UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Comparative analyses of separate data sources in a systematic study of the genus Myoxocephalus (Pisces;… Cowan, Garry Ian McTaggart 1968

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1968_A1 C69.pdf [ 15.6MB ]
Metadata
JSON: 831-1.0104276.json
JSON-LD: 831-1.0104276-ld.json
RDF/XML (Pretty): 831-1.0104276-rdf.xml
RDF/JSON: 831-1.0104276-rdf.json
Turtle: 831-1.0104276-turtle.txt
N-Triples: 831-1.0104276-rdf-ntriples.txt
Original Record: 831-1.0104276-source.json
Full Text
831-1.0104276-fulltext.txt
Citation
831-1.0104276.ris

Full Text

COMPARATIVE ANALYSES OF SEPARATE DATA SOURCES IN A SYSTEMATIC STUDY OF THE GENUS HYOXOCEPHALUS (PISCES; COTTIDAE). by GARRY I . MOT. COWAN B.Sc.(Hons), U n i v e r s i t y of B r i t i s h Columbia, M.Sc., U n i v e r s i t y of B r i t i s h Columbia,  1963  1966  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  i n the Department of Zoology  We accept t h i s t h e s i s as conforming to the r e q u i r e d standard  The U n i v e r s i t y of B r i t i s h September, 1968  Columbia  In  presenting  for  an .advanced  that-  the  Study.  thesis  degree  I further  of  that  it  permission  thesis  of  y\jQA>3sSM^^yfi-^  Columbia  the  be g r a n t e d  It  is  requirements  Columbia,  for  reference  for extensive  for financial  permission.  of  British  f r e e l y .avai1ab1e  purposes•may  this  fulfilment  the U n i v e r s i t y of  make  The. U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, C a n a d a Date  in partial  o r b y h.iJs r e p r e s e n t a t i v e s ,  my w r i t t e n  Department  at  agree  f o r scho1ar1y  publication  without  thesis  Library shall  Department  or  this'  I  agree  and  copying  of  this  b y t h e H e a d o f my  understood  gain  shall  that  n o t be  copying  allowed  ABSTRACT COMPARATIVE ANALYSES OF TEMATIC STUDY OF THE  SEPARATE DATA SOURCES IN A SYS-  GENUS MYOXOCEPHALUS (PISCES; COTTIDAE)  The purpose of t h i s study was  to compare the systematic r e -  l a t i o n s h i p s w i t h i n the genus Myoxocephalus ( P i s c e s ; C o t t i d a e ) suggested  by separate  chemical"=protein  c o n v e n t i o n a l morphological  evidence  and  and " b i o -  to compare the e f f e c t s of numer-  i c a l and c o n v e n t i o n a l systematic analyses of t h i s evidence  on  the r e l a t i o n s h i p s . About 5000 specimens r e p r e s e n t i n g 13 nominal s p e c i e s of the genus Myoxocephalus provided investigation.  the source  for  morphological  An a d d i t i o n a l 157 f r e s h - f r o z e n specimens r e p r e -  s e n t i n g 11 nominal s p e c i e s were used i n the determination  of  biochemical d i f f e r e n c e s . P r o t e i n data c o n s i s t e d of e l e c t r o p h o r e t i c c h a r a c t e r i s t i c s of muscle p r o t e i n , malic dehydrogenase, and No  sexual v a r i a t i o n i n banding p a t t e r n s of any  t e r s employed was  detected.  myogen p a t t e r n was  "M.  these  (M.  unique.  of the  In only two  from wide geographic  charac-  nominal  range.  One  s c o r p i o i d e s ) had a constant p a t t e r n , the other,  s c o r p i u s " r e v e a l e d the presence of two  the c u r r e n t l y recognized There were two  Eleven  M.  s p e c i e s types w i t h i n  taxon.  e l e c t r o p h o r e t i c p a t t e r n s i n the malic  hydrogenase isozymes, 10 s p e c i e s possessed second.  dehydrogenase.  In each s p e c i e s examined the  constant and  s p e c i e s were samples obtained of  lactic  de-  one p a t t e r n , two  s p e c i e s had i d e n t i c a l isozyme p a t t e r n s of  the  lactic  ii dehydrogenase.  One  other s p e c i e s (M.  s c o r p i o i d e s ) was  Di-  phasic . Within the 7 m e r i s t i c c h a r a c t e r s examined, both d i n a l and l o n g i t u d i n a l c l i n e s were e x h i b i t e d . c l i n e s g e n e r a l l y i n c r e a s e d northward.  latitu-  Latitudinal  L o n g i t u d i n a l trends i n -  creased eastward a c r o s s the A r c t i c of North America, while i n the t r a n s p a c i f i c where there was  s p e c i e s values i n c r e a s e d westward. a response  In  cases  i n the number of p e c t o r a l r a y s , i t  was  i n a d i r e c t i o n opposite to the response  tic  features.  i n the other  meris-  M e r i s t i c c h a r a c t e r s were r i c h i n d i f f e r e n c e s  between s p e c i e s . M o r p h o l o g i c a l data e x c l u d i n g morphometric c h a r a c t e r s were d e r i v e d from 20 major c o n v e n t i o n a l f e a t u r e s as w e l l as from squamation, c e p h a l i c l a t e r a l l i n e system, l a t e r a l l i n e  ossi-  c l e s , o l f a c t o r y r o s e t t e s , and the c o i l i n g p a t t e r n of the  gut,  a l l of them f e a t u r e s not p r e v i o u s l y used i n systematic s t u d i e s of t h i s genus. Twenty body f e a t u r e s were measured and gave r i s e to c h a r a c t e r combinations. natural  When analyzed  190  these d i d not y i e l d  any  groupings.  Separate  phenetic dendrograms based on " b i o c h e m i c a l " and  morphological data were d e r i v e d as w e l l as dendrograms based on numerical  taxonomic analyses of biochemical, morphological  and  the combined data. No  s i m i l a r i t i e s were e x h i b i t e d upon comparison of the  numerical  analyses of " b i o c h e m i c a l " and morphological  data.  However, p a t t e r n s of r e l a t i o n s h i p s from both " b i o c h e m i c a l "  and  iii morphological  sources  ment were s i m i l a r .  using the conventional phenetic  The c o n v e n t i o n a l and.:numerical  of the morphological  treat-  treatments  data y i e l d e d almost i d e n t i c a l patterns of  r e l a t i o n s h i p between t h e specieSi v A n a l y s e s  of the "biochemical"  d a t a u s i n g t h e same two a p p r o a c h e s p r o d u c e d c o m p l e t e l y ferent results. sources  Speculations are"included  of the d i f f e r e n c e s arising  dif-  on t h e p r o b a b l e  from the l a t t e r  comparison.  A new d i a g n o s i s o f t h e genus M y o x o c e p h a l u s was g i v e n a s w e l l as a synopsis recognized  o f the s p e c i e s ''attributed t o i t .  s p e c i e s were r e v e a l e d  through  Two u n -  the a n a l y s i s .  iv TABLE OF CONTENTS PAGE ABSTRACT  X  TABLE OF CONTENTS LIST OF TABLES  iv viii  LIST OF FIGURES INTRODUCTION ACKNOWLEDGEMENTS  7  MATERIALS  8  MATERIALS EXAMINED IN MORPHOLOGICAL INVESTIGATION  8  MATERIALS EXAMINED IN "BIOCHEMICAL" INVESTIGATION 9  METHODS DEFINITION OF MERISTIC CHARACTERS  9  METHOD OF MEASUREMENT  10  DEFINITION OF MEASUREMENTS  10  X-RAY TECHNIQUE  11  CLEARING AND STAINING TECHNIQUES  1 1  ELECTROPHORETIC PROCEDURE  12  P r e p a r a t i o n of Muscle Samples P r e p a r a t i o n of Starch Gel S t r i p s  12 1y  Muscle Myogen E l e c t r o p h o r e s i s  iZf  Malic Dehydrogenase E l e c t r o p h o r e s i s  1L  L a c t i c Dehydrogenase E l e c t r o p h o r e s i s  1S  STATISTICAL TREATMENT OF DATA  15  V  PAGE .  RESULTS  1  7  MORPHOLOGICAL INVESTIGATION  17  Meristic Characters  17  Sexual Dimorphism i n M e r i s t i c C h a r a c t e r s Geographic V a r i a t i o n i n M e r i s t i c C h a r a c t e r s Interspecific Differences  - 18 19  i n Meristic  Characters  if2  General Morphology  if6  Squama t i on C e p h a l i c L a t e r a l L i n e System  54  Morphology o f the L a t e r a l L i n e O s s i c l e s  59  Morphology of the O l f a c t o r y  81  Ro setters  88  Morphology of the Gut Other M o r p h o l o g i c a l C h a r a c t e r s Used  88  Morphometric C h a r a c t e r s  91  "BIOCHEMICAL" INVESTIGATION  91  Sources of E r r o r i n Starch G e l E l e c t r o p h o r e s i s  94  Variation i n Electrophoretic  95  Characteristics  Sexual V a r i a t i o n  95  Individual  95  Variation  Geographic V a r i a t i o n  .  Species S p e c i f i c i t y of Myogen Banding P a t t e r n Quantitative  Hyphen E x p r e s s i o n  97 99 101  Percent Myogen Band Composition  101  Relative  101  Myogen Band M o b i l i t y  Malic Dehydrogenase E l e c t r o p h o r e s i s Percent Composition o f MaUc Dehydrogenase L a c t i c Dehydrogenase E l e c t r o p h o r e s i s  10?. 109 111  DISCUSSION PHENETIC RELATIONSHIPS BASED ON CONVENTIONAL MORPHOLOGY PHENETIC RELATIONSHIPS BASED ON  105  1 11  "BIOCHEMICAL"  EVIDENCE  120  NUMERICAL TAXONOMIC ANALYSIS  126  Numerical C l u s t e r i n g of M o r p h o l o g i c a l Data  127  Numerical C l u s t e r i n g of " B i o c h e m i c a l " Data  127  Numerical C l u s t e r i n g of Combined M o r p h o l o g i c a l and " B i o c h e m i c a l " Data COMPARISON OF NUMERICAL CLUSTERING OF MORPHOLOGICAL AND BIOCHEMICAL^DlfA . A Test o f the Hypothesis of N o n s p e c i f i c i t y  127 131 131  COMPARISON OF PHENETIC RELATIONSHIPS BASED ON MORPHOLOGICAL AND PROTEIN DATA  137  COMPARISON OF NUMERICAL AND PHENETIC RELATIONSHIPS  13-3  Comparison of Treatments on M o r p h o l o g i c a l Data  139  Comparison o f Treatments on P r o t e i n Data  139  SYSTEMATIC CONCLUSIONS GENERIC DIAGNOSIS SYNOPSIS OF SPECIES OF THE GENUS MYOXOCEPHALUS SUMMARY AND GENERAL CONCLUSIONS LITERATURE CITED  U 2 f  1 Zf2 11+5 154  vii PAGE APPENDIX A.  TABLES OF SIGNIFICANCE  164  APPENDIX B.  MATERIALS EXAMINED  205.  MATERIALS EXAMINED IN "BIOCHEMICAL" INVESTIGATION  206  MATERIALS EXAMINED IN MORPHOLOGICAL INVESTIGATION  209  vn.il LIST OF TABLES PAGE Table I .  S i g n i f i c a n c e M a t r i c e s of I n t e r p o p u l a t i o n V a r i a t i o n i n M e r i s t i c Characters of M. aeneus.  166  S i g n i f i c a n c e M a t r i c e s of I n t e r p o p u l a t i o n V a r i a t i o n i n M e r i s t i c Characters of M. .jaok.  169  S i g n i f i c a n c e M a t r i c e s of I n t e r p o p u l a t i o n V a r i a t i o n i n M e r i s t i c Characters of M. niger. "~  172  S i g n i f i c a n c e M a t r i c e s of I n t e r p o p u l a t i o n V a r i a t i o n i n M e r i s t i c Characters of M. octodecemspinosus.  175  S i g n i f i c a n c e M a t r i c e s of I n t e r p o p u l a t i o n V a r i a t i o n i n M e r i s t i c Characters of M. polyacanthocephalus.  177  S i g n i f i c a n c e M a t r i c e s of I n t e r p o p u l a t i o n V a r i a t i o n i n M e r i s t i c Characters of M. quadricornis.  180  S i g n i f i c a n c e M a t r i c e s of I n t e r p o p u l a t i o n V a r i a t i o n i n M e r i s t i c Characters of M. "scorpius".  183  S i g n i f i c a n c e M a t r i c e s of I n t e r p o p u l a t i o n V a r i a t i o n i n M e r i s t i c Characters of M. scorpioides.  187  Table IX.  S i g n i f i c a n c e M a t r i c e s of I n t e r s p e c i f i c D i f f e r e n c e s i n M e r i s t i c Characters.  190  Table X.  Number of S i g n i f i c a n c e Species D i f f e r e n c e s i n M e r i s t i c Characters  h5  Table X I .  Other Morphological Characters Used.  90  Table X I I .  Experimental V a r i a t i o n i n Myogen Characteristics.  96  Table X I I I .  Geographic V a r i a t i o n i n Myogen Banding Pattern.  QP>  Table I I .  Table I I I .  Table IV.  Table V.  Table VI.  Table V I I .  Table V I I I .  ix  Table XIV.  Myogen Banding P a t t e r n s of the Species of MyoxoceDha!us.  Table XV.  R e l a t i v e M o b i l i t y o f Myogen Bands ( i n percent of Band 1 7 ) .  Table XVI.  S i g n i f i c a n c e M a t r i c e s of Standardized Myogen Band M o b i l i t y w i t h i n S p e c i e s .  Table XVII.  S i g n i f i c a n c e M a t r i c e s of Standardized Myogen Band M o b i l i t i e s between Speci.es.  Table  M a l i c dehydrogenase Banding P a t t e r n s o f the s p e c i e s of Myoxocenhalus.  XVIII.  Table XIX.  S i g n i f i c a n c e M a t r i c e s of Percent Composition of M.D.H. Bands between Species.  Table XX.  Comparison o f Primary. Groups of C o n v e n t i o n a l Phenetic and Numerical Taxonomic Treatments of M o r p h o l o g i c a l Data.  X  L I S T OF FIGURES  PAGE Figure  1.  Geographic V a r i a t i o n i n M e r i s t i c Characters of Myoxocephalus aeneus.  F i g u r e 2.  Geographic V a r i a t i o n i n M e r i s t i c C h a r a c t e r s o f Myoxocephalus j a o k .  F i g u r e 3. F i g u r e 4.  F i g u r e 5«  F i g u r e 6. 7.  C h a r a c t e r s of Myoxocephalus n i g e r .  26  Geographic V a r i a t i o n i n M e r i s t i c C h a r a c t e r s of Myoxocephalus octodecemspinosus.  28  Geographic V a r i a t i o n i n M e r i s t i c C h a r a c t e r s of Myoxocephalus polyacanthocephalus.  30  Geographic V a r i a t i o n i n M e r i s t i c  37  Geographic V a r i a t i o n i n M e r i s t i c C h a r a c t e r s o f Myoxocephalus s c o r p i o i d e s .  F i g u r e 9.  32  Geographic V a r i a t i o n i n M e r i s t i c C h a r a c t e r s o f Myoxocephalus " s c o r p i u s " .  F i g u r e 8.  23  Geographic V a r i a t i o n i n M e r i s t i c  C h a r a c t e r s of Myoxocephalus q u a d r i c o r n i s . Figure  20  40  Comparison o f M e r i s t i c C h a r a c t e r s between Species.  43  F i g u r e 10.  Squamation o f Myoxocephalus aeneus.  A7  F i g u r e 11.  Squamation o f Myoxocephalus octodecemspinosus. ~~  47  F i g u r e 12.  Squamation of Myoxocephalus cephalus.  43  F i g u r e 13.  Squamation o f Myoxocephalus " s c o r p i u s " (European).  F i g u r e 14.  Squamation of Myoxocephalus " s c o r p i u s " (Gulf of  polyacantho-  AlaskaTl  48  50  F i g u r e 15*  Squamation o f Myoxocephalus j a o k .  50  F i g u r e 16.  Squamation of Myoxocephalus " s c o r p i u s " (Arctic).  52  xi PAGE  Figure  17.  Squamation of Myoxocephalus s c o r p i o i d e s .  52  Figure  18.  Squamation of Myoxocephalus q u a d r i c o r n i s .  53  Figure  19.  C e p h a l i c L a t e r a l L i n e Canals.  Figure  20.  The C e p h a l i c L a t e r a l L i n e System of Myoxocephalus q u a d r i c o r n i s .  Figure  21.  The C e p h a l i c L a t e r a l Line System of Myoxocephalus aeneus.  60  Figure  22.  The C e p h a l i c L a t e r a l L i n e System of Myoxocephalus s c o r p i o i d e s .  61  Figure  23.  The C e p h a l i c L a t e r a l Line System of Myoxocephalus octodecemspinosus.  62  Figure  24.  The C e p h a l i c L a t e r a l L i n e System of Myoxocephalus " s c o r p i u s " (Europe).  63  Figure  25.  The C e p h a l i c L a t e r a l L i n e System of Myoxocephalus edomius.  64  Figure  26.  The C e p h a l i c L a t e r a l Line System of Myoxocephalus j a o k .  65  55  Figure  27.  The C e p h a l i c L a t e r a l L i n e System of Myoxocephalus " s c o r p i u s " ( A r c t i c ) .  66  Figure  28.  The C e p h a l i c L a t e r a l Line System of Myoxocephalus s t e l l e r i .  67  Figure  29.  The C e p h a l i c L a t e r a l L i n e System of Myoxocephalus e n s i g e r .  Figure  30.  The C e p h a l i c L a t e r a l L i n e System of Myoxocephalus n i g e r .  6Q  Figure  31.  The Cephalic L a t e r a l L i n e System of Myoxocephalus polyacanthocephalus.  70  Figure  32.  The C e p h a l i c L a t e r a l Line System of Myoxocephalus r a n i n u s .  71  Figure  33.  The C e p h a l i c L a t e r a l L i n e System of Myoxocephalus " s c o r p i u s " (Gulf of A l a s k a ) .  72  xii  PAGE F i g u r e 34* F i g u r e 35« Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. F i g u r e 41• Figure 42. F i g u r e Zf3« Figure 44. F i g u r e 45Figure 46. F i g u r e 47. Figure 48. Figure 49. Figure 50.  L a t e r a l L i n e O s s i c l e s of Myoxocephalus scorpioides.  7/4.  L a t e r a l L i n e O s s i c l e s of Myoxocephalus aeneus.  74  L a t e r a l L i n e O s s i c l e s of Myoxocephalus " s c o r p i u s " (European).  75  L a t e r a l L i n e O s s i c l e s o f Myoxocephalus "scorpius" (Arctic).  75  L a t e r a l L i n e O s s i c l e s of Myoxocephalus " s c o r p i u s " (Gulf of AlaskaH  76  L a t e r a l L i n e O s s i c l e s of Myoxocephalus polyacanthocephalus.  76  L a t e r a l L i n e O s s i c l e s of Myoxocephalus  .iaok.  77  L a t e r a l L i n e O s s i c l e s of Myoxocephalus edomius.  77  L a t e r a l L i n e O s s i c l e s of Myoxocephalus stelleri.  78  L a t e r a l L i n e O s s i c l e s of Myoxocephalus raninus.  78  L a t e r a l L i n e O s s i c l e s of Myoxocephalus niger.  79  L a t e r a l L i n e O s s i c l e s o f Myoxocephalus octodecemspinosus.  79  L a t e r a l L i n e O s s i c l e s of Myoxocephalus quadricornis.  80  The O l f a c t o r y Rosette of Myoxocephalus scorpioides.  82  The O l f a c t o r y Rosette of Myoxocephalus quadricornis.  82  The O l f a c t o r y Rosette of Myoxocephalus ensiger.  83  The O l f a c t o r y Rosette of Myoxocephalus raninus.  33  xiii PAGE  F i g u r e 51 •  The O l f a c t o r y Rosette stelleri.  of Myoxocephalus  Figure 52.  The O l f a c t o r y Rosette .iaok.  o f Myoxocephalus  The O l f a c t o r y Rosette aeneus.  of Myoxocephalus ~  Figure 54.  The O l f a c t o r y Rosette octodecemspinosus.  of Myoxocephalus  Figure 55.  The O l f a c t o r y Rosette "scorpius" (Arctic).  of Myoxocephalus  F i g u r e 56.  The O l f a c t o r y Rosette o f Myoxocephalus " s c o r p i u s " ( G u l f o f Alaska)  86  57.  The O l f a c t o r y Rosette polyacanthocephalus.  of Myoxocephalus  87  Figure 58.  The O l f a c t o r y Rosette  of Myoxocephalus  Figure 53.  Figure  84 84 85 85 86  niger.  87  C o n f i g u r a t i o n s of the Gut.  89  Dendrogram of Numerical R e l a t i o n s h i p s Based on Morphometric Data. Densitometer T r a c i n g s o f E l e c t r o p h o r e t i c Myogen Banding P a t t e r n s .  92 102  Densitometer T r a c i n g s of E l e c t r o p h o r e t i c Malic Dehydrogenase P a t t e r n s .  108  Figure 63.  L a c t i c Dehydrogenase Isozyme E l e c t r o p h o r e t i c Banding P a t t e r n s .  110  F i g u r e 64.  Conventional Phenetic R e l a t i o n s h i p s Based on Morphological Data.  113  S i m i l a r i t y M a t r i x of Myogen Banding Patterns.  123  Conventional Phenetic R e l a t i o n s h i p s Suggested from P r o t e i n Data.  124  Dendrogram of Numerical R e l a t i o n s h i p s Based on Conventional Morphological Data.  128  Figure 59. Figure 60. Figure  61.  Figure 62.  Figure 65. Figure 6 6 . F i g u r e 67.  xiv  F i g u r e 68.  Dendrogram of Numerical R e l a t i o n s h i p s Based on C o n v e n t i o n a l P r o t e i n Data.  Figure 69.  Dendrogram of Numerical R e l a t i o n s h i p s Based on Combined M o r p h o l o g i c a l and P r o t e i n Data.  F i g u r e 70.  Dendrogram of Numerical R e l a t i o n s h i p s Based on Combined M o r p h o l o g i c a l and P r o t e i n Data Minus MDH Data.  INTRODUCTION  The l a s t 35 y e a r s have seen a r e v o l u t i o n i n the approach to d e c i s i o n s i n animal  systematics.  The c l a s s i c a l approach  v/hich c a l l e d upon r e l a t i v e l y I n t u i t i v e d e c i s i o n s based upon data o f t e n l i m i t e d i n scope and d e r i v e d from r e l a t i v e l y has been c a l l e d to q u e s t i o n .  small samples  A new s c h o o l o f thought  up v/hich m a i n t a i n s that s y s t e m a t i c s cannot  be t r u l y  has grov/n  scientific  u n t i l d e c i s i o n s are based p r i m a r i l y upon o b j e c t i v e l y d e r i v e d conclusions.  The b a s i c t e n e t s of the philosophy u n d e r l y i n g the  present day numerical taxonomic s c h o o l o f thought by any means.  are not new  Merrem, Adanson, Blumenbach, and Bufon extended  the Linnean approach o f d i s t i n g u i s h i n g s p e c i e s on the b a s i s o f one,  or a t best, a few morphological c h a r a c t e r i s t i c s ; ( M a y r ,  1965).  They proposed  t h a t s p e c i e s were p r o p e r l y c h a r a c t e r i z e d  by a l l t h e i r a t t r i b u t e s and i t i s only from t h i s t o t a l body o f i n f o r m a t i o n t h a t true r e l a t i o n s h i p s can be d e r i v e d . and  The s i z e  complexity o f the p o t e n t i a l body of data o b t a i n a b l e from the  a p p l i c a t i o n of t h i s new concept made i t almost i m p o s s i b l e to analyze without  the use o f i n t e g r a t i v e mathematical  techniques.  D i s s a t i s f a c t i o n with the i n t u i t i v e element i n c o n v e n t i o n a l systematic techniques, along with the n e c e s s i t y of d e v e l o p i n g means o f a n a l y z i n g the much more complicated body o f data l e d to the development o f numerical taxonomy.  The most a c t i v e pro-  ponents of numerical taxonomy today are Sokal and Sneath'(1963)• The  two systems have many common u n d e r l y i n g p h i l o s o p h i c a l  p r i n c i p l e s ( S t e b b i n s , 1963; Ross, 1964; Simpson, 1964; and Mayr, 1965).  The major p o i n t o f disagreement  between the numerical  -2p h e n e t i c i s t s and that the  the c l a s s i c a l or c o n v e n t i o n a l  former group b e l i e v e s that organisms and  isms can be t r e a t e d l i k e inanimate o b j e c t s . a conceptual inalistic  grouping  taxa of organ-  T h i s approach  b a s i s s i m i l a r to that of the t y p o l o g i c a l or  s p e c i e s concept as opposed to the b i o l o g i c a l  concept adhered to by the c o n v e n t i o n a l and mists.  systematists i s  The  conventional  has nom-  species  e v o l u t i o n a r y taxono-  s y s t e m a t i s t bases h i s d e c i s i o n s f o r the  of s p e c i e s i n t o taxa on the e v a l u a t i o n of the apparent  h i s t o r y of the organisms under i n v e s t i g a t i o n . T h i s source i s considered  invalid  by the numerical p h e n e t i c i s t .  T h i s conceptual  d i f f e r e n c e has l e d to the second major  disagreement between the two  groups.  The  pheneticists stress  t h a t each c h a r a c t e r of an organism has equal i n f o r m a t i o n and  must, t h e r e f o r e , be given  equal weight.  The  content  conventional  s y s t e m a t i s t , on the other hand, i s more s e l e c t i v e i n h i s choice of c h a r a c t e r s , b e l i e v i n g that c e r t a i n c h a r a c t e r s and  character  complexes more a c c u r a t e l y r e f l e c t the h i s t o r y and r e l a t i o n s h i p s of the organisms under study  than do o t h e r s .  p h e n e t i c i s t , t h e r e f o r e , must not choose one  The  numerical  character  over  another but must s e l e c t h i s c h a r a c t e r s as randomly as p o s s i b l e . In g e n e r a l , the a c t u a l d i f f e r e n c e s between numerical c o n v e n t i o n a l taxonomy are not as great as claimed cal pheneticists.  conventional  systematist  and  unsound  condemned by the modern  (Mayr, 1 9 6 5 ) .  While the r e v o l u t i o n i n methodology has been new  by the numeri-  In most i n s t a n c e s they have attacked  methods which have already been e q u a l l y  and  approved techniques  developing,  have become a v a i l a b l e to  systematists.  -3These have given access to many new sources of  evidence such as b i o c h e m i c a l , p h y s i o l o g i c a l , and b e h a v i o u r a l t r a i t s t h a t a r e a s t r u l y p r o p e r t i e s of the s p e c i e s as are t h e i r anatomical  details.  Recently a few s y s t e m a t i s t s have s t u d i e d the r e l a t i o n s h i p s between organisms d e r i v e d from s t u d i e s o f biochemical data and have compared these w i t h r e l a t i o n s h i p s based upon the morpholog i c a l data o f o t h e r s ( S i b l e y , I 9 6 0 ; Tsuyuki and Roberts,  1966).  However, we have been unable to f i n d a study i n which a d i r e c t comparison  i s made o f the e f f e c t s of d i f f e r e n t k i n d s o f evidence  upon the p a t t e r n s o f apparent r e l a t i o n s h i p s w i t h i n a genus or h i g h e r taxon.  S o - c a l l e d b i o c h e m i c a l s t u d i e s a r e indeed  form o f the morphology o f a taxon.  another  However, i n keeping with  c u r r e n t usage, which I b e l i e v e to be m i s l e a d i n g , the term  bio-  chemical h e r e i n r e f e r s t o p r o t e i n morphology. The purpose o f t h i s study was t o compare the systematic r e l a t i o n s h i p s w i t h i n the genus Myoxocephalus ( P i s c e s ; C o t t i d a e ) suggested by b i o c h e m i c a l ( p r o t e i n c h a r a c t e r i s t i c s ) and morpholog i c a l evidence and to compare the e f f e c t s o f numerical and conv e n t i o n a l taxonomic a n a l y s e s on the r e l a t i o n s h i p s based on these sources o f evidence.  The study was not concerned with nomen-  c l a t o r i a l a s p e c t s o f the problem. in  These a s p e c t s w i l l be t r e a t e d  a separate paper d e a l i n g with a f u l l r e v i s i o n o f the genus. W i t h i n the n o r t h P a c i f i c Ocean, the l i t t o r a l and s u b l i t -  t o r a l fauna i s p a r t i c u l a r l y r i c h i n s p e c i e s o f the f a m i l y C o t t i d a e (Shmidt, 1 9 5 0 ; Wilimovsky,  1 9 5 4 ; Watanabe, I 9 6 0 ) .  Though l i t t l e i s known of the g e o l o g i c a l h i s t o r y of the f a m i l y ,  it  is  apparent  that i t  been s u b j e c t e d various the  late  tertiary  species,  l o n g enough t o  s e a s and t h e i r  and q u a t e r n a r y  This family i s  1939).  low  throughout the A r c t i c  Its  and P a c i f i c ,  occupies a variety  up t o 250  (Shmidt,  eurythermic  this  them  comprised of a l a r g e  number  and  type  of  of the  northern  the b e n t h i c ,  Its  into Asia.  from the r o c k y l i t t o r a l  and  and h a s b e e n c a p t u r e d  t h e B e r i n g Sea  o f abundance v a r i e s  1950).  parts  (U.B.C.  at  records).  considerably with  d i s t r i b u t i o n a p p e a r s t o be  the  both  euryhaline.  T h i s genus was c o n s i d e r e d t o be p a r t i c u l a r l y for  reunited  a l o n g b o t h c o a s t s t o E u r o p e and  fathoms i n  e c o l o g i c a l center  species  through  b a s i n , and e x t e n d s s o u t h w a r d  of habitats  t i d e p o o l regions to  depths of  isolated  a b o u t 80 i n A l a s k a n w a t e r s a l o n e .  the A t l a n t i c It  faunas  t i m e s and l a t e r  The g e n u s M y o x o c e p h a l u s o c c u r s i n a l l oceans,  have  t o t h e many g e o l o g i c a l c h a n g e s t h a t have  s e c t o r s of the northern  (Andriyashev, of  h a s been p r e s e n t  study.  Its  well  suited  geographic d i s t r i b u t i o n probably  c o v e r s a n a r e a a s b r o a d a s t h a t o f any i n t h e C o t t i d a e .  The  broad range of environmental t o l e r a n c e has p e r m i t t e d t h e genus t o colonize a v a r i e t y of h a b i t a t s where many d i f f e r e n t p r e s s u r e s could be e f f e c t i v e e thern  It  has been p r e s e n t i n the  s e a s l o n g enough t o have u n d e r g o n e t r a n s i t o r y  i m p o s e d by g e o l o g i c a l c h a n g e s o f s e a l e v e l s (Andriyashev,  selective nor-  isolation  and l a n d masses  1939).  L i t t l e work h a s b e e n done on t h e phalus as a whole. taxonomy o f t h e  Since Shmidt s  genus,  8  systematics  o f Myoxoce-  (1929) a t t e m p t t o r e v i s e  o n l y work on l o c a l  s p e c i e s groups has  the  been r e p o r t e d .  A l m o s t no work h a s been done on t h e  and i n t e r s p e c i f i c reasons, In  relationships within  the.present  where t h e y  For  study,  u s u a l l y known l o c a l l y  b u t i o n was u s e d a s a g u i d e t o  b l i n g samples from a l l and f r o m a l l this  from d e t a i l e d tures  as the  cephalic  The map o f  generic  the  effort  distri-  this  study.  study,  have d e r i v e d a d d i t i o n a l new i n f o r m a t i o n  study of  line  literature.  such p r e v i o u s l y i g n o r e d anatomical  structure  lateral  the  littoral  1  areas r e f e r r e d  I  to i n  oceans  assem-  critical  of  the  scales,  lateral  line  s y s t e m , and t h e o l f a c t o r y  taxa only.  A n a l y s i s was f i r s t  distinct  within  each b a s i n ,  e x i s t i n g between  fea-  ossicles,  rosettes.  These  identification  undertaken w i t h i n  H a v i n g d e c i d e d upon t h e  out the b o r e a l t o determine the  each  groups r e c o g -  c o m p a r i s o n was made t h r o u g h -  similarity  forms o c c u p y i n g each o f  and  distinctness  them.  A d d i t i o n a l new d a t a have b e e n o b t a i n e d phoretic  is  b e i n g put i n t o  major r e g i o n s o f the  ocean b a s i n s e p a r a t e l y . nizably  and  samples from as  d a t a were a s s e m b l e d and a n a l y s e d u s i n g n u m e r i c a l for  genus  seeking specimens f o r  special  tech-  s p e c i m e n s have been p r e -  h a s b e e n made t o o b t a i n a d e q u a t e  wide an a r e a a s p o s s i b l e ,  rare  beach s e i n i n g , t r a w l i n g ,  or not  s e r v e d i n t h e museum c o l l e c t i o n s .  An a t t e m p t  were n o t  Thus the presence of the  whether  genus  c a p t u r e d by t h e v a r i o u s  gillnetting,  toxicants.  these  exists.  representatives  o c c u r and a r e r e a d i l y  use o f  For  t h e known d i s t r i b u t i o n o f t h e  t h e most p a r t ,  niques of h a n d l i n i n g ,  In  genus.  widespread n o m e n c l a t o r i a l confusion  was mapped.  by t h e  the  evolution  from t h e  electro-  e x a m i n a t i o n o f m u s c l e p r o t e i n s a s w e l l a s from  the  -6enzymes m a l i c a n d l a c t i c  dehydrogenase.  The s t u d y was n o t c o n c e r n e d w i t h t h e n o m e n c l a t o r i a l a s p e c t s of  the problem.  specific In  Morphotypes  were e s t a b l i s h e d and a s s i g n e d t h e  names c u r r e n t l y a t t r i b u t e d  c a s e s where m u l t i p l e  t o them i n t h e l i t e r a t u r e .  f o r m s were f o u n d w i t h i n a n o m i n a l  spe-  cies,  g e n e r a l g e o g r a p h i c names w e r e a d d e d i n b r a c k e t s t o d e -  limit  them. The names a s s i g n e d t o t h e s p e c i e s u s e d i n t h e " b i o c h e m i -  c a l " i n v e s t i g a t i o n were based terminations. ascribed  3  on t h e p r e v i o u s m o r p h o l o g i c a l d e -  Consequently, the nomenclature  i s that  currently  e x c e p t i n the, c a s e o f o b v i o u s synonyms and i n M.  s c o r p i u s where t h r e e forms masquerade under  the nominal  species.  -7ACKNOY/LEDGEMENTS T h i s study was suggested by Dr. N. J . V/ilimovsky and was undertaken  w i t h h i s guidance and support, f o r which I am most  grateful.  Mr. S. Borden o f the I n s t i t u t e of F i s h e r i e s  undertook  the e x t e n s i v e programming of the s t a t i s t i c a l treatments. J . R. Adams, P. W. Hochachka,  Drs.  P.. A. L a r k i n , J . D. McPhail and  D. Suzuki were members of the d o c t o r a l committee.  They gave  c o n s t r u c t i v e c r i t i c i s m through the study and e d i t o r i a l  assis-  tance with the manuscript. Dr. R. M. B a i l e y , U n i v e r s i t y o f Michigan, Dr. S . A . Lachner, United S t a t e s N a t i o n a l Museum, Dr. D. E. M a c A H i s t e r , N a t i o n a l Museum of Canada, Dr. G. S. Myers, N a t u r a l H i s t o r y Museum, S t a n f o r d U n i v e r s i t y , and Drs. B. W. S c o t t and E. J . Crossman, Royal O n t a r i o Museum, as w e l l as s t a f f members o f these i n s t i t u t i o n s made me most welcome and f u r t h e r a s s i s t e d with the l o a n o f c r i t i c a l  material.  The p r o t e i n s t u d i e s would have been i m p o s s i b l e but f o r the a s s i s t a n c e o f Dr. J . Bedard, Mr.  Mr. R. A. Hagny, Mr. J . G. Hunter,  R. N. Gibson, Dr. J . K e l s a l , Dr. C. C. L i n d s e y , Dr. T. W.  McKenney, Mr. C. J . M a r t i n , Dr. J . C. Ouast, and Dr. T. Ueno i n o b t a i n i n g f r e s h specimens f o r me. L a s t but not l e a s t , my wife Ana has spent the course of t h i s study b e a r i n g the brunt of my f r u s t r a t i o n s with p a t i e n c e and  understanding. D u r i n g the course o f t h i s study f i n a n c i a l  support was r e -  c e i v e d from the N a t i o n a l Research C o u n c i l o f Canada and from the H. R. MacMillan S c h o l a r s h i p Fund.  -8-  MATERIALS An e f f o r t was made to examine a l l a v a i l a b l e specimens o f all  the s p e c i e s a s c r i b e d to the genus Myoxocephalus. The i n v e s t i g a t i o n of p r o t e i n s , however, could only be made  on f r e s h m a t e r i a l .  I c h t h y o l o g i s t s i n many p a r t s of the known  range of the genus were most h e l p f u l i n o b t a i n i n g f r e s h s p e c i mens.  