Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Responses to fertilizer nitrogen of rangelands at various elevations in the southern interior of British… Hall, Kenneth M. 1971

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1971_A6_7 H37.pdf [ 10.01MB ]
Metadata
JSON: 831-1.0101923.json
JSON-LD: 831-1.0101923-ld.json
RDF/XML (Pretty): 831-1.0101923-rdf.xml
RDF/JSON: 831-1.0101923-rdf.json
Turtle: 831-1.0101923-turtle.txt
N-Triples: 831-1.0101923-rdf-ntriples.txt
Original Record: 831-1.0101923-source.json
Full Text
831-1.0101923-fulltext.txt
Citation
831-1.0101923.ris

Full Text

RESPONSES TO FERTILIZER NITROGEN OF RANGELANDS AT VARIOUS ELEVATIONS IN THE SOUTHERN INTERIOR OF BRITISH COLUMBIA BY KENNETH M. HALL B.S.A., U n i v e r s i t y o f B r i t i s h Columbia, 1966 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the D i v i s i o n o f P l a n t Science We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA OCTOBER, 1971. In presenting t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree that permission f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission. Department of The U n i v e r s i t y of B r i t i s h Columbia Vancouver 8, Canada Date A T " / so/7/ ABSTRACT Ni t r o g e n f e r t i l i z a t i o n of g r a s s l a n d and f o r e s t range i n B r i t i s h Columbia i s examined as a p r a c t i c a l means of i n c r e a s i n g p r o d u c t i v i t y . T r i a l s were undertaken at s e v e r a l a l t i t u d e s and responses were s t u d i e d i n fenced and unfenced p l o t s over a p e r i o d of two y e a r s . Four c l i p p i n g times, t h r e e r a t e s of ammonium n i t r a t e a p p l i c a t i o n and two times of a p p l i c a t i o n were the major treatments at most s i t e s . Information on c l i m a t e and s o i l was a l s o o b tained and c l i p p e d forage was analyzed f o r n i t r o g e n . Increases i n dry matter y i e l d and combined n i t r o g e n l e v e l s o b t a i n e d on a l l s i t e s d e s p i t e the marked mid-season l i m i t a t i o n o f s o i l moisture; responses to autumn f e r t i l i z a t i o n were evident i n e a r l y growth i n the s p r i n g f o l l o w i n g a p p l i c a t i o n ; responses to s p r i n g a p p l i c a t i o n were delayed. Response to f e r t i l i z e r has continued to be marked i n the second year a f t e r a p p l i c a t i o n . Understory v e g e t a t i o n of the f o r e s t range responded to f e r t i l i z a t i o n at f i r s t but by the second y e a r , i t appears, o v e r s t o r y v e g e t a t i o n ( t r e e s ) was responding to the detriment o f understory y i e l d . - i -TABLE OF CONTENTS S e c t i o n PAGE TABLE OF CONTENTS i LIST OF TABLES v LIST OF FIGURES v i i ACKNOWLEDGEMENTS i x 1 INTRODUCTION 1 2 GENERAL DESCRIPTION OF THE STUDY AREA 2 2.1. Physiography 2 2.2. S o i l s 3 2.3. Climate 6 2.4. V e g e t a t i o n 7 . 2.5. Other Features 8 3 SPECIFIC SITE DESCRIPTIONS 8 3.1. Quilchena ( S i t e 1) 8 3.2. Hamilton Common ( S i t e 2) 9 3.3. Minnie Lake ( S i t e 3) 9 3.4. Paradise Lake ( S i t e 4) 10 3.5. Dew Drop ( S i t e 5) 10 3.6. Loch Lomond ( S i t e 6) 11 3.7. Wawn Quarter ( S i t e 7) 11 4 LITERATURE REVIEW 12 4.1. F e r t i l i z e r Response of Rangelands 12 4.1.1. Grasslands 12 4.1.2. F o r e s t s 16 4.2. C y c l i n g o f N i t r o g e n and Other Elements i n Wildlands 18 4.2.1. Grasslands 19 - i i -4.2.2. Forests 21 4.3. Some Biomass R e l a t i o n s h i p s i n B r i t i s h Columbia 25 4.4. Moisture and F e r t i l i z e r U t i l i z a t i o n 26 4.5. Temperature and F e r t i l i z e r U t i l i z a t i o n 27 4.6. Problems Associated w i t h M o d i f i c a t i o n of Range Environment with Nitrogen F e r t i l i z e r s 29 4.6.1. L i m i t a t i o n s 29 4.6.2. P o t e n t i a l s 31 5 METHODS 34 5.1. S i t e Preparation 34 5.2. Instrumentation 35 5.3. P l o t P r e p a r a t i o n 35 5.4. P l o t Design 36 5.5. Sample Treatment 38 6 OBSERVATIONS AND RESULTS 4 2 6.1. General 42 6.2. M e t e r o l o g i c a l Observations 45 6.3. Results at I n d i v i d u a l S i t e s 47 6.3.1. Quilchean 47 6.3.2. Hamilton Common 5 7 6.3.3. Minnie Lake 5 8 6.3.4. Paradise 69 6.3.5. Dew Drop 6 9 6.3.6. Loch Lomond 7 9 6.3.7. Wawn Quarter 86 6.4. I n t r a t r a n s e c t Comparisons 9 2 7 DISCUSSION 93 7.1. General 93 7.2. F l o r i s t i c Composition 97 7.3. S i t e Responses 97 7.4. Transect Responses 106 7.5. C l i m a t o l o g i c a l Data 109 7.6. Economics o f Range F e r t i l i z a t i o n 109 CONCLUSIONS 113 APPENDIX l a 114 l b 115 l c 116 Id 117 I f 118 l g 119 Ih 120 l i 121 l j 122 l k 123 11 124 lm 125 In 126 l o 127 l p 128 APPENDIX 2a 129 2b 130 2c 131 2d 132 APPENDIX 3a 3b 3c 3d 3e 3f LITERATURE C I T E D - V -LIST OF TABLES Table PAGE 1 Summary o f F e r t i l i z a t i o n and Harvest Dates 37 2 P h e n o l o g i c a l Data 39 3 A r b o r e a l Measurements: Fo r e s t e d S i t e s 46 4 M e t e r o l o g i c a l Data (1969) 46 2 5 Q u i l c j e n a : Average Y i e l d s (g/m ) f o r each Treatment 4 8 6 Quilchena: Average Percent N i t r o g e n f o r each Treatment 4 9 7 Quilchena: N i t r o g e n Y i e l d (Kg/ha) 49 2 8 Hamilton Common: Average Y i e l d s (g/m ) f o r each Treatment 54 9 Hamilton Common: Average percent Nitrogen f o r each Treatment 5 5 10 Hamilton Common: Nitrogen Y i e l d (Kg/ha) 55 2 11 Minnie Lake: Average Y i e l d s (g/m ) f o r each Treatment 5 9 12 Minnie Lake: Average Percent N i t r o g e n f o r each Treatment 60 13 Minnie Lake: N i t r o g e n Y i e l d (Kg/ha) 60 2 14 P a r a d i s e : Average Y i e l d s (g/m ) f o r each Treatment 64 15 P a r a d i s e : Average Percent N i t r o g e n f o r each Treatment 6 5 16 P a r a d i s e : N i t r o g e n Y i e l d s (Kg/ha) 6 5 2 17 Dew Drop: Average Y i e l d s (g/m ) f o r each Treatment 70 18 Dew Drop: Average Percent N i t r o g e n f o r each Treatment 7 2 19 Dew Drop: N i t r o g e n Y i e l d (Kg/ha) 72 - V I -2 20 Loch Lomond: Average Y i e l d s (g/m ) f o r each Treatment 80 21 Loch Lomond: Average Percent N i t r o g e n f o r each Treatment 81 22 Loch Lomond: Ni t r o g e n Y i e l d (Kg/ha) 81 23 Wawn Quarter: Average of Counts and C l i p p i n g Weights (1969) 88 24 Average Y i e l d s from F e r t i l i z e r Treatments (g/m 2) 1969 89 25 Average Percent Nitrogen from Treatments (1969) 9 0 26 N i t r o g e n Y i e l d s (Kg/ha) (1969) 91 - v i i -LIST OF FIGURES FIGURE PAGE 1 Main study area 4 2 Quilchena i n s i d e fence growth curve 50 3 Quilchena percent n i t r o g e n 51 4 Quilchena p r o t e c t e d p l o t i n l a t e s p r i n g showing new growth 5 2 5 Quilchena p r o t e c t e d p l o t i n l a t e summer 53 6 Quilchena unprotected p l o t i n l a t e summer 53 7 Hamilton Common.inside fence growth curve 5 3a 8 Hamilton Common percent n i t r o g e n 5 3b 9 Hamilton Common h e a v i l y grazed area i n l a t e summer 56 10 Hamilton Common showing snow gauge 5 6 11 Minnie Lake i n s i d e fence growth curve 61 12 Minnie Lake percent n i t r o g e n 6 2 13 Minnie Lake showing darker green o f f e r t i l i z e d areas i n l a t e s p r i n g 6 3 14 Minnie Lake seed p r o d u c t i o n o f f e r t i l i z e d areas 6 3 15 P a r a d i s e i n s i d e fence growth curve 66 16 Paradise percent n i t r o g e n 6 7 17 P a r a d i s e showing green s t r i p and seed when a l l o t h e r undercover had d i e d down 6 8 18 P a r a d i s e square meter l i t t l e c a t c h e r 68 19 Dew Drop permanent fence growth curve 7 3 2 0 Dew Drop permanent percent n i t r o g e n 74 21 Dew Drop i n s i d e drop fence growth curve 7 5 - v i i i -FIGURE PAGE 22 Dew Drop drop-fence percent n i t r o g e n 75 2 3 Dew Drop unseeded area 77 24 Dew Drop f e r t i l i z e d s t r i p s on seeded area 77 25 Dew Drop f e r t i l i z e d and u n f e r t i l i z e d v e g e t a t i o n i n l a t e s p r i n g 78 26 Dew Drop f e r t i l i z e d and u n f e r t i l i z e d v e g e t a t i o n i n l a t e summer 78 27 Loch Lomond i n s i d e fence growth curve 8 2 2 8 Loch Lomond percent n i t r o g e n 8 3 29 Loch Lomond v e g e t a t i o n o f the area 84 3 0 Loch Lomond showing darker green o f f e r t i l i -zed area t o l e f t o f white stake 84 31 Timber milk vetch a t Lac du Bois — an area near Wawn Quarter 85 - i x -ACKNOWLEDGEMENTS I wish to thank Dr. V.C. B r i n k , P r o f e s s o r of Agronomy, U n i v e r s i t y o f B r i t i s h Columbia, f o r s u g g e s t i n g t h i s study, f o r h i s encouragement, f o r h e l p f u l d i r e c t i o n d u r i n g the e x perimental work and f o r h i s a i d i n checking the manu-s c r i p t . Thanks are a l s o due to Dr. A. McLean, Research S c i e n t i s t , and Mr. L. Haupt, T e c h n i c i a n , o f the Canada Depart-ment o f A g r i c u l t u r e , Research S t a t i o n , Kamloops, B r i t i s h Columbia, f o r t h e i r great a s s i s t a n c e i n the f i e l d experiments. For t h e i r a s s i s t a n c e and d i s c u s s i o n of t h i s t h e s i s g r a t e f u l acknowledgement i s given to the other members o f my committee: Dr. A.J. Renney, D i v i s i o n o f P l a n t Science, Dr. C A . Rowles, Chairman, D i v i s i o n o f S o i l S c i e n c e , Dr. W.B. S c h o f i e l d , Department o f Botany, Dr. J . Bandy, Department o f Zoology. I am g r a t e f u l t o Mr. Jim Campbell, Miss Karen McLaren and Mr. Bryan Kemper, without whose a i d the f i e l d work would have been much more arduous, to Sohan Parmar and Llmars D e r i c s f o r a i d i n the l a b o r a t o r y work, and to Mrs. E. Stewart f o r t y p i n g the manuscript. To Mr. R. Sayle of the U n i v e r s i t y o f B r i t i s h Columbia Computing Centre who k i n d l y gave h i s time to w r i t e programmes, I wish to express my g r a t i t u d e . S p e c i a l thanks go to a l l my f r i e n d s and r e l a t i v e s who p r o v i d e d moral support and encouragement d u r i n g the course o f t h i s study. I am a l s o indebted t o the Canada Department of A g r i c u l t u r e ; the B r i t i s h Columbia Department of A g r i c u l t u r e ; Dean W. Gage, Chairman o f the P r i z e s , S c h o l a r s h i p s and B u r s a r i e s Committee, U n i v e r s i t y of B r i t i s h Columbia; and the C o n s o l i d a t e d Mining and Smelting Co. L t d . f o r p r o v i d i n g the funds which enabled me to complete t h i s study. 1. 1. I n t r o d u c t i o n Topography and e l e v a t i o n are prime i n f l u e n c e s i n the use and p r o d u c t i v i t y o f rangelands i n B r i t i s h Columbia. Abrupt changes of r e l i e f c h a r a c t e r i z e n e a r l y a l l ranges and prof o u n d l y i n f l u e n c e c l i m a t e , and t h e r f o r e q u a l i t y and p r o d u c t i o n , o f v e g e t a t i o n . In g e n e r a l , p r e c i p i t a t i o n i n c r e a s e s and temperature decreases as e l e v a t i o n becomes g r e a t e r . F e r t i l i z e r response, l i k e p r o d u c t i v i t y , i s s e n s i t i v e to the change. An a l t i t u d i n a l t r a n s e c t , which i n c l u d e s f o u r s t a t i o n s and at which the gene r a l f e a t u r e s o f c l i m a t e and v e g e t a t i o n were measured, was l a i d out to o b t a i n q u a n t i t a t i v e i n f o r m a t i o n on the responses of the range v e g e t a t i o n on the responses o f commercial f e r t i l i z e r s on range, s p e c i f i c a l l y , nitrogenous f e r t i l i z e r s . Located i n the N i c o l a V a l l e y , the t r a n s e c t ran from Quilchena i n mid-grassland t o a p o i n t i n the montane f o r e s t c l o s e t o Parad i s e Lake. Two a d d i t i o n a l s t a t i o n s , not on the t r n a s e c t ; one i n the f o r s t at Loch Lomond on the Green Timber P l a t e a u , and one on avery dry low g r a s s l a n d at T r a n q u i l l e were used t o extend the study. The ranges re p r e s e n t e d are important t o both domestic and n a t i v e u g u l a t e s . Nitrogenous f e r t i l i z e r was chosen i n t h i s , an i n i t i a l study, because of the immediacy of i t s response, and because combined n i t r o g e n i s a p p a r e n t l y a great f a c t o r l i m i t i n g the p r o d u c t i v i t y o f B r i t i s h Columbia ranges. I t i s a v a i l a b l e i n many very s o l u b l e forms and may be t r a n s p o r t e d at low c o s t t o s e m i - a r i d s i t u a t i o n s . A g r a d i e n t response on 2. B r i t i s h Columbia ranges has a l r e a d y been demonstrated t o some extent by Hubbard and Mason (1967). Another reason f o r st u d y i n g f e r t i l i z e r responses l i e s i n the f a c t t h a t many ranges are s e v e r e l y d e p l e t e d and added n i t r o g e n may a i d i n t h e i r r e h a b i l i t a t i o n . I t should be emphasized at the o u t s e t t h a t the study i s intended t o provide a p r e l i m i n a r y o p p o r t u n i t y t o analyse g r a d i e n t responses on g r a s s l a n d ranges and to examine d i f f e r e n t i a l responses o f undercover and t r e e s t o f e r t i l i z e r on f o r e s t ranges. 2. General D e s c r i p t i o n o f the Study Area. 2.1 Physiography The Province o f B r i t i s h Columbia i s c h a r a c t e r i z e d by,, an extremely rough, predominantly mountainous t e r r a i n and l i e s , except f o r n o r t h - e a s t e r n B r i t i s h Columbia, w i t h i n the North American C o r d i l l e r a n system. The study areas ( F i g u r e 1) are l o c a t e d i n the i n t e r i o r b e l t o f pl a t e a u x , i n South C e n t r a l B r i t i s h Columbia, which l i e s between the mountains of the Columbian system on the e a s t , the Coast Range on the west, the 5 3rd p a r a l l e l on the nor t h and the Canadian-United States boundary on the south. The topography i s rugged and r e p r e s e n t s an a n c i e n t p l a t e a u which has under-gone great changes due to l a t e t e r t i a r y u p l i f t and e r o s i o n ( B r i n k and F a r s t a d (1949)). In the south-western p a r t o f the p o l i t i c a l p r o v i n c e , the area c o n s i s t s o f much r o l l i n g upland separated by numerous deep v a l l e y s r a nging from 3. 1800 t o 4500 f t . below the l e v e l of the surrounding uplands. The main v a l l e y s are g e n e r a l l y s t e e p - s i d e d with eroded shoulders and o f t e n c o n t a i n well-marked t e r r a c e s . In the most s o u t h e r l y p o r t i o n , the b a s i n s a s s o c i a t e d w i t h the Princeton-Nicola-Kamloops d e p r e s s i o n , and the l o c a t i o n of the t r a n s e c t aforementioned, c o n t a i n some o f the l a r g e s t areas of open g r a s s l a n d and good topography i n the P r o v i n c e . Northward, r e l i e f and e l e v a t i o n become l e s s with a r o l l i n g h i l l s type o f topography predominating (Brink and F a r s t a d (1949)), Bostock (1948), H o l l a n d (1964), F u l t o n (1962) (1963) (1967)). 2.2 S o i l s The s o i l s of the g r a s s l a n d r e g i o n are mainly sandy loam and d r u m l i n i z e d t i l l ( F u l t o n 1962, 1963) i s common. There are t h r e e main s o i l t y p e s , d e s c r i b e d by T i s d a l e (1947), as brown, dark brown (chestnut) and b l a c k (chernozem). These are c l o s e l y a s s o c i a t e d with the "low", "mid", and "high" e l e v a t i o n g r a s s l a n d , the three major g r a s s l a n d zones. The s o i l s are a l l t y p i f i e d by a shallow A h o r i z o n , seldom g r e a t e r than 25 cm. i n depth, a dense tough B h o r i z o n w i t h a s t r o n g accumulation of f r e e lime c l o s e to the s u r f a c e , and a s t r o n g e l y cemented impervious C h o r i z o n ( S p i l l s b u r y and T i s d a l e (1944)). S o i l d e s c r i p t i o n s have been p u b l i s h e d by the Canada Land Inventory (1970), and surveys of the s o i l s i n the study area are p r e s e n t l y being prepared by s o i l surveyors of the Canada Department of A g r i c u l t u r e ( F a r s t a d 1969). 3. MERRITT, B.C. Sheet 9 2 1/SE Map Co-ordinates 120°38' West t o 120°20'i+0" West 50°00' North t o 50°14'15" North LEGEND CH L i m i t a t i o n due t o low temperature — too c o l d CA L i m i t a t i o n due t o a r i d i t y — too a r i d C l a s s e s 2, 3 and 5 -- c l i m a t i c c a p a b i l i t y c l a s s i f i c a t i o n f o r a g r i c u l t u r e ( F a r s t a d e t a l . ) S i t e 1 Qu i l c h e n a 2- Hamilton Common 3 Minnie Lake M- P a r a d i s e F I G . 1. M A I N S T U D Y A R E A 6. S p i l l s b u r y and T i s d a l e (1944) and S p i l l s b u r y et_ a l . (1963), a l s o give d e t a i l e d d e s c r i p t i o n s of the f o r e s t e d p o d s o l i c s o i l s found at e l e v a t i o n s above the upper g r a s s l a n d s . These have a l l developed from a common g l a c i a l t i l l and c o n t a i n b a s a l t i c subangular stones and g r a v e l . The o r g a n i c l a y e r s of the mid and low podsols are s i m i l a r ; both are f i b r o u s and i n c o m p l e t e l y decomposed mor types. The L and F h o r i z o n s are d i s t i n c t but the H h o r i z o n i s s u p e r f i c i a l . The o r g a n i c l a y e r i s s h a r p l y d i f f e r e n t i a t e d from the m i n e r a l s o i l and t h e r e i s , g e n e r a l l y , a w ell-developed ash grey leached l a y e r . The A l a y e r tends to be loose and dusty w i t h a 2 y e l l o w i s h - g r e y B h o r i z o n , and a l a y e r of c l a y accumulation i n the B h o r i z o n . The lower e l e v a t i o n podsols are o f t e n 2 b a s i c and are a s s o c i a t e d with mixed c o n i f e r o u s and deciduous t r e e s and an e x t e n s i v e herbaceous u n d e r s t o r y . 2.3 Climate The general c l i m a t e of B r i t i s h Columbia has been w e l l d e s c r i b e d by Kerr (1950) and Kendrew and Kerr (1956). The south-western i n t e r i o r c l i m a t e i s warm and dry, combining maritime and c o n t i n e n t a l q u a l i t i e s and i s i m p o r t a n t l y i n f l u e n c e d by the presence of a mountain b a r r i e r to the west. L o c a l l y i t i s d i s t i n c t l y a f f e c t e d by d i f f e r e n c e s i n e l e v a t i o n , a i r drainage and exposure. With each r i s e i n e l e v a t i o n t o moderate h e i g h t s , p r e c i p i t a t i o n tends to i n c r e a s e and mean annual temperature to decrease ( T i s d a l e (1947), T i s d a l e et a l . (1954), F a r s t a d (1968), Mason and M i l t i m o r e (1969)). Chapman and Brown (1964), F a r l e y eit a l . (1968) give more s p e c i f i c 7. i n f o r m a t i o n on moisture, temperature and f r o s t - f r e e days. 2.4 V e g e t a t i o n The environmental g r a d i e n t s produced by c l i m a t e r e s u l t i n a great response i n the v e g e t a t i o n which i s shown i n s p e c i e s d i s t r i b u t i o n and p r o d u c t i v i t y . Grassland v e g e t a t i o n occupies the l a r g e r and lower v a l l e y s and adjacent s l o p e s of the Okanagan, N i c o l a , Thompson, F r a s e r and C h i l c o t i n watersheds, while f o r e s t v e g e t a t i o n occupies the h i g h e r s l o p e s . The g r a s s l a n d v e g e t a t i o n was d e s c r i b e d by T i s d a l e (1947) who c l a s i f i e d i t i n t o the f o l l o w i n g zones: a) bluebunch wheatgrass, (Agropyron spicatum (P u r s h ) , S c r i b n . and Smith), b l a c k sagebrush ( A r t e m i s i a  t r i d e n t a t a , N u t t ) , or lower g r a s s l a n d zone; b) wheatgrass - Sandberg b l u e g r a s s (Poa secunda, P r e s l . ) or middle g r a s s l a n d zone; and c) wheatgrass-rough fescue (Festuca  s c a b r e l l a , T o r r ) or the upper g r a s s l a n d zone. The terms, "lower", "middle" and "upper" r e f e r t o the e l e v a t i o n a l sequence of the zones throughout the r e g i o n . A thorough d e s c r i p t i o n of the v e g e t a t i o n of the g r a s s l a n d s i t e s i n the N i c o l a t r a n s e c t has been w r i t t e n by Ndawula-Senyimba (1969) who a l s o d e s c r i b e d v e g e t a t i o n c l o s e to the Dewdrop s i t e near Kamloops. G e n e r a l l y as e l e v a t i o n i n c r e a s e s , above the upper g r a s s l a n d , the f o r e s t begins. The lowest zone i s o f t e n occupied by ponderosa pine (Pinus ponderosa, Dougl.) and/or D o u g l a s - f i r (Pseudotsuga m e n z i e s i i , M i r b . ) ; h i g h e r s t i l l are the s p r u c e - a l p i n e f i r and a l p i n e zones ( T i s d a l e e_t a l . (1954)). More d e t a i l e d accounts o f the v e g e t a t i o n of 8. B r i t i s h Columbia and o f s e v e r a l r a g i o n s have been w r i t t e n by McLean (1969), I l l i n g w o r t h and A r l i d g e (1960), Rowe (1959) and K r a j i n a (1965). 2.5 Other Features Before 1800 A.D. and the era o f the white man, the area was grazed o n l y l i g h t l y , p o s s i b l y by small p o p u l a t i o n s of deer and e l k . Pasture ungulates d i d not exert heavy g r a z i n g p r e s s u r e s , probably because the n a t i v e peoples kept the numbers at a low l e v e l . C a t t l e r a n c h i n g i n the Kamloops area began about 186 2 and, as the i n d u s t r y expanded, some ranges s u f f e r e d o v e r - g r a z i n g and gen e r a l misuse. An ex t e n s i v e d i s c u s s i o n of the ra n c h i n g i n d u s t r y i n the i n t e r i o r , i n c l u d i n g i t s h i s t o r y and economics has been p u b l i s h e d by Weir (1964),. and the B r i t i s h Columbia Department of A g r i c u l t u r e (1969). 3. S p e c i f i c S i t e D e s c r i p t i o n s The s p e c i f i c s i t e s on the t r a n s e c t and the a s s o c i a t e d s i t e s are named a c c o r d i n g to the area i n which they occur. Quilchena, Hamilton Common, Minnie Lake, P a r a d i s e , Dew Drop, Loch Lomond and Wawn Quarter. The f i r s t f o u r s i t e s -- the major ones, r e p r e s e n t an e l e v a t i o n a l t r a n s e c t o f some 40 Km from a mid-grassland i n t o the montane f o r e s t . 3.1 Quilchena ( S i t e 1) The Quilchena s i t e i s l o c a t e d on the Guichon C a t t l e Company Ranch, 77 Km south of Kamloops, j u s t south-9. east o f the j u n c t i o n of the highway and the Quilchena-Pennask Lake Road, on B r i t i s h Columbia Highway 5 i n the N i c o l a V a l l e y . The e l e v a t i o n i s 640 m.a.s.l., the average annual p r e c i p i t a t i o n i s 23-28 cm. and the slope i s 15% to the southeast. The v e g e t a t i o n i s d e s c r i b e d as an Agrophyron-Chrysothamnus a s s o c i a t i o n of the low middle g r a s s l a n d zone. Bluebunch wheatgrass i s the dominant s p e c i e s on the p r o t e c t e d p l o t , while r a b b i t b r u s h , Chrysothamnus sp., i s dominant on the h e a v i l y overgrazed unprotected p l o t . The s o i l o f the s i t e i s a s o l o d i c brown loam c o n s i s t i n g of c o l l u v i u m over l a c u s t r i n e d e p o s i t s . Notes on the s o i l p r o f i l e s o f i n d i v i d u a l s i t e s may be found i n the appendix. 3.2. Hamilton Common ( S i t e 2) The Hamilton s i t e i s l o c a t e d on Douglas Lake C a t t l e Company range on an o l d commonage 16 Km. southeast o f the Quilchena s i t e j u s t n o r t h of the Quilchena-Pennask Lake Road. The e l e v a t i o n i s 1249 m.a.s.l., the average annual p r e c i p i -t a t i o n i s about 45.7 cm. and aspect i s 5% southwest. T h i s i s i n the upper g r a s s l a n d dominated by bluebunch wheatgrass and rough f e s c u e . Larkspur, (Delphinium b i c o l o r , Nutt.) and S i l v e r y l u p i n e (Lupinus s e r i c e u s , Pursh.) are common. The s o i l o f the s i t e i s a s o l o d i c b l a c k loam of moderate per-m e a b i l i t y . 3.3 Minnie Lake ( S i t e 3) The Minnie Lake s i t e , on the Douglas Lake C a t t l e Company range i s about 21 Km. southeast of Quilchena, j u s t n o r t h of the Quilchena-Pennask Lake Road. The e l e v a t i o n i s 10. 1097 m.a.s.l., the average annual p r e c i p i t a t i o n i s about 30.5 cm. and slope i s 5% southeast. Bluebunch wheatgrass and rough fescue dominate t h i s s i t e i n the middle g r a s s l a n d zone. The s o i l o f t h i s s i t e i s an e l u v i a t e d dark brown. 3.4 P a r a d i s e Lake ( S i t e 4) The Paradise Lake s i t e i s a l s o on the Douglas Lake C a t t l e Company range, some 4 0 Km southeast of Quilchena. I t i s l o c a t e d j u s t southeast of the j u n c t i o n of the road to P a r a d i s e Lake with the road to Pennask Lake and on the n o r t h s i d e of the former. The e l e v a t i o n i s 1220 m.a.s.l., the s i t e r e c e i v e s an average annual p r e c i p i t a t i o n of about 44 cm. and i s f l a t . The area i s i n the D o u g l a s - f i r zone and the dominant s p e c i e s are lodgepole pine (Pinus c o n t o r t a ) i n the o v e r s t o r y and p i n e g r a s s (Calamagrostis rubescens Buckl.) i n the u n d e r s t o r y . The s o i l s o f the s i t e are b r u n o s o l i c and are t r a n s i t i o n a l between brown and grey wooded. 3.5 Dew Drop ( S i t e 5) Dew Drop, s i t u a t e d on the lower Dew Drop F l a t i s p a r t of the B r i t i s h Columbia Government T r a n q u i l l e range, j u s t above the farm. I t i s marked on o f f i c i a l maps as an o c c a s i o n a l l a k e . The e l e v a t i o n i s 609 m.a.s.l., the area has an average annual p r e c i p i t a t i o n o f about 20 cm. and v i r -t u a l l y no s l o p e . The area has been c l e a r e d of b l a c k sagebrush and has been seeded to c r e s t e d wheatgrass (Agropyron  c r i s t a t u m , L.) which i s now dominant. O r i g i n a l l y the s i t e was dominated by bluebunch wheatgrass. I t i s used as a w i n t e r range by mule deer and b i g h o r n sheep ( r e i n t r o d u c e d ) . The s o i l o f the s i t e i s l a c u s t r i n e . I t i s a s a l i n e , somewhat 11. s o l o n e t z i c s i l t y s o i l w ith a poor s t r u c t u r e and occurs i n the l i g h t brown zone d e s c r i b e d by S p i l l s b u r y and T i s d a l e (1949). 3.6 Loch Lomond ( S i t e 6) The Loch Lomond s i t e i s on the north shore o f Loch Lomond, 9 3 Km north o f Cache Creek on the west s i d e o f B r i t i s h Columbia Highway 97 and 177 Km from Kamloops. The e l e v a t i o n i s approximately 1200 m.a.s.l., the s i t e has a southwest aspect and a slope o f about 6%. The area i s i n the Douglas-f i r zone and the dominants are lodgepole pine i n the o v e r s t o r y and p i n e g r a s s i n the understory. Some moose and a few deer occur i n the area. C a t t l e numbers are low. The s o i l s o f the area are t r a n s i t i o n a l o f o r t h i c dark brown and o r t h i c dark wooded. 