UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Examination of cellulose-lignin relationships within coniferous growth zones Squire, Gordon Balfour 1967

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1968_A1 S65.pdf [ 7.49MB ]
Metadata
JSON: 831-1.0104246.json
JSON-LD: 831-1.0104246-ld.json
RDF/XML (Pretty): 831-1.0104246-rdf.xml
RDF/JSON: 831-1.0104246-rdf.json
Turtle: 831-1.0104246-turtle.txt
N-Triples: 831-1.0104246-rdf-ntriples.txt
Original Record: 831-1.0104246-source.json
Full Text
831-1.0104246-fulltext.txt
Citation
831-1.0104246.ris

Full Text

The U n i v e r s i t y o f B r i t i s h  Columbia  FACULTY OF GRADUATE STUDIES PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of GORDON BALFOUR SQUIRE B.S.F., The U n i v e r s i t y  o f B r i t i s h Columbia, 1961  M.F., Y a l e University., 1962 THURSDAY, OCTOBER 5, 1967, AT 3:30 P M 0  0  IN ROOM 379, H„R„ MacMILLAN BUILDING  COMMITTEE IN CHARGE Chairman: G„G.S. Dutton J.A.F. Gardner R.W. Kennedy  J.R. Adams E.P. Swan R.W. Wellwood J.W. W i l s o n  E x t e r n a l Examiner: K.Vo Sarkanen Associate Professor, College of F o r e s t r y U n i v e r s i t y o f Washington, S e a t t l e  Research S u p e r v i s o r :  J.W. W i l s o n  EXAMINATION OF  CELLULOSE-LIGNIN  RELATIONSHIPS WITHIN CONIFEROUS GROWTH ZONES  ABSTRACT  Q u a n t i t a t i v e d i f f e r e n c e s i n wood growth zone chemistry were f i r s t r e p o r t e d f o r t y years ago. Several s t u d i e s have f o l l o w e d , mostly done on w i d e - r i n g e d m a t e r i a l , but always by d i s s e c t i o n i n t o earlywood and latewood segments u s u a l l y c o l l e c t e d as s i z e a b l e samples and analysed by standard or s l i g h t l y m o d i f i e d procedures. An o b j e c t i v e of the p r e s e n t work has been to sample and analyze m u l t i p l e p o s i t i o n s w i t h i n charact e r i s t i c c o n i f e r o u s wood growth increments, and thereby search out common p a t t e r n s r e l a t i n g to wood b i o l o g i c a l a c t i v i t y and product b e h a v i o r s . Lack of s e l e c t i v e h o l o c e l l u l o s e i s o l a t i o n procedures and the problem of l i m i t e d m a t e r i a l have long f r u s t r a t e d attempts to a c c u r a t e l y measure and d e s c r i b e carbohydrate p a t t e r n s w i t h i n growth zones of c o n i f e r o u s woods. A new approach has been a p p l i e d to micrc e l l u l o s e a n a l y s i s . T h i s a r i s e s from the o b s e r v a t i o n t h a t the c o r r e c t e d y i e l d from n i t r a t i o n of wood pulps and whole woods c l o s e l y matches t h a t o b t a i n e d as a l p h a cellulose. I t has been shown t h a t O . l g wood-meal sample t r e a t e d t h i s way i n r e p l i c a t i o n s of three p r o v i d e a determination with s t a t i s t i c a l r e l i a b i l i t y . The procedure was used to examine s i x t y p o s i t i o n s w i t h i n ten increments r e p r e s e n t i n g f i v e Canadian c o n i f e r o u s woods of d i f f e r e n t genera. I n t r a - i n c r e m e n t a l l i g n i f i c a t i o n p a t t e r n s were c o n s t r u c t e d f o r the same m a t e r i a l s by making u l t r a v i o l e t a b s o r p t i o m e t r i c measurements on products from a c e t y l bromide - a c e t i c a c i d d i g e s t i o n of 20 mg wood samples i n r e p l i c a t i o n s of t h r e e . T h i s f o l l o w s an t e a r l i e r procedure of t h i s l a b o r a t o r y .  The s e r i e s of a l p h a - c e l l u l o s e e s t i m a t e s desc r i b e d have shown r e l a t i o n s h i p of t h i s l o n g - c h a i n carbohydrate f r a c t i o n to s e a s o n a l development w i t h i n growth zones. New c h e m i c a l evidence i s p r o v i d e d f o r a p h y s i o l o g i c a l l y s i g n i f i c a n t phenomenon of some earlywoods. T h e r e i n , minimum a l p h - c e l l u l o s e y i e l d o c c u r r e d at c o n s i d e r a b l e c e l l u l a r depth f o l l o w i n g i n i t i a t i o n of seasonal, growth. I t appears t h a t the f i r s t formed earlywood a r i s i n g from " o v e r - w i n t e r e d " x y l a r y mother c e l l s r e t a i n s s i m i l a r i t i e s at the chemical l e v e l of o r g a n i z a t i o n to l a s t formed t i s s u e s of the p r e c e d i n g season, i n c o n t r a s t to new cambial d i v i s i o n s w i t h i n a growing season. Both S i t k a and b l a c k spruce d i f f e r e d from o t h e r woods examined i n t h i s r e g a r d (Douglas f i r , P a c i f i c s i l v e r f i r and western red cedar) i n t h a t they d i d not show the phenomenon. Among the ten growth increments s t u d i e d , the a l p h a - c e l l u l o s e estimate. (45.9%.; 1SD = + 2.0%) was the e x a c t complement of l i g n i f i c a t i o n (27„4%; 1SD = + 1.9%) i n each i n s t a n c e . Moreover, combining both v a l u e s f o r the s i x t y p o s i t i o n s i n c l u d e d i n the study gave l e s s v a r i a t i o n (73.47 ; 1SD = 1.2%) than considering either separately. F u r t h e r evidence f o r t h i s important r e l a t i o n s h i p was shown by the h i g h l y s i g n i f i c a n t ( r = 0.785) l i n e a r r e g r e s s i o n on data combined from a l l i n c r e m e n t s . T h i s suggests much c l o s e r p h y s i o l o g i c a l c o n t r o l over the combinat i o n of these c h e m i c a l e n t i t i e s , than towards the i n d i v i d u a l components i n v o l v e d i n such a system. 0  R e s i d u a l n i t r o c e l l u l o s e s were used to i n d i c a t e e x t e n t of d e g r a d a t i o n i n t r o d u c e d d u r i n g p r e p a r a t i o n s . Because of v a r i a b i l i t y i n i n t r i n s i c v i s c o s i t i e s at each p o s i t i o n , however, no c o n s i s t e n t trends were found w i t h i n growth zones. A l i m i t a t i o n of the new micro a l p h a - c e l l u l o s e method i s t h a t i t can not be u n i v e r s a l l y a p p l i e d to a l l woods. Samples from f o u r o t h e r s p e c i e s attempted f a i l e d to y i e l d s u i t able d e r i v a t i v e s .  GRADUATE STUDIES  F i e l d of Study:  Wood and Pulp  Biometrics Chemistry  Statistics Wood P h y s i c a l and Properties  Science . D.. Ormrod . G.G.S. Dutton . .. J.B« Farmer L.D. Hayward D.E. McGreer J.R.. S ams J.H.G. Smith  Chemical J.W.  Wilson  PUBLICATION  S q u i r e , C.B., Swan, E.P. and J.W.Wilson. In p r e s s . I n t r a - i n c r e m e n t v a r i a t i o n i n Douglas f i r f l a v o n o i d s by new t e c h n i q u e . Pulp Paper Mag. Can. (scheduled Sept.. 1967 i s s u e ) .  EXAMINATION O F CELLULOSE-LIGNIN  RELATIONSHIPS WITHIN C O N I F E R O U S G R O W T H ZONES  by Gordon Balfour Squire B . S . F . U n i v e r s i t y of B r i t i s h C o l u m b i a M.F.  Yale University  1961  1962  A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F T H E REQUIREMENTS FOR T H E DEGREE O F DOCTOR O F PHILOSOPHY  i n the  Department  of  Forestry  W e a c c e p t t h i s t h e s i s as c o n f o r m i n g to the r e q u i r e d  T H E UNIVERSITY O F BRITISH September,  1967  COLUMBIA  standard  In  presenting  this  advanced degree  Library  shall  at  make  thesis  the  it  in p a r t i a l  U n i v e r s i t y of  freely  fulfilment  of  the  B r i t i s h Columbia,  available  for  reference  requirements  for  I agree  the  and s t u d y .  that  I  an  further  i agree  that  permission  f o r e x t e n s i v e copying of  p u r p o s e s may be g r a n t e d  tatives.  It  financial  gain  by t h e Head o f my D e p a r t m e n t  is understood shall  not  that  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  thesis  for  scholarly  o r by h i s  represen-  copying or p u b l i c a t i o n  be a l l o w e d w i t h o u t my w r i t t e n  Depa r t m e n t  Date  this  Columbia  of  this  thesis  permission.  for  Supervisor: Professor J.W. Wilson  L a c k of a s e l e c t i v e h o l o c e l l u l o s e  ii  i s o l a t i o n p r o c e d u r e a n d the  p r o b l e m of l i m i t e d m a t e r i a l h a v e l o n g f r u s t r a t e d the a t t e m p t s of w o o d s c i e n t i s t s to a c c u r a t e l y m e a s u r e coniferous  growth zones.  determination,  and d e s c r i b e c a r b o h y d r a t e yields  A new m e t h o d has b e e n d e v i s e d for  micro-cellulose  Alpha-(o<.) c e l l u l o s e y i e l d m a y b e quantitatively  as the c o r r e c t e d y i e l d o f n i t r a t e d w o o d m e a l .  within  estimated  T h r e e - O . l g wood m e a l  samples provide a statistically  reliable determination.  of the n e w t e c h n i q u e ,  i s that i t c a n n o t b e a p p l i e d to a l l w o o d s .  however,  Sixty positions  within ten i n c r e m e n t s  A major limitation  r e p r e s e n t i n g five  Canadian  coniferous woods of different g e n e r a w e r e e x a m i n e d and i n t r a - i n c r e m e n t a l patterns were constructed.  A n o v a and Duncan's test showed  latewood  - c e l l u l o s e y i e l d to b e g r e a t e r t h a n that of e a r l y w o o d b y a h i g h l y s i g n i ficant degree. was e s t i m a t e d  A l p h a - c e l l u l o s e content throughout m a t u r e growth reliably by linear correlation or, more accurately,  logarithmic transformation used in a recent mathematical model. successful  zones by The  a p p l i c a t i o n of the l a t t e r i s i t s f i r s t r e p o r t e d u s e d e s c r i b i n g the  n o n - l i n e a r b e h a v i o r of a w o o d c h e m i c a l p r o p e r t y a c r o s s  These patterns  s h o w e d r e l a t i o n s h i p of the l o n g - c h a i n  f r a c t i o n to s e a s o n a l d e v e l o p m e n t w i t h i n c o n i f e r o u s s i x of the t e n p a t t e r n s  a coniferous  increment.  carbohydrate  growth zones.  In a d d i t i o n ,  d e m o n s t r a t e d n e w c h e m i c a l e v i d e n c e p e r t a i n i n g to a  physiologically significant phenomenon i n earlywood. <s< - c e l l u l o s e  Therein, minimum  y i e l d o c c u r s at c o n s i d e r a b l e c e l l u l a r d e p t h f o l l o w i n g c a m b i a l  r e a c t i v a t i o n i n the g r o w i n g s e a s o n . some s i m i l a r i t y  F i r s t - f o r m e d e a r l y w o o d a p p e a r s to r e t a i n  at the c h e m i c a l l e v e l o f o r g a n i z a t i o n to l a s t - f o r m e d t i s s u e s  o f the p r e c e d i n g s e a s o n .  L a t e r - f o r m e d e a r l y w o o d ( i . e. , f r o m the  present  y e a r ) d o e s not a p p e a r to r e t a i n s u c h s i m i l a r i t y .  . F r o m e a r l i e r w o r k of t h i s l a b o r a t o r y , l i g n i f i c a t i o n p a t t e r n s d e s c r i b e d f o r the s a m e m a t e r i a l s ,  using ultraviolet measurements  b r o m i d e - a c e t i c a c i d d i g e s t i o n p r o d u c t s o f two w o o d m e a l  E x a m i n a t i o n of  the  o< - c e l l u l o s e  on acetyl  samples.  o<-cellulose and lignification patterns p r o v i d e d  evidence for their mutually exclusive behavior. studied,  were  e s t i m a t e (x = 4 5 . 9 +  F o r the t e n 2.0%)  increments  w a s the e x a c t  m e n t o f l i g n i f i c a t i o n (x = 2 7 . 4 + ^ 1 . 9%) at a l l p o s i t i o n s b u t o n e .  comple-  The linear  r e g r e s s i o n for data f r o m a l l i n c r e m e n t s was h i g h l y s i g n i f i c a n t ( r = - 0 . 7 8 5 ) . In a d d i t i o n , m i c r o o ( - c e l l u l o s e  and m i c r o l i g n i n values, when c o m b i n e d ,  s h o w e d a d e f i n i t e t e n d e n c y to c l u s t e r about a c e n t r a l v a l u e (x = 73. 4 +_ 1. 2%) s u g g e s t i n g t h a t c e r t a i n s p e c i e s r e q u i r e a c o m m o n , c r i t i c a l m e a s u r e of h i g h m o l e c u l a r weight m a t e r i a l . -cellulose  D i s p e r s i o n about c o m b i n e d l i g n i n a n d  e s t i m a t e s was  individual means.  s i g n i f i c a n t l y l e s s t h a n about e i t h e r o f t h e i r  T h i s s u g g e s t s m u c h c l o s e r p h y s i o l o g i c a l c o n t r o l o v e r the  c o m b i n a t i o n of t h e s e c h e m i c a l entities, i n d i c a t i n g that t r e e p h y s i o l o g y o r i e n t e d m o r e t o w a r d s the f i n i s h e d b i o s y n t h e t i c p r o d u c t t h a n t o w a r d s individual components  involved in such a  system.  is the  IV  A s a m e a n s of m e a s u r i n g s u c c e s s f u l n i t r o c e l l u l o s e p r e p a r a t i o n , intrinsic viscosity  j^J  extensive degradation. position tested, zones.  w a s u s e d to i n d i c a t e p r e s e n c e o r a b s e n c e o f B e c a u s e o f the h i g h l y v a r i a b l e  at e a c h  no c o n s i s t e n t t r e n d s i n c h a i n l e n g t h w e r e f o u n d a c r o s s  However,  in four i n c r e m e n t s ,  significant differences  in  growth  jjO  t h r o u g h o u t the e a r l y w o o d p r o v i d e d f u r t h e r e v i d e n c e o f two e a r l y w o o d t y p e s .  V  TABLE OF CONTENTS  Page  TITLE PAGE  .'  ABSTRACT  i ii  T A B L E OF CONTENTS  v  LIST O F T A B L E S  viii  LIST O F FIGURES  x  ACKNOWLEDGEMENT  xi  INTRODUCTION  1  LITERATURE REVIEW  4  I. H i s t o r y o f C h e m i c a l O r g a n i z a t i o n i n W o o d II.  III.  4  Variations in Chemical Organization in Wood  8  A.  Taxonomic Level  9  B.  Wood Zone L e v e l  13  C.  G r o w t h Zone and T i s s u e L e v e l  18  D.  Cell Wall Organization  25  E.  Biosynthesis  29  Methods for W o o d M i c r o a n a l y s i s  34  A.  Carbohydrate Fraction  34  B.  Other Components  52  MATERIALS AND METHODS  53  vi  Page I.  II.  III. IV. V.  Wood Sample Preparation  53  A.  Sampling Criterion  53  B.  P r e p a r a t i o n of W o o d M e a l s  53  C.  V a l i d i t y of R e s u l t s  56  Nitration Procedure  58  A.  Mixed Acid Preparation  58  B.  Nitration  60  C.  Cellulose Nitrate Recovery  61  Nitrogen Determination  63  Viscosity Determination  66  Lignin Determination  71  EXPERIMENTAL RESULTS  73  DISCUSSION  76  I.  R e v i e w of D a t a  78  A.  Alpha-cellulose Estimates  78  B.  Viscosity Estimates  80  C.  Lignin Estimates  82  II. I n t r a - i n c r e m e n t A l p h a - c e l l u l o s e E s t i m a t e s  and their  Significance  82  A.  Two Representative  Patterns  82  B.  C h e m i c a l E v i d e n c e for Two E a r l y w o o d T y p e s . . . .  84  C.  A l p h a - c e l l u l o s e Patterns and E a r l y w o o d - L a t e w o o d Variations  87  vii  Page III.  Relationship between C e l l u l o s e - L i g n i n Patterns. . . .  92  A.  92  B.  C. IV.  E v i d e n c e for C o m p l e m e n t a r y C h a r a c t e r E v i d e n c e for M u t u a l l y E x c l u s i v e R e l a t i o n s h i p Between C e l l u l o s e and L i g n i n  94  B i o l o g i c a l Interpretations  96  R e l a t i o n s h i p s of A l p h a - c e l l u l o s e P a t t e r n s to P h y s i c a l Properties  100  A.  Strength P a r a m e t e r s  100  B.  P h y s i c a l E v i d e n c e for Two E a r l y w o o d T y p e s . . . .  101  CONCLUSIONS  104  BIBLIOGRAPHY  107  T A B L E S A N D FIGURES  120  APPENDICES  137  I.  R e l a t i o n s h i p b e t w e e n the m a j o r c e l l w a l l  components  a f t e r N o r m a n (94)*  138  II. S u g g e s t e d g e n e r i c c l a s s i f i c a t i o n of w o o d p o l y s a c c h a * r i d e s a f t e r S t e w a r t (117) III.  139  D e s c r i p t i o n of s t e m sections and growth i n c r e m e n t s i n c l u d e d i n the s t u d y (157).  140  viii  LIST O F T A B L E S Page T a b l e 1.  A n a l y s e s on c o n i f e r o u s e a r l y w o o d ( E ) , l a t e w o o d ( L ) , a n d w h o l e w o o d (W) c a r b o h y d r a t e f r a c t i o n s f r o m the l i t e r a t u r e ( b a s e d o n o v e n - d r y , e x t r a c t i v e - f r e e wood)  T a b l e 2.  121  D e t e r m i n a t i o n of r e p l i c a t i o n n u m b e r on  oL - c e l l u l o s e y i e l d f o r 4 0 - 6 0 m e s h D o u g l a s f i r latewood m e a l using three sample sizes ( n i t r o c e l l u l o s e s c o r r e c t e d to 13. 65 + 0. 30% nitrogen) T a b l e 3.  122  D e t e r m i n a t i o n of r e p l i c a t i o n n u m b e r for Douglas fir l a t e w o o d n i t r o c e l l u l o s e n i t r o g e n content  T a b l e 4.  123  S u m m a r y of a l p h a - c e l l u l o s e and l i g n i n e s t i m a t e s and n i t r o c e l l u l o s e v i s c o s i t i e s for ten  coniferous  increments examined T a b l e 5.  L i n e a r r e g r e s s i o n of estimates (Y,  124 alpha-cellulose  %) • o n p o s i t i o n ( X ) , f o r a l l s p e c i e s  and i n c r e m e n t s T a b l e 6.  126  A n a l y s i s of v a r i a n c e for  alpha-cellulose  e s t i m a t e s (%) w i t h i n P i c e a m a r i a n a ( M i l l . ) B . S . P . I n c r e m e n t N o . 34 Table 6A.  D u n c a n ' s t e s t of m e a n  127 alpha-cellulose  e s t i m a t e s (%) w i t h i n P i c e a m a r i a n a ( M i l l . ) B . S . P . Increment No. T a b l e 7.  34  127  A n a l y s i s of v a r i a n c e for  alpha-cellulose  e s t i m a t e s (%) w i t h i n P i c e a . . s i t c h e n s i s Carr. Table 7A.  127  Duncan's test of m e a n a l p h a - c e l l u l o s e e s t i m a t e s within P i c e a sitchensis (Bong.) C a r r .  T a b l e 8.  (Bong.)  I n c r e m e n t N o . 70  A n a l y s i s of v a r i a n c e f o r  (%)  I n c r e m e n t N o . 70  128  alpha-cellulose  e s t i m a t e s (%) w i t h i n T h u j a p l i c a t a D o n n .  Increment M o . U3 Table 8A.  D u n c a n ' s t e s t of m e a n  128 alpha-cellulose  e s t i m a t e s (%) w i t h i n T h u j a p l i c a t a D o n n . I n c r e m e n t N o . 73  128  XX  Page T a b l e 9.  A n a l y s i s of v a r i a n c e for a l p h a - c e l l u l o s e e s t i m a t e s (%) w i t h i n P s e u d o t s u g a m e n z i e s i i ( M i r b . ) F r a n c o I n c r e m e n t N o . 40  Table 9A.  128  D u n c a n ' s t e s t o f m e a n a l p h a - c e l l u l o s e e s t i m a t e s (%). within Pseudotsuga m e n z i e s i i ( M i r b . )  Franco  I n c r e m e n t N o . 40 T a b l e 10.  129  A n a l y s i s o f v a r i a n c e f o r a l p h a - c e l l u l o s e e s t i m a t e s (%) within Pseudotsuga m e n z i e s i i ( M i r b . ) F r a n c o Increments No.  T a b l e 10A.  64 to 66  129  D u n c a n ' s t e s t o f m e a n a l p h a - c e l l u l o s e e s t i m a t e s (%) within Pseudotsuga m e n z i e s i i ( M i r b . ) F r a n c o I n c r e m e n t s N o . 64 to 66  T a b l e 11.  129  A n a l y s i s o f v a r i a n c e f o r a l p h a - c e l l u l o s e e s t i m a t e s (%) within A b i e s amabilis (Dougl.) F o r b . No.  Table H A .  130  D u n c a n ' s t e s t o f m e a n a l p h a - c e l l u l o s e e s t i m a t e s (%); within A b i e s amabilis (Dougl.) F o r b . N«.  T a b l e 12.  130  L i n e a r r e g r e s s i o n of l i g n i n ( Y ,  itfj ( d l  131  (r) f o r t h e l i n e a r r e g r e s s i o n  / g) o n a l p h a - c e l l u l o s e y i e l d (%) f o r  intra-increment positions,  six  showing effect of  i n c l u s i o n (+) o r e x c l u s i o n (-} No.  %) o n a l p h a - c e l l u l o s e  %};for a l l s p e c i e s a n d i n c r e m e n t s  C o r r e l a t i o n coefficients of  Increments  78 to 80  estimates (X, T a b l e 13.  Increments  78 to 80  of data f r o m P o s i t i o n  o n e ( w h i c h c o r r e s p o n d s to f i r s t - f o r m e d e a r l y -  wood).  132  X  LIST O F FIGURES  Page F i g u r e 1.  T w o r e p r e s e n t a t i v e p a t t e r n s of a l p h a c e l l u l o s e ( e s t . ),  F i g u r e 2.  F i g u r e 3.  %  133  T e n patterns showing alpha-cellulose l i g n i n , %, a n d t h e i r s u m L i n e a r c o r r e l a t i o n of lignin,  ( e s t . ) , %, 134  %, i n c o m b i n a t i o n  w i t h a l p h a - c e l l u l o s e ( e s t . ); %, f o r t e n  coniferous  increments F i g u r e 4.  135  M e a n s (x) a n d s t a n d a r d d e v i a t i o n s (s) f o r a l l a l p h a cellulose and l i g n i n estimates and their s u m  136  xi  ACKNOWLEDGEMENT W h i l e p r e p a r a t i o n of a n y t h e s i s i s m a i n l y the w o r k o f one i n d i v i d u a l , nevertheless,  i t r e p r e s e n t s the c o m b i n e d e f f o r t s of a g r o u p of p e o p l e .  D u r i n g the w r i t i n g o f t h i s t h e s i s ,  I b e c a m e a c u t e l y a w a r e of the t i m e a n d  e n e r g y t h a t o t h e r s h a d w i l l i n g l y g i v e n to m e . pleasure  to a c k n o w l e d g e the i n v a l u a b l e c o n t r i b u t i o n s  persons:  I w i s h to s i n g l e out m y s u p e r v i s o r ,  F a c u l t y of F o r e s t r y , standards  m a d e b y the  Dr. J . W. Wilson,  and p e r s o n a l c o n c e r n for m y behalf.  Professor,  Professor,  Professor, professional  criticisms;  L i k e w i s e , I w i s h to  F a c u l t y of F o r e s t r y ,  D r . G . G . S.  D e p a r t m e n t of C h e m i s t r y a n d D r . R . W . K e n n e d y ,  Products Laboratory (Vancouver),  for their m o s t constructive  Dr. A . Kozak, Assistant  Professor,  F a c u l t y of F o r e s t r y ,  a s s i s t a n c e i n s t a t i s t i c a l a n a l y s i s and computer  Dr.  Professor,  K . Sarkanen,  F a c u l t y of F o r e s t r y ,  f o r s e r v i n g as the E x t e r n a l E x a m i n e r o f the t h e s i s ; F a c u l t y of F o r e s t r y ,  f o r d r a f t i n g the f i g u r e s ;  Products L a b o r a t o r y (Vancouver), R u m m a and M i s s H . Apelt,  E . T . S q u i r e and M i s s B . P e a r c e y ,  and the V a n D u s e n F o u n d a t i o n , and the U n i v e r s i t y  for  programming;  U n i v e r s i t y of Washington, M r s . M . Lambden,  M r . S r Z . Chow,  Forest  f o r s a m p l e m a t e r i a l a n d data;  Technicians,  Forest  suggestions  his e v e r - c h e e r f u l  Mr.  distinct  following  f o r h i s p a t i e n c e a n d d e d i c a t i o n to the h i g h e s t  thank D r . R . W . W e l l w o o d ,  and  it is m y  d u r i n g a l l p h a s e s of t h i s w o r k a n d f o r h i s t r u l y e n l i g h t e n e d ,  i n s p i r i n g guidance  Dutton,  Therefore,  f o r h e l p i n the  Mr. U.  laboratory;  f o r p r e p a r a t i o n o f the  manuscript;  P u l p a n d P a p e r R e s e a r c h I n s t i t u t e of C a n a d a ,  of B r i t i s h C o l u m b i a for f i n a n c i a l aid.  1  INTRODUCTION  W o o d s u b s t a n c e m a y b e d i v i d e d i n t o t h r e e m a i n c l a s s e s of m a t e r i a l : cell wall components,  extraneous  components,  and t r e e s e c r e t i o n s .  The  latter are distinguished by their i n s o l u b i l i t y in c o l d water and solubility in non-polar neutral solvents; a r e s u c h an e x a m p l e .  oleoresins  Extraneous components  in c o l d water and i n n e u t r a l solvents. characterize extractives hydrolysis.  a r e s o l u b l e to s o m e d e g r e e  H o t w a t e r s o l u b i l i t y i s not u s e d to  since this m a y free wood acids which can cause  A l t h o u g h the p e r c e n t a g e  m a y be v e r y low,  e x u d e d f r o m c o n i f e r o u s r e s i n ducts  of extraneous  components i n wood  t h e i r i n f l u e n c e m a y b e so g r e a t as to o f t e n  a wood m o r e s h a r p l y than c e l l w a l l components;  characterize  these latter are  distinguished  by t h e i r i n s o l u b i l i t y i n c o l d water o r n e u t r a l s o l v e n t s and b y t h e i r b e i n g an i n t e g r a l p a r t o f the c e l l u l a r s t r u c t u r e .  T h e y are chiefly high polymers,  typical examples being cellulose, hemicelluloses,  and l i g n i n s ;  pectic  m a t e r i a l s a n d m i n e r a l d e p o s i t s ( f o u n d c h i e f l y i n the m i d d l e l a m e l l a ) a r e a l s o included.  It i s o b v i o u s t h a t t h e s e d e f i n i t i o n s a r e l i m i t e d a n d f a r f r o m c o m -  plete and, t h e r e f o r e ,  In w o o d s c i e n c e ,  they await c o n s i d e r a b l e addition and r e f i n e m e n t .  m a n y u s e f u l and s o p h i s t i c a t e d a n a l y s e s have  m a d e on c a r b o h y d r a t e f r a c t i o n s of coniferous  s e c o n d a r y x y l a r y t i s s u e s with  the e x p r e s s p u r p o s e o f f u r t h e r i n g u n d e r s t a n d i n g o n s u c h h i g h l y p r o d u c t s of plant m e t a b o l i s m .  However,  been  complex  the u l t i m a t e i n " p u r i t y " h a s  never  b e e n p r o d u c e d i n h i g h y i e l d , p a r t l y b e c a u s e of the l a c k o f d e f i n i t i o n o n what i s s o u g h t i n the c h e m i c a l s e n s e .  T h i s l a c k of absolute r e f e r e n c e f r o m w h i c h  2  to b a s e a n a l y s e s  causes m u c h confusion.  Because carbohydrates  separated  f r o m wood show different c h e m i c a l and p h y s i c a l p r o p e r t i e s dependent on isolation method,  c o m p a r i s o n o f a n a l y t i c a l v a l u e s i s c o n f o u n d e d to t h e p o i n t  where such carbohydrate fractions only have meaning when r e p o r t e d i n t e r m s o f the i s o l a t i o n m e t h o d .  Nevertheless,  m u c h u s e f u l i n f o r m a t i o n m a y be  o b t a i n e d t h r o u g h e x a m i n a t i o n of c e r t a i n w e l l - d e f i n e d p o r t i o n s i n the c e l l walls.  In r e l a t i o n to q u a l i t a t i v e a n d q u a n t i t a t i v e v a r i a t i o n s w i t h i n the t r e e stem,  however,  F o r instance,  c a r b o h y d r a t e f r a c t i o n s h a v e not b e e n e x a m i n e d w i d e l y .  l i t t l e i s k n o w n r e g a r d i n g the p a t t e r n o f h o l o c e l l u l o s e  deposition  throughout growth i n c r e m e n t s of c o n i f e r o u s woods. T h i s has r e s u l t e d f r o m the p r o b l e m o f s a m p l i n g , w h e r e t h e t o t a l a m o u n t o f m a t e r i a l n e e d e d e x c e e d s that w h i c h i s a v a i l a b l e .  M o r e i m p o r t a n t , no m e t h o d h a s b e e n a v a i l a b l e f o r  r e l i a b l y r e p o r t i n g m e a s u r e m e n t of any h o l o c e l l u l o s e ,  or p o r t i o n thereof,  at  m a n y p o i n t s w i t h i n a n i n c r e m e n t . A t m o s t , o n l y two t i s s u e s ( e a r l y w o o d a n d latewood) have been s e p a r a t e d and a n a l y z e d .  T h e i m m e d i a t e g o a l s o f t h i s t h e s i s w e r e c l o s e l y r e l a t e d to t h i s " a r e a of i n v e s t i g a t i o n . holocellulose, tissues,  A r e l i a b l e m e t h o d h a d to b e d e v e l o p e d f o r  or a constant p o r t i o n thereof,  i . e. , w o o d .  in coniferous secondary x y l a r y  A t any l e v e l of s a m p l e size,  of h o l o c e l l u l o s e i s d i f f i c u l t , h e n c e ,  estimating  accurate  measurement  it r e q u i r e s adequate r e p l i c a t i o n .  A m o n g the m o r e i m p o r t a n t c o n s i d e r a t i o n s a f f e c t i n g r e p l i c a t i o n w e r e p a r t i c l e size,  extraction solvents and their sequence,  and l i m i t e d s a m p l e  size.  Since o n l y s m a l l amounts of m a t e r i a l w e r e available,  another  of the m e t h o d w a s t h a t i t b e o f s e m i - m i c r o n a t u r e a n d g i v e r e l i a b i l i t y with a reasonable r e p l i c a t i o n n u m b e r .  requirement  statistical  T h e method would be  a p p l i e d to m a t e r i a l s a m p l e d w i t h i n s e v e r a l a n n u a l g r o w t h i n c r e m e n t s determine actual patterns of cellulose  deposition.  to  A l p h a - c e l l u l o s e patterns  d e t e r m i n e d o n w o o d m a t e r i a l s w o u l d b e c o m p a r e d to l i g n i n p a t t e r n s a n d , along with these newly established patterns,  c o m p a r i s o n s would be  w i t h the h o p e that i n f o r m a t i o n d e r i v e d t h e r e f r o m m i g h t g i v e n e w  made  insight  to i n t e r - r e l a t i o n s h i p s b e t w e e n the m a j o r s e c o n d a r y x y l a r y c e l l w a l l c o m ponents.  T h i s c o m p a r i s o n w o u l d u p h o l d o r r e f u t e the h y p o t h e s i s  by this thesis which i s :  that l i g n i f i c a t i o n a c r o s s  examined  coniferous growth i n c r e -  m e n t s i s the c o m p l e m e n t to the l o n g - c h a i n c e l l u l o s i c f r a c t i o n o f h o l o c e l l u l o i . e. ,  alpha-cellulose.  4 LITERATURE  REVIEW  I. H i s t o r y o f C h e m i c a l O r g a n i z a t i o n i n W o o d Due to the c o m p l e x n a t u r e o f w o o d ,  the h i s t o r y a n d n o m e n c l a t u r e o f  w o o d c h e m i s t r y and its n o m e n c l a t u r e have often b e e n confused; less,  neverthe-  t h i s i s to b e e x p e c t e d w h e r e v e r a n e w b r a n j ^ h o f s c i e n c e e m e r g e s .  spite of s h o r t c o m i n g s ,  i m p o r t a n t divisions and developments have been  made in wood chemistry,  m a i n l y b y its  pioneers.  P u r v e s (97) h a s r e v i e w e d the h i s t o r y o f o r g a n i z e d c e l l u l o s e T h i s r e a l l y b e g a n i n 1837 w i t h P a y e n ,  Payen brought a systematic  and oxygen.  a p p r o a c h to w o o d a n a l y s i s w h e r e b y h e t r e a t e d  a l t e r n a t e l y w i t h n i t r i c a c i d a n d a l k a l i to get " c e l l u l o s e , 11  skeletal substance,  chemistry.  a l t h o u g h G a y L u s s a c i n 1811 h a d  s h o w n t h a t w o o d c o n t a i n e d the e l e m e n t s c a r b o n , h y d r o g e n ,  oak  In  a solid  w h i c h h e d e s c r i b e d as m e c h a n i c a l l y e m b e d d e d i n an  "encrusting" substance.  C h l o r i n a t i o n w a s u s e d to p r o c u r e t h e s a m e  with f i r , a coniferous wood.  results  Payen's work extended over a five year p e r i o d  and f r o m i t , h e e s t a b l i s h e d an e m p i r i c a l f o r m u l a f o r c e l l u l o s e ( C , H . O ) , o ID 5 n 1 r  s h o w e d t h i s to b e i s o m e r i c w i t h s t a r c h , to c o l o r i m e t r i c d e t e r m i n a t i o n s , to t h e " e n c r u s t i n g " s u b s t a n c e .  however,  response  m a i n t a i n e d t h a t c e l l u l o s e w a s not l i n k e d F u r t h e r m o r e , P a y e n was c o n v i n c e d of  the c h e m i c a l u n i f o r m i t y o f c e l l u l o s e . claim,  and b e c a u s e of its l a c k of  Some botanists  soon disputed this  o n the b a s i s t h a t d i f f e r e n t p l a n t t i s s u e s v a r i e d w i d e l y  in staining reactions and c u p r a m m o n i u m solubility.  In 1859,  m a i n t a i n e d t h e c e l l w a l l to b e c o m p o s e d o f s e v e r a l s u b s t a n c e s  :  Fremy (lignin,  5 encrusting substance, "para",  and cellulose) w h i c h he c a l l e d "vasculose",  and r e m a i n i n g c e l l u l o s e s .  The same year,  on r e g e n e r a t i o n f r o m c u p r a m m o n i u m solution,  "meta",  P e l o u z e s h o w e d that,  cellulose originally dissolved  i n cone h y d r o c h l o r i c a c i d was now s o l u b l e i n a m u c h w e a k e r a c i d . c o n t e n t i o n s w e r e s u p p o r t e d 25 y e a r s l a t e r , w e r e f o u n d to c o n t a i n g a l a c t o s e , glucose;  arabinose,  a c c o r d i n g to N o r m a n (94),  yielding these non-glucose extractablej  hence,  when cellulose h y d r o l y z a t e s mannose, xylose,  sugars were m o r e readily hydrolyzed or alkali-  he c a l l e d t h e m h e m i c e l l u l o s e s .  however,  as w e l l as  S c h u l z e n o t e d i n 1891 t h a t the p o l y s a c c h a r i d e s  s a c c h a r i d e c o n s t i t u e n t r e m a i n e d as c e l l u l o s e . constituents,  Fremy's  The more resistant poly-  D i f f e r e n t i a t i o n b e t w e e n t h e two  lacked specificity because drastic extraction treat-  m e n t s f a i l e d to r e m o v e a l l h e m i c e l l u l o s e s (97).  The non-cellulose portion  of s o l v e n t - e x t r a c t e d p l a n t t i s s u e i n c l u d e d h e m i c e l l u l o s e as w e l l as  Payen's  e n c r u s t i n g s u b s t a n c e a n d , as t h e s e c o m p o n e n t s b e c a m e r e c o g n i z e d as distinct entities,  the t e r m l i g n i n ( F r e m y ' s "vasculose")  c a r b o h y d r a t e f r a c t i o n of the n o n - c e l l u l o s i c i n c r u s t a n t s .  denoted the n o n Such a clarification  i n i d e a s a n d n o m e n c l a t u r e d i d m u c h to e x p l a i n the r e a s o n s w h e r e b y and his colleagues  Fremy  d e n i e d the c h e m i c a l u n i f o r m i t y o f c e l l u l o s e .  A s the i s o l a t i o n o f c e l l u l o s e r e q u i r e d u s e o f h a r s h r e a g e n t s ,  it  seemed  p l a u s i b l e to a c c e p t c e l l u l o s e as a n a r t i f a c t p r o d u c e d b y c h e m i c a l c h a n g e d u r i n g i s o l a t i o n . P u r v e s (97) r e p o r t s that E r d m a n n t o o k t h i s v i e w i n 1867, w h e n h e c o n s i d e r e d t h e c o n c r e t i o n s f r o m f r u i t w o o d to b e " g l u c o drupose" ( C  H , / 0 - ,),  while s p r u c e wood was " g l y c o l i g n o s e  t !  ( C _ H .,0 n  ).  6  M i l d a c i d h y d r o l y s i s left "drupose", ( C  rl 0 ) and "lignose" 12 20 o  1 0  o  (C^H^O,,), l o 2o 11  and subsequent n i t r i c a c i d e x t r a c t i o n left a n e a r l y constant y i e l d of wood f i b r e (97).  E r d m a n n ' s v i e w s r e c e i v e d s u p p o r t f r o m C r o s s a n d B e v a n (33),  who c l a i m e d t h a t b a s t f i b r e s w e r e u n i f o r m i n c h e m i c a l r e a c t i o n s , b e l i e v e d t h a t a l l p l a n t c o m p o n e n t s m e r g e d i n t o one a n o t h e r b y chemical gradations. "  and  "insensible  C e l l u l o s e , t h e y stated,, w a s m e r e l y t h e  aggregate  r e s u l t i n g f r o m a c h e m i c a l b r e a k d o w n o f p l a n t t i s s u e c a r r i e d to the p o i n t where r e a c t i o n s g e n e r a l l y accepted for p u r e c e l l u l o s e were obtained.  Their  " l i g n o c e l l u l o s e " t h e o r y w a s r e f u t e d i n 1920 w h e n H e r z o g a n d J a n k e showed that l i g n i f i e d n o n - w o o d y f i b r e s o r cotton gave an X - r a y p a t t e r n n e a r l y i d e n t i c a l to t h a t o f d e l i g n i f i e d w o o d p u l p .  Thus,  a uniformly ordered  c r y s t a l l i n e lattice could be i n u n i f o r m c h e m i c a l combination with l a r g e amorphous molecules  o f l i g n i n , fat,  A c c o r d i n g to M a r k (86), b y N a e g e l e i n 1858,  or  hemicellulose.  t h e f r i n g e m i c e l l a r t h e o r y , as f i r s t s u g g e s t e d  r e n d e r s the c o n c e p t o f ' l i g n o c e l l u l o s e " ( a n d i t s  associated nomenclature) obsolete.  Nevertheless  historical controversies  about t h e d e f i n i t i o n o f c e l l u l o s e h a v e as y e t not b e e n a d e q u a t e l y r e s o l v e d . In t e x t i l e o r b o t a n i c a l c i r c l e s , c e l l u l o s e m e a n s the n a t u r a l , c a r b o h y d r a t e polymer  c o l l e c t e d i n f i b r o u s f o r m t h a t i s the s t r u c t u r a l a g g r e g a t e o f the  cell wall. A s such,  it u s u a l l y i n c l u d e s a h e m i c e l l u l o s e f r a c t i o n y i e l d i n g  o n h y d r o l y s i s s u g a r s o t h e r t h a n g l u c o s e (94).  A n alternative definition  has b e e n adopted b y those studying c h e m i c a l s t r u c t u r e , w h i c h follows  Payen  a n d S c h u l t z e i n a c c e p t i n g c o t t o n as a s t a n d a r d , r e s t r i c t i n g the t e r m c e l l u l o s e to t h a t p o r t i o n o f the c e l l w a l l d e r i v e d e x c l u s i v e l y f r o m  glucose  7 and r e s e m b l i n g cotton c e l l u l o s e i n its p h y s i c a l and c h e m i c a l p r o p e r t i e s .  T h e f i r s t v i e w of c e l l u l o s e i s h e l d b y N o r m a n (94),  who d e f i n e d h o l o c e l -  l u l o s e b y t h e c h l o r i t e m e t h o d of J a y m e as m o d i f i e d b y W i s e et a l . (153) differentiated this b y solubility c r i t e r i a which,  quite expectedly,  and  l e a d to o v e r -  l a p p i n g o f c a t e g o r i e s a n d c o n t r i b u t e d to a r a t h e r c o n f u s e d u n d e r s t a n d i n g o f wood c h e m i s t r y .  T h i s s y s t e m i s p r e s e n t e d as A p p e n d i x I;  dotted lines  show  i n d e f i n i t e b o u n d a r i e s w h i c h m a y shift a c r o s s t h i s a r e a d e p e n d i n g o n i n t e n s i t y and n u m b e r of e x t r a c t i o n t r e a t m e n t s . c e l l u l o s e s into c e l l u l o s a n s  F o r example,  s e p a r a t i o n o f the h e m i -  and p o l y u r o n i d e h e m i c e l l u l o s e s  the C r o s s a n d B e v a n c e l l u l o s e m e t h o d ;  r e s t s p r i m a r i l y on  since this utilizes v i s u a l determination  of r e s i d u a l l i g n i n , t h e s a m e d e g r e e o f d e l i g n i f i c a t i o n w i l l r a r e l y b e a g r e e d u p o n b y a n y two w o r k e r s a n d ,  concomitantly,  attained between h e m i c e l l u l o s e s . affects c e l l u l o s a n s hemicellulose  r a r e l y w i l l the s a m e r a t i o b e  M o r e o v e r , while chlorite  and c e l l u l o s e v e r y little,  the e n c r u s t i n g p o l y u r o n i d e  f r a c t i o n is r e n d e r e d distinctly m o r e soluble,  that v a r i a b l e a m o u n t s w i l l b e o b t a i n e d ,  delignification  w i t h the  result  depending on i s o l a t i o n technique.  The nomenclature itself is misleading.  The t e r m hemicellulose  is  a c t u a l l y i n c o r r e c t w h e n a p p l i e d to e n c r u s t i n g p o l y u r o n i d e s a n d f o r t h i s reason,  its u s e s h o u l d be d i s c o u r a g e d ;  that of c e l l u l o s a n i s e n t i r e l y m i s -  l e a d i n g s i n c e i t i m p l i e s a l o n g c h a i n w i t h g l u c o s e b a s e a n d i n t e n d s to m e a n a short chain with o t h e r - t h a n - g l u c o s e  base.  Uronic acids (from p o l y -  u r o n i d e s ) i m p l y t e r m i n a l situation or o c c u r r e n c e on a s i d e - c h a i n of known linkage,  w h e r e a s i n f a c t o n l y the f o r m e r i s p r e s e n t .  L a s t l y , this  nomen-  c l a t u r e t a k e s no a c c o u n t o f the x y l a n a n d m a n n a n ( f r o m c e l l u l o s a n s )  which  8  a r e often i n a s s o c i a t i o n with s e p a r a t e d  o(, - c e l l u l o s e s .  In an a t t e m p t to r e f i n e t h e s e s h o r t c o m i n g s ,  S t e w a r t {117)  extended  N o r m a n ' s o r i g i n a l c l a s s i f i c a t i o n and n o m e n c l a t u r e of wood substance s a c c h a r i d e s ( A p p e n d i x II).  poly-  A n a l y t i c a l p r o c e d u r e s for d e t e r m i n i n g each  c o n s t i t u e n t a r e k n o w n a n d , e x c e p t f o r the f a i r s e p a r a t i o n o f g l y c o s a n uronides f r o m non-cellulosic glycosans, separations between all constituents,  they give r e l a t i v e l y c l e a r - c u t  t h u s a l l o w i n g a p p r o x i m a t i o n o f the  total p o l y s a c c h a r i d e f r a c t i o n of wood substance. to b e p r e f e r r e d to the o l d e r n o m e n c l a t u r e (94), r a t h e r than t r i v i a l n o m e n c l a t u r e . to m a c r o m o l e c u l a r s u b s t a n c e s  The t e r m i n o l o g y used is as i t i s b a s e d o n  systematic  W h i l e use of "osan" is g e n e r a l l y a p p l i e d  w h i c h h y d r o l y z e to g i v e s u g a r s , S t e w a r t h a s  e x t e n d e d t h i s d e f i n i t i o n to i n c l u d e o l i g o s a c c h a r i d e s  as w e l l .  