I t i s a matter of r e g r e t that s i x s p e c i e s  (Myoxocephalus  s c o r p i u s (Gulf of A l a s k a ) , M. b r a n d t i , M. edomius, M. i n c i t u s , M. matsubarai, and M. y e s o e n s i s ) were not a v a i l a b l e as f r e s h material.  The f i v e l a t t e r s p e c i e s a r e endemic  to Japanese  waters and are r a r e even i n museum c o l l e c t i o n s .  MATERIALS EXAMINED IN MORPHOLOGICAL INVESTIGATION About 5000 specimens r e p r e s e n t i n g 15 nominal s p e c i e s were examined d u r i n g the course o f t h i s i n v e s t i g a t i o n .  A l i s t of  the c o l l e c t i o n s examined and t h e i r geographic l o c a l i t i e s i s found i n Appendix B.  MATERIALS EXAMINED IN "BIOCHEMICAL" INVESTIGATION In the course of the i n v e s t i g a t i o n o f p r o t e i n s 157 i n d i v i d u a l s r e p r e s e n t i n g 11 nominal s p e c i e s were examined. list in  A complete  of the specimens and t h e i r c o l l e c t i o n l o c a l i t i e s i s found  Appendix B.  -9- , METHODS The f o l l o w i n g methods were u t i l i z e d i n the i n v e s t i g a t i o n s and a n a l y s e s of m o r p h o l o g i c a l and p r o t e i n  characters.  DEFINITION OF MERISTIC CHARACTERS The f o l l o w i n g m e r i s t i c c h a r a c t e r s were taken:  F i n Ray Counts In the ray counts on the second d o r s a l and a n a l f i n s , the s p l i t r a y s ( i f p r e s e n t ) o f the l a s t b a s a l s were counted as' two distinct  rays.  V e r t e b r a l Number V e r t e b r a l counts were taken from x - r a y f i l m s and i n the case of very small i n d i v i d u a l s from c l e a r e d and s t a i n e d material.  The h y p u r a l elements were excluded from the counts.  L a t e r a l L i n e O s s i c l e Number Counts of l a t e r a l pores were not made s i n c e , i n most cases, numerous pores are given o f f from each secondary canal.  -10-  METHOD OF MEASUREMENT The  standard  l e n g t h o f l a r g e i n d i v i d u a l s was m e a s u r e d  a meter r u l e and t a k e n t o t h e nearest, m i l l i m e t r e . m e a s u r e m e n t s w e r e made u s i n g d i a l nearest  with  A l l other  c a l i p e r s and t a k e n t o t h e  tenth of a millimetre.  DEFINITION'OF MEASUREMENTS The  f o l l o w i n g body m e a s u r e m e n t s were t a k e n :  Standard  l e n g t h , s n o u t l e n g t h , h e a d l e n g t h , m a x i l l a r y l e n g t h , vomer i n t e r o r b i t a l width,  e y e d i a m e t e r , 1st. p r e d o r s a l l e n g t h ,  predorsal length, preanal 1st.  length,  1st. d o r s a l s p i n e ,  preopercular  s u b o r b i t a l s t a y l e n g t h , and s u p r a o c c u l a r  to o c c i p i t a l c r e s t l e n g t h . f i n e d by Kubbs and L a g l e r lowing  length  f i n base, l e n g t h o f p e c t o r a l f i n base, depth o f caudal  peduncle, l e n g t h of longest spine  2nd.  length, prepelvic length, length of  d o r s a l f i n b a s e , l e n g t h o f 2nd. d o r s a l f i n b a s e ,  of anal  width,  terms undefined  crest  A l l m e a s u r e m e n t s were t a k e n a s d e -  (1958)  with the exception  of the f o l -  by them.  Vomer W i d t h i s t h e d i s t a n c e  b e t w e e n t h e p o s t e r i o r most  tips  o f t h e two w i n g s o f t h e vomer. Length of Dorsal the  and A n a l  F i n Bases a r e t h e d i s t a n c e s  s t r u c t u r a l o r i g i n o f t h e a n t e r i o r most s p i n e  s t r u c t u r a l base o f t h e l a s t  spine  from  or ray to the  or ray.  L e n g t h o f P e c t o r a l F i n Base i s t h e d i s t a n c e between t h e s t r u c t u r a l o r i g i n o f t h e d o r s a l most r a y a n d t h e v e n t r a l most ray.  -11P r e o p e r c u l a r Spine Length i s the d i s t a n c e between the t i p of  the f i r s t  p r e o p e r c u l a r spine to the t i p o f the second p r e -  opercular spine. S u b o r b i t a l Stay Length i s the d i s t a n c e from the most ant e r i o r p a r t o f the a r t i c u l a t i o n o f the s u b o r b i t a l s with the p r e f r o n t a l bone to the p o s t e r i o r most t i p o f the s u b o r b i t a l stay. Supraoccular C r e s t to O c c i p i t a l C r e s t Length i s the d i s tance taken from immediately below the s u p r a o c c u l a r c r e s t i n the o r b i t t o the p o s t e r i o r margin o f the base o f the o c c i p i t a l crest.  X-RAY TECHNIQUE To f a c i l i t a t e the c o u n t i n g o f v e r t e b r a e , x-rays were taken when p o s s i b l e .  The x-rays were taken w i t h a General E l e c t r i c  Model D - l X-Ray u n i t u s i n g I l f o r d I I f l e x f i l m f o r l a r g e r  speci-  mens and the f i n e grained Kodak I n d u s t r i a l Type M f i l m f o r small  specimens.  CLEARING AND STAINING TECHNIQUES The integumental pigment was bleached from the specimens after  washing i n r u n n i n g water f o r a p e r i o d o f two to three  days.  B l e a c h i n g was accomplished by p l a c i n g the m a t e r i a l i n t o  a s o l u t i o n o f 10% hydrogen gone.  peroxide u n t i l the pigment was almost  The specimens were then removed from the b l e a c h i n g s o l u -  t i o n , r i n s e d i n r u n n i n g water, and p l a c e d i n a vacuum f l a s k h a l f f i l l e d with water.  The f l a s k was evacuated by means of tap  s u c t i o n u n t i l bubbles were no longer  emitted.  The  material  was  next placed i n a s t a i n i n g s o l u t i o n c o n s i s t i n g of 1%-!+% potassium hydroxide with s u f f i c i e n t a l i z a r i n red S to make a deep red-purple s o l u t i o n .  S t a i n i n g took 10 hours to two  pending upon the s i z e of the specimen. placed,  successively,  s o l u t i o n s of 30%,  f o r a p e r i o d of one  60%,  not,  s u f f i c i e n t l y c l e a r e d i t was i t was  desired  c l a r i t y was  day  i n each of  stored i n 100%  the  material  glycerine.  solution until  If  the  attained. o r i g i n a l l y been f i x e d w i t h  subsequently washed and  formalin  preserved i n l+CP/o i s o p r o p y l a l c o h o l  gave b e t t e r r e s u l t s than with m a t e r i a l o r i g i n a l l y f i x e d and served i n 70%  was  and  of t h i s time the  allowed to remain i n the 80%  Specimens which had and  I f at the end  de-  s t a i n e d specimen  80% r e s p e c t i v e l y of g l y c e r i n e  of potassium hydroxide. was  The  days  pre-  ethanol.  ELECTROPHORETIC PROCEDURE To e l i m i n a t e as much b i a s as p o s s i b l e i n the l a t e r grouping of e l e c t r o p h o r e t i c p a t t e r n s , number randomly which was  each f r o z e n specimen was  assigned a  subsequently used as the s o l e means  of sample i d e n t i f i c a t i o n . , To ensure s t a n d a r d i z a t i o n , as a c o n t r o l and  Preparation  was  a s i n g l e specimen was  run i n the f i r s t  selected  s l o t of each g e l  strip.  of Muscle Samples  A 0.2-0.7 gram sample of s k e l e t a l muscle was  taken from an  area on the r i g h t side between the second d o r s a l and  anal  fins.  T h i s sample was p l a c e d i n a p r e v i o u s l y i c e - c h i l l e d V i r t i s l e s s s t e e l micro-homogenizing i o n i c s t r e n g t h phosphate  cup with an equal amount of low  b u f f e r (O.OI56 molar Na HP0^, 0 . 0 0 3 5  molar NaH P0^) a t pH 7 . 4 5 . 2  stain-  2  T h i s mixture was then homogenized  on a V i r t i s 23 homogenizer u n t i l a smooth c o n s i s t e n c y was a t t a i n e d ( u s u a l l y about 20 seconds). i n a 15 ml. Nalgene  The homogenate was placed  t e s t tube and c e n t r i f u g e d a t 1 6 , 0 0 0  ( 3 0 9 0 0 g r a v i t i e s ) f o r 30 minutes i n a S e r v a l Automatic gerated C e n t r i f u g e Model No. RC-2B a t 4°C. was  The c l e a r  rpm Refri-  supernate  then c a r e f u l l y decanted i n t o a 2 ml. g l a s s t e s t tube,  covered, and s t o r e d under r e f r i g e r a t i o n (i|°C.) u n t i l needed ( l e s s than three d a y s ) .  P r e p a r a t i o n of S t a r c h Gel S t r i p s A 12% s t a r c h g e l was made by adding 200 ml. of 0 . 0 2 3 pH 8 . 5  molar  borate b u f f e r to 2 4 grams of Connaught L a b o r a t o r i e s hy-  d r o l i z e d s t a r c h i n a 500 ml. vacuum f l a s k .  The f l a s k was  placed on a Thermolyne " S t i r - P l a t e " on medium heat  then  (approx.  400°F.) and heated u n t i l the s o l u t i o n was almost a t the b o i l i n g point.  The f l a s k was  then stoppered and attached to a small  Cenco vacuum pump and was evacuated as f a s t as p o s s i b l e no bubbles remained i n the s o l u t i o n .  until  The hot g e l s o l u t i o n  was  then poured i n t o the g e l mould d e s c r i b e d by Tsuyuki et a l . (1966 hour.  ) and allowed to c o o l i n a r e f r i g e r a t o r a t 4°C f o r one A f t e r the c o o l i n g p e r i o d the mould was removed and  1/16  i n c h s t r i p s of g e l were cut, s l o t t e d and the samples i n t r o d u c e d as d e s c r i b e d by Tsuyuki et a l . ( 1 9 6 6 ).  S l o t s were cut using  -14six razor blades. p h o r e t i c apparatus.  The s t r i p s were then placed on the e l e c t r o Except where otherwise s t a t e d the runs were  made a t 2 1 0 v o l t s , 4°C. f o r 2 hours.  Muscle Myogen E l e c t r o p h o r e s i s A f t e r f o l l o w i n g the procedure o u t l i n e d above, the s t r i p s were taken o f f the apparatus, p l a c e d i n a s t a i n i n g tray and s t a i n e d w i t h amido b l a c k B f o r 3»5 minutes.  They were then  p l a c e d i n a c i r c u l a t i n g g e l washer and washed f o r 6 hours with gel  wash (methanol, d i s t i l l e d water, a c e t i c a c i d — 5 : 5 : 1 ) .  g e l s were then photographed,  The  packed and sealed i n p l a s t i c  bags  and s t o r e d under r e f r i g e r a t i o n ( 4 ° C ) .  M a l i c Dehydrogenase E l e c t r o p h o r e s i s The s e p a r a t i o n and d e t e c t i o n of malic dehydrogenase  iso-  zymes was accomplished u s i n g the same muscle e x t r a c t and e l e c t r o p h o r e t i c procedure as f o r the myogens.  Instead of s t a i n i n g  with amido b l a c k B as f o r myogens the g e l s t r i p s were incubated for  two hours ( i n t o t a l darkness and a t room temperature, 25°C.)  i n a m a l i c a c i d s u b s t r a t e and u t i l i z i n g  a formazine p r e c i p i t a -  t i o n r e a c t i o n f o r d e t e c t i o n (Colowick and Kaplan, 1965» V o l . VI, p. 9 6 8 ) . A f t e r i n c u b a t i o n the g e l s were washed i n running water for  10 minutes and then p l a c e d i n t o g e l wash (Methanol,  water, A c e t i c A c i d — 5 ^ 5 : 1 ) graphed.  distilled  f o r about an hour and then photo-  -15-  L a c t i c Dehydrogenase E l e c t r o p h o r e s i s The  s e p a r a t i o n and d e t e c t i o n of l a c t i c dehydrogenase i s o -  zymes was  accomplished as f o r m a l i c dehydrogenase but with  the  a p p r o p r i a t e l a c t i c a c i d s u b s t r a t e s u b s t i t u t i o n as d e s c r i b e d i n Colowick and Kaplan (1963» V o l . VI, p. 9 6 8 ) . of the l a c t i c dehydrogenase isozymes was m a l i c dehydrogenase isozymes and  The  separation  much slower than the  consequently  was  run at 2i+0  v o l t s f o r 4 hours at i+°C.  STATISTICAL TREATMENT OF DATA Morphological Meristic  Data Characters  The presence of sexual dimorphism i n m e r i s t i c c h a r a c t e r s was  t e s t e d f o r u s i n g the Student's T - t e s t . I n t r a and i n t e r s p e c i f i c d i f f e r e n c e s i n m e r i s t i c c h a r a c t e r s  were t e s t e d u s i n g S c h e f f e ' s t e s t f o r m u l t i p l e comparisons of means (Brownlee, 1 9 6 5 ) . Morphometric  Characters  Morphometric data f o r each c h a r a c t e r were regressed  with  each other c h a r a c t e r i n t u r n and were then compared between a l l combinations of p a i r s of s p e c i e s u s i n g a n a l y s i s of (Brownlee, 1 9 6 5 ) . digital  A l l a n a l y s i s was  covariance  done u t i l i z i n g the IBM  computer at the Computing Center,  U n i v e r s i t y of  70^4  B.C.  Numerical Taxonomy The weighted p a i r group method with average l i n k a g e t e c h nique  was  used f o r the numerical  taxonomic analyses  (Sokal  and  Sneath,  1963).  The a n a l y s e s were run on the IBM  1130  computer o f the I n s t i t u t e o f F i s h e r i e s , U n i v e r s i t y  digital  o f B.C.  -17RESULTS MORPHOLOGICAL INVESTIGATION Meristic The  Characters number o f m e r i s t i c p a r t s of some s p e c i e s of f i s h have  been found to be s u s c e p t i b l e to m o d i f i c a t i o n by v a r i o u s p h y s i c a l f a c t o r s o f the environment a c t i n g d u r i n g the p e r i o d o f emb r y o n i c development A l i , 1965). genotypic  (Lindsey  T h i s phenotypic  expression  1958, 1962, 1962b; Lindsey and response i s superimposed upon the  of the s p e c i e s .  T h i s has o f t e n l e d t o  taxonomic c o n f u s i o n i n i n s t a n c e s where samples o f a s p e c i e s taken from s e v e r a l widely compared.  separated  geographic l o c a t i o n s are  Thus i t would appear t h a t to a c c u r a t e l y c h a r a c t e r i z e  the m e r i s t i c a t t r i b u t e s o f a s p e c i e s i t i s necessary it  to sample  throughout i t s geographic range. Another p o s s i b l e c o m p l i c a t i n g f a c t o r i n the c h a r a c t e r i z a -  t i o n o f a s p e c i e s i s t h a t l o c a l s e l e c t i o n p r e s s u r e s may a c t on a c h a r a c t e r d u r i n g the growth o f the i n d i v i d u a l s , r e s t r i c t of the frequency f o r e necessary all  range, and i n t r o d u c e some b i a s .  parts  I t i s there-  t o not only sample the geographic range but a l s o  s i z e s w i t h i n a geographic l o c a l i t y i n order to a c c u r a t e l y  delimit a species. In the present fill  study i t was not always p o s s i b l e to f u l -  e i t h e r o f the above sampling c r i t e r i a , however, i n most i n -  stances the s p e c i e s range was w e l l  covered.  My primary concern has been with geographic  variation.  T h i s can occur throughout the r e g i o n a l p o p u l a t i o n or can be conf i n e d merely to one sex. I t i s important,  t h e r e f o r e , to examine  -18-  the occurrence  of sexual v a r i a t i o n .  Sexual Dimorphism i n M e r i s t i c  Characters  The means f o r each c h a r a c t e r o f those p o p u l a t i o n s i n which sex d e t e r m i n a t i o n s were made were t e s t e d t o d i s c o v e r whether sexual dimorphism i s e x h i b i t e d i n m e r i s t i c c h a r a c t e r s .  I t was  found t h a t there were e i g h t p o p u l a t i o n s r e p r e s e n t i n g f i v e nominal 0.05)  s p e c i e s i n which there were s i g n i f i c a n t d i f f e r e n c e s (P > i n mean numbers o f body p a r t s between males and females. In the northern Newfoundland p o p u l a t i o n o f M. aeneus the  females have a s i g n i f i c a n t l y higher mean v e r t e b r a l number than the males.  The southern Newfoundland p o p u l a t i o n o f M. aeneus  p r e s e n t s a s i g n i f i c a n t d i f f e r e n c e i n the mean anal f i n number, the males having a higher mean count. In the southeastern B e r i n g Sea p o p u l a t i o n o f M. jaok the f  males have a s i g n i f i c a n t l y higher mean number o f second d o r s a l f i n r a y s than the females. Two o f the four p o p u l a t i o n s o f M. n i g e r e x h i b i t cant d i f f e r e n c e s i n the mean numbers o f l a t e r a l l i n e  signifiossicles.  In both the S t . Paul I s l a n d and A t t u I s l a n d p o p u l a t i o n s the males have higher mean counts than the females.  Two p o p u l a t i o n s  from the Alaskan p e n i n s u l a and the Commander I s l a n d s d i d not e x h i b i t such d i f f e r e n c e s . Only two o f the s i x p o p u l a t i o n s o f M. q u a d r i c o r n i s show sex d i f f e r e n c e s i n the mean number of f i r s t d o r s a l s p i n e s .  Males o f  both the e a s t e r n Hudson Bay and northern Ellesmere I s l a n d popul a t i o n s have s i g n i f i c a n t l y higher f i r s t  d o r s a l spine  counts  -19than the females.  The e a s t e r n Hudson.Bay p o p u l a t i o n i s r e p r e -  sented by o n l y f i v e males and f i v e females and thus any c o n c l u sion i s doubtful.  ;r j  In the Newfoundland p o p u l a t i o n o f M. s c o r p i u s the males were shown to have a s i g n i f i c a n t l y higher mean number o f anal f i n r a y s than the females. The  sexual dimorphism e x h i b i t e d i n m e r i s t i c s does not  appear to be r e s t r i c t e d t o any one c h a r a c t e r i n p a r t i c u l a r nor i s i t found  u n i f o r m l y through the p o p u l a t i o n s of any s p e c i e s .  In s i x of the e i g h t p o p u l a t i o n s i n which sexual d i f f e r e n c e s , were shown the males had higher mean counts than the females.  Geographic V a r i a t i o n i n M e r i s t i c To examine geographic  Characters  v a r i a t i o n w i t h i n s p e c i e s , the data  f o r each was g r a p h i c a l l y p l o t t e d and f o r each  o f the c h a r a c t e r s  the d i f f e r e n t p o p u l a t i o n means were t e s t e d f o r s i g n i f i c a n c e u s i n g S c h e f f e ' s t e s t f o r the m u l t i p l e comparisons of means. These t a b l e s o f s i g n i f i c a n c e m a t r i c e s are found i n Appendix A.  Myoxocephalus aeneus M. aeneus was sampled from f i v e l o c a l i t i e s ranging from northern Newfoundland to New York. v a l u e s f o r each l o c a l i t y .  F i g u r e 1 presents the p l o t t e d  There i s l i t t l e  change i n the mean  number of f i r s t d o r s a l spines throughout the range.  The S t .  Lawrence estuary p o p u l a t i o n does have a somewhat higher mean number but the d i f f e r e n c e i s not s i g n i f i c a n t  (Table I A ) .  second d o r s a l f i n r a y number i n d i c a t e s a l a t i t u d i n a l  cline  The  -20-  FIGURE  1  Geographic V a r i a t i o n i n M e r i s t i c Characters of Myoxocephalus' aeneus.  P o p u l a t i o n Number  Geographic L o c a t i o n  1  northern  Newfoundland  2  southern  Newfoundland  3  S t . Lawrence  i+  Cape Cod  5  New  York  Estuary  Pop. No.  1st. Dorsal Rn n=48  1  2nd. Dorsal Fin re 48  Anal Rn ns48  n«S4  n=54  J ± i _ n=S4  n=i4  n*43  nr 42  _rjfci_  n=43  r ^ n  r*=23  n=23  •  1  8  9  1  10  i 12  i  13  n:23  1  14  i 15  i 16  i 17  *  8  i  9  .  10  .  11  12  Left Pectoral Rn n=48  Right Pectoral Fin n=48  Lateral Una Ossicles Vertebrae n-48 n=47  ru54  rta53  n=54  13  n=64  _J±L  ran n=14  n=n  n=43  n=43  n=43  n=42  n=23  n=23  h=8  _c4n n=23  J4L i 14  i 15  1  16  i 17  i 14  i 15  1  16  i 17  i 33  i 35  i 37  * 39  i 31  1  1  33  35  —i 14  -21( i n c r e a s i n g northward). both the n o r t h and cantly different localities  south Newfoundland p o p u l a t i o n s are  The  significantly (Table I C ) .  signifi-  from those of the other three, more s o u t h e r l y ,  (Table I B ) .  ray number.  The means of second d o r s a l counts o f  A similar  c l i n e i s apparent i n the anal  means of the two Newfoundland p o p u l a t i o n s  higher than those Both l e f t  from Cape Cod  and New  York  and r i g h t p e c t o r a l f i n ray counts  inverse l a t i t u d i n a l clines  ( d e c r e a s i n g northward).  are  The  exhibit left  p e c t o r a l f i n count of the northern Newfoundland p o p u l a t i o n d i f fers  significantly  the  southern  one  (Table ID).  right  from the Cape Cod  and New  Newfoundland one d i f f e r i n g  York p o p u l a t i o n s ,  from only the New  A comparison of the means between the l e f t  p e c t o r a l f i n ray numbers ( T a b l e s ID and  the r i g h t  York and  E) r e v e a l s that  p e c t o r a l count i s s l i g h t l y higher than the l e f t i n  the southern  Newfoundland, St. Lawrence estuary, and Cape Cod  populations. A very  sharp l a t i t u d i n a l c l i n e  ( i n c r e a s i n g northward) i s  present i n the mean number of l a t e r a l l i n e o s s i c l e s .  The  north-  ern Newfoundland p o p u l a t i o n has a s i g n i f i c a n t l y higher mean than a l l other p o p u l a t i o n s (Table I F ) . land p o p u l a t i o n d i f f e r s s i g n i f i c a n t l y Cod  and New  York.  less distinct decreases  southern  from those  Newfound-  from  Cape  T h i s i s accompanied by a s i m i l a r  l a t i t u d i n a l c l i n e i n v e r t e b r a l number.  southward.  significantly  .  The  The  but  The  number  two Newfoundland p o p u l a t i o n s have  higher mean numbers than the other three  popula-  t i o n s (Table IG). In summary, l a t i t u d i n a l c l i n e s are e x h i b i t e d i n the number  -22-  of  second d o r s a l f i n r a y s , a n a l f i n rays, l a t e r a l l i n e  and v e r t e b r a e .  An i n v e r s e l a t i t u d i n a l c l i n e  ossicles,  ( d e c r e a s i n g north-  ward) i s present i n the ray numbers of both p e c t o r a l f i n s .  Myoxocephalus jaok Seven p o p u l a t i o n s of M. Alaska to Japan.  .jaok were sampled ranging from  F i g u r e 2 r e p r e s e n t s the p l o t s of the m e r i s t i c  characters. The p l o t s of the f i r s t  d o r s a l f i n spine numbers r e v e a l a  c l i n a l i n c r e a s e northward and a l s o an i n c r e a s e towards the west from the mid significant  B e r i n g Sea p o p u l a t i o n to Japan.  No  significant  (Table I I B ) , The any  no  i n t e r p o p u l a t i o n d i f f e r e n c e s (Table I I A ) . The  d o r s a l f i n numbers show a l a t i t u d i n a l ward).  There are  cline  ( i n c r e a s i n g north-  d i f f e r e n c e s between p o p u l a t i o n s appear  mean a n a l ray number does not appear to e x h i b i t  consistent pattern.  has a s i g n i f i c a n t l y  The  southeastern B e r i n g Sea  population  higher mean anal f i n ray number than  Kodiak I s l a n d , Shumagin I s l a n d s , and Japanese p o p u l a t i o n s IIC).  second  S i m i l a r l y the Kodiak I s l a n d p o p u l a t i o n has a  the (Table  significantly  higher mean than the mid  B e r i n g Sea and Kamchatka and  B e r i n g Sea p o p u l a t i o n s .  The Kamchatka p o p u l a t i o n a l s o d i f f e r s  from the Japanese  southeast  one.  The number of p e c t o r a l f i n r a y s remains f a i r l y c o n s i s t e n t throughout the range of the s p e c i e s (Tables IID and E ) . There i s a l a t i t u d i n a l  cline  number of l a t e r a l l i n e o s s i c l e s .  ( i n c r e a s i n g northward) i n the An exception i s the Norton  Sound p o p u l a t i o n which has a mean lower than  expected  -23-  FIGURE 2 Geographic V a r i a t i o n i n M e r i s t i c Characters of Myoxocephalus j a o k .  P o p u l a t i o n Number  Geographic L o c a t i o n  1  Kodiak I s l a n d  2  Shumagin I s l a n d s  3  southeastern B e r i n g Sea  k  Norton Sound  5  mid B e r i n g Sea  6  Kamchatka P e n i n s u l a  7  Japan  Pop. No.  1st. Dorsal R n  2nd. Dorsal  n=39  n=39  rh  1  n=38  Lateral Line Ossicles Vertebrae  n=39  n=39  n=39  n=39  n=5i  otl n  =  3  r+n  n=n  nno  rdm  n=io  6  r^n n=i9  rii_  7  8  nki  n=23  r±L  9  10  n=23  nil  13  14  rfci  n=38  r#~i  nki  n=n  n=n  n=n  n=2  n=io  n=io  n=io  n=io  n^i  n=i9  r#n  n=23  n=38  n=io  nil n=l9  c A n  I  n=n  ntkn  ndki  f#1 n=5i  I i  n=38  rin  I  n=5i  r i n  n=38  n=39  I ^  n=5i  riri  8  rim  n=n  _Tjfc]  rhn  n=5i  n=38  &\  5  R. Pectoral R n  rki  I+I  4  L. Pectoral Fin  r i n  n=5i  3  Anal Fin  nki  n=5i  2  Rn  15  16  n=i9  _cJn  rici  n=23  n=23  \k  rdn  17  12  13  14  tin  n=i9  15  16  [•^••L n=i9  _nricL n=i2  o#i  oddn=23  rin  n=22  nfrn  i  i  i  \  i  i  i  i  17  18  19  16  17  18  19  37  i 39  ri]  1 1 1  41  43  45  i 34  1 11  35  36  37  -2Z+-  considering i t s l a t i t u d e .  The Japanese p o p u l a t i o n (Table  IIF)  has a s i g n i f i c a n t l y lower mean number than the Shumagin I s l a n d s , southeastern  B e r i n g Sea and mid  B e r i n g Sea p o p u l a t i o n s .  In  a d d i t i o n , the Norton Sound p o p u l a t i o n has a lower mean number than the mid  B e r i n g Sea  one.  L a t i t u d i n a l c l i n e ( i n c r e a s i n g northward) the mean v e r t e b r a l number.  The mid B e r i n g Sea p o p u l a t i o n  a s i g n i f i c a n t l y higher mean number than those Shumagin I s l a n d s , and  i s apparent i n has  from Kodiak I s l a n d ,  Japan (Table I I G ) . The Kamchatka popula-  t i o n has a s i g n i f i c a n t l y lower mean number than the Kodiak I s l a n d , Shumagin I s l a n d s , and  the Japanese p o p u l a t i o n s .  In summary, a l l m e r i s t i c c h a r a c t e r s e x h i b i t some degree of dependence upon l a t i t u d e i n t h e i r means with the exception of the p e c t o r a l f i n r a y s which remain f a i r l y constant.  In a d d i -  t i o n the f i r s t d o r s a l f i n ray number tends to i n c r e a s e s l i g h t l y towards the west.  Myoxocephalus n i g e r Samples of M . n i g e r were examined from four l o c a l i t i e s r a n g i n g from St. Paul I s l a n d i n the B e r i n g Sea to the Commander Islands. No of  F i g u r e 3 shows the p l o t s of the m e r i s t i c c h a r a c t e r s . d e f i n i t e geographic  the f i r s t  trends are apparent from the means  d o r s a l spine number.  d i f f e r e n c e s between p o p u l a t i o n s .  There are, however, l o c a l The  Izembek Bay  has a s i g n i f i c a n t l y higher mean number than those  population from St. Paul  I s l a n d and Commander I s l a n d s (Table I I I A ) . S i m i l a r l y the A t t u  -25I s l a n d p o p u l a t i o n has a higher mean spine number than e i t h e r the S t . Paul I s l a n d or Commander I s l a n d s p o p u l a t i o n . The cline  second d o r s a l f i n r a y number i n d i c a t e s a l a t i t u d i n a l  ( i n c r e a s i n g northward).  For i n s t a n c e , the A t t u I s l a n d  p o p u l a t i o n has a s i g n i f i c a n t l y lower mean number than both the Izembek Bay and S t . Paul I s l a n d one (Table I I I B ) .  The St. Paul  I s l a n d p o p u l a t i o n , i n turn, has a higher mean than those  from  the A t t u and Commander I s l a n d s . A latitudinal cline the a n a l r a y number.  ( i n c r e a s i n g northward) i s r e v e a l e d i n  Thus the A t t u I s l a n d p o p u l a t i o n has a  s i g n i f i c a n t l y lower a n a l r a y number than do those Bay  from Izembek  and S t . P a u l I s l a n d (Table I I I C ) . Although no c l e a r c u t p i c t u r e emerges from e i t h e r the l e f t  or r i g h t p e c t o r a l f i n ray counts there i s some i n d i c a t i o n o f i n verse l a t i t u d i n a l c l i n e s ( d e c r e a s i n g northwards) i n both.  There  are no s i g n i f i c a n t d i f f e r e n c e s i n the r i g h t p e c t o r a l r a y numbers.  The l e f t  p e c t o r a l r a y number o f the S t . Paul I s l a n d pop-  u l a t i o n i s s i g n i f i c a n t l y d i f f e r e n t from t h a t of the A t t u I s l a n d population  (Table H I D ) .  There i s no c o n s i s t e n t d i f f e r e n c e i n  the mean p e c t o r a l r a y number between l e f t and r i g h t p e c t o r a l s . The mean number o f l a t e r a l l i n e o s s i c l e s suggests a t u d i n a l c l i n e ( i n c r e a s i n g eastward) The  S t . Paul I s l a n d p o p u l a t i o n ,  longi-  but no l a t i t u d i n a l  too, has a s i g n i f i c a n t l y  mean than the Commander I s l a n d s one (Table I I I F ) .  trend. higher  The v e r t e -  b r a l number i n d i c a t e s a s l i g h t l o n g i t u d i n a l dependence; however, s i n c e the Commander I s l a n d s p o p u l a t i o n i s not represented i n the comparison, l i t t l e  can be s a i d .  -26-  FIGURE 3 Geographic V a r i a t i o n i n M e r i s t i c Characters o f Myoxocephalus n i g e r .  Population  Number  Geographic  Location  1  Izembek Bay  2  St. Paul  3  Attu Island  k  Commander  Island  Islands  Pop.No.  1st. Dorsal Fin n=30  2nd. Dorsal Fin n=30  Anal Fin n=30  n=50  n=5i  n=5l  nr51  n=5i  n=5l  n=26  n=26  n=26  i  1  8  9  1 -  i  i  •  •  •  i  i  10 14 15 16 17 18 10 11 12  L.Pectoral n=30  R. Pectoral n=30  Lateral Line Ossicles Vertebrae n=30 n=30  n=51  n=51  n=37  n=48  n=5i  n=5i  n=5i  n=5i  iL_ n=26  i  16  _Jl n=26  I  i  i  n=i8  i  i  u  -J  I  u  18 16 18 38 40 42 44 35 36 37 38  -27In summary, the f i r s t d o r s a l f i n e x h i b i t s no c o n s i s t e n t geographic trends.  The second d o r s a l and anal f i n s show l a t i -  t u d i n a l l y dependent c l i n e s ( i n c r e a s i n g northward).  The pec- .  t o r a l s e x h i b i t i n v e r s e l a t i t u d i n a l c l i n e s , and the l a t e r a l  line  o s s i c l e s and v e r t e b r a e have l o n g i t u d i n a l l y dependent c l i n e s ( i n c r e a s i n g eastward).  Myoxocephalus octodecemspinosus M. octodecemspinosus i s represented by four samples ranging from Newfoundland to southern Maine. p l o t s o f the m e r i s t i c c h a r a c t e r s .  Figure  4 p r e s e n t s the  There are no c l e a r geogra-  phic t r e n d s or s i g n i f i c a n t i n t e r p o p u l a t i o n d i f f e r e n c e s IVA)  i n the f i r s t d o r s a l f i n .  (Table  Two apparent l a t i t u d i n a l c l i n e s  ( i n c r e a s i n g northward) suggested by the mean number of second d o r s a l and a n a l  f i n r a y s l a c k s t a t i s t i c a l s i g n i f i c a n c e on the  b a s i s of my s e r i e s (Tables  IVB and C ) .  Both l e f t and r i g h t p e c t o r a l f i n r a y numbers r e v e a l i n verse l a t i t u d i n a l c l i n e s ( i n c r e a s i n g southward). shows the n o r t h e r n New Brunswick p o p u l a t i o n  Table IVD  to have a s i g n i f i -  c a n t l y lower mean l e f t p e c t o r a l r a y number than the S t . Andrews population.  The mean r i g h t p e c t o r a l f i n ray number of the  southern Maine p o p u l a t i o n  i s s i g n i f i c a n t l y higher than e i t h e r  the Newfoundland or the northern New Brunswick  population  (Table I V E ) . No d e f i n i t e geographic trends are e x h i b i t e d or i n t e r p o p u l a t i o n d i f f e r e n c e s appear i n e i t h e r -the number of l a t e r a l o s s i c l e s or v e r t e b r a e (Tables IVF and G).  line  The only exception i s  -28-  FIGURE A Geographic V a r i a t i o n i n M e r i s t i c C h a r a c t e r s o f Myoxocephalus octodecemspinosus.  P o p u l a t i o n Number  Geographic L o c a t i o n  1  n o r t h e a s t e r n New  2  Newfoundland  3  St. Andrews, New  4  southern Maine  Brunswick  Brunswick  Pop.No.  1st. Dorsal Fin  2nd. Dorsal Fin  Anal Fin  L.Pectoral Fin R. Pectoral Fin  Lateral Line Ossicles  Vertebrae  n=8  n=8  n=8  n=8  n=8  n=8  n=40  n=38  n=46  n=46  n=i4  n=6  jfa  1  n=40  n=40  jii  2  n=46  jii n=i4  7  jk  [ i _  9  n=40  rin  n=40  jh  ah  n=M  n=U  12  n=40  nh  rti  n=46  17  i  n k _  rtn  n=46  15  n=8  14  n=46  n=46  rin  rki n=i4  16  n=i4  18~" 16  18  37  39  41  43  34  35  36  37  -29-  the northern New Brunswick p o p u l a t i o n which has a s i g n i f i c a n t l y higher mean v e r t e b r a l number than t h a t from St. Andrews (Table IVG).  Myoxocephalus  polyacanthocephalus  Six l o c a l i t i e s were sampled f o r M.  polyacanthocephalus  r a n g i n g from B r i t i s h Columbia and Washington to the Sea of Okhotsk. ters..  F i g u r e 5 p r e s e n t s the p l o t s f o r the m e r i s t i c charac-  The mean number o f f i r s t d o r s a l spines i l l u s t r a t e s a  latitudinal cline  ( i n c r e a s i n g northward).  There i s a trend  a l s o toward a higher mean number i n the west than i n the east f o r comparable l a t i t u d e s .  F o r example, Table VA i n d i c a t e s that  the B r i t i s h Columbia p o p u l a t i o n has a s i g n i f i c a n t l y lower mean than the Shumagin I s l a n d s one. The data f o r the mean number o f r a y s i n the second d o r s a l f i n suggest ward.  a l o n g i t u d i n a l c l i n e with numbers i n c r e a s i n g west-  However, the d i f f e r e n c e s between s u c c e s s i v e  are so s l i g h t t h a t they are not s i g n i f i c a n t .  populations  However, compari-  son of the e a s t e r n (B.C.) with the western (Attu) p o p u l a t i o n r e v e a l s t h a t the extremes are d i f f e r e n t  (Table VB).  