DINOFLAGELLATES AND V I T A M I N B 12. I N THE S T R A I T OF GEORGIA, B R I T I SH COLUMBIA by S. ALLEN B.S., U n i v e r s i t y M.S., U n i v e r s i t y CATTELL of the Pacific of the P a c i f i c T H E S I S SUBMITTED I N P A R T I A L F U L F I L L M E N T THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in t h e Department of" Botany We a c c e p t t h i s t h e s i s to the required as c o n f o r m i n g standard THE U N I V E R S I T Y OF B R I T I S H COLUMBIA J u n e 19 69 In p r e s e n t i n g an the thesis advanced degree at Library I further for this shall the agree that his permission of this written representatives. thesis be for extensive g r a n t e d by the It is understood for financial gain of The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada British available for permission. Department f u l f i l m e n t of U n i v e r s i t y of make i t f r e e l y s c h o l a r l y p u r p o s e s may by in p a r t i a l Columbia shall requirements Columbia, Head o f my be I agree r e f e r e n c e and copying of that not the that Study. this thesis Department copying or for or publication allowed without my vi:" •. v' . ., : The . ... . ABSTRACT purpose o f t h i s study ;.- •. was t o c o m p a r e t h e d i s t r i b u t i o n of d i n o f l a g e l l a t e s i n the S t r a i t British and Columbia with of a number o f e n v i r o n m e n t a l i n particular with vitamin .was: d e t e r m i n e d b y a m o d i f i e d conclusions from Georgia, parameters, concentrations. bioassay technique, : the marine d i n o f l a g e l l a t e , Amphidinium c a r t e r a e The : :;.. f The latte employing Hulburt. a r e b a s e d o n t h e a n a l y s i s o f 511 s a m p l e s 19 c r u i s e s . The annual c y c l e o f vitamin c h a r a c t e r i z e d by t h r e e 3 S found t o be major peaks o f c o n c e n t r a t i o n : peak f o l l o w i n g t h e s p r i n g 'bloom' o f p h y t o p l a n k t o n ; summer i n c r e a s e t h a t was c l o s e l y icles i n river contained W associated with r u n o f f ; a n d 3) a f a l l f o l l o w e d t h e breakdown o f d e n s i t y g r a d i e n t s 1.) a 2) a silt part- maximum that i n the water column. Seventy-seven species recorded from t h e S t r a i t o f d i n o f l a g e l l a t e s were of Georgia. The t e m p o r a l u t i o n o f d i n o f l a g e l l a t e s was d i v i d e d i n t o periods o f abundance: one o c c u r r i n g d u r i n g months and a n o t h e r d u r i n g and the environmental two d i s t i n c t the early spring t h e summer m o n t h s . of m u l t i p l e regression analyses distrib- The r e s u l t s between' t h e d i n o f l a g e l l a t e s parameters measured n i t r o g e n , phosphorus, zooplankton, (vitamin t e m p e r a t u r e , - s a l i n i t y and sunlight) indicated that the size of the d i n o f l a g e l l a t e c o m m u n i t y i n t h e e a r l y s p r i n g was c l o s e l y associated with vitamin concentration concentration determining was the i n the apparently size months. . Phosphorus related with t o t a l of the of other exception in the thecate was Strait the of species. found to be late to summer be closely d i s t r i b u t i o n of essentially neritic presence of appear in numbers. and s e a s o n a l temperate Georgia, d i d not Nitrogen factor community d u r i n g the dinoflagellate was northern a significant concentration The c o m p o s i t i o n dinoflagellates v/ater column,^ waters. a distinct consisting similar The spring largely of to the that major component small non- iv „•;•••' ABSTRACT TABLE.: OF CONTENTS' - > _ •' ±i TABLE OF CONTENTS ' •, "... i L I S T OF TABLES v L I S T OF FIGURES .". -V. ^ MATERIALS AND METHODS.,. viii - 1. ' 5 Sampling 5 analysis 8 Sunlight Plankton 17 analysis Statistical 18 analysis 19 RESULTS 22 T e m p e r a t u r e and s a l i n i t y 2 3 SUnlight 2 3 Nitrogen Vitamin and p h o s p h o r u s B^^ . 3 Zooplankton 3 0 5 .42. Dinoflagellates 42 Regression 52 analysis DISCUSSION Vitamin • '.- i x INTRODUCTION Nutrient i ' . ACKNOWLEDGEMENT v 63 B^- Regression • 6 3 analysis . D i n o f l a g e l l a t e s • •: SUMMARY AND CONCLUSIONS 72 • .89 95 . LITERATURE CITED , - 107 APPENDIX I - C r u i s e D a t e s APPENDIX.II - Species D i s t r i b u t i o n Taxonomic Notes Plates of Species APPENDIX I I I - D i s t r i b u t i o n S p r i n a 1968 ' • 97 of B ? and 109 in 130 . vi . L I S T OF TABLES " .TABLE ' . I PAGE: 12 B i o a s s a y c u l t u r e medium II -' . - P h o s p h o r u s and n i t r o g e n c o n c e n t r a t i o n s ( p g - a t / 1 ) d u r i n g t h e f a l l m o n t h s o f 1967 31 III P h o s p h o r u s and n i t r o g e n c o n c e n t r a t i o n s ( u g - a t / 1 ) d u r i n g t h e w i n t e r m o n t h s o f 1968 .32 IV P h o s p h o r u s and n i t r o g e n . c o n c e n t r a t i o n s ( u g - a t / 1 ) d u r i n g t h e s p r i n g m o n t h s o f 1968 33 V P h o s p h o r u s and n i t r o g e n c o n c e n t r a t i o n s ( u g - a t / 1 ) d u r i n g t h e summer m o n t h s o f 1968 34 VI Regression c o e f f i c i e n t s VII T o t a l and p a r t i a l VIII Regression c o e f f i c i e n t s f o r time-series a n a l y s e s ( M a r c h - A u g u s t , 1968) 55 2 T o t a l and p a r t x a l R f o r t i m e - s e r i e s a n a l y s e s ( M a r c h - A u g u s t , 1968) 56 for individual cruises 53 2 IX X: . R for individual 54 R e g r e s s i o n c o e f f i c i e n t s and p a r t i a l coefficients- of determination for £• .t-riguetrum & G-. p a u l s e n i XI cruises Cruise dates 57 108 vii LIST OF FIGURES FIGURE 1. .' PAGE S t r a i t o f G e o r g i a and a s s o c i a t e d :showing s t a t i o n p o s i t i o n s . waters, 6 2. Seasonal cycle a t S t a t i o n A. of temperature and salinity ' 3. Seasonal cycle - a t S t a t i o n B. o f temperature and salinity 4. Seasonal cycle a t S t a t i o n C. of temperature - . and salinity 5. Seasonal cycle at S t a t i o n D. of temperature • and salinity 6. Seasonal cycle at Station"E. of temperature •' and salinity 7. . Seasonal changes i n i n s o l a t i o n i n the u p p e r 10 m e t e r s o f t h e w a t e r c o l u m n . 8. Seasonal d i s t r i b u t i o n of vitamin S t a t i o n Ao B^ at 9. Seasonal d i s t r i b u t i o n of vitamin S t a t i o n B. B^ at 10. Seasonal d i s t r i b u t i o n of vitamin Station C. . B,~ a t •11. Seasonal d i s t r i b u t i o n of vitamin S t a t i o n D. B^ at 12. Seasonal d i s t r i b u t i o n of vitamin S t a t i o n E. • . . ' . B- at Temporal d i s t r i b u t i o n o f Calanus in the S t r a i t of Georgia. pacificus 13. 14. 15. 16. 2 24 . 2 5 26 27 28 .29 36 37 ' 3 8 39 40 43 Seasonal d i s t r i b u t i o n of d i n o f l a g e l l a t e s a t S t a t i o n A. . . " 44 Seasonal d i s t r i b u t i o n of d i n o f l a g e l l a t e s a t ' S t a t i o n B. 45 Seasonal d i s t r i b u t i o n of d i n o f l a g e l l a t e s a t S t a t i o n C. 46 V1X1 17. 18. 19. 20. 21. Seasonal d i s t r i b u t i o n of a t S t a t i o n D. . Seasonal d i s t r i b u t i o n • a t . S t a t i o n E. of dinoflagellates"" 47 dinoflagellates •>•'. .48 T h e o r e t i c a l r e l a t i o n between d i n o f l a g e l l a t e s . (D„V.) and l i m i t e d t o t a l q u a n t i t y o f nutrients (I.V.) with time. 78 T h e o r e t i c a l r e l a t i o n between d i n o f l a g e l l a t e s (D.V.) and l i g h t t e m p e r a t u r e and s a l i n i t y (I.V.)' w i t h time. .78 Spring d i s t r i b u t i o n of Georgia, i n l o n g i t u d i n a l 132 i n the S t r a i t of section. • I Dr. t o develop helpful Janet the would like, t o express F . J . R . T a y l o r , who s e r v e d helped The ACKNOWLEDGEMENTS my s i n c e r e t h a n k s t o a s t h e s i s a d v i s o r , and who many o f t h e i d e a s u s e d i n t h i s advice R. S t e i n , R.F. S c a g e l Special thesis. g i v e n b y D r s . G.L. P i c k a r d , G.C. Hughes I I I , a n d G-.H.N. T o w e r s , who s e r v e d o n t h e s i s committee, i s g r a t e f u l l y developed . acknowledged. t h a n k s a r e d u e t o M r . S. B o r d e n , who t h e computer programs used i n t h i s study, and t o Dr. J . S i b e r t f o r assistance given i n the i n t e r p r e t a t i o n of the statistical It data. i s a l s o my p l e a s u r e c r e w o f t h e C.S.S. E h k o l i , t o t h a n k t h e o f f i c e r s and C.S.S. V e c t o r , C. N.A.V. E n d e a v o u r a n d H.M.C.S. M i r a m i c h i v a l u a b l e a s s i s t a n c e and c o o p e r a t i o n . C.N.A.V. L a y m o r e , for their i n - •INTRODUCTION The from motivation f o rthis three considerations. F i r s t l y , the temporal: and s p a t i a l existed little distribution in of dinoflagellates of the north-eastern P a c i f i c . of vitamin i n ' t h e sea. Thirdly, lies British attempt t h e d i s t r i b u t i o n o f v i t a m i n B.^ a r e a c h o s e n f o r s t u d y was t h e S t r a i t o f G e o r g i a between Vancouver I s l a n d Columbia approximately and t h e m a i n l a n d o f a n d W a s h i n g t o n S t a t e . .The s t r a i t i s 140 n a u t i c a l m i l e s i n l e n g t h a n d up t o 30 n a u t i c a l m i l e s w i d e and has an a v e r a g e and 100 f a t h o m s (Tully depth and Dodimead, p l a n k t o n i c diatoms coastal waters. o f between 1957). Some a t t e n t i o n h a s b e e n d e v o t e d t o the ecology of i n the S t r a i t of Georgia and a s s o c i a t e d T h e more n o t a b l e v/orks i n t h i s area s t u d i e s o f P e c k and H a r r i n g t o n ( 1 8 9 7 ) , B a i l e y (1916), Lucas and H u t c h i n s o n ( 1 9 2 9 ) , G r a n a n d Thompson Phifer at no t h e s e a t o a s e l e c t e d group o f p h y t o p l a n k t o n . which the chiefly i n f o r m a t i o n was a v a i l a b l e o n t h e s e a s o n a l y e t b e e n made t o r e l a t e The 50 arose no s y s t e m a t i c s t u d y o f distribution f o rt h e c o a s t a l waters Secondly, had investigation (19 33) and L e g a r e most, been b r i e f l y Wailes (19 3 0 ) , G r a n a n d A n g s t (1957). alluded (1928, (1927), Hutchinson Include and MacKay et a l . , (1931), The d i n o f l a g e l l a t e s , t o i n these have studies. 1933, 1939) has c h a r a c t e r i z e d t h e s p e c i e s o f d i n o f l a g e l l a t e s p r e s e n t in- t h e S t r a i t o f Georgia, but g i v e s l i t t l e i n f o r m a t i o n on t h e i r seasonal distribution.- P r a k a s h and in the Taylor Strait ( 1 9 6 6 ) s t u d i e d an o u t b r e a k -of of Georgia c a u s e d by a levels of have i n i t i a t e d • B^^ i the bloom. n the area of study H u t n e r e t a l . ( 1 9 4 9 , 1953) form after (Smith, t h e v i t a m i n had 1948). phytoplankton Cassie, 1962; 1963; R y t h e r and Guillard, •phytoplankton i n the seasonal the limiting t h e r e had of vitamin the been o n l y B^ 'i n Sea was vitamins when t h e s e three a c c o m p a n i e d by rose i n the fall as the the Pintner Cowey an B^^ t o w a r d s a w i n t e r maximum. i n nature vitamins Before s t u d i e s on sea. limits actual determination and the growth (195 3) of will B^ of (Daisley, the enable a c t u a l l y , become the present seasonal work' d.istributi--- (1956) d e m o n s t r a t e d concentration i n c r e a s e i n the t r a t i o n of p l a n k t o n i c organisms: the situation vitamin 1962 ; G u i l . l a r d P r o v a s o l i and spring-summer d e c l i n e i n v i t a m i n North marine D r o o p , 1955 ; D r o o p e t a l . , ever f o r growth". the vitamin crystalline been s u b j e c t t o debate "only the factors in t i m e a number o f vitamin sea has times absolute 1968). v a r i a t i o n of these d e t e c t i o n of the an organisms f o r Guillard, Droop, 1957a,b, 1968). have suggested t h a t the mug/1) m i g h t been i s o l a t e d S w e e n e y , ' 1954; Whether o r not 195 7; this (13.0 have been found t o r e q u i r e t h i s ( e . g . , L e v / i n , 1954; 1959 ; G o l d , Since suggested that demonstrated requirement i n several,phytoplanktonic shortly water' dinoflagellate, G o n y a u l a x a c a t e n e l l a Whedon & K o f o i d , and high 'red reverse B^^ being concentration in the concenthe i n the B e c a u s e t h i s work that was sea e x p l o r a t o r y i n n a t u r e , no attempt was. made t o - a s s e s s t h e e c o l o g i c a l s i g n i f i c a n c e of the vitamin. V i s h n i a c and R i l e y (1961) compared t h e s e a s o n a l dis- t r i b u t i o n o f c h l o r o p h y l l a i n Long I s l a n d Sound w i t h t h e d i s t r i b u t i o n o f B.^ > t h i a m i n , n i t r a t e , phosphate and temperature. N i t r a t e , phosphate and v i t a m i n were a l l found t o vary i n v e r s e l y w i t h c h l o r o p h y l l a c o n c e n t r a t i o n , b u t n i t r a t e was presumed t c be t h e n u t r i e n t l i m i t i n g phyto- p l a n k t o n growth because o f i t s v e r y low c o n c e n t r a t i o n during the s p r i n g and summer months. V i t a m i n B ^ was u n d e t e c t a b l e i n the surface waters o f t h e S a r g a s s o Sea d u r i n g t h e l a t e s p r i n g and summer months (Menzel and S p a e t h , 1962) f o l l o w i n g a s p r i n g maximum i n concentration. V i t a m i n B - ^ - f e c i u i r i n g d i a t o m s were present d u r i n g t h e s p r i n g maximum o f B ^ c o n c e n t r a t i o n , b u t were a b s e n t from t h e p l a n k t o n concluded that d u r i n g t h e summer months. probably i t i o n of the phytoplankton The one d i d a f f e c t t h e s p e c i e s composi n t h e S a r g a s s o Sea. unique f e a t u r e of the present group o f t h e p h y t o p l a n k t o n , considered study i s t h a t only Dinophyceae, i s being i n r e l a t i o n t o v i t a m i n B^ . 2 A l l dinoflagellates previously tested, with the exception of three ( P r o v a s o l i and G o l d , I t was species 1957; M c L a u g h l i n and Z a h l , 1959) have been shown t o have an a b s o l u t e r e q u i r e m e n t f o r v i t a m i n ( L o e b l i c h , . 1967). ^ Sweeney (1954) found t h a t l i n e a r i t y o f the d o s e - r e s p o n s e c u r v e f o r growth o f Gymnodinium sp^lend^ens Lebour began t o f a l l o f f o n l y above a B,„ c o n c e n t r a t i o n o f 4 10 mug/1. Preliminary r e s u l t s -indicate a s i m i l a r f o r Amphidinium c a r t e r a e Hulburt, the dose-response curve at although the response linearity f o r a number o f d i a t o m s f a l l s c o n c e n t r a t i o n s o f b e t w e e n 3 and 6 mug/1 of off (Guillard, 1968). This evidence suggests t h a t i t may t o a t t e m p t t o u n c o v e r c o r r e l a t i o n s betv/een of v i t a m i n B.^ and be more realistic concentrations t h e d i s t r i b u t i o n o f o n l y one group of p h y t o p l a n k t o n i c o r g a n i s m s known t o h a v e a g e n e r a l r e q u i r e ment f o r t h e v i t a m i n , r a t h e r t h a n phytoplankton The concentration.as purpose of t h i s c h a r a c t e r i z e the seasonal Dinophyceae i n the possible ecological group of organisms. has t o use an i n d e x o f been done i n t h e s t u d y was, distribution S t r a i t of Georgia past. therefore, to and and total abundance o f the to i n v e s t i g a t e the s i g n i f i c a n c e of v i t a m i n to this 5 MATERIALS AND METHODS' SAMPLING ;' .." ... • Samples were c o l l e c t e d from f o u r Strait stations i n the o f G e o r g i a (A - D) a n d o n e s t a t i o n i n t h e c o n n e c t i n g w a t e r s b e t w e e n t h e S t r a i t o f G e o r g i a a n d J u a n de F u c a (Figure 1) d u r i n g 19 c r u i s e s b e t w e e n O c t o b e r S e p t e m b e r 1968 ( A p p e n d i x I - T a b l e I ) . were s e l e c t e d the of t h e water column Fraser River runoff i n areas o f i n t e n s i v e Station •conditions E was s e l e c t e d i n waters flowing 1200 (National properties affects Stations tidal mixing t o m o n i t o r changes into the Strait A h y d r o c a s t was made a t e a c h N.I.O. A through D at a l l stations i n the Strait, a t S t a t i o n C (Waldichuk, 1957). were l o c a t e d 1957). Stations and m i x i n g ) i n t h e s u r f a c e w a t e r s o f S t r a i t of Georgia. cularly 1966 and t o t y p i f y t h e range o f p h y s i c a l (temperature, s a l i n i t y Strait stability parti- A and D (Waldichuk, i n nutrient of Georgia. station., using plastic I n s t i t u t e o f Oceanography) b o t t l e s o f ml c a p a c i t y . These p l a s t i c b o t t l e s were used i n p r e - ference t o metal water samplers t o prevent metal a t i o n o f t h e samples. W a t e r was c o l l e c t e d f r o m s i x d e p t h s (surface, 5, 1 0 , 2 0 , 50 a n d 100 m e t e r s ) S t a t i o n D, a n d f r o m f i v e meters) at Station E. depths s t a t i o n was n o t f e a s i b l e b e c a u s e off a t S t a t i o n A through (surface, A 100 m e t e r contamin- sample 5, 1 0 , 20 a n d 50 at the l a t t e r o f the tendency to drift s t a t i o n i n t o an a r e a o f r o c k o u t c r o p p i n g a t l e s s 100 m e t e r s . To e l i m i n a t e than cumbersome r e f e r e n c e t o d e p t h a t F i g u r e 1. S t r a i t o f G e o r g i a and a s s o c i a t e d showing s t a t i o n p o s i t i o n s . waters, a station, into the the station a single 20 m e t e r letter entity. sample and d e p t h w i l l F o r example, at Station (10 g i o d i n e ; 10% g l a c i a l specific S t a t i o n A-20 r e f e r s t o of each water sample s i x drops of modified Lugol's Iodine 20 g p o t a s s i u m i o d i n e d i s s o l v e d acetic acid). identification dinoflagellates present. sample were f i l t e r e d filter combined A. F i v e hundred m i l l i l i t e r s .preserved with be These Salinity Autolab inductively solution i n 200 m l o f a s a m p l e s were u s e d f o r t h e and q u a n t i t a t i v e e n u m e r a t i o n o f t h e Three hundred m i l l i l i t e r s t h r o u g h a 0.22 -u GS M i l l i p o r e and f r o z e n i n s u l p h u r i c - c h r o m i c ethylene containers were for nutrient acid cleaned o f each membrane poly- analyses i n the laboratory. samples were c o l l e c t e d from a l l depths. An c o u p l e d s a l i n o m e t e r was u s e d t o d e t e r m i n e salinity. E a c h N.I.O. b o t t l e v/as l o a d e d w i t h protected 'Richter and W e i s e * reversing a single, thermometer to d e t e r m i n e t h e t e m p e r a t u r e a t each s a m p l i n g d e p t h . A submarine photometer with cell a Weston was u s e d t o d e t e r m i n e t h e r e l a t i v e u p p e r 20 m e t e r s o f t h e w a t e r A single vertical 'meters t o t h e s u r f a c e light photovoltaic intensity i n the column. p l a n k t o n tow was made f r o m a t each s t a t i o n u s i n g a n e t 32 cm i n . d i a m e t e r a t t h e m o u t h and c o n s t r u c t e d o f n y l o n n e t t i n g a mean a p e r t u r e s i z e o f 64 u . 100 with The s a m p l e s w e r e p r e s e r v e d with modified Lugol's Iodine solution and w e r e u s e d t o s u p p l e - ment t h e t a x o n o m i c a n a l y s i s o f t h e p h y t o p l a n k t o n . NUTRIENT A N A L Y S I S -- ' Vitamin B.^ w e r e d e t e r m i n e d by concentrations bioassay Amphidinium c a r t e r a e , and i n the employing using - : sea water a marine d i n o f l a g e l l a t e , a modified v e r s i o n of m e t h o d b r i e f l y . d e s c r i b e d by A n t i a et a l . (1963). The bacteria-free carterae by Dr. N.J. c u l t u r e o f A. Antia bioassay s o l u t i o n w h i c h has was and then r i n s e d three allowed rinse. using stand B^^ p r o c e d u r e was carterae the yield two solutions and psi. vitamin-free were s t e r i l i z e d by Culture sea filtration t h r o u g h 0.22 was used i n preference precipitation i n the v i t a m i n - f r e e occurred during prevents chemical autoclaving. breakdown of 5 by u GS autoclaving B^ bioassay sterile S i l b e r n a g e l , 1966). This the to autoclaving sea v/ater, w h i c h sterility organics s o l u t i o n s , v/hereas a u t o c l a v i n g B- Tests suppressed water used i n the sterilization of fourth medium, v i t a m i n ( C a r l u c c i and 30% water glassware indicated then s t e r i l i z e d Millipore filters B^ glass- more t i m e s . n e i t h e r enhanced or g l a s s w a r e v/as 15 m i n u t e s a t 15 and The second set of r i n s e s . Bioassay for R o b b i n s e t a l . (1951) l e a s t s i x hours i n the repeated All chromic-sulphuric from g l a s s . acid cleaned was in times i n g l a s s - d i s t i l l e d f o r at chromic-sulphuric t h a t A. after to This provided cleaned b e e n shown by t o remove a l l t r a c e s o f v i t a m i n w a r e was was a ( F i s h e r i e s Research Board, Vancouver). glassware used i n the acid samples may method i n the destroy i n s o l u t i o n (Robbins et a l . , 1950). Filterto avoid sometimes also medium up to Vitamin-free after s e a w a t e r f o r t h e b i o a s s a y was t h e m e t h o d o f R y t h e r and G u i l l a r d ( 1 9 6 2 ) , as 10 g o f N o r i t e - A ( d e c o l o r i z i n g c a r b o n ) was shaking 500 m l o f a 6% of i t f o r 10 m i n u t e s w i t h analytical distilled water. Whatman #2 The filter, chloride and shaken solution through by t h e a filter. chloride charcoal and by filtration The t h e n a d d e d t o 1025 a b s o r b e d by t h e c h a r c o a l . the t h r o u g h a Whatman #2 through a s t e r i l e vitamin 0.22 samples ml o f time filter was the t o remove sterilized u GS M i l l i p o r e w e r e t h a w e d and 50 m l P y r e x b r a n d ( s e e p. 8 ) 400° C. The and b a k e d liners of the screw-caps detrimental to p h y t o p l a n k t o n growth 1953). Bakelite screw-caps w h i c h c a n be e x t r a c t e d i s n o t known w h e t h e r toxic screw-cap hours as a g e n t s w h i c h may (Provasoli contain by d i s t i l l e d and water (Kordan, from the f l a s k s . be Pintner, fluorescent or not these f l u o r e s c e n t separately acid were removed t o p h y t o p l a n k t o n , b u t as a p r e c a u t i o n w a s h e d and d r i e d ml on a h o t p l a t e f o r two t h e y h a v e b e e n shown t o r e t a i n c l e a n i n g The filter. 