UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The absolute stability of nonlinear systems Chang, Te-Lung 1970

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1970_A7 C43.pdf [ 2.85MB ]
Metadata
JSON: 831-1.0102180.json
JSON-LD: 831-1.0102180-ld.json
RDF/XML (Pretty): 831-1.0102180-rdf.xml
RDF/JSON: 831-1.0102180-rdf.json
Turtle: 831-1.0102180-turtle.txt
N-Triples: 831-1.0102180-rdf-ntriples.txt
Original Record: 831-1.0102180-source.json
Full Text
831-1.0102180-fulltext.txt
Citation
831-1.0102180.ris

Full Text

THE ABSOLUTE STABILITY OF NONLINEAR SYSTEMS by TE-LUNG CHANG B.A.Sc. i n E.E., Cheng Kung U n i v e r s i t y , 1966 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n the Department of E l e c t r i c a l Engineering We accept t h i s thesis as conforming to the required standard Research Supervisor Members of Committee Acting Head of Department Members of the Department of E l e c t r i c a l Engineering THE UNIVERSITY OF BRITISH COLUMBIA February, 1970 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by the Head o f my Depar tment o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Depar tment o f The U n i v e r s i t y o f B r i t i s h C o l u m b i a V a n c o u v e r 8, Canada ABSTRACT This thesis i s i n two parts, both considering the absolute s t a b i l i t y of nonlinear systems. In the f i r s t two chapters the s t a b i l i t y of c e r t a i n classes of nonlinear time i n v a r i a n t systems involving several n o n l i n e a r i t i e s i s considered. A number of graphical methods are given for t e s t i n g the s t a b i l i t y of these systems. The graphical tests are equivalent to a weakened form of the Popov c r i t e r i o n . The t h i r d chapter derives a s t a b i l i t y condition f o r nonlinear systems involving a l i n e a r time-varying gain. The time-varying gain i s assumed to s a t i s f y conditions on i t s magnitude and rate of change. i i "TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS v ACKNOWLEDGEMENT '. . v i i 1. TIME INVARIANT NONLINEAR FEEDBACK SYSTEMS AND TIME VARYING NONLINEAR FEEDBACK'SYSTEMS 1 1.1 Introduction 1 1.2 Lyapunov Methods 7 1.3 The Popov C r i t e r i o n 8 1.4 L 2 S t a b i l i t y 10 2. THE ABSOLUTE STABILITY OF A TIME INVARIANT NONLINEAR FEEDBACK SYSTEM 11 2.1 Introduction. 11 2.2 A Graphical Test of the Absolute S t a b i l i t y of a Series System with N o n l i n e a r i t i e s and I d e n t i c a l Transfer Functions 11 2.2.1 Main Method-Common Popov Line 13 2.2.2 S i m p l i f i c a t i o n i n P a r t i c u l a r Cases 16 2.2.3 Use of the Modified Nichols Chart to Obtain Q 19 2.2.4 An Analogue-Computer Technique 23 2.3 The Absolute S t a b i l i t y of the Series Nonlinear System with D i f f e r e n t Transfer Functions 27 2.4 The Absolute S t a b i l i t y of a P a r a l l e l Nonlinear System 30 3. THE ABSOLUTE STABILITY OF A TIME VARYING FEEDBACK SYSTEM WITH MONOTONIC NONLINEARITIES 34 3.1 The Absolute S t a b i l i t y of the Single-Loop Time Varying Nonlinear Feedback System 34 3.2 The Main Results 35 3.2.1 Theorem 1 35 3.2.2 A Speical Case of Theorem 1 36 3.3 Proof of Main Results • 36 3.4 Examples 41 *in-i Page 3.5 The Absolute S t a b i l i t y of a System with Mul t i p l e N o n l i n e a r i t i e s and Time Varying Gains 46 3.6 Theorem 2 49 3.7 Proof of Theorem 2 50 3.8 Example 51 4. CONCLUSIONS 53 APPENDIX 1 55 APPENDIX 2 , 57 APPENDIX 3 58 APPENDIX 4 59 REFERENCES 60 i v LIST OF ILLUSTRATIONS Page 1.1 General time i n v a r i a n t nonlinear feedback system 2 1.2 General time varying nonlinear feedback system 2 1 . 3 Series system with m n o n l i n e a r i t i e s 4 1 .4 P a r a l l e l system with m n o n l i n e a r i t i e s . . . 5 1 .5 Internal feedback system with m n o n l i n e a r i t i e s 5 1 .5 M u l t i - c i r c u i t system with m n o n l i n e a r i t i e s 6 1.7 Popov c r i t e r i o n 9 2.1 Graphical c r i t e r i o n f o r the time i n v a r i a n t series system with 5 i d e n t i c a l l i n e a r t r a n s f e r functions. 2.2 Modified Nyquist l o c i and the common Popov l i n e for the series system, o nf \ 32(s+0.25) . _ • ' . N , m = 3 ' G ( s ) = (s+l)(s+ 2)(s+ 4 ) ' F O R E X A M P L E 2 > 1 • • 1 5 2 .3 Modified Nyquist locus for i = l , and the corresponding Popov l i n e f o r the s e r i e s system, m=3, G(s) = (g+i)(s+5)(s+20) ' E x a m P l e 2.2.1. 17 2 .4 Nyquist p l o t of (1+0.788S)G(s), where G(s) = ( s + 1 ) ( S + 5 ) ( s + 2 0 ) ' A N D a graphical t e s t i n g the s t a b i l i t y of the se r i e s system, m=3, f o r Example 2.2.1 17 2 .5 Modified Nyquist locus f o r i = l , and the corresponding Popov l i n e for the series system, m=4, G(s) = , 1 . , ,rw , 9 n \ > for Example Example 2.2.2 \...\ \..".\ 18 2.6 Nyquist p l o t of (1+0.766s)G(s) , where G(s) = (s+]_) (3+5) ( S+20) ' A N ^ a graphical t e s t i n g the s t a b i l i t y of the se r i e s system, m=4, for Example 2 . 2 . 2 18 2.7 Gain-phase pl o t f o r G(s) = ( S + J Q ) ( S+5Q) a n < ^ a r a m : i - l y o r boundaries for the se r i e s system, m=3, f o r Example 2 .3 21 6 30 2 .8 Gain-phase pl o t f o r G(s) = ( S + 2 Q ) ( S+50) A N C ^ A ^am^y °f .boundaries for the series system, m=4, f o r Example 2 .3 22 580 2.9 Gain-phase p l o t for G(s) = ( s + IQ ) ( S +50) a n d a f a m i l y o f boundaries for the se r i e s system, m=5, for Example 2 .3 22 v Page 2.10A Computer program for R-I generator 24 2.10B Computer program for X-Y producer 25 2.11 The l o c i p l o t t e d by analogue computer 26 2.12 Extension of Popov c r i t e r i o n f o r the p a r a l l e l system with m iden-t i c a l n o n l i n e a r i t i e s and m l i n e a r transfer functions 33 3.1 Single loop time varying nonlinear feedback system with zero-input 42 3.2 Bode diagram f o r a compensator l+y(s) = 42 3.3 The p l o t s of G(s) = T 4 T V 7 ^ \ a n d G'(s) = (|^)G(s) for (s+l)(s+2) 4+s Example 3.1 44 3.4 Modified Nyquist p l o t of G(s) = ( s-f]j (S+D) E x a mP-'- e ^.2 47 3.5 General time varying nonlinear feedback system with zero-input.. 47 v i ACKNOWLEDGEMENT I wish to express my sincere gratitude to Dr. M.S. Davies, the supervisor of th i s p r oject, for h i s invaluable guidance, and Dr. E.V. Bohn for reading the manuscript. Grateful acknowledgement i s given to the National Research Council f o r f i n a n c i a l support received under NRC Grant A-4148, and to the University of B r i t i s h Columbia f o r U.B.C. Fellowship awarded since 1968. I would also l i k e to thank Miss Beverly Harasymchuk for typing the manuscript. VH 1 CHAPTER 1 TIME INVARIANT NONLINEAR FEEDBACK SYSTEM AND TIME VARYING NONLINEAR FEEDBACK SYSTEM §1.1 Introduction This thesis considers the absolute s t a b i l i t y of the equilibrium p o s i t i o n , X = 0, of feedback systems defined by X = AX + BY Y = 0(a) (1.1.1) T a = C X, or, i n the time varying case, X = AX + BY Y = 0(a,t) (1.1.2) T a = C X, where X i s an n-vector, Y i s an m-vector, 0 i s an m-vector, A i s an nxn con-T stant matrix, B i s annxm constant matrix, and C i s an mxn constant matrix. In (1.1.1), each element of 0(a) i s a nonlinear function of a alone, so that the system (1) i s time i n v a r i a n t . In (1.1.2), each element of 0(a,t) i s a time varying nonlinear function of both a and t. It i s assumed that the i - t h element can be separated into a nonlinear part 0 . (a . ) and the time i x varying gain k . ( t ) , where 0.