Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Influence of forest edge, elevation, aspect, site index, and roads on deer use of logged and mature forest,… Willms, Walter David 1971

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1971_A6_7 W54_8.pdf [ 10.91MB ]
Metadata
JSON: 831-1.0101863.json
JSON-LD: 831-1.0101863-ld.json
RDF/XML (Pretty): 831-1.0101863-rdf.xml
RDF/JSON: 831-1.0101863-rdf.json
Turtle: 831-1.0101863-turtle.txt
N-Triples: 831-1.0101863-rdf-ntriples.txt
Original Record: 831-1.0101863-source.json
Full Text
831-1.0101863-fulltext.txt
Citation
831-1.0101863.ris

Full Text

THE INFLUENCE OF FOREST EDGE, ELEVATION, ASPECT, S ITE INDEX, AND ROADS ON DEER USE OF LOGGED AND MATURE FOREST, NORTHERN VANCOUVER ISLAND by WALTER DAVID W I LMS B .S .F . U n i v e r s i t y of B r i t i s h C o l u m b i a , 1969 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN THE FACULTIES OF FORESTRY AND AGRICULTURAL SCIENCES We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA MAY, 1971 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of t h e r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y of B r i t i s h C o l u m b i a , I ag ree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r ag ree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s f o r s c h o l a r l y pu rpo se s may be g r a n t e d by the Head of my Department o r by h i s r e p r e s e n t a t i v e . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . F a c u l t i e s of FORESTRY AND AGRICULTURAL SCIENCES, The U n i v e r s i t y of B r i t i s h C o l u m b i a , Vancouve r 8 , Canada. i i ABSTRACT This study was proposed by the B. C. F i s h and Wild-l i f e Branch to evaluate the e f f e c t of f o r e s t r y p r a c t i c e s and f o r e s t c h a r a c t e r i s t i c s on deer use of logged and mature f o r e s t s . The s p e c i f i c f a c t o r s studied were "time since burning", "elevation", " s i t e index", "aspect", "f o r e s t edge", "roads" and "vegetation". The e f f e c t of e l e v a t i o n and as-pect on deer use was studied f o r both the mature and logged fo r e s t while the other f a c t o r s were considered only f o r r e c e n t l y logged areas. The l o c a t i o n of t h i s study was the Nimpkish Va l l e y , northern Vancouver Island i n B r i t i s h Columbia. This area was selected p r i m a r i l y because i t had a large population of Columbian b l a c k - t a i l e d deer (Odocoileus heinionus columbianus Richardson), active logging, and v a r i a b l e t e r r a i n . The deer response to "time since burning","elevation", and " s i t e index" was generally determined by plant q u a l i t y and climate. The importance of vegetative q u a l i t y to deer i s reduced when the c l i m a t i c conditions become favorable f o r the animals. Therefore, during a mild winter the deer are l e s s dependent upon the greater plant production found on areas with l a t e r s e r a i stages, lower elevation, and higher s i t e index, than they are during a severe winter. S i m i l a r l y , on an annual b a s i s , high plant production i s l e s s important on the warm south aspect than i t i s on the colder north aspect. i i i Two types of f o r e s t edges were studied, the upper which i s p a r a l l e l to the e l e v a t i o n contours and the ad-jacent which i s perpendicular to the e l e v a t i o n contours. The upper edge influences deer use of areas, both i n s i d e and outside the f o r e s t , by maximizing use near the edge. Deer use declines with incre a s i n g distance from the edge. The only apparent e f f e c t of the adjacent edge on deer use of r e c e n t l y logged areas was to depress use at the edge. This also occurred at the upper edge. Roads a f f e c t deer use of r e c e n t l y logged f o r e s t s by incre a s i n g use adjacent to the road but decreasing use on the road and the road edge. I t appears that deer use the road only f o r t r a v e l . Deer e x h i b i t preference f o r a v a r i e t y of plant species. The use with incre a s i n g cover of an i n d i v i d u a l species i s generally p a r a b o l i c while the use with increasing cover f o r a l l species combined i s generally l i n e a r . Further-more, maximum use occurs on those areas where the number of species present i s greater than 1 . The response of deer to incre a s i n g elevation, i n the mature f o r e s t , i s p o s i t i v e on the south aspect and zero, or nearly so, on the north aspect. This r e l a t i o n s h i p i s s i m i l a r to that which occurred on r e c e n t l y logged areas following a mild winter. i v TABLE OF CONTENTS Page INTRODUCTION 1 1. LITERATURE REVIEW 2 Shelter Requirements 3 Protection from snow 4 Protection from Temperature Extremes 4 Shelter Quality Provided by Conifers 5 Food Requirements 5 Factors Affecting Plant Growth 6 Light 7 Temperature 8 Effect of Temperature and Light on Flowering... 9 Factors Affecting Plant Quality 9 Plant Maturity 9 Fire 9 Browse Variety 10 Browse Nutrition 10 Effect of Forest Succession on Deer 11 Factors Contributing to Population Decline 12 Other Factors Affecting Deer Movement 12 Site Index 12 Aspect 13 Elevation 14 Logging Patterns 15 Snow Accumulation 16 As Affected by Aspect 16 As Affected by Elevation 17 As Affected by Forests 17 Forest Canopy 17 Forest Clearing 17 Snow Melt 18 Pell e t Group Counts as a Census Technique.. 19 2. STUDY SITE DESCRIPTION 20 Physiography 20 Geology 20 Soils 23 Site 24 Climate 24 Biota 25 Fire History 26 Logging History 27 History of Deer Population 27 3. METHODS AND MATERIALS 30 Selection of Study Area 30 Project Divisions 30 V TABLE OF CONTENTS Page Pellet Group Counts 31 Vegetation Survey 32 Permanent Plots 33 Plot Location 33 Plot Layout 36 Plot Relocation and Estimating Deer Pop-ulation 37 Ecotone Study . 37 Location of Plots 37 Plot Layout 38 Sample Size -42 Road Effect 43 Mature Forest 44 Plot Location 44 Plot Layout 45 4. OBSERVATIONS 46 Permanent Plots 46 Fi r s t Sampling Period 48 Time Since Burning 49 Elevation 49 Site Index 51 Second Sampling Period 55 Time Since Burning 55 Elevation 57 Site Index 59 Change of Deer Use with Elevation for the Two Sampling Periods 59 Change of Snowfall for the Two Sampling Periods 62 Vegetation 62 Ecotone Study 65 Forest Edge Effect 66 Inside Forest 74 Outside Forest 80 Road Edge Effect 83 Vegetation Effect 83 Individual Species 85 A l l Species Combined 89 Mature Forest Study 97 5. DISCUSSION 102 Permanent Plots 104 Time Since Burning 104 Elevation 106 Site Index 106 a Effect of Aspect 107 Differences Observed Between Sampling 1 and Sampling 2 108 v i TABLE OF CONTENTS Page Ecotone Study 109 Forest Edge 109 Outside Forest 109 Inside Forest 112 Road Edge E f f e c t 113 Vegetation E f f e c t 113 Ind i v i d u a l Species 113 A l l Species Combined 114 Species Number 116 Mature Forest 117 SUMMARY 119 LITERATURE CITED 123 APPENDIX 127 LIST- OF TABLES Table Page 1 Number of p l o t s representing each successional age 34 2 Number of p l o t s representing each s i t e c l a s s . . . 34 3 Number of p l o t s representing each e l e v a t i o n c l a s s 35 4 Estimate of deer on permanent p l o t s 47 5 C o r r e l a t i o n of ele v a t i o n and s i t e index i n the Nimpkish V a l l e y 51 6 Monthly snowfall from 1966 to 1970 63 7 Snowfall at several c o a s t a l drainage basins and snow courses from 1963 to 1970 64 8 Percent cover of i n d i v i d u a l species on p l o t s 1 and 4 95 v i i LIST OF FIGURES Figure Page 1 A view f a c i n g south-east of a p o r t i o n of the Nimpkish Va l l e y with Woss Camp i n the back-ground 21 2 An estimate of the increase of deer population i n the Nimpkish V a l l e y between 1958 and 1964 29 3a Forest edge with f i r e - g u a r d on p l o t 4; burned i n 1961 39 3b Forest edge with f i r e - g u a r d on p l o t 2 and 3, burned i n 1961 39 3c Forest edge without f i r e - g u a r d on p l o t 1; burned i n 1961 40 4a Response of deer to age of burn. Observations f o r f i r s t sampling and f o r p l o t s on a l l aspects.. 50 4b Response of deer to age of burn. Observations f o r f i r s t sampling and s t r a t i f i e d f o r north and south aspects 50 5a Response of deer to elevation on logged areas. Observations f o r f i r s t sampling and f o r p l o t s on a l l aspects 52 5b Response of deer to e l e v a t i o n on logged areas. Observations f o r f i r s t sampling and s t r a t i f i e d f o r north and south aspects 53 6a Response of deer to s i t e index on logged areas. Observations f o r f i r s t sampling on a l l aspects... 5^ 6b Response of deer to s i t e index on logged areas. Observations f o r f i r s t sampling and s t r a t i f i e d f o r north and south aspects 54 ?a Response of deer to age of burn. Observations f o r second sampling and f o r p l o t s on a l l aspects. 56 7b Response of deer to age of burn. Observations f o r second sampling and s t r a t i f i e d f o r north and south aspects.... 56 8a Response of deer to elevation on logged areas. Observations f o r second sampling and f o r p l o t s on a l l aspects 58 v i i i LIST OF FIGURES Figure Page 8b Response of deer to elevation on logged areas. Observations for second sampling and s t r a t i f i e d for north and south aspects 58 9a Response of deer to site index on logged areas. Observations for second sampling and for plots on a l l aspects 60 9b Response of deer to si t e index on logged areas. Observations for second sampling and s t r a t i f i e d for north and south aspects 60 10 Changes i n deer use with elevation between two sampling periods 61 11 A view of the vegetation outside the forest on plot 1 67 12 A view of the vegetation outside the forest on plot 2 and 3 67 13a Effect of upper forest edge on deer use of a southern exposure logged and then i n 1961 slash-burned. Broken line indicates effect of road on deer use 68 13b Pe l l e t group distribution on a southern ex-posure and a 1961 burn 68 14a Effect of upper forest edge on deer use of a southern exposure logged and then i n 1966 slash-burned 69 14b Pe l l e t group distribution on a southern ex-posure and a 1966 burn 69 14c Pe l l e t group distribution on a southern ex-posure and a 1966 burn 70 15a Effect of upper forest edge on deer use of a northern exposure logged and then i n 1961 slash-burned 72 15b Pellet group distribution on a northern exposure and a 1961 burn 72 16a Effect of upper forest edge on deer use of a northern exposure logged and then i n 1967 slash-burned 73 i x LIST OF FIGURES Figure Page 16b Pe l l e t group distribution on a northern ex-posure and a 1967 burn 73 17a Effect of forest edge on deer use inside the forest on a south aspect 75 17b Distribution of pellet groups inside the forest on a south aspect.. 75 17c Distribution of pellet groups inside the forest on a south aspect 76 17d Distribution of pellet groups inside the forest on a south aspect 77 18a Effect of forest edge on deer use inside the forest on a north aspect 78 18b Distribution of p e l l e t groups inside the forest on a north aspect 78 18c Distribution of pellet groups inside the forest on a north aspect 79 19 A view of a sparsely vegetated site inside the forest on a south aspect 81 20 A view of a densely vegetated s i t e , consisting primarily of Vaqcinium spp., inside the forest on a south aspect.. 81 21 Effect of forest edge, crossing contours, on deer use of areas logged and then slash-burned i n 1966 and 1967 82 22a Effect of roads and verges on deer use of areas logged and then slashOburned i n 1961 84 22b Effect of roads and verges on deer use of areas logged and then slash-burned i n 1966.. 84 23a Response of deer to fireweed cover on 1966 burns 86 23b Response of deer to fireweed cover on 1961 burns 86 24 Response of deer to s a l a l cover inside the forest on a south aspect 87 25 Response of deer to thimbleberry cover on 1961 burns 87 X LIST OF FIGURES Figure Page 26 Response of deer to salmonberry cover on 1961 burns 88 27 Response of deer to t r a i l i n g blackberry cover x>n 1961 burns 88 28a Response of deer to Vaccinium spp. cover on 1961 burns 90 28b Response of deer to Vaccinium spp. cover, on 1966 burns 90 28c Response of deer to Vacdnium spp. cover inside the forest on a south aspect 91 29 Response of deer to t o t a l vegetation cover on 1961 burns 91 30a Response of deer to t o t a l vegetation cover on a 1966 burn.with*a south aspect 93 30b Response of deer to t o t a l vegetation cover on a 1967 burn with a north aspect 93 31 Response of deer to t o t a l vegetation cover inside the forest on a south aspect 94 32 Response of deer to t o t a l vegetation cover inside the forest on a north aspect 94 33 Response of deer to t o t a l number of plant species on 1961 burns 98 34 Response of deer to t o t a l number of plant species on 1966 burns 98 35 Response of deer to t o t a l number of plant species inside the forest on a south aspect 99 36 Response of deer to t o t a l number of plant species inside the forest on a north aspect 99 37 Response of deer to elevation i n the mature forest. Observations s t r a t i f i e d for north and south aspect 101 x i TABLES IN APPENDIX Table Page l a Average monthly precipitation i n the Nimpkish Valley (Woss Gamp) 1 2 7 lb Snowfall 128 2 Eire History of the Nimpkish Valley 1 2 9 3 Estimated population of deer i n the Nimpkish Valley from 1958 to 1964 130 4 Description of permanent plots 131 5 Description of ecotone study areas... 134 6 Description of mature forest plots 1 3 5 7 Sampling accuracy of pellet groups on permanent plots 136 8 S t a t i s t i c s and multiple regression analysis of data from permanent plots 140 9 Regression analysis of data i l l u s t r a t i n g changing deer use with elevation i n a two year period for logged areas 146 10 Sample of species composition and cover on per-manent plots 148 11a A summary of pellet group variation within classes - outside forest 155 l i b A summary of p e l l e t group variation within classes - inside forest 166 12 Distribution of pellet groups on five ecotone study areas 174 13 Linear regression of deer use from near the forest edge 176 14 Vegetation occurrence on ecotone plots 1 to 5 . . 177 1 5 Correlation of t o t a l vegetative cover with number species for ecotone plots 1 to 5 180 16 Sampling accuracy of mature plots 181 17 Sample of species composition and cover on mature forest plots 182 ACKNOWLEDGEMENTS This project was financed by the B. C. F i s h and W i l d l i f e Branch. Several employees of the Branch, p a r t i c -u l a r l y Donald Blood, Ian Smith, and Keith Mundy provided h e l p f u l advice at the time the project was i n i t i a t e d and during the period of f i e l d work. I am p a r t i c u l a r l y indebted to Dr. V. C. Brink, De-partment of A g r i c u l t u r a l Sciences, who di r e c t e d t h i s study. Dr. Brink also provided f i n a n c i a l assistance and h e l p f u l c r i t i c i s m during the preparation of t h i s manuscript. Valu-able constructive c r i t i c i s m and thoughtful consideration was also provided by Dr. J . H. G. Smith, Dr. P. J . Bandy, and e s p e c i a l l y , Dr. F. Bunnell who also provided generous assistance from h i s computer knowledge and resources. I am also g r a t e f u l f o r the assistance provided by Dr. Kozak and the f o r e s t r y computer technicians, L i l l i a n and Roka. This study was made possible through the cooperation of the Englewood D i v i s i o n of Canadian Forest Products L t d . who permitted unlimited access to t h e i r land and provided accommodation at Woss Camp. I am also g r a t e f u l to the em-ployees of Canadian Forest Products L t d . namely Stan Chester, J u l i u s Kapitany, Gordon Burton, A l l e n Hopwood, Jim White, and Douglas Rickson, who provided access to surveying equip-ment and information on logging and deer h i s t o r y i n the Nimpkish V a l l e y . F i n a l l y I would l i k e to thank my wife, Maureen, f o r a s s i s t i n g i n gathering f i e l d data and enduring with me during the w r i t i n g of t h i s manuscript. THE INFLUENCE OF FOREST EDGE, ELEVATION, ASPECT, S ITE INDEX, AND ROADS ON DEER USE OF LOGGED AND MATURE FOREST, NORTHERN VANCOUVER ISLAND INTRODUCTION T h i s s t u d y was i n i t i a t e d by Mr . D. B l o o d , f o r m e r R e g i o n a l B i o l o g i s t , Nana imo, B .C . I t was l o c a t e d i n t h e N i m p k i s h V a l l e y w h i c h i s i n t h e n o r t h e r n h a l f o f V a n c o u v e r I s l a n d . T h i s a r e a i s o c c u p i e d by t h e C o l u m b i a n b l a c k - t a i l e d d e e r ( O d o c o i l e u s hemionus c o l u m b i a n u s R i c h a r d s o n ) . The p r i m a r y o b j e c t i v e o f t h i s s t u d y was^ to e v a l u a t e t h e i n f l u e n c e o f v a r i o u s e n v i r o n m e n t a l f a c t o r s on d e e r u se o f l o g g e d and f o r e s t e d l a n d . These f a c t o r s were f o r e s t edge , e l e v a t i o n , a s p e c t , s i t e i n d e x , and r o a d s . A l s o i n v e s t i g a t e d was t h e u se o f v a r i o u s p l a n t c o m m u n i t i e s by d e e r . L o g g i n g u s u a l l y r e s u l t s i n an i n c r e a s e i n d e e r number s . The s e r a i v e g e t a t i o n w h i c h f o l l o w s a f t e r a few y e a r s , c o n s i s t s o f l u x u r i a n t h e r b a c e o u s v e g e t a t i o n . T h i s f o o d p r o v i d e s t h e b a s i s upon w h i c h t h e d e e r p o p u l a t i o n s c a n i n -c r e a s e . The matu re f o r e s t may s i m u l t a n e o u s l y p r o v i d e s h e l t e r f r o m a d v e r s e wea the r and p r e d a t o r s and , i n i t s u n d e r c o v e r s e r ve as an i m p o r t a n t s ou r ce of w i n t e r f o o d . T h e o r e t i c a l l y , t h e r e f o r e , an i n t e r s p e r s i o n of n e w l y l o gged a r ea s i n a mature f o r e s t w i l l p r o v i d e an i d e a l h a b i t a t f o r d e e r . 1. L i t e r a t u r e Review <• A u t o g e n i c s u c c e s s i o n of b o t h p l a n t s and a n i m a l s f o l l o w i n g l o g g i n g of the f o r e s t s of No r t hwes t P a c i f i c c o a s t a l a r e a s has been p a r t i a l l y documented by K r a j i n a ( 1965 ) , Gates (1968) and § p $ l s b u r y and S m i t h ( 1947 ) . The e a r l y s e r e s d i s p l a y v i g o r o u s deve lopment of he rb s and shrubs t o c r e a t e a l a r g e s ou r ce of f o o d f o r h e r b i v o r e s . The i n c r e s e d f o o d , t o g e t h e r w i t h t he s h e l t e r p r o v i d e d by a d j a c e n t mature f o r e s t s , g r e a t l y I n c r e a s e t he c a r r y i n g c a p a c i t y f o r dee r ( R o b i n s o n , 1950; Brown, 1 9 6 1 ) . Cowan ( 1945 ) , f o r example , e s t i m a t e d t he p o p u l a t i o n of b l a c k - t a i l e d dee r ( O d o c o i l e u s hemionus  c o l umb ianu s R i c h a r d s o n ) , i n a mature f o r e s t of t he P a c i f i c N o r t h w e s t , t o be one d e e r p e r square m i l e , whereas a l o gged h a b i t a t , i n a s i m i l a r g e o g r a p h i c a l a r e a , may suppo r t one hundred d e e r p e r square m i l e (Brown, 1961 ) . Deer a r e a n i m a l s of t he f o r e s t edge. They r e q u i r e t he mature f o r e s t f o r p r o t e c t i o n f r o m wea the r and p r e d a t o r s as w e l l as a s ou r ce of emergency f o o d i n w i n t e r . A r ea s r e -c e n t l y l o g ged and s l a s h burned a re a m a j o r s ou r ce of f o o d f o r dee r and may p r o v i d e on o c c a s i o n sunny a r ea s f o r warming d u r i n g the w i n t e r . 1.1 S h e l t e r Requ i rement s S h e l t e r a d j a c e n t t o adequate f o r a g e i s e s s e n t i a l f o r dee r s u r v i v a l In s e ve re w i n t e r s ( J u l a n d e r , 1 966 ) . ' Deer m o r t a l i t y i s h i g h where s h e l t e r i s s p a r s e , and where deep snow I n h i b i t s m o b i l i t y and c o v e r s the f o o d s u p l y . Cover s e r v e s no t o n l y i n m o d i f y i n g snow d e p t h and t e x t u r e but a l s o i n p r o v i d i n g p r o t e c t i o n f r o m wind and c o l d wea the r ( R o b i n s o n , 1 9 6 0 ) . Rob i n son (1960) f ound t h a t w h i t e - t a i l e d •deer ( O d o c o i l e u s g i r g l n i a n u s B a i l e y ) , sought b e d d i n g s i t e s , d u r i n g w i n t e r , on a s o u t h exposu re under dense c o n i f e r s . T h i s c o m b i n a t i o n p r o v i d e d Optimum p r o t e c t i o n f r o m wind and was the warmest s i t e a v a i l a b l e . 1.1.1 P r o t e c t i o n f r o m Snow Deep snow i s pe rhap s the s i n g l e most i m p o r t a n t f a c t o r r e s p o n s i b l e f o r dee r m o r t a l i t y i n the w i n t e r . I t i n h i b i t s t h e i r m o b i l i t y and f o r a g i n g o p p o r t u n i t i e s (Verme, 1 9 6 5 ) . W h i t e - t a i l e d dee r w i l l a v o i d deep snow (10 t o 14 i n c h e s o r g r e a t e r ) i n f o r e s t open ing s by mov ing i n t o dense c o n i f e r s t and s T e f l e r , 1970; and T e f l e r , 1970b) . The response -4-of mule d e e r ( O d o c o i l e u s hemionus hemionus R a f i n e s q u e ) , t o snow I s s i m i l a r . G i l b e r t e_fc a l . ( 1 9 7 0 ) n o t e t h a t u n i f o r m snow c o v e r 18 i n c h e s deep v e r y s e v e r e l y i n h i b i t s t he mule d e e r movement i n a n a r e a . The f o r a g i n g o p p o r t u n i t i e s f o r d e e r a r e s e v e r e l y r e s t r i c t e d by u n i f o r m snow. C o b l e n t z (1970) f ound a s t r o n g r e l a t i o n s h i p between t he amount of he rbaceou s m a t e r i a l i n -g e s t e d and the d e p t h of snow. W/Ith no snow c o v e r t he d i e t of w h i t e - t a i l e d dee r c o n s i s t e d of about 63 p e r c e n t he rbaceous m a t e r i a l : w i t h a 3 i n c h snow c o v e r t he he rbaceou s m a t e r i a l no l o n g e r fo rmed a p a r t of t he d i e t . Woody b rowse , though l e s s p r e f e r r e d , r e p l a c e d the he rbaceou s m a t e r i a l i n t he d i e t . 1.1.2 P r o t e c t i o n f r o m Temperature Ex t remes I n b o t h w i n t e r and summer, dee r use of an a r e a I s s t r o n g l y i n f l u e n c e d by t e m p e r a t u r e . Deer a c t i v e l y seek an a r e a of c e r t a i n t e m p e r a t u r e range o r an a r e a c l o s e l y a p p r o x -i m a t i n g t h e i r t e m p e r a t u r e p r e f e r e n c e . M i l l e r (1970) ob se rved t h a t b l a c k - t a i l e d dee r i n Oregon seek c o v e r when summer temp-e r a t u r e s exceed 60 P. T h i s s u b s t a n t i a t e s the s u g g e s t i o n by Taber and Dasraann (1958) t h a t t he optimum t e m p e r a t u r e f o r b l a c k - t a i l e d d e e r i n C a l i f o r n i a i s between 55 t o 65 P. I n S o l d wea the r dee r w i l l seek s i b e s w h i c h p r o v i d e them w i t h t he g r e a t e s t c o m f o r t (Ozoga, 1 968 ) . F o r i n s t a n c e , i n n o r t h e r n M i c h i g a n w h i t e - t a i l e d d e e r p r e f e r t o r e s t under the mature c o n -i f e r s w h i c h have the n a r r o w e s t t h e r m a l range but f r e q u e n t s ou th -5-slopes and open areas when these are sunny (Verme, 1965). 1.1.3 S h e l t e r Q u a l i t y Provided by C o n i f e r s C o n i f e r s p r o v i d e the best s h e l t e r from snow and c o l d weather (Ozoga, 1968). Dense f o r e s t stands w i t h a h i g h p r o p o r t i o n of softwoods i n t e r c e p t f a l l i n g snow and decrease the depth of accumulation on the ground (Weitzman and Bay, 1958; Verme 1965; i n T e f l e r , 1970a). A dense c o n i f e r o u s f o r e s t p r o v i d e s p r o t e c t i o n not only from wind and snow but a l s o from c o l d weather. The warmest average temperature d u r i n g the c o l d e s t weather was found under swamp c o n i f e r s . The heat, obtained under these c o n d i t i o n s , i s r a d i a t e d from the c o n i f e r s (Moen, 1968a) and s o i l beneath them. Ij2 Pood Requirements S u i t a b l e s h e l t e r i s an e s s e n t i a l requirement of deer. The q u a l i t y of a v a i l a b l e s h e l t e r i s r e f l e c t e d i n the h e a l t h of the deer p o p u l a t i o n , p a r t i c u l a r l y i n w i n t e r . The importance of s h e l t e r cannot be denied; however, an even g r e a t e r requirement, one which forms the b a s i s of the p o p u l a t i o n s i z e , i s herbage and browse. The primary e f f e e t on deer p o p u l a t i o n i s r e l a t e d to p l a n t p r o d u c t i v i t y and q u a l i t y ( n u t r i e n t , s p e c i e s , p a l a t a b i l i t y , s p e c i e s d i v e r s i t y ) . -6-1.2.1 Factors Aff e c t i n g Plant Growth Numerous works have been written about environmental influences on plant growth. Although information on thi s topic i s f a i r l y common i t has been reviewed i n the following section to complete the review of l i t e r a t u r e . Vegetation and s o i l q u a l i t y are a function of geo-l o g i c a l material, r e l i e f , organisms, time, and climate (Dokuchaev, 1898; Jenny, 1941; Major, 1951';in Krajina, 1965). F i r e can q u a l i f y as climatic (lightning), geologic (volcano), or organic (man) (Krajina, 1965). In t h i s thesis only the effe c t of climate and f i r e , on vegetation s h a l l be considered. S o i l s are not discussed since t h e i r influence on vegetation i s most important i n determining the extent and location of vegetation types (Klein, 1965). Seed germination, plant growth, and flowering are influenced mainly by l i g h t and temperature. Free water i s ess e n t i a l f o r germination which therefore w i l l not occur below 32 F. Germination occurs at an optimum temperature . . . . . / • • • • -which i s approximately half-way between the maximum and minimum temperatures at which germination may occur (Meyer et a l . , 1960 ). - 7 -Net growth r a t e of p l a n t s i s dependent upon the r a t e of p h o t o s y n t h e s i s and the Bate of r e s p i r a t i o n o c c u r r i n g o v e r a p e r i o d of t i m e . I f the r a t e of growth i s p o s i t i v e t h e n p h o t o s y n t h e s i s exceeds r e s p i r a t i o n ; the p o i n t a t w h i c h the two are e q u a l I s the compensation p o i n t . 1.2,1.1 L i g h t The r e l a t i o n s h i p between l i g h t and p h o t o s j m t h e s i s i s n e a r l y a l i n e a r one u n t i l about 1000 f t . c a n d l e s ( H o o v e r - - . . . . . . . , f et_ a l . , 195? I n K l e i n , 1965; Meyer et_ a l . , 1960). Photo-s y n t h e s i s i n c r e a s e above 1000 f t . c a n d l e s i s l e s s r a p i d . P l a n t s i n t h e temperate r e g i o n r e q u i r e a r e l a t i v e l y h i g h l i g h t i n t e n s i t y t o proceed at an optimum r a t e (Withrow, 1951, i n K l e i n , 1965). A f o r e s t canopy changes the i n t e n s i t y and q u a l i t y of l i g h t . D i r e c t s u n l i g h t may have an i n t e n s i t y of between 8,000 t o 10,000 f t . c a n d l e s (Meyer et_ a l . , 1969)£ whereas l i g h t i n t e n s i t y under a f o r e s t canopy i s f r e q u e n t l y l e s s t h a n 100 f t . c a n d l e s ( K l e i n , 1965; S p u r r , 1 9 64), Shade t o l e r a n t p l a n t s have adapted t o l i g h t s h o r t a g e t o the e x t e n t of h a v i n g a l o w e r compensation p o i n t (50 - 100 f t . c a n d l e s ) t h a n h e l i o p h i l i c p l a n t s (100 - 200 f t . c a n d l e s ) (Meyer et_ a l _ . , 1960). A f u r t h e r a d a p t a t i o n of shade t o l e r a n t p l a n t s i s t h e i r a b i l i t y t o u t i l i z e sun f l e c k s ( S p u r r , 1964). S t r o n g l i g h t i s h a r m f u l t o p l a n t s s i n c e i t b r i n g s about a d i s i n t e g r a t i o n -8 of t h e c h l o r o p h y l l s (Meyer e_b_ a l . , 1960) and a d e c r e a s e i n p h o t o s y n t h e s i s ( S p u r r , 1964; Odum, 1959 ) . L i g h t i n t e n s i t y and l i g h t q u a l i t y ( u t i l i z a b l e wave-l e n g t h of l i g h t ) a r e b o t h s e v e r e l y l i m i t e d unde r the f o r e s t . . . . . . . . . . . . . . . f canopy . The c o l o u r s of t he spec t rum w h i c h s t i m u l a t e p h o t o -s y n t h e s i s t o the g r e a t e s t e x t e n t a r e red (760mu) and b l u e (540mu) (Meyer et_ aJL., 1 960 ) . These a re r e a d i l y ab so rbed by t he f o r e s t canopy so t h a t the l i g h t i s p r o p o r t i o n a t e l y r i c h e r i n g r e e n . T h i s f i l t e r i n g e f f e c t f u r t h e r r educe s the r a t e of p h o t o s y n t h e s i s i n p l a n t s (S p u r r , 1964.). 