10 which had been c l e a n e d i n c h r o m i c - s u l p h u r i c solution sea the Finally, the v i t a m i n - f r e e f i l t r a t e a l i q u o t s were d i s p e n s e d i n t o are by i n glass- sodium f o r one h o u r , d u r i n g w h i c h passed It w/v the charcoal being r e t a i n e d s o l u t i o n was at pretreated s o l u t i o n v/as t h e n f i l t e r e d c h a r c o a l was s o l u t i o n was flasks follows: and t h e a b o v e o p e r a t i o n r e p e a t e d two more t i m e s . pretreated water in The sodium charcoal was.transferred to a fresh solution The reagent q u a l i t y prepared compounds 1965). compounds the caps Any were possible toxic e f f e c t s f r o m t h e s e c a p s o n c e t h e f l a s k s "had i n o c u l a t e d were assumed t o have been a s i m i l a r e f f e c t on a l l s a m p l e s , s t a n d a r d s and b l a n k s and t h e r e b y n o t s i g n i f i c a n t l y altering the r e s u l t s . Three r e p l i c a t e s milliliters w e r e made o f e a c h s a m p l e . of v i t a m i n - f r e e sea water method on p. 9) were added minimized s a l i n i t y bringing A° c a r t e r a e g r o w t h . samples i n t o The s a l i n i t y dilution vitamin- samples by a range s u i t a b l e f o r optimum, as a f u n c t i o n o f f o r A. c a r t e r a e i s 25 o/oo a t - 2 4 ° C w i t h growth o c c u r r i n g between The This o f a p p r o x i m a t e l y 30 o/oo a n d extremes o f t h e d i f f e r e n t low s a l i n i t y growth r a t e , (prepared by t h e c h a r c o a l t o each t e s t f l a s k . f r e e s e a v/ater h a d a s a l i n i t y Ten good 15 a n d 35 o/oo ( M c L a c h l a n , 1961). e f f e c t on t h e c o n c e n t r a t i o n s o f t h e samples by t h e a d d i t i o n o f t h e v i t a m i n - f r e e s e a w a t e r s e r v e d t o keep B^2 v a l u e s w i t h i n t h e range o f t h e e x t e r n a l standards so t h a t e x t r a p o l a t i o n beyond standard regression External t h e upper l i m i t l i n e was n o t n e c e s s a r y ( s e e p . 16 ) . s t a n d a r d s were u s e d t o d e t e r m i n e t h e e f f e c t o f known a m o u n t s o f v i t a m i n - B ^ carterae. of the calculated o n the f i n a l y i e l d of S t a n d a r d s w e r e made up b y a d d i n g 20 m l o f v i t a m i n - f r e e s e a water t o each s t a n d a r d f l a s k . the standards contained B^2« In addition, 1, 2, 3, 5 o r 10 mug/1 o f v i t a m i n B l a n k s , c o n t a i n i n g 20 m l o f v i t a m i n - f r e e s e a w a t e r , were used t o measure t h e c a r r y - o v e r o f v i t a m i n B ^ inoculum c u l t u r e . The b l a n k s and e x t e r n a l s e t up i n t r i p l i c a t e . from t h e s t a n d a r d s were All flasks inoculated with sterilized 1 ml Cornwall Stock week p r i o r B 12~'f" r e e bioassay medium. flasks It and A. was by The this To inequalities ml per using c o u n t s w e r e made on each total the r e s u l t s of (1) a m o n g - s a m p l e SS; this sum test a b e a k e r due r the the depleted samples, same number 200 final ml of yield to 1 ml continuous i n each beaker was of beakers filter Cornwall AH pipettor. test inoculated with the was B.^' i n the q u a n t i t y ten one vitamin the t h a t the Millipore were been remove of an pipettor. was a Model B C o u l t e r Counter. Three sample. of squares and (SS) v/as c a l c u l a t e d f r o m partitioned into the v a r i a n c e (2) w i t h i n - s a m p l e an means o f a week s e a w a t e r t h a t had milliliter determined d i r e c t l y c u l a t i o n of of a.0.22 p GS carterae culture using within effect, of continuous i n o c u l a t i o n so test this number o f c e l l s 1 ml t h a t each, o f E a c h b e a k e r was b e a k e r s and. I ) by the c u l t u r e s of received nearly initial The (Table s a m p l e s ) were inoculation into Cornwall important through particles. A. deplete e a c h c o n t a i n i n g 99 filtered test G r o w t h i n t h i s medium f o r one a sterilized carterae. s e t up date of bioassay standards biased and pipettor. were i n o c u l a t e d w i t h organisms•during not s t e r i l e medium continuous to v i r t u a l l y culture using blanks of blanks c u l t u r e s o f A., c a r t e r a e w e r e s u b - c u l t u r e d to the sufficient (standards, SS; to inherent F-value from the two between the different the v a r i a n c e counting ratio error. of the components: between The counts cal- a m o n g - s a m p l e SS - TABLE I BIOASSAY CULTURE MEDIUM Total Components Biotin 0.000005 g Thiamine 0.0003 g KNO3 0.05 g KH2PO4 0.007 g TRIS-OH 1.0 g Na2HC03 0.32 g Metal mix - 1.0 ml Distilled H20 50.0 ml pH 8.0 Chelated Metal Mix • 0.004 g - 0.004 g FeCl3-6H20 - 1.0 g ZnS04*7H 0 • 0.3 g MnS04'H20 - 0.6 g Na Mo04'2H20 -- 0.15 g Distilled H0 • 1.0 1 pH •- 7.6 CoCl2"6H 0 2 CUS04-5H20 2 2 2 to the within-sample SS r e v e a l e d a t t h e .95 p r o b a b i l i t y due t o t h e C o r n w a l l level. was c o n c l u d e d Since t h e amount o f v a r i a n c e due t o t h e c o u n t i n g Weekly s t e r i l i t y equal flasks. t e s t s w e r e made o n t h e s t o c k c u l t u r e s o f A. c a r t e r a e b y a s e p t i c a l l y drops of the c u l t u r e t o s t e r i l i z e d c o n t a i n i n g STP medium different procedure, t h a t t h e p i p e t t o r was d i s p e n s i n g numbers o f o r g a n i s m s t o t h e b i o a s s a y bioassay difference p i p e t t o r was n o t s t a t i s t i c a l l y t h a n t h e amount o f v a r i a n c e it no s i g n i f i c a n t transferring several screw-cap t e s t ( P r o v a s o l i e t aJL. , 1 9 5 8 ) . samples were s i m i l a r l y tubes Inoculated checked t o i n s u r e sterile conditions. The b i o a s s a y c u l t u r e s were i n c u b a t e d b e l o w a bank o f ' d a y l i g h t ' f l u o r e s c e n t b u l b s of 0.15 l a n g l e y s p e r m i n u t e . positively p h o t o t a c t i c and t e n d s t o s t i c k a t 24° C w i t h nearly optimal b e t w e e n 0.1 a n d 0.3 l y / m i n . bioassay (Jitts c u l t u r e s were m a i n t a i n e d a b o u t 24° C. was n o t a t t e m p t e d 30° C ( J i t t s The o p t i m u m light growth occurring e t a l . , 1964). a t a m b i e n t room The temperature R i g i d temperature c o n t r o l o f the bioassay a s A. c a r t e r a e g r o w s w e l l b e t w e e n 20 a n d et. a l . , Vitamin yield t o the flasks f o r A. c a r t e r a e , as a f u n c t i o n o f d i v i s i o n r a t e , i s 0.3 l y / m i n . of a rating a r r a n g e m e n t , a s A. c a r t e r a e w i t h e i t h e r s i d e o r bottom i l l u m i n a t i o n . value with inches O v e r h e a d i l l u m i n a t i o n was f o u n d t o be t h e most s a t i s f a c t o r y is 12 o f t h e samples. 1964). c a l c u l a t i o n s w e r e made o n t h e f i n a l The. s a m p l e s r e a c h e d this state 14 after 1 1 t o 1 2 days o f incubation.. ations f o r the f i r s t e x t r a c t i o n method procedure for centrifuge. disturbed minutes The f l u i d to bring centrifuge was d e c a n t e d at directly was t h e n a d d e d t o t h e t u b e T h i s s o l u t i o n was i n t h e stoppered tube t o e x t r a c t t h e a n d c a r o t e n o i d s and t h e n c e n t r i f u g e d 4 0 0 0 rpm. The s u p e r n a t a n t liquid for 10 was d e c a n t e d i n t o a 1 0 cm p a t h - l e n g t h s p e c t r o p h o t o m e t e r t h e e x t i n c t i o n m e a s u r e d w i t h a Beckman.DU 4 4 0 0 head leaving the c e l l s un- t h e v o l u m e e x a c t l y up t o 1 0 m l . chlorophylls at t u b e and rpm i n a s w i n g - o u t 2 5 0 0 per cent acetone f o r 1 0 minutes minutes at screw-cap sample i n l e s s than 0 . 3 ml o f s o l u t i o n . Ninety shaken 1 0 determin- 1 9 6 0 ;Antia et al.., ml o f each b i o a s s a y 15 were added t o a 1 5 ml g r a d u a t e d centrifuged yield c r u i s e s w e r e made b y a c h l o r o p h y l l ( S t r i c k l a n d and P a r s o n s , With t h i s 1 9 6 3 ) . five The f i n a l against a °v corrected 9 0 % acetone blank. c e l l and spectrophotometer E a c h v a l u e was f o r t h e e x t i n c t i o n o f t h e same s o l u t i o n a t The- w a v e l e n g t h of 4 4 0 0 7 5 0 0 X. ?\ m e a s u r e s b o t h , c h l o r o p h y l l s a n d carotenoids. This e x t r a c t i o n procedure more t h a n a f e w s a m p l e s . involved of was l a b o r i o u s Furthermore, t h e number o f s t e p s a l l o w e d f o r t h e i n t r o d u c t i o n o f a s i m i l a r number possible sources of error i n t o the f i n a l determinations. The e x t r a c t i o n p r o c e s s was, t h e r e f o r e , a method u s i n g t h e Model B C o u l t e r C o u n t e r through when h a n d l i n g replaced with f o r cruises 6 1 9 . T h i s method i n v o l v e d , a s i n g l e t r a n s f e r o f 1 0 ml o f 190 each ml o f membrane numbers the bioassay seawater filter to were t h e n final yield .To introduced the beaker, test beaker. each test beaker Cornwall not in this that of the of volumes cells states. growth the Counter calculated of state, Coulter threshold sea the to cell determine of cell amount bioassay was water. Coulter set p. .95 up to each into numbers were made o n An F - v a l u e using the to of The d e t e r m i n e d was b e i n g was the ratio probability level error sample error were p i p e t t e d Counter. li) of Ten m i l l i l i t e r s i n a s i m i l a r manner current the F-value and i t was introduced that and a m p l i t u d e m u l t i p l i e r were c a l i b r a t e d from measurements determined value the maximum y i e l d counts (see spectrum Counter, end e l e c t r i c a l at the A. c a r t e r a e A. s i s e beaker of u step. aperture Coulter of within-sample SS. at a 0.22 counts a significant ml b e a k e r s no s i g n i f i c a n t transfer The ual test SS t o not 250 results significant concluded or filtered Three pipettor through Coulter from the transfer ten using filtered containing sample. culture from the among-sample was of ml o f each ml b e a k e r particles. whether an A . c a r t e r a e calculated the w i t h the 190 a 250 which had been remove of a set containing to made d i r e c t l y test was of sample was maximal of an A. c a r t e r a e with the used to and at the include a spectrum made on 250 at individ- and p o s t - m a x i m a l J-plotter select would i n c l u d e 'noise' to culture a minimum amount same t i m e growth in component a realistic settings maximal of lower of allow for lower a minimum l o s s o f c e l l numbers. The l o w e r threshold of the C o u l t e r C o u n t e r was s e t a t 16 a n d t h e u p p e r t h r e s h o l d a t unlimited f o r the bioassay cell counts. • was s e t a t 0.345 a n d t h e a m p l i t u d e '.2.0. blank and s t a n d a r d . volumetric counts counts V F i v e 20 s e c o n d c o u n t s standards •. \' ". ; w e r e made o n e a c h t e s t Time c o u n t s sample, were used i n p r e f e r e n c e t o because o f the r a p i d i t y with which t h e c o u l d be r e p l i c a t e d . not necessary current multiplier control at " • The a p e r t u r e F u r t h e r , volumetric counts s i n c e the t e s t counts were were a s s o c i a t e d v/ith t h e i n a r e l a t i v e m a n n e r a n d , t h e r e f o r e , h a d no d i r e c t dependency upon t h e volume o f s o l u t i o n counted. Replicate counts v/ere g e n e r a l l y w i t h i n - 3% o f t h e mean a n d a l w a y s ivithin - 5% o f t h e mean. A background count o f t h e filtered s e a w a t e r was made a n d t h i s v a l u e p l u s t h e mean b l a n k was s u b t r a c t e d f r o m t h e mean v a l u e s o f t h e s t a n d a r d sample and t e s t counts. ^ While (1967) developed bioassay this study The proportional f o r the as organism. final yield of.cell t o added v i t a m i n squares series numbers o f A. c a r t e r a e i s U P to a concentration of by t h e s t a n d a r d s . the c a l c u l a t i o n of the B ^ bioassay and N i c o l u s i n g C y c l o t e l l a nana Hustedt 10 mug/1., a s d e t e r m i n e d least was i n p r o g r e s s , D a v i s a C o u l t e r Counter technique of vitamin the bioassay a value Therefore, f o r concentrations of the test r e g r e s s i o n l i n e was e s t i m a t e d f r o m t h e mean s t a n d a r d values samples, f o r each according to 17 the equation: Y = A + B (X - X) w h e r e Y i s t h e number o f c e l l s mean v a l u e o f the standard coefficient; value f o ra level cell X i s a specified o f B^2 c o n c e n t r a t i o n s (1) counts; o f X; A i s t h e B i s the regression amount o f B^-,; X i s t h e mean f o r the standards (Brownlee, T h i s r e g r e s s i o n l i n e was p l o t t e d a n d i n d i v i d u a l mean counts i n t h e sample. This resultant B ^ v a l u e was b y two t o c o m p e n s a t e f o r t h e o r i g i n a l vitamin B^,)-f r e e concentrations p h o s p h o r o u s and n i t r a t e - n i t r i t e with nitrogen w e r e d e t e r m i n e d i n t h e s u r f a c e , 5 a n d 10 m e t e r water samples u s i n g Parsons dilution multi- sea water. Reactive and sample w e r e a p p l i e d t o i t t o d e t e r m i n e t h e amount o f present plied 1965). t h e m e t h o d s d e s c r i b e d by (1965). A modified Strickland cadmium r e d u c t i o n column d e s c r i b e d b y Wood e t a _ l . ( 1 9 6 7 ) was e m p l o y e d f o r t h e n i t r a t e measurements. ' SUNLIGHT Daily obtained for s u n l i g h t measurements (langleys/day) f r o m t h e U.B.C. m e t e r o l o g i c a l s t a t i o n . t h e 30 d a y s p r i o r were A mean t o a c r u i s e was c a l c u l a t e d f o r t h e statistical analyses corrections w e r e made f o r 5 a n d 10 m e t e r s d e p t h f r o m t h e photometer r e a d i n g s . situated value ( s e e p. 2 0 ) . Light absorption The U.B.C. m e t e r o l o g i c a l s t a t i o n i s o n P o i n t G r e y w h i c h i s a b o u t mid-way up t h e S t r a i t of Georgia on t h e e a s t e r n side. The s u n l i g h t m e a s u r e m e n t s 18 from t h i s Strait this s t a t i o n may of Georgia. n o t be r e p r e s e n t a t i v e o f " t h e entire H o w e v e r , a mean v a l u e f o r 30 d a y s s t a t i o n v/as c o n s i d e r e d t o be more r e l e v a n t w i t h the d i n o f l a g e l l a t e ations taken during community t h a n s i n g l e from f o r comparison light observ- cruises. PLANKTON A N A L Y S I S The : dinoflagellate counts at the species ( U t e r m o h l , 1931, level, 1958). samples using were q u a n t i f i e d T h e s e c o u n t s w e r e made w i t h were t h o r o u g h l y mixed s e d i m e n t a t i o n chambers. 20 m e t e r s 50 and a t l e a s t one chamber four depths Samples from the s u r f a c e , The Zeiss 5, 10 samples and and from 50 F i l l e d chambers were allowed, t o chambers were s e l e c t e d These samples ml settle the larger.chambers. f o r the were c o u n t e d i n t r i p l i c a t e v a r i a n c e when c o u n t s w e r e l o w . Progressively R e p l i c a t i o n o f t h e 50 and i n s e t t l i n g , the to reduce fewer cells 20 m e t e r s , h e n c e t h e vise o f t h e not l o g i s t i c a l l y f e a s i b l e because involved into as a s t a n d a r d i z a t i o n p r o c e s s f o r s t a t i s t i c a l g e n e r a l l y o c c u r r e d below was before dispensing (Lund e t a_l. , 1 9 5 8 ) . analysis. the a hour f o r each c e n t i m e t e r o f h e i g h t o f Ten ' m i l l i l i t e r upper cell preserved w e r e c o u n t e d o n l y o n c e i n 25 m l chambers r e s p e c t i v e l y . for The w e r e c o u n t e d i n 10 ml c h a m b e r s . 100 m e t e r s .'• t h e s e d i m e n t a t i o n method C a r l Zeiss inverted plankton microscope. samples by / samples. 100 m e t e r o f t h e amount o f samples time The e n t i r e was d o n e w i t h a 6.3X illumination c h a m b e r was, a l w a y s , c o u n t e d , . Neofluar objective and 8X e y e p i e c e s were few c e l l s and l i t t l e was u s e d t o s c a n Scanning with.phase-contrast w i t h c r o s s - h a i r s when detritus. there A. 16X N e o f l u a r o b j e c t i v e t h e c h a m b e r when t h e r e w e r e many c e l l s c o n s i d e r a b l e amounts o f d e t r i t u s . Species or Identification was made w i t h a 40X N e o f l u a r o b j e c t i v e and 12.5X eyepieces. S c a l e d r a w i n g s o r p h o t o g r a p h s w e r e made when a p p r o p r i a t e to facilitate species identification. T h e mean v a l u e o f t h e d i n o f l a g e l l a t e c o m m u n i t y and o f e a c h s p e c i e s f r o m t h e u p p e r f o u r d e p t h s was and expressed total number as t h e number calculated of individuals per l i t e r . of d i n o f l a g e l l a t e s and t h e n u m b e r s o f e a c h f r o m t h e 50 and 100 m e t e r s a m p l e s w e r e e x p r e s s e d of i n d i v i d u a l s per l i t e r . were e n c o u n t e r e d i n this As no c h a i n - f o r m i n g by t h e s e d i m e n t a t i o n were used i n t h e s t a t i s t i c a l method. v/as a l s o These measurements analyses. multiple linear.regression used i n the s t a t i s t i c a l statistic per l i t e r 1956). ANALYSIS A stepwise was c a r r i e d number dinoflagellates ( H o l m e s and W i d r i g , The number o f z o o p l a n k t o n STATISTICAL as species s t u d y , no c o r r e c t i o n f o r c o n t a g i o n ( ' c l u m p i n g ' ) was n e c e s s a r y estimated The a n a l y s i s of the data. o u t o n an IBM quantitatively 1130 computing equation was The a n a l y s i s system. This . d e s c r i b e s the a s s o c i a t i o n between a d e p e n d e n t v a r i a b l e Y a n d a number of independent variables ' - : .-• • .:• 20..- ( X , X ,'.,.'X ) a c c o r d i n g t o the e q u a t i o n : 1 2 n Y = A + B,X .+ B X •+ ... B X 1 1 2 2 n n 1 0 (2) 0 w h e r e B^, B_,. ... ET a r e t h e p a r t i a l 2 regression coefficients f o r Y o n X^ a n d d e t e r m i n e t h e m a g n i t u d e o f c h a n g e i n t h e dependent v a r i a b l e p e r u n i t c h a n g e i n . an i n d e p e n d e n t , v a r i - a b l e ; A - i s t h e i n t e r c e p t o n Y when t h e i n d e p e n d e n t are zero (Brownlee, variables 1965). To d e t e r m i n e v/hether an i n d e p e n d e n t v a r i a b l e significantly variable, associated with the hypothesis ( H Q with ly different community. associated The .95 p r o b a b i l i t y t h r o u g h o u t t o d e t e r m i n e i f B^ was significant- from zero (Brownlee, 1965). . The number o f d i n o f l a g e l l a t e s as t h e dependent v a r i a b l e . 1) v i t a m i n B If i t was c o n c l u d e d t h a t t h e i n q u e s t i o n was s i g n i f i c a n t l y the d i n o f l a g e l l a t e level.was used independent ) t h a t B^ = 0 was t e s t e d . t h i s h y p o t h e s i s was r e j e c t e d , independent v a r i a b l e a particular was 1 ? per l i t e r was t a k e n The i n d e p e n d e n t v a r i a b l e s were: ( m p g / 1 ) , 2 ) p h o s p h a t e ( u g - a t P / 1 ) , 3) n i t r a t e ( u g - a t N / 1 ) , 4) s a l i n i t y ( o / o o ) , 5) t e m p e r a t u r e 6) z o o p l a n k t o n ( i n d i v i d u a l s / l i t e r ) (° C ) , and 7) s u n l i g h t (ly/day). The m u l t i p l e r e g r e s s i o n a n a l y s i s was a p p l i e d t o each Individual cruise complete- d a t a were (except cruises 1, 2 , 5 and 12 w h e r e l a c k i n g ) t o determine which, i f any, o f . t h e i n d e p e n d e n t v a r i a b l e s were s i g n i f i c a n t l y t h e d i n o f l a g e l l a t e community.. T h i s s t a t i s t i c associated with v/as a l s o . u s e d t o measure the r e l a t i o n between the independent v a r i a b l e s . and d i n o f l a g e l l a t e numbers a t e a c h s t a t i o n o v e r t h e s i x m o n t h p e r i o d between- M a r c h referred to herein and A u g u s t 1968, This as t h e t i m e - s e r i e s m u l t i p l e will be regression analysis. • two More d e t a i l e d i n f o r m a t i o n v/as o b t a i n e d by s e l e c t i n g abundantly occurring d i n o f l a g e l l a t e s f o r regression analysis at the species paulseni ShiHer triquetrum three samples were Gymnodinium and Peridinium. ( t h e summer d o m i n a n t ) . f r o m t h e u p p e r 10 m e t e r s s t a t i o n were used i n t h e r e g r e s s i o n majority upper These (the s p r i n g dominant) (Ehrenb.) Lebour The each level. analyses o f t h e d i n o f l a g e l l a t e s were c o n t a i n e d layers. a v a i l a b l e only A l s o , phosphate f o r the upper and n i t r a t e data as at the i n these were 10 m e t e r s o f t h e w a t e r column. 