UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Relationships between some elements in rocks, soils and plants of some mineralized areas of British Columbia Barakso, John (Ja'nos) 1967

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1967_A6_7 B35.pdf [ 7.16MB ]
Metadata
JSON: 831-1.0104407.json
JSON-LD: 831-1.0104407-ld.json
RDF/XML (Pretty): 831-1.0104407-rdf.xml
RDF/JSON: 831-1.0104407-rdf.json
Turtle: 831-1.0104407-turtle.txt
N-Triples: 831-1.0104407-rdf-ntriples.txt
Original Record: 831-1.0104407-source.json
Full Text
831-1.0104407-fulltext.txt
Citation
831-1.0104407.ris

Full Text

RELATIONSHIPS BETWEEN SOME ELEMENTS IN ROCKS, SOILS AND PLANTS OF SOME MINERALIZED AREAS OF  BRITISH COLUMBIA  by J . J . Barakso  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE  REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE  i n . t h e Department of Soil  Science  We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e required  standard.  THE UNIVERSITY OF BRITISH COLUMBIA 1967  In  presenting  for  an  that  advanced  the  I  thesis  for  Department  shall  further  agree  partial  the  make  that  it  freely  representatives.  h.iJs  of  this  thesis  may  for  permission.  of  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  Columbia  be  of  British  available  permission  or  by  f u l f i l m e n t of  University  purposes  my w r i t t e n  Department  at  in  scholarly  publication  without  thesis  degree  Library  Study.  or  this  for  granted  It  is  financial  for  the  Columbia,  I  reference  and  extensive  by  the  requirements  copying  Head  understood  gain  shall  of  this  my  that  not  of  agree  be  copying  allowed  ii  ABSTRACT  The d i s t r i b u t i o n o f t r a c e elements i n bedrock,  s o i l s and p l a n t s ,  was s t u d i e d i n twelve a r e a s o f B r i t i s h Columbia where m i n e r a l i z a t i o n was known t o o c c u r below d i f f e r e n t k i n d s and depths o f overburden.  Samples  were t a k e n from two s o i l p r o f i l e s and t h e bedrock a t each l o c a t i o n , and second and t h i r d y e a r t w i g s o f t h e p r i n c i p a l v e g e t a t i o n found w i t h i n a r a d i u s o f f i f t y f e e t o f each p r o f i l e were a l s o c o l l e c t e d . and p l a n t samples were a n a l y s e d .  The b e d r o c k , s o i l  The s o i l samples were used f o r t h e d e t e r -  m i n a t i o n o f pH, o r g a n i c m a t t e r c o n t e n t , percentage  o f m a t e r i a l -=80 mesh,  c a t i o n exchange c a p a c i t y , exchangeable heavy m e t a l s , and c o n t e n t o f Cu, Mo, Zn, Pb, As, Co, N i , Fe and Hg.  The same elements were determined  i n the  bedrock and v e g e t a t i o n samples. The r e s u l t s were examined g r a p h i c a l l y f o r r e l a t i o n s h i p s between e l e m e n t a l c o n t e n t s o f t h e bedrock, were t h e n s t a t i s t i c a l l y  s o i l h o r i z o n s and v e g e t a t i o n .  The d a t a  analysed.  (a)  s o i l h o r i z o n s and p l a n t r e l a t i o n s h i p w i t h bedrock .  (b)  inter-elemental relationship of individual h o r i z o n s o f s o i l s and o f p l a n t s , as w e l l as a l l horizon relationships.  (c)  m u l t i p l e c o r r e l a t i o n s t u d y o f c a t i o n exchange c a p a c i t y , percentage o f o r g a n i c m a t e r i a l and -80 mesh o f element content o f i n d i v i d u a l and a l l s o i l horizons.  y 0  iii  These s t u d i e s  showed t h a t , a l t h o u g h most o f t h e s o i l h o r i z o n s  were developed from t r a n s p o r t e d  materials,  ( g l a c i a l , a l l u v i a l , e t c . ) , there  was a h i g h l y s i g n i f i c a n t c o r r e l a t i o n w i t h B and C h o r i z o n s and bedrock t h a t confirmed t h e v a l u e o f s o i l sampling i n p r o s p e c t i n g , ment i n c l u d e s The Co,  since horizon  develop-  t h e upwards m i g r a t i o n o f t h e elements from bedrock. secondary d i s p e r s i o n o f t h e h a l o elements (Mo, Zn, Pb, A s ,  N i , Hg) proved u s e f u l as p a t h f i n d e r s  have been masked d u r i n g  where major economic elements may  t h e upward m i g r a t i o n p r o c e s s .  Secondary d i s p e r s i o n  may a l s o be i n some degree, h e l p f u l i n i d e n t i f y i n g t h e o r i g i n o f s o i l s and plants. A great erent  divergence i n the a f f i n i t y o f various  elements, and o f t h e same s p e c i e s  plants  for d i f f -  a t d i f f e r e n t l o c a t i o n s , was n o t e d .  I t was a l s o observed t h a t p l a n t s have a c l o s e r r e l a t i o n s h i p t o t h e s o i l s t h a n t o t h e bedrock i t s e l f , b u t even s o , i n d i c a t e The  mineralization.  i m p o r t a n t r e l a t i o n s h i p s between e l e m e n t a l d i s t r i b u t i o n s i n  s o i l h o r i z o n s and i n p l a n t s w i t h bedrock, i n d i c a t e d a l o g a r i t h m i c  relat-  ionship . The  multiple  factors of influencing transported frequently  c o r r e l a t i o n study i n d i c a t e d that  some o f t h e major  t h e l e v e l o f element c o n t e n t i n s o i l s developed on  m a t e r i a l - c o v e r e d a r e a s , a r e t h e s i z e o f t h e s o i l p a r t i c l e s and t h e pH o f t h e s o i l .  iv In g e n e r a l , the study i n d i c a t e d t h a t the d i s t r i b u t i o n of t r a c e elements i s h i g h l y complex and t h a t b e d r o c k , s o i l s , and p l a n t s , be combined i n t o one s t u d y ; incomplete without  the  should  all  s i n c e t h e s t u d y o f one o f t h e s e a l o n e would be  others.  V  TABLE OF CONTENTS Page 1  INTRODUCTION  2  LITERATURE REVIEW 2.1 S o i l and V e g e t a t i o n Surveys 2.2 D i s p e r s i o n o f Elements 2.3 Anomalies i n T r a n s p o r t e d M a t e r i a l s 2.4 S o i l Formation and Secondary D i s p e r s i o n  3 3 7 11 13  3  MATERIALS 3.1 3.2 3.3  16 16 18 22  4.  RESULTS AND DISCUSSION 4-1 D i s c u s s i o n o f Sample S i t e s 4-1.1 McBride Creek P r o s p e c t 4-1.2 Craigmont Mines 4.1.3 Copper Mountain Mines 4.1-4 Taylor W i n d f a l l Prospect 4.1.5 Minex-Highland V a l l e y 4.1.6 P a c i f i c N i c k e l Mines 4.1-7 Skeena S i l v e r P r o p e r t y - H i g h l a n d V a l l e y 4.1.8 G a l o r e Creek P r o s p e c t 4.1.9 P i o n e e r Mine 4.1.10 B r a l o r n e Mine 4.1.11 Endako Mine 4.1.12 Carmi P r o s p e c t 4.2 D i s c u s s i o n b y Elements  24 24 29 31 34 36 38 41 43 45 48 50 53 55 67  5  SUMMARY AND CONCLUSIONS  82  6  LITERATURE CITED  88  AND METHODS Sampling S i t e s and Methods L a b o r a t o r y Methods S t a t i s t i c a l Methods  1  vi  LIST OF TABLES Page 1.  Summary of I n f o r m a t i o n C o n c e r n i n g Sample S i t e s  26  2.  E l e m e n t a l C o r r e l a t i o n s o f S o i l H o r i z o n s and t o Bedrock ( L o g a r i t h m i c V a l u e s used, df=22)  60  3.  Plants  I n t e r - E l e m e n t a l Simple C o r r e l a t i o n s over a l l S o i l H o r i z o n s , Bedrocks and S o i l Data (df=130)  62  4.  Simple C o r r e l a t i o n s  63  5.  The H i g h e s t S i g n i f i c a n t Independent V a r i a b l e f o r t h e M u l t i p l e C o r r e l a t i o n s of Mesh S i z e , C.E.C. and O.M. w i t h t h e Elements and H o r i z o n s  66  A-l  A n a l y t i c a l Data f o r McBride Creek P r o s p e c t  97  A-2  A n a l y t i c a l Data f o r Craigmont Mines  98  A-3  A n a l y t i c a l Data f o r Copper Mountain Mines  99  A-4  A n a l y t i c a l Data f o r * T a y l o r W i n d f a l l  A-5  A n a l y t i c a l Data f o r M i n e x - H i g h l a n d V a l l e y  101  A-6  A n a l y t i c a l Data f o r P a c i f i c  102  A-7  A n a l y t i c a l Data f o r Skeena S i l v e r P r o p e r t y  103  A-8  A n a l y t i c a l Data f o r G a l o r e Creek P r o s p e c t  104  A-9  A n a l y t i c a l Data f o r P i o n e e r Mines  105  A-10  A n a l y t i c a l Data f o r B r a l o r n e Mines  106  A-ll  A n a l y t i c a l Data f o r Endako Mines  107  A-12  A n a l y t i c a l Data f o r Carmi Prospect  108  A-13  E l e m e n t a l C o r r e l a t i o n s o f S o i l H o r i z o n s and t o Bedrock (Assuming L i n e a r D i s t r i b u t i o n s )  i n I n d i v i d u a l H o r i z o n s and P l a n t s  Prospect  100  N i c k e l Mines  Plants 109  vii  LIST OF FIGURES Page 1.  L o c a t i o n o f Sample S i t e s  17  2.  Sketch o f Sampling Method  19  3.  S e l e c t e d Data f o r McBride Creek P r o s p e c t , P r o f i l e s 1,2  4.  S e l e c t e d Data f o r Craigmont Mines, P r o f i l e s 3,4  32  5.  S e l e c t e d Data f o r Copper Mountain Mines, P r o f i l e s 5,6  35  6.  S e l e c t e d Data f o r T a y l o r W i n d f a l l P r o s p e c t , P r o f i l e s 7,8  37  7.  S e l e c t e d Data f o r Minex-Highland V a l l e y , P r o f i l e s 9,10  39  8.  S e l e c t e d Data f o r P a c i f i c N i c k e l Mines, P r o f i l e s 11,12  42  9.  S e l e c t e d Data f o r Skeena S i l v e r P r o p e r t y - H i g h l a n d V a l l e y , P r o f i l e s 13,14  30  44  10.  S e l e c t e d Data f o r G a l o r e Creek P r o s p e c t , P r o f i l e s 15,16  46  11.  S e l e c t e d Data f o r P i o n e e r Mines, P r o f i l e s 17,18  49  12.  S e l e c t e d Data f o r B r a l o r n e Mines  51  13.  S e l e c t e d Data f o r Endako Mines  14.  S e l e c t e d Data f o r Carmi P r o s p e c t , P r o f i l e s 2 3 , 2 4  56  15.  Cu D i s t r i b u t i o n  i n S o i l s and Bedrock  68  16.  Mo D i s t r i b u t i o n  i n S o i l s and Bedrock  69  17.  Zn D i s t r i b u t i o n  i n S o i l s and Bedrock  71  18.  Pb D i s t r i b u t i o n  i n S o i l s and Bedrock  72  P r o f i l e s 19,20 P r o f i l e s 21,22  54  viii  LIST O F J I G U R £ S _ - _ c o n t « d  Page  19.  As D i s t r i b u t i o n i n S o i l s and Bedrock  74  20.  N i D i s t r i b u t i o n i n S o i l s and Bedrock  77  21.  Co D i s t r i b u t i o n i n S o i l s and Bedrock  75  22.  Fe D i s t r i b u t i o n i n S o i l s and Bedrock  79  23.  Hg D i s t r i b u t i o n i n S o i l s and Bedrock  80  A-l  A n a l y t i c a l Data f o r S o i l s , Rocks and P l a n t s a t McBride Creek P r o s p e c t  A-2  92  A n a l y t i c a l Data f o r S o i l s , Rocks and P l a n t s a t T a y l o r W i n d f a l l Prospect  93  A-3  Cu Content R e l a t i o n o f P l a n t s and S o i l H o r i z o n s  94  A-4  Zn Content R e l a t i o n o f P l a n t s and S o i l H o r i z o n s  95  A-5  Hg Content R e l a t i o n o f P l a n t s and S o i l H o r i z o n s  96  ix ACKNOWLEDGEMENTS  The w r i t e r wishes t o e x p r e s s h i s a p p r e c i a t i o n t o t h e Graduate Committee f o r t h e i r h e l p f u l a d v i c e and c r i t i c i s m : D r . C. A .  Rowles(Chairman),  Department o f S o i l S c i e n c e , D r . L. M. L a v k u l i c h , Department o f S o i l D r . H. V . Warren, Department o f G e o l o g y , D r . R. Geology, and D r . E.  E.  Science,  D e l a v a u l t , Department o f  H. G a r d n e r , p r e v i o u s l y w i t h t h e Department o f  Soil  Science. Sincere appreciation i s  extended t o D r . C. W. R o b e r t s and Mr. D. C .  C r o b e r , Department o f P o u l t r y S c i e n c e ,  f o r t h e i r v a l u a b l e a d v i c e and s t a t i s -  t i c a l work. S p e c i a l thanks a r e a c c o r d e d t o Kennco E x p l o r a t i o n s , L i m i t e d , and p a r t i c u l a r l y t o D r . J .  A . Gower and Mr. C. S.  (Western)  Ney f o r  their  h e l p and a d v i c e throughout the f i e l d work and g e o l o g y . G r a t e f u l acknowledgment i s expressed t o M r . F. Reger and M r . A . Z o l t a y f o r t h e i r t e c h n i c a l a s s i s t a n c e i n e d i t i n g , and t o M i s s F.  Haworth  f o r t y p i n g of the manuscript. F i n a n c i a l assistance i s also recognized C o u n c i l of Canada.  from t h e N a t i o n a l  Research  -1-  1.  INTRODUCTION  The rapidly growing demand for metals has led to prospecting for metallic orebodies on an unprecedented scale.  Since earlier surveys, made  by prospectors using conventional methods, located many of the exposed orebodies, new techniques of prospecting are needed to detect those which are buried by s o i l , organic debris, or other material. Pedo-geochemical and bio-geochemical prospecting are methods which have recently been developed for this purpose.  Pedo-geochemical and  bio-geochemical prospecting refer to exploration based on systematic measurement of one or more elements occurring i n s o i l or plant material. In order to use these methods effectively, i t i s necessary to have an understanding of the relationships that exist between the elements occurring i n buried orebodies, i n s o i l , and i n vegetation. The purpose of this study was to obtain a better knowledge of these relationships. In this study, 24 soils were examined, described, and sampled, at 12 locations where buried orebodies were known to occur i n British Columbia.  Samples of the vegetation and underlying bedrock were also  collected and, along with the s o i l samples, analysed for their content of eight important micro-elements, along with some additional chemical properties.  -2-  The r e s u l t s o f t h e s e s t u d i e s and the r e l a t i o n s h i p s between t h e c o n t e n t o f micro-elements i n t h e b e d r o c k , s o i l s , and v e g e t a t i o n , a r e p o r t e d upon i n t h e s e c t i o n s which  follow.  re-  -3-  2.  L I T E R A T U R E  R E V I E W  Geochemical p r o s p e c t i n g f o r m i n e r a l s i n c l u d e s any method o f m i n e r a l e x p l o r a t i o n based on s y s t e m a t i c measurement o f one o r more c h e m i c a l properties of naturally occurring material.  The c h e m i c a l p r o p e r t y measured  i s most commonly t h e c o n t e n t o f some t r a c e element o r group o f elements; t h e n a t u r a l l y o c c u r r i n g m a t e r i a l may be r o c k , s o i l , gossan, g l a c i a l d e b r i s , v e g e t a t i o n , stream sediment o r water. the d i s c o v e r y o f abnormal lated to mineralization  The purpose o f t h e measurement i s  c h e m i c a l p a t t e r n s o r g e o c h e m i c a l anomalies r e (15).  Pedo-geochemical and b i o - g e o c h e m i c a l p r o s p e c t i n g r e f e r t o t h e use o f s o i l and v e g e t a t i o n r e s p e c t i v e l y , and s i n c e t h e work r e p o r t e d here i s concerned w i t h t h e s e r e l a t i o n s h i p s , t h e r e v i e w o f l i t e r a t u r e w i l l be restricted  accordingly.  2.1  S o i l and V e g e t a t i o n Surveys  The use o f p l a n t s as i n d i c a t o r s o f m e t a l l i c elements d a t e s back t o 1753 when Urban J e r n e (25),  noted the frequent presence o f a  h i g h e r c o n t e n t o f heavy m e t a l s i n c l u d i n g i r o n , copper, t i n , l e a d , g o l d and a r s e n i c , i n p l a n t s growing i n c e r t a i n a r e a s o f Sweden.  -4-  I n 1929,  Linstow, mentioned by Malyuga ( 2 5 ) , observed  an a f f i n -  i t y among p l a n t s p e c i e s f o r c e r t a i n elements when grown on d i f f e r e n t g i c a l formations.  geolo-  He noted e s p e c i a l l y , t h e h i g h c o n t e n t o f z i n c i n t h e  v i o l e t s o f Germany and Belgium. Pedo-geochemical p r o s p e c t i n g was begun about 1930. and h i s a s s o c i a t e s ( 2 6 , 3 3 ) were among t h e f i r s t t o conduct  Goldsmith  t r a c e element  a n a l y s i s of s o i l s i n order t o i d e n t i f y the o r i g i n o f transported s o i l s i n p a r t s o f Norway and F i n l a n d . (33,40)  D u r i n g t h e same p e r i o d , Fersman and V e m a d s k y  i n R u s s i a , d i d s i m i l a r work t o determine t h e o c c u r r e n c e o f d i s p e r -  s i o n o f elements i n geochemical  cycles.  They were s u c c e s s f u l i n u s i n g  s p e c t r o g r a p h i c a n a l y s e s f o r t r a c e elements i n s o i l s and p l a n t s as a p r o s p e c t i n g method.  T h e i r work l e d t o t h e i n i t i a t i o n o f " M e t a l l o m e t r i c  S u r v e y i n g " i n t h e m i d - 1 9 3 0 s , which has s i n c e become a s t a n d a r d v  procedure  of prospecting i n Russia. Palmquist and Brundin  (25) working i n Sweden i n 1939,  used  b i o - g e o c h e m i c a l methods i n r o u t i n e s p e c t r o g r a p h i c d e t e r m i n a t i o n s o f t h e ash o f g r a s s y p l a n t s and t h e f a l l e n l e a v e s o f the. f o r e s t .  Occasionally,  t h e y a l s o sampled t h e o r g a n i c l a y e r s o f s o i l s i n a r e a s where t h e r e was a p o s s i b i l i t y of finding minerals.  The o c c u r r e n c e o f h i g h e r l e a d , z i n c ,  and t u n g s t e n contents i n some o f t h e i r samples, l e d t o t h e d i s c o v e r y o f s e v e r a l m i n e r a l i z e d zones. economical  f o r mining,  Although  t h e s e d e p o s i t s were found t o be non-  t h e i r o b s e r v a t i o n s proved t h e v a l u e o f t h e i r method.  -5Tooms r e p o r t e d i n 1961 (39)  on l a t o s o l s o i l p r o f i l e s d e v e l o p e d  o v e r g r a n i t i c bedrock i n N o r t h e r n Rhodesia and d e s c r i b e d s o i l s w i t h e n richments o f c o p p e r , chromium, vanadium, manganese, and i r o n i n t h e B h o r i zon. B e g i n n i n g about 1945, Warren and h i s a s s o c i a t e s (41,42,46)  in  B r i t i s h C o l u m b i a , undertook an e x t e n s i v e r e s e a r c h program on the m e t a l content o f v e g e t a t i o n , and r e p o r t e d t h e p o s s i b i l i t y o f u s i n g d i f f e r e n t species o f t r e e s f o r geochemical p r o s p e c t i n g f o r s e v e r a l elements.  Their  work p i o n e e r e d t h i s f i e l d and e s t a b l i s h e d background v a l u e s f o r some r o c k s and p l a n t s as g u i d e l i n e s f o r p r o s p e c t i n g . D u r i n g t h e l a s t d e c a d e , a g r e a t d e a l more a t t e n t i o n was t o geochemical p r o s p e c t i n g .  given  R u s s i a n s c i e n t i s t s have done a g r e a t d e a l o f  work i n t h e use o f s o i l and v e g e t a t i o n i n s u r v e y s .  Among t h e R u s s i a n  s c i e n t i s t s working i n t h i s f i e l d , V i n o g r a d o v and Malyuga ( 4 0 , 2 5 ) have been o u t s t a n d i n g .  V i n o g r a d o v made a wide s t u d y o f the d i s t r i b u t i o n o f  " R a r e " elements i n s o i l s .  He examined more than 20 s o i l p r o f i l e s from  a r e a s o f the e a s t e r n European p l a i n s , and made a complete and d e t a i l e d a n a l y s i s o f samples c o l l e c t e d from t h e r e ,  summarizing h i s work i n the  t e x t " T h e Geochemistry o f Rare and D i s p e r s e d Chemical Elements i n (40),  Soils"  p u b l i s h e d i n 1959. Malyuga s t u d i e d t h e c h e m i c a l c o m p o s i t i o n o f p l a n t s r e l a t i v e  g e o c h e m i c a l p r o s p e c t i n g , and gave a summary o f d i f f e r e n t  to  indicator plants.  