1 .2 .1 .2 Temperatu re P h o t o s y n t h e s i s i s p r i m a r i l y a f f e c t e d by l i g h t , whereas r e s p i r a t i o n i s p r i m a r i l y a f f e c t e d by t e m p e r a t u r e . R e s p i r a t i o n I n c r e a s e s w i t h t e m p e r a t u r e t o a moda l v a l u e t h e n d e c r e a s e s u n t i l t he p l a n t d i e s ( S u r r , 1964; Meyer e t a l . , 1 960 ) . P h o t o s y n t h e s i s and v e g e t a t i v e g r owth re spond t o t e m p e r a t u r e i n much the same way as r e s p i r a t i o n i n t h a t t h e y i n c r e a s e w i t h h i g h e r t e m p e r a t u r e s u n t i l a modal v a l u e i s r eached a t a p p r o x i m a t e l y 77 t o 86 P . , t h e r e a f t e r a d e c r e a s e o c c u r s (Meyer e t a l . , 1960 ) . I n the tempera te r e g i o n , g rowth r a t e s of p l a n t s and hence p h o t o s y n t h e s i s fcates d e c r e a s e g r e a t l y with any drop i n temperature below 70 F. (Popp 1926 and Hicks, 1934 i n Kelin, 1965). Most plant species do not grow appreciably below 41°F. Meyer et a l , I960). 1.2.1.3 Effect of Temperature and Light on Flowering The flowering of plants i s strongly affected by temperature and l i g h t . The interactions are complex and therefore only a few generalities w i l l be made. While the. photoperiod of plants varies from one species to another many plants i n the temperate regions require a long photo-period. The effect of temperature on flov/ering i s to either reinforce the effect of the photoperiod or to act i n oppos-i t i o n to i t . (Meyer et a l , I960). Since l i g h t duration and quality, as well as temperature, determine flowering i n most plants, the removal, or development, of a canopy w i l l deter-mine to a great extent whether flowering of the understory plants w i l l occur. 1.2.2 Factors Affecting Plant Quality 1.2.2.1 Plant Maturity A very important factor governing the quality of forage on the summer range i s the stage of maturity of these plants (Klein, 1965). The young parts of the plant are usually the most nutritious, particularly i n protein. Nutrients i n the older leaves become redistributed to areas of growth such as the new leaves and later i n the season, to the reproductive -10-parts of the p l a n t . Furthermore, as the plant matures i t becomes l e s s palatable as i t s f i b e r s increase and i t s c e l l s become l i g n i f i e d . 1.2.2.2 F i r e Forest f i r e s and slashburning i n i t i a t e a secondary succession. This involves many changes i n the habitat which include, release of nutrients to the s o i l and atmosphere, r e -moval of organic accumulation on the f o r e s t f l o o r and removal of the f o r e s t canopy. These changes are r e f l e c t e d i n the n u t r i e n t q u a l i t y of vegetation, species d i v e r s i t y , species number, and p r o d u c t i v i t y of vegetation. 1.2.2.2.1 Browse Variety Species numbers and d i v e r s i t y increase during the i n i t i a l stages of autogenic succession, but decrease i n l a t e r stages (Odum, 1966). In the P a c i f i c Coast Forest species are present i n the greatest numbers 5 to 10 years a f t e r burn-ing (Gates, 1968), whereas a f t e r 18 years t h e i r numbers de-c l i n e to h a l f the maximum. Of the plant forms i n Gates area, forbs and shrubs were represented by the greatest number of species. D i v e r s i t y of browse species i s both desirable and necessary f o r deer n u t r i t i o n . Verme (1965) observed that deer prefer v a r i e t y i n browse even though only the most n u t r i t i o u s species are eaten i n any great quantity. Low value browse, i t was noted, consumed i n l i b e r a l amounts would main-- 1 1 -t a i n dee r t h r oughou t the w i n t e r . On l y one s p e c i e s was f ound w h i c h a l o n e wou ld s uppo r t d e e r . 1 . 2 . 2 .2 .2 Browse N u t r i t i o n F i r e t e m p o r a r i l y improves the f e r t i l i t y of s o i l . N u t r i e n t s a r e . r e l e a s e d i n the a s h , the d e c a y i n g r o o t s of b u r n - k i l l e d p l a n t s p roduce a g r een manur i ng e f f e c t , and the n u t r i f i c a t i o n r a t e s i n c r e a s e w i t h t he absence of shade (Daub-e n m i r e , 1968 ) . Lay (1957) and Shepherd (1953) ob se rved t h a t b u r n i n g u s u a l l y r e s u l t s i n a h i g h p r o t e i n and phosphorous l e v e l i n t h e i n v a d i n g v e g e t a t i o n . The d u r a t i o n of t h i s e f f e c t was, however , o n l y f o r one o r two y e a r s ( Lay , 1957 ) . 1.3 E f f e c t of F o r e s t S u c c e s s i o n on Deer The i n f l u e n c e of f o r e s t s u c c e s s i o n on dee r i n the P a c i f i c C o a s t a l F o r e s t has been d e s c r i b e d by v a r i o u s a u t h o r s ( G a t e s , 1968; R o b i n s o n , 1958; Brown, 1961 ) . Dasmann (1964) f ound t h a t dee r use of a f o r e s t was a t a maximum 8 t o 10 y e a r s a f t e r b u r n i n g w h i l e Gates (1968) f ound maximum use 4 y e a r s a f t e r b u r n i n g . Rob in son (1958) ob se rved t h a t dee r r a i s e d on new l y l ogged l a n d e x h i b i t e d r a p i d r a t e s of g r o w t h . He a t t r i b u t e d t h i s t o a c o m b i n a t i o n of s o i l f e r t i l i t y , new p l a n t s , s p e c i e s i n t h e i c i n i t i a l g rowth p h a s e s , i n c r e a s e d i n -s u l a t i o n , and d i f f e r e n t i a l g r owth and m a t u r a t i o n p e r i o d s of h e r b s and g r a s s e s . Deer use d e c l i n e d on an a r e a w h i c h was burned more t h a n 10 y e a r s ago (Dasmann, 1964 ) ; a f t e r about 20 y e a r s , i n - 1 2 -h i s a r e a , when sh rubs were t a l l and the t r e e canopy was w e l l f o r m e d , t he d e e r p o p u l a t i o n i s reduced t o l e v e l s s i m i l a r t o t h o s e i n o l d g r owth f o r e s t (Dasmann, 1964 ) . 1.4 F a c t o r s C o n t r i b u t i n g t o P o p u l a t i o n D e c l i n e T h i s d e c l i n e i s a t t r i b u t e d bo s e v e r a l f a c t o r s : t r e e canopy grows out of t he r e a c h of d e e r , t h e r e b y e l i m i n a t i n g a s ou r ce of w i n t e r f o o d , f o o d q u a l i t y i s r educed ( R o b i n s o n , 1 958 ) , and p r o d u c t i o n of g r a s s e s , f o r b s , and browse i s r e -duced ( B l a i r , 1 9 6 9 ) . P l a n t p r o d u c t i v i t y I n the u n d e r s t o r y i s g e n e r a l l y r e l a t e d t o the u n d e r s t o r y d e n s i t y ( B l a i r , 1969; S p u r r , 1964 ) . Hence, l e s s f o o d i s a v a i l a b l e f o r h e r b i v o r e s as s t a nd d e n s i t y i n c r e a s e s . Under dense young c o n i f e r s t ands l i g h t t r a n s -m i s s i o n may be l e s s t h a n 5 p e r c e n t of f u l l s un ; a c o n d i t i o n w h i c h l e a d s t o t he d i s a p p e a r a n c e of u n d e r s t o r y v e g e t a t i o n ( S h i r l e y , 1945, I n B l a i r , 1 9 6 9 ) . L i g h t under some mature f o r e s t c a n o p i e s I s o n l y l / 2 p e r c e n t of f u l l sun ( S p u r r , 1964 ) . T h i s e x p l a i n s t h e s c a r c i t y of v e g e t a t i o n i n such f o r e s t s and t h e r e d u c t i o n of the dee r p o p u l a t i o n f r o m p o s s i b l y 100 dee r p e r square m i l e i n a l ogged env i r onment as r e c o r d e d by Brown (1961) t o 1 dee r p e r square m i l e i n a mature f o r e s t a 3 r e -co rded by Cowan ( 1 945 ) . 1.5 O the r F a c t o r s A f f e c t i n g Deter: Movement 1.5.1 S i t e Index O the r f a c t o r s w h i c h i n f l u e n c e d e e r movement ( e i t h e r - 1 3 -d i r e c t l y or i n d i r e c t l y i n regard to food and cover) are s i t e index, elevation, and aspect. S i t e index i s e s s e n t i a l l y an estimate of p r o d u c t i v i t y and would, therefore, u s u a l l y be r e f l e c t e d i n n u t r i e n t q u a l i t y of most p l a n t s . Since veget-ation with high p r o t e i n content i s preferred by deer (Brown, 1 9 6 1 ; Crouch, 1 9 6 6 ; Einarsen, 1 9 4 6 ) , those plants on a high p r o d u c t i v i t y s i t e w i l l be u t i l i z e d more than those of a lower p r o d u c t i v i t y s i t e ( t h i s would be p a r t i c u l a r l y true during the growing season before the nutrients are r e d i s t r i b -uted to the seeds). The extent to which a "high" and "low" s i t e are u s e f u l to deer v a r i e s with the age of the autogenic succession. A "high" s i t e on a r e c e n t l y logged f o r e s t en-hances deer use, however, i t s ' usefulness to deer declines more r a p i d l y than that of a "low" s i t e . This i s caused by a f a s t e r rate of growth on the "higher" s i t e s which shorten the time of succession. 1 . 5 . 2 Aspect Aspect a f f e c t s deer by a l t e r i n g the climate, which i n turn i s important to the comfort of the animal and to the growth of vegetation. In the North Temperate Zone the south and southwest aspects receive more of the sun's energy than other aspects and the north aspect receives the l e a s t (Spurr, 1 9 6 4 ) . This e f f e c t i s p a r t i c u l a r l y pronounced when the sun i s low over the horizon. The e f f e c t of aspect on plants, therefore, i s u s u a l l y i n the modification of the p o t e n t i a l energy ( l i g h t -14 and h e a t ) r e c e i v e d . On t h i s b a s i s t he g r ow i ng season wou ld b e g i n e a r l i e r and p l a n t p r o d u c t i v i t y and q u a l i t y wou ld be h i g h e r on s o u t h e r n s l o p e s t h a n on n o r t h e r n . B e s i d e s b e i n g i n f l u e n c e d by v e g e t a t i o n , dee r a r e a l s o d i r e c t l y a f f e c t e d by t e m p e r a t u r e and w i l l s e l e c t t he 4 a s p e c t w h i c h b e s t meets t h e i r r e q u i r e m e n t s . Taber Sad Da s -mann (1958) n o t e d t h a t the Co lumb ian b l a c k - t a i l e d d e e r i n C a l i f o r n i a move around f r o m h o u r t o hou r and f r o m season t o season t o f i n d the most c o m f o r t a b l e a i r t e m p e r a t u r e . In w i n t e r t he d e e r spend most of t h e i r t i m e on the warmer s o u t h e r n f a c i n g s l o p e s . I n summer t he se s l o p e s become t o o warm f o r t he d e e r and t he n o r t h e r n f a c i n g s l o p e s a r e o c c u p i e d d u r i n g t he day bu t a r e u s u a l l y d e s e r t e d a t n i g h t i n f a v o u r of s o u t h e r n f a c i n g s l o p e s . S i m i l a r o b s e r v a t i o n s have been made w i t h mule dee r by L o v e l e s s (1964) i n Moen, (1968b) and J u l a n d e r ( 1966 ) . L .5 .5 E l e v a t i o n The i n f l u e n c e of e l e v a t i o n on d e e r movement I s p r i m a r i l y t h r o u g h the t e m p e r a t u r e g r a d i e n t a s s o c i a t e d w i t h i t . I n t he m a r i t i m e c l i m a t e of C a l i f o r n i a t he t e m p e r a t u r e d e -c r e a s e s between 1 t o 1.5 P. w i t h each 1,000 f o o t r i s e i n e l e v -a t i o n ( S p u r r , 1 964 ) . These v a l u e s a r e c o n s i d e r e d comparab le t o t he P a c i f i c No r t hwes t s i t u a t i o n . The e f f e c t i s t o s t i m u l -a t e e a r l i e r p l a n t g rowth at l o w e r a l t i t u d e s w h i c h p r o v i d e s an i m p o r t a n t e a r l y s ou rce of f o o d . C o o l e r t e m p e r a t u r e s a t h i g h e r a l t i t u d e s ensu re e a r l i e r snowfall, l a t e r snow m e l t i n t he s p r i n g , and g r e a t e s t - 1 5 -a c c u m u l a t i o n of snow t h a n a t the l o w e r e l e v a t i o n s . T h i s i s t he p r i m a r y r e a s o n , i n most c a s e s , f o r d e e r m i g r a t i o n t o l o w e r a l t i t u d e s i n w i n t e r (Dasmann and T a b e r , 1956 ) . These c o o l e r c o n d i t i o n s a l s o po s tpone the g r ow ing season i n the s p r i n g . T h i s , e f f e c t p r o v i d e s a g r a d i e n t of p l a n t s a t v a r i o u s s t age s of m a t u r i t y - t he o l d e s t a t t he bo t t om and t he youges t a t t he t o p . S i n c e young p l a n t m a t e r i a l l i s more n u t r i t i o u s and p a l a t a b l e than o l d e r m a t e r i a l , c o n c e i v -a b l y , y o u t h f u l f o r a g e c o u l d p r o v i d e an i n c e n t i v e f o r dee r t o m i g r a t e up t o t h e i r summer range ( S ^ e J / e j ^ b ^ ^ K l ) . O t he r i n -v e s t i g a t o r s c o n s i d e r m i g r a t i o n p a t t e r n s t o be i n n a t e (Dasmann and T a b e r , 1 956 ) . 1.5.4 L o g g i n g P a t t e r n s L o g g i n g p a t t e r n s and s i z e of a r e a l ogged c o n t r i b u t e s i g n i f i c a n t l y t o the q u a l i t y of d e e r h a b i t a t . These f a c t o r s have been s t u d i e d s u b j e c t i v e l y and t h e r e i s much s p e c u l a t i o n on t he m a t t e r ( R o b i n s o n , 1958; Brown, 1961; McGInnes, 1969; T e f l e r , 1970a; Verme, 1965; K r e f t i n g and P h i l l i p s , 1 970 ) . K r e f t i n g and P h i l l i p s (1970) f ound t h a t d e e r use was h i g h e s t i n p a t t e r n s where e l e a r c u t s t r i p s were c u t 75 f e e t by 400 f e e t w i t h na r row s t r i p s of mature f o r e s t a l t e r n -a t i n g . Such p a t t e r n s p r o v i d e d more a t t r a c t i v e h a b i t a t t o d e e r t han e l e a r c u t b l o c k s (0.4 a c r e s ) o r f o r e s t s cu t on the d i a m e t e r - l i m i t , s h e l t e r w o o d , o r s e l e c t i o n b a s i s . T e f l e r (1970a) c o n c l u d e d t h a t the b e s t dee r h a b i t a t i n e a s t e r n Canada - 1 6 -c o n s i s t e d of l o g ged s t r i p s w h i c h were l e s s t han 200 f e e t w i d e . T h i s i s c o n s i s t e n t w i t h R e y n o l d ' s (1966b i n M c g i n n e s , 1969) f i n d i n g s t h a t open ing s l a r g e r t han 20 a c r e s ( i n A r i z o n a ) were l i t t l e used by d e e r . However, d e e r use i n c r e a s e d as t he s i z e of the l ogged p a t c h e s d e c r e a s e d . A p p a r e n t l y d e e r d i d no t o r d i n a r i l y move much more t h a n 1,200 f e e t f r o m the f o r e s t edge. S i n c e l o g g e d - o v e r l a n d i s a t t r a c t i v e t o d e e r , c o n -i f e r r e g e n e r a t i o n o f t e n becomes d i f f i c u l t because the s e e d -l i n g s a r e b r owsed . To p r o v i d e b o t h f o o d f o r d e e r and adequate c o n i f e r r e g e n e r a t i o n , Verme (1965) sugges ted c u t t i n g l a r g e r p a t c h e s t han t ho se d e s c r i b e d above . He p ropo sed p a t c h e s w h i c h were 40 t o 60 a c r e s i n s i z e . 1.5.5 Snow A c c u m u l a t i o n 1 .5 .5 .1 As A f f e c t e d by A s p e c t The n a t u r e of the snow pack s a re i m p o r t a n t i n the l i f e of dee r i n .the P a c i f i c N o r t h w e s t . Of p a r t i c u l a r I n t e r e s t a r e t he e f f e c t s of a s p e c t , e l e v a t i o n and f o r e s t edge on snow d e p o s i t i o n and m e l t . Meiman (1968) obse rved t h a t the e f f e c t of a s p e c t appear s t o be p r e d o m i n a n t l y a m e l t i n f l u e n c e a l -though t h e r e a r e s t r o n g i n d i c a t i o n s t h a t a c c u m u l a t i o n , i r r e s -p e c t i v e o f m e l t , i s r e l a t e d t o a s p e c t . M e l t wou ld of c ou r s e be most r a p i d on s l o p e s r e c e i v i n g the most ene rgy f r o m the sun - v i z . t ho se w i t h a s o u t h e r n a s p e c t . - 1 7 -1.5.5.2 As A f f e c t e d by E l e v a t i o n E l e v a t i o n imposes a s i g n i f i c a n t e f f e c t upon snow accumulation. I n g e n e r a l , accumulation i n c r e a s e s w i t h e l e v a t i o n at r a t e s which vary from one p l a c e t o another (Meiman, 1968). A study, i n C a l i f o r n i a , showed t h a t depth i n c r e a s e ranged from 1 to 2.5 inches per 100 f e e t i n c r e a s e i n e l e v a t i o n (U.S.Army, 1956, see Stanton, 1966). F u r t h e r -more, s i n c e temperatures are n o r m a l l y warmer at lower a l t i -tudes melt occurs f i r s t t h e r e . 1.5.5.3 As A f f e c t e d by F o r e s t s 1.5.5.3.1 Forest Canopy Fo r e s t c l e a r i n g s and t h e i r edge e x h i b i t a marked i n f l u e n c e on both snow d e p o s i t i o n and melt. More snow accum-u l a t e s i n f o r e s t openings (up to 10 acres i n s i z e ( G o o d e l l , 1 9 7 1 ) ) than beneath f o r e s t canopies ( J e f f r e y , 1968; Stanton, 1966; and Rothacher, 1965). This may be l a r g e l y due to a r e -d i s t r i b u t i o n of snow attendant upon r e d u c t i o n of wind v e l o c i t y i n the openings ( J e f f r e y , 1968). Snow accumulation r a t e , at l e a s t i n some s i t u a t i o n s , beneath the f o r e s t canopy i s i n -v e r s e l y r e l a t e d to canopy d e n s i t y (Goodwell, 1 9 5 9 ; Molchanov, 1963 i n J e f f r e y , 1968). 1.5.5.3.2 Forest C l e a r i n g Snow d e p o s i t i o n w i t h i n the f o r e s t opening shows a r e l a t i o n s h i p w i t h the f o r e s t edge. Hoover (1962, i n J e f f r e y , -18-1968) and Stanton (1966) note that snow-drifts generally form at the forest edge adjacent to open areas. Anderson et a l (1958, i n Rothacher, 1965) found that heaviest snow accumulation tends to occur at the bottom edge of a clearcut area regardless of aspect. Snow accumulation occurs not only at the edge but also i n the center of r e l a t i v e l y small clear-cut areas. For example, snow builds up toward the center (after a depression near the forest edge) i n clearings of 10 to 16 acres (Stanton, 1966), and i n others that are 60 feet i n diameter where the surrounding threes average 80 feet t a l l (Goodell, 1964 i n Stanton, 1966). 1.5.6 Snow Melt A relationship of snow accumulation and melt with aspect and forest edge was noted by Rothacher (1965) on the west slopes of the Oregon Cascades. On clearcut s t r i p s , 152 feet wide, i n an east-west direction and located on south to southwest aspects, snow depth decreased with distance from the south edge of the forest. This was true during both snow accumulation and melt. Snow melted f i r s t , i n Rothachers study, on the upper, north edge where solar radiation i s least i n -terrupted by tree crowns. Although snow accumulates more rapidly i n clear-cut areas, i t also melts faster since more heat i s available ( M i l l e r , 1955; and Anderson, 1956 i n Jeffrey, 1968). Again, numerous other influences tend to reinforce or negate this generalization. For instance, Rothacher's study demonstrates -19-the r e l a t i o n of snow accumulation and melt with aspect and for e s t edge. Complicating the melting rates i s the combin-ation of convecting heat (from adjacent f o r e s t s ) , with solar and longwave rad i a t i o n , and sensible heat a l l of which vary i n melting influence from open to mature f o r e s t s . The f o l -lowing example i s a generalization of the interactions: Small openings receive convected heat from adjacent f o r e s t s , as well as more sensible heat and longwave radiation, but less d i r e c t beam radiation than large open snow f i e l d s ; therefore t h e i r melt rates are less than those i n large open areas but are greater than i n closed forest (Goodell'.'., 1959; Molchanov, 1963; Jeffrey, 19 1.6 P e l l e t Group.;Counts as a Census Technique The p e l l e t group count has become an acceptable technique f o r both censusing deer (Gates, 1968; Dasmann, 1964) and giving t h e i r r e l a t i v e d i s t r i b u t i o n s (Brown, 1961; Krefting and P h i l l i p s , 1970; McGinnes, 1969). This technique i s based on an assumed defecation rate by deer and the assumption that p e l l e t group counts are In proportion to the amount of time deer spend In each l o c a t i o n . Various sources of error are inherent i n t h i s method; included are: defecation and p e l l e t decomposition rates vary with food p a l a t a b i l i t y and therefore the season i n which the food was eaten; defecation rates vary with deeiv.^e .. a c t i v i t y ; p e l l e t decomposition rates vary with climate and hence cover; and a l l errors involved i n sampling techniques. -20-N e f f (1968) made a complete r e v i e w o f the p e l l e t group c o u n t t e c h n i q u e . He i n c l u d e s t o p i c s on s i z e and s l o p e o f sample p l o t , d i s t r i b u t i o n o f sample u n i t s , s a m p l i n g i n -t e n s i t y , d e f e c a t i o n r a t e , o b s e r v e r b i a s , o t h e r s o u r c e s o f e r r o r , and an e x p e r i m e n t a l e v a l u a t i o n o f p e l l e t group c o u n t s . 2. S t u d y S i t e D e s c r i p t i o n 2.1 P h y s i o g r a p h y (Bunce, i 9 6 0 ; C a n a d i a n F o r e s t P r o d u c t s L t d . ( C a n f o r ) i n f o r m a t i o n ; and C o n t o u r Maps P r o -duced by S u r v e y s and Mapping B r a n c h , O t t a w a ) . The N i m p k i s h V a l l e y l i e s w i t h i n t h e m o u n t a i n mass o f t h e n o r t h e r n p a r t o f Vancouver I s l a n d . The mountains range from 5,000 t o 6,000 f e e t above s e a l e v e l ( H o a d l e y , 1 9 5 3 ) . The v a l l e y f l o o r d r o p s i n a l t i t u d e from about 950 f e e t a t i t s s o u t h e a s t e r n end t o s e a l e v e l a t B e a v e r Cove. The a l t i -t u d e s o f l a k e s , a d j a c e n t t o t h e s t u d y a r e a i n t h e V a l l e y , a r e : Schoen L a k e , 1320 f e e t ; Woss L a k e , 491 f e e t ; Vernon L a k e , 675 f e e t ; and N i m p k i s h L a k e , between 0 - 100 f e e t . Schoen Lake i s o f f s e t s e v e r a l m i l e s from t h e N i m p k i s h V a l l e y . The main v a l l e y t r e n d s n o r t h w e s t - s o u t h w e s t and has t h e t y p i c a l U-shaped g l a c i a l f o r m . I t i s from h a l f t o t h r e e m i l e s wide and 57 m i l e s l o n g (Bunce, I 9 6 0 ) . F i g u r e 1 p r e s e n t s a v i e w o f a p o r t i o n o f t h e v a l l e y . 2.2 G e o l o g y (Bunce, i 9 6 0 ; C a n f o r i n f o r m a t i o n ; and G e o l o g y Map - 1028A) The b e d r o c k s t r a t i g r a p h y s t r u c t u r e o f t h e N i m p k i s h Figure 1 A south-east facing view of a portion of the Nimpkish Valley with Woss Camp i n the back-ground . -22-area were developed over several geological periods, es-pecially the Triassic, Jurassic, and Cretaceous. The s t r a t i -graphy has two primary components; the coast granitic i n -trusions and the "Vancouver group"; rocks of this l a t t e r group are assigned to the Triassic period, and are further subdivided into three subgroups: the rocks of the Karmutsen group, the Quatsino formation, and the Bonanza group (Hoadley, 1953). Rocks of the Karmutsen group consist predominately of basaltic and andesitic lavas, agglomerates, breccias, and tu f f s (Map 1028A). The lavas are generally basic and contain only small amounts of acidic types such as dacite and rhyolite (Bunce, I960). This group occupies the greatest proportion of the Nimpkish area. The Quatsino formation consists primarily of c r y s t a l -l i n e limestone associated with minor volcano rocks (Map 1028A). The limestone varies i n depth from 500 to 3,500 feet but contributes only 5 percent of the valley's surface (Bunce, 1961). I t occurs both south and east of the Nimpkish Lake. The Bonanza group consists of both sedimentary and volcanic rocks with the l a t t e r lying above the former. The lower layer i s about 400 to 500 feet thick and i s composed of tuffaceous a r g i l l i t e , impure limestone, and quartzite at the base. The upper layer i s thicker than the lower layer and consist of andisitic lavas, agglomerates, t u f f s , breccias, and lavas which are a mix of basalt, trachyte, and dacite. Of the three groups, this one i s represented by the smallest area (1.6$) of the v a l l e y (Bunce, 1960). I t i s g e n e r a l l y found on the edges of the v a l l e y s n o r t h of Nimpkish Camp. The C o a s t a l I n t r u s i o n occurred d u r i n g J u r a s s i c and /or Cretaceous time. I t i s formed of h o l o c r y s t a l l i n e , igneous, rocks which are from b a s i c to a c i d i c . The I n t r u s i o n extends beyond Woss Lake i n the southeast to beyond Nimpkish Lake i n the northwest, a d i s t a n c e of about f i f t y m i l e s (Bunce,1960). During the P l e i s t o c e n e p e r i o d , g l a c i a t i o n was r e -s p o n s i b l e f o r d e p o s i t i n g g l a c i a l d r i f t over e x t e n s i v e areas throughout the V a l l e y . These d e p o s i t s are not deep and the bedrock f r e q u e n t l y crops up even i n the v a l l e y bottom. 2.3 S o i l s (Bunce, 1960) The l a s t g l a c i a t i o n was recent and the s o i l s are immature. Parent m a t e r i a l s range i n f e r t i l i t y from the poorer t u f f s and a c i d i c l a v a s to the b a s e - r i c h b a s a l t s and the f e r t i l e s o i l s d e r i v e d from the g r a n o d i o r i t i e s of the major i n t r u s i v e b o d i e s . These g r a n o d i o r i t e s have provided the g r e a t e r p a r t of \ h i g h p r o d u c t i v i t y s i t e s o i l s . G l a c i a l d r i f t has i t s own c h a r a c t e r i s t i c s b e s i d e s those i n h e r i t e d from the bedrock; I t g i v e s r i s e t o g l e y s and ground-water podzols over s l i g h t l y e l e v a t e d ground, and podzols where the bedrock emerges through the d r i f t . S o i l may be many f e e t deep i n the v a l l e y bottom and lower slopes but may become v e r y shallow, w i t h out-croppings of bedrock, on l y 100 f e e t above the v a l l e y f l o o r . _24-2.4 S i t e (Bunce, i960) The term, s i t e index, as used i n t h i s report i s defined as the average height of the dominant and co-dominant Douglas-fir trees at 100 years of age. I t expresses the sum-mation of a l l i n t e r a c t i o n s of c l i m a t i c , b i o t i c , topographic, and edaphic f a c t o r s . The s i t e index classed by Canfor, and t h e i r mid-points, are as follows: Class I, 200; Class I I , 170; Class I I I , 140; Class IV, 110; and Class V, 80. The percent of the t o t a l area, which each cl a s s occupies i n the Nimpkish Valley, i s , Class I, Class I I , 21#, Class I I I , 46$, Class IV, 22$, and Class V, 10%. 2.5 Climate (Canfor Information; Bunce, I960) The Nimpkish Valley experiences a moderate temper-ature range but extremes i n p r e c i p i t a t i o n . Mean annual pre-c i p i t a t i o n values f o r Woss Camp, a few hundred feet above sea l e v e l , ranged from 71 to 116 inches over a 15 year period; the average i s 90 inches. The s i x months between A p r i l and September account f o r only 23 percent of the t o t a l annual p r e c i p i t a t i o n (See Appendix l a f o r summary). P r e c i p i t a t i o n at Nimpkish Camp, also a v a l l e y bottom s t a t i o n , which i s about 20 miles northwest of Woss, has a very s i m i l a r record (Bunce, i960) however, f a r t h e r south the p r e c i p i t a t i o n range becomes greater. This may be the r e s u l t of a more v a r i a b l e t e r r a i n . -25-Snow f a l l s e v e r y y e a r i n t h e N i m p k i s h V a l l e y c a t e l e v a t i o n s above 1 ,000 f e e t ; s n o v / f a l l may b e g i n as e a r l y as November above 1,500 f e e t and a c c u m u l a t e s t o v a r y i n g d e p t h s u n t i l l a t e s p r i n g . W i t h t h e e x c e p t i o n s o f s t e e p n o r t h s l o p e s , t h e snow l i n e , b y t h e end o f A p r i l , has u s u a l l y r e t r e a t e d t o abou t 3,000 f e e t . On t h e n o r t h s l o p e s t h e snow w i l l r e m a i n u n t i l midsummer. The ave r age a n n u a l s n o w f a l l a t Woss Camp i s 40 i n c h e s (See A p p e n d i x l b ) . Tempe ra tu r e e x t r e m e s a t Woss Camp v a r y f r o m a maximum o f 99°F t o a minimum o f - 4 ° (See A p p e n d i x l c and d ) . No month has an a ve r age t e m p e r a t u r e w h i c h i s be l ow f r e e z i n g . 