(a.,t) = 0.(a.)k.(t). The system (2) i s thus a l i i i i i time varying nonlinear feedback system. The transfer matrix TXs).of the l i n e a r part i s T(s) = C T ( s I - A ) _ 1 B, (1.1.3) where I i s an nxn unit matrix. The feedback system (1) may be depicted as shown i n F i g . 1.1. The forward path consists of an mxm l i n e a r time inva r i a n t matrix r ( s ) and the n o n l i n e a r i t y matrix N.L. In F i g . 1.2, the forward path of the time varying nonlinear feedback system (2) consists of the transfer 2 F i g . 1.1 General time i n v a r i a n t nonlinear feedback system r(t) + <rtt) N N . U <P((Tl k(t) r(s) C(t) F i g . 1.2 General time varying nonlinear feedback system 3 matrix F ( s ) , the mxm diagonal n o n l i n e a r i t y matrix N.L. with elements 0T(a, ), 0 „(a„),. . • 0 (a ) and the mxm diagonal time-varying gain matrix k(t) 1 1 2 2 m m with elements k, (t),k (t) ,. . .k ( t ) . 1 2 m A wide v a r i e t y of systems may be treated by choice of r(s) , some forms of p a r t i c u l a r i n t e r e s t are: (1) A series system. The forward path consists of the s i n g l e -input single-output l i n e a r time inva r i a n t t r a n s f e r functions separated by amnesic n o n l i n e a r i t i e s . This i s shown i n F i g . 1.3. (2) A p a r a l l e l system. The forward path consists of m-parallel branches, each of which has one n o n l i n e a r i t y i n series with one l i n e a r time in v a r i a n t t r a n s f e r function. This i s shown i n F i g . 1.4. (3) An i n t e r n a l feedback system. The forward path consists of m-single nonlinear feedback loops. This i s shown i n F i g . 1.5. (4) A m u l t i - c i r c u i t system. Such systems do not f a l l into the previous classes. Such a system i s shown i n F i g . 1.6. The elements of the n o n l i n e a r i t y matrix are to be considered i n 4 classes. In each i t i s assumed that 0(a) i s a piece-wise continuous, angle valued function of a. (1) A sector n o n l i n e a r i t y ; any function which s a t i s f i e s the condition k. < ^ < k 9, a i 0 l a I 0(a) =0, a = 0 where k^ > 0 and k^ may be p o s i t i v e , negative or zero. (2) A f i r s t and t h i r d quadrant n o n l i n e a r i t y ; this' i s a s p e c i a l case of (1). 0 < < k < oo k > 0 , a — for a l l f i n i t e nonzero values of a. <ryt) <t>,«r,) Q,ls) <t>i(tTi) Gi(s) ( T m f t ) <Pm<F»t F i g . 1.3 Series system with m n o n l i n e a r i t i e s 5 F i g . 1.5 Internal feedback system with m n o n l i n e a r i t i e s 6 F i g . 1.6 M u l t i - c i r c u i t system with m n o n l i n e a r i t i e s (3) A monotonic n o n l i n e a r i t y ; t h i s belongs to a subclass of (2) , i n which i t i s assumed that d | M > o . do (4) A monotonic odd n o n l i n e a r i t y ; t h i s belongs to a subclass of (3) , i n which i t i s further assumed that 0(-a) = -0(a) for a l l a. Furthermore, the elements of the time varying gain matrix to be considered are assumed p o s i t i v e , bounded and continuous. §1.2 Lyapunov Method Investigations of the s t a b i l i t y of such systems were i n i t i a t e d by Lure who proposed a Lyapunov function of the form: T m a. V(X) = X PX + Z 3 . / 1 0.(z)dz, (1.2.1) i = l 1 0 1 T where P i s an nxn symmetrical p o s i t i v e d e f i n i t e matrix (P = P > 0), a l l 3 . > 0 and the upper l i m i t s of the i n t e g r a l terms are the elements of the matrix C TX. (1.2.2) It i s obvious that V(X) i s a p o s i t i v e function since 0 < 0(a)a < Ka 2. (1.2.3) From (1.1.1), the d e r i v a t i v e of (1.2.1) i s V(X) = X T(AP T+PA) +B TPX0(a)'+ X TPB0(a) - 3AX0(a) + BC0(a), (1.2.4) where g i s a diagonal constant matrix with elements 3 n,$ 0 >•••6 • I 2 m From the Lyapunov second method, i n order to f i n d the s u f f i c i e n t condition of absolute s t a b i l t i y , i t i s necessary to determine the conditions under which V(X) i s negative d e f i n i t e except at the n u l l state, X = 0, where V(X) = 0. In [5], i t was shown that the conditions of absolute s t a b i l i t y of a time varying nonlinear system may be found from using the Lyapunov func-t i o n (1.2.1) with a l l 3^ = 0. This method of using Lyapunov functions was further developed by Narendra and Taylor [6] using the modified Lyapunov func-ti o n , v i z . , T m °i V(X,t) = X PX + E g.k.(t) / 0.(z)dz, (1.2.5) i = l 1 1 0 1 where k^(t) i s a time varying gain. In [4,5], i t Is also proved that the s u f f i c i e n t condition under which the Lyapunov function is- v a l i d i s s i m i l a r to the Popov c r i t e r i o n , d i s -cussed below. §1.3 The Popov C r i t e r i o n The s u f f i c i e n t condition of absolute s t a b i l i t y f o r a c o n t r o l l a b l e and observable time i n v a r i a n t system with one n o n l i n e a r i t y s a t i s f y i n g (1.2.3) was established by V.M. Popov [1]. The Popov c r i t e r i o n takes the form Re[(l+qjco) G(jui)] +~ > 0 (1.3.1) for a l l to, where q i s a nonnegative number. A convenient graphical method e x i s t s f o r t e s t i n g (1.3.1). A s u f f i c i e n t condition f o r the absolute s t a b i l i t y of a system with many n o n l i n e a r i t i e s was given by Jury and Lee [2]. The condition requires the Hermitian matrix: 2K _ 1 + H(jo>) + H T(-ju)) (1.3.2) to be p o s i t i v e d e f i n i t e f o r a l l OJ. Here K i s a constant diagonal matrix of elements K... ,K , . . .K , a l l of which are p o s i t i v e numbers such that the in e q u a l i t y 1 I m 0 < 0 . (o\ )o\ < K.o. 2 (1.3.3) i i i i i i s s a t i s f i e d for i = l,2,...m, and where H(joi) = (I + J O J Q ) T O ) , (1.3.4) unstable region Y 'Popov A 'me Stable region F i g . 1.7 Popov c r i t e r i o n 10 where Q i s a constant diagonal matrix with elements q 1,q„...q which are 1 2 m nonnegative numbers. This forms a g e n e r a l i z a t i o n of the Popov r e s u l t . For the time varying nonlinear feedback system, the s u f f i c i e n t condition of absolute s t a b i l i t y established by Rozenvasser i s as below, Re G(jco) + ^ > 0 (1.3.5) K for a l l co. It i s but the Popov c r i t e r i o n with q = 0. Other new c r i t e r i a , s i m i l a r to the Popov's, were introduced by Zames' and Falb [8,9], Yakubovich [4], Narendra and Taylor [6], Baker and Desoer [10,11], Bergen and Rault [12], and Anderson [13]. §1.4 L 2 S t a b i l i t y The concept of the s t a b i l i t y has been introduced by Sandberg [14]. It i s c l o s e l y r e l a t e d to asymptotic s t a b i l i t y . L„ i s the space of square integrable, valued functionjon [t ,°°), i t i s assumed that L -is-'a l i n e a r , inner-product, i/formed space; the inner product of x and y i n i s <x,y> = r x ( t ) - y ( t ) d t '< °°, (1.4.1) ' o and the norm of x i s || x || 2 = /<x,x>. Suppose a(x) i s i n L^fO, 0 0], a(t) i s uniformly continuous, and <j(t) i s bounded, then the state.o(t) approaches n u l l state i f the s u f f i c i e n t condi-t i o n of absolute s t a b i l i t y of a time i n v a r i a n t nonlinear system, the Popov c r i t e r i o n , i s s a t i s f i e d . A further L 2 bounded condition was introduced by Zames [8,9]. 