22 RESULTS The seasonal results . "' "." ; o f t h e 19 c r u i s e s a r e p r e s e n t e d b a s i s i n an e f f o r t a " b i o l o g i c a l l y meaningful t o b r i n g the data manner". together i n Frequent reference i s made t o s p e c i f i c m o n t h s t o e m p h a s i z e c h a r a c t e r i s t i c of p a r t i c u l a r periods. years out are considered Furthermore, the r e s u l t s together s e l e c t e d on t h e b a s i s o f l i g h t , general ation different Winter atures are lowest of January l a y e r s over intensity as t h a t t i m e while I n steep surface Fall atures and l i g h t salinities Sgrinq their are- a t and f a 1 1 a r e d e f i n e d between t h e w i n t e r i n c l u d e s March, A p r i l and summer a n d May when are r i s i n g i s c h a r a c t e r i z e d by d e c r e a s i n g intensity. reaches d e n s i t y g r a d i e n t s i n t h e upper and s u r f a c e t e m p e r a t u r e s lows. intensity temperatures also reach much o f t h e S t r a i t . . Spring p e r i o d when t e m p e r - I t i n c l u d e s t h e months August, l i g h t Surface as p e r i o d s o f t r a n s i t i o n conditions. popul- ( n o c r u i s e s w e r e made i n D e c e m b e r ) . f o r the year a minimum, r e s u l t i n g data w h i c h may be o f to the dinoflagellate f o r the year. summer, J u n e t h r o u g h highest values t e m p e r a t u r e and s a l i n i t y l a y e r s o f t h e w a t e r c o l u m n and i n c i d e n t and F e b r u a r y i t s - - y e a r l y maximum. both Georgia. i s considered i n the surface radiation During of from The s e a s o n s have been periods of the year ecological significance i n the S t r a i t features a s much a s p o s s i b l e , p o i n t i n g m a j o r d i f f e r e n c e s between them. to represent on a light from t h e w i n t e r surface This period includes temperSeptember, 23 O c t o b e r and November. - A l l of available i n the U n i v e r s i t y of the environmental 1967 and British TEMPERATURE AND 1968 Columbia data able v a r i a t i o n i n the i n t e m p e r a t u r e and t e m p e r a t u r e and slight of salinities a gradual seasonal a year. change i n both summer m o n t h s a l o n g the y e a r . with During rose During the the low the resulting surface highest salinities, surface during surface g r a d i e n t s i n the upper r e g i o n of the temperatures f e l l i n a breakdown o f the the water the resulting i n t h e u p p e r 20 m e t e r s o f fall surface s p r i n g months t e m p e r a t u r e s were p r e v a l e n t density gradients water column. d e p t h ) and low i n c r e a s e i n temperature i n the High surface salinities p e r i o d of consider- upper w i n t e r months were c h a r a c t e r i z e d by surface steep i n the four salinity. (increasing with in 1969). underwent salinity water temperatures layers. (1968, 2 t h r o u g h 6 show t h a t t h e S t r a i t of Georgia S t a t i o n E demonstrated only .there was are Oceanography, reports the water column over the The study SALINITY (A - D) l a y e r s of from t h i s I n s t i t u t e of Comparison of Figures stations data and density column. SUNLIGHT The s u n l i g h t d a t a v/ere s i m i l a r h a v e b e e n s u m m a r i z e d as an f o r both years average f o r both years Solar radiation increased r a p i d l y during reaching I n s o l a t i o n below the a peak i n J u n e . the and In Figure s p r i n g months, surface, 7. 24 1967 Figure 2. TIME (MONTHS) S e a s o n a l c y c l e of temperature s a l i n i t y at S t a t i o n A . ' 1968 and 25 TIME (MONTHS) Figure 3. S e a s o n a l c y c l e of temperature s a l i n i t y a t S t a t i o n B. 1968 and 19 6 7 3 4 5 6 1967 F i g u r e 4. 7 19 6 8 8 9 10 II 12 I TIME (MONTHS) 2 3 4 5 19 6 8 S e a s o n a l c y c l e o f temperature and s a l i n i t y a t S t a t i o n C. 6 7 8 9 27 19 6 7 F i g u r e 5. TIME (MONTHS) 19 6 8 S e a s o n a l c y c l e of temperature s a l i n i t y a t S t a t i o n D. and 28. 1967 F i g u r e 6. TIME (MONTHS) 19 6 8 S e a s o n a l c y c l e o f temperature s a l i n i t y at S t a t i o n E. and 29 l 2 3 4 -5 6 7 8 9 10 II MONTH F i g u r e 7. S e a s o n a l changes i n i n s o l a t i o n i n the upper 10 meters of t h e w a t e r column. 12 30 however, i n c r e a s e d only and a t a much s l o w e r r a t e and r e a c h e d a peak i n A u g u s t when t h e w a t e r was r e l a t i v e l y free of plankton detrital material. NITROGEN AND PHOSPHORUS .Marked s e a s o n a l concentrations variation were e v i d e n t i n p h o s p h o r u s and n i t r o g e n a t S t a t i o n s A t h r o u g h D,. b u t much l e s s d i s t i n g u i s h a b l e a t S t a t i o n E ( T a b l e s I I - V). P h o s p h o r u s and n i t r o g e n c o n c e n t r a t i o n s during t h e w i n t e r months t h e r e was l i t t l e (Table variation III). i n concentration a l s o h o r i z o n t a l l y between s t a t i o n s . by decreasing (Table concentrations IV), particularly water column. During were this high period w i t h d e p t h and S p r i n g was c h a r a c t e r i z e d of nitrogen and p h o s p h o r u s i n t h e upper f i v e meters o f t h e An e s p e c i a l l y n o t i c e a b l e d e c r e a s e i n n i t r o g e n •and p h o s p h o r u s c o n c e n t r a t i o n h a d o c c u r r e d at the three n o r t h e r n m o s t s t a t i o n s ( A , B and C) b y M a r c h 1968 w i t h t h e lowest values Station by. A p r i l no B). occurring at the surface Concentration (except o f both elements had 1968 a t S t a t i o n A, B and C a n d t h e r e evidence o f depth s t r a t i f i c a t i o n . stratification the lowest values was virtually since and . March. o f t h e t w o n u t r i e n t s was e v i d e n t i n May 1968 a t S t a t i o n s A t h r o u g h D ( e x c e p t with Increased Values of nitrogen p h o s p h o r u s a t S t a t i o n D and E h a d d e c r e a s e d Vertical nitrogen at nitrogen occurring at the surface. and phosphorus a t S t a t i o n E reached t h e i r h i g h e s t the s p r i n g i n May. a t S t a t i o n C) Nitrogen values f o r TABLE I I PHOSPHORUS AND NITROGEN CONCENTRATIONS (p.g-at/1) DURING THE FALL MONTHS OF 1967 Stn/ Depth September P N October N P November P N A-10 0.9 1.5 1.8 5.9 6.2 12.2 1.8 2.0 2.1 6.2 5.3 6.4 2.1 2.1 2.1 20.3 19.0 20.2 B-0 B-5 B-10 1.0 1.8 1.4 2.4 2.5 7.4 1.9 1.7 1.1 11.5 11.8 13.0 1.9 1.9 1.9 18.1 18.0 17.3 C-0 C-5 C-10 1.6 1.3 1.8 2.5 7.8 11.0 1.6 0.8 1.1 13.0 13.4 ' 14.3 1.7 1.7 1.8 15.5 15.6 D-0 D-5 D-10 1.8 1.4 2.8 4.6 7.3 7.9 1.1 1.9 2.0 14.5 16.6 19.2 1.7 1.7 1.8 14.0 14.1 14.6 E-0 E-5 E-10 2.9 2.1 2.1 11.0 11.1 11.9 2.4 2.4 2.3 18.6 22.0 21.2 2.0 2.1 2.0 14.5 16.7 18.0 A-0 A-5 16.0 TABLE I I I PHOSPHORUS AND NITROGEN CONCENTRATIONS (u\g-at/l) DURING THE WINTER MONTHS OF 1968 Stn/ Depth P January N 2.2 2.2 2.1 15.4 15.4 B-5 B-10 2.2 2.3 2.3 C-0 C-5 C-10 2.4 2.2 2.2 16.8 16.0 D-0 2.2 2.2 2.2 15.9 2.1 2.1 2.0 20.1 20.7 21.0 A-0 A-5 A-10 B-0 D-5 D-10 E-0 E-5 E-10 P February N 16.0 16.5 15.6 16.3 15.9 16.3 16.0 2.0 2.0 1.9 17.6 17.8 18.2 1.6 16.1 1.7 1.9 17.4 19.8 TABLE IV PHOSPHORUS AND NITROGEN CONCENTRATIONS (ug-at/1) DURING THE SPRING MONTHS OF 1968 Stn/ Depth March April May P N P N P N 0.7 1.0 1.5 1.2 A-5 A-10 1.8 1.9 1.8 12.6 12.0 12.4 0.7 1.2 1.5 5.1 9.0 10.7 B-0 B-5 B-10 1.3 1.5 1.6 7.2 6.0 6.0 1.5 1.4 1.4 13.3 14.9 14.5 0.3 0.9 1.5 0.9 7.9 13.2 C-0 C-5 C-10 0.5 1.2 2.1 1.9 5.9 10.0 1.3 1.5 1.5 14.0 14.7 14,0 0.6 0.9 0.3 D-0 D-5 D-10 1.4 1.5 1.7 12.2 12.1 15.0 1.3 1.5 1.2 10.5 12.9 9.4 0.5 0.8 1.3 E-0 E-5 E-10 1.7 2.0 1.7 14.5 1.1 1.0 9.9 8.8 17.5 2.2 2.5 2.2 A-0 4.6 6.7 16.3 16.1 1.6 0.7 1.4 6.1 1.2 2.8 6.7 16.0 18.0 16.4 TABLE V PHOSPHORUS AND NITROGEN CONCENTRATIONS (u.g-at/1) DURING THE SUMMER MONTHS OF 1968 Stn/ Depth June July August N P N P N P A-0 A-5 A-10 0.9 1.1 1.8 3.3 6.3 14.2 0.1 0.3 1.0 0.4 1.7 14.3 0.5 1.3 1.6 2.1 0.8 11.8 B-0 B-5 B-10 0.8 0.8 1.5 3.3 4.3 10.7 0.1 0.3 0.6 0.6 7.4 6.8 0.6 0.4 0.5 0.8 0.4 0.5 C-0 C-5 C-10 0.3 1.2 1.1 0.8 6.6 10.9 0.2 0.2 0.6 1.7 1.3 1.2 0.2 0.5 0.7 0.4 0.5 0.4 D-0 D-5 D-10 0.2 1.1 1.5 0.5 5.4 11.4 0.2 0.9 1.3 0.3 1.6 10.3 1.2 1.7 1.7 7.8 14.4 14.7 E-0 E-5 E-10 1.7 1.6 2.0 16.4 1.7 1.8 1.7 15.2 15.8 2.3 2.3 2.6 20.0 20.1 20.5 15.9 18.5 16.0 ' ' . ' 35 T h e summer c o n c e n t r a t i o n s remained higher It 7:1 in low i n the S t r a i t o f Georgia concentrations i s interesting period o f p h o s p h o r u s and were r e c o r d e d in.June ratios ratio comparatively at S t a t i o n E (Table V ) . to note that during t h e a v e r a g e N:P while nitrogen this three month at S t a t i o n C decreased t o 4:1 i n J u l y t o 1:1 i n A u g u s t . i n d i c a t e s t h a t n i t r o g e n was b e i n g This from change depleted at a f a s t e r r a t e t h a n p h o s p h o r u s a n d / o r t h a t p h o s p h o r u s was being replenished than i n these u p p e r l a y e r s a t a more r a p i d r a t e nitrogen. T h e r e was a general phorus c o n c e n t r a t i o n s Stratification September. evident B the f a l l of nitrogen with This stratification by O c t o b e r a n d VITAMIN during i n c r e a s e i n n i t r o g e n and p h o s - apparent In became p r o g r e s s i v e l y less 1 2 concentration in d e p t h was (Table I I ) . November. There was'considerable month months of vitamin fluctuation i n the S t r a i t t o month. ' However, t h e r e i n the of Georgia was r e m a r k a b l e from consistency t h e t e m p o r a l p a t t e r n o f B-^ c h a n g e w i t h d e p t h a t a n y one station and o f t e n b e t w e e n d i f f e r e n t s t a t i o n s (Figures 8 - 12). The s p r i n g m o n t h s o f 1967 w e r e c h a r a c t e r i z e d by l o w B 12 c o n c e n ' : r 'ahions time during this which d i d not exceed of Georgia a t any period. By J u n e 1967 t h e a v e r a g e B ^ Strait 5.0 mug/1 had d e c r e a s e d concentration t o 0.8 mpg/1. The f o r the highest _l 4 L_J I 5 7 6 1967 L_J 8 9 1 I -10 II TIME 12 I 2 3 (MONTHS) 4 I I I I I 5 6 7 8 9 1968 Figure 8. Seasonal distribution of vitamin Bi2 at Station A. 37 0 2 10 UJ tsJ Q_ £ 20 50 100 4 5 6 7 8 19 67 F i g u r e 9. 9 10 II 12 I 2 3 4 TIME (MONTHS) 5 6 7 8 9 19 6 8 S e a s o n a l d i s t r i b u t i o n of v i t a m i n at S t a t i o n B. B^2 38 4 5 6 7 8 9 1967 F i g u r e 10. 10 II 12 I 2 3 4 TIME (MONTHS) 5 6 7 8 9 1968 S e a s o n a l d i s t r i b u t i o n of v i t a m i n B^2 at S t a t i o n C. 4 5 6 7 8 1967 9 10 II 12 I 2 3 4 TIME (MONTHS) 5 6 7 8 9 1968 F i g u r e 11. S e a s o n a l d i s t r i b u t i o n o f v i t a m i n B^£ a t S t a t i o n D. 40 4 5 6 7 1967 8 9 10 II TIME 12 I 2 (MONTHS) 3 4 5 6 7 8 9 1968 F i g u r e 12. S e a s o n a l d i s t r i b u t i o n o f v i t a m i n B]^2 at S t a t i o n E. f o r t h i s month was 2.8 mpg/1 a t S t a t i o n J 3 - 0 . value undetectable a notable a t S t a t i o n B - 5 0 , G-100, D-0 and D-5. increase i n a b o v e 10 mug/1 b e i n g B,^. was T h e r e was concentration i n July with recorded values a t S t a t i o n C-5, C-20 a n d C-50 (Figure 10). T h e r e was a g e n e r a l during the f a l l i n c r e a s e i n B.^ months o f 1967, p a r t i c u l a r l y ten meters a t t h e three n o r t h e r n B^2 c o n c e n t r a t i o n s highest values a t these of the year slightly over three s t a t i o n s reached i n November. this B concentration (Figure 11). the S t r a i t of Georgia i n concentrations decreased during the winter (1967 - 1968) a t a l l s t a t i o n s i n t h e S t r a i t o f (except values n to this 1967 was 9.5 mug/1. B^ months i their An e x c e p t i o n t h r e e month p e r i o d The a v e r a g e c o n c e n t r a t i o n o f B ^ November i n t h e upper s t a t i o n s (A, B and C ) . p a t t e r n was f o u n d a t S t a t i o n D-0 w h e r e B ^ decreased concentrations D-0) a n d i n m o s t c a s e s i n February. reached The F e b r u a r y their lowest Georgia winter a v e r a g e was 5.6 mpg/1 o f 12° T h e r e was c o n s i d e r a b l e f l u c t u a t i o n concentrations during of high Figure 1). B, ? ( g r e a t e r than evident during These 'patches' Again high t h e s p r i n g months o f 1968. B^2 c o n c e n t r a t i o n particularly during i nthe this time 10 mpg/1) w e r e (Appendix I I I - were f o u n d a t s t a t i o n s B, C and D. t h e summer m o n t h s c o n c e n t r a t i o n were r e c o r d e d 'Patches' (1968) 'patches' of a t S t a t i o n s B, C and D By A u g u s t B i n J u n e and J u l y . 'patches' of high B^ This had decreased c o n c e n t r a t i o n were 2 It i s interesting overall values 1 2 and no apparent. t o n o t e t h a t t h e r e was a g e n e r a l t r e n d towards i n c r e a s e d B^ 2 concentration with time. e f f e c t c a n be s e e n f o r any d e p t h a t any s t a t i o n b u t i s particularly evident at Station D (Figure 11). to the Strait Further, this t r e n d was n o t l i m i t e d of Georgia also apparent at S t a t i o n E (Figure 12). I t i s not w h e t h e r t h i s phenomenon i s t h e r e s u l t o f some l o n g cycling o f B^ o r whether i t i s simply 2 b u t was understood term the result of yearly variation. ZOOPLANKTONA- s i n g l e was recorded s p e c i e s o f c o p e p o d , Calanus_ from t h e samples. abiandance f o r t h i s The s e a s o n a l pacificus Brodsky, pattern of copepod i s summarized i n F i g u r e 13. DINOFLAGELLATES The flagellate study was temporal changes i n t h e .size o f t h e t o t a l community were s i m i l a r f o r both ( F i g u r e s 14 - 1 8 ) . The g e n e r a l an i n c r e a s e i n n u m b e r s d u r i n g followed by a s h a r p years pattern that dino- of the emerged t h e e a r l y s p r i n g months, decrease i n A p r i l (except S t a t i o n D). T h i s was f o l l o w e d by a s e c o n d i n c r e a s e i n n u m b e r s d u r i n g t h e early summer m o n t h s w i t h d i n o f l a g e l l a t e s abundant u n t i l The l a t e O c t o b e r and t h e n seasonal trends remaining falling relatively t o a w i n t e r low. a t each s t a t i o n were g e n e r a l l y apparent a t a l l depths sampled. The number o f d i n o f l a g e l l a t e s Figure 13. Temporal d i s t r i b u t i o n of Calanus p a c i f i c u s the S t r a i t of G e o r g i a in 44 II 12 I 2 34 19 6 7 F i g u r e 14. 5 6 7 8 TIME 9 10 II 12 I (MONTHS) S e a s o n a l d i s t r i b u t i o n of at S t a t i o n A. 2 3 4 5 6 7 8 9 . 1968 dinoflagellates 45 II 12 I 2 3 4 5 6 7 8 9 1967 F i g u r e 15. TIME 10 II 12 1 2 3 4 5 6 7 8 9 (MONTHS) 1968 Seasonal d i s t r i b u t i o n of d i n o f l a g e l l a t e s at S t a t i o n B. 46 5 4 _ 100 II 12 1 2 3 4 5 6 7 1967 Figure 16. 8 9 TIME Seasonal at 10 II 12 (MONTHS) d i s t r i b u t i o n of Station C. 1 2 3 4 5 6 7 8 1968 dinoflagellates 9 47 J I I I II 12 I 2 I 3 1967 Figure 17. L 4 I 5 I 6 I 7 I 8 9 TIME I 1 I 10 II I L 12 I I (MONTHS) Seasonal distribution of at Station D. I 2 I 3 I 4 5 I 6 I I L 7 8 1968 dinoflagellates 9 48 Figure 18. S e a s o n a l d i s t r i b u t i o n of at S t a t i o n E. dinoflagellates at 50 and 100 m e t e r s , h o w e v e r , w e r e u s u a l l y l o w . The. seasonal distribution of the individual s p e c i e s were char- a c t e r i z e d by s m a l l p o p u l a t i o n s o r complete absence o v e r of the year. in A few s p e c i e s demonstrated a marked i n c r e a s e n u m b e r s d u r i n g o n e o r two m o n t h s e i t h e r i n t h e s p r i n g o r summer m o n t h s . and The t e m p o r a l taxonomic notes distribution of i n d i v i d u a l during this study. The s p e c i e s a r e l i s t e d t h e i r mode o f n u t r i t i o n as d e t e r m i n e d absence o f c h l o r o p l a s t s ( i . e . , s y n t h e t i c ) and a c c o r d i n g Parke and D i x o n species are given i n Appendix I I . A. t o t a l o f 7.7 s p e c i e s ' o f D i n o p h y c e a e was to most below encountered according by t h e presence or p h o t o s y n t h e t i c o r non-photo- t o t h e c l a s s i f i c a t i o n scheme o f ( 1 9 6 8 ) : Photosvnthetic Non-Photosynthetic PROROCENTRACEAE Prorocentrum Ehrenb. qr_acile Schuett DINOPHYSIACEAE S^UPPiilY^i.S. E h r e n b . infundibulus Schiller . lachmannii Paulsen n o r v e g i c a C l a p . & Lachm. £ulchella ( L e b o u r ) B a l e c h r o t u n d a t a C l a p . & Lachm. Oxy^hysi_s_ K o f o i d oxytoxoides Kofoid GYMNODINIAC EA E Amp_hidinium C l a p . & Lachm. s t i g m a t i c urn S c h i H e r Amphidinium J;2H21i!Il ° b m . sphenoides Wulff L 50 Photosynthetic Non-Photosynthetic Cochlodinium Schuett h e l i c o i d e s Lebour Cochlodinium • b r a n d t i i Wulff puchellum Lebour DUDa Lebour Gymnodinium S t e i n c i n e turn K o f . & Sv/ezy paulseni S c h i l l e r s i m p l e x (Lohm.) K o f . & Swezy splendens Lebour v i r e s c e n s K o f . & Swezy sp. 2 Gymnodinium -• d i s s i m i l e G y r o d i n i u m K o f . & Sv/ezy citrinum Kofoid f u s i f o r m e K o f . & Swezy Gyrodinium pepo ( S c h u e t t ) K o f . & Swezy varians (Wulff) Schiller sp, 1 sp, 2 Kof. & Swezy : sp. 1 Katodiniurn qlaucum Fott (Lebour) Loeblich I I I •POLYKRIKACEAE Polvkrikos Buetschli k o f o i d i i Chatton PRONOCTILUCACEAE Oxyrrhis Dujardin marina Dujardin Pronoctiluca pelagica FabreDomer, Fabre-. Domer. NOCTILUCACEAE Noctiluca Suriray s c i n t i 11 a. n s ( M a c a r t n e y ) E h r enb, 51 Photosynthetic Non-Photosynthetic AMPHILOTHACEAE D i c r o e r i s m a g e n . n. T a y l o r Cattell P s i l o n e r e i e l l a s p . n. T a y l o r .& C a t t e l l GLENODINIACEAE Glenodinium Ehrenb. l e n t i c u l a (Berqh) S c h i l l . p i l u l a (Ostenf.) S c h i l l . rotundum (Lebour) S c h i l l . PERIDINIACEAE P e r i d i n i u m Ehrenb. achrornaticum L e v . conicoides Paulsen conicum (Gran) O s t e n f . & Schmidt ££§:£§.i2£§. K o f o i d decipiens Joerg. divergens Ehrenb. excentricum Paulsen g r a n i i Ostenf. leonis P a v i l l . nudurn M e u n i e r p e l l u c i d urn ( B e r g h ) S c h u e t t Peridinium brevipes Paulsen depressum B a i l e y globulus Stein minusculum P a v i l l . minutum K o f o i d n i p p o n i c u m Abe peeanicum Vanh. • s t e i n i i Joerg. tuba S c h i l l . E^nl^SSIiyili G r a n thorianum Paulsen t r i g u e t r u m (Ehrenb.) Lebour t r o c h o i d e u m ( S t e i n ) Lemm. GONYAULACACEAE Gonyaulax D i e s i n g scrippsae Kofoid s p i n f f e r s ( C l a p . & Lachm.) Diesing •tamerensia. Lebour triacantha Joerg. PROTOCERATIACEAE P r o t o c e r a t i u m Bergh r e t i c u l a t u m ( C l a p , & Lachm.) Buetschli Gonyaulax diacantha (Meunier) Schill, Photosynthetic Non-Photosyhthetic CERATTACEAE ' • ,• " Ceratium Schrank a r c t i c u m (Ehrenb.) C l e v e fusus (Ehrenb.) D u j a r d i n horrjdum ( C l e v e ) Gran l i n e a t u m (Ehrenb.) C l e v e , •,, GONIODOMATACEAE Goniodoma S t e i n o s t e n f e l d i i Paulsen OXYTOZACEAE Murrayella Kofoid punctata Kofoid OODIMIACEAE P a u l s e n e l l a Chatton chaetoceratis (Paulsen) Chatton PHYTODINIACEAE P y r o c y s t i s Thomson lunula (Schuett) Cystodinium sp. 1 INCERTAE Schuett Klebs SEDIS Amoebophyra C h a t t o n c e r a t i i Chatton REGRESSION ANALYSIS The r e s u l t s o f t h e m u l t i p l e r e g r e s s i o n with the total d i n o f l a g e l l a t e community a r e summarized i n Tables VI - IX. Peridinium analyses The r e g r e s s i o n results for t r i q u e t j r u m and Gymnodinium p a u l s e n i a r e INDEPENDENT M CO c •z o b O CP o „ o _ « b « VARIABLES o H O CM m o -< m ro o _ ro i cn — CM CD — ro 6^ O ->l cn 7 O b ro _ i 4k ~ _ co ->3 p CM I CM - O « ro o b - I (9 o o c P ~ ro 00 O Ui CM 1 " o - o CM 11 9 o eg" 7 — co m co ro _ i ca o ~ o b J. - E CM 'ro o I o — I ro — o - o b m o - ro i O ^ i 0) " b O ~ b i CM -* o - O •- I 0) O - b J. - ca o O 3D _ co 40 CD 2) m co co O z o o m -n -n o — rn 2 'COH > r~ m < TABLE VII TOTAL AND PARTIAL R FOR INDIVIDUAL CRUISES 2 YEAR 1967 MONTH INDEPENDENT VARIABLES R 2 B|2 P0 19 6 8 2 4 6 7 9 10 II 1 3 4 5 6 7 8 9 .84 .81 .81 .62 .46 .49 .73 .46 .82 .74 .40 .50 .83 .89 .83 .06 .20 .35 .33 .33 4 .12 .05 NO3 TEMF .60 .17 SAL .10 ZOO .03 SUN .09 .06 .48 .72 .25 .36 .12 .26 .05 .09 37 .48 .19 .20 .08 .27 .11 .32 .12 .05 J8 .21 55 TABLE REGRESSION VIII COEFFICIENTS ANALYSES ST N. FOR ( 6 4 A R C H - A U G U S T , 1968) A B C VARIABLES 0.58 I2 PO 4 N0 3 (-1 2.50 (- ) 1.49 i-\ (-1 0.28 0.16 D (-i 1.07 INDEPENDENT 0.92 SAL. (-) 2.78 (-) 0.24 (-i 0.18 ZOO. SUN 1.69 (-1 4.27 i-\ TEMP. E (-i 0.08 i-\ B TIME-SERIES (-\ 0.01 56 TABLE IX T O T A L AND PARTIAL R FOR TIME-SERIES ANALYSES (MARCH - AUGUST, 1968) INDEPENDENT VARIABLES 2 ST N. A B R .77 .75 2 B| C .7 8 .15 2 4 .05 .06 N0 3 .03 .61 .03 SAL. .36 E .70 .82 13 P0 TEMR D .14 .64 .07 .10 ZOO. SUN .07 .26 57 TABLE X REGRESSION C O E F F I C I E N T S AND PARTIAL COEFFICIENTS OF DETERMINATION FOR R TRIQU ETRUM SPECIES 1967 COEFFICIENT VARIABLES G. PAULSENI G. PAULSENI R TRIQUETRUM YEAR INDEPENDENT © B 19 68 R 2 1968 B R (-) 0.18 .17 2 (-) .55 .01 SAL. (-) 0.13 .89 T E MR (-) 0.19 .04 (-) 0.08 .18 (-J 0.01 .01 (-) 0.01 .07 P0 4 NO3 ZOO. SUM B i-\ 0.30 R 2 .34 • ". summarized i n T a b l e X. coefficients, of the regression B, w h i c h w e r e s t a t i s t i c a l l y the .95 p r o b a b i l i t y VII and X w i t h or Only those values level 58 significant at have been i n c l u d e d i n T a b l e s V I , the s i g n of the r e l a t i o n s h i p (i.e., positive negative). 