2 .6 B i o t a ( Bunce , I 9 60 ) S e v e r a l f o r e s t t y p e s o c c u r i n t h e N i m p k i s h V a l l e y . The two m a j o r t y p e s a r e D o u g l a s - f i r ( P s e u d o t s u g a m e n z i e s i i ( M i r b . F r a n c o ) and D o u g l a s - f i r - w e s t e r n hem lock (T suga  h e t e r o p h y l l a R a f . S a r g . ) . These a r e p r e s e n t o v e r n e a r l y a l l w e l l d r a i n e d v a l l e y bo t t oms and on h i l l s i d e s t o t h e 2,000 f e e t c o n t o u r . S i x o t h e r t y p e s a r e r e p r e s e n t e d i n t h e V a l l e y , v i z . We s t e r n r e d c e d a r ( T h u j a p l i c a t a ( D o n n . ) ) ; l o d g e p o l e p i n e ( P i n u s c o n t o r t a ( D o u g l . ) ) ; S i t k a s p r u c e ( P i c e a s i t c h e n s i s ( Bong . C a r r ) ) - w e s t e r n h e m l o c k ; P a c i f i c s i l v e r f i r ( A b i e s  a m a b a l i s ( D o u g l . ) ) ; y e l l o w c e d a r ( C h a m a e c y p a r i s n o o t k a -t e n s i s D. Don. S p a c h . ) ; m o u n t a i n hem lock ( T suga ' ~me r t en s i ana ( B o n g . ) ) ; ' s u b a l p i n e f i r ( A b i e s l a s i o c a r p a ( H o o k ) ) . The Wes te rn r e d c e d a r t y p e o c c u r s on l a n d w i t h p o o r d r a i n a g e and -26-swampy ground. I t i s replaced by the lodgepole pine type where peat formation i s pronounced. The l a t t e r type also e x i s t s on low rocky h i l l s where the water supply i s low i n dry weather. In the northern end of the v a l l e y a more mari-time climate i n summer accounts f o r the replacement of the Douglas f i r with the s i t k a spruce-western hemlock type. The next three types are found at higher a l t i t u d e s : P a c i f i c s i l v e r f i r (may be outnumbered by balsam, western hemlock, and mountain hemlock); yellow cedar; and mountain hemlock-subalpine f i r . The l a t t e r occurs at elevations i n excess of 4,000 f e e t . 2.7 F i r e History (Bunce, I960; and F i r e History Maps, Canfor) Uncontrolled f i r e s have occurred throughout the Nimpkish V a l l e y with a frequency of about one every 100 years (Bunce, i960). Appendix 2 summarizes the f i r e h i s t o r y by showing the approximate times of f i r e , the age of present stands produced, the siz e of areas burned, and general l o c a t i o n . The e f f e c t of f i r e has been to create large blocks of even-aged timber c o n s i s t i n g predominantly of Douglas-fir. Nearly a l l the area of the Vall e y below 2,000 feet has been burned at one time or another during the l a s t 1,000 years, with the exception of the ten miles of the Va l l e y c l o s e s t to the sea. - 2 7 -2.8 L o g g i n g H i s t o r y (Bunce, i 9 6 0 ; and C a n f o r L o g g i n g H i s t o r y Maps) L o g g i n g i n t h e N i m p k i s h V a l l e y f i r s t began i n 1 9 1 5 a t Englewood and around B e a v e r Cove. L o g g i n g c o n t i n u e d i n l a n d , p r e c e d e d by t h e r a i l r o a d , and r e a c h e d t h e n o r t h end o f N i m p k i s h Lake by 1923. By 1943 l o g g i n g o p e r a t i o n s had ex t e n d e d t o t h e s o u t h end o f N i m p k i s h Lake and a f t e r 1945 was p r o c e e d i n g up t h e V a l l e y a t an average r a t e o f 2,000 a c r e s p e r y e a r . L o g g i n g around Woss Camp s t a r t e d i n 194-7 and around Vernon Camp i n 1953. C a n a d i a n F o r e s t P r o d u c t s L t d . has t h r e e l o g g i n g camps i n t h e V a l l e y s i t u a t e d a t t h e s o u t h e a s t o f N i m p k i s h Lake and spaced about 20 m i l e s a p a r t . They a r e , b e g i n n i n g from N i m p k i s h L a k e , a) N i m p k i s h Camp, b) Woss Camp, and c) Vernon Camp. The l a t t e r was e s t a b l i s h e d i n 1 9 5 5 t o s a l v a g e 6,400 a c r e s o f t i m b e r damaged by f i r e . The t o t a l e f f e c t o f t h e l o g g i n g o p e r a t i o n s has been t o remove t h e heavy t i m b e r o f t h e f i r - h e m l o c k t y p e i n v a l l e y bottoms and l e a v e l e s s a c c e s s i b l e s i d e h i l l t i m b e r o f hemlock-balsam s t a n d s (Bunce, i 9 6 0 ) . I n i t i a l l y t h e l o g g i n g s e t t i n g s were c o n t i g u o u s and n e a r t h e v a l l e y b ottom. At p r e s e n t s i d e h i l l s are b e i n g l o g g e d and t h e s e t t i n g s a re s e p a r a t e d by mature t i m b e r . 2.8 H i s t o r y o f Deer P o p u l a t i o n s (Bunce, i 9 6 0 ; C a n f o r I n f o r m a t i o n ) U n t i l 1961, t h e r e s p o n s e o f d e e r p o p u l a t i o n s t o -28-logging were not what was expected. In 1958, about 15 years after logging started, the deer population was estimated by the Game Branch, (now Fish and Wildlife Branch, B. C. Dept. of Recreation and Conservation) to be only 1.8 deer per square mile while for the same year Canfor estimated the population to be about 2.4 deer per square mile. The estim-ates were based on hunting returns and pellet group counts respectively. Since 1958 the population increased gradually u n t i l 1961 when i t "exploded" and reached an estimated 6 5 deer per square mile i n 1964. Although no data i s available for the interval u n t i l 1969, the opinions expressed by residents of the Valley are that the population continued ex-panding u n t i l 1968 when a great number of deer died during the winter of 1968-69. The die-off began with the exception-a l l y heavy snowfall during that winter. The following year the population was estimated by myself to be approximately 5 1 deer per square mile. Current observations indicate a rapidly expanding population. This i s indicated by the large number of yearling deer seen during the summer, i n comparison to adults. The available data on deer population increase i s depicted graphically i n Figure 2 and i n tabular form in Appendix 3 . -29-Figure 2 An estimate of the increase of deer populations i n the Nimpkish V a l l e y . -30-3 . Methods and M a t e r i a l s 3 . 1 S e l e c t i o n o f S t u d y A r e a The N i m p k i s h V a l l e y was s e l e c t e d as t h e most s u i t -a b l e a r e a f o r r e a s o n s g i v e n as f o l l o w s . The V a l l e y c o n t a i n s a l a r g e d e e r p o p u l a t i o n ; good a c c e s s ; l o g g i n g on a v a r i e t y o f a s p e c t s and a l t i t u d e s ; and a v a i l a b l e l i v i n g a c c o m o d a t i o n s . The s i g n i f i c a n c e o f a l a r g e d e e r p o p u l a t i o n l i e s i n t h e i n -c r e a s e d s a m p l i n g a c c u r a c y w i t h i n c r e a s e d p o p u l a t i o n s ( N e f f , 1 9 6 8 ) . V a r i a b l e t e r r a i n and l o g g i n g p e r m i t s t h e s t u d y o f a s p e c t and e l e v a t i o n on d e e r u sage o f mature and l o g g e d f o r e s t s . 3 . 2 P r o j e c t D i v i s i o n s The o b j e c t i v e s o f t h i s s t u d y were app r oached by means o f t h r e e i n d e p e n d e n t s u b - p r o j e c t s . The f i e l d work f o r them was c o m p l e t e d i n two summers o f 1 9 6 9 and 1 9 7 0 . ( a ) D u r i n g t h e f i r s t summer f i f t y " p e r m a n e n t " p e l l e t g roup p l o t s were e s t a b l i s h e d t h r o u g h o u t t h e N i m p k i s h V a l l e y , on r e c e n t l y l o g g e d f o r e s t s . The p u r p o s e o f t h e s e p l o t s was t o p r o v i d e i n f o r m a t i o n on t h e e f f e c t o f s i t e i n d e x , e l e v a t i o n , a s p e c t , and t i m e s i n c e s l a s h b u r n i n g on d e e r u se o f l o g g e d a r e a s . These p l o t s a l s o p r o v i d e d an e s t i m a t e o f p o p u l a t i o n s i z e . They were r e s a m p l e d a t t h e b e g i n n i n g o f t h e second summer. (b ) A n o t h e r m a j o r s u b - p r o j e c t was begun and c o m p l e t e d -31-during the second summer. The influence of forest edge on deer use of mature and recently logged forests was studied on five sites where transects of temporary subplots were established to sample pellet group density. Additional i n -formation was obtained from these plots on roads and veget-ation as they influenced deer use. (c) A third sub-project was begun and completed at the end of the second summer. This project was intended to give information on deer use of mature forests and the effect of aspect and elevation through study of temporary pellet group subplots. 3.3. Pellet Group Counts A l l pellet group subplots i n this study were c i r -cular with a radius of 5.64 feet (this gave each an area of o 100 square feet). The use of small plots (e.g. 50 f t . ) may permit a sampling accuracy equal to that of fewer larger plots yet s t i l l reduce the t o t a l area sampled (Pechanec and Stewart, 1940; i n Neff, 1968). However, the small plots also require greater effort to establish and sample and w i l l often increase border errors. Furthermore, larger plots w i l l show less v a r i a b i l i t y when the deer population i s low (Smith, 1964, i n Neff, 1968). With increasing plot size the possi-b i l i t y of overlooking pellet groups increases as also does the d i f f i c u l t y of delineating the plot boundary. The plot size chosen provided the best compromise with the above ad-vantages and disadvantages. -32-S u b p l o t b o u n d a r i e s were d e t e r m i n e d w i th , a s t i c k w h i c h was 5.64 f e e t l o n g . The c e n t e r o f t h e s u b p l o t was f i r s t e s t a b l i s h e d , t h e n one end o f t h e s t i c k was p l a c e d on t h e c e n t e r w h i l e t h e o t h e r end marked t h e b o u n d a r y . The number o f p e l l e t s r e q u i r e d t o be c o u n t e d as one g roup v a r i e d f r o m one s i t u a t i o n t o a n o t h e r . One i s o l a t e d p e l l e t was n e v e r c o n s i d e r e d t o be a g roup u n l e s s t h e r e was e v i d e n c e o f o t h e r p e l l e t s f r o m a d i s t u r b e d g r o u p . A p e l l e t g roup was c o u n t e d o n l y i f i t s c e n t e r was w i t h i n o r on t h e p l o t b o u n d a r y . S a m p l i n g i n t e n s i t y v a r i e d w i t h each p r o j e c t . A compromise be tween s a m p l i n g e f f i c i e n c y and a v a i l a b l e t i m e were p r i m a r i l y r e s p o n s i b l e f o r v a r i a t i o n i n i n t e n s i t y . 3.4 V e g e t a t i o n S u r v e y A l l t h r e e s u b - p r o j e c t s c o n t r i b u t e d t o the . s u r v e y o f t h e V a l l e y v e g e t a t i o n . A s u r v e y o f v e g e t a t i o n was made w i t h 3 s u b - p r o j e c t s . I n t h e e c o t o n e and matu re f o r e s t s u b -p r o j e c t s (b and c ) t h e s u b p l o t s u s e d t o sample t h e v e g e t a t i o n were t h e same as t h o s e u s e d t o sample t h e p e l l e t g roup d e n s i t y . V e g e t a t i o n on t h e permanent p l o t s was samp led w i t h t e n s u b -p l o t s on e a ch p l o t , e s t a b l i s h e d i n a s y s t e m a t i c - s e l e c t i v e manner. V e g e t a t i o n on each sample was r e c o r d e d by s p e c i e s , g r o w t h h a b i t ( h e r b and sh rub e t c . ) , v e g e t a t i v e c o v e r as a p e r c e n t o f t h e g round a r e a , and r e l a t i v e c o n t r i b u t i o n o f each s p e c i e s t o t h i s p e r c e n t a g e . Where p e l l e t g roups and v e g e t a t i o n were sampled s i m u l t a n e o u s l y a c o r r e l a t i o n of dee r use w i t h v e g e t a t i o n was u n d e r t a k e n . . On the permanent p l o t s , where t h i s was not the c a s e , t h e v e g e t a t i o n was t a b u l a t e d f o r r e f e r e n c e . 3.5 Permanent P l o t s ( S u b - p r o j e c t a ) 3 .5 .1 P l o t L o c a t i o n S e v e r a l c r i t e r i a were used t o s e l e c t a rea s on w h i c h t o l o c a t e p l o t s . In v i ew of the v e r y g r e a t v a r i a b i l i t y i n v e g e t a t i o n and t e r r a i n i t was e s s e n t i a l f i r s t t o p e r s o n a l l y s e l e c t a r ea s w h i c h were s u i t a b l e f o r s t udy bu t r e a s o n a b l y homogeneous t o p o g r a p h i c a l l y and f l o r i s t i c a l l y ; s a m p l i n g ( s t r a -t i f i c a t i o n ) w i t h t h i s r e s t r i c t i o n , made e s t a b l i s h m e n t and r e l o c a t i o n e a s i e r . T h i s c o n s i d e r a t i o n was i m p o r t a n t f o r r e d u c i n g the v a r i a t i o n among samples on t h e p l o t as w e l l as p e r m i t t i n g e a s i e r e s t a b l i s h m e n t and r e l o c a t i o n of permanent s u b p l o t s . O the r c r i t e r i a we re : s e l e c t i o n of a rea s l ogged and burned w i t h i n the l a s t 10 y e a r s ; s e l e c t i o n t o g i v e p l o t l o c a t i o n s o ve r a s u i t a b l e range of a l t i t u d e s ; and s e l e c t i o n of a r e a s t o d i s p l a y a v a r i e t y of a s p e c t s . E v e n t u a l l y 50 permanent p l o t s were e s t a b l i s h e d on l ogged a r ea s where a l l bu t f o u r were on s l a s h b u r n . Where s l a s h b u r n i n g had not been c a r r i e d o u t , the age of the new s u c c e s s i o n was c o n s i d e r e d f r o m the t ime of l o g g i n g . The number of p l o t s r e p r e s e n t i n g each s u c c e s s i o n a l age a r e shown i n T a b l e 1. S i m i l a r T a b l e s (2;,ahd 3) have been c o n s t r u c t e d t o show the number of p l o t s r e p r e s e n t i n g each s i t e and e l e v a t i o n c l a s s . A d e s c r i p t i o n of each p l o t i s g i v e n i n Append i x 4 . -34-T a b l e 1 Number o f P l o t s R e p r e s e n t i n g each S u c c e s s i o n a l Age S u c c e s s i o n a l Age Y e a r S l a s h b u r n e d * Number o f P l o t s 1 1968 1 2 1967 8 3 1966 10 4 1965 12 5 1964 4 6 1963 7 7 1962 3 8 1961 3 9 I960 2 * Y e a r s l a s h b u r n e d p r o v i d e d by George M u i r o f C a n f o r . T a b l e 2 Number o f P l o t s R e p r e s e n t i n g E a c h S i t e C l a s s S i t e C l a s s * Number o f P l o t s 100 1 110 3 120 12 130 14 140 13 150 6 160 1 * S i t e C l a s s e s p r o v i d e d by George M u i r o f C a n f o r , -35 Table 3 Number of P l o t s Representing Each Elevation Class Elevation Class* Number of Elevation Class Number Pl o t s 3 1 (X100) Pl o t s (X100) 8 3 20 9 6 21 10 5 22 11 3 23 12 3 24 13 1 25 14 2 26 15 8 27 16 1 28 17 1 29 18 2 30 19 1 31 3 1 1 1 *Elevation obtained from topography maps printed by B. C, Dept. of Lands and Forests - 3rd e d i t i o n . -36-3.5.2 P l o t L a y o u t E a c h p l o t c o n s i s t e d o f 40 s u b p l o t s ( s a m p l e s ) e s -t a b l i s h e d s y s t e m a t i c a l l y a l o n g e i g h t t r a n s e c t s r a d i a t i n g from a c e n t e r . T h i s arrangement a l l o w s f i v e s u b p l o t s p e r t r a n s e c t . The s u b p l o t s were spaced 50 f e e t a p a r t , f rom t h e i r c e n t e r s , a l o n g t h e t r a n s e c t . The t r a n s e c t s were e s t a b l i s h e d by compass w i t h one i n each o f t h e f o l l o w i n g d i r e c t i o n s : n o r t h , n o r t h e a s t , e a s t , s o u t h e a s t , s o u t h , s o u t h w e s t , w e s t , n o r t h w e s t . A 200 f o o t c h a i n was u s e d t o space t h e s u b p l o t s on t h e t r a n s e c t . The p l o t and s u b p l o t c e n t e r s were marked w i t h a s t a k e and p l a s t i c r i b b o n . I n t h e f o r m e r , t h e s t a k e s were about f i v e f e e t t a l l w i t h a l o n g r i b b o n w h i l e i n t h e l a t t e r t h e s t a k e s were o n l y about s i x i n c h e s t a l l and w i t h a s h o r t r i b b o n . O t h e r i n f o r m a t i o n o b t a i n e d f o r each p l o t was t h e p e r c e n t s l o p e o f t h e t e r r a i n w i t h a Sunto c l i n o m e t e r , t h e s i t e i n d e x f r o m George M u i r o f C a n f o r , t h e a l t i t u d e f r om t o p o g r a p h i c maps, and y e a r b u r n e d , a l s o f rom George M u i r o f C a n f o r . The s l o p e o f t h e l a n d was n o t c o n s i d e r e d i n any c a l -c u l a t i o n s s i n c e i t was moderate (30 - 40%) i n most c a s e s and i s n o t c o n s i d e r e d t o a f f e c t d e e r movement s i g n i f i c a n t l y ( J u l a n d e r , 1 9 6 6 ) . An i n i t i a l p e l l e t group coun t was made on a l l sub-p l o t s . A f t e r b e i n g c o u n t e d t h e p e l l e t g roups were removed from t h e p l o t s . - 3 7 -3 . 5 . 3 P l o t R e l o c a t i o n and E s t i m a t i n g Dee r P o p u l a t i o n s D u r i n g May o f t h e f o l l o w i n g y e a r t h e p l o t s , w i t h t h e e x c e p t i o n o f o n e , were r e s a m p l e d f o r p e l l e t g r oup s on e a ch s u b p l o t . T h i s i n f o r m a t i o n c o u l d be u s e d f o r c o r r e l a t i n g d e e r u se o f l o g g e d a r e a s w i t h s i t e i n d e x , e l e v a t i o n , and number o f y e a r s s i n c e s l a s h b u r n i n g as w e l l as f o r e s t i m a t i n g d e e r p o p u l a t i o n s . The d e e r p o p u l a t i o n c an be e s t i m a t e d w i t h t h e f o l l o w i n g f o r m u l a : Deer p e r s qua re m i l e = D e e r - d a y Wo. g roup P l o t 1 3 g r oup s x P l o t x S q . f e e t x Square f e e t 1  Square m i l e Days s i n c e l a s t sample E x p l a n a t i o n : D e e r - d a y An a s s u m p t i o n i s made t h a t d e e r 1 3 g r o u p s d e f e c a t e 1 3 t i m e s p e r d a y . No . g r oup s The number o f g r o u p s a r e t h o s e P l o t c o u n t e d d u r i n g t h e s e cond y e a r . P l o t T h i s v a l u e i s t h e i n v e r s e o f t h e Squa re f e e t t o t a l a r e a samp led p e r p l o t . Squa re f e e t Number o f s qua re f e e t i n one Square M i l e s qua re m i l e . 1 t The i n v e r s e number o f Days s i n c e l a s t sample days be tween t h e two s a m p l i n g p e r i o d s . The v a l u e o b t a i n e d c o u l d be f i t t e d w i t h c o n f i d e n c e l i m i t s . 3.6 E c o t o n e S t u d y ( S u b - p r o j e c t 6) 3 . 6 . 1 L o c a t i o n o f P l o t s F i v e p l o t s were e s t a b l i s h e d , w i t h i n t h e N i m p k i s h V a l l e y , p r i m a r i l y t o e v a l u a t e t h e r e l a t i o n s h i p o f d e e r u se o f r e c e n t l y l o g g e d and matu re f o r e s t s and t h e e f f e c t o f t h e -38-f o r e s t edge. To study t h i s r e l a t i o n s h i p i t became e s s e n t i a l to select areas with a r e c e n t l y logged and slashburned s i t e adjacent to a mature f o r e s t , and where the ecotone was d i s -t i n c t and regular. This l a s t c h a r a c t e r i s t i c f a c i l i t a t e d measuring of the edge and i n t e r p r e t i n g the i n t e r a c t i o n s . Other conditions which had to be considered when s e l e c t i n g an area were aspect and time since slashburning. Both of these parameters determine to a large extent the deer usage of an area. Although desired combinations of these parameters were l i m i t e d , four study areas were even-t u a l l y selected, with two on the north aspect and two on the south aspect. The northiaspect was represented by an area burned i n 1961 and another i n 1967 while the south aspect was represented by a 1961 and a 1966 burn. • The area burned i n 1966 was large enough to permit the l o c a t i o n of two p l o t s . The p l o t s are described more f u l l y i n Appendix 5. 3.6.2 P l o t Layout The logging pattern i n the V a l l e y was instrumental i n determining the p l o t layout. In a l l cases the p l o t s were on a slope with a f o r e s t edge situated on the upper side and, with the exception of two p l o t s , open on three sides. In the two exceptions the p l o t s were situated i n a corner bounded by two f o r e s t edges and open on the other two. Another feature associated with a l l p l o t s , except one, are fireguards situ a t e d between the mature and logged f o r e s t s (See F i g . 3a, 3b, and 3 c ) . On steep slopes where the Figure 3b Forest edge with fire-guard on p l o t s 2 and 3, burned i n 1966. -40-Figure 3c Forest edge without fire-guard on p l o t 1, burned i n 1951. - 4 1 -f i r e g u a r d s f o l l o w e d the c o n t o u r s , t h e y tended t o f o r m banks on b o t h t h e i r uppe r as w e l l as t h e i r l o w e r edges . F u r t h e r -more , t h e f i r e g u a r d s a r e a s s o c i a t e d w i t h an a c c u m u l a t i o n of s l a s h a t t h e i r edges , and a l s o , s i n c e t h e y a r e o f t e n dug t o t h e p a r e n t m a t e r i a l , p l a n t g rowth on them i s l i m i t e d . The s u b p l o t s f o r s a m p l i n g p e l l e t g roups and v e g e -t a t i o n were a r r anged s y s t e m a t i c a l l y i n t r a n s e c t s . These t r a n s e c t s were p a r a l l e l one t o a n o t h e r and , w i t h the e x c e p t i o n of- one p l o t , d i s s e c t e d t he upper f o r e s t edge p e r p e n d i c u l a r l y . The f o r e s t edge i n P l o t 4 c u r v e s f r o m S 25 E t o S 25 W. I n t h i s case t h e t r a n s e c t s c o n t i n u e d t o be p a r a l l e l bu t were i n a d i r e c t i o n t o m i n i m i z e any d e v i a t i o n f r o m p e r p e n d i c u l a r t o t he f o r e s t edge. The t r a n s e c t s were e s t a b l i s h e d i n a s i m i l a r manner on each p l o t . Three t o f o u r rows of s t a k e s , p a r a l l e l t o t he f o r e s t edge, p r o v i d e d adequate r e f e r e n c e ^ p o i n t s w i t h w h i c h t o a l i g n the t r a n s e c t s and the s u b p l o t s . The s t a k e s were 200 f e e t a p a r t i n each row w h i l e the rows were 300 f e e t a p a r t . A 300 f o o t c h a i n and a S i l v a compass were used t o l o c a t e each s t a k e . Each s t a k e , i n a row, had a c o u n t e r p a r t I n e ve r y o t h e r row, w h i c h was o p p o s i t e t o i t and i n the same d i r e c t i o n as t he t r a n s e c t s . S i n c e t he s t a k e s i n a row were 200 f e e t a p a r t , and the t r a n s e c t s o n l y 25 f e e t , n i n e t r a n s e c t s c o u l d be f i t t e d f r o m one s t a k e t o the o t h e r . S u b p l o t s on each t r a n s e c t were spaced about 40 f e e t a p a r t . AApoke s t i c k was Used t o space the s u b p l o t s bu t -42-since t h i s measurement i s subject to v a r i a t i o n , the more exact l o c a t i o n was estimated with reference to the stakes. Since the stakes along each transect are 300 feet apart, t h i s w i l l accommodate 7% subplots. Any v a r i a t i o n i n the number of subplots i s corrected when recording the distance of each from the fo r e s t edge by e i t h e r i n c r e a s i n g or decreas-ing the distance between them. In a l l p l o t s , except the f i r s t , four rows of r e f -erence stakes were used; one on, the'forest edge and the l a s t 900 feet from i t . In the f i r s t p l o t no stakes were used on the f o r e s t edge and the f i r s t row from i t was only (approx-imately) 300 feet away. Two other rows were established p a r a l l e l to the f i r s t and away from the edge. The exact d i s -tance of the stakes from the f o r e s t edge was measured with a range f i n d e r . Transects greater than 900 feet from the f o r e s t edge, and those into the f o r e s t , could not be adjusted with reference stakes. In t h i s case the transect's alignment was based s o l e l y on the compass while the subplot l o c a t i o n on the transect, i n r e l a t i o n to the f o r e s t edge, was based on the average spacing of the subplots on the transect where reference stakes were a v a i l a b l e . 3.6.3 Sample Size The sampling i n t e n s i t y used was about 10 percent of the p l o t ' s area. However, the p l o t ' s area was subject to v a r i a t i o n . A l l but one p l o t had 40 transects each; p l o t 5 - 4 3 -had o n l y 2 7 , b e i n g l i m i t e d b y a s h o r t u p p e r f o r e s t edge . The g r e a t e s t v a r i a t i o n i n p l o t s i z e o c c u r r e d as a r e s u l t o f d i f f e r e n c e s i n t r a n s e c t l e n g t h s . T h i s was t h e r e s u l t o f s e v e r a l f a c t o r s i n c l u d i n g d i f f e r e n c e s i n t h e s i z e o f t h e l o g g e d a r e a , t o p o g r a p h i c a l l i m i t a t i o n , and l i m i t a t i o n o f t i m e . An a t t e m p t was made t o e x t e n d t h e t r a n s e c t s 9 0 0 f e e t i n t o t h e l o g g e d a r e a . T h i s d i s t a n c e was s u r p a s s e d i n some p l o t s ( 1 and 2 ) and was s h o r t o f i t i n one ( 4 ) . The t r a n -s e c t s ivere c u t s h o r t i n t h e c o r n e r o f p l o t 4 by a m a j o r l o g g i n g r o a d . On p l o t 1 t h e t r a n s e c t s were e x t e n d e d up t o 1 , 2 0 0 f e e t f r o m t h e f o r e s t edge . T r a n s e c t s i n t o t h e f o r e s t v a r i e d i n l e n g t h , d e p e n d -i n g upon t h e p e l l e t g roup d e n s i t y and a v a i l a b l e t i m e . On s o u t h a s p e c t s t h e t r a n s e c t l e n g t h a l t e r n a t e d be tween 3 2 0 and 1 5 0 0 f e e t . L a c k o f t i m e p r e v e n t e d t h e e x t e n d i n g a l l t r a n s -e c t s t o 1 5 0 0 f e e t . The s h o r t e r t r a n s e c t s were c o n s i d e r e d l o n g enough t o encompass t h e ma in i n f l u e n c e s o f t h e f o r e s t edge . On n o r t h a s p e c t s t h e t r a n s e c t s were e x t e n d e d an a r b i t r a r y 3 2 0 f e e t i n t o t h e f o r e s t . Here t h e p e l l e t g roup d e n s i t y d r opped o f f s h a r p l y w i t h i n a s h o r t d i s t a n c e o f t h e f o r e s t edge . 3 . 6 . 4 Road E f f e c t The e f f e c t o f r o a d s on d e e r use o f l o g g e d a r e a s ' c o u l d be e v a l u a t e d w i t h t h e same p l o t s t h a t were u s ed i n t h e e c o t o n e s t u d y . T h i s was p o s s i b l e on p l o t s 1 , 2 , and 3 where -44-abandoned l o g g i n g r o a d s d i s s e c t e d t h e p l o t s . The l o c a t i o n o f t h e s e r o a d s on each t r a n s e c t was n o t e d w h i l e s a m p l i n g t h e s u b p l o t s . The r e l a t i o n s h i p o f p e l l e t - g r o u p d e n s i t y w i t h d i s t a n c e f r o m t h e r o a d c o u l d t h e n be c a l c u l a t e d . 3.7 M a t u r e F o r e s t ( S u b - p r o j e c t c ) A m i n o r s t u d y was made a t t h e end o f t h e second summer t o o b t a i n an i n d i c a t i o n o f t h e e f f e c t o f a s p e c t and s l o p e on d e e r u se o f matu re f o r e s t s . T h i s r e q u i r e d p l o t s on b o t h n o r t h and s o u t h a s p e c t s and a t v a r i o u s a l t i t u d e s . E v e n t u a l l y t e n p l o t s on each a s p e c t were c h o s e n . 3.7.1 P l o t L o c a t i o n T h i s s t u d y r e q u i r e d two s l o p e s w i t h one f a c i n g o r n e a r l y s o , i n a n o r t h , and t h e o t h e r i n a s o u t h d i r e c t i o n . T h e i r a l t i t u d e s s h o u l d r ange f r om t h e v a l l e y f l o o r t o abou t 3,000 f e e t . Such c o n d i t i o n s , howeve r , were n o t a v a i l a b l e s i n c e a l l a c c e s s i b l e s l o p e s were e i t h e r l o g g e d a t v a r i o u s i n t e r v a l s o r d i d n o t have t h e n e c e s s a r y a l t i t u d i n a l r a n g e . T h i s s i t u a t i o n was r e c t i f i e d by e s t a b l i s h i n g p l o t s a t v a r i o u s a l t i t u d e s b u t on d i f f e r e n t s l o p e s . An e q u a l number o f p l o t s on b o t h n o r t h and s o u t h a s p e c t s were s a m p l e d . They were l o c a t e d a t - va r i ou s a l t i t u d e s and f r e q u e n t l y o f f r o a d s w h i c h e x t e n d e d f o r a c o n s i d e r a b l e d i s t a n c e i n t o t h e matu re f o r e s t . I n a few c a s e s t h e p l o t s w e r e l o c a t e d b y w a l k i n g i n t o t h e f o r e s t f r o m a r o a d o r l o g g e d - 4 5 -a r e a . The a l t i t u d e o f e a ch p l o t was o b t a i n e d w i t h t h e a i d o f an anemometer. The r e a d i n g s o b t a i n e d were c h e c k e d w i t h a c o n t o u r map and a d j u s t e d i f n e c e s s a r y . A p p e n d i x 6 p r o -v i d e s a d e s c r i p t i o n o f each p l o t . 3 . 7 « 2 P l o t L a y o u t E a c h p l o t c o n s i s t e d o f 3 0 s u b p l o t s l a i d ou t i n a s y s t e m a t i c - s e l e c t i v e manner. They were s p a c e d abou t 50 f e e t a p a r t f r o m one a n o t h e r . B o t h v e g e t a t i o n and p e l l e t g r oup s were s amp led f r o m them. 4 . O b s e r v a t i o n s The o b s e r v a t i o n s of t h i s t h e s i s a r e r e p r e s e n t e d p r i m a r i l y by f i g u r e s I n t he f o r m of g r a p h s . T h i s i s p a r t i c -4 u l a r l y t r u e f o r the o b s e r v a t i o n s of t he eco tone s t u d y ( s ub -p r o j e c t b ) . 