UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Relationship of precipitation to runoff from a small westcoast watershed Zeman, Lubomir John 1969

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1969_A6_7 Z44.pdf [ 5.98MB ]
Metadata
JSON: 831-1.0103981.json
JSON-LD: 831-1.0103981-ld.json
RDF/XML (Pretty): 831-1.0103981-rdf.xml
RDF/JSON: 831-1.0103981-rdf.json
Turtle: 831-1.0103981-turtle.txt
N-Triples: 831-1.0103981-rdf-ntriples.txt
Original Record: 831-1.0103981-source.json
Full Text
831-1.0103981-fulltext.txt
Citation
831-1.0103981.ris

Full Text

THE RELATIONSHIP OF PRECIPITATION TO RUNOFF FROM A SMALL WESTCOAST WATERSHED by LUBOMIR JOHN ZEMAN Master of Science i n A g r i c u l t u r a l Engineering Czech Technical University i n Prague 1947 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AGRICUtTtfltE in the Department of A g r i c u l t u r a l Mechanics We accept t h i s t h e s i s as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August, 1969 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e Head o f my D e p a r t m e n t o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f A g r i c u l t u r a l E n g i n e e r i n g and Mechanics The U n i v e r s i t y o f B r i t i s h C o l u m b i a V a n c o u v e r 8, C a n a d a D a t e September 10 , 1969. ABSTRACT Streamflow from a small watershed on the western s l o p e s o f the B r i t i s h Columbia Coast Mountains i s strongly-i n f l u e n c e d by a maritime c l i m a t e (wet w i n t e r s and dry sum-mers) . The abrupt r i s e northward from the F r a s e r d e l t a to the n o r t h shore mountains—5000 f e e t + i n 20 m i l e s - - h a s a pronounced o r o g r a p h i c e f f e c t on the annual p r e c i p i t a t i o n . M i l i t z a Lake B a s i n , which i s l o c a t e d at the south west corner o f Golden Ears P r o v i n c i a l Park, has been chosen as an area to study the h y d r o l o g i c c h a r a c t e r i s t i c s o f the west coast c o n d i t i o n s . Instrumentation began i n 1966. Hydrometric surveys, c o l l e c t i o n of s y s t e m a t i c r e c o r d s of stage and p r e c i p i t a t i o n data to p r o v i d e essen-t i a l i n f o r m a t i o n on the headwaters of the drainage area, were c a r r i e d out i n 1967. The i n f o r m a t i o n obtained from r e c o r d s between October 1, 1967 and September 30, 1968 has been s u b j e c t e d to a n a l y s i s . The degree of c o r r e l a t i o n that n a t u r a l l y e x i s t e d d u r i n g t h i s p e r i o d , between the streamflow c h a r a c t e r i s t i c s under study and p r e c i p i t a t i o n as a c o n t r o l parameter, has been e s t a b l i s h e d . i i i TABLE OF CONTENTS Page 1 INTRODUCTION . 1 Research O b j e c t i v e s . . . . . . 2 2 REGIONAL SETTING AND PHYSICAL BACKGROUND . . 3 Geograph ic S i t u a t i o n . . . . . 3 P h y s i o g r a p h i c H i s t o r y . . . . . 3 Dra inage System . . . . . . . 4 3 WATERSHED CHARACTERISTICS 5 C l i m a t e . . . . . . . . . 5 Temperature . . . . . . . . 6 P r e c i p i t a t i o n . . . . . . . 6 Humid i t y and Fog . . . . . . 7 Wind 7 4 PHYSIOGRAPHY AND LANDFORM 10 S i z e and Shape o f the M i l i t z a Lake Bas i n 10 Dra inage Fea tu res . . . . . . 10 Land D i v i s i o n . . . . . . . 10 Ground Cover . . . . . . . 12 5 ESSENTIAL DEVELOPMENT IN THE MILITZA LAKE BASIN PROJECT 13 Stream Gauging I n s t rumen ta t i on . . . 13 Streamf low Measurements . . . 14 Measurements o f Water L e v e l s . 1 4 D i s cha rge Measurements . . . . 1 5 S t age-d i s cha rge R e l a t i o n . . . 16 Computat ion o f S t reamf low Data . . 16 i v Page 6 METEREOLOGICAL INSTRUMENTATION 18 Network Development . . . . . . 18 P r e c i p i t a t i o n Measurement . . . 18 Temperature and Humid i t y Measurement 19 E v a p o r a t i o n Measurement . . . 19 7 HYDROLOGICAL ANALYSIS 20 I n t e r p r e t a t i o n o f P r e c i p i t a t i o n Data . 20 Bas in P r e c i p i t a t i o n from P o i n t Va lue . 20 R e l a t i o n to Seasona l P r e c i p i t a t i o n . . 21 8 INTERPRETATION OF STREAMFLOW DATA . . . . 22 9 EVAPOTRANSPIRATION 23 Method o f E s t i m a t i o n . . . . . 23 Computat ion o f E v a p o t r a n s p i r a t i o n . . 24 10 STATISTICAL ANALYSIS OF HYDR0METE0R0L0GICAL DATA 26 Method o f A n a l y s i s . . . . . . 26 S imple R e g r e s s i o n Techn iques . . . 26 Monthly S imp le R e g r e s s i o n . . . 26 Annual S imple R e g r e s s i o n . . . 28 M u l t i p l e R e g r e s s i o n Techn ique . . . 29 Monthly P r e c i p i t a t i o n Runof f M u l t i p l e Reg res s i on . . . . 29 Annual P r e c i p i t a t i o n Runof f M u l t i p l e Reg re s s i on . . . . 30 ANNUAL STREAM HYDR0GRAPH OF OBSERVED AND PREDICTED DISCHARGE 32 V Page SUMMARY AND CONCLUSION 33 PROPOSED DEVELOPMENT AND RECOMMENDATION . . . . 37 LIST OF REFERENCES 39 APPENDIX A Tables Al - A3 41 APPENDIX B Tables Bl - B9 46 APPENDIX C Tables CI - C4 57 APPENDIX D Figures Dl - D3 62 APPENDIX E Figure E l 66 APPENDIX F Figures FI - F14 68 ( v i LIST OF TABLES T a b l e Page A l P e r c e n t a g e Frequency o f Wind a t Vancouver A i r p o r t P e r i o d o f Record 1936 - 1955 . . 42 A2 Average Wind Speed a t Vancouver A i r p o r t i n M i l e s p e r Hour (By d i r e c t i o n ) P e r i o d o f Record 1936 - 1955 43 A3 Average and Extreme Number o f Days w i t h S t r o n g Winds a t Vancouver A i r p o r t , P e r i o d o f Record 1936 - 19 55 . . . . 44 B l S t a g e D i s c h a r g e R e l a t i o n Developed from C o n t a i n e r Measurements . . . . 47 B2 S t a g e - D i s c h a r g e R e l a t i o n Developed from C u r r e n t - M e t e r Measurements . . . 47 B 3 Gauge S t a t i o n A r e a D e t e r m i n a t i o n . . . 48 B4 B a s i n P r e c i p i t a t i o n i n I n c h e s . . . . 48 B5 Weighted B a s i n P r e c i p i t a t i o n i n i n c h e s f o r 8-hour P e r i o d , Water y e a r 1967 - 68 49 B6 Average D i s c h a r g e i n C.F.S. f o r 8-hour P e r i o d , Water y e a r 1967 - 68 . . . . 53 B7 Monthly C u m u l a t i v e D i s c h a r g e i n A c r e F e e t f o r 8-hour P e r i o d , Water Y e a r 1957 - 68 . 54 B8 B a s i n O u t f l o w Volume i n I n c h e s , Water Y e a r 1967 - 68 . . . . . 55 Computed Evapotranspiration for Seven Months of the Water Year 1 9 6 7 - 6 8 . Monthly Simple Regression of Discharge and Weighted Basin P r e c i p i t a t i o n , Water Year 1 9 6 7 - 6 8 . . . . Annual Simple Regression of Discharge and Weighted P r e c i p i t a t i o n , Water Year 1 9 6 7 - 6 8 . . . . Monthly Regression of Discharge on P r e c i p i t a t i o n of Three Stations, Water Year 1 9 6 7 - 6 8 . . . . Annual Regression of Discharge on P r e c i p i t a t i o n of Three Stations, Water Year 1 9 6 7 - 6 8 . . . . v i i i LIST OF FIGURES F i g u r e Page Dl Geographical L o c a t i o n of M i l i t z a Lake B a s i n . 63 D2 Map of M i l i t z a Lake 64 D 3 Water Stage-Discharge R e l a t i o n Determined by Current-Meter and C o n t a i n e r Measurements 65 E l Annual Simple Regression of Discharge and P r e c i p i t a t i o n . . . . . . . 67 FI M i l i t z a Lake B a s i n , P r e c i p i t a t i o n and Discharge, October 1967 69 F2 M i l i t z a Lake Basin, P r e c i p i t a t i o n and Discharge, November 1967 . . . . . 70 F3 M i l i t z a Lake Basin, P r e c i p i t a t i o n and Discharge, December 1967 . . . . 71 F4 M i l i t z a Lake Basin, P r e c i p i t a t i o n and Discharge, January 1968 . . . . . 72 F5 M i l i t z a Lake B a s i n , P r e c i p i t a t i o n and Discharge, February 1968 73 F6 M i l i t z a Lake Basin, P r e c i p i t a t i o n and Discharge, March 1968 74 F7 M i l i t z a Lake Basin, P r e c i p i t a t i o n and Discharge, A p r i l 1968 75 F8 M i l i t z a Lake B a s i n , P r e c i p i t a t i o n and Discharge, May 1968 76 F9 M i l i t z a Lake Basin, P r e c i p i t a t i o n and Discharge, June 1968 77 I M i l i t z a Lake Basin, P r e c i p i t a t i o n and Discharge, July 1968 . . . . . M i l i t z a Lake Basin, P r e c i p i t a t i o n and Discharge, August 1968 . . . . M i l i t z a Lake Basin, P r e c i p i t a t i o n and Discharge, September 1968 . . . . M i l i t z a Lake Basin, Discharge Hydrograph Water Year 1967 - 68 . M i l i t z a Lake Basin, Observed and Predicted Discharge, Water Year 1967 - 68 X LIST OF ABBREVIATIONS Symbol D e f i n i t i o n AR Water l e v e l r e c o r d e r A.S.L. Above mean sea l e v e l A l Anemometer ES E v a p o r i m e t e r HT Hygrothermograph No. 173 HI The s t a t i o n s i t e a t 2100 f e e t A.S.L. No. 174 MD The s t a t i o n s i t e a t 1700 A.S.L. No. 171 LO The s t a t i o n s i t e a t 1600 f e e t A.S.L. PPT HI P r e c i p i t a t i o n measured at t h e s t a t i o n No. 173 HI PPT MD P r e c i p i t a t i o n measured a t t h e s t a t i o n No. 174 HD PPT L0 P r e c i p i t a t i o n measured a t t h e s t a t i o n No. 171 L0 Qin Annual w e i g h t e d i n p u t o v e r t h e b a s i n i n a c r e f e e t Q o u t B a s i n o u t p u t as annual r u n o f f i n a c r e f e e t RA R e c o r d i n g p r e c i p i t a t i o n gauge RS N o n - r e c o r d i n g p r e c i p i t a t i o n gauge WT PPT Weighted p r e c i p i t a t i o n o v e r t h e b a s i n ACKNOWLEDGEMENTS The writer wishes to express h i s appreciation for assistance i n t h i s study to: Professor T. L. Coulthard who directed t h i s research, provided encouragement and advice, Dr. V. C. Brink, Dr. W. W. Je f f r e y , Dr. V. J . Krajina, and Dr. J . K. Stager for serving on the research committee and reviewing t h i s paper. The writer wishes to extend his gratitude to Dr. G. R. Gates for helpful suggestions on hydrometeoro-l o g i c a l problems. Financial support for the investigation was given by the National Research Council of Canada and i s hereby gra t e f u l l y acknowledged. 1. INTRODUCTION Creditable progress i s being made i n the expansion of hydrometeorological networks providing information for develop-in g and managing water resources of t h i s country. In Canada, there are about 4 0 research basins located across the country from coast to coast forming the backbone of the hydrologic research being ca r r i e d out under the national program. M i l i t z a Lake Basin, located at the University of B r i t i s h Columbia Research Forest has been selected for gauge basin studies under the national research program for the International Hydrological Decade. M i l i t z a Lake Basin project f a l l s into the category of research a c t i v i t i e s that lead to the attainment of increas-ing knowledge of a small watershed behavior on the west coast of Canada. Stream flow from a small watershed i n the western Coast Mountains depends to a large extent upon climate charr-acterized by extremely heavy annual r a i n f a l l concentrated i n the winter months, with l i t t l e or no r a i n during the two or three months i n the summer. M i l i t z a Lake Basin research began i n 1 9 6 6 , with i n i t i a l emphasis placed upon instrumentation of a single experimental basin. This was necessitated by lack of pre-liminary information upon which to base detailed, long-term research p r i o r i t i e s and projects. Because of the long period required to c a l i b r a t e the gauge basin p r i o r to an application 2 o f t rea tment exper iments , i t has been o b l i g a t o r y to c o n c e n t r a t e a l l e f f o r t s i n i t i a l l y on the i n s t r u m e n t a t i o n o f the b a s i n . T h i s s tudy t h e r e f o r e d e a l s p r i m a r i l y w i th the d e v e l o p -ment and the d e s c r i p t i o n o f the watershed c h a r a c t e r i s t i c s i n t h e i r n a t u r a l s t a t e and the methods o f a n a l y s i s o f r a i n f a l l -r u n o f f r e l a t i o n s h i p . I t i s hoped, however, t h a t such gauge b a s i n s t u d i e s w i l l be seen as p a r t o f a more comprehensive r e s e a r c h i n the proposed program. RESEARCH OBJECTIVES Research o b j e c t i v e s o f M i l i t z a Lake Bas in a r e : ( i ) To e s t a b l i s h the h y d r o l o g i c c h a r a c t e r i s t i c s , p a r t i c u -l a r l y r e l a t e d to p r e c i p i t a t i o n , r u n o f f r e l a t i o n s h i p and t h e i r i n t e r - r e l a t i o n s h i p w i t h i n the b a s i n , ( i i ) To de te rmine water y i e l d regimen o f the a rea as i t was w i t h i n i t s o r i g i n a l cove r v e g e t a t i o n . A t ta inment o f t hese o b j e c t i v e s w i l l r e q u i r e measurements over a l o n g p e r i o d o f t ime i n o rde r t o e va lua t e f u l l y the e f f e c t s o f any consequent t r e a tmen t . 