Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Some effects of cool temperatures on flower production, fruit set and growth of four tomato varieties… Li, Shin Chai 1969

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1969_A6_7 L5.pdf [ 8.02MB ]
Metadata
JSON: 831-1.0103967.json
JSON-LD: 831-1.0103967-ld.json
RDF/XML (Pretty): 831-1.0103967-rdf.xml
RDF/JSON: 831-1.0103967-rdf.json
Turtle: 831-1.0103967-turtle.txt
N-Triples: 831-1.0103967-rdf-ntriples.txt
Original Record: 831-1.0103967-source.json
Full Text
831-1.0103967-fulltext.txt
Citation
831-1.0103967.ris

Full Text

SOME EFFECTS OF COOL TEMPERATURES ON FLOWER PRODUCTION, FRUIT SET AND GROWTH OF FOURi TOMATO VARIETIES AND THEIR. F l HYBRIDS  by SHIN CHAI L I B.S.A., U n i v e r s i t y o f Taiwan, 1 9 6 5 A THESIS SUBMITTED IN PARTIAL FULFILMENT, OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE  JZBE£&mgm&&£E  i n the Department; of PLANT SCIENCE  We accept this, t h e s i s as- conforming to the r e q u i r e d s t a n d a r d  THE UNIVERSITY OF BRITISH COLUMBIA September, 1 9 ^ 9  In p r e s e n t i n g an the  thesis  advanced degree at Library  I further for  this  shall  by  his  of  this  written  fulfilment of  University  of  make i t f r e e l y  agree tha  scholarly  the  in p a r t i a l  permission  p u r p o s e s may  representatives.  be  available  for  for extensive  granted  by  the  It i s understood  thesis for financial  gain  permission.  Department The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  British  Columbia  shall  requirements  Columbia,  Head o f my  be  I agree  r e f e r e n c e and copying of  that  not  the  that  study.  this  thesis  Department  copying or  for  or  publication  allowed without  my  i  ACKNOWLEDGEMENT  The  w r i t e r wishes t o express h i s thanks t o Dr. C.A.Hornby,  A s s o c i a t e P r o f e s s o r o f H o r t i c u l t u r e and Chairman o f the T h e s i s Committee, f o r s u p e r v i s i o n of: the e x p e r i m e n t a l  work and f o r  v a l u a b l e a s s i s t a n c e i n the p r e p a r a t i o n o f the t h e s i s . Acknowledgement i s g i v e n t o the other members o f the t h e s i s committee; Dr. G.W.Eaton, A s s o c i a t e P r o f e s s o r o f H o r t i c u l t u r e ? , f o r h i s i n v a l u a b l e h e l p i n the s t a t i s t i c a l  a n a l y s i s i n this=  t h e s i s ; Dr. V.C.Brink, P r o f e s s o r o f Agronomy and chairman o f the D i v i s i o n o f P l a n t S c i e n c e ; Dr. K.Cole, A s s o c i a t e of  Professor  Botany, Dr. D.P.Ormrod, P r o f e s s o r o f P l a n t S c i e n c e ; Dr. C.  W.Roberts, A s s o c i a t e P r o f e s s o r o f Poirl.tryi G e n e t i c s , Department; of  Poultry Science,  project  f o r t h e i r i n t e r e s t and concern w i t h  and p r e p a r a t i o n o f the t h e s i s .  the:  ABSTRACT.  It  i s d e s i r a b l e t o d e v e l o p tomato v a r i e t i e s  c h a r a c t e r o f b e i n g a b l e to s e t f r u i t e r a t u r e between 10°C to 15.5°C  which have the.*  at r e l a t i v e l y c o o l  f o r commercial  temp-  production,in  Canada. The  tomato v a r i e t i e s  Puck, Bonny B e s t , Immur, P r i o r B e t a ,  C o l d Set and some o f t h e i r r e c i p r o c a l  F l h y b r i d s were grown.-  both i n greenhouses  and in> growth  temperature  experiments were c a r r i e d  set  levels,  and the e f f e c t s  development  chambers under two d i f f e r e n t out to study f r u i t ,  o f s e l f and c r o s s - p o l l i n a t i o n  i n four v a r i e t i e s  on. f r u i t  and the F l h y b r i d s o f PxBB, BBxP,  IPBxBB, BBxIPB, CSxBB, and BBxCS. Under both c o o l fruit  s e t and a l s o  and warm temperatures, the percentage o f size  of f r u i t  were i n c r e a s e d when c r o s s -  p o l l i n a t i o n was used i n c o n t r a s t to s e l f - p o l l i n a t i o n . Under cool  temperature, a l l F l h y b r i d l i n e s had a h i g h e r percentage  of f r u i t the  s e t than t h e i r tivo p a r e n t s , but i n warm temperature  F l h y b r i d l i n e s had a i n t e r m e d i a t e percentage between  those o f the two p a r e n t s . Under both temperature regimes t h e r e were d i s t i n c t rences among l i n e s  i n the time i n t e r v a l s  component stages i n the l i f e  cycle.  diffe-  for different  C o o l temperatures  i n c r e a s e d l e n g t h s o f these i n t e r v a l s ,  but r e l a t i v e  difference-  i n l e n g t h s o f i n t e r v a l was c l e a r l y e v i d e n t . Among the t e n l i n e s , IPB was n o t a b l y the e a r l i e s t v a r i e t y the  first  to r i p e  first  f r u i t . In  component i n t e r v a l from s e e d i n g to f l o w e r opening,  IPB  was  the e a r l i e s t  for  the two s u c c e e d i n g i n t e r v a l s ,  set  and f r u i t  intervals  and Bonny Best the l a t e s t ;  namely f l o w e r i n g to f r u i t  s e t to r i p e n i n g , IPB d i d not have the shortest;  or most r a p i d growth. In f a c t  b e t t e r than IPB f o r the second component the  third  interval,  the  e a r l i e s t . This sort  to put tlie e a r l i e s t a very e a r l y  however,  line.  Puck v a r i e t y interval,  (BBxIPB)Fl and the r e c i p r o c a l  was  and i n c r o s s were  o f v a r i a b i l i t y suggests r e c o m b i n a t i o n  component  stages t o g e t h e r to s y n t h e s i z e  iv  LIST Table  1  Percentage their  Table  2  3  Percentage  of  and  of  set  fruit  set  Puck,  in of  hybrids  fruit  their  of  hybrids  reciprocal  Percentage Beta  fruit  reciprocal  their Table  of  OF T A B L E S  set  cool  of  Bonny  warm Cold  with  Best  and  greenhouse.  Puck,  in  reciprocal  Bonny  Best  and  greenhouse. Set.  Iraraur  Bonny  Best  Prior in  cool  greenhouse. Table  k  Percentage Beta  and  of  fruit  their  set  of  reciprocal  Cold  Set,  Immur  Prior  with  Bonny  Best  in  warm  Puck,  Bonny  Best  and  their  and  their  greenhouse. Table  Table  Table  5  6  7  Mean f r u i t  weight  reciprocal  hybrids  Mean  weight  fruit  (g)  hybrids  Mean f r u i t  weight  their  in  cool  (g)  reciprocal  and  of  of  in  Puck,  warm  (g)  reciprocal  greenhouse.  of  Best  greenhouse.  Cold  with  Bonny  Set,  Bonny  Immur  Best  in  Prior  Beta  cool  greenhouse. Table  8  Mean f r u i t arid  their  weight(g)  of  reciprocal  Cold  with  Set,  Bonny  Immur  Best  in  Prior  Beta  warm  greenhouse. Table  9  Seed in  Table  10  the  Seed their  Table  11  number  Seed  ten  number  and lines  reciprocal  at  numbor  reciprocal number  percentage  per  two per  hybrids  in  parthenocarpic  different fruit  hybrids fruit  of  of  in  of  Puck,  warm  temperatures. Puck,  cool  fruit  Bonny  Best  and  greenhouse.  Bonny  Best  greenhouse.  and  their  Table  12  Seed number per f r u i t and t h e i r r e c i p r o c a l  o f C o l d Set, Immur P r i o r Beta hybrids  w i t h Bonny Best  i n cool  greenhouse. Table  13  Seed number per f r u i t and t h e i r r e c i p r o c a l  of Cold hybrids  Set, Immur P r i o r Beta w i t h Bonny Best i n  warm greenhouse. Table  Table  ik  15  Percentage o f seed g e r m i n a t i o n  i n f o u r v a r i e t i e s and  s i x F l h y b r i d l i n e s at two d i f f e r e n t  temperaturelevels.  Number o f f l o w e r buds formed on f i r s t  four  of four v a r i e t i e s  clusters  and s i x h y b r i d l i n e s i n warm  greenhouse. Table  16  Number o f f l o w e r buds formed on f i r s t of f o u r v a r i e t i e s  four  clusters  and s i x h y b r i d l i n e s i n c o o l  greenhouse. Table  17  Number o f f r u i t varieties  Table  18  Table  19  and s i x h y b r i d l i n e s  Number o f f r u i t varieties First  formed on f i r s t  four clusters  ©f f o u r  i n warm greenhouse.  formed on f i r s t  four clusters  of four  and s i x h y b r i d l i n e s i n c o o l greenhouse.  flower,  fruit  s e t and r i p e  fruit  i n a l l lines,  compared w i t h IPB & i n warm greenhouse. Table  20  First  flower,  fruit  s e t and r i p e  fruit  i n a l l lines,  compared w i t h IPB ® i n c o o l greenhouse. Table  21  Percentage o f f r u i t F l hybrid  Table  22  set of four v a r i e t i e s  and s i x  l i n e s i n warm greenhouse.  Percentage o f f r u i t  set of four v a r i e t i e s  F l h y b r i d l i n e s i n c o o l greenhouse.  and s i x  vi  Table  23  Growth days varieties  Table  2k  25  Table  26  Table  27  from  lines  fruit  to r i p e  weight  lines  fruit  lines  fruit  greenhouse.  6f3 f o u r  i n cool  greenhouse.  and s i x -  greenhouse.  (g) o f f o u r v a r i e t i e s  i n cool  of four  i n warm  (g) o f f o u r v a r i e t i e s  i n warm  Parthenocarpic hybrid  seeding  weight  Mean f r u i t hybrid  to ripe  and s i x F l h y b r i d l i n e s  Mean f r u i t hybrid  seeding  and s i x P I h y b r i d l i n e s  Growth days varieties  Table  from  and s i x  greenhouse. of four varieties  i n two d i f f e r e n t  and s i x  temperatures  i n the  greenhouse. Table  Table  Table  28  29  30  Percentage  of fruit  reciprocal  hybrids  Percentage  of f r u i t  reciprocal  hybrids  Percentage  of fruit  and  their  31  Percentage and cool  Table  Table  Table  32  33  34  their  Immur P r i o r  Beta  in a  Set,  hybrids with  Immur P r i o r  Binny  Best  Beta  in a  chamber.  reciprocal  hybrids  Mean f r u i t  weight  reciprocal  hybrids  Mean f r u i t  weight  growth  and t h e i r  chamber.  h y b r i d s w i t h Bonny B e s t  s e t on C o l d  reciprocal  weight  their  growth  s e t on C o l d S e t ,  of fruit  growth  chamber.  s e t on Puck, Bonny B e s t inecool  and t h e i r  chamber.  Mean f r u i t  and  i n a warm g r o w t h  reciprocal  warm g r o w t h Table  s e t on Puck, Bonny B e s t  (g) o f P u c k , Bonny B e s t i n a warm g r o w t h  (g) o f C o l d  reciprocal  chamber.  chamber.  ( g ) o f P u c k , Bonny B e s t i n a cool  growth  and t h e i r  and t h e i r  chamber.  S e t a n d Immur P r i o r  h y b r i d s w i t h Bonny B e s t  Beta  i n a warm  Vll  T a b l e 3 5 Mean f r u i t and  weight  (g) o f C o l d Set and Immur P r i o r  their reciprocal  Beta  h y b r i d s w i t h Bonny Best i n a  c o o l growth chamber. T a b l e 3 6 Seed number o f Puck, Bonny Best and therLi  reciprocal  h y b r i d s i n a warm growth chamber. Table 3 7  Seed number o f Puck, Bonny Best and t h e i r  reciprocal  h y b r i d s i n a c o o l growth chamber. Table 3 8  Seed number o f C o l d Set, Immur P r i o r Beta and t h e i r . reciprocal  h y b r i d s w i t h Bonny Best  i n a warm growth  chamber. T a b l e 3 9 Seed number o f C o l d Set, Immur P r i o r Beta and t h e i r reciprocal  h y b r i d s w i t h Bonny Best  i n a c o o l growth  chamber. T a b l e kO  Percentage  of f r u i t  ripe  and f r u i t weight f o f o u r v a r i e t i e s and  fruit  s e t , growth days from s e e d i n g to  s i x h y b r i d l i n e s i m i a warm growth chamber. Table 4 l  Percentage  of f r u i t  ripe  and f r u i t weight o f f o u r v a r i e t i e s and  fruit  s e t , growth days from s e e d i n g t o  s i x h y b r i d l i n e s i n a c o o l growth chamber. T a b l e 42  Percentage varieties  Table  Percentage varieties  T a b l e kk  of p o l l e n germination i n v i t r o f o r four grown under c o o l  temperatures.  of p o l l e n germination i n v i t r o f o r four grown under warm  P o l l e n germination  i n vivo.  temperatures.  viii TABLE OF CONTENTS page 1  INTRODUCTION LITERATURE  REVIEW  MATERIALS AND  1,3  METHODS  20  A. M a t e r i a l s  20  B. Methods  23  1.  Greenhouse experiments  23  a. 1 9 6 7 - 1 9 6 8 experiment  23  b. I 9 6 8 - I 9 6 9  26  experiment  2 . Growth chamber experiments  3.  27  a. experiment 1  27  b. experiment 2  28  P o l l e n experiments  28  a. p o l l e n g e r m i n a t i o n i n v i t r o  28  b. p o l l e n g e r m i n a t i o n i n v i v o  29  RESULTS 1.  2.  Greenhouse experiments  32  a. 1 9 6 7 - 1 9 6 8 experiment  32  b. 1 9 6 8 - 1 9 6 9 experiment  48  Growth chamber experiments a. exfjeriment 1 . . . . . b. experiment 2  3.  P o l l e n experiments  68 .68 82 85  a. p o l l e n g e r m i n a t i o n i n v i t r o  85  b. p o l l e n g e r m i n a t i o n i n v i v o  85  ix DISCUSSION  89  SUMMARY AND CONCLUSIONS  98  LITERATURE CITED APPENDIX  100 ,  108  1 INTRODUCTION  The  tomato i s a warm temperature  c o o l temperatures r e s u l t and l a t e f r u i t  crop and u n f a v o r a b l y  i n c o m p a r a t i v e l y slow p l a n t  r i p e n i n g . T h i s c r o p has two b a s i c  requirements: a f r o s t  growth  temperature  f r e e p e r i o d o f about 110 days  from  s e e d i n g and a r e l a t i v e l y warm temperature d u r i n g t h a t When the o r d i n a r y commercial v a r i e t i e s are exposed field  temperatures between 10°C and 15.5°C,  second i n f l o r e s c e n c e s f r e q u e n t l y f a i l  period.  to o u t s i d e  the f i r s t  to s e t f r u i t .  and  The  r e l a t i v e l y low temperatures have been shown to r e s u l t i n poor f r u i t exposure  s e t o f f l o w e r s which open about two weeks a f t e r  to a c o l d temperature treatment, a l t h o u g h such  temperatures d i d not a f f e c t f r u i t Tomato growers would  s e t o f open f l o w e r s .  (46 )  l i k e to have c o n s i s t e n t f r u i t s e t  d u r i n g the p e r i o d o f r e l a t i v e l y c o o l , low temperatures, i n o r d e r to s u p p l y the e a r l y , more l u c r a t i v e market,  and  also  i n c r e a s e t o t a l y i e l d s . F o r these purposes i t i s n e c e s s a r y to i n c r e a s e the range of temperature  t o l e r a n c e f o r economic  tomato growing. Thus i n Canada, w h e r e the season i s s h o r t and somewhat c o o l , i t i s v e r y important to breed new for  setting fruit Fruit  s u c c e s s f u l l y i n the e a r l y s p r i n g  s e t t i n g i s a r e s u l t o f a complex sequence  varieties  season. of develop-  ments, t h e r e f o r e i t i s n e c e s s a r y to know what c o n s t i t u t e s the  character of s e t t i n g f r u i t  at c o o l temperatures, and  a s c e r t a i n the mechanisms which c o n t r o l these c h a r a c t e r s .  2 T h i s knowledge would enable p l a n t b r e e d e r s to temperature The  t o l e r a n c e i n b r e e d i n g programmes.  purpose  characters  of t h i s i n v e s t i g a t i o n  controlling  temperatures confined  incorporate  around  the a b i l i t y  10°C  to set f r u i t  the  at c o o l  to 12.8°C. P r e s e n t s t u d i e s were  to the temperature  seed development a f t e r  i s to determine  self-  effect  on f l o w e r ,  fruit  and c r o s s - p o l l i n a t i o n  and treat-  ments o f f o u r tomato v a r i e t i e s , Puck, Bonny Best, Immur P r i o r Beta and C o l d Set, and o f t h e i r F l h y b r i d s .  3 LITERATURE REVIEW  There a r e s e v e r a l r e p o r t s i n d i c a t i n g t h a t poor f r u i t s e t of  tomato p l a n t s a t c o o l temperature  c o u l d be due to i n t e r a c -  t i o n s between the g e n e t i c c o n s i t u t i o n and environment may i n f l u e n c e development It  which  from s e e d i n g to f r u i t m a t u r a t i o n .  i s c o n v e n i e n t to review the l i t e r a t u r e concerned w i t h  each s t e p which may be a f f e c t e d d i f f e r e n t l y by v a r i a t i o n i n growing  conditions.  Seed g e r m i n a t i o n and s e e d l i n g growth In  e a r l i e r s t u d i e s , v a r i a t i o n i n the r a t e o f seed  t i o n at d i f f e r e n t  germina-  temperatures has been observed i n many  v e g e t a b l e c r o p s . Kotowski  (2k)  r e p o r t e d t h a t speed o f germina-  t i o n f o r 17 d i f f e r e n t k i n d s o f v e g e t a b l e s i n c r e a s e d as the temperature  r o s e . The optimum temperature  f o r tomato was 18°C  and the minimum was between 11°C and 18°C, l e t t u c e 25°C, e t c . Metcalf  ( 3 5 ) t e s t e d 53 v a r i e t i e s and l i n e s o f tomato f o r  ability  to germinate at c o o l temperatures. He found  differences  that  i n g e r m i n a t i o n depended on v a r i e t y , but germina-  t i o n took l o n g e r a t the c o o l e r temperature. Went ( 5 6 ) found the  time r e q u i r e d f o r tomato seed g e r m i n a t i o n depended on  temperature,  and lower temperatures  Kemp (21) suggested t h a t the a b i l i t y like  E a r l i n o r t h and Rocket,  required longer periods. o f some tomato v a r i e t i e s  t o germinate a t low temperatures  may be i n h e r i t e d ; and a t 10°C or lower, the percentage o f g e r m i n a t i o n i s reduced s i g n i f i c a n t l y . W h i t t i n g t o n ( 5 9 ) reported  that time f o r g e r m i n a t i o n showed a g e n e t i c  component,  but the r e l a t i o n s h i p s between d i f f e r e n t i n f l u e n c e d by e n v i r o n m e n t a l f a c t o r s . The t u r e on seed g e r m i n a t i o n was required  genotypes effect  of  highly significant,  f o r germination being greatest  was  much  tempera-  the time  at the lower  temperatures. Floral  i n d u c t i o n and  initiation  There are s e v e r a l r e p o r t s t u r e and l i g h t  on f l o r a l  tomato. Phatak  (37)  about  the i n f l u e n c e o f  i n d u c t i o n and i n i t i a t i o n  reported  i n the  o f 10°C  t h a t temperatures  s i g n i f i c a n t l y reduced the number of nodes below the i n f l o r e s c e n c e when compared to 1 5 . 5 ° C 2 1 . 1 ° C . At 10°C flowers  was  to 1 8 . 5 ° C  to 12.8°C r o o t temperature,  to the appearance  o f the f i r s t  to 12,8*  first  or 1 8 . 5 ° C to  the number of  as compared to 15.5°C to  s i g n i f i c a n t l y increased  18.5°C or 1 8 . 5 ° C to 2 1 . 1 ° C d u r i n g  tempera-  the p e r i o d from the  seedling  i n f l o r e s c e n c e . Went ( 5 7 ) how-  ever, s t a t e d t h a t when tomato p l a n t s were grown at a c o n s t a n t temperature,,the  optimum was  2 6 . 5 ° C , and p l a n t s grown at lower  temperatures had a c o n s i s t e n t l y lower growth r a t e . However, optimum temperature not  by day and a lower n i g h t  m a t e r i a l l y increase  initiated  different  or d e c r e a s e thernumber o f  per i n f l o r e s c e n c e . He  periodicity  i n tomatoes  temperature d i d  i s due  concluded t h a t  flowers  thermo-  to the predominance o f  p r o c e s s e s at day and at n i g h t , o f which  p r o c e s s has a much lower temperature p r o c e s s . He emphasized phenomenon i n h i g h e r environment,  p l a n t s . Lewis  (31)  e s p e c i a l l y temperature,  the dark  optimum than the  that t h e r m o p e r i o d i c i t y  is a  reported  i s one  two  light  general  that  o f the main  f a c t o r s which a f f e c t the s i z e o f the i n f l o r e s c e n c e A low temperature the  ( l 4 ° C ) during  the growing p e r i o d ,  from  expansion o f c o t y l e d o n s to the appearance o f the f i r s t ,  i n f l o r e s c e n c e , r e s u l t e d i n an i n c r e a s e as  i n tomato.  i n flower  production  compared w i t h p l a n t s r a i s e d a t 25°C t o 3 0 ° C . He a l s o i n -  dicated  t h a t a l t e r n a t i o n o f warm days and c o o l n i g h t s , and  vice versa, effect but  as opposed to a u n i f o r m temperature, had no  on flo\>rer number i n p l a n t s  grown under n a t u r a l  both temperature combinations had a d e p r e s s i n g  flower  production  under a r t i f i c i a l  temperature e f f e c t on the f i r s t  i n f l o r e s c e n c e , the s e n s i t i v e  e x p a n s i o n to the emergence o f the f i r s t  (63)  and C a l v e r t  reported and  that  night  to the f i f t h  earliest  inflorescence.  This  i n f l o r e s c e n c e . Wittwer  f l o w e r i n g was i n i t i a t e d  temperatures were equal  vegetative  cotyledon  ( 4 ) observed s i m i l a r r e s u l t s . They a l s o  (constant  ( 2 5 ) suggested t h a t v a r i o u s  Lake  e f f e c t on  l i g h t . R e g a r d i n g the  p e r i o d was between the 8 t h to 1 2 t h day a f t e r  e f f e c t may sometimes l a s t  light,  growth, f l o w e r  when the day  temperature).  p l a n t p r o c e s s e s such as  i n i t i a t i o n , f l o r a l growth and f r u i t  growth may have d i f f e r e n t temperature r e q u i r e m e n t s . F o r exampl b o t h the mean number o f branches p e r i n f l o r e s c e n c e and the : . number o f f l o w e r s  p e r p l a n t were l e a s t a t the h i g h e s t  d a i l y temperature  ( 2 3 . 3 ° C day, l 6 . 6 ° C n i g h t  greatest 13«3°C life 1.  a t the lowest temperature regime  ). A g a i n , Lake ( 2 6 ) i n d i c a t e d t h a t  can be d i v i d e d  into four periods,  emergence to f l o w e r  initiation  mean  ) and were  ( day 1 8 . 3 ° C ,  night  the tomato p l a n t  as f o l l o w s :  6  2. f l o w e r i n i t i a t i o n t o a n t h e s i s o f the f i r s t 3. a n t h e s i s o f f i r s t 4. The  flower  f l o w e r to s e t t i n g o f the l a s t  s e t t i n g o f the l a s t  fruit  fruit  to the end o f h a r v e s t i n g .  mean number o f branches i n each i n f l o r e s c e n c e depended  on the day temperature a p p l i e d d u r i n g p e r i o d 1, b e f o r e flower i n i t i a t i o n , The  and was l e a s t at the h i g h e s t  temperature.  number o f f l o w e r s p e r p l a n t appeared to be a f f e c t e d by  the treatments  a p p l i e d i n p e r i o d 2 as w e l l as i n p e r i o d 1,  b e i n g l e a s t a t the h i g h e s t  temperature.  