Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Dinoflagellates and vitamin B12 in the Strait of Georgia, British Columbia Cattell, Sidney Allen 1969

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1969_A1 C38.pdf [ 6.38MB ]
Metadata
JSON: 831-1.0104321.json
JSON-LD: 831-1.0104321-ld.json
RDF/XML (Pretty): 831-1.0104321-rdf.xml
RDF/JSON: 831-1.0104321-rdf.json
Turtle: 831-1.0104321-turtle.txt
N-Triples: 831-1.0104321-rdf-ntriples.txt
Original Record: 831-1.0104321-source.json
Full Text
831-1.0104321-fulltext.txt
Citation
831-1.0104321.ris

Full Text

DINOFLAGELLATES  AND V I T A M I N B  12.  I N THE S T R A I T OF GEORGIA, B R I T I SH COLUMBIA  by S.  ALLEN  B.S., U n i v e r s i t y M.S., U n i v e r s i t y  CATTELL of the Pacific of the P a c i f i c  T H E S I S SUBMITTED I N P A R T I A L F U L F I L L M E N T THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in  t h e Department of" Botany  We a c c e p t t h i s t h e s i s to the required  as c o n f o r m i n g standard  THE U N I V E R S I T Y OF B R I T I S H COLUMBIA J u n e 19 69  In p r e s e n t i n g an the  thesis  advanced degree at Library  I further for  this  shall  the  agree that  his  permission  of  this  written  representatives. thesis  be  for extensive  g r a n t e d by  the  It is understood  for financial  gain  of  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  British  available for  permission.  Department  f u l f i l m e n t of  U n i v e r s i t y of  make i t f r e e l y  s c h o l a r l y p u r p o s e s may  by  in p a r t i a l  Columbia  shall  requirements  Columbia,  Head o f my  be  I agree  r e f e r e n c e and copying of  that  not  the  that  Study.  this  thesis  Department  copying or  for  or  publication  allowed without  my  vi:" •. v' .  .,  :  The  . ...  . ABSTRACT  purpose o f t h i s  study  ;.- •.  was t o c o m p a r e t h e  d i s t r i b u t i o n of d i n o f l a g e l l a t e s i n the S t r a i t British and  Columbia with  of  a number o f e n v i r o n m e n t a l  i n particular with vitamin  .was: d e t e r m i n e d b y a m o d i f i e d  conclusions  from  Georgia, parameters,  concentrations.  bioassay  technique,  : the marine d i n o f l a g e l l a t e , Amphidinium c a r t e r a e The  : :;..  f  The  latte  employing Hulburt.  a r e b a s e d o n t h e a n a l y s i s o f 511 s a m p l e s  19 c r u i s e s . The  annual c y c l e o f vitamin  c h a r a c t e r i z e d by t h r e e  3  S  found t o be  major peaks o f c o n c e n t r a t i o n :  peak f o l l o w i n g t h e s p r i n g  'bloom' o f p h y t o p l a n k t o n ;  summer i n c r e a s e  t h a t was c l o s e l y  icles  i n river  contained  W  associated with  r u n o f f ; a n d 3) a f a l l  f o l l o w e d t h e breakdown o f d e n s i t y g r a d i e n t s  1.) a 2) a  silt  part-  maximum  that  i n the water  column. Seventy-seven species recorded  from t h e S t r a i t  o f d i n o f l a g e l l a t e s were  of Georgia.  The t e m p o r a l  u t i o n o f d i n o f l a g e l l a t e s was d i v i d e d i n t o periods  o f abundance: one o c c u r r i n g d u r i n g  months and a n o t h e r d u r i n g  and  the environmental  two d i s t i n c t the early spring  t h e summer m o n t h s .  of m u l t i p l e regression analyses  distrib-  The r e s u l t s  between' t h e d i n o f l a g e l l a t e s  parameters measured  n i t r o g e n , phosphorus, zooplankton,  (vitamin  t e m p e r a t u r e , - s a l i n i t y and  sunlight) indicated that the size of the d i n o f l a g e l l a t e c o m m u n i t y i n t h e e a r l y s p r i n g was c l o s e l y  associated  with  vitamin  concentration  concentration determining  was  the  i n the  apparently  size  months.  . Phosphorus  related  with t o t a l  of  the  of  other  exception in  the  thecate  was  Strait  the of  species.  found  to  be  late to  summer  be  closely  d i s t r i b u t i o n of  essentially  neritic  presence of  appear  in  numbers.  and s e a s o n a l  temperate  Georgia,  d i d not  Nitrogen  factor  community d u r i n g the  dinoflagellate  was  northern  a significant  concentration  The c o m p o s i t i o n dinoflagellates  v/ater column,^  waters.  a distinct  consisting  similar The  spring  largely  of  to  the that  major component small  non-  iv „•;•••' ABSTRACT  TABLE.: OF CONTENTS'  -  >  _  •' ±i  TABLE OF CONTENTS  ' •,  "...  i  L I S T OF TABLES  v  L I S T OF FIGURES  .".  -V.  ^  MATERIALS AND METHODS.,.  viii  - 1.  '  5  Sampling  5 analysis  8  Sunlight Plankton  17 analysis  Statistical  18  analysis  19  RESULTS  22  T e m p e r a t u r e and s a l i n i t y  2 3  SUnlight  2 3  Nitrogen Vitamin  and p h o s p h o r u s B^^  .  3  Zooplankton  3  0 5  .42.  Dinoflagellates  42  Regression  52  analysis  DISCUSSION Vitamin  •  '.- i x  INTRODUCTION  Nutrient  i  ' .  ACKNOWLEDGEMENT  v  63 B^-  Regression  •  6 3  analysis  . D i n o f l a g e l l a t e s • •: SUMMARY AND CONCLUSIONS  72 •  .89 95 .  LITERATURE CITED  , -  107  APPENDIX I - C r u i s e D a t e s APPENDIX.II - Species D i s t r i b u t i o n Taxonomic Notes Plates of Species APPENDIX I I I - D i s t r i b u t i o n S p r i n a 1968  ' • 97  of B  ?  and 109 in  130  .  vi . L I S T OF TABLES  "  .TABLE ' . I  PAGE: 12  B i o a s s a y c u l t u r e medium  II  -' .  - P h o s p h o r u s and n i t r o g e n c o n c e n t r a t i o n s ( p g - a t / 1 ) d u r i n g t h e f a l l m o n t h s o f 1967  31  III  P h o s p h o r u s and n i t r o g e n c o n c e n t r a t i o n s ( u g - a t / 1 ) d u r i n g t h e w i n t e r m o n t h s o f 1968  .32  IV  P h o s p h o r u s and n i t r o g e n . c o n c e n t r a t i o n s ( u g - a t / 1 ) d u r i n g t h e s p r i n g m o n t h s o f 1968  33  V  P h o s p h o r u s and n i t r o g e n c o n c e n t r a t i o n s ( u g - a t / 1 ) d u r i n g t h e summer m o n t h s o f 1968  34  VI  Regression c o e f f i c i e n t s  VII  T o t a l and p a r t i a l  VIII  Regression c o e f f i c i e n t s f o r time-series a n a l y s e s ( M a r c h - A u g u s t , 1968)  55  2 T o t a l and p a r t x a l R f o r t i m e - s e r i e s a n a l y s e s ( M a r c h - A u g u s t , 1968)  56  for individual  cruises 53  2  IX X:  .  R  for individual  54  R e g r e s s i o n c o e f f i c i e n t s and p a r t i a l coefficients- of determination for £• .t-riguetrum & G-. p a u l s e n i  XI  cruises  Cruise dates  57 108  vii LIST  OF FIGURES  FIGURE 1.  .' PAGE  S t r a i t o f G e o r g i a and a s s o c i a t e d :showing s t a t i o n p o s i t i o n s .  waters, 6  2.  Seasonal cycle a t S t a t i o n A.  of temperature  and  salinity '  3.  Seasonal cycle - a t S t a t i o n B.  o f temperature  and  salinity  4.  Seasonal cycle a t S t a t i o n C.  of temperature - .  and  salinity  5.  Seasonal cycle at S t a t i o n D.  of temperature •  and  salinity  6.  Seasonal cycle at Station"E.  of temperature •'  and  salinity  7. .  Seasonal changes i n i n s o l a t i o n i n the u p p e r 10 m e t e r s o f t h e w a t e r c o l u m n .  8.  Seasonal d i s t r i b u t i o n of vitamin S t a t i o n Ao  B^  at  9.  Seasonal d i s t r i b u t i o n of vitamin S t a t i o n B.  B^  at  10.  Seasonal d i s t r i b u t i o n of vitamin Station C. .  B,~ a t  •11.  Seasonal d i s t r i b u t i o n of vitamin S t a t i o n D.  B^  at  12.  Seasonal d i s t r i b u t i o n of vitamin S t a t i o n E. • . . ' .  B-  at  Temporal d i s t r i b u t i o n o f Calanus in the S t r a i t of Georgia.  pacificus  13. 14. 15. 16.  2  24 . 2 5 26 27 28 .29 36 37  '  3  8 39 40 43  Seasonal d i s t r i b u t i o n of d i n o f l a g e l l a t e s a t S t a t i o n A. . . "  44  Seasonal d i s t r i b u t i o n of d i n o f l a g e l l a t e s a t ' S t a t i o n B.  45  Seasonal d i s t r i b u t i o n of d i n o f l a g e l l a t e s a t S t a t i o n C.  46  V1X1  17. 18. 19.  20.  21.  Seasonal d i s t r i b u t i o n of a t S t a t i o n D. . Seasonal d i s t r i b u t i o n • a t . S t a t i o n E.  of  dinoflagellates"" 47 dinoflagellates •>•'.  .48  T h e o r e t i c a l r e l a t i o n between d i n o f l a g e l l a t e s . (D„V.) and l i m i t e d t o t a l q u a n t i t y o f nutrients (I.V.) with time.  78  T h e o r e t i c a l r e l a t i o n between d i n o f l a g e l l a t e s (D.V.) and l i g h t t e m p e r a t u r e and s a l i n i t y (I.V.)' w i t h time.  .78  Spring d i s t r i b u t i o n of Georgia, i n l o n g i t u d i n a l  132  i n the S t r a i t of section.  • I Dr.  t o develop  helpful  Janet the  would  like, t o express  F . J . R . T a y l o r , who s e r v e d  helped The  ACKNOWLEDGEMENTS  my s i n c e r e t h a n k s t o  a s t h e s i s a d v i s o r , and who  many o f t h e i d e a s u s e d i n t h i s  advice  R. S t e i n ,  R.F. S c a g e l  Special  thesis.  g i v e n b y D r s . G.L. P i c k a r d , G.C. Hughes I I I , a n d G-.H.N. T o w e r s , who s e r v e d o n  t h e s i s committee, i s g r a t e f u l l y  developed  .  acknowledged.  t h a n k s a r e d u e t o M r . S. B o r d e n , who  t h e computer programs used i n t h i s  study,  and t o  Dr.  J . S i b e r t f o r assistance given i n the i n t e r p r e t a t i o n of  the  statistical It  data.  i s a l s o my p l e a s u r e  c r e w o f t h e C.S.S. E h k o l i ,  t o t h a n k t h e o f f i c e r s and  C.S.S. V e c t o r ,  C. N.A.V. E n d e a v o u r a n d H.M.C.S. M i r a m i c h i v a l u a b l e a s s i s t a n c e and c o o p e r a t i o n .  C.N.A.V. L a y m o r e , for their i n -  •INTRODUCTION The from  motivation f o rthis  three considerations. F i r s t l y ,  the temporal: and s p a t i a l existed  little  distribution  in  of dinoflagellates  of the north-eastern P a c i f i c .  of vitamin  i n ' t h e sea.  Thirdly,  lies  British  attempt  t h e d i s t r i b u t i o n o f v i t a m i n B.^  a r e a c h o s e n f o r s t u d y was t h e S t r a i t o f G e o r g i a  between Vancouver I s l a n d  Columbia  approximately  and t h e m a i n l a n d o f  a n d W a s h i n g t o n S t a t e . .The s t r a i t i s  140 n a u t i c a l m i l e s i n l e n g t h a n d up t o 30  n a u t i c a l m i l e s w i d e and has an a v e r a g e and 100 f a t h o m s  (Tully  depth  and Dodimead,  p l a n k t o n i c diatoms coastal waters.  o f between  1957).  Some a t t e n t i o n h a s b e e n d e v o t e d  t o the ecology of  i n the S t r a i t of Georgia  and a s s o c i a t e d  T h e more n o t a b l e v/orks i n t h i s  area  s t u d i e s o f P e c k and H a r r i n g t o n ( 1 8 9 7 ) , B a i l e y  (1916), Lucas  and H u t c h i n s o n  ( 1 9 2 9 ) , G r a n a n d Thompson Phifer at  no  t h e s e a t o a s e l e c t e d group o f p h y t o p l a n k t o n .  which  the  chiefly  i n f o r m a t i o n was a v a i l a b l e o n t h e s e a s o n a l  y e t b e e n made t o r e l a t e  The  50  arose  no s y s t e m a t i c s t u d y o f  distribution  f o rt h e c o a s t a l waters  Secondly,  had  investigation  (19 33)  and L e g a r e  most, been b r i e f l y Wailes  (19 3 0 ) , G r a n a n d A n g s t (1957).  alluded  (1928,  (1927), Hutchinson  Include  and MacKay  et a l . , (1931),  The d i n o f l a g e l l a t e s ,  t o i n these  have  studies.  1933, 1939) has c h a r a c t e r i z e d t h e  s p e c i e s o f d i n o f l a g e l l a t e s p r e s e n t in- t h e S t r a i t o f Georgia, but g i v e s l i t t l e  i n f o r m a t i o n on t h e i r  seasonal  distribution.-  P r a k a s h and in  the  Taylor  Strait  ( 1 9 6 6 ) s t u d i e d an o u t b r e a k -of  of Georgia  c a u s e d by  a  levels of  have i n i t i a t e d •  B^^  i  the  bloom.  n  the  area of  study  H u t n e r e t a l . ( 1 9 4 9 , 1953)  form  after  (Smith,  t h e v i t a m i n had  1948).  phytoplankton  Cassie,  1962;  1963;  R y t h e r and  Guillard,  •phytoplankton  i n the  seasonal  the  limiting  t h e r e had of vitamin the  been o n l y B^  'i  n  Sea  was  vitamins  when t h e s e  three  a c c o m p a n i e d by  rose  i n the  fall  as  the  the  Pintner  Cowey  an  B^^  t o w a r d s a w i n t e r maximum.  i n nature  vitamins Before  s t u d i e s on  sea.  limits  actual determination  and  the  growth  (195 3) of  will  B^  of  (Daisley,  the  enable  a c t u a l l y , become the  present  seasonal  work'  d.istributi---  (1956) d e m o n s t r a t e d concentration  i n c r e a s e i n the  t r a t i o n of p l a n k t o n i c organisms: the situation  vitamin  1962 ; G u i l . l a r d  P r o v a s o l i and  spring-summer d e c l i n e i n v i t a m i n  North  marine  D r o o p , 1955 ; D r o o p e t a l . ,  ever  f o r growth".  the  vitamin  crystalline  been s u b j e c t t o debate  "only the  factors  in  t i m e a number o f  vitamin  sea has  times  absolute  1968).  v a r i a t i o n of these  d e t e c t i o n of the  an  organisms f o r  Guillard,  Droop, 1957a,b, 1968).  have suggested t h a t  the  mug/1) m i g h t  been i s o l a t e d  S w e e n e y , ' 1954;  Whether o r not  195 7;  this  (13.0  have been found t o r e q u i r e t h i s  ( e . g . , L e v / i n , 1954; 1959 ; G o l d ,  Since  suggested that  demonstrated  requirement i n several,phytoplanktonic shortly  water'  dinoflagellate,  G o n y a u l a x a c a t e n e l l a Whedon & K o f o i d , and high  'red  reverse  B^^  being  concentration  in  the  concenthe  i n the  B e c a u s e t h i s work  that  was  sea  e x p l o r a t o r y i n n a t u r e , no attempt was. made t o - a s s e s s t h e e c o l o g i c a l s i g n i f i c a n c e of the vitamin. V i s h n i a c and R i l e y (1961) compared t h e s e a s o n a l  dis-  t r i b u t i o n o f c h l o r o p h y l l a i n Long I s l a n d Sound w i t h t h e d i s t r i b u t i o n o f B.^ > t h i a m i n , n i t r a t e , phosphate and temperature.  N i t r a t e , phosphate and v i t a m i n  were a l l  found t o vary i n v e r s e l y w i t h c h l o r o p h y l l a c o n c e n t r a t i o n , b u t n i t r a t e was presumed t c be t h e n u t r i e n t l i m i t i n g  phyto-  p l a n k t o n growth because o f i t s v e r y low c o n c e n t r a t i o n  during  the s p r i n g and summer months. V i t a m i n B ^ was u n d e t e c t a b l e  i n the surface waters  o f t h e S a r g a s s o Sea d u r i n g t h e l a t e s p r i n g and summer months (Menzel and S p a e t h , 1962) f o l l o w i n g a s p r i n g maximum i n concentration.  V i t a m i n B - ^ - f e c i u i r i n g d i a t o m s were  present  d u r i n g t h e s p r i n g maximum o f B ^ c o n c e n t r a t i o n , b u t were a b s e n t from t h e p l a n k t o n concluded  that  d u r i n g t h e summer months.  probably  i t i o n of the phytoplankton The one  d i d a f f e c t t h e s p e c i e s composi n t h e S a r g a s s o Sea.  unique f e a t u r e of the present  group o f t h e p h y t o p l a n k t o n ,  considered  study i s t h a t only  Dinophyceae, i s being  i n r e l a t i o n t o v i t a m i n B^ . 2  A l l dinoflagellates  previously tested, with the exception of three ( P r o v a s o l i and G o l d ,  I t was  species  1957; M c L a u g h l i n and Z a h l , 1959) have  been shown t o have an a b s o l u t e r e q u i r e m e n t f o r v i t a m i n ( L o e b l i c h , . 1967).  ^  Sweeney (1954) found t h a t l i n e a r i t y o f  the d o s e - r e s p o n s e c u r v e  f o r growth o f Gymnodinium sp^lend^ens  Lebour began t o f a l l o f f o n l y above a B,„ c o n c e n t r a t i o n o f  4  10 mug/1.  Preliminary r e s u l t s -indicate a s i m i l a r  f o r Amphidinium c a r t e r a e Hulburt, the dose-response curve at  although  the  response  linearity  f o r a number o f d i a t o m s f a l l s  c o n c e n t r a t i o n s o f b e t w e e n 3 and  6 mug/1  of  off  (Guillard,  1968). This evidence  suggests  t h a t i t may  t o a t t e m p t t o u n c o v e r c o r r e l a t i o n s betv/een of v i t a m i n B.^  and  be more  realistic  concentrations  t h e d i s t r i b u t i o n o f o n l y one  group  of  p h y t o p l a n k t o n i c o r g a n i s m s known t o h a v e a g e n e r a l r e q u i r e ment f o r t h e v i t a m i n , r a t h e r t h a n phytoplankton The  concentration.as purpose of t h i s  c h a r a c t e r i z e the  seasonal  Dinophyceae i n the possible ecological group of  organisms.  has  t o use  an i n d e x o f  been done i n t h e  s t u d y was,  distribution  S t r a i t of Georgia  past.  therefore, to  and  and  total  abundance o f  the  to i n v e s t i g a t e the  s i g n i f i c a n c e of v i t a m i n  to  this  5  MATERIALS AND METHODS' SAMPLING  ;' .."  ... •  Samples were c o l l e c t e d from f o u r Strait  stations i n the  o f G e o r g i a (A - D) a n d o n e s t a t i o n i n t h e c o n n e c t i n g  w a t e r s b e t w e e n t h e S t r a i t o f G e o r g i a a n d J u a n de F u c a (Figure  1) d u r i n g  19 c r u i s e s b e t w e e n O c t o b e r  S e p t e m b e r 1968 ( A p p e n d i x I - T a b l e I ) . were s e l e c t e d  the of  t h e water column  Fraser  River  runoff  i n areas o f i n t e n s i v e  Station  •conditions  E was s e l e c t e d  i n waters flowing  1200  (National  properties  affects  Stations  tidal  mixing  t o m o n i t o r changes  into the Strait  A h y d r o c a s t was made a t e a c h N.I.O.  A through D  at a l l stations i n the Strait,  a t S t a t i o n C (Waldichuk, 1957).  were l o c a t e d 1957).  Stations  and m i x i n g ) i n t h e s u r f a c e w a t e r s o f  S t r a i t of Georgia.  cularly  1966 and  t o t y p i f y t h e range o f p h y s i c a l  (temperature, s a l i n i t y  Strait  stability parti-  A and D (Waldichuk, i n nutrient  of Georgia.  station., using  plastic  I n s t i t u t e o f Oceanography) b o t t l e s o f  ml c a p a c i t y .  These p l a s t i c  b o t t l e s were used i n p r e -  ference t o metal water  samplers t o prevent metal  a t i o n o f t h e samples.  W a t e r was c o l l e c t e d f r o m s i x d e p t h s  (surface,  5, 1 0 , 2 0 , 50 a n d 100 m e t e r s )  S t a t i o n D, a n d f r o m f i v e meters)  at Station  E.  depths  s t a t i o n was n o t f e a s i b l e b e c a u s e off  a t S t a t i o n A through  (surface,  A 100 m e t e r  contamin-  sample  5, 1 0 , 20 a n d 50 at the l a t t e r  o f the tendency  to drift  s t a t i o n i n t o an a r e a o f r o c k o u t c r o p p i n g a t l e s s  100 m e t e r s .  To e l i m i n a t e  than  cumbersome r e f e r e n c e t o d e p t h a t  F i g u r e 1.  S t r a i t o f G e o r g i a and a s s o c i a t e d showing s t a t i o n p o s i t i o n s .  waters,  a station, into the  the station  a single 20 m e t e r  letter  entity. sample  and d e p t h w i l l  F o r example,  at Station  (10 g i o d i n e ; 10% g l a c i a l specific  S t a t i o n A-20 r e f e r s t o  of each water sample  s i x drops of modified Lugol's Iodine 20 g p o t a s s i u m i o d i n e d i s s o l v e d  acetic  acid).  identification  dinoflagellates present. sample were f i l t e r e d filter  combined  A.  F i v e hundred m i l l i l i t e r s .preserved with  be  These  Salinity Autolab inductively  solution  i n 200 m l o f a  s a m p l e s were u s e d f o r t h e  and q u a n t i t a t i v e e n u m e r a t i o n o f t h e Three hundred m i l l i l i t e r s  t h r o u g h a 0.22 -u GS M i l l i p o r e  and f r o z e n i n s u l p h u r i c - c h r o m i c  ethylene containers  were  for nutrient  acid cleaned  o f each membrane poly-  analyses i n the laboratory.  samples were c o l l e c t e d  from a l l depths.  An  c o u p l e d s a l i n o m e t e r was u s e d t o d e t e r m i n e  salinity. E a c h N.I.O. b o t t l e v/as l o a d e d w i t h protected  'Richter  and W e i s e *  reversing  a  single,  thermometer  to  d e t e r m i n e t h e t e m p e r a t u r e a t each s a m p l i n g d e p t h . A submarine photometer with cell  a Weston  was u s e d t o d e t e r m i n e t h e r e l a t i v e  u p p e r 20 m e t e r s o f t h e w a t e r A single vertical 'meters t o t h e s u r f a c e  light  photovoltaic intensity  i n the  column. p l a n k t o n tow was made f r o m  a t each s t a t i o n u s i n g  a n e t 32 cm i n .  d i a m e t e r a t t h e m o u t h and c o n s t r u c t e d o f n y l o n n e t t i n g a mean a p e r t u r e s i z e o f 64 u .  100  with  The s a m p l e s w e r e p r e s e r v e d  with modified Lugol's Iodine solution  and w e r e u s e d t o s u p p l e -  ment t h e t a x o n o m i c a n a l y s i s o f t h e p h y t o p l a n k t o n .  NUTRIENT A N A L Y S I S  -- '  Vitamin  B.^  w e r e d e t e r m i n e d by  concentrations  bioassay  Amphidinium c a r t e r a e ,  and  i n the  employing  using  -  :  sea water  a marine d i n o f l a g e l l a t e ,  a modified  v e r s i o n of  m e t h o d b r i e f l y . d e s c r i b e d by  A n t i a et a l . (1963).  The  bacteria-free  carterae  by  Dr.  N.J.  c u l t u r e o f A.  Antia  bioassay  s o l u t i o n w h i c h has  was  and  then r i n s e d three  allowed  rinse. using  stand  B^^  p r o c e d u r e was  carterae  the  yield  two  solutions  and  psi.  vitamin-free  were s t e r i l i z e d  by  Culture sea  filtration  t h r o u g h 0.22  was  used i n preference  precipitation  i n the v i t a m i n - f r e e  occurred  during  prevents  chemical  autoclaving. breakdown of  5  by  u GS  autoclaving B^  bioassay sterile  S i l b e r n a g e l , 1966).  This the  to autoclaving  sea  v/ater, w h i c h  sterility organics  s o l u t i o n s , v/hereas a u t o c l a v i n g B-  Tests  suppressed  water used i n the  sterilization  of  fourth  medium, v i t a m i n  ( C a r l u c c i and  30%  water  glassware indicated  then s t e r i l i z e d  Millipore filters  B^  glass-  more t i m e s .  n e i t h e r enhanced or  g l a s s w a r e v/as  15 m i n u t e s a t 15  and  The  second set of r i n s e s . Bioassay  for  R o b b i n s e t a l . (1951)  l e a s t s i x hours i n the repeated  All  chromic-sulphuric  from g l a s s .  acid cleaned was  in  times i n g l a s s - d i s t i l l e d  f o r at  chromic-sulphuric  t h a t A. after  to  This  provided  cleaned  b e e n shown by  t o remove a l l t r a c e s o f v i t a m i n w a r e was  was  a  ( F i s h e r i e s Research Board, Vancouver).  glassware used i n the acid  samples  may  method i n the  destroy  i n s o l u t i o n (Robbins et a l . , 1950).  