The a n a l f i n r a y s show a l o n g i t u d i n a l c l i n e ( i n c r e a s i n g westward).  The B r i t i s h Columbia p o p u l a t i o n has a s i g n i f i c a n t l y  lower mean a n a l r a y number than a l l o t h e r s (Table VC). Both l e f t and r i g h t  p e c t o r a l f i n r a y numbers are without  w e l l d e f i n e d g e o g r a p h i c a l trends, but there are small ces between adjacent p o p u l a t i o n s . lation i s significantly different  differen-  F o r example, the B.C. popufrom a l l o t h e r s except  that  -30-  FIGURE 5 Geographic V a r i a t i o n i n M e r i s t i c Characters Myoxocephalus polyacanthocephalus.  P o p u l a t i o n Number  of  Geographic L o c a t i o n  1  B r i t i s h Columbia  2  Juneau (SE Alaska)  3  Kodiak I s l a n d  h,.  Shumagin I s l a n d s  5  Attu Island  6  e a s t e r n Sea of Ohkotsk  Pop No.  1st Dorsal Fin  2nd. Dorsal Fin  Anal Fin  n=29  n=29  n=29  ufc  (4L  1  n=22  2  4  n=22  n=29  n=30  rti  n=30  n=24 n=24  n=24  n=24  n=24  n=3 n=3  n=3  A  6  .1  I  I  I  8  10  10  1 12  1 14  =3  JL  n=3  n=23  JJQ_ n=10  i L^I i n=18  0=24  rii  n  _Ji  n=28  rii  rin  n=18  mkn  n=30  it_  JTAL  rk\  i  n=27  ntn  Ai  i ^  rzdn  n=29  I  rii  I  _ i i  n=3  JL  Vertebrae n=23  n=22  ri  nki  n=30  _ i i  n-22  n=29  cfci  n=30  r i i  JA  n=29  L4I  3  n=23  n=29  n(n  n=22  JJCL  n=29  Lateral Line Ossicles  n=29  _jki  n=22  ofci  L Pectoral Fin R. Pectoral Fin  n=3  1_  I  1 I  I  16  8  1 ^  1 1 12  14  16  1 8 ~ 16  1 8 " 37 -  39  41  43  45  "34  36  -31from the Sea of Okhotsk (Table VD). B.C.  The  r i g h t p e c t o r a l i n the  p o p u l a t i o n d i f f e r s s i g n i f i c a n t l y only from the Kodiak I s -  l a n d , Shumagin I s l a n d s , and A t t u I s l a n d p o p u l a t i o n s ( T a b l e Examination of the means of the two  VE).  p e c t o r a l s i n d i c a t e s a ten-  dency f o r the l e f t p e c t o r a l to have a higher mean than the right  one. The mean number of l a t e r a l l i n e o s s i c l e s r e v e a l s a  general  tendency to i n c r e a s e westward with the exception of the Okhotsk Sea which has the lowest mean but i s based on only e i g h t i n d i v i duals.  The  B r i t i s h Columbia and Juneau p o p u l a t i o n s have s i g n i -  f i c a n t l y lower means than does t h a t from the Shumagin I s l a n d s (Table VF).  The v e r t e b r a l number shows no c l e a r geographic  t r e n d s as there i s only a s i n g l e s i g n i f i c a n t d i f f e r e n c e , the B.C. one  p o p u l a t i o n having a lower mean than the Shumagin I s l a n d s (Table  VF).  In summary, the f i r s t cline  dorsal f i n exhibits a l a t i t u d i n a l  ( i n c r e a s i n g northward).  The  second d o r s a l and  anal  fins  and l a t e r a l l i n e o s s i c l e s show l o n g i t u d i n a l c l i n e s ( i n c r e a s i n g westward). any  N e i t h e r the p e c t o r a l s nor the vertebrae i n d i c a t e  c l e a r geographic  trends.  Myoxocephalus q u a d r i c o r n i s M.  q u a d r i c o r n i s i s represented  t i e s ranging  from the n o r t h e a s t e r n  by samples from s i x l o c a l i B e r i n g Sea,  Point.Barrow,  through the Canadian A r c t i c to eastern Hudson Bay a r c t i c l o c a l i t y on northern  Ellesmere  the p l o t s of m e r i s t i c c h a r a c t e r s .  Island.  with one  high  F i g u r e 6 presents  -32-  FIGURE 6 Geographic V a r i a t i o n i n M e r i s t i c C h a r a c t e r s of Myoxocephalus q u a d r i c o r n i s *  P o p u l a t i o n Number  Geographic L o c a t i o n  1  n o r t h e a s t e r n Bering Sea  2  P o i n t Barrow  3  Mackenzie R i v e r Mouth  4  Cambridge  5  e a s t e r n Hudson Bay  6  northern Ellesmere I s l a n d  Bay  Pop. No.  1st Dorsal Fin n=2l  1  2nd. Dorsal Fin n=2l  rAi  n=2l  n=25  n=25  AL  Ai n=25  n = 2 5  rAn  n=23  n=23  n=2l  n=4i  Ai  n=2i  n=2l  n=25  n=25  n=25  n=25  n=25  n=25  n=23  n=23  n=23  A  JAI  lAn  n=4l  rAi  6  n=2l  n=2i  n=2l  n=2l  n-41  n-41  n=4l  n=4l  JA:—  rAi  -lata i  6  i  8  i  10  i  12  —  n^rn  n=2l  r^n  5  _AD  AI  n=2i  Vertebrae  rAi  n=23  JAL  4  R. Pectoral Fin  r#i  n = 2 5  r±i  3  L.Pectoral Fin  rAn  ntr  n=25 2  Anal Fin  i  14  —  i  16  i  13  15  *—i  17  14  16  r-^  _r± 18  14  16  18  38  39  40  41  42  -33-  No and  trends are obvious i n f i r s t d o r s a l spine numbers and  there are no s i g n i f i c a n t  means (Table VIA). some i n d i c a t i o n  interpopulation differences i n  In the second d o r s a l ray number there i s  of a l o n g i t u d i n a l trend ( i n c r e a s i n g eastward)  r e v e a l e d i n a s i g n i f i c a n t l y lower mean number i n the ern B e r i n g Sea than i n the Hudson Bay  (Table VIB).  northeastNo  geo-  graphic t r e n d s are evident i n the a n a l f i n ray number.  How-  ever, there are i n t e r p o p u l a t i o n d i f f e r e n c e s as the Mackenzie p o p u l a t i o n has a s i g n i f i c a n t l y higher mean than those n o r t h B e r i n g Sea and Cambridge Bay I n both the l e f t  and r i g h t  l o n g i t u d i n a l c l i n e present cline  (Table  VIC).  p e c t o r a l ray numbers there i s a  ( d e c r e a s i n g eastwards).  Within  the  s e v e r a l p o p u l a t i o n s d i f f e r s i g n i f i c a n t l y i n t h e i r means.  The mean  number of l e f t  p e c t o r a l f i n r a y s from the  B e r i n g Sea p o p u l a t i o n i s higher than those and  from the  from the Mackenzie  Ellesmere I s l a n d populations; the P o i n t Barrow  those  from the Mackenzie, Hudson Bay,  Table VID,  higher  than  and Ellesmere I s l a n d ; and  the Mackenzie higher than the Ellesmere (Table VID).  northeastern  Island population  In a d d i t i o n to the d i f f e r e n c e s i l l u s t r a t e d i n  the Hudson Bay  p o p u l a t i o n has a s i g n i f i c a n t l y  mean number of r a y s i n the r i g h t  lower  p e c t o r a l than does t h a t of the  n o r t h e a s t e r n B e r i n g Sea p o p u l a t i o n (Table VIE). The teriad  l a t e r a l l i n e of M.  q u a d r i c o r n i s terminates w e l l an-  of the o r i g i n of the caudal f i n , and i t s count was  considered  not  comparable.  The mean number of vertebrae i n d i c a t e s a l a t i t u d i n a l ( i n c r e a s i n g northward).  There a l s o appears to be some  cline  -34l o n g i t u d i n a l component which tends to i n c r e a s e the mean eastward.  Within the c l i n e the northeastern B e r i n g Sea  population  has a s i g n i f i c a n t l y lower mean v e r t e b r a l number than any of the others.  The  P o i n t Barrow p o p u l a t i o n has a s i g n i f i c a n t l y  mean than a l l o t h e r s with the exception of Hudson Bay. son Bay (Table  The Hud-  p o p u l a t i o n i s s i g n i f i c a n t l y lower than Ellesmere  Island  VIF).  In summary, no in  higher  first  s i g n i f i c a n t geographic trends are e x h i b i t e d  d o r s a l spine number and a n a l f i n ray number.  The mean  second d o r s a l f i n ray number shows an eastward-increasing  longi-  t u d i n a l c l i n e , whereas i n the l e f t and r i g h t p e c t o r a l s , there i s an i n v e r s e l o n g i t u d i n a l c l i n e ( i n c r e a s i n g westward). v e rt eb ra e i n d i c a t e two cline  geographical  The  components, a l a t i t u d i n a l  ( i n c r e a s i n g northward) and a p o s s i b l e l o n g i t u d i n a l c l i n e  ( i n c r e a s i n g eastward).  I t should be noted that the m e r i s t i c  counts of the h i g h A r c t i c Ellesmere  I s l a n d p o p u l a t i o n were  c o n s i s t e n t l y lower than expected on the b a s i s of the other popul a t i o n s studied.  Myoxocephalus 'scorpius* T h i r t e e n l o c a l i t y samples of the nominal s p e c i e s M. "'scorp i u s 'were examined.  The  samples ranged from Kodiak I s l a n d  n o r t h , a c r o s s the Canadian A r c t i c , east as B r i t a i n and Europe.  south to Maine, and as f a r  F i g u r e 7 presents  the p l o t s of the  m e r i s t i c c h a r a c t e r s from which the f o l l o w i n g trends may  be  discerned. The mean of the f i r s t d o r s a l f i n spine number i n d i c a t e s  -35both l a t i t u d i n a l and l o n g i t u d i n a l c l i n e s , the former i n c r e a s i n g northward, the l a t t e r eastward.  In t h i s feature the Chukchi Sea  p o p u l a t i o n has a s i g n i f i c a n t l y higher number than those the two Gulf of Alaska,  as w e l l as those  from  from the S t . Lawrence  estuary, Nova S c o t i a , Maine-Cape Cod, and Europe.  The Maine-  Cape Cod p o p u l a t i o n has a higher mean than that from the Chukchi Sea  (Table VTIA).  The mean of the second d o r s a l f i n r a y number  e x h i b i t s the same double c l i n e s ( F i g u r e 7 ) .  In t h i s case the  Kodiak I s l a n d p o p u l a t i o n has a s i g n i f i c a n t l y lower mean number than the Mackenzie, F r o b i s h e r Bay, Labrador, Newfoundland, S t . Lawrence estuary and Nova S c o t i a n p o p u l a t i o n s .  The Shumagin  I s l a n d s p o p u l a t i o n d i f f e r s from those i n Newfoundland, Nova S c o t i a , and Europe.  The European p o p u l a t i o n has a s i g n i f i c a n t l y  lower mean count than a l l ot h e r s with the exception from Kodiak I s l a n d .  The Nova S c o t i a p o p u l a t i o n , i n a d d i t i o n ,  d i f f e r s from the Chukchi Sea one (Table The  of that  VIIB).  a n a l f i n r a y number trends are the same but evidence  i s not as c l e a r .  The Kodiak I s l a n d p o p u l a t i o n has a  c a n t l y lower mean than those  signifi-  from the Mackenzie and Nova S c o t i a .  S i m i l a r l y the Shumagin I s l a n d s p o p u l a t i o n has a lower mean than the Chukchi Sea, Mackenzie, Labrador, Newfoundland, and Nova Scotia populations.  The European p o p u l a t i o n again shows the  g r e a t e s t divergence  i n having a s i g n i f i c a n t l y lower mean number  than any other p o p u l a t i o n , with the exception the Gulf of A l a s k a The tence  left  (Table  of the two from  VIIC).  and r i g h t p e c t o r a l f i n numbers i n d i c a t e the e x i s -  of two c l i n e s .  There i s an i n v e r s e l a t i t u d i n a l  cline  -36( i n c r e a s i n g southward) and a l o n g i t u d i n a l c l i n e tending to i n crease the means eastward.  The European p o p u l a t i o n does not  conform to these p a t t e r n s .  The t e s t  for significant differences  shows t h a t the European p o p u l a t i o n has a s i g n i f i c a n t l y lower mean number of p e c t o r a l r a y s than any o f t h e others; a l s o the Shumagin I s l a n d s p o p u l a t i o n has a higher mean count than does the Hudson Bay one (Tables VIID and E ) .  The same i n t e r p o p u l a -  t i o n d i f f e r e n c e s a r e apparent i n the r i g h t the l e f t ,  p e c t o r a l f i n as i n  with the exception that the Hudson Bay and Shumagin  I s l a n d s p o p u l a t i o n s are not s i g n i f i c a n t l y The mean l a t e r a l l i n e o s s i c l e i n t o three d i s t i n c t  different.  number appears to separate  subgroups; the Gulf of A l a s k a p o p u l a t i o n s ,  the B e r i n g Sea, A r c t i c European p o p u l a t i o n .  and East Coast North America, and the There i s a d e f i n i t e  latitudinal  ( i n c r e a s i n g northward) through the B e r i n g Sea, A r c t i c Coast p o p u l a t i o n s .  cline and East  The Kodiak I s l a n d p o p u l a t i o n has a s i g n i -  f i c a n t l y lower mean than those o f the B e r i n g Sea, A r c t i c and Labrador (Table VTIF).  The Shumagin I s l a n d s p o p u l a t i o n has a  s i g n i f i c a n t l y lower mean than the B e r i n g Sea, Chukchi Sea, Mackenzie, and Hudson Bay p o p u l a t i o n s i n t u r n , and a l l have s i g n i f i c a n t l y higher mean l a t e r a l l i n e o s s i c l e  counts than the  Newfoundland, S t . Lawrence estuary, Nova S c o t i a , and MaineCape Cod p o p u l a t i o n s .  Those from F r o b i s h e r Bay have a s i g n i f i -  c a n t l y higher mean than those from Nova S c o t i a . The European form i s d i s t i n c t i v e  with a s i g n i f i c a n t l y  mean than a l l other p o p u l a t i o n s (Table VTIF). V e r t e b r a l counts could not be obtained  f o r s i x of the  lower  - 3 7 -  FIGURE 7 Geographic V a r i a t i o n i n M e r i s t i c C h a r a c t e r s Myoxocephalus 'scorpius?  P o p u l a t i o n Number  of  Geographic L o c a t i o n  1  Kodiak I s l a n d  2  Shumagin I s l a n d s  3  southeastern  4  Chukchi  5  Mackenzie R i v e r Mouth  6  eastern Hudson Bay  7  Frobisher  8  Labrador  9  mid-western Newfoundland  Bering  Sea  Sea  Bay  10  St. Lav/rence estuary  11  Nova S c o t i a  12  southern  13  Europe  Maine-Cape Cod  -38t h i r t e e n p o p u l a t i o n s ; however, on those i n which the count taken, a l a t i t u d i n a l c l i n e Table V U G  was  ( i n c r e a s i n g northward) i s e v i d e n t .  r e v e a l s that the Shumagin I s l a n d s p o p u l a t i o n has a  s i g n i f i c a n t l y lower mean v e r t e b r a l number than those of the Chukchi Sea, Mackenzie, Hudson Bay,  and F r o b i s h e r  Bay.  In summary, i n M. s c o r p i u s " t h e f i r s t d o r s a l , second d o r s a l , >  and a n a l f i n s a l l e x h i b i t l a t i t u d i n a l c l i n e s ( i n c r e a s i n g northward) and l o n g i t u d i n a l c l i n e s ( i n c r e a s i n g eastward).  Both  p e c t o r a l f i n s show i n v e r s e l a t i t u d i n a l c l i n e s ( d e c r e a s i n g n o r t h ward) as w e l l as l o n g i t u d i n a l ones ( i n c r e a s i n g eastward).  La-  t i t u d i n a l c l i n e s ( i n c r e a s i n g northward) are apparent i n both l a t e r a l l i n e o s s i c l e and v e r t e b r a l numbers. The m e r i s t i c c h a r a c t e r i s t i c s of nominal M. "scorpius' provide >  c o n v i n c i n g evidence  t h a t t h i s i s not a homogeneous taxon,  r a t h e r t h a t three d i s t i n c t e n t i t i e s e x i s t .  T h i s evidence  but i s in  the mean number of the l a t e r a l l i n e o s s i c l e s ( i n which the  two  Gulf of A l a s k a p o p u l a t i o n s d i f f e r d r a m a t i c a l l y from that of the adjacent  southeastern  B e r i n g Sea).  such magnitude that environmental one  The d i f f e r e n c e here i s of i n d u c t i o n seems u n l i k e l y  suspects d i f f e r e n c e s of a genotypic  nature.  The  and  Arctic  p o p u l a t i o n i s i n d i s t i n g u i s h a b l e from that of the B e r i n g Sea i n this  criterion. The European stock i s d i f f e r e n t from both Gulf and  Sea p o p u l a t i o n s and h i g h l y d i s t i n c t i v e . from a l l p o p u l a t i o n s of the A r c t i c ter  except On  The  Bering  genotype d i f f e r s  form i n every m e r i s t i c charac  the number of spines i n the f i r s t d o r s a l f i n .  the b a s i s of m e r i s t i c f e a t u r e s , i t i s p o s s i b l e to pose  -39the hypothesis  that w i t h i n the nominal s p e c i e s M. ''scorpius."  there are three g e n e t i c a l l y d i s t i n c t  forms; European, A r c t i c  and  B e r i n g Sea,and G u l f of A l a s k a . These forms w i l l be t r e a t e d as separate study u n t i l the t o t a l body of evidence  species i n t h i s  i n d i c a t e s v a l i d a t i o n or  rejection.  Myoxocephalus s c o r p i o i d e s M. ties. M. any  s c o r p i o i d e s i s represented  by samples from seven l o c a l i -  F i g u r e 8 p r e s e n t s the p l o t s of the m e r i s t i c c h a r a c t e r s .  s c o r p i o i d e s appears to be the most g e o g r a p h i c a l l y s t a b l e of s p e c i e s examined.  There appears to be a s l i g h t trend to i n -  crease mean number with l a t i t u d e but there are no c l e a r geographic  t r e n d s e x h i b i t e d by any  under c o n s i d e r a t i o n . ferences.  of the m e r i s t i c c h a r a c t e r s  Tables VIIIA - E show no  significant  The Labrador p o p u l a t i o n has a s i g n i f i c a n t l y  higher  mean number of l a t e r a l l i n e o s s i c l e s than the Hudson Bay, I s l a n d , and  Ungava Bay  populations  (Table V I I I F ) .  dif-  Baffin  Vertebral  counts a v a i l a b l e were not adequate to r e v e a l geographic  trends.  Table VIIIG i n d i c a t e s no s i g n i f i c a n t d i f f e r e n c e . In summary, none of the m e r i s t i c c h a r a c t e r s s t u d i e d i n M. s c o r p i o i d e s e x h i b i t e d c l e a r g e o g r a p h i c a l l y dependent t r e n d s . There i s , however, an i n d i c a t i o n of a tendency to i n c r e a s e mean numbers northward.  FIGURE 8 Geographic V a r i a t i o n i n M e r i s t i c C h a r a c t e r s of Myoxocephalus s c o r p i o i d e s .  P o p u l a t i o n Number  Geographic L o c a t i o n  1  north B e r i n g Sea  2  P o i n t Barrow  3  Mackenzie R i v e r Mouth  4  Hudson Bay  5  B a f f i n Island  6  Labrador  7  Ungava Bay  Pop. No.  1st. Dorsal Fin  2nd. Dorsal Fin  Anal Fin  L. Pectoral Fin  R. Pectoral Fin  Lateral Line Ossicles  Vertebrae  n=21  n=21  D=21  n=2i  n=2i  n=i9  n=2i  nki.  r i i  nJc_  n = 30  n=30  n=30  n=30  n=27  n=27  i  wdm  n=i8  n=27  n=27  n=2  _L_  rkn  n=17  rt=i7  n=i7  n=i5  n=39  n=39  n=39  n=39  n=39  n=38  rin  n  n=17  n=17  n=i7  n = i7  n=12  n=12  n=12  n=i2  n i n  -•L,  8  9  - i  l _  10  13  _1  14  15  16  1  •  •  '  17  11  12  13  15  16  15  _n^m  I  n=6  I  17  ^  n=i6  n=i2  r*L_  _J_  n=7  I  n=i7  i  n=3  n=17  *  di  i  n=17  r  r ^ n  nki  rki  xnki_  i  n=30  nki,  •fci n=27  ric  n=i2  n i n  16  17  38  39  L  40  41  42  43  35  36  ^  D  37  _  38  -41-  A b r i e f resume of the c l i n a l v a r i a t i o n r e v e a l e d by  this  examination o f m e r i s t i c c h a r a c t e r s of these seven s p e c i e s i s h e l p f u l i n i d e n t i f y i n g trends.  A l l seven s p e c i e s have the  common a t t r i b u t e of wide geographic range, and thus the potential  for c l i n a l The f i r s t  response. g e n e r a l i z a t i o n concerns the r e l a t i v e  r a t e of the d i f f e r e n t  features studied.  response  The maximum p o t e n t i a l  number of responses to c l i n a l o p p o r t u n i t y i s seven i n a l l but l a t e r a l l i n e o s s i c l e s , i n which i t i s s i x , s i n c e M. nis  does not have a complete  quadricor-  l a t e r a l l i n e and thus was  not  s  counted. for  L a t i t u d i n a l response^ are detected  i n five  species  second d o r s a l , four f o r a n a l , four f o r vertebrae,  each f o r f i r s t The  d o r s a l , p e c t o r a l s , and l a t e r a l l i n e  and  ossicles.  second ' g e n e r a l i z a t i o n concerns the predominant  t i o n of change.  three  direc-  In every i n s t a n c e except p e c t o r a l r a y s , the  response i s r e v e a l e d as an i n c r e a s e i n number northward.  In  each case the i n v e r s e i s t r u e of the p e c t o r a l s . L o n g i t u d i n a l c l i n e s are more d o u b t f u l except i n the A r c t i c and t r a n s p a c i f i c  s p e c i e s and i n these there are about as many  westward as eastward  changes.  However, i f these are broken  down i n t o A r c t i c and t r a n s p a c i f i c that the predominant Arctic  s p e c i e s groups, i t i s found  d i r e c t i o n of change i n the North  American  s p e c i e s i s found i n the p e c t o r a l s which, as has p r e v i -  o u s l y been p o i n t e d out, appear to respond i n r e v e r s e to a l l other  characters. O v e r a l l the f i r s t  ter  d o r s a l seems to be the most s t a b l e charac-  and the second d o r s a l the most s u b j e c t to t h i s p a t t e r n of  -2+2variation.  INTERSPECIFIC DIFFERENCES IN MERISTIC CHARACTERS The  interspecific  differences i n meristic characteristics  of the Ik nominal s p e c i e s w i t h i n the genus have been examined by g r a p h i c a l means ( F i g u r e 9)  and  by s t a t i s t i c a l l y t e s t i n g the  means of the s i x c h a r a c t e r i s t i c s f o r s i g n i f i c a n c e (Tables IXA-G, Appendix A).  On  the b a s i s of these t e s t s , Table  X was  s t r u c t e d l i s t i n g the number of s p e c i e s which d i f f e r e d f i c a n t l y from each other character.  f i r s t dorsal  s p e c i e s v/ith regard  signi-  to each m e r i s t i c  For example, s p e c i e s 1 (M. aeneus) d i f f e r s  c a n t l y from s i x other  The  s p e c i e s with regard  con-  signifi-  to mean number of  spines.  s e v e r a l c h a r a c t e r i s t i c s d i f f e r i n t h e i r c o n t r i b u t i o n to  the d i s t i n c t i v e n e s s o f the s p e c i e s .  T h i s i s c e r t a i n l y an  ex-  p r e s s i o n of t h e i r r e l a t i v e m u t a b i l i t y along with the s e l e c t i v e forces involved. v a r i a b l e and The  On  t h i s b a s i s the p e c t o r a l f i n s are the most  the f i r s t d o r s a l the l e a s t v a r i a b l e .  m e r i s t i c c h a r a c t e r s are r i c h i n d i f f e r e n c e s between  s p e c i e s t h a t are of importance i n d i s t i n g u i s h i n g s p e c i e s .  How-  ever,  be  f o r the purpose of the present  p r i m a r i l y as data  f o r the numerical  study, t h e i r use w i l l analyses.  I have been unable to d i s c e r n any these data alone. and  Asian  n a t u r a l groupings using  I n d i v i d u a l s p e c i e s from both North American  s p e c i e s groups appear to have s i m i l a r c h a r a c t e r  a s s o c i a t i o n s but no apparent e v o l u t i o n a r y p a t t e r n i s e v i d e n t .  -L3FIGURE 9  Comparison of M e r i s t i c Characters  Species 1  Number  between  Species  Species Name aeneus M.  2  M.  3  M. e n s i g e r  4  M.  5.  M.  niger  6  M.  octodecemspinosus  7  M. polyacanthocephalus  8  M.  9  M. r a n i n u s  edemius  quadricornis  10  M. "scorpius" (European)  11  M. ' s c o r p i u s " ( A r c t i c )  12  M. 'scorpius" (Gulf of Alaska)  13  M.  scorpioides  14  M.  stelleri  Species  1st Dorsal Fin  2nd Dorsal Fii  run 81  1 2  n.4  n.182  Anal Fm  Left Pectoral Fin  Right Pectoral Fin  n-1 8 2  n=182  n = 181  XfcL  1  n«4  *  n.11  n»4  n.11  n.191  n.11  n«191  n»191  J±L_ n-156  n-158  n«191  JZt  n.158  J±L  ml 58  5 n.108  n-108  n.142  rin  n.108  n.108  6  J±l  n.142  n*160  n.11  n.2  n=18 7  n«143  ns 1 3 6  n.128  n.108  n*98  JZtL  n.142  ne13 0  n»95  n-1 60  n-160  m 66  nr66  n«66  n.142  n.34  nr34  n=34  n*238  n.238  nr238  n»54  n«5 4  n=174  n=173  n=46  n=46  n«160  n«156  JZt  n-66  9 rw34  JZtL  JZtL  n-160  n-64  n>34  10 n.238  n-2 38  JZfcL n.53  n.54  _E±1  i i i  r-*-|  n.5 4  n-174  n=174  n.4 6  n.4 6  J±L rw46  14  n»1  J±L  n-107  n-142  8  13  n» 4  J±L  n.158  7  n-1 74  ml63  n«11  n.101  12  n 180  rti  I  n- 4  3  11  Vertebrae  ns 4  n.11  4  Lateral Line Ossicles  rin  ±  rjfcL  n=66  n»66  n=34  n.4  n.231  n.108  n» 5 4  n.26  n=107  n.67  n.4 6  J±L —1  10  I  I  12  14  1  16  •  •  14  16  18  14  _i  16  i  18  •  33  1  35  37  •  •  39  41  43  45  '  33  •  35  •  37  i_ 39  -i 41  i 43  -44-  Legend f o r Table  X  1  M.  aeneus  2  M.  edomius  3  M.  ensiger  4  M.  .jaok  5  M.  niger  6  M.  octodecemspinosus  7  M.  polyacanthocephalus  8  M.  quadricornis  9  M.  raninus  10  M. "sc o r p i us"(European)  11  M. " s c o r p i u s " ( G u l f of Alaska)  12  M. "scorpius" ( A r c t i c )  13  M.  scorpioides  14  M.  stelleri  -45TABLE X Number o f s i g n i f i c a n t  species differences  i n meristic characters  Species Number  ID  2D  1  6  7  2  0  3  A  LP  LLO  V  9  12  12  9  0  3  4  2  1  5  4  9  4  -  4  5  9  11  9  9  8  5  6  10  8  11  9  7  6  8  9  10  8  6  7  7  9  7  7  9  7  8  12  7  13  12  -  9  9  7  7  9  8  6  10  4  6  6  12  11  -  11  7  7  8  6  5  6  12  9  12  11  8  10  9  5  8  7  12  6  7  3  7  8  8  9  -  96  8o  7.38  8.<  14 TOTAL AVG.  82  101  114  128  5.85  7.21  8.14  9.14  9 9  -46General Morphology Squamation Squamation of forms a t t r i b u t e d to the genus Myoxocephalus i s g r e a t l y reduced from that of the more p r i m i t i v e c o t t i d s such as the  genus Hemilepidotus.  C e r t a i n s p e c i e s have l o s t a l l t r a c e  of s c a l e s , though the m a j o r i t y scattered modified c l e a r e d and Two pacific The  of forms have at l e a s t some small  or s t e l l a t e s c a l e s .  stained skins representing  Asiatic species  species  (M. r a n i n u s  In t h i s study 20L\ 15 s p e c i e s were examined.  and  M.  s t e l l e r i ) and  (M. n i g e r ) l a c k s c a l e s or any  trans-  rudiments of them.  remaining s c a l e d forms can be f u r t h e r d i v i d e d i n t o four  subgroups on the b a s i s of s c a l e d i s t r i b u t i o n and first  one  subgroup, c o n t a i n i n g the two  ( F i g u r e 10) and M.  The  s p e c i e s M.  s c a l e s s c a t t e r e d i n the area above the  A l s o i n M. aeneus the s p i n u l e s appear detached  from the b a s a l element or body of the s c a l e .  The  s c a l e s of  octodecemspinosus l a c k even the rudiments of s p i n u l e s and are l a r g e p o r t i o n s of many of the bodies which are calcified.  aeneus  octodecemspinosus ( F i g u r e 1 1 ) , posesses  small, poorly c a l c i f i e d lateral line.  east coast  type.  M.  there  incompletely  In both s p e c i e s , t h e r e f o r e , the l i m i t e d amount of  c a l c i f i c a t i o n suggests that the  s c a l e s are i n the process of  reduction. The  second subgroup c o n t a i n s  edomius, M. species "M.  ensiger,  and  three A s i a t i c  M. y e s o e n s i s ) ,  (M. p o l y a c a n t h o c e p h a l u s ) ( F i g u r e  scorpius"  (Figure 1 3 ) .  s c a l e s both above and  one  species  (M.  transpacific  1 2 ) , and  the European  In t h i s group there are  below the l a t e r a l l i n e .  spinate  In general  the  -h7FIGURE 10 SQUAMATION OF MYOXOCEPHALUS AENEUS  FIGURE 11 SQUAMATION OF MYOXOCEPHALUS OCTODECEMSPINOSUS  -48FIGURE 12 SQUAMATION OF MYOXOCEPHALUS POLYACANTHOCEPHALUS  FIGURE 13 SQUAMATION OF MYOXOCEPHALUS SCORPIUS"(EUROPEAN)  -49s c a l e s , and e s p e c i a l l y t h e i r  bases, tend to be somewhat b e t t e r  c a l c i f i e d above the l a t e r a l l i n e than below. edomius have the most reduced squamation. spinate  The s c a l e s of M .  In i t there are no  s c a l e s and u s u a l l y o n l y a few small rounded,  calcified,  s c a t t e r e d rudiments.  ( F i g u r e 13)  "M.  scorpius"  poorly  (European)  a l s o e x h i b i t s the t r e n d to the r e d u c t i o n of s c a l e s .  Both above and below the l a t e r a l l i n e the b o d i e s of the spinate s c a l e s are o n l y p a r t i a l l y c a l c i f i e d and the s p i n u l e s are o f t e n detached from t h e i r The t h i r d  bases or reduced to small rounded v e s t i g e s .  subgroup which c o n s i s t s of the A r c t i c  A l a s k a forms o f "M.  s c o r p i u s " and the t r a n s p a c i f i c  M. jaok a l l have a t l e a s t  one s t e l l a t e  s p e c i e s i n t h i s group i s "M.  ( F i g u r e 14)  caudad.  s c a l e s below.  The s t e l l a t e  t u b e r c l e s are o f t e n i r r e g u l a r  has a much h i g h e r d e n s i t y o f s t e l l a t e  and bear 1-4  The s c a l e s be-  s p i n u l e s which are u s u a l l y d i r e c t e d  u s u a l l y incomplete towards the p o s t e r i o r .  u s u a l l y w e l l formed.  The  s c o r p i u s " (Gulf of Alaska)  which has few s c a l e s or t u b e r c l e s .  low the l a t e r a l l i n e bear 1-6  species  t u b e r c l e , and u s u a l l y  more, above the l a t e r a l l i n e and s p i n a t e simplest  and Gulf of  and are  M. .jaok ( F i g u r e  15)  t u b e r c l e s which are  The s c a l e s below the l a t e r a l l i n e are few  spinules.  The squamation of "M. most dense of t h i s group.  s c o r p i u s " ( A r c t i c ) (Figure 16) The s t e l l a t e  i s the  t u b e r c l e s i n i t form a  dense row above the l a t e r a l l i n e and i n numerous cases two t u b e r c l e s appear to have fused.  I t i s noteworthy that the s p i n u l e s  i n many cases appear to be d i s j u n c t from the body as i n M . aeneus, again suggesting the p o s s i b i l i t y that r e d u c t i o n i s i n  -50FIGURE lif SQUAMATION  OF MYOXOCEPHALUS"SCORPIUS (GULF OF ALASKA) 1  FIGURE 15 SQUAMATION  OF MYOXOCEPHALUS JAOK  -51progress.  The  spinate  s c a l e s below the l a t e r a l l i n e are  persed and  there i s a s i m i l a r  indication  dis-  of r e d u c t i o n i n  their  spinules. The  f o u r t h subgroup, composed of the two  s p e c i e s , M.  q u a d r i c o r n i s and  b e r c l e s above and ( F i g u r e 17)  M.  below the l a t e r a l l i n e .  squamation i s sparse.  The  stellate and  has  two  spinules.  H.  t u b e r c l e s above incompletely  of s t e l l a t e  tuber-  s c a l e s below the  quadricornis  rows of w e l l developed s t e l l a t e  tu-  scorpioides  often  There are a l s o s p i n a t e  l a t e r a l l i n e which bear 5-12 18)  In M.  Below the l a t e r a l l i n e the m a j o r i t y  c l e s are incomplete.  Arctic  s c o r p i o i d e s , have s t e l l a t e  the l a t e r a l l i n e tend to be i r r e g u l a r formed.  fully  (Figure  t u b e r c l e s i n the  a n t e r i o r p o r t i o n above the l a t e r a l l i n e which t a p e r  to a s i n g l e  row  of  posteriad.  are s t e l l a t e ;  Below the l a t e r a l l i n e the m a j o r i t y however, some are Incomplete and  scales  lack spinules  on  the a n t e r i o r s i d e . . Within  the genus then, there i s evidence i n the  for divergent constant line.  evolution.  Throughout most s p e c i e s there i s  t r e n d toward the r e d u c t i o n  In H.  squamation  s c o r p i o i d e s , "M.  of s c a l e s below the  scorpius"  (Arctic),  and  c o r n i s the s u b l a t e r a l s c a l e s have a p p a r e n t l y  reached a  form before  jaok and  the r e d u c t i o n began, w h i l e i n M.  canthocephalus there i s no  evidence of t h i s .  seems to be proceeding upon a s u b s t r a t e one  time reached d i f f e r e n t  levels  of  Thus the  elaborate  lateral  M.  ouadristellate  M,  polya-  reduction  of s c a l e s that had  at  complexity.  In the d o r s a l s c a l e s i t i s hard to escape the t h a t the p e r f e c t and  one  stellate  conclusion'  tubercles typical  of  -52FIGURE 16 SQUAMATION OF MYOXOCEPHALUS "SCORPIUS" (ARCTIC)  FIGURE 17 SQUAMATION OF MYOXOCEPHALUS SCORPIOIDES  -53FIGURE 18 SQUAMATION OF MYOXOCEPHALUS QUADRICORNIS  -54-  M. Jaok, M. " s c o r p i u s ( A r c t i c ) , and M. q u a d r i c o r n i s have funcv  t i o n a l s i g n i f i c a n c e t h a t i s a c t i n g as a c o n s e r v a t i v e  force  c o u n t e r a c t i n g the g e n e r a l t r e n d i n the genus towards the reduct i o n o f squamation. S c a l e s appear t o e x h i b i t a s t r o n g s p e c i e s s p e c i f i c i t y i n t h e i r morphology and d i s t r i b u t i o n .  I n t e r e s t i n g l y , the three  s p e c i e s w i t h i n nominal "M. s c o r n i u s " show d i f f e r e n c e s i n the morphology and d i s t r i b u t i o n o f the s c a l e s o f an extent a t l e a s t equal t o those thus tend  e x h i b i t e d by o t h e r s p e c i e s .  to support  the three s p e c i e s  The squamation would  hypothesis.  C e p h a l i c - L a t e r a l L i n e System The 105  c e p h a l i c l a t e r a l l i n e c a n a l system has been s t u d i e d i n  I n d i v i d u a l s r e p r e s e n t i n g 1 4 d i f f e r e n t forms i n the genus  Myoxocephalus. 19)  The b a s i c p a t t e r n o f the primary c a n a l s  (Figure  i n the system i s the same i n a l l . The  c e p h a l i c p o r t i o n o f the l a t e r a l l i n e system commences  p o s t e r i o r l y a t the p o i n t where the body l a t e r a l l i n e c a n a l meets and  e n t e r s the s u p r a c l i e t h r u m  on i t s dorsomedial s u r f a c e .  From  t h i s p o i n t the c a n a l passes a n t e r i o r l y through i t and i n t o the posttemporal  bone midway between i t s two p o i n t s o f a r t i c u l a t i o n  w i t h the s u p r a c l i e t h r u m .  