c t u r e and P r o p e r t i e s o f t h e A d d u c t ONF3.ASF5 The 1:1 s t o i c h e i o m e t r y f o r t h e r e a c t i o n : ONF3 4 A s F 5 = ONF3, A s F 5 was e s t a b l i s h e d g r a v i m e t r i c a l l y , and t e n s i o m e t r i c a l l y . Two m a i n t y p e s o f s t r u c t u r e a r e p o s s i b l e : 110 ( i ) t h e o x y g e n b r i d g e d s t r u c t u r e F^NO A s F ^ it 4, ( i i ) t h e s a l t l i k e s t r u c t u r e ONF2 A s F g " ( 8 5 ) A 1:1 a d d u c t i s formed between p h o s p h o r y l t r i c h l o r i d e / and a n t i m o n y p e n t a c h l o r i d e w h i c h i s shown by t h e X - r a y a n a l y s i s t o h a v e an o x y g e n b r i d g e d s t r u c t u r e . The c r y s t a l s t r u c t u r e o f s i m i l a r compounds POCI3, T i C T ^ 8 6 ' and 0 F M e 3 S b C l 5 * 8 7 / show t h e s e a r e a l s o o x y g e n - b r i d g e d a d d u c t s . The i n f r a r e d s p e c t r u m o f t h e s e compounds shows a l o w e r i n g o f ^ ( P = 0 ) o n c o o r d i n a t i o n . The a d d u c t 0 N F 3 , A s F 5 has a peak i n t h e n i t r o g e n - o x y g e n s t r e t -c h i n g r e g i o n a t 1850 c m " 1 , a t h i g h e r wave numbers t h a n V (NO) f o r O N F 3 ( 1 6 9 0 c m " 1 ) w h i c h s u g g e s t s t h a t t h e a d d u c t h a s t h e f o r m u l a t i o n 0 N F 2 + AsFg", r a t h e r t h a n F 3 N O A s F 5 . A n o x y g e n b r i d g e d a d d u c t w o u l d p r o b a b l y o n l y h a v e C§ symmetry and t h e r e f o r e w o u l d h a v e a c o m p l i c a t e d s p e c t r u m . The s a l t 0 N F 2 + A s F g " w o u l d be e x p e c t e d t o h a v e a s t r u c t u r e s i m i l a r t o t h e i s o e l e c t r o n i c m o l e c u l e 0 C F 2 ( C 2 v symmetry) and t o h a v e p e a k s c h a r a c t e r i s t i c o f t h e A s F g i o n (Oh s y m m e t r y ) . V a r i o u s f l u o r i n e b r i d g e d s t r u c t u r e s a r e a l s o p o s s i b l e f o r t h e a d d u c t . These w i l l be c o n s i d e r e d i n c l u d e d i n c a t e g o r y ( i i ) . I l l TABLE 17 A C o m p a r i s o n o f t h e I n f r a r e d S p e c t r a  o f ONF3. A s F f i . and OCFQ and A sFA" O C F 2 ( 8 8 ) 1928 1249 965 774 629 584 « O N F 2 + M 1850 1150 900 A s F 6 " i o n i n K A s F 6 ^ 8 9 * 700 400 " A s F g " " i o n i n a d d u c t 692 * * A n y peak i n t h i s r e g i o n was o b s e r v e d by t h e s t r o n g a b s o r p t i o n o f t h e A g C l w i n d o w s . N . B . F u n d a m e n t a l s i n c m " 1 The s p e c t r u m t h u s seems t o s u p p o r t a 0 N F 2 A s F g " f o r m u l a t i o n . F o x ^ 7 / d e t e c t e d t h e p r e s e n c e o f t h e F 2 N 0 * i o n b y 19 means o f t h e F n . m . r . o f t h e a d d u c t d i s s o l v e d i n h y d r o g e n 19 f l u o r i d e . The F n . m . r . shows a 4 . 5 . 4 . t r i p l e t a t ^ C C L j F = - 3 3 1 p . p . m . and a r e s o n a n c e a t & = +50 p . p . m . The r a t i o o f t h e a r e a s a s s o c i a t e d w i t h t h e s e r e s o n a n c e s i s 1 : 3 . N i t r o g e n o x i d e t r i f l u o r i d e i s r e a d i l y l i b e r a t e d f r o m ONF3ASF5 by C s F , 0 2 N F , and ONF. I t w o u l d a p p e a r t h e r e f o r e t h a t ONF3 i s a weak f l u o r i n e i o n d o n o r . 112 TABLE 18 V i b r a t i o n a l F r e q u e n c i e s . S t r e t c h i n g F o r c e C o n s t a n t s . ( a ) N - 0 V C N O ) ^ " 1 K N 0 0 Mdyne/A 0 R N 0 / A M e t h o d Ave ( N - 0 ) K c a l s / m o l e NO 1 8 7 6 < 6 1 > 1 5 . 5 < 6 1 > 1 .15< 9 0 > I R 1 5 0 ( 9 1 ) ONF 1844< 3 6 > 1 4 . 7 < 9 2 > 1 . 1 3 < 9 2 > M 1 3 5 . 3 < c ) 0 2 N F a 1 5 5 2 ( 7 8 ) 9 . 0 6 < 9 4 > 1.21< 4 > M 9 9 . 0 ( c ) N 0 2 W 7 7 > 8 . 4 3 ( 9 4 > 1 . 197< 9 5 > M U 1 ( 9 1 ) ( C H 3 ) 3 N 0 937 3 . 8 t o , . , . ( 5 ) 4 . 8 l s 6 , 1 . 3 6 - . 0 3 E . D . ONF3 1690 0 N F 2 * 1850 ( b ) N - F hi* M e t h o d Ave N-F K c a l s / m o l e NF U 1 5 < 9 7 > 1 .35 ( b ) n ( 9 8 ) N F 2 NF3 a 1 0 0 5 < 9 9 > a 9 4 7 < 7 9 > i * 3 6 3 ( 1 0 0 ) M - 0 . 0 0 8 1 . 3 7 ( 1 0 1 > K 7 1(98> 6 6 < 9 8 > 0 2 N F ONF 8 2 2 ( 7 8 ) 7 6 6 < 3 6 > 1.35<*> 1 . 5 2 < 9 3 > M M 4 4 . 7 < 1 0 2 > 5 5 . 4 < 3 4 > ONF3 a 840 T a b l e c o n t i n u e d p . 113 113 TABLE 18 c o n t i n u e d ( a ) V a l u e s c a l c u l a t e d b y u s i n g L e h m a n n ' s r u l e ^ 1 0 ^ F o r a s p e c i e s ABx = J ( V • <*-l) *aayJ ( b ) The NF d i s t a n c e was e s t i m a t e d b y B o h n and Bauer^ f r o m a d i s t a n c e - f r e q u e n c y c o r r e l a t i o n . ( c ) See A p p e n d i x 3 f o r c a l c u l a t i o n o f t h e s e bond e n e r g i e s . E . D . — E l e c t r o n D i f f r a c t i o n I . R . — I n f r a r e d S p e c t r o s c o p y M — M i c r o w a v e S p e c t r o s c o p y The f o r c e c o n s t a n t s f o r t h e N - F bonds h a v e n o t been i n c l u d e d as t h e y a r e v e r y d e p e n d e n t o n t h e p a r t i c u l a r p o t e n t i a l f u n c t i o n u s e d i n t h e i r c a l c u l a t i o n . 3 . 1 0 . B o n d i n g i n ONF^ I n t h e a b s e n c e o f r e l i a b l e s t r u c t u r a l and t h e r m o -c h e m i c a l d a t a any d i s c u s s i o n c o n c e r n i n g t h e b o n d i n g i n t h e m o l e c u l e must be r a t h e r s p e c u l a t i v e . H o w e v e r , some s u g g e s t i o n s c a n be made b a s e d o n t h e f r a g m e n t a r y e v i d e n c e t h a t i s a v a i l a b l e : 19 a) The g e o m e t r y C 3 V ( F n . m . r . I . R . ) b) A n o n - p o l a r N - 0 b o n d . ( V o l a t i l i t y , l a c k o f i n t e r a c t i o n w i t h s t r o n g a c i d s , h i g h N - 0 s t r e t c h i n g f r e q u e n c y , T a b l e 1 8 ) . 114 19 c ) U n s h i e l d e d F atoms ( F n . m . r . ) d) S u b s t a n t i a l d e g r e e o f c o v a l e n t c h a r a c t e r i n N-0 and N - F bonds ( s o l u b i l i t y i n CCI3F, weak f l u o r i d e i o n d o n o r p r o p e r t i e s ) . T h r e e m o d e l s c a n be p r o p o s e d t o r e p r e s e n t t h e b o n d i n g i n O N F 3 : 0-(i) I N t ' F F F 0" 0 0 0 L U U i + N * «-» N <-> N \ ««—> N . / I F / I F - - \ F / F F F F F F F F F -< i i i ) 8 N F F I n s t r u c t u r e ( i ) c h a r g e s a r e r e s i d e n t i n t h e n i t r o g e n and o x y g e n a t o m s . The n i t r o g e n - o x y g e n bond w o u l d be r a t h e r l o n g and t h e n i t r o g e n - f l u o r i n e bond p r o b a b l y s h o r t . V a r i o u s p r o p e r t i e s s u g g e s t t h a t m o d e l ( i ) i s n o t a good r e p r e s e n t a t i o n o f t h e b o n d i n g i n ONF3 . 115 A . P r o t o n a t i o n has n o t b e e n o b s e r v e d B . ONF3 i s n o t a s s o c i a t e d i n t h e l i q u i d s t a t e C . S o l u b i l i t y i n CCI3F D . H i g h v a l u e o f V N Q ( s e e T a b l e 18) S t r u c t u r e ( i i ) i s r e p r e s e n t e d b y f o u r r e s o n a n c e h y b r i d s i n v a l e n c e bond t e r m s . The N - 0 bond o r d e r w o u l d be 1-3/4 and each N - F bond 3 / 4 . T h i s m o d e l w o u l d be c o n s i s t a n t w i t h t h e p h y s i c a l and c h e m i c a l b e h a v i o u r o f t h e m o l e c u l e , w i t h 19 t h e e x c e p t i o n o f t h e F n . m . r . r e s u l t s w h i c h s u g g e s t t h a t t h e f l u o r i n e atoms i n ONF3 a r e u n s h i e l d e d . S t r u c t u r e ( i i i ) w o u l d r e q u i r e p e n t a c o v a l e n c y f o r t h e n i t r o g e n a t o m , and i s t h e r e f o r e o f i n t e r e s t . A n argument a g a i n s t t h i s s t r u c t u r e i s t h e p r o b a b l e l o w s t r e n g t h o f t h e N - F bond ( s e e T a b l e 1 8 ) , a l t h o u g h t h i s does n o t r u l e o u t t h e p o s s i b i l i t y o f p e n t a c o v a l e n c y . A c c u r a t e bond d i s t a n c e s a r e n e e d e d i n o r d e r t o d i s t i n g u i s h between ( i i ) and ( i i i ) . To t h i s e n d , a s a m p l e o f ONF3 has been s e n t t o K . H e d b e r g a t O r e g o n S t a t e U n i v e r s i t y f o r an e l e c t r o n d i f f r a c t i o n s t u d y . I t i s p o s s i b l e t h a t t h e v a l e n c e bond t h e o r y m i g h t be u n s a t i s f a c t o r y i n e x p l a i n i n g t h e b o n d i n g i n ONF3 as i s t h e c a s e f o r n i t r o s y l f l u o r i d e . ( 1 0 4 > 116 3 . 1 1 . The S a l t ( N O ) 2 N i F 6 The e m p i r i c a l f o r m u l a ( N O ^ N i F g was e s t a b l i s h e d by c h e m i c a l a n a l y s i s . The i n f r a r e d s p e c t r u m was c o n s i s t a n t w i t h 4- 2 -t h e s a l t c o n t a i n i n g t h e NO , and N i F g i o n s . R e p o r t e d NO* 2150 t o 2400 c m " 1 * 1 0 5 / ( N 0 ) 2 N i F 6 2313 c m " 1 ( f l u o r o l u b e m u l l ) 2 ( 106) R e p o r t e d N i F 6 i n K 2 N i F 6 653 cm ( N 0 ) 2 N i F 6 635 c m " 1 ( f l u o r o l u b e m u l l ) 650 c m " 1 ( s o l i d ) ; The f a c t t h a t t h e compound i s d i a m a g n e t i c i s c o n s i s -t a n t w i t h a d s p i n p a i r e d c o n f i g u r a t i o n o f t h e d e l e c t r o n s , and i m p l i e s a f o r m a l +4 o x i d a t i o n s t a t e o n t h e m e t a l a t o m . The a l k a l i m e t a l compounds ( K , R b , C s ) A 2 N i F g a r e a l s o d i a m a g n e t i c , ^ and l i k e t h e n i t r o s y l s a l t , r e d c o l o u r e d . The X - r a y a n a l y s i s o f a s i n g l e c r y s t a l c o n f i r m e d t h e ( N O ^ N i F g s t r u c t u r e ( s e e C h a p t e r I I I ) . 117 CHAPTER I I I THE CRYSTAL STRUCTURE OF ( N 0 ) 2 NiFg Chapter Summary The X-ray powder d i f f r a c t i o n pattern of (NO) 2NiFg o could be indexed on a hexagonal unit c e l l a = 5.524 A , o jc * 5.097 A, except f o r f i v e d i f f u s e l i n e s that varied i n i n -te n s i t y from sample to sample. Weissenberg (h k 0, h k 1, h k 2, h k 3,) photographs were obtained. These showed two sets of r e f l e c t i o n s . One sharp strong set that could be indexed on the same hexagonal c e l l as the li n e s on the powder photograph, and a weak diff u s e set of r e f l e c t i o n s that to-gether with the strong r e f l e c t i o n s could be indexed on the hexagonal unit c e l l , a = 4 x 5.524, c = 5.097 A structure determination was carried out using the strong sharp set of r e f l e c t i o n s . The d i f f r a c t i o n data were consistent with various models, but the most l i k e l y a l t e r n a t i v e consisted of 2-(NiFg) groups with the flu o r i n e atoms i n a regular octahedron around the n i c k e l atom and the Ni-F bond distance equal to i.76 a. The N-0 bond distance was very short, 0.88 A, and had associated with i t regions of electron density to the passing through the nitrogen and oxygen atoms of the (NO) ion. A s i m i l a r s i t u a t i o n for the 0 2 ion i n 0 2PtFg was reported by Ibers and Hamilton. 117 Ci) CHAPTER I I I THE CRYSTAL STRUCTURE OF ( N 0 ) 2 N i F 6 1. INTRODUCTION No c r y s t a l s t r u c t u r e c o n t a i n i n g t h e n i t r o s y l i o n has b e e n r e p o r t e d i n t h e l i t e r a t u r e . The n i t r o g e n - o x y g e n bond d i s -t a n c e i n t h e ( N O ) * i o n has h o w e v e r been d e t e r m i n e d s p e c t r o s c o p -i c a l l y as 1 .062 The 0 2 * i o n i s r e l a t e d t o ( N O ) * . I b e r s and H a m i l t o n ^ 1 0 ^ r e f i n e d t h e s t r u c t u r e o f 0 2 P t F g b y a n e u t r o n d i f f r a c t i o n s t u d y o f t h e p o w d e r , t h e s e d a t a b e i n g c o n -s i s t e n t w i t h s e v e r a l m o d e l s . The m o d e l w i t h t h e l o w e s t R v a l u e o ( 0 . 1 0 5 1 ) gave t h e o x y g e n - o x y g e n bond d i s t a n c e o f 0 . 9 1 A , a l -t h o u g h a n o t h e r a c c e p t a b l e m o d e l ( R = 0 . 1 5 9 ) , a l l o w e d an o x y g e n -o o x y g e n bond d i s t a n c e o f 1 .21 A . I n a l l t h e m o d e l s t h e s h o r t e s t o o x y g e n - f l u o r i n e bond d i s t a n c e ( 2 . 