He r e p o r t e d e x p e r i e n c e i n t h e U . S . S . R . o f the use o f p l a n t s f o r b i o -  -6-  geochemical p r o s p e c t i n g .  The a c c o u n t o f h i s work i s found i n h i s book -  " B i o - G e o c h e m i c a l Methods o f P r o s p e c t i n g " (25), I n comparison,  p u b l i s h e d i n 1964.  l i t e r a t u r e p u b l i s h e d i n t h e w e s t e r n c o u n t r i e s on  t h i s s u b j e c t , e s p e c i a l l y i n N o r t h America, i s r a t h e r l i m i t e d .  Some i n d i c a -  t i o n o f t h e use o f s o i l sampling i n m i n e r a l p r o s p e c t i n g has been g i v e n by Hawkes and L a k i n ( 1 5 ) .  T h e i r e a r l i e r work was m o s t l y on l e a d - z i n c  occurr-  ences and o n l y t h e c o l d e x t r a c t a b l e m e t a l c o n t e n t s were used as a guide t o f u r t h e r study.  A more s c i e n t i f i c a l l y d e s i g n e d s t u d y was  Byers i n t h e F l i n F l o n a r e a o f N o r t h e r n Saskatchewan ( 4 ) ,  c a r r i e d out by i n which  the  e x t r a c t a b l e heavy m e t a l s were compared i n d i f f e r e n t s o i l h o r i z o n s a t z i n c copper s u l p h a t e m i n e r a l i z e d and u n m i n e r a l i z e d a r e a s .  I t was  noted t h a t  t h e exchangeable heavy m e t a l s a r e h i g h e s t i n t h e o r g a n i c h o r i z o n and e n r i c h e d i n t h e B h o r i z o n as compared w i t h t h e p a r e n t m a t e r i a l . what more e l a b o r a t e i n v e s t i g a t i o n was Ermergen (12)  also  A some-  c a r r i e d out f o r copper and z i n c by  i n Chibougamau i n Northwestern Quebec.  The samples  t a k e n from known m i n e r a l i z e d a r e a s o f d i f f e r e n t depths down t o 15 the m e t a l s were e x t r a c t e d w i t h hot HNO3 and determined  were feet;  colorimetrically.  I n h i s work, enrichment o f t h e elements v a r i e d w i t h depth and the h i g h e s t r e s u l t s he o b t a i n e d were i n t h e Ao h o r i z o n .  I n B r i t i s h Columbia,  Clark  ( & ) , a n a l y s e d a number o f s o i l s from n o n - m i n e r a l i z e d a r e a s f o r t o t a l a v a i l a b l e copper. 1-4  ppm  He  found t h e l e v e l s o f exchangeable Cu ranged  and copper a c c u m u l a t i o n was  B horizons.  and  from  i n d i c a t e d i n some w e l l d e v e l o p e d  -7-  Recently,  Presant  (29), a n a l y s e d  d i f f e r e n t horizons o f Podzolic  s o i l s i n New Brunswick and found t h a t t h e c o n c e n t r a t i o n o f elements v a r i e d i n the d i f f e r e n t horizons represented.  Warren and a s s o c i a t e s (47,48),  worked on s e v e r a l o f t h e p a t h f i n d e r elements, and a l s o began i n v e s t i g a t i n g t h e use o f new p a t h f i n d e r elements such as Hg and As i n p l a n t s as i n d i c a tors ofmineralization. Warren and D e l a v a u l t d e f i n e d t h e p a t h f i n d e r s i n 1956 a s f o l l o w s : " P a t h f i n d e r elements may be d e f i n e d as elements which, because o f nome p a r t i c u l a r p r o p e r t y o r p r o p e r t i e s , p r o v i d e anomalies, o r h a l o s , more r e a d i l y u s a b l e than t h e soughta f t e r element w i t h which t h e y a r e a s s o c i a t e d . " (43) I t i s e v i d e n t t h a t s i n c e 1930, s o i l and v e g e t a t i o n surveys  have  been w i d e l y and e f f e c t i v e l y used i n l o c a t i n g m i n e r a l i z e d a r e a s , b u t t h a t much remains t o be l e a r n e d r e g a r d i n g t h e r e l a t i o n s h i p s and t h e l e v e l s o f elements i n anomalies, s o i l h o r i z o n s , and v e g e t a t i o n .  2.2  D i s p e r s i o n o f Elements  Goldschmidt (26) noted t h a t g e o c h e m i s t r y i s concerned w i t h t h e determination  o f t h e r e l a t i v e and a b s o l u t e abundance o f t h e elements i n  t h e e a r t h and t h e study o f t h e d i s t r i b u t i o n and m i g r a t i o n o f t h e i n d i v i d ual  elements i n t h e v a r i o u s p a r t s o f t h e e a r t h .  Pressure,  and  t h e a v a i l a b i l i t y o f t h e most abundant c h e m i c a l  temperature,  components, a r e t h e  -8-  parameters o f t h e geochemical environment t h a t determine which m i n e r a l phases a r e s t a b l e a t any g i v e n p o i n t .  On t h e b a s i s o f t h e s e v a r i a b l e s ,  i t i s p o s s i b l e t o c l a s s i f y a l l t h e n a t u r a l environments o f t h e e a r t h two major groups - p r i m a r y and secondary  into  (15).  (a)  P r i m a r y environment - extends downward from t h e lower l e v e l s o f c i r c u l a t i n g m e t e o r i c water t o t h e d e e p e s t l e v e l a t which normal r o c k s can be formed. This i s t h e environment o f h i g h temperature and p r e s s u r e , r e s t r i c t e d c i r c u l a t i o n o f f l u i d s , and r e l a t i v e l y low f r e e oxygen c o n t e n t .  (b)  Secondary environment - i s t h e environment o f weatheri n g , e r o s i o n and s e d i m e n t a t i o n a t t h e s u r f a c e o f t h e Earth. C h a r a c t e r i s t i c s a r e low temperature, n e a r l y c o n s t a n t p r e s s u r e , f r e e movement o f s o l u t i o n s , f r e e oxygen, H 0 and CO2 p r e s e n t . 2  The secondary environment i s o f most concern i n t h i s study, s i n c e i t i n c l u d e s t h e secondary d i s p e r s i o n o f t h e elements i n w e a t h e r i n g and. s o i l f o r m a t i o n . The o v e r a l l p a t t e r n o f t h e geochemical d i s t r i b u t i o n o f elements i n a g i v e n a r e a w i l l r e f l e c t the n e t e f f e c t o f a l l t h e dynamic  forces  concerned; t h i s p a t t e r n i s r e f e r r e d t o as the geochemical l a n d s c a p e  (15).  The normal abundance o f an element i n each m a t e r i a l i s known as t h e background v a l u e f o r t h a t element ( 1 5 ) .  Background v a l u e s have been g i v e n by  s e v e r a l workers f o r r o c k (14,15) and a range o f v a l u e s f o r a number o f i m p o r t a n t elements i n s o i l s i s g i v e n by Hawkes and Webb ( 1 5 ) . s h o u l d be noted t h a t i n some c a s e s , background v a l u e s have been t o c o v e r a wide range and t h e r e f o r e may purposes.  However, i t reported  be u n s a t i s f a c t o r y for, p r a c t i c a l  -9-  The enrichment o f elements may o c c u r a s a r e s u l t o f f r a c t i o n a l r e c r y s t a l l i z a t i o n o f magmas and r e p r e s e n t s t h e second g e o c h e m i c a l d i f f e r e n t i a t i o n o f the Earth  (30).  Rocks and s o i l s where t h e y a r e e n r i c h e d above t h e normal c o n t e n t s o f d i s p e r s e d elements a r e termed anomalous. D i s p e r s i o n i s g e n e r a l l y t h e r e s u l t o f an i n t e r - a c t i o n o f c h e m i c a l and m e c h a n i c a l p r o c e s s e s (15).  Fundamentally, t h e d i s p e r s i o n o f an element  i s governed b y t h e m o b i l i t y o f t h a t element and i s dependent onment, and on t h e m e c h a n i c a l p r o p e r t i e s o f t h e m o b i l e phase.  on i t s e n v i r M o b i l i t y has  a v e r y i m p o r t a n t r o l e i n t h e p r i m a r y and secondary d i s p e r s i o n o f t h e e l e ments, and r e l a t i v e m o b i l i t i e s have been g i v e n f o r s e v e r a l groups o f e l e ments under t h e most common c i r c u m s t a n c e s so f a r encountered b y s e v e r a l workers  (15).  M o b i l i t y o f elements p l a y s an i m p o r t a n t r o l e i n geochemical  d i s p e r s i o n o f elements, e s p e c i a l l y i n t h e use o f p a t h f i n d e r elements P a t h f i n d e r elements a r e o f t e n c a l l e d " i n d i c a t o r s " (14), tracers.  (43)-  o r geochemical  They may be d i s t r i b u t e d i n t h e form o f h a l o s around m i n e r a l i z a -  tion. These elements can p l a y a major r o l e i n a p p l i e d geochemistry, and t h e i r o r i g i n s a r e v e r y i m p o r t a n t . secondary:  They can be c l a s s e d as p r i m a r y o r  -10-  1.  P r i m a r y d i s p e r s i o n - i s concerned w i t h t h e d i s t r i b u t i o n o f t h e elements t h a t a r e p r e s e r v e d i n r o c k s o f d i f f e r e n t formations. I n p r i m a r y d i s p e r s i o n , t h e elements a r e d i s t i n g u i s h e d as s y n g e n e t i c p a t t e r n s which were formed a t the same time as the rock i t s e l f , o r e p i g e n e t i c p a t t e r n s formed by t h e m a t e r i a l i n t r o d u c e d i n some way i n t o a p r e - e x i s t i n g rock m a t r i x .  2.  Secondary d i s p e r s i o n - i s concerned w i t h t h e r e d i s t r i b u t i o n o f t h e elements as r o c k s weather. The major f a c t o r s o f secondary d i s p e r s i o n a r e c h e m i c a l , m e c h a n i c a l o r b i o l o g i c a l (15)-  Chemical  f a c t o r s important  i n secondary d i s p e r s i o n a r e t h e  hydrogen i o n c o n c e n t r a t i o n (pH), redox p o t e n t i a l ( E h ) , c h e m i c a l  stability  o f t h e m i n e r a l , s o r p t i v e c a p a c i t y o f t h e s o l i d s , and t h e s t a b i l i t y o f the d i s p e r s e d c o l l o i d a l phase.  The important m e c h a n i c a l  factors are  g r a v i t y movement, wind a c t i o n , and w i t h l e s s s i g n i f i c a n c e , B i o l o g i c a l d i s p e r s i o n f a c t o r s a r e v e g e t a t i o n and  simple  volcanism.  micro-organisms.  The n a t u r e o f t h e s t a t i s t i c a l d i s t r i b u t i o n o f t h e elements has been t h e s u b j e c t o f study and some c o n t r o v e r s y . r e p o r t e d t h a t most geochemical  Ahrens  d i s t r i b u t i o n s i n r o c k s appear t o be more  n e a r l y l o g normal than normal (2). Aubrey and o t h e r s (34),  Thus, i n 1954,  T h i s has been q u e s t i o n e d by Chayes,  and t h e q u e s t i o n has not been  completely  answered. I n a r e c e n t p u b l i c a t i o n , Saw  concluded t h a t  ....  " I t i s e s s e n t i a l t o understand c l e a r l y the n a t u r e and l i m i t s o f a g i v e n p o p u l a t i o n , i n geochemical terms, b e f o r e t r y i n g t o f i n d a model t o e x p l a i n i t . " ...  -11-  In  g e n e r a l , Saw  concluded t h a t l o g normal d i s t r i b u t i o n s e x i s t e d , but no  s i n g l e law a p p l i e s t o a l l the s i t u a t i o n s (34)• c o n c e r n i n g the d i s t r i b u t i o n problem,  Hawkes and Webb  (15),  state i t i s c e r t a i n l y true that data  c o l l e c t e d d u r i n g the c o u r s e o f geochemical s u r v e y s o f t e n appear t o be d i s t r i b u t e d log-normally. In  r e v i e w o f the work done, i t appears t h a t f o r purposes o f  s t a t i s t i c a l t r e a t m e n t , t h e d i s t r i b u t i o n o f elements may, c i r c u m s t a n c e s , be assumed t o be l o g normal. of the s t a t i s t i c a l t i o n was  under some  I n view o f t h i s , f o r purposes  treatment used i n the p r e s e n t s t u d y , l o g normal  assumed t o o c c u r i n bedrock and  2.3  distribu-  soils.  Anomalies i n T r a n s p o r t e d M a t e r i a l s  An anomaly i s a d e v i a t i o n from the norm, and a geochemical anomaly i s a d e p a r t u r e from the g e o c h e m i c a l p a t t e r n s t h a t a r e normal f o r a g i v e n area or geochemical landscape.  Anomalies t h a t a r e r e l a t e d t o , o r  t h a t can be used as g u i d e s i n e x p l o r a t i o n a r e termed " s i g n i f i c a n t " anomalies  (15). In  ary  o r d e r t o d e f i n e what c o n s t i t u t e s an anomaly, i t i s n e c e s s -  t o determine upper l i m i t s o f normal background  establishing threshold value.  f l u c t u a t i o n before  The magnitude o f anomalies may  be expressed  -12-  i n terras o f t h e c o n t r a s t between t h e peak o r h i g h e s t v a l u e s , and t h e threshold  (14,15,26). Hawkes and Webb (15) s t a t e t h a t a f u l l y dependable v a l u e  from  t h r e s h o l d can come o n l y from an o r i e n t a t i o n s u r v e y o f t h e a r e a , and a t t h i s time t h e r e i s no r e a l s u b s t i t u t e f o r a v i s u a l e s t i m a t e threshold values, bedrock.  of tentative  c o r r e l a t e d w i t h t h e known d i s t r i b u t i o n o f m e t a l i n t h e  They a l s o noted t h a t s t a t i s t i c a l methods should be used  solely  as a d i s c i p l i n a r y g u i d e and n e v e r as a replacement f o r q u a l i t a t i v e appraisal.  There has been c o n s i d e r a b l e c o n t r o v e r s y  i n t h e geochemical  l i t e r a t u r e r e l a t i v e t o s t a t i s t i c a l d i s t r i b u t i o n o f elements i n r o c k s . T h i s has been d i s c u s s e d i n some d e t a i l e a r l i e r w i t h t h e d i s p e r s i o n o f elements. Pedo- and b i o - g e o c h e m i c a l  p r o s p e c t i n g a r e concerned w i t h de-  t e c t i n g anomalies where t h e overburden i s e i t h e r r e s i d u a l o r t r a n s p o r t e d (15).  I n B r i t i s h Columbia, a s i n many o t h e r a r e a s  anomalies a r e o f t e n b l a n k e t e d  o f t h e e a r t h , bedrock  with recent deposits o f g l a c i a l d e b r i s ,  a l l u v i u m , c o l l u v i u m , p e a t , wind-blown m a t e r i a l , o r v o l c a n i c a s h , a l l o f which p r e s e n t  s p e c i a l problems.  I t has been found t h a t geochemical anoma-  l i e s developed i n t r a n s p o r t e d m a t e r i a l have some f e a t u r e s i n common, and t h a t d i f f e r e n t patterns occur (a)  (15)-  Syngenetic p a t t e r n s which a r e t h e e f f e c t o f p u r e l y m e c h a n i c a l movement o f s o l i d p a r t i c l e s .  -13-  (b)  E p i g e n e t i c p a t t e r n s t h a t r e s u l t from hydromorphic and b i o g e n e t i c f a c t o r s and appear t o be t h e more important.  A syngenetic  anomaly i s formed a t t h e same time as t h e d e p o s i t  o f t r a n s p o r t e d m a t e r i a l i n which i t o c c u r s ; w h i l e an e p i g e n e t i c anomaly i s a d i s p e r s i o n pattern introduced The  occurrence  and nature  subsequent t o t h e d e p o s i t i o n o f t h e m a t r i x .  o f syngenetic  and e p i g e n e t i c p a t t e r n s have been  s t u d i e d i n such m a t e r i a l s as g l a c i a l overburden, c o l l u v i u m , a l l u v i u m , and marine sediments., and o r g a n i c d e p o s i t s ( 1 5 ) . to  However, t h e r e appear  be few p u b l i s h e d s t u d i e s made o f these i n r e l a t i o n t o s o i l  and h o r i z o n  formation  differentiation.  2.4  S o i l Formation and Secondary D i s p e r s i o n  "Weathering and s o i l f o r m a t i o n merge and o f t e n proceed aneously;  lake  w e a t h e r i n g p a v i n g t h e way f o r s o i l development.  weathering o f rocks by p h y s i c a l , chemical elements a r e l i b e r a t e d .  simult-  During t h e  and b i o l o g i c a l means, t h e  M i n e r a l s which a r e more r e s i s t a n t t o w e a t h e r i n g  tend t o be r e l e a s e d from h o s t r o c k s , w h i l e t h e l e s s r e s i s t a n t ones p r o v i d e c o n s t i t u e n t s f o r new m i n e r a l s  o f d i f f e r e n t composition,  as w e l l as  s o l i d - f o r m aqueous s o l u t i o n s ( 1 5 ) . A g r e a t many s t u d i e s have been made r e l a t i n g t o s o i l and  formation  t h e b e h a v i o u r o f elements i n t h e development o f s o i l h o r i z o n s .  Hawkes  -14-  and Webb ( 1 5 ) , w r i t i n g on s o i l f o r m a t i o n  i n r e l a t i o n t o geochemistry,  p o i n t out t h a t b e g i n n i n g w i t h t h e work i n R u s s i a , s o i l formation  and t h e development o f h o r i z o n s  i t has been shown t h a t  are primarily the r e s u l t  o f c i r c u l a t i o n o f s o l i d s and s u s p e n s i o n o f m a t e r i a l s accompanied by a complex s e r i e s o f c h e m i c a l r e a c t i o n s .  Therefore,  i t i s evident  that  secondary d i s p e r s i o n o f elements w i l l be a f f e c t e d by s o i l - f o r m i n g p r o cesses.  Jenny (20) d i s c u s s e s  s o i l development a t some l e n g t h i n r e l a t i o n  to the f i v e f a c t o r s o f s o i l formation  —  time, p a r e n t m a t e r i a l , topography,  c l i m a t e and organisms, and p o i n t s o u t t h a t a s o i l i n c l u d i n g t h e m a t e r i a l of i t s horizons  i s a f u n c t i o n o f these f a c t o r s .  The secondary d i s p e r s i o n  o f elements, t h e r e f o r e , w i l l a l s o be a f f e c t e d b y t h e s e f a c t o r s and w i l l be r e l a t e d t o t h e s o i l , as noted by V i n o g r a d o v ( 4 0 ) i n h i s s t u d i e s o f the s o i l s o f t h e p l a i n s o f E a s t e r n Europe. Webb (15) a l s o p r o v i d e and  G i n s b u r g (14) and Hawkes and  r a t h e r complete reviews o f t h e importance o f s o i l s  s o i l c l a s s i f i c a t i o n i n r e l a t i o n t o geochemistry.  In spite of i t s  importance, t h e secondary d i s p e r s i o n o f elements i n s o i l s i n r e l a t i o n t o geochemistry, has n o t been t h o r o u g h l y  studied.  I t can be s a i d t h a t t h e l a c k o f t h i s k i n d o f study was due i n p a r t t o t h e need f o r a p r e c i s e d e s c r i p t i v e s o i l c l a s s i f i c a t i o n based on evolution.  T h i s was p r o v i d e d  Survey Committee.  r e c e n t l y i n Canada b y t h e N a t i o n a l  The r e p o r t s o f t h i s committee f o r 1963,  Soil  and 1965 ( 3 1 , 3 2 ) ,  -15-  g i v e a complete o u t l i n e o f t h e s o i l c l a s s i f i c a t i o n system d e s i g n e d f o r t h e Canadian environment.  The s o i l d e s c r i p t i o n s and c l a s s i f i c a t i o n used i n  t h i s s t u d y were made f o l l o w i n g t h i s  system.  -163  3.1  Twelve  sample  MATERIALS AND METHODS  Sampling S i t e s and Methods  s i t e s were chosen r e p r e s e n t i n g w i d e l y s e p a r a t e d  m i n e r a l i z e d a r e a s i n B r i t i s h Columbia. shown i n F i g u r e 1. the  The l o c a t i o n s o f t h e s e s i t e s a r e  A t each s i t e , two s o i l p r o f i l e s were l o c a t e d w i t h i n  a r e a o f m i n e r a l i z a t i o n , as i n d i c a t e d i n F i g u r e 2.  l o c a t e d about 100  f e e t a p a r t , and w i t h i n a r a d i u s o f 50 f e e t o f each t h e  p r i n c i p a l v e g e t a t i o n was analysis.  The p r o f i l e s were  i d e n t i f i e d and the shrubs and t r e e s sampled f o r  To minimize s e a s o n a l v a r i a t i o n s , t h e second and t h i r d y e a r  growth, i n c l u d i n g t h e n e e d l e s i n t h e case o f c o n i f e r s , was At the  collected.  each s i t e t h e g e n e r a l g e o l o g y and p h y s i o g r a p h y , i n c l u d i n g  s l o p e , a s p e c t , and d r a i n a g e , were noted and r e c o r d e d f o l l o w i n g t h e  procedure o u t l i n e d i n U. S. S o i l Survey Manual (33).  