Filterto  avoid  sometimes also medium up  to  Vitamin-free after  s e a w a t e r f o r t h e b i o a s s a y was  t h e m e t h o d o f R y t h e r and G u i l l a r d  ( 1 9 6 2 ) , as  10 g o f N o r i t e - A ( d e c o l o r i z i n g  c a r b o n ) was  shaking  500 m l o f a 6%  of  i t f o r 10 m i n u t e s w i t h  analytical  distilled  water.  Whatman #2 The  filter,  chloride  and  shaken  solution  through  by t h e  a  filter.  chloride  charcoal  and  by  filtration The  t h e n a d d e d t o 1025  a b s o r b e d by t h e c h a r c o a l .  the  t h r o u g h a Whatman #2  through a s t e r i l e vitamin  0.22  samples  ml o f  time  filter was  the  t o remove sterilized  u GS M i l l i p o r e  w e r e t h a w e d and  50 m l P y r e x b r a n d  ( s e e p. 8 )  400° C.  The  and b a k e d  liners  of the screw-caps  detrimental  to p h y t o p l a n k t o n growth  1953).  Bakelite  screw-caps  w h i c h c a n be e x t r a c t e d i s n o t known w h e t h e r toxic  screw-cap  hours as  a g e n t s w h i c h may  (Provasoli  contain  by d i s t i l l e d  and  water  (Kordan,  from the f l a s k s .  be  Pintner,  fluorescent  or not these f l u o r e s c e n t  separately  acid  were removed  t o p h y t o p l a n k t o n , b u t as a p r e c a u t i o n  w a s h e d and d r i e d  ml  on a h o t p l a t e f o r two  t h e y h a v e b e e n shown t o r e t a i n c l e a n i n g  The  filter.  10  which had been c l e a n e d i n c h r o m i c - s u l p h u r i c  solution  sea  the  Finally,  the v i t a m i n - f r e e f i l t r a t e  a l i q u o t s were d i s p e n s e d i n t o  are  by  i n glass-  sodium  f o r one h o u r , d u r i n g w h i c h  passed  It  w/v  the charcoal being r e t a i n e d  s o l u t i o n was  at  pretreated  s o l u t i o n v/as t h e n f i l t e r e d  c h a r c o a l was  s o l u t i o n was  flasks  follows:  and t h e a b o v e o p e r a t i o n r e p e a t e d two more t i m e s .  pretreated  water in  The  sodium  charcoal was.transferred to a fresh  solution The  reagent q u a l i t y  prepared  compounds 1965).  compounds the caps  Any  were  possible  toxic  e f f e c t s f r o m t h e s e c a p s o n c e t h e f l a s k s "had  i n o c u l a t e d were assumed t o have  been  a s i m i l a r e f f e c t on a l l  s a m p l e s , s t a n d a r d s and b l a n k s and t h e r e b y n o t s i g n i f i c a n t l y altering  the r e s u l t s . Three r e p l i c a t e s  milliliters  w e r e made o f e a c h s a m p l e .  of v i t a m i n - f r e e sea water  method on p. 9) were added  minimized s a l i n i t y bringing  A° c a r t e r a e g r o w t h .  samples i n t o The s a l i n i t y  dilution  vitamin-  samples by  a range s u i t a b l e f o r optimum, as a f u n c t i o n o f  f o r A. c a r t e r a e i s 25 o/oo a t - 2 4 ° C w i t h  growth o c c u r r i n g between The  This  o f a p p r o x i m a t e l y 30 o/oo a n d  extremes o f t h e d i f f e r e n t  low s a l i n i t y  growth r a t e ,  (prepared by t h e c h a r c o a l  t o each t e s t f l a s k .  f r e e s e a v/ater h a d a s a l i n i t y  Ten  good  15 a n d 35 o/oo ( M c L a c h l a n , 1961).  e f f e c t on t h e  c o n c e n t r a t i o n s o f t h e samples  by t h e a d d i t i o n o f t h e v i t a m i n - f r e e s e a w a t e r s e r v e d t o keep  B^2 v a l u e s w i t h i n  t h e range o f t h e e x t e r n a l standards  so t h a t e x t r a p o l a t i o n beyond standard regression External  t h e upper l i m i t  l i n e was n o t n e c e s s a r y ( s e e p . 16 ) . s t a n d a r d s were u s e d t o d e t e r m i n e t h e e f f e c t  o f known a m o u n t s o f v i t a m i n - B ^ carterae.  of the calculated  o  n  the f i n a l y i e l d of  S t a n d a r d s w e r e made up b y a d d i n g 20 m l o f  v i t a m i n - f r e e s e a water t o each s t a n d a r d f l a s k . the standards contained B^2«  In addition,  1, 2, 3, 5 o r 10 mug/1 o f v i t a m i n  B l a n k s , c o n t a i n i n g 20 m l o f v i t a m i n - f r e e s e a w a t e r ,  were used t o measure t h e c a r r y - o v e r o f v i t a m i n B ^ inoculum c u l t u r e .  The b l a n k s and e x t e r n a l  s e t up i n t r i p l i c a t e .  from t h e  s t a n d a r d s were  All  flasks  inoculated with sterilized  1 ml  Cornwall Stock  week p r i o r B  12~'f"  r e e  bioassay  medium.  flasks  It and  A.  was  by  The  this  To  inequalities  ml  per  using  c o u n t s w e r e made on  each  total  the  r e s u l t s of  (1)  a m o n g - s a m p l e SS;  this  sum test  a b e a k e r due r  the  the  depleted  samples,  same number  200  final  ml  of yield  to  1 ml  continuous  i n each beaker  was  of  beakers  filter  Cornwall  AH  pipettor.  test  inoculated with  the  was  B.^'  i n the q u a n t i t y ten  one  vitamin  the  t h a t the  Millipore  were  been  remove of  an  pipettor. was  a Model B C o u l t e r Counter.  Three  sample. of  squares  and  (SS)  v/as c a l c u l a t e d f r o m  partitioned into  the v a r i a n c e  (2) w i t h i n - s a m p l e  an  means o f a  week  s e a w a t e r t h a t had  milliliter  determined d i r e c t l y  c u l a t i o n of  of  a.0.22 p GS  carterae culture using  within  effect,  of  continuous  i n o c u l a t i o n so  test this  number o f c e l l s  1 ml  t h a t each, o f  E a c h b e a k e r was  b e a k e r s and.  I ) by  the c u l t u r e s of  received nearly  initial  The  (Table  s a m p l e s ) were  inoculation into  Cornwall  important  through  particles. A.  deplete  e a c h c o n t a i n i n g 99  filtered  test  G r o w t h i n t h i s medium f o r one  a sterilized  carterae.  s e t up  date of bioassay  standards  biased  and  pipettor.  were i n o c u l a t e d w i t h  organisms•during not  s t e r i l e medium  continuous  to v i r t u a l l y  culture using  blanks  of  blanks  c u l t u r e s o f A., c a r t e r a e w e r e s u b - c u l t u r e d  to the  sufficient  (standards,  SS;  to inherent  F-value from the  two  between the  different  the v a r i a n c e  counting ratio  error.  of the  components:  between The  counts  cal-  a m o n g - s a m p l e SS -  TABLE I BIOASSAY CULTURE MEDIUM Total Components Biotin 0.000005 g Thiamine 0.0003 g KNO3 0.05 g KH2PO4 0.007 g TRIS-OH 1.0 g Na2HC03 0.32 g Metal mix - 1.0 ml Distilled H20 50.0 ml pH 8.0  Chelated Metal Mix • 0.004 g - 0.004 g FeCl3-6H20 - 1.0 g ZnS04*7H 0 • 0.3 g MnS04'H20 - 0.6 g Na Mo04'2H20 -- 0.15 g Distilled H0 • 1.0 1 pH •- 7.6 CoCl2"6H 0 2  CUS04-5H20 2  2  2  to the within-sample  SS r e v e a l e d  a t t h e .95 p r o b a b i l i t y due t o t h e C o r n w a l l  level.  was c o n c l u d e d  Since  t h e amount o f v a r i a n c e  due t o t h e c o u n t i n g  Weekly s t e r i l i t y  equal  flasks.  t e s t s w e r e made o n t h e s t o c k  c u l t u r e s o f A. c a r t e r a e b y a s e p t i c a l l y drops of the c u l t u r e t o s t e r i l i z e d c o n t a i n i n g STP medium  different  procedure,  t h a t t h e p i p e t t o r was d i s p e n s i n g  numbers o f o r g a n i s m s t o t h e b i o a s s a y  bioassay  difference  p i p e t t o r was n o t s t a t i s t i c a l l y  t h a n t h e amount o f v a r i a n c e it  no s i g n i f i c a n t  transferring several  screw-cap t e s t  ( P r o v a s o l i e t aJL. , 1 9 5 8 ) .  samples were s i m i l a r l y  tubes Inoculated  checked t o i n s u r e  sterile  conditions. The b i o a s s a y  c u l t u r e s were i n c u b a t e d  b e l o w a bank o f ' d a y l i g h t ' f l u o r e s c e n t b u l b s of  0.15 l a n g l e y s p e r m i n u t e .  positively  p h o t o t a c t i c and t e n d s t o s t i c k  a t 24° C w i t h  nearly optimal  b e t w e e n 0.1 a n d 0.3 l y / m i n . bioassay  (Jitts  c u l t u r e s were m a i n t a i n e d  a b o u t 24° C.  was n o t a t t e m p t e d 30° C ( J i t t s  The o p t i m u m  light  growth  occurring  e t a l . , 1964). a t a m b i e n t room  The temperature  R i g i d temperature c o n t r o l o f the bioassay a s A. c a r t e r a e g r o w s w e l l b e t w e e n 20 a n d  et. a l . ,  Vitamin yield  t o the flasks  f o r A. c a r t e r a e , as a f u n c t i o n o f d i v i s i o n r a t e , i s  0.3 l y / m i n .  of  a rating  a r r a n g e m e n t , a s A. c a r t e r a e  w i t h e i t h e r s i d e o r bottom i l l u m i n a t i o n . value  with  inches  O v e r h e a d i l l u m i n a t i o n was  f o u n d t o be t h e most s a t i s f a c t o r y is  12  o f t h e samples.  1964). c a l c u l a t i o n s w e r e made o n t h e f i n a l The. s a m p l e s r e a c h e d  this  state  14  after  1 1 t o 1 2 days o f incubation..  ations  f o r the f i r s t  e x t r a c t i o n method  procedure  for  centrifuge. disturbed  minutes  The f l u i d  to bring  centrifuge  was d e c a n t e d  at  directly  was t h e n a d d e d t o t h e t u b e T h i s s o l u t i o n was  i n t h e stoppered tube t o e x t r a c t t h e  a n d c a r o t e n o i d s and t h e n c e n t r i f u g e d  4 0 0 0  rpm.  The s u p e r n a t a n t  liquid  for 10  was d e c a n t e d  i n t o a 1 0 cm p a t h - l e n g t h s p e c t r o p h o t o m e t e r  t h e e x t i n c t i o n m e a s u r e d w i t h a Beckman.DU 4 4 0 0  head  leaving the c e l l s un-  t h e v o l u m e e x a c t l y up t o 1 0 m l .  chlorophylls  at  t u b e and  rpm i n a s w i n g - o u t  2 5 0 0  per cent acetone  f o r 1 0 minutes  minutes  at  screw-cap  sample  i n l e s s than 0 . 3 ml o f s o l u t i o n . Ninety  shaken  1 0  determin-  1 9 6 0 ;Antia et al..,  ml o f each b i o a s s a y  15  were added t o a 1 5 ml g r a d u a t e d centrifuged  yield  c r u i s e s w e r e made b y a c h l o r o p h y l l  ( S t r i c k l a n d and P a r s o n s ,  With t h i s  1 9 6 3 ) .  five  The f i n a l  against a  °v  corrected  9 0 %  acetone  blank.  c e l l and  spectrophotometer E a c h v a l u e was  f o r t h e e x t i n c t i o n o f t h e same s o l u t i o n a t  The- w a v e l e n g t h  of  4 4 0 0  7 5 0 0  X.  ?\ m e a s u r e s b o t h , c h l o r o p h y l l s a n d  carotenoids. This e x t r a c t i o n procedure more t h a n a f e w s a m p l e s . involved of  was l a b o r i o u s  Furthermore,  t h e number o f s t e p s  a l l o w e d f o r t h e i n t r o d u c t i o n o f a s i m i l a r number  possible  sources of error i n t o the f i n a l determinations.  The  e x t r a c t i o n p r o c e s s was, t h e r e f o r e ,  a method u s i n g t h e Model B C o u l t e r C o u n t e r through  when h a n d l i n g  replaced with  f o r cruises 6  1 9 . T h i s method i n v o l v e d , a s i n g l e t r a n s f e r o f 1 0  ml o f 190  each  ml o f  membrane numbers the  bioassay seawater  filter  to  were t h e n  final  yield .To  introduced  the  beaker,  test  beaker.  each  test  beaker  Cornwall  not  in  this  that  of  the  of  volumes cells  states. growth the  Counter  calculated of  state,  Coulter  threshold  sea  the  to  cell  determine  of  cell  amount  bioassay was  water.  Coulter  set  p.  .95  up  to  each  into  numbers were made o n An F - v a l u e  using  the  to  of  The d e t e r m i n e d  was b e i n g  was  the  ratio  probability level error  sample  error  were p i p e t t e d  Counter.  li)  of  Ten m i l l i l i t e r s  i n a s i m i l a r manner  current  the  F-value  and i t  was  introduced  that  and a m p l i t u d e m u l t i p l i e r  were c a l i b r a t e d from measurements  determined  value  the  maximum y i e l d  counts  (see  spectrum  Counter,  end e l e c t r i c a l  at  the  A. c a r t e r a e  A. s i s e  beaker  of  u  step.  aperture  Coulter  of  within-sample SS. at  a 0.22  counts  a significant  ml b e a k e r s  no s i g n i f i c a n t  transfer The  ual  test  SS t o  not  250  results  significant  concluded  or  filtered  Three  pipettor  through  Coulter  from the  transfer  ten  using  filtered  containing  sample.  culture  from the  among-sample was  of  ml o f  each  ml b e a k e r  particles.  whether  an A . c a r t e r a e  calculated  the  w i t h the  190  a 250  which had been remove  of  a set  containing  to  made d i r e c t l y  test  was  of  sample  was  maximal  of  an A. c a r t e r a e  with  the  used  to  and  at  the  include a  spectrum  made on 250  at  individ-  and p o s t - m a x i m a l  J-plotter select  would i n c l u d e  'noise'  to  culture  a minimum amount same t i m e  growth  in  component  a realistic  settings  maximal of  lower of  allow for  lower a  minimum l o s s o f c e l l  numbers.  The l o w e r  threshold of the  C o u l t e r C o u n t e r was s e t a t 16 a n d t h e u p p e r t h r e s h o l d a t unlimited  f o r the bioassay  cell  counts.  • was s e t a t 0.345 a n d t h e a m p l i t u d e '.2.0.  blank  and s t a n d a r d .  volumetric counts counts  V  F i v e 20 s e c o n d c o u n t s  standards  •.  \'  ". ;  w e r e made o n e a c h t e s t  Time c o u n t s  sample,  were used i n p r e f e r e n c e t o  because o f the r a p i d i t y with which t h e  c o u l d be r e p l i c a t e d .  not necessary  current  multiplier control at  " •  The a p e r t u r e  F u r t h e r , volumetric counts  s i n c e the t e s t counts  were  were a s s o c i a t e d v/ith t h e  i n a r e l a t i v e m a n n e r a n d , t h e r e f o r e , h a d no d i r e c t  dependency upon t h e volume o f s o l u t i o n counted.  Replicate  counts  v/ere g e n e r a l l y w i t h i n - 3% o f t h e mean a n d a l w a y s  ivithin  - 5% o f t h e mean.  A background count o f t h e  filtered  s e a w a t e r was made a n d t h i s v a l u e p l u s t h e mean b l a n k was  s u b t r a c t e d f r o m t h e mean v a l u e s o f t h e s t a n d a r d  sample  and t e s t  counts.  ^  While  (1967) developed bioassay  this  study  The proportional  f o r the as  organism. final  yield  of.cell  t o added v i t a m i n  squares series  numbers o f A. c a r t e r a e i s U  P to a concentration of  by t h e s t a n d a r d s .  the c a l c u l a t i o n of the B ^  bioassay  and N i c o l  u s i n g C y c l o t e l l a nana Hustedt  10 mug/1., a s d e t e r m i n e d  least  was i n p r o g r e s s , D a v i s  a C o u l t e r Counter technique  of vitamin  the bioassay  a  value  Therefore, f o r  concentrations of the test  r e g r e s s i o n l i n e was e s t i m a t e d f r o m t h e mean s t a n d a r d  values  samples,  f o r each according to  17 the  equation:  Y = A + B (X - X) w h e r e Y i s t h e number o f c e l l s mean v a l u e  o f the standard  coefficient; value  f o ra level  cell  X i s a specified  o f B^2 c o n c e n t r a t i o n s  (1)  counts;  o f X; A i s t h e  B i s the regression  amount o f B^-,; X i s t h e mean  f o r the standards  (Brownlee,  T h i s r e g r e s s i o n l i n e was p l o t t e d a n d i n d i v i d u a l mean counts  i n t h e sample.  This resultant B ^  v a l u e was  b y two t o c o m p e n s a t e f o r t h e o r i g i n a l  vitamin  B^,)-f  r e e  concentrations  p h o s p h o r o u s and n i t r a t e - n i t r i t e  with  nitrogen  w e r e d e t e r m i n e d i n t h e s u r f a c e , 5 a n d 10 m e t e r  water samples u s i n g Parsons  dilution  multi-  sea water.  Reactive  and  sample  w e r e a p p l i e d t o i t t o d e t e r m i n e t h e amount o f  present plied  1965).  t h e m e t h o d s d e s c r i b e d by  (1965).  A modified  Strickland  cadmium r e d u c t i o n  column  d e s c r i b e d b y Wood e t a _ l . ( 1 9 6 7 ) was e m p l o y e d f o r t h e n i t r a t e measurements.  '  SUNLIGHT Daily obtained for  s u n l i g h t measurements  (langleys/day)  f r o m t h e U.B.C. m e t e r o l o g i c a l s t a t i o n .  t h e 30 d a y s p r i o r  were  A mean  t o a c r u i s e was c a l c u l a t e d f o r t h e  statistical  analyses  corrections  w e r e made f o r 5 a n d 10 m e t e r s d e p t h f r o m t h e  photometer r e a d i n g s . situated  value  ( s e e p. 2 0 ) .  Light  absorption  The U.B.C. m e t e r o l o g i c a l s t a t i o n i s  o n P o i n t G r e y w h i c h i s a b o u t mid-way up t h e S t r a i t  of Georgia  on t h e e a s t e r n  side.  The s u n l i g h t m e a s u r e m e n t s  18  from t h i s Strait this  s t a t i o n may  of Georgia.  n o t be r e p r e s e n t a t i v e o f " t h e  entire  H o w e v e r , a mean v a l u e f o r 30 d a y s  s t a t i o n v/as c o n s i d e r e d t o be more r e l e v a n t  w i t h the d i n o f l a g e l l a t e ations taken during  community t h a n s i n g l e  from  f o r comparison  light  observ-  cruises.  PLANKTON A N A L Y S I S The  :  dinoflagellate  counts at the species ( U t e r m o h l , 1931,  level,  1958).  samples using  were q u a n t i f i e d  T h e s e c o u n t s w e r e made w i t h  were t h o r o u g h l y mixed  s e d i m e n t a t i o n chambers. 20 m e t e r s 50  and  a t l e a s t one  chamber  four depths  Samples from the s u r f a c e , The  Zeiss  5,  10  samples and  and  from 50  F i l l e d chambers were allowed, t o  chambers were s e l e c t e d  These samples  ml settle  the  larger.chambers.  f o r the  were c o u n t e d i n t r i p l i c a t e  v a r i a n c e when c o u n t s w e r e l o w .  Progressively  R e p l i c a t i o n o f t h e 50 and  i n s e t t l i n g , the  to  reduce  fewer  cells  20 m e t e r s , h e n c e t h e vise o f t h e  not l o g i s t i c a l l y f e a s i b l e because  involved  into  as a s t a n d a r d i z a t i o n p r o c e s s f o r s t a t i s t i c a l  g e n e r a l l y o c c u r r e d below  was  before dispensing  (Lund e t a_l. , 1 9 5 8 ) .  analysis. the  a  hour f o r each c e n t i m e t e r o f h e i g h t o f  Ten ' m i l l i l i t e r upper  cell  preserved  w e r e c o u n t e d o n l y o n c e i n 25 m l  chambers r e s p e c t i v e l y . for  The  w e r e c o u n t e d i n 10 ml c h a m b e r s .  100 m e t e r s  .'•  t h e s e d i m e n t a t i o n method  C a r l Zeiss inverted plankton microscope. samples  by  /  samples.  100 m e t e r  o f t h e amount o f  samples time  The e n t i r e was d o n e w i t h a 6.3X illumination  c h a m b e r was, a l w a y s , c o u n t e d , . Neofluar objective  and 8X e y e p i e c e s  were few c e l l s  and l i t t l e  was u s e d t o s c a n  Scanning  with.phase-contrast  w i t h c r o s s - h a i r s when  detritus.  there  A. 16X N e o f l u a r o b j e c t i v e  t h e c h a m b e r when t h e r e w e r e many c e l l s  c o n s i d e r a b l e amounts o f d e t r i t u s .  Species  or  Identification  was made w i t h a 40X N e o f l u a r o b j e c t i v e and 12.5X  eyepieces.  S c a l e d r a w i n g s o r p h o t o g r a p h s w e r e made when a p p r o p r i a t e to  facilitate  species  identification.  T h e mean v a l u e o f t h e d i n o f l a g e l l a t e  c o m m u n i t y and  o f e a c h s p e c i e s f r o m t h e u p p e r f o u r d e p t h s was and  expressed  total  number  as t h e number  calculated  of individuals per l i t e r .  of d i n o f l a g e l l a t e s  and t h e n u m b e r s o f e a c h  f r o m t h e 50 and 100 m e t e r s a m p l e s w e r e e x p r e s s e d of i n d i v i d u a l s per l i t e r . were e n c o u n t e r e d  i n this  As no c h a i n - f o r m i n g  by t h e s e d i m e n t a t i o n  were used i n t h e s t a t i s t i c a l  method.  v/as a l s o  These measurements  analyses.  multiple linear.regression  used i n the s t a t i s t i c a l  statistic  per l i t e r  1956).  ANALYSIS  A stepwise  was c a r r i e d  number  dinoflagellates  ( H o l m e s and W i d r i g ,  The number o f z o o p l a n k t o n  STATISTICAL  as  species  s t u d y , no c o r r e c t i o n f o r c o n t a g i o n  ( ' c l u m p i n g ' ) was n e c e s s a r y  estimated  The  a n a l y s i s of the data.  o u t o n an IBM  quantitatively  1130  computing  equation  was  The a n a l y s i s  system.  This .  d e s c r i b e s the a s s o c i a t i o n between  a d e p e n d e n t v a r i a b l e Y a n d a number  of independent  variables ' -  : .-•  •  .:•  20..-  ( X , X ,'.,.'X ) a c c o r d i n g t o the e q u a t i o n : 1  2  n  Y = A + B,X .+ B X •+ ... B X 1 1 2 2 n n 1  0  (2)  0  w h e r e B^, B_,. ... ET a r e t h e p a r t i a l 2  regression  coefficients  f o r Y o n X^ a n d d e t e r m i n e t h e m a g n i t u d e o f c h a n g e i n t h e dependent v a r i a b l e p e r u n i t  c h a n g e i n . an i n d e p e n d e n t , v a r i -  a b l e ; A - i s t h e i n t e r c e p t o n Y when t h e i n d e p e n d e n t are zero (Brownlee,  variables  1965).  To d e t e r m i n e v/hether an i n d e p e n d e n t v a r i a b l e significantly variable,  associated with  the hypothesis (  H Q  with  ly different  community.  associated  The .95 p r o b a b i l i t y  t h r o u g h o u t t o d e t e r m i n e i f B^ was  significant-  from zero (Brownlee, 1965). .  The number o f d i n o f l a g e l l a t e s as t h e dependent v a r i a b l e . 1) v i t a m i n B  If  i t was c o n c l u d e d t h a t t h e  i n q u e s t i o n was s i g n i f i c a n t l y  the d i n o f l a g e l l a t e  level.was used  independent  ) t h a t B^ = 0 was t e s t e d .  t h i s h y p o t h e s i s was r e j e c t e d , independent v a r i a b l e  a particular  was  1 ?  per l i t e r  was t a k e n  The i n d e p e n d e n t v a r i a b l e s  were:  ( m p g / 1 ) , 2 ) p h o s p h a t e ( u g - a t P / 1 ) , 3) n i t r a t e  ( u g - a t N / 1 ) , 4) s a l i n i t y  ( o / o o ) , 5) t e m p e r a t u r e  6) z o o p l a n k t o n ( i n d i v i d u a l s / l i t e r )  (° C ) ,  and 7) s u n l i g h t  (ly/day).  The m u l t i p l e r e g r e s s i o n a n a l y s i s was a p p l i e d t o each  Individual  cruise  complete- d a t a were  (except cruises  1, 2 , 5  and 12 w h e r e  l a c k i n g ) t o determine which, i f any, o f .  t h e i n d e p e n d e n t v a r i a b l e s were s i g n i f i c a n t l y t h e d i n o f l a g e l l a t e community.. T h i s s t a t i s t i c  associated  with  v/as a l s o . u s e d  t o measure the r e l a t i o n between  the independent v a r i a b l e s .  