3.7 Wawn Quarter ( S i t e 7) T h i s s i t e was not on the t r a n s e c t but was used t o extend the p r o j e c t . Timber milk vetch ( A s t r a g a l u s sp.) i s a legume capable o f f i x i n g atmospheric n i t r o g e n , but i t i s t o x i c t o l i v e s t o c k . The study was made to determine whether or not f e r t i l i z e r n i t r o g e n a p p l i c a t i o n s would reduce the abundance of t h i s s p e c i e s while encouraging o t h e r s p e c i e s . The s i t e was approximately 25 Km north o f Kamloops on the road t o Pass Lake. I t was l o c a t e d on the edge of the f o r e s t i n an area w i t h a heavy i n f e s t a t i o n o f timber milk v e t c h . The slope was approximately 6% t o the south and the e l e v a t i o n i s approximately 872 m.a.s.l. 4. L i t e r a t u r e Review 4.1. F e r t i l i z e r Response to Rangelands With some e x c e p t i o n s , r e s e a r c h e r s working w i t h n i t r o g e n have d i r e c t e d t h e i r a t t e n t i o n at a p a r t i c u l a r s i t e and have o f t e n ignored the continuum and catena aspects o f v e g e t a t i o n and s o i l . The concept i s e s p e c i a l l y important i n B r i t i s h Columbia because of the change i n c l i m a t e and t h e r e -f o r e i n v e g e t a t i o n a s s o c i a t e d with the c o n s i d e r a b l e r e l i e f o f the rangelands. One would expect to f i n d s t r i k i n g d i f f e r e n c e s i n response to f e r t i l i z e r s along a l t i t u d i n a l g r a d i e n t s . The l i t e r a t u r e on f e r t i l i z e r n i t r o g e n i s immense. For general chemical and t e c h n i c a l i n f o r m a t i o n the reader may r e f e r t o : Bear (1958), G.H. C o l l i n g s (1955), McVicker et a l . (1963). Since the m a j o r i t y o f the rangelands i n B r i t i s h Columbia are found i n s e m i - a r i d c l i m a t e s and i n areas where n i t r o g e n i s l i m i t i n g , t h i s review deals with f e r t i l i z e r n i t r o g e n i n s e m i - a r i d s i t u a t i o n s where l i t t l e p r e c i p i t a t i o n becomes groundwater. 4.1.1. Grasslands In the Province of B r i t i s h Columbia, Mason and M i l t i m o r e (19 59) observed t h a t i n an area with 2 8 cm. per annum p r e c i p i t a t i o n , y i e l d , crude p r o t e i n and ground cover of the bluebunch wheatgrass (the c a e s p i t o s e dominant), i n c r e a s e d g r e a t l y w i t h 67 Kg/ha n i t r o g e n per h e c t a r e . Sandberg b l u e -grass (a s h o r t - l i v e d , shallow r o o t e d c a e s p i t o s e s p e c i e s ) a l s o 13. i n c r e a s e d , but not at so great a r a t e . They a l s o found (1964) t h a t there was very l i t t l e a d d i t i o n a l growth response to n i t r o g e n a p p l i e d at more than 16 8 Kg/ha. Hubbard and Mason (1967) observed t h a t a p p l i c a t i o n s o f n i t r o g e n at v a r y i n g e l e v a t i o n s produced responses a t h i g h and middle s i t e s at Kamloops and on the low s i t e at Summerland, but not at the low s i t e a t Kamloops. Pr o d u c t i o n on the check p l o t at the upper s i t e was approximately three times t h a t of the lower p l o t . They concluded t h a t i f v e g e t a t i o n i s i n an u n d i s t u r b e d climax stage, the main c o n t r o l o f p r o d u c t i o n i s by p r e c i p i t a t i o n . Mason and M i l t i m o r e (1969) found t h a t w i t h 67 Kg/ha of n i t r o g e n y i e l d s i n c r e a s e d at 336 and 724 m. e l e v a t i o n by 336-448 Kg/ha, and at 1144 and 1373 m. e l e v a t i o n by 672-784 Kg/ha. Using 269 Kg/ha o f n i t r o g e n , r e s u l t s were s i m i l a r . L a v i n (196 8) noted t h a t n i t r o g e n a p p l i c a t i o n s on i n t e r m e d i a t e wheatgrass i n c r e a s e d green growth, he i g h t and l e a f l e n g t h as w e l l as moisture, p r o t e i n and phosphorous content of young p l a n t s . C r e s t e d wheatgrass, a c c o r d i n g to Smoliak et_ a l . , i s able to out-produce o t h e r grasses i n mixed p r a i r i e n a t i v e range without d i m i n i s h i n g the n i t r o g e n accumulators i n the s o i l . These authors a l s o noted t h a t n i t r o g e n f e r t i l i z a t i o n o f c r e s t e d wheatgrass r e s u l t e d i n an i n c r e a s e i n herbage growth r a t e s , m o b i l i z a t i o n of carbohydrate r e s e r v e s p r i o r to head emergence and g r e a t e r d i f f e r e n t i a t i o n of the growing p o i n t s . Others, (Sneva et a l . ( 1 9 5 8 ) , Smika e t a l . ( 1 9 6 0 ) , P a t t e r s o n and Youngman (1960), and Thomas and Osenbrug (1959)), 14. have observed an i n c r e a s e i n y i e l d s and p r o t e i n , both crude and t o t a l with f e r t i l i z a t i o n o f c r e s t e d wheatgrass. Lorenz and Rogler (1962), u s i n g 34-67 Kg/ha n i t r o g e n , found f e r t i l i z a -t i o n t o be most s a t i s f a c t o r y method f o r r e n o v a t i o n of c r e s t e d wheatgrass stands. Houston (1957), however, saw no change when f e r t i l i z i n g t h i s grass with n i t r o g e n at 56 Kg/ha. Many s t u d i e s of range f e r t i l i z a t i o n have observed t h a t n i t r o g e n may i n c r e a s e y i e l d s , p r o t e i n content and percent n i t r o g e n while r e s u l t i n g i n e a r l i e r maturation and of carbo-hydrates or a c i d e x t r a c t a b l e phosphorous, (McKell et a l . (1959), Smidt and B l a s e r (1967), Rauzi et a l . (1968), Rogler and Lorenz (1957), Lodge (1959), B u r t z l a f f et a l . (1968), Rumberg et a l . (1964), S t r o c k l e i n et a l . (1968), Herron et a l . (1963), Nowakiwski (1962), K i l c h e r et a l . (1955)). Others, ( H u l l (1963b), Jones (1963)), found l i t t l e i n c r e a s e i n y i e l d although t h e r e were i n c r e a s e s i n p r o t e i n and percent n i t r o g e n while K l i p p l e and Retzer (1959) c o u l d f i n d no s i g n i f i c a n t i n c r e a s e over check p l o t s u s i n g l e s s than 392 Kg/ha o f n i t r o g e n and at r a t e s of 504 and 650 Kg/ha k i l l e d Carex, F e s t u c a , Agropyron and Bromus s p e c i e s ; no f o r b s were r e p o r t e d k i l l e d . A c c o r d i n g t o Lawrence et al_. (1968), t o x i c r a t e s of n i t r a t e s may be encountered at f e r t i l i z e r r a t e s over 225 Kg/ha. High r a t e s of n i t r o g e n may cause burning through e x c e s s i v e accumulation of s a l t s i n dry la n d s i t u a t i o n s . The n i t r o g e n content of forages has been observed to d e c l i n e from the green l e a f stage to m a t u r i t y , (Mason and M i l t i m o r e (1964), McLean and T i s d a l e (1960), Demarchi (1968)). 15. T h i s a l s o occurs on f e r t i l i z e d range, although the percent n i t r o g e n a f t e r being h i g h e r i n the green l e a f stage, may at m a t u r i t y be l e s s than t h a t of the check p l o t s due t o d i l u t i o n e f f e c t s of r a p i d growth (Jones (1963), Rumberg et_ a l . ( 1 9 6 4 ) ) . The uptake of added n i t r o g e n i s r a p i d and i s p r o p o r t i o n a l t o the r a t e of f e r t i l i z a t i o n , (Jones (1967), Terman and Brown (1968), Herron et a l . ( 1 9 6 3 ) , Rumberg e t a l . (1964)). Herron et a l . (19 63), working with sorghum, concluded t h a t n i t r o g e n uptake was at a maximum at the hard dough stage. Lawrence et a l • (1968) s t a t e d t h a t the h i g h e r the r a t e o f f e r t i l i z a t i o n , the l a t e r i s the date of maximum n i t r o g e n accumulation. More vigorous and e x t e n s i v e ro o t systems, both i n the top f o o t and lower, i n range forage p l a n t s are the o b s e r v a t i o n s of some r e s e a r c h e r s , (Rogler and Lorenz (1957), Lorenz and Rogler (1967), McKell et a l . (1962), Haas (1958), Cook (1965), Smika et a l . (1965)). B u r z l a f f et a l . (1968) however found no change i n underground p a r t s , and Smidt and B l a s e r (1967) found reduced r o o t growth and carbohydrate. Working with Russian w i l d r y e , Lawrence and K i l c h e r (1964) concluded t h a t f e r t i l i z i n g j u s t a f t e r seed h a r v e s t i n J u l y , gave the g r e a t e s t i n c r e a s e i n seed, but i n A p r i l , gave the g r e a t e s t i n c r e a s e i n f o r a g e . The evidence of S t r o c k l e i n et a l . (1968) i n d i c a t e s t hat the best time f o r f e r t i l i z e r a p p l i c a t i o n i s d u r i n g the r a i n y season. On the northern Great P l a n s , Cosper et_ a l . (1967), found t h a t f a l l a p p l i c a t i o n s were s l i g h t l y more e f f e c t i v e than those of s p r i n g or summer, and t h a t s p r i n g or f a l l treatments were the best f o r producing 16. h i g h crude p r o t e i n content. Smidt and B l a s e r (1967), i n V i r g i n i a , decided f a l l and w i n t e r a p p l i c a t i o n s were b e s t . 4.1.2. F o r e s t s There has been very l i t t l e study of the responses of f o r e s t undercover t o f e r t i l i z e r n i t r o g e n and the i n t e r a c t i o n s between understory and o v e r s t o r y . T h i s i s a very complex area of study i n v o l v i n g as i t does the i n t e r m i n g l i n g of both the s h o r t and long term c y c l e s of the d i f f e r e n t types of v e g e t a t i o n . Pine grass i n f o r e s t s of i n t e r i o r B r i t i s h Columbia i n a s e m i - a r i d area, when f e r t i l i z e d with n i t r o g e n i n c r e a s e d i n crude p r o t e i n and i n p a l a t a b i l i t y , and decreased i n both carbohydrate and s i l i c a (Freyman and Van Ryswyk (1969)). There was no n o t i c e a b l e change i n the f i b r e content. A l l a p p l i e d n i t r o g e n was d e p l e t e d from the upper r o o t zone by the end of the second year. Dense v e g e t a t i v e cover may suppress c o n i f e r s e e d l i n g s by c o m p e t i t i o n f o r water (Sims and Mueller-Domboid (1968)). Heilman and Gessel (1963a) observed a decrease i n understory v e g e t a t i o n and an i n c r e a s e i n m o r t a l i t y o f suppressed t r e e s when f e r t i l i z e d by n i t r o g e n , but Duval and Hilmon (19 55) found t h a t 56 Kg/ha of n i t r o g e n i n c r e a s e d bluestem herbage t e n f o l d under 25 y e a r - o l d p i n e . Pines over e i g h t years o l d appeared to cause a d e c l i n e i n herbage. Gessel and Shareef (1957) noted an i n c r e a s e i n diameter growth, volume growth and n a t u r a l c o m p e t i t i v e a b i l i t y with a f a s t e r s u p p r e s s i o n of s m a l l t r e e s . The l a r g e s t t r e e s responded the most. N i t r o g e n f e r t i l i z e r has been found to i n c r e a s e twig amino a c i d content, f o l i a r n i t r o g e n and t o t a l n i t r o g e n i n needles, l i v e branches, bark and r o o t s . Of the amino a c i d s , a r g i n i n e appears to be the most re s p o n s i v e to a d d i t i o n s o f n i t r o g e n (Barnes and Bengtson (1968), Durzan and Stewart (1967), Heilman and Gessel (1963a)). Heilman and Gessel (1965), found an i n c r e a s e i n n i t r o g e n c o n c e n t r a t i o n and a decrease i n phosphorous and potassium i n D o u g l a s - f i r f o l i a g e a f t e r n i t r o g e n f e r t i l i z a t i o n . The c o n c e n t r a t i o n of n i t r o g e n a l s o i n c r e a s e d i n o t h e r t h r e e components with no d i l u t i o n of the other elements. Needles showed the g r e a t e s t i n c r e a s e , then branches and bark. On the f e r t i l i z e d p l o t , the t r e e s contained double the n i t r o g e n , more potassium and equal phosphorous of t r e e s on the u n f e r t i l i z e d areas. Flower and seed crops are i n c r e a s e d by f e r t i l i z a t i o n with n i t r o g e n (Barnes and Bengston (1968), G r i f f i t h (1968), Cayford and J a r v i s (1967), Shoulders (1968), but G r i f f i t h (196 8) saw no i n c r e a s e i n the f l o w e r i n g of the youngest t r e e s and l i t t l e r e d u c t i o n i n a b o r t i o n . The use of n i t r o g e n has a l s o caused an i n c r e a s e i n lammas shoots i n D o u g l a s - f i r (Walters and Kozak). In t h i s case very l i t t l e i n c r e a s e i n h e i g h t was observed, but when phosphorous and potassium were added normal shoots and l e a d e r s i n c r e a s e d i n l e n g t h . . B r i x and E b e l l (1969) s t a t e d i n t h e i r work t h a t n i t r o g e n a p p l i c a t i o n s t o D o u g l a s - f i r r e s u l t e d i n i n c r e a s e s i n : l e a f l e n g t h and width, b a s a l areas, stem h e i g h t , branch l e n g t h , diameter b r e a s t h e i g h t , number o f leaves per shoot, number of shoots and c h l o r o p h y l l and n i t r o g e n c o n c e n t r a t i o n s . There was no i n c r e a s e i n the r a t e of p h o t o s y n t h e s i s and wood s p e c i f i c g r a v i t y decreased. 18. Experiments i n p l a c i n g of f e r t i l i z e r s with s e e d l i n g s r e s u l t e d i n i n c r e a s e d m o r t a l i t y with treatments p l a c e d around the r o o t s , except when there was a two-inch s o i l b a r r i e r p r o t e c t i n g the r o o t s , o r when p e r f o r a t e d sacs were used, (White (1963)). Armson (1963), s t u d y i n g uptake of n i t r o g e n i n white spruce, found maximum a c t i v i t y t o be from e a r l y J u l y u n t i l the t h i r d week of August. There were no c l e a r p a t t e r n s between s p e c i e s and no c o r r e l a t i o n s between n i t r o g e n content and s e e d l i n g s i z e . 4.2 C y c l i n g of Ni t r o g e n and Other Elements i n Wildlands B i o l o g i c a l c y c l e s may be d e f i n e d as the uptake of elements from the s o i l and the atmosphere by l i v i n g organisms, b i o s y n t h e s i s i n v o l v i n g the formation of new compounds and the r e t u r n of elements t o the s o i l and atmosphere with the annual l i t t e r f a l l o f p a r t o f the organism o r with the death of the organisms i n the ecosystem. (Rodin and B a z i l e v i t c h (1967)). There i s a n a t u r a l e q u i l i b r i u m between the p r o d u c t i o n of o r g a n i c matter by v e g e t a t i o n and i t s decomposition by micro-organisms, which i s determined p r i m a r i l y by c l i m a t e , and to a l e s s e r degree, by v e g e t a t i o n . (Jenny (1930)). The balance i s l a K g e l y a f u n c t i o n o f water and temperature; W i t h i n areas of s i m i l a r moisture c o n d i t i o n s , the average amounts o f s o i l n i t r o g e n and o r g a n i c matter decrease from north to south as temperature r i s e s . The temperature i n c r e a s e promotes more r a p i d breakdown of o r g a n i c matter with subsequent and r a p i d r e - u t i l i z a t i o n o f the m i n e r a l elements. Conversely, f o r each 10°C r e d u c t i o n i n annual average temperature, t h e r e i s a corr e s p o n d i n g i n c r e a s e o f two to t h r e e - f o l d i n s o i l n i t r o g e n 19. and o r g a n i c matter. T h i s holds t r u e f o r both timber and g r a s s l a n d . Regions with s i m i l a r v e g e t a t i o n and temperatures g e n e r a l l y experience an i n c r e a s e i n s o i l n i t r o g e n with i n c r e a s i n g moisture. The r a t e o f i n c r e a s e i s g r e a t e r i n the north than i n the south and i s l e s s f o r f o r e s t s than f o r g r a s s l a n d s . 4.2.1. Grasslands Steppelands (Rodin and B a z i l e v i t c h (1967)), present a much d i f f e r e n t p i c t u r e from f o r e s t ecosystems. In these areas the b i o l o g i c a l c y c l e does not r e t a i n o r g a n i c m a t e r i a l as long and the accumulation of minerals i s much g r e a t e r i n the grass organs than i n the ward of the f o r e s t s . Dryland and d e s e r t v e g e t a t i o n are c h a r a c t e r i z e d by c a e s p i t o s e grasses and z e r o p h i l o u s shrubs. The v e g e t a t i o n tends t o be sparse, patchy and t o show c o n s i d e r a b l e v a r i a t i o n due to i r r e g u l a r i -t i e s of r e l i e f and d i f f e r e n c e s i n s o i l humidity and s a l i n i t y . The t o t a l biomass accumulation i n the steppe i s much l e s s than t h a t i n f o r e s t communities, ranging from 100 1 to 370 c n t r /ha. In dry, a r i d and d e s e r t zones, the v a r i a t i o n may be from 37 to 266 c n t r / h a . P r o d u c t i v i t y data i s u s u a l l y based on a s i n g l e d e t e r m i n a t i o n , the a c t u a l p r o d u c t i v i t y over the whole growing season being much g r e a t e r . On dry steppes 15-20% of the biomass i s contained i n the green p a r t s of the p l a n t s and f o r a r i d steppe the f i g u r e i s 10%; the remainder i s i n the r o o t s . The l i t t e r f a l l approximates 45% o f the t o t a l biomass a n n u a l l y on dry steppe and 40% on a r i d . T h i s 1 1 c n t r - 10 0 European l b s = 50 Kg. i s somewhat l e s s than t h a t o c c u r r i n g on moist steppe but i t has a s l i g h t l y h i g h e r n i t r o g e n c o n c e n t r a t i o n . In g e n e r a l the d r y e r the s i t e the lower i s the p r o p o r t i o n of the biomass contained i n the green p a r t s . The r a t e of decomposition l a g s behind l i t t e r f a l l and produces what i s r e f e r r e d t o as "steppe matting". On dry areas t h i s may be as much as 60 c n t r / h a and on a r i d , 30 c n t r / h a . In a l l cases the accumu-l a t e d amount i s g r e a t e r than the mass of the green above ground p a r t s and i s 55 - 60% of the t o t a l ground mass, both a l i v e and dead. Grasses and f o r b s tend to be h i g h i n n i t r o g e n with a g r e a t e r c o n c e n t r a t i o n i n the green p a r t s than i n the r o o t s . The amounts o f n i t r o g e n and ash elements can vary between 250 and 1800 Kg/ha. The amounts i n the r o o t s , o f n i t r o g e n and ash elements i n the dry steppes i s 80 - 85%, and i n a r i d , up to 80 - 95% of the t o t a l , due to the p r o p o r t i o n of a e r i a l p a r t s to r o o t s . From 40 to 4 5% of the m i n e r a l substances and n i t r o g e n i n the p l a n t biomass i s r e t u r n e d to the s o i l a n n u a l l y i n moderately dry and a r i d steppes. The b i o l o g i c c y c l e s i n dry environments are governed mainly by l i t t e r from dying r o o t s . The amounts o f n i t r o g e n and ash elements i n the matting exceed t h a t i n the green p a r t s of the p l a n t by n e a r l y 1.5 times. Decomposition of the matting o f t e n r e s u l t s i n l o s s e s of the more v o l a t i l e elements while the h i g h molecular weight humic a c i d s which are s t r o n g l y combined with c a l c i u m , give the s o i l i t s t y p i c a l l y b l a c k -grey chernozem f e a t u r e s . 4.2.2. F o r e s t s C o n s i d e r a b l e amounts of n u t r i e n t s - c a l c i u m , potassium and sodium, and l e s s e r amounts o f n i t r o g e n and phosphorous are leached from c o n i f e r crowns by r a i n (Tamm (1951), Madgwick and Ovington (1959), W i l l (1955), Rodin and B a z i l e v i t c h (1967)). Tamm's (1951) i n v e s t i g a t i o n showed an i n c r e a s e of potassium up to 18 f o l d i n r a i n t h r o u g h - f a l l i n both pine and spruce f o r e s t s compared to an open a r e a , and of phosphorous and n i t r o g e n , up to 1.5 f o l d . T h i s was c o n s i d e r e d t o be an important source o f n u t r i t i o n f o r both t r e e s and u n d e r s t o r y . In an oak f o r e s t , C a r l i s l e et a l . (1966a) observed t h r o u g h - f a l l t o c o n s i s t o f 8.82, 1.31 and 28.4 Kg/ha of n i t r o g e n , phosphorous and potassium r e s p e c t i v e l y . Some i n o r g a n i c n i t r o g e n and phosphorous was removed from p r e c i p i t a t i o n as i t passed through the canopy but potassium was i n c r e a s e d . The t o t a l amounts o f elements i n t h r o u g h - f a l l and l i t t e r were 49.88, 350 and 38.65 Kg/ha of n i t r o g e n , phosphorous and potassium r e s p e c t i v e l y . There i s a great annual t u r n o v e r of n u t r i e n t s and r e t e n t i o n i n the biomass i s much l e s s than t h a t r e t u r n e d by l i t t e r f a l l (Ovington (1965)). The example used i s a New Zealand beech f o r e s t where the annual uptake of potassium, c a l c i u m , magnesium, phosphorous and n i t r o g e n was 34, 84, 12, 3.3 and 40 Kg/ha and the r e t u r n i n l i t t e r was 30, 74, 11, 2.6 and 37 Kg/ha r e s p e c t i v e l y . C a r l i s l e et a l . (1966b) determined t o t a l l e a f p r o d u c t i o n to be 38 20 Kg/ha dry weight, while autumn l e a f l i t t e r f a l l was 2206 Kg/ha per annum and t o t a l l i t t e r f a l l ( t w i g s , acorns, flowers e t c ) was 3858 Kg/ha, c o n t a i n i n g 41.06, 2.19 and 10.51 Kg/ha of n i t r o g e n , phosphorous and potassium r e s p e c t i v e l y . Small n o n - l e a f y m a t e r i a l s such as male f l o w e r s , bud s c a l e s and i n s e c t f r a s s made up 14% o f the dry weight and contained 29.9% of the n i t r o g e n , 40.2% of the phosphorous and 25.1% of the potassium. Heilman and Ge s s e l (196 3a) noted t h a t a p p l i c a t i o n s of n i t r o g e n i n D o u g l a s - f i r stands i n c r e a s e d uptake of the elements and caused a h i g h e r r a t e o f l i t t e r f a l l , thereby a c c e l e r a t i n g the n i t r o g e n c y c l e . Madgwick's (1965) s t u d i e s i n ash woods i n d i c a t e d t h a t the understory was very important i n r e c y c l i n g s i n c e i t contained 37 - 44% of t o t a l f o l i a r potassium, phosphorous and n i t r o g e n . The o v e r s t o r y appears unable to compete s u c c e s s f u l l y f o r these n u t r i e n t s . N i t r o g e n i n c r e a s e s d u r i n g the w i n t e r , a f t e r the f i r s t growing season, i n c o n i f e r needles, which then seem to serve as a r e s e r v e source of n i t r o g e n , phosphorous and potassium f o r young growth i n the f o l l o w i n g years (Wells and Metz (1963), M i l l e r (1966)). As needles age, t h e r e i s a slow d r a i n of these r e s e r v e s u n t i l , immediately a f t e r a b s c i s s i o n , about one h a l f the n i t r o g e n , potassium and phosphorous i s suddenly t r a n s l o c a t e d . (Wells and Metz (1948)). Studying the s p e c i e s i n the P a c i f i c Northwest, T a r r a n t et al_. (19 51) found t h a t ponderosa pine and lodge-pole pine had the lowest r a t e s of l i t t e r f a l l = 614 and 25 2 Kg/ha r e s p e c t i v e l y . N i t r o g e n with 3.1 and 2.8 Kg/ha and t o t a l weight of n u t r i e n t s at 8.8 and 6.1 Kg/ha 23. r e s p e c t i v e l y f o l l o w e d the same p a t t e r n . Weight l o s s , n i t r o g e n d e f i c i t and n i t r o g e n c o n c e n t r a t i o n were g r e a t e r i n l i t t e r o f hardwoods than of c o n i f e r s ( V o i g t (1965)). In Pinus r a d i a t a f o r e s t s , dry matter content of the l i t t e r decreased s t e a d i l y f o r t h ree years and the weight was reduced by h a l f i n two years ( W i l l (1968)). Phosphorous, potassium, c a l c i u m and magnesium were d e p l e t e d i n s i x years but not n i t r o g e n . 80% of the potassium disappeared i n the f i r s t t h r e e months, phosphorous a l s o showed a sharp drop but i n the f i r s t year magnesium i n c r e a s e d and the second year n i t r o g e n i n c r e a s e d . S t y l e s (1968) continued the o b s e r v a t i o n s and found t h a t the microfauna were g r e a t e s t i n the second year and then decreased. For the f i r s t s i x months n i t r o g e n and potassium c o n c e n t r a t i o n s were eq u a l , but then t o t a l and percent n i t r o g e n rose and at 18 months, t o t a l n i t r o g e n was 167% o f the o r i g i n a l l e v e l . The reason f o r the i n c r e a s e was not d i s c o v e r e d . The time of the g r e a t e s t l i t t e r f a l l i n white spruce i s j u s t a f t e r the seed f a l l , (Waldon (1964)). By October 3 - 70% of the seed f a l l had taken p l a c e , but o n l y 20% of the l i t t e r f a l l . A l i t t e r c o v e r i n g o f the seed does not i n h i b i t germination which i s best on a m i n e r a l s o i l . In a pine f o r e s t c o n t a i n i n g some hardwoods, the amino n i t r o g e n accounted f o r more than 50% of the s o i l n i t r o g e n (Jorgensen (1967)). Ammonium and some amino sugar n i t r o g e n made up 19 - 27% o f the n i t r o g e n but the amount decreased as amino n i t r o g e n i n c r e a s e d . Recent s t u d i e s have i n d i c a t e d t h a t t h e r e i s an 24. accumulation of n i t r o g e n i n the s o i l under pine f o r e s t s 15 (Richards (1962)). T r a c e r s t u d i e s u s i n g N show t h a t the n i t r o g e n i s atmospheric i n o r i g i n , (Richards and V o i g t (1963)). The organism, or organisms f i x i n g n i t r o g e n are unknown, but the s i t e o f a c t i v i t y i s probably i n the s o i l , not i n the t r e e r o o t . An e x t e n s i v e l i t e r a t u r e review d e a l i n g with c y c l i n g o f m i n e r a l , i n t e r r e s t r i a l v e g e t a t i o n has been compiled by Rodin and B a z i l e v i t c h (1967). They s t a t e t h a t i n f o r e s t s , the accumulation of n i t r o g e n i n the p l a n t biomass i s d i r e c t l y r e l a t e d t o the t o t a l r e s e r v e of the biomass and i n c r e a s e s with i t . With a l i t t e r f a l l o f 20 -70 c n t r / h a , pine (Pinus s y l v e s t r i s ) f o r e s t s i n the Crimea r e t u r n 6 0 - 9 0 Kg/ha o f m i n e r a l elements per year. Mixed f o r e s t s r e t u r n h i g h e r smounts but never i n excess of 20% o f the r e s e r v e t o t a l i n the biomass. Normally 3 - 5% of the minerals i n a mature stand f a l l i n the l i t t e r , and approximately 3% of the n i t r o g e n i n the crowns i s leached out. There i s a gradual decrease i n the n i t r o g e n content of the needles. The element most accumulated and immobilized i n c o n i f e r s i s n i t r o g e n . I t i s a l s o the predominant element i n the l i t t e r . Calcium i s the element most accumulated by aspen, which has a m i n e r a l uptake of up to 500 Kg/ha and a l i t t e r f a l l c o n t a i n i n g 270 - 400 Kg/ha of m i n e r a l elements. In pine f o r e s t s much of the l i t t e r i s not m i n e r a l i z e d f o r a long time; the r a t e depends on c l i m a t e , f o r e s t type and s o i l type; l i t t e r tends to accumulate more i n f o r e s t s o f 25. pine than i n f o r e s t s of o t h e r s p e c i e s o f c o n i f e r s . 