The s o i l  profiles  were d e s c r i b e d and c l a s s i f i e d as t o group and sub-group f o l l o w i n g t h e method o f t h e N a t i o n a l S o i l Survey Committee (31,32,38). a two-pound sample o f s o i l was purpose, a s m a l l t r o w e l was the  taken from each major h o r i z o n .  discarded.  For t h i s  used t o o b t a i n a r e p r e s e n t a t i v e sample  t h i c k n e s s o f each major h o r i z o n .  d i a m e t e r was  Approximately  from  M a t e r i a l l a r g e r than 2 inches i n  One t o six-pound samples o f t h e u n d e r l y i n g bed-  -13-  r o c k were a l s o t a k e n a t each p r o f i l e b y c o l l e c t i n g rock c h i p s from t h e o x i d i z e d b u t unbroken m a t e r i a l .  3.2  The  L a b o r a t o r y Methods  l a b o r a t o r y methods used were a combination o f t h o s e used  i n g e o c h e m i s t r y (33,17), and i n standard  s o i l and p l a n t a n a l y s i s (36). The 1  a n a l y s i s was c a r r i e d o u t i n t h e l a b o r a t o r i e s o f t h e Department o f S o i l Science,  and i n t h e g e o c h e m i c a l l a b o r a t o r y o f Kennco E x p l o r a t i o n s ,  (Western)  Limited. A l l t h e samples were t a k e n t o t h e l a b o r a t o r y and f o l l o w i n g mixing,  a sub-sample was removed from each f o r t h e d e t e r m i n a t i o n  These sub-samples were p l a c e d  i nplastic  containers  o f mercury.  t o p r e v e n t d r y i n g . The  b a l a n c e o f each sample was d r i e d i n an e l e c t r i c oven by s l o w l y  raising  the temperature t o 100°C. The  samples o f bedrock were crushed and p u l v e r i z e d  ceramic p l a t e s t o pass a 100-mesh s i e v e (minus 0.16 The  mm).  s o i l samples were pounded, mixed and q u a r t e r e d .  q u a r t e r was screened through a s c r e e n w i t h 2 mm openings. p a s s i n g was used f o r t h e d e t e r m i n a t i o n and  percent  organic  material.  using  One  The m a t e r i a l  o f pH, c a t i o n exchange  capacity,  -20-  The r e m a i n i n g t h r e e - q u a r t e r s were weighed and s c r e e n e d u s i n g a n 80-mesh s c r e e n (minus 0.205 mm).  The m a t e r i a l p a s s i n g was weighed  and i t s p e r c e n t a g e o f t h e t o t a l sample c a l c u l a t e d ( >80, m a t e r i a l was  mesh % ) .  used f o r t h e d e t e r m i n a t i o n o f t h e exchangeable and  also  This  total  element c o n t e n t s , as t h i s i s t h e s i z e f r a c t i o n g e n e r a l l y used i n geochemi c a l work ( 1 5 ) . The p l a n t samples were d r i e d a t 95°C, ground w i t h a W i l e y m i l l , and r e p r e s e n t a t i v e samples used f o r a n a l y s e s . The methods o f a n a l y s e s used were as f o l l o w s : Reaction: and a Z e r o m a t i c pH  (pH) was measured u s i n g a 1:2  s o i l t o water  meter.  C a t i o n Exchange C a p a c i t y : (C.E.C. me/100 gms) was u s i n g 2.5  ratio  o r 5-gram samples and Na  ( n e u t r a l normal sodium a c e t a t e ) .  !  determined  t o r e p l a c e t h e exchangeable  C e n t r i f u g a l t e c h n i q u e s were  ions  employed  and for washing, e t h a n o l was used; Na" was determined u s i n g a flame photometer ( 1 7 ) . O r g a n i c M a t t e r Percentage: (0.M.$) o f t h e samples was mined u s i n g 0.25  grams o r l e s s o f samples and wet  deter-  combustion u s i n g  N. ^Cr^Oy- and b a c k - t i t r a t i n g w i t h 0.5N  f e r r o u s sulphate i n the presence  of  O r g a n i c m a t t e r p e r c e n t a g e was  orthophenonthroline i n d i c a t o r (17).  found by m u l t i p l y i n g t h e o r g a n i c carbon p e r c e n t a g e by t h e f a c t o r 1.724.  -21-  Exchangeable Heavy M e t a l s and Exchangeable Copper: and Exch. Cu ppm).  Blooms method  (36,21)  Holman s method f o r Exch. Cu u s i n g MH^ f  was  (Exch.  H.M.  f o l l o w e d f o r Exch. H.M.  and  i o n s t o exchange the m e t a l s .  D i p h e n y l - D i t h i o c a r b a z o n e ( D i t h i z o n e ) 0.001$ was  used as reagent  i n t h e presence o f a weak a c e t a t e b u f f e r . T o t a l M e t a l s : (ppm) were determined f o l l o w i n g d i g e s t i o n o f 1 gram o f < 80-mesh s o i l  o r < 100-mesh r o c k i n a beaker.  The samples were  f i r s t t r e a t e d w i t h c o n c e n t r a t e d HNO3 and then d i g e s t e d w i t h 11% HCIO^. To r e l e a s e m e t a l s from s i l i c a l a y e r s , a few drops o f HF were added digestion.  during  The d i g e s t e d samples were made up t o volume o f 50 ml and  a l i q u o t s t a k e n f o r each element d e t e r m i n a t i o n .  C o l o r i m e t r i c methods were  used as i n d i c a t e d below, u s i n g a " S p e c t r o n i c 20" spectrophotometer. Molybdenum: (Mo ppm)  was  determined by ammonium- t h i o -  c y a n a t e - s t a n n o u s - c h l o r i d e method (33,21). Copper:  (Cu ppm)  2»-2 b i q u i n o l i n e was  used as reagent  d i s s o l v e d i n i s o - a m y l a l c o h o l and e x t r a c t e d from t h e b u f f e r e d media a t  pH 4-5 (33,21). Z i n c : ( Z n ppm)  a mixed, c o l o u r e d d i t h i z o n e method  was  used where p r e v i o u s l y copper had been e x t r a c t e d from t h e sample s o l u t i o n to  reduce i n t e r f e r e n c e Lead:  by complexing w i t h KCN,  (33 21). }  (Pb ppm)  a f t e r Zn and B i i n t e r f e r e n c e  th« monocolour  d i t h i z o n e method was  eliminations employed  (33,21).  -22-  Nickel:  ( N i ppm) was determined  as reagent i n b u f f e r e d media  (33,21).  C o b a l t : (Co ppm) was determined t o 6 . 2 by t h e 2-Witroso - 1 Arsenic;  with dimethyl-glyoxine  -Maphtol method  a f t e r i t was b u f f e r e d  (33,21).  (As ppm) t h e m o d i f i e d G u t z e i t method was  f o l l o w e d and t h e h i g h l y s e n s i t i v e s i l v e r - d i p h e n y l - d i t h i o c a r b a m a t e used as reagent i n p y r i d i n e ( 9 , 4 7 ) •  P l a n t s were set-ashed and f o l l o w e d w i t h  t h e same procedure. Mercury: (Hg ppb) unscreened  samples were used and 1-3  grams o f s o i l s and r o c k s , and 0 . 5 - 1 . 0 o f p l a n t s were taken.  After  d i g e s t i o n , t h e mercury was amalgamated on copper and measured b y a s i n g l e beam U. V. i n s t r u m e n t i n t h e mercury vapour form  (19,23,35).  P l a n t A n a l y s i s : 5 g samples were weighed i n t o a p o r c e l a i n c r u c i b l e and ashed a t 550°C f o r about two h o u r s .  A f t e r ashing, the  treatment and procedure were t h e same a s f o r s o i l and r o c k , w i t h t h e e x c e p t i o n o f t h e d e t e r m i n a t i o n o f a r s e n i c and mercury.  These were wet-  ashed b e f o r e d e t e r m i n a t i o n .  3.3  S t a t i s t i c a l Methods  The d a t a was s t a t i s t i c a l l y a n a l y s e d u s i n g a n I.B.M. 7040 computer a t t h e U n i v e r s i t y o f B r i t i s h Columbia. conducted:  The f o l l o w i n g t e s t s were  -23-  1.  Simple c o r r e l a t i o n s were made o f the e l e m e n t a l content i n the bedrock w i t h t h a t o f the major s o i l h o r i z o n s . Both l i n e a r and l o g a r i t h m i c c o r r e l a t i o n s were c a r r i e d out.  2.  Simple c o r r e l a t i o n s between i n d i v i d u a l elements and between i n d i v i d u a l elements and the a n a l y t i c a l s o i l data.  3.  M u l t i p l e c o r r e l a t i o n s were determined among c a t i o n exchange c a p a c i t y , o r g a n i c m a t e r i a l p e r c e n t , and minus 80 mesh p e r c e n t w i t h each element and w i t h each r e cognized s o i l horizon.  -24-  4  4-1  RESULTS AND DISCUSSION  D i s c u s s i o n o f Sample S i t e s  The l o c a t i o n s o f the 24 p r o f i l e s s t u d i e d a r e shown on t h e l i n e map o f B r i t i s h  Columbia, F i g u r e 1.  out-  From t h i s f i g u r e i t may be noted  t h a t the l o c a t i o n s are w i d e l y d i s t r i b u t e d from south t o n o r t h . I n f o r m a t i o n r e l a t i v e t o the l o c a t i o n s , w i t h r e s p e c t t o e c o n o mic m i n e r a l i z a t i o n , bedrock p a r e n t m a t e r i a l , and c l a s s i f i c a t i o n o f t h e soils,  i s summarized i n T a b l e  I.  From T a b l e I i t may be noted t h a t t h e p r o f i l e s were s e l e c t e d t o r e p r e s e n t d i f f e r e n t t y p e s o f economic m i n e r a l i z a t i o n .  Economic m i n -  e r a l i z a t i o n r e f e r s t o m i n e r a l i z a t i o n i n a r e a s where m i n e r a l s a r e b e i n g mined o r may be mined a t some f u t u r e d a t e .  Seven o f the s i t e s  f o r s t u d y c o n t a i n copper as the major economic m i n e r a l ( 1 , 2 ; 7,8;  9,10; 13,14; 15,16).  3,4;  5,6;  Two r e p r e s e n t s i g n i f i c a n t molybdenum major  m i n e r a l i z a t i o n (21,22; 2 3 , 2 4 ) .  A t t h r e e o t h e r s i t e s , molybdenum o c c u r s  as an a s s o c i a t e d i m p o r t a n t element ( 1 , 2 ; by two s i t e s  selected  7,8;  9,10)..  Gold i s  ( 1 7 , 1 8 ; 19,20) and n i c k e l by one a t P a c i f i c  p r e s e n t the o n l y p r o d u c i n g n i c k e l mine i n B r i t i s h  represented  N i c k e l mine,  Columbia ( 1 1 , 1 2 ) .  at  -25-  Bedrock i n T a b l e I  r e f e r s t o the sometimes o x i d i z e d but s o l i d  l a y e r o f c o n s o l i d a t e d r o c k which o c c u r s under the o v e r b u r d e n .  The n a t u r e  o f t h i s was determined by r e f e r e n c e to g e o l o g i c a l and o t h e r r e p o r t s 8 , 9 , 2 3 , 3 3 ) , and by o b s e r v a t i o n s a t the  (4,5,  sites.  Parent m a t e r i a l i s the u n c o n s o l i d a t e d mass from which the developed;, and the terms used i n T a b l e I,  r e f e r t o i t s mode o f  From t h i s t a b l e i t may be noted t h a t a t a l l  s i t e s except 9-10,  soil  origin. parent  m a t e r i a l s have been t r a n s p o r t e d o r moved t o a g r e a t e r o r l e s s e r  extent.  Thus, c o l l u v i u m , r e f e r s t o p o o r l y s o r t e d m a t e r i a l near the base o f  steep  s l o p e s t h a t has been moved by g r a v i t y ,  local  wash ( 3 8 ) .  Its  nature, therefore,  m a t e r i a l o c c u r r i n g above i t  f r o s t a c t i o n , s o i l creep o r  s h o u l d be c l o s e l y r e l a t e d t o the  on the s l o p e .  G l a c i a l d r i f t consists of  all  the m a t e r i a l p i c k e d u p , mixed, d i s i n t e g r a t e d , t r a n s p o r t e d and d e p o s i t e d through the a c t i o n o f g l a c i a l i c e o r water r e s u l t i n g p r i m a r i l y from the melting of g l a c i e r s .  Glacial t i l l  i n c l u d e s t h a t p a r t o f the  glacial  d r i f t d e p o s i t e d d i r e c t l y by the i c e w i t h l i t t l e o r no t r a n s p o r t a t i o n by water ( 3 8 ) .  A l l u v i u m c o n s i s t s o f sediments moved and r e - d e p o s i t e d by  streams. R e s i d u a l p a r e n t m a t e r i a l s can be d e f i n e d as t h o s e which a r e formed i n p l a c e through the d i s i n t e g r a t i o n and d e c o m p o s i t i o n o f c o u n t r y rocks (38).  Of c o u r s e , the above mentioned p a r e n t m a t e r i a l s may o c c u r  i n c o m b i n a t i o n s , such as a t S i t e 5,6 where a mixture o f c o l l u v i u m and  TABLE 1:  Sample S i t e s  1,2  S o i l Subgroup  Brunisolic  Degraded A c i d Brown Wooded  Podzolic  Gleyed Gray Wooded  Glacial  Brunisolic  Orihic Acid Brown Wooded  Colluvium & R e s i d u a l Mixed  Brunisolic  Degraded A c i d Brown Wooded  Alluvium & Colluvium  Brunisolic  Orthic Acid Brown F o r e s t  Residual & Colluvium  Brunisolic  Orthic Concretionary Brown  Glacial  Degraded Brown Wooded  Glacial  Craigmont Mines  5,6 Copper Mountain Mines  _  Taylor Windfall Prospect  9,10 Minex Highland  Valley  11,12 Pacific N i c k e l Mines  13,14 Skeena S i l v e r Property i_ . . . ,,,  Concerning Sample S i t e s  S o i l Order  M c B r i d e Creek Prospect  3,4  Summary o f I n f o r m a t i o n  Brunisolic  Parent M a t e r i a l Colluvium (some v o l c a n i c a s h layers) Drift  Drift  Colluvium Till  Bedrock  Economic M i n e r a l  Granite Porphyry & Rhyolites  Pyrite Chalcopyrite Molybdenite  Nicola Volcanic Beds o f Limestone  Chalcopyrite Magnetite Hematite  Nicola Volcanics (Tuffaceous)  Chalcopyrite Magnetite Hematite  Granite I n t r . & S i l i c i f i e d Tuffs Hornblende Granodiorite  Ultrabasic (Dunite,Norite, and D i o r i t e ) Skeena Granodiorite  Pyrite Chalcopyrite Molybdenite Chalcopyrite Pyrite Molybdenite Ni Sulphide Chalcopyrite  Chalcopyrite Pyrite  cont'd  TABLE 1:  cont'd  _Sample_ S i t e s  15,16  S o i l Order  J  S o i l Subgroup  Parent M a t e r i a l  Bedrock  Eoonomic  Mineral  Brunisolic  Orthic Acid Brown Wooded  Glacial  Drift  Volcanic & Sediments w i t h Syenite Intrus.  17, IB F i c n e e r Mine  Podzolic  Dark Gray Wooded  Glacial  Drift  Granodiorite Quartz v e i n  Gold Arsenopyrite Pyrite  19,20  Brunisolic  Orthic Brown F o r e s t  Glacial  Drift  Granodiorite Quartz v e i n s  Gold Arsenopyrite Pyrite  21,22  Brunisolic  Degraded A c i d Brown F o r e s t  Glacial  Drift  Topley Granodiorite  Molybdenite Pyrite  23,24  Brunisolic  Orthic Acid Brown Wooded  Glacial  Till  Granodiorite Gneiss  Molybdenite Pyrite  G a l o r e Creek Prospect  Bralorne  Mines  Bndako Mines  Carnd. P r o s p e c t  Chalcopyrite Bornite Pyrite  -28-  r e s i d u a l m a t e r i a l was  found, and  a t S i t e 11,12  where a m i x t u r e  d r i f t w i t h c o l l u v i a l m a t e r i a l from t h e s t e e p mountain s l o p e s The  of g l a c i a l  occurred.  s o i l s were c l a s s i f i e d a c c o r d i n g t o t h e l a t e s t r e p o r t o f  t h e N a t i o n a l S o i l Survey Committee o f Canada (32) i n t o the f o l l o w i n g c a t e g o r i e s - " o r d e r " , " g r e a t group", and "subgroup". may  be noted  t h a t w i t h t h e e x c e p t i o n o f p r o f i l e s 3,4  were c l a s s e d as b e l o n g i n g t o t h e B r u n i s o l i c o r d e r . i m p e r f e c t l y d r a i n e d s o i l s developed g r a s s and  f e r n , o r heath and  From T a b l e 1 i t and  17,18, the s o i l s  These a r e w e l l t o  under f o r e s t , mixed f o r e s t and  tundra vegetation, with  brownish-coloured  s o l a and w i t h o u t marked e l u v i a l h o r i z o n s (N.S.S.C. p.51). t h i s group, i t i s important marked e l u v i a l h o r i z o n s , and  t o note t h a t t h e y a r e a l l s o i l s  which a r e w e l l and heath, light  without  17,18  expected.  a r e c l a s s e d i n the P o d z o l i c o r d e r ,  i m p e r f e c t l y d r a i n e d s o i l s developed  under f o r e s t  h a v i n g under v i r g i n c o n d i t i o n s o r g a n i c s u r f a c e h o r i z o n s coloured eluviated horizons  accumulations of  and  In regard to  t h e r e f o r e a major r e - d i s t r i b u t i o n o f  elements w i t h i n t h e p r o f i l e would not be P r o f i l e s 3,4  these  (Ae) and  Due  with  combinations  t o the g r e a t e r h o r i z o n d i f f e r e n t i a t i o n i n  t h e s e s o i l s , more marked r e - d i s t r i b u t i o n o f micro-elements would be pected .  or  (L-H),  i l l u v i a l (B) h o r i z o n s  o f o r g a n i c m a t t e r , s e s q u i o x i d e s o r c l a y , o r any  ( N . S . S . C , p.38).  grass,  ex-  -29-  I n t h e taxonomic system o f s o i l c l a s s i f i c a t i o n , t h e next l e v e l i s the " g r e a t group" which i n c l u d e s groups o f s o i l s h a v i n g c e r t a i n m o r p h o l o g i c a l f e a t u r e s i n common t h a t r e f l e c t a s i m i l a r pedogenic e n v i r o n ment.  The subgroup which i s g i v e n f o r each s o i l i n T a b l e 1 d e f i n e s the  c e n t r a l concept o f the " g r e a t group" and v a r i a t i o n s from t h i s concept.  central  The number o f subgroups i n t h e above mentioned two o r d e r s i n  t h i s s u r v e y , i s n i n e ; almost as many as t h e sample  sites.  Diagrams i d e n t i f y i n g the major h o r i z o n s p r e s e n t i n each p r o f i l e are given i n Figures 3 - 1 4 .  The h o r i z o n nomenclature used i s t h a t  a c c e p t e d by t h e N a t i o n a l S o i l Survey Committee o f Canada (1965) on the l e f t , and t h e U.S.D.A. (1951) on the r i g h t .  These f i g u r e s a l s o show t h e  d i s t r i b u t i o n , i n the s o i l h o r i z o n s and the p l a n t s , o f elements t o be most s i g n i f i c a n t a t each l o c a t i o n .  considered  With r e f e r e n c e t o t h e s e f i g u r e s ,  T a b l e s A l t o A12 i n t h e Appendix s h o u l d be used c o n c o m i t a n t l y . Each l o c a t i o n i s d e s c r i b e d i n d i v i d u a l l y i n the s e c t i o n s t h a t follow.  A..-Jk'l_„ McBride Creek P r o s p e c t , P r o f i l e s  1,2  These p r o f i l e s , l o c a t e d about 35 m i l e s s o u t h e a s t o f P r i n c e t o n on a low grade p o r p h y r y copper-type m i n e r a l i z a t i o n , o c c u r a t an e l e v a t i o n o f 5200 f e e t on a normal convex s l o p e o f 28-29° t o the s o u t h e a s t . Both p r o f i l e s a r e c l a s s e d as Degraded A c i d Brown Wooded s o i l s , o f sandy  -30Pseudotsuga menziesii  — I  Cu  Mo  ppm  Hg  ppm  Ppb  Pinus contorta var. lat. Vaccinium  scoparium i  n — i — i  r  M  <*>  K  §  o °  (01) Ah (Al) Aej (A2)  1 0  CM  ^  ^  ^  §  ^  t< 5  «\  ? 1  •+  ' o  L-H  Bf  ii-'i-.'i.'ili.'i'.i.' +-  (B)  i  +  - i- +  1:10  ; i! i  (C)  1  IIC .(IIC) IIIC  - •  -  800  4- 1.+ - 1  (IIIC)  : i• i  (R)  Pseudotsuga  ®  Vaccinium  ppm  Mo  ppm  Hg  scoparium  5  r  -(01)  Ah T(AI) Aej (A2) Bf  Cu  Pinus contorta var. lat.  An  L-H  menziesii  (B)  1:10  -  -f—  | _  +• - i + -  -I  + -!  •h -  ! -- r  (C)  !i! M • : i  R  (R)  Fig.3  Setected  D a t a  for Mc B r i d e C r e e k Prospect P r o f i l e s  1,2  ppb  -31-  loam t e x t u r e and f r i a b l e t o f i r m c o n s i s t e n c y , developed from material.  colluvial  There i 3 some e v i d e n c e o f e r o s i o n and p r o f i l e 1 i s c o n s i d e r e d  t o have b u r i e d B f and C h o r i z o n s .  I t i s a l s o thought t h a t t h e A e j h o r i -  zon has been i n f l u e n c e d by v o l c a n i c a s h which i s known t o o c c u r i n t h e area. The a n a l y t i c a l d a t a i n d i c a t e a h i g h c o r r e l a t i o n between Cu i n the  bedrock and t h e s o i l h o r i z o n s , and t h e p a t h f i n d e r elements Mo, As and  Hg i n t h e s o i l h o r i z o n s a l s o p r o v i d e good e v i d e n c e o f t h e m i n e r a l i z a t i o n due t o secondary d i s p e r s i o n . The p l a n t samples i n d i c a t e t h e P i n u s c o n t o r t a has n o t i c e a b l y c o l l e c t e d Cu, Zn, Pb, N i and Co, w h i l e Pseudotsuga m e n z i e s i i has 2 0 t o 2 5 t i m e s t h e c o n c e n t r a t i o n o f As, t h a n do t h e o t h e r two s p e c i e s .  