3 2. REGIONAL SETTING AND PHYSICAL BACKGROUND 2.1 Geographic S i t u a t i o n The geographic s i t u a t i o n o f the M i l i t z a Lake Basin i s as f o l l o w s : Longitude : 122 34' 21" W L a t i t u d e : 49 18' 50" N A l t i t u d e : 1,600 to 2,100 f e e t A.S.L. The M i l i t z a Lake Basin i s l o c a t e d at the U n i v e r s i t y of B r i t i s h Columbia Research F o r e s t , 40 m i l e s east of Vancouver, and approximately one h a l f m i l e east of Loon Lake ( F i g u r e D l , Appendix D). The b a s i n l i e s w i t h i n the wetter (perhumid o r r a i n y ) subzone of the C o a s t a l Western Hemlock B i o g e o c l i m a t i c Zone ( K r a j i n a , 1965). Annual t o t a l p r e c i p i t a t i o n i n t h i s sub-zone, b e l o n g i n g to mesothermal c l i m a t e , ranges between 110 -262". The f o r e s t i s p a r t of the southern f r i n g e of the Coast Mountains and i s bounded on the n o r t h and east by G a r i b a l d i Park and on the northwest by P i t t Lake. I t s southern bound-a r i e s are approximately f o u r m i l e s n o r t h of the town, Haney, B. C. 2.2 P h y s i o g r a p h i c H i s t o r y E s s e n t i a l l y the p h y s i o g r a p h i c h i s t o r y begins with the b u i l d i n g of the Coast and Columbia Mountains ( b a t h o l i t h i c c o r r e s ) i n the l a t e J u r a s s i c p e r i o d (Putnam et a l 1952). The p r e s e n t l a n d f e a t u r e s have r e s u l t e d m a i n l y from t h e l a s t g l a -c i a t i o n ( A r m s t r o n g 1957). G l a c i o f l u v i a l d e p o s i t s , s c a t t e r e d t h r o u g h o u t t h e a r e a have a g r i c u l t u r a l s i g n i f i c a n c e . Some v o l c a n i c a c t i o n has o c c u r r e d r e c e n t l y and a few v o l c a n i c l a y e r s c o v e r g l a c i a l t i l l . 2.3 D r a i n a g e System The area o f t h e U n i v e r s i t y o f B r i t i s h Columbia Re-s e a r c h f o r e s t c o n t r i b u t e s r u n o f f by way o f t h e n o r t h A l o u e t t e R i v e r i n t h e e a s t , and B l a n e y Creek i n t h e west. E l e v a t i o n s i n t h e f o r e s t range from sea l e v e l at P i t t Lake t o 2600 A.S.L. i n t h e n o r t h w h i l e t h e s o u t h e r n p a r t o f t h e f o r e s t l i e s below 1,200 f e e t A.S.L. N o r t h o f t h i s a r e t h r e e major v a l l e y s i n a n o r t h s o u t h d i r e c t i o n , and t h e w e s t e r n most d e p r e s s i o n con-t a i n s Loon Lake and a t r i b u t a r y c r e e k w h i c h d r a i n s from M i l i t z a Lake. The e a s t e r n v a l l e y c o n t a i n s M a r i o n Lake and t h e n o r t h A l o u e t t e R i v e r w h i l e t h e c e n t r a l v a l l e y h o l d s P l a c i d Lake, B l a n e y Creek and B l a n e y Lake. 5 3• WATERSHED CHARACTERISTICS 3.1 C l i m a t e The major c l i m a t i c c o n t r o l s o f the r e g i o n a re the n o r t h P a c i f i c Ocean, the p r e v a i l i n g w e s t e r l y f low o f a i r and the topography o f B r i t i s h Co lumbia as a who le . The ocean i s a g rea t s to rehouse o f energy and m o i s t u r e , e s p e c i a l l y i n w i n t e r , when i t remains r e l a t i v e l y warm to the ad j acen t l a n d a r e a s . Consequent l y m i l d , mo is t a i r moves on t o the coas t from the ocean i n the normal eastward c i r c u l a t i o n . Low p r e s s u r e systems a re p a r t o f t h i s f l ow e s p e c i a l l y i n the autumn, w in te r and e a r l y s p r i n g w i t h r e s u l t i n g heavy r a i n s . Fu r the rmore , t he a i r i s f o r c e d up at the coas t moun-t a i n s and t h i s o r o g r a p h i c a c t i o n augments the amount o f r a i n f a l l c o n s i d e r a b l y . When the p r e s s u r e i s h i g h over the n o r t h P a c i f i c Ocean, as i s the case i n the summer, the d e p r e s s i o n s a re weak. They pass over n o r t h e r n B r i t i s h Co lumbia and l i t t l e r a i n f a l l s on the sou thern a r e a . C o l d waves o f the type expe r i enced f r e q u e n t l y ove r c o n t i n e n t a l Canada seldom reach c o a s t a l B r i t i s h Columbia s i n c e the a rea i s dominated by w e s t e r l i e s and p r o t e c t e d by t he h i g h mountain b a r r i e r . Only when the P o l a r H igh becomes i n t e n s e and moves i n t o southern B r i t i s h Co lumbia i s t h i s t ype o f weather expe r i enced ove r the sou the rn c o a s t . The mar i t ime t ype o f c l i m a t e p r e v a i l s ove r the west c o a s t . I t i s c h a r a c t e r i z e d by m i l d , e x c e e d i n g l y wet w i n t e r s ; 6 c o o l , modera te ly wet, foggy summers; h i g h humid i t y throughout the y e a r ; and a s m a l l annual range o f t empe ra tu r e s . 3.2 Temperature The mean annua l range o f the west c o a s t a l s t a t i o n s , which i s from 1 6 ° F i n the south to 23 °F i n the n o r t h , i s ev idence o f the m i l d w in t e r s (38-41 °F) and c o o l summers (56-5 8 ° F ) . (Chapman 1957). In January t he mean d i u r n a l range i n c r e a s e s from 9 ° i n the sou th to 13° i n the n o r t h , wh i l e i n the summers i t i s a somewhat h i g h e r ( 1 3 ° ) range but wi th l e s s l a t i t u d i n a l d i f f e r e n c e s . Absence o f ext reme ly h i g h o r low tempera tures i s i n d i c a t e d by t h e va lues f o r monthly mean d a i l y extreme maxima and minima which f o r the Haney U .B .C . Research F o r e s t are 7 2 . 6 ° ( A u g u s t 1967) and 2 9 . 4 ° ( J anua r y 1967). The oc cu r r ence o f maximum tempera tures as l a t e as August i s c h a r a c t e r i s t i c o f mar ine c l i m a t e s . The l e n g t h o f the f r o s t f r e e p e r i o d v a r i e s from 150-250 days , s h o r t e r p e r i o d s o c c u r -r i n g where mar i t ime i n f l u e n c e s a re reduced by l a c k o f p r o t e c -t i o n from ou tb reaks o f c o l d a i r o r by e l e v a t i o n o f the t e r r a i n . 3.3 P r e c i p i t a t i o n The o u t s t a n d i n g p r e c i p i t a t i o n c h a r a c t e r i s t i c s a re extremely h i g h t o t a l s , sma l l p r o p o r t i o n o f snow, l a r g e number o f days w i th p r e c i p i t a t i o n and a we l l d e f i n e d summer h a l f y e a r minima. The q u a n t i t y o f p r e c i p i t a t i o n ( f r e q u e n t l y over 100 i n ches ) i s the r e s u l t o f the p r e v a i l i n g onshore movement o f P a c i f i c a i r u s u a l l y i n company wi th w e s t e r l y moving " l o w " i 7 d e p r e s s i o n a reas which are f o r c e d to ascend by bo th f r o n t a l and o r o g r a p h i c i n f l u e n c e s . The p r o p o r t i o n o f the t o t a l p r e c i p i t a t i o n which f a l l s as snow i s sma l l (l% o f the s t a t i o n s w i th most o cean i c e x p o s -ure ) . At the Haney U . B . C . Research F o r e s t , d u r i n g the y e a r 1 9 6 7 , the number o f days w i th measurab le s n o w f a l l was 1 5 and t o t a l s n o w f a l l i n t h a t y ea r was 4 9 . 6 i n c h e s . The seasona l regime o f p r e c i p i t a t i o n i s a t y p i c a l l y mar i t ime one . Novem-b e r , December and January are the wet tes t months w i th June , J u l y and August b e i n g the d r i e s t . C loudy mornings w i th no r a i n and sunny a f t e rnoons a r e c h a r a c t e r i s t i c o f the weather d u r i n g the l a t t e r h a l f o f the summer. 3 . 4 Humid i ty and Fog The whole r e g i o n i s c h a r a c t e r i z e d by h i g h r e l a t i v e humid i t y r a n g i n g from an average o f 85% i n January to an average o f 5 0 - 5 5 $ i n J u l y . The r e l a t i v e humid i t y o c c a s i o n a l l y d rops below 25% d u r i n g dry p e r i o d s o f s t r o n g e a s t e r l y w inds . Fog i s p redominant l y a summer f e a t u r e o f the a d v e c t i v e t ype a s s o c i a t e d w i t h an onshore d r i f t o f warm a i r over the c o o l o f f s h o r e water . 3 . 5 Wind The p r e v a i l i n g wind d i r e c t i o n a l o n g the o u t e r c o a s t i s sou theas t i n w in t e r ( i n response t o the low p r e s s u r e g r a d i e n t and the t r e n d o f the coas t l i n e ) , and northwest i n summer 8 c o r r e s p o n d i n g to the h i g h p r e s s u r e g r a d i e n t (Chapman, 1952 ) . Topograph i c c o n t r o l o f wind d i r e c t i o n i s l o c a l l y very marked i n t he v a r i o u s channe l s and f i o r d s ( Ke r r 1950 ) . S i n c e 1936 a r e g u l a r wind o b s e r v i n g program has been i n e f f e c t at the Vancouver I n t e r n a t i o n a l A i r p o r t S t a t i o n , which p r o v i d e s cons tan t summaries o f wind r e p o r t s . Hence i n twenty y e a r s (1936 to 1955) a comple te r e c o r d o f t h i s i n f o r -mat ion has been e s t a b l i s h e d . For t h i s reason the f o l l o w i n g T a b l e s have been summarized (a t p r e s e n t t ime the on l y a v a i l -a b l e long-term summaries have been taken from Ha r r y and Wr igh t , 1967) f rom the A i r p o r t S t a t i o n d a t a . T a b l e A l (Appendix A) g i v e s the pe r cen tage f r equency o f winds from month t o month a c c o r d i n g t o t h e i r d i r e c t i o n . Calm winds are added at the bottom and a pe rcen tage f o r the yea r i s g i ven i n the r i g h t hand co lumn. A g l ance at the T a b l e shows a preponderance o f winds f rom the e a s t . T h i s i s t r u e not o n l y f o r the yea r as a whole, but f o r every month o f the y e a r . N o t i c e a b l e , t o o , i s the f a c t t h a t s o u t h e a s t , west and nor thwest winds rank next i n t h a t o r d e r . Another i n t e r e s t i n g f a c t i s t h a t the l a r g e number o f eas t and sou theas t winds d u r i n g the w in te r months g r a d u a l l y f a l l o f f as summer a p p r o a c h -e s , wh i l e west and southwest winds i n c r e a s e from w in t e r t o summer. T a b l e A2 (Appendix A) g i v e s t he average wind speed month by month a c c o r d i n g to the p r i n c i p a l d i r e c t i o n s . Here i t may be seen tha t winds from the nor thwest are o f h i g h e r v e l -o c i t y than those from any o the r d i r e c t i o n . Wind speeds do not 9 vary g r e a t l y from month t o month on the average , a l t hough they a re s l i g h t l y " s t r o n g e r " d u r i n g the month o f March and r each a low p o i n t i n Oc tobe r . T a b l e A3 (Appendix A) g i v e s a summary o f the average and maximum number o f o c cu r r ences of s t r o n g winds t o g e t h e r w i th t he peak v e l o c i t i e s a t t a i n e d month by month. I t shou ld be noted t h a t these o c c u r r e n c e s do not r e f e r to a peak gust o f wind but on l y to average c o n d i t i o n s over a p e r i o d o f an hou r . The f i r s t t h r e e columns g i v e , i n o r d e r , the average number o f days d u r i n g the month i n which speeds g r e a t e r than 18 m i l e s per hour , 25 m i l e s pe r hour , and 31 m i l e s pe r hour may be expec t ed . Immediate ly below each number i s g i ven the maximum number o f t imes on which t h a t s t r e n g t h o f wind o c -c u r r e d . I t can t h e r e f o r e be seen tha t s t r o n g winds o c cu r w i th g r e a t e r f requency d u r i n g the w in t e r and s p r i n g months than they do d u r i n g the summer. The l a s t t h r e e columns g i v e maximum wind v a l ues f o r the p e r i o d o f one hour , f o r ten minutes and f i n a l l y the peak g u s t . The d i r e c t i o n i s g i v e n f i r s t , f o l l o w e d by the speed i n m i l e s pe r hour . Beneath i s g i ven the d a t e o f the month and the y ea r i n which t h a t peak v e l o c i t y o c c u r r e d . In a few cases the same peak was a t t a i n e d tw i ce and so da tes o f more than one o c c u r r e n c e have been e n t e r e d . The s t r o n g e s t gust so f a r r e -c o r d e d , a t the Vancouver A i r p o r t , o c c u r r e d on January 30, 1947 when the wind reached 72 m i l e s pe r hour from the no r thwes t . 10 4. PHYSIOGRAPHY AND LANDFORM 4.1 S i z e and Shape o f the M i l i t z a Lake Bas in Fo r the purpose o f t h i s s t u d y , the M i l i t z a Lake Bas i n i s d e f i n e d as the d r a i n a g e area o f 60 .5 a c r e s w i t h boundar i e s and shape i l l u s t r a t e d on the map ( f i g u r e D2, Appendix D ) . E l e v a t i o n s , on the B a s i n , range from 1,600 f e e t A . S . L . a t t he s t ream gauging s t a t i o n to 2,100 f e e t A . S . L . at the h i g h e s t p o i n t on the d i v i d e . . 4.2 Dra inage F ea tu r e s The headqua r t e r s o f the major d r a i nage c h a n n e l , w i th t r i b u t a r i e s to M i l i t z a Lake , a re s i t u a t e d i n the n o r t h e r n p a r t o f the B a s i n at an e l e v a t i o n o f i860 f e e t A . S . L . The number and l e n g t h s o f w e l l - d e f i n e d channe l s a re as f o l l o w s : Length o f channe l Ground cover S l ope ( i n f e e t ) % 1,500 " l o g g e d " 33, 28, 22 300 wooded 28 250 wooded 0.5 350 s c rub 0.5 300 wooded 0.5 T o t a l 2,700 4. 