4.3. Some Biomass R e l a t i o n s h i p s i n B r i t i s h Columbia Biomass s t u d i e s i n B r i t i s h Columbia are very l i m i t e d . U s u a l l y only net p r o d u c t i v i t y i s observed and normally, o n l y t h a t of f o r b s and g r a s s e s . T r e e s , shrubs and mosses are g e n e r a l l y i g n o r e d . The net p r o d u c t i v i t y of ground v e g e t a t i o n s t u d i e d can approach biomass p r o d u c t i o n , but o n l y because h e r b i v o r e s o f t e n take o n l y a very s m a l l f r a c t i o n o f p l a n t p r o d u c t i o n . T i s d a l e and McLean (1957) have p u b l i s h e d some data on the s t a n d i n g crop of i n t e r i o r f o r e s t s i n the D o u g l a s - f i r zone. The average b a s a l area i n areas dominated by D o u g l a s - f i r was 8.3 m /ha, f o r lodgepole 2 pine (Pinus c o n t o r t a ) 5.4 m /ha and f o r mixed c o n i f e r o (Populus) stands 4.4 m /ha. The herbaceous cover was dominated by pine grass i n a l l cases. The abundance of undercover and number of s p e c i e s tends to decrease with denser canopies. In very dense young stands of D o u g l a s - f i r , f o r b s , grass and even mosses may be reduced t o a much lower l e v e l than t h a t found i n a mature stand. The h i g h e s t y i e l d -72 g/m - was found under Populus, and the lowest - 11.4 2 g/m - under dense young D o u g l a s - f i r . In the l a t t e r case, the r a d i a n t energy was cut to 10% and i n the former averaged 35.3% of f u l l s u n l i g h t . The s e r a i dominants o f Pinus  c o n t o r t a and Populus tremuloides r a r e l y a t t a i n great age as a r e s u l t of a t t a c k s by b e e t l e s and fungus r e s p e c t i v e l y . In the g r a s s l a n d s , T i s d a l e (1947) found t h a t up to a p o i n t average y i e l d s i n c r e a s e with a l t i t u d e . The low g r a s s l a n d s , dominated by bluebunch wheatgrass, y i e l d e d on the average 39.0 g/m of which 37.3 g i s bluebunch wheatgrass and 1.5 sandberg b l u e g r a s s . The mid g r a s s l a n d s have a g r e a t e r number of s p e c i e s and a g r e a t e r p r o d u c t i v i t y of 2 5 2.5 g/m . Bluebunch wheatgrass accounts f o r 40.1 g of t h i s w i t h rough fescue c o n t r i b u t i n g 4.0 g and sandberg b l u e g r a s s 3.3 g. The most p r o d u c t i v e are the h i g h l e v e l g r a s s l a n d s y i e l d i n g 137.6 g/m . The bulk o f t h i s i s composed o f rough fescue at 64.5 g and bluebunch wheatgrass at 46.8 g. 4.4. Moisture and F e r t i l i z e r U t i l i z a t i o n A d d i t i o n s of water produce an i n c r e a s e o f forage o n l y at h i g h r a t e s of n i t r o g e n , and the e f f e c t o f n i t r o g e n alone may be the same as the e f f e c t o f s e v e r a l inches o f water (Smika et a l . (1965), Doss et a l . (1966)). T h i s i s because p l a n t s use water more e f f i c i e n t l y and t o g r e a t e r depth when f e r t i l i z e d as w e l l as r e d u c i n g e v a p o r a t i o n by shading l a r g e r areas as s i z e i n c r e a s e s (Smika et al_. (1961, 1965), McKell et a l . (1959), Cook (1965), Black (1968)). B u r z l a f f et a l . (1968) found no major change i n s o i l moisture a f t e r f e r t i l i z a t i o n . A comprehensive review: " F e r t i l i z e r s and the E f f i c i e n t Use of Water" has been p u b l i s h e d by V i e t s (1962). In concluding," he notes t h a t f e r t i l i z e r s a f f e c t the s i z e and h e i g h t of the p l a n t and thus the o p p o r t u n i t y f o r e v a p o t r a n s p i r a t i o n . The i n t e r c e p t i o n o f advected heat appears to have the g r e a t e s t r e g u l a t o r y e f f e c t on evapo-t r a n s p i r a t i o n . Some f i e l d experiments show no e f f e c t o f f e r t i l i z e r s on water use. I t cannot be s t a t e d c a t e g o r i c a l l y t h a t f e r t i l i z a t i o n and a l a r g e r crop do not use more water, however, i t i s safe to conclude t h a t i n the f i e l d d o u b l i n g crop s i z e does not double water requirements, but i n c r e a s e s them onl y s l i g h t l y , i f at a l l . Root development may be s t i m u l a t e d by f e r t i l i z a t i o n t o produce adequate n u t r i t i o n so t h a t s o i l water i s used t o h i g h e r t e n s i o n s and to g r e a t e r depths. The evidence i n d i c a t e s t h a t water-use e f f i c i e n c y , o r dry matter produced per u n i t of water used i s g r e a t l y i n c r e a s e d i f f e r t i l i z e r s i n c r e a s e y i e l d . Recovery of n i t r o g e n i n the p l a n t i s g r e a t e s t with high s o i l water and r e c o v e r y i n s o i l i s g r e a t e s t with low s o i l moisture (Smika et_ a l . (1965), Power (1967)). Herron et a l . (1963) observed n i t r o g e n l o s s e s i n p l a n t t i s s u e a f t e r m a t u r i t y at a time of water s t r e s s and a t t r i b u t e d t h i s t o t r a n s l o c a t i o n . With 179 Kg/ha n i t r o g e n on brome gr a s s , h i g h p r e c i p i t a t i o n decreased y i e l d s ( C o l v i l l e et_ a l . (1963)). A p p l i c a t i o n s of n i t r o g e n were found t o have no c o n s i s t e n t i n f l u e n c e on the i n t a k e o f water by the s o i l (Rauzi and Smika (1963)). •+.5. Temperature and F e r t i l i z e r U t i l i z a t i o n Smidt and B l a s e r (1967) d i s c o v e r e d t h a t i n humid areas, n i g h t temperatures s t i m u l a t e d growth of bentgrass and reduced carbohydrate r e s e r v e s . Low temperature with an a l k a l i n e s o i l favours n i t r i t e accumulation s i n c e low tempera-t u r e i n h i b i t s n i t r i f i c a t i o n more than i t does ammonification of s o i l o r g a n i c n i t r o g e n ( T y l e r et a l . ( 1 9 5 0 ) ) . V e g e t a t i o n tends to reduce s o i l mean temperatures 28. and amplitudes by r e d u c i n g the r a d i a t i o n i n t a k e (Quashu and Zinke (196"+)). There i s very l i t t l e d i f f e r e n c e between grass and pine covers i n t h i s r e d u c t i o n , and a time l a g occurs with temperature and water p a t t e r n s . In d r y l a n d areas the s i t u a t i o n i s not n e c e s s a r i l y the same s i n c e the canopy i s o f t e n f a i r l y open r a t h e r than c l o s e d . I n v e s t i g a t i n g s o i l temperatures, J e f f e r y (1963) found t h a t d u r i n g September i n v e r s i o n s formed under balsam, r e s u l t i n g i n minimal tempera-t u r e f l u c t u a t i o n s and the h i g h e s t temperatures at the 46 cm s o i l depth. White spruce was the c o l d e s t with no i n v e r s i o n and a cu t - o v e r area had the g r e a t e s t f l u c t u a t i o n s d e s p i t e a p a r t i a l i n v e r s i o n . O v e r r i e n (1967) noted t h a t t h e r e was a constnat i m m o b i l i z a t i o n o f added NH + f o r 9 0 days at 43$C and 4 12^C but at 20%C t h e r e was a very low l e v e l a f t e r 10 days. At 45$C and 12Jt;C micro-organisms used n i t r o g e n f a s t e r as NH + than as NO . N i t r o g e n as NO was immobilized much more 4 3 3 r a p i d l y at the h i g h e s t temperature and w i t h i n t h r e e days some was r e m i n e r a l i z e d . Sneva et a l . (1958) i n e a s t e r n Oregon found t h a t e a r l y y i e l d s v a r i e d d i r e c t l y with temperature and i n v e r s e l y with w i n t e r p r e c i p i t a t i o n and l a t e y i e l d s v a r i e d d i r e c t l y w ith w i n t e r p r e c i p i t a t i o n when f e r t i l i z e d with n i t r o g e n . Cummins (1967) observed y i e l d s to vary d i r e c t l y with water a v a i l a b i l i t y and n i t r o g e n content with temperature. Low temperature o r water produced y i e l d s with one a p p l i c a t i o n , but h i g h temperature and water maximized y i e l d s with s p l i t a p p l i c a t i o n s o f f e r t i l i z e r . Using three temperatures 29. Mack (1966) observed at 27°C the lowest y i e l d s r e g a r d l e s s of the a v a i l a b i l i t y of water. Nitrogen a p p l i c a t i o n s r e s u l t e d i n i n c r e a s e s at 9° and 18°C. 4.6. Problems A s s o c i a t e d with M o d i f i c a t i o n o f Range Environment with N i t r o g e n F e r t i l i z e r s . 4.6.1. L i m i t a t i o n s The a p p l i c a t i o n o f f e r t i l i z e r s on ranges and w i l d -lands has a f a r more complex e f f e c t than a p p l i c a t i o n on c u l t i v a t e d a r e a s . Since the ecosystems i n ranges and w i l d l a n d s are so much more complex than those of a r a b l e lands many unique problems a r i s e . The s p e c i e s composition may be m o d i f i e d as may be the s o i l water-plant r e l a t i o n s h i p s . Timing o f f e r t i l i z e r a p p l i c a t i o n i s important. I f , f o r example, i n a g r a i n crop, n i t r o g e n l e v e l s r i s e to a h i g h peak e a r l y i n the growing season t h e r e i s no d e l e t e r i o u s e f f e c t , but t h i s i s not the case with range g r a s s e s , g e n e r a l l y p e r e n n i a l s . Cheatgrass (Bromus s e c a l i n u s L.) r o o t s tend t o grow more q u i c k l y than the l a r g e r r o o t s o f bluebunch wheatgrass and f i l l s o i l pore space b e t t e r ( H u l l (1963a)). As a r e s u l t , cheatgrass i s a more e f f i c i e n t water user and can produce twice the top growth at 66% of the water necessary f o r bluebunch wheatgrass t o s y n t h e s i z e one gram o f dry matter. B. s e c a l i n u s L., B. tectorum L. and B. r i g i d u s Roth, s p e c i e s i n some cases tend t o push out more d e s i r a b l e wheatgrass and fescue s p e c i e s r e s u l t i n g i n an e c o l o g i c a l r e g r e s s i o n a f t e r f e r t i l i z a t i o n (Kay and Evans (1965), Wilson et a l . (19 66), P a t t e r s o n and Youngman (1960), Jones and Evans ( I 9 6 0 ) ) . U n d e s i r a b l e f o r b s g e n e r a l l y have a vigorous response t o n i t r o g e n f e r t i l i z a t i o n which i s no h e l p i n 30 . i n c r e a s i n g the speed of s u c c e s s i o n (Graves and McMurphy (1969)). These i n v e s t i g a t o r s f e e l t h a t range with much low q u a l i t y v e g e t a t i o n should not be f e r t i l i z e d . Forbs and other weedy p l a n t s have o f t e n r e p l a c e d grasses when f e r t i l i z e d , e s p e c i a l l y i n dry y e a r s . (Klages and Ryerson (1965), Drawe and Box (1969), Johnston et a l . (1967), L a v i n (1968), H u f f i n e and E l d e r ( I 9 6 0 ) ) . One p l a n t which does not i n c r e a s e at the expense of g r a s s , i s c l o v e r . In f a c t , the c l o v e r tends t o decrease under f e r t i l i z a t i o n as i t i s choked out by the grasses ( S t i t t et a l . (1955), Jones (1967), Jones and Evans (1960), Jones (1963), Templeton and T a y l o r (1966), Jones et a l . (1961)). Jones (1967) f e e l s t h a t t h i s produces poor q u a l i t y forage i n s p i t e o f the r i s e i n n i t r o g e n compounds i n the gras s . He found t h a t the uptake o f n i t r o g e n was r a p i d i n the e a r l y s p r i n g , but t h a t a f t e r c l i p p i n g o r g r a z i n g , l i t t l e was l e f t f o r f u r t h e r growth. Some oth e r authors observed no change i n b o t a n i c a l composition except, i n some cases, an i n c r e a s e i n weedly s p e c i e s i n the f i r s t year a f t e r f e r t i l i z a -t i o n (Hubbard and Mason (1967), Drawe and Box (1969), Hogland et a l . (1952), Black (1968)). F e r t i l i z a t i o n with n i t r o g e n r e s u l t s i n g r e a t e r herbage p r o d u c t i o n and an i n c r e a s e i n p r o t e i n content, but i t a l s o causes r a p i d carbohydrate d e p l e t i o n and exhaustion of o r g a n i c r e s e r v e s (McKee et_ al. (1967)). A s t r e s s s i t u a t i o n at such a time would c o n s i d e r a b l y weaken the p l a n t . Sneva et a l . (1958) observed w i l i n g b efore m a t u r i t y due to s t i m u l a t i o n by n i t r o g e n o f the use of a v a i l a b l e water supply Large r a p i d l o s s e s o f n i t r o g e n from NH NO a p p l i c a 4 3 t i o n s occur as NO e s p e c i a l l y i n dry p e r i o d s or on a c i d i c 3 s o i l s (Krause and Batsh (1969), C a r t e r et a l . (1967), W u l l s t e i n and Gilmore (1964)). Smika et a l . (1961), and P i e r r e (19 33) noted t h a t s o i l a c i d i t y i n c r e a s e d the amount o f NH + compounds. In a l k a l i n e s o i l s the n i t r o g e n l o s t was 4 i n the form o f NH when a p p l i e d as NH NO . 3 4 3 L i t t l e has been done concerning the economics o f w i l d l a n d f e r t i l i z a t i o n . Smith et a l . (1969) decided t h a t f e r t i l i z a t i o n o f range was not eco n o m i c a l l y f e a s i b l e and was good o n l y t o a i d animal d i s t r i b u t i o n . 4.6.2. P o t e n t i a l s On the p o s i t i v e s i d e , nitrogenous f e r t i l i z e r tends to i n c r e a s e the number of seed heads, spike p r o d u c t i o n , and percent pure seed, thereby i n c r e a s i n g the competetive a b i l i t y of the Agropyron s p e c i e s , A. inerme, A. spicatum and A. c r i s t a t u m , ( M i l t i m o r e et_ al_. (1962), Mason and M i l t i m o r e (1959), Sneva et a l . (1958), S t i t t et a l . (1955)). Johnston et a l . (1967) observed t h a t most d e s i r a b l e s p e c i e s of grass were r e p l a c e d by Hordeum jubatum but bluebunch wheatgrass was the one decre a s e r which a c t u a l l y i n c r e a s e d a f t e r f e r t i l i z a t i o n . Mason and M i l t i m o r e (1959) noted t h a t bluebunch wheatgrass i n c r e a s e d at the expense of Poa. spp. to upgrade s p e c i e s composition a f t e r n i t r o g e n a p p l i c a t i o n s . An i n c r e a s e i n rough f e s c u e when no o t h e r d e s i r a b l e s p e c i e s responded was observed by Smith et a l . (1969). Weed growth 32. has decreased as a r e s u l t of i n c r e a s e d p r o d u c t i o n by c r e s t e d wheatgrass wh^ch has shown to be e x c e l l e n t f o r r e s t o r i n g over-grazed ranges. ( P a t t e r s o n and Youngman (1960), H e i n r i c h s and C l a r k e (1961), Smika et_ a l . (1963)). Working on Western Canada, K i l c h e r et_ a l . (1965) r e p o r t e d a f i r s t year i n c r e a s e i n weeds d e c l i n i n g u n t i l , i n the t h i r d year t h e r e were fewer weeds on the t r e a t e d p l o t s than on the checks. Mid and i n t e r m e d i a t e grasses have been shown to i n c r e a s e at the expense of s h o r t g r a s s e s , f o r b s and sedges (Rauzi and Smika (1963), Cosper et a l . (1967). M a r t i n et a l . (196"+) d i s c o v e r e d t h a t w i t h r a t e s of n i t r o g e n 67 - 134 Kg/ha, annual grasses i n c r e a s e d , but r a t e s o f 269 Kg/ha favoured p e r e n n i a l s . Klages and Ryerson (196 5) d e t e c t e d a t h r e e - f o l d i n c r e a s e i n ground cover by l i t t e r i n s p i t e o f ground l e v e l c l i p p i n g when n i t r o g e n was a p p l i e d at 112 Kg/ha. Experiments u s i n g h e r b i c i d e s and f e r t i l i z e r showed t h a t 2,4-D i n c r e a s e d y i e l d s by 44 Kg/ha, n i t r o g e n by 665 Kg/ha and 2,4-D p l u s n i t o r g e n by 18 37 Kg/ha. ( N i c h o l s and McMurphy (1969)). Decreaser s p e c i e s were i n c r e a s e d more than 2.5 f o l d w h ile invaders decreased by one t h i r d u s i n g c o n t r o l l e d burning (Graves and McMurphy (1969)). N i t o r g e n d i d not improve b o t a n i c a l composition c o n s i s t e n t l y but d i d i n c r e a s e herbage y i e l d s c o n s i d e r a b l y a f t e r burning. One unburned p l o t t r e a t e d with 90 Kg/ha n i t r o g e n y i e l d e d t h r e e tons of forage 75% of which was p r a i r i e three-awn. The authors noted t h a t three tons of p r a i r i e three-awn should not be c a l l e d f o r a g e . The r e s i d u a l e f f e c t tends to i n c r e a s e with i n c r e a s i n g f e r t i l i z e r a p p l i e d . T h i s has been shown p a r t i c u l a r l y i n B r i t i s h Columbia, by Mason and M i l t i m o r e (1969) who observed an e f f e c t l a s t i n g f o r at l e a s t t h r e e years with an i n i t i a l r a t e o f f e r t i l i z a t i o n o f 269 Kg/ha of n i t r o g e n . 5. Methods 5.1. S i t e P r e p a r a t i o n The s i x study s i t e s were s e l e c t e d with the a i d of Dr. V.C. B r i n k ; of the Department of P l a n t S c i e n c e , U n i v e r s i t y of B r i t i s h Columbia, and Dr. A. McLean of the Canada Department of A g r i c u l t u r e , Kamloops to r e p r e s e n t the three g r a s s l a n d zones and the Pinus-Calamagrostis a s s o c i a t i o n o f the Douglas-f i r zone. P l o t s 30 by 30 m. were fenced at each o f the g r a s s -l a n d s i t e s t o exclude domestic ungulates. Exceptions to t h i s were at the Quilchena s i t e where a r e l i c t stand o f bluebunch wheatgrass along one edge of a fenced f i e l d was used as a p r o t e c t e d stand, and at the Dew Drop F l a t where one c o r n e r o f a B r i t i s h Columbia Department of A g r i c u l t u r e e x c l o s u r e , e r e c t e d approximately f i v e years p r e v i o u s l y , ( a f t e r seeding of the range with c r e s t e d wheatgrass) was used. Areas of an equal s i z e were designated o u t s i d e each e x c l o s u r e as unprotected areas. An a d d i t i o n a l area of 15 by 30 m. was fenced on the then grazed p o r t i o n o f the Dew Drop F l a t a d j acent t o the l a r g e e x c l o s u r e . T h i s was designed the 'drop fence p l o t ' and was t o permit p a r t - t i m e g r a z i n g . The p r o t e c t e d p l o t was fenced 60 m. to a s i d e at Paradise and an equal area was used o u t s i d e as i n the g r a s s -lands. A B r i t i s h Columbia F o r e s t S e r v i c e e x c l o s u r e was a l r e a d y fenced at Loch Lomond so a corner of t h i s was used as a p r o t e c t e d area with the customary unprotected p l o t adjacent to i t . On the Wawn Quarter, p l o t s were fenced 10 m. t o a s i d e , one on the h e a v i l y grazed s i d e of a fence and one on the l i g h t l y grazed s i d e . Fences were c o n s t r u c t e d o f page wire on the bottom and two strands o f barbed wire on top with wooden corner posts and s t e e l i n t e r m e d i a t e p o s t s . Sub-plots were then l a i d out both i n s i d e the fences and o u t s i d e on the unprotected areas. 5.2. Instrumentation Standard r a i n gauges were p l a c e d i n p a i r s at the f o u r g r a s s l a n d s i t e s with three i n the f o r e s t and two i n the open at the Para d i s e s i t e , and read bi-weekly from Mid-August (1968). At the same time t h e r m i s t o r s were set i n d u p l i c a t e at 10, 25, 50 and 100 cm at the f o u r g r a s s l a n d p l o t s . For the P a r a d i s e s i t e t h e r m i s t o r r e c o r d s from a nearby experimenta s i t e o f the Kamloops Research S t a t i o n were used; the t h e r m i s t o r s were checked bi-weekly. Homemade Sacramento snow gauges were set up i n d u p l i c a t e on the f i v e s i t e s i n December (1968), as were f r e e z i n g v i a l s ( p l a c e d every 10 cm. t o a lm. depth), and a l l were checked i n the s p r i n g . In May (1969), Stevenson screens were e r e c t e d on the f i v e p l o t s and minimum-maximum thermometers p l a c e d t h e r e i n ; these were t o be checked monthly. At Quilchena and Hamilton Common, weekly r e c o r d i n g hygrothermographs were i n s t a l l e d i n the screens. Humidity checks were made p e r i o d i c a l l y with a psychrometer. No instruments were i n s t a l l e d at Loch Lomond or at the Wawn Quarter s i t e s . 5.3. P l o t P r e p a r a t i o n In l a t e October when growth had ceased, a l l p l o t s except those d e s t i n e d f o r e a r l y s p r i n g c l i p p i n g and those on the Wawn Quarter were c l e a r e d u s i n g a s i c k l e bar mower and a rake. As soon as t h i s was accomplished, the f a l l f e r t i l i z e r treatment was a p p l i e d . At the time o f the f i r s t c l i p p i n g , the s p r i n g f e r t i l i z e r was a p p l i e d . The Wawn Quarter was f e r t i l i z e d at the same times as the othe r s i t e s . 5.4. P l o t Design P l o t s were l a i d out i n a " s p l i t p l o t " design and d u p l i c a t e d i n s i d e and o u t i s d e each e x c l o s u r e . The design i n c l u d e d 3 b l o c k s , t h r e e f e r t i l i z e r r a t e s , two seasonal a p p l i c a t i o n s and f o u r c l i p p i n g dates. F e r t i l i z e r treatments were: 0, 168, 336 Kg/ha o f elemental n i t r o g e n a p p l i e d i n the f a l l and 0, 168', 336 Kg/ha o f elemental n i t r o g e n a p p l i e d i n the s p r i n g but to d i f f e r e n t s u b - p l o t s . The n i t r o g e n was s u p p l i e d by NH NO f e r t i l i z e r . The f o u r c l i p p i n g dates were 4 3 meant t o measure, i n orde r : 1. - o l d growth c a r r i e d over the wi n t e r as s t a n d i n g crop and c l i p p e d i n the e a r l y s p r i n g ; 2. - new growth d u r i n g the s p r i n g , c l i p p e d i n l a t e June o r e a r l y J u l y ; 3. - maximum growth, c l i p p e d i n l a t e August; 4. - sta n d i n g crop going i n t o the w i n t e r and c l i p p e d i n l a t e September o r e a r l y October. Herbage was c l i p p e d at a he i g h t of 2.5 cms. The f i r s t c l i p made on the Paradi s e p l o t was delayed by some th r e e weeks due to slow growth i n i t i a t i o n and a l a c k o f overwintered standing crop. A f a l l treatment was not a p p l i e d at the d i s t a n t Loch Lomond s i t e and hence no e a r l y s p r i n g c l i p was made. For f e r t i l i z i n g and c l i p p i n g dates see Table 1. Table 1. Summary of F e r t i l i z a t i o n and harvest dates F e r t i l i z a t i o n date Clipping Dates and Numbers Fall Spring 1 1969 2 3 4 1 1970 2 3 4 Quilchena 30/10/68 6/5/69 1/5 23/6 19/8 6/10 5/7 5/7 25/7 Hamilton Common 30/10/68 6/5/69 3/5 23/6 19/8 6/10 5/7 5/7 25/7 Minnie Lake 30/10/68 6/5/69 3/5 7/7 22/8 28/9 6/7 6/7 25/7 Paradise 30/10/68 6/5/69 25/5 10/7 22/8 7/10 14/9 14/9 14/9 14/9 Dew Drop 31/10/68 4/5/69 1/5 8/7 21/8 8/10 3/7 4/7 26/7 Loch Lomond 5/5/69 11/7 20/8 5/10 15/9 15/9 15/9 15/9 Wawn Quarter 31/10/68 4/5/69 20/6 9/7 16/7 38. In the Paradi s e area fenced p l o t e i g h t , meter square l i t t e r c a t c h e r s were l a i d out t o determine l i t t e r f a l l . They were c l e a r e d t h r e e times d u r i n g a one-year p e r i o d . On the Wawn Quarter two counts were made o f the As t r a g a l u s p l a n t s as they grew and f i n a l l y the grass and A s t r a g a l u s were c l i p p e d , s e p a r a t e l y . 5.5. Sample Treatment The samples were brought i n from the f i e l d a f t e r c l i p p i n g , oven d r i e d and weighed. I n d i v i d u a l weights were recorded. Each group o f thr e e r e p l i c a t e s , i . e . f o r c l i p 1 of 16 8 Kg/ha n i t r o g e n , f a l l treatment at Quilchena i n s i d e the fence, the th r e e r e p l i c a t e s were bulked, ground t o pass a #40 mesh sc r e e n on a Wiley m i l l and submitted t o m i c r o - K j e l d h a l a n a l y s i s as m o d i f i e d by Chapman and P r a t t (1961). The l i t t e r c l e a r e d o f f the c a t c h e r s at Paradi s e was d r i e d , weighed and analyzed f o r n i t r o g e n i n d i v i d u a l l y . The c l i p p i n g s from the Wawn Quarter were d r i e d and weighed. 39. Table 2. Phenological Data Site Elevation (m) Date (1969) Species Stage Spring Observations Dew Drop 60 9 Quilchena Minnie Lake 610 1,097 Hamilton Common 1,249 Loch Lomond ca. 1,200 Paradise Wawn Quarter Wawn Quarter 1,220 872 872 Early Summer Observations Dew Drop 609 Quilchena Wawn Quarter 640 872 5/5 6/5 6/5 6/5 7/5 6/5 19/5 27/5 8/7 23/6 20/6 Black Sagebrush Crested Wheatgrass Bluebunch Wheatgrass Rabbit Brush Sandberg Bluegrass Bluebunch Wheatgrass Silver Sagebrush Rough Fescue Bluebunch Wheatgrass Pinegrass Trembling Aspen Pinegrass Trembling Aspen Pinegrass Timber Milk Vetch Timber Milk Vetch . Pre-bloom Low Larkspur Flowering Pre-flushing Three leaf Four leaf Leaf i n i t i a t i o n P r e-Anthesis Three leaf F u l l leaf Two leaf Three leaf Four leaf Leaf bud Two leaf Leaf bud Three leaf Pre-bloom Crested Wheatgrass Black Sagebrush Anthesis Pre-flushing Bluebunch Wheatgrass Soft dough Rabbit Brush Downy Brome Timber Milk Vetch Yarrow Low Larkspur Full leaf Dead Late bloom, seed set. F u l l bloom Summer dormancy 40. Table 2 (Cont.) Phenological Data Site Elevation (m) Date (1969) Species Stage Early Summer Observations cont. Minnie Lake 1,097 10/7 Silver Sagebrush Bluebunch Wheatgrass Pre-bloom Milk Hamilton Common 1,249 23/6 Bluebunch Wheatgrass Rough Fescue Timber Milk Vetch Anthesis Anthesis Late bloom, seed set. Loch Lomond ca. 1,200 11/7 Pinegrass Trembling Aspen Pre-ahthesis F u l l leaf Paradise 1,220 10/7 Pinegrass Trembling Aspen Anthesis Fu l l leaf Late Summer Observations Dew Drop 609 21/8 Crested Wheatgrass Black Sagebrush Summer dormancy F u l l leaf Quilchena 640 19/8 Bluebunch Wheatgrass Rabbit Brush Hard dough, mature Flowering Minnie Lake 1,097 22/8 Bluebunch Wheatgrass Silver Sagebrush Mature Flowering Hamilton Common 1,249 19/8 Bluebunch Wheatgrass Rough Fescue Forbs Hard dough Hard dough dried and shattered Loch Lomond ca. 1,200 23/8 Trembling Aspen Pinegrass Fu l l leaf Vegetative Paradise 1,220 22/8 Pinegrass Trembling Aspen Nootka Rose Soft dough Fu l l leaf Hip Table 2 (Cont.) Phenological Data Site Elevation (m) Date (1969) Species Site Autumn Observations Dew Drop 609 8/10 . Crested Wheatgrass Black Sagebrush Dormant Fu l l leaf Quilchena 640 6/10 Bluebunch Wheatgrass Rabbit Brush Dormant Flowering Minnie Lake 1,097 28/9 Bluebunch Wheatgrass Silver Sagebrush Dormant Flowering, nature Hamilton Common 1,249 6/10 Grasses and Forbs Dormant Loch Lomond ca. 1,200 5/10 Pinegrass Trembling Aspen Dormant Leaves yellow-brown Paradise 1,220 7/10 Pinegrass Trembling Aspen Dormant Leaves yellow-brown 1+2. 