UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Autecology of Ctenocladus (Chlorophyceae) in saline environments Blinn, Dean Ward 1969

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1969_A1 B55.pdf [ 9.68MB ]
Metadata
JSON: 831-1.0103964.json
JSON-LD: 831-1.0103964-ld.json
RDF/XML (Pretty): 831-1.0103964-rdf.xml
RDF/JSON: 831-1.0103964-rdf.json
Turtle: 831-1.0103964-turtle.txt
N-Triples: 831-1.0103964-rdf-ntriples.txt
Original Record: 831-1.0103964-source.json
Full Text
831-1.0103964-fulltext.txt
Citation
831-1.0103964.ris

Full Text

AUTECOLOGY OF CTENOCLADUS (CHLOROPHYCEAE) IN SALINE ENVIRONMENTS  by  DEAN W. BLINN B.A.,  Simpson College, Indianola, Iowa, 1964  M.A.,  University of Montana, Missoula, Montana, 1966  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  in the Department of BOTANY  We accept this thesis as conforming to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA AUGUST, 1969  In p r e s e n t i n g an the  thesis  advanced degree at Library  I further for  this  shall  the  his  of  this  agree that  University  of  permission  representatives. thesis  f u l f i l m e n t of  make i t f r e e l y  s c h o l a r l y p u r p o s e s may  by  in p a r t i a l  be  available  g r a n t e d by  gain  Botany  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  the  It i s understood  for financial  for  for extensive  wr i t t e n p e r m i ss i on.  Department of  British  Columbia  shall  requirements  Columbia,  Head o f my  be  I agree  r e f e r e n c e and copying of  that  not  the  that  Study.  this  thesis  Department  copying or  for  or  publication  allowed without  my  Abstract  Ctenocladus c i r c i n n a t u s B o r z i , a member o f the U l o t r i c h a l e s , has a l i m i t e d d i s t r i b u t i o n being r e s t r i c t e d to s a l i n e aquatic of  s p e c i f i c physico-chemical composition.  Most o f the c o l l e c t i o n s o f  t h i s a l g a have been i n North America, w i t h a few s c a t t e r e d i n Peru, S i c i l y  collections  and S i b e r i a .  C o n f u s i o n i n t h e nomenclature of  environments  o f t h i s taxon has l e d t o t h e use  two g e n e r i c names Ctenocladus and Lochmiopsis.  Based on f i e l d  o b s e r v a t i o n s , l a b o r a t o r y c u l t u r e s and herbarium m a t e r i a l i t appears t h a t Lochmiopsis and Ctenocladus a r e one w i t h Ctenocladus a monotypic genus. In  o r d e r t o study t h e e c o l o g y o f Ctenocladus, s e a s o n a l p h y s i c o -  c h e m i c a l parameters  o f seven s a l i n e h a b i t a t s were i n v e s t i g a t e d over a  two year p e r i o d i n the dry i n t e r i o r zone o f B r i t i s h Columbia. . Three of  the s i t e s c o n t a i n e d Ctenocladus w h i l e the retaining f o u r h a b i t a t s  were used f o r comparative  purposes.  Additional collections of  Ctenocladus and water a n a l y s e s were made from s e v e r a l s a l i n e h a b i t a t s i n C a l i f o r n i a and Nevada. of  In a d d i t i o n , c o n t r o l l e d l a b o r a t o r y  e n v i r o n m e n t a l parameters  (pH, temperature,  l i g h t , osmotic  regulation potential  and s p e c i f i c i o n s ) c o n s i d e r e d t o be important i n the e c o l o g y o f Ctenocladus were conducted and c o r r e l a t e d w i t h f i e l d o b s e r v a t i o n s . The c a t i o n c o m p o s i t i o n o f t h e waters d i s t r i b u t i o n o f Ctenocladus. with Na :Mg +  growth.  +  appears s i g n i f i c a n t i n t h e  Waters composed p r e d o m i n a t e l y o f N a  +  salts  r a t i o s g r e a t e r than 1.5 were r e q u i r e d f o r normal v e g e t a t i v e  C u l t u r e d m a t e r i a l placed i n the f i e l d  i n various investigated  s a l i n e h a b i t a t s s u b s t a n t i a t e d t h i s as w e l l .  Akinete germination could  + + 4~to n l y be induced w i t h Na s a l t s o l u t i o n s , w h i l e o t h e r c a t i o n s (K , Mg j;  j | Ca  ) were extremely  t o x i c t o these c e l l s .  Anion c o n s t i t u e n t s do n o t  appear t o be s i g n i f i c a n t i n the d i s t r i b u t i o n o f Ctenocladus as c o l l e c t ions were made i n a l l o f the major a n i o n s o l u t i o n s i n nature C l ) and s u b s t i t u t i o n o f v a r i o u s a n i o n s a l t s  (S0^~, CO-j"»  to laboratory cultures  showed no s i g n i f i c a n t changes i n growth and development. Temperature may a l s o be s i g n i f i c a n t , p a r t i c u l a r l y i n s h a l l o w open waters  o f semi-permanent h a b i t a t s where temperatures  d u r i n g the summer.  r i s e above 35°C  Corresponding l a b o r a t o r y experiments  indicated  t h a t r e s t i n g a k i n e t e s were extremely s u s c e p t i b l e t o these h i g h temperatures. L i g h t i n t e n s i t y appears  t o i n f l u e n c e the c o n d i t i o n o f a k i n e t e s w i t h  l e v e l s above 12,000 l u x d e t r i m e n t a l t o v i a b i l i t y .  S a l t encrustment  c l o n e s o f a k i n e t e s and b u r i a l beneath  and p r e c i p i t a t e d  the sediment  of  s a l t d e p o s i t s may p l a y an important r o l e i n s u r v i v a l o f these r e s t i n g stages. Waters o f s a l i n e h a b i t a t s w i t h Ctenocladus were above pH 9.0 d u r i n g most o f the year w h i l e o t h e r s i t e s without below t h i s v a l u e .  the a l g a were g e n e r a l l y  L a b o r a t o r y s t u d i e s showed pH below 7.5 t o be  d e t r i m e n t a l t o a k i n e t e s i n d i c a t i n g pH t o be i n d i r e c t i l y s i g n i f i c a n t as it  r e f l e c t s the i o n i c c o n s t i t u e n t s o f the n a t u r a l A k i n e t e p r o d u c t i o n appears  solutions.  t o have s u b s t i t u t e d f o r the r e s t i n g  zygote i n m a i n t a i n i n g the p o p u l a t i o n i n these extreme environments shown  i n both f i e l d and l a b o r a t o r y experiments.  as  Most c e l l s a r e  c o n v e r t e d i n t o a k i n e t e s a t osmotic l e v e l s above 3000 mOsm and remain  iv  i n t h i s c o n d i t i o n f o r most o f the y e a r .  Massive  akinete  germination  occurs f o l l o w i n g s p r i n g d i l u t i o n from r u n o f f and when water are above 5°C.  Zoosporangia  temperatures  p r o d u c t i o n may not occur every year i n  s h a l l o w s a l i n e h a b i t a t s when h i g h s a l i n i t i e s a r e a c h i e v e d e a r l y i n the season.  Zoosporangia  were o n l y induced i n l a b o r a t o r y c u l t u r e s a t  osmotic p o t e n t i a l l e v e l s below 1300 mOsm.  F i e l d observations substant-  i a t e d t h i s as w e l l . The  t o t a l l a c k o f genetic recombination  may have r e s t r i c t e d the organism  i n Ctenocladus  populations  t o a v e r y narrow e c o l o g i c a l n i c h e as  w i t n e s s e d both i n the f i e l d and the l a b o r a t o r y .  V TABLE OF CONTENTS PAGE ABSTRACT  i i  LIST OF TABLES (TEXT)  viii  LIST OF FIGURES  ix  LIST OF APPENDIX TABLES  xii  ACKNOWLEDGEMENTS I. II. III.  IV.  INTRODUCTION  xiv '  1  TAXONOMIC CONSIDERATIONS  3  FIELD METHODS  4  A. Selection of Saline Lakes and Ponds  4  B. Sampling, Physico-chemical Analyses  7  C. Biological  10  LABORATORY METHODS  12  A. Media  12  B. General Culture Conditions  13  C. Experimental Methods  13  D.  E.  1. Germination Studies  13  2. Akinete Tolerance Experiments  14  Individual Factors Studied  14  1. Temperature  14  2. Light  15  3.  16  Osmotic Potential  4. Hydrogen-ion Concentration  17  5.  18  Specific Ion Influence  6. Response in Other Saline Waters  19  7. Chelator in Seawater  20  Experimental Transplants  20  vi PAGE F.  G. V.  B i o l o g i c a l Factors  21  1.  B i o l o g i c a l Anatagonism  21  2.  Predation  22  Herbarium M a t e r i a l  22  FIELD RESULTS  23  A.  D e s c r i p t i o n o f Study Area i n Kamloops Region  23  B.  Seasonal Changes i n H a b i t a t s  25  C.  Comparative  D.  VI.  Changes  Ions  29  1.  Major  2.  N i t r o g e n and Phosphorus  36  3.  Osmotic P o t e n t i a l , T o t a l D i s s o l v e d S o l i d s and Specific Conductivity  40  4.  D i s s o l v e d Gases  43  5.  pH  44  6.  Depth V i s a b i l i t y and Temperature  44  7.  T r a c e Elements  48  29  Biological  48  1.  Seasonal C o n d i t i o n o f Ctenocladus  48  2.  S e a s o n a l Occurrence o f Other Dominant Organisms  52  a.  Algae  52  b.  B r i n e Shrimp  53  3.  E.  S e a s o n a l P h y s i c a l and Chemical  D e s c r i p t i o n o f Other I n v e s t i g a t e d Ctenocladus Habitats  E x p e r i m e n t a l T r a n s p l a n t s o f Ctenocladus  53 57  LABORATORY RESULTS  60  A.  General C u l t u r e Conditions  60  B.  L i f e H i s t o r y S t u d i e s o f Ctenocladus  60  6.  B i o l o g i c a l Factors  62  1.  Antagonism  62  2.  Predation  63  D.  Physico-chemical Experimental Studies  63  vii Page 1.  Temperature  63  2.  Light  64  3.  pH  65  4.  Osmotic Potential  68  5.  Specific Ions  68  6.  Effect of Natural Saline Waters  71  a.  Saline Soil Water Extract  71  b.  Other Saline Pond Water  71  E.  Herbarium Material  VII.  DISCUSSION AND CONCLUSION  75  A.  Salinity  76  B.  pH  80  C.  Temperature  82  D.  Light  83  E.  Biological  84  VIII. SUMMARY IX.  73  LITERATURE CITED  X. APPENDIX  89 91 95  viii LIST OF TEXT TABLES  Table  Page 1.  Chemical Data for Major Ions i n Kamloops Habitats (June, 1968) Compared with Seawater.  2.  Monthly Mean C e l l Dimensions of Ctenocladus From F i e l d Collections (1968).  3.  4.  31  51  Physico-chemical Analysis of Waters From C a l i f o r n i a and Nevada Area.  55  Effect of S a l i n i t y on C e l l Dimensions.  69  ix LIST OF FIGURES  Figure  Page 1  Map o f I n v e s t i g a t e d S a l i n e H a b i t a t s B r i t i s h Columbia  Area.  5  2  Experimental F i e l d Transplant  3  S a l i n e Deposits i n V i c i n i t y Columbia  i n Kamloops  Illustrating  Chamber.  26  of Kamloops, B r i t i s h  Geology  of Drainage  Basins  For I n v e s t i g a t e d H a b i t a t s .  24  S e a s o n a l C o n d i t i o n of "Cherry Creek Pond"  26  S e a s o n a l C o n d i t i o n of "Polygon Pond"  27  12-14  S e a s o n a l C o n d i t i o n of Ironmask Lake  27  15-16  S e a s o n a l C o n d i t i o n of Bowers Lake  28  17-18  S e a s o n a l C o n d i t i o n of Wallender  28  19  " 1 s t S a l t Mine Pond" d u r i n g May  28  20  "2nd S a l t Mine Pond" d u r i n g May  28  4-8  9-11  21a  Seasonal I o n i c Diagrams o f Major  Lake  Ions f o r Semi-permanent  Kamloops H a b i t a t s . 21b  34  S e a s o n a l I o n i c Diagrams o f Major  Ions f o r Permanent  Kamloops H a b i t a t s .  35  22  S e a s o n a l V a l u e s f o r N0 "-N0 " f o r Kamloops H a b i t a t s  37  23  S e a s o n a l V a l u e s f o r Ammonia f o r Kamloops H a b i t a t s .  38  2  3  X  Figure  Page  24  S e a s o n a l V a l u e s f o r Phosphorus f o r Kamloops H a b i t a t s  25  Seasonal Values f o r T o t a l D i s s o l v e d S o l i d s f o r  39  Kamloops H a b i t a t s  41  26  Seasonal S p e c i f i c C o n d u c t i v i t y f o r Kamloops H a b i t a t s  42  27  S e a s o n a l pH Values f o r Kamloops H a b i t a t s  45  28  S e a s o n a l S u r f a c e Temperatures f o r Kamloops H a b i t a t s  46  29-35  Stages i n the L i f e H i s t o r y o f Ctenocladus i n the F i e l d  49  36-41  C a l i f o r n i a and Nevada H a b i t a t s w i t h Ctenocladus  56  42-45  F i e l d T r a n s p l a n t s o f Ctenocladus i n t o I n v e s t i g a t e d Saline Habitats  46  E f f e c t o f pH, L i g h t I n t e n s i t y , and Temperature on Germination o f Ctenocladus  47  59  Akinetes  E f f e c t o f N a t u r a l Waters on A k i n e t e Germination of Ctenocladus  48-53  66  67  C o n d i t i o n o f Ctenocladus when S u b j e c t e d t o V a r i o u s N a t u r a l S o l u t i o n s and V a r i o u s Na:Mg R a t i o s  72  xi LIST OF APPENDIX TABLES Table  Page I II  III IV V VI VII VIII IX X  Reported Collections of Ctenocladus  96  Procedures Used i n Water Analyses  98  Media Used For C u l t i v a t i o n of Ctenocladus  99  Seasonal Drop i n Water Levels For Kamloops Habitats  100  Chemical Analysis of Major Ions (Kamloops June, 1967)  101  Chemical Analysis of Major Ions (Kamloops August, 1967)  102  Chemical analysis of Major Ions (Kamloops March, 1968)  103  Chemical analysis of Major Ions (Kamloops May,  104  1968)  Chemical Analysis of Major Ions (Kamloops August, 1968) Seasonal Monovalent:Divalent Total Cation Ratios and Na:Mg Ratios? (Kamloops 1968)  XI XII XIII XIV XV XVI  105  106  Seasonal Values for Nitrogen (N0 ~-N0 " and NH^ )  107  Seasonal Values for Phosphorus  109  Seasonal Total Dissolved Solids  111  Seasonal Osmotic Potential Values  112  Seasonal S p e c i f i c Conductivity Values  113  Seasonal Values for Oxygen  114  +  2  3  xii Table  Page  XVII  XVIII  XIX  XX  S e a s o n a l pH  115  S e a s o n a l Water Temperatures  116  T r a c e A n a l y s i s f o r S u r f a c e Waters o f Kamloops H a b i t a t s  117  Dominant B e n t h i c and P l a n k t o n i c A l g a l S p e c i e s i n Kamloops H a b i t a t s  XXI  D e f i n e d Medium R e c i p e f o r Ctenocladus Compared w i t h Major  XXII  118  Ions o f Seawater  119  I n f l u e n c e of Temperature on A k i n e t e Germination and Zoosporangia Formation  XXIII  XXIV  XXV  E f f e c t o f Temperature on A k i n e t e Germination o f Ctenocladus  121  T o l e r a n c e of Ctenocladus A k i n e t e s t o V a r i o u s Temperatures  122  I n f l u e n c e o f L i g h t I n t e n s i t y on Ctenocladus A k i n e t e Germination  XXVI  123  T o l e r a n c e o f Ctenocladus A k i n e t e s to V a r i o u s L i g h t Intensities  XXVII  E f f e c t o f Hydrogen-ion  124  C o n c e n t r a t i o n on Ctenocladus  A k i n e t e Germination  XXVIII  125  T o l e r a n c e o f Ctenocladus A k i n e t e s t o V a r i o u s Hydrogenion Concentrations  XXIX  120  126  E f f e c t o f N a t u r a l Waters on A k i n e t e Germination of Ctenocladus  127  xiii Table XXX  Page Effect of Dilution of "1st Salt Mine Pond" Water on Ctenocladus Akinete Germination  XXXI  Effect of Dilution of "Cherry Creek Pond" Water on Zoosporangia Formation.  XXXII  132  Analysis of Sediment Extracts From Investigated Habitats  XXXVI  131  Effect of Various Na:Mg Ratios in Chihara Medium on Branching and Cell Dimension of Ctenocladus  XXXV  130  Effect of Various Na:Mg Ratios In Bowers Sediment Extract on Reproduction of Ctenocladus  XXXIV  129  Effect of Specific Ions on Ctenocladus Akinete Germinat ion  XXXIII  128  133  Collections of Ctenocladus Deposited in Various Herbaria with Collection Data  134  xiv Acknowledgements The author wishes to express his sincere thanks to Dr. J. R. Stein, under whose inspiration and supervision this investigation was undertaken. This study was supported by funds from  N.R.C. grant A 1035.  In addition  I wish to acknowledge support provided by a fellowship from N.R.C. of Canada during 1967-1969.  My thanks also to the committee members who  assisted throughout this study and made helpful suggestions in the final preparation of the manuscript.  Special thanks are extended M. Wali, P.  Barrett and D. Cameron, whose valuable assistance in the field and laboratory was greatly appreciated.  Finally I would like to thank my  wife, Sandra, not only for her assistance in the preparation of this manuscript, but also for her continued encouragement and understanding throughout this study.  Autecology o f Ctenocladus (Chlorophyceae) i n S a l i n e Environments INTRODUCTION Autecological representative  i n v e s t i g a t i o n s on Ctenocladus c i r c i n n a t u s B o r z i , a  o f the U l o t r i c h a l e s , were s t i m u l a t e d  d i s t r i b u t i o n of t h i s alga.  by  the  restricted;,  Ctenocladus i s l i m i t e d to a q u a t i c  environments of s p e c i f i c p h y s i c o - c h e m i c a l  saline  composition.  Recorded c o l l e c t i o n s of Ctenocladus on a w o r l d wide b a s i s it  to be r e s t r i c t e d to o n l y a few  as shown i n Appendix T a b l e I . North A m e r i c a / w i t h l s c a t t e r e d  i n l a n d or c o a s t a l s a l i n e a q u a t i c  reports  i n B r i t i s h Columbia and  Investigations  i n Peru, S i c i l y and  These i n c l u d e  Other s t u d i e s are 1960;  1966;  C o l i n v a u x 1968)  C o l e , et al.j.1967;  Jones and Van  to  (Livingstone  1963;  i n c l u d e o n l y spot water c o l l e c t i o n s .  concerned w i t h s e a s o n a l  s a l i n e environments i n the dry  dynamics (Anderson 1958;  Denburgh 1967)  and  fall).  Gastenholz  are based o n l y Investigations  i n t e r i o r of B r i t i s h Columbia, where t h i s  conducted, are e q u a l l y s p a r s e .  These i n c l u d e one  fauna i n s e v e r a l of the s a l i n e h a b i t a t s now  several  semi-permanent environments.  a l i m i t e d number o f c o l l e c t i o n s ( i . e . s p r i n g and  was  Several  o f s a l i n e waters have been p r i m a r i l y r e s t r i c t e d  In a d d i t i o n , r e g i o n a l surveys o f i n l a n d s a l i n e waters and W i l l i a m s  Siberia.  Southern Oregon.  permanent h a b i t a t s , i g n o r i n g temporary and  Bayly  habitats,  Most of these c o l l e c t i o n s have been i n  North -American c o l l e c t i o n s have not been p u b l i s h e d . localities  indicate  (Cameron 1953)  general and  survey o f  two  on of study the  investigations  i n p r o g r e s s i n v o l v e d w i t h the d i s t r i b u t i o n of i n s e c t s (G.G.E. Scudder,  personal  communication) and  fungi ( C L .  Anastasiou,  E x p e r i m e n t a l s t u d i e s on a l g a l s p e c i e s  personal  communication).  o c c u p y i n g s a l i n e waters have been  2  l i m i t e d due  t o the l a c k o f i s o l a t e s i n c u l t u r e .  have been conducted  on organisms  b r a c k i s h water h a b i t a t s ,  (Droop  t h e r e f o r e , has been conducted Cl  becomes secondary  Most s t u d i e s o f t h i s  c o l l e c t e d and i s o l a t e d from marine or 1958;  Gibor 1956);;  on organisms  t o d i v a l e n t anions  T h i s was  (SO^"  by Ruinen  l i t t l e research  and CO^"). on Ctenocladus  (1933) who  growth i s p o s s i b l e i n NaCl c o n c e n t r a t i o n s up t o 1.5 tolerated a saturated s a l t solution.  Very  o f i n l a n d s a l i n e h a b i t a t s where  Only one e x p e r i m e n t a l study has been conducted Lochmiops i s s i b e r i c a ) .  nature  showed t h a t  mol.  (as active  The r e s t i n g  He a l s o r e p o r t e d t h a t the a l g a  stages was  polymorphic when s u b j e c t e d t o d i f f e r e n t s a l t c o n c e n t r a t i o n s . Pringsheim  (1967) s t r e s s e d the i n c r e a s i n g need of f i e l d and l a b o r a t o r y  phycologists to continue e f f o r t s  to b e t t e r u n d e r s t a n d i i n d i v i d u a l s p e c i e s as  w e l l as the e n v i r o m e n t a l parameters Coiisequentljy/, i t was  the purpose  the p h y s i c o - c h e m i c a l enviromnent  influencing algal  characteristics.  o f t h i s i n v e s t i g a t i o n t o : 1) c h a r a c t e r i z e o f those h a b i t a t s o c c u p i e d by  2) measure the s e a s o n a l p h y s i c o - c h e m i c a l parameters  Ctenocladus;  i n these s a l i n e h a b i t a t s  to r e v e a l s e a s o n a l dynamics o f the system and i t s i n f l u e n c e on  Ctenocladus:  and 3) c o r r e l a t e these f i e l d measurements w i t h e x p e r i m e n t a l l a b o r a t o r y regulation of factors s p e c i f i c i o n s ) thought circinnatus.  ( i . e . ; pH,  temperature,  t o be s i g n i f i c a n t  osmotic p o t e n t i a l , l i g h t  i n the ecology o f  Ctenocladus  and  3  Taxonomic C o n s i d e r a t i o n s  Confusion i n the nomenclature  o f t h i s a l g a f o r t h e l a s t 50-60 y e a r s  has l e d t o the u s e , by v a r i o u s a u t h o r s , o f two g e n e r i c names, C t e n o c l a d u s and L o c h m i o p s i s .  Some a u t h o r s c o n s i d e r t h e two synonymous whereas o t h e r s  recognize separate taxa.  The a l g a was o r i g i n a l l y c o l l e c t e d as an e p i p h y t e  on S a l i c o r n i a sp. and R u p p i a sp. i n a s a l i n e h a b i t a t i n S i c i l y B o r z i (1883).  He named the a l g a C t e n o c l a d u s c i r c i n n a t u s .  by A n t o n i n o  Approximately  45 y e a r s l a t e r , Woronochin and Popova (1929) c o l l e c t e d an a l g a from s e v e r a l inland s a l i n e lakes i n Siberia.  They named t h e i r a l g a , L o c h m i o p s i s as i t  r e s e m b l e d Lochinium i n p o s s e s s i n g numerous a k i n e t e s and h a v i n g i n t e r c a l a r y zoosporangia. ing  Woronochin and Popova (1929) added more c o n f u s i o n by d e s c r i b -  two s p e c i e s , L. s i b e r i c a and L. P r i n t z i i  d i m e n s i o n s and g e n e r a l s i z e . L. C h o d a t i i , s e p a r a t i n g Smith  based on c e l l  length to width  R e c e n t l y P r i n t z (1964) c r e a t e d a t h i r d s p e c i e s  i t from the o r i g i n a l two by the a n g l e o f b r a n c h i n g .  (1950) and B o u r r e l l y  (1966) have combined C t e n o c l a d u s and L o c h m i o p s i s  and r e t a i n e d t h e o r i g i n a l name, C t e n o c l a d u s .  Throughout the remainder o f  t h i s d i s c u s s i o n the a u t h o r w i l l u s e t h e o r i g i n a l name C t e n o c l a d u s , which i s i n accordance w i t h the I n t e r n a t i o n a l Rules o f B o t a n i c a l (1964).  Nomenclature  4  FIELD METHODS: S e l e c t i o n o f S a l i n e Lakes and Ponds  Seven a q u a t i c s a l i n e h a b i t a t s were s e l e c t e d near Kamloops', B r i t i s h Columbia  ( a p p r o x i m a t e l y 280 m i l e s NE o f Vancouver,  limnological investigation  ( F i g . 1).  on p r e l i m i n a r y surveys conducted  B.C.)  for intensive  S e l e c t i o n of these h a b i t a t s was  i n the dry i n t e r i o r a r e a around Kamloops  and M e r r i t t f o r the presence o f Ctenocladus c i r c i n n a t u s .  This region l i e s  e a s t o f the C o a s t a l Range r a i n shadow w i t h an annual p r e c i p i t a t i o n l e s s than 30cm.  based  generally  The p r e l i m i n a r y survey i n d i c a t e d t h a t Ctenocladus o c c u r r e d  i n o n l y one s h a l l o w s a l i n e pond a p p r o x i m a t e l y 7.6 m i l e s west o f Kamloops on Highway 1.  A d d i t i o n a l i n v e s t i g a t i o n s d u r i n g the f o l l o w i n g year r e v e a l e d  the presence o f Ctenocladus i n two a d d i t i o n a l ponds l o c a t e d a p p r o x i m a t e l y 3.5 m i l e s NW  o f the i n i t i a l  s i t e where Ctenocladus was  the s a l i n e h a b i t a t s throughout appearance,  the study a r e a appeared  collected.  Since  t o be s i m i l a r i n  s i z e and f l o r a , except f o r Ctenocladus i n t h r e e o f the h a b i t a t s ,  convenience and a c c e s s i b i l i t y were major f a c t o r s i n v o l v e d i n s e l e c t i n g f o u r more s i t e s f o r comparison.  Only t h r e e o f the s a l i n e h a b i t a t s  (Bowers  Lake, Ironmask Lake and Wallender Lake) s e l e c t e d f o r t h i s study were o f f i c i a l l y named, t h e r e f o r e names have been t e m p o r a r i l y a s s i g n e d t o the r e m a i n i n g four s a l i n e h a b i t a t s .  U n o f f i c i a l names f o r semi-permanent ponds  are  i n quotes; o f f i c i a l names o f l a k e s a r e used w i t h o u t such d e s i g n a t i o n .  The  f o l l o w i n g s a l i n e h a b i t a t s , l o c a t e d w i t h i n a 6 m i l e r a d i u s o f the  i n i t i a l Ctenocladus s i t e , were u l t i m a t e l y s e l e c t e d f o r i n t e n s i v e study.  [ 5  i  Figure  1.  I n v e s t i g a t e d s a l i n e h a b i t a t s i n Kamloops a r e a .  ( 1. " 1 s t S a l t  Mine pond", 2. "2nd S a l t Mine Pond", 3. "Cherry Creek Pond", 4. "Polygon Pond" 5. Ironmask Lake, 6. Bowers Lake, 7. Wallender Lake).  ^Insert of southern B r i t i s h Columbia.  6  1.  "Cherry Creek Pond" (50°39'N 120°32'W) 7.6 m i l e s W o f Kamloops; e l e v a t i o n 2150'; and semi-permanent b a s i n i n shaded d e p r e s s i o n w i t h water o n l y i n s m a l l i s o l a t e d pockets i n l a t e summer; maximum depth l e s s than 1 meter; Ctenocladus p r e s e n t .  2.  " 1 s t S a l t Mine Pond" (50°42'N 120°32'W) 7.2 m i l e s WNW of Kamloops; e l e v a t i o n 1750'; semi-permanent b a s i n i n shaded d e p r e s s i o n ; maximum depth l e s s than 1 meter; Ctenocladus p r e s e n t .  3.  "2nd S a l t Mine Pond" (50°41.5'N 120°32'W) 7.2 m i l e s WNW o f Kamloops; e l e v a t i o n 1800'; semi-permanent b a s i n i n p a r t i a l l y shaded d e p r e s s i o n ; maximum depth l e s s than 1 meter; Ctenocladus p r e s e n t .  4.  "Polygon Pond" (50°40.5'N 120°32'W) 7.2 m i l e s WNW o f Kamloops; e l e v a t i o n 2300'; semi-permanent i n open expanded b a s i n ; maximum depth l e s s than 1 meter.  5.  Ironmask. Lake (50°40'N 120°27'W) 3.6 m i l e s W o f Kamloops e l e v a t i o n 2350'; semi-permanent i n open expanded b a s i n ; maximum depth l e s s than 1 meter.  6.  Bowers Lake (50°40.2'N 120°26'W) 3.0 m i l e s W o f Kamloops; e l e v a t i o n 2350'; permanent i n open expanded b a s i n ; maximum depth g r e a t e r than 1 meter.  7.  Wallender Lake (50°38'N 120°26.5'W) 4.6 m i l e s WSW o f Kamloops; e l e v a t i o n 2750'; permanent i n open expanded b a s i n ; maximum depth g r e a t e r than 1 meter.  f  In a d d i t i o n t o the seven l a k e s and ponds i n the Kamloops  a r e a , Lyons  Lake, l o c a t e d a p p r o x i m a t e l y 40 m i l e s n o r t h o f Kamloops, was i n v e s t i g a t e d d u r i n g June and J u l y 1968 f o r the presence o f C. crBfccinnatus. In e a r l y June 1968 v a r i o u s s a l i n e l a k e s and ponds were examined i n a r i d regions  (annual p r e c i p i t a t i o n l e s s than 51cm.) i n Nevada and C a l i f o r n i a .  T h i s s u r v e y was designed t o l o c a t e new c o l l e c t i o n s i t e s f o r Ctenocladus and t o compare  these h a b i t a t s c h e m i c a l l y t o the s a l i n e h a b i t a t s  investigated  7  i n B r i t i s h Columbia.  Ctenocladus o c c u r r e d a t only t h r e e s i t e s  ( F i g . 36-38).  For comparative purposes, a d d i t i o n a l s a l i n e ponds l o c a t e d w i t h i n the immediate v i c i n i t y o f these t h r e e h a b i t a t s were a l s o s e l e c t e d f o r study.  