3 Land D i v i s i o n In the d e f i n i t i o n o f the boundar i e s o f l a n d d i v i s i o n o f the M i l i t z a Lake B a s i n two c l a s s i f i c a t i o n s are u s e d , the Land U n i t s and the Land A s s o c i a t i o n . In the U .B .C . Resea rch 11 F o r e s t f o u r Land A s s o c i a t i o n s have been r e c o g n i z e d ( Laca te 1965) . Each Land A s s o c i a t i o n c o v e r s a l a r g e a rea and i s an agg rega t i on o f g e o g r a p h i c a l l y a s s o c i a t e d Land U n i t s . The Land A s s o c i a t i o n " B " o c c u r s th roughout the M i l i t z a Lake Bas in and i s d e f i n e d as h i l l y to g e n t l y r o l l i n g g r a n i t i c -co red u p l a n d s . G r a v e l l y sandy loam c o l l u v i u m , o v e r l y i n g un-weathered , compact , g l a c i a l t i l l and/or bedrock i s the most common s t r u c t u r a l p a t t e r n o f the t e r r a i n . The area o f the Bas in i s o c c u p i e d by v a r i o u s Land U n i t s . They a re r e l a t i v e l y s m a l l , homogeneous segments o f the l a n d s u r f a c e which have a c h a r a c t e r i s t i c t o p o g r a p h i c form and i n t e r n a l g e o l o g i c s t r u c t u r e w i th which a re a s s o c i a t e d d i s t i n c -t i v e t ypes o f s o i l s and v e g e t a t i o n . The n o r t h e r l y o n e - t h i r d p o r t i o n o f the B a s i n , w i th a southwest exposure , i s c h a r a c t e r -i z e d by a r i d g e and s teep s l o p e r a n g i n g from 20% t o 33% and f o l l o w i n g p h y s i o g r a p h i c changes f rom concave t o convex . The s o u t h e a s t e r l y o n e - t h i r d o f the d r a i n a g e area has a rough r o l l i n g s l o p e o f 28% and f a c e s to the n o r t h e a s t . S o i l s on t h i s p o r t i o n o f the Bas in have been deve loped on a complex o f a b l a t i o n t i l l and c o l l u v i a l m a t e r i a l which o v e r l i e s the t i l l . Ev idence o f s o i l c r e e p i n g , s l i d e s and s lump ing i s r e f l e c t e d i n many s o i l p r o f i l e s . B u r i e d p r o f i l e s , o v e r l a i n by c o l l u v i a l - a l l u v i a l c a p , v a r y i n g i n t h i c k n e s s f rom 6-30" a re found on lower concave s l o p e s . W e l l d r a i n e d c o n d i -t i o n s occu r on s o i l m a t e r i a l s where the re i s some s l o p e to the t e r r a i n . 12 The w e s t e r l y o n e - t h i r d o f the d r a i nage a rea i s c h a r a c -t e r i z e d by a smooth and moderate s l o p e w i th d i f f e r e n t s o i l p r o f i l e s . An o r g a n i c c ap , o f t e n 6 - 8 " t h i c k c o v e r s the g l a c i a l d r i f t and bedrock on many p l a c e s s u p p o r t i n g o l d growth s t a n d s . A c i d "brown wooded" s o i l s a re common i n the mo i s t a reas w i th a deep muck and peat o f t e n p r e s e n t i n such p l a c e s . In d e p r e s -s i o n s , where seepage water c o l l e c t s , t he water t a b l e i s a t , o r n e a r , the s u r f a c e throughout most o f the y e a r . Very wet c o n d i t i o n s o c cu r i n the c e n t r a l p a r t o f the d r a i n a g e area which c o n t a i n s M i l i t z a Lake . 4 . 4 Ground Cover Ground c o v e r , i n the e a s t e r n h a l f o f the wate rshed , c o n s i s t s o f s l a s h and the remainder o f the watershed c o n s i s t s o f o l d growth hemlock, r ed c e d a r , Douglas f i r and woody shrubs i n the low l y i n g pea t a r e a . 13 5. ESSENTIAL DEVELOPMENT IN THE MILITZA LAKE BASIN PROJECT E s s e n t i a l development i n M i l i t z a Lake Bas i n i n c l u d e s a l l c o n t i n u i n g a c t i v i t i e s such as an i n s t r u m e n t a t i o n o f a stream gaug ing s t a t i o n , and m e t e o r o l o g i c a l i n s t r u m e n t a t i o n . 5.1 Stream Gauging I n s t r umen ta t i on A st ream gaug ing s t a t i o n has been c o n s t r u c t e d on a q u a r t z - d i o r i t e bedrock f o r m a t i o n which a c t s as a c u t o f f w a l l a c ro s s the lower end o f the d ra inage a r e a . A two f o o t h i g h , sharp c r e s t e d 120 ° V-notch we i r was chosen as the c o n t r o l because pond ing wi thout l eakage i s p o s s i b l e a t t h i s s i t e ; a l s o t h e r e i s an adequate drop below the w e i r . The st ream g r ad i en t i s smooth at the s i t e , making i t p o s s i b l e to o b t a i n a p o o l l a r g e enough t o e l i m i n a t e any-a p p r e c i a b l e v e l o c i t y o f approach at h i g h f l o w s . The s tage r e c o r d e r i s sensed by a f l o a t i n a s t i l l i n g w e l l t ha t i s connected to the stream by an i n t a k e p i p e . The Leupo ld & S tevens F-61 r e c o r d e r i n s t a l l e d at t h e s t a t i o n i s f i t t e d w i th a b a t t e r y ope ra ted e l e c t r i c a l l y d r i v e n c l o c k . In t h i s r e c o r d e r the h o r i z o n t a l c h a r t drum i s t u rned th rough f l o a t a c t i o n p r o p o r t i o n a l to changes i n water l e v e l s . The s t y l u s i s moved a c ros s the c h a r t on a 32 day t ime s c a l e . The combined movement o f the c h a r t drum and s t y l u s p roduces a g r aph i c r e c o r d o f water l e v e l s aga in s t t i m e . The va lue o f the s m a l l e s t c h a r t d i v i s i o n i s equa l to 0.02 f e e t o f water l e v e l i n the p o o l , and i n d i c a t e s t h i s l e v e l above the V-no t ch . 14 5.1 .1 . S t r e a m f l o w Measurements There a r e t h r e e b a s i c s t e p s i n p r o v i d i n g r e c o r d s o f s t r e a m f l o w : ( i ) Measurements o f t h e w a t e r l e v e l ; ( i i ) Measurements o f t h e s t r e a m d i s c h a r g e ; ( i i i ) D e f i n i t i o n o f t h e r e l a t i o n s h i p between w a t e r l e v e l and d i s c h a r g e . 5.1.2. Measurement o f Water L e v e l s The h e i g h t o f t h e w a t e r s u r f a c e above t h e g i v e n datum (sometimes r e f e r r e d t o as s t a g e ) has been measured, by r e f e r -ence t o a f i x e d p o i n t o f known e l e v a t i o n . I t has been accom-p l i s h e d i n two ways: ( i ) By a manual v e r t i c a l s t a f f gauge; ( i i ) By a f l o a t - a c t u a t e d r e c o r d e r . ( i ) The s i m p l e t y p e o f a manual v e r t i c a l s t a f f gauge which i s a s c a l e r e a d i n g t o t e n t h s and hundredths o f a f o o t has been a t t a c h e d p e r m a n e n t l y t o t h e c o n c r e t e w a l l o f t h e c h a n n e l dam. I t i s i n such a p o s i t i o n t h a t i t makes i t p o s -s i b l e t o r e a d a l l l e v e l s o f t h e water t h a t may o c c u r . ( i i ) The f l o a t - a c t u a t e d s t a g e r e c o r d e r p r o v i d e s a c o n t i n u o u s r e c o r d o f s t r e a m f l o w , and t h e h e i g h t s o f t h e w a t e r t r a c e d by t h e r e c o r d e r a r e checked by a manual s t a f f gauge a t t h e same c r o s s - s e c t i o n o f t h e stre a m . 15 5.1.3 D i s cha rge Measurements Check measurements o f the s t a g e - d i s c h a r g e r e l a t i o n s h i p were made a f t e r the stream gaug ing s t a t i o n was b u i l t . The r a t i n g f o r the a r t i f i c i a l c o n t r o l has been determined by two methods: ( i ) By c o n t a i n e r measurements ( i i ) W i th st ream c u r r e n t me te r . ( i ) S t age-d i s cha rge r e l a t i o n de te rmined by c o n t a i n e r measurements may be measured by c o l l e c t i n g the water p a s s i n g ove r the we i r i n bucke ts at a s e l e c t e d t ime ( U . S . D . A . 1964 ) . The f low i n c u b i c f e e t pe r second i s computed f rom the t ime i t t akes to c o l l e c t a c o n t a i n e r f u l l o f wa te r . T h i s i s r e l a t e d t o the s t age h e i g h t a t the t i m e . U s i n g t h i s p r o c e d u r e , t h r e e d i f f e r e n t low-f low s tages have been r a t e d and the r e s u l t s a re g i v en i n T a b l e B l (Appendix B ) . ( i i ) S t age-d i s cha rge r e l a t i o n s de te rmined by c u r r e n t meter measurements, d u r i n g a g r e a t e r f l o w , have been made w i t h a c u r r e n t meter , a l o n g the c r o s s s e c t i o n area o f the approach channe l 10 f t . upstream from the w e i r . The w id th o f the s t ream has been d i v i d e d i n t o f o u r segments o f app rox ima te l y equa l c r o s s s e c t i o n a r e a . At each p o i n t o f measurement, t o t a l water depth has been measured w i t h a r u l e and v e l o c i t y o b s e r -v a t i o n has been o b t a i n e d . The a rea and v e l o c i t y o f f l ow i n each s e c t i o n has been determined by a v e r a g i n g the measurements o f depth and v e l o c i t y made at each s i d e o f the s e c t i o n ; f l ow through the s e c t i o n has been determined by the v e l o c i t y i n 16 f e e t p e r second . T o t a l d i s c h a r g e has been de te rmined by add ing the f l ow o f the sepa ra te s e c t i o n s as t a b u l a t e d i n T a b l e B2 (Appendix B ) . 5 .1 .4 S t age-d i s cha rge r e l a t i o n S t age-d i s cha rge r e l a t i o n deve loped from c o n t a i n e r measurements and measurements w i th the c u r r e n t meter t a b u l a t e d i n T a b l e B l and T a b l e B2 (Appendix B) a r e p l o t t e d i n F i g u r e D3 (Appendix D ) . A " b e s t f i t " l i n e i s drawn th rough the p l o t t e d measurements. U s i ng t h i s r a t i n g cu rve and the con t i nuous water l e v e l r e c o r d at t he gauge to which the r a t i n g i s r e -f e r r e d , a con t inuous r e c o r d o f the f l ow i n the s t ream can be o b t a i n e d . 5.1.5 Computat ion o f S t reamf low Data Fo r computat ion o f d i s c h a r g e f rom a 120 ° V-notch w e i r , a s t a g e - d i s c h a r g e fo rmu la deve loped by H e r t z l e r has been u s e d . ( H e r t z l e r 1938) . The fo rmu la i s : Q = 4.43 H 2 -449 * o ( 1 ) i n which Q i s the d i s c h a r g e i n c u b i c f e e t per second and H i s the head i n f e e t (measured 6 f e e t upstream from the b l a d e ) . In o rde r to check the s t a g e - d i s c h a r g e fo rmu la ( l ) p e r i o d i c measurements o f s tage and d i s c h a r g e have been t a k e n . In a d d i t i o n to those f i g u r e s g i ven i n T a b l e B l and B2 (Appen-d i x B) the f o l l o w i n g f i g u r e s have been ob t a i ned d u r i n g h ighe r 17 and lower s t a g e , and hereby used f o r c a l c u l a t i o n . Data o b t a i n e d d u r i n g h i g h e r f l o w was as f o l l o w s . The Head H^ was 1.30 f e e t when the d i s c h a r g e was 8 . 423 c . f . s . whereas da ta o b t a i n e d d u r i n g the lower f l ow was Head H 2 0.30 f e e t and the d i s c h a r g e Q 2 w a s 0»232 c . f . s . T h i s da ta has been p l o t t e d i n F i g u r e D3 (Appendix D) and a p p l i e d to, t he b a s i c equa t i on f o r f l ow th rough V-notch we i r s ( K i n g and B r a t e r 1963 ) . Fo r the b a s i c equa t ion which i s : Q = C H n (2) Q i s the d i s c h a r g e i n c u b i c f e e t , C i s a c o e f f i c i e n t dependent on the na tu re o f the c r e s t and the approach c o n d i t i o n s , H i s the head above the datum on the upstream s i d e o f the we i r , n i s the exponent dependent upon the shape o f the we i r o p e n i n g . Thus the e m p i r i c a l r e l a t i o n s h i p f rom the two measurements becomes: l o g Qi - l o g Q2 l o g H x - l o g H 2 n = l o g 8 . 423 - l o g 0.232 l o g 1.30 - l o g 0.30 n = 2.449 Thus : l o g C = l o g Q x - n ( l o g H x ) C = 4.43 18 6. METEREOLOGICAL INSTRUMENTATION M e t e r e o l o g i c a l i n s t r u m e n t a t i o n began i n 1967 and d u r i n g t ha t yea r t h r e e s i t e s were se t up to p r o v i d e da ta f o r the remainder o f the s e a s o n . 6 . 1 . Network Development The s e l e c t i o n o f s i t e s was based on t he f o l l o w i n g c o n s i d e r a t i o n s : ( i ) To sample the f u l l range o f p r e c i p i t a t i o n on each major s l o p e w i t h i n the b a s i n . ( i i ) To m a i n t a i n an optimum exposure c l e a r o f o b s t r u c t i o n s and good a c c e s s i b i l i t y i n the i n t e r e s t o f comple te r e c o r d s . The p r e s e n t i n s t r u m e n t a t i o n network i s shown on a map ( F i g u r e D2 Appendix D) and c o n s i s t s o f the f o l l o w i n g : ( l ) P r e c i p i t a t i o n Measurements P r e c i p i t a t i o n i n t e n s i t y i s r e co rded on a weekly b a s i s by two, b a t t e r y e l e c t r i c a l l y opera ted t i p p i n g bucket r e c o r d i n g * gauges . In the lower p a r t o f t he b a s i n a f l o a t t ype record ing-** gauge, w i th a syphon d r a i n i n g chamber, i s i n s t a l l e d . T h i s ins t rument i s propane heated and i s s u i t a b l e f o r measur ing snow under l i g h t f r e e z i n g c o n d i t i o n s . * Ogawa S e i k i t y p e . * * Ota r e c o r d i n g gauge. (2) Temperature and H u m i d i t y Measurements Three c o n t i n u o u s r e c o r d i n g hygrothermographs i n t h e b a s i n a r e m a i n t a i n e d t h e y e a r r o u n d . (3) E v a p o r a t i o n Measurements E v a p o r a t i o n measurements are made d u r i n g t h e summer months a t one s i t e i n t h e l o w e r b a s i n s t a t i o n u s i n g a s t a n d a r d c l a s s A pan. Two porous s t o n e * e v a p o r i m e t e r s a r e i n s t a l l e d a t each s i t e f o r a d d i t i o n a l e v a p o t r a n s p i r a -t i o n e v a l u a t i o n o f t h e c l i m a t o l o g i c a l c o n d i t i o n s . * D e s i g n e d and s u p p l i e d by Dr. J . C. W i l c o x , Canada D e p a r t -ment o f A g r i c u l t u r e R e s e a r c h S t a t i o n , Summerland, B. C. 7. HYDROLOGICAL ANALYSIS 7.1 I n t e r p r e t a t i o n o f P r e c i p i t a t i o n Data I n t e r p r e t a t i o n o f the p r e c i p i t a t i o n da ta has two major p u r p o s e s . One purpose i s to e v a l u a t e t he o b s e r v a t i o n s which sample a p r e c i p i t a t i o n event o r a s e r i e s o f e v e n t s . The o t h e r purpose i s to e s t ima te averages o f p r e c i p i t a t i o n over the d r a i nage b a s i n from o b s e r v a t i o n s taken at the t h r e e r a i n gauge s t a t i o n s . 