6. Observations and R e s u l t s 6.1. General An attempt was made t o maintain a r e c o r d of major p h e n o l o g i c a l events at each s i t e . Such events are commonly used t o determine use r e a d i n e s s by g r a z i e r s and w i l d l i f e managers f o r ranges at d i f f e r e n t e l e v a t i o n s and a s p e c t s . The r e c o r d s i n Table 2 give a rough guide t o the s t a t e of the v e g e t a t i o n at the times the p l o t s were c l i p p e d at each s i t e . Ammonium n i t r a t e was used i n the study f o r a v a r i e t y of reasons. I t can be prepared as a concentrated nitrogenous f e r t i l i z e r and thus reduces t r a n s p o r t a t i o n c o s t s t o d i s t a n t rangelands. I t i s a l s o i n a form e a s i l y adaptable t o a e r i a l methods of a p p l i c a t i o n . Such methods are probably the on l y p r a c t i c a b l e way to f e r t i l i z e w i l d l a n d s , both grasslands and f o r e s t . Ammonium n i t r a t e f e r t i l i z e r , e s p e c i a l l y i n semi-a r i d w i l d l a n d s i t u a t i o n s , should give responses f o r a number of years when a p p l i e d at the h e a v i e s t r a t e without l a r g e l o s s e s t o the atmosphere and to g r a v i t a t i o n a l water. F e r t i l i z a t i o n g e n e r a l l y produced a darker green, more s u c c u l e n t and more dense f o l i a g e . The green; >period of t r e a t e d v e g e t a t i o n was extended g r e a t l y . At the time of the f i r s t c l i p p i n g i n e a r l y s p r i n g , the f a l l f e r t i l i z e r treatment had some e f f e c t on the over-wintered m a t e r i a l . By the second c l i p i n e a r l y summer the f a l l a p p l i c a t i o n had begun t o show good r e s u l t s but there was l i t t l e d i f f e r e n c e at t h i s time w i t h i n the s p r i n g treatments. At the time of the l a t e summer c l i p the e f f e c t of the s p r i n g treatment 43. was becoming more obvious and t h i s c a r r i e d through to the year's f i n a l c l i p p i n g i n the autumn. (Tables 5, 8, 11, 14, 17, 20). At Quilchena and Hamilton Common by e a r l y May a l l a p p l i c a t i o n s of f e r t i l i z e r had r e s u l t e d i n some c h l o r o s i s , b urning and c u r l i n g of the l e a v e s o f Sandberg b l u e g r a s s and yarrow ( A c h i l l e a m i l l e f o l i u m ( L . ) ) and o t h e r shallow r o o t i n g s m a l l p l a n t s . On the Dew Drop F l a t p l o t s by l a t e May, a l l the p r o t e c t e d f e r t i l i z e d p l o t s c o ntained c o n s i d e r a b l e w i l t e d f o r a g e . The unprotected areas d i d not show t h i s s i n c e they had been grazed t o ground l e v e l . A f t e r the r a i n i n e a r l y J u l y the v e g e t a t i o n no l o n g e r showed s i g n s of w i l t . In the s p r i n g and e a r l y summer of the second year s i g n s of burning a g a i n were observed. At Minnie Lake, i n e a r l y J u l y , t h e r e were s i g n s of f e r t i l i z e r burning on narrow l e a f p l a n t a i n (Plantago p u r s h i i (RSS)), and d a n d e l i o n (Taraicum o f f i c i n a l e (Weber)) with the heavy r a t e of f e r t i l i z e r a p p l i e d i n the f a l l . Causes o f burning, w i l t i n g and c h l o r o s i s may be caused d i r e c t l y by f e r t i l i z e r induced t o x i c s a l t c o n c e n t r a t i o n s or i n d i r e c t l y by d e p l e t i o n of the l i m i t e d a v a i l a b l e moisture by f e r t i l i z e r s t i m u l a t e d p l a n t s . A d i s t i n c t i o n i s d i f f i c u l t t o make. Some of the p l a n t s appeared to be u n l i k e l y or b a r e l y able to s u r v i v e . The one s i t e i n f e s t e d with annual downy brome (Bromus tectorum ( L . ) ) , Quilchena, showed no v i s i b l e change i n s p e c i e s composition with f e r t i l i z e r . A l s o at t h i s s i t e , t h e r e appeared to be more seed heads c o n t a i n i n g good seed on the f e r t i l i z e d areas than on the n o n - f e r t i l i z e d areas. In the second year (1970), a great increase i n seed production was observed i n the p e r e n n i a l grasses at the Minnie Lake s i t e . Nitorgen treatments appeared t o r e t a r d the maturity of cre s t e d wheatgrass at the Dew Drop s i t e . By the time the untreated areas had matured seed, the f e r t i l i z e d p l o t s had seed s t i l l i n the s o f t dough stage, although with much more profuse t i l l e r i n g , a greater number of seed heads were produced i n the l a t t e r areas. A p p l i c a t i o n s of nit r o g e n s t i m u l a t e d seed production i n pinegrass stands at the Paradise s i t e . The untreated regions were p r a c t i c a l l y devoid of seed heads but the f e r t i l i z e d s t r i p s produced an abundant supply. At a l l s i t e s , by the time the surrounding vegetation had matured and d r i e d , the f e r t i l i z e d p l o t s were s t i l l green. This h e l d w e l l i n t o the autumn. Also at the Paradise s i t e , where i t was s p e c i a l l y n o t i c e a b l e , and probably on other s i t e s as w e l l , there was a marked r e d u c t i o n i n 1970 i n p r o d u c t i v i t y of the subplots c l i p p e d i n 1969, p a r t i c u l a r l y those c l i p p e d during the s p r i n g and summer. From the appearance of the veg e t a t i o n i n the unprotected treatments i t would seem that the f e r t i l i z e d p l o t s were grazed s e l e c t i v e l y , e s p e c i a l l y those from which the o l d growth had been c l e a r e d the previous f a l l . Because of t h i s s p e c i f i c over-grazing the r e s u l t s of the outside c l i p s are not shown i n graph form. On most unprotected p l o t s consider-able trampling of the vegetation occurred and corner stakes were o f t e n chewed or broken o f f . At Hamilton Common and Quilchena t h e r e was c o n s i d e r a b l e ground s q u i r r e l a c t i v i t y e s p e c i a l l y w i t h i n the p l o t s . Ground s q u i r r e l a c t i v i t y appeared t o have i n c r e a s e d d r m a t i c a l l y with i n c r e a s e s i n f e r t i l i z e r . T h i s w i l l have i n f l u e n c e d some of the r e s u l t s . During the l a t t e r p a r t o f the autumn, f o r t u n a t e l y , a f t e r the l a s t c l i p p i n g was accomplished, the fence which had p r o t e c t e d the ungrazed p l o t at Quilchena was removed so t h a t c a t t l e c o u l d graze the a l f a l f a s t u b b l e adjacent t o the p r o j e c t ' s p r o t e c t e d s i t e . The c a t t l e a l s o grazed the forage i n the experimental p l o t area almost to ground l e v e l . At the Dew Drop s i t e the drop fence was not dropped due to weather and road c o n d i t i o n s . On the Wawn Quarter the drop fence on the h e a v i l y grazed areas was dropped and l a t e r the fence posts were s t o l e n . D i f f i c u l t y was encountered i n the r e c o r d i n g of c l i m a t o l o g i c a l data d u r i n g the w i n t e r due to weather and road c o n d i t i o n s . Tree counts were made at the P a r a d i s e s i t e and at the Loch Lomond s i t e i n 30 m by 30 m areas. Numbers of t r e e s and average diameter at b r e a s t h e i g h t are shown i n Table 3. One o f the o r i g i n a l o b j e c t i v e s i n the f o r e s t p l o t s was to determine the n i t r o g e n balance of the canopy understory r e l a t i o n s h i p . T h i s was found to be i m p r a c t i c a l , p a r t i c u l a r l y s i n c e the r e a c t i o n of the t r e e s to n i t r o g e n f e r t i l i z a t i o n i s not obvious over the s h o r t term although the response o f the u n d e r s t o r y i s . 6.2. M e t e r o l o g i c a l Observations Records are t a b u l a t e d i n Table 4. TABLE 3. ARBOREAL MEASUREMENTS: FORESTED SITES S i t e Height(m) Trembling Aspen Number/30 m.sq. Average d.b.h.(cm) Lodgepole Pine Number/30 m.sq. Average d.b.h.(cm) Pa r a d i s e < 1.4 > 1.4 18 227 1.9 1 9 4 5 77 Loch Lomond < 1.4 > 1.4 20 132 2.5 91 6 ' 6 TABLE 4. METEROLOGICAL DATA (19 69) S i t e R a i n f a l l (cm) Snowfall as water (cm) T o t a l P r e c i p i t a t i o n (cm) Quilc h e n a Hamilton Common Minnie Lake P a r a d i s e Dew Drop 12.4 18.4 18.0 15.5 16.7 6.3 10.4 8.6 15. 8 6.5 18.7 28.8 26.6 31. 3 23.2 Other data was taken i n c o n j u n c t i o n with Canada Department o f A g r i c u l t u r e and Canada S o i l Surveys and may be found i n c l u d e d i n a r e p o r t by F a r s t a d (1969). -P CD 6.3. R e s u l t s at I n d i v i d u a l S i t e s Dry matter h a r v e s t s and percent n i t r o g e n f o r i n d i v i d u a l p l o t s ("raw data") are given..in Appendix I I ; averages are given i n the t e x t which f o l l o w s . 6.3.1. Quilchena Average dry weights and percent n i t r o g e n are shown i n Tables 5 and 6 and F i g u r e s 2 and 3. In the f i r s t year the h i g h e s t dry matter y i e l d s on the p r o t e c t e d area o c c u r r e d with the f a l l a p p l i c a t i o n o f 168 Kg/ha of n i t r o g e n , but 336 Kg/ha a p p l i e d i n the f a l l gave the g r e a t e s t dry weight y i e l d s on the unprotected area. I n s i d e the fe n c e , s p r i n g treatments showed very l i t t l e e f f e c t u n t i l the l a t e f a l l c l i p whereas f a l l treatments produced an i n c r e a s e i n herbage y i e l d from l a t e s p r i n g onwards. E a r l y s p r i n g c l i p s were confounded by the presence of o l d growth. Throughout the second s p r i n g and summer, both f a l l f e r t i l i z e r a p p l i c a t i o n s produced i n c r e a s e s of s i m i l a r magnitude. The same was g e n e r a l l y t r u e o f the r e s u l t s from the s p r i n g a p p l i e d f e r t i l i z e r s , with the ex c e p t i o n of the s p r i n g c l i p p i n g which produced the g r e a t e s t i n c r e a s e with the hi g h r a t e of f e r t i l i z a t i o n . In both p r o t e c t e d and unprotected areas n i t r o g e n l e v e l s i n forage were h i g h e s t with the f a l l a p p l i c a t i o n o f 336 Kg/ha of n i t r o g e n i n f e r t i l i z e r . S p r i n g treatments had l i t t l e e f f e c t on the l e v e l s o f n i t r o g e n u n t i l mid-summer and these l e v e l s then continued to r i s e . The f a l l treatment caused i n c r e a s e s from the f i r s t c l i p but the l e v e l s tended to drop o f f toward Table 5. Quilchena: Average Yields (g/m ) for each Treatment Ferti l i z e r s (Kg/ha) Clipping Dates - Inside Fenced Area F a l l Applied Early Spring (1969) Early Summer Late Summer Autumn Early Spring (1970) Early Summer Late Summer 0 102.6 35.3 31.5 33.4 31.8 37.0 31.1 168 91.8 76.9 74.9 101.9 54.4 58.9 42.6 336 98.6 61.7 83.3 71.7 57.8 49.2 42.9 Spring Applied 0 33.1 30.5 36.6 37.1 24.4 26.4 168 36.2 37.8 50.9 72.4 64.8 60.3 336 31.7 91.3 78.5 83.7 59.3 66.2 F a l l Applied Clipping Dates - Outside Fenced Area 0 9.9 8.7 25.3 28.7 168 3.1 17.9 47.0 14.2 336 11.6 24.4 40.5 46.4 F a l l Applied 0 13.0 18.4 20.4 168 14.4 30.5 13.3 336 11.4 35.6 25.3 TABLE 6. QUILCHENA: AVERAGE PERCENT NITROGEN FOR EACH TREATMENT Inside Fenced Area F e r t i l i z e r A p p l i c a t i o n (Kg/ha) Outside Fenced I Area C l i p p i n g Date 0 F a l l 168 336 0 Spri n g 168 336 0 F a l l 168 336 0 Spri n g 168 336 (1969) E a r l y S p r i n g E a r l y Summer Late Summer Autumn 1.07 1.25 1.02 0.69 2. 31 1.75 1.50 1.50 2.05 2.00 1. 75 1.59 1.12 1.08 0.77 1.21 1.67 1.63 1. 24 1.60 1.79 0. 86 1.63 1.65 1.11 1.85 2. 31 1.91 1.54 1.86 2.43 2.10 2.32 1.71 1.56 1.29 1.58 2 .04 2.15 1.74 1. 84 1.92 TABLE 7. QUILCHENA: NITROGEN YIELD (Kg/ha) Inside Fenced Area F e r t i l i z e r A p p l i c a t i o n (Kg/ha) Outside Fenced [ Area C l i p p i n g Date 0 F a l l 168 336 0 Sp r i n g 168 336 0 F a l l 168 336 0 S p r i n g 168 336 (1969) E a r l y S p r i n g E a r l y Summer Late Summer Autumn 10.99 4.40 3.23 2. 30 21.15 13.40 11.26 15.33 20.19 12. 34 14.53 11. 36 3.68 3.26 2.81 4. 35 6. 35 8. 30 3.90 6.67 14.06 0. 85 1.42 4.18 3.17 0. 85 4.13 8.94 2.18 2.16 5.94 8.50 10.77 2.22 2.85 2.61 2.29 6.24 2. 85 1.97 6.54 4.86 50. 51. FIG. 4. Quilchena protected plot i n late spring showing new growth FIG. 5. Quilchena - protected plot i n late summer FIG. 6. Quilchena - unprotected plot in late summer FIG. 7. HRMILTON COMMON INSIDE FENCE GROWTH CURVE FIG. 8 . HRMILTON COMMON PERCENT NITROGEN cn in p-J U J O TIME [DflYS-FROM MAY 1) 2 Table 8. Hamilton Common: Average Yields (g/m ) for each Treatment Fe r t i l i z e r s (Kg/ha) Clipping Dates - Inside Fenced Area F a l l Applied Early Spring (1969) Early Summer Late Summer Autumn Early Spring (1970) Early Summer Late Summer 0 . 102.4 97.7 85.5 95.8 104.6 83.7. 73.4 168 99.7 147.6 111.2 114.6 95.5 97.0 56.9 336 64.5 168.1 126.0 112.6 90.2 103.4 90.7 Spring Applied 0 88.1 96.3 81.7 104.3 74.4 109.5 168 134.4 90.5 87.6 92.5 123.6 83.5 336 139.2 117.3 88.1 93.1 129.6 110.6 F a l l Applied Clipping Dates - Outside s Fenced Area 0 32.8 73.8 40.3 52.4 168 47.1 123.1 40.6 102.8 336 66.3 69.6 53.9 80.3 Spring Applied 0 71.0 45.3 63.1 168 79.4 35.7 64.4 336 65.1 66.3 67.4 TABLE 9. HAMILTON COMMON: AVERAGE PERCENT NITROGEN FOR EACH TREATMENT Inside Fenced Area Outside Fenced I Area F e r t i l i z e r A p p l i c a t i o n (Kg/ha) F a l l S p r i n g F a l l S p r i n g C l i p p i n g Date 0 168 336 0 168 336 0 168 336 0 168 336 (1969) E a r l y S p r i n g 0.86 1.47 2.15 0.95 0.96 1.06 E a r l y Summer 1.34 1.47 1.58 1.06 1.97 2.30 2.01 2.35 2.78 2.11 2.61 2.55 Late Summer 0.81 1.87 1.66 1.19 1.51 1.56 1.23 1.52 1.90 0. 86 1.71 2.82 Autumn 0.88 1.24 1.08 0.85 1.41 1.90 0.72 1.43 2 .25 0.96 1.51 2.00 TABLE 10. HAMILTON COMMON: NITROGEN YIELD (Kg/ha) — I n s i d e Fenced Area Outside Fenced Area F e r t i l i z e r A p p l i c a t i o n (Kg/ha) F a l l S p ring F a l l S p r i n g C l i p p i n g Date 0 168 336 0 168 336 0 168 336 0 168 336 (1969) E a r l y S p r i n g 9.17 14.67 13.82 3.15 4.52 7.00 E a r l y Summer 13.12 21.73 26.62 9.44 26.45 32.06 14.88 28 .82 19.38 14.99 20.70 16.56 Late Summer 6.85 20.82 20.96 11.39 13.60 18.21 4.96 6.18 10.26 3.92 6.11 12.10 Autumn 8.75 12.11 12.06 6.92 12.34 16.77 3.78 14. 80 17.98 6.06 9.79 13.49 56. F I G . 9 . H a m i l t o n Common - H e a v i l y g r a z e d a r e a i n l a t e summer FIG. 10. H a m i l t o n Common - showing snow gauge 57. the end of the growing season. As shown i n Table 7, the y i e l d o f n i t r o g e n .in forage i n the p r o t e c t e d area was h i g h e s t with the f a l l a p p l i c a t i o n o f 168 Kg/ha of f e r t i l i z e r n i t r o g e n , while on the unprotected area 3 36 Kg/ha gave the h i g h e s t y i e l d s . 6.3.2. Hamilton Common Dry weights and percentages o f n i t r o g e n are shown i n Tables 8 and 9 and d e p i c t e d i n Figues 4- and 5. During 1969 dry matter y i e l d s were s l i g h t l y h i g h e r with 16 8 Kg/ha of n i t r o g e n a p p l i e d i n the f a l l , than with 336 Kg/ha f a l l a p p l i e d or 3 36 Kg/ha s p r i n g a p p l i e d i n the p r o t e c t e d area. On the unprotected p l o t 16 8 Kg/ha o f f a l l a p p l i e d n i t r o g e n produced the g r e a t e s t dry matter. Y i e l d s g e n e r a l l y decreased i n the p r o t e c t e d a r e a as the season advanced. On the unprotected zone however, y i e l d s showed a mid-summer d e c l i n e but were hi g h e r again i n the f a l l . During 1970 the f a l l f e r t i l i z e r s produced a n e g l i g i b l e i n c r e a s e i n y i e l d s and i n f a c t , a decrease at the tiem of the s p r i n g c l i p p i n g . They d i d , however, produce an i n c r e a s e i n ground s q u i r r e l a c t i v i t y . Much the same s t o r y was repeated with the s p r i n g treatments of f e r t i l i z e r although at the time of the second c l i p p i n g an i n c r e a s e i n y i e l d was recorded. With the f a l l a p p l i c a t i o n o f f e r t i l i z e r i n the p r o t e c t e d p l o t , p l a n t n i t r o g e n peaked i n the e a r l y s p r i n g and i n mid-summer but d e c l i n e d i n the l a t e a p r i n g and f a l l . The r e a c t i o n was e x a c t l y o p p o s i t e with the s p r i n g a p p l i c a t i o n . On the unprotected p l o t , the l e v e l s o f p l a n t n i t r o g e n f o l l o w e d the p a t t e r n set by the 58. f a l l a p p l i c a t i o n s i n the p r o t e c t e d area. Highest p r o d u c t i o n of p l a n t n i t r o g e n (Table 10) o c c u r r e d i n l a t e s p r i n g with 336 Kg/ha of s p r i n g a p p l i e d n i t r o g e n f o l l o w e d by the f a l l a p p l i c a t i o n o f 336 Kg/ha i n s i d e the fence. Outside the hi g h e s t p r o d u c t i o n r e s u l t e d i n l a t e s p r i n g with the 16 8 Kg/ha f a l l treatment. 6.3.3. Minnie Lake Dry weights and percent n i t r o g e n may be observed i n Table 11 and 12 and F i g u r e s 6 and 7. Most treatments on the p r o t e c t e d area showed, i n 1969, e i t h e r a very l i t t l e i n c r e a s e , o r a d e c l i n e i n dry matter y i e l d a f t e r l a t e summer. The one e x c e p t i o n o c c u r r e d with 16 8 Kg/ha of f a l l a p p l i e d n i t r o g e n . Y i e l d s on the unfenced p l o t were very i r r e g u l a r . The Highest y i e l d s were reco r d e d from the 336 Kg/ha p r o t e c t e d f a l l treatment f o l l o w e d c l o s e l y by those from 168 Kg/ha. The s p r i n g a p p l i e d f e r t i l i z e r had a l e s s e r e f f e c t . In 1970 both s p r i n g and f a l l f e r t i l i z e r treatments showed great i n c r e a s e s w i t h i n c r e a s i n g r a t e s o f a p p l i e d n i t r o g e n , through-out the s p r i n g and summer growing seasons. A s l i g h t d e c l i n e o c c u r r e d i n the e a r l y summer but g r e a t e r i n c r e a s e s o c c u r r e d again l a t e r i n the season. On both fenced and unfenced p l o t s , percent n i t r o g e n l e v e l s i n forage were much h i g h e r with s p r i n g a p p l i c a t i o n s of f e r t i l i z e r than with f a l l . The g r e a t e s t i n c r e a s e s were observed i n the e a r l y summer with 3 36 Kg/ha of n i t r o g e n . With the ex c e p t i o n o f the 336 Kg/ha treatments, percent p l a n t n i t r o g e n l e v e l s show l i t t l e v a r i a t i o n d u r i n g the season. As can be seen i n Table 13, the f a l l a p p l i c a t i o n Table 11. Minnie Lake: Average Yields (g/m ) for each Treatment Fer t i l i z e r s (Kg/ha) Clipping Dates - Inside Fenced Area F a l l Applied Early Spring (1969) Early Summer Late Summer Autumn Early Spring (1970) Early Summer Late Summer 0 61.2 24.7 25.3 34.5 51.7 40.3 47.6 168 53.1 50.9 70.7 99.6 137.9 79.6 106.4 336 44.2 74.3 84.9 73.1 144.1 116.8 154.8 Spring Applied 0 28.7 23.3 23.3 100.7 41.7 31.5 168 31.8 37.5 39.1 137.3 110.7 122.7 336 32.8 51.6 50.7 154.1 124.6 156.3 F a l l Applied Clipping Dates - Outside Fenced Area 0 61.3 11.0 24.1 13.3 168 30.0 34.2 32.9 23.8 336 55.8 35.6 38.9 17.8 Spring Applied 0 18.1 19.6 13.1 168 20.0 27.1 9.1 cn CO 336 33.2 36.6 13.9 • TABLE 12. MINNIE LAKE: AVERAGE PERCENT NITROGEN FOR EACH TREATMENT Inside Fenced Area Outside Fenced 1 Area F e r t i l i z e r A p p l i c a t i o n (Kg/ha) F a l l S p r i n g F a l l S p r i n g C l i p p i n g Date 0 168 336 0 168 336 0 168 336 0 168 336 (1969) E a r l y S p r i n g 0. 81 1. 36 1.27 0. 72 1.40 1.05 E a r l y Summer 0. 79 1. 38 2. 39 0. 80 1.69 2.53 0. 80 1.55 2 . 37 0.81 1.70 2. 87 Late Summer 0.95 1.40 1.98 0.92 1.90 2. 31 1.41 1.02 1.62 1.12 2.06 1.97 Autumn 0.99 1.62 1.65 0.76 1.74 1.8-6 1.04 1.92 1. 84 1. 37 2.44 2.23 TABLE 13. MINNIE LAKE: NITROGEN YIELD (Kg/ha) Insi d e Fenced Area F e r t i l i z e r A p p l i c a t i o n (Kg/ha) Outside Fenced i Area C l i p p i n g Date 0 F a l l 168 336 0 Spring 168 r 336 0 F a l l 168 336 0 S p r i n g 168 336 (1969) E a r l y Spring E a r l y Summer Late Summer Autumn 4.99 1. 94 2.43 3.42 7.22 7.01 9.95 16.10 5.65 17.71 16. 85 12.05 2. 30 2.16 . 1.79 5. 34 7.14 6. 75 8.29 .11.97 9.41 4.42 0.88 3.39 1.36 4.22 5. 31 3.31 4.58 5. 81 8.43 6.29 3. 30 1.46 2.19 1.78 3. 39 5. 55 2.21 9.50 7.20 3.09 61. 62. FIG. 12. MINNIE LRKE PERCENT NITROGEN F a l l A p p l i e d N i t r o g e n • o - 0 Kg/ha - 168 K g / h a - 336 Kg/ha S p r i n g A p p l i e d N i t r o g e n X - 0 Kg/ha - 168 Kg/ha - 336 Kg/ha FIG. 13. Minnie Lake - showing darker green of f e r t i l i z e d areas i n l a t e s p r i n g . FIG. 14. Minnie Lake - seed p r o d u c t i o n on f e r t i l i z e d a r e a . Table 14. Paradise: Average Yields (g/m ) for each Treatment Fe r t i l i z e r s (Kg/ha) Clipping Dates - Inside Fenced Area F a l l Applied Early Spring (1969) Early Summer Late Summer Autumn Early Spring Early Summer (1970) Late Summer Autumn 0' 14.0 23.8 21.0 12.0 20.0 22.9 26.5 22.9 336 10.6 9.8 17.9 24.4 19.7 16.5 23.7 41.2 Spring Applied 0. 21.5 22.7 13.7 28.5 18.9 21.1 27.3 336 17.4 27.8 26.5 32.8 38.5 32.9 40.8 F a l l Applied Clipping Date.s-- Outside Fenced Area 0 2.14 1.73 0.96 0.51 336 3.68 2.79 2.63 1.14 Spring Applied 0 1.54 1.14 0.54 336 2.59 2.27 1.01 cn -P TABLE 15. PARADISE: AVERAGE PERCENT NITROGEN FOR EACH TREATMENT Insid e Fenced Area F e r t i l i z e r A p p l i c a t i o n (Kg/ha) Outside Fenced Area C l i p p i n g Date 0 F a l l 168 336 Spring 0 168 336 F a l l 0 168 336 S p r i n g 0 168 336 (1969) E a r l y S p r i n g E a r l y Summer Late Summer Autumn 2.47 2.00 1.44 0.50 3.28 3.21 2.62 1.27 1.88 2.90 1.29 2.45 0.51 1.41 2.14 1.73 0.96 0.51 3.68 2.79 2.63 1.14 1.54 1.14 0.54 ].59 2.27 1.01 TABLE 16. PARADISE: NITROGEN YIELDS (Kg/ha) Inside Fenced Area F e r t i l i z e r A p p l i c a t i o n (Kg/ha) Outside Fenced Area C l i p p i n g Date 0 F a l l 168 336 Spring 0 168 336 F a l l 0 168 336 Spr i n g 0 168 336 (1969) E a r l y S p r i n g E a r l y Summer Late Summer Autumn 3.46 4. 77 3.02 0.61 3.47 3.14 4.70 3.01 4.03 5.04 2.94 6.80 0.70 N 3.02 5.94 4.48 1.68 0.67 6.99 2.11 3.28 0.22 3.30 2. 38 0.65 4.46 4. 32 0.61 FIG. is. PRRRDISE INSIDE FENCE GROWTH CURVE FIG. ie. PRRRDISE PERCENT NITROGEN cn *1 CM "! J m l TIME (DflYS-FRDM MAY 1) FIG. 18. Paradise - square meter l i t t e r c a t c h e r . of 336 Kg/ha of nxtrogen i n f e r t i l i z e r produced the g r e a t e s t y i e l d of n i t r o g e n i n the fora g e . At a time, l a t e f a l l , when t h i s p r o d u c t i o n was dropping o f f , however, that from the 16 8 Kg/ha treatment showed an i n c r e a s e . 6.3.4. Pa r a d i s e Dry matter y i e l d s and percent n i t r o g e n of the grass understory are shown i n Tables 14 and 15 and F i g u r e s 8 and 9. In most cases a p p l i c a t i o n o f 336 Kg/ha of n i t r o g e n reduced dry matter y i e l d s i n the f i r s t year both on the grazed and p r o t e c t e d ungrazed p l o t s . Exceptions o c c u r r e d o n l y i n the ungrazed area and toward the season's end. During the second year, however, i n the p r o t e c t e d area, a l l the sub-p l o t s which had r e c e i v e d a s p r i n g f e r t i l i z e r a p p l i c a t i o n showed i n c r e a s e s over the blanks and the l a t e summer and f a l l c l i p p i n g s showed i n c r e a s e s with the f a l l a p p l i e d treatment. Percent n i t r o g e n l e v e l s i n almost a l l cases were n e a r l y doubled by the a p p l i c a t i o n o f the f e r t i l i z e r . Y i e l d s o f n i t r o g e n (Table 16) were i n c r e a s e d , f o r the most p a r t near the end of the growing season, and more by s p r i n g - a p p l i e d f e r t i l i z e r than by f a l l a p p l i e d . The average weight of 2 l i t t e r f a l l f o r a one-year p e r i o d was 313.0 g/m and average percent n i t r o g e n was 0.41. 6.3.5. Dew Drop Dry matter y i e l d s and percent n i t r o g e n l e v e l s may be observed i n Table 17 and 18 and F i g u r e s 10 and 13. The area o u t s i d e the fence at Dew Drop was too h e a v i l y grazed t o be of much use, n e v e r t h e l e s s y i e l d f i g u r e s are g i v e n , but Table 17. Dew Drop: Average Yields (g/m ) for each Treatment Fe r t i l i z e r s (Kg/ha) Clipping Dates - Inside Permanently Fenced Area F a l l Applied Early Spring (1969) Early Summer Late Summer Autumn Early Spring Early Summer • (1970) Late Summer 0 19.1 32.4 34.5 42.2 25.4 34.6 27.7 168 69.4 89.6 135.8 83.4 52.2 48.9 54.3 336 56.5 107.5 127.2 132.6 64.0 67.7 57.2 Spring Applied 0 34.0 51.0 28.0 50.1 34.6 32.9 168 50.8 94.5 67.1 75.6 56,4 44.1 336 48.5 85.0 76.7 88.0 73.7 57.3 F a l l Applied Clipping Dates - Inside Drop-Fenced Area 0 26.0 39.6 35.7 36.3 45.5 45.4 26.5 168 67.6 110.2 71.8 132.1 73.0 56.7 57.3 336 78.9 105.9 82.6 125.8 79.1 70.8 72.3 Spring Applied 0 30.9 34.9 41.9 88.6 32.5 25.8 168 54.4 67.0 75.2 75.1 51.0 64.1 336 65.8 63.1 88.3 88.7 66.1 59.5 Table 17 Cont. Dew Drop: Average Yields (g/m ) for each Treatment Fe r t i l i z e r s (Kg/ha) Clipping Dates - Outside Fenced Area F a l l Applied Early Spring (1969) Early Summer Late Summer Autumn Early Spring Early Summer Late Summer (1970) 0 7.4 27.4 5.5 9.9 168 4.5 2.7 2.3 7.5 336 5.2 1.7 0.9 6.6 Spring Applied 0 5.1 8.5 7.9 168 5.5 1.3 6.3 336 5.6 4.3 9.9 TABLE 18. DEW DROP: AVERAGE PERCENT NITROGEN FOR EACH TREATMENT In s i d e Permanently Fenced Area F e r t i l i z e r A p p l i c a t i o n I n s i d e Drop (Kg/ha) -Fenced Area C l i p p i n g Date F a l l 0 168 336 0 Sp r i n g 168 336 F a l l 0 168 336 0 S p r i n g 168 336 (1969) E a r l y S p r i n g E a r l y Summer Late Summer Autumn 0.85 2.59 1.13 2.14 0.82 1.80 0.41 1.45 1.74 3.10 2.28 1.34 1.11 0.80 0.55 2.33 1.83 1.53 2.33 2.13 0.60 1.56 3.93 1.15 2.82 0.83 1.96 0.50 1.14 4.33 2.79 2.12 0.45 1.21 0. 86 0.49 2.71 2.19 1.46 2.33 2. 32 0.55 TABLE 19. DEW ; DROP: NITROGEN YIELD (Kg/ha) I n s i d e Permanently Fenced Area F e r t i l i z e r A p p l i c a t i o n I n s i d e Drop (Kg/ha) ^Fenced Area C l i p p i n g Date F a l l 0 168 336 0 Spring 168 336 F a l l 0 168 336 0 S p r i n g 168 336 (1969) E a r l y S p r i n g E a r l y Summer Late Summer Autumn 1.62 15.65 3.68 19.20 2.86 24.56 1.74 12.02 9.8 33.38 29.10 17. 82 3.76 4.08 2.06 11. 30 17.39 10.19 11.33 18.10 4 .66 4.03 26.61 4.56 31.04 2.98 14.13 1.86 15.22 34.21 29.66 17.58 5.63 3.76 3.01 2.02 14.69 14.69 10.94 14.64 14.64 4.94 FIG. 20. DEW DROP "PERMANENT FENCE" PERCENT NITROGEN FIG. 22. DEW DROP DROP-FENCE PERCENT NITROGEN FIG. 23. Dew Drop - unseeded area FIG. 24. Dew Drop - F e r t i l i z e d s t r i p s on seeded area FIG. 26. Dew Drop - F e r t i l i z e d and u n f e r t i l i z e d v e g e t a t i o n in l a t e summer. 79. t h e r e was not enough m a t e r i a l t o analyze f o r percent n i t r o g e n . In 1969, dry matter y i e l d s i n s i d e the permanent fence peaked i n l a t e summer, then d e c l i n e d , but those of the drop-fenced e n c l o s u r e showed a l a t e summer d e c l i n e f o l l o w e d by a l a t e f a l l h i g h p o i n t . In both cases the h i g h e s t p o i n t was reached by s u b - p l o t s t r e a t e d w i t h 168 Kg/ha o f f a l l a p p l i e d n i t r o g e n , however the 3 36 Kg/ha treatment produced s l i g h t l y h i g h e r year-long y i e l d s . There was not so great an i n c r e a s e from the s p r i n g a p p l i e d f e r t i l i z e r i n e i t h e r p l o t but trends were much the same. The f o l l o w i n g year y i e l d s were s i m i l a r f o r both s p r i n g and f a l l treatments, g e n e r a l l y i n c r e a s i n g with i n c r e a s -i n g r a t e s o f f e r t i l i z e r and t a p e r i n g o f f as the season progressed. Y i e l d s from the drop-fenced area were s l i g h t l y h i g h e r o v e r - a l l than those from the permanently fenced area. Percent n i t r o g e n l e v e l s i n forage tended t o show the same p a t t e r n i n both p l o t s except f o r very h i g h concen-t r a t i o n s d u r i n g the e a r l y s p r i n g on the nearby enclosed drop-fenced a r e a , i . e . 3.93 and 4.33% f o r the 168 Kg/ha and 336 Kg/ha treatments r e s p e c t i v e l y . The g r e a t e s t y i e l d s o f n i t r o g e n were produced by f a l l a p p l i c a t i o n s o f f e r t i l i z e r at 336 Kg/ha and 168 Kg/ha. The permanently fenced p l o t had the g r e a t e s t season-long y i e l d but the drop-fenced area i n the e a r l y s p r i n g had the g r e a t e s t y i e l d f o r any one time (Table 19). 