5 A) was s h o r t e r t h a n t h e sums o f e i t h e r t h e v a n d e r Waals o r i o n i c r a d i i . I b e r s and H a m i l t o n s u g g e s t t h a t p r o b a b l y t h e d a t a i s c o n s i s t e n t w i t h a s h o r t 0 - 0 bond b e c a u s e o f some s p e c i a l c r y s t a l l o g r a p h i c f e a -t u r e , a l t h o u g h t h e y p o i n t o u t i t c o u l d a l s o b e due t o t h e h i g h l y e l e c t r o n e g a t i v e e n v i r o n m e n t o f t h e f l u o r i n e atoms a r o u n d t h e 0 2 * i o n . I t was t h e r e f o r e o f i n t e r e s t t o d e t e r m i n e t h e N - 0 bond d i s t a n c e i n t h e r e l a t e d s p e c i e s ( N O ) * i n a s i n g l e c r y s t a l w i t h a s i m i l a r e l e c t r o n e g a t i v e e n v i r o n m e n t , and t o e s t a b l i s h w h e t h e r t h e r e w e r e any f l u o r i n e - o x y g e n o r 118 f l u o r i n e - n i t r o g e n i n t e r a c t i o n s . The c r y s t a l a n a l y s i s was a l s o u n d e r t a k e n t o d e t e r m i n e w h e t h e r o r n o t any s t r u c t u r a l f e a t u r e o f ( N O ) 2 N i F g was r e s p o n s i b l e f o r i t s b e i n g an i n t e r m e d i a t e i n t h e p r e p a r a t i o n o f ONF3. V o n H . B o d e x ' r e p o r t e d a N i - F d i s t a n c e o f 1 .70 A i n R b 2 N i F g . The s t r u c t u r e was d e t e r m i n e d f r o m powder d a t a , b u t no d e t a i l s o f t h e a n a l y s i s were g i v e n . 2 . EXPERIMENTAL 2 . 1 . X - r a y D i f f r a c t i o n P h o t o g r a p h s o f S i n g l e C r y s t a l s  o f ( N O ) 2 N i F 6 Red c r y s t a l s o f ( N 0 ) 2 N i F g were o b t a i n e d as n e e d l e s e l o n g a t e d a l o n g t h e c a x i s . The c r y s t a l s were mounted i n 0 . 5 mm q u a r t z c a p i l l a r i e s i n t h e d r y b o x , and t h e n s e a l e d w i t h a h o t f l a m e . S e v e r a l c r y s t a l s were examined b e f o r e a s u i t a b l e c r y s t a l was f o u n d . I t was n o t o n l y n e c e s s a r y t o f i n d a good s i n g l e c r y s t a l , b u t one t h a t d i d n o t move o n r o t a t i n g t h e c a p i l l a r y i n w h i c h t h e y were h o u s e d . A r o t a t i o n p h o t o g r a p h was o b t a i n e d w i t h t h e c r y s t a l r o t a t i n g a b o u t t h e c a x i s . W e i s s e n b e r g ( h k O , h k l , h k 2 , J* k 3) p h o t o g r a p h s w e r e o b -t a i n e d ( s e e P l a t e s 1, 2 ) . T h e r e were two s e t s o f r e f l e c t i o n s . One s e t c o n s i s t e d o f s h a r p r e f l e c t i o n s t h a t c o u l d be i n d e x e d o n t h e h e x a g o n a l u n i t c e l l ( a = 5 . 5 2 4 , £ = 5 . 0 9 7 %, z = 1 119 TABLE 19 X - r a y Powder D a t a f o r (NO)oNiFr; C a l c . 1 / d 2 w i t h C a l c . 1 / d 2 w i t h H e x a g o n a l u n i t H e x a g o n a l u n i t O b s e r v e d c e l l d i m e n s i o n s c e l l d i m e n s i o n s 1 / d 2 I -2 I / I o a=b= 5 . 5 2 4 r t A a=b= 4 x 5 . 5 2 4 A c = 5 . 0 9 7 A c = 5 . 0 9 7 h k 1 i/d2a-2> h k 1 V d 2 <S 0 . 0 4 3 9 6 v s 100 0 . 0 4 3 7 400 0 . 0 4 3 7 010 040 0 . 0 4 8 8 3 m 201 0 . 0 4 9 4 0 2 1 0 . 0 7 1 8 vw 221 0 . 0 7 1 2 0 . 0 8 1 5 m 101 0 . 0 8 2 2 401 0 . 0 8 2 2 011 041 0 . 0 8 5 6 m 510 0 . 0 8 4 6 0 . 1 1 3 1 vw 331 0 . 1 1 2 2 0 . 1 3 0 7 s 110 0 . 1 3 1 1 440 0 . 1 3 1 1 0 . 1 4 2 8 vw 260 0 . 1 4 2 1 0 . 1 5 4 1 m 002 0 . 1 5 4 0 002 0 . 1 5 4 0 0 . 1 7 4 9 w 200 0 . 1 7 4 8 800 0 . 1 7 4 8 020 080 0 . 1 9 6 2 m 102 0 . 1 9 7 7 402 0 . 1 9 7 7 012 042 0 . 2 1 4 6 v s 201 0 . 2 1 3 3 801 0 . 2 1 3 3 021 081 0 . 2 8 5 1 ms 112 0 . 2 8 5 0 442 0 . 2 8 5 0 0 . 3 0 7 4 mw 210 0 . 3 0 5 9 840 0 . 3 0 5 9 v 120 480 0 . 3 2 9 4 s 202 0 . 3 2 8 7 802 0 . 3 2 8 7 022 082 0 . 3 9 3 7 mw 300 0 . 3 9 3 2 1200 0 . 0 3 9 2 030 0120 0 . 4 3 0 9 w 301 0 . 4 3 1 7 1201 0 . 4 3 1 7 031 0121 0 . 4 6 0 9 MW 212 0 . 4 5 9 8 842 0 . 4 5 9 8 122 482 0 . 5 2 5 8 ms 220 0 . 5 2 4 3 880 0 . 5 2 4 3 0 . 5 4 8 5 mw 302 0 . 5 4 7 2 1202 0 . 5 4 7 2 032 0122 ( i - 2 ) TABLE 19 c o n t i n u e d O b s e r v e d l / d * a-* I / I o C a l c . l / dz w i t h H e x a g o n a l u n i t c e l l d i m e n s i o n s a=b= 5 . 5 2 4 A c = 5 . 0 9 7 A C a l c . l / d z w i t h H e x a g o n a l u n i t c e l l d i m e n s i o n s a=b= 4 x 5 . 5 2 4 1 c = 5 . 0 9 7 h k 1 h k 1 2 o . l / d 2 < A 0 . 5 6 9 6 mw 310 0 . 5 6 8 0 1240 0 . 5 6 8 0 130 4120 0 . 6 5 6 3 w 213 0 . 6 5 2 3 843 0 . 6 5 2 3 123 483 104 0 . 6 5 9 5 404 0 . 6 5 9 5 014 0 4 4 0 . 7 2 1 8 w 312 0 . 7 2 2 0 1242 0 . 7 2 2 0 132 4122 0 . 7 3 6 9 w 401 0 . 7 3 7 6 1601 0 . 7 3 7 6 0 4 1 0161 0 . 7 9 0 5 W W 204 0 . 7 9 0 6 804 0 . 7 9 0 6 0 2 4 ; 0 8 4 0 . 8 2 9 1 w 320 0 . 8 3 0 2 1280 0 . 8 3 0 2 230 8120 0 . 8 5 2 5 w 402 0 . 8 5 3 1 1602 0 . 8 5 3 1 042 0162 0 . 9 2 0 2 w 214 0 . 9 2 1 7 844 0 . 9 2 1 7 124 484 1 .0729 vw 142 1 .0715 4162 1 .0715 412 1642 1 .1827 W W 314 0 . 1 8 3 9 1244 0 . 1 8 3 9 1 . 2 4 4 6 W W 502 1 . 2 4 6 3 2002 1 .2463 052 0202 1 .2639 W W 413 1 .2640 1643 1 .2640 143 4163 1 .3542 vww 510 1 .3545 2040 1 .3545 150 4200 305 1 .3555 1205 1 .3555 035 0125 1 .3735 w 422 1 .3774 1682 1 .3774 242 8162 1 .3807 vw 006 1 .3857 006 1 .3857 1 .4417 w 503 1 .4388 2003 1 . 4 3 8 8 121 TABLE 19 c o n t i n u e d C a l c . 1 / d 2 w i t h C a l c . l / d w i t h H e x a g o n a l u n i t H e x a g o n a l u n i t O b s e r v e d c e l l d i m e n s i o n s c e l l d i m e n s i o n s 1 / d 2 X-2 I / I o a=b= 5 . 5 2 4 A c=5.097 A* - a=b=5.524 c = 5 . 0 9 7 h k 1 l / d 2 < & - 2 ) h k 1 053 0203 1 . 4 4 9 8 vw 324 1 .4460 1284 1 . 4 4 6 0 234 8124 1 . 5 0 4 9 w 512 1 .5085 2042 1 .5085 512 2042 1 .5707 w 423 1 .5698 1683 1 .5698 243 8163 1 .5788 w 600 1 .5730 2400 1 .5730 060 0240 ( s e e s e c t i o n 2 . 2 ) ) , and showed t h e L a u e symmetry o f 6/mmm. A s e c o n d s e t o f d i f f u s e r e f l e c t i o n s o f much l o w e r i n t e n s i t y were p r e s e n t o n s t r e a k s d e f i n i n g v a r i o u s f e s t o o n s . A l l o f t h e s p o t s , b o t h weak d i f f u s e , and s t r o n g s h a r p , c o u l d be i n d e x e d o n t h e h e x a g o n a l u n i t c e l l , a • 4 x 5 . 5 2 4 2, c = 5 . 0 9 7 A* , z m 16 ( s e e T a b l e 1 9 . ) . 2 . 2 . X - r a y Powder P h o t o g r a p h s C r y s t a l s o f ( N O ^ N i F g were c r u s h e d i n an a g a t e m o r t a r and p e s t a l i n t h e d r y box and powder p h o t o g r a p h s were o b t a i n e d . The r e l a t i v e i n t e n s i t y o f f i v e o f t h e l i n e s v a r i e d 122 Plate 1 h k 0 layer Weissenberg Photograph of (N0) 2N1F h k 1 123 P l a t e 2 h k 3 l a y e r W e i s s e n b e r g P h o t o g r a p h o f ( N O ^ N i F g h k 2 124 f r o m sample t o s a m p l e . These l i n e s o f v a r i a b l e i n t e n s i t y were a l s o d i f f u s e . A l l t h e s t r o n g s h a r p l i n e s o f c o n s t a n t i n t e n s i t y w h i c h i n c l u d e d a l l t h e l i n e s i n t h e powder p h o t o g r a p h e x c e p t t h e f i v e d i f f u s e l i n e s , c o u l d be i n d e x e d o n t h e h e x a g o n a l u n i t c e l l , a = 5 . 5 2 4 X, c = 5 . 0 9 7 A . ( A c c u r a t e c e l l d i m e n -s i o n s were o b t a i n e d by a N e l s o n - R i l e y e x t r a p o l a t i o n . ) A l l t h e r e f l e c t i o n s c o u l d be i n d e x e d w i t h t h e h e x a g o n a l u n i t c e l l o o a = 4 x 5 . 5 2 4 A , c = 5 . 0 9 7 A ( s e e T a b l e 1 9 . ) . 2 . 3 . D e t e r m i n a t i o n o f S t r u c t u r e o f ( N O ^ N i F ^ B a s e d o n t h e  S t r o n g S h a r p S e t o f R e f l e c t i o n s 2 . 3 . 1 . C r y s t a l D a t a ( )\ , CuK^ - no f i l t e r r e q u i r e d h = 1 .5418 X) ( N 0 ) 2 N i F 6 , N i t r o s y l H e x a f l u o r o n i c k e l a t e ( I V ) , M.W. = 2 3 2 . 7 T r e a t e d as H e x a g o n a l w i t h a = 5 . 5 2 4 , c = 5 . 0 9 7 X. U = 1 3 4 . 6 A J , z = 1, b a s e d o n a f l u o r i n e a t o m i c o v o l u m e o f c a . 20 A , P c a l c . = 2 . 8 7 F ( 0 0 0 ) = 1 1 2 A b s o r p t i o n c o e f f i c i e n t f o r X - r a y s , / ( ( C u - K / J = 6 3 . 4 c m " 1 A b s e n t r e f l e c t i o n s : h h ( 2 h ) l when L i s o d d . Space g r o u p s : £ 63/m m c , . P 63 m c , P 6 2c 125 The s t r u c t u r a l a n a l y s i s was c a r r i e d o u t u s i n g i n -c o m p l e t e d a t a . The i n t e n s i t i e s o f t h e weak d i f f u s e r e f l e c -t i o n s w h i c h c o u l d be i n d e x e d o n t h e l a r g e r u n i t c e l l a = o 4 x 5 . 5 2 4 , c = 5 . 0 9 7 A were n o t m e a s u r e d . The i n t e n s i t i e s o f t h e s t r o n g r e f l e c t i o n s were m e a s u r e d o n a G e n e r a l E l e c t r i c X RD-5 S p e c t r o g o n i o m e t e r , u s i n g a s c i n t i l l a t i o n c o u n t e r , C u r a d i a t i o n ( w i t h p u l s e h e i g h t a n a l y s e r ) , and a 6 - 20 s c a n . A l l o f t h e 75 i n d e p e n d e n t r e f l e c t i o n s w i t h 2 0 - $ 1 4 5 ° w e r e o b s e r v e d above b a c k g r o u n d . A l l o f t h e i n t e n s i t i e s were c o r r e c t e d f o r b a c k g r o u n d ( a p p r o x i m a t e l y a f u n c t i o n o f © o n l y ) . The c r y s t a l measured . 0 2 x . 1 0 x . 2 1 mm a l o n g a , b , and c r e s p e c t i v e l y and was mounted w i t h c p a r a l l e l t o t h e J> a x i s o f t h e g o n i o s t a t . L o r e n t z and p o l a r i s a t i o n f a c t o r s were a p p l i e d and t h e s t r u c t u r e a m p l i t u d e s were d e r i v e d . 2 . 3 . 2 . S t r u c t u r e A n a l y s i s The a p p r o x i m a t e p o s i t i o n s o f a l l t h e atoms were d e t e r m i n e d f r o m t h e t h r e e d i m e n s i o n a l P a t t e r s o n f u n c t i o n . The P a t t e r s o n map s u g g e s t e d t h a t t h e n i c k e l atoms were d i s o r d e r e d ( r a n d o m o c c u p a t i o n o f o , o , o , o r o , o , % ) . The s t r u c t u r e was r e -f i n e d i n t h e s p a c e g r o u p P. 63/m m c b/ b l o c k d i a g o n a l l e a s t s q u a r e s methods m i n i m i s i n g t h e f u n c t i o n £ W(Fo - F c ) 2 w i t h u n i t w e i g h t s l e a d i n g t o a n o v e r a l l R = . 2 4 . The p a r a m e t e r s f o u n d f o r t h i s m o d e l ( I ) a r e s e t o u t i n T a b l e 2 0 . An e l e c t r o n 126 d e n s i t y d i f f e r e n c e map a t t h i s p o i n t i n d i c a t e d e l e c t r o n d e n s i t y s u r r o u n d i n g t h e p o r t i o n o f t h e f l u o r i n e atom a t Z = a p p r o x . . 2 0 , and an e l e c t r o n d e n s i t y n e a r t h e n i c k e l atom p o r t i o n a t Z = a p p r o x . . 0 5 . Two a l t e r n a t i v e s w e r e c o n s i d e r e d . E i t h e r t h e s p a c e g r o u p symmetry c o u l d be r e d u c e d t o P 63 m £ , and an o r d e r e d s t r u c t u r e p r e s e r v e d ( M o d e l l i b ) , o r t h e f l u o r i n e atoms d i s -o r d e r e d i n P 63/m m c ( M o d e l 1 1 a ) . C a l c u l a t i o n s u s i n g t h e more o r d e r e d s t r u c t u r e i n P 63 m c a l l o w e d u n e q u a l N i - F bond l e n g t h s , 1 .77A and 2 . 1 2 (R = 0 . 1 2 ) . M o d e l ( U a ) a l l o w e d t h e f l u o r i n e atoms t o be s p l i t and d i s o r d e r e d o n e i t h e r s i d e o f t h e m i r r o r p l a n e a t Z = \ . C a l c u l a t i o n s b a s e d o n t h i s m o d e l gave i d e n -t i c a l agreement to t h e f o r m e r m o d e l b u t gave s i x e q u a l N i - F o bond d i s t a n c e s o f 1.77 A . The e l e c t r o n d e n s i t y d i f f e r e n c e map t h e n showed a p e a k o n b o t h s i d e s o f t h e n i c k e l atom p o s i t i o n a l o n g t h e Z - a x i s , and t h e e l e c t r o n d e n s i t y n o r m a l t o t h e t h r e e f o l d a x i s a r o u n d t h e ( N + 0 ) / 2 a t o m s . M o d e l (111) was d e s i g n e d t o remove t h e r e s i d u a l e l e c t r o n d e n s i t y a b o u t t h e n i c k e l atom by f u r -t h e r d i s o r d e r i n g o f t h e n i c k e l atom o n e i t h e r s i d e o f t h e o r i g i n a l o n g t h e Z a x i s . I n M o d e l ( I V ) t h e ( N + 0 ) / 2 atom was 127 TABLE 20 T h e r m a l and P o s i t i o n a l P a r a m e t e r s f o r V a r i o u s M o d e l M o d e l X y N i z B 1 o , o , o , 1 . 3 9 4 1 1 a o , o , o , 2 . 1 4 6 111 o , o , . 0 2 7 7 1 .578 IV o , o , o , * M o d e l F 1 0 . 1 5 0 9 0 . 3 0 1 8 . 2 5 4 . 6 7 0 l l a 0 . 1 5 1 2 2 0 . 3 0 2 4 4 . 2 0 3 . 6 5 8 111 0 . 1 5 1 5 5 0 . 3 0 3 1 1 . 1 9 6 2 3 2 . 9 8 7 IV 0 . 1 5 1 7 4 0 . 3 0 3 4 9 . 1970 3 . 0 0 5 M o d e l (N+0)/2 R 1 1/3 2/3 . 16 6 .317 0 . 2 4 l l a 1/3 2/3 . 1637 5 . 6 6 0 . 1 2 111 1/3 2/3 . 1 6 5 5 . 2 . 0 9 2 IV 0 . 3 2 1 8 5 0 . 6 4 3 6 9 . 166 3 . 0 5 9 . 0 9 5 * A n i s o t r o p i c F a c t o r s B u • B 1 2 = B 2 2 = 0 . 0 1 5 9 1 P o s i t i o n a l P a r a m e t e r s B 1 3 " B 2 3 = 0 . 0 0 0 i n A B 3 3 = 0 . 0 3 4 2 3 T h e r m a l P a r a m e t e r s B i n A 2 128 F i g u r e 9 . A P r o j e c t i o n o f t h e (N1F&) " Group i n (NO)gNiFft A l o n g an A x i s N o r m a l t o t h e P l a n e N i Z -> x R e s u l t s : M o l e c u l a r D i m e n s i o n fo Bond D i s t a n c e s A l l N - F bond d i s t a n c e s N - 0 bond d i s t a n c e s C l o s e s t (N+0) - F c o n t a c t F 3 N i F l F % i F 2  F 3 F 2 F 2 F 1 ( N O ) 2 N i F 6 ( M o d e l I V ) 1.76 A o . 