and d i n o f l a g e l l a t e numbers a t e a c h s t a t i o n o v e r t h e s i x m o n t h p e r i o d between- M a r c h referred  to herein  and A u g u s t  1968,  This  as t h e t i m e - s e r i e s m u l t i p l e  will  be  regression  analysis. • two  More d e t a i l e d i n f o r m a t i o n  v/as o b t a i n e d  by s e l e c t i n g  abundantly occurring d i n o f l a g e l l a t e s f o r regression  analysis  at the species  paulseni  ShiHer  triquetrum  three  samples  were Gymnodinium and  Peridinium.  ( t h e summer d o m i n a n t ) . f r o m t h e u p p e r 10 m e t e r s  s t a t i o n were used i n t h e r e g r e s s i o n  majority upper  These  (the s p r i n g dominant)  (Ehrenb.) Lebour The  each  level.  analyses  o f t h e d i n o f l a g e l l a t e s were c o n t a i n e d  layers.  a v a i l a b l e only  A l s o , phosphate f o r the upper  and n i t r a t e  data  as  at the  i n these were  10 m e t e r s o f t h e w a t e r  column.  22  RESULTS The seasonal  results  . "' "."  ;  o f t h e 19 c r u i s e s a r e p r e s e n t e d  b a s i s i n an e f f o r t  a " b i o l o g i c a l l y meaningful  t o b r i n g the data manner".  together i n  Frequent reference i s  made t o s p e c i f i c m o n t h s t o e m p h a s i z e c h a r a c t e r i s t i c of p a r t i c u l a r periods. years out  are considered  Furthermore, the r e s u l t s  together  s e l e c t e d on t h e b a s i s o f l i g h t ,  general ation  different  Winter atures  are lowest  of January  l a y e r s over  intensity  as t h a t t i m e  while  I n steep  surface  Fall  atures  and l i g h t  salinities  Sgrinq  their are- a t  and f a 1 1 a r e d e f i n e d  between t h e w i n t e r  i n c l u d e s March, A p r i l  and summer a n d May when  are r i s i n g  i s c h a r a c t e r i z e d by d e c r e a s i n g intensity.  reaches  d e n s i t y g r a d i e n t s i n t h e upper  and s u r f a c e t e m p e r a t u r e s  lows.  intensity  temperatures also reach  much o f t h e S t r a i t . .  Spring  p e r i o d when t e m p e r -  I t i n c l u d e s t h e months  August, l i g h t  Surface  as p e r i o d s o f t r a n s i t i o n conditions.  popul-  ( n o c r u i s e s w e r e made i n D e c e m b e r ) .  f o r the year  a minimum, r e s u l t i n g  data  w h i c h may be o f  to the dinoflagellate  f o r the year.  summer, J u n e t h r o u g h  highest values  t e m p e r a t u r e and s a l i n i t y  l a y e r s o f t h e w a t e r c o l u m n and i n c i d e n t  and F e b r u a r y  i t s - - y e a r l y maximum.  both  Georgia.  i s considered  i n the surface  radiation  During  of  from  The s e a s o n s have been  periods of the year  ecological significance  i n the S t r a i t  features  a s much a s p o s s i b l e , p o i n t i n g  m a j o r d i f f e r e n c e s between them.  to represent  on a  light  from t h e w i n t e r  surface  This period includes  temperSeptember,  23 O c t o b e r and  November.  - A l l of available  i n the  U n i v e r s i t y of  the environmental 1967  and  British  TEMPERATURE AND  1968  Columbia data  able v a r i a t i o n  i n the  i n t e m p e r a t u r e and  t e m p e r a t u r e and  slight  of  salinities a gradual  seasonal  a  year.  change i n both  summer m o n t h s a l o n g  the y e a r .  with  During  rose  During  the  the  low  the  resulting  surface  highest  salinities,  surface during  surface  g r a d i e n t s i n the upper r e g i o n of  the  temperatures f e l l  i n a breakdown o f the the water  the  resulting  i n t h e u p p e r 20 m e t e r s o f fall  surface  s p r i n g months  t e m p e r a t u r e s were p r e v a l e n t  density gradients  water column.  d e p t h ) and  low  i n c r e a s e i n temperature i n the  High surface  salinities  p e r i o d of  consider-  upper  w i n t e r months were c h a r a c t e r i z e d by  surface  steep  i n the  four  salinity.  (increasing with  in  1969).  underwent  salinity  water temperatures  layers.  (1968,  2 t h r o u g h 6 show t h a t t h e  S t r a i t of Georgia  S t a t i o n E demonstrated only  .there was  are  Oceanography,  reports  the water column over the  The  study  SALINITY  (A - D)  l a y e r s of  from t h i s  I n s t i t u t e of  Comparison of Figures stations  data  and  density  column.  SUNLIGHT The  s u n l i g h t d a t a v/ere s i m i l a r  h a v e b e e n s u m m a r i z e d as  an  f o r both years  average f o r both years  Solar radiation increased  r a p i d l y during  reaching  I n s o l a t i o n below the  a peak i n J u n e .  the  and  In Figure  s p r i n g months, surface,  7.  24  1967 Figure  2.  TIME (MONTHS) S e a s o n a l c y c l e of temperature s a l i n i t y at S t a t i o n A . '  1968 and  25  TIME (MONTHS) Figure  3.  S e a s o n a l c y c l e of temperature s a l i n i t y a t S t a t i o n B.  1968 and  19 6 7  3 4  5  6  1967 F i g u r e 4.  7  19 6 8  8 9  10  II  12  I  TIME (MONTHS)  2  3  4  5  19 6 8  S e a s o n a l c y c l e o f temperature and s a l i n i t y a t S t a t i o n C.  6  7  8  9  27  19 6 7 F i g u r e 5.  TIME (MONTHS)  19 6 8  S e a s o n a l c y c l e of temperature s a l i n i t y a t S t a t i o n D.  and  28.  1967  F i g u r e 6.  TIME (MONTHS)  19 6 8  S e a s o n a l c y c l e o f temperature s a l i n i t y at S t a t i o n E.  and  29  l  2  3  4  -5  6  7  8  9  10  II  MONTH  F i g u r e 7.  S e a s o n a l changes i n i n s o l a t i o n i n the upper 10 meters of t h e w a t e r column.  12  30 however, i n c r e a s e d only and  a t a much s l o w e r  r a t e and r e a c h e d a peak  i n A u g u s t when t h e w a t e r was r e l a t i v e l y  free of plankton  detrital material.  NITROGEN AND PHOSPHORUS .Marked s e a s o n a l concentrations  variation  were e v i d e n t  i n p h o s p h o r u s and n i t r o g e n  a t S t a t i o n s A t h r o u g h D,. b u t  much l e s s d i s t i n g u i s h a b l e a t S t a t i o n E ( T a b l e s  I I - V).  P h o s p h o r u s and n i t r o g e n c o n c e n t r a t i o n s during  t h e w i n t e r months  t h e r e was l i t t l e  (Table  variation  III).  i n concentration  a l s o h o r i z o n t a l l y between s t a t i o n s . by  decreasing  (Table  concentrations  IV), particularly  water column.  During  were  this  high  period  w i t h d e p t h and  S p r i n g was c h a r a c t e r i z e d  of nitrogen  and p h o s p h o r u s  i n t h e upper f i v e meters o f t h e  An e s p e c i a l l y n o t i c e a b l e d e c r e a s e i n n i t r o g e n  •and p h o s p h o r u s c o n c e n t r a t i o n h a d o c c u r r e d  at the three  n o r t h e r n m o s t s t a t i o n s ( A , B and C) b y M a r c h 1968 w i t h t h e lowest  values  Station by. A p r i l no  B).  occurring at the surface Concentration  (except  o f both elements had  1968 a t S t a t i o n A, B and C a n d t h e r e  evidence o f depth s t r a t i f i c a t i o n .  stratification  the lowest  values  was  virtually  since  and .  March.  o f t h e t w o n u t r i e n t s was e v i d e n t i n  May 1968 a t S t a t i o n s A t h r o u g h D ( e x c e p t with  Increased  Values of nitrogen  p h o s p h o r u s a t S t a t i o n D and E h a d d e c r e a s e d Vertical  nitrogen at  nitrogen  occurring at the surface.  and  phosphorus a t S t a t i o n E reached t h e i r h i g h e s t  the  s p r i n g i n May.  a t S t a t i o n C) Nitrogen values f o r  TABLE I I PHOSPHORUS AND NITROGEN CONCENTRATIONS (p.g-at/1) DURING THE FALL MONTHS OF 1967 Stn/ Depth  September P N  October N  P  November P N  A-10  0.9 1.5 1.8  5.9 6.2 12.2  1.8 2.0 2.1  6.2 5.3 6.4  2.1 2.1 2.1  20.3 19.0 20.2  B-0 B-5 B-10  1.0 1.8 1.4  2.4 2.5 7.4  1.9 1.7 1.1  11.5 11.8 13.0  1.9 1.9 1.9  18.1 18.0 17.3  C-0 C-5 C-10  1.6 1.3 1.8  2.5 7.8 11.0  1.6 0.8 1.1  13.0 13.4 ' 14.3  1.7 1.7 1.8  15.5 15.6  D-0 D-5 D-10  1.8 1.4 2.8  4.6 7.3 7.9  1.1 1.9 2.0  14.5 16.6 19.2  1.7 1.7 1.8  14.0 14.1 14.6  E-0 E-5 E-10  2.9 2.1 2.1  11.0 11.1 11.9  2.4 2.4 2.3  18.6 22.0 21.2  2.0 2.1 2.0  14.5 16.7 18.0  A-0 A-5  16.0  TABLE I I I PHOSPHORUS AND NITROGEN CONCENTRATIONS (u\g-at/l) DURING THE WINTER MONTHS OF 1968 Stn/ Depth  P  January N  2.2 2.2 2.1  15.4  15.4  B-5 B-10  2.2 2.3 2.3  C-0 C-5 C-10  2.4 2.2 2.2  16.8 16.0  D-0  2.2 2.2 2.2  15.9  2.1 2.1 2.0  20.1 20.7 21.0  A-0  A-5 A-10 B-0  D-5  D-10  E-0  E-5  E-10  P  February N  16.0 16.5  15.6 16.3  15.9  16.3 16.0  2.0 2.0 1.9  17.6 17.8 18.2  1.6  16.1  1.7 1.9  17.4 19.8  TABLE IV PHOSPHORUS AND NITROGEN CONCENTRATIONS (ug-at/1) DURING THE SPRING MONTHS OF 1968  Stn/ Depth  March  April  May  P  N  P  N  P  N  0.7 1.0 1.5  1.2  A-5 A-10  1.8 1.9 1.8  12.6 12.0 12.4  0.7 1.2 1.5  5.1 9.0 10.7  B-0 B-5 B-10  1.3 1.5 1.6  7.2  6.0 6.0  1.5 1.4 1.4  13.3 14.9 14.5  0.3 0.9 1.5  0.9 7.9 13.2  C-0 C-5 C-10  0.5 1.2 2.1  1.9 5.9 10.0  1.3 1.5 1.5  14.0 14.7 14,0  0.6  0.9 0.3  D-0 D-5 D-10  1.4 1.5 1.7  12.2 12.1 15.0  1.3 1.5 1.2  10.5 12.9 9.4  0.5 0.8 1.3  E-0 E-5 E-10  1.7 2.0 1.7  14.5  1.1 1.0  9.9 8.8 17.5  2.2 2.5 2.2  A-0  4.6  6.7  16.3 16.1  1.6  0.7 1.4  6.1 1.2 2.8  6.7  16.0 18.0  16.4  TABLE V PHOSPHORUS AND NITROGEN CONCENTRATIONS (u.g-at/1) DURING THE SUMMER MONTHS OF 1968 Stn/ Depth  June  July  August N  P  N  P  N  P  A-0 A-5 A-10  0.9 1.1 1.8  3.3 6.3 14.2  0.1 0.3 1.0  0.4 1.7 14.3  0.5 1.3 1.6  2.1 0.8 11.8  B-0  B-5 B-10  0.8 0.8 1.5  3.3 4.3 10.7  0.1 0.3 0.6  0.6 7.4 6.8  0.6 0.4 0.5  0.8 0.4 0.5  C-0 C-5 C-10  0.3 1.2 1.1  0.8 6.6 10.9  0.2 0.2 0.6  1.7 1.3 1.2  0.2 0.5 0.7  0.4 0.5 0.4  D-0 D-5 D-10  0.2 1.1 1.5  0.5 5.4 11.4  0.2 0.9 1.3  0.3 1.6 10.3  1.2 1.7 1.7  7.8 14.4 14.7  E-0 E-5 E-10  1.7 1.6 2.0  16.4  1.7 1.8 1.7  15.2 15.8  2.3 2.3 2.6  20.0 20.1 20.5  15.9 18.5  16.0  '  '  .  ' 35  T h e summer c o n c e n t r a t i o n s remained higher It  7:1 in  low i n the S t r a i t o f Georgia  concentrations  i s interesting  period  o f p h o s p h o r u s and  were r e c o r d e d  in.June ratios  ratio  comparatively  at S t a t i o n E (Table V ) .  to note that during  t h e a v e r a g e N:P  while  nitrogen  this  three  month  at S t a t i o n C decreased  t o 4:1 i n J u l y t o 1:1 i n A u g u s t .  i n d i c a t e s t h a t n i t r o g e n was b e i n g  This  from change  depleted  at a  f a s t e r r a t e t h a n p h o s p h o r u s a n d / o r t h a t p h o s p h o r u s was  being  replenished  than  i n these  u p p e r l a y e r s a t a more r a p i d r a t e  nitrogen. T h e r e was  a general  phorus c o n c e n t r a t i o n s Stratification September. evident  B  the f a l l  of nitrogen with  This  stratification  by O c t o b e r a n d  VITAMIN  during  i n c r e a s e i n n i t r o g e n and p h o s -  apparent In  became p r o g r e s s i v e l y  less  1 2  concentration  in  d e p t h was  (Table I I ) .  November.  There was'considerable  month  months  of vitamin  fluctuation  i n the S t r a i t  t o month. ' However, t h e r e  i n the  of Georgia  was r e m a r k a b l e  from  consistency  t h e t e m p o r a l p a t t e r n o f B-^ c h a n g e w i t h d e p t h a t a n y one  station  and o f t e n b e t w e e n d i f f e r e n t  s t a t i o n s (Figures 8 - 12).  The s p r i n g m o n t h s o f 1967 w e r e c h a r a c t e r i z e d by l o w B  12  c o n c e n  '  : r  'ahions  time during  this  which d i d not exceed  of Georgia  a t any  period.  By J u n e 1967 t h e a v e r a g e B ^ Strait  5.0 mug/1  had d e c r e a s e d  concentration  t o 0.8 mpg/1.  The  f o r the  highest  _l  4  L_J  I  5  7  6  1967  L_J 8  9  1  I  -10 II TIME  12  I  2  3  (MONTHS)  4  I  I  I  I  I  5  6  7  8  9  1968  Figure 8. Seasonal distribution of vitamin Bi2 at Station A.  37  0  2  10  UJ  tsJ  Q_  £ 20  50  100 4  5 6 7 8 19 67  F i g u r e 9.  9 10 II 12 I 2 3 4 TIME (MONTHS)  5 6 7 8 9 19 6 8  S e a s o n a l d i s t r i b u t i o n of v i t a m i n at S t a t i o n B.  B^2  38  4 5 6 7 8 9 1967  F i g u r e 10.  10 II 12 I 2 3 4 TIME (MONTHS)  5 6 7 8 9 1968  S e a s o n a l d i s t r i b u t i o n of v i t a m i n B^2 at S t a t i o n C.  4  5  6  7  8  1967  9  10 II  12  I  2 3 4  TIME (MONTHS)  5  6  7  8  9  1968  F i g u r e 11. S e a s o n a l d i s t r i b u t i o n o f v i t a m i n B^£ a t S t a t i o n D.  40  4  5  6  7 1967  8  9  10 II TIME  12  I  2  (MONTHS)  3  4  5  6  7  8  9  1968  F i g u r e 12. S e a s o n a l d i s t r i b u t i o n o f v i t a m i n B]^2 at S t a t i o n E.  f o r t h i s month was 2.8 mpg/1 a t S t a t i o n J 3 - 0 .  value  undetectable a notable  a t S t a t i o n B - 5 0 , G-100, D-0 and D-5.  increase i n  a b o v e 10 mug/1 b e i n g  B,^. was T h e r e was  concentration i n July with  recorded  values  a t S t a t i o n C-5, C-20 a n d C-50  (Figure 10). T h e r e was a g e n e r a l during  the f a l l  i n c r e a s e i n B.^  months o f 1967, p a r t i c u l a r l y  ten meters a t t h e three n o r t h e r n B^2 c o n c e n t r a t i o n s highest values  a t these  of the year  slightly  over  three  s t a t i o n s reached  i n November.  this  B  concentration (Figure 11).  the S t r a i t of Georgia i n  concentrations  decreased  during  the winter  (1967 - 1968) a t a l l s t a t i o n s i n t h e S t r a i t o f  (except values  n  to this  1967 was 9.5 mug/1. B^  months  i  their  An e x c e p t i o n  t h r e e month p e r i o d  The a v e r a g e c o n c e n t r a t i o n o f B ^ November  i n t h e upper  s t a t i o n s (A, B and C ) .  p a t t e r n was f o u n d a t S t a t i o n D-0 w h e r e B ^ decreased  concentrations  D-0) a n d i n m o s t c a s e s i n February.  reached  The F e b r u a r y  their  lowest  Georgia  winter  a v e r a g e was 5.6 mpg/1 o f  12° T h e r e was c o n s i d e r a b l e f l u c t u a t i o n  concentrations during of high  Figure  1).  B,  ?  ( g r e a t e r than  evident during These 'patches'  Again high  t h e s p r i n g months o f 1968.  B^2 c o n c e n t r a t i o n  particularly  during  i nthe  this  time  10 mpg/1) w e r e  (Appendix I I I -  were f o u n d  a t s t a t i o n s B, C and D.  t h e summer m o n t h s  c o n c e n t r a t i o n were r e c o r d e d  'Patches'  (1968)  'patches'  of  a t S t a t i o n s B, C and D  By A u g u s t B  i n J u n e and J u l y . 'patches'  of high  B^  This  had decreased  c o n c e n t r a t i o n were  2  It i s interesting overall  values  1 2  and no  apparent.  t o n o t e t h a t t h e r e was a g e n e r a l  t r e n d towards i n c r e a s e d B^  2  concentration with  time.  e f f e c t c a n be s e e n f o r any d e p t h a t any s t a t i o n b u t i s  particularly  evident  at Station D (Figure 11). to the Strait  Further,  this  t r e n d was n o t l i m i t e d  of Georgia  also  apparent at S t a t i o n E (Figure 12). I t i s not  w h e t h e r t h i s phenomenon i s t h e r e s u l t o f some l o n g cycling  o f B^  o r whether i t i s simply  2  b u t was understood term  the result of  yearly  variation. ZOOPLANKTONA- s i n g l e was  recorded  s p e c i e s o f c o p e p o d , Calanus_  from t h e samples.  abiandance f o r t h i s  The s e a s o n a l  pacificus  Brodsky,  pattern of  copepod i s summarized i n F i g u r e 13.  DINOFLAGELLATES The flagellate study was  temporal  changes i n t h e .size o f t h e t o t a l  community were s i m i l a r  f o r both  ( F i g u r e s 14 - 1 8 ) . The g e n e r a l  an i n c r e a s e i n n u m b e r s d u r i n g  followed  by a s h a r p  years  pattern that  dino-  of the emerged  t h e e a r l y s p r i n g months,  decrease i n A p r i l  (except  S t a t i o n D).  T h i s was f o l l o w e d by a s e c o n d i n c r e a s e i n n u m b e r s d u r i n g t h e early  summer m o n t h s w i t h d i n o f l a g e l l a t e s  abundant u n t i l The  l a t e O c t o b e r and t h e n seasonal  trends  remaining  falling  relatively  t o a w i n t e r low.  a t each s t a t i o n were g e n e r a l l y  apparent a t a l l depths sampled.  The number o f d i n o f l a g e l l a t e s  Figure  13.  Temporal d i s t r i b u t i o n of Calanus p a c i f i c u s the S t r a i t of G e o r g i a  in  44  II  12  I  2  34  19 6 7  F i g u r e 14.  5  6  7  8 TIME  9  10  II  12  I  (MONTHS)  S e a s o n a l d i s t r i b u t i o n of at S t a t i o n A.  2 3 4 5 6 7 8 9 .  1968  dinoflagellates  45  II 12 I 2 3 4 5 6 7 8 9 1967  F i g u r e 15.  TIME  10 II 12  1 2 3 4 5 6 7 8 9  (MONTHS)  1968  Seasonal d i s t r i b u t i o n of d i n o f l a g e l l a t e s at S t a t i o n B.  46  5 4 _  100  II  12  1  2  3  4  5  6  7  1967  Figure  16.  8  9  TIME  Seasonal at  10 II  12  (MONTHS)  d i s t r i b u t i o n of  Station  C.  1  2  3  4  5  6  7  8  1968  dinoflagellates  9  47  J  I  I  I  II  12  I  2  I  3  1967  Figure 17.  L  4  I  5  I  6  I  7  I  8  9  TIME  I  1  I  10 II  I  L  12  I  I  (MONTHS)  Seasonal distribution of at Station D.  I  2  I  3  I  4  5  I  6  I  I L  7  8  1968  dinoflagellates  9  48  Figure  18.  S e a s o n a l d i s t r i b u t i o n of at S t a t i o n E.  dinoflagellates  at  50 and 100 m e t e r s , h o w e v e r , w e r e u s u a l l y l o w . The.  seasonal  distribution  of the individual  s p e c i e s were  char-  a c t e r i z e d by s m a l l p o p u l a t i o n s o r complete absence o v e r of the year. in  A few s p e c i e s demonstrated  a marked i n c r e a s e  n u m b e r s d u r i n g o n e o r two m o n t h s e i t h e r i n t h e s p r i n g o r  summer m o n t h s . and  The t e m p o r a l  taxonomic notes  distribution  of i n d i v i d u a l  during  this  study.  The s p e c i e s a r e l i s t e d  t h e i r mode o f n u t r i t i o n  as d e t e r m i n e d  absence o f c h l o r o p l a s t s ( i . e . , s y n t h e t i c ) and a c c o r d i n g Parke  and D i x o n  species  are given i n Appendix I I .  A. t o t a l o f 7.7 s p e c i e s ' o f D i n o p h y c e a e was  to  most  below  encountered  according  by t h e presence  or  p h o t o s y n t h e t i c o r non-photo-  t o t h e c l a s s i f i c a t i o n scheme o f  ( 1 9 6 8 ) :  Photosvnthetic  Non-Photosynthetic  PROROCENTRACEAE Prorocentrum Ehrenb. qr_acile Schuett DINOPHYSIACEAE S^UPPiilY^i.S. E h r e n b . infundibulus Schiller . lachmannii Paulsen n o r v e g i c a C l a p . & Lachm. £ulchella ( L e b o u r ) B a l e c h r o t u n d a t a C l a p . & Lachm. Oxy^hysi_s_ K o f o i d oxytoxoides Kofoid GYMNODINIAC EA E Amp_hidinium C l a p . & Lachm. s t i g m a t i c urn S c h i H e r  Amphidinium J;2H21i!Il ° b m . sphenoides Wulff L  50  Photosynthetic  Non-Photosynthetic  Cochlodinium Schuett h e l i c o i d e s Lebour  Cochlodinium • b r a n d t i i Wulff puchellum Lebour DUDa Lebour  Gymnodinium S t e i n c i n e turn K o f . & Sv/ezy paulseni S c h i l l e r s i m p l e x (Lohm.) K o f . & Swezy splendens Lebour v i r e s c e n s K o f . & Swezy sp. 2  Gymnodinium -• d i s s i m i l e  G y r o d i n i u m K o f . & Sv/ezy citrinum Kofoid f u s i f o r m e K o f . & Swezy  Gyrodinium pepo ( S c h u e t t ) K o f . & Swezy varians (Wulff) Schiller sp, 1 sp, 2  Kof. & Swezy  : sp. 1  Katodiniurn qlaucum  Fott (Lebour) Loeblich I I I  •POLYKRIKACEAE Polvkrikos Buetschli k o f o i d i i Chatton PRONOCTILUCACEAE Oxyrrhis Dujardin marina Dujardin Pronoctiluca pelagica  FabreDomer, Fabre-. Domer.  NOCTILUCACEAE Noctiluca Suriray s c i n t i 11 a. n s ( M a c a r t n e y ) E h r enb,  51  Photosynthetic  Non-Photosynthetic  AMPHILOTHACEAE D i c r o e r i s m a g e n . n. T a y l o r Cattell P s i l o n e r e i e l l a s p . n. T a y l o r .& C a t t e l l GLENODINIACEAE Glenodinium Ehrenb. l e n t i c u l a (Berqh) S c h i l l . p i l u l a (Ostenf.) S c h i l l . rotundum (Lebour) S c h i l l . PERIDINIACEAE P e r i d i n i u m Ehrenb. achrornaticum L e v . conicoides Paulsen conicum (Gran) O s t e n f . & Schmidt ££§:£§.i2£§. K o f o i d decipiens Joerg. divergens Ehrenb. excentricum Paulsen g r a n i i Ostenf. leonis P a v i l l . nudurn M e u n i e r p e l l u c i d urn ( B e r g h ) S c h u e t t  Peridinium brevipes Paulsen depressum B a i l e y globulus Stein minusculum P a v i l l . minutum K o f o i d n i p p o n i c u m Abe peeanicum Vanh. • s t e i n i i Joerg. tuba S c h i l l .  E^nl^SSIiyili G r a n  thorianum Paulsen t r i g u e t r u m (Ehrenb.) Lebour t r o c h o i d e u m ( S t e i n ) Lemm.  GONYAULACACEAE Gonyaulax D i e s i n g scrippsae Kofoid s p i n f f e r s ( C l a p . & Lachm.) Diesing •tamerensia. Lebour triacantha Joerg. PROTOCERATIACEAE P r o t o c e r a t i u m Bergh r e t i c u l a t u m ( C l a p , & Lachm.) Buetschli  Gonyaulax diacantha  (Meunier) Schill,  Photosynthetic  Non-Photosyhthetic  CERATTACEAE '  • ,•  "  Ceratium Schrank a r c t i c u m (Ehrenb.) C l e v e fusus (Ehrenb.) D u j a r d i n horrjdum ( C l e v e ) Gran l i n e a t u m (Ehrenb.) C l e v e  , •,,  GONIODOMATACEAE Goniodoma S t e i n o s t e n f e l d i i Paulsen OXYTOZACEAE Murrayella Kofoid punctata Kofoid OODIMIACEAE P a u l s e n e l l a Chatton chaetoceratis (Paulsen) Chatton PHYTODINIACEAE P y r o c y s t i s Thomson lunula (Schuett) Cystodinium sp. 1 INCERTAE  Schuett  Klebs  SEDIS Amoebophyra C h a t t o n c e r a t i i Chatton  REGRESSION  ANALYSIS The r e s u l t s o f t h e m u l t i p l e r e g r e s s i o n  with  the total  d i n o f l a g e l l a t e community a r e summarized i n  Tables VI - IX. Peridinium  analyses  The r e g r e s s i o n  results for  t r i q u e t j r u m and Gymnodinium p a u l s e n i a r e  INDEPENDENT M  CO  c  •z  o b  O  CP  o „ o _ « b «  VARIABLES o  H  O CM  m  o  -<  m  ro  o _  ro i cn — CM  CD —  ro  6^  O  ->l cn  7  O b  ro  _  i  4k ~  _  co ->3 p  CM I CM -  O «  ro  o b  -  I  (9  o o c  P ~ ro 00  O  Ui CM  1  "  o -  o  CM  11 9 o eg"  7 —  co m co  ro _ i  ca  o ~ o b J. -  E  CM 'ro o  I  o  — I ro —  o -  o b  m  o -  ro i  O  ^  i 0) "  b  O  ~  b i CM -*  o - O •-  I  0)  O  -  b J.  -  ca  o O  3D  _  co  40  CD  2) m co co  O  z o o  m -n -n  o  — rn  2  'COH  > r~  m  <  TABLE  VII  TOTAL AND PARTIAL R FOR INDIVIDUAL CRUISES 2  YEAR  1967  MONTH  INDEPENDENT  VARIABLES  R  2  B|2 P0  19 6 8  2  4  6  7  9  10  II  1  3  4  5  6  7  8  9  .84  .81  .81  .62  .46  .49  .73  .46  .82  .74  .40  .50  .83  .89  .83  .06  .20  .35  .33  .33  4  .12 .05  NO3  TEMF .60  .17  SAL  .10  ZOO  .03  SUN  .09  .06  .48 .72  .25  .36  .12  .26  .05  .09  37  .48  .19  .20  .08  .27  .11  .32 .12 .05  J8 .21  55  TABLE REGRESSION  VIII  COEFFICIENTS  ANALYSES ST N.  FOR  ( 6 4 A R C H - A U G U S T , 1968) A  B  C  VARIABLES  0.58  I2  PO  4  N0  3  (-1 2.50  (- ) 1.49  i-\  (-1 0.28  0.16  D  (-i 1.07  INDEPENDENT  0.92  SAL.  (-) 2.78  (-) 0.24  (-i 0.18  ZOO. SUN  1.69  (-1 4.27  i-\  TEMP.  