6.3.6. Loch Lomond Dry matter y i e l d s and percent n i t r o g e n may be observed i n Tables 20 and 21 and F i g u r e s 14 and 15. On the Table 20. Loch Lomond: Average Yields (g/m ) for each treatment Fe r t i l i z e r s (Kg/ha) Clipping Dates - Inside Fenced Area  Spring Applied Early Spring Early Summer Late Summer Autumn Early Spring Early Summer Late Summer Autumn (1969) (1970) 0 25.7 24.6 15.4 72.8 51.4 47.9 70.5 336 42.8 24.5 21.2 81.0 87.0 60.6 42.9 Spring Applied Clipping Dates - Outside Fenced Area 0 336 29.1 14.4 17.4 29.0 14.4 13.3 TABLE 21. LOCH LOMOND: AVERAGE PERCENT NITROGEN FOR EACH TREATMENT Inside Fenced Area F e r t i l i z e r A p p l i c a t i o n (Kg/ha) Outside Fenced Area C l i p p i n g Date 0 F a l l 168 Spring 336 0 168 336 F a l l 0 168 Sp r i n g 336 0 168 336 (1969) E a r l y S p r i n g E a r l y Summer Late Summer Autumn 1.27 0. 89 0.53 2.37 2.38 1.10 1.27 0. 89 2.53 2. 37 2. 38 1.10 TABLE 22. LOCH LOMOND: NITROGEN YIELD (Kg/ha) Inside Fenced Area Outside Fenced Area F e r t i l i z e r A p p l i c a t i o n (Kg/ha) Spring S p r i n g C l i p p i n g Date 0 336 0 336 (1969) E a r l y Summer 3.58 10.20 3.68 0. 69 Late Summer 2.59 5.52 1.26 3.41 Autumn 0.72 1.87 0.88 1.44 FIG. 28. LOCH LOMOND PERCENT NITROGEN cn CD Z r u UJ LD O - 3 0 . 0 20.0 50.0 BO.O 110.0 140.0 170 TIME IDflYS-FROM MAY 1) 9 FIG. 29. Loch Lomond - v e g e t a t i o n o f the area FIG. 30. Loch Lomond - showing darker green o f f e r t i l i z e d v e g e t a t i o n to l e f t o f white stake FIG. 31. Timber milk vetch a t Lac du Bois - an area near the Wawn Quarter 86. ungrazed p l o t , d u r i n g the f i r s t y e a r , f e r t i l i z e r had an e f f e c t on dry matter y i e l d s i n the e a r l y summer and l a t e f a l l but made no d i f f e r n c e i n the l a t e summer. Treatment made almost no d i f f e r e n c e on the unprotected area. During the 1970 growing season f e r t i l i z e r d e f i n i t e l y reduced forage y i e l d s f o r a l l but the l a s t c l i p p i n g i n the autumn. Percent p r o t e i n was i n c r e a s e d throughout the season on both areas by f e r t i l i z a t i o n . Y i e l d s o f n i t r o g e n (Table 22) were somewhat g r e a t e r i n forage from the fenced area than i n t h a t from the unfenced area. 6.3.7.. Wawn Quarter At the Wawn Quarter (Table 23) the number o f As t r a g a l u s spp. p l a n t s on the h e a v i l y grazed s i d e decreased c o n s i d e r a b l y with the i n c r e a s i n g r a t e s of f a l l a p p l i e d n i t r o g e n but only s l i g h t l y with the s p r i n g treatment. On the l i g h t l y grazed s i d e there was an i n c r e a s e i n numbers with h e a v i e r r a t e s of f a l l a p p l i e d n i t r o g e n but there was a decrease with the s p r i n g treatment. Weights o f A s t r a g a l u s spp. c l i p p e d from the s u b - p l o t s decreased c o n s i d e r a b l y with i n c r e a s i n g f e r t i l i z e r n i t r o g e n r a t e s f o r both the s p r i n g and f a l l treatments on the h e a v i l y grazed s i d e but only f o r the s p r i n g treatment on the l i g h t l y grazed s i d e . On t h i s l a t t e r s i d e the 16 8 Kg/ha f a l l a p p l i e d n i t r o g e n a p p l i c a t i o n r e s u l t e d i n a decrease from the 0 Kg/ha treatment but at 336 Kg/ha the weight i n c r e a s e d . Viewed as a comparison between weights of grass and weights o f A s t r a g a l u s spp., f e r t i l i z e r had a d e f i n i t e b e n e f i c i a l e f f i c t , i . e . reduced the r e l a t i v e weight 87. FIG. 16. AVERAGE YIELD AND % NITROGEN (1969) S i t e E l e v a t i o n (m.a.s.i.) Y i e l d (g/m2 x l 0) % N i t r o g e n 7 6 5 4 3* Dew Drop 609 31.5 I 30.0 28.5 I 27.0 25.5 24.0 22.5 . 21.0 19.5 L 18. 0 7 i 6 5 4 3 x _x X x x Quilchena .640 31.5 30.0 28.5 27.0 25 24 22, 21.0 19.5 18.0 Minnie Lake 1097 Hamilton Common 1249 Unprotected 03 P r o t e c t e d O Drop-fenced ca P r e c i p i t a t i o n ^ 7 •] 6 • 5 4 3 31.5 30.0 28.5 27.0 25.5 24.0 22.5 *L 21.0 19. 5 r 18.0 11 9 4 7 5 3 I 2 • x x X X 31, 30 , 28, 27.0 25.5 24.0 22.5 21.0 19. 5 18.0 Loch Lomond 1200 Pa r a d i s e 1220 7 6 5 J 4 3 1 • x X X X X X x r 31.5 7 . 30.0 •6 . 2 8.5 5 . 27.0 4 • 25.5 3 • 24.0 22.5 2 . 21.0 • 19.5 1 • 18.0 r 31.5 , 30.0 ft it 28.5 s'c . 27.0 • i . 25.5 ft . 24.0 ft . 22.5 X ft ft 21.0 X ft . 19.5 X ft . 18.0 X > TABLE 23. Wawn Quarter: Average o f Counts and C l i p p i n g Weights (1969) . A s t r a g a l u s counts (#/m ) Forage Weights (g/m ) H e a v i l y grazed L i g h t l y grazed A s t r a g a l u s Grass s i d e (a) (b) Date 27/5 20/6 27/5 20/6 (a) 20/6 (b) 20/6 (a) 16/7 (b) T 7 T Treatment Date Kg/ha n i t r o g e n F a l l 0 7.0 13.0 9.5 13.0 7.8 25.7 81.5 151.0 168 3.25 6.0 10.75 17.5 1.3 15.0 321. 3 300 .2 336 1.0 5.75 10 .75 10.0 1.7 28.3 296.4 241.6 Spring 0 6.50 15.5 11.75 14. 75 11.4 20.0 85.0 128.7 168 6.0 11.75 9.0 14.25 8.0 15.3 77.8 244. 3 336 6.25 10.75 5. 75 7.5 4.3 8.7 78.0 149.5 Table 24. Average Yields from F e r t i l i z e r Treatments (g/m^) 1969. Site 0. F a l l 168 Kg/ha Nitrogen 336 0 Spring 168 336 Quilchena 1 Quilchena 2 18.2 50.8 20.6 86.4 30.8 78.8 17.3 33.5 19.4 41.6 24.1 50.5 Hamilton Common 1 Hamilton Common 2 49.8 95.4 78.4 118.3 67.5 117.8 44.9 88.7 44.9 104.2 49.7 114.7 Minnie Lake 1 Minnie Lake 2 27.4 36.4 30.3 68.6 37.0 69.1 17.0 25.1 18.7 36.1 27.9 45.0 Paradise 1 Paradise 2 21.2 17.7 10.3 15.7 14.2 19.3 14.1 22.2 Dew Drop 1 Dew Drop 2 Dew Drop 3 9.1 32.0 34.4 5.8 92.3 95.4 4.3 105.9 98.3 5.6 41.0 35.9 4.3 70.8 65.5 4.5 70.1 72.4 Loch Lomond 1 Loch Lomond 2 20.3 21.9 18.9 29.5 1 = unfenced 2 = fenced 3 = drop-fenced' Table 25. Average Percent Nitrogen from Treatments (1969) F e r t i l i z e r Treatment (Kg/ha) Site F a l l Applied Spring Applied 0 168 336 0 168 336 Quilchena 1 1.31 Quilchena 2 1.01 Hamilton Common 1 1.23 Hamilton Common 2 0.98 Minnie Lake 1 0.99 Minnie Lake 2 0.90 Paradise 1 1.33 Paradise 2 1.60 Dew Drop 2 0.82 Dew Drop 3 (Drop fence) 1.01 Loch Lomond 1 Loch Lomond 2 1. 90 2.18 1.52 1.92 1.82 1. 76 1.84 0.98 1.50 1.54 1. 57 2.00 1.31 1.95 2.13 1. 52 1.62 1.04 1.62 1.92 1. 47 1.71 1.09 2.06 2.35 1. 44 1.71 0.83 1.78 2.22 2.58 1.07 1.95 3.06 1.22 2.26 2. 00 2.13 0.82 1.86 1.68 2. 46 2.43 0.85 2.11 1.73 0.88 1.94 0.98 1.84 91. Table 25 Nitrogen Yields (Kg/ha) (1969) Inside Fenced Area Outside Fenced Area F e r t i l i z e r Applications (Kg/ha) Clipping Date F a l l 0 168 336 Spring 0 168 336 3.58 10.20 2.59 5.52 0.72 1.87 F a l l 0 168 336 Spring 0 168 336 1.97 6.54 4.86 16.56 12.10 13.49 9.50 7.20 3.09 4.46 4.32 0.61 15.26 14.64 4.94 3.68: 0.69 1.26 3.41 0.88 1.44 Early Spring 10.99 21.15 Early Sunnier 4.40 13.40 Late Summer 3.23 11.26 Autumn 2.30 15.33 Early Spring 9.17 14.67 Early Summer 13.12 21.73 Late Summer 6.85 20.82 Autumn 8.75 12.11 20.19 12.34 14.53 11.36 Quilchena 3.68 3.26 2.81 4.35 3.90 6.35 6.67 8.30 14.06 0.85 1.42 4.18 3.17 0.85 2.16 4.13 5.94 8.94 8.50 2.18 10.77 2.22 2.85 2.61 2.29 6.24 2.85 Hamilton Common 13.82 26.62 9.44 26.45 32.06 20.96 11.39 13.60 18.21 12.06 6.92 12.34 16.77 3.15 4.52 7.00 ' 14.88 28.82 19.38 14.99 20.70 4.96 6.18 10.26 3.92 6.11 3.78 14.80 17.98 6.06 9.79 Minnie Lake Early Spring 4.99 7.22 5.65 4.42 4.22 5.81 Early Summer 1.94 7.01 17.71 2.30 5.34 8.29 0.88 5.31 8.43 1.46 3.39 Late Summer 2.43 9.95 16.85 ,2.16 7.14 11.97 3.39 3.31 6.29 2.19 5.55 Autumn 3.42 16.10 12.05 1.79 6.75 9.41 1.36 4.58 3.30 1.78 2.21 Paradise Early Spring 3.46 Early Summer 4.77 Late Summer 3.02 Autumn 0.61 3.47 3.14 4.70 3.01 4.03 2.94 0.70 5.04 6.80 3.02 5.94 4.48 1.68 0.67 6.99 2.11 3.30 3.28 2.38 0.22 0.65 Inside Permanently Fenced Area Dew Drop Inside Drop Fenced Area Early Spring 1 Early Summer 3 Late Summer 2 Autumn 1 Early Summer Late Summer Autumn ,62 ,68 ,86 ,74 15.65 19.20 24.56 12.02 9.8 33.38 29.10 17.82 3.76 11.30 11.33 4.08 17.39 18.10 2.06 10.19 4.66 4.03 26.61 34.21 4.56 31.04 29.66 2.98 14.13 17.58 1.86 15.22 5.63 3.76 14.70 3.01 14.69 2.02 10.94 Loch Lcmond 92. o f A s t r a g a l u s • The 168 Kg/ha of f e r t i l i z e r n i t r o g e n appears to be the most e f f e c t i v e i n t h i s r e g ard s i n c e the i n c r e a s e i n dry weights o f grass was g r e a t e s t with t h i s treatment. 6.4. I n t r a t r a n s e c t Comparisons F i g u r e 16 shows average y e i d l s , percent n i t r o g e n , and r a i n f a l l f o r each s i t e . Values f o r average y i e l d and percent n i t r o g e n f o r each treatment appear i n Tables 24 and 25. Hamilton Common, the s i t e o f the g r e a t e s t e l e v a t i o n and p r e c i p i t a t i o n , produced the most forage o f the p r o t e c t e d g r a s s l a n d s i t e s , and Minnie Lake the l e a s t . F o r e s t s i t e p r o d u c t i o n was c o n s i d e r a b l y l e s s . The h i g h e s t p r o d u c t i o n o c c u r r e d a t Hamilton Common with 16 9 Kg/ha o f f a l l a p p l i e d n i t r o g e n . The y i e l d response t o f a l l a p p l i e d f e r t i l i z e r n i t r o g e n on the g r a s s l a n d was, i n three c a s e s , g r e a t e r with 336 Kg/ha than with 16 8 Kg/ha. In another three cases the y i e l d d e c l i n e d with the h i g h r a t e o f f e r t i l i z e r . The d e c l i n i n g and s t a t i c c o n d i t i o n s o c c u r r e d i n p r o t e c t e d p l o t s , and on the unprotected p l o t on Hamilton Common which supported a dense stand of h;Lgh q u a l i t y grazed v e g e t a t i o n . A p p l i c a t i o n o f 16 8 Kg/ha o f n i t r o g e n r e s u l t e d i n l a r g e herbage i n c r e a s e s at most s i t e s . Exceptions were the unprotected areas o f Dew Drop, Quilchena and Minna Lake. F a l l a p p l i e d f e r t i l i z e r at 336 Kg/ha of n i t r o g e n r e s u l t e d i n a decrease i n herbage p r o d u c t i o n by C. rubescens i n the f o r e s t p l o t s at P a r a d i s e . S p r i n g a p p l i c a t i o n s o f 16 8 Kg/ha n i t r o g e n on the gras s l a n d s produced s u b s t a n t i a l i n c r e a s e s on f i v e p l o t s , 93. s l i g h t i n c r e a s e s on two, no change on one (Hamilton Common, unfenced),and a decrease on Dew Drop unfenced. I n c r e a s i n g r a t e s of 336 Kg/ha of elemental n i t r o g e n r a i s e d y i e l d s c o n s i d e r a b l y i n f o u r p l o t s compared to the 16 8 Kg/ha l e v e l , two s l i g h t l y , and l e f t t h r e e e s s e n t i a l l y the same. F o r e s t e d p l o t s showed i n c r e a s e s over the zero treatment when 3 36 Kg/ha n i t r o g e n was added i n the s p r i n g . V a r i a t i o n i n percent n i t r o g e n between the s i t e s was not g r e a t . Grassland s i t e s ahd h i g h e r percentages on the unprotected areas while the f o r e s t s i t e s d i d not. W i t h i n s i t e s i n a l l cases, the percent n i t r o g e n of the forage i n c r e a s e d w i t h i n c r e a s i n g r a t e s o f f e r t i l i z e r , w ith the e x c e p t i o n o f the s p r i n g treatments on the Dew Drop and unprotected Quilchena s i t e s . The f a l l a p p l i c a t i o n had a tendency t o r a i s e the percent n i t r o g e n content o f forage i n the dry s i t e s to h i g h e r l e v e l s than i n the wetter but c o o l e r h i g h e l e v a t i o n g r a s s s l a n d s i t e s . The r e v e r s e o c c u r r e d with the s p r i n g a p p l i e d treatment. The h i g h e s t o v e r a l l n i t r o g e n l e v e l s were reached i n the f o r e s t undercover t r e a t e d i n the f a l l , but both f o r e s t s i t e s had percentages s i m i l a r t o those of the g r a s s l a n d s . 7. D i s c u s s i o n 7.1. General The p r o j e c t was i n i t i a t e d as p a r t of a study of n u t r i e n t and energy c y c l i n g on rangeland and w i l d l a n d s i n the B r i t i s h Columbia Southwestern I n t e r i o r . With the e x c e p t i o n of one s e r i e s o f s t u d i e s i n the c o a s t a l f o r e s t i n Washington State ( G e s s e l and Shareef, 1957; Gessel and Cole, 1958 and 1965; G e s s e l , T u r n b u l l and Tremblay, 1960; G e s s e l and B a l c i , 1963; G e s s e l , Stoate and T u r n b u l l , 1965; Gessel and Or i a n s , 1967; Hielman and G e s s e l , 1963a and b) th e r e has been l i t t l e study o f the m i n e r a l o r o r g a n i c matter c y c l i n g i n n a t u r a l o r near n a t u r a l areas o f the P a c i f i c Northwest. The p r e l i m i n a r y p a r t of the study r e s u l t e d i n the expenditure of a great amount of e f f o r t i n f e n c i n g and t r a v e l . Unforeseen problems i n methodology and l a r g e p o p u l a t i o n i n c r e a s e s i n ground s q u i r r e l s , i n fenced p l o t s , h i n d e r e d p r o g r e s s . Only nitrogenous f e r t i l i z e r s were s t u d i e d . Responses to phosphates and other minerals would a l s o be important, as would t h e i r i n t e r a c t i o n s with nitrogenous f e r t i l i z e r s (Demarchi, 1968). M i n e r a l s o f l i m i t e d a v a i l a b i l i t y may be immobilized i n p l a n t t i s s u e with the f i r s t b u r s t o f n i t r o g e n induced growth. J u s t i f i c a t i o n f o r the s i n g u l a r approach l i e s i n the widespread d e f i c i e n c y of f i x e d n i t r o g e n on ranges and i n the l a r g e y i e l d i n c r e a s e s obtained at r e l a t i v e l y low c o s t . In a d d i t i o n , responses i n a w i l d l a n d range s i t u a t i o n can be much more complicated than i n ot h e r areas; f o r example, homogeneous a r a b l e lands and s i n g l e c r o p s . Profound changes may occur i n the f l o r i s t i c composition o f f e r t i l i z e d swards. Changes would probably be i n favour o f the dominant bunch g r a s s e s . As a r e s u l t , the use of f e r t i l i z e r s may be an important t o o l i n the r e h a b i l i t a t i o n o f rangelands. The p r o f i l e o f a range s o i l , the d u f f and l i t t e r l a y e r s t o be c o n s i d e r e d , may be much more complex than t h a t o f 95. a c u l t i v a t e d s o i l . In most cases o n l y a f r a c t i o n o f the a p p l i e d n i t r o g e n was har v e s t e d i n p l a n t t i s s u e . The r e s t may not have been l o s t but was m i n e r a l i z e d or immobilized i n the d u f f and o r g a n i c matter, and hence i s onl y slowly a v a i l a b l e to v e g e t a t i o n . P r o t e c t i o n from l a r g e h e r b i v o r e s must be p r o v i d e d , u s u a l l y by fence, i n s t u d i e s o f t h i s nature. Rodents are not excluded and, o f t e n , n e i t h e r are n a t i v e ungulates o r i n s e c t h e r b i v o r e s . The w i l d l a n d s o f the study a r e a , range from semi-a r i d t o sub-humid, and p r e c i p i t a t i o n , o r l a c k o f i t , may complicate o p p o r t u n i t i e s f o r u t i l i z a t i o n o f f e r t i l i z e r n i t r o g e n . S u r v i v a l o f p l a n t s may be a d v e r s e l y a f f e c t e d i f a l l a v a i l a b l e water i s used i n the f i r s t b u r s t of growth i n the s p r i n g . I f e f f i c i e n c y of water use i s i n c r e a s e d substan-t i a l l y , as V i e t s (1967) suggests, there may be l i t t l e or no adverse e f f e c t . The mechanism a l l o w i n g i n c r e a s e d growth wit h l i t t l e o r no concurrent i n c r e a s e i n water consumption i s not r e a l l y known. There are obvious d i f f e r e n c e s i n response t o s p r i n g and f a l l f e r t i l i z e r treatments s i n c e i t takes time and water to move the n i t r o g e n through the s o i l t o a p o i n t where i t can be u t i l i z e d . In a l l c a s e s , growth i s terminated i n the summer by drought. I t i s apparent t h a t forage q u a l i t y , as w e l l as q u a n t i t y , was i n c r e a s e d throughout the t r i a l s . The value o f these i n c r e a s e s remains t o be seen s i n c e l o s s e s , such as l e a c h i n g , may be h i g h and c e r t a i n l y the n i t r o g e n l e v e l s i n 96. p l a n t t i s s u e d e c l i n e d d r a s t i c a l l y near the end of the season. Thus forage perhaps may not pro v i d e much added n u t r i t i o n on wi n t e r game range un l e s s there are shrubs p r e s e n t . I t appears t h a t f o r e s t f e r t i l i z a t i o n i s l a r g e l y d e t r i m e n t a l t o herbage p r o d u c t i o n . Marked d i f f e r e n c e s i n response may be expected between f o r e s t s and g r a s s l a n d s . In the f o r e s t much of the n u t r i e n t f e r t i l i z e r may be " t i e d up" i n woody p o r t i o n s o f long l i v e d t r e e s so t h a t l i t t l e i s a v a i l a b l e f o r c y c l i n g i n the undergrowth. I n i t i a l l y , the f i x e d n i t r o g e n o f the f e r t i l i z e r may be t i e d up i n the d u f f ; how much f i x e d n i t r o g e n i n c r e a s e s i n the d u f f , o r how soon i t gets t o the t r e e s i s unknown. The undercover appears t o be a very minor component, and i n c r e a s i n g c o m p e t i t i o n f o r minerals probably favours the f o r e s t which i n c r e a s e s canopy d e n s i t y , thus d e c r e a s i n g r a d i a n t energy r e a c h i n g the f o r e s t f l o o r . There i s very l i t t l e data on the m o d i f i c a t i o n o f the range s o i l s t r e a t e d with f e r t i l i z e r n i t r o g e n , on the best f e r t i l i z e r s to be used or on the importance i n f e r t i l i z a t i o n o f the t r e e s p e c i e s o r on the growing c o n d i t i o n s . L i t t l e a t t e n t i o n has been p a i d t o the time o f a p p l i c a t i o n and the b e n e f i t s o f time i n r e l a t i o n t o growth regime (Armson 1967). In any eco-system t h e r e w i l l be the c o m p l i c a t i n g f a c t o r o f great c o m p e t i t i o n , f o r the a d d i t i o n a l n i t r o g e n , between the organisms of the o r g a n i c l a y e r and the p l a n t s . Competition w i l l i n c r e a s e as d e t r i t u s from a f a s t e r growing f l o r a i s r e t u r n e d at an i n c r e a s i n g r a t e . Nitrogenous f e r t i l i z e r s i n h i g h r a t e s may a l s o produce a "washy" f o r a g e , c o n t a i n i n g e a s i l y leached n i t r o g e n which c o u l d r e s u l t i n l a r g e l o s s e s . As p a r t of the t r a n s e c t study, t h i s p r o j e c t has begun the i n v e s t i g a t i o n i n t o one of the elements i n v o l v e d i n the over-a l l p i c t u r e o f n u t r i e n t c y c l i n g ; n i t r o g e n . 7.2 F l o r i s t i c Composition Jones (1963, 1967), S t i l t et a l . (1955) and Templeton and T a y l o r (1966), observed t h a t a p p l i c a t i o n s of f e r t i l i z e r n i t r o g e n reduced y i e l d s o f legumes. I t was not s u r p r i s i n g t h e r e f o r e to observe a decrease i n the number o f A s t r a g a l u s spp. on the f e r t i l i z e d s u b - p l o t s o f the Wawn Quarter. The most n o t i c e a b l e e f f e c t was the i n c r e a s e i n grass to widen the r a t i o between grass and A s t r a g a l u s dry matter y i e l d s . For t h i s , the 168 Kg/ha f a l l treatment was the most e f f e c t i v e . T h i s would appear to be a good method of b i o l o g i c a l c o n t r o l o f a problem weed, but the n i t r o g e n may a l s o , p o s s i b l y , have the e f f e c t o f i n c r e a s i n g the amount of t o x i c n i t r o - s u g a r i n the p l a n t . The n i t r o g e n f e r t i l i z e r may give the grass a c o m p e t i t i v e advantage, however A s t r a g a l u s i s a very long l i v e d p l a n t with a long tap r o o t and i s u n l i k e l y to be e a s i l y e l i m i n a t e d . A s the grass A s t r a g a l u s r a t i o i s a l t e r e d f o l l o w i n g a p p l i c a t i o n o f nitrogenous f e r t i l i z e r , so t h a t r e l a t i v e i n t a k e of A s t r a g a l u s by l i v e s t o c k should be reduced. 7.3 S i t e Responses In g e n e r a l , the l e s s the e f f e c t i v e p r e c i p i t a t i o n , the h i g h e r the temperature and r a d i a n t energy a v a i l a b l e , and the l o n g e r p o t e n t i a l growing season. Each f a c t o r changes 98. with i n c r e a s i n g e l e v a t i o n and a f f e c t s the s p e c i e s and the growth c h a r a c t e r i s t i c s of the v e g e t a t i o n p r e s e n t . At the Dew Drop s i t e , the most a r i d , dry matter y i e l d s i n s i d e both permanent and drop fence were s i m i l a r u n t i l a f t e r the J u l y c l i p . From there they go i n o p p o s i t e d i r e c t i o n s . The y i e l d from the 16 8 Kg/ha treatment i n the permanent p l o t would f l u c t u a t e l e s s i f r e p l i c a t e two of the t h i r d c l i p were not so much l a r g e r than the others but the response s t i l l would not be s i m i l a r t o i t s o p p o s i t e number i n the drop-fenced p l o t . Since t h i s l a t t e r p l o t had been h e a v i l y grazed u n t i l l a t e summer the year b e f o r e t h i s c l i p , the p l a n t s may have over-extended the c a p a b i l i t i e s of a weakened r o o t system, r e s u l t i n g i n a mid-summer d e c l i n e . This appeared not to be the case with the b e t t e r e s t a b l i s h e d p l a n t s i n the permanently fenced area. Another p o s s i b i l i t y , c o n s i d e r i n g the work o f Senyimba (1968) i s t h a t the b e t t e r e s t a b l i s h e d , longer p r o t e c t e d , more widely spaced p l a n t s were more ab l e to c o n c e n t r a t e the l i m i t e d r a i n f a l l i n t o t h e i r r o o t zones f o r i n d i v i d u a l use than were the densely growing newly fenced p l a n t s . The p l a n t n i t r o g e n i n both areas shows a t r e n d t h a t i s to be expected, v i z . h i g h i n the e a r l y s p r i n g f o l l o w e d by a f a i r l y steady d e c l i n e . L e v e l s i n s i d e the permanent fence at the f i r s t c l i p would probably have been the same as those i n s i d e the drop-fence except f o r the " d i l u t i o n " caused by the o l d growth pre s e n t . T h i s was l a c k i n g i n the drop-fenced p l o t s i n c e i t had been grazed to the 99 . ground before f e n c i n g i n l a t e summer. The f i n a l very low p l a n t n i t r o g e n l e v e l of the h e a v i l y f e r t i l i z e d p l o t i s l i f e e l y a r e s u l t of e a r l y use of a l l a v a i l a b l e water and subsequent d r y i n g and maturing o f the forage before t h a t of the o t h e r treatments. Jones et_ a l . (196 3) observed t h a t f e r t i l i z e d p l a n t s tend to mature e a r l i e r than n o n - f e r t i l i z e d . The high y i e l d o f p r o t e i n tends to f o l l o w p l a n t n i t r o g e n l e v e l more c l o s e l y than dry matter y i e l d . The s i m i l a r i t y i n y i e l d s of the drop-fenced and permanently fenced p l o t s i n the second h a r v e s t season would seem to i n d i c a t e t h a t the a p p l i c a t i o n of f e r t i l i z e r n i t r o g e n was a great a i d i n r e j u v e n a t i n g a very much over-grazed stand. Care must be taken i n areas such as t h i s s i n c e i t appeared t h a t the p l a n t s s u f f e r e d from severe burning on the f e r t i l i z e d p l o t s , due no doubt to an i n c r e a s e i n s o i l s a l i n i t y caused by the f e r t i l i z e r . L esser r a t e s might decrease t h i s damage. At the Quilchena s i t e , a l s o i n an a r i d a r e a , d i f f e r e n c e s i n dry matter response to f a l l and s p r i n g t r e a t -ments may be e x p l a i n e d by the a v a i l a b i l i t y of the n i t r o g e n from each a p p l i c a t i o n . F a l l a p p l i e d f i x e d n i t r o g e n would be absorbed by the s o i l w i t h the melt waters of the winters snow, but f e r t i l i z e r from the s p r i n g treatment was observed s t i l l l y i n g on the ground f o r a c o n s i d e r a b l e p e r i o d a f t e r the a p p l i c a t i o n s i n c e t h e r e was l i t t l e p r e c i p i t a t i o n u n t i l e a r l y J u l y , (normally peak p r e c i p i t a t i o n occurs i n June). As a r e s u l t of h i g h e v a p o r a t i o n r a t e s , the l i g h t June r a i n s may do l i t t l e more than maintain the v e g e t a t i o n but they do 100. p r o v i d e enough moisture t o make the f e r t i l i z e r p a r t i a l l y a v a i l a b l e t o the p l a n t s . A s i m i l a r s i t u a t i o n would h o l d t r u e f o r p l a n t n i t r o g e n l e v e l s , which were h i g h e s t woth 336 Kg/ha of f a l l a p p l i e d f e r t i l i z e r n i t r o g e n . The a v a i l a b i l i t y o f the s p r i n g treatment f i x e d n i t r o g e n l a t e i n the season a f t e r a p e r i o d o f some r a i n would be s i m i l a r t o the a v a i l a b i l i t y of the f a l l treatment n i t r o g e n i n the s p r i n g , a f t e r the m e l t i n g o f the winters snows. T h i s would account f o r the continued upswing ; l a t e i n the f i r s t season i n p l a n t n i t r o g e n content and y i e l d o f s p r i n g t r e a t e d m a t e r i a l s at a time when the response t o the f a l l treatments was d e c l i n i n g . The f a l l treatment o f 16 8 Kg/ha n i t r o g e n produced g r e a t e r dry matter y i e l d s than d i d 336 Kg/ha i n the f i r s t year. T h i s may, i n p a r t , be a r e s u l t o f excess use of a v a i l a b l e moisture d u r i n g the p e r i o d o f r a p i d growth so t h a t the p l a n t s d r i e d up and became dormant e a r l y . The 16 8 Kg/ha p l o t s d i d not i n c r e a s e e a r l y y i e l d so much and t h e r e f o r e may not have overextended the a v a i l a b l e water e a r l y i n the season, a l l o w i n g f o r f u r t h e r growth l a t e r . The f a l l y i e l d s f o r two r e p l i c a t e s o f the 16 8 Kg/ha treatment are very c l o s e to those of the 336 Kg/ha treatment, but the t h i r d r e p l i c a t e has a y i e l d almost double the mean. I t has been noted (Cook 1965), ( M c K e l l , et a l . 