Anoma-  l o u s amounts o f As and Mo a r e i n d i c a t e d b y V a c c i n i u m scoparium.  4.1.2  Craigmont Mines, P r o f i l e s 3,4 Craigmont Mine i s a major o p e r a t i n g copper mine i n B r i t i s h  Columbia, l o c a t e d about 7 m i l e s northwest from M e r r i t t i n t h e N i c o l a v o l c a n i c r o c k f o r m a t i o n s o f Upper T r i a s s i c age. The sample  s i t e s a r e l o c a t e d a t t h e edge o f t h e orebody and  are  o f p o s s i b l y lower grade, b u t s i m i l a r i n n a t u r e and environment t o  the  orebody.  -32-  Cu ppm  ©  Hg ppb  Zn ppm  Pseudotsuga menziesii Pinus conrorta var. lat. Juniperus communis Arctostaphylos  L-Hr(OI) A h (Al) Aeg (A2) IIBtg (MB)  Uva-Ursi  i • I • i. i-i • i.  0  <a  J  I  9  x  - + 1. I  •  1  3  15  I  v>  In  51  A  v\\7l /  + -+ -  i-30  IIC  (IIC)  355.  (R)  ©  Hg ppb  Pseudotsuga menziesii Pinus  Ponderosa  Arctostaphylos Uva-Ursi  L-H Ah Aegj ilBtgj 1:30  II Ck  R Fig.A  Selected Data f o r Craigmont Mines P r o f i l e s  3,4  -33-  The bedrock i s covered till  by s e v e r a l f e e t o f g l a c i a l d r i f t and  but s o i l horizon d i f f e r e n t i a t i o n i s quite n o t i c e a b l e .  c l a s s i f i e d a s Gleyed  The s o i l i s  Gray Wooded and has a f i r m , s i l t y c l a y B t g h o r i z o n .  The t e x t u r e o f t h e h o r i z o n s v a r i e s from sandy loam i n t h e s u r f a c e t o s i l t y c l a y loam t e x t u r e i n t h e B t g , w i t h 10 - 25$ stones above one i n c h i n diameter. The  a n a l y t i c a l r e s u l t s a r e q u i t e s t r i k i n g i n these  p a r t i c u l a r l y so f o r p r o f i l e 3.  s o i l s , and  T h i s s o i l has a s t r o n g l y d e v e l o p e d t e x t -  u r a l B t g h o r i z o n , which a p p a r e n t l y has t r a p p e d movement o f elements such a s Zn and Hg.  t h e upward and downward  T h i s e f f e c t i s n o t as n o t i c e -  a b l e i n p r o f i l e 4, i n which t h e B t g h o r i z o n i s n o t a s w e l l d e v e l o p e d . I n t h i s s o i l t h e h i g h e s t amount o f Hg i s i n t h e Ah h o r i z o n w h i l e i n t h e former i t i s i n t h e B t g .  Some c o n t a m i n a t i o n  by copper and o t h e r elements  o f t h e L-H h o r i z o n s may have o c c u r r e d as a r e s u l t o f t h e open p i t o p e r a t i o n s o f t h e nearby mine. The  a n a l y s e s o f t h e p l a n t s , whose r o o t s p e n e t r a t e d  the Btg  h o r i z o n s , show i n d i c a t i o n s o f m i n e r a l i z a t i o n . F i g u r e 4 suggests t h a t mercury and p o s s i b l y z i n c a r e p a t h f i n d e r s f o r copper.  -34-  4-1-3  Copper Mountain Mines, P r o f i l e s  5,6  T h i s i s a n o t h e r major copper orejbody i n t h e v i c i n i t y o f N i c o l a v o l c a n i c group, s i t u a t e d about 15 The m a j o r i t y o f the known o r e b o d i e s The  sample s i t e was  miles  chosen near the underground  from a m i x t u r e o f c o l l u v i a l and  with  f r i a b l e consistency.  p o l e p i n e and  The  operated  a depressional r e l i e f s o i l s a r e developed  r e s i d u a l m a t e r i a l , and were c l a s s i f i e d  The  profiles  a r e o f a sandy loam t e x t u r e  The most common p l a n t s a t the  s i t e a r e Lodge-  i n d i c a t e a c o r r e l a t i o n between the  s o i l h o r i z o n s , as i n d i c a t e d by F i g u r e 5.  5 t h a t the L-H  Princeton.  Douglas f i r .  A n a l y t i c a l data and  I t has  s l o p e s a t an e l e v a t i o n o f 4000 f e e t .  as O r t h i c A c i d Brown Wooded.  of  have been mined.  mine t o a v o i d problems o f c o n t a m i n a t i o n . with 7°  southeast  the  orebody  I t i s a l s o noted i n p r o f i l e  h o r i z o n shows abnormal amounts o f copper, p o s s i b l y due  to  contamination. The  i n d i c a t i v e p a t h f i n d e r s . Zn and Hg,  s t r a t e t h e v e r t i c a l secondary d i s p e r s i o n o f h a l o  were chosen t o demonelements.  P l a n t s a g a i n , gave a good c l u e t o the presence o f m i n e r a l i z a t i o n i n t h e bedrock.  Cu  ©  Zn  ppm  ppm  P i n u s c o n l o r t a var. lat. Pseudolsuga  1927  menziesii  1  L-H i ( O f )  Ah (AI)  Hg ppb  r  2  i o  1  °  o ^  $ S!  2  <* *it) J  1  "fl  I  ::  Bfj |(B) (C) 1-20  (R)  Fig.5  Selected Data for Copper Mountain Mines Profiles  5,6  -36-  U.l.U  Taylor Windfall Prospect. P r o f i l e s  7,8  Near an o l d g o l d mine on the s o u t h e r n s i d e o f Taseko R i v e r , there  i s a small  copper p r o s p e c t .  o f W i l l i a m s Lake.  The  m a t e r i a l , i s on t h e  g o l d mine, which was  a small producer of  The  eluvial The  bed-  copper m i n e r a l i z a t i o n o c c u r s w i t h  intrusions.  The  Degraded A c i d Brown Wooded s o i l i s developed m o s t l y  a l l u v i a l deposits  o f the Taseko R i v e r , and  mixed i n a t some p l a c e s The e r o s i o n a t the horizon.  m i l e s southwest  s o u t h e a s t s i d e o f Battlement Creek Canyon.  rock formation i s v o l c a n i c t u f f . granodiorite  I t i s l o c a t e d about 75  The  sand w i t h 2 - 3 $  general  on  some c o l l u v i a l m a t e r i a l i s  from the mountain s i d e s . r e l i e f c o n s i s t s o f complex s l o p e s w i t h  sample s i t e s .  P r o f i l e 7 has  a 2.0  inch thick buried  s o i l c o n s i s t s o f w e l l developed h o r i z o n s stones above one  little  i n c h i n d i a m e t e r , and  o f sand and a distinct  Ah silty B  horizon. A n a l y t i c a l d a t a i n d i c a t e a r e l a t i o n s h i p between s o i l and  bedrock m i n e r a l i z a t i o n , e s p e c i a l l y w i t h the B h o r i z o n .  L-H  and  Ah h o r i z o n s  are v e r y e r r a t i c and  r e s u l t s , p a r t i c u l a r l y w i t h copper. the B o r C h o r i z o n s be m i s s e d .  were not  The  horizons d a t a from  t h e y do n o t g i v e c l e a r anomalous  I t i s evident  from F i g u r e  6,  that i f  sampled f o r copper, the m i n e r a l i z a t i o n  could  Molybdenum, p o s s i b l y djie t o i t s h i g h e r m o b i l i t y , shows a more  even d i s t r i b u t i o n .  Fig.6 Selected Data for Taylor Windfall Prospect Profiles 7 , 8  -38-  The pathfinder  d i s t r i b u t i o n o f As i n t h e p r o f i l e shows i t t o be a good  f o r Cu, a s w e l l as Co and N i , which can a l s o be i n d i c a t i v e  but a t a somewhat lower s c a l e . I n p l a n t sampling, a l l t h e noted elements show anomalous amounts i n d i c a t i n g t h e p r e s e n c e o f m i n e r a l i z a t i o n . The Figure  4.1.5  complete a n a l y t i c a l d a t a f o r t h e s i t e a r e g i v e n i n  A-2.  Minex-Highland V a l l e y , P r o f i l e s Minex p r o p e r t y  9.10  i s l o c a t e d on t h e s o u t h e r n s i d e o f H i g h l a n d  V a l l e y , a l o n g t h e s i d e o f Gnawed Mountain, a s shown on F i g u r e 1. a low grade copper m i n e r a l i z e d and  It i s  a r e a w i t h minor amounts o f molybdenum  gold. The  introduced  bedrock i s o f t h e B e t h s a i d a - t y p e g r a n o d i o r i t e w i t h some  quartz The  veins, e s p e c i a l l y along  economical m i n e r a l i z a t i o n c o n s i s t s mostly o f c h a l c o p y r i t e ,  b o r n i t e and p y r i t e . The  fractures.  Molybdenum o c c u r s a s M0S2.  s o i l has developed from d e c o m p o s i t i o n o f bedrock, and  some c o l l u v i a l m a t e r i a l c o v e r s t h e s u r f a c e . down by g l a c i a l movement from t h e h i g h e r  The s u r f a c e has been p l a n e d  e l e v a t i o n s which l e f t  p r a c t i c a l l y no g l a c i a l d e b r i s on t h e mountain s l o p e s and t o p s .  behind  Mo ppm  ©  As ppm  Pinus contorta var. lat. Pseudotsuga menziesii  L-Hr(OI) A h -(Al)  — + —i — + — i- + —i—i— i -  +— - i +- —- +/ --  (B)  Bfh  i- +— + /  1:10  I :i (C)  i  ; i •  R  (R)  Cu ppm  ®  Mo ppm  As ppm  Pseudotsuga menziesii Pinus contorta var. lat.  1 (5  (B)  4-  --  - I - H — I— H  1:10  I--  +I  .i-l (O  R  I  ; ! •  (R) Fig.7  i  1s  L - H . (01) Ah (Al) Bf  1  Selected Data for Mine x-Highland Valley P r o f i l e r g  10  -40-  The sampling a r e a has an B° s l o p e , a southwest a s p e c t w i t h s l i g h t e r o s i o n , medium d r a i n a g e , and moderate p e r m e a b i l i t y o f the p r o f i l e . The p r o f i l e s have a sandy loam t o loamy sand t e x t u r e w i t h a medium, g r a n u l a r t o subangular b l o c k y s t r u c t u r e i n the lower h o r i z o n s w i t h moderately  soft consistency.  The s o i l i s  c l a s s e d as O r t h i c A c i d Brown  Wooded. The a n a l y t i c a l d a t a f o r t h i s  site is particularly  interesting  and i n d i c a t e s t h a t t h e B h o r i z o n i s markedly e n r i c h e d w i t h elements shown i n F i g u r e 7-  From t h i s f i g u r e i t  is  evident that the B h o r i z o n  has a h i g h e r c o n t e n t o f micro-elements than any o t h e r h o r i z o n , the C h o r i z o n .  as  including  T h i s d i s t r i b u t i o n i s thought t o be a s s o c i a t e d w i t h t h e  r e s i d u a l n a t u r e o f the  soil.  S i m i l a r r e l a t i o n s h i p s can be noted w i t h exchangeable heavy m e t a l s and exchangeable copper ( T a b l e A-V).  It  i s believed that  these  e f f e c t s are r e l a t e d t o t h e w e l l developed B h o r i z o n (10YR 5/4 d r y ) this residual s o i l , higher  of  where a c c u m u l a t i o n s o f the elements t a k e p l a c e on a  scale. As p a t h f i n d e r elements i n v e r t i c a l d i s p e r s i o n , Mo, A s , Hg,  and Zn may be s i g n i f i c a n t . O u t s t a n d i n g anomalous r e s u l t s trees  (Douglas f i r and Lodgepole p i n e )  can be observed by t h e sampled  f o r molybdenum, z i n c and c o p p e r .  Douglas f i r i s a g a i n much h i g h e r i n a r s e n i c than t h e o t h e r p l a n t studied.  species  -41-  4.1.6  P a c i f i c N i c k e l Mines, P r o f i l e s 11,12 P a c i f i c N i c k e l Mines a r e l o c a t e d about 7 m i l e s n o r t h e a s t o f  Hope i n t h e rugged mountain areas The  of ultrabasic intrusives.  Orthic Concretionary  Brown s o i l has developed i n t h e  t h i c k c o l l u v i a l d e p o s i t s which o r i g i n a t e from t h e s t e e p mountain s l o p e s . The  s o i l p r o f i l e s i n d i c a t e f a i r l y good development, b u t t h e  t h i c k n e s s o f t h e p r o f i l e s and h o r i z o n s lithological  changes.  The The  can v a r y a g r e a t d e a l because o f  sample s i t e has an 11° s l o p e w i t h a normal convex  s o i l c o n t a i n s about 5% stones  o v e r on i n c h i n d i a m e t e r and t h e  g r a v e l l y sandy loam t e x t u r e i n t h e B f h and C h o r i z o n s structure with f i r m consistency.  relief.  exhibits a blocky  Root d i s t r i b u t i o n i s down t o t h e C  horizon. The  laboratory data  show t h a t i n o r d e r t o d e t e c t t h e m i n e r a l -  i z a t i o n , a l l s o i l sampling must be from B o r C h o r i z o n s , e s p e c i a l l y f o r copper.  The m e t a l v a l u e s p l o t t e d i n F i g u r e 8 show a t y p i c a l example o f  micro-elemental  d i s t r i b u t i o n i n t r a n s p o r t e d s o i l s ; as one can observe  a d e c r e a s i n g m e t a l v a l u e from bedrock upwards. The  observed p a t h f i n d e r s f o r N i appear t o be Co and Zn which  g e n e r a l l y f o l l o w t h e p a t t e r n o f t h e major m i n e r a l elements, w i t h eristic  higher mobility.  charact-  I n t h i s case, t h e use o f mercury as a p a t h -  f i n d e r appears somewhat d o u b t f u l .  Fig.8  Selected D a t a f o r P a c i f i c N i c k e l Mine??  Profilpcll  1?  -43-  The p l a n t s gave v e r y h i g h V a r i a t i o n s i n m e t a l c o n t e n t by different  s p e c i e s , b u t some o f them i n d i c a t e d m i n e r a l i z a t i o n , such a s  A b i e s montana (which has t h e deep h a r t r o o t system). can a l s o be u s e f u l t o i n d i c a t e t h e major elements,  The o t h e r s p e c i e s  such a s Cu, N i and Co.  T h i s i s w e l l p r e s e n t e d i n F i g u r e 8 and T a b l e A-VI.  4.1.7  Skeena S i l v e r P r o p e r t y - H i g h l a n d V a l l e y , P r o f i l e s 1 3 , 1 4 T h i s s i t e i s l o c a t e d on t h e southwest  side o f Highland V a l l e y  o p p o s i t e t o Bethlehem Copper, as shown i n F i g u r e 1. The  s u r r o u n d i n g bedrock  i s Guichon q u a r t z d i o r i t e and t h e  a r e a , where t h e m i n e r a l i z a t i o n o c c u r s , i s known as Skeena G r a n o d i o r i t e , a phase o f t h e Guichon q u a r t z d i o r i t e . The Degraded Brown Wooded s o i l i s developed from g l a c i a l d r i f t and t i l l which cover t h e bedrock. s l o p e w i t h a northwest  aspect.  thick  The r e l i e f has a convex  P e r m e a b i l i t y and d r a i n a g e a r e moderate.  The t e x t u r e v a r i e s from loamy sand t o loamy c o a r s e sand, w i t h some l a y e r s of s i l t y c l a y m a t e r i a l ( g l a c i a l o r i g i n ) .  The p l a n t coverage  consists  m o s t l y o f t r e e s and some shrubs. The l a b o r a t o r y d a t a show Cu as t h e main element, which i s h i g h i n each h o r i z o n , and i s anomalous i n B and C h o r i z o n s .  In p r o f i l e  13 t h e h i g h copper c o n t e n t o f t h e L-H h o r i z o n i s thought t o be t h e result  o f c o n t a m i n a t i o n s caused by some d r i l l i n g and t r e n c h i n g i n t h e  v i c i n i t y o f t h e sampling a r e a .  Fi .9 s  Selected Data forSkeena Silver Property - Highland Valley P r o f i l e s H U  -45-  The  observed p a t h f i n d e r s , Zn and  Hg,  o f the m i n e r a l i z e d  zones,  a g a i n d e f i n e v e r y w e l l v e r t i c a l d i s p e r s i o n o f a secondary n a t u r e o f halo  the  elements. S i m i l a r l y , p l a n t s e x h i b i t the p r o j e c t i o n s o f m i n e r a l i z a t i o n  but the  element c o n t e n t v a r i e s w i t h the s p e c i e s .  The  the o c c u r r e n c e s o f molybdenum v e i n s , which were not s o i l sampling.  Alnus sinuata  i n d i c a t e d by  as compared t o o t h e r  i t may  have a h i g h a f f i n i t y f o r mercury.  species  G a l o r e Creek P r o s p e c t ,  (see T a b l e A - V I I I ) , which i n d i c a t e  Profiles  15.16  T h i s s i t e i s l o c a t e d i n the northwest p a r t o f Columbia c l o s e t o the A l a s k a n b o r d e r , about 10 m i l e s R i v e r , as  bedrock c o n s i s t s o f v o l c a n i c and  presumed T r i a s s i c  age,  British  e a s t o f the S t i k i n e  1.  shown i n F i g u r e The  the  ( S i t k a a l d e r ) y i e l d e d v e r y h i g h mercury  values  4.1.8  p l a n t s a l s o show  sedimentary r o c k s  of  w i t h a complex o f s m a l l s y e n i t e p o r p h y r y i n t r u s -  ions. The tills  o f the  Wooded.  s o i l s a r e d e v e l o p e d from one  sampled a r e a s .  I t must be p o i n t e d  The  i t s closeness  t o the  glacial  s o i l i s c l a s s i f i e d as O r t h i c A c i d Brown  out t h a t the  s o i l c o v e r o f the a r e a  v e r y u n i f o r m because o f sudden t o p o g r a p h i c a l and  o f the youngest  timberline.  and  lithological  i s not  changes,  Fig.10  Selected  Data for Galore Creek Prospect  PmfMPC  m  1K  -47-  The graphy and  a r e a has  a complex r e l i e f w i t h t i l l  an e l e v a t i o n o f 2500 f e e t .  on t h e n o r t h e a s t a s p e c t  of Galore  The  foot slope  sampled a r e a has  21°  d i s t r i b u t i o n i s s a t i s f a c t o r y throughout t h e p r o f i l e .  The  root  p r o f i l e s have  s t o n y c l a y loam i s i n d i c a t e d by t h e minus  mesh f r a c t i o n s i n the B and deposition.  slopes  Creek.  Some f r o z e n l e n s e s were seen i n June; however, t h e  a loamy t e x t u r e , a l t h o u g h  physio-  80  C h o r i z o n s , which o r i g i n a t e from g l a c i a l  S t r u c t u r e i n c r e a s e d i n s t r e n g t h w i t h depth from  granular  t o b l o c k y i n the C h o r i z o n . I n c o n t r a s t t o the y o u t h f u l n e s s horizons  of the s o i l p r o f i l e ,  the  i n d i c a t e d a very i n t e r e s t i n g d i s t r i b u t i o n o f micro-elements.  Copper i s t h e main element o f t h e m i n e r a l i z e d bedrock and i s shown by t h e r e s u l t s f o r each h o r i z o n , and  t h i s anomaly  a v e r y sharp i n c r e a s e i n  Cu w i t h d e p t h .  Exchangeable heavy m e t a l s a l s o show some i n c r e a s e w i t h  depth, although  not so d i s t i n c t i v e , and  a l s o show the presence o f t h e  anomaly. The F i g u r e 10.  d i s t r i b u t i o n o f p a t h f i n d e r s As and Hg a r e p l o t t e d on  Z i n c , and p o s s i b l y c o b a l t and n i c k e l , may  a l s o be  given  some c o n s i d e r a t i o n as p a t h f i n d e r elements, as r e s u l t s i n d i c a t e t h e i r presence.  (See T a b l e  A-VIII).  A l l t h e p l a n t s gave i n d i c a t i o n s o f the major elements  and  p a t h f i n d e r s , but the i n d i v i d u a l s p e c i e s gave c o n s i d e r a b l e v a r i a t i o n s ;  -43i.e.,  A b i e s l a s i o c a r p a (Mountain  as was p r e s e n t i n Alnus  4.1.9  f i r ) had o n l y o n e - t h i r d as much  s i n u a t a (Scrub  copper  alder).  P i o n e e r Mine, P r o f i l e s 17,, 13 P i o n e e r g o l d mine i s l o c a t e d i n s o u t h e r n B r i t i s h  about 1 2 5 m i l e s northwest  Columbia,  o f Vancouver, a s i n d i c a t e d on F i g u r e 1 . The  s i t e l o c a t i o n i s near numerous v e i n s o f q u a r t z w i t h some g o l d m i n e r a l i z a tion.  B e s i d e s b e i n g a sample s i t e o f g o l d m i n e r a l i z a t i o n , t h e a r e a  as one t o s t u d y p a t h f i n d e r s g i v i n g secondary  serves  d i s p e r s i o n halos f o r other  elements. The bedrock c o n s i s t s o f i n t r u s i v e masses o f a u g i t e d i o r i t e soda g r a n i t e .  The g o l d - q u a r t z f i s s u r e v e i n s a r e r e l a t e d t o and developed  w i t h i n t h e i n t r u s i v e masses. The Dark Gray Wooded s o i l i s developed t h e southwest s l o p e s . elevation of  4200  i n g l a c i a l d r i f t on  The q u a r t z v e i n s a r e on a mountainside  feet.  a t an  E r o s i o n i s n o t i c e ^ a b l e on s l o p e s and i n exposed  gullies. The  s o i l s c o n t a i n 5 - 8 $ stony m a t e r i a l over one i n c h i n s i z e .  S o i l t e x t u r e i s loamy and g r a v e l l y sandy loam w i t h a medium g r a n u l a r to  blocky structure.  The c o n s i s t e n c y v a r i e s w i t h depth from  through l o o s e , t o f i r m .  