7.2 B a s i n P r e c i p i t a t i o n f rom P o i n t Va lue The T h i e s s e n po l ygon method has been used to o b t a i n a w e i g h t i n g system f o r the s t a t i o n da ta i n p r o p o r t i o n to the a rea s u r r o u n d i n g each r e s p e c t i v e r a i n gauge and s t a t i o n . In t h i s p r o c e d u r e , l i n e s were drawn between ad j acen t s t a t i o n s on a map ( F i gu r e D2, Appendix D ) . The p e r p e n d i c u l a r b i s e c t o r s o f t hese l i n e s form a p a t t e r n o f p o l y g o n s , around each s t a t i o n . The enc losed a rea at each s t a t i o n s i t e was measured by a p l a n i m e t e r and became a we ighted f a c t o r f o r p r e c i p i t a t i o n at the s t a t i o n . The r e s u l t s a re t a b u l a t e d i n T a b l e B3 (Appendix B) i n which --No. 173 HI i s the s t a t i o n s i t e at 2100 f e e t A . S . L . , No. 174 MD i s the s t a t i o n s i t e a t 1700 f e e t A . S . L . , No. 171 LO i s the s t a t i o n s i t e a t 1600 f e e t A . S . L . , r e s p e c t i v e l y . The l o c a t i o n o f t h r e e m e t e o r o l o g i c a l s t a t i o n s i s shown on the map ( F i g u r e D2, Appendix D ) . 21 The weighted average p r e c i p i t a t i o n o b t a i n e d by m u l t i -p l y i n g each o f the t h r e e s t a t i o n ' s r e s p e c t i v e p r e c i p i t a t i o n va lues by i t s T h i e s s e n po l ygon w e i g h t i n g f a c t o r and d i v i d i n g by the t o t a l o f the w e i g h t i n g f a c t o r s , g i v e s the average p r e c i p i t a t i o n over the d r a i nage a r e a . The monthly mean t o t a l s o f the b a s i n p r e c i p i t a t i o n a re t a b u l a t e d i n T a b l e B4 (Appendix B ) . The weighted b a s i n p r e c i p i t a t i o n , i n i n c h e s f o r an 8-hour p e r i o d , i s g i ven i n T a b l e B 5 (Appendix B ) . 7 . 3 R e l a t i o n to Seasona l P r e c i p i t a t i o n A u s e f u l s tep i n i n t e r p r e t i n g s t reamf low r e c o r d s was to express the r a t e o f f l ow f o r each month o f the water y ea r as a depth over the catchment a r e a . The depth o f r u n o f f , expressed i n i n c h e s , was then compared w i th the depth o f t he weighted p r e c i p i t a t i o n over the catchment area d u r i n g the same month. The p l o t s o f d i s c h a r g e and p r e c i p i t a t i o n f o r every month o f water y ea r 1 9 6 7 - 6 8 a re shown i n F i g u r e s FI to F12 (Appendix F ) . I f p r o p e r a l l owance i s made f o r a c a r r y over o f t he n a t u r a l s t o r age from one month to the n e x t , the d i f f e r e n c e between p r e c i p i t a t i o n and r u n o f f r e p r e s e n t s the depth o f n a t u r a l water l o s s f rom the catchment a r e a . I f a r easonab l e amount o f i n t e r p r e t a t i o n i s used i n comput ing r e c o r d s o f d a i l y d i s c h a r g e , t h e accuracy o f t h o s e r e c o r d s w i l l u s u a l l y be c o n s i d e r a b l y b e t t e r than the accu racy o f any o f the o t h e r i t ems i n the h y d r o l o g i c a l budget o f a catchment a rea (W.M.O., 1 9 6 5 ) . 8 . INTERPRETATION OF STREAMFLOW DATA A con t i nuous r e c o r d o f f l ow at the gaug ing s t a t i o n has been computed from the i n s t a n t a n e o u s r e a d i n g s o f the water l e v e l r e c o r d e r c h a r t s . The computa t ion has been done by the d i g i t a l computer u s i n g the s t a g e - d i s c h a r g e fo rmu la ( l ) . The computer ou tput c o n s i s t s o f average d i s c h a r g e s i n c u b i c f e e t pe r second f o r an 8-hour p e r i o d . I t i s t a b u l a t e d i n T a b l e B6 (Appendix B) and the monthly cumu la t i v e d i s c h a r g e i n a c r e - f e e t i s g i ven i n T a b l e B7 (Appendix B ) . The monthly b a s i n ou t f l ow volume i n i n ches and annual t o t a l i n c h e s i s g i ven i n T a b l e B8 (Appendix B ) . A g r a p h i c a l r e p r e s e n t a t i o n o f the d i s c h a r g e i s shown as the annual stream d i s c h a r g e hydrograph i n F i g u r e F13 (Appendix F ) . The annual s t ream d i s c h a r g e hydrograph c o n s i s t s o f a s e r i e s o f i r r e g u l a r l y spaced , i r r e g u l a r l y shaped r i s e s and r e c e s s i o n s super imposed upon a r e l a t i v e l y low base f l o w . 23 9. EVAPOTRANSFIRATION E v a p o t r a n s p i r a t i o n i s o f t e n d e f i n e d b r i e f l y as the sum o f the water t r a n s p i r e d by growing p l a n t s i n a d d i t i o n to t h a t which evapora tes from the s o i l , snow and i n t e r c e p t i v e s u r f a c e s , P o t e n t i a l e v a p o t r a n s p i r a t i o n i s t h a t which o c c u r s under c o n d i -t i o n s o f complete c rop cove r by a c t i v e l y growing p l a n t s and where m o i s t u r e s u p p l i e s a re not l i m i t i n g . 9.1 Method o f E s t i m a t i o n There are many methods o f e s t i m a t i n g e v a p o t r a n s p i r a -t i o n . These methods c o n s i s t o f water budge t , energy budge t , aerodynamics and pan e v a p o r a t i o n t e c h n i q u e s . Perhaps the most w ide l y used method f o r comput ing e v a p o t r a n s p i r a t i o n from m e t e o r o l o g i c a l f a c t o r s i s based on a comb ina t ion o f aerodynamics and energy ba l ance e q u a t i o n s . The Penman's f o r m u l a , which i n c l u d e s the most complete t h e o r e t i c a l approach , y i e l d s s a t i s f a c t o r y e s t i m a t e s o f e v a p o t r a n s p i r a t i o n . In i t s gene ra l form Penman's equa t i on s t a t e s t h a t : E o = AH_t jpSa * + r where E Q i s the es t imated e vapo ra t i on f rom a f ree-wate r s u r f a c e i n mm water pe r day A i s the s l o p e o f the s a t u r a t i o n vapor p r e s s u r e l i n e at any tempera ture T a i n ° F H i s the net r a d i a t i o n i n mm water per day 24 ^ i s the cons tan t i n the wet and dry b u l b psychrometer equa t i on E a a d e r i v e d parameter , i s a f u n c t i o n o f wind v e l -o c i t y and vapour p r e s s u r e e a - e^, where e a i s the s a t u r a t i o n vapour p r e s s u r e i n mm o f Hg at a t em-p e r a t u r e T a and e^ i s the a c t u a l vapour p r e s s u r e at the same t empera tu re . 9 . 2 Computat ion o f E v a p o t r a n s p i r a t i o n The t h r e e f o l l o w i n g f o rmu l ae , which a re used by Penman i n e s t i m a t i n g e v a p o t r a n s p i r a t i o n , have been s e l e c t e d f o r t h i s s tudy and a computer program was w r i t t e n . ( 1 ) H = R A ( 1 - r ) ( 0 . 1 8 + 0 . 5 5 n / N ) - ( 5 ' T a 4 ( 0 . 5 6 - 0 . 0 9 2 ]fe^) ( 0 . 1 0 + 0 . 9 0 n/N) ( 2 ) E a = 0 . 3 5 ( e a - e d ) ( l + 0 . 0 0 9 8 u 2 ) ( 3 ) E T = A » ~ 0.27Efl 1 4 - 0 . 2 7 where H i s the d a i l y heat budget at s u r f a c e i n mm o f water pe r day . R a i s the mean monthly e x t r a t e r r e s t r i a l r a d i a t i o n i n mm o f water pe r day . r i s the r e f l e c t i o n c o e f f i c i e n t o f the s u r f a c e , n i s the a c t u a l d u r a t i o n o f b r i g h t s u n s h i n e . N i s the maximum p o s s i b l e d u r a t i o n o f b r i g h t sunshine. i s the Boltzman cons t an t <t> T a 4 i s a c o e f f i c i e n t depend ing on tempera ture (mm H20/day) 25 i s t h e s a t u r a t i o n vapour p r e s s u r e a t a mean dew p o i n t , ( i . e . a c t u a l vapour p r e s s u r e i n t h e a i r ) i n mm Hg. E a i s t h e e v a p o r a t i o n i n mm o f wa t e r p e r day. e a i s t h e s a t u r a t i o n vapour p r e s s u r e a t a mean a i r t e m p e r a t u r e i n mm Hg. u 2 i s t h e mean wind speed a t 2 meters e l e v a t i o n above t h e ground s u r f a c e ( M i l e s p e r d a y ) . Erp i s t h e e v a p o t r a n s p i r a t i o n i n mm o f water p e r day. S i n c e t h e Penman e q u a t i o n i s based on a l a r g e number o f p a r a m e t e r s , t h e c l i m a t o l o g i c a l d a t a u s e f u l i n making com-p u t a t i o n o f e v a p o t r a n s p i r a t i o n was o b t a i n e d from t h e Vancouver A i r p o r t . The v a l u e s o f t h e mean monthly e x t r a t e r r e s t i a l r a d i a t i o n i n mm o f water p e r day ( R a d i a t i o n r a t e R A ) > c o e f f i -c i e n t s d e p e nding on t e m p e r a t u r e (<oTa^), and s a t u r a t i o n vapour p r e s s u r e ( e a ) , were t a k e n from t a b l e s . ( C r i d d l e 1 9 5 8). The r e f l e c t i o n c o e f f i c i e n t o f s u r f a c e was assumed as 0.20. The r e s u l t s o f e s t i m a t i n g t h e e v a p o t r a n s p i r a t i o n f o r seven months o f t h e water y e a r 1967-68 a r e g i v e n i n T a b l e B9 (Appendix B ) . Because o f l i m i t e d d a t a i t i s n o t i n t e n d e d t o e x t e n d t h e study o f e v a p o t r a n s p i r a t i o n i n t o f u r t h e r d e t a i l . R a t h e r , t h e o b j e c t i v e i s t o t e s t a b a s i c approach t o p r e d i c t i o n o f e v a p o t r a n s p i r a t i o n which w i l l h e l p i n j u d g i n g what t o e x p e c t i n a g i v e n l o c a l i t y on t h e b a s i s o f c l i m a t e , s o i l and ground c o v e r . 26 1 0 . STATISTICAL ANALYSIS OF HYDROMETEREOLOGICAL DATA 10.1 Method o f A n a l y s i s S imple r e g r e s s i o n a n a l y s i s and m u l t i p l e r e g r e s s i o n a n a l y s i s have been used to de te rmine the r e l a t i o n s h i p between r u n o f f and p r e c i p i t a t i o n o f the d r a i nage b a s i n . The a n a l y s i s was c a r r i e d out on the U n i v e r s i t y com-p u t e r , u s i n g a s t anda rd comput ing c e n t r e l i b r a r y program ( U . B . C . TRIP) which employs the methods o u t l i n e d i n R a l s t o n , A . and H. S. W i l f : Mathemat i ca l Methods f o r D i g i t a l Computers . 10 .2 S imple R e g r e s s i o n Techn iques The s imp le r e g r e s s i o n o f d i s c h a r g e as a dependent v a r i a b l e , and weighted b a s i n p r e c i p i t a t i o n as an independent v a r i a b l e , has been des igned to o b t a i n a l i n e a r r e g r e s s i o n equa t i on which would e x p l a i n the p r o p o r t i o n o f the v a r i a t i o n o f the dependent v a r i a b l e . The s imp l e r e g r e s s i o n , employ ing p r e c i p i t a t i o n as volume i n p u t i n a c re f e e t , was c a r r i e d out f o r : (a) each o f the twe lve months o f the water yea r 1967-68, and (b) f o r the whole water y ea r b e g i n n i n g October 1967 and end ing September 1968. 1 0 . 2 . 1 Monthly S imple Reg re s s i on The r e s u l t s o f the monthly s imp le r e g r e s s i o n a n a l y s i s a re t a b u l a t e d i n T a b l e C l (Appendix C ) . In t h i s T a b l e N i s t he number o f o b s e r v a t i o n s , A i s a c o n s t a n t , WT PPT i s a weighted p r e c i p i t a t i o n over the b a s i n i n ac re f e e t , Syjc i s the s t anda rd e r r o r o f e s t i m a t e , r^ i s the c o e f f i c i e n t o f d e t e r m i n a t i o n , and r i s the c o r r e l a t i o n c o e f f i c i e n t . These a n a l y s e s gave s t anda rd e r r o r s o f e s t ima te t h a t ranged from 0 . 0 5 3 t o 2 . 5 6 8 a c r e f e e t f o r e s t i m a t e s based on p r e c i p i t a t i o n - r u n o f f r e g r e s s i o n . By f a r the bes t c o r r e l a t i o n c o e f f i c i e n t s were o b t a i n e d i n August and January r e s p e c t i v e l y . On the o t h e r hand Novem-b e r , J u l y and September produced c o r r e l a t i o n c o e f f i c i e n t s which were not s i g n i f i c a n t and the v a l ues f o r the s l o p e s (WT PPT) o f the t h e o r e t i c a l r e g r e s s i o n l i n e s a l s o became low. The h i g h and low c o r r e l a t i o n c o e f f i c i e n t s are a s s o c i a t e d w i th s e a s o n a l v a r i a t i o n i n f l ow and i t s r e l a t i o n s h i p t o p r e c i p i t a -t i o n d u r i n g wet and dry seasons . Because the l i n e a r equa t i on d e r i v e d from a monthly s imp l e r e g r e s s i o n o f d i s c h a r g e and we ighted b a s i n p r e c i p i -t a t i o n would not p r o v i d e s a t i s f a c t o r y e s t ima te s o f r u n o f f f rom weighted p r e c i p i t a t i o n da ta f o r J u l y , September, and November, the m u l t i p l e r e g r e s s i o n o f d i s c h a r g e on p r e c i p i -t a t i o n o f t h r e e s t a t i o n s has been u s e d . T h i s method i s d i s c u s s e d i n S e c t i o n 1 0 . 3 . 1 . N e v e r t h e l e s s , an annual s i m p l e r e g r e s s i o n shown i n pa rag raph 1 0 . 2 . 2 a l s o y i e l d s b e t t e r r e s u l t s than the monthly s imp l e r e g r e s s i o n . 28 10.2.2 Annual Simple Regression T a b l e C2 (Appendix C) shows the r e s u l t s o f the annual simple r e g r e s s i o n of d i s c h a r g e and weighted p r e c i p i t a t i o n f o r the water year 1967-68. In t h i s T a b l e N i s the number of o b s e r v a t i o n s , A i s a constant, WT PPT i s a weighted p r e c i p i -t a t i o n over the b a s i n i n acre f e e t , Sy.x i s the standard e r r o r o f estimate, r - 6 i s the c o e f f i c i e n t of d e t e r m i n a t i o n , and r i s the c o r r e l a t i o n c o e f f i c i e n t . From the p l o t of the data ( F i g u r e E l , Appendix E) the r e g r e s s i o n of r u n o f f on weighted p r e c i p i t a t i o n i s f i t t e d s a t i s f a c t o r i l y by a s t r a i g h t l i n e . U s i n g the valu e s of the c o n s t a n t s t a b u l a t e d i n T a b l e C2, the r e g r e s s i o n equation f o r t h i s data becomes Qout = 0.3991 + 0.3051 (Qin) i n which Qout x s annual r u n o f f ( i n acre f e e t ) and Q±n i s p r e -c i p i t a t i o n (WT PPT) as a weighted input over the drainage b a s i n , i n acre f e e t . The standard e r r o r of estimate becomes + 1.3064 acre f e e t , which i n d i c a t e s t h at about 67% of a l l values of r u n o f f l i e w i t h i n t h i s range of the r e g r e s s i o n l i n e . I t i s seen t h a t c o r r e l a t i o n c o e f f i c i e n t r = 0.472 which i s s i g n i f i c a n t at P 0.01 and a l s o that the c o e f f i -c i e n t o f d e t e r m i n a t i o n r * = 0.223. Thus the r e g r e s s i o n of p r e c i p i t a t i o n accounts f o r 22.3% of the v a r i a n c e of the r u n o f f . 