1959) th a t f e r t i l i z a t i o n does i n c r e a s e e f f i c i e n c y o f water use but the i n c r e a s e d removal o f s o i l moisture can l e a d to d e p l e t i o n even i n e a r l y s p r i n g . In dry areas such as the i n t e r i o r o f B r i t i s h Columbia such i n c r e a s e 101. would probably leave no moisture r e s e r v e . Another p o s s i b i l i t y i s t h a t the heavy r a t e o f n i t r o g e n i n c r e a s e d the c o n c e n t r a t i o n o f the s o i l s o l u t i o n enough to r e t a r d f u r t h e r growth s i n c e the s o i l o f the area i s f a i r l y " s a l i n e " to begin w i t h . In the second year, y i e l d s from both f e r t i l i z e r r a t e s were very c l o s e which would seem to i n d i c a t e that f e r t i l i z e r n i t r o g e n i s l i t t l e used at s t r e n g t h s above 168 Kg/ha, at l e a s t i n the f i r s t two y e a r s , i n such d r y - l a n d s i t u a t i o n s . The h e a v i e r r a t e may have a g r e a t e r c a r r y - o v e r e f f e c t but t h i s remains to be seen. S p r i n g treatment c a r r y -over produced h i g h e r y i e l d s i n the second year than the f a l l treatment c a r r y - o v e r d i d , probably because the f i x e d n i t r o g e n had a t l a s t been c a r r i e d i n q u a n t i t y to the r o o t zone o f the p l a n t s a f t e r the winters p r e c i p i t a t i o n . The y i e l d of crude p r o t e i n i s a combination of dry matter y i e l d and percent n i t r o g e n content, and i n t h i s case the t r e n d p a r a l l e l s t h a t o f the dry matter y i e l d . The Minnie Lake s i t e , at a h i g h e r e l e v a t i o n , r e c e i v e s a somewhat g r e z t e r r a i n f a l l than the p r e v i o u s s i t e s . The l a c k of an obvious d e c l i n e i n dry matter p r o d u c t i o n i n the f i r s t year was probably the r e s u l t of a warm m i l d f a l l . A l s o at t h i s s i t e , i n the p r o t e c t e d a r e a , the heavy r a t e o f f e r t i l i z e r produced l i t t l e more dry matter than the 168 Kg/ha treatment. In time, r e s u l t s from the heavy a p p l i c a t i o n may become more obvious as the r e s i d u a l f i x e d n i t r o g e n takes e f f e c t . Part of the great i n c r e a s e i n l a t e f a l l p r o d u c t i o n with the 16 8 Kg/ha treatment was again 102. due to one r e p l i c a t e , although a l l were somewhat h i g h e r i n y i e l d than the corresponding 336 Kg/ha r e p l i c a t e s . The i n c r e a s e i n percent p l a n t n i t r o g e n caused by f e r t i l i z a t i o n i s q u i t e s p e c t a c u l a r . Even i n the f a l l , the l e v e l (converted to crude p r o t e i n ) i s c l o s e t o the optimum r e q u i r e d f o r the f e e d i n g o f beef c a t t l e . With both f a l l and s p r i n g treatments, the g r e a t e s t i n c r e a s e i n percent n i t r o g e n content o f the forage came i n the e a r l y summer a f t e r the l a t e s p r i n g r a i n s . Since the f a l l f e r t i l i z e d s u b - p l o t s n e a r l y a l l had approximately double the dry matter y i e l d o f the s p r i n g t r e a t e d ones, d i l u t i o n may be a f a c t o r i n the lower p l a n t n i t r o g e n content. The d i f f e r e n t i a l shows i n the a c t u a l y i e l d o f p l a n t n i t r o g e n which i s c o n s i d e r a b l y h i g h e r f o r the f a l l treatments, probably because the s p r i n g t r e a t -ment had not had the water and t h e r e f o r e the o p p o r t u n i t y t o be so a v a i l a b l e . On Hamilton Common, the h i g h e s t and wettest o f the g r a s s l a n d s i t e s , the f i r s t year y i e l d s from a l l treatments, i n the p r o t e c t e d p l o t s , f o l l o w e d a s i m i l a r p a t t e r n . The e a r l y summer peak, a f t e r s p r i n g r a i n s , f o l l o w e d by d e c l i n i n g y i e l d s , due t o s h a t t e r i n g and c u r i n g o f the v e g e t a t i o n , was the expected response. C o n s i d e r i n g the a l t i t u d e , e a r l y f r o s t s may have prevented the autumn upsurge t h a t o c c u r r e d at Quilchena and Minnie Lake (a probable response t o a warm m i l d f a l l ) . The sharp drop i n y i e l d s between J u l y and August i s most c e r t a i n l y a r e s u l t of almost complete maturing and s h a t t e r i n g o f the ex t e n s i v e s p r i n g growth o f 103. f o r b s . The f l u c t u a t i o n s i n y i e l d on the unprotected area are probably the r e s u l t of d i f f e r e n t i a l g r a z i n g by c a t t l e and other h e r b i v o r e s . The very l a r g e ground s q u i r r e l p o p u l a t i o n has undoubtedly i n f l u e n c e d many o f the r e s u l t s at t h i s s i t e . The s t a t i c y i e l d as the treatment moves from l i g h t t o heavy f e r t i l i z e r n i t r o g e n a p p l i c a t i o n s may, a g a i n , be a t t r i b u t e d t o i n c r e a s e d use of s o i l moisture but i s more l i k e l y t o be a r e s u l t o f i n t e n s e d i f f e r e n t i a l g r a z i n g by ground s q u i r r e l s . A c t i v i t y o f ground s q u i r r e l s over a p e r i o d o f time was i n d i c a t e d not only by the mounds of f r e s h e a r t h everywhere, but a l s o by the h i g h i n c i d e n c e o f l u p i n e s — p l a n t s r e q u i r i n g f r e s h l y turned or loose e a r t h f o r good growth. In s p i t e o f t h i s a c t i v i t y the p r o t e c t e d s i t e managed to show an i n c r e a s e i n y i e l d d u r i n g the f i r s t season samples were taken, although there was a d e c l i n e the f o l l o w -i n g year (1970). A d e c l i n e the f i r s t year was probably prevented by the g r e a t e r p r e c i p i t a t i o n on t h i s h i g h s i t e than at the o t h e r s . Hamilton Common has the p o t e n t i a l t o produce the g r e a t e s t y i e l d s o f any s i t e . Here, p r e c i p i t a t i o n i s the h i g h e s t , temperatures and e v a p o r a t i o n are the lowest and the cover i s the most dense. At h i g h e r e l e v a t i o n s temperature i s l i m i t i n g and lower moisture i s l i m i t i n g . Such low y i e l d s were not expected. In order t o d i s c o v e r the t r u e p o t e n t i a l o f t h i s a r e a , ground s q u i r r e l s should be e l i m i n a t e d , i f p o s s i b l e , from t h i s p l o t . F l u c t u a t i o n s i n y i e l d and percent n i t r o g e n content o f the forage on the zero f e r t i l i z e d areas c o u l d be the r e s u l t o f f e r t i l i z e r movement 104. with s o i l water across sub-plot boundaries. In s p i t e of the l i m i t e d y i e l d response, percent n i t r o g e n i n the forage d i d show the e f f e c t s of i n c r e a s i n g f e r t i l i z e r n i t r o g e n i n most cases. Even i n the autumn, l e v e l s of percent n i t r o g e n i n the forage when transformed t o crude p r o t e i n are a t , or above, the l e v e l deemed necessary to m a i n t ain c a t t l e (NRC standards quoted by McLean and T i s d a l e (I9 60)). The r e a c t i o n of percent n i t r o g e n , i n the dry matter, t o f e r t i l i z e r as the season progressed at f i r s t glance may seem strange. There are s i m i l a r i t i e s between s p r i n g and f a l l treatment r e s u l t s . The graph of the r e a c t i o n to s p r i n g treatment i s almost i d e n t i c a l to t h a t of the f a l l treatment except f o r a l a g p e r i o d of one c l i p . The f i r s t h i g h p o i n t f o r each can be c o r r e l a t e d t o the f i r s t b u r s t of growth a f t e r s u i t a b l e moisture c o n d i t i o n s occur f o l l o w i n g f e r t i l i z e r a p p l i c a t i o n . The subsequent d e c l i n e may i n d i c a t e d i l u t i o n e f f e c t s due to vigorous growth. There may be a number of reasons why the percent n i t r o g e n i n the 3 36 Kg/ha f e r t i l i z e d forage dropped more r a p i d l y than t h a t o f the 168 Kg/ha f e r t i l i z e d . Use of a l l a v a i l a b l e water by mid-summer c o u l d have r e s u l t e d i n a f a s t e r onset of dormancy, or the forage might have matured f a s t e r . In e i t h e r case the tops would be dead longer than on o t h e r treatments, with g r e a t e r weathering l o s s e s of n u t r i e n t s . Heavy f e r t i l i z a t i o n w i th n i t r o g e n may a l s o produce "washy" forage which i s more e a s i l y leached than normal, thus producing lower q u a l i t y mature f o r a g e . The l o s s of p l a n t n i t r o g e n i s probably a combination o f e f f e c t s . P a r a d i s e , the main t r a n s e c t f o r e s t s i t e , was a l s o the r e c i p i e n t of the g r e a t e s t p r e c i p i t a t i o n . At t h i s s i t e , w h i l e p l a n t n i t r o g e n l e v e l s were s u b s t a n t i a l l y i n c r e a s e d , i t would appear t h a t n i t r o g e n f e r t i l i z a t i o n , at l e a s t at hi g h r a t e s , i s d e t r i m e n t a l to p i n e g r a s s . Y i e l d s at t h i s s i t e were g e n e r a l l y low. In the f o r e s t there are problems o f assessment. Tr e e s , shrubs, and sub-shrubs mean l i t t l e as f a r as y i e l d s o f forage are concerned. The one f a c t o r which stands out i s the i n c r e a s e i n percent n i t r o g e n i n the forag e . On the u n f e r t i l i z e d p o r t i o n s , i n the f a l l , l i v e s t o c k would undoubtedly l o s e weight, but on f e r t i l i z e d a r e a s , a maintenance l e v e l o f crude p r o t e i n i s s t i l l a v a i l a b l e . The y i e l d s of p l a n t n i t r o g e n i n d i c a t e t h a t v e r y ! . l i t t l e o f the t o t a l a p p l i e d appeared i n the top growth. How much was t i e d up i n the r o o t s o f the herbaceous cover and i n the d u f f and or g a n i c l a y e r s was not determined. C o n s i d e r i n g the l i m i t e d p r e c i p i t a t i o n , and the extent o f the ground cover, i t would seem u n l i k e l y t h a t i n the f i r s t year much of the f e r t i l i z e r n i t r o g e n would f i n d i t s way i n t o the o v e r s t o r y o f Pinus and Populus. Seed p r o d u c t i o n by pine grass on the f e r t i l i z e d s t r i p s would tend t o i n d i c a t e t h a t an i n c r e a s e i n at l e a s t one n u t r i e n t , n i t r o g e n , can be r e s p o n s i b l e f o r s t i m u l a t i n g r e p r o d u c t i v e growth. The p h y s i o l o g y o f t h i s phenomena would be an i n t e r e s t i n g problem. At Loch Lomond, f e r t i l i z e r n i t r o g e n d i d i n c r e a s e y i e l d s e a r l y i n the year, u n l i k e the s i t u a t i o n at P a r a d i s e . The l a c k o f d i f f e r e n c e on the unfenced area c o u l d have been the r e s u l t o f g r a z i n g s i n c e there was evidence o f some a c t i v i t y i n t h a t area. Nitrogen l e v e l s f o l l o w e d a p a t t e r n s i m i l a r t o those o f the Paradise s i t e . 7.4 T r a n s e c t Responses The marked d i f f e r e n c e i n y i e l d between Hamilton Common and the other s i t e s was probably due p r i m a r i l y to a much g r e a t e r annual p r e c i p i t a t i o n along with s l i g h t l y lower temperature and ev a p o r a t i o n r a t e s . The other t h r e e g r a s s l a n d s i t e s are mainly populated by bunch grasses with l i t t l e or almost no c o l o n i z a t i o n of the c o n s i d e r a b l e spaces between p l a n t s . One reason the fenced "dry" s i t e at Quilchena produced so much co u l d be r e l a t e d t o i t s piedmont l o c a t i o n ; supplementary s o i l moisture c o u l d be r e c e i v e d from la n d "up-slops" o r from the water t a b l e o f the i r r i g a t e d l a n d below. In a d d i t i o n , the low e l e v a t i o n s would r e s u l t i n e a r l i e r warmer s p r i n g s and l a t e r m i l d e r autumns than the hi g h e r e l e v a t i o n s such as Hamilton Common. Another important f a c t o r t o be co n s i d e r e d i n the hig h y i e l d o f the Quilchena p l o t s i s the p r o t e c t i o n r e c e i v e d by the area over many y e a r s ; p o s s i b l y the p l a n t s have developed e x t e n s i v e r o o t systems and a t t a i n e d a vi g o u r r a r e l y observed on range lands today. The Hamilton Common and Minnie Lake p r o t e c t e d s i t e s were grazed, although l i g h t l y u n t i l the year of f e n c i n g . To r u l e out d i f f e r e n c e s such as t h i s , the t r a n s e c t must be operated on a long term b a s i s . Only be e l i m i n a t i n g d i f f e r e n -t i a l e f f e c t s , such as pr e v i o u s g r a z i n g p r e s s u r e , can the 107. p o t e n t i a l p r o d u c t i v i t y f o r each area be determined. In a d d i t i o n , more p l o t s should be l a i d out so t h a t the t r a n s e c t encompasses as much of the complete g r a d i e n t as p o s s i b l e , i n s t e a d o f j u s t the three main zones i n the gr a s s l a n d s and one i n the f o r e s t . Dew Drop, the other very dry s i t e , produced the second h i g h e s t dry matter y i e l d , a f t e r Hamilton Common. T h i s i s probably due to p r o t e c t i o n and t o the seeding o f the area t o c r e s t e d wheatgrass. The p l a n t s o u t s i d e the en c l o s u r e are grazed t o the ground a n n u a l l y and i t i s a wonder there i s anything except sage and cactus l e f t . The response i n the f i r s t arid second years on the drop-fence p r o t e c t e d p l o t was such that dry matter y i e l d almost e q u a l l e d t h a t from the permanently p r o t e c t e d area. I t remains t o be seen whether the p l a n t s can s u s t a i n t h i s growth r a t e o r not. Here a g a i n , p r o t e c t i o n i s a r e l a t i v e l y unknown f a c t o r . Another f a c t o r i s the p o s s i b i l i t y of e x t e n s i v e water f o r much of the year. The s o i l s are markedly s a l i n e and the area i s marked as an o c c a s i o n a l lake and from s p r i n g to e a r l y summer th e r e i s u s u a l l y a l a r g e pond to the west of en c l o s u r e , about h a l f a m i l e . A s t r e s s f u l s i t u a t i o n , such as g r a z i n g , appears to enable the g r a s s l a n d v e g e t a t i o n to u t i l i z e a h e a v i e r r a t e of f e r t i l i z e r than a program of p r o t e c t i o n , although p u b l i s h e d a u t h o r i t y f o r t h i s view seems to be l a c k i n g . T h i s i s probably from repeated h a r v e s t i n g and regrowth so t h a t r e p r o d u c t i v e development and t h e r e f o r e c e s s a t i o n o f v e g e t a t i v e 108. growth i s d e f e r r e d . In a d d i t i o n , the regrowth on the h e a v i l y f e r t i l i z e d areas may be the most r a p i d . The p l a n t s on the p r o t e c t e d a r e a s , on the oth e r hand, may a t t a i n approximately the same maximum dry matter over a p e r i o d of time. Decreases i n y i e l d on h e a v i l y grazed areas o f f e r t i l i z e d s u b -plots can be a t t r i b u t e d t o s e l e c t i v e g r a z i n g s i n c e the f o l i a g e on these treatments was a darker green and more s u c c u l e n t than i n othe r areas. The h i g h e r l e v e l s o f p r o t e i n o c c u r r i n g on unprotected s i t e s may be e x p l a i n e d by g r a z i n g . The removal o f o l d growth and subsequent s t i m u l a t i o n o f i n i t i a t i o n o f new growth h i g h i n p r o t e i n , would account f o r t h i s . T h i s s t i m u l a t i o n would not occur i n p r o t e c t e d p l o t s . Although a l l s i t e s probably r e c e i v e a s i m i l a r p r o p o r t i o n o f t h e i r p r e c i p i t a t i o n as r a i n i n the summer, t h i s moisture i s l i k e l y to have f a r l e s s e f f e c t on the dry hot low areas than on the more c o o l h i g h e r s i t e s . Since most of the summer p r e c i p i t a t i o n occurs as l i g h t showers, evapo-r a t i o n would tend to be g r e a t e r on the low hot re g i o n s so summer p r e c i p i t a t i o n probably has r e l a t i v e l y l e s s e f f e c t than at h i g h e r e l e v a t i o n s . T h i s c o u l d e x p l a i n the d i f f e r e n c e i n p r o t e i n content with treatment. The m e l t i n g w i n t e r snows would p r o v i d e a g r e a t e r p r o p o r t i o n o f moisture t o the s o i l than the summer r a i n s i n the areas w i t h h i g h e v a p o r a t i o n r a t e s , w h ile the summer p r e c i p i t a t i o n would be r e l a t i v e l y more u s e f u l i n areas with lower e v a p o r a t i o n r a t e s s i n c e they occur at a time of r a p i d growth. 109. 7.5 C l i m a t e - l o g i c a l Data Since t h i s was a p r e l i m i n a r y study with e v e r y t h i n g to be set up at the b e g i n n i n g , data i s only a v a i l a b l e f o r a one year p e r i o d . While i t may not be of much use t o analyze the data at t h i s p o i n t , and indeed I have not done so, the value of the o b s e r v a t i o n s , i f continued on a r e g u l a r b a s i s , w i l l i n c r e a s e with time as i t becomes p o s s i b l e t o p r o j e c t f u t u r e data. Although t h i s f i r s t year's data i s l i m i t e d , i t does give some i n d i c a t i o n of weather p a t t e r n i n g , hot and c o l d , wet and dry p e r i o d s . The data f o r the year i n d i c a t e s t h a t a great p a r t of the p r e c i p i t a t i o n occurs as snow. I t would appear, from the data at hand, t h a t s n o w f a l l i n range areas g e n e r a l l y c o n s t i t u t e s o n e - t h i r d o f the t o t a l p r e c i p i t a t i o n and more at the h i g h e r a l t i t u d e s above the r a n c h i n g zone. The regrowth of the p l o t s d u r i n g the second year of the study i n d i c a t e s t h at w i n t e r p r e c i p i t a t i o n p r o v i d e s ample moisture to recharge the s o i l and p r o v i d e water f o r s p r i n g growth. Snow c o n s t i t u t e s a very l a r g e percentage at the h i g h e l e v a t i o n s and even at lower e l e v a t i o n s i s such t h a t i t should be p o s s i b l e to p r e d i c t f e r t i l i z e r response and dry matter p r o d u c t i o n as Sneva and Hyder (196 2) i n Oregon. Records w i l l be r e q u i r e d f o r a c o n s i d e r a b l e p e r i o d to provide the r e q u i r e d median amount o f p r e c i p i t a t i o n and the estimated median herbage y i e l d f o r each area. 7.6. Economics of Range F e r t i l i z a t i o n With a p i l o t study o f t h i s nature i t i s s t i l l too e a r l y t o t e l l whether i t i s economical to f e r t i l i z e w i l d l a n d s 110 . f o r the purpose of i n c r e a s i n g forage. The r e s u l t s of these p r e l i m i n a r y t r i a l s have been promising and are worthy of f u r t h e r work i n an expanded program on a l a r g e r s c a l e . Much more extensive t r i a l s than I attempted are necessary f o r a p r a c t i c a b l e s o l u t i o n to the problems of f e r t i l i z e r a p p l i c a -t i o n . Determination of the optimum r a t e of f e r t i l i z a t i o n and the length of carryover are two important aspects r e q u i r i n g study. With nitrogenous f e r t i l i z e r s decreasing i n p r i c e , f e r t i l i z i n g rangelands may w e l l be economically f e a s i b l e . Great care must be taken however not to damage very s e n s i t i v e ecosystems by excessive use of i n o r g a n i c f e r t i l i z e r s and excessive cropping. The e c o l o g i c a l repercussions r e s u l t i n g from extensive f e r t i l i z e r use on rangelands and the i n t e n s i v e g r a z i n g which might f o l l o w could be d i s a s t e r o u s i n a program handled without great care. The upper grasslands and f o r e s t ranges might become as bare and useless as many low grasslands of the i n t e r i o r are today. By i n c r e a s i n g growth of the more r e a d i l y consumed species and by i n c r e a s i n g the p a l a t a b i l i t y of the o t h e r s , some increase i n u t i l i z a t i o n could occur as a r e s u l t of j u d i c i o u s use of f e r t i l i z e r s . Even i n the f o r e s t the grazing p e r i o d was extended by f e r t i l i z e r s and the herbaceous cover, though not as productive of dry matter as the grasslands, increased g r e a t l y i n q u a l i t y . Since the a d d i t i o n of f e r t i l i -z e r n i t r o g e n appeared to cause a marked increase i n seed production of blue-bunch wheatgrass and crested wheatgrass i t i s l i k l e y t h a t f e r t i l i z a t i o n of rangelands would lead to 111. s u b s t a n t i a l improvement i n the q u a l i t y o f the forage as long as a p p r o p r i a t e grasses were pres e n t . The s i t u a t i o n was e s p e c i a l l y s t r i k i n g i n the case of blue-bunch wheatgrass, c o n s i d e r i n g t h a t Senyimba (1969) observed very l i t t l e mature seed being produced by t h i s s p e c i e s at the same s i t e s . The value o f n i t r o g e n on wint e r ranges i s an aspect d e r s e r v i n g study. I t i s p o s s i b l e t h a t these ranges c o u l d be s u b s t a n t i a l l y improved by the use o f f e r t i l i z e r s . On the othe r hand, i f the f i x e d n i t r o g e n i s taken up o n l y i n enzymes and protoplasm, the i n c r e a s e may be r e f l e c t e d o n l y i n the dry matter y i e l d s and whether or not t h i s i s important o r not i s unknown. Nit r o g e n l o s s e s were noted by Herron ejt a l . (196 3) a f t e r m a t u r i t y at a time of water s t r e s s and were a t t r i b u t e d t o t r a n s l o c a t i o n . The heavy treatment o f n i t r o g e n was not observed to have an " e x t r a " e f f e c t on y i e l d s i n many cases. Rather, the r e s u l t s were s i m i l a r t o those produced by N at 16 8 Kg/ha. In d r y l a n d s i t u a t i o n s as i n the i n t e r i o r t h e r e are not l i a b l e t o be any l o s s e s through ground water or r u n o f f . V o l a t i l i -z a t i o n w i l l probably account f o r most o f the l o s s e s and w i l l not be gr e a t . I t i s q u i t e l i k e l y however t h a t the heavy r a t e , w hile not o b v i o u s l y o f b e n e f i t immediately, w i l l continue t o s t i m u l a t e growth f o r some years t o come and i t i s t h e r e f o r e d i f f i c u l t t o say i n long term responses what the "be s t " r a t e o f N a p p l i c a t i o n should be. G e n e r a l l y , f o r range f e r t i l i z a t i o n t o be economical, i t should a t t a i n i m m e d i a t e . s u b s t a n t i a l i n c r e a s e s i n y i e l d s 112. t h r o u g h t h e a p p l i c a t i o n o f n u t r i e n t s . In most c a s e s , on t h e g r a s s l a n d s , f e r t i l i z e r n i t r o g e n i n c r e a s e d y i e l d s by 200 t o 400 p e r c e n t w i t h i n a y e a r and i n c r e a s e d crude p r o t e i n by g r e a t e r amounts. On o n l y a few f e r t i l i z e d s u b - p l o t s i n t h e f a l l was crude p r o t e i n ( c o n v e r t e d from p e r c e n t n i t r o g e n ) l e s s t h a n t h a t c o n s i d e r e d t o be t h e maintenance l e v e l ( c a . 8-9%) f o r c a t t l e . F o r most i t was h i g h e r and some even approached t h e optimum l e v e l . These o b s e r v a t i o n s s h o u l d i n d i c a t e t h a t i t i s q u i t e p o s s i b l e f o r j u d i c i o u s use of range f e r t i l i z e r t o be e c o n o m i c a l l y f e a s i b l e i f s i m p l e methods are found f o r a p p l i c a t i o n . 11.3. CONCLUSIONS On the g r a s s l a n d s , n i t r o g e n f e r t i l i z e r a p p l i c a -t i o n s i n c r e a s e d dry matter y i e l d s c o n s i d e r a b l y i n the f i r s t and second y e a r s . The percent n i t r o g e n i n forage was s u b s t a n t i a l l y i n c r e a s e d i n both h a r v e s t years by a p p l i c a t i o n o f n i t r o g e n as f e r t i l i z e r . The unprotected p l o t s were d i f f e r e n t i a l l y grazed, sometimes i n t e n s e l y w i t h the r e s u l t t h a t there i s l i t t l e i n f o r m a t i o n a v a i l a b l e f o r a c t u a l y i e l d s . More e f f e c t i v e c o n t r o l o f h e r b i v o r e s , other than domestic sto c k , i s r e q u i r e d f o r net p r o d u c t i v i t y p l o t s . Lack o f s o i l moisture causes dormancy i n e a r l y summer at a l l e l e v a t i o n s and l i m i t s the response to f e r t i l i -z e r n i t r o g e n . In the f o r e s t s , undercover responded s u b s t a n t i a l l y i n the f i r s t year. The second year undercover i n c r e a s e d l i t t l e but the o v e r s t o r y appeared t o b e n e f i t from n i t r o g e n f e r t i l i z e r a p p l i c a t i o n s . APPENDIX l a . Q u i l c h e n a : Y i e l d s and P e r c e n t N i t r o g e n I n s i d e t h e F e n c e d A r e a C l i p #1 ( E a r l y S p r i n g ) 1969 C l i p #2 ( E a r l y Summer) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) F e r t i l i z e r s A p p l i e d (Kg/ha) F a l l S p r i n g F a l l S p r i n g 0 168 336 0 168 336 0 168 336 0 168 336 1 92. 5 106 .5 95.2 1 22 .8 106. 1 34 .9 35 .7 39 .1 24. 9 B l o c k s 2 138. 2 95 .1 99.8 B l o c k s 2 64 . 6 96. 1 110 .0 32 .3 32 .1 49 . 0 3 77. 1 73 .8 100.7 3 19 . 2 28 . 5 40.3 32 .0 17 .4 21. 1 Mean Y i e l d 102 . 6 91 . 8 98.6 Mean Y i e l d 35 . 3 76 . 9 61.7 33 .3 36 .2 31. 7 % N i t r o g e n 1. 07 2 . 31 2.05 % N i t r o g e n 1 .25 1. 75 2.00 1 .12 1 .21 ~! X • 21 C l i p #3 ( L a t e Summer) . 1969 C l i p #4 (Autumn) 1969 1 34. 9 55 .2 78.0 48.3 24 .7 53 .1 1 30 .3 41. 6 58.0 40 . I 54 .3 64. 3 B l o c k s 2 31. 9 '95 .6 102.8 23.5 40 .8 40 .2 B l o c k s 2 39 .0 83 . 7 80 .1 34 .0 47 .6 60 . 2 3 27 . 6 73 .8 69.0 19.6 48 .0 30 .6 3 31 .0 180. 5 77.1 35 .8 50 .7 111. 1 Mean Y i e l d 31. 5 74 . 9 83.3 30.5 37 .8 41 . 3 Mean Y i e l d 33 .4 101. 9 71.7 36 .6 50 .9 78. 5 % N i t r o g e n 1. 02 1 .50 1.75 1.08 1 .67 1 .60 % N i t r o g e n 0 .69 1. 50 1.59 0 .77 1 .63 1. 7! C l i p #5 ( E a r l y S p r i n g ) 1970 C l i p #6 ( E a r l y Summer) 1970 1 45. 2 49 . 8 37.9 41.0 84 .8 78 .7 1 25 .1 83. 7 42.0 26 .1 86 .2 83. 4 B l o c k s 2 24. 9 67 .7 60.3 39.2 72 .0 99 .0 B l o c k s 2 53 .4 43. 3 82 .1 24 .9 67 .1 57. 5 3 25. 4 45 .3 75.2 31.1 60 .5 72 .4 3 32 .5 49 . 8 23.4 22 .3 47 .0 36 . 9 Mean Y i e l d 31. 8 54 . 3 57.8 37.1 72 .4 83 .7 Mean Y i e l d 37 .0 58. 9 49.2 24 .4 64 .8 59 . 3 % N i t r o g e n 1. 02 1.61 1.90 0.82 1 .84 2 .06 % N i t r o g e n 1 .32 1. 65 2.06 1 .25 2 .11 2. 2( C l i p #7' ..(Late Summer) 1970 1 33. 6 36 .8 31.8 36.8 43 .3 74 .6 B l o c k s 2 25. 4 57 .5 56 .7 22.7 73 .5 96 .9 3 31. 4 33 .6 40 . 3 19.6 64 . I 27 .2 Mean Y i e l d 31. 1 42 .6 42 .9 26.4 60 .3 66 .2 % N i t r o g e n 1. 10 1 .46 1.86 1.07 1 .74 2 .11 Appendix lb . Quilchena: Yields and Percent Nitrogen Outside the Fenced Area (1969) Clip #1 (Early Spring) Fertilizers Applied (Kg/ha) F a l l Spring 0 , 168 336 0 168 336 1 8.9 1.7 11.0 Blocks 2 6.1 5.1 1.8 3 14.7 2.6 22.1 Mean Yield 9.9 3.1 11.6 % Nitrogen 0.86 1.85 1.86 Clip #2 (Early Summer) Fe r t i l i z e r s Applied (Kg/ha) F a l l Spring 0 168 336 0 168 336 1 7.9 20.7 25.1 10.3 10.1 10.0 Blocks 2 1 2 . i 7.6 27.5 21.0 21.5 16.0 3 6.2 25.5 20.7 7.6 11.6 8.2 Mean Yield 8 . 7 1 7 > 9 24.4 13.0 14.4 11.4 % Nitrogen 1 < 6 3 2.31 2.43 1.71 1.58 1.74 Clip #3 (Late Summer) Fertilizers Applied (Kg/ha) ' F a l l Spring 0 168 336 0 168 336 1 34.4 49.6 34.1 22.6 25.4 43.5 Blocks 2'33.9 26.0 35.5 18.1 21.2 41.3 3 7.5 65.5 52.0 14.5 44.9 21.9 Mean Yield 25.3 47.0 40.5 18.4 30.5 35.6 % Nitrogen 1.65 1.91 2.10 1.56 2.04 1.84 Clip #4 (Autumn) Fe r t i l i z e r s Applied (Kg/ha) F a l l Spring 0 168 336 0 ' 168 336 1 54.2 10.2 77.7 24.3 '5.8 22.8 Blocks 2 i 5 . i 23.7 30.8 23.8 20.8 21.8 3 16.8 8.7 30.8 13.2 13.2 31.3 Mean Yield 28.7 14.2 46.4 20.4 13.3 25.3 % Nitrogen 1.54 2.32 1.29 2.15 1.92 V \ \ APPENDIX l c Hamilton Common: Y i e l d and Percent N i t r o g e n Inside the Fenced Area C l i p #1 ( E a r l y Spring) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) F a l l Spring 0 168 336 0 168 336 C l i p #2 ( E a r l y Summer) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) F a l l S p r i n g 0 168 336 0 168 336 1 102 .4 76. 