Stewart's  c l a s s i f i c a t i o n i s m u c h e a s i e r to u n d e r s t a n d a n d a p p l y . C e r t a i n l y i t  abolishes  m u c h c o n f u s i o n attendant between u n d e r s t a n d i n g a c t u a l v a r i a t i o n s i n wood c h e m i c a l constituents  and methods u s e d for their m e a s u r e m e n t .  M u c h of  this h d s t o r i c a l and n o m e n c l a t u r e r e v i e w is also available i n a p a p e r b y W i s e (152).  II. V a r i a t i o n s i n C h e m i c a l O r g a n i z a t i o n i n W o o d W o o d i s o f p l a n t o r i g i n a n d c o n s t i t u t e s the s e c o n d a r y x y l a r y p o r t i o n of c e r t a i n f i b r o v a s c u l a r t i s s u e s .  T h e f o l l o w i n g c r i t e r i a s e r v e to d i s t i n -  g u i s h w o o d y f r o m n o n - w o o d y p l a n t s (19,  96):  woody plants have  specialized  c o n d u c t i n g ( v a s c u l a r ) t i s s u e s that p r o d u c e x y l e m (wood) a n d p h l o e m ( i n n e r bark);  t h e s e plants p r o v i d e a s t e m that p e r s i s t s  years,  i n fact,  and l i v e s for a n u m b e r of  s o m e w o o d y p l a n t s ( t r e e s ) a r e the o l d e s t l i v i n g t h i n g s ;  and,  b e s i d e s e x h i b i t i n g the p r i m a r y g r o w t h w h i c h o c c u r s at a p i c a l g r o w i n g p o i n t s  9 and c a u s e s elongation of t r e e s t e m s , thickening,  a  woody plants exhibit  secondary  m e a n s o f s t e m t h i c k e n i n g a c h i e v e d t h r o u g h the a c t i v i t y o f a  g r o w i n g l a y e r c a l l e d the c a m b i u m .  T h e t e r m " w o o d " r e f e r s to p a r t of  t h i s c o l l e c t e d p r o d u c t o f the c a m b i u m w h i c h , b e c a u s e o f i t s o r i g i n , i s r e f e r r e d to as s e c o n d a r y x y l e m .  Originating f r o m apical growing  also  points,  p r i m a r y x y l e m i s f o r m e d o n l y d u r i n g the f i r s t y e a r o f g r o w t h i n s u c h p l a n t s , hence,  A.  i s r e s t r i c t e d to i n i t i a l p o s i t i o n about the s t e m p i t h .  Taxonomic Level Taxonomically,  and t r e e s ;  of t h e s e ,  there are three types of woody plants:  lianas,  shrubs,  the l a t t e r a r e the o n l y o n e s o f d i r e c t i n t e r e s t to W o o d  S c i e n c e a n d , t h o u g h s o m e t i m e s d i f f i c u l t to s e p a r a t e f r o m the o t h e r s ,  they  a r e u s u a l l y identified f r o m t h e i r c h a r a c t e r i s t i c habit of attaining a height o f at l e a s t 20 f e e t at m a t u r i t y a n d h a v i n g a s e l f - s u p p o r t i n g s t e m .  Within  the p l a n t k i n g d o m , t r e e s o c c u r o n l y i n the P h y l u m S p e r m a t o p h y t a w h i c h , in turn,  is s u b d i v i d e d into G y m n o s p e r m a e and A n g i o s p e r m a e .  M u c h w o r k h a s b e e n done o n the c o m p o s i t i o n a n d c h e m i c a l s t r u c t u r e of g r o s s w o o d f r o m t h e s e two d i v i s i o n s . - S u c h r e s u l t s  are of interest because  t h e y i n d i c a t e c h a n g e s i n the c e l l w a l l c h e m i c a l s t r u c t u r e w h i c h m a y h a v e e v o l v e d d u r i n g the d e v e l o p m e n t o f t e r r e s t r i a l p l a n t s .  B o t h have i n c o m m o n  the q u a l i t a t i v e s i m i l a r i t y o f c o n t a i n i n g the f o u r b a s i c w o o d  components.  M a j o r quantitative differences between these components,  however,  s e p a r a t e the two w o o d t y p e s .  133)has s u m m a r -  R e c e n t l y , T i m e l l (131,  i z e d the m o r e i m p o r t a n t d i f f e r e n c e s  132,  s e r v e to  i n carbohydrate composition between  A n g i o s p e r m a e and G y m n o s p e r m a e and showed t h e i r e v o l u t i o n a r y  development  10 to b e a s s o c i a t e d w i t h d e c r e a s i n g c o n t e n t s of g a l a c t o s e , m a n n o s e , binose units,  and i n c r e a s i n g amounts of glucose and x y l o s e units.  n o t e s t h a t s u c h t r e n d s s e e m to b e r e l a t e d to i n c r e a s e s secondary growth, p r i m a r y wall  as w e l l as to i n c r e a s e s  s u b s t a n c e i n the f o r m o f h o l o c e l l u l o s e ,  Glucan,  (118)  i n the e x t e n t of  i n the p r o p o r t i o n o f s e c o n d a r y to  are usually obtained f r o m wood  of w h i c h A n g i o s p e r m a e c o n t a i n f r o m  a n d G y m n o s p e r m a e 60 to 75%,  b a s e d on e x t r a c t i v e - f r e e  as a p p r o x i m a t e d b y oc* - c e l l u l o s e ,  f o r m e r a n d 40 to 45% o f the l a t t e r (117);  p r o p o r t i o n of h o l o c e l l u l o s e h y d r o x i d e at 2 0 ° C .  (124).  wood.  c o n s t i t u t e s 45 to 50% o f the t h i s i s c u s t o m a r i l y r e g a r d e d as  the t r u e c e l l u l o s i c f r a c t i o n o f w o o d c a r b o h y d r a t e s .  A l p h a c e l l u l o s e i s the  o r p u l p i n s o l u b l e i n a s o l u t i o n o f 17. 5% s o d i u m The t e r m , however,  is s t r i c t l y a r b i t r a r y ,  d o e s not i m p l y e x c l u s i v e l y a h o m o g e n e o u s g l u c o s a n f o r , contains  Stewart  components.  The total c e l l - w a l l polysaccharides  70 to 80%,  and a r a -  and  i n v a r i a b l y , it  s m a l l amounts of c a r b o n d i o x i d e - a n d f u r f u r a l - y i e l d i n g m a t e r i a l s ,  as w e l l as s i g n i f i c a n t a m o u n t s of m a n n a n s f r o m s o f t w o o d s (153).  F r o m the l i t e r a t u r e r e l a t i n g to the n o n - c e l l u l o s i c w o o d p o l y s a c c h a r i d e s , H a m i l t o n a n d T h o m p s o n (54)  reached these conclusions:  polysaccharides (Norman's hemicelluloses) s p e r m o u s wood,  e n t i t i e s i n c o m m o n to b o t h : g a l a c t o g l u c o m a n n a n , pectins,  non-cellulosic  r e p r e s e n t about 25% of  a n d 20% o f g y m n o s p e r m o u s w o o d .  galactose-containing polymers,  total  angio-  E a c h c o n t a i n the  following  arabinogalactan and other  and s t a r c h .  In c o n t r a s t ,  very  m u c h l a r g e r a m o u n t s o f 4 - 0 - m e t h y l g l u c u r o n o x y l a n (80 to 90% o f t o t a l ) a r e found i n A n g i o s p e r m a e ,  w h e r e a s m e d i u m to l a r g e a m o u n t s of a r a b i n o -  11 4 - 0 - m e t h y l g l u c u r o n o x y l a n (15 to 30% o f t o t a l ) a n d g l u c o m a n n a n (60 to 70% of t o t a l ) ,  respectively,  occur in Gymnospermae.  In a d d i t i o n , m a n y p h y s i c a l m e a s u r e m e n t s s e p a r a t e d w o o d p o l y s a c c h a r i d e s (118,  129).  h a v e b e e n p e r f o r m e d on  Further chemical  investigation  h a s r e v e a l e d o t h e r d i f f e r e n c e s b e t w e e n p o l y s a c c h a r i d e s of the two m a j o r groups.  A c e t y l c o n t e n t o f A n g i o s p e r m a e w o o d i s about t w i c e t h a t of  G y m n o s p e r m a e w o o d , b e i n g i n the o r d e r o f 3 to 4%; to o c c u r as O - a c e t y l g r o u p s (22,  118).  m o s t of these are known  O n the o t h e r h a n d , G y m n o s p e r m a e  c o n t a i n a p p r o x i m a t e l y 2 5% l i g n i n as c o m p a r e d to about 20% f o r A n g i o s p e r m a e and,  of t h i s p e r c e n t a g e ,  m e t h o x y l c o n t e n t of the f o r m e r i s about 15%,  t h a t o f the l a t t e r i s c l o s e r to 20%. in composition,  constitute  while  E x t r a c t i v e s , a l t h o u g h quite v a r i a b l e  a n a v e r a g e o f 3 to 5% f o r w o o d o f e i t h e r g r o u p .  W i t h i n the G y m n o s p e r m a e f o u r l i v i n g o r d e r s a r e r e c o g n i z e d b y p r o b a b l e o r d e r of i n c r e a s i n g e v o l u t i o n a r y development, Ginkgo ales,  Conifer ales and Gnetales.  is of c o m m e r c i a l i m p o r t a n c e ,  these are Cycadales,  O n l y the t h i r d o r d e r ,  Coniferales,  m a i n l y b e c a u s e o f the g r e g a r i o u s n a t u r e o f  i t s s p e c i e s ( t e n d i n g to b e g e t t r e e e x t r a c t i o n o n a n e c o n o m i c l e v e l ) , e x c u r r e n t m o d e of growth,  A m o n g the C o n i f e r s ,  their  a n d the d i v e r s i t y of t h e i r w o o d u s e s .  c h e m i c a l studies of v a r i a t i o n s i n p o l y s a c c h a r i d e s  a r e m o r e l i m i t e d and m u c h m o r e data is needed b e f o r e g e n e r a l i z a t i o n s be m a d e r e g a r d i n g differences divisions.  While  between families or l e s s e r taxonomic  - c e l l u l o s e i s c o n s i d e r e d the s a m e c h e m i c a l l y ,  genera variations in heteroglycans (109)  have been noted.  can  subinter-  S c h w a r t z and T i m e l l  extracted galactoglucomannan f r o m Pacific silver fir (Abies  amabilis  12 ( D o u g l . ) F o r b . ) a n d f o u n d two t y p e s h a v i n g d i f f e r e n c e m o n o s a c c h a r i d e  ratios  a n d d e g r e e o f p o l y m e r i z a t i o n ( D P ) ; T i m e l l (132) e a r l i e r s t u d i e d h e t e r o g l y c a n s o f v a r i o u s s p e c i e s o f the g e n e r a P i n u s , Thuja.  H e s h o w e d that,  genera,  P i c e a, T s u g a , A b i e s a n d  while galactoglucomannans were s i m i l a r for a l l  each exhibited characteristic monosaccharide ratios. F u r t h e r m o r e ,  he c o n c l u d e d t h a t w i t h a few e x c e p t i o n s , 2 to 4% g a l a c t o s e ,  all coniferous glucomannans contain  a n d that c o n i f e r o u s w o o d m a y c o n t a i n 10 to 20% o f a  c l o s e l y r e l a t e d s e r i e s of galactoglucomannans  differing m a i n l y in their  r e l a t i v e g a l a c t o s e content and p e r h a p s also i n t h e i r a v e r a g e D P (or m o l e c u l a r w e i g h t ) a n d c h a i n b r a n c h i n g . S c h u e r c h (108)  r e p o r t e d t h a t the l a t t e r  c h a r a c t e r i s t i c s e l d o m e x c e e d s 3 b r a n c h e s p e r 100 u n i t s ,  and that i n c e r t a i n  conifers,  the p o i n t of O - a c e t y l g r o u p attachment v a r i e s .  In s o m e  of L a r i x ,  e s p e c i a l l y l a r g e amounts of a h i g h l y b r a n c h e d a r a b i n o g a l a c t a n  h a v e b e e n f o u n d (132).  species  A n o t h e r w i s e i m p o r t a n t p o i n t about a r a b i n o g a l a c t a n  i s that it i s found o n l y i n P i n a c e a e .  S c h u e r c h (108) h a s l i s t e d a b i b l i o -  g r a p h y r e l a t i n g to i n t e r - g e n e r a v a r i a t i o n s i n s o m e  hemicelluloses.  E r d t m a n (39) h a s a p p l i e d d i f f e r e n c e s i n e x t r a c t i v e c h e m i s t r y to d i s t i n g u i s h w i t h i n and b e t w e e n the F a m i l i e s P i n a c e a e , Araucariaceae,  Taxodiaceae,  and C u p r e s s a c e a e .  Podocarpaceae,  Inter-species  variation  i n a l l c h e m i c a l c o m p o n e n t s i s c o n v e n i e n t l y l i s t e d b y B r o w n i n g (22) a n d T i m e l l (135);  t h e s e c o v e r the m o r e i m p o r t a n t c o m m e r c i a l N o r t h A m e r i c a n  woods.  B r o w n i n g (22) a l s o h a s s h o w n e l e m e n t a l a n a l y s i s o f s o m e o f t h e s e  species.  G e n e r a l l y , c h e m i c a l v a r i a t i o n b e t w e e n s p e c i e s is l e s s than that  between genera;  however,  m a n y exceptions  have been reported.  Within a species,  c h e m i c a l c o m p o s i t i o n v a r i e s u n p r e d i c t a b l y , due  to the m u l t i p l e e f f e c t s o f g r o w t h c o n d i t i o n s a v a i l a b l e w i t h i n a n d b e t w e e n forests  a n d , as r e s u l t o f t h e l a t t e r , t h e r e s e e m s to h a v e b e e n  of s o - c a l l e d r a c e s within s p e c i e s  development  (96).  Some s t r u c t u r a l features and p h y s i c a l c h a r a c t e r i s t i c s (hence, c h e m i c a l c h a r a c t e r i s t i c s ) a r e i n h e r i t e d (96) a n d , b e c a u s e o f t h i s ,  also  tree-  b r e e d i n g p r o g r a m s a r e now o p e r a t e d i n a n u m b e r o f c o u n t r i e s , w i t h s p e c i a l a t t e n t i o n b e i n g p a i d to t h e s e  B.  aspects.  Wood Zone L e v e l Within a single coniferous stem,  the r a d i a l p a t t e r n o f C r o s s a n d  B e v a n cellulose distribution for Douglas fir (Pseudotsuga m e n z i e s i i ( M i r b . ) F r a n c o ) a n d M o n t e r e y p i n e ( P i n u s r a d i a t a D . D o n . ) h a s b e e n s h o w n to r a p i d l y i n c r e a s e i n the f i r s t 10 to 15 y e a r s , t h e r e a f t e r l e v e l o f f (141,  160).  f r o m the p i t h o u t w a r d , a n d  Z o b e l a n d M c E l w e e (160) ; c o n f i r m e d t h e s e  results for loblolly pine (Pinus taeda L . ) a l s o where o f s a p w o o d w a s h i g h e r b y 7% t h a n that n e a r the p i t h .  - cellulose L a r s o n (76)  content  recently  d e t e r m i n e d the f i v e p r i n c i p a l w o o d s u g a r s a n d l i g n i n a c r o s s r a d i i o f t h r e e m a t u r e r e d pine ( P i n u s r e s i n o s a L . ) s t e m s and showed that g l u c o s e and m a n n o s e y i e l d s i n c r e a s e d r a p i d l y w i t h age, galactose, gradually).  arabinose,  w h e r e a s y i e l d s of x y l o s e ,  a n d l i g n i n d e c r e a s e d (the l a t t e r d e c l i n e d v e r y  H e f u r t h e r s h o w e d that l i g n i n i n c r e a s e d b y 2% f r o m 6 ft to  18 ft i n h e i g h t .  K l e m (70) a n d H a t a ( 5 5 ) > r e p o r t e d s i m i l a r r e s u l t s f o r N o r w a y  s p r u c e ( P i c e a a b i e s L . ( K a r s t . ) a n d J a p a n e s e r e d p i n e ( P i n u s d e n s i f l o r a L . ),  respectively.  W e l l - w o o d et a l . (147)  s h o w e d that,  across  a s t e m r a d i u s of  w e s t e r n h e m l o c k ( T s u g a h e t e r o p h y l l a R a f . S a r g . )* s p e c i f i c g r a v i t y f o l l o w s the s a m e g e n e r a l t r e n d as t h a t f o r c e l l u l o s e c o n t e n t .  K e n n e d y and  J a w o r s k y (68) s h o w e d t h e s e two p r o p e r t i e s to b e c o r r e l a t e d i n D o u g l a s f i r . Therefore,  cellulose  c o n t e n t m a y b e e x p e c t e d to f o l l o w the s a m e p a t t e r n  as t h a t o f s p e c i f i c g r a v i t y i n o b l i q u e a n d h e i g h t s e r i e s of D o u g l a s f i r a n d the p r e c e d i n g s p e c i e s c i t e d f o r c e l l u l o s e  content,  that i s ,  cellulose  yield  c o u l d b e e x p e c t e d to d e c r e a s e f r o m the b u t t u p w a r d . E x t r a c t i v e p a t t e r n s have been established across (D. (13,  Don) E n d l . ) (110), 45),  r a d i i of r e d w o o d (Sequoia  sempervirens  w e s t e r n l a r c h ( L a r i x o c c i d e n t a l i s N u t t . ), D o u g l a s f i r  a n d w e s t e r n r e d c e d a r ( T h u j a p l i c a t a D o n n . ) (83).  Both poly-  p h e n o l a n d t h u j a p l i c i n c o n t e n t s i n c r e a s e d f r o m the p i t h to t h e h e a r t w o o d s a p w o o d p e r i p h e r y , a f t e r w h i c h the f o r m e r d e c r e a s e d r a p i d l y a n d t h e latter disappeared.  In c o n t r a s t ,  r e s i n s f r o m a n u m b e r of pines  to b e h i g h e s t i n t h e p i t h r e g i o n a n d t h e r e a f t e r (5,  27,  78,  110).  appear  d e c r e a s e g r a d u a l l y to the b a r k  L u x f o r d (81) h a s s t u d i e d the e f f e c t o f e x t r a c t i v e s  on  s t r e n g t h of whole w o o d .  W o o d zone d i f f e r e n c e s  s i m i l a r l y r e f l e c t the a b o v e t r e n d s :  juvenile  w o o d i s r e g a r d e d as t h e c e n t r a l p o r t i o n o f the s t e m o c c u p y i n g the f i r s t 15 to 20 r i n g s a n d m a t u r e w o o d i s that f o r m e d  subsequently.  T h e l a t t e r p o s s e s s e s c h a r a c t e r i s t i c s c o n s i d e r e d r e g u l a r for the species,  while juvenile wood,  o n the other h a n d , has c h e m i c a l p r o p e r t i e s  different f r o m those of m a t u r e wood.  Trends relating cellulose,  lignin,  and extractive summary,  contents between these zones have been d i s c u s s e d .  within juvenile wood,  c e l l u l o s e c o n t e n t a p p e a r s to r i s e a b r u p t l y ,  p o l y p h e n o l and t h u j a p l i c i n contents i n c r e a s e contents d e c r e a s e slowly;  ash,  g r a d u a l l y , and l i g n i n and r e s i n  in mature heartwood,  b u t at m o r e g r a d u a l r a t e s . 50% e t h a n o l s o l u b l e s ,  In  these trends  continue,  C a m b i a l z o n e s m a y c o n t a i n u p to 20% i n o r g a n i c 30% p r o t e i n ,  35% n o n - c e l l u l o s i c  polysaccharides  b u t l i t t l e (up to 25%) c e l l u l o s e o r l i g n i n (118).  In g e n e r a l ,  r e g u l a r w o o d i s that f o r m e d b y n o r m a l p h y s i o l o g i c a l  p r o c e s s e s r e s u l t i n g i n e q u a l c a m b i a l d i v i s i o n of c e l l s t h r o u g h o u t the t r e e circumference.  W h e n i n s p e c t e d f r o m p i t h to b a r k a l o n g a r a d i u s ,  c h a r a c t e r i s t i c quality is frequently,  b u t not a l w a y s ,  d i s t i n c t l y c o l o r e d zones of growth:  h e a r t w o o d ( d u r a m e n ) •. a n d  (alburnum).  tree,  sapwood  T h e l a t t e r o c c u p i e s the p e r i p h e r a l r e g i o n o f s e c o n d a r y  Its s u s p e c t e d f u n c t i o n s  and r e s e r v e  food storage.  are s t e m support,  most  the p r e s e n c e of two  i n w h i c h a p o r t i o n o f the t i s s u e (5 to 4 0 % ) i s l i v i n g , h e n c e , active.  its  xylem  physiologically  s a p c o n d u c t i o n up the  With time and i n c r e a s i n g girth,  however,  the p r o t o p l a s m o f a l l l i v i n g x y l a r y c e l l s i s t h o u g h t to die a n d s e c o n d a r y c h a n g e s a c c r u i n g f r o m t h i s r e s u l t i n f o r m a t i o n of h e a r t w o o d , l o g i c a l l y dead,  c e n t r a l c o n i c a l c o r e o f the s t e m x y l e m .  the  physio-  S i m i l a r death  c h a n g e s p r o b a b l y o c c u r i n the p h l o e m .  F o r many species,  the t r a n s i t i o n o f s a p w o o d i n t o h e a r t w o o d  c h a r a c t e r i z e d b y a change f r o m a c r e a m y - w h i t e darker color,  is  c o l o r to an a p p r e c i a b l y  the d e m a r c a t i o n zone b e i n g e i t h e r a b r u p t o r g r a d u a l .  In  16 o t h e r g e n e r a s u c h as P i c e a ,  Tsuga,  Abies,  or Populus, this color  m a y b e i m p e r c e p t i b l e (96).  D a r k h e a r t w o o d v i s u a l l y i l l u s t r a t e s that s o m e  c h e m i c a l c h a n g e h a s o c c u r r e d i n t r a n s i t i o n b e t w e e n the z o n e s ; o r g a n i c s u b s t a n c e s s u c h as e x t r a c t i v e s ,  extraneous  t h i s p h e n o m e n o n o c c u r s i n s p e c i e s of l i g h t h e a r t w o o d ;  s u b s t a n c e s i s w e l l - k n o w n (67,  83,  84);  T o be  however,  T h e t o x i c i t y of s o m e  this,  various  materials, or infil-  t r a t i o n s a r e t h o u g h t to p a s s i n t o the l u m e n s a n d c e l l w a l l s .  t i v e s l a c k s u c h a h i g h d e g r e e of o x i d a t i o n .  change  sure, their  extrac-  extractive  w i t h the i n h i b i t e d m o v e m e n t  o f m o i s t u r e a n d a i r ( c a u s e d p o s s i b l y b y the i n f i l t r a t i o n o r m o r p h o l o g i c a l changes,  i . e.  tyloses),  i s t h o u g h t to r e n d e r h e a r t w o o d m o r e r e s i s t a n t  to  penetration than sapwood.  As indicated previously,  corewood heartwood,  p o s i t i o n w o u l d b e e x p e c t e d to c o n t a i n o n the a v e r a g e , l i g n i n than m a t u r e heartwood and sapwood, consistently higher in sapwood  because of its  central  less cellulose  and m o r e  while a c e t y l content w o u l d be  (22).  I r r e g u l a r h e a r t w o o d h a s b e e n n o t e d i n D o u g l a s f i r (69) a n d w e s t e r n r e d c e d a r (84) f r o m the i n t e r i o r o f B r i t i s h C o l u m b i a .  P a t t e r n s of d i -  h y d r o q u e r c e t i n a n d t h u j a p l i c i n d i s t r i b u t i o n a p p e a r to f o l l o w a l t e r n a t e  light-  a n d d a r k - c o l o r e d c o n c e n t r i c b a n d s o f v a r i a b l e w i d t h w i t h i n the h e a r t w o o d ("target r i n g " ) ;  the l i g h t e r b a n d s a p p e a r to b e m o r e c l o s e l y r e l a t e d b y  c h e m i c a l e x t r a c t i v e c o n t e n t to s a p w o o d t h a n to h e a r t w o o d .  In c o n t r a s t to r e g u l a r w o o d ,  reaction wood is frequently c o r r e l a t e d  with a c h a r a c t e r i s t i c anatomy and e c c e n t r i c r a d i a l growth;  both result  from  d i f f e r e n t i a l ( u n e q u a l ) c a m b i a l d i v i s i o n o f c e l l s o n one s i d e o f a s t e m , s e e m i n g l y i n r e s p o n s e to g r a v i t y a n d / o r g r o w t h h o r m o n e s (142, conifers,  g r e a t e r c a m b i a l d i v i s i o n o c c u r s on the l o w e r side,  to " c o m p r e s s i o n " w o o d ;  t h i s m a y l e a d to an e c c e n t r i c p i t h .  a n a l y s e s o f c o m p r e s s i o n w o o d h a v e b e e n s u m m a r i z e d (89,  145).  In  giving rise Chemical  96).  T h e r e s e e m s to b e a c e r t a i n b a l a n c e w h i c h n o r m a l l y e x i s t s b e t w e e n the f o r m a t i o n o f l i g n i n a n d c e l l u l o s e i n g r o s s w o o d .  This balance,  within  l i m i t s o f n u m e r o u s s o u r c e s o f v a r i a t i o n , m a y b e s h i f t e d one w a y o r the o t h e r b y a m e c h a n i s m a d j u s t i n g to the s t r e s s o r s t r a i n to w h i c h t h e  develop-  ing wood tissue is subjected.  O n e e x p r e s s i o n of this shift o c c u r s v i v i d l y  with reaction wood formation.  In c o n i f e r o u s t r e e s , a m a r k e d c h a n g e  t h a t o f r e g u l a r w o o d i s s h o w n at the l e v e l o f c h e m i c a l c o m p o s i t i o n . Scots pine (Pinus s y l v e s t r i s L . ) ,  the a m o u n t o f l i g n i n i n c r e a s e s  T h i s i s a c c o m p a n i e d b y s m a l l e r amounts of g a l a c t o -  g l u c o m a n n a n and a r e d u c t i o n i n c e l l u l o s e 15%.  In  M e i e r (89) h a s s h o w n t h a t a l o n g w i t h  h i g h e r g a l a c t a n and p e n t o s a n content, a p p r o x i m a t e l y 10%.  from  c o n t e n t o f a p p r o x i m a t e l y 10 to  L a r s o n (76) o b t a i n e d s i m i l a r r e s u l t s f r o m r e d p i n e a n d , a c c o r d i n g  to S t e w a r t (118),  S c h w e r i n found l i k e w i s e for M o n t e r e y p i n e .  B y r d et a l .  (26) s t u d i e d t h r e e r a d i a l p o s i t i o n s a n d h e i g h t s w i t h i n e a c h o f f o u r old loblolly pine stems.  37-year-  R e g r e s s i o n analysis showed chlorite a l p h a - c e l l u -  l o s e a n d l i g n i n to b e n e g a t i v e l y a n d s i g n i f i c a n t l y c o r r e l a t e d ( r = - 0 . 764).  18  C.  Growth Zone and T i s s u e  Level  A c r o s s coniferous growth zones, longitudinal and t r a n s v e r s e t i s s u e s .  c h e m i c a l variations o c c u r between  A c c o r d i n g to T i m e l l (135);  Peirila  and c o - w o r k e r s studied c a r b o h y d r a t e c o m p o s i t i o n of p a r e n c h y m a ( r a y and longitudinal) and t r a c h e i d c e l l s i n Scots pine and N o r w a y s p r u c e . former,  hemicellulose  respectively,  residues,  c o n t e n t o f p a r e n c h y m a a n d t r a c h e i d s w a s 20 a n d 21%,  w h i l e i n the l a t t e r ,  In b o t h s p e c i e s ,  In the  the v a l u e s w e r e 30 a n d 18%,  respectively.  p a r e n c h y m a cells contained m o r e x y l o s e than mannose  while in tracheids mannose predominated.  s h o w e d that p o l y s a c c h a r i d e s  r i c h in galactose,  predominate in epithelial cells, b y a p p r o x i m a t e l y 10%.  T h o m p s o n et a l . (125).  arabinose,  and u r o n i c acids  and that t h e s e c e l l s a r e l o w e r i n g l u c o s e  F r o m this evidence,  i t a p p e a r s p o s s i b l e that  c e l l type has a c h a r a c t e r i s t i c c a r b o h y d r a t e c o m p o s i t i o n . H a a s a n d K r e m e r s (51) h a v e c o m p a r e d d i f f e r e n c e s  each  M e i e r (89)  and  in polysaccharide  content for m a t u r e and i m m a t u r e pine t r a c h e i d s .  V a r i a t i o n s existing between and a m o n g e a r l y - and latewood t i s s u e s c o n t r o l the m o s t p r o n o u n c e d d i f f e r e n c e s  found i n wood quality,  hence,  the i n f l u e n c e o f s u c h v a r i a t i o n s o n the c h e m i c a l d e v e l o p m e n t a c r o s s  a  g r o w t h z o n e w i l l h a v e a m o s t i m p o r t a n t b e a r i n g on a w o o d ' s u l t i m a t e utilization.  M o r p h o l o g i c a l v a r i a t i o n s w i t h i n a t r e e r e f l e c t the  of t e r m i n a l m e r i s t e m s dormancy,  ( 7 4 ) ; a n d m o i s t u r e a v a i l a b i l i t y (158);  influence  following  r e s u m p t i o n of c a m b i a l activity is a c c o m p l i s h e d through v e r t i c a l  a u x i n t r a n s l o c a t i o n f r o m the c r o w n ,  causing radial enlargement of  i m m a t u r e t r a c h e i d s to f o r m e a r l y w o o d .  N a t u r a l l y , as the a u x i n r e a c h i n g  the c a m b i u m d e c r e a s e s w i t h d i s t a n c e f r o m the c r o w n , the m a g n i t u d e a n d d u r a t i o n of e a r l y w o o d f o r m a t i o n i s l e a s t at the t r e e b a s e . r e m a i n s as l o n g as m o i s t u r e i s h i g h l y a v a i l a b l e , m o i s t u r e (as i n s u m m e r m o n t h s ) ,  i n doubt. deficit,  decreasing  r a d i a l c e l l e n l a r g e m e n t d e c r e a s e s and  differentiated cells r e m a i n alive longer, l a t e w o o d f o r m s (36).  but w i t h  This condition  hence,  walls become thicker,  T h e m e c h a n i s m by which transition occurs is  Z a h n e r (159)  still  c l a i m s i t b e g i n s a f t e r the f i r s t s e v e r e w a t e r  b u t L a r s o n (75) b e l i e v e s a d e c r e a s i n g a u x i n s u p p l y to b e the  Following transition,  and  however,  a m i l d moisture deficit favors  cause.  latewood  fo r m a t i o n (159).  R e c e n t c h e m i c a l e v i d e n c e b y W u a n d W i l s o n (157)  s u g g e s t s the  o c c u r r e n c e of two e a r l y w o o d t y p e s w i t h i n an i n c r e m e n t ( E ^ a n d E ^ ) , ^  e  f i r s t c o r r e s p o n d i n g to w o o d a r i s i n g f r o m " o v e r - w i n t e r e d " x y l a r y m o t h e r cells,  the s e c o n d r e l a t i n g to that f o r m e d b y new c a m b i a l d i v i s i o n s w i t h i n  a growing season.  It i s p r o p o s e d ,  therefore,  that E ^ m i g h t " r e t a i n s o m e  s i m i l a r i t y at the c h e m i c a l l e v e l of o r g a n i z a t i o n to l a s t - f o r m e d t i s s u e s o f the p r e c e d i n g s e a s o n " (157).  T h e o r i g i n of these t i s s u e s has  d e m o n s t r a t e d b y B a n n a n (10) who h a s r e m o v e d a n d s t u d i e d wood throughout single growing seasons.  been  developing  F r o m n o r t h e r n white  cedar  ( T h u j a o c c i d e n t a l i s L . ) g r o w n i n the T o r o n t o , O n t a r i o a r e a , B a n n a n (10) f o u n d that,  on r e s u m p t i o n of c a m b i a l activity,  the f i r s t s i t e o f c e l l  d i v i s i o n i s i n the o l d e s t x y l a r y m o t h e r c e l l s c o n t i g u o u s to the a l r e a d y differentiated xylem;  f u r t h e r m o r e , the g r e a t m a j o r i t y o f t h e s e c e l l s ,  not the s p e c i f i c l a y e r ( s ) o f c a m b i a l i n i t i a l s ,  and  a r e m o s t a c t i v e d u r i n g the  f i r s t month(s) of r a d i a l growth.  T h e r e f o r e , B a r m a n (12) o b s e r v e s ,  a  c o n s i d e r a b l e p o r t i o n of e a r l y w o o d m a y be f o r m e d b y r e d i v i s i o n of ( o v e r wintered) x y l e m mother cells; 2 to 24 ( a v e r a g e o f 8),such c e l l s  this p o r t i o n m a y include anywhere between (11).  S o m e c h e m i c a l b a c k g r o u n d e x i s t s as to c h e m i c a l d i f f e r e n c e s a growth zone.  across  E a r l y - and latewood carbohydrate differences w e r e f i r s t  n o t e d b y R i t t e r a n d F l e c k (102) who r e p o r t e d c e l l u l o s e c o n t e n t o f w e s t e r n w h i t e p i n e ( P i n u s m o n t i c o l a D o u g l . ) , D o u g l a s f i r , a n d l o b l o l l y p i n e to b e s i g n i f i c a n t l y h i g h e r (2 to 5%) i n l a t e w o o d ;  this s a m e r e l a t i o n s h i p has been  i n d i c a t e d f o r h o l o c e l l u l o s e c o m p o n e n t s o f D o u g l a s f i r (9, l o b l o l l y p i n e (160); J a p a n e s e r e d p i n e (55);  a c o n s t a n t 56% a c r o s s t h e r i n g ,  r e d p i n e (53),  a n d S c o t s p i n e (89).  zates f r o m g r o w t h zones have b e e n s t u d i e d a l s o : a n d W i l k i e (90) s h o w e d t h a t i n S c o t s p i n e ,  53),  Hydroly-  M e i e r (89) a n d M e i e r  glucose (cellulose)  content was  w h i l e g l u c o m a n n a n content i n c r e a s e d b y  4% a n d that f o r a r a b i n o g l u c u r o n o x y l a n d e c r e a s e d b y 4%. almost identical patterns in r e d pine;  at c o n s t a n t a g e ,  L a r s o n (76) glucose  recovery  f r o m l a t e w o o d c o n s i s t e n t l y e x c e e d e d t h a t o f e a r l y w o o d b y 1 to 2%, t h a t f o r m a n n a n i n l a t e w o o d w a s a l s o 3 to 4% h i g h e r . y i e l d s w e r e h i g h e r b y 1 to 2% i n e a r l y w o o d .  showed  and  A r a b i n a n and x y l a n  L a r s o n ( 7 6 ) , e x p l a i n e d that,  w h i l e the i n c r e a s i n g g l u c o s e a n d m a n n o s e v a l u e s ( t h r o u g h o u t a r a d i u s ) are age-dependent, wall thickness.  t h e y m a y b e m o d i f i e d b y the a g e - r e l a t e d i n c r e a s e i n  A s u m m a r y o f s u c h d a t a a v a i l a b l e f r o m the l i t e r a t u r e  i s p r e s e n t e d i n T a b l e 1.  It i s i m p o r t a n t to n o t e t h a t a l l t h e s e o b s e r v a t i o n s  a r e b a s e d o n s a m p l i n g o n l y two p o i n t s w i t h i n a g r o w t h i n c r e m e n t ,  frequently  with unusually w i d e - r i n g e d m a t e r i a l s .  O n l y two p r e v i o u s s t u d i e s h a v e i n c l u d e d s a m p l i n g m o r e t h a n two p o i n t s w i t h i n an i n c r e m e n t .  C a r b o h y d r a t e d i s t r i b u t i o n was s t u d i e d for s i x points  w i t h i n e a c h of t h r e e D o u g l a s f i r i n c r e m e n t s .  Using a procedure involving  0. 5 g w o o d m e a l a n d k n o w n to h a v e s e r i o u s l i m i t a t i o n s i n reliability,  Ifju (61); s h o w e d t h a t f o r e a c h r i n g ,  statistical  peak chlorite  holocellulose  as d e t e r m i n e d b y the Z o b e l a n d M c E l w e e (160) m e t h o d (77 to 78%) o c c u r r e d at the e a r l y w o o d - l a t e w o o d t r a n s i t i o n ,  while f i r s t and l a s t - f o r m e d  i n the i n c r e m e n t g a v e l o w e r v a l u e s (72 to 73%). "micro"-holocelluloses  e x a m i n e d and r e c o n f i r m e d .  increased across (xylan,  T h i s m i c r o - K a p p a m e t h o d (149) h a s  been  H y d r o l y z a t e s o f g l u c a n p l u s m a n n a n (88 to 94%  f o l l o w e d the h o l o c e l l u l o s e p a t t e r n ,  e a c h i n c r e m e n t (2. 5 to 6%),  8 to 4. 5%;  In a l a t e r s t u d y , t h e s e  w e r e c o r r e c t e d for a r e s i d u a l l i g n i n d e t e r m i n a t i o n  a p p l i e d f o r the f i r s t t i m e (151).  o f the h o l o c e l l u l o s e )  positions  while  and pentosans  galactan decreased  a r a b i n a n , 0. 6 to 0.2%).  Ifju a l s o d e t e r m i n e d m e a n c e l l u l o s e  chain lengths for e a r l y - and  latewood cellulose nitrates dissolved i n acetone.  Mean intrinsic  viscosity  f o r e a c h o f t h r e e i n c r e m e n t s w a s 34 d l / g i n e a r l y w o o d a n d 36 d l / g i n latewood.  M a r k (88); s t u d i e d r e s i s t a n t c a r b o h y d r a t e b y C r o s s a n d B e v a n  analysis  i n e a r l y - a n d l a t e - e a r l y w o o d a n d l a t e w o o d of e a s t e r n r e d c e d a r ( J u n i p e r u s  Virginian a L . ). resistant  In o r d e r ,  carbohydrate.  e a c h c o n t a i n e d 45. 0%,  49. 3%,  a n d 57. 7%  B e s i d e s noting earlywood-latewood yield,  differences  in carbohydrate  m a n y of the p r e c e d i n g a u t h o r s a l s o r e p o r t e d s i m i l a r q u a n t i t a t i v e  differences  i n l i g n i n contents,  being derived f r o m earlywood.  b u t w i t h the h i g h e r v a l u e s i n e a c h c a s e W u a n d W i l s o n (157) h a v e t a b u l a t e d s u c h  earlywood-latewood values for lignin c o m p a r i s o n s in coniferous  woods  a v a i l a b l e i n the l i t e r a t u r e .  U s i n g e x t r a c t e d wood m e a l f r o m t h r e e adjacent i n c r e m e n t s of m a t u r e wood,  i n t r a - i n c r e m e n t l i g n i n c o n t e n t s of f i v e w e s t e r n c o n i f e r o u s  w e r e i n v e s t i g a t e d b y W u (156). studied,  woods  In the g r e a t m a j o r i t y of i n c r e m e n t s  e a r l y w o o d was h i g h e r i n l i g n i n p e r c e n t a g e than latewood,  average difference between these being, for i n d i v i d u a l s p e c i e s : f i r , 2.27%;  P a c i f i c s i l v e r f i r , 2.06%;  western r e d cedar,  spruce,  ( P i c e a s i t c h e n s i s ( B o n g . ) * C a r r . ) 1. 08%;  0.46%.  T h r e e different distribution patterns w e r e evident:  Douglas  1.28%;  and w e s t e r n  the  Sitka  hemlock,  1) l i g n i n  i n c r e a s e d f r o m P o s i t i o n 1 to 2 i n e a r l y w o o d a n d d e c r e a s e d t h e r e a f t e r P o s i t i o n 6 i n latewood; 1 to 6;  2),lignin decreased p r o g r e s s i v e l y f r o m Position  a n d 3 ) . l i g n i n i n c r e a s e d f r o m P o s i t i o n 1 to 2 a n d r e m a i n e d  thereafter  to  f r o m Positions  3 t h r o u g h 6.  constant  W u found a h i g h l y significant  c o r r e l a t i o n for lignin percentages between positions within growth i n c r e ments for representatives fir,  o f the f i r s t p a t t e r n ( P a c i f i c s i l v e r f i r , D o u g l a s  a n d w e s t e r n r e d c e d a r ) a n d the r e p r e s e n t a t i v e  Sitka spruce.  Between growth i n c r e m e n t s ,  Douglas fir and western  cedar showed highly significant c o r r e l a t i o n s . calibration,  of the s e c o n d p a t t e r n , red  In. o r d e r to o b t a i n s t a n d a r d  K l a s o n l i g n i n was p r e p a r e d . Since a p o r t i o n of this is a c i d -  soluble,  Wu's values m a y be slightly low.  W u (155)  showed that  methoxyl  c o n t e n t s of t h e s e s p e c i e s f o l l o w e d s i m i l a r p a t t e r n s w i t h i n i n c r e m e n t s .  T h e f i r s t p a t t e r n of W u ' s l i g n i n d i s t r i b u t i o n h a s a l s o b e e n s h o w n to exist for Douglas fir polyphenols, s i n g l e i n c r e m e n t (113, cetin,  114);  dihydrokaempferol,  the i n i t i a t i o n of,  m a x i m u m values for q u e r c e t i n ,  across  a  dihydroquer-  a n d p i n o b a n k s i n a l l o c c u r e d w i t h i n , b u t not at  earlywood.  o f about 20% a n d t h e r e a f t e r  as s a m p l e d at e i g h t p o s i t i o n s  T h e s e m a x i m a o c c u r r e d at a r e l a t i v e  position  f e l l o f f m a r k e d l y to t r a n s i t i o n w o o d a n d  l e v e l l e d o f f t h r o u g h the l a t e w o o d r e g i o n .  T h i s position is analogous  to  Position 2 in Wu's lignin pattern.  T h e r e i s l i t t l e c h a n c e t h e s e two p a t t e r n s a r e c o i n c i d e n t a l ;  the  i n f e r e n c e i s t h a t a f l a r o n o i d - o r i e n t e d d i s t r i b u t i o n p a t t e r n e x i s t s at l e a s t within Douglas fir growth zones and p o s s i b l y i n other coniferous having s i m i l a r flavonoid extractives.  woods  T h i s a f f i r m s the d u a l e a r l y w o o d  h y p o t h e s i s of W u a n d W i l s o n (157).  It h a s b e e n s u g g e s t e d that b o t h l i g n i n a n d f L a v o n o i d s o r i g i n a t e f r o m a c o m m o n c i n n a m i c a c i d p r e c u r s o r (14). buckwheat,  for example,  T h i s is e n t i r e l y p l a u s i b l e .  In  p - c o u m a r i c a c i d i s the l a s t p r e c u r s o r c o m m o n to  synthesis of both l i g n i n and q u e r c e t i n .  S o m e e v i d e n c e e x i s t s as to p h y s i c a l d i f f e r e n c e s growth zone.  across  I n t r a - i n c r e m e n t t e n s i l e and r a d i a l c o m p r e s s i v e  of s i x c o n i f e r o u s w o o d s h a v e b e e n s t u d i e d b y H o m o k y (59); of both strength p r o p e r t i e s and s p e c i f i c  a  coniferous strengths  regressions  gravity showed highly  significant  relationships. properties,  C o m p a r e d with gross wood,  specific  g r a v i t y was r e s p o n s i b l e  it was found that, for g r e a t e r  i n both  stress  increase  of g r o s s wood than of t i s s u e .  In w o o d s h a v i n g a g r a d u a l t r a n s i t i o n ,  d i s t r i b u t i o n of s p e c i f i c g r a v i t y ,  m a x i m u m tensile stress,  compression stress rises gradually f r o m earlywood, at the l a s t - f o r m e d l a t e w o o d .  and m a x i m u m  then c u r v e s u p w a r d  In t h o s e w o o d s h a v i n g a b r u p t t r a n s i t i o n ,  the d i s t r i b u t i o n o f t h e s e p r o p e r t i e s f o l l o w s a s i g m o i d c u r v e .  The  e x p l a n a t i o n o f t h e s e p a t t e r n s i s g i v e n i n t e r m s o f p e r i o d i c i t y of, ations i n ,  cell wall  and v a r i -  thickness.  Ifju et a l . (62) f o u n d the s a m e s i g m o i d d i s t r i b u t i o n o f  specific  g r a v i t y i n D o u g l a s f i r w h i c h , . w h e n c o r r e l a t e d w i t h t e n s i o n p a r a l l e l to grain elasticity, results.  and ultimate t e n s i l e strength,  gave h i g h l y  significant  Ifju (61) p r e v i o u s l y s h o w e d t e n s i o n p a r a l l e l to b e a f u n c t i o n of  cellulose properties.  Ifju et a l . (62)  a n d H o m o k y (59) d e v e l o p e d  g r a v i t y p r o f i l e s for five w e s t e r n c o n i f e r s  specific  a n d f o u n d that a b r o a d e r  a c c o m p a n i e d w o o d s w i t h a b r u p t e a r l y w o o d - l a t e w o o d t r a n s i t i o n (e. g. W o r r a l l (154)  showed significant c o r r e l a t i o n between specific  range 0. 2 - 0 . 7)  g r a v i t y and  c e l l w a l l a r e a a n d f o u n d c e l l w a l l d e n s i t y to v a r y d i r e c t l y w i t h t h a t o f wood  density.  T h e e f f e c t o f f e r t i l i z e r t r e a t m e n t o n i n t r a - i n c r e m e n t s t r e n g t h of w e s t e r n r e d c e d a r h a s b e e n e x a m i n e d (147).  