friable,  Fig.11  S e l e c t e d Data  for  Pioneer  Mines Profiles  17,18  -50-  The m i c r o - e l e m e n t a l  r e s u l t s shown i n F i g u r e 11 and T a b l e A-9  a r e p a r t i c u l a r l y u s e f u l t o study p o s s i b l e p a t h f i n d e r s f o r g o l d i n t h e v e i n - s t r u c t u r e d bedrock and t h e presence o f p r i m a r y and secondary h a l o s . They i n d i c a t e d t h a t some o f t h e p a t h f i n d e r elements can be v e r y u s e f u l i n p r o s p e c t i n g f o r g o l d d e p o s i t s , even i n t r a n s p o r t e d s o i l s . horizons  The s o i l  show t h a t d i s p e r s i o n o f h a l o elements o f t h e bedrock i s more  w i d e l y d i s p e r s e d i n t h e secondary h a l o , t h a n i n t h e p r i m a r y h a l o , as i n d i c a t e d by t h e Cu, Zn, As and Hg i n T a b l e A-9moderately promising,  i t may a l s o be c o n s i d e r e d  A l t h o u g h Hg i s o n l y as a h a l o  element.  P l a n t s were a l s o u s e f u l i n d i c a t o r s a t t h i s s i t e .  The h i g h  c o n c e n t r a t i o n o f a r s e n i c i n Pseudotsuga m e n z i e s i i (Douglas f i r ) ,  which  c o l l e c t s about 100 times more a r s e n i c t h a n t h e o t h e r sampled p l a n t s , i s very noticeable.  4.1-10  B r a l o m e Mine, P r o f i l e s 19,20 B r a l o r n e Mine i s a t p r e s e n t  B r a l o r n e Gold Mines. on F i g u r e 1. The  the producing  part of Pioneer-  I t i s about 120 m i l e s from Vancouver, a s i n d i c a t e d  The sample s i t e s a r e i n t h e v i c i n i t y o f Ida-May v e i n s . bedrock i s s i m i l a r t o t h a t a t t h e P i o n e e r Mine,  masses o f a u g i t e - d i o r i t e - s o d a g r a n i t e , c o n t a i n i n g g o l d - q u a r t z veins.  intrusive fissure  The v e i n s v a r y i n w i d t h from a few i n c h e s up t o 10 f e e t .  -52The O r t h i c Brovm F o r e s t s o i l was developed at the s i t e s . the n o r t h e a s t  W e l l developed  from g l a c i a l  Ah (A^) and B f h o r i z o n s a r e n o t i c e a b l e on  s i n g l e mountain s l o p e r e l i e f , a t an e l e v a t i o n o f 4 1 0 0 f e e t .  Root d i s t r i b u t i o n i s down t o bedrock.  The t e x t u r e o f t h e  h o r i z o n s v a r i e s from sandy loam t o g r a v e l l y sand, w i t h e s t i m a t e d pebbles,  drift  above one i n c h i n s i z e .  the B, which e x h i b i t s t h e h a r d e s t  6-8$  The most massive l o o k i n g h o r i z o n i s consistency.  P l a n t coverage i s s a t i s f a c t o r y f o r sampling  over t h i s  logged  a r e a where second growth timber w i t h some shrubs a r e found. The  a n a l y t i c a l d a t a i n d i c a t e d , a s t h e y d i d a t s i t e s 1 7 and 18,  t h a t p a t h f i n d e r elements o c c u r which i n d i c a t e t h e m i n e r a l i z e d zones i n s o i l and p l a n t samples.  Those p l o t t e d i n F i g u r e 12 a r e Cu, As, and Hg.  The v a r i a t i o n o f l e a d content  i n t h e h o r i z o n s i n d i c a t e d t h a t i t must  have o r i g i n a t e d from g l a c i a l t i l l  r a t h e r than from t h e bedrock.  r e s u l t s i n d i c a t e t h a t As i s t h e most p r o m i s i n g  The  pathfinder i n the area,  but t h e use o f t h e o t h e r s would a s s i s t i n c o n f i r m i n g t h e p r e s e n c e o f a mineralization. At t h i s l o c a t i o n o f gold m i n e r a l i z a t i o n , p l a n t s a r e very i n d i c a t i v e o f t h e s o i l ' s element c o n t e n t . it  With r e g a r d t o a r s e n i c v a l u e s ,  can be noted t h a t n o t o n l y Pseudotsuga m e n z i e s i i (Douglas f i r ) , b u t  P a c h y s t i m a m y r s i n i t e s ( F a l s e Box) show h i g h a f f i n i t y f o r a r s e n i c .  -53-  4.1.11  Endako Mine, P r o f i l e s  21,22  Endako mine i s the l a r g e s t p r o d u c i n g molybdenum mine i n B r i t i s h Columbia.  I t i s l o c a t e d about 115 m i l e s n o r t h e a s t  o f P r i n c e George, as  shown on F i g u r e 1 . The  bedrock o f the m i n e r a l i z e d  o f e a r l y J u r a s s i c age.  zone c o n s i s t s o f T o p l e y  P r e - o r e a p l i t e s and  quartz  f e l d s p a r p o r p h y r y dykes,  as w e l l as p o s t - o r e lamprophyre dykes a r e found i n the The The  vicinity.  Degraded Brown F o r e s t s o i l i s developed from g l a c i a l  sample s i t e was  l i e f bearing  on a mountain s i d e w i t h a s i n g l e mountain s l o p e  southwest  8°  a t an e l e v a t i o n o f  3000  feet.  v e r y t h i n l a y e r o f gray-brown ( 1 0 Y R 5/2 d r y ) A e j h o r i z o n , measureable a t p r o f i l e 2 2 . a mixture of gravels. profiles.  The  The  Profile but  rehad  i t was  a  not  L i t h o l o g i c d i s c o n t i n u a t i o n s were noted i n b o t h  M a t e r i a l above one  II-C h o r i z o n s  are p r i s m a t i c w i t h  i n c h i n s i z e amounted t o 7 -  9%.  e l e m e n t a l a n a l y t i c a l d a t a c l e a r l y i n d i c a t e d molybdenum  as the most important element o f m i n e r a l i z a t i o n w e l l above the l e v e l i n each  21  drift.  t e x t u r e o f the s o i l i s sandy loam w i t h  s t r u c t u r e s i n the B and  f i r m consistency. The  Granite  background  horizon.  Populus t r e m u l o i d e s ( T r e m b l i n g aspen) was  sampled.  an e x c e l l e n t i n d i c a t i o n o f the molybdenum m i n e r a l i z a t i o n , and showed a h i g h a f f i n i t y f o r z i n c , mercury and  I t gave i t also  l e a d , as w e l l as molybdenum.  Ni p p m  ®  Hg ppb  Populus tremuloides  8  "i—i <3 i  ?  (01)  L-H Ahj Aej  (Al)  Bfj  (B)  (A2)  -+ _ -+ i -+ i• -• • i •  + - i- +7 +  1:20  + I  IIC  (IIC) 'Ai. I  R  1  .•  (R)  i  Populus  Mo  ppm  Ni  Hg ppb  ppm  tremuloides T  15  L-H  Ahj  IIBfj /•io  R  Fig.13  Selected  Data  for E n d a k o Mines P r o f i l e s 21,22  4.1.12  Carmi P r o s p e c t ,  Profiles  23,24  T h i s molybdenum p r o s p e c t  i s l o c a t e d i n the southeast part of  B r i t i s h Columbia, about 3 0 m i l e s n o r t h  o f t h e U. S. Border and about  5 m i l e s northwest from Carmi, as i n d i c a t e d on F i g u r e 1 . The  bedrock o f t h i s s i t e i s b r e c c i a o f g r a n o d i o r i t e  cemented by q u a r t z The till  and by minor p e g m a t i t i c  material.  O r t h i c A c i d Brown Wooded s o i l was developed from g l a c i a l  and v a r i e s g r e a t l y i n t h i c k n e s s w i t h topography.  was on a mountain s l o p e p h y s i o g r a p h y w i t h 1 4 ° n o r t h e a s t elevation of 4 1 0 0 feet. t h a n one i n c h i n s i z e . digging,  The sample s i t e s l o p e a t an  The p r o f i l e s had 5 - 1 0 $ p a r t i c l e s c o a r s e r A t p r o f i l e 2 3 , t h e bedrock was n o t reached by  so t h a t samples were n o t o b t a i n e d The  gneiss  forR  (bedrock).  a n a l y t i c a l d a t a f o r both s o i l s and p l a n t s f o r p r o f i l e 2 4  c l e a r l y i n d i c a t e d t h e presence o f m i n e r a l i z a t i o n .  However  the r e s u l t s  o f p r o f i l e 2 3 were i n c o n c l u s i v e because bedrock was n o t found, as t h i s s i t e i s p r o b a b l y l o c a t e d i n a b l i n d g u l l y which has been f i l l e d by g l a c i a l material.  I t i s evident  i n t h i s p r o f i l e t h a t secondary d i s p e r s i o n  o f t h e molybdenum and a l s o t h e h a l o elements such as z i n c , n i c k e l , and mercury, e t c . have n o t been n o t i c e a b l y a f f e c t e d v e r t i c a l l y from t h e bedrock. The  sampled p l a n t s a r e a l l i n d i c a t i v e o f t h e p r e s e n c e o f  molybdenum m i n e r a l i z a t i o n .  S i m i l a r l y , the halo  elements a r e i n d i c a t i v e  o f an anomaly, even though t h e y v a r y a g r e a t d e a l i n t h e d i f f e r e n t species.  Mo Larix  (01) (Al)  II B f (HB)  II  C  ppm  Hg  menziesii  i - t - i — i - +• -  _i - + —i i- - +- * - - - - i + -- j- t-i  —  — H  1 = 20  Ni  occidentalis  Pseudotsuga  L-H Ah  ppm  + -1  + —  —  I  (HC)  R Fig.K  Selected  Data for Carmi  Prospect Profiles  73.71,  ppb  -57-  I n t h e p r e v i o u s s e c t i o n , t h e a n a l y t i c a l r e s u l t s were d i s c u s s e d b r i e f l y f o r each l o c a t i o n , and t h e y w i l l now be c o n s i d e r e d for  a l l locations.  To f a c i l i t a t e  F i g u r e s 1 5 t o 2 3 were prepared  collectively  comparison and e s t a b l i s h r e l a t i o n s h i p s ,  showing t h e amount o f each element p r e s e n t  i n t h e bedrock and t h e major s o i l h o r i z o n s a t a l l l o c a t i o n s . o f t h e s o i l and m i c r o - e l e m e n t a l a n a l y s e s were a l s o t r e a t e d  The r e s u l t s  statistically  w i t h t h e a i d o f computer programming and t h e r e s u l t s a r e shown i n T a b l e s  2  to  5. I n F i g u r e s 1 5 t o 2 3 , t h e sample l o c a t i o n s a r e arranged on t h e  h o r i z o n t a l a x i s i n o r d e r o f t h e i n c r e a s i n g amount o f t h e element  found  i n t h e bedrock and t h e amount o f each element found i n t h e major s o i l h o r i z o n s i s shown on t h e v e r t i c a l a x i s . r e p r e s e n t s t h e average  I n t h e s e f i g u r e s , each  point  e l e m e n t a l content o f t h e two s i t e s sampled a t  each l o c a t i o n . F i g u r e s 1 5 t o 2 3 a l s o suggested background v a l u e s o f each element f o r bedrock and s o i l s .  These v a l u e s were e s t i m a t e d u s i n g back-  ground v a l u e s g i v e n i n l i t e r a t u r e  (14,15),  the r e s u l t s obtained i n t h i s  s t u d y and t h e a u t h o r ' s e x p e r i e n c e g a i n e d i n o t h e r s t u d i e s . o b t a i n e d above background f o r each element i n d i c a t e and  Values  mineralization,  i n g e n e r a l t h e h i g h e r t h e v a l u e s a r e above background, t h e more  p o s i t i v e i s t h e evidence t h a t m i n e r a l i z a t i o n  i s present a t a l o c a t i o n .  Background v a l u e s f o r v e g e t a t i o n a r e n o t suggested, as i t was f e l t t h a t t h e i n f o r m a t i o n a v a i l a b l e was not s u f f i c i e n t f o r t h i s purpose. However, i t i s thought t h a t the background v a l u e s f o r v e g e t a t i o n would be somewhat lower than t h o s e i n d i c a t e d elsewhere  (25,46),  i n t h e p r e s e n t s t u d y were o b t a i n e d f o l l o w i n g a s h i n g a t  as t h e r e s u l t s  450°C  f o r three  hours, and n o t d i r e c t l y comparable t o o t h e r p u b l i s h e d r e s u l t s .  The  amount o f elements i n v e g e t a t i o n i s g e n e r a l l y r e p o r t e d i n a s h and t h e weight o f a s h depends on t h e temperature and time o f i g n i t i o n . In Figures 1 5 to 2 3 , the c o r r e l a t i o n c o e f f i c i e n t s f o r the amount o f each element found i n t h e bedrock and i n each major at a l l  horizon  s i t e s , i s also given. In the s t a t i s t i c a l treatment, i n d i v i d u a l p r o f i l e values r a t h e r  than t h e averages o f t h e two p r o f i l e s a t t h e same l o c a t i o n , were used. T h i s was  done a f t e r comparisons had been made u s i n g b o t h i n d i v i d u a l and  average r e s u l t s i n which i t was  found t h a t u s i n g averages i n c r e a s e d  the c o r r e l a t i o n s noted between t h e e l e m e n t a l c o n t e n t o f t h e bedrock and major s o i l h o r i z o n s , but a t t h e same time freedom.  T h e r e f o r e , i t was  reduced t h e degrees o f  assumed each p r o f i l e r e p r e s e n t s .a random  sample, because t h e p r o f i l e s were s e l e c t e d i n a random manner a t known mineralized areas.  -59The  s t a t i s t i c a l t r e a t m e n t s were o f t h e f o l l o w i n g types:  1.  Simple  c o r r e l a t i o n s o f t h e e l e m e n t a l c o n t e n t o f t h e bed-  r o c k w i t h t h a t o f the major s o i l h o r i z o n s .  F o r t h i s study, f o u r major  h o r i z o n s were used - - L - H ( O - l ) , A h ( A - l ) , B and C, and t h e p l a n t s were c o n s i d e r e d as a f i f t h " b i o - h o r i z o n " w i t h o u t  s e p a r a t i o n as t o s p e c i e s .  F i r s t , no s i g n i f i c a n t c o r r e l a t i o n was found between t h e e l e m e n t a l c o n t e n t o f the bedrock and some major h o r i z o n s . (See T a b l e 2 and A-13).  A f t e r t h a t , the d a t a were s u b j e c t e d t o p a r t i a l  correlations,  and  r e p e a t e d s e v e r a l times, f o r t h e m i n e r a l i z e d and u n m i n e r a l i z e d  for  the i n d i v i d u a l elements.  The r e s u l t s , however, were s t i l l  sites,  insignifi-  c a n t and t h e r e f o r e i t was d e c i d e d t o use t h e l o g a r i t h m o f t h e e l e m e n t a l values. obtained.  I n t h i s case, u s i n g copper  L e v e l s o f s i g n i f i c a n c e o f c o r r e l a t i o n v a l u e s were  From t h i s , i t was assumed t h e d i s t r i b u t i o n o f t r a c e elements  a r e n o t j u s t l o g normal bedrock,  (12,30),  but t h e r e l a t i o n s h i p e x i s t s between  s o i l s and p l a n t s , which a r e a l s o l o g a r i t h m i c r a t h e r than The  It  s i g n i f i c a n t c o r r e l a t i o n s were  A f t e r t h a t , l o g a r i t h m i c v a l u e s were used f o r the o t h e r  elements as w e l l . obtained.  first  linear.  r e s u l t s o f t h e simple c o r r e l a t i o n s a r e shown i n T a b l e 2 .  s h o u l d be noted t h a t these were o b t a i n e d u s i n g s i n g l e l o g a r i t h m i c  v a l u e s o f t h e elements.  These c o r r e l a t i o n s c o e f f i c i e n t s a r e a l s o  shown i n F i g u r e s 1 5 t o 2 3 .  TABLE 2 :  Horizon Element  L-H Corr. Coeff.(r)  E l e m e n t a l C o r r e l a t i o n s o f S o i l H o r i z o n s and P l a n t s to Bedrock ( L o g a r i t h m i c V a l u e s used, df - 2 2 ) .  Ah C o r r . C o e f f . (ar)  B C o r r . C o e f f . (if)  C Corr. C o e f f . ( r )  Plants Corr. Coeff ( r )  Cu  0.56**  0.63-"-*  0.78-"-*  0.81-**  0.38  Mo  0.85**  0.85**  0.76*-*  0.87**  0.66*-*  Zn  0.06  0.09  0.20  0.22  Pb  O.46*  0.59**  0.58*-*  0-45-*  0.12  As  0.84**  0.89**  0.86-**  0.89**  0.87*-*  Co  0.46*  0.43*  0.80**  0.83*-*  0.40  Ni  0.44*  0.66**  0.88*-*  0.90-**  0.83**  0.11  0.20  0.57*-*  0.39  -0.10  Fe  -0.11  < 0.01  -0.16  Hg  0.05  0.25  0.01  Significant Correlation  >0.40  (p <  0.05)  H i g h l y S i g n i f i c a n t C o r r e l a t i o n ^ 0 . 5 2 (p < 0 . 0 1 )  -61-  2. d i v i d u a l elements  Simple  c o r r e l a t i o n s were a l s o determined between i n -  and between t h e elements  These a r e p r e s e n t e d i n T a b l e s 3 and k-  and t h e s o i l a n a l y t i c a l &a±&...  T h i s study p r o v i d e d u s e f u l i n -  f o r m a t i o n on p a t h f i n d e r s i n g e n e r a l , and showed t h a t Cu-Zn, Cu-Pb, Cu-Co, Mo-Zn, Pb-Zn, Co-Zn, P b - F e ( n e g a t i v e ) , Co-Ni and Ni-Fe a r e c o r r e l a t e d and t h e r e f o r e c o u l d be used as p a t h f i n d e r s . 3.  M u l t i p l e c o r r e l a t i o n was made o f C.E.C., OM.%  -80 mesh %, w i t h each element s e p a r a t e l y and w i t h each h o r i z o n . r e s u l t s a r e g i v e n i n T a b l e 5-  and The  G e n e r a l l y , i t can be concluded t h a t t h e  most important c o n t r o l l i n g f a c t o r i s -80 mesh % and t h e e l e m e n t a l c o n t e n t of  the s o i l  samples.  -62-  TABLE 3 :  I n t e r - E l e m e n t a l Simple C o r r e l a t i o n s S_ _ . o v e r a l l S o i l H o r i z o n s , Bedrocks, and S o i l Data ( d f = 130)  Correlation  Between  pH  MESH H.M. Cu Zn As Co C.E.C. O.M. Cu Zn As Co Fe O.M. Zn Pb Fe Pb Co Fe H.M. Zn Pb Co Zn Pb Co Fe Ni Fe  PH pH pH pH pH -80 MESH$ -80 MESH$ -80 MESH$ -80 MESH# -80 MESH$ -80 MESH# -80 MESH$ C.E.C. C.E.C. C.E.C. C.E.C. O.M. O.M. O.M. Ex.Cu Cu Cu Cu Mo Zn Zn Pb Co Ni  Corr. Coeff. 0.72** 0.34** -0.28** -0.35** -0.23** -0.29** 0.28** 0.18* -0.24** -0.33** -0.20* -0.22* -0.23* 0.83** -0.22* 0.24** -0.36** 0.28** -0.19* -0.45** 0.93** 0.32** 0.49** 0.50** 0.25** 0.30** 0.25** -0.25** 0.52** 0.62**  (p £ 0 . 0 5 )  *  Significant  **  Highly significant  (p £ 0 . 0 1 )  (t)  -63-  TABLE 4:  Simple C o r r e l a t i o n s i n I n d i v i d u a l H o r i z o n s and P l a n t s  Correlations  Between  pH pH pH PH C .E • C • C.E.C. C.E.C. Ex.Cu Ex.Cu H.M. Mo As  C.E.C. O.M. Zn Pb O.M. H.M. Zn H.M. Cu Cu Zn Ni  PH -80 MESH$ -80 MESH# H.M. H.M. H.M. H.M. Mo Co  O.M. H.M. Co Ex.Cu Cu Pb Co Zn Ni  pH PH pH -80 MESH#  -80 MESH$ C.E.C. O.M. O.M. As Ni Ex.Cu Cu Pb  Corr. Coeff.frJ L-H (01) H o r i z o n  -0.69** -0.78** 0.46* -0.43* 0.60** -O.46* -0.44* 0.87** 0.75** 0.49* 0.68** 0.42* Ah(A^) H o r i z o n !  -0.53** 0.43* 0.43* 0.80**  0.60** 0.61** 0.48* 0.79** O.67**  Ae(A ) Horizon 2  -80 MESH.%  C.E.C. H.M. H.M. Zn  0.67* -0.63* -0.74** -0.58* 0.83** 0.71* 0.97** O.63* 0.65* Ae H o r i z o n  Zn Fe  Hg Pb  0.79** -0.74**  -64TABLE 4 - cont'd Correlations  Between  O.M. C.E.C. C.E.C. O.M. O.M. H.M. Cu Ex.Cu Mo Mo Zn Co Ni  C.E.C. Ni Fe Ex.Cu Mo Ex.Cu H.M. Cu Cu Zn Pb Ni Fe  pH pH C.E.C. C.E.C. O.M. H.M. H.M. Ex.Cu Ex.Cu Ex.Cu Cu Cu Cu Mo Zn As Co Co Ni  Ni Fe O.M. Fe Mo Ex.Cu Cu Cu Co Fe Mo Zn Pb Co Pb Hg Ni Fe Fe  pH -80 MESH$ H.M. H.M. Ex.Cu Cu Cu Mo As  Fe Mo Ex.Cu Hg Zn As Mo Zn Hg  In  Corr. Coeff.fr) "B" Horizon 0.64** 0.44* 0.53** 0.48* 0.48* 0.97** 0.82** 0.75** 0.53**  0.40*  0.57**  0.42* 0.52** In " C "  Horizon -0.59* -0.51* 0.49* 0.53* 0.74** 0.97** 0.64** 0.68** -0.53*  -0.50* 0.50*  0.68** 0.58* -0.50* 0.88**  0.50*  0.53* 0.62** 0.87** In II-C  Horizons  "6.65* -0.74* 0.87** 0.66* 0.65* 0.98** 0.79** 0.75* 0.75*  -65TABLE 4 - cont'd Correlations  Between  Cu Cu Hg Co Co Ni  Pb Co Mo Ni Fe Fe  Pb Co  As Ni  Corr. Coeff.^rj In "R» Bedrock  O.76**  0.54** O.46*  0.61** 0.52*-* 0.76** In P l a n t s  0.47** 0.73**  TABLE 5:  Elements  L-H  The H i g h e s t S i g n i f i c a n t Independent V a r i a b l e f o r t h e M u l t i p l e C o r r e l a t i o n s o f Mesh S i z e C.E.C. and P.M. w i t h t h e Elements and H o r i z o n s  Ah  Ae  Horizons B  C  II-C  All  Horizons  MESH  MESH  MESH  H.M.  C.E.C.  MESH  .MESH  MESH  X Cu  CE.C.  MESH  MESH  MESH  MESH  O.M.  O.M.  Cu  MESH  MESH  MESH  O.M.  C.E.C.  O.M.  MESH  Mo  MESH  MESH  C.E.C.  O.M.  O.M.  MESH  MESH  Zn  C.E.C.  C.E.C.  C.E.C.  MESH  C.E.C.  O.M.  MESH  Pb  O.M.  MESH  O.M.  C.E.C.  O.M.  MESH  O.M.  J>3  O.M.  O.M.  MESH  MESH  O.M.  O.M.  MESH  Co  MESH  MESH  O.M.  O.M.  O.M.  O.M.  MESH  Ni  O.M.  C.E.C.  C.E.C.  C.E.C.  MESH  MESH  MESH  Fe  C.E.C.  O.M.  C.E.C.  C.E.C.  C.E.C.  O.M.  O.M.  Hg  MESH  MESH  MESH  O.M.  C.E.C.  O.M.  MESH  C.E.C. MESH O.M. X Cu  : : : :  C a t i o n Exchange C a p a c i t y Minus 80 Mesh % Organic M a t e r i a l % Exchangeable Copper  '  -67-  4.2  Coppert  D i s c u s s i o n by Elements  The d i s t r i b u t i o n o f copper  i n t h e bedrock and t h e  major s o i l h o r i z o n s i s shown i n F i g u r e 15.  