4.1 Permanent P l o t s ( S u b - p r o j e c t a ) The p e l l e t g roups on t he permanent p l o t s were counted on two d i f f e r e n t o c c a s i o n s , f i r s t , when t h e p l o t s were e s t -a b l i s h e d i n 1969, and a g a i n i n the f o l l o w i n g summer. S i n c e t he p e l l e t g roups were removed a f t e r t he i n i t i a l s amp le , an e s t i m a t e of d e e r p o p u l a t i o n c o u l d be made u s i n g the a s s u m p t i o n t h a t d e e r d e f e c a t e 13 t i m e s p e r day . The p o p u l a t i o n e s t i m a t e s f o r each p l o t a r e shown i n f a b l e 4 . E s t i m a t e s of s a m p l i n g a c c u r a c y f o r the f i r s t and second samples a r e g i v e n i n A p p e n d i x 7 . The t o t a l p e l l e t group count p e r p l o t (an e s t i m a t e of d e e r u s e ) was used i n m u l t i p l e r e g r e s s i o n a n a l y s i s w i t h t he f o l l o w i n g i ndependen t v a r i a b l e s : " t i m e of b u r n i n g " , " e l e v a t i o n " , and " s i t e i n d e x " . A s e p a r a t e a n a l y s i s of each sample p e r m i t t e d an e s t i m a t i o n of t he e f f e c t of t he i n d e p e n d -ent v a r i a b l e s on dee r use f o r two d i f f e r e n t p e r i o d s . These p e r i o d s were (1) t he t ime b e f o r e t he summer of 1969 and i n p a r t i c u l a r , t he f i r s t y e a r p r e c e d i n g i t , and (2) t he t ime i n t e r v a l between t he summer of 1969 and 1970. The i n f o r m a t i o n TABLE 4 Estimates Of Deer On Permanent Plots Plot Sample Number of Estimated Plot Sample Number of Estimated No. Period Pellet Groups Deer per No. Period Pellet Deer per (days) - per plot Sq. Mile* (days) Groups - Sq. Mile* per plot 1 361 29 43.1 26 310 37 64.0 2 359 53 79.1 27 309 24 41.7 3 357 31 46.5 28 308 20 34.8 4 356 41 61.8 29 307 46 80.3 5 355 41 61.9 30 311 28 48.3 6 Not available 31 310 21 36.3 7 339 23 36.3 32 310 48 83.0 8 353 26 39.7 33 308 37 64.4 9 342 34 53.3 34 305 48 84.4 10 341 60 94.4 35 304 27 47.6 11 340 18 28.4 36 304 42 74.1 12 340 22 34.7 37 303 48 84.9 13 339 34 53.8 38 302 32 56.8 14 338 48 76.1 39 301 32 57.0 15 337 18 28.6 40 303 17 30.1 16 3366 22 35.1 41 288 14 26.1 17 330 42 68.1 42 280 15 28.7 18 329 36 58.7 43 293 23 42.1 19 . 327 16 26.2 44 292 13 23.9 20 320 4 6.7 45 295 5 9.1 21 318 52 87.7 46 294 21 38.3 22 317 48 81.2 47 292 17 31.2 23 319 53 89.1 48 284 35 66.1 24 318 10 16.8 49 283 31 58.7 25 312 20 33.4 50 285 21 39.5 •Equation used shown i n Section 3.5.3. - 4 8 -f r o m t h e m u l t i p l e and s i m p l e r e g r e s s i o n a n a l y s i s i s p r e s -en ted i n t a b u l a r f o r m i n A p p e n d i x 8 and t h e s i m p l e r e g r e s s i o n i n g r a p h i c f o r m i n f i g u r e s 4 t o 9 . The r e g r e s s i o n a n a l y s i s was made on p l o t s u n s t r a t i f i e d f o r a s p e c t . The r e g r e s s i o n s of t he s t r a t i f i e d d a t a were not t e s t e d t o e s t a b l i s h whethe r t h e r e g r e s s i o n s were s i g n i f i c a n t l y d i f f e r e n t . The d a t a f o r t he r e g r e s s i o n s of t he v a r i a b l e s " t i m e s i n c e b u r n i n g " , " e l e v a t i o n " , and " s i t e i n d e x " was d e r i v e d f r o m the same p l o t s . Independent a n a l y s i s of each v a r i a b l e s hou l d be a v o i d e d and , i n s t e a d , a n a l y s i s of c o v a r i a n c e u s e d . I n t h i s s t u d y , t h o u g h , a n a l y s i s of c o v a r i a n c e was no t used because i n most i n s t a n c e s t he p l o t d i s t r i b u t i o n was a p r o -h i b i t i v e f a c t o r . 4 .1 .1 S amp l i n g P e r i o d The p e l l e t group coun t s of t he f i r s t s a m p l i n g p e r i o d w e r e , i n g e n e r a l , c o r r e l a t e d v e r y s i g n i f i c a n t l y t o o t he i ndependen t v a r i a b l e s ( " t i m e s i n c e b u r n i n g " , " e l e v a t i o n " , and ' " s i t e I n d e x " ) . The n u l l h y p o t h e s i s t h a t the s l o p e s of t he r e g r e s s i o n d i d no t d i f f e r s i g n i f i c a n t l y f r o m z e r o was r e j e c t e d a t t he 1 p e r c e n t l e v e l . A n a l y s i s of t he s t r a t -i f i e d d a t a on " n o r t h s l o p e " f o r " e l e v a t i o n " , and on " s o u t h s l o p e " f o r " t i m e s i n c e b u r n i n g " d i d no t r e v e a l s t a t i s t i c a l l y s i g n i f i c a n t r e g r e s s i o n s a t P . 0 1 . I n b o t h of t he se ca se s t h e s i g n i f i c a n c e of t he reg re s s i on . ;was r e d u c e d t t o P . 0 5 . -48a-A test f o r l i n e a r i t y of a l l the simple regressions was made. The n u l l hypothesis stated that the regression was l i n e a r . The hypthesis was not rejected f o r a l l regressions except those where "time since burning" was the independent variable both f o r u n s t r a t i f l e d plots and s t r a t i f i e d f o r north and south aspect. In the f i r s t Instance the l e v e l of s i g -n ificance was P .05 but i n the l a t t e r two i t was P .01. -49 4.1.1.1 Time S i n c e B u r n i n g ( A u t o g e n i c S u c c e s s i o n ) The r e l a t i o n s h i p between " p e l l e t g r o u p c o u n t s " - • ( h e r e a f t e r r e f e r r e d t o as " d e e r u s e " ) and " t i m e s i n c e b u r n -i n g " i s s i g n i f i c a n t l y n o n - l i n e a r . The b e s t f i t l i n e f o r b o t h t h e u n s t r a t i f i e d and s t r a t i f i e d d a t a was drawn by com-p u t e r a t U.B.C. u s i n g t h e model f o r a f o u r t h d e g r e e p o l y -n o m i a l as t h e u n d e r l y i n g r e g r e s s i o n m o d e l . The r e s u l t s a r e a r e shown i n F i g u r e 4a and 4b o S o u t h . The l i n e f o r F i g u r e 4b N o r t h was drawn f r e e - h a n d t o I l l u s t r a t e t h e r e l a t i o n s h i p e x p r e s s e d b y t h e d a t a . The g r a p h s d e p i c t a. t r e n d w h i c h s u g g e s t s t h a t d e e r u s e i s maximum on t h o s e a r e a s w h i c h were b u r n e d 8 o r 9 y e a r s p r e v i o u s l y . T h i s a p p e a r s t o be t r u e f o r b o t h t h e n o r t h and s o u t h a s p e c t s . The d i f f e r e n c e i n t h e u s e b y d e e r o f b u r n s i s i n i t i a l l y s l o w f o r t h e f i r s t few y e a r s a f t e r f i r e and t h e n i t i s more r a p i d . A " p l a t e a u o f u s e " i s r e a c h e d a f t e r a b o u t 7 y e a r s . On s o u t h s l o p e s d e e r soon use on t h o s e p l o t s r e a c h e s a f i r s t p e a k and t h e n a f t e r a l a g of 2 o r 3 y e a r s d e e r u s e a g a i n i n c r e a s e s u n t i l i t r e a c h e s a m a j o r s e c o n d p e a k a t ( o r n e a r ) 8 y e a r s f r o m t h e t i m e t h e f o r e s t was f i r s t l o g g e d and b u r n e d . 4.1.1.2 E l e v a t i o n D u r i n g t h e f i r s t p e r i o d of s a m p l i n g , b u t n o t d u r i n t h e s e c o n d , t h e r e s p o n s e o f d e e r u s e t o e l e v a t i o n a l change, Figure 4a Response of deer to age of burn. Observations f o r f i r s t sampling and f o r p l o t s on a l l aspects. Figure 4 b Response of deer to age of burn. Observations f o r f i r s t sampling and s t r a t i f i e d f o r north and south aspects. -51-from 800 t o 3200 f e e t , was ne g a t i v e ( F i g u r e s 5a and 5b). The response was s i m i l a r on both the n o r t h and south aspects w i t h the ex e p t i o n that the d e c l i n e i n use was more r a p i d on the n o r t h s l o p e . Deer use at every e l e v a t i o n , w i t h i n the range s t u d i e d , was l e s s on the n o r t h slope than on the south. 4.1.1.3 S i t e Index The "response of deer" to " s i t e index" i s p a r t i a l l y masked by the ne g a t i v e c o r r e l a t i o n of s i t e index to e l e v a t i o n . T h i s i s evident by the c o r r e l a t i o n c o e f f i c i e n t s shown i n Table 5. C o r r e l a t i o n Of E l e v a t i o n And S i t e Index In The Nimpkishi; Aspect C o r r e l a t i o n C o e f f i c i e n t C o e f f i c i e n t of Determination Table 5 V a l l e y . North -0.8803 0.7749 South -0.79 65 0.6344 A l l -0.7501 0.5626 -52-Figure 5a Response of deer to e l e v a t i o n on logged areas. Observations f o r f i r s t sampling and f o r p l o t s on a l l aspects. -53-Figure 5b Response of deer to e l e v a t i o n on logged areas. Observations f o r f i r s t sampling and s t r a t i f i e d f o r north and south aspects. -54-Sample 1 100 120 140 SITE INDEX 160 Figure 6a Response of deer to s i t e index on logged areas, Observations f o r f i r s t sampling on a l l aspects, 120 l 8 0 4) a i V) a. Z3 O tc a Ul 40 UJ a. Sample 1 NORTH • • S O U T H oo •y ^ 100 120 140 SITE INDEX 160 Figure 6b Response of deer to s i t e index on logged areas Observations f o r f i r s t sampling and s t r a t i f i e d f o r north and south aspects. -55-When analyzed with simple regression, however, shows a s i g n i f i c a n t l i n e a r relationship with deer use. This r e l a t i o n s h i p can be seen^in Figure 6a and 6b. Deer use on a north aspect shows a greater response to an increased s i t e index than i t does on a south aspect. This may be-a true r e l a t i o n s h i p of "deer use" wdth " s i t e index" but also i t could be the res u l t of the c o r r e l a t i o n of s i t e index with elevation. 4.1i.2 Second Sampling Period The behaviour of deer as indicated by p e l l e t group counts i n r e l a t i o n to autogenic succession, changing elevation, and changing s i t e index, was d i f f e r e n t i n the two periods. In general, the c o r r e l a t i o n of deer use with the independent variables was not s i g n i f i c a n t at the P .05 l e v e l during the second sampling period. Only the time since burning showed a c o r r e l a t i o n at that l e v e l of s i g n i f i c a n c e . A test f o r l i n e a r i t y was made, f o r a l l simple re-gressions. In a l l cases the n u l l hypothesis as stated i n Section 4.1.1., was not rejected at the P .05 l e v e l of s i g -n i f i c a n c e . 4.1.2.1 Time Since Burning (Autogenic Succession) The r e l a t i o n s h i p of "deer use" to "autogenic suc-cession" i n t h i s sample i s s i g n i f i c a n t at the P .05 l e v e l f o r the plots u n s t r a t i f i e d f o r aspect and f o r the north aspect of u n s t r a t i f i e d plots (Figures 7a and 7b). This relationship was -56-80 o a k. a 1 v> a. K O I U J 1 CL Sample 2 1968 1966 1964 YEAR BURNED 1962 1960 Figure 7a Response of deer to age of burn. Observations f o r second sampling and f o r p l o t s on a l l aspects. Figure 7b Response of deer to age of burn. Observations f o r second sampling and s t r a t i f i e d f o r north and south aspects. not s i g n i f i c a n t f o r "the south aspect". Regression analyses of data, s t r a t i f i e d by aspect (north and south), i n d i c a t e s that deer use i s lower on the north aspect than on the south (Figure 7b). This response i s s i m i l a r to that found i n the f i r s t sampling but d i f f e r s i n that the regression i s s t a t i s t i c a l l y l e s s s i g n i f i c a n t . 4 . 1 . 2 . 2 E l e v a t i o n In the second sampling period the "response of deer" to "elevation" was somewhat d i f f e r e n t from that of the f i r s t sampling period. Although the regression i s not s i g n i f i c a n t at the P=.05 l e v e l the regression c o e f f i c i e n t i s now generally p o s i t i v e with i n c r e a s i n g e l e v a t i o n . This i s true f o r the data, u n s t r a t i f i e d f o r aspect and f o r the data s t r a t i f i e d f o r the south aspect. The data f o r the north aspect deviates from the general with a negative regression c o e f f i c i e n t (Figures 8a and 8b). Although the r e l a t i o n s h i p s of deer use to elevation are f a i r l y weak, i n t h i s sample, several g e n e r a l i t i e s can be made. For the period that t h i s sampling represents, the deer use with e l e v a t i o n d i f f e r e d on the north and south aspects. On the south aspect deer u t i l i z e d the upper elevations (up to 3200 feet), more than the lower but on the north aspect deer u t i l i z e d the lower elevations more than the upper. i Figure 8a Response of deer to elevation on logged areas. Observations f o r second sampling and f o r p l o t s on a l l aspects. Sample 2 NORTH • • SOUTH o o ' 1 6 20 ELEVATION-feet x100 Figure 8b Response of deer to elevation on logged areas. Observations f o r second sampling and s t r a t i f i e d f o r north and south aspects. -59-4.1.2.3 Site Index Correlations of s i t e index and elevation (Table 5) on f i r s t and second samplings are s i m i l a r . The regression analysis of t h i s data indicates that the r e l a t i o n s h i p of "deer use" to " s i t e Index" i s negative except on the north aspect (Figures 9a and 9b). A s i m i l a r negative r e l a t i o n exists with elevations i n t h i s sample (Section 4.1,2.2.). 4.1.3 Change of deer use with Elevation f o r the Two Sample Periods Several references have been made to deer use of logged f o r e s t s at various elevations (Section 4.1.1.2 and 4.1.2.2.). It was noted that a change occurred In the response to elevation between the tw/o sampling periods. In the f i r s t period deer use declined with increased elevation, but i n the second period use increased with elevation except on the north aspect where i t showed a decline. This change i s i l l -ustrated i n Figure 10. The average p e l l e t groups per plot of the f i r s t sampling was adjusted to that of- the second (the p e l l e t groups per p l o t were proportionately reduced). Then the p e l l e t -60-8 0p Sample 2 o a a f 0 o ' o tn ° -a o ° 34oL- . ; 8 8. U J IS 2 o 5 y = 35.6 - o.cKv i O 6 o T 1 i _ ' O jp o o •ui W 8° o o 100 120 140 160 SITE INDEX Figure 9a Response of deer to s i t e index on logged areas. Observations f o r second sampling and f o r p l o t s on a l l aspects. o Q . 0> a i if) a o H U l - I _ l UJ a. Sample 2 I NORTH — • • S O U T H OO i 8 » o 0 0 o • i •8 ! o y = hZ.k • S o • i i • I i 100 120 SITE 140 INDEX 160 _ j - O.llx Figure 9b Response of deer to s i t e index on logged areas. Observations f o r second sampling and s t r a t i f i e d f o r north and south aspects. Figure 1 0 Change i n deer use with elevation between two sampling periods -62-groups per p l o t were subtracted from the adjusted p e l l e t group counts f o r the corresponding p l o t data of the f i r s t sampling. A regression analysis of t h i s d i f f e r e n c e with elev-ation i n d i c a t e s that the regression i s hi g h l y s i g n i f i c a n t P=.01) and with a c o e f f i c i e n t of determination of 0.36 (Appendix 9). 4.1 ^4 Change of Snowfall f o r the Two Sampling Periods The change i n deer use with e l e v a t i o n occurred simultaneously with a s i g n i f i c a n t change i n snowfall f o r the winter preceding the sample. Two tables have been constructed to show the snowfall from 1966 to 1970 at Woss Camp (Table 6) and from 1963 to 1970 at 9 loc a t i o n s i n the Pacific"Northwest and at various elevations (Table 7). The two winters of par-t i c u l a r i n t e r e s t are those occurring i n 1968-69 and i n 1969-70. Table 6 i l l u s t r a t e s an important difference i n snowfall be-tween these winters. In the f i r s t winter the snowfall was exceptionally heavy compared to the long term mean, and i n the second winter the snowfall was exceptionally l i g h t . S i m i l a r observations can be made f o r the snowfall data i n Table 7. Columns 8 and 10 show the snowfall difference from the long term mean f o r the winters of 1968-69 and 1969-70 re s p e c t i v e l y . 4.1.-5 Vegetation A sample of vegetation on each p l o t i s given i n Appendix 10. The information provided gives the species -63-Table 6 Monthly Snowfall from 1966 to 1970 Woss Camp (Elevation 550 f t a.s.i.) Winter Recorded October November December January February March 1966-67 0 0 0 24.1 0.1 0.6 1967-68 0 0 0 28.5 0 0 1968-69 0 4.0 20.5 82.0 26.75 0 1969-70 0 0 0 7.5 0 0 Avg. Snow- 0 1.0 5.1 35.5 6.7 .15 f a l l by Month Data contributed by Canadian Forest Products Ltd. Table 7 Snowfall At Several Coastal Drainage Basins and Snow Courses Prom 1 9 6 3 to 1 9 7 0 (A comparison i s also made of the snowfall during 1 9 6 9 and 1 9 7 0 to the average for the years shown). Location and Elevation 1 2 1963 1964 3 1965 Average Snow Accumulation between February to March (inches) 4 1966 5 1967 6 1968 7 1969 8 Devi-ation from avg. 9 10 11 1970 Devi- Aver-ation age from avg. 12.6* 43.2 2.0 56.4 Upper Quinsam; Mid-eastern Vancouver Is-land (VI)2100 f t . Tripp Meadows; South (VI); 2700 f t Lyford Mt.;South Central VI;3000 Is f t . 5.8 52.6 Mt.Seymour; Main-land; 3650 f t . 73.4 208.4 Forbidden Plat-eau; East coast, central V.I. 3700 f t . 32.1 41.3 20.8 130.1 42.3 39.6 NA** 146.2 48.1 3 9 . 9 32.1* 26.7 1 0 . 2 * 166.4 129.8 68.5* 61.8 61.8* 165.5 +28.0 + 2 1 . 9 + 3 5 . 5 + 2 7 . 2 5.9 -34.6 40.5 5.6 -34.3 39.9 0* -26.3 26.3 91.3 -47.0 138.3 97.8 156.8* 99.3 171.4 177.9 1 5 5.7 197.8 +59.0 124.1 -14.7 138.8 Grouse Mt.; Mainland; 3800 f t . 51.0 169.1 105.1 130.0 153.1 107.8 140.5 +25.0 67.4 -48.1 115.5 Newcastle Ridge; East Coast, Northern V.I.; 3850 f t . 87.2 150.7 87.7 1 2 9 . 3 147.1 9 2 . 1 149.8* + 3 3 . 3 118.1 + 1.6 116.5 Table 7 (continued) Location and Elevation Burman Lake; Mid-central V.I.; 4100 f t . Sno-bird Lake; South central V.I. 4585 f t . NA Average Snow Accumulation between February to March (inches) 1 2 1963 1964 3 1965 4 1966 5 1967 6 1968 7 1969 8 Devi-ation from avg. 9 1 9 7 0 10 Devi-ation from avg. NA NA 11 Aver-age 98.4* 187.2 120.3 1 7 1.9* 191.1 107.5 191.3 +45.9 109.9 -35.5 145.41 144.7 125.6* 9 7 . 5 148.4 +28.1 95.4 -24.9 1 2 0 . 3 * Measurements from less than three months not available. **Not available Information obtained from B r i t i s h Columbia Snow Survey Bulletins; Published by Dept. of Lands, Forests, and Water Resources, Victoria, B.C. i (T I -65-p r e s e n t and t h e i r r e l a t i v e c o v e r , t he ave rage c o v e r of a l l s p e c i e s and the range of c o v e r i n the samples t a k e n . 4.2 E co t one S tudy ( S u b - p r o j e c t b ) I n f o r m a t i o n o b t a i n e d i n t he eco tone s t u d y p e r m i t t e d o b s e r v a t i o n s i n t h r e e a r e a s ; a s t u d y of d e e r use (a) f r o m the f o r e s t edge (b) f r o m the road edge, and ( c ) w i t h n o n - a r b o r e c e n t v e g e t a t i o n . The o b s e r v a t i o n s f o r t h i s s t u d y a r e shown i n F i g u r e s 11 t o 29. The i n d i v i d u a l o b s e r v a t i o n s were grouped i n t o c l a s s e s , t he means f o r each c l a s s were c a l c u l a t e d ( f o r b o t h dependent and i ndependen t v a r i a b l e s ) , t h e c o n f i d e n c e l i m i t s (95$) e s t i m a t e d , and the means p l o t t e d i n t o g r a p h s . The means, c o n f i d e n c e l i m i t s , number of i n d i v i d u a l p b s e r v a t i o n s p e r c l a s s , and the c l a s s l i m i t s a re shown i n Append i x 11a and l i b f o r the d a t a " o u t s i d e " and " I n s i d e " f o r e s t r e s p e c t i v e l y . The range and med ian of 1 t he 95 p e r c e n t c o n f i d e n c e l i m i t s f o r the c l a s s m i d p o i n t s of each f i g u r e a re shown In t he s u b s c r i p t of t h a t f i g u r e . I n t h i s s t u d y f i v e p l o t s were used ( d e s c r i b e d i n A p p e n d i x 5). E ach p l o t was p a r t i a l l y i n s i d e t he mature f o r e s t , t h e p r o p o r t i o n v a r y i n g f r o m somewhat o ve r one h a l f t o about one t h i r d t he t o t a l p l o t a r e a . The d i s t r i b u t i o n of p e l l e t g roups on e a c h h p l o t was c a l c u l a t e d f o r b o t h i n s i d e and o u t s i d e f o r e s t as w e l l as f o r s t r a t i f i e d ( w i t h r e s p e c t t o d i s t a n c e f r o m the f o r e s t edge) s e c t i o n s of the p l o t (Append ix 12). I n a l l ca se s t he sfi_ r a t i o was g r e a t e r t han one and t h e d a t a f i t t e d the n e g a t i v e X b i n o m i a l d i s t r i b u t i o n the c l o s e s t (when t e s t e d f o r n o r m a l , b i n o m i a l , n e g a t i v e b i n o m i a l and P o i s s o n d i s t r i b u t i o n s ) . -66-Observations were s t r a t i f i e d i n numerous instances. The basis f o r s t r a t i f i c a t i o n was, "time since burning" and "aspect" f o r the data outside the f o r e s t , and "aspect" alone i n s i d e the f o r e s t . 4.2.1 Forest Edge E f f e c t The r e l a t i o n s h i p s of deer use with distance from the f o r e s t edge are shown i n Figures 1 3 to 21. Since the f a c t o r s a f f e c t i n g deer use on r e c e n t l y logged f o r e s t s and i n mature f o r e s t s are d i f f e r e n t to a c e r t a i n extent, the two ob-servations are recorded separately. 4.2.1.1 Outside Forest (Perpendicular to Upper Forest Edge) The p l o t s i n t h i s study were burned at two d i f f e r e n t periods, i n 1961 and 1966 ( a c t u a l l y p l o t 5 was burned i n 1967). Vegetation on the burned p l o t s tends to be f a i r l y evenly d i s t r i b u t e d by species composition and cover. A view of the vegetation areas, representating p l o t 1 and p l o t 2 and 3 , can be seen i n Figures 11 and 12 r e s p e c t i v e l y . Abandoned roads appear to be important i n the d i s -t r i b u t i o n of deer over logged areas. Although a sec t i o n on the e f f e c t of roads i s presented i n Section 4.2.2. reference i s made to them here since t h e i r presence introduces v a r i a b i l -i t y i n deer use along the forest-logged area ecotone. In p l o t s 2, 3 » and 5 a road provided the border on the side f a r t h e s t from the f o r e s t edge. In p l o t s 1, 2, and 3 roads -67-i Figure 11 A view of the vegetation outside the fo r e s t on p l o t 1. Figure 12 A view of the vegetation outside the fo r e s t on p l o t s 2 and 3. -68-Plot 1 Outside Forest FEET x10CT Figure 13a Effect of upper forest edge on deer use of a southern exposure logged and then i n 1961 slash-burned. Broken line indicates effect of road on deer use. Plot 1 Outside. Forest Road » » Landing O Figure 13b Pellet group distribution on a southern exposure and a 1961 burn. Figure 13a (Confidence limits (95%) Range 0.24-0.82, Median 0.59) -69-Plot 2 • • Plot 3 • • Outside Forest I Figure 14a Effect of upper forest edge on deer use oft a south-ern exposure logged and then i n 1966 slash-burned. (Confidence l i m i t s (95$); Plot 2, Range 0.16-0.77; Median 0.46; Plot 3* Range.,0.24-0.67, Median 0.49) Plot 2 Outside Forest Figure 14b Pellet group distribution on a southern exposure and a 1966 burn. Figure 14c P e l l e t group d i s t r i b u t i o n on a southern exposure and a 1966 burn. • - 7 1 -also were on the plots. Their effect can best be seen i n Figures 13b, 14b, and 14c, and an indication of i t by the broken l i n e i n Figure 13a. The general effect of the forest edge appears to be to increase deer use to a maximum about 100 to 200 feet from the edge. The deer use at the forest edge i s altered by the presence or absence of a fireguard at the edge. Where a fireguard i s present the use i s zero (plots 2 to 5), but where i t i s absent the use at the forest edge i s above zero (Plot 1). On plots 2, 3 and 5 with a 1966 burn, the point of maximum use from the forest edge, peaks and declines rapidly. The deer use levels off rapidly at f i r s t and then, gradually with distance from the forest edge. These trends change on plots 1 and 4 with a 1961 burn. On the l a t t e r plots the deer use peaked rapidly, as i n the former plots, but the decline i n use from the forest edge was much more gradual. The height of the curves i n Figures 13a, 14a, 15a, and 16a vary. The extent of the difference seems to corres-pond with the estimated population of deer on each plot (Appendix 5 ) . Plot 5 d i f f e r s from this generalization by show ing a higher curve i n relation to the plot's estimated popul-ation. A regression analysis was made of deer use with distance from the forest edge. Although the relationship i s l i k e l y not l i n e a r , this assumption was made for ease i n analys -72-Plot 4 Outside Forest o o 4 . 6 FEET x10O" 10 Figure 15a E f f e c t of upper f o r e s t edge on deer use of a northern exposure logged and then i n 1961 s l a s h -burned. (Confidence l i m i t s (95$): Range 0.30-0.79, Median 0.52) Plot 4 Outside Forest Figure 15b P e l l e t group d i s t r i b u t i o n on a northern exposure and a 1961 burn. - 7 3 -Plot 5 Outside Forest Figure 16a Effect of upper forest edge on deer use of a north-ern exposure logged and then i n 1967 slash-burned. (Confidence limits (95#): Range 0.18-0.85, Median 0.58) sx _ . O Plot 5 Outside Forest Figure 16b Pellet group distribution on a northern exposure and a 1967 burn. -74-Forv?calculation the regression began at the point of maximum use which was u s u a l l y l e s s than 150 feet from the f o r e s t edge. The r e s u l t s are shown i n Appendix 13. In a l l cases the r e -gression c o e f f i c i e n t was negative and, with one exception, highly s i g n i f i c a n t (P=.01). The exception occurred i n p l o t 3 where the regression was not s i g n i f i c a n t at the P=.05 l e v e l . 4.2.1.2 Inside Forest (Perpendicular to Upper Forest Edge) Deer use from the f o r e s t edge i n s i d e the f o r e s t i s s i m i l a r to that outside, however the former r e l a t i o n s h i p does not appear to be determined by the l a t t e r . This conclusion i s i n d i c a t e d by a comparison of the graph's f o r outside the f o r e s t (Figures 13 to 16) with the ones f o r i n s i d e the f o r e s t (Figures 17 and 18). Figure 18 i l l u s t r a t e s the response of deer to the f o r e s t edge on a north slope. Deer use reaches a peak i n the f o r e s t about 100 feet from the edge and then drops to near zero at 400 f e e t . On the south aspect the decline i s more gradual. The deer use i s s t i l l considerable even at 1500 feet into the f o r e s t (Figure 17). A comparison of deer use on the north and south slopes i n s i d e the f o r e s t i n d i c a t e s that the peak use occurs at approximately the same distance from the edge. However, the use on the north aspect becomes unimportant within a short distance from the edge while on the south aspect the use i s maintained at an important l e v e l f o r a considerable distance into the f o r e s t . -75-Plot 1 o o Plot 3 • • Inside Forest Figure 17a Effect of forest edge on deer use inside the forest on a south aspect. (Confidence l i m i t s (95$); Plot 1, Range 0.23-0.76, Median 0.45; Plot 3, Range 0.26-1.18, Median 0.64). Plot 1 Inside Forest Figure 17b Distribution of pellet groups inside the forest on a south aspect. (Open transects, 400 feet from forest edge, not sampled). Figure 17c D i s t r i b u t i o n of p e l l e t groups i n s i d e the f o r e s t on a south aspect (open transects, 360 feet from the f o r e s t edge, not sampled). -77-Figure 17d D i s t r i b u t i o n of p e l l e t groups i n s i d e the f o r e s t on a south aspect (open transects, 4-00 feet from the f o r e s t edge, not sampled). -78-Figure 18a E f f e c t of f o r e s t edge on deer use in s i d e the f o r e s t on a north aspect. (Confidence l i m i t s (95%): P l o t 4, Range 0.10-0.42, Median 0.37; P l o t 5, Range 0.20-0.52, Median 0.33) Figure 18b D i s t r i b u t i o n of p e l l e t groups i n s i d e the f o r e s t oh^a north aspect. Figure 18c D i s t r i b u t i o n of p e l l e t groups i n s i d e the f o r e s t on a north aspect. -80-Species composition w i t h i n the f o r e s t d i f f e r s from t h a t o u t s i d e . Also,, i n s i d e the f o r e s t the s p e c i e s tend to be clumped. Two photographs i n F i g u r e 19 and 20 i l l u s t r a t e the v a r y i n g c o n d i t i o n s present on p l o t s 2 and 3. Regression a n a l y s i s of "deer use" and " d i s t a n c e Into the f o r e s t " are shown i n Appendix 13. Here, as i n the r e -g r e s s i o n o u t s i d e the f o r e s t ( S e c t i o n 4.2.1.1.), the r e g r e s s i o n began at the p o i n t of maximum deer use which was w i t h i n 150 f e e t of the f o r e s t edge. The r e g r e s s i o n c o e f f i c i e n t s were a l l n e g a t i v e and i n a l l but p l o t 1 the r e l a t i o n s h i p was h i g h l y s i g n i f i c a n t (P .01). 