8 8 A 2 .47 A 9 0 . 8 ° 8 9 . 2 ° 3 . 0 1 ° X 2 . 9 3 % 129 p l a c e d s l i g h t l y away f r o m t h e t h r e e f o l d a x i s , and t h e n i c k e l atom g i v e n a n i s o t r o p i c t e m p e r a t u r e f a c t o r s ( R = 0 . 0 9 5 ) . The w e i g h t i n g scheme u s e d was: Jw = 1, i f i F o l < F * and Jw = f o r IFo l >/ F * F * = . 8 . Jw f o r u n o b s e r v e d r e f l e c t i o n s = . 8 . Fo i n t e r v a l f o r w e i g h t i n g scheme = 3 . 0 0 3 A n e l e c t r o n d i f f e r e n c e map showed no p e a k s above . 1 3 e / A . The o b s e r v e d and c a l c u l a t e d s t r u c t u r e f a c t o r s f o r t h e l a s t c y c l e o f l e a s t s q u a r e s r e f i n e m e n t f o r m o d e l ( I V ) a r e l i s t e d i n A p p e n d i x 3 . 2 . 4 . D i s c u s s i o n o f R e s u l t s T h r e e m o d e l s were c o n s i d e r e d f o r t h e s t r u c t u r e o f ( N 0 ) 2 N i F 6 . The m o d e l s d i f f e r i n t h e s t r u c t u r e o f the N i F g g r o u p s , and i t i s t h i s t h a t i s compared i n t h e f o l l o w i n g d i s c u s s i o n . M o d e l ( l l b j i The f l u o r i n e atoms were a r r a n g e d i n o r d e r e d l a y e r s % c a p a r t , w i t h t h e n i c k e l atoms r a n d o m l y o c c u p y i n g s i t e s s e p a r a t e d by c / 2 . The n i c k e l atoms a r e n o t s i t u a t e d e x a c t l y h a l f w a y between t h e f l u o r i n e l a y e r s , t h u s t h e r e a r e two s e t s o f N i F d i s t a n c e s , 2 . 1 2 , and 1.77 A . 130 M o d e l ( I V ) The N i F g u n i t i s r a n d o m l y a r r a n g e d w i t h t h e n i c k e l atom e i t h e r a t 0 , 0 , 0 , o r 0 , 0 , % , and w i t h a r e g u l a r a r r a n g e m e n t o f f l u o r i n e atoms e q u a l l y s p a c e d a r o u n d i t ( s e e f i g u r e 1 0 . ) . M o d e l (111) 2-The a s y m m e t r i c N i F g g r o u p i s r a n d o m l y a r r a n g e d 4 4 4 w i t h t h e n i c k e l atoms a r r a n g e d a t - 0 , 0 , - Z , o r 0 , 0 , % - Z , and t h e f l u o r i n e atoms a s y m m e t r i c a l l y p l a c e d a r o u n d t h e n i c k e l a t o m s . 2 -I f i t i s assumed t h a t t h e N i F g i o n a p p r o x i m a t e s t o a r e g u l a r o c t a h e d r o n ( t h e compound i s d i a m a g n e t i c ) t h e n m o d e l ( I V ) i s t o be p r e f e r r e d . M o d e l (111) has t h e f e a t u r e o f i n c r e a s e d d i s o r d e r o f t h e n i c k e l atoms w h i c h makes i t l e s s a c c e p t a b l e . I t w o u l d be n e c e s s a r y t o do a s t r u c t u r a l d e t e r -m i n a t i o n b a s e d o n a l l r e f l e c t i o n s i n o r d e r t o f i n d a u n i q u e s o l u t i o n . A l l o f t h e m o d e l s had one f e a t u r e i n common, a v e r y s h o r t N - 0 bond d i s t a n c e , and " c u p s h a p e d " r e g i o n s o f e l e c t r o n d e n s i t y a r o u n d t h e 3m a x i s n e a r t h e NO g r o u p . These f e a t u r e s a r e v e r y s i m i l a r t o t h o s e d e s c r i b e d f o r t h e O2* i o n i n 0 2 * E t F 6 ~ / 1 0 8 / The N i - F bond d i s t a n c e o b t a i n e d i n m o d e l ( I V ) i s s i m i l a r t o t h a t f o u n d by V o n H . B o d e / 1 1 0 ' ( N i - F = 1.70 % i n R b 2 N i F g ) and i n good agreement w i t h t h e e x p e c t e d v a l u e c o n -s i d e r i n g t r e n d s f o u n d f o r o t h e r compounds o f g r o u p V l l l . 131 N i F 2 2 . 0 1 8 A (4) P d F 2 2 . 155 (4) 1 . 9 8 6 ( 2 ) 2 . 171 ( 2 ) N i F 6 2 " 1 .7b P d F 6 2 " 1 .89 The s t r u c t u r e o f ( N 0 ) 2 N i F g i s d i f f e r e n t f r o m o t h e r r e l a t e d n i t r o s y l and a l k a l i m e t a l h e x a f l u o r 6 m e t a l a £ e & ^ ( T 4 b l e 2 1 ) . H o w e v e r , b o t h ( N 0 ) 2 P t F g and ( N 0 ) 2 N i F g show some l i n e s t o be s h a r p and o t h e r s d i f f u s e , s u g g e s t i n g some d i s o r d e r i n t h e s t r u c t u r e . I n t h e c a s e o f ( N 0 ) 2 N i F g t h e d i f f u s e r e f l e c t i o n s w e r e g e n e r a l l y a l s o v e r y weak, and d i f f e r e d i n i n t e n s i t y f r o m s a m p l e t o s a m p l e , i n d i c a t i n g t h a t p e r h a p s t h e d e g r e e o f d i s -o r d e r a l s o v a r i e d . Some n i t r o s y l s a l t s a r e i s o m o r p h o u s w i t h t h e i r p o t a s s i u m a n a l o g u e o n t h e b a s i s o f a c o m p a r i s o n o f t h e r a t i o o f t h e c e l l l e n g t h s d e t e r m i n e d f r o m powder p h o t o g r a p h s ( s e e T a b l e 2 2 . ) . K l i n k e n b e r g ^ 1 1 1 ' r e p o r t s t h a t t h e s a l t s NH4CIO4, OH3 CIO4, N6CIO4 a r e i s o m o r p h o u s , as w e l l as NH4BF4 and NQBF^. (49) J h a N 7 r e p o r t s t h a t t h e s a l t s SF3 SbFg and NO S b F g , and N0'IrF6 and SF3lrFg a r e i s o m o r p h o u s o n t h e b a s i s o f X - r a y powder w o r k . Complex h a l i d e s g e n e r a l l y h a v e s t r u c t u r e s w h i c h a r e b a s e d o n c l o s e p a c k i n g o f t h e h a l i d e i o n s and c a t i o n s / 1 1 2 * 1 1 3 ' The i s o m o r p h i s m o f t h e n i t r o s y l and p o t a s s i u m s a l t s s u g g e s t t h a t t h e n i t r o s y l i o n i s a c t i n g as a s p h e r e i n t h e c r y s t a l 133 F i g u r e 10. A P r o j e c t i o n o f t h e (NCOoNiF^ S t r u c t u r e  ( M o d e l I V ) A l o n g t h e c A x i s F l u o r i n e atoms a t - z 134 F i g u r e 10 c o n t i n u e d D e s c r i p t i o n o f D i a g r a m The d i a g r a m i s o f an o r d e r e d u n i t o f ( N O ^ N i F g . I n m o d e l ( I V ) , t h e r e i s a n i d e n t i c a l u n i t s u p e r i m p o s e d o n t h e one s h o w n , d i s p l a c e d V 2 ^ f r o m i t . I n t h e d i a g r a m t h e n i c k e l atoms a r e p l a c e d a t t h e c o r n e r o f t h e u n i t c e l l w i t h t h r e e f l u o r i n e atoms b e l o w e a c h n i c k e l a t o m , and t h r e e a b o v e . The n i t r o s y l g r o u p s a r e t i l t e d a b o u t t h e t h r e e f o l d a x i s p a s s i n g t h r o u g h t h e p o s i t i o n s shown p e r p e n d i c u l a r t o t h e p l a n e o f t h e p a p e r . The t i l t i n g i s n o t shown i n t h e d i a g r a m f o r t h e s a k e o f c l a r i t y . * * * * * * * l a t t i c e . T h i s w o u l d s u g g e s t l a c k o f i n t e r a c t i o n between t h e NO g r o u p and t h e s u r r o u n d i n g a t o m s . The a p p a r e n t s i m p l i c i t y o f t h o s e n i t r o s y l s a l t s t h a t a r e i s o m o r p h o u s w i t h t h e i r p o t a s s i u m a n a l o g u e s i s c o n t r a s t e d w i t h t h e c o m p l e x i t y o f ( N O ^ N i F g . A f u l l s i n g l e c r y s t a l s t u d y m i g h t show w h e t h e r o r n o t t h i s c o m p l e x i t y i s a r e s u l t o f i n t e r a c t i o n o f t h e n i t r o s y l g r o u p s w i t h t h e s u r r o u n d i n g l i g a n d s . 135 TABLE 21 C o m p a r i s o n o f t h e C r y s t a l P a r a m e t e r s o f ( N O ) ? N i F g and Some R e l a t e d Compounds ( N O ) 2 N i F 6 H e x a g o n a l a = 4 X 5 . 5 2 4 A * c =5.097A* C s 2 N i F 6 ( 1 1 ° * C u b i c a = 8 . 9 2 1 R b 2 N i F 6 ( 1 1 0 ) C u b i c a = 8 . 4 4 A K 2 N i F 6 C u b i c a = 8 .10 A (49} o o ( N 0 ) 2 P t F 6 v H e x a g o n a l a = 1 0 . 0 1 A c = 3 . 5 3 A ( N 0 ) 2 P d F 6 ( 1 1 4 ^ Isomorphous w i t h ( N 0 ) 2 P t F 6 TABLE 22 Some Isomorphous N i t r o s y l and P o t a s s i u m S a l t s ( l 0 ~ ^ N0BF4 o r t h o r h o m b i c a s 7.88 b = 5 . 7 2 c = 7 .40 K B F 4 o r t h o r h o m b i c a s 7 . 8 3 b = 5 .67 c = 7 .35 NOSO3F o r t h o r h o m b i c a = 8 . 5 9 b = 5 . 9 9 c = 7 .37 KSO3F o r t h o r h o m b i c a s 8.56 b = 5 .95 c = 7 .33 ( N O ) 2 S n C l 6 C u b i c a s 10.24 K 2 S n C l 6 C u b i c a = 10.14 ( N 0 ) 2 P t C l 6 C u b i c a = 11.27 K 2 P t C l 6 C u b i c a = 11.18 136 CHAPTER I V REACTION OF IRIDIUM HEXAFLUORIDE WITH BROMINE AND CHLORINE PENTAFLUORIDE C h a p t e r Summary B r o m i n e and C h l o r i n e p e n t a f l u o r i d e s d i d n o t r e a d i l y r e a c t w i t h i r i d i u m h e x a f l u o r i d e . C h l o r i n e p e n t a f l u o r i d e , h o w e v e r , r e a c t e d w i t h i r i d i u m h e x a f l u o r i d e a t 200° t o g i v e s m a l l q u a n t i t i e s o f a y e l l o w compound. The e m p i r i c a l f o r m u l a o f t h e compound was e s t a b l i s h e d as CIF3, I r F , j b y e l e m e n t a l a n a l y s i s . The i n f r a -r e d s p e c t r u m and m a g n e t i c s u s c e p t i b i l i t y o f t h e compound were c o n s i s t e n t w i t h t h e f o r m u -l a t i o n C1F 2 + I r F 6 ' . CHAPTER I V 137 THE REACTION OF I r F g WITH BROMINE AND CHLORINE PENTAFLUORIDES 1. INTRODUCTION When n i t r o s y l f l u o r i d e r e a c t s w i t h i r i d i u m h e x a -f l u o r i d e t h e n i t r o g e n i s o x i d i s e d t o t h e +5 f o r m a l o x i d a t i o n s t a t e ( s e e s e c t i o n 2.1 . 5 . , c h a p t e r I I ) . 3 ONF + 2 I r F 6 = 2 NO I r F g + ONF3 R o b i n s o n and W e s t l a n d ^ 1 1 5 ' r e p o r t e d t h a t i r i d i u m h e x a f l u o r i d e r e a c t e d w i t h s u l p h u r t e t r a f l u o r i d e t o y i e l d SF3 I r F g , and S F 6 . 3 S F 4 + 2 I r F 6 = 2 SF3 I r F 6 + S F 6 T h i s r e a c t i o n was i n v e s t i g a t e d as a r o u t e t o h i g h e r f l u o r i d e s : 3 M F + 2 I r F 6 = 2 M I r F g + M F 2 A n a t t e m p t was made t o s y n t h e s i s CIF7, and B r F y b y t h i s r o u t e . I r i d i u m h e x a f l u o r i d e has a h i g h e l e c t r o n a f f i n i t y , ^ t h e r e f o r e a n a t t e m p t was made t o s y n t h e s i s t h e i o n s C l F g , and B r F 6 * ( i s o e l e c t r o n i c t o S e F g , and S F f i ) b y t h e r e a c t i o n o f C1F5, and B r F 5 w i t h i r i d i u m h e x a f l u o r i d e i n t h e p r e s e n c e o f 138 f l u o r i n e : F 2 4 2 C 1 F 5 4 2 I r F 6 = 2 C l F g * I r F , 2 . EXPERIMENTAL 2 . 1 . 1 . R e a c t i o n o f B r F ^ w i t h I r F ^ a t Room T e m p e r a t u r e B r o m i n e p e n t a f l u o r i d e and i r i d i u m h e x a f l u o r i d e were r e a c t e d t o g e t h e r i n a " w e i g h i n g v e s s e l " , i n a s i m i l a r manner t o t h a t d e s c r i b e d e a r l i e r ( C h a p t e r I I , s e c t i o n 2 . 1 . 5 ) f o r t h e I r F 6 , ONF r e a c t i o n . I r i d i u m H e x a f l u o r i d e ( 0 . 6 7 8 3 g ) , and b r o m i n e p e n t a f l u o r i d e ( 0 . 5 1 3 3 g) were c o n d e n s e d i n t o t h e M o n e l r e a c t i o n v e s s e l a t - 1 9 6 ° . A f t e r a l l o w i n g t h e c a n t o warm up t o room t e m p e r a t u r e , i t was c o o l e d t o l l i q u i d n i t r o g e n t e m -p e r a t u r e s and t h e n c o n n e c t e d t o a g a u g e . The c o n t e n t s o f t h e v e s s e l e x e r t e d no m e a s u r a b l e p r e s s u r e a t t h i s t e m p e r a t u r e , w h i c h i n d i c a t e d t h e a b s e n c e o f f l u o r i n e g a s . A f t e r w a r m i n g t o room t e m p e r a t u r e , t h e g a s e s i n t h e c e l l w e r e c o n d e n s e d i n t o an i n f r a r e d c e l l . The i n f r a r e d s p e c t r u m showed t h e p r e s e n c e o f b o t h I r F g , and B r F 5 # The r e a c t i o n v e s s e l was w e i g h e d and showed an i n c r e a s e i n w e i g h t o f 0 . 0 8 7 8 g i n d i c a t i n g t h a t t h e r e was v e r y l i t t l e r e a c t i o n between I r F g and BrFc. 139 2 . 1 . 2 . R e a c t i o n o f I r F f i . B r F u and F l u o r i n e A m i x t u r e o f I r F g , and B r F 5 ( 0 . 1 3 3 gms) was c o n d e n s e d i n t o a " s o l i d r e a c t o r " . H i g h p r e s s u r e f l u o r i n e was added t o t h e c a n t o a p r e s s u r e o f a b o u t f i v e a t m o s p h e r e s and t h e c a n h e a t e d a t 1 7 0 ° o v e r n i g h t w i t h t h e l i d o f t h e v e s s e l c o o l e d b y c o m p r e s s e d a i r . The f l u o r i n e was pumped o f f a t l i q u i d n i t r o g e n t e m p e r a t u r e s and t h e c a n w e i g h e d . No i n c r e a s e i n w e i g h t was o b s e r v e d , i n d i c a t i n g no u p t a k e o f f l u o r i n e g a s . The v o l a t i l e g a s e s p r e s e n t i n t h e v e s s e l were c o n d e n s e d i n t o a n i n f r a r e d c e l l . The i n f r a r e d s p e c t r u m showed t h e p r e s e n c e o f i r i d i u m h e x a f l u o r i d e , and b r o m i n e : p e n t a f l u o r i d e . The c a n i n c r e a s e d 0 . 