I t then courses a n t e r i o r l y through the  p o s t e r i o r p o r t i o n o f the posttemporal bone.  and i n t o a small t a b u l a r  At the a n t e r i o r end o f t h i s the c a n a l b i f u r c a t e s , one  branch r u n n i n g  a n t e r i a d t o become the l a t e r a l c a n a l and the  other r u n n i n g rnediad t o become the supratemporal c a n a l . The  supratemporal c a n a l passes through another t a b u l a r bone  -55FIGURE 19 CEPHALIC LATERAL LINE CANALS  anterior  supraorbital  suborbital posterior  supraorbital  postorbital digitating lateral preoperculoraandibular interorbital posttemporal supratemporal occipital  -56and  then through the p o s t e r i o r p o r t i o n of the p a r i e t a l bone  beneath i t s c r e s t and  toward the d o r s a l m i d l i n e where i t i s  j o i n e d by i t s counterpart  from the other s i d e .  At t h i s j u n c t i o n  the s m a l l e r o c c i p i t a l c a n a l i s given o f f , running d i r e c t l y t e r i a d on the d o r s a l m i d l i n e and  pos-  t e r m i n a t i n g j u s t a n t e r i o r to  the o r i g i n of the spinous d o r s a l f i n base. The teriad.  l a t e r a l c a n a l courses beneath the p t e r o t i c c r e s t anWhen the c a n a l emerges from the p t e r o t i c bone i t b i f u r -  c a t e s , one  branch p a s s i n g mediad to form the p o s t e r i o r supra-  o r b i t a l c a n a l and orbital The  the other v e n t r o l a t e r a l l y to become the sub-  canal. p o s t e r i o r s u p r a o r b i t a l c a n a l almost immediately  enters  the f r o n t a l bone where i t passes under the supraoccular c r e s t mediad to a p o s i t i o n at the base of the o r b i t a l r i m . curves a n t e r i o r l y and b i f u r c a t e s g i v i n g r i s e to the  I t then infraorbital  c a n a l which r u n s mediad to the m i d l i n e where i t j o i n s i t s counterpart  from the other s i d e .  The  other branch becomes the  s u p r a o r b i t a l c a n a l which c o n t i n u e s a n t e r i a d a l o n g the base of the o r b i t a l r i m . t r e m i t y and  I t emerges from the r i m near i t s a n t e r i o r ex-  continues  of the n a s a l bone and  forward  p a s s i n g through the medial p o r t i o n  t e r m i n a t i n g j u s t above the margin of  the  upper l i p . The and  p o s t o r b i t a l c a n a l passes through s u b o r b i t a l s 5 and  k  i n t o the s u b o r b i t a l stay where i t becomes the s u b o r b i t a l  canal.  T h i s c a n a l courses a n t e r i a d through the s u b o r b i t a l stay,  i n t o the d o r s a l p o r t i o n of the second, then the. f i r s t  (lacrimal)  s u b o r b i t a l s , t e r m i n a t i n g at the a n t e r o d o r s a l p o r t i o n of the  -57lacrimal. The extent of m o d i f i c a t i o n s superimposed pattern i s dramatic.  upon t h i s b a s i c  Commonly there are secondary and  tertiary  c a n a l s a r i s i n g from the p r i m a r i e s , and these c a n a l s d i f f e r widely from one apparent genotype to another i n t h e i r number, extent and complexity. Only one of the p r e s e n t l y r e c o g n i z e d forms d e p a r t s r a d i c a l l y from the normal p a t t e r n .  T h i s form, M.  quadricornis  ( F i g u r e 20) d i f f e r s i n s e v e r a l important a s p e c t s . primary c a n a l system, i n s t e a d of b e i n g d i s t i n c t tubes, appears to be assembled chambers.  Second,  First,  the  cylindrical  from a s u c c e s s i o n of i n t r a o s t e a l  the number of secondary c a n a l s i s reduced,  many o f them, which appear to correspond to those of some other forms, are formed by i r r e g u l a r i t i e s of the i n t r a o s t e a l making up the primary c a n a l s . canals present.  Finally,  There are a l s o almost no  the pores open to the s u r f a c e  to be reduced to a s i n g l e p a i r on the a n t e r i o r canals.  chambers tertiary appear  supraorbital  Other d i v e r t i c u l a t h a t could have developed i n t o open  c a n a l s , come out to j u s t beneath the s k i n but have remained closed. The lif forms f o r which s u i t a b l e m a t e r i a l has been a v a i l a b l e can be separated i n t o two major groups on the b a s i s of complexity and the presence or absence of i n t e r d i g i t a t i n g c a n a l s . first  group, comprised of M. aeneus and M.  the c e p h a l i c  The  s c o r p i o i d e s , have  system simple w i t h primary and secondary c a n a l s  but w i t h few, i f any,  t e r t i a r y ones and no d i g i t a t i n g  canals.  In t h i s group a l s o , the c e p h a l i c c a n a l p a t t e r n s are almost  -58FIGURE 2 0 THE CEPHALIC LATERAL L I N E  SYSTEM  OF MYOXOCEPHALUS QUADRICORNIS  -59identical  ( F i g u r e s 21  22),  and  d i f f e r i n g only s l i g h t l y i n the  secondary s u b o r b i t a l , p o s t o r b i t a l , and i n t e r o r b i t a l The  canals.  second group i s comprised of forms i n which the  c e p h a l i c c a n a l system i s complex to v a r y i n g degrees.  All  s p e c i e s i n i t have primary, secondary, t e r t i a r y c a n a l s , d i g i t a t i n g canals.  T h i s group c o n t a i n s M. edomius. M.  M. jaok, M.  octodecemspinosus. M. polyacanthocephalus.  r a n i n u s , M.  s c o r p i u s (European), M.  p i u s ( G u l f of Alaska), M.  stelleri,  In the second group M. (European) ( F i g u r e s 23 and der of forms. s h o r t e r and M.  The  edomius, M. jaok, M.  ensiger  and M.  scor-  yesoensis. "M.  scorpius"  t e r t i a r y c a n a l s tend to be  the d i g i t a t i n g c a n a l s a r e  s c o r p i u s ( A r c t i c ) , M.  ( F i g u r e s 25 - 2 9 )  M.  are much simpler than the remain-  secondary and  l e s s numerous and  ensiger,  s c o r p i u s ( A r c t i c ) , M.  octodecemspinosus and 24)  and  are of i n t e r m e d i a t e  stelleri.  small. and  complexity  in  having b e t t e r developed secondary c a n a l s and more t e r t i a r y than the former group. polyacanthocephalus.  fairly  canals  The most complex forms are M. n i g e r ,  M. r a n i n u s , and M.  Alaska) ( F i g u r e s 3 0 - 3 3 ) ; ches and  M.  these  s c o r p i u s ( G u l f of  forms have l o n g t e r t i a r y  numerous quaternary  M.  bran-  ones.  Morphology of the L a t e r a l L i n e O s s i c l e s The  morphology of the l a t e r a l l i n e o s s i c l e s i n the f a m i l y  C o t t i d a e i s extremely v a r i e d .  The  o s s i c l e s range from the  p r i m i t i v e c o n d i t i o n e x h i b i t e d by the genus Hemilepidotus i n which c t e n i or s p i n u l e s are s t i l l  present  on t h e i r  ends to the h i g h l y s p e c i a l i z e d heavy p l a t e - l i k e  anterodorsal  ossicles  -60FIGURE 21 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS AENEUS  -61FIGURE 22 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS SCORPIOIDES  -62FIGURE 23 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS OCTODECEMSPINOSUS  -63FIGURE 22+ THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS "SCORPIUS"  (EUROPE)  -64FIGURE 25 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS EDOMIUS  -65FIGURE 26 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS JAOK  -66FIGURE 27 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS "SCORPIUS" (ARCTIC)  -67FIGURE 28 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS STELLERI  -68-  FIGURE 2 9 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS ENSIGER  -69FIGURE  30  THE CEPHALIC LATERAL L I N E  SYSTEM  OF MYOXOCEPHALUS NIGER  -70FIGURE 3 1 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS POLYACANTHOCEPHALUS  FIGURE 32 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS RANINUS  -72FIGURE 33 THE CEPHALIC LATERAL LINE SYSTEM OF MYOXOCEPHALUS "SCORPIUS" (GULF OF ALASKA)  -73c h a r a c t e r i s t i c of P a c i f i c  s p e c i e s of the genus Enonhrys or to  the very reduced, p o o r l y o s s i f i e d ones of Dasycottus and  Mala-  cocottus. The i n 204  morphology of the l a t e r a l l i n e o s s i c l e s was s t a i n e d s k i n s r e p r e s e n t i n g 13  c l e a r e d and  The  examined  species.  morphology of the o s s i c l e s v a r i e s l i t t l e  throughout  the range o f a s p e c i e s but the o s s i c l e s of each s p e c i e s distinctive. t i c and  The  three "M.  other m o r p h o l o g i c a l  lateral line ossicles.  s c o r p i u s " forms d e t e c t e d  two  The  s t r u c t u r e of the  34 - 36).  r e l a t i v e l y slender.  in. the r e g i o n of the l a t e r a l canals)  major  species  s c o r p i o i d e s , H. aeneus, and  p i u s " (European)(Figures and  lateral  f u r t h e r s p e c i e s with unique f e a t u r e s .  group i s composed of M.  simple  from meris-  c h a r a c t e r s a l s o have d i s t i n c t i v e  l i n e o s s i c l e s i n d i c a t e s the e x i s t e n c e of two groups and  ( F i g u r e 38a)  and  are  The "H.  first  scor-  In these the o s s i c l e s are  Little  fossae  m o d i f i c a t i o n i s evident  ( e x i t p o i n t of  there i s l i t t l e  lateral  r e t i c u l a t i o n on  the  o s s i c l e body. The  second group c o n s i s t s of "H.  scorpius" (Arctic),"H.  s c o r p i u s " ( G u l f of A l a s k a ) , K. polyacanthocenhalus, M. li* 44).  edomius, M.  M.  raninus,  and  They are g e n e r a l l y l e s s elongate  of the f i r s t in  stelleri,  group.  Considerable  the r e g i o n of the l a t e r a l  r i m s of the fossae out  M. n i g e r  and  heavier  m o d i f i c a t i o n has  jaok,  ( F i g u r e s 37 ~ than those taken place  fossae, most forms producing  from the body of the o s s i c l e .  t e r i o r r e g i o n of the o s s i c l e s has  The  the pos-  a l s o undergone m o d i f i c a t i o n  -7kFIGURE 3k LATERAL LINE OSSICLES OF MYOXOCEPHALUS SCORPIOIDES  FIGURE 35 LATERAL LINE OSSICLES OF MYOXOCEPHALUS AENEUS  -75FIGURE 36 LATERAL LINE OSSICLES OF MYOXOCEPHALUS "SCORPIUS" (EUROPEAN)  FIGURE 37 LATERAL LINE OSSICLES OF MYOXOCEPHALUS "SCORPIUS" (ARCTIC)  -76FIGURE 38 LATERAL LINE OSSICLES OF MYOXOCEPHALUS "SCORPIUS" (GULF OF ALASKA)  FIGURE 39 LATERAL LINE OSSICLES OF MYOXOCEPHALUS POLYACANTHOCEPHALUS  -77FIGURE 4 0 LATERAL LINE OSSICLES OF MYOXOCEPHALUS JAOK  FIGURE 41 LATERAL LINE OSSICLES OF MYOXOCEPHALUS EDOMIUS  -78FIGURE 42 LATERAL LINE OSSICLES OF MYOXOCEPHALUS STELLERI  FIGURE 43 LATERAL LINE OSSICLES OF MYOXOCEPHALUS RANINUS  -79FIGURE LATERAL LINE OSSICLES OF MYOXOCEPHALUS NIGER  FIGURE 45 LATERAL LINE OSSICLES OF MYOXOCEPHALUS OCTODECEMSPINOSUS  -80FIGURE 46 LATERAL LINE OSSICLES OF MYOXOCEPHALUS QUADRICORNIS  -81and i n a d d i t i o n r e t i c u l a t i o n i s g e n e r a l l y q u i t e The  remaining two  s p e c i e s , M.  q u a d r i c o r n i s ( F i g u r e s 45 and  46)  octodecemspinosus and  have o s s i c l e s h i g h l y  especially i n their posterior half. from each other and  evident.  The  M.  modified  species d i f f e r greatly  are t o t a l l y d i f f e r e n t from a l l the  other  species. On  the b a s i s of l a t e r a l l i n e o s s i c l e s two  l i n e s appear to be  formed w i t h i n the genus.  i n g a h o l a r c t i c , an East Coast and have elongate and  major  One  divergent  line  contain-  the European s p e c i e s v/hich  o s s i c l e s t h a t have remained r e l a t i v e l y unmodified  the other l i n e which c o n t a i n s the  the Gulf of Alaska,  and  Asiatic-transpacific,  the B e r i n g S e a - A r c t i c s p e c i e s .  these the o s s i c l e s have become l e s s elongate,  heavier  and  have undergone m o d i f i c a t i o n p a r t i c u l a r l y i n the r e g i o n of  the  l a t e r a l fossae. modified  I t i s impossible  and  In  to p l a c e l o g i c a l l y the highly-  East Coast s p e c i e s M. octodecemspinosus or the  s p e c i e s M.  q u a d r i c o r n i s i n t o the general  morphology of the l a t e r a l l i n e  Arctic  scheme formed from the  ossicles.  Morphology of the O l f a c t o r y Rosettes The  o l f a c t o r y r o s e t t e s were examined on 40 specimens r e p r e -  senting a l l species  ( F i g u r e s 47 -  58).  Comparison of these  f i g u r e s r e v e a l s t h a t s e v e r a l groupings can be made on the of gross morphological The M.  first  features.  group i s composed of the two  s c o r p i o i d e s and  M.  basis  Arctic  q u a d r i c o r n i s ( F i g u r e s 47  the l a m e l l a e r a d i a t e from an elongated  and  species 48)  i n v/hich  median r a c h i s but which  -82FIGURE 47 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS SCORPIOIDES  FIGURE 1+8 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS QUADRICORNIS  -83FIGURE if9 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS ENSIGER  FIGURE 50 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS KANINUS  -84FIGURE 51 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS STELLERI  FIGURE 52 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS JAOK  -85FIGURE 53 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS AENEUS  FIGURE 54 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS OCTODECEMSPINOSUS  -86FIGURE 55 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS "SCORPIUS" (ARCTIC)  FIGURE 56 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS SCORPIUS^GULF OF ALASKA)  -87FIGURE 57 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS POLYACANTHOCEPHALUS  FIGURE 58 THE OLFACTORY ROSETTE OF MYOXOCEPHALUS NIGER  -88are devoid  of l a m e l l a e a n t e r i a d .  are simpler and The  The  l a m e l l a e of M.  fewer i n number than those of M. 10  remaining  s p e c i e s may  be separated  whether or not the r a c h i s f o r k s a n t e r i o r l y . r a c h i s i s elongate  and  simple  (non-forked);  scor-oioides  quadricornis.  In one  group the  i t c o n s i s t s of  three A s i a t i c  s p e c i e s (M.  ensiger, M. raninus, and M.  ( F i g u r e s 49 -  51)  transpacific  52).  In M.  and  one  .jaok and M.  of  on the b a s i s  stelleri)  form (H. ,jaok) (Figure  ensiger the l a m e l l a e r a d i a t e from the  r a c h i s along i t s l e n g t h .  In M. r a n i n u s and M.  stelleri  l a m e l l a e r a d i a t e from the c e n t r a l p o r t i o n (median end)  the of the  r a c h i s only. The  l a r g e s t group i s formed by those i n which the r a c h i s  forks anteriad. M.  T h i s i n c l u d e s M. aeneus, M.  s c o r p i u s ( A r c t i c ) , M.  thocephalus,  and M.  The  s c o r p i u s (Gulf of A l a s k a ) , M.  n i g e r ( F i g u r e s 53 -  Morphology of the  58).  c o i l i n g of the i n t e s t i n a l t r a c t was  except "M.  examined i n 70 i n -  species.  b a s i c c o i l i n g p a t t e r n s are found.  ( F i g u r e 59a)  polyacan-  Gut  d i v i d u a l s r e p r e s e n t i n g 13 Two  octodecemspinosus,  A sigmoid  pattern  i s present with minor v a r i a t i o n s i n a l l s p e c i e s s c o r p i u s " (European) i n which a unique h e l i c a l  of i t s i n t e s t i n e s (Figure 59b)  Other Morphological Morphological  i s exhibited.  Characters  Used  c h a r a c t e r s which are used i n t h i s study  not d i s c u s s e d are compiled  coiling  i n Table  XI.  but  -89FIGURE 59 CONFIGURATIONS OF THE GUT  TYPICAL  MYOXOCEPHALUS "SCORPIUS"  (EUROPEAN)  -90TABLE  XI  Other Morphological Characters  M. aeneus  + _ + _ - -  __  + _ _ _  Used  + + _ „  + + + _  .M. edomius  - + - + -- -- + + - - + - + + + + + +  M. ensiger  ---  M. jaok  - + - + - + __  + + - -  H. niger  + + _ _ _ _ _ _  + __  M. octodecemspinosus  +  -  +  M. polyacanthocephalus  -  +  -  +  -  +  -  -  +  -  -  -  +  -  +  +  -  +  +  -  +  -  +  -  -  -  -  +  -  +  -  -  +  -  -  -  -  -  +  +  +  -  +  +  -  -  -  +  -  +  M. scorpius TArctic)  +  +  -  +  +  -  -  _  _  -  M. scorpius TEuropeanl~  +  +  -  +  +  -  -  -  +  M« scorpioides  +  -  +  -  -  -  -  +  -  -  M. s t e l l e r i  -  +  -  +  -  -  +  -  -  -  +  -  +  -  -  +  -  M. quadricornis M. raninus M. scornius (Gulf of Alaska)  M. yesoensis  + - + _ + - - - - + _- _ + + _ +  -  -  0  xi rt  .rto  o L>  &  u rt  r-i co H  to  siE - p xi W rt •ri - H -P  H  0  rt  &  Xi H o  0 rt-  o  rt co  o  u rt  o CO Xi 0)  rt-ci  H  rt •ri OJ  rt  -P •ri  ,Q  o  a  to o  rt  H iH •H  co 0  0 •H - H - P tO-Pn rt• H rt •H T3 P .  +  +  o 0 Pi  rt H 3 o  ?  o 0 U  rt  H 3 o  JH  0  P<  o 0  o 0 PH  o 0  +  +  +  +  +  -  -  -  +  +  -  +  -  -  -  +  +  —  —  -  -  +  +  -  +  +  -  -  +  +  +  +  +  -  -  -  +  +  -  _  -  +  +  -  -  +  +  +  +  +  -  +  +  -  -  +  -  +  -  -  -  -  +  +  -  -  +  -  -  +  -  +  -  +  +  -  -  +  +  +  +  o  co  •P to rt r-i 3 o  CO 00 r-i r - l  Xi  o  rt  -P CO rt 0  3 ti  u  rt rt o  3  H i—1 ^ H rt 0 O E: o  Xi  0  -p  Xi •ri  •H  0 •ri  •H  rt  rt  .rtrt•rirt o  O  ft rt rt•ri - P CO CO rtCO ft ft rt rt SH 0 1 o o • H rt rt  0 H  _ _ _  +  +  CO 0 " Xi co rt 0 -P 0 •ri  £j H  __  +  ft rt ft rt rt - H •ri CO u rt - p ft ft ft CO CO ft rt • rt 0 0  rt .rt JH0 •ri 0 - P - P rt •ri ft rt rH  + _ + + + + _ +  O  o  rt  rt  CO f-i 0 ft 3 o CO  u  0 •p  © -p  o  o  3  O 0  rt rt rt -P 0 co rt 0 -H ?H  H •ri 3 O o o 4->  -p  O H  •ri ft CO  • xi > 0 0 rt ft'o o r-i 0 0 to > Xi 0 -ri xi U  • 0 O -rt fc0-H -P Tj -P • •ri -ri O ft 0. JH ?H S H 0 0 O rH 4 J P.  CO  rt  -p •H ft-p •H O CO o o o P<  rt ?H PI  rt  Pi  O O -P 3 3 3 co rt rt  -91Morphometric  Characters  Twenty c h a r a c t e r s (measurements) and 1 9 0 c h a r a c t e r combinat i o n s were used f o r each of the 12+ nominal s p e c i e s .  In analy-  z i n g the rav/ data l i n e a r r e g r e s s i o n with l o g a r i t h m i c t r a n s f o r mation and a n a l y s i s of covariance were u t i l i z e d . The  bulk o f 1 9 0 c h a r a c t e r combinations f o r each o f the 12+  s p e c i e s made graphic p r e s e n t a t i o n i m p r a c t i c a l .  To s i m p l i f y t h i s  complex of data f o r p r e s e n t a t i o n , use was made of Pearson's C o e f f i c i e n t of R a c i a l L i k e n e s s and  cluster analysis.  sented  (Sokal and Sneath, 1 9 6 3 , p. 1 4 9 )  The r e s u l t s of t h i s a n a l y s i s are pre-  i n F i g u r e 6 0 . T h i s shows tv/o major c l u s t e r s and, i n  a d d i t i o n , two i n d i v i d u a l s p e c i e s l i n e s (M. octodecemspinosus and M. q u a d r i c o r n i s ) somewhat removed from the r e s t . the same r e l a t i o n s h i p i n d i c a t e d by the l a t e r a l l i n e  This i s ossicles.  No apparent n a t u r a l groupings are d i s c e r n a b l e . The  apparent h e t e r o g e n e i t y  of the tv/o major c l u s t e r s ( i . e . ,  the placement of "M. s c o r p i u s " (European) and M. aeneus would tend to i n d i c a t e the presence of convergence and p a r a l l e l i s m i n body form.  Extensive  use i s made of these data i n the numeri-  cal section.  "BIOCHEMICAL" INVESTIGATION As p r e v i o u s l y noted, the " b i o c h e m i c a l " s p e c i e s are simply In t h i s study,  c h a r a c t e r i s t i c of a  another form of morphological  information.  three p r o t e i n c h a r a c t e r i s t i c s were measured  (Myogens, LDH, MDH).  These may, i n f a c t , represent  of s e v e r a l f u n c t i o n a l systems.  the e f f e c t s  The consequence of t h i s  -92FIGITRE  60  Dendrogram of Numerical R e l a t i o n s h i p s based on Morphometric  Data  ~M.  raninus  -M.  scorpius  -M.  s c o r p i u s ( G u l f of A l a s k a )  -M.  ensiger  -M.  jaok  -M.  niger  •"M.  scorpioides  ""M.  scorpius  —M.  stelleri  —M.  polyacanthocephalus  —M.  aeneus  (European)  (Arctic)  M.  edoraius  M.  octodecemspinosus  M.  quadricornis  -93f a c t upon a n a l y s i s e i t h e r s e p a r a t e l y or i n combination other  c r i t e r i a w i l l be considered Muscle myogen was  istic  in detail  later.  s e l e c t e d as the most s u i t a b l e c h a r a c t e r -  for investigation.  Hemoglobins, blood plasma, and  f e r i n s posed s e r i o u s d i f f i c u l t i e s i n f i e l d h a n d l i n g and preparation.  with  In a d d i t i o n the hemoglobin of f i s h e s ,  transsample  unlike  s  those of mammals, s t a r t to d e t e r i o r a t e w i t h i n three hours of c o l l e c t i o n despite r e f r i g e r a t i o n .  I t would thus be  necessary  to run the samples i n the f i e l d immediately a f t e r c o l l e c t i o n or t r a n s p o r t l i v e  specimens to the l a b o r a t o r y , both of which  were i m p r a c t i c a l because of the widespread d i s t r i b u t i o n of s p e c i e s under study.  Plasma p r o t e i n s do not supply  the  the most  r e l i a b l e source of evidence as i t has been found that many p a t h o l o g i c a l c o n d i t i o n s as w e l l as d i e t may t i v e and  a l t e r both q u a l i t a -  q u a n t i t a t i v e a s p e c t s of an i n d i v i d u a l ' s plasma p r o t e i n  p a t t e r n (Van  T e t s and  Cowan, 1966).  Thus, i f sample s i z e s are  s m a l l , the p o s s i b i l i t y of making a wrong i n t e r p r e t a t i o n i s considerable. In order  to s e l e c t enzymes i n s u f f i c i e n t q u a n t i t y f o r  analysis a pilot citric,  lactic,  study was and  concentration  Only malic  and l a c t i c  glucose  6  dehydrogenases  i n s u f f i c i e n t q u a n t i t i e s to use without f u r t h e r procedures.  In general, electrophoretic limited.  M a l i c , glutamic, i s o -  a l c o h o l dehydrogenases, and  phosphatase were t e s t e d . were present  c a r r i e d out.  the types of data v/hich are d e r i v e d s e p a r a t i o n of p r o t e i n s and  from the  enzymes have been  U s u a l l y only q u a l i t a t i v e i n f o r m a t i o n i s c o l l e c t e d  (Johnson, 1968;  Tsuyuki  et a l . , 1961,  1962,  1963,  1964,  1965,  -94-  1966  ).  However much i n f o r m a t i o n  be d e r i v e d The  of a q u a n t i t a t i v e nature may  through the use o f a densitometer.  manner o f treatment was to c o l l e c t both q u a l i t a t i v e  (number of bands) and q u a n t i t a t i v e  ( m o b i l i t y and percent compo-  s i t i o n ) data.. To t h i s end densitometer t r a c i n g s produced by scanning the photographic p o s i t i v e s o f the g e l s t r i p s were used f o r a l l samples.  Sources o f E r r o r i n Starch Gel E l e c t r o p h o r e s i s The  micro technique of s t a r c h g e l e l e c t r o p h o r e s i s has many  p o s s i b l e sources of e r r o r .  I n my experiments the g r e a t e s t  source i s found i n the p r e p a r a t i o n  and c u t t i n g of the g e l . I t  i s d i f f i c u l t to make the g e l a b s o l u t e l y Minute areas of g r e a t e r d e n s i t y  constant i n t e x t u r e .  o f t e n occur w i t h i n the g e l  which w i l l a l t e r the o v e r a l l m i g r a t i o n . almost i m p o s s i b l e  In a d d i t i o n , i t i s  to make the g e l s t r i p s o f constant  This w i l l also contribute  single  thickness.  to the e r r o r by a l t e r i n g the e l e c t r i -  c a l p r o p e r t i e s and a l s o the s t a i n i n g i n t e n s i t y o f the g e l . The  c u t t i n g of the s l o t s o f f e r s another source o f e r r o r since i t  i s d i f f i c u l t to achieve c o n s i s t e n c y introduced mate.  and the amount "of sample  w i l l vary and hence i n f l u e n c e the q u a n t i t a t i v e  esti-  Another p o s s i b l e source of e r r o r i s i n the s t a i n i n g o f  the g e l s , where minor v a r i a t i o n s i n the absolute  s t a i n i n g time  can occur as w e l l as the aforementioned e f f e c t of nonuniformity i n g e l thickness.  These sources of e r r o r w i l l be p a r t i a l l y  compensated f o r by running a s i n g l e c o n t r o l on each g e l s t r i p . The  muscle samples from some i n d i v i d u a l s (e.g.,  M.  -95polyacanthocephalus) d i d not homogenize as w e l l as other s p e c i e s and  there i s a p o s s i b i l i t y that the c o n c e n t r a t i o n s of the r e -  sulting extracts  will  vary.  Variation i n Electrophoretic Sexual  Characteristics  Variation  No d i f f e r e n c e s were found between sexes with r e s p e c t  to the  myogen c h a r a c t e r i s t i c s .  Individual  Variation  To determine whether the e l e c t r o p h o r e t i c f i c i e n t l y s e n s i t i v e to enable the d e t e c t i o n tion i n fraction mobility, were t e s t e d  against  technique was  suf-  of i n d i v i d u a l v a r i a -  the v a r i a n c e s of the c o n t r o l runs  the remainder of the i n d i v i d u a l s of that  species. In bands 2 ,  5, 13,  -1,  - 5 there was a s i g n i f i c a n t l y lower  v a r i a t i o n i n the c o n t r o l group than i n the experimental group. However, i n bands 8 , 1 0 , 1 1 ,  12+, - 2 , ; - 3 there were no s i g n i f i c a n t  d i f f e r e n c e s i n v a r i a t i o n , and.in bands 6 and 12 the c o n t r o l group had a s i g n i f i c a n t l y higher v a r i a t i o n than the experimental group.  I t must be concluded that v a r i a t i o n i n the m o b i l i t i e s  of bands of a s i n g l e i n d i v i d u a l between s e v e r a l i e n t to mask d i f f e r e n c e s s p e c i e s (Table X I I ) .  gels i s s u f f i c -  of an i n d i v i d u a l nature w i t h i n  a  -96TABLE XII EXPERIMENTAL  VARIATION IN MYOGEN CHARACTERISTICS Var 1 ~Var 2 •  df(1)  df (2)  2  20  35  4.8539  *  5  20  35  8.1679  *  6  18  24  O.3614  NS  8  19  35  0.8112  NS  10  19  35  1.5758  NS  11  19  35  0.7873  NS  12  19  35  0.1008  NS  13  19  35  4.8058  *  14  19  35  I.1480  NS  -1  15  24  1.8983  *  -2  15  24  0.6044  NS  -3  15  24  0.444  NS  -4  15  24  2.9240  Band No.  r  Sig. Ps. 05  -97Geographic  Variation  I t was p o s s i b l e i n only two nominal s p e c i e s (M. and "M.  s c o r p i u s " ) to o b t a i n samples from d i f f e r e n t geographic  l o c a l i t i e s on which to study geographic v a r i a t i o n . M.  scorpioides  Samples of  s c o r p i o i d e s were obtained from St. Lawrence I s l a n d  Churchill "M.  (Hudson Bay), and B a f f i n Island.(N.W.T.).  s c o r p i u s " were obtained from Cambridge Bay  Island  (Alaska), Samples of  (N.W.T.), B a f f i n  (N.W.T.), Newfoundland, and Great B r i t a i n .  Table XIII  i n d i c a t e s the banding p a t t e r n s of these two s p e c i e s by geographic  locality. There i s no v a r i a t i o n i n the number of bands i n M.  p i o i d e s between l o c a l i t i e s .  S i m i l a r l y there i s no apparent  geographic v a r i a t i o n e x h i b i t e d by the North American "M.  scorpius".  scor-  forms of  There i s , however, a great d i f f e r e n c e i n the  banding p a t t e r n s between North American l o c a l i t i e s and the European  for t h i s species.  more bands than the European  The North American form.  form has  two  Furthermore, the European  form has three unique bands irk, 8, 11) and the North American form has f i v e unique bands (-5, 3, 7, 10, 12). The banding p a t t e r n s of the other forms i n v e s t i g a t e d  indi-  cate a h i g h degree of s p e c i e s s p e c i f i c i t y and the magnitude of the d i f f e r e n c e s between the European and North American of "M.  s c o r p i u s " are s i m i l a r i n nature and  to c h a r a c t e r i z e other s p e c i e s .  extent to those found  Thus the d i f f e r e n c e s are c o n s i d -  ered s p e c i f i c r a t h e r than a t t r i b u t a b l e to i n t r a s p e c i f i c tion.  forms  varia-  -98:  TABLE XIII  Geographic V a r i a t i o n i n Myogen Banding P a t t e r n  Myoxocephalus  scorpioides  - 5 ^ 4 . 3 . 2 _ i 1 2 3 A 5 6 7 8 9- 10 11 St. Lawrence Island Hudson's Bay Baffin Island  *  *  *  *  * * * * * * *  *  *  *  *  * * * * * * *  *  *  *  *  * * * * * * *  Myoxocephalus -5^-3^^.  12 13 14 15 16 17  "scorpius"  1 2 3 4 5 6 7 8 9 10 11 12 13 1 4 . 1 5  16 17  Bay Baffin Island  *  * * *  *  *.*  Newfoundland  *  * * *  *  * *  * *  *  *  Great Britain  *  * i n d i c a t e s presence of bands  18  * *  *  *  * *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  18  -99Species S p e c i f i c i t y o f Myogen Banding P a t t e r n The  presence and absence of myogen bands of the twelve  s p e c i e s of the genus Myoxocephalus which were studied are shown i n Table XIV. bands present.  Each s p e c i e s was c o n s i s t e n t i n the number o f Table XIV i s organized  i n geographic order o f  s p e c i e s d i s t r i b u t i o n : "M. scorpius"(European);  M. aeneus  and  M. octodecemspinosus, east coast of North America; M. s c o r p i o i des and M. q u a d r i c o r n i s , A r c t i c North America; "M. s c o r p i u s " ( A r c t i c ) , A r c t i c and A t l a n t i c North America, B e r i n g Sea; M. jaok, M. n i g e r and M. polyacanthocephalus, and  southern  pacific  eastern P a c i f i c  B e r i n g Sea to A s i a , h e r e a f t e r r e f e r r e d to as trans-  s p e c i e s ; M. ensiger, M. raninus, and M. s t e l l e r i ,  Asia.  Bands 13 - 17 are common to a l l s p e c i e s (Table XIV).  Band  5 i s r e s t r i c t e d e n t i r e l y to the two A r c t i c s p e c i e s (M. scorp i o i d e s and M. q u a d r i c o r n i s ) .  Band 7 i s r e s t r i c t e d to the  A r c t i c and east coast s p e c i e s ("M. s c o r p i u s " , M. s c o r p i o i d e s , M. q u a d r i c o r n i s , M. aeneus, and M. octodecemspinosus) and i s not  found i n the European s p e c i e s , or i n the t r a n s p a c i f i c  s p e c i e s which b r i d g e the North American group with the A s i a t i c group, and i n one Asian s p e c i e s .  Bands 2 and /+ are unique t o  the A s i a t i c s p e c i e s (M. raninus, M. ensiger, M. s t e l l e r i band 4 ) ) , a n d to one o f the three t r a n s p a c i f i c Band 18 i s p e c u l i a r to one A r c t i c  (only  forms (M. j a o k ) .  s p e c i e s (M. q u a d r i c o r n i s ) and  to one east coast s p e c i e s (M. aeneus).  The d i s t r i b u t i o n o f  band 9 i s common to the two east coast s p e c i e s (M. aeneus, M. octodecemspinosus), one of the two h i g h A r c t i c s c o r p i o i d e s ) , and to a l l three of the A s i a t i c  species ( M . species ( M .  TABLE X I V Myogen Banding P a t t e r n o f the Species SPECIES  .5 _i+ _3 -2 -1  1  2  3  4  o f Myoxocephalus  BAND NUMBER 9 10 11 12 13 14 15 16 17 1! 5 6 7  "M. s c o r p i u s " (European) M. aeneus M. octodecemspinosus M. s c o r p i o i d e s M. q u a d r i c o r n i s "M. s c o r p i u s " (Arctic) M, polyacanthoccephalus M. jaok  A  A  M. n i g e r  .».  A  A  * ft  M. e n s i g e r M. raninus M. s t e l l e r i  • denotes presence of a band f  ft  A  A  A  A  A  A  -101rahinus,  M.  stelleri,  transpacific  Quantitative The  M.  ensiger)  but i s found i n none of  species.  Myogen  conversion  Expression of the e l e c t r o p h o r e t i c p a t t e r n s  to densitometer t r a c i n g s enables one expressed between the q u a l i t a t i v e and Figure  the  to compare the  on the  gels  differences  q u a n t i t a t i v e approaches.  61 p r e s e n t s s e l e c t e d c h a r a c t e r i s t i c examples of the denr  sitometer  t r a c i n g s of the 12 s p e c i e s i n v e s t i g a t e d .  of each s p e c i e s i s of a c h a r a c t e r i s t i c shape. are minor v a r i a t i o n s i n the height s p e c i e s the general  The  Although  tracing there  of the peaks w i t h i n a  given  shape of the p a t t e r n i s maintained.  Percent Myogen Band Composition An i n s p e c t i o n of F i g u r e  6 l a w i l l r e v e a l one  encountered i n the q u a n t i t a t i v e expression s i t i o n of the myogen.electropherograms. e r a l f r a c t i o n s are o b v i o u s l y  of the  problems  of the percent compo-  In many i n s t a n c e s  present c l o s e together but  sev-  the  technique f a i l e d to separate them s u f f i c i e n t l y to permit c l e a r i d e n t i f i c a t i o n of the bands (summation).  I t was  therefore  im-  p o s s i b l e to i n t e g r a t e the areas under the band as has been done by  some other workers (Matsui and  Yaeno, 1963;  Van  Tets  and  Cowan, 1 9 6 6 ) .  R e l a t i v e Myogen Band M o b i l i t y While i t was  not p o s s i b l e to express the myogen f r a c t i o n s  i n percentage amounts, i t was  r e l a t i v e l y easy to i d e n t i f y  the  -102 FIGURE 61 Densitometer T r a c i n g s of E l e c t r o p h o r e t i c Myogen Banding  Patterns  Legend f o r f i g u r e 6 l  A  M. aeneus  B  M. e n s i g e r  C  M*  D  M. n i g e r  E  M. octodecemspinosus  F  M. polyacanthocephalus  G  M.  quadricornis  H  M.  raninus  I  M. s c o r p i o i d e s  J,  M. "scorpius" ( A r c t i c )  K  M. "scorpius^(European)  L  M.  -i °k a  stelleri  -103peak of each band on the densitometer t r a c i n g s .  I t was  possible  to determine w i t h p r e c i s i o n , the m o b i l i t y of the separate tions.  