2 The IX c o e f f i c i e n t of determination, and X) i s e q u a l dependent the the square of the t o t a l sum of a m e a s u r e o f t h e amount o f v a r i a t i o n v a r i a b l e w h i c h c a n be Edmondson, 1 9 6 5 ) . T h u s , an R 80%' o f t h e v a r i a n c e dinoflagellate v a r i a b l e s used (Riley, o f .80 w o u l d i n the dependent n u m b e r s ) may squares i n the signify that variable (in this be p o s s i b l y e x p l a i n e d by The partial that p o r t i o n of the t o t a l able t h a t may case the i n the m u l t i p l e r e g r e s s i o n and i s presumably unmeasured independent v a r i a b l e ( s ) and/or measurement. in 1946; a n a l y s i s , w h i l e 20% o f the v a r i a n c e i n the dependent able remains unexplained of a s s o c i a t e d w i t h chance independent v a r i a b l e s taken together 2 independent , (Tables V I I , t o t h e s q u a r e o f t h e r e g r e s s i o n sum s q u a r e s d i v i d e d by and p r o v i d e s R due vari- t o some inherent error i n c o e f f i c i e n t of determination i s variation i n the dependent be e x p l a i n e d by any p a r t i c u l a r vari- independent variable. The regression coefficient, and X) i s u s e f u l f o r c a l c u l a t i n g in the d i n o f l a g e l l a t e B, (Tables t h e amount o f c h a n g e community f o r a s p e c i f i e d c h a n g e i n an i n d e p e n d e n t V I I , IX v a r i a b l e and produced amount o f f o r comparing changes 59 In the association between the dependent v a r i a b l e particular independent v a r i a b l e analyses. R e g r e s s i o n c o e f f i c i e n t s can h o w e v e r , when c o m p a r i n g v a r i a b l e s , on variables the may be t e m p e r a t u r e was m e a s u r e d as calculated number o f tend langleys per day and another. independent because recorded i n degrees .Celsius, f l u c t u a t i o n , of t o be a b o u t one In different Thus, while sunlight was the regression coefficients are, therefore, not Furthermore, while nitrogen order larger order of than the the T a b l e s VI and It not VII; April coefficients much b e t t e r the f o r by of the variation as for for about one nitrogen much and possibly than phosphorus regression the coefficients effect (Tables VII, t h i s purpose since variation of dependent v a r i a b l e . i n the IX and they are dinoflagellates various independent v a r i a b l e s comparable. of (see . 1968). determination suited amount o f on be coefficient for guides f o r comparing the independent v a r i a b l e s coefficient would u s u a l l y account f o r i s evident that useful regression regression dinoflagellate sea magnitude lower than those dinoflagellates e v e n t h o u g h n i t r o g e n may more o f per phosphorus c o n c e n t r a t i o n s i n the t h i s case, the phosphorus with are different dinoflagellates from these v a r i a b l e s nitrogen. of of misleading, phosphorus were b o t h measured i n microgram-atoms liter, are effects be a regression measured i n d i f f e r e n t u n i t s . c o m p a r a b l e w i t h one and the in different and and, alone different The X) partial are a measure accounted therefore, 60 ' . The m u l t i p l e r e g r e s s i o n a n a l y s e s cruises (Tables o f "the i n d i v i d u a l , V I and V I I ) show t h a t t h e r e v/as c o n s i d e r a b l e t e m p o r a l change i n t h e independent v a r i a b l e s t h a t significantly associated with Vitamin community, m a i n l y particularly was during notable 33% o f t h e t o t a l were the d i n o f l a g e l l a t e s . associated with the d i n o f l a g e l l a t e t h e e a r l y s p r i n g months. that vitamin B ^ dinoflagellate could variance It. i s account f o r over i n M a r c h 1968 when the l a r g e s t concentration of d i n o f l a g e l l a t e s i n t h i s was recorded (Table V I I ) . T h e r e was a s i g n i f i c a n t negative p h o s p h o r u s and d i n o f l a g e l l a t e s i n A p r i l regression two v a r i a b l e s i n A p r i l Nitrogen the d i n o f l a g e l l a t e ments regressions with negative, e x c e p t f o r March 1968. were n o t a v a i l a b l e f o r t h e f i r s t between 1967 and a p o s i t i v e a s s o c i a t i o n between these mainly study 1968. community Nitrogen four cruise were measureanalyses (Table V I ) . Significant regression occurred and d i n o f l a g e l l a t e s more o f t e n t h a n w i t h ent variable. occurring In a d d i t i o n to being temperature any o t h e r independ- t h e most commonly s i g n i f i c a n t independent v a r i a b l e , temperature 2 a c c o u n t e d f o r more t h a n 5 0 % o f t h e R and between value J u l y 1967 and J a n u a r y and J u l y 1968 Salinity flagellates during I n each case, was significantly the late salinity was i n February (Tables V I and V I I ) . a s s o c i a t e d v/ith dino- s p r i n g and e a r l y summer m o n t h s . n e g a t i v e l y r e l a t e d t o t h e community. 61 • Salinity and Hay 2 a c c o u n t e d f o r most o f 1968 (Tables • T h e r e was VI and a negative i n late winter and with fall 1968) R relation and only of i n August v a r i a t i o n ^ in 1968 (Tables VI Zooplankton standing with the related dinof lagellates to the The analyses i n February r e s u l t s of the i n the dinoflagellate V I I I and number o f d i n o f l a g e l l a t e s and was negatively 1967 and J u n e 1968. demonstrated and during the s i x month p e r i o d . account f o r over 35% of during alone this was independent v a r i a b l e except time period. significantly c h a n g e s a t S t a t i o n B. the The significantly every could VI). regression to s t a t i o n . associated with zooplankton (Table considerable a s s o c i a t i o n s from s t a t i o n c o m m u n i t y a t S t a t i o n A was associated positively time-series multiple IX) explain VII). stock community i n A p r i l (Tables variation and 1967 summer and - Sunlight could the and (February a p o s i t i v e regression during the 1967 between s u n l i g h t early spring (June t h r o u g h September 1968). m o r e t h a n 25% in—June- value VII). dinoflagellates March the sunlight Salinity dinoflagellate variation None o f the independent v a r i a b l e s r e l a t e d to the d i n o f l a g e l l a t e Nitrogen, p h o s p h o r u s and salinity were a s s o c i a t e d With d i n o f l a g e l l a t e changes at S t a t i o n C with nitrogen flagellate explain D alone accounting variability over 26% v/ith v i t a m i n of B. ~, the at t h i s f o r o v e r 60% station. of the Sunlight dinoflagellatevariation p h o s p h o r u s and salinity also dinocould at Station being significantly and related with the d i n o f l a g e l l a t e s . t e m p e r a t u r e were b o t h a s s o c i a t e d w i t h ,ates at S t a t i o n E'with temperature accounting 64% of the d i n o f l a g e l l a t e v a r i a b i l i t y The the the two and Vitamin f o r more t h a n station. species of d i n o f l a g e l l a t e s , Peridinium was significantly during dinoflagell- r e s u l t s of the m u l t i p l e r e g r e s s i o n analyses individual paulseni at t h i s triquetrum was £• r e l a t e d to the d i s t r i b u t i o n ature Phosphorus, Salinity distribution ly were c o n s i d e r e d and J u l y o f b o t h 1967 associated with 1967. and i n Table o f G. X. t h e P. was this 1968. I n 1967 distrib- salinity of the v a r i a t i o n i n t e m p e r a t u r e and triquetrum o f P. t r i q u e t r u m associated with and the The by r e g r e s s i o n a n a l y s i s i n 1968: s u n l i g h t were population not s i g n i f i c a n t l y s u n l i g h t being paulseni ( F e b r u a r y - M a r c h ) i n 1968. a b l e t o e x p l a i n n e a r l y 90% also in triquetrum triquetrum. Gymnodinium are summarized r e l a t i o n s b e t w e e n t h e i n d e p e n d e n t v a r i a b l e s and f o r June for t h e o n l y i n d e p e n d e n t v a r i a b l e t h a t v/as the spring increase u t i o n o f P. Phosphorus r e l a t e d to the. v i t a m i n B.^* t h e v a r i a b l e s w h i c h were species. changes tempersignificant- 63 DISCUSSION VITAMIN B • - 1 2 The e v i d e n c e t h a t now e x i s t s f o r t h e l e v e l s centration of soluble vitamin coastal of B D r o o p , 1954; P r a k a s h and T a y l o r , 55 rnpg/1 o f B ^ 2 1966) having Lewin, with B^ 2 i n theseai n d i c a t e s that 1954; values been recorded (Kashiwada e t a l . , 195S). reported 2 o n t h e a v e r a g e , c o n t a i n b e t w e e n 5 a n d 10 mug/1 waters, (e.g., 1 2 B^ 1956; Cowey, as h i g h a s 20 t o i n some c o a s t a l concentrations as h i g h values a t t h etime o f c o l l e c t i o n , a s 200 mpg/1 i n V i n e y a r d thereby rendering Oceanic waters appear t o have lower of the vitamin with a concentration to a b o u t 4 mpg/1 o f B ^ (e.g., 2 1959; M e n z e l and S p a e t h , A l l o f these determination the having the B regions B l 2 undetectable Kashiwada e t a l . , C a r l u c c i and S i l b e r n a g e l , f o r the concentration. B 1 2 concentration corresponds t o t h a t found recorded i n f o r other w i t h , an o c c a s i o n a l e x c e p t i o n a l l y l o w v a l u e been noted i n t h i s 1 2 1962; spectrum from Cowey, 1 9 5 6 ; range i nv i t a m i n S t r a i t o f Georgia coastal these concentrations s t u d i e s employed b i o a s s a y s of vitamin The preserved ( P r o v a s o l i , 1958). h i g h l y suspect 1966). areas (1953) P r o v a s o l i and P i n t n e r Sound, M a s s a c h u s e t t s b u t t h e samples h a d n o t been (frozen) o f con- distributional study. An i n t e r e s t i n g pattern recorded feature of i ntheStrait of G e o r g i a , was t h e f l u c t u a t i o n s i n c o n c e n t r a t i o n that occurred 64 over the period of a year. This study shows t h e r e t h r e e m a i n p e a k s i n B.^ c o n c e n t r a t i o n Strait the of Georgia. One o c c u r r e d summer a n d a t h i r d a year i nthe i n s p r i n g , another during i n the late f a l l . were u s u a l l y a p p a r e n t v e r t i c a l l y to at least during were These fluctuations through the water ar d e p t h o f 100 m e t e r s ( t h e lower column limit of s a m p l i n g ) and c o u l d be f o u n d a t a l l s t a t i o n s ( s e e F i g u r e s 8 - 12). • Cowey ( 1 9 5 6 ) f o u n d o n l y o n e y e a r l y p e a k i n concentration i n the North the w i n t e r months. Sea. This peak o c c u r r e d M e n z e l and S p a e t h one y e a r l y p e a k i n B^ the spring. Vishniac (1962) a l s o n o t e d c o n c e n t r a t i o n which occurred and R i l e y during (1961) r e p o r t e d only during two B^ c o n c e n t r a t i o n maxima i n Long I s l a n d Sound: one i n t h e l a t e summer and a n o t h e r d u r i n g the winter months. In view o f t h e d i f f e r e n c e s i n the seasonal o f v i t a m i n B^ and the previous consider sea. concentrations found between t h e present studies cited a b o v e . I t seems i m p o r t a n t w h a t f a c t o r s m i g h t c o n t r o l B^ In this regard, there factors into of the vitamin?; study to i nthe t o be 2 ) how i s t h e w a t e r c o l u m n ? ; and 3) w h a t are responsible f o r the decrease i n concentration of the v i t a m i n i n the water Previous column? s t u d i e s h a v e shown b a c t e r i a t o b e m a j o r producers o f soliable vitamin B ^ and concentration are three major questions a n s w e r e d : 1) w h a t i s t h e s o u r c e the v i t a m i n introduced pattern (Hall e t al_. , 1950; B u r t o n L o c h h e a d , 1 9 5 1 ; L o c h h e a d and T h e x t o n , 1 9 5 1 ; S t a r r e t a l . , " 65 1 9 5 7 ) . a n d t h e r e seems t o b e l i t t l e is also true i n the S t r a i t of Georgia. phytoplankton (Robbins have been found soluble B^ Basically biologically column: active 1) i n s i t u 3^ &Y be o p e r a t i v e t h e r e s h o u l d for i n situ (e.g., Z o B e l l , One s o u r c e C o w e Yj 1956). : (Provasoli, i n the 1958; biologically active B ^ m i g h t be. r e g e n e r a t e d T h i s phenomenon w o u l d be e x p e c t e d d u r i n g s p r i n g , summer a n d f a l l after support Vishniac to this occurred i n c r e a s e which m e c h a n i s m o f B^^ P r o d u c t i o n . (1961) found to The s p r i n g peak o f Georgia. (1968) the spring phytoplankton and R i l e y to when p l a n k t o n a r e 'blooms'. B^2 c o n c e n t r a t i o n i n t h e S t r a i t month a f t e r sink, bacteria s u r f a c e s and as a r e s u l t o f t h e i r a b u n d a n t and p a r t i c u l a r l y one plankton they 1 9 4 6 ; Wood, 195 3; Thus, as dead p l a n k t o n attach to these the water column. in B^ 1 9 6 3 ) w h i c h may c o n t a i n up t o 50 mpg/g o f v i t a m i n metabolism, occur t o which of p a r t i c u l a t e matter water column would be decaying could active be a s u i t a b l e p h y s i c a l s u b s t r a t e associated with particles 1958). itself, a c t i o n as m a r i n e b a c t e r i a h a v e been a t t a c h and m e t a b o l i z e ^ a s t o how supplying i t to the S t r a i t . production of b i o l o g i c a l l y for bacterial shown t o be m a i n l y 12 phytoplankton p r o d u c t i o n by b a c t e r i a i n t h e S t r a i t to B f o r marine be i n t r o d u c e d i n t o t h e w a t e r m order Kriss, freshwater t h e r e a r e two p o s s i b i l i t i e s In Provasoli, A few this i s lacking. o r 2) some e x o g e n o u s s o u r c e ( s ) available t o doubt t h a t t o produce s o l u b l e e t al_. , 1951) b u t e v i d e n c e producing can reason increases In B lends Similarly, n 0 concentration . f o l l o w i n g b o t h t h e s p r i n g and f a l l ; Another source Strait o f Georgia Atlantic increase-in-phytoplankton. of biologically might i n c l u d e production the bottom d e p o s i t s of theStrait. a c t i v e B.^ i n t h e of the vitamin i n "Bottom d e p o s i t s c o a s t a l w a t e r s h a v e b e e n shown t o c o n t a i n concentrations of B ^ (Burkholder i s conceivable in t h e S t r a i t b r e a k down a n d t h e w a t e r coliamn liberated mixed (Tully from these the water column. B^2 bottom d e p o s i t s bo t h e w a t e r d u r i n g across include influx and/or F r a s e r density gradients that J u a n de F u c a S t r a i t occur fall Waldichuk, B ^ into there should in of biologically B'^ theS t r a i t which column. active B ^ of.Georgia could Strait Major i n f l u x e s o f water (Tully from apparently and D o d i m e a d , 1 9 5 7 ; of Georgia. be s i g n i f i c a n t a n c 5 high I fthis s a l i n i t y being than t h eS t r a i t o f Georgia. was v i r t u a l l y no c o r r e l a t i o n b e t w e e n t h e s e time o f the year. were t h e c a s e correlation coefficients, s a l i n i t y values, J u a n de F u c a S t r a i t Station i t cannot 1957; Dodimead and P i c k a r d , 1967) and c o u l d carry vitamin throughout and w i n t e r , i nthe water into theStrait throughout the year i s and i s mixed o f t h e v i t a m i n , f r o m J u a n de F u c a River runoff. gradients b o t t o m , e f f e c t may c o n t r i b u t e thelate Exogenous s o u r c e s 1958). becomes a c c o u n t f o r t h e summer p e a k i n B ^ c o n c e n t r a t i o n occurred high t h e w i n t e r when d e n s i t y and Dodimead, 1957), While t h i s i n western 1956, and B u r k h o l d e r , It vertically that during .' 66 between higher There v a r i a b l e s f o r any F u r t h e r m o r e , B.^ c o n c e n t r a t i o n s a t E between t h e S t r a i t o f G e o r g i a . a n d J u a n de F u c a Strait were c o n s i s t e n t l y lower stations. was This Fraser water. of the Strait of Georgia i n f o r m a t i o n i n d i c a t e s t h a t J u a n de F u c a not a l i k e l y concentrations than those source of B 1 2 f o r the S t r a i t River runoff water contains of biologically active o f B^ 2 would Georgia. even lower • t h a n J u a n de F u c a However, c o n s i d e r a t i o n o f t h e F r a s e r p o s s i b l e exogenous source of R i v e r as a seem t o c e n t e r around the.fact that large quantities of s i l t are carried Strait t h e e a r l y summer and of Georgia by t h i s r i v e r during D o d i m e a d , 195 7; W a l d i c h u k , shown t h a t t h e coastal and r i v e r 1956; Burkholder, content 1957). w a t e r s c a n be q u i t e h i g h 1 2 o f magnitude l a r g e r than B^ (Cowey, 1 9 5 6 ) . of Fraser River outflow Fraser the late concentrations should reported evidence, be c o n s i d e r e d from the effect i n some detail. during approaches i t s which i s g e n e r a l l y i n June The t u r b i d i t y i n such and i s two o r d e r s s p r i n g a n d e a r l y summer as t h e r i v e r which are present i n turbid R i v e r r u n o f f w a t e r becomes t u r b i d Dodimead, 1957). (Tully s t u d i e s have (Burkholder This value I n view of t h i s y e a r l y maximal d i s c h a r g e and 2 into the c o n t a i n i n g up t o 6400 m p g B / g o f s o l i d m a t e r i a l . plankton Previous o f suspended p a r t i c l e s S t a r r , 1956), Strait i s due t o s i l t (Tully particles l a r g e q u a n t i t i e s as t o g i v e t h e w a t e r a muddy b r o w n a p p e a r a n c e . • T h e l a r g e r s i l t particles s e t t l e o u t n e a r t h e mouth o f t h e F r a s e r R i v e r but the, f i n e r particles areas o f the S t r a i t of Georgia are c a r r i e d over considerable (Matthews and S h e p a r d , 1962) as t h e r u n o f f water ••• f a n s o u t as a t h i n water. was as S t a t i o n active 1967 discolored as f a r n o r t h as S t a t i o n silt particles s e r v e as a t t a c h m e n t B^ might particles is i n June runoff B and An as f a r s o u t h sites f o r b a c t e r i a and biologically t h e water column active B^ w a s These low c o n c e n t r a t i o n s e f f e c t on t h e g r o w t h c a n n o t be attributed o f a l l samples f o r A. carterae samples (Jitts, reasonable explanation f o r this seem t o be t h a t a d s o r b e d by dense concentrations particles were d o u b l e d by - r e e sea water. their be be g e n e r a t e d i n t o would et a l , , 1964). active B^ would during and become d i s p e r s e d , able to increase their be would readily particles. B-^.is begin to of settle colonizing biomass and b i o l o g i c a l l y t h e water column be r e s o r b e d o n t o of A the p r e p a r a t i o n T h e n , as t h e s e p a r t i c l e s metabolic potential would w i t h i n the range i n much t h e same m a n n e r as t h r o u g h the water column b a c t e r i a would which the when t h e y a r e p r e s e n t i n adsorbed onto c h a r c o a l p a r t i c l e s B^2 f salinity apparent i n c o n s i s t e n c y any b i o l o g i c a l l y the s i l t scheme Amphidinium a d d i t i o n o f s e a w a t e r o f a p p r o x i m a t e l y 31 o/oo the lowest s a l i n i t y the content. to a of the bioassay organism, as t h e v o l u m e s good growth as always p r e s e n t i n v e r y low c o n c e n t r a t i o n s irt r u n o f f water w i t h h i g h s i l t even runoff a p p a r e n t i n c o n s i s t e n c y v/ith t h i s that b i o l o g i c a l l y bring water from the F r a s e r R i v e r be g e n e r a t e d i n t o sink. carterae, Strait D. The could l a y e r on t o p o f t h e more s a l i n e For example, noted n e a r l y 68 and active B ^ hence might at a f a s t e r r a t e than i t The supplying possible role of Eraser biologically River runoff i n a c t i v e B^^ t o t h e S t r a i t may b e e x e m p l i f i e d b y t h e r e s u l t s o b t a i n e d the summer o f 1967 ( s e e F i g u r e salinity a t S t a t i o n C was v e r y t o the presence of s i l t the f i v e meter w a t e r v/as v i r t u a l l y microscopical l o w (3.8 o/oo) due t o t h e below 5 meters recently logically while Silt 10 m e t e r s also discolored and b e l o w t h e as d e t e r m i n e d by The extreme salinity t h e w a t e r column a c t i v e B.^ c o n c e n t r a t i o n s a t S t a t i o n C. Bio- were l o w d u r i n g June f r o m 0.1 mpg/1 o f B ^ 1.7 mpg/1 a t 10 m e t e r s and u n d e t e c t a b l e However, t h e s u r f a c e at the surface a t 100 m e t e r s . apparent a t S t a t i o n C i n July 1967. 12.8 o/oo a t t h e s u r f a c e . , i n d i c a t i n g salinity had' i n c r e a s e d t o t h a t some m i x i n g S t r a i t o f G e o r g i a w a t e r was t a k i n g p l a c e . c e n t r a t i o n was s t i l l Lesser other abundant i n t h e upper b u t n o t so abundant numbers o f s i l t samples particles suggests t h a t t h e r u n o f f water had o n l y penetrated w a t e r column stratific- and t h e l a c k o f s i l t R u n o f f w a t e r was s t i l l the r a p i d l y t o 26.9 o/oo a t 10 m e t e r s free of particles a t S t a t i o n C, r a n g i n g to particles. examination. a t i o n i n t h e upper 1967 t h e s u r f a c e T h e s u r f a c e was a muddy b r o w n c o l o r due sample, at Station C i n 1 0 ) . I n June i n t r u s i o n o f runoff water, but increased a t d e p t h o f 10 m e t e r s . of Georgia active 5 meters conof the as t o d i s c o l o r t h e w a t e r . p a r t i c l e s w e r e now e v i d e n t t o a d e p t h o f 50 m e t e r s . of b i o l o g i c a l l y Silt with was s t i l l ( 0 . 8 mpg/1 o f B,~) b u t h a d m a r k e d l y The i nthe concentration low a t t h e s u r f a c e increased t o 12.5 mpg/1 at 5 meters near t h e p y c n o c l i n e (zone i n t h e w a t e r w h e r e d e n s i t y i n c r e a s e s r a p i d l y w i t h depth)« ation of depth. column The concentr- was a l s o a b o v e 10 mpg/1 a t 20 and 50 m e t e r s These were t h e h i g h e s t S t r a i t of Georgia during B^ values recorded i nthe t h e summer o f 1 9 6 7 . Thus, i n b o t h months t h e c o n c e n t r a t i o n o f biologically as active B ^ at the surface a result of adsorption increase i n biologically on t h e s i l t active B ^ appears t o have been c l o s e l y of silt being particles remained low presumably particles. The marked with-depth by J u l y a s s o c i a t e d v/ith t h e p e n e t r a t i o n through t h e water column: t h e B ^ g e n e r a t e d from t h e p a r t i c l e s by b a c t e r i a l While considerable probably action. a t t e n t i o n has been g i v e n t o t h e m e c h a n i s m s w h i c h may a c c o u n t f o r t h e i n c r e a s e i n b i o l o g ically active B ^ concentrations i n the S t r a i t of Georgia, no m e n t i o n h a s b e e n made o f t h e f a c t o r s i n v o l v e d i n t h e d e c r e a s e of b i o l o g i c a l l y - a c t i v e B^ concentrations. The m o s t obvious mechanism would be b i o l o g i c a l u p t a k e o f t h e v i t a m i n by planktonic organisms. analyses partly The r e s u l t s o f t h e m u l t i p l e r e g r e s s i o n s t r o n g l y support t h e i d e a t h a t d i n o f l a g e l l a t e s -are r e s p o n s i b l e f o r removal o f t h e v i t a m i n from Previous studies (Cowey, 1 9 5 6 ; V i s h n i a c solution. and R i l e y , 1961; M e n z e l a n d . S p a e t h , 1962) a l s o i n d i c a t e t h a t d e c r e a s e s i n biologically increases in active B ^ were c l o s e l y associated with phytoplankton. H o w e v e r , as m e n t i o n e d above ( p . 