E  (-i 0.08  i-\ B  TIME-SERIES  (-\ 0.01  56  TABLE  IX  T O T A L AND PARTIAL R FOR TIME-SERIES ANALYSES (MARCH - AUGUST, 1968)  INDEPENDENT  VARIABLES  2  ST N.  A  B  R  .77  .75  2  B|  C .7 8  .15  2  4  .05  .06  N0  3  .03  .61  .03  SAL.  .36  E  .70  .82  13  P0  TEMR  D  .14  .64 .07  .10  ZOO. SUN  .07  .26  57  TABLE  X  REGRESSION C O E F F I C I E N T S AND PARTIAL COEFFICIENTS OF DETERMINATION FOR R TRIQU ETRUM SPECIES  1967  COEFFICIENT  VARIABLES  G. PAULSENI G. PAULSENI  R TRIQUETRUM  YEAR  INDEPENDENT  ©  B  19 68 R  2  1968  B  R  (-) 0.18  .17  2  (-) .55  .01  SAL.  (-) 0.13  .89  T E MR  (-) 0.19  .04  (-) 0.08  .18  (-J 0.01  .01  (-) 0.01  .07  P0  4  NO3  ZOO.  SUM  B i-\  0.30  R  2  .34  • ". summarized  i n T a b l e X.  coefficients,  of the regression  B, w h i c h w e r e s t a t i s t i c a l l y  the  .95 p r o b a b i l i t y  VII  and X w i t h  or  Only those values  level  58  significant  at  have been i n c l u d e d i n T a b l e s V I ,  the s i g n of the r e l a t i o n s h i p  (i.e.,  positive  negative). 2 The  IX  c o e f f i c i e n t of determination,  and X) i s e q u a l  dependent the  the square of the t o t a l  sum  of  a m e a s u r e o f t h e amount o f v a r i a t i o n  v a r i a b l e w h i c h c a n be  Edmondson, 1 9 6 5 ) .  T h u s , an R  80%' o f t h e v a r i a n c e dinoflagellate  v a r i a b l e s used  (Riley,  o f .80 w o u l d  i n the dependent  n u m b e r s ) may  squares i n the  signify  that  variable (in this  be p o s s i b l y e x p l a i n e d by  The  partial  that p o r t i o n of the t o t a l able  t h a t may  case  the  i n the m u l t i p l e r e g r e s s i o n  and  i s presumably  unmeasured independent v a r i a b l e ( s ) and/or measurement.  in  1946;  a n a l y s i s , w h i l e 20% o f the v a r i a n c e i n the dependent able remains unexplained  of  a s s o c i a t e d w i t h chance  independent v a r i a b l e s taken together 2  independent  , (Tables V I I ,  t o t h e s q u a r e o f t h e r e g r e s s i o n sum  s q u a r e s d i v i d e d by and p r o v i d e s  R  due  vari-  t o some  inherent error i n  c o e f f i c i e n t of determination i s variation  i n the dependent  be e x p l a i n e d by any p a r t i c u l a r  vari-  independent  variable. The  regression coefficient,  and X) i s u s e f u l f o r c a l c u l a t i n g in  the d i n o f l a g e l l a t e  B,  (Tables  t h e amount o f c h a n g e  community f o r a s p e c i f i e d  c h a n g e i n an i n d e p e n d e n t  V I I , IX  v a r i a b l e and  produced  amount o f  f o r comparing  changes  59 In  the  association  between the  dependent v a r i a b l e  particular  independent v a r i a b l e  analyses.  R e g r e s s i o n c o e f f i c i e n t s can  h o w e v e r , when c o m p a r i n g v a r i a b l e s , on variables  the  may  be  t e m p e r a t u r e was m e a s u r e d as calculated  number o f  tend  langleys  per  day  and  another.  independent  because  recorded i n degrees .Celsius,  f l u c t u a t i o n , of  t o be  a b o u t one In  different  Thus,  while  sunlight  was  the  regression  coefficients  are,  therefore,  not  Furthermore, while  nitrogen  order  larger  order of  than the  the  T a b l e s VI  and It  not  VII;  April  coefficients much b e t t e r the  f o r by  of  the  variation  as  for  for  about  one  nitrogen  much and  possibly  than phosphorus  regression  the  coefficients effect  (Tables VII,  t h i s purpose since  variation  of  dependent v a r i a b l e .  i n the  IX  and  they are  dinoflagellates  various independent v a r i a b l e s  comparable.  of  (see  .  1968).  determination  suited  amount o f  on  be  coefficient for  guides f o r comparing the  independent v a r i a b l e s  coefficient  would u s u a l l y  account f o r  i s evident that  useful  regression  regression  dinoflagellate  sea  magnitude lower than those  dinoflagellates  e v e n t h o u g h n i t r o g e n may more o f  per  phosphorus c o n c e n t r a t i o n s i n the  t h i s case, the  phosphorus with  are  different  dinoflagellates  from these v a r i a b l e s  nitrogen.  of  of  misleading,  phosphorus were b o t h measured i n microgram-atoms  liter,  are  effects  be  a  regression  measured i n d i f f e r e n t u n i t s .  c o m p a r a b l e w i t h one and  the  in different  and  and,  alone  different The X)  partial are  a measure accounted  therefore,  60  ' .  The m u l t i p l e r e g r e s s i o n a n a l y s e s cruises  (Tables  o f "the i n d i v i d u a l ,  V I and V I I ) show t h a t t h e r e v/as c o n s i d e r a b l e  t e m p o r a l change i n t h e independent v a r i a b l e s t h a t significantly  associated with  Vitamin community, m a i n l y particularly  was during  notable  33% o f t h e t o t a l  were  the d i n o f l a g e l l a t e s .  associated with  the d i n o f l a g e l l a t e  t h e e a r l y s p r i n g months.  that vitamin B ^  dinoflagellate  could  variance  It. i s  account f o r over  i n M a r c h 1968 when  the  l a r g e s t concentration of d i n o f l a g e l l a t e s i n t h i s  was  recorded  (Table V I I ) .  T h e r e was  a s i g n i f i c a n t negative  p h o s p h o r u s and d i n o f l a g e l l a t e s i n A p r i l  regression  two v a r i a b l e s i n A p r i l  Nitrogen  the d i n o f l a g e l l a t e  ments  regressions with  negative,  e x c e p t f o r March 1968.  were n o t a v a i l a b l e f o r t h e f i r s t  between  1967 and a p o s i t i v e  a s s o c i a t i o n between these  mainly  study  1968.  community  Nitrogen four cruise  were  measureanalyses  (Table V I ) . Significant  regression occurred  and  d i n o f l a g e l l a t e s more o f t e n t h a n w i t h  ent  variable.  occurring  In a d d i t i o n to being  temperature  any o t h e r  independ-  t h e most  commonly  s i g n i f i c a n t independent v a r i a b l e , temperature 2  a c c o u n t e d f o r more t h a n 5 0 % o f t h e R and  between  value  J u l y 1967 and J a n u a r y and J u l y 1968 Salinity  flagellates  during  I n each case,  was  significantly  the late  salinity  was  i n February  (Tables  V I and V I I ) .  a s s o c i a t e d v/ith  dino-  s p r i n g and e a r l y summer m o n t h s . n e g a t i v e l y r e l a t e d t o t h e community.  61 •  Salinity and  Hay  2  a c c o u n t e d f o r most o f 1968  (Tables  • T h e r e was  VI  and  a negative  i n late winter  and  with  fall  1968)  R  relation and  only  of  i n August  v a r i a t i o n ^ in  1968  (Tables  VI  Zooplankton standing with  the  related  dinof lagellates to the The  analyses  i n February  r e s u l t s of the  i n the  dinoflagellate  V I I I and  number o f d i n o f l a g e l l a t e s  and  was  negatively  1967  and  J u n e 1968.  demonstrated  and  during  the  s i x month p e r i o d .  account f o r over  35%  of  during alone  this was  independent v a r i a b l e except  time period.  significantly  c h a n g e s a t S t a t i o n B.  the  The  significantly  every  could  VI).  regression  to s t a t i o n .  associated with zooplankton  (Table  considerable  a s s o c i a t i o n s from s t a t i o n  c o m m u n i t y a t S t a t i o n A was  associated  positively  time-series multiple  IX)  explain  VII).  stock  community i n A p r i l  (Tables  variation  and  1967  summer and -  Sunlight could  the  and  (February  a p o s i t i v e regression during  the  1967  between s u n l i g h t  early spring  (June t h r o u g h September 1968).  m o r e t h a n 25%  in—June-  value  VII).  dinoflagellates March  the  sunlight  Salinity  dinoflagellate variation  None o f  the  independent v a r i a b l e s  r e l a t e d to the d i n o f l a g e l l a t e Nitrogen,  p h o s p h o r u s and  salinity  were a s s o c i a t e d With d i n o f l a g e l l a t e changes at S t a t i o n C with  nitrogen  flagellate explain D  alone  accounting  variability  over 26%  v/ith v i t a m i n  of  B. ~,  the  at t h i s  f o r o v e r 60% station.  of  the  Sunlight  dinoflagellatevariation  p h o s p h o r u s and  salinity  also  dinocould  at  Station  being  significantly and  related with  the d i n o f l a g e l l a t e s .  t e m p e r a t u r e were b o t h a s s o c i a t e d w i t h  ,ates  at S t a t i o n E'with temperature accounting  64% of the d i n o f l a g e l l a t e v a r i a b i l i t y The the  the  two  and  Vitamin  f o r more t h a n station.  species of d i n o f l a g e l l a t e s ,  Peridinium was  significantly during  dinoflagell-  r e s u l t s of the m u l t i p l e r e g r e s s i o n analyses  individual  paulseni  at t h i s  triquetrum  was £•  r e l a t e d to the d i s t r i b u t i o n  ature  Phosphorus,  Salinity  distribution  ly  were c o n s i d e r e d  and J u l y o f b o t h 1967  associated with  1967.  and  i n Table  o f G.  X.  t h e P.  was  this  1968.  I n 1967  distrib-  salinity  of the v a r i a t i o n i n  t e m p e r a t u r e and triquetrum  o f P. t r i q u e t r u m  associated with  and  the  The  by r e g r e s s i o n a n a l y s i s  i n 1968:  s u n l i g h t were  population  not s i g n i f i c a n t l y  s u n l i g h t being  paulseni  ( F e b r u a r y - M a r c h ) i n 1968.  a b l e t o e x p l a i n n e a r l y 90%  also in  triquetrum  triquetrum.  Gymnodinium  are summarized  r e l a t i o n s b e t w e e n t h e i n d e p e n d e n t v a r i a b l e s and  f o r June  for  t h e o n l y i n d e p e n d e n t v a r i a b l e t h a t v/as  the spring increase  u t i o n o f P.  Phosphorus  r e l a t e d to the.  v i t a m i n B.^*  t h e v a r i a b l e s w h i c h were species.  changes  tempersignificant-  63 DISCUSSION VITAMIN B  • -  1 2  The  e v i d e n c e t h a t now e x i s t s f o r t h e l e v e l s  centration of soluble vitamin coastal of  B  D r o o p , 1954;  P r a k a s h and T a y l o r , 55 rnpg/1 o f B ^  2  1966)  having  Lewin, with  B^  2  i  n  theseai n d i c a t e s that  1954;  values  been recorded  (Kashiwada e t a l . , 195S). reported  2  o n t h e a v e r a g e , c o n t a i n b e t w e e n 5 a n d 10 mug/1  waters, (e.g.,  1 2  B^  1956;  Cowey,  as h i g h  a s 20 t o  i n some c o a s t a l  concentrations  as h i g h  values  a t t h etime o f c o l l e c t i o n ,  a s 200 mpg/1 i n V i n e y a r d  thereby  rendering  Oceanic waters appear t o have lower of  the vitamin with  a concentration  to  a b o u t 4 mpg/1 o f B ^  (e.g.,  2  1959; M e n z e l and S p a e t h , A l l o f these  determination  the  having the  B  regions  B  l 2  undetectable  Kashiwada e t a l . ,  C a r l u c c i and S i l b e r n a g e l , f o r the  concentration. B  1 2  concentration  corresponds t o t h a t found  recorded i n  f o r other  w i t h , an o c c a s i o n a l e x c e p t i o n a l l y l o w v a l u e  been noted i n t h i s 1 2  1962;  spectrum from  Cowey, 1 9 5 6 ;  range i nv i t a m i n  S t r a i t o f Georgia  coastal  these  concentrations  s t u d i e s employed b i o a s s a y s  of vitamin  The  preserved  ( P r o v a s o l i , 1958).  h i g h l y suspect  1966).  areas  (1953)  P r o v a s o l i and P i n t n e r  Sound, M a s s a c h u s e t t s b u t t h e samples h a d n o t been (frozen)  o f con-  distributional  study.  An i n t e r e s t i n g  pattern recorded  feature of  i ntheStrait of  G e o r g i a , was t h e f l u c t u a t i o n s i n c o n c e n t r a t i o n  that  occurred  64  over the period of a year.  This  study  shows t h e r e  t h r e e m a i n p e a k s i n B.^ c o n c e n t r a t i o n Strait the  of Georgia.  One o c c u r r e d  summer a n d a t h i r d  a year  i nthe  i n s p r i n g , another  during  i n the late f a l l .  were u s u a l l y a p p a r e n t v e r t i c a l l y to at least  during  were  These  fluctuations  through the water  ar d e p t h o f 100 m e t e r s  ( t h e lower  column  limit of  s a m p l i n g ) and c o u l d be f o u n d a t a l l s t a t i o n s ( s e e F i g u r e s 8 - 12).  • Cowey ( 1 9 5 6 ) f o u n d o n l y o n e y e a r l y p e a k i n  concentration  i n the North  the w i n t e r months.  Sea.  This  peak o c c u r r e d  M e n z e l and S p a e t h  one  y e a r l y p e a k i n B^  the  spring.  Vishniac  (1962) a l s o n o t e d  c o n c e n t r a t i o n which occurred and R i l e y  during  (1961) r e p o r t e d  only  during  two  B^  c o n c e n t r a t i o n maxima i n Long I s l a n d Sound: one i n t h e l a t e summer and a n o t h e r d u r i n g  the winter  months.  In view o f t h e d i f f e r e n c e s i n the seasonal o f v i t a m i n B^ and  the previous  consider sea.  concentrations  found between t h e present  studies cited  a b o v e . I t seems i m p o r t a n t  w h a t f a c t o r s m i g h t c o n t r o l B^  In this  regard,  there  factors  into  of the vitamin?;  study to  i nthe t o be  2 ) how i s  t h e w a t e r c o l u m n ? ; and 3) w h a t  are responsible f o r the decrease i n concentration  of the v i t a m i n  i n the water  Previous  column?  s t u d i e s h a v e shown b a c t e r i a t o b e m a j o r  producers o f soliable vitamin B ^ and  concentration  are three major questions  a n s w e r e d : 1) w h a t i s t h e s o u r c e the v i t a m i n introduced  pattern  (Hall  e t al_. , 1950; B u r t o n  L o c h h e a d , 1 9 5 1 ; L o c h h e a d and T h e x t o n , 1 9 5 1 ; S t a r r e t a l . , "  65  1 9 5 7 ) . a n d t h e r e seems t o b e l i t t l e is  also true i n the S t r a i t of Georgia.  phytoplankton (Robbins  have been found  soluble B^ Basically  biologically column:  active  1) i n s i t u  3^  &Y  be o p e r a t i v e t h e r e s h o u l d  for i n situ  (e.g., Z o B e l l ,  One s o u r c e  C o w e  Yj  1956).  :  (Provasoli,  i n the 1958;  biologically  active B ^  m i g h t be. r e g e n e r a t e d  T h i s phenomenon w o u l d be e x p e c t e d  d u r i n g s p r i n g , summer a n d f a l l after  support Vishniac  to this  occurred  i n c r e a s e which  m e c h a n i s m o f B^^ P r o d u c t i o n . (1961) found  to  The s p r i n g peak  o f Georgia. (1968)  the spring phytoplankton  and R i l e y  to  when p l a n k t o n a r e  'blooms'.  B^2 c o n c e n t r a t i o n i n t h e S t r a i t month a f t e r  sink, bacteria  s u r f a c e s and as a r e s u l t o f t h e i r  a b u n d a n t and p a r t i c u l a r l y  one  plankton  they  1 9 4 6 ; Wood, 195 3;  Thus, as dead p l a n k t o n  attach to these  the water column.  in  B^  1 9 6 3 ) w h i c h may c o n t a i n up t o 50 mpg/g o f v i t a m i n  metabolism,  occur  t o which  of p a r t i c u l a t e matter  water column would be decaying  could  active  be a s u i t a b l e p h y s i c a l s u b s t r a t e  associated with particles  1958).  itself,  a c t i o n as m a r i n e b a c t e r i a h a v e been  a t t a c h and m e t a b o l i z e  ^  a s t o how  supplying i t to the S t r a i t .  production of b i o l o g i c a l l y  for bacterial  shown t o be m a i n l y  12  phytoplankton  p r o d u c t i o n by b a c t e r i a i n t h e S t r a i t  to  B  f o r marine  be i n t r o d u c e d i n t o t h e w a t e r  m  order  Kriss,  freshwater  t h e r e a r e two p o s s i b i l i t i e s  In  Provasoli,  A few  this  i s lacking.  o r 2) some e x o g e n o u s s o u r c e ( s )  available  t o doubt t h a t  t o produce s o l u b l e  e t al_. , 1951) b u t e v i d e n c e  producing  can  reason  increases In B  lends  Similarly, n 0  concentration  .  f o l l o w i n g b o t h t h e s p r i n g and f a l l ; Another source Strait  o f Georgia  Atlantic  increase-in-phytoplankton.  of biologically  might i n c l u d e production  the bottom d e p o s i t s  of theStrait.  a c t i v e B.^ i n t h e of the vitamin i n  "Bottom d e p o s i t s  c o a s t a l w a t e r s h a v e b e e n shown t o c o n t a i n  concentrations  of B ^  (Burkholder  i s conceivable  in  t h e S t r a i t b r e a k down a n d t h e w a t e r coliamn  liberated  mixed  (Tully  from these  the water column. B^2  bottom d e p o s i t s  bo t h e w a t e r d u r i n g  across  include influx and/or F r a s e r  density gradients  that  J u a n de F u c a S t r a i t occur  fall  Waldichuk,  B ^ into  there  should  in  of biologically  B'^  theS t r a i t  which  column.  active B ^  of.Georgia  could  Strait  Major i n f l u x e s o f water  (Tully  from  apparently  and D o d i m e a d , 1 9 5 7 ;  of Georgia.  be s i g n i f i c a n t a n c 5  high  I fthis  s a l i n i t y being  than t h eS t r a i t o f Georgia.  was v i r t u a l l y no c o r r e l a t i o n b e t w e e n t h e s e time o f the year.  were t h e c a s e  correlation coefficients,  s a l i n i t y values,  J u a n de F u c a S t r a i t  Station  i t cannot  1957; Dodimead and P i c k a r d , 1967) and c o u l d  carry  vitamin  throughout  and w i n t e r ,  i nthe water  into theStrait  throughout the year  i s  and i s mixed  o f t h e v i t a m i n , f r o m J u a n de F u c a River runoff.  gradients  b o t t o m , e f f e c t may c o n t r i b u t e  thelate  Exogenous s o u r c e s  1958).  becomes  a c c o u n t f o r t h e summer p e a k i n B ^ c o n c e n t r a t i o n occurred  high  t h e w i n t e r when d e n s i t y  and Dodimead, 1957),  While t h i s  i n western  1956,  and B u r k h o l d e r ,  It  vertically  that during  .' 66  between higher There  v a r i a b l e s f o r any  F u r t h e r m o r e , B.^ c o n c e n t r a t i o n s a t  E between t h e S t r a i t  o f G e o r g i a . a n d J u a n de F u c a  Strait  were c o n s i s t e n t l y lower stations. was  This  Fraser  water.  of the Strait of  Georgia  i n f o r m a t i o n i n d i c a t e s t h a t J u a n de F u c a  not a l i k e l y  concentrations  than those  source  of B  1 2  f o r the S t r a i t  River runoff water contains  of biologically  active  o f B^  2  would  Georgia.  even lower •  t h a n J u a n de F u c a  However, c o n s i d e r a t i o n o f t h e F r a s e r  p o s s i b l e exogenous source  of  R i v e r as a  seem t o c e n t e r  around  the.fact that large quantities of s i l t  are carried  Strait  t h e e a r l y summer  and  of Georgia  by t h i s  r i v e r during  D o d i m e a d , 195 7; W a l d i c h u k ,  shown t h a t t h e coastal  and r i v e r 1956;  Burkholder,  content  1957).  w a t e r s c a n be q u i t e h i g h  1 2  o f magnitude l a r g e r than B^ (Cowey, 1 9 5 6 ) .  of Fraser  River outflow Fraser  the  late  concentrations  should  reported  evidence,  be c o n s i d e r e d  from  the effect  i n some  detail. during  approaches i t s  which i s g e n e r a l l y i n June  The t u r b i d i t y  i n such  and  i s two o r d e r s  s p r i n g a n d e a r l y summer as t h e r i v e r  which are present  i n turbid  R i v e r r u n o f f w a t e r becomes t u r b i d  Dodimead, 1957).  (Tully  s t u d i e s have  (Burkholder  This value  I n view of t h i s  y e a r l y maximal d i s c h a r g e and  2  into the  c o n t a i n i n g up t o  6400 m p g B / g o f s o l i d m a t e r i a l .  plankton  Previous  o f suspended p a r t i c l e s  S t a r r , 1956),  Strait  i s due t o s i l t  (Tully particles  l a r g e q u a n t i t i e s as t o g i v e t h e  w a t e r a muddy b r o w n a p p e a r a n c e . • T h e l a r g e r s i l t  particles  s e t t l e o u t n e a r t h e mouth o f t h e F r a s e r  R i v e r but the, f i n e r  particles  areas o f the S t r a i t  of Georgia  are c a r r i e d over considerable (Matthews and S h e p a r d , 1962)  as t h e r u n o f f  water  •••  f a n s o u t as a t h i n water. was  as S t a t i o n  active  1967  discolored  as f a r n o r t h as S t a t i o n  silt  particles  s e r v e as a t t a c h m e n t B^  might  particles is  i n June  runoff  B and  An  as f a r s o u t h  sites  f o r b a c t e r i a and  biologically  t h e water column  active  B^  w  a  s  These low c o n c e n t r a t i o n s e f f e c t on t h e g r o w t h  c a n n o t be  attributed  o f a l l samples  f o r A.  carterae  samples  (Jitts,  reasonable explanation f o r this seem t o be t h a t a d s o r b e d by dense  concentrations  particles  were d o u b l e d by  -  r e e  sea water.  their  be  be g e n e r a t e d i n t o would  et a l , , 1964).  active  B^  would  during  and become d i s p e r s e d ,  able to increase their  be  would  readily  particles.  B-^.is  begin to  of settle  colonizing  biomass  and b i o l o g i c a l l y  t h e water column  be r e s o r b e d o n t o  of  A  the p r e p a r a t i o n  T h e n , as t h e s e p a r t i c l e s  metabolic potential  would  w i t h i n the range  i n much t h e same m a n n e r as  t h r o u g h the water column b a c t e r i a would  which  the  when t h e y a r e p r e s e n t i n  adsorbed onto c h a r c o a l p a r t i c l e s B^2 f  salinity  apparent i n c o n s i s t e n c y  any b i o l o g i c a l l y  the s i l t  scheme  Amphidinium  a d d i t i o n o f s e a w a t e r o f a p p r o x i m a t e l y 31 o/oo the lowest s a l i n i t y  the  content.  to a  of the bioassay organism,  as t h e v o l u m e s  good growth  as  always p r e s e n t i n v e r y  low c o n c e n t r a t i o n s irt r u n o f f water w i t h h i g h s i l t  even  runoff  a p p a r e n t i n c o n s i s t e n c y v/ith t h i s  that b i o l o g i c a l l y  bring  water  from the F r a s e r R i v e r  be g e n e r a t e d i n t o  sink.  carterae,  Strait  D. The  could  l a y e r on t o p o f t h e more s a l i n e  For example,  noted n e a r l y  68  and  active B ^  hence might  at a f a s t e r r a t e than i t  The supplying  possible role of Eraser  biologically  River runoff i n  a c t i v e B^^ t o t h e S t r a i t  may b e e x e m p l i f i e d b y t h e r e s u l t s o b t a i n e d the  summer o f 1967 ( s e e F i g u r e  salinity  a t S t a t i o n C was v e r y  t o the presence of s i l t  the  f i v e meter  w a t e r v/as v i r t u a l l y microscopical  l o w (3.8 o/oo) due t o t h e  below  5 meters  recently logically  while  Silt  10 m e t e r s  also discolored  and b e l o w t h e  as d e t e r m i n e d by  The extreme  salinity  t h e w a t e r column  a c t i v e B.^ c o n c e n t r a t i o n s  a t S t a t i o n C.  Bio-  were l o w d u r i n g  June  f r o m 0.1 mpg/1 o f B ^  1.7 mpg/1 a t 10 m e t e r s  and u n d e t e c t a b l e  However, t h e s u r f a c e  at the surface a t 100 m e t e r s .  