F o l l o w i n g application of high  n i t r o g e n content f e r t i l i z e r ,  growth rate increased,  decreased  tensile strength,  length.  specific  gravity,  accompanied by a  stiffness and average  tracheid  25 M o r p h o l o g i c a l variations have been studied a c r o s s increments.  W i t h i n a n y one g r o w t h z o n e ,  i n A n g i o s p e r m a e (57). h a v e s h o w n that,  Bissetetal.  growth  the a v e r a g e l e n g t h o f l a t e w o o d  c e l l s w a s g r e a t e r t h a n t h a t o f e a r l y w o o d (99); definite p a t t e r n throughout the i n c r e m e n t ; .  coniferous  also,  t h e r e s e e m s to b e a  T h i s phenomenon is also found  (17) a n d B i s s e t a n d D a d s w e l l (16)  following i n c e p t i o n of growth i n Douglas f i r ,  c e l l length  d e c r e a s e s to a m i n i m u m i n the f i r s t p o r t i o n of e a r l y w o o d a n d t h e r e a f t e r i n c r e a s e s to a m a x i m u m i n the l a t e w o o d ,  either rapidly or  slowly,  depending on the n a t u r e of the e a r l y w o o d - l a t e w o o d t r a n s i t i o n .  Studies on  v a r i a b i l i t y o f t h i s a n d o t h e r c e l l d i m e n s i o n s h a v e b e e n s u m m a r i z e d (36)j as w e l l as t h e e f f e c t o f e x t e r n a l e n v i r o n m e n t u p o n s u c h v a r i a b i l i t y (99). D.  Cell Wall Organization A t the c e l l u l a r l e v e l ,  the r e l a t i v e p e r c e n t a g e s  of p o l y s a c c h a r i d e s i n  the d i f f e r e n t c e l l w a l l l a y e r s h a s b e e n e s t i m a t e d b y M e i e r (89) b y d i f f e r e n t i a t ing tissue technique.  F o r Scots pine and N o r w a y s p r u c e ,  c e l l u l o s e content  was  l o w e s t i n t h e m i d d l e l a m e l l a ( M ) a n d p r i m a r y w a l l ( P ) l a y e r s (35%), b u t t h e r e a f t e r i n c r e a s e d s t e a d i l y b y 15-20% o v e r t h e o u t e r , w a l l (S , S , S ). J. L.r J  middle,  and i n n e r  secondary  A c c o r d i n g to T i m e l l (135) t h i s r e a f f i r m s e a r l i e r r e l a t i o n -  ships noted b y A s u n m a a and L a n g e .  In t h e M a n d P ,  a n d p e c t i c a c i d s w e r e p r e s e n t i n t h e o r d e r o f 50%; s h o w e d M o f D o u g l a s f i r to c o n t a i n 14% p e n t o s a n .  arabinan, galactan,  i n 1936,  B a i l e y (9)  M e i e r (89) f u r t h e r  t h a t g l u c o m a n n a n w a s c o n c e n t r a t e d i n the S^ a n d S^ (24 to 27%), t h a n h a l f the x y l a n w a s f o u n d i n t h e S^.  S c h u e r c h (108)  showed  while m o r e  cites T h o m p s o n  et a l . as h a v i n g s h o w n t h a t c a r b o x y l c o n t e n t i s h i g h n e a r the P a n d d e c r e a s e s l i n e a r l y a c r o s s t h e c e l l w a l l to the l u m e n .  A c c o r d i n g to S t e w a r t (118), T h o r n b e r a n d N o r t h c o t e non-cellulosic polysaccharides and non-pectic fractions. was  o f the P w a l l of S c o t s p i n e i n t o  O f the p e c t i c f r a c t i o n s (10 to 15%),  c o m p o s e d of m o n o s a c c h a r i d e u n i t s ,  acid units;  subdivided pectic one-half  w i t h the r e m a i n d e r b e i n g u r o n i c  the n o n - p e c t i c f r a c t i o n v a r i e d f r o m 35 to 45% a n d c o n t a i n e d a  4 : 1 ratio of m o n o s a c c h a r i d e s  to u r o n i c a c i d u n i t s .  accompanied by polysaccharides or 4-0-methylglucuronic  acid,  containing glucose,  galactose,  T h e S w a l l was xylose,  and mannose  glucuronic acid  units.  T h e d i s t r i b u t i o n o f l i g n i n t h r o u g h the c e l l w a l l o f M o n t e r e y p i n e h a s b e e n s t u d i e d m o s t t h o r o u g h l y b y W a r d r o p (143)  a n d W a r d r o p a n d B l a n d (144);  a l i g n i n o r i t s p r e c u r s o r i s d e p o s i t e d i n i t i a l l y i n t h e P w a l l n e a r the corners;  d u r i n g the f o r m a t i o n o f ( c e l l u l o s e ) l a y e r S^, l i g n i n a p p e a r s a l o n g the  i n t e r c e l l u l a r M l a y e r and, walls.  successively,  i n the t a n g e n t i a l a n d t h e n r a d i a l P  T h e m a j o r i t y of l i g n i n i s d e p o s i t e d o r a p p e a r s d u r i n g o r  f o r m a t i o n o f ( c e l l u l o s e ) l a y e r S^; lignified.  cell  at the s a m e t i m e ,  D u r i n g these p h a s e s of l i g n i f i c a t i o n ,  after  l a y e r s S^ a n d S^ b e c o m e  l i g n i n c o n t i n u e s to b e  d e p o s i t e d i n the i n t e r c e l l u l a r a n d o u t e r l a y e r s o f the c e l l w a l l .  T h e f i r s t a t t e m p t at a q u a n t i t a t i v e e s t i m a t e o f l i g n i n d i s t r i b u t i o n i n the c e l l w a l l w a s m a d e i n 1925 b y R i t t e r (100),  who s t a t e d that 75% of the  l i g n i n i n w o o d w a s l o c a t e d i n the M , w i t h the r e m a i n d e r b e i n g i n the P + S layers.  Three years later,  h e m o d i f i e d t h i s f i n d i n g to i m p l y e q u a l d i s -  t r i b u t i o n b e t w e e n M a n d P + S, b u t i n 1934, 1936,  r e v e r t e d to h i s f i r s t s t a n d .  B a i l e y (9) s h o w e d t h a t the m i d d l e l a m e l l a t r u l y d i d c o n s i s t o f 71%  In  l i g n i n a n d , i n 1954,  a c c o r d i n g to F r e y - W y s s l i n g (44) L a n g e u s e d u l t r a -  v i o l e t s p e c t r o s c o p y to e s t a b l i s h t h a t i n s p r u c e , 60 to 90% o f the l i g n i n w a s p r e s e n t i n the M , w i t h o n l y 10-12% b e i n g i n the S l a y e r . t h r o u g h o u t the l a t t e r a p p e a r e d to t a p e r off.  Distribution  F r e y - W y s s l i n g (44)  cites  R u c h a n d H e n g a r t n e r as h a v i n g s h o w n l i g n i f i c a t i o n i n jute f i b r e s to b e u n i f o r m t h r o u g h o u t the S l a y e r w h i c h c o n t a i n s s l i g h t l y l e s s t h a n h a l f as m u c h l i g n i n as the P l a y e r .  T h e c o n c l u s i o n s of R i t t e r and L a n g e w e r e  d i s p u t e d b y B e r l y n a n d M a r k (15) who,  recently  b y l u c i d but s i m p l e r e a s o n i n g  showed  t h a t m o s t o f M a n d P i s l i g n i n , b u t m o s t o f l i g n i n i s n o t i n the M a n d P layers!  F r o m other p u b l i s h e d data, they c a l c u l a t e d l i g n i n content i n M  to b e s o m e w h a t l e s s t h a n 40% o f the t o t a l i n w o o d .  T h e s t a t e of c e l l u l o s e the e n c r u s t i n g c o n s t i t u e n t s :  a g g r e g a t i o n d i f f e r s c o n s i d e r a b l y f r o m that of Cellulose molecules  l o g i c a l units of s t r u c t u r e t e r m e d m i c r o f i b r i l s . microscope  studies on these units,  a r e a g g r e g a t e d into b i o F r o m the m a n y e l e c t r o n  F r e y - W y s s l i n g (43) h a s i n t e g r a t e d the  i m p o r t a n t c o n c l u s i o n s i n t o a u n i f y i n g c o n c e p t of m i c r o f i b r i l  structure. o  D i m e n s i o n s o f e a c h m i c r o f i b r i l a r e a p p r o x i m a t e l y 100 x 200 A , which four m i c e l l e s 30 x 70 I" i n c r o s s  or crystallites are located; section,  at l e a s t 600 A  by p a r a c r y s t a l l i n e m a t e r i a l which,  within  the l a t t e r a r e about  i n length, and are s u r r o u n d e d  when u n d e r g o i n g l i g n i n r e m o v a l ,  a p p a r e n t l y c r y s t a l l i z e s to g i v e a s l i g h t i n c r e a s e i n m i c e l l e A c c o r d i n g to F r e y - W y s s l i n g (44),  size.  the p h y s i c a l a s s o c i a t i o n of l i g n i n  w i t h c a r b o h y d r a t e s w a s f i r s t r e p o r t e d b y F r e y who s h o w e d t h a t l i g n i n was  28  e n c r u s t e d i n an a m o r p h o u s state; who f o u n d that,  t h i s was  c o n f i r m e d b y F r e u d e n b e r g et a l .  after quantitative e x t r a c t i o n of c e l l u l o s e ,  y i e l d e d a f r a m e w o r k of a m o r p h o u s l i g n i n .  lignified cell walls  A s t b u r y et a l . (7) h a v e  studied  the p h y s i c a l r e l a t i o n s h i p b e t w e e n m i c r o f i b r i l s a n d a s s o c i a t e d c e l l w a l l c o n s t i t u e n t s a n d , a c c o r d i n g to W a r d r o p a n d B l a n d (144),  P r e s t o n and A l l s o p  s h o w e d t h a t the X - r a y d i f f r a c t i o n d i a g r a m o f c o i r c h a n g e d l i t t l e u p o n l i g n i n removal,  l e a d i n g to the c o n c l u s i o n that l i g n i n d i d not p e n e t r a t e the m i c r o f i b r i l s .  H o d g e and W a r d r o p (58),obtained d i r e c t evidence of l i g n i n p e n e t r a t i o n between c r y s t a l l i n e r e g i o n s of m i c r o f i b r i l s ;  t h e y r e p o r t e d that,  m i c r o f i b r i l s ( p e r h a p s m i c e l l e s ) 5 0 - 1 0 0 R. i n d i a m e t e r much greater  clarity.  after  delignification,  could be seen with  C o p p i c k a n d F o w l e r (31) s t u d i e d a c o l d s o d a p u l p  of A u s t r a l i a n m o u n t a i n a s h ( E u c a l y p t u s r e g n a n s F . M u e l l . ) d u r i n g the s t a g e o f d e l i g n i f i c a t i o n a n d f o u n d l i g n i n s t i l l a d h e r i n g to the surfaces.  T h e a m o r p h o u s q u a l i t y of l i g n i n r e s i d u e s  early  microfibril  has b e e n noted b y  M f i i l e t h a l e r (92) who i n v e s t i g a t e d the l i g n i n s t r u c t u r e o f s i s a l a f t e r c e l l w a l l saccharification with sulfuric acid;  h e o b s e r v e d the p r e s e n c e of m i n u t e  p o r e s ( 2 5 0 - 4 0 OA- i n d i a m e t e r ) w h i c h w e r e t h o u g h t to b e f o r m e d w h e n the cellulose microfibrils were dissolved. that c e l l u l o s e a n d n o n - c e l l u l o s e systems. hamii,  Mtthlethaler therefore  each f o r m independent,  F r o m a cross-section  concluded  but i n t e r p e n e t r a t i n g  of T a s m a n i a n m y r t l e (Nothofagus  cunning -  O e r s t . )j W a r d r o p a n d B l a n d (144) i l l u s t r a t e d s i m i l a r f i n d i n g s to t h i s ,  n o t i n g the p r e s e n c e o f p o r e s 200 to 300 & Muhlethaler's observations,  wide i n r e s i d u a l l i g n i n . A s with  t h e s e p o r e s c o u l d b e e x p e c t e d to b e l a r g e r t h a n  the m i c r o f i b r i l s b e c a u s e o f the s w e l l i n g o f c e l l u l o s e a n d r e m o v a l o f p a r a crystalline areas during solution.  A p p r o x i m a t e l y 40 y e a r s a f t e r  Frey's  work,  F r e y - W y s s l i n g (44) r e p e a t e d t h e e x p e r i m e n t s o f F r e u d e n b e r g et a l .  and p r o d u c e d ' l i g n i n g h o s t s " of r a d i a l c e l l w a l l s of s p r u c e t r a c h e i d s b y d i s s o l v i n g the c a r b o h y d r a t e s w i t h c u o x a m , l e a v i n g t h e p r o o u s  skeleton  o f l i g n i n as a " r o d l e t c o m p o s i t e " b o d y .  T h i s suggests that i f a  ( l i g n i n ) ; c e m e n t i s a d d e d to a w e l l - o r i e n t e d  s t r u c t u r e ( c e l l u l o s e ) ; a n d the l a t t e r r e m o v e d , the c e m e n t w i l l t h e n r e t a i n i t s o r i g i n a l s t r u c t u r e a n d t h e r e b y the b i r e f r i n g e n c e o f i t s r e f l e c t i n g l e a v e s a g h o s t i m a g e o f the o r i g i n a l s t r u c t u r e ,  E.  surface  cellulose.  Biosynthesis W h i l e k n o w l e d g e of w o o d b i o s y n t h e s i s  respects,  much useful information is,  however,  i s k n o w n about o r i g i n of s u g a r s i n p l a n t s , carbohydrate metabolism in trees,  is rather m e a g r e i n s o m e  hence,  available.  Although much  relatively little is available on most suggested metabolic path-  ways r e s u l t f r o m analogy with known s o u r c e s i n plants a n d / o r fungi. R e g a r d l e s s of t h e i r apparent p h y s i c a l and c h e m i c a l differences, and l i g n i n have a c o m m o n o r i g i n ,  n a m e l y c a r b o n d i o x i d e (73);  glucose  the m e c h a n -  i s m o f c o n v e r s i o n to s u g a r s a n d p o l y m e r s h a s b e e n s t u d i e d b y m a n y w o r k e r s . J o n e s (66) h a s s h o w n t h a t m o s t h e x o s e s u g a r s a r i s e i n the f o l l o w i n g w a y : 3 - D - p h o s p h o g l y c e r o n i c a c i d (the f i r s t p r o d u c t o f p h o t o s y n t h e s i s )  is  off f r o m a D - e r y t h r o p e n t u l o s e d i p h o s p h a t e d e r i v a t i v e a n d , w i t h the aldolase,  condenses with a 3 - D - p h o s p h o g l y c e r a l d e h y d e or other  f r a g m e n t to y i e l d D - f r u c t o s e - 1,  6 - diphosphate.  split enzyme  triose  T h i s m a y then be c o n -  v e r t e d to p e n t o s e s u g a r s t h r o u g h at l e a s t 3 p a t h w a y s (66).  J o n e s (66)  cites  K r o t k o v et a l . hexoses,  as s h o w i n g that,  besides containing m a i n l y n o n - r e d u c i n g  photosynthates of e a s t e r n white pine (Pinus strobus L . ) seedlings  c o n t a i n s m a l l a m o u n t s of s h i k i m i c a n d q u i n i c a c i d s ; important lignin p r e c u r s o r s .  t h e s e a r e k n o w n to b e  F r o m this and other evidence,  J o n e s (66)  has  s h o w n that f o r m a t i o n o f l i g n i n p r e c u r s o r s r e q u i r e s the s a m e u n i t as that u s e d for hexose sugar synthesis,  namely,  3-D-phosphoglyceronic  When condensed with D - e r y t h r o s e - 4 - phosphate,  i t f o r m s 3. - d e o x y - 2 -  keto - D - arabinohexulosonic a c i d - 7 - phosphate which then coupled (66,  107).  undergoes  r e a c t i o n s (73) w i t h ( A ) to f o r m s h i k i m i c a n d p r e p h e n i c Hence,  acid (A).  acids  i n a d d i t i o n to b e i n g i n v o l v e d i n c e l l u l o s e s y n t h e s i s ,  is i n v o l v e d i n s e v e r a l stages of l i g n i n  (A)  biosynthesis.  C o l v i n (30) h a s g i v e n the f o l l o w i n g r e s u m e o f c e l l u l o s e b i o s y n t h e s i s s t a r t i n g where Jones ended: glucose is activated i n t r a c e l l u l a r l y through g l u c o s e - 1 - p h o s p h a t e ( G - 1 - P ) to u r i d i n e d i p h o s p h a t e g l u c o s e ( U D P G ) a n d t r a n s f e r r e d to a l o n g - c h a i n p o l y h y d r o x y a l c o h o l to f o r m a l i p i d glucosephosphate  complex.  In p l a n t s ,  m e m b r a n e i n t o the p l a n t c e l l w a l l .  t h i s m i g r a t e s t h r o u g h the  T h e g l u c o s e i s t r a n s f e r r e d (by t r a n s -  g l u c o s i d a s e ) to the e n d o f a c e l l u l o s e c h a i n w i t h i n the i n s o l u b l e , gating m i c r o f i b r i l tips;  cytoplasmic  elon-  the r e s u l t i n g p o l y m e r i z a t i o n a n d c r y s t a l i z a t i o n  into the l a t t i c e a r e r e g a r d e d as s i m u l t a n e o u s .  The lipid carrier  r e t u r n s to the c e l l m e m b r a n e f o r r e - u s e i n a a n o t h e r c y c l e . o r i e n t a t i o n m a y b e s u b j e c t to a n y o f t h r e e i n f l u e n c e s ;  then  Microfibril  mechanical  strain  i n the p l a n t c e l l w a l l , l a t e r a l a s s o c i a t i o n w i t h V a n d e r W a a l ' s f o r c e s , d i r e c t i o n b y the p r o t o p l a s m .  and  31 S t e w a r t (118)  s u g g e s t s two m e c h a n i s m s o f c e l l u l o s e  biosynthesis:  It h a s b e e n s h o w n t h a t the p o l y s a c c h a r i d e i s b u i l t up of the s t e p w i s e l e n g t h e n i n g o f the n o n - r e d u c i n g ends of a p r i m e r ,  w h i c h a c t s as the a c c e p t o r m o l e c u l e .  is p o s s i b l e that p r i m e r m o l e c u l e s of s a c c h a r i d e s t r a n s l o c a t e d into a s t r u c t u r a l m o l d .  are  . . w h e r e t h e y a c t as  a c c e p t o r s f o r g l u c o s y l d o n o r s s u c h as s u c r o s e , or B - l , 4-linked glucans.  It  UDPG,  T h u s the i n d i v i d u a l c h a i n s of  c e l l u l o s e m a y b u i l d u p to a d e g r e e o f p o l y m e r i z a t i o n o f 10, 000 o r m o r e ,  adjacent,  p a r a l l e l l y - o r i e n t e d chains  p e r h a p s b e i n g o r g a n i z e d into c r y s t a l l i n e  micelles.  T h e a l t e r n a t e m e c h a n i s m i s t h a t w h i l e . . . the lengths of m o s t c e l l u l o s e m i c e l l e s  average  a r e u s u a l l y w i t h i n the  r a n g e o f 2 0 0 - 6 0 0 K, t h e s e v a l u e s c o r r e s p o n d to a D P r a n g e of about 4 0 - 1 2 0 . molecules  It i s p o s s i b l e ,  therefore,  are f o r m e d within this range.  into m i c e l l e s w h i c h ,  t h a t the p r i m e r  T h e y m a y then c r y s t a l l i z e  a f t e r b e i n g a l i g n e d i n the s t r u c t u r a l m o l d ,  a r e s u b j e c t e d to the a c t i o n o f e n z y m e s w h i c h k n i t t o g e t h e r i n d i v i d u a l c h a i n s o f c e l l u l o s e b e t w e e n the m i c e l l e s i n c o r p o r a t i o n of new units of g l u c o s e w h e r e  In o u t l i n i n g t h e b i o g e n e s i s o f c e l l u l o s e ,  with  necessary.  it was e s t a b l i s h e d that  shiki-  m i c a c i d o r i g i n a t e d f r o m c a r b o h y d r a t e m a t e r i a l . N u m e r o u s w o r k e r s have s h o w n l a b e l l e d s h i k i m i c a c i d to b e c o n v e r t e d v i a p r e p h e n i c a c i d into a r o matic amino acids,  o f w h i c h two p o o l s e x i s t :  other for t y r o s i n e .  B y this method,  one f o r p h e n y l a l a n i n e a n d the  N e i s h a n d c o - w o r k e r s (93) a l s o  have  e s t a b l i s h e d t h a t d e a m i n a t i o n o f t h e s e a m i n o a c i d s l e a d s to c i n n a m i c a c i d s , a n d that d e r i v a t i v e s o f t h e s e a c i d s ( c i n n a m i c a l c o h o l s a n d / o r t h e i r g l u c o s i d e s : D - c o n i f e r i n , p - c o u m a r i n , s y r i n g i n ) s e r v e as i n t e r m e d i a t e s i n the biosynthesis i.e.,  o f a n u m b e r o f p h e n o l i c m e t a b o l i t e s p e c u l i a r to p l a n t s ,  l i g n i n , flavonoids and c o u m a r i n s .  in structure,  N e i s h c a u t i o n s t h a t t h i s s h o w s o n l y that l i g n i n c a n h a v e a  phenylpropanoid origin, less,  While these are all phenylpropanoid  not t h a t i t a c t u a l l y i s s u c h i n s t r u c t u r e .  s i m i l a r i t y in o r i g i n and structure is,  however,  Neverth-  strong evidence for  the c o n c e p t of p h e n y l p r o p a n o i d s t r u c t u r e i n l i g n i n .  T h e m e c h a n i s m for c o n v e r s i o n of c i n n a m i c a c i d d e r i v a t i v e s  to  l i g n i n h a s b e e n d i s c u s s e d b y F r e u d e n b e r g (42) who u s e d N o r w a y s p r u c e an e x a m p l e :  T h e t h r e e c i n n a m i c a l c o h o l s a r r i v e at the c a m b i u m ,  ably b y translocation, frequently,  w h e r e t h e y m a y p a s s out as a g l y c o n e s  c o m b i n e w i t h U D P G to f o r m g l u c o s i d e s  presum-  or,  most  which are then stored.  T h e g r e a t e r p e r c e n t a g e o f c o n i f e r y l a l c o h o l , the m a j o r c o n s t i t u e n t , p r e s e n t as the g l u c o s i d e c o n i f e r i n (41)*  as  W h e n the g l u c o s i d e s  is  do p a s s out  f r o m the c a m b i u m to the i m m a t u r e c e l l s u n d e r g o i n g l i g n i f i c a t i o n (2 to 3 c e l l s f r o m the c a m b i u m ) t h e y a r e h y d r o l y z e d to a g l y c o n e s b y glucosidase,  a localized enzyme.  The aglycones  ^  —  (cinnamic alcohols  a r e i n t u r n a t t a c k e d b y a b u n d a n t d e h y d r o g e n a s e p r e s e n t (of w h i c h  now)  laccase  a n d p e r o x i d a s e a r e two m a j o r s o u r c e s ) a n d c o n v e r t e d into l i g n i n . W h e n the c e l l w a l l s b e c o m e p l u g g e d w i t h l i g n i n , the c e l l i s m a t u r e .  F r e u d e n b e r g (42) h a s a l s o s h o w n t h a t c o n i f e r l i g n i n h a s a m e t h o dical structure: units,  L i k e other p o l y m o l e c u l e s ,  i . e. , c i n n a m i c a l c o h o l s .  it is d e r i v e d f r o m  T h e s e condense or p o l y m e r i z e v i a m e s o -  m e r i c f o r m s w i t h d i f f e r e n t b o n d t y p e s at d i f f e r e n t p o i n t s o f and without definite s e q u e n c e .  single  attachment  T h r o u g h t h r e e m a j o r r e a c t i o n s , the p o l y -  m o l e c u l e g r o w s s i m u l t a n e o u s l y i n at l e a s t t h r e e d i f f e r e n t w a y s , l i g n i n has a unique p o s i t i o n a m o n g h i g h p o l y m e r s ,  consequently  b e c a u s e other high p o l y m e r  a r e f o r m e d b y one p a t h w a y .  C o m m e n t i n g o n the a b o v e a p p r o a c h to l i g n i f i c a t i o n , K r e m e r s (73) In c o n f o r m i t y w i t h the p r i n c i p l e t h a t l i g n i n m u s t with photosynthesis  products,  originate  the b i o c h e m i c a l o r i g i n o f  said:  c o n i f e r y l a l c o h o l h a s b e e n r e l a t e d to the s i m p l e  sugars  b y a n a l o g y to the m i c r o b i a l m e t a b o l i s m of g l u c o s e v i a sedoheptulose,  s h i k i m i c a n d p r e p h e n i c a c i d s to p h e n y l a -  lanine and t y r o s i n e .  B i o c h e m i c a l reactions  which would  c o n v e r t t y r o s i n e into c o n i f e r y l a l c o h o l v i a  ferulic acid  a p p e a r a n a l o g o u s to m a n y t r a n s f o r m a t i o n s  occurring in  r e s p i r a t i o n and carbohydrate synthesis. Freudenberg's  A s a whole,  s c h e m e of l i g n i f i c a t i o n h a s m u c h a p p e a l  b e c a u s e m a n y s t e p s a r e c o n s i s t e n t w i t h the g e n e r a l i t i e s of plant  metabolism.  34  III.  A.  M e t h o d s f o r "Wood M i c r o - a n a l y s i s  Carbohydrate Fraction W o o d c a r b o h y d r a t e a n a l y s i s h a s e v o l v e d to the s t a t e w h e r e  p o l y s a c c h a r i d e m a t e r i a l s or f r a c t i o n s t h e r e o f (whether f i n e d o r not) h a v e b e e n p r e p a r e d .  total  empirically de-  Examples are firstly,  the m a c r o  h o l o c e l l u l o s e p r e p a r a t i o n s of V a n B e c k u m a n d R i t t e r (138) a n d W i s e et a l (153) a n d s e c o n d l y ,  the c e l l u l o s e of C r o s s a n d B e v a n (22,  v a l u e o f a h o l o c e l l u l o s e p r e p a r a t i o n i s that i t o f f e r s for f u r t h e r r e s e a r c h ; m a t e r i a l and allows  33).  T h e chief  a beginning m a t e r i a l  i t g i v e s u s e f u l i n f o r m a t i o n about the  starting  a p p r o x i m a t e quantitative and qualitative study of h e m -  i c e l l u l o s i c f r a c t i o n s and i s o l a t i o n of p e c t i c  D u r i n g the p a s t two c e n t u r i e s ,  materials.  v a r i o u s c l a s s i c a l p r o c e d u r e s have  d e v e l o p e d f o r the i s o l a t i o n of c a r b o h y d r a t e s f r o m c e l l w a l l s o f free wood m e a l s .  U p to the 1950's,  been  extractive-  a l l w e r e b a s e d on a two-stage l i g n i n  substitution and solublization u s i n g free halogens,  their oxides or  oxysalts.  T h e f i r s t m e t h o d to i s o l a t e c e l l u l o s e to a n y d e g r e e w a s t h a t of C r o s s a n d B e v a n (33,  122).  T h i s r e q u i r e d t r e a t m e n t of m o i s t m e a l b y  c h l o r i n a t i o n at 2 5 - 3 0 ° xide solution,  water,  C and extraction with d i s t i l l e d water, t h e n b o i l i n g 2% s o d i u m s u l f i t e .  alternate 3% s u l f u r d i o -  This cycle  was  c o n t i n u e d u n t i l the f i b r o u s m a t e r i a l s h o w e d a f a i n t p i n k t i n g e o n f u r t h e r addition of s o d i u m sulfite.  The method,  however,  w a s not q u a n t i t a t i v e a n d  c o n t a i n e d a p p r o x i m a t e l y 80% o f the t o t a l h o l o c e l l u l o s e  (23),  as at l e a s t 10%  of the p e n t o s a n s a n d 5 % / _ - c e l l u l o s e w e r e r e m o v e d w i t h the l i g n i n (123, c >  138).  A c c o r d i n g to W i s e _ e t al. (153), the f i r s t m e t h o d to i s o l a t e q u a n t i t a t i v e l y b o t h t h e c e l l u l o s e a n d h e m i c e l l u l o s e was t h a t a d v a n c e d b y S c h m i d t who,  i n 1932,  u s e d chlorine dioxide, pyridine,  and water.  Although these  r e a g e n t s h a d p r a c t i c a l l y no e f f e c t o n the c a r b o h y d r a t e s , h i s m e t h o d u n f o r t u n a t e l y r e q u i r e d one m o n t h f o r t h e i s o l a t i o n .  In 1933,  R i t t e r and  K u r t h (103). e m p l o y e d a l t e r n a t e t r e a t m e n t o f c h l o r i n e , a l c o h o l i c p y r i d i n e , and c o l d c a l c i u m h y p o c h l o r i t e on e x t r a c t i v e - f r e e wood m e a l .  When  c o m p a r e d to S c h m i d t ' s p r o c e d u r e , t h e y o b t a i n e d e x c e l l e n t c o n f i r m a t i o n a n d s u b s t i t u t e d the t e r m " h o l o c e l l u l o s e " f o r what S c h m i d t p r e v i o u s l y h a d called "skelettsubstanzen", the m a t e r i a l c o r r e c t l y .  the r e a s o n b e i n g t h a t the l a t t e r d i d not d e s c r i b e  H o w e v e r , t h i s m e t h o d n e e d e d r e f i n e m e n t as t h e  t i m e r e q u i r e d f o r a n a l y s i s w a s two d a y s a n d the u s e o f p y r i d i n e w a s u n p l e a s a n t (138)*  In 1937,  V a n B e c k u m a n d R i t t e r (138) m o d i f i e d t h i s  p r o c e d u r e to s h o r t e n the i s o l a t i o n t i m e to t h r e e h r , t h e r e b y p r o v i d i n g a m e t h o d t h a t i s s t i l l i n p o p u l a r u s e t o d a y (123) as i t r e m o v e s n e a r l y a l l the lignin.  T h e s o l v e n t u s e d to d i s s o l v e t h e c h l o r o l i g n i n a n d n e u t r a l i z e h y d r o -  c h l o r i c a c i d f o r m e d d u r i n g e h l o r i n a t i o n is hot e t h a n o l a m i n e ,  with alternate  c h l o r i n a t i o n a n d e x t r a c t i o n m a d e u n t i l the r e s i d u e r e m a i n s u n c o l o u r e d o n further extraction.  T h e solvent,  itself,  h a s l i t t l e i f a n y a c t i o n o n the  c a r b o h y d r a t e f r a c t i o n , b u t i n the a q u e o u s c o n d i t i o n , as w h e n f o l l o w e d w i t h w a t e r e x t r a c t i o n , the s o l v e n t t e n d s to r e m o v e s m a l l a m o u n t s o f c a r b o h y d r a t e a n d b e c o m e a b s o r b e d b y the h o l o c e l l u l o s e i t s e l f (153)* addition,  In  c h l o r i n a t i o n c a u s e s o v e r h e a t i n g o f the m e a l , c o n s e q u e n t l y p o l y -  s a c c h a r i d e d e g r a d a t i o n and h y d r o l y s i s can be expected  (23).  36  W i s e _ e t al_ (153)  c i t e J a y m e as h a v i n g i n t r o d u c e d the u s e of s o d i u m  c h l o r i t e w i t h a c e t i c a c i d as a p p l i e d to e x t r a c t e d ,  m i c r o t o m e d wood sections.  T h i s r e q u i r e d 12 h r f o r d e l i g n i f i c a t i o n a n d the r e s i d u e , holocellulose,  unlike chlorinated  c o n t a i n e d 3 to 5% l i g n i n w h i c h c o u l d not b e r e m o v e d w i t h o u t  l o s s of attendant c a r b o h y d r a t e ; action on cellulose  however,  and hemicellulose,  i v e l y b y W i s e et a l (153) >  b e c a u s e of i t s s i m p l i c i t y a n d m i l d  J a y m e s m e t h o d was 1  studied intens-  and m a r k e d i m p r o v e m e n t s have b e e n m a d e  since.  W i s e e t _ a l ( 1 5 3 ) h a v e b e e n a b l e to r e d u c e r e a c t i o n t i m e b y t w o - t h i r d s a n d a p p l y t h i s to a n a l y s i s of w o o d m e a l . t h i s t r e a t m e n t t h a n to c h l o r i n a t i o n .  C o n i f e r s a r e m o r e a m e n a b l e to  B r o w n i n g a n d B u b l i t z (23) f o u n d that  the f o r e g o i n g m e t h o d p e r m i t t e d e x c e s s l o s s of c a r b o h y d r a t e s as fication approached completion.  T h e y t h e r e f o r e u t i l i z e d the b e s t  o f b o t h the c h l o r i t e a n d c h l o r i n a t i o n p r o c e d u r e s to o b t a i n b e t t e r hence,  holocellulose  deligni-  y i e l d than either.  features  pentosan,  In the s a m e a r t i c l e w r i t t e n i n 1951,  t h e y (23) m a d e a n a p p r o p r i a t e r e s u m e o f p r o g r e s s i n c e l l u l o s e  isolation:  T h e i s o l a t i o n of c e l l u l o s e p r e p a r a t i o n s f r o m wood b y d e l i gnifi cation with suitable reagents has b e e n c a r r i e d out f o r n e a r l y a c e n t u r y ;  in  e a r l y w o r k , the d i f f e r -  e n t i a t i o n b e t w e e n the s u b s t a n c e now d e s i g n a t e d  "cellulose"  a n d " h e m i c e l l u l o s e " w a s not c l e a r l y r e c o g n i z e d a n d p a r t of s u c h a n a t u r e t h a t e x t e n s i v e h y d r o l y s i s a n d o x i d a t i o n of the c e l l u l o s e o c c u r r e d .  A s a r e s u l t , the  "cellulose"  p r e p a r a t i o n s obtained w e r e of a heterogeneous c h a r a c t e r and little s i g n i f i c a n c e  c o u l d b e a t t a c h e d to a n a l y t i c a l  figures.  Recently,  t h e r e has been a need for m i c r o - p r o c e d u r e s b a s e d on a  w o o d m e a l s a m p l e s i z e l e s s t h a n 1 g; advanced,  four such p r o c e d u r e s have  been  a l l d e r i v e f r o m u s i n g s c a l e d - d o w n v e r s i o n s o f the m o r e p o p u l a r ,  though h i g h l y v a r i a b l e m a c r o - m e t h o d s . holocellulose  and  <^  -cellulose  Z o b e l a n d M c E l w e e (160)  determine  y i e l d s o n 0. 75 g p o r t i o n s o f w o o d m e a l  a n d f o u n d v a l u e s to b e h i g h b y 1 to 2%,  due to the m i l d m e t h o d o f i s o l a t i o n .  T h o u g h this m e t h o d gave r e p r o d u c a b l e r e s u l t s with a r e p l i c a t i o n n u m b e r of two,  i t d i d n o t a p p e a r to b e u n d e r s t a t i s t i c a l c o n t r o l .  E r i c k s o n (38) u s e d a  m u l t i s a m p l e s y s t e m e m p l o y i n g 0. 5 g s a m p l e s i n w h i c h e x t r a c t i o n a n d chlorite holocellulose treatments samples.  However,  temperature,  w e r e p e r f o r m e d without t r a n s f e r of  w h i l e g r e a t c a r e w a s t a k e n to s t u d y s u c h e f f e c t s  particle size,  extraction procedure,  a n d p H , no  statistical  v e r i f i c a t i o n w a s e v i d e n t as c h o i c e o f s a m p l e s i z e a p p e a r e d to b e a n d no r e p l i c a t i o n w a s s t i p u l a t e d .  43 w e r e w i t h i n 1% o f e a c h o t h e r .  statistical validity. significantly.  arbitrary  W a t s o n (146) has a p p l i e d the m e t h o d of  C r o s s a n d B e v a n to 0. 5 g s a m p l e s o f M o n t e r e y p i n e . two r e p l i c a t i o n s ,  as  O f 50 s a m p l e s  T h i s does not  U s i n g w e i g h t s b e l o w 0. 4 g, h o w e v e r ,  L e o p o l d (77) h a s r e p o r t e d the p r e p a r a t i o n o f  error  having  constitute increased  holocellulose  f i b r e s f r o m l o b l o l l y p i n e , b u t f a i l e d to i n d i c a t e s a m p l e s i z e o r  replicates.  T h o u g h s t a t i s t i c a l c o n t r o l i s l a c k i n g to a v a r i a b l e d e g r e e i n a l l t h e s e methods,  t h e i r g r e a t d i s a d v a n t a g e i s t h e i r l a r g e s a m p l e s i z e a n d the h i g h  r e p l i c a t i o n n u m b e r t h a t i s o b v i o u s l y n e e d e d w i t h the m a c r o p r o c e d u r e s upon which they r e l y . A l s o ,  A different,  c o r r e c t i o n for r e s i d u a l l i g n i n was  absent.  fifth s e m i - m i c r o m e t h o d h a s b e e n u s e d b y M e i e r  (89)  a n d M e i e r a n d W i l k i e (90) i n w h i c h s e c o n d a r y x y l a r y f i b r e s a r e h y d r o l y z e d to t h e i r m o n o s a c c h a r i d e s ,  f r o m w h i c h the p o l y s a c c h a r i d e c o m p o s i t i o n i s  calculated f r o m some basic assumptions  and chromatographic  evidence.  38 L a r s o n (76) h a s a l s o u s e d a s i m i l a r m e t h o d f o r c a l c u l a t i n g p o l y s a c c h a r i d e composition.  W h i l e both methods have appeal,  only proximate;  since reconstruction involves  it is p r o b a b l e that they a r e a s s u m p t i o n of p o l y s a c c h a r i d e  c o m p o s i t i o n f r o m t h e i r h y d r o l y s i s p r o d u c t s a n d not d i r e c t e x p e r i m e n t a l e v i d e n c e a l o n e , a d e g r e e of u n c e r t a i n t y i s i n t r o d u c e d .  A b o u t 1940,  r e s e a r c h e r s w e r e t u r n i n g t h e i r attention f r o m i m p e r f e c t  c a r b o h y d r a t e i s o l a t i o n to the a c t i o n of n i t r i c a c i d o n w o o d .  As well  s u b s t i t u t i n g a n d s o l u b l i z i n g the l i g n i n , n i t r i c a c i d f o r m s a c e l l u l o s e  as nitrate  e s t e r d e r i v a t i v e w h i c h c a n be u s e d f o r y i e l d a n d m o l e c u l a r w e i g h t d e t e r m i n ation.  J a h n a n d C o p p i c k (64) r e p o r t e d t h a t n i t r a t i o n o f w o o d y t i s s u e s w i t h  f u m i n g n i t r i c a c i d w a s f i r s t done i n 1937 b y F r i e s e a n d F u r s t who n i t r a t e d a "spruce" and "red beech" i n E u r o p e .  T h e y u s e d n i t r i c a c i d m i x e d with  s u l f u r i c o r p h o s p h o r i c a c i d s a n d r e p o r t e d a 50% s o l u b l i z a t i o n o f s p r u c e (hence,  a s o l i d r e s i d u e of u n d e r 50%).  J a h n a n d C o p p i c k (64) t h e n d i d a  f e a s i b i l i t y s t u d y to d e t e r m i n e w h e t h e r o r not w o o d y t i s s u e s i n g e n e r a l c o u l d b e n i t r a t e d to y i e l d p r o d u c t s o f p o s s i b l e p r a c t i c a l o r s c i e n t i f i c Besides three pulps, crude procedure; air-dry,  eight woods w e r e studied s u c c e s s f u l l y u s i n g a r a t h e r  a s u l f u r i c - n i t r i c a c i d m i x t u r e at 1 0 ° C w a s p o u r e d onto  60-80 m e s h ,  u n e x t r a c t e d w o o d m e a l a n d m a i n t a i n e d at 1 0 ° C f o r  f i v e h o u r s a f t e r w h i c h the p r o d u c t w a s d r o w n e d i n i c e w a t e r , dried.  value.  bleached,  P r o p e r t i e s o f the n i t r a t e i n c l u d e d a 90% a c e t o n e s o l u b i l i t y ,  gen content,  and  11% n i t r o -  and a r a t h e r l o o s e l y defined s p e c t r u m of m o l e c u l a r weights.  Characteristically,  softwoods gave a h i g h e r y i e l d of n i t r a t e .  T h e n i t r a t i o n p r o c e d u r e has s i n c e been r e f i n e d and s i m p l i f i e d b y T i m e l l (134)  a n d A l e x a n d e r a n d M i t c h e l l (2);  the l a t t e r d e v e l o p e d a  n i t r a t i n g m i x t u r e w h i c h , b y v i r t u e of i t s c a u s i n g m i n i m u m d e g r a d a t i o n a n d high d e g r e e of n i t r a t i o n , is s t i l l u s e d today.  In the l a t e 1940's a n d e a r l y 1950's, w o r k b y s e v e r a l N o r w e g i a n s t h a t the  ©4 - cellulose  f r a c t i o n of w o o d p u l p s c o u l d b e o b t a i n e d r e l i a b l y  b y n i t r a t i o n . T i m e l l (130) and l a t e r ,  show  r e p o r t e d that B r y d e p i o n e e r e d t h i s a p p r o a c h  B r y d e a n d S m i t h (25) r e c o v e r e d 45% o f a s e m i - c h e m i c a l p u l p  h a v i n g an i n t r i n s i c v i s c o s i t y then c o m p a r e d  o f 36 d l / g .  A b a d i e a n d E l l e f s e n (1)  - a n d cellulose nitrate (hereafter  "nitrocellulose")  v  y i e l d s of h y d r o l y z e d c o t t o n a n d i n d u s t r i a l p u l p s b e t w e e n the r a n g e o f 50 to 98% f r o m 26 p a i r s of v a l u e s . and r e g r e s s i o n coefficient  T h e y showed a c o r r e l a t i o n coefficient of  of 0.98,  quantitative c o r r e s p o n d e n c e .  demonstrating nearly identical  F u r t h e r m o r e , they found qualitative  p o n d e n c e b y e x a m i n i n g the d e g r e e o f p o l y m e r i z a t i o n ;  B r y d e et a l . (24)  corres-  they concluded  f r o m b o t h a p p r o a c h e s t h a t the n i t r o c e l l u l o s e f r o m p u l p was e»^- cellulose.  0.99  nitrated  showed a s i m i l a r c o r r e l a t i o n i n other  c o m m e r c i a l p u l p s and a l s o found that s a m p l e s  as s m a l l as 0. 2 g c o u l d b e  used.  T i m e l l (129) h a s i n v e s t i g a t e d the c h e m i c a l p u r i t y o f w h i t e  spruce  ( P i c e a g l a u c a ( M o e n c h . ) V o s s ) n i t r o c e l l u l o s e as w e l l as i t s c h a i n l e n g t h and p o l y d i s p e r sity. cellulose  H e f o u n d c h l o r i t e o< - c e l l u l o s e  and m a x i m u m n i t r o -  y i e l d s to a g r e e c l o s e l y ( i . e. , 50 a n d 49%, r e s p e c t i v e l y )  on c h r o m a t o g r a p h i c a n a l y s i s , and u r o n i c a c i d r e s i d u e s .  both contained glucose,  mannose,  T i m e l l c o n c l u d e d that both methods  a n d that xylose,  account for  v e r y s i m i l a r p o r t i o n s of wood,  although neither y i e l d "true"  cellulose.  Snyder and T i m e l l ( l l l ) s i m i l a r l y investigated P a c i f i c s i l v e r fir (Abies b a l s a m e a L . , M i l l . ) and showed c h l o r i t e o ^ - cellulose n i t r o c e l l u l o s e y i e l d s of 48% a n d 49%,  respectively.  and m a x i m u m  The nitrocellulose  p r o d u c t c o n t a i n e d g l u c o s e (88%), m a n n o s e (9%) a n d x y l o s e (1%) while,  s u r p r i s i n g l y , b o t h the w a t e r - a c e t o n e  contained glucose and mannose r e s i d u e s . products f r o m both methods of cellulose conifers;  and m e t h a n o l - s o l u b l e  r e c o v e r y for four a d d i t i o n a l ranging in yield f r o m  T i m e l l a l s o f o u n d t h a t the s m a l l e r p o r t i o n o f t o t a l  w a s o c c l u d e d i n the n i t r o c e l l u l o s e .  glucomannans  A l p h a - c e l l u l o s e contents for  s p e c i e s a g r e e d w i t h t h o s e r e p o r t e d p r e v i o u s l y (129) methods  portions  T i m e l l (130) f i n a l l y c o m p a r e d  e a c h gave c e l l u l o s e v a l u e s that a g r e e d ,  40 to 45%.  residues  most  and differences  between  s h o w e d no m o r e v a r i a t i o n t h a n t h o s e o b s e r v e d b y A b a d i e a n d  E l l e f s e n (1).  Strangely,  o n l y the l a t t e r a u t h o r s i n d i c a t e d s o m e  semblance  o f s t a t i s t i c a l r e l i a b i l i t y w i t h r e g a r d to t e s t i n g h y p o t h e s e s a n d s a m p l i n g technique.  A s is c u s t o m a r y with wood c h e m i s t s ,  to h a v e n e g l e c t e d  the r e m a i n d e r a p p e a r  r e l i a b i l i t y c r i t e r i a altogether.  Since Staudinger,  as r e p o r t e d b y S t a m m (115),  and K r a e m e r  (72)  f i r s t developed e m p i r i c a l equations r e l a t i n g v i s c o s i t y of high m o l e c u l a r w e i g h t p o l y m e r s to D P , n i t r o c e l l u l o s e h a s b e e n u s e d as an a n a l y t i c a l t o o l for v i s c o m e t r i c d e t e r m i n a t i o n of D P and m o l e c u l a r weight i n wood and wood pu~ips;  this has b e e n its m o s t p o p u l a r application.  