35 ) t h e f l u c t u a t i o n 71 in biologically a c t i v e B.^ c o n c e n t r a t i o n s w e r e - a p p a r e n t t o a d e p t h o f 100 m e t e r s w h i l e t h e p h y t o p l a n k t o n c o m m u n i t y was,, a l m o s t w i t h o u t e x c e p t i o n , f o u n d t o be s m a l l b e l o w It appears then t h a t other f a c t o r s i n addition 20 m e t e r s . to phyto- p l a n k t o n u p t a k e may be r e s p o n s i b l e f o r t h e d e c r e a s e o f biologically active Georgia. B.^ c o n c e n t r a t i o n s i n t h e S t r a i t o f • -, It i s not clear may b e a f f e c t i n g centrations. bacteria. the decrease I n b i o l o g i c a l l y One p o s s i b i l i t y factors a c t i v e B^^ m i g h t be u p t a k e by 3 ^ con- requiring A d s o r p t i o n by p a r t i c u l a t e matter i s another possibility. I n t h i s r e s p e c t , p a r t i c u l a t e m a t t e r was o f t e n found throughout t h e water be f r o m t h e d a t a what o t h e r column. One f u r t h e r f a c t o r involvement o f t h e v i t a m i n i n a complex w i t h •binding factor' (Lau, e t a l . , a soluble 1965; Droop, 1968) o r t h e presence o f a c o m p e t i t i v e i n h i b i t o r which would could (Droop, 1968), e i t h e r o f render the vitamin unavailable t o the bioassay organism. The appears for s e a s o n a l c y c l e o f B^ n the S t r a i t of Georgia t o b e more c o m p l e x t h a n h a s p r e v i o u s l y b e e n r e p o r t e d o t h e r a r e a s a n d may b e s u m m a r i z e d a s f o l l o w s : t h e s p r i n g maximum f o l l o w s be i the result the from the spring i n c r e a s e i n p h y t o p l a n k t o n a n d may of generation of summer p e a k i s c l o s e l y from decaying p l a n k t o n ; associated with t h e F r a s e r R i v e r runoff, w i t h liberated f r o m • t h e . s i l t by - b a c t e r i a l silt presumably particles being a c t i o n ; -the l a t e fall p e a k may be clue t o a c o m b i n a t i o n o f d e c a y i n g p l a n k t o n , l a c k o f . b i o l o g i c a l uptake B i o l o g i c a l uptake biologically and m i x i n g f r o m can p a r t i a l l y the deeper waters. account f o r the decrease i n a c t i v e B.^ c o n c e n t r a t i o n s i n t h e S t r a i t o f Georgia but the consistency of t h i s decrease throughout the water column suggests t h a t o t h e r f a c t o r s such as chemical complexing o r competitive i n h i b i t o r s may adsorption, also be important. REGRESSION A N A L Y S I S Regression analysis to investigate a number o f e n v i r o n m e n t a l p a r a m e t e r s communities Riley ion 1946), R o u n s e f e l l (1967a). analysis plankton t o marine whether (1956) to f i e l d s t u d i e s o f marine or not a s t a t i s t i c a l l y o r more i n d e p e n d e n t variables, phyto- pertinent. analysis significant variables. and o n e I f a regression exists the sign of the r e l a t i o n s h i p n e g a t i v e ) c a n be d e t e r m i n e d . i s to association (or r e g r e s s i o n ) e x i s t s between a dependent v a r i a b l e two and This being the case, a review of regress- as i t a p p l i e s seems and D r a g o v i c h The b a s i c f u n c t i o n o f r e g r e s s i o n test phytoplankton has a p p a r e n t l y been p r e v i o u s l y used o n l y by (1939, Margalef the r e l a t i o n of between (positive'or I f i t i s n e g a t i v e t h e r e i s an i n c r e a s e i n one v a r i a b l e c o r r e s p o n d i n g t o a d e c r e a s e i n t h e other variable. one variable Further, A positive coinciding with sign results from an i n c r e a s e i n an i n c r e a s e i n a n o t h e r t h e amount o f c h a n g e p r o d u c e d variable. i n one v a r i a b l e by change i n a n o t h e r v a r i a b l e regression in coefficient, B addition regression on the to be of The statistic variable the 3) follows between not on drawn a t highly variables, variable, under which each array the Thus, variable. of the a n o r m a l d i s t r i b u t i o n ; 2) samples are are 1) the ). c h a n g e s i n one theoretical conditions are: from ( 2 ) , p. 20 associations change i n a n o t h e r is valid variables calculated formula used to p r e d i c t dependent v a r i a b l e the be (see testing for may basis can this dependent the regression independent v a r i a b l e s r a n d o m ; and correlated 4) with the one of is linear; independent another (Brownlee, 1965). The arrays of the dependent v a r i a b l e , numbers, were found i n i t i a l l y tribution. Of the 1957) and This d a t a by s i t u a t i o n was log^Q (x + 1) which normalized thereby fulfilled T h e r e i s no response of always linearity the the dictates of of the to f o l l o w corrected (Barnes, arrays first of by B a r n e s and of the Hasle, variable statistic. assume t h a t the to environmental parameters as the However, the d i n o f l a g e l l a t e data independent v a r i a b l e s . dinoflagellate.concentration, Test that should improve dependent scatter the the logarithmic relation is the variable, diagrams of after transformation, indicates is s e c o n d c o n d i t i o n .of r e l a t i o n s h i p s between the independent v a r i a b l e s dis- transformation dependent condition they s h o u l d be. the a normal 1952; the good r e a s o n t o phytoplankton transformation and the l i n e a r ( R i l e y , 1946) statistic not dinoflagellate the v/ith the . . essentially ' ' 74 linear. The samples w e r e .not d r a w n a t r a n d o m a s i t was necessary to establish definite of sampling to f a c i l i t a t e of the data. No a t t e m p t was made, h o w e v e r , t o s a m p l e population density movement o f t h e w a t e r b y t i d e s i s difficult example, sunlight tv/o a n d c u r r e n t s may h a v e a I t i s possible extent. expected) t i m e s when t h e h e a t - over mixing processes t h a t o n l y one o r n e i t h e r o f i n d e p e n d e n t v a r i a b l e s w i l l be c o n s i d e r e d s i g n i f i c a n t by t h e r e g r e s s i o n e q u a t i o n even correlated It ( a s m i g h t be at certain e f f e c t o f t h e sun predominated the water. variables v / i t h o n e a n o t h e r t o some and t e m p e r a t u r e were f o u n d t o be c o r r e l a t e d in and t h e c o n s t a n t t o s e l e c t independent that are not i n t e r c o r r e l a t e d ing any e f f e c t on t h e p h y t o p l a n k t o n . It For and d e p t h s s h i p b o a r d o p e r a t i o n s and c o m p i l a t i o n particular dinoflagellate randomizing sampling s t a t i o n s though v / i t h o n e a n o t h e r and w i t h was p o s s i b l e t o c h e c k correlation coefficient available with this t h e y may be h i g h l y t h e dependent type of s i t u a t i o n variable. as t h e f o r . a l l o f t h e v a r i a b l e s v/ere t h e r e g r e s s i o n p r i n t o u t from t h e computer. F u r t h e r m o r e , s i n c e a r e g r e s s i o n e q u a t i o n was c a l c u l a t e d f o r the a d d i t i o n o f each ion a n a l y s i s ) i t was p o s s i b l e t o d e t e r m i n e w h e t h e r correlated variables coefficients occur i n t h i s independent v a r i a b l e significantly o f one a n o t h e r . study. (stepwise regress- affected highly the regression No s u c h c a s e s w e r e f o u n d t o 75 .Several additional considerations applying r e g r e s s i o n a n a l y s i s to the f i e l d that are data. I t i s evident s u c h p h y s i c a l f a c t o r s as l i g h t , t e m p e r a t u r e and essentially Also, they may independent of the d i n o f l a g e l l a t e a c t as c a u s a t i v e response i n the d i n o f l a g e l l a t e considered as arise i n agents e f f e c t i n g population as i n d e p e n d e n t v a r i a b l e s w i t h salinity community. some and s h o u l d be the d i n o f l a g e l l a t e s t h e dependent v a r i a b l e . It flagellate i s n o t p o s s i b l e , however, t o s e p a r a t e numbers and t h e o t h e r phosphorus, v i t a m i n and effect The r e a s o n f o r t h i s f a c t o r s may h a v e an e f f e c t the should reverse been e n t e r e d that variables (nitrogen, and z o o p l a n k t o n ) i n t o scheme. as i n d e p e n d e n t v a r i a b l e s w i t h the causal these community They have, reached concerning cause i s that while nevertheless, understanding a s s o c i a t i o n s between them and t h e d i n o f l a g e l l a t e s c a n n o t be w h o l l y a simple a neat on t h e d i n o f l a g e l l a t e a l s o be t h e c a s e . any c o n c l u s i o n s dino- attributed to e f f e c t by t h e s o - c a l l e d i n d e p e n d e n t vari- ables. The p o s s i b i l i t y analysis for field data always e x i s t s i n using regression t h a t an a r t i f i c i a l , a s s o c i a t i o n may b e f o u n d b e t w e e n an i n d e p e n d e n t v a r i a b l e and t h e d e p e n d e n t v a r i a b l e which i s a c t u a l l y highly correlated with due t o a n o t h e r v a r i a b l e t h a t i s the independent v a r i a b l e but which has n o t been i n c l u d e d i n t h e a n a l y s i s . This presents t h e most s e r i o u s drawback i n u s i n g analysis for field data. possibility regression Y e t , i n any c o n s i d e r a t i o n o f t h e 76 . • ; environmental factors one.will type of a f f e c t i n g p h y t o p l a n k t o n i n the be. f a c e d . w i t h analysis involved. t h i s same p r o b l e m no i s used t o measure the Multiple regression analysis o v e r n o n - s t a t i s t i c a l methods o f phytoplankton to number o f can be effect's of the with considered t o use data i n preliminary phytoplankton preliminary indications from the the are subject to It (as in m i g h t be from the of t h e n be to I t would analysis area to that tested a results subject may by for gain t h e i r environment. a n a l y s e s the are some exist Such more refined dinoflagellates considered as one arrived the large at in this validity of which determined. useful t o know what t y p e s o f e x p e c t e d between the a n a l y s e s ) and Independent the relation- variables dinoflagellate i n t e r p r e t a t i o n of i t is likely regression an t h i s assumption, order to f a c i l i t a t e Unfortunately, as regression Thus, c o n c l u s i o n s w o u l d be employed i n the not of methods. different stations c a n n o t a t p r e s e n t be ships and regression community component. study time, the relationships could experimental In are studies ecological between the s a m p l i n g and results a t one n o n - s t a t i s t i c a l methods. justifiable the advantage the and into the environment i n that quantified insight has relation be a p p e a r t o be relationships the can as m a t t e r what studying factors personal bias field the field, the community results. that the significant analyses are the r e s u l t of associations complex interaction of the to determine the environmental parameters acting s i z e of the "relationship can, ent variable i n r e l a t i o n to The c o n c e n t r a t i o n of community. h o w e v e r , be put the the dinoflagellate the are community expected to vary i n v e r s e l y a closed system v/ith t i m e be dinoflagellate versa. negative or dinoflagellate positive level each of and the the dition for the survival. As (Figure At the salinity could, 20) i s f a r above or optimal at the low level. are and 75) and the say, as should not and inter- either a the dinoflagellates a particular optimum con- dinoflagellate as a r e s u l t of poor the independent variable n u m b e r s w o u l d be with this in theoretically, below the same t i m e , h o w e v e r , t h e association optimal with community l e v e l of m i g h t become d e p e n d e n t u p o n o t h e r f a c t o r s show l i t t l e p. d e p e n d i n g upon community, l e v e l of approached d i n o f l a g e l l a t e increase. and independent v a r i a b l e When t h e e x p e c t e d t o be the trogen That i s to t o l e r a n c e range of dinoflagellate n u m b e r s w o u l d be (see community relationship variables. independent v a r i a b l e is 19). community. associated v/ith t h i s t e m p e r a t u r e and occur with these factors optimal n i independ- c o m m u n i t y i n c r e a s e s i n number t h e r e Light, dependent w i t h the for (Figure a c o r r e s p o n d i n g decrease i n the vice 3^2' intimately w o u l d be the theoretical f o r w a r d f o r each (vitamin zooplankton simple dinoflagellate nutrients p h o s p h o r u s ) and s i z e of A together expected to dinoflagellates and, environmental therefore, parameter TIME 'Figure 19. T h e o r e t i c a l r e l a t i o n between d i n o f l a g e l l a t e s (D.V.) and l i m i t e d t o t a l q u a n t i t y o f n u t r i e n t s ( I . V . ) w i t h time. UJ o < I.V. 3: — / <_> U. O UJ \ - < D.V. OL —/V\ TIR3E Figure 2CL T h e o r e t i c a l r e l a t i o n between d i n o f l a g e l l a t e s (D.V.) and l i g h t , temperature and s a l i n i t y (I.V.) w i t h time. 79 S u n l i g h t has in determining the v e r t i c a l t h e w a t e r c o l u m n and phytoplankton I t would b e e n shown t o be distribution in initiating the i n temperate waters seem r e a s o n a b l e winter lack of s u c h an to the was long to obtain an Raymont, in of 1963). time i n t e r v a l accurate the I n c r e a s i n g from a s s o c i a t i o n (Table t i m e between c r u i s e s ( a p p r o x i m a t e l y too s p r i n g bloom d i n o f l a g e l l a t e s during sunlight intensity m i g h t h a v e b e e n due of phytoplankton (c.f., s p r i n g m o n t h s as The factor to expect a s i g n i f i c a n t p o s i t i v e r e g r e s s i o n b e t w e e n s u n l i g h t and low. a principal one of VI) sampling: the month) h a v i n g measure of the the been relation b e t w e e n i n c r e a s i n g s u n l i g h t and d i n o f l a g e l l a t e s i n the upper 10 That i s to say, space meters of o f one the water column. month I t i s p o s s i b l e t h a t s u n l i g h t had f r o m a p o i n t w h e r e i t was 'with t h e so low no an i n t r i g u i n g question: summer m o n t h s when s u r f a c e ates as; i t was during i n March 1968? detrital m a t t e r and One it. why two was a. s i g n i f i c a n t two possibility had could be l i g h t i n t h e u p p e r 10 the spring. i s , however, not late times dinoflagell- that significantly e x t i n c t i o n of the to three s p r i n g i n c r e a s e of phytoplankton the explanation factors during the This This i n s o l a t i o n was the for of the d i n o f l a g e l l a t e s c l o s e l y c o n t r o l l e d by a s s o c i a t i o n found between these as h i g h association d i n o f l a g e l l a t e s t o n e a r l y optimum i n t e n s i t y longer presents increased as: t o show no c o m m u n i t y so t h a t t h e d i s t r i b u t i o n was i n the increased increased meters over that borne out by the light of •' measurements (Figure 7). A more p l a u s i b l e e x p l a n a t i o n could be t h a t t h e s p r i n g d i n o f l a g e l l a t e community has a l o w e r optimum t h a n d o e s t h e summer c o m m u n i t y . i n view of the f a c t that community the species i n t h e s p r i n g was This seems 80 ' light possible composition of the quite d i f f e r e n t than that of the summer. . • , This hypothesis does n o t agree w e l l w i t h studies so f a r u n d e r t a k e n the limited laboratory Ryther, 1956; M c A l l i s t e r e t a l . , 1964; B u r k h o l d e r e t a l . , 1967) w h i c h have d e m o n s t r a t e d h i g h for dinoflagellates. However, used i n these s t u d i e s Prorocentrurn the (e.g., Peridinium s p . and G o n i o d o m a be e x p e c t e d Confirmation d i n o f l a g e l l a t e s have low l i g h t studies of the l i g h t Gymnodinium and triquetrum, o f G e o r g i a and that light t h e s p r i n g community o f upon as citrinum, Peridinium P. a c h r o m a t ! c u m w h i c h a r e a b u n d a n t o n l y I t should regression sunlight i n February with depend r e q u i r e m e n t s o f such s p e c i e s p a u l s e n i , Gyrjp^inium would, i n t e n s i t y optima. optima'will s p r i n g months. the i n t e n s i t y optima sp.) are c h a r a c t e r i s t i c of t o have h i g h of the hypothesis during be f u r t h e r n o t e d t h a t E: a s l i g h t l y occurring at the other the The negative 1967 was m a i n l y due t o p o s i t i v e r e l a t i o n s h i p v/ith four nudum the complete lack of d i n o f l a g e l l a t e s at the surface Station 1935; many o f t h e d i n o f l a g e l l a t e s summer c o m m u n i t y i n t h e S t r a i t therefore, light (Barker, of sunlight stations. a s s o c i a t i o n between l i g h t and p o p u l a t i o n s of 81 Peridinium t r i q u e t r u m (summer d o m i n a n t ) a p p e a r e d t o be a f f e c t e d by p a r t i c l e c o n c e n t r a t i o n i n t h e u p p e r l a y e r s o f t h e w a t e r c o l u m n . ." I n t h e summer o f 1967 when " t h e w a t e r d i s c o l o r e d by s i l t from t h e F r a s e r R i v e r a s s o c i a t i o n was f o u n d b e t w e e n (Table X ) . the light D u r i n g t h e summer m o n t h s w a t e r was r e l a t i v e l y clear the extinction of light beyond the o p t i m a l l e v e l It radiation i s difficult o f 1 9 6 8 , h o w e v e r , when This suggests that account. as i t a f f e c t s As with- s u n l i g h t , of solar the phytoplankton the spring associated with w h i l e t h e r e v e r s e was t r u e f o r t h e d i n o f l a g e l l - ates i n July of both years. that, silt i t s h e a t i n g e f f e c t on t h e c o m m u n i t y o f d i n o f l a g e l l a t e s was n e g a t i v e l y temperature was i n the s u r f a c e waters to consider the role community w i t h o u t a l s o t a k i n g into and P. t r i q u e t r u m f o r P. t r i q u e t r u m i n 1 9 6 7 . i n t h e form o f l i g h t environment a positive a negative relationship f o u n d b e t w e e n t h e s e tv/o v a r i a b l e s . increased was i n addition T h e s e f i n d i n g s may indicate t o lower' l i g h t o p t i m a , t h e s p r i n g a l s o has a l o w e r t e m p e r a t u r e optimum community t h a n t h e summer community o f d i n o f l a g e l l a t e s ' . It relation i s interesting between d i n o f l a g e l l a t e s when t h e t e m p e r a t u r e for determined during July t h e o p t i m a l t e m p e r a t u r e , as f o r a number o f d i n o f l a g e l l a t e s ( B r a a r u d , 1961; J i t t s Sweeney, and t e m p e r a t u r e o f t h e s u r f a c e l a y e r s was a t a maximum t h e y e a r and v e r y n e a r atory t o n o t e t h a t t h e r e was a. p o s i t i v e et al., 1 9 6 4 ; Thomas, 1 9 6 6 ) . i n the labor- 1 9 6 4 ; H a s t i n g s and The t i m e - s e r i e s analyses 82 show t h a t m o s t o f t h i s p o s i t i v e for r e g r e s s i o n caa.be a t S t a t i o n E. w h e r e t h e t e m p e r a t u r e s w e r e 3 t o 4 C° those of the other s t a t i o n s . stations, A t h r o u g h D, this factor displayed little Provasoli, Gold and tested 20 o/oo growth) (Braarud, Braarud (1961) optimum s a l i n i t y with good g r o w t h effect suggests.that while ranges dinoflagellates less factor o/oo a r e so wide that i s important and associated salinity suggests that the low s a l i n i t y itself. have been a response t o affecting I t seems density a r e a f u n c t i o n o f t e m p e r a t u r e and T h e n , as t h e s a l i n i t y dropped some o t h e r w a t e r v/as r a t h e r than s a l i n i t y but p r i n c i p a l l y a function of s a l i n i t y Georgia. of the d i n o f l a g e l l - e v e n when s a l i n i t i e s ( J u n e 1967) with t h a t t h i s may which i t has c o n s i s t e n t n e g a t i v e a s s o c i a t i o n between t h a n 4 o/oo gradients 50% whole. dinoflagellates likely f o r most 40 salinity i n c o n t r o l l i n g the growth The 1961; 1963; (greater than a t l e a s t b e t w e e n 10 and These t o l e r a n c e a t e c o m m u n i t y as a the ( B r a a r u d , 1951, determining the d i s t r i b u t i o n of d i n o f l a g e l l a t e s little to The rate (regardless of source of i s o l a t e ) i s occurring 1961). the growth P r o v a s o l i and M c L a u g h l i n , McLaughlin, 1961). approximately maximal i n laboratory cultures e t a_l. , 1954; dinoflagellates relation •.. S a l i n i t y h a s b e e n shown t o a f f e c t of d i n o f l a g e l l a t e s below At the h i g h e r temperature to the dinof l a g e l l a t e s . in accounted salinity i n the S t r a i t of decreased the density g r a d i e n t i n the water column would i n c r e a s e , s e r v i n g t o maintain the dinoflagellates salinity. Another i n t h e upper waters possibility w o u l d be t h a t t h e o b s e r v e d r e g r e s s i o n was due t o an u n m e a s u r e d v a r i a b l e correlated 'with s a l i n i t y . t h a t was due to river water i n spring runoff I t - i s q u i t e p o s s i b l e t h a t some unknown such ( P r a k a s h and R a s h i d , 1968) a r e c a r r i e d as a t r a c e m e t a l Georgia w i t h t h e r u n o f f water the d i n o f l a g e l l a t e s . salinity water resulting From a n o t h e r such as d i a t o m s a c t as a b a r r i e r eliminating upper v i e w p o i n t , low to other - eliminating Low s a l i n i t y . w a t e r against herbivorous grazing of the dinoflagellates r e l a t i o n between z o o p l a n k t o n ates i n the S t r a i t of G e o r g i a remains of estimating zooplankton factory from a s t h e r e was a l m o s t the zooplankton bottle growth zooplankton i n these waters. The by the S t r a i t of i n increased thereby competition f o r available nutrients. thus into o r humic a c i d s m i g h t s e r v e a s an e f f e c t i v e b a r r i e r plankton organisms might also For instance, a n d summer i s p r i n c i p a l l y required nutrient(s) of highly I f t h i s was t h e c a s e , a n y o f s e v e r a l mechanisms might have been i n v o l v e d . .as t h e l o w s a l i n i t y o f low samplers. water certainly obscure. The method s a m p l e s was n o t s a t i s an a v o i d a n c e ( F l e m i n g e r and C l u t t e r , Furthermore, and d i n o f l a g e l l - reaction 1965) t o t h e most s a m p l e s were collected b e t w e e n dawn a n d d u s k when many z o o p l a n k t o n w o u l d b e t o have m i g r a t e d downward f r o m the surface layers expected (Rayrnont, 84 1963). dant by Calanus plumchrus, during the late vertical a h e r b i v o r o u s c o p e p o d , was. a b u n - spring and summer m o n t h s a s r e v e a l e d p l a n k t o n h a u l s from recorded from the bottle 100 m e t e r s , samples. b u t was Only Calanus never pacificus, a. s m a l l h e r b i v o r o u s c o p e p o d , was r e c o r d e d i n t h e q u a n t i t ative samples. That of g r a z i n g by z o o p l a n k t o n d e t e r m i n e s the size the phytoplankton standing stock to a large extent, particularly well during the spring documented (Lebour, Bigelow e t a l . , Beklemishev in • Ocean. 