I t may be n o t e d from  f i g u r e t h a t t h e background v a l u e s suggested  a r e 4 0 ppm f o r s o i l and  6 0 ppm f o r bedrock.  this  These v a l u e s may be a f f e c t e d by t h e f a c t t h a t t h e  non-economic m i n e r a l i z e d a r e a s sampled were somewhat h i g h e r i n copper t h a n would be t y p i c a l o f c o m p l e t e l y u n m i n e r a l i z e d a r e a s . F i g u r e 1 5 and t h e c o r r e l a t i o n v a l u e s show t h a t t h e c o n t e n t of  copper  i n a l l t h e h o r i z o n s i s h i g h l y c o r r e l a t e d w i t h t h a t i n t h e bed-  r o c k and t h e c o r r e l a t i o n s a r e h i g h e s t f o r t h e B and C h o r i z o n s . Copper i n almost  e v e r y case i s lower i n t h e s o i l  horizons  t h a n i n t h e bedrock, t h e e x c e p t i o n b e i n g s i t e s 5 , 6 and 9, 1 0 , i n which m o d i f i e d r e s i d u a l m a t e r i a l e x i s t s , and where copper a c c u m u l a t i o n  i s very  high i n the B h o r i z o n .  Molybdenum: The background v a l u e s f o r molybdenum, 1 . 0 ppm for  s o i l and 1 . 5 ppm f o r r o c k , a r e suggested.  mobile 16  Molybdenum i s a h i g h l y  element i n t h e upward m i g r a t i o n i n t h e s o i l s and p l a n t s .  Figure  i n d i c a t e s h i g h c o r r e l a t i o n between bedrock c o n t e n t w i t h t h a t i n each  h o r i z o n and p l a n t .  -68-  sites 21,22  23,24  19,20  17,18  3,4  11,12  13,14  5,6  1,2  Incr. Cu  7,8 in  9,10  Bedrock  15,16  1000  1000  19,20  5,6  13,14  15,16  3,4  11,12  1,2  17,18 . 9,10  Incr. Mo  7,8 in  23,24 21,22  Bedrock  _  -70-  The  p e r s i s t e n t good c o r r e l a t i o n s o f molybdenum w i t h s o i l s  p l a n t s i s p r i n c i p a l l y due  t o i t s m o b i l i t y and  and  consequent d i s t r i b u t i o n ,  i n g e n e r a l , s i m i l a r t o copper i n B r i t i s h Columbia  soils.  I t i s i n t e r e s t i n g t o note t h a t mercury gave s i g n i f i c a n t c o r r e l a t i o n w i t h Mo  Zinc: 50 ppm  i n bedrock. (See T a b l e  I n F i g u r e 17  f o r s o i l and 70 ppm  4)•  t h e background v a l u e s a r e i n d i c a t e d as  f o r bedrock.  Z i n c was  included i n t h i s  study  as a good p a t h f i n d e r , because i t p r o v i d e s a good secondary h a l o . Z i n c accumulation  i s n o t i c e a b l e i n the o r g a n i c h o r i z o n s  and Ah, which i s p r o b a b l y due  t o p l a n t uptake.  P l a n t s show h i g h  f o r z i n c , e s p e c i a l l y the common t r e e o f t h e a r e a , P i n u s  L-H  affinity  contorta, var.  latifolia. Z i n c showed n e g a t i v e was  h i g h l y c o r r e l a t i v e w i t h Cu, Mo,  Lead:  Lead was  element i n t h i s study,  and  Pb, and  mesh %,  Co (see T a b l e s 3 and  but  4).  a l s o c o n s i d e r e d as a p a t h f i n d e r o r h a l o  s i n c e none o f the m i n e r a l i z a t i o n s c o n t a i n e d  economical l e a d m i n e r a l s . ppm  c o r r e l a t i o n w i t h pH and -SO  f o r bedrock a t 1.5  Background v a l u e s f o r s o i l were s e t a t ppm.  most o f the s o i l h o r i z o n s and  1.0  Lead gave s i g n i f i c a n t c o r r e l a t i o n i n showed h i g h c o n t e n t s  g i v i n g h i g h l y s i g n i f i c a n t c o r r e l a t i o n w i t h QM.% t o the p l a n t s ' a f f i n i t y f o r l e a d .  i n organic  ( T a b l e 3),  In a d d i t i o n , l e a d was  c o r r e l a t e d w i t h Cu and Zn, but gave a n e g a t i v e  horizons  which r e l a t e s  positively  correlation with  Fe.  -71-  1000  Fig.17.  1000  Zn Distribution in Soils and Bedrock 500  e  a. a.  c N  100  \ 1/  \ ^ / \ , BedrocM^ckgrounchy^s ~ ._/ 7 0 ' ....  ^Ah'  50  10  R Bedrock  100  Soil Bo ck-v'g round 1  50  5H  10  CorrelationCoeff. to Bedrock  C c Horizon-O.20 B B Horizon -O.IO Ah Ah Horizon = 0.85  ~  :  1 sites19.20  23,24  17.18  9.10  4.5  7.8  E-OI  11.12 21.22 Incr.  1.2  13.14  Zn in B e d r o c k  1 5.6 15.16  -72-  1000 Fig.18:  1000  Pb Distribution in Soils and Bedrock  E CL CL  -Q CL  R  Bedrock  Corr.lotion Co.ff.  C  C Horizon • 0.45 * *  B  B Horizon•  c  0.57**  Ah Ah Horizon^ 0.59 * *  100  100  50  50  10  5 -  Rock Background  ! 'r  sites  3,4  5,6  11,12  19,20 21,22 13,14  9,10  .5_  \"  SoiI Background ~ I.0 17,18 23,24 7,8 1,2 15,16 Incr.  Pb  in  Bedrock  -73-  A r s e n i c : A r s e n i c i s one  o f the most i m p o r t a n t g o l d  pathfinders,  s i n c e i t gave good i n d i c a t i o n s o f m i n e r a l i z a t i o n a t s i t e s 17, 19,  20,  but i t i s p r e s e n t  15,  1 6 ; and  9, 10;  negative  gold are also  present.  i n t e r - e l e m e n t a l c o r r e l a t i o n ( T a b l e 3) i n d i c a t e d highly-80 mesh %.  n o t i c e a b l e i n the C h o r i z o n s between As and Hg  A high  correlation i s  (Table  4).  plant relationship i s quite fascinating.  Looking at  i n d i v i d u a l p l a n t s , t h e s p e c i e s are v e r y s e l e c t i v e about a r s e n i c , but some u n e x p l a i n e d  r e a s o n , Pseudotsuga m e n z i e s i i has more t h a n 100  t h e amount o f t h i s element t h a n o t h e r p l a n t s a t t h e same s i t e . elemental  2;  as an i n d i c a t i o n o f copper m i n e r a l i z a t i o n , where  c o r r e l a t i o n s w i t h pH and  The  and  i n o t h e r m i n e r a l i z e d a r e a s such as s i t e s 1,  minor amounts o f s i l v e r and The  18  correlation i n plants  c o r r e l a t i v e . (Table  Cobalt:  the for  times Inter-  indicated that Pb and As a r e h i g h l y  3).  Cobalt  i s a n o t h e r element which has not been c o n s i d -  e r e d as an economical element i n t h i s work, but i t i s r a t h e r s u r p r i s i n g t h a t i t i s found i n the f i e l d  of halo  elements, w i t h h i g h  pathfinder  characteristics. The  s t r i k i n g c o r r e l a t i o n o f bedrock and  t h e B and  C  can be n o t e d i n F i g u r e 21, w i t h the s o i l background v a l u e o f 3.0 bedrock 4.0  ppm.  horizons and  Inc.  As in Bedrock  -75-  1000  Fig.21:  1000  Co Distribution in Soils and Bedrock  500  500 - R Bedrock  Correlation Coeff.  To Bedrock •- C C Horizon ' 0 . 8 3 * * - B B Horizon • 0.80 * *  £ CL. CL  O  CJ  - Ah A h Horizon^ Q.43  **  100  100  50  10  1 sites 9jo  13,14  7,8  21,22  1,2  3,4  5,6  23,24 Jncr.  Co  19,20 17,18 in  Bedrock  11,12 15,16  -76-  I n i n t e r - e l e m e n t a l c o r r e l a t i o n s , pH,  -80 mesh %, Cu,  N i a r e found t o be h i g h l y c o r r e l a t i v e w i t h c o b a l t .  Zn,  and  Also i t i s notice-  a b l e t h a t a v e r y s i m i l a r p a t t e r n i s o b t a i n e d w i t h n i c k e l , not o n l y a t nickel-bearing deposits  ( P a c i f i c N i c k e l Mines 11,12), but a l s o a t  other  s i t e s as w e l l . P l a n t s absorb c o b a l t without  apparent d i f f i c u l t y , and  m o b i l i t y o f the element encourages t h i s uptake; however, t h e t i o n s between bedrock and  the  high  correla-  p l a n t s d i d not g i v e s i g n i f i c a n t v a l u e s  but  were h i g h l y c o r r e l a t e d w i t h s o i l h o r i z o n s , which a c t as s u p p l i e r s o f the element t o the p l a n t s . T h i s element should be g i v e n more a t t e n t i o n as a p a t h f i n d e r i n geochemical a p p l i c a t i o n s .  Nickel: N i c k e l Mines 11,  12,  N i c k e l i s o f h i g h economic importance a t P a c i f i c but l i k e c o b a l t , i t can be c o n s i d e r e d  lower l e v e l as a p a t h f i n d e r , a t s i t e s 15,16; 17,18; and  on a somewhat  19,20.  i t must be n o t e d t h a t t o make use o f i t i n t r a n s p o r t e d m a t e r i a l , s h o u l d be  one  c a r e f u l because a g l a c i a l d e p o s i t o r i g i n a t i n g from nearby  v o l c a n i c - c o v e r e d areas rock  However  c o u l d have a h i g h e r n i c k e l c o n t e n t  t h a n t h e bed-  itself. N i c k e l i s h i g h l y c o r r e l a t e d w i t h a l l major s o i l h o r i z o n s  p l a n t s i n r e l a t i o n t o bedrock ( T a b l e 2 ) . c o r r e l a t i o n was  A l s o , the  h i g h l y s i g n i f i c a n t between Co and  inter-elemental  Fe ( T a b l e 3 ) .  and  -77-  1000  Fig.20:  1000  Ni Distribution in Soils and Bedrock  500rR  E a  Bedrock  C B  Correlation Coeff. to Bedrock C Horizon - 0.90 * * B Horizon = 0.87 * *  Ah  Ah Horizon 0.65 * * 1  100 h  bO  10 r  1 . sites 21,22  TT2  37  9?T0  13\TZ  ,  23^Z  5^6  , 19,20  7^8 Incr.  Ni  17,18 15,16 11,12  in Bedrock  -78  P l a n t s can be good i n d i c a t o r s o f n i c k e l , as t h i s l i m i t e d work indicates.  I n a sense, p l a n t s v a r y by s p e c i e s i n n i c k e l c o n t e n t ,  a l l o f them a r e i n d i c a t i v e a t a s p e c i f i c s i t e  Iron:  (see T a b l e s A-I t o A - X I I ) .  The a n a l y t i c a l d a t a on i r o n was  used as a g u i d i n g  f a c t o r i n s o i l c l a s s i f i c a t i o n , b u t d i d not g i v e any geochemical tion.  but  informa-  However, i t i s i n t e r e s t i n g t h a t Fe gave a h i g h l y s i g n i f i c a n t  n e g a t i v e c o r r e l a t i o n w i t h C.E.C. and OM.%  Mercury:  Mercury was  one  (Table  3).  o f t h e most i n t e r e s t i n g elements  thie work, s i n c e i t s p a t h f i n d e r b e h a v i o r i s not y e t  included i n  s c i e n t i f i c a l l y established. Some o b s e r v a t i o n s have been g i v e n i n the d i s c u s s i o n o f the i n d i v i d u a l s i t e s , but i t i s d i f f i c u l t t o g e n e r a l i z e o r t o g i v e conclusions.  final  M e r c u r y shows a v e r y complex d i s t r i b u t i o n i n n a t u r e ,  and  i n e l e m e n t a l s t u d i e s Hg demonstrates t h e meaning o f t h e dynamic complexi o n o f t r a c e elements i n d i s p e r s i o n s t u d i e s . In the c o r r e l a t i o n s t u d i e s ( F i g u r e  23, T a b l e s 3,4,5), i t i s  seen t h a t mercury d i f f e r s a g r e a t d e a l from o t h e r elements.  S i n c e bed-  r o c k g e n e r a l l y shows t h e l o w e s t amounts p r e s e n t i n t h e p r o f i l e s , i l l u s t r a t e s w e l l t h e f a c t o f v e r t i c a l m i g r a t i o n o f mercury. c a s e s , t h e Ah(A]_) h o r i z o n i s e n r i c h e d , except when o t h e r  this  I n some  absorbing  -79-  100.0  Fig,22:  100.0  Fe Distribution in Soils and Bedrock  o u. —  —  R  RpHmrk BedrocK  Correlation  C  C H o r i z o n • O. I I  B  B H o r i z o n ' 0.15  t  Q  B  e  d  r  o  c  E-  Ah Ah H o r i z o n ' 0 . 1 7  u.  Coeff.  k  02  10.0  10.0  5.0  Rock  /  y^ackqround~2.5|  /  1  \J5oil  / B a c k g r o u n d ~ 1.7  1.0  1.0  0.5  0.5  0.1 sites 7,8  13,U  23,24  1,2  21,22  1 5,16  9,10  1 9,20  Incr . i n  1 7,16  Bedrock  0.1 3,4 11,12  5,6 w  -80-  Fig.23:  Ha Distribution in Soils and Bedrock  Q. Q.  R BedrocK  Co  7 i Ji°" ? ? to Bedrock e  a  eff  '  C C Horizon -0.57 * * B B Horizon' 0.95  E-OI  Ah Ah Horizon^ 0.25 1000  1000  500  500  100  100 S o i l Background — 6 0 Rock Background ~ 5 0  50  10 sites 23,24"  2V2  9/I0  15716  576  778  19^0  11/12  Incr.  \213^U  50  10 17,18  Hg content of Bedrock,  -81-  substances,  such a s c l a y , r e s t r i c t i t t o t h e lower h o r i z o n s .  s t a n d i n g example i s seen a t t h e Craigmont s i t e ( 3 , 4 ) i s present Ah  An o u t -  I f n o t much c l a y  i n t h e lower h o r i z o n s , t h e mercury enrichment i s found i n t h e  horizon. The  elemental  c o r r e l a t i o n o f h o r i z o n s and bedrock gave  signi-  f i c a n t c o r r e l a t i o n o n l y between bedrock and t h e C h o r i z o n , which a r e a l s o o f a s i m i l a r low l e v e l i n Hg  content.  P l a n t s show Hg a c c u m u l a t i o n h i g h e r than t h e s o i l s which support  as t h e i r background i s g e n e r a l l y  t h e i r growth.  P l a n t s can a l s o s o l v e  sampling and sample p r e p a r a t i o n problems which a r e p r e s e n t w i t h  soils,  s i n c e mercury i n p l a n t s i s g e n e r a l l y i n u n v a r y i n g  Some  f i x e d forms.  p l a n t s p e c i e s show a h i g h e r a f f i n i t y f o r Hg t h a n o t h e r s , b u t g e n e r a l c o n c l u s i o n s cannot be reached a t t h i s stage because f r e q u e n c y o f s p e c i e s were i n s u f f i c i e n t  ( s e e T a b l e s A-I t o A - X I I I ) .  o f sampling  -82-  5  One  SUMMARY AND  CONCLUSIONS  o f the main o b j e c t i v e s o f the  study was  t o determine  whether o r not l e v e l s o f c e r t a i n elements i n s o i l s formed from t r a n s ported materials, mineralized and  c o u l d be used as a p r a c t i c a l b a s i s f o r d e t e c t i n g  a r e a s covered by overburden.  l a b o r a t o r y data are  t i o n a t the 12 t o be p o s s i b l e . samples must be  considered,  When the f i e l d  i n r e l a t i o n t o the known m i n e r a l i z a -  s i t e s s t u d i e d , i t i s concluded t h a t t h i s has been shown However, the s t u d y has  a l s o demonstrated t h a t  c a r e f u l l y t a k e n from s p e c i f i c h o r i z o n s ,  t a k e n a r b i t r a r i l y by depth would not be  and  that  the c o r r e l a t i o n s between  i n the d i f f e r e n t h o r i z o n s  and  C horizon  difficult  The  i n s o i l s where t h e r e i s no  to recognize.  the  for loca-  r e s u l t s a l s o show t h a t  i s q u i t e s a t i s f a c t o r y , e s p e c i a l l y where the s o i l i s  s h a l l o w , and  samples  t h e bedrock, i t i s  concluded t h a t , i n g e n e r a l , the most s u i t a b l e h o r i z o n t o use t i n g m i n e r a l i z a t i o n i s the B h o r i z o n .  soil  s a t i s f a c t o r y f o r t h i s purpose.  For a l l the elements s t u d i e d amounts p r e s e n t  observations  B horizon,  the  fairly  o r where i t i s  I n t h e s e l a t t e r cases the C h o r i z o n  should  used. There a r e e x c e p t i o n s there  i s doubt, p i l o t  to t h i s general  sampling and  c o n c l u s i o n , and when  a n a l y s i s should  be done.  This i s  be  -83-  t r u e e s p e c i a l l y i n t h e case o f Hg. shown t o g i v e e r r a t i c r e s u l t s . may  Use  o f L-H,  Ah,  o r Ae h o r i z o n s  A l s o , p r e d i c t i o n s based upon Ae  be i n c o r r e c t because o f eluvjgbion o f elements and  the  was  horizons  susceptibility  o f t h i s h o r i z o n t o e r o s i o n and/or d e p o s i t i o n . As would be  expected i n s o i l s formed from t r a n s p o r t e d  the m i c r o - e l e m e n t a l content  o f the s o i l s was  o f the bedrock i n t h e m i n e r a l i z e d a r e a s . ground v a l u e s which, w i t h the e x c e p t i o n  materials,  i n g e n e r a l lower than t h a t  T h i s was o f Hg,  r e f l e c t e d i n back-  were lower i n the  soils  t h a n the bedrock. I n a c o n s i d e r a b l e number o f cases, h o r i z o n s was  elemental  h i g h e r t h a n t h a t o f the bedrock.  t h a t upward m i g r a t i o n  The  o f elements through g l a c i a l ,  i a l m a t e r i a l s i s important.  This migration  content  of  soil  r e s u l t s suggested c o l l u v i a l and  alluv-  can be the r e s u l t o f f o u r  factors. (a) (b) (c)  Water t a b l e f l u c t u a t i o n s . Capillary action. Plant action (biocycling).  (d)  D i f f u s i o n o f elements and  These f a c t o r s were not  p h y s i c a l mixing.  s t u d i e d i n r e l a t i o n t o movement of  elements, but i t i s b e l i e v e d t h a t t h e i r r e l a t i v e importance v a r i e s considerably i n d i f f e r e n t  soils.  -84-  D i s p e r s i o n upward i n t o s o i l s i s most common i n the case o f p a t h f i n d e r elements  (Mo, As, Co and Hg), as t h e s e elements  are r e l a t i v e l y  g r e a t e r i n amount i n the upper s e c t i o n o f the p r o f i l e s than t h e o t h e r elements which have l e s s m o b i l i t y ( F i g u r e s 5, 9,  10).  t h a t i n t r a n s p o r t e d m a t e r i a l s , p a t h f i n d e r elements r o l e i n l o c a t i n g areas of m i n e r a l i z a t i o n . t i o n o f elements  in soils,  can p l a y an important  I n t h e case o f upward m i g r a -  t h e p a t h f i n d e r s may  can be used i n l o c a t i n g the o r e b o d i e s .  T h i s suggests  a c t d i f f e r e n t l y , which  F o r example, the major  element  can undergo s e v e r a l t r a n s f o r m a t i o n s by d i f f e r e n t r e a c t i o n s , such as p r e c i p i t a t i o n , i n t e r - a c t i o n s , c h e l a t i o n , e t c . , and never i n d i c a t e anomal o u s amounts.  A t t h e same time, t h e p a t h f i n d e r s may  same p r o c e s s e s , o r w i l l environment.  not go through t h e  show c o m p l e t e l y d i f f e r e n t b e h a v i o r i n the same  F o r example, copper w i l l p r e c i p i t a t e i n b a s i c media i n  lower h o r i z o n s , w h i l e molybdenum's m o b i l i t y w i l l i n c r e a s e ; o r i n the case o f an a c i d i c media, molybdenum can have i n t e r - a c t i o n s w i t h i r o n t h e r e b y l o s e m o b i l i t y > w h i l e z i n c and mercury may  c o b a l t may  it  be h i g h l y m o b i l e , o r  d i f f u s e through the s o i l w i t h o u t any major The upward m i g r a t i o n o f Hg was  i s thought t h a t t h i s may In  and  difficulties.  p a r t i c u l a r l y n o t i c e a b l e and  have been l a r g e l y t h e r e s u l t o f d i f f u s i o n .  g e n e r a l , background  v a l u e s f o r the elements  lower t h a n those suggested f o r bedrock.  i n s o i l s were  -85-  In  t h i s study, c o n s i d e r a t i o n was  g i v e n t o the p o s s i b i l i t y o f  c o r r e l a t i o n between s o i l development and the e l e m e n t a l c o n t e n t o f the major h o r i z o n s ; e.g. o f t h e B h o r i z o n . ment i n t h e s o i l s e x c e p t i o n o f two  s t u d i e d appeared  However, t h e range o f d e v e l o p -  t o be t o o l i m i t e d , because w i t h the  s o i l s , a l l o f them b e l o n g t o t h e B r u n i s o l i c o r d e r ,  and t h e r e f o r e d i d not g i v e wide enough range t o work w i t h .  A l s o , for  t h i s t y p e o f c o r r e l a t i o n , each s o i l - f o r m i n g f a c t o r s h o u l d be i n t h e s t a t i s t i c a l treatment and ing  t o i t s importance  considered  s h o u l d be s t a t i s t i c a l l y weighed a c c o r d -  i n s o i l development a t any p a r t i c u l a r  site.  I t s h o u l d be noted, however, t h a t the development o f a p r o f i l e may  g i v e the f i r s t  c l u e as t o what can be expected  sampling as an i n d i c a t i o n o f m i n e r a l i z a t i o n . developed  i n the v e g e t a t i o n was than i t was  obvious  The more s t r o n g l y  as a r e s u l t o f g r e a t e r m i g r a t i o n .  