11 CHAPTER 2 THE ABSOLUTE STABILITY OF A TIME INVARIANT NONLINEAR FEEDBACK SYSTEM §2.1 Introduction In the previous chapter, i t was mentioned that the nonlinear systems can be considered i n 4 classes according to the form of the t r a n s f e r matrix res). Testing absolute s t a b i l i t y of a single-loop time invariant nonlinear system using the modified Nyquist diagram was f i r s t i n i t i a t e d by Popov, basing the method on h i s c r i t e r i o n . Further developments using a graphical method to test the absolute s t a b i l i t y of a nonlinear system have been furnished by Naumov [15], Meyer and Hsu [16], and Murphy [17]. A graphical method of t e s t i n g the absolute s t a b i l i t y of a time in v a r i a n t s e r i e s system with m-nonlinearities and m-identical l i n e a r transfer functions was introduced by Davies [18]. ' §2.2 A Graphical Test of the Absolute S t a b i l i t y of a Series System with N o n l i n e a r i t i e s and I d e n t i c a l Transfer Functions Consider a ser i e s system with the l i n e a r time invariant transfer function matrix , 0 . 0 v 0 G(s) r(s) = -G(s) 0 o 0 \ \ 0 - G ( s > N \ N \ \ 0 \ \ -G(s) 0 (2.2.1) The input, a . ( t ) , and output, 0^(oO> of the i-th nonlinear element s a t i s f y the i n e q u a l i t y 0 < a . 0 .(a.) < a. i i i l (2.2.2) 12 F i g . 2.1 Graphical c r i t e r i o n for the time i n v a r i a n t series system with 5 i d e a l n o n l i n e a r i t i e s and 5 i d e n t i c a l l i n e a r t r a n s f e r functions. Such a system f a l l s within the c l a s s for which a Popov-like s t a b i l i t y c r i t e r i o n has been, established. In applying t h i s r e s u l t , the matrix where Q i s an a r b i t r a r y , semi-positive, diagonal matrix of constants, i s con-sidered. A s u f f i c i e n t condition to e s t a b l i s h the absolute s t a b i l i t y of a nonlinear system i s that the Hermitian matrix (1.3.2) must be p o s i t i v e d e f i n i t e for a l l co. I f a l l nonlinear elements are assumed to have the same upper bound; that i s , = K for i = l,2,...m, then, without loss of g e n e r a l i t y , K may be taken as the i n d e n t i t y matrix. If Q=0, the s t a b i l i t y c r i t e r i o n i s equivalent to the Nyquist p l o t of G(s) l y i n g within a symmetric m-sided polygon. In the subsequent development i t i s not required that Q=0, but rather that a l l elements of Q are equal; that i s , Q=ql, where q i s a p o s i t i v e s c a l a r constant. where r'(jco) i s i d e n t i c a l to r(jco) except that G(jco) has been replaced by G'(jco) = (l+jcoq)G(jco) • Thus i t i s possible to consider the case 0=0 by applying the e a r l i e r r e s u l t s for Q=0 to G'(jco) instead of G(jco) i t s e l f . I f i t can be shown that G'(jco) l i e s within the appropriate polygon, for any p o s i t i v e q, then s t a b i l i t y has been established. H(jui) = (I+jcoQ)r(jco), (2.2.3) I f Q i s r e s t r i c t e d i n t h i s manner, then (I+jcoQ)T(jco) = r'(jco), (2.2.4) §2.2.1 Main Method-Common Popov Line Let |G'(jco)| = *f and G'(jco) = 6. If G' (jco) l i e s within a polygon, then y cos (6 - a) < 1, (2.2.5) where a = 2iiT m and i = 1,2,... m, 14 and where i i s one of m values each corresponding to the m sides of the polygon. '• Now where Thus and Define G'(jco) = (l+jwq)G(» = (l+jo)q)(R+jI), G(ju) = R(u) + jl(oo) Re G' (jcj) = R - jtol = ycosG , Ira G' (jco) = uqR + I = f sine , (R-coql)cosa + (ioqR+I)sina < 1, (Rcosa+Isina) + qco(-Icosa+Rsina) < 1. -X(co) = Rcosa + I s i n a , (2.2.6) (2.2.7A) (2.2.7B) (2.2.8A) (2.2.8B) (2.2.9A) (2.2.9B) Y ( ( j j ) = co(-Icosa + Rsina). (2.2.8B) gives -X + qY < 1. • (2.2.10) From (2.2.9A) and (2.2.9B), the m d i f f e r e n t modified Nyquist l c c i are pl o t t e d each corresponding to one of the m sides of the polygon. To s a t i s f y i n e q u a l i t y (2.2.10), a l l these l o c i must be to the right side of a s t r a i g h t l i n e , the Popov l i n e , which passes the point (-1,0) having slope 1/q. If such a s t r a i g h t l i n e e x i s t s , then the absolute s t a b i l i t y of the system i s established. Example.2.1 Consider a feedback system of the type shown i n F i g . 1.3 (m=3). Let every n o n l i n e a r i t y s a t i s f y the i n e q u a l i t y 0 < 0.a. < a., l l l where i = 1,2,3 and l e t every l i n e a r block be represented by (2.2.11) 15 Fig . 2.2 Modified Nyquist l o c i and the common Popov l i n e for the series system, „, . . 32(s+0.25) • m-3, G(s) = ( s + 1 ) ( s + 2 ) ( s + 4 r ' f ° r E x a m P l e 2- 1' 16 n . , 32K(s+0,25) /, , , ^ l (s+1)(s+2)(s+4) . The m d i f f e r e n t modified Nyquist l o c i and common Popov l i n e are shown i n F i g . 2.2. Then, by s e t t i n g q = 0.23, the absolute s t a b i l i t y condition K < 0.476 (2.2.13) i s obtained. §2.2.2 S i m p l i f i c a t i o n i n P a r t i c u l a r Cases P l o t t i n g the m d i f f e r e n t modified Nyquist l o c i i s tedious i f m >_ 4. A simpler and more d i r e c t approach i s possible i f G(s) i s of the form G(s) = -p (2.2.14) n (S+D . ) j = i 3 or n k n . , (s+N.) G(s) = — V — (2.2.15) P n ( S + D . ) j=i 2 where p > 1+m, N. and D . are r e a l p o s i t i v e constants, and N. > D . for i = j . i 3 1 J I f the tran s f e r function G' (jco) = (l+jioq)G(jo)) having q^ and k^ which are found from the modified Nyquist locus f o r i = 1, s a t i s f i e s the above conditions, then ^  (1) The phase of G'(jco) i s decreasing as co increases. (2) For some co = co , giving Z.G'(jco ) > and |G'(jco )| < 1, |G'(jco)| c c — m c decreases when co increases f o r co > co . c And k^ i s the maximum value s a t i s f y i n g the absolute s t a b i l i t y conditon. 4 Y(u) 17 J - r 2.3 Modified Nyquist locus f or i = l , and the corresponding Popov l i n e f o r the series system, m=3, G (s ) = ( s + 1 ) ( s ^ s + 2 Q ) ., for Example 2.2.1. 2.4 Nyquist p l o t of (1+0.788$)G(s), where G(s) = 100 , and a (s+l)(s+5)(s+20) graphical testing the s t a b i l i t v 18 a graphical t e s t i n g the s t a b i l i t y of the s e r i e s system, m=4. for Example 2.2.2. - -19 Example 2.2 (1) Consider m = 3 with every l i n e a r element having a transfer function G(s) = 1 0 ° k (s+l)(s+5)(s+20). (2.2.16) From F i g . 2*3, q± = 0.788, (2.2.17) and k = 1.46. (2.2.18) Setting q = 0.788, k < 1.46 i s the absolute s t a b i l i t y condition since, as shown i n F i g . 