frac-  The c o r r e c t e d m o b i l i t i e s expressed as percentages of  band 17 are presented i n Table XV.  I t was  necessary to t r a n s -  form the raw m o b i l i t y measurements to s t a n d a r d i z e f l u c t u a t i o n s i n o v e r a l l migration distance. common band v/hich migrated the  Band 17 was  used as i t was  the  farthest.  In u t i l i z i n g the myogen banding p a t t e r n s as systematic c r i t e r i a i t i s necessary to determine  t h a t a l l bands assigned  to a s p e c i e s are s i g n i f i c a n t l y d i f f e r e n t , and that the bands (band numbers) a t t r i b u t e d to each s p e c i e s are of s i m i l a r mobility. To determine  v/hether a l l bands a t t r i b u t e d to each s p e c i e s  are s i g n i f i c a n t l y d i f f e r e n t , the m o b i l i t y means were t e s t e d f o r each s p e c i e s . Appendix A ) .  The r e s u l t s are t a b u l a t e d i n Table  XVI(see  With one exception (M. e n s i g e r ) a l l bands v/ere  significantly different. cantly different  In t h i s case band 12+ i s not  from band 15.  The M. e n s i g e r sample i s based  on two r e p l i c a t e s of a s i n g l e specimen and the raw m o b i l i t y data shows complete  signifi-  percentage  s e p a r a t i o n without o v e r l a p .  d i f f e r e n c e , which, although s i g n i f i c a n t , probably r e s u l t s inadequate  sample s i z e .  The band t e s t f o r M.  This from  .jaok (Table XVI  c)  i n d i c a t e s a l l bands s i g n i f i c a n t l y d i f f e r e n t from each other with one  exception, band 12 with band 13. The mean m o b i l i t i e s of the s p e c i e s assigned each band were  t e s t e d to determine  the v a l i d i t y of a s s i g n i n g s p e c i f i c band  numbers on the b a s i s of comparative  band m o b i l i t y between  -1 C I TABLE Relative  M.  M.  Mobility  aeneus  x  ensiger  o f Myogen  -4 .5115 ,0078  X  SX  M.  .jaok  X  M.  niger  X  M. octodecemspinosus  .5284 ,0048  XV Bands  ( i n percent  of  -3 .3882 ,0054  -2 ,2751 ,0030  -1 .1835 ,0080  .3981 ,0258  .2836 ,0208  .1563 ,0176  ,4100 ,0034  ,2982 ,0024  x  M.  quadricornis  M.  raninus  M.  scorpius  M.  scorpioides  M. s c o r p i u s (European) M.  stelleri  .5074 .0106  .3823 .0037  .2647 ,0031  .1392 .0068  x  .4075 .0065  .2970 .0069  ,1866 .0093  x Sx x  x Sx  .2733 .0020 .1836 .0012  ,1216 ,0045  .1899 .0096  .151*+ .0027  ,1470  .1470 .0040  .2206  .3063  .1489 .0032  .2038 .0020  .2713 .0028  .2052 .0037  .1566 .0035 •4577 .0032  .2985 .0029  .1349 ,0022  .1454 .0079  .1893 ,0070  15  16  .4893 .0022  .5252 .0015  .9k59  .3218 .0066  .3709 .0013  .4400 .0052  .4927 .0036  .5273 .0056  .9255 ,0015  .4487 .0036  .4916 .0050  .5323 .0048  .9313 ,0082  .4434 .0031  .4967 .0032  .5399 ,0032  .9323 .0029  .3643 .0031 .3289 .0029  .3063 .0038  .3404 .0020  1.3434  .4249 .0024  .4596 .0032  .5100 .0039  .5319 ,0036  .9414 .0016  .3652 .0036  .4093 .0035  .4509 .0046  .4975 .0044  .5343 .0043  .9363 ,0025  .3663 .0044  .4077 .0028  .4408 .0036  .4923 .0034  .5284 .0036  .9333 , 0020  1.3616  .3945 .0055  .4408 .0030  .4769 .0043  5162 0032  .9425 .0076  .0071  .4153 .0032  .4615 .0025  .4986 .0023  • 5367 ,0050  .9367 .0023  .4165 .0039  .4549 .0059  .5013 .0053  .5412 ,0047  .9310 .0051  .3689 ,0039  .4343 .0032  .4872 .0045  .5372 ,0036  .9361 ,0039  .3924 .0050  .4547 .0023  .5065 .0014  .5^66 .0023  .9325 .0011  .3560 ,0029 .3307 .0047  .4213 .0031  .0019  18  .3787 .0030  .3192 .0039  3013 0010  Ik  .4403 .0023  .2916 .0043  .1615 .0058  13  .3810 .0020  .3017 .0033  ,2783 ,0028  12  .3231 .0030  ,2859 ,0025  .1411 .0075  11  .3694 .0036  .2653 .0027  .1863 .0079  10  .3072 ,0029  .2540 ,0027  .1597 .0026  ,1290 ,0047 .5288 .0073  8  k  .1273 ,0032  x  x (NA)  3 .1418 .0021  .0963 ,0036  X  S-  S-  17)  .1914 .0032  X  M. p o l y a c a n thocephalus  Band  .3786 .0045  -105species  (Table XVIT, see Appendix A).  7 of M.  octodecemspinosus i s s i g n i f i c a n t l y d i f f e r e n t from both  "M.  s c o r p i u s " ( A r c t i c ) and  M.  The  mean m o b i l i t y of band  scorpioides.  s i g n i f i c a n t l y d i f f e r e n t from the other  However, n e i t h e r i s  four s p e c i e s  t h i s band (Table XVII C-), S i m i l a r l y i n band - 1 n i g e r and from "M.  "M.  scorpius"  scorpius"  ( A r c t i c ) are  In band - 5  c a n t l y from M. "M.  scorpius"  (Table XVIIp) H.  significantly different  (European) but hone of these s p e c i e s i s  s i g n i f i c a n t l y d i f f e r e n t from any t h i s band.  possessing  "M.  aeneus, M.  o f the other  p o s s e s s o r s of  s c o r p i u s " (European) d i f f e r s n i g e r , M.  ( A r c t i c ) but not  Po1yacanthocePhalus  from M.  Although s p e c i e s possessing  signifiand  ensiger.  band 7 and  -1  have been shown  to e x h i b i t s i g n i f i c a n t d i f f e r e n c e s between the  ends of  their  r e s p e c t i v e m o b i l i t y ranges, they each appear to belong to the signed band.However, band -3 s i g n i f i c a n t l y higher it,  with the  exception  of M.  assigned  have been c o r r e c t e d  (European) has species  a  possessing  e n s i g e r which i s cased on an i n -  I t must t h e r e f o r e be  s c o r p i u s " (European) does not must be  scorpius"  m o b i l i t y than a l l other  adequate sample s i z e .  band and  of "M.  as  concluded t h a t  "M.  have v a l i d membership i n t h i s  to a d i s t i n c t i v e one.  A l l results  f o r the r e v i s e d band number of "M.  scorpius"  (European).  Malic Dehydrogenase The  Electrophoresis  e l e c t r o p h o r e s i s and  hydrogenase (MDH) p a t t e r n s i n the  substrate incubation  from s k e l e t a l muscle r e v e a l e d  f o r malic  two  de-  banding  twelve s p e c i e s i n v e s t i g a t e d (Table XVILT),  The  -106TABLE XVIII M a l i c dehydrogenase Banding P a t t e r n of the s p e c i e s of Myoxocephalus  1  2  3  M. aeneus  *  *  *  M, ensiger  *  *  M. .iaok  *  *  M. n i g e r  *  *  M. octodecemspinosus .  *  *  polyacanthocephalus  *  quadricornis  10  •5  6  7  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  M. r a n i n u s  *  *  *  *  *  *  *  *  M. " s c o r p i u s "X A r c t i c )  *  *  *  *  *  *  M._ s c o r p i o i d e s  *  *  *  *  *  *  *  *  M. "sc o r p i u s * ( European)  *  *  *  *  *  *  *  *  M. s t e l l e r i  *  *  *  *  *  *  T./r  v  * i n d i c a t e s presence of band  *  8  9  11  * *  *  *  * *  *  *  #  -107f i r s t banding p a t t e r n  (bands 1,  to one  species  of the A s i a t i c  transpacific  species  p a t t e r n 2 (bands 1, sents the MDH  2,  2, (M.  4>  5,  5,  8,  9  S  e n s i g e r ) and  (M. n i g e r ) . 3*  4,  6,  11)  was  one  of the  limited three  A l l o t h e r s possessed band 7,  10)  s p e c i e s . Figure 62  densitometer t r a c i n g s of the twelve s p e c i e s .  r e v e a l some degree of s p e c i e s s p e c i f i c i t y but not to the  preThey  extent  of the myogens. Percent Composition of M a l i c Dehydrogenase To i n v e s t i g a t e the amount of enzyme i n each of the isozyme bands, the a r e a s under the bands were i n t e g r a t e d . 3,  2+, 5,  Only bands  6 were used i n t h i s study; the others were not  and  because o f the problem of d e l i m i t i n g them a c c u r a t e l y .  used  The  amount of t o t a l a c t i v i t y of each band between s p e c i e s shows that there i s a h i g h degree of v a r i a b i l i t y i n the percent c o n t r i b u t e d by each band.  activity  The mean percentages f o r each band  were t e s t e d to determine s i g n i f i c a n t d i f f e r e n c e s between w i t h i n the bands. Table XIX are no  The  r e s u l t s of these t e s t s , are presented i n  (see Appendix A ) .  These t a b l e s i n d i c a t e that  s i g n i f i c a n t d i f f e r e n c e s i n bands 3 ,  l+, or 6 .  i n d i c a t e s s i g n i f i c a n t d i f f e r e n c e s between M. other  s p e c i e s with the exceptions of M.  thocephalus and between M. n i g e r and M» e n s i g e r . two  0  n  groups, one  the "basis of MDH c o n t a i n i n g M.  c o n t a i n i n g a l l other  species  there  Table XIX  ensiger and a l l  n i g e r and  a l l other  M.  polyacan-  species  except  band 5 i t i s p o s s i b l e to form  ensiger and  M. n i g e r , the  other  species.  I t i s probable that a refinement of techniques and  the  u t i l i z a t i o n of l a r g e r sample s i z e s w i l l r e v e a l d i f f e r e n c e s i n  C  -108FIGURE 62:  DENSITOMETER TRACINGS OF ELECTROPHORETIC MALIC DEHYDROGENASE PATTERNS  Legend f o r f i g u r e ^2  A.  M. aeneus  B.  M. e n s i g e r  C.  M. .jaok  D.  M. n i g e r  E.  M. oc todec emspinosus  F.  M. polyacanthoc ephalus  G.  M. q u a d r i c o r n i s  H.  M. r a n i n u s  I.  M. s c o r p i o i d e s  J.  M."scorpius " ( A r c t i c )  K. L.  M."scorpius"(European) M.  stelleri  -109percent  composition  statistical  that have not been expressed  by the  present  treatment.  L a c t i c Dehydrogenase E l e c t r o p h o r e s i s E l e c t r o p h o r e s i s and  substrate incubation for l a c t i c  drogenase a c t i v i t y r e v e a l e d two (Figure 6 3 ) .  distinct  dehy-  f i v e banded p a t t e r n s  Eleven of the twelve s p e c i e s i n v e s t i g a t e d had  p a t t e r n 1 i n M. s c p r p i o i d e s , 7 specimens e x h i b i t e d p a t t e r n and 18  specimens, p a t t e r n 1.  There were both males and  2,  females  i n each group; thus sex i s not r e s p o n s i b l e f o r the d i f f e r e n c e . Both p a t t e r n groups were found i n samples taken from B a f f i n I s l a n d and  St. Lawrence I s l a n d but only p a t t e r n 1 was  present  i n the f i v e specimens taken from the C h u r c h i l l area of Hudson Bay.  A d e t a i l e d morphological  study of these specimens f a i l e d  to r e v e a l any other constant d i f f e r e n c e s . F u r t h e r i n v e s t i g a t i o n of t h i s question i s necessary, z i n g much l a r g e r samples from a s i n g l e p o p u l a t i o n . present  evidence  possibly s i b l i n g  On  utili  the  one i s tempted to conclude the presence of species.  two  -110-  FIGURE 63 LACTIC DEHYDROGENASE ISOZYME ELECTROPHORETIC BANDING PATTERNS  ; ft  p a t t e r n  P a t t e r n  1  2  -111DISCUSSION R e l a t i o n s h i p s w i t h i n the genus Myoxocephalus are d e r i v e d on the b a s i s of c o n v e n t i o n a l morphological f e a t u r e s . tein  The  pro-  f e a t u r e s obtained i n t h i s study are a l s o t r e a t e d with the  c o n v e n t i o n a l systematic approach ships.  to d e r i v e apparent  relation-  Numerical analyses of both c o n v e n t i o n a l morphological  and p r o t e i n f e a t u r e s are made. of evidence and the two  The e f f e c t  of the two  sources  treatments of these sources are then  analyzed.  PHENETIC RELATIONSHIPS BASED ON CONVENTIONAL MORPHOLOGY The p r o g e n i t o r of the Myoxocephalus l i n e was form with a f a i r l y  heavy body, s u b c i r c u l a r i n c r o s s s e c t i o n ,  a n t e r i o r l y s l i g h t l y deeper pressed p o s t e r i a d . The head was minal mouth.  than wide, and becoming more com-  The caudal peduncle was moderately  The snout was  f a i r l y l a r g e and b l u n t .  The  tereyes  space concave and f a i r l y  The l a t e r a l p r o f i l e of the head was  s l i g h t l y convex v e n t r a l l y . low.  heavy.  somewhat depressed, l a r g e , and w i t h a l a r g e ,  were l a r g e , and the i n t e r o r b i t a l row.  probably a  convex d o r s a l l y  narand  The f i n s were g e n e r a l l y small and  The d o r s a l f i n s were c o n f l u e n t to some degree, and a l l  r a y s were unbranched w i t h e x c e p t i o n of those of the caudal f i n . The caudal f i n was  s l i g h t l y rounded i n p r o f i l e .  The  pelvic  f i n s were t h o r a c i c and c o n s i s t e d of one spine and three r a y s . The anus was  located immediately  The body l a t e r a l l i n e was  i n f r o n t of a n a l f i n o r i g i n .  complete  t u b u l a r o s s i c l e s without c t e n i .  and composed of numerous bony,  The c e p h a l i c l a t e r a l  line  -112system was  simple.  Occipital  and  supraocular  c r e s t s were  moderately produced but without i n t e r d i g i t a t i n g cirri  on t h e i r  apices.  present  above and  four  spines  and  Some squamation (modified  below l a t e r a l l i n e .  of about equal l e n g t h ,  the l o n g e s t .  r i d g e s , and  The the  scales)  f i r s t being  There were s i x b r a n c h i o s t ^ g a l  D e n t i t i o n was.  head of vomer.  The  confined  straight  r a y s , the mem-  .form, acute, r e c u r v e d , were borne on  shaped p a t c h .  d i r e c t e d i n and  four pads, two  moderately l a r g e c i r c u l a r the f o u r t h g i l l  first  the complexity of t h e ment of d i g i t a t i n g  branch ( 1 )  back.  villi-  Pharyngeal  two  r i d g e s , the  teeth  ventrally. present  to the western P a c i f i c . Sea and  sumably through Bering of head s i z e ,  heavy body.  A behind  Strait.  s l i g h t l y shorter.  system, the  of the  develop-  snout, and  This l i n e i s primarily second branch (2)  The  the  I t has d i v e r g e d  Ocean,  in a  has pre-  slight  has maintained the p r i m i t i v e simple  body has  system, and  lacks  become more depressed and  In general,  stem forms more c l o s e l y  branched  i n increasing  subsequently the A r c t i c  s t a t e s of the c e p h a l i c l a t e r a l l i n e The  stem has  diverged  shortening  restricted  Bering  has  the  cephalic l a t e r a l l i n e  of the r e l a t i v e l y  ting ridges.  teeth  t e e t h were  p o r e - l i k e opening was  flattening  reduction  The  and  arch.  The  invaded the  The  d o r s a l l y and  From t h i s h y p o t h e t i c a l p r o g e n i t o r (Figure 6 4 ) .  broad  to .dentaries, p r e m a x i l l a r i e s  p a l a t i n e s d i d not bear t e e t h .  on the vomer formed a "V"  was  preoperculum bore  branes of which were u n i t e d at the isthmus w i t h a very fold.  with  this line  than does 'the  f o l l o w s the  first.  digitathe ^snout original  FIGURE 6k Conventional Phenetic R e l a t i o n s h i p s based on Morphological Data  -115There i s an obvious divergence  ( 3 ) along the second  line  shown by the t r e n d to r e d u c t i o n of the l a t e r a l l i n e system, esp e c i a l l y i n the c e p h a l i c l a t e r a l l i n e system, from the normal t u b u l a r to i n t e r o s t e a l c a n a l . a complete to an incomplete  The body system i s reduced  lateral line.  from  There i s a l s o an i n -  crease i n the number of f i n r a y s ; an e l o n g a t i o n of the body w i t h the caudal peduncle the supraocular i n complexity  becoming very s l e n d e r ; the development of  and  occipital  c r e s t s i n the a d u l t s ; i n c r e a s e  of the squamation.  the present day  circumpolar  Perhaps the divergence  T h i s l i n e has culminated i n  s p e c i e s M. q u a d r i c o r n i s . of t h i s l i n e was  due  i n the A r c t i c Ocean by the B e r i n g Land B r i d g e .  to  isolation  I t probably  s p l i t o f f the main stem f a i r l y e a r l y s i n c e P l e i s t o c e n e f o s s i l s have been recorded  from' Europe ( S e g e r s t r a l e  In the main l i n e  (if)  the c e p h a l i c l a t e r a l l i n e  1957).  •  forms, the f i n s have remained s m a l l , system simple and without  any  pro-  nounced development of the c r e s t s and r i d g e s of the head. what l a t e r tic  a form d i v e r g e d  or East Coast  (5)  and  there was  from s t o c k s of the E a s t e r n Arc-  of North America i n which the f i n r a y s became  more numerous, the supraocular and became acute  Some-  the two  r e d u c t i o n and  and  occipital  c r e s t s developed  d o r s a l f i n s became w e l l  separated  subsequent l o s s of the t h i r d  pre-  o p e r c u l a r spine with an accompanying great e l o n g a t i o n of the f i r s t preopercular spine.  The  and were subsequently  from the area below the l a t e r a l  lost  s c a l e s became g r e a t l y reduced  those above the l a t e r a l l i n e remaining ossified  plates.  line;  only as small, p o o r l y  T h i s l i n e has l e d to the present day  species  M.  octodecemspinosus. S t i l l later  first  (6),  two  l i n e s diverged  l e a d i n g to the present  day  t a i n e d a low number of f i n r a y s . the two  dorsal fins,  l i n e and  s p e c i e s M.  I t diverged  The  aeneus, main-  i n s e p a r a t i o n of  the l o s s of squamation below- the  lateral  the r e d u c t i o n above the l a t e r a l l i n e to small incom-  pletely ossified stricted  spinate s c a l e s . . This l i n e i s presently r e -  to the n o r t h e a s t  The  second l i n e  b a s i c stock as M. to Europe. "M.  from the main l i n e .  coast of North America.  (7) appears to have come from the same  aeneus, however i t has crossed  This l i n e i s represented  s c o r p i u s " (European).  the  Atlantic  by the contemporary form  As i n the M. aeneus l i n e the f i n ray  numbers have remained small but there, has been no trend f o r the s e p a r a t i o n of the d o r s a l f i n s . has been reduced and occipital  The  subsequently  lost;  and  autopterotic ridges.  system-has remained simple.  The  The  cephalic l a t e r a l  as line has  from the normal sigmoid  remainder o f the main l i n e  stock  The  complexity  (8)  to a  which appears to  to the North American A r c t i c and  northern B e r i n g Sea i s now- represented  in  and  pattern.  have been r e s t r i c t e d  pioides.  the supraocular  c o n f i g u r a t i o n of the gut  become more complex being m o d i f i e d  The  spine  c r e s t s have undergone s l i g h t development as w e l l  the nuchal  helical  t h i r d preopercular  the  by the s p s c i e s H.  scor-  l i n e has undergone r e d u c t i o n i n d i s t r i b u t i o n of the squamation both above and  l i n e , with most s c a l e s i r r e g u l a r l y l i n e has remained simple;  cirri  formed.  are s t i l l  The  below the  and  lateral  cephalic l a t e r a l  present  on the a p i c e s o  -117the  supraocular  and o c c i p i t a l c r e s t s of the a d u l t s even though  these c r e s t s have undergone some development. the  last g i l l  The pore behind  a r c h has been l o s t .  The f i r s t dichotomy o f the f i r s t  branch (1) d i v i d e d  into  two major l i n e s which i n h a b i t the western n o r t h P a c i f i c .  The  first  (9) c o n t a i n s three A s i a n s p e c i e s and one  form.  transpacific  In t h i s there has been a g e n e r a l r e d u c t i o n of .'squamation.  The body i n c l u d i n g the caudal peduncle has become h e a v i e r , the snout s l i g h t l y s h o r t e r .  The i n t e r o r b i t a l  and l e s s concave.  are present i n the a d u l t s .  Cirri  space has become wider The t h i r d  p r e o p e r c u l a r spine tends to become reduced and the f i r s t p r e o p e r c u l a r spine to remain r e l a t i v e l y The f i r s t  l i n e to d i v e r g e  short.  (10) from t h i s stem appears to  be that of M. n i g e r v/hich has l o s t the d i g i t a t i n g not.the c a n a l s .  The major change has been the development of a  complex h i g h l y branched c e p h a l i c l a t e r a l l i n e of  squamation has been All  r i d g e s but  system.  A l l trace  lost.  other members d e r i v e d from t h i s main l i n e are r e s t r i c t e d  to Japanese waters w i t h the e x c e p t i o n o f M. s t e l l e r i  which i s  a l s o found i n the Okhotsk and B e r i n g Seas. A l l are very Both the M. s t e l l e r i all  similar.  (12) and M. r a n i n u s (11) l i n e s have  lost  t r a c e of s c a l e s which have been r e t a i n e d as s m a l l spinate  s c a l e s by the M. y e s o e n s i s l i n e  (13).  The major d i f f e r e n c e s are  found i n c o l o r a t i o n and the shape of the head. In  the second l i n e  (1A) the body has become more elongate  w i t h a modera.be caudal peduncle. and the i n t e r o r b i t a l  The head has remained l a r g e  space concave and f a i r l y  narrow.  Squamation  -118-  has been r e t a i n e d both above and below the l a t e r a l l i n e .  The  c r e s t s of the head have become more pronounced and the f i r s t p r e o p e r c u l a r spine lengthened.  In general the number of f i n  r a y s has i n c r e a s e d . A b i f u r c a t i o n takes place i n t h i s l i n e ,  (15)  In one branch  forms becomes more s l e n d e r , the c e p h a l i c l a t e r a l l i n e system o f moderate complexity.  The snout  and r i d g e s more pronounced.  becomes longer and the c r e s t s  D i g i t a t i n g r i d g e s are r e t a i n e d .  A  g e n e r a l trend to r e d u c t i o n o f the t h i r d p r e o p e r c u l a r spine i s a l s o found.  The mature males g e n e r a l l y have developed  t o r a l and p e l v i c p a p i l l a e on the medial rays.  both pec-  surface of some of the  T h i s l i n e has given r i s e to the two A s i a t i c  (Japanese)  s p e c i e s , M. edomius and M. e n s i g e r and two t r a n s p a c i f i c M. .jaok and M. polyacanthocephalus.  forms,  The M. e n s i g e r l i n e  (16)  may p o s s i b l y have been the f i r s t t o d i v e r g e .  I t has r e t a i n e d  the f o u r p r e o p e r c u l a r s p i n e s with no evidence  of r e d u c t i o n of  the t h i r d .  The squamation, although reduced, p e r s i s t s as small  s p i n a t e s c a l e s above and below the l a t e r a l l i n e . f i n rays i s l a r g e .  The d o r s a l s have become separated but only  s l i g h t l y and the s l i t duced to a s m a l l  The number of  behind  the l a s t g i l l  arch has become r e -  pore.  M. -iaok, M. edomius, and M. polyacanthocephalus f a i r l y s i m i l a r , the former two most c l o s e l y r e l a t e d . jaok l i n e  The M.  ( 1 7 ) d i f f e r s from the other two i n p o s s e s s i n g the most  s p e c i a l i z e d squamation with s t e l l a t e l i n e and s p i n a t e s c a l e s below. (19)  appear  t u b e r c l e s above the l a t e r a l  The M. polyacanthocephalus  line  has spinate s c a l e s above and below the l a t e r a l l i n e and i n  -119-  (18) squamation i s reduced  the M. edomius l i n e ossified  to s m a l l p o o r l y  p l a t e s and a few s p i n a t e s c a l e s above and below the  lateral line.  The t h i r d  p r e o p e r c u l a r . s p i n e has undergone  t i o n i n a l l three and i s u s u a l l y , l a c k i n g . r a y s have remained r e l a t i v e l y l i n e s but have been reduced  The numbers o f f i n  high i n the H. j a o k and M. edomius  I n the M. polyacanthocephalus  e s p e c i a l l y i n the second d o r s a l and a n a l f i n s . hind the l a s t g i l l  reduc-  a r c h i s reduced  line  The s l i t be-  to a small pore i n a l l t h r e e .  S i m i l a r l y the f o l d o f the b r a n c h i o s t e g a l membranes a t the i s thmus i s reduced.  The d o r s a l s are w e l l separated  and M. edomius l i n e s but only s l i g h t l y i n the M. cephalus  i n the M. jack polyacantho--  line. (20) o f t h i s limb,the  In the second d i v i s i o n  digitating  r i d g e s have undergone r e d u c t i o n and have f i n a l l y been l o s t ; the body has become heavier;, the spinous d o r s a l f i n s have become higher,  e s p e c i a l l y i n mature males; the t h i r d p r e o p e r c u l a r  has been l o s t ;  the supraocular  spine  and o c c i p i t a l c r e s t s have be-  come more prominent; squamation has been r e t a i n e d both above and below the l a t e r a l l i n e with s t e l l a t e behind  the l a s t g i l l  a r c h has p e r s i s t e d as a l a r g e pore.  l i n e has branched i n t o two. line  t u b e r c l e s above; the s l i t  One, the "r_I. s c o r p i u s " ( A r c t i c )  (21) i n the B e r i n g Sea has subsequently  Ocean and spread  invaded  the A r c t i c  eastward through the Canadian A r c t i c .  other, the "M. s c o r p i u s " (Gulf of Alaska) l i n e east a c r o s s the A l e u t i a n I s l a n d s . markedly i n the complexity  This  The  (22) has spread  The l i n e s have d i v e r g e d  o f the c e p h a l i c l a t e r a l l i n e  system,  that o f the. Gulf o f A l a s k a form i s much more complex than the  -120Arctic  form.  The  number and  has a l s o become c o n s i d e r a b l y Gulf of A l a s k a  form of the l a t e r a l l i n e o s s i c l e s different.  The  squamation of  form has undergone r e d u c t i o n both i n d e n s i t y  complexity above and  below the l a t e r a l l i n e .  has r e t a i n e d the more complex squamation. of the Gulf of A l a s k a  The  The  very  sparce.  The  top of the head  form has developed numerous small  general  and  A r c t i c form  w a r t - l i k e protuberances which i n the A r c t i c form are and  the  fleshy  smaller  body c o l o r a t i o n has a l s o become  very d i f f e r e n t .  PHENETIC RELATIONSHIPS BASED ON The  conversion  systematic  and  conclusions  "BIOCHEMICAL" EVIDENCE  i n t e r p r e t a t i o n of b i o c h e m i c a l has  u s u a l l y been accomplished on  b a s i s o f degree of s i m i l a r i t y , but very vague.  data i n t o the  the a c t u a l procedure i s o f t e n  In most i n s t a n c e s weighting methods or other  tech-  niques used to d e r i v e r e l a t i o n s h i p s have not been s t a t e d . I t would appear that the use tematic  of s p e c i f i c enzymes i n sys-  s t u d i e s would y i e l d more c e r t a i n evidence than would a  very complex system such as the myogens.  With enzymes an  t i g a t o r i s c e r t a i n of what he i s working with,  and  in  inves-  general  of what i t s f u n c t i o n i s , whereas with the myogens, many d i f f e r e n t systems are probably present unknown.  and  the f u n c t i o n a l s i g n i f i c a n c e s  In a d d i t i o n the u t i l i z a t i o n of myogens f o r c e s one  accept the b a s i c assumption that the s p e c i e s i s homologous.  same band i n two d i f f e r e n t  T h i s assumption may  o f t e n be f a u l t y  since the bands are only m o b i l i t y homologs but not s t r u c t u r a l homologs. t e i n s may  have the  to  necessarily  I t i s g e n e r a l l y accepted that s e v e r a l pro-  same amino a c i d composition and  yet be  quite  -121different i n actual structure.  T h i s i s a l s o true f o r the number  of i o n i z a b l e groups, which i s one  of the major f a c t o r s d e t e r -  mining the e l e c t r o p h o r e t i c m o b i l i t y . In attempting  to d e r i v e systematic  r e l a t i o n s h i p s among the  s p e c i e s s t u d i e d h e r e i n the p o s s i b l e c o n c l u s i o n s w i l l be of  limi-  ted scope because f i v e nominal A s i a t i c s p e c i e s (M. b r a n d t i ,  M.  edomius, M. matsubarai, and  M. y e s o e n s i s )  i n v e s t i g a t i o n from f r e s h m a t e r i a l . present  i n the A l e u t i a n and  available.  were u n a v a i l a b l e f o r  Only two. of the four  species  southern B e r i n g Sea r e g i o n s v/ere  However, i n general  the samples of the North Ameri-  can s p e c i e s group were adequate to allow a n a l y s i s . Study of the enzymes l a c t i c dehydrogenase and malic dehydrogenase i n the genus r e v e a l that both systems are tive.  There was  conserva-  no grouping p o s s i b l e on the b a s i s of LDH  zymes, a l l s p e c i e s having i d e n t i c a l p a t t e r n s with the  iso-  exception  of 7 of the 25  specimens of M.  that a uniform  s u b t r a c t i o n of p a r t of the molecule of both  parent  LDH  scorpioides.  subunits has occurred  i o n i z a b l e subgroups.  T h i s suggests e i t h e r  or a b i n d i n g up of s i m i l a r  Both of these p o s s i b i l i t i e s would e f f e c t  the r e d u c t i o n of m o b i l i t y . Data from malic dehydrogenase isozymes makes i t p o s s i b l e to form two  groups, both on the b a s i s of the q u a n t i t a t i v e and  qualitative characteristics investigated.  The  f i r s t group con-  t a i n s a l l the North American forms,"M. s c o r p i u s " (European), t r a n s p a c i f i c forms M. two  of the A s i a t i c  jaok and  M. polyacanthocephalus, and  forms M. r a n i n u s and  M.  stelleri.  The  group i s composed of the t r a n s p a c i f i c form M. n i g e r and  the  the other  the  -122Asiatic  form M. e n s i g e r .  On this b a s i s one c o u l d conclude t h a t  M. n i g e r and M. e n s i g e r are more c l o s e l y r e l a t e d  to each other  than to the other s p e c i e s . The myogen banding p a t t e r n s r e v e a l that each s p e c i e s has i t s own  unique c h a r a c t e r i s t i c s .  can be d e t e c t e d .  One  However, s e v e r a l n a t u r a l  appears to be formed  and a second by the A r c t i c and American  groups  by the A s i a t i c s p e c i e s  east c o a s t forms.  There appears to be some d i s c r e p a n c y between the r e l a t i o n s h i p s suggested by the MDH  data and that of the myogens.  To d e r i v e p h e n e t i c r e l a t i o n s h i p s based on b i o c h e m i c a l e v i dence, two  types of data are used.  or absence  of myogen bands, and the second i s the  m a t r i x ( F i g u r e 65)  The  f i r s t i s the presence similarity  based on the number of bands each s p e c i e s  combination has i n common.  These two types of evidence i n d i c a t e  some obvious cases of p a r a l l e l i s m , or convergence,  between  s p e c i e s from widely separated geographic r e g i o n s .  These e f f e c t s  are minimized i f both sources of evidence are r e s t r i c t e d to geographic s p e c i e s groups, and t r a n s i t i o n a l . f o r m s are i n c l u d e d i n both groups.  T h i s i s done i n the p r e l i m i n a r y a n a l y s i s i n the  s e c t i o n d e a l i n g with " b i o c h e m i c a l " r e s u l t s . However, i n t e r p r e t a t i o n of the data becomes s u b j e c t i v e when the two l i n e s of evidence g i v e d i f f e r e n t r e s u l t s . the presence or absence  Probably .  of the myogen bands most a c c u r a t e l y  d e f i n e broad group dichotomies, w h i l e the s i m i l a r i t y matrix b e t t e r d e f i n e s i n t r a g r o u p resemblances. The p r o t e i n data are not s u f f i c i e n t p r i m i t i v e v e r s u s advanced  states.  to attempt d e c i s i o n s , on  -123FIGURE 65  S i m i l a r i t y matrix of myogen banding p a t t e r n s  Legend  f o r f i g u r e 65:  A.  M. aeneus  EN  M« ensiger  J  M« jaok  N  M. n i g e r  0  M. octodecemspinosus  P  M. polyacanthoc ephalus  Q  M. q u a d r i c o r n i s  R  M. r a n i n u s  SCA  -  M. " s c o r p i u s ' \ A r c t i c )  SCE  -  M. 'kcorpius'XEuropean)  SD  M. s c o r p i o i d e s  ST  M. s t e l l e r i  FIGURE 65 S i m i l a r i t y matrix of myogen banding p a t t e r n s  EN  J  N  0  P  Q  R  SCA  SCE  SD  ST  11  7  12  9  12  9  7  12  10  9  9  A  9  10  7  10  6  8  9  9  7  9  EN  8  7  9  7  8  7  8  7  9  J  6  13  7  5  11  11  9  N  8  9  8  8  6  10  •8  0  8  6  12  11  8  8  P  7  8  7  10  7  Q  10  5  8  7  9  8  7'  SCA  7  9  SCE  8  SD s  -124-  FIGURE 66 Conventional Phenetic  Relationships  suggested from P r o t e i n Data  Legend  for Figure  66:  A  Ik  aeneus  EN  Ik  ensiger  J  . -  Ik  jaok  H  —  Ik  niger  0  Ik  octodecemspinosus  P  Ik  polyacanthocephalus  Ik  quadricornis  Ik  raninus  Q  _  R SCA  -  Ik  "scorpius"  (Arctic)  SCE  -  M.  "scorpius"  (European  SD  M.  scorpioides  ST  M.  stelleri  -125It  i s i m p o s s i b l e to give an accurate graphic r e p r e s e n t a t i o n  i n a two  dimensional  diagram of the r e l a t i o n s h i p s which emerge  from the present a n a l y s i s . cated and  However major r e l a t i o n s can be  these are set out i n F i g u r e  indi-  66.  The base of the dendrogram i s d e f i n e d by the presence of the f i v e myogen bands common to a l l s p e c i e s .  The  f i r s t major  dichotomy r e s t s on the presence or absence of band 2+.« three A s i a t i c and  Only the  s p e c i e s (M. e n s i g e r , M. r a n i n u s , and M.  stelleri)  one of the three t r a n s p a c i f i c s p e c i e s (M. jaok) possess  band.  