0 2 5 7 g i n w e i g h t and when opened i n t h e d r y box showed a v e r y t h i n c o a t i n g o f a y e l l o w m a t e r i a l o n t h e w a l l s o f t h e r e -a c t o r . 2 . 2 . 1 . R e a c t i o n o f C I F ^ and I r F 6 I r i d i u m h e x a f l u o r i d e ( 0 . 8 8 m i l l i m o l e s ) and c h l o r i n e p e n t a f l u o r i d e ( 1 . 7 6 m i l l i m o l e s ) were c o n d e n s e d i n t o a r e a c t i o n v e s s e l . The g a s e s were warmed up t o room t e m p e r a t u r e and e x -panded i n t o t h e l i n e . The p r e s s u r e r e a d i n g i n d i c a t e d t h a t t h e r e h a d been no r e d u c t i o n o f p r e s s u r e . The gases were t r a n s -f e r r e d t o an i n f r a r e d c e l l . The i n f r a r e d s p e c t r u m c l e a r l y showed t h e p r e s e n c e o f C1F, . , b u t t h e f u n d a m e n t a l s a s s o c i a t e d 140 w i t h t h e c h l o r i n e s ; s p e c i e s o b s c u r e d t h e IrF6 a b s o r p t i o n s . The r e a c t i o n v e s s e l was opened i n t h e d r y box and showed t h a t no s o l i d h a d been f o r m e d . 2 . 2 . 2 . R e a c t i o n o f C1F 5. I r F f r and Fo C h l o r i n e p e n t a f l u o r i d e and I r F g were c o n d e n s e d i n t o a r e a c t i o n v e s s e l and f l u o r i n e added t o a t o t a l p r e s s u r e o f 70 p . s . i . The c a n was h e a t e d a t 200° o v e r n i g h t . The f l u o r i n e was pumped o f f a t - 1 9 6 ° . The v o l a t i l e g a s e s were c o n d e n s e d i n t o an i n f r a r e d c e l l and t h e i n f r a r e d s p e c t r u m r e c o r d e d . The s p e c t r u m showed t h e p r e s e n c e o f CIF5, and p r o b a b l y I r F g , a l t h o u g h t h e p e a k s due t o b o t h s p e c i e s o v e r l a p p e d , m a k i n g a s s i g n m e n t s d i f f i c u l t . The r e a c t i o n v e s s e l was opened i n t h e d r y box and showed t h e p r e s e n c e o f a b r i g h t y e l l o w s o l i d i d -e n t i f i e d as C1F 3, I r F 5 ( s e e s e c t i o n 2 . 2 . 3 . ) . 2 . 3 . R e a c t i o n o f CIF5 w i t h IrFg I r i d i u m p e n t a f l u o r i d e ( 0 . 1 0 1 5 gms) was w e i g h e d o u t i n t o a M o n e l r e a c t i o n v e s s e l and C1F 5 added t o t h e c a n . T h e r e was no d r o p i n p r e s s u r e o n c o n t a c t o f t h e C I F ^ w i t h I r F ^ . E x c e s s CIF5 was c o n d e n s e d i n t o t h e r e a c t o r and t h e r e a c t o r immersed i n a h e a t e r m a i n t a i n e d a t 50° o v e r n i g h t . The gases were c o n d e n s e d i n t o a n i n f r a r e d c e l l . The s p e c t r u m o f gases 141 showed t h e p r e s e n c e o f u n r e a c t e d C1F 5. The s o l i d ( 0 . 1 3 3 9 g) was e x a m i n e d i n t h e d r y box and was f o u n d t o h a v e an X - r a y powder p a t t e r n i d e n t i c a l t o t h a t o f CIF3, I r F ^ ( c h a r a c t e r i s e d b e l o w ) . T h e r e f o r e 0 . 3 5 3 m i l l i m o l e s o f I r F 5 h a d formed 0 . 3 4 1 m i l l i m o l e s o f CIF3, I r F ^ . 2 . 4 . R e a c t i o n o f CIF3 w i t h I r F 5 I r i d i u m p e n t a f l u o r i d e ( 1 . 4 0 m i l l i m o l e s ) were w e i g h e d o u t i n t o a M o n e l r e a c t o r and e x c e s s c h l o r i n e t r i f l u o r i d e a d d e d . The b o t t o m o f t h e v e s s e l was h e a t e d a t 200° o v e r n i g h t w h i l e t h e t o p p o r t i o n was c o o l e d i n a s t r e a m o f a i r . The v e s s e l was t h e n c o o l e d and t h e e x c e s s o f c h l o r i n e t r i f l u o r i d e c o n d e n s e d o u t o f t h e c a n . A w e i g h t i n c r e a s e o f t h e v e s s e l i n d i c a t e d t h e f o r m a t i o n o f 1 .34 m i l l i m o l e s o f a d d u c t ( a s s u m i n g t h e f o r m a t i o n o f CIF3 I r F ^ ) . The c o n t e n t s were examined i n t h e d r y box and a n X - r a y powder d i f f r a c t i o n p a t t e r n showed t h a t t h e m a t e r i a l was i d e n t i c a l t o t h a t p r o d u c e d by t h e r e a c t i o n o f C 1 F 5 , I r F g , and f l u o r i n e . 2 . 5 . C h e m i c a l A n a l y s i s o f CIF3. I r F ^ The compound was a n a l y s e d by t h e p y r o h y d r o l y s i s method d e s c r i b e d b y L o h m a n n ^ 3 ' and J h a / 4 9 / 142 2 . 5 . 1 . F l u o r i n e A b o u t . 0 5 gm. o f t h e compound was w e i g h e d o u t i n a p l a t i n u m b o a t w h i c h was t r a n s f e r r e d t o t h e p y r o h y d r o l y s i s a p p a r a t u s . Wet n i t r o g e n was p a s s e d o v e r t h e s a m p l e a t room t e m p e r a t u r e , f o l l o w e d by h e a t e d s team a t 3 0 0 ° . The d i s t i l -l a t e was c o n d e n s e d i n t o a b e a k e r c o n t a i n i n g a b o u t 50 m i s . o f w a t e r . The s o l u t i o n was made up t o 250 m i s . and a 25 m l a l i q u o t was t i t r a t e d a g a i n s t a s t a n d a r d s o l u t i o n o f t h o r i u m n i t r a t e a t pH 3 t o d e t e r m i n e t h e q u a n t i t y o f f l u o r i n e p r e -( 5 4 ) s e n t . 2 . 5 . 2 . C h l o r i n e The e x p e r i m e n t was r e p e a t e d , t h e d i s t i l l a t e b e i n g c o n d e n s e d i n t o a s o l u t i o n o f s o d i u m s u l p h i t e i n o r d e r t o r e -d u c e a l l t h e c h l o r i n e - c o n t a i n i n g s p e c i e s t o c h l o r i d e . The s u l p h i t e was t h e n o x i d i s e d t o s u l p h a t e b y t h e a d d i t i o n o f h y d r o g e n p e r o x i d e . The c h l o r a t e was r e d u c e d t o c h l o r i d e b y z i n e i n s u l p h u r i c a c i d . The s o l u t i o n was t h e n made n e u t r a l and t h e z i n c h y d r o x i d e f i l t e r e d o f f . The c h l o r i n e was t h e n e s t i m a t e d b y t i t r a t i o n w i t h m e r c u r i c o x y c y a n i d e ( V i e b a c k ' s m e t h o d ) . A b l a n k was r u n and a c o r r e c t i o n a p p l i e d . 2 . 5 . 3 . I r i d i u m M e t a l I n b o t h e x p e r i m e n t s i n v o l v i n g t h e e s t i m a t i o n o f f l u o r i n e and c h l o r i n e a f t e r t h e s a l t h a d been e x p o s e d t o s team 143 a t 3 0 0 ° C , h y d r o g e n was p a s s e d o v e r t h e s a m p l e a t 600°C. E x c e s s h y d r o g e n was b u r n t o f f a t t h e end o f t h e p y r o h y d r o l y s i s t u b e . The a p p a r a t u s was c o o l e d w h i l e h y d r o g e n was s t i l l b e i n g p a s s e d o v e r t h e s a m p l e . The b o a t was t h e n w e i g h e d and t h e q u a n t i t y o f i r i d i u m m e t a l d e t e r m i n e d . TABLE 23 C h e m i c a l A n a l y s i s R e s u l t s f o r CIF3. I r F 5 % F % C l % I r 1 4 0 . 5 5 0 . 7 2 2 8 . 9 0 5 0 . 9 0 T h e o r e t i c a l "U f o r C l F 3 , I r F 5 4 0 . 0 3 9 . 3 3 5 0 . 6 3 2 . 6 . P h y s i c a l P r o p e r t i e s o f C l F 3 . I r F 5 2 . 6 . 1 . M e l t i n g P o i n t M e l t i n g p o i n t t u b e s were h e a t e d a t 200° o v e r n i g h t and q u i c k l y t r a n s f e r r e d t o t h e a n t e - c h a m b e r o f t h e d r y box and e v a c u a t e d . The compound was i n t r o d u c e d i n t o t h e m e l t i n g p o i n t t u b e and t h e o p e n i n g s e a l e d w i t h K e l - F g r e a s e . The t u b e was t h e n s e a l e d o f f w i t h a h o t : f l a m e . The b r i g h t y e l l o w c r y s -t a l l i n e s o l i d was s l o w l y h e a t e d i n a m e l t i n g p o i n t a p p a r a t u s . A t 1 3 5 ° t h e compound was l i g h t r e d and a t 1 4 2 ° i t was a deep 144 b l o o d r e d . The c r y s t a l s m e l t e d a t 1 5 4 ° . On c o o l i n g t h e com-pound t h e o r i g i n a l y e l l o w c o l o u r r e t u r n e d . 2 . 6 . 2 . I n f r a r e d S p e c t r u m The i n f r a r e d s p e c t r u m was o b t a i n e d o n t h e pow-d e r e d s o l i d between s i l v e r c h l o r i d e windows ( f o r e x p e r i m e n t a l d e t a i l s , s e e C h a p t e r I I , s e c t i o n 2 . 5 . 2 . ) . A weak a b s o r p t i o n a t 1012 c m " 1 and a s t r o n g a b s o r p t i o n a t 660 c m " 1 was o b s e r v e d i n t h e s p e c t r u m . 2 . 6 . 3 . M a g n e t i c S u s c e p t i b i l i t y M e a s u r e m e n t s 2 . 6 . 3 . ( a ) M a g n e t i c S u s c e p t i b i l i t y b y Gouy M e t h o d The m a g n e t i c s u s c e p t i b i l i t y measurements were made b y t h e Gouy m e t h o d . The a p p a r a t u s was s i m i l a r t o t h a t ; and (118) d e s c r i b e d by F i g g i s  N y h o l m . ^ 1 1 7 ^ The d e t a i l e d a r r a n g e m e n t has been d e s c r i b e d . A f i n e l y powdered s a m p l e was p a c k e d i n t o a 1 1 . 4 x 3 mm ( d i a . ) P y r e x s a m p l e t u b e i n s i d e t h e d r y box and s e a l e d u n d e r v a c u u m . The s p e c i m e n was t h e n s u s p e n d e d f r o m t h e b o t t o m o f t h e b a l a n c e pan b y means o f a l i g h t b r a s s c h a i n . U n d e r i d e a l c o n d i t i o n s , t h e b o t t o m o f t h e t u b e was a t t h e c e n t r e o f t h e p o l e f o r c e s and t h e t o p o f t h e t u b e i n t h e r e g i o n o f n e g l i g i b l e f i e l d . 145 Aqueous n i c k e l d i c h l o r i d e s o l u t i o n was u s e d as a s t a n d a r d . The m o l a r s u s c e p t i b i l i t y was c o r r e c t e d f o r t h e d i a m a g n e t i c c o n t r i b u t i o n o f t h e c o n s t i t u e n t i o n s / 1 1 ^ A t 2 4 ° C . t h e m o l a r s u s c e p t i b i l i t y o f C l F 3 , I r F 5 was —6 f o u n d t o be 669 x 10" ( c . g . s . u n i t s ) . T h e r e f o r e t h e m a g n e t i c moment = 1 .285 B . M . a t 297°K. A t e m p e r a t u r e dependence s t u d y was a t t e m p t e d o n a n o t h e r s a m p l e . The changes i n w e i g h t o f t h e sample o n a p p l i c a t i o n o f a c o n s t a n t m a g n e t i c f i e l d d i d n o t change b y more t h a n 0 . 2 mgs i n t h e t e m p e r a t u r e r a n g e 2 3 ° t o - 1 3 5 ° . (The s a m p l e w e i g h e d a p p r o x i m a t e l y 0 . 5 g . ) 2 . 6 . 3 . ( b ) D e m o n s t r a t i o n o f T e m p e r a t u r e I n d e p e n d e n t 19 P a r a m a g n e t i s m by B r o a d L i n e F n . m . r . 19 The b r o a d l i n e F n . m . r . s p e c t r u m o f t h e compound was s t u d i e d by T . C y r o n a V a r i a n H . R . 6 0 , ( 5 6 . 4 M c / s e c ) and a V a r i a n V . F . 16 ( 8 . 0 M c / s e c ) . The f o l l o w i n g r e s u l t s were o b t a i n e d . C h e m i c a l s h i f t w i t h r e s p e c t t o T r i f l u o r o A c e t i c A c i d Room T e m p e r a t u r e - 2 2 5 - 25 p . p . m . - 7 8 ° - 2 2 5 - 25 p . p . m . - 1 9 6 ° - 2 7 0 - 30 p . p . m . A l l t h e f l u o r i n e atoms a s s o c i a t e d w i t h t h e i r i d i u m were f o u n d t o be e q u i v a l e n t ; t h e f l u o r i n e atoms a s s o c i a t e d w i t h t h e c h l o r i n e atoms w e r e n o t d e t e c t e d . 146 2 . 6 . 4 . X - r a v Powder D a t a f o r C l F 3 , I r F 5 The X - r a y powder p h o t o g r a p h s o f C l F 3 I r F 5 were o o i n d e x e d o n t h e t e t r a g o n a l u n i t c e l l ; a = 5 . 1 6 4 A , c = 5 . 6 6 2 A ( t h e s e c e l l d i m e n s i o n s were o b t a i n e d b y a N e l s o n - R i l e y e x t r o -o p o l a t i o n , see T a b l e 2 4 ) , V = 151 .0 A . 2 . 7 . A t t e m p t e d F l u o r i n a t i o n o f C l F 3 « I r F g A b o u t 0 . 2 grams C l F 3 , I r F 5 were i n t r o d u c e d i n t o a " w e i g h i n g v e s s e l " . F l u o r i n e was added t o a p r e s s u r e o f 70 p . s . i . and t h e c a n h e a t e d a t 200° o v e r n i g h t . The s o l i d was e x a m i n e d i n t h e d r y b o x . The a d d u c t h a d s u b l i m e d i n t o t h e c o o l e d l i d , w i t h f o r m a t i o n o f a l a r g e q u a n t i t y o f c r y s t a l s . A n X - r a y powder p h o t o g r a p h o f t h e c r y s t a l l i n e m a t e r i a l was i d e n t i c a l t o t h a t o f C l F q , I r F c . 3 . DISCUSSION 3 . 