2.4, G'(s) s t a i s f i e s the above conditions. (2) Using the same approach the absolute s t a b i l i t y condition of the system with 4 n o n l i n e a r i t i e s i s obtained as: k < 1.234 (2.2.19) by s e t t i n g q = 0.766. The information required for the previous method may be obtained d i r e c t l y from the Nyquist Plot of G(s) by noting that the c r i t i c a l point i s that having phase a^, and the corresponding value of q i s given by tan(a^~3) where tanp i s the slope of G(s) at a= a^. If the transfer function G(s) does not s a t i s f y the s p e c i a l form of (2.2.14) or (2.2.15), the Nyquist locus of G'(s) haivng q^ and k^ found from i n e q u a l i t y (2.2.10) for i = l may be tested by the polygon c r i t e r i o n . I f t h i s f a i l s , the general approach must be adopted. §2.2.3 Use of the Modified Nichols Chart to Obtain 0 The use of the modified Nichols chart to obtain q and to test the absolute s t a b i l i t y of the system with many n o n l i n e a r i t i e s i s also possible. A polygon w i l l be described by some r e l a t i o n s h i p between the log amplitude and the phase of the form 20 M = 20 log, r t sec(- ^ + - - 0)db, (2.2.20) 10 m m > 2ii 2n where - (i-1) < 6 < i , m — — • m and i = 1,2,...m. The stable boundary G' can be represented i n the modified Nichols chart. Let us consider _1 M = M - 20 l o g 1 ( ) ( l + N 2 ) 2 , (2.2.21A) and where j = 0, t a n " 1 N. , (2.2.21B) J and N_. i s an a r b i t r a r y , p o s i t i v e constant. (2.2.21A) and (2.2.21B) give a family of the stable boundaries as shown i n F i g . 2.7, each corresponding to one of the constants N. Note that these curves are a l l of the same form and may e a s i l y be sketched. I f the locus of G(jco) i s sketched and q i s chosen, such that each point co. on the locus of G(jco) on the modified Nichols chart i s beneath the corresponding stable boundary N_. = co^  <J, then the absolute s t a b i l i t y of the system i s established. Also, i f the p o s i t i o n of the point co. i s known, and i s beneath a 2 N. family of stable boundaries N, then the corresponding values of q. = — j = 0,...°°, i s known, so that every point has one corresponding stable q range. Then, any q i n the i n t e r i o r q range i s permitted to be chosen for es t a b l i s h i n g the s t a b i l i t y of the system. This seemingly complex procedure i s , i n f a c t , quite straight-forward. I f a range of q's i s permissible, that value of q i s chosen which gives the greatest possible value of k. Example 2.3 Consider the system i n the Example 2.2 with every l i n e a r element G(s) where 700 F i g . 2.7 Gain-phase pl o t for. G(s) = -,—TTTTCT—, and a family of boundaries for (s+10)(s+50) the s e r i e s system, m=3, for Example 2.3. 22 6db F i g . 2.8 630 Gain-phase p l o t for G(s) = ( s +xo)( s+50) a n d a f a m i l y o f D ° u n d a r i e s f o r the ser i e s system, m=4, for Example 2.3. Fig. 2.9 Gain-phase pl o t for G(s) - 5 8 0 .____ (s+10)(s+50) a n d a family of boundaries f o r e s e r i e s system, m=5, for Example 2.3. 23 G ( S ) = (s +10)(s +20T ( 2 ' 2 - 2 2 ) and m = 3. Comparing the frequency response curve of G(juj) with a family of the stable boundaries as i n F i g . 2.7, the value of q and stable condition are q = 0.067 (2.2.23A) k £ 700 . (2.2.23B) S i m i l a r l y , from F i g . 2.8 and F i g . 2.9, by s e t t i n g q = 0.067, the following absolute s t a b i l i t y conditions k £ 630 for m = 4, . (2.2.24) and k £ 580 for m = 5, (2.2.25) are obtained. §2.2.4 An Analogue-Computer Technique This l a s t method makes use of the analogue-computer to test the absolute s t a b i l i t y of a nonlinear system. The computer arrangement, which i s shown i n F i g . 2.10A and F i g . 2.10B, i s divided into two main parts. The f i r s t generates R and I, and depends on the p a r t i c u l a r t r a n s f e r function being considered while the second gives the components of G(jco) which are set to remain unchanged for d i f f e r i n g systems. The e f f e c t of varying q on the G'(jco) locus i s e a s i l y obtained by adjusting a potentiometer. This method, however, s u f f e r s from d i f f i c u l t i e s i n amplitude s c a l i n g . Besides, the analogue-computer set-up becomes more complex with increase i n system order. It i s also noted that to sketch the complete locus of G'(jco) from co = 0 to co = 0 0 by the computer i s impossible because the describing time o M i s proportional to . To improve the accuracy of the output i t i s necessary to use a three- (or two-) stage programming and rescalin'g technique, and also to l i m i t the to range which i s dependent on the computer, c h a r a c t e r i s t i c s . 2.10B Computer program for X-Y producer Example 2.4 The system (m=3) has l i n e a r elements G^(s) where G i ( s ) (s+0.5)(s+l) (2.2.26) The c i r c u i t s of the two parts of the analogue computer set-up are shown i n F i g . 2.10A and F i g . 2.10B, and the t y p i c a l resultant l o c i for various values of q shown'in F i g . 2.11 lead to the choice q = 1.5. This therefore permits the choice of k = 0.685. max §2.3 Absolute S t a b i l i t y of the Series Nonlinear System with D i f f e r e n t Transfer Functions Let us consider the case where the i d e n t i c a l l i n e a r transfer functions i n the previous section have been replaced by d i f f e r e n t l i n e a r transfer functions, Now the tran s f e r matrix r(s) may be written / 0 r(s) = o . o -G-^s) 0 - G 2 ( s J \ G (s) N, m 0 I I 0 (2.3.1) -G ^ ( s ) 0 m-1 Let us consider H(>) = (I+jwQ)r(ju)), where I i s a unit matrix and Q i s a diagonal constant matrix with elements q^,q 2,...q^; thus H(s) may be considered as below, / 0 H(s) = G'(s)^ m G^(s) 0 -Gl(s) (2.3.2) 28 where G'(s) = (1+jwq.)G.(s), i=l,2,...m. i 1 1 (2.3.3) Let |G^ (jco)I = Y £ and Z G ^ ( J W ) = 6 i; then the Herraitian matrix 21 + H(jco) + H (-ju>) becomes / 2 - Y l e ~ j 6 l 0 Y e j 6m '1 \ 'm -Y 2e 2 r J 6 9 ~ Y 0 R 2 0 I _ j 9 _ _ _ 0 < v e m ^ -j8 , \ -y e m-1 -Y ,e m-1^ 'm-1 2 (2.3.4) and must be p o s i t i v e d e f i n i t e for a l l a> to s a t i s f y the s t a b i l i t y condition. The f i r s t (m-1) p r i n c i p a l minors of A^ are generated by the recurrence r e l a t i o n A. = 2A. l 1-1 " Y i - 1 A i - 2 > 0, i = 3,4,...m-1, with A^ = 2 and = 4 - Y j _ A = m The l a s t condition i s ri1 •y.e ^1 0 V 9 1 2 'Y 9 e 2 v e 2 m m - Y 2 E 2 e^m 'm Ym-1 \ ie \ 0 — Y _e J m-1 2 'm-1 ! 6 e-J6m-2 > 0, (2.3.5) that i s , 9 9 m m A = 2A , - ( Y , + Y )A „+(-!)( TT Y . ) e ( E 9.) m m-1 'm-1 m m-2 . .. ' i . , l 1=1 i = l m (-E 6.) m • -i 1 + ( - l ) m ( T f Y , ) e 1 = 1 i = l 2. 2, 2 A - , - ( Y / + Y " ) A „ + ( - D m ( Jl Y.)2 cos( E 0.) > 0. m-1 'm-1 'm m-2 . ., ' l . , l 1=1 1=1 m m (2.3.6) If a l l y. < 1 f ° r a H w, i=l,2,...m, then 1 and A 2 =-4-Y^ > 3, 2 2 A 3 ~A 2 = A 2-Y 2 A - L > ^2~^1 = - 2 > 1, 2 A3 > A 2 + 1 = 4 ~ Y 1 + 1 > 4: V A 3 = V Y 3 A 2 > A3" A2 > X ' > A 3+l > 5, 2 A.-A. , = A. ., —Y. , i . , > A. .-A. 0 > 1, l l - l l - l 1-2 l - l i-2 A. > A. ,+1 > i+1, l i - l ' 2 A = A -Y „A > A -A > 1, m-1 m-2 m-2 m-2 m-J m-2 m-3 A T > A „+l > m, m-1 m-2 m A > 2A ,-2A „+(-l) m2cos( E 6.) m m-l m-z . . l i = l m > 2+(-l) m2cos( E 6.) >_0. (2.3.8) 1=1 1 . Therefore, the absolute s t a b i l i t y of a nonlinear system i s assured i f every locus of G^(joo) l i e s within'a c i r c l e of unit radius. Obviously, must be chosen zero so that G'(jw) = G i(jo J) In order to test absolute s t a b i l i t y of nonlinear system i t i s thus necessary to sketch the l o c i of G^(jio) and to observe whether a l l of the l o c i l i e within the unit c i r c l e . 