1922; Harvey 1940; R i l e y , (1954) has found the fecal pellets Harvey demonstrated and summer m o n t h s , h a s b e e n e t a l , , 1935; 1946; C u s h i n g , dinoflagellates o f Calanus 1959). t o be abundant at times i n the North Pacific ( 1 9 3 7 ) and M a r s h a l l and O r r ( 1 9 5 2 ) h a v e the a b i l i t y o f Calanus also t o f e e d o n some dinoflagellates. Fecal pellets from t h e samples c o l l e c t e d S t r a i t -of G e o r g i a e x a m i n e d w h i l e c o u n t i n g contained mainly f r u s t l e s ThaIassiosira of diatoms, dinoflagellates particularly s p . , w i t h o n l y an o c c a s i o n a l p e r i d i n i a n being observed. This.implies- that these u n a r r n o r e d d i n o f l a g e l l a t e s w o u l d .not b e e x p e c t e d t h e f e c a l p e l l e t s by r e a s o n o f t h e i r membrane w h i c h processes. would might delicate However, t o be seen cell p r o b a b l y be d e s t r o y e d by d i g e s t i v e Similarly, dinoflagellates theca dinoflagellates may n o t h a v e b e e n s e r i o u s l y g r a z e d b y z o o p l a n k t o n . in i nthe the. t h e c a l p l a t e s o f armored be d e s t r o y e d by m e c h a n i c a l a b r a s i o n . 85 Upon r e f l e c t i o n of the zobplankton have provided fecal i t seems t h a t q u a n t i t a t i v e c o u n t s pellets a more r e a l i s t i c than counts of the measure of g r a z i n g a c t u a l organisms present. c o u n t s w o u l d e l i m i n a t e some o f and the Also number o f f e c a l more r e l i a b l e index pellets of. f e e d i n g a c t u a l i n d i v i d u a l s w h i c h may a .particular i n the organism these the activity o r may during the may periods as was s p r i n g and early f a l l . p r e d i c t e d by relation be more i m p o r t a n t related Vitamin (Figure the B^ numbers theoretical 19). Vitamin This in controlling the 3.^ spring suggests- the size community than n i t r o g e n or i s interesting regression .coefficient, d i n o f l a g e l l a t e s v/as than i n the t h e r e v/as per at of phos- concentrations. It 1968) of to a l e s s e r nutrient negatively associated with spring dinoflagellate phorus a have been f e e d i n g i n c r e a s e o f d i n o f l a g e l l a t e s ' i n ' M a r c h ' 1968. that counts. than counts not the l a t e summer and nutrient-phytoplankton the o n l y effect i n a sample i s p r o b a b l y always n e g a t i v e l y r e l a t e d with d i n o f l a g e l l a t e during was migration d i n o f l a g e l l a t e c o m m u n i t y v/as m a i n l y to nutrient concentration was pellet time. The during effect Fecal the v e r t i c a l avoidance response inherent the extent i n the water samples' would B, lower t h a t the magnitude of for vitamin during s p r i n g months the B-^p and nitrogen summer ( J u l y (Table VI). the and v/ith August T h i s means that a s m a l l e r c h a n g e i n t h e number o f d i n o f l a g e l l a t e s u n i t change i n e i t h e r of these nutrients during the 86 ; summer a s c o m p a r e d w i t h t h e s p r i n g . complex n u t r i e n t - p h y t o p l a n k t o n the This .indicates that a r e l a t i o n s h i p may e x i s t summer m o n t h s , p o s s i b l y o f t h e t y p e (1968) i n which c o m p e t i t i v e inhibitors growth r a t e o f a chrysophyte presence of constant • described The p o s i t i v e r e l a t i o n during b y "Droop markedly reduced the (Monochrysis concentrations lutheri) of vitamin i nthe B^2° between n i t r o g e n and dinoflagellates i n M a r c h 1968 and b e t w e e n p h o s p h o r u s a n d dinoflagellates i n April were b e i n g by replenished biological ation that uptake. 1968 c o u l d result f a s t e r than they two n u t r i e n t s were b e i n g i n the tirne-series t o replenishment l a y e r s by v e r t i c a l .mixing were p r e s e n t density mixing. during analyses c a n n o t be of the nutrient i n the surface processes as s t e e p t h e summer m o n t h s . and i s i n k e e p i n g with p h o s p h o r u s may b e r e g e n e r a t e d of time, such at least as n i t r o g e n density In situ 19 59; the present gradients regeneration source of the knowledge that i n a relatively i n comparison with other short period inorganic nutrients (Cooper, 1935; von Brand e t a l . , 1937, 1939; Antia. e t a l . , 1963). liberate stratific- 1 9 6 8 , i t may w e l l b e of phosphorus i n t h e upper l a y e r s i s a l i k e l y nutrient removed p o s i t i v e r e l a t i o n s h i p b e t w e e n p h o s p h o r u s and dinoflagellates attributed nutrients s u p p l i e d from t h e deeper l a y e r s o f t h e w a t e r column by v e r t i c a l The i f these were b e i n g A s t h e r e was l i t t l e a t most s t a t i o n s , even by A p r i l these • Also zooplankton i n o r g a n i c as w e l l as o r g a n i c H a r r i s , 1959; M a r s h a l l and O r r , h a v e been' shown t o phosphorus (Cushing, 1 9 6 1 ; P o m e r o y and 87 Bush', 1959) nutrient and may add s i g n i f i c a n t q u a n t i t i e s of to the upper l a y e r s . involved, the inference phosphorus does not community i n the Regardless of the from the regulate regression the this mechanism results i s that s i z e of the d i n o f l a g e l l a t e S t r a i t of Georgia. R i l e y ( 1 9 3 7 , 1946) a l s o found p o s i t i v e r e g r e s s i o n between p h y t o p l a n k t o n stock and phosphorus concentrations productivity of and between phosphorus c o n c e n t r a t i o n s . unperceived may be i n d i c a t i v e of standing phytoplankton The a d i r e c t r e g r e s s i o n b e t w e e n p h o s p h o r u s and of d i f f e r e n t regions consistency phytoplankton some, as yet, relationship. The and and has significant d i n o f l a g e l l a t e s during negative r e g r e s s i o n between the summer m o n t h s late nitrogei (1968) 2 and the during increasing R this nitrogen the value period give was an that this Station strong important community a t t h i s nitrogen r a t i o s were at t h e i r were r e g u l a t e d by could lowest the nitrogen n u t r i e n t s as community i n the the regression nitrogen that the s i z e of important concentrations at of the and i n A u g u s t 1968 dino- the N:P at S t a t i o n C i d e a that the d i n o f l a g e l l a t e s concentration. or nitrogen can be considered regards the d i n o f l a g e l l a t e S t r a i t o f G e o r g i a c a n n o t be analyses. for results indicate a c c o u n t f o r 60% value W h e t h e r e i t h e r B^p as: ' l i m i t i n g ' VII) time-series particularly Nitrogen which f u r t h e r supports and presumptive evidence The e f f e c t was variation. VI f a c t o r i n determining time. C where n i t r o g e n flagellate (Table discerned While growth or p h o t o s y n t h e t i c from rate- 88 limiting concentrations described on t h e 1962; for basis several of Thomas, values to several ments 1966), natural v/hile it is In the light, not first with required nutrients centrations findings alter as to (1968) In the apply i n which a l l present the Gold, these at there fact i n such as relations that other low c o n - Droop's i n h i b i t o r s can further abundance community such the vitamin B.^ nutrients, however, poorly understood competitive Monochrysis l u t h e r i the maintained the be p r e s e n t for experi- i n over field, be p o s s i b l y l i m i t i n g . of 1935; laboratory i n a d d i t i o n to concentration growth of place, affecting may a l s o that to and s a l i n i t y a r e grazing, dissolved organics been dinoflagellate (Barker, practical are conditions. competition, of have phytoplankton communities many a d d i t i o n a l f a c t o r s species species i d e a l i z e d systems temperature nutrients experiments one b e i n g t e s t e d , nearly.optimal are individual occurring reasons. the various laboratory represent except of recent significantly needed to stimulate complicates the situation. Under t h e s e to state that on t h e Bj^ is important ate community i n t h e the same r e s p e c t , these nutrients ant to the circumstances basis of the during should the perhaps sufficient results vitamin size of the and n i t r o g e n is Important, late summer m o n t h s . be c o n s i d e r e d dinoflagellates is regression i n d e t e r m i n i n g the soring it i n the as Strait dinoflagellin Therefore, ecologically of G e o r g i a . import- DI MO F LAG E L L AT E S - '/ . - I t i s e v i d e n t from ate community In the Strait and summer maximum i n n u m b e r s ' .. •• the. r e s u l t s . t h a t o f Georgia attained both ( F i g u r e 14 - 1 8 ) . p e a k i n c o n c e n t r a t i o n was d u e m a i n l y t o s m a l l dinof.lagellates, the d i n o f l a g e l l spring The s p r i n g non-thecate w h i l e t h e summer c o m m u n i t y was composed mainly of larger thecate species.. This seasonal pattern fits w e l l w i t h M a r g a l e f ' s scheme temporal d i s t r i b u t i o n o f marine Margalef distribution temperate (1958, (1958, phytoplankton. 1967b) h a s summarized t h e t e m p o r a l ('succession*) o f marine regions i n the.following 1) i n i t i a l l y 1967b) f o r t h e phytoplankton i n manner: i n t h e s p r i n g when n u t r i e n t s a r e p r e s e n t i n h i g h c o n c e n t r a t i o n , a community o f s m a l l - c e l l e d organisms, mainly diatoms, flagellates, develops. large surface/volume in numbers; dinoflagellates These organisms ratios; are capable and o t h e r s m a l l a r e c h a r a c t e r i z e d by of rapid increase and g e n e r a l l y have s i m p l e i n o r g a n i c n u t r i e n t 1 requirements. 2) i n t h e l a t e community (mainly diatoms These organisms division are larger rate than 3) t h i s in spring and e a r l y and.dinoflagellates) and have a l o w e r i s high. develops. potential those o f stage ( 1 ) . I s a c o n t i n u a t i o n o f stage areas o f u p w e l l i n g o r d u r i n g the l a t e diversity summer a m i x e d ( 2 ) and o c c u r s summer. The community i s composed Species o f diatoms 90 and an i n c r e a s i n g number o f 4) depleted this surface dinoflagellate species. stage occurs waters,. Few i n density diatoms are stratified, present. nutrient The dominant organisms are g e n e r a l l y d i n o f l a g e l l a t e s . The ates the i n the early spring increase Strait of Georgia, of s m a l l naked dinoflagell characterized particularly abundance o f Gymnodinium p a u l s e n i , c l e a r l y b e l o n g s stage (1) o f M a r g a l e f ' s species stage require only succession scheme. Whether M a r g a l e f i s not known. for However, most d i n o f l a g e l l a t e s have complex n u t r i e n t r e q u i r e m e n t s : vitamins Further (see vitamin significantly during the associated s u g g e s t s t h a t G. B^2 w a s this f o r a complete the associated a whole d u r i n g flagellate was only with s p r i n g i n March significantly as L o e b l i c h , 1967 with paulseni of sufficient s p r i n g was increase stage i s i n t e r e s t i n g to B-^ i n the was p o s s i b l y the this entire the This that s i z e of the time. responsible with dino- r e q u i r e m e n t and speculate i n d i n o f 1 a g e l l a t e s along also information t h a t the S t r a i t of Georgia i n the to a large extent (1) o r g a n i s m s . This factor in controlling d i n o f l a g e l l a t e community d u r i n g It B^ VI). community) does have a B ^ a significant X). population d i n o f l a g e l l a t e community (Table (and summary). G_^ p a u l s e n i (Table the period e.g., independent v a r i a b l e the 1968 in these i n o r g a n i c n u t r i e n t s as p r o p o s e d ( 1 ) o r g a n i s m s by by f o r the t h e more means t h a t w h i l e the presence early spring typical small naked ' ' v 91 dinoflagellates are s i m i l a r , i n many r e s p e c t s . t o t h e early s p r i n g s p e c i e s of phytoplankton rapid r e p r o d u c t i v e p o t e n t i a l ) they f u l l y ..with t h e s e B^^ can the S t r a i t composition p e r i o d was o n l y compete s p e c i e s i n the presence sufficient i n c r e a s e d d u r i n g J u n e and mainly G o n y a u l a x and stages In J u n e 1967 ( 2 ) and were abundant i n these stage This A found succession pattern. waters. typical been This probably upper liter) corresponds and to scheme. s p r i n g maximum o f s m a l l n a k e d has s t u d i e s done i n n o r t h e r n I t i s important unique to the Fraser Dinoflagellates (49,500 c e l l s p e r i n the S t r a i t of G e o r g i a , a number o f corresponds heavy r u n o f f from the waters (4) o f M a r g a l e f ' s this Prorocentrum. d e n s i t y g r a d i e n t i n the d i a t o m s were r e c o r d e d . The Peridinium,-Ceratium, (3) o f H a r g a l e f ' s a steep July. of s p e c i e s of when t h e r e was t h e r e was present community d u r i n g l a y e r o f t h e w a t e r c o l u m n a t S t a t i o n C. as of success- species of dinoflagellat.es of Georgia made up to River, number o f of the d i n o f l a g e l l a t e Pinophysis, no small-celled, concentrations. The in other (i.e., typical- not been r e p o r t e d i n temperate c o a s t a l t o know w h e t h e r t h i s S t r a i t of Georgia of other northern dinoflagellates, phenomenon i s community o r whether i t i s temperate regions and has simply overlooked. Unfortunately, distribution a number, o f s t u d i e s on of phytoplankton i n temperate waters the seasonal make o n l y passing r e f e r e n c e o r no r e f e r e n c e dinoflagellates Bigelow (e.g., Bigelow, 1926; L i 1 l i c k , e t a l . , 1 9 4 0 ; Co.nover, 1 9 5 6 ; R i l e y P a r t of the problem i s that nets these at a l l to small studies (Bigelow, naked 1933, 1940; a n d Conover.,. 1 9 6 7 ) . . were used i n s e v e r a l o f 1926; L i l l i c k , 1 9 3 8 ) a n d i t may b e a s s u m e d t h a t many o f t h e s m a l l e r s p e c i e s w e r e n o t c a p t u r e d . Even i n those s t u d i e s i n which v a r i o u s types samplers, were used 1940; (Gran, 1929: Bigelow Conover, 1956; R i l e y have been r e c o r d e d l a r g e numbers. • Gymnodinium and were n e v e r p r e s e n t i n (1935) found Gymnodinium g r o e n l a n d i c u m , phytoplankter Iceland) (mainly ' However, B r a a r u d flagellate, e t a_l. , 1940; L i l l i c k , and C o n o v e r , 1967) o n l y a few s p e c i e s o f naked d i n o f l a g e l l a t e s lohmannii) of bottle i n t h e Denmark S t r a i t that a small was t h e d o m i n a n t (between Greenland i n J u n e 1929 when t h e i c e v/as s t i l l tightly When t h e i c e o p e n e d u p , d i a t o m s i n c r e a s e d r a p i d l y dominant. it While t h i s succession dino- took and packed. a n d became p l a c e d u r i n g , t h e summer i s p e r h a p s a n a l o g o u s t o t h e s p r i n g b l o o m , as i t was t h e initial increase i n phytoplankton numbers f o l l o w i n g t h e w i n t e r low. In to a later study, Braarud be t h e d o m i n a n t d i n o f l a g e l l a t e Norway i n March (140,000 c e l l s (7,500 c e l l s per l i t e r ) . ( 1 9 4 5 ) f o u n d G. l^pjimajnnii i n the i n n e r Oslo per l i t e r ) This last and a g a i n liter) i n M a r c h 1968 i n t h e S t r a i t i n April f i g u r e i s very a b l e t o t h e s p r i n g maximum o f G„ p a u l s e n i per Fjord, (12 7,5 00 of Georgia. compar- cells Although.- the evidence support i s scanty, the s t u d i e s o f B r a a r u d - ( 1 9 35., t h e i d e a t h a t s p r i n g maxima o f s m a l l n a k e d flagellates may be h e r e t o f o r e been o f more g e n e r a l o c c u r r e n c e 1935, 1945). i n the S t r a i t of Georgia the f j o r d s o f Norway and 1929; o f t h e same g e n u s , those Braarud, increase i n Gymnodinium, a summer maximum i n w h i c h t h e d o m i n a n t s p e c i e s i s Peridinium are the triquetrum. same f o r b o t h occurrence Many o f t h e o t h e r p r o m i n e n t areas. of Prorocentrum a s o p p o s e d t o P. Strait g r a c i l e i n the of by G r a n and the Braarud compare v e r y c l o s e l y (19 35) i n the and Bay o f Fundy, Canada seasonal Braarud (1935) i n t h i s dinoflagellate temperate r e g i o n s . A single reported study. species composition appears t o be The distribution i n the S t r a i t of Georgia. by of Georgia the dinoflagellates s p e c i e s , G y m n o d i n i u m l o h m a n n i i , was Strait from a s p e c i e s have been r e p o r t e d non-thecate The Also are recorded s p e c i e s o f armored i n composition v/ith the d i n o f l a g e l l a t e s G r a n and Georgia Norway. Similarly, found S t r a i t of micans i n the norwegian f j o r d s . o f G e o r g i a w h i l e o n l y a few the f j o r d s species A. n o t a b l e e x c e p t i o n i s t h e number o f u n a r m o r e d d i n o f l a g e l l a t e s for (Grsn, dinoflagellate I n b o t h ..regions t h e r e i s a s p r i n g s m a l l naked d i n o f l a g e l l a t e s and has realized. species composition from dino- than There i s good agreement between the reported 1945) fairly t y p i c a l of major exceptions being i n the northern t h a t more taxa . of n o n - t h e c a t e d i n o f l a g e l l a t e s were f o u n d i n the Georgia and these species t h a n has been r e p o r t e d G r a n and Braarud dinoflagellates preservation f o r most o t h e r in their the this delicate cell for preservation study, flagellate formalin. may give may The use spring s c a r c i t y of have been the membranes o f of modified of regions. naked r e s u l t of samples i n n e u t r a l i z e d f o r m a l i n forms beyond r e c o g n i t i o n . solution study Strait i n the temperate (1935) s u g g e s t t h a t the of the tends to d i s t o r t w e r e more p r e v a l e n t 94 which non-thecate Lugol's Iodine o f d i n o f l a g e l l a t e s a m p l e s , as a truer representation community than samples p r e s e r v e d of the in dino- in neutralized 95 . IV " ' SUMMARY AND CONCLUSIONS "Seventy-seven s p e c i e s o f d i n o f l a g e l l a t e s were from.the S t r a i t o f Georgia period of this study. samples d u r i n g The s e a s o n a l flagellates was d i v i d e d i n t o abundance. The f i r s t early spring (February of summer m o n t h s larger, thecate a ' spring increase t h e two y e a r distribution tv/o d i s t i n c t i n the T h e s e c o n d peak o c c u r r e d of during ( J u n e - A u g u s t ) and v/as made up p r i m a r i l y dinoflagellates,• I t i s postulated i n non-thecate species that of d i n o f l a g e l l a t e s v/aters t h a n has been p r e v i o u s l y realized, study of relative - M a r c h ) a n d was c o m p o s e d m a i n l y i n northern This of dino- periods may b e a more common o c c u r r e n c e 2. recorded p e r i o d o f abundance o c c u r r e d small, non-thecate species. the ' h a s shown t h a t t h e s e a s o n a l temperate c o a s t a l cycle of biologic- a l l y - a c t i v e v i t a m i n B.^ i n t h e S t r a i t o f G e o r g i a i s more complex than has been r e p o r t e d Three in vitamin a year. B^ concentration the v i t a m i n from decaying in B^2 c o n c e n t r a t i o n the 3^ runoff water. v/as p r o b a b l y plankton. was c l o s e l y River. was l i b e r a t e d peaks after the spring a n d v/as p o s s i b l y due t o r e g e n e r a t i o n of r u n o f f from the F r a s e r areas. v/ere n o t e d o v e r t h e p e r i o d o f - A s p r i n g p e a k i n B.^ o c c u r r e d increase i n phytoplankton vitamin f o rother T h e summer maximum associated with I t i s postulated from s i l t The l a t e f a l l particles p e a k i n B^^ the result of typical t h e summer that contained i n concentration regenerative processes 96 in 3. the. w a t e r c o l u m n . The r e s u l t s of the vitamin of B.