1 . R e a c t i o n o f I r F 6 w i t h C I F ^ and BrFr As shown a b o v e , i r i d i u m h e x a f l u o r i d e d i d n o t r e a c t r e a d i l y w i t h e i t h e r c h l o r i n e o r b r o m i n e p e n t a f l u o r i d e . A f t e r t h i s s e t o f e x p e r i m e n t s was c o m p l e t e d , G o r t s e m a and T o e n i s k o e t t e r ( 1 2 1 ) r e p o r t e d s i m i l a r r e a c t i o n s u s i n g p l a t i n u m h e x a f l u o r i d e and f o u n d t h a t 757. o f i t r e m a i n e d u n r e a c t e d a f t e r t w e l v e h o u r s 147 TABLE 24 X - r a v Powder D a t a f o r C ^ . I r F s 2 o_2 l / d Z ( A ^ ) o b s . I / I o h k 1 c a l c . o b s . I / I o 2 °-2 l / d Z ( A " Z ) c a l c . h k 1 001 0.0312 100,010 0.0376 101,011 0.0689 110 0.0752 111 0.1065 002 0.1249 102,012 0.1626 210,120 0.1881 112 0.2002 211,121 0.2193 022,202 0.2754 003 0.2811 220 0.3009 103,013 0.3187 300,030 0.3385 113 0.3564 031,301 0.3698 310,130 0.3762 311,131 0.4074 222 0.4259 203,023 0.4316 032,302 0.4635 123,213 0.4692 004 0.4998 321,231 0.5203 0.0315 m 0.0381 m 0.0694 m 0.0769 s 0.1078 in 0.1254 m 0.1631 m 0.1879 m 0.2014 s 0.2235 s 0.2762 m 0.2819 ms 0.3065 m 0.3174 s 0.3379 m 0.3569 m 0.3690 w 0.3773 w 0.4081 w 0.4204 w 0.4320 m 0.4642 w 0.4742 w 0.4998 w 0.5127 vw ? 104,014 0.5374 114 0.0750 223 0.5821 313,133 0.6573 414,144 0.6707 214.124 0.6879 402,042 0.7268 115 0.8562 215.125 0.9690 050 0.9404 225 1.0819 404,040 1.1017 414,144 1.1393 315,135 1.1571 116 1.1998 522,252 1.2158 503,053 1.2215 0.5263 vw 0.5350 m 0.5742 m 0.5866 w 0.6557 w 0.6683 w 0.6890 TO 0.7227 w 0.8544 w 0.9662 vw 0.9487 vw 1.0797 vw 1.1021 vw 1.1387 vw 1.1556 vw 1.1961 vw 1.2188 w T e t r a g o n a l B r a v a i s L a t t i c e o a = 5.I64, c = 5.662 A c o n t a c t w i t h CIF5 a t room t e m p e r a t u r e ; 527„ r e a c t i o n w i t h BrF5 t o o k p l a c e a f t e r 72 h o u r s a t 100°C. C h l o r i n e t r i f l u o r i d e was r e p o r t e d t o r e a c t w i t h P t F ^ a t room t e m p e r a t u r e a c c o r d i n g t o t h e e q u a t i o n 3 CIF3 + 2 F t F 6 = CIF5 + 2 CIF2 PtF6 148 G o r t s e m a e t a / l 2 l / s u g g e s t e d t h a t t h e r e a c t i o n : o f P t F g w i t h C1F5 i n v o l v e d t h e d e c o m p o s i t i o n o f CIF5 i n t o CIF3 and f l u o r i n e , f o l l o w e d by t h e r e a c t i o n o f CIF3 w i t h P t F g . (The e q u i l i b r i u m CIF5 % CIF3 4» F 2 has been e s t a b l i s h e d above 1 6 5 ° ( . 1 2 2 \ ) T h e t , e h a v i o u r ^ s p r o b a b l y p a r a l l e l e d i n t h e r e a c t i o n s o f CIF5 and B r F ^ w i t h I r F g , t h u s a c c o u n t i n g f o r t h e f o r m a t i o n o f s m a l l amounts o f C l F ^ j I r F ^ , and u n i d e n t i f i e d s o l i d , i n t h e BrF5 r e a c t i o n . The r e a c t i o n o f CIF3 w i t h P t F g i s o f t h e t y p e ( 1 ) 3 MF + 2 P t F g = 2 M P t F g 4- MF3 s i m i l a r t o t h e r e a c t i o n between I r F g and ONF. B o t h CIF3 and ONF a r e good f l u o r i d e i o n d o n o r s , whereas C I F ^ , and BrFs a r e n o t . ( C h l o r i n e p e n t a f l u o r i d e d i d n o t r e a c t w i t h IrF«j t o g i v e CIF4 I r F 6 . ) T h e r e f o r e i t may be t h a t i n o r d e r f o r r e a c t i o n s o f t h e t y p e ( 1 ) t o p r o c e e d , MF must be a f l u o r i d e i o n d o n o r . The s u g g e s t i o n was made ( C h a p t e r I I , s e c t i o n 3 . 2 ) t h a t N O M F y was an i n t e r m e d i a t e i n ONF3 p r e p a r a t i o n f r o m ONF, and I r F g o r P t F $ . The f o r m a t i o n o f s u c h an i n t e r m e d i a t e w o u l d be f a v o u r e d by m o l e c u l e s w h i c h r e a d i l y d o n a t e d f l u o r i d e i o n s s u c h as ONF, and CIF3. 149 3 . 2 . The A d d u c t C l F 3 . I r F 5 The e m p i r i c a l f o r m u l a C l F 3 , I r F 5 f o r t h e a d d u c t i s s u p p o r t e d by t h e g r a v i m e t r i c r e s u l t s f o r i t s p r e p a r a t i o n f r o m CIF3, and IrF5 and c o n f i r m e d by c h e m i c a l a n a l y s i s . A l l o w i n g e a c h f l u o r i n e atom a v o l u m e o f 18 t o 19 t h e v o l u m e o f 03 C l F 3 , I r F ^ s h o u l d be between 144 and 154 A , o n t h e b a s i s o f ( 1 2 3 ) Z a c h a r i a s e n ' s method o f c a l c u l a t e d u n i t c e l l v o l u m e s . 03 The u n i t c e l l c o l u m n was f o u n d t o be 151 A ( Z = 1 ) . The room t e m p e r a t u r e m a g n e t i c moment was s i m i l a r t o t h a t r e p o r t e d f o r o t h e r c o m p l e x e s o f m e t a l s o f t h e t h i r d 4 t r a n s i t i o n a l s e r i e s h a v i n g a d c o n f i g u r a t i o n o f t h e l o w s p i n t y p e . TABLE 25 4 M a g n e t i c D a t a f o r Some d (MF^) S p e c i e s Compound e f f . B . M . R e f e r e n c e K I r F 6 1.27 124 C s I r F g 1 .29 124 Na I r F 6 1 . 2 3 125 Ag I r F 6 1 . 2 4 125 NO I r F 6 1 .23 49 P t F 6 1 .30 49 C l F 3 , I r F 5 1 .285 150 19 The b r o a d l i n e F n . m . r . showed CIF3, I r F ^ t o h a v e o o ( 1 2 0 > a t e m p e r a t u r e i n d e p e n d e n t moment i n t h e r a n g e 25-*-196:. C . , The o t h e r c o m p l e x e s i n t h e t a b l e a r e r e p o r t e d t o e x h i b i t t e m p e r a -t u r e - i n d e p e n d e n t p a r a m a g n e t i s m . The t e m p e r a t u r e i n d e p e n d e n c e o f t h e p a r a m a g n e t i s m has been e x p l a i n e d as a r i s i n g f r o m h i g h s p i n - o r b i t c o u p l i n g . ^ 2 4 ^ The s p i n - o r b i t c o u p l i n g removes t h e d e g e n e r a c y o f t h e 3T^ s t a t e ( g i v e n by t h e R u s s e l l S a u n d e r s scheme as t h e l o w e s t l y i n g t e r m ) . I t i s a r g u e d t h a t t h e s p i n -o r b i t c o u p l i n g i s so g r e a t t h a t o n l y t h e l o w e s t n o n - d e g e n e r a t e l e v e l i s o c c u p i e d a t room t e m p e r a t u r e , and t h a t t h e s u s c e p t i -b i l i t y a r i s e s o n l y f r o m t h e s e c o n d o r d e r Zeeman e f f e c t between t h i s and h i g h e r p a r a m a g n e t i c l e v e l s , and t h i s c o n t r i b u t i o n i s t e m p e r a t u r e i n d e p e n d e n t . Thus t h e m a g n e t i c e v i d e n c e shows t h a t t h e i r i d i u m atom i n t h e ClF3lrF 5 a d d u c t has a f o r m a l o x i d a t i o n s t a t e o f +5. The c o m p l e x K I r F g has a s t r o n g a b s o r p t i o n a t 667 c m " 1 due t o t h e ( I r F 6 ) " i o n and K 2 I r F 6 a t 568 c m " ^ 1 0 6 / A s s o c i a t e d 2 1 w i t h ( I r F 6 ) " ( V 3 ) . The s t r o n g a b s o r p t i o n a t 660 cm" f o r C1F3, I r F 6 , s u p p o r t s t h e v i e w t h a t i r i d i u m has a f o r m a l o x i -d a t i o n s t a t e o f +5 i n ClF3,IrF5. The weaki band a t 1012 c m " 1 i s u n a c c o u n t e d f o r . The a d d u c t C l F 3 , I r F 5 M . P . 1 5 4 ° r e s e m b l e s CIF3, P t F 6 M . P . 1 7 1 ° , ( 1 2 6 ) S F 4 , I r F 5 m . p . 1 2 5 - 1 3 0 ° ( 1 1 5 ) and S e F , I r F m . p . 1 3 3 o ( l 2 7 / i n i t s p h y s i c a l p r o p e r t i e s . 151 CHAPTER V THE CRYSTAL STRUCTURE OF C l F 2 * I r F 6 " C h a p t e r Summary The X - r a y d i f f r a c t i o n p a t t e r n o f powdered C 1 F 2 I r F g ^ o was i n d e x e d o n t h e t e t r a g o n a l u n i t c e l l a = 5 . 1 6 4 , c = 5 . 6 6 2 A . As t h e r e was o n l y one m o l e c u l a r u n i t p e r u n i t c e l l , i t seemed p o s s i b l e t h a t t h e compound m i g h t c o n t a i n t h e l i n e a r C 1 F 2 i o n . W e i s s e n b e r g ( h k 0 , h k 1, h k 2 , h k 3> p h o t o g r a p h s showed t h a t t h e u n i t c e l l h a d o r t h o h o m b i c d i f f r a c t i o n s y m m e t r y , and c o n t a i n e d two m o l e c u l a r u n i t s p e r u n i t c e l l . T h i s was c o n f i r m e d by c o m p a r i s o n o f c o r r e c t e d i n t e n s i t i e s o b t a i n e d i n t h e s c i n t i l -l a t i o n c o u n t e r . The c o m b i n e d s p a c e g r o u p and c e l l s i z e do n o t r e q u i r e t h e C 1 F 2 + i o n t o be l i n e a r . P r e l i m i n a r y r e s u l t s s u g -g e s t t h a t t h e i r i d i u m atoms f o r m an a b - f a c e d c e n t r e d a r r a y , and t h e c h l o r i n e atoms a r e s i t u a t e d a l m o s t i n t h e c e n t r e o f t h e s q u a r e p y r a m i d a l h o l e s d e f i n e d b y t h e i r i d i u m a t o m . CHAPTER V 152 THE CRYSTAL STRUCTURE OF C 1 F 2 , I r F g 1. INTRODUCTION The X - r a y powder d i f f r a c t i o n p a t t e r n o f C l F 2 + , I r F 6 " o was i n d e x e d u s i n g a t e t r a g o n a l u n i t c e l l , a = 5 . 1 6 4 , c = 5 . 6 6 2 A , o u =151A, Z = 1. I t was s u g g e s t e d t h a t i t was p o s s i b l e t h a t t h i s a d d u c t c o n t a i n e d a l i n e a r C 1 F 2 i o n . T h i s w o u l d be t h e c a s e i f t h e symmetry o f t h e u n i t c e l l were t e t r a g o n a l , and t h e s t r u c t u r e was o r d e r e d . The f a c t t h a t t h e u n i t c e l l c a n be i n d e x e d o n t h e t e t r a g o n a l s y s t e m does n o t i m p l y t h a t t h e symmetry o f t h e c e l l must be t e t r a g o n a l , a l t h o u g h t h i s i s v e r y o f t e n t h e c a s e . A s s u m i n g t e t r a g o n a l s y m m e t r y , t h e C 1 F 2 + i o n must be l i n e a r o r r a n d o m l y a r r a n g e d i n t h e l a t t i c e ( i . e . d i s -o r d e r e d ) , i f t h e r e i s o n l y one m o l e c u l e p e r u n i t c e l l . The p r e s e n c e o f a l i n e a r C 1 F 2 * i o n w o u l d be a n e x c e p t i o n t o t h e /128) s i m p l e S i d g w i c k P o w e l l ' t h e o r y o f s t e r e o c h e m i s t r y . A s i n g l e c r y s t a l s t u d y was u n d e r t a k e n i n o r d e r t o i n v e s t i g a t e t h i s p o s s i b i l i t y . No r e p o r t o f an X - r a y a n a l y s i s o f a c r y s t a l c o n t a i n -4, i n g t h e CIF2 i o n c o u l d be f o u n d i n t h e l i t e r a t u r e . H o w e v e r , w h i l e t h i s work was i n p r o g r e s s , C h r i s t e and S a w o d n y ^ 1 2 9 ^ 153 r e p o r t e d an i n f r a r e d and Raman s t u d y o f s o l i d C 1 F 2 + B F 4 ~ , and C l F 2 + A s F g ~ . T h e i r r e s u l t s w e r e i n t e r p r e t e d i n terms o f a b e n t C 1 F 2 i o n . The c r y s t a l s t r u c t u r e o f t h e r e l a t e d i o n ( I C l 2 ) i n t h e s a l t I C l 2 + S b C l 6 ~ has been d e t e r m i n e d and t h e C l - I - C l bond a n g l e r e p o r t e d as 9 2 . 5 ° . T h e r e i s no r e p o r t i n t h e l i t e r a t u r e o f an X - r a y d i f f r a c t i o n s t u d y o f a s a l t c o n t a i n i n g t h e I r F g " i o n . H e p w o r t t h , J a c k and W e s t l a n d ^ 1 ^ f o u n d t h a t t h e O s - F d i s t a n c e i n K O s F g o was 1 .82 A f r o m an X - r a y d i f f r a c t i o n s t u d y o f t h e p o w d e r . E i n s t e i n B a r t l e t t and S t e w a r t c a r r i e d o u t a s i n g l e c r y s t a l o s t u d y o f X e F ^ P t F g and f o u n d t h e mean P t - F d i s t a n c e t o be 1 .89A ( 1 3 2 ) . I b e r s and H a m i l t o n ^ 1 0 8 * r e p o r t a P t - F bond d i s t a n c e o f o 1 . 8 2 A f r o m a n e u t r o n d i f f r a c t i o n s t u d y o f a powder s a m p l e o f 0 2 P t F 6 . 2 . EXPERIMENTAL 2 . 1 . P r e p a r a t i o n o f S i n g l e C r y s t a l s o f C l F ^ I r F ^ " ' I t was r e l a t i v e l y e a s y t o s u b l i m e c r y s t a l l i n e C 1 F 2 , I r F g , b u t t h i s m a t e r i a l d i d n o t c o n t a i n s a t i s f a c t o r y c r y s t a l s . C o n d i t i o n s w e r e v a r i e d u n t i l good s i n g l e c r y s t a l s w e r e f o r m e d . A b o u t , 3 g o f a d d u c t were added t o a 20 m l " w e i g h i n g v e s s e l " and c h l o r i n e t r i f l u o r i d e added t o a p r e s s u r e 154 o f 30 p . s . i . F l u o r i n e was added t o a t o t a l p r e s s u r e o f 70 p . s . i . and t h e b o t t o m h a l f o f t h e v e s s e l p l a c e d i n a h e a t a t 160° f o r 48 h o u r s . The s i d e s o f t h e r e a c t o r were l a g g e d w i t h a s b e s t o s s t r i n g , and t h e t o p o f t h e c a n was c o o l e d b y c o m p r e s s e d a i r . The v o l a t i l e g a s e s were removed and t h e c r y s t a l s examined i n t h e d r y b o x . 2 . 2 . X - r a v D i f f r a c t i o n o f S i n g l e C r y s t a l s o f C l F ^ I r F ^ . " The c r y s t a l s were mounted i n q u a r t z c a p i l l a r i e s ( s e e C h a p t e r I V , s e c t i o n 2 . 1 f o r d e t a i l s ) . Many c r y s t a l s were e x -a m i n e d u n d e r a p o l a r i s i n g m i c r o s c o p e and o s c i l l a t i o n p h o t o -g r a p h s were t a k e n o f t h e more p r o m i s i n g o f t h e s e b e f o r e a s u i t a b l e c r y s t a l was f o u n d . A r o t a t i o n p h o t o g r a p h and h k 0 , h & 1> h & 2 , and h k 3 W e i s s e n b e r g p h o t o g r a p h s were o b t a i n e d . ( A n u n c o n v e n t i o n a l i n d e x i n g s y s t e m i s u s e d i n o r d e r t h a t t h e i n d i c e s o b t a i n e d f r o m t h e s m a l l and l a r g e u n i t c e l l s a r e r e a d i l y r e l a t e d . ) A l l o f t h e r e f l e c t i o n s c o u l d be i n d e x e d o n a t e t r a g o n a l u n i t c e l l , a = 5 . 