F l o r a l development A. Development o f the p e r i a n t h Zielinski  (64)  reported that unfavourable  environmental  f a c t o r s i n f l u e n c e d p e r i a n t h development i n the tomato, and t h a t a low temperature o f 7.2°C to 12.8°C r e s u l t e d i n f a s c i a t i o n o f p e r i a n t h components. Sometimes s e p a l s may not be present  i n f a s c i a t e d f l o w e r s , but i f p r e s e n t ,  they may  exist  i n numbers as h i g h as e i g h t , and o f t e n become p e t a l o i d . B. Development o f the stamens Unfavourable  environmental  factors interacting  with  d i f f e r e n t genotypes may cause abnormal stamen development. Zielinski  (64)  r e p o r t e d t h a t f l o w e r f a s c i a t i o n may  the stamens, sometimes r e s u l t i n g i n adhesion the c o r o l l a o r c a l y x , and c o h e s i o n f i l a m e n t s . Rudimentary anther  affect  o f stamens to  o f the a n t h e r i d i a l  sacs w i t h aborted p o l l e n  occurred frequently. Some gene mutations respond to temperature change and i n f l u e n c e normal p o l l e n development. R i c k and Boynton  (45)  7 o b t a i n e d a spontaneous differences of  mutant of L. esculentum i n which  i n temperature account f o r the v a r i e d  a s i n g l e r e c e s s i v e gene, v a r i a b l e - m a l e - s t e r i l e  response (vms), to  environment. Minimal temperatures o f 30°C i n the  the  and of 32°C i n the greenhouse p r e s s i o n o f the s t e r i l e five one  tomato mutants,  field  were r e q u i r e d to a l l o w ex-  phenotype.  Soost  ( 5 2 ) reported  on  each o f which shotted s t e r i l i t y due  of f i v e n o n - a l l e l i c ,  a s y n a p t i c genes. And  to  the a c t i o n o f  these genes c o u l d be i n f l u e n c e d by temperature. Poole ( 3 8 ) suggested f l u c t u a t i o n i n the percentages o f f u n c t i o n a l p o l l e n i n pure s p e c i e s i s p r o b a b l y i n f l u e n c e d by the p h y s i o l o g i c a l adjustments made to f l o w e r i n g and Robinson e_t a l (46) at  10°C  indicated  from p o l l i n a t i o n u n t i l  p e n e t r a t e d the complete 48  senescence.  t h a t when p l a n t s were kept  fertilization,  pollen  tubes  l e n g t h o f the s t y l e s i n l e s s  h o u r s . The removal o f s t y l e s from f l o w e r s a few  than  days  a f t e r they were p o l l i n a t e d and the p l a n t s kept at 10°C d i d not  reduce f r u i t  s e t or seed p r o d u c t i o n . Thus c o l d  t u r e d i d not seem to a f f e c t  fruit  tempera-  s e t d u r i n g or a f t e r  p o l l i n a t i o n . The u n d e s i r a b l e i n f l u e n c e o f low  temperature  seems to be e f f e c t i v e p r i o r to p o l l i n a t i o n . They a l s o that but  low temperature d i d not a f f e c t d i d cause poor f r u i t  fruit  s e t o f open f l o w e r s  s e t o f f l o w e r s t h a t opened  2 weeks a f t e r the c o l d treatment. Flowers p o l l i n a t e d the  suggested  about during  u n f r u i t f u l p e r i o d 2 weeks a f t e r the c o l d treatment had  very l i t t l e  p o l l e n , most o f which was  were more f e r t i l e  not v i a b l e . These  plants  when used as female p a r e n t s than when used  8  as male p a r e n t s i n c r o s s e s w i t h p l a n t s not exposed temperature. They c o n c l u d e d t h a t low temperature fruit  s e t o f tomatoes  gametogenesis,  reduces  p r i m a r i l y through i t s i n f l u e n c e on  and e s p e c i a l l y on p o l l e n f o r m a t i o n .  Shannon ( 4 8 ) made a s i m i l a r r e p o r t and c l a i m e d t h a t the u n f r u i t f u l p e r i o d , f l o w e r s were abnormal v e r y much l i k e  to low  during  and l o o k e d  those o f some male s t e r i l e mutants.  He observed  t h a t p e t a l s were s h o r t e n e d , stamens were green to p a l e y e l l o w and shrunken, and p o l l e n p r o d u c t i o n was  curtailed.  He c o n c l u d e d t h a t t h e r e was g e n e t i c v a r i a t i o n i n response to c o l d  temperature d u r i n g m i c r o s p o r o g e n e s i s . Hornby and  Daubeny ( 1 7 ) i n v e s t i g a t e d  two tomato v a r i e t i e s ,  Bonny B e s t , a t two d i f f e r e n t 12.8°C  and 1 8 . 5 ° C  temperature l e v e l s  Puck and ( 1 0 ° C to  t o 2 1 . 1 ° c ) . They found n e a r l y 2 5 $ o f the  Bonny Best f l o w e r s had a s m a l l amount o f p o l l e n , and the remainder had none; whereas n e a r l y 8 5 % o f Puck f l o w e r s had abundant  p o l l e n and the remainder had none. Two samples o f  p o l l e n produced at the c o o l temperature averaged  24.9$  v i a b l i t y f o r Puck and o n l y 2 . 5 $ f o r Bonny B e s t . Those  data  suggested g e n e t i c d i f f e r e n c e s between Puck and Bonny Best i n p r o d u c t i o n o f v i a b l e p o l l e n , g e r m i n a t i o n o f p o l l e n and f e r t i l i z a t i o n a t r e l a t i v e l y c o o l temperature. Daubeny ( 8 ) r e p o r t e d t h a t l a c k o f v i a b l e p o l l e n might be an important factor limiting fruit  s e t . He found t h a t two v a r i e t i e s ,  Puck and Bonny Best growing under f i e l d night  c o n d i t i o n s when  temperatures were lower than 1 2 . 8 ° C  and l i g h t i n -  t e n s i t i e s were h i g h , produced c o n s i s t e n t l y h i g h amount o f  9 66$ to' 88$ v i a b l e p o l l e n per f l o w e r . P o l l e n can be produced from the anthers due  n o r m a l l y , but may  not be r e l e a s e d  to m o r p h o l o g i c a l a b n o r m a l i t i e s . L a r s o n  and Paur (27.) s t u d i e d t h i s f u n c t i o n a l male s t e r i l e and r e p o r t e d t h a t the connate  tomato,  form of the p e t a l s r e s u l t e d i n  c o n s i d e r a b l e c o n s t r i c t i o n o f the anthers and tended them i n c l o s e c o n t a c t w i t h the p i s t i l , of  the stromium and  the subsequent  C. Development of the Unfavourable  to h o l d  thus p r e v e n t i n g r u p t u r e  r e l e a s e o f the  pollen.  pistil  environmental  f a c t o r s l i k e extreme  i n t e r a c t i n g w i t h d i f f e r e n t genotypes,  may  temperature,  cause abnormal  development i n the tomato f l o w e r . Under c o o l temperature, mato f l o w e r s o f t e n drop without main f a c t o r s may  setting fruit,  female  sterility.  In the f i r s t  cause  two  type, the megaspores  immediately  after- m e i o s i s . I n the second  mother c e l l  was  to-  and one of. the  be a b o r t i o n of the p i s t i l . R i c k (hk)  t h a t i n tomato lower n u t r i e n t l e v e l s may  pistil  reported  types of degenerated  type, an embryo sac  not formed and the n u c e l l u s remained u n d i f f e -  rentiated. V a r i a b l e environment  s i g n i f i c a n t l y influences stylar  lopment. Short p h o t o p e r i o d , low l i g h t  i n t e n s i t y , e x t r a carbo-  h y d r a t e s , i n t e r a c t i o n of h i g h temperature etc.,  a l l may  cause  deve-  w i t h low  hummidity,  s t y l a r e l o n g a t i o n . T h i s abnormal development  i n d i r e c t l y i n f l u e n c e s the f r u i t  s e t . Daubeny (9) i n v e s t i g a t e d  36 f l o w e r s o f the tomato v a r i e t y Bonny Best, uder c o o l temperature  (10°C to 12.8°C), and found o n l y 4 l . 7 $ f l o w e r s were  normal,  and  The  i n the remainder,  l o n g s t y l e was  one  58.3$ o f the s t y l e s were e l o n g a t e d .  o f the f a c t o r s c a u s i n g tomato p l a n t s to  10  be u n f r u i t f u l under  c o o l temperature  culture.  A l s o under c o o l temperature, tomato f l o w e r s may  show  f a s c i a t e d o v a r i e s . The l o c u l e s are o f t e n i n c r e a s e d i n number and the o v u l e s may  be rudimentary or a b o r t e d ( 5 6 ) . Smith  found t h a t tomato f l o w e r i n g seemed to be l a r g e l y  (5°)  dependent  upon s o i l m o i s t u r e and temperature. The temperature  existing  a p p r o x i m a t e l y t h r e e days b e f o r e a n t h e s i s appeared to have the g r e a t e s t i n f l u e n c e upon f l o w e r i n g . D u r i n g p e r i o d s of hot d r y winds and low s o i l m o i s t u r e , the s t y l e s e l o n g a t e d abnormally s i m i l a r to the e f f e c t s o f extreme temperatures.  P o l l e n g e r m i n a t i o n and  growth  G e r m i n a t i o n o f p o l l e n and growth o f the p o l l e n tubes down the  s t y l a r t i s s u e are i n f l u e n c e d by environmental f a c t o r s .  Bonn ( l ) suggested t h a t the c r i t i c a l  temperature  p o l l e n g e r m i n a t i o n , tube growth and f e r t i l i z a t i o n was  differentiating i n the tomato  between 12.8 C and 18.5 C. Hornby and C h a r l e s (18) found,  r e a s o n to q u e s t i o n the e f f e c t s of d i f f e r e n t amounts of p o l l e n peirligmay  and r e p o r t e d the need f o r a minimum s i z e o f p o l l e n  a p p l i c a t i o n , and noted v a r i e t a l d i f f e r e n c e s i n the minima. Koot; (23) found that the g e r m i n a t i o n o f tomato p o l l e n on the stigma was  i n f l u e n c e d by temperature. At h i g h temperature  g e r m i n a t i o n spe-ed was At  much g r e a t e r  the  (optimum at about 30°C) .  h i g h temperatures the g e r m i n a t i o n of the p o l l e n seeded to  have s u f f e r e d s l i g h t l y from low a i r h u m i d i t y . The g e r m i n a t i o n was  poor i n dark, humid weather  pollen  and when v i r u s  11  was  p r e s e n t . Both the percentage and speed o f g e r m i n a t i o n were  l a r g e l y dependent  r e p o r t e d b o t h p o l l e n g e r m i n a t i o n and p o l l e n tube growth g r e a t l y reduced by c o o l n i g h t  temperatures, which was  i n reduced f r u i t and seed s e t . Smith f l o w e r s remained the  (12)  on the temperature. Dempsey and Boynton  were  reflected  ( 5 0 ) observed t h a t  open f o r s e v e r a l days, depending  tomato  largely  temperature. Tomato p l a n t s d i d not have a d e f i n i t e  on  flowering  peak; and a n t h e s i s appeared  to be c o r r e l a t e d w i t h  temperature.  E x t r e m e l y h i g h temperatures  caused the s t y l e s - to e l o n g a t e  a b n o r m a l l y , and e x c e p t i o n a l l y e a r l y , r e s u l t i n g i n l a c k o f fertilization,  and then a b s c i s s i o n o f f l o w e r s . P o l l e n  germina-  t i o n on tomato stigmas at 3 7 « 7 ° C was- extremely poor, and p o l l e n tubes v/ere a l l v e r y s h o r t . Optimum g e r m i n a t i o n  the  wa&  o b t a i n e d at 2 9 . 4 ° C , a l t h o u g h at 2 1 . 1 ° C the g e r m i n a t i o n was only a t r i f l e  l e s s , whereas at 10°C  i t was. poor even  though  somewhat b e t t e r than at 3 7 . 7 ° C . A g a i n , Smith and Cochran indicated  that  temperatures  (51)  o f 2 1 . 1 ° C to 2 9 . 4 ° C p e r m i t t e d the  h i g h e s t percentage of p o l l e n g e r m i n a t i o n ; and 2 1 . 1 ° C allowed! the  maximum r a t e o f growth  Fertilization  o f the p o l l e n  tube.  and f r u i t m a t u r a t i o n  Successful f e r t i l i z a t i o n w i t h the s t i g m a t i c  r e q u i r e s ; t h a t p o l l e n be i n c o n t a c t  s u r f a c e and germinate, and the male gametes  s h o u l d be c a r r i e d by the p o l l e n tube to the ovule and d i s c h a r g e d near the egg. Smith  ( 5 0 ) reported that f e r t i l i z a t i o n occurred  between 82 and 9^ hours a f t e r p o l l i n a t i o n at a  temperature  between 1 5 . 5 ° C  (13)  and 2 3 . 5 ° C . Dempsey and Boynton  found the  12 number o f seed per f r u i t fruit  was  s i g n i f i c a n t l y correlated with  weight. They thought t h a t ovule number determined  s i z e ; and a l a r g e many seeded f r u i t  fruit  would o r i g i n a t e from a  l a r g e ovary c o n t a i n i n g many o v u l e s . A l s o they found d i f f e r e n c e s ? a t t r i b u t e d to p o l l e n s o u r c e . Davis ejt a l (10) s t a t e d t h a t set  i n the tomato i s c o n s i d e r e d to be dependent  attainment o f f e r t i l i t y  on  i n i n d i v i d u a l f l o w e r s and  fruit  successful successful  p o l l i n a t i o n . They a l s o i n d i c a t e d t h a t e n v i r o n m e n t a l c o n d i t i o n s r have a q u a n t i t a t i v e e f f e c t upon the c h a i n o f g e n e r a t i v e events and the number o f seeds produced floral  i s a q u a n t i t a t i v e index of  fertility.  Most v a r i e t i e s o f tomatoes w i l l at  produce p a r t h e n o c a r p i c f r u i t  a r e l a t i v e l y low temperature, but not at the warm temperatures.  Osborne and Went (58) found p a r t h e n o c a r p i c f r u i t temperature  with a high l i g h t  at a low/  i n t e n s i t y . Daubeny (9) a l s o  found t h a t poor p o l l e n g e r m i n a t i o n and/or growth may the at  parthenocarpic f r u i t the c o o l temperature  explain  produced by tomato v a r i e t y Bonny Best (lO°C to 12.8°C) d e s p i t e hand p o l l i n a -  t i o n s . Both v : a r i e t i e s 9 l B o n n y Be s t r a n d Puck, were a b l e to produce  parthenocarpic f r u i t  would produce  fruit  at the c o o l temperature, but Puck  w i t h seed \tfhen t h e r e was  pollen  available.  There are a number o f r e p o r t s on the i n t e r a c t i o n o f e n v i r o n ment and genotype erature e f f e c t  of f r u i t  on f r u i t  s e t . Lake (25) s t u d y i n g the temp-  setting,  c l a i m e d t h a t day  temperature  appeared more important than n i g h t temperature. When the day and n i g h t v a l u e s were r e s p e c t i v e l y l6.6°C and 13.3°C, variety  "Craigella"  s e t p r a c t i c a l l y no f r u i t  the  d u r i n g the  spring  13  and e a r l y summer. R a i s i n g the n i g h t temperature in  o n l y a s m a l l improvement, but r a i s i n g the day  3.3  C resulted  temperature  by the same amount caused a marked improvement and n e a r l y a l l the  f l o w e r s produced marketable  fruits.  Robinson et a l ( 4 5 ) r e p o r t e d t h a t to  affect  fruit  c o l d temperature  appears  s e t t i n g o f tomato p r i m a r i l y through i t s  i n f l u e n c e on m i c r o s p o r o g e n e s i s . They a l s o r e p o r t e d t h a t h i g h temperatures had a s i m i l a r e f f e c t , g e n e t i c system determines f r u i t  s u g g e s t i n g t h a t the same  s e t t i n g response to both h i g h  and low temperatures. Wedding and V i n e s although f i e l d p l a n t growth,  o b s e r v a t i o n s may inadequate f r u i t  (57)  i n d i c a t e t h a t a p e r i o d o f poor s e t or abnormally shaped  c o i n c i d e w i t h a p e r i o d o f low temperature, to  p o i n t e d out t h a t  be c e r t a i n of the r e l a t i o n s h i p under  i t i s impossible  field  conditions.  Other f a c t o r s such as s u n l i g h t , h u m i d i t y , n u t r i e n t water may reported  a l s o be changing at the same time. Walkof that  When tomatoes to  s u p p l y , or (54)  the most important s i n g l e environmental  c o n t r o l l i n g the m a t u r i t y o f tomatoes  to 1 5 . 5 ° C  factor  i s p r o b a b l y temperature-.  were grown under d i f f e r e n t  10°C, 1 2 . 8 ° C  fruit  temperatures,  7.2°C  and 1 5 . 5 ° to 2 1 . 1 ° C , good f r u i t  set  and e a r l y r i p e n i n g were o b t a i n e d i n the h i g h e s t temperature. P l a n t growth was  r e t a r d e d i n the 1 2 . 8 ° C  lowest temperature, m a t u r i t y was and of  v a r i e t y . Lake ( 2 6 ) r e p o r t e d t h a t as a r e s u l t  setting,  In the  delayed i n a l l characters,  i n extreme c a s e s , f l o w e r s t e r i l i t y developed  e f f e c t s o f temperature of  to 1 5 . 5 ° C  regardless o f the s e p a r a t e  on the number o f f l o w e r s and on the r a t e  an i n c r e a s e o f day temperature  at any stage reduced  the  time elapsing- between a n t h e s i s  the  s e t t i n g o f the l a s t  harvest  was  delayed  the p e r i o d b e f o r e periods  h i g h day  harvest.  one.  He  of the f i r s t  a l s o found t h a t the  s l i g h t l y by h i g h day  flower  initiation,  (^7)  Schaible  reported  the  temperatures of 1 3 . 9 ° C and  night  fruits pointed  out  that f r u i t  were i n c r e a s e d , related the to  and  i n subsequent  commercial and  Sioux set f r u i t  l6.6°C,  but  in fruit  v e r y poor, and  (29)  fruit  may  be  explained  be  i n c r e a s e d by d e c a p i t a t i o n . At  26°c night  and  on the b a s i s of simple  At low  ture, auxin  temperature f r u i t i n g  sprays  decapitated,  fruit  10°C  competition  and  l4°C  fruit  f o r sugar.  night  s u p p l i e s are l i m i t i n g .  cannot  tempera-  s e t , whereas at  a p p l i c a t i o n s were  T h i s response a l s o i n d i c a t e d t h a t at low  a  growth which  i s a l s o poor, but  strongly stimulated  temperature, a u x i n  temperature, a u x i n  growth.  temperature t h e r e was  between v e g e t a t i v e  2.  night  set i s  d i d s e t a t the h i g h e s t i n f l o r e s c e n c e .  T h i s response showed t h a t a t h i g h strong competition  reported  the  temperature tomato f r u i t  When tomato p l a n t s grown at 26°C d u r i n g n i g h t were  was  related  reported  i s s t r o n g l y i n h i b i t e d by v e g e t a t i v e  immediatedly a few  also  temperatures  directly  i n temperatures. Went ( 5 6 )  At h i g h n i g h t  He  few  of each v a r i e t y  i n t e n s i t y of the f r u i t i n g response was  following. 1.  freely  set very  26.6°C.  and  s i z e d e c r e a s e d as n i g h t  seed content  of  varieties,  to i t s degree of heat t o l e r a n c e . L e a r n e r  each i n c r e a s e  first-  temperatures i n  but  temperatures of 2 2 . 8 ° C  at n i g h t  and  temperature g r e a t l y advanced the date  R u t g e r s , Improved Garden S t a t e , Ace at  flower  but not 3« Not  ineffective. at  high  only  fruit,  15  but a l s o f l o w e r development i s s t r o n g l y reduced n i g h t temperatures, sprayed  and  excessive a b s c i s s i o n occurs.  on the p l a n t s at 26°C n i g h t temperature  f l o w e r a b s c i s s i o n and  at h i g h  allowed  Sugar  prevented  the f l o w e r s to develop  normal  s i z e . T h i s response shows t h a t the poor f l o w e r development at h i g h temperature was the growing r e g i o n , k. c o u l d be is  expected  due The  to i n s u f f i c i e n t  sugar supply  e f f e c t s of night  temperature  to be g r e a t e s t on the r o o t system, which  f a r t h e s t removed from the p h o t o s y n t h e t i c  Hybrid  region.  vigor  "The  expressions  'hybrid v i g o r  1  and  ' h e t e r o s i s ' are used  to d e s c r i b e a v a r i e t y of phenomena \tfhich may progeny of a c r o s s between i n b r e d p a r e n t s " The  to  appear i n the ( Gowen, 1 9 5 1 ) •  h y b r i d s are o f t e n b i g g e r than e i t h e r parent,  germinate b e t t e r , f l o w e r e a r l i e r and Hatcher  ( 1 5 ) r e p o r t e d w i t h constant  p o s i t i v e c o r r e l a t i o n between f r u i t  they  may  give a higher y i e l d  etc.  seed number t h e r e i s h i g h and  seed weight. Seed  and  embryo s i z e are l a r g e l y determined by the number o f seeds i n a fruit, Cross  and  thus by the e f f e c t i v e n e s s o f p o l l i n a t i o n .  p o l l i n a t i o n by hand i s l e s s e f f e c t i v e than n a t u r a l s e l f -  pollination,  l e a d i n g to h y b r i d f r u i t s w i t h fewer seeds  and  t h u s l l a r r g e r embryos. C o r b e i l and B u l t e r (6) and K h e i r a l l a Willington and  (22), u s i n g the same c r o s s e s w i t h L. p i m p i n e l l i f o l i u m  L. esculentum, and  h y b r i d v i g o r , found t i o n and  and  doing genetic analyses  h e t e r o s i s a p p a r e n t l y due  o f the F l to gene recombina-  i n t e r a c t i o n which showed as responses i n seed  size,  16  growth r a t e , f r u i t weight, dry weight and A. G e r m i n a t i o n o f seed and (32)  Luckwill  reported  leaf  s e e d l i n g growth tomato h y b r i d seed d i d not  germinate more q u i c k l y than t h e i r p a r e n t s . No d i f f e r e n c e s between r e c i p r o c a l h y b r i d s weight at 16  or 1^5  h e t e r o s i s was  size  In c e r t a i n h y b r i d s  a l r e a d y e s t a b l i s h e d i n the young shoot p r i -  the 1 ^ 5 t h  and was  day.  maintained  Several hybrids  e x h i b i t e d p l a n t weight h e t e r o s i s d i d not and  plant  from seed of d i f f e r e n t  days a f t e r s e e d i n g .  mordium by the l 6 t h day basis u n t i l  area.  v i c e v e r s a . Hatcher ( 1 5 )  on a r e l a t i v e of tomato which  show h e i g h t  heterosis  i n d i c a t e d a f t e r germination  h y b r i d tomato seed, t h a t the h e t e r o s i s of the  cotyledons  t e m p o r a r i l y masked d u r i n g dormancy, reappeared and was flected in their final  s i z e . The  h e t e r o s i s d u r i n g the v e g e t a t i v e  plumule showed no stage  f l o w e r i n g , but h e t e r o s i s became v e r y  of  of growth  re-  size  before  e v i d e n t a f t e r the  onset,  of f l o w e r i n g . B. F l o r a l  stage  Williams hybrids  (62)  and  fruit  set  i n v e s t i g a t e d s e v e r a l c h a r a c t e r s of tomato F l  i n c l u d i n g number o f f r u i t ,  average weight per  f r u i t weight per p l a n t , f l o w e r number and He  date.  found the c h a r a c t e r i s t i c l e v e l s o f v a r i a b i l i t y of c e r t a i n  parents  which vreve  Generally, the mid low  flowering  fruit,  found to be t r a n s m i t t e d  the v a r i a b i l i t y o f F l h y b r i d s  p a r e n t a l v a l u e , but w i t h r e s p e c t  v a r i a b i l i t y was  to the F l h y b r i d s .  