t h e v e g e t a t i o n a t t h e 12  soils  soil  B h o r i z o n s w i l l n o r m a l l y show much h i g h e r accumulations  t h e elements, of  from  soil  Sampling  and  of  analysis  s i t e s showed t h a t t h e o c c u r r e n c e o f elements  more c l o s e l y c o r r e l a t e d w i t h t h e amount i n the  w i t h amounts i n t h e bedrock.  T h i s s u b s t a n t i a t e s the  f a c t t h a t s o i l h o r i z o n s a r e the major s o u r c e o f p l a n t n u t r i e n t s ,  r a t h e r than the The  bedrock. f a c t t h a t Hg and Pb i n the L-H  horizons are h i g h l y  c o r r e l a t e d w i t h the amounts i n the v e g e t a t i o n ( h i g h e r than w i t h o t h e r  -86-  h o r i z o n s ) , shows the importance o f v e g e t a t i o n i n b i o - g e o c h e m i c a l as the main source  o f Hg and  Pb i n t h e s e h o r i z o n s .  by p l a n t r e s i d u e s f a l l i n g on the s o i l s u r f a c e . i n t h e case o f Zn i n t h e Ah h o r i z o n s . h i g h e r a f f i n i t y o f p l a n t s f o r Hg, The  r e s u l t s confirmed  This l i k e l y  that elemental  one  general  Zn. content  of vegetation  v a r i e d a g r e a t d e a l w i t h the d i f f e r e n t s p e c i e s s t u d i e d , and environments the uptake by any  occurs  A s i m i l a r e f f e c t i s noted  T h i s a l s o i n d i c a t e s the  Pb and  cycling,  s p e c i e s may  a l s o vary.  i n different However, the  r e s u l t s a l s o showed t h a t v e g e t a t i o n can be v e r y u s e f u l i n l o c a t i n g m i n e r a l i z e d a r e a s , as none o f t h e m i n e r a l i z e d areas  included i n the  study would have been missed, i f a l l s p e c i e s a t each s i t e had sampled and  been  analysed. The  i n transported  c o n c l u s i o n s above i n d i c a t e t h a t e l e m e n t a l s o i l and  "compexum", and w i t h o u t r o c k , s o i l s , and  p l a n t s growing i n t h i s s o i l , a r e most dynamic a complete c r o s s - s e c t i o n study,  p l a n t s , the c o m p l i c a t e d  m i n e r a l i z a t i o n w i l l not be  laws which may  i n c l u d i n g bedapply to l o c a t e  understood.  The major c o n c l u s i o n s 1.  distributions  are:  The l e v e l s o f c e r t a i n elements, i n s o i l s and p l a n t s from t r a n s p o r t e d m a t e r i a l s ( g l a c i a l , a l l u v i a l , c o l l u v i a l ) , can be used as g u i d e s f o r d e t e c t i n g m i n e r a l i z e d areas i n B r i t i s h Columbia.  -87-  2.  In. s o i l sampling f o r geochemical p r o s p e c t i n g , t h e most s a t i s f a c t o r y h o r i z o n t o sample i s g e n e r a l l y t h e B, o r i n cases o f weaker developed h o r i z o n s , t h e C. These h o r i z o n s g i v e t h e b e s t c o r r e l a t i o n o f element content w i t h bedrock.  3.  S o i l development i n t r a n s p o r t e d m a t e r i a l i n c l u d e s v e r t i c a l m i g r a t i o n o f elements. The p r o c e s s e s thought to be i n v o l v e d a r e c a p i l l a r y a c t i o n , water t a b l e f l u c t u a t i o n s , b i o c y c l i n g , and d i f f u s i o n . These phenomena make i t p o s s i b l e t o use s o i l h o r i z o n s f o r i n d i c a t i o n o f m i n e r a l i z e d bedrock.  4.  The stage o f s o i l development can always g i v e t h e f i r s t c l u e as t o what we can expect t o f i n d from s o i l sampling as an i n d i c a t o r o f m i n e r a l i z a t i o n under t r a n s ported parent m a t e r i a l s .  5.  P a t h f i n d e r s and s o i l s developed s o i l s developed f i n d e r s may not movement.  6.  P l a n t s a r e g e n e r a l l y good i n d i c a t o r s o f m i n e r a l i z a t i o n , but t h e y v a r y w i d e l y i n element content by s p e c i e s s p e c i a l i n d i c a t o r p l a n t s should be sought i n each a r e a . Element content o f v e g e t a t i o n c o r r e l a t e s w i t h s o i l h o r i z o n s more t h a n w i t h bedrock.  7.  I n s o i l s and p l a n t s , the r e l a t i o n t o bedrock content o f t h e elements was found t o be more c o r r e l a t i v e u s i n g l o g a r i t h m i c than l i n e a r values. T h i s i s an i n d i c a t i o n o f t h e r e l a t i o n s h i p not b e i n g l i n e a r , but l o g a r i t h m i c s i m i l a r l y t o t h e t r a c e element d i s t r i b u t i o n s r e p o r t e d elsewhere.  8.  I n t h e t r a n s p o r t e d s o i l s s t u d i e d , the most c o r r e l a t i v e f a c t o r o f element content was found t o be Mesh s i z e and pH.  t h e i r study have g r e a t e r importance i n from t r a n s p o r t e d m a t e r i a l , t h a n i n from r e s i d u a l m a t e r i a l ; s i n c e p a t h s u f f e r t r a n s f o r m a t i o n s i n the upward  -88-  6  LITERATURE CITED  1.  A b e l s o n , P.H. 1959. Researches i n Geochemistry. & Sons, I n c . , New York.  John W i l e y  2.  Ahrens, L.H., 1954. The Lognormal D i s t r i b u t i o n of t h e Elements. Geochem. et Cosmochem. A c t a . 5: 49-73.  3.  Barakso, J . J . 1964. Some p a t h f i n d e r s v e r t i c a l d i s p e r s i o n e s p e c i a l l y a r s e n i c i n s o i l p r o f i l e s and some p l a n t s . Fulfilment of G e o l . 524. U.B.C. U n p u b l i s h e d .  4.  Byers, A.R. 1956. Geochemical I n v e s t i g a t i o n s i n t h e F l i n Area, N o r t h e r n Saskatchewan. Can. Min. J o u r n . A p r i l p. 83-86.  5.  C a i r n e s , C.E. 1937. Geology and M i n e r a l D e p o s i t s of B r i d g e R i v e r M i n i n g Camp, B.C. G e o l . Surv. o f Can., Mem. 213.  6.  Canada, Department of F o r e s t r y . 1961. N a t i v e Trees o f Canada. Queen's P r i n t e r & C o n t r o l l e r o f S t a t i o n e r y , Ottawa.  7.  C a r r , J.M. 1960. Geology and Ore D e p o s i t s of Craigmont Annual Report o f M i n i s t e r o f Mines, B.C.  8.  Cavender, S..W. 1964. A r s e n i c i n Geochemical G o l d E x p l o r a t i o n s . Annual Meetings o f A.I.M., Met. and P e t r . Eng. I n c . , New York.  9.  C l a r k , J.S. 1950. A Method f o r t h e E s t i m a t i o n of Copper i n S o i l s and i t s A p p l i c a t i o n s i n B r i t i s h Columbia. (Master's T h e s i s , U.B.C).  Flon 1956,  Mines.  10.  Dolmage, V. 1934. Geology and Ore D e p o s i t s of Copper B.C. G e o l . Surv. o f Can., Mem. 171.  Mountain,  11.  Dolmage, V. 1924. C h i l k o Lake and V i c i n i t y . G e o l . S u r v . of Can., Summary Report 1924, P a r t A, p. 59.  12.  Ermengen, S.V* 1957. Can. Min. J o u r n .  Geochemical P r o s p e c t i n g i n Chibougamau. A p r i l 1957, p. 99 - 104.  -89-  13.  F a r s t a d , L and Rowles, C.A. 1960. S o i l s of the C o r d i l l e r a n Region. A g r i c u l t u r a l I n s t i t u t e Review, M a r c h - A p r i l .  14.  G i n z b u r g , I . I . 1960. Pergamon P r e s s .  15.  Hawkes, H.E. and Webb, J.S. 1962. Geochemistry i n M i n e r a l E x p l o r a t i o n . Harper and Row, New York and E v a s t o n .  16.  Hawkes, H.E. and W i l l i s t o n , S.H. 1962. Mercury Vapor as a Guide t o Lead, Z i n c , S i l v e r D e p o s i t s . M i n i n g Congress J o u r n a l , December.  17.  J a c k s o n , M.L. 1958. S o i l Chemical A n a l y s i s . Englewood C l i f f s , N.J.  18.  James, C.H. 1964. The P o t e n t i a l R o l e o f Mercury i n Modern Geoc h e m i c a l P r o s p e c t i n g . M i n i n g Magazine, J u l y 1964.  19.  James, C.H. and Webb, J.S. 1964. Meter f o r Use i n Geochemical  20.  Jenny, Hans. 1941. New York.  21.  Kennco E x p l o r a t i o n s , (Western) L i m i t e d . 1966. cedures. Unpublished.  22.  Legget, R.F. 1961. S o i l s i n Canada. The Royal S o c i e t y o f Canada, S p e c i a l P u b l i c a t i o n s No. 3.  23.  Lemaire Instruments. D e t e c t o r (634).  24.  Lyons, C P . 1954. T r e e s , Shrubs and Flowers t o know i n B r i t i s h Columbia. J.M. Dentand Sons (Canada) L t d . , Vancouver.  25.  Malyuga, D.P. 1964. B i o g e o c h e m i c a l Methods of P r o s p e c t i n g . C o n s u l t a n t Bureau, New York.  26.  Mason, B. P r i n c i p l e s of Geochemistry. New York.  27.  Ney, C.S. 1960. McBride Creek, (Western) L i m i t e d .  P r i n c i p l e s of Geochemical  P r e n t i c e H a l l Inc.,  S e n s i t i v e Mercury Prospecting.  F a c t o r s of S o i l F o r m a t i o n .  1963.  Prospecting.  Vapour  McGraw-Hill,  Laboratory Pro-  I n s t r u c t i o n s f o r Type S-^ Mercury  John W i l e y & Sons I n c . ,  Report o f Kennco E x p l o r a t i o n s ,  -90-  28.  Norman, A.G. 1957. S o i l P l a n t R e l a t i o n s h i p s and P l a n t N u t r i t i o n . Amer. J o u r n . Botany, V o l . 44  29.  P e r s a n t , E.W. 1964. Geochemical Study of S o i l P r o f i l e s from the B a t h u r s t N.B. Area, G.S.A. Meeting, Miami, November.  30.  Rankama, K. and Sahama, Th.G. i t y of C h i c a g o P r e s s .  31.  Report on the F i f t h M e e t i n g of the N a t i o n a l S o i l Survey Committee of Canada. Ottawa, 1963.  32.  Report on the S i x t h M e e t i n g of the N a t i o n a l S o i l Survey Committee of Canada, L a v a l U n i v e r s i t y , Quebec, 1965.  33.  S a n d e l l , E.B. Metals.  34.  Shaw, D.M. 1960. Element D i s t r i b u t i o n Laws i n Geochemistry. Cosmoch. et Geochem. A c t a . I960, p. 116.  35.  Sergeyev, Y.A. 1957. Metodology o f Mercurometric I n v e s t i g a t i o n s . The Geochemical P r o s p e c t i n g of Ore D e p o s i t s i n t h e U.S.SkR-.  36.  Smales, A.A. and Wager, L.R. 1960. Methods i n Geochemistry. I n t e r s c i e n c e P u b l i s h e r , New York.  37.  Stevenson, J.S. 1940. Molybdenum i n B.C., S t e l l a P r o p e r t y . B.C. Department of Mines. B u l l . No. 9.  38.  S o i l Survey Manual, U.S. Gov't P r i n t i n g O f f i c e . S o i l s Survey Staff. 1951. A g r i c u l t u r e , Handbook 18.  39.  Tooms, J.S. and Webb, J.S. 1961. Geochemical P r o s p e c t i n g I n v e s t i g a t i o n s i n t h e Northern Rhodesian Copper B e l t . Econ. G e o l . V o l . 56, p. 815-846.  40.  Vinogradov, A.P. 1959. The Geochemistry of Rare and D i s p e r s e d Chemical Elements i n S o i l s . C o n s u l t a n t s Bureau, New York.  41.  Warren, H.V. and D e l a v a u l t , R.E. 1953. Further Studies i n B i o geochemistry. G e o l . Soc. Americ. B u l l . , V o l . 60, p. 539.  1949.  Geochemistry.  The U n i v e r s -  1950. C o l o r i m e t r i c D e t e r m i n a t i o n o f T r a c e s of I n t e r s c i e n c e P u b l i s h e r , New York.  -91-  42.  Warren, H.V. and D e l a v a u l t , R.E. 1957. Biogeochemical Prospecting for Cobalt. T r a n s a c t i o n s of t h e Royal S o c i e t y o f Canada. V o l . L l , S e r i e s I I I , June 1957.  43.  Warren, H.V. and D e l a v a u l t , R.E. Geochemical P r o s p e c t i n g .  44.  Warren, H.V. and D e l a v a u l t , R.E. 1959. R e a d i l y E x t r a c t a b l e Copper i n E r u p t i v e Rocks as a Guide f o r P r o s p e c t i n g . Econ. G e o l . V o l . 54, No. 7.  45.  Warren, H.V. and D e l a v a u l t , R.E. 1960. T r a c e Element V a r i a t i o n s i n R e l a t e d Rocks. I n t e r n a t i o n a l G e o l o g i c a l Congress. XXI S e s s i o n , Norden, Part I I .  46.  Warren, H.V. 1962. Background Data f o r B i o g e o c h e m i c a l P r o s p e c t i n g i n B r i t i s h Columbia. T r a n s a c t i o n s of t h e R o y a l S o c i e t y of Canada, T h i r d S e r i e s , V o l . LVI, S e c t i o n I I I .  47.  Warren, H.V., D e l a v a u l t , R.E. and Barakso, J . J . 1964. The Role of A r s e n i c as a P a t h f i n d e r i n B i o g e o c h e m i c a l P r o s p e c t i n g . Econ. G e o l . V o l . 59, No. 7.  48.  Warren, H.V., D e l a v a u l t , R.E. and Barakso, J . J . 1966. Some O b s e r v a t i o n s on t h e Geochemistry of Mercury as A p p l i e d t o Prospecting^. Econ. Geol., V o l . 61, No. 6.  1959.  P a t h f i n d i n g Elements i n  jVg  Pseudotsuga menziesii  ppi  Pinus contorta var.lat. Vaccinum  scoparium  L-H f(01) Ah (Al) Aej (A2) Bf  (B)  C  (C)  IIC  i IIC)  1:10  IIIC (IIIC) R  + 1 - 1 -  +  I : II •-I : I : I :I : I: l  —  : I I :  : I  I: : I I :  (R)  £icji. Copper Cu  ppm  Mo ppm  Zft ppm  Pi ppm  Pseudotsuga menziesii (?)  Co ppm  Nj ppm  Hf ppi  Pinus contorta var.lot. Vaccinum scoparium  1  1  1 1  ^ $  L-H;  As ppm  _l  I  I  1—1  1  «  IR  I  _i  1  1  ft  U in  M 1  1  a  s « »I  1  Ah • AejBf  /.•JO  Fig. A- I  Fig.A-1 Analytical Data for Mc Bride Creek Prospect  - 9 3 -  Pinus contorto Pieea  Ni ppm.  var.lat  ftq ppi  Engelmanni  Empetrum n i g r u m  i—i—x—  5 **  L-H T (01) Ahe.(AI)  $ s $ s -I  • Bfj IIAhbpAlb) IIC  O.M. Vo Pinus contorta var.lat. (8)  Abies  £xcA.MA/s.  SxcA. Copper  lasiocarpa  Empetrum  nigrum  Fig.A-2 Analytical Data for Taylor Windfall Prospect  Pb pp  m  BLEU: I  CO PP " 1  |  Mppm  I  F i g . A- 2  I  1  1000  1000  1000  500  u m  100 -  50  0)  >  a>  Fig. A - 4  Zn  10  or  Content Relation of  Plants  10  and Soil Horizons  Ah H o r i z o n s Zn Content in Relative % to Bedrock Plants  i  Zn  Content in  Relative  % to Bedrock oB a C  z  in UJ SI  <°  z  < Ul ID Z  o in — t o  in  Q  z  >—  3  Ul  in  in ui E r^ < < a. < Z o »UJ u jrio L O Z  1,2  0.  Z U  < >  o o  3 UJ  in  SI z ,_• (J  >  in z 3  Z  z  Ul O D O Ct  in  «* UJ cc*o o tn o  i-  a 3 UJ  u in  3 .4  >  iJ Z o  o > u in  u> in  3  3  Z  Z  CL  5.6  > X CL  I-  3 *  w a  3  z  < £  7.8  9.10  o oc Ul < Ul  ox 3  in  3 Ul  u < z <  Ct Z O O — I •  z £s °  i£  — Ul  o > u in  « Z 3 o Z < a >  11 .12  in UJ , M < z  < o r— *•  ID UJ  Iz < >z — UJ  o  ui  o z o > u in 3  3UJ  m  >  15 .16  z  <- y— o  uiZ a  <  13 .14  in ui  m  < °  17.18  3 Ul  < in  5>  t-Z in >x u < a.  19 .20  z  Ul Q U O  3  Z  l/)UI 3CC  <Z 19 u l  <  21, 22  23,24  1000  1000  500  100  50  Fig. A- 5  Hg Content Relation of Plants and Soil Horizons  10  10  C Horizons Hg Content in Relative % to Bedrock Plants Hg content in Relative % to Bedrock o  111 cn 3  a.  1, 2  z o in o ct UJ  a. z  3  3 .4  N  ct-  o o  <5 t-—' z  in  t-  O  o  O  I-  O  OO  (_) > u *  a  cn  3 Ul  in a.  3  Z  5,6  in 3  Z  o in  LU CD  Z <-  LU  < o  _<i  z  in  < UJ o  LU  a_  CD  <  7,8  UJ NI  ll  O  —  I— i_  o o * z cn u y— o cn in Q 3 UJ  >i a. o  3  If  9.10  UJ  co <  at LU <U1 O I 3  cn  3 .LU O  o <£  < o2 z <  II r  LU  uz u <  >  11 ,12  ii CJ  cn 3  3 LU  Z  in  <  13 , U  z  <  CCI  z  in  a.  (AC  Z  — r «*-  <  z z < z  A  3  a  A  z  t-»-  in LU  U  rsi  cn  o  N  <z  ISLU 3  CD  z z o — LU « Z LU o to < a. >  15 ,16  a <  z  o  3 _l O LL UI  \— K  O • a t— £ O  on  o a  <  (_)  US  cn  LU  < a. < z cc-z o C9 LU o o o 3 Z i—• Z i_ z <n in O o 9— 3 o> o > Z o Q cn 3 u 3 u UJ Z cn < CL >  is  3  ce  cn  11  is 2 ° z < LU CD Z  3  IUS  cn u  z a!  Ah B  >°  i  <->  yz X  o <  17,18  < o h- *•  <2 2  r— O Q 3 Ul  s  LU O  3  cn -  in > x u  2 19 ,20  cn  z  3LU  2" o  a.  X  ce <  \Z\T  22  CJ O O  EC O  u cn 3  ^ O  tn < CD  UJ N  Z  —; i3 n zUJ t-  o a  3  in a.  23,24  A n a l y t i c a l Data f o r McBride Creek Prospect  Sample No. Horizon  S o i l Type or Name of Species  ^ rhickless of forizon  pH  PROFILE No.  % %  -80 Mesh  C .£.C • O.M. m.e/ /100g  Exch. Heavy Exch. Metals Copper Cu ppm ppm ppm  Mo ppm  Zn ppm  Pb  ppm  As ppm  Co ppm  Ni ppm  Fe p/o  1 & 2  Hg * ppb  B- 1  L-H  (01)  Degraded A c i d Brown Wooded  0.8"  5.2  24.7  62.6  60.0  28  1  121  4  214  16  3  2  6  0.15  250  B-2  Ah  (Al)  Brunisolic  1.0"  5.1  25.3  93.9  23.5  24  2  176  5  115  10  13  3  5  0.80  250  B- 3  Aej  (A2)  Developed on  1.7"  5.2  20.4  6.1  3.6  20  12  224  6  115  8  5  2  8  0.20  200  B- 4  Bf  (B )  colluvial  7.0"  5.4  27.0  4.3  0.4  14  16  588  7  90  7  17  4  5  1.50  108  B- 5  C  (C )  with a buried B and  4.6"  5.3  26.0  6.1  0.9  20  28  422  10  70  1  37  4  4  2.00  175  B- 6  II-C(B )  C horizon.  1.9"  5.5  33.2  4.3  1.6  40  1650  3  70  2  22  3.5  5  1.50  800  B- 7  rii-r,(c )  8.7"  5.4  25.8  4.3  0.3  40  530  9  50  2  37  4  6  2.00  150  900  6  470  42  26  6  4  3.0  200  1  173  52  500  8  12  0.60  400  404  8  935  21  5  15  6P  0,30  250  101  3  763  58  23  5  30  0.60  200  2  3.5  4  0.50  150  5  6  1.50  550  R  B- 7A  soil  deposits  24.0" Pseudotsuga menziesii (Douglas F i r ) Pinus contorta var. l a t i f o Lia (Lodgepole Pine) Vaccinium scoparium (Red Alpine Blueberry)  1 2 3  97.25 95.2 89.1  32 36  __  83»  B- 8  L-H  (01)  Degraded A c i d Brown Wooded  0.8"  5.0  26.4  52.1  59.3  12  0  41  4  69  16  B- 9  Ah  (Al)  Brunisolic  1.2"  5.1  32.3  34.8  9.4  8  1  95  4  136  4  B-10  Aej  (A2)  Developed on  1.8"  4.7  25.8  7.8  4.1  6  2  69  4  130  8  5  4  5  1.50  125  B-ll '  Bf  (B )  colluvial  6.0"  5.4  27.9  6.1  0.8  4  0  236  4  100  4  13  4  7  1.50  150  B-12  C  (C )  without buried horizons.  8.0"  5.6  23.0  2.6  0.2  4  0  178  5  28  1  35  3.5  4  1.50  125  784  5  96  10  26  6  9  2.70  75  204  1  546  60  400  4  15  0.50  150  189  3  1243  100  3  7  SO  0.60  450  229  6  502  50  27  6  30  0.40  200  B-12A 4 5 6  8  soil  deposits  _ ___ — __  17.0" Pseudotsuga menziesii (Douglas F i r ) Pinus contorta v a r . l a t i f o j i a (Lodgepole Pine) Vaccinium scoparium (Red Alpine Blueberry) *  Plants are ppm  95.2 97.3 89.3  __ __ - -  i n ash, except mercury ppb i n oven dry plants.  11  TABLE  A-l  Sample No. Horizon B-13  L-H (01)  B-14  Ah  B-l 5 B-l 6  Aeg (A2) IIBtg (B)  B-17  II-C(C)  B-18  (Al)  <3>  S o i l Type or Name of Species  Thickness of Horizo  -80 Mesh i  pH  %  C •£ aC a m.e/ O.M. /100g %  10  Zn ppm  Pb ppm  As ppm  Co ppm  Ni ppm  Fe p/o  Hg ppb  35.3  38.3  6.3  16  1  86  0  68  2  0  2  6  2.00  150  3.5"  5.2  33.0  8.7  0.4  4  0  46  1  40  1  0  3  8  2.00  75  Developed from  23.0"  5.5  36.2  6.9  0.3  2  0  64  0  46  0  0  2  5  4.00  100  Glacial Drift  11.0"  6.1  16.9  18.2  0.2  20  20  240  1  90  2  1  4  8  4.00  1400  35.5"  6.5  16.9  19.9  0.7  28  36  396  1  35  0  2  3  S  4.00  125  75.0"  -  -  -  432  3  195  1  5  7  6  4.00  95  95.5  825  2  700  66  15  14  30  2.00  200  96.5  248  2  1470  84  0  20  30  4.00  150  93.7  1264  50  816  41  2  10  37  3.00  250  Pinus contorta v a r . l a t i f o l a (Lodgepole Pine) Juniperus communis (Dwarf Juniper) Arctostaphylos uva-ursi — (Kinnikinnick)  9  Mo ppm  6.1  -  -  Pseudotsuga menziesii (Douglas F i r )  8  Cu ppm  1.5"  Gleyed Graywooded Podzolic S o i l  R.  7  Exch. Heavy Exch. Metals Copper ppm ppm  _  _  _  _  _  _  -  95.0  -  -  966  12  960  54  1  6  27  0.90  200  B-l 9  L-H (01) ^Gleyed Graywooded  1.7"  6.7  43.0  64.3  11.3  24  20  477  2  50  5  0  5  5  3.00  125  B-20  (U\  Podzolic S o i l - a l o t  4.3"  6.6  32.4  17.4  3.3  20  8  142  2  47  0  0  6  8  4.00  1350  B-21  Aegj (A2)  thinner gley zone  9.2"  6.5  28.4  16.5  0.8  16  12  137  0  39  0  0  8  9  4.00  62  22.5"  8.1  14.6  26.9  3.2  30  28  342  0  50  0  1  11  9  3.00  100  38.0"  8.7  17.4  8.6  0.1  28  42  391  0  28  1  2  9  11  5.00  120  74.0"  _  _  412  2  150  1  2  7  9  5.00  100  96.4  850  6  580  100  12  10  20  2.00  100  96.4  750  6  832  113  1  12  60  1.50  150  744  25  930  60  1  40  2.00  200  B-22 B-23 B-24 11 12 13  (Al)  IIBtgj (B) II3k (C)  in p r o f i l e .  