Again,  most o f these h a b i t a t s , w i t h the e x c e p t i o n o f Mono Lake, a r e not o f f i c i a l l y named, t h e r f o r e names have been a s s i g n e d . 1.  Mono Lake (119°00'W 38°00'N) a p p r o x i m a t e l y 1.5 m i l e s ENE o f Lee V i n i n g , C a l i f o r n i a ; permanent; maximum depth 51,5 meters; Ctenocladus p r e s e n t .  2.  ' k i t t l e Mono Lake Pond" (119°00'W 38°01'N) i s o l a t e d pond a p p r o x i m a t e l y 600' NW o f Mono Lake; permanent; maximum depth a p p r o x i m a t e l y 1.5 meters.  3v  "Hazen Pond" (119°00'W 39°50'N) 5.0 m i l e s E o f Hazen, Nevada; semi-permanent open b a s i n ; maximum depth about 1.0 meter; Ctenocladus p r e s e n t .  4.  "2nd Hazen Pond'' (119°00W 39°50'N) 1.0 m i l e W o f "Hazen Pond" s e m i p e r m a n e n t open b a s i n ; maximum depth l e s s than 1.0 meter.  5.  " S t a t e l i n e Pond" (122°00'W 42°00'N) 8 m i l e s W o f T u l e l a k e ,  California; permanent open b a s i n ; maximum depth about 1.0 meter; Ctenocladus p r e s e n t .  6.  "2nd S t a t e l i n e Pond" (122°00'W 42°00*N) 0.5 m i l e E o f " S t a t e l i n e Pond"; permanent open b a s i n ; maximum depth a p p r o x i m a t e l y 1 meter.  Sampling, P h y s i c o - C h e m i c a l A n a l y s e s : Measurements  o f s e l e c t e d p h y s i c o - c h e m i c a l f a c t o r s were made a t  v a r i o u s times o f the y e a r t o determine i f s e a s o n a l c o n d i t i o n s temperature, i o n i c c o n s t i t u e n t s , e t c . ) were s i g n i f i c a n t to a p a r t i c u l a r h a b i t a t . i n the Kamloops  (salinity,  i n limiting  T h e r e f o r e , a l l o f the d e t e c t e d s a l i n e  Ctenocladus  habitats  a r e a , w i t h the e x c e p t i o n o f the two " S a l t Mine Ponds",  8 were investigated at 3 week intervals from 19 May 1967 to 23 September 1967 Samples were also taken through the ice in January. During the following year these same five ponds were investigated monthly from March to August. The two "Salt Mine Ponds" were sampled once a month from 18 May 1968 to 29 August 1968, During each collection on Bowers Lake and Wallender Lake, surface and bottom water samples were taken at a station in the center of the lake along with one sample near the margin.  Bottom samples were obtained  ca. 5-10 cm above the sediment with a 1-liter polyethylene bottle clamped to a calibrated pole.  Surface samples were obtained £a. 0-10 cm.  Marginal water samples were collected from Ironmask Lake, "Polygon Pond" and the two "Salt Mine Ponds" in duplicate.  In "Cherry Creek Pond",  distinct crystal beds were scattered throughout the pond, therefore surface and b o t t o m samples were takera at one station over the crystal bed and one station over the non-crystal zone.  Eighteen 1-liter samples were  normally collected for chemical analysis from the seven habitats during each v i s i t .  Water samples for chemical analysis were filtered through  silk bolting cloth (No 20 mesh) into 1-liter polyethylene bottles. These samples were frozen within 5 hr after collection and transported back to the laboratory for analyses. A detailed description of procedures used in measuring the physicochemical factors in this study is included in Appendix Table II. Values for N02~, -NOj", NH^ j P0^ , Cl and S0^~ were obtained in the laboratory +  =  within 72 hr with Hach Chemicals (Hach Chemical Co., Ames, Iowa). ++  Major cations (Mg  ++  , Ca  4-  + •  , Na , K ) were analyzed on a Perkin-Elmer atomic  absorption spectrophotometer from frozen and Millipore filtered samples  9  s t o r e d a t -15 C.  A n a l y s i s o f major c a t i o n s and anions f o r the 11 August 1967  c o l l e c t i o n s as w e l l as the s a l t c r y s t a l s taken from the c r y s t a l bed i n "Cherry Creek Pond" on 1 J u l y 1967, were conducted by Wood L a b o r a t o r y , Vancouver.  T o t a l d i s s o l v e d s o l i d s and osmotic p o t e n t i a l v a l u e s were  a l s o o b t a i n e d from the f r o z e n Temperature, situ.  samples.  pH, depth v i s i b i l i t y ,  CC^ and C^ were determined i n  S u r f a c e measurements were made a t , 0-5 cm whereas bottom r e a d i n g s  were taken ca. 5-10 cm above the sediment.  V a l u e s f o r the d i s s o l v e d  gases  were o b t a i n e d by^the W i n k l e r method w i t h Hach Chemicals and YSI model 54 (Yellow S p r i n g s Instrument Co.) oxygen probe. made w i t h mercury  thermometers  Temperature  r e a d i n g s were  and a YSI model 54 t h e r m i s t e r .  Depth  v i s i b i l i t y r e a d i n g were o b t a i n e d from a s t a n d a r d 20 cm S e c c h i D i s k . Values f o r HCO^  and CO-j" were o b t a i n e d by p o t e n t i o m e t r i c  titration  procedures from s e p a r a t e 250 ml u n f r o z e n samples w i t h i n 6 h r o f c o l l e c t i o n . A s p e c t r o g r a p h i c a n a l y s i s o f t r a c e elements was conducted by Coast E l d r i d g e , Vancouver, the  f o r s u r f a c e samples  c o l l e c t e d 18„!May 1968 from a l l  Kamloops ponds and l a k e s except Ironmask Lake.  Monthly water  level  r e c o r d i n g s were o b t a i n e d from a c a l i b r a t e d s t a k e p o s i t i o n e d i n the ponds. C l i m a t o l o g i c a l data f o r the Kamloops a r e a was r e c o r d e d by the Canada Department  o f A g r i c u l t u r e a t a weather s t a t i o n i n the a r e a (50°43'N  shown i n F i g 1 (See C.Dv'A.).  Average v a l u e s f o r p r e c i p i t a t i o n and temp-  e r a t u r e a r e based on a 15 y r and 14 y r r e c o r d i n g p e r i o d S o i l samples  120°26'W)  respectively.  f o r p r e p a r a t i o n o f c u l t u r e media were c o l l e c t e d  times from November 1966, t o A p r i l  1968.  five  Submerged m a r g i n a l sediment  samples were o b t a i n e d from Bowers Lake, Wallender Lake, Ironmask Lake, and "Polygon Pond".  Sediment  samples  from both the c r y s t a l and n o n - c r y s t a l  10 zones were c o l l e c t e d from "Cherry Creek Pond". a i r - d r i e d and s t o r e d i n p l a s t i c D u p l i c a t e 1 - l i t e r samples  A l l o f these samples were  bags. f o r p h y s i c o - c h e m i c a l a n a l y s e s were c o l l e c t e d  i n p o l y e t h y l e n e b o t t l e s from each o f the s i x s e l e c t e d l a k e s and ponds i n the C a l i f o r n i a and Nevada s t u d y a r e a s .  S i m i l a r a n a l y s e s f o r major  cations  to those from the Kamloops a r e a conducted on these samples.  Biological: D u r i n g each v i s i t  t o the Kamloops study a r e a , a l g a l  collections  were made w i t h p l a n k t o n n e t h a u l s (#20 mesh), d i p p i n g nets ( f o r bottom sediment samples)  or were c o l l e c t e d as e p i p h y t e s from v a r i o u s  a l o n g t h e margin and w i t h i n the pond.  A l g a l m a t e r i a l was n o r m a l l y  preserved i n e i t h e r Lugol's IKI S o l u t i o n acid-alcohol  Reimer  (Ruttner 1966) or f o r m a l i n - a c e t i c  (FAA) p l u s 5% CuSO^ (Smith 1950).  follows that of G e i t l e r  Algal  (1932) f o r Cyanophyceae,  nomenclature  Smith (1950) P a t r i c k and  (1966) f o r B a c i l l a r i o p h y c e a e , H u b e r - P e s t a l o z z i  and P r e s c o t t  substrates  (1941) f o r Chrysophyceae,  (1961) f o r Chlorophyceae and r e m a i n i n g groups.  A represent-  a t i v e sample o f each c o l l e c t i o n remains i n the U n i v e r s i t y o f B r i t i s h phycological collection.  Columbia  M a r g i n a l and a q u a t i c v a s c u l a r p l a n t s from each  h a b i t a t were c o l l e c t e d and p r e s s e d w i t h i d e n t i f i c a t i o n s made u s i n g Muenscher (1964), and H i t c h c o c k e t a l . (1964).  Voucher specimens a r e d e p o s i t e d i n the  U n i v e r s i t y o f B r i t i s h Columbia herbarium.  Zooplankton and i n s e c t  larvae  were c o l l e c t e d from each pond w i t h plankton. neti!ihauls'*(#,20 mesh) and p r e s e r v e d i n 70% a l c o h o l .  L i v e c h i r o n o m i d l a r v a e from the Wallender Lake  c o l l e c t i o n on 19 May 1968, were t r a n s p o r t e d back t o the l a b o r a t o r y f o r p r e d a t i o n experiments.  11  Akinetes  ( r e s t i n g c e l l s ) f o r l a b o r a t o r y experiments were c o l l e c t e d  d u r i n g l a t e summer and s t o r e d i n the f o l l o w i n g c o n d i t i o n s : 1) f r o z e n at -15°C;  2) m a i n t a i n e d i n f i l t e r e d c o n c e n t r a t e d  d u r i n g l a t e summer;  pond water c o l l e c t e d  3) c o l l e c t e d and s t o r e d as d r i e d m a t e r i a l .  Three hundred v e g e t a t i v e  cells  from "Cherry Creek Pond" were randomly  s e l e c t e d and measured monthly from 26 March 1968 t o 29 August 1968. One  hundred c e l l s were s e l e c t e d from t h r e e d i f f e r e n t c o l l e c t i o n s t o account  f o r the t o t a l .  Measurements were made w i t h a l i g h t microscope w i t h an  o c u l a r micrometer a t a m a g n i f i c a t i o n -a'f lOOx. A H i l l e r - b o r e r was used i n c o l l e c t i o n 50 cm sediment cores "Cherry Creek Pond", Ironmask Lake and Bowers Lake.  from  Sediment cores  taken next t o the margin and toward the c e n t e r o f each h a b i t a t . mounts were p r e p a r e d i n the l a b o r a t o r y a t 10 cm i n t e r v a l s a l o n g  were  Water each 50 cm  core and examined f o r r e s t i n g stages o f Ctenocladus as w e l l as f o r other resting  stages.  C o l l e c t i o n s o f Ctenocladus were taken a t the three previously described  i n C a l i f o r n i a and Nevada.  within 4 hr a f t e r c o l l e c t i o n f o r reproductive cytological condition. back t o the l a b o r a t o r y .  Both p r e s e r v e d  locations  M a t e r i a l was examined s t r u c t u r e s and g e n e r a l  and l i v e c o l l e c t i o n s were brought  C u l t u r e s , as mentioned above were e s t a b l i s h e d  from Ctenocladus c o l l e c t e d a t t h e t h r e e s i t e s and m a i n t a i n e d f o r f u r t h e r investigation.  algal  12  LABORATORY MATERIALS AND  A.  METHODS  Media The c h e m i c a l l y u n d e f i n e d media used t o c u l t u r e Ctenocladus i n c l u d e d  (Provasolit  sea-water based media (Appendix T a b l e I I I ) , P r o v a s o l i ES enrichment 1968)  and C h i h a r a Marine Medium (M. C h i h a r a p e r s o n a l communication).  a d d i t i o n , a s a l i n e s o i l water  (SSW)  medium as d e s c r i b e d below was  e i t h e r i n the b i p h a s i c stage ( b i p h a s i c SSW) (SSW  extract).  In  used  extract  Other media used i n t h i s study i n c l u d e d s t a n d a r d b i p h a s i c  s o i l water w i t h garden loam B o l d B a s a l Media  ( S t a r r 1964), B e i j e r i n c k Medium ( S t e i n  ( N i c h o l s and B o l d 1965) , E r d - S c h r e i b e r  m o d i f i e d von S t o s c h (vonStosch 1965) B i p h a s i c SSW 0.5g  or as f i l t e r e d  two  was  T h i s was  steamed  water t o ca.  a t 95°C f o r 1 hr on t h r e e  The pH o f the e x t r a c t ranged from 8^4  c a t i o n s o f the f i l t e r e d  1964),  ( P r o v a s o l i e t a l . 1957).  p r e p a r e d by adding £ a . 20ml d i s t i l l e d  a i r d r i e d sediment.  c o n s e c u t i v e days.  and ASP  (Starr  1958),  - 8.7.  Major  (#1 Whatman paper) e x t r a c t s were measured on  an atomic a b s o r p t i o n spectrophotometer. Attempts were made to develop a c h e m i c a l l y d e f i n e d m i n e r a l medium i n o r d e r t o o b t a i n a more c r i t i c a l  i d e a o f the i n f l u e n c e o f i n d i v i d u a l  on v a r i o u s stages i n the l i f e h i s t o r y o f C t e n o c l a d u s .  Ionic  for  (Mason  waters o c c u p i e d by Ctenocladus i n p r e v i o u s s t u d i e s  Rawson and Moore 1944; Wetzel 1964;  C o l e , et a l . 1967)  A basic defined mineral solution  (BSM) was  concentrations 1967;  as w e l l as v a l u e s  from t h i s study were s y s t e m a t i c a l l y a n a l y z e d f o r a p o t e n t i a l solution.  ions  culture  p r e p a r e d as  i n d i c a t e d i n Appendix T a b l e XXI through v a r i a t i o n s o f each  constituent.  13  B.  General Culture Conditions Unless o t h e r w i s e i n d i c a t e d f o r s p e c i f i c experiments, g e n e r a l c u l t u r i n g  c o n d i t i o n s w i t h optimum development 4280 l u x on 8-hr dark/16-hr  o f Ctenocladus was  l i g h t photoperiod.  19-720 C a t 4066-  C u l t u r e u n i t s were equipped  w i t h overhead banks o f F 48T 12 C o o l White S y l v a n i a f l u o r e s c e n t 4-  lamps.  o  D i u r n a l f l u c t u a t i o n s i n the c u l t u r e chambers averaged -2>.„ C.  Stock  c u l t u r e chambers w e r e ^ a i h t a i i n e d on s i m i l a r l i g h t c y c l e s a t a lower i n t e n s i t y o f ca. 2140  l u x a t 10°C or l e f t  i n the r e s t i n g stage as a k i n e t e s .  Optimum pH f o r c u l t u r e s o l u t i o n s ranged from £a. 8.5 C.  light  -  9.5.  E x p e r i m e n t a l Methods jl.  Germination S t u d i e s  Throughout  t h i s i n v e s t i g a t i o n procedures f o r g e r m i n a t i o n s t u d i e s were  conducted under s i m i l a r c o n d i t i o n s u n l e s s otherwise i n d i c a t e d f o r s p e c i f i c experiments.  A s o l u t i o n o f c o n c e n t r a t e d s a l i n e pond water was  through a s t e r i l e  . 22u M i l l i p o r e f i l t e r ,  the s t o r a g e medium f o r a k i n e t e s . were i s o l a t e d i n t o t h i s s o l u t i o n .  filtered  p l a c e d a t 10°C and u t i l i z e d as  A k i n e t e s c o l l e c t e d d u r i n g midsummer When i n v e s t i g a t i n g <  1968  the i n f l u e n c e of  v a r i o u s environmental f a c t o r s on a k i n e t e g e r m i n a t i o n ca.J250-350 a k i n e t e s were s e l e c t e d from t h i s s o l u t i o n , r i n s e d through t h r e e s t e r i l e water and i n o c u l a t e d i n t o d u p l i c a t e 20-ml t e s t tubes or 60mm P e t r i  dishes.  C u l t u r e s w i t h media were p l a c e d a t r e s p e c t i v e temperature s e t t i n g s p r i o r t o i n o c u l a t i o n to a l l o w f o r temperature adjustment. s t u d i e s w i t h v a r i a t i o n s of pH and s p e c i f i c w i t h a potassium t e l l u r i d e f o r 5-6  (.002  g/1)  baths  24;hr  In g e r m i n a t i o n  i o n s , a k i n e t e s were t r e a t e d  and c a f f e i n e (.001  days t o o b t a i n near b a c t e r i a - f r e e c o n d i t i o n s .  g/1) p r e p a r a t i o n  Length of time f o r  14  optimum g e r m i n a t i o n percentages f o r each f a c t o r c o n s i d e r e d experimentaly p r i o r to i n o c u l a t i o n . optimum c o n d i t i o n s n o r m a l l y used as indicated.  Generally,  f o r 10 days w i t h one  SSW  extract  studies unless  Germination p e r c e n t a g e s , based on 200  from each i n o c u l a t i o n and  established  c u l t u r e s remained under  factor varied.  the c u l t u r e medium f o r v a r i o u s  was  akinetes,  was  otherwise  were r e c o r d e d  compared to a c o n t r o l l e d c o n d i t i o n i n SSW.  a d d i t i o n , the number o f c e l l s per g e r m i n a t i o n tube was Each i n d i v i d u a l experiment was  generally  conducted a t l e a s t twice u n l e s s  In .  noted.  otherwise  stated,  2.  A k i n e t e T o l e r a n c e Experiments The  a b i l i t y of a k i n e t e s  o f temperature, pH and was  also investigated  light i n the  t o germinate a f t e r s u b j e c t e d  to v a r i o u s  i n t e n s i t y f o r a d e s i g n a t e d p e r i o d o f time laboratory.  General procedures  included  f o u r r e p l i c a t e s o f 60mm P e t r i d i s h c u l t u r e s , each i n o c u l a t e d w i t h 350  akinetes  section.  and  placed  Cultures  a t determined c o n d i t i o n s  remained under d e s c r i b e d  i n d i c a t e d f o r each f a c t o r c o n s i d e r e d . were removed from each s e t t i n g and  controls.  and  I n d i v i d u a l Factors  the  initial  250-  i n d i c a t e d i n each  conditions  for a period  as  cultures  at optimum c o n d i t i o n s  c u l t u r e s at each i n i t i a l  Germination percentages were measured a f t e r a  p e r i o d a t the new  D.  as  A f t e r t h i s p e r i o d two  placed  f a c t o r b e i n g i n v e s t i g a t e d l e a v i n g two for  levels  for  the  condition given  condition.  Studied  1.  Temperature  The  e f f e c t of temperature on a k i n e t e  g e r m i n a t i o n was  investigated.  15  Temperatures  utilized  indicated i n results  i n the experiment ranged from -15 C t o +35 i n Appendix T a b l e X X I I I .  C as  C u l t u r e s were m a i n t a i n e d  a t optimum c o n d i t i o n s a t the v a r i o u s temperature s e t t i n g s f o r a p e r i o d o f 14-16  days.  C u l t u r e s were t r a n s f e r r e d once i n t o t e m p e r a t u r e - a d j u s t e d  SSW  e x t r a c t a f t e r 6 days. The time r e q u i r e d f o r g e r m i n a t i o n and the time r e q u i r e d t o r e a c h the 2 - c e l l s t a g e were determined a t temperatures r a n g i n g from 0-31°C as i n d i c a t e d i n the r e s u l t s  (Appendix T a b l e X X I I ) .  T r i p l i c a t e c u l t u r e s of  f i l t e r e d SSW 'extract were i n o c u l a t e d w i t h a k i n e t e s and p l a c e d a t the d e s i g n a t e d temperature levels'.T h i s experiment was Temperature  C u l t u r e s were examined _ca. every 4-8 h r .  conducted a t l e a s t t h r e e times f o r a l l s e t t i n g s .  i n f l u e n c e on z o o s p o r a n g i a f o r m a t i o n was  also  established  i n the l a b o r a t o r y . D u p l i c a t e d 20-ml t e s t tubes o f b i p h a s i c SSW i n o c u l a t e d w i t h Ctenocladus a k i n e t e s .  Temperatures  utilized  were  i n this  experiment ranged from 0-31°C a t ca. 4°C i n t e r v a l s as i n d i c a t e d i n r e s u l t s i n Appendix T a b l e XXII. w i t h t r a n s f e r s every 12-14  2.  C u l t u r e s were m a i n t a i n e d f o r ca. 60  days  days.  Light A k i n e t e s were s u b j e c t e d t o v a r i o u s l i g h t  the e f f e c t on g e r m i n a t i o n p e r c e n t a g e s .  i n t e n s i t i e s t o determine  Light intensity settings  from 0-12,305 l u x as i n d i c a t e d i n r e s u l t s i n Appendix T a b l e XXV. i n the dark were wrapped s e v e r a l times w i t h aluminum  ranged Cultures  foil.  V a l u e s f o r each l i g h t s e t t i n g were r e a d from a Gossen #1.67-873 l i g h t meter through 15-ml  of:/SSW e x t r a c t and the bottom of the g l a s s 60mm P e t r i  dish  to compensate f o r the removal o f l i g h t by the s o l u t i o n and the d i s h cover.  16  A l l c u l t u r e s were m a i n t a i n e d between 9-12.5°C on optimum l i g h t / d a r k Since  cultures a t higher l i g h t  f l u o r e s c e n t lamps,  cycles.  i n t e n s i t i e s were l o c a t e d near t h e  temperature r e a d i n g were taken d a i l y w i t h a Y e l l o w S p r i n g s  Instrument model 425 C Telethermometer.  Temperatures  i n the c u l t u r e media  never f l u c t u a t e d more than 3.5°C d u r i n g the experiment. E n c r u s t e d fragments o f a k i n e t e s c o l l e c t e d a l o n g the margin o f "Cherry Creek Pond" d u r i n g l a t e summer were exposed t o a h i g h l i g h t in  the l a b o r a t o r y .  of  SSW e x t r a c t i n P e t r i d i s h e s and exposed  lux  f o r 10 days.  These dry e n c r u s t e d fragments were p l a c e d i n 20-ml  two t o 11,770 l u x .  Osmotic  to a l i g h t  i n t e n s i t y o f 11,770  At the end o f t h i s p e r i o d , e n c r u s t e d fragments were  immersed i n 20-ml o f SSW e x t r a c t .  3.  intensity  Two were exposed  t o 4280 l u x l i g h t and  A f t e r 10 days, a k i n e t e g e r m i n a t i o n was measured.  Potential  Water c o l l e c t e d from s e v e r a l s a l i n e h a b i t a t s from May through J u l y w i t h osmotic p o t e n t i a l v a l u e s ranged from low (690 mOsm) t o h i g h ( 3000 mOsm) as i n d i c a t e d i n r e s u l t s  (Appendix T a b l e XXIX).  a k i n e t e s were p l a c e d a t optimum c o n d i t i o n s  Inoculated cultures o f  f o r 12 days.  S a l i n e pond water c o l l e c t e d from " 1 s t S a l t Mine Pond" on 29 August 1968 was d i l u t e d w i t h d i s t i l l e d water t o determine the response o f a k i n e t e g e r m i n a t i o n and the e f f e c t o f c e l l  dimensions.  A t o t a l o f 10 v o l u m e t r i c  d i l u t i o n s were made p r o v i d i n g osmotic p o t e n t i a l v a l u e s r a n g i n g from 10 mOsm t o 3000 mOsm as i n d i c a t e d i n r e s u l t s  i n Appendix T a b l e XXX.  A f t e r 10 days a t these c o n d i t i o n s , g e r m i n a t i o n percentages were r e c o r d e d for  two c u l t u r e s a t each d i l u t i o n .  i n t o the r e s p e c t i v e s o l u t i o n s .  The r e m a i n i n g c u l t u r e s were t r a n s f e r r e d  A f t e r another 10 days, c e l l  dimensions  17  for  200 c e l l s were measured from c u l t u r e s w i t h the f o l l o w i n g osmotic  p o t e n t i a l values:  375 mOsm, 1050  mOsm, 1510  mOsm, 2540 mOsm or £a. the  range o f s e a s o n a l f i e l d c o n d i t i o n s . The  osmotic  g l y c o l 1000".  p o t e n t i a l o f s o l u t i o n s was r e g u l a t e d w i t h Four d i f f e r e n t l e v e l s o f osmotic  potential  "polyethylene (32 mOsm, 72 mOsm,  176 mOsm and 375 mOsm) were e s t a b l i s h e d by the a d d i t i o n o f v a r i o u s c o n c e n t r a t i o n s o f t h i s h i g h m o l e c u l a r weight compound t o d i s t i l l e d T r i s b u f f e r (1.0 g/1) water.  was a l s o added t o each c u l t u r e as w e l l as t o d i s t i l l e d  P r e l i m i n a r y s t u d i e s i n d i c a t e d l e v e l s o f p o l y e t h y l e n e g l y c o l 1000  up t o 150 g/1 d i d not r e t a r d a k i n e t e g e r m i n a t i o n . S a l t Mine Pond" c o l l e c t e d on 29 August 1968 osmotic  Water from the "1st  was a l s o d i l u t e d t o p r o v i d e  p o t e n t i a l v a l u e s o f 112 mOsm and 360 mOsm f o r c o n t r o l  In order t o study e f f e c t s o f osmotic f o r m a t i o n , water from "Cherry was  water.  purposes.  p o t e n t i a l on zoosporangia  Creek Pond" c o l l e c t e d on 29 August 1968  d i l u t e d w i t h d i s t i l l e d water t o g i v e 8 d i f f e r e n t osmotic  r e a d i n g r a n g i n g from 225 mOsm t o 1625  potential  mOsm (Appendix T a b l e XXXI).  I n o c u l a t e d c u l t u r e s were t r a n s f e r r e d a t the end o f 12 and 24 days d u r i n g the 32 day i n c u b a t i o n p e r i o d .  4.  Hydrogen-ion C o n c e n t r a t i o n The  of  c u l t u r e medium used i n t h i s experiment t o demonstrate the  pH on a k i n e t e g e r m i n a t i o n was the d e f i n e d m i n e r a l medium (BSM)  developed  specifically  f o r c u l t i v a t i o n o f Ctenocladus.  A 1:3 d i l u t i o n  w i t h d i s t i l l e d water was made t o e l i m i n a t e p r e c i p i t a t i o n a t lower ion  effects  concentrations.  hydrogen-  V a r i o u s pH v a l u e s r a n g i n g from 6.0 t o 12.0 as i n d i c a t e d  i n Appendix T a b l e XXVII were o b t a i n e d w i t h  .145  N HCL f o r v a l u e s below  18  9.0 and .IN NaOH f o r v a l u e s under optimum c o n d i t i o n s  above t h i s l e v e l .  f o r 8-10 days.  C u l t u r e s were m a i n t a i n e d  Fluctuations for cultures  between pH 7-8.5 never exceeded *0.1 o f a u n i t w h i l e ranged from 0.3 t o 0.5 u n i t s . t o 6.3, w h i l e  those between pH 9-11  S e t t i n g s a t pH 6.0 f l u c t u a t e d from pH,i60O  those above pH 11.0 ranged from 0.4 t o 0.8 u n i t s .  pH o f d i s t i l l e d water p l u s T r i s b u f f e r (0.5 g/1) was a d j u s t e d (-0.2) w i t h  .145N HC1.  T r i p l i c a t e tubes each w i t h  s o l u t i o n as w e l l as an unadjusted T r i s inoculated with akinetes. conditions  5.  The  t o ea. pH 7.5  20ml o f the a d j u s t e d  (p.5 g/1) s o l u t i o n a t pH 9.^0 were  C u l t u r e s were m a i n t a i n e d under  optimal  f o r s i x days.  S p e c i f i c Ion I n f l u e n c e C-:  Chihara  Seawater Medium (Appendix T a b l e  I I I ) was p r e p a r e d and a d j u s t e d  -into d i f f e r e n t Na:Mg r a t i o s by t h e a d d i t i o n o f Mg salts.  The medium was  d i l u t e d by f o u r p a r t s d i s t i l l e d water t o one p a r t C h i h a r a  Seawater Mix.  Previous allowed  i n v e s t i g a t i o n s i n d i c a t e d d i l u t i o n s o f t h i s medium o f up t o 1:5 normal development o f v e g e t a t i v e  zoosporangia. preparation.  Tris buffer  (0.2 g/1) was a l s o added t o t h i s d i l u t e d seawater  Major c a t i o n s f o r t h e b a s i c s o l u t i o n were measured on an  atomic a b s o r p t i o n  spectrophotometer.  the a d d i t i o n o f known c o n c e n t r a t i o n s  The Mg  t r a n s f e r r e d every 7-8 days. general  structures. culture.  l e v e l s were m a n i p u l a t e d by  o f Na:Mg a t r a t i o s o f 1:1, 1:2, 3:1.  C u l t u r e s remained a t optimum c o n d i t i o n s  for  c e l l s and p r o d u c t i o n o f  f o r ca. 30 days w i t h  cultures  A f t e r t h i s p e r i o d , c u l t u r e s were examined  c e l l shape, appearance, type o f b r a n c h i n g  and r e p r o d u c t i v e  C e l l dimensions o f 200 c e l l s were a l s o measured from each  19  S a l i n e s o i l water e x t r a c t was p r e p a r e d from Bowers Lake sediment as previously described  (pl2).  The e x t r a c t was f i l t e r e d  through a . 45u  M i l l i p o r e f i l t e r and a d i l u t i o n o f one p a r t d i s t i l l e d water: one p a r t e x t r a c t was p r e p a r e d . aration.  Tris buffer  (1 g/1) was a l s o added t o t h i s prep-  S i x d i f f e r e n t c o n c e n t r a t i o n s o f Na^SO^ were added t o s e p a r a t e  a l i q u o t s o f s o i l e x t r a c t p r e p a r a t i o n t o o b t a i n the Na:Mg r a t i o s  indicated  i n r e s u l t s i n Appendix T a b l e XXXIII.  The pH o f the p r e p a r a t i o n was  a d j u s t e d t o 8.^7 (-0.2) w i t h .IN KOH.  C u l t u r e s remained a t optimum  c o n d i t i o n s f o r c a . 