4.2.1.3 Outside F o r e s t ( P a r a l l e l to Upper F o r e s t Edge) A l o o k a t t deer use from a second f o r e s t edge was p o s s i b l e on two p l o t s , 2 and 5. T h i s edge i s p e r p e n d i c u l a r to the upper f o r e s t edge as w e l l as to the e l e v a t i o n c o n t o u r s . Both p l o t s are l o c a t e d on 1966 burns. The e f f e c t of t h i s edge d i f f e r s from the upper one i n that i t does not encourage a p o i n t of peak u t i l i z a t i o n at a s h o r t d i s t a n c e from the edge. Instead, i t depresses deer use oh the edge but permits a r a p i d i n c r e a s e towards an upper l e v e l of use. T h i s phenomenon occurred on both p l o t s even though one ( p l o t 5) d i d not have a f i r e g u a r d (Figure 21). - 8 1 -i Figure 1 9 A view of a sparsely vegetated s i t e inside the f o r e s t on a south aspect. i Figure 20 A view of a densely vegetated s i t e , c o n s i s t i n g p r i m a r i l y of Vaccinium spp., inside the f o r e s t on a south aspect. -82-Figure 21 Effect of forest edge, crossing contours, on deer use of areas logged and then slash-burned i n 1966 and 1967. (Confidence l i m i t s (95$):' pl°t 2, Range 0.14-0.95, Median 0.58; Plot 5, Range 0.25-0.98, Median 0.56). -83-4.2.2 Road Edge E f f e c t The data obtained from p l o t s 1 and 2 was s u i t a b l e , a f t e r minor adjustment, f o r estimating the e f f e c t of roads on deer use of rece n t l y logged areas. Figures 22a and 22b i l l u s t r a t e the influence of roads on deer use on 1961 and 1966 burns f o r two d i r e c t i o n s , v i z . (1) from the road edge toward the upper f o r e s t edge and (2) away from the f o r e s t edge. On the 1966 burn (Figure 22b) the use adjacent to the road i s near zero but increases r a p i d l y with distance from the edge. A minor peak of use i s reached about 100 feet away and a major peak occurs about 250 feet from the road edge. The response i s s i m i l a r on the 1961 burn but d i f f e r s with more moderate f l u c t u a t i o n s at the peaks. On t h i s p l o t the use t o -wards the for e s t edge, from the road, hardly f l u c t u a t e s at a l l and, i n f a c t , appears to reach a gradual peak of use which recedes gradually (Figure 22a). The v a r i a t i o n s of deer use on the 1966 burn are also more moderate towards the fo r e s t edge than away from the edge. 4.2.3 Vegetation E f f e c t The vegetation i n t h i s study was recorded as des-crib e d i n Section 3.4. An estimate of the vegetation on each p l o t i s given i n Appendix 14. The response of deer to veg-e t a t i o n can be considered i n terms of the i n d i v i d u a l species and a l l species combined. The data was analysed by p l o t -84-1961 BURN To forest edge — — • • Away from forest edge o o FEET x100* Figure 22a E f f e c t of roads and verges on deer use of areas logged and then slash-burned i n 1961. (Confidence l i m i t s (95$): To f o r e s t edge, Range 0.35-0.88, Median 0.59; Away from f o r e s t edge, Range, 0.00-0.78, Median 0.54). To forest edge .,,... _ _ « s Away from forest edge o o 1966 BURN FEET x100 Figure 22b E f f e c t of roads and verges on deer use of areas logged and then slash-burned i n 1966. (Confidence l i m i t s (95$): To f o r e s t edge, Range 0.06-1.31, Median 0.33; Away from f o r e s t edge, Range 0.00-1.13, Median 0.55). -85-and s t r a t i f i e d f o r inside and outside f o r e s t . 4.2.3.1 Individual Species The analysis of i n d i v i d u a l species with deer use required numerous observations f o r a reasonably wide range of cover classes. More species than those analysed could1: q u a l i f y with the above requirements. Of the species which q u a l i f i e d only those which were considered important as deer food were used. These species were fireweed (Epilobium angustlfolium) Figure 23a 23b: s a l a l (Gautheria shallon) Figure 24: thimbleberry (Rubus p a r v i f l o r u s ) Figure 25; salmonberry (Rubus s p e c t a b i l l s ) Figure 26; t r a i l i n g black-berry (Rubus ursinus) Figure 27; and huckleberry (Vaccinium spp.) Figures 28a, 28b, and 28c. Of these species, f i r e -weed, thimbleberry, salmonberry and t r a i l i n g blackberry occurred only outside the f o r e s t while s a l a l and huckle-berry occurred both inside and outside the f o r e s t . The data f o r s a l a l on any plot outside the f o r e s t was not suf-f i c i e n t to permit i t s r e l a t i o n to deer use to be determined. In several graphs the relationship of deer use with any one species was compared f o r two plots (Figures 23b, 25, 26, 2.7 and 28a. In Figures 23a, 24, 28b and 28© the ob-servations of three plots are combined f o r i n d i v i d u a l species. This i s permitted because of the s i m i l a r i t y with which deer respond to the vegetation. The response of deer to cover of most i n d i v i d u a l -86-UI °-1 Plot 2 Plot 3 • • Plot 5 o o Outside Forest Epilobium angustifolium Figure 23 a PERCENT COVER x10"' Response of deer to fireweed cover on 1966 burns. (Confidence l i m i t s (95$): Plot 2, Range 0.18-0.76, Median 0.26; Plot 3, Range 0.18-0.73, Median 0.26; Plot 5, Range 0.19-0.56, Median 0.24) 3 r V) • a. O tc o UI M Plot 1 oo Plot 4 •• Outside Forest Epilobium angustifolium \ 2 4 PERCENT COVER.xlO" Figure 23b Response of deer to fireweed cover on 1961 burns. (Confidence l i m i t s (95$): Plot 1, Range 0.18-1.63, Median 0.28; Plot 4, Range 0.18-0.32, Median 0.20). -87-CO 0. o tc (3 (-UJ ° -1 Inside Forest Gaultheria shallon Plot 1 o o Plot 2 « • Plot 3 • • 2 4 PERCENT COVER x10" Figure 24 Response of deer to s a l a l cover inside the forest on a south aspect. (Confidence l i m i t s (95%): Plot 1, Range 0.08-0.62, Median 0.51, Plot 2, Range 0.12-0.59, Median 0.59; Plot 3, Range 0.14-0.89, Median 0.48. o o Plot 4 • • Outside Forest Rubus parviflorus 2 4 PERCENT COVER x10" Figure 25 Response of deer to thimbleberry cover on 1961 burns. (Confidence l i m i t s (95%): Plot 1, Range 0.14-0.65, Median 0.40; Plot 4, Range 0.18-0.65, Median 0.24). -88-O K O fc1 Plot 1 oo Plot 4 • • Outside Forest Rubus spectabi l is 2 4 PERCENT COVER x10"' Figure 26 Response of deer to salmonberry cover on 1961 burns, (Confidence l i m i t s (95%) P l o t 1, Range 0.16-2.18, Median 0.38; Pl o t 4, Range 0.14-0.83, Median 0.26). PERCENT COVER x10' Figure 27 Response of deer to t r a i l i n g blackberry cover on 1961 burns. (Confidence l i m i t s (95%): P l o t 1, Range 0.12-1.23, Median 0.35, P l o t 4, Range 0.12-1.32, Median 0.46). -89-species i s parabolic. Such response Indicates maximum u t i l -i z a t i o n of a food species when i t s * cover on any area Is not too scarce or too dominant. The parabolic form i s strongly exibited f o r thimbleberry, salmonberry, t r a i l i n g blackberry, and fireweed (on 1961 burn), less strongly f o r huckleberry (outside f o r e s t ) and s a l a l ; and weakly f o r fireweed (1966 burn) and huckleberry (inside f o r e s t ) . The parabolic response of deer to i n d i v i d u a l species i s weakest f o r those species which tend to dominate a large area, f o r instance, fireweed on a recent burn or huckleberry inside open f o r e s t . Con-versely, i t i s strongest f o r those species which tend to occur : i n scattered patches of variable s i z e . 4.2.3.2 A l l Species Combined This section deals with the response of deer to the number and cover of a l l species on the p l o t . Most of the species represented In t h i s analysis are those l i s t e d i n Appendix 12. The c o r r e l a t i o n of t o t a l vegetative cover with number of species i s reasonably high. The c o r r e l a t i o n co-e f f i c i e n t and c o e f f i c i e n t of determination f o r both inside and outside f o r e s t ot a l l plots i s shown In Appendix 15. The c o e f f i c i e n t of determination ranges from 0.17 to 0.48 with a median of between 0.27 and 0.31. The relationships of deer to t o t a l vegetative cover are shown i n Figures 29 to 32. In general, the response of -90-W CL o CC o UI ° -1 Plot 1 o o Plot 4 . P • • Outside Forest Vaccinium spp. •y-2 4 > PERCENT COVER x10 1 Figure 28a Response of deer to Vaccinium spp. cover on 1961 burns. (Confidence l i m i t s (95$) P l o t 1- Range 0.14-0.55, Median 0.24; P l o t 4, Range 0.14-1.16, Median 0.24). W CL 3 O CC o UI °-1 Plot 2 • • Plot 3 • • Plot 5 o o Outside Forest Vaccinium spp. PERCENT COVER x10" 8 Figure 28b Response of deer to Vaccinium spp. cover on 1966 burns. (Confidence l i m i t s (95$): P l o t 2, Range 0.08-1.27, Median 0.42; Plot 3, Range 0.10-1.15, Median 0.22; P l o t 5, Range 0.14=2.37, Median 0.29). -91-Figure 28c Response of deer to Vaccinium spp. cover i n s i d e the fo r e s t on a south aspect. (Confidence l i m i t s (95%): Plot 1, Range 0.10-0.86, Median 0.28, Plot 2, Range 0.26-1.57, Median 0.36; Plot 3, Range 0.22,-0.91, Median 0.38). Plot 1 — — oo Plot 4 • • Outside Forest •^1. I , I ; _1 !_ I 0 2 4 6 8 10 PERCENT COVER x10" Figure 29 Response of deer to t o t a l vegetation cover on 1961 burns. (Confidence l i m i t s (95%): Plot 1, Range 0.32-0.69, Median 0.36; Plot 4, Range 0.11-0.46, Median 0.29). -92-deer use with t o t a l cover i s a p o s i t i v e l i n e a r (or nearly so) r e l a t i o n s h i p . This rel a t i o n s h i p i s most obvious i n the graph of Figures 50a and : 31. Deviations from l i n e a r i t y occur i n the other graphs. Figures 30a and 31 represent plots 2 and 3 on a 1966 burn. These plots a l l support deer populations of about 80 deer per square mile. In both these plots the deer use on area with no vegetation i s above zero. Figure 29 presents a comparison of de»r use with t o t a l cover f o r plots 1 and 4. Both plots were burned i n 1961. The deer use i n areas with no vegetation i s well above zero i n plot 1 while In p l o t 4 deer use i s nearly zero. Deer use increases with Increasing cover but varies s i g n i f i c a n t l y between the two p l o t s . In plot 1 deer use peaks at 80 per-cent cover. At a l l densities of cover the use i s greater on on p l o t 1 than on plot 4. Several factors which may be responsible f o r the difference i n the response of deer use with vegetative cover are the deer population, vegetative composition, and aspect f o r each p l o t . The estimated population on plot 1 i s 19 deer per square mile while on p l o t 4 i t i s 43 deer per square mile (Appendix 5). Table 8 l i s t s the commonly browsed plants f o r both shrubs and herbs on each p l o t . This comparison shows that shrubs occur In greater proportion f o r both p l o t s , however -93-3r o. o o H UI UI ° -1 Plot 2 a • Plot 3 • • Outside Forest All Spec ies 4 6 PERCENT COVER x10" 10 Figure 30a Response of deer to t o t a l vegetation cover on a 1966 burn with a south aspect. (Confidence l i m i t s (95$): P l o t 2, Range 0.14-1.09, Median 0.25; P l o t 3, Range 0.16-0.73, Median 0.26). Plot 5 Outs ide Forest All Species 4 6 PERCENT COVER x10 _ 10 Figure 30b Response of deer to t o t a l vegetation cover on 1967 burn with a north aspect. (Confidence l i m i t s (95$): P l o t 5, Range 0.08-1.02, Median 0.3*0. -94-OT a O c a t-U J _J _l UI a-1 Plot 1 ° ° Plot 2 • • Plot 3 • • Inside Forest All Species _J 10 4 6 . PERCENT COVER x10 Figure 31 Response of deer to t o t a l vegetation cover inside ^ L ? ° r ^ s t ° n a s o u t h aspect. (Confidence l i m i t s (95%): P l o t 1, Range 0.10-0.62, Median 0.28: P l o t 0 2:2l- ai?io?-M^a^°6.4l^ a n °- 5 g ; P l 0 t ^ R a n S S Plot 4 • • Plot 5 o o Inside Forest All Species 4 6 , PERCENT COVER x10~' Figure 32 Response of deer to t o t a l vegetation cover insi d e f o ^ n ^ V ? V ° r t h a s p e c t ' (Confidence l i m i t s (95%): P l o t 4, Range 0.14-0.55, Median 0.39; P l o t 5, Range 0.06-0.74, Median 0.38). -95-the p r o p o r t i o n of shrubs t o herbs i s much l e s s i n p l o t 1 (56:42) than i n p l o t 4 (66:26). C l o s e l y a l l i e d to the q u a l i t y of the v e g e t a t i v e cover i s the p r o d u c t i v i t y of the s o i l ( s i t e i n d e x ) . The s i t e Index of p l o t 1 i s 150 w h i l e the s i t e index of p l o t 4 i s 160. F i n a l l y the aspect f o r p l o t 1 i s south-east while f o r p l o t 4 the aspect i s north-west. The way i n which deer use d i f f e r s on each p l o t may be ex p l a i n e d on the b a s i s of one or more of the above v a r i a b l e s . The deer use on p l o t 5 o u t s i d e the f o r e s t i n -d i c a t e s a trend w i t h I n c r e a s i n g p l a n t cover that Is sim-i l a r t o a combination of trends a l r e a d y r e v e a l e d (Figure 50b). "Deer use" at zero p l a n t cover i s a l s o z ero, as i n p l o t 4 o u t s i d e f o r e s t . Both p l o t 4 and 5 have n e a r l y n o r t h e r n a s p e c t s . Table 8 Percent Cover Of I n d i v i d u a l Species on P l o t s 1 and 4 Plan t Form Shrub Herb P l o t P l o t Species 1 4 Species 1 4 Hu c k l e b e r r y 6.8 6.2 Fireweed 12.1 8.7 S a l a l 0 0.3 Foam f l o w e r 0 0.3 Salmonberry 5.8 Gras'ses 0.9 0 Thimbleberry ' 6.3 19.1 Twin-flower 2.0 4.5 T r a i l i n g b l a c k - V a n i l l a l e a f 2.3 0 b e r r y 3.4 1.9 T o t a l T o t a l ' ' , 23.7 33.3 17.3 13.5 Information d e r i v e d from Appendix 12. -96-A f t e r an i n i t i a l l y r a p i d i n c r e a s e deer use begins to l e v e l o f f and assumes the trend which Is found f o r p l o t 2 and 3 o u t s i d e f o r e s t ( F igure 3 0 a ) . These two p l o t s are both 1966 burns, s i m i l a r t o p l o t 5. F i g u r e 32 shows a trend of deer use w i t h cover which d e v i a t e s f u r t h e r from the other t r e n d s . T h i s r e l a -t i o n s h i p occurred i n s i d e the f o r e s t on near n o r t h aspects ( p l o t s 4 and 5 ) . U t i l i z a t i o n of t h i s area reaches a max-imum where the v e g e t a t i v e i s about 40 p e r c e n t . Then, wi t h i n c r e a s i n g cover, the use drops t o zero before 100 p e r -cent cover i s a c h i e v e d . The response of deer to number of p l a n t s p e c i e s on the p l o t i s e s s e n t i a l l y a response to p l a n t d i v e r s i t y . The study i n c l u d e d both browsed and unbrowsed s p e c i e s . T h i s c h a r a c t e r i s t i c of the ob s e r v a t i o n s may g i v e a bia s e d i n d i c a t i o n of the deer p r e f e r e n c e f o r p l a n t d i v e r s i t y . However, assuming that as the number of sp e c i e s i n c r e a s e s so do the s p e c i e s which are e d i b l e to deer, c e r t a i n ob-s e r v a t i o n s are noted. In a l l areas of t h i s . s t u d y , the u t i l -i z a t i o n by deer does not Increase as p l a n t d i v e r s i t y i n -c r e a s e s . The u t i l i z a t i o n on an area e i t h e r reaches a p l a t e a u or becomes depressed as the sp e c i e s number Incr e a s e s . The data f o r p l o t s 2, 3 and 5 o u t s i d e f o r e s t are combined In F i g u r e 34. A note should be made that although the graph i s drawn t o begin above zero — and a c t u a l l y does f o r the data of p l o t s 2 and 3 -- the data of p l o t 5 a c t u a l l y shows zero u t i l i z a t i o n at zero s p e c i e s . The e f f e c t of p l a n t d i v e r s i t y on the u t i l i z a t i o n - 9 7 -of these p l o t s ( a l l 1 9 6 6 burns) seems to be constant beyond 3 species (and at l e a s t up to 8 ) . Figure 3 3 gives a comparison of the response of deer to species d i v e r s i t y f o r p l o t s 1 and 4 outside f o r e s t . The response on p l o t 4- i s s i m i l a r to that described i n Figure 3 4 (above). I t v a r i e s i n that the response, on p l o t 4 , i n -creases exponentially, from zero, u n t i l the vegetative com-p o s i t i o n c o n s i s t s of four species. The response then l e v e l s o f f but continues to increase to at l e a s t 8 species. The response of deer use to species number found i n p l o t 1 (Figure 3 3 ) t y p i f i e s the r e l a t i o n s h i p s found i n the remaining areas (Figure 3 5 and 3 6 — representing p l o t s i n s i d e f o r e s t f o r south and north aspect r e s p e c t i v e l y ) . On these areas maximum u t i l i z a t i o n i s reached on s i t e s with more than zero and l e s s than four species. On the north slope i n s i d e f o r e s t (Figure 3 6 ) the peak u t i l i z a t i o n was reached on s i t e s with more than zero and l e s s than four species. On the north slope insi d e f o r e s t (Figure 3 6 ) the peak u t i l i z a t i o n ' was reached between zero and twos species, while on the south slope f o r both insi d e f o r e s t (Figure 3 4 ) and outside f o r e s t (Figure 3 3 ) maximum use was reached between two and four species. 4 . 3 Mature Forest Study (Sub-project c) This study involved l o c a t i n g p l o t s within the mature f o r e s t at various elevations on both north and south slopes (Appendix 6 ) . The p e l l e t group sampling accuracy f o r each -98-Plot 1 O O Plot 4 • a Outside Forest NUMBER SPECIES Figure 33 Response of deer to t o t a l number of plant species on 1961 burns. (Confidence l i m i t s (95%): Plot 1, Range 0.22-0.55, Median 0.32, Plot 4, Range 0.00-0.70, Median 0.25). (0 Q. 3 O tc Ul °-1 Plot 2 • • Plot 3 • • Plot 5 o o Outside Forest _L NUMBER SPECIES Figure 34 Response of deer to t o t a l number of plant species on 1966 burns. (Confidence l i m i t s (95%): Plot 2, Range 0.16-1.17, Median 0.28; Plot 3, Range 0.18-0.92, Median 0.31; Plot 5, Range 0.00-1.08, Median 0.26). -99-Plot 1 o o Plot 2 • « Plot 3 • • | | | | 0 2 4 6 8 NUMBER SPECIES Figure 35 Response of deer to t o t a l number of plant species insid e the f o r e s t on a south aspect. (Confidence l i m i t s (95$): P l o t 1, Range 0.12-1.06, Median 0.18, P l o t 2, Range 0.16-1.21; Median 0.25; P l o t 3, Range 0.18-1.16, Median 0.40). Figure 36 Response of deer to t o t a l number;:of plant species insid e the f o r e s t on a north aspect. (Confidence l i m i t s (95$); P l o t 4, Range 0.00-0.22, Median 0.18; Plot 5, Range 0.18-0.56, Median 0.22). -100-p l o t i s shown i n Appendix 16 while the v e g e t a t i o n sample i s shown i n Appendix 17. The p e l l e t groups p e r p l o t , an estimate of deer use, were s t r a t i f i e d f o r aspect and p l o -ted a g a i n s t e l e v a t i o n (Figure 37) Although the method of s e l e c t i n g p l o t l o c a t i o n s could be g r e a t l y improved ( see S e c t i o n 3.7.1 ), the ob-s e r v a t i o n s shown i n F i g u r e 37 do p r o v i d e an i n d i c a t i o n of deer response w i t h e l e v a t i o n i n mature f o r e s t s . Between . . . j the 400 to 2900 f e e t e l e v a t i o n range, the deer use i n -creases w i t h e l e v a t i o n while on the n o r t h aspect the r e -ponse i s p o o r l y d e f i n e d and p o s s i b l y n o n - e x i s t e n t . A s t a t i s t i c a l a n a l y s i s was not attempted on these data be-cause of the s m a l l number of p l o t s a v a i l a b l e . -101-80 60-o a. a. a. 3 O K O NORTH • • SOUTH o o UJ tt-20 • • o o o • J • 10 20 , ELEVATION - feet x100T' 30 Figure 37 Response of deer to el e v a t i o n i n the mature f o r e s t . Observations s t r a t i f i e d f o r north and south aspect. - 1 0 2 -5 . DISCUSSION The primary technique used i n t h i s study f o r estim-ating deer use was p e l l e t group counts. The l i m i t a t i o n s of t h i s technique we're extensively reported by Neff (1968). The advantage of t h i s technique, f o r t h i s study, was that i t provided a method to measure r e l a t i v e rates of deer use on each area. Furthermore, these measurements ( p e l l e t group counts) can be used i n s t a t i s t i c a l a n a l y s i s , f o r example, i n determining the v a r i a t i o n of the estimate or i n regression a n a l y s i s . In a study such as t h i s one, the p e l l e t group count technique i s used p r i m a r i l y f o r comparisons of use and environ-mental f a c t o r s . Therefore an estimate of deer numbers i s not required and the d a i l y defecation rate of deer i s a l e s s im-portant f a c t o r than i n some other studies. The main source of v a r i a t i o n r e s u l t s from uneven p e l l e t group degradation between d i f f e r e n t plant communities (Low, 1 9 5 9 , i n Neff, 1 9 6 5 ) and p o s s i b l y varying defecation rates with deer a c t i v i t i e s other than foraging. The rates of p e l l e t group degradation f o r environ-mental conditions s i m i l a r to those found i n the Nimpkish Val l e y were not a v a i l a b l e ; however, a varying rate of degrad-a t i o n i s assumed; the greatest diff e r e n c e would probably occur "outside" and " i n s i d e " the f o r e s t where the e f f e c t of r a i n f a l l on p e l l e t groups would also d i f f e r most. Washing of the p e l l e t groups would be greatest on the exposed burned -103-areas. No documentation could be found that the defecation rate v a r i e d with d i f f e r e n t a c t i v i t i e s (e.g. feeding and resting) i n deer. Making t h i s assumption seems reasonable even without substantiating evidence. Observations of deer i n the f i e l d often reveals that defecation occurs r e a d i l y when the animal i s agitated. Thus i t may be that defecation occurs more often when the animal i s active (as i n feeding) than when i t i s r e s t i n g . The e f f e c t of both sources of v a r i a t i o n on p e l l e t group counts would d i f f e r i n s i d e and outside the f o r e s t . P e l l e t groups would d i s i n t e g r a t e f a s t e r outside the f o r e s t than i n s i d e . However, the area which w i l l receive most defecation would depend on the source of food. Therefore the defecation rate w i l l l i k e l y be greater outside the f o r e s t dur-ing spring, summer, and f a l l but greater i n s i d e the f o r e s t during winter. These f a c t o r s introduce unknown v a r i a t i o n into the p e l l e t group count technique. A d i r e c t comparison of deer use i n s i d e the f o r e s t and outside the f o r e s t should not be made without considering these f a c t o r s . The method of sampling the vegetation i n t h i s study was rather crude. Time l i m i t e d greater p r e c i s i o n i n sampling. Therefore the observer estimated the cover on each sample to a 10 percent c l a s s . The cover contributed by each species within a sample was r e l a t i v e and proportionate to both the -104-t o t a l cover and the number of species present. Where the vegetation sample was used simply to provide an estimate of the vegetative composition on each p l o t (such as i n sub-projects a and c) the method of sampling was adequate. However where the data was used i n c o r r e l a t i o n analysis (as i n sub-project b) a greater number of samples were required. This condition was s a t i s f i e d f o r most anal-yses i n sub-project b. 5.1 Permanent P l o t s (Sub-project a) The observations obtained from the permanent p l o t s gave an i n d i c a t i o n of the response of deer to plant succession, e l e v a t i o n and s i t e index. Furthermore, the e f f e c t of aspect on deer use could be tested with each of the three f a c t o r s l i s t e d previously. Also, since information was a v a i l a b l e from two sampling periods, and since the winters within each period d i f f e r e d d r a s t i c a l l y i n s e v e r i t y , we were able to observe the e f f e c t of snow on deer f o r the three f a c t o r s : plant succession, elevation, and s i t e index. 5.1.1 Time Since Burning (Autogenic Succession) The p l o t s i n t h i s study were burned over a time span of 8 years. The time between the most recent burn and the f i r s t sample period was one year. Therefore i n the second sample t h i s time was extended one year so that the most recent burn during that period was two years o l d . -105-In general, the deer use increased s i g n i f i c a n t l y with time since the plots were burned (Figures 4- and 7) • During both sampling periods the response to autogenic suc-cession was stronger on the north aspect than on the south. This i s p a r t i c u l a r l y well i l l u s t r a t e d i n Figure 4-b which shows an insignificant amount of use at the early serai stages and a maximum of use only a few years l a t e r . This contrasts to the response seen on the south aspect where the deer use forms a peak of high use on recently burned areas. The d i f f e r i n g response to autogenic succession'be-tween the two aspects i s possibly a response to the diff e r i n g importance of vegetation on each aspect. Since the climate on the north aspect i s probably unfavorable to deer, espec-i a l l y i n winter with respect to temperature and solar rad-i a t i o n (Loveless, 1967), a major attraction to deer would be an abundant supply of preferred vegetation. Such vegetation could occur only on burns more than several years old. On the other hand, open areas on the south aspect often provide a more suitable climate, part i c u l a r l y i n cold weather. There-fore recent burns on these areas are readily u t i l i z e d by a large indigenous population of deer. The di f f e r i n g response of deer on the north and south aspects can be explained on the basis of the population size and the relative climatic and vegetative attractiveness on each slope. On the north aspect a r e l a t i v e l y small popul-ation selects the most productive and preferred vegetation while on the south aspect the recently burned areas are -106-quickly invaded, partly because of pressure l o ; ; from a larger population and partly because of the more equable climate on such areas. The drop i n deer use shown for the plots burned i n 1962 and 1963 par t i c u l a r l y i n the f i r s t period, may be caused by the, inclusion of plots from high elevations. Four of the five plots responsible for the decrease are located at elevations of 2500 feet and over. For the period of sample 1 deer use decreased with increased elevation. Observation of deer use on individual plots i n -dicates that maximum use occurs 8 years after burning. This can be seen i n Figure 4a when use i s maximum i n 1961 and i n Figure 7a where use i s maximum i n 1962. Studies by other authors have shown maximum use on areas 8 to 10 years after burning (Dasmann, 1964) and 4 years after burning (Gates, 1968). 5.1.2 Elevation In this study, as i n others (Dasmann and Taber, 1956; Leopold et a l , 1951), the deer use of areas at various elevations was affected strongly by snow-fall. The f i r s t sampling period was preceded by a winter of heavy snowfall (Tables 6 and 7)and consequently the deer use declined with increased elevation (Figure 5). The winter i n the second sample period however, was unusually mild and i n this period the deer use generally increased with elevation (Figure 8). -106a The change i n use, f o r the p e r i o d s , i s I l l u s t r a t e d In F i g u r e 10. These o b s e r v a t i o n s suggest that the m i g r a t i o n t o lower e l e v a t i o n s i n w i n t e r Is l a r g e l y a f u n c t i o n of snow--f a l l . The o b s e r v a t i o n s of the second sample I n d i c a t e a p r e f e r e n c e f o r areas at h i g h e r e l e v a t i o n s when snow i s s c a r c e . These g e n e r a l i z a t i o n s must be kept w i t h i n the l i m -i t a t i o n s of t h i s study which were a range i n e l e v a t i o n from 800 to 3100 f e e t . Furthermore I t must be kept i n mind that the use observed i s on an annualVbasis while the c o n c l u s i o n s were on a seasonal b a s i s . The d i f f e r e n t i a l use of v a r i o u s e l e v a t i o n s by season would, no doubt, I n t r o -duce s u b s t a n t i a l v a r i a t i o n s . 