However,  A b a d i e and  E l l e f s e n (1) h a v e u t i l i z e d n i t r o c e l l u l o s e to d e m o n s t r a t e b o t h q u a l i t a t i v e a n d  quantitative s i m i l a r i t y with d  - c e l l u l o s e f r o m pulp and, after conducting  s i m i l a r experiments on N o r t h A m e r i c a n conifers,  T i m e l l (130)  has  s u g g e s t e d t h e u s e of n i t r o c e l l u l o s e as an a l t e r n a t e m e t h o d f o r the i s o l a t i o n and e s t i m a t i o n of  - cellulose in wood.  In a d d i t i o n , t h i s d e r i v a t i v e h a s  b e e n u s e d to s t u d y c h a i n - l e n g t h a n d p o l y d i s p e r s i t y o f v a r i o u s p u l p s p e c i e s i n S c a n d i n a v i a and N o r t h A m e r i c a .  B r y d e et a l . (24) f o u n d the m e t h o d  e s p e c i a l l y s u i t e d to t h e s t u d y o f d i g e s t i o n p r o c e s s e s at v a r i o u s s t a g e s o f delignification;  s i n c e the l i g n i n w a s r e m o v e d i t d i d not i n t e r f e r e w i t h  measurements.  Hence,  these d i v e r s i f i e d applications,  i n d i c a t e that n i t r o -  c e l l u l o s e m a y b e e m p l o y e d as a u s e f u l a n d i m p o r t a n t a n a l y t i c a l t o o l i n w o o d and cellulose  science.  In c o n s i d e r i n g the m e c h a n i s m o f n i t r o c e l l u l o s e f o r m a t i o n , i t i s i m p o r t a n t to b e a r i n m i n d t h a t c e l l u l o s e i s a f i b r o u s m a t e r i a l t h a t m a y b e c o n s i d e r e d at s e v e r a l l e v e l s o f o r i e n t a t i o n ,  d e p e n d i n g o n the  a n d the q u e s t i o n h i s a n a l y s i s i s m e a n t to a n s w e r .  investigator  One m a y p r o g r e s s  from  the s u b - m a c r o s c o p i c l e v e l o f the p l a n t c e l l t h r o u g h the f i b r i l l a r a n d m i c r o f i b r i l l a r s u b m i c r o s c o p i c l e v e l s to t h e m i c e l l a r a n d , f i n a l l y , the m o l e c u l a r s t a g e o f the c l a s s i c m o n o c l i n i c u n i t c e l l o f M e y e r a n d M i s c h .  Briefly,  t h i s e n v i s a g e s the u n i t c e l l f o r n a t i v e c e l l u l o s e as c o n t a i n i n g f i v e  cellobiose  u n i t s p o s i t i o n e d i n s u c h a w a y that d i s t a n c e s b e t w e e n a t o m s of the  different  c h a i n s d e t e r m i n e the n a t u r e o f the f o r c e s h o l d i n g the c e l l u l o s e t o g e t h e r (63,  87).  E a c h chain, of c o u r s e ,  comprises  lattice  many  g l u c o p y r a n o s e u n i t s h a v i n g one p r i m a r y a n d two s e c o n d a r y h y d r o x y l s p e r ring.  It i s t h e r e f o r e c l e a r that,  i n f o r m a t i o n of any c e l l u l o s e  derivative,  42 the p r o b l e m o f h y d r o x y l a c c e s s i b i l i t y i s an i m p o r t a n t o n e .  In o r d e r to c o m p r e h e n d c e l l u l o s e r e a c t i o n s , h o w e v e r , at the s u b m i c r o s c o p i c l e v e l : of a g g r e g a t e s of c e l l u l o s e  here,  m i c r o f i b r i l s a r e p r o p o s e d as  chains (micelles)  between m i c r o f i b r i l s into a m o r p h o u s r e g i o n s , greatly;  however,  consisting  passing through o r d e r e d  (crystalline) and d i s o r d e r e d (amorphous) regions.  increases  one m u s t b e g i n  If a r e a g e n t  penetrates  the extent a n d r a t e o f r e a c t i o n  the r e a c t i o n p r o d u c t w i l l b e n o n - u n i f o r m , as  no r e a c t i o n w i l l h a v e o c c u r r e d w i t h h y d r o x y l s of the c r y s t a l l i n e r e g i o n s . O n l y when the l a t t e r c o n d i t i o n i s f u l f i l l e d w i l l u n i f o r m i t y r e s u l t , formation of cellulose derivatives,  hence,  in  it is i m p o r t a n t that a l l c e l l u l o s e  h y d r o x y l s a r e a v a i l a b l e f o r r e a c t i o n (63).  B e s i d e s this effect of s u p e r m o l e c u l a r s t r u c t u r e on distribution,  substituent  two o t h e r f a c t o r s m u s t b e c o n s i d e r e d , the c e l l u l o s e l i n e a r  p o l y m e r i c n a t u r e and the h y d r o x y l p r o p e r t i e s .  T h e l o n g c h a i n n a t u r e of  c e l l u l o s e m a k e s i t i m p o r t a n t t h a t r e a c t i o n s o c c u r a l o n g the c h a i n i n o r d e r to p r o d u c e a h o m o g e n e o u s  end product;  r e c e n t w o r k (63) h a s s h o w n  c e l l u l o s e r e a c t i o n s ( i n c l u d i n g " n i t r a t i o n " ) to b e p e r m u t o i d , i . e . , hydroxyls are completely accessible. m a k i n g the r e a c t i o n p r o c e e d  all  T h i s h a s the o v e r a l l e f f e c t o f  homogeneously.  W h e n a l l h y d r o x y l s a r e a s s u m e d to b e a c c e s s i b l e the d i s t r i b u t i o n o f s u b s t i t u e n t s b e p r e d i c t e d . S p u r l i n (112)  most  and equally reactive,  w i t h m e a n d e g r e e o f s u b s t i t u t i o n ( D S) c a n  s h o w e d that a c e l l u l o s e d e r i v a t i v e h a v i n g a n  i n t e r m e d i a t e o v e r a l l degree of substitution always contains a c e r t a i n amount of unsubstituted,  mono,  d i - and t r i - s u b s t i t u t e d a n h y d r o g l u c o s e units,  43  w h e r e a s one w i t h a h i g h D S (2. 7 to 3. 0) c l o s e l y a p p r o a c h e s H e a l s o s h o w e d that d i f f e r e n c e s  homogeneity.  in h y d r o x y l reactivity (which are  d i d n o t g r e a t l y affect the o v e r a l l s u b s t i t u e n t d i s t r i b u t i o n I  slight)  Hence,  the  l a t t e r i s of r e l a t i v e l y m i n o r i m p o r t a n c e .  In o r d e r to b r i n g c e l l u l o s e h y d r o x y l s i n t o c o n t a c t w i t h a r e a g e n t , h y d r o g e n b o n d s m u s t b e b r o k e n to a l l o w e n t r y o f the s w e l l i n g agent.  In  the c a s e o f n i t r a t i o n , t h i s c a u s e s l i m i t e d i n t r a - c r y s t a l l i n e s w e l l i n g c h a r a c t e r i s t i c o f a new l a t t i c e to g i v e a new,  w e l l - d e f i n e d X - r a y d i a g r a m and  a l l o w s f o r m a t i o n o f the w e l l - k n o w n a d d i t i o n c o m p o u n d o f K n e c h t . c o m p o u n d s a r e i m p o r t a n t i n that r e a g e n t s r e a c t i v i t y and this p r e d i s p o s e s derivatives  c a n f r e e l y d i f f u s e to  f o r m a t i o n of m o r e o r l e s s  Such  enhance  homogeneous  (63).  T h e K n e c h t c o m p o u n d s e r v e s as t h e i n t e r m e d i a t e i n n i t r a t i o n o f c e l l u l o s e w i t h n i t r i c a c i d a b o v e 61%; X - r a y evidence  concentration;  i n its f o r m a t i o n ,  s h o w s the c e l l u l o s e l a t t i c e i s a t t a c k e d a n d e x p a n d e d m a i n l y  i n one d i r e c t i o n .  W h e r e a s the p e r i o d i c i t y a l o n g the  b  a x i s o f the m o n o -  c l i n i c c e l l i s u s u a l l y u n c h a n g e d , the a and c d i m e n s i o n s i n c r e a s e  (98).  T h i s i s e x p l a i n e d b y an i n c r e a s e i n the (101) i n t e r p l a n a r d i s t a n c e , b u t a l m o s t i d e n t i c a l (101)  a n d (002)  F r o m a c h e m i c a l point of view,  s p a c i n g s w i t h t h o s e o f c e l l u l o s e II (105). the a d d i t i o n c o m p o u n d f o r m s as  when cellulose is treated with concentrated n i t r i c acid, bond between adjacent h y d r o x y l s is destroyed. a n e w b o n d f o r m e d b e t w e e n one h y d r o x y l , reagent,  follows:  the h y d r o g e n  T h i s is r e p l a c e d b y  the h y d r o n i u m i o n o f the  a n d e i t h e r the o p p o s i t e h y d r o x y l o f the a d j a c e n t c h a i n d i r e c t l y  44 or through another m o l e c u l e o r i o n .  Hence,  one o r m o r e o x y g e n a t o m s m a y  f o r m a c o n n e c t i n g b r i d g e b e t w e e n h y d r o x y l s (105). w a t e r i n the m i x e d a c i d i s i m p o r t a n t (2); reagent ionization,  A c o r r e c t amount of  e n o u g h m u s t b e p r e s e n t to p e r m i t  b u t not e n o u g h f o r c o m p e t i t i o n b e t w e e n h y d r o x y l s a n d  the w a t e r m o l e c u l e s f o r the h y d r o n i u m i o n s and, t h u s , c o m p o u n d f o r m a t i o n (63).  When water is present in o p t i m u m quantity and  h y d r o n i u m ions f o r m hydrogen bonds, follow v i a electrostatic s w e l l i n g (105).  p r e v e n t addition",  the c o u n t e r i o n s w i t h t h e i r w a t e r  shells  a t t r a c t i o n to c a u s e l a t t i c e e x p a n s i o n a n d i n t e r m i c e l l a r  T h e c e l l u l o s e h y d r o x y l s a r e t h e n c a p a b l e of r e a c t i n g l i k e  o r d i n a r y a l i p h a t i c h y d r o x y l s to f o r m e s t e r s .  N i t r a t i o n i s c a r r i e d out i n a m e d i u m of c o n e n i t r i c a c i d , a c i d i c s w e l l i n g agent ( s u l f u r i c , T h i s r e a c t i o n i s v e r y r a p i d and, itself,  strictly,  b u t w i t h the a d d i t i o n c o m p o u n d .  strong affinity for h y d r o x y l s , b e due,  phosphoric,  a strongly  o r acetic acid), and water.  d o e s not o c c u r w i t h c e l l u l o s e W h i l e the s w e l l i n g a c i d s  n i t r i c a c i d is o b v i o u s l y s u p e r i o r ;  have this m a y  i n p a r t , to the N 0 ^ i o n h a v i n g a p l a n a r s t r u c t u r e w h i l e i o n s of  s u l f u r i c a n d p h o s p h o r i c a c i d s a r e not s u c h ,  but a r e r a t h e r v o l u m i n o u s  (91).  S u b s t i t u t i o n o c c u r s w i t h p r o d u c t i o n of a n i t r a t e e s t e r a n d n i t r i c a c i d - h y d r a t e molecule;  with i n c r e a s e i n nitration time,  l e s s a c i d i s a v a i l a b l e f o r n i t r a t i o n (91).  m o r e h y d r a t e is p r o d u c e d and In the m i c e l l a r r e g i o n s ,  n i t r o g e n c o n t e n t o f c e l l u l o s e i s a net r e s u l t o f two p r o c e s s e s :  the  inward  " d i f f u s i o n " of f r e s h a c i d a n d o u t w a r d ' d i f f u s i o n " o f " s p e n t " a c i d (^L. e . , n i t r i c acid-hydrate). expression  F o r l a c k of knowledge  a n d the a p p r o p r i a t e t e r m , the  " d i f f u s i o n " i s u s e d b y M i l e s (91) to d e s c r i b e t h i s p r o c e s s .  The  45 f i n a l s o l i d p r o d u c t i s not s i m p l y n i t r o c e l l u l o s e , acid complex.  but a n i t r o c e l l u l o s e - n i t r i c  T h e a b o v e g i v e s a g e n e r a l u n d e r s t a n d i n g o f the r e l a t i v e  of n i t r a t i o n w i t h t i m e :  at f i r s t ,  rate  n i t r o g e n c o n t e n t r i s e s r a p i d l y to a p o i n t  w i t h i n 1% o f the f i n a l v a l u e , b u t s i n c e the r a t e d e c r e a s e s w i t h t i m e , the f i n a l i n t e r v a l is p a s s e d only after a long p e r i o d . s p e e d of n i t r a t i o n :  O t h e r factors also  influence  a c i d v i s c o s i t y p a r a l l e l s nitration t i m e m a r k e d l y and  with dilute a c i d s and t h o s e of low n i t r o g e n content (see formation) nitration is slow  addition compound  (91).  T h e p r e s e n c e o f a s w e l l i n g agent i s n e c e s s a r y as i t p r e s e r v e s  the  c e l l u l o s e f i b r o u s s t r u c t u r e a n d a c t s as a d e h y d r a t i n g a g e n t o n n i t r i c a c i d to f o r m the N O * i o n ;  u s e o f n i t r i c a c i d a l o n e c a u s e s f i b r e s to  gelatinize  w h i c h i m p e d e s e s t e r i f i c a t i o n (46).  N i t r a t i o n c a r r i e d out w i t h s u l f u r i c a c i d  c a t a l y s t l e a d s m a i n l y to n i t r a t i o n ;  i n c r e a s i n g the s u l f u r i c a c i d c o n t e n t a n d  d e c r e a s i n g the w a t e r c o n t e n t ( a f t e r o p t i m u m q u a n t i t y ) e n h a n c e s (esterification with sulfuric acid),  preventing m a x i m u m nitration.  alleviated by using phosphoric acid, weaker,  This  an a c i d o f l o w e r e l e c t r o p h i l i t y .  is  Being  i t f o r m s l e s s p h o s p h a t e e s t e r as a s i d e p r o d u c t ( r e s i d u a l p h o s p h o r u s  c o n t e n t i s n e v e r m o r e t h a n 0. 4%) (48), i s a t t a i n e d ( e . g . 13. 9%) (2, e s s e n t i a l l y the s a m e  47);  Also,  therefore,  i t i s thought to y i e l d a p r o d u c t o f  nitrate plant  h e n c e , it i s  d e t e r m i n a t i o n of plant and l i g n i f i e d m a t e r i a l s .  Though acetic anhydride gives slightly better hence,  a h i g h e r n i t r o g e n content  D P as t h a t o f the o r i g i n a l c e l l u l o s e (48),  p a r t i c u l a r l y suited for  and,  sulfation  cellulose.  v a l u e s , it cannot  swell  46 In s u m m a r y , of c h l o r i t e  m a x i m u m y i e l d o f n i t r o c e l l u l o s e i s c o r r e l a t e d w i t h that  - c e l l u l o s e to a h i g h l y s i g n i f i c a n t d e g r e e e i t h e r w h e n n o n - c o r -  r e c t e d (1) o r c o r r e c t e d (130) f o r n o n - g l u c a n m a t e r i a l . presupposes  This,  of c o u r s e ,  u s e o f the o p t i m u m n i t r a t i n g m i x t u r e o f A l e x a n d e r a n d M i t c h e l l  (2) u s e d u n d e r n i t r a t i n g c o n d i t i o n s ( e s t a b l i s h e d f o r e a c h s p e c i e s ) as g i v e n b y T i m e l l (134).  T h e method c o n s i s t s of a r e l a t i v e l y n o n - d e g r a d a t i v e  o f c e l l u l o s e to a n i t r a t e d e r i v a t i v e , s m a l l as 0. 2 g (24).  conversion  w h i c h m a y be p e r f o r m e d o n s a m p l e s  as  B e s i d e s i n d i c a t i n g y i e l d , the m e t h o d w i l l a l l o w u s e o f  sufficient m a t e r i a l for subsequent  analysis.  H e r e i n l i e s an i m p o r t a n t  n o v e l t y that m i g h t a l l o w r e l i a b l e m e a s u r e m e n t s  to b e m a d e on m i n u t e  of w o o d m a t e r i a l s w i t h r e a s o n a b l e r e p l i c a t i o n n u m b e r .  amounts  The method could  c o n t a i n u s e f u l f e a t u r e s b e c a u s e o f the s m a l l a m o u n t o f w o o d m a t e r i a l n e e d e d , a r e q u i r e m e n t w h i c h e v e n the " s e m i - m i c r o  1 1  m e t h o d s h a v e f a i l e d to m e e t .  T h e r e i s no s i m p l e o r s a t i s f a c t o r y m e t h o d f o r the a n a l y t i c a l d e t e r m i n a t i o n of c e l l u l o s e i n wood: particle size,  a f t e r r e d u c i n g w o o d to a s u i t a b l e  the p o l y s a c c h a r i d e f r a c t i o n m a y be e i t h e r  extracted  d i r e c t l y f r o m t h i s o r the m e a l m a y b e d e l i g n i f i e d b y a m i l d p r o c e d u r e to give holocellulose.  T h e f o r m e r i s p o s s i b l e o n l y i n a few c a s e s :  galactans m a y be w a t e r - e x t r a c t e d (hence, questionable)  t h e i r l o c a t i o n i n the c e l l w a l l i s  a n d a p p r o x i m a t e l y h a l f the h e m i c e l l u l o s e s  b e e x t r a c t e d d i r e c t l y u s i n g 16% s o d i u m h y d r o x i d e . instances,  of,  in angiosperms  may  Other than these  deli gnifi cation is n e c e s s a r y for a l l coniferous  Ideally,  arabino-  woods.  s u c h an i s o l a t i o n seeks c o m p l e t e l i g n i n r e m o v a l without l o s s  o r a t t a c k o n , the a s s o c i a t e d p o l y s a c c h a r i d e c o m p o n e n t s .  Experimentally,  t h i s i s d i f f i c u l t to a c h i e v e a n d no p r o c e d u r e h a s yet b e e n d e v i s e d to m e e t t h i s a i m w i t h o u t a t t a c k i n g the p o l y s a c c h a r i d e s . f o r f u r t h e r i n g k n o w l e d g e of w o o d c h e m i s t r y , caused m u c h confusion.  Although indispensible  present methods have also  S u c h a n a l y t i c a l p r o c e d u r e s a r e at b e s t e m p i r i c a l l y  u s e f u l for i s o l a t i n g groups of r e l a t e d substances, molecular species. a c i d on wood,  rather than  single  T h e p r o d u c t r e s u l t i n g f r o m the a c t i o n of f u m i n g n i t r i c  however,  h a s b e e n s h o w n b y T i m e l l (130)  E l l e f s e n (1) to c l o s e l y a p p r o x i m a t e f o r m i n g this derivative,  cxi  - cellulose  the l i g n i n i s s u b s t i t u t e d ,  and A b a d i e and  content.  Moreover, in  then s o l u b l i z e d ;  r e s u l t i s that t h r e e i m p o r t a n t changes have o c c u r r e d w i t h l e s s  the n e t  degradation  t h a n e n c o u n t e r e d w i t h the c o n v e n t i o n a l two s t a g e l i g n i n i s o l a t i o n p r o c e d u r e . Further,  the d e r i v a t i v e h a s d o u b l e u s e f u l n e s s f o r e s t i m a t i o n o f  o< -  cellulos  y i e l d and m o l e c u l a r weight (or D P) d e t e r m i n a t i o n .  B e c a u s e of its p o l y m o l e c u l a r nature,  hence,  polydispersity,  the  d i s t r i b u t i o n of c e l l u l o s e m o l e c u l a r w e i g h t s ( o r that of i t s d e r i v a t i v e s ) of i n t e r e s t to p h y s i c a l c h e m i s t s .  is  T h e methods most c o m m o n l y employed  f o r d e t e r m i n a t i o n of the " d i f f e r e n t i a l d i s t r i b u t i o n c u r v e " a r e t h o s e o f f r a c t i o n a l p r e c i p i t a t i o n or solution.  T h e f o r m e r i s a p p l i e d to  cellulose  derivatives i n solution through addition of a non-solvent,  b y r e m o v a l of  solvent,  the n e t r e s u l t i s  or b y addition of solvent n o n - s o l v e n t m i x t u r e s ;  that p r e c i p i t a t e s o c c u r i n o r d e r of d e c r e a s i n g c h a i n - l e n g t h . m e t h o d r e l i e s o n the p r o g r e s s i v e  e x t r a c t i o n o f f r a c t i o n s of i n c r e a s i n g  chain-length f r o m undissolved cellulose b e c o m e s a better  solvent.  T h e latter  d e r i v a t i v e s as the e x t r a c t i n g  solvent  48  T h e f o l l o w i n g s t u d i e s w i t h n i t r o c e l l u l o s e f r o m c o n i f e r s i n v o l v e the use of f r a c t i o n a t i o n b y p r e c i p i t a t i o n . and white pine,  C o p p i c k a n d J a h n (32) n i t r a t e d s p r u c e  a n d f o u n d t h a t the v i s c o s i t y f r e q u e n c y c u r v e s f o r e a c h  s p e c i e s c o n s i s t e d o f two g r o u p s o f m o l e c u l a r s i z e s .  The first, mainly  c a r b o h y d r a t e i n n a t u r e , h a d wide m o l e c u l a r weight d i s t r i b u t i o n of a s i z e c o m p a r a b l e to n i t r a t e d c o t t o n l i n t e r s ;  the s e c o n d ,  c o m p o s e d of a p p r o x i -  m a t e l y 5% o f the a l c o h o l - e x t r a c t e d p r o d u c t , h a d a n a r r o w d i s t r i b u t i o n o f low m o l e c u l a r weight,  which p r o b a b l y r e p r e s e n t e d a m i x t u r e of lignin  degradation p r o d u c t s and n o n - c e l l u l o s i c m a t e r i a l s . that f o r w h i t e s p r u c e m a x i m u m  T i m e l l (129)  determined  of c e l l u l o s e n i t r a t e d i s s o l v e d i n  a c e t o n e w a s 33 d l / g u s i n g a C a n n o n - F e n s k e v i s c o m e t e r .  Frequency  d i s t r i b u t i o n o f D P s h o w e d two p e a k s w i t h i n a r a n g e o f 1000 to 5500, o c c u r r i n g at 1400 a n d c o r r e s p o n d i n g to 20% o f the c e l l u l o s e , o c c u r r i n g at 3100;  a m o n g the n u m e r o u s s p e c i e s h a v i n g t h i s  chain-length distribution are some spruces, f i r (129). A c c o r d i n g to T i m e l l (129), distribution for b l a c k s p r u c e .  a n d the o t h e r two-peak  western h e m l o c k , and Douglas  J o r g e n s e n has found a one-peak  Mannose residues were rather uniformly  d i s t r i b u t e d o v e r the e n t i r e r a n g e a n d l i t t l e d i f f e r e n c e s h o w e d , between each peak.  one  chemically,  In P a c i f i c s i l v e r f i r , S n y d e r a n d T i m e l l (111)  showed  that the f r e q u e n c y d i s t r i b u t i o n o f D P v a r i e d b e t w e e n 900 a n d 5500 a n d , as w i t h w h i t e s p r u c e , 25% w h i l e the s e c o n d ,  two m a x i m a w e r e p r e s e n t : at 2500,  location and g e n e r a l nature, w h i t e s p r u c e (129)  t h a t at 1000  represented  r e p r e s e n t e d m o s t o f the r e m a i n d e r .  In  t h i s i s a l m o s t i d e n t i c a l to that o b t a i n e d f o r  a n d p a p e r b i r c h ( B e t u l a p a p y r i f e r a M a r s h ) (137).  |/(J  Maximum.  o f c e l l u l o s e n i t r a t e d i s s o l v e d i n a c e t o n e w a s 40 d l / g  using a Cannon-Fenske viscometer;  t h i s i s h i g h e r t h a n the 33 d l / g q u o t e d  e l s e w h e r e f o r t h i s s p e c i e s (129), the s o u r c e of t h i s d i s c r e p a n c y b e i n g unknown. was  T h r o u g h o u t the f r e q u e n c y d i s t r i b u t i o n , l i t t l e c h e m i c a l  difference  evident.  M u c h i n f o r m a t i o n e x i s t s as to the n a t u r e a n d f i n e s t r u c t u r e of cellulose in situ.  M a i n l y f r o m X - r a y studies,  the m o n o c l i n i c unit c e l l a r e known, and their r e g i o n s . however,  as i s the a p p r o x i m a t e s i z e of  B e c a u s e o f the s o l i d c r y s t a l l i n e n a t u r e of  crystallites  cellulose,  its p o l y m e r i c o r m o l e c u l a r p r o p e r t i e s cannot be studied i n situ  with p r e s e n t methods its  the s i z e a n d o r i e n t a t i o n o f  and, consequently,  i t m u s t be s o l u b l i z e d to  disperse  molecules.  M a n y qualitative methods  are available for cellulose  characterization:  o s m o t i c p r e s s u r e and sedimentation e q u i l i b r i u m methods m a y give m o l e c u l a r weights o r D P d i r e c t l y ; the p r e s e n c e  a c o n d i t i o n f o r the l a t t e r i s the a s s u m p t i o n o f  o r a b s e n c e o f a d e f i n i t e l a t e r a l a s s o c i a t i o n of the s t r u c t u r a l  c h a i n s (115);  E n d - g r o u p and v i s c o s i t y methods  lengths which may,  in turn,  give p r i m a r y - c h a i n  b e c o n v e r t e d to m o l e c u l a r w e i g h t s b y  a d e g r e e o f a s s o c i a t i o n (115).  In c o n j u n c t i o n w i t h o t h e r  assuming  measurements  diffusion studies y i e l d m o l e c u l a r weight and shape f a c t o r s , and s p r e a d i n g measurements,  the m o l e c u l a r t h i c k n e s s e s .  T h e p o l y - d i s p e r s i t y of  and its d e r i v a t i v e s affects s o m e m e a s u r e m e n t s  differently:  cellulose  while various  t y p e s o f a v e r a g e c a n be c a l c u l a t e d f r o m s e d i m e n t a t i o n e q u i l i b r i u m d a t a ,  50 viscosity methods yield weight-average  m o l e c u l a r weights and o s m o t i c  p r e s s u r e and end - group methods give those on a n u m b e r For polyjdisperse materials, weights.  average.  the l a t t e r g i v e s s m a l l e r a v e r a g e m o l e c u l a r  • W i t h the l i g h t - s c a t t e r i n g t e c h n i q u e ,  weight-average  molecular  w e i g h t s a r e d e t e r m i n e d a l o n g w i t h i n f o r m a t i o n about the s i z e a n d s h a p e o f the p o l y m e r ; however,  cellulose  solutions undergo considerable degradation,  and absolute m e a s u r e s  derivatives,  are impractical.  U s e d with  cellulose  though, the technique has b e e n s u c c e s s f u l on solutions of  c e l l u l o s e n i t r a t e (8)*  T h e u l t r a c e n t r i f u g e (120) m a y b e u s e d to  not o n l y a v e r a g e m o l e c u l a r w e i g h t , and s e d i m e n t a t i o n  determine  but also m o l e c u l a r weight d i s t r i b u t i o n  velocity.  Experimentally,  v i s c o s i t y m e a s u r e m e n t of a c e l l u l o s e  m o s t a v a i l a b l e and s i m p l e s t of the above m e t h o d s ,  hence,  s o l u t i o n i s the  it has b e e n a p p l i e d  e m p i r i c a l l y to g a u g e p l a n t p r o d u c t i o n c o n t r o l a n d e f f e c t s o f v a r i o u s c h e m i c a l t r e a t m e n t s on c e l l u l o s e , measurements  these being l a r g e l y followed and c o n t r o l l e d b y  i n c u p r a m m o n i u m s o l u t i o n (9 5).  Evidence from reversible  and degradative t r a n s f o r m a t i o n s between cellulose and its c o m m o n d e r i v a t i v e s s h o w b o t h a r e d i s p e r s e d as s i n g l e c h a i n s ;  s h o u l d they be a s s o c i a t e d ,  t r a n s f o r m a t i o n s w o u l d b e e x p e c t e d to a l t e r the a s s o c i a t i o n (72).  such  Further,  c e l l u l o s e and such d e r i v a t i v e s i n dilute solutions with "good" solvents are d i s p e r s e d i n u n i t s t h a t r i g h t f u l l y m a y b e r e g a r d e d as m o l e c u l e s (72, ) . L i n e a r polymers (long-chain molecules)  a f f e c t v i s c o s i t y to a f a r g r e a t e r  than s p h e r i c a l p a r t i c l e s ;  this effect i n c r e a s e s  m i n o r - m a j o r axis ratio.  F o r rigid,  extent  r a p i d l y w i t h an i n c r e a s i n g  rodlike polymers,  no s i m p l e r e l a t i o n -  ship exists between specific viscosity,  c o n c e n t r a t i o n and a x i a l r a t i o ;  a  s o l u t i o n i s p o s s i b l e w h e n B r o w n i a n m o t i o n i s e i t h e r so g r e a t as to n e g a t e o r i e n t a t i o n (e. g.  s m a l l p a r t i c l e s ) o r so s m a l l as to b e n e g l i g i b l e (e. g.  large particles);  no s o l u t i o n i s p o s s i b l e f o r i n t e r m e d i a t e c o n d i t i o n s .  relationships,  however,  Most  i n v o l v e the s q u a r e o f m i n o r - m a j o r " r a t i o s a n d s o m e  a p p r o a c h c o n s i d e r i n g the e f f e c t i v e p a r t i c l e v o l u m e e q u a l to a s p h e r e d e s c r i b e d b y the p a r t i c l e l e n g t h as the d i a m e t e r (115).  T o give a true p i c t u r e of a high p o l y m e r in solution, that,  as r e f l e c t i n g i t s f l e x i b l e n a t u r e ,  of r i g i d r o d s ,  one w o u l d e x p e c t  its v i s c o s i t y s h o u l d be l e s s than that  b u t m o r e t h a n t h a t of a r a n d o m c o i l .  T h a t t h i s i s the  case  has b e e n shown f r o m a r e l a t i o n between i n t r i n s i c v i s c o s i t y and m o l e c u l a r weight,  the M a r k - H o u w i n k e q u a t i o n (34,  K1-  K  105):  .  M  K , , , M  M  M  a  M where:  are constants v a r y i n g for solvent and cellulose derivative  D P T h e exponent theoretically,  =  intrinsic  viscosity  =  d e g r e e of p o l y m e r i z a t i o n  a. i s a f u n c t i o n o f the g e o m e t r y o f the m o l e c u l e i n s o l u t i o n ;  ,t  n  i t s v a l u e r a n g e s f r o m 0. 5 f o r c h a i n m o l e c u l e s  u n r e s t r i c t e d r o t a t i o n ( a r a n d o m c o i l ) to 1. 5 to 2 . 0 f o r stiff, cules;  with rodlike mole-  c e l l u l o s e t r i n i t r a t e i n a c e t o n e h a s a v a l u e of 1 . 0 ,  showing that  such molecules i n solution display f a i r l y - l o w flexibility,  although they  are  f a r f r o m r o d l i k e (105).  T h e constants of this and other v i s c o s i t y  a r e obtained b y c o m p a r i s o n of v i s c o m e t r i c m e a s u r e m e n t s other m o l e c u l a r weight methods, method,  then,  e. g. u l t r a c e n t r i f u g a t i o n .  equations  w i t h one o f the The  m e r e l y e x p r e s s e s an e m p i r i c a l p r o p o r t i o n a l i t y ;  viscosity i t i s not  an a b s o l u t e m e t h o d u s e d f o r m o l e c u l a r w e i g h t / D P d e t e r m i n a t i o n , b u t a s i m p l e m e a n s of following such v a r i a t i o n s of m e m b e r s f r o m a p o l y m e r i c series.  C o m p a r e d to s t a n d a r d v i s c o s i t y m e t h o d s , offers these additional advantages: c u p r a m m o n i u m method);  i t i s r a p i d a n d a c c u r a t e ( c o m p a r e the  l i g n i n , b e i n g r e m o v e d f r o m the s t a r t i n g m a t e r i a l ,  d o e s not i n t e r f e r e w i t h m e a s u r e m e n t s ; least evident.  v i s c o s i t y of n i t r o c e l l u l o s e  and c h a i n - l e n g t h d e g r a d a t i o n is  A p a r t f r o m the i n s t a b i l i t y of the n i t r a t e s w h e n f o r m e d ,  only f u r t h e r l i m i t a t i o n of consequence  i s the n e e d f o r d e v e l o p m e n t of a  h i g h l y a c c u r a t e a n d p r e c i s e m e t h o d f o r e s t i m a t i o n of n i t r o g e n content, v a r i a t i o n s i n this w i l l m a r k e d l y affect  B.  the  since  viscosity.  Other Components Methods available for m i c r o - a n a l y s i s of l i g n i n have been  r e c e n t l y b y "Wu a n d W i l s o n (157),  while those for polyphenols and r e s i n s  i n D o u g l a s f i r a r e g i v e n i n p a p e r s b y S q u i r e et a l . (114) et a l . (27),  respectively.  reviewed  and C a m p b e l l  MATERIALS AND METHODS I. W o o d S a m p l e P r e p a r a t i o n A.  Sampling Criterion The  c r i t e r i o n f o r s e l e c t i o n o f w o o d m a t e r i a l s w a s b a s e d on a b r o a d  botanical s o u r c e of wood t i s s u e s :  t h e r e b y , r e s u l t s f r o m the w o r k m i g h t b e  i n t e r p r e t e d o v e r a r e a s o n a b l e range and m o r e c l o s e l y a p p r o a c h a g e n e r a l statement.  F r o m Pinaceae,  s i x g e n e r a and s e v e n s p e c i e s w e r e  sampled;  t h e s e w e r e j a c k p i n e ( P i n u s b a n k s i a n a ( L a m b . ) ), S i t k a s p r u c e ( P i c e a sitchensis  (Bong.) C a r r . ) ,  b l a c k s p r u c e ( P i c e a m a r i a n a ( M i l l . ) B . S . P . ) ), g  t a m a r a c k ( L a r i x l a r i c i n a (Du Roi) K . Koch),  Douglas fir  (Pseudotsuga  menziesii (Mirb. );Franco), western hemlock (Tsuga heterophylla(Raf jSarg.), and P a c i f i c s i l v e r f i r ( A b i e s a m a b i l i s ( D o u g l . ) F o r b . ) . g e n e r a and s p e c i e s of C u p r e s s a c e a e were included; red  c e d a r ( T h u j a p l i c a t a Donn) a n d y e l l o w  tensis (D.  D o n . ) S p a c h . );  eight g e n e r a ,  W o o d s f r o m two  these were  western  cedar (Chamaecyparis nootka-  T h e e n t i r e s a m p l i n g p l a n i n c l u d e d two  and nine species,  families,  w i t h r e p l i c a t i o n b e t w e e n t r e e s f o r one  s p e c i e s a n d r e p l i c a t i o n o f m o r e t h a n one i n c r e m e n t w i t h i n t r e e s f o r two species.  O r i g i n and d e s c r i p t i o n of g r o s s wood c h a r a c t e r i s t i c s for s o m e  of t h e s e w o o d s a m p l e s i s g i v e n i n A p p e n d i x III.  B.  P r e p a r a t i o n of W o o d M e a l s The  g e n e r a l p r o c e d u r e f o r p r e p a r a t i o n of w o o d m e a l s w a s as  i m m e d i a t e l y after f e l l i n g , b r e a s t height,  follows:  d i s c s e c t i o n s w e r e r e m o v e d f r o m e a c h s t e m at  wrapped in polyethylene,  a n d t r a n s f e r r e d to the W o o d S c i e n c e  L a b o r a t o r y at the U n i v e r s i t y of B r i t i s h C o l u m b i a . gular,  straight-grained specimen blocks  ( l o n g i t u d i n a l ) x 2 - i n ( r a d i a l ) ~]  F r o m these,  rectan-  £ 1 / 2 - i n (tangential) x 4 - i n  w e r e s p l i t f r o m the o u t e r h e a r t w o o d o r  s a p w o o d a l o n g the m a j o r a n d m i n o r a x e s a n d s o a k e d i n w a t e r f o r days.  Increments  several  c h o s e n r e p r e s e n t e d c h a r a c t e r i s t i c w i d t h s (2 to 3 m m )  f o r r e g u l a r m a t u r e w o o d i n the p a r t i c u l a r s t e m s e c t i o n s a n d f o r the A s W u a n d W i l s o n (157) p o i n t out,  species.  this is a s t r o n g point of s a m p l i n g ;  in  c o n t r a s t to f o r m e r w o r k o n e x c i s e d e a r l y w o o d a n d l a t e w o o d , t h i s d o e s not require abnormally wide-ringed material.  B l o c k s w e r e m i c r o t o m e d i n the m a n n e r d e s c r i b e d b y Ifju (61), w h e r e b y e a c h s p e c i m e n was p l a c e d i n the j a w s of a s p e c i a l 6 - i n aligned, edge.  vise,  a n d t i g h t e n e d so t h a t the top g r o w t h r i n g p a r a l l e l l e d the b l a d e  cutting  T h e p r e c e d i n g r i n g was s e c t i o n e d t a n g e n t i a l l y to a l l o w f o r m i n o r b l o c k  adjustments  i n the c u t t i n g p l a n e a n d the r e s u l t i n g e x t r a s e c t i o n s w e r e u s e d  to d e t e r m i n e n i t r a t i o n t i m e to m a x i m u m y i e l d ; a v e r a g i n g lOO.^u  thickness  b e t w e e n 25 to 35 s e c t i o n s  w e r e r e m o v e d f r o m each i n c r e m e n t and  n u m b e r e d i n d i v i d u a l l y with alcohol-benzene  soluble p e n c i l . T h e s e were a i r -  d r i e d a n d d i v i d e d i n t o s i x e q u a l g r o u p s a c c o r d i n g to s i x s e q u e n t i a l l y positions  spaced  a c r o s s the i n c r e m e n t f r o m e a r l y - to l a t e w o o d . A f t e r g r i n d i n g the  sections through a W i l e y m i l l , sieving and collecting a c e r t a i n m e s h fraction to b e d e s c r i b e d ,  0. 5 to 1. 0 g p o r t i o n s of the w o o d m e a l s  s e p a r a t e l y i n t o s m a l l (1 1 / 2 - i n x 2 - i n )  were  sealed  1 0 0 - m e s h nylon o r g a n z a bags with a  s o l d e r i n g gun. A l l b a g s w e r e g r o u p e d together and s u c c e s s i v e l y  extracted.  55  A s the m a t e r i a l s h a d b e e n c o l l e c t e d and p r e p a r e d o v e r a 3 - y r interval, 1963,  s l i g h t d i f f e r e n c e s o c c u r r e d i n s o m e a s p e c t s o f p r e p a r a t i o n . In  W u (156)  silver fir,  studied Sitka spruce,  and western r e d c e d a r .  an i n t e r m e d i a t e W i l e y m i l l , genized,  Douglas fir, western hemlock, P a c i f i c Sections w e r e g r o u n d into m e a l u s i n g  c o l l e c t e d as the 4 0 - 8 0 m e s h f r a c t i o n , h o m o -  c o n d i t i o n e d to s i m i l a r m o i s t u r e c o n t e n t , a n d s e a l e d u n d e r n i t r o g e n  until u s e d for this study.  T h e o t h e r w o o d s w e r e c o l l e c t e d i n 1966, a n d ,  a p a r t f r o m the D o u g l a s f i r s a m p l e f r o m I n c r e m e n t 40 ( w h i c h was t o m e d two d a y s a f t e r f e l l i n g ) , thymol solutions.  micro-  b l o c k s e c t i o n s w e r e s t o r e d i n the c o l d i n  F o l l o w i n g m i c r o t o m i n g , sections were fed g r a d u a l l y  through a variable speed m i c r o - W i l e y m i l l ( W i l e y - F . R . I .  m i c r o model)  s e t at a p p r o x i m a t e l y 3500 r p m , a n d g r o u n d to p a s s a 2 0 - m e s h T h e l a t t e r two s t e p s m i n i m i z e d f i n e s ;  on s c r e e n i n g ,  screen.  the 4 0 - 6 0 m e s h f r a c t i o n  w a s r e t a i n e d w h i l e the o v e r s i z e p a r t i c l e s w e r e r e t u r n e d to the m i l l a n d r e g r o u n d to p a s s a g a i n the 2 0 - m e s h s c r e e n .  B y this method,  a i r - d r y wood  m i c r o s e c t i o n s w e r e r e c o v e r e d i n 75 to 80% y i e l d as 4 0 - 6 0 m e s h w o o d m e a l .  T h e 4 0 - 6 0 m e s h f r a c t i o n s i z e was c h o s e n b e c a u s e p r e l i m i n a r y s h o w e d that f o r b o t h e a r l y - and latewood,  studies  nitrocellulose yield reaches  a  m a x i m u m f o r t h i s p a r t i c l e s i z e a n d i s l e a s t v a r i a b l e i n the r a n g e o f p a r t i c l e s i z e b e t w e e n 8 0 - m e s h (0. 16 m m ) a n d 9 . 0 m m .  Likewise, Timell  a l s o r e c o v e r e d h i g h e r n i t r o c e l l u l o s e y i e l d s with 40-60 m e s h white m e a l than with 60-80 m e s h wood m e a l .  (130) spruce  E a r l y s t u d i e s a l s o s h o w e d t h a t the w o o d e x t r a c t i o n  treatment  i n f l u e n c e d n i t r a t i o n . T h e p r o c e d u r e f i n a l l y adopted was s u c c e s s i v e tion of a l l s a m p l e s  as a g r o u p w i t h f o u r - 1 h r c h a n g e s o f b o i l i n g d i s t i l l e d  water and a i r - d r y i n g , Soxhlet apparatus. five r e p l i c a t e s  extrac-  followed with alcohol-benzene  (1:2) f o r 24 h r i n a  A s e x a m p l e of e x t r a c t i o n s t u d i e s ,  four treatments  e a c h w e r e a p p l i e d to the s a m e D o u g l a s f i r l a t e w o o d m e a l ;  f o l l o w i n g n i t r a t i o n o n the m o i s t u r e - f r e e  extracted meal,  t h a t g i v i n g the  h i g h e s t y i e l d w i t h l e a s t v a r i a t i o n d i c t a t e d the c o u r s e o f f u t u r e w o r k . o r d e r of i n c r e a s i n g y i e l d , the t r e a t m e n t s ethanol,  w a t e r (46.1 + 1.0%);  benzene,  of  w e r e f o u n d to b e e t h y l e t h e r ,  water, ether,  w a t e r (49.7 + 0.8%);  In  a l c o h o l (49.3 + 1.3%); a l c o h o l -  and water, a l c o h o l - b e n z e n e  (51.0 +_0.3%).  It w a s n o t the p u r p o s e o f t h i s t h e s i s to t h o r o u g h l y e x a m i n e the i n t e r a c t i o n of w o o d e x t r a c t i o n h i s t o r y w i t h n i t r o c e l l u l o s e p r e p a r a t i o n . O b v i o u s l y , some serious  C.  effects are i n v o l v e d .  The literature neglects these entirely.  V a l i d i t y of R e s u l t s T h e a p p l i c a t i o n of s t a t i s t i c s to w o o d c h e m i s t r y p r o c e d u r e s  p r i m i t i v e o r often neglected, r e s u l t s i s o p e n to s e r i o u s  with consequence  question.  is  t h a t the v a l i d i t y of s o m e  With this i n m i n d ,  both sample  size  a n d r e p l i c a t i o n n u m b e r w e r e c a r e f u l l y e x a m i n e d i n the p r e s e n t s t u d y . T a b l e 2 shows a t y p i c a l c a l c u l a t i o n for d e t e r m i n a t i o n of r e p l i c a t i o n n u m b e r .  The  p r o c e d u r e was r e p e a t e d s e v e r a l t i m e s d u r i n g d e v e l o p m e n t of m e t h o d s  for  the p u r p o s e of e v a l u a t i n g p r o g r e s s i n c o n t r o l l i n g e x p e r i m e n t a l e r r o r .  The  o b j e c t i v e was to m i n i m i z e the a m o u n t of m a t e r i a l n e e d e d f o r a defensible  determination.  Thus,  i t was f i n a l l y f o u n d that, to  statistically  determine  57 yield r e l i a b l y for a single position within a wood growth i n c r e m e n t , 3 x 0. 1 g = 0. 3 g o f w o o d m e a l was n e e d e d .  only  In a d d i t i o n , t h i s s a m p l e  size  supplied sufficient c e l l u l o s e nitrate for n i t r o g e n c o r r e c t i o n s and v i s c o s i t y determinations.  T h e a m o u n t o f c e l l u l o s e r e c o v e r e d as the n i t r a t e was  c a l c u l a t e d f r o m the y i e l d c o r r e c t e d f o r the n i t r o g e n p e r c e n t a g e o f the derivative:  M i l e s (91) g i v e s a c o n v e n i e n t e q u a t i o n f o r t h i s :  P  .  =  100  N  3 1 . 13 - N  \_2~]  where p  =  i n c r e a s e i n w e i g h t o f 100 g o f  N  =  nitrogen, %  "cellulose"  T h e s y m b o l "p" i s r e a l l y a c o n v e r s i o n f a c t o r u s e d to r e d u c e w e i g h t o f n i t r o c e l l u l o s e to w e i g h t o f " c e l l u l o s e " ( r e g a r d e d h e r e as an e s t i m a t e o f <=>C - c e l l u l o s e )  a n d i s d e r i v e d f r o m the r e l a t i o n s h i p ( r a t i o ) b e t w e e n m o l e -  c u l a r weights of c e l l u l o s e t r i n i t r a t e and c e l l u l o s e . the l a t t e r 162 t h i s r a t i o i s t h e n 1.833,  A s the f o r m e r i s 297 a n d  w h i c h c o r r e s p o n d s to  complete  n i t r a t i o n o f c e l l u l o s e (14. 