6 6 2 , b = c = Jl * 5 . 1 6 4 SL The W e i s s e n b e r g p h o t o g r a p h s showed two t y p e s o f r e f l e c t i o n s . Those r e f l e c t i o n s w i t h i n d i c e s k 4- 1 = 2 N , were s t r o n g , and t h o s e w i t h i n d i c e s k + 1 = 2 N + 1 w e r e weak. I t was o b s e r v e d t h a t t h e r e f l e c t i o n s h 0 1 were n o t a l l e q u a l i n i n t e n s i t y t o t h e h 1 0 r e f l e c t i o n s . ( T h i s was c o n f i r m e d by measurement o f t h e i n t e n s i t y o f r e f l e c t i o n s o n t h e s c i n t i l l a t i o n c o u n t e r . ) S i n c e 155 t h e r e was no f o u r - f o l d d i f f r a c t i o n s y m m e t r y , t h e u n i t c e l l was o f o r t h o r h o m b i c s y m m e t r y . 2 . 3 . C r y s t a l l o g r a p h i c D a t a C 1 F 3 , I r F 5 . MWt 3 7 9 . 6 4 o (MoKo< >= 0 . 7 1 0 7 A ) . O r t h o r h o m b i c a = 5 . 6 6 2 , b=c= Jl x 5 . 1 6 4 A ( c e l l d i m e n s i o n s o b t a i n e d f r o m powder d a t a . ) a = 5 . 6 9 5 t . 0 2 , b = 7 . 1 9 - 0 . 0 1 , c = 7 .215 to.01 A ( t h e s e d i m e n s i o n s w e r e o b t a i n e d d i r e c t l y f r o m measurements o n t h e s c i n t i l l a t i o n c o u n t e r . ) * O q U = 3 0 2 . 0 A , Z = 2 ( b a s e d o n a f l u o r i n e v o l u m e o f a p p r o x i -m a t e l y 19 A * 3 ) . f> ( c a l c ) = 4 . 1 7 6 g / c m 3 F ( 0 0 0 ) = 332 A b s o r p t i o n c o e f f i c i e n t Mo-Kc* = 2 5 7 . 2 0 c m - 1 A b s e n t r e f l e c t i o n s O k l , a b s e n t when k + 1 = 2 N + 1 S p a c e G r o u p s Pmmn PmnJU The i n t e n s i t i e s o f t h e r e f l e c t i o n s were m e a s u r e d o n a G e n e r a l E l e c t r i c X RD 5 s p e c t r o g o n i o m e t e r w i t h a S i n g l e T h e r e was agreement between t h e i n t e n s i t i e s o f t h e r e f l e c -t i o n s e s t i m a t e d f r o m t h e powder p h o t o g r a p h , t h e c o u n t e r and f r o m t h e W e i s s e n b e r g p h o t o g r a p h s . 156 C r y s t a l O r i e n t e r , u s i n g a s c i n t i l l a t i o n c o u n t e r , a p p r o x i m a t e l y m o n o c h r o m a t i c M o - K \ r a d i a t i o n ( Z i r c o n i u m f i l t e r and p u l s e h e i g h t a n a l y s i s ) , and a 0- 2 0 s c a n o f t h e 209 r e f l e c t i o n s w i t h 2 0 (MoKx) 4 0 , 175 were o b s e r v e d w i t h i n t e n s i t i e s above t h a t o f b a c k g r o u n d . A l l t h e i n t e n s i t i e s w e r e c o r r e c t e d f o r t h e b a c k g r o u n d r a d i a t i o n , w h i c h was a p p r o x i m a t e l y a f u n c t i o n o f 0 o n l y . The c r y s t a l was s h a p e d l i k e a f l a t p l a t e a p p r o x i -m a t e l y . 0 4 mm i n t h i c k n e s s , and h a d two s i d e s r o u g h l y p a r a l l e l ( 0 . 2 5 mm and 0 . 1 5 mm i n l e n g t h ) . The r e m a i n i n g two s i d e s were o f l e n g t h 0 . 1 7 mm and 0 . 1 4 mm; t h e p l a t e was mounted w i t h t h e c a x i s p a r a l l e l t o t h e a x i s o f t h e g o n i o s t a t . The c a x i s l a y i n t h e p l a n e o f t h e p l a t e a l o n g t h e p a r a l l e l edges o f t h e c r y s t a l . A b s o r p t i o n was s e r i o u s and c o r r e c t i o n s were a p p l i e d by t h e method o f Z a l k i n , F o r r e s t e r , and T e m p l e t o n . ^ 1 3 3 ^ I n t e n s i t y ( c o r r e c t e d ) = I n t e n s i t y ( m e a s u r e d ) * ( 1 +• 2 . 7 exp ( " ° ^ 2 1 3 ) e m where m i s cos 9 cos <fp . The c o r r e c t i o n f a c t o r v a r i e d b e t w e e n 1 .00 and 3 . 3 . L o r e n t z and P o l a r i s a t i o n f a c t o r s were a p p l i e d and t h e s t r u c t u r e a m p l i t u d e s were d e r i v e d . A l i s t o f r e l a t i v e s t r u c t u r e f a c t o r s a r e g i v e n i n A p p e n d i x 4 . 157 2 . 3 . 3 . S t r u c t u r e A n a l y s i s The p o s i t i o n s o f i r i d i u m a t o m s , t h e c h l o r i n e a t o m s , and f o u r o f t h e f l u o r i n e atoms a s s o c i a t e d w i t h e a c h i r i d i u m atom were d e t e r m i n e d f r o m t h e t h r e e - d i m e n s i o n a l P a t t e r s o n f u n c t i o n . The s t r u c t u r e was r e f i n e d i n s p a c e g r o u p P b y b l o c k - d i a g o n a l l e a s t - s q u a r e s m e t h o d s . The f u n c t i o n mmn m i n i m i s e d was Xw (Fo - F c ) 2 w i t h Jw = l / U - K / F o / - F * ) / £ * ) 2 ) ^ where F * = 3/4 Cr * = 1/4; Jw = 0 . 0 5 f o r u n o b s e r v e d r e f l e c t i o n s . S e v e r a l c y c l e s o f l e a s t s q u a r e r e d u c e d R t o 0 . 2 4 , t h e c o o r d i n a t e s and a n i s o t r o p i c p a r a m e t e r s o b t a i n e d were s e t o u t i n T a b l e 2 6 . TABLE 26 P a r a m e t e r s O b t a i n e d f r o m S t r u c t u r a l A n a l y s i s o f Qlli^Hle (R - 0 - 2 4 ) X y z B o I r 0 1/4 1/4 1 .885 C l 3 . 9 9 6 8 1/4 3/4 2 . 2 5 6 F 0 . 0 2 5 0 . 2 1 2 6 1/4 0 . 4 3 6 5 0 . 5 1 2 6 1/4 2 . 4 9 5 0 . 2 3 2 The s t r u c t u r e a n a l y s i s i s b e i n g c o n t i n u e d by D r . F . E i n s t e i n o f S i m o n F r a s e r U n i v e r s i t y , B u r n a b y , B . C . 158 3 . DISCUSSION 3 . 1 . The Symmetry o f t h e C l F o * I o n The c r y s t a l s t u d y o f C l F ^ I r F g " was u n d e r t a k e n t o i n v e s t i g a t e t h e p o s s i b i l i t y t h a t t h e C 1 F 2 g r o u p m i g h t be l i n e a r as a r e q u i r e m e n t o f s y m m e t r y . The X - r a y powder d i f -f r a c t i o n p h o t o g r a p h o f C l F ^ I r F g " " was i n d e x e d u s i n g a t e t r a -o g o n a l u n i t c e l l , a = 5 . 6 6 2 , b = c = 5 . 1 6 4 A, Z = 1, ( w i t h t h e e x c e p t i o n o f one v e r y weak r e f l e c t i o n , s e e T a b l e 2 4 ) . I f t h e d i f f r a c t i o n symmetry o f t h e u n i t c e l l were t e t r a g o n a l t h e n t h e C 1 F 2 g r o u p , w o u l d be l i n e a r as a r e q u i r e m e n t o f symmetry o r be r a n d o m l y o r i e n t a t e d i n t h e c r y s t a l . H o w e v e r , W e i s s e n b e r g p h o t o g r a p h s showed t h a t t h e u n i t c e l l had t h e d i m e n s i o n s a = 5 . 6 6 2 , b = c = J~2 x 5 . 1 6 4 X, Z = 2 . The i n t e n s i t i e s o f t h e r e f l e c t i o n s o n t h e W e i s s e n b e r g p h o t o g r a p h s , and t h e c o r r e c t e d i n t e n s i t i e s m e a s u r e d o n t h e s c i n t i l l a t i o n c o u n t e r showed t h e u n i t c e l l t o h a v e o r t h o r h o m i c d i f f r a c t i o n s y m m e t r y . Thus i t i s n o t a r e q u i r e m e n t o f symmetry t h a t t h e C 1 F 2 g r o u p be l i n e a r . 4 . 3 . 2 . S t r u c t u r e o f C l F o IrF^-The s t r u c t u r e a n a l y s i s i s by no means c o m p l e t e a l -t h o u g h i t i s p r o b a b l e t h a t t h e p o s i t i o n s o f t h e i r i d i u m and c h l o r i n e atoms a r e c o r r e c t . The i r i d i u m atoms f o r m an a b - f a c e d c e n t r e d a r r a y , w i t h t h e c h l o r i n e l 159 F i g u r e 11 . The A r r a n g e m e n t o f t h e I r i d i u m and  C h l o r i n e Atoms i n C l F ^ I r F ^ . " The S t r u c t u r e V i e w e d A l o n g t h e a A x i s O I r atoms a t Z = 0 and 1 C I atoms a t Z % . 4 C I atoms a t Z . 6 atoms a l m o s t i n t h e c e n t r e o f t h e s q u a r e p y r a m i d a l h o l e s d e f i n e d b y t h e i r i d i u m s ( s e e F i g u r e 1 1 ) . The c o n t r i b u t i o n o f t h e i r i d i u m atoms t o t h e i n t e n s i t y o f t h e d i f f r a c t e d X - r a y s i s much l a r g e r t h a n t h a t o f t h e o t h e r a t o m s , t h u s t h e s t r o n g r e f l e c t i o n s c o u l d be i n d e x e d o n a p r i m i t i v e t e t r a g o n a l u n i t c e l l . A P P E N D I C E S APPENDIX 1 161 M o n e l M e t a l : A n a l l o y o f c o p p e r and n i c k e l , e . g . N i 67%, Cu 307o. O t h e r c o n s t i t u e n t s i n c l u d e Fe 1.4%, S i 0 . 1 % , CuO 0.15%. K e l - F g r e a s e : C 1 - ( C F 2 - C F C 1 ) X - C l . 3 M M i n n e s o t a M i n i n g & M a n u f a c t u r i n g C o . , S t . P a u l , M i n n . K e l - F T u b i n g and R o d : C h e m i c a l c o m p o s i t i o n t h e same as t h e g r e a s e w i t h h i g h e r v a l u e s o f x . The F l u o r o c a r b o n C o . , L a m b e r t A v e . , P a u l o A l t o , C a l i f . F l u o r o l u b e O i l : C F 2 C 1 ( C F 2 C F C 1 ) X C F 2 C 1 , H o o k e r Chem. C o r p . , N i a g a r a F a l l s . T e f l o n : F - ( C 2 F 4 ) X - F (Du P o n t t r a d e mark - T e f l o n ) , d i s t r i b u t e d b y C r a n e P a c k i n g C o . L t d . , P a r k d a l e A v e . , H a m i l t o n , O n t . S w a g e l o k F i t t i n g s ' ( t r a d e n a m e ) : D i s t r i b u t e d by C r a w f o r d f i t t i n g s (Canada) L t d . , N i a g a r a F a l l s , O n t . A u t o c l a v e E n g i n e e r i n g V a l v e s (MV30) and P a r t s : Made b y A u t o c l a v e E n g i n e e r i n g I n c . , W. 22nd S t . , E r i e , P a . 162 W h i t e y V a l v e s : ( 1 K S 4 . 316) V a l u e s m a n u f a c t u r e d b y t h e W h i t e y R e s e a r c h T o o l C o . , M a r s h a l l S t . , O a k l a n d 8 , C a l i f . Hoke V a l v e s : (431) Hoke I n c . , C r e s k i l l , New J e r s e y . B o u r d o n Gauge: M a n u f a c t u r e d b y A m e r i c a n C h a i n & C a b l e C o . , B r i d g e p o r t , New J e r s e y . C r o s b y H i g h P r e s s u r e Gauge: M a n u f a c t u r e d b y C r o s b y , A s h t o n V a l v e and Gauge C o . , Wrentham, M a s s . L i n d e M o l e c u l a r S i e v e s : P r o d u c e d by L i n d e A i r P r o d u c t s C o . ( A d i v i s i o n o f U n i o n C a r b i d e C a r b o n C o r p . ) , d i s t r i b u t e d b y F i s h e r S c i e n t i f i c C o . A p i a z o n N-fT G r e a s e : M e t r o p o l i t a n V i c k e r s E l e c t r i c a l C o . L t d . A g C l S h e e t s : R o l l e d A g C l S h e e t s , H a r s h a w Chem. C o . , E a s t 9 7 t h S t . , C l e v e l a n d 6 , O h i o . Q u a r t z C a p i l l a r i e s : P a n t a k C o . , W i n d s o r , B e r k s . , E n g l a n d . I l f o r d : I l f o r d L t d . , I l f o r d , E s s e x , E n g l a n d . 163 APPENDIX 2 ( a ) The Bond D i s s o c i a t i o n E n e r g y o f N - 0 i n ONF 298 A l l s p e c i e s a r e i n t h e gaseous s t a t e , A H = A H. R e a c t i o n F NO = JLN 2 4 1 0 2 4 1 F 2 2 2 2 A H 4 1 5 . 8 k c a l s m o l e -1 R e f e r e n c e ( 3 4 ) | N 2 = N 4 112 .5 n II (91) \ 0 2 - 0 4- 5 9 . 5 » (91) f F 2 = F *"18.5 II II ( 9 1 ) N + F = NF - 7 1 . 0 " ( 6 9 ) NF 4 0 = ONF 5 £ H = 0 D = 1 3 5 . 3 k c a l s m o l e - 1 -D II it ( b ) The A v e r a g e Bond D i s s o c i a t i o n E n e r g y o f N - 0 i n FNO? - 1 F N 0 2 = FNO 4 0 FNO = FN 4 0 6 2 . 8 k c a l s m o l e 1 3 5 . 3 « « ( 102) Ave N * 0 bond d i s s o c i a t i o n e n e r g y = 99 k c a l s m d l e - 1 164 APPENDIX 3 C u r t i s ' c a l c u l a t i o n ^ 7 ^ 7 o f t h e Moment o f I n e r t i a I g o f ONF3 f r o m t h e s p a c i n g o f t h e r o t a t i o n a l f i n e s t r u c t u r e o n t h e 744 c m " 1 band i s r e p e a t e d . A r e l a t i o n s h i p b e t w e e n R N0> R N F a n d *B *- s o b t a i n e d . F o r t h e r i g i d r o t o r t h e r o t a t i o n a l e n e r g y f o r t h e s t a t e F C J , K ) i s g i v e n b y t h e e q u a t i o n : F ( J , K ) = B J ( J + 1) + (A - B) K 2 ( 7 3 ) B = —~r~"~ j A = — 1 L — 8rr 2 C I B 8v 2 C I A J , K a r e quantum numbers I g = moment o f i n e r t i a p e r p e n d i c u l a r t o t h e u n i q u e a x i s , 1^ = moment o f i n e r t i a a l o n g t h e u n i q u e a x i s . F o r a t r a n s i t i o n A J = - 1 , 0 , & K = 0 , i f K f 0 , and A J = - 1, A K = 0 , i f K = 0 . I f A=fcB, and A , B ( u p p e r s t a t e ) ^ A , B ( g r o u n d s t a t e ) t h e n t h e s e p a r a t i o n o f t h e f i n e s t r u c t u r e o f t h e P and Q b r a n c h e s c a n be a s s o c i a t e d w i t h t h e q u a n t i t y 2 B . C u r t i s ^ 7 ^ 7 r e p o r t s t h a t t h e a v e r a g e s e p a r a t i o n o f t h e l i n e s o f t h e R b r a n c h o f * 2 i s 0 » 3 4 5 , - 0 . 0 0 9 c m " 1 , and t h a t t h e a v e r a g e + - 1 s p a c i n g s o f t h e P b r a n c h i s 0 . 4 2 2 7 - 0 . 