UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Using a computer soil data file in the development of statistical techniques for the evaluation of soil… Kloosterman, Bruce 1971

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1971_A1 K46.pdf [ 27.73MB ]
Metadata
JSON: 831-1.0101808.json
JSON-LD: 831-1.0101808-ld.json
RDF/XML (Pretty): 831-1.0101808-rdf.xml
RDF/JSON: 831-1.0101808-rdf.json
Turtle: 831-1.0101808-turtle.txt
N-Triples: 831-1.0101808-rdf-ntriples.txt
Original Record: 831-1.0101808-source.json
Full Text
831-1.0101808-fulltext.txt
Citation
831-1.0101808.ris

Full Text

USING A COMPUTER SOIL DATA FILE IN THE DEVELOPMENT OF STATISTICAL TECHNIQUES FOR THE EVALUATION OF SOIL SUITABILITY FOR LAND USE by BRUCE KLOOSTERMAN B.S.A., University of B r i t i s h Columbia, 1968 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of S o i l Science We accept t h i s thesis as conforming to the required standard. The University of B r i t i s h Columbia August, 1971 - i i -In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purpose may be granted by the Head of my Department or by his representatives. It i s understood that copying or duplication of this thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of S o i l Science University of B r i t i s h Columbia Vancouver 8, B.C. Date - i i i -ABSTRACT Pedology, l i k e most other sciences, i s facing a data explosion i n which i t i s becoming increasingly d i f f i c u l t to organize, summarize and interpret large quantities of data. Coupled with this i s an unprecedented demand for s o i l s information for consideration in resource management and environmental considerations. Since decision making in these areas increasingly has to be j u s t i f i e d by economic c r i t e r i a , the need for e v a l u a t i o n of s o i l s information for land use considerations in economic terms i s paramount. In this study, the B r i t i s h Columbia S o i l Survey Data F i l e was used. The f i l e contains only routine s o i l survey data. It was improved and modified to correct problems a r i s i n g from e a r l i e r experiences. The i d e n t i f i c a t i o n , organization and coding techniques used in the data f i l e are presented. In view of the int e r e s t i n establishing national data bank systems a modified h i e r a r c h i c a l organizational and i d e n t i f i c a t i o n system i s proposed, which should be equally applicable at regional, p r o v i n c i a l and national l e v e l s . The Data F i l e was also used to explore by s t a t i s t i c a l techniques the in t e r - r e l a t i o n s h i p s between s o i l properties, the f e a s i b i l i t y of predicting the values - i v -f o r dependent v a r i a b l e s by m u l t i p l e r e g r e s s i o n equations and to study the modal concept of s o i l which i s b a s i c to s o i l c l a s s i f i c a t i o n and subsequent s t a t i s t i c a l a n a l y s i s . Numerical taxonomy techniques were used to determine the f e a s i b i l i t y of using o b j e c t i v e s t a t i s t i c a l techniques i n the development of a model by which s o i l s could be rated, f o r a s p e c i f i c land use, as w e l l as, determine on the b a s i s of c o r r e l a t i o n and r e g r e s s i o n a n a l y s i s an estimate of h y p o t h e t i c a l treatments and costs that would make a given s o i l behave more l i k e an i d e a l s o i l f o r the use i n question. The study showed t h a t , using cash cropping and road bed c o n s t r u c t i o n as two c o n t r a s t i n g s o i l uses as examples, the d e r i v a t i o n of cost estimates f o r s o i l manipulation i s f e a s i b l e . However, the d e r i v a t i o n of the i d e a l s o i l (model) i s c r i t i c a l . -v-TABLE OF CONTENTS Page Introduction 1 Chapter I - The B r i t i s h Columbia S o i l Survey Data F i l e 6 Introduction 6 Framework 7 Support programs 12 Discussion 15 Conclusion 24 Chapter II - A Computer S o i l Data F i l e - An Aid i n S o i l Science 26 Introduction 26 Materials and Methods 2 8 Results and Discussion 30 Conclusion 6 3 Chapter III - Grouping of Fraser Valley Soils by Numerical Methods 64 Introduction 64 Materials and Methods 67 Results and Discussion 75 Conclusions 88 Chapter IV - A Method of S t a t i s t i c a l l y Interpreting S o i l Data for A g r i c u l t u r a l and Engineering Land Use 89 Introduction 89 - v i -The Model 91 Material and Methods 104 Results and Discussion 119 Conclusions 126 Summary and Conclusions 127 Literature Cited 130 Introduction 130 Chapter I 131 Chapter II 131 Chapter III 132 Chapter IV 134 Appendices 136 Appendix I - S o i l Survey Data F i l e Descriptions and Listings and Descriptions for Support Programs 13 8 Appendix II - Description, Listings and Sample Card Deck Sequences for Programs Used i n Data Extraction 18 8 Appendix III - Description, L i s t i n g s and Sample Card Deck Sequences for the Determination of Euclidean Distance, S o i l Treatments and Costs 207 Appendix IV - Sample Treatment and Cost Computer Output for the Monroe and Page Series 232 Appendix V - O r i g i n a l and Treated S o i l Data for the A g r i c u l t u r a l Use of 35 Fraser Valley Soils and for the Engineering Use of 2 6 Fraser Valley Soils 241 - V l l -Appendix VI - Or i g i n a l Data Sources by Three Methods of Extraction