15% N)*  U s e o f 0. 2 g s a m p l e s g a v e g o o d r e s u l t s u s i n g t h r e e  replicates,  b u t r e q u i r e d t w i c e the a m o u n t o f m a t e r i a l as 0. 1 g w i t h o u t l a r g e in absolute value o r r e l i a b i l i t y . The final p r o c e d u r e , four other species, and l a t e w o o d .  B y u s i n g 0. 05 g,  change  r e p r o d u c i b i l i t y was  a p p l i e d to t h r e e 0. 1 g r e p l i c a t e s f o r s a m p l e s  lost.  from  g a v e v a l u e s not u n l i k e t h o s e f o r the D o u g l a s f i r e a r l y -  T h e r e f o r e , i t was c o n c l u d e d t h a t t h i s n u m b e r w o u l d b e  cient for a l l wood t i s s u e s .  suffi-  W h e r e the d i f f e r e n c e ( r a n g e ) a m o n g the t h r e e  repli-  c a t e s was m u c h g r e a t e r t h a n the c o n f i d e n c e i n t e r v a l o f 1.2%, o r w h e r e  the  absolute y i e l d appeared questionable,  were  duplicate sets of determinations  done a n d m o d a l v a l u e s w e r e c h o s e n f r o m a l l d a t a r e p r e s e n t i n g a p o s i t i o n .  II. A.  Nitration Procedure Mixed Acid Preparation T h e p r o c e d u r e u s e d f o r p r e p a r i n g the n i t r a t i n g m i x t u r e w a s  that  d e v e l o p e d b y A l e x a n d e r a n d M i t c h e l l (2) a n d m o d i f i e d b y T i m e l l (134). Additional features were discovered.  A n a l y t i c a l grade,  f u m i n g n i t r i c a c i d (120 m l ) was p o u r e d i n t o a 500 m l , E r l e n m e y e r flask.  colorless,  90%  glass-stoppered  T h i s w a s i m m e r s e d i n a D e w a r f l a s k (140 m m  diameter)  f i l l e d w i t h e t h y l e n e g l y c o l a n d c o o l e d to about - 1 5 ° C u s i n g a " W h i r l p o o l " t h e r m o e l e c t r i c i m m e r s i o n c o o l e r (Canlab M o d e l 84-640) r e g u l a t e d b y transformer.  U s e of a l a r g e r d i a m e t e r D e w a r f l a s k d i d not a l l o w the temperature depression,  desired  p r e s u m a b l y b e c a u s e of g r e a t e r coolant  a r e a e x p o s e d to the a t m o s p h e r e . r e c e i v e d f r o m the s u p p l i e r ,  s l i g h t l y c o l o r e d as  i t w a s n e c e s s a r y to r e m o v e the n i t r o g e n o x i d e s  by bubbling through dry nitrogen. f l a s k was f i l l e d t h r e e - f o u r t h s  S i n c e the a c i d w a s  surface  T o do t h i s , a two l i t e r  round-bottomed  f u l l of a c i d , p l a c e d i n a h e a t i n g m a n t l e ,  h e a t e d to 4 0 ° ito 5 0 ° C f o r o n l y 1 to 2 h r (139). h o u r f o l l o w i n g the h e a t i n g p e r i o d ,  and  D u r i n g t h i s t i m e , a n d f o r an  a s t r e a m of n i t r o g e n ,  passed  consecutive-  l y t h r o u g h cone s u l f u r i c a c i d and c a l c i u m c h l o r i d e was b u b b l e d through a gas d i s p e r s i o n tube into the a c i d . O n b e c o m i n g c o l o r l e s s ,  the a c i d was  allowed  59 to c o o l a n d w a s s t o r e d i n the o r i g i n a l b o t t l e at 0 ° C .  A t o t a l a m o u n t o f 72 g o f o v e n - d r y ,  analytical grade phosphorus  pentoxide was w e i g h e d into a b e a k e r and then added i n s m a l l i n c r e m e n t s the a c i d .  W i t h e a c h a d d i t i o n , the f l a s k w a s s w i r l e d v i g o r o u s l y to  the h e a t of s o l u t i o n a n d a v o i d r e l e a s e o f b r o w n f u m e s .  to  dissipate  After each addition,  the f l a s k c o n t e n t s w e r e c o o l e d to - 1 5 ° C . a n d the b e a k e r s e a l e d f r o m the atmosphere with a l u m i n u m foil.  F o l l o w i n g the l a s t a d d i t i o n , t h e c l o u d y w h i t e  m i x t u r e w a s k e p t at r o o m t e m p e r a t u r e f o r 1 to 1 1/2 h r a n d s w i r l e d f r e q u e n t ly.  A t this stage,  phases,  the m i x t u r e w a s c o m p o s e d o f two d i s t i n c t i m m i s c i b l e  both of which w e r e c l e a r and c o l o r l e s s .  T h i s w a s r e f r i g e r a t e d at  5 ° C f o r 4 to 6 h r , r e m o v e d a n d s w i r l e d v i g o r o u s l y into one m i s c i b l e a n d r e f r i g e r a t e d f o r a s e c o n d p e r i o d o f 5 to 6 h r .  F o l l o w i n g this,  phase,  the  m i x t u r e was r e a d y f o r u s e .  O v e r n i g h t s t o r a g e of the n i t r a t i o n m i x t u r e i s a l l o w e d . useful storage time, started.  however,  B e y o n d this p e r i o d ,  i s one o r two d a y s a f t e r the  Maximum  preparation is  c r y s t a l s a r e d e p o s i t e d o n the f l a s k b o t t o m  a n d the c o m p o s i t i o n of the a c i d c h a n g e s .  O n p r e p a r a t i o n , the  solution  contains n i t r i c acid, p h o s p h o r i c acid, and phosphorus pentoxide in a weight r a t i o o f 64:26:10.  T h i s m i x e d a c i d must be c l e a r and c o l o r l e s s  the  f o l l o w i n g day,  a n d a n y m i n o r p a r t i c l e s m a y be r e m o v e d b y f i l t r a t i o n o v e r  fritted glass.  A l t h o u g h i n i t i a l i m m i s c i b i l i t y has been encountered  before,  no r e a s o n h a s b e e n a d v a n c e d f o r t h i s b e h a v i o r (136), n o r i s one g i v e n f o r the r e q u i r e d " a g i n g " p e r i o d f o l l o w i n g t r a n s i t i o n into one p h a s e .  In the  p r e s e n t w o r k i t w a s f o u n d that b o t h f e a t u r e s  a r e n e c e s s a r y o r the a c i d  r e m a i n s o r s e p a r a t e s as a t w o - p h a s e s y s t e m d u r i n g the f i r s t s t a g e o f nitration.  B.  Nitration T h e p r o c e d u r e for n i t r a t i n g w o o d m e a l i s that d e s c r i b e d b y T i m e l l  (134).  A f t e r d r y i n g over phosphorus pentoxide under r e d u c e d p r e s s u r e  (1 to 2 d a y s ) , and stoppered.  wood m e a l (0.10  g) w a s w e i g h e d i n t o a 50 m l w e i g h i n g b o t t l e  A t n i t r a t i o n , the b o t t l e w a s i n v e r t e d , o p e n e d a n d w i t h the  m e a l r e m a i n i n g i n the l i d , 6 m l of n i t r a t i n g m i x t u r e at - 1 5 ° C w e r e t r a n s f e r r e d to the b o t t l e u s i n g a c l e a n , b a r r e l and p l u n g e r .  c a l i b r a t e d 20 m l g l a s s h y p o d e r m i c  T h e m e a l was added g r a d u a l l y i n s m a l l p o r t i o n s  while  the f l a s k c o n t e n t s w e r e s w i r l e d i n s t a n t l y a n d v i g o r o u s l y o n e a c h a d d i t i o n . U p o n the l a s t a d d i t i o n , the b o t t l e w a s r e - s t o p p e r e d , sides of a d h e r i n g wood m e a l ,  s w i r l e d to c l e a n the  a n d set a s i d e at 18 + 1 ° C .  A water bath  w a s k e p t at the p r o p e r t e m p e r a t u r e b y u s i n g a n e l e c t r o t h e r m a l  voltage  r e g u l a t o r to c o n t r o l a c o n s t a n t - h e a d r e s e r v o i r f e d b y a s t r e a m of c o l d tap water.  T h e t i m e s r e q u i r e d f o r d e v e l o p m e n t of m a x i m u m n i t r o c e l l u l o s e y i e l d at p r o p e r d e g r e e of s u b s t i t u t i o n w i t h m i n i m u m n i t r o c e l l u l o s e m e r i z a t i o n v a r i e d b e t w e e n w o o d s of d i f f e r e n t s p e c i e s , hr for P a c i f i c s i l v e r f i r , western r e d cedar, h r for Douglas f i r .  r a n g i n g f r o m 38 to 40  a n d the s p r u c e s ,  to 43 to 45  T h e s e times were in agreement with those  b y Ifju (61) a n d T i m e l l (130) f o r s i m i l a r s p e c i e s .  depoly-  determined  Western hemlock,  61 tamarack,  jack pine,  the r e a c t i o n p e r i o d , evenly-spaced  a n d y e l l o w c e d a r f a i l e d to n i t r a t e p r o p e r l y .  During  f l a s k c o n t e n t s w e r e s w i r l e d at l e a s t s i x t i m e s  intervals.  at  T h i s p r o v e d e s s e n t i a l i n o r d e r to m i n i m i z e  v a r i a t i o n i n y i e l d a n d p r o v i d e p r o d u c t s w i t h p r o p e r n i t r o g e n c o n t e n t Qi. e. , 13.8% o r h i g h e r ) .  In c o n t r a s t ,  for r e a s o n s unknown,  a g i t a t i o n i s k n o w n to g i v e m e a s u r e a b l e  Cellulose Nitrate  mechanical  denitration and r e d u c t i o n i n i n t r i n s i c  v i s c o s i t y a f t e r the f i r s t 20 h r of n i t r a t i o n (129,  C.  continuous  137).  Recovery  P r o d u c t s o f w o o d n i t r a t i o n w e r e r e c o v e r e d a c c o r d i n g to the  method  o f T i m e l l (134). A f t e r c o m p l e t i n g n i t r a t i o n f o r the r e q u i r e d t i m e p e r i o d , the f l a s k a n d c o n t e n t s w e r e c o o l e d to - 1 5 ° C .  T h e acids and soluble  p r o d u c t s w e r e r e m o v e d b y f i l t r a t i o n t h r o u g h a 30 m l c o a r s e , crucible,  s u c t i o n b e i n g i n t e r r u p t e d b e f o r e a i r e n t e r e d the s o l i d  T h i s was followed b y i m m e d i a t e a c e t i c a c i d at - 1 5 ° C (104)  a n d l e f t f o r 5 m i n to s o l u b l i z e  residue.  a d d i t i o n a n d r e m o v a l o f 40 m l of 50% a q  a n d 40 m l o f i c e d  T h e c r u c i b l e was r e m o v e d ,  lignin.  fritted-glass  water.  f i l l e d with saturated aq s o d i u m b i c a r b o n a t e ,  s o m e of the n i t r a t e d , o x i d i z e d ,  and degraded  T h e b i c a r b o n a t e w a s d i s p l a c e d w i t h 30 m l o f 10% a q a c e t i c a c i d  at 0 ° C a n d the r e s i d u e w a s w a s h e d w i t h d i s t i l l e d w a t e r u n t i l w a s h i n g s w e r e neutral.  T h i s w a s t r a n s f e r r e d w i t h m e t h a n o l to a 50 m l E r l e n m e y e r  a n d s h a k e n m e c h a n i c a l l y f o r 1 h r to r e m o v e the r e m a i n i n g l i g n i n d e g r a dation p r o d u c t s . that  is  completely  Good l i g n i n r e m o v a l is e s s e n t i a l in obtaining a nitrate acetone-soluble  (2).  The nitrated  m e a l w a s r e t u r n e d to the c r u c i b l e ,  r i n s e d with methanol,  and t r a n s f e r r e d  to a 250 m l w i d e - m o u t h E r l e n m e y e r c o n t a i n i n g 150 m l o f a c e t o n e . w a s s t i r r e d at 2, 200 r p m f o r 5 m i n w i t h a m e c h a n i c a l s t i r r e r .  This  After  u n d i s s o l v e d r e s i d u e s ( p r o b a b l y n a t i v e x y l a n d i n i t r a t e s ) s e t t l e d o v e r 12 h r , the c l e a r y e l l o w s u p e r n a t a n t l i q u o r was d e c a n t e d w h i l e the s w o l l e n  residue  was c e n t r i f u g e d at 15, 000 r p m f o r 1 to 1 1/2 h r a n d w a s h e d o n c e .  The  s u p e r n a t a n t s o l u t i o n s w e r e c o m b i n e d a n d p o u r e d i n t o one l i t e r o f d i s t i l l e d water.  P r e c i p i t a t e d nitrocellulose fibres were collected around a spatula  and p r e s s e d into a flat m a s s .  The r e c o v e r e d product probably contained  m i n o r amounts of g a l a c t o g l u c o m a n n a n or g l u c o m a n n a n t r i n i t r a t e s w i t h the c e l l u l o s e t r i n i t r a t e ,  occluded  a l t h o u g h m o s t c o n t a m i n a n t s a r e r e p o r t e d to  r e m a i n i n s o l u t i o n o n a d d i t i o n o f the a c e t o n e s o l u t i o n to w a t e r (134). p r e c i p i t a t e w a s t r a n s f e r r e d to a 30 m l f r i t t e d - g l a s s  crucible,  w a t e r a n d m e t h a n o l a n d , f o l l o w i n g 4 to 5 h r a i r - d r y i n g , d r i e d under r e d u c e d p r e s s u r e over phosphorus pentoxide a t u r e f o r 24 h r . viscosity,  washed with  the m a t e r i a l w a s at r o o m t e m p e r -  F o l l o w i n g a n a l y s i s f o r y i e l d , n i t r o g e n content,  and  i t was s t o r e d i n the c o l d .  N i t r a t i o n is a r e v e r s i b l e p r o c e s s ;  b e i n g v e r y r a p i d i n the  f o r m a t i o n s t a g e , b u t e x t r e m e l y s l o w i n the d e - e s t e r i f i c a t i o n stage.  The  Hence,  u s i n g high DS and p r o p e r r e c o v e r y techniques  the c h a n c e f o r n i t r a t e e s t e r r e m o v a l ( d e n i t r a t i o n ) .  However,  ester  or hydrolysis lessens opportunities  for d e n i t r a t i o n m a y be i n c r e a s e d e n o r m o u s l y b y r a i s i n g t e m p e r a t u r e S i n c e m a j o r h e a t e f f e c t s at a n y s t a g e of the n i t r a t i o n p r o c e s s  (91).  are those  a c c o m p a n y i n g a c i d d i l u t i o n (the h e a t of the n i t r a t i o n i t s e l f b e i n g  negligible),  63 the s u c k i n g o f a i r t h r o u g h the r e s i d u e a n d i n e f f i c i e n t o r t a r d y d r o w n i n g c a u s e local temperature increases which promote a serious Of course,  d e n i t r a t i n g effect  (91).  this w i l l a d v e r s e l y affect absolute y i e l d and v i s c o s i t y v a l u e s  w e l l as r e p r o d u c a b i l i t y b y i n t r o d u c i n g a l a r g e e x p e r i m e n t a l  as  error.  III. N i t r o g e n D e t e r m i n a t i o n T h e p r e f e r r e d m e t h o d for d e t e r m i n i n g total nitrate e s t e r n i t r o g e n on c e l l u l o s e t r i n i t r a t e i s the s e m i - m i c r o K j e l d a h l d i g e s t i o n (6, 49, 61). volumetric methods, m o r e t e d i o u s (56); (29,  while suitable,  a r e e i t h e r l e s s r e p r o d u c i b l e (37)  spectrophotometry  79) b u t r e q u i r e e l a b o r a t e ,  methods m a y yield accurate  or  results  s o p h i s t i c a t e d e q u i p m e n t a n d l a c k the  p l i c i t y of p r o c e d u r e e s s e n t i a l f o r r a p i d Briefly,  Gas-  sim-  analysis.  the e s t e r i s d i g e s t e d w i t h c o l d c o n e s u l f u r i c a c i d i n the  p r e s e n c e of a r e a d i l y C - nitrated,  aromatic compound (salicylic  acid)  a n d the n i t r o a r o m a t i c c o m p o u n d t h u s f o r m e d i s r e d u c e d w i t h s o d i u m t h i o s u l f a t e to a n a m i n e (56).  W h i l e the D e v a r d a m o d i f i c a t i o n (56)  digestion i n alkaline solution with a metal,  employs  a m o r e suitable method is  u s e o f a t r a c e o f s e l e n i u m w i t h the t h i o s u l f a t e to c a t a l y z e r e d u c t i o n  the  (21).  T h e s o l u t i o n m a y t h e n be t r e a t e d w i t h an e x c e s s o f s o d i u m h y d r o x i d e a n d the a m m o n i a d i s t i l l e d i n t o b o r i c a c i d a n d t i t r a t e d d i r e c t l y w i t h s t a n d a r d a c i d . T h i s m e t h o d o f M a a n d Z u a z a g a (82) i s c o m m o n l y u s e d .  Its d i s a d v a n t a g e  is  that the b u f f e r i n g a c t i o n o f the b o r i c a c i d m a k e s the e n d p o i n t l e s s s h a r p t h a n w i t h the b a c k - t i t r a t i o n m e t h o d u s i n g n i c k e l a m m o n i u m s u l f a t e (148).  Nessler's  r e a g e n t g i v e s d i r e c t c o l o r i m e t r i c d e t e r m i n a t i o n o f a m m o n i a i n the d i g e s t . A l t h o u g h m o r e r a p i d than s e m i - m i c r o o r m i c r o - K j e l d a h l , it is to b e n o t so a c c u r a t e o r d e p e n d a b l e The analytical  reported  (148).  p r o c e d u r e u s e d i n the p r e s e n t s t u d y w a s e s s e n t i a l l y that  o f M a a n d Z u a z a g a (82) as m o d i f i e d b y S t e y e r m a r k (119).  T a b l e 3 shows a  t y p i c a l d e t e r m i n a t i o n o f r e p l i c a t i o n n u m b e r f o r the n i t r o g e n d e t e r m i n a t i o n (n = 2).  W h e r e the d i f f e r e n c e b e t w e e n the two r e p l i c a t e s w a s g r e a t e r t h a n  the c o n f i d e n c e i n t e r v a l o f 0. 16%,  a t h i r d d e t e r m i n a t i o n w a s m a d e a n d the  a v e r a g e of the two c l o s e s t v a l u e s w a s  used.  T h e c e l l u l o s e n i t r a t e to be a n a l y s e d f o r n i t r o g e n w a s d r i e d i n v a c u o over phosphorus pentoxide.  A 15 to 20 +_ 0. 05 m g p o r t i o n was w e i g h e d o n a  S p o e r h a s e s e m i - m i c r o a n a l y t i c a l b a l a n c e a n d t r a n s f e r r e d to a 100 m l A m i n c o digestion - distillation flask.  T h r e e m l of stock solution containing  0. 1 g of r e a g e n t g r a d e s a l i c y l i c a c i d a n d 3. 0 m l of c o n e s u l f u r i c a c i d w e r e d i s p e n s e d to e a c h f l a s k b y g l a s s h y p o d e r m i c b a r r e l a n d p l u n g e r .  The  c o n t e n t s w e r e s h a k e n m e c h a n i c a l l y f o r 2 to 3 h r to e n s u r e c o m p l e t e and a r o m a t i c n i t r a t i o n .  solution  It w a s n o t e d that t h i s p r o v i d e s c o n s i d e r a b l e  saving  in time c o m p a r e d with other methods which, unaccountably, specify a long d i s s o l u t i o n p e r i o d w i t h o u t a g i t a t i o n (49,  61).  Further,  it was found that  shaking gave m o r e r e p r o d u c e a b l e n i t r o g e n values than obtained b y o v e r night d i s s o l u t i o n without agitation.  A p p r o x i m a t e l y 0. 3 g o f r e a g e n t g r a d e s o d i u m t h i o s u l f a t e  penta-  h y d r a t e w a s a d d e d and, f o l l o w i n g a 15 m i n c o o l i n g p e r i o d (119), two selenized H e n g a r granules were added.  T h e flasks were digested 2  1/2  h r at s e t t i n g 6 o n a n A m i n c o r o t a r y K j e l d a h l d i g e s t i o n a p p a r a t u s (3) t h a t had been warmed previously.  F l a s k s w e r e r o t a t e d 2 to 3 t i m e s d u r i n g  d i g e s t i o n to e n s u r e that s p l a s h e d m a t e r i a l s o n the f l a s k s i d e s r e f l u x e d i n t o the m a i n  contents.  O n c o o l i n g the d i g e s t , of d i s t i l l e d water,  the f l a s k s i d e s w e r e r i n s e d w i t h 10 to 15 m l  a n d the f l a s k was g r e a s e d a n d a t t a c h e d to an A m i n c o  s t e a m d i s t i l l a t i o n a s s e m b l y (3).  A 125 m l E r l e n m e y e r f l a s k c o n t a i n i n g 10  m l o f 4% r e a g e n t g r a d e b o r i c a c i d s o l u t i o n a n d m i x e d i n d i c a t o r w a s p l a c e d u n d e r the c o n d e n s e r d e l i v e r y tube w i t h the t i p e x t e n d i n g b e n e a t h the liquid level.  T h e i n d i c a t o r s w e r e b r o m c r e s o l g r e e n (0. 5 g i n 100 m l o f  ethanol) and m e t h y l r e d (0.1  g i n 100 m l o f e t h a n o l ) .  T o make a stock  s o l u t i o n f o r t w e l v e d e t e r m i n a t i o n s , f i v e d r o p s of the f o r m e r a n d t e n of the l a t t e r w e r e a d d e d to 120 m l o f the b o r i c a c i d s o l u t i o n . T e n m l of 40% s o d i u m h y d r o x i d e w e r e r u n c a r e f u l l y i n t o the d i s t i l l a t i o n f l a s k t h r o u g h the t u b e a n d the r e s u l t i n g ,  entrance  s t r o n g l y alkaline m i x t u r e was s t e a m d i s t i l l e d for  7 m i n a n d c o n t i n u e d 2 m i n l o n g e r to w a s h out the c o n d e n s e r t i p . A n A m i n c o e l e c t r i c s t e a m g e n e r a t o r w a s u s e d (3),  w i t h the r a t e o f  steam  g e n e r a t i o n c o n t r o l l e d b y the v a r i a b l e t r a n s f o r m e r .  A few m l o f d i s t i l l e d w a t e r w e r e u s e d to w a s h the s i d e s of the  Erlen-  m e y e r f l a s k a n d the b o r i c a c i d s o l u t i o n c o n t a i n i n g the a m m o n i a w a s t i t r a t e d to the e n d p o i n t w i t h 0. 02 N h y d r o c h l o r i c a c i d . T h e c o l o r m a t c h e d to t h a t f o r a n e q u a l v o l u m e o f b o r i c a c i d , b o t h i n d i c a t o r s , one d r o p o f e x c e s s h y d r o c h l o r i c a c i d .  T h e t i t r a t i o n a c i d was  was and  standardized  u s i n g r e c r y s t a l l i z e d b o r a x a c c o r d i n g to the m e t h o d o f V o g e l (139); n o r m a l i t y was c h e c k e d i n t r i p l i c a t e b e f o r e e v e r y u s e . w e r e m a d e i n the a b s e n c e of a s a m p l e ,  Blank  using all reagents,  determinations  a n d the v a l u e  o b t a i n e d was s u b t r a c t e d f r o m e x p e r i m e n t a l v a l u e s of a g i v e n s e r i e s . m e t h o d was  The  standardized against r e c r y s t a l l i z e d reagent p o t a s s i u m nitrate  66  ( n i t r o g e n c o n t e n t = 13.85%).  C a l c u l a t i o n o f n i t r o g e n c o n t e n t was  as  follows:  M  % Nitrogen  IV.  m l 0. 02 N a c i d ( c o r r e c t e d ) x 14. 008 x 100% f —s a m p l e wt, g (oven-dry) ,  =  [4]  Viscosity Determination T h e p r o c e d u r e u s e d f o r d e t e r m i n i n g i n t r i n s i c v i s c o s i t y was  o f Ifju ( 6 1 ) . b a s e d o n w o r k of D a v i s o n (35).  that  A 3 to 5 + . 0 1 m g s a m p l e  was  weighed on a C a h n g r a m e l e c t r i c m i c r o a n a l y t i c a l b a l a n c e and t r a n s f e r r e d to a 15 m l p o l y e t h y l e n e t e s t tube f i t t e d w i t h a p e r f e c t l y c l o s i n g cap.  T e n m l o f r e a g e n t g r a d e a c e t o n e w e r e a d d e d a n d the t u b e w a s  m e c h a n i c a l l y o v e r n i g h t to e f f e c t s o l u t i o n . clean,  polyethylene  dry Cannon-Fenske viscometer  i n a v i s i b i l i t y j a r b a t h at 25 +_0. 1 ° C . equilibrium,  the v i s c o m e t e r  A 5 m l a l i q u o t was p i p e t t e d to a  (4) a l i g n e d v e r t i c a l l y a n d s u s p e n d e d After waiting 5 m i n for t e m p e r a t u r e  c a p i l l a r y tube a n d efflux b u l b w e r e f i l l e d b y  a t t a c h i n g a r u b b e r b u l b to the o p e n a r m a n d s q u e e z i n g g e n t l y . m i n i m i z e d evaporation,  This  E f f l u x t i m e w a s m e a s u r e d to the  n e a r e s t 0. 1 s e c b e t w e e n the u p p e r a n d l o w e r e t c h m a r k s . the v i s c o m e t e r  was r i n s e d e x h a u s t i v e l y  Between  with reagent  the v i s c o m e t e r  was c l e a n e d with aqua r e g i a .  deter-  grade  acetone and d r i e d b y p a s s i n g t h r o u g h a i r , then p l a c i n g it i n an oven. Periodically,  technique  h e n c e e r r o r s c a u s e d b y d r a w i n g the s o l u t i o n up  the c a p i l l a r y b y d i r e c t s u c t i o n (4).  minations,  shaken  Specific viscosity, t/t  o  , was  c a l c u l a t e d f r o m the  - 1, w h e r e t i s efflux t i m e o f the s o l u t i o n a n d t  o  expression  t h a t of p u r e a c e t o n e ,  T h i s a s s u m e s t h a t d e n s i t i e s o f the s o l v e n t a n d the s o l u t i o n a r e e q u a l .  I d e n t i f i c a t i o n o f flow t i m e (t) w i t h a b s o l u t e v i s c o s i t y s t r i c t l y speaking, increases  ^1  is,  i n c o r r e c t a n d r e s u l t s i n e r r o r i f the s o l u t i o n  significantly with concentration.  density  The density correction, which  is v e r y s m a l l i n dilute solutions of high v i s c o s i t y ,  can be safely i g n o r e d  (121).  K i n e t i c e n e r g y l o s s e s o c c u r due to p e r t u r b e d flow at the c a p i l l a r y ends,  p a r t i c u l a r l y w h e n an o r g a n i c s o l v e n t w i t h r a p i d e f f l u x t i m e i s  used.  A c o r r e c t i o n m a y b e a p p l i e d (121), b u t a b e t t e r s o l u t i o n i s to u s e a v i s c o m e t e r with a s m a l l bulb and a long c a p i l l a r y of suitable d i a m e t e r .  Here  the k i n e t i c e n e r g y e f f e c t w o u l d t h e n b e r e d u c e d to l e v e l s w h i c h c a n b e disregarded.  . The specific viscosity values kinetic energy losses,  a c c o r d i n g to T i m e l l (128); i n the f o l l o w i n g m a n n e r :  '  i  s  p  ju  s  f where:  and  F  .. s  (t+t  o  .  p  ^  ^ )^  so c a l c u l a t e d w e r e c o r r e c t e d f o r  sp n  F  sp o  =  o <L  )+  1) C  5  J  o the c o r r e c t e d s p e c i f i c  viscosity.  =  observed value .  =  a f a c t o r c a l c u l a t e d f o r the v i s c o m e t e r  f r o m the  expression: F  ° ~  m  8  do  r f n o" T o T t  V 1  L  £63  68 where:  m  =  the k i n e t i c e n e r g y c o e f f i c i e n t ,  (1),  i.e.,  end  e f f e c t s f o r the c a p i l l a r y w e r e n e g l e c t e d . d  o  V  =  density of acetone (0.785).  =  t h e v o l u m e i n m l o f the v i s c o m e t e r b u l b (3. 65), the a b s o l u t e v i s c o s i t y o f p u r e a c e t o n e (0. 003075 poise).  t  o  L  =  the e f f l u x t i m e o f p u r e a c e t o n e ( 1 6 2 . 9  =  the l e n g t h o f t h e c a p i l l a r y ( 7 . 7 5  S u b s t i t u t i n g t h e a b o v e v a l u e s into the a b o v e e x p r e s s i o n , F  sec),  cm).  o  for the v i s c o m e t e r  u s e d i n t h i s e x p e r i m e n t w a s c a l c u l a t e d as 0. 0 2 9 3 5 4 8 .  W h e n the i n t r i n s i c v i s c o s i t y o f c e l l u l o s e n i t r a t e i n a c e t o n e  exceeds  a p p r o x i m a t e l y t e n (a w e i g h t a v e r a g e d e g r e e o f p o l y m e r i z a t i o n o f about 2, 000),  the o r i e n t a t i o n o f t h e m o l e c u l e s i n the d i r e c t i o n o f flow l o w e r s the  apparent i n t r i n s i c viscosity. weight,  T h e effect i n c r e a s e s w i t h i n c r e a s i n g m o l e c u l a r  a n d t h e e r r o r i n i n t r i n s i c v i s c o s i t y e x c e e d s 10% f o r c e l l u l o s e o f  h i g h e s t D P (121).  T h i s affects  s h e a r g r a d i e n t w h i c h , f o r e a c h b u l b at a  g i v e n c o n c e n t r a t i o n , i s c a l c u l a t e d f r o m the f o r m u l a o f K r o e p l i n (121):  G  =  8V/3TT r t  where: r  =  c a p i l l a r y radius (0.02125 c m ) i  3  L7]  After c o r r e c t i n g specific v i s c o s i t y values for kinetic energy loss, t h e i n t r i n s i c v i s c o s i t i e s w e r e c a l c u l a t e d b y m e a n s o f the S c h u l t z - B l a n s c h k e and Huggins equation, r  -  U  "  where: J ^ _ ,  =  as g i v e n b y D a v i s o n (35): ^  =  0  ,  1 -~K^7p  t 81  t h e i n t r i n s i c v i s c o s i t y c o r r e s p o n d i n g to t h e s h e a r , G,  K  P  at w h i c h the m e a s u r e m e n t was m a d e .  a f a c t o r t a k e n as 0. 30 a c c o r d i n g to D a v i s o n (35).  69 C  The  =  concentration in d l / g .  intrinsic viscosity  |{|]Q>  varies in a regular manner  p o n d i n g to s h e a r d e p e n d e n c e o f the v i s c o s i t y (126, 127). rate of shear depends upon efflux t i m e w h i c h , i n t u r n , concentration and n i t r o c e l l u l o s e D P . for  O n the o t h e r h a n d , is influenced by both  In o r d e r to o b t a i n c o m p a r a b l e v a l u e s  the v a r i o u s c o n c e n t r a t i o n s o f d i f f e r e n t D P n i t r a t e s ,  a d j u s t e d to t h e 500 s e c  corres-  all results  were  v e l o c i t y g r a d i e n t b y u s i n g the f o l l o w i n g r e l a t i o n -  ship r e p o r t e d b y D a v i s o n (35):  l o  s  L<l  where:  500  =  p  P  =  the s l o p e o f the s t r a i g h t l i n e r e l a t i n g the l o g o f  l  ° e  • T o V  +  l o  e  rf  G  1  C  9  ]  i n t r i n s i c v i s c o s i t y to the l o g o f r a t e o f s h e a r .  P m a y b e d e t e r m i n e d b y the f o l l o w i n g  expression:  d logtf^G  C io 1  d log G D a v i s o n (35) d e t e r m i n e d P e x p e r i m e n t a l l y a n d r e l a t e d P to i n t r i n s i c v i s c o s i t y b y the f o l l o w i n g e q u a t i o n : P  =  0.0039  v/l]  - 0 . 8 x l 0 "  ^  i  n  ClO 500  * in equationtlll ,  t h i s e q u a t i o n c a n b e u s e d to  c a l c u l a t e t h e f i r s t a p p r o x i m a t i o n o f the s l o p e P . substituted i n equation  frf]  500  S i n c e P i s r e l a t e d to i n t r i n s i c v i s c o s i t y at 500 s e c the v a l u e o b t a i n e d b y s u b s t i t u t i n g [ J ^ I Q  8  This value,  when  C 9 3 , g i v e s a f i r s t a p p r o x i m a t i o n to |yjl  500*  70  O i l » ^1  W h e n r e substituted into equation of P .  \dj step.  5  Q Q gives a b e t t e r  estimate  T h i s b r a c k e t i n g t e c h n i q u e c a n b e c o n t i n u e d u n t i l the r e s u l t i n g 500  C  ^  I  A  N  S  E  S  l  e  s  s  than 0.001  i n i n t r i n s i c v i s c o s i t y with e a c h  successive  T h e l a b o r i o u s c a l c u l a t i o n can be r e p l a c e d b y c o m p u t e r solution  (U. B . C . Wood Science P r o g r a m WS 7040-2).  T h e e x t e n t to w h i c h c e l l u l o s e n i t r a t e i s s u b s t i t u t e d g r e a t l y its i n t r i n s i c v i s c o s i t y .  affects  A n i n c r e a s e i n DS f r o m 2. 3 to 3. 0 (12. 0 to 14. 15%  o f n i t r o g e n ) d o u b l e s the i n t r i n s i c v i s c o s i t y .  If n i t r o g e n a n a l y s i s s h o w s l e s s  t h a n f u l l s u b s t i t u t i o n , t h e f o r m u l a o f L i n d s l e y a n d F r a n k ( 8 0 ) i s u s e d to c o n v e r t the i n t r i n s i c v i s c o s i t y to a c o m m o n b a s i s ,  that i s ,  to w h a t i t w o u l d  b e w e r e the s a m p l e f u l l y n i t r a t e d :  l  Q  g  ,  —  n  ^1  where:  =  ^  logf  +  (14. 15 - X) B  c \ z l  = the i n t r i n s i c v i s c o s i t y o f the f u l l y n i t r a t e d cellulose. the i n t r i n s i c v i s c o s i t y o f the p a r t i a l l y nitrated sample.  f  x  = 1 . 8 3 3 - 0 . 589x,  a function which accounts  for the d i f f e r e n c e i n m o l e c u l a r weights between p a r t i a l l y and fully n i t r a t e d c e l l u l o s e .  x  = the p e r c e n t n i t r o g e n i n the p a r t i a l l y nitrated sample.  B  = 0 . 114,  an e m p i r i c a l  constant.  S i n c e a l l v i s c o s i t y m e a s u r e m e n t s i n t h i s s t u d y w e r e c a r r i e d out at 25°C,  f u r t h e r a d j u s t m e n t of  the i n t r i n s i c v i s c o s i t y v a l u e s i s  necessary.  A l l r e s u l t s w e r e c o n v e r t e d i n t o v a l u e s c o r r e s p o n d i n g to t h o s e t a k e n at  71  2 0 ° C t e m p e r a t u r e b y m u l t i p l y i n g the i n t r i n s i c v i s c o s i t i e s d e t e r m i n e d b y 1. 0 4 7 1 6 .  T h e f a c t o r was o b t a i n e d f r o m the T r e i b e r a n d A b r a h a m s o n  r e l a t i o n s h i p as r e p o r t e d b y Ifju (61).  V.  Lignin Determination T h e p r o c e d u r e u s e d h e r e for u l t r a - v i o l e t  spectrophotometric  d e t e r m i n a t i o n o f l i g n i n w a s o r i g i n a t e d b y J o h n s o n et a l . (65).  Moisture-  f r e e w o o d m e a l o f a c c u r a t e l y d e t e r m i n e d w e i g h t (0. 020 g) i s p l a c e d i n a g l a s s tube h a v i n g a n o t c h e d ,  ground-glass  stopper.  T e n m l of 25% r e a g e n t  g r a d e a c e t y l b r o m i d e i n a c e t i c a c i d i s a d d e d a n d the t u b e i s p l a c e d i n a w a t e r b a t h at 70_+ dissolution.  1 ° C a n d s w i r l e d g e n t l y at 10 m i n i n t e r v a l s to a s s i s t  A f t e r e x a c t l y 30 m i n , the c o n t e n t s a r e c o o l e d at 13 +  1 ° C for  8 to 10 m i n , t h e n t r a n s f e r r e d to a 200 m l v o l u m e t r i c f l a s k c o n t a i n i n g 9 m l o f 2 M s o d i u m h y d r o x i d e a n d 50 m l of a c e t i c a c i d . T h e t r a n s f e r i s b y r i n s i n g w i t h 5 to 10 m l o f a c e t i c a c i d a n d f o l l o w i n g t h i s , h y d r o x y l a m i n e h y d r o c h l o r i d e i s a d d e d to the f l a s k . transfer,  1 m l o f 7. 5 M  E x a c t l y 5 m i n following  t h e c o n t e n t s a r e m a d e u p to v o l u m e w i t h r e a g e n t g r a d e  a c i d a n d the m i x t u r e i s c o o l e d u n d e r c o l d w a t e r . t h e n m e a s u r e d at 282 m u ,  completed  acetic  Peak absorbance  a n d l i g n i n i s c a l c u l a t e d a c c o r d i n g to the  is following  equation: _ Lignm  _ c  Absorbance  [| 13 3  Absorptivity x moisture-free  sample  wt  w h e r e a b s o r p t i v i t y is d e t e r m i n e d for each s p e c i e s .  S i n c e t h i s m e t h o d w a s f i r s t p u b l i s h e d i n 1961,  v a r i o u s a s p e c t s of  the t e c h n i q u e h a v e b e e n r e - e x a m i n e d a n d e r r o r s n o t i m m e d i a t e  inherent  have been encountered.  It h a s b e e n d e m o n s t r a t e d (157) that a n i n c r e a s e o f  7 m g i n s a m p l e w e i g h t l o w e r s l i g n i n d e t e r m i n e d b y 0. 1% a n d ,  similarly,  i n c r e a s i n g d i l u t i o n b y 50 m l o r a b s o r b a n c e b y 0 . 4 l o w e r s l i g n i n d e t e r m i n e d b y the s a m e a m o u n t . A s t r o n g i n t e r a c t i o n o f s a m p l e s i z e w i t h d i l u t i o n and a b s o r b a n c e is also evident.  Studies on e l a p s e d t i m e between d i l u t i o n  a n d m e a s u r e m e n t h a v e s h o w n that d i l u t e s o l u t i o n s m a y b e s t o r e d i n the c o l d f o r 24 h r , a n d s t i l l p r o v i d e s t a b l e a b s o r b a n c e s . n  aging  f l  A l s o n o t e d w a s the  rapid  of a c e t y l b r o m i d e , s u c h that a b s o r p t i v i t y v a l u e s b e c a m e e r r a t i c  o n l y h o u r s after p r e p a r i n g f r e s h l y d i s t i l l e d reagent; however,  t h i s was a v o i d e d ,  b y sealing f r e s h stock under nitrogen i n individual a m p u l e s .  W u (156)  r e c o g n i z e d and c o r r e c t e d s e v e r a l of these  inconsistencies  and e s t i m a t e d l i g n i n values for Sitka s p r u c e , Douglas f i r , w e s t e r n h e m l o c k P a c i f i c s i l v e r f i r , a n d w e s t e r n r e d c e d a r . T h e s e o r i g i n a l d a t a , as w e l l as new d a t a f o r b l a c k s p r u c e a n d D o u g l a s f i r a r e u s e d h e r e to e x p l o r e the i m p o r t a n t l i g n i n - c a r b o h y d r a t e r e l a t i o n s h i p s f r o m o b s e r v a t i o n s of t h e i r respective  patterns.  73  EXPERIMENTAL  RESULTS  Changes in some important chemical properties across g r o w t h z o n e s a r e s u m m a r i z e d i n T a b l e 4. - cellulose  contents,  coniferous  E s t i m a t e d l i g n i n and  and n i t r o c e l l u l o s e v i s c o s i t y a r e tabulated for  w o o d s f r o m t h r e e g e n e r a a n d f o u r s p e c i e s of P i n a c e a e ( S i t k a s p r u c e , spruce,  Douglas fir,  a n d P a c i f i c s i l v e r f i r ) a n d one s p e c i e s o f  (western red cedar).  Estimated  r e c o v e r e d as n i t r o c e l l u l o s e equation of M i l e s  black  Cupressaceae  <^>^ - c e l l u l o s e i s s h o w n as t h a t  a n d c o r r e c t e d f o r n i t r o g e n c o n t e n t u s i n g the  (91).  A v e r a g e s for  <^></  of at l e a s t t h r e e r e p l i c a t e s I n c r e m e n t N o . 40,  - c e l l u l o s e ( T a b l e 4) a r e d e t e r m i n e d o n the b a s i s a n d , e x c e p t f o r two p o s i t i o n s i n D o u g l a s f i r  a v e r a g e s f o r l i g n i n a r e b a s e d o n two r e p l i c a t e s . S i t k a  s p r u c e h a d the h i g h e s t a v e r a g e y i e l d of  cxi - c e l l u l o s e (48. 3%),  followed  in d e c r e a s i n g o r d e r b y both Douglas f i r samples  (which had identical  a v e r a g e y i e l d s of 46.7%), b l a c k s p r u c e (45.2%),  P a c i f i c s i l v e r f i r (44.9%),  a n d w e s t e r n r e d c e d a r (44. 0%). l i g n i n c o n t e n t (31. 2%),  64 to 66 (26. 7%),  P a c i f i c s i l v e r f i r (27.5%),  a n d S i t k a s p r u c e (25. 7%).  encountered among viscosity replicates  Douglas fir  therefore,  Increments  L a r g e v a r i a b i l i t y was  a n d v e r y f r e q u e n t l y the  r a n g e at one p o s i t i o n o v e r l a p p e d t h o s e o f c o n t i g u o u s p o s i t i o n s . decided,  average  f o l l o w e d i n t u r n b y b l a c k s p r u c e (29. 5%), D o u g l a s f i r  I n c r e m e n t N o . 40 (27.8%), No.  W e s t e r n r e d c e d a r h a d the h i g h e s t  viscosity It w a s  t h a t t h e s e d a t a h a v e l i t t l e m e a n i n g o t h e r t h a n as a  q u a l i t a t i v e m e a s u r e o f s a t i s f a c t o r y de r i v a t i v e f o r m a t i o n .  74 E x a m i n a t i o n of m a t e r i a l f r o m a f r e s h l y - c u t Douglas f i r t r e e ( I n c r e m e n t N o . 40) a n d b l a c k s p r u c e r e v e a l e d the two  c > <  /  - cellulose  representative  e a r l y w o o d p a t t e r n s as s h o w n i n F i g . 1.  a r e plotted above each p o s i t i o n e x m a i n e d .  A r e c e n t (60)  Replicate values mathematical  m o d e l d e s c r i b e s e a c h p a t t e r n b y u t i l i z i n g r e l a t i v e p o s i t i o n w i t h i n the i n c r e ment,  p e r cent latewood,  and e s t i m a t e d  s t a n d a r d e r r o r of e s t i m a t e ( S E  )  c<^ - c e l l u l o s e y i e l d .  The model,  , and r e g r e s s i o n and c o r r e l a t i o n  E coefficients (U. B . C .  (b a n d r ,  respectively) were calculated f r o m a computer solution  Wood Science P r o g r a m WS7040-3).  c o r r e l a t i o n coefficients  o f the  - cellulose  Linear regressions  and  content on p o s i t i o n a r e  l i s t e d f o r a l l i n c r e m e n t s i n T a b l e 5. R e s u l t s of a n a l y s i s of v a r i a n c e ( A N O V A ) for  - cellulose  w i t h i n g r o w t h z o n e s o f e a c h s p e c i e s a r e t a b u l a t e d i n the u s u a l f o r m T a b l e s 6 t h r o u g h 11.  F o r each species,  content as  least significant ranges between  p o s i t i o n m e a n s ( D u n c a n ' s m u l t i p l e - r a n g e test) a r e p r e s e n t e d c o i n c i d e n t a l l y w i t h A N O V A r e s u l t s i n T a b l e s 6 a t h r o u g h 11a.  F o r all ten i n c r e m e n t s ,  p a t t e r n s of e s t i m a t e d  ax^ -  cellulose,  e s t i m a t e d l i g n i n , a n d t h e i r c o m b i n e d v a l u e s a r e p l o t t e d i n F i g . 2.  T a b l e 12 l i s t s l i n e a r r e g r e s s i o n s estimated species.  oC  and c o r r e l a t i o n coefficients  of  - c e l l u l o s e on l i g n i n contents for a l l i n c r e m e n t s of each  F i g u r e 3 d e s c r i b e s the h i g h l y s i g n i f i c a n t l i n e a r c o r r e l a t i o n  between these lignin and within i n c r e m e n t s .  <L - c e l l u l o s e e s t i m a t e s f o r a l l p o s i t i o n s  <=>  studied  75 F r o m F i g . 2 a l l i n d i v i d u a l and c o m b i n e d l i g n i n and  -  cellulose  values w e r e p l o t t e d for e a c h p o s i t i o n and i n c r e m e n t and a r e p r e s e n t e d Fig.  4.  as  T h e l a t t e r s h o w s that the d i s p e r s i o n about the c o m b i n e d d a t a i s  s i g n i f i c a n t l y l e s s t h a n that about e i t h e r of the two i n d i v i d u a l m e a n s .  C o r r e l a t i o n coefficients CX^ - c e l l u l o s e means  f r o m linear regressions  of  [/t^  y i e l d f o r f o u r s p e c i e s a r e t a b u l a t e d i n T a b l e 13.  on As a  of showing c h a i n - l e n g t h v a r i a t i o n i n e a r l y w o o d , data c o r r e s p o n d i n g  to f i r s t - f o r m e d e a r l y w o o d t i s s u e s a r e i n c l u d e d o r e x c l u d e d f r o m e a c h regression.  76  DISCUSSION T h e p r e s e n t s t u d y i s not c o n c e r n e d w i t h d e s c r i p t i o n o f m o l e c u l a r structures or,  f o r that m a t t e r ,  with d e v e l o p m e n t of p r o c e d u r e s for d e r i v i n g  statements on ultimate c h e m i c a l purity.  R a t h e r , its p u r p o s e and attention  a r e f o c u s s e d on a f i r s t e s t i m a t e of i m p o r t a n t quantitative r e l a t i o n s h i p s of m a j o r wood constituents growth zones.  