40 days w i t h t r a n s f e r s every 8-10 days. A s e r i e s o f c u l t u r e s was p r e p a r e d where the C l each  and S0^~ s a l t s f o r  o f the f o u r major c a t i o n s were added t o d i s t i l l e d water a t  c o n c e n t r a t i o n s r a n g i n g from .05 g/1 t o 6 g/1 (Appendix T a b l e XXXIV). Tris buffer  (0.5 g/1) was a l s o added t o each p r e p a r a t i o n .  c u l t u r e s were m a i n t a i n e d a t o p t i m a l c o n d i t i o n s  6.  Response  Inoculated  f o r 6 days a t pH 8.6  (-0.2).  o f Ctenocladus i n Other S a l i n e Water  Water was c o l l e c t e d from Ironmask Lake, Wallender Lake, Bowers Lake, and "Polygon Pond" d u r i n g the s p r i n g 1967)  ( A p r i l 1968) and l a t e summer (August  and t r e a t e d i n the f o l l o w i n g ways: 1) u n f i l t e r e d and unstearned;  2) f i l t e r e d  through #1 Whatman f i l t e r paper and steamed a t 80-100°F f o r  30-40 minutes on two c o n s e c u t i v e days; 3) f i l t e r e d , one p a r t s a l i n e pond water:two  steamed and d i l u t e d  p a r t s d i s t i l l e d water.  Approximately one  month a f t e r each s e a s o n a l c o l l e c t i o n , 20-ml o f each o f the three types s a l i n e water' was added t o d u p l i c a t e 20-ml t e s t tubes and each with vegetative filaments of Ctenocladus. inoculated with akinetes.  Temperatures  inoculated  Another s i m i l a r s e t was  used f o r the two s e a s o n a l c o l l e c t i o n s  20  were approximated t o s i m i l a r f i e l d  conditions  a t the time o f c o l l e c t i o n .  o o S p r i n g water was m a i n t a i n e d a t 10 C and summer water a t 20 C.  The  v e g e t a t i v e m a t e r i a l was t r a n s f e r r e d every 14-15 days over a 60 day p e r i o d .  7.  Chelator  i n Seawater  A p o r t i o n o f seawater c o l l e c t e d from the southwest coast Island  o f Vancouver  (near Sooke) was t r e a t e d w i t h EDTA-N82 (.004 g/1) and another p o r t i o n  was l e f t  untreated.  Four t e s t tubes w i t h 20 ml o f each s o l u t i o n were  inoculated with akinetes  and p l a c e d a t o p t i m a l  conditions.  Cultures  were  examined a f t e r 6 and 12 days f o r g e r m i n a t i o n percentages and r e p r o d u c t i v e structures.  E.  Experimental  transplants:  Ctenocladus was i n t r o d u c e d  on g l a s s m i c r o s l i d e s  ponds where i t was not/.previously Ironmask Lake and "Polygon Pond".  c o l l e c t e d ; Wallender Lake, Bowers Lake, S i m i l a r t r a n s p l a n t s were made i n t o  "Cherry Creek Pond" f o r c o n t r o l purposes. weeks on etched g l a s s m i c r o s l i d e s better  zoospore attachment.  i n t o those l a k e s and  The p l a n t s were grown f o r three  (hydrogen f l u o r i d e ) which were used f o r  The p l a n t s were s t a r t e d from zoospores  produced by p l a n t s growing i n b i p h a s i c SSW c u l t u r e s .  These c u l t u r e s  were m a i n t a i n e d a t 20°C a t 4066 l u x (16 l i g h t / 8 dark c y c l e ) .  Sixslides  w i t h young Ctenocladus p l a n t s were p l a c e d a t approximately 4 5 ° a n g l e s i n c l e a r p l a s t i c t r a n s f e r chambers i n each pond.  The boxes were c a . 8x15cm  i n which 0.6 cm h o l e s were randomly spaced t o a l l o w (Fig.  2 ) . The boxes were f a s t e n e d  c i r c u l a t i o n o f water  s e c u r e l y t o a s t a k e ca. 10cm below  the water s u r f a c e a t one l o c a t i o n i n each h a b i t a t except i n the c o n t r o l  21  pond where t r a n s p l a n t s were made over the c r y s t a l bed and i n the noncrystal  zone.  T r a n s f e r boxes were p l a c e d i n the f i v e h a b i t a t s on t h r e e  d i f f e r e n t occasions Transplants  d u r i n g the p e r i o d o f 28 March 1968 t o June 1968.  were made on 28 March 1968, 20 A p r i l  1968 and 19 May 1968.  Four o f the s i x m i c r o s l i d e s from the March t r a n s p l a n t were c o l l e c t e d and r e p l a c e d w i t h  f o u r new s l i d e s on 20 A p r i l  remaining from the March t r a n s p l a n t a l o n g w i t h t r a n s p l a n t were c o l l e c t e d and r e p l a c e d w i t h on 19 May 1968. and  1968.  The two s l i d e s  two s l i d e s from the A p r i l  f o u r new i n o c u l a t e d  slides  On 16 June 1968, a l l s i x o f the s l i d e s were c o l l e c t e d  the experiment terminated.  The above c o l l e c t i n g procedure  f o r both one and two month i n c u b a t i o n p e r i o d s  allowed  i n each h a b i t a t .  A f t e r each c o l l e c t i o n , the s l i d e s were examined w i t h i n 3 hr, f o r general  c e l l shape and appearance as w e l l as f o r r e p r o d u c t i v e  structures.  M a t e r i a l was t r a n s p o r t e d back t o the l a b o r a t o r y i n b i p h a s i c SSW  containers  f o r f u r t h e r study. Due two  t o heavy g r a z i n g p r e s s u r e s  t r a n s f e r chambers were p l a c e d i n t h i s l a k e d u r i n g  19 May 1968 t o 16 June 1968. modified  F.  o f chironomid l a r v a e i n Wallender Lake,  by c o v e r i n g  Biological 1.  the p e r i o d o f  One o f these chambers was s l i g h t l y  the opening w i t h #20 mesh s i l k b o l t i n g /elejih.  Factors:  B i o l o g i c a l Antagonism  I s o l a t e s o f s e v e r a l a l g a l s p e c i e s o c c u r r i n g i n two o f the i n v e s t i g a t e d Kamloops l a k e s were i n o c u l a t e d i n t o c u l t u r e s o f C t e n o c l a d u s. s p e c i e s s e l e c t e d were Cladophora f r a c t a Lake and, R h i z o c l o n i u m h i e r o g l y p h i c u m  ( D i l l w . ) KUtz.  (C.A.Ag.) Kiitz.  The two  from Wallender from Bowers Lake.  22  I n o c u l a t i o n s o f each were made i n t o d u p l i c a t e 20-ml b i p h a s i c SSW c o n t a i n i n g young v e g e t a t i v e  f i l a m e n t s o f C t e n o c l a d u s.  D u p l i c a t e c u l t u r e s o f each  i s o l a t i o n were p l a c e d a t 10°C, 15°C and 20°C. under optimum c o n d i t i o n s  A.L.  f o r c a . 60 days through two t r a n s f e r s .  2.  Predation  The  feeding c a p a b i l i t i e s  of Cricotopus  sp. l a r v a e i d e n t i f i e d by  Hamilton ( p e r s o n a l communication) were i n v e s t i g a t e d i n the l a b o r a t o r y .  Inoculations with  C u l t u r e s were m a i n t a i n e d  o f Ctenocladus on etched  f i v e - s i x Cricotopus  containers similar  l a r v a e were i n t r o d u c e d  o f b i p h a s i c SSW.  to f i e l d  glass s l i d e s  (See t r a n s p l a n t experiment)  into five s t e r i l e  250-ml  These c u l t u r e s were m a i n t a i n e d a t 15°C o r  temperature c o n d i t i o n s a t the time o f c o l l e c t i o n .  T r a n s f e r s were made o n l y once a f t e r a p e r i o d of' 8-days. In a d d i t i o n t o examination o f d r o p p i n g s , l a r v a e were s a c r i f i c e d  every 1-2 days t o  examine gut c o n t e n t s .  G.  Herbarium M a t e r i a l Herbarium sheets  designated  as e i t h e r Ctenocladus c i r c i n n a t u s o r  Lochmiopsis s i b i r i c a were examined from 13 major h e r b a r i a . A l i s t i n g o f the h e r b a r i a and specimens i s g i v e n c e l l s i z e , type o f b r a n c h i n g  i n Appendix T a b l e XXXVI.  Vegetative  and presence o f a k i n e t e s were g e n e r a l l y  noted when p o s s i b l e f o r each specimen. c o l l e c t i o n were a l s o p r e p a r e d f o r l a t e r  Permanent s l i d e s reference.  from each  23 FIEIS- RESULTS - KAMLOOPS AREA  A.  Description of Study Area in Kamloops Region The seven lakes and ponds investigated in the Kamloops area are  situated within the ponderosa pine-bunch grass biogeoclimatic zone of British Columbia (Krajina 1965).  The lower slopes of the h i l l s and  valleys generally are covered with sagebrush. The area is comprised of thick accumulations of Tertiary volcanic rocks composed mainly of basalt and basalt breccia (Cockfield 1961). Several localized deposits occur within this sheet which include the Ironmask Batholith and a syenite intrusive bordering Kamloops Lake to the south within the vicinity of the two "Salt Mine Ponds" (Fig 3). The Ironmask Batholith is composed mainly of diorites rich in hornblende of which the main constituent is magnesium-rich amphibole (G. Rouse and W.H. Mathews personal communication). Climatic conditions place the area in the dry belt with an average annual precipitation ca. 24.3 cm, with the highest monthly average (2.99 cm) received in June (Canada Department of Agriculture).  Minimum average  monthly precipitation is received during March and April with values at 0.71 and 0.91 cm respectively (CD.A.).  Average annual winter snowfall  is jca. 73.4 cm, with most of this falling in December and January (CD.A.). Average annual temperature for the area is ca. 9°C with average monthly high is July (21.5°C) and August (20.0°C) (CD.A.). occur in December (-1.5°C) and January (-5.0°C).  Average monthly lows  Temperatures f i r s t rise  o above freezing during March (3.5 C) and normally f a l l below the freezing point in December (CD. A.).  .24  Figure 3.  Saline Deposits in the Vicinity of Kamloops, British Columbia Illustrating the Geology of the Drainage Basins for Saline Habitats.  ( 1 ="lst Salt Mine Pond", 2 = "2nd Salt Mine  Pond", 3 = "Cherry Creek Pond", 4 ="Polygon Pond", 5 = Ironmask Lake, 6 = Bowers Lake, 7 = Wallender Lake) After J.M. Cummings, 1940.  25  B.  Seasonal Changes i n the H a b i t a t s Seasonal changes i n the appearance o f the c l o s e d s a l i n e h a b i t a t s i n  the Kamloops a r e a a r e extreme as would be expected w i t h e v a p o r a t i o n r a t e s exremely h i g h and p r e c i p i t a t i o n v e r y low throughout  the summer.  Many  of the s h a l l o w undrained b a s i n s and d e p r e s s i o n s a r e temporary, w i t h water p r e s e n t d u r i n g o n l y s p r i n g and e a r l y summer.  Others may be  c l a s s i f i e d as semi-permanent, c h a r a c t e r i z e d as h a v i n g o n l y pockets o f c o n c e n t r a t e d water i n the l a t e summer.  isolated  Formation  of a thin,  t r a n s p a r e n t e n c r u s t e d s a l t sheet over the s u r f a c e o f these i s o l a t e d water pockets minimizes  e v a p o r a t i o n , consequently  t o t a l drying i s infrequent.  T o t a l d r y i n g f o r any g i v e n year depends on c l i m a t i c c o n d i t i o n s i . e . w i n t e r s n o w f a l l , s p r i n g and e a r l y summer p r e c i p i t a t i o n and summer temperatures. Seasonal changes f o r each h a b i t a t i n v e s t i g a t e d i n t h i s study a r e i l l u s t r a t e d i n f i g u r e s 4 - 20. r i n g o f d r i e d s a l t appears  A c h a r a c t e r i s t i c white  efflorescent  a l o n g the margin o f a l l h a b i t a t s  the summer months as water l e v e l s drop  ( F i g 5,13,16,18).  Major l o s s e s  of water occur i n J u l y and August as would be expected when a r e a t t h e i r h i g h e s t (Appendix  Table IV).  Wallender  the y e a r .  f i v e h a b i t a t s a r e semi-permanent w i t h i s o l a t e d pockets  throughout i s unique  temperatures  Lake ( F i g 17,18)  and Bowers Lake ( F i g 15,16) remain permanent throughout remaining  throughout  the u n d r a i n e d b a s i n ( F i g 6,11,14).  "Polygon  and s i m i l a r , t o p a t t e r n e d ground i n the A r t i e  The o f water  Pond" ( F i g 9-11) (Washburn 1956)  i n t h a t i t i s c h a r a c t e r i z e d by p o l y g o n a l r a i s e d r i d g e s o f sediment apparent  d u r i n g the l a t e summer.  Cumming (1940) r e p o r t s t h a t permanent  c r y s t a l beds c a . 1.2 m beneath the s o f t b l a c k ooze i n " 1 s t S a l t Mine Pond" and  Ironmask Lake.  Cores  taken i n d i c a t e d c r y s t a l beds up t o 10 m occur  Experimental f i e l d transfer chamber (8 x 15 cm). Seasonal Condition of "Cherry Creek Pond". Spring condition (April) at maximum depth ca. 45 cm. Early summer condition (May) with open water zones ( c r y s t a l beds) and Ruppia zones . Mid-summer condition (July) with water only remaining i n the c r y s t a l pockets (depressions) , Late summer condition (September) with no standing water. Winter condition (January) with v i s i b l e c r y s t a l zones as spherical semi-frozen regions .  F i g u r e s 9-11  S e a s o n a l c o n d i t i o n o f "Polygon 9.  10.  Pond",  S p r i n g c o n d i t i o n a t maximum depth c a . 40 cm (Note p o l y g o n a l r a i s e d r i d g e s n o t v i s i b l e ) , L a t e summer c o n d i t i o n (September) w i t h polygonal r a i s e d r i d g e s .  visible  Open pockets o f c o n c e n t r a t e d water i n the l a t e summer (September). F i g u r e s 12-14.  Seasonal c o n d i t i o n o f Ironmask Lake.  12.  S p r i n g a o n d i t i o n ( A p r i l ) a t maximum depth c a . 42 cm.  13.  L a t e summer c o n d i t i o n (August) w i t h o n l y s c a t t e r e d pockets o f c o n c e n t r a t e d water remaining.  14.  S c a t t e r e d r e g i o n s o f open c o n c e n t r a t e d water i n the l a t e summer (September),  pockets  Figures  Figures  15-16.  S e a s o n a l c o n d i t i o n o f Bowers Lake, .  15.  S p r i n g c o n d i t i o n ( A p r i l ) a t maximum depth c a . 140 cm .  16.  L a t e summer c o n d i t i o n (September) w i t h c h a r a c t e r i s t i c e f f l o r e s c e n t white m a r g i n a l r i n g o f s a l t .  17-18.  S e a s o n a l c o n d i t i o n o f Wallender  Lake.  17.  S p r i n g c o n d i t i o n ( A p r i l ) a t maximum depth c a . 150 cm  18.  L a t e summer c o n d i t i o n  (September).  F i g u r e 19.  "1st  S a l t Mine Pond" d u r i n g May .  F i g u r e 20.  "2nd S a l t Mine Pond" d u r i n g May.  29  i n the " 1 s t S a l t Mine Pond" (Report o f M i n i s t e r o f Mines f o r B r i t i s h Columbia, 1930). A l l h a b i t a t s a r e c h a r a c t e r i z e d by a narrow band S a l i c o r n i a r u b r a A. N e l s . around the margins.  (up t o 3 m) o f  The b o u n d a r i e s f o r these  primary c o l o n i s t s o f s a l i n e environments v a r y from y e a r ,to y e a r depending upon the a n n u a l f l u c t u a t i o n s i n the water l e v e l . macrophyte  The dominant  aquatic  i n "Cherry Creek Pond" and Wallender Lake i s Ruppia m a r i t i m a  L., whereas the a l g a Chara canescens Desv. & L o i s and s c a t t e r e d patches of Potomogeton  spp. a r e dominants  i n Bowers Lake.  Small i s o l a t e d  patches o f Ruppia were observed i n "Polygon Pond" and Ironmask  remnant  Lake.  These two h a b i t a t s a l o n g w i t h t h e two " S a l t Mine Ponds" were too c o n c e n t r a t e d to s u p p o r t abundant  growth o f macrophytes.  "Cherry Creek Pond" i s unique i n t h a t t h e r e a r e f o u r i s o l a t e d pockets of c r y s t a l d e p o s i t s throughout the year where Ruppia does not o c c u r ( F i g 5,6), whereas throughout the r e s t o f the pond the p l a n t i s q u i t e abundant.  These c r y s t a l  zones a r e sometimes  e v i d e n t d u r i n g the w i n t e r  months when the water f r e e z e s l e a v i n g c l e a r l y v i s i b l e s e m i - f r o z e n pockets of s l u s h  (Fig 8).  D u r i n g the l a t e summer t h e r e i s u s u a l l y a b r i l l i a n t  reddish-pink  c o l o r c a s t a l o n g the margins and i s o l a t e d patches due t o h i g h c o n c e n t r a t i o n s o f s u l f u r b a c t e r i a which p r e v a i l i n these h a b i t a t s . p a r t i c u l a r l y n o t i c e a b l e around masses o f decomposing  They a r e  Cladophora, RhizocIonium  and C t e n o c l a d u s i n Wallender Lake, Bowers Lake and "Cherry Creek Pond" respectively.  C.  Comparative S e a s o n a l P h y s i c a l and Chemical Changes i n H a b i t a t s 1.  Major Ions  30  The dominant cation and anion constituents d i f f e r markedly i n the investigated saline lakes and ponds.  Chemical results for June 1968  of major ions for a l l the lakes and ponds are eompared to seawater expressed as meg[..7» of, the major cations and anions (Hutchinson for comparison  (Table^l) .  Appendix Tables V - IX.  1957)  Also',) values for June and August 1967  March, May and August 1968 expressed i n meq.%  and  and  and meq'./I are shown i n  The dominant s a l t i n "Cherry Creek Pond" and  "1st Salt Mine Pond" i s Na^O^, whereas i n the "2nd Salt Mine Pond", CO^ • replaces the SO^* as dominant.  Cation proportions i n "Cherry Creek  Pond" are quite similar to those of seawater with C l ions reversed (Table 5). Mg  ++  and Na  +  and S0^~ proport-  Bowers Lake i s d e f i n i t e l y a MgSO^ lake with  -  cations sharing the dominant role with S0^~ i n Wallender  Lake, Ironmask Lake and "Polygon Pond". The monovalent:divalent (M:D) habitat (Appendix Table X).  cation ratios also d i f f e r i n each  Similar seasonal M:D  ratios occurred i n  a l l Habitats except "Polygon Pond", where spring ratios were higher (1.2) than those i n the late summer (0.^49).  Extremely high  M:D  cation  r a t i o s were found i n the "1st Salt Mine Pond" (36.0) and "2nd Salt Mine Pond" (75.0), whereas seasonal ratios i n "Cherry Creek Pond" remained between 5.3-8.8.  A l l other habitats investigated had a M:D  cation r a t i o  of 1.2 or less with the lowest occurring i n Bowers Lake (0.47) (Appendix Table X). Seasonal percentage composition of K  and Ca  remain low and f a i r l y  constant i n a l l habitats with the highest percentage of each occurring i n Bowers Lake (Appendix Table V - IX). ion  Extremely high levels of each  are achieved a f t e r evaporation i n the concentrated solutions  T a b l e 1.  Chemical Data f o r Major Ions i n June 1968 Compared w i t h Normal Seawater  (Harvey 1963) E x p r e s s e d i n meq.  ,.K. +  Na  +  Mg  Ca^  (per cent)  Cl"  SO." 4  co ' 3  1.7  77.3  17.7  3.3  90.0  9.3  0.7  Surface  .6  82.5  16.2  .7  1.6  95.0  3.4  Bottom  .8  82.8  15.6  .8  1.4  96:0'  2.6  Ruppia zone  1.0  78.4  20.0  .6  1.8  94.9  3.3  Seawater "Cherry Creek Pond" Crystal  zone  "1st  Salt  Mine"  .39  98.3  1.3  .01  3.2  28.8  68.0  "2md  Salt  Mine"  .34  96.9  2.7  .06  .6  83.0  16.4  1.1  43.9  53.5  1.5  .9  98.7  .4  1.1  48.8  49.3  .8  1.9  96.2  1.9  Surface  2.8  37.1  56.2  3.9  1.3  97.4  1.3  Bottom  2.6  39.8  54.5  3.1  1.3  97.5  1.2  Surface  1.2  52.0  43.9  2.9  3.7  93.6  2.7  Bottom  1.1  53.3  43.8  1.8  4.1  93.3  2.6  "Polygon  Pond"  Ironmask Lake  Bowers Lake  Wallender Lake  32  remaining i n the l a t e summer. H i g h e s t Mg  l e v e l s occur i n "Polygon Pond" (3083 meq./I) and  Ironmask Lake (1266 meq>/I) i n l a t e summer, w i t h h i g h e s t N a  levels  +  found i n " 1 s t S a l t Mine PondV' (4269 meq. /I) and "2nd S a l t Mine Pond" (4434 meq./l).  Percentages o f Na  w i t h r e s p e c t t o the o t h e r c a t i o n s  i n these two ponds and i n "Cherry Creek Pond" a r e extremely h i g h r a n g i n g from 82.07, t o 98.37. w i t h percentages o f o t h e r s r e l a t i v e l y low  (Appendix  Table V - IX). Both v e r t i c a l and h o r i z o n t a l d i f f e r e n c e s i n percentage composition o f ions were noted i n t h i s study. greater concentration of ions.  G e n e r a l l y , the bottom l e v e l s have the  This i s p a r t i c u l a r l y noticeable i n  Wallender Lake where the bottom stagnant l a y e r i s formed i n the l a t e summer (Appendix T a b l e I X ) .  I t a l s o i s e v i d e n t on a s m a l l e r s c a l e i n "Cherry  Creek Pond" (Appendix T a b l e IX) and i n a d d i t i o n , the percentages o f Mg  and Na  d i f f e r between the c r y s t a l and Ruppia zone ( F i g 5 ) , w i t h  h i g h e r percentages o f N a ratios  +  found i n t h e f . c r y s t a l zone.  Sodium:magnesium  (5:1) i n the c r y s t a l zone a r e h i g h e r than i n the Ruppia  (3.5:1.0).  zone  The c r y s t a l l i n e s a l t d e p o s i t s i n "Cherry Creek Pond" c o v e r i n g  the bottom sediment  i n the c r y s t a l  zone were a n a l y z e d w i t h Na2$0^ b e i n g  the major component. As the season p r o g r e s s e s , the percentages o f Na +4i o n change w i t h Mg Table V - IX).  +  i n solut-  For example, waters i n "Polygon Pond" i n the s p r i n g  of 52.37. and 42.67. r e s p e c t i v e l y . +  and Mg  i n c r e a s i n g as the waters c o n c e n t r a t e (Appendix  a r e c o n s i d e r e d t o be predominantly Na2S0^ w i t h Na  Na  +  percentages  However by midsummer the dominant  becomes the secondary to M g ^ ' w i t h Mg  and 32.37. r e s p e c t i v e l y .  and Mg  +  and N a  +  percentages a t 65.77o  S i m i l a r p a t t e r n s are apparent i n a l l ponds,  33  however they are more n o t i c e a b l e i n "Polygon Pond" and Ironmask Lake^due t o g r e a t e r c o n c e n t r a t i o n o f ions (Appendix T a b l e V - I X ) . P r o p o r t i o n a l s e a s o n a l changes  f o r "Polygon Pond", Ironmask Lake,  Wallender Lake, Bowers Lake and "Cherry Creek Pond" a r e g r a p h i c a l l y i l l u s t r a t e d i n F i g 21S^$yb. The r e l a t i v e a n i o n i c p r o p o r t i o n s o f both C l  f a i r l y c o n s t a n t throughout the year.  and SO,~ 4  One e x c e p t i o n was  remained  "1st S a l t Mine  Pond" (Appendix T a b l e V - IX) where percentages o f S0^~ i n c r e a s e d from 28.8%  t o 45/47o.  Highest absolute values f o r C l  and SO^ were a c h i e v e d i n  "Polygon Pond", w i t h C l " a t 184 me«j$/l and SO* a t 4125 metj./I (Appendix Table V -  I X ) . Wallender Lake and the " 1 s t S a l t Mine Pond" had the  highest r e l a t i v e proportions of C l  r e a c h i n g as h i g h as 5%  (Appendix  Table V - IX). S e a s o n a l changes  i n the HCO^  /CO^  forms o f combined, CO^ were  e v i d e n t i n "Cherry Creek Pond", Wallender Lake and Bowers Lake. the s p r i n g , HCO^ p r o g r e s s e d , CO^"  was  In  the p r i n c i p l e component; however as the seasons  became the dominant  (Appendix T a b l e V - I X ) .  Both  forms were g e n e r a l l y s i m i l a r i n Ironmask Lake throughout the year. "Polygon Pond", HCO^"  was  the s e a s o n a l dominant  f r a c t i o n , whereas i n the S a l t Mine Ponds CO^" onent as r e f l e c t e d i n the pH ences of HCO^  and C0^  s  o f the combined  was  In  CO^  the p r i n c i p a l comp-  (Appendix T a b l e V - IX).  Vertical  were apparent i n Bowers Lake, Wallender  differLake  and "Cherry Creek Pond" w i t h v a l u e s at the bottom c o n s i d e r a b l y h i g h e r f o r each component than a t the s u r f a c e by the l a t t e r p a r t o f the summer. Extreme v e r t i c a l d i f f e r e n c e s i n the water column e x i s t e d i n Wallender Lake a t the end o f the summer when CO^"  (17.4 me«j./l) was  component a t the s u r f a c e w i t h t h i s form r e p l a c e d by HCO-"  the major (22.6 mei*. /I)  34  F i g u r e 21a,  S e a s o n a l i o n i c diagrams f o r semi-permanent h a b i t a t s  ("Cherry  Creek Pond" l a & l b , "Polygon Pond" 2a & 2b and Ironmask Lake 3a & 3b) i n which the areas o f the segments a r e p r o p o r t i o n a l to the e q u i v a l e n t  concentration  (a = spring;} v a l u e s  1  o f the major anions and c a t i o n s ,  b. = l a t e summer v a l u e s ) .  35  F i g u r e 21b  S e a s o n a l i o n i c diagrams f o r permanent  lakes  (Bowers Lake l a &  l b , Wallender Lake 2a & 2b) i n which the areas of the segments are p r o p o r t i o n a l t o the e q u i v a l e n t c o n c e n t r a t i o n o f the major anions and c a t i o n s .  (a = s p r i n g v a l u e s ,  b = l a t e summer v a l u e s ) .  la  1b  36  at the bottom (Appendix Table IX).  2.  Nitrogen and Phosphorous  Nitrogen (N0 -NO^ ) values expressed in mg/1 as indicated in 2  ^Appendix Table XI, were formally higher in spring and early summer, decreasing in late summer to trace amounts until after winter turnover (Fig 22).  Highest levels in the spring were present in'"Cherry Creek  Pond" at .18 mg/1 with increased concentration of N0„ NO, in  "Polygon Pond" and Ironmask Lake (Fig 22).  by midsummer  Marked seasonal vertical  differences were not detected in any of the habitats except in the early spring in "Cherry Creek Pond" and the late summer in Wallender Lake (Fig 22). Ammonium ,&on concentrations were generally lower in "Cherry Creek Pond" and the two salt mines, than in the other lakes and ponds investigated (Appendix Table XI).  Values as high as 49.25 mg/1 were measured  in "Polygon Pond" during June.  Seasonal vertical differences in NH^  +  concentrations existed with bottom measurements higher than those at the surface (Fig 23).  This was particularly evident in the two permanent  lakes (Bowers tand Wallender) when surface measurements of NH^ were .2 mg/1 +  and 12.0 mg/1 and bottom measurements at .75 mg.l and 26.0 mg.l respectively. Phosphate concentrated as the seasons progressed to extreme levels as high as 177.3 mg/1 recorded; in "Polygon Pond" in the late summer (Fig 24).  Phosphate levels were also higher in bottom samples than  those taken from the surface, particularly in the stagnant bottom layer in Wallender Lake in late August, where levels were six times as high as at the surface (Appendix Table XII).  In a l l of the habitats invest-  37  F i g u r e 22.  Seasonal values  f o r NO2  - NO3  measured i n mg/1 f o r  Kamloops' h a b i t a t s d u r i n g 1967 and 1968. ( Surface  ;  Bottom  -)  2.56  I  Iron/wask  2  ,56..  Q* '- -28  2  .64..  Wallender  My  Je  Jul  Aug  Sept  Mar  Time  Apr  My  Je  Jul  Aug  38  Figure 23.  Seasonal surface and bottom ammonia values measured in Kamloops' habitats during 1968. ( Surface  ; Bottom —  ---  )  Figure 24.  Seasonal values for phosphorus for Kamloops' habitats during 1967 and 1968. (Ortho-phosphate  ; Total phosphate  —)  128  "Cherry Ck. i * Pond"  "Polygon"  Wallender  Jul  Aug  Sept  Mar  Time  Apr  My  Jul  Aug  igated, except Bowers Lake and "Polygon Pond" most of the phosphate was as ortho-PO^  =  throughout the year (Fig 24).  In these two habitats  the meta-PO^ fraction made up a large percentage, consequently producing =  very low seasonal ortho-PO^ values. s  3.  Osmotic Potential, Total Dissolved Solids and Specifics/Conductivity  Extreme summer drying conditions produced a characteristic drop in;/ the water level of a l l habitats.  