30 As m -> °°, this r e s u l t coincides with the previous r e s u l t i n §2.2, but here the G_^(jaj)'s are not nec e s s a r i l y the same. §2.4 Absolute S t a b i l i t y of the P a r a l l e l Nonlinear System The transfer matrix of the p a r a l l e l nonlinear system shown i n F i g . 1.4 may be written Define and r(s) = , G^s) G (s) G (s) 1 / m G l ( s ) ' j ! i G 1(s) G 2(s) m (2.4.1) then Suppose that G.(s) = G(s), i=l,2,...m, and G'(joo) = (l+jcoq)G(ju)) , ^G|(jw) G 2(jco) G| (ja>) ^G^(jco) G 2 ( j u ) G' (ju>) ^  m. , i I = G'(jco) 1 1 1 ' (2.4.2) G(jco) = R(co) + jl(co) , R' (jio) = R(co) + ql(w) , (2.4.3A) (2.4.3B) I 1 (ju) = qtoR(w) + I(w) (2.4.3C) Let us suppose the i - t h n o n l i n e a r i t y s a t i s f i e s 0 < a.0.(a ) < a.. 1 x i I (2.2 The Hermitian matrix i s 21 + 2R' ,1 1 1-I I I ^1 1 1/ /2(1+R f) 2R' 2R' \ I 2R' 2(1+R')\ ' | \ 2R* s 2R' 2R' 2(1+R')' (2.4 The s u f f i c i e n t condition of absolute s t a b i l i t y i s that the Hermitian matrix must be p o s i t i v e d e f i n i t e for a l l w; consequently, > 0. Now 2(1+R') 2R' 2R' \ I 2R' 2(1+R'>s I \ \ \ I 2R1- -2R* \ I 2R' \ 2(1+R') 2(1+R') 2R1 2R* -2 2 0, -2 2 \ ° N 1 ! \ \ S i I \ \ • 0 .0 2 32 = 2A. . + 21R' i - l = 2(2A i_ 2 + 2 1 _ 1R') + 21R' = 2 1~ 1A 1 + ( i - l ) 2 V = 2 1(l+iR') > 0. (2.4.5) Substituting (2.4.3B) i n (2.4.5), . R(u>) - q'ajl(u) + j > 0. (2.4.6) Define X(ui) = R(u>), (2.4.7A) and ^ Y(u>) = COI(OJ). (2.4.7B) (2.4.7A) and (2.4.7B) give X(u)) - qY(w) + j > 0. (2.4.8) The condition A = X(u>) - qY(u) + - > 0. (2.4.9) m m implies that A > 0, i = 1,2,...m-1. (2.4.5) Hence,the new Popov line,shown i n F i g . 2.12, passes through the point (- ^ , 0) with slope —. q 33 2.12 Extension of Popov c r i t e r i o n f o r the p a r a l l e l system with m i d e n t i c a l n o n l i n e a r i t i e s and m l i n e a r t r a n s f e r functions 34 Chapter 3 ABSOLUTE STABILITY OF A TIME VARYING FEEDBACK SYSTEM WITH MONOTONIC NONLINEARITIES §3.1 The Absolute S t a b i l i t y of the Single-Loop Time Varying Nonlinear Feedback System In recent years some r e s u l t s concerning the absolute s t a b i l i t y of a single-loop nonlinear system with a time varying gain have been obtained by Rozenvasser [5], Zames [22], Bergen and Rault [12]. The r e s u l t s to be presented here extend t h i s previous work. Let us consider single-loop time varying nonlinear system shown i n F i g . 3.1. In that system, a (t) = St g(t-r) e ( i ) d T f o r t > 0 e o ~~ (3.1.1) = 0 for t < 0 i s the zero-state response of the l i n e a r time i n v a r i a n t part with t r a n s f e r function G(jw) = ^ [ g ( t ) ] . The input il(t) represents the zero-input response of g ( t ) . The complete response of g(t) i s thus c ( t ) = o (t) + n ( t ) . (3.1.2) e The input, a(t) = - c ( t ) , and the output 0(c) of the amnesic n o n l i n e a r i t y N.L. are r e l a t e d i n the following manner: (1) 0 < 00(a) < a 2 for a i 0, 0(0) = 0, 0 ( a ) - 0 ( a ) (2) 0 < a _ a — — 1 f o r CTx * V The block, k ( t ) , represents a l i n e a r time varying gain, thus e(t) = k ( t ) 0 [ a ( t ) ] . The instantaneous value of t h i s gain i s constrained so that (1) K± < k(t) < K 2, where K 2 > K± > 0, (2) bk(t)< k(t) < a k ( t ) , where the number a> 0,and the number b (3.1.3) i s f i n i t e . It i s assumed that the l i n e a r part i s stable, more s p e c i f i c a l l y , (1) g(t) E L 2(0,«0, g(t) e L 1(0, K>) j (2) n ( t ) e ^ ( O . c o ) , (3) n(t) i s d i f f e r e n t i a b l e and f)(t) e L (0,»). Condition (1) above ensures that g(t) i s bounded on (0,°°) and that g(t) 0 as t •+ °°; besides, conditions (2) and (3) ensure that n(t) behaves i n the same manner. Denote n(t) = sup | n ( t ) | , t>0 g(t) = Sup | g ( t ) | . U t>0 The Fourier transforms of g ( t ) , e ( t ) , etc., are denoted by G(jco) E(jco), etc. The notation f| • II denotes norms i n the space L^(0,°°). Thus ||n(t)|l = /~ | n ( t ) | d t . §3.2 • The Main Result The main r e s u l t i s the following theorem. §3.2.1 Theorem 1 Consider the system shown i n F i g . 3.1 to which the assumptions made above apply. Let y ( t ) be any r e a l function such that (1) y(t) = 0 for t < 0, (2) y(t) < 0 ' f o r t > 0 , K l (3) ||y(t)|| < . K2 and l e t q be any nonnegative number. If Re( [l+qjw+Y(jco)] [G(jto)-4-]+aqG(jto')} K2 - l l y ( t ) l l ( f - f ' - 0 ( Q 1 ) K l - K2 36 for a l l to, then (1) Sun |a(t) | < «, t>o (2) a(t) -v 0 as t <», (3) as |ln(t)|| + U n( t) 1 ->- 0, the corresponding a(t) has the property that Sup |o(t) J ->- 0. f >0 §3.2.2 A Special Case of the Theorem It should be noted that i f the time varying gain k(t) i s monotonically non-increasing and a <_ 0 V t >^  0, then the condition (01) for absolute s t a b i l i t y may be replaced by Re[l+qj<^Y(juO][G(ju))+^H - || y ( t ) II -K2 K l K2 3 > 0 CQ1') for a l l a), 2 K 2 where again, q i s any nonnegative r e a l number. §3.3 Proof of Main Result The body of the proof of Theorem 1 w i l l be given i n a seri e s of appendices; a b r i e f summary i s given below i n t h i s section. Define a(t) for t < T a T ( - ' 0 for t > T, ,(t) ={and Thus e T ( t ) = k ( t ) 0 [ a T ( t ) ] , a e T ( t ) = g(t-x) e T(x)dT. (3.3.1) a T ( t ) = a (t) for t < T, eT e — and a e T ( t ) e L 1(T,-) 37 Define The notation (x*y)(t) denotes convolution between x(t) and y ( t ) ; (x*y)(t) = x( T ) y ( t - T ) d T . . (3.3.2) a - o + o*y, c = c + c*y. m- • J m J Then T e (t) / ' [aAt) - -~—-]e(t)dt U m K.^. •= / J [ a(t) - ^ - ] e ( t ) d t + /J[y*(a - | - ) ( t ) e ( t ) d t . (3.3.3) Define k(t-x)0[a T(t-T.)] R(x) •= / J [ a T(t-T) ^ — - ] k ( t ) 0 [ a T ( t ) ] d t . (3.3.4) Now where and R(x) = R 1 ( T ) + R 2 ( T . ) , (3.3.5) R 1 ( t ) = f0 to T ( t-T ) -0 [a T ( t-T ) ] ]k(t )0 [a T ( t ) ]dt , (3.3.6) R 2 ( T ) = /Q[1 - k ^ T ) ]k(t)0[a T(t-x)]0[a T(t)]dt. (3.3.7) Frem Appendix 1. ro K k(t)0[a (t)] R 1 ( T ) l / 0 K [ a T ( t ) K ]k(t)0[a T(t)]dt, (3.3.8) and from Appendix 2, oo 1 1 2 R 2 ( T ) <_ / 0 ( ^ - - K ~ ) e T ( t ) dt. (3.3.9) Thus bo K 2 e T ( t ) R ( T ) ± V K a T ( t ) ~ ~ i ] e x ( t ) d t - (3.3.10) The f i r s t term of the ri g h t side of (3.3.3) i s always p o s i t i v e . Let us now consider the second term of the ri g h t side of (3.3.3) ; 0 t y * ( a " K ^ ] ( T ) D T 38 = / J /Jy(T ) [o- ( t-T) - e ( ^ " T ) ] e ( t ) d T dt co co e ( t - T ) = fQ / Q y ( x ) [ o T ( t - T ) - R ] e T ( t ) d T dt = / 0y(T)R(x)dx. (3.3.11) But, employing (3.3. 10), i t may be shown that fl[y*(o - f - ) ] ( t ) e ( t ) d t 0 > /gyCOdx a T ( t ) - - | ^ - ] e T ( t ) d t (3.3.12) - ' l l y l l / 0 [ K ^ ° T ( t ) " K ^ ~ ] e T ( t ) d t - (3.3.13) Substitu t i o n of (3.3.13) i n (3,3.3) y i e l d s e (t) /S[0»(t) - -YT-^t + W " y" ; o e T ( t ) 2 d t S T 6 T ( T ) > (1 - - ^ l l y l l / i [ a T ( t ) - - | ]e _ ( t ) d t (3.3.14) K l 0 T K2 T and, from the assumptions of the Theorem 1, the r i g h t side of (3.3.14) i s non-negative. Hence, e (t) - - f 2 - ] e ( t ) d t + lly" 'SeT(t)2dt - °- ( 3 - 3 - 1 5 ) Consider the following i n t e g r a l . T E M ( T ) 1 1 I = /o [ _ C Tem ( t ) ~ q°e(t) " ~T~ aqa e(t) + ( f - - £-) ||y|l e ( t ) ] e ( t ) d t = I 1 + I 2 , (3.3.16) where and T e ( t ) i l I = /'[ - a (t) - + ( f - - f - ) ||yll e ( t ) ] e ( t ) d t , (3.3.17) ± u em i^-^. 