W i t h i n t h i s group the three A s i a t i c  band 9>  species  v/hich i s absent i n the t r a n s p a c i f i c  possess  form M.  jaok.  s i m i l a r i t y i n d i c a t e s • t h a t M. e n s i g e r and M. s t e l l e r i s i m i l a r to M.  jaok and  that M. r a n i n u s i s the f u r t h e s t removed,  to the f i r s t major dichotomy and  d e f i n e d by the absence of band k  f  and M. n i g e r .  of  are the most s i m i l a r .  Myoxocephalus these two  the niger-polyacanthocephalus  to the  stelleri. line  the f i r s t branches given o f f  are M. polyacanthocephalus  Of a l l the s p e c i e s Although  l i n e l a c k s myogen band 4,  the  s i m i l a r i t y matrix i n d i c a t e s some r e l a t i o n s h i p between the ies  of the major l i n e i n which band 4 i s present.  the niger-polyacanthocephalus initial  The  are e q u a l l y  but t h a t M. r a n i n u s i s c l o s e r to M. e n s i g e r than to M. Returning  this  l i n e diverged  spec-  Perhaps  soon a f t e r  the  branching.  Another major grouping i s suggested  by the s i m i l a r i t y  ma-  t r i x which i n d i c a t e s t h a t M. aeneus, M. octodecemspinosus,  and  M.  q u a d r i c o r n i s are a l l q u i t e c l o s e to M.  are a l l A r c t i c and East Coast  forms.  scorpioides.  These  T h i s group i s a l s o d e f i n e d  -126by the presence o f myogen band 7.  M. aeneus appears  c l o s e s t to "M. s c o r p i u s " ( A r c t i c ) . ( A r c t i c ) appears  to be  However, "M. s c o r p i u s "  to be c l o s e r t o the niger-polyacanthocephalus  and M. aeneus l i n e s than to the r e s t of the band 7 group.  On  the b a s i s o f the s i m i l a r i t y matrix t h i s p l a c e s the branching of the "M. s c o r p i u s " l i n e c l o s e to that o f the n i g e r - p o l y a c a n t h o cephalus l i n e with the M. aeneus l i n e d i v e r g i n g s h o r t l y The  after.  s i m i l a r i t y matrix i n d i c a t e s that "M. s c o r p i u s " (Euro-  pean) i s c l o s e l y r e l a t e d to M. aeneus. c o n s i d e r a b l e convergence,  Apparently there i s  or p a r a l l e l i s m , between "M. s c o r p i u s "  (European) and M. polyacanthocephalus  i n the p r o t e i n c h a r a c t e r s  used. The  s i m i l a r i t y matrix i n d i c a t e s that the three remaining  s p e c i e s (M. q u a d r i c o r n i s , M. octodecemspinosus, p i o i d e s ) are r e l a t e d t o a s i m i l a r degree.  and M. scor-  However, M. q u a d r i -  c o r n i s i s c l o s e r to M. aeneus than the other s p e c i e s both on the b a s i s o f the number o f s i m i l a r i t i e s and the common presence o f a unique band 18.  In t h i s group M. octodecemspinosus  appears  to be the f u r t h e s t removed.  NUMERICAL TAXONOMIC ANALYSIS In order to compare the v a r i o u s methods of systematic analyses the data c o l l e c t e d from c o n v e n t i o n a l morphology and p r o t e i n a n a l y s e s were subjected to numerical treatment.  Cluster  a n a l y s i s was c a r r i e d out on the p r o t e i n and morphological data u s i n g the weighted  p a i r group method with average  d e s c r i b e d by Sokal and Sneath ( 1 9 6 3 ,  p. 3 0 9 ) .  l i n k a g e as  -127Numerical  C l u s t e r i n g of M o r p h o l o g i c a l Data  F o u r t y - f i v e morphological c h a r a c t e r s c o v e r i n g a l l aspects of the body were taken f o r each of the f o u r t e e n s p e c i e s examined. M e r i s t i c data were transformed  to standard s t a t e as i n d i c a t e d  i n Sokal and Sneath{ 1 9 6 3 , p. 293 - 295^ transformed  The data were then  t o b i n a r y s t a t e and subjected to c l u s t e r  analysis.  The r e s u l t a n t c l u s t e r i n g i s i l l u s t r a t e d i n F i g u r e 6 7 .  Numerical  C l u s t e r i n g of " B i o c h e m i c a l " Data  The myogen banding data and the malic dehydrogenase data were transformed  to b i n a r y s t a t e , based  banding  on the presence or  absence of each band f o r each of the twelve s p e c i e s examined. T h i s y i e l d e d 34 b i n a r y c h a r a c t e r s . then subjected to c l u s t e r a n a l y s i s .  The transformed data were The r e s u l t a n t  clusterings  are shown i n F i g u r e 6 8 .  Numerical C l u s t e r i n g of Combined M o r p h o l o g i c a l and " B i o c h e m i c a l " Data The b i n a r y s t a t e p r o t e i n and morphological c h a r a c t e r s were combined, r e s u l t i n g i n a t o t a l of 79 c h a r a c t e r s .  These charac-  t e r s were subjected t o c l u s t e r a n a l y s i s and the r e s u l t a n t t e r i n g i s i l l u s t r a t e d i n F i g u r e 69 .  clus-  -128FIGURE 67 Dendrogram of Numerical R e l a t i o n s h i p s based  on Conventional Morphological  Data  ro O  to Oi  O  Oi  4> O  Ol  M.  jaok  M.  edomius  M.  polyacanthocephalus  M.  ensiger  M.  stelleri  M.  raninus  M.  niger  M.  scorpius  (Gulf of  M.  scorpius  (Arctic)  M.  aeneus  M.  scorpioides  M.  scorpius  M.  octodecemspinosus  M.  quadricornis  Alaska)  (European)  -129FIGURE 68 Dendrogram of Numerical R e l a t i o n s h i p s based on Conventional P r o t e i n Data  Ul  I M. ensiger M. niger M.  raninus  M. octodecemspinosus M. scorpioides M. quadricornis M.  stelleri  M.  jaok  M. scorpius (European) M. scorpius ( A r c t i c ) M. polyacanthocephalus M. aeneus  -130FIGURE 69 Dendrogram of Numerical R e l a t i o n s h i p s based on Combined Morphological  and P r o t e i n Data  00  o  I M. niger M. ensiger M. s t e l l e r i M. raninus M. polyacanthocephalus M. jaok M. aeneus M. scorpioides M. scorpius (European) M. octodecemspinosus M. scorpius ( A r c t i c ) M. quadricornis  -131COMPARISON OF NUMERICAL CLUSTERING OF MORPHOLOGICAL AND  "BIO-  CHEMICAL" DATA A Test of the Hypothesis of N o n s p e c i f i c i t y As o u t l i n e d by Sokal and sis  Sneath (1963, p. 85),  the hypothe-  of n o n s p e c i f i c i t y assumes that "there are no d i s t i n c t  c l a s s e s of genes a f f e c t i n g e x c l u s i v e l y one ...".  c l a s s of  Thus, i f c h a r a c t e r s are sampled from two  gions of the body and s i m i l a r numerical I t was  analyzed  large  characters  different re-  s e p a r a t e l y they should  yield  classifications.  p o s s i b l e . t o t e s t t h i s hypothesis s i n c e data from  both m o r p h o l o g i c a l and  "biochemical"  Comparison of F i g u r e s 67 and t e r i n g s from the two  sources were a v a i l a b l e .  68 r e v e a l that the r e s u l t a n t c l u s -  character  sources y i e l d  classifications  which are not at a l l comparable. A more c r i t i c a l  examination of F i g u r e s 67 and  68  reveals  that on the b a s i s of p r o t e i n evidence four primary c l u s t e r s are formed c o n s i s t i n g of the f o l l o w i n g  2)  M»  e n s i g e r . M.  niger  M.  raninus ,  octodecemspinosus, M.  M.  M.  quadricornis  3)  M.  stelleri,  4)  "M.  scorpius"  M.  On  by  M. jaok,"M. s c o r p i u s " ( A r c t i c ) , M.  scorpioides,  (European)  polyacanthocephalus,  aeneus  Groups 3 and finally  species:  k are s e c o n d a r i l y c l u s t e r e d followed  by group 2  and  group 1.  the other hand Figure  67, based on morphological evidence  i n d i c a t e s l\ primary c l u s t e r s and  two  separate s p e c i e s  lines:  -132-  .1)  The  M.  .jaok, M.  M.  ensiger  2)  M.  stelleri,  3)  "M.  4)  M.  two  edomius*. M.  scorpius" aeneus, M.  M. raninus,  polyacanthocephalus,  M.  niger  (Gulf of A l a s k a ) * , s c o r p i o i d e s , "M.  separate s p e c i e s l i n e s are M.  quadricornis. from the two  "M.  scorpius" (Arctic)  scorpius"  (European)  octodecemspinosus and  M.  Comparison of the members of the c l u s t e r s formed sources of evidence r e v e a l s that none of the  pri-  mary c l u s t e r s are s i m i l a r . The  h y p o t h e s i s of n o n s p e c i f i c i t y i n t h i s set of  i n Myoxocephalus must be r e j e c t e d . a f f e c t i n g the p r o t e i n and  T h i s suggests that the genes  morphological c h a r a c t e r s could  more or l e s s e x c l u s i v e of each Comparison of Figure  characters  be  other.  69 with F i g u r e s 67  and  68  indicates  that the c l u s t e r i n g of s p e c i e s based on the combined p r o t e i n  and  morphological c h a r a c t e r s i s s i m i l a r to that based on morphological  data.  These c h a r a c t e r s  combined s i m i l a r l y y i e l d  mary c l u s t e r s which c o n s i s t of the 1)  M. n i g e r , M.  2)  M.  stelleri,  M.  .jaok  3)  M.  aeneus, M.  4)  "M.  Groups 1 and  *Species  scorpius" 2 and  following  four  pri-  species:  ensiger M. raninus.  M.  polyacanthocephalus,  s c o r p i o i d e s , "M, ( A r c t i c ) , M.  3 and  scorpius"  quadricornis  4 cluster secondarily.  not a v a i l a b l e f o r p r o t e i n i n v e s t i g a t i o n .  (European)  -133Comparison of the combined c h a r a c t e r c l u s t e r i n g with " b i o c h e m i c a l " c l u s t e r i n g shows that only the f i r s t c l u s t e r s are s i m i l a r i n t h e i r makeup.  the  primary  I n s p e c t i o n of the  raw  " b i o c h e m i c a l " d a t a i n d i c a t e s t h a t M. e n s i g e r and M. n i g e r  share  an e x c l u s i v e m a l i c dehydrogenase p a t t e r n while the other s p e c i e s have a second p a t t e r n . C l u s t e r a n a l y s i s was  c a r r i e d out on the combined  minus the malic dehydrogenase c h a r a c t e r s (Figure 70).  data The  re-  moval of the malic dehydrogenase c h a r a c t e r s r e s u l t e d i n a breakup of the n i g e r - e n s i g e r c l u s t e r .  I t i s thus apparent t h a t the  c l u s t e r i n g of M. n i g e r with M.  e n s i g e r i s dependent upon the  c h a r a c t e r s and may  as c o i n c i d e n t a l .  be regarded  Comparison of the combined c h a r a c t e r c l u s t e r i n g with morphological  MDH  the  c l u s t e r i n g r e v e a l s t h a t c l u s t e r 3 of the morpho-  l o g i c a l group i s contained i n c l u s t e r 3 of the combined group which a l s o i n c l u d e s M. octodecemspinosus. t e r i n g c o n t a i n s the i d e n t i c a l s p e c i e s .  The  secondary c l u s -  Similarly clusters 3  and 4 c o n t a i n i d e n t i c a l members i f the two  separate  l i n e s of the morphological  group are i n c l u d e d .  d i f f e r e n c e between the two  groups i s found i n the placement of  "M.  scorpius" ( A r c t i c ) .  The  species only major  T h i s form appears to be an o f f - s h o o t of  the A s i a n - t r a n s p a c i f i c s p e c i e s group i n the morphological  clus-  t e r i n g and a member of the North American-European s p e c i e s group i n the combined  clustering.  The absence of the MDH  c h a r a c t e r s not only breaks up  n i g e r - e n s i g e r c l u s t e r but s h i f t s "M. A s i a n - t r a n s p a c i f i c s p e c i e s group.  the  s c o r p i u s " ( A r c t i c ) to the  -134FIGURE 70 Dendrogram of Numerical R e l a t i o n s h i p s based on Combined Morphological Minus MDH  Data  and P r o t e i n Data  Ul  o  4> Ul  Ul  o  T  Ul Ul  o  Ul  T - M. scorpius ( A r c t i c ) - M. niger - M.  jaok  • M. polyacanthocephalus M. ensiger M.  stelleri  M.  raninus  M. aeneus M. scorpioides M. scorpius (European) M. octodecemspinosus M.  quadricornis  -135In summary, the grouping  formed on the b a s i s of the mor-  p h o l o g i c a l c h a r a c t e r s i s s i m i l a r to that based on the.combined c h a r a c t e r s with the exception of the placement of "M. (Arctic).  scorpius"  Both these groupings d i f f e r i m p o r t a n t l y from the  based on p r o t e i n c h a r a c t e r s alone.  The MDH  one  c h a r a c t e r s are r e -  s p o n s i b l e f o r the d i v e r g e n t clustering i n the combined and " b i o chemical" groupings. obtained The  E l i m i n a t i o n of MDH  renders the  from b i o c h e m i c a l and morphological data  clustering  similar.  e f f e c t of the biochemical data on the above a n a l y s i s  stresses i t s limitations. myogens, due  Although i t may  be argued that the  to t h e i r probable l a r g e f u n c t i o n a l d i v e r s i t y , r e -  present a wide spectrum of the s p e c i e s genome, the enzyme c h a r a c t e r s employed are n o t a b l y c o n s e r v a t i v e throughout  the genus.  Hence i t i s p o s s i b l e t h a t these data may  reflect  not adequately  the broad information p o t e n t i a l contained i n p r o t e i n evidence. In c o n t r a s t , the many c o n v e n t i o n a l morphological tend to be c o n s e r v a t i v e and probably r e f l e c t with  characters  reasonable  accuracy the i n f o r m a t i o n contained w i t h i n the genomes of the s p e c i e s concerned. at t h i s The  However, t h i s can not be adequately  time. q u e s t i o n then a r i s e s as to whether the e f f e c t s of  numerical a n a l y s i s of these two Numerical  tested  taxonomy due  types of data are t r u l y  comparable.  to i t s conceptual b a s i s can only hope to  minimize the e f f e c t s of convergence or p a r a l l e l i s m through use of many c h a r a c t e r s .  In t h i s r e s p e c t there i s reasonable  doubt as to the c o m p a r a b i l i t y of the numerical based on these two  the  sources of data.  relationships  I t i s g e n e r a l l y considered  that between Z+0 and 50 c h a r a c t e r s are r e q u i r e d f o r the  numerical  -136technique  to p r o v i d e r e s u l t s t h a t can be accepted with con-  fidence.  In t h i s i n s t a n c e only 34 were a v a i l a b l e and  these  l a r g e l y from a s i n g l e b i o l o g i c a l " u n i t " of the organism.  It  i s probable t h a t an extension of the biochemical a n a l y s i s to include data from a d d i t i o n a l s t r u c t u r a l and  f u n c t i o n a l systems  would l e a d to s t a b l e n u m e r i c a l l y d e r i v e d r e l a t i o n s h i p s . problem i s an i n t e r e s t i n g one  not yet explored f o r any  The organism.  In the present study the i n t e r p r e t a t i o n s to be drawn from the b i o c h e m i c a l data are u n s t a b l e . it  The removal of the MDH  from  r e s u l t s i n numerically derived relationships generally similar  to those based on c o n v e n t i o n a l morphological  evidence.  This  suggests that the myogen c h a r a c t e r i s t i c s provide balanced  or  moderate e x p r e s s i o n of the i n f o r m a t i o n contained on the genome. On the other hand, the r e l a t i o n s h i p s that are. i n d i c a t e d by MDH  between c e r t a i n s p e c i e s that by a l l other evidence  widely separate, suggests t h a t t h i s enzyme may i n f l u e n c e of convergent  are  be e v i n c i n g the  or p a r a l l e l e v o l u t i o n .  I t must be concluded sources may  the  t h a t a d d i t i o n of new  data from some  d i s t o r t the i n t e r p r e t a t i o n of broad  relationships.  However, the g r e a t e r the number of components i n the t o t a l  data  p o o l , the more minor i s the d i s t o r t i o n l i k e l y to be. I t would thus appear that a l a r g e r number and v a r i e t y of c h a r a c t e r s must be used i n order to adequately  r e p r e s e n t the  broad i n f o r m a t i o n p o t e n t i a l contained i n the chemical s t r u c t u r e of the organism.  No  s i n g l e area of morphology or physi-  ology p r o v i d e s more " u s e f u l " i n f o r m a t i o n than any  other.  -137COMPARISON OF PHENETIC RELATIONSHIPS BASED ON MORPHOLOGICAL AND PROTEIN DATA The dendrogram based on c o n v e n t i o n a l morphological (Figure 6i+) i n d i c a t e s that there are three primary relationship. transpacific one  data  l i n e s of  One of these c o n t a i n s three A s i a t i c and one s p e c i e s ; the second two A s i a t i c , two t r a n s p a c i f i c ,  Gulf of Alaska, and one B e r i n g S e a - A r c t i c s p e c i e s ; the t h i r d  c o n t a i n s two h o l a r c t i c , two East Coast,  and the one European  species.as follows: 1)  M. y e s o e n s i s * , M. raninus, M. s t e l l e r i , M. n i g e r  2)  M. edomius*, M. e n s i g e r , M. jaok, M.  polyacanthoce-  phalus, "M. s c o r p i u s " ( G u l f of A l a s k a ) * , "M. s c o r p i u s " (Arctic) 3)  M. s c o r p i o i d e s , M. q u a d r i c o r n i s , M. aeneus, M. octodecemspinosus, "M. s c o r p i u s " (European)  The dendrogram based on the p r o t e i n evidence shows two main l i n e s of r e l a t i o n s h i p . wholly A s i a t i c and one t r a n s p a c i f i c transpacific, Coast,  (Figure 66)  One c o n t a i n s three  species.  The second has two  one B e r i n g S e a - A r c t i c j two h o l a r c t i c , two East  and the one European s p e c i e s .  Within t h i s second  primary  l i n e there appears to be two secondary groups; one composed of the two t r a n s p a c i f i c  and one Bering Sea s p e c i e s and the other  of the two h o l a r c t i c , two East Coast,  and the one European  s p e c i e s as f o l l o w s :  not a v a i l a b l e f o r p r o t e i n i n v e s t i g a t i o n .  -1381)  M. r a n i n u s , M.  2)  M.  s t e l l e r i , M. e n s i g e r , M.  s c o r p i o i d e s , M. q u a d r i c o r n i s , M. aeneus, M.  decemspinosus, "M. The dendrogram based As noted  jaok  on page 135  octo-  s c o r p i u s " (European)  upon the p r o t e i n data i s more simple.  the data from t h i s source a t the present  l e v e l of knowledge are more r e s t r i c t e d than the c o n v e n t i o n a l morphological data.  N e v e r t h e l e s s the tv/o groupings are  in  o v e r a l l arrangement.  is  found i n the placement of M. n i g e r , M.  and "M.  similar  The g r e a t e s t d i f f e r e n c e between them polyacanthocephalus,  s c o r p i u s " ( A r c t i c ) which are i n the North American-  European group on the p r o t e i n dendrogram and are placed i n the A s i a t i c - t r a n s p a c i f i c group on the morphological dendrogram. If,  however, the f i r s t major dichotomy of the " b i o c h e m i c a l "  dendrogram occurred betv/een the "M. M. aeneus l i n e s ( F i g u r e 65a) would be very  s c o r p i u s " ( A r c t i c ) and  the arrangement of the  the  groupings  similar.  COMPARISON OF NUMERICAL AND  PHENETIC RELATIONSHIPS  I t i s to be emphasized t h a t the author has been conscious of  the p o s s i b i l i t y of b i a s due  l a t i o n s h i p s based rived.  to the sequence i n which the r e -  on the d i f f e r e n t treatments  The c o n v e n t i o n a l phenetic treatment  of data are de-  was  regarded  as  b e i n g more i n f l u e n c e d by p r i o r knowledge of the a n a l y s i s of the numerical c l u s t e r i n g than v i c e v e r s a . In  an e f f o r t to minimize  were c o l l e c t e d  f i r s t were used  b i a s morphological data which f o r the phenetic a n a l y s i s of  c o n v e n t i o n a l morphology p r i o r to the a n a l y s i s of p r o t e i n data.  -139Upon the completion of these, numerical analyses were i n augurated.  Comparison of Treatments on Morphological Data Comparison of the r e l a t i o n s h i p s d e r i v e d from the morphol o g i c a l data u s i n g c o n v e n t i o n a l phenetic numerical  ( F i g u r e 64) and  ( F i g u r e 67) procedures i n d i c a t e s t h a t the r e l a t i o n -  s h i p s d e r i v e d by the two methods p a r a l l e l each other McAllister  closely.  ( 1 9 6 6 ) comes to the same c o n c l u s i o n i n h i s study  of the f a m i l y Osmeridae. Examination  and comparison of the primary  a r i s i n g from the tws treatments,(Table members i n t h e i r primary  groups*  shows-these two  The  reveals identical  The numerical c l u s t e r i n g i n -  d i c a t e s M. octodecemspinosus and M. l i n e s o f f the main stem.  XX)  s p e c i e s groups  q u a d r i c o r n i s to be  separate  c o n v e n t i o n a l phenetic method  s p e c i e s as the e a r l i e s t  North American-European l i n e .  d e r i v a t i v e s of the  When the sequence of  secondary  c l u s t e r i n g of the numerical method i s considered, t h i s r e p r e s e n t s almost the i d e n t i c a l  technique  situation.  Comparison of Treatments on P r o t e i n Data Comparison of the r e l a t i o n s h i p s d e r i v e d from the convent i o n a l phenetic and numerical treatments  of p r o t e i n data ( F i g u r e s  6.6 and 68) show that the two d i f f e r i n every r e s p e c t .  Hov/ever,  as has been p r e v i o u s l y i n d i c a t e d the number of p r o t e i n c h a r a c t e r s i s s m a l l and  thus convergence or p a r a l l e l i s m i n the data could  unduly i n f l u e n c e the c o n c l u s i o n s when numerical a n a l y s i s i s applied.  -1 ROTABLE XX Comparison of Primary Species Conventional Phenetic  and  Groups of Numerical  Taxonomic Treatments of Morphological  Conventional Phenetic £[• s t e l l e r i ,  Data  Treatment  M«- raninus,  M. n i g e r , M.  M.  polyacanthocephalus, M.  M.  jaok  yesoensis*  ensiger, M.  M. 'tecorpius" (Gulf of A l a s k a ) , M.  edomius,  "scorpius"(Arctic)  M.  aeneus, M. "scorpius'' (European), M.  M,  octodecemspinosus, M.  scorpioides  quadricornis  Numerical Taxonomic Treatment M»  stelleri,  M.  ensiger,  M. r a n i n u s , M.  M.  niger  polyacanthocephalus, M.  edomius,  M. jaok (  M.  "scorpius"  (Gulf of A l a s k a ) , M.  "scorpius"  (Arctic) M. aeneus, M.  s c o r p i o i d e s , M.  S p l i n t e r s p e c i e s - M. M.  "scorpius"  octodecemspinosus quadricornis  (Europe)  In summary, i t has been shown that the r e l a t i o n s h i p s rived  de-  from both " b i o c h e m i c a l " and m o r p h o l o g i c a l sources of data  .using the c o n v e n t i o n a l phenetic treatment are g e n e r a l l y s i m i l a r . The numerical r e l a t i o n s h i p s based of evidence are not comparable.  on the two  separate sources  However, the numerical  treatment  of the combined m o r p h o l o g i c a l and " b i o c h e m i c a l " data i n d i c a t e s »  t r e l a t o n s h i p s g e n e r a l l y s i m i l a r to those of the m o r p h o l o g i c a l A  data.  Both c o n v e n t i o n a l p h e n e t i c and numerical treatments of the  m o r p h o l o g i c a l d a t a produced two  treatments  their  almost i d e n t i c a l r e l a t i o n s h i p s .  The  of the p r o t e i n d a t a showed no s i m i l a r i t i e s i n  relationships. I t i s i n a p p r o p r i a t e to attempt  s u b j e c t i v e d e c i s i o n s upon  the r e l a t i v e m e r i t of the -two methods of treatment  or the r e -  s u l t s obtained u s i n g the two c l a s s e s of evidence.  I t i s possible  to conclude, however, that where evidence i s a v a i l a b l e from a wide v a r i e t y of systems w i t h i n the organism, i n this instance y i e l d  similar results.  the two  techniques  The i n t e r p r e t a t i o n of  r e l a t i o n s h i p s between a complex group of r e l a t e d  s p e c i e s may  dependent upon the wealth of the d a t a t h a t can be brought  be  to  bear on the d e c i s i o n but no s i n g l e source of evidence p r o v i d e s ' more u s e f u l information than any o t h e r . The l a c k of c o n g r u i t y r e v e a l e d between the r e l a t i o n s h i p s d e r i v e d from the two k i n d s of evidence i n t h i s study probably r e s t s l a r g e l y upon the r e l a t i v e l y r e s t r i c t e d coverage chemical" information a v a i l a b l e .  I t seems c l e a r t h a t  of the " b i o the'intro-  d u c t i o n of a l i m i t e d amount of " b i o c h e m i c a l " data i n t o systematic should not be expected decisions.  to give r i s e to g r e a t l y a l t e r e d or improve  -1Z+2SYSTEMATIC CONCLUSIONS  On the b a s i s of the present has been f u r t h e r d e l i m i t e d . s i s i d e n t i f i e s 15 though probably  the genus Myoxocephalus  f o l l o w i n g d i a g n o s i s and  s p e c i e s w i t h i n the genus.  valid  i s not c o n s i d e r e d  Generic  The  study  except  The  synop-  nomenclature,  f o r the forms of "M.  scorpius",  herein.  Diagnosis  Genus Myoxocephalus ( S t e l l e r )  Tilesius  Body r o b u s t , a n t e r i o r l y almost round i n c r o s s s e c t i o n becoming more or l e s s compressed p o s t e r i a d . or without  m o d i f i e d s t e l l a t e and  Skin t h i c k ,  spinate s c a l e s .  Mouth t e r m i n a l , l a r g e , lower jaw always i n c l u d e d .  Head l a r g e . Eyes l a r g e .  I n t e r o r b i t a l space concave.  Nasal  •with s k i n .  o c c i p i t a l c r e s t s more or l e s s  Supraocular  duced, sometimes acute, and  and  s p i n e s acute,  with  often bearing c i r r i  u s u a l l y covered  on a p i c e s .  a u t o p t e r o t i c r i d g e s more or l e s s developed.  b e a r i n g 3 or A spines, the dorsal-most straight.  Opercular  in.teroperculum.  Posttemporal  more or l e s s acute.  Nuchal  Preoperculum  s p i n e being s t r o n g and  spine heavy, acute.  e r o v e n t r a l margin of suboperculum and  pro-  Acute spine on  post-  on p o s t e r o d o r s a l margin of  spine acute.  S u p r a c l e i t h r a l spine  Median f i n s g e n e r a l l y low,  convex i n p r o f i l e  Anus j u s t I n f r o n t of o r i g i n of a n a l f i n . D o r s a l s more o r . l e s s separate.  Caudal f i n moderate, s l i g h t l y rounded.  l a r g e , lower r a y s p r o c u r r e n t .  Pelvic  f i n 1-3•  branched with e x c e p t i o n of major caudal r a y s . developed, elongated  Pectoral f i n  F i n rays  un-  Lateral l i n e well  u s u a l l y complete, composed of small more or l e s s t u b u l a r bony o s s i c l e s .  Cephalic l a t e r a l l i n e  system  -143s i m p l e to complex. . S l i t or  absent.  behind l a s t  B r a n c h i o s t e g a l r a y s 6.  gill  E r a n c h i o s t e g a l membranes  u n i t e d a t i s t h m u s w i t h broad or narrow premaxillaries, dentaries,  and head  a r c h reduced t o pore  fold.  Teeth born  of- vomer.  palatines.  T e e t h on vomer f o r m " V ' - s h a p e d  villiform,  a c u t e , r e c u r v e d , d i r e c t e d i n and  on  No t e e t h , on  patch. back.  Teeth  -144-  A b b r e v i a t i o n s used i n  Synopsis  ID - f i r s t d o r s a l spines 2D - second d o r s a l r a y s A - anal f i n r a y s Pect - p e c t o r a l r a y s LLO - l a t e r a l l i n e Vert - vertebrae  ossicles  -145SYTTOPSIS  OF  SPECIES  A l . Cephalic few  GSilUS-  OF T H E  MYOXOCEPHALUS  l a t e r a l l i n e system simple,  secondary and t e r t i a r y  no d i g i t a t i n g  canals,  branches; no d i g i t a t i n g  ridges,  l a t e r a l l i n e o s s i c l e s generally slender, l i t t l e of fossae  modification  region.  B l . 4 preopercular stellate  spines; o l f a c t o r y r o s e t t e s p r i m i t i v e ;  t u b e r c l e s above l a t e r a l  line.  CI.. D o r s a l s c o n f l u e n t ; l a t e r a l l i n e o s s i c l e s not h i g h l y . modified;  body not elongate;  caudal  peduncle mod-  e r a t e l y heavy; c e p h a l i c l a t e r a l l i n e c a n a l s body l a t e r a l l i n e complete; s t e l l a t e and  typical,  t u b e r c l e s above  below l a t e r a l l i n e , those below o f t e n very im-  perfectly line;  formed; some s p i n a t e  supraocular  s c a l e s below l a t e r a l  and o c c i p i t a l  s l i g h t l y , bearing c i r r i  c r e s t s developed  i n both young and a d u l t s ;  s u p r a c l . e i t h r a l s p i n e s b l u n t ; pore absent behind gill  last  arch; no p a p i l l a e on p e c t o r a l o r second d o r s a l  f i n s o f mature males; i n t e r o r b i t a l f o s s i l record;  1D-9(3-10);  Pect-l5(l4-l7);  Range- B e r i n g  2D-l6(13-l3);  LLO-40(38-43);  Sea,  Arctic  space narrow; no A-12(10-1A);  Vert-36(35-33);  America to Labrador. .M. s c o r n i o i d e s  C 2 . D o r s a l s w e l l separated; reduced, i n t e r o s t e a l ;  cephalic l a t e r a l l i n e  body l a t e r a l l i n e u s u a l l y i n -  complete; l a t e r a l l i n e o s s i c l e s h i g h l y body elongate; tion  caudal  canals  peduncle very  h i g h l y developed, s t e l l a t e  modified;  slender;  squama-  t u b e r c l e s above and  -12+6below l a t e r a l l i n e ;  supraocular  and  occipital  crests  g r e a t l y developed, produced i n t o comb-like s t r u c t u r e s i n a d u l t s ; no c i r r i s p i n e s acute; t o r a l and  on c r e s t s ; s u p r a c l e i t h r a l  small pore behind l a s t  gill  arch;  second d o r s a l f i n s with p a p i l l a e . i n  males; i n t e r o r b i t a l from Europe;  mature  space narrow; P l e i s t o c e n e  basin, northern  3 (4) p r e o p e r c u l a r tive; Dl.  no  stellate  spines;  quadricornis  o l f a c t o r y r o s e t t e s riot p r i m i -  t u b e r c l e s ; squamation reduced.  M e r i s t i c counts low; elongate;  Sea,  Labrador, Europe.  ...................M« B2.  fossils  lD-8( 7-10); 2D-12+ (12-16); A-15(13-17);  Pect-l6(12f-l8); Vert-ifO(38-2|2); Range- B e r i n g Arctic  pec-  1st.  preopercular  scales spinate; l a t e r a l l i n e  spine  not  ossicles  highly modified;  supraocular - and  not acute;  on c r e s t s of a d u l t s ; d o r s a l s con-  cirri  f l u e n t or separated El.  by  occipital  not  crests •  small gaps.  Dorsals confluent; 3 preopercular nate s c a l e s above and  spines;  below the l a t e r a l  spi-  line;,  supraocular  and  occipital  oped; nuchal  and  a u t o p t e r o t i c r i d g e s developed;  gut with h e l i c a l p a t t e r n ; gill  arch;  c r e s t s not w e l l d e v e l -  small pore behind  last  ~1D-10(9-11); 20-15(12.-16); A-ll(9-13);  Pect-l6(l5-17); LLO-37(35-40); Vert-34; Rangenorthern  Europe, south as f a r as A t l a n t i c .M..  Spain  "scor'oius' (European) >  -147Ll.  D o r s a l s separate with small gap; 3 (4)  preoper-  c u l a r spines; s c a l e s reduced, a b o v e . l a t e r a l l i n e , small poorly o s s i f i e d , supraocular veloped;  spinate and absent below;  and o c c i p i t a l  c r e s t s not w e l l de-  nuchal r i d g e developed, a u p t o t e r o t i c  r i d g e not; gut w i t h sigmoid behind  p a t t e r n , . s m a l l pore  l a s t g i l l arch; l D - 9 ( 8 - 1 0 ) ;  A-11(8-14);  Pect-l6(l4-17);  20-14(12-1?);  LLO-36(33-40); V e r t -  32(31-34); Range- n o r t h e r n Newfoundland to New Jersey  M. aeneus  D2. M e r i s t i c counts higher; 3 p r e b p e r c u l a r ' spines,' f i r s t g r e a t l y elongated;  s c a l e s above the l a t e r a l l i n e r e -  duced to small, p o o r l y o s s i f i e d  plates buried i n  s k i n ; s c a l e s absent below l a t e r a l l i n e ; l a t e r a l l i n e ' ossicles  highly modified;  supraocular  and o c c i p i t a l  c r e s t s developed u s u a l l y acute; nuchal and autopterotic  r i d g e s developed;' no c i r r i on head or c r e s t s ;  d o r s a l s w e l l separated; arch; lD-9(7-9);  no pore behind  last  2D-16(15-17); A-13(12~14);  gill Pect-17  (16-19); LLC-AO(37-43); Vert-36(34-37); Range-  nor-  thern Newfoundland to New J e r s e y . M. octoclecemsnino sus Complex c e p h a l i c l a t e r a l l i n e system, u i g i t a t i n g sent; d i g i t a t i n g  r i d g e s u s u a l l y present; l a t e r a l l i n e  c l e s g e n e r a l l y short, heavy bodied, gion. FI.  c a n a l s pre-  Cephalic l a t e r a l l i n e  ossi-  modified i n fossae r e -  ' system o f moderate  complexity;  -148c r e s t s b e t t e r developed.;-' c i r r u s  on apex of each c r e s t ,  u s u a l l y only i n young; s c a l e s present; i h t e r o r b i t a l  space  moderately narrow, s t r o n g l y concave; f i n counts genera l l y higher; body g e n e r a l l y more  elongate..  G l . . D i g i t a t i n g c a n a l s and r i d g e s present; l o n g e r ; body more elongate; slender;, spinous  HI.  gill  caudal peduncle more  pores small or absent  behind  arch; c r e s t s o f t e n developed..  Spinate fin  slightly  d o r s a l f i n moderately'low; g i l l mem-  branes with narrow f o l d ; last  snout  s c a l e s above and below l a t e r a l l i n e ;  anal  count' low.  1 1 . No pore behind parated  last  gill  arch; d o r s a l s se-  by small gap; no p e c t o r a l or p e l v i c  p a p i l l a e found; c e p h a l i c l a t e r a l l i n e larger,  system not as complex; r a c h i s o f o l -  f a c t o r y r o s e t t e s elongate, teriad; cirri  canals  gill  not forked an-  membranes with narrow f o l d ; no  i n adults; 4 preopercular  a u t o p t e r o t i c r i d g e s developed;  spines;  1D-10(9~10);  2D-14(13-15); A-12(11-13); Pect-l8(l8-19); LLQ-39(34-42); Vert-55; Range- Japan ......H. e n s i g e r 12.  