R. Pseudotsuga menziesii (Douglas F i r ) Pinus ponderosa (Pondersoa Pine) Arctostaphylos uva-ursi (Kinnikinniok)  _  _  96.0  _  14  TABLE A-2  Analyt i c a l Data f o r COPPER MOUNTAIN MINES  Sample No. Horizon  S o i l Type or Name of Species  PROFILE No. 5 & 6 Thickness of forizon  PH  -80 Mesh %  X  Exch. Heavy Petals ppm  O.M. ii. e./ /100g  Exch. Copper Cu ppm ppm  Mo ppm  Zn ppm  Pb ppm  As ppm  Co ppm  Ni ppm  Fe p/o  Hg ppb  £-25  L-H (01)  O r t h i c Acid Brown Wooded  1.5"  5.2  49.9  139.1  22.6  32  28  608  2  40  10  1  6  7  1.00  200  B-26  Ah (Al)  Brunisolic S o i l  2.0"  5.9  55.2  59.1  24.3  28  20  304  2  50  2  0  4  6  2.00  170  B-27  Bfj (B )  Developed from mixture  9.0"  5.7  42.1  26.1  1.8  36  2  362  0  75  3  1  3  8  3.00  100  B-28  C  of c o l l u v i a l and  27.5"  6.1  32.3  18.2  1.0  4  46  966  2  40  1  3  9  9  4.00  50  r e s i d u a l materials.  35.5"  _  _  _  _  _  934  2  410  1  5  8  9  3.00  50  188  3  503  75  15  9  22  0.30  100  B-29  (C ) R  Pseudotsuga menziezii (Douglas F i r )  14  —  _  96.0  B-30  L-H (01)  O r t h i c Acid Brown Wooded  1.0"  5.2  43.0  187.8  37.3  28  28  568  2  100  16  0  6  9  1.00  225  B-31  Ah (Al)  Brunosolic S o i l  1.5"  5.9  56.4  53.5  10.8  36  28  312  1  240  4  0  8  8  4.00  125  B-32  Bfj (B )  Developed  5.0"  6.3  42.1  28.7  1.2  12  12  553  3  100  4  2  7  9  B-33  C  14.5*  6.2  35.1  26.1  1.2  36  50  1028  2  70  0  3  7  7  4.00  100  .  _  762  1  300  1  4  7  12  4.00  100  97.7  409  5  1927  172  1  10  . 40  0.60  200  95.8  193  3  400  69  19  8  31  0.40  100  B-34  15 16  (C ) R  same as #5  _  21.0"  Pinus contorta var. l a t i f c l i a (Lodgepole Pine) Pseudotsuga menziezii _ (Douglas F i r )  mm  _  4.0C  50  TABLE A-3  A n a l y t i c a l Data f o r TAYLOR WINDFALL PROSPECT  Sample No. Horizon  S o i l Type or Names of Species  PROFILE No. 7 & 8  Thickiessof iorizon  pH  %  -80 Mesh  0 «£ «C < m.e/ O.M. /100g 1.  B-35  L-H (01)  Degraded Acid Brown Woodec  1.5"  4.8  27.1  86.9  B-36  Ahe (Al)  soil.  5.5"  5.0  22.6  15.6  B-37  Bf (B ) II Ahb(Alb) II C (C )  a l l u v i a l deposition and  15.5"  5.1  17.0  2.0"  5.2  16.0"  5.1  37.0"  _  B-39 B-38 B-40  Developed from  c o l l u b i a l material i n places.  R  Pinus contorta var. l a t i f o l i a (Lodaepole Pine) Picea Engelmanni (Engelmann Spruce) Empertum nigrum (Crowberrv)  17 18 19  _  Exch. Heavy Exch. Metala Copper Cu ppm ppm ppm  Mo ppm  -  Zn ppm  Pb ppm  As ppm  Co ppm  Ni ppm  Fe p/o  Hg ppb  8  4  33  8  57  6  3  4  6  6.00  100  2.1  4  4  19  5  57  4  0  5  6  1.50  150  15.6  3.7  10  6  453  51  100  2  20  8  8  3.00  50  21.3  32.1  4.2  4  4  402  84  45  7  15  6  9  3.00  50  30.3  19.1  1.1  6  8  606  36  115  5  9  11  9  3.00  150  —  1308  149  240  10  6  6  14  1.50  75  97.5  168  96  960  48  9  18  120  0.30  100  95.9  115  29  274  36  15  7  45  0.15  150  497  194  220  58  13  21  50  1.00  500  _  38.6  _  92.3  _  _  B-41  L-H (01)  Degraded Acid Brown Woodec  1.2"  4.1  25.1  163.4  54.6  16  2  89  36  61  8  1  2  4  0.15  112  B-42  Ah (Al)  soil.  2.3"  4.3  30.0  31.3  8.3  8  2  109  32  77  4  0  2  5  1.50  300  B-43  Bfh (B ) II C (C )  a l l u v i a l deposition.  15.2"  5.0  25.0  30.4  7.6  20  14  1216  62  70  10  9  3  12  3.00  133  13.5"  5.0  33.2  12.1  1.0  20  14  1304  33  80  23  19  4  13  3.00  125  3810  59  180  8  7  3  13  1.50  80  235  235  1104  110  5  15  50  0.40  350  179  437  780  62  4  14  18  0.15  250  379  408  504  43  9  20  65  1.50  250  B-44 B-45  20 21 22  R  Developed from  31.0" Pinus contorta var. l a t i f i >lia (Lodgepole Pine) Abies lasiocarpa (Alpine F i r ) Empertum nigrum _ (Crowberry)  _  _  97,8 96.2  —  _  93.1  _  TABLE A-k  S o i l Type or Name of Species  Sample No. horizon B-46  L=H (01)  B-47  <Ui (Al)  B-48  3fh (B )  B-49  C  B-50  Thickness of Horizoi  ©  (C )  -80 Mesh pH  7.  C.E.C m.e/ /100g  O.M.  %  Exch. Heavy Exch. Metals Copper ppm ppm  Zn ppm  Pb ppm  As ppm  Co ppm  Ni ppm  Fe p/o  Hg PPb  4.1  28.4  168.7  60.7  12  2  90  78  77  12  2  3  3  0.30  125  4.3  25.3  36.5  21.5  10  4  360  62  140  3  16  2  6  3.00  150  modified residual s o i l mixed with some c o l l u v i a l debris on places  7.5"  6.1  20.4  37.4  6.7  140  140  3660  295  190  4  185  3  12  4.00  125  10.0"  6.0  24.0  25.2  2.4  90  100  1590  82  320  8  100  4  8  2.00  100  1900  70  190  3  235  2  8  1.50  75  171  80  1620  99  12  25  68  0.75  250  117  200  476  83  470  7  30  0.50  150  1  8  0.50  150  19.0"  Pinus contorta var. l a t i f o ! i a (Lodgepole Pine) Pseudotsuga menziesii (Douglas F i r )  24  Mo ppm  1.0" Orthic Acid Brown Forest soil Developed from granodioriti >. 1.5"  R  23  Cu ppm  96.7 _  95.6  • N. B-51 B-52  L-H (01) Orthic A c i d Brown Forest soil Ah (Al! modified residual s o i l  B-53  Bf  (B ) on granodicrite.  B-54  C  (C ;  B-55  25 26  R  2.0"  4.1  26.5  173.9  43.5  12  1  90  64  66  9  3.0"  4.4  33.2  52.2  10.8  10  2  196  55  115  3  14  2  5  3.00  100  8.0"  5.9  25.8  36.5  2.1  100  100  2170  71  170  0  100  2  3  4.00  50  11.0"  5.8  19.9  30.4  2.1  100  100  1408  54  100  0  45  1  3  1.50  100  22.0"  _  _  _  —  4750  44  84  4  275  3  8  4.00  50  _  95.3  _  -  126  183  397  107  280  4  20  6.00  250  97.1  _  173  428  1101  92  9  20  63  5.00  300  Pseudotsuga menziesii (Douglas F i r ) Pinus contorta var. l a t i f o i .ia (Lodgepole Pine)  _  6.  TABLE A-5  A n a l y t i c a l Data f o r PACIFIC NICKEL MINES  Sample No.  S o i l Type or Names of Species  Horizon  P r o f i l e No. 11 & 12 Thickness of Horizor  -80 Mesh PH  O.M.  7.  C.E.C m.e/ /100g  7.  Exch. Heavy Exch, Metals Copper ppm ppm  Cu ppm  Mo ppm  Zn ppm  Pb ppm  As ppm  Co ppm  Ni ppm  Fe p/o  Hg ppb  B-56  L-H (Oi; ^-Orthic concretionary  3.5"  3.5  18.9  253.8  62.1  2  1  78  2  50  24  0  6  17  0.50  150  B-57  Ah (Ai;  brown s o i l .  2.0"  3.6  25.1  135.6  18.5  4  1  44  0  52  4  6  6  82  3.00  175  B-58  Aej (A2;  on c o l l u v i a l deposits  1.5"  4.1  22.5  49.5  2.6  2  8  16  0  54  4  2  5  57  4.00  125  B-59  Bfoc(B )  from mountain sides  19.5"  4.8  17.1  70.4  5.4  1  1  80  126  4  19  9  144  4.00  150  B-60  C  u l t r a b a s i c rocks.  30.0''  4.8  12.7  25.2  0.4  0  0  178  1  175  0  8  19  750  8.00  75  430  3  195  1  13  47  420  8.00  100  -  30  0  102  29  15  40  300  2.0  150  _  40  0  343  106  9  37  449  1.5  250  166  0  324  66  3  60  274  1.0  100  B-61  (C )  Developed  R  _  53.0"  Abies montana (Alpine F i r ) Vaccinium membraneceum (Black Mountain Huckleberry) Tsuga heterophylla (Western Hemlock)  27 28 29  -  _  -  -  -  _  _  —  97.1  _  _  _  98.8  —  _  96.6  -  1  B-62  L-H (01)  Orthic concretionary  4.2"  3.4  14.9  188.6  65.5  2  0  18  0  55  17  0  1  9  0.10  150  B-63  Ah (Al)  brown s o i l .  Developed  3.5"  3.4  22.6  96.1  62.1  2  0  15  0  30  5  0  1  18  0.10  125  B-64  Aej (A2)  on c o l l u v i a l deposits.  4.5"  3.8  21.7  30.8  4.0  2  0  23  0  51  8  2  4  39  3.00  100  16.0"  4.6  20.7  42.6  4.5  2  1  135  1  98  2  14  8  220  5.00  125  33.0"  4.9  17.7  32.1  0.8  1  0  190  1  112  1  10  19  450  8.0  125  59.0"  _  _  500  3  275  1  7  67  1280  8.0  100  109  0  604  89  3  61  317  2.0  130  B-65 • Bfco (B )  (C )  B-66 ...C B-67 30__. 31 32  Same as #11  R Abies montana (Alpine F i r ) Tsuga heterophylla (Western Hemlock) Vaccinium membraneceum (Black Mountain Huckleberry )  _  _  97.0  _  _  _  _  97.2  _  _  84  0  315  119  4  14  336  1.50  250  -  -  -  -  98.7  -  -  30  0  280  170  11  16  150  0.5  275  TABLE A-6  A n a l y t i c a l Data f o r SKEENA SILVER PROPERTY - HIGHLAND VALLEY  Sample No. Horizon  S o i l Type or Name of Species  Thickness of horizon  PH  %  -80 Mesh  C E .C m.e/ /100g  O.M.  %  Exch. Heavy Excha. Metals Dopper ppm ppm  Cu ppm  Mo ppm  Zn ppm  Pb ppm  As ppm  (Do ppm  Ni ppm  Fe p/o  Hg ppb  B-68  L-H  (01) ^Degraded Brown Wooded  1.5"  5.9  20.5  14.4  34.2  160  120  572  3  115  9  0  3  7  1.0  125  B-69  Ah  (Al)  s o i l developed on  3.0"  6.0  23.8  12.8  9.4  40  36  354  2  170  10  0  4  8  1.5  250  B-70  Aej (A2)  glacial t i l l  9.0"  5.7  20.4  5.4  0.3  6  0  318  1  215  8  1  8  20  2.00  250  B-71  Bm  (B )  on Skeena granodiorite  13.0"  6.3  8.4  4.9  0.4  16  12  416  6  35  4  3  4  9  4.00  150  B-72  C  (C )  25.0"  6.8  29.1  10.6  0.4  160  140  680  1  95  2  2  6  15  2.0  100  52.0"  _  700  2  390  2  2  4  8  2.0  125  96.5  311  34  1646  84  5  6  18  0.3  200  92.8  109  16  780  8  7  8  12  0.5  250  B-73  setting  R  Pinus contorta var. l a t i f o l i a (Lodgepole Pine) S a l i x caudata (Whiplash Willow)  33 34  B-74  L-H  (01) ^Degraded Brown Wooded  B-75  Ah  (Al)  B-76  Aej (A2)  B-77  Bm  Bw78  C  B-79  35 36 37  R  2.0"  5.2  28.0  53.9  31.7  20  0  130  10  128  10  0  3  3  2.0  150  2.0"  5.9  22.8  13.6  3.3  20  0  92  5  144  7  1  4  8  1.0  125  9.0"  6.0  33.3  9.6  0.8  16  8  160  1  121  8  2  5  10  2.0  81  (B )  11.0"  6.3  12.6  11.7  0.5  120  160  766  4  115  1  4  3  6  2.0  100  (C )  19.0"  6.6  14.7  11.6  0.5  160  160  786  2  95  4  6  3  7  1.5  iUu  800  2  200  3  3  3  8  2.0  125  184  11  1760  119  4  6  23  0.2  400  216  77  854  43  9  6  20  0.1  1250  112  20  277  23  3  12  21  0.4  200  soil. #13.  Same as  43.0"  Pinus contorts, var. l a t i f o l i a (LodaeDole Pine) Alnus sinuata (Sitka Alder) S a l i x caudata (Whiplash Willow)  -  97.3 94.1  -  -  -  91.1  — _  TABLE A..-7  A n a l y t i c a l Data f o r GALORE CREEK PROSPECT  S o i l Type or Name of Species  Sample No. Horizon  PROFILE No. 15 & 16 Thickness of horizon  pH  3,0"  -80 Mesh  Exch. Heavy Exch. Metals Copper ppm ppm  Q.M.  7.  C.E.C m.e/ /100g  4,9  22.7  53.9  25.7  40  2.1"  5.0  42.5  36.5  6.4  %  Cu ppm  Mo ppm  Zn ppm  32  384  3  175  60  40  375  3  Pb ppm  As ppm  Co ppm  24  6  4  20  0.9  200  115  20  10  15  60  3.0  125  Ni ppm  Fe p/o  Hg ppb  B-80  L-H (01) ^ O r t h i c A c i d Brown Wooded  B-81  Ah (Al)  soil.  B-82  Bfj  (B )  g l a c i a l t i l l with  13.9"  5.8  38.5  12.2  0.8  60  60  500  3  195  25  8  15  80  3.0  350  B-83  C  (C )  underlying bedrock of  12.0"  6.4  23.2  18.8  0.4  120  100  2339  3  520  25  16  20  70  4.0  200  syenite porph. i n t r u s .  27.0"  27000  2  420  13  80  60  24  3.0  70  B-84  R  Developed on  Abies lasiocarpa (Mountain F i r ) Alnus sinuata (Scrab Alder)  38 39  _  »  __  _  _  _  —  _  96.9  _  260  2  3534  65  3  10  167  0.5  250  98.1  _  612  109  1224  153  7  43  398  0.2  280  B-85  L-H (01) ^ D r t h i c A c i d Brown Wooded  2.0"  4.2  36.3  60.8  36.4  36  20  310  6  160  32  3  7  7  4.0  275  B-86  Ah (Al)  soil.  3.5"  4.3  42.4  45.2  12.7  40  20  180  9  100  35  5  7  40  3.0  250  B-87  Bfj  (B )  #15.  9.5"  5.0  24.5  11.3  1.2  40  36  462  4  280  24  8  20  60  4.0  125  B-88  C  (C )  36.0"  6.7  37.5  10.8  0.4  40  44  398  2  220  16  10  20  150  3.0  100  40500  2  70  11  60  120  2.0  65  96.7  "400  19  1079  102  4  21  170  0.6  250  93.7  558  72  666  117  11  8  117  0.2  250  B-89  40 41  Same as  R  49.0"  Abies lasiocarpa (Mountain F i r ) Vaccinium membraneaeum (Black Mountain Huckleberry)  _  _  _  *  TABLE A-8  Analytical  Data f o r PIONEER MINES  Sample No. Horizon  S o i l Type or Names of Species  (oi;^bark Gray  Wooded  B-90  L-H  B-91  Ah (Al]  Podzolic s o i l , developed  B-92  Aej (A2)  from g l a c i a l  B-93  Bt  (B )  Bedrock augite d i o r i t e .  B-94  C  (C )  B-95  drift.  R  ^ Thickness of Horizon  .  -80 Mesh pH  %  PROFILE No. 17 & 18  C.E.C m.e/ /100g  O.M.  %  Exch. Seavy Exch. Metals Copper ppm ppm  Zn ppm  Pb ppm  As ppb  Co ppm  Ni ppm  Fe p/o  Hg ppb  6.5  44.4  79.1  28.4  12  0  57  0  85  13  19  60  15  0.6  225  4.3"  6.8  30.2  27.8  7.2  6  0  31  1  57  7  12  8  7  1.0  100  11.2"  6.8  49.7  10.9  0.8  4  0  17  0  55  .4  21  7  40  2.0  100  18.3"  6.6  24.4  13.9  0.4  6  4  79  3  77  4  270  20  60  3.0  100  31.0"  6.6  22.4  13.4  0.8  8  8  83  0  92  4  65  20  150  3.0  250  400  12  114  4  170  60  40  4.0  150  113  2  948  138  1250  9  73  0.4  200  290  5  1789  164  19  8  69  0.3  250  -  Pseudotsuga menziesii (Douglas F i r ) Pinus contorta var. l a t i i o l i a (Lodgepole Pine)  43  Mo ppm  2.5"  65.0"  42  Cu ppm  -  -  -  -  -  97.7  _  _  96.4  B-96  L-H (01)  (18) Dark Gray Wooded  3.7"  6.6  33.9  48.7  18.5  60  0  45  0  155  15  110  5  30  1.0  200  B-97  Ah (Al)  Podzolic s o i l .  3.5"  7.0  40.5  34.8  5.8  24  0  34  0  104  4  40  8  50  1.5  125  B-98  Aej (A2)  Same as #17  9.0"  6.8  43.2  7.3  0.3  2  0  17  0  65  3  23  9  40  3.0  50  B-99  Btf  19.5"  6.8  41.5  20.8  0.8  12  12  119  3  104  2  400  15  90  4.0  75  B-100  C  27.0"  6.8  32.3  12.9  0.7  4  6  102  0  134  1  175  15  100  4.0  200  116  1  139  4  2000  20  40  3.0  100  90  3  443  263  3500  9  53  0.3  200  101  25  194  36  15  5  29  0.1  1250  B-101  44 45  (B ) (C)  59.0"  R  Pseudotsuga menziesii (Douglas F i r ) Achillea millefolium (Yarrow)  _  _  _  -  _  96.0 91.9  -  -  TABLE A-9  A n a l y t i c a l Data f o r BRALORNE MINES  Sample No. Horizon  S o i l Type to Name of Species  _____ Thickness of iorizon  PROFILE No. 19 & 20  pH  -80 Mesh %  C.E.C m.e/ /100g  0_i. %  Exch. Heavy Exch. Metals Copper ppm ppm  Cu ppm  Mo ppm  Zn ppm  Pb ppm  As ppm  Co ppm  Ni ppm  Fe p/o  Hg ' ppb  B-102  L-H (01)  Orthic Brown Forest  2.7"  6.6  30.6  42.5  14.9  16  0  34  0  112  4  12  7  60  1.5  100  B-l 03  Ah (Al)  s o i l developed from  5.2"  6.7  49.6  14.3  4.1  8  0  45  0  135  1  10  10  60  2.0  100  B-l 04  Bf  (B )  g l a c i a l d r i f t s on augite  11.9"  6.8  46.2  9.9  1.8  2  0  31  6  139  1  18  15  30  2.0  92  B-105  C  (C )  d i o r i t e with gold-guartz  45.9"  6.7  25.7  13.1  1.6  4  4  90  1  100  2  155  20  90  4.0  200  f i s s u r e veins.  63.0"  45  1  69  1  30  19  19  3.5  110  104  15  1296  36  22  4  14  0.4  300  352  1  414  45  200  5  72  0.5  200  B-l 06  R  Arctostaphylos uva-ursi (Kinnikinnick) Pseudotsuga menziesii (Douglas F i r )  46 47  98.1  -  -  70.4  24.3  36  0  37  0  152  7  8  5  30  0.8  68  s o i l , developed from  4.0"  6.7  49.7  43.5  7.5  24  0  •32  1  104  4  8  15  50  2.0  62  glacial d r i f t .  7.0"  6.5  36.1  10.9  0.9  2  0  40  0  98  4  20  15  50  3.0  125  23.0"  6.3  30.9  17.4  1.7  4  2  42  1  100  2  85  15  90  3.0  50  93  1  69  1  700  19  23  3.0  137  22  270  32  200  5  25  1.0  350  80  3  465  42  400  6  30  0.3  200  Ah (Al)  B-109  Bf  (B )  B-110  C  (C )  — -  -  41.4  B-108  34.0"  R  Pachystima myrsinites (False Box) Pseudotsuga menziesii (Douglas F i r )  49  -  6.7  L-H (01) ^ O r t h i c Brown Forest  48  _  4.5"  B-107  B-lll  _  91.9  _ _  _  _  91.7  _  97.6  _ _  -  50  -  TABLE A-10  PROFILE No. 2 1 & 2 2  A n a l y t i c a l Data f o r ENDAKO MINES  Sample Horizon No.  S o i l Type or Name of Species  Thickness of Horizo i  pH  -80 Mesh  %  C.E.C m.e/ /100g  O.M  %  Exch. Heavy Exch, Metals Copper ppm ppm  Cu ppm  Mo ppm  Zn ppm  Pb ppm  As ppm  Co ppm  Ni ppm  Fe p/o  Hg ppb  B-112  L-H (01) *Si)egraded Brown Forest  2.5"  6.8  29.9  75.6  26.5  40  0  18  56  173  9  0  3  5  0.3  250  B-113  Ahj (Al)  soil  7.8"  6.9  39.4  50.4  11.3  8  0  19  48  80  8  0  3  4  0.9  100  B-114  Aej (A2)  from g l a c i a l  1.1"  6.7  29.2  8.9  1.8  2  0  6  20  53  6  1  3  6  1.5  75  B-115  Bfj  (B )  on the Topley  14.1"  6.5  25.7  7.3  0.7  0  0  25  65  88  6  2  4  9  2.0  50  B-116  [IC  (C )  Granite.  41.0"  6.7  12.9  6.8  0.8  0  0  44  229  67  8  2  3  5  2.0  75  _  .  _  28  176  290  1  1  7  3  2.1  60  91.5  _  215  373  1373  33  4  4  14  0.4  600  B-117  64.0"  Populus tremuloides (Trembling Aspen)  B-118  L-H  B-119  Aej (Al) IIBfj (B) IIC (C)  B-121 B-122D  51  drifts  R  50  B-120  developed  (01 i  Degraded Brown Forest  3.7"  7.2  22.4  53.0  20.1  20  0  40  230  382  6  1  2  3  0.7  275  soil.  4.5"  6.4  22.4  52.1  9.1  20  0  39  253  432  1  1  4  4  1.5  75  4.4"  6.3  9.2  27.8  3.5  8  0  21  315  212  4  X  6  8  3.0  75  18.1"  6.2  6.4  21.7  1.5  2  0  30  437  174  2  1  5  7  3.0  75  37  288  250  4  2  3  4  2.7  58  90  240  1290  24  3  5  13  0.2  350  Same as  #21  _  27.0"  R  Populus tremuloides (Trembling Aspen)  _  _  90.3  _  _  J  TABLE A-.-11  i c a l Data f o r CARMI PROSPECT  ; ample Horizon No.  ______  S o i l Type or Name of Species  Thickness of iorizon  PROFILE No. 23 & 24  C.E.C m.e/ /100g  O.M.  PH  -80 Mesh %  %  Co ppm  Ni ppm  p/o  Fe  Hg ppb  1  2  4  0.3  125  9.1  28  0  7  6  138  18  1  3  6  1.0  75  25.2  1.7  4  0  34  4  176  8  1  5  10  2.0  50  6.4  0.3  4  2  27  2  62  6  1  6  6  3.0  50  221  19  1152  125  2  4  24  0.15  150  276  41  2305  193  1  6  43  0.5  250  114.7  28.7  B-124  Ah  s o i l developed from  1.5"  5.4  49.2  38.2  B-125  Bf (B ) IIC (C )  g l a c i a l t i l l on grano-  11,7"  6.2  60.6  diorite  45. C"  6.2  35.9  96.9 _  As ppm  41  39.2  53  Pb ppm  105  5.2  Larix occidentalis (Western Larch) Pinus contorta var. l a t i f ;1; a (Lodoepole Pine)  Zn ppm  21  3.7"  52  Mo ppm  28  Orthic Acid Brown Wooded  gneiss.  Cu ppm  0  L-H (01)  B-126  Exch. Copper ppm  2a-  p-123  (Al)  ixch. teavy Petals ppm  _  _  97.8  B-127  L-H (01)  Orthic Acid Brown  5.5"  5.3  24.8  78.2  25.4  40  0  28  58  208  20  1  2  3  0.9  100  B-128  Ah  (Al)  Wooded s o i l developed  2.5"  5.7  57.2  35.6  3.2  28  0  28  83  204  16  1  4  4  1.5  50  B-129  Bf  (B )  from two d i f f e r e n t  20.5"  6.4  48.8  37.4  0.4  4  0  40  23  147  6  1  6  8  3.0  200  (C )  layers of g l a c i a t i l l s  42.0"  6.0  34.5  7.6  0.1  20  8  64  8  80  9  1  5  7  3.0  50  on granodiorite  65.0"  _  _  _  _  71  248  70  4  1  8  9  2.0  50  96.5  277  34  874  126  2  12  30  0.5  200  95.7  117  35  725  110  7  14  45  0.2  300  B-130 B-131  54 55  IIC R  gneiss.  Larix occidentalis (Western Larch) Pseudotsuga menziesii (Douglas F i r )  mm  _  • _  TABLE A-12  TABLE A-13:  E l e m e n t a l C o r r e l a t i o n s o f S o i l H o r i z o n s and P l a n t s ^o^^ro^_J^ss\s^ng^IA^ar Distributions)  Single Element  L-H  Ah  B  C & II-C  - Correlation Coefficient Plants L-H  Ah  Partial B  C & II-C  Plants  0.18  0.32  0.26  0.59**  -0.23  0.23  0.13  0.25  -0.33  -0.18  -0.39  0.06  0.42*  Cu  0.25  0.34  0.06  0.37  Mo  0.80**  0.82**  0.61**  0.76**  0.53**  Zn  0.18  0.02  0.01  0.29  0.32  0.24  Pb  0.60**  0.78*-*  0.67**  0.36  0.06  0.04  0.48*  As  0.94**  0.85**  0.79  0.72**  0.94*  0.21  0.14  Co  0.43*  0.33  0.71**  0.86**  0.58**-  0.28  -0.29  0.21  0.45*  0.55**  Ni  0.01  0.25  0.89**  0.77**  0.70**  0.26  -0.65**  0.80**  0.45*  0.17  Fe  -0.16  0.10  0.43*  0.85**  0.37  -0.41*  0.92**  0.71**  Hg  -0.11  0.09  0.07  0.38  0.05  0.09  0.36  0.03  .31  -0.26  0.27  -0.59**  0.65** -0.15  -0.32 0.41*  -0.17  -0.32  0.08  0.04  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0104407/manifest

Comment

Related Items