that e x i s t i n t i s s u e s s a m p l e d w i t h i n c o n i f e r o u s  A n s w e r s w e r e s o u g h t to s u c h q u e s t i o n s  and how a r e these i n t e r - r e l a t e d . chemistry. of m e t h o d s .  as w h e r e , h o w m u c h ,  T h i s d i f f e r s f r o m the a i m s o f b a s i c w o o d  T h e two a p p r o a c h e s f r e q u e n t l y c o m e t o g e t h e r b y i n t e r c h a n g e It i s u n d e r s t o o d that f u t u r e d e v e l o p m e n t s  m a y provide means  f o r m a k i n g fine a d j u s t m e n t s to the f i r s t a p p r o x i m a t i o n s d e r i v e d i n t h i s study.  D i r e c t n i t r a t i o n of wood s e e m e d a l i k e l y a n a l y t i c a l tool for m e a s u r i n g an i n t r a - i n c r e m e n t c a r b o h y d r a t e y i e l d f r a c t i o n . be c o r r e c t ; the m e t h o d .  however,  limitations,  F o r example,  d e f i n i t i o n as o<f anhydropyranose.  a r e attendant w i t h  coniferous wood nitrates m a y contain s m a l l  q u a n t i t i e s (up to 7%) o f m a n n a n s , It m a y b e a r g u e d , t h e n ,  as w e l l as a d v a n t a g e s  T h i s p r o v e d to  but v e r y l i t t l e ( b e l o w  1. 5%) x y l a n s (130).  that the d e r i v a t i v e d o e s not m e e t the  - glucan.  That is,  i t i s not p u r e 1,  4 - $  classic - D - gluco-  T h i s i s r e c o g n i z e d i n the p r e s e n t s t u d y , w h e r e  yields  c o r r e c t e d f o r n i t r o g e n a r e r e g a r d e d as r e a s o n a b l e e s t i m a t e s o f o / lose,  s u c h as t h o s e p r e p a r e d f r o m c o n v e n t i o n a l h o l o c e l l u l o s e s  These estimates,  therefore,  - cellu-  (124).  i n c l u d e the u s u a l p a r t i a l g l u c a n p r o d u c t s  w i t h o u t a t t e m p t to r e s o l v e v a r i a t i o n s b y e x t e n s i v e a n a l y s i s of carbohydrates.  T h e latter procedures,  constituent  as u s e d b y T i m e l l (130),  also  carry  a d i s a d v a n t a g e i n that r a t i o s b e t w e e n m o n o m e r s u g a r s m u s t b e a s s u m e d i n o r d e r to m a k e  corrections.  A m a j o r l i m i t a t i o n of the m i c r o - n i t r o c e l l u l o s e m e t h o d i s t h a t i t c a n n o t b e u n i v e r s a l l y a p p l i e d to a l l w o o d s .  T h a t i s , the s u c c e s s o f the  m e t h o d d e p e n d s o n a b i l i t y to m a n u f a c t u r e a s u i t a b l e d e r i v a t i v e . E v e n w i t h m a n y t r i a l s and adjustments  o f p r o c e d u r e , t h i s was not a c c o m p l i s h e d w i t h  f o u r s p e c i e s of the p r e s e n t s t u d y : and y e l l o w c e d a r .  jack pine,  O t h e r w o r k e r s (18,  129,  tamarack, western  hemlock,  137) h a v e h a d s i m i l a r e x p e r i -  ence i n c h e m i c a l t r e a t m e n t of s o m e of these woods. A further inherent d i s a d v a n t a g e w i t h n i t r o c e l l u l o s e i s t h a t the p r o d u c t c a n n o t b e r e d u c e d to c e l l u l o s e w i t h o u t c o l l a p s e of the c e l l u l o s e  chain.  V i s c o s i t y data w e r e m o s t l y useful for i n d i c a t i n g p r e s e n c e o f e x t e n s i v e d e g r a d a t i o n as one c r i t e r i o n f o r j u d g i n g s u c c e s s f u l preparation. differences  nitrocellulos  T h e y a l s o p r o v i d e d s o m e c o m p a r i s o n s of i n t r a - i n c r e m e n t in chain-length.  degradation than associated  or absence  cs^  - cellulose  emphasizes  with  nitration procedure. a p p r o x i m a t e l y 5%,  S i n c e [ffi  is a m o r e sensitive m e a s u r e  y i e l d b y n i t r a t i o n , the h i g h e r v a r i a b i l i t y  the n e e d f o r r e f i n e m e n t o f the  F o r instance,  of  the r a n g e of  depending on extractive  - cellulose  pre-treatment;  m i g h t b e e x p e c t e d to v a r y e v e n m o r e t h a n t h i s .  wood yield varie  , therefore  T h i s i n t e r a c t i o n of w o o d  e x t r a c t i o n h i s t o r y with n i t r o c e l l u l o s e p r e p a r a t i o n has been  completely  78 n e g l e c t e d i n the l i t e r a t u r e !  M e a n s f o r e s t i m a t i n g l i g n i n w i t h s m a l l a m o u n t s of m a t e r i a l s e e m to be b e t t e r e s t a b l i s h e d s i n c e the a c e t y l b r o m i d e - a c e t i c a c i d m e t h o d f o r U V l i g n i n d e t e r m i n a t i o n w a s f i r s t p u b l i s h e d (65). inconsistencies  h a v e b e e n f o u n d (157).  s e v e r a l of t h e s e i n c o n s i s t e n c i e s , defensible level, for s e v e r a l  W u (156)  However,  certain  recognized and c o r r e c t e d  b r o u g h t the t e c h n i q u e to a  statistically  and followed by estimating i n t r a - i n c r e m e n t lignin patterns  species.  W u a n d W i l s o n (157)  also showed that a v e r a g e l i g n i n v a l u e s  obtained  f o r the w o o d s s t u d i e d c o m p a r e d w e l l w i t h v a l u e s f o u n d i n the l i t e r a t u r e . T h e s e d a t a a r e r e p o r t e d as p a r t o f T a b l e 4 a n d p l o t t e d i n F i g . 2.  These  l i g n i n v a l u e s p l u s new d a t a f o r b l a c k s p r u c e a n d D o u g l a s f i r w e r e u s e d to explore i n t r a - i n c r e m e n t cellulose-lignin  In s u m m a r y ,  relationships.  data d e v e l o p e d and u s e d i n this study a r e r e g a r d e d  as s t a t i s t i c a l l y d e f e n s i b l e  e s t i m a t e s o f the two m a j o r c o n i f e r o u s  i n c r e m e n t wood c h e m i c a l components  intra-  f o r w h i c h no a b s o l u t e m e a s u r e  or  p r o c e d u r e s h a v e yet b e e n a d v a n c e d .  I.  R e v i e w of Data  A.  Alpha-cellulose  Estimates  T h e range of average  <=*C  - cellulose  e s t i m a t e s f o u n d f o r the  s p e c i e s r e p o r t e d i n t h i s s t u d y (44. 0% to 48.3%) a r e r e c o r d e d i n T a b l e 4. T h e s e a g r e e f a v o r a b l y w i t h t h o s e f o u n d b y T i m e l l (130) who r e p o r t e d a  five  range of  - c e l l u l o s e b y n i t r a t i o n f r o m 4 1 . 3% f o r j a c k p i n e a n d e a s t e r n  hemlock (Tsuga canadensis ( L . ) C a r r ) as g i v e n i n T a b l e 1.  up to 46,  % to 48% f o r w h i t e  Close agreement is also noted b y species;  spruce  average  v a l u e s f o r b o t h s p r u c e s f a l l i n the s a m e r a n g e as w h i t e s p r u c e r e p o r t e d b y T i m e l l (130). T i m e l l (130). method,  P a c i f i c s i l v e r f i r a l s o c o r r e s p o n d s c l o s e l y to d a t a of  T h e s e r e s u l t s a f f i r m the c o n s i s t e n c y of the  nitrocellulose  w h i c h s e e m s to b e i n d e p e n d e n t o f s a m p l e s i z e ( d o w n to 0. 1 gm)  and o p e r a t o r v a r i a b i l i t y .  E x c e p t f o r P o s i t i o n 1 i n w e s t e r n r e d c e d a r , the v a l u e s to e x t e n d the r a n g e o f w h o l e w o o d v a l u e s . was e x a m i n e d . t w i c e  This peculiar,  do not a p p e a r  single  position  i n d u p l i c a t e d e t e r m i n a t i o n s w h i c h g a v e the s a m e  values.  Y i e l d o f a l p h a - c e l l u l o s e b y n i t r a t i o n c o m p a r e s c l o s e l y to t h a t p r e p a r e d f r o m conventional holocellulose  d e t e r m i n a t i o n s o n g r o s s wood.  The  f o r m e r m e t h o d i s g e n e r a l l y l o w e r b y 2 to 3%. T h i s a g r e e s w i t h T i m e l l (130),  who a s c r i b e d p a r t o f t h i s d i f f e r e n c e as due to the p r e s e n c e o f m o r e  non-glucan m a t e r i a l retained in conventional  <cx^ - c e l l u l o s e .  The difference  in yields by both methods v a r i e s b y species:  In D o u g l a s f i r , f o r  instance,  the y i e l d r a n g e (44. 0% to 49.4%) c o m p a r e s c l o s e l y to t h a t f o u n d b y K e n n e d y a n d J a w o r s k y (68) who r e p o r t e d a r a n g e o f c h l o r i t e of 45% to 51% o n w h o l e w o o d .  The f o r m e r , however,  - cellulose  a p p e a r s to h a v e m o r e  i n h e r e n t v a r i a t i o n t h a n the 46% to 48% r a n g e i n c h l o r i t e f o u n d b y H a l e a n d C l e r m o n t (53). e-*/'  - cellulose measurement,  content  cx^  -  cellulose  T h e difference between both methods  however,  appears greater for P a c i f i c  of  s i l v e r f i r . T h i s i s at v a r i a n c e w i t h what T i m e l l (130) he s h o w e d that y i e l d s o f  previously  cxT - c e l l u l o s e f r o m c h l o r i t e h o l o c e l l u l o s e  n i t r a t i o n a r e e s s e n t i a l l y the s a m e v a l u e .  and  W i t h white s p r u c e and e a s t e r n  c e d a r ( T h u j a o c c i d e n t a l i s L . ), T i m e l l (130) evident;  reported;  found that d i f f e r e n c e s  t h e s e w e r e 2. 5% a n d 4. 3%, r e s p e c t i v e l y .  white  were  T h e r e f o r e , f o r the  r e l a t e d s p e c i e s of t h i s s t u d y (both s p r u c e s a n d w e s t e r n r e d c e d a r ) i t i s p r o b a b l e that  -cellulose  as e s t i m a t e d b y the n i t r o c e l l u l o s e m e t h o d m a y  be low b y a p p r o x i m a t e l y these  B.  amounts.  Viscosity Estimates S i n c e no a t t e m p t was m a d e to d e t e r m i n e c e l l u l o s e p o l y m o l e c u l a r i t y ,  v a l u e s r e p o r t e d a r e r e g a r d e d as r e p r e s e n t i n g a v e r a g e e s t i m a t e s .  It i s  r e c o g n i z e d that i n d i v i d u a l n i t r o c e l l u l o s e s p r o b a b l y c o n t a i n e d v a r i a b l e c h a i n length distributions,  f o r i n s t a n c e as p e a k s r e p o r t e d b y T i m e l l (129,  for s o m e of the s a m e  137)  species.  A l t h o u g h n i t r a t i o n y i e l d s p r o d u c t s s i m i l a r to t h o s e o f the o r i g i n a l c e l l u l o s e (49),  i t i s r e c o g n i z e d t h a t the h a r s h c o n d i t i o n s u n d e r g o n e b y w o o d  t i s s u e s d u r i n g n i t r a t i o n c a u s e s o m e c h a i n - l e n g t h d e g r a d a t i o n (134).  Except  f o r D o u g l a s f i r I n c r e m e n t N o . 40, i t a p p e a r s t h a t l i t t l e c h a i n - l e n g t h d e g r a dation o c c u r r e d a c r o s s s p r u c e v i s c o s i t y data,  a n y o f the g r o w t h i n c r e m e n t s .  A s shown b y b l a c k  s t o r a g e o f w o o d as a b l o c k i n c o l d t h y m o l s o l u t i o n  a p p e a r e d to i n v o l v e l e s s d e g r a d a t i v e e f f e c t s t h a n w h e n w o o d m e a l was s t o r e d u n d e r n i t r o g e n at r o o m t e m p e r a t u r e . on the i n f l u e n c e o f w o o d p r e t r e a t m e n t .  T h i s focuses attention again  81  W h a t i s p u z z l i n g i s the l o w e r  jjjrf  f r o m freshly-cut Douglas fir  ( I n c r e m e n t N o . 40).  T h i s was  sectioned and n i t r a t e d i m m e d i a t e l y  after  s a m p l i n g the t r e e .  T h e o n l y r e a s o n g i v e n for its l o w e r v i s c o s i t y i s that  p e r h a p s t h i s w o o d w a s o v e r - n i t r a t e d , h e n c e o v e r - e x p o s e d to the h y d r o l y t i c effect of c h a i n - s c i s s i o n . stages of n i t r a t i o n  ( 1 2 9 ) ;  While  i s k n o w n to d e c r e a s e a f t e r  previous experience  e l s e w h e r e ( 1 2 9 ) i n d i c a t e s that  jj^l  values on s t o r e d Douglas fir m e a l s |ff^  who r e p o r t e d a v e r a g e  as 34. 0 a n d 36. 0 d l / g  gained i n this study and  does not m a r k e d l y d e c r e a s e u n t i l  a b o u t the t i m e of m a x i m u m n i t r a t i o n .  (61),  T h e r a n g e of n i t r o c e l l u l o s e  c o m p a r e d f a v o r a b l y w i t h t h a t of Ifju  o f two e a r l y w o o d a n d l a t e w o o d  e s t a b l i s h e d f r o m the p r e s e n t p r e p a r a t i o n s . encountered among replications,  \j^J  patterns  the r a n g e o f  c o u l d not b e  B e c a u s e of e x c e s s i v e v a r i a b i l i t y  the r e l i a b i l i t y of d e t e r m i n i n g an a v e r a g e  f r o m these would have little meaning for between-position  contiguous positions.  replicates  respectively.  It i s u n f o r t u n a t e that i n t r a - i n c r e m e n t  v e r y frequently,  early  comparisons for,  at one p o s i t i o n o v e r l a p p e d t h a t o f  In v i e w o f t h i s l i m i t a t i o n , t h e r e f o r e , i t i s f e l t that  t h e s e v i s c o s i t y d a t a g i v e i n d i c a t i o n o n l y o f the r a n g e o f r e l a t i v e d e g r a d a t i o n a c r o s s the g r o w t h i n c r e m e n t s s t u d i e d .  Perhaps more  n e e d s to b e g i v e n to a c c u r a c y of the n i t r o g e n d e t e r m i n a t i o n . o f L i n d s l e y a n d F r a n k (80),  unit changes i n  n i t r o g e n c o n t e n t of a p p r o x i m a t e l y 0. 1%.  Hence,  chain-length attention  B y the f o r m u l a  a c c o m p a n y changes in i t i s s u g g e s t e d that the  m e t h o d o f n i t r o g e n d e t e r m i n a t i o n b e a d a p t e d to the u s e o f 0. I N s t a n d a r d a c i d and three  replications.  82  C.  Lignin  Estimates  E s t i m a t e d a v e r a g e l i g n i n c o n t e n t of b l a c k s p r u c e (29.5%) a g r e e s c l o s e l y w i t h the s p e c i e s a v e r a g e of 28% (22).  That for Douglas fir Increment  No.  40 (27. 8%) i s w i t h i n 1% of t h a t r e p o r t e d b y W u (156)  fir;  however,  for his  Douglas  b o t h a r e w e l l b e l o w the s p e c i e s a v e r a g e o f 31. 5% (22).  T h e s e d a t a a r e r e p o r t e d as p a r t of T a b l e 4 a n d p l o t t e d as F i g . 2.  A s both  D o u g l a s f i r t r e e s c a m e f r o m the l o w e r m a i n l a n d o f B . C . , i t m a y be that Douglas f i r o r i g i n a t i n g f r o m this a r e a , i s c h a r a c t e r i s t i c a l l y l o w e r i n l i g n i n .  II. I n t r a - i n c r e m e n t A l p h a - c e l l u l o s e E s t i m a t e s a n d t h e i r A.  Two Representative Y i e l d of  <=>{  Significance  patterns  - celluloses f r o m Douglas fir Increment No.  a r a t h e r d e f i n i t e p a t t e r n ( F i g . 2),  as d i d b o t h a d j a c e n t g r o w t h i n c r e m e n t s ,  s u g g e s t i n g that s u c h a p a t t e r n i s a r e g u l a r f e a t u r e w i t h i n a g i v e n stem.  coniferous  E x a m i n a t i o n o f m a t e r i a l f r o m a s e c o n d D o u g l a s f i r s t e m s h o w e d the  same result.  E x a m i n a t i o n o f f o u r o t h e r w o o d s s h o w e d that a s e c o n d p a t t e r n  m i g h t o c c u r ( F i g . 2). as  64 g a v e  T h e two  - cellulose yield patterns are described  follows: 1. A l p h a - c e l l u l o s e y i e l d d r o p p e d s l i g h t l y f r o m P o s i t i o n 1 ( o r e a r l y w o o d ) to 2,  t h e n r o s e s h a r p l y to a m a x i m u m  e i t h e r at P o s i t i o n 5 o r  6 ( l a t e w o o d ) as r e p r e s e n t e d b y  Douglas f i r .  2.  Y i e l d of 5,  - c e l l u l o s e i n c r e a s e d s h a r p l y f r o m P o s i t i o n 1 to  w h e r e u p o n i t e i t h e r p e a k e d o r d r o p p e d off at P o s i t i o n 6;  83 this was c h a r a c t e r i s t i c for both s p r u c e s e x a m i n e d and western red cedar.  3. P a c i f i c s i l v e r f i r v a r i e d a c c o r d i n g to i n c r e m e n t , e i t h e r of the a b o v e two  following  patterns.  F r o m r e c e n t w o r k b y Ifju ( 6 l V H o m o k y (59) a n d W o r r a l l (154) intra-increment specific gravity profiles, e a r l y w o o d as i n c l u d i n g P o s i t i o n s a n d l a t e w o o d as P o s i t i o n s  1 to 3;  5 a n d 6,  i t s e e m s a p p r o p r i a t e to  on  consider  t r a n s i t i o n w o o d , P o s i t i o n 4;  when i n c r e m e n t s  a r e d i v i d e d into  six  equal p a r t s .  cxT - c e l l u l o s e  T h e two g e n e r a l p a t t e r n s o f i n F i g . 1.  Douglas fir represents  deposition are  the f i r s t t y p e o f p a t t e r n ,  y i e l d at c o n s i d e r a b l e c e l l u l a r d e p t h w i t h i n the e a r l y w o o d ; h o l d s f o r s i x o f the t e n i n c r e m e n t s r e p o r t e d ( F i g . 2). be associated  presented  showing m i n i m u m this pattern also  Maximum yield may  e i t h e r w i t h c o n t i n u a t i o n o r c o n c l u s i o n of l a t e w o o d g r o w t h .  B l a c k s p r u c e r e p r e s e n t s the s e c o n d t y p e o f p a t t e r n , s h o w i n g m i n i m u m y i e l d at the i n i t i a t i o n o f e a r l y w o o d . associated  A s with Douglas f i r , m a x i m u m y i e l d was  either with continuation o r c o n c l u s i o n of latewood growth.  a l s o s h o w s that no d i f f e r e n c e i n c h a i n - l e n g t h i s a p p a r e n t t h r o u g h o u t  Fig. 1 either  increment.  E a c h pattern is most accurately d e s c r i b e d by a recent m o d e l ( l o g a r i t h m i c e q u a t i o n ) r e p o r t e d b y H o m o k y et_aL_(60), relative position,  p e r cent latewood,  mathematical b a s e d on  a n d e s t i m a t e d cx^ - c e l l u l o s e  yield.  F o r black spruce, respectively;  I n c r e m e n t N o . 40 S E  i n the s a m e o r d e r ,  Increment No.  40.  and r a r e 0.40  t h e s e a r e 0. 60 a n d 0 . 9 6  F o r comparison purposes,  s p e c i e s a r e l i s t e d i n T a b l e 5;  and  0.95,  for Douglas fir  l i n e a r r e g r e s s i o n s for both  t h e s e do not f i t the b l a c k s p r u c e a n d  D o u g l a s f i r d a t a as •well as d o e s the m o d e l .  T r a n s f o r m a t i o n s h a v e b e e n u s e d w i t h s u c c e s s to i m p r o v e the fit i n c a s e s w h e r e n o n - l i n e a r i t y has o c c u r r e d with r e l a t i o n s h i p s between wood properties. across  W i l s o n a n d Ifju (150) h a v e d e s c r i b e d t e n s i l e s t r e n g t h  coniferous increments,  b y u s i n g an arctangent function.  behaviors The  a p p l i c a t i o n h e r e o f the p a r t i c u l a r t r a n s f o r m a t i o n : £n  Y = a + b  x  + b  x  + b  x  ( 6 0 ) I s i t s f i r s t u s e to d e s c r i b e n o n -  l i n e a r b e h a v i o r of a wood c h e m i c a l p r o p e r t y a c r o s s  a coniferous  growth  increment.  B v C h e m i c a l E v i d e n c e for Two E a r l y w o o d T y p e s T h e e x i s t e n c e o f m i n i m u m cx'-  c e l l u l o s e y i e l d d e e p w i t h i n the  early-  w o o d ( P o s i t i o n 2) i s n e w c h e m i c a l e v i d e n c e s u g g e s t i n g o c c u r r e n c e o f a m a j o r p h y s i o l o g i c a l change with p r o g r e s s with, (157).  of s e a s o n a l g r o w t h ;  this is  consistent  a n d t h e r e b y r e - a f f i r m s the d u a l e a r l y w o o d h y p o t h e s i s o f W u a n d W i l s o n To reiterate,  t h i s h y p o t h e s i s s t a t e s that e a r l y w o o d a r i s i n g f r o m  "overwintered" x y l a r y mother cells retains a chemical t o w a r d s l a t e w o o d o f the p r e c e d i n g s e a s o n .  It i m p l i e s ,  pre-disposition therefore,  i n c h e m i c a l c o m p o s i t i o n f r o m that o f c e l l s f o r m e d b y n e w c a m b i a l w i t h i n the  present growing season.  a  difference  divisions  M o r p h o l o g i c a l d a t a on f i b r e l e n g t h s  i n D o u g l a s f i r c a r r y the s a m e s u g g e s t i o n (16,  17).  The hypothesis  relates  85  to e v i d e n c e p r e s e n t e d b y B a n n a n ( 1 0 ) o n e a s t e r n white c e d a r g r o w n i n southern Ontario. activity,  B a n n a n (10) f o u n d that,  o n r e s u m p t i o n of c a m b i a l  the f i r s t s i t e o f c e l l d i v i s i o n is i n the o l d e s t x y l e m m o t h e r  c o n t i g u o u s to the a l r e a d y - d i f f e r e n t i a t e d x y l e m ; m a j o r i t y of t h e s e c e l l s ,  f u r t h e r m o r e , the  cells  great  a n d not the s p e c i f i c l a y e r ( s ) o f c a m b i a l i n i t i a l s ,  a r e m o s t a c t i v e d u r i n g the f i r s t m o n t h ( s ) o f r a d i a l g r o w t h .  Hence,  Bannan  (12) o b s e r v e d t h a t a c o n s i d e r a b l e p o r t i o n o f e a r l y w o o d m a y b e f o r m e d b y r e - d i v i s i o n of (overwintered)  x y l e m mother cells.  a n y w h e r e b e t w e e n 2 to 24 ( a v e r a g e Where many such cells occur,  The portion m a y include  o f 8) s u c h " o v e r w i n t e r e d " c e l l s  (11).  t h i s f i r s t - f o r m e d e a r l y w o o d i s s a m p l e d as  P o s i t i o n 1 a n d / o r 2 within a single growth increment.  Such a condition  m a y h a v e a r i s e n i n D o u g l a s f i r a n d p o s s i b l y not i n o t h e r w o o d s although P a c i f i c s i l v e r fir followed either pattern,  examined  as s t a t e d p r e v i o u s l y .  It i s n o t k n o w n w h e t h e r the d i f f e r e n c e i n p a t t e r n s r e s u l t s f r o m i n h e r e n t species differences  or is a result of c l i m a t i c differences.  Alpha-cellulose  y i e l d s at P o s i t i o n 1 c o u l d r e l a t e to the c o m b i n a t i o n o f s a m p l i n g p r o c e d u r e a n d p e r i o d i c i t y of c a m b i a l r e a c t i v a t i o n .  W h i l e the c e s s a t i o n t i m e o f  c a m b i a l d i v i s i o n v a r i e s widely with altitude, (12),  latitude, climate,  so a l s o c a n t h i s b e s a i d f o r t i m e o f c a m b i a l r e a c t i v a t i o n .  and site Even  where  these factors are s i m i l a r within a s m a l l forest area, reactivation time v a r i e s with species and individuals within s p e c i e s . W a l t e r s a n d S o o s (140)  At Haney, B . C . ,  found that w e s t e r n r e d c e d a r and D o u g l a s f i r  s h o o t g r o w t h a c t i v i t y b y the m i d d l e o f A p r i l , w e s t e r n h e m l o c k and w e s t e r n white p i n e .  commenced  two w e e k s b e f o r e t h a t f o r At Corvallis,  Oregon,  Grillos  86 a n d S m i t h (50) c l a i m t h a t the c a m b i u m o f D o u g l a s f i r r e s u m e s d u r i n g the m i d d l e o f M a r c h ; n e a r e s t the m a t u r e x y l e m .  activity  the f i r s t d i v i s i o n s o c c u r i n the m o t h e r While these observations  cells  o n l y show the  effect  of l a t i t u d e o n s h o o t g r o w t h a n d c a m b i a l r e a c t i v a t i o n i n D o u g l a s f i r , one d e n y the i n f l u e n c e o n o t h e r s p e c i e s .  F o r example, both spruces u s e d in  the p r e s e n t s t u d y c a m e f r o m m o r e n o r t h e r l y l a t i t u d e s ; from Terrace,  cannot  B . C . and b l a c k s p r u c e ,  the S i t k a s p r u c e  f r o m northern Quebec.  It c o u l d b e  e x p e c t e d t h a t the c a m b i a l z o n e s f o r b o t h r e s u m e d a c t i v i t y at l a t e r d a t e s t h a n trees f r o m Haney, cell  B . C . , w h i c h m a y r e l a t e to f r e q u e n c y o f x y l a r y m o t h e r  divisions.  Besides et a l . (65),  d e t e r m i n i n g l i g n i n b y the w o o d d i g e s t i o n m e t h o d o f J o h n s o n  a n o t h e r m e t h o d d e v i s e d b y C h o w (28) w a s a p p l i e d to d e t e r m i n -  ation of l i g n i n w i t h i n D o u g l a s f i r I n c r e m e n t N o . 40. m e a s u r e m e n t f r o m I n f r a - R e d (IR) s p e c t r o s c o p i c (20^  This provides  direct  absorption using thin  ) tangential wood sections.  Both lignin methods  correlate highly;  p e a k l i g n i n c o n t e n t at P o s i t i o n 2, e x i s t e n c e of two e a r l y w o o d t y p e s .  the I R m e t h o d a l s o  which r e a f f i r m s by other means C h o w (28) h a s , a l s o d e r i v e d a n  f o r r e l a t i n g c a r b o x y l / c a r b o n y l r a t i o on t h i n w o o d t i s s u e s . wood of Douglas f i r , P a c i f i c s i l v e r fir, i n c r e m e n t s have been examined,  reveals the expression  W i t h i n the  and w e s t e r n r e d cedar,  early-  where  t h i s r a t i o p e a k s at a p p r o x i m a t e l y the  r e l a t i v e p o s i t i o n as s h o w n f o r l i g n i n d e t e r m i n e d b y h i s m e t h o d .  The  b e h a v i o r f u r t h e r s u g g e s t s p r e s e n c e o f d i f f e r e n t e a r l y w o o d t y p e s at the c h e m i c a l functional group l e v e l .  same  87 C.  A l p h a - c e l l u l o s e Patterns and E a r l y w o o d - L a t e w o o d V a r i a t i o n s Fig.  2 shows e s t i m a t e d  ments reported.  o<d - c e l l u l o s e p a t t e r n s f o r a l l t e n i n c r e -  V e r i f i c a t i o n of definite patterns for each s p e c i e s  a c h i e v e d b y two s t a t i s t i c a l t e s t s .  A n a l y s i s of v a r i a n c e ( A N O V A ) s h o w e d c o n -  c l u s i v e l y that h i g h l y s i g n i f i c a n t d i f f e r e n c e s ( T a b l e s 6 to 11).  e x i s t e d a m o n g m o s t o f the  In c o m p a r i s o n to  D u n c a n ' s t e s t a c c o u n t s f o r the n u m b e r of p o s i t i o n m e a n s  In w e s t e r n r e d c e d a r , (those s p e c i m e n s  positions  T o determine significant differences between positions,  D u n c a n ' s m u l t i p l e - r a n g e t e s t w a s u s e d ( T a b l e s 6a to 11a). the F t e s t ,  was  the f r e s h l y - c u t D o u g l a s f i r , a n d b o t h  compared.  spruces  w h e r e i n j u s t one i n c r e m e n t w a s s t u d i e d ) , the l a t e w o o d  s i g n i f i c a n t l y h i g h e r t h a n e a r l y w o o d i n s>< - c e l l u l o s e  yields.  was  Although this  was not e n t i r e l y t r u e w i t h S i t k a s p r u c e l a t e w o o d ( y i e l d f o r P o s i t i o n 6 w a s  not  s t a t i s t i c a l l y d i f f e r e n t f r o m that f o r P o s i t i o n s 2 a n d 3), P o s i t i o n 4 h a d s i m i l a r y i e l d to t h a t of P o s i t i o n 5, than earlywood.  Within western r e d cedar earlywood, positions  significantly f r o m each other, wood-latewood;  and both of these w e r e s i g n i f i c a n t l y higher differed  w h e r e a s none d i f f e r e d w i t h i n the t r a n s i t i o n -  t h i s a l s o h e l d f o r the f r e s h l y - c u t D o u g l a s f i r w i t h the  e x c e p t i o n that P o s i t i o n 5 was tionwood-latewood.  s i g n i f i c a n t l y h i g h e r than the r e m a i n i n g t r a n s i -  Within black spruce,  t h a n the r e m a i n d e r of e a r l y w o o d , than transitionwood-latewood.  P o s i t i o n 1 was  w h e r e a s P o s i t i o n 5 was s i g n i f i c a n t l y h i g h e r  A l t h o u g h i n a few i n s t a n c e s y i e l d v a l u e s  o u t s i d e the d e s i r e d c o n f i d e n c e i n t e r v a l o f 1. 0%, c a n c e of the e a r l y w o o d - l a t e w o o d g r e s s i o n s of o £ - c e l l u l o s e  significantly lower  differences.  fell  t h i s h a d no e f f e c t o n s i g n i f i -  F o r these species linear r e -  estimates on relative position within growth zones  88 a r e r e p o r t e d i n T a b l e 5.  For  A l l are highly significant.  stored meals f r o m Douglas fir and P a c i f i c silver fir (wherein  t h r e e adjacent i n c r e m e n t s w e r e studied); single i n c r e m e n t s , positions. 11).  A N O V A s h o w e d that, as w i t h the  highly significant differences  existed among most  T h i s w a s t r u e a l s o b e t w e e n g r o w t h i n c r e m e n t s ( T a b l e s 10 a n d  F o r both species,  of e a r l y w o o d .  latewood yields were significantly higher than those  F o r P a c i f i c s i l v e r f i r , the y i e l d p a t t e r n w a s the s a m e f o r a l l  t h r e e g r o w t h i n c r e m e n t s (as e v i d e n c e d b y n e g a t i v e i n t e r a c t i o n ) ; earlywood,  w i t h i n the  P o s i t i o n 3 was s i g n i f i c a n t l y h i g h e r and i n t r a n s i t i o n w o o d ,  P o s i t i o n 4 w a s l i k e w i s e l o w e r ( T a b l e 11a).  O n l y one o f t h e t h r e e  i n c r e m e n t s was s i g n i f i c a n t l y different i n a v e r a g e y i e l d .  growth  In D o u g l a s f i r ,  A N O V A revealed a highly significant interaction between positions  and growth  i n c r e m e n t s w i t h m o s t i n t e r a c t i o n c a u s e d b y v a r i a t i o n at P o s i t i o n s  1 and 2  which,  in turn,  affected the shape of y i e l d c u r v e s f o r e a c h r i n g .  w h i l e the g e n e r a l p a t t e r n o f y i e l d h o l d s f o r t h e s e t h r e e r i n g s , not c o n s t a n t t h r o u g h o u t the s i x p o s i t i o n s i n e v e r y r i n g . ( T a b l e 10a),  Hence,  its shape  B y Duncan's test  P o s i t i o n 3 was s i g n i f i c a n t l y h i g h e r i n y i e l d w i t h i n e a r l y w o o d  while P o s i t i o n s 4 and 6 were significantly different f r o m each other, f r o m P o s i t i o n 5. f r o m each other,  For  is  b u t not  I n c r e m e n t s N o . 64 a n d 66 w e r e s i g n i f i c a n t l y d i f f e r e n t b u t not f r o m I n c r e m e n t N o .  these same m a t e r i a l s ,  65.  linear regressions  of  -  cellulose  c o n t e n t o n r e l a t i v e p o s i t i o n w i t h i n g r o w t h z o n e s w e r e c o m p u t e d a n d f o u n d to highly significant.  F o r Douglas f i r and P a c i f i c s i l v e r f i r , c o r r e l a t i o n  be  89 coefficients equations  w e r e . 86 a n d . 83 r e s p e c t i v e l y ( T a b l e 5).  While  regression  s h o w e d that although i n i t i a l c e l l u l o s e y i e l d s of Douglas f i r w e r e  h i g h e r b y 2%,  i t i s i n t e r e s t i n g to n o t e the m a r k e d s i m i l a r i t y b e t w e e n  r e g r e s s i o n coefficients the i n c r e m e n t s s t u d i e d ,  (.75  a n d . 7 6 ) i n T a b l e 5.  T h i s s u g g e s t s that,  y i e l d s for both s p e c i e s i n c r e a s e d c o n s t a n t l y and  at n e a r l y i d e n t i c a l r a t e s d u r i n g t h e i r r e s p e c t i v e g r o w t h p e r i o d s . cellulose  for  Perhaps  deposition a c r o s s annual i n c r e m e n t s is regulated b y a m e c h a n i s m  c o m m o n to m o r e t h a n one a n d p o s s i b l y s e v e r a l significant c o r r e l a t i o n coefficients, estimating^j^/  - cellulose  species.  In v i e w o f  both equations w o u l d be u s e f u l for  contents throughout m a t u r e growth i n c r e m e n t s  for  these species.  R e s u l t s f r o m A N O V A and Duncan's m u l t i p l e - r a n g e tests for a l l i n c r e m e n t s r e - a f f i r m the e x i s t e n c e o f h i g h e r  - cellulose or glucan  c o n t e n t i n l a t e w o o d as f o u n d b y p r e v i o u s w o r k e r s (53, E a r l i e r results  a r e g i v e n i n T a b l e 1.  A l l , however,  55,  76, 89,  102).  s a m p l e d j u s t two p o i n t s  w i t h i n a g r o w t h i n c r e m e n t a n d a n a l y z e d w o o d m a t e r i a l b y m e t h o d s k n o w n to have limitations, c e d u r e (33),  s u c h as c e l l u l o s e p r e p a r e d b y the C r o s s a n d B e v a n p r o -  h o l o c e l l u l o s e b y s o d i u m c h l o r i t e (153), a n d c e l l u l o s e b y c h r o m a -  t o g r a p h y o f w o o d h y d r o l y z a t e s (76, 89).  E x c e p t i n g the a n o m a l y i n w e s t e r n  r e d c e d a r , t h e m a g n i t u d e of e a r l y w o o d - l a t e w o o d d i f f e r e n c e s  f o r the t e n  i n c r e m e n t s r e p o r t e d h e r e a p p e a r s to r e f l e c t the i n f l u e n c e o f t r a n s i t i o n type.  Douglas fir,  a species having c h a r a c t e r i s t i c a l l y abrupt transition,  s h o w s a n a v e r a g e d i f f e r e n c e o f 4 to 5%;  both spruces,  o n the o t h e r h a n d ,  a r e c h a r a c t e r i s t i c a l l y w o o d s of g r a d u a l t r a n s i t i o n a n d s h o w d i f f e r e n c e s  of  90 o n l y Z to 3%.  H a l e a n d C l e r m o n t (53) d e t e r m i n e d c h l o r i t e h o l o c e l l u l o s e o n  r e d p i n e a n d D o u g l a s f i r e a r l y - a n d l a t e w o o d a n d f o u n d a n 8 to 9% d i f f e r e n t i a l . It i s f e l t t h a t t h i s m a y r e p r e s e n t r a t h e r e c c e n t r i c b e h a v i o r .  A l t h o u g h they  m e a s u r e d C r o s s a n d B e v a n c e l l u l o s e i n D o u g l a s f i r , R i t t e r a n d F l e c k (10Z) s h o w e d a n e a r l y w o o d - l a t e w o o d d i f f e r e n c e o f 3-4% w h i c h s e e m s to b e i n better a g r e e m e n t with l i t e r a t u r e values, and r e s u l t s r e p o r t e d h e r e .  S i n c e the o n l y p r e v i o u s w o r k s h o w i n g i n t r a - i n c r e m e n t c h l o r i t e h o l o c e l l u l o s e a n d c a r b o h y d r a t e p a t t e r n s at m o r e t h a n two p o s i t i o n s w i t h i n a n i n c r e m e n t w a s done b y Ifju (61) o n D o u g l a s f i r w o o d , d i s c u s s i o n a n d c o m p a r i s o n s i n t h i s s e c t i o n a r e r e s t r i c t e d to t h i s s i n g l e s p e c i e s .  Ifju's r e s u l t s h a v e  b e e n s u m m a r i z e d e a r l i e r (151) w h i l e t h o s e f r o m the p r e s e n t s t u d y a r e g i v e n in F i g . Z. however,  B o t h sets of data show h i g h e r c a r b o h y d r a t e content i n latewood; s i m i l a r i t y ends h e r e .  carbohydrate yields,  A p a r t f r o m the 30% d i f f e r e n c e i n a b s o l u t e  what c o n t r a s t s m o s t i n the c o m p a r i s o n i s the s h a p e o f  the c u r v e s a n d t h e l o c a t i o n o f p r o f i l e p e a k s .  Ifju s h o l o c e l l u l o s e p a t t e r n s 1  f o l l o w the p a r a b o l i c c u r v e f o r a l l t h r e e i n c r e m e n t s e x a m i n e d , w i t h the l o w e r o f the two c u r v e e n d s b e i n g at P o s i t i o n 1 a n d the a p e x o c c u r r i n g at P o s i t i o n 4,  w h i c h r e l a t e s e x a c t l y to i n i t i a t i o n o f l a t e w o o d .  C o m p a r e d to p a t t e r n s  of o<l - c e l l u l o s e e s t i m a t e d i n t h i s s t u d y , n e i t h e r Ifju's h o l o c e l l u l o s e n o r g l u c a n a n d m a n n a n c o n t e n t s i n d i c a t e d m i n i m u m o r m a x i m u m y i e l d at Position Z.  T h e s e c o n d o b v i o u s d i f f e r e n c e i s the p e a k i n g o f h o l o c e l l u l o s e  a n d g l u c a n p l u s m a n n a n c o n t e n t s at the e a r l y w o o d - l a t e w o o d t r a n s i t i o n , w h i l e theo^  - c e l l u l o s e y i e l d p e a k s deep w i t h i n t h e l a t e w o o d o r , l e s s c o m m o n l y ,  at P o s i t i o n 6.. F r o m Ifju's w o r k , the g a l a c t a n c o n t e n t f o l l o w e d m o s t  closely  9 1  the e s t a b l i s h e d t r e n d f o r r_>/ c o n t e n t d i d the r e v e r s e ,  - c e l l u l o s e i n t h i s s t u d y , w h i l e the x y l a n  s h o w i n g a n a v e r a g e d r o p o f 3% f r o m e a r l y - to  latewood.  A l t h o u g h p a t t e r n s of h o l o c e l l u l o s e c o n t e n t i n D o u g l a s f i r do not a g r e e ,  a n d e s t i m a t e d o<^ -  cellulose  a d d i t i o n a l d a t a f r o m Ifju's w o r k  a n d i n f o r m a t i o n about the a c e t o n e s o l u b i l i t y o f n o n - g l u c a n n i t r a t e s m i g h t e x p l a i n s o m e o f the d i s c r e p a n c y .  O f the two m a j o r  n o n - g l u c a n p o l y s a c c h a r i d e s w h i c h m a y b e r e c o v e r e d w i t h the  as s u c h i n the l o w e r b y 2 to 4%,  (130, 134).  - cellulose yield.  nitrocellulose,  It i s p r o b a b l y not i n c l u d e d  A s the c o n t e n t of x y l a n i n e a r l y w o o d i s  t h i s w o u l d p a r t l y e x p l a i n the l o w e r  f o u n d i n the e a r l y w o o d .  (130)  T i m e l l (130) f o u n d n i t r o c e l l u l o s e  o f s i x c o n i f e r o u s w o o d s to h a v e an a v e r a g e p u r i t y o f 94%.  xylan dinitrate is acetone-insoluble  (151)  - cellulose  yield  T h e r e i s no o b v i o u s r e a s o n f o r the d i f f e r e n c e i n  l o c a t i o n of p e a k s .  T i m e l l (130) h a s d e m o n s t r a t e d t h a t 4 to 7% g l u c o m a n n a n i s i n the n i t r o c e l l u l o s e .  If,  d u r i n g n i t r a t i o n , p r o p o r t i o n a t e l y m o r e of t h i s  s h o r t - c h a i n m a t e r i a l i s s o l u b l i z e d o r l o s t i n the r e g i o n o f i t s occurrence,  greatest  t h i s w o u l d t e n d to g i v e a r a t h e r u n i f o r m , l o w c o n t r i b u t i o n o f  g l u c o m a n n a n t h r o u g h o u t the i n c r e m e n t . o f the a c e t o n e - i n s o l u b l e  This loss,  <><^ - c e l l u l o s e . =  m e a s u r e d i n the p r e s e n t  w h e n c o u p l e d w i t h that  x y l a n d i n i t r a t e , c o u l d a c c o u n t f o r the m a j o r  d i f f e r e n c e b e t w e e n the c u r v e s a n d p e a k p o s i t i o n s estimated  occluded  for holocellulose  and  R e s i d u e s o f x y l o s e a n d m a n n o s e w e r e not  study.  92 In s u m m a r y ,  c>C - c e l l u l o s e p a t t e r n s w e r e e s t a b l i s h e d  growth zones f r o m s e v e r a l c o n i f e r o u s woods.  These patterns  across suggest  r e l a t i o n s h i p o f the l o n g - c h a i n c a r b o h y d r a t e f r a c t i o n to s e a s o n a l within coniferous growth zones.  development  C o m p a r i n g r e s u l t s o f t h i s s t u d y to the  l i t e r a t u r e s h o w s g o o d a g r e e m e n t to d e t e r m i n a t i o n s o f o £ -  cellulose  e s t i m a t e d b y n i t r o c e l l u l o s e p r e p a r a t i o n . T h e m e t h o d a p p e a l s as a m e a n s for e x a m i n i n g minute amounts of m a t e r i a l . per p o s i t i o n is s t a t i s t i c a l l y  T h e use of three  replicates  defensible.  III. R e l a t i o n s h i p b e t w e e n C e l l u l o s e - L i g n i n P a t t e r n s A.  Evidence for C o m p l e m e n t a r y C h a r a c t e r A d i s t i n c t n o v e l t y o f the new m e t h o d r e p o r t e d h e r e i n i s t h a t a l l d a t a  a r i s e at a l e v e l a l l o w i n g c o m p a r i s o n to o t h e r c h e m i c a l a n d p h y s i c a l p a t t e r n s d e v e l o p e d at the s a m e l e v e l . and  Notable r e l a t i o n s h i p s were found when l i g n i n  - c e l l u l o s e p a t t e r n s w e r e c o m p a r e d f o r the s a m e p o s i t i o n s w i t h i n  i n c r e m e n t s ( F i g . 2).  Though differences for both components  growth zones and s p e c i e s a r e evident, c o m p l e m e n t o f the o t h e r .  between  the p a t t e r n o f one i s o b v i o u s l y the  T h i s s h o w s e v e n at t h e p o i n t s o f c h a n g i n g s l o p e a n d  for e x t r e m e positions within any i n c r e m e n t .  The interdependency is well  e x e m p l i f i e d for P a c i f i c s i l v e r fir and Douglas fir,, where r i n g - t o - r i n g p o s i t i o n a l d i f f e r e n c e s m o d i f y the l i g n i n p a t t e r n .  The o< -  c o m p l e m e n t of these is a l m o s t quantitatively p e r f e c t . a p p e a r s i n the s l o p e o f one c o m p o n e n t ,  W h e r e no c h a n g e  as w i t h b o t h s p r u c e s f o r i n s t a n c e ,  so a l s o i s t h e r e no c o r r e s p o n d i n g c h a n g e i n the s l o p e o f i t s In b o t h s p r u c e s ,  l i g n i n contents  cellulose  complement.  decrease steadily f r o m Positions  1 to 4 o r  5 and,  conversely,  o^.  through these positions.  - c e l l u l o s e y i e l d s i n c r e a s e i n the s a m e  magnitude  W i t h the s o l e e x c e p t i o n o f P o s i t i o n 1 i n w e s t e r n  r e d c e d a r , patterns for both components a r e continuously c o m p l e m e n t a r y t h r o u g h o u t the 60 p o s i t i o n s w i t h i n the 10 i n c r e m e n t s e x a m i n e d .  T h i s adds  new d i m e n s i o n f o r u n d e r s t a n d i n g the c o m p l e x i n t e r - r e l a t i o n s h i p s o f the two m a j o r coniferous wood  components.  T h e c o m p l e m e n t a r y i n t e r - d e p e n d e n c y o f l i g n i n a n d cx^ -  cellulose  was c o m p a r e d b y r e g r e s s i o n a n a l y s i s o f the c o m b i n e d d a t a (60 In s t u d y i n g c e l l d i f f e r e n t i a t i o n ,  positions).  it is known that l i g n i f i c a t i o n c a n be f i r s t  n o t e d f o l l o w i n g s e c o n d a r y w a l l f o r m a t i o n (143), h e n c e , l i g n i n c o n t e n t r e g a r d e d as b e i n g d e p e n d e n t o n <=>C - c e l l u l o s e  content.  was  In F i g . 3 the  r e l a t i o n s h i p o f t h i s c o m p l e m e n t i s s h o w n as a h i g h l y s i g n i f i c a n t l i n e a r c o r r e l a t i o n (r =  - 0 . 785) b e t w e e n the two e s t i m a t e s .  B y v i r t u e of this  s t r o n g r e l a t i o n s h i p with c o m b i n e d data f r o m n u m e r o u s b o t a n i c a l the h y p o t h e s i s  receives  combined therein,  strong support.  increments  the o d - c e l l u l o s e e s t i m a t e w a s r e l a t e d to l i g n i n b y t h e  e q u a t i o n Y = 63. 08 - 0. 7 7 3 X , estimate.  F o r the t e n c o n i f e r o u s  sources,  w h e r e : Y = l i g n i n and X = © < -  T h e c o r r e l a t i o n coefficient  cellulose  c o m p a r e s v e r y f a v o r a b l y w i t h that of  - 0 . 764 as r e p o r t e d b y B y r d et a l . ( 2 6 ) i f o r w h o l e w o o d o f l o b l o l l y p i n e .  H i g h l y significant l i n e a r c o r r e l a t i o n s w e r e found also for of the t e n i n c r e m e n t s w h e n t h e s e w e r e a n a l y z e d s e p a r a t e l y . individual analyses  a r e p r e s e n t e d i n T a b l e 12.  eight  R e s u l t s of  E x c e p t f o r the one a n o m a l y  i n w e s t e r n r e d c e d a r , the " c o m p l e m e n t " h y p o t h e s i s  s e e m s to h o l d r e g a r d -  94 l e s s of s p e c i e s or i n c r e m e n t . <=»<d - c e l l u l o s e  H a d i t b e e n p o s s i b l e to t r e a t l i g n i n a n d  r e p l i c a t e s as m a t c h e d o b s e r v a t i o n s ,  all regressions  i n T a b l e 12 w o u l d h a v e b e e n h i g h l y s i g n i f i c a n t s i n c e , as a  listed  consequence,  d e g r e e s o f f r e e d o m i n the a n a l y s i s w o u l d h a v e b e e n i n c r e a s e d t w o - f o l d .  B.  E v i d e n c e for M u t u a l l y E x c l u s i v e R e l a t i o n s h i p B e t w e e n C e l l u l o s e and and L i g n i n F u r t h e r e v i d e n c e o f l i g n i f i c a t i o n as the c o m p l e m e n t of  d i s t r i b u t i o n i s p r e s e n t e d i n F i g . 4.  A l l m e a n cx^ - c e l l u l o s e  -  cellulose  estimates  a n d l i g n i n v a l u e s w e r e c o m b i n e d a n d p l o t t e d f o r e a c h p o s i t i o n w i t h the i n t e n tion of c o m p a r i n g i n t e r - s p e c i e s  variations.  In F i g . 4 a r e s h o w n the  m e a n ( x ) a n d a b s o l u t e r a n g e o f one s t a n d a r d d e v i a t i o n (s) about for a l l e s t i m a t e s of  c><^ - c e l l u l o s e ,  averages  l i g n i n , a n d the s u m o f b o t h .  T h e d a t a t r e a t e d t h i s w a y p r o v i d e two o b s e r v a t i o n s o f n o t e . the s u m o f the c o m p o n e n t e s t i m a t e s c l u s t e r s 72 to 74%.  Secondly,  about the c e n t r a l v a l u e o f  d i s p e r s i o n about the c o m b i n e d v a l u e s i s  significantly  l e s s t h a n t h a t about e i t h e r o f the two i n d i v i d u a l m e a n s e x a m i n e d These important observations  First,  separately.  s u g g e s t t h a t f o r the i n c r e m e n t s s t u d i e d , a l l  s p e c i e s h a d a c o m m o n c r i t i c a l l e v e l t h a t r e p r e s e n t s the s u m o f a u n i q u e c o m b i n a t i o n of c e r t a i n c e l l w a l l c o m p o n e n t s u p o n w h i c h the u l t i m a t e s t r u c t u r a l n a t u r e o f the c e l l w a l l d e p e n d s , formation.  This demonstrates  that s o m e c l o s e p h y s i o l o g i c a l c o n t r o l e x i s t s  over these c h e m i c a l components,  as i n d i c a t e d b y the s i g n i f i c a n t l y l o w e r  d i s p e r s i o n a b o u t the c o m b i n e d e s t i m a t e s . not p a t e n t l y o b v i o u s ;  however,  r e g a r d l e s s of s e a s o n of  W h y this p h e n o m e n a o c c u r s  i t does g i v e s t r o n g i n d i c a t i o n o f the  is  close,  finely balanced inter-relationship existing between,^- cellulose Clearly,  and lignin.  a p r e - d e t e r m i n e d q u a n t i t y o f s o m e p r e c u r s o r (e. g. , 72 to 74% i n  eventual weight) is p r o d u c e d i n m e t a b o l i c pathways, synthetic  sequences,  and by c o m p l e x b i o -  t h i s i s d i r e c t e d f o r i n c o r p o r a t i o n as e i t h e r l i g n i n o r  l o n g c h a i n g l u c a n e n d - p r o d u c t s (but n e v e r both) s u c h that the s u m f o r b o t h results i n a s i m i l a r value,  r e g a r d l e s s of i n d i v i d u a l t r e e o r s p e c i e s  differences.  T h i s indicates that c o n i f e r o u s t r e e p h y s i o l o g y i s o r i e n t e d m o r e t o w a r d s finished biosynthetic product rather than towards m a j o r individual  the  components  involved in such synthesis.  T h e c o n s t a n t 26 to 28% o f o t h e r m a t e r i a l m u s t b e  hemicelluloses,  w h i c h s e e m l e s s w e l l r e l a t e d q u a n t i t a t i v e l y to the b a s i c g l u c a n t h a n i s l i g n i n . T h i s a m o u n t of h e m i c e l l u l o s e Coniferales,  i s n e v e r r e c o v e r e d f r o m m e m b e r s of the  which require delignification before hemicelluloses  can be  extracted.  A s s e e n i n F i g . 4,  values for western r e d cedar are obviously high,  b e i n g d i s p l a c e d 2 to 3% a b o v e the x .  T h i s i s the o n l y m e m b e r  t h a t s h o w e d s u c h b e h a v i o u r t h r o u g h o u t the i n c r e m e n t ;  examined  it m a y have a  s p e c i f i c p r e - d i s p o s i t i o n towards type of l i g n i n t r e a t m e n t .  F o r this  species,  l i g n i n d e t e r m i n a t i o n b y u l t r a - v i o l e t s p e c t r o s c o p y h a s t e n d e d to b e h i g h i n the o r d e r of 10%.  M a c L e a n a n d M u r a k a m i (85) h a v e f o u n d s y r i n g y l as w e l l  guiacyl groups i n cedar lignans.  T h i s or other u n d e s c r i b e d phenomena m a y  c o n t r i b u t e to h i g h e r a b s o r b a n c e r e a d i n g s a n d , h e n c e , high U V lignin values.  as  cause artificially  96 F r o m the c o m p l e m e n t a r y c e l l u l o s e - l i g n i n p a t t e r n s ( F i g .  2),  t h e i r h i g h l y s i g n i f i c a n t n e g a t i v e l i n e a r c o r r e l a t i o n ( F i g . 3) a n d t e n d e n c y to c l u s t e r a b o u t a c e n t r a l v a l u e w h e n c o m b i n e d ( F i g . 4), w h e r e an e x t r a amount of  i t i s e v i d e n t that  - cellulose is present, this is  accompanied  by deficiency in lignin.  T h i s i s the f i r s t q u a n t i t a t i v e e v i d e n c e f o r s u c h r e l a t i o n s h i p w i t h i n coniferous growth zones. (31,  40,  44,  58,  92,  These results  evidence  144) c o n f i r m i n g r a t h e r c l e a r l y t h a t c e l l u l o s e a n d l i g n i n  deposition is m u t u a l l y exclusive. (40)  support previous  T h e results also a f f i r m F r e u d e n b e r g ' s  c l a s s i c a n a l o g y o f c e l l w a l l s as r e - i n f o r c e d c o n c r e t e ,  c r y s t a l l i n e c e l l u l o s e ( w h i c h i s c u s t o m a r i l y r e g a r d e d as  w h e r e b y the  cxl  -  cellulose)  a c t s as r e - i n f o r c i n g r o d s s u r r o u n d e d , b u t not d i s p l a c e d , b y n o n - c e l l u l o s i c c e l l w a l l c o m p o n e n t s w h i c h act as  C.  cement.  B i o l o g i c a l Interpretations T h e m u t u a l l y e x c l u s i v e b e h a v i o r of  reflects  - cellulose and l i g n i n  a b a s i c d i f f e r e n c e i n c h e m i s t r y o f the i r r e g u l a r w o o d k n o w n as  c o m p r e s s i o n wood, high and cellulose  w h e r e i n i t h a s b e e n n o t e d (142) t h a t l i g n i n i s content low.  There is,  however,  always  a fundamental  d i f f e r e n c e i n t h a t r e g u l a r w o o d e x h i b i t s an i n t e r c h a n g e a b l e b a l a n c e w h i l e c o m p r e s s i o n wood changes  exhibit excessive lignin.  Nevertheless,  d o e s not r u l e out the a c t i o n of a m e c h a n i s m c o m m o n , i n p a r t , to the c h e m i s t r y of both.  H o w it o p e r a t e s i s a m a t t e r of c o n j e c t u r e .  this  It i s k n o w n t h a t h i g h e r a i x i n c o n t e n t s a c c o m p a n y e a r l y w o o d a n d c o m p r e s s i o n wood formation,  a l t h o u g h , w i t h the l a t t e r , f a c t o r s o t h e r t h a n  a u x i n a r e k n o w n to b e o p e r a t i v e at c o m p r e s s i o n w o o d s i t e s (74, B o t h w o o d t y p e s a r e r e l a t i v e l y h i g h i n l i g n i n c o n t e n t (142,  156).  W i l s o n (157) h a v e p o s t u l a t e d t h a t w i t h i n c o m p r e s s i o n w o o d , s e e m s to b e c o n s t a n t a n d l a t e w o o d l i g n i n i n c r e a s e s , effect of h i g h e r l i g n i n for c o m p r e s s i o n w o o d .  142,  145).  W u and  earlywood lignin  giving a whole wood  T h e r e m a y be,  then,  some  c o r r e l a t i o n b e t w e e n t h e s e facts s u c h that auxins i n f l u e n c e f o r m a t i o n of l e s s o<£ - c e l l u l o s e  and m o r e lignin.  If t h i s w e r e c o r r e c t , t h e n the  lower  l i g n i n content of r e g u l a r l a t e w o o d r e s u l t s f r o m a l o w e r a u x i n s u p p l y .  As  auxin supply and translocation decrease with reduction in apical activity which, i n turn, plausible.  signifies  If s u c h i s the c a s e ,  controlling cellulose centration.  l a t e w o o d i n i t i a t i o n (74,  Actually,  145);  this a p p r o a c h s e e m s  one w o u l d c o n c l u d e a l s o t h a t t h e m e c h a n i s m  d e p o s i t i o n r e s p o n d s i n v e r s e l y to a u x i n s u p p l y o r c o n since cellulose  deposition precedes lignification,  it  s e e m s l i k e l y t h a t s u c h a m e c h a n i s m w o u l d b e r e l a t e d m o r e d i r e c t l y to c e l l u l o s e r a t h e r t h a n to l i g n i n .  It m i g h t b e m o r e c o r r e c t , t h e n , to r e g a r d  l i g n i f i c a t i o n as s h o w i n g i n d i r e c t r a t h e r t h a n d i r e c t r e s p o n s e to a u x i n i n f l u e n c e o n c h e m i c a l c o n s t i t u t i o n a c r o s s the g r o w t h z o n e .  O t h e r a p p r o a c h e s h a v e b e e n m a d e as to the c a u s e o f l i g n i n a n d c a r b o h y d r a t e v a r i a t i o n s w i t h i n the c o n i f e r o u s g r o w t h zone; r e v i e w e d r e c e n t l y b y W u a n d W i l s o n (157).  these  R i t t e r (100) p r e s e n t e d  t h a t the m i d d l e l a m e l l a c o n t a i n e d 7 5% o f the l i g n i n i n w o o d ;  were evidence  a year later,  R i t t e r a n d F l e c k (102) u s e d t h i s e v i d e n c e w h e n t h e y p r o p o s e d that, s i n c e  the  m i d d l e l a m e l l a constituted a g r e a t e r p r o p o r t i o n of e a r l y w o o d than latewood, the f o r m e r ,  therefore,  h a d a h i g h l i g n i n content.  m i d d l e l a m e l l a i s l i g n i n (9), l a m e l l a (15). (15).  but 75% o f the l i g n i n i s not i n the m i d d l e  the m i d d l e l a m e l l a t h e o r y a d v a n c e d b y R i t t e r a n d  suspect.  A c c o r d i n g to W u a n d W i l s o n (157), i l l u m i n a t i o n on l e a f s u r f a c e s porous woods. cation;  75% o f the  T h e l a t t e r c o n t a i n s at m o s t 40% of the t o t a l l i g n i n i n w o o d  F o r this r e a s o n ,  F l e c k (102) i s  In r e a l i t y ,  Consequently,  however,  P h i l l i p s s u g g e s t e d that s o l a r  controls lignification in t r o p i c a l and temperate he s h o w e d the f o r m e r to h a v e h i g h e r l i g n i f i -  e v e n i f a p p l i e d to c o n i f e r o u s w o o d s ,  such a hypothesis  s e e m s to c o n t r a d i c t the m a j o r o b s e r v a t i o n i n t h a t h i g h e r l a t e w o o d l i g n i f i cation would be  anticipated.  L a r s o n (76) r e p o r t e d that d e c r e a s i n g l i g n i f i c a t i o n a n d i n c r e a s i n g glucose yield across wall thickness,  a g r o w t h z o n e a r e r e l a t e d not o n l y to i n c r e a s i n g c e l l  b u t to the a g i n g of the c a m b i u m c o m b i n e d w i t h the d e c l i n i n g  influence of an u p w a r d r e c e d i n g c r o w n .  T h i s l e d h i m to p r o p o s e t h a t  c h a n g e s i n c e l l w a l l c o m p o s i t i o n r e l a t e d to age c a n b e t y p i f i e d b y the e a r l y wood,  w h e r e b y at a n y age,  i t s t r a n s i t i o n to l a t e w o o d i s s u p e r i m p o s e d o n the  e x i s t i n g e a r l y w o o d m a t r i x to r e p r e s e n t a c h a n g e o f a d i f f e r e n t n a t u r e (j.. e., i n c r e a s i n g c e l l w a l l t h i c k n e s s ) . (53) i n d i c a t e d t h a t h i g h e r h o l o c e l l u l o s e latewood are associated with thicker S  qualitative  P r e v i o u s l y , Hale and Clermont  and c x C - cellulose  contents i n  l a y e r s within latewood p r o s e n c h y m a  cell walls. approach,  T h i s a p p e a r s a n a l o g o u s to L a r s o n ' s e a r l y w o o d m a t r i x i f a p p l i e d at a g i v e n  Although cellulose  age.  a n d l i g n i n h a v e a c o m m o n o r i g i n as p h o t o s y n -  t h a t e s , the s e q u e n c e of b i o s y n t h e t i c p a t h w a y s t h r o u g h w h i c h p r e c u r s o r s h a s not b e e n c o m p l e t e l y e s t a b l i s h e d . is available.  Much useful information, however,  J o n e s (66) h a s s h o w n t h a t the f o r m a t i o n o f l i g n i n p r e c u r s o r s  r e q u i r e s the s a m e u n i t as t h a t u s e d f o r s y n t h e s i s o f h e x o s e s u g a r s , 3-D_-phosphoglyceronic acid.  P r e c u r s o r s of both components  namely,  apparently  b r a n c h o f f at t h i s p o i n t to f o r m i n c r e a s i n g l y d i f f e r i n g e n t i t i e s (30, 107,  move  66,  73  118) i n s p i t e o f the f a c t that b o t h m a y u n d e r g o s i m i l a r t r a n s f o r m a t i o n s  many times.  A p p a r e n t l y , s o m e o f t h e s e p r e c u r s o r s m a y c o m b i n e i n the  c a m b i a l z o n e t o w a r d s the e n d o f t h e i r b i o s y n t h e t i c s e q u e n c e . Norway spruce, fication,  F r e u d e n b e r g ( 4 2 ) , s h o w e d that,  the g r e a t e r p e r c e n t a g e  c a m b i u m as the g l u c o s i d e  w h e n the g l u c o s i d e s  i m m e d i a t e l y p r i o r to l i g n i -  of c o n i f e r y l a l c o h o l i s p r e s e n t i n the  coniferin.  the m a j o r l i g n i n p r e c u r s o r (41,  42).  F u r t h e r m o r e , c o n i f e r y l alcohol is F r e u d e n b e r g (42) g o e s o n to s a y t h a t  p a s s out f r o m the c a m b i u m to i m m a t u r e c e l l s u n d e r -  g o i n g l i g n i f i c a t i o n , t h e y a r e h y d r o l y z e d to a g l y c o n e s the a g l y c o n e s  W o r k i n g with  by  a r e i n t u r n a t t a c k e d b y an abundant d e h y d r o g e n a s e  and  c o n v e r t e d i n t o l i g n i n . W h a t h a p p e n s to the g l u c o s e o n h y d r o l y s i s i s n o t s t a t e d b y F r e u d e n b e r g , b u t i t i s a l m o s t c e r t a i n l y c o n v e r t e d to  cellulose.  F r o m a d i s c u s s i o n w i t h F r e u d e n b e r g , N e i s h (93) b e l i e v e s t h a t i f c o n i f e r y l a l c o h o l i s o v e r p r o d u c e d i n the s p r u c e c a m b i u m i t i s s t a b i l i z e d as a g l u c o side b y r e a c t i o n with U D P - g l u c o s e .  T h i s glucoside then undergoes  the  100 changes indicated b y F r e u d e n b e r g . rapid,  However,  where lignification is  N e i s h (93) i m p l i e s that a l l the c o n i f e r y l a l c o h o l f o r m e d i s  to l i g n i n . step.  H e d o e s not m e n t i o n f o r m a t i o n of a g l y c o s i d e  Hence,  as an i n t e r m e d i a t e  i t m i g h t b e d e d u c e d that w h e r e l i g n i f i c a t i o n i s r a p i d ,  r a t i o of l i g n i n to c a r b o h y d r a t e d e p o s i t i o n f a v o r s the l i g n i n . well hold for earlywood,  l i g n i f i c a t i o n i s not so r a p i d ,  components latewood,  142,  Where  c o n i f e r y l a l c o h o l w i l l f i r s t be s t a b i l i z e d  does not f a v o r l i g n i n as m u c h as b e f o r e .  a r e not n e a r l y so r a p i d as i n e a r l y w o o d ,  as  H e r e the r a t i o of  T h i s m i g h t a p p l y to  s i n c e g r o w t h p r o c e s s e s a n d c e l l m a t u r a t i o n (e. g.  lignification)  and auxin  145).  w h i c h t h e n m o v e s out f r o m the c a m b i u m .  the  T h i s might  w h e r e r e l a t i v e l y h i g h e r l i g n i n (156)  c o n t e n t s h a v e b e e n f o u n d i n c o n i f e r o u s w o o d s (74,  a glucoside,  converted  including  and l i g n i n content is  s i g n i f i c a n t l y l o w e r (156).  IV. A.  R e l a t i o n s h i p of A l p h a - c e l l u l o s e P a t t e r n s to P h y s i c a l P r o p e r t i e s Strength  Parameters  It was p r e v i o u s l y n o t e d that, the m a g n i t u d e of e a r l y w o o d - l a t e w o o d  f o r the t e n i n c r e m e n t s differences  in  o<  reported,  - cellulose yield  a p p e a r s to r e f l e c t the i n f l u e n c e of t y p e of e a r l y w o o d - l a t e w o o d  transition.  While Douglas fir  - cellulose yield followed a sigmoid curve ( F i g s .  1 and 2),  and P a c i f i c s i l v e r f i r d i s p l a y e d m o r e g r a d u a l  both spruces  i n c r e a s e i n cX^  - c e l l u l o s e y i e l d a c r o s s the i n c r e m e n t .  T h i s effect i n  these same species has been noted for s o m e i n t r a - i n c r e m e n t p h y s i c a l p r o p e r t i e s b y Ifju et a l . (62)  a n d H o m o k y et a l .  (60).  101 W i t h r e g a r d to p h y s i c a l p r o p e r t i e s , t e n s i l e a n d r a d i a l strengths  compressive  o f D o u g l a s f i r a r e c o r r e l a t e d w i t h s p e c i f i c g r a v i t y to a h i g h l y  s i g n i f i c a n t degree"(59,  60,  61,  increase in specific gravity,  62).  T h a t i s , with a n e a r l y t h r e e - f o l d  strength increases  the n e w l y - e s t a b l i s h e d p a t t e r n of  proportionately.  cr>£ - c e l l u l o s e  From  d i s t r i b u t i o n f o r the  s p e c i e s (though no d i r e c t e v i d e n c e i s e s t a b l i s h e d ) ,  same  i t i s u n l i k e l y t h a t the a p p r o -  x i m a t e l y 5% y i e l d d i f f e r e n t i a l b e t w e e n e a r l y - a n d l a t e w o o d o f a n y o f the  above  s p e c i e s w o u l d a c c o u n t f o r the 300% s t r e n g t h i n c r e a s e w i t h the s a m e t i s s u e . Hence,  i t w o u l d a p p e a r t h a t s u c h s t r e n g t h p r o p e r t i e s i n r e g u l a r w o o d of  D o u g l a s f i r d e p e n d to a l a r g e d e g r e e u p o n v a r i a t i o n s r e f l e c t i n g d e g r e e of cell wall packing,  alignment and associative  properties between cell wall  components  r a t h e r t h a n o n t h o s e r e f l e c t i n g a m o u n t of l o n g - c h a i n  material.  T h e m a t e r i a l d i f f e r e n c e h e r e i s the r e m a i n i n g c e l l w a l l c o m -  ponents,  these being p r e d o m i n a n t l y l i g n i n and h e m i c e l l u l o s e ;  influencing basic strength properties, is e m p h a s i z e d .  cellulosic  thus, i n  the i m p o r t a n c e o f t h e s e  components  T h e r o l e of l i g n i n (40) h a s a l r e a d y b e e n l i k e n e d to that o f  c o n c r e t e r e - i n f o r c i n g s u r r o u n d i n g s t e e l r o d s ( c e l l u l o s e ) , w h i l e t h a t of hemicellulose  B.  is,  perhaps,  not q u i t e as c l e a r l y  established.  P h y s i c a l E v i d e n c e for Two E a r l y w o o d T y p e s W i t h i n D o u g l a s f i r g r o w t h z o n e s W i l s o n a n d Ifju (150)  a n o m a l o u s b e h a v i o u r o f two p h y s i c a l p r o p e r t i e s i n e a r l y w o o d ; s p e c i f i c g r a v i t y (G) r e m a i n e d r e l a t i v e l y c o n s t a n t ,  discerned while  ultimate tensile  strength  ( U T S ) i n c r e a s e d p r o g r e s s i v e l y a c r o s s t h i s z o n e w i t h as m u c h as a t h r e e fold change.  T h i s p r o n o u n c e d n o n - l i n e a r i t y was a l s o e v i d e n t (but not  1 d i s c u s s e d ) i n r e s u l t s o f K l o o t (71),  who s h o w e d that s p e c i m e n s o f r a t h e r  u n i f o r m l y low weight (earlywood) d i s p l a y e d a l a r g e v a r i a t i o n i n u l t i m a t e tensile load.  In v i e w o f b o t h s t u d i e s ,  W i l s o n a n d Ifju (150)  suggested  t h a t w h i l e at h i g h s p e c i f i c g r a v i t y , s t r e n g t h d e p e n d s m o r e o n a m o u n t o f w o o d s u b s t a n c e t h a n o n i t s c o m p o s i t i o n , the r e v e r s e m a y b e t r u e at l o w l e v e l s of G .  T h a t i s to s a y ,  e a r l y w o o d strength is m o r e affected b y  qualitative rather than quantitative differences i n wood substance.  Accord  i n g to Ifju et_aL_(62), t h i s h a s a p p a r e n t l y b e e n i m p l i e d b y H i l l .  It h a s b e e n d e m o n s t r a t e d h e r e that l i g n i n a n d e s t i m a t e p a t t e r n s r e l a t e d i r e c t l y to,  -  cellulose  a n d p o s i t i v e l y r e - a f f i r m , the d u a l  e a r l y w o o d h y p o t h e s i s o f W u a n d W i l s o n (157).  S i n c e the a n o m a l o u s e a r l y -  wood p h y s i c a l b e h a v i o r noted above reflects v a r i a t i o n within e a r l y w o o d , too m u s t r e l a t e to the h y p o t h e s i s .  it  T h e r e b y , r e s u l t s f r o m K l o o t (71) a n d  W i l s o n a n d Ifju (150) b e c o m e the f i r s t e v i d e n c e s h o w i n g v a r i a t i o n i n e a r l y w o o d p h y s i c a l p r o p e r t i e s as r e f l e c t i n g the p r e s e n c e o f two e a r l y w o o d t y p e s  If,  w i t h i n the e a r l y w o o d z o n e ,  the i n c r e a s e i n t e n s i l e  strength  r e l a t e s to a c o r r e s p o n d i n g c h a n g e i n c e l l w a l l s a n d , i f F r e u d e n b e r g ' s (40) a n a l o g y i s v a l i d ,  then c e l l u l o s e m u s t change i n s o m e b a s i c c h a r a c t e r -  i s t i c a c r o s s the s a m e z o n e .  That for some species this is a quantitative  change has a l r e a d y b e e n shown f r o m p a t t e r n s of  - cellulose  content.  Q u a l i t a t i v e e v i d e n c e m a y b e i n f e r r e d f r o m the r e g r e s s i o n o f n i t r o cellulose species,  on  oC - c e l l u l o s e y i e l d .  nitrocellulose  l/fl  F o r single i n c r e m e n t s of four  f o r P o s i t i o n 1 a p p e a r e d h i g h e r o n the a v e r a g  103 t h a n that f o r the r e m a i n i n g e a r l y w o o d .  Linear regressions were determined  on data p l o t t e d f r o m a l l s i x p o s i t i o n s and on these s a m e data w h e r e i n P o s i t i o n 1 w a s o m i t t e d ( T a b l e 13). removed,  a b e t t e r fit o c c u r r e d ;  W h e n the d a t a f r o m P o s i t i o n 1 w e r e  when these w e r e included,  their influence  was s u c h that t h e s l o p e e v e n c h a n g e d s i g n i n one i n s t a n c e . T h i s  suggests  f u r t h e r e v i d e n c e o f two e a r l y w o o d t y p e s o n the b a s i s of a v e r a g e c h a i n length.  104  CONCLUSIONS  A m e t h o d has been d e v i s e d for a c c u r a t e m i c r o - c e l l u l o s e mination.  A l p h a - c e l l u l o s e y i e l d m a y be q u a n t i t a t i v e l y  f r o m m i n u t e s a m p l e s o f w o o d m e a l as the c o r r e c t e d nitrate yield.  deter-  estimated cellulose  Important v a r i a b l e s w e r e studied and it was  that t h r e e - 0 . 1 g ( o v e n - d r y ) w o o d s a m p l e s p r o v i d e a defensible determination.  shown  statistically  Intrinsic viscosities  of these  m i c r o - c e l l u l o s e s w e r e u s e d to i n d i c a t e p r e s e n c e o r a b s e n c e  of  e x t e n s i v e d e g r a d a t i o n as a m e a n s o f q u a l i t a t i v e l y d e c i d i n g successful nitrocellulose preparation. new method?  however,  F o r the f i r s t t i m e ,  A m a j o r l i m i t a t i o n o f the  i s t h a t i t c a n n o t b e a p p l i e d to a l l w o o d s .  a s e r i e s of ten distinct  - cellulose  patterns  have b e e n e s t a b l i s h e d within coniferous growth i n c r e m e n t s of w i d e l y d i f f e r e n t b o t a n i c a l o r i g i n (5 g e n e r a ) .  A l l such patterns  r e v e a l e d l a t e w o o d to b e s i g n i f i c a n t l y h i g h e r (2 to 3%) i n - cellulose than earlywood.  S i x of these p r o v i d e new c h e m i c a l  e v i d e n c e p e r t a i n i n g to a p h y s i o l o g i c a l l y s i g n i f i c a n t p h e n o m e n o n , t h i s b e i n g the p r e s e n c e o f two t y p e s o f e a r l y w o o d . estimated depth.  Therein,  minimum  - c e l l u l o s e y i e l d o c c u r r e d at c o n s i d e r a b l e c e l l u l a r  T h e r e m a i n i n g f o u r i n c r e m e n t s s e e m e d d i f f e r e n t , i n that  t h e y d i d not c o n t a i n the a n o m a l y .  E s t i m a t e d Q>^  - cellulose  content v a r i e d with s p e c i e s .  h a d the h i g h e s t a v e r a g e y i e l d , 48. 3% (46. 5 to 50. 1%),  Sitka spruce followed by  105  D o u g l a s f i r , 46. 7% (43. 4 to 49. 8%), 4 7 . 0%),  Pacific silver fir,  44. 9% (41. 8 to 47. 5%), a n d w e s t e r n  r e d cedar,  44. 6% (40. 2 to 4 6 . 0%).  differences  in  c x i f  b l a c k s p r u c e 45. 2% (43. 1 to  M a g n i t u d e of  earlywood-latewood  - c e l l u l o s e y i e l d a p p e a r e d to r e f l e c t t y p e o f  earlywood-latewood  transition.  Species having typically abrupt  t r a n s i t i o n t e n d e d to d i s p l a y a r a t h e r s i g m o i d a l p a t t e r n of <^>^ - c e l l u l o s e y i e l d , s i t i o n show a flatter  4.  whereas those having typically gradual t r a n -  pattern  U s i n g t h r e e v a r i a b l e s of wood quality, throughout mature growth increments by linear regression or, formation.  alpha-cellulose  content  m a y be p r e d i c t e d r e l i a b l y  more accurately, by logarithmic t r a n s -  In two e x a m p l e s ,  b l a c k spruce and Douglas f i r ,  corre-  l a t i o n c o e f f i c i e n t s d e t e r m i n e d b y the l a t t e r m e t h o d w e r e 0 . 9 5 0.96,  respectively.  This successful  and  a p p l i c a t i o n of a l o g a r i t h m i c  t r a n s f o r m a t i o n i s i t s f i r s t r e p o r t e d u s e d e s c r i b i n g the n o n - l i n e a r behavior of a wood c h e m i c a l p r o p e r t y a c r o s s  5.  a coniferous  increment.  E x a m i n a t i o n o f < ^ - c e l l u l o s e a n d l i g n i f i c a t i o n p a t t e r n s i n the g r o w t h z o n e s s h o w e d the  ^  same  - c e l l u l o s e e s t i m a t e (x = 4 5 . 9 + 2. 0%)  as the e x a c t c o m p l e m e n t of l i g n i f i c a t i o n (x = 2 7 . 4 + 1.9%), r e g a r d l e s s o f s p e c i e s o r l o c a t i o n w i t h i n g r o w t h zone ( h e n c e , formation). was  s e a s o n of  E v i d e n c e supporting this i m p o r t a n t i n t e r r e l a t i o n s h i p  demonstrated by linear correlation;  o<^ - c e l l u l o s e - l i g n i n v a l u e s ,  f o r 60 p a i r s of  r = - 0 . 7 8 5 was h i g h l y  significant.  T h i s c o r r e l a t i o n r e i n f o r c e s p r e v i o u s t h e o r y o n the m u t u a l l y  106  e x c l u s i v e n a t u r e e x i s t i n g between l i g n i n and  6.  cellulose.  F u r t h e r e v i d e n c e o f the m u t u a l l y e x c l u s i v e n a t u r e o f a n d l i g n i n r e s u l t e d w h e n the m i c r o l i g n i n a n d were combined.  These values  (x = 7 3 . 4 +_ 1. 2%), a common,  cellulose  o<* - c e l l u l o s e  values  c l u s t e r e d about a c e n t r a l v a l u e  s u g g e s t i n g t h a t f o r the i n c r e m e n t s  studied,  c r i t i c a l p o r t i o n of h i g h m o l e c u l a r weight m a t e r i a l was  included in cell wall formation. the c o m b i n e d value's w a s  F u r t h e r m o r e , d i s p e r s i o n about  s i g n i f i c a n t l y l e s s t h a n t h a t about  of t h e i r i n d i v i d u a l m e a n s . control over  -  - cellulose  This suggests closer  either  physiological  and l i g n i n when c o m b i n e d , i n d i c a t i n g  t h a t t r e e p h y s i o l o g y i s o r i e n t e d m o r e t o w a r d s the f i n i s h e d b i o s y n t h e t i c p r o d u c t t h a n t o w a r d s the i n d i v i d u a l c o m p o n e n t s in such a  7.  involved  system.  B e c a u s e o f the h i g h l y v a r i a b l e  at e a c h p o s i t i o n ,  no t r e n d s i n  n i t r o c e l l u l o s e chain-length v a r i a t i o n were evident throughout growth zones.  However,  i n four i n c r e m e n t s ,  significant differences  t h r o u g h o u t the e a r l y w o o d p r o v i d e d f u r t h e r e v i d e n c e o f two types.  i n Jj^l  earlywood  BIBLIOGRAPHY  Abadie,  F . A . a n d 0.  Ellefsen.  1952.  Correspondence between  the c o n t e n t o f a l p h a c e l l u l o s e a n d the c o n t e n t o f the fraction,  p r e c i p i t a b l e i n water when dissolved i n acetone. Skogind. Alexander,  « A »  i . e . , t h e f r a c t i o n of n i t r a t e d c e l l u l o s e w h i c h is Norsk  6 : 192-195.  W . J . and R. L . M i t c h e l l .  1949.  Rapid  measurement  of c e l l u l o s e v i s c o s i t y b y the n i t r a t i o n m e t h o d .  Anal.  Chem.  21 : 1 4 9 7 - 1 5 0 0 . A m e r i c a n I n s t r u m e n t C o . 1965. Bull.  2346-A.  Kjeldahl nitrogen  Silver Spring. M d .  A m e r i c a n Society for T e s t i n g M a t e r i a l s . standards. Test. Anderson,  P a r t 17.  A . B . 1962.  properties.  1965.  B o o k of A S T M  Petroleum products.  M a t . , Philadelphia, pp.  determinations  U.S.A.  Amer.  Soc.  915-916.  T h e influence of e x t r a c t i v e s on t r e e  II P o n d e r o s a p i n e .  J . Inst.  Wood. Sci.  10 : 2 9 - 4 7 . A s s o c i a t i o n of O f f i c i a l A g r i c u l t u r a l C h e m i s t s . I960. Methods of A n a l y s i s . 9th E d . T h e C o l l e g i a t e P r e s s . M e n a s h a , W i s e . 832 p p . Astbury,  W. T . , Preston,  R . D. and A . G . N o r m a n .  e x a m i n a t i o n of the e f f e c t o f r e m o v i n g constituents f r o m vegetable fibres. Badger,  R. M . and R. H . B l a k e r .  p r o p e r t i e s of n i t r o c e l l u l o s e scattering. Bailey,  J . Phys.  A . J . 1936.  M .W.  1955.  1957.  T h e i n v e s t i g a t i o n of the  m o l e c u l e s in solution by light  Colloid Chem.  Ind. E n g . C h e m .  53 : 1 0 5 6 - 1 0 6 9 . C o m p o s i t i o n of the  ( A n a l . ) 8 : 52-55.  T h e v a s c u l a r c a m b i u m and r a d i a l growth i n  Thuja occidentalis .  L . C a n . J . B o t a n y 33 : 1 1 3 - 1 3 8 .  T h e r e l a t i v e f r e q u e n c y o f the d i f f e r e n t t y p e s  of a n t i c l i n a l d i v i s i o n s i n c o n i f e r c a m b i u m . 35 : 8 7 5 - 8 8 4 .  X-Ray  N a t u r e 136 : 391.  L i g n i n i n Douglas f i r .  middle lamella. Bannan,  1949.  1935.  non-cellulosic  Can. J .  Botany  108  12.  Bannan,  M .W.  1962.  C a m b i u m and t r e e - r i n g development.  T r e e Growth. T . T . Koslowski. pp. 3-21. 13.  Barton,  G . M . and J . A . F .  Gardner.  ed.  1958.  Ronald Press  In  Co., N. Y.  D e t e r m i n a t i o n of  d i h y d r o q u e r c e t i n in Douglas fir and w e s t e r n l a r c h wood. C h e m . 30 : 2 7 9 - 2 8 1 . 14.  Bate-Smith,  E . C . 1956.  T h e c o m m o n e r p h e n o l i c constituents of  plants and their s y s t e m a t i c distribution. D u b l i n S o c . 27 : 1 6 5 - 1 7 6 . 15.  Berlyn, G. P.  and R . E . M a r k .  cell walls. 16.  Bisset,  I.W.J,  Forest Prod.  1965. J.  Sci. Proc.  Royal  L i g n i n distribution i n wood  15 : 1 4 0 - 1 4 1 .  and H . E . D a d s w e l l .  1950.  T h e v a r i a t i o n of f i b r e  l e n g t h w i t h i n one g r o w t h r i n g of c e r t a i n a n g i o s p e r m s gymnosperms.  Anal.  Aust.  and  F o r . 14 : 1 7 - 2 9 .  17.  and G . L . A m o s .  1950.  i n f i b r e l e n g t h w i t h i n one g r o w t h r i n g o f c e r t a i n  Changes  angiosperms.  N a t u r e 165 : 3 4 8 - 3 4 9 . 18.  B r a m h a l l , G . In P r e p . S t a t u s o f p r e s s u r e i m p r e g n a t i o n o f w e s t e r n hemlock (Tsuga heterophylla). For.  19.  Prod.  Dept.  of F o r . and R u r a l Dev.  L a b . , Vancouver, B . C .  B r o w n , H . P . , P a n s h i n , A . J . a n d C . C . F o r s a i t h . 1949. T e x t b o o k o f W o o d T e c h n o l o g y . V o l . I. M c G r a w - H i l l B o o k C o . I n c . N . Y . 652 p p .  20.  . of W o o d T e c h n o l o g y .  V o l . II.  1952.  Textbook  M c G r a w - H i l l Book C o . Inc.  N . Y . 783 p p . 21.  B r o w n , R . K . and C B . P u r v e s . c o l l a p s e d cotton l i n t e r s .  22.  23.  Browning,  B . L . 1963.  1947.  N i t r a t i o n of s w o l l e n a n d  P u l p P a p e r M a g . C a n . 48 : T 1 0 0 - T 1 0 7 .  T h e c o m p o s i t i o n and c h e m i c a l  reactions  of wood.  In_ T h e C h e m i s t r y o f W o o d . B . L . B r o w n i n g ,  Intersc.  P u b . N . Y . pp. 57-102.  ed.  a n d L . O . B u b l i t z . 1953. T h e i s o l a t i o n of h o l o cellulose f r o m wood. T a p p i 36 : 4 5 2 - 4 5 8 .  109  24.  B r y d e , 0.,  Ellefsen,  and T . H . S m i t h .  0.  1953.  a n a l y t i c a l t o o l i n the s t u d y of w o o d p u l p s .  N i t r a t i o n as  an  I V . T a p p i 36 :  353-359. 25.  and T . H . S m i t h .  1950.  i n the s t u d y o f w o o d p u l p s . 26.  Byrd,  V . , E l l wood,  N i t r a t i o n as a n a n a l y t i c a l t o o l III. N o r s k S k o g i n d .  E . L . , Hitchings,  Wood characteristics  C a m p b e l l , J . R . , Swan,  R. G . and A . C . Barefoot.  and kraft paper p r o p e r t i e s  four s e l e c t e d l o b l o l l y p i n e s . 27.  4 : 308-312.  E . P.  Forest Prod.  of  J . 15 : 3 1 3 - 3 2 0 .  a n d J . W . W i l s o n . 1965.  of w o o d and growth zone r e s i n o u s  1965.  Comparison  extracts i n Douglas  fir.  P u l p P a p e r M a g . C a n . 66 : T 2 4 8 - T 2 5 2 . 28.  Chow, S - Z .  29.  Clarkson,  1966.  Personal  communication.  A . and C . M . R o b e r t s o n .  1966.  R e f i n e d c a l c u l a t i o n for  d e t e r m i n a t i o n of n i t r o g e n i n n i t r o c e l l u l o s e spectrometry. 30.  Colvin,  J . R.  1964.  Anal.  Chem.  31.  C o p p i c k , S.  38 : 522.  T h e b i o s y n t h e s i s of c e l l u l o s e .  of W o o d i n F o r e s t T r e e s . Press.,  by infrared  In T h e F o r m a t i o n  M . H . Z i m m e r m a n . !ed.  Academic  N . Y . pp.189-202.  and W . F . F o w l e r .  1939.  substances i n woody t i s s u e s .  L o c a t i o n of potential  Paper Trade J .  reducing  109 ( H ) :  81-86. 32.  '  and E . C . Jahn.  1943.  N i t r a t e d wood.  Ind. E n g .  Chem.  35 : 8 9 0 - 8 9 4 . 33.  Cross,  C . F . and E . J . B e v a n .  of l i g n i f i c a t i o n . 34.  Daniels,  I 8 8 9 .  J . Chem.  Soc.  C o n t r i b u t i o n s to the  F . , Williams, J . W. , Bender,  C D .  C o r n w e l l . 1962.  P.,  Davison,  P. F .  1957.  DeZeeuw,  C . 1965.  and  N . Y . 625 p p .  R a p i d d e t e r m i n a t i o n of i n t r i n s i c v i s c o s i t y o f  cellulose nitrate. 36.  Alberty, R. A .  Experimental Physical Chemistry.  6th E d . M c G r a w - H i l l B o o k C o . I n c . , 35.  chemistry  55 : 1 9 9 - 2 1 3 .  T a p p i 40 : 9 7 5 - 9 7 7 .  V a r i a b i l i t y i n wood.  o f W o o d . W . A . Cote'.  In C e l l u l a r i n f r a s t r u c t u r e  <£d. S y r a c u s e U n i v . P r e s s ,  pp. 457-471.  110  37.  E l i a s , W . E . a n d L . D . H a y w a r d . 1958.  The n i t r a t i o n of wood and  related substances with gaseous dinitrogen pentoxide.  Tappi  41 : 2 4 6 - 2 5 0 . 38.  Erickson,  H . D.  1962.  S o m e a s p e c t s of m e t h o d s i n d e t e r m i n i n g  cellulose i n wood. 39.  Erdtmann,  H . 1958.  T a p p i 45 : 7 1 0 - 7 1 9 .  C o n i f e r c h e m i s t r y and t a x o n o m y of  conifers.  I n _ B i o c h e m i s t r y of W o o d . K . K r a t z l and G . B i l l e k . ed. P r o c . 4th Int. C o n g r . o f B i o c h e m . P e r g a m o n P r e s s , N . Y . pp. 1-28. 40.  Freudenberg, wood.  K . 1932.  J . Chem.  41.  .  1962.  T h e r e l a t i o n s h i p of c e l l u l o s e to l i g n i n i n Educ.  9 : 1171-1180.  B i o g e n e s i s and constitution of l i g n i n .  of the W o o d C h e m i s t r y S y m p o s i u m , P u r e and A p p l i e d C h e m . 42.  .  1964.  in vitro.  L o n d o n , pp. 9-20.  1954.  Academic Press,  Trees.  N . Y . pp. 203-218.  T h e fine s t r u c t u r e of c e l l u l o s e m i c r o -  S c i e n c e 119 : 8 0 - 8 2 .  44.  .  19 64.  lignified cell walls.  U l t r a v i o l e t and f l u o r e s c e n c e optics of In_The F o r m a t i o n of W o o d i n F o r e s t  T r e e s . M . H . Z i m m e r m a n , ed. A c a d e m i c P r e s s , pp. 153-168. 45.  Gardner,  J . A . F . and G . M . B a r t o n ,  i960.  N. Y.  T h e d i s t r i b u t i o n of  dihydroquercetin in Douglas fir and western l a r c h . Prod. 46.  Green,  J.  J . W . 1963.  Section V - 3 6 . Nitration.  Academic Press,  In  Methods in Carbohydrate C h e m i s t r y .  1963.  . 1963.  Methods in R. L . Whistler,  N . Y . pp. 213-217.  Section V - 3 7 .  R. L . Whistler, 48.  In  V o l . HI. Cellulose.  ed.  .  Forest  10 : 1 7 1 - 1 7 3 .  Carbohydrate Chemistry.  47.  Proc.  U n i o n of  T h e f o r m a t i o n o f l i g n i n i n the t i s s u e a n d  Frey-Wyssling, A. fibrils.  Butterworths,  In T h e F o r m a t i o n o f W o o d i n F o r e s t  M . H . Z i m m e r m a n , ed. 43.  M o n t r e a l . Int.  Stabilization of c e l l u l o s e nitrate.  ed. A c a d e m i c P r e s s ,  V o l . III.  Cellulose.  N . Y . pp. 218-222.  S e c t i o n V - 3 8 . N i t r a t i o n . In M e t h o d s i n C a r b o -  hydrate Chemistry. ed. A c a d e m i c P r e s s ,  V o l . HI. Cellulose. N . Y . pp. 222-224.  R. L . Whistler.  Ill  49-  G r e e n , J . W . 1963.  Section V - 4 1 .  C e l l u l o s e N i t r a t e . In M e t h o d s  in Carbohydrate Chemistry. V o l . HI. Cellulose. Whistler,  ed. A c a d e m i c P r e s s ,  R. L .  N . Y . pp. 229-235.  50.  