29 10.3 M u l t i p l e R e g r e s s i o n Techn ique In the f o r e g o i n g method i t would be expected t h a t the r e g r e s s i o n c o u l d be improved by the i n t r o d u c t i o n o f a d d i t i o n a l independent v a r i a b l e s , t h e r e f o r e d i s c h a r g e was c o r r e l a t e d w i th p r e c i p i t a t i o n measurements from t h r e e gauge s t a t i o n s . The f o l l o w i n g m u l t i p l e r e g r e s s i o n s were c a r r i e d o u t : (a) Monthly r e g r e s s i o n o f d i s c h a r g e on p r e c i p i t a t i o n o f t h r e e s t a t i o n s . (b) Annual r e g r e s s i o n o f d i s c h a r g e on p r e c i p i t a t i o n o f t h r e e s t a t i o n s . 10.3.1 Monthly P r e c i p i t a t i o n Runof f M u l t i p l e R e g r e s s i o n A s e r i e s o f m u l t i p l e r e g r e s s i o n s were computed f o r every month o f the water yea r 1967-68. The r e s u l t s are t a b u -l a t e d i n T a b l e C3 (Appendix C ) . In t h i s T a b l e N i s the number o f o b s e r v a t i o n s , A i s a c o n s t a n t , PPT H I , PPT MD, and PPT LO a r e independent v a r i -a b l e s o f p r e c i p i t a t i o n o f t h r e e gauge s t a t i o n s i n i n ches r e l a t e d t o r u n o f f i n ac re f e e t . In t h i s method m u l t i p l e r e g r e s s i o n produced s t anda rd e r r o r s o f e s t ima te r a n g i n g from 0.053 to 2.479 a c r e f e e t . S i m i l a r l y to the p r e v i o u s r e g r e s s i o n , August and January showed the h i g h e s t c o r r e l a t i o n c o e f f i c i e n t s . On the o t h e r hand S e p -tember showed a p a r t i c u l a r l y low c o r r e l a t i o n between p r e c i p i t a -t i o n and r u n o f f . D u r i n g the dry summer season the average f l ow i s u s u a l l y low and a l i t t l e r a i n f a l l causes the c o r r e l a t i o n c o e f f i c i e n t s to become h i g h . 30 In September also during the dry season the average flow would be expected to be low but because of the occurrence of a heavy rainstorm the c o r r e l a t i o n c o e f f i c i e n t became low. In January the average flow during the wet season i s high and i f there i s a high p r e c i p i t a t i o n i t gives a high c o r r e l a t i o n c o e f f i c i e n t . The c o r r e l a t i o n c o e f f i c i e n t s f o r nine months are s t a t i s t i c a l l y s i g n i f i c a n t at 0.01 and f o r three months they are not s i g n i f i c a n t . 10.3.2 Annual P r e c i p i t a t i o n Runoff Mult i p l e Regression In r e l a t i n g the annual p r e c i p i t a t i o n runoff r e l a t i o n -ship, the multiple c o r r e l a t i o n was established using p r e c i p i -t a t i o n of three stations as independent variables i n inches and discharge as a dependent variable i n acre feet. Table C4 (Appendix C) shows the r e s u l t s of the annual pr e c i p i t a t i o n - r u n o f f multiple regression which has been car-r i e d out for the following periods: ( i ) f or the period of twelve months of water year 1967-68, ( i i ) separately for the period from October to May, and for the period from June to September. This method showed that the highest c o r r e l a t i o n co-e f f i c i e n t coincides with the winter and spring wet period. During t h i s period (October to May) groundwater l e v e l i s presumably high and an accretion added to a high groundwater by high p r e c i p i t a t i o n w i l l run o f f i n a shorter time and the pre c i p i t a t i o n - r u n o f f regression might be affected more by r a i n f a l l ( S to rey 1951) than d u r i n g the d ry summer w i t h a low groundwater l e v e l . Fu r the rmore , a r e l a t i v e l y low c o r r e l a t i o n c o e f f i c i e n t has been ob t a i ned f o r t he p e r i o d f rom June to September. Ob -v i o u s l y , t he r e a re o t h e r v a r i a b l e s ( e v a p o t r a n s p i r a t i o n l o s s e s , d i f f e r e n c e s i n g roundcover , s o i l c h a r a c t e r i s t i c s , changes i n groundwater l e v e l e t c . ) t ha t i n f l u e n c e the r u n o f f and which c o u l d become apparent by p r o g r e s s i v e t e s t i n g . The f i n a l r e g r e s s i o n equa t i on c a l c u l a t e d f o r the whole water yea r 1967-68, t a b u l a t e d i n T a b l e C4 (Appendix C ) , took t h i s fo rm: Q = 0.398 - 0.224 (PPT HI) + 0.994 (PPT MD) + 0.789 (PPT LO) . (3) where Q i s the d i s c h a r g e i n a c r e f e e t , PPT H I , PPT MD, and PPT LO a re the p r e c i p i t a t i o n s i n i n c h e s o f the t h r e e gauge s t a t i o n s . 32 ANNUAL STREAM HYDROGRAPH OF OBSERVED AND PREDICTED DISCHARGE D e s p i t e t he use o f minimum m e t e o r o l o g i c and h y d r o l o g i c i n f o r m a t i o n i t i s d e s i r a b l e to have some knowledge o f t he i n -f l u e n c e o f p r e c i p i t a t i o n as a s i n g l e c o n t r o l parameter f o r the p r e s e n t , and on the expected f u t u r e s t reamf low ( E r i c k s o n 1966). The r e s u l t i n g annua l m u l t i p l e r e g r e s s i o n equa t i on (3) has been a p p l i e d to p l o t an annual s t ream hydrograph o f o b -se rved and p r e d i c t e d d i s c h a r g e f o r the water yea r 1967-68. The hydrograph i s shown i n F i g u r e F14 (Appendix F ) . D e s p i t e the p r e d i c t i o n equa t ion t e n d i n g t o smooth out the f l u c t u a t i o n s due to extreme va l ues o f p r e c i p i t a t i o n , i t c o u l d be observed t h a t a good r e c o n s t r u c t i o n o f the a c t u a l hydrograph has been o b t a i n e d f o r monthly events which do not f l u c t u a t e w ide l y from the mean. The r e s u l t s o b t a i n e d by the monthly m u l t i p l e p r e c i p i t a -t i o n - r u n o f f r e g r e s s i o n d i s c u s s e d e a r l i e r were e v iden t a l s o i n the p l o t o f t h i s hyd rog raph . D u r i n g summer the r e s i d u a l d i f -f e r e n c e between observed and p r e d i c t e d v a l ues o f d i s c h a r g e was s m a l l e r than i n w i n t e r wet season . D e s p i t e the r e l a t i v e l y h i g h c o r r e l a t i o n which was ob t a i ned i n J anuary , t he r e s i d u a l d i f f e r e n c e became more appa ren t . I t may be conc luded t h a t any r e s i d u a l d i f f e r e n c e b e -tween observed and p r e d i c t e d va lues o f d i s c h a r g e must , t h e r e -f o r e , be a s s o c i a t e d w i th some f a c t o r s y e t u n t e s t e d . Among the major f a c t o r s a re the m e t e o r o l o g i c a l even ts antecedent t o t he f l o o d t o g e t h e r wi th the p h y s i o g r a p h i c and g e o l o g i c a l c h a r a c -t e r i s t i c s o f the wa te rshed . 33 SUMMARY AND CONCLUSIONS (1) The f o r e g o i n g s t u d y has shown t h e program development t h r o u g h t h e f i r s t y e a r o f a s i n g l e w a t e r s h e d c a l i b r a t i o n a pproach, s e e k i n g t o e s t a b l i s h a normal r e l a t i o n s h i p between s t r e a m f l o w c h a r a c t e r i s t i c s and p r e c i p i t a t i o n as a c o n t r o l p a r a meter. (2) The ar e a s e r v e d by the watershed r e s e a r c h c o m p r i s e s a v e r y s m a l l p a r t (60.5 a c r e s ) i n t h e f o o t h i l l s o f t h e U n i v e r -s i t y o f B r i t i s h Columbia R e s e a r c h F o r e s t l o c a t e d a t t h e s o u t h e r n f r i n g e o f t h e Coast M o u n t a i n s . D e t a i l e d s t u d i e s o f the c o n t r i b u t i o n o f t h e mountains and f o t t h i l l s r e g i o n o f th e Coast Mountains t o s t r e a m f l o w a r e not y e t a v a i l a b l e . (3) The s h o r t - t e r m , e x p l o r a t o r y phase o f t h e wate r s h e d r e s e a r c h program p r e s e n t l y embraces: ( i ) i n s t r u m e n t a t i o n o f a stream-gauge s t a t i o n which i s i n t e g r a t e d i n t o t h e c l i m a t o l o g i c a l network o f t h r e e gauge s t a t i o n s ; ( i i ) a h y d r o m e t r i c s u r v e y and c o l l e c t i o n o f s y s t e m a t i c r e c o r d s o f s t a g e ; ( i i i ) c o l l e c t i o n o f p r e c i p i t a t i o n d a t a f o r t h r e e gauge s t a t i o n s . (4) C u r r e n t - m e t e r measurements have been made t o d e f i n e a c c u r a t e l y t h e s t a g e - d i s c h a r g e r e l a t i o n . E x c e l l e n t s t r e a m f l o w r e c o r d s have been o b t a i n e d a t t h e s t r e a m - g a u g i n g s t a t i o n o v e r t h e water y e a r , and no m o d i f i c a t i o n s seem n e c e s s a r y . (5) Runoff from the drainage b a s i n d u r i n g the water y e a r 1967-68 f o l l o w e d the p r e c i p i t a t i o n p a t t e r n c l o s e l y . A normal hig h flow d u r i n g the winter months i s f o l l o w e d by an annual r e c e s s i o n to low flow i n l a t e r summer months. (6) The annual t o t a l gross p r e c i p i t a t i o n , predominantly i n the form of r a i n , was 159.62 inches and the annual t o t a l r u n o f f was 135-62 i n c h e s . (7) High y i e l d (85$ of t o t a l p r e c i p i t a t i o n ) i s due i n p a r t to the f a c t t h a t most of the p r e c i p i t a t i o n o c c u r s d u r i n g the wet winter p e r i o d and to low e v a p o t r a n s p i r a t i o n l o s s i n the perhumid r a i n y c l i m a t e o f the study area. (8) During the p e r i o d s o f a heavy r a i n f a l l , h i g h i n t e n s -i t y i s q u i t e n o t i c e a b l e . In January 1968 the maximum 8-hour i n t e n s i t y was 5.47 i n c h e s . (9) The seasonal v a r i a t i o n o f p r e c i p i t a t i o n i s a l s o r e -markable. The summer i s dry (mean t o t a l p r e c i p i t a t i o n i n June was 3.21 i n c h e s ) , i n c o n t r a s t to the wi n t e r months iwhen i t i s very wet (mean t o t a l p r e c i p i t a t i o n i n October was 27.65 inches and i n January 27.30 i n c h e s ) . P o t e n t i a l e v a p o t r a n s p i r a t i o n estimated from the Vancouver A i r p o r t r e c o r d s , u s i n g Penman's formula, averages 22.70 inches f o r the months from A p r i l to September, 1968. (10) In making the esti m a t e s o f monthly and annual y i e l d s from m e t e o r o l o g i c a l data f o r the water year 1967-68, two methods of s t a t i s t i c a l a n a l y s e s were used: ( i ) the simple monthly and annual r e g r e s s i o n o f di s c h a r g e and weighted b a s i n p r e c i p i t a t i o n . 35 ( i i ) t he m u l t i p l e monthly and annual r e g r e s s i o n o f d i s c h a r g e and p r e c i p i t a t i o n o f t h r e e s t a t i o n s . (11) The bes t e s t i m a t i o n o f annual d i s c h a r g e was o b t a i n e d by an annual m u l t i p l e r e g r e s s i o n o f the d i s c h a r g e f o r p r e -c i p i t a t i o n at the t h r e e gauge s t a t i o n s . T h i s a n a l y s i s p r o -duced a s t andard e r r o r o f e s t ima t e * 1.307 a c r e - f e e t and a c o r r e l a t i o n c o e f f i c i e n t o f 0.474 which i s s t a t i s t i c a l l y s i g n i f i c a n t at P < 0.01. (12) The equa t i on computed from the annual m u l t i p l e p r e -c i p i t a t i o n - r u n o f f r e g r e s s i o n has been used to p r e d i c t the annual volume o f r u n o f f i n a g r a p h i c a l form o f a s t ream hyd rog raph , f o r an observed and p r e d i c t e d d i s c h a r g e . The r e s u l t i n g equa t i on f o r p r e d i c t e d annua l d i s c h a r g e g i v e s a good r e p r e s e n t a t i o n f o r an average f low and t ends to smooth out the f l u c t u a t i o n s o f extreme v a l u e s o f d i s c h a r g e . Because m u l t i p l e r e g r e s s i o n has been adapted t o t e l l , w i thou t b i a s , what va lue can be expected w i th the g i v en se t o f v a r i a b l e s : ( i ) i t i s conc luded t h a t a r e s i d u a l d i f f e r e n c e between observed and p r e d i c t e d v a l u e s o f d i s c h a r g e must be a s s o c i a t e d w i th some f a c t o r y e t u n t e s t e d , ( i i ) The m u l t i p l e r e g r e s s i o n a n a l y s i s u s i n g i n f o r -mat ion from the t h r e e s epa ra t e m e t e o r o l o g i c a l s t a t i o n s which sample da ta from the t h r e e l o c a t i o n s w i th d i f f e r e n t e l e v a t i o n , s l o p e , aspec t and exposure showed h i g h e r r e s u l t s than the s imp le r e g r e s s i o n u s i n g we ighted b a s i n 36 p r e c i p i t a t i o n . I t sugges t s t h a t t h i s i m p r o v e -ment i s due t o i n f o r m a t i o n o b t a i n e d p e r t i n e n t t o each zone o f rugged t e r r a i n and w i th r e s p e c t to t he degree o f those a s s o c i a t i o n s and v e g e t a t i v e c o v e r , ( i i i ) In o rde r to a t t a i n f u r t h e r improvement i n t he s tudy o f h y d r o l o g i c c h a r a c t e r i s t i c s o f the M i l i t z a Lake B a s i n the c o n s t r u c t i o n and i n s t r u -menta t ion o f a sub-bas in may be found to be i n t r i n s i c a l l y o f s a t i s f a c t o r y h y d r o l o g i c e f f i -c i e n c y . I t would be necessa r y to measure s t reamf low and groundwater i n the two gauge b a s i n s and d e r i v e c o r r e l a t i o n s between those two b a s i n s . 