apparent a t S t a t i o n C i n  July  1967.  12.8  o/oo a t t h e s u r f a c e . , i n d i c a t i n g  salinity  had' i n c r e a s e d t o  t h a t some m i x i n g  S t r a i t o f G e o r g i a w a t e r was t a k i n g p l a c e .  c e n t r a t i o n was s t i l l  Lesser other  abundant  i n t h e upper  b u t n o t so abundant  numbers o f s i l t samples  particles  suggests t h a t t h e r u n o f f water had o n l y  penetrated  w a t e r column  stratific-  and t h e l a c k o f s i l t  R u n o f f w a t e r was s t i l l  the  r a p i d l y t o 26.9 o/oo  a t 10 m e t e r s  free of particles  a t S t a t i o n C, r a n g i n g to  particles.  examination.  a t i o n i n t h e upper  1967 t h e s u r f a c e  T h e s u r f a c e was a muddy b r o w n c o l o r  due  sample,  at Station C i n  1 0 ) . I n June  i n t r u s i o n o f runoff water, but increased a t d e p t h o f 10 m e t e r s .  of Georgia  active  5 meters  conof the  as t o d i s c o l o r t h e w a t e r .  p a r t i c l e s w e r e now e v i d e n t  t o a d e p t h o f 50 m e t e r s .  of b i o l o g i c a l l y  Silt  with  was s t i l l  ( 0 . 8 mpg/1 o f B,~) b u t h a d m a r k e d l y  The  i nthe  concentration  low a t t h e s u r f a c e increased  t o 12.5 mpg/1  at 5 meters near t h e p y c n o c l i n e  (zone i n t h e w a t e r  w h e r e d e n s i t y i n c r e a s e s r a p i d l y w i t h depth)« ation of depth.  column  The  concentr-  was a l s o a b o v e 10 mpg/1 a t 20 and 50 m e t e r s  These were t h e h i g h e s t  S t r a i t of Georgia  during  B^  values  recorded  i nthe  t h e summer o f 1 9 6 7 .  Thus, i n b o t h months t h e c o n c e n t r a t i o n o f biologically as  active B ^  at the surface  a result of adsorption  increase i n biologically  on t h e s i l t active B ^  appears t o have been c l o s e l y of  silt  being  particles  remained  low presumably  particles.  The marked  with-depth  by J u l y  a s s o c i a t e d v/ith t h e p e n e t r a t i o n  through t h e water column: t h e B ^  g e n e r a t e d from t h e p a r t i c l e s by b a c t e r i a l While considerable  probably  action.  a t t e n t i o n has been g i v e n t o  t h e m e c h a n i s m s w h i c h may a c c o u n t f o r t h e i n c r e a s e i n b i o l o g ically  active B ^  concentrations  i n the S t r a i t of Georgia,  no  m e n t i o n h a s b e e n made o f t h e f a c t o r s i n v o l v e d i n t h e d e c r e a s e of b i o l o g i c a l l y - a c t i v e  B^  concentrations.  The m o s t  obvious  mechanism would be b i o l o g i c a l u p t a k e o f t h e v i t a m i n by planktonic organisms. analyses partly  The r e s u l t s o f t h e m u l t i p l e r e g r e s s i o n  s t r o n g l y support  t h e i d e a t h a t d i n o f l a g e l l a t e s -are  r e s p o n s i b l e f o r removal o f t h e v i t a m i n from  Previous  studies  (Cowey, 1 9 5 6 ; V i s h n i a c  solution.  and R i l e y , 1961;  M e n z e l a n d . S p a e t h , 1962) a l s o i n d i c a t e t h a t d e c r e a s e s i n biologically increases  in  active B ^  were c l o s e l y  associated  with  phytoplankton.  H o w e v e r , as m e n t i o n e d  above  ( p . 35 ) t h e f l u c t u a t i o n  71  in  biologically  a c t i v e B.^ c o n c e n t r a t i o n s w e r e - a p p a r e n t t o  a d e p t h o f 100 m e t e r s  w h i l e t h e p h y t o p l a n k t o n c o m m u n i t y was,,  a l m o s t w i t h o u t e x c e p t i o n , f o u n d t o be s m a l l b e l o w It  appears  then t h a t other f a c t o r s  i n addition  20 m e t e r s .  to phyto-  p l a n k t o n u p t a k e may be r e s p o n s i b l e f o r t h e d e c r e a s e o f biologically  active  Georgia.  B.^ c o n c e n t r a t i o n s i n t h e S t r a i t o f • -,  It  i s not clear  may b e a f f e c t i n g centrations. bacteria.  the decrease I n b i o l o g i c a l l y  One p o s s i b i l i t y  factors  a c t i v e B^^  m i g h t be u p t a k e by 3 ^  con-  requiring  A d s o r p t i o n by p a r t i c u l a t e matter i s another  possibility.  I n t h i s r e s p e c t , p a r t i c u l a t e m a t t e r was o f t e n  found throughout t h e water be  f r o m t h e d a t a what o t h e r  column.  One f u r t h e r f a c t o r  involvement o f t h e v i t a m i n i n a complex w i t h  •binding factor'  (Lau, e t a l . ,  a soluble  1965; Droop, 1968) o r t h e  presence o f a c o m p e t i t i v e i n h i b i t o r which would  could  (Droop,  1968), e i t h e r o f  render the vitamin unavailable t o the bioassay  organism. The appears for  s e a s o n a l c y c l e o f B^  n  the S t r a i t of Georgia  t o b e more c o m p l e x t h a n h a s p r e v i o u s l y b e e n r e p o r t e d  o t h e r a r e a s a n d may b e s u m m a r i z e d a s f o l l o w s : t h e s p r i n g  maximum f o l l o w s be  i  the result  the from  the spring  i n c r e a s e i n p h y t o p l a n k t o n a n d may  of generation of  summer p e a k i s c l o s e l y  from decaying p l a n k t o n ;  associated with  t h e F r a s e r R i v e r runoff, w i t h  liberated  f r o m • t h e . s i l t by - b a c t e r i a l  silt  presumably  particles being  a c t i o n ; -the l a t e  fall  p e a k may be clue t o a c o m b i n a t i o n o f d e c a y i n g p l a n k t o n , l a c k o f . b i o l o g i c a l uptake B i o l o g i c a l uptake biologically  and m i x i n g f r o m  can p a r t i a l l y  the deeper  waters.  account f o r the decrease i n  a c t i v e B.^ c o n c e n t r a t i o n s i n t h e S t r a i t o f  Georgia but the consistency of t h i s decrease throughout the water column suggests t h a t o t h e r f a c t o r s  such  as  chemical complexing o r competitive i n h i b i t o r s  may  adsorption, also  be  important. REGRESSION A N A L Y S I S Regression analysis  to investigate  a number o f e n v i r o n m e n t a l p a r a m e t e r s communities Riley  ion  1946), R o u n s e f e l l  (1967a).  analysis  plankton  t o marine  whether  (1956)  to f i e l d  s t u d i e s o f marine  or not a s t a t i s t i c a l l y  o r more i n d e p e n d e n t variables,  phyto-  pertinent. analysis  significant  variables.  and o n e  I f a regression exists  the sign of the r e l a t i o n s h i p  n e g a t i v e ) c a n be d e t e r m i n e d .  i s to  association  (or r e g r e s s i o n ) e x i s t s between a dependent v a r i a b l e  two  and  This being the case, a review of regress-  as i t a p p l i e s  seems  and D r a g o v i c h  The b a s i c f u n c t i o n o f r e g r e s s i o n test  phytoplankton  has a p p a r e n t l y been p r e v i o u s l y used o n l y by  (1939,  Margalef  the r e l a t i o n of  between  (positive'or  I f i t i s n e g a t i v e t h e r e i s an  i n c r e a s e i n one v a r i a b l e c o r r e s p o n d i n g t o a d e c r e a s e i n t h e other variable. one  variable  Further,  A positive  coinciding  with  sign results  from  an i n c r e a s e i n  an i n c r e a s e i n a n o t h e r  t h e amount o f c h a n g e p r o d u c e d  variable.  i n one v a r i a b l e  by  change i n a n o t h e r v a r i a b l e regression in  coefficient, B  addition  regression on  the  to  be of  The statistic variable the 3)  follows  between  not  on  drawn a t highly  variables, variable,  under which  each array  the  Thus,  variable.  of  the  a n o r m a l d i s t r i b u t i o n ; 2)  samples are are  1)  the ).  c h a n g e s i n one  theoretical conditions are:  from  ( 2 ) , p. 20  associations  change i n a n o t h e r  is valid  variables  calculated  formula  used to p r e d i c t  dependent v a r i a b l e the  be  (see  testing for  may  basis  can  this  dependent  the  regression  independent v a r i a b l e s  r a n d o m ; and  correlated  4)  with  the  one  of  is linear;  independent  another  (Brownlee,  1965). The  arrays  of  the  dependent v a r i a b l e ,  numbers, were found i n i t i a l l y tribution. Of  the  1957) and  This  d a t a by  s i t u a t i o n was  log^Q  (x + 1)  which normalized thereby  fulfilled T h e r e i s no  response of always  linearity the  the  dictates  of  of the  to f o l l o w  corrected (Barnes,  arrays first  of  by  B a r n e s and  of  the  Hasle,  variable  statistic.  assume t h a t  the  to environmental parameters as  the  However, the  d i n o f l a g e l l a t e data  independent v a r i a b l e s .  dinoflagellate.concentration,  Test  that  should improve dependent  scatter  the  the  logarithmic  relation is  the  variable,  diagrams of  after transformation,  indicates  is  s e c o n d c o n d i t i o n .of  r e l a t i o n s h i p s between the  independent v a r i a b l e s  dis-  transformation  dependent  condition  they s h o u l d be. the  a normal  1952; the  good r e a s o n t o  phytoplankton  transformation  and  the  l i n e a r ( R i l e y , 1946)  statistic  not  dinoflagellate  the  v/ith the .  . essentially  ' '  74  linear. The  samples  w e r e .not d r a w n a t r a n d o m a s i t was  necessary to establish  definite  of  sampling to f a c i l i t a t e  of  the data.  No a t t e m p t was made, h o w e v e r , t o s a m p l e population density  movement o f t h e w a t e r b y t i d e s  i s difficult  example,  sunlight  tv/o  a n d c u r r e n t s may h a v e a  I t i s possible  extent.  expected)  t i m e s when t h e h e a t -  over mixing processes  t h a t o n l y one o r n e i t h e r o f  i n d e p e n d e n t v a r i a b l e s w i l l be c o n s i d e r e d s i g n i f i c a n t  by t h e r e g r e s s i o n e q u a t i o n even correlated It  ( a s m i g h t be  at certain  e f f e c t o f t h e sun predominated the water.  variables  v / i t h o n e a n o t h e r t o some  and t e m p e r a t u r e  were f o u n d t o be c o r r e l a t e d  in  and t h e c o n s t a n t  t o s e l e c t independent  that are not i n t e r c o r r e l a t e d  ing  any  e f f e c t on t h e p h y t o p l a n k t o n . It  For  and d e p t h s  s h i p b o a r d o p e r a t i o n s and c o m p i l a t i o n  particular dinoflagellate  randomizing  sampling s t a t i o n s  though  v / i t h o n e a n o t h e r and w i t h  was p o s s i b l e t o c h e c k  correlation coefficient available with  this  t h e y may be h i g h l y  t h e dependent  type of s i t u a t i o n  variable.  as t h e  f o r . a l l o f t h e v a r i a b l e s v/ere  t h e r e g r e s s i o n p r i n t o u t from t h e computer.  F u r t h e r m o r e , s i n c e a r e g r e s s i o n e q u a t i o n was c a l c u l a t e d f o r the  a d d i t i o n o f each  ion  a n a l y s i s ) i t was p o s s i b l e t o d e t e r m i n e w h e t h e r  correlated  variables  coefficients occur i n t h i s  independent v a r i a b l e  significantly  o f one a n o t h e r . study.  (stepwise regress-  affected  highly  the regression  No s u c h c a s e s w e r e f o u n d t o  75  .Several  additional considerations  applying r e g r e s s i o n a n a l y s i s to the f i e l d that are  data.  I t i s evident  s u c h p h y s i c a l f a c t o r s as l i g h t , t e m p e r a t u r e and essentially  Also,  they  may  independent of the d i n o f l a g e l l a t e a c t as c a u s a t i v e  response i n the d i n o f l a g e l l a t e considered as  arise i n  agents e f f e c t i n g population  as i n d e p e n d e n t v a r i a b l e s w i t h  salinity  community. some  and s h o u l d  be  the d i n o f l a g e l l a t e s  t h e dependent v a r i a b l e . It  flagellate  i s n o t p o s s i b l e , however, t o s e p a r a t e  numbers  and t h e o t h e r  phosphorus, v i t a m i n and  effect  The r e a s o n f o r t h i s  f a c t o r s may  h a v e an e f f e c t  the  should  reverse  been e n t e r e d that  variables (nitrogen,  and z o o p l a n k t o n ) i n t o  scheme.  as i n d e p e n d e n t v a r i a b l e s w i t h  the  causal  these  community  They have,  reached concerning  cause  i s that while  nevertheless, understanding  a s s o c i a t i o n s between  them and t h e d i n o f l a g e l l a t e s c a n n o t be w h o l l y a simple  a neat  on t h e d i n o f l a g e l l a t e  a l s o be t h e c a s e .  any c o n c l u s i o n s  dino-  attributed to  e f f e c t by t h e s o - c a l l e d i n d e p e n d e n t  vari-  ables. The p o s s i b i l i t y analysis for field  data  always e x i s t s  i n using  regression  t h a t an a r t i f i c i a l , a s s o c i a t i o n may  b e f o u n d b e t w e e n an i n d e p e n d e n t v a r i a b l e and t h e d e p e n d e n t v a r i a b l e which i s a c t u a l l y highly correlated with  due t o a n o t h e r v a r i a b l e t h a t i s  the independent v a r i a b l e but which  has n o t been i n c l u d e d i n t h e a n a l y s i s .  This  presents  t h e most s e r i o u s drawback i n u s i n g  analysis  for field  data.  possibility regression  Y e t , i n any c o n s i d e r a t i o n o f t h e  76 .  • ;  environmental factors one.will type of  a f f e c t i n g p h y t o p l a n k t o n i n the  be. f a c e d . w i t h analysis  involved.  t h i s same p r o b l e m no  i s used t o measure the  Multiple  regression  analysis  o v e r n o n - s t a t i s t i c a l methods o f phytoplankton to number o f can  be  effect's of  the  with  considered  t o use  data i n preliminary  phytoplankton  preliminary  indications  from the  the  are  subject  to  It  (as in  m i g h t be  from the  of  t h e n be  to  I t would  analysis  area to that  tested  a  results  subject  may  by  for  gain  t h e i r environment.  a n a l y s e s the are  some  exist Such  more  refined  dinoflagellates  considered  as  one  arrived  the  large  at  in  this  validity  of  which  determined. useful  t o know what t y p e s o f  e x p e c t e d between the a n a l y s e s ) and  Independent  the  relation-  variables  dinoflagellate  i n t e r p r e t a t i o n of  i t is likely  regression  an  t h i s assumption,  order to f a c i l i t a t e  Unfortunately,  as  regression  Thus, c o n c l u s i o n s  w o u l d be  employed i n the  not  of  methods.  different stations  c a n n o t a t p r e s e n t be  ships  and  regression  community component. study  time, the  relationships  could  experimental  In  are  studies  ecological  between the  s a m p l i n g and  results  a t one  n o n - s t a t i s t i c a l methods.  justifiable  the  advantage  the  and  into  the  environment i n that  quantified  insight  has  relation  be  a p p e a r t o be  relationships  the  can  as  m a t t e r what  studying  factors  personal bias  field  the  field,  the  community  results.  that  the  significant  analyses are  the  r e s u l t of  associations  complex  interaction  of  the  to determine the  environmental parameters acting  s i z e of  the  "relationship  can,  ent  variable  i n r e l a t i o n to  The  c o n c e n t r a t i o n of  community.  h o w e v e r , be  put  the  the  dinoflagellate  the  are  community  expected to vary i n v e r s e l y  a closed  system v/ith t i m e  be  dinoflagellate  versa.  negative or  dinoflagellate  positive  level  each of  and  the  the  dition  for  the  survival.  As  (Figure  At  the  salinity  could, 20)  i s f a r above or  optimal  at  the  low  level.  are and  75)  and  the  say,  as should  not  and  inter-  either  a  the  dinoflagellates a  particular optimum  con-  dinoflagellate  as  a r e s u l t of  poor  the  independent  variable  n u m b e r s w o u l d be  with this  in  theoretically,  below the  same t i m e , h o w e v e r , t h e  association  optimal  with  community  l e v e l of  m i g h t become d e p e n d e n t u p o n o t h e r f a c t o r s show l i t t l e  p.  d e p e n d i n g upon  community,  l e v e l of  approached d i n o f l a g e l l a t e  increase.  and  independent v a r i a b l e  When t h e  e x p e c t e d t o be  the  trogen  That i s to  t o l e r a n c e range of  dinoflagellate  n u m b e r s w o u l d be  (see  community  relationship  variables.  independent v a r i a b l e  is  19).  community.  associated  v/ith t h i s  t e m p e r a t u r e and  occur with these factors optimal  n i  independ-  c o m m u n i t y i n c r e a s e s i n number t h e r e  Light,  dependent w i t h the  for  (Figure  a c o r r e s p o n d i n g decrease i n the  vice  3^2'  intimately  w o u l d be  the  theoretical  f o r w a r d f o r each  (vitamin  zooplankton  simple  dinoflagellate  nutrients  p h o s p h o r u s ) and s i z e of  A  together  expected  to  dinoflagellates and,  environmental  therefore, parameter  TIME 'Figure  19.  T h e o r e t i c a l r e l a t i o n between d i n o f l a g e l l a t e s (D.V.) and l i m i t e d t o t a l q u a n t i t y o f n u t r i e n t s ( I . V . ) w i t h time.  UJ  o  <  I.V.  3:  — /  <_>  U.  O  UJ  \ -  <  D.V.  OL  —/V\  TIR3E  Figure  2CL  T h e o r e t i c a l r e l a t i o n between d i n o f l a g e l l a t e s (D.V.) and l i g h t , temperature and s a l i n i t y (I.V.) w i t h time.  79  S u n l i g h t has in  determining  the v e r t i c a l  t h e w a t e r c o l u m n and phytoplankton I t would  b e e n shown t o be distribution  in initiating  the  i n temperate waters  seem r e a s o n a b l e  winter  lack of  s u c h an  to the  was  long  to obtain  an  Raymont,  in  of  1963).  time i n t e r v a l  accurate  the  I n c r e a s i n g from  a s s o c i a t i o n (Table  t i m e between c r u i s e s ( a p p r o x i m a t e l y too  s p r i n g bloom  d i n o f l a g e l l a t e s during  sunlight intensity  m i g h t h a v e b e e n due  of phytoplankton  (c.f.,  s p r i n g m o n t h s as The  factor  to expect a s i g n i f i c a n t p o s i t i v e  r e g r e s s i o n b e t w e e n s u n l i g h t and  low.  a principal  one  of  VI)  sampling:  the  month) h a v i n g  measure of  the  the  been  relation  b e t w e e n i n c r e a s i n g s u n l i g h t and  d i n o f l a g e l l a t e s i n the  upper  10  That i s to say,  space  meters of  o f one  the  water column.  month I t i s p o s s i b l e t h a t s u n l i g h t had  f r o m a p o i n t w h e r e i t was 'with t h e  so  low  no  an i n t r i g u i n g  question:  summer m o n t h s when s u r f a c e  ates  as; i t was  during  i n March 1968?  detrital  m a t t e r and  One  it.  why two  was  a. s i g n i f i c a n t  two  possibility had  could  be  l i g h t i n t h e u p p e r 10  the  spring.  i s , however, not  late times  dinoflagell-  that  significantly  e x t i n c t i o n of  the  to three  s p r i n g i n c r e a s e of  phytoplankton  the  explanation  factors during  the  This  This  i n s o l a t i o n was  the  for  of the d i n o f l a g e l l a t e s  c l o s e l y c o n t r o l l e d by  a s s o c i a t i o n found between these  as h i g h  association  d i n o f l a g e l l a t e s t o n e a r l y optimum i n t e n s i t y  longer  presents  increased  as: t o show no  c o m m u n i t y so t h a t t h e d i s t r i b u t i o n was  i n the  increased increased  meters over that  borne out  by  the  light  of  •'  measurements  (Figure  7).  A more p l a u s i b l e e x p l a n a t i o n  could  be t h a t  t h e s p r i n g d i n o f l a g e l l a t e community has a l o w e r  optimum  t h a n d o e s t h e summer c o m m u n i t y .  i n view of the f a c t that community  the species  i n t h e s p r i n g was  This  seems  80  '  light  possible  composition of the  quite d i f f e r e n t than that of the  summer.  . • , This  hypothesis  does n o t agree w e l l w i t h  studies  so f a r u n d e r t a k e n  the  limited  laboratory  Ryther,  1956; M c A l l i s t e r e t a l . , 1964; B u r k h o l d e r e t a l . ,  1967) w h i c h have d e m o n s t r a t e d h i g h for  dinoflagellates.  However,  used i n these s t u d i e s Prorocentrurn the  (e.g.,  Peridinium  s p . and G o n i o d o m a  be e x p e c t e d  Confirmation  d i n o f l a g e l l a t e s have low l i g h t studies  of the l i g h t  Gymnodinium and  triquetrum,  o f G e o r g i a and  that  light  t h e s p r i n g community o f upon as  citrinum, Peridinium  P. a c h r o m a t ! c u m w h i c h a r e a b u n d a n t o n l y I t should  regression  sunlight i n February  with  depend  r e q u i r e m e n t s o f such s p e c i e s  p a u l s e n i , Gyrjp^inium  would,  i n t e n s i t y optima.  optima'will  s p r i n g months.  the  i n t e n s i t y optima  sp.) are c h a r a c t e r i s t i c of  t o have h i g h  of the hypothesis  during  be f u r t h e r n o t e d t h a t  E: a s l i g h t l y  occurring  at the other  the  The  negative  1967 was m a i n l y due t o  p o s i t i v e r e l a t i o n s h i p v/ith four  nudum  the  complete lack of d i n o f l a g e l l a t e s at the surface  Station  1935;  many o f t h e d i n o f l a g e l l a t e s  summer c o m m u n i t y i n t h e S t r a i t  therefore,  light  (Barker,  of  sunlight  stations.  a s s o c i a t i o n between l i g h t  and p o p u l a t i o n s  of  81 Peridinium  t r i q u e t r u m (summer d o m i n a n t ) a p p e a r e d  t o be  a f f e c t e d by p a r t i c l e c o n c e n t r a t i o n i n t h e u p p e r l a y e r s o f t h e w a t e r c o l u m n . ." I n t h e summer o f 1967 when " t h e w a t e r d i s c o l o r e d by s i l t  from t h e F r a s e r R i v e r  a s s o c i a t i o n was f o u n d b e t w e e n (Table X ) . the  light  D u r i n g t h e summer m o n t h s  w a t e r was r e l a t i v e l y  clear  the extinction of light  beyond the o p t i m a l l e v e l It radiation  i s difficult  o f 1 9 6 8 , h o w e v e r , when  This suggests that  account.  as i t a f f e c t s  As with- s u n l i g h t ,  of solar  the phytoplankton  the spring associated  with  w h i l e t h e r e v e r s e was t r u e f o r t h e d i n o f l a g e l l -  ates i n July of both years. that,  silt  i t s h e a t i n g e f f e c t on t h e  c o m m u n i t y o f d i n o f l a g e l l a t e s was n e g a t i v e l y temperature  was  i n the s u r f a c e waters  to consider the role  community w i t h o u t a l s o t a k i n g into  and P. t r i q u e t r u m  f o r P. t r i q u e t r u m i n 1 9 6 7 .  