1^ 2 I 0 = fl - q[a (t) + aa ( t ) ] e ( t ) d t . (3.3.18) 2 0 e e Now 39 I x = V ° m ( t ) + ^ - ^ ) H y l l e ( t ) ] e ( t ) d t + n m ( t ) e ( t ) d t (3.3.19) givi n g , due to (3.3.15) I > i'l n ( t ) e ( t ) d t . (3.3.20) 1 — 0 m In a s i m i l a r manner, I 2 = /Qq [a(t )+aa(t)]e(t)dt+/Jq[n(t )+an(t)]e(t)dt. (3.3.21) Invoking the r e s u l t of Appendix 3, I 2 L q[k(T)$(T)-k(0)$(0)+/Qq[fi(t)+an(t)']e(t)dt. (3.3.22) R e c a l l that / J f ( t )d t = / 0 f T ( t )d t , where f ^ ( t ) i s the truncated version of f ( t ) to between 0 and T. Hence from (3.3.16), 1 = V ^ e T m ^ " q 6 e T ( t ) " " q a C T e T ( t ) + ( ~ - jp ) ||y I! e T ( t ) ] e T ( t ) d t (3.3.23) and, from the conditions of Theorem 1 and since 1 CO 1 1 = " 27 L,Re{[l+qjco+Y(jw)][G(juO + + aqG(jw) -(^- " ~) llyll }E T ( j u3)E*(j W)du), i t follows that I 1 0. (3.3.24) Since I = I + I ? , from Appendix 3 and a f t e r s u b s t i t u t i n g (3.3.20) i n (3.3.24), • q[k(T)*(T)-k(0)*(0)] < - /*[aqn(t)+n (t)+qn(t)]e(t)dt. (3.3.25) — U r n Define e = Sup |e(t)1 0 < t < T 40 and invoking the conditions already imposed upon n ( t ) , fi(t) and y ( t ) , the rig h t side of (3.3.25) must be less than the quantity e M [ ( l + llyll +aq) ||n|| +q llfill ] = MeM. (3.3.26) Furthermore, considering the f i r s t term of t h e ' l e f t side of (3.3.25), since 0 i s monotonic, *(t) > |{0[a(t)]} 2. (3.3.27) Using (3.3.26) and (3.3.27) i n (3.3.25) y i e l d s ' | k(T){0[ a(T)]} 2 <_ qk(0)<D(0) + Me^. ' (3.3.28) From (3.3.28), since < 1, 2 ~ • L - e ( T ) 2 £ qk(0)*(0) + MeM. (3.3.29) The i n e q u a l i t y (3.3.29) holds .for any T >_0 and implies K M K M Sup | e ( t ) | ± + [ ( - ~ - ) 2 + 2 K 2 k ( 0 ) $ ( 0 ) ] 1 / 2 . (3.3.30) Furthermore, since a (0) = 0 by (3.3.1), t h i s bound on e(t) tends to zero with II hli + l lf i l l • It remains to be shown that | e ( t ) | + 0 as t ->• °°. Af t e r s u b s t i t u t i n g i n (3.3.14) of(A 3.3) of Appendix 3 and using . (3.3.24) , K (1 - - ^ l l y l l ) / J [ a ( t ) - ^-]e(t ) d t+/Qn m ( t)e ( t)dt -qk(0)$(0) + q/J[fi(t)+an(t)]e(t)dt <. 0. (3.3.31) Thus K (1 - r ^ l l y l l )fl[a(t) - ^ - ] e ( t ) d t < qk(0)*(0) .+ Me . (3.3.32) K^ 0 K 2 — M From which i t follows that T e(t) qk(0)*(0) + Me fQ[o(t) - ^ - ] e ( t ) d t i ^ . (3.3.33) 2 i - / l l y l l K l 41 Since r i g h t side of (3.3.33) i s independent of T, then l e t t i n g l.-> «>, e ( t ) qk(0)*(0) + Me fAo(t) - ^ - ] e ( t ) d t < M 0 L U V W K_ J C ^ ' U I " - K , (3.3.34) 2 l l y l l 1 and t h i s bound on the i n t e g r a l tends to zero with || nil + llnll . However, the bound already placed on e together with the conditions demanded of g(t) require 0" (t) to be bounded and to tend to zero. It may now be shown that the i n t e g r a l of (3.3.34) i s i n f i n i t e unless a (t) + 0 as t co, thus co n t r a d i c t i n g (3.3.34). Therefore i t can be concluded that a(t) -> 0 as t 0 0. Since a (t) i s uniformly continuous and i f Sup | a ( t ) | does not go to zero as |lnll + l l n l l 0, then (3.3.34) does not tend to zero e i t h e r . This i s a c o n t r a d i c t i o n . Hence, as l l n l l + II n II + 0, Sup |a ( t ) | -> 0. The proof i s t>0 therefore completed. §3.4 Examples Example 3.1 In the single-loop nonlinear system with a l i n e a r time varying gain shown i n F i g . 3.1, the l i n e a r part has a transfer function G ( s ) = (s+l)(s+2) ' the input and output of the nonlinear part, s a t i s f y (3.1.2), and the time varying gain i s such that (1) 1 <_ k(t) <_ 1.2, i . e . , K = 1, K = 1.2, (2) bk(t) <_ k(t) <_ ak(t) , where a,b are r e a l numbers such that a > 0, and b i s f i n i t e . Suppose that a i s large enough, q must be chosen zero. Let us assume that y ( t ) i s an exponential function such that 42 rct)=o p" o N.L. eft) Gcs) i | C t 7 c<t) -f 3.1 Single loop time varying nonlinear feedback system with zero-input 4 3 e ' as t > 0 y M - { T 0 as t > 0, 2 where y > 0 , and g > 1 . 2 = — . Then 1 lly(t)H =rQ l - i e ' ^ l dt . Thus the conditions on y(t) are s a t i s f i e d . A f t e r taking the Laplace transform of y ( t ) , 1 + Y(s) = 1 - - 1 = + T S + Y S + 1 3 + YS . ( 3 . 4 . 1 ) • Y The s u f f i c i e n t condition of absolute s t a b i l i t y i s R e { [ C p - l ) + Y . V ] [ G ( j a ) ) +•_! ] _ I ^ | o ( 3 . 4 > 2 ) 3 + Y JW ! • 2 3 1 - 2 — for a l l 03. Let us define G 1(Ja )) = GCjo,) + and From the r e l a t i o n ( 3 . 4 . 2 ) , the locus of G|(joi) must l i e on the r i g h t side of the v e r t i c a l l i n e passing through the point (r~L^~~ > 0 ) • The m u l t i p l i e r of 3 G^(jw) i n G^(jo)) may be considered as a compensator which i s shown on the Bode diagram F i g . 3 . 2 . The function of the compensator i s to improve the c h a r a c t e r i s t i c s of G^(jo3). From the p l o t of G ^ ( j w ) i n F i g . 3 . 3 , i t i s a simple matter to choose the proper values of g and y. From the fac t that the left-most point O J ^ = 2 . 5 • 3 — 1 3 on the locus of G.. (JOJ) l i e s between and — and that g s a t i s f i e d the r e l a t i o n 1 y y li-l 1 -j 1 . , . . ft"Urz _ ir~J < < c the s t a b i l i t y condition 3 K x K 2 K 2 K < 2 3 . 7 5 ( 3 . 4 . 3 ) 44 G= (UJOJXUJCO) Kf =23. 75 F i g . 3.3 The plot s of G(s) = ( 3 + i ) ( g + 2 ) a n d G'<s) = C^ J^-)GCs) for Example 3.1. 45 has been found by running a s u i t a b l y w r itten programme on the d i g i t a l computer. It i s noted that the combination 3 = 2 and y = i s not the best one because of the p a r t i c u l a r choice of y ( t ) . That optimum y(t) which gives the best combination of 3 and y m a Y be determined by a d i g i t a l computer technique. Example 3.2 Consider G(s) K (s+1)(s+D)' where D i s any p o s i t i v e r e a l constant, instead of the-G(s) i n the previous problem and l e t 0 < k(t) <_ 1, . and bk(t) <_ R(t) <_ ak(t) . In t h i s case, l e t us suppose y(t) = 0, then the' condition of absolute s t a b i l i t y i s Re{(l+qjio) [G(jco)+l]+aqG(jco)} >_ 0 C3 4.4) for a l l co. Rewritting, R(co) - qcol(co) + 1 + aqR(oj) ^ 0 (3.4.5) ' for a l l co, since G(jco) = R(co) + jl(co) . (3.4.6) Here „ / n 2. K^CD-co ) and Define -K (1+D) oi = ( l + c o 2 ) ( D 2 + . 2 ) ( 3 - 4 ' 7 B ) X(co) = R(co) (3.4.8A) and Y(OJ) = u i y - aR(oj). (3.4.8B) Substituting (3.4.8A) and (3.4.8B) i n (3.4.5), X(OJ) - qY(a)) + 1 >0. (3.4.9) To s a t i s f y i n e q u a l i t y (3.4.9), the locus must be on the r i g h t side of the s t r a i g h t l i n e passing through the point (-1,0) having p o s i t i v e slope —. q From (3.4.8A), (.3.4. 8B). and (3.4.9), i f a <_ l+D- e, where the small number e > 0 i s a r b i t r a r i l y chosen, and q i s then the s t a b i l i t y condition (Ql) i s s a t i s f i e d for any nonnegative r e a l constant k. Besides, the modified Nyquist pl o t i s on the r i g h t side of the Popov l i n e . This i s shown i n F i g . 