37 PROPOSED DEVELOPMENT and RECOMMENDATION To a t t a i n a c c u r a c y i n wat e r s h e d work i t r e q u i r e s many y e a r s t o i n s t r u m e n t and c a l i b r a t e a gauge b a s i n . S i n c e M i l i t z a Lake B a s i n has p r o v i d e d v a l u a b l e i n f o r -m a t i o n i n t h e i n i t i a l phase o f t h i s r e s e a r c h program, i t would be recommended t h a t emphasis be p l a c e d on t h e e x t e n s i o n o f t h e r e s e a r c h a c t i v i t i e s . T h i s would f u r n i s h f u r t h e r i n -f o r m a t i o n e s s e n t i a l t o t h e complete u n d e r s t a n d i n g o f b a s i n h y d r o l o g y . A complete w a t e r s u p p l y s t u d y s h o u l d i n c l u d e t h e f o l l o w i n g : ( i ) c o n t i n u a t i o n o f t h e e x i s t i n g program; ( i i ) p r e p a r a t i o n and development o f more p e n e t r a t i n g r e s e a r c h which would i n d i c a t e t h o s e avenues o f st u d y which appear p o t e n t i a l l y more r e w a r d i n g . Those s t u d i e s s h o u l d c o n s i s t o f — (1) groundwater i n s t r u m e n t a t i o n (2) s o i l m o i s t u r e ( c o n s u m p t i v e use) s t u d i e s (3) s o i l t e m p e r a t u r e s t u d i e s (4) e v a p o t r a n s p i r a t i o n measurements (5) s o l a r r a d i a t i o n measurements ( 6 ) i n t e r c e p t i o n and s t e m f l o w s t u d i e s (7) snow a c c u m u l a t i o n and m e l t s t u d i e s ; 38 ( i i i ) F o r m u l a t i o n and d e s i g n o f a computer model o f b a s i n behav iou r which would i n c l u d e a l l measured parameters o f the phenomena which o c cu r i n h y d r o l o g i c sys tems ; and examina t ion o f h y d r o l o g i c parameters as they would be a f f e c t e d by management and o t h e r changes w i t h i n the b a s i n . 39 LIST OF REFERENCES Armstrong, J . E., 1957. S u r f a c i a l g e o l o g y o f New W e s t m i n s t e r Map-area, B r i t i s h Columbia. Canada Department o f Mines and T e c h n i c a l Survey, Paper 57-5. B r i n k , V. C. and L. F a r s t a d , 1949. The p h y s i o g r a p h y o f t h e a g r i c u l t u r a l a r e a s o f B r i t i s h C o l u m b i a , S c i e n t i f i c A g r i c u l t u r e 29, pp. 273-301. Chapman, J . D., 1952. The c l i m a t e o f B r i t i s h C o l u m b i a , The U n i v e r s i t y o f B r i t i s h C o l u m b i a . C r i d d l e , W. D., 1958. Methods o f c o m p u t i n g consumptive use o f w a t e r . P r o c . Am. Soc. CIV. E n g r s . , J . D i v . I r r i g a t i o n and D r a i n a g e , V o l . 84, No. IR1, pp. 1-27, J a n u a r y . Department o f T r a n s p o r t , M e t e o r o l o g i c a l Branch. Annual Mete-o r o l o g i c a l summary w i t h c o m p a r a t i v e d a t a , Vancouver A i r p o r t and Vancouver C i t y 1967-1968. Department o f T r a n s p o r t , 1968. M o n t h l y r e c o r d , m e t e o r o l o g i c a l o b s e r v a t i o n s i n Canada. E r i c k s o n , 0. M., 1966. A p p l i c a t i o n o f computers t o t h e d e t e r -m i n a t i o n o f snowmelt r u n o f f . S t a t i s t i c a l method i n h y d r o l o g y . P r o c . H y d r o l o g y Symposium No. 5, M c G i l l U n i v e r s i t y . H a r r y , K. F. and J . B. W r i g h t , 1967. The c l i m a t e o f Vancouver Department o f T r a n s p o r t M e t e o r o l o g i c a l B r a n c h . H e r t z l e r , R. A., 1938. D e t e r m i n a t i o n o f a f o r m u l a f o r 120° V-Notch w e i r . C i v i l E n g i n . 8: 7 56-757. J e f f r e y , W. W., 1964. Watershed r e s e a r c h i n t h e Saskatchewan R i v e r headwaters. P r o c . o f H y d r o l o g y Symposium No. 4, R e s e a r c h Watersheds, U n i v e r s i t y o f Guelph. K e r r , D. P., 1950. R e g i o n a l c l i m a t o l o g y o f s o u t h e r n B r i t i s h C o l umbia, Ph.D. t h e s i s , U n i v e r s i t y o f T o r o n t o . K i n g , H. W., and C. F. B r a t e r , 1963. Handbook of h y d r a u l i c s (5th ed.) M c G r a w - H i l l , New Y o r k . K r a j i n a , V. J . , 1965. B i o g e o c l i m a t i c zones and c l a s s i f i c a t i o n o f B r i t i s h C o l u m b i a . E c o l o g y o f Western N o r t h A m e r i c a 1:1-17, U n i v e r s i t y o f B r i t i s h C o l u m b i a , Vancouver, B. 40 L a c a t e , D. S . , 1965. F o r e s t l a n d c l a s s i f i c a t i o n f o r the U n i v e r s i t y o f B r i t i s h Co lumbia Research F o r e s t , Department o f F o r e s t r y P u b l . No. 1107> Ot tawa. McKay, D. J . , 1959. H y d r o m e t e o r o l o g i c a l i n s t r u m e n t a t i o n , P r o c . o f Hydro logy Symposium No. 7> V i c t o r i a , B r i t i s h Co lumb ia . Penman, H. L . , 1958. N a t u r a l e v a p o r a t i o n from open water , bare s o i l , and g r a s s . P r o c . Roya l S o c i e t y o f London, S e r i e s A. 193: 120-146. Putnam, D. F . , B. B r o u i l e t t e , D. P. K e r r and J . L. Rob inson , 1952. Canad ian r e g i o n s , a geography o f Canada , J . M. Dent and Sons , Canada L t d , R a l s t o n , A , , and H. S. W i l f , I 960 , Ma themat i ca l methods f o r d i g i t a l computers , John W i l e y and Sons , I n c . S t a g e r , J . K. and J . H. W a l l i s , 1968. The c l i m a t e f a c t o r -v a r i a t i o n on a mean, Lower F r a s e r V a l l e y , p p . 89-101, E v a l u a t i o n o f a c u l t u r a l l a n d s c a p e , B. C . Geog raph i ca l S e r i e s , No. 9 . T a n t a l u s Research L t d . , Vancouver , Canada. Snyder , W. M, and J . B. S t a l l , 1965. Men, models and machines i n h y d r o l o g i c a n a l y s i s . J r . o f the h y d r a u l i c s d i v i -s i o n ASCE, V o l . 91, No. HY . 2 , P r o c . Paper 4256. S t o r e y , H. G . , 1951. F o r e s t and water r e s e a r c h p r o j e c t , Delaware-LEHIGH Exper imenta l F o r e s t , Pa , Department F o r e s t s and Waters 44 pp . i l l u s . U . S . D . A . , 1962. F i e l d manual f o r r e s e a r c h i n a g r i c u l t u r a l h y d r o l o g y . A g r i c u l t u r a l Handbook No. 224. U . S . D . A . , 1964. S t ream-gauging s t a t i o n s f o r r e s e a r c h on sma l l wa te r sheds . A g r i c u l t u r a l Handbook No. 268. Wor ld M e t e o r o l o g i c a l O r g a n i z a t i o n , 1965, Guide to Hydrometeor -o l o g i c a l P r a c t i c e s , F i r s t E d i t i o n , No. 168 p . , Geneva, S w i t z e r l a n d . 41 APPENDIX A TABLE A l PERCENTAGE FREQUENCY OF WIND AT VANCOUVER AIRPORT PERIOD OF RECORD 1936-1955 Jan Feb Mar Apr Mav Jun J u l Aug Sen Oct Nov Dec Year Nor th 3 3 3 3 2 2 2 2 3 4 3 3 3 Nor theas t 9 8 7 6 5 5 4 4 6 7 10 9 7 Eas t 47 40 32 27 24 25 27 29 28 35 41 44 33 Southeas t 17 15 16 17 18 21 24 23 16 15 16 17 18 South 6 6 7 8 6 8 7 5 4 4 6 6 6 Southwest 4 5 7 10 9 8 9 6 5 5 4 4 6 West 5 9 12 13 17 16 14 13 16 11 8 7 12 Northwest 7 12 15 15 18 14 12 16 20 17 10 8 14 Calm 2 2 1 1 1 1 1 2 2 2 2 2 1 4 * . t o TABLE A2 AVERAGE WIND SPEED AT VANCOUVER AIRPORT IN MILES PER HOUR (BY DIRECTION) PERIOD OF RECORD 1936-1955 Jan Feb Mar A££ May Jun J u l Aug Sep Oct Nov Dec Year North 3.7 4.0 4.3 4.1 3.5 3.5 3.5 3.5 3.4 3.4 3.3 3.4 3.6 Northeast 6.9 6.7 6.8 6.3 5.9 5.7 5.7 4.9 4.8 5.6 6.6 6.9 6.1 East 7.9 8.2 8.0 7.5 7.0 6.9 6.6 6.7 6.4 7.2 7.8 8.0 7.4 Southeast 8.3 8.6 9.2 8.9 8.2 8.1 7.7 7.6 7.4 8.5 9.6 10.3 8.5 South 10.6 10.4 10.1 9.7 7.8 7.3 6.7 6.6 6.6 9.5 11.0 11.0 8.9 Southwest 9.0 8.6 9.6 9.2 7.8 7.0 6.5 6.0 6.3 7.3 8.5 9.8 8.0 West 9.9 9.5 11.4 10.0 9.7 9.2 8.3 8.0 8.5 8.4 9.2 10.0 9.3 Northwest 11.0 10.1 11.8 11.3 11.8 11.9 11.5 11.2 10.5 9.8 8.7 9.7 10.8 Average 8.4 8.3 8.9 8.4 7.7 7.4 7.1 6.8 6.7 6.5 8.1 8.6 Co 4 4 TABLE A3 AVERAGE AND EXTREME NUMBER OF DAYS WITH STRONG WINDS AT VANCOUVER AIRPORT PERIOD OF RECORD 1936-1955 Number o f Days with Wind f o r One Maximum Recorded Wind Hour Greater Than: f o r P e r i o d o f : 18 MPH 25 MPH 31 MPH 1 Hour 10 Min. Gust January Av Max 8 14 3 6 1 5 NW 57 30/1947 NW 63 30/1947 NW 72 30/1947 February Av Max 8 13 2 6 0 2 NW 45 18/1948 W 53 18/1948 W 63 18/1948 March Av Max 9 19 2 10 1 4 w 44 31/1945 NW 44 15/1951 WNW60 31/1945 NW 71 31/1945 A p r i l Av Max 8 15 2 5 0 2 NW 34 30/1944 6,19/1952 SSE50 23/1943 SSE58 23/1943 May Av Max 6 10 2 9 0 2 W 42 17/1938 w 45 17/1938 WNW56 7/1955 June Av Max 6 10 1 5 0 2 NW 36 29/1948 15/1951 NW 45 15/1951 NW 50 15/1951 J u l y Av Max 5 18 1 3 0 1 w 32 2/1945 NW 39 21/1946 NW 46 21/1946 August Av Max 4 9 1 3 0 0 W 29 19/1955 NW 35 18/1945 WNW35 19/1955 NW 40 18/1945 WNW40 19/1955 45 TABLE A3 — Con t inued Number o f Days w i t h Wind f o r One Hour G rea te r Than : Maximum f o r Recorded Wind P e r i o d o f : 18 25 31 MPH MPH MPH 1 Hour 10 M i n . Gusf^ September Av 5 2 0 NW 35 W 44 SE 54 Max 9 5 2 18/1945 17/1945 15/1949 Oc tober Av 7 2 0 NW 40 NW 45 WNW60 Max 13 4 2 23/1939 25/1946 13/1947 25/1946 November Av 8 3 1 W 48 WNW53 WNW71 Max 17 7 3 10/1955 10/1955 10/1955 December Av 9 4 1 NW 38 S 50 NW 60 Max 15 8 4 8/1938 22/1940 2/1938 SSW60 5/1953 46 APPENDIX B 47 TABLE B l STAGE-DISCHARGE RELATION DEVELOPED FROM CONTAINER MEASUREMENTS C r e s t Head Time Volume D i s c h a r g e Day Feet Sec . G a l l o n C . F . S . 0.256 45.4 45.461 0.161 May 6/67 0.340 7.4 14.000 0.304 0.350 9.0 20.000 0.356 TABLE B2 STAGE-DISCHARGE RELATION DEVELOPED FROM CURRENT METER MEASUREMENTS fieao?*' Width Depth V e l o c i t y Area D i s c h a r g e Day Feet Fee t Fee t f t / S e c . Sq . Fee t C . F . S . 1 0.875 0.42 0.875 0.368 1 0.750 0.32 0.750 0.240 1 0.750 0.39 0.750 0.292 1 1.000 0.22 1.000 0.220 June 6/67 O.58 T o t a l = 3.375 1.120 TABLE B3 GAUGE STATION AREA DETERMINATION S t a t i o n No. No. 173 HI No. 174 MD No. 171 LO T o t a l B a s i n Area Area o f Po lygon ( i n ac res ) 7.48 15.82 37.20 60.50 TABLE B4 Month Mean T o t a l Ann . T o t a l BASIN PRECIPITATION IN INCHES WATER YEAR 1967 - 68 O c t , Nov. Dec . J a n . Feb . Mar . A p r . May June J u l . Aug . S ep t . 27.65 12.82 15.13 27.30 15.79 16.05 10.66 5.07 6.03 3.21 6.56 13.35 159.62 00 TABLE B5 WEIGHTED BASIN PRECIPITATION IN INCHES FOR 8-HOUR PERIOD, WATER YEAR 1967-68 Day O c t , Nov. Dec, J an . Feb , Mar. Ap r , May June J u l y Aug . Sep. 1 0.240 2.020 0.907 0.443 0.237 0.060 0.013 0.013 0.062 0.013 0.005 0.0 0.0 0.0 0.032 0.030 0.025 0.028 0.144 0.214 0.092 0.453 0.326 0.156 0.012 0.021 0.735 0.017 0.006 0.0 0.010 0.004 0.001 0.133 0.188 0.118 2 0.096 0.003 0.0 0.047 0.003 0.0 0.684 0.311 0.222 0.0 0.0 0.0 0.393 1.028 0.044 0.012 0.0 0.081 0.039 0.139 0.219 0.070 0.0 0.0 0.420 0.128 0.065 0.0 0.0 0.0 0.0 0.0 0.0 0.154 0.077 0.019 3 0.055 0.547 0.088 0.0 0.0 0.0 0.060 0.005 0.031 0.0 0.018 0.018 O.48I 1.862 1.050 0.009 0.0 0.0 0.233 0.0 0.0 0.0 0.0 0.0 0.039 0.013 0.025 0.0 0.0 0.0 0.0 0.0 0.048 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.065 0.041 0.013 0.013 0.038 0.062 0.900 0.0 0.0 0.067 0.318 0.425 0.0 0.003 0.010 0.0 0.0 1.351 0.0 0.013 0.022 0.0 0.0 0.0 0.046 0.015 0.032 0.0 0.0 0.0 5 0.018 0.061 0.072 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.031 0.0 0.0 0.0 2.007 0.518 0.264 0.357 0.103 0.007 0.272 0.282 0.228 0.031 0.061 1.168 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 1.468 0.775 1.504 0.0 0.0 0.0 0.0 0.0 0.0 0.156 0.082 0.031 0.0 0.0 0.0 0.073 0.149 0.216 0.0 0.044 0.034 0.131 0.0 0.0 0.676 0.264 0.031 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 3.167 1.596 0.468 0.0 0.0 0.005 0.0 0.0 0.0 0.0 0.234 0.060 0.0 0.0 0.0 0.037 0.037 0.037 0.003 0.0 0.0 0.0 0.0 0 .0 0.061 0.031 0.031 0.0 0 .0 0.0 0.0 0.0 0.0 0 .0 0 .0 0.0 TABLE B5 — C o n t i n u e d Day. Oct, Nov. Dec, J a n . F e b t Mar. Apr. May June J u l y Aug, Sep 8 0.038 0.0 0.0 0.069 0.156 0.206 0.0 0.0 0.0 0 .072 0.042 0.050 0.0 0.0 0.0 0.029 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.031 0.0 0.025 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 0.0 0.0 0.0 0.075 1.741 1.103 1.272 0.031 0.013 0.031 0 .044 0.045 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.013 0.0 0.0 0.0 0.031 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 0.031 1 .682 0.414 1.173 0 .097 0 .044 3 .797 1.206 0.083 0.005 0.0 0 .025 0.0 0.0 0.0 0.0 0.0 0.0 0.018 0.024 0.031 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 0.033 0.033 0.0 0.0 0.642 0 .057 0 .497 0 .047 0.0 0.013 0.019 0.014 0.0 0.0 0.0 0.0 0.0 0.150 0.523 0 .241 0.183 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.041 0 .068 0.0 0.0 0.0 0.0 0.0 0.0 12 0 .076 0 .068 0 .005 0.031 0.0 0.0 0.0 0.0 0.0 0.005 0.082 0.206 0.0 0.0 0.0 0.299 1.517 1 .487 0 .086 0.039 0.039 0,0 0,0 0.0 0.0 0.0 0.0 0.031 0.010 0.242 0.0 0.0 0.0 0.0 0.0 0.0 13 0.026 0.768 0.006 0.024 0 .330 0.061 0.0 0.0 0.0 0.669 0.569 5.474 0.0 0.0 0.0 0 .405 0.035 0 .044 0 .026 0.031 0.040 0.0 0.0 0.019 0.0 0.0 0.0 0.038 0.026 0,369 0.0 0.042 0.158 0.0 0.0 0.0 14 0*005 0 .Q20 0.106 0.025 0 .026 0.616 0.0 0.0 0.0 1.850 0.069 0 .037 0.0 0.0 0.0 0 .131 0.476 0.013 0.056 0.048 0.122 0.0 0.006 0.0 0.0 0.0 0.0 0.088 0.0 0.354 0.099 0.094 0.097 0.0 0.0 0.0 15 0.018 0.0 0.0 0 .105 1.078 0 .025 0.0 0.0 0.0 0.193 0.088 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.553 0.755 0.447 0.0 0.0 0.0 0,0 0.0 0.0 0.040 0.070 0 .267 0.077 0,063 0.0 0.0 0.0 0.0 TABLE B5 — Cont inued Day. O c t , Nov, Dec. J an . Feb , Mar. A p r . May June J u l y Aw?, Sep, 0.0 0.026 0,0 0.0 0.0 0.005 0.224 0.0 0.0 0.0 0.0 0.0 16 0.0 0.130 0.0 0.0 0.0 0.306 0.166 0.0 0.0 0 .0 0.0 0.0 0.0 0.046 0.0 0.0 0.0 0.213 0.142 0.0 0.0 0.167 0.0 0.061 0.0 0.0 0.0 0.0 0.0 0.099 0.006 0.0 0.0 0.036 0.0 0.205 17 0.0 0.053 0.0 0.026 0.082 0.010 0.117 0.0 0.0 0.018 0.0 0.075 0.0 0.0 0.0 0.194 0.118 0.003 0.110 0.0 0.0 0.142 0.027 0.332 0.0 0.0 0.0 0.456 1.141 0.0 0.0 0.0 0.0 0.027 0.006 0.026 18 0.0 0.0 0.0 0.656 2.849 0.0 0.0 0.0 0.0 0 .101 0.054 0.204 0.061 0.0 0.0 2.244 1.006 0.0 0.164 0.0 0.0 0.003 0.0 0.374 0.0 0.0 0.0 3.501 0.606 0.0 0.012 0.0 0.0 0.0 0.026 0.0 19 0.006 0.0 0.0 2.006 0.032 0.0 0.044 0.0 0.0 0.971 0.0 1.039 0.0 0.0 o.o •;. 