i n t h e form o f l i g h t  environment  a positive  a negative relationship  f o u n d b e t w e e n t h e s e tv/o v a r i a b l e s . increased  was  i n addition  T h e s e f i n d i n g s may  indicate  t o lower' l i g h t o p t i m a , t h e s p r i n g  a l s o has a l o w e r t e m p e r a t u r e optimum  community  t h a n t h e summer  community o f d i n o f l a g e l l a t e s ' . It relation  i s interesting  between d i n o f l a g e l l a t e s  when t h e t e m p e r a t u r e for  determined  during July  t h e o p t i m a l t e m p e r a t u r e , as  f o r a number o f d i n o f l a g e l l a t e s  ( B r a a r u d , 1961; J i t t s  Sweeney,  and t e m p e r a t u r e  o f t h e s u r f a c e l a y e r s was a t a maximum  t h e y e a r and v e r y n e a r  atory  t o n o t e t h a t t h e r e was a. p o s i t i v e  et al.,  1 9 6 4 ; Thomas, 1 9 6 6 ) .  i n the labor-  1 9 6 4 ; H a s t i n g s and  The t i m e - s e r i e s  analyses  82 show t h a t m o s t o f t h i s p o s i t i v e for  r e g r e s s i o n caa.be  a t S t a t i o n E. w h e r e t h e t e m p e r a t u r e s w e r e 3 t o 4 C°  those of the other s t a t i o n s . stations,  A t h r o u g h D,  this factor  displayed  little  Provasoli, Gold  and  tested  20 o/oo  growth)  (Braarud, Braarud  (1961)  optimum s a l i n i t y  with  good g r o w t h  effect  suggests.that while  ranges  dinoflagellates less  factor  o/oo  a r e so wide  that  i s important  and  associated  salinity  suggests that  the low s a l i n i t y  itself.  have been a response t o  affecting I t seems  density  a r e a f u n c t i o n o f t e m p e r a t u r e and  T h e n , as t h e s a l i n i t y  dropped  some o t h e r  w a t e r v/as  r a t h e r than s a l i n i t y  but p r i n c i p a l l y a function of s a l i n i t y Georgia.  of the d i n o f l a g e l l -  e v e n when s a l i n i t i e s  ( J u n e 1967)  with  t h a t t h i s may which  i t has  c o n s i s t e n t n e g a t i v e a s s o c i a t i o n between  t h a n 4 o/oo  gradients  50%  whole.  dinoflagellates  likely  f o r most  40  salinity  i n c o n t r o l l i n g the growth  The  1961;  1963;  (greater than  a t l e a s t b e t w e e n 10 and  These t o l e r a n c e  a t e c o m m u n i t y as a  the  ( B r a a r u d , 1951,  determining the d i s t r i b u t i o n of d i n o f l a g e l l a t e s  little  to  The  rate  (regardless of source of i s o l a t e ) i s  occurring  1961).  the growth  P r o v a s o l i and M c L a u g h l i n ,  McLaughlin, 1961).  approximately maximal  i n laboratory cultures  e t a_l. , 1954;  dinoflagellates  relation  •..  S a l i n i t y h a s b e e n shown t o a f f e c t of d i n o f l a g e l l a t e s  below  At the h i g h e r temperature  to the dinof l a g e l l a t e s .  in  accounted  salinity  i n the S t r a i t of  decreased the  density  g r a d i e n t i n the water  column would i n c r e a s e , s e r v i n g t o  maintain the dinoflagellates salinity.  Another  i n t h e upper waters  possibility  w o u l d be t h a t t h e o b s e r v e d  r e g r e s s i o n was due t o an u n m e a s u r e d v a r i a b l e correlated  'with s a l i n i t y .  t h a t was  due  to river  water  i n spring  runoff I t - i s  q u i t e p o s s i b l e t h a t some unknown  such  ( P r a k a s h and R a s h i d ,  1968) a r e c a r r i e d  as a t r a c e m e t a l  Georgia w i t h t h e r u n o f f water the d i n o f l a g e l l a t e s .  salinity  water  resulting  From a n o t h e r  such  as d i a t o m s  a c t as a b a r r i e r  eliminating  upper  v i e w p o i n t , low to other -  eliminating  Low s a l i n i t y . w a t e r  against herbivorous  grazing of the dinoflagellates  r e l a t i o n between z o o p l a n k t o n  ates i n the S t r a i t  of G e o r g i a remains  of estimating zooplankton factory  from  a s t h e r e was a l m o s t  the zooplankton  bottle  growth  zooplankton i n these  waters. The  by  the S t r a i t of  i n increased  thereby  competition f o r available nutrients.  thus  into  o r humic a c i d s  m i g h t s e r v e a s an e f f e c t i v e b a r r i e r  plankton organisms  might also  For instance,  a n d summer i s p r i n c i p a l l y  required nutrient(s)  of  highly  I f t h i s was t h e c a s e , a n y o f  s e v e r a l mechanisms might have been i n v o l v e d . .as t h e l o w s a l i n i t y  o f low  samplers.  water  certainly  obscure.  The method  s a m p l e s was n o t s a t i s an a v o i d a n c e  ( F l e m i n g e r and C l u t t e r , Furthermore,  and d i n o f l a g e l l -  reaction  1965) t o t h e  most s a m p l e s were  collected  b e t w e e n dawn a n d d u s k when many z o o p l a n k t o n w o u l d b e t o have m i g r a t e d  downward f r o m  the surface layers  expected  (Rayrnont,  84  1963). dant by  Calanus  plumchrus,  during the late  vertical  a h e r b i v o r o u s c o p e p o d , was. a b u n -  spring  and summer m o n t h s a s r e v e a l e d  p l a n k t o n h a u l s from  recorded from  the bottle  100 m e t e r s ,  samples.  b u t was  Only Calanus  never  pacificus,  a. s m a l l h e r b i v o r o u s c o p e p o d , was r e c o r d e d i n t h e q u a n t i t ative  samples. That  of  g r a z i n g by z o o p l a n k t o n d e t e r m i n e s  the size  the phytoplankton standing stock to a large extent,  particularly well  during the spring  documented  (Lebour,  Bigelow e t a l . , Beklemishev in  •  Ocean.  1922; Harvey  1940; R i l e y ,  (1954) has found  the fecal  pellets  Harvey  demonstrated  and summer m o n t h s , h a s b e e n e t a l , , 1935;  1946; C u s h i n g , dinoflagellates  o f Calanus  1959). t o be abundant  at times i n the North  Pacific  ( 1 9 3 7 ) and M a r s h a l l and O r r ( 1 9 5 2 ) h a v e  the a b i l i t y  o f Calanus  also  t o f e e d o n some  dinoflagellates. Fecal pellets  from  t h e samples c o l l e c t e d  S t r a i t -of G e o r g i a e x a m i n e d w h i l e c o u n t i n g contained mainly f r u s t l e s ThaIassiosira  of diatoms,  dinoflagellates  particularly  s p . , w i t h o n l y an o c c a s i o n a l p e r i d i n i a n  being observed.  This.implies- that these  u n a r r n o r e d d i n o f l a g e l l a t e s w o u l d .not b e e x p e c t e d t h e f e c a l p e l l e t s by r e a s o n o f t h e i r  membrane w h i c h processes.  would  might  delicate  However,  t o be  seen  cell  p r o b a b l y be d e s t r o y e d by d i g e s t i v e  Similarly,  dinoflagellates  theca  dinoflagellates  may n o t h a v e b e e n s e r i o u s l y g r a z e d b y z o o p l a n k t o n .  in  i nthe  the. t h e c a l p l a t e s o f armored be d e s t r o y e d by m e c h a n i c a l a b r a s i o n .  85  Upon r e f l e c t i o n of  the  zobplankton  have provided  fecal  i t seems t h a t q u a n t i t a t i v e c o u n t s  pellets  a more r e a l i s t i c  than counts of the  measure of g r a z i n g  a c t u a l organisms present.  c o u n t s w o u l d e l i m i n a t e some o f and  the  Also  number o f f e c a l  more r e l i a b l e  index  pellets  of. f e e d i n g  a c t u a l i n d i v i d u a l s w h i c h may a .particular  i n the organism  these  the  activity  o r may  during  the  may  periods  as was  s p r i n g and  early f a l l .  p r e d i c t e d by  relation  be  more i m p o r t a n t  related  Vitamin  (Figure  the  B^  numbers  theoretical  19).  Vitamin  This  in controlling  the  3.^ spring  suggests-  the  size  community than n i t r o g e n or  i s interesting  regression .coefficient, d i n o f l a g e l l a t e s v/as than i n the  t h e r e v/as per  at  of  phos-  concentrations. It  1968)  of  to a l e s s e r  nutrient negatively associated with  spring dinoflagellate  phorus  a  have been f e e d i n g  i n c r e a s e o f d i n o f l a g e l l a t e s ' i n ' M a r c h ' 1968. that  counts.  than counts  not  the  l a t e summer and  nutrient-phytoplankton the o n l y  effect  i n a sample i s p r o b a b l y  always n e g a t i v e l y r e l a t e d with d i n o f l a g e l l a t e  during  was  migration  d i n o f l a g e l l a t e c o m m u n i t y v/as m a i n l y  to nutrient concentration  was  pellet  time.  The  during  effect  Fecal  the v e r t i c a l  avoidance response inherent  the  extent  i n the water samples' would  B,  lower  t h a t the magnitude of  for vitamin during  s p r i n g months  the  B-^p  and  nitrogen  summer ( J u l y  (Table  VI).  the  and  v/ith  August  T h i s means  that  a s m a l l e r c h a n g e i n t h e number o f d i n o f l a g e l l a t e s  u n i t change i n e i t h e r of  these  nutrients during  the  86  ;  summer a s c o m p a r e d w i t h t h e s p r i n g . complex n u t r i e n t - p h y t o p l a n k t o n the  This .indicates that a  r e l a t i o n s h i p may e x i s t  summer m o n t h s , p o s s i b l y o f t h e t y p e  (1968) i n which c o m p e t i t i v e  inhibitors  growth r a t e o f a chrysophyte presence of constant •  described  The p o s i t i v e r e l a t i o n  during  b y "Droop  markedly reduced the  (Monochrysis  concentrations  lutheri)  of vitamin  i nthe  B^2°  between n i t r o g e n and  dinoflagellates  i n M a r c h 1968 and b e t w e e n p h o s p h o r u s a n d  dinoflagellates  i n April  were b e i n g by  replenished  biological  ation that  uptake.  1968 c o u l d  result  f a s t e r than they  two n u t r i e n t s were b e i n g  i n the tirne-series  t o replenishment  l a y e r s by v e r t i c a l .mixing were p r e s e n t  density  mixing.  during  analyses  c a n n o t be  of the nutrient i n the surface processes  as s t e e p  t h e summer m o n t h s .  and i s i n k e e p i n g  with  p h o s p h o r u s may b e r e g e n e r a t e d of  time,  such  at least  as n i t r o g e n  density  In situ  19 59;  the present  gradients  regeneration  source  of the  knowledge  that  i n a relatively  i n comparison with other  short  period  inorganic nutrients  (Cooper, 1935; von Brand e t a l . , 1937, 1939;  Antia. e t a l . , 1963). liberate  stratific-  1 9 6 8 , i t may w e l l b e  of phosphorus i n t h e upper l a y e r s i s a l i k e l y nutrient  removed  p o s i t i v e r e l a t i o n s h i p b e t w e e n p h o s p h o r u s and  dinoflagellates attributed  nutrients  s u p p l i e d from t h e deeper  l a y e r s o f t h e w a t e r column by v e r t i c a l The  i f these  were b e i n g  A s t h e r e was l i t t l e  a t most s t a t i o n s , even by A p r i l these  •  Also  zooplankton  i n o r g a n i c as w e l l as o r g a n i c  H a r r i s , 1959; M a r s h a l l and O r r ,  h a v e been' shown t o phosphorus  (Cushing,  1 9 6 1 ; P o m e r o y and  87 Bush', 1959) nutrient  and  may  add  s i g n i f i c a n t q u a n t i t i e s of  to the upper l a y e r s .  involved,  the  inference  phosphorus does not community i n the  Regardless of the  from the  regulate  regression  the  this mechanism  results i s that  s i z e of the d i n o f l a g e l l a t e  S t r a i t of Georgia.  R i l e y ( 1 9 3 7 , 1946)  a l s o found p o s i t i v e r e g r e s s i o n between p h y t o p l a n k t o n stock  and  phosphorus concentrations  productivity of  and  between  phosphorus c o n c e n t r a t i o n s .  unperceived  may  be  i n d i c a t i v e of  standing  phytoplankton  The  a d i r e c t r e g r e s s i o n b e t w e e n p h o s p h o r u s and  of d i f f e r e n t regions  consistency  phytoplankton  some, as  yet,  relationship. The  and  and  has  significant  d i n o f l a g e l l a t e s during  negative  r e g r e s s i o n between  the  summer m o n t h s  late  nitrogei  (1968)  2 and  the  during  increasing R this  nitrogen the  value  period give  was  an  that this Station  strong  important  community a t t h i s nitrogen  r a t i o s were at t h e i r  were r e g u l a t e d  by  could  lowest the  nitrogen  n u t r i e n t s as  community i n the the  regression  nitrogen that  the  s i z e of  important  concentrations  at  of the and  i n A u g u s t 1968  dino-  the  N:P  at S t a t i o n C  i d e a that the d i n o f l a g e l l a t e s concentration. or nitrogen  can  be  considered  regards the d i n o f l a g e l l a t e  S t r a i t o f G e o r g i a c a n n o t be  analyses.  for  results indicate  a c c o u n t f o r 60%  value  W h e t h e r e i t h e r B^p as: ' l i m i t i n g '  VII)  time-series  particularly  Nitrogen  which f u r t h e r supports  and  presumptive evidence  The  e f f e c t was  variation.  VI  f a c t o r i n determining  time.  C where n i t r o g e n  flagellate  (Table  discerned  While growth or p h o t o s y n t h e t i c  from rate-  88 limiting  concentrations  described on t h e 1962;  for  basis  several of  Thomas,  values  to  several ments  1966),  natural  v/hile  it  is  In  the  light,  not  first  with  required  nutrients  centrations findings alter  as  to  (1968)  In  the  apply  i n which a l l present  the  Gold,  these  at  there  fact  i n such  as  relations that  other  low c o n -  Droop's  i n h i b i t o r s can  further  abundance  community such  the  vitamin B.^  nutrients,  however,  poorly understood  competitive  Monochrysis l u t h e r i  the  maintained  the  be p r e s e n t  for  experi-  i n over  field,  be p o s s i b l y l i m i t i n g .  of  1935;  laboratory  i n a d d i t i o n to  concentration  growth of  place,  affecting  may a l s o  that  to  and s a l i n i t y a r e  grazing,  dissolved organics  been  dinoflagellate  (Barker,  practical  are  conditions.  competition,  of  have  phytoplankton communities  many a d d i t i o n a l f a c t o r s  species  species  i d e a l i z e d systems  temperature  nutrients  experiments  one b e i n g t e s t e d ,  nearly.optimal are  individual  occurring  reasons.  the  various  laboratory  represent  except  of  recent significantly  needed to  stimulate  complicates  the  situation. Under t h e s e to  state  that  on t h e  Bj^  is  important  ate  community i n t h e  the  same r e s p e c t ,  these nutrients ant  to  the  circumstances  basis  of  the  during should  the  perhaps  sufficient  results  vitamin  size  of  the  and n i t r o g e n  is  Important,  late  summer m o n t h s .  be c o n s i d e r e d  dinoflagellates  is  regression  i n d e t e r m i n i n g the soring  it  i n the  as  Strait  dinoflagellin  Therefore,  ecologically of G e o r g i a .  import-  DI MO F LAG E L L AT E S  -  '/  . - I t i s e v i d e n t from ate  community  In the Strait  and  summer maximum i n n u m b e r s  '  ..  ••  the. r e s u l t s . t h a t  o f Georgia attained both ( F i g u r e 14 - 1 8 ) .  p e a k i n c o n c e n t r a t i o n was d u e m a i n l y t o s m a l l dinof.lagellates,  the d i n o f l a g e l l spring  The s p r i n g  non-thecate  w h i l e t h e summer c o m m u n i t y was  composed  mainly of larger thecate species.. This seasonal pattern fits  w e l l w i t h M a r g a l e f ' s scheme  temporal  d i s t r i b u t i o n o f marine Margalef  distribution temperate  (1958,  (1958,  phytoplankton.  1967b) h a s summarized t h e t e m p o r a l  ('succession*)  o f marine  regions i n the.following 1) i n i t i a l l y  1967b) f o r t h e  phytoplankton i n  manner:  i n t h e s p r i n g when n u t r i e n t s a r e  p r e s e n t i n h i g h c o n c e n t r a t i o n , a community o f s m a l l - c e l l e d organisms,  mainly diatoms,  flagellates,  develops.  large surface/volume in  numbers;  dinoflagellates  These organisms  ratios;  are capable  and o t h e r s m a l l  a r e c h a r a c t e r i z e d by of rapid increase  and g e n e r a l l y have s i m p l e i n o r g a n i c n u t r i e n t  1  requirements. 2) i n t h e l a t e community  (mainly diatoms  These organisms division  are larger  rate than 3) t h i s  in  spring  and e a r l y  and.dinoflagellates) and have a l o w e r  i s high.  develops.  potential  those o f stage ( 1 ) . I s a c o n t i n u a t i o n o f stage  areas o f u p w e l l i n g o r d u r i n g the l a t e  diversity  summer a m i x e d  ( 2 ) and o c c u r s  summer.  The community i s composed  Species  o f diatoms  90  and  an i n c r e a s i n g number o f 4)  depleted  this  surface  dinoflagellate species.  stage occurs  waters,.  Few  i n density  diatoms are  stratified, present.  nutrient  The  dominant organisms are g e n e r a l l y d i n o f l a g e l l a t e s . The ates the  i n the  early spring increase  Strait  of Georgia,  of  s m a l l naked  dinoflagell  characterized particularly  abundance o f Gymnodinium p a u l s e n i , c l e a r l y b e l o n g s  stage  (1) o f M a r g a l e f ' s  species stage  require only  succession  scheme.  Whether  M a r g a l e f i s not  known.  for  However, most  d i n o f l a g e l l a t e s have complex n u t r i e n t r e q u i r e m e n t s : vitamins Further  (see  vitamin  significantly during  the  associated  s u g g e s t s t h a t G.  B^2  w a  s  this  f o r a complete  the  associated  a whole d u r i n g  flagellate  was  only  with  s p r i n g i n March  significantly as  L o e b l i c h , 1967  with  paulseni  of  sufficient  s p r i n g was increase stage  i s i n t e r e s t i n g to B-^  i  n  the  was  p o s s i b l y the  this  entire  the  This  that  s i z e of  the  time.  responsible with  dino-  r e q u i r e m e n t and  speculate  i n d i n o f 1 a g e l l a t e s along  also  information  t h a t the  S t r a i t of Georgia i n the  to a large extent  (1) o r g a n i s m s .  This  factor in controlling  d i n o f l a g e l l a t e community d u r i n g It  B^  VI).  community) does have a B ^  a significant  X).  population  d i n o f l a g e l l a t e community  (Table  (and  summary).  G_^ p a u l s e n i  (Table  the  period  e.g.,  independent v a r i a b l e  the  1968  in  these  i n o r g a n i c n u t r i e n t s as p r o p o s e d  ( 1 ) o r g a n i s m s by  by  f o r the  t h e more  means t h a t w h i l e  the  presence early  spring typical small  naked  '  '  v  91  dinoflagellates  are  s i m i l a r , i n many r e s p e c t s . t o t h e  early  s p r i n g s p e c i e s of phytoplankton  rapid  r e p r o d u c t i v e p o t e n t i a l ) they  f u l l y ..with t h e s e B^^  can  the S t r a i t  composition p e r i o d was  o n l y compete  s p e c i e s i n the presence  sufficient  i n c r e a s e d d u r i n g J u n e and  mainly  G o n y a u l a x and  stages  In  J u n e 1967  ( 2 ) and  were abundant i n these  stage  This  A found  succession pattern.  waters.  typical been  This probably  upper  liter)  corresponds  and  to  scheme.  s p r i n g maximum o f s m a l l n a k e d has  s t u d i e s done i n n o r t h e r n  I t i s important  unique to the  Fraser  Dinoflagellates  (49,500 c e l l s p e r  i n the S t r a i t of G e o r g i a ,  a number o f  corresponds  heavy r u n o f f from the  waters  (4) o f M a r g a l e f ' s  this  Prorocentrum.  d e n s i t y g r a d i e n t i n the  d i a t o m s were r e c o r d e d .  The  Peridinium,-Ceratium,  (3) o f H a r g a l e f ' s  a steep  July.  of s p e c i e s of  when t h e r e was  t h e r e was  present  community d u r i n g  l a y e r o f t h e w a t e r c o l u m n a t S t a t i o n C.  as  of  success-  species of dinoflagellat.es  of Georgia  made up  to  River,  number o f  of the d i n o f l a g e l l a t e  Pinophysis,  no  small-celled,  concentrations. The  in  other  (i.e.,  typical-  not been r e p o r t e d i n  temperate c o a s t a l  t o know w h e t h e r t h i s  S t r a i t of Georgia  of other northern  dinoflagellates,  phenomenon i s  community o r whether i t i s  temperate regions  and  has  simply  overlooked. Unfortunately,  distribution  a number, o f s t u d i e s on  of phytoplankton  i n temperate waters  the  seasonal  make o n l y  passing  r e f e r e n c e o r no r e f e r e n c e  dinoflagellates Bigelow  (e.g.,  Bigelow,  1926; L i 1 l i c k ,  e t a l . , 1 9 4 0 ; Co.nover, 1 9 5 6 ; R i l e y  P a r t of the problem i s that nets these  at a l l to small  studies  (Bigelow,  naked  1933, 1940;  a n d Conover.,. 1 9 6 7 ) . .  were used i n s e v e r a l o f  1926; L i l l i c k ,  1 9 3 8 ) a n d i t may b e  a s s u m e d t h a t many o f t h e s m a l l e r s p e c i e s w e r e n o t c a p t u r e d . Even i n those  s t u d i e s i n which v a r i o u s types  samplers, were used 1940;  (Gran,  1929: Bigelow  Conover, 1956; R i l e y  have been r e c o r d e d  l a r g e numbers.  •  Gymnodinium  and were n e v e r p r e s e n t i n  (1935) found  Gymnodinium g r o e n l a n d i c u m ,  phytoplankter Iceland)  (mainly  '  However, B r a a r u d flagellate,  e t a_l. , 1940; L i l l i c k ,  and C o n o v e r , 1967) o n l y a few  s p e c i e s o f naked d i n o f l a g e l l a t e s lohmannii)  of bottle  i n t h e Denmark S t r a i t  that a small  was t h e d o m i n a n t  (between Greenland  i n J u n e 1929 when t h e i c e v/as s t i l l  tightly  When t h e i c e o p e n e d u p , d i a t o m s i n c r e a s e d r a p i d l y dominant. it  While t h i s  succession  dino-  took  and packed.  a n d became  p l a c e d u r i n g , t h e summer  i s p e r h a p s a n a l o g o u s t o t h e s p r i n g b l o o m , as i t was t h e  initial  increase i n phytoplankton  numbers f o l l o w i n g t h e  w i n t e r low. In to  a later  study,  Braarud  be t h e d o m i n a n t d i n o f l a g e l l a t e  Norway i n March (140,000 c e l l s  (7,500 c e l l s per l i t e r ) .  ( 1 9 4 5 ) f o u n d G. l^pjimajnnii  i n the i n n e r Oslo  per l i t e r ) This  last  and a g a i n  liter)  i n M a r c h 1968 i n t h e S t r a i t  i n April  f i g u r e i s very  a b l e t o t h e s p r i n g maximum o f G„ p a u l s e n i per  Fjord,  (12 7,5 00  of Georgia.  compar-  cells Although.-  the evidence support  i s scanty,  the  s t u d i e s o f B r a a r u d - ( 1 9 35.,  t h e i d e a t h a t s p r i n g maxima o f s m a l l n a k e d  flagellates  may  be  h e r e t o f o r e been  o f more g e n e r a l o c c u r r e n c e  1935,  1945).  i n the S t r a i t of Georgia  the f j o r d s  o f Norway  and  1929;  o f t h e same g e n u s ,  those Braarud, increase i n  Gymnodinium,  a summer maximum i n w h i c h t h e d o m i n a n t s p e c i e s i s  Peridinium are the  triquetrum.  same f o r b o t h  occurrence  Many o f t h e o t h e r p r o m i n e n t areas.  of Prorocentrum  a s o p p o s e d t o P.  Strait  g r a c i l e i n the  of  by  G r a n and  the  Braarud  compare v e r y c l o s e l y  (19 35)  i n the and  Bay  o f Fundy, Canada  seasonal  Braarud  (1935) i n t h i s  dinoflagellate  temperate r e g i o n s .  