^ regression is a significant analyses of Georgia. During the the year. spring i n minimum v a l u e s appear to r e g u l a t e of d i n o f l a g e l l a t e s i n . t h e S t r a i t of Georgia. results had i n d i c a t e d t h a t the lower l i g h t community. flagellate unclear. The and zooplankton I t i s postulated and con- number regression s p r i n g d i n o f l a g e l l a t e community community i n the between s a l i n i t y the for the The temperature optima than the e f f e c t of size s i z e of related to nitrogen reached"their Phosphorus d i d not the summer m o n t h s t h e d i n o f l a g e l l a t e c o m m u n i t y was c e n t r a t i o n s w h i c h had indicate that f a c t o r i n determining"the the d i n o f l a g e l l a t e community d u r i n g Strait the .__ grazing Strait of Georgia t h a t the observed d i n o f l a g e l l a t e s was m e a s u r e d p a r a m e t e r t h a t was due on summer the dino- remains association t o some highly correlated with un- salinity „ LITERATURE CITED A n o n . MS, 1 9 6 8 . B r i t i s h C o l u m b i a I n l e t C r u i s e s , 1967. D a t a Report., No. 27. I n s t . O c e a n o g . U n i v . B.C. V a n c o u v e r , B.C. 36p. 3 f i g . . , 1969. B r i t i s h C o l u m b i a I n l e t and P a c i f i c O c e a n C r u i s e s , 1968. D a t a R e p o r t Mo. 2 8 . I n s t . Oceanog. U n i v . B.C., V a n c o u v e r , B.C. ( i n p r e p a r a t i o n ) . A n t i a , N.H. , C D . M c A l l i s t e r . , T.R, P a r s o n s , K. S t e p h e n s and J.D.H. S t r i c k l a n d . 1963. F u r t h e r measurements of primary production using a large-volume p l a s t i c sphere. L i m n o l . O c e a n o g . , 8: 166 - 1 8 3 . B a i l e y , L.W. and A.H. M a c K a y . 1916. Diatoms from the e a s t ern c o a s t of Vancouver I s l a n d . T r a n s . Roy. S o c . C a n a d a , S e r . I l l , 9: 141 - 1 7 3 . B a r k e r , H.A. 1935. The c u l t u r e and p h y s i o l o g y o f t h e m a r i n e dinoflagellates. A r c h . M i k r o b i o l . , 6: 157 - 1 8 1 . B a r n e s , H. 1 9 5 2 . The u s e o f t r a n s f o r m a t i o n s i n m a r i n e biological statistics. J . Cons. I n t . E x o l o r . Mer., 61-71. * 18: and G.R. H a s l e . 1 9 5 7 . A s t a t i s t i c a l examination o f t h e d i s t r i b u t i o n o f some s p e c i e s o f d i n o f l a g e l l a t e s . i n t h e p o l l u t e d i n n e r O s l o F j o r d . . N y t t Mag. Bot., 5: 113 - 1 2 3 . B e k l e m i s h e v , K.V. 1954. F e e d i n g o f some common p l a n k t o n . copepods In f a r e a s t e r n seas. Z o o l . J„ I n s t . O c e a n o l . A c a d . S c i . U.S.S.R., 33: 1210 - 1229. B i g e l o w , H.B, 1926. Gulf of Maine. Plankton of the o f f s h o r e waters of the B u l l . U.S. B u r . F i s h . , 4 0 : 1 - 507. , L. L i l l i c k and M. S e a r s . 1940. Phytoplankton and p l a n k t o n i c p r o t o z o a o f t h e o f f s h o r e w a t e r s o f t h e Gulf of Maine. P a r t I . Numerical d i s t r i b u t i o n . Trans. Amer. P h i l . S o c . 3 1 : 149 - 1 9 1 . B r a a r u d , T. 1 9 3 5 . The 0 s t - e x p e d i t i o n t o t h e Denmark S t r a i t , 1929. I I . The p h y t o p l a n k t o n and i t s c o n d i t i o n s o f g r o w t h . H v a l r a d e t s S k r . N r . 10: 7 - 1 7 3 . . 1945. A phytoplankton waters of i n n e r Oslo F j o r d . survey of the p o l l u t e d H v e l . S k r . N r . 28: 1 - 164. 98 _„ 1 9 5 1 . S a l i n i t y a s an e c o l o g i c a l f a c t o r phytoplankton. P h y s i o l . P l a n t . 4: 28 - 3 4 . •[ i n marine __. 1 9 6 1 . C u l t i v a t i o n o f m a r i n e o r g a n i s m s a s a means o f u n d e r s t a n d i n g e n v i r o n m e n t a l i n f l u e n c e on p o p u l a t i o n s . I n O c e a n o g r a p h y . P u b l i c . No. 6 7 , A.A.A.S. W a s h i n g t o n , D.C. e d . M. S e a r s : 2 7 1 - 2 9 8 . B r a n d t , T . v o n , N.W. R a k e s t r a w a n d C.E. R e n n . 1 9 3 7 . The e x p e r i m e n t a l d e c o m p o s i t i o n and r e g e n e r a t i o n o f n i t r o genous o r g a n i c m a t t e r i n s e a water. B i o l . B u l l . Woods H o l e , 7 2 : 165 - 1 7 5 . and . 19 39. Further experiments on t h e d e c o m p o s i t i o n s and r e g e n e r a t i o n o f n i t r o g e n o u s organic matter i n sea water. B i o l . B u l l . Woods " H o l e , 7 7 : 285 - 2 9 6 . B r o w n l e e , K.A. 1 9 6 5 . S t a t i s t i c a l T h e o r y a n d M e t h o d o l o g y i n S c i e n c e a n d E n g i n e e r i n g . New Y o r k . J o h n W i l e y & Sons. 590 p p . B u r k h o l d e r , P.R.'and L.M. B u r k h o l d e r . 1 9 5 6 . V i t a m i n B.^ i n s u s p e n d e d s o l i d s a n d m a r s h muds c o l l e c t e d along the coast of Georgia. L i m n o l . O c e a n o a r . , 1: 202. - 2 0 8 . and . 1958. S t u d i e s on B v i t a m i n s i n r e l a t i o n to p r o d u c t i v i t y of the Bahia Fosforescente, Puerto Rico. B u l l . M a r . S c i . o f t h e G u l f and C a r r i b . , 8: 2 0 1 - 22 3. . , a n d L.R. A l m o d o v a r . 1 9 6 7 . C a r b o n a s s i m i l a t i o n o f marine f l a g e l l a t e blooms i n n e r i t i c waters of southern Puerto R i c o . B u l l . Mar. S c i . , 17: 1-15. B u r t o n , M.O. a n d A.G. L o c h h e a d . 1 9 5 1 . S t u d i e s o n t h e p r o d u c t i o n o f B j o - a c t i v e substances by m i c r o o r g a n i s m s . C a n . J . B o t . , " 2 9 : 352 - 3 5 9 . ' C a r l u c c i , A , F . a n d F.B. S i l b e . r n a g e l . 1966. Bioassay of s e a w a t e r I . A 14-c U p t a k e . m e t h o d f o r t h e d e t e r m i n a t i o n o f c o n c e n t r a t i o n s o f v i t a m i n B__2 i n s e a w a t e r . C a n . ', J . M i c r o b i o l . , 1 2 : 175 - 1 8 3 . ; C o n o v e r , S.A.M. 1 9 5 6 . O c e a n o g r a p h y o f L o n g I s l a n d S o u n d , 1952 - 1 9 5 4 . I V . P h y t o p l a n k t o n . B u l l . B i n g h a m O c e a n o g r , C o l l . , 1 5 : 62 - 1 1 2 . 99 C o o p e r , L.H.N. 1 9 3 5 . T h e r a t e o f l i b e r a t i o n o f p h o s p h a t e i n s e a water by t h e breakdown o f p l a n k t o n - organisms. J . M a r . B i o l . A s s . U.K., 20: 197 1 2 0 0 . ••Cowey, C.B. 1 9 5 6 . A p r e l i m i n a r y i n v e s t i g a t i o n o f t h e v a r i a t i o n o f v i t a m i n ' B j 2 i n o c e a n i c and c o a s t a l w a t e r s , J . M a r . B i o l . A s s . U.K., 3 5 : 609 - 6 2 0 . , C u s h i n g , 1 9 5 9 . The s e a s o n a l v a r i a t i o n i n o c e a n i c p r o d u c t i o n as a p r o b l e m i n p o p u l a t i o n d y n a m i c s . J . Cons. I n t . . . E x p l o r . Mer, 24:'455 - 464, ' . D a i s l e v , K.W. 1 9 5 7 . V i t a m i n B^2 i L o n d o n . 1 8 0 : 1041 - 1 0 4 2 . n marine ecology. Nature, D a v i s , Rr.E. a n d D , J . N i c o l . 1 9 6 7 . The m i c r o b i o l o g i c a l o f v i t a m i n B;_2 u s i n g t h e d i a t o m C y c l o t e l l a n a n a . J . e x p . B i o l . med. S c i . , 4 5 : 613 — 6 2 8 . assay Aust. D o d i m e a d , A . J . and G„L, P i c k a r d , 1 9 6 7 . A n n u a l c h a n g e s i n the o c e a n i c - c o a s t a l waters o f the eastern s u b a r c t i c Pacific. J . F i s h . R e s . Bd. Can., 24: 2207 - 2227. D r o o p , M.R. 1 9 5 4 . C o b a l a m i n r e q u i r e m e n t N a t u r e , London, 174: 520. i n Chrysophyceae. . 1 9 5 5 . A. p e l a g i c m a r i n e d i a t o m r e q u i r i n g J". M a r . B i o l . A s s . U.K., 3 4 : 229 - 2 3 1 . . 1957a, V i t a m i n B-_2 i n m a r i n e e c o l o g y . "London. 1 8 0 : 1 0 4 1 . __ ___• ; cobalamin. Nature, . 19 5 7b. A u x o t r o p h y a n d o r g a n i c compounds i n t h e n u t r i t i o n o f Marine phytoplankton. J . Gen. M i c r o b i o l . 16: 286 - 2 9 3 . . 1 9 6 8 . V i t a m i n B__2 a n d m a r i n e e c o l o g y . I V . T h e k i n e t i c s o f u p t a k e , g r o w t h and i n h i b i t i o n i n ^ n o c h r _ y s i s lutheri. J . M a r . B i o l . A s s . U.K., 4 8 : 689 - 733."'. • , J . J . A . M c L a u g h l i n , I . J . P i n t n e r , and L. P r o v a s o l i . 1959. S p e c i f i c i t y o f some p r o t o p h y t e s t o w a r d v i t a m i n B__2-like compounds. P r e p r i n t s I n t , Oceanogr. Congr. 916 - 9 1 8 . E d m o n d s o n , W.T, 1 9 6 5 . R e p r o d u c t i v e r a t e o f p l a n k t o n i c r o t i f e r s as r e l a t e d t o f o o d and t e m p e r a t u r e i n n a t u r e . E c o l . Monogr., 35:-61 - 111. F l e r n i n g e r , A. and R . I . C l u t t e r . 1 9 6 5 . A v o i d a n c e o f t o w e d n e t s by z o o p l a n k t o n . L i m n o l . O c e a n o g r . , 1 0 : 96 - 1 0 4 . 100 Gold., K 1 9 6 2 . N u t r i t i o n o f m a r i n e p h y t o p l a n k t o n .measured by• C'I4 u p t a k e and c e l l s i z e d i s t r i b u t i o n . J . Protozool. ( A b s t r . ) 9 ( s u p p l . ) : 10. 0 _ and J . J . A . M c L a u g h l i n . 1 9 6 1 . C - u p t a k e a s an. index'of n u t r i t i o n a l status i n marine d i n o f l a g e l l a t e s . I. S a l i n i t y . J . P r o t o z o o l . ( A b s t r . ) 8 ( s u p p l ) : 7. G r a n , H.H. .1929. Investigation of the production of plankton o u t s i d e t h e R o m s h a l s f j o r d 1926 - 1 9 2 7 . C o n s . I n t . ...' Exp l o r . M e r , 5 6 : 5 - 1 1 0 . and E.C. A n g s t . 1 9 3 1 . P l a n k t o n d i a t o m s o f P u g e t • Sound. P u b l . P u g e t S o u n d - B i o l . S t n . , U n i v . Wash., 7: 417 - 5 1 9 . and T. B r a a r u d , 19 35. A q u a n t i t a t i v e study of the p h y t o p l a n k t o n i n t h e Bay o f F u n d y and t h e G u l f o f Maine ( i n c l u d i n g o b s e r v a t i o n s on h y d r o g r a p h y , c h e m i s t r y , and t u r b i d i t y ) . J . B i o l . B d . C a n . , 1: 279 - 4 6 7 . •_ a n d T.G. T h o m p s o n . 19 30. The d i a t o m s a n d p h y s i c a l and c h e m i c a l c o n d i t i o n s o f t h e s e a w a t e r i n t h e S a n Juan A r c h i p e l a g o . P u b l . Puget Sound B i o l . S t n . , U n i v . Wash., 7: 170 - 2 0 3 . G u i l l a r d , R.R.L. 1 9 6 8 . B 1 2 s p e c i f i c i t y diatoms. J . P h y c o l . , 4': 59 - 6 4 . o f marine centric __________ a n d V. C a s s i e . 1 9 6 3 . M i n i m u m c y a n o c o b a l a m i n r e q u i r e . rnents o f some m a r i n e c e n t r i c d i a t o m s . L i m n o l . O c e a n o a r . 8: 229 - 2 3 9 . Hall, H.H., J . C . B e n j a m i n , H.M. B r i c k e r , J . R . G i l l , W.C. H a y n e s and H.M. T s u c h i v a . 1 9 5 0 . A. s u r v e y f o r . B 1 2 p r o d u c i n g m i c r o o r g a n i s m s . P r o c . S o c . Amer. B a c t . 50: 2 1 . H a r r i s , E. 1 9 5 9 . T h e n i t r o g e n c y c l e i n L o n g I s l a n d B u l l . Bingham Oceanogr. C o l l . , 17: 3 1 - 6 5 . Sound. Harvey,- H.W. 19 37. N o t e s o n s e l e c t i v e f e e d i n g bv C a l a n u s . J . M a r . B i o l . A s s . U.K. 2 2 : 97 - 1 0 0 . H a r v e y , H.W. , L.H.N. C o o p e r , M.V,. L e b o u r and F . S . R u s s e l l . 19 35. P l a n k t o n p r o d u c t i o n and i t s c o n t r o l . J . Mar. B i o l , A s s . U.K. 2 0 : 40 7 - 4 4 1 . H a s t i n g s , J.W. and B.M. S w e e n e y , 1 9 6 4 . P h a s e d c e l l d i v i s i o n i n . t h e marine d i n o f l a g e l l a t e s . I n Synchrony i n c e l l d i v i s i o n a n d g r o w t h , e d , E. M e u t h e n . Mew Y o r k . 447 p p . 101 H o l m e s , R.W. and T.M. W i d r i g . 1956. The e n u m e r a t i o n c o l l e c t i o n of marine p h y t o p l a n k t o n . J . C o n s e i l , 21 - 32. and' 22: H u t c h i n s o n , A.H., C C . L u c a s , and M. M c P h a i l . 1929. Seasonal .•' v a r i a t i o n s i n t h e c h e m i c a l and. p h y s i c a l p r o p e r t i e s o f . the waters of the S t r a i t of Georgia i n r e l a t i o n to phytoplankton. T r a n s . R o y a l S o c . Can., 3 r d S e r i e s , 2 3 : 177 - 1 8 8 . H u t n e r , S.H., L. P r o v a s o l i , E.L.R. S t o c k s t a d , C E . Hoffmann, M. B e l t , A . L . F r a n k l i n and.T.H. J u k e s . 1949. Assay . o f a n t i p e r n i c i o u s anemia f a c t o r v;ith E u g l e n a . Proc. S o c . E:<p. B i o l . , N.Y. , 70: 118 - 1 2 1 . ' and ' _.' 195 3. A pigmented marine diatom r e q u i r i n g v i t a m i n B12 and u r a c i l . News B u l l . P h y c o l o g . S o c . Amer., 6: 7 - 8. i J i t t s , H.R., CD. M c A l l i s t e r , K. S t e p h e n s and J.D.H. S t r i c k l a n d . 1964. The c e l l d i v i s i o n r a t e s o f some m a r i n e p h y t o p l a n k t o n as a f u n c t i o n o f l i g h t and temperature. J . F i s h . R e s . Bd. C a n . , 2 1 : 139 - 157. K a s h i w a d a , K., D. K a k i m o t o , and A. o f v i t a m i n B__2 1° s e a w a t e r . U n i v . , 5: 148 - 152. K a n a z o w a . 1959. Mem. F a c . F i s h . • • Studies Kagoshima " . , T. M o r i t a , A. K a n a z o w a and K. K a w a z o e . 19'56. S t u d i e s on v i t a m i n B^2 i n s e a w a t e r . Jap. Soc. S c i . F i s h . B u l l . 7: 637 - 6 4 0 . K o r d a n , H.A. 1 9 6 5 . F l u o r e s c e n t contaminants from p l a s t i c and r u b b e r l a b o r a t o r y e q u i p m e n t . S c i e n c e 149: 1382 . 1383. K r i s s , ' A.E. 1963. M a r i n e M i c r o b i o l o g y (Deep S e a ) . John W i l e y & Sons. 5 36 pp. New York, Lau, K.S., C G o t t l i e b , L, W a s s e r m a n , and V. H e r b e r t . 1965. M e a s u r e m e n t o f s e r u m v i t a m i n B12 l e v e l u s i n g r a d i o i s o t o p e d i l u t i o n and c o a t e d c h a r c o a l . B l o o d , 2 6 : 202 • 214. L e b o u r , M.V. 1922. Food of the p l a n k t o n organisms. Mar. B i o l . A s s . U.K., 1 2 : 644 - 6 7 7 . J. L e g a r e , J , E . H . 1957. The q u a l i t a t i v e and q u a n t i t a t i v e d i s t r i b u t i o n of p l a n k t o n i n the S t r a i t of Georgia i n r e l a t i o n to c e r t a i n oceanographic f a c t o r s . J. Fish. R e s . Bd. C a n . , 14: 521 - 5 5 2 . . L e v / i n , R. 1954. vitamin A marine Stichococcus « Gen. M i c r o b i o l . , J 102 sp. which r e q u i r e s 10: 93 - 9 6 . L i l l i c k , L.C. 1938. P r e l i m i n a r y r e p o r t on t h e of t h e G u l f o f M a i n e . Amer. M i d i . N a t . 2 0 : phytoplankton 624 - 6 4 0 . 1940. P h y t o p l a n k t o n and p l a n k t o n i c p r o t o z o a o f . . the o f f s h o r e waters of the G u l f of Maine. Part I I . T r a n s . Amer. P h i l . S o c , 3 1 : 19 3 - 237. . , L o c h h e a d , A-.G. and R.H. T h e x t o n . 1951. V i t a m i n B^2 as growth f a c t o r f o r s o i l b a c t e r i a . N a t u r e , London,, 167: 1034. L o e b l i c h , A.R. I I I . 1967. Aspects of b i o c h e m i s t r y of the Pyrrhophyta. 255. a the'physiology and P h y k o s , 5: 216 - L u c a s , C.C., and A.H. H u t c h i n s o n . 1927. A bio-hydrographical i n v e s t i g a t i o n o f the sea a d j a c e n t t o the F r a s e r R i v e r Mouth. T r a n s . R o y a l Soc. Can., S e r . I l l , 2 1 : 485 - 5 2 0 . L u n d , J.W.G. , C. K i p l i n g and E.D'. L e C r e n . 1958. The i n v e r t e d m i c r o s c o p e m e t h o d o f e s t i m a t i n g a l g a l n u m b e r s and t h e s t a t i s t i c a l b a s i s o f e s t i m a t i o n s by c o u n t i n q . H v d r o b i o l . , 11: 143 - 170. M a r g a l e f , R. geneity Biology, s i t y of 1958. T e m p o r a l s u c c e s s i o n and s p a t i a l h e t e r o i n phytoplankton. In Perspectives i n Marine e d . A.A. B u z z a t i - T r a v e r s o . B e r k e l e y , U n i v e r C a l i f o r n i a Press. 621 pp. _. 1 9 6 7 a . C b r r e l a c i o n e s e n t r e p a r a m e t r o s o c e a n o graficos del Caribe. I n v e s t , p e s q . , 31: 1 - 15. __. 1 9 6 7 b . The f o o d web- i n t h e H e l g o l . W i s s . M e e r e s u n t e r s . , 15: p e l a g i c environment. 548 - 5 5 9 . M a r s h a l l , S.M. and A.P. O r r . 1952. On t h e b i o l o g y o f Calanus finmarchicus V I I . F a c t o r s a f f e c t i n g egg production. J M a r . B i o l . A s s . U.K., 30: 527 - 547. and . 1961. S t u d i e s on t h e b i o l o g y o f Calanus finmarchicus X I I . J . Mar. B i o l . A s s . U.K., 4 1 : 463 - 4 8 8 . M a t t h e w s , W.H. and F „ P S h e p a r d , .19 62. Sedimentation of Fraser River d e l t a , B r i t i s h Columbia. B u l l . Amer. A s s . P e t r o l . G e o l . , 46: 1416 1443. C 103 M c A l l i s t e r , CD.,• N. Shah and J.D.H. S t r i c k l a n d . . 1 9 6 4 . • M a r i n e p h y t o p l a n k t o n p h o t o s y n t h e s i s as a f u n c t i o n o f l i g h t i n t e n s i t y : a comparison o f methods. J. Fish. Res.- B d . C a n . , 2 1 : 1 5 9 - 1 8 1 . M c L a c h l a n , J . 1 9 6 1 . The e f f e c t o f s a l i n i t y o n g r o w t h and •chlorophyll content i n representative classes of u n i c e l l u l a r m a r i n e a l g a e . C a n . J . M i c r o b i o l . , 7: r /•••• 399 - 4 0 6 . M c L a u g h l i n , J . J . A . a n d P.A. Z a h l . 1 9 5 9 . V i t a m i n r e q u i r e m e n t s i n s y m b i o t i c a l g a e . P r e p r i n t s I n t . Oceanogr. Congr. A-;A.A.S.„ ".Washington, 9 3 0 * - 9 3 1 . M e n z e l , D.W. a n d J . P . S p a e t h . 1 9 6 2 . O c c u r r e n c e o f v i t a m i n B^2 i n t h e S a r g a s s o S e a . L i m n o l . O c e a n o g r . , 7: 151 158. P a r k e , M. and P.S. D i x o n . 1 9 6 8 . C h e c k - l i s t o f B r i t i s h Marine a l g a e - second r e v i s i o n . J . Mar. B i o l . A s s . U.K., 4 8 : 783 - 8 3 2 . P e c k , J . I . and M.R. H a r r i n g t o n . 189 7. O b s e r v a t i o n s on t h e p l a n k t o n o f Puget Sound. T r a n s . N.Y. A c a d . S c i . , 16: 378 - 3 8 7 . P h i f e r , L.D. 1 9 3 3 . S e a s o n a l d i s t r i b u t i o n and o c c u r r e n c e of p h y t o p l a n k t o n diatoms a t F r i d a y Harbor, Washington. U n i v . Wash. P u b l . O c e a n o g r . , 1: 39 - 8 1 . POmeroy,.. L.R. a n d F.M. B u s h . 1 9 5 9 . R e g e n e r a t i o n o f p h o s . p h a t e by m a r i n e a n i m a l s . P r e p r i n t ' s I n t . Oceanogr. Congr. A . A . A . s i W a s h i n g t o n , 893 - 8 9 4 . P r a k a s h , - A . and M.A. R a s h i d . 1 9 6 8 . I n f l u e n c e o f hurnic s u b s t a n c e s o n .the g r o w t h o f m a r i n e " p h y t o p l a n k t o n : dinoflagellates. L i m n o l . O c e a n o g r . , 1 3 : 598 - 6 0 6 . and. F . J . R . T a y l o r . 1 9 6 6 . A " r e d - w a t e r " b l o o m o f ^2HYJ?.y.i ES a c a t ^ n e l l a and i t s r e l a t i o n t o p a r a l y t i c shellfish toxicity, J . F i s h . R e s . B d . C a n . , 2 3 : 1265 1270. a P r o v a s o l i , L. 1 9 5 8 . G r o w t h f a c t o r s i n u n i c e l l u l a r m a r i n e a l g a e . I n P e r s p e c t i v e s i n M a r i n e B i o l o g y , e d . A.A. Buzzati-Traverso. Berkeley, U n i v e r s i t y of C a l i f o r n i a P r e s s . 621 p p . and K. G o l d . 1 9 5 7 . Some, n u t r i t i o n a l c h a r a c t e r i s t i c s of Gyrodinium cjDhniji, a c o l o r l e s s marine dinoflagellate. J . P r o t o z o o l . ( A b s t r . ) 4 ( s u p p l ) : 7. 104 and J . J . A . M c L a u g h l i n . 1963. Limited heterotrophy o f some o h o t o s y n t h e t i c d i n o f l a g e l l a t e s . Bact. Proc. 35. ' \ and M.R. D r o o p . 1957. .'. o f a r t i f i c i a l m e d i a f o r m a r i n e a l g a e . 2 5 : 392 - 4 2 8 . _____ The d e v e l o p m e n t Arch. M i k r o b i o l . , , ' •• and I . J . P i n t n e r . 1954.. R e l a t i v e and l i m i t i n g c o n c e n t r a t i o n s of major m i n e r a l c o n s t i t u e n t s •for t h e g r o w t h o f a l g a l f l a g e l l a t e s . Trans. N.Y. A c a d . S c i . , 16: 412 - 4 1 7 . . and I . J . P i n t n e r . 1 9 5 3 . Ecological implications °^ i n i t r o n u t r i t i o n a l r e q u i r e m e n t s o f a l g a l f l a g e l l ates. A n n . N.Y. A c a d . S c i . , 56: 839 - 8 5 1 . v Raymont, J.E.G. 1963. P l a n k t o n and P r o d u c t i v i t y Oceans. O x f o r , P e r g a m o n P r e s s . 660 p p . i n the R i l e y , G.A. 1937. S i g n i f i c a n c e of the M i s s i s s i p p i R i v e r drainage f o r b i o l o g i c a l c o n d i t i o n s i n the n o r t h e r n Gulf of Mexico. J . Mar. R e s . , 1: 60 - 74. . 19 39. Plankton studies. I I , the western North A t l a n t i c , Mav - J u n e 1939. J . Mar. R e s . , 2: 145 162. . 1946. Factors c o n t r o l l i n g phytoplankton p o p u l a t i o n s on G e o r g e s B a n k . J . M a r . R e s . , 6: 73. and S.A.M. C o n o v e r . 1967. L o n g I s l a n d S o u n d 1954 - 1 9 5 5 . C o l l . , 19: 5 - 34. Phytoplankton B u l l . Bingham 54 - of Oceanogr. R o b b i n s , W„J., A. H e r v e y , and M.E. S t e b b i n s . 1950. Studies o f E u g l e n a and B , B u l l . T o r r e y B o t . C l u b , 77: 423 441. L d , and o f E u g l e n a and B,~. 363 -""375. Bull. . 1951. Torrey Further observations B o t . C l u b , 78: R o u n s e f e l l , G.A. and. A. D r a g o v i c h . 1966. C o r r e l a t i o n between o c e a n o g r a p h i c f a c t o r s and a b u n d a n c e o f t h e F l o r i d a r e d t i d e ( G y r a n o d i n i u m b r e v e D a v i s ) , 1954 - 1 9 6 1 . Bull. M a r . S c i . , 16: 404 - 4 2 2 . R y t h e r , J.H. 1956. P h o t o s y n t h e s i s i n t h e o c e a n as a. f u n c t i o n of l i g h t i n t e n s i t y . L i m n o l . O c e a n o g r . , 1: 61 -~ 70. 105 _______ and . R . R . L . . G u i l l a r d . 1 9 6 2 . S t u d i e s o f m a r i n e ' p l a n k t o n i c d i a t o m s . I I . Use o f C y c l o t e l l a nana H u s t e d t f o r assays o f v i t a m i n B i n seawater.. Can. J . M i c r o b i o l . 8:* 437 - 4 4 5 . ... 1 ? S m i t h , E.L. 1948. P u r i f i c a t i o n o f a n t i - p e r n i c i o u s anemia f a c t o r s from l i v e r . M a t u r e , L o n d o n . 161:••• 6 3 8 . S t a r r , . T . J . 1 9 5 6 . R e l a t i v e a m o u n t s o f v i t a m i n B;_2 i n d e t r i t u s f r o m o c e a n i c and e s t u a r l n e e n v i r o n m e n t s n e a r Sapelo Island,' Georgia. E c o l o g y , 37: 658 - 664.. , M.E. J o n e s a n d D. M a r t i n e z . 1 9 5 7 . The p r o d u c t i o n . o f v i t a m i n B__2~active s u b s t a n c e s by m a r i n e b a c t e r i a . L i m n o l . Oceanogr 2 : 114 - 1 1 9 . S t r i c k l a n d , J.D.H. and T.R. P a r s o n s . . 