Seasonal values for total dissolved  solids (TDS), osmotic potential and specific conductivity for a l l habitats are shown in Appendix Tables XIII - XV. Extremely high values for TDS (Fig 25) were measured in isolated water pockets in the temporary habitats ( 565 g/1) in late summer. Since these habitats occupy shallow basins, salinity levels increase rapidly with extremely high salinity values occurring by early summer when water levels are relatively low as illustrated in Fig 25 for "Cherry Creek Pond" and "Polygon Pond".  Conversely the two permanent  lakes (Bowers and Wallender) are the least concentrated with less obvious monthly increases in salinity (Fig 25.).  The two "Salt Mine Ponds"  when f i r s t visited in May already had TDS values 140 g/1 with values more than doubling (315.4 g/1) in "2nd Salt Mine Pond" by the end of August. Vertical salinity differences in the water column are evident in spring and late summer as indicated in Fig 25-26. Early spring salinity differences recorded in March 1968 were apparent in a l l habitats except Ironmask Lake.  In the crystal zone of "Cherry Creek Pond" (Fig 54,7)  the bottom total dissolved solid readings was ca. three times greater than the surface.  Corresponding osmotic potential differences at the  —surface (220 mOsm) and bottom (705 mOsm) were also recorded (Appendix  Figure 25.  Seasonal total dissolved solids for Kamloops' habitats during 1967 and 1968. ( Surface  ; Bottom  ——-—)  600  "Cherry Ck. Pond"  300  600  'Polygon*  300 O)  CO  Bowers  •a "o to •a a> —  600-L  300.  o  CO CO Q  'I  "CD  Wallendei  o  600_L  I  I  Apr  My  I  "V  300-L  Jul  Aug  Sept  Jan  Time  Mar  Je  Jul  Aug  Figure 26.  Seasonal specific conductivity values for Kamloops habitats during 1967 and ( Surface -ri>  1968. ; Bottom  )  Je  Jul  Aug  Sept  Mar  Time  43 Table XIV). Simiar vertical differences in salinity levels were recorded for "Cherry Creek Pond" and Wallender Lake in the late summer (Fig 25-26). In a l l of the semi-permanent habitats, specific conductivity values would reach a summer peak and beyond this, conductivity values of the saturated solutions would fluctuate characteristically dropping to lower levels (Fig 26). A similar phenomenon occurred with total dissolved solids (Fig 25).  4. Dissolved Gases Dissolved oxygen in a l l habitats gradually diminished to extremely low levels (<1 mg/1) by the end of the summer (Appendix Table XVI). Highest concentrations of dissolved oxygen (12.0 mg/1) were measured in "Cherry Creek Pond" during spring with marked differences between the open crystal zone and the Ruppia zone during the optimum growing season of Ruppia in May and June (Appendix Table XVI). Vertical oxygen differences in the water column were also noted, particularly in Wallender Lake and Bowers Lake with levels from trace amounts up to 1 mg/1 afe bottom levels in the latter part of the season. Free CO2 was normally absent in the waters, except in cases where the pH dropped below 8.3. Hydrogen sulphide was present at the mud-water interface in a l l lakes and ponds investigated.  Measurements varied from trace amounts  to 6 mg/1 in a l l habitats except in Wallender Lake where values >10 mg/1 were recorded.  44  5. pH Values for pH were high in a l l habitats with noticeably lower I|  values (generally below pHC9.0) in the Mg (Fig 27).  habitats as would be expected  The seasonal range of pH for the permanent habitats was less  than in the semi-permanent basins as shown in Appendix Table XVII. There was a noticeable trend of decreasing pH throughout the summer with increasing salinity in these semi-permanent habitats (Fig 27), whereas this was less noticeable in the permanent lakes (Wallender and Bowers).  Both horizontal and vertical differences in pH were noted  during certain times of the year.  Horizontal differences approaching 1  unit were recorded in the early summer between the Ruppia and open water zones in both Wallender and "Cherry Creek Pond" during the active growing season of this macrophyte,  (Appendix Table XVII). Vertical differences in  pH were measured only in Wallender Lake where vertical differences of 1.5 units existed during late summer stagnation even though maximum depth was only 105 cm (Appendix Table XVII). 6. Depth V i s i b i l i t y and Temperature The standard 20 cm Secchi Disk was visible to the bottom in a l l open habitats throughout the year except where there was extensive growth of Ruppia in "Cherry Creek Pond" and Wallender Lake, which made v i s i b i l i t y of the disk impossible immediately below the surface. Temperature in the ponds and lakes demonstrated a typical seasonal pattern (Fig 28), with extremely high summer temperatures and low winter temperature conditions existing in the semi-permanent habitats. Winter measurements were recorded as low as -4.5°C during January with  45  Figure 27.  Seasonal surface and bottom pH values for Kamloops' habitats during 1967 and 1968. ( Surface  ; Bottom  —-——)  u  'Cherry Cr. Pond*  10 . 9. I  8  IronMask  I  '  I  I  I  I  I  Mar  Apr  J  I  11.  -10.  9 8  Bowers  a  11. 10. 9.  8  Wallender  11. 10, 9.  8  J  I  My  Je  Jul  L  Aug  H Sept  IJan  Tim e  My  I  j  e  I  Jul  Aug  Figure 28.  Seasonal Surface Temperature for Kamloop's Habitats During 1967 and 1968.  mid-summer readings up to 37.5 C in July (Fig 29).  Summer peak temper-  atures in the two permanent lakes (Bowers and Wallender) were considerably lower (Fig 28).  Afternoon temperatures in "Cherry Creek Pond",  "1st Salt Mine Pond" and "i2nd Salt Mine Pond", never measured above 28°C whereas those with open unshaded basins, such as Ironmask Lake and "Polygon Pond" ranged from 26 - 37°C during mid-summer in any one day (Fig 28). The significance of microclimatic temperature conditions became evident when waters within small wooden enclosures (1.5m x 1.5m,  from  previous mining operations on the "Salt Mine Ponds"), indicated significant temperature differences depending upon the length of time exposed to direct sunlight during the day.  In the two "Salt Mine Ponds"  temperatures for waters that were shaded for the majority of the day particularly during the afternoon, ranged from 16-20°C whereas areas exposed to direct afternoon sunlight ranged from 25-28°C in any one day. Temperatures of solutions beneath the encrusted salt, as well as temperatures within the salt crystals were also normally 3-6°C lower than water exposed to the direct sunlight. Vertical temperaturesdifferences in the water column were recorded in Bowers Lake and "Cherry Creek Pond", when density stratification occurred March 1968 (Appendix Table XVIII).  Surface water temperatures  in "Cherry Creek Pond" were recorded at 4.5°C with bottom temperatures at 11.5°C.  Similarly, surface temperatures in Bowers Lake were 7.5°C  with bottom temperatures at 12.0°C.  48  7.  T r a c e Elements:  T a b l e 19 i n the appendix g i v e s a comparative p i c t u r e o f the t r a c e elements p r e s e n t i n the s u r f a c e waters o f Bowers l a k e , Wallender  Lake,  "Cherry Creek Pond", " 1 s t S a l t Mine Pond", "2nd S a l t Mine Pond" and "Polygon Pond",  C e r t a i n elements  ( i . e . A l , B, Fe, S i and T i ) show  r e l a t i v e l y h i g h c o n c e n t r a t i o n s i n these s a l i n e h a b i t a t s w i t h v e r y h i g h v a l u e s found i n the semi-permanent h a b i t a t s .  Strontium values are  r e l a t i v e l y h i g h (32-50 mg/1) i n Wallender Lake, Bowers Lake and "Polygon Pond" w i t h r e l a t i v e l y lower l e v e l s measured i n "Cherry Creek Pond" and the two " S a l t Mine Ponds" (<20  mg/ll)  BIOLOGICAL Seasonal C o n d i t i o n o f Ctenocladus E a r l y i n the s p r i n g  (mid-March) a k i n e t e g e r m i n a t i o n ( F i g 29) i s  i n i t i a t e d by reduced s a l i n i t y tubes a r e formed  l e v e l s and r i s i n g temperatures.  i n several directions  t y p i c a l laminate c h l o r o p l a s t s .  Germination  ( F i g 30), p r o d u c i n g c e l l s w i t h  R a p i d v e g e t a t i v e development  f o l l o w s d u r i n g the l i m i t e d growing season, which l a s t s to mid-June depending upon s e a s o n a l c o n d i t i o n s .  ( F i g 31)  from mid-March  Zoosporangia may be  p r e s e n t as e a r l y as m i d - A p r i l on two t o m a n y - c e l l e d f i l a m e n t s . zoospores a t t a c h t o v a r i o u s s u b s t r a t e s ( l o g s , r o c k s , rubber macrophytic v e g e t a t i o n , e t c . ) .  Released  tires,  By e a r l y summer (June) as the waters  evaporate and s a l i n i t y l e v e l s r i s e , some t e r m i n a l c e l l s  form a k i n e t e s  ( F i g 32). At t h i s time l a r g e s p h e r i c a l masses, or " b a l l s " ( F i g 33) o f Ctenocladus  (from 15-25mm) a c h i e v e d from i n i t i a l  akinete germination  49  F i g u r e s 29-35.  Stages i n the l i f e h i s t o r y o f Ctenocladus and s e a s o n a l c o n d i t i o n .  i n the f i e l d  29.  Germination o f Ctenocladus a k i n e t e s w i t h g e r m i n a t i o n tubes a t 2-3 c e l l stage ( note c h a i n s o f g e r m i n a t i n g a k i n e t e s ) x300.  30.  A k i n e t e g e r m i n a t i o n w i t h s e v e r a l g e r m i n a t i o n tubes a r i s i n g i n s e v e r a l d i f f e r e n t d i r e c t i o n s xl200.  31.  V e g e t a t i v e f i l a m e n t s of Ctenocladus i l l u s t r a t i n g appearance w i t h acute b r a n c h i n g x300.  32.  Formation o f t e r m i n a l a k i n e t e s (A) i l l u s t r a t i n g * r e d u c e d c e l l s i z e a t t e r m i n a l end o f f i l a m e n t xl200.  33.  S p h e r i c a l c o l o n i e s o f Ctenocladus (10-25 cm) p r i o r t o saltlencrustment. Ctenocladus a t t h i s stage i s 'Primarily v e g e t a t i v e .  34.  E n c r u s t e d s p h e r i c a l c o l o n i e s of Ctenocladus ( a k i n e t e s ) d e p o s i t e d a l o n g the margin o f "Cherry Creek Pond" i n the l a t e summer.  35.  E n c r u s t e d s p h e r i c a l c o l o n i e s (10-25 cm) i l l u s t r a t i n g s a l t encrustment. Ctenocladus a t t h i s stage i s e n t i r e l y akinetes.  general  50  are  p r e s e n t throughout the c r y s t a l zone i n "Cherry Creek Pond" as w e l l  as a l o n g the margins o f the Ruppia zone.  The s i z e o f these c o l o n i e s  v a r i e s from year t o year depending upon the l e n g t h o f the growing  season.  T h i s was apparent i n " 1 s t and "2nd S a l t Mine Ponds" where these c o l o n i e s were never g r e a t e r than 15 cm i n diameter.  By J u l y , i n "Cherry Creek  Pond" z o o s p o r a n g i a were absent and many c e l l s were c o n v e r t e d i n t o a k i n e t e s . In some extreme h a b i t a t s ,  ("1st S a l t Mine Pond" and "2nd S a l t Mine Pond"),  most i f n o t a l l c e l l s were c o n v e r t e d i n t o a k i n e t e s by May. t h e r e i s a n o t i c e a b l e change from a l i g h t  Generally  green t o a dark green c o l o r  when v e g e t a t i v e c e l l s have been c o m p l e t e l y c o n v e r t e d i n t o a k i n e t e s .  By  the  end o f J u l y , w i t h d e c r e a s i n g water l e v e l s , s p h e r i c a l masses o f a k i n e t e s  are  s t r a n d e d a l o n g t h e margins and become e n c r u s t e d w i t h s a l t  ( F i g 34-35).  The c e n t e r s o f t h e s e e n c r u s t e d masses, however, remain moist f o r some time a f t e r i n i t i a l s u r f a c e encrustment.  C e l l dimensions o f v e g e t a t i v e  m a t e r i a l a l s o undergo d r a s t i c changes w i t h i n c r e a s e d s e a s o n a l s a l i n i t y as i n d i c a t e d i n t a b l e 2.  G r e a t e s t mean c e l l  l e n g t h o f 88.2u was o b t a i n e d  i n May 1968, c o l l e c t i o n s from "Cherry Creek Pond" w i t h dimensions decr e a s i n g as the waters c o n c e n t r a t e . I s o l a t e d s p h e r i c a l c o l o n i e s a r e o f t e n d e p o s i t e d i n the semi-moist Ruppia zone i n "Cherry Creek Pond" l a t e i n the summer.  The upper  p o r t i o n o f t h e s e masses i s a sun-bleached orange-brownish  c o l o r and the  lower p o r t i o n l o c a t e d i n the moist sediment, a dark green c o l o r . the  By  end o f the summer when the water l e v e l s i n "Cherry Creek Pond"  were extremely low, f i l a m e n t o u s c h a i n s o f a k i n e t e s were found approxi m a t e l y 6 cm beneath a t r a n s l u c e n t c r y s t a l l a y e r p a r t i a l l y b u r i e d i n the  bottom b l a c k ooze.  A p i n k i s h - r e d l a y e r o f b a c t e r i a was a l s o apparent  51  Table 2  Monthly Mean C e l l Dimensions o f Ctenocladus from Collections  (1968).  Range o f C e l l Size i n u  i n Kamloops Area.  Mean C e l l  Mean  Dimension i n u  MONTH  LENGTH  MARCH  22.5-  5.-  75  7  APRIL  Collected  WIDTH  25-  LENGTH  field  L:W  Osmotic  Potential  i n mOsm  WIDTH  RATIO  SURFACE  BOTTOM  50.4  6.0  8.3  220  705  65.0  6.0  10.8  330  365  92.0  6.7  13.8  536  559  53.0  7.3  7.2  690  700  43.4  7.5  5.7  1237  1258  18.8  9.5  1.9  1612  2382  105  MAY  JUNE  35180  8.5  37.5-  6.5-  120.0  JULY  AUGUST  5.5-  9.5  17.5-  6-  87.5  9  15.037.5  712  at  the c r y s t a l - C t e n o c l a d u s zone. Gametangia f o r m a t i o n or development was  collections  from any of the i n v e s t i g a t e d  D u r i n g the w i n t e r v i s i t  habitats.  (January 1968)  a k i n e t e c h a i n s were b u r i e d beneath  never observed i n f i e l d  fragments  of dark  green  20 cm o f snow and 18 cm o f i c e a t  the c r y s t a l - s e d i m e n t i n t e r f a c e .  Seasonal Occurrence o f Other Dominant Organisms a.  Algae  The d i v e r s i t y i n a l g a l s p e c i e s i n h a b i t i n g the s a l i n e  environments  i s s m a l l e r than expected i n a system where s a l i n i t y extremes do not exist.  G r e a t e s t d i v e r s i t y o f s p e c i e s occurs d u r i n g s p r i n g and  summer, p r i o r t o i n c r e a s e d s a l i n i t y Pond", "1st S a l t Mine Pond" and  levels.  Ironmask Lake,  early  "Polygon  "2nd S a l t Mine Pond" have the l e a s t  number of t o t a l s p e c i e s ( g e n e r a l l y <10) mud-water, m u d - c r y s t a l i n t e r f a c e .  w i t h most o c c u r r i n g a t the  Bowers Lake supports the g r e a t e s t  number o f s p e c i e s which r e f l e c t s i t s r e l a t i v e l y lower s a l i n i t y  levels.  Dominant s p e c i e s i n the s a l i n e h a b i t a t s i n v e s t i g a t e d a r e shown i n Appendix T a b l e  XX.  Sediment cores taken from the s a l i n e h a b i t a t s showed no s i g n s of a l g a l s p o r e s , p o s s i b l y r e f l e c t i n g the h i g h pH o f the  sediments.  Some g e n e r a l s e a s o n a l p a t t e r n s i n these h a b i t a t s were noted f o r the a l g a e .  In the s p r i n g when temperatures  t e n e r r i m a Kutz. was a l l habitats. in  are low  dominant a l o n g the margins  A l s o S p i r o g y r a sp. was  (4-10 C) U l o t h r i x  and i n the waters  p r e s e n t i n "Cherry Creek  l a t e s p r i n g , p r i o r t o Ctenocladus blooms.  of  Pond"  As temperatures i n c r e a s e d ,  53  Ctenocladus i n "Cherry Creek Pond" and the two " S a l t Mine Ponds" becomes dominant.  In Bowers Lake and Wallender Lake, R h i z o c l o n i u m h i e r o g l y p h i c u m  (C.S.Ag.) Kutz. and Cladophora  fracta  ( D i l l w . ) Kutz.  respectively  dominate by forming enormous mats t h a t almost cover these l a k e s i n midsummer.  As temperatures  i n c r e a s e and water l e v e l s drop, Chlamydomonas spp.  and Ochromonas v a l l e s i a c a Chodat become dominant occuppying  isolated  pools i n these semi-permanent h a b i t a t s . By mid t o l a t e summer, Chara canescens  Desv. & L o i s was g e n e r a l l y the  dominant i n Bowers Lake, occupying s c a t t e r e d zones  throughout  Chara was n o t p r e s e n t i n any o f the o t h e r h a b i t a t s , p o s s i b l y  the b a s i n . reflecting  the chemical n a t u r e o f the h a b i t a t s . In the f a l l when temperatures a g a i n a l o n g the margins  U l o t h r o x t e n e r r i m a appears  and among the decomposing masses o f Cladophora  and R h i z o c l o n i u m i n Wallender  b.  dropped,  Lake and Bowers Lake r e s p e c t i v e l y .  B r i n e Shrimp  Abundant numbers o f A r t e m i a s a l i n a  (L) o c c u r r e d i n "Cherry  Creek  Pond", " 1 s t S a l t Mine Pond" and "2nd S a l t Mine Pond".  D e s c r i p t i o n o f Other I n v e s t i g a t e d Ctenocladus H a b i t a t s . S a l i n e environments  i n v e s t i g a t e d i n the t h r e e a r i d r e g i o n s o f  C a l i f o r n i a and Nevada were s i m i l a r t o the Kamloops a r e a i n t h a t p r e c i p i t a t i o n and h i g h temperatures  p r e v a i l e d d u r i n g the summer months.  A t y p i c a l white r i n g o f e f f l o r e s c e n t s a l t s bordered the margins habitats.  minimal  of a l l  With the e x c e p t i o n o f Mono Lake ( F i g 36), w i t h a mean depth  of 19.0 m (Mason 1967), a l l o t h e r s a l i n e h a b i t a t s i n v e s t i g a t e d were  54  s h a l l o w ponds w i t h p r o b a b l e maximum depths a f t e r s p r i n g r u n o f f and p r e c i p i t a t i o n o f l e s s than 1.5 meters ( F i g 3 7 - 3 8 ) . A n a l y s i s o f s a l i n e waters  c o n t a i n i n g Ctenocladus i n Nevada and (Table 3 ) .  C a l i f o r n i a showed extremely h i g h c o n d u c t i v i t y l e v e l s  i n v e s t i g a t e d s a l i n e h a b i t a t s used f o r comparative purposes  i n the  r e s p e c t i v e a r e a e x h i b i t e d r e l a t i v e l y lower s p e c i f i c c o n d u c t i v i t y (fable 3).  levels  Sodium was c o n s i s t e n t l y the dominant c a t i o n making up more  than 95% o f the t o t a l c a t i o n s i n a l l s i x h a b i t a t s . CO^" and C l  Other  In Mono Lake,  both  were the major a n i o n c o n s t i t u e n t s making up 4 4 , 1 % and  38.07o r e s p e c t i v e l y . dominant ( 9 3 . 2 % ) .  In " S t a t e l i n e Pond" waters, C 0 ^ "Hazen Pond" resembles  i n b e i n g predominately Na2S0^.  _  a l o n e was the  "Cherry Creek Pond" c h e m i c a l l y  A l l h a b i t a t s w i t h Ctenocladus had a  pH o f 9 . 4 or above, whereas the pH o f the other ponds ranged  from  8.2-  9.2. Ctenocladus was c o l l e c t e d i n Mono Lake, "Hazen Pond", and " S t a t e l i n e Pond", i n June 1968.  M a t e r i a l from " S t a t e l i n e Pond" was e n t i r e l y a k i n e t e s  (14.0u x 15.5u) w i t h l a r g e mats c o v e r i n g v a r i o u s s u b s t r a t e s ( i . e . wooden f e n c e p o s t s , barbed wire'/ r o c k s , e t c . ) throughout  the pond ( F i g 3 9 ) .  S p h e r i c a l masses or b a l l s o f Ctenocladus r a n g i n g from 10- 20 cm. i n diameter were p r e s e n t i n "Hazen Pond" a l o n g the margins Ruppia stems ( F i g 40).  Many o f the c e l l s  as w e l l as a t t a c h e d to  ( a t l e a s t two-three per f i l a m e n t )  had a l r e a d y been c o n v e r t e d i n t o a k i n e t e s ( 1 2 . 5 - 1 4 . 5 u ) . o f remaining v e g e t a t i v e c e l l s averaged 8.5u x 48;<2y.  Cell  dimensions  No s i g n s o f  zoosporangia were observed from these c o l l e c t i o n s i n "Hazen Pond". C o l l e c t i o n s o f Ctenocladus from Mono Lake were made a l o n g the margins  from  under the s a l t e n c r u s t e d g r a n i t e rocks next to the mud-water i n t e r f a c e .  55  T a b l e 3.  P h y s i c o - c h e m i c a l A n a l y s i s o f Waters from C a l i f o r n i a and Nevada Area  Specific Cond: K  Mono Lake  +  Na  +  meq/1 46.0 1108.0 %  3.86  95.6  M g ^ Ca**  6.8 .5  Cl"  .55 464.8  S0  = 4  218.7  HCO^"  C O ^ pH  34.0 504.6  millimho  9.5  56.6  9.2  3.2  9.4  75.4  -  8.4  16.0  187.5 329.5 2880  9.6  84.9  8.7  2.8  .04  38.0  17.8  41.4  2.8  .66 1.4  13.8  14.5  -  -  " L i t t l e Mono Lake"  meq/1  "Hazen"  Hazen"  meq/1  x7o  "Stateline"  126.0  .8  97.6  meq/1 21.7 1782.0 %  "2nd  1.1  meq/1 %  .5  1.4  58.3 1.1  -  -  166.5 1552.0  .6  95.7  3.1  .6  7.5  73.5  1.8  360.0  1.0  .6  35.4  135.4  .5  99.0  .2  .2  -  3.7 2260.8 .02  98.58  29.1 1.6  44.8  97.9 333.2 3.5  -  15.5  -  1.3  .1  1.8  5.0  6.1  93.7  9.5  83.7  "2nd Stateline  meq/1  7o  2.3  86.9  .5  .7  2.5  96.1  .6  .8  -  -  -  C a l i f o r n i a and Nevada h a b i t a t s w i t h C t e n o c l a d u s . Mono Lake near Lee V i n i n g , C a l i f o r n i a i n June. " S t a t e l i n e Pond" near Klamath F a l l s , Oregon i n June. "Hazen Pond" near Reno, Nevada d u r i n g June, w i t h s p h e r i c a l c o l o n i e s o f Ctenocladus a l o n g margin as i n d i c a t e d by the arrow. H a b i t a t appearance o f Ctenocladus i n " S t a t e l i n e Pond" attached to s a l t encrusted r o t t i n g l o g . H a b i t a t appearance o f Ctenocladus i n "Hazen Pond" w i t h l a r g e s p h e r i c a l c o l o n i e s (10-20 cm) f r e e f l o a t i n g o r a t t a c h e d t o Ruppia maritima L. as i n d i c a t e d siby'the arrow. C a l c a r e o u s t u f a s t r u c t u r e s i n Mono Lake, C a l i f o r n i a . Ctenocladus a t t a c h e d t o these s t r u c t u r e s i n c r e v i c e s a t water l e v e l down t o ca. Im.  57  A d d i t i o n a l c o l l e c t i o n s were a l s o taken  from c a l c a r e o u s t u f a towers,  formed by i n o r g a n i c and o r g a n i c processes  (Dunn 1953;  S c h o l l and T a f t  1969)  s t a n d i n g a l o n g the s h o r e l i n e a t the western end of the l a k e ( F i g 41). These c o l l e c t i o n s were made from c r e v i c e s a t water l e v e l down t o about 1 m  ( F i g 41).  M a t e r i a l was  still  i n vegetative condition with  x 9.5u.  Many c e l l s were c o n v e r t e d  dimensions a v e r a g i n g  41.3u  w i t h no  present.  with  zoosporangia  Artemia  s a l i n a was  cell into  akinetes  abundant i n a l l h a b i t a t s  Ctenocladus.  EXPERIMENTAL TRANSPLANTS OF CTENOCLADUS T r a n s p l a n t s of Ctenocladus  into previously uninhabitated  water i n d i c a t e d t h a t t h i s a l g a c o u l d not normally  grow i n such h a b i t a t s .  T r a n s p l a n t s made i n t o Bowers Lake showed c e l l s almost e n t i r e l y i n t o a k i n e t e s a f t e r one month ( F i g 42) w i t h period i n d i c a t i n g signs of n o n - v i a b i l i t y .  those  saline  converted  i n o c u l a t e d f o r 2-month  Transplants  i n t o Wallender  Lake were u n a v a i l a b l e f o r A p r i l and May  due  to p r e d a t i o n by C r i c o t o p u s  l a r v a e , however, the p e r i o d between May  and  June showed abnormal growth.  Short, i r r e g u l a r c e l l s zoosporangia  (17.5u x 12.Ou) d i d e x i s t , but w i t h no s i g n s of  ( F i g 43).  Transplants  those o f Bowers Lake w i t h Transplants  i n Ironmask Lake were s i m i l a r  to  the m a j o r i t y of the c e l l s becoming a k i n e t e s .  i n "Polygon Pond" waters a f t e r a month i n c u b a t i o n from March-  A p r i l e x i s t e d as reduced zoosporangia.  cells  (27.5u x 1.25u) w i t h a l i m i t e d number o f  However, i n d i v i d u a l zoospores w i t h i n these  c o u l d not ac&ftally be seen. cells  sp.  to be s h o r t and  of zoosporangia.(Fig  C o l l e c t i o n s examined a f t e r A p r i l i n d i c a t e d  i r r e g u l a r w i t h many a k i n e t e s and no 44).  zoosporangia  further signs  58  T r a n s p l a n t s p l a c e d i n the c r y s t a l zone o f "Cherry  Creek Pond"  showed normal v e g e t a t i v e growth w i t h numerous zoosporangia and no s i g n o f a k i n e t e s except  a l i m i t e d number i n the June  ( F i g 45) collections.  However, t r a n s p l a n t s p l a c e d i n the Ruppia zone o f t h i s pond showed vegetative c e l l s  t o be i n s i m i l a r  c o n d i t i o n but the number o f  formed i n the M a r c h - A p r i l p e r i o d much reduced. s m a l l and i r r e g u l a r  zoosporangia  V e g e t a t i v e c e l l s were  between May and June i n the Ruppia zone w i t h many  a k i n e t e s and no f u r t h e r s i g n s o f  zoosporangia.  F i e l d t r a n s p l a n t s o f Ctenocladus i n t o saline habitats.  investigated  T r a n s p l a n t s of Ctenocladus i n t o Bowers Lake i l l u s t r a t i n g numerous a k i n e t e s w i t h r e m a i n i n g reduced c e l l s a f t e r one month, (note g r a n u l a r appearance) xl200. T r a n s p l a n t o f Ctenocladus i n t o Wallender Lake i l l u s t r a t i n g s h o r t i r r e g u l a r c e l l s (17.5-12.Ou) a f t e r one month x l 2 0 0 . T r a n s p l a n t of Ctenocladus i n t o "Polygon Pond" i l l u s t r a t i n g reduced i r r e g u l a r c e l l s xl200. T r a n s p l a n t of Ctenocladus i n "Cherry Creek Pond" showing z o o s p o r a n g i a (Z) w i t h zoospores xl200.  60  LABORATORY RESULTS  General C u l t u r e C o n d i t i o n s : C u l t u r e s o l u t i o n s found t o be most s u c c e s s f u l f o r c u l t i v a t i o n o f Ctenocladus 2.)  i n c l u d e d : 1.) b i p h a s i c s a l i n e s o i l water ( b i p h a s i c  C h i h a r a Marine Media (Chihara) and 3.)  SSW),  P r o v a s o l i ES enrichment  (ES.).  L a b o r a t o r y i n v e s t i g a t i o n s showed these s o l u t i o n s capable o f s u p p o r t i n g Ctenocladus  i n the v e g e t a t i v e c o n d i t i o n w i t h p r o d u c t i o n o f numerous  z o o s p o r a n g i a when t r a n s f e r r e d every 10-14  days.  Zoosporangia were not  p r e s e n t beyond s i x - f o l d d i l u t i o n s o f C h i h a r a medium even w i t h  daily  t r a n s f e r s , however, d i l u t i o n s below t h i s were adequate f o r normal zoosporangia formation.  Major c a t i o n s o f the d e f i n e d medium prepared  s p e c i f i c a l l y f o r c u l t i v a t i o n o f Ctenocladus to those o f seawater,  are i n s i m i l a r p r o p o r t i o n s  whereas p r o p o r t i o n s o f major a n i o n i c c o n s t i t u e n t s  ( S 0 ^ , C l " ) a r e r e v e r s e d (Appendix T a b l e X X I ) . =  100%)  w i t h v e g e t a t i v e c e l l s r a n g i n g t o 180u  Akinete germination  (95-  i n l e n g t h and 6.5-7.Op i n  w i d t h were o b t a i n e d i n t h i s c u l t u r e s o l u t i o n s .  Zoosporangia  formation,  however, c o u l d not be induced even w i t h l i g h t and temperature  variations.  L i f e History Studies: I s o l a t i o n s o f C. c-ircinnatus were made i n t o both C h i h a r a Medium and SSW  f o r t h i s study.  l a b o r a t o r y was  The macroscopic  appearance o f the organism  s i m i l a r to t h a t observed i n the f i e l d .  