A  single  reported  study.  species composition  appears t o be The  distribution  i n the S t r a i t of Georgia.  by  of Georgia  the  dinoflagellates  s p e c i e s , G y m n o d i n i u m l o h m a n n i i , was  Strait  from  a  s p e c i e s have been r e p o r t e d  non-thecate  The  Also  are recorded  s p e c i e s o f armored  i n composition  v/ith the d i n o f l a g e l l a t e s  G r a n and  Georgia  Norway.  Similarly, found  S t r a i t of  micans i n the norwegian f j o r d s .  o f G e o r g i a w h i l e o n l y a few  the f j o r d s  species  A. n o t a b l e e x c e p t i o n i s t h e  number o f u n a r m o r e d d i n o f l a g e l l a t e s  for  (Grsn,  dinoflagellate  I n b o t h ..regions t h e r e i s a s p r i n g  s m a l l naked d i n o f l a g e l l a t e s and  has  realized.  species composition from  dino-  than  There i s good agreement between the  reported  1945)  fairly  t y p i c a l of  major exceptions being  i n the northern  t h a t more  taxa  .  of  n o n - t h e c a t e d i n o f l a g e l l a t e s were f o u n d i n the  Georgia  and  these species  t h a n has  been r e p o r t e d  G r a n and  Braarud  dinoflagellates preservation  f o r most o t h e r  in their  the  this  delicate cell  for preservation  study,  flagellate formalin.  may  give  may  The  use  spring  s c a r c i t y of  have been the  membranes o f of modified  of  regions. naked  r e s u l t of  samples i n n e u t r a l i z e d f o r m a l i n  forms beyond r e c o g n i t i o n . solution  study  Strait  i n the  temperate  (1935) s u g g e s t t h a t the  of the  tends to d i s t o r t  w e r e more p r e v a l e n t  94  which  non-thecate Lugol's  Iodine  o f d i n o f l a g e l l a t e s a m p l e s , as  a truer representation  community than samples p r e s e r v e d  of the  in  dino-  in neutralized  95  . IV  " ' SUMMARY AND CONCLUSIONS  "Seventy-seven s p e c i e s  o f d i n o f l a g e l l a t e s were  from.the S t r a i t o f Georgia period of this  study.  samples d u r i n g  The s e a s o n a l  flagellates  was d i v i d e d i n t o  abundance.  The f i r s t  early  spring  (February  of  summer m o n t h s larger, thecate  a ' spring increase  t h e two y e a r  distribution  tv/o d i s t i n c t  i n the  T h e s e c o n d peak o c c u r r e d  of during  ( J u n e - A u g u s t ) and v/as made up p r i m a r i l y dinoflagellates,•  I t i s postulated  i n non-thecate species  that  of d i n o f l a g e l l a t e s  v/aters t h a n has been p r e v i o u s l y  realized,  study  of relative  - M a r c h ) a n d was c o m p o s e d m a i n l y  i n northern  This  of dino-  periods  may b e a more common o c c u r r e n c e  2.  recorded  p e r i o d o f abundance o c c u r r e d  small, non-thecate species. the  '  h a s shown t h a t t h e s e a s o n a l  temperate c o a s t a l  cycle of biologic-  a l l y - a c t i v e v i t a m i n B.^ i n t h e S t r a i t o f G e o r g i a  i s more  complex than has been r e p o r t e d  Three  in  vitamin  a year.  B^  concentration  the v i t a m i n from decaying  in  B^2 c o n c e n t r a t i o n  the  3^  runoff water.  v/as p r o b a b l y  plankton.  was c l o s e l y River.  was l i b e r a t e d  peaks  after  the spring  a n d v/as p o s s i b l y due t o r e g e n e r a t i o n  of  r u n o f f from the F r a s e r  areas.  v/ere n o t e d o v e r t h e p e r i o d o f -  A s p r i n g p e a k i n B.^ o c c u r r e d  increase i n phytoplankton  vitamin  f o rother  T h e summer maximum  associated with  I t i s postulated  from s i l t  The l a t e f a l l  particles  p e a k i n B^^  the result of typical  t h e summer that  contained i n concentration  regenerative  processes  96  in 3.  the. w a t e r c o l u m n . The  r e s u l t s of the  vitamin of  B.^  regression  is a significant  analyses  of Georgia.  During the  the year.  spring i n  minimum v a l u e s  appear to r e g u l a t e  of d i n o f l a g e l l a t e s i n . t h e S t r a i t of Georgia. results had  i n d i c a t e d t h a t the  lower l i g h t  community. flagellate unclear.  The  and  zooplankton  I t i s postulated and  con-  number  regression  s p r i n g d i n o f l a g e l l a t e community  community i n the  between s a l i n i t y  the  for  the  The  temperature optima than the  e f f e c t of  size  s i z e of  related to nitrogen  reached"their  Phosphorus d i d not  the  summer m o n t h s t h e  d i n o f l a g e l l a t e c o m m u n i t y was  c e n t r a t i o n s w h i c h had  indicate that  f a c t o r i n determining"the  the d i n o f l a g e l l a t e community d u r i n g  Strait the  .__  grazing  Strait  of Georgia  t h a t the  observed  d i n o f l a g e l l a t e s was  m e a s u r e d p a r a m e t e r t h a t was  due  on  summer the  dino-  remains association t o some  highly correlated with  un-  salinity „  LITERATURE CITED A n o n . MS, 1 9 6 8 . B r i t i s h C o l u m b i a I n l e t C r u i s e s , 1967. D a t a Report., No. 27. I n s t . O c e a n o g . U n i v . B.C. V a n c o u v e r , B.C. 36p. 3 f i g . . , 1969. B r i t i s h C o l u m b i a I n l e t and P a c i f i c O c e a n C r u i s e s , 1968. D a t a R e p o r t Mo. 2 8 . I n s t . Oceanog. U n i v . B.C., V a n c o u v e r , B.C. ( i n p r e p a r a t i o n ) . A n t i a , N.H. , C D . M c A l l i s t e r . , T.R, P a r s o n s , K. S t e p h e n s and J.D.H. S t r i c k l a n d . 1963. F u r t h e r measurements of primary production using a large-volume p l a s t i c sphere. L i m n o l . O c e a n o g . , 8: 166 - 1 8 3 . B a i l e y , L.W. and A.H. M a c K a y . 1916. Diatoms from the e a s t ern c o a s t of Vancouver I s l a n d . T r a n s . Roy. S o c . C a n a d a , S e r . I l l , 9: 141 - 1 7 3 . B a r k e r , H.A. 1935. The c u l t u r e and p h y s i o l o g y o f t h e m a r i n e dinoflagellates. A r c h . M i k r o b i o l . , 6: 157 - 1 8 1 . B a r n e s , H. 1 9 5 2 . The u s e o f t r a n s f o r m a t i o n s i n m a r i n e biological statistics. J . Cons. I n t . E x o l o r . Mer., 61-71. *  18:  and G.R. H a s l e . 1 9 5 7 . A s t a t i s t i c a l examination o f t h e d i s t r i b u t i o n o f some s p e c i e s o f d i n o f l a g e l l a t e s . i n t h e p o l l u t e d i n n e r O s l o F j o r d . . N y t t Mag. Bot., 5: 113 - 1 2 3 . B e k l e m i s h e v , K.V. 1954. F e e d i n g o f some common p l a n k t o n . copepods In f a r e a s t e r n seas. Z o o l . J„ I n s t . O c e a n o l . A c a d . S c i . U.S.S.R., 33: 1210 - 1229. B i g e l o w , H.B, 1926. Gulf of Maine.  Plankton of the o f f s h o r e waters of the B u l l . U.S. B u r . F i s h . , 4 0 : 1 - 507.  , L. L i l l i c k and M. S e a r s . 1940. Phytoplankton and p l a n k t o n i c p r o t o z o a o f t h e o f f s h o r e w a t e r s o f t h e Gulf of Maine. P a r t I . Numerical d i s t r i b u t i o n . Trans. Amer. P h i l . S o c . 3 1 : 149 - 1 9 1 . B r a a r u d , T. 1 9 3 5 . The 0 s t - e x p e d i t i o n t o t h e Denmark S t r a i t , 1929. I I . The p h y t o p l a n k t o n and i t s c o n d i t i o n s o f g r o w t h . H v a l r a d e t s S k r . N r . 10: 7 - 1 7 3 . . 1945. A phytoplankton waters of i n n e r Oslo F j o r d .  survey of the p o l l u t e d H v e l . S k r . N r . 28: 1 -  164.  98  _„ 1 9 5 1 . S a l i n i t y a s an e c o l o g i c a l f a c t o r phytoplankton. P h y s i o l . P l a n t . 4: 28 - 3 4 . •[  i n marine  __. 1 9 6 1 . C u l t i v a t i o n o f m a r i n e o r g a n i s m s a s a means o f u n d e r s t a n d i n g e n v i r o n m e n t a l i n f l u e n c e on p o p u l a t i o n s . I n O c e a n o g r a p h y . P u b l i c . No. 6 7 , A.A.A.S. W a s h i n g t o n , D.C. e d . M. S e a r s : 2 7 1 - 2 9 8 .  B r a n d t , T . v o n , N.W. R a k e s t r a w a n d C.E. R e n n . 1 9 3 7 . The e x p e r i m e n t a l d e c o m p o s i t i o n and r e g e n e r a t i o n o f n i t r o genous o r g a n i c m a t t e r i n s e a water. B i o l . B u l l . Woods H o l e , 7 2 : 165 - 1 7 5 . and . 19 39. Further experiments on t h e d e c o m p o s i t i o n s and r e g e n e r a t i o n o f n i t r o g e n o u s organic matter i n sea water. B i o l . B u l l . Woods " H o l e , 7 7 : 285 - 2 9 6 . B r o w n l e e , K.A. 1 9 6 5 . S t a t i s t i c a l T h e o r y a n d M e t h o d o l o g y i n S c i e n c e a n d E n g i n e e r i n g . New Y o r k . J o h n W i l e y & Sons. 590 p p . B u r k h o l d e r , P.R.'and L.M. B u r k h o l d e r . 1 9 5 6 . V i t a m i n B.^ i n s u s p e n d e d s o l i d s a n d m a r s h muds c o l l e c t e d along the coast of Georgia. L i m n o l . O c e a n o a r . , 1: 202. - 2 0 8 . and . 1958. S t u d i e s on B v i t a m i n s i n r e l a t i o n to p r o d u c t i v i t y of the Bahia Fosforescente, Puerto Rico. B u l l . M a r . S c i . o f t h e G u l f and C a r r i b . , 8: 2 0 1 - 22 3. .  , a n d L.R. A l m o d o v a r . 1 9 6 7 . C a r b o n a s s i m i l a t i o n o f marine f l a g e l l a t e blooms i n n e r i t i c waters of southern Puerto R i c o . B u l l . Mar. S c i . , 17: 1-15.  B u r t o n , M.O. a n d A.G. L o c h h e a d . 1 9 5 1 . S t u d i e s o n t h e p r o d u c t i o n o f B j o - a c t i v e substances by m i c r o o r g a n i s m s . C a n . J . B o t . , " 2 9 : 352 - 3 5 9 . ' C a r l u c c i , A , F . a n d F.B. S i l b e . r n a g e l . 1966. Bioassay of s e a w a t e r I . A 14-c U p t a k e . m e t h o d f o r t h e d e t e r m i n a t i o n o f c o n c e n t r a t i o n s o f v i t a m i n B__2 i n s e a w a t e r . C a n . ', J . M i c r o b i o l . , 1 2 : 175 - 1 8 3 . ;  C o n o v e r , S.A.M. 1 9 5 6 . O c e a n o g r a p h y o f L o n g I s l a n d S o u n d , 1952 - 1 9 5 4 . I V . P h y t o p l a n k t o n . B u l l . B i n g h a m O c e a n o g r , C o l l . , 1 5 : 62 - 1 1 2 .  99 C o o p e r , L.H.N. 1 9 3 5 . T h e r a t e o f l i b e r a t i o n o f p h o s p h a t e i n s e a water by t h e breakdown o f p l a n k t o n - organisms. J . M a r . B i o l . A s s . U.K., 20: 197 1 2 0 0 . ••Cowey, C.B. 1 9 5 6 . A p r e l i m i n a r y i n v e s t i g a t i o n o f t h e v a r i a t i o n o f v i t a m i n ' B j 2 i n o c e a n i c and c o a s t a l w a t e r s , J . M a r . B i o l . A s s . U.K., 3 5 : 609 - 6 2 0 . , C u s h i n g , 1 9 5 9 . The s e a s o n a l v a r i a t i o n i n o c e a n i c p r o d u c t i o n as a p r o b l e m i n p o p u l a t i o n d y n a m i c s . J . Cons. I n t . . . E x p l o r . Mer, 24:'455 - 464, ' . D a i s l e v , K.W. 1 9 5 7 . V i t a m i n B^2 i L o n d o n . 1 8 0 : 1041 - 1 0 4 2 .  n  marine ecology.  Nature,  D a v i s , Rr.E. a n d D , J . N i c o l . 1 9 6 7 . The m i c r o b i o l o g i c a l o f v i t a m i n B;_2 u s i n g t h e d i a t o m C y c l o t e l l a n a n a . J . e x p . B i o l . med. S c i . , 4 5 : 613 — 6 2 8 .  assay Aust.  D o d i m e a d , A . J . and G„L, P i c k a r d , 1 9 6 7 . A n n u a l c h a n g e s i n the o c e a n i c - c o a s t a l waters o f the eastern s u b a r c t i c Pacific. J . F i s h . R e s . Bd. Can., 24: 2207 - 2227. D r o o p , M.R. 1 9 5 4 . C o b a l a m i n r e q u i r e m e n t N a t u r e , London, 174: 520.  i n Chrysophyceae.  . 1 9 5 5 . A. p e l a g i c m a r i n e d i a t o m r e q u i r i n g J". M a r . B i o l . A s s . U.K., 3 4 : 229 - 2 3 1 . . 1957a, V i t a m i n B-_2 i n m a r i n e e c o l o g y . "London. 1 8 0 : 1 0 4 1 . __ ___•  ;  cobalamin. Nature,  . 19 5 7b. A u x o t r o p h y a n d o r g a n i c compounds i n t h e n u t r i t i o n o f Marine phytoplankton. J . Gen. M i c r o b i o l . 16: 286 - 2 9 3 . . 1 9 6 8 . V i t a m i n B__2 a n d m a r i n e e c o l o g y . I V . T h e k i n e t i c s o f u p t a k e , g r o w t h and i n h i b i t i o n i n ^ n o c h r _ y s i s lutheri. J . M a r . B i o l . A s s . U.K., 4 8 : 689 - 733."'. • , J . J . A . M c L a u g h l i n , I . J . P i n t n e r , and L. P r o v a s o l i . 1959. S p e c i f i c i t y o f some p r o t o p h y t e s t o w a r d v i t a m i n B__2-like compounds. P r e p r i n t s I n t , Oceanogr. Congr. 916 - 9 1 8 .  E d m o n d s o n , W.T, 1 9 6 5 . R e p r o d u c t i v e r a t e o f p l a n k t o n i c r o t i f e r s as r e l a t e d t o f o o d and t e m p e r a t u r e i n n a t u r e . E c o l . Monogr., 35:-61 - 111. F l e r n i n g e r , A. and R . I . C l u t t e r . 1 9 6 5 . A v o i d a n c e o f t o w e d n e t s by z o o p l a n k t o n . L i m n o l . O c e a n o g r . , 1 0 : 96 - 1 0 4 .  100 Gold., K 1 9 6 2 . N u t r i t i o n o f m a r i n e p h y t o p l a n k t o n .measured by• C'I4 u p t a k e and c e l l s i z e d i s t r i b u t i o n . J . Protozool. ( A b s t r . ) 9 ( s u p p l . ) : 10. 0  _ and J . J . A . M c L a u g h l i n . 1 9 6 1 . C - u p t a k e a s an. index'of n u t r i t i o n a l status i n marine d i n o f l a g e l l a t e s . I. S a l i n i t y . J . P r o t o z o o l . ( A b s t r . ) 8 ( s u p p l ) : 7. G r a n , H.H. .1929. Investigation of the production of plankton o u t s i d e t h e R o m s h a l s f j o r d 1926 - 1 9 2 7 . C o n s . I n t . ...' Exp l o r . M e r , 5 6 : 5 - 1 1 0 . and E.C. A n g s t . 1 9 3 1 . P l a n k t o n d i a t o m s o f P u g e t • Sound. P u b l . P u g e t S o u n d - B i o l . S t n . , U n i v . Wash., 7: 417 - 5 1 9 . and T. B r a a r u d , 19 35. A q u a n t i t a t i v e study of the p h y t o p l a n k t o n i n t h e Bay o f F u n d y and t h e G u l f o f Maine ( i n c l u d i n g o b s e r v a t i o n s on h y d r o g r a p h y , c h e m i s t r y , and t u r b i d i t y ) . J . B i o l . B d . C a n . , 1: 279 - 4 6 7 . •_ a n d T.G. T h o m p s o n . 19 30. The d i a t o m s a n d p h y s i c a l and c h e m i c a l c o n d i t i o n s o f t h e s e a w a t e r i n t h e S a n Juan A r c h i p e l a g o . P u b l . Puget Sound B i o l . S t n . , U n i v . Wash., 7: 170 - 2 0 3 . G u i l l a r d , R.R.L. 1 9 6 8 . B 1 2 s p e c i f i c i t y diatoms. J . P h y c o l . , 4': 59 - 6 4 .  o f marine  centric  __________ a n d V. C a s s i e . 1 9 6 3 . M i n i m u m c y a n o c o b a l a m i n r e q u i r e . rnents o f some m a r i n e c e n t r i c d i a t o m s . L i m n o l . O c e a n o a r . 8: 229 - 2 3 9 . Hall,  H.H., J . C . B e n j a m i n , H.M. B r i c k e r , J . R . G i l l , W.C. H a y n e s and H.M. T s u c h i v a . 1 9 5 0 . A. s u r v e y f o r . B 1 2 p r o d u c i n g m i c r o o r g a n i s m s . P r o c . S o c . Amer. B a c t . 50: 2 1 .  H a r r i s , E. 1 9 5 9 . T h e n i t r o g e n c y c l e i n L o n g I s l a n d B u l l . Bingham Oceanogr. C o l l . , 17: 3 1 - 6 5 .  Sound.  Harvey,- H.W. 19 37. N o t e s o n s e l e c t i v e f e e d i n g bv C a l a n u s . J . M a r . B i o l . A s s . U.K. 2 2 : 97 - 1 0 0 . H a r v e y , H.W. , L.H.N. C o o p e r , M.V,. L e b o u r and F . S . R u s s e l l . 19 35. P l a n k t o n p r o d u c t i o n and i t s c o n t r o l . J . Mar. B i o l , A s s . U.K. 2 0 : 40 7 - 4 4 1 . H a s t i n g s , J.W. and B.M. S w e e n e y , 1 9 6 4 . P h a s e d c e l l d i v i s i o n i n . t h e marine d i n o f l a g e l l a t e s . I n Synchrony i n c e l l d i v i s i o n a n d g r o w t h , e d , E. M e u t h e n . Mew Y o r k . 447 p p .  101  H o l m e s , R.W. and T.M. W i d r i g . 1956. The e n u m e r a t i o n c o l l e c t i o n of marine p h y t o p l a n k t o n . J . C o n s e i l , 21 - 32.  and' 22:  H u t c h i n s o n , A.H., C C . L u c a s , and M. M c P h a i l . 1929. Seasonal .•' v a r i a t i o n s i n t h e c h e m i c a l and. p h y s i c a l p r o p e r t i e s o f . the waters of the S t r a i t of Georgia i n r e l a t i o n to phytoplankton. T r a n s . R o y a l S o c . Can., 3 r d S e r i e s , 2 3 : 177 - 1 8 8 . H u t n e r , S.H., L. P r o v a s o l i , E.L.R. S t o c k s t a d , C E . Hoffmann, M. B e l t , A . L . F r a n k l i n and.T.H. J u k e s . 1949. Assay . o f a n t i p e r n i c i o u s anemia f a c t o r v;ith E u g l e n a . Proc. S o c . E:<p. B i o l . , N.Y. , 70: 118 - 1 2 1 . ' and ' _.' 195 3. A pigmented marine diatom r e q u i r i n g v i t a m i n B12 and u r a c i l . News B u l l . P h y c o l o g . S o c . Amer., 6: 7 - 8. i  J i t t s , H.R., CD. M c A l l i s t e r , K. S t e p h e n s and J.D.H. S t r i c k l a n d . 1964. The c e l l d i v i s i o n r a t e s o f some m a r i n e p h y t o p l a n k t o n as a f u n c t i o n o f l i g h t and temperature. J . F i s h . R e s . Bd. C a n . , 2 1 : 139 - 157. K a s h i w a d a , K., D. K a k i m o t o , and A. o f v i t a m i n B__2 1° s e a w a t e r . U n i v . , 5: 148 - 152.  K a n a z o w a . 1959. Mem. F a c . F i s h . • •  Studies Kagoshima " .  , T. M o r i t a , A. K a n a z o w a and K. K a w a z o e . 19'56. S t u d i e s on v i t a m i n B^2 i n s e a w a t e r . Jap. Soc. S c i . F i s h . B u l l . 7: 637 - 6 4 0 . K o r d a n , H.A. 1 9 6 5 . F l u o r e s c e n t contaminants from p l a s t i c and r u b b e r l a b o r a t o r y e q u i p m e n t . S c i e n c e 149: 1382 . 1383. K r i s s , ' A.E. 1963. M a r i n e M i c r o b i o l o g y (Deep S e a ) . John W i l e y & Sons. 5 36 pp.  New  York,  Lau,  K.S., C G o t t l i e b , L, W a s s e r m a n , and V. H e r b e r t . 1965. M e a s u r e m e n t o f s e r u m v i t a m i n B12 l e v e l u s i n g r a d i o i s o t o p e d i l u t i o n and c o a t e d c h a r c o a l . B l o o d , 2 6 : 202 • 214.  L e b o u r , M.V. 1922. Food of the p l a n k t o n organisms. Mar. B i o l . A s s . U.K., 1 2 : 644 - 6 7 7 .  J.  L e g a r e , J , E . H . 1957. The q u a l i t a t i v e and q u a n t i t a t i v e d i s t r i b u t i o n of p l a n k t o n i n the S t r a i t of Georgia i n r e l a t i o n to c e r t a i n oceanographic f a c t o r s . J. Fish. R e s . Bd. C a n . , 14: 521 - 5 5 2 .  . L e v / i n , R. 1954. vitamin  A marine Stichococcus « Gen. M i c r o b i o l . , J  102  sp. which r e q u i r e s 10: 93 - 9 6 .  L i l l i c k , L.C. 1938. P r e l i m i n a r y r e p o r t on t h e of t h e G u l f o f M a i n e . Amer. M i d i . N a t . 2 0 :  phytoplankton 624 - 6 4 0 .  1940. P h y t o p l a n k t o n and p l a n k t o n i c p r o t o z o a o f . . the o f f s h o r e waters of the G u l f of Maine. Part I I . T r a n s . Amer. P h i l . S o c , 3 1 : 19 3 - 237. . , L o c h h e a d , A-.G. and R.H. T h e x t o n . 1951. V i t a m i n B^2 as growth f a c t o r f o r s o i l b a c t e r i a . N a t u r e , London,, 167: 1034. L o e b l i c h , A.R. I I I . 1967. Aspects of b i o c h e m i s t r y of the Pyrrhophyta. 255.  a  the'physiology and P h y k o s , 5: 216 -  L u c a s , C.C., and A.H. H u t c h i n s o n . 1927. A bio-hydrographical i n v e s t i g a t i o n o f the sea a d j a c e n t t o the F r a s e r R i v e r Mouth. T r a n s . R o y a l Soc. Can., S e r . I l l , 2 1 : 485 - 5 2 0 . L u n d , J.W.G. , C. K i p l i n g and E.D'. L e C r e n . 1958. The i n v e r t e d m i c r o s c o p e m e t h o d o f e s t i m a t i n g a l g a l n u m b e r s and t h e s t a t i s t i c a l b a s i s o f e s t i m a t i o n s by c o u n t i n q . H v d r o b i o l . , 11: 143 - 170. M a r g a l e f , R. geneity Biology, s i t y of  1958. T e m p o r a l s u c c e s s i o n and s p a t i a l h e t e r o i n phytoplankton. In Perspectives i n Marine e d . A.A. B u z z a t i - T r a v e r s o . B e r k e l e y , U n i v e r C a l i f o r n i a Press. 621 pp.  _. 1 9 6 7 a . C b r r e l a c i o n e s e n t r e p a r a m e t r o s o c e a n o graficos del Caribe. I n v e s t , p e s q . , 31: 1 - 15. __. 1 9 6 7 b . The f o o d web- i n t h e H e l g o l . W i s s . M e e r e s u n t e r s . , 15:  p e l a g i c environment. 548 - 5 5 9 .  M a r s h a l l , S.M. and A.P. O r r . 1952. On t h e b i o l o g y o f Calanus finmarchicus V I I . F a c t o r s a f f e c t i n g egg production. J M a r . B i o l . A s s . U.K., 30: 527 - 547. and . 1961. S t u d i e s on t h e b i o l o g y o f Calanus finmarchicus X I I . J . Mar. B i o l . A s s . U.K., 4 1 : 463 - 4 8 8 . M a t t h e w s , W.H. and F „ P S h e p a r d , .19 62. Sedimentation of Fraser River d e l t a , B r i t i s h Columbia. B u l l . Amer. A s s . P e t r o l . G e o l . , 46: 1416 1443. C  103 M c A l l i s t e r , CD.,• N. Shah and J.D.H. S t r i c k l a n d . . 1 9 6 4 . • M a r i n e p h y t o p l a n k t o n p h o t o s y n t h e s i s as a f u n c t i o n o f l i g h t i n t e n s i t y : a comparison o f methods. J. Fish. Res.- B d . C a n . , 2 1 : 1 5 9 - 1 8 1 . M c L a c h l a n , J . 1 9 6 1 . The e f f e c t o f s a l i n i t y o n g r o w t h and •chlorophyll content i n representative classes of u n i c e l l u l a r m a r i n e a l g a e . C a n . J . M i c r o b i o l . , 7: r /•••• 399 - 4 0 6 . M c L a u g h l i n , J . J . A . a n d P.A. Z a h l . 1 9 5 9 . V i t a m i n r e q u i r e m e n t s i n s y m b i o t i c a l g a e . P r e p r i n t s I n t . Oceanogr. Congr. A-;A.A.S.„ ".Washington, 9 3 0 * - 9 3 1 . M e n z e l , D.W. a n d J . P . S p a e t h . 1 9 6 2 . O c c u r r e n c e o f v i t a m i n B^2 i n t h e S a r g a s s o S e a . L i m n o l . O c e a n o g r . , 7: 151 158. P a r k e , M. and P.S. D i x o n . 1 9 6 8 . C h e c k - l i s t o f B r i t i s h Marine a l g a e - second r e v i s i o n . J . Mar. B i o l . A s s . U.K., 4 8 : 783 - 8 3 2 . P e c k , J . I . and M.R. H a r r i n g t o n . 189 7. O b s e r v a t i o n s on t h e p l a n k t o n o f Puget Sound. T r a n s . N.Y. A c a d . S c i . , 16: 378 - 3 8 7 . P h i f e r , L.D. 1 9 3 3 . S e a s o n a l d i s t r i b u t i o n and o c c u r r e n c e of p h y t o p l a n k t o n diatoms a t F r i d a y Harbor, Washington. U n i v . Wash. P u b l . O c e a n o g r . , 1: 39 - 8 1 . POmeroy,.. L.R. a n d F.M. B u s h . 1 9 5 9 . R e g e n e r a t i o n o f p h o s . p h a t e by m a r i n e a n i m a l s . P r e p r i n t ' s I n t . Oceanogr. Congr. A . A . A . s i W a s h i n g t o n , 893 - 8 9 4 . P r a k a s h , - A . and M.A. R a s h i d . 1 9 6 8 . I n f l u e n c e o f hurnic s u b s t a n c e s o n .the g r o w t h o f m a r i n e " p h y t o p l a n k t o n : dinoflagellates. L i m n o l . O c e a n o g r . , 1 3 : 598 - 6 0 6 . and. F . J . R . T a y l o r . 