1 9 6 0 . A", m a n u a l o f sea. w a t e r a n a l y s i s . B u l l . F i s h . R e s . B d . C a n . No. 12 5: . 1 - 185. and . 1 9 6 5 . 'A m a n u a l o f s e a w a t e r a n a lysis. Second e d i t i o n , r e v i s e d . B u l l . F i s h . R e s . Bd. Can. No. 1 2 5 : 1 - 203.. S w e e n e y , B.M. 1 9 5 4 . G y m n o d i n i u m s p e n d e n s , a m a r i n e d i n o f l a g e l l a t e r e q u i r i n g v i t a m i n B,-. Amer. J . B o t . , 4 1 : 821 - 8 2 4 . T a y l o r , F.J.R. 1968. P a r a s i t i s m o f t h e t o x i n - p r o d u c i n g d i n o f l a g e l l a t e G o n y a u l a x c a t e n e l l a by t h e e n d o p a r a s i t i c d i n o f l a g e l l a t e A^o^boj^hrvs c e r a t i i . J . Fish. R e s . B d . Can.", 2 5 : 2 2 4 1 - 2 2 4 5 . Thomas, W.H..1966. E f f e c t s o f t e m p e r a t u r e and i l l u m i n a n c e on c e l l d i v i s i o n r a t e s o f t h r e e s p e c i e s o f t r o p i c a l oceanic phytoplankton. J . P h y c o l . , 2: 17 - 2 2 . T u l l y , J . P . a n d A . J . D o d i m e a d . 195 7. P r o p e r t i e s of the water i n t h e S t r a i t o f G e o r g i a , B r i t i s h C o l u m b i a , and influencing factors. J . F i s h . R e s . B d . C a n . , 14: 241 - 319." U t e r m o h l , H. 19 3 1 . des P l a n k t o n s . Neue V/ege i n d e r q u a n t i t a t i v e n E r f as sung, Verh„ I n t . V e r . L i m n o l . 5. _. 1 9 5 8 . Z u r V e r v o l l k o m m n u n g d e r q u a n t i t a t i v e n Phytoplankton - Methodik. .M i t t . I n t . Ver. Limnol., • 9: 1 - 3 8 . V i s h n i a c , H . S . a n d G.A". R i l e y . 1 9 6 1 . C o b a l a m i n a n d t h i a m i n e _ I n L o n g I s l a n d S o u n d : p a t t e r n s o f d i s t r i b u t i o n and ecologica.l s i g n i f i c a n c e . L i m n o l . O c e a n o g r . , 6: 36 - 4 1 . 106 W a i l e s , G.H. 1 9 2 8 . D i n o f l a g e l l a t e s f r o m B r i t i s h C o l u m b i a w i t h d e s c r i p t i o n s o f new s p e c i e s . Museum a n d A r t N o t e s , V a n c o u v e r C i t y Museum, 3: 1 - 8 . _. 1 9 3 3 . The p l a n k t o n o f t h e w e s t c o a s t o f V a n c o u v e r .Island, B r i t i s h Columbia. Museum a n d A r t N o t e s , .' V a n c o u v e r C i t y Museum, 7 ( s u p p l ) : 1 - 9 . 1939. Canadian Mastigophora. Fish. Press, 1 - 45. P a c i f i c fauna. 1 . Protozoa. l e . R e s . B d . C a n . and U n i v . T o r o n t o W a l d i c h u k , M. 1 9 5 7 . P h y s i c a l O c e a n o g r a p h y o f t h e ' S t r a i t • o f G e o r g i a , B r i t i s h Columbia.. F i s h . Res. Bd. Can., 14: 321 - 4 8 6 . Wood, E.D., F . A . J . A r m s t r o n g and F.A. R i c h a r d s . 1 9 6 7 . D e t e r m i n a t i o n o f n i t r a t e i n s e a w a t e r by cadmium-copper reduction to n i t r i t e . J . M a r . B i o l . A s s . U.K., 4 7 : 23-31. Wood, E . J . F . 195 3. H e t e r o t r o p h i c b a c t e r i a i n marine environments of Eastern A u s t r a l i a . A u s t . J . Mar. F r e s h w a t e r R e s . , 4: 160 - 2 0 0 . Z o B e l l , C.E. 1 9 4 6 . M a r i n e M i c r o b i o l o g y . Co. W a l t h a m M a s s . , 240 p p . . Chronica Botanica 107 APPENDIX Cruise I Dates TABLE I ,' CRUISE DATES 1966-1967 1967-1968 Oct. 12-14 25-26 Nov. 15-17 27-28 Dec. Jan. Feb. 9-11 21-22 Mar. 20 19-20 Apr. 25-27 16-18 May 22-23 10-11 June 12-13 7-8 July 26-28 8-9 Aug. Sept. 10-11 25-27 13-14 APPENDIX I I Species D i s t r i b u t i o n ..Plates of and T a x o n o m i c Species Notes S P E C I E S D I S T R I B U T I O N AND TAXONOMIC • -Prorocentrum gracile NOTES ( F i g . 1) was r e c o r d e d only f r o m J u l y t o S e p t e m b e r i n t h e u p p e r 20 m e t e r s o f t h e w a t e r column. This species 23,500 c e l l s / l i t e r The a t t a i n e d a maximum c o n c e n t r a t i o n o f i n September. species of Dinophysis a b u n d a n t and o c c u r r e d The . oxytoxoldes July 1968. was 1,600 c e l l s / l i t e r f o r a t S t a t i o n A i n September 1967. ( F i g . 7) was n o t e d October with Oxyphysis o c c a s i o n a l l y between J u l y and a p e a k o f 1,400 c e l l s / l i t e r This never o n l y d u r i n g t h e l a t e ' summer a n d f a l l . highest concentration recorded — ' lachm-annii ( F i g . 2 - 6) w e r e at Station C i n s p e c i e s was f o u n d t o o c c u r t o a depth o f 50 m e t e r s . A m p h i d i n i u m longum s e v e r a l months i n v e r y liter i n June 1968). l o w numbers i n January A. s t i g m a t i c u m both it years 260 only cells/ ( F i g . 9 ) was and a l s o i n l o w numbers (200 c e l l s / ( F i g . 8 ) was f o u n d i n the e a r l y spring of d u r i n g t h e summer a n d e a r l y f a l l a p e a k c o n c e n t r a t i o n o f 1,100 c e l l s / l i t e r S t a t i o n C i n September 1968. distributed from 1967 v/as t h e maximum c o n c e n t r a t i o n ) . and a g a i n reached (maximum b e i n g S i m i l a r l y , A. s p h e n o i d e s i n f r e q u e n t l y encountered liter ( F i g . 1 0 ) was r e c o r d e d A. s t i g m a t i c u m when at t e n d e d t o be t h r o u g h o u t t h e water column a t a l l depths sampled. Cochlodinium (Fig. brandtil 1 1 ) , and C. p u l c h e l l u m ( F i g . 1 2 ) , C. . h e l i c q i d e s ( F i g . 13) were e a c h n o t e d only a few.times.,- m a i n l y i n t h e summer a n d a l w a y s i-n l o w n u m b e r s ( l e s s t h a n 100 c e l l s / l i t e r ) . 20 C, b r a n d t i i a n d 50 m e t e r s d e p t h , w h i l e . C , occurred h e l i c o i d e s a n d C. w e r e g e n e r a l l y found, i n t h e u p p e r 20 m e t e r s . •(Fig. 14) was r e c o r d e d between' pulchellum C„ p u p a from June t h r o u g h March and a l m o s t a l w a y s i n l o w n u m b e r s e x c e p t i n A u g u s t 1968 when i t a t t a i n e d a peak c o n c e n t r a t i o n o f 1,000 c e l l s / l i t e r a t S t a t i o n C. G y m n o d i n i u m c i n e t u r n ( F i g . 1 5 ) was r e c o r d e d month o f t h e s t u d y except i n A p r i l a maximum c o n c e n t r a t i o n i n fall of both years. July was ( F i g . 2 0 ) was r e c o r d e d 1967 a n d a g a i n particularly i n June 1968. prevalent maximum c o n c e n t r a t i o n rising highest (Fig. during concentration 17) was p r e s e n t i n A u g u s t .1968). only t w i c e : once i n G. p a u l s e n i the early i n March n o t e d f o r any s p e c i e s . T h i s was t h e G. i n small simplex numbers. G. s p l e n d e n s ( F i g , 1 8 ) was n o t e d i n t h e summer m o n t h s a maximum c o n c e n t r a t i o n 5° v i r e s c e n s ( F i g . 19) was a b u n d a n t i n J u l y concentration in was found i n only i n J u l y 1967. 1967 (maximum once Gymnodinium s p . 1 ( F i g . 21) s e v e r a l s a m p l e s f r o m N o v e m b e r 1966 a n d 1967 a n d was a l w a y s i n l o w n u m b e r s . similar with was 12,000 c e l l s / l i t e r ) b u t was s e e n o n l y t h e summer s a m p l e s o f 1 9 6 8 . January was o f 550 c e l l s / l i t e r a i n F e b r u a r y 1968, 1968. throughout the year ( F i g . 16) spring with o f 15,000 c e l l s / l i t e r t o 127,500 c e l l s / l i t e r I t reached (3,500 c e l l s / l i t e r i n S e p t e m b e r 1967 a n d 9,500 c e l l s / l i t e r G. d i s s i m i l e every i n s h a p e t o G. a r c t i c u m Wulff, This species b u t was somewhat • larger. . Small 1 i n c l u s i o n s and a n u c l e u s Gymnodinium s p . 1, b u t no d e f i n i t e v/ere s e e n . Gymnodinium throughout in May the year 1967 liter). 2 were e v i d e n t i n plastids, as i n G. arcticum, s p . 2 ( F i g . 22) a p p e a r e d s p o r a d i c a l l y i n low numbers becoming most abundant (450 c e l l s / l i t e r ) This 1 and M a r c h 1968 (1,350 cells/ s m a l l s p e c i e s was n o t c o m p a r a b l e t o any known dinoflagellate. The n u c l e u s ' was n o t o b s e r v e d few The inclusions. and t h e r e were g i r d l e was c o n s i s t e n t l y b e l o w t h e c e n t e r of the c e l l . G y r o d i n i u m c i t r i n u m ( F i g . 2 3 ) was r e c o r d e d month except January and A p r i l d u r i n g t h e s p r i n g months. 4,200 c e l l s / l i t e r was G. fusiforme 1 9 6 8 , and was m o s t common A peak c o n c e n t r a t i o n o f found i n March 1968. ( F i g . 24) o c c u r r e d i n M a r c h 1968 b e i n g species. year w a s found present chiefly during the l a t e low numbers. S° f l a g e l l a r e study. This ' Gyrodinium fall Gyrodinium s p . 2 ( F i g . 2 7 ) was occurred s p r i n g months, similar always i n size to s p . 1 v/as t h a t o f G. f l a g e l 1 a r e . found i n l o w numbers summer m o n t h s , o c c u r r i n g a t a l l d e p t h s . i n s h a p e t o G. b i c o n i c u m the ( F i g . 25) w e r e The g i r d l e o f G y r o d i n i u m f u r t h e r a n t e r i o r than similar throughout s p . 1 ( F i g . 26) and e a r l y positioned the cells/ a t 50 and 100 m e t e r s o f G. v a r i a n s s p e c i e s was Schiller. t h e s p r i n g : 2,200 i n l o w numbers Only f o u r i n d i v i d u a l s during this month's t h e maximum c o n c e n t r a t i o n f o r t h i s and was n o t i n f r e q u e n t l y n o t e d depth. in G. 2 £ 2 £ Similarly, i n n e a r l y every s a m p l e s and was m o s t p r e v a l e n t d u r i n g liter each This during species K o f o i d & S w e e z y b u t was was smaller o f G. and d i d n o t p o s s e s s the t y p i c a l l y nucleus biconicum. K a t o d i n i um glaucum during elongate ( F i g . 28) o c c u r r e d t h e summer m o n t h s , b e i n g reaching principally f o u n d a t a l l d e p t h s and a maximum c o n c e n t r a t i o n i n J u l y of both years (2,650 c e l l s / l i t e r , 1967 a n d 2,200 c e l l s / l i t e r , Polykrikos kofoidii ( F i g . 30) was f o u n d o n l y d u r i n g months and a l w a y s i n low numbers. recorded 1966. the Dicroerisma ( i n press) both years with May 1 9 6 8 . during scintillans o s i l o n e r e i e l l a g e n . n . , s p . n. T a y l o r & ( F i g . 36) was m o s t a b u n d a n t i n May o f a peak c o n c e n t r a t i o n This species o f 1,150 v/as a l s o r e c o r d e d c h a r a c t e r i z e d by a b i f u r c a t i n g All f r o m t h e 50 and 100 samples. d u r i n g "the-summer m o n t h s a t a l l d e p t h s . is n o t e d i n November few i n d i v i d u a l s o f N o c t i l u c a w e r e f o u n d i n t h e summer t h e summer s p o r a d i c a l l y throughout a n d was c o n s i s t e n t l y r e c o r d e d A very 1968). m a r i n a was o n l y once: a s i n g l e specimen being meter samples. in Oxyrrhis Pronoctiluca pelagica occurred year Cattell 113. the species D. internal cells/liter i n l o w numbers psilonereiella s k e l e t a l structxare. o f G l e n o d i n i u m were f o u n d only t h e summer m o n t h s , g e n e r a l l y o c c u r r i n g i n f r e q u e n t l y and/In low numbers. G. p i l u i a largest concentration reaching ( F i g . 29) o c c u r r e d 2,150 c e l l s / l i t e r i n .August 1 9 6 8 . Species i nthe " o f P e r i d i n i u m were c h i e f l y summer m o n t h s a l t h o u g h found during the a f e w were most abundant o r o c c u r r e d ( 114 only during t h e s p r i n g months. r e a c h e d a peak but abundance F o r e x a m p l e , _P. a c h r o m a t i c u m o f 3,950 c e l l s / l i t e r d i d occur o c c a s i o n a l l y during v/as o n l y r e c o r d e d liter. i n March P. m i n u s c u l u m (Fig. 33) was 1968 w i t h i n 1967 All 1,250 cells/liter. and -16,750 c e l l s / l i t e r P. G. abundantly o c c u r r i n g species o f 7,100 i n low All of this cells/liter genus w i t h i n June a peak 1968. t h e summer numbers. the species of Ceratium occurred i n the C. species August between ( F i g . 52) v/as t h e m o s t numbers, genus w i t h cells/ i n 1968. summer' and f a l l m o n t h s and g e n e r a l l y i n l o w arcticum cells/ 1968. 1,150 P r o t o c e r a t i um' r e t i c u 1 a turn v/as f o u n d o n l y d u r i n g months.and of the o f G o n y a u l a x were r e c o r d e d tamarensis and triquetrum i n June i n J u l y .with and 7,950 c e l l s / l i t e r J u n e and S e p t e m b e r . cells/ 3,250 c e l l s / l i t e r a maximum d e n s i t y o f 4 9 , 3 5 0 the species concentration a maximum o f 2,450 1968 w i t h P. t r o c h o i d e u m was m o s t a b u n d a n t liter J?. nudum t h e most p r e d o m i n a n t d i n o f l a g e l l a t e i n J u n e 1967 1968 ( F i g . 32) d i s p l a y e d two p e a k s o f summer p e r i o d , r e a c h i n g liter t h e summer. 1968 w i t h c o n c e n t r a t i o n : one i n M a r c h another i n J u l y i n March ( F i g . 4 0 ) v/as t h e m o s t a b u n d a n t a maximum c o n c e n t r a t i o n o f 1,650 late of cells/liter this in 1968. Goniodqma o s t e n f e l d i i J u l y w i t h a peak c o n c e n t r a t i o n J u n e 1968. v/as f o u n d o n l y i n ' J u n e o f 16,500 c e l l s / l i t e r Paulsenella chaetoceratis ( F i g . 35) was and in found '•' ' l i s • during the summer and fall months i n low species, i s g e n e r a l l y attached d e c i p i e n s or P. C. boreale. c h a e t o c e r a t i s was the setae parasitic o f C. n e a r J u a n de Taylor This but t o be A by however, was to the found a case p a r a s i t e i n Sequim Pyrocystis lunula occurred September. Cystodinium In September of both y e a r s similar attached recently described this i n s i z e and always found to occur and sp. i n low s h a p e t o C. of 9y^sJ_5_d_j}JA_m. Bay in 1 low was numbers. steinii i n p a i r s which does not common i n t h e known s p e c i e s This Chaetoceros s i n g l e specimen of (1968) has Fuca S t r a i t . s p e c i e s was was study, of Amoebophyra c e r a t i i , infestation n u m b e r s b e t w e e n J u n e and only setae c o n s i s t e n t l y f o u n d t o be dinoflagellate, dinoflagellate recorded In t h i s concavicornis. i n A u g u s t 1968. of to the concentrations. Klebs appear .PLATE I Figure 1. Prorocentrum g r a c i l e , l a t e r a l view. Figure 2. Dinophysis infundibulus, l a t e r a l view. Figure 3. D. p u l c h e l l a , l a t e r a l and v e n t r a l view Figure 4. D. lachma'nnii, l a t e r a l view. Figure 5. D. norvegica, l a t e r a l view. Figure 6. D. rotundata, l a t e r a l view. Figure 7. Oxyphysis oxytoxoides, l a t e r a l view. Figure 8. Amphidinium stigmaticum, v e n t r a l view. Figure 9. A. sphenoides, v e n t r a l view. Figure 10. A. longum, d o r s a l view. PLATE 1 I 2 6 8 9 10 I 20LI 1 •PLATE; I I Figure 11. Cochlodinium h e l i c o i d e s , ventral view. Figure 12. C. brandtii, lateral Figure 13. C . pulchellum, l a t e r a l Figure 14. C. pupa, l a t e r a l Figure 15. Gymnodinium cinctum, ventral view. Figure 16. G. paulseni, d i v i d i n g and ventral view Figure 17. G. simplex, ventral view. Figure 18. G. splendens, ventral view. Figure 19. G. virescens, view. view.' view. ventral view. PLATE I—H 2 Op II PLATE I I I Figure 20. Gymnodinium d i s s i m i l e , ventral view Figure 21. Gymnodinium sp. 1, ventral view. Figure 22. Gymnodinium sp. 2, ventral view. Figure 23. Gyrodinium citrinum, l a t e r a l Figure 24. G. fusiforme, l a t e r a l Figure 25. G. varians, Figure 26. Gyrodinium sp. 1, Figure 27. Gyrodinium sp. .2, ventral view. Figure 28. Katodinium glaucum, ventral view. view. view. l a t e r a l view, op_. r e v . lateral view. PLATE 21 26 2 7 h — i 20p III 22 2 8 PLATE IV Figure 29. Glenodinium p i l u l a , ventral view. Figure 30. Polykrikos k o f o i d i i , ventral view. Figure 31. Peridinium tuba, ventral view. Figure 32. P. minusculum, ventral view. Figure 33. P. triquetrum, dorsal view. Figure 34. Gonyaulax diacantha, Figure 35. Paulsenella chaetoceratis, on Chaetoceros concavicornis. Figure 36. Dicroerisma p s i l o n e r e i e l l a , dorsal view. ' " ventral view, op_. r e v . PLATE IV PLATE V Figure 37. Peridinium oceanicum, v e n t r a l view. Figure 38. Ceratium fusus, v e n t r a l view. Figure 39. Cystodinium sp. 1. l a t e r a l view. Figure 40. Ceratium areticum, v e n t r a l view. Figure 41. C. horridum, v e n t r a l view. PLATE VI Figure 42. Peridinium brevipes, v e n t r a l view. Figure 43. P. conicum, v e n t r a l view. Figure 44. P. c r a s s i p e s , v e n t r a l view. Figure 45. P. depressum, v e n t r a l view. Figure 46. P. divergens, v e n t r a l view. Figure 47. Gonyaulax scrippsae, v e n t r a l view. P L A T E VI 4 0 y PLATE V I I Figure 48. Peridinium l e o n i s , v e n t r a l view. Figure 49. P. minutum, v e n t r a l and d o r s a l view. Figure 50. P. pentagonum, v e n t r a l view. Figure 51. Gonyaulax t r i a c a n t h a , v e n t r a l view. Figure 52. G. tamerensis, v e n t r a l and d o r s a l view 130 APPENDIX I I I D i s t r i b u t i o n o f .B.^ i n Spring 1968 DISTRIBUTION OF B ^ IN SPRING 1968' : , jj_/'' " . ',,; • : / . ' P a t c h e s ' o f h i g h B.^ c o n c e n t r a t i o n were r e c o r d e d i n The S t r a i t o f G e o r g i a d u r i n g t h e s p r i n g months o f 196.8 (Figure 1). I t appeared t h a t t h e s e 'patches* i n t h e s u r f a c e w a t e r s near S t a t i o n D. originated A comparison of s e c t i o n s from t h e s p r i n g months ( F i g u r e 1) s u g g e s t e d t h a t t h e s e ' p a t c h e s ' were moving northward i n the i n t e r m e d i a t e w a t e r s o f t h e s t r a i t a l o n g i s o p y c n a l e s ( T u l l y and Dodime'ad, •1957; W a l d i c h u k , 1957). As l i t t l e i s known about t h e c i r c u l a t i o n of the i n t e r m e d i a t e waters i n the S t r a i t o f Georgia, these of 'patches* may p r o v i d e a c r u d e e s t i m a t e t h e v e l o c i t y o f water movement a t t h e s e depths. 132 STATIONS MARCH STATIONS E A C D E MAY F i g u r e 1. S p r i n g D i s t r i b u t i o n o f B_2 i Georgia i n l o n g i t u d i n a l section. n t n e Strait o
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Dinoflagellates and vitamin B12 in the Strait of Georgia,...
Open Collections
UBC Theses and Dissertations
Featured Collection
UBC Theses and Dissertations
Dinoflagellates and vitamin B12 in the Strait of Georgia, British Columbia Cattell, Sidney Allen 1969
pdf
Page Metadata
Item Metadata
Title | Dinoflagellates and vitamin B12 in the Strait of Georgia, British Columbia |
Creator |
Cattell, Sidney Allen |
Publisher | University of British Columbia |
Date Issued | 1969 |
Description | The purpose of this study was to compare the distribution of dinoflagellates in the Strait of Georgia, British Columbia with a number of environmental parameters, and in particular with vitamin B₁₂ concentrations. The latter was determined by a modified bioassay technique, employing the marine dinoflagellate, Amphidinium carterae Hulburt. The conclusions are based on the analysis of 511 samples from 19 cruises. The annual cycle of vitamin B₁₂ found to be characterized by three major peaks of concentration: 1) a peak following the spring 'bloom' of phytoplankton; 2) a summer increase that was closely associated with silt particles contained in river runoff; and 3) a fall maximum that followed the breakdown of density gradients in the water column. Seventy-seven species of dinoflagellates were recorded from the Strait of Georgia. The temporal distribution of dinoflagellates was divided into two distinct periods of abundance: one occurring during the early spring months and another during the summer months. The results of multiple regression analyses between the dinoflagellates and the environmental parameters measured (vitamin B₁₂, nitrogen, phosphorus, zooplankton, temperature, salinity and sunlight) indicated that the size of the dinoflagellate community in the early spring was closely associated with vitamin B₁₂ concentration in the water column. Nitrogen concentration was apparently a significant factor in determining the size of the community during the late summer months. Phosphorus concentration did not appear to be closely related with total dinoflagellate numbers. The composition and seasonal distribution of the dinoflagellates was found to be essentially similar to that of other northern temperate neritic waters. The major exception was the presence of a distinct spring component in the Strait of Georgia, consisting largely of small nonthecate species. |
Subject |
Vitamins Mastigophora |
Genre |
Thesis/Dissertation |
Type |
Text |
Language | eng |
Date Available | 2011-07-16 |
Provider | Vancouver : University of British Columbia Library |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
DOI | 10.14288/1.0104321 |
URI | http://hdl.handle.net/2429/36040 |
Degree |
Doctor of Philosophy - PhD |
Program |
Botany |
Affiliation |
Science, Faculty of Botany, Department of |
Degree Grantor | University of British Columbia |
Campus |
UBCV |
Scholarly Level | Graduate |
Aggregated Source Repository | DSpace |
Download
- Media
- 831-UBC_1969_A1 C38.pdf [ 6.38MB ]
- Metadata
- JSON: 831-1.0104321.json
- JSON-LD: 831-1.0104321-ld.json
- RDF/XML (Pretty): 831-1.0104321-rdf.xml
- RDF/JSON: 831-1.0104321-rdf.json
- Turtle: 831-1.0104321-turtle.txt
- N-Triples: 831-1.0104321-rdf-ntriples.txt
- Original Record: 831-1.0104321-source.json
- Full Text
- 831-1.0104321-fulltext.txt
- Citation
- 831-1.0104321.ris
Full Text
Cite
Citation Scheme:
Usage Statistics
Share
Embed
Customize your widget with the following options, then copy and paste the code below into the HTML
of your page to embed this item in your website.
<div id="ubcOpenCollectionsWidgetDisplay">
<script id="ubcOpenCollectionsWidget"
src="{[{embed.src}]}"
data-item="{[{embed.item}]}"
data-collection="{[{embed.collection}]}"
data-metadata="{[{embed.showMetadata}]}"
data-width="{[{embed.width}]}"
async >
</script>
</div>

http://iiif.library.ubc.ca/presentation/dsp.831.1-0104321/manifest