Small pore behind separate  with  last  gill  arch;  dorsals  small gap; p e c t o r a l and p e l v i c  p a p i l l a e i n mature males; c e p h a l i c line  canals smaller,  gill  membranes with'narrow f o l d ;  lateral  system more complex; no c i r r i  on  -149c r e s t s i n a d u l t s ; 3 (4) p r e o p e r c u l a r  spines;  lD-9(9-10);  a u t o p t e r o t i c r i d g e s developed;  2D-14(1G-15); A-12(8-13); Pect-l8(l6-19); LLO-41(37-45); Vert-35(33-36); Range- Japan, Sea of Ohkotsk, A l e u t i a n I s l a n d s , B e r i n g Sea,  southeast  Alaska, B r i t i s h Columbia,  shington...  ,,,,M,  Wa-  polyacanthocephalus  S c a l e s not s p i n a t e above l a t e r a l l i n e ; a n a l f i n r a y count higher* Jl.  S t e l l a t e t u b e r c l e s above and s p i n a t e s c a l e s below l a t e r a l l i n e ; g i l l narrow f o l d ;  membranes with  small pore behind  arch; d o r s a l s w e l l separated; c u l a r s p i n e s ; supraocular  last  gill  3 (4) preoper-  and o c c i p i t a l  c r e s t s sometimes acute; l a t e r a l l i n e  ossicles  m o d i f i e d i n fossae r e g i o n ; p e c t o r a l and p e l v i c p a p i l l a e present i n a d u l t males; 1D-9  (8-10); 2D-15(13-17); .A-14(12-16); Pect-18 (17-19); LLO-41(40-45); Vert-35(34-37); Range- Japan, Sea of Okhotsk, B e r i n g Sea, A l e u t i a n I s l a n d s , to Alaskan  Peninsula. M. jaok  J2. No s t e l l a t e  t u b e r c l e s ; body appears naked,  but has a few s c a t t e r e d p o o r l y  ossified  small p l a t e s above and belov/ l a t e r a l gill  membranes with narrow f o l d ;  behind  last g i l l  line;  small pore  arch; d o r s a l s separate  with  • -150small gap; 3 (4) p r e o p e r c u l a r praocular acute;  and o c c i p i t a l  spines; su-  c r e s t s sometimes  fossae r e g i o n of l a t e r a l l i n e  somewhat developed; no p e c t o r a l or . p a p i l l a e on a d u l t males;  G2.  no d i g i t a t i n g  snout s h o r t e r ; body more robust; heavier;  LLO-4K40-  Range- Japan...............M.  D i g i t a t i n g c a n a l s present;  pelvic  lD-9(8-9); 2D-15  (14-16); A-13; Pect-l8(17-19) ', 42);  ossicles  caudal  edomius  ridges; peduncle  spinous d o r s a l f i n s h i g h e s p e c i a l l y i n ma-  t u r e males; g i l l pore behind  membranes with broad f o l d ;  last g i l l  large  arch; c r e s t s developed,  K l . C e p h a l i c l a t e r a l l i n e not very complex; d o r s a l s separate-with present  only s m a l l gap; s t e l l a t e  above l a t e r a l l i n e , complex,  s p i n a t e s c a l e s present below;, c i r r i c r e s t s , only i n young; nuchal  tubercles-  numerous; present  on  and a u t o p t e r o t i c  r i d g e s not developed; top of head w i t h only few w a r t - l i k e protuberances;  1 D - 1 0 ( 9 - 1 2 ) ; 2D-17(12-  20); A - 1 3 ( l l - l 6 ) ; Pect-17(16-19)5  LLO-42(38-45)J  Vert-38(36-40); Range- B e r i n g Sea to A t l a n t i c coast of North America, south  to New  Jersey.  M. " s c o r t d u s ^ (Arc t i c ) K2,  Cephalic l a t e r a l l i n e fluent;  stellate  not numerous,  complex; d o r s a l s con-  t u b e r c l e s above l a t e r a l  fairly  below l a t e r a l l i n e ;  simple; cirri  line,  some s p i n a t e s c a l e s  present  on c r e s t s of  -151many a d u l t s ; nuchal and a u t o p t e r o t i c r i d g e s  de-  veloped; many w a r t - l i k e protuberances on top of . head; 1D-10(8-10); 2D-16(14-17);  A-12(10-14);  Pect-18(17-18); LLO-40 (38-42). ; Vert-36(35-37); Range- A l e u t i a n I s l a n d s south t o A l a s k a n panhandle...  M.  " s c o r p i u s " (Gulf of Alaska)  C e p h a l i c l a t e r a l l i n e system very complex w i t h many secondary t e r t i a r y ,  and quaternary c a n a l s ; c r e s t s  and  r i d g e s u s u a l l y not w e l l developed; c i r r u s on apex of each s u p r a o c u l a r and o c c i p i t a l c r e s t i n both young and a d u l t s ; squamation tal  reduced, u s u a l l y absent;  space broad, s l i g h t l y concave;  interorbi-  f i n counts g e n e r a l l y  lower; body heavy, c a u d a l peduncle heavy; f i r s t p r e o p e r c u l a r spine f a i r l y Ll.  short.  D i g i t a t i n g r i d g e s present; no c i r r i  on top of head.  Ml. Spinate s c a l e s above and below l a t e r a l  line;  d o r s a l s c o n f l u e n t ; 2nd d o r s a l and a n a l f i n ray counts  low.  3 p r e o p e r c u l a r s p i n e s ; g i l l membranes w i t h narrow f o l d ;  s m a l l pore behind l a s t  arch; nuchal and a u t o p t e r o t i c r i d g e s veloped; 1D-9;  2D-13; A-10;  37; Range- Japan M2.  gill de-  Pect-17; L L O M. y e s o e n s i s  Squamation absent; d o r s a l s separated, with s m a l l gap;  2nd d o r s a l and a n a l f i n ray number  higher. 01. s u p r a c l e i t h r a l spine acute; 3 p r e o p e r c u l a r  -152s p i n e s ; g i l l membranes with broad  fold;  s m a l l pore behind  auto-  pterotic  last g i l l  r i d g e developed;  arch;  lD-9(8-10);  2D-15(15-16); A-12(11-14); Pect-17(16-18); LLO-39(36-43); Range- Japan, Sea of Okhotsk, western B e r i n g Sea. . * 02.  supracleithral  M. s t e l l e r i .  spine b l u n t ; 3 p r e o p e r c u l a r  s p i n e s ; s m a l l pore behind  last g i l l  arch;  l a t e r a l line ossicles different; autopterotic; r i d g e developed;  lD-8(5-10);  2D-14(12-16);  A - 1 K 8 - 1 2 ) ; Pect-17(16-19); LLO-39(37-43); Vert-33(32-35);  Range- Japan M. r a n i n u s  L2. No d i g i t a t i n g r i d g e s ; numerous c i r r i Squamation absent;  on top of head;  p r e o p e r c u l a r spines 3 or 4;  d o r s a l s separate with only small gap; spine b l u n t ; s m a l l pore behind brancheostegal  supracleithral  last g i l l  membranes with broad  arch;  f o l d ; ID- 9 (8-10);  2D- 16(14-18); A- 11(10-12); Pect-17(16-18); LLO42(38-45); Vert-37(35-38);  Range- Sea of Okhotsk,  A l e u t i a n I s l a n d s , southern  Bering Sea. M. n i g e r  On the b a s i s of t h i s study  i t appears l i k e l y from the d i s -  t r i b u t i o n of s p e c i e s t h a t the p r o g e n i t o r of the genus Myoxocephalus arose from the b a s a l c o t t i d s t o c k s , probably P a c i f i c Ocean.  i n the north west  Two major l i n e s appear t o have evolved, one  -153i n v a d i n g the B e r i n g Sea and A r c t i c Ocean through B e r i n g spread  e a s t to the A t l a n t i c  s p e c i e s , one  European  of North America Arctic  species  ("M.  The  and Europe and gave r i s e to f i v e scorpius"  (M. aeneus and M.  remaining  (European)),  two  scorpioides).  group f u r t h e r evolved, probably  One  s p e c i e s group invaded  and  the A r c t i c Ocean, spreading  cephalus) , one southeast  transpacific  due  ("M.  scorpius"  Japanese s p e c i e s species  ("M. scorpius"  (Arctic)).  l e a s t three A s i a t i c s p e c i e s and  c r o s s e d along  quaternary.  This  a l s o one  and one  e a s t coast of North Ameri  other branch of the I t has  (M. r a n i n u s , M.  line  g i v e n r i s e to at  stelleri,  form (M. n i g e r ) which has  the A l e u t i a n I s l a n d s and  M.  polyacantho-  (Gulf of A l a s k a ) ) , and  The  Sea  (M. edomius and  (M. jock and M.  s p e c i a t e d i n the western P a c i f i c area.  yesoensis)  line  to the  to the A t l a n t i c Ocean.  s p e c i e s i n the B e r i n g Sea, A r c t i c and ca  This  form r e s t r i c t e d to the A l e u t i a n I s l a n d s  Alaska  two  the A l e u t i a n I s l a n d s , the B e r i n g  g i v e n r i s e to two  e n s i g e r ) , two  coa  primitive.  complex g e o l o g i c a l changes of the l a t e t e r t i a r y and  l i n e has  east  octodecemspinosus) and  (M. q u a d r i c o r n i s and M.  appears to be the more  Strait,  and  M.  subsequently  i n t o the southern  Bering  -154SUMMARY AND GENERAL CONCLUSIONS The purpose of t h i s study was to compare the systematic r e l a t i o n s h i p s w i t h i n the genus Myoxocephalus ( P i s c e s ; suggested  by separate "biochemical"=protein  morphological and  evidence  Cottidae)  and c o n v e n t i o n a l  and to compare the e f f e c t s of numerical  c o n v e n t i o n a l taxonomic analyses on the r e l a t i o n s h i p s based  on these sources o f evidence. About 5000 specimens r e p r e s e n t i n g 13 nominal s p e c i e s of the genus Myoxocephalus provided the source f o r morphological investigation.  An a d d i t i o n a l 157  f r e s h - f r o z e n specimens r e p r e -  s e n t i n g 11 nominal s p e c i e s were used i n the determination of biochemical d i f f e r e n c e s . P r o t e i n data c o n s i s t e d of e l e c t r o p h o r e t i c c h a r a c t e r i s t i c s of muscle p r o t e i n , malic dehydrogenase, and l a c t i c No sexual v a r i a t i o n i n banding t e r s employed was d e t e c t e d .  dehydrogenase.  p a t t e r n s o f any of the charac-  I t was found a l s o that v a r i a t i o n  between g e l s a r i s i n g from the same specimen was s u f f i c i e n t to obscure  d i f f e r e n c e s between i n d i v i d u a l s .  In each s p e c i e s ex-  amined the myogen p a t t e r n was constant and unique. nominal s p e c i e s were samples obtained range.  One of these  from wide  geographic  ( M . s c o r p i o i d e s ) had a constant p a t t e r n ,  the other " M . s c o r p i u s " , r e v e a l s the presence w i t h i n the c u r r e n t l y recognized The  In only two  of two types  taxon.  enzymes malic and l a c t i c dehydrogenase are very con-  s e r v a t i v e i n t h e i r nature.  There were two e l e c t r o p h o r e t i c  p a t t e r n s i n the malic dehydrogenase isozymes, sed one p a t t e r n , two the second.  10  s p e c i e s posses-  Eleven s p e c i e s had i d e n t i c a l  -155isozyme p a t t e r n s of l a c t i c dehydrogenase. (M. s c o r p i o i d e s ) v/as b i p h a s i c .  One other  species  T h i s may i n d i c a t e the presence  of two s i b l i n g s p e c i e s w i t h i n t h i s nominal s p e c i e s . Some sexual dimorphism was found i n the seven m e r i s t i c c h a r a c t e r s s t u d i e d but i t was not r e s t r i c t e d to any one t e r , nor to the same c h a r a c t e r s i n any s p e c i e s .  charac-  However, i n  s i x of the e i g h t p o p u l a t i o n s where m e r i s t i c sex d i f f e r e n c e s occurred  the males had higher counts than the females.  Both l a t i t u d i n a l and l o n g i t u d i n a l c l i n e s were present i n the m e r i s t i c f e a t u r e s . northward.  L a t i t u d i n a l c l i n e s generally increased  L o n g i t u d i n a l trends i n c r e a s e d eastward across the  A r c t i c of North America, while the c h a r a c t e r s of t r a n s p a c i f i c s p e c i e s i n c r e a s e d westward'.  In cases where there was a response  i n the number of p e c t o r a l r a y s , i t was i n a d i r e c t i o n to the response i n the other m e r i s t i c f e a t u r e s .  opposite  Meristic  c h a r a c t e r s were r i c h i n d i f f e r e n c e s between s p e c i e s . Morphological  data, e x c l u d i n g morphometric c h a r a c t e r s , were  d e r i v e d from 2 0 major c o n v e n t i o n a l  f e a t u r e s as w e l l as squama-  t i o n , c e p h a l i c l a t e r a l l i n e system, l a t e r a l l i n e o s s i c l e s , o l f a c t o r y r o s e t t e s , and the c o i l i n g p a t t e r n o f the gut, a l l of them f e a t u r e s not p r e v i o u s l y used i n systematic  s t u d i e s of t h i s  genus. The  s c a l e s , the c e p h a l i c l a t e r a l l i n e system and the l a t e r -  a l l i n e o s s i c l e s were s t r o n g l y s p e c i e s s p e c i f i c .  Five species  groups were c l e a r l y i n d i c a t e d i n s c a l e form and d i s t r i b u t i o n . F i v e groups can a l s o be formed on the b a s i s of s t r u c t u r e of the cephalic l a t e r a l l i n e .  In general, the two sources i n d i c a t e  -156-  s i r a i l a r grouping o f the s p e c i e s . detected u s i n g the l a t e r a l l i n e  Only three major groups were ossicles.  The o l f a c t o r y r o s e t t e s e x h i b i t e d weak s p e c i e s s p e c i f i c i t y w i t h f o u r s p e c i e s groups d i s c e r n a b l e . and M. s c o r p i o i d e s appeared  Those o f M. q u a d r i c o r n i s  to be the s i m p l e s t .  The c o i l i n g p a t t e r n o f the gut was i d e n t i c a l i n a l l forms except "M. s c o r p i u s " (European).  The d i s t i n c t i v e p a t t e r n i n  t h i s form has supplemented other evidence that the nominal "M. s c o r p i u s " was a complex o f three  forms.  Twenty body f e a t u r e s were measured and gave r i s e to 190 c h a r a c t e r combinations. natural  When analyzed these d i d not y i e l d any  groupings.  Separate phenetic dendrograms based  on p r o t e i n and morpho-  l o g i c a l data were d e r i v e d as w e l l as dendrograms based  on numeri-  c a l taxonomic analyses of p r o t e i n , m o r p h o l o g i c a l , and the combined d a t a . Comparisons were made between c o n v e n t i o n a l and numerical taxonomic a n a l y s e s w i t h r e s p e c t t o p r o t e i n , morphological, and the combined data.  No s i m i l a r i t i e s were e x h i b i t e d upon com-  p a r i s o n of the numerical analyses of ^ b i o c h e m i c a l " and morphol o g i c a l data.  P a t t e r n s of r e l a t i o n s h i p s from both " b i o c h e m i c a l "  and morphological sources u s i n g the c o n v e n t i o n a l phenetic ment were s i m i l a r .  The c o n v e n t i o n a l and numerical  treat-  treatments  of the m o r p h o l o g i c a l data y i e l d e d almost i d e n t i c a l p a t t e r n s of r e l a t i o n s h i p between the s p e c i e s .  Analyses of the " b i o c h e m i c a l "  data u s i n g the same two approaches produced r e s u l t s . I t was concluded  completely  different  that the 34 c h a r a c t e r s that provided  -157the " b i o c h e m i c a l " evidence quate to y i e l d A new  i  f o r t h i s study were, alone, inade»  s t a b l e i n t e r p r e t a t i o n from numerical  d i a g n o s i s of the genus Myoxocephalus was  analysis. given as  w e l l as a synopsis of the s p e c i e s which r e c o g n i z e s 15 two  of which are  unrecognized.  species,  -158LITERATURE CITED  Andriyashev, A. P. 1939.  An O u t l i n e of the Zoogeography  and O r i g i n of the  F i s h Fauna of the Bering Sea and Neighbouring Waters. Izd.  L e n i n g r . Gos. Univ. Leningrad: 187pp.  (MS, Trans-  l a t i o n by Mr. A. M e r r i v a l e )  Brownlee, K. A. 1965.  S t a t i s t i c a l Theory and Methodology In Science and Engineering. (2nd.  Edition)  John Wiley &• Sons, Inc., New  York. 590pp.  Colowick, S. P. and N. 0 . Kaplan. 1963.  Methods i n Enzymology. Vol.  VI. Academic  Press, New  York.  Hubbs, C. L. and K. F. L a g l e r . 1958.  F i s h e s of the Great Lakes Region. Cranbrook I n s t i t u t e of Science B u l l e t i n 26.  213pp.  Johnson, M. L. 1968.  A p p l i c a t i o n of Blood P r o t e i n E l e c t r o p h o r e t i c Studies to Problems i n Mammalian Taxonomy. Systematic Z o o l . , JT£ ( 1 ) :  23-30.  -159Lindsey, 1958.  C.  C.  M o d i f i c a t i o n of M e r i s t i c Characters Duration  1962a.  C.  (2):  134-136.  C.  Experimental Study of M e r i s t i c V a r i a t i o n of Threespine S t i c k l e b a c k s , Gasterosteus Canadian J . Z o o l . , 4J>:  Lindsey, 1962b.  Light  i n Kokanee, Oncorhynchus nerka .  Copeia, 1958,  Lindsey,  by  C.  aculeatus.  271-312.  C.  Observations on M e r i s t i c V a r i a t i o n i n Ninespine S t i c k l e b a c k s , P u n g i t i u s p u n g i t i u s , Reared at Different  Temperatures.  Canadian J . Z o o l . , ^ 0 :  Lindsey, 1965.  C. C. and M. The  1237-1247.  V. A l i .  E f f e c t of A l t e r n a t i n g Temperature on  Counts i n the Medaka (Oryzias Canadian J . Zool., L £ : M c A l l i s t e r , D. 1966.  Vertebral  latipes).  99-104.  E.  Numerical Taxonomy and  the Smelt Family,  Osmeridae. The  Canadian F i e l d N a t u r a l i s t , 8 ( 4 ) :  227-238.  -160-  Matsui, K. and 1963.  K.  Yaeno.  Quantitative  Starch Gel  Electrophoresis*  A n a l y t i c a l Biochem., 6 ( 6 ) : 491-503.  Mayr, E. 1965.  Numerical Phenetics  and  Taxonomic Theory.  Systematic Z o o l . , lij. ( 2 ) : 73-97.  Ross, H. 1964.  H. Review of Sokal and Numerical Taxo  omy.  Systematic Zool.,  Segerstrale, 1957.  On  S.  the  Sneath, P r i n c i p l e s of  1j>  (2):  106-108.  G. Immigration of the G l a c i a l R e l i c t s of Northern  Europe with Remarks on T h e i r Soc.  Shmidt, P. 1929.  Prehistory.  S c i . Fennica Commentat. B i o l o g i c a e , Uj.: 1-117.  Yu.  A R e v i s i o n of the Genus Myoxocephalus T i l e s i u s (Pisces, Cottidae)  and  Some A l l i e d Genera of  the  Pacific. Ann.  Mus.  Z o o l . Akad. S c i . URSS., j?0: 2+05-425.  -161-  Shmidt, P. 1950.  Yu.  F i s h e s of the Sea of Okhotsk. I z d . Akad. Nauk SSSR.,(Isreal Program f o r Scientific  S i b l e y , C. I960.  1965.  T r a n s l a t i o n s , Jerusalem,  342pp.  G.  The  E l e c t r o p h o r e t i c P a t t e r n s of Avian Egg White  P r o t e i n s as Taxonomic C h a r a c t e r s . ' Ibis,  Simpson, G. 1964.  102:  215-284.  G.  Numerical Taxonomy and Science, lAjj.:  Sneath.  P r i n c i p l e s of Numerical Taxonomy. W.  Stebbins, 1963.  Classification.  712-713.  Sokal, R. R. and P. H. 1963.  Biological  H. Freeman and Company, San F r a n c i s c o .  G.  359pp.  L.  A Review of "Animal Species and E v o l u t i o n " by Ernst Mayr.  Amer. S c i . ,  Tsuyuki, 1963.  £1.:  362-370.  H. and R. E. A. Gadd. The  M u l t i p l e Hemoglobins of Some Members of the  Salmonidae et Family. Biochemica B i o p h y s i c a Acta., 21  :  219-221.  -162Tsuyuki, H. and E. Roberts.  1961.  Muscle P r o t e i n s of P a c i f i c  Salmon  (Oncorhynchus).  A note on the s e p a r a t i o n of muscle p r o t e i n  I.  s o l u b l e i n low i o n i c J.  strength s a l t  solutions.  F i s h . Res. Bd. Canada, 1_8 ( A ) : 6 3 7 - 6 4 0 .  Tsuyuki, H. and E. Roberts. 1966.  I n t e r - s p e c i e s R e l a t i o n s h i p s Within the Genus Oncorhynchus Based on Biochemical J.  F i s h . Res. Bd. Canada, 2^ ( 1 ) : 1 0 1 - 1 0 7 .  Tsuyuki, H.; Roberts, 1962.  Systematics.  E., and R.E.A.' Gadd.  Muscle P r o t e i n s of P a c i f i c III.  Salmon  (Oncorhynchus).  The s e p a r a t i o n of muscle p r o t e i n s s o l u b l e i n low i o n i c  s t r e n g t h s a l t s o l u t i o n s by s t a r c h  gel electrophoresis. Canadian J . Biochem. and P h y s i o l . , AjO: 929-936.  Tsuyuki, H. and F. Wold. 1964.  Enolase:  M u l t i p l e Molecular Forms i n F i s h Muscle.  Science.  (3643):535-537.  Tsuyuki, H. et a l . 1965.  The Species S p e c i f i c i t y and Constancy of M Myogen and Hemoglobin Electropherograms  of  Oncorhynchus. J.  F i s h . Res. Bd. Canada, 22 ( 1 ) : 2 1 5 - 2 1 7 .  :  u s c  le  -163Tsuyuki, 1966.  H. et a l . Micro  Starch G e l E l e c t r o p h o r e s i s .  J . F i s h . Res. Bd. Canada, 2j> (6):929-933.  VanTets, P. and I . McT. Cowan. 1966.  Some Sources of V a r i a t i o n i n the Blood (Odocoileus)  as Revealed by Starch G e l E l e c t r o p h o r e s i s .  Canadian J . Z o o l . , 44 631 -647. :  Watanabe, M. i960.  Fauna Japonica  Cottidae.  Tokyo News S e r v i c e , L t d . Tokyo, Japan.  218pp. 40 p l a t e s .  Wilimovsky, N.J. 1954.  Sera of Deer  L i s t o f the F i s h e s of Alaska. Stanford I c h t h y o l . B u l l . ,  it (5):279-294.  -164-  APPENDIX A  TABLES OF SIGNIFICANCE  -165-  Legend f o r Table I  P o p u l a t i o n Number  Locality  1  northern Newfoundland  2  southern Newfoundland  3  S t . Lawrence Estuary  if  Cape Cod  5  New York  -166TABLE I. Significance Matrices of Interpopulation Variation i n M e r i s t i c C h a r a c t e r s o f M. aeneus (axes i d e n t i c a l , s i g n i f i c a n c e i n d i c a t e d by * * ) .  A.  Spinous D o r s a l F i n 2 4  5  ~ — —  —  1 2  3  4  P o p u l a t i o n Number  B.  Second D o r s a l F i n 2  ^  ^  —  ** »* ** ** ** ** 1  2  3  4  P o p u l a t i o n Number  C.  Anal F i n 2  —  1 2  3  4  P o p u l a t i o n Number  D.  Left Pectoral F i n  1  2  3  4  P o p u l a t i o n Number  -167E.  Right P e c t o r a l F i n 2 3  ** ** . —  5  **  k ** — — 1 2 3 4 P o p u l a t i o n Number  F.  L a t e r a l Line O s s i c l e s 2 3 4 5  G.  ** ** »* **  ** ** 2  1  4 3 P o p u l a t i o n Number  Vertebrae 2 3 4 5  —  •  ** ** *#  •** ** **  1  2  3 4 P o p u l a t i o n Number  -168  Legend f o r Table I I  P o p u l a t i o n Number  Locality  1  Kodiak I s l a n d  2  Shumagin I s l a n d s  3  southeast B e r i n g Sea  k  mid  5  Norton Sound  6  Kamchatka P e n i n s u l s  7  Japan  B e r i n g Sea  -169TABLE I I S i g n i f i c a n c e M a t r i c e s of I n t e r p o p u l a t i o n V a r i a t i o n i n M e r i s t i c C h a r a c t e r s of M. .jaok (axes i d e n t i c a l , s i g n i f i c a n c e i n d i c a t e d by * * 7 .  A.  Spinous D o r s a l F i n 2 4 5 6 7  B.  — —  --  —  ~ — 1 2 3 4 5 P o p u l a t i o n Number  6  Second D o r s a l F i n 2 3 4 5 6  7  C.  ~  — — — — —  — ~  —  —  —  —  —  —  1 2 3 4 5 P o p u l a t i o n Number  —  6  Anal F i n 2  —  ^  **  #*  4 5 g 7  ** — **  — **  1  2  — — ** 3  —  4  __ 5  P o p u l a t i o n Number  ** 6  170D.  Left Pectoral F i n 2 4 5 6  7  —  — 1  „  —  —  —  —  3  4  5  6  2  P o p u l a t i o n Number  E.  Right P e c t o r a l F i n 2 4  — -  5 6  —  —  7  —  —  1  2  -  3  4  5  6  P o p u l a t i o n Number  F.  L a t e r a l Line O s s i c l e s 2  —  4 c.  —  —  7  **  »*  »*  2  3  4  **  1  5  P o p u l a t i o n Number  G.  Vertebrae 2  —  ^  **  ** «...  **  **  1  2  5  g  y  »• 3  4  ** 5  P o p u l a t i o n Number  6  -171-  Legend f o r Table I I I  P o p u l a t i o n Number  Locality  1  S t . Paul I s l a n d  2  Izembek Bay  3  Attu Island  if  Commander I s l a n d s  -172TABLE i  n  Significance Matrices of Interpopulation Variation i n M e r i s t i c C h a r a c t e r s o f M. n i g e r (axes i d e n t i c a l , s i g n i f i c a n c e i n d i c a t e d "by **7.  A.  Spinous D o r s a l F i n 2 3  **  ij.  **  ** *#  1 2 3 P o p u l a t i o n Number B.  Second D o r s a l F i n 2 •5  — **  **  Zj.  —  * *  1 2  3  P o p u l a t i o n Number  C.  Anal F i n 2  ^  4  D.  —  **  **  — — — 1 2 3 P o p u l a t i o n Number  Left Pectoral F i n 2 3 4  — ** 1 2 3 P o p u l a t i o n Number  -173E  Right P e c t o r a l F i n 2  k  —  1  2  3  P o p u l a t i o n Number  F.  Lateral Line O s s i c l e s 2  4  —  — 1  ** 2  3  P o p u l a t i o n Number  G.  Vertebrae 2  --  k — — — 1  2  3  P o p u l a t i o n Number  -174-  Legend f o r Table  P o p u l a t i o n Number  IV  Locality  1  northeast New  2  Newfoundland  3  St. Andrews,  Brunswick  New  Brunswick southern Maine  -175TABLE i v Significance Matrices of Interpopulation V a r i a t i o n i n M e r i s t i c C h a r a c t e r s o f M. octodecemspinosus (axes i d e n t i c a l , s i g n i f i c a n c e i n d i c a t e d by * * ) .  A.  Spinous D o r s a l F i n  2  ~  4  --  1  ~  2  3  P o p u l a t i o n Number  B.  Second D o r s a l F i n  2  —  k — — 1 2  ~ 3  P o p u l a t i o n Number  C.  Anal F i n  2  —  k — — — 1 2 3  P o p u l a t i o n Number  D.  Left Pectoral F i n  2 — 3 ** k 1 2  3  P o p u l a t i o n Number  Right P e c t o r a l F i n 2 3  -~ ** 1  — *» 2  3  P o p u l a t i o n Number  L a t e r a l Line O s s i c l e s 2  --  3  —  k  — V  — 2  3  P o p u l a t i o n Number  Vertebrae 2  —  3  4  **  — 1  — 2  ~ 3  P o p u l a t i o n Number  Legend f o r Table V  Population  Number  Locality  1  British  Columbia  2  Juneau,  Alaska  3  Kodiak I s l a n d Shumagin I s l a n d s  5  Attu Island  6  Sea o f Ohhotsk  -177TABLE V S i g n i f i c a n c e M a t r i c e s of I n t e r p o p u l a t i o n V a r i a t i o n i n M e r i s t i c C h a r a c t e r s o f M. polyacanthocephalus (axes i d e n t i c a l , s i g n i f i c a n c e ~ ~ i n d i c a t e d by * * ) .  A.  Spinous D o r s a l F i n  2  —  Ly  **  5  —  6  3  1 2  k  5  P o p u l a t i o n Number  B.  Second D o r s a l F i n  2 3  — —  —  k  —  —  6  —  5  **  1  2  —  3  h  5  P o p u l a t i o n Number C.  Anal F i n  2 3  ** **  /  * *  f  5  6  **  —  ** —  1 2  —  —  3  —  4  —  5  P o p u l a t i o n Number  Left Pectoral F i n 2 3 4 5  ** ** ** **  6  —  ——  -  1 2 3 4 5 P o p u l a t i o n Number  Right P e c t o r a l F i n 2 3  ij. 5  6  — **  **  .**  -  —  1 2 3 4 5 P o p u l a t i o n Number  Lateral Line Ossicles 2 3 ^  — —  —  **  **  —  -  5  6  1 2 3 4 5 P o p u l a t i o n Number  Vertebrae 2  —  4 5  ** —  6  **  —  — —  —  —  —  —  —  1 2 3 4 5 P o p u l a t i o n Number  -179-  Legend f o r Table  P o p u l a t i o n Number  VI  Locality  1  n o r t h e a s t Bering Sea  2  Point Barrow  3  Mackenzie R i v e r Mouth  k  Cambridge Bay  5  E a s t e r n Hudson Bay  6  southern Ellesmere I s l a n d  -180TABLE VI Significance Matrices of Interpopulation V a r i a t i o n i n M e r i s t i c C h a r a c t e r s o f M. q u a d r i c o r n i s (axes i d e n t i c a l , s i g n i f i c a n c e i n d i c a t e d Toy * * ) .  A.  B.  Spinous D o r s a l F i n 2  —  4 5 6  ~  Second D o r s a l F i n 2 4 5 6  C.  1 2 3 4 5 P o p u l a t i o n Number  — — — — ** ~«... — 1 2 3 4 5 P o p u l a t i o n Number  Anal F i n 2 4 5 6  — —  —  **  — 1 2 3 4 5 P o p u l a t i o n Number  Left Pectoral F i n 2 3 4 5  **  **  **  g  ** ** ** __ 1 2  3  4  5  P o p u l a t i o n Number Right P e c t o r a l F i n 2 3 4 5 6  — .  —  ** ** *• 1  —  ** **  **  2  **  3  4  5  P o p u l a t i o n Number  Vertebrae 2 3 5  g  **  **  ** **  ** #*  ** ** 1  2  «... 3  ** 4  5  P o p u l a t i o n Number  -182Legend f o r Table  P o p u l a t i o n Number  VII  Locality  1  Kodiak I s l a n d  2  Shumagin  3  southeast B e r i n g Sea  k  Chukchi Sea  •5  Mackenzie R i v e r mouth  6  e a s t e r n Hudson Bay  7  F r o b i s h e r Bay  8  Labrador  9  midwestern Newfoundland  Islands  10  Nova S c o t i a  11  B r i t a i n and Europe  12  southern Main and Cape Cod  13  St. Lawrence Estuary  -183TABLE VII Significance Matrices of Interpopulation Variation i n M e r i s t i c C h a r a c t e r s o f M. * s c o r p i u s (axe;;; i d e n t i c a l , s i g n i f i c a n c e i n d i c a t e d by * * ) . M  A.  Spinous D o r s a l F i n  2 3 if  •5 6 7  **  *#  8 9 10 11 12 13  B.  *#  ... ._  ** **  **  3  4  5  ._  *«  «...  6  7  8  _.. .  9 10 11 12  P o p u l a t i o n Number  Second D o r s a l F i n  2 3 5 6 7 8 9 10 11 12 13  • —  ** *# #* »* #*  —  **  •* *«  «*  *«  **  *«  *«  **  .  ._  2  3  __ if  **  ** '**  5  6  7  P o p u l a t i o n Number  8  «#  9 10 11 12  -16V-  C.  Anal F i n 2 4 6 7 8 q  H  12 13  —  **  *»  **  —  -— —  — — ** *#  —  —  —  --  **  •**  —  --  1  2  ~ —  — —  —  ** ** ** ** ** ** ** **  -— 3  — — 4  — — 5  — — 6  — — _«. — 7 8  -— 9  — «._ 10  •» ** 11  __ 12  ** ** 11  — 12  ** ** 11  — 12  P o p u l a t i o n Number D.  Left Pectoral F i n 2  —  4 5 6 7 8 9 10 11 12 13  — — —  — — **  — — —  — — — — — * * »* — — — — 1 2  — ~ ** — — 3  — — — — »* ~. k  — — — ** — ~ 5  — — — — — — — ** ** — — — 6 7  — — #*  ~ **  — 8  — 9  ** — — 10  — ** -~ 8  — ** ~ — 9  ** — ~ 10  P o p u l a t i o n Number  E.  Right P e c t o r a l F i n 2  —  4 5 6 7 8 9 10 11 12 13  — — —  — — —  — —  — — — ** — 1  — — ** — 2  —  — — —  —  — ** —  ~ ** —  — ** —  — —  —  — -** ** — -— 3 k 5 6 7 P o p u l a t i o n Number  -185L a t e r a l Line Ossicles  CO  2 3 4 5 6 7  9 10 11 12 13  —  ** •* ** ** ** **  ** ** ** **  _.„  _ _  **  **  1  2  ** ** ** ** •*  ** ** ** ** **  ** ** •* ** **  4  5  6  ** ** ** ** **  6 3 4 5 P o p u l a t i o n Number  Vertebrae 3 4 5 6 7  —  ** ** ** **  2  3  P o p u l a t i o n Number  -186-  Legend f o r Table  P o p u l a t i o n Number  VIII  Locality  1  northern Bering Sea  2  P o i n t Barrow  3  .  Mackenzie R i v e r Mouth  k  Hudson Bay  3  Baffin Island  6  Labrador  7  Ungava Bay  -187TABLE VIII Significance Matrices of Interpopulation Variation i n . M e r i s t i c C h a r a c t e r s o f M. s c o r p i o i d e s (axes i d e n t i c a l , s i g n i f i c a n c e i n d i c a t e d by . * * ) .  A.  B.  C.  Spinous D o r s a l F i n 2  —  4 5 6 7  —  —  —  - — — — — — — — — 1 2 3 4 5 6 P o p u l a t i o n Number  Second D o r s a l F i n 2  —  4 5 6 7  — — —  — — —  — — —  — —  —  2 3 4 5 6 P o p u l a t i o n Number  1  Anal F i n 2 4 5 6 7  —  — 1  — — — ~ — — — 2 3 4 5 6 P o p u l a t i o n Number  -188D.  Left Pectoral F i n 2  —  4 5 6 7  — — — — 1 2  — — 3  — — 4  — — 5  — 6  P o p u l a t i o n Number  E.  F.  Eight Pectoral F i n 2  —  4 5 6 7  —  —  — -•-  — 1  — — — — — 2 3 4 5 6 P o p u l a t i o n Number  L a t e r a l Line O s s i c l e s 2  --  4 5 6 7  — — **  — —  — —  ~ **  ** **  1  2  3  4  5  6  P o p u l a t i o n Number G.  Vertebrae 2  —  7  ~ 1  — ~ 2 5 P o p u l a t i o n Number  189-  Legend f o r Table IX  1  M. aeneus  2  M. edomius  3  M. ensiger  k  M. 1aok  5  M. niger  6  M,  7  M. polyacanthocephalus  8  M. quadricornis  9  M. raninus  r  octodecemspinosus  10  M. scorpius (European)  11  M. scorpius (Gulf of Alaska)  12  M. scorpius ( A r c t i c )  13  M. scorpioides  Ik  M.  stelleri  -190TABLE IX S i g n i f i c a n c e M a t r i c e s of I n t e r s p e c i f i c D i f f e r e n c e s i n M e r i s t i c Characters (axes i d e n t i c a l , s i g n i f i c a n c e i n d i cated by * * ) .  Spinous D o r s a l F i n 2  —  4 5 6 7 8 q 10 11 12 1^ 14  -— ** ** ** ** -** **  1  — —  — —  —  —  **  ** **  -—  --  2  3  ** ** **  4  ** ** ** ** -** *•  5  ** **  ** ** --  ** ** ** ** 6  ** ** ** ** ** **  ** ** ** 7  8  ** **  ** 9  10  11 **  **  **  ** ** 10  11  **  12  13  P o p u l a t i o n Number  Second D o r s a l F i n 2  —  4 5  ** **  g  7 8 q 10 11 12 13 1^  —  1 2  **  ** ** _«.  **  — ** ** ** **  — **  — ... —  _ „ * * ** ** — ** ** ** ** ** ** 3  4  * * » * ** ** ** ** ** **  **  ** ** ** **  ** ** ** **  6  7  8  **  **  ** 5  P o p u l a t i o n Number  -**  9  **  12  13  -191C.  Anal F i n 2 3 5 6 7  9  10 11 12 13 14  D.  **  ——  —  **  #*  ** *# _ _ ** ** __ **  __.  ** ** ** **  ...»  —  1  »* **  __ **  2  __  **  —  ** ** ** ** ** ** ** **  ** ** **  __ ** ** ** **  ** ** ** ** ** **  ** ** .... **  *# 6  7 5 3 4 P o p u l a t i o n Number  .  ** *# ** ** ** ** 8  ** ** ** **  9  ** **  _ _  **  **  ** **  10  11  12  ** #* ** *# 10  ** ** 11  **  Left Pectoral F i n 2 3 4 5 6 7 8  9  10 ll 12 13 14  ** ** ** ** ** ** ** ** ** *# **  .... ** 1  —  ....  ** **  ** **  **  *# ** **  ** ** **  ** __  **  ** ** ** ** ** ** ** *»  **  ** ** ** _ _  ** *• ** ** ** * * *# _ _ ** ** ** 6 7 3 4 5 P o p u l a t i o n Number mm  2  ** **  H  *# _ _  ** ** ** ** 8  **  .... **  9  12  ** 13  -192E.  Right P e c t o r a l F i n 2 3 4 6 7 8 9 10 11 12 13 14  F.  ** ** ** ** ** **  *•*  ** ** ** ** **  —  -x- -* —_  **  __  *# **  **  ** ** **  ** ** **  _ _  ** ** ** * * ** ** ** ** ** ** _ _ 6 7 3 4 5 P o p u l a t i o n Number  **  1  2  ** ** **  ** ** ** ** ** **  ** **  **  __  **  ** #* ** 8  **  .... ** 9  **  #* ** 10  •** ** 11  **  _  12  Lateral Line Ossicles 2 3 4 5 6 7 8 9 10 11 12 13 14  ** ** ** ** ** ** ** ** ** ** ** ** ** 1  .... _ _ —  ** ** —  ** _  _  ** _  _  2  **  .... 3  ** ** ** ** ** ** ** ** 4  ** •* ** ** ** ** ** ** 5  **  ** ** **  _ _  ** _  _  ** —  #* -  ** 6  _ —  ** 7  ** »* ** ** ** *» 8  *# „_ ** 9  P o p u l a t i o n Number G.  **  Vertebrae 4 5 6 7 8 9 11 12 13  ** ** ** ** ** ** ** ** ** 1  ** ** ** ** ** ** ** 4  ** ** ** **  ** ** **  **  ** **  .... .._ .6  ** ** ** ** **  ** ** ** **  8  *# ** **  7 5 9 P o p u l a t i o n Number  ** 11  **  12  »* ** ** ** 10  ** ** ii  12  13  -193-  TABLE Significance Matrices w i t h i n Species (axes by * * ) . M.  XVI  o f S t a n d a r d i z e d Myogen Band M o b i l i t y identical, significance indicated  aeneus  2  —  4 5  — -  -2 —  —  ~  -4  — — - 1 - 2  -  — -3  Band Number  -4  8  "  9  —  ZZ ZZ ZZ ZZ ZZ — —  —  —  —  —  —  10  —  —  —  —  —  —  —  7 ZZ  ZZ  1  ZZ  2  ZZ  3  ZZ  4  5  6  —  — 7  — 8  9  Band Number M.  ensiger  2  —  4  —  -2  5 7 8 9  — — — 1  —  —  —  —  — — —  — —  2  -1  ^ — —  — —  — —  ** ~  4  5  6  7  —  8  Band Number  M. 2 3 4 5 6 7 8  **  9 10 1  2  3  4  5  -2  -3  Band Number  — 3  —  6  Band Number  7  8  9  -194D.  M.  niger  -2 mm ^  — mm mm  -1  mm mm  -2  -3  -4  Band Number  1 2  3  4  5  6  7  — -  —  Band Number  E.  