Material consisted  of s p h e r i c a l c o l o n i e s r a n g i n g i n s i z e from minute t o 2-3 The  l i m i t e d h e t e r o t r i c h o u s n a t u r e o f the organism was  cm i n diameter.  obscure.  hidden by the dominant e r e c t system o f u n i l a t e r a l branches acute a n g l e s from the d i s t a l end o f the c e l l s .  i n the  It is  a r i s i n g at  Each c e l l has  one  61  nucleus and a p a r i e t a l laminate c h l o r o p l a s t w i t h o n e - s i x p y r e n o i d s . Around the p y r e n o i d a r e two h a l f - r i n g or cup-shaped s t a r c h b o d i e s . T e r m i n a l c e l l s g e n e r a l l y possess more p y r e n o i a & j (up t o s i x ) than calary cells  (one-three).  C e l l dimensions to  inter-  change depending  o f the v e g e t a t i v e m a t e r i a l a r e extremely upon environmental c o n d i t i o n s .  susceptible  Average c e l l  dimen-  s i o n s were ca. 105-7.5u under optimum c o n d i t i o n s (<1100 mOsm). Changes in  t o t a l c o n c e n t r a t i o n of the s o l u t i o n brought  i n average  c e l l length with c e l l s  water reduced conditions  in salinities  i n l e n g t h t h r e e - f o u r times.  ( i . e . increasing s a l i n i t y ,  about  drastic  variations  over twice t h a t o f sea-  Consequently, ..under u n f a v o r a b l e  i o n i c changes, extreme  temperatures)  t e r m i n a l c e l l s f i r s t undergo r a p i d d i v i s i o n f o l l o w e d by s u c c e s s i v e intercalary cells original cell  forming numerous s e p t a w i t h each segment w i t h i n the  then r o u n d i n g up i n t o the t h i c k - w a l l e d r e s t i n g a k i n e t e .  C u l t u r e s may  be m a i n t a i n e d e n t i r e l y f r e e o f a k i n e t e s under o p t i m a l  c o n d i t i o n s i f t r a n s f e r r e d once a week w i t h c e l l s r a n g i n g from 6-8u width and  in  from 45-220u i n l e n g t h .  Under o p t i m a l c o n d i t i o n s a k i n e t e g e r m i n a t i o n o c c u r s w i t h i n 10 h r . The g e r m i n a t i o n tube branches  i n one o r s e v e r a l d i r e c t i o n s by  p r o l i f e r a t i o n s a t the a p i c a l end o f the newly formed c e l l s .  lateral Each*$  branch grows i n a d i f f e r e n t d i r e c t i o n thus g i v i n g the p l a n t a r a d i a l Zoosporangia  form 6-8  or  s p h e r i c a l macroscopic  appearance.  akinete germination.  T h i s n o r m a l l y begins when the ends o f the a p i c a l c e l l :  round up t o form a l a t e r a l e x t e n s i o n a t the upper end.  days a f t e r  Zoosporangia  d i f f e r from the normal v e g e t a t i v e c e l l by the presence o f a protrusion zoospores  ( F i g 45), a p p r o x i m a t e l y 15-23u.  E i g h t t o 16  (6x8u) form w i t h i n the zoosporangia.  lateral  biflagellate  They a r e r e l e a s e d  62  s i n g l y or i n mass through a pore a t the end o f the l a t e r a l The  protrusion.  zoospores a r e s p h e r i c a l t o s u b s p h e r i c a l w i t h a conspicuous r e d  eyespot l o c a t e d w i t h i n the c h l o r o p l a s t a t the a n t e r i o r end. e q u a l f l a g e l l a are a p p r o x i m a t e l y as l o n g as the body.  The  two  Occasionally  zoospores were clumped t o g e t h e r forming a m o t i l e v o l v o c a l e a n type c o l o n y . •Further development o f these s t r u c t u r e s was i c a t i o n t h a t t h i s was factory culture Zoospores  ind-  an abnormal form o f development due t o u n s a t i s -  conditions.  swim f o r a p e r i o d and then s e t t l e s i n g l y or i n groups  onto a s u b s t r a t e .  Germination o f the zoospores begins w i t h f o r m a t i o n  o f a l a t e r a l germ tube. 15-35  not observed, p o s s i b l y  T h i s forms a p r o s t r a t e t h a l l u s system o f ca.  c e l l s , each c e l l c a p a b l e o f b r a n c h i n g l a t e r a l l y , which i n t u r n  a c t s as an a p i c a l i n i t i a l  g i v i n g r i s e t o the e r e c t f i l a m e n t o u s p o r t i o n  o f the t h a l l u s .  was  Formation o f gametangia w i t h development o f gametes and  zygotes  not observed from Kamloops m a t e r i a l i n the l a b o r a t o r y .  However,  gamete f o r m a t i o n has been r e p o r t e d by o t h e r i n v e s t i g a t o r s and Woronochin and Popova 1929).  (Ruinen  1933;  Zygote g e r m i n a t i o n has never been  observed.  Biological 1.  Factors:  Antagonism  A n t a g o n i s t i c responses between Ctenocladus and dominant a l g a e found i n Bowers Lake and Wallender Lake ( R h i z o c l o n i u m h i e r o g l y p y i c i u m and Cladophora f r a c t a ) r e s p e c t i v e l y were not d e t e c t e d i n the l a b o r a t o r y as noted e a r l i e r i n the methods s e c t i o n  (p. 21).  Normal v e g e t a t i v e growth  and zoosporangia f o r m a t i o n o f Ctenocladus o c c u r r e d w i t h m a t e r i a l  growing  63  e p i p h y t i c a l l y on normal  2.  f i l a m e n t s o f Rhizocloliium and Cladophora.  Predation  Chironomid l a r v a e  ( C r i c o t o p u s sp) i n t r o d u c e d i n t o b i p h a s i c SSW  c u l t u r e s o f Ctenocladus gave s t r o n g evidence o f p r e d a t i o n .  After 1  week a l l s l i d e s were denuded o f Ctenocladus.  cultures  In c o n t r o l l e d  w i t h o u t the l a r v a e , the a l g a remained on the s l i d e s throughout the experiment.  Furthermore, p e r i o d i c l a b o r a t o r y checks o f l a r v a l gut  contents suggested s i m i l a r r e s u l t s .  P r e d a t i o n o f Ctenocladus by  c h i r o n o m i d l a r v a e i n the l a b o r a t o r y s t u d i e s supports s i m i l a r o b s e r v a t i o n s made a t Wallender  Lake.  Physico-chemical Experimental Studies 1.  E f f e c t o f Temperature  Temperature in  t o l e r a n c e l e v e l s f o r a k i n e t e g e r m i n a t i o n were e s t a b l i s h e d  the l a b o r a t o r y under optimum l i g h t  conditions with  temperatures  o r a n g i n g from 0-35 C as i l l u s t r a t e d i n F i g 46. i n d i c a t e d by i n i t i a l  A k i n e t e g e r m i n a t i o n was  r u p t u r i n g o f the t h i c k e n e d w a l l .  Germination  o c c u r r e d from 5-31°C w i t h the optimum between 9.0-26:6°C ( F i g 4 6 ) . Temperatures  below 9.5°C and above 34°C produced o n l y one-two c e l l e d  g e r m i n a t i o n tubes i f a t a l l . optimum f o r i n i t i a l  Possibly this indicates a different  g e r m i n a t i o n than f o r v e g e t a t i v e development.  v a r i o u s temperatures, the l e n g t h o f time f o r i n i t i a l significant.  Under  g e r m i n a t i o n was  At 19-21°C over 907» o f t h e a k i n e t e s had germinated  a f t e r 6-10 h r whereas n e a r l y 125 h r e l a p s e d f o r c u l t u r e s a t 10°C b e f o r e 90% o f the a k i n e t e s germinated  (Appendix T a b l e X X I I ) .  Germination a t optimum temperatures a f t e r b e i n g s u b j e c t e d t o temp-  64  e r a t u r e s above the optimum range were a l s o examined. t h e i r c o l o r and most were n o n v i a b l e a f t e r exposure t o above 34°C (Appendix temperatures  2.  T a b l e XXIV).  The a k i n e t e s temperatures  C o n v e r s e l y up t o 3 months o f f r e e z i n g  as low as -15°C had no adverse e f f e c t s on a k i n e t e v i a b i l i t y .  E f f e c t of L i g h t  In the l a b o r a t o r y l i g h t  i n t e n s i t y was found t o be a s i g n i f i c a n t  f a c t o r with respect to akinete germination  ( F i g 46).  In the t o t a l  absence o f l i g h t , no g e r m i n a t i o n o c c u r r e d even though o t h e r were o p t i m a l . light  lost  Germination  factors  c o u l d be induced by s u b j e c t i n g a k i n e t e s t o  i n t e n s i t i e s as low as 214 l u x on a 16 h r l i g h t / 8 h r dark  cycle.  A k i n e t e g e r m i n a t i o n remained h i g h (>90%) through v a r i o u s l i g h t regimes t o a p p r o x i m a t e l y percentages  intensity  9630 l u x . At t h i s i n t e n s i t y , mean g e r m i n a t i o n  showed a s l i g h t  decrease  ( F i g 46).  Akinetes subjected  t o i n t e n s i t i e s o f 12,305 l u x showed a c o n s i d e r a b l e decrease  i n germination  (16.4%). A k i n e t e s s u b j e c t e d t o extreme l i g h t  conditions p r i o r to transfer  t o o p t i m a l l i g h t regimes were a l s o examined f o r g e r m i n a t i o n . maximum l i g h t  (12,305 l u x ) and optimum l i g h t  ined f o r germination.  Those i n darkness  No  ( c a . 4280 l u x ) were exam-  up t o 1 month showed maximum  a k i n e t e g e r m i n a t i o n when exposed t o 4066-4280 l u x i l l u m i n a t i o n . ely high l i g h t  light,  Convers-  i n t e n s i t y showed adverse a f f e c t s w i t h the a k i n e t e s a g a i n  l o s i n g c o l o r and b e i n g n o n v i a b l e ( i . e . 11.9% germination) to 12,305 l u x f o r 10 days.  a f t e r exposure  E n c r u s t e d dry fragments a l s o exposed t o 12,305  l u x f o r 10 days then t r a n s f e r r e d i n t o f i l t e r e d SSW e x t r a c t under o p t i m a l l i g h t c o n d i t i o n s ( c a . 4280 l u x ) demonstrated normal g e r m i n a t i o n w i t h mean percentage v a l u e s w e l l above 90%.  (Appendix  T a b l e XXVI).  65 A k i n e t e s p l a c e d i n f i l t e r e d SSW  e x t r a c t from the same e n c r u s t e d  fragments  and exposed t o 1 2 , 3 0 5 l u x showed c o n s i d e r a b l e r e d u c t i o n i n mean g e r m i n a t i o n  (<20%).  3.  E f f e c t of  pH  L a b o r a t o r y s t u d i e s showed o p t i m a l pH c o n d i t i o n s f o r g e r m i n a t i o n of a k i n e t e s i s between 8 . 4 7.1  and 1 1 . 0  as i n d i c a t e d i n F i g 4 6 .  have l e s s than 17» g e r m i n a t i o n .  showed reduced g e r m i n a t i o n .  S i m i l a r l y , pH l e v e l s above  were i n f l u e n c e d by hydrogen-ion  below | 8 . 0  inducing shorter c e l l s .  82.6  32.4  x 7.5u.  reduced  That  concentration with  i s , a t pH below 8 . 0  x 8.5u whereas c e l l s m a i n t a i n e d The number o f c e l l s produced  t o l e s s than 3 c e l l s a t pH below  A k i n e t e s s u b j e c t e d t o hydrogen-ion o p t i m a l range f o r a g i v e n p e r i o d and  a t pH 8 . 5 - 9 . 0  ( t o 0%)  solutions the  cells  averaged also  8.3. concentrations outside their  then t r a n s f e r r e d t o o p t i m a l s o l u t i o n s ^  a t pH below 7 . 0  indicates  c o n d i t i o n s t o the r e s t i n g stage a t these l e v e l s . o c c u r a t pH 1 1 . 0  cell  per g e r m i n a t i o n tube was  were a l s o i n v e s t i g a t e d as shown i n Appendix T a b l e XXVIII. i n mean g e r m i n a t i o n  11.0  In a d d i t i o n , s t u d i e s i n d i c a t e d t h a t  dimensions  averaged  V a l u e s below  Reduction  unfavorable  Similar conditions  w i t h a mean g e r m i n a t i o n o f 4.97o.  Attempts t o induce a k i n e t e g e r m i n a t i o n i n the l a b o r a t o r y by  increasing  the pH o f b u f f e r e d d i s t i l l e d water t o optimum l e v e l s were u n s u c c e s s f u l . S t u d i e s i n d i c a t e d t h a t an i n c r e a s e i n pH t o l e v e l s w i t h i n the normal o p t i m a l range ( 8 . 6 - 1 0 . 0 )  f o r a k i n e t e g e r m i n a t i o n was  s t i m u l a t e t h i s p r o c e s s even though l i g h t and optimal.  insufficient  temperature  to  c o n d i t i o n s were  66  F i g u r e 46.  E f f e c t of pH,  l i g h t and temperature  o f Ctenocladus a k i n e t e s .  ( n  =  on g e r m i n a t i o n  800)  Temperature ( ° C )  Effect  o f d i l u t i o n of " 1 s t S a l t Mine Pond" water w i t h  d i s t i l l e d water on g e r m i n a t i o n (At  of Ctenocladus  akinetes.  20°C, 4066-4280 l u x . 16 light/8ddar.k c y c l e )  I  1  1 500  1  1 1000  1  1 1500  4  1 2000  Osmotic Potential (mOsm)  1  1 2500  1 3000  68  4.  E f f e c t o f Osmotic  Potential  Waters c o l l e c t e d from v a r i o u s i n v e s t i g a t e d l a k e s and ponds w i t h d i f f e r e n t i o n i c p r o p o r t i o n s and c o n c e n t r a t i o n s showed the o p t i m a l  osmotic  p o t e n t i a l f o r a k i n e t e g e r m i n a t i o n t o be below 2383 mOsm (Appendix  Table  XXIX).  Above t h i s l e v e l , g e r m i n a t i o n r a p i d l y decreased.  g e r m i n a t i o n as h i g h as 98% was a c h i e v e d a t 1700 t h a t o f seawater.  Mean  mOsm o f ca. two times  Germination was a l s o d r a s t i c a l l y reduced w i t h  dilut-  ions o f more than 200 times o r l e s s than 40 mOsm as shown i n F i g 47. The number o f c e l l s produced at  per g e r m i n a t i o n tube was g r e a t l y  extreme osmotic p o t e n t i a l regimes w i t h <2 c e l l s produced  2540 mOsm and 20 mOsm (Appendix  Table  reduced  at levels  XXX).  S i m i l a r t o f i e l d measurements, osmotic p o t e n t i a l appeared nificant  i n altering vegetative  cell  dimensions  sig-  as shown i n T a b l e 4.  D i l u t i o n s o f " 1 s t S a l t Mine Pond" water w i t h d i s t i l l e d water showed an i n c r e a s i n g l e n g t h t o width r a t i o w i t h d e c r e a s i n g osmotic  potential.  D i l u t i o n s o f "Cherry Creek Pond" water, r a n g i n g from 1626 255 mOsm, i n d i c a t e d no zoosporangia (Appendix  T a b l e XXXI).  Zoosporangia  osmotic p o t e n t i a l v a l u e s below 1385  fomation a t 1385  mOsm t o  mOsm and above  were formed i n a l l c u l t u r e s w i t h mOsm.  A k i n e t e g e r m i n a t i o n c o u l d not be induced by i n c r e a s i n g the  osmotic  p o t e n t i a l o f d i s t i l l e d water w i t h the o t h e r f a c t o r s o p t i m a l (pH, temperature,  l i g h t ) t o v a l u e s as h i g h as 375 mOsm w i t h P o l y e t h y l e n e  Glycol.  5.  Effects of Specific  Ions.  L a b o r a t o r y s t u d i e s showed t h a t a k i n e t e g e r m i n a t i o n c o u l d be induced o n l y by the a d d i t i o n o f N a s a l t s w h i l e no g e r m i n a t i o n o c c u r r e d w i t h +  69  T a b l e 4.  E f f e c t of S a l i n i t y  on C e l l Dimensions measured i n Microns  (N = 200) Temperature = 19-21°C; L i g h t  c a . 4280 l u x  16 h r l i g h t / 8 h r dark.  Mean C e l l Dilution Factor  Osmotic Potential  Range o f C e l l S i z e  i n mOsm  Length  in u  Width  Dimension i n u Length  Width  L:W Ratio  1.42  2500-2550  22.5-50.0  9.0-13.0  36.25-11.0  3.3  2.00  1500-1540  30.0-100.0  8.0-11.0  65.0  9.5  6.8  3.33  1020-1050  50.0-162.5  8.0-10.0  106.0  9.0  11.7  350-375  47.5-152.5  7.0-8.5  100.0  7.7  12.9  10.0  7Q  C l " and S 0 ^ s a l t s o f t h e o t h e r t h r e e major c a t i o n s (Appendix  Table  =  XXXII).  G r e a t e s t a k i n e t e g e r m i n a t i o n percentages were a c h i e v e d by t h e a d d i t i o n of Na S0^ (2.0 g/1) and NaCl (1.0 g/1) w i t h d e c r e a s i n g g e r m i n a t i o n 2  percentages i n Mg  |j  , Ca  o c c u r r i n g above these c o n c e n t r a t i o n s .  j _|  and K  |  A f t e r 6-8 days  s a l t s o l u t i o n s , a k i n e t e s became c o l o r l e s s and +4-  non-viable.  T h i s was most apparent  The a d d i t i o n o f N a suggested  +  t h e importance  cation ratio  (M:D).  i n Mg  salt  solutions.  s a l t s t o f i l t e r e d SSW e x t r a c t from Bowers Lake o f e i t h e r an Na:Mg r a t i o or m o n o v a l e n t : d i v a l e n t  S o i l water e x t r a c t from Bowers Lake had an Na:Mg  r a t i o o f .45 as i n d i c a t e d i n Appendix T a b l e XXXIII, Ctenocladus  o n l y as a k i n e t e s .  With the a d d i t i o n o f v a r i o u s c o n c e n t r a t i o n s  o f e i t h e r Na2S0^ o r NaCl, consequently shown i n Appendix T a b l e XXXIII, o f the organism  occurred.  and supported  i n c r e a s i n g t h e Na:Mg r a t i o as  a significant  change i n t h e c o n d i t i o n  At an Na:Mg r a t i o o f 1.3, v e g e t a t i v e c e l l s  f i r s t appear as s h o r t i r r e g u l a r c e l l s  (25.9 x 8.8u).  increased, corresponding increases i n c e l l  As t h e r a t i o  l e n g t h t o width r a t i o s  Zoosporangia were formed o n l y when t h e Na:Mg r a t i o was 13.7.  occurred.  T h i s may  i n d i c a t e t h e s i g n i f i c a n c e o f t h e Na:Mg o r M:D r a t i o p r i o r t o zoosporangia f o r m a t i o n as w e l l .  The s i g n i f i c a n c e o f (M:D) c a t i o n r a t i o s may p o s s i b l y  be e l i m i n a t e d i n t h i s study s i n c e s i m i l a r experiments showed t h i s i o n t o be extremely S i m i l a r manipulations  e q u a l c o n c e n t r a t i o n s o f Na  w i t h Mg  M a t e r i a l i n solutions with  ++ and Mg  showed s h o r t , i r r e g u l a r  forming a k i n e t e s ( F i g 48).  In a d d i t i o n ,  cells  branching  t o range from a c u t e angles t o n e a r l y 90° ( F i g 49). h i g h e r than Na  s a l t s ..  o f Na:Mg r a t i o s o b t a i n e d w i t h C h i h a r a Medium  +  appeared  +  t o x i c w i t h i n c r e a s e d K:Mg r a t i o s .  are i n d i c a t e d i n Appendix T a b l e XXXIV.  w i t h many c e l l s  with K  Solutions  (.5 Na:Mg) 'showed n e a r l y a l l c e l l s c o n v e r t i n g  to a k i n e t e s ( F i g 50).  C o n v e r s e l y , w i t h Na  i n c r e a s e d t o t h r e e times  t h a t o f t h e M g , as shown i n Appendix T a b l e XXXIV, normal v e g e t a t i v e ++  cells  (91.9 x 8.1u) w i t h acute b r a n c h i n g were observed  ( F i g 51).  S i m i l a r r e s u l t s were o b t a i n e d w i t h a d d i t i o n s o f e i t h e r M g C ^ or MgSO^ s a l t s as i n d i c a t e d i n Appendix T a b l e XXXIV.  6.  E f f e c t o f N a t u r a l S a l i n e : Waters  a.  S a l i n e S o i l Water E x t r a c t s  Major c a t i o n a n a l y s e s o f sediment  extracts  (Appendix T a b l e XXXV)  from t h e v a r i o u s s a l i n e h a b i t a t s appear s i m i l a r t o those i n s o l u t i o n in  the o v e r l y i n g water column (Appendix T a b l e V - I X ) .  One n o t i c e a b l e  d i f f e r e n c e d i d o c c u r however, i n t h a t r e l a t i v e l y h i g h percentages o f Ca  ++  o c c u r r e d i n these sediments  i n the water column. as Ca  compared t o percentages  T h i s i s p r o b a b l y due t o c o n t i n u e d p r e c i p i t a t i o n  s a l t s , p a r t i c u l a r l y CaCO^, have a f a i r l y  constant  ++ o f Ca  low s o l u b i l i t y  (Langbein 1961).  Ctenocladus  i n a l l o f these sediment  e x t r a c t s except from  "Cherry  Creek Pond" o n l y o c c u r r e d i n t h e form o f a k i n e t e s w i t h normal v e g e t a t i v e cells  ( F i g 52) m a i n t a i n e d i n "Cherry Creek Pond" e x t r a c t s .  Noticeable  d i f f e r e n c e s i n zoosporangia were noted between the two zones i n t h e pond.  Sediment e x t r a c t  from t h e " c r y s t a l zone" c o n s i s t e n t l y  produced  more z o o s p o r a n g i a , whereas few t o none o c c u r e d on extracts, from the "Ruppia  zone".  As noted i n f i e l d r e s u l t s  (p.32), chemical  differences  i n t h e water column between the two zones a l s o e x s i s t e d .  b.  Other S a l i n e Pond Water  V e g e t a t i v e f i l a m e n t s o f Ctenocladus  transferred into untreated  C o n d i t i o n o f Ctenocladus when s u b j e c t e d t o v a r i o u s n a t u r a l s o l u t i o n s and Na:Mg r a t i o s . Ctenocladus a k i n e t e s i l l u s t r a t i n g s u b j e c t e d t o Na:Mg r a t i o s o f l e s s g r a n u l a r appearance) xl200.  condition after than 1.0 (note  Ctenocladus i l l u s t r a t i n g reduced c e l l s w i t h r i g h t a n g l e b r a n c h i n g a f t e r s u b j e c t e d t o Na:Mg r a t i o s o f l e s s than 1.0 xl200. Ctenocladus a f t e r s u b j e c t e d t o s o l u t i o n s w i t h magnesium c o n c e n t r a t i o n s h i g h e r than sodium w i t h most c e l l s as a k i n e t e s xl200. Normal v e g e t a t i v e c e l l s o f Ctenocladus w i t h normal acute b r a n c h i n g i n c u l t u r e s o l u t i o n s w i t h Na:Mg r a t i o of 3 : 1 xl200. Ctenocladus i l l u s t r a t i n g normal v e g e t a t i v e c e l l s l i m i t e d a k i n e t e f o r m a t i o n x300.  with  A k i n e t e g e r m i n a t i o n w i t h reduced number of c e l l s i n n a t u r a l s o l u t i o n s from Bowers Lake xl200.  73>  water  ( u n f i l t e r e d and unsteamed) l o s t  i n waters the two  t h e i r c o l o r w i t h i n 10-12  days  c o l l e c t e d from a l l h a b i t a t s except "Cherry Creek Pond" and  " S a l t Mine Ponds".  In water from "Cherry Creek Pond" normal  v e g e t a t i v e c e l l s w i t h numerous z o o s p o r a n g i a were observed. A k i n e t e g e r m i n a t i o n o c c u r r e d i n a l l s a l i n e waters s p r i n g and e a r l y summer.  Germination tubes e x i s t e d w i t h a l i m i t e d  number ( l e s s than 3 c e l l s ) o f i r r e g u l a r c e l l s f i l t e r e d waters  c o l l e c t e d during  ( F i g 53) i n steamed and  from o t h e r than Ctenocladus h a b i t a t s .  Material i n  Wallender and Ironmask Lakes u s u a l l y remained  i n t h i s c o n d i t i o n ; whereas,  t h a t i n Bowers Lake and "Polygon Pond" formed  akinetes a f t e r  14-20  days. C o n d i t i o n o f v e g e t a t i v e m a t e r i a l when t r a n s f e r r e d i n t o steamed and f i l t e r e d water c o l l e c t e d from Bowers Lake ( A p r i l 1968)  was  similar  t o e x p e r i m e n t a l f i e l d t r a n s p l a n t s i n t o t h i s l a k e i n t h a t a k i n e t e s were immediately  formed as shown i n F i g 47, l a t e r l o s i n g t h e i r  color.  Best growth o c c u r r e d i n steamed and f i l t e r e d water c o l l e c t e d  from  "Cherry Creek Pond"£ as would be expected, and numerous z o o s p o r a n g i a were formed.  T r e a t e d waters  Wallender Lake from A p r i l  from Ironmask Lake,  1968,  "Polygon Pond":.arid  i n d i c a t e d these waters  t o be unsat-  i s f a c t o r y f o r normal v e g e t a t i v e growth, as the m a j o r i t y o f the  cells  c o n v e r t e d i n t o a k i n e t e s w i t h i n one month, w i t h t r a n s f e r s every  14-16  days.  D i l u t i o n o f a l l waters by a f a c t o r o f t h r e e showed no  significant  change i n growth i n d i c a t i n g t h a t s p e c i f i c i o n s or p r o p o r t i o n s o f these i o n s may  Herbarium  be more s i g n i f i c a n t than t o t a l c o n c e n t r a t i o n s .  Material  C o l l e c t i n g d a t a as w e l l as g e n e r a l c o n d i t i o n  (i.e. vegetative  or a k i n e t e s ) o f m a t e r i a l i s noted f o r each specimen.  T h i s i s shown  i n Appendix T a b l e XXXVI. The number o f a v a i l a b l e  specimens  (27) from v a r i o u s h e r b a r i a  g i v e s an i n d i c a t i o n o f the l i m i t e d d i s t r i b u t i o n o f the organism throughout the w o r l d .  Most specimens  were c o l l e c t e d  from  saline  h a b i t a t s i n a r i d r e g i o n s i n North America w i t h a few s c a t t e r e d collections  taken f-com:.similar h a b i t a t s i n S i b e r i a ,  I t a l y and Peru.  In g e n e r a l , most o f the m a t e r i a l was i n the a k i n e t e s t a g e . However, s e a s o n a l p a t t e r n s w i t h r e g a r d t o c o n d i t i o n o f m a t e r i a l were noted from c o l l e c t i o n s  i n Mono Lake, C a l i f o r n i a .  summer c o l l e c t i o n s  (June 12) were p r i m a r i l y  summer c o l l e c t i o n s  (September  In 1940, e a r l y  v e g e t a t i v e , whereas l a t e  6) showed almost a l l c e l l s as a k i n e t e s .  75  DISCUSSION AND  CONCLUSION  In t h i s study, as i n most e c o l o g i c a l i n v e s t i g a t i o n s , i t i s extremely d i f f i c u l t  t o s e p a r a t e one f a c t o r as the s i n g l e  "regulator" responsible f o r a species inhabiting a given The presence o f an organism  governing environment.  i n a h a b i t a t i s based on an  interrelated  complex of f a c t o r s , each e x e r t i n g an i n f l u e n c e d i r e c t l y o r  indirectly,  when expressed o u t s i d e the t o l e r a n c e l e v e l s o f t h a t s p e c i e s . s t r e s s environments,  such as i n l a n d s a l i n e h a b i t a t s , a l i m i t e d  number o f " r e g u l a t o r y " f a c t o r s may conditions.  In  p r e v a i l due t o e x i s t i n g extreme  S p e c i e s o c c u r r i n g i n such environments  may  be unable  to  compete i n more d e s i r a b l e h a b i t a t s , or; e x i s t i n g c o n d i t i o n s i n the enviroment  may  fulfill  their  requirements.  The r e s t i n g s t a g e , or a k i n e t e s , appear t o be the .dominant stage (present 70-907o o f the t i m e ) , and the most important and s u r v i v a l o f Ctenocladus  i n these extreme s a l i n e  T h e r e f o r e l a b o r a t o r y experiments were n o r m a l l y conducted  i n the  environments.  d e s i g n e d w i t h environmental  on a k i n e t e s .  Zoosporangia  distribution  extremes  production i s  p r o b a b l y not s i g n i f i c a n t w i t h r e s p e c t t o d i s t r i b u t i o n and w i l l  be  examined b r i e f l y a l o n g w i t h the absence o f s e x u a l s t a g e s , a f t e r d i s c u s s i o n o f p h y s i c o - c h e m i c a l f a c t o r s a f f e c t i n g v e g e t a t i v e growth and a k i n e t e g e r m i n a t i o n and  formation.  P h y s i c o - c h e m i c a l and  biological  f a c t o r s o f the i n v e s t i g a t e d s a l i n e h a b i t a t s as c o r r e l a t e d w i t h l a b o r a t o r y s t u d i e s w i l l be d i s c u s s e d both i n d i v i d u a l l y and  i n combination  b e t t e r a p p r e c i a t i o n of the ecology o f t h i s i n t e r e s t i n g  alga.  for a  76  Salinity: In t h i s study d i f f i c u l t i e s encountered w i t h water a n a l y s i s were due  t o the extreme s a l i n i t i e s , c o n s e q u e n t l y d i l u t i o n s were n e c e s s a r y  for f i n a l analyses.  Oxygen d e t e r m i n a t i o n s , e s p e c i a l l y d u r i n g t h e  l a t t e r p a r t o f the season, by t h e W i n k l e r method (American  Public Health  A s s o c i a t i o n 1965) may be q u e s t i o n e d s i n c e v i o l e n t b u b b l i n g o c c u r r e d due t o the h i g h carbonate c o n t e n t . by Anderson  S i m i l a r d i f f i c u l t i e s were encountered  (1958) d u r i n g h i s study o f two s a l i n e l a k e s i n Washington.  