3.4. If a ^ 0, the s u f f i c i e n t condition of absolute s t a b i l i t y i s R(OJ) - qoKu) + 1 >_ 0. (3.4.10) This i s the Popov c r i t e r i o n and i s s a t i s f i e d for any nonnegative r e a l constant k 1 by choosing q = 1+D" §3.5 Absolute S t a b i l i t y of a System with Many N o n l i n e a r i t i e s and Many Time  Varying Gains In the previous secLions, the absoluLe s t a b i l i t y of the system with one n o n l i n e a r i t y and one time varying gain i s established. Now, l e t us consider i system with many n o n l i n e a r i t i e s and many time varying gains. Such a system i s shown i n F i g . 3.5. The input a. and the output 0.(o.) of the i-th n o n l i n e a r i t y l i i are r e l a t e d by the following: (1) 0 < a.0.(a.) < a 2 for a. i 0, 0.(0) = 0, l i i — i l l d0.(a.) (3.5.1) <2> 0<-<t^ l 1 -i and the instantaneous value of the i - t h time varying gain i s constrained so that (1) K, . < k.(t) < K. . , where K„. > K_ . > 0, l i — I — z i 2 i l i (2) b.k(t) < k.(t) < a . k . ( t ) , where the number a > 0 and the number 1 1 1 1 i b. i s f i n i t e , l 47 F i g . 3.5 General time varying nonlinear feedback system with zero-input 48 Besides, ° = fn r(t - T)e(x ) d T e (J — i s the zero state response of the l i n e a r time inv a r i a n t transfer matrix r(jw) = J [F(t) ] , where / G 1 1 ( J O J ) G 1 2 ( j a j ) -G 2 1 ( j u ) G ( j o ) — • r(ju) = G l m ( ^ ^ (3.5.2) I I kGml(U) G^Cjo.) The input vector n_(t) represents the zero-input response of r(t). The complete response of T(t) i s thus c(t) = o ^ t ) + _n(t). I t i s assumed t h a t . a l l elements of the l i n e a r t r a n s f e r matrix r(t) are s t a b l e , more s p e c i f i c a l l y , (1) g ± j ( t ) e L 2(0,-),. g (t) £ ^ ( 0 , 0 0 ) , i=l,2,...m, j = l,2,...m, (2) n.(t) e ^ ( O . o o ) , (3) n i ( t ) i s d i f f e r e n t i a b l e and f^Ct) c L (0,«). Condition (1) above ensures that each element of r(t) i s bounded on (0,<») and that g_^ .—»nj and conditions (2) and (3) ensure that ^(t) behaves i n the same manner as g ( t ) . i j Denote n = E n. = E Sup |n. ( t ) | i = l i = l t>0 m m m m E E Sup |g ( t ) | . r = E E g.... . . 1=1 j = l J i = l j = l t>0 J The notation 11-11 denotes norms i n the space L ( 0 , c ° ) such that, for example, 49 m H II = 'n E ' n i ( t ) l d t i = l Define and K^ "*" = diagonal matrix O^-^l ' K] 2 '' ' * " Klm^ = diagonal matrix ( K 21' K22'"''* K2m^' A = diagonal matrix ( a ^ , , . . . . a ^ ) §3.6 Theorem 2 . • Consider the system shown i n F i g . 3.5 to which assumptions given above apply. Let Y(t) = diag{y ( t ) , y (t) . . . .y (t) } be such that each element i s a r e a l function and that (1) y ± ( t ) ' = 0 for t < 0, i = 1,2,...m, (2) y.(t) < 0 for t > 0, l — — K (3) l|y.(t)ll < i K N Let Q be any p o s i t i v e semi-definite constant diagonal matrix. I f there e x i s t s anmxm matrix H(jco) such that H(jco) = [I+JWQ+Y(jaj)] [r(jco)+K21] + AQTCjoj) - II YIt [ K " 1 - K " 1 ] , (02) and then T (1) H(jco) + H (-jco) i s a p o s i t i v e semi-definite Hermitian matrix for a l l co, (2) H*(jw) = H(-jco) (3) Every element' of H(jco) i s a n a l y t i c f o r a l l co, (1) Sup | o.(t) | < «=, and Sup|a.(t)| < i=l,2,...m, t>0 t>0 1 50 (3) (2) o;(t) -> 0 as t -> 0 0, and o\ -> 0 as t -> o o , a s Hull + Ilil II _ > 0> t n e corresponding _g_ has the property Sup|o_(t)| -K), and Sup| C T.(t)| ->0. t>0 t>0 1 §3.7 Proof of Theorem 2 This proof follows the same vein as that of the previous Theorem. The only d i f f e r e n c e here i s that a l l vectors such as e ( t ) , a (t) , n ( t ) , n ( t ) , — —e — — jc(t) , 0^.t) , cr(t) are m-vectors, and a l l matrices such as 0,Y are mxm matrices. A l l formulae and the proofs of which developed i n §3.3 s t i l l hold, except that the proof of (3.3.24) must be performed i n the following manner. where h(t) i s the inverse Fourier transform of H(jco). From the condition of Theorem 2 and Newcomb's r e s u l t [25], From (3.3.23), (3.3.23') = - / ^ e J ( t ) / Q h ( t - T ) e T ( T ) d x dt, I' < 0. (3.3.24') This, however, i s the same as (3.3.24). Hence, by the same argument used i n the proof of Theorem 1, (1) Sup|a(t)| < t>0 CO (2) a(t) + 0 as t -> CO Now, Sup|o.(t)| t>0 < 0 0 i f and only i f every component a.(t) s a t i s f i e s S u p 1°" (t) I < 00. t>0 i S i m i l a r l y , cr(t) -> 0 as t -> ~ i f and only i f every con\ponent ^ ( t ) s a t i s f i e s rj^(t) -> 0 as t -> c o , and Sup|c[(t)| -> 0 i f and only i f every component a. (t) s a t i s f i e s t>0 Sup\o. (t) I -> 0. t>0 1 §3.8 Example Example 3.3 Let us consider the p a r a l l e l system, where m = 3, each branch of which has one n o n l i n e a r i t y and one time varying gain i n series with one l i n e a r time i n v a r i a n t t r a n s f e r function. Here these three parts of each the three branches are i d e n t i c a l to the corresponding ones used i n Example 3.2. Suppose that the matrix Y(t) = 0. Let us consider the matrix H(jw) = (I+ju)Q)(r(ju))+I) + a Qr(joi), (3.8.1) where r(jco) = G(ju) 1 1 IN 1 1 1 1 1 1 ' ' and Q = ql-Rewritting, H(jco) = (l+jcoq+aq)G(jco) 1 1 1 + U+jcoq)!. I l l 1 1 1 Obviously, H*(jco) = H(-jco), and the elements of H(jco) are a l l a n a l y t i c for a l l 60. -Invoking the proof of §2.4, the Hermatian matrix (3.8.2) 52 H(ju) + H T ( - j w ) = Re(l+ju)q+aq)G(joj) + - j . ( 3 . 8 . 3 ) Following the argument used in Example 3 . 2 , i f a <_ 1+D-E. and q i s Y> the s u f f i c i e n t condition Q2 of absolute s t a b i l i t y i s s a t i s f i e d for any p o s i t i v e r e a l constant K. 53 Chapter 4 CONCLUSIONS A graphical method using the Popov l i n e i s possible for a p a r t i c u l a r class of time i n v a r i a n t nonlinear system. The method may be s i m p l i f i e d i n a number of cases. Two a l t e r n a t i v e approaches, one using the Nichols chart, the other the analogue computer, are mentioned b r i e f l y and i l l u s t r a t e d . No simple graphical method e x i s t s to test the absolute s t a b i l i t y of the p a r a l l e l system with many d i f f e r e n t l i n e a r transfer functions, although a graphical method using the Popov l i n e to test the absolute s t a b i l i t y of the p a r a l l e l system with many i d e n t i c a l nonlinear t r a n s f e r functions i s possible. Neither i s there any simple graphical method a v a i l a b l e to e s t a b l i s h the c r i t e r i o n of absolute s t a b i l i t y of a m u l t i - c i r c u i t or an i n t e r n a l feedback system. However, work on the determination of the c r i t e r i o n of absolute s t a b i l i t y f o r any one of the four classes mentioned i n §1.1 by d i g i t a l technique i s underway. The d i g i t a l technique [23] i s i n essence concerned with l o c a t i o n of the optimum combination of matrices Q and K which w i l l define the ^ boundary of absolute s t a b i l i t y region. I t must be pointed out, however, that with the systems that have been discussed so far i n th i s thesis the graphical method i s so far simpler and less cumbersome i n obtaining the r e q u i s i t e conditions for absolute s t a b i l i t y . In chapter 3, Theorems 1 and 2 provide the s u f f i c i e n t , but not necessary, conditions f o r the absolute s t a b i l i t y of a time varying nonlinear system i n which the nonlinear part must be monotonically nonlinear. Of great importance i n e s t a b l i s h i n g the s u f f i c i e n t condition of absolute s t a b i l i t y i s the appropriate choice of A and y ( t ) . 