5.1.3 S i t e Index In t h i s study s i t e index was n e g a t i v e l y and c l o s e l y c o r r e l a t e d n e g a t i v e l y w i t h e l e v a t i o n . T h i s c o r r e l a t i o n may mask the e f f e c t of s i t e index on deer use of logged f o r e s t s . Although the a v a i l a b l e evidence reduces i n Im-portance the e f f e c t of s i t e index on deer, a response to t h i s f a c t o r v e r y l i k e l y e x i s t s . Since s i t e index i s a measure of p l a n t p r o d u c t i v i t y a h i g h s i t e index might some-times imply h i g h e r n u t r i e n t values of p l a n t s d u r i n g the -107-growing season. Both i n c r e a s e d p l a n t p r o d u c t i v i t y and q u a l i t y i n c r e a s e the a t t r a c t i v e n e s s of an area to deer. The e f f e c t of p l a n t n u t r i t i o n w i l l be n o t i c e d p a r t i c u l a r l y d u r i n g the growing season while p l a n t p r o d u c t i v i t y w i l l have i t s ' g r e a t e s t e f f e c t d u r i n g p e r i o d s of l i m i t e d food s u p p l y . 5.1.4 E f f e c t of Aspect The e f f e c t of aspect on deer use of logged areas was not s t u d i e d d i r e c t l y . I t s e f f e c t could be seen In the r e g r e s s i o n a n a l y s i s of deer use w i t h time of burn, e l e v a t i o n and s i t e index f o r the data s t r a t i f i e d f o r n o r t h and south aspect ( F i g u r e s 4 t o 9 ) . Obs e r v a t i o n of the dat,a makes s e v e r a l trends n o t i c e a b l e ; deer use on the n o r t h slope i s lower than on the south, and deer respond more s t r o n g l y to g r e a t e r p r o d u c t i v i t y oh the n o r t h slope than on the south. The p r e f e r e n c e of deer f o r the south aspect, p a r t i c u l a r l y In w i n t e r , i s documented by Loveless (1967), Taber and Dasmann (1958), Julander (1966), and o t h e r s . In most i n s t a n c e s the response of deer to aspect was p r i m a r i l y determined by the temperature of the s l o p e s . The response t o g r e a t e r product-i v i t y on the n o r t h slope seems to be a compensatory r e a c t i o n to the l a c k of f a v o r a b l e c l i m a t e . Therefore the l a t e r burn, -108-lower elevation, and higher s i t e index w i l l be used compar-a t i v e l y more than t h e i r opposites on the north slope than on the south slope. 5.1.5 Differences Observed Between Samplings 1 and Samplings 2 The differences observed between the observations of sample 1 and sample 2 may be p a r t i a l l y explained on the basis of snowfall i n each sample period. The observations f o r the change i n use of e l e v a t i o n has already been discussed (Section 5.1.2). In t h i s case the explanation that deer were forced down to lower elevations by the snow should be acceptable. For time of burn and s i t e index, however, the explanation must be on the basis of the importance of plant p r o d u c t i v i t y to deer f o r each period. In a severe winter the areas of highest plant p r o d u c t i v i t y w i l l provide the most avail a b l e food supply (plants that emerge through the snowfall, and provide adequate d i v e r s i t y ) . Therefore the deer w i l l respond more strongly to such areas i n a severe winter than i n a winter with l i t t l e snowfall and r e l a t i v e l y mild weather. The f i r s t sample period was preceded by a harsh winter and the response by deer to plant p r o d u c t i v i t y was strong. The second period contained a mild winter and i n t h i s case the response to i n -creased p r o d u c t i v i t y was noticeably l e s s . -109-5 . 2 Ecotone Study (Sub-project b) 5 . 2 . 1 Forest Edge 6 . 2 . 1 . 1 Outside Forest Observations on the e f f e c t of deer use, of logged and burned areas from the f o r e s t edge were made with two edges; the upper ( p a r a l l e l to the el e v a t i o n contours) and adjacent (perpendicular to ele v a t i o n contours). There was no opportunity to study the lower edge since none of the ecotone p l o t s had one. The observations in d i c a t e that deer are affected most strongly by the upper f o r e s t edge. In a l l p l o t s a peak of maximum use occurred about 1 5 0 feet from the upper edge (Figures 13-16) while no such peak of use occurred from the adjacent edge (Figure 2 1 ) . Both f o r e s t edges showed, however, minimal use at the edge. The extent to which the use dropped on the upper edge was determined by the presence or absence of a fi r e g u a r d . A fire g u a r d has the e f f e c t of depressing deer use to zero at the edge. Deer use on the adjacent edge decline to near zero regardless of the presence or absence of a f i r e g u a r d . The observations of deer use with the two edges suggest that deer move perpendicular to the el e v a t i o n con-tours. This could explain the strong p o s i t i v e responses of deer use to the upper f o r e s t edge and the negative response to the adjacent edge. Personal observations of deer movement -110-l n the f i e l d support t h i s t h e o r y . In most s i g h t i n g s of t r a v e l l i n g deer on logged f o r e s t s the movement was g e n e r a l l y p e r p e n d i c u l a r to the contours. F/here two f o r e s t edges p r o -vided escape cover the deer would nor m a l l y move toward the upper edge. T h i s g e n e r a l i z a t i o n d i d not h o l d t r u e , however, when a deer was s t a r t l e d . In such a case i t would take cover i n the n e a r e s t f o r e s t . The deer use d e c l i n e d w i t h d i s t a n c e from the f o r e s t , edge. T h i s decline) v a r i e d near the f o r e s t edge depending on the stage of p l a n t s u c c e s s i o n . In p l o t s 2, 3 and 5 ( F i g u r e s 14 and 16) the d e c l i n e was r a p i d from the peak use near the edge while i n p l o t s 1 and 4 (Figures 13 and 15) the d e c l i n e was more g r a d u a l . The former p l o t s were burned i n 1966 and the l a t t e r p l o t s were burned i n 1961. The more g r a d u a l d e c l i n e i n use from the f o r e s t edge i n p l o t s 1 and 4 i s p r o b a b l y a r e f l e c t i o n on the g r e a t e r a t t r a c t i v e n e s s of the v e g e t a t i o n to deer i n these p l o t s . Deer w i l l move f a r t h e r from the f o r e s t edge In areas that p r o v i d e g r e a t e r p l a n t p r o d u c t i v i t y and d i v e r s i t y , as w e l l as camouflagic p r o t e c t i o n , than they w i l l i n areas that do not p r o v i d e t h i s . The d e c l i n e i n deer use from the f o r e s t edge was s t u d i e d o n l y up t o 900 f e e t and at times a few hundred f e e t f a r t h e r . The d e c l i n e i s g r a d u a l and g e n e r a l l y c o n s i s t e n t . V a r i a t i o n of deer use w i t h i n the p l o t was o f t e n caused by the presence of roads. T h i s i s p a r t i c u l a r l y e vident i n p l o t 3 ( F i g u r e 14a), and p l o t 1 (Figure 13a) where the v a r i a t i o n caused by a road i s marked w i t h a broken l i n e . -111-A hypothetical exercise with such data would be to estimate the size of a logged area which would provide maximum use to deer. Such a problem involves knowing the effect of the lower edge on deer use of logged areas. The use from the lower edge could be very similar as the use from the upper edge i f deer did not have preferences for upper or lower edges. Arguments for and against the similar-i t y of effect of both edges might include rates of snow accumulation and melt at each forest edge and preference of deer for the upper or lower elevations. Both of these arguments favor greater u t i l i z a t i o n near the upper edge (particularly on the south aspect). For this exercise, how-ever, the assumption i s made that the response to each forest edge i s similar. The peak of maximum use occurs approximately 150 feet from the forest edge. However the decline from the peak to a point of more gradual decrease extends the peak a further 50 feet from the edge i n the 1966 burns (plots 2, 3, and 5) and up to 200 feet (this figure more arbitrary) i n the 1961 burns (plots 1 and 4). Since deer use i s near maximum on the 1961 burns (these plots were burned about 9 years ago) the estimate from these plots should be used to estimate the area providing maximum deer use. Assuming that the nearness of another forest edge w i l l not change the pattern of deer use from either edge, we can estimate that the max-imum use w i l l be provided on a st r i p cut approximately 700 feet wide (200 f t . + 150 f t . ) x 2 and p a r a l l e l to the elevation -112-c o n t o u r s . Estimates of other optimum s i z e s are shown i n S e c t i o n 1.5.4. 5.2.1.2 In s i d e F o r e s t V a r i a t i o n of deer use w i t h i n the f o r e s t r e s u l t e d from three main causes, (1) e f f e c t of f o r e s t edge, (2) e f f e c t of a s p e c t , and (3) .effect of v e g e t a t i o n . Deer use from the f o r e s t edge,into the f o r e s t , responded s i m i l a r l y to use p a t t e r n s o u t s i d e the f o r e s t . The response was sim-i l a r i n t h a t a peak of use occurred about 150 f e e t from the edge and the use g e n e r a l l y d e c l i n e d w i t h d i s t a n c e from the f o r e s t edge ( F i g u r e s 17 and 18). The e f f e c t of aspect on deer use i s w e l l i l l u s -t r a t e d on p l o t s 4 and 5, and p l o t s 1, 2 and 3. The f i r s t set of p l o t s are on a n o r t h aspect and the deer use d e c l i n e s to n e a r l y zero w i t h i n 400 f e e t from the edge. The second set of p l o t s , however, occur on a south aspect, and the deer use remains c o n s i d e r a b l e even at 1500 f e e t i n the f o r e s t . The v a r i a t i o n of deer use w i t h i n the f o r e s t Is l a r g e l y c o n t r i b u t e d by the d i s t r i b u t i o n of v e g e t a t i o n . No s p e c i f i c study was made to show the v a l i d i t y of t h i s s t a t e -ment although o b s e r v a t i o n s i n the f i e l d convey such an im-p r e s s i o n . A l s o the number of p o s s i b l e f a c t o r s which could c o n t r i b u t e to the v a r i a t i o n of deer use i n the f o r e s t p a r t i c -u l a r l y on a south aspect, are l i m i t e d p r i m a r i l y to these. -113-5.2.2 Road Edge E f f e c t :.. inference has already been made to,, the e f f e c t of roads on deer use (Section 5-2.1.2). The e f f e c t of roads was to increase deer use adjacent to them while minimizing the use at the edge and on the roads (Figures 22a and 22b). Two peaks of use were measured, one about 100 feet from the road edge and the other, a l a r g e r peak of use, about 250 feet from the edge. An explanation of a single peak of use could i n -dicate that deer t r a v e l along a road, since i t has fewer obstacles, then enter the p l o t to feed. A double peak of use, however, might i n d i c a t e that deer t e s t the vegetation near the road and then depart f u r t h e r from the road to feed. This l a t t e r p o s s i b i l i t y i s very tenuous and serves only as an explanation where none other i s a v a i l a b l e . The peaks of use were moderated toward the fo r e s t edge. This i n d i c a t e s greater use toward that d i r e c t i o n . 5.2.3 Vegetation E f f e c t 5.2.3.1 I n d i v i d u a l Species The observations of deer use to the cover of i n -d i v i d u a l species i n d i c a t e s that maximum u t i l i z a t i o n of a browse species occurs when i t s ' cover on an area i s not too scarce or too dominant. In e f f e c t , the deer are e x h i b i t i n g a preference f o r a v a r i e t y of plants rather than f o r a single -114-species, even though that species may be preferred. The parabolic response of deer to i n d i v i d u a l species i s most strongly displayed with those that occur i n patches of vary-ing s i z e , f o r example salmonberry. In these s i t u a t i o n s the deer can d i s p l a y t h e i r preferences more accurately because of the greater choice of cover avai l a b l e to s e l e c t from. The weakest response would occur with species that tended to cover large areas, l i k e fireweed outside the f o r e s t and huckleberry insi d e a rather open f o r e s t . In these s i t u a t i o n s the deer have much l e s s choice i n the size of cover f o r species. 5.2.3.2 A l l Species Combined The response of deer to t o t a l vegetative cover i s of two general natures, l i n e a r and p a r a b o l i c . A l i n e a r r e -sponse with increasing cover, from zero to 100 percent, generally occurs on areas where the vegetative composition consists of species which, even at 100 percent cover, have stems that are sparse enough not to r e s t r i c t the movement of deer. Such a g e n e r a l i z a t i o n i s exemplified by recent burns (1966 i n t h i s study) which have a vegetative composition that consists p r i m a r i l y of fireweed, and shrubs.; that were s c a r i f i e d by slash-burning (Figure 30a). A s i m i l a r response, but with greater v a r i a t i o n about the l i n e , occurs also in s i d e the f o r e s t on a south aspect (Figure 31). Although species such as huckleberry and s a l a l often occur i n groups, t h e i r stems are u s u a l l y open enough to permit t r a v e l i n t o and through such groups. Also such areas may be sought a f t e r f o r the - 1 1 5 -added p r o t e c t i o n they a f f o r d from adverse climate and pre-dators. The parabolic response of deer to vegetation cover occurs on areas where the vegetation consists of species that can grow in t o dense c l u s t e r s thereby impeding movement to deer. This condition occurs on l a t e burns ( 1 9 6 1 i n t h i s study) with species such as salmonberry and thimbleberry, that are often found i n dense groups (Figure 2 9 ) . Such a parabolic response i s also seen insi d e the f o r e s t on the north aspect (Figure 3 2 ) . In t h i s s i t u a t i o n the e f f e c t of increasing the vegetation density on deer i s to r e i n f o r c e the o r i g i n a l aversion to the colder and damper conditions u s u a l l y found inside the f o r e s t on a north aspect. A f u r t h e r modification of both the parabolic and l i n e a r responses to t o t a l vegetative cover, i s made by as-pect. With zero vegetative cover on the north aspect the use declines to zero, both i n s i d e and outside the f o r e s t , while on the south aspect the use i s well above zero f o r no cover. This difference r e f l e c t s the added use of u t i l i z i n g the bare areas on the south slope f o r r e s t i n g on. Such areas would u s u a l l y be warmer and d r i e r therefore a t t r a c t i v e to deer i n cold weather and a f t e r a r a i n . Also the population i s higher on the south aspect, than the north, therefore competition f o r land could force u t i l i z a t i o n of the open areas. An apparent c o n f l i c t of explanation f o r deer use occurs between p l o t 1 and p l o t 4- (Figure 2 9 ) . The e a r l y -116-maximum use at 20 percent cover, on p l o t 1, may be the r e -s u l t of multi-use by deer, on r e l a t i v e l y open areas, f o r both r e s t i n g and feeding. The open areas on p l o t 4, however, were scarcely u t i l i z e d because of t h e i r c h a r a c t e r i s t i c s . In most cases they r e s u l t e d from skid t r a i l s and consequently consisted of parent material. Furthermore the p r o d u c t i v i t y on these areas was low as a r e s u l t of the disturbances. 5.2.3.3 Species Number The data of t h i s study in d i c a t e s that a l i m i t e x i s t s where increasing species d i v e r s i t y no longer increases the preference of an area to deer. Some of the response, shown i n Figures 33 to 36 i s due no doubt, to the c o r r e l a t i o n of t o t a l cover with number of species. However, i t seems reasonable that the number of preferred food species on any sample are l i m i t e d to several with the remaining made up of e i t h e r non-edible or non-preferred species. Furthermore, the method of sampling vegetation may be responsible f o r a decline of deer use with incre a s i n g number of species. This i s because a l l species were recorded regardless•of dominance. Therefore some species may hardly be noticed by deer and con-t r i b u t e l i t t l e or nothing to the attractiveness of an area. Where increasing number of species does not a f f e c t deer use, the response l e v e l s o f f as i n Figure 34 and 33 (Plot 4). In other cases, however, the e f f e c t of increasing number of species on deer use i s negative Figures 33 (plot 1), 35 and 36. The vegetation composition, i n these s i t u a t i o n s , -117-was not studied i n t e n s i v e l y enough to f i n d a cause f o r t h i s phenomenon. There i s a p o s s i b i l i t y that t h i s e f f e c t i s the combined r e s u l t of increasing the number of species with no e f f e c t on deer and the c o r r e l a t i o n of t o t a l number of species with t o t a l cover. This i s p a r t i c u l a r l y evident by the close s i m i l a r i t y of response between increasing t o t a l cover and increasi n g number of species (Figures 29 and 33? 30a(b) and 34, and 32 and 36). 5.3 Mature Forest Study (Sub-project c) The observations concerning deer use, within the fo r e s t , i n r e l a t i o n to el e v a t i o n f o r north and south slope was not analysed with s t a t i s t i c s . The i n d i v i d u a l observ-ations of deer use f o r each p l o t (Figure 37) appear to show some r e l a t i o n s h i p with e l e v a t i o n and aspect. Deer use appears to increase with e l e v a t i o n on the south slope but i s unaffected by ele v a t i o n on the north slope. These observ-ations were made from data that ranged from 400 to 2900 feet i n e l e v a t i o n . A comparison of data from two d i f f e r e n t sampling periods, each preceded by a winter opposite i n se v e r i t y , was not avai l a b l e to study the e f f e c t of snow on deer use within the mature f o r e s t . The observations of t h i s study were made from samples which were taken a f t e r a mild winter. In t h i s respect and also i n the general trends of deer use with e l e v a t i o n that they portray, the observations are s i m i l a r to those made on the logged f o r e s t s during the second sample -118-period (Figure 8b and Section 4.1.3). During this period, on the logged forests, the deer use increased with elevation on the south aspect and decreased on the north aspect. An unqualified comparison for the two situations i s invalid since the effect of snow inside and outside the forest i s not identical. Snow usually accumulates to a greater depth outside the forest than inside. (Jeffrey, 1968; Stanton, 1966; and Rothacher, 1965). Furthermore, snow generally melts more rapidly outside the forest (Miller, 1955, and Anderson, 1956 i n Jeffrey, 1968). -119-SUMMARY 1. A study was conducted i n the Nimpkish V a l l e y , Northern Vancouver I s l a n d , to evaluate the e f f e c t of f o r -e s t r y p r a c t i c e s and f o r e s t c h a r a c t e r i s t i c s on deer use of the f o r e s t s . Three s u b - p r o j e c t s were made: su b - p r o j e c t a was e s t a b l i s h e d to eva l u a t e the e f f e c t of time of burn-i n g , e l e v a t i o n , and s i t e index on deer use of r e c e n t l y l o g -ged f o r e s t s ; s u b - p r o j e c t b attempted t o assess the e f f e c t of both f o r e s t edge and v e g e t a t i o n on deer use of logged and mature f o r e s t ; and s u b - p r o j e c t c_ gave an I n d i c a t i o n of the e f f e c t of deer use w i t h e l e v a t i o n In the mature f o r e s t . The e f f e c t of a l l f a c t o r s on deer use In t h i s study could be seen on the n o r t h and south a s p e c t s . The p l o t s i n sub-p r o j e c t a were sampled twice, once i n 19 69 and once i n 1970. Since the w i n t e r of one sample p e r i o d d i f f e r e d i n s e v e r i t y from the other, the' e f f e c t of snow on deer could be observed. 2. The technique f o r sampling deer use was p e l l e t group counts. In s u b - p r o j e c t a the p l o t s were permanent w h i l e i n the other two s u b - p r o j e c t s the p l o t s were temp-o r a r y . In su b - p r o j e c t b and c_ the v e g e t a t i o n was sampled w i t h the same p l o t 3 that were used to sample the p e l l e t groups. In s u b - p r o j e c t a separate samples of v e g e t a t i o n were made d u r i n g the summer of the second sampling p e r i o d . 3. Deer use i n c r e a s e d on areas w i t h time that they were logged and slash-burned. Observations of i n d i v i d u a l -120-p l o t s i n t h i s study i n d i c a t e t h a t maximum use occurs approx-i m a t e l y 8 years a f t e r the area was burned. 4. The response of deer t o e l e v a t i o n i s g e n e r a l l y de-termined by s n o w - f a l l . On the south aspect deer w i n t e r use i s g r e a t e r at upper e l e v a t i o n s than the lower ( f o r an a l -t i d \ i d i n a l range between 800 and 3100 f e e t ) u n l e s s they are f o r c e d down by heavy s n o w - f a l l . . . . . / 5. Deer e x h i b i t a p r e f e r e n c e f o r areas w i t h the h i g h -est, s i t e Index. S i t e index i s c l o s e l y c o r r e l a t e d n e g a t i v e l y w i t h e l e v a t i o n and t h e r e f o r e the apparent response of deer use to s i t e index i s a c t u a l l y the response t o the combined e f f e c t of s i t e index and e l e v a t i o n . 6. The response of deer to time of burning, e l e v a t i o n and s i t e index d i f f e r s between the n o r t h and south a s p e c t s . On the n o r t h aspect the response of deer t o more p r e f e r r e d food c o n d i t i o n s i s s t r o n g e r than on the south aspect. The response of deer on the south aspect was thought to be a l t e r e d , from the response seen on the n o r t h aspect, by h i g h e r deer p o p u l a t i o n s and more f a v o r a b l e c l i m a t i c c o n d i t i o n s . 7. Deer use d e c l i n e d w i t h d i s t a n c e from the upper f o r e s t edge f o r both i n t o and away from the mature f o r e s t . The d e c l i n e i n deer use from the f o r e s t edge, o u t s i d e the f o r e s t , was a l t e r e d by the presence of roads (see number 8 below). I n s i d e the f o r e s t the d e c l i n e of deer use was a f f e c t e d by aspect and v e g e t a t i o n . On the n o r t h aspect deer use d e c l i n e d r a p i d l y t o near zero w i t h i n 400 f e e t of the f o r e s t - 1 2 1 -edge while on the south aspect deer use was considerable even at 1 5 0 0 feet from the edge. Vegetation was considered to have a s i g n i f i c a n t e f f e c t upon deer use. This l a t t e r con-c l u s i o n was based p r i m a r i l y upon personal observations. 8. Roads are probably used by deer f o r t r a v e l l i n g on. The p e l l e t group count on the road and road edge i s nearly zero however the count adjacent to the edge i s above normal i n d i c a t i n g that deer t r a v e l along the road then leave i t to feed. 9. Deer ex h i b i t a preference f o r a v a r i e t y of plant species. The response of deer use to the cover of i n d i v i d u a l species i s generally p a r a b o l i c . For a l l species combined the response of deer to incre a s i n g cover i s generally p o s i t i v e and l i n e a r . Deviations from a l i n e a r response are thought to r e s u l t from the e f f e c t of aspect and autogenic succession. 1 0 . Observations on the response of deer to plant d i v -e r s i t y i n d i c a t e that food preference f o r deer does not con-tinue to increase with incre a s i n g species d i v e r s i t y . A f t e r an i n i t i a l i n c r e a s i n g response, food preference tends to l e v e l o f f or decrease with incre a s i n g number of plant species. This response may be caused by a l i m i t e d number of preferred plant species and also by the fa c t that a l l plant species, regardless of t h e i r e d i b i l i t y were included i n the a n a l y s i s . 1 1 . The response of deer to elevation and aspect, i n the mature f o r e s t , was s i m i l a r to the response on the logged -122-f o r e s t during the second sample period. E l e v a t i o n on the north aspect appears to have l i t t l e or no e f f e c t on deer use. On the other hand, deer use increases with e l e v a t i o n on the south aspect. The e l e v a t i o n range of t h i s study was between 400 to 2900 f e e t . - 1 2 3 -LITERATURE CITED Anderson, H.W., R. M. Rice, and A. J . West, 1958. Snow i n f o r e s t openings and f o r e s t stands. Proc. Soc. Amer. For. 1958: 46-50. B l a i r , R.M. 1969. Timber stand density influences food and @> cover. "White-Tailed Deer i n the Southern Forest  Habitat", pp. 74-76. U.S.D.A. Forest Service, Southern Forest Exp. Sta., Proceedings of a Symposium. B r i t i s h Columbia Snow Survey B u l l e t i n . Water Investigations Branch, Dept. of Lands, Forests, and Water Resources, V i c t o r i a , B.C., 1963 -1970. Brown, E . R. 1961. The b l a c k - t a i l e d deer of Western Wash- @ ington, Washington State Game Dept. B i o l . B u l l . No. 13, 124 pp. Bunce, H. W. i960. A survey of f o r e s t regeneration i n the Nimpkish V a l l e y of B r i t i s h Columbia and recommendations f o r future management, U.B.C., M.F. Thesis, 208 pp. Clarke, C. L. 1967. "Elements of Ecology". John Wiley and Sons, Inc., New York. Coblentz, B., E. 1970. Food habits of George Reserve deer. # Jour. W i l d l . Mgmt. 34(3): 535-540. Co wan, I.McT. 1945. The e c o l o g i c a l r e l a t i o n s h i p s of the @ Food of the Columbian b l a c k - t a i l e d deer (Odocoileus  hemionus columbianus, Richardson) i n the coast f o r e s t region of southern Vancouver Island, B.C. E c o l . Monog. 1 5(2): 109 -139 . . 1956. L i f e and times of the b l a c k - t a i l e d deer. "The Deer of North America", pp. 523=617. Harrisburg, Penn: Stack Pole Co. Crouch, G. L. 1966. Preference of b l a c k - t a i l e d deer f o r 0 native forage and Douglas-fir seedlings. Jour. W i l d l . Mgmt. 30(3): 471-475. Dasmann, R. F. 1964. " W i l d l i f e Biology". John Wiley and o Sons, Inc., New York. 231 pp. , and R. D. Taber. 1956. Behavior of Columbian 9 b l a c k - t a i l e d deer with reference to population ecology. Jour. Mammal. 37(2): 143-164. Daubenmire, R. 1968. "Plant Communities, a Textbook of Plant Synecology". Harper and Row, Publishers, New York. 300 pp. -124-Edwards, R.Y. 1956. Snow depth and ungulate abundance i n the mountains of Western Canada. Jour. W i l d l . Mgmt. 20(2): 159-168. E i n a r s e n , A.S. 1946. Crude p r o t e i n d e t e r m i n a t i o n of deer 0 food as an a p p l i e d management technique. Trans. N.A.M. W i l d l . C o n f . ' l l ( 2 ) : 309-312. Gates, B.R. 1968. Deer food p r o d u c t i o n i n c e r t a i n s e r a i ^ stages of the coast f o r e s t . M.Sc. T h e s i s , Dept. of Zoology, U.B.C, Vancouver, B.C., 106 pp. G i l b e r t , P.P., O.C Wallmo, and R.B. G i l l , 1970. E f f e c t of © snow depth on mule dee'r i n Middle Park, Colorado. Jour. W i l d l . Mgmt. 34(1): 15-23. Hebert, D. 1971. Unpublished Ph.D. T h e s i s , U.B.C, Van-couver, B.C. Hoadley, J.W. 1953. Geology and M i n e r a l Deposited of the Zeballos-Nimpkish Area, Vancouver I s l a n d , B.C., Ottawa. J e f f r e y , W.W. 1968'. Snow hydrology i n the f o r e s t environment. g> Proc. CN.C-I.H.D. Workshop Seminar on Snow Hydro-logy, F r e d r i c t o n , N.B. pp.1-19. Julander 0. 1966. How mule deer use mountain rangeland In © Utah. Reprinted from Utah Acadamy Proc. V o l . 43(2): 22-28. K l e i n , ' D.R. 1965. Ecology of deer range. A l a s k a E c o l . Mono. <\ 35(3): 259-284. K r e f t i n g , L.W., and R.L. P h i l l i p s . 1970. Improving deer h a b i t a t i n upper Michigan by C u t t i n g m i x e d - c o n i f e r swamps. Jour. F o r . 68(11): 701-704. K r a j i n a , V . J . 1965. P h i l o s o p h y of ecology. "Ecology of @> Western North America',' U h i v e r i s i t y of B.C., Dept. of Bot., V o l 1, pp. 102-109. Lay, D.W. 1957. Browse q u a l i t y and the e f f e c t s of p r e s c r i b e d © b u r n i n g i n southern pine f o r e s t s . Jour. F o r . 55(5): 342-347. Leopold, A.S., T. Riney, R. McCain, and L . T e v i s J r . 1951. The Jawbone deer herd. C a l i f o r n i a Dept. F i s h and Game, Game B u l l . 4:1-139. McGinnes, B.S. 1969. How s i z e and d i s t r i b u t i o n of c u t t i n g ^ u n i t s a f f e c t f o o d and cover of deer. "White T a i l e d  Deer i n the Southern F o r e s t Habitat'.' Proceedings of a Symposium at Nacogdoches, Texas, pp. 66-70. - 1 2 5 -Meiman, J .R . 