f l u c t u a t e d around to f l o w e r i n g  t r a n s m i t t e d as a dominant  date,  character.  17  Burdick  ( 3 ) and  L u c k w i l l ( 3 3 ) both, claimed  f l o w e r i n g i n most h y b r i d s  i s approximately  betxveen the f l o w e r i n g dates  of the two  the time o f intermediate  parents.  r e p o r t e d w i t h r e s p e c t to number o f r i p e f r u i t p l a n t , t h a t t h e r e was  and  per tomato  a range i n e x p r e s s i o n of dominance  i n h e t e r o s i s f o r the number o f f r u i t s to  Powers ( 3 9 )  weight o f r i p e f r u i t ,  and  per p l a n t . With r e g a r d  the F l h y b r i d s v a r i e d from no  dominance  i n h e t e r o s i s f o r the number of f r u i t s per p l a n t . With  r e g a r d to weight o f r i p e f r u i t ,  the F l h y b r i d s v a r i e d from  no d o m i n a n c e — o r at most, s l i g h t p a r t i a l d o m i n a n c e — o f l a r g e r fruit  to s l i g h t p a r t i a l dominance of s m a l l e r f r u i t  p a r t i a l dominance of s m a l l e r f r u i t h e t e r o s i s . Larson  and  s i z e and  ( 3 3 ) claimed  a close relationship  the g e o m e t r i c a l average o f  parents.  the tomato F l p l a n t s e x h i b i t e d v e r y  marked h y b r i d v i g o r d u r i n g the f l o w e r i n g stage, which manifested  i n an i n c r e a s e i n the dry weight of both  l e a v e s , i n t o t a l l e a f a r e a and l e a v e s . The w i t h those differences  fruit  i n the F l h y b r i d w i t h a tendency toward  the s m a l l e r f r u i t e d p a r e n t . There was  Luckwill  latter i s nonbeneficial  (28) r e p o r t e d t h a t the i n h e r i t a n c e o f  s i z e i s intermediate  between F l f r u i t  to marked  i n the s i z e o f the  was  stems  and  individual  l a r g e r s i z e of the l e a v e s of the h y b r i d compared of the t a l l  parent was  i n c e l l number and not  shown to be due to any  to  increase i n c e l l »  s ize. C.  Yield Williams  and G i l b e r t  (60) r e p o r t e d the g r e a t e r p a r t of the  average h e t e r o s i s f o r y i e l d  i n the tomato i s due  simply  to  the  18 r e l a t i v e d i s t r i b u t i o n f o r the l e v e l s of the  recombination  of g e n e t i c components of y i e l d  i n the parents  c r o s s . H e t e r o s i s i n tomato was  l a r g e l y c o n f i n e d to c r o s s e s  between p a r e n t s which were below observed  of a given  maxima i n the range  o f v a r i a t i o n f o r a p a r t i c u l a r c h a r a c t e r . Near maximal l e v e l s have been f i x e d i n the pure b r e e d i n g v a r i e t i e s which f a l l  in  the upper ranges o f v a r i a t i o n , and  by  these are not exceeded  h e t e r o t i c h y b r i d s between p o o r e r p a r e n t s . The  behaviour  the e n t i r e range of h y b r i d s i s c o n s i s t e n t w i t h a  of  controlling  g e n e t i c system t h a t i s based on complementary gene a c t i o n : w i t h an unJcnown, and Burdick  ( 3 ) found  p o s s i b l y v a r i a b l e , degree of dominance.  that greater e a r l y y i e l d  i s one  of the  p r i n c i p a l m a n i f e s t a t i o n s of h e t e r o s i s i n the tomato but t h i s h e t e r o s i s i s not the f i r s t  e v i d e n t , as a r u l e , u n t i l  r i p e f r u i t . Larson  the time  of tomato c r o s s e s and  i n d i c a t e d that e a r l y y i e l d  average i n c r e a s e i n e a r l y y i e l d  p a r e n t a l average was tive effect  ^7$;  s u p e r i o r y i e l d i n g F l l i n e . The the p a r e n t a l l i n e s was I t was  noted  yielding  of the F l over  the F2 i n c r e a s e was  of genes f o r y i e l d  the  i s intermediately inherited  i n the F l w i t h a tendency toward the l a r g e r e a r l y p a r e n t . The  of  (28) s t u d i e d the extent of h y b r i d  v i g o r i n F l and F2 g e n e r a t i o n s results  that  the  cumula- . v.  8$. The  :  o c c a s i o n a l l y gave r i s e to a increase i n t o t a l y i e l d  3 9 $ f o r the F l and 2 3 $ f o r the  over F2.  t h a t c e r t a i n h y b r i d s responded d i f f e r e n t l y i n the  d i f f e r e n t g e n e r a t i o n s . Most F2 g e n e r a t i o n s were lower y i e l d i n g than t h e i r F l l i n e s . T h i s was  significantly  assumed to be  i n p a r t to y i e l d r e d u c t i o n i n c u r r e d as homozygosity  was  due  19 approached. Williams found  (6l)  investigating  none o f t h e h y b r i d s  of  the  characters with  He  emphasized  exceeded  the  exception  t h a t h e t e r o s i s was  (4-2)  with  their  reported  F l was  it.  F l tomato p l a n t s o r d i n a r i l y  hibiting  in  no  the  yield,  crease  the  over  early  and  showed  size.  grade  hybrids  one  of the fruit  Fruit as  size  the  the  parents.  a number o f t o m a t o F l ' s in  maturity  sometimes even the  marked  Quinones  tomato  charac-  thus (40)  i s considered  exemphasized  very  crosses  parental varieties yields,  as  25.1,  showed a 2 . 1  compared w i t h  the  surpassed  vegetative  were  p a r e n t a l average,  of parents  average  respectively.  i n the  and  i f any  plant. in  genes from  intermediate  of crop h y b r i d s . His  the  per  evident  F l tomato f r u i t s  heterosis for fruit  production  cent  parent,  the  s m a l l e r than  genetic d i v e r s i t y  heterosis  per  earliest  o f h e t e r o s i s , but  teristically  the  not  closer  that  the  the  but  vigor  to  of y i e l d  t h a t when c o m p a r i n g  parents,  b e t t e r parent  clearly  p h e n o t y p e w h i c h i s c o n d i t i o n e d by Rick  the  several characters,  important showed foe  15•3  per  parents.  cent  total  and de-  17.8  20  MATERIALS AND  A.  METHODS  Materials The  f o l l o w i n g tomato v a r i e t i e s were used i n the  Puck, Bonny B e s t , Immur P r i o r Beta, C o l d Set hybrids  between Bonny Best and  the  other  and  three  experiments:  the r e c i p r o c a l  varieties.  Puck Puck (p) was who  described  e a r l y and  introduced  from England i n 1948  B.  i t as a dwarf bush v a r i e t y t h a t produced  heavy crop.  p r o g e n i e s of c r o s s e s  Puck was  s e l e c t e d from  Crane  an  segregating  between the American v a r i e t y , V i c t o r  an u n i d e n t i f i e d v a r i e t y r e l e a s e d World War  by M.  from R u s s i a  at the  end  of the.'  II. (9)  Puck has  a d e t e r m i n a t e growth h a b i t  and  i s characterized  by a woody stem, s t r o n g enough to bear the weight of the i n the  e a r l y p e r i o d of growth. The  l e a f and  side-shoots  d e v e l o p from buds and  growth as w e l l , they may internode  habit (for  s e l f pruning),  belonging and  double ones u s u a l l y occur. The  to the  i n the  determinate  by a s i n g l e r e c e s s i v e gene sp  l o c a t e d i n the  fcourth l i n k a g e  internode.  have determinate  c a r r y s i n g l e c l u s t e r s , but  of growth i s c o n d i t i o n e d  s i x t h chromosome,  and  group. Leaves are dark green  t h i c k , w i t h a c h a r a c t e r i s t i c roughness of s u r f a c e .  fruit  s i z e i s medium, c o l o r i s uniform, and  i r r e g u l a r . The  fruit  commercial v a r i e t i e s .  w a l l l a c k s the (9)  fruits  main stem t e r m i n a t e s i n a  c a r r i e s a double i n f l o r e s c e n c e i n the l a s t  Axillary  last  and  The  shape i s sometimes  f l e s h y character  of  21 Puck, d e s c r i b e d as an e a r l y producer,  has  been shown to  r e q u i r e a g r e a t e r number o f days between blossming r i p e n i n g when compared to other v a r i e t i e s under Columbia growing c o n d i t i o n s . Puck has  and  British  been found  to be  d e f i n i t e l y i n f e r i o r to commercial v a r i e t i e s a l r e a d y grown i n the p r o v i n c e  of B.C.,  d e s p i t e i t s acknowledged  of b e i n g a b l e to se f r u i t s at low  character  temperature. On the  hand, i t i s t h i s c h a r a c t e r t h a t makes i t a p o t e n t i a l of v a l u a b l e germ plasm f o r improvement of v a r i e t i e s acceptable  f o r commercial p r o d u c t i o n .  other, source  otherwise  (9)  Bonny Best Bonny Best  (BB-)  i s one  o f the w e l l known v a r i e t i e s  N o r t h American c o n t i n e n t , where i t has the e a r l y y e a r s  of t h i s c e n t u r y ,  the f i r m o f Johnson and has  indeterminate  fruits.  fruit  was  a c o n s i d e r a b l e amount o f r e s e a r c h has  elongated  was  conditions. Typically,  been  the t e s t p l a n t . of Bonny Best,  c o n s i d e r a b l y under c o o l temperatures  f i v e f l o w e r s per c l u s t e r w i t h two cluster.  the  the commercial v a r i e t i e s because i n the  (2) s t a t e d t h a t d u r i n g m a t u r a t i o n  other unfavorable  per  coloured  s e t t i n g . Bonny Best  done, i n which t h i s p o p u l a r v a r i e t y was Boswell  since  Stokes o f P h i l a d e l p h i a . Bonny Best  temperatures on f r u i t  t h i r t y years  the  f o l l o w i n g i n t r o d u c t i o n by  growth; round, f l e s h y , u n i f o r m l y  chosen to r e p r e s e n t past  been c u l t i v a t e d  I t i s r e l a t i v e l y e a r l y , but v e r y s e n s i t i v e to  e f f e c t s o f low  on  or  t h e r e are f o u r or  or t h r e e f r u i t s b e i n g s e t  22  C o l d Set C o l d Set (CS) i s a new type seeding,  o f tomato v a r i e t y f o r d i r e c t ,  i n t r o d u c e d by P r o f e s s o r T.O.Graham a t the U n i v e r s i t y  o f Guelph i n 1962. I t came from a c r o s s between F i r e b a l l and F i l i p i n o #2. Both the parents  are r e s i s t a n t  to heat and c o l d  sterility. T h i s v a r i e t y has been t e s t e d by P.A.Young i n E a s t e r n Texas, and  proved t h a t CS i s r e s i s t a n t  set  fruit  at night  to c o l d s t e r i l i t y and w i l l  temperature 7.2°C. CS a l s o can s e t i t s  f l o w e r s under both c o l d and warm c o n d i t i o n s , but i t may not possess the a d d i t i o n a l a b i l i t y  o f b e i n g h i g h l y r e s i s t a n t to  f r e e z i n g i n the s e e d l i n g stage. CS has i n d e t e r m i n a t e and  uniformly  colored f r u i t  growth,  o f medium s i z e .  Immur P r i o r Beta The and  o r i g i n o f Immur P r i o r Beta (IPB) i s not known. Curme (7)  Reynard  ( 4 l ) b e l i e v e d t h a t t h i s v a r i e t y was developed by  Dr. A . K a l l i o , U n x v e r s i t y s a i d he o b t a i n e d  of Alaska at Fairbanks.  But K a l l i o  (.20)  the seed i n 1951 from the H o r t i c u l t u r e  Department o f the U n i v e r s i t y o f N o r t h Dakota, and he a l s o i n d i c a t e d t h a t t h i s v a r i e t y may have come from Europe. T h i s v a r i e t y has the p o t a t o - l e a f gene, i s not very d e t e r m i n a t e i n growth h a b i t , and v e r y t o l e r a n t o f low temperatures regard and  to f r u i t  s e t and v i n e growth. The f r u i t  rough v/ith green s h o u l d e r s .  Dinkel  with  is flat,  ( l 4 ) reported  I.P.B. was l e a s t a f f e c t e d by the h i g h e r  fertilization  angular  that r a t e and  showed no a p p r e c i a b l e damage from l e a f mold. T e s t s  i n Alaska  confirmed  at low  t h a t I.P.B. has the a b i l i t y  to s e t f r u i t  23  temperature and i t i s a l s o one o f the best v a r i e t i e s f o r summer p r o d u c t i o n i n heated g l a s s houses f o r the A l a s k a l a t i t u d e s . Average Fl  fruit  s i z e was  3.5  ounces.  hybrids F l h y b r i d s o f the r e c i p r o c a l s  Immur P r i o r Beta, C o l d Set  xirere  at the U n i v e r s i t y o f B r i t i s h The  o f Bonny Best w i t h Puck, produced i n the w i n t e r o f 1 9 ^ 7  Columbia.  f o l l o w i n g c r o s s e s are to be d e s i g n a t e d by the  shown below.  symbols  1.  (Bonny Best x Puck)  (BBxP)  2.  (Puck x Bonny B e s t )  (PxBB)  3.  (immur P r i o r Beta x Bonny B e s t )  (iPBxBB)  k.  (Bonny Best x Immur P r i o r Beta)  ( B B X I P B )  5. ( ( C o l d Set x Bonny B e s t )  (CSxBB)  6.  (BBxCS)  (Bonny Best x C o l d Set)  symbols  B. Methods 1.  Greenhouse  experiments  a. 1 9 6 7 - I 9 6 8 experiment The  experiments were conducted i n the greenhouses at  the U n i v e r s i t y of B r i t i s h Columbia i n the w i n t e r o f 1 9 6 7 1 9 6 8 to c o n t r a s t  the response o f the p l a n t m a t e r i a l s at  the r e l a t i v e l y c o o l temperature of 10°C to 12.8°C w i t h the more optimum range o f 18.3°C  to 2 1 . 1 ° C  f o r tomatoes.  Seeds o f the f o u r v a r i e t i e s were sown on Oct. 18, and s e e d l i n g s were p r i c k e d out and s e t i n 2 x 2 " venner bands  in flats  two weeks l a t e r . Temperature were kept  1967»  2h  as c l o s e l y as p o s s i b l e between 10°C to 12.8°C for,.-the c o o l house and 18.3°C to 21.1°C f o r the warm house. Temperature r e c o r d s were o b t a i n e d  f o r the d u r a t i o n o f  the experiments by means o f thermographs. A l l s e e d l i n g s v/ere kept i n the warm house u n t i l t r a n s p l a n t i n g time. On Nov. 29, 1967 a l l the p l a n t s were p l a c e d under the d i f f e r e n t i a l temperature c o n d i t i o n s - i n a randomized block esperimental  design.  Both c o o l and warm houses have two benches. Puck and  Bonny Best were grown i n bench 1, Immur. P r i o r Beta,  C o l d Set and Bonny Best were grown i n bench 2. Bench 1 c o n s i s t e d o f s i x b l o c k s , w i t h f o u r plants: i n each b l o c k . Bench 2 c o n s i s t e d o f f o u r b l o c k s , w i t h s i x p l a n t s i n each b l o c k ,  (experimental  design  shown i n appendix,  page 108) The  plants- were 12" apart w i t h i n the row and 18"  between the rows. Supplementary l i g h t was. p r o v i d e d by f o u r 300-Watt f l u o r e s c e n t tubes i n s t a l l e d each bench to i n s u r e a fourteen-hour All  i n p a i r s over  photoperiod.  p l a n t s except v a r i e t y Puck were pruned to a  s i n g l e stem, and staked. The  p o l l i n a t i o n treatments a r e l i s t e d as f o l l o w s ,  and w i l l be h e r e a f t e r r e f e r r e d to by the symbols. symbols 1. P s e l f - p o l l i n a t e d f a  P 0  2. B B . s e l f - p o l l i n a t e d  BB 8  3. P c r o s s - p o l l i n a t e d w i t h BB  PxBB'  25  k.  BB c r o s s - p o l l i n a t e d w i t h P  BBxP  5. IPB s e l f - p o l l i n a t e d  IPB ©  6. IPB c r o s s - p o l l i n a t e d w i t h BB  IPBxBB  7. BB c r o s s - p o l l i n a t e d r w i t h . IPB  BBxIPB  8. CS  CS &  9.  self-pollinated  CS c r o s s - p o l l i n a t e d w i t h BB  CSxBB*  10. BB c r o s s - p o l l i n a t e d w i t h CS  BBxCS  Second,  t h i r d and f o u r i n f l o r e s c e n c e s were p o l l i n a t e d  on each p l a n t . F i r s t  c l u s t e r s were d i s c a r d e d because  they were w e l l developed a t the time o f t r a n s p l a n t i n g to  benches,  later,  and f l o w e r s opened i n both houses  thusdevelopment  o f those f l o w e r s would not have  been i n f l u e n c e d by the c o n t r a s t i n g The  a few days  temperatures.  f o l l o w i n g procedure was used i n making c o n t r o l l e d  c r o s s - p o l l i n a t i o n s . The f l o w e r s wer emasculated  one days  b e f o r e a n t h e s i s by t a k i n g away p e t a l s and anthers \tfith a pair, o f tweezers. P o l l e n w a s . o o l l e c t e d on microscope  slides,  and t r a n s f e r e d t o the stigmas by n e e d l e . A p p l i c a t i o n s o f p o l l e n were r e p e a t e d twice on each f l o w e r a t one day i n t e r v a l s . A l l p o l l e n used was produced The  i n the warm house.  s e l f - p o l l i n a t i o n treatments were a l l o w e d t o occur  naturally. At. the end o f Marclr/. the f o l l o w i n g d a t a were o b t a i n e d . 1. percentage o f f r u i t s e t 2. weight  of f r u i t  3. number o f seed, i n c l u d i n g percentage o f p a r t h e n o c a r pic  fruit.  26  v:': When the f r u i t wasr r i p e , i t was- opened were made. I f there was  and seed counts  no seed i n the f r u i t ,  i t was  par-  thenocarpic:. b. I968-I969 The  experiment  temperature and l i g h t regimes were s i m i l a r to the  p r e v i o u s experiment. Seeds  o f t e n PI l i n e s : P &,  BB  0,  PxBB, BBxP, IPB ©, IPBxBBS, BBxIPB, CS ®, CSxBB, and BBxCS were sown on Oct. 1, 1968 and s e e d l i n g s were p r i c k e d out and s e t i n 2x2" veneer bands i n f l a t s All  s e e d l i n g s were kept i n the warm house u n t i l  l a n t i n g time. On Nov. the  two weeks l a t e r . transp-  6,1968 a l l p l a n t s were p l a c e d  under  d i f f e r e n t i a l temperature c o n d i t i o n s i n a randomized  b l o c k experiment. Both c o o l and warm houses have two benches, and bench was  each  d i v i d e d i n t o f o u r b l o c k s , and each b l o c k con-  tained ten plants,  (experiment d e s i g n shown i n appendix,  P.1Q9) The p l a n t s were 16" a p a r t w i t h i n the row and 18," a p a r t between rows. A l l p l a n t s except Pc.uk 8 were pruned to a s i n g l e stem, and s t a k e d . The f o l l o w i n g d a t a were t a k e n : 1.  first  f l o w e r production. .  2. f i r s t  fruit  3. f i r s t  ripe  s e t (when, f r u i t was, 0.5-cm diameter) . fruit.  4. number o f f l o w e r buds formed on f i r s t 5. number of f r u i t  s e t on f i r s t  6. percentage o f f r u i t s e t .  four  four  clusters.  clusters.  27  7.  fruit  8.  number o f p a r t h e n o c a r p i c frui&;.  9.  number o f days from s e e d i n g to r i p e  weight.  The purpose  of t h i s  i n v e s t i g a t i o n was  fruit. to compare the  responses o f the above n i n e items to d i f f e r e n t i a l  tempera-  t u r e s , and to a s c e r t a i n whether any o f the l i n e s was a b l e f o r c o o l temperature Variability therefore,  Growth Chamber Experiment Because  conditions could a f f e c t  f o r e g o i n g experiments were  repeated using c o n t r o l l e d 2.  culture.  i n greenhouse  the two  environment  results,  essentially  chambers.  experiments  1  of l i m i t e d  s s a r y to d i v i d e  space i n grox^th chambers, i t was  this  experiment  i n t o two  second s e r i e s ,  On Feb. 2 1 ,  1 9 6 8 and J u l y 28, 1 9 6 8 , each s e r i e s was  p l a n t e d to 9 " c l a y pots and p l a c e d under the chambers. The  first  1968  IPB and CS were sown on June 2 1 ,  temperature c o n d i t i o n i n growth  nece-  s e r i e s . The  s e r i e s Puck and Bonny Best were sown on Jan. 1 0 , the  suit-  and  1968. trans-  differential temperature  ranges were kept as c o n s t a n t as p o s s i b l e u s i n g 1 0 ° + 1 . 1 ° C for  the c o o l chamber and 2 1 . 1 ° + 1 . 1 ° C f o r the warm one. Each chamber c o n s i s t e d o f two b l o c k s , each w i t h f o u r  pots w i t h one p l a n t per p o t . Except f o r Puck, a l l p l a n t s were pruned to t h r e e stems and s t a k e d . The p o l l i n a t i o n treatments was greenhouse  experiment.  Experiment  2  series of  the same as i n the I967-I968  28  Experiment  2  Seeds o f Puck, Bonny B e s t , Immur P r i o r B e t a , C o l d Set and  (PxBB)Fl, (BBxP)Fl, (iPBxBB)Fl,  (BBxIPB)Fl, (CSxBB)Fl,  (BBxIPB)Fl were sown on O c t . 1 , 1 9 6 8 . The  same temperatures  regimes were used as i n p a r t 1 .  and l i g h t  A l l seedlings  were p r i c k e d out and s e t i n 2x2" vaneer bands i n f l a t s two weeks l a t e r . A l l s e e d l i n g s were kept i n the warm house until  t r a n s p l a n t i n g time. On Nov.  p l a c e d under the d i f f e r e n t i a l  6,  1 9 6 8 a l l plants? were  temperature groxvth chambers  i n 9" clay pots. Each chamber c o n t a i n e d one pot o f each o f t e n d i f f e r e n t v a r i e t i e s and h y b r i d l i n e s . The  limited  space d i d not  alios  r e p l i c a t i o n t h i s experiment. Except f o r Puck v a r i e t y , a l l p l a n t s were pruned to t h r e e stems and s t a k e d . O b s e r v a t i o n were made f o r the same items as: the 1 9 6 8 - 1 9 6 9  greenhouse  experiment. Experiment  3  A seed g e r m i n a t i o n experiment u s i n g the same 1 0 as employed  i n experiment 2, was  chambers to observe the e f f e c t s  c a r r i e d out i n growth o f c o n s t a n t temperature  at the two l e v e l s used i n experiments 1 and 2. The were sown i n compost i n p l a s t i c 1 0 0 seeds o f each 3.  Pollen  lines,  pots on May  11,  seeds  using  line.  experiments  a. p o l l e n g e r m i n a t i o n i n v i t r o I t was. c o n s i d e r e d d e s i r a b l e to compare the g e r m i n a t i o n percentages of p o l l e n i n v i t r o ,  because  as Howlett  (21)  29  r e p o r t e d , tomato p o l l e n g r a i n s and e x t e r n a l  appearance  which appear normal  i n shape  are o f t e n n o n v i a b l e .  The medium used f o r g e r m i n a t i n g p o l l e n g r a i n s c o n t a i n e d 10$ sugar, 0.5$ agar, and 30 ppm boron A small  drop o f medium was p l a c e d  temperature,  two drops of water,  temperature the  on a s l i d e a t room  over w e l l - s l i d e s  contain-  and then i n c u b a t e d i n an oven at a.  o f 20°C. A f t e r t e n hours, counts were made o f  two c l a s s e s : v i a b l e and empty  grains.  