0 0 5 cm . V a l u e s o f I g a r e c a l c u l a t e d , u s i n g v a r i o u s v a l u e s o f B . TABLE 27 V a l u e s o f Moment o f I n e r t i a I R C a l c u l a t e d  f o r V a r i o u s V a l u e s o f B B = 0 . 1 7 c m " 1 I B = 1 6 4 . 6 1 0 " 4 0 g c m 2 B = 0 . 1 9 c m " 1 I B = 1 4 7 . 3 1 0 " 4 ° g c m 2 B = 0 . 2 1 c m " 1 I B = 1 3 3 . 2 7 1 0 " 4 0 g c m 2 - 2 7 h = 6 . 6 2 5 5 x 10 e r g s e c c = 2 . 9 9 7 8 9 + 1 0 1 0 c m / s e c T7 2 = 9 . 8 6 9 6 167 D e t e r m i n a t i o n o f I B f o r ONF3 D e t e r m i n a t i o n o f C e n t r e o f G r a v i t y : R N O MO = M N = mass o f f l u o r i n e atom mass o f o x y g e n atom mass o f n i t r o g e n atom c e n t r e o f g r a v i t y Moments were t a k e n a b o u t t h e c e n t r e o f g r a v i t y 3 M F ( P N F - S) = M N S + MQ ( S + R N 0 ) Now 3 M F P N F - 3 M F S = M N S + M Q S + M 0 R N Q P N F = £NF »" a s F N F = F N O = 109.28 3 M F R N F - MQRJJQ = (MQ + M N + 3 M F ) S. S = 19 R N F - 16 R N Q 87 87 168 I £ Moment o f I n e r t i a P e r p e n d i c u l a r t o C ? „ A x i s c e n t r e o f g r a v i t y F , N and 0 a l l l i e i n t h e same p l a n e . The moment o f i n e r t i a I R a b o u t an a x i s p e r p e n d i c u l a r t o t h e p l a n e d e f i n e d b y F*"NO t h r o u g h t h e c e n t r e o f g r a v i t y . C o n t r i b u t i o n due t o Oxygen Atom C o n t r i b u t i o n due t o N i t r o g e n Atom M 0 (S + R N 0 > 2 M N S 2 C o n t r i b u t i o n due t o F 1 -R N F / T NS R N F 2 = H 2 + 1 R N F 2 R F 1 S 2 = H 2 + ( SSE .2 3 + S - 2 S Ri NF C o n t r i b u t i o n o f F 1 = M F ( R N F 2 + S 2 - 2 S R N F ) 3 170 3 2 C o n t r i b u t i o n o f F and F 2 M F ( R N F 2 cos 5 4 . 4 4 + S 2 + | S R N F ) *B = 16 ( R N 0 + S ) 2 + 19 ( R N F 2 +• S 2 - § S R N F ) M H * 38 ( R N F 2 c o s 2 5 4 . 4 4 4- S 2 - | S R N F ) 4- 14 S 2 S u b s t i t u t i n g f o r S and r e a r r a n g i n g where S = R ^ F - R N O = c Rjq F - a R N O jjjj = ( 8 7 a 2 - 3 2 a 4 1 6 ) R 2 N O 4 (-2| C - 87 § a c 4 ^ a ) R N Q R N F + (38 c o s 2 5 4 . 4 4 + 19 + | ^ C 2 - I7- x 2 c ) R N F 2 ~ = 13 .057 4 R N 0 2 + 6 . 9 8 4 R N F R N 0 4 2 7 . 5 1 8 R N p 2 H where R N O = n i t r o g e n - o x y g e n bond d i s t a n c e R N F = n i t r o g e n - f l u o r i d e bond d i s t a n c e MH = mass o f t h e h y d r o g e n a t o m . The e q u a t i o n was s o l v e d f o r R N F , s u b s t i t u t i n g i n t o t h e e q u a t i o n v a r i o u s v a l u e s o f RN O a » d I f i* 171 TABLE 28 V a l u e s o f RNF i n ONFq C a l c u l a t e d f o r B= 0 . 1 7 0 . 1 9 0 . 2 1 o 1.15 A R N F = 1*58 1 .46 1.37 1 .20 A 1.55 1 . 4 4 1 .33 o 1 .25 A 1 .53 1 .42 1 .32 1 .30 A 1 .51 1 .39 1 .29 o 1 .35 A 1 .48 1 .38 1 .26 -1> I t i s e v i d e n t t h a t t h e v a l u e s o f t h e n i t r o g e n - f l u o r i n e bond d i s t a n c e s a r e v e r y d e p e n d e n t o n t h e v a l u e o f t h e moment o f i n e r t i a . I t i s o p e n t o c o n j e c t u r e as t o w h e t h e r o r n o t t h e t r u e moment o f i n e r t i a i s t h e e x a c t mean o f t h e v a l u e s d e r i v e d f r o m t h e s p a c i n g s o n t h e P and R b r a n c h e s . H e r t z b e r g ^ 1 3 ^ p o i n t e d o u t t h a t i t i s o n l y p o s s i b l e t o d e t e r m i n e t h e moment o f i n e r t i a i f t h e s p a c i n g s o f t h e r o t a t i o n a l f i n e s t r u c t u r e on a l l t h e i n f r a r e d a c t i v e f u n d a m e n t a l modes a r e k n o w n . The e x -a m p l e o f methane i s c i t e d by H e r t z b e r g where t h e s p a c i n g s o f t h e r o t a t i o n a l f i n e s t r u c t u r e o n t h e y 3 band i s 9 . 9 3 c m " 1 and y ^ 5 . 7 4 cm 1 . H o w e v e r , i f t h e h y d r o g e n s w e r e r e p l a c e d by h e a v i e r a t o m s , t h e d e v i a t i o n f r o m r i g i d r o t o r b e h a v i o u r w o u l d be e x -p e c t e d t o d e c r e a s e . APPENDIX 4 C a l c u l a t e d and O b s e r v e d S t r u c t u r e F a c t o r s  f o r (NO) 9N1F& h k 1 £ 2 F c h k 1 Fo Fc 1 0 0 4 7 . 0 4 5 . 0 5 1 0 8 . 7 8 . 1 2 0 0 1 6 . 3 - 1 5 . 2 2 1 1 4 . 7 - 3 . 4 3 0 0 2 7 . 0 2 6 . 6 3 1 1 1.7 - 3 . 6 4 0 0 2 . 8 3 . 1 4 1 1 6 . 7 5 . 3 5 0 0 7 . 0 6 . 6 5 1 1 2 . 8 - 0 . 1 1 0 1 1 3 . 1 1 3 . 9 1 1 2 2 6 . 9 2 8 . 1 2 0 1 7 1 . 5 - 7 0 . 4 2 1 2 2 7 . 3 2 6 . 6 3 0 1 1 4 . 3 - 1 3 . 7 3 1 2 1 4 . 2 1 4 . 5 4 0 1 2 3 . 2 2 2 . 3 4 1 2 1 3 . 8 1 2 . 9 5 0 1 6 .7 5 . 3 5 1 2 1 0 . 5 1 0 . 4 0 0 2 4 0 . 2 - 4 1 . 8 2 1 3 4 . 8 5 . 9 1 0 2 2 6 . 3 2 3 . 1 3 1 3 1 .8 - 1 . 5 2 0 2 5 1 . 6 4 8 . 5 4 1 3 2 . 8 - 2 . 0 3 0 2 2 4 . 3 2 2 . 9 1 1 4 7 . 3 6 . 9 4 0 2 2 3 . 6 2 3 . 2 2 1 4 1 1 . 3 1 2 . 2 5 0 2 1 5 . 0 1 3 . 8 3 1 4 1 0 . 3 1 0 . 1 1 0 3 4 . 4 5 . 6 4 1 4 6 . 5 5 . 6 2 0 3 1 4 . 9 1 5 . 2 3 1 5 1 .5 1 .5 3 0 3 6 . 4 4 . 6 1 1 6 5 . 3 6 . 1 4 0 3 3 . 9 - 6 . 0 2 2 0 6 0 . 8 6 4 . 1 5 0 3 3 . 5 - 3 . 2 3 2 0 2 6 . 1 2 5 . 0 0 0 4 1 6 . 8 15.7 4 2 0 3 . 8 5 . 4 1 0 4 2 2 . 0 1 8 . 0 3 2 1 2 . 2 3 . 1 2 0 4 1 4 . 2 11 .7 4 2 1 5 . 7 - 9 . 5 3 0 4 6 . 4 6 . 2 2 2 2 5 . 0 - 5 . 3 4 0 4 7 . 6 7 . 4 3 2 2 6 . 2 6 . 9 1 0 5 3 . 1 - 3 . 6 4 2 2 1 4 . 5 1 3 . 0 2 0 5 4 . 4 4 . 2 3 2 3 1.1 0 . 5 3 0 5 2 . 2 0 . 4 2 2 4 9 . 9 9 . 6 0 0 6 1 0 . 4 11 .9 3 2 4 11 .2 9 . 1 1 0 6 2 . 8 4 . 6 3 3 0 1 1 . 4 1 3 . 8 1 1 0 4 0 . 9 4 9 . 1 3 3 2 1 1 . 3 9 . 4 2 1 0 1 5 . 5 1 4 . 9 3 1 0 2 4 . 5 2 2 . 1 4 1 0 1 2 . 3 1 5 . 8 APPENDIX 5 O b s e r v e d S t r u c t u r e F a c t o r s f o r C l F g ^ I r F ^ ( C a l c u l a t e d f r o m C o r r e c t e d I n t e n s i t i e s ) h MP k 1 Fo h _ k 1 Fo h k 1 Fo 0 0 2 7 4 . 1 2 4 2 3 2 . 6 1 6 3 8 . 7 0 0 4 6 1 . 3 2 4 4 2 4 . 3 2 0 1 17 .7 0 0 6 3 5 . 9 2 6 0 3 7 . 1 2 0 3 1 2 . 4 0 2 0 1 0 0 . 4 2 6 2 2 1 . 4 2 0 5 8 . 8 0 2 2 4 9 . 6 3 0 0 7 6 . 1 2 2 1 1 7 . 6 0 2 4 6 0 . 7 3 0 2 2 8 . 2 2 2 3 14 .7 0 2 6 3 0 . 3 3 0 4 4 0 . 5 2 2 5 1 0 . 5 0 4 0 7 7 . 2 3 2 0 6 8 . 6 2 4 1 6 . 4 0 4 2 4 8 . 0 3 2 2 4 3 . 6 2 4 3 11 .0 0 4 4 4 2 . 8 3 2 4 3 8 . 2 2 4 5 8 . 0 0 6 0 5 5 . 8 3 4 0 4 0 . 1 2 6 1 1 2 . 2 0 6 2 4 5 . 2 3 4 4 2 8 . 9 3 0 1 7 . 2 1 0 0 1 0 1 . 0 4 0 0 7 7 . 5 3 0 3 9 . 1 1 0 2 4 4 . 2 4 0 2 3 3 . 6 3 0 5 - 0 . 1 1 0 4 4 4 . 5 4 0 4 2 9 . 5 3 2 1 6 . 7 1 0 6 1 8 . 9 4 2 0 4 2 . 9 3 2 3 4 . 3 1 2 0 5 4 . 0 4 2 2 2 1 . 7 3 2 5 7 . 0 1 2 2 3 5 . 8 4 2 4 1 9 . 9 3 4 1 6 . 6 1 2 4 3 6 . 6 4 4 0 3 1 . 9 3 4 3 7 . 1 1 2 6 1 3 . 9 4 4 2 1 7 . 8 4 0 1 2 0 . 2 1 4 0 4 8 . 5 5 0 0 6 0 . 7 4 0 3 1 4 . 4 1 4 2 3 5 . 0 5 0 2 3 7 . 8 4 2 1 1 3 . 3 1 4 4 3 3 . 8 5 2 0 3 9 . 1 4 2 3 1 5 . 1 1 6 0 3 0 . 7 1 0 1 - 0 . 0 4 4 1 1 4 . 3 1 6 2 - 0 . 1 1 0 3 - 0 . 0 5 0 1 2 0 . 5 2 0 0 8 8 . 5 1 0 5 5 . 9 5 2 1 1 7 . 4 2 0 2 2 3 . 0 1 2 1 4 . 4 1 1 0 2 3 . 3 2 0 4 3 1 . 4 3 4 2 2 9 . 9 1 1 2 1 1 . 3 2 0 6 2 2 . 4 1 2 3 5 . 4 1 1 4 6 . 7 2 2 0 1 0 5 . 6 1 2 5 - 0 . 0 1 1 6 6 . 8 2 2 2 4 7 . 2 1 4 1 - 0 . 0 1 3 0 6 . 8 2 2 4 3 9 . 3 1 4 3 1 0 . 1 1 3 2 - 0 . 0 2 2 6 2 4 . 4 1 4 5 - 0 . 1 1 3 4 5 . 1 2 4 0 4 8 . 1 1 6 1 - 0 . 1 1 3 6 - 0 . 1 173a h k 1 Fo h k 1 J o h I Fo 1 5 0 1 0 . 6 4 1 2 1 3 . 9 2 1 3 4 0 . 3 1 5 2 9 . 0 4 1 4 9 . 8 2 1 5 2 2 . 6 1 5 4 7 . 0 4 3 0 1 2 . 3 2 3 1 5 3 . 6 2 1 0 6 . 0 4 3 2 1 0 . 8 2 3 3 4 9 . 6 2 1 2 3 . 3 5 1 2 1 0 . 0 2 , 3 5 2 7 . 6 2 1 4 - 0 . 0 0 1 1 6 0 . 5 2 5 1 2 4 . 6 2 1 6 6 . 9 0 1 3 5 9 . 6 2 5 3 2 4 . 2 2 3 0 6 . 6 0 1 5 2 8 . 8 3 1 1 4 9 . 2 2 3 2 - 0 . 0 0 3 1 2 5 . 4 3 1 3 2 9 . 9 2 3 4 - 0 . 0 0 3 3 3 8 . 7 3 1 5 2 3 . 2 2 5 0 5 . 5 0 3 5 5 2 . 4 3 3 1 4 2 . 8 2 5 2 8 . 2 0 5 1 4 3 . 8 3 3 3 3 2 . 6 2 5 4 - 0 . 1 0 5 3 4 0 . 4 3 3 5 2 0 . 1 3 1 0 2 6 . 6 1 1 1 8 1 . 6 3 5 1 2 2 . 5 3 1 2 1 6 . 4 1 1 3 4 8 . 6 3 5 3 1 7 . 8 3 1 4 12 .5 1 1 5 3 4 . 4 4 1 1 5 4 . 2 3 3 0 2 7 . 1 1 3 1 5 0 . 0 4 1 3 4 5 . 2 3 3 2 8.7 1 3 3 3 3 . 3 4 3 1 3 4 . 5 3 3- 4 1 0 . 9 1 3 5 2 3 . 8 4 3 3 3 2 . 3 3 5 0 11.7 1 5 1 4 4 . 4 5 1 1 3 0 . 9 3 5 2 7 . 6 1 5 3° 3 2 . 7 4 1 0 2 2 . 0 2 1 1 3 8 . 7 . 174 REFERENCES 1. M . E . Redwood and C . J . W i l l i s , C a n a d . J . C h e m . , 4 3 , 1893 ( 1 9 6 5 ) ; D . C . B r a d l e y , M . E . Redwood and C . J . W i l l i s , P r o c . Chem. S o c , 416 ( 1 9 6 4 ) . 2 . R . E . R u n d l e , A c t a . C r y s t . , 1, 180 ( 1 9 4 8 ) . 3 . G . W i t t i g and M . W e t t e r l i n g , A n n . C h i m . , 5 5 7 . 193 ( 1 9 4 7 ) . 4 . D . F . S m i t h and D. W. M a g n u s o n , P h y s . R e v . , 8 7 , 226 ( 1 9 5 2 ) . 5 . M . L i s t e r and L . E . S u t t o n , T r a n s . F a r a d a y S o c , 3 5 , 495 ( 1 9 3 9 ) . 6 . S . C r o m e r , U . S . A . E . C . , MDDC-803 ( J u n e 2 0 , 1 9 4 4 ) . 7 . P . R . R a o , P h . D . T h e s i s , U n i v e r s i t y o f B . C . ( 1 9 6 5 ) . 8 . N . B a r t l e t t , " F l u o r i n e Compounds o f t h e P l a t i n u m M e t a l s " i n P r e p a r a t i v e I n o r g a n i c R e a c t i o n s , v o l . 2 , W . L . J o l l y , e d . , I n t e r s c i e n c e P u b l i s h e r s , New Y o r k , 1 9 6 5 , p . 3 1 9 . 9 . G. M . B e g u n , W. H . F l e t c h e r and D. F . S m i t h , J . Chem. P h y s . , 4 2 , 2236 ( 1 9 6 5 ) . 1 0 . C . W o o l f , " O x y f l u o r i d e s o f N i t r o g e n , " A d v a n c e s i n  F l u o r i n e C h e m i s t r y , v o l . 5 , e d . S t a c e y , T a t l o w and S h a r p e , L o n d o n , B u t t e r w o r t h ' s ( 1 9 6 5 ) . 11 . 0 . R u f f and K . S t a u b e r , Z . a n o r g . C h e m . , 4 7 , 190 ( 1 9 0 5 ) 13 . 0 . R u f f , Z . angew. C h e m . , 4 2 , 807 ( 1 9 2 9 ) . 14. H . M o i s s a n and P . L e b e a u , Compt. R e n d . , 1 4 0 . 1573 ( 1 9 0 5 ) . 1 5 . G . H . C a d y , J . Amer . Chem. S o c , 5 6 , 2623 ( 1 9 3 4 ) . 1 6 . L . P i e r c e and E . P a c e , J . Chem. P h y s . , 2 3 , 551 ( 1 9 5 5 ) . 17. 0 . R u f f , J . F i s h e r , and F . L u f t , Z . a n o r g . C h e m . , 1 7 2 . 417 ( 1 9 2 8 ) . 175 18 . C . B . C o l b u r n and A . K e n n e d y , J . A m e r . Chem. S o c , 8 0 . 5004 ( 1 9 5 8 ) . 19 . C . B . C o l b u r n , A . K e n n e d y , F . A . J o h n s o n , K . M c C a l l u m , C . C . M e t z e r , and C . 0 . P a r k e r , J . A m e r . Chem. S o c , 8 1 , 6397 ( 1 9 5 9 ) . 2 0 . J . F . H a l l e r , P h . D . T h e s i s , C o r n e l l U n i v e r s i t y , New Y o r k ( 1 9 4 2 ) . 21^ U . Wannagat and J . R a d e m a c h e r s , Z . a n o r g . C h e m . , 1 8 4 . 290 ( 1 9 5 7 ) . 2 2 . H . S c h u l z e , J . P r a k t . C h e m . ( 2 ) , 2 1 , 443 ( 1 8 8 0 ) . 2 3 . H . M o i s s a n , Compt . R e n d . , 92, 665 ( 1 8 8 4 ) . 2 4 . T . E . T h o r p e , P r o c . R o y . S o c , 2 5 , 122 ( 1 8 7 7 ) . 2 5 . M . L u s t i g , J . K . R u f f , and C . B . C o l b u r n , J . Amer . Chem. S o c , 8 8 , 3875 ( 1 9 6 6 ) . 2 6 . R . W. R u d o l p h , R. C . T a y l o r , and R . W. P a r r y , J . Amer. Chem. S o c , 8 8 , 3729 ( 1 9 6 6 ) . 2 7 . J . W. G e o r g e , " H a l i d e s and O x y h a l i d e s o f t h e E l e m e n t s o f G r o u p s Vb and V I b , " P r o g r e s s i n I n o r g a n i c C h e m i s t r y . V o l . 2 , e d . F . A . C o t t o n , New Y o r k , L o n d o n , I n t e r s c i e n c e P u b l i s h e r s I n c . ( 1 9 6 0 ) . 2 8 . C . J . H o f f m a n and R. G. N e v i l l e , " N i t r o g e n F l u o r i d e s and t h e i r O r g a n i c D e r i v a t i v e s , " Chem. R e v . , 61 ( 1 9 6 1 ) . 2 9 . C . C o l b u r n , " N i t r o g e n F l u o r i d e s and t h e i r I n o r g a n i c ' D e r i v a t i v e s , " A d v a n c e s i n F l u o r i n e C h e m i s t r y , v o l . 2 , B u t t e r w o r t h ' s , L o n d o n ( 1 9 5 9 ) . 3 0 . R . S c h m u t z l e r , " T h e F l u o r i d e s o f P h o s p h o r u s , " A d v a n c e s  i n F l u o r i n e C h e m i s t r y , v o l . 2 , e d . S t a c e y , T a t l o w * : and S h a r p e , B u t t e r w o r t h ' s , L o n d o n ( 1 9 6 5 ) . 3 1 . 0 . R u f f , W. M e n z e l , and W. Newmann, Z . a n o r g . C h e m . , 2 0 8 . 293 ( 1 9 3 2 ) . 3 2 . A . V . F a l o o n and W. B . K e n n a , J . A m e r . Chem. S o c , 7 3 , 2937 ( 1 9 5 1 ) . 176 3 3 . D. Rapp and H . S . J o h n s t o n , J . Chem. P h y s . , 3 3 , 695 ( 1 9 6 0 ) . 3 4 . H . S . J o h n s t o n and J . B e r t i n J r . , J . Amer . Chem. S o c , 8 1 , 6402 ( 1 9 5 9 ) . 3 5 . H . J . B e r t i n , P h . D. T h e s i s , S t a n f o r d U n i v e r s i t y o f C a l i f o r n i a ( 1 9 5 7 ) ; D i s s e r t a t i o n A b s t r a c t s , 7 7 , 2432 ( 1 9 5 7 ) . 3 6 . P . J . H . W o l t z , E . A . J o n e s , and A . H . N i e l s o n , J . Chem. P h y s . , 20,, 378 ( 1 9 5 2 ) . 