C o n c e n t r a t i o n o f s a l t s i n a c l o s e d s a l i n e environment e l i m i n a t e s organisms  when l e v e l s exceed  the optimum f o r g e r m i n a t i o n o f r e s t i n g  spores o r when i o n i c c o n c e n t r a t i o n or the osmotic s t r e s s o f the s o l u t i o n i s d e t r i m e n t a l t o the s p o r e s . sediment may r e f l e c t  Extreme a l k a l i n i t y o r s a l i n i t y o f the  the age o f the system and a l s o be c h a r a c t e r i z e d  by the t o t a l l a c k o f spores i n sediment  cores.  Consequently  i t is  n e a r l y i m p o s s i b l e t o r e c o n s t r u c t the h i s t o r y i n many o f these extreme saline habitats. S e v e r a l workers have proposed mechanisms which b u f f e r the c o n t i n u e d c o n c e n t r a t i o n o f s a l t s apparent  i n these h a b i t a t s .  Removal o f d r i e d  s a l t by wind a c t i o n from the margins  as w e l l as throughout  b a s i n i s c o n s i d e r e d most s i g n i f i c a n t  i n r e g u l a t i n g the s a l t economy  o f a s a l i n e l a k e system  (Langbein 1961).  the e n t i r e  T h i s was observed i n those  s h a l l o w h a b i t a t s which were n e a r l y dry by e a r l y summer.  In a d d i t i o n ,  s e l e c t i v e s a l t d e p l e t i o n by wind t r a n s p o r t has been suggested by Jones and Van Denburgh (1967).  T h i s i s based on the i d e a t h a t  dried  e f f l o r e s c e n t s a l t s composed p r i m a r i l y o f carbonate m i n e r a l a r e more powdery than the p l a t y s u l f a t e r i c h m a t e r i a l s o r the h a r d c r u s t s dominated  by h a l i t e .  irregular  The  Ctenocladus h a b i t a t s ("Cherry Creek Pond", "1st S a l t Mine  Pond" and "2nd depressions  S a l t Mine Pond") i n the Kamloops r e g i o n o c c u p i e d  ( l e s s than 0.2 h e c t a r e ) w i t h e x t e n s i v e s a l t  throughout the b a s i n .  small  encrustation  Other c o l l e c t i o n s o f Ctenocladus were made  from l a r g e r l a k e s as Mono Lake (51.5m) as d e s c r i b e d by Mason (1967). S i t e s i n the Kamloops r e g i o n w i t h distinct. without  Ctenocladus were  morphometrically  These h a b i t a t s were s h e l t e r e d d e p r e s s i o n s , whereas  Ctenocladus were l a r g e expanded and exposed b a s i n s .  p a r t i c u l a r l y s i g n i f i c a n t i n the s h a l l o w  those This i s  semi-permanent h a b i t a t s  ("Polygon Pond" and Ironmask Lake) i n which s u r f a c e e v a p o r a t i o n  rates  are c o n s i d e r a b l y g r e a t e r due t o lower s u r f a c e a r e a t o volume r a t i o s . The as  fact that evaporation  r a t e s are r e l a t i v e l y g r e a t e r i n h a b i t a t s such  Ironmask Lake and "Polygon Pond" i s s i g n i f i c a n t as the optimum  p e r i o d o f v e g e t a t i v e development i s reduced o r e l i m i n a t e d due t o increasing s a l i n i t y  l e v e l s e a r l y i n the season.  environments may be too c o n c e n t r a t e d other  Consequently, some  f o r akinete germination  when a l l  f a c t o r s are optimum ( i . e . pH, l i g h t , temperature, s p e c i f i c  etc.).  T h i s c o u l d occur  i n such h a b i t a t s as the "2nd  ions,  S a l t Mine Pond"  where osmotic p o t e n t i a l v a l u e s were measured a t 2283 mOsm as e a r l y as mid May 1968,  consequently  development.  Laboratory  forming  akinetes  minimizing  the p e r i o d f o r o p t i m a l  s t u d i e s showed t h a t c e l l s  generally start  a t l e v e l s around 1600-1800 mOsm and a r e  e n t i r e l y i n t o akinetes  above 2400 mOsm.  vegetative  converted  Extreme s a l i n i t i e s , however,  appear t o have no d e t r i m e n t a l e f f e c t s on Ctenocladus s i n c e c f i l l s merely c o n v e r t  i n t o a k i n e t e s when t o t a l c o n c e n t r a t i o n  tolerance l i m i t s .  i s above t h e  The mechanism u t i l i z e d by t h i s a l g a t o t o l e r a t e these  extreme osmotic c o n d i t i o n s w h i l e s t i l l  i n the v e g e t a t i v e c o n d i t i o n i s  78  i n t r i g u i n g and r e q u i r e s Concentration  further investigation.  l e v e l s above the optimum f o r v e g e t a t i v e  e x p l a i n why Cteriocladus has not been r e p o r t e d  growth may  from h a b i t a t s such as the  Great S a l t Lake ( s a l i n i t y n e a r l y 4 times that o f seawater) even though other  conditions  appear t o be s u i t a b l e f o r i t s e x i s t e n c e  However, one might p r e d i c t Ctenocladus i n p a r t s o f t h i s  (Adams 1964). lake i n the  f u t u r e , s i n c e the l a k e i s now d i v i d e d by a r a i l r o a d embankment one  s i d e g e t t i n g more s a l t y and the other more d i l u t e .  with  A smaller  volume o f s a l i n e water f l o w i n g i n t o one p o r t i o n i n a d d i t i o n t o a greater  evaporation  i n two b o d i e s  r a t e accounts f o r the d i f f e r e n c e s i n s a l i n i t y  (Adams 1964).  The disappearance o f Ctenocladus from  h a b i t a t s as the waters become more and more c o n c e n t r a t e d years i s a l s o f e a s i b l e .  Hammer ( p e r s o n a l  through the  communication) r e p o r t e d the  absence o f Ctenocladus i n L i t t l e Manitou Lake, Saskatchewan, i n 1968. The  lake i s three-four  times s a l t i e r now than when Ctenocladus was  o r i g i n a l l y c o l l e c t e d (Kuehne 1941).  The disappearance o f Ctenocladus  from such h a b i t a t s as L i t t l e Manitou Lake may r e s u l t from t o t a l o f ions o r r e f l e c t major s h i f t s  i n dominance o f major i o n s .  (1957) i n d i c a t e d t h a t as s a l i n e h a b i t a t s age and c o n c e n t r a t e years there may be changes i n dominant c a t i o n s w i t h Mg increasing. habitats  over many  concentrations  i n v e s t i g a t e d i n t h i s study o n l y on an annual time s c a l e , w i t h  s i g n i f i c a n t seasonal Mg  Hutchinson  Such a phenomenon was observed i n the temporary s a l i n e  s p r i n g d i l u t i o n r e s t o r i n g the p r o c e s s each year.  alfd  concentration  f l u c t u a t i o n s i n major c a t i o n s , p a r t i c u l a r l y  i n two o f the temporary h a b i t a t s  Pond") w i t h Na  F i e l d s t u d i e s showed Na  +  (Ironmask Lake and "Polygon  dominant i n t h e e a r l y s p r i n g and Mg  i n the l a t e summer.  Seasonal s h i f t s i n major c a t i o n s , due t o s e l e c t i v e p r e c i p i t a t i n g o f the  79  i o n s , i n temporary s a l i n e h a b i t a t s (Cole  1968).  has  been suspected but  In l a r g e r , permanent s a l i n e lakes  assumed t h a t the mean r e l a t i v e i o n i c p r o p o r t i o n s remain s u b s t a n t i a l l y c o n s t a n t d e s p i t e (Bayly  and W i l l i a m s 1966).  (Wallender Lake and  The  two  generally  f o r the v a r i o u s  lakes  large fluctuations i n s a l i n i t y  permanent lakes  i n t h i s study  temporary h a b i t a t s  showed l a r g e s e a s o n a l  fluc-  i n c a t i o n dominance. s i g n i f i c a n c e o f these a n n u a l i a n d permanent s h i f t s may  enhanced through e x a m i n a t i o n o f wxperimental data. proportions  o f the water i n the  be  extremely important i n the  by  experimental f i e l d transplant  were m a i n t a i n e d o n l y habitats  reported  Bowers Lake) demonstrate l i m i t e d c a t i o n r a t i o v  f l u c t u a t i o n s , w h i l e the tuations  The  i t is  not  personally  investigated  substantiate  saline habitats  studies.  T r a n s p l a n t s of  i n h a b i t a t s w i t h marked Na* i n v e s t i g a t e d as w e l l as  i n d i c a t e d Na  cationic  d i s t r i b u t i o n o f Ctenocladus as  workers (Cole and W h i t e s i d e 1965; Mason 1967)  The  to be  be  seem t o indicated  Ctenocladus  dominance.  All  those i n v e s t i g a t e d by  Rawson and  Moore 1944;  the: dominant c a t i o n .  t h i s s i n c e a k i n e t e s remain v i a b l e and  Wetzel  other 1964;  Laboratory  studies  germinate o n l y  in  a. solutions  o f Na  s a l t s (Appendix T a b l e XXXII) whereas a k i n e t e s i n I | 4. 4.  solutions  o f other major c a t i o n s  u l t i m a t e l y becoming c o l o r l e s s . t h a t Na:Mg r a t i o s as w e l l as r a t i o s are  (Mg  , Ca  , K ) were n o n - v i a b l e ,  In a d d i t i o n , l a b o r a t o r y  t o t a l monovalent:divalent  (M:D)  indicated  cation  important i n the d i s t r i b u t i o n o f C t e n o c l a d u s .  R a t i o s of Na:Mg of at l e a s t 1.5-20 were r e q u i r e d g e r m i n a t i o n s a n d growth. 1968;  results  Wetzel 1964  and  s i g n i f i c a n c e of t o t a l  Several  f a l l i n g and (M:D)  investigations T a i l i n g 1965)  for akinete  (Wetzel and  McGregor  have i n d i c a t e d  c a t i o n r a t i o s to vegetative  the  growth of a l g a e  i n v a r i o u s l a k e systems.  However, (M:D) c a t i o n r a t i o s d i d not appear  to be s i g n i f i c a n t except when i n v o l v i n g N a , as i n c r e a s e d g e r m i n a t i o n +  + and v e g e t a t i v e development o c c u r r e d o n l y wi/fch the a d d i t i o n o f Na of  e i t h e r SO^", CO^" or C l , w i t h adverse  r a t i o s were i n c r e a s e d by adding s i m i l a r K  salts  e f f e c t s o c c u r r i n g when these +  salts.  A d d i t i o n a l f i e l d o b s e r v a t i o n s i n Lyons Lake enhanced the s i g n i f i cance o f Na:Mg r a t i o s  (Northcote and H a l s e y 1969).  r a t i o s i n c r e a s e d w i t h depth.  Ctenocladus  In t h i s  l a k e these  has been c o l l e c t e d a t 12 meters  and below, which c o i n c i d e s w i t h h i g h e r Na:Mg r a t i o s a t these Absolute N a  +  levels.  c o n c e n t r a t i o n does not appear t o be as important as  r a t i o s o f the p a r t i c u l a r c a t i o n s p r e s e n t , as a n a l y s i s o f h a b i t a t s where Ctenocladus  i s absent  those i n Ctenocladus  i n d i c a t e s ' comparable c o n c e n t r a t i o n s o f Na habitats.  to  Sodium, however, i s important and  p o s s i b l y r e q u i r e d f o r development as a k i n e t e g e r m i n a t i o n was o n l y i n i t i a t e d by the a d d i t i o n o f N a  +  salts.  Sodium as such, i s g e n e r a l l y  not r e q u i r e d f o r a u t o t r o p h i c p l a n t s , however, s e v e r a l s p e c i e s o f b l u e green a l g a e r e q u i r e i t f o r normal l o g a r i t h m i c growth (See K r a t z and Myers 1955; A l l e n 1955). a l g a e a l s o suggested important  Droop's (1958) s t u d i e s w i t h e u r y h a l i n e  t h a t the c o n c e n t r a t i o n o f N a  +  i s s i n g l e most  f a c t o r w i t h the use o f s a l i n i t y as an e c o l o g i c a l  perhaps masking t h i s  factor  possibility.  pH: Seasonal pH v a l u e s i n a l l i n v e s t i g a t e d h a b i t a t s i n the Kamloops r e g i o n was above 8.0 w i t h v a l u e s i n some as h i g h as 10.2. may n o t l i m i t Ctenocladus  as v a l u e s showed s i m i l a r s e a s o n a l  Thus pH fluctuations  81  i n a l l h a b i t a t s w i t h Ctenocladus. pH below 7.0  t o be extremely d e t r i m e n t a l to a k i n e t e s , u l t i m a t e l y c a u s i n g  loss of c o l o r .  Consequently, hydrogen-ion c o n c e n t r a t i o n s  directly significant acidic habitats. ions.  However, l a b o r a t o r y s t u d i e s showed  i n r e s t r i c t i n g the organism from n e u t r a l  A l s o pH r e f l e c t s  water to optimum l e v e l s  akinetes  (8.5-10.0) were not s u f f i c i e n t  However, pH  and  the i o n i c c o n s t i t u e n t s o f the s o l u t -  Changes i n hydrogen-ion c o n c e n t r a t i o n o f b u f f e r e d  germination.  are i n -  distilled  f o r akinete  i s s i g n i f i c a n t i n o v e r a l l growth as  or s h o r t i r r e g u l a r c e l l s were present  Hydrogen-ion c o n c e n t r a t i o n i s important  only  below pHr;8.4.  i n the a v a i l a b i l i t y  of  c e r t a i n n u t r i e n t s , e s p e c i a l l y i n a l k a l i n e waters where m i c r o n u t r i e n t d e f i c i e n c i e s are common (Shutte 1964).  One  important  d e f i c i e n c y i n s a l i n e waters i s a decrease i n a v a i l a b l e i r o n i n c r e a s i n g pH.  Hence the e c o l o g i c a l s i g n i f i c a n c e of c h e l a t o r s i n  these a q u a t i c systems may  p l a y an important  o f such m i c r o n u t r i e n t s as i r o n . al.  with  Schelske  r o l e i n the  availibility  (1960) and S c h e l s k e ,  et  (1962) noted t h a t the i r o n complex o f EDTA i n c r e a s e d the photo14  s y n t h e t i c uptake of Ctenocladus was to  C i n s e v e r a l marl l a k e s .  obtained  i n l a b o r a t o r y by adding EDTA-Na2 (.015  seawater, whereas u n t r e a t e d  akinete germination  and  Normal growth of g/1)  seawater showed marked r e d u c t i o n i n  l i t t l e v e g e t a t i v e development.  This  may  e x p l a i n the absence of Ctenocladus i n marine environments, s i n c e s a l i n i t y , temperature and major i o n i c c o n s t i t u e n t s are s u i t a b l e f o r normal development.  P r e l i m i n a r y s t u d i e s o f the response of Ctenocladus  to v a r i o u s c o n c e n t r a t i o n s growth and  development.  of i r o n showed no s i g n i f i c a n t r e s u l t s i n  Temperature: Large s e a s o n a l and d a l l y  f l u c t u a t i o n s i n temperatures occur i n  a q u a t i c h a b i t a t s i n the temperate  region.  These v a l u e s are augmented  i n h a b i t a t s w i t h exposed s h a l l o w expanded b a s i n s .  Diurnal  fluctuations  i n f r e s h w a t e r h a b i t a t s have been i n v e s t i g a t e d by Klimowicz Bamforth  (1961) and  (1962) w i t h d a i l y temperature amplitudes as h i g h as 10.2°C  depending upon depth. Extreme temperatures were r e c o r d e d i n both Ironmask Lake and "Polygon Pond" where temperatures  approached  h i g h e r than o t h e r h a b i t a t s i n v e s t i g a t e d .  40°C of n e a r l y  10°C  Corresponding l a b o r a t o r y  i n v e s t i g a t i o n s showed t h a t a k i n e t e s were e x t r e m e l y s u s c e p t i b l e to temperatures above 34°C w i t h the m a j o r i t y becoming n o n - v i a b l e . extreme temperatures  These  c o u l d p l a y an important r o l e i n the absence  Ctenocladus i n such h a b i t a t s .  In a d d i t i o n , water  l e v e l s drop a t a  much g r e a t e r r a t e i n these expanded s h a l l o w b a s i n s (Ironmask and "Polygon Pond") and r e a c h h i g h e r temperatures  of  earlier  Lake  i n the  season, w i t h s i g n i f i c a n t r e d u c t i o n s i n a v a i l a b i l i t y o f d i s s o l v e d gases, p a r t i c u l a r l y oxygen.  C o n c e n t r a t i o n s of d i s s o l v e d oxygen a r e  i n d i r e c t l y p r o p o r t i o n a l to temperature  (Ruttner 1966)  consequently  minimum oxygen v a l u e s are a c h i e v e d e a r l i e r i n the season than i n o t h e r more s h e l t e r e d or permanent h a b i t a t s . Temperature  s t r a t i f i c a t i o n i n the e a r l y s p r i n g i n the s a l i n e h a b i t a t s  i n v e s t i g a t e d makes i t tempting t o c o r r e l a t e h i g h e r bottom  temperatures  w i t h a k i n e t e g e r m i n a t i o n a l l o w i n g t h i s p r o c e s s t o occur e a r l y i n the season.  Some i n v e s t i g a t o r s  (Guseva  1947)  suggest t h a t forms  predominating  at the b e g i n n i n g o f the s p r i n g p e r i o d a r e u s u a l l y forms without known  83  r e s t i n g stages.  Her view i s t h a t forms o v e r w i n t e r i n g as spores appear  l a t e r i n the y e a r because of the time p e r i o d needed t o reach the stage at which g e r m i n a t i o n i s p o s s i b l e .  T h i s i s d e f i n i t e l y not t r u e f o r  organisms such as Ctenocladus which i n h a b i t s a l i n e environments,  since  g e r m i n a t i o n begins e a r l y i n the s p r i n g as soon as the ponds are i c e f r e e and temperatures important  are above 5-6°C.  Germination  s i n c e c o n d i t i o n s (•$,.e. temperature,  at this  time i s  s a l i n i t y , e t c . ) of  temporary or semi-permanent h a b i t a t s would be too extreme f o r g e r m i n a t i o n l a t e r i n the  season.  Light: L a b o r a t o r y s t u d i e s i n d i c a t e d t h a t l i g h t was and subsequent growth. is  T h i s suggests  t h a t a p h o t o s y n t h e t i c mechanism  i n v o l v e d i n the a c t u a l g e r m i n a t i o n p r o c e s s .  a t i o n c o u l d be induced, however, a t extremely (215.2 lux) on a 16/8  r e q u i r e d f o r germination  hr l i g h t - d a r k c y c l e .  Normal a k i n e t e germinlow l i g h t  T h i s may  be  intensities correlated  w i t h the l o c a t i o n of the a l g a i n the pond d u r i n g s p r i n g g e r m i n a t i o n ( i . e . , b u r i e d i n the upper l a y e r s of sediment and under s a l t  encrustmaat),  y e t normal g e r m i n a t i o n o c c u r s . Water l e v e l s i n s a l i n e h a b i t a t s drop t o a minimum and even dry completely during c e r t a i n years.  Consequently  Ctenocladus  up  akinetes  e x i s t a l o n g the margins as e n c r u s t e d s p h e r i c a l masses or b u r i e d beneath precipitated salt crystals. not common. i t appears  T h e r e f o r e d i r e c t exposure t o s u n l i g h t i s  L i g h t i n t e n s i t y was  not measured i n the f i e l d , however  t h a t the i n t e n s i t y would be v e r y h i g h , w i t h r e f l e c t e d  light  from the d r i e d white e f f l o r e s c e n t s a l t s i m i l a r to t h a t of a s n o w f i e l d .  L a b o r a t o r y s t u d i e s i n d i c a t e d t h a t a k i n e t e s were v e r y s e n s i t i v e t o r e l a t i v e l y high l i g h t the c h l o r o p l a s t .  intensities  ( 11,770 lux) c a u s i n g breakdown of  T h i s a g a i n corresponds w i t h f i e l d o b s e r v a t i o n s  on  the p o s i t i o n and c o n d i t i o n ( b u r i e d i n the sediment, b u r i e d i n the s a l t c r y s t a l s or e n c r u s t e d ) of the a k i n e t e s d u r i n g the p e r i o d when extreme light  i n t e n s i t i e s occur.  significant  L i g h t may  t h e r e f o r e by an  ecologically  f a c t o r i n r e d u c i n g p o p u l a t i o n s by d e s t r o y i n g a k i n e t e s when  they are exposed t o l e v e l s above 11,770 l u x d u r i n g peaks i n the summer. Wetzel of  and McGregor (1968) a l s o found t h a t i n c r e a s i n g l i g h t  over 9000 l u x i n carbonate  l a k e s suppressed  intensity  g e r m i n a t i o n o f Chara  zygotes w i t h v e r y poor development of pigments.  F u r t h e r s t u d i e s on  p h o t o p e r i o d and l i g h t q u a l i t y need to be conducted  f o r a more  a n a l y s i s o f the t o t a l e f f e c t of l i g h t on a k i n e t e g e r m i n a t i o n  critical and  e x i s t e n c e of the r e s t i n g s t a g e .  Biological: The presence w i t h Ctenocladus  of the b r i n e shrimp, appears  t o be c o n s i s t e n t .  s u r v i v a l o f t h i s a n o s t r a c a n was Na  +  salts  Artemia s a l i n a , i n h a b i t a t s Croghan (1958) showed t h a t  p o s s i b l e o n l y i n media where c e r t a i n  ( p r i n c i p a l l y NaCl) predominate, w i t h t o x i c l e v e l s o c c u r i n g  i n s o l u t i o n s dominated by Mg  , Ca  and e s p e c i a l l y K .  i o n i c p r o p o r t i o n s i n media u t i l i z e d by D'Agostino for  and P r o v a s o l i  Artemia and media used i n c u l t i v a t i n g Ctenocladus  (Appendix  X X I ) , suggest s i m i l a r i t i e s between chemical requirements two  organisms i n n a t u r e .  h a b i t a t t h e r e f o r e may  Presence  of these two  Similar (1968) Table  f o r these  organisms i n a s a l i n e  be used as an i n d i c a t o r of the major c a t i o n i c  85  c o n d i t i o n s o f the environment. habitats has  B r i n e shrimp have been c o l l e c t e d i n many  (Cole and Brown 1967) without C t e n o c l a d u s , but the r e v e r s e  not o c c u r r e d .  concentrate  Normally l a t e r i n the season l a r g e numbers o r Artemia  around c l o n e s  o f Ctenocladus  ( p r i m a r i l y as a k i n e t e s )  c a p i t a l i z i n g on the l i m i t e d p h o t o s y n t h e t i c  possibly  oxygen r e l e a s e d by the a l g a .  Sulphur b a c t e r i a , common i n s a l i n e h a b i t a t s , undoubtedly p l a y an u n f o r e s e e n r o l e i n t h e p h y s i c o - c h e m i s t r y  o f the e n t i r e a q u a t i c  ecosystem.  I n t e r a c t i o n s between the mud-water i n t e r f a c e a r e extremely  significant  i n shallow  l a r g e extent  h a b i t a t s and a r e undoubtedly r e g u l a t e d t o a  by b a c t e r i a l  activity.  A n i o n i c c o n s t i t u e n t s do n o t appear t o be s i g n i f i c a n t i n r e s t r i c t i n g Ctenocladus from s a l i n e h a b i t a t s , s i n c e the a l g a was found i n a l l o f the major a n i o n i c s o l u t i o n s i n n a t u r e ( C l , S 0 ^ , C 0 ^ =  and  and Cl'/CO^*),  =  the a d d i t i o n o f any o f the a n i o n i c s a l t s i n the l a b o r a t o r y d i d not  show s i g n i f i c a n t changes i n growth and development.  The absence o f f r e e  CC»2 i n a l l Ctenocladus h a b i t a t s i n v e s t i g a t e d i s , however, e c o l o g i c a l l y s i g n i f i c a n t i n t h a t i t i n d i c a t e s t h a t t h i s a l g a i s among the few which can u t i l i z e a t l e a s t the HCO^ carbon source.  p o r t i o n o f combined CC^ as a  photosynthetic  D i s s o l v e d phosphate and n i t r a t e c o n c e n t r a t i o n s  not seem t o be s i g n i f i c a n t  i n the h a b i t a t s i n v e s t i g a t e d i n t h i s  I n t e r e s t i n g studies of s u c c e s s i o n a l patterns  of species  h a b i t a t s c o u l d be conducted, because r e v e r s e p a t t e r n s n u t r i e n t c y c l i n g occurs  study.  i n saline  of seasonal  i n these h a b i t a t s w i t h an extreme b u i l d - u p o f  phosphate c o n c e n t r a t i o n s Other c o n s i d e r a t i o n s as w e l l as g e n e r a l  a l s o do  i n the l a t e summer. such as the drainage p a t t e r n o f the b a s i n  c h a r a c t e r i s t i c s o f the b a s i n i t s e l f may prove t o  86  be s i g n i f i c a n t f o l l o w i n g more c r i t i c a l study a r e a ,  one  m a t e r i a l , which may  ( C o c k f i e l d 1961) reflect  exists within  the  volcanic  the d i f f e r e n c e s i n the major c a t i o n i c  of the h a b i t a t s .  Those h a b i t a t s  located within  b a s i n of the Ironmask B a t h o l i t h showed c o n s i d e r a b l y t r a t i o n s than o t h e r s o u t s i d e  t h i s formation.  o f the d r a i n a g e b a s i n ,  the  h i g h e r Mg  on the bottom of the b a s i n may  importance of these d r a i n a g e  importance of critical  does not  a n a l y s i s of  since populations  1153 ("1st  and  perfected  appear t o be  h i b i t e d by mOsm.  This  as H^S,  may  organic  with  e x i s t i n g at the mud-water i n t e r f a c e .  The  the s i g n i f i c a n c e of i t s o c c u r r e n c e i n such or f u l l y  exploited.  i n f l u e n c e of p h y s i c o - c h e m i c a l f a c t o r s on  a population  zones.  the  a l s o needs f u r t h e r examination s i n c e techniques f o r  h a b i t a t s were not The  patterns,  through a n a e r o b i c decay o f  r e s u l t s i n l o s s e s o f s u l p h a t e by r e d u c t i o n  possible toxic conditions  character-  readers  have a s i g n i f i c a n t i n f l u e n c e on  extremely s i g n i f i c a n t where S0^~,  materials  was  In a d d i t i o n , c o n t i n u e d s a l t p r e c i p i t a t i o n  o c c u r r e n c e o f Ctenocladus i n c r y s t a l v s . n o n - c r y s t a l be  drainage concen-  lithologic  based on o t h e r i n v e s t i g a t i o n s , can o n l y be brought to the a t t e n t i o n through s p e c u l a t i o n .  the  However, s i n c e i t  beyond the scope of t h i s i n v e s t i g a t i o n to study the istics  In the Kamloops  major g e o l o g i c a l i n t r u s i v e , r i c h i n hornblende,  (Ironmask B a t h o l i t h )  constituents  investigations.  s i g n i f i c a n t i n excluding  zoosporangia  formation  Ctenocladus from a h a b i t a t ,  can be m a i n t a i n e d through f o r m a t i o n o f a k i n e t e s  w i t h i n a given h a b i t a t .  Zoosporangia f o r m a t i o n  temperatures above 26°C and Consequently p o p u l a t i o n s  S a l t Mine Pond" and  "2nd  in  isfcin-  osmotic p o t e n t i a l v a l u e s above  i n extremely c o n c e n t r a t e d  S a l t Mine Pond") may  habitats  o n l y r a r e l y be  able  87  t o produce  z o o s p o r a n g i a a t times when water i s d i l u t e d below the  optimum temperature The  and s a l i n i t y  l e v e l s f o r such r e p r o d u c t i o n .  l a c k o f s e x u a l r e p r o d u c t i o n i n c u l t u r e s o f Ctenocladus  the Kamloops r e g i o n may  from  p a r t i a l l y account f o r i t s r e s t r i c t i o n to a v e r y  narrow range o f p h y s i c o - c h e m i c a l f a c t o r s or c o n d i t i o n s . i n d e v e l o p i n g a s u i t a b l e c u l t u r e medium f o r l a b o r a t o r y r e f l e c t s upon i t s narrow t o l e r a n c e l i m i t s or s p e c i f i c  Also,  difficulty  cultivation requirements.  The r e s t i n g s t a g e or a k i n e t e s u b s t i t u t e s f o r the r e s t i n g zygote, which appears  t o be a more e f f i c i e n t mechanism f o r m a i n t a i n i n g a p o p u l a t i o n  i n these extreme environments.  However, without g e n e t i c r e c o m b i n a t i o n ,  v a r i a b i l i t y i s d r a s t i c a l l y l i m i t e d and unable to draw upon the g e n e t i c pool.  Consequently, Ctenocladus may  have r e s t r i c t e d i t s e l f  through  the y e a r s to a v e r y narrow e c o l o g i c a l n i c h e . D i v e r s i t y of a l g a l s p e c i e s w i t h i n the i n v e s t i g a t e d s a l i n e h a b i t a t s was  markedly  reduced, a l t h o u g h p o p u l a t i o n d e n s i t i e s were v e r y h i g h .  T h i s i s the same as r e p o r t e d by o t h e r i n v e s t i g a t o r s o f s a l i n e (Flowers 1934;  H u t c h i n s o n 1937;  Kuehne 1941;  Anderson  environments  1958).  