1.094 0.0 0.0 0.0 0.0 0.0 0.025 0.421 0.954 0.055 0.0 0.0 1.957 0.0 0.0 0.0 0.0 0.0 0.033 0.0 0.633 20 0.006 0.059 0.0 4.056 0.0 0.0 0.0 0.883 0.0 0.006 0.0 0.584 0.0 0.036 0.0 0.588 0.0 0.0 0.0 0.396 0.0 0 .0 0.009 5.064 0.710 0.0 0.0 0.049 1.001 0.0 0.0 0.200 0.0 0.0 0.0 0.209 21 0.070 0.0 0.0 0.031 0.0 0.0 0.0 0.152 0.0 0 .0 0.0 0.010 0.079 0.012 0.060 0.018 0.0 0.0 0.0 0.093 0.0 0.0 0.0 0.0 0.811 0.034 2.667 0.0 0.046 0.0 0.0 0.024 0.0 0.0 0.039 0.0 22 0.633 0.044 0.909 0,0 0.438 0.0 0.006 0.0 0.0 0 .0 0.200 0.0 0.005 0.0 0.335 0.0 0.506 0.0 0.068 0.0 0.0 0.0 0.254 0.0 0.0 0.692 0.469 0.0 1.240 0.0 0.0 0.0 0.0 0.0 0.167 0.0 23 0.003 0.922 0.820 0.0 0.577 0.0 0.076 0.0 0.0 0.0 0.132 0.0 0.507 0.031 0.083 0.0 0.208 0.0 0.006 0.0. 0.0 0 .0 0.096 0.0 TABLE B5 — C o n t i n u e d Day 0 c t t Nov. Dec. J a n . Feb. Mar. Apr, May June J u l y Aug, Sep, 24 0.039 0.021 0.441 0.0 0.0 0.0 0.010 0.0 0.862 0.0 0.0 0 .0 0.039 0 .0 0.0 0.0 0.0 0.0 0.006 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.068 0.005 0.0 0.0 0.0 0.0 25 0.018 0.0 0.0 0.0 0.0 0.0 0.061 0.0 0 .062 0.026 0.0 0.0 0.0 0.0 0.0 0.090 0.181 0.206 0.032 0.045 0.112 0.0 0.0 0.0 0.0 0.0 0.075 0 .0 0.0 0.0 0.118 0.063 0.0 0.0 0.018 0.039 26 0.010 0.056 0.505 0.010 0.221 0.010 0.297 0.010 0.010 0.0 0.0 0.0 0.056 0.025 0.006 0.376 2.310 1.754 0.316 0.730 0.449 0.0 0.0 0.0 0.795 0.026 0.050 0.0 0 .0 0.0 0.013 0.307 0.746 0.106 0.188 2.472 27 1.489 0.852 0.018 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.707 0.356 0.280 0.321 0.302 0.059 0.0 0.0 0.0 0.707 0.005 0.067 0.0 0.0 0.0 0.905 0.808 0.725 0.031 0.0 0.0 28 0.0 0.0 0.0 0.0 1.481 0.055 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.010 0.156 0.059 0.0 0.036 0.044 0.0 0.0 0.0 0.090 0.013 0.044 0.0 0.0 0 .0 0.374 0.074 0.012 0.019 0.012 0.006 29 0 .006 0.019 0.038 0.027 0.098 0.108 0.0 0.0 0.0 0.0 0.0 0.005 0.0 0.0 0.020 0.008 0.0 0.0 0.0 0.013 0.045 0.0 0.0 0.0 0.159 0.025 0.026 0.0 0.0 0.0 0.012 0.0 0.0 0.0 0.0 0.0 30 1.015 0.827 2.023 0.032 0.200 0.008 0.0 0.0 0.0 0.013 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.066 0.013 0.010 0.0 0.0 0.0 0.0 0.0 0.010 0.0 0.0 0.0 0.005 0.005 0.005 0.0 0 .0 0 .0 31 0.831 0.062 0.0 0.0 0.0 0 .0 0.0 0.006 0.0 0.0 0.013 0.0 0.0 0.0 0.0 0.0 0.006 0.0 0.0 0.0 0.0 0.008 0.020 0.0 0.0 0.0 0.0 0 .0 0.010 0.006 0.005 0.052 0.037 0.0 0 .0 0 .0 TABLE B 6 AVERAGE DISCHARGE IN C . F . S . FOR B-HOUR PERIOD WATER YEAR 1 9 6 7 - 6 8 DAY O C T . N O V . D E C . J A N . F E B . MAR. A P R . MAY J U N . JULk A U G . S E P . 0 0 . 6 9 7 0 . 0 0 1 0 . 4 1 4 0 . 1 6 ' i 0 . 2 0 5 0 . 2 8 2 0 . 5 2 9 0 . 6 6 1 0 . 1 6 4 0 . 2 1 4 0 . 0 5 0 0 . 3 7 5 1 0 . 6 2 7 0 . 0 0 3 0 . 4 1 4 0 . 1 3 4 0 . 2 0 5 0 . 2 5 2 0 . 4 7 0 0 . 9 8 0 0 . 6 6 1 0 . 1 8 8 0 . 0 4 3 0 . 3 3 9 0 1 . 4 8 5 1 . 1 6 7 0 . 5 9 3 0 . 1 2 1 0 . 2 1 4 0 . 2 5 2 0 . 4 4 1 ' 1 . 2 1 7 U 0 7 1 0 . 1 7 9 0 i 0 4 3 0 . 3 1 5 0 4 . 2 1 6 0 . 7 7 2 0 . 9 8 0 0 . 1 0 9 0 . 5 2 9 0 . 2 9 3 0 . 4 1 4 1 . 1 1 8 2 . 1 1 9 0 . 1 6 4 0 . 0 4 3 0 . Z 9 3 2 1 . 9 8 2 0 . 5 9 3 3 . 0 6 2 0 . 0 8 6 1 . 1 6 7 0 . 2 9 3 0 . 3 6 3 0 . 9 3 6 1 .982 0 . 1 4 9 0 . 0 4 3 0 . 2 5 2 0 1 . 2 1 7 0 . 4 7 0 1 . 7 2 3 0 . 0 5 0 3 . 2 3 9 0 . 2 7 2 0 . 3 1 5 0 . 5 6 1 1J485 0 . 1 3 4 0 . 0 4 3 0 . 2 1 4 0 0 . 8 7 2 0 . 4 7 0 1 . 4 2 9 0 . 0 5 8 2 . 7 2 5 0 . 2 5 2 0 . 2 9 3 0 . 4 9 9 1 .167 0 . 1 2 1 0 . 0 4 3 0 . 1 9 6 3 0 . 8 5 2 0*414 1 . 3 7 4 0 . 0 6 6 2 . 7 6 6 0 . 3 8 8 0 . 2 5 2 0 . 4 4 1 6.893 0 . 1 2 1 0 . 0 4 3 0 . 1 7 9 0 1 . 6 0 1 0 . 3 3 9 0 . 9 8 0 0 . 0 6 6 8 . 7 4 4 0 . 5 8 8 0 . 2 1 4 C . 4 1 4 0 . 7 3 4 0 . 1 0 9 0 . 0 4 3 0 . 1 7 9 0 2 . 1 1 9 0 . 3 1 5 0 . 8 9 3 0 . 0 5 8 7 . 2 0 9 0 . 3 6 3 0 . 1 7 9 0 . 3 6 3 0 . 6 6 1 0 . 1 0 3 0 . 0 4 3 0 . 1 6 4 4 1 . 3 7 4 0 . 2 1 4 0 . 8 1 1 0 . 0 5 0 2 . 1 1 9 1 . 0 7 1 0 . 1 7 9 0 . 4 2 8 0 . 5 2 9 0 . 0 9 7 0 . 0 4 3 0 . 1 4 9 0 1 . 1 1 8 0 . 1 7 9 0 . 7 3 4 0 . 0 4 3 1 . 4 8 5 2 . 2 6 2 0 . 1 6 4 0 . 6 6 1 0 . 4 7 0 0 . 0 9 7 0 . 0 4 3 0 . 1 3 4 0 0 . 9 8 0 0 . T 4 9 0 . 6 6 1 0 . 0 3 6 1 . 1 6 7 3 . 6 1 2 0 . 1 9 6 0 . 8 1 1 0*441 0 . 0 8 6 0 . C 4 3 0 . 1 3 4 5 0 . 8 5 2 0 . 1 2 1 0 . 5 9 3 0 . 0 3 6 0 . 9 8 0 4 . 8 7 7 0 . 4 9 9 1 . 0 2 5 0*388 0 . 1 0 3 0 . 0 4 3 0 . 1 2 1 0 0 . 8 5 2 0 . 1 0 9 0 . 4 9 9 0 . 0 3 0 0 . 8 1 1 3 . 2 3 9 0 . 4 7 0 1 . 2 1 7 0 . 3 1 5 0 . 0 9 7 0 . 0 4 3 0 . 1 2 1 0 0 . 8 9 3 0 . 0 8 6 0 . 4 4 1 0 . 0 3 0 0 . 7 3 4 2 . 5 6 5 0*441 1 . 2 1 7 0 . 2 9 3 0 i 0 9 7 0 . 0 4 3 0 . 1 2 1 6 7 . 9 5 5 0 . 0 7 6 0 . 3 6 3 0 . 0 3 0 0 . 6 6 1 1 . 8 4 9 0 . 4 1 4 1 . 1 6 7 0 . 2 5 2 0 . 0 9 7 Oi.043 0 . 1 2 1 0 5 . 8 4 7 0 . 0 6 6 0 . 3 3 9 0 . 0 3 6 0 . 5 9 3 1 . 3 7 4 0 . 3 8 8 1 . 1 1 8 0 . 2 1 4 0 . 0 8 6 0 . 0 4 3 0 . 1 0 9 0 1 0 . 2 7 6 0 . 0 6 6 0 . 3 3 9 0 . 0 4 3 0 . 5 4 5 1 . 1 1 8 0 . 3 6 3 1 . 1 1 8 0 . 1 7 9 0*086 0 . 0 4 3 0 . 1 0 9 7 1 3 . 3 7 1 0 . 0 5 8 0 . 3 1 5 0 . 0 4 3 0 . 5 2 9 1 . 0 2 5 0 . 3 3 9 0 . 8 5 2 0 ; 1 6 4 0 . 0 8 6 0 . 0 4 3 0 . 1 0 3 0 1 0 . 4 5 6 0 . 0 5 8 0 . 3 6 3 0 . 0 3 6 0 . 4 7 0 0 . 8 9 3 0 . 3 1 5 0 . 7 3 4 0. '149 0 . 0 8 6 0 . 0 4 3 0 . 0 9 7 0 4 . 1 1 2 0 . 0 5 8 0 . 3 8 8 0 . 0 5 8 0 . 4 4 1 0 . 8 1 1 0 . 2 7 2 C ' 6 9 7 0 . 1 3 4 0 . 0 8 6 0 . 0 4 3 0 . 0 9 7 8 2 . 1 1 9 0 . 0 5 0 0 . 3 6 3 0 . 0 6 6 0 . 4 1 4 0 . 7 3 4 0 . 2 5 2 0 . 6 2 7 0 . 1 2 1 0 . 0 8 6 0 . 0 4 3 0 . 0 9 7 0 1. 543 0 . 0 3 6 0 . 363 0 . 076 0 . 3 6 1 0 . 6 6 1 0 . 2 1 4 0 . 5 6 1 0 J 1 2 1 0 . 0 7 6 0 . 0 4 3 0 . 1 0 3 0 1 . 1 1 8 0 . 0 3 0 0 . 5 9 3 0 . 0 8 6 0 . 3 2 7 0 . 6 2 7 0 . 1 9 6 0 . 4 9 9 0 . 1 2 1 0 . 0 7 1 0 . 0 3 6 0 . 1 0 3 9 0 . 9 8 0 -0-030 5 . 8 4 7 0 . 1 4 9 0 . 2 8 2 0 . 5 9 3 0 . 179 0 . 4 4 1 0 . 109 0 . 0 6 6 0 . 0 3 6 0 . 0 9 1 0 0 . 8 1 1 8 . 4 2 3 4 . 2 1 6 0 . 1 2 1 0 . 2 7 2 0 . 5 6 1 0 . 1 7 9 0 . 3 8 8 0 . 1 0 3 0 . 0 5 8 0 . 0 3 6 0 . D B 6 0 0 . 7 3 4 7 . 5 0 2 3 . 6 1 2 0 . 0 8 6 0 . 2 5 2 0 . 4 9 9 0 . 1 6 4 0 . 3 6 3 0 . 0 9 7 0 . 0 5 8 0 . 0 3 6 0 . 0 8 6 10 2 . 8 9 0 7 . 2 0 9 1 3 . 5 8 0 0 . 0 7 6 0 . 2 3 2 0 . 4 4 1 0 . 1 4 9 0 . 3 1 5 0 . 0 9 7 0 . 0 6 6 0 . 0 3 6 0 . 0 8 6 0 8 . 9 0 7 6 . 7 8 3 3 . 8 0 7 0 . 0 7 6 0 . 2 1 4 0 . 3 8 8 0 . 1 3 4 0 . 2 9 3 0 . 0 8 6 0 . 0 6 6 0 . 0 3 6 0 . 0 9 1 0 2 . 5 6 5 5 . 8 4 7 1 . 6 0 1 0 . 0 6 6 0 . 2 1 4 0 . 3 8 8 0 . 1 3 4 0 . 2 5 2 0 . 0 8 6 0 . 0 6 6 0 . 0 3 6 0 . 1 4 1 11 1 .601 0 . 0 2 5 0 . 8 9 3 0 . 0 5 8 0 . 1 9 6 0 . 4 7 0 0 . 1 3 4 0 . 2 1 4 0 . 0 7 6 0 . 0 7 6 0 . C 3 6 0 . 1 9 6 0 1 . 3 7 4 0 . 4 7 0 0 . 6 6 1 0 . 0 4 3 0 . 1 9 6 0 . 6 6 1 0 . 1 9 6 0 . 1 7 9 0. '076 0 . 1 2 1 0 . 0 3 6 0 . 1 9 6 0 1 . 1 1 8 0 . 0 2 5 0 . 4 7 0 0 . 0 6 6 0 . 1 7 9 1 .071 0 . 1 7 9 0 . 1 6 4 0 . 0 8 6 0 . 2 1 4 0 . 0 3 6 0 . 1 7 9 12 0 . 9 3 6 0 . 0 2 5 0 . 3 8 8 0 . 0 8 6 0 . 1 7 9 2 . 2 6 2 0 . 1 6 4 C . 1 5 6 0 . 0 8 6 0 . 1 3 4 0 . 0 4 3 0 . 1 4 9 0 0 . 8 1 1 0 . 1 4 9 0 . 3 1 5 0 . 6 6 1 0 . 1 7 9 2 . 8 9 0 0 . 1 4 9 0 . 1 4 9 0 . 0 7 6 0 . 1 2 1 0 . 0 4 3 0 . 1 3 4 0 0 . 7 3 4 0 . 0 6 6 0 . 2 7 2 3 . 6 1 2 0 . 1 6 4 3 . 0 1 8 0 . 1 3 4 0 . 1 3 4 0 . 0 7 6 0 . 0 9 7 0 . 0 4 3 0 . 1 2 1 13 0 . 6 6 1 0 . 1 3 4 0 . 2 5 2 7 . 5 0 2 0 . 1 6 4 2 . 4 1 1 0 . 1 2 1 C . I 2 1 0 . 0 7 6 0 . 0 7 6 0 . 0 4 3 0 . 1 2 1 0 2 . 6 4 4 1 . 2 6 8 0 . 1 7 9 4 . 4 3 0 0 . 1 5 6 1 . 8 4 9 0 . 1 2 1 0 . 1 2 1 0 . 0 8 6 0 . 1 4 9 0 . 0 4 3 0 . 1 6 4 0 1 . 8 4 9 0 . 1 9 6 0 . 1 9 6 3 0 . 5 4 9 0 . 1 4 9 1 . 6 0 1 0 . 1 0 9 0 . 1 2 1 0 . 0 9 1 0 . 3 1 5 0 . 0 5 0 0 . 5 9 3 14 1 . 2 6 8 0 . 2 7 2 0 . 1 7 9 3 . 6 1 2 0 . 1 4 9 1 .174 0 . 1 2 1 0 . 1 2 1 0 . 0 8 6 0 . 2 9 3 0 . 0 5 0 0 . 6 6 1 0 0 . 9 8 0 3 . 4 2 3 0 . 1 7 9 2 . 4 1 1 0 . 1 4 9 1 . 6 0 1 0 . 4 7 0 0 . 1 2 1 0 . C 7 6 0 . 2 3 2 0 . 0 5 8 0 . 7 3 4 0 0 . 8 1 1 0 . 4 7 0 0 . 1 6 4 2 . 6 4 4 0 . 1 3 4 1.6D1 1 . 2 1 7 0 . 1 1 5 0 . 0 7 6 0 . 1 9 6 0 . 0 6 6 0 . 9 3 6 15 0 . 6 9 7 0 . 8 9 3 0 . 1 7 9 2 . 8 0 7 0 . 1 3 4 1 . 7 2 3 7 . 5 0 2 0 . 1 0 9 0 . 0 6 6 0 . 1 7 9 0 . 0 7 6 1 .601 0 0 . 6 2 7 5 . 8 4 7 0 . 1 0 9 1 . 6 0 1 0 . 1 3 4 1 .661 4 . 0 0 9 0 . 0 9 7 0 . 0 5 8 0 . 1 6 4 0 . 0 7 6 2 . 5 2 6 0 0 . 5 2 9 1 . 2 6 8 0 . 0 8 6 1 . 0 7 1 0 . 1 4 1 1 . 7 2 3 2 . 2 6 2 0 . 0 9 7 0 . 0 5 8 0 . 1 4 9 0 . 0 6 6 1 .9B2 16 0 . 4 7 0 0 . 8 9 3 0 . 0 6 6 0 . 8 1 1 0 . 1 2 1 1 . 4 2 9 1 .601. 0 . 0 9 7 0*058 0 . 1 3 4 0 . 0 6 2 1 . 1 6 7 0 0 . 4 4 1 0 . 5 9 3 0 . 0 5 8 0 . 6 6 1 0 . 1 2 1 1 . 2 1 7 1 . 1 6 7 0 . 0 8 6 0 . 0 5 0 0 . 1 2 1 0 . 0 5 8 8 . 4 2 3 0 0 . 3 8 8 0 . 4 7 0 0 . 0 3 9 0 . 4 7 0 0 . 1 1 5 1 .071 0 . 9 8 0 0 . 0 7 6 0 . 0 5 0 0 . 1 0 9 0 . 0 5 0 2 4 . 4 8 7 17 0 . 3 3 9 0 . 363 0 . 0 3 6 0 . 4 1 4 0 . 115 1 . 0 2 5 0 . 8 5 2 0 . 0 7 6 0. '046 0 . 0 9 7 0 . 0 5 0 6 . 1 0 6 0 0 . 3 1 5 1 .071 0 . 0 3 0 0 . 7 3 4 0 . 1 9 6 0 . 9 8 0 0 . 7 3 4 C . 0 6 6 0 . 0 4 3 0 . 0 8 6 0 . 0 5 8 2 . 3 3 6 0 0 . 3 3 9 0 . 2 9 3 0 . 0 2 5 1 . 6 0 1 0 . 6 6 1 0 . 8 9 3 0 . 6 6 1 0 . 0 6 6 0 . 0 5 0 0 . 0 8 1 0 . 0 6 6 1 .601 18 0 . 3 8 8 0 . 2 7 2 0 . 0 2 5 1 0 . 0 9 9 1 . 6 0 1 0 . 8 1 1 0 . 5 9 3 0 . 0 6 6 0 . 0 4 3 0 . 0 7 6 0 . 0 6 6 1 . 1 6 7 0 0 , 3 6 3 0 . 2 3 2 0 . 0 1 6 1 1 . 9 5 8 1 0 . 0 9 9 0 . 7 7 2 0 . 5 6 1 0 . O 5 8 0 . 0 8 6 0 . 0 7 1 0 . 0 5 8 0 . 9 3 6 0 0 . 3 6 3 0 , 2 1 4 0 . 0 1 6 " 1 5 . 3 2 7 7 . 8 0 2 0 . 6 9 7 0 . 5 2 9 0 . 0 5 8 0 . 0 9 7 " 0 . 0 7 6 0 . 0 5 8 " 0 . 8 5 2 19 0 . 3 3 9 0 . 1 9 6 0 . 0 1 6 1 7 . 1 9 9 4 . 4 3 0 0 . 6 6 1 0 . 5 9 3 0 . 0 5 8 0 . 0 8 6 0 . 1 9 6 0 . 0 5 8 0 . 7 7 2 0 0 . 3 1 5 0 . 2 1 4 0 . 0 1 6 1 4 . 8 7 8 2 . 7 2 5 0 . 6 2 7 0 . 6 9 7 0 . 0 5 4 0 . 0 7 6 0 . 3 6 3 0 . 0 6 6 0 . 6 9 7 0 0 . 2 7 2 0 . 1 3 4 0 . 0 1 6 7 . 8 0 2 1 . 8 4 9 0 . 5 6 1 0 . 6 6 1 C . 1 7 9 0 . 0 6 6 0 . 3 8 8 0 . 1 7 9 0 . 5 9 3 20 0 . 2 5 2 0 . 1 2 1 0 . 0 1 6 1 6 . 0 1 4 1 . 3 7 4 0 . 5 2 9 0 . 6 4 4 0 . 2 3 2 0 . 0 5 8 0 . 3 8 8 0 . 1 9 6 0 . 5 2 9 0 0 . 3 1 5 0 . 4 1 4 0 . 0 1 6 1 9 . 2 0 1 1 . 1 6 7 0 . 4 7 0 0 . 6 2 7 0 . 3 8 8 0 . 0 5 0 0 . 3 6 3 0 . 1 7 9 0 . 4 7 0 0 0 . 8 9 3 0 . 1 0 9 0 . 0 2 0 1 . 6 0 1 1 .071 0 . 4 4 1 0 . 6 2 7 C . 3 6 3 0 . 0 5 0 0 . 3 1 5 0 . 1 4 9 0 . 4 1 4 21 1 . 4 8 5 0 . 0 8 6 0 . 0 2 0 1 . 0 7 1 1 .374 0 . 3 8 8 0 . 6 2 7 0 . 3 3 9 0 . 0 4 3 0 . 2 9 3 0 . 1 4 9 0 . 3 8 8 0 1 . 4 2 9 0 . 0 7 6 0 . 0 2 5 0 . 8 1 1 1 . 6 3 1 0 . 3 6 3 0 . 6 2 7 0 . 3 1 5 0 . 0 4 3 0 . 2 7 2 0 . 1 4 9 0 . 3 3 9 0 2 . 2 6 2 0 . 0 5 8 2 . 5 6 5 0 . 5 9 3 1 . 4 8 5 0 . 3 1 5 0 . 6 2 7 0 . 2 9 3 0 . 0 5 0 0 . 2 1 4 0 . 1 4 9 0 . 3 1 5 22 3 . 2 3 9 0 . 0 5 8 6 . 6 4 4 0 . 4 7 0 1 .268 0 . 2 9 3 0 . 6 2 7 0 . 2 5 2 0 . 0 5 0 . 0 . 2 1 4 0 . 1 9 6 0 . 4 1 4 0 2 . 4 1 1 0 . 4 1 4 3 . 6 1 2 0 . 4 1 4 1 . 0 9 4 0 . 2 7 2 0 . 5 9 3 0 . 2 1 4 0 . 0 5 0 0 . 1 7 9 0 . 4 7 0 0 . 9 8 0 0 1 .601 0*043 3 . 7 0 9 0 . 3 6 3 2 . 2 6 2 0 . 2 6 2 0 . 5 6 1 C . 1 7 9 0 . 0 4 6 0 . 1 7 9 0 . 4 7 0 4 . 9 9 2 23 1 .071 0 . 0 4 3 3 . 2 3 9 0 . 3 1 5 3 . 8 0 7 0 . 2 5 2 0 . 4 9 9 C . 164 0 . 0 4 3 0 . 164 0 . 4 7 0 3 . 2 3 9 0 0 . 8 5 2 5 . 4 7 1 2 . 5 6 5 0 . 4 7 0 2 . 4 1 1 0 . 2 9 3 0 . 4 7 0 0 . 1 4 9 0 . 0 4 3 0 . 1 4 9 0 . 5 6 1 1 . 9 8 2 0 1 . 6 6 1 0 . 2 3 2 3 . 6 1 2 0 . 5 2 9 1 . 8 4 9 0 . 2 7 2 0 . 4 4 1 0 . 1 4 9 0 . 0 4 3 0 . 1 3 4 0 . 6 2 7 1 . 3 2 0 24 0 . 7 3 4 0 . 2 1 4 3 . 4 2 3 0 . 4 9 9 1 . 4 8 5 0 . 2 5 2 0 . 3 8 8 0 . 1 3 4 0 . C 3 6 0 . 1 2 1 0 . 6 2 7 0 . 9 8 0 0 1 . 3 2 0 0 . 1 9 6 3 . 2 3 9 0 . 4 1 4 1 . 2 6 8 0 . 2 5 2 0 . 3 6 3 0 . 1 3 4 0 . 0 3 6 0 . 1 2 1 0 . 5 9 3 0 . 7 3 4 0 1 . 5 1 4 0 . 1 7 9 3 . 3 3 0 0 . 3 6 3 1 . 0 7 1 0 . 3 6 3 0 . 5 2 9 0 . 1 2 1 0 . 0 3 6 0 . 1 1 5 0 . 5 2 9 0 . 5 9 3 25 1 . 2 6 8 0 . 1 6 4 2 . 5 6 5 0 . 3 1 5 0 . 9 3 6 0 . 4 7 0 0 . 6 2 7 C . 0 9 7 0 . 0 3 6 0 . 1 0 9 0 . 5 2 9 0 . 4 9 9 0 1 . 0 2 5 0 . 1 4 9 1 .601 0 . 2 7 2 0 . 8 9 3 0 . 4 7 0 0 . 5 9 3 0 . 0 9 7 0 . 0 3 3 0 . 0 7 6 0 . 5 2 9 0 . 4 4 1 0 0 . 8 1 1 0 . 1 3 4 1 . 2 1 7 0 . 2 5 2 0 . 8 1 1 0 . 4 4 1 0 . 5 9 3 C . 0 8 6 0 . 1 6 4 0 . 0 9 7 0 . 6 9 7 0 . 3 8 8 26 0 . 6 9 7 0 . 1 2 1 0 . 8 9 3 0 . 2 0 5 0 . 7 3 4 0 . 5 9 3 4 . 0 0 9 C . 0 7 6 0 . 6 2 7 0 . 0 9 7 0 . 6 9 7 0 . 3 3 9 0 0 . 5 6 1 1 . 0 2 5 0 . 7 3 4 0 . 2 0 5 0 . 6 6 1 6 . 5 0 7 2 . 5 6 5 0 . 0 7 6 0 . 5 9 3 0 . 0 9 7 0 . 6 9 7 0 . 2 9 3 0 1 . 8 4 9 0 . 1 0 9 0 . 6 9 7 0 . 2 0 5 0 . 6 2 7 5 . 8 4 7 1 . 7 2 3 0 . 0 7 6 0 . 5 2 9 0 . 0 8 6 1 . 3 2 0 0 . 2 7 2 27 1 0 . 2 7 6 0 . 1 0 9 0 . 6 9 7 0 . 2 0 5 0 . 5 6 1 4 . 6 5 0 1 . 1 6 7 0 . 0 6 6 0 . 4 7 0 0 . 0 8 6 2 . 2 6 2 0 . 2 3 2 0 3 . 7 0 9 0 . 0 8 6 0 . 7 3 4 0 . 2 0 5 0 . 5 2 9 2 . 8 9 0 0 . 8 9 3 0 . 0 7 6 0 . 4 1 4 0 . 0 7 6 2 . 1 9 0 0 . 2 1 4 0 1 . 9 8 2 0 . 0 9 7 0 . 4 7 0 0 . 2 0 5 0 . 4 7 0 1 .982 0 . 8 1 1 0 . 0 7 6 0*388 0 . 0 8 1 1 . 6 0 1 0 . 1 9 6 28 1 . 3 7 4 0 . 0 9 7 0 . 4 1 4 0 . 2 0 5 0 . 4 4 1 1 . 4 8 5 0 . 6 6 1 0 . 0 7 6 0 . 4 7 0 0 . 0 7 6 1 . 2 6 8 0 . 1 6 4 0 0 . 9 8 0 1 1 . 3 8 1 0 . 3 6 3 0 . 2 0 5 • 0 . 4 1 4 1 . 2 6 8 0 . 5 9 3 0 . 0 6 6 0 . 4 4 1 0 . 0 7 6 1 .C71 0 . 1 4 9 0 0 . 7 3 4 0 . 1 0 9 0 . 3 6 3 0 . 0 8 6 0 . 3 3 9 1 . 1 6 7 0 . 5 2 9 0 . 0 7 6 0 . 4 1 4 0 . 0 7 6 0 . 