1 + Y(s) i s i d e n t i c a l to the function describing some RC passive network i f y(t) i s an exponential function. The optimum region of absolute s t a b i l i t y may be found by a d i g i t a l technique. 54 If the time varying gain i s frozen, that i s , k ( t ) = 1, the s u f f i c i e n t condition. (Ql) may be rewritten Re[l+qjw+Y(jui)] [G(jto) > 0. 2 This i s the r e s u l t of Baker and Desoer's [11]. For some classes of time varying nonlinear systems, i t i s possible to use the- graphical method discussed i n chapter 2. APPENDIX 1 From (3.3.6) R ^ O - R ^ T ) = / o ( [ a T ( t ) - 0 [ a T ( t ) ] ] - [ a T ( t - T ) - 0 [ a T ( t - T ) 1 ] } 0[a T ( t ) ] k ( t ) d t Noting that 0(t) and [a(t)-0(t)] are monotonic, and 0 < < 1 " r°2 ' or or (tf 1-a 2)(0 1-0 2) - (01"02)2 > 0, [ ( a 1 - 0 1 ) - ( a 2 - 0 2 ) 1(0^ 02) > 0, thus 0(t) i s monotonic increasing i n [a(t) - 0(t)]. Let us define A = ([c T(t)-0[a T(t)]-[a T(t - T)-0[a T(t-x)])0[a T(t)], and observe that A >_P(t) - P ( t - r ) , where a T ( t ) P(t) =rQ 0[a T(x)]d[a T ( T)-0[a T(x)]]. From ( A l . l ) , (A1.4) and (A1.5), 00 R 1(0)-R 1(x) >_ / Q [ P ( t ) - P ( t - T ) ] k ( t ) d t and But R 1 ( T ) 1 ^ ( 0 ) + / 0 [ k ( t + T ) - k ( t ) ] P ( t ) d t . V 0 ) -C[0l(t) - ^ t a T ( t ) ] ] k ( t ) 0 [ a T ( t ) ] d t , and,since, P(t) < [ o T ( t ) - 0 [ a T ( t ) ] ] 0 [ a T ( t ) l < t a T ( t ) - - 1 0ta T(t)]] ^ 0 [ a T ( t ) ] , then / ~ [ k ( t + x ) - k ( t ) ] P ( t ) d t <_ (Z2~\) /QP(t)dt K —K J"o [ aT ( t ) - ^ 0 [ a T ( t ) ] ] k ( t ) 0 [ C T T ( t ) ] d t . Substituting (A1.9) and (ALIO) i n (A1.8) y i e l d s 57 APPENDIX 2 From (3.3.7) R 2 ( T ) = /Q[1 - ^ ^ - ] k ( t ) 0 [ a T ( t - T ) ] 0 [ a T ( t ) ] d t . (A2.1) Therefore, R 2 ( T ) - Qk^O ~ K ^ l l^-tW^tt-!)]] | k ( t ) 0 [ a T ( t ) ] |dt - " K"' l k ( t - r ) 0 [ a T ( t - T ) ] I | k ( t ) 0 [ a T ( t ) ] |dt (A2.2) giving r 2 ( t ) - I ( K " " ^ H y K ( T ~ T ) 0 [ A T ( T ~ T ) ] 2 ) D T + /Q[k(t)0[a T(t)] 2Jdt} (A2.3)' from which (3.3.9) follows. 58 cl e a r l y ^ APPENDIX 3 Since ak(t) > k ( t ) , ak(t) > 0, and a(t)0[a(t)] >_faQ(t) 0[a]da = *(t) > 0, /Jak(t)a(t)0 [a(t ) ]dt >/Jk(t)$(t)dt, (A3.1) J = q/J(d(t)aa(t))k(t)0(t) >q [k(t)4>(t)+k(t)0[a(t)] d(t)]dt - q fl IF t k ( t ) * ( t ) ] d t >_ q[k(T)$(T) - k(0)*(0)] . (A3.2) Therefore, I 2 = i + q /J[f|(t)+an(t)]e(t)dt ^ q[k(T)$(T)-k(0)$(0) + /^[f|(t)+an(t)]e(t)dt. (A3.3) 59 APPENDIX 4 2 Since k ( t ) <_ ak ( t ) <_ 0 and 0 <_ M ^ i £ ( t ) J _ ,< $ - ( t ) f c l e a r l y , fl ^ e ( t ) 2 d t = / J a k ( t ) • ^ t ) 0 [ a ( t ) ] 2 ^ ,T U t ) $ ( t ) d t j ( M < 1 ) J' = q/J[6(t) + ~ - e ( t ) ] e ( t ) d t >_ q /J [k$ (t)+k (t) 0 [a (t) ]d (t) ] dt >_ q[k(T)$(T) - k(0)$(0)] . (A4.2) Therefore, 1\ £ q [ k ( T ) $ ( T ) - k(0)$(0) + fi ( t )e(t)dt] . ' (A4.3) 60 REFERENCES 1. V.M. Popov, "The Absolute S t a b i l i t y of Nonlinear Automatic-Control System", Avtomatika i Telemekhanika, Vol. 22, No. 8, pp. 857-875, August, 1961. 2. E.I. Jury and B.W. Lee, "The Absolute S t a b i l i t y of Systems with Many N o n l i n e a r i t i e s " , Avtomatika i Telemekhanika, Vol. 26, No. 6, pp. 945-965, July 1965. 3. V.A. Yakubovich, "The Solution of Some Matrix In e q u a l i t i e s Occurring i n the Theory of Automatic Control", Dokl. AN SSSR, Vol. 143, No. 6, 1962. 4. V..A. Yakubovich, "The Matrix-Inequality Method i n the Theory of the S t a b i l i t y of Nonlinear Control Systems", Avtomatika i Telemekhanika, Vol. 25, No. 7, pp. 1017-1029, J u l y , 1964. 5. E.N. Rozenvasser, "The Absolute S t a b i l i t y of Nonlinear Systems", Avtomatika i Telemekhanika, Vol. 24, No. 3, pp. 304-313, March, 1963. 6. Kumpati S. Narendra and James H. Taylor, "Lyapunov Functions for Non-l i n e a r Time-Varying Systems", Information and Control, Vol. 12, pp. 378-393, 1968. 7. Kumpati S. Narendra and Yo-sung Cho, " S t a b i l i t y Analysis of Nonlinear and Time-Varying Discrete Systems", SIAM J. Control, Vol. 6, No. 4, pp. 625-646, 1968. 8. G. Zames, "On the Input-Output S t a b i l i t y of Time Varying Nonlinear Feedback Systems", Part- I, I I , IEEE Trans. Automatic Control Conference, Troy, New York, 1965, pp. 735-747. 9. G. Zames and P.L. Falb, " S t a b i l i t y Conditions for Systems with Monotone and Slope-Restricted N o n l i n e a r i t i e s " , SIAM J . Control, Vol. 6, No. 1, pp. 89-108, 1968. 10. C.A. Desoer, "A Generalization of the Popov C r i t e r i o n " , IEEE Trans. Auto-matic Control, Vol. AC-10, pp. 182-18 , 1965. 11. R.A. Baker and C.A. Desoer, "Asympotic S t a b i l i t y i n the Large of a Class of Single-Loop Feedback Systems", SIAM J . Control, Vol. 6, No. 1, pp. 1-8, 1968. 12. A.R. Bergen and A.J. Rault, "Absolute Input-Output S t a b i l i t y of Feedback Systems with a Single Time-Varying Gain", Journal of the Fra n k l i n I n s t i t u t e , Vol. 286, No. 4, October, 1968. 13'. B.D.O. Anderson, " S t a b i l i t y of Distributed-Parameter Dynamical Systems with M u l t i p l e N o n l i n e a r i t i e s " , Int. J . Control, Vol. 3, No. 6, pp. 535-540, 1966. 14. I.W. Sandberg, "On the L-Boundedness of Solutions of Nonlinear Functional Equations", BSIJ, Vol. 143, No. 4, 1964. 61 15. B.N. Naumov, "An Investigation of Absolute S t a b i l i t y of the Equilibrium State i n Nonlinear Automatic Control Systems by Means of Logarithmic. Frequency C h a r a c t e r i s t i c s " , Avtomatika i Telemekhanika, Vol. 26, No. 4, pp. 591-600, A p r i l , 1965. 16. A.U. Meyer and J.C. Hsu, "The Evaluation of Frequency Response S t a b i l i t y C r i t e r i a for Nonlinear System v i a Logarithmic Gain-Phase P l o t s " , Proc. 1968 JACC Conf. pp. 791-811. 17. Gordon J . Murphy, "A Frequency-Domain S t a b i l i t y Chart for Nonlinear Feed-back Systems", IEEE Trans. Automatic Control Vol. AC-12, pp. 740-743, December, 1967. 18. M.S. Davies., " S t a b i l i t y of a Class of Nonlinear Systems", E l e c t r o n i c L e t t e r s , Vol. 4, No. 5, pp. 322, J u l y , 1968. 19. T.L. Chang and M.S. Davies, " S t a b i l i t y of a Class of Nonlinear Systems", Int. J . Control, Vol. 10, No. 2, 1970. 20. N.M. Trukhan, "Single-Loop Systems which are Absolute Stable i n the Hurwitz Sector", Avtomatika i Telemekhanika, Vol. 27, No. 11, pp. 5-8, November, 1966. 21. N.G. Meadows, "New Analog-Computer Technique for Automatic Frequency-Response Locus P l o t t i n g " , Proc. IEE, Vol. 114, No..2, December, 1967. 22. G. Zames, "Nonlinear Time-Varying Feedback Systems-Conditions for Loo-Boundedness Derived Using Conic Operators on Exponentially Weighted Spaces", Proc. 1965 A l l e r t o n Conf. pp. 460-471. 23. A.G. Dewey, "Frequency Domain S t a b i l i t y C r i t e r i a for Nonlinear M u l t i -Variable Systems", Int. J . Control, Vol. 5, No. 1, pp. 77-84, 1967. 24. T.L. Chang and M.S. Davies, "The Absolute S t a b i l i t y of Nonlinear Systems Involving a Time-Varying Gain", Proc. 1969 A l l e r t o n Conf. pp. 721-729. 25. R.W. Newcomb, "Linear Multiport Synthesis", McGraw-Hill, New York, 1966. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0102180/manifest

Comment

Related Items