Cyanophyceae and B a c i l l a r i o p h y c e a e a r e v e r y common i n both the  sediment  and water column, w i t h chlorophyceans r a r e l y c o l l e c t e d , w i t h the exception of Ctenocladus.  Most forms were a t the mud-water  interface,  s i n c e the v e r t i c a l d i s t a n c e of the water column i s l i m i t e d w i t h those s p e c i e s unable to m a i n t a i n themselves  i n the water column soon  dropping  to the bottom. Bowers Lake d i s p l a y e d the g r e a t e s t d i v e r s i t y of s p e c i e s , which r e f l e c t s upon i t s r e l a t i v e l y lower s a l i n i t y compared t o the o t h e r habitats investigated.  Wallender Lake had comparable s a l i n i t y  y e t had a l i m i t e d humber o f s p e c i e s .  levels  The low d i v e r s i t y o f a l g a l s p e c i e s  i n t h i s l a k e may the  be due t o the oxygen d e p l e t e d l a y e r which e x i s t s i n  lower l e v e l s d u r i n g most o f the y e a r . S e a s o n a l p e r i o d i c i t y o f a l g a l s p e c i e s i n the water column o f  semi-permanent h a b i t a t s i s extremely d i f f i c u l t fluctuations i n s a l i n i t y  levels.  t o p r e d i c t due t o y e a r l y  A more a c c u r a t e p r e d i c t i o n can be  made w i t h b e n t h i c s p e c i e s , which appears  t o be a more s t a b l e  environment.  The p e r i o d f o r o p t i m a l v e g e t a t i v e growth of Ctenocladus i n semipermanent or temporary  h a b i t a t s appears  to be extremely s h o r t  since  i t must occur between the minimum temperature v a l u e s f o r a k i n e t e g e r m i n a t i o n i n the s p r i n g and maximum s a l i n i t y i n the season.  (i.e.  winter snowfall, spring  Consequently, Ctenocladus may  a number o f h a b i t a t s s i n c e i t may i n the sediment  later  T h i s optimum p e r i o d f l u c t u a t e s from y e a r t o year  depending upon weather c o n d i t i o n , temperature).  tolerance l e v e l s  rain,  have been o v e r l o o k e d i n  o n l y be i n the a k i n e t e s t a g e , b u r i e d  or e n c r u s t e d a t the time o f examination.  F i e l d and l a b o r a t o r y s t u d i e s a l s o suggest t h a t c e l l dimensions a r e not  v a l i d c r i t e r i a f o r s e p a r a t i n g s p e c i e s o f Ctenocladus as proposed  by some authors (Woronochin physico-chemical factors alter at  the c e l l  and Popova 1929;  P r i n t z 1964),  ( i . e . osmotic f l u c t u a t i o n s , pH)  length:width r a t i o s .  l e a s t two s p e c i e s of Lochmiops i s  be one w i t h Ctenocladus a monotypic  because  drastically  Consequently, i t appears  then t h a t  (L. s i b e r i c a and L. P r i n t z i i )  may  genus d i s p l a y i n g s e v e r a l p h y s i o -  l o g i c a l v a r i a n t s or ecotypes r e s p o n d i n g t o environmental c o n d i t i o n s o f t h i s extreme environment.  Based on p e r s o n a l o b s e r v a t i o n s i n the  and  laboratory, i t i s l i k e l y  may  be r e s p o n s i b l e f o r d i f f e r e n c e s i n b r a n c h i n g as w e l l .  field  t h a t , s e a s o n a l environmental c o n d i t i o n s  89 SUMMARY  1.  Ctenocladus  c i r c i n n a t u s B o r z i i s r e s t r i c t e d t o s a l i n e waters  i n a r i d r e g i o n s where sodium i s the dominant c a t i o n , w i t h a t l e a s t a 1.5  Sodium:Magnesium r a t i o . 2.  Morphometric f e a t u r e s of s a l i n e environments appear t o be  significant  i n the d i s t r i b u t i o n of Ctenocladus.  Those h a b i t a t s w i t h  deeper s h e l t e r e d b a s i n s are more d e s i r a b l e f o r Ctenocladus  than open  expanded b a s i n s w i t h e x c e s s i v e e v a p o r a t i o n r a t e s , 3. shifts  Two  semi-permanent h a b i t a t s without  showed s e a s o n a l  i n dominant c a t i o n s , dominated i n the s p r i n g by sodium and i n  the f a l l by magnesium. may  Ctenocladus  These s e a s o n a l s h i f t s  i n major c a t i o n dominance  be v e r y s i g n i f i c a n t i n the d i s t r i b u t i o n of Ctenocladus  as magnesium  dominated s o l u t i o n s both i n the f i e l d and l a b o r a t o r y were found t o be d e t r i m e n t a l t o v e g e t a t i v e development. 4.  Optimum pH  (8.5-10.0) f o r a k i n e t e g e r m i n a t i o n and development; ,  e s t a b l i s h e d i n the l a b o r a t o r y , c o i n c i d e w i t h the pH of the o c c u p i e d habitats.  There i s some i n d i c a t i o n t h a t hydrogen-ion  a l s o i n f l u e n c e d c e l l length:width 5. at  concentration  ratios.  L a b o r a t o r y s t u d i e s showed a k i n e t e g e r m i n a t i o n was  v e r y low temperatures  breakdown o f a k i n e t e s . extreme temperatures  initiated  w i t h r e l a t i v e l y h i g h e r temperatures T h i s may  causing  be e c o l o g i c a l l y s i g n i f i c a n t s i n c e  are a c h i e v e d i n some of the broad exposed b a s i n s ,  p o s s i b l y r e d u c i n g p o p u l a t i o n s o f the a l g a . 6.  D i f f e r e n t l e v e l s of l i g h t i n t e n s i t y gave v a r y i n g  with respect to akinete germination.  No  responses  germination occurred i n absolute  darkness w i t h o n l y extremely low l i g h t to i n i t i a t e normal g e r m i n a t i o n .  intensities  ( 215 l u x ) needed  R e l a t i v e l y higher l i g h t  intensities  ( 10,780 l u x ) were extremely d e t r i m e n t a l t o the a k i n e t e s , which be s i g n i f i c a n t s i n c e i t i s assumed t h a t comparable h i g h l i g h t are a c h i e v e d i n exposed h a b i t a t s 7.  In temporary  temperatures  or semi-permanent h a b i t a t s , the optimum p e r i o d s h o r t and  upon the y e a r , as i t must occur between minimum  f o r a k i n e t e g e r m i n a t i o n i n the s p r i n g d i l u t e d  and maximum s a l i n i t y 8.  intensities  investigated.  of v e g e t a t i v e development f o r Ctenocladus i s remarkably v a r i a b l e depending  may  waters  t o l e r a n c e l e v e l s l a t e r i n the season.  Seasonal v a r i a t i o n i n c e l l  l e n g t h r w i d t h r a t i o s , due t o i n c r e a s i n g  s a l i n i t i e s , emphasizes the p o s s i b i l i t y o f p h y s i o l o g i c a l r a c e s or v a r i a n t s r e s p o n d i n g t o v a r y i n g environmental c o n d i t i o n s r a t h e r distinct 9.  than  species. C o n s i s t e n t a s s o c i a t i o n o f Ctenocladus and Artemia s a l i n a  (L)  suggests s i m i l a r p h y s i c o - c h e m i c a l requirements w i t h t h e i r c o e x i s t e n c e p o s s i b l y used as an i n d i c a t o r o f the g e n e r a l c a t o n i c c o m p o s i t i o n o f the h a b i t a t s . 10.  F i e l d and l a b o r a t o r y o b s e r v a t i o n s of chironomid l a r v a e f e e d -  i n g on Ctenocladus p o p u l a t i o n s suggested the p o s s i b l e importance  of  p r e d a t i o n i n the d i s t r i b u t i o n o f C t e n o c l a d u s . 11.  The l a c k o f g e n e t i c r e c o m b i n a t i o n i n i s o l a t e s of Ctenocladus  from the Kamloops r e g i o n suggests t h a t a k i n e t e s have s u b s t i t u t e d f o r the r e s t i n g zygote w i t h t h i s l o s s o f v a r i a b i l i t y r e s t r i c t i n g organism t o a v e r y narrow e c o l o g i c a l n i c h e over the y e a r s .  the  91 LITERATURE CITED  Adams, {g.C. 1964. S a l t m i g r a t i o n t o the northwest body of Great Lake, Utah. S c i e n c e 143: 1027-1029. j  Salt  American P u b l i c H e a l t h A s s o c i a t i o n . 1965. Standard Methods f o r the Examination of Water and Sewage. 12th ed. New York. 769 pp. A l l e n , M.B. 1955. S t u d i e s on t h e ^ n i t r o g e n - f i x i n g b l u e - g r e e n a l g a e . II. The sodium requirement of Anabaena c y l i n d r i c a . Physiol. Plantarum 8: 653-660. Anderson, G.G. 1958. Seasonal c h a r a c t e r i s t i c s of two Washington. Limnol. Oceanogr. 3: 51-68.  s a l i n e lakes i n  Bamforth, S.S. 1962. D i u r n a l changes i n s h a l l o w a q u a t i c h a b i t a t s . L i m n o l . Oceanogr, 7: 348-353. B a y l y , I.A.E. and W i l l i a m s , W. some s a l i n e l a k e s o f S.E. Res. 17: 177-228. B o r z i , A. 1883. 1: 27-50.  Studi a l g o l o g i c i .  B o u r r e l l y , P. 1966. I: 511 pp. B r i t i s h Columbia. p. 196.  1966. Chemical and b i o l o g i c a l s t u d i e s on Australia. A u s t r a l i a n J . Mar. Freshwater Ctenocladus,  Les Algues D'eau Douce:  1930.  gen.  nov.  Messina.  Les Algues V e r t e s .  Fasc.  Tome  Report o f B r i t i s h Columbia M i n i s t e r of Mines,  Cameron, F. 1953. A study o f the l i v i n g organisms of some s a l i n e ponds i n the Kamloops a r e a o f B r i t i s h Columbia. B. A. T h e s i s . U n i v e r s i t y B r i t i s h Columbia. 47 pp. C a s t e h h b l z , R. 1960. S e a s o n a l changes i n the a t t a c h e d a l g a e of freshwater and s a l i n e l a k e s i n the lower Grand Coulee, Washington. Limnol. Oceanogr. 5: 1-28. C o c k f i e l d , W.E. 1961. B r i t i s h Columbia. T e c h n i c a l Surveys. C o l e , G.A. 1968. 423-486.  Geology and m i n e r a l d e p o s i t s o f N i c o l a map a r e a , G e o l o g i c a l Survey o f Canada; Dept. of Mines and Memoir 249: 104-149.  D e s e r t Limnology, In  C o l e , G.A. and Brown, R.J. E c o l o g y 48: 858-861.  1967.  The  Brown, G.W., chemistry  ed. Desert  Biology  o f Artemia h a b i t a t s .  C o l e , G.A. and W h i t e s i d e , M./2. 1965. Kiatuthlanna- a limnological appraisal. I I . Chemical f a c t o r s and b i o t a . P l a t e a u 38: 36-48. C o l e , G.A., W h i t e s i d e , M.C. and Brown, R.J. 1967. Unusual monomixis i n two s a l i n e A r i z o n a ponds. L i m n o l . Oceanogr. 12: 584-591. C o l i n v a u x , P.A. 1968. Reconnaissance and c h e m i f t r y of the l a k e s bogs o f the Galapagos I s l a n d s . Nature 219: 590-594.  and  Croghan, P.C. 1958. The s u r v i v a l o f A r t e m i a s a l i n a media. E x p t l . B i o l . 35: 213-218. Cummings, J.M. Columbia.  (L.) i n v a r i o u s  1940. S a l i n e and hydromagnesite d e p o s i t s o f B r i t i s h B r i t i s h Columbia Dept. o f Mines. B u l l . #4: 26-30.  D'Agostino, A.S. and P r o v a s o l i , L. 1968. E f f e c t s o f s a l i n i t y and n u t r i e n t s on mono- and d i a x e n i c c u l t u r e s o f two s t r a i n s o f Artemia salina. B i o l . B u l l . 134: 1-14. Droop, M.R. 1958. Optimum r e l a t i v e and a c t u a l i o n i c c o n c e n t r a t i o n s f o r growth o f some e u r y h a l i n e a l g a e . Verh. I n t . V e r e i n . Theor. Angew. L i m n o l . 13: 722-730. Dunn, J.R. 1953. The o r i g i n o f t h e d e p o s i t s o f t u f a i n Mono Lake. J.:Sediment. P e t r o l . 23: 18-23. Flowers, S. 1934. 95: 353-418.  V e g e t a t i o n o f the Great S a l t Lake r e g i o n .  Bot. Gaz.  G e i t l e r , L. 1932. Cyanophyta. I n Rabenhorst, L., Kryptogamen-Flora von D e u t s c h l a n d , O s t e r r e i c h und der Schweiz. V o l . 14, Akad. V e r l a g s . Leipzig. G i b o r , A.  1956.  The c u l t u r e o f b r i n e a l g a e .  Biol. Bull.  Ill:  223-229.  Guseva, K.A. 1947. Causes o f f l u c t u a t i o n s and development o f phytop l a n k t o n i n Yunhchoro r e s e r v o i r . B u l l . Soc. Nat. Moscow, 52: 49-62. Harvey, H.W. 1963. The c h e m i s t r y and F e r t i l i t y o f Seawater. 2nd ed. Cambridge U n i v . Press 240 pp. H i t c h c o c k , C.L., C r o n q u i s t , A., Ownbey M. and Thompson, J.W. 1964. V a s c u l a r P l a n t s o f the P a c i f i c Northwest. Part 2. S a l i c a c e a e t o Saxifragaceae. Univ. Washington P r e s s . 597 pp. H u b e r - P e s t a l o z z i , G. 1941. Das Phytoplankton des Susswassers. I n , Thienemann, A. ed., D i e Binnengewasser 16:2(1). E. S c h w e i z B r b a r t sche V e r l a g s . S t u t t g a r t , 365 pp. H u t c h i n s o n , G.E. 1937. A c o n t r i b u t i o n t o the l i m n o l o g y o f a r i d T r a n s . Conn. Acad. A r t s S c i . 33: 47-132.  1  regions,  ?H^c^nson.,'\G..E. ^.1957. A T r e a t i s e on Limnology. V o l . 1 (Geography, P h y s i c s and C h e m i s t r y ) . John W i l e y and Sons, New York. 1015 pp. Jones, B.F. and Van DenBurgh, A.S. 1967. Geochemical i n f l u e n c e s on t h e chemical character of closed lakes. I.A,S.H. Symposium o f Garda. # 70: 435-446. K l i m o w i c z , H. i n Cairo.  1961.  D a i l y temperature v a r i a t i o n s i n a s m a l l water p o o l  P o l s k i e Arch. H y d r o b i o l o g i i . 9: 196-202.  K r a j i n a , V . J . 1965. E c o l o g y o f Western North America. V o l . 1 B r i t i s h Columbia. 112 pp.  Univ.  K r a t z , W.A. and Myers, J . 1955. N u t r i t i o n and growth o f s e v e r a l b l u e green a l g a e . Am. J . Bot. 42: 282-287. Kuehne, P.E. 1941. The p h y t o p l a n k t o n o f s o u t h e r n and c e n t r a l Can. J . Res., S e r . C 19: 292-322.  Saskatchewan,  93 Langbein, W.B. 1961. S a l i n i t y and hydrology Geol. Surv. Prof., Paper 412, 20 pp. Lanjouw, J . and S t a f l e u , F.A. H e r b a r i a of the World.  of c l o s e d l a k e s .  1956. Index Herbariorum. 3rd ed. 244 pp.  U.S.  Part T,  The  L i v i n g s t o n , D. 1963. Data of Geochemistry. Chapter G. Chemical Composition of R i v e r s and Lakes. 6th. ed. Geol. Surv. Prop. Paper. 440-G, 64 pp. Mason, D. Vol.  1967. Limnology of Mono Lake. 83: 1-11-.  Univ.  of C a l i f .  Publ. Z o o l .  Muenscher, W.C. 1964. A q u a t i c P l a n t s o f the U n i t e d S t a t e s . Publishing Associates. I t h a c a , New York. 374 pp.  Comstock  N i c h o l s , H.W. and B o l d , H.C. 1965. T r i c h o s a r c i n a polymorpha e t . Sp. Nov. J . P h y c o l . 1: 34-38.  Gen.  N o r t h c o t e , T.G.and Halsey, T.G. 1969. Seasonal changes i n the limnology o f some meromictic l a k e s i n southern B r i t i s h Columbia. J . F i s h . Res. B'd. , Canada. In P r e s s . P a t r i c k , R. and Reimer, C.W. 1966. The Diatoms of the U n i t e d V o l . 1. L i v i n g s t o n e Publ. Co., P h i l a d e l p h i a , Penn., 688  States pp.  P r e s c o t t , G.W. 1961. Algae of the Western Great Lakes Area. Wm. C. Brown Company P u b l . , Dubuque, Iowa. 977 pp.  2nd  Pringsheim, E.G. 1967. Phycology i n the f i e l d J . P h y c o l . 3: 93-95. P r i n t z , H. 1964. Die Chaetophoralen Der Suppl. 24: 1-376.  and  ed.  i n the l a b o r a t o r y .  Binnengewasser.  Hydrobiologia  P r o v a s o l i , L. 1968. Media and p r o s p e c t s f o r the c u l t i v a t i o n o f marine algae. In: Watanabe, A. and H a t t o r i , A. eds., C u l t u r e s and C o l l e c t i o n s of Algae. Proc, U.S. - Japan Conf. Jap. Soc. P l a n t P h y s i o l . 63-75. P r o v a s o l i , L., M c L a u g h l i n , J.A. and Droop, M.R. 1957. The development of a r t i f i c i a l media f o r marine a l g a e . Arch. M i k r o b i o l . 25: 392-428. Rawson, D.S. and Moore, J.E. 1944. The Can. J . Res. Ser. D. 22: 141-201. Ruinen, J . 1933. Woron. Rec.  s a l i n e l a k e s of Saskatchewan.  L i f e c y c l e and environment of Lochmiops i s Travaux Bot. N e e r l a n d a i s . 30: 752-797.  R u t t n e r , R. 1966. Fundamentals of Limnology, 3rd ed. Frey, D.G. and F r y , F.E.J. Univ. Toronto Press.  siberica  T r a n s l a t e d by Toronto. 295 pp.  94 Schelske, C L . 1960. I r o n , o r g a n i c matter and o t h e r f a c t o r s l i m i t i n g primary p r o d u c t i v i t y i n a m a r l l a k e . S c i e n c e 136: 45-56. S c h e l s k e , C L . , Hooper, F.E. , and H a e r t l , E . J . 1962. Responses o f a marl l a k e t o c h e l a t e d i r o n and f e r t i l i z e r . E c o l o g y 43: 646-653. S c h o l l , D.W. and T a f t , W.H. 1964. Algae, c o n t r i b u t o r s t o the f o r m a t i o n o f c a l c a r e o u s t u f a Mono Lake, C a l i f o r n i a . J . Sediment P e t r o l . 34: 309-319. S h u t t e , K.H. 1964. and Son L t d .  The B i o l o g y o f the Trace,,Elements. London. 228 pp.  Cosby Lockwood  Smith, C M . 1933. Freshwater Algae o f the U n i t e d S t a t e s . New York, 716 pp.  McGraw-Hill,  Smith, C M . 1950. Freshwater Algae o f the U n i t e d S t a t e s . 2nd M c G r a w - H i l l , New York, 719 pp.  ed.  S t a r r , R.C. 1964. The c u l t u r e c o l l e c t i o n o f a l g a e at I n d i a n a U n i v e r s i t y Am. J . Bot. 51: 1013-1044. S t e i n , J.R. 1958. A morphologic and g e n e t i c study of Gonium p e c t o r a l e . Am. J . Bot. 45: 664-672. T a i l i n g , J.F. and T a i l i n g , I.B. 1965. The chemical c o m p o s i t i o n o f A f r i c a n l a k e waters. I n t . Rev. H y d r o b i o l . 50: 1-32. von_Stosch, H.A. 1965. The sporophyte o f L i a g o r a f a r i m o s a Lamour. B r i t i s h P h y c o l . B u l l 2: 486-496. Washburn, A.L. 1956. C l a s s i f i c a t i o n of p a t t e r n e d ground and review of suggested o r i g i n s . Am. G e o l . Soc. B u l l . 67: 823-866. W e t z e l , R.C 1964 A comparative s t u d y of the primary p r o d u c t i v i t y of h i g h e r a q u a t i c p l a n t s , p e r i p h y t o n and p h y t o p l a n k t o n i n a large, shallow lake. I n t . Rev. H y d r o b i o l . 49: 1-61. W e t z e l , R.C and McGregor, D.L. 1968. s t u d i e s o f a q u a t i c macrophytes.  Axenic c u l t u r e and n u t r i t i o n a l Am. M i d i . Nat. 80: 52-64.  W o r o n i c h i n , N.N. and Popova, T.L. 1929. a l g a from the f a m i l y L e p t o s i r e a e .  Lochmiopsis a new genus of Boft. Okshch. 3: 17-27.  95  A P P E N D I X  A  T A B L E S  I - XXXVI  96  T a b l e I . Reported C o l l e c t i o n s of C t e n o c l a d u s I n c l u d i n g Date, C o l l e c t o r , and Dominant I o n s . LOCATION  DATE  COLLECTOR  DOMINANT CATION  MESSINA, SICILY  1881  A. BORZI  Na  +  BOLSHOYE PETUKHOVSKOYE LAKE SLAVGOROD DIST.; OMSK REGION, USSR  1927  N.N. WORONICHIN & T.L. POPOVA  Na  +  LAKE MALOYE SLAVGOROD DIST.; OMSK REGION, USSR  1927  N.N. WORONICHIN & T.L. POPOVA  Na  +  LAKE BELENKOYE SLAVGOROD DIST.; OMSK REGION, USSR  1927  N.N. WORONICHIN & T.L. POPOVA  Na  +  KUPALNOYE LAKE SLAVGOROD DIST.; OMSK REGION, USSR  1927  N.N. WORONICHIN & T.L. POPOVA  Na  +  LEBYAZHYE LAKE (RUBTSOVSKOGO OKR.) SLAVGOROD DIST. ; OMSK REGION, USSR  1927  N.N. WORONICHIN & T.L. POPOVA  Na  +  MALOYE USHKALY LAKE SLAVGOROD DIST.; OMSK REGION, USSR  1927  N.N. WORONICHIN & T.L. POPOVA  Na  +  LAKE BOZA CUZCO, PERU LIMA, PERU  3  co  3  co  3  co  3  co  3  co  3  :  :  :  :  :  :  -  12/1940  A. MALDONADO  -  -  8/24/1942  MONO LAKE, CALIFORNIA  6/11/1942  Na  +  Cl"  A. CARTER  Na  +  Cl"  M.J.  Na  +  Cl"  M.J.  GROESBECK GROESBECK  BORAX LAKE, CALIFORNIA  1964  R.J. WETZEL  Na  +  MARINA, CALIFORNIA  1929  L.G.M. BASS-BECKING  Na  +  3/1954  R. LEWIN  1964  G. COLE, M. WHITESIDE & R.J. BROWN  Na  RED POND, APACHE COUNTY ARIZONA  1964  G. COLE, M. WHITESIDE & 'R.J. BROWN  Na  +  ABERT LAKE, OREGON  1967  G.W.  PRESCOTT  Na  +  (Cl" CO 3 "C1 CO - C l  =  =  3  "STATE LINE POND" 22 m i . S o f KLAMATH FALLS, OREGON  6/1968  D.W.  BLINN  Na  "HAZEN POND" 23 m i . W o f FALLON, NEVADA  6/1968  D.W.  BLINN  Na  +  9/12/1940  P.E.  KUEHNE  Na  +  T.G. HALSEY & T.G. NORTHCOTE  Na  +  STEIN  Na  +  J.R.  ; 3  Cl"  +  GREEN POND, APACHE COUNTY ARIZONA  7/1961  C l "-co  (Na ) +  WHITE LAKE, BRITISH COLUMBIA  co  -  MONO LAKE, CALIFORNIA  LYONS LAKE, BRITISH COLUMBIA  = 3  A. MALDONADO  9/6/1940  LITTLE MANITOU LAKE SASKATCHEWAN, CANADA  co  1/1943  MONO LAKE, CALIFORNIA  BERMUDA: MARINE LAB.  DOMINANT ANK  Cl" +  SO,,"  so"  so^  =  97  T a b l e 1 Continued  LOCATION  DATE  COLLECTOR  DOMINANT CATION  J.R. STEIN  Na+  5/17/1968  D.W.  BLINN  Na  5/17/1968  D.W.  BLINN  Na  "CHERRY CREEK POND" 7.6 m i . W OF KAMLOOPS, BRITISH COLUMBIA  5/1961  "1ST SALT MINE" 8.1 m i . W OF KAMLOOPS, BRITISH COLUMBIA "2ND SALT MINE" 7.2 m i . W OF KAMLOOPS, BRITISH COLUMBIA  +  DOMINANT ANION SO.  C0  3  -SO^  SOIk  98 Table I I .  H~  "h  |j  Na , K , Ca  P r o c e d u r e s Used i n Water A n a l y s i s  | | , Mg  P e r k i n - E l m e r Atomic A b s o r p t i o n Spectrophotometer from . 45u M i l l i p o r e f i l t e r e d sample. Mohr method w i t h "Hach" Chemicals (Hach C h e m i c a l Company, Ames, Iowa)  Cl" SO^  Barium s u l p h a t e t u r b i m e t r i c method w i t h "Hach" c h e m i c a l s . (Hach Chemical Company, Ames, Iowa)  NO2 -NO 3  A l p h a Naphtylamine and S u l f a n i c a c i d w i t h "Hach" Chemicals (Hach Chemical Company, Ames, Iowa)  NHii" *  N e s s e r l e r i z a t i o n method w i t h "Hach" chemicals. (Hach C h e m i c a l Company, Ames, Iowa)  1  Ortho-PO^  HCO3  -  and T o t a l - P O ^  and CO3  O2 C0  -  Stannous C h l o r i d e w i t h "Hach" chemicals. (Hach Chemical Company, Ames, Iowa) P o t e n t i o m e t r i c t i t r a t i o n (Standard Methods) American P u b l i c H e a l t h A s s o c i a t i o n , 1965) W i n k l e r Method w i t h "Hach" c h e m i c a l s . (Hach Chemical Company, Ames, Iowa)  2  . Sodium H y d r o x i d e t i t r a m e t r i c method w i t h "Hach" c h e m i c a l s . (Hach Chemical Company, Ames, Iowa)  H2S  "Hach" c h e m i c a l s . (Hach Chemical Company, Ames, Iowa)  Specific Conductivity  Radiometric-Copenhagen Meter a t 25°C.  Osmotic P o t e n t i a l  45u M i l l i p o r e f i l t e r e d sample on P r e c i s i o n Osmette Osmeter.  Total Dissolved Solids  E v a p o r a t i o n a t 103-105°C of 50 ml sample (Standard Methods, American P u b l i c H e a l t h A s s o c i a t i o n , 1965)  pH  Metrohm pH meter.  Conductivity  99 Table I I I .  Media Used f o r C u l t i v a t i o n o f C t e n o c l a d u s ,  C h i h a r a Marine Medium ( p e r s o n a l communication) Seawater  1 1  Na.NO  0.2 gm  NaftjPO^-HgO  0.025 gm  3  M i n o r Element M i x FeCl MnCl ZnCl CoCl CuCl  2 ml  6H 0 4H 0  3  2  2  2  2  6H 0 2H 0  2  2  2  2  H3BO3 Na Mo0i 2  • 2H 0  +  2  EDTA - N a D i s t i l l e d Water 2  .00032 gm .00048 " .00006 " .00002 " .000005 " .00240 " .00020 " .01500 " 1 £  P r o v a s o l i ES Enrichment ( P r o v a s o l i , 1968) Seawater  1 I  NaN0  3.5 g  3  Na glycerePhosphate  500 mg  Vitamin B  100 g  2  1 2  Biotin  50 g  Thiamin  5 mg  Tris Buffer (Sigma Co.)  5 g  P I I Metal Mix 1ml/l H3BO3  FeCl  • 6H 0 MnSO^ • 4H 0 ZnSOit • 7H 0 CoSO^ • 7H 0 EDTA - N a D i s t i l l e d Water 3  2  2  2  2  2  .114 .0049 .0164 .0022 .00048 .001 1 I  gm  100  Table I V .  S e a s o n a l Drop i n Water L e v e l s f o r Kamloops Measured from C a l i b r a t e d S t a k e .  P e r i o d Measured  "Cherry Creek Pond"  10vi-lvii67  12.0cm  "Polygon Pond"  Bowers Lake  Wallender Lake  11.0cm  12.0cm  8.0  14.0  12.0  10.0  11.0  9.5  12viii-31viii67  8.0  14.0  12.5  31viii-23ix67  Dry  2.5  3.0  26iii-20iv68  1.0  20iv-19v68  6.0  7. 5cm  8.0cm  9.5  4.5  19v-15vi68  4.0  3.5  4,2  2.5  2.5  13.0  14.0  Nearly  16.5  13.0  3;o  Dry  15.0  12.0  lvii-23vii67 23vii-12viii67  16vi-19vii68 19vii-29viii68  '  Ironmask Lake  Habitats  101 T a b l e V.  C h e m i c a l A n a l y s i s of M a j o r Ions i n Kamloops A r e a f o r June, 1967.  " C h e r r y Creek Pond" Surface meq/1 % Bottom meq/1 % "Polygon Pond" meq/1 % Ironmask Lake meq/1 % Bowers Lake Surface meq/1 % Bottom meq/1 % W a l l e n d e r Lake Surface meq/1 % Bottom meq/1 %  K  Na  Ca  Cl  10.8 1.4  705.6 91.4  9.3 1.2  13.7  750.0  -  8.9 1.0  708.0 73.1  180.0 19.8  10.1 1.1  31.7  822.9  -  8.2 .3  1086.0 39.0  1666.0 59.8  26.6 .9  77.2  2958.0  -  21.2 .6  1565.0 46.6  1750.0 52.2  21.3 .6  63.3  2260.0  -  6.9 2.4  86.9 29.8  183.0 62.8  14.7 5.0  5.9  250.0  -  9.0 2.9  89.1 29.3  191.7 62.8  15.3 5.0  4.3  260.0  -  8.3 2.0  252.0 60.5  145.8 35.1  9.6 2.3  20.4  375-.0  -  12.9 2.0  286.9 54.2  233.3 41.0  14.6 2.8  21.4  541.0  -  Mg  43.3 6.09  SO^  -  -  -  -  -  -  -  -  -  -  -  -  -  -  HC0  3  CO 3  102  Table V I .  Chemical A n a l y s i s f o r M a j o r Ions i n Kamloops A r e a f o r August, 1967  K  Na  Mg  Ca  Cl  SO^  HC0  3  " C h e r r y Creek" meq/1 %  35.8 1.2  2804.0 90.6  116.0 3.7  140.0 4.5  67.5 1.7  3968.0 96.7  20.1 .5  "Polygon Pond" meq/1 %  340.0 4.2  2478.0 30.9  4325.0 54.0  870.0 10.9  337.0 4.0  8020.0 95.1  77.6 .9  Ironmask Lake meq/1 %  276.0 3.5  3322.0 42.2  3333.0 42.4  940.0 11.9  133.8 1.0  7291.0 91.8  65.6 6.7  Bov/ers Lake meq/1 %  13.2 4.5  113.9 39.1  140.0 48.0  24.6 8.4  8.7 2.8  293.0 95.5  W a l l e n d e r Lake meq/1 %  15.3 2.4  320.0 51.1  261.6 41.9  28.8 4.6  25.3 3.8  625.0 93.5  .85 .3 1.5 .3  C0  3  46.1 1.1  39.6 .5 4.4 1.4 16.3  2.4  103 Table VII.  Chemical Analysis of Major Ions in Kamloops Area for March 26, 1968  K "Cherry Creek: Surface meq/1  +  Na  +  Mg^  Ca^  Cl  SOi/  HC0  3  CO 3  %  1.8 .9  180.0 88.1  21.0 10.2  1.5 .8  6.1 2.7  214.0 96.4  1.4 .63  %  -  791.0 90.7  75.0 8.6  6.5 .74  15.1 1.8  854.0 97.8  3.2 .37  %  7.6 2.5  165.0 54.4  125.0 41.5  5.1 1.6  6.9 2.9  218.0 94.8  2.2 .9  3.2 1.4  %  -  326.0 54.9  261.0 43.9  7.1 1.2  33.0 5.3  510.0 92.0  13.9 2.2  3.1 .5  10.2 3.1  173.0 52.3  141.0 42.6  6.4 2.0  4.3 1.3  333.0 97.9  1.45 .42  16.0 5.8  123.0 45.4  118.0 43.4  14.5 5.4  7.3 2.3  312.0 96.3  3.4 1.1  %  12.1 5.2  93.0 39.6  112.0 47.7  17.5 7.5  5.2 1.9  302.0 97.9  2.2 .01  %  12.8 3.4  230.0 61.0  116.0 30.7  18.5 4.9  8.1 -  406.0 -  Bottom meq/1 Wallender Surface meq/1 Bottom meq/1 "Polygon" meq/1 "/ to  Ironmask meq/1 %  Bowers Surface meq/1 Bottom meq/1  -  .93 .27  3.1 .2  104 Table V I I I .  C h e m i c a l A n a l y s i s o f M a j o r Ions i n Kamloops A r e a f o r May 18, 1968  K  " C h e r r y Creek" Surface meq/1 7  Na  Mg  Ca  Cl  SO4  HC0  3  C0 " 3  4.1 .75  508.0 86.4  71.0 12.1  4.1 .75  9.3 1.8  510.0 94.83  5.1 .97  5.1 .8  530.0 82.8  100.0 15.6  4.9 .79  9.4 1.4  625.0 96.0  7.4 1.1  9.6 1.5  5.1 1.2  217.0 183.0 52.0 . 43.9  12.3 2.9  15.8 3.7  395.0 93.6  3.4 .81  8.0 1.9  9.4 1.2  426.0 53.3  350.0 43.8  14.5 1.8  29.9 4.1  687.5 93.9  4.3 .58  15.5 2.1  "Polygon" meq/1 %  20.0 1.1  831.0 43.9  1011.0 53.5  29.0 1.5  18.3 .9  1979.0 98.7  7.6 .38  0 0  Ironmask meq/1 %  8.8 1.1  391.0 48.8  395.0 49.3  6.3  15.8 1.8  833.0 96.2  7.1 .82  9.6 1.1  15.0 2.9  186.9 37.2  283.0 56.1  19.2 3.8  6.4 1.3  479.0 97.4  6.0 1.2  15.8 2.7  217.0 37.2  333.0 56.9  19.0 3.2  6.5 1.3  500.0 97.4  6.9 1.3  "1st S a l t Mine" meq/1 %  10.5 .4  2752.0 98.3  37.5 1.3  .4 .01  76.8 3.1  708.0 28.8  131.0 5.3  1546.0 62.8  "2nd S a l t Mine" meq/1 %  7.5 .3  2130.0 97.0  58.3 2.7  .3 .01  14.1 .6  1896.0 83.0  54.0 2.4  320.0 14.0  12.4 2.4  so  Bottom meq/1 Wallender Surface meq/1  % Bottom meq/1  Bowers Surface meq/1 % Bottom meq/1 7 to  .62 .13  105  Table IX.  