1 9 6 6 . A " r e d - w a t e r " b l o o m o f ^2HYJ?.y.i ES a c a t ^ n e l l a and i t s r e l a t i o n t o p a r a l y t i c shellfish toxicity, J . F i s h . R e s . B d . C a n . , 2 3 : 1265 1270. a  P r o v a s o l i , L. 1 9 5 8 . G r o w t h f a c t o r s i n u n i c e l l u l a r m a r i n e a l g a e . I n P e r s p e c t i v e s i n M a r i n e B i o l o g y , e d . A.A. Buzzati-Traverso. Berkeley, U n i v e r s i t y of C a l i f o r n i a P r e s s . 621 p p . and K. G o l d . 1 9 5 7 . Some, n u t r i t i o n a l c h a r a c t e r i s t i c s of Gyrodinium cjDhniji, a c o l o r l e s s marine dinoflagellate. J . P r o t o z o o l . ( A b s t r . ) 4 ( s u p p l ) : 7.  104 and J . J . A . M c L a u g h l i n . 1963. Limited heterotrophy o f some o h o t o s y n t h e t i c d i n o f l a g e l l a t e s . Bact. Proc. 35. ' \ and M.R. D r o o p . 1957. .'. o f a r t i f i c i a l m e d i a f o r m a r i n e a l g a e . 2 5 : 392 - 4 2 8 . _____  The d e v e l o p m e n t Arch. M i k r o b i o l . ,  , ' •• and I . J . P i n t n e r . 1954.. R e l a t i v e and l i m i t i n g c o n c e n t r a t i o n s of major m i n e r a l c o n s t i t u e n t s •for t h e g r o w t h o f a l g a l f l a g e l l a t e s . Trans. N.Y. A c a d . S c i . , 16: 412 - 4 1 7 . . and I . J . P i n t n e r . 1 9 5 3 . Ecological implications °^ i n i t r o n u t r i t i o n a l r e q u i r e m e n t s o f a l g a l f l a g e l l ates. A n n . N.Y. A c a d . S c i . , 56: 839 - 8 5 1 . v  Raymont, J.E.G. 1963. P l a n k t o n and P r o d u c t i v i t y Oceans. O x f o r , P e r g a m o n P r e s s . 660 p p .  i n the  R i l e y , G.A. 1937. S i g n i f i c a n c e of the M i s s i s s i p p i R i v e r drainage f o r b i o l o g i c a l c o n d i t i o n s i n the n o r t h e r n Gulf of Mexico. J . Mar. R e s . , 1: 60 - 74. . 19 39. Plankton studies. I I , the western North A t l a n t i c , Mav - J u n e 1939. J . Mar. R e s . , 2: 145 162. . 1946. Factors c o n t r o l l i n g phytoplankton p o p u l a t i o n s on G e o r g e s B a n k . J . M a r . R e s . , 6: 73. and S.A.M. C o n o v e r . 1967. L o n g I s l a n d S o u n d 1954 - 1 9 5 5 . C o l l . , 19: 5 - 34.  Phytoplankton B u l l . Bingham  54  -  of Oceanogr.  R o b b i n s , W„J., A. H e r v e y , and M.E. S t e b b i n s . 1950. Studies o f E u g l e n a and B , B u l l . T o r r e y B o t . C l u b , 77: 423 441. L d  , and o f E u g l e n a and B,~. 363 -""375.  Bull.  . 1951. Torrey  Further observations B o t . C l u b , 78:  R o u n s e f e l l , G.A. and. A. D r a g o v i c h . 1966. C o r r e l a t i o n between o c e a n o g r a p h i c f a c t o r s and a b u n d a n c e o f t h e F l o r i d a r e d t i d e ( G y r a n o d i n i u m b r e v e D a v i s ) , 1954 - 1 9 6 1 . Bull. M a r . S c i . , 16: 404 - 4 2 2 . R y t h e r , J.H. 1956. P h o t o s y n t h e s i s i n t h e o c e a n as a. f u n c t i o n of l i g h t i n t e n s i t y . L i m n o l . O c e a n o g r . , 1: 61 -~ 70.  105 _______ and . R . R . L . . G u i l l a r d . 1 9 6 2 . S t u d i e s o f m a r i n e ' p l a n k t o n i c d i a t o m s . I I . Use o f C y c l o t e l l a nana H u s t e d t f o r assays o f v i t a m i n B i n seawater.. Can. J . M i c r o b i o l . 8:* 437 - 4 4 5 . ... 1 ?  S m i t h , E.L. 1948. P u r i f i c a t i o n o f a n t i - p e r n i c i o u s anemia f a c t o r s from l i v e r . M a t u r e , L o n d o n . 161:••• 6 3 8 . S t a r r , . T . J . 1 9 5 6 . R e l a t i v e a m o u n t s o f v i t a m i n B;_2 i n d e t r i t u s f r o m o c e a n i c and e s t u a r l n e e n v i r o n m e n t s n e a r Sapelo Island,' Georgia. E c o l o g y , 37: 658 - 664.. , M.E. J o n e s a n d D. M a r t i n e z . 1 9 5 7 . The p r o d u c t i o n . o f v i t a m i n B__2~active s u b s t a n c e s by m a r i n e b a c t e r i a . L i m n o l . Oceanogr 2 : 114 - 1 1 9 . S t r i c k l a n d , J.D.H. and T.R. P a r s o n s . . 1 9 6 0 . A", m a n u a l o f sea. w a t e r a n a l y s i s . B u l l . F i s h . R e s . B d . C a n . No. 12 5: . 1 - 185. and . 1 9 6 5 . 'A m a n u a l o f s e a w a t e r a n a lysis. Second e d i t i o n , r e v i s e d . B u l l . F i s h . R e s . Bd. Can. No. 1 2 5 : 1 - 203.. S w e e n e y , B.M. 1 9 5 4 . G y m n o d i n i u m s p e n d e n s , a m a r i n e d i n o f l a g e l l a t e r e q u i r i n g v i t a m i n B,-. Amer. J . B o t . , 4 1 : 821 - 8 2 4 . T a y l o r , F.J.R. 1968. P a r a s i t i s m o f t h e t o x i n - p r o d u c i n g d i n o f l a g e l l a t e G o n y a u l a x c a t e n e l l a by t h e e n d o p a r a s i t i c d i n o f l a g e l l a t e A^o^boj^hrvs c e r a t i i . J . Fish. R e s . B d . Can.", 2 5 : 2 2 4 1 - 2 2 4 5 . Thomas, W.H..1966. E f f e c t s o f t e m p e r a t u r e and i l l u m i n a n c e on c e l l d i v i s i o n r a t e s o f t h r e e s p e c i e s o f t r o p i c a l oceanic phytoplankton. J . P h y c o l . , 2: 17 - 2 2 . T u l l y , J . P . a n d A . J . D o d i m e a d . 195 7. P r o p e r t i e s of the water i n t h e S t r a i t o f G e o r g i a , B r i t i s h C o l u m b i a , and influencing factors. J . F i s h . R e s . B d . C a n . , 14: 241 - 319." U t e r m o h l , H. 19 3 1 . des P l a n k t o n s .  Neue V/ege i n d e r q u a n t i t a t i v e n E r f as sung, Verh„ I n t . V e r . L i m n o l . 5.  _. 1 9 5 8 . Z u r V e r v o l l k o m m n u n g d e r q u a n t i t a t i v e n Phytoplankton - Methodik. .M i t t . I n t . Ver. Limnol., • 9: 1 - 3 8 . V i s h n i a c , H . S . a n d G.A". R i l e y . 1 9 6 1 . C o b a l a m i n a n d t h i a m i n e _ I n L o n g I s l a n d S o u n d : p a t t e r n s o f d i s t r i b u t i o n and ecologica.l s i g n i f i c a n c e . L i m n o l . O c e a n o g r . , 6: 36 - 4 1 .  106  W a i l e s , G.H. 1 9 2 8 . D i n o f l a g e l l a t e s f r o m B r i t i s h C o l u m b i a w i t h d e s c r i p t i o n s o f new s p e c i e s . Museum a n d A r t N o t e s , V a n c o u v e r C i t y Museum, 3: 1 - 8 . _. 1 9 3 3 . The p l a n k t o n o f t h e w e s t c o a s t o f V a n c o u v e r .Island, B r i t i s h Columbia. Museum a n d A r t N o t e s , .' V a n c o u v e r C i t y Museum, 7 ( s u p p l ) : 1 - 9 . 1939. Canadian Mastigophora. Fish. Press, 1 - 45.  P a c i f i c fauna. 1 . Protozoa. l e . R e s . B d . C a n . and U n i v . T o r o n t o  W a l d i c h u k , M. 1 9 5 7 . P h y s i c a l O c e a n o g r a p h y o f t h e ' S t r a i t • o f G e o r g i a , B r i t i s h Columbia.. F i s h . Res. Bd. Can., 14: 321 - 4 8 6 . Wood, E.D., F . A . J . A r m s t r o n g and F.A. R i c h a r d s . 1 9 6 7 . D e t e r m i n a t i o n o f n i t r a t e i n s e a w a t e r by cadmium-copper reduction to n i t r i t e . J . M a r . B i o l . A s s . U.K., 4 7 : 23-31. Wood, E . J . F . 195 3. H e t e r o t r o p h i c b a c t e r i a i n marine environments of Eastern A u s t r a l i a . A u s t . J . Mar. F r e s h w a t e r R e s . , 4: 160 - 2 0 0 . Z o B e l l , C.E. 1 9 4 6 . M a r i n e M i c r o b i o l o g y . Co. W a l t h a m M a s s . , 240 p p .  .  Chronica Botanica  107  APPENDIX Cruise  I  Dates  TABLE I ,'  CRUISE DATES  1966-1967  1967-1968  Oct.  12-14  25-26  Nov.  15-17  27-28  Dec. Jan. Feb.  9-11 21-22  Mar.  20 19-20  Apr.  25-27  16-18  May  22-23  10-11  June  12-13  7-8  July  26-28  8-9  Aug. Sept.  10-11 25-27  13-14  APPENDIX I I Species D i s t r i b u t i o n ..Plates of  and T a x o n o m i c Species  Notes  S P E C I E S D I S T R I B U T I O N AND TAXONOMIC •  -Prorocentrum  gracile  NOTES  ( F i g . 1) was r e c o r d e d  only  f r o m J u l y t o S e p t e m b e r i n t h e u p p e r 20 m e t e r s o f t h e w a t e r column.  This  species  23,500 c e l l s / l i t e r The  a t t a i n e d a maximum c o n c e n t r a t i o n o f  i n September.  species of Dinophysis  a b u n d a n t and o c c u r r e d The  .  oxytoxoldes  July  1968.  was 1,600 c e l l s / l i t e r f o r  a t S t a t i o n A i n September 1967.  ( F i g . 7) was n o t e d  October with  Oxyphysis  o c c a s i o n a l l y between J u l y and  a p e a k o f 1,400 c e l l s / l i t e r This  never  o n l y d u r i n g t h e l a t e ' summer a n d f a l l .  highest concentration recorded  — ' lachm-annii  ( F i g . 2 - 6) w e r e  at Station C i n  s p e c i e s was f o u n d t o o c c u r  t o a depth o f  50 m e t e r s . A m p h i d i n i u m longum s e v e r a l months i n v e r y liter  i n June 1968).  l o w numbers  i n January  A. s t i g m a t i c u m both it  years  260  only  cells/  ( F i g . 9 ) was  and a l s o i n l o w numbers  (200 c e l l s /  ( F i g . 8 ) was f o u n d  i n the e a r l y spring of  d u r i n g t h e summer a n d e a r l y f a l l  a p e a k c o n c e n t r a t i o n o f 1,100 c e l l s / l i t e r  S t a t i o n C i n September 1968. distributed  from  1967 v/as t h e maximum c o n c e n t r a t i o n ) .  and a g a i n  reached  (maximum b e i n g  S i m i l a r l y , A. s p h e n o i d e s  i n f r e q u e n t l y encountered liter  ( F i g . 1 0 ) was r e c o r d e d  A. s t i g m a t i c u m  when at  t e n d e d t o be  t h r o u g h o u t t h e water column a t a l l depths  sampled. Cochlodinium (Fig.  brandtil  1 1 ) , and C. p u l c h e l l u m  ( F i g . 1 2 ) , C. . h e l i c q i d e s  ( F i g . 13) were e a c h n o t e d  only  a few.times.,- m a i n l y  i n t h e summer a n d a l w a y s i-n l o w n u m b e r s  ( l e s s t h a n 100 c e l l s / l i t e r ) . 20  C, b r a n d t i i  a n d 50 m e t e r s d e p t h , w h i l e . C ,  occurred  h e l i c o i d e s a n d C.  w e r e g e n e r a l l y found, i n t h e u p p e r 20 m e t e r s . •(Fig.  14) was r e c o r d e d  between' pulchellum  C„ p u p a  from June t h r o u g h March and a l m o s t  a l w a y s i n l o w n u m b e r s e x c e p t i n A u g u s t 1968 when i t a t t a i n e d a peak c o n c e n t r a t i o n  o f 1,000 c e l l s / l i t e r  a t S t a t i o n C.  G y m n o d i n i u m c i n e t u r n ( F i g . 1 5 ) was r e c o r d e d month o f t h e s t u d y  except i n A p r i l  a maximum c o n c e n t r a t i o n  i n fall  of both years.  July was  ( F i g . 2 0 ) was r e c o r d e d  1967 a n d a g a i n particularly  i n June 1968.  prevalent  maximum c o n c e n t r a t i o n rising highest (Fig.  during  concentration  17) was p r e s e n t  i n A u g u s t .1968). only  t w i c e : once i n  G. p a u l s e n i the early  i n March  n o t e d f o r any s p e c i e s .  T h i s was t h e G.  i n small  simplex numbers.  G. s p l e n d e n s ( F i g , 1 8 ) was n o t e d i n t h e summer m o n t h s a maximum c o n c e n t r a t i o n 5° v i r e s c e n s  ( F i g . 19) was a b u n d a n t i n J u l y  concentration in was  found i n only  i n J u l y 1967. 1967 (maximum once  Gymnodinium s p . 1 ( F i g . 21)  s e v e r a l s a m p l e s f r o m N o v e m b e r 1966 a n d  1967 a n d was a l w a y s i n l o w n u m b e r s .  similar  with  was 12,000 c e l l s / l i t e r ) b u t was s e e n o n l y  t h e summer s a m p l e s o f 1 9 6 8 .  January was  o f 550 c e l l s / l i t e r  a  i n F e b r u a r y 1968,  1968.  throughout the year  ( F i g . 16)  spring with  o f 15,000 c e l l s / l i t e r  t o 127,500 c e l l s / l i t e r  I t reached  (3,500 c e l l s / l i t e r i n  S e p t e m b e r 1967 a n d 9,500 c e l l s / l i t e r G. d i s s i m i l e  every  i n s h a p e t o G. a r c t i c u m  Wulff,  This  species  b u t was somewhat  •  larger. . Small  1  i n c l u s i o n s and a n u c l e u s  Gymnodinium  s p . 1, b u t no d e f i n i t e  v/ere s e e n .  Gymnodinium  throughout in  May  the year  1967  liter).  2  were e v i d e n t i n  plastids,  as i n G.  arcticum,  s p . 2 ( F i g . 22) a p p e a r e d s p o r a d i c a l l y  i n low numbers becoming most abundant  (450 c e l l s / l i t e r )  This  1  and M a r c h 1968  (1,350  cells/  s m a l l s p e c i e s was n o t c o m p a r a b l e t o any known  dinoflagellate.  The n u c l e u s ' was n o t o b s e r v e d  few  The  inclusions.  and t h e r e  were  g i r d l e was c o n s i s t e n t l y b e l o w t h e c e n t e r  of the c e l l . G y r o d i n i u m c i t r i n u m ( F i g . 2 3 ) was r e c o r d e d month  except  January  and A p r i l  d u r i n g t h e s p r i n g months. 4,200 c e l l s / l i t e r was G.  fusiforme  1 9 6 8 , and was m o s t common  A peak c o n c e n t r a t i o n o f  found  i n March 1968.  ( F i g . 24) o c c u r r e d  i n M a r c h 1968 b e i n g  species. year  w  a  s  found  present  chiefly  during  the l a t e  low numbers.  S° f l a g e l l a r e  study.  This  ' Gyrodinium fall  Gyrodinium  s p . 2 ( F i g . 2 7 ) was  occurred  s p r i n g months,  similar  always  i n size to s p . 1 v/as  t h a t o f G. f l a g e l 1 a r e .  found  i n l o w numbers  summer m o n t h s , o c c u r r i n g a t a l l d e p t h s . i n s h a p e t o G. b i c o n i c u m  the  ( F i g . 25) w e r e  The g i r d l e o f G y r o d i n i u m  f u r t h e r a n t e r i o r than  similar  throughout  s p . 1 ( F i g . 26)  and e a r l y  positioned  the  cells/  a t 50 and 100 m e t e r s  o f G. v a r i a n s  s p e c i e s was  Schiller.  t h e s p r i n g : 2,200  i n l o w numbers  Only f o u r i n d i v i d u a l s during this  month's  t h e maximum c o n c e n t r a t i o n f o r t h i s  and was n o t i n f r e q u e n t l y n o t e d  depth.  in  G. 2 £ 2 £  Similarly,  i n n e a r l y every  s a m p l e s and was m o s t p r e v a l e n t d u r i n g liter  each  This  during  species  K o f o i d & S w e e z y b u t was  was  smaller o f G.  and d i d n o t p o s s e s s  the t y p i c a l l y  nucleus  biconicum. K a t o d i n i um glaucum  during  elongate  ( F i g . 28) o c c u r r e d  t h e summer m o n t h s , b e i n g  reaching  principally  f o u n d a t a l l d e p t h s and  a maximum c o n c e n t r a t i o n  i n J u l y of both  years  (2,650 c e l l s / l i t e r ,  1967 a n d 2,200 c e l l s / l i t e r ,  Polykrikos kofoidii  ( F i g . 30) was f o u n d o n l y d u r i n g  months and a l w a y s i n low numbers. recorded 1966. the  Dicroerisma ( i n press)  both years  with  May 1 9 6 8 .  during  scintillans  o s i l o n e r e i e l l a g e n . n . , s p . n. T a y l o r  &  ( F i g . 36) was m o s t a b u n d a n t i n May o f  a peak c o n c e n t r a t i o n  This  species  o f 1,150  v/as a l s o r e c o r d e d  c h a r a c t e r i z e d by a b i f u r c a t i n g All  f r o m t h e 50 and 100  samples.  d u r i n g "the-summer m o n t h s a t a l l d e p t h s . is  n o t e d i n November  few i n d i v i d u a l s o f N o c t i l u c a  w e r e f o u n d i n t h e summer  t h e summer  s p o r a d i c a l l y throughout  a n d was c o n s i s t e n t l y r e c o r d e d A very  1968).  m a r i n a was  o n l y once: a s i n g l e specimen being  meter samples.  in  Oxyrrhis  Pronoctiluca pelagica occurred  year  Cattell  113.  the species  D.  internal  cells/liter i n l o w numbers  psilonereiella s k e l e t a l structxare.  o f G l e n o d i n i u m were f o u n d  only  t h e summer m o n t h s , g e n e r a l l y o c c u r r i n g i n f r e q u e n t l y  and/In low numbers.  G. p i l u i a  largest concentration  reaching  ( F i g . 29) o c c u r r e d  2,150 c e l l s / l i t e r i n  .August 1 9 6 8 . Species  i nthe  " o f P e r i d i n i u m were c h i e f l y  summer m o n t h s a l t h o u g h  found during the  a f e w were most abundant o r o c c u r r e d  (  114 only during  t h e s p r i n g months.  r e a c h e d a peak but  abundance  F o r e x a m p l e , _P. a c h r o m a t i c u m  o f 3,950 c e l l s / l i t e r  d i d occur o c c a s i o n a l l y during  v/as o n l y r e c o r d e d liter.  i n March  P. m i n u s c u l u m  (Fig.  33) was  1968 w i t h  i n 1967 All  1,250  cells/liter.  and -16,750 c e l l s / l i t e r  P.  G.  abundantly o c c u r r i n g species o f 7,100  i n low All  of this  cells/liter  genus w i t h  i n June  a peak  1968. t h e summer  numbers.  the species  of Ceratium occurred  i n the  C.  species  August  between  ( F i g . 52) v/as t h e m o s t  numbers,  genus w i t h  cells/  i n 1968.  summer' and f a l l m o n t h s and g e n e r a l l y i n l o w arcticum  cells/  1968.  1,150  P r o t o c e r a t i um' r e t i c u 1 a turn v/as f o u n d o n l y d u r i n g months.and  of the  o f G o n y a u l a x were r e c o r d e d  tamarensis  and  triquetrum  i n June  i n J u l y .with  and 7,950 c e l l s / l i t e r  J u n e and S e p t e m b e r .  cells/  3,250 c e l l s / l i t e r  a maximum d e n s i t y o f 4 9 , 3 5 0  the species  concentration  a maximum o f 2,450  1968 w i t h  P. t r o c h o i d e u m was m o s t a b u n d a n t liter  J?. nudum  t h e most p r e d o m i n a n t d i n o f l a g e l l a t e  i n J u n e 1967  1968  ( F i g . 32) d i s p l a y e d two p e a k s o f  summer p e r i o d , r e a c h i n g liter  t h e summer.  1968 w i t h  c o n c e n t r a t i o n : one i n M a r c h another i n J u l y  i n March  ( F i g . 4 0 ) v/as t h e m o s t a b u n d a n t a maximum c o n c e n t r a t i o n  o f 1,650  late  of  cells/liter  this in  1968. Goniodqma o s t e n f e l d i i  J u l y w i t h a peak c o n c e n t r a t i o n J u n e 1968.  v/as f o u n d o n l y i n ' J u n e o f 16,500 c e l l s / l i t e r  Paulsenella chaetoceratis  ( F i g . 35) was  and  in found  '•' ' l i s • during  the  summer and  fall  months i n low  species, i s g e n e r a l l y attached d e c i p i e n s or P.  C.  boreale.  c h a e t o c e r a t i s was  the  setae  parasitic  o f C.  n e a r J u a n de  Taylor  This but  t o be  A  by  however,  was  to the  found a case  p a r a s i t e i n Sequim  Pyrocystis lunula occurred September.  Cystodinium  In September of both y e a r s similar  attached  recently described  this  i n s i z e and  always found to occur  and  sp.  i n low  s h a p e t o C.  of  9y^sJ_5_d_j}JA_m.  Bay  in 1  low  was  numbers.  steinii  i n p a i r s which does not  common i n t h e known s p e c i e s  This  Chaetoceros  s i n g l e specimen of  (1968) has  Fuca S t r a i t .  s p e c i e s was was  study,  of  Amoebophyra c e r a t i i ,  infestation  n u m b e r s b e t w e e n J u n e and only  setae  c o n s i s t e n t l y f o u n d t o be  dinoflagellate,  dinoflagellate  recorded  In t h i s  concavicornis.  i n A u g u s t 1968. of  to the  concentrations.  Klebs  appear  .PLATE I Figure 1.  Prorocentrum g r a c i l e , l a t e r a l view.  Figure 2.  Dinophysis infundibulus, l a t e r a l view.  Figure 3.  D. p u l c h e l l a , l a t e r a l and v e n t r a l view  Figure 4.  D. lachma'nnii, l a t e r a l view.  Figure 5.  D. norvegica, l a t e r a l view.  Figure 6.  D. rotundata, l a t e r a l view.  Figure 7.  Oxyphysis oxytoxoides, l a t e r a l view.  Figure 8.  Amphidinium stigmaticum, v e n t r a l view.  Figure 9.  A. sphenoides, v e n t r a l view.  Figure 10.  A. longum, d o r s a l view.  PLATE  1  I  2  6  8  9  10  I 20LI  1  •PLATE;  I I  Figure 11.  Cochlodinium h e l i c o i d e s , ventral view.  Figure 12.  C. brandtii, lateral  Figure 13.  C . pulchellum, l a t e r a l  Figure 14.  C. pupa, l a t e r a l  Figure 15.  Gymnodinium cinctum, ventral view.  Figure 16.  G. paulseni, d i v i d i n g and ventral view  Figure 17.  G. simplex, ventral view.  Figure 18.  G. splendens, ventral view.  Figure 19.  G. virescens,  view. view.'  view.  ventral view.  PLATE  I—H 2 Op  II  PLATE I I I Figure 20.  Gymnodinium d i s s i m i l e , ventral view  Figure 21.  Gymnodinium sp. 1,  ventral view.  Figure 22.  Gymnodinium sp. 2,  ventral view.  Figure 23.  Gyrodinium citrinum, l a t e r a l  Figure 24.  G. fusiforme, l a t e r a l  Figure 25.  G. varians,  Figure 26.  Gyrodinium sp. 1,  Figure 27.  Gyrodinium sp. .2, ventral view.  Figure 28.  Katodinium glaucum, ventral view.  view.  view.  l a t e r a l view, op_. r e v . lateral  view.  PLATE  21  26  2 7  h — i  20p  III  22  2 8  PLATE IV Figure 29.  Glenodinium p i l u l a , ventral view.  Figure 30.  Polykrikos k o f o i d i i , ventral view.  Figure 31.  Peridinium tuba, ventral view.  Figure 32.  P. minusculum, ventral view.  Figure 33.  P. triquetrum, dorsal view.  Figure 34.  Gonyaulax diacantha,  Figure 35.  Paulsenella chaetoceratis, on Chaetoceros concavicornis.  Figure 36.  Dicroerisma p s i l o n e r e i e l l a , dorsal view.  '  "  ventral view, op_. r e v .  PLATE  IV  PLATE V Figure 37.  Peridinium oceanicum, v e n t r a l view.  Figure 38.  Ceratium fusus, v e n t r a l view.  Figure 39.  Cystodinium sp. 1. l a t e r a l view.  Figure 40.  Ceratium areticum, v e n t r a l view.  Figure 41.  C. horridum, v e n t r a l view.  PLATE VI Figure 42.  Peridinium brevipes, v e n t r a l view.  Figure 43.  P. conicum, v e n t r a l view.  Figure 44.  P. c r a s s i p e s , v e n t r a l view.  Figure 45.  P. depressum, v e n t r a l view.  Figure 46.  P. divergens, v e n t r a l view.  Figure 47.  Gonyaulax scrippsae, v e n t r a l view.  P L A T E VI  4 0 y  PLATE V I I Figure 48.  Peridinium l e o n i s , v e n t r a l view.  Figure 49. P. minutum, v e n t r a l and d o r s a l view. Figure 50. P. pentagonum, v e n t r a l view. Figure 51.  Gonyaulax t r i a c a n t h a , v e n t r a l view.  Figure 52.  G. tamerensis, v e n t r a l and d o r s a l view  130  APPENDIX I I I D i s t r i b u t i o n o f .B.^  i n Spring  1968  DISTRIBUTION OF B ^  IN SPRING 1968'  :  ,  jj_/'' "  . ',,; •  :  / . ' P a t c h e s ' o f h i g h B.^ c o n c e n t r a t i o n were r e c o r d e d i n The S t r a i t o f G e o r g i a d u r i n g t h e s p r i n g months o f 196.8 (Figure 1).  I t appeared  t h a t t h e s e 'patches*  i n t h e s u r f a c e w a t e r s near S t a t i o n D.  originated  A comparison  of  s e c t i o n s from t h e s p r i n g months ( F i g u r e 1) s u g g e s t e d t h a t t h e s e ' p a t c h e s ' were moving northward  i n the i n t e r m e d i a t e  w a t e r s o f t h e s t r a i t a l o n g i s o p y c n a l e s ( T u l l y and Dodime'ad, •1957; W a l d i c h u k ,  1957).  As l i t t l e i s known about t h e  c i r c u l a t i o n of the i n t e r m e d i a t e waters i n the S t r a i t o f Georgia, these of  'patches* may p r o v i d e a c r u d e e s t i m a t e  t h e v e l o c i t y o f water movement a t t h e s e  depths.  132 STATIONS  MARCH STATIONS  E  A  C  D  E  MAY  F i g u r e 1.  S p r i n g D i s t r i b u t i o n o f B_2 i Georgia i n l o n g i t u d i n a l section. n  t  n  e  Strait o  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0104321/manifest

Comment

Related Items