P o l l e n of f o u r v a r i e t i e s was c o l l e c t e d from blossoms  1962).  and the sample o f p o l l e n was s t i r r e d i n t o the  drop. The s l i d e was then i n v e r t e d ing  (Charles,  from the c o o l and warm greenhouses  several  ( the source  p l a n t s were grown i n pots as the same time as the I967-I968 greenhouse samples  experiment  plants  ). A f t e r c o l l e c t i o n ,  were mixed and d u s t e d on microscope  the p o l l e n  slides.  bb>. p o l l e n g e r m i n a t i o n i n v i v d P o l l e n gran be a p p l i e d  t o the stigma and subsequent  ger-  m i n a t i o n can be observed. T h i s d e t e r m i n a t i o n o f p o l l e n viability  i n vivo  i s d i f f i c u l t w i t h the tomato because the  stigma i s r e l a t i v e l y  small.  Q u i t e a few r e p o r t s nation  i n d i c a t e d success w i t h p o l l e n  germi-  i n v i v o . The M a r t i n (3*0 q u a n t i t a t i v e procedure o f  o b s e r v i n g p o l l e n tubes by f l u o r e s c e n c e  was adopted f o r these  experiments. The procedure developed was as f o l l o w s : 1. Flowers were emasculated were r e f l e x e d .  and tagged b e f o r e the p e t a l s  30 Pollen grains  were counted under a d i s s e c t i n g microscope  and  then p i c k e d up by means o f a s i n g l e camel h a i r .  The  p o l l e n grains  were t r a n s f e r r e d  t o the s t i g m a t i c  suirface  o f the emasculated f l o w e r s a t the time when the; petalsbecame r e f l e x e d  and f l u i d was n o t i c e a b l e  on the- s t i g m a t i c :  surface. A f t e r p o l l e n t r a n s f e r , to the s t i g m a t i c h a i r was i n s p e c t e d that  surface,  the. camel  under the microscope a g a i n t o ensure  t h e r e was. no p o l l e n r e m a i n i n g on the h a i r .  Pollen grains  were a l l o w e d to germinate f o r 48 hours-,  a f t e r which time the stigmas were removed. The  s t y l e s were f i x e d i n  alcohol  formalin-acetic-acid--80$,  (1:1:8) f o r 48 hours..  The  f i x e d s t y l e s were washed f o r 1.5 hours then s o f t e n e d  and  cleared, i n a s t r o n g  8N sodium h y d r o x i d e S:Olution f o r  24 h o u r s . Then the s t y l e s were washed a g a i n f o r 2 hours and s t a i n e d w i t h a 0.1$ s o l u t i o n o f water s o l u b l e dissolved  a n i l i n e b l u e dye  i n 0.1N> K^PO^.  S t a i n was a l l o w e d to p e n e t r a t e over a 4-hour p e r i o d . S t y l e s were smeared by p r e s s i n g and  them between a c o v e r s l i p  a microscope s l i d e , and examined under a d i s s c e t i n g  microscope o f 4 0 X , u s i n g violet  light  d i r e c t i l l u m i n a t i o n with  or b l u e l i g h t  Under these c o n d i t i o n s ,  c o l o r which c o n t r a s t e d  o f a wavelength o f about  the c a l l o s e i n germinated  tubes appeared f l u o r e s c e n t  ultra35.0mu.  pollen  w i t h a b r i g h t ; y e l l o w green  strongly  w i t h the g r e y i s h  c o l o r of.  31 the s t y l a r t i s s u e . 11. The number o f g r a i n s which had germinated) were counted i n a darkroom. The i n v i v o s t u d i e s were done on f o u r and I P B .  Seeds were sown i n a f l a t  young p l a n t s were t r a n s p l a n t e d  varieties—P,BB,CS,  on A p r i l 27, 1968. A l l  t o the bench on May 31> i n the  warm greenhouse where the temperature was kept around to 23.9 C . There were two b l o c k s  each c o n t a i n i n g t e n s i n g l e  p l a n t p l o t s . The f o u r l i n e s were p l a n t e d shown i n T a b l e  i n the t e n p l o t s as,  5 i n the appendix. Plants, were l 6  p l a n t was t r a i n e d to a s i n g l e stem and staked. allowed  Data was- e v a l u a t e d variance, test  l , :  wliere  apart.  Each  Each p l a n t was-  to produce f i v e c l u s t e r s , and two f l o w e r s  c l u s t e r were used f o r the i n v i v o  2 3 ! ° ! ° C  from each  studies.  j u s t i f i e d by a p p l y i n g a n a l y s i s o f  and Duncan's new m u l t i p l e range t e s t was, employed t o  the s i g n i f i c a n c e o f d i f f e r e n c e s between means.. The datai  from the warm and c o o l house were not c o n s o l i d a t e d of variance the d a t a  because there was no r e p l i c a t i o n o f houses. A g a i n ,  from s u c c e s s i v e  consolidated  f o r analysis:  s e r i e s o f growth chamber t h a t w a s i n o  f o r analysis of variance  assurance t h a t the s u c c e s s i v e i d e n t i c a l c o n d i t i o n s , the d a t a s e r i e s were analyzed  because there was no  s e r i e s were  produced under  from each chamber and each  separately.  32  RESULTS  Greenhouse  experiments  .. 1 9 6 7 - 1 9 6 8 experiment a) percentage of" f r u i t s e t The  percentage o f f r u i t  s e t on P, BB, IPB, CS and t h e i r  r e c i p r o c a l h y b r i d s was i n f l u e n c e d by temperature by d a t a i n t a b l e s 1 , Inspection  2 , 3  and  as shown  k.  o f the d a t a i n t a b l e s 1 and 2 , makes i t evide  t h a t P had a h i g h e r p e r c e n t s e t than BB under both c o o l and warm temperatures. The d i f f e r e n c e i n f a v o u r o f P was significant  i n the warm house,  c o o l house o n l y approached r e c i p r o c a l hybrids, d i f f e r e n c e was  but the d i f f e r e n c e i n the  s i g n i f i c a n c e . Regarding the  PxBB was b e t t e r than BBxP and the  significant.  In t a b l e s 3 and k,  i t can be seen t h a t IPB was  better  than CS under both c o o l and warm temperatures, but the means were not s i g n i f i c a n t l y d i f f e r e n t . Comparing the mean of percentage f r u i t  s e t , IPBxBB was b e t t e r than IPB St and  BExTPB, and CSxBB was b e t t e r than CS & and BBxCS both  temperatures.  under  33  Table 1  Percentage o f f r u i t  s e t o f Puck, Bonny Best and their,  r e c i p r o c a l hybrids i n cool  Block  Treatment  Cluster 24;  Puck 6h  B.. B. 8  Puck x B. B,  B.B.x, Puck  40.00  14.28;  42.8;5  50.00 44.44 25.00  3 4  26.66 6.66  II  2 3 4  30.00 25.00 1 2 . 50  28.57  III  2 3 4.  56.25 80.00 21.42  IV  2 3 4  V  VI  I  greenhouse.  0.00 0.00  75.00  66.66, 80.00 33.33  33.33 33.33 40.00  50.00 18.67 0.00  69.23 60.00  66.66.  50.00 0.00 0.00  35.29 42.85 2 2 . 22  0.00 0.00 0.00  50.00 50.00 0.00  20.00 0.00 50.00  2 3 4  33.33 6.66, 23.07  0. 00 0.00 0.00  70.00 100.00 50.00  33.33 33.33 0.00  2 3 4  12.50 16.66  4o.oo  75.00  28.57  22.22 0.00  4o.oo  57.14  20.00 0.00 66.66.  28.87  9.64  57.55  27.75  Ave.  0.00  50.00  0.00  A n a l y s i s of v a r i a n c e Source  D.:F.  Treatment Cluster C-T. Error Total  3 2 6 60  Duncan's t e s t  S.S • 18859 2762 1734 23508  46864  71  Mi's.  F.  .0 .5 .1 .0  6285.50 1381.30 289.02  1 6 . 05 3 . 53 0 . 74  391.80  (P=0.0l)  Treatments  PxBB  P &  BBxP  BB ®  Mean  5 7 . 55  28.87  27.75  9.64  Prob. 0.0000 0.0349 0.6231  34  Table 2  Percentage o f f r u i t s e t o f Puck, Bonny Best and r e c i p r o c a l h y b r i d s i n warm greenhouse.  DiocK  iiuster  I  2 3 k  II  Treatment Puck  a  B.B.St  PuckxB.B.  B .B.xPuck  33.33 20.00 0.00  0.00 0.00 33.33  54.54 55.55 40.00  16.66 50.00 28.57  2 3 k  21.42 50.00 42.85  0.00 20.00 0.00  28.57 100.00 20.00  4o.oo 20.00 7 5.00  III  2 3 k  33.33 25.00 66.66  16.66 16.66 25.00  33.33 38.46 66.66  33.33 50.00 66.66  IV  2 3 k  50.00 55.55 50.00  0.00'; 0.00 50.00  42.85 30.00 44.44  0.00 50.00 37.50  V  2 3 k  85.71 16.66 66.66  4o.oo 28.57 42.8 5  50.00 30.76 50.00  40.00 50.00 0.00  VI  2 3 k  45.00 42.85 23.07  16.66 16.66 28.57  33.33 40.00 75.00  50.00 60.00 37.50  40.44  18.61  46.31  39.62  Ave.  Analys i s of v a r i a n c e Source  D.F.  S.S.  M.S.  F.  Prob.  Treatment Cluster C-T Error Total  3 2 6 60 71  7892.50 880.68 1752.20 22994.00 33520.00  2630.8O 440.34 292.04 383.23  6.86 1.15 O.76  0.0005 0.3243 0.6042  Duncan's  test  (P=0.01)  Treatment  PxBB  PSi  BBxP  BBS  Mean  46.31  4o.44  39.62  18.61  their  35 Table  3  Percentage o f f r u i t  set of Cold  r e c i p r o c a l w i t h Bonny Best . Block  „i A. Cluster  I I  I I I  IV  i n cool  greenhouse.  Treatment IPBxBB  BBxIPB  csa  CSxBB  BBxCS  70.00  6 0 . 00  33.33  50.00  33.-33  0.00  50.00  37-50  28.57  0.00  60.00  33.33  44.44  2  a 75.oo  3  33.33  4  45.83  55.55 66.66  2  16.66  57.1^  83.33  33.33  33.33  33.33  3  25.58  57.1^+  5^.5^  ii.il  58.33  60.00  4  29.03  33.33  20.00  33.33  42.85  50.00  2  46.15  50.00  57.1^  16.66  33.33  33.33  3  58.82  60.00  50.00  37.50  88.88  33.33  4  30.00  55.55  50.00  30.76  50.00  25.00  2  38.46  20.00  55.55  12.50  0.00  3  33.33  57.1*1 66.66  22.22  57.1**  42.85  66.66  4  41.66  0.00  40.00  28.57  77.77  66.66  39.39  52.43  38.10  37.26  46.72  39.47  I P B  I  Set, I.P.B. and t h e i r  Ave.  Analys i s of V a r i a n c e Source  D.F.  Treatment  5  Cluster  2  S.S.  M.S.  F.  Prob.  2166.3  433.25  1.18  0.3298  195.07  0.53  0.5957  1.43  0.1912  390.14  T-C  10  5246.6  524.66  Error  54  19786.0  366.41  Total  71  27599.0  ( No s i g n i f i c a n t d i f f e r e n c e s r e v e a l e d by Duncan's at P = 0 . 0 1  )  test  36 Table  4  Percentage of f r u i t reciprocal  Block  Cluster  I  II  III  IV  Bonny Best  T r e a tment IPBxBB  IPB  BBxIPBi  cs a  CSxBB  BBxCS  14.28  66.66  66.66  60.00  41.17  3  42.85  55.55  50.00  61.53  71.42  20.00  73.33  33.33  0.00  25.00  50.00  0.00  2  50.00  40.00  80.00  28.57  42.85  0.00  3  35.71  50.00  42.85  50.00  16.66  0.00  4  27.27  33.33  50.00  66.66  33.33  66.66  2  25.00  80.00  20.00  12.50  57.14  66.66  3  35.71  52.94  66.66  50.00  75.00  33.33  4  30.00  100.00  0.00  50.00  60.00  66.66  2  75.00  44.44  25.00  66.66  66.66  33.33  3  84.61  69.23  50.00  50.00  66.66  20.00  4  55.55  71.42  50.00  4o.oo  40.00  50.00  47.36  56.21  41.76  47.29  53.31  33.15  Variance D.F.  Treatment  5  Cluster  2  s.s.  M .s.  F.  Prob.  344i .3  688.26  1.34  0 .2616  16 4 . 9 9  0.13  0 .8774  0.82  0.6086  129 .98  T-C  10  4234 .5  423.45  Error  5k  27767.0  514.20  Total  71  35573 . 0  ( No s i g n i f i c a n t d i f f e r e n c e s )  i n warm greenhouse.  33.33  Analys i s of  P=0.01  S e t , IPB and t h e i r :  2  Ave.  Source  with  set o f Cold  r e v e a l e d by Duncan's t e s t a t  37 (b) f r u i t  weight  In g e n e r a l ,  fruit  s i z e i n the warm house was l a r g e r  than i n the c o o l house. W i t h i n and  each house, t a b l e 5> 6, 7  8 shown t h a t there was a t r e n d f o r l a r g e r f r u i t t o  d e v e l o p from c r o s s p o l l i n a t i o n r a t h e r than s e l f The  phenomenon i s most n o t i c e a b l e where BB i s the maternal  parent P fruit in and  pollination.  i n the c r o s s p o l l i n a t i o n s . When BB p o l l e n was used, i n the c o o l house shows an i n c r e a s e  i n s i z e , but  the warm house, there was no e f f e c t . L i k e w i s e CS were maternal p a r e n t s ,  there was l i t t l e  when IPB  increase i n  s i z e . However when BB was p o l l i n a t e d w i t h P, IPB o r Cs pollen  t h e r e was an i n c r e a s e  more. F r u i t  s i z e on d i f f e r e n t  none o f the d i f f e r e n c e s were  in fruit  s i z e by on t h i r d or  c l u s t e r s was v a r i a b l e , but significant.  38 Table  5  Mean f r u i t  weight  (g) o f Puck, Bonny Best  r e c i p r o c a l hybrids i n cool  Block  III IV V VI Ave. Analysis  B.B. a 188.30  Puck & 32.45 27.95 18.95 32.46 15.30 27.70 18.74 11.07 65.30 39.68 28.40 47.66 32.80 30.20 67.65 50.65 24. 5 0 46.15  2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4  II  greenhouse.  Treatment  Cluster  I  and t h e i r  /* /* /*  51.85  /*  5^.55 35.60 43.4o  /* /* /* /* /* /*  34.31  /*  /* 114.10  /*  29.90 78.70 165.IO /* 109.70  /*  /*  41.77 17.70 37.28 3 0 . 68 2 8 . 50 35.92  61.17  40.18  22.60 31.90  B.B.xPuck 124.70 167.62 61.40 52.00 62.40 96.15 49.80  PuckxB.B. 22.86 32.73 44.25 38.67 63.30 31.10 47.86 38.60 38.80 55.10 78.90  /*  101.20 93.22  of variance  Source  D.F.  Treatment Block B-T Cluster C-T Error Total  3 5 15 2 6 4o 71  Duncan's t e s t  M.S.  S.S. 30567. 6178. 24310. 1024. 10978. 44393. 117452.  21 57 70 23 23 34 29  10189 1235 1620 512 1829 1109  Required  F.  1  .07 .72 .71 .12 .71 .84  0 . 05  6. . 2 9 l ,.11 1. .46 0 .. 4 6 1. . 6 5  (P=0.01)  Treatment  BBxP  BB a  PxBB  P s  Mean  93.22  6 1 . 17  40.18  3k. 3 1  * no f r u i t  on the c l u s t e r  3. 2. 1. 3. 2.  29 46 92 23 3k  F  value 0 . 01 5. 2. 2. 5. 3.  42 91 18 18 29  39  Table 6  Mean f r u i t  weight  (g) o f Puck, Bonny Best and t h e i r  r e c i p r o c a l hybrids  BIOCK  tiusier  I II III IV V VI  2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4  Puck St 26.50 36.50  55.85 61.20 31.80 59.80 51.30 71.20 51.10  PuckxB.]B. 30.23 28.70 22.30 27.85 25.17 15.80 47.60 25.48 45.00 41.90 38.27 43.90 32.86 32.25 49.76 42.93 51.95 31.87  60. 40  35.20  B.B. &  /* /*  6 0 . 56  /*  /*  115.80  /*  61.40 49.10 55.72  /* /*  36.58  A n a l y s i s of Source  Treatment  2 2 . 66 44.00 58.10 33-00 34.90 26.87 58.42 65.48 51.20 19. 60 27.80 27.30 30.77 32.50 25.46  Ave.  i n warm greenhouse.  /*  i4i.30 66.66 110.13 95.99  D.F.  S.S. 40007. 1649. 4555. 298. 1334. 5527. 53372.  M.S. 10 09 49 01 98 88 55  13335 329 303 149 222 138  Required F value  F. .70 .82 .69 .00 .49 .19  30.51 2.38 2.18 1.08 1.61  Duncan's t e s t (P:= 0 . 0 1 )  * no f r u i t  /*  108.33 117.10 113.45 79.46  variance  Treatment 3 Block 5 T-B 15 Cluster 2 6 C-T Error 4© Total 71  Treatment Mean  B.B.xPuck 87.40 91.25 112.k5_ 95.45 100.00 83.00 75.75 65.50 88.65  BBxP 45.99  BB & 60.40  s e t on the c l u s t e r  P 8 3 6 . 58  PxBB 35.20  0.05  0.01  3.29 2.46 1.92 3.23 2.34  5.42 2.91 2.18 5.18 3.29  4o  Table 7  Mean f r u i t  weight  (g) o f C o l d S e t , I.P.B. and t h e i r  r e c i p r o c a l w i t h Bonny Best i n c o o l  Block  Treatment  Cluster  IPB & 14.71 12.76  2 3 4 2 3 4 2 3 4 2 3 4  I II III IV  19.86  24. 90 17.74 17.32 2 2 . 50 15.75 10.65 19.98 14.55 22.86  Ave.  Analysis  greenhouse.  IPBxBB  BBxIPB  15.16 19.74 23.00 22.12 1 2 . 36 17.10 24.70 18.28 1 6 . 52 17.51 25.17  76.63  /*  /*  104.27 85.60 81.90 84.77 76.60 75.10 86. 60 73.50 85.85 83.08  CSxBB  BBxCS  I? 00 32 00 72 77 95  65.70 42.16 63.65 32.95 36.03 28.^56 34.30 62.57. 47.70 68.20 35.40 35.25  100.26 71.30 88.20 105.70 110.10 59.25 142.80 122.45 171.80  4 4 . 52  46.04  101.48  17. 25. 30. 72. 53. 81. 130. 32. 25. 20. 22. 21.  /*  19.25  17.79  CS & 55 90 83 65 40  /*  95.70 48.75  of variance  Source Treatment Block T-B . Cluster C-T Error Total  D.F. 5 3 15 2 10 36 71  Duncan's t e s t  S. s. 63442. 2195. 9127. 1236. 1583. 12341. 89926.  33 62 62 25 29 01 12  Required F value  F.  M.S. 12688.47 731.87 608.47 618.13 158.33 342.81  17. 2. 1. 1. 0.  10 13 78 80 46  0.01  2.90 2.88 1.96 3.26 2.13  4.56 4.41 2.61 5.27 2.91  (P=0.0l)  Treatment  BBxCS  BBxIPB  CSxBB  CS&  Mean  101.48  83.08  46.04  44.52  * no f r u i t  0.05  s e t on the c l u s t e r  IPBxBB  IPB  19.25  17.79  a  41  Table 8  Mean f r u i t  weight  (g) o f C o l d S e t , I.P.B. and t h e i r  r e c i p r o c a l w i t h Bonny Best i n warm greenhouse.  Block  Cluster  I II III IV  2 3 4 2 3 4 2 3 4 2 3 4  Treatment I P B  &  26.80 19.86 1 6 . 47 32.15 18.75 21.13 17.85 39.36 16.73 21.97 22.48  /*  Ave.  23.05  IPBxBB 6.4o 17.48 19. 60 21.65 23.83 4 2 . 50 22.17 2 1 . 72 23.50 20.00 22.11 2 4 . 9k  BBxIPB  CS & 12. 71. 95. 76. 70. 75. 63. 42. 65. 76. 32. 4i.  108.90 77.18  /* 98.35 75.71 110.60 59.80 59.72 72.90 94.80 133.56 70.53  22.16  87.55  CSxBB  BBxCS 76.60 79.80  4l 28 20 4o 83 90 10 50 80 65 30 40  69.37 67.40 104.10 60.10 42.00 57.40 82.77 41.20 87.80 58.70 27.05 73.33  67.^5 79.22 83.95 75.80 125.50 99.10 62.60  6 0 . 06  64.27  83.34  /* /* /*  A n a l y s i s of v a r i a n c e Source  D.F. . S.S.  Treatment Block  5 3 15 2 10 36 71  T-B  Cluster C-T Error Total  Duncan's t e s t  44367. 196. \729. 586. 14083. 905. 65242.  66 56 60 78 37 00 16  Required  M.S.  F.  8 8 7 3 . 53 6 5 . 52 4 8 . 64 2 9 3 . 39 1 4 0 8 . 3k 2 5 . 20  2 3 . 22 2 . 60 l .93 1 1 . 67 5 6 . 02  0.05  0.01  2.90 2.88 1.96 3.26 2.13  4 . 56 4 . 41 2 . 61 5 . 27 2 . 91  (P=0.0l)  Treatment  BBxIPB  BBxCS  CSxBB  CS &  IPB  Mean  87.55  83.34  6 4 . 27  60.06  23.05  * no f r u i t  F value  s e t on the c l u s t e r  £1  IPBxBB 22.16  k2  (c)  Seed number It  i s obvious i n t a b l e 9 t h a t temperature  influenced  significantly  the seed number. G e n e r a l l y s p e a k i n g , seed number  was much g r e a t e r i n the warmer house. Regarding the p a r t h e nocarpic f r u i t  ( t a b l e 9)> t h e r e was none i n the warm house  on any v a r i e t y ; but i n the c o o l house,  BB <k>, CS 8 and Puck 8  had h i g h percentages o f p a r t h e n o c a r p y . These p a r t h e n o c a r p i c fruits  o c c u r r e d i n the s e l f - p o l l i n a t e d p l a n t s o n l y , and t h e r e  was no p a r t h e n o c a r p y i n the c r o s s - p o l l i n a t e d  fruits.  There were no h i g h l y s i g n i f i c a n t d i f f e r e n c e s i n seed number from the d i f f e r e n t the  p o l l i n a t i o n treatments o f the v a r i e t i e s a t  two temperatures  regimes, as can be seen i n t a b l e s 10, 1 1 ,  12 and 13. However i n t a b l e s 10 and 12 t h e r e are d i f f e r e n c e s i n favour of using f o r e i g n p o l l e n i n c r o s s - p o l l i n a t i o n ,  although  o n l y d a t a from t a b l e 10 shows a s i g n i f i c a n t d i f f e r e n c e . I n t a b l e 11 and 1 3 , i n s p i t e o f the l a c k o f s t a t i s t i c a l the  d a t a show t h a t i n the warm greenhouse  significance,  BB c r o s s e d w i t h  f o r e i g n p o l l e n from P, IPB and CS gave a h i g h e r seed number than BB s e l f - p o l l i n a t e d ; however, P, IPB and CS c r o s s e d w i t h BB p o l l e n gave lower seed numbers than  self-pollination.  43  Table 9  Seed number and percentage in  temperature  of parthenocarpic  fruit  the t e n l i n e s 'at two d i f f e r e n t temperatures.  seed number per f r u i t 1-5 6 - 1 0 1 1 - 5 0 5 0 -  pollination  $  parthenocarpy  treatment  0  Puck 8  17  8  7  18  7  4  2  3  13  9  17  5  0  6  8  4  0  15  21  42  20  0  BB^ &> PxBB BBxP  a  6.  25.76 43.75  C o l d temp.  IPB  10°-12.8°C  IPBxBB  13  6  16  7  0  BBxIPB  2  2  17  5  0  11  5  6  9  12  18  7  0  5 12  14  4  0  20  53  0  3  19  6  0  6-  29  33  0;  1  l  12  22  0.  2  5  43  33  0,  2  6  28,  12  0  14  17  0  26  CS 8 CSxBB BBxCS Puck 8  6  BB 8 PxBB BBxP Warm temp.  IPB  18.5°-21.1°C  IPBxBB  8  BBxIPB  5k. 1 7  CS 8  9  26  24  0  CSxBB  5  15  16  0  BBxCS  l  10  13  0  44  10  Table  Seed number p e r f r u i t  o f Puck, Bonny Bfest and  their  r e c i p r o c a l hybrids: i n c o o l greenhouse.  I II III IV V VI'  2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4  Ave. A n a l y s i s of  variance  Source  D.F.  Treatment Block T.-B) Cluster C-T Error Total  3 5 15 2 6 4o 71  Duncan's t e s t Treatment Mean  * No  fruit  Treatment Bonny Best & 0  -Puck a 24.00 4o.75 8 . 50 12.50 0 4.00 7.88 2.00 70.33 15.00 8.00 23.33 6.50 35.00 18.00 11.00 1.00 10.00 16.54  /* /* /*  3.50  /*  12.75 5.^0. 6.00  /* /*  /*  /*  /*  /* 0 0, •/* 3.95  S. S. 2 7 0 2 . 84 1 4 6 1 . 91 2 9 5 5 . 18. 4 0 4 . 92 3 4 0 4 . 23 7385.05 1 8 3 1 ^ . 13  PuckxBB 10.00 12.33 12.00 13.00 43.00 3.00 38;. 0 0 18.33 16.50 40.00 52.00 t* 16.14 6.50; 10.50 22.00 8.00 18.. 7 5 30.91  M.S.  F.  900.95 292.38; 197.01 202.46 567.37 184.63  ^.57 1.58. 1.07 1.10 3.07  (E = 0 . 0 1 ) PxBB 30.91  s e t on. the  BBxP 22.30  cluster  P 8\ 16.  BB 8 3.95  BBxPuck 15.00. 101.50 9.00 8.00 23.00 30.00 7.00 /* /* 36.00 /* OJ  10.00 22.00  /*  13.00  /*  15.00 22.30  Required F fr.05 0.01 3.29 5.^2 2.46. 2.91 I.96 2.18; 3.23 5.18) 2.3^ 3.29  value  4  Table 11  5  Seed number per f r u i t  o f Puck, Bonny Best and  their  r e c i p r o c a l h y b r i d s i n warm greenhouse.  Block  Cluster  I  II  III  IV  V  VI  Ave.  2 3 4. 2 3 4  11.00 30.00  3 4 2 3 4 2 3 4 2 3  71.00 103.00 6.00 28 . 0 0 19.00 106.11 137.66 115.00 72.38  A n a l y s i s of  19.00  /*  110.00  /*  13.00 10.00 38.00  /* /*  24.00 60.00 2.50 51.00 14.00  40.00  PuckxBB»  50.16 61.60 13.50 25.00 30.00 10.00 90.00 35». ^o6 6 . 50 65.00 57.66 72.50 61.00 55.75 95.66 93.50  62.00 66.50 44.00 60.50, 63.00 66.66, 49.75-  40.00 61.00  /*  48.33 37.33 131.50 103.66  /*  75.00 14.66 7/8,. 6 6 62.66  64.50  16.50 33.17  BBxPuck  48.. 8 8 55.37  variance  D.F.  Treatment 3 Block 5 T-B: 15 Cluster 2 6 4o  Error Total  /* /*  94.00  4  C-Tx  Treatment Bonny Best  /*  25.66 71.00 87.33 150.00 63.OO 112.75  2  Source  Puck &)  71  r e q u i r e d F. v a l  S.S. 11377.13 4493.8,3 10673.85 6.36.93 3347.39 14975.60 45445.13  0.  3792,; 37 898.77 707.59  318.46 557.89 374.39  °5  1.36.  3 . 29  1.89 O.8.5 1.49  1 . 96 3 . 23 2 . 34  2.385  2 . 46  u. Ul  5„42i  2491 2.18  5.18 3.29  ]("iiMoasignifdcant; d i f f e r e n c e s r e v e a l e d by Duncan's t e s t at P=0.01  ))  * No f r u i t  s e t on the c l u s t e r  46.  Table 12  Seed number  per f r u i t  o f C o l d S e t , I.P.B. and t h e i r  r e c i p r o c a l h y b r i d s w i t h Bonny Best i n c o o l Treatment IPBxBB BBxIPB  Block  Cluster  Ti-  2 3 4  17.66 11.60 33.10  21.00 40.00 35.00  ll  2 3 4  29.55 17.00 25.66  2 III  3 4  2 IV  3 4  Ave.  Analysis  I P B  a  CS a:  greenhouse.  CSxBB'. BBxCS  0 O.25. 