C h e m i c a l A n a l y s i s of M a j o r Ions i n Kamloops A r e a f o r August 29, 1968.  'Cherry Creek" Surface meq/1  % Bottom meq/1 %  K  Na  23.0 1.0  1826.0 82.4  23.0 .89  Mg  Ca  Cl  SO,  350.0 15.8  16.8 .76  35.8 1.4  2400.0 97.1  2278.0 88.2  266.0 10.3  16.1 .62  53.7 2.1  1500.0 96.4  HCOc  9.0 .45 10.8 .5  COc  25.6 1.05 28.5 1.0  Wallender Surface meq /1 % Bottom meq/d' %  23.0 2.9  380.0 47.9  375.0 47.3  14.5 1.8  29.0 3.9  697.0 93.6  30.8 2.3  578.0 42.3  733.0 53.6  24.5 1.8  51.2 3.6  1343.0 94.8  22.6 1.6  "Polygon" meq/1 %  40.4 .9  1304.0 32.3  3083.0 65.7  47.5 1.1  184.0 4.2  4125.0 94.7  22.3 .51  27.0 .62  Ironmask meq/1 %  100.4 4.1  46.6. 1.9  22.4 2558.0 .75 98.6  9.9 .33  10.6 .35  2.4 .3  5.3 .63  Bowers Surface meq/1 % Bottom meq/1 % "1st  S a l t Mine" meq/1 %  "2nd S a l t Mine" meq/1 %  955.9- 1348.0 39.0 51.0  1.9 .26  17.4 2.3 0 0  39.3 4.6  298.9 35.0  469.6 55.0  46.1 5.4  11.1 1.3  822.9 97.7  22.4 2.2  330.0 130.5  700.0 64.7  28.9 2.6  12.8 1.1  1125.0 98.3  41.0 .9  4260.0 94.9  183.0 4.2  1.5 .03  214.0 4.1  2395.0 45.4  55.2 1.0  2613.0 49.5  45.0 .95  4434.0 94.2  233.0 4.9  1.15 .02  100.0 1.9  3291.0 64.8  54.6 1.1  1633.0 32.5  6.3 .6  106  Table X.  S e a s o n a l M o n o v a l e n t : D i v a l e n t (M:D) T o t a l C a t i o n R a t i o s and Na:Mg R a t i o s f o r Kamloops H a b i t a t s (1968).  Saline Habitats 'CHERRY CREEK POND' C r y s t a l Surface (M:D) Na:Mg C r y s t a l Bottom (M:D) Na:Mg Ruppia S u r f a c e (M:D) Na:Mg Ruppia Bottom (M:D) Na:Mg "1st  26  iii  18 v  29 v i i i  8.8  6.8 7.1  5.3 5.3  10.5  5.4 5.3  8.1 8.8  6.6 7.0  3.8 3.9  4.9  SALT MINE POND" (M:D) Na:Mg  75.9 75.6  22.3 22.5  "2nd SALT MINE POND" (M:D) Na:Mg  36.0 35.9  19.4 19.2  'POLYGON POND" (M:D) Na:Mg  1.2 1.2  .81 .82  .49 .49  IRONMASK (M:D) Na :Mg  1.0 1.0  .99 .98  .81 .76  WALLENDER LAKE Surface (M:D) Na :Mg Bottom (M:D) Na:Mg BOWERS LAKE Surface (M:D) Na:Mg Bottom (M:D) Na:Mg  1.3 1.3  ,81 ,83 1.8 1.9  1.1 1.1  1.0 1.0  1.1 1.2  .8  .66 .68  .65 .63  .66 .65  .47 .47  107  Table X I .  S e a s o n a l V a l u e s f o r N i t r o g e n (NO2-NO3 and NHi*) measured i n mg/1 f o r Kamloops H a b i t a t s D u r i n g 1967 and 1968.  Saline Habitats "CHERRY CREEK POND" N0 -N0 Surface Bottom 2  19v67  19vi67  23vii67  llviii67  30viii67  23ix67  ,12 ,07  .11 .18  trace trace  trace trace  .02  ,02  .04  .06  .06  .06  trace trace  ,03 ,02  ,52  ,30  2.25  .08  ,03  ,08  .11  .11  ,12  .02  ,03  .05  .07 .06  .05 .02  .04  .03 .01  ,04 ,01  3  BOWERS LAKE NO2-NO3  Surface Bottom  ,03 .02  POLYGON POND NO2-NO3  IRONMASK LAKE NO2-NO3  WALLENDER LAKE NO2-NO3  Surface Bottom  .03  108  T a b l e X I Continued 20iv68  18v68  .07 .34  .05 .09  .12 .10  Surface Bottom  5.25 6.8.1  2.68 3.47  2.50 3.30  BOWERS LAKE N0 -N0 Surface Bottom  .07 .05  .07 .07  .04 .03  Saline Habitats "CHERRY CREEK POND" N0 -N0 Surface Bottom 2  2  26iii68  15vi68  19vii68  29viii68  3  .16 .16 5.3 7.2  .16 .18  .09 .10  2.4 2.5  3  ,06 ,08  ,06 ,07  .04 .06  NHit  Surface Bottom  19.2 23.0  6.9 9.0  2.4 11.5  .2 12.0  .18 49.25  48.30  11.25  .34 13.10  .45 10.50  8.75  2.5 5.4  POLYGON POND NO2-NO3  NH  4  IRONMASK LAKE N0 -N0 NH 2  3  4  .10 5.25 .07 (.75  .04 .50  trace 10.75  WALLENDER LAKE NO2-NO3  .08 .07  .04 trace  Surface Bottom  .11 .12  .08 .09  .04 .04  Surface Bottom  9.25 10.23  .3.0 6.10  3.05 10.10  2.5 9.8  .75 26.0  trace 4.30  3.0  6.25  2.50  3.75  NHtt  " 1 s t SALT MINE" NO2-NO3  NH  4  "2nd SALT MINE" NO2-NO3 NHif  .16 3.30  .04  109 Table X I I .  S e a s o n a l V a l u e s f o r Ehosphorus (0rtho-phosphate=0-P0 and Total-phosphate=T-P04) measured i n mg/1 f o r Kamloops H a b i t a t s D u r i n g 1967 and 1968.  Saline Habitats "CHERRY CREEK POND" O-PO^ Surface Bottom  it  19v67  19vi67  23vii67  llviii67  30viii67  23ix67  1.41 .44  .84 .78  .96 .95  1.86 1.86  11.0  Surface Bottom  1.54 .50  1.10 1.07  1.25 1.41  2.14 2.08  12.40  BOWERS LAKE 0-P01+ Surface Bottom  .04 -  .09 .14  .09 .24  .07 .07  .07 .06  .07 .06  .19 -  .78 .43  .68 .72  1.79 1.70  3.20 3.14  3.51 3.81  T-POij  T-POit  Surface Bottom POLYGON POND O-PO^ T-POi,  IRONMASK LAKE 0-PO^ T-POit  WALLENDER LAKE 0-P0 Surface Bottom T-P0 Surface Bottom  2.01  -  69.5  71.75  165.0  2.05  -  101.0  124.25  177.3  .32 .38  10.0 . 10.84  13.75 14.50  30.75 33.50  40.50 45.20  41.85 43.40  4  1.41 -  1.38 2.34  .92 1.30  .84 4.20  1.16 4.30  1.21 5.28  1.54 -  1.54 2.66  1.34 1.61  1.31 4.35  1.21 4.48  1.28 5.41  4  110 Table X I I . C o n t i n u e d Saline Habitats  26iii68  20iv68  18v68  15vi68  19vii68  .28 .34  .78 .90  .55 .81  .44 1.10  1.23 1.81  2.20 3.90  Surface Bottom  .30 .41  .90 1.10  .56 .81  .47 1.14  1.28 1.87  2.27 3.99  BOWERS LAKE 0-P0 Surface Bottom  .12 .57  .50 .06  .06 .23  .06 .26  .12 ..12  .11 .06  .78 .59  1.16 .87  .21 .25  .23 .78  .30 C-.92  .57 1.12  "CHERRY CREEK POND" 0-P0-+ Surface Bottom  29viii68  T-P01+  4  T-P0i+  Surface Bottom POLYGON POND O-PO^ T-P0 H  IRONMASK 0-P0 T-PO^ 4  WALLENDER LAKE 0-PO.+ Surface Bottom  .68 1.01  2.41 6.80 2.45 16.97  34.5 45.5  59.2 72.1  75.0 86.2  .92 .93  .74 .95  .17 .20  .26 .30  8.35 8.75  10.60 11.10  1.98 2.14  1.41 2.37  2.20 2.34  1.50 3.80  .71 7.85  2.20 14.25  2.41 2.31  2.51 2.39  2.48 2.44  1.52 3.91  .74 7.98  2.35 14.70  T-PO4  Surface Bottom " 1 s t SALT MINE" O-PO4  -  -  .07  .19  .42  T-POj,  -  -  .09  .20  .45  -  -  "2nd SALT MINE" O-PO^ T-PO^  46.50 47.20  75.0 75.5  220.0 270.0  12.50  13.75 345.0 350.0  Ill Table X I I I .  S e a s o n a l T o t a l D i s s o l v e d S o l i d s (measured i n g/1) f o r Kamloops H a b i t a t s , 1967 and 1968. 10vi67  23vii67  30viii67  23ix67  50.4 54.5  161.6 163.6  478.0  16.6 19.6  18.8 21.0  84.0 82.0  88.2 85.0  96.0 106.0  "Cherry Creek Pond" S u r f a c e (g/1) Bottom (g/1) Bowers Lake S u r f a c e (g/1) Bottom (g/1) W a l l e n d e r Lake S u r f a c e (g/1) Bottom (g/1)  28.0 35.8  36.4 37.2  91.6 103.2  205.6  560.0  568.0  218.0  472.5  569.0  li68  26iii68  " P o l y g o n Pond" S u r f a c e (g/1) Ironmask Lake S u r f a c e (g/1)  20ix68  520.0 18v68  19vii68  29viii68  "Cherry Creek Pond" S u r f a c e (g/1) Bottom (g/1)  14.5 59.6  21.8 28.4  39.0 45.0  95.7 113.2  139.3 225.0  78.4  17.2 26.2  27.2 27.6  31.0 34.6  42.1 53.4  51.0 65.5  112.0  16.5 42.0  20.0 56.4  27.6 52.8  40.7 63.4  48.8 82.5  24.3  40.8  123.8  278.0  271.5  20.5  33.2  60.5  234.5  198.0  148.7  298.8  295.4  142.5  312.0  315.4  Bowers Lake S u r f a c e (g/1) Bottom (g/1) W a l l e n d e r Lake S u r f a c e (g/1) Bottom (g/1) "Polygon Pond" S u r f a c e (g/1) Ironmask Lake S u r f a c e (g/1)  217.0  " 1 s t S a l t Mine Pond" S u r f a c e (g/1) "2nd S a l t Mine Pond" S u r f a c e (g/1)  T a b l e XIV.  MONTH  S e a s o n a l Osmotic P o t e n t i a l f o r 1968 i n (mOsm) f o r Kamloops H a b i t a t s .  CHERRY CR. POND  WALLENDER  BOWERS  Surface  Bottom  IRONMASK  Surface  Surface  245 mOsm  211 mOsm  Surface  Bottom  Surface  MARCH  220 mOsm  705 mOsm  240 mOsm  APRIL  330  365  281  285  228  615  465  374  MAY  536  559  355  322  312  629  1240  715  JUNE  690  700  368  344  353  673  1720  1242  1612  2382  510  599  535  682  >3000  >3000  AUGUST  Bottom  POLYGON  470 mOsm  108 mOsm  521 mOsm  113  Table XV.  "Cherry  S e a s o n a l S p e c i f i c C o n d u c t i v i t y Values (measured i n m i l l i m h o s ) f o r Kamloops H a b i t a t s , 1967 and 1968. 19v67  10vi67  23vii67  llviii67  30viii67  23ix67  32.7 32.8  37.7 38.8  78.9 80.9  101.9  80.2  10.6 10.2  11.1 11.2  14.2 13.8  18.9 19.2  29.9 27.8  30.5 31.5  17.5 19.0  18.2 23.4  25.5 29.8  34.0 41.5  35.0 42.8  35.9 40.8  77.9  72.4  48.9  36.3  37.9  72.3  64.2  56.6  49.1  45.3  Creek Pond"  Surface (millimho) Bottom ( m i l l i m h o ) Bowers Lake Surface (millimho) Bottom ( m i l l i m h o ) W a l l e n d e r Lake Surface (millimho) Bottom ( m i l l i m h o ) "Polygon Pond" Surface (millimho) Ironmask Lake Surface  (millimho)  li68  26iii68  .46.2  20iv68  18v68  15vi68  19vii68  29viii68  8.6 40.6  16.2 19.1  30.0 31.1  40.5 41.0  64.1 66.9  73.5 90.2  20.8  12.2 20.1  18.9 19.3  20.7 21.5  22.6 22.6  27.3 29.8  28.3 33.0  30.2  7.5 30.1  13.4 35.8  19.8 37.7  26.4 35.9  27.4 37.9  29.2 34.9  13.3  30.2  63.5  77.0  60.3  70.5  13.6  23.6  30.1  56.7  77.3  50.2  82.0  105.7  101.9  94.3  77.3  101.9  107.5  95.6  "Cherry Creek Pond' Surface (millimho) Bottom ( m i l l i m h o ) Bowers  Lake  Surface (millimho) Bottom ( m i l l i m h o ) W a l l e n d e r Lake Surface (millimho) Bottom ( m i l l i m h o ) "Polygon Pond" Surface  (millimho)  Ironmask Lake Surface  (millimho)  " 1 s t S a l t Mine Pond Surface  (millimho)  "2nd S a l t Mine Pond Surface  (millimho)  114  Table XVI.  S e a s o n a l V a l u e s f o r Oxygen (measured i n mg/1) f o r Kamloops H a b i t a t s , 1967, 1968. (None Det. i n d i c a t e s n o t measurable due t o extreme s a l i n i t y . )  Saline Habitats "Cherry Creek Pond'.' Crystal Surface Bottom Ruppia Surface Bottom Bowers Lake Surface „ Bottom "Polygon" Surface  19v67  19vi67  23vii67  9.0 9.0  8.0 '7.5  3.0  12.0 12.0  11.0 11.0  3.5  5.0  5.0  6.5 6.0  llviii67  30viii67  23ix67  1.0  0.0  0.0  5.5 5.5  5.0  5.0  None Det. None Det. None Dec. None Det. None Det. None Det.  Ironmask W a l l e n d e r Lake Surface Bottom  4.0 .5  6.0 1.0  26iii68  20iv68  18v68  15vi68  11.0 8.5  8.5 8.5  6.5 6.5  6.0 6.0  ,5 ,5  12.0 7.5  9.0 9.0  8.0 8.0  Lake Surface Bottom  8.5 8.5  3.0 3.0  3.0 2.5  5.0  6.5 6.0  "Polygon Pond" Surface  9.0  6.5  Ironmask  8.0  6.0  W a l l e n d e r Lake Surface Bottom  8.5 2.5  6.0 1.5  "Cherry Creek Pond':' Crystal Surface Bottom Ruppia Surface Bottom Bowers  6.0  3.0 1.0  3,5  3.0 .5 19vii68  3.5 .5 29viii68  4.5 1.0  2.0 .5  None Det. None Det. None Det. None Det.  4.0 1.5  5.0 .5  6.5 .5  1.5 .5  115  Table X V I I .  Seasonal pH f o r Kamloops H a b i t a t s 1967 and 1968. 19v67  10vi67  23vii67  llviii67  30viii67  9.2 9.4  9.6 9.6  9.9 9.9  8.9 8.9  8.3 8.3  9.5 9.5  10.2 10.4  Box^ers Lake Surface Bottom  8.8 8.8  8.6 8.6  8.5  9.0 9.0  8.7 8.7  8.6 8.5  W a l l e n d e r Lake Surface Bottom  9.7 9.7  9.9 9.9  9.9 8.7  9.8 9.0  9.8 8.8  9.9 8.7  Pond Surface  9.9  1.5  8.2  5.3  8.1  Ironmask Surface  8.9  8.2  8.4  8.6  Saline Habitats "Cherry Creek Pond" Crystal Surface Bottom Ruppia Surface Bottom  Polygon  12168 "Cherry Creek Pond" Crystal Surface Bottom Ruppia Surface Bottom  8.6  23iv67  9.1  26iii68  20iv68  18v68  15vi68  19vii68  29viii68  9.4 9.4  8.9 9.0  9.1 9.0  10.2 10.2  9.6 9.4  9.0 8.8  9.2 9.6  9.0 9.0  9.4  10.3  9.7  Bowers Lake Surface Bottom  8.1 8.2  8.5 8.5  8.4 8.5  8.6 8.6  9.2 9.3  9.1 9.1  9.4 9.3  W a l l e n d e r Lake Surface Bottom  9.3 9.0  9.0 8.8  9.1 9.2  9.2 9.5  10.0 9.2  10.2  9.6 8.0  9.9  8.4  8.35  8.3  8.2  8.4  8.9  9.1  8.5  8.6  " 1 s t S a l t Mine" Surface  9.4  9.8  9.8  10.2  "2nd S a l t Mine" Surface  9.'..5  9.6  9.6  9.7  Polygon Surface Ironmask Surface  9.0  8.9  ,8  Table XVIII. MONTH 1967  S e a s o n a l Water Temperatures f o r Kamloops H a b i t a t s (1967 - 1968)  "CHERRY CREEK POND" "CRYSTAL" B S  BOWERS  "RUPPIA" S B i / o„  S  WALLENDER B  S  B  "POLY"  "IRON"  1ST  2ND  S  S  S  S  My 19  14°C  14°C  14 C  14°C  15°C  15°C  14°C  14°C  14°C  15°C  J e 10  15.0  15.0  15.0  15.0  15.0  15.0  15.0  15.0  16.0  17.0  J u l 23  18.0  18.0  18.0  18.5  17.5  20.0  19.5  37.5  32.0  Aug 11  22.0  18.5  18.0  20.5  19.5  27.0  23.0  Sept 23  18.5  15.0  14.0  16.0  15.5  19.0  Jan 12  -4.0  -3.0  -3.0  -3.0  -3.0  -5.0  Mar 26  4.5  11.5  5.2  11.5  7.5  12.0  7.0  8.5  6.0  6.5  Apr 20  8.0  9.0  8.0  8.0  10.0  10.5  9.5  9.5  9.5  9.0  My 18  17.0  17.0  17.0  17.0  16.0  16.0  15.0  17.0  17.5  16.0  20.5  21.0  J e 15  21.0  21.0  21.0  19.5  19.5  15.0  17.0  22.5  23.0  25.0'  25.5  J u l 19  19.5  19.5  19.5  21.0  20.0  15.5  15.5  26.0  25.5  28.0  28.0  Aug 29  26.0  18.5  20.0  15.0  14.0  31.5  27.5  25.0  24.0  1968  ON  117 T a b l e XIX.  :MENT  T r a c e A n a l y s i s f o r S u r f a c e Waters f o r Kamloops H a b i t a t s (May 1968) i n mg/1. (LDL = l o w e r s d e t e c t i o n l i m i t o f t e s t ; ND = n o t d e t e r m i n e d ) . S p e c t r o g r a p h i c a n a l y s i s by C o a s t - E l d r i d g e , Vancouver, B r i t i s h Columbia.  LDL  1ST  2ND  BOWERS  32.0  400.0  400.0  16.0  26.0  CHERRY CR.  WALLENDER  P0LYG01  Al  .3  Sb  3.0  ND  ND  ND  ND  ND  ND  As  25.0  ND  ND  ND .  ND  ND  ND  Ba  2.0  ND  ND  ND  30.0  ND  ND  100.0  Be  .03  ND  ND  ND  ND  ND  ND  Bi  .3  ND  ND  ND  ND  ND  ND  B  .3  4;o  100.0  9.0  21.0  1.5  1.0  Cd  3.0  ND  ND  ND  ND  ND  ND  Cr  .1  ND  ND  ND  ND  ND  ND  Co  .3  ND  ND  ND  ND  ND  ND  Cu  .1  Ga  .3  ND  ND  ND  Fe  .3  20.0  150.0  400.0  Pb  .3  ND  ND  ND  ND  ND  ND  Mn  1.0  ND  ND  ND  ND  ND  ND  Mo  .3  trace  trace  trace  Nb  .3  ND  ND  ND  ND  ND  ND  Ni  .3  ND  ND  trace  ND  ND  ND  Si  .3  28.0  300.0  400.0  21.0  25.0  130.0  Ag  .03  trace  ND  ND  ND  ND  trace  Sr  .3  20.0  ND  14.0  32.0  50.0  Sn  .3  ND  ND  ND  ND  ND  ND  Ti  .3  4.0  40.0  40.0  3.0  9.0  40.0  ND  ND  ND  ND  ND  .1.5  10.0  ND  ND  W  25.0  V  .3  Zn  3.0  .4  ND 1.2 ND  trace  15.0 ND  trace  4.0 ND  .3  trace ND 16  ND 12  trace  .3 ND  trace  trace ND 65.0  trace  40.0  Table  XX.  Dominant B e n t h i c and P l a n k t o n i c A l g a l S p e c i e s i n Kamloops H a b i t a t s 1967, 1968. (Pg = P o l y g o n , Im = Ironmask, Bo = Bowers, Wa = W a l l e n d e r , CC = Cherry Creek Pond, IS = 1 s t S a l t M i n e , 2S = 2nd S a l t M i n e ) .  Species  Bo  Wa  Im  Pg  CC  IS  2S  Anabaena spp.  X  X  X  X  X  X  X  Merismopedia t e n u i s s i m a Lemm.  X  N o d u l a r i a spumigena Mertens  X  X  X  X  X  X  X  Oscillatoria  X  X  X  X  X  X  X  N a v i c u l a sp.  X  X  X  X  X  X  X  Pinnularia  sp.  X  X  S u r r u r i l l a sp.  X  X  Synedra f a s i c u l a t a (C.A.Ag). Kutz  X  X  X  X  X  X  X  X  Cladophora  spp.  f r a c t a (Dillw.) Kutz.  Chlamydomonas spp. Ctenocladus  circinnatus  X Borzi  R h i z o c l o n i u m h i e r o g l y h i u m (C.A.Ag.) K u t z .  X  U l o t h r i x tenerrima Kutz.  X  Phacus sp.  X  Euglena  X  spp.  Cryptomonas sp.  X  Gymnodinium sp.  X  Ochromonas v a l l e s i a r a Chodat  X  X  oo  Table XXI.  CONCENTRATION  SALT Na S0 2  CaCl  13.5  Na  .098  i  K  • 2H 0  . 100  '  Mg"""  • 6H 0  .05  i  Ca~*~  .05  |  Cl"  i  SO  3  2  2  2  2  KCL NaCl  g/1  13.75  NaN0  .175  3  '  Na^PO^ • H 0  .100  i  FeCl  3  .00032 g/1  '  MnCl  2  .00048  i  .00006  |  2  • 6H 0 2  ZnCl  2  CoCl  2  • 6H 0  .00002  i  CuCl  2  • 2H 0  .000005  |  H B0  3  .00240  i  .00020  |  3  Na MoO 2  SEAWATER  ION  1  '  lt  NaHC0 MgCl  D e f i n e d Medium R e c i p e f o r C t e n o c l a d u s Compared w i t h Major Ions o f Sea Water (Harvey, 1963).  2  2  • 2H 0  )+  2  Tris-buffer EDTA-Na  2  1.0 .015  g/1  i |  +  +  1 1  = h  HC0 " 3  DEFINED  10.76 g/1  15.75 g/1  .387  .052  1.29  .014  .413  .047  19.353  16.780  2.712  9.140  .142  .071  120  Table XXII.  TEMPERATURE  I n f l u e n c e o f Temperature on A k i n e t e G e r m i n a t i o n and Z o o s p o r a n g i a F o r m a t i o n a t c a . 4280 l u x , 16 h r l i g h t / 8 h r dark c y c l e (+ = z o o s p o r a n g i a ; - = no z o o s p o r a n g i a )  TIME FOR INITIAL GERMINATION  90% 2-CELL STAGE  ZOOSPORANGIA  0-l°C  none  nil  -  4-6°C  none  nil  -  7-9°C  106-125 h r  nil  -(+)  9-ll°C  25-38  hr  80-95 h r  +  14-16°C  22-30  hr  60-72 h r  +  19-21°C  6-10  hr  24-36 h r  +  25-27°C  <10  hr  nil  29-31°C  <10  hr  nil  -(+) _  121  Table XXIII.  E f f e c t o f Temperature on C t e n o c l a d u s A k i n e t e G e r m i n a t i o n (N=800) c a . 4280 l u x , 16 h r l i g h t / 8 h r dark c y c l e .  I  11  III  IV  0-l°C  0  0  0  0  3-4  1.0%  0  0  0  Temperature  X Germ % 0  X Cell # per j 0  .25%  0  5-7  47.0  59.0%  38.5%  61.5%  51.4  2  7-9  54.0  63.5  70.0  59.0  61.7  2  9-11  96.0  92.0  98.0  89.5  93.9  >2  15-16  97.0  95.0  99.0  93.0  96.0  >2  19-21  99.0  98.5  95.5  98.0  97.3  >2  25-26  91.0  99.5  98.0  96.5  96.3  >2  30-31  60.5  55.0  41.5  32.0  46.8  >2  34-35  6.0  0  1.5  0  .  0  0  122 Table XXIV.  Initial Temperature  Tolerance of Ctenocladus Akinetes to Various Temperatures (Initial germination % after 8 days exposure to i n i t i a l temperature conditions; optimum germination % measured 8 days cafter transferred to optimum temperature (19-21 C).  Optimum Temp.  x Initial %  x Optimum  0%  98.0%  3-4  0  97.9-  5-6  56.0  97.0  7-9  52.9  94.4  15-16  98.3  96.2  19-21  97.8  97.4  30-31  60.9  85.4  34-36  3.4  4.7  0-l°C  19-21°C  123  Table XXV.  I n f l u e n c e o f L i g h t I n t e n s i t y on C t e n o c l a d u s A k i n e t e s (N=800) 19-21°C.  Duration*  I  II  III  IV  x germ  0  0  0  0  0  0  16/8  81.5%  96.5%  92.5%  97.5%  95.0%  535  92.0  97.5  89.5  96.0  93.8  1070  95.0  90.0  88.0  100  93.3  3210  97.5  99.0  92.0  100  97.1  5350  96.0  98.0  92.0  98.0  96.0  7490  82.5  86.0  93.5  92.0  88.3  9630  79.5  62.0  81.5  88.5  77.9  12,305  17.0  26.0  7.0  15.5  16.4  Light  Intensity 0 lux 214  *light/dark  cycle  124  Table XXVI.  T o l e r a n c e of Ctenocladus A k i n e t e s t o V a r i o u s L i g h t I n t e n s i t i e s ( I n i t i a l g e r m i n a t i o n % a f t e r 6 days exposure to i n i t i a l c o n d i t i o n s ; optimum g e r m i n a t i o n % measured 6 days a f t e r t r a n s f e r r e d to optimum l i g h t c o n d i t i o n s (4280 l u x )  Initial Light Quantity 0 lux  Duration* 1 day 0  _ x Initial % 0  Optimum Light 4280 l u x  Optimum % 95.3  3210  16/8  96.7%  "  95.7  12,305  16/8  9.3%  "  11.9  *light/dark cycle  T a b l e XXVII.  pH  E f f e c t of Hydrogen I o n C o n c e n t r a t i o n ort C t e n o c l a d u s A k i n e t e s G e r m i n a t i o n (N=800) (19-21°C, c a . 4280 l u x 16 h r l i g h t / 8 h r dark c y c l e )  I  II  III  IV  x Germ %  6.0-6.3  0  0  0  0  0  6.9-7.1  0  0  1.0%  0  7.4-7.6  9.0%  .25%  16.0%  6.5%  12.0%  10.9%  7.9-8.1  85.5%  72.0%  69.5%  82.5%  77.5%  8.4-8.6  97.0%  92.0%  98.5%  92.5%  94.9%  8.9-9.1  90.0%  97.0%  88.0%  92.5%  91.9%  9.8-10.1  96.0%  93.5%  86.5%  89.0%  91.3%  10.8-11.1  91.5%  98.0%  94.5%  99.0%  95.8%  11.6-12.1  4.5%  18.0%  13.0%  97.0%  99.5%  100.0%  8.5-8.7 (control i n SSW)  6.5%  94.0%  10.6%  97.7%  126  Table XXVIII.  I n i t i a l pH  T o l e r a n c e of C t e n o c l a d u s A k i n e t e s a t V a r i o u s Hydrogen Ion C o n c e n t r a t i o n s ( I n i t i a l g e r m i n a t i o n % a f t e r 7 days a t i n i t i a l pH c o n d i t i o n s ; optimum g e r m i n a t i o n % measured 8 "days a f t e r t r a n s f e r r e d t o optimum pH- 8.5-9.0)  x Initial %  Optimum pH  6.0-6.3  0  6.9-7.1  1.3%  "  55.3  7.4- 7.6  48.9%  "  83.8  7.9-8.1  82.4%  "  92.9  8.5-8.7  96.4  8.5- 8 . 7 (control i n SS)  96.4  8.8-9.2  Optimum % 5.8  127  T a b l e XXIX.  E f f e c t of N a t u r a l Waters on C t e n o c l a d u s A k i n e t e G e r m i n a t i o n n=400. (19-21°C, c a . 4280 l u x 16 h r l i g h t / 8 h r d a r k c y c l e  Date of Collection  Solution Source  Osmotic P o t e n t i a l (mOsm)  X  Germinal  "Cherry Creek Pond"  14vi68  690  "2nd S a l t Mine"  19v68  1587  94.6  Mono Lake  lvi68  1700  89.3  15vi68  1720  92.7  " 1 s t S a l t Mine"  19v68  2383  18.7  "Hazen Pond"  2vi68  2611  19.7  "Polygon  19vii68  2672  26.4  3vi68  2914  2.3  "2nd S a l t Mine"  14vi68  >3000  0  "1st  14vi68  >3000  0  "Polygon  Pond"  Pond"  "Stateline  Pond"  S a l t Mine"  94.3%  128  Table XXX.  Dilution Factor  E f f e c t s o f D i l u t i o n o f "1ST SALT MINE POND" Water w i t h D i s t i l l e d Water on C t e n o c l a d u s A k i n e t e G e r m i n a t i o n , (x g e r m i n a t i o n % based on 2 t r i a l s o f 200 a k i n e t e s each 19-21°C; c a . 4280 l u x 16 h r l i g h t / 8 h r dark cycle).  Osmotic P o t e n t i a l i n mOsm  x No. C e l l s per germination tube  x % Germination  >3000 mOsm  0  0.0%  1.1  >3000  0  0.0  1.42  2540  1-2  31.5  2.00  1510  many  93.5  3.33  1050  many  92.5  10.00  372  many  96.0  20.00  221  many  91.3  50.00  108  many  95.2  100.00  41  1-2  88.7  200.00  20  1  20.1  1000.00  <10  0  0.0  0 (  129  T a b l e XXXI.  E f f e c t s o f D i l u t i o n o f "CHERRY CREEK POND" Water w i t h D i s t i l l e d Water (August 29, 1968) 19-21°C; c a . 4280 l u x 16 h r l i g h t / 8 h r d a r k c y c l e .  DILUTION FACTOR  OSMOTIC POTENTIAL  ZOOSPORANGIA FORMATION  1625 mOsm  NIL  1385  "  NIL  •1.45  1153  "  NUMEROUS  1.73  997  "  NUMEROUS  2.00  925  "  NUMEROUS  2.66  726  "  NUMEROUS  4.00  483  "  NUMEROUS  8.00  255  "  NUMEROUS  Normal 1.40  130  Table XXXII.  E f f e c t o f S p e c i f i c Ions on A k i n e t e G e r m i n a t i o n (n=200) 19-21°C, c a . 4280 l u x 16 h r l i g h t / 8 h r dark c y c l e ) (KC1, K 2 S O 4 , MgSO^, M g C l a t a l l c o n c e n t r a t i o n s (.05-6 mg/1) gave G% g e r m i n a t i o n ) 2  Salt Solution NaCl  Na S0 2  1+  Concentration i n mg/1  x Germination %  .05  0.0  .1  0.0  .5  10.0  1.0  77.0  2.0  5.0  4.0  .5  6.0  0.0  .05  0.0  .1  7.5  .5  63.5  1.0  83.2  2.0  2.5  4.0  0.0  6.0  0.0  131  Table XXXIII.  E f f e c t o f V a r i o u s Na:Mg R a t i o s I n Bowers Sediment E x t r a c t on R e p r o d u c t i o n (A = A k i n e t e , Z = Z o o s p o r a n g i a , 0 = N e i t h e r ) (19-21°C, 4280 l u x , 16 h r l i g h t / 8 h r dark c y c l e ) (Na source = Na SO )  A  B  C  D  E  F  meo^l Mg  H.7  11.7  11.7  11.7  11.7  meq/1 Na  5.1  6.6  9.4  15.7  42.3  1.3  3.6  Na:Mg  .45  .56  .80  A  A  A  0  0  11.5 12.5  11.5 12.5  11.5 12.5  25.9 8.8  54.2 7.5  G 11.7  H 11.7  11.7  109.3 214.7  13.7  9.3  18.3  13.7  Ratio Reproduction x Cell Length (u) Width (u) Range i n C e l l Size Length (u)  0  Z  95.3 7.35  Z  91.6 102.5 7.12 7.3  :  Width  (y)  Length:Width Ratio  10.0- 10.0- 10.0- 12.5- 25.0- 37.5- 35.0- 47.512.5 12.5 12.5 37.5 87.5 155.0 147.5 210.0 12.0- 12.0- 12.013.5 13.5 13.5 -  -  -  7.510.0  6.58.0  2.9  7.2  6.08.1 12.9  6.27.9 12.8  6.57.9 14.0  132  T a b l e XXXIV.  Ms "* meq/1.  Na meq/1.  Branching  157  140  ac-rt  4  Salt MgSOL,  E f f e c t o f V a r i o u s Na:Mg r a t i o s i n C h i h a r a Medium on b r a n c h i n g (ac = branches a r i s i n g a c u t e l y , r t . = branches a r i s i n g a t r i g h t a n g l e s ) and c e l l dimensions (N=200). A t 19-21 C, c a . 4280 l u x on 16 h r l i g h t / 8 h r dark c y c l e .  +  Range o f C e l l Size i n Length Width 17.550.0  6.9-  x C e l l Size in Width Length  Mean Ratio L:W  Approximafe Na :Mg Ratios  32.9  7.9  4.1  1:1  2.9  1 :2  8.7  MgSOit  280  140  ac-rt  15.040.0  7.29.0  24.5  8.2  MgSOit  157  482  ac  50.0127.5  7.58.4  91.9  8.1 11.3  3:1  MgCl2  164  140  rt  20.052.5  7.09.0  34.5  7.9  4.3  1:1  MgCl2  312  140  ac-rt  17.542.5  7.4 10.0  26.4  8.5  3.1  2:1  MgCl2  164  498  ac  37.5120.0  6.47.6  71.4  7.2  9.9  1:3  Chihara ^ Solution  140  ac  30.0197.5  6.6-  89.5  6.8 13.1  7.2  1:7"  133 Table XXV.  A n a l y s i s (Ln meq/1) o f Sediment E x t r a c t s from I n v e s t i g a t e d H a b i t a t s (CC-C = "Cherry Creek" C r y s t a l Zone, CC-R = " C h e r r y Creek" Ruppia Zone, B = Bowers Lake, W = W a l l e n d e r Lake, I = Ironmask, P = Polygon Pond) Showing E f f e c t s on Ctenocladus Reproduction. (Temp. = 20 C, L i g h t = c a . 4280 l u x 16 h r l i g h t / 8 h r dark c y c l e , pH = c a . 8.5-9.1.  Ca.^  Extract CC-C CC-R B W I P  .95 24.8 11.7 2.75 13.8 6.45  .325 4.3 10.4 2.2 11.9 6.6  +  Na :Mg Ratio  Cation M:D Ratio  .25  13.1  13.7  10.4  1.47  172.0  6.9  K  +  Na  5.98  Reproduction many z o o s p o r a n g i few-no  zoosporan  .875  5.3  .45  .28  Akinetes  .525  2.7  .98  .65  Akinetes  .82  Akinetes  .37  Akinetes  2.2 .100  18.9 4.8  1.4 .74  Table XXXVI.  C o l l e c t i o n s of Ctenocladus Deposited i n Various Herbaria w i t h Data. ( A b b r e v i a t i o n s a f t e r Lanjouw, J and S t a f l e u , F, 1956.)  Herbarium  Herbarium #  Cryptogamic Herbarium Chicago (F)  F a r l o w Herbarium Cambridge, Mass. (FH) N a t u r h i s t o r i s c h e Museum A u s t r i a , Wein (W) R i j k s h e r b a r i u m Herbarium L e i d e n , N e t h e r l a n d s (NBV)  Location  Date & Collector  Collecting  Condition of M a t e r i a l  L i t t l e M a n i t o u Lake Sask. Canada  P.E. Kuehne 121x41  Akinetes  Marina, C a l i f o r n i a Monterey County  L.G.M. Bass B e c k i n g , 1929  Undet.  1074231  L i m a , Peru  A. Maldonado 12/1940  Vegetative  1123022  Laguna Boza, Lima Peru  A. Maldonado 1/1943  Akinetes  1049310  Mono L a k e , C a l i f o r n i a  M.J. Groesbeck 12vi40  Vegetative  1115929  Mono Lake, C a l i f o r n i a  A. C a r t e r 24viii42  VegetativeAkinete  1051587  Mono L a k e , C a l i f o r n i a  M.J. Groesbeck 6ix40  Akinete  1049303  Mono Lake, C a l i f o r n i a  M.J. Groesbeck llvi40  Undet.  1049308  Mono Lake, C a l i f o r n i a  M.J. Groesbeck 12vi40  Vegetative  301b  Laguna Boza, Lima  A. Maldonado 1/1943  Undet.  9938  L i t t l e Mariitou Sask. Canada  P.E. Kuehne 12ix40  Akinetes  L-3085 166  L i t t l e Manitou Sask. Canada  P.E. Kuehne 12ix40  Akinetes  L-3085 173  Marina, C a l i f o r n i a  L.G.M. Bass B e c k i n g , 1929  Vegetative  Table XXXVI C o n t i n u e d  Herbarium R i j k s h e r b a r i u m Herbarium L e i d e n , N e t h e r l a n d s (NBV)  Univ. C a l i f o r n i a Herbarium B e r k e l e y , C a l i f o r n i a (UC)  ii  Date $' Collector  Condition of M a t e r i a l  Herbarium #  Location  L-3085 170  Marina, C a l i f o r n i a  L.CM. Bass B e c k i n g , 1929  Undet.  L-3085 171  Laguna Boza, Lima, P e r u  A. Maldonado 1/1943  VegetativeAkinete  L-3085 172  Lima, Peru  A. Maldonado  VegetativeAkinete  L-3085 168  Mono Lake, C a l i f o r n i a  M.J. Groesbeck llvi40  Undet.  L-3085 164  Mono Lake, C a l i f o r n i a  M.J. Groesbeck 6ix40  Akinete  L-3085 165  Mono L a k e , C a l i f o r n i a  M.J. Groesbeck 12vi40  Vegetative  L-3085 167  Mono L a k e , C a l i f o r n i a  M.J. Groesbeck 12/640  Vegetative  L-3085 169  Mono L a k e , C a l i f o r n i a  A. C a r t e r 24viii42  VegetativeAkinete  Marina, C a l i f o r n i a  L.G.M. Bass B e c k i n g , 1929  Undet.  680585  Laguna Boza L i m a , Peru  A. Maldonado 1/1943  Akinete  641536  Cuzco, Peru  A. Maldonado 12/1940  Undet.  674693  Mono L a k e , C a l i f o r n i a  A. C a r t e r 24viii42  VegetativeAkinete  953416  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0103964/manifest

Comment

Related Items