3 7 . L . K . B e a c h , J . I n o r g . N u c l e a r C h e m . , 2 6 , 2033 ( 1 9 6 4 ) . 3 8 . P a t e n t s u b m i t t e d by E . I . Du P o i n t de Nemours & C o . , N o . 8 9 5 , 9 4 5 , U . K . (May 1 9 6 2 ) . 3 9 . F . D. M a r s h , U . S . P a t e n t N o . 3 0 , 3 2 , 400 ( 1 9 6 2 ) . 4 0 . S . P . B e a t o n , P h . D. T h e s i s , U n i v e r s i t y o f B . C . ( 1 9 6 6 ) . 4 1 . J . M . S h r e a v e , L . C . D u n c a n , and G . H . C a d y , I n o r g . C h e m . , 4 , 1516 ( 1 9 6 5 ) . 4 2 . M . L u s t i g and J . K . R u f f , I n o r g . C h e m . , 3 , 1422 ( 1 9 6 4 ) . 4 3 . R . L . C a u b l e and G . H . C a d y , " T e c h n i c a l R e p o r t 61 t o t h e O f f i c e o f N a v a l R e s e a r c h C o n t r a c t N o . N 0 0 0 1 4 - 6 7 -A - 0 1 0 3 - 0 0 2 , N . R . N o . N R 0 9 3 - 0 1 8 . 4 4 . C o m p r e h e n s i v e A n a l y t i c a l C h e m i s t r y , v o l . 1 B , C l a s s i c a l A n a l y s i s , e d . C . L . W i l s o n and D.W. W i l s o n , New Y o r k ( 1 9 6 0 ) V a n N o s t r a n d C o . , p . 4 6 7 . 4 5 . H . H . W i l l a r d and D . B . W i n t e r , I n d . E n g . Chem. A n a l . E d . , 5 , 7 ( 1 9 3 3 ) . 4 6 . Q u a n t i t a t i v e O r g a n i c M i c r o a n a l y s i s , 2nd e d i t i o n . A S t e y e r m a r k , New Y o r k ( 1 9 6 1 ) , A c a d e m i c P r e s s , p . 3 3 1 . 4 7 . C. E . B r i o n , A n a l y t . C h e m . , 3 7 , 1706 ( 1 9 6 5 ) . 4 8 . K . B . K e l l o g g and G. H . C a d y , J . A m e r . Chem. S o c , 2 0 , 3986 ( 1 9 4 8 ) . 177 4 9 . N . K . J h a , P h . D . T h e s i s , U n i v e r s i t y o f B . C . ( 1 9 6 5 ) . 5 0 . J . P . G u e r t i n , K . 0 . C h r i s t e , and A . E . P a v l a t h , I n o r g . C h e m . , 5 , 1921 ( 1 9 6 6 ) . 5 1 . M e t h o d s i n M i c r o a n a l y s i s , v o l . 2 . e d . J . A . K u c k , New Y o r k ( 1 9 6 5 ) , G o r d o n and B r e a c h , p . 7 . B 5 2 . C o m p r e h e n s i v e A n a l y t i c a l C h e m . , v o l . 1 , C l a s s i c a l A n a l y s i s , e d . C . L . W i l s o n and D.W. W i l s o n , New Y o r k ( 1 9 6 0 ) , V a n N o s t r a n d C o . , p . 4 9 5 . 5 3 . D . H . Lohmann, P h . D . T h e s i s , U n i v e r s i t y o f B . C . ( 1 9 6 1 ) . 5 4 . Q u a n t i t a t i v e O r g a n i c M i c r o a n a l y s i s , 2nd e d i t i o n , A . S t e y e r m a r k , New Y o r k ( 1 9 6 1 ) , A c a d e m i c P r e s s , p . 3 3 1 . 5 5 . R . B e l c h e r , A . S y k e s , and J . C . T a t l o w , J . Chem. S o c , 2393 ( 1 9 5 7 ) . 5 6 . W. B . F o x , B . S u k o r n i c k , R . S t u r t e v a n t , A . M a x w e l l , D. K e l l y , R . V i t e k , R . S t a h l , N . V a n d e r k o o i , and J . S . M a c k e n z i e , A b s t r a c t o f t h e F o u r t h I n t e r n a t i o n a l Symposium o f F l u o r i n e C h e m i s t r y . A m e r i c a n Chem. S o c . , E s t e r P k . C o l o r a d o ( J u l y 2 4 - 2 8 , 1 9 6 7 ) , P a p e r 3 3 . 5 7 . W. B . F o x , J . S . M a c k e n z i e , N . V a n d e r k o o i , B . S u k o r n i c k , C . A . Warnser, J . R. H o l m e s , R . E . E i b e c k , and B . B. S t e w a r t , J . Amer . Chem. S o c , 8 8 , 2604 ( 1 9 6 6 ) . 5 8 . D . P i l i p o v i c h , W. M a y a , B . L . T u f f l y , E . C . C u r t i s , H . D u b b , E . A . L a w t o n , R. D . W i l s o n , N . N . O g i m a c h i , D . F . S h e e h a n , and V . B e d w e l l , J . A m e r . Chem. S o c , t o be p u b l i s h e d . 5 9 . R . D. D o e s c h e r , J . Chem. P h y s . , 1 9 , 1070 ( 1 9 5 1 ) . 6 0 . G. S p e n g e r , H . T a y l o r , H . B o d e n s t e i n , H . J o c k u s c h , and S h i n g - H o u C h o n g , Z . a n o r g . C h e m . , 2 3 1 , 24 ( 1 9 3 7 ) . 6 1 . " M o l e c u l a r S p e c t r a and M o l e c u l a r S t r u c t u r e I : S p e c t r a o f D i a t o m i c M o l e c u l e s , " G . H e r z b e r g , P r i n c e t o n , N . J . ( 1 9 5 0 ) , V a n N o s t r a n d C o . 178 6 2 . H . J . B e r t i n J r . and M . S . J o h n s t o n , J . M o l . S p e c t r o s c o p y , 3 , 683 ( 1 9 5 9 ) . 6 3 . N . B a r t l e t t and S . P . B e a t o n , N . K . J h a , Chem. Comm., 168 ( 1 9 6 6 ) . 6 4 . O r g a n i c and I n o r g a n i c H y p o f l u o r i t e s . C . J . H o f f m a n , Chem. R e v s . , 6 4 , 91 ( 1 9 6 4 ) . 6 5 . J . A . P o p l e , W. G . S c h n e i d e r , and H . J . B e r n s t e i n , " H i g h R e s o l u t i o n N u c l e a r M a g n e t i c R e s o n a n c e , " New Y o r k ( 1 9 5 9 ) , M c G r a w - H i l l . 6 6 . E . L . M u e t t e r t i e s and W. 0 . P h i l l i p s , J . A m e r . Chem. S o c , 8 i , 1084 ( 1 9 5 9 ) . 6 7 . K . 0 . C h r i s t e , J . P . G u e r t i n , A . E . P a v l a t h , and W. Sawadny, I n o r g . C h e m . , 6 , 533 ( 1 9 6 7 ) . 6 8 . J . H . N o g g l e , J . D . B a l d e s c h w i e l e r , and C . B . C o l b u r n , J . Chem. P h y s . , 3 7 , 182 ( 1 9 6 2 ) . 6 9 . H . S . Gutowsky and C . J . H o f f m a n , J . Chem. P h y s . , 1 9 , 1259 ( 1 9 5 1 ) . 7 0 . J . R. H o l m e s , R . B . S t e w a r t , and J . S . M a c k e n z i e , J . Chem. P h y s . , 3 7 , 2728 ( 1 9 6 2 ) . 7 1 . L . W. R e e v e s , C a n a d . J . Chem. ( t o be p u b l i s h e d ) . 7 2 . V . S c h o m a c k e r and C h i a - S i L u , J . Amer . Chem. S o c , 7 2 , 1182 ( 1 9 5 0 ) . 7 3 . S . H e r z b e r g , " I n f r a r e d and Raman S p e c t r a o f P o l y a t o m i c M o l e c u l e s , " New Y o r k ( 1 9 4 5 ) , V a n N o s t r a n d , p . 312 . 7 4 . D . R . L i d e J r . , and D. E . M a n n , J . Chem. P h y s . , 2 5 , 1128 ( 1 9 5 6 ) . 7 5 . E . C . C u r t i s , D. P i l i p o v i c h , and W. H . M o b e r l y , J . Chem. P h y s . , 4 6 , 2904 ( 1 9 6 7 ) . 7 6 . H . S . Gutowsky and A . D. L i e h r , J . Chem. P h y s . , 20., 1652 ( 1 9 5 2 ) . 179 7 7 . C . H . J o n e s and E . M c L a r e n , J . Chem. P h y s . , 2 8 , 995 ( 1 9 5 8 ) . 7 8 . R . E . D o d d , J . A . R o l f e , and L . A . Woodward, T r a n s . F a r a d a y S o c , 5 2 , 145 ( 1 9 5 6 ) ; D. G . P a r a n i k and E . V . R a o , I n d i a n J . P h y s i c s , 3 5 , 177 ( 1 9 6 1 ) . 7 9 . M . E . W i l s o n and S . R . P o l o , J . Chem. P h y s . , 2 0 , 1716 ( 1 9 5 2 ) ; and I b i d . . 2 1 , 1426 ( 1 9 5 3 ) . 8 0 . C . C a m p b e l l and N . B a r t l e t t , P r i v a t e C o m m u n i c a t i o n . 8 1 . S . R. L a P a g l i a and A . B . F . D u n c a n , J . Chem. P h y s . , 3 4 , 1003 ( 1 9 6 1 ) . 8 2 . C . I . M e r r i l l and G . H . C a d y , J . Amer. Chem. S o c . , 8 4 , 414 ( 1 9 6 2 ) . 8 3 . C . I . M e r r i l l and G . H . C a d y , J . Amer . Chem. S o c , 8 3 , 298 ( 1 9 6 1 ) . 8 4 . N . V . S i d g w i c k , C h e m i c a l E l e m e n t s and T h e i r Compounds. L o n d o n ( 1 9 5 2 ) , O x f o r d P r e s s , p . 6 7 9 . 8 5 . P . 0 . K i n e l l , I . L i n d q u i s t , and M . Z a c k r i s s o n , A c t a . Chem. S c a n d . , 14 , 994 ( I 9 6 0 ) . 8 6 . C . I . B r a n d e n and I . L i n d q u i s t , A c t a . Chem. S c a n d . , 1 4 , 726 ( 1 9 6 0 ) . 8 7 . C . I . B r a n d e n and I . L i n d q u i s t , A c t a . Chem. S c a n d . , 15 , 167 ( 1 9 6 1 ) . 8 8 . J . O v e r e n t , and J . C . E v a n s , T r a n s . F a r a d a y S o c , 5 5 , 1817 ( 1 9 5 9 ) . 8 9 . D. W. A . S h a r p and A . G . S h a r p e , J . Chem. S o c , 1855 ( 1 9 5 6 ) . 9 0 . J . H . Shaw, J . Chem. P h y s . , 2 4 , 402 ( 1 9 5 6 ) . 9 1 . T . L . C o t t r e l , "The S t r e n g t h o f C h e m i c a l B o n d s , " 2nd e d i t i o n , L o n d o n ( 1 9 5 8 ) , B u t t e r w o r t h ' s S c i e n t i f i c P u b l i c a t i o n s . 180 9 2 . C. V . S t e p h e n s o n and E . A . J o n e s , J . Chem. P h y s . , 2 0 , 135 ( 1 9 5 2 ) . 9 3 . D . W. M a g n u s o n , J . Chem. P h y s . , 1 9 , 1071 ( 1 9 5 1 ) . 9 4 . J . P . D e v l i n and I . C. H i s a t s u n e , S p e c t r o c h i m A c t a . , 17, 206 ( 1 9 6 1 ) . 9 5 . G. R. B i r d , J . Chem. P h y s . , 2 5 , 1040 ( 1 9 5 6 ) . 9 6 . P . A . G i g u e r e , and D. C h i n , C a n a d . J . C h e m . , 3 9 , 1216 ( 1 9 6 1 ) . 9 7 . D. E . M i l l i g a n and M . E . J a c o x , J . Chem. P h y s . , 4 0 , 2461 ( 1 9 6 4 ) . 9 8 . C . B . C o l b u r n and A . K e n n e d y , J . Chem. P h y s . , 3 5 , 1892 ( 1 9 6 1 ) . 9 9 . M . D . Harmony, R . J . M y e r s , L . J . S c h o e n , D. R . L i d e , and D . E . M a n n , J . Chem. P h y s . , 3 5 , 1129 ( 1 9 6 1 ) , 1 0 0 . R . K . Bonn and S . H . B a u e r , I n o r g . C h e m . , 6 , 304 ( 1 9 6 5 ) . 1 0 1 . J . S h e r i d a n and W. G o r d y , P h y s . R e v . , 7 9 , 513 ( 1 9 5 0 ) . 102 . E . T s c h u i k o w - R o u x , J . Chem. P h y s . , 6 6 , 1636 ( 1 9 6 2 ) . 1 0 3 . N . J . Lehmann, J . M o l . S p e c t r o s c o p y , 7 , 261 ( 1 9 6 1 ) . 104. R . D. S p r a t l e y and G. C . P i m e n t e l , J . Amer. Chem. S o c , 2394 ( 1 9 6 6 ) . 1 0 5 . D . W. A . S h a r p and J . T h o r l e y , J . Chem. S o c , 3557 ( 1 9 6 3 ) . 1 0 6 . R . D. P e a c o c k and D. W. A . S h a r p , J . Chem. S o c , 2762 ( 1 9 5 9 ) . 1 0 7 . W. Klemm and E . H u s s , Z . a n o r g . C h e m . , 2 5 8 , 221 ( 1 9 4 9 ) . 1 0 8 . J . A . I b e r s and W. C . H a m i l t o n , J . Chem. P h y s . , 4 4 , 1749 ( 1 9 6 6 ) . 181 1 0 9 . T a b l e s o f I n t e r a t o m i c D i s t a n c e s and C o n f i g u r a t i o n i n M o l e c u l e s and I o n s . Chem. S o c . S p e c . P u b . N o . 11 ( 1 9 5 8 ) and S u p p l e m e n t t o A b o v e , S p e c . P u b . N o . 1 8 ( 1 9 6 5 ) . 110. V . H . Bode and E . V o s s , Z . a n o r g . C h e m . , 2 8 6 , 136 ( 1 9 5 6 ) . 111. L . J . K l i n k e n b e r g , R e c . T r a v . C h i m . , 5 6 , 749 ( 1 9 3 7 ) . 112. R. D. W. K e m m i t t , D. R. R u s s e l , and D. W. A . S h a r p , J . Chem. S o c , 4408 ( 1 9 6 3 ) . 113 . A . F . W e l l s , Chem. R e v . , 8 , 380 ( 1 9 5 4 ) . 114 . N . B a r t l e t t , P r i v a t e C o m m u n i c a t i o n ( 1 9 6 7 ) . 115. P . L . R o b i n s o n and G . L . West l a n d , J . Chem. S o c , 431 ( 1 9 5 6 ) . 116. C o m p r e h e n s i v e A n a l y t i c a l C h e m i s t r y , v o l . I B , e d . C . L . W i l s o n and D . W. W i l s o n , New Y o r k ( I 9 6 0 ) , V a n N o s t r a n d C o . , p . 5 3 0 . 117. B . N . F i g g i s and R. S . N y h o l m , J . Chem. S o c , 331 ( 1 9 5 9 ) . 118 . H . C . C l a r k and R. J . O ' B r i e n , C a n a d . J . C h e m . , 3 9 , 1030 ( 1 9 6 1 ) . 119. P . W. S e l w o o d , " M a g n e t o c h e m i s t r y , " 2nd e d i t i o n , New Y o r k ( 1 9 5 6 ) , I n t e r s c i e n c e . 1 2 0 . R. M . G o l d i n g , M o l . P h y s . , 8 , 561 ( 1 9 6 4 ) . 1 2 1 . F . P . G o r t s e m a and R. H . T o e n i s h o e t t e r , I n o r g . C h e m . , 5 , 1925 ( 1 9 6 6 ) . 122 . H . F . B a u e r and D . F . S h e e h a n , I n o r g . C h e m . , 6 , 1736 ( 1 9 6 7 ) . 1 2 3 . W. H . Z a c h a r i a s e n , J . Amer . Chem. S o c , 70., 2147 ( 1 9 4 8 ) . 124 . A . E a r n s h a w , B . N . F i g g i s , J . L e w i s , and R. D. P e a c o c k , J . Chem. S o c , 3132 ( 1 9 6 1 ) . 1 2 5 . R . D. P e a c o c k , R e c . T r a v . C h i m . , 7 5 , 576 ( 1 9 5 6 ) . 182 126 . N . B a r t l e t t and D. H . Lohmann, J . Chem. S o c , 615 ( 1 9 6 4 ) . 127 . M . A . H e p w o r t h , P . L . R o b i n s o n and G . L . W e s t l a n d , Chem. and I n d . , 1516 ( 1 9 5 5 ) . 1 2 8 . N . V . S i d g w i c k and H . M . P o w e l l , P r o c . R o y . S o c . A . , 1 7 6 . 153 ( 1 9 4 0 ) . 129 . K . 0. C h r i s t e and W. Sawodny, I n o r g . C h e m . , 6 , 1736 ( 1 9 6 7 ) . 130. C . G. Vonk and E . H . W i e b e n g a , A c t a . C r y s t . , 1 2 , 859 ( 1 9 5 9 ) . 131 . M . A . H e p w o r t h , K . H . J a c k , and G. J . W e s t l a n d , J . I n o r g . N u c l e a r C h e m . , 2 , 79 ( 1 9 5 6 ) . 132 . N . B a r t l e t t , F . E i n s t e i n , D . F . S t e w a r t , and J . T r o t t e r , J . Chem. S o c ( A ) , 1190 ( 1 9 6 7 ) . 1 3 3 . A . Z a l k i n , J . D. F o r r e s t e r , and D . H . T e m p l e t o n , I n o r g . C h e m . , 3 , 639 ( 1 9 6 4 ) . 1 3 4 . N . N . L i p s c o m b , " B o r o n H y d r i d e s , " New Y o r k ( 1 9 6 3 ) , N . A . B e n j a m i n . 1 3 5 . G . H e r z b e r g , " I n f r a r e d and Raman S p e c t r a o f P o l y a t o m i c M o l e c u l e s , " P r i n c e t o n , N . J . ( 1 9 4 5 ) , V a n N o s t r a n d , p . 4 5 4 . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0104716/manifest

Comment

Related Items