1.66  48.00 42.66 48.00  33.00, 12.00 19.25  3^.75 6.33 6.00  15.33 /* /* 116.25 60.02 39.00  19.00 10.00 22.00  10.00 10.50 11.66  39.00 34.00 19.00  38.08; 27.33 6.00  50.75 23.14 27.4o  30.75 9.00 5.50  44.00 0.33 0  8-. 0 0 24.71 21. 0 0  15.00 42.50 43.00  34.00 19.50 46.40 25.49  22.25 4i.oo /* 28.01  22.00 35.00 15.50 34.84  0 8.50 11.50 9.77  18.00 3.33 4.57 20.87  /* 57.50 7.00 29.20  of variance  o Source  ^ ^ D.F.  Treatment Block T~B> Cluster C-Ti Error Total  5 3 15 2 10 36 71  ^ S.S. 5144.57 435.05 8373.96. 859.95 1472.53 8612.82 24898.88  No s i g n i f i c a n t d i f f e r e n c e s  * no f r u i t  ^ M.S. 1028.91 145.02 558.26 429.98147.25 239.25  revealed  s e t on the c l u s t e r  F. 1.84 0.61 2.33 1.79 O.62  required F value rr~^ 6~01 2. 2. 1. 3. 2.  90 8.8. 96. 26 13  4.56, 4.41 2.61 5.27 2.91  by Duncan's t e s t at P = 0 . 0 1 .  4?  13  Table  Seed number per  fruit  of IPB,  Cold  r e c i p r o c a l h y b r i d s w i t h Bonny Best  Block  a  II III IV  BBxIPB 92.00 36.33  48.33 27.91  2.00 29.60 34.33 9.00 24.00 90.00 48.75 85.57 56.66 25.25 30.11 24.00  75.75 55.16 90.50 36.00 26.25 39.00 62.00 59.00 36.00  38.25 42.87 6 8 . 50 123.50 79.66 65.00 25.00 74.00 44.85 89.75 75.66 85.50  40.87  38.27  55.27  67.71  34.00 43.33 36.18 64. 5 0 35.25 36.00 46. 5 0 29.00 2 1 . 66  /*  Ave.  Analysis  of  Source  cs  IPBxBB  I P B  2 3 h 2 3 h 2 3 k 2 3 h  and  their  i n warm greenhouse,  Treatment  Cluster  I  Set  /*  a  CSxBB  BBxCS  49.28 102.00 32.00 59.75 89.00 /* 17.33 /* 58.00 /* 4 2 . 00 35.50 66.25 39-00 32.00 50.00 73.00 32.33 26.25 125.00 6.50 109.00 65.6O 55.00 64.26  30.87  variance D.F.  S. S.  M.S.  Required F  F.  value  0.05  0.01  Treatment  5  8916.81  1783.36  1.33  2.90  4.56  Block  3  1318.36  439.45  1.08  2.88  4.41  15  20168.73  1344.58  3.31  1.96  2.61  2  352.54  176.26  0.43  3.26  5.27  C-T  10  13889.75  388.98  O.96  2.13  2.91  Error  36  14639.85  406.66  Total  71  49286.04  Duncan's t e s t  at  T-B Cluster  (No  significant  differences  revealed  P=0.01)  * No  fruit  set  on  the  cluster  by  48 . 1968-1969  experiment  (a) percentage  o f seed g e r m i n a t i o n  G e r m i n a t i o n o f seeds hybrid lines  o f f o u r v a r i e t i e s and s i x F l  sown under two d i f f e r e n t  temperature  levels  and are shown i n t a b l e 14. A l t h o u g h t h e r e was no r e p l i c a t i o n , temperatures  the response to  and time shows same i n t e r e s t i n g f e a t u r e s  which may be o f v a l u e to a p l a n t b r e e d e r . V a r i e t y CS had  the most r a p i d and h i g h e s t g e r m i n a t i o n under both  temperature  l e v e l s . The CSxBB h y b r i d was n e a r l y the same  Other l i n e s were v a r i a b l e , and temperature may be i n v o l v e d .  interaction  4  Table l 4  9  Percentage o f seed g e r m i n a t i o n i n f o u r and s i x F l h y b r i d  varieties  l i n e s at two d i f f e r e n t  temperature  levels.  Temperature V a r i e t y  days 6  7  Puck a  0  8 52  B.B. a  6 36  54  58  58  PxBB  0 30  72  78  80  BBxP  0 12  16  36  36  Warm temp.  IPE St  4 46 6 8  76  78  ?1°+  IPBxBB  8 30  60  62  BBxIPB  1 6 4 4 80 9 0  98  CS St  52  84 98  98 98  CSxBB  36  84 8 4  90  94  BBxCS  26  42 58  62  62  1?1  C  temp.  10°+  1.1°C  48  9 10 1 1  12 13  ik 1 5  16  17  18 1 9  20 21  7 0 74/o  Puck a  0  0  0  0  a  0  0  0  4 12 18 18 20 28  PxBB  0  0  0  0  BBxP  0  4  4  8 16  36  40  2  2  4  8 14 3 2 46 5 0  56  IPBxBB  2  2  8  8 14 20 20 22 36  BBxIPB  0  4  4 10 14 22 2 6  cs  0  2 30  42 68 7k 78 80 80  CSxBB  0  0 24  44 58 64 80 86 86  BBxCS  0  2  B . B .  Cold  8  a f t e r sowing the seeds  a  I P B  a  4  2 14 2  16  20 20  6 10 12 1 6 24  8 14 18  36  30  36  22 28 28  50  (b) number o f f l o w e r buds Under warm temperatures,  the d i f f e r e n c e s i n f l o w e r number  among the f o u r v a r i e t i e s and s i x h y b r i d l i n e s were not significant  as can be seen i n t a b l e 15. The average  flower  number i n some h y b r i d l i n e s was g r e a t e r than the p a r e n t s , but  i n some cases were between t h e i r two p a r e n t s . Under the c o o l temperature, the r e s u l t s i n t a b l e 16 show  a h i g h l y s i g n i f i c a n t d i f f e r e n c e s among the l i n e s . The f l o w e r number o f r e c i p r o c a l h y b r i d s between Puck and Bonny Best, and  I.P.B. and Bonny Best was lower than the two p a r e n t s .  But  the f l o w e r number o f r e c i p r o c a l h y b r i d s between C o l d Set  and  Bonny Best was i n t e r m e d i a t e , and approached the l e s s e r  f l o w e r number p a r e n t . G e n e r a l l y speaking, all  lines  floxver number o f  i n c o o l temperature was much h i g h e r than i n warm  temperature c o n d i t i o n s .  51  Table  15  Number o f f l o w e r buds formed on the: f i r s t f o u r c l u s t e r s of f o u r v a r i e t i e s  and s i x h y b r i d  lines  i n warm greenhouse  Block  Variety  Cluster  II  III  4 5 6 5 6 10 6 i4 6 6 6 5 7 6 6 7  ' 7 7 6 8 8 6 6  105  113  l  2 3 4  IV  Total  of  Source  9 14 6  7 7 8 6 7 6 6 7 5 6 7 6 7  11k. 1 1 3  129  7 8 7 7 8 9 6  7.06  4 8 6 5 7 9 3 6 7 8 9 6 6 8 7 9  8 5 7 6 6 4 8 9 7 9 7 5 7 7 10  6  6 7 7 6 6 7 7 8 5 4 6 7 5 7 8 8  116  104  108  110  7  7 7 7 8 7  8  6 7 7 7 7 9  14 13 9  7 6 7 8 7 6 7 8 6 7  5 10 8 8 7 8 8 8 5 6 4 9  5  6.56  Ave.  Analysis  lines  P a BB a PxBB BBxP IPB& IPBxBB BBxIPB c s a CSxBB BBxCS  1 2 3 4 1 2 3 4 1 2 3 4  I  and  8  ll  7 5 6 8 7 6 9  8  7 . :13 7 . 0 6 8 . 0 6  7.25  6. 50  variance D.F.  M. S.  F.  Prob.  Variety  9  37,977  k.2196  1.34  0.2214  Clus t e r  3  1 6 . 523  5.5078  1.75  0.1582  27  7 2 . 477  2.6843  0.85  0.6731  Error  120  377. 000  Total  159  5 0 3 . 980  V-C  (No s i g n i f i c a n t P=0.01  )  6.75  differences  3.1417  revealed  by Duncan's t e s t at  5  6.88  7 6 6 6 6 9 10 9 8 11 9 10 6 6 9 8 126 7.88  T a b l e 16  Number o f f l o w e r buds formed on f i r s t f o u r v a r i e t i e s and s i x h y b r i d  Block u i u s i e r I  II  III  IV  Total Ave.  Analysis Source Variety Cluster V-C Error Total  1 2 3 4 1  2 3 4 l 2 3 4 l 2 3 4  four c l u s t e r s of  l i n e s i n cool  greenhouse.  V a r i e t y and l i n e s pa 16 ii 22  BBS 14  18  21  9  7 48 49 21 9 17 7  20  12 26  12 18  23 15 13  PxBB 7 13 15 20 17 22 7 17 4  28  23  28 21  8  11 23 16 7  25 7 8 17 19  280 309  21  19 25  17.5 19.13  BBxP 9 15 26 31 7 4 23 9 5 9 7 7 16 10 8  IPB8  15 14 25 39 31 25  46  29 10 24 21 20  7 ll  IPBxBB BBxIPB CSS CSxBB BBxCS 6 14 11 7 9 4 6 13 7 9 12 12 8 11 9 18 8 29 9 7 21 10 6 9 9 42 12 6 9 7 11 9 23 5 15 22 11 9 13 13 4 6 4 9 5 ll 14 9 7 5 ll 24 8 8 13 28 12 5 7 15 10 8 6 8 9 14 6 12 9 9 12 21 11 18 7 10 21 13 13 13  10  18 20  247  196  355  250  162  15.44  12.25  22.19  15.63  10.13 8.87  142  145  202  9.06  12.62  of variance D.F. 9 3 27 120 159  Duncan's t e s t  S.S.  M.S.  4859. 1138. 1483. 6431* 11913.  90 10 70 70 00  317. 379. 54. 53.  Prob.  5. 93 7. 08 l . 03  0.0000 0.0002 0.4418  (P=0.0l)  V a r i e t y and l i n e s IPBft BB&  PS  Mean  17.5 15.63  22.19  770 370 952 598  F.  19.31  IPBxBB PxBB BBxCS 15.44  12.62  BBxP 12.25  BBxIPB CSxBB C S a 10.13  9.06  8.87  53 (c) number o f  fruit  There were h i g h l y s i g n i f i c a n t among v a r i e t i e s  differences i n f r u i t  and h y b r i d s . In the warm greenhouse,  were h i g h l y s i g n i f i c a n t  differences  (table  h y b r i d s were i n t e r m e d i a t e between t h e i r number, except f o r (IPBxBB)PI exceeded  and  1  there  1 7 ) and most o f the  two  parents i n f r u i t  (BBxCS)Fl both o f which  t h e i r parent l i n e s .  Under c o o l temperatures, the d i f f e r e n c e s were more pronounced  (table  (bbxCS)Fl exceeded  parent l i n e s  both p a r e n t s . There was  d i f f e r e n c e between f r u i t  clusters,  clusters.  number  except once more a highly  significant  and i t can be seen that  u s u a l l y the second and t h i r d c l u s t e r s and f o u r t h  in fruit  18). The h y b r i d l i n e s were  i n t e r m e d i a t e between t h e i r two  first  number  s e t more f r u i t  than  54  Table 17  Number o f f r u i t four v a r i e t i e s  , ~., , Block C l u s t e r  P a BB S 1 2 4 2 2 2 7 3 4 1 4 l 2 _ j_ _ 2 5 1 3 3 1 4 5 2 1 3 1 1 2 4 3 3 4 1 4 2 2 l " 4 1 2 4 2 3 1 2 2 4 3 1 /  I  II  III  IV  formed on f i r s t  four clusters of  and s i x h y b r i d l i n e s  i n warm greenhouse.  PxBB 1 4 5 4 3 3 2 2 1 4 2 2 1 2 2  V a r i e t y and l i n e s * : BBxP IPB & IPBxBB BBxIPB CS & CSxBB BBxCS 5 6 3 4 1 1 2 3 2 3 3 2 3 5 4 3 2 3 3 4 2 2 3 5_ 3 3 2 •• g 2 4 3 2 2 4 7 4 2 4 5 4 5 4 5 2 3 4 5 2 2 3_ 3 4 3 5 1 1 4 3 3 1 3 2 1 1 2 5 4 3 3 3 2 1 3 1 2 1 2 1 1 3 2 2 5 1 2 1 1 2 3 4 2 2 2 2 2 5 2 1 1 3 4 3 5. 4 2 2 2  43  46  Total  51  27  52  Ave.  3.18  1.68 2.68 2.87 3 . 2 5  5J>  44  36  3.50  2.75  2.25 2.25  (Per c l u s t e r )  Analysis of variance Source  D.F.  Variety  9  Cluster  M. S.  F.  41.3750  4.5972  2.54  0.0107  3  3.6997  1.2332  0.68  O.5694  27  35.4250  1.3120  0.72  0.8337  Error  120  217.5000  1.8125  Total  159  298.0000  V-C  (No s i g n i f i c a n t P= 0 . 0 1 )  S. S.  Prob.  d i f f e r e n c e s r e v e a l e d by Duncan's t e s t at  36  47 2.94  55  T a b l e 18- Number o f f r u i t varieties  P  Xt  T  T  11  III  TV JL V  Total  1 2 3 4 1 2 3 4 l 2 3 4 l 2 3 4  H  9 4 15 7/ 4 4 8 7/ 4 10 12  4? 11 12 9 129  Ave . 8.06 (per c l u s t e r )  formed on f i r s t  and s i x h y b r i d  BB a 5 6 5 6 2 15 16; 2 3 2 1 1 4 5 2 1 76.  four- c l u s t e r o f f o u r  l i n e s i n cool  greenhouse;.  V a r i e t y and l i n e s PxBB BBxP IPB & IPBxBB BBxIPB CS ®> CSxBB BBxCS 1 3 5 6 4 10 1 3 3 18, 16 13 5 614 14 123  6 4 12 24 3 4 15, 8. 3 2 5 11 6 6 6: 121  4 . ' 75 7 . 6 9 7 . 5 6  4 1 9 12 59 14 7 6 12 11 9 4 5 11 9 1288.00  5 5 10 16, 6 26 4 5 2 5 12 7. 4 6, 5 7 125 7.81  2 7 7 5* 3 6 8 7 4 7 6 7 4 5 7 6. 91  3 11 5 4 2 4i 3 1 l 2 4 2 3 4 10 5, 64  6> 3 8, 3 1 3 7 2 1 6 5 5' 3 2 5 4; 64  5.69  4.00  4.00  Analysis of variance Source  D.F.  S.S.  M.S.  Variety  9  401.35  Cluster  3  337.87'  27/  286.75  10.621 16.733  V-C Error  120  2008.00  Total  159  3034.00  (No s i g n i f i c a n t d i f f e r e n c e s  44.595 112.62  revealed  F.  Prob.  2.67  0.0075  6.73  o.ooo4  O.63  0.91^3  by Duncan's t e s t a t P=0.0l)  1 5 5 13f; 11 8) 8; 4 3) 1 3 2 6 8 10,' 13, 101 6.31  56> (d) f i r s t  flower, f r u i t  s e t , and r i p e  fruit  The d a t a i n "table 1 9 show t h a t under the warm temperature, was  TJPB  the e a r l i e s t v a r i e t y , i n c l u d i n g the p r o d u c t i o n of  flower, f i r s t  fruit  set and f i r s t  days from s e e d i n g to f i r s t Bonny Best a and first For  fruit  this  IPB r e q u i r e d $6  f l o w e r , and the l a t e s t  (PxBB)Fl needed  s e t was  ripe f r u i t .  l i n e s , Puck &<,  7,0 days. A l t h o u g h IPB was: the  9 days, whereas Puck 0 o n l y needed  same i n t e r v a l  first  5 days?.  (BBxP)Fl had the l o n g e s t p e r i o d ,  requiring  16 days. None o f the h y b r i d s showed, any h e t e r o s i s w i t h r e s p c e t to  the time i n t e r v a l hetween f i r s t A l t h o u g h IPB was  the f i r s t  p e r i o d between f i r s t  fruit  f l o w e r to f i r s t  f r u i t set.  p l a n t to bear r i p e f r u i t ,  s e t to fird:t r i p e f r u i t was  whereas i n the case o f (BBxIPB)Fl the i n t e r v a l was  the kO days,  o n l y 3k  (IPBxBB)F1 o n l y r e q u i r e d 35 days. Furthermore, Puck k  and  52 days, which was  the l o n g e s t time f o r r i p e n i n g the  D u r i n g t h i s p e r i o d from f i r s t  fruit  s e t to f i r s t  h y b r i d l i n e s showed p o s i t i v e h e t e r o s i s , number o f days r e q u i r e d f o r r i p e n i n g  ripe  days, needed  fruit. fruit,  i n o t h e r words, the  f r u i t was  s h o r t e r than> f o r  t h e i r two p a r e n t s . Under c o o l temperatures, a l l l i n e s took l o n g e r p e r i o d s f o r development the  as can be seen i n t a b l e 20. Under these c o n d i t i o n ,  p e r i o d from s e e d i n g to f i r s t  IPB, but Puck ®- and p e r i o d of f i r s t  set,  was  (CSxBB)Fl needed  f l o w e r to f r u i t  l i n e to s e t f r u i t ,  f l o w e r , ,was  o n l y 8>9 days f o r -  119 days. I n the second  s e t , a l t h o u g h IPB was  the i n t e r v a l between f i r s t  the  f l o w e r aridi f r u i t  35 days, whereas BB' o n l y r e q u i r e d 26 days. I n the  p e r i o d , a l t h o u g h IPB was  the f i r s t  first;  v a r i e t y to r i p e n f r u i t ,  third the  57 i n t e r v a l between f i r s t  fruit  s e t to f i r s t  ripe  fruit  was 58 days  f o r IPB, whereas i t was o n l y kO days, f o r (BBxP)Fl.  ('e) percentage o f f r u i t s e t Under warm temperature  c u l t u r e t h e r e were h i g h l y  d i f f e r e n c e s i n percentage o f f r u i t 2l).  significant  s e t among the t e n l i n e s  (table  Puck v a r i e t y had the h i g h e s t percentage s e t and BB was^ the  l o w e s t . Among the h y b r i d l i n e s , o n l y ( i P B x B B ) F l and (BBxCS)Fl showed a h i g h e r percentage o f f r u i t Under c o o l temperature of f r u i t unced  s e t than p a r e n t s .  c u l t u r e , the d i f f e r e n c e i n percentage  s e t was h i g h l y s i g n i f i c a n t .  D i f f e r e n c e s were more prono-  than under warm temperatures. A l l the h y b r i d l i n e s  a h i g h e r percentage o f f r u i t  s e t than the two p a r e n t s .  showed  5&  T a b l e 19  First  flower, f r u i t  compared  Lines  P a BB ft PxBB^Fl BBxP)Fl IPB a IPBxBB)F1 BBxIPB)F1 cs a CSxBB)Fl BBxCS)Fl  Lines  p a  BB a (PxBB)Fl (BBxP)Fl IPB' & (IPBxBB)F1 (BBxIPB)F1 cs a (CSxBB)F1 (BBxCS)F1  s e t and r i p e  60 63  First days from seed  127 133 126 119 105 105 113 119 118. 120  i n a l l lines,  w i t h ZPBi 8t> i n warm greenhouse  F i r s t flower production i n a l l lines days number t o t a l numfrom of ber flowers seed flowers on IPB®' t h i s time  70 70 70 63 56 60 60 60  fruit  F i r s t f r u i t set i n a l l lines days- number number interval from o f o f f r u - bet-ween, seed f r u i t i t on first; floIPB®, t h ^ wer and  75 85 85 79 65 70 79 70  15 15 15  7/  1 5  l  6.  1  4 4 4  l  1  l l 2  isa.timeeaafruit  h 6  73 73  1 1 3 2  1  2  4 l 1 1  r i p e f r u i t i n a l ll i n e s interval number number of r i p e of f r u i t between f i r s t . f r u i t : s e t and fruit on IPBa; at. this; f i r s t ripe t ime • fruit  1 2 1 2 2 1 1 2 1 1  22  28  18 10  2 5 10 9 11  52 48 41 40 40 35 3^ ^9 45 hi,  3  18> 18:.  5.  4  15 15> 16. 9 10 19'  3 3  13 10.  4. 2 2  10J  set  59  T a b l e 20  First  flower, f r u i t  s e t and r i p e f r u i t  i n a l l lines,  compared w i t h IPB 8 i n c o o l greenhouse  Lines  E  :i  a  a (PxBB^Fl (BBxP)Fl IPB a (IPBxBB)F1 (iBBxIPB)Fl cs a (CSxBB)Fl (BBxCS)Fl BB  Lines  p a BB 8 (PxBB)Fl (BBxP)Fl IEB8 (IPBxBB)F1 (BBXIPB)F1  cs a (CSxBB)Fl (BBxCS)Fl  F i r s t flower production i n a l l lines t o t a l numdays number of ber flowers from flowers seed on IPB® t h i s time  119 107 112 107 89 115 115 101 119 105  First days from seed  215  214  219 188 182 196 211 191 215 215  1 l  1 1 1 l  1 3  l  2  4 3 3 3 3 3 3 4 3  First, f r u i t set lines days number number. from of of seed f r u i t f r u i t on IPB; 8; t h i s time  151 133 144  148 124 144  151 128 151 151  7 1 2 8 2 5 2 1 5 3  r i p e f r u i t; i n a l ll i n e s number number interval o f r i p e of f r u i t between fruit f r u i t set on IPB8 at t h i s and f i r s t time ripe fruit 2 64 49 81 2 37  3 1  6-3 2  1 4 1 2  4 25 3 49 49  1  1  75 4o 58 52 60 63 64 64  12 2 5 7  5 12 2 12 12  in a l l interval between first flowerand f r u i t ; set  32 26 32  41  35. 32 36 27 32  46  6o T a b l e 21  Percentage o f f r u i t hybrid  l i n e s i n warm greenhouse.  Block  V a r i e t i e s and h y b r i d  Cluster T  JL  III  IV Ave.  p  fi  B  B  a  p BB  BBxP  X  IBB® jTi.  lines  IPBxB BxIPB CSSt  -tt—  CSxBB BBxCS  1 50. 00 57. 14 11. 11 71. 42 42.85 50.00 66. 66 25. 00 12. 50 28.57 ko. 00 28. 57 50. 00 66. 66 28.08 28.57 42. 85 37. 50 4 o . o o 50.00 2 66. 67 16. 66 83. 33 71. 42 44.44 42.85 28. 57 50. 00 42.85 66.66 3 20. 00 25. 00 57. 14 25. 00 28.57 42.85 83. 33 60. 00 50.00 33.33 4 1 66.67 25.00 42.85 14.28 60.00 85.72 33.33 57.Ik 50.00 33.33 2 5 50.00 16.66 37.50 33.33 40.00 77.78 5 7 . i k 22.22 100.0 55-55 3 50.00 16.66 50.00 57.14 62.50 36.36 71.42 66.66 37.50 4 o . o o 4 35.71 20.00 28.57 62.50 25.00 28.57 37.50 50.00 44.44 33.33 1 50.00 12.50 16.66 33.33 71.42 20.00 20.00 57.14 42.85 37.50 2 66.67 42.85 16.66 14.28 37.50 33.33 25.00 12.50 22.22 45.45 3 66.67 12.50 57.14 50.OO 37.50 37.50 50.00 22.22 14.28 33.33 4 40.00 28.57 40.00 14.28 25.00 14.28 28.57 16.67 20.00 30.00 1 57.1^ 14.28 33.33 28.57 40.00 83.33 20.00 33.33 14.28 16.67 2 66.67 25.00 14.28 28.57 50.00 44.44 28.57 25.00 28.57 33.33 3 16.66 22.22 33.33 25.00 50.00 62.50 25.OO 14.28 10.00 33.33 4 42.85 16.66 28.57 57.14 33.33 83.33 50.00 22.22 40.00 25.00 49.11 23.77 37.53 40.81 42.26 48.21 41.75 3 5 . I k 35.59 37.21  Analysis Source  s e t o f f o u r v a r i e t i e s and s i x F l  of  variance D.F.  S.S.  M.S.  F.  Prob.  Variety  9  7489.30  832.15  2.52  0.0112  Cluster  3  650.00  216.67  0.66  0.5844  27  9253.30  342.72  1.04  0.4257  Error  120  29622.00  330.19  Total  159  57015.00  V-C  No s i g n i f i c a n t d i f f e r e n c e s r e v e a l e d P=0.01  by Duncan's t e s t at  61 T a b l e 22  Percentage hybrid  Block Cluster 1 2 3 4 jfc-'r . 2 3 4 1 2 3 4 l 2 3 4  T X  T T X X  T TT XX X  TV XV  Analysis  of  BB a  lines  a IPBxB BxIPB c s  PxBB  BBxP  IPB  14.28 23.07 33.33 35.00 23.53 45.45 14.28 17.65 75-00 64.29 76.19 32.00 71.43 75.00 82.35 73.68  66. 66 26. 67 4 6 . 15 77. 42 4 2 . 86 IOC 1.0 60. 83 8 8 . 89 6 0 . 00 66. 66 28. 57 7 1 . 43 68. 75 60. 00 7 5 . 00 60. 00  26. 67 7. 14 36. 00 30. 76 16. 13 36. 00 30. 43 24. 14 6 0 . 00 50. 00 52. 38 00 57. 1 4 44. 44 6 1 . 11 4 5 . 00  45. 71. 8355. 60. 61. 36. 22. 50. 45. 50. 25. 40. 66. 71. 53-  45 43 33 17 00 90 36 73 00 45 00 00 00 66 43 83  22.22 77.78 58.33 55.56 33.33 66.66  88.89 53.3 5 44.44 77.78 54.25 58.23 50.00 55.56 58.33 46.15  a  CSxBB BBxCS  50.00 84.62 62. 50 50.00 33.33 57.14 60.00 9.09 16.67 4o.oo 50.00 4o.oo 50.00 28.57 47.61 38.46  42.86 75.00 88.89 42.86 11.11 50.00 30.43 22.22 20.00 42.86 62. 50 71.43 37.50 33.33 45.45 4o.oo  14.28 83.33 45.45 72. 22 52.38 66.67 53.33 30.77 75.00 14.28 23.08 13.33 66.67 66.67 55.56 61.90  22. 88 48. 53 62. 49 3 8 . 8 9 52. 42 56.35 44.37 44.78 49.68  variance D.F. 9 3 27 120 159  Duncan s t e s t  (P=:0.01)  Varieties  lines  1  and  S.S.  M .s.  16369. 0 2843. 6 8348. 2 41208. 0 68769. 0  1818. 947. 309. 343.  BBxP BBxIPB IPBxBB BBxCS :PxBB Mean  v a r i e t i e s and s i x F l  l i n e s i n cool greenhouse.  5 6 . 2 5 35. 71 36.36 2 1 . 42 68.18 2 1 . 69 38.89 2 8 . 57 44.44 2 8 . 57 2 0 . 0 0 3 1 . 25 7 5 . 0 0 32. 65 26.92 9- 52 3 3 . 3 3 , 33. 33 55.56 1 1 . 76 52.19 14. 2 8 6 0 . 0 0 12. 50 3 0 . 7 7 36. 36 52.38 2 1 . 69 6 3 . I 6 12. 50 3 6 . 0 0 14. 28  Source Variety Cluster V-G Error Total  set of four  V a r i e t i e s and h y b r i d _ „ P. ss  46.84  Ave.  of f r u i t  62.49 56.35  52.42  80 88 19 40  -pa  F  Prob.  5 130 2 .76 0 ..90  0. 0 0 0 0 0. 0 4 4 5 0. 6102  , csesxBBFBsa  iPBa  4 9 . 6 8 4 8 . 5 3 4 6 . 8 4 44.78 44.37 38.89  BBa 22.88  ( f ) growth days from s e e d i n g t o r i p e  fruit  Under both warm and c o o l temperature c u l t u r e , as t a b l e s 23, and 2k show, t h e r e were h i g h l y s i g n i f i c a n t days r e q u i r e d t o r i p e n f r u i t .  d i f f e r e n c e s i n the-  I n b o t h Ibhe warm and c o o l  temperar-  t u r e s a l l the h y b r i d l i n e s were i n t e r m e d i a t e between two p a r e n t s except  ( i P B x B B ) F l i n the warm house.  A l s o i n the warm house, CS was the e a r l i e s t v a r i e t y ,  requiring.  I34.I days, and BB was the l a t e s t w i t h 150.8 days. I n the c o o l temperature, IPB was the e a r l i e s t v a r i e t y , 212.3 days, and BB was. the  latest  (g) f r u i t  2 2 0 . 9 days. weight  There were some h i g h l y s i g n i f i c a n t among the t e n l i n e s  differences i n f r u i t  weight  ( t a b l e 25 and 2 6 ) . C o n s i d e r i n g parent lines:.,  BB was the h e a v i e s t and IPB the l i g h t e s t ; i n f r u i t  weights  under  both temperatures. I n g e n e r a l the f r u i t weight o f the h y b r i d s was i n t e r m e d i a t e between p a r e n t a l l i n e s w i t h two e x c e p t i o n s , namely,  (BBxGS)Fl which was s l i g h t l y h e a v i e r than both parents;  and  (CSxBB)Fl which was a l i t t l e  the  d i f f e r e n c e s are s i g n i f i c a n t  test.  I n g e n e r a l the f r u i t  less  t h a n the;'parents ;> a l t h o u g h  when s u b j e c t e d to the Duncan's  weight o f the h y b r i d s tended to be  closes- t o the l i g h t e r p a r e n t f r u i t  weight.  63  Table 23  Growth days from s e e d i n g to r i p e f r u i t and  s i x F l hybrid  Block  1  BB®  PxBB  BBxP  IPB®  IPBxB BxIPB CSS  CSxBB BBxCS  1 3 ^ . 3 1 5 2 . 5 l4l.O 1 2 9 . 4 1 5 3 . 5 1 2 3 . 3 1 2 3 . 0 1 1 9 . 0 1 4 4 . 0 1 3 6 . 5  1 2 3  1 3 9 . 0 1 3 3 . 0 1 2 7 . 0 1 2 2 . 5 114.6 145.0 1 2 7 . 0 124.5 1 2 0 . 3 140.0 1 3 2 . 0 1 5 4 . 7 126.O 1 1 9 . 0 1 1 7 . 7 143.5 1 4 0 . 0 123.O 1 3 3 . 5 1 4 9 . 6 1 5 0 . 5 1 5 6 . 0 1 3 6 . 5 1 3 2 . 8 1 3 0 . 3 1 5 0 . 7 1 4 6 . 0 142.0 1 2 9 . 0 1 5 3 . 7  2 3  4 Ave.  Analysis  152.0 155.0 157.0 133.5 145.0 151.0  149.6 148.5 1 5 7 . 