1968, Snow a c c u m u l a t i o n r e l a t e d t o e l e v a t i o n , & a s p e c t , and f o r e s t canopy. P r o c . C .N .C . - I .H .D . Workshop Seminar on Snow H y d r o l o g y , P r e d r i c t o n , N.B. , p p . 3 5 - 47 . Meye r , B .S . , D.B. Ande r s on , and R.H. B o h n i n g . 1960. " I n t r o - $ d u c t i o n t o P l a n t P h y s i o l o g y " . D. Van N o s t r a n d C o . , I n c . , T o r o n t o , 541 p p . M i l l e r , P . L . 1970. D i s t r i b u t i o n p a t t e r n s of b l a c k - t a i l e d Q d e e r ( O d o c o i l e u s hemionus c o l umb l anu s ) i n r e l a t i o n t o e n v i r o n m e n t . J o u r . Mammal. 5 1 ( 2 ) : 248 -260 . Moen, A . N . 1968a. Ene rgy exchange of a b i r c h t r e e and « sp ruce t r e e a t n i g h t . E c o l o g y 4 9 ( 1 ) : 145 -147 . . 1968b. Ene r g y b a l a n c e of w h i t e - t a i l e d dee r i n t h e w i n t e r . T r a n s . 3 3 r d . Am. W i l d l . Conf . p p . 224 -235 . N e f f , D.R. 1965. Deer p o p u l a t i o n t r e n d t e c h n i q u e s . " W i l d - l i f e R e s e a r c h I n A r i z o n a ' " . Job C o m p l e t i o n Rep. P r o j e c t W-78-R-9. p p . 17 -60 . . 19 68. The p e l l e t group count t e c h n i q u e f o r b i g game'. t r e n d , c e n s u s , and d i s t r i b u t i o n : A Rev iew. ' J ou r . W i l d l . Mgmt. 32 (3 ): 597-614. Odum,- E .P . 1959. " Fundamenta l s of E c o l o g y " . W.B. Saunders # C o . , P h i a d e l p h i a , 5 4 6 p p . . 1966. " E c o l g y " . Modern B i o l o g y ' S e r i e s . H o l t , * R i n h a r t , and W i n s t o n . New/ Y o r k , 152 p p . Ozoga, J . J . 1968. V a r i a t i o n s i n m i c r o c l i m a t e i n " a c o n i f e r & swamp d e e r y a r d i n N o r t h e r n M i c h i g a n . J o u r . W i l d l . Mgmt. 3 2 ( 3 ) : 574-585. R o b i n s o n , D . J . 1958. F o r e s t r y and w i l d l i f e r e l a t i o n s h i p s ^ on Vancouver I s l a n d . F o r . Ch ron . p p . 3 1 - 56 . , W.L. 1960. Te s t of s h e l t e r r e q u i r e m e n t s of $ penned w h i t e - t a i l e d d e e r . J o u r . W i l d l . Mgmt. 2 4 ( 4 ) : 3 64-371. R o t h a c h e r , J . 1965. Snow a c c u m u l a t i o n and m e l t i n s t r i p ' « c u t t i n g s on the west s l o p e s of t h e ' O r e g o h Cascades . U.S.D.A. F o r . S e r v . Res. N o t e , P.N.W. 23 . Shephe rd , W.O. 1953. E f f e c t s of b u r n i n g and g r a z i n g f l a t - ^ wood f o r e s t r a n g e s . S.E. F o r E xp . S t a . , Res . Note No. 30 . S p i l s b u r y , R. H. and D.S. S m i t h . 1947. F o r e s t t y p e s of t h e ' p P a c i f i c N o r t h w e s t . B.C. F o r . S e r v . Tech . P u b l . T. 30 . -126-Spurr, S.H. 1964. "Forest Ecology 1.' The Ronald Press Co., & New York. 351 pp. Stanton, C R . 1966. P r e l i m i n a r y i n v e s t i g a t i o n s of' snow 0 accumulation and m e l t i n g i n the f o r e s t e d cut-over areas of the Crowsnest F o r e s t . Proc. YiJest. Snow Conf., 34 Annual Meet.: 7-12. Taber, R.D. and R.F. Dasmann. 1958. The b l a c k - t a i l e d deer © of the c h a p a r r a l . C a l i f . Dept. of F i s h and Game. Game B u l l . No. 8, 163 pp. T e f l e r , E.S. 1970a. R e l a t i o n s h i p s between l o g g i n g and b i g „ game i n E a s t e r n Canada. Pulp and Paper Magazine of Canada. Oct. 1970, pp. 69-74. . 1970b. Winter h a b i t a t s e l e c t i o n by moose' and' • w h i t e - t a i l e d deer. Jour W i l d l . Mgmt. 34(3): 553-559. Verme L . J . 1965. Swamp c o n i f e r deeryards i n n o r t h e r n & Michigan. Jour. F o r . 63(7): 523-529. ® PERSONAL COMMUNICATION G o o d e l l , B , C 1971. P r o f e s s o r of F o r e s t r y Hydrology, U.B.C, V a n e , B.C. -127-APPENDIX 1 AVERAGE MONTHLY PRECIPITATION IN THE NIMPKISH VALLEY (Woss Camp) (Contributed by Canadian Forest Products Ltd.) l . a . PRECIPITATION Woss Camp Number of Average Monthly Range of Years Precipitation Precipitation Month Recorded (inches) (inches) January 13 12 .79 3 .89 -- 2 7 . 18 February 1 5 9 . 0 5 2 .79 -- 1 9 . 62 March 15 8 .40 2 .63 -- 14. 97 Ap r i l 15 6 . 2 3 1 . 7 2 -  14. 7 2 May 19 2 .37 .42 -- 5. 73 June 22 2 .08 . 0 5 -  4. 87 July 22 1 .95 .04 -- 5. 18 August 22 2 .75 .30 -- 7. 22 September 22 4 . 9 6 .89 -- 8. 9 0 October 13 12 .63 5 .58 -- 22. 78 November 13 12 .48 5 .04 -- 2 7 . 61 December 12 14 .05 6 . 1 7 -- 1 9 . 62 TOTAL 89.74 l . b SNOWFALL Woss Camp 1 9 5 4 _ 1 9 6 9 Months Ave rage S n o w f a l l b y Month ( i n c h e s o f snow) Range o f S n o w f a l l ( i n c h e s o f snow) November 2 . 5 0 - 2 7 December 9 . 6 0 - 7 6 J a n u a r y 1 5 . 6 0 . - 82 F e b r u a r y 6 . 4 0 - 2 7 March 5 . 3 0 - 26 A p r i l . 2 0 - 2 TOTAL 3 9 . 6 - 1 2 9 -APPENDIX 2 F IRE HISTORY OF THE NIMPKISH VALLEY A p p r o x i m a t e Date o f B u r n Age o f P r e s e n t S t a n d S i z e ( M i l e ) 2 L o c a t i o n 194-0 - 5 9 6 - 1 0 Ve rnon Camp 1 9 2 0 - 3 9 1 7 1 - 5 SW V e r n o n Lake 1 - 5 NE Ve rnon Lake 1 9 1 4 4 1 - 6 0 1 NE Ve rnon Lake l NE Woss Lake 1 N Woss Camp 1 NE K a i p i t C r e e k 1 8 9 4 6 1 - 8 0 1 E Ve rnon Camp 1 - 5 S Woss Camp 1 - 5 SE N i m p k i s h Lake 1 8 4 4 1 2 0 1 1 - 1 5 NW Woss L a k e ; a l o n g N i m p k i s h R i v e r t o S end N i m p k i s h L a k e and S t o A t l u c k Lake 1 - 5 NE N i m p k i s h Lake 1 5 6 0 - 1 7 5 9 2 7 0 1 - 5 NE Edge Woss Lake 4 1 - 5 0 V e r n o n Lake 1 3 6 0 - 1 5 5 9 4 0 0 2 1 - 3 0 N i m p k i s h Lake 1 6 - 2 0 Woss Camp t o Schoen L a k e ; a l o n g N i m p -k i s h R i v e r 1 - 5 N W Woss Lake 5 4 0 6 - 1 0 Woss Camp, Woss L a k e , Ve rnon Lake 1 6 - 2 0 SE c o r n e r o f T imbe r L i c e n s e 9 6 0 - 1 3 5 9 6 2 0 1 - 5 W K l a k l a h a m a Lake S Ve rnon Camp 7 5 0 1 - 5 w K l a k l a h a m a Lake 1 - 5 s Woss Lake 1 0 0 0 1 w K l a k l a h a m a Lake B e f o r e 9 6 0 1 0 0 0 + 4 0 0 + On h i g h e r a l t i t u d e s ( 7 , 2 0 0 ' ) - 1 3 0 -APPENDIX 3 ESTIMATED POPULATION OP DEER IN THE NIMPKISH VALLEY FROM 1958 to 1964-(Canfor Information) Time E s t . Deer per Square M i l e January - June, 1958 2.4-9 J u l y - December 1958 2.34-January - June, 1 9 5 9 2 . 8 3 J u l y - December, 1 9 5 9 5.21 January - June, I960 4-.4-1 June, I960 - May, 1961 7.43 June, 1961 - June, 1962 29.4-0 J u l y , 1962 - June, 1963 13.70 S p r i n g - F a l l , 1963 24-. 10 F a l l , 1963 - S p r i n g , 1964- 1 3 . 3 2 S p r i n g t o F a l l , 1964- 65.4-2 APPENDIX 4 DESCRIPTION OP PERMANENT PLOTS P l o t 1 No. ,;f Y e a r Logged Y e a r Burned Year P l a n t e d A s p e c t S i t e Index E l e v a t i o n ( f t x 100) P e l l e t Groups p e r p l o t -Sample I P e l l e t Groups p e r p l o t -Sample I I * 1 1961 1961 1965 N 160 9 93 28 2 1961 1961 1963 S 1 5 0 8 126-. 5 2 3 i 9 6 0 1960 1965 N 140 10 81 30 4 i 9 6 0 I960 1965 N 140 12 74 40 5 i 9 6 0 1961 1968 S 140 1 5 106 40 6 1964 1964 1966 N 140 8 86 7 1964 1964 1966 N 140 10 71 24 8 1964 1965 1966 N 130 12 94 26 9 1966 1966 Not P I . S 140 9 67 ' 35 10 1965 1965 1968 S 140 11 61 62 11 1967 s 140 9 63 1 9 12 1965 1965 Not P I . s 130 10 68 2 3 1 3 1965 1965 1968 s 130 12 54 35 14 1965 1965 1968 s 130 11 86 50 1 5 1965 1965 1968 - 130 9 48 19 16 1966 1966-67 1967 N 140 8 16 2 3 1 7 1962 1963 1966 N 140 9 56 4 5 18 1962 1963 1966 N 140 11 57 . 38 19 1963 1963 1966 - 1 5 0 9 39 1 7 •_, 20 1965 1965 Not P I . - 140 10 21 4 V 21 1966 1966 Not P I . S 130 15 65 i 57 APPENDIX 4 ( c o n t i n u e d ) DESCRIPTION OP PERMANENT PLOTS P l o t No . Y e a r Logged Y e a r Bu rned Y e a r P l a n t e d A s p e c t S i t e I ndex E l e v a t i o n ( f t x 100) P e l l e t Groups p e r p l o t -Sample I P e l l e -p e r p! Sampl i 22 1966 1966 Not P I . S 130 18 62 53 2 3 1966 1966 Not P I . S 130 18 4 5 58 24 1966 1968 Not P I . - 110 2 3 12 11 2 5 1967 1967 Not P I . ' N 130 13 7 22 26 1965 1967 Not P I . S 1 5 0 14 43 42 2 7 1965 1967 1967 - 140 15 5 1 2 7 28 1966 1967 Not P I . - 150 20 42 2 3 2 9 1962 1964 1967 S 150 16 80 5 2 30 1963 1964 1968 s 130 1 7 4 7 3 2 31 1963 1963 1966 s 140 15 43 . 24 3 2 1962 1962 1968 s 120 26 55 54 33 1962 1962 1968 s 120 2 5 57 42 34 1962 1962 1968 - 120 2 3 ? 6 55 35 1966 1967 Not P I . s 120 2 3 22 31 36 1962 1963 1968 s 110 28 2 9 48 37 1962 1963 Not P I . s 100 3 1 43 55 38 1966 1967 1968 s 120 2 5 2 5 37 39 ' 1966 1966 1967 N 110 30 13 37 40 1966 1967 Not P I . - 120 14 9 20 41 1966 1966 Not P I . N 120 21 4 17 42 1965 1966 Not P I . - 120 2 5 10 1 9 43 1964 1965 Not P I . N 120 20 40 . 2 7 I H ro i APPENDIX 4 (continued) DESCRIPTION OP PERMANENT PLOTS Plot Year Year Year No. Logged Burned Planted 44 1963 1965 1968 45 1965 1966 Not PI. 46 1965 1965 1967 47 1964 1965 % 1967 48 1964 1965 1968 49 1963 1963 1968 50 1966 1966 Not PI. *Number of pellet groups adjusted on a period of 350 days a Aspect N N S S Site Index 130 120 130 130 120 120 130 Elevation ( f t x 100) 1 5 20 1 0 1 5 1 9 1 5 1 5 P e l l e t Groups per plot -Sample I 45 17 31 58 43 55 43 Pellet Groups per plot -Sample I I * 16 6 2 5 20 43 38 26 The interval was based i I -134-APPENDIX 5 DESCRIPTION OF ECOTONE STUDY AREAS P l o t No. Y e a r Logged Y e a r Burned Y e a r P l a n t e d 1 1961 1961 1963 2 1966 1966 Not P I . 3 1966 1966 Not P I . 4 1961 1961 1963? 5 196? 1967 Not P I . E l e v a t i o n S i t e No.Deer ( f e e t ) I ndex A s p e c t p e r s q . m i l e * 800-- 1 5 0 0 150 SE 79 1 7 0 0 - -2000 160 S 89 1700--2000 130 S 81 800--1300 130 NW 43 1200--1500 130 NE 33 * E s t i m a t e t a k e n from T a b l e 4. The permanent p l o t s w h i c h were a l s o l o c a t e d on t h e E c o t o n e S t u d y a r e a s were ( i n co n -s e c u t i v e o r d e r t o t h e a b o v e ) : 2 , 2 3 , 2 2 , 1, and 2 5 . -135-APPENDIX 6 DESCRIPTION OP MATURE FOREST PLOTS P l o t No. E l e v a t i o n ( f e e t ) A s p e c t S l o p e ( p e r c e n t ) P l o t No. E l e v a t i o n ( f e e t ) A s p e c t S l o p e ( p e r c e n t ) 1 1 9 0 0 SE 40 11 2840 S 30 2 1730 SW 55 12 1 7 0 0 N 30 3 1220 N 40 13 420 N 20 4 1040 N 50 14 7 0 0 N 90 5 1530 S 40 1 5 840 N 20 6 1 9 2 0 N 50 16 1 5 0 0 NE 35 7 1400 S 30 17 6 7 0 S 10 8 1210 :S 3 0 18 870 S 35 9 2500 . S 60 1 9 1050 S 1 5 10 2860 N 20 20 1000 N 55 -136-APPENDIX 7 SAMPLING ACCURAC:,YV OF PELLET GROUPS ON PERMANENT PLOTS* Sample 1 P l o t No. Avg. No. P e l l e t S t a n d a r d E r r o r C o n f i d e n c e Groups p e r Sample o f mean L i m i t s ( 9 5 $ ) 1 2.38 0.30 0.59 2 3 . 1 5 0.40 0.80 3 2.02 0 . 3 2 0.65 4 1.90 0.34 0.68 5 2.65 0.34 0.68 6 2.15 0.44 0.88 7 1.94 0.37 0.74 8 2.34 0.35 0.70 9 1.68 0.24 0.49 10 1 . 5 2 0.28 0.56 11 1.58 0.28 0.57 12 1.70 0.26 0.53 13 1.35 0.26 0 . 5 2 14 2.15 0 . 2 9 0.58 1 5 1.20 0.28 0.56 16 0.42 0.14 0.28 1 7 1.51 0.24 0.47 18 1.42 0.24 0.49 1 9 0.98 0 . 1 9 0.38 20 0.54 0.14 0 . 2 9 21 1.62 0.35 0 . 7 1 22 1.55 0.30 0.61 2 3 1.12 0.21 0.42 24 0.30 0.12 0 . 2 3 2 5 0.18 0.07 0.14 26 1.08 0.22 0.44 2 7 1.28 0.28' 0.55 28 1 . 0 5 0.18 0.35 2 9 2.05 0.33 0.67 30 1.18 , 0.24 0.48 -137-APPENDIX 7 ( c o n t i n u e d ) SAMPLING. ACCURACY OP 1 PELLET Sample GROUPS ON 1 PERMANENT PLOTS* P l o t No. Avg. No. P e l l e t Groups p e r Sample S t a n d a r d o f Mean E r r o r C o n f i d e n c e L i m i t s (95%) 31 1.08 0.24 0.49 3 2 1.38 0 . 2 5 0.51 33 1.42 0.26 0 . 5 2 34 1.98 0.34 0.68 35 0.55 0 . 1 5 0 . 2 9 36 0 . 7 2 0 . 1 9 0.38 37 1.07 0.28 0.56 38 0.62 0 . 1 5 0.30 39 0 . 3 2 0.12 0.24 40 0.22 0.07 0 . 1 5 41 0.10 0.07 0.14 42 0 . 2 5 0.11 0.22 43 1.00 0 . 1 9 0.38 44 1.12 0.20 0.41 45 0.42 0.15 0.30 46 0.78 0.20 0.40 47 1.45 0 . 2 9 0.58 48 1.08 0.22 0.43 49 1.38 0 . 2 7 0.55 50 1.08 0.22 0.44 -138-APPENDIX 7 ( c o n t i n u e d ) SAMPLING ACCURACY OF PELLET GROUPS ON PERMANENT PLOTS* Sample 2 P l o t No . A v g . No . P e l l e t S t a n d a r d E r r o r C o n f i d e n c e Groups p e r Sample o f Mean L i m i t s ( 9 5 $ ) 1 0 . 7 2 0 . 1 7 2 0 . 3 4 2 1 . 4 4 0 . 2 7 2 0 . 5 5 3 0 . 7 8 0 . 1 9 0 0 . 3 8 4 1 . 0 2 0 . 2 2 7 0.46 5 1 . 0 2 0.216 0 . 4 4 6 No t R e c o r d e d 7 0 . 5 8 0.180 0 . 3 6 8 0 . 6 5 0 . 1 3 7 0.28 9 0 . 8 5 0.188 0 . 3 8 1 0 1 . 5 0 0.224 0 . 4 5 1 1 0.48 0 . 1 0 7 . 0 . 2 2 1 2 . 0 . 5 5 0 . 1 2 9 0.26 1 3 0 . 8 5 0 . 1 7 0 0 . 3 5 14 1 . 2 0 0 . 1 6 9 ' 0 . 3 4 1 5 0.451 0 . 1 2 1 0 . 2 5 16 0 . 5 7 0.149 0.30 17 1 . 0 5 0.162 0 . 3 2 18 0.90 0 . 1 9 1 0 . 3 7 1 9 0.40 0.106 0 . 2 2 2 0 0 . 1 0 0 . 0 5 9 0 . 1 2 2 1 1 . 3 0 0 . 3 2 9 0.66 2 2 1 . 2 0 0.261 0 . 5 3 2 3 1 . 3 4 0.206 0.42 24 0 . 2 5 0 . 0 8 5 0 . 1 7 2 5 0 . 5 0 0 . 1 3 0 0.26 26 0 . 9 3 0.164 0 . 3 3 2 7 1 . 1 0 0.167 0 . 3 4 28 0 . 5 0 0 . 1 0 7 0 . 2 2 2 9 1 . 1 7 0 . 1 7 0 0 . 3 5 - 1 3 9 -APPENDIX 7 ( c o n t i n u e d ) SAMPLING ACCURACY OP PELLET GROUPS ON PERMANENT 1 PLOTS* Sample 2 P l o t No. Avg. No. P e l l e t Groups p e r Sample S t a n d a r d E r r o r o f Mean C o n f i d e n c e L i m i t s (95$) 30 0.70 0.161 0 . 3 2 31 0 . 5 2 0 . 1 3 2 0.26 3 2 1.26 0.183 0.38 33 0.92 0 . 1 7 1 0.35 34 1.20 0 . 1 8 7 0.38 35 0.68 0.146 0.30 36 1.05 0 . 1 7 2 0.35 37 1.20 0 . 1 7 2 0.35 38 0.78 0.145 0.30 39 0.80 0.221 0.48 40 0.42 0 . 1 0 7 0.22 41 0.35 0.126 0.26 42 0.38 0.128 0.26 43 0.58 0.128 0.26 44 0.33 0.093 0 . 1 9 45 0 . 1 3 0.056 0.11 46 0 . 5 2 0 . 1 2 9 0.26 47 0.42 0.124 0 . 2 5 48 0.87 0 . 1 5 5 0.31 49 0.78 0.182 0.37 5 0 0.53 0 . 1 2 3 0 . 2 5 *Each p l o t c o n s i s t s o f 40 samples. -140-APPENDIX 8 STATISTICS AND MULTIPLE REGRESSION ANALYSIS ON DATA PROM PERMANENT PLOTS Sample I - Pl o t s on a l l Aspects ( U n s t r a t i f i e d ) Variable Year Burned Ele v a t i o n ( f t x 1 0 0 ) S i t e Index * P e l l e t Groups - per p l o t Mean 1 9 6 4 . 6 1 5 . 7 1 3 1 . 4 5 0 . 8 Range 1960-1968 8-31 100-160 4-126 :In a l l cases the dependent v a r i a b l e i s p e l l e t groups. Independent Variables (In combin-ati o n or alone) Time Burn Elevation S i t e Index Time Burn Si t e Index Time Burn El e v a t i o n S i t e Index S t a t i s t i c s f o r i n d i v i d u a l S t a t i s t i c s f o r independent independent va r i a b l e s i n va r i a b l e s i n combination combination or alone or alone Regression C o e f f i c i e n t +7.021 -0.673 +0.610 +6.892 +0.868 +8 . 2 5 -1.880 +1.144 Variance M u l t i p l e Ratio (P)' C o r r e l -a t i o n Co-e f f i c i e n t (R) 2 5 . 1 1 5 1 . 0 5 4 3.294 2 4 . 3 7 1 1 5 . 0 9 1 2 8 . 7 6 8 1 1 . 2 9 1 1 8 . 7 8 7 Variance Ratio (P) 0.733 0.537 17.806** 0.726 0 . 5 2 7 2 6 . 1 5 2 * * 0.612 0.375 28.768** 0.436 0 . 1 9 0 1 1 . 2 9 1 * * 0.530 0.281 18.787** APPENDIX 8 ( c o n t i n u e d ) -141-Sample I - P l o t s on N o r t h A s p e c t V a r i a b l e Mean Range Y e a r B u r n 1 9 6 4 . 0 7 E l e v a t i o n ( f t x 1 0 0 ) 1 3 - 8 7 S i t e Index 1 3 3 . 3 3 P e l l e t Groups -p e r p l o t 5 0 . 2 7 1960-1967 8-30 110-160 4-94 Independent V a r i a b l e s ( I n combin-a t i o n o r a l o n e ) S t a t i s t i c s f o r i n d i v i d u a l S t a t i s t i c s f o r i n d e p e n d e n t i n d e p e n d e n t v a r i a b l e s i n v a r i a b l e s i n c o m b i n a t i o n Time B u r n E l e v a t i o n S i t e I n d e x Time Burn E l e v a t i o n Time B u r n E l e v a t i o n S i t e Index c o m b i n a t i o n o r a l o n e R e g r e s s i o n V a r i a n c e C o e f f i c i e n t R a t i o (P) +8.748 -1.997 -0.183 +8.417 -1.737 +10.746 - 3.193 + 1.789 5.378 0.903 0.021 8.604 2.839 16.00 7.886 11.070 o r a l o n e M u l t i p l e C o r r e l -a t i o n Co-e f f i c i e n t (H) R' 2 V a r i a n c e R a t i o (P) 0.799 0.638 6.467** 0.798 0.637 10.551** 0.743 0 . 5 5 2 16.00 ** 0.614 0.378 7.886* 0 . 6 7 8 0.460 1 1 . 0 7 0 * * APPENDIX 8 ( c o n t i n u e d ) -142-Sample I - P l o t s on S o u t h A s p e c t V a r i a b l e Mean Time Burn 1964.57 E l e v a t i o n ( f t x 100) " 16.96 S i t e I ndex 130.87 P e l l e t Groups 58.61 Range 1 9 6 1 - 1 9 6 7 8 - 3 1 1 0 0 - 1 5 0 22-26 Independent V a r i a b l e s ( I n combin-a t i o n o r a l o n e ) Time B u r n E l e v a t i o n S i t e I n d e x Time B u r n E l e v a t i o n E l e v a t i o n Time B u r n S i t e I n d e x S t a t i s t i c s f o r i n d i v i d u a l S t a t i s t i c s f o r i n d e p e n d e n t i n d e p e n d e n t v a r i a b l e s i n v a r i a b l e s i n c o m b i n a t i o n c o m b i n a t i o n o r a l o n e o r a l o n e R e g r e s s i o n C o e f f i c i e n t +7.672 - 2 . 2 3 3 +0.264 +7.975 -2.670 -2.212 +6 . 1 5 1 +1.157 V a r i a n c e M u l t i p l e Rc R a t i o (P) C o r r e l -a t i o n Co-e f f i c i e n t -00 2 3.985 8.845 0.513 28.655 38.258 11.801 6.394 13.567 0 . 8 5 8 0 . 7 3 7 0.600 0.360 0 . 4 8 3 0 . 2 3 3 0.626 0 . 3 9 2 V a r i a n c e R a t i o (P) 0.862 0.744 18.382** 2 7.998** 11.801** 6.394* 1 3 . 5 6 7 * * -143-APPENDIX 8 (continued) Sample I I - P l o t s on a l l Aspects ( U n s t r a t i f i e d ) V a r i a b l e Mean Time Burn 1964.61 E l e v a t i o n ( f t x 100) 15.88 S i t e Index 131.22 P e l l e t Groups 33.20 Range 1960-1968 8-31 100-160 4*62 Independent V a r i a b l e s ( I n combin-a t i o n o r alone) S t a t i s t i c s f o r i n d i v i d u a l S t a t i s t i c s f o r independent independent v a r i a b l e s i n v a r i a b l e s i n combination combination or alone o r alone Time burn E l e v a t i o n S i t e Index Time Burn E l e v a t i o n Time Burn E l e v a t i o n S i t e Index Regression C o e f f i c i e n t +2.496 +0.849 +0.166 +2.657 +0.605 +2.425 +0.497 -0.0495 Variance M u l t i p l e Rc R a t i o (P) C o r r e l -a t i o n Co-e f f i c i e n t 00 6.224 3.203 0.476 Variance R a t i o (P) 7.546 3.709 6.036 2.236 0.086 0.434 0.188 3.485* 0.424 0.180 5.046* 0.337 0.114 6.036* NS 0.213 0.045 2.236 0.043 0.00 0.086 NS -144-APPENDIX 8 ( c o n t i n u e d ) Sample I I - P l o t s on N o r t h A s p e c t V a r i a b l e Mean Range Time B u r n 1964.07 1960-1967 E l e v a t i o n ( f t x 100) 14.28 8 - 3 0 S i t e I n d e x 132.87 110-160 P e l l e t Groups 2 7.07 6-45 Independent S t a t i s t i c s f o r i n d i v i d u a l S t a t i s t i c s f o r i n d e p e n d e n t V a r i a b l e s i n d e p e n d e n t v a r i a b l e s i n v a r i a b l e s i n c o m b i n a t i o n ( I n combin- c o m b i n a t i o n o r a l o n e o r a l o n e a t i o n o r a l o n e ) 2 R e g r e s s i o n V a r i a n c e M u l t i p l e R V a r i a n c e C o e f f i c i e n t R a t i o ( P) C o r r e l - R a t i o a t i o n Co- (P) e f f i c i e n t (R) Time B u r n +2.864 2.807 E l e v a t i o n -0.018 0.000 S i t e I ndex -0.121 0.043 Time Burned +2.854 3.385 S i t e -0.112 0.153 Time Burned +2.44 4 . 9 9 5 E l e v a t i o n - 0 . 3 3 2 0 . 4 9 2 S i t e I ndex +0.248 1.176 0 . 5 5 1 0.304 1 . 4 5 3 N S 0.551 0.304 2 . 3 9 7 N S 0.542 0.294 4.995* 0.198 0 . 0 3 9 0 . 4 9 2 N S 0 . 2 9 9 • 0.089 1 . 1 7 6 W S APPENDIX 8 ( c o n t i n u e d ) - 1 4 5 -Sample I I - P l o t s on S o u t h A s p e c t V a r i a b l e Mean Time B u r n 1 9 6 4 . 5 7 E l e v a t i o n ( f t x 100) 1 6 . 9 6 S i t e I n d e x 1 3 0 . 8 7 P e l l e t Groups 4 1 . 9 1 Range 1 9 6 1 - 1 9 6 7 8-31 1 0 0 - 1 5 0 1 9-62 Independent V a r i a b l e s ( I n combin-a t i o n o r a l o n e ) Time B u r n E l e v a t i o n S i t e I n d e x Time B u r n E l e v a t i o n E l e v a t i o n Time B u r n S i t e I ndex S t a t i s t i c s f o r i n d i v i d u a l S t a t i s t i c s f o r i n d e p e n d e n t i n d e p e n d e n t v a r i a b l e s i n v a r i a b l e s i n c o m b i n a t i o n c o m b i n a t i o n o r a l o n e o r a l o n e R e g r e s s i o n C o e f f i c i e n t +0.906 +0.762 +0.198 +1.133 +0.433 +0.498 +1.430 -0.105 V a r i a n c e M u l t i p l e R R a t i o ( P) C o r r e l -a t i o n Co-e f f i c i e n t (R) 0.337 1.039 0 . 2 9 2 0 . 5 9 1 1 . 0 2 9 1 . 4 4 5 0 . 9 7 7 0 . 2 4 3 0.324 0 . 3 0 2 0 . 2 5 4 0 . 2 1 1 0 . 1 0 7 N u l l h y p o t h e s i s ; Ho = B^ = ^ - -"3 B 2 = B N.S. Not s i g n i f i c a n t a t P0.05. * S i g n i f i c a n t a t P0.05. S i g n i f i c a n t a t P0.01. = 0 0.064 0.044 V a r i a n c e R a t i o (P) 0 . 1 0 5 0 . 7 4 3 NS 0 . 0 9 1 1.004 NS 1.445 NS 0 . 9 7 7 NS 0.011 0.243 NS -146-APPENDIX 9 R e g r e s s i o n A n a l y s i s on D a t a I l l u s t r a t i n g C h a n g i n g Deer Use w i t h E l e v a t i o n I n a Two Y e a r P e r i o d f o r Logged P o r e s t P l o t No. Sample I * - Sample I I E l e v a t i o n ( f t x 100) 1 33.7 9 2 31.6 8 3 23.7 10 4 9.0 12 5 30.3 15 6 N.A. 8 7 23.1 10 8 36.3 12 9 9.4 9 10 -21.6 11 11 22.8 9 12 22.1 10 13 0.8 12 14 7.0 11 15 12.8 9 16 -12.4 8 17 - 7.9 9 18 - 0.2 11 19 - 8 .9 9 20 + 9.9 10 21 -13 .9 15 22 -11 .9 18 23 -28.2 18 24 - 3.0 23 25 -17.4 13 26 -13.5 14 27 + ;6;-8 15 28 + 4.8 20 29 + 1.1 16 30 - 0.8 17 31 + 4.5 15 APPENDIX 9 ( c o n t i n u e d ) -147-P l o t No. Sample I * - Sample I I E l e v a t i o n ( f t x 100) 3 2 - 1 7 . 5 26 3 3 - 4 . 2 2 5 3 4 - 4 . 6 2 3 3 5 - 1 6 . 4 2 3 3 6 -28.8 28 3 7 - 2 6 . 5 3 1 3 8 - 2 0 . 4 2 5 3 9 -28.4 3 0 40 - 1 4 . 0 14 41 - 1 4 . 4 2 1 42 - 1 2 . 4 2 5 4 3 - o . 5 2 0 4 4 + 1 3 . 8 1 5 4 5 + 5 . 3 2 0 46 - 4 . 4 1 0 4 7 +18 .5 1 5 48 - 1 4 . 5 1 9 4 9 - 1 . 5 1 5 5 0 + 2 . 5 1 5 Mean x (Sample I - Sample I I ) = -0.376 Mean y ( e l e v a t i o n - f t x 1 0 0 ) = 1 5.28 S l o p e (b) = -1.64 C o r r e l a t i o n c o e f f i c i e n t ( r ) = 0.596 C o e f f i c i e n t o f d e t e r m i n a t i o n ( r ) = 0.355 t ( 4 7 d f ) = 4.085** * F o r t h i s e x e r c i s e t h e d a t a o f sample I was a d j u s t e d so t h a t t h e average p e l l e t g r o u p s p e r p l o t was t h e same as i n sample I I . T h i s r e q u i r e d m u l t i p l y i n g t h e count i n each p l o t by a c o n s t a n t . N u l l h y p o t h e s i s ; Ho b = 0 * * S i g n i f i c a n t a t P0.01 APPENDIX 10 -148-Sample Of S p e c i e s C o m p o s i t i o n And C o v e r On Pe rmanent P l o t s P l o t C l a s s * No . 1 3 A B C D E S p e c i e s * * Gs , Ru , Pm, D, Am, A t , T t , Ead V, L b , Rs E a , Rp 60(30-80)*** A B C D E 7 0 ( 1 0 - 1 0 0 ) S, C c , L b , R s , Pm, Am, Ss E a , V Gs P l o t C l a s s S p e c i e s No . 4 A B C D E 30(5-100) A Ru , A t , S s , Pa E a , V, Lb Gs , L b , Pm, S s , Pa B R s , Am C E a , V, Ru D E 65(30-90) 5 A B C D E 75(50-100) 8 A B C D E 35(0.80) V, •Cc, R s , Ru , Pm, A t , Ss Am Lb E a E a , V , •G s , C c , R s , P a , Am Lb 7 9 A E a , V, G s , C c , Am, A t B S r C L b , R s , Ru , Pm, S s , P a D E 75(30-90) A B C D E 85(60-90) V , - S , C c , Ru , S s , Mn, A t , Ead L b . E a , Gs P a APPENDIX 10 ( c o n t i n u e d ) Sample o f S p e c i e s C o m p o s i t i o n And C o v e r On Permanent P l o t s -149-P l o t No . 1 0 C l a s s S p e c i e s A E a , R s , Ru , Pm, D, Am, S r , Gr B V, Mn, P a C Lb D Gs E 7 0 ( 2 0 - 9 0 ) P l o t C l a s s No . 11 A B C D E S p e c i e s E a , V, R p , - R s , Ru , Pm, S s , G r , E a d , A t . G s , C c , P a , Am Lb Mn 8 0 ( 6 0 - 1 0 0 ) 12 E a , C c , L b , Mn 13 B V C Pa D Gs E 7 0 ( 2 0 - 9 0 ) A B C D E 5 5 ( 2 0 - 9 0 ) E a , S, G s , C c , R s , R u , S s , Am, A t P a V, Lb 14 A B C D E 8 0 ( 6 0 - 1 0 0 ) V, R s , Pm C c , A f , Ss E a Lb 1 5 A B C D E 8 5 ( 6 0 - 1 0 0 ) E a , S, L b , R s , Pa Cc V, Gs 16 A B C D E 5 5 ( 0 - 9 0 ) D, Am, A t , A f , E a d ' 1 7 C c , L b , R s , Pm E a , V A B C D E V, C c , L b , • S s , Am, S r , T t , Gr Rp E a , Rs 8 5 ( 6 0 - 1 0 0 ) 18 A B C D E 6 5 ( 0 . 9 0 ) Gs , L b , Rp, Ru , A f , P a , Am, A t , Gr 1 9 V, R s , Ss E a , Cc B C D 6 5 ( 5-lo) G, Gs , R s , S s , Am, Gr >i C c , Lb -150-APPENDIX 1 0 ( c o n t i n u e d ) Sample o f S p e c i e s C o m p a s i t i o n and C o v e r on Permanent P l o t s P l o t No . C l a s s S p e c i e s P l o t No . C l a s s S p e c i e s 2 0 B C D E 60(4-0-70) Gs , S s , Am, Pa V, Lb Cc E a 2 1 A B C D E V, S, G s , L b , A f , S s , Mn G r , E ad E a 65(4-0-100) 2 2 A V, S, C c c , L b , Pm, - 2 3 Ead B C D E Gs , Mn, Ss E a 6 5 ( 1 0 - 1 0 0 ) A B C D E 4 -5(10-80) S, Gs , C c , L b , S s , Gr E a , V 24-B C D . E 2 0 ( 5 - 7 0 ) E a , S, C c , L b , Am 2 5 V A B C D E V, S, L b , R s , Pm, S s , P a , S r , Mn Ea 4 5 ( 3 0 - 7 0 ) 26 A V , • S , Gs , C c , Am, 2 7 Mn, Ead B C D E 60(4-0 - 90 ) P a Lb E a A B C D E C c , Rp, R s , Ru , Pm, A f , Am, A t , S r , Mn E a , V, Pa Lb 7 0 ( 3 0 - 1 0 0 ) APPENDIX 10 ( c o n t i n u e d ) - 1 5 1 -Sample o f S p e c i e s C o m p o s i t i o n and Cove r on Permanent P l o t s P l o t No . C l a s s S p e c i e s P l o t No . C l a s s S p e c i e s 28 A V , P a B S C D E E a 65(50-90) 2 9 A B C D E V , R u , P a , S r , Mn, A t E a , Lb, 70(60-80) 3 0 A 3 2 S, Gs, Gr B C Lb D • E a E 55(20-100) A B C D E V , - C c , • A f , Am, T t , G r , Ss E a , Lb 80(60-100) 31 3 3 A B C D E V, S, R s , Ru , Pm, S r , G r , A t , P a Rp E a , Lb 85(50-100) A B C D E C c , Am, P f , P a , Ss V Lb E a 7 0 ( 3 0 - 9 0 ) 34 A B Lb C Cc D E a , V E 80(50-100) 3 5 A B C D E a E 5 5 ( 2 0 - 8 0 ) S, L b , Am V APPENDIX 10 (continued) -152-Sample of Species Composition and Cover on Permanent P l o t s P l o t No. 36 38 40 Class A B C D E 55(10-80) A B C D E 80(70-100) Species V Ea, Lb, Pa V, S, Am, Pa Ea, Lb A B C D E 30(5-70) V, S, Cc, Lb, Gr, Pa Ea P l o t No. Class Species 37 39 41 B C D E V, Af, Tt, Ead, Ss Pa Lb Ea 50(5-100) A B C D E S, Lb, Tt, Ead V Ea 65(20-80) A S, Cc, Lb, Af,S B C Ea D V E 50(20-60) 42 A B C D E 40(20-60) Ea, S, Lb, Af Cc V 43 A B C D E 20(5-60) V, Cc, Lb, At, Ss Ea APPENDIX 10 ( c o n t i n u e d ) -153-Sample o f S p e c i e s C o m p o s i t i o n and Cover on Permanent P l o t s P l o t No. C l a s s S p e c i e s P l o t No. C l a s s S p e c i e s 44 A B C D E S, Hp, Am, Pa V, Lb Ea 65(40-80) 45 A B C D E S, R s , Am, E a d , Ss E a , Gs, Cc V, Lb 46 A B C D E 70(30-90) Cc, Rs, Pm, Ss V E a , Lb Gs 47 A B C D E S, S s , B, Am, S r V Lb Ea 48 50 A S, Pa B C V, Lb D E a E 70(50-80) 49 A B C D E 50(20-70) V, S s , Am, Gr, Ead E a , S Lb A B C D E 45(5-80) Cc, Rs, F f , S s , Pa V E a , Lb APPENDIX 1 0 ( c o n t i n u e d ) -154-* P e r c e n t c o v e r b y e a ch c l a s s : A , 1 - 5 ; B, 6 - 1 0 , C, 1 1 - 2 0 ; D, 2 1 - 5 0 ; E, 5 1 + * * B o t a n i c a l name r e p r e s e n t e d by e a ch s p e c i e s s y m b o l : Symbol B o t a n i c a l Name"*" 1 A f A t h y r i u m f i l i x - f e m i n a ( L . ) R o t h 2 Am A n a p h a l i s m a r g a r i t a c e a B e u t h . 5 A t A c h l y s t r i p h y l l a (D .C . ) 4 Cc Co rnu s c a n a d e n s i s I . 5 E a E p i l o b i u m a n g u s t i f o l i u m L. 6 Ead E p i l o b i u m a d e n o c a u l o n Haus . 7 Gr": Gramlnae spp. 8 Gs G a u l t h e r i a s h a l l o n P u r s h . 9 Lb L i n n a e a b o r e a l i s L . 1 0 Mn M a h o n i a n e r v o s a ( P u r s h , ) N u t t . 1 1 P a P t e r i s a q u i l i n a L . 1 2 Pm P o l y s t i c h u m muniturn ( K a u l f . ) P r e s i . 1 3 Rp Rubus p a r u i f l o r u s N u t t . 14 P s Rubus s p e c t a b i l i s P u r s h . 1 5 Ru Rubus u r s i n u s Cham. & S c h . 16 S S e n e c i a s p p . L . 1 7 S r Sambucus r a cemosa L . 18 Ss'= S t r u t h i o p t e r i s s p i c a n t (L.) We i s . 1 9 T t T i a r e l l a t r i f o l i a t a L. 2 0 V V a c c i n i u m s p p . L . * * * A v e r a g e t o t a l c o v e r and r ange ( i n b r a c k e t s ) o f s amp le s w i t h i n e a ch permanent p l o t ^ Common name can be f o u n d a t end o f A p p e n d i x 14 , P l o t 6 n o t r e c o r d e d . Lower L i m i t APPENDIX 11a A Summary o f P e l l e t Group V a r i a t i o n W i t h i n C l a s s e s - O u t s i d e P o r e s t D i s t a n c e Out o f P o r e s t - P e r p e n d i c u l a r t o Upper P o r e s t Edge P l o t I o f C l a s s ( f t ) 0 4-1 81 121 161 201 24-1 281 3 2 1 361 401 441 481 5 2 1 561 Number samples 5 1 4-6 4-2 4-7 44 4-5 4-6 4-2 43 43 46 47 47 43 45 Mean (Y) 2 . 2 7 3 .43 3.24- 3.02 2.61 2.98 3.22 2.36 2.02 2.53 2.63 2.60 2.36 2.14 2.33 C o n f i d e n c e L i m i t s (95%) 0 . 5 8 0 . 1 7 0.73 0.56 0.71 0.69 0.77 0.54 0 . 5 1 0.73 0.66 0.64 0.42 0.56 0.67 601 641 681 . 7 2 1 761 801 841 881 9 2 1 961 1001 1041 1081 1121 44 57 44 3 9 3 1 33 3 1 30 30 28 28 2 7 46 2.16 0.68 0.43 0.75 1.21 1.74 1.67 2.16 1.80 1.60 1.46 2.54 1.07 1.48 0.54 0.34 0.24 0.40 0.44 0 . 7 1 0.61 0.73 0.63 0 . 5 5 0.59 0.82 0.47 0 . 5 2 P l o t 2 Lower L i m i t o f C l a s s ( f t ) 0 41 81 121 161 201 241 281 3 2 1 361 ^401 441 4481 521 Number samples 53 43 46 47 46 45 49 40 41 43 46 44 44 45 Mean (Y) 0 . 2 5 1.81 2 . 5 9 1.70 1.74 1.24 1.41 1.05 0.66 0.33 0 . 7 2 0.61 0 . 5 9 0.87 C o n f i d e n c e L i m i t s ( 9 5 % ) 0.16 0.75 0.77 0 . 