8 50.1 1 120 .7 126 .8 204.5 88 .5 133 .9 138 .6 Blocks 2 88 .5 87. 8 78.6 Blocks 2 64 .1 137 .5 118.2 52 .2 70 .7 105 .1 3 116 .2 116. 2 64. 7 3 108 .3 178 .6 181.5 123 .5 198 .7 173 .9 Mean Y i e l d 102 .4 99 . 7 64.5 Mean Y i e l d 97 .7 147 .6 168.1 88 .1 134 .4 139 .2 % N i t r o g e n 0 .86 1. 47 2.15 % Ni t r o g e n 1 .34 1 .47 1.58 1 .06 1 .97 2 .30 C l i p #3 (Late Summer) 1969 C l i p #4 (Autumn) 1969 1 61 .8 85. 0 74.4 102.8 74.9 73 .0 1 90 .0 146 .2 i O i . l 57 .7 101 .6 37 .6 Blocks 2 64 .1 137. 5 118.2 52.2 70.7 105 .1 Blocks 2 65 .1 92 .2 99.3 61 .4 71 .6 112 .5 3 108 .3 178. 6 181.5 123.5 198.7 173 .9 3 132 .4 105 .5 137.4 126 .0 89 .7 114 .1 Mean Y i e l d 85 .5 111. 2 126.0 96.3 90.5 117 .3 Mean Y i e l d 95 .8 114 .6 112.6 81 .7 87 .6 88 .1 % N i t r o g e n 0 .80 1. 87 1.66 1.19 1.51 1 .56 % N i t r o g e n 0 .88 1 .24 1.08 0 . 85 1 .41 1 .90 C l i p #5 ( E a r l y Spring) 1970 C l i p #6 ( E a r l y Summer) 1970 1 95 .6 101. 0 61.1 83.2 82.0 57 .2 1 86 .3 86 .4 99.4 62 .9 108 .1 103 . 2 Blocks 2 67 .3 95 . 8 107.1 69.0 82.0 122 .7 Blocks 2 112 .0 84 .0 120.9 92 .4 141 .2 147 .0 3 150 .8 89 . 8 102.5 175.8 113.5 99 .4 3 53 .0 120 .6 90.0 68 .0 121 .7 138 .7 Mean Y i e l d 104 .6 95. 5 90.2 104.3 92.5 93 .1 Mean Y i e l d 83 . 7 97 .0 103.4 74 .4 123 .6 129 .6 % N i t r o g e n 1 .21 1. 6 7 2 .0 6 i.2i>.. 1.72 2 .10 % N i t r o g e n 1 .47 1 .63 1.94 1 .53 1 .69 1 .85 C l i p #7 (Late Summer) 19 7 0 1 52 .4 82. 8 94.2 141.1 105.8 117 .2 Blocks 2 56 . 6 74. 5 105.3 82.9 69.6 118 .7 3 111 .1 103. 5 72..5 104.5 75.2 95 .8 Mean Y i e l d 73 .4 86. 9 90.7 109.5 83.5 110 .6 % N i t r o g e n 1 .10 1. 48 1.57 1.14 1.57 2 .08 H cn Appendix Id. Hamilton Common: Yields and Percent Nitrogen Outside the Fenced Area (1969) Clip #1 (Early Spring) Fertilizers Applied (Kg/ha) F a l l Spring 0 168 336 0 168 336 1 20.9 Blocks 2 2.1 102.8 147.4 3 96.3 38.5 30.5 Mean Yield 32.8 37.1 66.3 % Nitrogen 0.95 0.96 1.06 . Clip #2 (Early Summer) Fer t i l i z e r s Applied (Kg/ha) ' F a l l Spring 0 168 336 0 168 336 1 95.6 134.7 120.1 87.5 106.8 38.9 Blocks 264.2 142.2 65.6 58.6 80.0 97.2 3 61.7 92.5 23.2 66.9 51.5 59.3 Mean Yield 73.8 123.1 69.6 71.0 79.4 65.1 % Nitrogen 2.01 2.35 2.78 2.11 2.61 2.55 Clip #3 (Late Summer) Clip #4 (Autumn) Fertil i z e r s Applied (Kg/ha) F a l l Spring ,0 168 336 0 168 336 1 20.6 36.7 38.1 42.3 23.5 7.26 Blocks 2 54.3 48.6 54.5 36.8 58.8 54.7 3 46.1 36.6 69.1 56.9 24.8 71.5 Mean Yield 40.3 40.6 53.9 45.3 35.7 66.3 % Nitrogen 1.23 1.52 1.80 0.86 1.71 2.82 Blocks Mean Yield % Nitrogen Fe r t i l i z e r s Applied (Kg/ha) F a l l Spring 0 168 336 0 168 336 93.2 101.5 106.8 84.4 28.6 79.5 26.3 39.3 35.3 127.4 107.7 65.6 52.4 102.8 80.3 63.1 0.72 1.43 2.25 0.96 88.8 76.5 41.0 20.1 63.3 105.6 64.4 67.4 1.51 2.00 APPENDIX I f . Minnie Lake: Y i e l d s and Percent N i t r o g e n Inside the Fenced Area C l i p #1 ( E a r l y Spring) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) F a l l S pring C l i p #2 ( E a r l y Summer) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) F a l l S p r i n g 0 168 336 0 168 336 0 168 336 0 168 336 1 77 .8 64.5 64.1 1 35 . 3 63 .9 81.8 18 .9 32.2 20 .1 Blocks 2 69 .4 56.8 29.0 Blocks 2 20 .3 50 .5 55.5 34 .9 36.1 34 .6 3 36 .3 38.0 39.5 3 18 .6 38 .4 85.6 32 .2 27.0 43 .6 Mean Y i e l d 61 .2 53.1 44 . 2 Mean -Y i e l d 24 .7 50 .9 74.3 28 .7 31.8 32 .8 % Ni t r o g e n 0 .81 1.36 1.27 % N i t r o g e n 0 . 79 1 .38 2 . 39 0 .80 1.69 2 .53 C l i p #3 (Late Summer) 1969 C l i p #4 (Autumn) 1969 1 20 .5 63.5 85.1 18.4 37.2 48. 3 1 25 .6 74 .8 46 .7 17 .9 39.4 54 .5 Blocks 2 28 .8 58.5 105.9 28.0 43.3 35. 1 Blocks 2 45 .6 92 .7 75.9 23 .6 33.8 52 .5 3 26 .7 90.2 63.8 23.5 32.0 71. 4 3 32 .4 131 .2 96.6 28 .5 44.0 45 .1 Mean Y i e l d 25 .3 70.7 84.9 23.3 37.5 51. 6 Mean Y i e l d 34 .5 99 .6 73.1 23 .3 39.1 50 .7 % N i t r o g e n 0 .95 1.40 1.98 0.92 1.90 2. 31 % N i t r o g e n 0 .99 1 .62 1.65 0 .76 1.74 1 .86 C l i p #5 ( E a r l y Spring) 1970 C l i p #6 ( E a r l y ' Summer) 1970 1 53 .1 135.6 142.7 173.5 156.5 275. 3 1 51 .0 109 .8 131.6 40 .8 93.8 •10 8 .8 Blocks 2 51 .4 109.0 150.9 63.6 92.3 83. 7 Blocks 2 39 .4 70 .6 96.6 45 .0 147.8 149 .0 3 50 .7 169.0 138.8 65.2 163.2 103. 3 3 30 .5 58 .5 122.3 39 .4 9 0.4~ 116 .1 Mean Y i e l d 51 .7 137.9 144.1 100.7 137.3 154. 1 Mean Y i e l d 40 . 3 79 .6 116 .8 41 .7 110.7 124 .6 % Ni t r o g e n 1 .13 1.98 1.88 0.79 1.87 1. 85 % N i t r o g e n 1 .24 1 . 37 2.04 1 .20 1.78 2 .14 C l i p #7 (Late Summer) 19 7 0 1 28 .5 128.7 135. 5 23.1 133.2 131. 7 Blocks 2 69 .6 104.1 226 .8 42.6 137.9 169. 9 3 44 .6 86.4 101.9 28.6 97.1 167. 3 Mean Y i e l d 47 .6 106.4 54.8 31.5 122.7 156. 3 % N i t r o g e n 1 .10 1.46 1.86 1.07 1.74 2. 11 M CO Appendix l g . Minnie Lake: Yields and Percent Nitrogen Outisde the Fenced Area (1969) Clip #1 (Early Spring) Clip #2 (Early Summer) Fertilizers Applied (Kg/ha) F a l l Spring 0 168 336 0 168 336 1 39.0 27.3 38.6 Blocks 2 135.4 45.2 75.4 3 9.4 17.6 53.4 Mean Yield 61.3 30.0 55.8 % Nitrogen 0.72 1.40 1.05 Blocks 1 2 3 Mean Yield % Nitrogen Fertilizers Applied (Kg/ha) F a l l Spring 0 168 336 0 168 336 9.8 13.8 9.5 11.0 34.9 26.1 41.7 34.2 0.80 1.55 21.5 25.9 59.4 35.6 2.37 15.9 21.4 17.0 18.1 0.81 19.1 40.4 23.1 24.8 17.7 34.5 20.0 33.2 1.70 2.87 Clip #3 (Late Summer) Clip #4 (Autumn) 1 2 3 Blocks Mean Yield % Nitrogen Ferti l i z e r s Applied (Kg/ha) F a l l Spring 0 168 336 0 168 336 15.8 37.5 18.1 24.1 1.41 17.5 44.4 36.8 32.9 1.02 42.8 32.1 41.7 38.9 1.62 17.7 21.3 19.9 19.6 1.12 30.0 20.4 30.9 27.1 2.06 12.2 37.6 60.0 36.6 1.97 Blocks 1 2 3 Mean Yield % Nitrogen F e r t i l i z e r s Applied (Kg/ha) F a l l Spring 0 168 336 0 168 336 11.4 14.6 14.0 13.3 7.0 40.7 23.8 23.8 8.7 29.6 15.2 17.8 19.0 12.8 7.6 13.1 1.04 1.92 1.84 1.37 12.0 20.4 4.4 17.3 10.9 3.9 9.1 13.9 2.44 2.23 APPENDIX l h . P a r a d i s e : Y i e l d s and P e r c e n t N i t r o g e n I n s i d e the Fenced A r e a C l i p #1 ( E a r l y S p r i n g ) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) F a l l S p r i n g 0 336 0 336 C l i p #2 ( E a r l y Summer) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) F a l l S p r i n g 0 336 0 336 1 18 .5 15.4 1 25 .7 10.1 20.0 20.0 B l o c k s 2 13 .6 15.3 B l o c k s 2 31 .8 8.7 27.8 9.2 3 10 .4 3.2 3 14 .9 11.4 17 .8 22.4 4 13 .6 8.3 4 22 .7 8.9 20.5 18 .1 Mean Y i e l d 14 .0 10.6 Mean Y i e l d 23 .8 9.8 21.5 17.4 % N i t r o g e n 2 .47 3.28 % N i t r o g e n 2 .00 3.21 1.88 2.90 C l i p #3 ( L a t e Summer) 1969 C l i p #4 (Autumn) 196 9 1 22 .1 21.5 20.1 22 . 3 1 3 .8 14 .0 12 .5 18.9 B l o c k s 2 22 .0 13.7 31. 6 18.8 B l o c k s 2 15 .0 45.0 8.3 21.1 3 15 .3 11.6 14.6 37.5 3 12 .9 22.8 7.3 31.7 4 24 .7 24.9 24. 5 32.4 4 16 .4 15.8 26.7 14.1 Mean Y i e l d 21 .0 17.9 22.7 27.8 Mean Y i e l d 12 .0 24 .4 13.7 21.5 % N i t r o g e n 1 .44 2.62 1.19 2 .45 % N i t r o g e n 0 . 50 1.27 0.51 1.41 C l i p #5 ( E a r l y S p r i n g ) 1970 C l i p #6 ( E a r l y ' Summer) 19 70 1 29 .9 10.7 - 7.6 1 15 .6 8.7 20.0 29.2 B l o c k s 2 15 .1 34.7 30.3 57.2 B l o c k s 2 32 .2 13.9 26.3 41.6 3 14 .9 5.1 - 36.6 3 26 .5 14.3 33.4 4 25.4 26.6 29.6 4 16 .7 14 .9 27.2 Mean Y i e l d 20 .0 19.0 28.5 38 . 8 Mean Y i e l d 23 .9 16 .5 18.9 32.9 % N i t r o g e n 1 .19 1.68 1.14 1.61 % N i t r o g e n 1 .30 1.87 1.12 1.81 C l i p #7 ( L a t e Summer) 1970 C l i p #8 (Autumn) 1970 1 34.1 17.9 20.2 1 14 .4 32.8 29.9 40.3 B l o c k s 2 26 .5 24.8 26 .0 27.8 B l o c k s 2 31 .5 71.6 31.0 44.2 3 15.1 24.1 37.4 3 31.2 22 .1 46 .3 4 20.8 16 .5 46.1 4 26 .9 26.1 32 .4 Mean Y i e l d 26 .5 23.7 21.1 32.9 Mean Y i e l d 23 .0 40.6 27.3 40.8 £ % N i t r o g e n 0 .99 1.85 1.15 1.74 % N i t r o g e n 1 .11 1.46 1.08 1.32 ° Appendix l i . Paradise: Yields and Percent Nitrogen Outside the Fenced Area (1969) Clip #1 (Early Spring) Fertilizers Applied (Kg/ha) F a l l Spring 0 336 0 336 1 26.6 7.1 Blocks 2 33.8 12.2 3 29.7 39.7 4 21.3 16.9 Mean Yield 27.9 19.0 % Nitrogen 2.14 3.68 Clip #2 (Early Summer) Fert i l i z e r s Applied (Kg/ha) F a l l Spring 0 336 0 336 1 20.5 8.6 18.5 14.3 2 33.6 8.0 31.7 14.3 3 20.5 8.9 13.1 26.7 4 29.1 4.8 22.6 13.4 Mean Yield 25.9 7.6 21.5 17.2 % Nitrogen 1.73 2.79 1.54 2.59 Blocks Clip #3 (Late Summer) Blocks F e r t i l i z e r s Applied (Kg/ha) F a l l Spring .0' 336 0 336 1 22.7 6.4 2 3 4 Mean Yield % Nitrogen 12.3 13.3 13.8 13.5 19.9 16.9 17.8 12.5 0.96 2.63 22.1 22.0 15.3 24.7 21.0 1.14 13.9 24.0 12.1 26.0 19.0 2.27 Clip #4 (Autumn) Fertil i z e r s Applied (Kg/ha) F a l l Spring Blocks Mean Yield % Nitrogen 0 336 0' 336 1 14.2 2.2 3.8 9.1 2 7.2 0.8 15.0 2.6 3 11.8 2.2 12.9 6.4 4 19.3 2.4 16.4 5.7 [ 13.1 1.9 12.0 6.0 i 1.51 1.14 0.54 1.01 APPENDIX l j . Dew Drop: Y i e l d s and Percent N i t r o g e n I n s i d e the Permanently Fenced Area C l i p #1 ( E a r l y Spring) 1969 C l i p #2 ( E a r l y Summer) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) F e r t i l i z e r s A p p l i e d (Kg/ha) 0 F a l l S pring 168 336 0 168 336 0 F a l l 168 336 Spri n g 0 168 336 1 29 .0 54.9 56.4 1 17 .6 71.2 117.3 20.6 40.1 52 .1 Blocks 2 20 .8 51.2 59.7 Blocks 2 35 .6 124.2 74.9 56.1 63.7 51 .4 3 7 .4 75.1 53.3 3 43 .9 73.5 130.2 25.2 48.6 42 .1 Mean Y i e l d 19 .1 60.4 56.5 Mean Y i e l d 32 .4 89.6 107.5 34.0 50.8 48 .5 % Nitrogen 0 .85 2.59 1.74 % Ni t r o g e n 1 .13 2.14 3.10 1.11 2.2 3 2 .3: C l i p #3 (Late Summer) 1969 C l i p #4 (Autumn) 1969 1 38 .6 107.9 124.9 56.6 80.5 98.1 1 38 .3 83.1 143.4 44.8 67.9 87 .0 Blocks 2 42 .2 173.0 130.8 71.7 119.6 78.8 Blocks 2 50 .7 69.1 118.3 28.9 60.2 78 .9 3 22 .8 126.5 125.9 24.8 83.5 78.2 3 37 .6 98.1 136.0 40.4 73.3 64 . 1 Mean Y i e l d 34 .5 135.8 127.2 51.0 94.5 85.0 Mean Y i e l d 42 .2 83.4 132.6 38.1 67.1 76 .7 % Ni t r o g e n 0 .82 1.80 2.28 0.80 1.83 2.13 % N i t r o g e n 0 .41 1.45 1.34 0.55 1.53 0 .61 C l i p #5 ( E a r l y Spring) 1970 C l i p #6 ( E a r l y Summer) 1970 1 33 .8 71.6 67.5 47.0 80.2 92.0 1 24 .0 33.0 61.3 29.0 52.6 73 .8 Blocks 2 18 . 3 53.7 67.0 65.2 68.7 85.8 Blocks 2 48 .1 61.2 68.8 38.3 51.4 95 . 3 3 24 .2 31.2 57.5 38.0 77.9 86.2 3 31 .6 52.6 73.0 36.5 65.1 51 .9 Mean Y i e l d 25 .4 52.2 64.0 50.1 75.6 88. 0 Mean Y i e l d 34 .6 48.9 67.7 34.6 56.4 73 .7 C l i p #7 (Late Summer) 1970 1 33 , .0 39 . ,9 64, . 3 43, .2 52, ,2 69 , .5 Blocks 2 25. .5 52. , 8 47 , .8 25 , .6 41. , 7 52 , 9 3 24, ,6 70 , 2 59 , .5 29, .9 38 , 5 49 , .5 Mean Y i e l d 27 , .7 54 , .3 57, .2 32, ,9 44. ,1 57. , 3 ro -APPENDIX l k . Dew Drop: Y i e l d s and Percent N i t r o g e n Inside Drop Fence •Clip #1 ( E a r l y Spring) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) F a l l Spring 168 336 0 168 336 C l i p #2 ( E a r l y Summer) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) F a l l S pring 168 336 0 168 336 1 17. 6 8 2.0 6 3.0 1 35 .4 96.3 112.4 35.4 47 . 0 54 .4 Blocks 2 29 . 8 64.6 109 . 7 Blocks 2 41 . 2 94.5 117.6 31.3 44 . 7 85 . 3 3 30. 7 56.3 64.0 3 42 . 1 139.7 87.6 26.2 71. 4 57 .6 Mean Y i e l d 26. 0 67.6 78.9 Mean Y i e l d 39 .6 110.2 105.9 30.9 54. 4 65 . 8 % N i t r o g e n i . 56 3.93 4.33 % Nitrogen 1 .15 2.82 2.79 1.21 2 . 71 2 .3 C l i p #3 (Late Summer) 1969 C l i p #4 (Autumn) 1969 1 30. 9 77.5 75.4 31.1 78.0 55 .4 1 35 .3 128.2 114.5 36.1 69 . 3 78 . I Blocks 2 32 . 6 61.9 89.1 30.6 63.9 71 .9 Blocks 2 36 .2 145.5 133.9 45.7 76. 0 70 .5 3 43. 7 76.1 83.4 42.9 59.2 61 . 9 3 32 .5 122.5 129.0 44.0 80 . 3 116 .2 Mean Y i e l d 35. 7 71.8 82.6 34.9 67.0 63 .1 Mean Y i e l d 36 .3 132.1 125.8 41.9 75 . 2 88 . 3 % N i t r o g e n 0. 83 1.96 2.12 0.86 2.19 2 .32 % N i t r o g e n 0 .52 1.14 0.45 0.49 1. 45 0 .5, C l i p #5 ( E a r l y Spring) 1970 C l i p #6 ( E a r l y Summer) 1970 1 30 . 0 75.8 73.3 44.0 68.4 88 . 6 1 26 .1 57.0 69.0 27.2 61. 8 67 .6 Blocks 2 70. 0 73.8 70.3 68.1 73.2 79 .8 Blocks 2 31.0 53.0 76.9 39.7 37. 3 76 .3 3 36 . 5 69.5 93.8 33.7 82.4 97 .6 3 79 .0 60.0 66.6 30.5 53 . 9 54 .3 Mean Y i e l d 45. 5 73.0 79.1 48.6 75.1 88 .7 Mean Y i e l d 45 .4 56.7 70.8 32.5 51. 0 66 .1 C l i p #7 (Late Summer) 19 7 0 1' 26, . 3 53 , 3 71. 1 . J. 20. ,6 73 , .3 64 , .3 Blocks 2 25, .4 48. ,8 54 , .8 25. .6 39. , 3 39 , .3 3 27, .7 69 . ,7 90 , 9 31. , 3 79. ,8 70, .7 Mean Y i e l d 26, .5 57. ,3 72. , 3 25. ,8 64. ,1 59, .5 ro co Appendix 1 1 . Dew Drop: Yields-and=Pereent-Nitrogen=-Outside the Fenced Area (1969) .Clip #1 (Early Spring) 'Clip #2 (Early Summer) .Fertilizers Applied (Kg/ha) F e r t i l i z e r s Applied (Kg/ha) .0 F a l l 168 336 0 -Spring 168 336 ,0 •Fall 168 336 0 Spring 168 336 ,1 14.8 16.1 9.1 1 4.5 4.8 3.2 6.1 6.8 3.2 Blocks 2 6.7 4.7 2.7 .Blocks 2 6.9 5.1 1.8 5.7 7.5 6.9 3 7.4 4.5 5.2 3 27.4 2.7 1.7 5V1 5.5 5.6 Mean Yield 9.6 8.4 5.7 Mean Yield 12.9 4.2 2.2 5.6 6.6 5.2 Clip #3 (Late Summer) Fertilizers Applied (Kg/ha) Clip #4 (Autumn) Fe r t i l i z e r s Applied (Kg/ha) 0 F a l l 168 336 0 Spring 168 336 0 F a l l 168 336 0 Spring 168 336 1 8.3 2.8 2.7 9.6 4.4 1.3 1 6.1 7.1 6.3 10.1 9.9 8.1 Blocks -2 3.8 2.4 1.8 6.7 2.1 3.5 Blocks "2 10.5 10.0 9.0 7.7 8.3 11.1 3 5.5 2.3 0.9 8.5 1.3 4.3 3 9.9 7.5 6.6 7.9 6.3 9.9 Mean Yield 4.8 2.5 1.8 8.3 2.6 3.0 Mean Yield 8.8 8.2 7.3 8.6 8.2 9.7 APPENDIX lm. Loch Lomond: Y i e l d s and Percent N i t r o g e n I n s i d e the Fenced Area C l i p #2 ( E a r l y Summer) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) Spr i n g 0 336 C l i p #3 (Late Summer) 1969 F e r t i l i z e r s A p p l i e d (Kg/ha) Spr i n g 0 336 Blocks Mean Y i e l d % N i t r o g e n Blocks Mean Y i e l d % N i t r o g e n Blocks Mean Y i e l d % N i t r o g e n Blocks Mean Y i e l d % Nitrogen 1 2 3 4 26.4 21.0 15.2 40 .2 25.7 1. 27 30, 54, 47 38 42 2, 2 9 4 6 8 37 C l i p #4 (Autumn) 1969 1 2 3 4 6.1 17.7 22 . 3 15.3 15.4 0.53 46.7 4.8 25.0 8.2 21.2 1.10 C l i p #6 ( E a r l y Summer) 1970 1 2 3 4 54.1 13 3.3* 82.2 89.9 0.83 41.7 74.4 28.5 61.1 51.4 0.93 C l i p #8 (Autumn) 1970) 1 54.8* 78.9 2 50.5 45.2 3 -44. 0 10 3 .3* 4 22.6* 54.9 42.5 70.6 0.79 0.93 Blocks Mean Y i e l d % N i t r o g e n Blocks Mean Y i e l d % N i t r o g e n Blocks Mean Y i e l d % N i t r o g e n * A r c t o s t a p h y l o s 1 2 3 4 31.0 32 . 3 31.0 23.5 15 20 24 0.89 27 16 24 2 2 .1 5 38 C l i p #5 ( E a r l y Spring) 1970 1 2 3 4 89.9* 153.5* 73.8 35 .5 88.2 0 .85 59.8 48.1* 89.6 93.6 80.3 1.09 C l i p #7 (Late Summer) 19 7 0 1 2 3 4 45.5 86.8* 28.0 45.2* 51.4 0.79 55.4 58.0 33.1* 4 5.0* 47.9 1.06 H ro cn Appendix In.. Loch Lomond: Yields and Percent Nitrogen Outside the Fenced Area - (Spring Fertilized only) - 1969 •Clip #2 (Early Summer) Fertilizers Applied (kg/ha) 0 336 Blocks 1 2 3 4 Mean Yield % Nitrogen 26.4 47.1 18.8 23.6 29.1 1.27 31.1 30.0 32. 21. ,9 .9 29.0 2.37 Clip #4 (Autumn) Fertilizers Applied (Kg/ha) 0 336 Blocks 1 2 3 4 Mean Yield % Nitrogen 20.1 7.9 15.9 25.8 17.4 0.53 4.2 9.6 14.2 25.0 13.3 1.10 Clip #3 (Late Summer) Fer t i l i z e r s Applied (kg/ha) 0 336 Blocks 1 2 3 4 Mean Yield % Nitrogen 27.0 9.9 9.5 11.2 14.4 0.89 7.6 8.1 18.0 23.7 14.4 2.38 CD Appendix lo. Average Percent Nitrogen per Treatment (1969) Inside Fenced Area Outside Fenced Area F e r t i l i z e r Application (Kg/ha) •Fall .Spring F a l l Spring Clipping Date .0 168 336 ,0 168 336 0 168 336 0 168 '336 Early Spring 1.07 2.31 2.05 Early Summer 1.25 1.75 2.00 1.12 1.21 Late Summer 1.02 1.50 1.75 1.08 1.67 Autumn 0.69 1.50 1159 0.77 1.63 Quilchena 1.24 1.60 1.79 0.86 1.63 1.65 1.11 1.85 2.31 1.91 1.54 1.86 2.43 2.10 2.32 1.71 a . 58 Is 56 2.04 1.29 2 .15 1.74 1.84 1.92 Hamilton Common Early Spring 0.86 1.47 2.15 0.95 0.96 1.06 Early Summer 1.34 1.47 1.58 1.06 1.97 2.30 2.01 2.35 2.78 2.11 2.61 2.55 Late Summer 0.80 1.87 1.66 1.19 1.51 1.56 1.23 1.52 1.80 0.86 1.71 2.82 Autumn 0.88 1.24 1.08 0.85 1.41 1.90 0.72 1.43 2.25 0.96 1.51 2.00 biinriie Lake Early Spring 0.81 1.36 1.27 0.72 1.40 1.05 Early Summer 0.79 1.38 2.39 0.80 1.69 2.53 0.80 1.55 2.37 0.81 1.70 2.87 Late Simmer 0.95 1.40 1.98 0.92 1.90 2.31 1.41 1.02 1.62 1.12 2.06 1.97 Autumn 0.99 1.62 1.65 0.76 1.74 1.86 1.04 1.92 1.84 1.37 2.44 2.23 Paradise Early Spring 2.47 Early Summer 2.00 Late Summer 1.44 Autumn 0.50 3.28 3.21 2.62 1.27 1.88 1.29 0.51 2.90 2.45 1.41 2.14 1.73 0.96 0.51 3.68 2.79 2.63 1.14 1.54 1.14 0.54 2.59 2.27 1.01 Early Spring Early Summer Late Summer Autumn Inside Permanently Fenced Area Dew Drop 0.85 1.13 0.82 0.41 2.59 2.14 1.80 1.45 1.74 3.10 2.28 1.34 1.11 0.80 0.55 2.33 1.83 1.53 2.33 2.13 0.60 ,56 15 ,83 50 Inside Drop-Fenced Area 3.93 4.33 2.82 1.96 1.14 2.79 2.12 0.45 1.21 0.86 0.49 2.71 2.19 1.46 2.33 2.32 0.55 Early Spring Early Summer Late Summer Autumn 1.27 0.89 0.53 Loch Lomond 2.37 2.38 1.10 1.27 0.89 2.53 2.37 2.38 1.10 Appendix lp Wawn Quarter: Counts and Clipping Weights (1969) Date • •Astragalus counts (#/m2) 2 Forage Weights (g/m Heavily grazed side (a) Lightly grazed (b) Astragalus Grass (a) (b) (a) (b) 27/5 20/6 27/5 20/6 20/6 20/6 16/7 9/7 Treatment .Date Replicate Kg/ha nitrogen F a l l I 0 .7 . 8 10 4.4 1.8.3 11D.5 196.7 168 1 2 14 26 0.4 14.1 465.1 324.8 336 0 1 16 22 1.0 38.0 297.5 250.2 II 0 0 2 8 8 0.4 16.7 106.7 102.5 168 % - 6 6 13 0.4 7.4 259.9 247.8 336 3 9 7 11 2.6 9.2 324.8 182.5 III 0 17 31 8 11 20.7 28.4 34.7 138.1 168 2 6 14 21 2.4 27.5 310.4 398.1 336 1 5 7 11 1.3 31.9 221.0 272.7 IV 0 7 12 14 23 5.8 39.3 74.2 166.6 168 8 10 9 10 2.0 11.0 249.6 230.1 336 0 8 • 13 32 1.7 34.2 342.3 261.0 Spring I 0 13 21 11 15 16.2 18.2 29.0 177.0 168 3 6 15 25 2.1 18.6 105.3 351.3 336 9 12 5 2 5.5 2.2 86.3 196.0 II 0 3 13 9 8 4.3 9.5 76.5 122.1 168 7 14 5 6 15.4 14.6 59.9 220.1 336 9 12 *3 *5 6.3 *8.7 39.6 *138.6 III 0 5 16 9 13 11.8 4.9 40.6 112.9 168 7 16 8 13 12.1 16.4 41.7 251.4 336 9 9 1 5 1.2 4.7 40.8 160.6 IV 0 5 12 18 23 13.3 51.2 143.8 102.6 168 7 11 8 13 2.3 11.4 104.2 154.3 336 2 10 11 13 4.2 10.4 145.2 102.8 * h m bare rock in 1 m quadrat. Appendix 2 a Soils of the Study Sites. (Farstad 1969) Quilchena Soil Type - Loam. Classification - Solodic brown - moderate permeability Horizon Ahe Ab Btnj Csk Depth (cm) PH Root distribution Texture % Coarse fragments Dry colour 0-15 7 pl e n t i f u l l -fine loam, weak granular 20 greyish brown 15-20 7-5 few fine s i l t y clay loam 25 light brownish-grey 20-41 8 few fine clay . 50 light brownish-grey 41+ clay loam light brownish-grey 130. Appendix 2b. Soils of the Study Sites. (Farstad 1969) Hamilton Common Classification - Solodic black. Moderate permeability Horizon Ah Ae Bt Ck Depth (cm) pH Root distribution Texture % coarse fragments Dry colour 0-25 6.5 abundent, fine loam, medium granular very dark brownish-grey 25-37 7 p l e n t i f u l l -fine gravelly loam 10 dark grey-ish brown 37-81 7.5 few fine gravelly, s i l t y , clay loam 20 brownish grey Sl-i-gravelly, clav loam 40 light greyish brown. Aopendix 2c Soils of the Study Sites (Farstad 1969) Minnie Lake Classification - Eluviated dark brown. Moderately fast permeability • Horizon Ae Bt Csk Depth (cm) pH Root Distribution Texture % Coarse fragments Dry Colour 0-20 6 p l e n t i f u l l -fine gravelly loam 20 dark grey-ish brown 20-43 7 few fine very gravelly loam 50 greyish brown 43+ 8 few fine very gravelly clay loam 50 light grey-ish brown Appendix 2d Soils of the Study Sites (Farstad 1969) Loch Lomond Classification - Orthic grey wooded to Orthic dark brown. High permeability Horizon L-H A B B Depth (cm) pH Root Dis-tribution Texture % coarse fragments Dry colour 12-0 (mat of par-t i a l l y decom-posed needles and roots) 0-12 abundant fine sandy loam small gravel greyish brown 12-25 6.5 abundent loam small gravel dark brown 25-50 50-75+ p l e n t i f u l l p l e n t i f u l l gravelly loam 40 grey to brownish-grey gravelly loamy sand 50-60 olive grey The Paradise, Dew Drop and Wawn Quarter sites have yet to be surveyed. 133. APPENDIX 3a. QUILCHENA % S o i l Moisture at Time o f C l i p p i n g C l i p (1969) # 1 2 3 4 F e r t i l i z e r S o i l Sample Treatment Depth (cm) Kg/ha F a l l A p p l i e d S p r i n g A p p l i e d 0- 7.6 6.13 7. 89 2.18 5.23 0 7.6-15.2 8.37 10.16 2.31 6.32 15.2-30.5 7.64 10.00 2.65 4.49 0- 7.6 7.21 5.15 1.21 6.53 168 7.6-15.2 8.59 9.40 2. 36 6.74 15.2-30.5 6. 79 9.28 2.82 3. 70 0- 7.6 8. 21 6. 70 1. 32 6.93 336 7.6-15.2 7.82 10.48 1.80 5.46 15.2-30.5 7.57 10.17 2.04 3.54 0- 7.6 7.98 0.90 4. 56 0 7.6-15.2 9.84 2.28 7.06 15.2-30.5 9.35 2.59 3.42 0- 7.6 8.44 0.58 6.17 168 7.6-15.2 9.91 2.64 5.48 15.2-30.5 8.23 2.81 4.24 0- 7.6 8.10 0.58 6.33 336 7.6-15 .2 9.11 2.10 5. 79 15. 2-30.5 8.11 , 2.57 3.43 134. APPENDIX 3b. HAMILTON COMMON % S o i l Moisture a t Time o f C l i p p i n g C l i p (1969) # F e r t i l i z e r Treatment Kg/ha S o i l Sample Depth (cm) F a l l A p p l i e d 0- 7.6 25.14 20.15 3.28 17.00 0 7.6-15.2 19.57 14.61 3.33 10.98 15.2-30.5 22737 11.51 3.52 6.27 0- 7.6 21.68 19.75 2.54 15.44 168 7.6-15.2 20.62 18.87 4. 39 11. 78 15.2-30.5 18.01 12.90 3.71 6.23 0- 7.6 22.64 18.23 3.15 15.41 336 7.6-15.2 19.66 16.28 3.87 11. 89 15.2-30.5 18.70 7.62 3.89 5.47 Sp r i n g A p p l i e d 0- 7.6 20. 32 3. 39 15.53 0 7.6-15.2 14.42 4.03 10.83 15.2-30.5 5.14 4.21 8. 84 0- 7.6 19.01 3.03 13.26 168 7.6-15.2 15.90 3.70 11.50 15.2-30.5 9.27 3.98 6.48 0- 7.6 17.91 1.81 14.6 8 336 7.6015.2 15. 37 3.91 12.87 15.2-30.5 9.62 3. 87 7.32 135. APPENDIX 3c • MINNIE LAKE S o i l Moisture at Time of C l i p p i n g C l i p (1969) # 1 2 3 4 F e r t i l i z e r S o i l Sample Treatment Depth (cm) Kg/ha ( 0- 7.6 14.01 8.95 1. 75 13.74 ( 0 7.6-15.2 14.35 11.49 2. 00 14.12 J 15.2-30.5 13.11 5.09 2. 79 8.12 F a l l J A p p l i e d , 0- 7.6 15.28 . 7.65 0. 89 9.49 168 7.6-15.2 14.77 8.22 2. 41 11.74 15.2-30.5 12.88 4.24 3. 38 10.21 ( 0- 7.6 14.03 6.74 0. 78 6.66 ( 336 7.6-15.2 14.97 9.80 2. 32 11.20 ( 15.2-30.5 11.99 5.05 3. 32 10. 30 ( 0- 7.6 8.94 1. 59 8.53 ( 0 7.6-15.2 10.63 3. 20 14.38 J 15.2-30.5 5.12 3. 46 9.47 Sp r i n g , A p p l i e d , 168 0- 7.6 7.6-15.2 15.2-30.5 6.53 10.05 5. 04 0. 2 . 3. 97 40 43 12.44 11.78 2.63 ( 0- 7.6 8.23 0. 87 11.44 ( 336 7.6-15.2 9.95 2. 34 11. 28 ( 15.2-30.5 4.62 3. 42 7.02 136. APPENDIX 3d. PARADISE % S o i l M oisture at Time o f C l i p p i n g C l i p (1969) # 1 2 3 4 F e r t i l i z e r S o i l Sample Treatment Depth (cm) Kg/ha ( 0- 7.6 13. 31 26.57 10. 59 28.89 ( 0 7.6-15.2 9.71 15.75 7.38 17.20 F a l l J 15.2-30.5 9.98 11. 89 5.25 11. 83 A p p l i e d £ 0- 7.6 10.45 27.02 9.06 28.47 ( 336 7.6-15.2 7. 84 22.91 8. 35 11.93 < 15.2-30.5 9.46 10.92 7.82 9.53 ( 0- 7.6 23.75 11. 33 28. 85 ( 0 7.6-15.2 21.10 7.31 13. 24 Spring £ 15.2-30.5 12.21 6.74 9.33 A p p l i e d £ 0- 7.6 27. 33 12. 34 29. 30 ( 336 7.6-15.2 17.97 8.27 13.16 ( 15.2-30.5 11.48 6.79 9.60 APPENDIX 3 e . DEW DROP % S o i l Moisture a t Time o f C l i p p i n g C l i p (1969) # 1 2 3 4 F e r t i l i z e r Treatment Kg/ha S o i l Sample Depth (cm) : 0 7 15 0- 7.6 .6-15.2 .2-30.5 19. 20. 16. 79 68 53 19.46 19.94 14.68 5. 10. 10. 90 52 79 16. 03 13.64 16.65 F a l l A p p l i e d ( : 168 7 15 0- 7.6 .6-15.2 .2-30.5 18. 22. 17. 07 15 42 19. 38 20.04 16.04 6. 10. 10. 64 58 25 20. 36 12.64 11.70 336 7 15 0- 7.6 .6-15.2 .2-30.5 22. 17. 17. 42 82 46 20.20 20.82 18. 00 6. 9. 10. 44 29 35 20. 87 16.14 9.12 : o 7 15 0- 7.6 .6-15.2 .2-30.5 19.18 19.57 12.52 6. 10. 11. 75 21 08 17.39 14.11 11.72 S p r i n g A p p l i e d ( 168 7 15 0- 7.6 .6-15.2 .2-30.5 21.12 20.28 16. 36 6. 9. 9. 00 23 18 12.28 14.77 12.95 336 7 15 0- 7.6 .6-15.2 . 2-30.5 19.08 18. 55 20.28 6. 10. 10. 89 25 31 20.67 17.46 15. 39 138. APPENDIX 3f . LOCH LOMOND % S o i l M oisture at Time o f C l i p p i n g C l i p (1969) 1 2 3 4 F e r t i l i z e r S o i l Sample Treatment depth (cm) Kg/ha ( 0- 7.6 29.71 32.44 18.16 28. 35 ( 0 7.6-15.2 19.52 19. 73 12. 21 20.76 S p r i n g , 15.2-30.5 18. 31 18.86 10.37 15.10 XT O f A p p l i e d , 0- 7.6 28.69 21. 35 27.54 ( 336 7.6-15.2 17. 22 10. 52 21.08 ( 15.2-30 .5 17.10 8.67 12.59 139. LITERATURE CITED Anderson, H.W. and S.P. G e s s e l (1965). E f f e c t s o f nursery f e r t i l i z a t i o n on o u t - p l a n t e d Douglas F i r . Tree P l a n t . Notes No. 73(21). Armson, K.A. (1963). Seasonal p a t t e r n s o f n u t r i e n t a b s o r p t i o n by f o r e s t t r e e s . F o r e s t s o i l r e l a t i o n s h i p s i n North America. Oregon State U n i v e r s i t y P r e s s , C o r v a l l i s , Oregon, Ed. T.C. Youngberg, p.65. Armson, K.A. (1967). Review o f f o r e s t f e r t i l i z a t i o n i n Canada. F o r e s t r y Branch Departmental P u b l i c a t i o n No. 1186 - 1967. Barnes, R.L. and G.W. Bengtson (1968). E f f e c t s o f f e r t i l i z a -t i o n and cover cropping on f l o w e r i n g and on n i t r o g e n and s o l u b l e sugar contents o f s l a s h p i n e . For. S c i . 14 (172). Bear, F.E. (1958). Theory and p r a c t i c e i n the use of f e r t i l i -z e r s . John Wiley and Sons Inc. N.Y. Black, A.L. (1968). N i t r o g e n and Phosphorus f e r t i l i z a t i o n f o r p r o d u c t i o n o f c r e s t e d wheatgrass and n a t i v e grass i n North-Eastern Montana. Agron. J . 60 (213). Bostock, H.S. (1948). Physiography of the Canadian C o r d i l l e r a w ith s p e c i a l r e f e r e n c e to the area north o f the f i f t y -f i f t h p a r a l l e l . Canada Department o f Mines and Resources. G e o l o g i c a l Survey. Memior 247. B r i n k , V.C. and L. F a r s t a d (1949). The physiography o f the a g r i c u l t u r a l areas o f B r i t i s h Columbia. S c i . Agr. 2 9 (273). B r i t i s h Columbia Department of A g r i c u l t u r e (1969). The Beef C a t t l e Industry o f B r i t i s h Columbia. B r i t i s h Columbia Department o f A g r i c u l t u r e ; The Economics Branch, Canada Department of A g r i c u l t u r e ; and the B r i t i s h Columbia Economics and S t a t i s t i c s Branch, Department o f I n d u s t r i a l Development, Trade and Commerce. B r i x , H. and L.F. E b e l l (1969). E f f e c t s o f n i t r o g e n f e r t i l i -z a t i o n on growth, l e a f a r e a , and p h o t o s y n t h e s i s r a t e i n Douglas F i r . For. S c i . 15 (189). B u r z l a f f , D.F., G.W. F i c k , and L.R. Rittenhouse (1968). E f f e c t of n i t r o g e n f e r t i l i z a t i o n on c e r t a i n f a c t o r s o f a western Nebraska range ecosystem. J . Range Mgt. 21 (21). Canada Land Inventory (1970). Department o f Regional Economic Expansion. The Canada Land Inventory r e p o r t s . C a r l i s l e , A., A.H. Brown and E.J. White (1966a). The o r g a n i c matter and n u t r i e n t elements i n the p r e c i p i t a t i o n under-neath a s e s s i l e oak (Quercus petraea) canopy. J . E c o l . 54 (65). C a r l i s l e , A., A.H. Brown and E . J . White (1966b). L i t t e r f a l l , l e a f p r o d u c t i o n , and the e f f e c t s o f d e f o l i a t i o n by T o r t i x  v i r i d a n a i n a s e s s i l e oak (Quercus petraea) woodland. J . E c o l . 