7 1 3 1 . 5 1 2 7 . 7 128.7 1 4 3 . 5 1 5 2 . 3 156.O 1 5 5 . 0 1 3 3 . 7 1 4 0 . 5 141.3 1 5 4 . 0 1 5 3 . 5  136.0 138.5 153.0 132.0 133.2 134.0  4 1  Variety Cluster V-C Error Total  P®  lines  2 3 4 1 2 3  4  Source  l i n e s i n warm greenhouse. V a r i e t i e s and h y b r i d  Cluster  of four v a r i e t i e s  152.4 156.0 136.7 151.7  159.5  160.0 145.3  149.2 157.3 143.0 1 3 6 . 3 134.5 123.3 123.7 138.5 130.5 148.7 148.0 1 2 4 . 8 1 2 6 . 8 1 5 5 . 4 138.O  140.0 112.0 1 1 9 . 8  153.0 129.3 135.0  150.5 125.5 131.0  146.0 136.O  1 4 4 . 0 1 5 3 . 0 1 5 6 . 5 1 5 0 . 8 1 3 6 . 5 133.0 155.0 1 4 9 . 3 1 5 2 . 5 l4l.O  1 4 8 . 5 1 5 8 . 5 1 5 3 . 0 1 3 2 . 0 128.0 1 5 5 . 0 1 5 5 . 0 1 4 9 . 0 l4l.O 1 5 6 . 3 1 3 3 . 3 1 5 2 . 0 1 3 5 . 0 1 3 4 . 5 1 2 5 . 0 114.2 1 1 6 . 0 1 4 3 . 3 151.O 1 4 9 . 0 1 3 8 . 0 1 4 9 . 0 1 3 0 . 8 1 2 1 . 5 1 4 6 . 0 151.O 148.5 1 3 5 . 5 1 4 9 . 0 135.2 128.0 155.3 157.0 149.5 150.0 152.3 147.0 1 3 2 . 5  124.0 1 3 5 . 0 123.0 134.0 127.0 149.0 1 3 2 . 5 140.5  143.0 149.3 152.0  153.5  140.8 1 5 0 . 8 144.8 139.4 1 3 6 . 8 1 3 4 . 9 137.4 134.1 1 3 9 . 9 145.2  of variance D.F.  S.S. 3920. 6637. 580. 11366. 22503.  9 3 27 120 159  M.S.  F.  Prob.  0 0 0 0 0  435. .560 2212. .300 21. ,481 94. .717  4. ,60 2 3 . .36 0. ,23  P®  CSxBB BBxP BBxIPB IPB®  0. 0000 -0. 0 1. 0000  Duncan's t e s t (p=0.0l) V a r i e t y and l i n e s Mean  BBS  BBxCS PxBB  IPBxBB CS®  150.8  145.2 144.8 140.8 1 3 9 . 9 1 3 9 . 4 1 3 7 . 4 1 3 6 . 8 1 3 4 . 9  134.1  64 T a b l e 24  Growth days from s e e d i n g to r i p e f r u i t and  s i x F l hybrid  Block  i n cool  BBS 216.0 219.0 221.0 222.5 219.0 218.0 221.0 225.0 221.0 221.0 225.0 226.0 214.3 219.0 221.0 225.0  219.6 220.9  Ave.  BBxP 202.0 215.5 206.1 203.1 215.5 210.5 219.7 220.3 215.5 215.0 216.5 221.0 216.0 216.5 216.3 215.5  I.PB& IPBxBB 186.5 2 0 6 . 7 217.0 208.9 207.8 202.8 206.9 205.9 215.0 215.0 213.8 214.7 213.9 2l4.5 220.0 221.0 207.0 219.0 211.3 217.0 210.1 216.5 220.0 221.0 217.0 217.0 215.0 217.0 215.4 215.5 220.0 221.0  BBxIPB CS8 219.0 209.3 220.0 210.6 220.5 220.0 222.0 222.0 217.0 215.5 2l4.3 217.0 214.3 2 1 3 . 0 213.0 221.0 216.0 219.0 2l4.5 219.0 215.3 221.0 223.0 224.0 215.5 219.0 215.5 220.5 220.0 221.0 223.0 223.0  220.0  214.1  212.3 2l4.6  217.7 218.4 220.0  CSxBB BBxCS 2 2 0 . 0 218.0 219.0 220.0 221.0 221.0 217.0 222.0 220.0 217.0 220.5 220.5 224.0 220.5 225.0 223.7 223.0 220.0 222.7 221.0 223.0 223.0 225.0 225.0 221.0217.0 223.0 216.0 223.0 221.0 2 2 5 . 0 224.0 220.6  of variance D.F.  S.S.  M.S.  Variety Cluster V-C Error Total  9 3 27 120 159  1 7 6 3 . ,0 5 9 2 .,0 2 3 3 .,0 2 1 9 5 . ,0 4 7 8 3 .,0  195. 197. 8. 18.  Duncan's t e s t  Mean  lines  PxBB 219.0 219.5 222.3 225.0 219.5 221.0 222.0 222.7 220.0 221.0 224.0 226.0 220.0 221.0 224.0 225.0  Source  Variety  varieties  greenhouse.  V a r i e t i e s and h y b r i d  C l u s t e r P& 1 212.3 2 212.0 3 220.0 4 222.0 1 216.5 2 219.0 II 3 220.0 4 223.0 1 219.0 2 220.0 III 3 223.0 4 225.0 "l 217.0 2 219.0 IV 3 221.0 4 224.0  Analysis  lines  of four  and  8900 3300 6296 2920  F.  Prob.  10, .71 10. .79 0. .47  -0. 0 0. 0000 0. 9868  (P=0.0l)  lines  BBS  BBxCS PxBB  CSxBB Pfit  220.9  220.6 2 2 0 . 0  220.0  219.6  CS&  BBxIPB IPBxBB BBxP  218. 4 2 1 7 . 7 2 1 4 . 6  IPBSt  214.1 212.3  65 Table  25  Mean f r u i t lines  weight  (g) o f f o u r v a r i e t i e s  i n warm greenhouse. Varieties  Block Cluster Pa BBS 1 31.05 61.78 2 29.00 67.50 3 24.55 59.70 4 26.50100.95 1 28.28 8 O . 7 5 2 24.08 6 5 . 7 0 II 3 35.43 73.20 4 36.OO 6 9 . 5 0 1 36.23 65.50 2 37.38 60.57 ill 3 26.88 87.30 4 28.90 77.40 T 27.20 48.70 2 24.60 57.45 IV 3 26.90 53.85 4 30.67 42.70 29.60 67.03  Ave.  Analysis  and h y b r i d  lines  PxBB 35.60 35.34 53.78 53.30 51.97 62.30 51.23 50.90 60.00 44.90 76.98 64.95 51.05 62.30 46.95 36.10  BBxP 52.86 47.43 36.66 37.60 32.70 31.95 30.95 29.26 37.30 34.70 36.25 39.80 36.90 38.10 49.00 42.68  IPBQ IPBxBB BBxIPB CSS 19.01 22.50 33.57 100.60 46.17 1 9 . 3 3 3 5 . 8 5 44.26 20.85 29.47 23.8O 772.33 73.20 25.20 32.36 47.58 1 3 . 7 3 2 0 . 7 0 28.45 Z38226 22.57 23.35 32.50 65.90 64.85 2 8 . 2 6 2 7 . 3 3 40.96 59.67 2 2 . 4 5 3 4 . 3 5 42.76 15.98 18.20 44.60 70.60 13.33 27.60 53.70 50.40 23.36 32.50 36.96 49.6o 23.00 38.70 44.15 96.90 1 9 . 7 5 28.00 2 1 . 4 0 7 2 . 1 0 22.53 30.73 31.25 34.25 22.95 38.76 43.75 114.80 17.40 23.80 4 2 . 2 3 53.55  CSxBB 44.60 52.15 53.67 67.47 82.00 72.60 53.67 50.63 85.73 56.80 66.60 82.30 67.26 46.50 54.20 76.55  BBxCS 73.45 48.03 60.18 62.10 61.60 70.25 55.95 ?3,. 60 76.47 66.00 92.90 70.07 65.70 65.90 70.20 66.05  52.35  38.38  20.61 29.76  63.20  68.65  38.25  66.45  of variance  Source  D.F.  S.S.  Variety Cluster V-C Error Total  9 3 27 120 159  48266. 94l. 2662. 16950. 68820.  Duncan's t e s t V a r i e t y and Mean  and s i x h y b r i d  00 69 70 00 00  M.S.  F.  Prob.  5 3 6 2 .. 9 0 0 313. , 900 9 8 ., 6 1 8 141. . 2 5  37..97 2 .. 2 2 0 .. 7 0  -0. 0 0 . 0877 0. 8599  (P=0.01)  lines  RR^ns  BP.a  68.65  67.03  nsa  PxBR  6 6 . 4 5 63. 20 52.35  BBxP BBxIPB IPBxBB 38.38  38.25 29.76  PS  I P B S  29.60 20.61  66 T a b l e 26  Mean f r u i t weight (g) o f f o u r v a r i e t i e s  and s i x h y b r i d  l i n e s i n c o o l greenhouse. Block Cluster 1 2 3 4 1 2 II 3 4  1 2 3 4 1 2 3  III  IV  4  Ave.  V a r i e t i e s and h y b r i d  BBS PxBB BBxP IPB® IPBxBB BBxIPB CS® CSxBB BBxCS P® 17.22 51.76 52.20 45.70 13.85 44.77 18.10 13.47 36.30 55.40 17.05 136.80 39.80 24.80 15.10 24.06 27.60 16.92 25.80 43.03 21.26 60.77 40.20 8.73 7.02 29.07 24.30 22.20 18.60 43.20 19.77 43.60 27.20 11.01 9.44 21.93 27.30 18.05 8.20 39.00 19.85 77-60 31.70 27.25 8.70 15/47 41.30 23.65 49.30 59.55 19.80 52.65 23.80 26.35 6.93 30.07 23.33 38.87 30.37 55-55 18.70 86.90 4 i . 6 o 25.90 8.01 29.50 18.50 28.65 31.00 45.8O 17.80 68.70 39.25 20.87 10.31 12.85 18.66 27.15 29.60 83.50 18.60 109.26 56.70 15.20 15.13 35.70 27.80 28.70 42.80 68.70 21.70 205.70 40.85 16.47 7.02 20.30 33.18 21.70 32.50 85.60 22.50 54.60 35.70 27.05 11.04 64.15 40.97 25.80 35.70 78.35 23.70 65.70 36.10 25.17 12.30 51.60 38.60 25.60 31.60106.20 18.60 29.37 67.30 17.40 23.60 14.70 34.65 21.50 56.70 22.30 15.70 73.20 45.70 31.50 24.65 19.65 47.92 38.80 42.80 29.33 16.70 59.45 46.50 17.50 29.60 26.18 43.20 50.53 38.70 35.60 20.61 75.20 43.10 37.20 18.90 25.60 41.00 41.65 25.60 40.17 19.41  Analysis  lines  79.45 41.73 23.63 13.23 29.10 31.65 27.03 33.47 55.74  of variance  Source  D.F.  S.S.  M.S.  F.  Prob.  Variety Cluster V-C Error Total  9 3 27 120 159  52199.0 548. 5 10675.0 35799.0 99222.0  5799.90 182.83 395.38 298.32  19.44 0.61 1.33  -0.0 0.6119 0.1532  Duncan s 1  test  V a r i e t y and BBS Mean  (P=0.0l)  lines BBxCS PxBB  CSxBB BBxIPB IPBxBB CS® BBxP P® IPB® 79.45 55.74 41. 73 33.47 31.65 29.10 27 .03 23.63 19.41 13.23  67  (h) percentage o f p a r t h e n o c a r p i c f r u i t Under warm temperature fruit  culture  t h e r e were no p a r t h e n o c a r p i c  ( t a b l e 2 7 ) , But i n c o o l temperature, a l l l i n e s whether  h y b r i d F l o r v a r i e t y had p a r t h e n o c a r p i c f r u i t . There was a range from o 3 • 6",  Table 27  p a r t h e n o c a r p y i n BB to 3 6 . 9 % i n IPB.  Parthenocarpic f r u i t lines  T  .  o f f o u r v a r i e t i e s and s i x h y b r i d  i n two d i f f e r e n t  temperatures i n the greenhouse.  warm temperature c o o l temperature f r u i t number p a r t h e n o c a r - number o f p a r t h e n o c a r - percentage examined p i c number f r u i t examined p i c f r u i t parthenocarpy  P&  25  0  27  16  55.55  BBS  20  0  31  26  83.87  PxBB)PI 2 5  0  20  10  50.00  BBxP)Fl 2 5  0  64  43  67.18  25  0  65  24  36.92  IPBxB:)F125  0  52  35  67.31  BxIPB)F125  0  44  15  34.09  csa  0  43  25  58.14  CSxBB)F130  0  20  9  45.00  BBXCS)F130  0  36  18  50.00  IPB®  30  68  2. Growth, chamber experiments a. Experiment  one  (a) percentage o f f r u i t s e t Recognizing that  the d a t a i n t a b l e s  28, 29, 30 and 3 1 are.'  from two s e r i e s i n each 6'f two chambers, then comparing warm and c o o l temperature response i n t a b l e s that  28 and 2 9 i t i s seen  t h e r e were some s i g n i f i c a n t d i f f e r e n c e s  among l i n e s .  Puck c o n s i s t e n t l y had the h i g h e s t percentage f r u i t BB had the l o w e s t . A l s o  PxBB was h i g h e r than BBxP, a l t h o u g h  d i f f e r e n c e s were not s i g n i f i c a n t at P = 0 . 0 1 The  level.  second s e r i e s w i t h a d d i t i o n a l l i n e s a l s o  significant  differences  s e t and  in fruit  showed some  s e t i n the warm chamber  (chamber 3 0 ) but not so i n the c o o l chamber ( t a b l e 3 1 ) . At  e i t h e r temperature, IPBxBB and CSxBB had h i g h e r s e t s  than t h e i r s e l f - p o l l i n a t e d p a r e n t s .  69  Table  28  Percentage  of fruit  reciprocal  hybrids  s e t on P u c k , Bonny B e s t  and t h e i r  i n a warm g r o w t h chamber. Treatment  Block  Cluster  I  II  PS  BBS  PxBB  BBxP  1  71. 42  40.00  100.00  100.00  2  71.42  25.00  33.33  40.00  3 4  35.71  14.28  33.33  28.57  66.66  25.00  50.00  16.66  5  42.85  0.00  33.33  42.85  l  83.33  66.66  100.00  62.50  2  57.14  0.00  33.33  4o.oo  3 4  66.66  25.00  33.33  20.00  25.00  25.00  50.00  0.00  5  20.00  25.00  66.66  33.33  54.02  24.59  53.33  38.39  Ave.  Analysis Source  of variance  D:F:  s.s.  M.S.  F.  Prob.  3 4  5874.9  1958.30  9.11  0.0006  12692.0  3173.10  14.77  0.0000  T-C  12  3951.3  329.28  1.53  0.1924  Error  20  4297.8  214.89  Total  39  26816.0  Treatment Clus t e r  (No  significant differences  P=0.01)  r e v e a l e d b y Duncan's t e s t a t  70  Table 29  P e r c e n t a g e o f f r u i t s e t on Puck, Bonny Best and t h e i r r e c i p r o c a l h y b r i d s i n a c o o l g r o i f t h chamber. Treatment s  Block Cluster  I  II  E®  BB®  PxBB  BBxP  1  6 2 . 50  20.00  20.00  50.00  2  33.33  0.00  50.00  37.50  3  44.44  0.00  0.00  25.00  4  20.00  25.00  25. 00  20.00  5  14.28  0.00  0.00  0.00  1  50.00  0. 00  80.00  33.33  2  22.22  0.00  6 2 . 50  25.00  3  50.00  0.00  33.33  0.00  4  25.00  0.00  0.00  0.00  5  16.66  0.00  0.00  0.00  33.84  4.50  27.08  19.08  Ave.  Analysis of variance Source  D.F.  S.S.  M.S.  F.  Prob.  Treatment  3  4777.7  1592.60  7.66  0.0014  Cluster T-C Error Total  4  5948.6  1487.10  7.15  0.0010  12  3887.4  323.95  l . 56  0.1835  20  4157.8  207.79  39  18771.0  (No s i g n i f i c a n t d i f f e r e n c e s r e v e a l e d by Duncan's t e s t a t P=0.01)  71 Table  30  Percentage o f f r u i t reciprocal  s e t on Gold  S e t , I.P.B. and t h e i r  h y b r i d s w i t h Bonny Best  i n a warm growth  chamber. Block  Treatment  Cluster  I  II  IPB®  IPBxBB  BBxIPB  ess  CSxBB  BBxCS  1 2 3 4 5  54.54 70.00 50.00 28.57 20.00  100.00 85.61 100.00 33.33  50.00 40.00 25.00 0.00 0.00  71.42 28.57 50.00 16.66 20.00  75.00 100.00 40.00 25.00 0.00  40.00 14.28 33.33 33.33 0.00  l 2 3 4 5  57.14 57.14 25.OO 50.00 40.00  8 7 . 50 80.00 60.00 0.00 50.00  60.00 25.00 33.33 0.00 33.33  14.28 50.00 33.33 50.00 20.00  83.33 100.00 60.00 0.00 0.00  75.00 25.00 0.00 33.33 33.33  45.24  66.32  26.66  35.43  48.33  28,. 7 6  Awe.  Analysis  66.66  of v a r i a n c e  Source  D.F.  S.S.  M.S.  Treatment Cluster T-C Error Total  5 4 20 30 59  10954.0 16999.0 11313.0 9720.8 48988.0  2190. 4249. 565. 324.  Duncan's t e s t  90 80 65 02  F.  Prob.  6 .76 13 .12 1 .75  0.0003 0.0000 0.0814  (p=0.0l)  Treatment  IPBxBB CSxBB  IPB®  CS®  BBxCS  BBxIPB  Mean  66.32  45.24  35.43  28.76  26.66  48.33  72  T a b l e 31  Percentage o f f r u i t  s e t on C o l d  Set, IPB and t h e i r  r e c i p r o c a l h y b r i d s x^ith Bonny Best i n a c o o l growth Block  Treatment  Cluster  I  II  IPB®  IPBxBB  CS®  CSxBB  BBxCS  1  50.00  66.66  25.00  55.55  50.00  60.00  2  27.77  75.00  40.00  42.85  50.00  50.00  3  ko. 00  20.00  40.00  9.09  25.00  0.00  4  11.11  0.00  16.66  20.00  40.00  33.33  5  16.66  0.00  0.00  0.00  16.66  0.00  l  ki.66  100.00  4o.oo  16.66  60.00  4o.oo  2,  27.77  71.42  33.33  14.28  4o.oo  0.00  3  20.00  33.33  4o.oo  50.00  25.00  25.00  4  20.00  33.33  25.00  20.00  25.00  33.33  5  10.00  0.00  0.00  0.00  0.00  0.00  26.49  39.97  25.99  22.84  33.16  24.16  F.  Prob.  Ave.  Analysis Source  chamber.  BBxIPB  of v a r i a n c e D.F.  S.S.  M.S.  Treatment  5  2140.3  428.06  2.22  O.0778  Cluster  k  14996.0  3749.00  19.43  0.0000  T-C  20  6193.0  309.65  1.61  0.1173  Error  30  5787.3  192.91  Total  59  29117.0  (No s i g n i f i c a n t d i f f e r e n c e s P=0.0l)  revealed  by Duncan's t e s t a t  7/3  (b) f r u i t  weight  In; the warm growth chamber, t h e r e were h i g h l y d i f f e r e n c e s among f r u i t  x^eights ( t a b l e 32).  P p o l l e n gave the l a r g e s t produced  the s m a l l e s t  significant:  BB c r o s s e d w i t h ;  s i z e , but P c r o s s e d w i t h BB  pollen  size.  XIn the c o o l growth chamber, c r o s s - p o l l i n a t e d f r u i t s were h e a v i e r than s e l f - p o l l i n a t e d  ( t a b l e 33).  fruit  There are h i g h l y  s i g n i f i c a n t , d i f f e r e n c e s between s e l f and c r o s s - p o l l i n a t e d because BB  PxBB was  h e a v i e r than P 8 and BBxP was  the f r u i t  h e a v i e r than s e l f - p o l l i n a t e d  o f IPB c r o s s e d w i t h BB were  f r u i t . , but i n warm  r e s u l t s were r e v e r s e d ( t a b l e s 3^ and 35).  and warm temperatures (c)  CSxBB was  temperature  In both c o o l  h e a v i e r than CS  8.  seed number Seed number response to temperature  ( t a b l e s 36 arid 39). of  h e a v i e r than  8. At_ c o o l temperature  the  fruit  PxBB was  appeared  to be  variable  In the warm growth chamber, the seed number  l e s s than t h a t o f P 8,  but the seed number o f BBxP  was  g r e a t e r than t h a t o f BB 8.  the  c o o l growth chamber, a l t h o u g h the d i f f e r e n c e s between some  treatments were s i g n i f i c a n t In  (table  reversed i n  37).  b o t h warm and c o o l growth chambers, the seed number o f  IPBxBB was CS 8;  This., s i t u a t i o n was  less  than that o f IPB 8,  and CSxBB xvas g r e a t e r than  and the seed number o f BBxIPB and BBxCS was  BB 8 ( t a b l e 38< and  39).  g r e a t e r than  74  T a b l e 32  Mean f r u i t  weight  (g) o f Puck, Bonny Best and t h e i r  r e c i p r o c a l h y b r i d s i n a warm growth chamber  treatment BB 8  PxBB.  BBxP  36.40 40.90 54.96. 42.03 29.53  108.50 47.25 36. 20 99.90 /*  42.05 27.95 40.65 38. 90 28.33  98.27 6O.30 39.00 59.80 54.20  51.96 48.75 26.65 25.60 24.20  92.77 /* 37.10 29.70 35.00  28.22 29.10 30.30 /* 29.50  116.83 62.20 48.60 63.90 30.85  38.11  61.05  32.77  63.39  P ® 1 2 3 4 5 1 2  I'  3  II  5  Ave.  Analysis of variance Source  D.F.  Treatment Cluster T.-C Error Total  3 4 12 20 39  Duncan s 1  M.S.  S.S. 67.13.84 6854.86 4515.31 3941.54 ;22043.55  2237.95 1713.72 376.27 197.07  F. 11.4 8.7 1.9  t e s t (P=0.01)  Treatment Mean;  * No f r u i t  BBxP 63 .39  BB ® 61.05  s e t on the c l u s t e r  p a 38.11  PxBB 32.77  Prob. 0.0000 0.0007 0.2013  Table  33  Mean f r u i t  weight  (g) o f Puck,  r e c i p r o c a l hybrids  Block  Cluster  Ii  II  i n a c o o l growth  treatment. PxBB  P S  BB ®  1 2 3 4 5  15.26 22.95 26.50 17.45 20. 20  35-80  l 2 3 4 5  23.60 32.80 30.85 29.25 27.60 24.65  Ave.  Bonny B e s t and t h e i r chamber  BBxP  4o.6o 18... 0 0 t* 35.00 fa  58.93 29.13 35->. 1 0 37.20  /* /* /* /* /*  40.70 23.64 42.60  59.90 4o.io  /* /*  /* /* /*  32.25  33.42  43.39  /* /*  28.70  /*  /*  A n a l y s i s of variance Source Treatment Cluster  D.F. 3 4 12 20 39  T:-C  Error Total  Duncan's t e s t Treatment Mean  No f r u i t  s.s. L331.32 649.65 771.23 265.38 3017.59  M.S. 433.77 162.45 64.27 13.77  F. 31.5 11.8 4.7  Prob. -0.0 0.0000 0.0331  (P=0.0l) BBxP 43.39  s e t on the c l u s t e r  PxBB 33.42  BB ® 32.25  P ® 24.65-  76  T a b l e 34  Mean f r u i t  weight  (g) o f C o l d Set and I.P.B. and  t h e i r r e c i p r o c a l h y b r i d s w i t h Bonny Best i n a warm growth chamber  CLOCK  uiusier  I  II  -i-i-m  ^ 8  1 2 3 4 5  IPB 28.65 26.60 39.25 34.23 38/35  1 2 3 4 5  Ave.  IPBxBB  Treatment BBxIPB c s a  23.36 25.45 29.23  /*  109.67 98.80 85.60  /*  17.60  45.60  20.27 26.30 29.25 20.45 18.7©  26.04 23.05 25.08 26.75 20.80  108.70 127.25 120.80  28.21  24.15  /* /* 99.49  CSxBB  BBxCS  26.4o 34.25 4o.4o 32.80 70.60  67.54 34.80 48.10  107.93 59.40  /* /*  85.30 114.60  38.50 26.50 59.87 69.30 32.80  73.37 68.76 63.60 113.00  107.40 129.30 59.00 67.IO  /*  /*  43.14  67.02  /*  91.25  Analysis of variance Source Treatment Cluster T-C Error Total  D.P. 5 4 20 30 59  Duncan's t e s t Treatment Mean  * No f r u i t  s.s.  42523.09 1361.84 8679.85 6413.91 58978.69  M.S. 8504. 6.2 340.46 433. 99 213. 79  F• 39 .50 1 .61 2 .03  Prob. -0.0 0.6431 0.9622  (P=0.0l) BBxIPB 99.49  BBxC§ 91.25  s e t on the c l u s t e r  CSxBB 67.02  CS 8 43.14  IPB 8' 28.21  IPBxBB 24.15  77  T a b l e 35  Mean f r u i t  weight o f C o l d Set and I.P.B. and t h e i r  r e c i p r o c a l h y b r i d s w i t h Bonny Best  i n a c o o l growth  chamber ...... ., , Block C l u s t e r  I  II  Treatment IPB&  IPBxBB  BBxIPB  CSSt  CSxBB  BBxCS  1 2 3 4 5  10.05 16.32 12.50 i5.4o 13.90  17.50 19.20 19.30  45.70 28.00 24.50 12.30  16.70 17.80 15.90 13.15  28.23 22.15 28.30 19.95 28.60  30.83 18.90  1 2 3 4 5  18.78 14.98 12.13 10.73 10.30  10.86 17.72 25.60 12.50  26.10 14. 20 18.20 15. 20  19.30 16.60 25.60 18.70  13.51  17.52  Ave.  /* /*  /*  /*  31.95 30.60 27.40 25.60  /*  /*  /*  28.26  /* 23.05  17.16  /*  17.30  /* 27.15  /*  32.10 13.50  /* 23.29  Analysis of variance Source  D.F.  S.S.  M.S.  F.  Prob.  Treatment Cluster T-C Error Total  5 4 20 30 59  1223.92 403.89 578.98 419.10 2625.89  244.78 100.97 28.99 13.97  17.5 7.2 2.1  0.0000 0.0052 0.9800  Duncan's t e s t Treatment Mean  * No f r u i t  (P=0.0l)  BBxIPB BBxCS  CSxBB  IPBxBB  28 . 26 23.29  23.05  17.52  s e t on the c l u s t e r  csa 17.16  IPB® 13-51  78  Table  36  S e e d number hybrids  „, , _, . Block Cluster  I  II  Bonny B e s t  i n a warm g r o w t h  and t h e i r  reciprocal  chamber.  Treatment p a  BB a  PxBB  BBxP  1  114.2  90.0  123.0  105.0  2  135.2  47.0  95.0  97.0  3 4  175.0  24.0  63.0  79.0  107.6  70.0  127.0  91.5  5  67.6  /*  96.0  100.5  1  202.0  107.25  76.6  2  117.0  /*  105.0  122.3 l4i.O  3 4  53.5  14.0  80.0  84.0  77.0  6.0  /*  46.0  5  65.0  76.0  75.0  66.5  54.26  96.66  93.28  lll.4l  Ave.  Analysis  o f Puck,  of variance  Source  D.F.  S.S.  M.S.  F.>  Prob.  Treatment  3  15000..30  5000.,10  5-,4  0. 0012  Cluster  4  12994..30  3248..56  3.• 5  0. 0 0 5 9  T-C  12  10229..29  852.,44  0..9  0. 2841  Error  20  18422..88  921.,14  Total  39  566h6,.77  (No  significant differences  revealed  P=0.01)  * No f r u i t  s e t on t h e c l u s t e r  b y Duncan's  test at  79  T a b l e 37  Seed number o f Puck, Bonny Best and t h e i r hybrids  •rt i  .  _ i  .  rilocK  /~t i . . _  i n a cool  II  BB a  PxBB  BBxP  25.00  64.00  32.66  36.00  19.66  1  p a 17.40  2  24.75  /*  3  12.50  /*  4  9.00  5  28.00  /*  l  21.00  /*  27.00  37.50  2  16.50  22.60  18.00  3  15.00  /* /*  4o.oo  4  19.00  /*  /* /*  5  11.00  /*  /*  14.00  /* 36.00  21.00  13.00  /*  /*  /* /*  17.42  Ave.  Analysis  growth chamber.  Treatment  i_  tluster  I  reciprocal  22.47  37.60  23.00  of v a r i a n c e  Source  D.F.  S .s.  M.S.  F.  Prob.  Treatment  3  1558.56  519. 52  14.7  0.0000  Cluster  4  653.02  163. 26  4.6  0.0087  T-C  12  542.71  45. 23  1.3  0.1989  Error  20  700.59  35. 29  Total  39  3454.79  Duncan's t e s t  (P=0.0l)  Treatment  PxBB  BBa  BBxP  pa  Mean  37.6.0  23.00  22. 47  17 .42  * No f r u i t  s e t on the c l u s t e r  80  Table 38  Seed number of C o l d Set, I.P..B. and t h e i r h y b r i d s w i t h Bonny Best i n a warm groxrth  •nt i C /-.n Block l u s ta. er  II  CS &  CSxBB  BBxCS  83.00  38. 80  32.67  92.50  36.33  86. 5 0  3 2 . 00  34.40  138.00  57.75  31.75  73.00  89. 00  37-00  125.00  4  50.00  15.00  75. 00  87.00  78.00  5  42.00  /*  21.00  /*  2 5 . 00  71.80  1  55.50  35.86  88.00  4. 00  15.33  87.66  2  62. 5 0  46.00  119.00  2 5 . 00  55.33  143.00  74.33  53.00  7. 5 0  Si  IPBxBB  BBxIPB  1  48.00  35.60  2  68.57  3  3  137.50  4  91.00  5  119.00  39.50  48.00  1 0 5 . 00  73.18  37.26  78.64  4 2 . 60  Ave.  Analysis  chamber.  Treatment IPB  I  reciprocal  /*  /*  2 4 . 69  /* /* /* 47.65  /* 82.00 138.00 110.52  of variance  Source  D.F.  S.S.  M.S.  F.  Prob.  Treatment  5  32543.17  6508.63  11.07  0.0000  Cluster  4  2761.31  690.33  1.18  0.5873  1.30  0.1025  T-C  20  14793.93  739.96  Error  30  17633.16  587.77  Total  59  67731.57  Duncan's  /*  test  Treatment Mean  * No f r u i t  (P=0.0l) BBxCS 110.52  s e t on the  BBxIPB  IPB  78.64  73.18  cluster  a  CSxBB  cs &  IPBxBB  47.65  42.60  37.26  81 Table  39  Seed number  o f Cold  Set, I.P.B. and t h e i r  h y b r i d s w i t h Bonny Best „, , , , Block C l u s t e r  I  II  reciprocal  i n a c o o l growth chamber.  Treatment IPB  &  IPBxBB  BBxIPB  cs &  CSxBB  BBxCS  1  10.0  17.0  29.0  12.00  18.50  19.0  2  20.2  21.0  24. 5  18.33  17.00  14. 5  3  17.0  11.0  13.00  19.00  /*  4  26. 0  15.65  22.0  9.0  5  24.0  /* /*  19.5 38.0  /*  /*  18.0  /*  l  22.0  9.0  18.5  5.00  18.33  17.5  2  13.6  20.0  25.0  3.00  I8.50  /*  3  11.0  13.0  15.0  13.50  21.00  16.0  4  17.0  16.0  11.00  21.00  10.0  5  15.0  /* /*  /*  /*  /*  /*  15.16  23.19  11.42  19.26  14.33  17.58  Ave.  