G r i l l o s , S . J . a n d F . H . S m i t h . 1959. T h e s e c o n d a r y p h l o e m of Douglas f i r . F o r e s t Sc. 5 : 377-388.  51.  Haas,  52.  HSgglund, E . and T . Johnson.  B . R . a n d R . E . K r e m e r s . 1964. T h e p e c t i c s u b s t a n c e s as a n i n d e x to the c h e m i s t r y o f w o o d f o r m a t i o n . T a p p i 47 : 568-573. 1927.  Ueber die c h e m i s c h e n  s c h a f t e n u n d den v e r s c h i e d e n e n SpStholzes  53.  als Rohstoff fur die  Sulfitzellstoffabrikation.  Zellstoffu.  Papier 7 : 49-50.  Univ.  Col. , Vancouver, B. C.  Hale,  Brit.  J . D. and L . P .  Clermont.  Eigen-  W e r t des F r t f h - u n d T r a n s l a t i o n N o . 29.  1963.  Influence  Fac. For.  of p r o s e n c h y m a  c e l l - w a l l m o r p h o l o g y on b a s i c p h y s i c a l and c h e m i c a l characteristics  of w o o d .  J . Poly.  S c . ( P a r t C) 2 : 2 5 3 - 2 6 1 .  54.  H a m i l t o n , J . K . a n d N . S. T h o m p s o n . 19 59. A c o m p a r i s o n o f the c a r b o h y d r a t e s of hardwoods and softwoods. T a p p i . 42 : 752-760.  55.  Hata,  K . 1950. of wood. Fac.  P u l p of P i n u s d e n s i f l o r a wood, c h e m i c a l J . Japan F o r . Soc.  F o r . Univ.  Brit.  32 : 8 - 1 2 .  Translation No.  H a y w a r d , L . D . In p r e p . A n a l y s i s o f N i t r a t e E s t e r s .  57.  Hejnowicz,  A . and Z . H e j n o w i c z .  acacia. 58.  Hodge,  33  Col. , Vancouver, B . C.  56.  vessel members  composition  1959.  V a r i a t i o n s i n length of  a n d f i b r e s i n the t r u n k o f R o b i n i a p s e u d o -  P r o c . N i n t h Int.  Bot.  A . J . and A . B . W a r d r o p .  Congr.  1950.  9 : 158-159.  A n electron  microscopic  i n v e s t i g a t i o n of the c e l l w a l l o r g a n i z a t i o n o f c o n i f e r and conifer c a m b i u m . A u s t . J . S c i . R e s .  (Serv.  tracheids  B. )  3 : 265-269. 59.  H o m o k y , S. G . J . 1966.  R e l a t i o n s h i p of s o m e coniferous wood  p r o p e r t i e s to s p e c i f i c increments. Vancouver,  Unpub. B. C.  strength  gravity variations within growth Thesis.  F a c . F o r . Univ.  Brit. Col.,  112 60.  H o m o k y , S. G . J . , K o z a k , A . a n d J . W . W i l s o n . In P r e p . R a d i a l c o m p r e s s i v e s t r e n g t h of D o u g l a s - f i r g r o w t h zone t i s s u e s .  61.  Ifju,  G . 1963.  Influence of c e l l u l o s e  c h a i n l e n g t h o n the m e c h a n i c a l  b e h a v i o u r o f D o u g l a s f i r w o o d i n t e n s i o n p a r a l l e l to g r a i n . Unpub. 62.  Thesis.  F a c . F o r . Univ.  Brit.  __, W e l l w o o d , R . W . a n d J . W . W i l s o n .  C o l . , Vancouver, B. C. 1965.  Relationship  between certain i n t r a - i n c r e m e n t p h y s i c a l measurements Douglas f i r . 63.  Immergut,  P u l p P a p e r M a g . C a n . 66 : T 4 7 5 - T 4 8 3 .  E . H . 1963.  Cellulose.  Jin T h e C h e m i s t r y o f W o o d .  B . Li. B r o w n i n g , ed. Intersc. 64.  65.  Jahn,  E . C . a n d S.  Coppick.  Eng.  33 : 6 7 8 - 6 8 2 .  Johnson,  Chem.  in  D. B . , Moore,  P u b . , N . Y . pp. 103-190.  1941.  N i t r a t i o n o f w o o d t i s s u e s . Pnd.  W . E . and L . C . Zank.  The spectro-  I 9 6 I .  p h o t o m e t r i c d e t e r m i n a t i o n of l i g n i n i n s m a l l wood  samples.  T a p p i 44 : 7 9 3 - 7 9 8 . 66.  Jones,  J.K.N.  1962.  Biogenesis  of carbohydrates i n wood.  The Wood C h e m i s t r y Symposium, Montreal. P u r e and A p p l i e d C h e m . Butterworths,  Int.  London,  In  Union of pp. 21-35.  67.  K e n n e d y , R . W . 1956. F u n g i c i d a l t o x i c i t y of e x t r a n e o u s c o m p o n e n t s of Douglas f i r h e a r t w o o d . F o r e s t P r o d . J . 6 : 80-84.  68.  ______________ d J* M . J a w o r s k y . I960. V a r i a t i o n i n c e l l u l o s e content of D o u g l a s - f i r ( P s e u d o t s u g a m e n z i e s i i ) . T a p p i 2 1 1 1  43 : 2 5 - 2 7 . and J . W . W i l s o n .  69.  1956.  Variation in taxifolin  content of a Douglas f i r s t e m e x h i b i t i n g t a r g e t r i n g . Prod. 70.  Klem,  G . G . 1945.  Investigations  of s p r u c e w o o d i n c o n n e c t i o n w i t h  m e c h a n i c a l wood pulp and sulfite pulp e x p e r i m e n t s . Norske Skogforsoksv. 71.  Kloot,  N . H . 1952. App.  72.  Kraemer,  Sc.  Kremers,  Medd.  9 : 1-127.  A m i c r o - t e s t i n g technique for wood. A u s t . J .  3 : 125-143.  E . O . 1938.  derivatives. 73.  Forest  J . 6 : 230-231.  M o l e c u l a r weights of c e l l u l o s e s  Ind. E n g . C h e m .  R . E . 1963.  and cellulose  30 : 1 2 0 0 - 1 2 0 3 .  T h e c h e m i s t r y of d e v e l o p i n g wood.  The C h e m i s t r y of W o o d . B . L . B r o w n i n g , ed. Pub. , N . Y . pp.369-404.  In  Interscience  113 74.  Larson,  P . R.  activity.  1962.  A u x i n g r a d i e n t s a n d the r e g u l a t i o n o f c a m b i a l  In_Tree Growth.  T . T . K o s l o w s k i . ed.  Ronald Press  Co. , N . Y . pp.91-117. 75.  -  . 1963.  T h e i n d i r e c t effect of drought on t r a c h e i d  diameter i n r e d pine. 76.  .  F o r e s t Sc. 9 : 52-62.  C h a n g e s i n c h e m i c a l c o m p o s i t i o n of w o o d c e l l  I 9 6 6 .  w a l l s a s s o c i a t e d with age. 77.  Leopold, B.  1961.  of wood f i b r e s .  Levitin,  N.  1962.  J . 16 : 3 7 - 4 5 .  C h e m i c a l c o m p o s i t i o n and p h y s i c a l p r o p e r t i e s I. P r e p a r a t i o n o f h o l o c e l l u l o s e  loblolly pinewood. 78.  Forest Prod.  fibres  from  T a p p i 44 : 2 3 0 - 2 3 2 .  E t h e r e x t r a c t i v e s of r e d and white p i n e .  Pulp  P a p e r M a g . C a n . 63 : T 1 6 9 - T 1 7 4 . 79.  L e v i t s k y , H . and G . N o r w i t z .  1962.  D e t e r m i n a t i o n of n i t r o g e n i n  nitrocellulose by infrared spectrometry. Anal.  Chem.  34 :  1167-1169. 80.  Lindsley,  C . H . and M . B . F r a n k .  nitrocellulose  1953.  I n t r i n s i c v i s c o s i t y of  r e l a t e d to d e g r e e of n i t r a t i o n . I n d .  Eng.  Chem.  45 : 2 4 9 1 - 2 4 9 7 . 81.  L u x f o r d , R . F . 1931. E f f e c t of e x t r a c t i v e s on the s t r e n g t h of w o o d . J . A g r . R e s . 42 : 8 0 1 - 8 2 6 .  82.  M a , T . A . and G . Z u a z a g a . nitrogen.  83.  MacLean,  1942.  Ind. E n g . C h e m .  M i c r o » k j e l d a h l d e t e r m i n a t i o n of (Anal.  H . and J . A . F . G a r d n e r .  E d . ) 14 : 2 8 0 - 2 8 2 .  1956.  D i s t r i b u t i o n of f u n g i c i d a l  e x t r a c t i v e s (thujaplicin and w a t e r - s o l u b l e western r e d cedar heartwood. 84.  .  phenols)  Forest Prod. 1958.  in  J . 6 : 510-516.  D i s t r i b u t i o n of f u n g i -  c i d a l e x t r a c t i v e s i n t a r g e t p a t t e r n h e a r t w o o d of w e s t e r n red cedar. 85.  Forest Prod.  J . 8 : 107-108.  and K . M u r a k a m i .  1966.  cedar ( T h u j a p l i c a t a Donn). methyl ether. 86.  Mark,  H . 1954.  L i g n a n s of w e s t e r n r e d  I V . T h u j a p l i c a t i n and thujaplicatin  Can. J . Chem.  44 : 1 5 4 1 - 1 5 4 5 .  S t r u c t u r e s a n d p r o p e r t i e s of c e l l u l o s e f i b r e s .  In  C e l l u l o s e a n d C e l l u l o s i c D e r i v a t i v e s P a r t I. E . H . O t t et a l . ed. Intersc. 87.  P u b . , N . Y . pp. 217-230.  and A . V . T o b o l s k y . Polymeric Systems. 506 p p .  1950.  P h y s i c a l C h e m i s t r y of H i g h  2nd E d . I n t e r s c .  Pub. Inc.,  N. Y.  114  88.  Mark,  R.  1965.  T e n s i l e s t r e s s a n a l y s i s o f the c e l l w a l l s o f  coniferous Plants. 89.  t r a c h e i d s . In C e l l u l a r U l t r a s t r u c t u r e of W o o d y  W . A . CSte. ed. Syracuse Univ. P r e s s ,  M e i e r , H . 1964.  pp. 493-534.  G e n e r a l c h e m i s t r y of c e l l w a l l s and d i s t r i b u t i o n  of the c h e m i c a l c o n s t i t u e n t s a c r o s s the w a l l s . In T h e F o r m a t i o n of W o o d i n F o r e s t T r e e s . M . H . Z i m m e r m a n , ed. A c a d e m i c P r e s s , N . Y . pp.137-152. 90.  and K . C . B . W i l k i e .  1957.  T h e d i s t r i b u t i o n of p o l y s a c c h a -  r i d e s i n the c e l l w a l l of t r a c h e i d s o f p i n e ( P i n u s s y l v e s t r i s L . ) . Holzforsch. 91.  Miles,  F . D.  13 : 1 7 7 - 1 8 2 .  1955.  Cellulose Nitrate.  O l i v e r and B o y d , L o n d o n .  422 p p . 92.  M U h l e t h a l e r , K . 1949. Biochim.  93.  E l e c t r o n m i c r o g r a p h s of p l a n t  Biophys. Acta.  N e i s h , A . C . 1964.  fibres.  3 : 15-25.  Cinnamic acid derivatives  as i n t e r m e d i a t e s  the b i o s y n t h e s i s o f l i g n i n a n d r e l a t e d c o m p o u n d s . F o r m a t i o n of W o o d i n F o r e s t T r e e s .  in  In T h e  M .H. Zimmerman,  ed. A c a d e m i c P r e s s , N . Y . pp. 219-242. 94.  N o r m a n , A . G . 1937. uronides,  95.  T h e B i o c h e m i s t r y of C e l l u l o s e .  lignin,  etc.  O l s e n , F . and H . A . A a r o n s o n . solutions of c e l l u l o s e .  96.  The Clarendon Press,  Panshin,  A. J. ,  De Z e e u w ,  1929.  97.  Purves,  Oxford.  232 p p .  C o n t r o l of v i s c o s i t y of  I n d . E n g . C h e m . 21 : 1 1 7 8 - 1 1 8 1 . C . and H . P .  Brown.  of W o o d T e c h n o l o g y V o l I. 2 n d e d . Inc.,  The poly-  1964.  Textbook  M c G r a w - H i l l Book Co.  N . Y . 643 p p .  C . B . 1954.  C h e m i c a l nature of c e l l u l o s e and its  derivatives.  In C e l l u l o s e a n d C e l l u l o s e D e r i v a t i v e s . P a r t I. O t t et a l . ed. 98.  Intersc.  R a n b y , B . G . a n d S. A . R y d h o l m . 1956. derivatives. ed.  99-  P u b . , N . Y . pp. 29-53.  Inter.  Richardson,  Sc.  S. D .  C e l l u l o s e and c e l l u l o s e  In P o l y m e r P r o c e s s e s .  C. E .  Schildknecht.  P u b . , N . Y . pp. 351-428.  1964.  size in conifers.  The external environment and t r a c h e i d In T h e F o r m a t i o n of W o o d i n F o r e s t  M . H . Z i m m e r m a n , ed. A c a d e m i c P r e s s ,  Trees.  N . Y . pp. 367-388.  115 100.  R i t t e r , G . J . 1925. D i s t r i b u t i o n of l i g n i n i n w o o d . C h e m . 17 : 1 1 9 4 - 1 1 9 7 .  101.  and L . C . F l e c k . Eng.  Chem.  1922.  Ind. E n g .  C h e m i s t r y of w o o d .  J . Ind.  14 : 1 0 5 0 - 1 0 5 4 .  102.  .  1926.  Springwood and s u m m e r w o o d .  C h e m i s t r y of wood. IX. Ind. E n g . C h e m .  18 :  608-609. 103.  and E . F . K u r t h .  1933.  Holocellulose, total c a r b o -  h y d r a t e f r a c t i o n of e x t r a c t i v e - f r e e Eng.  Chem.  maple wood.  Ind.  25 : 1 2 5 0 - 1 2 5 3 .  104.  R o s e v e a r e , W . E . a n d L . P o o r e . 1955. N i t r a t i o n a n d f r a c t i o n a t i o n o f r a y o n s . I n d . E n g . C h e m . 45 : 2 5 1 8 - 2 5 2 1 .  105.  Rydholm,  S. A .  1965.  Pulping Processes.  Intersc.  Pub., N. Y.  1269 p p . 106.  S c h o r g e r , A . W . 1917. T h e c h e m i s t r y of w o o d . C h e m . 9 : 556-561.  107.  Schubert,  W . J . 1965.  J . Ind. E n g .  Lignin Biochemistry. Academic Press,  N . Y . 131 p p . 108.  Schuerch,  C . 1963.  Wood. 109.  Schwartz,  The hemicelluloses.  In T h e C h e m i s t r y o f  B . L . B r o w n i n g , ed. Intersc. P u b . , N . Y . pp.  E . C . A . and T . E . T i m e l l .  1963.  191-248.  C h a r a c t e r i z a t i o n of  t h r e e c e l l u l o s e s f r o m the w o o d o f a m a b i l i s f i r ( A b i e s amabilis) Can. J . Chem. 110.  Sherrard,  41 : 1 3 8 1 - 1 3 8 8 .  E . C . a n d E . F . K u r t h . 1933.  i n r e d w o o d . Ind. E n g . C h e m . 111.  Snyder,  J . L . and T . E . T i m e l l .  1955.  native b a l s a m fir cellulose.  D i s t r i b u t i o n of  extractive  25 : 3 0 0 - 3 0 2 . M o l e c u l a r p r o p e r t i e s of  Svensk P a p p e r s t i d .  58 :  851-859. 112.  Spurlin",  H . M . 1939. A r r a n g e m e n t of s u b s t i t u e n t s i n  derivatives.  113.  Squire,  G.B.  1965.  extractives.  J . A m . Chem.  Soc.  61 :  cellulose  2222-2227.  New m i c r o t e c h n i q u e for d e t e r m i n i n g wood Unpub.  Vancouver, B . C .  Report. F a c . F o r . Univ.  Brit. C o l . ,  116  114.  Squire,  G . B . , Swan,  E . P.  and J . W . W i l s o n .  In P r e s s .  New  m i c r o t e c h n i q u e f o r d e t e r m i n a t i o n of w o o d e x t r a c t i v e s . Pulp Paper Mag. Can.  115.  Stamm,  116.  Steele,  A . J . 1964. W o o d a n d C e l l u l o s e S c i e n c e . N . Y . 549 p p . R . G . D . and J . H . T o r r i e . of S t a t i s t i c s .  117.  Stewart,  I960. P r i n c i p l e s and P r o c e d u r e s  M c G r a w - H i l l Book C o . Inc.,  C M . 1954.  . 1966. Tech. Sci.  119.  A.  Svedberg,  1961.  Swenson,  T . and K . O .  H . A . 1963.  N . Y . 665 p p . Pedersen. Oxford.  S e c t i o n 15.  1940.  The Ultracentrifuge.  478 p p . I n t r i n s i c v i s c o s i t y and its  c o n v e r s i o n to m o l e c u l a r w e i g h t . hydrate C h e m i s t r y . ed; A c a d e m i c P r e s s , 122.  V o l . III.  In M e t h o d s i n C a r b o -  Cellulose. R. L . Whistler,  N . Y . pp. 84-90.  T A P P I Standards and Suggested M e t h o d s . wood T17 m-55. New Y o r k ,  Tech. Assoc.  Cellulose in  P u l p and P a p e r I n d . ,  . T9 m-54.  New Y o r k ,  1954.  N. Y.  123. wood.  Commonwealth  Quantitative O r g a n i c M i c r o a n a l y s i s . 2nd Ed.  Clarendon Press, 121.  D i v . of F o r . P r o d .  O r g . , A u s t r a l i a . 107 p p .  Academic Press, 120.  H o l z f o r s c h . 8 : 46-48.  T h e c h e m i s t r y of s e c o n d a r y growth i n t r e e s .  P a p e r Wo. 4 3 .  Ind. R e s .  Steyermark,  N . Y . 481 p p .  A n o u t l i n e of the c o m p o s i t i o n a n d n o m e n -  c l a t u r e of w o o d p o l y s a c c h a r i d e s . 118.  Ronald Press,  Tech. Assoc.  1954.  Holocellulose  P u l p and P a p e r I n d . ,  N. Y.  124.  1961.  Alpha-,  and g a m m a - c e l l u l o s e i n pulp. T 2 0 3 - o s - 6 l . Assoc. 125.  Thompson,  in  P u l p and P a p e r Ind. , New Y o r k ,  beta-,  Tech.  N. Y.  N . S. , H e l l e r , H . H . , H a n k e y , J . D . a n d O . S m i t h .  I n v e s t i g a t i o n s o n the i s o l a t i o n a n d c a r b o h y d r a t e  sition of different components of t r e e s and woods. P a p e r M a g . C a n . 67 : T 5 4 1 - T 5 5 1 .  1966.  compoPulp  117  126.  Timell,  T . E . 1954.  T h e effect of r a t e of s h e a r o n the  viscosity  of d i l u t e s o l u t i o n s o f c e l l u l o s e n i t r a t e . S v e n s k P a p p e r s t i d . 57 : 7 7 7 - 7 8 8 . 127.  . 1954.  T h e i n f l u e n c e of r a t e of s h e a r on v i s c o s i t y -  c o n c e n t r a t i o n r e l a t i o n s h i p for dilute solutions of nitrate. 128.  cellulose  S v e n s k P a p p e r s t i d . 57 : 8 4 4 - 8 4 9 .  .  1954.  T h e e f f e c t of s o l v e n t - s o l u t e  i n t e r a c t i o n o n the  v i s c o s i t y of dilute solutions of c e l l u l o s e n i t r a t e . Papperstid. 129.  .  Svensk  57 : 9 1 3 - 9 2 0 .  1955.  Chain length and chain-length distribution  of n a t i v e w h i t e s p r u c e c e l l u l o s e . P u l p P a p e r M a g . C a n . 56 : T 1 0 4 - T 1 1 4 . 130.  .  1957.  cellulose 131.  N i t r a t i o n as a m e a n s o f i s o l a t i n g t h e a l p h a -  component of wood.  . I960.  T a p p i 40 : 3 0 - 3 2 .  I s o l a t i o n of h a r d w o o d g l u c o m a n n a n s .  Svensk  P a p p e r s t i d . 63 : 4 7 2 - 4 7 6 . 132.  .  I 9 6 I .  I s o l a t i o n o f g a l a c t o g l u c o m a n n a n s f r o m the w o o d  of g y m n o s p e r m s . 133.  . 1964.  T a p p i 44 : 8 8 - 9 6 .  Studies on s o m e ancient plants.  Svensk P a p p e r s t i d .  54 : 8 3 1 - 8 4 5 . 134.  . 1965.  S e c t i o n 11-30. C e l l u l o s e f r o m W o o d .  Methods i n Carbohydrate C h e m i s t r y . V o l . V .  In_  General  P o l y s a c c h a r i d e s . R . L . W h i s t l e r , ed. A c a d e m i c P r e s s , N . Y . pp. 100-103. 135.  .1965.  Wood and b a r k p o l y s a c c h a r i d e s .  In C e l l u l a r  U l t r a s t r u c t u r e of Woody P l a n t s . W . A . Cote. ed. Syracuse Univ. 136. 137.  Press,  pp. 127-154.  . Personal communication. and E . C  Jahn.  1951.  A s t u d y o f the i s o l a t i o n a n d  p o l y m o l e c u l a r i t y of p a p e r b i r c h h o l o c e l l u l o s e . Papperstid. 138.  139.  54 : 8 3 1 - 8 4 6 .  V a n B e c k u m , W . G . and G . J . R i t t e r . of w o o d .  Svensk  1937. C h e m i c a l  composition  P a p e r T r a d e J . 104 (19) : 4 9 - 5 0 .  V o g e l , A . I . 1962. P r a c t i c a l O r g a n i c C h e m i s t r y . 3 r d E d . L o n g m a n s G r e e n a n d C o . L o n d o n , p p . 188.  118 140.  Walters,  J . and J . S o o s .  1963.  Shoot g r o w t h p a t t e r n s of s o m e  British Columbia conifers.  F o r e s t S c i . 9 : 73-85.  141.  W a r d r o p , A . B . 1951. C e l l w a l l o r g a n i z a t i o n a n d the p r o p e r t i e s o f the x y l e m . A u s t . J . S c i . R e s . ( s e r . B . ) 4 : 3 9 1 - 4 1 4 .  14Z.  _^  '  1964.  sperms.  R e a c t i o n a n a t o m y of a r b o r e s c e n t  angio-  I n _ T h e F o r m a t i o n of W o o d i n F o r e s t T r e e s .  M . H . Z i m m e r m a n , ed. A c a d e m i c P r e s s , N . Y . pp. 405-456. 143.  .  1964.  T h e s t r u c t u r e a n d f o r m a t i o n o f the  wall in xylem.  M . H . Z i m m e r m a n , ed. A c a d e m i c P r e s s , 144.  and D . E . B l a n d . i n woody plants.  1959.  N . Y . pp. 87-136.  T h e p r o c e s s of l i g n i f i c a t i o n  In P r o c . 4th Int.  C o n g r . of B i o c h e m .  K . K r a t z l and G . B i l l e k . ed. P e r g a m o n P r e s s , pp. 92-113. 145.  W a r e i n g , P . F . , Hanney,  C . E . A . and J . D i g b y .  h o r m o n e s i n c a m b i u m and x y l e m . Wood in Forest T r e e s . Press, 146.  cell  In T h e F o i ' a t i o n o f W o o d i n F o r e s t T r e e s .  1964.  N.Y.  Endogenous  In T h e F o r m a t i o n o f  M . H . Z i m m e r m a n , ed.  Academic  N . Y . pp. 323-344.  W a t s o n , A . J . 1962.  A s e m i - m i c r o p r o c e d u r e for estimating  resistant carbohydrate m a t e r i a l in wood.  the  T a p p i 45 :  722-724. 147.  Wellwood,  R . W . , Ifju, G . a n d J . W . W i l s o n . 1965.  p h y s i c a l p r o p e r t i e s of c o n i f e r s . s t r u c t u r e of W o o d y P l a n t s . Univ. 148.  Wilson,  Press,  W . A . C6te.  C . L . and D . W . W i l s o n . I960.  W i l s o n , J . W . 1964.  150.  Res.  UltraSyracuse  Comprehensive Analytical  Classical Analysis.  Wood characteristics.  p h y s i c a l and c h e m i c a l p r o p e r t i e s . Can.,  ed.  Intra-increment  pp. 539-550.  Chemistry. V o l . IB. C o . , N . Y . 878 p p . 149.  In C e l l u l a r  Note N o .  a n d G . Ifju.  Elsevier Pub.  Ill. Intra-increment Pulp Paper Res.  45.  1965.  Wood characteristics.  VII.  I n t r a - i n c r e m e n t r e l a t i o n s h i p of D o u g l a s f i r w o o d tensile strength,  Inst.  and stiffness.  Can. , Montreal. Tech.  Rep.  density,  P u l p P a p e r R e s . Inst.  424.  119  151.  W i l s o n , J . W . and R . W . W e l l w o o d .  Wise,  Intra-increment  chemical species.  In C e l l u l a r U l t r a s t r u c t u r e of W o o d y P l a n t s .  Cote,  ed. Syracuse Univ. 152.  1965.  p r o p e r t i e s of c e r t a i n w e s t e r n C a n a d i a n c o n i f e r o u s  L . E . 1958.  Press,  W. A .  pp. 551-559-  What is wood cellulose - a semantic  dilemma.  T a p p i 41 : 1 4 A - 2 2 A . 153.  , Murphy,  M . a n d A . A . D ' A d d i e c o . 1946.  Chlorite  holocellulose,  its f r a c t i o n a t i o n and b e a r i n g on  wood analysis  a n d o n s t u d i e s o n the he m i c e l l u l o s e s .  summative  P a p e r T r a d e J . 122(2) : 3 5 - 4 3 . 154.  Worrall,  J . G . 1963.  The relationship between fractional void  volume and wood quality in western Canadian conifers. Unpub.  Thesis.  F a c . F o r . Univ.  Brit.  Col. , Vancouver,  B. C. 155.  Wu, Y . T .  1963.  I n t r a - i n c r e m e n t m e t h o x y l content of five  Canadian woods. Col., 156.  .  Unpub. paper.  157.  1964.  I n t r a - i n c r e m e n t l i g n i n c o n t e n t of f i v e w e s t e r n  Brit.  and J . W . W i l s o n .  Zahner, R.  1962.  Unpub.  Thesis.  Fac. For.  Col. , Vancouver, B . C .  growth zones. 158.  1967.  Lignification within  159.  T e r m i n a l growth and wood f o r m a t i o n b y juvenile Forest  8 : 345-352. • 1963.  Internal m o i s t u r e s t r e s s and wood f o r m a t i o n  in conifers. 160.  coniferous  P u l p P a p e r M a g . C a n . 68 : T 1 5 9 - T 1 6 4 .  l o b l o l l y p i n e u n d e r two s o i l m o i s t u r e r e g i m e s . Sci.  western Brit.  Vancouver, B . C .  Canadian coniferous woods. Univ.  F a c . F o r . Univ.  Forest Prod.  J . 13 : 2 4 0 - 2 4 7 .  Z o b e l , B . J . a n d R . L . M c E l w e e . 1958. loblolly pine.  V a r i a t i o n of c e l l u l o s e i n  T a p p i 41 : 1 6 7 - 1 7 0 .  TABLES AND  FIGURES  TABLE  1.  121  A n a l y s e s on c o n i f e r o u s e a r l y w o o d ( E ) , l a t e w o o d ( L ) , a n d w h o l e w o o d (W) c a r b o h y d r a t e f r a c t i o n s f r o m the l i t e r a t u r e (based on o v e n - d r y , e x t r a c t i v e - f r e e wood).  . .Species  Ref.  . No.  . No.  o*C - C e l l u l o s e  Stems  Pairs  by nitration,  % Pinus montieola Pinus resinosa  ioi  Dougl. Ait.  Pinus sylvestris L .  b  1  1  53°  1  1  76  2  24  8  9  hb  Pinus ponderosa  Laws.  ioi  Pinus banksiana  Lamb.  130 106  Pinus palustris Pinus taeda L .  Mill.  b  102 P i n u s d e n s i f l o r a S.  et Z .  P i c e a glauca (Moench)  Voss  •f b  4 125 l  55  4  52S  1  106  Nutt.  4  106  Tsuga canadensis ( L . ) A b i e s a m a b i l i s (Doug.) Sequoia s e m p e r v i r e n s Endl.  "U' h  Thuja occidentalis  51 1  a)  G = glucose, after  1  1  b 102°  3 1  2 1  71-77  106  4  1  57-64  53-61 4 3.8  b  b  4  2  b  4  2  130  ioi  M=  c)  a f t e r W i s e et a l .  d)  by  calculation glucomannan  75.3  69-68  b  4  2  (33):  (153)  e)  as  f)  after Yundt and  g) h)  sulfite pulp species probably E u r o p e a n species sapwood  (160)  46-48 45-51 56.0  48 40-44 44. 6  mannose  Bradway  48 70 . 9  41. 3  C r o s s and B e v a n  48  53°  b  (D. Don. ) Spach  b)  60-63  48. 5  C h a m a e c y p a r i s nootkatensis  52-57 61.2  37. 0 - 4 0 . 3 4 2 . 8 - 4 3 . 5  1  106  39 45  58.0  4  51-55  L  M  a  G  M  49.9  13.9  53.0  77-84  130 (D. Don.): 106  L.  45.3  1  G-  .a  • %  44  55-61  500  Forb.  Torr.  W  56-59  130  Libocedrus decurrens  74.8  Hydrolyzates, E  57-60 73. 2  46. 0  6 8  Carr.  Cellulose, % *L  W  4  menziesii  (Mirb.) Franco  L  1  130 Pseudotsuga  %  2  130, L a r i x occidentalis  'E  <^<-  41. 3  160,  P i c e a abies ( L . ) K a r s t  4  H o l o c e l l u l ose,  59.4  45 47 38 20 49 36  47.8  11.0  d  56. 7  20 . 3  e  56. 2  24.  8  d  e  122  T A B L E 2.  D e t e r m i n a t i o n of r e p l i c a t i o n n u m b e r on  <=>< -  cellulose  y i e l d for 40-60 m e s h Douglas fir latewood m e a l u s i n g three sample 13.65  sizes (nitrocelluloses  c o r r e c t e d to  + 0. 30% n i t r o g e n ) .  Sample  size  0. 05  0. 10  0.20  1  47. 2  51. 2  51. 5  2  48. 5  51. 0  50. 6  3  43. 9  51. 0  51. 1  4  45. 4  50. 3  50. 6  5  47. 6  50. 3  51. 6  46. 5  50. 8  51. 1  Item  m e a n (x)j  %  v a r i a n c e (s  )  r e p l i c a t i o n n o . (n) Total  oven-dry)  3.4  0. 20  0.23  4. 3  2. 4  2.9  2. 2  . 3  .6  sample  required, R e p l i c a t i o n n u m b e r was (116):  ;  (g  g  d e t e r m i n e d by Stein's two-way s a m p l i n g  2  \  technique  2 S  n =  C1 3  where:  n  replication number  d = h a l f - w i d t h of d e s i r e d confidence i n t e r v a l  (4. 54) (s (0.6%)  %): 2  s  = sample  variance  t,  = t a b u l a t e d t f o r a 90% confidence i n t e r v a l (1, 4),= t  2  = 4. 54  TABLE  3.  D e t e r m i n a t i o n of r e p l i c a t i o n n u m b e r f o r latewood nitrocellulose nitrogen  Estimated  Item  N i t r o g e n Content, %  1  13.80  2  13.82  3  13.77  4  13.70  5  13.83  x  13.78  S  0.0027  2  n  R e p l i c a t i o n n u m b e r was t e c h n i q u e (116)  1.92  d e t e r m i n e d b y Stein's 2-way s a m p l i n g  as i n T a b l e 2.  d  Douglas  content.  t ' > '• ° ° » 4  54  (0.08)  2 7  C3 D  124 T A B L E 4. •  S u m m a r y of a l p h a - c e l l u l o s e  Stem Species  Picea  sitchensis  No.  Increment No.  70  (Bong. ) C a r r  Picea mariana  34  ( M i l l . ) B . S. P .  a n d l i g n i n e s t i m a t e s and n i t r o c e l l u l o s e v i s c o s i t i e s f o r t e n c o n i f e r o u s i n c r e m e n t s  Posi tion  47. 5  47. 1  46. 6  47. 6  47. 5  3  48. 6  48. 5  47. 8  48. 0  4 5 6  49. 8 49. 6 47. 6  50. 1 50. 1 47. 8  49- 7 49-9 47. 5  49. 2  1 2  43. 1  43. 5  44. 0  44. 7  1  40  amabilis  78  (Dougl. ) Forb  25. 0  24. 8  24. 9  49.9 47. 6  :25.."5 25. 4  25. 3 25. 6  43. 6  43.4  30. 3  45. 0  44. 6  30. 4  44. 9 45. 5 47. 0  44. 7 46. 1  45. 0 46. 1  44. 8  46. 8  46. 5  45. 8 46. 2  46. 0  46. 0 46. 8  46. 3 47. 2  9 1 6 2  45. 8 47. 7 47. 3  48. 3 43. 4  47. 4  2 3  45. 7 46. 1  44. 8 46. 4  43. 9 45. 1 46. 3  4  46. 8  48. 5  47. 7  5 6  48. 1  49. 1 48. 2  49- 0  48. 2  25. 5  49. 7  %  73. 8  46. 3  9 26. 2  estimates,  25. 6  47. 4 44. 6  45. 9 46. 8 46. 0 46.4 46. 0 47. 3 47. 5 47. 7  48. 1  45. 2  49. 7  74..9 73.7  34. 8  27. 6 4  73. 6 73. 7  30. 8 32. 2  73.9 73. 5  28. 5 30. 3  33. 5 32. 5 33. 4  35. 3  36. 7  34. 9 32. 1  35. 3 32. 6  3.1. 32. 34. 31.  32. 1  25. 7  25. 9 25. 2  24. 9  47. 3  46. 6  46. 9  46. 4  47. 2 46. 6  1  44. 6  43. 8  44. 3  *44. 3  2  42.8  43. 2  43. 9  *43. 2  43. 2 43. 6  26. 5  25. 8 26. 7  47. 4  47. 8  46. 7  28. 9 27. 3  26. 0 26. 6  47. 4  5 6  33. 6 33. 7  28. 7 27. 2  2,8. 3  45. 1 46. 5  44. 0 46. 2  47. 0  31.7  75. 0 75..4  28. 6  44. 7  45. 5 46. 4  36. 4 34. 0  29. 1 28.6  25. 3 27. 1  45. 0 46. 1  3  43. 9  35. 0 33. 8  29. 3 28. 6  25. 9 25. 2 27. 1  25. 8  43. 9 43. 2  38. 6  29. 5  2 6 .  74. 2 75. 0 74. 1  49. 4  1 2  37. 3  25. 28. 28. 27.  25. 3 27. 1 28. 4 26. 0  71.4 72. 3 72. 6  33. 5  9 4 0 7  37. 5  25. 1  73. 3  34. 1  30. 3  29. 1 30. 7  74. 3 74. 7  25. 1 24. 5  28. 8  28.6  74. 8 74. 0  27. 6 24. 1  25. 7 2 6 . 1  25. 8 2 6 . 0  75. 2  30. 5  29. 3 28. 4  30. 8 36. 2 32. 8  27. 5 2 6 . 7  29.0 28. 3 27. 7 2 6 . 6  73. 8 72. 2  2 6 . 2 6 .  4  2 6 .  0  2 6:'2  73. 4  2 6 .  3  2 6 .  2  26. 2  27. 9  27. 8  72. 8 72. 1  29. 0  29. 0  72. 2  71.9 72. 8 73. 1  35. 2 32. 2 35. 0 32. 5  25. 8  29. 29. 25. 32.  1 7 9 6  31. 5 28. 4  2 9 .  33. 8 30. 5 36. 7 36. 6  31. 0 28. 0 26. 5 30. 0 34. 2 30. 6  38. 8  38. 0 35.4  36. 8 35. 5 33. 3 37. 5 34. 8 38. 5 36. 5 35. 6  36. 6  37. 2  34.9 26. 4  39. 2  26. 0 8  25. 8 30. 6 30. 6 32. 2 32. 8 31.2 33. 8 28. 0 31. 0 27. 9  30. 0 36. 1 35. 1 37. 4  33. 1  2 6 .  29. 2 32. 1  34. 3  33. 0  34. 9 31. 1 32. 5 32. 2  26. 4  37. 3  35. 9  73. 6 73. 1  26. 7  9 7 3 8 6  27. 7 29. 0  34. 2  29. 3  26. 5 26. 0  47. 6  4947. 43. 43.  35. 8  27. 9 2 6 . 4 26. 5  8 3 3 6  47. 2  34. 3 36. 2  26. 5 26. 0  45. 5 48. 0  49. 4 47. 4 42. 4  36. 0  47. 7  46. 4  47. 6  35. 5 32. 1  75. 1 74..3  4 26. 2  29. 1 31. 1 28. 4 2 6 . 4  49. 0 48. 7  7 3.8  30. 5  73. 9 73. 8  44. 8 44. 0  5 6  30. 4  30. 5  28. 7 27. 6  45. 2  4  30. 5  28. 6  45. 5 43. 4  46. 7  30. 9 30. 5  27. 4  48. 2  45. 2 44. 5  29. 3 28. 5  28. 7 27. 8  48. 7  46. 9 47. 6  25. 4 25. 5  45. 2 46. 2  46. 9 47. 3  46. 8  4  72. 9 72. 5  47. 7 47. 6.  47. 1 47. 3 48.2  31.2  28. 9  25. 2 28. 5  46. 9  46. 1  30. 2  x  28. 5  25. 2 28. 7  43. 9 46. 6  3  27. 4 2 6 .  replications  74. 6 7 5. 3 73. 1  25. 8  44. 1 47. 1  4  29. 1 27. 4  viscosity  dl/j  27. 6 26. 4  25. 2 28. 4  44. 1 46. 5  43. 4  29. 7 28. 9 28. 6  _(7  29. 9 26. 3  2 6 .  26. 0  49- 1 44. 3  2  r  Nitrocellulose  31. 6 26. 5 26. 7  2 6 .  47. 7 44. 0  44. 0  49. 1 44. 5  2 6 .  26. 4 25.8  49. 0 48. 8 44. 3  1  4  79  6  26. 0  x  25. 7  47. 6 47. 7  3  Abies  46. 9 47. 7  X  plus L i g n i n  73. 6 73. 8  4 5 6 1  56 1 2  46. 5  Alpha-cellulose  7 26. 1  45. 47. 47. 47.  3  66  replications  48. 0  2  65  Estimated lignin., reps.  %  1  4 5 6 64  cellulose,  2  3  Pseudotsuga menziesii (Mirb. ) Franco  E s t i m a t e d alpha-  examined.  33. 0  31  6  32  8  30  8  29. 0 29. 6 30. 0 33. 4 31. 5 34. 1 28. 4 24. 9  125 T A B L E 4 (Continued)  Stem No.  Species  Abies  Incre ment No.  Position  replications  x  Forb.  73  3 4 5 6  80  Thuja p l i c a t a Donn  73  44. 5 45. 5  44. 1 46. 6  45. 2 45. 7  Nitrocellulose  %  plus L i g n i n  x  jjffl  reps  x  estimates,  %  viscosity  replications  x  46. 7  46. 9 47. 1  47. 5 46. 9 42. 0  27. 7 27. 3  27. 9 27. 1  27. 8 27. 2  72. 4 73. 3  28. 4 33. 2  28. 6 33. 8  30. 3  46. 7  47. 0 46.6  26.4 26. 0  26. 8  26. 6  34.2  26. 2  35. 5 26. 2  29. 6  26. 5  73. 6 72. 8  42. 5  9  28. 5 29. 2  28. 7  71. 2 71. 4  30. 8  34. 5 31. 6  28. 3  28. 2  28. 0  34. 1 31. 5 30. 7  45. 8 43. 3  2  42. 1  41. 8 42. 2  42. 3  42. 5 *42. 2  3  43. 0  43. 3  43. 3  4 3 . 5 *43. 3  4  45. 2 46. 0  45. 1 46. 3  44. 1  44. 8  44. 8 40. 2  45. 6 41.2  45. 3 45. 6  45. 9 45. 3  40. 6  *40. 7  43. 0  42. 6  42. 7  42. 8  1 2  28.  29. 1 28. 2  27. 6  30. 8  31. 4  31.7  31.7 32. 8  32. 4 32. 6  28. 5 27. 7 32. 0  31. 3  26. 5  72. 4 71. 7 72. 7  30. 4  26. 2  26. 5 26. 4 32. 0 * 32. 7  75. 5  31. 8  31.5 30. 5  75. 7 75. 7 76. 2 75. 4  28. 0  29. 2  26. 5 28. 6 30. 1  27. 8 28. 8 32. 0  44. 0  44. 3  44. 2  31. 5  31. 6  45. 3  45. 5 45. 3 45. 5  45. 2  30. 7  45. 5 45. 7  30. 6  30. 3 30. 8  29. 8  29. 6  60  60  45. 9  27. 6  1. 98  %  position 6 = last-formed  30. 7  29. 7  latewood. * repeated  value  1.95  60 73. 5 1. 23  30. 3  32. 7  27. 6  44. 9 45. 3 45. 7  , %  9  26. 4  44. 2  N  32.  27. 6 26. 6  3  45. 9 46. 0  29. 2  30.4  71. 5 72. 4  4 5 6  a) P o s i t i o n 1 = f i r s t - f o r m e d e a r l y w o o d ;  44. 6 46. 1  46. 7  1  5 6  s,  Alpha-cellulose  lignin,  amabilis (Dougl.)  x  Estimated  E s t i m a t e d alphacellulose,  29. 4 32. 4 28. 1  30. 6  30. 0  30. 4  28. 3 30. 6  29. 7  31. 1  29. 5  28. 5  32. 7  33. 0  28. 6 27. 5 30. 7 30. 6  126 T A B L E 5.  L i n e a r r e g r e s s i o n o f a l p h a - c e l l u l o s e e s t i m a t e s ( Y , %) on position (X) for a l l species and i n c r e m e n t s .  P i c e a sitchensis  (Bong.)  Increment No.  Carr. 70  Y = 47.17 + .33 X  n=6  r=.51  SE  =  1.2  S E = E  . 72  E P i c e a m a r i a n a ( M i l l . ) B . S. P . Increment No. Y = 4 3 . 19 + . 59 X  34 n=6  r=.90*  Pseudotsuga menziesii (Mirb. ) Franco Increment No. Y = 43.64 + . 8 7  X  40 n=6  r=. 8 3 *  -SE  =1.2  SE  =.88  I n c r e m e n t N o . 64 to 66 Y = 44. 08 + . 7 5 X  n = 18  r=.86**  E Abies amabilis (Dougl.)  Forb.  Increments No. Y = 42.22 + .76 X  78 to 80  n = 18  r = . 83**  SE  =.34 E  T h u j a p l i c a t a Donn. Increment No. 7 3 Y=  40.62 + .97 X  n=6  r=.93**  SE  =.78 E  * * highly significant *  significant  127  T A B L E 6.  A n a l y s i s of v a r i a n c e for alpha-oellulose  estimates  (%)  w i t h i n P i c e a m a r i a n a ( M i l l . ) B . S. P . I n c r e m e n t N o .  Source Among  positions  df_  ss  MS  5  2 1 . 67  4. 33  Within positions  12  1. 12  Total  17  22. 79  F  34.  F . 01  47.41**  5.06  0. 093  * * highly significant  T A B L E 6A.  D u n c a n ' s test of m e a n a l p h a - c e l l u l o s e e s t i m a t e s within P i c e a m a r i a n a ( M i l l . ) B . S . P .  Position  1  2  Alpha-cellulose  4 3 . 4 0 4 5 . 57  (%)  Increment No.  34.  3  4  6  5  44.87  45.90  45.93  46.77  no s i g n i f i c a n t d i f f e r e n c e b e t w e e n m e a n s .  T A B L E 7.  A n a l y s i s o f v a r i a n c e f o r a l p h a - c e l l u l o s e e s t i m a t e s (%) within P i c e a sitchensis  (Bong.) C a r r .  Increment No.  70.  Source  df  ss  MS  F  F . 01  A m o n g positions  5  20.03  4.07  34.27**  5. 06  Within positions  12  1.40  Total  17  21.43  0.117  128  T A B L E 7A.  D u n c a n ' s t e s t o f m e a n a l p h a - c e l l u l o s e e s t i m a t e s (%) within P i c e a sitchensis  (Bong.) C a r r .  Increment No.  70.  Position  1  6  2  3  4  5  Alpha-cellulose  47.07  47. 64  4 7 . 70  48. 10  49.67  49.87  T A B L E 8,  A n a l y s i s o f v a r i a n c e f o r a l p h a - c e l l u l o s e e s t i m a t e s (%) within T h u j a p l i c a t a Donn.  Increment No.  Source  df  ss  MS  F  A m o n g positions  5  58.29  11.66  116.6**  Within positions  12  1.21  Total  17  59-50  T A B L E 8A.  73.  F . 01 5.06  0.10  D u n c a n ' s t e s t o f m e a n a l p h a - c e l l u l o s e e s t i m a t e s (%) within Thuja plicata Donn Increment No.  73.  Position  1  2  3  4  5  6  Alpha-cellulose  40.67  42.77  44.17  45.23  45.50  45.73  T A B L E 9.  A n a l y s i s of v a r i a n c e for a l p h a - c e l l u l o s e e s t i m a t e s within Pseudotsuga m e n z i e s i i ( M i r b . ) F r a n c o No. 40.  Source  df  ss  MS  F  A m o n g positions  5  58.14  11.63  39. 8 3 * *  Within positions  12  3.50  Total  17  61.64  0.29  F . 01 5.06  (%)  Increment  129  T A B L E 9A  Duncan's test of m e a n a l p h a - c e l l u l o s e within Pseudotsuga m e n z i e s i i ( M i r b . )  e s t i m a t e s (%) Franco  Increment N o . 40.  TABLE  Position  2  Alpha-cellulose  43.96  10.  1 45.17  3  4  6  5  46.20  47.60  47.80  49.40  A n a l y s i s of v a r i a n c e for a l p h a - c e l l u l o s e within Pseudotsuga m e n z i e s i i ( M i r b . ) Increments  e s t i m a t e s (%)  Franco  N o . 64 to 66.  Source  df  as  Position  5  158.05  Increment  2  P x I  MS  F . 01  31.61  131. 3 * * 3 . 5 4  2.921  1.46  6.06**5.23  10  14.194  1.42  5. 8 9 * * 2 . 84  Error  38  9. 151  Total  55  T A B L E 10A.  241  184.32  Duncan's test of m e a n a l p h a - c e l l u l o s e  e s t i m a t e s (%)  within Pseudotsuga m e n z i e s i i ( M i r b . ) F r a n c o ;  Increments  N o . 64 to 6 6 .  Position  1  Alpha-cellulose  4 4 . 89  Increment  66  Alpha-cellulose  46.26  44.97  . 65 46.83  46.73  64 47.11  47.46  48.07  48.22  130  TABLE  11 .  A n a l y s i s of v a r i a n c e for alpha-cellulose w i t h i n A b j es a m a b i l i s ( D o u g l . ) F o r b .  e s t i m a t e s (%)  Increments No.  78 to 8 0 .  TABLE  Source  df_  ss  Position  5  130. 86 26. 17  108. 6** 5. 16  Increment  2  33. 66 16. 83  69. 8 0 * * 3 . 48  P x I  10  -9.29  Error  42  10.13  Total  59  165.36  11 A .  MS  F . 01  -0.93  -3.85  2.78  .241  Duncan's test of m e a n alpha-cellulose  e s t i m a t e s (%)  within A b i e s amabilis (Dougl. ) F o r b . Increments N o . 78 to 80.  Position  1  2  3  4  5  6  Alpha-cellulose  43.05  43.34  44. 31  4 5 . 82  46.19  46.76  Increment  80  79  78  Alpha-cellulose  44.01  45.28  45.39  131  TABLE  12 .  L i n e a r r e g r e s s i o n o f l i g n i n (-Y, %) o n a l p h a - c e l l u l o s e e s t i m a t e s ( X , %) f o r a l l s p e c i e s a n d i n c r e m e n t s .  P i c e a sitchensis (Bong.) C a r r .  Y = 46. 10 - . 4 2 2 X  P i c e a m a r i a n a ( M i l l . ) B . S. P .  Y = 56. 42 - . 595X  Increment No.  n=6  70  r=-% 8 2 0 *  Increment No.  n=6  r=-w921**  n=6  £  = . 40  34  Pseudotsuga menziesii ( M i r b . ) Franco Increment No.  Y = 75. 73 -• 1. 0 3 X  S E  S E = . 36 E  40  r = - 934**  S E = . 86 E  I n c r e m e n t s N o . 64 to 66  Y = 57. 32 - . 6 6 0 X  n =• 18  r  =-w 764**  SE  =.81 E  Abies amabilis (Dougl.) F o r b .  Y = 55. 43 - . 622X  I n c r e m e n t s N o . 78 to 80  n « 18  r=—945**  SE  =.92  E T h u j a p l i c a t a Donn Increment? N o . Y = 48. 61 - .  397 X  N . S. = not s i g n i f i c a n t  n=6  73 r = -.  733 ( N . S . ) S E =. 80 E  132  TABLE  13.  C o r r e l a t i o n coefficients of  j/fl  (dl/g)  ( r ) f r o m the l i n e a r r e g r e s s i o n  on a l p h a - c e l l u l o s e y i e l d (%) f o r  s i x i n t r a - i n c r e m e n t p o s i t i o n s , showing effect of i n c l u s i o n (+) o r e x c l u s i o n (-) o f d a t a f r o m P o s i t i o n N o . one ( w h i c h c o r r e s p o n d s to f i r s t - f o r m e d e a r l y w o o d ) .  Species  Increment  +  P i c e a sitchensis (Bong. ) Carr.  70  .07  .42  P i c e a m a r i a n a ( M i l l . ) B . S. P .  34  .49  .74**  66  -.10  .71  73  -.56*  .28  Pseudotsuga menziesii ( M i r b . ) Franco Thuja plicata Donn  * * highly significant * significant 1 excludes  Position No. 2 also  *  133 Pseudotsuga Picea  mariana  ( Mirb) Franco  Position I  0  L - — J  I 1  2  1  Position I  L_—J  3 Radial  F i g u r e 1.  menziesii  (Mill) B S P  '  0  i  i  I  i  i  2  i  i  i  3  Distance,mm-  T w o r e p r e s e n t a t i v e p a t t e r n s o f a l p h a - c e l l u l o s e ( e s t . ) ; %•  134  Picea  mariona  Picea  (Mill)BSP-  sitchensis  (Bong)Carr-  X  Lignin plus Alpho Cellulose (est),% Alpha Cellulose (es1),%  O  Lignin ,%  ®  1§§§H§ Lotewood  Eorlywood i  0 Pseudotsuga  i  i  i  i  2 3 4 Radiol Distance , mmmenziesii  (Mirb)Franco  76  Abies  amabilis  (Dougl) Forb  Thuja plicata  Donn  76-  F i g u r e 2.  T e n patterns showing alpha-cellulose (est.), and t h e i r s u m .  %, l i g n i n , %,  136  24  34  70  F i g u r e 4.  64  65 66 40 Increment Number  78  79  80  73  M e a n s (x) a n d s t a n d a r d d e v i a t i o n s (S) f o r a l l a l p h a cellulose and lignin e s t i m a t e s and their s u m .  APPENDICES  A P P E N D I X I.  _ R e l a t i o n s h i p b e t w e e n the m a j o r c e l l w a l l c o m p o n e n t s  Cell Wall  Chlorite  a f t e r N o r m a n (94).  Components LIGNIN  Holocellulose  (non c a r b o -  C r o s s and B e v a n "Plant C e l l u l o s e "  hydrate) HEMICELLULOSE tiydrolyzed  -phenyl propane  by dilute a c i d  units  (soluble i n dilute alkali ) ^ TRUE  CELLULOSE  .CELLULOSANS  POLYURONIDE  - phenolic and enolic hydroxyls  ( l o n g - c h a i n 1,  4-/?  -D-  anhydro-glucopyranose  (cellulosic  framework  substance)  HEMICELLULOSE (encrusting  substance)  units) xylan  Methoxyhexuronic acid  mannan  Pentose : xylose  glucans  arabinose Hexose  : glucose galactose  oriented  oriented  amorphous  amorphous  139  A P P E N D I X II.  S u g g e s t e d g e n e r i c c l a s s i f i c a t i o n of w o o d p o l y s a c c h a r i d e s a f t e r S t e w a r t (117).  Polysaccharides  Glycosan  Glycosans  uronides  Non-cellulosic glycosans  Non-glucosic  Cellulosic glycosans  cellulosic  Glucosic cellulosje  glycosans  glycosans  D e s c r i p t i o n of s t e m s e c t i o n s a n d growth i n c r e m e n t s i n c l u d e d i n the s t u d y (157).  A P P E N D I X III.  Stem Section  Growth Increments  Characteristics  Species Age, yr  Dia,  Stem  in  Growth  Examined  Decadal  No.  Growth,  Growth Rate,  Rate, mm/yr  P i c e a sitchensis (Bong. ) C a r r .  92  16.4  2.3  mm/yr  1. 7  Picea mariana (Mill. ) B.S. P.  Pseudotsuga menziesii (Mirb. )  19.2  3.2  2. 5  Franco  Pseudotsuga menziesii  %  mm/yr  2. 2  18. 9  3.4  43. 0  64  2. 4  45. 8  65 66  2. 8  44. 3  2. 2  41. 0  70  34  77  Latewood  a  40  a  3.6  44. 0  78  a  3. 5  (Mirb. ) Franco  Abies amabilis (Dougl.) F o r b .  T h u j a p l i c a t a Donn  a) H e a r t w o o d z o n e ,  143  78  23.0  18.9  2.0  3.1  a l l other samples f r o m sapwood.  3. 5  1.9  79 80  2. 7  20.9 15. 6 19. 2  73  2. 3  20. 7  3. 1  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0104246/manifest

Comment

Related Items