7 2 0.53 0.48 0.64 0.40 0.42 0.20 0.46 0 . 3 2 0.28 0 . 3 2 561 6601 641 681 7 2 1 761 801 841 881 44 42 40 41 45 43 43 42 1 0 5 0.89 1.40 1.42 1 . 9 3 1.58 0 . 9 3 0.56 0.98 1.08 0.40 0.60 0 . 5 2 0.61 0 . 5 7 0.36 0 . 3 2 0.48 0.28 APPENDIX 11a ( c o n t i n u e d ) A Summary o f P e l l e t Group V a r i a t i o n W i t h i n C l a s s e s - O u t s i d e F o r e s t D i s t a n c e Out o f F o r e s t - P e r p e n d i c u l a r t o Upper F o r e s t Edge P l o t 3 Lower L i m i t o f C l a s s ( f t ) 0 41 81 1 2 1 161 2 0 1 241 281 3 2 1 361 401 441 481 5 2 1 Number samples 41 3 8 3 8 3 8 3 7 3 8 40 40 3 7 3 6 3 3 3 6 3 5 3 8 Mean (Y) 0 . 6 8 0 . 8 9 1 . 6 6 2 . 0 0 1 . 2 2 1 . 4 7 0 . 8 8 1 . 0 7 1 . 1 1 1.06 I . 2 7 0 . 8 6 1.06 0.82 C o n f i d e n c e L i m i t s ( 9 5 $ ) 0 . 6 9 0 . 3 7 0 . 5 1 0 . 6 7 0 . 4 3 0 . 5 3 0 . 3 8 0.41 0 . 5 3 0 . 5 3 0 . 4 9 0 . 4 5 - 0 . 5 7 0 . 3 7 5 6 1 601 641 681 7 2 1 7 6 1 40 40 40 40 40 40 1 . 2 2 1 . 2 5 0.90 1 . 0 5 0.40 1 . 2 5 0.41 0 . 5 2 0 . 3 4 0.42 0.24 0 . 6 5 P l o t -Lower L i m i t o f C l a s s ( f t ) 0 41 81 1 2 1 161 2 0 1 Number samples 4 9 40 40 40 3 8 40 Mean (Y) 0 . 6 7 1 . 8 5 2 . 0 2 1 . 7 7 1 . 5 8 1.42 C o n f i d e n c e L i m i t s ( 9 5 $ ) 0.30 0 . 7 9 0 . 6 9 0 . 7 1 0 . 7 3 0 . 5 0 561 601 641 681 7 2 1 7 6 1 40 3 8 42 3 8 3 4 3 5 0 . 7 7 0 . 6 6 1 . 3 1 1.24 0 . 9 4 1 . 2 0 0.46 0 . 3 4 0 . 5 2 0 . 6 8 0 . 5 3 0 . 5 9 801 116 1 . 5 9 0 . 3 2 241 281 3 2 1 3 6 1 401 441 481 5 2 1 4 4 40 3 4 3 6 3 4 3 8 3 6 3 8 1 . 2 7 1 . 5 7 0 . 9 7 0 . 6 7 1 . 2 9 0 . 9 5 0 . 7 8 1.24 0 . 5 0 0 . 7 1 0 . 6 3 0 . 3 6 0 . 6 5 0.52 0 . 4 3 0 . 4 7 801 841 35 56 1.51 1.36 0.65 0.46 M 0^  APPENDIX 11a ( c o n t i n u e d ) A Summary o f P e l l e t Group V a r i a t i o n W i t h i n C l a s s e s - O u t s i d e P o r e s t D i s t a n c e Out o f P o r e s t - P e r p e n d i c u l a r t o Upper P o r e s t Edge P l o t 5 Lower L i m i t o f C l a s s ( f t ) 0 4-1 81 1 2 1 161 2 0 1 241 281 3 2 1 361 401 441 481 5 2 1 Number samples 3 0 2 1 26 2 2 2 3 2 3 2 5 2 7 2 2 2 7 2 7 26 2 3 2 7 Mean (Y) 0 . 2 0 0.90 1 . 8 8 2.18 1 . 4 3 1 . 7 4 1.68 1 . 5 6 0 . 9 5 1 . 1 5 1 . 1 1 0 . 8 8 1.04 1 . 5 2 C o n f i d e n c e L i m i t s ( 9 5 % ) 0.18 0 . 6 3 0 . 7 8 0 . 6 9 0.48 0.68 0 . 7 6 0.62 0 . 4 3 0.60 0 . 4 3 0 . 4 5 0 . 5 2 0 . 7 8 5 6 1 601 64-1 681 7 2 1 7 6 1 801 841 881 28 24 26 2 1 24 26 2 7 2 7 2 9 1 . 3 9 1 . 2 5 1 . 3 5 0 . 9 5 1 . 9 6 1 . 7 7 1.26 1 . 0 7 0.41 0 . 4 9 0 . 5 4 0 . 5 8 0 . 4 4 0 . 8 5 0.68 0.64 0 . 4 7 0 . 2 7 I I APPENDIX 11a ( c o n t i n u e d ) D i s t a n c e Out o f P o r e s t - P a r a l l e l t o Upper P o r e s t Edge P l o t 2 Lower l i m i t o f C l a s s ( f t ) 0 25 50 75 100 125 150 175 200 225 250 275 300 Mean (Y) 0.46 0.12 0.46 1.04 1.08 0.35 1.21 1.26 0.88 1.64 1.88 0.88 0.96 C o n f i d e n c e L i m i t s (95%) 0.39 0.14 0.44 0.54 0.78 0.29 0.63 0.82 0.54 0.76 0.93 0.56 0.56 325 350 375 400 425 450 475 500 525 550 575 600 625 0.88 1.04 1.12 0.76 0.58 1.27 1.20 1.65 1.25 1.22 1.56 1.04 1.12 0.50 0.64 0.64 0.44 0.37 0.66 0.78 0.95 0.45 0.76 0.74 0.49 0.58 650 675 700 725 750 775 800 825 850 875 900 925 950 .975 1.43 1.63 1.58 0.96 0.87 1.28 1.52 1.14 1.06 1.03 0.97 1.31 1^84 1.59 0.94 0.92 0.76 0.57 0.45 0.65 0.80 0.68 0.41 0.53 0.53 0.57 0.76 0.84 P l o t 4 Lower l i m i t o f C l a s s ( f t ) 0 25 50 75 100 125 150 175 200 225 250 275 300 Mean (Y) 0.41 0.50 0.86 0.95 1.76 1.10 1.76 1.67 1.86 1.38 1.30 1.76 1.29 C o n f i d e n c e L i m i t s (95%) 0.35 0.50 0.67 0.50 0.71 0.52 0.98 0.94 0.69 0.65 0.73 0.77 0.54 325 350 375 400 425 450 475 500 525 550 575 600 625 650 1.54 1.55 1.62 1.48 1.00 1.24 0.59 1.40 1.30 1.14 0.83 1.70 1.14 1.64 0.62 0.56 0.88 0.69 0.42 0.42 0.25 0.58 0.46 0.46 0.$4 0.73 0.56 0.56 I H vn Co I • APPENDIX 11a ( c o n t i n u e d ) Road Edge E f f e c t P l o t 1 Lower L i m i t s o f C l a s s ( f e e t ) Towards P o r e s t Edge 0 21 61 101 141 181 221 261 301 Number Samples 19 33 35 31 3 1 30 3 2 3 1 2 5 Mean (Y) 0.26 0 . 5 1 1.63 2.10 2.45 2.63 2.66 2.65 2.34 C o n f i d e n c e L i m i t s (95$) 0.36 0.35 0.55 0 . 5 9 0.75 0.67 0.61 0.88 0.44 Away f r o m F o r e s t Edge Number Samples 16 2 7 2 7 26 3 0 2 7 2 7 2 5 75 Mean (Y) 0 0 . 5 9 1.63 2 . 3 1 1.87 1.96 2.00 1 . 5 2 1.55 C o n f i d e n c e L i m i t s (95$) 0 0.51 0.53 0.74 0.63 0.78 0.76 0.54 0.38 P l o t 2 Loxver L i m i t s o f C l a s s ( f e e t ) Towards F o r e s t Edge 0 21 61 101 141 181 221 261 301 Number Samples 51 81 94 82 79 74 76 38 11 Mean (Y) 0.04 0 . 5 2 1.26 1.33 1.18 1 . 2 7 1 . 9 1 1.40 1.54 C o n f i d e n c e L i m i t s (95$) 0.66 0 . 2 3 0.31 0.33 0.30 0.33 0.54 0.49 1.31 Away from F o r e s t Edge Number Samples 40 57 55 3 6 31 26 24 16 8 Mean (Y) 0 0.44 1.18 1.50 1 . 1 3 1.54 2.00 1.12 0.75 C o n f i d e n c e L i m i t s (95$) 0 0.21 0.36 0.55 0 . 5 2 0 . 7 1 0.71 0.54 1 . 1 3 APPENDIX 11a (continued) Epilobium angustifolium - Outside Porest, P l o t 1 - 5 Lower Limits of Class (Percent) P l o t 1 0 6' 16 26 36 46 56 66 76 86 96 Number Samples 491:. 228 103 18 10 Mean (Y) 2:11; 2.12.. 2.18 1.96 2.06 1.70 Confidence Limits (95$) 0.18 0.22 0.28 0.34 1.25 1.63 P l o t 2 Number Samples 433 184 191 166 59 31 13 Mean (Y) 1.18 1.02 1.21 1.20 0.95 0.87 1.08 Confidence L i m i t s (95$) 0.18 0.24 0.24 0.26 0.36 0.43 0.76 P l o t 3 Number Samples 152 169 221 188 90 29 17 15 Mean (Y) 0.74 0.99 1.05 1.46 1.83 1.34 0.94 1.40 Confidence Limits (95$) 0.26 0.20 0.18 0.26 0.38 0.66 0.53 0.73 P l o t 4 Number Samples 392 346 109 18 Mean (Y) 1.04 1.53 1.11 0.50 Confidence L i m i t s (95$) 0.18 0.20 0.28 0.32 P l o t 5 Number Species 178 185 129 63 23 Mean (Y) 1.13 1.34 1.19 1.63 1.48 Confidence L i m i t s (95$) 0.23- 0.19 0.24 0.38 0.56 I H o 1 Rubus p a r v i f l o r u s P l o t 1 Number Samples Mean (Y) Confidence L i m i t s (95%) P l o t 4 Number Samples Mean (Y) Confidence Li m i t s (95%) Rubus sp.ectabills" P l o t 1 Number Samples Mean (Y) Confidence L i m i t s (95%) P l o t 4 Number Samples Mean (Y) Confidence L i m i t s (95%) APPENDIX 11a (continued) Outside Porest, P l o t 1 - 4 Lower Limits of Class (Percent) 0 6 16 26 36 46 56 796 244 98 36 20 2.17 2.23 1.67 1.78 1.05 0.14 0.28 0.40 0.65 0.48 163 219 256 170 35 22 0.57 1.16 1.56 1.52 1.43 0.50 0.18 0.23 0.24 0.29 0.65 0.33 Outside Porest, P l o t 1 - 4 Lower Limits of Class (Percent) 0 6 16 26 36 46 56 711 305 125 44 9 2.02 2.31 2.14 2.05 1.67 0.16 0.24 0.38 0.61 2.18 542 245 1.04 1.56 0.14 0.26 70 8 1.67 0.88 0.50 0.83 P l o t 1 Number Samples Mean (Y) C o n f i d e n c e L i m i t s P l o t 4 Number Samples Mean (Y) C o n f i d e n c e L i m i t s P l o t 1 Number Samples Mean (Y) C o n f i d e n c e L i m i t s ( 9 5 $ ) P l o t 2 Number Samples Mean (Y) C o n f i d e n c e L i m i t s ( 9 5 $ ) P l o t 5 Number Samples Mean (Y) C o n f i d e n c e L i m i t s ( 9 5 $ ) APPENDIX 11a ( c o n t i n u e d ) Rubus u r s i n u s - O u t s i d e F o r e s t , P l o t 1 - 4 Lower L i m i t s o f C l a s s ( P e r c e n t ) 36 46 5 6 ( 9 5 $ ) 0 6 16 26 9 5 5 1 7 9 46 16 1 . 9 5 2.84 2 . 5 7 2 . 1 2 0 . 1 2 0 . 3 5 0 . 7 9 1 . 2 3 755 89 16 5 1.18 1.66 1.56 0.60 (95$) 0.12 0.46 1 . 3 2 1.11 V a c c i n i u m spp - O u t s i d e F o r e s t , P l o t 1 - 5 b Lower L i m i t s o f C l a s s ( P e r c e n t ) 36 46 56 66 76 86 96 0 6 16 26 741 304 110 36 1.87 2.47 2.67 2 . 1 9 0.14 0.24 0.40 0.55 518 0.54 0.08 1 7 5 1.06 0.22 168 1.54 0.26 120 2.21 0.42 53 2.08 0.60 2 5 3.44 1 . 2 7 18 2.28 1.05 611 0.93 0.10 174 1.36 0.22 7 2 2.31 0 . 5 0 24 2.42 1.15 APPENDIX 11a (continued) Vaccinium spp - Outside Forest, Plot 1 - 5 (continued) Lower Limits of Class (Percent) 0 6 16 • 26 36 46 56 66 76 86 < Plot 4 Number Samples 5 2 2 262 7 2 9 Mean (Y) 0.98 1.61 1.61 1.67 Confidence Limits 0.14 0.24 0.44 1.16 (95%) Plot 5 Number Samples 378 136 60 7 Mean (Y) 1.14 1.62 1.20 2.57 Confidence Limits 0.14 0.29 0.36 2.37 (95%) APPEN Cove r ; A l l Spec i e s -0 6 16 P l o t 1 Number Samples 84 1 0 2 118 Mean (Y) 1 . 0 7 1 . 6 5 2 . 5 7 C o n f i d e n c e L i m i t s ( 9 5 % ) 0 . 3 8 0 . 3 8 0 . 3 4 P l o t 2 Number Samples 1 3 4 1 0 3 8 9 Mean (Y) 0 . 5 7 0 . 3 9 0 . 6 3 C o n f i d e n c e L i m i t s ( 9 5 % ) 0 . 2 2 0.14 0 . 2 2 P l o t 3 Number Samples 7 0 3 9 4 4 Mean (Y) 0.24 0 . 3 6 0 . 3 4 C o n f i d e n c e L i m i t s ( 9 5 % ) 0.16 0.26 0.26 P l o t 4 Numb e r:-- S amp 1 e s 3 7 24 2 1 Mean (Y) 0 . 1 1 0 . 2 1 0 . 2 9 C o n f i d e n c e L i m i t s ( 9 5 % ) 0 . 1 1 0 . 2 1 0 . 2 9 P l o t 5 Number Samples 28 3 7 6 7 Mean (Y) 0.04 1 . 0 5 1 . 1 2 C o n f i d e n c e L i m i t s ( 9 5 % ) 0.08 0 . 5 1 0 . 3 0 DIX 11a ( c o n t i n u e d ) O u t s i d e F o r e s t , P l o t 1 - 5 Lower L i m i t s o f C l a s s ( P e r c e n t ) 26 36 46 56 66 76 86 96 1 5 3 1 1 1 1 2 5 138 140 104 97 2 2 2.35 2.50 2 . 1 7 1.98 2.37 2.06 1 . 9 2 1 . 9 1 0 . 3 2 0.42 0.42 0.36 0.36 0.38 0.36 0.69 116 1 1 7 1 1 9 1 9 5 135 58 1 1 0.87 1.08 1.14 1.44 1.73 1.59 2.36 0.26 0.28 0.30 0 . 2 5 0.30 0.74 1.09 59 102 139 166 154 78 30 0 . 9 2 0.98 1.40 1.24 1.53 1.73 1.93 0 . 3 2 0.26 0.28 0.24 0.26 0.50 0.73 37 5 2 121 166 166 141 •75 2 5 0.70 0.73 1.04 1 . 2 7 1.81 1.45 1.68 0.84 0.45 0 . 3 2 0.31 0.28 0 . 3 2 0.28 0.46 0.45 9 1 1 1 7 98 86 43 14 1.54 1.04 1.30 1.60 1.79 1.57 0.34 0 . 2 2 0.26 0.34 0.59 1.02 I H cn Number Spe 0 1 P l o t 1 Number Samples 42 5 5 Mean (Y) 0 . 9 8 1.40 C o n f i d e n c e L i m i t s ( 9 5 $ ) 0 . 5 5 0.44 P l o t 2 Number Samples 9 8 44 Mean (Y) 0 . 7 1 0 . 2 5 C o n f i d e n c e L i m i t s ( 9 5 $ ) 1 0 . 3 0 0 . 2 2 P l o t 3 Number Samples 3 1 2 7 Mean (Y) 0.26 0.48 C o n f i d e n c e L i m i t s ( 9 5 $ ) 0 . 3 1 0 . 3 1 P l o t 4 Number Samples 1 5 18 Mean (Y) 0 0 . 1 7 C o n f i d e n c e L i m i t s ( 9 5 $ ) 0 0 . 2 5 P l o t 5 Number Samples 18 2 9 Mean (Y) 0 1 . 0 7 C o n f i d e n c e L i m i t s ( 9 5 $ ) 0 0.66 APPENDIX 11a ( c o n t i n u e d ) O u t s i d e F o r e s t , P l o t 1 - 5 Lower L i m i t s o f C l a s s 3 4 5 6 7 8 i e s -2 1 7 7 2 . 2 9 0 . 3 2 2 0 3 1.40 0.28 147 1 . 1 3 0.28 2 9 0.24 0.18 1 0 7 0 . 9 4 0.26 276 2.14 0.22 384 1.10 0.16 268 1.14 0.18 70 0.61 0.34 163 1.29 0.21 262 2.50 0.28 2 5 1 1.18 0.22 2 1 7 1.46 0.21 198 1.12 0.21 160 1.49 0 . 2 5 185 2.33 0 . 3 2 78 1.56 0.44 98 1 . 0 7 0.28 261 1.39 0.24 69 1.57 0.36 1 9 7 1.60 0.24 19 1 . 1 1 1 . 1 7 53 1.28 0.42 1 7 7 1 . 5 3 0 . 2 5 21 1.43 0 . 7 1 2 9 1.24 0.59 74 1.59 0.44 14 1.57 1.08 11 o . 9 i 0 . 9 2 2 3 1 . 7 8 0 . 7 0 I H i APPENDIX l i b A Summary o f P e l l e t Group V a r i a t i o n W i t h i n C l a s s e s = I n s i d e P o r e s t D i s t a n c e I n t o F o r e s t - P e r p e n d i c u l a r t o Upper P o r e s t Edge P l o t 1 Lower L i m i t o f C l a s s ( f t ) 0 41 81 121 161 201 "241 281 3 2 1 361 401 441 Number Samples 5 6 40 42 444 44 4 5 47 44 47 46 3 1 2 7 Mean (Y) 1.34 1.42 1 . 3 1 0 . 7 1 1.11 0.82 0.68 0 . 7 5 1 . 1 5 0 . 9 1 1.00 1.00 C o n f i d e n c e L i m i t s (95%) 0.42 0.54 0.48 0.28 0.34 0.34 0.32 0.30 0.36 0.30 0.51 0.53 481 5 2 1 561 601 641 681 7 2 1 761 801 841 881 9 2 1 2 7 28 28 2 7 2 7 31 2 7 28 2 9 2 7 30 2 7 0.89 0.96 1.00 0.85 1.30 0.90 1.44 1.68 1.24 1.26 0.73 0 . 9 6 0.35 0.41 0.43 0.35 0.49 0.35 0.51 0.59 0 . 4 9 0.55 0.39 0 . 2 9 961 1001 1041 1081 1121 1161 1201 1241 1281 1321 1361 1401 2 7 2 7 28 27 27 2 9 2 3 2 3 2 3 2 3 2 3 ' 2 3 1.26 1.81 1.11 1.48 1.93 1.34 1.48 1.13 0.87 0.65 0.48 0.61 0.41 0.70 0.47 0.57 0.76 0.45 0.60 0.58 0.54 0.37 0 . 2 3 0.41 1441 1481 1521 22 2 3 35 0 . 9 1 0.57 0.60 0.46 0.39 0.24 APPENDIX l i b ( c o n t i n u e d ) A Summary o f P e l l e t Group V a r i a t i o n W i t h i n C l a s s e s - I n s i d e F o r e s t D i s t a n c e I n t o F o r e s t - P e r p e n d i c u l a r t o Upper F o r e s t Edge P l o t 2 Lower L i m i t o f C l a s s ( f t ) 0 41 81 1 2 1 161 2 0 1 241 281 3 2 1 3 6 1 401 441 Number Samples 4 9 4 3 42 46 . 40 48 4 3 42 3 1 1 7 1 5 16 Mean (Y) 0 . 5 9 0 . 9 5 1 . 1 7 1 . 3 5 1 . 3 7 1 . 0 2 2.33 1 . 9 3 2 . 3 2 1.41 2 . 4 7 1.81 C o n f i d e n c e L i m i t s ( 9 5 $ ) 0 . 3 4 0 . 3 8 0 . 3 4 0.42 0.46 0 . 4 4 0 . 6 9 0 . 5 1 0 . 7 3 0.82 1 . 1 5 0 . 7 8 481 5 2 1 5 6 1 601 641 681 7 2 1 7 6 1 801 841 881 9 2 1 16 1 5 1 5 16 1 5 16 1 7 14' 16 14 1 7 14 2 . 3 7 1.40 1 . 6 7 1.06 1 . 4 7 0 . 9 4 1 . 5 9 1 . 2 1 1 . 3 1 1 . 3 6 1 . 2 9 1.14 0.64 0.81 0 . 8 7 0 . 4 9 0 . 8 5 0 . 5 7 0.80 1 . 0 0 0 . 5 7 1.18 0 . 7 0 0 . 5 4 961 1001 1041 1 5 16 41 1.20 0 . 3 8 0 . 3 9 0.74 0 . 3 2 0.26 I H cn I APPENDIX l i b ( c o n t i n u e d ) A Summary o f P e l l e t Group V a r i a t i o n W i t h i n C l a s s e s - I n s i d e P o r e s t D i s t a n c e I n t o P o r e s t - P e r p e n d i c u l a r t o Upper P o r e s t Edge P l o t 5 Lower L i m i t o f C l a s s ( f t ) 0 4-1 81 121 161 201 24-1 281 3 2 1 361 401 4-4-1 Number Samples 4-1 3 9 40 4-0 4-0 4-0 38 4-0 35 24- 20 18 Mean (Y) 2.12 2 . 0 3 2.62 1.67 1.65 1.82 1.4-7 1 . 2 5 1.4-6 1.87 1.35 1.22 C o n f i d e n c e L i m i t s ( 9 5 % ) 0.65 0 . 7 1 0.83 0.54 0.4-8 0.75 0.55 0.38 0.61 0.95 0.86 0 . 7 0 4-4-1 4-81 5 2 1 561 601 64-1 681 7 2 1 761 801 841 881 18 20 14- --J20 20 20 20 1 9 20 20 20 1 9 1.22 1.50 1.07 1.4-0 1.35 1.05 1.10 1.26 0.80 0 . 9 0 0.75 0.95 0.70 0.82 0.98 0.88 0.73 0 . 5 2 0.67 0.76 0.54 0.48 0.54 0.78 9 2 1 961 1001 104-1 1081 1121 1161 1201 20 20 20 20 1 9 18 14 3 1 1 . 5 0 1.55 1.55 1.35 1 . 3 2 1.50 1 . 2 9 1 . 2 9 0 . 9 0 0.79 0.88 0.56 0.80 0.86 0 . 5 2 0.4-6 I M CO i APPENDIX l i b (continued) A Summary of P e l l e t Group V a r i a t i o n Within Classes - Inside Forest Distance Into Forest - Perpendicular to Upper Forest Edge Pl o t 4 Lower L i m i t of Class ( f t ) 0 41 81 1 2 1 161 2 0 1 241 281 3 2 1 Number Samples 5 0 3 6 40 3 8 40 3 8 3 8 40 5 6 Mean (Y) 0.62 0 . 6 7 0 . 6 7 0 . 5 5 0 . 5 7 0 . 6 3 0 . 3 4 0 . 1 3 0.18 Confidence Limits ( 9 5 $ ) 0 . 3 7 0.41 0.42. 0 . 3 7 0.28 0 . 3 9 0.24 0 . 1 0 0.14 Plot 5 Lower L i m i t of Class ( f t ) 0 41 81 1 2 1 161 2 0 1 241 281 3 2 1 Number Samples 2 9 2 5 2 7 24 2 5 24 26 2 7 28 Mean (Y) 0 . 8 3 1.16 0 . 9 3 1 . 1 7 0.60 0 . 2 9 0 . 2 3 0 . 1 9 0 . 3 9 Confidence L i m i t s ( 9 5 $ ) 0 . 4 5 0 . 4 9 0 . 2 7 0 . 5 2 0 . 3 3 0 . 2 3 0 . 2 0 0.24 0 . 3 3 APPENDIX l i b (continued) Gaultheria shallon - Inside Porest, P l o t 1 - 3 0 6 16 26 36 46 Pl o t 1 Number Samples 1142 16 28 2 7 19 Mean (Y) 1.04 1.06 1 . 2 9 1 . 6 3 1.26 Confidence Limits ( 9 5 % ) 0.08 0 . 5 1 0 . 5 1 0.62 0 . 5 0 P l o t 2 Number samples 5 3 5 3 1 3 3 3 9 41 1 0 Mean (Y) 1 . 1 2 1 , 9 7 1 . 8 5 2.41 2 . 2 9 1 . 9 0 Confidence Limit ( 9 5 % ) 0 . 1 2 0 . 7 5 0 . 6 3 0 . 6 5 0 . 5 9 0 . 8 5 P l o t 5 Number samples 5 3 6 5 9 61 6 6 3 6 3 1 Mean (Y) 1 . 2 1 1 . 6 6 1 . 9 8 2 . 2 1 3.06 2 . 1 0 Confidence Limits ( 9 5 % ) ' 0.14 0.42 0 . 5 2 0.48 0 . 8 9 0 . 7 5 V a c c i n i u m ~ 0 6 P l o t 1 Number Samples 558 174 Mean (Y) 0.87 1 . 1 5 C o n f i d e n c e L i m i t s ( 9 5 % ) 0 . 1 0 0.22 P l o t 2 Number Samples 1 1 5 77 Mean (Y) 1.10 0.84 C o n f i d e n c e L i m i t s ( 9 5 % ) 0.30 0.26 P l o t 3 Number Samples 164 106 Mean (Y) 0.96 1.43 C o n f i d e n c e L i m i t s (95%) 0.22 0.38 P l o t 4 Number Samples 278 67 Mean (Y) 0.44 0.60 C o n f i d e n c e L i m i t s (95%) 0.12 0.26 P l o t 5 Number Samples 55 76 Mean (Y) 0.65 0 . 7 1 C o n f i d e n c e L i m i t s ( 9 5 % ) 0.24 0.24 APPENDIX l i b ( c o n t i n u e d ) I n s i d e P o r e s t , P l o t 1 - 5 Lower L i m i t s o f C l a s s ( P e r c e n t ) 16 26 36 46 56 66 76 86 96 144 1.12 0.20 118 1.14 0.22 98 1 . 3 5 0.28 61 1.36 0.34 3 2 1.16 0.45 26 1.54 0.45 21 1.76 0.86 1 1 0 1.28 0 . 3 2 9 9 1.64 0.36 9 0 1 . 4 3 0 . 3 2 63 1.46 0.38 64 1.58 0.36 38 1 . 5 5 0 . 5 5 2 5 1 . 4 4 0 . 5 1 8 2.00 1.57 136 1.51 0.28 131 1.95 0.35 1 0 9 1 . 8 7 0 . 3 4 55 1.56 0.46 47 1.40 0.46 2 7 1.48 0 . 5 1 14 1 . 7 9 o . 9 i 20 1 1 0 . 3 5 0.82 0 . 3 1 0.78 5 7 3 2 10 0 . 3 5 0 . 9 4 0.80 0.16 0 . 4 3 0 . 7 5 Number S p e c i e s 0 1 P l o t 1 Numb e r -• S amp l e s 148 385 Mean (Y) 0.84 0.95 C o n f i d e n c e L i m i t s (95$) 0.18 0.12 P l o t 2, Number Samples 12 103 Mean (Y) 1.00 0.93 C o n f i d e n c e L i m i t s (95$) 1.21 0.24 P l o t 3 Number Samples 22 2 1 7 Mean (Y) 0.59 1.16 C o n f i d e n c e L i m i t s (95$) 0.40 0.20 P l o t 4 Number Samples 58 168 Mean (Y) 0.26 0.58 C o n f i d e n c e L i m i t s (95$) 0.18 0.18 P l o t 5 Number Samples 5 93 Mean (Y) 0.20 0.82 C o n f i d e n c e L i m i t s (95$) 0.56 0.22 APPENDIX l i b ( c o n t i n u e d ) - I n s i d e F o r e s t , P l o t 1 - 5 Lower L i m i t s o f C l a s s 2 3 4 339 202 107 1.09 1.06 1 .59 0.14 0.16 0 . 3 2 338 198 26 1 . 2 5 1.81 0 . 9 2 0.16 0 . 2 5 0 .47 431 106 13 1.62 1 . 9 2 1 .77 0.18 0.41 1 .16 104 36 10 0.56 0.19 0 0.22 0.16 0 88 44 0.58 0.45 0.18 0.24 5 6 3 7 14 1.22 1.50 0 . 3 9 1.06 12 1.08 0 . 7 9 APPENDIX l i b ( c o n t i n u e d ) P l o t 1 C o v e r , A l l S p e c i e s - I n s i d e P o r e s t , P l o t 1 - 5 Lower L i m i t s o f C l a s s ( P e r c e n t ) 0 6 16 26 36 4-6 56 66 76 86 96 Number Samples 4-46 1 1 9 88 86 82 82 96 94 88 42 9 Mean (Y) 0.79 0 . 9 0 1.08 1.12 0 . 9 9 1.39 1.31 1.34 1.40 1.98 1.00 C o n f i d e n c e L i m i t s (95%) 0.10 0.22 0.24 0 . 3 0 0.24 0.34 0.28 0.28 0.28 0 . 5 1 0.62 P l o t 2 Number Samples 56 69 42 50 62 5 2 82 1 1 7 93 57 9 Mean (Y) 1.02 0.96 1.02 0.60 1.18 1.10 1.41 1.74 1.87 1-53 2.33 C o n f i d e n c e L i m i t s (95%) 0.38 0.38 0.40 0.26 0.40 0.38 0 . 3 2 0 . 3 2 0.36 0.36 1.90 P l o t 3 Number Samples 126 62 57 76 90 89 80 98 66 34 11 Mean (Y) 0.88 1 . 1 9 1 . 2 3 1 . 1 3 1.43 1.74 1»89 1.90 1.97 2.26 2.00 C o n f i d e n c e L i m i t s (95%) 0.22 0.42 0.42 0 . 3 0 0.38 0.42 0.44 0.42 0.46 0.61 1.20 P l o t 4 Number Samples 183 65 39 34 1 9 1 9 1 7 Mean (Y) 0.45 0.34 0.77 0.59 0.58 0.47 0.18 C o n f i d e n c e L i m i t s (95%) 0.14 0.22 0.48 0.39 0.55 0.38 N.A.* P l o t 5 Number Samples 2 5 39 3 2 2 5 18 11 11 3 1 38 Mean (Y) 0 . 5 2 0.95 0.53 1.12 1.22 1 . 0 9 1.00 0 . 2 3 0 . 0 3 C o n f i d e n c e L i m i t s (95%) 0.33 0.38 0.20 0.45 0.55 0.62 0.74 0.18 0.06 *Not a v a i l a b l e -174-D i s t r i b u t i o n o f P e l l e t L o c a t i o n Mean(: P l o t No. and D i s t a n c e from f o r e s t edge ( f t ) 1 , O u t s i d e P o r e s t (OP) 0 - 3 5 0 2 . 8 3 1 , (OP); 3 5 0 - 1 0 0 0 1 . 6 9 1 , (OP); 0 - 1 0 0 0 2.09 1 , I n s i d e F o r e s t ( I F ) 0 - 3 5 0 1.03 1, I F ; 3 5 0 - 1 2 0 0 1.08 I , I F : 0 - 1 2 0 0 1.06 2 , OF: 0 - 3 5 0 1 . 3 5 2 , OF: 3 5 0 - 1 2 0 0 0.99 2 , OF; 0 - 1 2 0 0 . 1 . 1 3 2 , I F ; 0 - 3 5 0 1.40 2 , I F ; 3 5 0 - 1 0 0 0 1.30 2 , I F ; 0 - 1 0 0 0 1 . 3 4 3, OF; 0 - 3 5 0 1 . 2 1 3, OF: 3 5 0 - 9 0 0 1 . 1 3 3, OF; 0 - 9 0 0 1.16 3, I F ; 0 - 3 5 0 1 . 7 9 3, I P ; 3 5 0 - 1 2 0 0 1 . 2 9 3, I F ; 0 - 1 2 0 0 1 . 5 4 4, OF; 0 - 3 5 0 1 . 4 5 4, OF; 3 5 0-900 1.08 4, OF; 0 - 9 0 0 1 . 2 3 APPENDIX 12 Groups on F i v e E c o t o n e S t u d y A r e a s 2 2 % V a r i a n c e ( s ) s_ D i s t r i b u t i o n ( C h i - S q u a r e s ^ x- N e g a t i v e B i n o m i a l P o i s s o n 4.96 1.75 5.84* 86.62 3 . 3 2 1.96 31.58 328.46 4 . 1 9 2.00 35.63 542.39 1.71 1.66 7.76 7 6 . 0 9 1.46 1.35 2 . 5 2 * 44.48 1.55 1.46 1 . 8 5 * * * 100.48 3.95 2 . 9 2 12.45 389.30 2.12 2.14 9.64 246.78 2.86 2.53 1 1.47 666.86 2.82 2.01 10.82 101.42 2.12 1.63 6.30 6 1 . 7 1 2.43 1.81 12.74 1 5 7 . 8 2 2.64 2.18 2.18** 161.42 2.22 1.96 1 5.28 269.85 2.40 2 . 0 7 2 5.14 340.89 3.71 2.07 7 . 2 5 137.82 2.38 1.84 6.80 126.70 3 . 1 5 2.04 1 1.08 3 2 2 . 6 1 3.93 2 . 7 1 8.73 2 2 7 . 5 6 2.57 2.38 5.87 283.82 3.12 2.54 6 . 2 9 507.05 - 1 7 5 -APPENDIX 1 2 ( c o n t i n u e d ) D i s t r i b u t i o n o f P e l l e t Groups on P i v e E c o t o n e S t u d y A r e a s — 2 2 s L o c a t i o n Mean(x) V a r i a n c e ( s ) s_ D i s t r i b u t i o n (Ch i - Squa re s ^ P l o t No . and x N e g a t i v e D i s t a n c e f r om B i n o m i a l P o i s s o n f o r e s t edge ( f t )  4 , I P ; 0 - 3 5 0 0 . 5 0 1 . 0 9 2 . 1 8 0 . 6 6 * * 8 9 . 7 6 5 , OP; 0 - 3 5 0 1 . 3 0 2 . 2 6 1 . 7 4 2 . 1 9 * 3 8 . 5 6 5 , OF; 3 5 0 - 9 0 0 1 . 2 1 2 . 0 3 1 . 6 8 3 . 7 4 7 3 . 0 1 5 , OP: o - 9 o o 1.24- 2 . 1 2 1 . 7 1 5 . 3 4 1 1 1 . 2 1 5 , I F ; 0 - 3 5 0 0 . 6 5 0 . 8 7 1 .34 - 3 . 8 6 18 .08 N u l l h y p o t h e s i s : There i s no d i f f e r e n c e be tween t h e o b s e r v e d and e x p e c t e d d i s t r i b u t i o n s * S i g n i f i c a n t a t P = 5 0 * * S i g n i f i c a n t a t P = 2 0 * * * S i g n i f i c a n t a t P = 1 0 None s i g n i f i c a n t a t P = 0 5 - 1 7 6 -APPENDIX 13 Linear Regression of Deer Use From Near the Forest Edge Pl o t Distance from Regression M u l t i p l e Variance Signif-forest edge C o e f f i c i e n t C o r r e l - Ratio icance regression be- ation Co- (F) gin ( f t ) e f f i c i e n t I , IF (Inside Forest) 40 -.00001 .003 .013 N.S. I , OF (Outside Forest) 40 -.00181 .278 96.285 * * 2, IF 120 -.00095 .186 19 . 7 5 1 * * 2, OF 81 -.00060 . 0 9 5 8,978 * * 3 , IP 82 - . 0 0 0 5 9 .122 10.653 * * 3 , OF 120 -.00004 .006 . 0 2 7 N.S. 4, IF 1 -.00159 . 1 7 3 11.604 * * 4, OF 80 -.00058 . 0 7 9 4,885 * 5 , IF 40 -.00365 .381 34 . 1 1 9 * * 5 , OF 1 2 5 -.00072 . 1 1 5 6.697 * * N.S. - Not s i g n i f i c a n t at P0.05 * - S i g n i f i c a n t at P0.05 ** - S i g n i f i c a n t at P0.01 -177-APPENDIX 14 V e g e t a t i o n O c c u r r e n c e on E c o t o n e P l o t s 1 t o 5 ( P e r c e n t C o v e r ) P l o t S p e c i e s * Mean S t a n d a r d Range No. P r e s e n t D e v i a t i o n 1 Rp 6.3 9 . 7 0 - 60 ( O u t s i d e Rs 7.2 9.4 0 - 50 P o r e s t ) Ru 3.4 6.5 0 - 40 E a 1 2 . 1 11.3 0 - 60 V 6.8 8.5 0 - 45 A t 2.3 6.9 0 - 7 0 Pm 1.4 4.0 0 - 30 Ss 2.6 6.1 0 - 7 0 Gr 0.9 3.8 0 - 35 P a 1.1 6.0 0 - 85 A f 0.4 2.3 0 - 30 Lb 2.0 5.3 0 - 55 A l l 4 7 . 1 2 7 . 4 0 - 100 1 Nf 0.4 2.5 0 - 30 ( I n s i d e Rs 0.1 1.4 0 - 3 0 F o r e s t ) Rn 0.2 1.5 0 - 35 Rg 0.2 1.6 0 ..= 2 5 V 1 9.0 20.2 0 - 9 0 A t 2.4 6 . 7 0 - 50 Pm 0.4 2.3 0 - 30 Mn 2.0 6 . 7 0 - 60 Ss 0 . 7 3.4 0 - 40 Cc 3 . 7 7.6 0 - 40 D 0.01 0.4 0 - 1 5 Pa 0.4 3.4 0 - 50 A f 0.2 2.0 0 - 2 5 Gs 2.1 7.8 0 - 60 A l l 31.2 2 9 . 4 0 - 100 2 Ead 0.2 1.0 0 - 1 5 ( O u t s i d e Rs 0.08 1.1 0 - 2 5 F o r e s t ) E a 16.3 1 5 . 5 0 - 70 V 14.2 1 5 . 5 0 - 80 Ss 0.2 1.9 0 - 3 0 Cc 5.3 9.3 0 - 45 A f 0.2 1.6 0 - 2 5 Gs 0.4 2 . 7 0 - 35 T t 0.5 15.2 0 - 50 S 5.4 9.4 0 - 55 A l l 4 0 . 7 2 5 . 0 0 - 90 -178-APPENDIX 14 (continued) Vegetation Occurrence on Ecotone P l o t s 1 to 5 (Percent Cover) P l o t Species Mean Standard Range No. Present Deviation 2 Mf 0 . 7 4 . 7 0 - 7 0 (Inside V 3 3 . 7 2 3 . 1 0 - 1 0 0 Forest) At 0 . 7 4 . 3 0 - 40 Ss 0.8 4 . 3 0 - 4 5 Cc 6.8 9 . 1 0 - 4 5 Gs 7 . 2 14 .0 0 - 80 A l l 5 0 . 7 28 .2 0 - 1 0 0 3 Ead 1 . 3 4 . 4 0 - 3 5 (Outside Ea 2 3 . 5 1 5 . 7 0 - 90 Forest) V 6 .0 8 . 5 0 - 5 0 Mn 1 . 0 3 . 7 0 - 3 0 Ss 1 . 3 4 . 2 0 - 3 0 Cc 1 . 5 4 . 0 0 - 2 5 Lb 2 . 4 5 . 2 0 - 40 Gs 4 . 3 7.8 0 - 5 0 Tt 0 . 2 1 . 5 0 - 3 0 S 7 . 2 8 . 9 0 - 40 A l l 49 .9 23.6 0 - 0 0 3 V 28 .0 2 0 . 3 0 - 9 0 (Inside Cc 4 . 0 7 . 0 0 - 40 Porest) Gs 9.6 1 5 . 5 0 - 7 0 A l l 42 . 7 27.6 0 - 1 0 0 4 Rp 1 9 . 1 12.6 0 - 80 (Outside Rs 5.8 7 . 7 0 - 5 0 Forest) Ru 1 . 9 5 . 1 0 - 5 0 Ea 8 . 7 8 .2 0 - 3 5 V 6 .2 7 . 7 0 - 40 Pm 4 . 7 7 . 3 0 - 3 5 Ss 3 . 7 6 . 5 0 - 3 5 Pa 1 . 1 5 . 0 0 - 40 Af 0 . 3 1.8 0 - 3 5 Lb 4 . 5 6 . 0 0 - 30 Gs 0 . 3 2 . 0 0 - 2 5 Tt 0 . 3 1 . 7 0 - 2 5 A l l 60 .2 2 3 . 1 0 - 1 0 0 4 V 5 . 5 7 . 9 0 - 4 5 (Inside At 2 . 1 8 .1 0 - 2 0 Forest Pm 6 .2 10.8 0 - 7 0 Ss 1 . 5 4 . 9 0 - 5 0 Lb 0 . 2 1 . 4 0 - 2 0 A l l 15.8 1 7 . 9 ... 0 - 9 0 - 1 7 9 -APPENDIX 14 (continued) Vegetation Occurrence on Ecotone P l o t s 1 to 5 (Percent Cover) P l o t Species Mean Standard Range No. Present Deviation 5 Rs 0.1 1 . 5 0 - 30 (Outside Ea 14.6 11.6 0 - 50 Porest) V 6.1 8.0 0 - 5 0 Mn 2.9 7 . 2 0 - 40 At 1 . 7 4.6 0 - 2 5 Lb 2.1 4.8 0 - 30 S 8.3 8.8 0 - 40 A l l 40 .2 19.3 0 - 80 5 V 16.1 10.9 0 - 45 (Inside Mn 4.3 8.8 0 - 55 Forest) Gs 16.8 25.6 0 - 90 A l l 40.0 2 9.1 0 - 100 *Species represented by- code. Code Botanical Name Common Name Af Athyrium f i l i x - f e m i n a (L.) Roth. Lady fern Am Anaphalis margaritacea Beuth Pearly eve r l a s t i n g At Achlys t r i p h y l l a (D.C.) V a n i l l a l e a f Cc Cornus canadensis L. Bunch berry D Dryopteris sppl Adans Wood-fern Eg Epilobium angustifolium L Fireweed Ead Epilobium adenocaulou Haus Northern willow-herb Gr Gramlnac 3pp. Gs Gaultheria shallon Pursh. S a l a l Lb L i nnaea borealxs L. Twin-flower Mf Menziesia ferruginea Smith. False azalea Mn Mahonia"~neryosa (Pursh.) Nutt. Oregon grape Pa P t e r i s "aquilina L Bracken Pm Polystichum muniturn ( K a u l f . ) P r e s l Sword fern R Rosa spp. Rose Rp Rubus p a r v i f l o r u s Nutt Thimble berry Rs Rubus s p e c t a b i l i s Pursh. Salmonberry Ru Rubus ursinus Cliam. + Sch. T r a i l i n g blackberry S Senecio Spp L. Groundsel Sr Sambucus racemosa L. Red Elderberry Ss S t r u t h i o p t e r i s spicant L. Scop. Deer fern Tt T i a r e l l a t r i f o l i a t a L Foam flower V Vaccinium spp. L Huckleberry A l l Total of a l l species - 1 8 0 -APBENDIX 1 5 C o r r e l a t i o n o f T o t a l V e g e t a t i v e C o v e r w i t h Number S p e c i e s f o r E c o t o n e P l o t s 1 t o 2 P l o t C o r r e l a t i o n C o e f f i c i e n t o f C o e f f i c i e n t ( r ) d e t e r m i n a t i o n ( 1, I n s i d e F o r e s t 0 . 6 1 0 . 3 7 l l O u t s i d e F o r e s t 0 . 6 9 0 . 4 8 2 , I n s i d e F o r e s t 0 . 4 1 0 . 1 7 2 , O u t s i d e F o r e s t 0 . 5 1 0 . 2 6 3 , I n s i d e F o r e s t = 0 . 4 6 0 . 2 1 3 , O u t s i d e F o r e s t 0 . 4 3 0 . 1 8 4 , I n s i d e F o r e s t 0 . 6 1 0 . 3 7 4 , O u t s i d e F o r e s t 0 . 5 6 0 . 3 1 5 , I n s i d e F o r e s t 0 . 6 9 0 . 4 8 5 , O u t s i d e F o r e s t 0 . 5 2 0 . 2 7 -181-APPENDIX 16 Sampling Accuracy of Mature P l o t s * P l o t Avg. No. Standard E r r o r Confidence No. P e l l e t Groups of Mean Limits ( 9 5 $ ) per Sample 1 0.60 0.13 0 . 2 7 2 1 . 5 7 0.20 0.41 3 0.03 0.03 0.07 4 0.30 0.12 0.24 5 0.07 0.04 0 . 0 9 6 0.33 0.14 0.28 7 0.07 0.04 0 . 0 9 8 0.73 0.16 0.34 9 0.21 0.26 0.53 10 0.31 0.056 0.11 11 1 . 5 0 0.21 0.42 12 1.28 0.23 0.68 1 3 0.36 0 . 1 3 0 . 2 7 14 0.63 0.11 0.34 1 5 0 . 1 7 0.07 0.14 16 0.60 0.20 0.41 1 7 0 . 1 7 0 . 0 3 0.14 18 0 . 2 3 0.12 0 . 2 5 1 9 0.80 0 . 1 9 0.38 20 0.60 0.18 0.37 *Each p l o t consists of 30 samples. -182-APPENDIX 1 7 Sample Of Species Composition And Cover On Mature Porest Plots Plot Class* Species** Plot Class Species No. No. 1 A ' 2 A V Mn B B C V C D Gs D Gs E E 50(0-80)*** 41(0-80) 3 A Pm At 4 A Cc Pm Mn Af B Ss B V At C V C Ss D D E E 31(0-80) 42(0 -70) 5 A Cc Mn 6 A Ss B Gs B C V C V D D E E 26(1-60) 11(0-50) 7 A Pm At Ss 8 A V Pm B V B Ss C C D D E E 18(0-50) 13(0-40) 9 A Mf 1 0 A At B Gs B c c D V D E E V 45(1-80) 52(1-90) -183-APPENDIX 1 7 ( c o n t i n u e d ) Sample Of S p e c i e s C o m p a s i t i o n And C o v e r on Ma tu re P o r e s t P l o t s P l o t No . 11 1 3 1 5 1 7 1 9 C l a s s A B D E 34(10-60) A B C D E 45(20-80) A B C D E 35(1-80) A B C D E 26(0-80) A B C D E 76(50-100) S p e c i e s V Ss V P a Gs Pm V P a A t Rp Pm Gs Pm Pa Mn A t Gs V V Mn Gs P l o t -No . 1 2 14 16 18 2 0 C l a s s A B C D E r 3 2 ( 0-80) A B C D E 4 9 ( 2 0 - 8 ) A B C D E 1 7 ( 0 - 7 0 ) A B C D E 3 5 ( 0 - 7 0 ) A B C D E 1 5 ( 0-60) S p e c i e s A t Ss Cc V V Rp A t Gs Pm Cc A t Ss V Gs V Mn Pm Ss A t V - 1 8 4 -APPENDIX 1 7 ( c o n t i n u e d ) * P e r c e n t c o v e r by e a ch c l a s s : A, 1 - 5 ; B, 6 - 1 0 ; C, 1 1 - 2 0 ; D, 2 1 - 5 0 ; E, 5 1 + * * B o t a n i c a l name"'- r e p r e s e n t e d by each s p e c i e s s y m b o l : Symbol B o t a n i c a l Name 1 A f A t h y r i u m f i l i x - f e m i n a ( L . ) R o t h . 2 A t A c h l y s t r i p h y l l a (D .C . ) 5 Cc Co rnu s c a n a d e n s i s L . 4 Gs G a u l t h e r i a s h a l l o n P u r s h 5 Mn Mahon i a n e r v o s a ( P u r s h . ) N u t t . 6 P a P t e r i s a q u i l i n a L . 7 Pm P o l y s t i c h u m muniturn ( K a u l f . ) P r e s i . 8 Rp Rubus p a r v i f l o r u s N u t t . 9 Ss. S t r u t h i o p t e r i s s p i c a n t ( L . ) Weis * * * A v e r a g e t o t a l c o v e r and r ange ( i n b r a c k e t s ) o f s amp le s w i t h i n e a ch matu re f o r e s t p l o t Common name c a n be f o u n d a t t h e end o f A p p e n d i x 14 . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0101863/manifest

Comment

Related Items