Analysis of variance Source  D.F.  S.S.  M.S.  F.  Prob.  5 4  6 6 5 . .79  1 3 3 . 15  1. 3 0  0. 1 0 4 7  202.,28  5 0 . 57  0. 5 0  0. 8796  T-C  20  585..59  2 9 . 27  0. 2 3  0 . 1475  Error  30  2 9 7 . .12  99. 0 1  Total  59  1 7 5 0 . ,80  Treatment Clus t e r  (No  significant  d i f f e r e n c e s r e v e a l e d by Duncan's t e s t at  P=0.0l)  * No f r u i t  s e t on the c l u s t e r  8-2  Experiment  two  (a) In the warm growth chamber, IPB had set,  and  the h i g h e s t  fruit-  BB the l o w e s t . A l l the F l h y b r i d s were  d i a t e between t h e i r two  p a r e n t s , except  interme-  (cSxBB)Fl which  exceeded the b e t t e r parent by a s m a l l percentage Regarding and BB was two  growth days,  ( b b x P ) F l was  the l a t e s t . The  p a r e n t s . The  the e a r l i e s t , l i n e ,  (BBxIPB)Fl was  e a r l i n e s s . Regarding  fruit  weight,  r e c i p r o c a l h y b r i d s between CS p r o d u c t i v e than both  a l l F l h y b r i d s were  p a r e n t s , except  parents,  the r e c i p r o c a l F l h y b r i d s was  s e t i n the experiments  i n terms of weight was (PxBB)Fl was  but  s e t on  the h i g h e s t per-  ( t a b l e 4 l ) . S i z e of  fruit  v e r y v a r i a b l e between the F l i n t e r m e d i a t e and  than both p a r e n t s .  between paren ts  of f r u i t  lower than t h e i r totw parents  w i t h e x c e p t i o n of (BBxIPB)Fl which had  lower  the  and BB which were l e s s  (b) I n the c o o l growth chamber, percentage  hybrids,  intermediate  (BBxP)Fl showed h e t e r o s i s i n  i n t e r m e d i a t e between t h e i r two  centage  intermediate  growth days f o r (BBxP)Fl was  between the p a r e n t s , but  (tableau)  (BBxCS)Fl was  (BBxP)Fl  was  intermediate  (CSxBB)Fl weight g r e a t l y exceeded?  those o f the p a r e n t s .  T a b l e 40  Percentage o f f r u i t ripe  fruit,  six hybrid Line  s e t , growth, d a y s f r o m s e e d i n g t o  and f r u i t lines  % of fruit  w e i g h t o o f f o u r v a r i e t i e s and  i n a warm g r o w t h set  Growth  Cluster 1  2  chamber. days  Cluster 4  3  Mean  l  2  3  4  Mean  P ®  33.33 70. 00 33.33 33. 33 42. 50 101.0 108. 0 109. 67119.0 109.42  BB &  40.00 25.00 14.29 25. 00 26.07 115.0 121. 5 122. 0 125.0 120.88  PxBB)PI  40.00 40.00 25.00 20. 00 31.25 114.0 116. 5 120.0 123.0 118.38  BBxP)Frl 33.33 28.57 25.00 50. 00 34.23 102.0 103.5 112.0 112.0:i107^28 IPB S 88.89 50.00 40.00 60. 00 59.72 101.0 i o 4 . 3 114. 0 117.0 109.08 IPBxB)Fi66.66  20.00 50.00 66. 66 50.83 108.2 112. 0 121. 0 120.7 115.50  60.00 40.00 30. 33 40.92 107.5 114. 6 118. 5 119.0 114.92 50.00 50.00 33.33 50. GO 45.83 136.9 110. 0 116. 5 117.6 120.27  BXIPB)FI33.33  cs  a  CSxBB)Fl60.00 33.33 50.  oo  50. 00 48.33 103.6 115. 5 116. 0 115.0 112.54  BBxCS)Fl42.86 42.86 33.33 33. 33 38.10  Fruit  weight  93.0 106. 3 115. 0 118.0 108.28  (g/fruit)  Cluster 1 p a  2  3_  4  Mean  31. 90 23. 70 31.90 20. 40  26. 99  a  47. 25 78. 70 65.30 30. 50  55. 44  PXBB:)P1  33. 35 32. 60 21.70 25. 70  28. 34  BBXP)F1  27. 10 28. 15 27.50 20. 00  25. 69  a  26. 33 22. 10 22.15 26. 90  24. 37  IPBxBB)F1  28. 43 32. 85 30. 20 35. 45  31. 73  BBXIPB)F1  31. 35 19. 50 33.50 25. 70  27. 51  70. 28 60. 90 4o.4o 36. 73  50. 08  CSxBB)F1  34. 75 30. 50 38.75 39. 93  35. 98  BBxCS)Fl  30. 47 27. 27 39.60 35. 70  33. 29  B B  I P B  cs  a  84  Table  Percentage  kl  ripe six  Lines  fruit, hybrid  of  fruit  and  fruit  lines  in  4> o f f r u i t ' Cluster  —  2  1  set,  a  growth days  weight  of  four  cool, growth  set  seeding  varieties  to  and  chamber.  Growth  days *— Cluster  4  3  from  1  Mean  ko.  15 38.89 4 o . o o 40. 00 4 o . 01 15. 00 2 8 . 57 40.00 38. 46 30. 51 , l 4 . 28 25.00 31.25 33. 33 23. 72  2  3  4  Mean  223 225  224.2  224  220.0  219 219 223 225  221.6  8. 33 2 4 . 29  215 2 2 0  225 225  221.2  1 0 0 . 00 15.79  13.64 30. 77 4o. 05  176 1 8 8  217 2 2 1  200.1  I P B x B B ) F 1 2 2 . 22 50.00  45.45 13. 33 32. 75  196 2 0 8  213 2 2 4  210.2  B B x I P B ) F l 8 7 . 50 77.78  66.67 58. 33 72. 57  196 207 209 215  206.7  p  a  BB & PxBB)Fl  36. 36 4 0 . 0 0 1 2 . 50  BBxP)PI IPB Q  cs  219 2 2 0  216 219 2 2 1  a  66. 67 57.14 25. 00 1 0 . 00 39. 70  203 209 214  220  211.5  CSxBB)F1  55. 56 25.00 10.00 14. 28 2 6 . 2 1  215 2 1 8  221  225  219.7  BBxCS)F1  50. 00 76.92 1 4 . 2 8  220  223 225  222.2  Fruit  10. 00 37. 8 0  weight  (g/fruit)  Cluster  i  2  18. 7  23.9  18. 9  14. 6  19.02  a  65. 7  78.4  73. 5  56. 9  68.62  PxBB)Fl  37. 6  4o.i  35. 8  32. 7  36.55  BBXP)F1  28. 5  35.2  18. 9  30. 3  28.22  a  18. 2  14.7  16. 5  13. 7  25.77  IPBxBB)Fl  16. 2  17.1  12. 1  14. 7  15.02  BBxIPB)F1  19. 8  17.4  27. 6  28. 5  23.31  cs  a  22. 5  25.6  25. 8  26. 9  25.20  CSxBB)Fl  97. l  194.7  73. 6  63. 8  107.29  BBxCS)Fl  68. 7  67.7  51. 4  44. 7  58.13  p  a  B B  I P B  3  4  Mean  221  85 3.  Pollen  experiments  a. p o l l e n g e r m i n a t i o n i n v i t r o Puck had the h i g h e s t p e r cent g e r m i n a t i o n ,  f o l l o w e d by  IPB and CS, and BB was d e f i n i t e l y the poorest i n s p i t e o f the warm temperatures  which f a v o u r growth o f t h a t v a r i e t y  (table 4 3 ) . R e s u l t s o f a s i m i l a r experiment grown under c o o l temperatures  u s i n g p o l l e n from p l a n t s  ( t a b l e 4 2 ) showed a r e d u c t i o n  i n per cent g e r m i n a t i o n as compared to r e s u l t s i n t a b l e 4 3 » except  f o r the v a r i e t y CS. Thus CS had the h i g h e s t per cent  g e r m i n a t i o n f o l l o w e d by IPB and P w i t h BB showing v e r y low germination. b. p o l l e n g e r m i n a t i o n i n v i v o There were s i g n i f i c a n t d i f f e r e n c e s among v a r i e t a l  effects  on p o l l e n gertninat i o n ( t a b l e 4 4 ) . I n the case o f v a r i e t a l germination percentage  i n v i v o , Puck p o l l e n on BB stigma gave the h i g h e s t g e r m i n a t i o n , and BB p o l l e n g e r m i n a t i o n on IPB  stigma was the lowest percentage treatments.  pollen  among the c r o s s p o l l i n a t i o n  86  Table 42  Percentage o f p o l l e n g e r m i n a t i o n i n v i t r o f o r f o u r v a r i e t i e s grown under c o o l  Rep.  Variety  Cluster  1  2  temperatures.  Puck  BB  IPB  CS  1  4 6  22  48  47  2  54  31  45  39  3  4 3  33  43  50  1  2 8  18  38  4 8  2  29  25  40  49  3  35  20  4l  51  39.17  24.83  42.50  47.17  S.S.  M.S.  F.  Prob.  562.49  9.21  0.0021  15.54  0.25  0.7808  0.29  0.9316  Mean  A n a l y s i s of v a r i a n c e D.P.  Source Variety  3  1 6 8 7 . 50  Cluster  2  31.  V-C  6  i o 4 . 92  17.49  Error  12  7 3 2 . 50  61.04  Total  23  2 5 5 6 . 00  0 8  Duncan s t e s t (p = 0 . 0 1 ) 1  ;  Variety  CS  IPB  Puck  BB  Mean  47.17  42.50  39.17  24.83  87  Table  43  Percentage o f p o l l e n g e r m i n a t i o n  i n vitro for  f o u r v a r i e t i e s grown under warm temperature.  1  2  Puck  BB  IPB  CS  1  60  37  51  4  2  68  28  54  51  3  51  41  k8  6o  l  60  39  47  48  2  46  43  46  47  3  48  4o  40  40  55-50  38.00  49.17  47.66  Mean  9  Analysis of variance Source  D.F.  Variety  3  Cluster  2  V-C  6  S.S. 942.17 .  F.  Prob.  314.06  5.87  0.0106  34.08  17.04  0.32  0.7362  151.58  25.26  0.47  0.8171  53.50  Error  12  642.00  Total  23  I769.8O  Duncan's t e s t  M.S.  (P=0.0l)  Variety  Puck  IPB  CS  BB  Mean  55.50  49.17  47.66  38.00  88  T a b l e 44  P o l l e n germination i n vivo  Block 1 Cluster flower P  i j.  o <c Ti  T  x  J U H-  y •\.  X  Q  T T  4 *+ c  >  Mean  P 20 16^ 17 18 21 19 23 21 22 20 15 17 17 18 18 20 30  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2  2h  18  20  2.  3  4  B  P  B  B  B 330 26 25 26 39  p 116: 15 22  23 14 16 15 16 16 16 22 20 21 22 17 19  18-  18 18 ' 19 23 22  24 28  26 34 30 24  24  22 17 27 33  28, 24  22 20  35 24 25  26 24 23 22  29 24 25  18  24  26  24  28  27 26  (percentage)  Treatment 6. 5 7 P o l l e n Source I B 1 Stigma B I 1 ;!28 119 117 20 14 25 24 18 14 22 22 17 21 ia 23 20 16 17 24 19 ia 20 16 17 22 20.. 1921 25 19 ia 17 23 20 19 25 20 18. 18 22 19 25 22 38, 33 21 30 29 22 31 19 24 20; 28 26 22 27/ 20 24 22.  8,  9  10)  C  B  C  B :;23 25.  C 222: 17 21 19 17  C 119 16 20> 18 19 17 22 16.  18  19 26. 32 26 22 24 21 20 26 32 22 26 20 26 25 29 30'  18.  25 23 22 24  20, 16) 19 24 27 21 30 31 36 27  28  34 18  19 19 20  18,  22 22 24 24  22  19.7 18.9 25.9 2 4 . 8 22.1 19.9 22.2 24.6. 22.9 20.9  Analysis of variance Source Treatment Cluster Flower  Ti-C  TL-F C-F  C,-Tr-E  Error. Total  1  D.F. 9 4 1 36 9 4 36 100. 199  Duncan's, t e s t Treatment Mean  s . S. 1009. 2 8 455. 28 4 9 . 01 8 0 2 . 72 6 5 . 04 51. 8 2 2 8 3 . 38 1 9 4 1 . 50 4:6)58.00  M. S. 1 1 2 . 13 113. 8 2 h9. 01 2 2 . 30 7. 23 1 2 . 96. 8$ 1 9 . 42  F. 5 .78. 5 .86 2 .52 1 .15 0 .37 0 .67 6 .41  Prob. 0.0000 0.0003 0.1111 0.2910, 0.9454 0.6191 0.9985.  (P=0.0l) 3 4 8 25.9 2 4 . 8 2 4 . 6  9 7 5 10 6 1 2 22.9 22.2 22.1 20.9 19.9 19.7 18,. 9  89  DISCUSSION  1. Greenhouse  experiments  The main purpose  of the greenhouse  the  different  two  temperature l e v e l s , namely, c o o l  experiments was to compare  responses of f o u r v a r i e t i e s  and t h e i r h y b r i d s t o  (10°C-15.5°G)  (18.3°C-21.1°C ) . G e n e r a l l y s p e a k i n g , the c o l d resulted  i n lower percentage f r u i t  i n most l i n e s  and warm  temperature  set, l i g h t e r f r u i t  weight  and fewer seeds p e r f r u i t .  Under both temperature regimes, the percentage of f r u i t s e t was  markedly  contrast  i n c r e a s e d when c r o s s - p o l l i n a t i o n was used i n  t o the n a t u r a l mode o f s e l f - p o l l i n a t i o n .  recognized that  the d a t a from the c o o l house may confound  temperature e f f e c t s on f r u i t viability The  It is  s e t t i n g w i t h the q u a n t i t y and  o f p o l l e n as p r o v i d e d by the e x p e r i m e n t a l p r o c e d u r e s .  self-pollinated  f l o w e r s i n the c o o l house may have shown  a low percentage f r u i t  s e t because  the q u a n t i t y and v i a b i l i t y  of  p o l l e n were reduced i n comparison w i t h f l o w e r s grown under  the  more c o n g e n i a l warm temperatures. On the o t h e r hand, the  cross-pollinations  i n the c o o l house were made u s i n g  grown i n the warm house where l a r g e q u a n t i t i e s  pollen  of functional  p o l l e n a r e developed. Thus the h i g h e r s e t from c r o s s might be a t t r i b u t e d t o the q u a n t i t y and v i a b i l i t y  pollination  of pollen  a v a i l a b l e . N e v e r t h e l e s s the d a t a have some v a l u e i n a s s e s s i n g c r o s s - v e r s u s s e l f - p o l l i n a t i o n . Data from the c o o l house show the  same t r e n d  as warm house r e s u l t s ,  s e l f - p o l l i n a t i o n s would be a r e s u l t  and i n the l a t t e r the  o f the ample s u p p l y o f  90  normal that in  p o l l e n produced under  the t r e n d  those growing  i s established  conditions.  I t seems  but the magnitude o f d i f f e r e n c e s  the c o o l house f r u i t - s e t d a t a may be l a r g e r than would be  the  case i f a l l p o l l e n had been s u p p l i e d  Ifi s p i t e o f t h i s c r i t i c i s m ,  from the warm house.  i t i s worth n o t i n g  that  the s e l f -  p o l l i n a t i o n r e s u l t s o f 39$ f o r IPB and 37$ f o r CS are r e l a t i v e l y high  ( t a b l e 3) f o r c o o l temperature  p o l l i n a t i o n r e s u l t e d i n increased the d i f f e r e n c e s effect it  percentage f r u i t  o f c r o s s - p o l l i n a t i o n s h o u l d be s t u d i e d  F r u i t weight  parent;-that  further  because  under  except f o r BB 8 and PxBB?. I n s p i t e o f t h i s , the weight o f f r u i t  temperatures  fruit  apparent  o f a c o m p a t i b i l i t y phenomenon.  t y p i c a l o f the v a r i e t y w i t h l i t t l e different  set although  under warm temperature was, h e a v i e r than  c o o l temperature generalizations,  and c r o s s -  were not s i g n i f i c a n t a t P=0.01. T h i s  may be a m a n i f e s t a t i o n  tions,  condition's,  weight  form s e l f - p o l l i n a t i o n was; apparent i n f l u e n c e  by the  employed. I n the case o f c r o s s - p o l l i n a -  c e r t a i n l y depended f i r s t  on the maternal  is,ys,ize was t y p i c a l f o r the v a r i e t y .  Additional  to t h i s b a s i c weight, c r o s s - p o l l i n a t i o n r e s u l t e d i n h e a v i e r fruit  than d i d s e l f - p o l l i n a t i o n i n most  A c c o r d i n g to t a b l e s p o l l e n , the f r u i t  lines.  5-&, when Puck, IPB and CS r e c e i v e d BB,  weight was a l i t t l e  h e a v i e r than those from  s e l f - p o l l i n a t i o n under both c o o l and warm temperatures; however, when BB was c r o s s e d weight  w i t h Puck, IPB and CS gave an i n c r e a s e i n  almost o n e - t h i r d  It, s i suggested that used t o advantage  greater  than the s e l f - p o l l i n a t e d f r u i t .  this, c r o s s - p o l l i n a t i o n phenomena; might be  f o r increasing  crop y i e l d s , i f p l a n t  breeders  91 c o u l d d e v e l o p tomatoes which would be n a t u r a l l y In  self-pollinated fruit  cross-pollination.  o f the f o u r v a r i e t i e s ,  the seed  number was t y p i c a l f o r the v a r i e t y . Regarding t h e c r o s s - p o l l i nated f r u i t ,  the seed number was g r e a t e r than i n s e l f - p o l l i n a t e d  f r u i t , r e g a r d l e s s o f temperature. T a k i n g BB aa, an example, i t is  seen t h a t under c o o l temperatures  the average seed number  i n s e l f - p o l l i n a t e d f r u i t was o n l y 3»95» hut when c r o s s e d w i t h Puck p o l l e n , the number o f seed was i n c r e a s e d to 22.3; s i m i l a r l y when c r o s s e d w i t h IPB and w i t h CS the seed number was; 34.84 and 29.2 r e s p e c t i v e l y . I t appears  t h a t seed number depends- on amount,,  v i a b i l i t y and c o m p a t i b i l i t y o f the p o l l e n . When the s i x F l h y b r i d l i n e s and f o u r p a r e n t a l v a r i e t i e s were observed over the d i f f e r e n t growing s t a g e s form seed to  first  of  heterosis. It  ripe f r u i t ,  sowing  there vras. v a r i a b i l i t y i n the m a n i f e s t a t i o n  i s g e n e r a l l y c o n s i d e r e d t h a t the optimum temperature f o r  tomato seed g e r m i n a t i o n i s about 18.5°-21.1°C ( K o t o w s k i , 2 4 ) , and i t i s known that g e r m i n a t i o n w i l l  tkke l o n g e r and i s o f t e n  reduced a t c o o l e r temperatures. A l s o t h e r e are v a r i e t a l or genetic d i f f e r e n c e s . Although L u c k w i l l of  (34) r e p o r t e d that  tomato h y b r i d s d i d not germinate more q u i c k l y than  seed  their  p a r e n t s , the r e s u l t s o f the p r e s e n t s t u d i e s showed t h a t the hybrids  (p-xBBs)Fl and (BBxIPB)Fl had a h i g h e r percentage  n a t i o n than p a r e n t s i n warm temperatures,  germi-  and (BBxP)Fl and  (CSxBB)Fl had a h i g h e r percentage seed g e r m i n a t i o n than parents i n c o o l temperature. These r e s u l t s a r e s i m i l a r to the work o f Burdick ( 3 ) , K h e i r a l l a  (22) and Lewis  (30);> hut a l l these workers  92  used optimum temperatures. levels  The c u r r e n t study employed the two  o f temperature and i n s p i t e o f l a c k o f r e p l i c a t i o n ,  results  i n d i c a t e another  case  o f genotype and temperature  inter-  action. C o o l temperatures  significantly  i n c r e a s e d the f l o w e r number  i n a l l l i n e s , however, the f l o w e r number o f F l h y b r i d s was, l e s s than e i t h e r one o r both p a r e n t s . I n warm temperatures  the F l  f l o w e r number was i n t e r m e d i a t e between or sometimes h i g h e r  than  t h a t o f both o f the p a r e n t s . I t seems t h a t the gene a c t i o n which c o n t r o l s the f l o w e r number was not p r o d u c i n g maximum e x p r e s s i o n at  warm  temperatures.  Furthermore i n the c o o l temperature greenhouse, the percentage of  fruit  s e t on F l h y b r i d l i n e s was g e n e r a l l y h i g h e r than for/  the p a r e n t s . T h i s i n c r e a s e might be c o n s i d e r e d to be a r e s u l t , of  h e t e r o s i s b e i n g r e v e a l e d at c o o l temperatures The  percentage  of f r u i t  only.  s e t on the F l h y b r i d l i n e s was  h i g h e r i n the c o o l house than i n warm ( t a b l e 2 1 and 2 2 ) a l t h o u g h the r e v e r s e o c c u r r e d w i t h the t r u e - b r e e d i n g v a r i e t i e s . T h i s i n t e r e s t i n g p o i n t might be a r e s u l t more adaptable  o f the F l h y b r i d s  to r e l a t i v e l y c o o l temperatures  than  being  parents,  or t h a t t h e F l h y b r i d s were a b l e to make v e g e t a t i v e growth v i g o r o u s l y at c o o l temperatures number o f f r u i t ,  and thus  support  a larger  o f a g a i n these F l h y b r i d s may have produced  g r e a t e r amounts o f p o l l e n o r were a b l e to mature the p o l l e n which i n t u r n c o u l d f u n c t i o n b e t t e r than p a r e n t s cool The  1  p o l l e n at  temperatures. i n c r e a s e d f l o w e r number r e s u l t i n g from exposure to c o o l  93  temperatures has  been r e p o r t e d f o r a few v a r i e t i e s of tomato  by C a l v e r t ( 4 ) , Daubeny (9) and Lewis present and  s t u d i e s r e p o r t two  ( 3 l ) . The  more v a r i e t i e s , IPB  r e s u l t s of the and C o l d  Set,  the F l h y b r i d s which a l s o show t h i s cool, temperature  onse. The  resp-  d i v e r s e r e p o r t s l e a d one: to t h i n k t h a t the species,  i n g e n e r a l ! which makes optimum growth at r e l a t i v e l y hi'gh temperature, has  the somewhat s u r p r i s i n g response of i n c r e a s i n g  f l o w e r number when exposed to the c o o l temperature. The  number o f growth days r e q u i r e d from s e e d i n g  was  i n c r e a s e d w i t h d e c r e a s i n g temperature. I n both  and  c o d l temperature houses, CS  ties,  Puck was  intermediate  and  and BB was  the  fruit,  the warm  IPB were the e a r l i e s t  were i n t e r m e d i a t e between t h e i r two Fl  to r i p e  varie.-  l a t e s t . F l hybrids  parents,  except, some of the  l i n e s which were 1 or 2 days e a r l i e r than the e a r l i e s t  parent;  however, t h i s s m a l l d i f f e r e n c e i n such a l i m i t e d p o p u l a t i o n is? of  dubious h o r t i c u l t u r a l Fruit  value.  s i z e of F l l i n e s was  i n t e r m e d i a t e between p a r e n t s ,  seems to approach the s m a l l e r - f r u i t s i m i l a r to those not  obtained  had  partial No  all  of Power (39) who  for fruit  s i z e and  l i n e s had  parthenocarpic  are  reported that h e t e r o s i s  t h a t the s m a l l f r u i t  fruit  was  character  i n the warm house, but  a h i g h percentage i n the c o o l house,  the 83.9$ f o r BB,  especially  ( t a b l e 2 7 ) . These p l a n t s were allowed  s e l f - p o l l i n a t e n a t u r a l l y , and  to  These r e s u l t s  dominance.  l i n e s had  result  parents  and  of i n s u f f i c i e n t  the parthenocarpy  might be  to a  p o l l e n p r o d u c t i o n or f a i l u r e o f p o l l e n  germinate, or f a i l u r e o f p o l l e n tube to r e a c h the  ovule.  9k.  A l t h o u g h c o o l temperature of the  fruit  tended to reduced the percentage  s e t on the t r u e - b r e e d i n g v a r i e t i e s  a c t u a l number o f f r u i t  than i n warm temperatures  ( t a b l e s 21 and 2 2 ) ,  set. i n c o o l temperatures was: g r e a t e r ( t a b l e s 17 and 18J) . As a l r e a d y obser-  ved, the c o o l temperatures i n c r e a s e d the f l o w e r number g r e a t l y . The l a r g e r number o f f l o w e r s would more f r u i t ,  g i v e more chances  and y e t t h i s l a r g e r number o f f r u i t  a s m a l l e r percentage o f the blossoms  to s e t  i s apparently  than i n the case at warm  temperature. Under both temperature regimes IPB* was the e a r i e s t  variety  compared w i t h a l l o t h e r l i n e s . I f the growth p e r i o d i s d i v i d e d into three periods, f l o w e r to f i r s t fruit,  ( l ) from s e e d i n g to f i r s t  fruit  s e t and ( 3 ) f i r s t  then IPB was the e a r l i e s t  fruit  i n the f i r s t  flower,  (2) f i r s t  s e t to f i r s t  p e r i o d , but not  i n the second and t h i r d p e r i o d s . I t seems that t h i s  variety  was! growing v e r y q u i c k l y b e f o r e f l o w e r i n g and then slowed a f t e r f l o w e r i n g and s e t t i n g f r u i t . e a r l i n e s s i n the f i r s t  down,  F l h y b r i d s d i d not show any  p e r i o d , but i n second p e r i o d were i n t e r -  mediate betwwen two p a r e n t a l v a r i e t i e s , and a l l were h e t e r o s i s i n the t h i r d  ripe  showing  period.  The growth r a t e i s no doubt, c o n t r o l l e d by many genes, and those genes may respond d i f f e r e n t l y i n the various- genotypes. P r o b a b l y d i f f e r e n t groups o f genes are i n v o l v e d a t d i f f e r e n t stages o f growth,  thus i t seems d e s i r a b l e t h a t b r e e d i n g f o r  e a r l i n e s s s h o u l d attempt shortest the  to get r e c o m b i n a t i o n s which have the  terms f o r the d i f f e r e n t  earliest  plants.  