54 (87). C a r t e r , J.N., O.L. Bennet and R.W. Pearson (1967). Recovery of f e r t i l i z e r n i t r o g e n under f i e l d c o n d i t i o n s u s i n g N-^. S o i l S c i . Soc. Amer. Proc. 31 (50). Ca y f o r d , J.H. and J.M. J a r v i s (1967). F e r t i l i z i n g w i t h ammonium n i t r a t e improves r e d pine seed p r o d u c t i o n . J . For. 65 (402). Chapman, C.J. and D.M. Brown (1964). C l i m a t i c maps o f the a g r i c u l t u r a l areas o f Canada. Ont. Res. Found. Dept. of Physiog. Chapman,,H.D. and P.F. P r a t t (1961). Methods o f a n a l y s i s f o r s o i i s , p l a n t s and waters. Div. Agr. S c i . U n i v e r s i t y o f C a l i f . C o l e , D.W. and S.P. G e s s e l (1963). Movement o f elements through a f o r e s t s o i l as i n f l u e n c e d by t r e e removal and f e r t i l i z e r a d d i t i o n s . Repr. from Proc. 2nd N. Am. For. S o i l s Conf., Oreg. S t a t e Univ. (95). Co l e , D.W. and S.P. G e s s e l , 1968). Cedar R i v e r Research. A program f o r s t u d y i n g the pathways, r a t e s and processes of e l emntal c y c l i n g i n a f o r e s t ecosystem. Contr. I n s t . For. Prod. Wash. No.4 (54). Co l e , D.W., S.P. G e s s e l and S.F. Dice (1968). D i s t r i b u t i o n and c y c l i n g o f nitrogen,phosphorus, potassium and c a l c i u m i n a second growth Douglas F i r ecosystem. Univ. of Maine P r e s s , p.36. C o l l i n g s , G.H. (1955). Commercial f e r t i l i z e r s . McGraw-Hill Book Co. Inc., Toronto. C o l v i l l e , W.L., L. Chesnin and D.P. M c G i l l (1963). E f f e c t , o f p r e c i p i t a t i o n and long term n i t r o g e n f e r t i l i z a t i o n on n i t r o g e n uptake, crude p r o t e i n , content and y i e l d of bromegrass f o r a g e . Agron. J . 55 (215). Cook, C.W. (1965). P l a n t and l i v e s t o c k responses to f e r t i l i -zed rangelands. B u l l . 544, Agr. Exp. Sta. Utah State U n i v e r s i t y , Logan. Cosper, H.R., J.R. Thomas and A.J. Alsayegh (1967). F e r t i l i -zer and i t s e f f e c t on range improvement i n the northern Great P l a i n s . J . Range Mgt. 20 (216). 141. Cummins, D.G., R.E. Burns and W.W. Smart J r . (1967). E f f e c t s of temperature and s o i l moisture on s i n g l e vs. s p l i t n i t r o g e n a p p l i c a t i o n s t o rye (Secale c e r e a l e L.) f o r a g e . Agron. J . 59 (497). Demarchi, R.A. (1968). Chemical composition of Bighorn w i n t e r f o r a g e s . J . Range Mgt. 21 (385). Doss, B.C., D.A. Ashley, O.L. Bennett and R.M. P a t t e r s o n (1966). I n t e r a c t i o n s o f s o i l m o i s t u r e , n i t r o g e n , and c l i p p i n g frequency on y i e l d and n i t r o g e n content o f c o a s t a l bermuda g r a s s . Agron. J . 5 8 (510). Drawe, D.L. and T.W. Box (1969). High r a t e s o f n i t r o g e n f e r t i l i z a t i o n i n f l u e n c e c o a s t a l p r a i r i e range. J . Range Mgt. 22 (32). Durzan, D.S. and F.C. Stewart (1967). The n i t r o g e n metabolism of P i c e a g l a u c a (Moench.) Voss and Pinus banksiana Lamb, as i n f l u e n c e d by m i n e r a l n u t r i t i o n . Can. J . Bot. 45 (695). D u v a l l , V.L. and J.B. Hilmon (1965). New g r a z i n g r e s e a r c h programs f o r southern f o r e s t ranges. J . Range Mgt. 18 (133). F a r s t a d , L. and a s s o c i a t e s (1969) (unpu b l i s h e d ) . Canada Depart. Agr. S o i l Survey. Freyman, S. and A.L. van Ryswyk (1969). E f f e c t o f f e r t i l i z e r on p i n e g r a s s i n southern B r i t i s h Columbia. J . Range Mgt. 22 (390). F u l t o n , R.J. (1962). S u r f i c i a l Geology, M e r r i t t , B r i t i s h Columbia. Geol. Surv. Can. Map 8 - 1962 (with d e s c r i p t i v e n o t e s ) . F u l t o n , R.J. (1963). S u r f i c i a l Geology, Kamloops Lake, B r i t i s h Columbia. Geol. Surv. Can. Map 8 - 19 6 2 (with d e s c r i p t i v e n o t e s ) . F u l t o n , R.J. (1967). D e g l a c i a t i o n s t u d i e s i n Kamloops r e g i o n an area o f moderate r e l i e f , B r i t i s h Columbia. Geol. S.W. Can. B u l l . 154. G e s s e l , S.P. and A. Shareef (1957). Response o f t h i r t y - y e a r -o l d Douglas F i r to f e r t i l i z a t i o n . S o i l S c i . Soc. Amer. Proc. 21 (236). G e s s e l , S.P. and D.W. Cole (1958). P h y s i c a l a n a l y s i s of f o r e s t s o i l s . F i r s t North American F o r e s t S o i l s Conf. A g r i c . Expt. S t a t i o n , Mich. State Univ., East Lansing. G e s s e l , S.P., K.J. T u r n b u l l and F.T. Tremblay (1960). How to f e r t i l i z e t r e e s and measure response. Nat. P l a n t . Food I n s t . 142. G e s s e l , S.P. and F. B a l c i (1963). Amount and composition o f f o r e s t f l o o r s under Washington c o n i f e r o u s f o r e s t s . Repr. Proc. 2nd N. Am. For. S o i l s Conf., Oregon State Univ., p. 11. G e s s e l , S.F. and D.W. Cole (1965). I n f l u e n c e o f removal of f o r e s t cover on movement of water and a s s o c i a t e d elements through s o i l s . Repr. from J . Am. Water Works Assn., N.Y. 57 (1301). G e s s e l , S.P., T.N. Stoate and K.J. T u r n b u l l (1965). The growth behaviour o f Douglas F i r with nitrogenous f e r t i l i z e r i n western Washington. Res. B u l l . C o l l . For., Univ. Wash. No. 1. G e s s e l , S.P. and G.H. Orians (1967). Rodent damage to f e r t i -l i z e d P a c i f i c S i l v e r F i r i n western Washington. Ecology 48 (694). Graves, J.E. and W.E. McMurphy (1969). Burning and f e r t i l i z a -t i o n f o r range improvement i n c e n t r a l Oklahoma. J . Range Mgt. 22 (165). G r i f f i t h , B.G. (1968). Phenology, growth and f l o w e r and cone p r o d u c t i o n i n 154 Douglas F i r t r e e s on the U n i v e r s i t y Research For e s t as i n f l u e n c e d by c l i m a t e and f e r t i l i z e r . B u l l . 6. U n i v e r s i t y o f B r i t i s h Columbia Fac. For. Haas, H.J. (1958). E f f e c t o f f e r t i l i z e r s , age o f stand, and decomposition on weight o f grass r o o t s and o f grass and a l f a l f a on s o i l n i t r o g e n and carbon. Agron. J . 50 ( 5 ) . Harper, F. (1967). Masters t h e s i s , U n i v e r s i t y o f B r i t i s h Columbia. Heilman, P.E. and S.P. G e s s e l (19 6 3a) N i t r o g e n requirements and the b i o l o g i c a l c y c l i n g of n i t r o g e n i n Douglas F i r stands i n r e l a t i o n s h i p t o the e f f e c t o f n i t r o g e n f e r t i l i z a t i o n . P l a n t and S o i l 18 (386). Heilman, P.E. and S.P. G e s s e l (1963b). The e f f e c t o f n i t r o g e n f e r t i l i z a t i o n on the c o n c e n t r a t i o n and weight of n i t r o g e n phosphorus and potassium i n Douglas F i r t r e e s . S o i l S c i . Soc. Amer. Proc. 27 (102). H e i n r i c h s , D.H. and K.W. C l a r k (1961). C l i p p i n g frequency and f e r t i l i z e r e f f e c t s on p r o d u c t i v i t y and l o n g e v i t y o f f i v e g r a s s e s . Can. J . P l a n t S c i . 41 (97). Herron, G.M. D.W. Grimes and J.T. Musick (1963). E f f e c t s o f s o i l moisture and n i t r o g e n f e r t i l i z a t i o n o f i r r i g a t e d g r a i n sorghum on dry matter p r o d u c t i o n and n i t r o g e n up-take at s e l e c t e d stages o f p l a n t development. J . Agron. 5 5 (393). 143. Hoglund, O.K., H.W. M i l l e r , and A.L. H a f e n r i c h t e r (1952). A p p l i c a t i o n o f f e r t i l i z e r s t o a i d c o n s e r v a t i o n on annual forage range. J . Range Mgt. 5 (55). H o l l a n d , S.S. (1964). Landforms of B r i t i s h Columbia a Physio-g r a p h i c o u t l i n e . B r i t i s h Columbia Department o f Mines and Petroleum Resources. B u l l . No. 48. Houston, W.R. (1957). Renovation arid f e r t i l i z a t i o n o f c r e s t e d wheatgrass stands i n the no r t h e r n great p l a i n s . J . Range Mgt. 10 ( 9 ) . Hubbard, W.A. and J.L. Mason (1967). R e s i d u a l e f f e c t s o f ammonium n i t r a t e and ammonium phosphate on some n a t i v e ranges o f B r i t i s h Columbia. J . Range Mgt. 20 ( 1 ) . H u f f i n e , W.W. and W.C. E l d e r (1960). E f f e c t o f f e r t i l i z a t i o n on n a t i v e grass pastures i n Oklahoma. J . Range Mgt. 13 (34). H u l l , A.C. J r . (196 3a). Competition and water requirements o f cheatgrass and wheatgrass i n the greenhouse. J . Range Mgt. 16 (199). H u l l , A.C. J r . (1963b). F e r t i l i z a t i o n o f seeded grasses on mountainous rangelands i n n o r t h e a s t e r n Utah and south-e a s t e r n Idaho. J . Range Mgt. 16 (306). I l l i n g w o r t h , K. and J.W. A r l i d g e (1960). I n t e r i m r e p o r t on some f o r e s t s i t e types i n lodgepole pine and spruce-a l p i n e f i r stands. Research Div. B.C. Dept. o f Lands and F o r e s t s , B u l l . 35. J e f f e r y , W.W. (1963). S o i l temperature measurements i n f o r e s t s o f northwestern Canada. Ecology 44 (158). Jenny, H. (1930). A study on the i n f l u e n c e o f c l i m a t e on the n i t r o g e n and o r g a n i c matter content o f the s o i l . M i s s o u r i Agr. Expt. S ta. Res. B u l l . 152. Johnston, A., S. Smoliak, A.D. Smith and L.E. Latwick (1967). Improvement of southeastern A l b e r t a range with f e r t i l i z e r s . Can. J . P l a n t S c i . 47 (671). Jones, M.B. (1963). Y i e l d , p ercent n i t r o g e n , and t o t a l n i t r o g e n uptake o f v a r i o u s C a l i f o r n i a annual g r a s s l a n d s p e c i e s f e r t i l i z e d with i n c r e a s i n g r a t e s o f n i t r o g e n . Agron. J . 55 (254). Jones, M.B. (1967). Forage and n i t r o g e n p r o d u c t i o n by sub-c l o v e r grass and n i t r o g e n f e r t i l i z e d C a l i f o r n i a g r a s s l a n d s . Agron. J . 59 (209). Jones, M.B. and R.A. Evans (1960). B o t a n i c a l composition changes i n annual g r a s s l a n d as a f f e c t e d by f e r t i l i z a t i o n and g r a z i n g . Agron. J . 52 (459). Jones, M.B., CM. McKell and S.S. Winans (1963). E f f e c t o f s o i l temperature and n i t r o g e n f e r t i l i z e r on growth o f s o f t chess at two e l e v a t i o n s . Agron. J . 55 (44). Jones, M.B., W.E. M a r t i n , L . J . Berry and V. O s t e r l i (1961). Ground cover and p l a n t s p r e s e n t on grazed annual range as a f f e c t e d by n i t r o g e n f e r t i l i z a t i o n . J . Range Mgt. 14 (146). Jorgenson, J.R. (1967). F r a c t i o n a t i o n of n i t r o g e n i n three f o r e s t s o i l s . S o i l S c i . Soc. Amer. Proc. 31 (707). Kay, B.L. and R.A. Evans (1965). E f f e c t s of f e r t i l i z e r on a mixed stand of cheatgrass and i n t e r m e d i a t e wheatgrass. J . Range Mgt. 18 ( 7 ) . Kendrew, W.G. and D.P. K e r r (1956). The c l i m a t e o f B r i t i s h Columbia and the Yukon T e r r i t o r i e s . The Queen's P r i n t e r , Ottawa. Kerr, D.P. (1950). The c l i m a t e o f southern B r i t i s h Columbia. Ph.D. t h e s i s , U n i v e r s i t y o f Toronto. K i l c h e r , M.R., S. Smoliak, W.A. Hubbard, A. Johnston, A. Gross and E. McCurdy (1966). E f f e c t s o f i n o r g a n i c n i t r o g e n and phosphorus on s e l e c t e d s i t e s o f n a t i v e g r a s s l a n d s i n western Canada. Can. J . PI. S c i . 45 (229). Klages, M.G. and D.E. Ryerson (1965). E f f e c t o f n i t r o g e n and i r r i g a t i o n on y i e l d and b o t a n i c a l composition o f western Montana range. Agron. J . 5 7 (78). K l i p p l e , G.E. and J.L. Retzer (1959). Response of n a t i v e v e g e t a t i o n of the C e n t r a l Great P l a i n s to a p p l i c a t i o n s o f c o r r a l manure and commercial f e r t i l i z e r . J . Range Mgt. 12 (239). K r a j i n a , V.J. (1965). Ecology o f western North America. Department o f Botany, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C., Canada. Krause, H.H. and W. Batsch (1969). Movement o f f a l l a p p l i e d n i t r o g e n i n sandy s o i l . Can. J . S o i l S c i . 48 (363). L a v i n , F. (1968). F a l l f e r t i l i z a t i o n o f i n t e r m e d i a t e wheat-grass i n the southwest ponderosa pine zone. J . Range Mgt. 20 (16). Lawrence, T. and M.R. K i l c h e r (1964). E f f e c t o f time o f f e r t i l i z e r a p p l i c a t i o n on the seed and forage y i e l d o f Russian w i l d r y e g r a s s . J . Range Mgt. 17 (272). Lawrence, T., G.F. Warder and R. Ashford (1968). N i t r a t e accumulation i n i n t e r m e d i a t e wheatgrass. Can. J . PI. S c i . 48 (85). Lodge, R.W. (1959). F e r t i l i z a t i o n o f n a t i v e range i n the no r t h e r n g r e a t p l a i n s . J . Range Mgt. 12 (277). Lorenz, R.J. and G.A. Rogler (1962). A comparison o f methods o f r e n o v a t i n g o l d stands o f c r e s t e d wheatgrass. J . Range Mgt. 15 (215). -Lorenz, R.J. and G.W. Rogler (1967). G r a z i n g and f e r t i l i z e r e f f e c t r o o t development o f range g r a s s e s . J . Range Mgt. 20 (129). Lutwick, L.E., A.D. Smith, and A. Johnston (1965). F e r t i l i z e r experiments on n a t i v e rangelands u s i n g i n c r e a s i n g - r a t e spreader. J . Range Mgt. 18 (136). Mcintosh, R.P. (1967). The continuous concept o f v e g e t a t i o n . Bot. Rev. 33 (130). Mack, A.R. (1966). E f f e c t o f s o i l temperature on y i e l d and n u t r i e n t uptake by b a r l e y . Can. J . S o i l S c i . 45 (337). McKee, J r . W.H., R.H. Brown and R.F. B l a s e r (1967). E f f e c t o f c l i p p i n g and n i t r o g e n f e r t i l i z a t i o n on y i e l d and stands of t a l l f e s c u e . Crop S c i . 7 (567). M c K e l l , CM., M.B. Jones and E.R. P e r r o e r (1962). Root p r o d u c t i o n and accumulation o f r o o t m a t e r i a l on f e r t i l i z e d annual range. Agron. J . 54 (459). M c K e l l , CM., J . Major and E.R. P e r r i e r (1959). Annual range f e r t i l i z a t i o n i n r e l a t i o n to s o i l moisture d e p l e t i o n . J . Range Mgt. 12 (189). McLean, A. (1969). (Unpub.) P l a n t communities o f the Similkameen V a l l e y , B r i t i s h Columbia, and t h e i r r e l a t i o n -s h i p t o the s o i l s . Ph.D. t h e s i s , Washington S t a t e U n i v e r s i t y . McLean, A. and E.W. T i s d a l e (1960). Chemical composition o f n a t i v e forage p l a n t s i n B r i t i s h Columbia i n r e l a t i o n t o g r a z i n g p r a c t i c e s . Can. J . PI. S c i . 40 (405). McVicker, M.H., G.L. Bridges and L.B. Nelson ( E d . ) , (196 3). F e r t i l i z e r technology and usage. Publ. S o i l . S c i . Amer. Madison, 11, Wis. Madgwick, H.A. (1965). The w e i g h t s and n u t r i e n t c o m p o s i t i o n s o f u n d e r s t o r y s p e c i e s i n an ash wood. J . E c o l . 5 3 (335) Madgwick, H.A. and J.D. O v i n g t o n (1959). The c h e m i c a l c o m p o s i t i o n o f p r e c i p i t a t i o n i n a d j a c e n t f o r e s t and open p l o t s . F o r . 32 ( 1 4 ) . M a r t i n , W.E., C. Poerce and V.P. O s t e r l i (1964). D i f f e r e n -t i a l n i t r o g e n response o f a n n u a l and p e r e n n i a l g r a s s e s . J . Range Mgt. 17 ( 6 7 ) . Mason, J.L. and J.E. M i l t i m o r e (1959). I n c r e a s e i n y i e l d and p r o t e i n c o n t e n t o f n a t i v e bluebunch wheatgrass from n i t r o g e n f e r t i l i z a t i o n . Can. J . P i . S c i . 39 ( 5 0 1 ) . Mason, J.L. and J.E. M i l t i m o r e (1964). E f f e c t o f n i t r o g e n c o n t e n t o f b e a r d l e s s wheatgrass on y i e l d r e s ponse t o n i t r o g e n f e r t i l i z e r . J . Range Mgt. 17 ( 1 4 5 ) . Mason, J.L. and J.E. M i l t i m o r e (1969). Y i e l d i n c r e a s e from n i t r o g e n on n a t i v e range i n s o u t h e r n B r i t i s h Columbia. J . Range Mgt. 2 2 (128 ) . M i l l e r , W.F. (1966). Annual changes i n f o l i a r n i t r o g e n , phosphorus and p o t a s s i u m l e v e l s o f l o b l o t h y p i n e ( P i n u s t a e d a L.) w i t h s i t e , and weather f a c t o r s . P l a n t and S o i l 24 ( 3 6 9 ) . M i l n e r , C , R.E. Hughes, R.O. S a y t e r and C H . Gimingham (1968). Methods f o r e s t i m a t i n g t h e p r i m a r y p r o d u c t i o n o f g r a s s l a n d s , a r i d l a n d s and dwarf s h r u b l a n d s . I n t e r n a t i o n a l B i o l o g i c a l Program Handbook #6. B l a c k w e l l S c i e n t i f i c P u b l i c a t i o n s , O x f o r d and E d i n b u r g h . M i l t i m o r e , J.E., J.L. Mason and C . B . W . Rogers ( 1 9 6 2 ) . I n c r e a s e i n seed p r o d u c t i o n from n i t r o g e n f e r t i l i z a t i o n o f n a t i v e b e a r d l e s s w h e a t g r a s s . Can. J . P I . S c i . 42 ( 359) . Ndawula-Senyimba, M. (1969). F e n c e l i n e e c o l o g y o f f o u r g r a s s l a n d s i t e s i n t h e s o u t h e r n i n t e r i o r o f B r i t i s h Columbia. U n p u b l i s h e d . M.Sc. t h e s i s , U n i v e r s i t y o f B r i t i s h C olumbia. N i c h o l s , J.T. and W.E. McMurphy (1969). Range r e c o v e r y and p r o d u c t i o n as i n f l u e n c e d by n i t r o g e n and 2, 4-D t r e a t m e n t . J . Range Mgt. 2 2 ( 1 1 6 ) . Nowakowski, T.Z. (1962). E f f e c t s o f n i t r o g e n f e r t i l i z e r s on t o t a l n i t r o g e n , s o l u b l e n i t r o g e n and s o l u b l e c a r b o -h y d r a t e c o n t e n t s o f g r a s s . J . Agr. S c i . 59 ( 3 8 7 ) . O v e r r i e n , L. (1967). I m m o b i l i z a t i o n and m i n e r a l i z a t i o n o f t r a c e r n i t r o g e n i n f o r e s t raw humus. P l a n t and S o i l 27 ( 1 ) . Ovington, J.D. (1965). Organic p r o d u c t i o n t u r n o v e r and m i n e r a l c y c l i n g i n woodlands. B i o l . Rev. 40 (295). P a t t e r s o n , J.K. and V.E. Youngman (1960). Can f e r t i l i z e r s e f f e c t i v e l y i n c r e a s e our rangeland production? J . Range Mgt. 1 3 ( 2 5 5 ) . P i e r r e , W.H. (1933). Determination o f e q u i v a l e n t a c i d i t y and b a s i c i t y o f f e r t i l i z e r s . Indus. Eng. Chem. A n a l . Ed. 5 (229). Power, J.F. (1967). The e f f e c t o f moisture on f e r t i l i z e r n i t r o g e n i m m o b i l i z a t i o n i n g r a s s l a n d s . S o i l S c i . Sco. Amer. Proc. 32 (223). Power, J.F. and J . A l e s s i (1970). E f f e c t s o f n i t r o g e n source and phosphorus on c r e s t e d wheatgrass growth and water use. J . Range Mgt. 2 3 (125). Quashu, H.K. and P.J. Zinke (1967). The i n f l u e n c e o f v e g e t a t i o n on s o i l thermal regime at the San Dimas l y s i m e t e r s . S o i l S c i . Soc. Amer. Proc. 2 8 (703). R a u z i , F., R.L. Lang, L . I . P a i n t e r (1968). E f f e c t s o f n i t r o g e n f e r t i l i z a t i o n on n a t i v e rangeland. J . Range Mgt. 21 (287). Rauzi, F. and D.E. Smika (1963). Water i n t a k e on rangeland as a f f e c t e d by s i m u l a t e d g r a z i n g and f e r t i l i z a t i o n . J . Range Mgt. 16 (125). R i c h a r d s , B.N. (1962). Increased supply o f s o i l n i t r o g e n brought about by Pinus. Ecology 4 3 (538). R i c h a r d s , B.N. and G.L. V o i g t (1963). N i t r o g e n a c c r e t i o n i n c o n i f e r o u s f o r e s t ecosystems. F o r e s t s o i l r e l a t i o n -s h i p s i n North America. Oreg. S t a t e U n i v e r s i t y P r e s s , C o r v a l l i s , Oregon. Ed. T.C. Youngberg, p. 105. Riekerk, H. and S.P. G e s s e l (1965). M i n e r a l c y c l i n g i n a Douglas F i r f o r e s t . Repr. from H e a l t h P h y s i c s , Oxford 11 (1363). Rodin, L.E. and N.I. B a z i l e v i t c h (19 67). P r o d u c t i o n and m i n e r a l c y c l i n g i n t e r r e s t r i a l v e g e t a t i o n . P u b l . O l i v e r and Boyd, Edinburgh. Trans. O.E. Fogg. 148. Rogler, G.A. and R.J. Lorenz (1957). N i t r o g e n f e r t i l i z a t i o n o f n o r t h e r n great p l a i n s rangelands. J . Range Mgt. 10 (156). Rowe, J.S. (19 59). F o r e s t r e g i o n s o f Canada. Canada Dept. o f Northern A f f a i r s and N a t u r a l Resources, F o r e s t r y Branch. B u l l . 12 3. Rumburg, C.B., J.D. Wallace and R.J. Ral e i g h (1964). I n f l u e n c e o f n i t r o g e n on seasonal p r o d u c t i o n o f dry-matter and n i t r o g e n accumulation from meadow. Agron. J . 56 (283). Shoulders, E. (1968). F e r t i l i z a t i o n i n c r e a s e s l o n g l e a f and s l a s h pine f l o w e r and cone crops i n L o u i s i a n a . J . For. 66 (193). Sims, H.O. and D. Mueller-Dombois (1968). E f f e c t o f grass c o m p e t i t i o n and depth o f w a t e r t a b l e on h e i g h t growth o f c o n i f e r o u s t r e e s e e d l i n g s . Ecology 49 (597). Smidt, R.E. and R.F. B l a s e r (1967). E f f e c t o f temperature l i g h t and n i t r o g e n on growth and metabolism o f 'cohansey' bentgrass ( A g r o s t i s p a l u s t r i s ) Crop S c i . 7 (447). Smika, D.E., H.J. Haas and J.F. Power (1965). E f f e c t s o f moisture and n i t r o g e n f e r t i l i z e r on growth and water use by n a t i v e g r a s s . Agron. J . 57 (483). Smika, D.E., H.J. Haas and G.A. Rogler (1960). Y i e l d , q u a l i t y and f e r t i l i z e r r e c o v e r y o f c r e s t e d wheatgrass bromegrass and Russian w i l d rye as i n f l u e n c e d by f e r t i l i z a t i o n . J . Range Mgt. 13 (243). Smika, D.E., H.J. Haas, G.A. Rogler and R.J. Lorenz (19 61). Chemical p r o p e r t i e s and moisture e x t r a c t i o n i n range-l a n d s o i l s as i n f l u e n c e d by n i t r o g e n f e r t i l i z a t i o n . J . Range Mgt. 14 (213) . Smith, A.D., A. Johnston, L.E. Lutwick and S. Smoliak (1969). F e r t i l i z e r response o f fescue g r a s s l a n d v e g e t a t i o n . Can. J . S o i l Sci,. 48 (125). Smoliak, S., A. Johnston and L.E. Lutwick (1967). P r o d u c t i v i t y and d u r a b i l i t y o f c r e s t e d wheatgrass i n southwestern A l b e r t a . Can. J . P l a n t t S c i . 47 (539). Sneva, F.A., D.N. Hyder and C.S. Cooper (1958). The i n f l u e n c e o f ammonium n i t r a t e on the growth and y i e l d o f c r e s t e d wheatgrass on the Oregon high d e s e r t . Agron. J . 50 (40). Sneva, F.A. and D.N. Hyder (1962). E s t i m a t i n g herbage p r o d u c t i o n on s e m i - a r i d ranges i n the intermountain r e g i o n . J . Range Mgt. 15 (88). S p i l s b u r y , R.H., J.W. A r l i d g e , N. Keser, L. F a r s t a d and D.S. Lacate (1963). A c o - o p e r a t i v e study o f the c l a s s i f i c a -t i o n of f o r e s t l a n d i n B r i t i s h Columbia. For e s t s o i l r e l a t i o n s h i p s i n North America. Oregon S t a t e Univ. P r e s s , C o r v a l l i s , Oregon. Ed. T.C. Youngberg. S p i l s b u r y , R.H. and E.W. T i s d a l e (1944). S o i l - p l a n t r e l a t i o n s h i p s and v e r t i c a l z o n a t i o n i n the southern i n t e r i o r o f B r i t i s h Columbia. S c i . A g r i c . 24 (395). S t i t t , R.E., J.C. Hyde, E. Frahm (1955). The response of c r e s t e d wheatgrass and v o l u n t e e r sweet c l o v e r t o n i t r o g e n and phosphorus under dry l a n d c o n d i t i o n s . Agron. J . 4 7 (568). S t r o c h l e i n , J.L., P.R. Ogden and B. B i l l y (1968). Time o f f e r t i l i z e r a p p l i c a t i o n on d e s e r t g r a s s l a n d s . J . Range Mgt. 21 (86). S t y l e s , J.H. (1967). Decomposition o f Pinus r a d i a t a l i t t e r on the f o r e s t f l o o r , P a r t 2. N.Z. J . S c i . 10 (1045) . Tamm, C O . (1951). Removal o f p l a n t n u t r i e n t s from t r e e crowns by r a i n . P h y s i o l o g i a Plantarum 4 (184). T a r r a n t , R.F., L.A. Isaac and R.F. Chandler J r . (1951). Observations on l i t t e r f a l l and f o l i a g e n u t r i e n t content o f some P a c i f i c North West t r e e s p e c i e s . J . For. 49 (914). Templeton, J r . W.C and T.H. T a y l o r (1966). Some aspects o f n i t r o g e n , phosphorus and potassium f e r t i l i z a t i o n on b o t a n i c a l composition o f a t a l l ' fescue-white c l o v e r sward. J . Agron. 5 8 (569). Terman, G.L. and M.A. Brown (1968). Uptake of f e r t i l i z e r and s o i l n i t r o g e n by rye grass as a f f e c t e d by carbonaceous r e s i d u e . S o i l S c i . Sco. Amer. Proc. 32 (86). Thomas, J.R. and A. Osenhurg (1959). E f f e c t o f manure n i t r o g e n , phosphorus and c l i m a t i c f a c t o r s on the p r o d u c t i o n and q u a l i t y o f brome-grass-crested wheatgrass hay. Agron. J . 51 (6 3). T i s d a l e , E.W. (1947). The grasslands o f the southern i n t e r i o r o f B r i t i s h Columbia. Ecology 28 (346). T i s d a l e , E.W. and A. McLean (1957). The Douglas F i r zone o f southern B r i t i s h Columbia. E c o l . Monog. 27 (247). 150. T i s d a l e , E.W., A. McLean and S.E. C l a r k (1954). Range res o u r c e s and t h e i r management i n B r i t i s h Columbia. J . Range Mgt. 7 ( 3 ) . T y l e r , K.B., F.E. Broadbent and G.N. H i l l (1950). Low temperature e f f e c t s on n i t r i f i c a t i o n i n f o u r C a l i f o r n i a s o i l s . S o i l S c i . 87 (123). V i e t s , F. J r . (1967). F e r t i l i z e r and the e f f i c i e n t use o f water. Adv. i n Agron 14 (223). V o i g t , G.K. (1965). N i t r o g e n recovery from decomposing t r e e l e a f t i s s u e and f o r e s t humus. S o i l S c i . , S o c . Amer. Proc. 29 (756). Waldron, E. (19 64). August-November seed and l i t t e r f a l l i n a mature white spruce stand. For. Chron. 39 (333). W a l t e r s , J . and A. Kozak (1967). The e f f e c t of chemical f e r t i l i z a t i o n on the formation of lammas shoots i n Douglas F i r . Res. paper #76 from the f i l e s o f the F a c u l t y of F o r e s t r y , U n i v e r s i t y o f B r i t i s h Columbia. Weir, T.R. (1964). Ranching i n the southern i n t e r i o r p l a t e a u o f B r i t i s h Columbia. Dept. Mines and T e c h n i c a l Surveys, G e o g r a p h i c a l Branch, Memior 4. W e l l s , C.G. and L . J . Metz (1963). V a r i a t i o n i n n u t r i e n t content o f l o b l o l l y pine needles with season, age, s o i l , and p o s i t i o n on the crown. S o i l S c i . Soc. Amer. Proc. 27 (90). White, D.P. (1963). S u r v i v a l , growth and n u t r i e n t uptake by spruce and pine s e e d l i n g s as a f f e c t e d by slow r e l e a s e f e r t i l i z e r m a t e r i a l s . F o r e s t S o i l R e l a t i o n -s h i p s i n North America. Oregon S t a t e U n i v e r s i t y P r e s s , C o r v a l l i s , Oregon. Ed. T.C. Youngberg, p. 47. Whittaker, R.H. (1965). Gradient a n a l y s i s o f v e g e t a t i o n . B i o l . Rev. 42 (207). W i l l , G.M. (1955). Removal of m i n e r a l n u t r i e n t s from t r e e crowns. Nature 176 (1180). W i l l , G.M. (1967). Decomposition o f Pinus r a d i a t a l i t t e r on the f o r e s t f l o o r . N.Z. J . S c i . 10 (1030). Wilson, A.M., G.A. H a r r i s and D.H. Gates (1966). F e r t i l i -z a t i o n of mixed cheatgrass - bluebunch wheatgrass stands. J . Range Mgt. 19 (134). W u l l s t e i n , L.H. and C.M-r G i l l m o r e (1964). Gaseous n i t r o g e n l o s s e s and range f e r t i l i z a t i o n . J . Range Mgt. 17 (203). 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0101923/manifest

Comment

Related Items