9 3 6 0 . 1 2 1 29 0 . 5 6 1 0 . 1 2 1 0 . 3 6 3 0 . 2 0 5 0 . 3 3 9 1 .071 0 . 4 7 0 0 . 0 6 6 0 . 3 8 8 0 . 0 5 8 0 . 8 1 1 0 . 0 9 7 0 1 . 2 6 8 1 . 2 1 7 0 . 3 1 5 0 . 2 0 5 0 . 3 1 5 0 . 9 8 0 0 . 4 1 4 C . 0 5 B 0 . 3 3 9 0 . 0 5 8 0 . 7 3 4 0 . 0 9 7 0 8 . 2 6 5 0 . 3 1 5 0 . 2 7 2 0 . 2 0 5 0 . 0 0 . 8 5 2 0 . 3 6 3 0 . 0 5 8 0 . 2 9 3 0 . 0 6 2 0 . 6 6 1 0 . 0 7 6 30 5 . 3 4 9 0 . 3 1 5 0 . 2 5 2 0 . 2 0 5 O.O 0 . 6 2 7 0 . 3 3 9 0 . 0 5 0 0 . 2 6 2 0 . 0 5 8 0 . 5 9 3 0 . 0 7 6 0 4 . 0 0 9 1 . 8 4 9 0 . 2 3 2 ' 0 . 2 0 5 0 . 0 0 . 5 9 3 0 . 2 5 2 0 . 0 5 0 0 . 2 3 2 0 . 0 5 8 0 . 5 2 9 0 . 0 7 1 0 1 2 . 3 5 2 0 . 0 0 . 2 1 4 0 . 2 0 5 0 . 0 0 . 0 0 . 0 0 . 0 5 0 0 . 0 0 . 0 5 0 0 . 4 9 9 0 . 0 31 5 . 1 0 9 0 . 0 0 . 1 9 6 0 . 2 0 5 0 . 0 0 . 0 0 . 0 0 . 0 5 0 0 . 0 0 . 0 5 0 0 . 4 4 1 0 . 0 0 0 . 0 0 1 0 . 0 0 . 1 4 9 0 . 2 0 5 O .C 0 . 0 0 . 0 0 . 0 5 0 0 . 0 0 . 0 5 0 0 . 4 1 4 0 . 0 TABLE B 7 MONTHLY CUMULATIVE DlSGHARGE IN ACRE FEET FOR 8-HOUR PERIOD WATER YEAR 1967-68 DEC- JAN. FEB. MAR. APR. MAY JUNi JUL. AUG. SEP. 0 I o o 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 IB 0 0 19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 0. 0. 1. 4. 5. 6. 7. 7. a. 10. 11. 12. 12. 13. 13. 14. 19. 23. 30. 39. 46. 48. 50. 51. 51. 52. 53. 53. 55. 61. 63. 64. 65. 65. 66. 66. 67. 67. 69. 70. 71. 72. 72. 73. 73. 74. 74. 74. 74. 75. 75. 75. 75. 76. 76. 76. 76. 76. 77. 77. 77. 78. 79. 81. 83. 85. 86. 86. 87. 88. 88. 89. 90. 91. 92. 92. 93. 93. 94. 27 101. 0 104. 0 105. 28 106. 0 107. 0 107. 29 107. 0 108. 0 1 14. 30 117. 0 120. 0 128. 31 131. 0 131. 461 875 857 '645 955 759 336 899 958 359 267 007 854 217 780 371 630 496 290 130 043 762 163 183 922 570 106 591 502 391 087 146 054 793 412 948 434 871 619 842 680 328 864 325 740 090 400 692 949 173 381 605 862 102 342 566 774 954 120 329 919 901 846 34 1 483 077 136 844 407 505 990 863 864 702 380 916 377 748 971 765 217 527 435 083 568 939 777 242 778 429 595 973 974 0.001 0.002 0.774 1.284 1.677 1.987 2.298 2.572 2.796 3.004 3. 146 3.264 3.362 3.442 3.514 3.571 3.621 3.665 3.709 3.747 3.'786 3.824 3.857 3. 881 3.900 3.920 9. 489 14.449 19.216 23.700 27.566 27.582 27.893 27.909 27.925 28.024 28.067 28.156 28.995 29. 124 29.304 31.567 31. 877 32:468 36.334 37.172 37. 762 38.155 38.465 38. 705 39.413 39.607 39.787 39.940 t0.082 40.211 40.353 40.441 40.522 40.795 40.867 40.924 40. 974 41.012 41.1051 41.325 41.353 41.381 44.998 45.151 45.293 45.422 45.541 45.649 45.747 45. 836 45.916 46.594 46.666 46.737 46.794 46.858 46.922 54.447 54.519 54.599 55.403 55.612 55. 820 57.043 57.043 57.043 57.043 0.274 0.548 0.940 1.588 3:612 4.751 5.'6 96 6.604 7.252 7.842 8.379 8.864 9.301 9.694 10.024 10.315 10.555 10.779 11.003 11.212 11.452 11.708 11.948 12.188 12.580 16.446 19.234 21.622 30.601 33.118 34.176 34.767 35.204 35.515 35.771 35.980 36. 160 36.326 36.445 36.574 36.693 36.811 36.920 37.038 37.110 37.167 37.211 37.249 37.275 37.299 37.318 37.335 37.351 37.361 37.37Z 37.382 37.393 37.403 37.413 37.424 37.437 37.450 37.466 39.162 43.555 45.943 48.395 50.537 52.232 54.620 56.883 59.025 61.226 62.922 63.981 64.785 65.376 65.861 66.322 66.783 67.269 67.579 67.853 68.093 68.333 68.573 68.781 68.961 69.128 69.281 69.422 69.552 69.650 0. 108 0. 197 0.277 0.349 0.406 0.439 0.477 0.521 0.565 0.603 0.636 0.664 0.688 0.712 0.731 0.751 0.771 0.795 0.823 0.851 0.875 0.913 0. 957 1. 007 1.064 1.162 I. 242 1. 299 1.349 1.399 1.443 1.482 1.510 1.554 1.610 2.048 4. 436 9.396 12.325 32.522 34.910 36.504 38.252 40.108 41.167 41.875 42.411 42.849 43.159 43.433 43.918 44.977 51.654 59.560 69.693 81.065 90.902 96.060 106.648 119.342 120.401 121.109 121.645 122.038 122.348 122.622 122.862 123.071 123.. 381. 123.731 124.061 124.335 124.575 124.783 124.963 125.130 125.265 125.400 125.536 125.671 125.807 125.942 126.077 126.213 126.270 126.405 126.540 126.676 126.811 126.947 127.082 127.217 127.353 0.135 0.271 0.412 0.762 1.534 3.675 5.477 7.305 13.086 17.853 19.254 20.236 21.007 21.655 22.191 22.676 23.114 23.506 23.866 24.216 24.527 24.819 2 5.093 25.332 25.549 25.735 25.915 26.082 26.235 26.376 26.518 26.647 26.777 26.896 27.014 27.133 27.241 27.349 27.452 27.550 27.649 27.747 27.836 27.925 28.013 28.107 28.187 28.267 28.343 28.419 28.549 28.986 30.045 36.721 41.880 44.809 46.610 47.833 48.741 49.513 50.221 51.129 52.208 53.190 54.028 54.751 56.247 58.764 60.358 61.581 62.563 63.401 64.109 64.727 65.318 65.854 66.340 66.777 67.191 67.562 67.912 68.223 68.515 68.788 69.012 69.236 69.445 69.445 69.445 69.445 69.445 69.445 69.-445 0.187 0.353 0.519 0.713 0.907 1.087 1.253 1.510 1.767 2.007 2.715 4.210 6.598 9.822 11.964 13.660 14.883 15.791 16.530 17.208 17.798 18.335 18.820 19.257 19.672 20.064 20.435 20.764 21.056 21.313 21.570 21.880 22.317 23.025 24.521 26.432 28.428 30.022 31.244 32.303 33.211 34.270 35.329 36.468 37.566 38.705 39.650 40.454 41.162 41.840 42.487 43.078 43.614 44. 125 44.586 45.023 45.437 45.808 46.158 46.469 46.761 47.017 47.257 47.466 47.660 47.839 48.012 48.179 48.373 48.552 48.719 48.885 49.125 49.436 49.746 50.038 50.430 54.732 58.598 61.673 63.584 64.894 65.876 66.714 67.486 68.194 68.841 69.404 69.819 70.211 70.211 70.211 70.211 0.350 0.661 0.952 1.226 1.466 1.675 1.869 2.035 2. 176 2.295 2.414 2.522 2.651 2.981 3.292 3.584 3.858 4.114 4.354 4.578 4.787 4.967 5.133 5.274 5.404 5.523 5.641 5.749 5.847 5.936 6.025 6. 114 6.244 6.362 6.471 6.569 6.658 6.738 6.818 6.890 6.970 7.280 8.085 13.045 15.695 17.191 18.250 19.021 19.669 20.232 20.717 21.154 21.547 21.917 22.267 22.660 23.121 23.558 23.984 24.398 24.812 25.227 25.641 26.056 26.470 26.862 27.233 27.563 27.873 28.165 28.422 28.662 29.012 29.426 2.9.818 30.21 1 32.861 34.557 35.696 36.467 37.058 37.594 38.031 38.424 38.774 39.084 39.358 39.598 39.822 39.988 39.988 39.988 39.988 0.437 1.085 1.689 2.629 3.247 3.618 3.948 4:240 4.514 4.754 5.037 5.474 6.010 6.688 7.49 2 81297 9.068 9.808 101.547 11.110 11.595 12.056 12.471 12:842 13.171 13.463 13.720 13.960 14.168 14i362 14.529 14.670 14.789 14.897 15.000 15.098 15.187 15.267 15.347 15.427 15.507 15.587 15.663 15.735 15.799 15.863 15.927 15.984 16.035 16.085 16.129 16.173 16.216 16.255 16:293 16.331 16.367 16.485 16.639 16.895 17.135 17.359 17.568 17.762 171928 18.069 18.188 18.296 18.394 18.492 18.581 18.670 18.750 18.814 181878 18.935 18.985 191036 19.086 19.130 19.180 19.230 19.280 19.324 19.374 19.418 19.456 191.495 19.527 19.560 19:593 19.626 19.659 0J108 0:545 1:253 2J654 3i965 4J946 5J718 6J308 6J794 7:231 7J581 7:892 8J184 8.14 40 8;649 8J843 9:009 9.150 9:269 9:377 9.475 9.564 9.644 9.724 9:804 9.876 9J944 10:008 10.072 10.129 10:186 10.1236 10.286 10.343 10.400 10.450 10.501 10:551 10:608 10:668 10.725 10.775 10.825 10.869 10.907 10:946 10.984 11.017 11.050 11.080 n : i08 11.141 11.169 11.226 11.290 11.347 11.397 11.'441 11:479 11:512 11.545 11:573 1 1.601 11.634 11:667 11:700 11.731 11:759 11.787 11:815 11J839 11.863 11:886 11.910 11:932 12.-04O 12:454 12J847 13:196 13:507 13:781 14:038 14:348 14:640 14:914 15:170 15.394 15:688 15:761 15.915 15:915 15:915 15.915 0.141 0.265 0:384 0.492 0.590 0:679 0:759 0.839 0. 911 0:979 1.043 l i l 0 7 1. 164 1:232 1.296 1:360 1.424 1.481 U538 1.595 1:652 1.709 1.766 1.816 1.863 1.907 1.945 1.983 2i027 2:071 2.115 2J165 2.245 2:386 2.475 2:555 2.620 2.670 2:768 2.977 3.170 3.324 3i454 3.572 3.680 3.779 3.867 3:948 4J019 4:084 4:140 4: 194 4:244 _4.291 4.341 4.471 4:711 4:967 5J224 5.464 5.672 5:866 6:046 6.187 6.329 6.447 6.566 6i674 6:772 6.861 6- 941 7:021 7.097 7.169 7.219 7.283 7- 347 7.412 7.468 7i525 7. 575 7.629 7.679 7.729 7:779 7.818 7.856 7.897 7.935 7.973 8.006 8i039 8.072 0.033 0.061 0.089 0.117 0 i l 45 0.174 0.202 0.230 0.258 0:286 0.314 0.342 0.370 0.398 0.427 0.455 0.483 0.511 0.539 0:567 0:595 0.623 0:651 0.680 0.703 0.727 0.751 0.775 0.798 0.822 0:846 0.870 C.893 0.917 0.945 0. 973 1.001 1.030 1-058 1.091 1.123 1. 162 1.206 1.256 1.306 1. 350 1.391 1.429 1.462 1.495 1.533 1.577 1.621 1.659 1.697 1.736 1.780 1.898 2. 028 2.146 2.245 2:343 2.441 2.539 2.669 2.980 3.290 3.601 3.972 4.386 4.800 5: 193 5.543 5:892 6.242 6.703 7.164 7:625 8.498 9.994 11.442 12.501 13.339 14.047 14.665 15.202 15.687 16.125 16.517 16.867 17. 197 17.489 17.762 0.248 0.472 0.681 0.875 1.041 1.182 1.312 1.431 1.549 1.657 1.755 1.844 1.933 2.013 2.093 2.1T4 2.254 2.325 2.397 2.465 2.529 2.593 2.657 2.725 2.793 2.854 2.911 2.967 3.024 3.085 3.178 3.308 3.438 3.556 3.654 3.743 3.823 3.903 4.012 4.404 4.841 5.326 5.945 7.004 8.674 9.984 10.755 16.3Z4 32.514 36.551 38.095 39.154 39.925 40.544 "41.107 41.617 42.078 42.471 42.821 43.131 43.405 43.662 43.886 44.094 44.368 45.016 48.316 50.458 51.768 52.641 53.289 53.774 64.166 54.496 54.788 55.045 55.269 55.462 55.642 S5.796 55.937 56.067 56.175 56.273 56.353 56.417. 56.481 56.531 56.582 56.629 56.629 56.629 56.629 TABLE B8 BASIN OUTFLOW VOLUME IN INCHES WATER YEAR 1967 - 68 O c t . Nov. Dec . J an . Feb . Mar. A p r . May June J u l y Aug . Sep. T o t a l 26.176 11.314 13.815 25.26 13.774 13.926 7.932 3.899 3.157 1 .601 3.523 11.241 Ann . T o t a l 135.62 cn TABLE B9 COMPUTED EVAPOTRANSPIRATION FOR 7 MONTHS OF THE WATER YEAR 1967 - 68 Data O c t . 67 A p r . 68 May 68 June 68 J u l y 68 Aug . 68 Sep. 68 A i r Temperature 51 .8 47.1 54 .6 58 .9 64 .2 61.4 56.7 R e l a t i v e Humid i t y 0 .88 0.72 0 .75 0 .76 0 .75 0.81 0.84 Sunsh ine n/N % 0 .255 0.436 0 .584 0 .553 0 .666 0.466 0.465 Wind Speed Mi/day 189 .6 213.6 134 .4 139 .2 151 .2 146.4 160 .4 Rad .Rate f o r Nth.Hem.50° 7 .1 12 .7 15 .4 16 .7 16 .1 13 .9 10 .5 R e f l e c . C o e f f i c i e n t 0 .20 0.2 0 .2 0 .2 0 .2 0.2 0.2 S a t u r . V a p . P r e s s . mm/Hg 10 .0 7.75 11 .09 13 .32 16 .0 14.74 12.06 C o e f f . Depend ing on Temp. 13 .12 12.65 13 .4 13 .79 14 .46 14 .07 13.63 Bol tzman Cons tan t 0 .40 0.32 0 .36 0 .59 0 .56 0.495 0.449 COMPUTED EVAPOTRANSPIRATION mm. o f water pe r day 0.829 2.231 3.166 3.757 4.231 2.837 1.759 i n c h e s o f water pe r day 0.033 0.088 0.125 O.I48 O.I67 0.112 0.069 i n c h e s o f water pe r month 1.023 2.64 3.875 4.44 5.177 3.472 2.07 57 APPENDIX C TABLE C l MONTHLY SIMPLE REGRESSION OF DISCHARGE AND WEIGHTED BASIN PRECIPITATION WATER YEAR 1967 - 68 Month N A WT PPT Sy • x r i r S i g n i f i c a n c e O c t o b e r 93 0 .907 0 .341 l . 566 0 .286 0.535 November 90 0 .520 0 .158 l . 383 0 .036 0.190 December 93 0 .583 0 .202 l . 133 0 .186 0.431 J a n u a r y 93 0 .643 0 .490 2. 568 0 .417 0.646 •3HS-F e b r u a r y 87 0 .581 0 .237 1. 092 0 .204 0.452 March 93 0 .576 0 .205 0. 676 0 .298 0.546 A p r i l 90 0 .296 0 .247 0. 577 0 .226 0.475 May 93 0 .193 0 .068 0. 215 0 .081 0.284 June 90 0 .152 0 .075 o. 243 0 .085 0.291 J u l y 93 0 .084 0 .013 0. 053 0 .021 0.144 August 93 0 .110 0 .227 0. 212 0 .470 0.685 September 90 0 .628 0 .002 1. 868 0 .010 0.100 ** S i g n i f i c a n t a t P < 0.01 59 TABLE C2 ANNUAL SIMPLE REGRESSION OF DISCHARGE AND WEIGHTED PRECIPITATION WATER YEAR 1967 - 68 N A WT PPT S y . x r 2 r S i g n i f i c a n c e October 67 to S e p t . 6 8 1098 0.399 0.305 1.306 0.223 0.472 * * * * S i g n i f i c a n t at P < 0.01 TABLE C3 MONTHLY REGRESSION OF DISCHARGE ON PRECIPITATION OF THREE STATIONS WATER YEAR 1967 - 68 N A PPT HI PPT.MD PPT LO S y t x Rf R S i g n i f i c a n c e October 93 0 .889 -0 .713 4.794 - 0 . 297 1 .576 0 .294 0.542 November 90 0 .503 -0 .951 1.820 0. 277 1 .369 0 .077 0.277 December 93 0 .579 0 .342 0.992 - 0 . 345 1 .143 0 .190 0.436 January- 93 0 .559 -19 .457 0.522 21. 732 2 .479 0 .468 0.684 Feb rua ry 87 0 .536 -4 .483 -4.104 10 . 071 1 .072 0 .252 0.502 March 93 0 .575 -2 .572 2.824 0. 777 0 .647 0 .374 0.612 A p r i l 90 0 .332 -1 .158 2.391 - 0 . 219 0 .554 0 .301 0.549 May 93 0 .189 -1 .985 2.331 0. 062 0 .208 0 .166 0.408 June 90 0 .141 -0 .743 -0.024 1. 317 0 .214 0 .310 0.556 J u l y 93 0 .084 -0 .316 0.588 - 0 . 202 0 .053 0 .050 0.223 August 93 0 .114 1 .325 -0.183 - 0 , 996 0 .194 0 .550 0.741 September 90 -0 .639 -2 .009 2.632 0. 628 1 .884 0 .060 0.245 * * S i g n i f i c a n t at P < 0.01 TABLE C4 ANNUAL REGRESSION OF DISCHARGE ON PRECIPITATION OF THREE STATIONS WATER YEAR 1967 - 68 Months N A PPT HI PPT MP PPT LO Sv.x R 2 R S i g n i f i c a n c e October 67 to Sept.68 1098 0.398 -0.224 0.994 0.789 1.307 0.224 0.473 * * October 67 to May 68 732 0.478 -2.015 3.006 0.855 1.380 0.303 0.550 * * June 68 t o Sept.68 366 0.253 0.855 -0.251 -0.416 0.958 0.016 0.126 * * ** S i g n i f i c a n t at P < 0.01 62 APPENDIX D 0.1 0 0.1 Km. LATITUDE 49*18'41"N 2.0 o Current-meter Measurements + Container Measurements 0) CO 1.0 + .8 .6 • 4 + H -I 1—I—(—+- H 1 1—1 I I . 2 .4 .6 .8 l.O 2 Discharge (c.f.s.) FIGURE D 3 STAGE-DISCHARGE RELATION DEVELOPED FROM CURRENT-METER AND CONTAINER MEASUREMENTS •8 10 0 66 APPENDIX E Q o u t = 0.3991 + 0.3051 (Qin) r z = 0.223 P r e c i p i t a t i o n i n A c r e F e e t FIGURE E l ANNUAL SIMPLE REGRESSION OF DISCHARGE AND WEIGHTED BASIN PRECIPITATION 68 APPENDIX F 69 73 76 77 : 0 la --W cn .5 u_ UJ ZD °>- LO CX! U-t a: D:: a: IT.; C_> • C/i i — [ C; C : a; c ; •—. a; L L : ' a-cr: a: OCr a: a: 78 79 DOT FIGURE F 12. MTI T T 7 f l I flKF R f l S T N PRFrTPTTflTTHN AND nTSCHflRnF S h H I K M H F R 1 qRR 3 0 . 5 6 1 . 0 9 1 . 5 1Z2.0 152.5 1B3.0 2 1 3 . 5 244 .0 H74.S 305 .0 3 3 5 . 5 OCT NOV DEC JAN FEB MAR APR _ MAY JUN JUL AUG SEP F I G U R E F 13 F IGURE F 14. MTl TT7R I RKF RflSTN ORSFRVFn HNH PRFnT F T F n DTSrHRRGF WRTFR YFRR 1 R67-6B . ; : . OO N5 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0103981/manifest

Comment

Related Items