M. o c t o d e c emspino s u s  2  —  if  5 6 7 8  —• — — — —  —  — 1  — 3  —  9 10  —  — 2  — 4  — — — -5 6 7 8 9  —  Band Number F.  M.  polyacanthocephalus  2  —  if  —  —  5 r  ^  8 9  —  _  -2  —  -if  —  —  —  -1  -2  -3  _  -4  ZZ ZZ ZZ ZZ ZZ ZZ — Band Number  1  2  —  — — 3 ifNumber 5 6 Band  — 7  — 8  j  -195-  G.  M.  quadricornis  2 4  ~ -  5  -  6  —  7  -  -  —  —  8 9 10  — 1  —  —  2  —  —  3  —  4  —  5  —  6  7  — 8  9  Band Number H.  M. raninus 2  —  3  —  1+  —  —  5  -  6  —  —  —  —  7  ~  —  —  —  —  —  —  —  —  —  2  3  —  —  — —  8 9  1  4  5  — 6  — 7  — 8  Band Number I,  M. 'scorpius**(Arctic) -2  —  -4 -1  -2  -3  Band Number  Band Number  -4  -196-  J.  M. s c o r p i o i d e s 2 3 4 5 6 7 8 9 10  K.  — — -  ~ —  —  — 1  — 2  — -  — — — — — — — — — — — 3 4 5 6 Band Number  — — 7  —  — 8 9  M. "sc o r p i u s *'( European) 2  L.  — — — —  -2  —  —  4 5 6  —  —  —  -1  —  —  __  Band Number  7 8  — — — 1 2  3 4 5 6 Band Number  7  M. s t e l l e r i 2 4 5 6 7 8 9  — — —  — —  — —  — —  -  — —  — -—  3  4  5  — —  —  —  io — — — — — — — — — 1 2  Band Number  6  7  8  9  -2  -3  -197Legend f o r Tables XVII andXEX ( f o r biochemical  Species No.  Species Name  1  M. aeneus  2  M. ensiger  3  M. .jaok  k  section)  Species Code  A .'  EN J  .M. n i g e r '  .  N  5  M. octodecemspinosus  0  6  M. polyacanthocephalus  P  7  M. q u a d r i c o r n i s  Q  8  M. r a n i n u s  R  9  M.^scorpius^(Arctic)  SCA  10  •  .  •  • M. s c o r p i o i d e s  SD  11  M. s c o r p i u s (European)  SCE  12  M. s t e l l e r i  ST.  <,  M  -198TABLE Significance Matrices i t i e s between S p e c i e s i n d i c a t e d by **).  XVIi  o f S t a n d a r d i z e d Myogen Band M o b i l (axes identical, significance  Myogen Band 2  2  — 2.  3  Species  Number  Myogen Band 3  k 6 7 9 10 11 12  ~ —  —  —  — — — 1  — — — k  — — — 5  Species  — — — — 6  Number  Myogen Band k  3 8 12  — — — 2  — — 3  Species  ~ 8 Number  Myogen Band 5  10  — 7 Species  Number  — — — ~ 7  — — — 9  ~ — 10  — 11  -199E.  Myogen Band 6  2  3 i,  6  —  — —  —  — —  —  —  —  9 — — 11 . . . -— — 12 — — — — — — — 1 2 3 4 6 9 10 Species Number  F.  Myogen Band 7  5 — 8 -- -- — 9 ** __ 10 — — — — — 1 5 7 8 9 Species Number  G.  Myogen Band 8  i ii  12  3  k  6 11  Species Number  H.  Myogen Band 9  2 — 5 — — 8 10 — — 12 — —  — —  — —  —  1 2 5 8 10 Species Number  -200I.  Myogen Band 11  2  —  k  —  5  —  —  — —  —  6 7  10 11 12  J.  -  —  — — —  — — —  — — —  -1 2 3 k Species Number  ~ — —  — — — 5  — — — 6  7  ~ — 10  — 11  Myogen Band 12 5 6  — ~  —  7 8 9  10  —  —  —  —  —  —  —  —  3  5  6  —  — 7  — 8  9  Species Number K.  Myogen Band 13 .2  —  k  —  —•  —  5  —  —  —  6 7 8 9  10 11 12  —  .  — —  -- — — — — — — — — — — — — — — 1 2 3 k 5 Species Number  —  — — —  6  —  ~  — — --  -— —  — — —  7  8  9  ~ 10  — 11  -201L.  Myogen Band 14 2 3  — —  —  k  5 6 7 8 9 10 11 12  — —  — —  —  — 1  — 2  — 3  — — — 4  ,— ^-  —  — — — 5  — — — 6  — — — 7  — — — 8  — — — 9  — — 10  — 11  — — 10  — 11  — — 10  — 11  Species Number M.  Myogen Band 15 2 4 5 6 7 8 9 10 11 12  N.  — — —  — --  — —  —  — — — — — — — — — — — — — — — — — -— -— -— — — — — — — — — — — — 1 2 3 4 5 6 7 8 9 Species Number  Myogen Band 16 2 4 5  6  7 8 9 10 11 12  — —  —  —  —  — -  —  —  —  —  —  --  —  —  — --  — —  —  — — — — — — — — — — — — -— — — — — — — — — — — — — 1 2 3 4 5 6 7 8 9 Species Number  Myogen Band 1'8 7  — 1 Species Number  Myogen Band - 1 2  —  ZZ —  6  9 11  .  —  — * * __ * * 1 2 4 - 6 9 Species Number  Myogen Band - 2 2 6 9 11  —  ZZ ZZ —  — — 1  -2  — 4  — 6  — 9  Species Number Myogen Band - 3 2 6 9 11  —  ZZ ZZ — — ** 1  -  2  ** 4  ** 6  Species Number Myogen Band - 4 4 6  9  — —  —  1  —  —  4  — 6  Species Number  ** 9  -203TABLE XIX S i g n i f i c a n c e M a t r i c e s o f Percent Composition o f M.D.H. Bands between Species (axes i d e n t i c a l , s i g n i f i c a n c e i n d i c a t e d by * * ) .  A.  M a l i c Dehydrogenase Band 3 3 6 7 8 9 10 11 12  B.  —  " II — —  -  -  —  — — ~ — — — — — — — — — — — — 1 3 5 6 7 Species Number  — — — 8  -— — 9  — — 10  — 11  — — — —  — — — ~  — — —  M a l i c Dehydrogenase Band k 2 k  5 6 7 8 9 10 11 12  — —  -  — — — —  —  —  —  — — — — — — — — — -— -— — — — — 1 2 3 4 Species Number  —  —  — — -- — — ~ 5 6 7  8  9  — — 10  — 11  -204C.  M a l i c Dehydrogenase Band 5 2 3  4 5 6 7 8 9 10 11 12  D.  ** ** — ~ _ _  **  — ** —  #*• — —  »* ** ** ** **  — —  **  **  — — — ** — 1 2 3 4 5 S p e c i e s Number  — __,  — 6  —  — 7  __  — 8  — 9  — — 10  — 11  M a l i c Dehydrogenase Band 6 3 5 6 7 8 9 10 11 12  — — — — — — — — — — — — — — — — — — — — — — — -- — «.« — — — -— — — -- — 1 3 5 6 7 8 S p e c i e s Number  — — — —  — — ~ 9  — 10  — 11  -205-  APPENDIX B  MATERIALS EXAMINED  -206MATEPJALS EXAMINED IN BIOCHEMICAL'INVESTIGATION M. aeneus 22 specimens:  Canada,  southeastern  Newfoundland  M. ensiger 1  specimen: Japan, Mishike  M. .jaok 2 specimens:  Japan, Mashike  3 specimens:  Japan, Otaru  2 specimens:  Japan, Y o i c h i  M. n i g e r 7 specimens:  U.S.A., Alaska, S t . Paul I s l a n d  M. octodecemspinosus 21 specimens:  Canada,  southeastern  Newfoundland  M. polyacanthocephalus 4 specimens:  Canada, B. C , Vancouver  6 specimens:  Canada, B. C , Queen C h a r l o t t e I s l a n d s , Masset  5 specimens:  U.S.A., Alaska, Auke Bay  M. q u a d r i c o r n i s 1  specimen:  Canada, N.W.T., Cambridge Bay  2 specimens:  Canada, Hudson Bay, near C h u r c h i l l  7 specimens:  U.S.A., Alaska, P o i n t  Barrow  M. r a n i n u s 1  specimen:  4 specimens:  Japan, Otaru Japan, Mashike  M. s c o r p i o i d e s 12 specimens: 5 specimens:  Canada, N.W.T., B a f f i n I s l a n d , F r o b i s h e r Bay Canada, Hudson Bay, near C h u r c h i l l  -2077 specimens:  U.S.A., Alaska,  S t . Lawrence  Island  scorpius 12 specimens:  Canada, N.W.T., B a f f i n  Island,  Frobisher  Bay 9 specimens:  Canada, N.W.T., V i c t o r i a I s l a n d ,  Cambridge  Bay if specimens: 16 specimens:  Scotland, Canada,  I s l e o f Cumbrae southeastern  stelleri if specimens:  Japan,  Muroran  Newfoundland  -208MATERIALS EXAMINED IN MORPHOLOGICAL INVESTIGATION  To  supplement m a t e r i a l  Fisheries,  University  i n the museum o f the I n s t i t u t e o f  o f B r i t i s h Columbia, many museums k i n d l y  made t h e i r c o l l e c t i o n s a v a i l a b l e  f o r study.  The f o l l o w i n g  a b b r e v i a t i o n s are used to denote the museum l o c a t i o n o f specimens examined:  AB - F i s h C o l l e c t i o n , Bureau of Commercial F i s h e r i e s , Auke Bay Laboratory, A l a s k a BC  - F i s h C o l l e c t i o n , I n s t i t u t e of F i s h e r i e s ,  University  of B r i t i s h Columbia NMC - N a t i o n a l Museum o f Canada, Ottawa ROM - Royal O n t a r i o Museum, Toronto SU - N a t u r a l H i s t o r y  Museum, Stanford U n i v e r s i t y ,  Palo  Alto, C a l i f o r n i a UMMZ - U n i v e r s i t y  o f Michigan Museum o f Zoology, Ann Arbor,  Michigan USNM - United S t a t e s N a t i o n a l Museum, Smithsonian I n s t i t u t i o n , Washington, D. C.  \  -209UW - F i s h C o l l e c t i o n , C o l l e g e o f F i s h e r i e s , U n i v e r s i t y o f Washington, S e a t t l e .  M. aeneus NMC- 6 6 - 1 6 8  Canada,' Newfoundland  5 1 ° 1 0 N . 57°05'W.  NMC 6 6 - 1 8 1  Canada, Newfoundland  5 0 ° 5 1 N . 57°02«W.  NMC 6 6 - 1 6 6  Canada, Newfoundland  51°02'N. 57°03*W.  NMC 6 6 - 2 0 3  Canada, Newfoundland  47°35'N. 59°10'W.  NMC 6 0 - 2 6 5  Canada, Quebec, S t . Lawrence Estuary  ,  I  47°34'N. 69°51'W. NMC 6 0 - 2 6 3  Canada, Quebec, S t . Lawrence Estuary 47°34'N. 69°51'W.  NMC 6 0 - 2 6 4  Canada, Quebec, S t . Lawrence Estuary 47°34tN.  NMC 6 0 - 2 6 6  69°51'W.  Canada, Quebec, S t . Lawrence Estuary 47°34»N.  NMC 6 0 - 2 6 0 B  ,  Canada, Quebec, S t . Lawrence Estuary 47°34*N.  NMC 60-265A  69°51 W.  69°51 W. ,  Canada, Quebec, S t . Lawrence Estuary 47°34*N. 69°51'W.  NMC 60-265B  Canada, Quebec, S t . Lawrence Estuary 47°34'N. 69°51'W.  UMMZ 1 4 0 5 5 5 UMMZ 89218  U.S.A., Massachusetts U.S.A., Massachusetts  41°39'N. 70°l6'W. 41°32'N. 70 39'W. o  UMMZ 1 0 3 8 0 9  U.S.A., New York, Long I s l a n d  41°02'N. 71°57'W.  UMMZ 104013  U.S.A., New York, Long I s l a n d  40°53*N. 73°31'W.  UMMZ 1 0 3 8 0 8  U.S.A., New York, Long I s l a n d  4 0 4 9 » N . 73°43 W. 0  ,  -210UMMZ 103810  U.S.A., New York, Long I s l a n d  40°59'N. 72°50«W.  UMMZ 103811  U.S.A., New York, Long I s l a n d  40°59'N. 72°50«W.  M. edomius SU 7707  (type)  Japan, Edomo  A2°21'N. 140°59'E.  USNM 50919  (cotype)  USNM 71583  Japan, Hokkaido, Muroran  41 Zf6'N. l Z + o V ^ E .  Japan, Hakodate  0  M. e n s i g e r SU 7709  (type)  SU 18645  Japan  USNM 71540  !f6°0VN.  Japan  USNM 150366  BC 66-109  Zfl 46'N. W ^ Z + ' E . 0  Japan, Hakodate  142°29 E. f  42°N. 144°00'E.  No data (Japan?)  Japan, o f f T e u r i I s l a n d  Z / 26 N. L46°11'E. 0  f  ,  f  M. .jaok SU 5743  U.S.S.R., Kamchatka Penn., P e t r o p a u l s k i Harbour  SU 5584  Canada, N.W.T., H e r s c h e l I s l a n d  SU 2970  B e r i n g Sea  58°39'N. 157°l8'W.  SU 2971 Bering Sea  58°45'N. 160°28'W.  USNM 27972  69°34'N. 139°00'W.  U.S.A., Alaska, E s c h s c h o l t z Bay, Chanisso I s l a n d  USNM 105118  U.S.S.R., Peter the Great Bay  USNM 126858  U.S.S.R., P e t r o p a u l s k i Harbour  USNM 125992  U.S.S.R., T a p i e n s k i Harbour  USNM 105248  U.S.S.R., Kamchatka  BC 66-182  Japan, o f f Kushire  BC 63-670  Okhotsk Sea  43°N. 132°E.  50°03'N. 1 5 8 ° 4 3 E  53°10'N. 159°14'E.  53°10«N. l60°00'E.  52°43'N. 155°24'E.  9  0  UW 1L250  U.S.A., Alaska, Norton Sound  UW .16385  U.S.A., Alaska, Norton Sound  BC 6 3 - 6 8 4  B e r i n g Sea  60°54'N. 179°44'W.  BC 6 3 - 6 9 0  B e r i n g Sea  60°29'N. 178°44'W.  BC 6 3 - 3 9 8  B e r i n g Sea  60°29'N. 1 7 6 ° 3 2 » W .  BC ' 6 2 - 5 6 0  U.S.A., Alaska, P r i b i l o f I s l a n d s , 1 3 0 m i l e s N.E, St. Paul I s l a n d  BC 6 1 - 3  U.S.A., Alaska, Togiak Bay, near Summit I s l a n d  BC 5 8 - 3 0 6  58°30'N. 157°30'W.  BC 6 3 - 1 4 3 3  U.S.A., Alaska, Izembek Bay  BC 6 3 - 1 4 3 8  U.S.A., Alaska, Izembek Bay  BC 6 2 - 5 4 6  U.S.A., A l a s k a  5 5 ° 0 0 ' 3 0 N . l63°02 00"W.  BC 6 2 - 4 9 8  U.S.A., A l a s k a  5 4 ° 5 4 ' 0 0 " N . l63°00'W.  BC 6 2 - 4 4 0  U.S.A., A l a s k a  5 4 ° 3 3 ' 3 0 N . •.l63°29'30"W.  BC 6 3 - 1 0 7 9  n  ,  11  U.S.A., Alaska, Cold Bay  BC 6 2 - 7 1 9  U.S.A., A l a s k a  55°13'30"N.  l6l 47'00"W.  BC 6 2 - 4 8 9  U.S.A., A l a s k a  5 5 ° 3 6 0 0 » N . l6l°28»30"W.  BC 6 2 - 6 5 7  U.S.A., A l a s k a  54°Z 8'N. 160°00»W. ,  BC 6 3 - 5 0 5  U.S.A., A l a s k a  5 5 ° 1 6 N . 159°40'W.  BC 62-676  U.S.A., A l a s k a  57°36'N. 154°30'W.  BC 6 2 - 4 8 1  U.S.A., A l a s k a  56°45'N. 154°15'W.  BC 6 2 - 6 6 6  U.S.A., A l a s k a  58°30'N. 153°30'W.  BC 6 2 - 6 8 6  U.S.A., A l a s k a  58°36»N. 1 5 3 ° 3 0 « W .  BC 6 5 - 1 5 8  U.S.A., A l a s k a  5 8 ° 5 5 . 7 N . 152°57.3'W.  BC 6 2 - 6 5 5  U.S.A., A l a s k a  54°54'N. l63°00'W.  BC 62-453  U.S.A., A l a s k a  57°09'N. 152°45'W.  BC 6 2 - 6 7 7  U.S.A., Alaska  57°06'N. 152°30'W.  O  ,  f  ,  f  -212BC 6 3 - 1 0 2 6  U.S.A.j Alaska, Region I d .  BC 6 1 - 5 1 5  U.S.A., Alaska, Kachemak Bay  BC 6 1 - 5 1 7  U.S.A., A l a s k a , Kachemak Bay, o f f Homer S p i t  BC 62-998  U.S.A., A l a s k a , Kachemak Bay, Aurora Lagoon  BC 6 3 - 1 1 8  U.S.A., Alaska, K a s i t s n a Bay  BC 6 2 - 6 7 8  54°39'N. 150°lf5'W.  2+3-3 J.N. Cobb  Chukchi Sea  67°0/+«N. 163°48'W.  M. n j g e r BC 65-1/+2  U.S.A., Alaska, Amak I s l a n d  BC 6 3 - 1 4 2 0  U.S.A., A l a s k a , B u l d i r I s l a n d  BC 6 3 - I 4 1 3  U.S.A., Alaska, B u l d i r I s l a n d  BC 6 3 - 1 4 5 8  U.S.A., Alaska, S t . Paul I s l a n d  BC 6 3 - 1 4 4 6  U.S.A., A l a s k a , S t . Paul I s l a n d  BC 6 3 - I 4 4 8  U.S.A., Alaska, S t . Paul I s l a n d , S a l t Lagoon  BC 6 5 - 1 4 0  U.S.A., A l a s k a , S t . George I s l a n d  BC 6 3 - 1 4 1 8  U.S.A., A l a s k a , B u l d i r I s l a n d  BC 6 3 - 1 3 0 8  U.S.A., Alaska, Caton I s l a n d  BC 62-939  U.S.A., Alaska, P r i b i l o f I s l a n d , S t . Paul I s l a n d  BC 6 3 - 8 9 3  U.S.A., Alaska, A t t u I s l a n d , A l e r a l Cove  BC 6 3 - 9 0 5  U.S.A., Alaska, Adak, F i n g e r Bay  BC 6 5 - 8  U.S.A., Alaska, Agattu I s l a n d , America Bay  BC 6 3 - 1 0 4 4  U.S.S.R., Medney I s l a n d , S.E. Cape  BC 6 3 - 1 0 4 2  U.S.S.R., Medney I s l a n d , S.E. Cape  BC 6 3 - 1 0 4 3  U.S.S.R., Medney I s l a n d , S.E. Cape  -213M. b c todecemspinosus BC 68-  Canada, New Brunswick, o f f S t . Andrews  NMC 59-322  Canada, New Brunswick  46°42'N. 64°54'W.  NMC 64-38  Canada, Newfoundland  46°30«N. 56 40'W.  NMC 64-36  Canada, Newfoundland  46°30«N. 56°40'W.  NMC 64-37  Canada, Newfoundland  46°30'N. 56°40'W.  NMC 64-35  Canada, Newfoundland  46°30'N. 56°40 W.  o  !  NMC 66-141  Canada, Newfoundland  i+8°29'N. 58°26»W.  NMC 66-159  Canada, Newfoundland  49°55'N. 57°46'W.  NMC 66-171  Canada, Newfoundland  51°22»N. 56°34'W.  NMC 66-134  Canada, Newfoundland  48°35 N. 58°55*W. f  UMMZ 104023  U.S.A., New York  UMMZ 126214  U.S.A., Massachusetts  UMMZ 64497  40°53»N. 73°31'W.  42°15'N.^O^'W.  U.S.A., Massachusetts  UMMZ 162026  U.S.A., Massachusetts  SO 10248  U.S.A., F l o r i d a  SU 10241  U.S.A., Massachusetts  42°15'N. 70°49'W.  42°37'N. 70°41 W. r  24°34*N. S l ^ ' W . 42°19'N. 40°54»W.  USNM 143491  U.S.A., V i r g i n i a  37°43'N. 75°35'W.  USNM 45212  U.S.A., New J e r s e y  USNM 188299  U.S.A., New York  40°45'N. 73°40'W.  USNM 147811  U.S.A., V i r g i n i a  37°17'N. 76°01'W.  39°l6'N. 74°35'W.  USNM 15676  U.S.A., Massachusetts  41°30 N. 71°19'W.  USNM 15680  U.S.A., Massachusetts  41°30'N. 71°19'W.  I  -214M. polyacanthocephalus AB 62-15  U.S.A., A l a s k a  56°23'N. 134°38'W.  AB 62-89  U.S.A., A l a s k a  56°23'N. 134°38'W.  AB 6 2 - 2 0 2 AB 6 2 - 5 6  58°22'N. 134°29'W.  U.S.A., A l a s k a  56°23'N.  U.S.A., Alaska  134°38»W.  BC 6 3 - 3 9 6  Okhotsk Sea  52°20'N.  155°30«E.  BC 6 3 - 4 0 2  Okhotsk Sea  52°30'N.  155°10'E.  BC 6 3 - 1 0 4 2  U.S.S.R., Medney I s l a n d , S.E. Cape  BC 6 3 - 8 8 0  U.S.A., Alaska, A t t u I s l a n d , east o f Casco P o i n t  BC 6 3 - 8 8 3  U.S.A., Alaska, A t t u I s l a n d , east of Casco Point  BC 6 3 - 8 8 5  U.S.A., Alaska, A t t u I s l a n d , near Murder P o i n t  BC 6 3 - 8 8 6  U.S.A., Alaska,  BC 6 3 - 8 8 8  U.S.A., Alaska, A t t u I s l a n d , Massacre Bay  BC 6 3 - 8 9 3  U.S.A., Alaska, A t t u I s l a n d , A l e x a l  BC 6 3 - 8 9 5  U.S.A., Alaska,  BC 6 3 - 9 0 4  U.S.A., Alaska, A t t u I s l a n d , Halekot Bay  A t t u I s l a n d , near Murder P o i n t  Cove  A t t u I s l a n d , Casco P o i n t  BC 6 3 - 1 0 0 4  U.S.A., Alaska, A l e x a l P o i n t  BC 6 3 - 1 0 0 6  U.S.A., Alaska, A t t u I s l a n d , north shore C h i c h i g o f Harbour  BC 6 3 - 1 0 0 9  U.S.A., Alaska, A t t u I s l a n d , Massacre Bay  BC 6 3 - 1 0 1 3  U.S.A., Alaska, A t t u I s l a n d , Massacre Bay  BC 6 3 - 9 0 0  U.S.A., Alaska,  BC 6 3 - 9 1 1  U.S.A., Alaska, K i s k a I s l a n d  B.C. 6 3 - 3 0 3  Shemya I s l a n d , S.W. shore  U.S.A., Alaska, Amchitka I s l a n d , S t . Makarius Point  BC 63-1019  U.S.A., Alaska,  Amchitka I s l a n d , Makarius Bay  BC 6 3 - 1 0 1 4  U.S.A., Alaska, Amchitka I s l a n d  -215BC 63-1018  U.S.A., A l a s k a , Amchitka I s l a n d , C y r i l Cove  BC 63-1086  U.S.A., Alaska, Amchitka I s l a n d , K i r i l o f P o i n t  BC 63-903  U.S.A., A l a s k a , Adak I s l a n d , F i n g e r Bay  BC 63-905  U.S.A., A l a s k a , Adak I s l a n d , F i n g e r Bay  BC 63-906  U.S.A., A l a s k a , Adak I s l a n d , Kulak Bay  BC 63-1150  U.S.A., Alaska, Adak I s l a n d , Zeto P o i n t  BC 63-1025  U.S.A., Alaska, S i t k i n I s l a n d , S i t k i n Sand Bay  BC 63-919  U.S.A., Alaska, I g i t k i n  Islands  BC 63-1068  U.S.A., Alaska, Umnak I s l a n d , N i k o l s k i Bay  BC 63-1069  U.S.A., Alaska, Umnak I s l a n d , Kelp P o i n t  BC 63-1070  U.S.A., Alaska, Umnak I s l a n d , N i k o l s k i Bay  BC 63-1071  U.S.A., Alaska, Umnak I s l a n d , N i k o l s k i Bay  BC 63-1073  U.S.A., Alaska, Umnak I s l a n d , N i k o l s k i Bay  BC 63-1076  U.S.A., Alaska, Umnak I s l a n d , O t t e r P o i n t  BC 63-1335  U.S.A., Alaska, Unalaska I s l a n d  BC 63-1339  U.S.A., Alaska, Unalaska I s l a n d , Dutch Harbour  BC 56-38  U.S.A., A l a s k a , Unalaska I s l a n d , Dutch Harbour  BC 63-1375  U.S.A., Alaska, Unalaska I s l a n d , Dutch Harbour  BC 63-1302  U.S.A., A l a s k a , Caton I s l a n d  BC 63-1311  U.S.A., A l a s k a  BC 62-502  U.S.A., A l a s k a  54°07 00"N. 164°58 18 W. ,  ,  ,,  54°05 50"N. 164°28'00"W. I  BC 63-1430  U.S.A., Alaska, Izembek Bay  BC 63-1433  U.S.A., A l a s k a , Izembek Bay  BC 63-1435  U.S.A., Alaska, Izembek Bay, B l a i n e P o i n t  BC 63-1439  U.S.A., Alaska, Izembek Bay  BC 63-1438  U.S.A., Alaska, Cold Bay, Kelp P o i n t  BC 63-1302  U.S.A., Alaska, Caton I s l a n d  BC 63-1306  U.S.A., Alaska, Caton I s l a n d  -216BC  63- 1338  U.S.A. , A l a s k a , Caton" I s l a n d  BC 62- 719  U.S.A., A l a s k a  55°13 30"N. l6l047tOO»W.  BC 62- 454  U.S.A., A l a s k a  54°54«oo"N. i61 oo'00»w.  BC 62- 678  U.S.A., A l a s k a  54°39'N. 160°45'W.  BC 62-488  U.S.A., A l a s k a  55 .24'00"N. 160 30'00 W.  BC  62-451 U.S.A., A l a s k a  I  0  ?  0  U  55°02'N. i6o°i8'W.  BC 62- 657  U.S.A., A l a s k a  54°48'N. 160°30'W.  BC 62- 547  U.S.A., A l a s k a  54°15 40"N. l6o°oi'30"W.  BC 62- 499  U.S.A., A l a s k a  55°30'30 N. 159°43«00"W.  BC 63- 1303  ,  ,,  U.S.A. , A l a s k a , Shumagin I s l a n d s , L i t t l e  Kiniuji  Island BC 63- 1299  U.S.A. , A l a s k a , Simeonof I s l a n d  BC 63- 1301  U.S.A. , A l a s k a , Simeonof I s l a n d  BC 63- 1376  U.S.A. , A l a s k a , Simeonof I s l a n d  BC 62- 528  U.S.A., A l a s k a  54°54'N. 158°30'W.  BC 62- 500  U.S.A., A l a s k a  55°36'00"N. 158°30«00"W.  BC 62- 661 U.S.A., A l a s k a  55°42»N. 158°00'W.  BC 62- 484  56°31'N. 157°40'W. .  U.S.A., A l a s k a  BC 62- 651 U.S.A., A l a s k a BC 63- 1164  56°48»N. 155°00'W.  U.S.A. , A l a s k a , Kanatck, Portage Bay  62-676  U.S.A., A l a s k a  57°36«N. 154°30'W.  BC 62- 530  U.S.A., A l a s k a  56°42 oo»N. 154°30»00"W.  62-514 62-481  U.S.A., A l a s k a  58°03'N. 154 15»W.  U.S.A., A l a s k a  56°45'N. 154°15'W.  BC 62- 680  U.S.A., A l a s k a  56°48'N. 154°30'W.  BC 62- 683  U.S.A., A l a s k a  56°42'N. 154°30'W.  BC 62- 503  U.S.A., A l a s k a  57 36'00'«N. 154°30'00"W.  BC  BC BC  l  0  0  -21757°42« N. 154°00'W.  BC 62-679  U.S.A.  Alaska  BC 59-485  U.S.A.  Alaska, Kodiak I s l a n d , S p i r i d o n Bay  BC 59-486  U.S.A.  Alaska, Kodiak I s l a n d , Uyak Bay  BC 62-555  U.S.A.  Alaska, Kodiak I s l a n d , Uyak Bay  BC 62-643  U.S.A.  Alaska  54°53'N. 155°00«W.  BC 62-453  U.S.A.  Alaska  57°09' N. 152°45»W.  BC 62-677  U.S.A.  Alaska  57°06' N. 152°30»W.  BC 62-684  U.S.A.  Alaska  57 24' N. 152°30»W.  BC 63-1026  U.S.A  , Alaska, Region I s l a n d  BC 63-1027  U.S.A  , Alaska, Kodiak I s l a n d , Kodiak Harbour  BC 63-IO32  U.S.A  , Alaska, Kodiak I s l a n d , C h i n i a k Bay  0  BC 63-660  U.S.A.  Alaska  BC 58-209  U.S.A.  Alaska, Afognak I s l a n d , K i t o i Bay  BC 61-520  U.S.A.  Alaska, Kachemak Bay  BC 61-521  U.S.A.  Alaska, Kachemak Bay  BC 62-991  U.S.A.  Alaska, Hachemak Bay, K a s i t s n a Bay  BC 62-995  U.S.A.  Alaska, Upper Kachemak Bay, Homer S p i t  BC 62-998  U.S.A.  Alaska, Upper Kachemak Bay, Tulka Bay  BC 63-109  U.S.A.  Alaska  BC 63-118  U.S.A.  Alaska, Kachemak Bay, K a s i t s n a Bay  BC 63-128  U.S.A.  Alaska,. E l r i n g t o n I s l a n d  BC 63-484  U.S.A.  Alaska, Galena Bay  BC 63-431  U.S.A.  Alaska, P r i n c e W i l l i a m I s l a n d , near 01sen  BC 63-474  U.S.A.  Alaska, P r i n c e W i l l i a m I s l a n d , near 01sen  BC 63-385  U.S.A.  Alaska, Prince W i l l i a m I s l a n d , Port Gravina  BC 65-139  U.S.A.  Alaska, Chichagof I s l a n d , Whiteshore  BC 62-611  U.S.A.  Alaska, Auke Bay  57°54'N. 152°00'W.  59°30'N. 151°30«W.  Harbour  -218BC 62-612  U.S.A., Alaska, Auke Bay  BC 6 2 - 9 6 9  U.S.A., Alaska, Auke Bay  BC 6 3 - 1 8 9  U.S.A., Alaska,  BC 6 3 - 7 8 BC 6 2 - 7 9 1 BC 6 5 - 1 3 8 BC 6 1 - 5 1 1 BC 6 3 - 3 2 5  Admiralty  U.S.A., Alaska, P o r t l a n d  I s l a n d , Barlow Cove  Island  U.S.A., Alaska, Horse I s l a n d , Stephens Passage U.S.A., Alaska, Douglas I s l a n d U.S.A., Alaska,  Gastineau Channel, Juneau  U.S.A., Alaska, Young Bay, Stephens Passage  BC 6l-52+*f  U.S.A., Alaska,  Thomas Bay, F r e d r i c k Sound  BC 6 3 - 2 0 0  U.S.A., Alaska,  Saginaw Bay, F o r e f i n g e r Bay  BC 6 2 - 5 5 7  U.S.A., Alaska, Chathan S t r a i t  BC 6 3 - 1 2 9 0  U.S.A., Alaska, K u i u I s l a n d , E l e n a  Bay  BC 63-261  U.S.A., Alaska, Baranof I s l a n d , P o r t Walter  BC 63-262  U.S.A., Alaska,  Baranof I s l a n d , Port Walter  BC 6 3 - 1 2 5 0  U.S.A., Alaska, Baranof I s l a n d , Torpedo Harbour  BC 6 3 - 1 2 5 6  U.S.A., Alaska, Baranof I s l a n d , L i t t l e Port Walter  BC 6 2 - 5 9 1  U.S.A., Alaska, P o r t Armstrong  BC 6 3 - 1 7 1  U.S.A., Alaska,  BC 6 1 - 5 8  Canada, B.C.,  C r a i g , Boat Harbour .  Queen C h a r l o t t e C i t y  BC 6O-2+13  Canada, B.C.,  Queen C h a r l o t t e I s l a n d , Aero  BC 6O-2+I6  Canada, B.C.,  Queen C h a r l o t t e I s l a n d , Aero  BC 60-2+29  Canada, B.C.,  Queen C h a r l o t t e I s l a n d , Hogson I n l e t  BC 5 5 - 3 8 6  Canada, B.C.,  Port John  BC 6 3 - 2 3 2  Canada, B.C.,  Joassa Channel  BC 6 1 - 2 8 8 Canada, B.C.,  .  Dean Channel  BC63-780  Canada, B.C.,  Hope I s l a n d , B u l l Harbour  BC 6 3 - 7 8 2  Canada, B.C.,  Queen C h a r l o t t e Sound, N a h w i t t i  Bar  -219BC 5 3 - 2 6 5  C a n a d a , B.C., V a n c o u v e r I s l a n d , P o r t Hardy-  BC 5 3 - 1 5 6  C a n a d a , B.C., G e o r g i a S t r a i t , Echo B a y  BC 61-601  C a n a d a , B.C., V a n c o u v e r I s l a n d ,  BC 5 3 - 5 6 BC 53-273A BC 5 5 - 3 5 7 BC 5 6 - 9 BC 5 8 - 5 7 4 BC 6 2 - 8 2  C a n a d a , B.C., V a n c o u v e r , E n g l i s h B a y Canada , B.C., V a n c o u v e r , S t a n l e y P a r k C a n a d a , B.C., V a n c o u v e r , S t a n l e y P a r k C a n a d a , B.C., V a n c o u v e r , S e c o n d N a r r o w s C a n a d a , B.C., V a n c o u v e r , S t a n l e y  Park  C a n a d a , B.C., S a l t S p r i n g I s l a n d , F u l f o r d  BC 5 5 - 1 1 7  C a n a d a , B.C., S o u t h P e n d e r  BC 5 4 - 4 4 7  C a n a d a , B.C., S a t u r n a  Island  BC 5 4 - 4 5 3  C a n a d a , B.C., S a t u r n a  Island  BC 5 5 - 1 1 9  C a n a d a , B.C., S a t u r n a  Island  BC 5 6 - 8 3  Qualicum Beach  C a n a d a , B.C., S a t u r n a  Harbour  Island  BC 5 7 - 2 0 4  C a n a d a , B.C., S a t u r n a  Island  BC 5 7 - 2 0 5  C a n a d a , B.C., S a t u r n a  Island  BC 5 7 - 2 0 6  C a n a d a , B.C., S a t u r n a  Island  BC 5 7 - 2 1 0  C a n a d a , B.C., S a t u r n a  Island  BC 5 7 - 2 1 1  C a n a d a , B.C., S a t u r n a  Island  BC 5 7 - 2 1 3  C a n a d a , B.C., S a t u r n a  Island  BC 5 7 - 2 1 4  C a n a d a , B.C., S a t u r n a  Island  BC 5 7 - 2 1 5  C a n a d a , B.C., S a t u r n a  Island  BC 6 0 - 3 2 5  C a n a d a , B.C., Samuel  BC 6 0 - 3 3 4  C a n a d a , B.C., S a t u r n a  BC 6 1 - 2 6 7  C a n a d a , B.C., S o u t h P e n d e r I s l a n d  BC 6 0 - 2 5 9  C a n a d a , B.C., V a n c o u v e r I s l a n d , o f f V i c t o r i a  BC 6 2 - 8 5 3  C a n a d a , B.C., V a n c o u v e r I s l a n d ,  Island Island  Victoria  S h o a l Bay  -220 BC 6 2 - 8 5 7  Canada, B.C.,  Vancouver I s l a n d , Sooke  BC 6 2 - 8 7 1  Canada, B.C.,  Vancouver I s l a n d , Sooke  BC 6 2 - 8 7 2  Canada, B.C.,  Vancouver I s l a n d , Sooke  BC 6 2 - 8 7 4  Canada, B.C.,  Vanc ouver I s i a n d , Sooke, Agate Beach  BC 6 2 - 8 8 0  Canada, B.C.,  Vancouver I s l a n d , Sooke, Agate Beach  BC 6 2 - 8 8 2  Canada, B.C.,  Vancouver I s l a n d , Sooke, Agate Beach  BC 5 8 - 3 3 6  U.S.A., Washington, F r i d a y Harbour  BC 6 0 - 3 3 6  U.S.A., Washington, San Juan I s l a n d , Spieden Channel  BC 5 5 - 3 7 3  U.S.A., Washington, F a l s e Bay  BC 5 5 - 3 7 4  U.S.A., Washington,  Marvista  M. q u a d r i c o r n i s NMC 6 4 - 3 3 2  Canada, N.W.T., Tuktoyaktuk  NMC 6 2 - 4 8 7  Canada, N.W.T., Ellesmere  NMC 6 3 - 2 2 0  Canada, Quebec, Richmond  NMC 6 2 - 2 8 2  Canada, Quebec, James Bay, north o f F a c t o r y  NMC 6 3 - 1 9 5  Canada, Quebec, Hudson Bay  NMC 6 2 - 4 7 9  Canada, N.W.T., V i c t o r i a I s l a n d  NMC 6 0 - 3 7 8  Canada, N.W.T.  BC 6 0 - 3 8 0  U.S.A., Alaska,  69°27'N. 132°53'W. 80°08«N. 86°20«W.  Island  63°39'N. 68°27'W.  Gulf  58°25'N. 78°15'W. 69°03»N. 105°05'W.  64°30'N. l65 00'W. O  S t . Lawrence  Island  63°18»N. 169°26'W. BC 6O-456  U.S.A., Alaska, D i l l i n g h a m ,  Snag P o i n t  BC 6 3 - 1 1 1 7  U.S.A., Alaska, Wainwright Lagoon  BC 6 3 - 1 1 0 3  U.S.A., Alaska,. E l son Lagoon  BC 6 3 - 6 9 9  U.S.A., Alaska,  BC 6 3 - 7 6 0  U.S.A., Alaska, Point  BC 63-1218  U.S.A., Alaska,  E l s o n Lagoon Barrow  Barrow  River  Village  -221BC 6 3 - 6 1 2  U.S.A., Alaska, ELson Lagoon  SU 3 3 9 7 1 SU 5 4 0 1  Sweden, B a l t i c Sea Greenland, A r c t i c Harbour  NMC 6 2 - 4 1 3  Canada, N.W.T., Somerset I s l a n d  NMC 62-2+63  Canada, N.W.T., Somerset I s l a n d  NMC 62-2+62+  Canada, N.W.T., Somerset I s l a n d  NMC 62-2+18  Canada, N.W.T., Somerset  Island  M. r a n i n u s SU 7 5 9 1  (cotypes)  Japan, Otaru  SU 7938  (cotypes)  Japan, Hakodate  SU 7592  (cotypes)  Japan, Muroran  SU 7595  (cotypes)  Japan, Aomori  SU 3 0 5 9 7 SU 7708  Japan, Sendai (type)  Japan, Aomori  M. s c o r p i o i d e s BC 6 4 - 2 8 1  Canada, Ungava Bay  BC 6 1 - 2 0 5  Canada, N.W.T., B a f f i n I s l a n d , Cape F a r r i n g t o n  BC 6 1 - 2 1 0  Canada, N.W.T., B a f f i n I s l a n d , F r o b i s h e r Bay  BC 6 1 - 2 1 1  Canada, N.W.T., B a f f i n I s l a n d , B l a c k l e a d  BC 6 1 - 2 1 3  Canada, N.W.T., B a f f i n I s l a n d , Pangnirtung F j o r d  Island  mouth BC 6 1 - 2 1 4  Canada, N.W.T., B a f f i n I s l a n d ,  BC 6 3 - 9 8 5  Canada, N.W.T., P a r r y P e n i n s u l a  BC 6 3 - 8 4 1  U.S.A., Alaska, B a r t e r  BC 6 3 - 8 4 6  U.S.A., Alaska, Flaxman  Padloping  I s l a n d , Bernard Harbour Island  -222BC 6 3 - 1 1 2 6  U.S.A., Alaska, Wairiwright I n l e t  BC 6 0 - 3 7 7  U.S.A., A l a s k a , Seward P e n i n s u l a  BC 6O-384  U.S.A., Alaska, S t . Lawrence I s l a n d , northeast Cape  USNM 3 2 3 4 9  Canada, Labrador, Fox Harbour  USNM 3 4 2 0 0  Canada, Labrador  USNM 3 4 2 0 1  Canada, Labrador  USNM 3 4 1 8 1 Canada, Labrador USNM 34179  Canada, Labrador  USNM 3 2 3 4 8  Canada, Labrador, Fox Harbour  USNM 3 9 7 3 6  Canada, Labrador  USNM 1 6 5 2 3 2  Canada, Labrador  USNM 1 6 5 2 3 3 Canada, Labrador USNM 1 6 5 2 3 4  Canada, Labrador  USNM 1 6 5 2 3 5  Canada, Labrador, Turnavik I s l a n d  USNM 34179 USNM 1 7 7 5 8 4 USNM 88852 SOM 1 2 1 5 6  Canada, Labrador Canada, Labrador, Jerusalem Bight Canada, Quebec Canada, N.W.T., B a f f i n  I s l a n d , Pangnirtung  NMC 6 2 - 5 3 4  Canada, N.W.T., Belcher I s l a n d s  NMC 63-217  Canada, N.W.T., Ross I s l a n d  NMC 6 0 - 1 8 6  Canada, N.W.T., South F l a h e r t y I s l a n d  NMC 6 3 - 2 3 4  Canada, Quebecj Richmond  NMC 6 4 - 3 4 2  Canada, N.W.T.j B a f f i n  NMC 6 4 - 3 5 2  Canada, N.W.T.  NMC 6 4 - 3 5 0  Canada, N.W.T., L i v e r p o o l Bay  NMC 64-353.  Canada, N.W.T., B a f f i n I s l a n d , Sepuladjuk  NMC 6 4 - 3 3 7  Canada, N.W.T., B a f f i n  Baffin  Gulf  I s l a n d , Cape Dorset I s l a n d , Sepuladjuk  I s l a n d , Tessiuakjuak I n l e t o  -223NMC 62-475  Canada, N.W.T., B a f f i n I s l a n d , Tuktu R i v e r mouth  NMC 64-343  Canada, N.W.T., B a f f i n I s l a n d , I k a h l a k u i l i k  NMC 64-354  Canada, N.W.T., B a f f i n I s l a n d , Sapeladjuk  NMC 64-339  Canada, N.W.T., B a f f i n I s l a n d , T e l l i k Bay  SU 5583  U.S.A., Alaska, Herendeen Bay  SU 5582  U.S.A., Alaska, P o r t Clarence  SU 558O  Greenland  M. " s c o r p i u s " ( G u l f o f Alaska) BC 63-1027  U.S.A., Alaska, Kodiak I s l a n d , Kodiak Harbour  BC 63-1026  U.S.A., Alaska, Region I s l a n d  BC 63-1338  U.S.A., Alaska, Caton I s l a n d  BC 63-1422 U.S.A., Alaska, Adak I s l a n d , F i n g e r Bay BC 63-718  U.S.A., Alaska, 54°l6'N. l60°02«W.  NMC 66016  U.S.A., Alaska, Unalaska I s l a n d .  NMC 66-17 U.S.A., Alaska, Unga I s l a n d AB 64-736  U.S.A., Alaska, Cook I n l e t near Homer  AB 64-737  U.S.A., Alaska, Cook I n l e t near Homer  AB 64-738  U.S.A., Alaska, Cook I n l e t near Homer  AB 65-116  U.S.A., Alaska, S h e l i k o f S t r a i t  M. " s c o r p i u s " ( A r c t i c ) BC 61-443  U.S.A., Alaska, Chukchi Sea  BC 61-440 U.S.A., Alaska, Chukchi Sea BC 61-99 U.S.A., Alaska, Chukchi Sea BC 61-104  U.S.A., Alaska, Chukchi Sea  BC 61-419. U.S.A., Alaska, Chukchi Sea  -222+BC 6 1 - 7 7 U.S.A., Alaska, Chukchi Sea BC 61-2+18  U.S.A., Alaska, Chukchi Sea  USNM 92077  Canada, Labrador, Brewsters P o i n t  USNM 62078  Canada, Labrador, S a g l i k Bay  USNM  92075  Canada, Labrador, Port Manvers  USNM 92076  Canada, Labrador, Port Manvers  USNM 92073  Canada, Labrador, Mulford Harbour  SU 52+01  Greenland, A r c t i c Harbour  SU 2+9230  Greenland, Groendal  UMMZ 1 2 7 0 2 0 NMC 67-2  U.S.A., Main, Hancock County, Deer I s l a n d Canada, Newfoundland, Cape Broule Harbour  NMC 66-202+  Canada, Newfoundland, Port aux Basques  NMC 66-132+  Canada, Newfoundland, P i c c a d i l l y Bay  NMC 6 7 - 5  Canada, Newfoundland, Bay o f B u l l s  NMC 66-162+  Canada, Newfoundland, Margaret Bay  NMC 6 6 - 1 9 5  Canada, Bay o f Fundy, Black Hole Harbour  NMC 6 1 - 1 6 6  Canada, Nova S c o t i a ,  NMC 5 9 - 3 0 1  Canada, Nova S c o t i a , Queens County, Sumraerville  NMC 6 1 - 1 7 3  Canada, Nova S c o t i a , Queens County, Port Mouton  NMC 63-232+  Canada, Quebec, Hazzard G u l f  NMC 60-2+00  Canadaj Nova S c o t i a , Luxeraberg, Le Havre  NMC 59-312  Canadaj Nova S c o t i a , Port George  NMC 61-191  Canada, Bay o f Fundy, Black Hole Harbour  NMC 59-315  Canada, New Brunswick, Passamquoddy Bay  NMC 59-263  Canadaj Quebec, Gaspe County, near Cap au Renard  NMC 6 5 - 3 6 7  Canada, N.W.T.  NMC 6 3 - 2 0 7  Canada, East C e n t r a l Hudson Bay  Halifax  69°N. 125°W. 57°21'N. 76°2+5»W.  -225BC 6 1 - 1 0 5  U.S.A., Alaska, Chukchi Sea  NMC 6 5 - 2 1 4 BC 6 1 - 2 0 5  Canada, N.W.T., Anderson I s l a n d , Hudson Bay Canada, N.W.T., B a f f i n I s l a n d , Cape F a r r i n g t o n  NMC 6 3 - 2 5 1  Canada, Quebec, Richmond Gulf 1  BC 6 5 - 7 3 2  U.S.A., Alaska, B e r i n g Sea  5 7 ° 1 5 N . 165°15'W.  BC 6 5 - 7 1 4  U.S.A., Alaska, B e r i n g Sea  57°45'N. l68°45'W.  BC 6 5 - 7 3 4  U.S.A., Alaska, Bering Sea  57°45'N. l69°15'W.  BC 6 5 - 7 3 0  U.S.A., Alaska, B e r i n g Sea  57°45'N. 164°45'W.  BC 6 1 - 2 0 9  Canada, N.W.T., B a f f i n I s l a n d , F r o b i s h e r Bay  BC 6 1 - 2 1 0  Canada, N.W.T., B a f f i n I s l a n d , F r o b i s h e r Bay  BC 6 1 - 2 1 7  Canada, N.W.T., B a f f i n I s l a n d , F r o b i s h e r Bay  BC 6 1 - 2 0 8  Canada, N.W.T., B a f f i n I s l a n d , F r o b i s h e r Bay  I  NMC 6 6 - 5 9 6  Canada, Newfoundland, Lark Harbour  NMC 6 6 - 1 7 1  Canada, Newfoundland  NMC 6 6 - 1 6 0  Canada, Newfoundland, B e l l b u r n s  NMC 6 6 - 1 3 3  Canada, Newfoundland, Port au Port Bay  NMC 6 6 - 1 8 1  Canada, Newfoundland, S t . John Bay  51°22'N. 56°24'W.  ScN 8  Canada, Newfoundland, S t . John's  ScN 2  Canada, Newfoundland, S t . John's  ScN 1 0  Canada, Newfoundland, S t . John's  .ScN 14  Canada, Newfoundland, S t . John's  ScN 16  Canada, Newfoundland, S t . John's  ScN 3  Canada, Newfoundland, S t . John's  M. "scorpius"(European) USNM 197377  Scotland, B u t s h i r e  USNM 197583  Germany,  Gelgoland  -226USNM 197580  Germany,  South o f Helgoland  USNM 59738  Denmark, Vordingborg  USNM 39742  Denmark, Vordingborg  USNM 86569  England, Shatham  USNM 44508  Norway,  Christianintion  USNM 22981  Norway,  Christianintion  USNM  Norway,  Christianintion  17433  UMMZ  Holland, Helder, mouth o f Zuiderzee  UMMZ 147316  Norway, Drobak  M. s t e l l e r i USNM 6OO4O  U.S.S.R., Kamchatka Penn., T a p i e n s k i Harbour  USNM 60039  U.S.A., Alaska, Unalaska I s l a n d  USNM 70834  U.S.S.R., Kamchatka Penn., P e t r o p a u l s k i  USNM 70826  U.S.S.R., B e r i n g I s l a n d ,  Nikolski  USNM 126857  U.S.S.R., Kamchatka Penn., P e t r o p a u l s k i Harbour  USNM 105178  U.S.S.R., Kamchatka Penn., Peter the Great Bay  SU 5733  U.S.S.R., Kamchatka Penn., P e t r o p a u l s k i  M. y e s o e n s i s USNM 68238  (type)  Japan, Hakodate  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0104276/manifest

Comment

Related Items