s t a g e s , and e v e n t u a l l y  obtain  A p p a r e n t l y most breeders e v a l u a t e e a r l i n e s s  95  i n terms chance  o f days  from s e e d i n g t o f i r s t  r i p e f r u i t . U n l e s s by,  they r e c o v e r segregants w i t h the s h o r t e s t times f o r  every s t a g e , then the e a r l i n e s s c o u l d be improved  by  carefully  s e l e c t i n g p a r e n t s to c o n t r i b u t these component stages o f earliness.  2. growth chamber The  results  experiments  o f the growth chamber experiments  d i f f e r e n c e s from the greenhouse c o u l d be expected because  showed some  experiment. Such d i f f e r e n c e s  the chambers were m a i n t a i n e d at  c o n s t a n t temperatures, whereas the greenhouses  had  some,even  though r e s t r i c t e d , d i u r n a l f l u c t u a t i o n s i n temperature. theless,  the more exact c o n t r o l s i n growth chambers s h o u l d  e v a l u a t e temperature d i f f e r e n c e s c a r e f u l l y and the  variability  the  p l a n t s ' response to The  Never-  i n greenhouse  environments  i n d i c a t e whether  seriously  affected  temperature.  amount o f space a v a i l a b l e i n growth chamber, l i m i t e d  s i z e o f p l a n t p o p u l a t i o n , t h e r e f o r e comparisons  of  the  greenhouse  and growth chamber e x p e r i m e n t a l r e s u l t s must be made c a t i o u s l y . The r e s u l t s from both sources were e s s e n t i a l l y s i m i l a r f o r percentage f r u i t  s e t and weight w i t h s i m i l a r t r e n d s i n time  needed to r e a c h m a t u r i t y , a l t h o u g h greenhouse slower. R e g a r d i n g the percentage f r u i t the  PxBB was  p l a n t s were  s e t i n the c o o l  s u r p r i s i n g l y lower than t h a t f o r the  Puck. I t i s p o s s i b l e that the BB p o l l e n had lower than Puck as a r e s u l t  chamber  self-pollinated viability  o f c o n d i t i o n s f o r p o l l e n p r o d u c t i o n . The  l i m i t e d plant population precluded studying possible  differences  in pollen,  further  t h e r e f o r e , the above d i f f e r e n c e s h o u l d be  96  investigated. Regarding f r u i t the  weight, i n the growth chamber experiments:,  cross-pollinated fruit  w a s a u s u a l l y l a r g e r than  self-pollinated  as i n the greenhouses,  but i n the warm chamber the f r u i t  size  of  PxBB and IPBxBB was  s m a l l e r than P & and IPB &. A c c o r d i n g  to  the d a t a i n t a b l e s 32 and 34, PxBB and IPBxBB had s m a l l e r  numbers than P & and IPB ®, a n d t t h i s s i t u a t i o n seems to account for  the reduced s i z e because  a c c o r d i n g t o Dempsey (13) t h e r e  i s a p o s i t i v e c o r r e l a t i o n between seed number and f r u i t  size.  Once a g a i n i t seems BB p o l l e n d i d not f u n c t i o n as w e l l as Puck and IPB  pollen.  I t would be v a l u a b l e to have more experiments done to compare and r e l a t e responses o f crops i n growth chambers and i n greenhouses. The  example o f IPB i n these experiments  i s a case i n  p o i n t . In. the growth chamber, IPB had the h i g h e s t percentage fruit  s e t i n a l l l i n e s ; however i n the greenhouse,  i n f e r i o r to Puck. Such r e s u l t s may of  genotypes  and l i g h t  be d i f f e r e n t i a l  to such environmental f a c t o r s as  IPB  was;  responses;  temperature  c o n d i t i o n s . P r e s e n t work d i d not i n d i c a t e that one:?  c o u l d assume that responses i n the growth chambers can expected i n the greenhouse  on the  be  field.  3. g e n e r a l The d i f f i c u l t i e s  i n p r e c i s e c o n t r o l over greenhouse  environ-  mental v a r i a b l e s and the l i m i t a t i o n to v e r y s m a l l p l a n t p o p u l a t i o n s i n growth chambers obscured the c l e a r i d e n t i f i c a t i o n o f the  component c h a r a c t e r s i n f r u i t  s e t at c o o l temperatures.  It.,  97  was  obvious t h a t IPB and CS are p a r t i c u l a r l y  good genotypes: f o r  f u r t h e r s t u d y o f t o l e r a n c e to c o o l temperatures. A l s o the variability growth was might  i n the f u n c t i o n o f time f o r d i f f e r e n t  stage o f  c l e a r l y e v i d e n t , and s u g g e s t * that the p l a n t  profitably  pursue  "component" stages to develop  from f o r e a r l i n e s s and c o o l temperature expend the r e g i o n s f o r p r a c t i c a l  t o l e r a n c e , and  production of  breeder  improved ultimately  tomatoes.  98  SUMMARYt AND CONCLUSION  Most commercial temperature  tomato v a r i e t i e s r e q u i r e a r e l a t i v e l y h i g h  forfruit  s e t and development,  and t h i s requirement  l i m i t s tomato groxving i n the Canadian a g r i c u l t u r a l a r e a s . There are  c e r t a i n newer v a r i e t i e s such a Puck, IPB and C o l d Set w h i c h  are  reported to set f r u i t  r e l a t i v e l y c o o l temperatures  (about  12.8°-15.6°C). These v a r i e t i e s were c r o s s e d r e c i p r o c a l l y w i t h Bonny. B e s t , r e p r e s e n t i n g the c u l t i v a t e , r e q u i r i n g the r e l a t i v e l y warm temperature ( 2 1 . 1 ° C ) . R e p l i c a t e d greenhouse  and growth  done t o a s c e r t a i n the economic  chamber experiments were  c h a r a c t e r s , such as f r u i t s e t ,  f r u i t weight, seed number, growth days and p o l l e n  viability.  The r e s u l t s are summarized as f o l l o w s : 1. The percentage f r u i t  s e t was i n c r e a s e d when c r o s s - p o l l i n a t i o n  was used i n c o n t r a s t t o the normal  s e l f - p o l l i n a t i o n o f tomatoes.  2. C r o s s - p o l l i n a t i o n w i t h d i f f e r e n t v a r i e t i e s the  fruit  i n c r e a s e d both  s i z e and seed number i n the low temperature  3. There was no p a r t h e n o c a r p i c f r u i t  level.  i n the c r o s s - p o l l i n a t i o n  treatment, but t h e r e was a r e l a t i v e l y gjhih percentage o f parthenocarpic f r u i t with s e l f - p o l l i n a t i o n at cool  temperatures.  None o f the f r u i t was p a r t h e n o c a r p i c i n the warm temperature. k. C o o l temperature all  i n c r e a s e d the f l o w e r and f r u i t number i n  f o u r v a r i e t i e s an& s i x h y b r i d  lines.  5. IPB was the e a r l i e s t v a r i e t y i n both warm and c o o l  tempera-  t u r e s . Most o f the F l h y b r i d l i n e s were i n t e r m e d i a t e between  99  t h e i r two 6. The  parents f o r e a r l i n e s s .  earliest  variety requires  from seed sowing to f i r s t did  not  necessarily  the  shortest  ripe fruit,  but  7.  8. The  variety  the  shortest  In  interval  p a r t i c u l a r growth s t a g e s .  Most o f the  t h e i r two  earliest  show e a r l i n e s s at every growth s t a g e .  f a c t a l a t e v a r i e t y l i k e Bonny Best had between two  the  number of days  F l l i n e s showed i n t e r m e d i a t e f r u i t  s i z e between  parents.  r e s u l t s of p o l l e n g e r m i n a t i o n i n v i v o  differences  and  may  be  showed v a r i e t a l  a matter of c o m p a t i b i l i t y between  and.  within v a r i e t i e s . The  c h o i c e o f p a r e n t s to p r o v i d e components w i t h  growth r a t e s  at s e v e r a l  stages i n the  life  p r o m i s i n g i n b r e e d i n g f o r e a r l i n e s s and rance than the for  c y c l e appears more  c o o l temperature t o l e -  customary approach of c r o s s i n g  e a r l i n e s s as a s i n g l e c h a r a c t e r ,  s e e d i n g to f i r s t  ripe f r u i t .  c o o l temperature t o l e r a n c e together i n recombination.  desirable  and  then s e l e c t i n g  that, i a days- r e q u i r e d  S i m i l a r l y component stages- f o r  might be  i d e n t i f i e d ! and  brought  from  100 LITERATURE CITED  1. Bonn,  G.N.  1955  A genetic the  d i f f e r e n c e i n p o l l e n tube growth i n  tomato.  Report o f the T-tamato genetics- C o o p e r a t i v e 5-.i6. 2. B b s w e l l ,  V.R^.  1933  D e s c r i p t i o n s - o f types o f p r i n c i p a l American: varieties  o f tomatoes:.  U.S.Dept.Agr. 3. B u r d i c k ,  M i s c . Pub. l 6 0  A.B.  1954  Genetics  o f heterosis  f o r e a r l i n e s s i n . the-  tomato. G e n e t i c s 39: 488-505 4. C a l v e r t ,  A.  1958  E f f e c t , o f e a r l y environment: on development; o f flowering  im the tomato.  J. Hort. S c i . 5. C h a r l e s ,  33: 9-1-7  W.B.  1962  Some f a c t o r s a f f e c t i n g p o l l e n v i a b i l i t y  in; a  tomato b r e e d i n g program M.S.A. T h e s i s , 6.-. C o r b e i l , R.R. 1965.  and  a n a l y s i s o f time to m a t u r i t y  c r o s s between  1968 8. Daubeny, 1959  S c i . , U.B.C.  L.Butler  A genetic  7. Curme, J.H.  Dept. P l a n t  species  in a  o f the genus, Ly.c o p e r s i co ra.  (Horticulturist) Personal  communication:.  H.A. P o s s i b l e mechanism flowers  involved  i n the f a i l u r e ; o f  o f some tomato v a r i e t i e s to s e t f r u i t ;  at r e l a t i v e l y low temperature. Report of the Tomato G e n e t i c s C o o / p e r a t i v e 9J12-«  101  9.  Daubeny,, H.A. 1955  Some e f f e c t s o f c o o l temperature  on f l o w e r  p r o d u c t i o n , p o l l e n p r o d u c t i o n and p o l l e n germination i n c e r t a i n l i n e s M. S, A. The s i s ,  10.  o f the tomato.  Dept. Plant. S c i . , U.B.C.  Davis ,'. RJ.M.Jir., P.G.Smith,,, V.H. Sch.wee.-ES: and R. W. Scheuerman. 1965  Independence o f f l o r a l  f e r t i l i t y and f r u i t set;  i n the tomato. Proc. Amer. Soc. H o r t . 0 c i . 11.  Dempsey,  W.H.  i960  P o l l e n tube growth v s . p o l l e n Report  12.  86=: 552-556•  „  viability.  o f the Toamto G e n e t i c s C o o p e r a t i v e  10J: lft..  and J.E. Boynton.  1962  Effect  o f time o f day on: c o n t r o l l e d  pollinations.  Report  o f the Tomato G e n e t i c s C o o p e r a t i v e  Effect  o f seed number on tiomato f r u i t  12:12.  13. 1965  s i z e and;  maturity^:.:: Proc. Amer. Soc. H o r t . S c i . 86.: 5 7 5 - 5 8 1 . 14,. D i n k e l , D.H. 1966  T S m a t o e s - v a r i e t i e s and c u l t u r e f o r A l a s k a greenhouses. A l a s k a Univ. A g r . Exp. S t a . B u i . 3 8 .  15.  Hatcher,  E.S.J.  19^0  S t u d i e s i n the i n h e r i t a n c e o f p h y s i o l o g i c a l c h a r a c t e r s . V. H y b r i d v i g o r i n the tomato part.IIIi. of  A c r i t i c a l examination  o f the r e l a t i o n  embryo development to the m a n i f e s t a t i o n o f  hybrid  vigor.  Amer. J . Bot. 4,: 7 3 5 - 7 6 4 . 16.. Hepton, A. 1957  Temperature e f f e c t s on g e r m i n a t i o n o f c a u l i flower  seeds.  C o n t r o l o f the p l a n t environment In  p. 218  J.P.Hudson, B u t t e r worths S c i e n t i f i c Pub.,  London.  102 17. Hornby, C.A. 1956  and H.A.Daubeny  Genetic differences  i n p o l l e n p r o d u c t i o n , germi-  nation  and  Report  o f the Tomato G e n e t i c s C o o p e r a t i v e  18,.  growth. 6:17.  . and W.B.Charles 1962  P o l l e n g e r m i n a t i o n as a f f e c t e d by v a r i e t y number of p o l l e n Report  19. Howlett,  and  grains.  o f the Tomato G e n e t i c s C o o p e r a t i v e  16:11.  F.S.  1936  The  e f f e c t , o f carbohydrate  upon m i c r o s p o r o g e n e s i s  and n i t r o g e n d e f i c i e n c y '  and development of the  male gametophyte i n the tomato. Amer. J . Bo.t.. 50 : 767-803. 20. K a l l i o , A. I968 21.  Kemp,  (Research H o r t i c u l t u r i s t i n A l a s k a Agr. Exp.  Sta.)  P e r s o n a l communication.  G.A.  I968  Low Can.  temperature J . Plant  22. K h e i r a l l a , A . I . and 1962  growth responses  S c i . 48:  of the tomato.  281-286.  W.J.Whittington  G e n e t i c a n a l y s i s o f growth i n tomato: the F l generation. Ann.  Bot. 26: 489-510.  23. Koot, V. I J . and Van. 1962  The  Ravestijn  g e r m i n a t i o n of tomato p o l l e n on the  l 6 t h I n t e r n a t i o n a l H o r t . Congress 24. Kotowski,  V o l . I T : 452-461  F. Temperature r e l a t i o n s to g e r m i n a t i o n o f  1926  stigma.  vegetable  seeds. Proc. Amer. Soc. H o r t . S c i . 2 3 : 25.  Lake,  176-184.  J.V.  I965  P l a n t s and  temperature.  S c i . Hort. 1 7 :  l6l-l66.  26. I967  The temperature response J . H o r t . S c i . 42: 1-12.  of s i n g l e - t r u s s tomato.  103  L a r s on,  R. E. and S.Paur  1948  Trie d e s c r i p t i o n and i n h e r i t a n c e s t e r i l e mutant in hybrid  i n tomato and i t s probable  tomato seed  The extent  value  production.  Proc. Amer. Soc. H o r t . S c i . 5 2 : 1944  of a f u n c t i o n a l l y  355-364.  o f h y b r i d v i g o r i n F l and F2  generations  o f tomato  crosses.  Minn. Agr. Exp/ S t a . Tech. B u i . 1 6 4 . L e a r n e r , E.N. and S.H.Wittwer 1953  Some e f f e c t s o f p h o t o p e r i o d i c i t y and thermop e r i o d i c i t y on v e g e t a t i v e and  growth,  flowering  f r u i t i n g of the tomato.  P r o c . Amer. Soc. H o r t . S c i . 6 l : 3 7 3 - 3 8 0 . Lewis, D. 1954  Gene-environment i n t e r a c t i o n : A r e l a t i o n s h i p between dominance h e t e r o s i s ,  phenotypid,  s t a b i l i t y and v a r i a b i l i t y . Heredity  8:  333-356.  Lewis, D. 1953  Some f a c t o r s a f f e c t i n g f l o w e r the  production i n  tomato.  J.Hort. S c i . 2 3 :  207-219.  L u c k w i l l , L.C. 1939  O b s e r v a t i o n on h e t e r o s i s i n Lycopersicum. 37:  J. Genetics 1937  Studies  421-440.  i n the i n h e r i t a n c e  characters  I V h y b r i d v i g o r i n the tomato.  Part 2 M a n i f e s t a t i o n s the  flowering  Ann. B o t . 1: Martin, 1959  of p h y s i o l o g i c a l  of hybrid vigor  during  period. 379-407.  F.W. O b s e r v i n g p o l l e n tubes i n tomato s t y l e s . Report o f the Tomato G e n e t i c s  C o o p e r a t i v e 9l6  •  104 M e t c a l f , J.G. 1964  Germination Can.  o f tomato seed under c o o l  Hort. C o u n c i l Report  temperature.  on H o r t . Res. P . 4 3 .  Osborne, D.J. and F.W.Went 1953  C l i m a t i c f a c t o r s i n f l u e n c i n g parthenocarpy normal f r u i t Bot.  and  s e t i n tomato. 312-323.  Gaz. 114:  Phatak, S.C. 1966  Top and r o o t temperature e f f e c t s on tomato f l o w e r i n g , Proc. Amer. Soc. Hort.  Sci. 8 8 : 527-531.  Poole, C.F. 1932  P o l l e n grain, s t u d i e s as an i n d i c a t i o n o f f e r t i l i t y in hybrids. Genetics 1 7 :  125-136.  Powers, L. 1945  Relative yields of  o f i n b r e d l i n e s and F l h y b r i d s  tomato. Gaz. 1 0 6 :  Bot.  247-268.  Quinones, F«A. 1957  H e t e r o s i s i n tomatoes as a f f e c t e d by d i v e r s e o r i g i n of parents. Proc. Amer. Soc. H o r t . S c i . 7 0 : 3 6 6 - 3 7 2 .  Reynard, G.B;  ("Vice P r e s i d e n t o f Campbell I n s t i t u t e f o r Agr.  1968  Res., New Personal  Rick, 1956  communication.  CM. Cytogenetics Adv. and  1967  Jersey)  o f the tomato.  Genet. 8 : 2 6 7 - 3 8 2 . J.E.Boynton  A t e m p e r a t u r e - s e n s i t i v e male s t e r i l e of  mutant  the tomato.  Amer. Bot. 5 4 : 6 0 1 - 6 l l . 1946  The development o f s t e r i l e esculentum  Mill.  Amer. B o t . 3 3 : 2 5 0 - 2 5 6 .  ovules  i n Lycopersicon  105  Robinson, 1966  R.¥.,  W.Mishanec and  Fruit  S.Shannon  s e t t i n g a b i l u t y i n r e l a t i o n to extreme  temperature. of the Tomato G e n e t i c s C o o p e r a t i v e 1 6 :  Report  33.  , S.Shannon and W.Mishanec 1965  Low  temperature  fruit  set of tomatoes. 31:  Farm Research Schaible, 1962  i n f l u e n c e p o l l e n p r o d u c t i o n and 13-15.  C.W. Fruit  s e t t i n g response  of tomatoes to h i g h n i g h t  temperatures. Cambell Shannon, S., 1965  P l a n t S c i . Syrn. Proc. P. 8 9 - 9 8 .  R.W.Robinson and  W.Mishanec  Male s t e r i l i t y induced by c o l d Report  Smith,  Soup Co.  temperature.  of the Tomato G e n e t i c s C o o p e r a t i v e 1 5 :  57.  0  1935  P o l l i n a t i o n and l i f e h i s t o r y s t u d i e s o f the tomato. ( Lycopers i c o n esculentum  1932  Mill  ) 184.  C o r n e l l Univ. Agr. Exp.  S t a . Mem.  R e l a t i o n of temperature  to a n t h e s i s and  blossom  drop of the tomato, t o g e t h e r w i t h a h i s t o l o g i c a l study of the  postils.  J.  44:  Agr.  Res.  183-190.  and H.L.Cochran 1935  Effect  of temperature  on p o l l e n g e r m i n a t i o n  and  tube growth i n the tomato. C o r n e l l Agr. Exp.  S t a . Mem.  175.  S o o s t, R. K. 1951  Comparative  c y t o l o g y and g e n e t i c s of a s y n a p t i c  mutants i n L y c o p e r s i c o n esculentum Genetics 3 4 : Torfason, 1954  Mill.  410-434.  W.E. A study of the e f f e c t s of temperature  and  other  f a c t o r s upon the g e r m i n a t i o n of v e g e t a b l e  crops  I.  sweet c o r n .  Can.  J . Agr.  Sci. 34:  137-144  106  Walkof, C . 1962  Environmental pressures  and e a r l i n e s s o f tomatoes,  R e p o r t o f 1 8 t h ann. m e e t i n g W. Can. Soc. H o r t . P.  49-51.  Wedding, R.T. and II. M. V i n e s 1959  Temperature e f f e c t s on tomato. C a l i f o r n i a Agr. 1 3 :  Went. 1957  13-l4.  F.W. The e x p e r i m e n t a l  c o n t r o l of plant  Chronica Botanica  growth.  Co.  Waltham, Mass., U.S.A. 1944  P l a n t growth under c o n t r o l l e d c o n d i t i o n s . Amer. B o t . 3 1 :  1944  597-618.  P l a n t growth under c o n t r o l l e d c o n d i t i o n s . II. Thermoperiodicity  i n g r o w t h and f r u i t i n g .  Amer. J . B o t . 3 1 : 1 3 5 - 1 4 9 . W h i t t i n g t o n , W.J. and J . D . C h i l d s 1965  A n a l y s i s of v a r i a t i o n i n the r a t i o fo and Ann.  germination  e a r l y s e e d l i n g g r o w t h i n tomato. 29:  Bot.  59-71.  W i l l i a m s , W. and N. G i l b e r t i960  Heterosis Heredith  i960  l4:  133-1^5.  R e l a t i o n v a r i a b i l i t y o f i n b r e d l i n e s and F l hybrids  i n L. e s c u l e n t u m .  Genetics 1959  and t h e i n h e r i t a n c e o f y i e l d i n t h e tomat<  45:  Heterosis  l457-l465.  and t h e g e n e t i c s  Nature,184:  o f complex  characters.  527-530.  W i t t w e r , S.H. and F'G.Tevbner 1956  C o l d exposure o f tomato s e e d l i n g s  and f l o w e r  format i o n . P r o c . Amer. S o c ; , H o r t . S c i . 6 7 :  369-376.  107  64.  Zielinski, Q.B. 1948 F a s c i a t i o n i n L y c o p e r s i c o n . I. o f dominance m o d i f i c a t i o n . Genetics 33: 4 0 4 - 4 2 8 .  Genetic  analysis  108 APPENDIX T a b l e 1 E x p e r i m e n t d e s i g n f o r 1967-1968 greenhouse e x p e r i m e n t Block Block  1 1  2  2  3  4  P a BBxP PxBB BB® 4  1  2  3  3  4  3  1  5  1  2  6  1  PxBB BBxP BBS P a  2  2  3  Bxcs  2  3  4  5  3 3  P S BBxP PxBB BBa  1  4  2  1  65 65  64 64  66 65  64  65 66 65 66  * l e s s than 1 hour.  64 67  75  82 76 72 72 76 75 77 76 77 78 74 75  Lo 60* 61*  59(lhr. 59(lhr.  58(2hr. 60*6l* 62*  59(lhr.  62*  59(lhr. 58(lhr.  62*  5  6  3  4  5  6  BxIPB csa CSxB IPBxB IPBa BxCS  Table 2 Temperatures r e c o r d d u r i n g I 9 6 7 - I 9 6 8 room 14 ave. H i  4  3 4  6  5  2  IPBxB csa CSxB BxIPB ipsa BxCS  csa CSxB IPBxB IPBa BxIPB  dat e 1967 Nov.30-Dec.4 Dec.4-Dec.ll Dec.ll-Dec.18 Dec.l8-Dec.25 Dec.25-Jan.1 1968 J a n . 1 - J a n . 8 Jan.8-Jan.15 Jan.15-Jan.22 Jan.22-Jan.29 J a n . 29-Fe-b. 5 Feb.5-Feb.12 Feb.12-Feb.19 Feb.19-Feb.26  4  2 6  CSa BxCS IPBa CSxB IPBxB BxIPB 1  4  3  BBxP PxBB P a BBa  4  3  2  1 1  Block  2  BBxP P & PxBB BBS  4  PxBB p a BBS BBxP Block  1  .  room 15 ave. H i 56 55 )55 )58 )57 58 55 57 )58 54 )57 )56 60  greenhouse e x p e r i m e n t Lo  68* 67*  54 53  67* 66* 68* 69*  47 55  7 4 ( l h r . ) 49  46  54  74* 51 7 4 ( l h r . ) 46 7 4 ( l h r . ) 49 72* 68* 68*  55 52 57  109  Table 3  E x p e r i m e n t a l d e s i g n f o r I 9 6 8 - I 9 6 9 greenhouse experiment-  Warm house: 3  k  5  6  7  &  PxB  BxP  CxB  C &  Bxl  IxB! BxC  P  PxBi  I a>  I a.  C &> IxB;  CxB  BxC  BxC  C &) CxB  B &>  IxB  Block 1  1  2  BxC III BxP  BS  9  10;  IxB>  EQ  I Q  B S  CxB  :  C &  Bxl  Bxl  P. S  B &  BxP  PxB  P 0  I a  BxP  PxB  Bxl  III IV  C o o l house: Block I  1  2  3  k  5  6.  p S  IxB  BxC  PxB  CxB  c  BxC  Bxl.  BxP  1 a.  I'xBi  PxBi  BJ  JL H  Bxl  CxB,  IxB^  BxC  PxB.  p a  B75&. IxB  BxC  c a  Bxl  a  10,  7  8;  Bxl  1 a.  a*  p a.  c  BxP  p a  c a  CxB.  1 a< BxP  9 BxP  B  a.  II. a  CxB  III B  a  IV PxB  1-10,  Table 4  Temperature r e c o r d d u r i n g I 9 6 8 - I 9 6 9  clci"fct©  ave. 66 65 65 64. Z6: 6,5 6,7 6,7 66 65 65 64 67 67 65 66 6,6  N0v.1a-N0v.25 Nov.25-Dec.2 Dec.2-Dec.9 Dec.9-Dec.l6 Dec.l6-Dec.23 Dec. 2 3 - D e c . 3 0 Dec. 3 0 - J a n . 6» JJan. 6:- Jan . 1 3 Jan.13-Jan.20 J a n . 2 0 - J a n . 27/ Jan.27-Feb.3 Feb.3-Feb.10 Feb.l0-Feb.l7 Feb.17-Feb.24 Feb.24-Mar.3 Mar.3-Mar.10 Mar. 10-Mar. 17, * less  Table 5  than  room 14 Hi Lo 70 7.8. 7-0 70 72 73 74 76 73 78 76 70 72 73 71 70 70  greenhouse  ave.  Hi  room  one hour.  vivo test.  female  Bi  P  B'>  C  I  P  B:1  male  I,  C  P  B;  Bi  I  C  female  I  C  P  B:>  BJ  I  C  male  B  C  B:,  I  P  I  B  15 ILo  54* 47 52* 42 55* ' 42 51* 43. 54* 48 60* 50 58,* 50 64(6hr$)48 6.0* ' 48 73(2hrs)43 66* 44 76* 50 65* 43 60* 40 60* 42 65(9hrs)39 68(8hrs-,y43  6,1* 5-0 63* 4.7 62* 47 58.* 4:6 63* 53 6.2* 5k 63* 53 59(lhfe^. )5k 58>* 52 56* 50 60* 50 5 9 ( l h r ) 5k 6,1* 48: 61* 50. 60* 50 59 ( 2 h r s )50' 60* 5k  Experimental design f o r i n  experiment.  C  Bi Bi  I  B.  B  P  Bi  P  B.  P  II  C'l  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0103967/manifest

Comment

Related Items