for Fraser Valley Soils 267 Appendix VII - Cluster Analysis Output for 35 Fraser Valley S o i l s 289 Appendix VIII - H i e r a r c h i c a l Grouping Analysis Output for 35 Fraser Valley S o i l s 299 Appendix IX - Description of F i l e Changes Made S p e c i f i c a l l y for This Study 327 - ^ v i i i -LIST OF TABLES Table Page Chapter I 1 Card column designations of variable f i e l d s 10 Chapter II 1 Number of observations by horizon for each Great Group 2 8 2 Coding of descriptive variables 29 3 Means and standard deviations of variables f o r major Humo F e r r i c Podzol horizons 42 4 Means and standard deviations of variables for major Humic Gleysol horizons 43 5 Means and standard deviations of variables for major Gleysol horizons 45 6 Equations for predicting s o i l drainage (D) 47 7 Equations for predicting cation exchange capacity (CEC) 49 8 Correlation matrix for Humo Fe r r i c Podzol A horizons 51 9 Correlation matrix f o r Humo F e r r i c Podzol B horizons 53 10 Correlation matrix fpr Humo Fe r r i c Podzol C horizons 55 11 Correlation matrix for Humic Gleysol A horizons 57 -IX-12 Correlation matrix for Humic Gleysol B horizons 59 13 Correlation matrix for Humic Gleysol C horizons 61 Chapter III 1 Variables and coding used for numerical methods 6 8 2 S o i l series name and CSSC c l a s s i f i c a t i o n for s o i l s studied 76 Chapter IV 1 C l a s s i f i c a t i o n and series name of s o i l s employed i n the study for row cropping s u i t a b i l i t y 105 2 Variables and coding used in the study 108 3 Variable treatment cost estimates for a g r i c u l t u r a l land use 110 4 Variable values for the a g r i c u l t u r a l model 111 5 C l a s s i f i c a t i o n and series name of s o i l s used for road bed construction s u i t a b i l i t y 112 6 Variables and model values used for road bed construction c r i t e r i a 113 7 Variable treatment cost estimates for engineering land use 114 8 Euclidean distance of each s o i l from the row cropping model 120 9 Estimated costs to improve s o i l s for row cropping 121 - X -10 Euclidean distance and estimated costs fo r road bed construction 122 11 Typical computer output for the Cresent Series 123 - x i -LIST OF FIGURES Figure Page Chapter I 1 National topographic series map of B r i t i s h Columbia 2 2 Chapter II Plot of the.frequency d i s t r i b u t i o n for slope of the Humo Fe r r i c Podzol, Humic Gleysol and Gleysol Great Groups 3 3 Plot of the frequency d i s t r i b u t i o n f o r drainage of the Humo F e r r i c Podzol, Humic Gleysol and Gleysol Great Groups 34 Plot of the frequency d i s t r i b u t i o n for color hue of major Humo F e r r i c Podzol horizons 3 5 Plot of the frequency d i s t r i b u t i o n for percent sand of major Humo F e r r i c Podzol horizons 36 Plot of the frequency d i s t r i b u t i o n for percent organic matter of the Humo Fer r i c Podzol, Humic Gleysol and Gleysol Great Groups A horizons 37 Plot of the frequency d i s t r i b u t i o n for color hue of the Humo Fe r r i c Podzol, Humic Gleysol and Gleysol Great Groups A horizons 38 Plot of the frequency d i s t r i b u t i o n s for color chroma of Humo Fe r r i c Podzol, Humic Gleysol and Gleysol Great Group B horizons 39 Plot of the frequency d i s t r i b u t i o n s for pH of Humo Fe r r i c Podzol, Humic Gleysol and Gleysol Great Group B horizons 40 - x i i -Chapter I I I Dendrogram of s e l e c t e d average data by c l u s t e r a n a l y s i s f o r 35 F r a s e r V a l l e y s o i l s 79 Dendrogram of average s u r f a c e s l i c e data by c l u s t e r a n a l y s i s f o r 35 F r a s e r V a l l e y s o i l s 80 Dendrogram of average p r o f i l e data by c l u s t e r a n a l y s i s f o r 35 F r a s e r V a l l e y s o i l s 81 Dendrogram of s e l e c t e d average data by h i e r a r c h i c a l grouping a n a l y s i s f o r 35 F r a s e r V a l l e y s o i l s 85 Dendrogram of average s u r f a c e s l i c e data by h i e r a r c h i c a l grouping a n a l y s i s f o r 35 F r a s e r V a l l e y s o i l s 86 Dendrogram of average p r o f i l e data by h i e r a r c h i c a l grouping a n a l y s i s f o r 35 Fr a s e r V a l l e y s o i l s 87 Chapter IV 1 Diagrammatic r e p r e s e n t a t i o n of the r e l a t i o n s h i p between a h y p o t h e t i c a l model and a t y p i c a l s o i l 9 3 2 Geometric r e p r e s e n t a t i o n of the c o r r e l a t i o n c o e f f i c i e n t ' r ' 94 3 R e l a t i o n s h i p of the v a r i a b l e v e c t o r s (V n-V.) to the f a c t o r a x i s ( F n , F„) 95 l b 1 I 4 R e l a t i o n s h i p of s o i l s t o the two f a c t o r s (F^, F^) i n 2-dimensional space 9 8 5 Distance r e l a t i o n s h i p i n 2-dimensions between the model and a s o i l 99 ACKNOWLEDGEMENTS This study would not have been possible without the assistance of certain people. Appreciation i s sincerely expressed to Dr. L.M. Lavkulich, Department of S o i l Science, for his guidance and di r e c t i o n i n every phase of thi s study and to Dr. C.A. Rowles for his constant encouragement. Appreciation i s also expressed to Dr. A. Kozak, Faculty of Forestry and Mr. Doug Williams who gave expert advice in the s t a t i s t i c a l sections of the study; to Miss Beth Loughran fo r assistance in the figures for this thesis and to Mrs. Retha Gerstmar who typed the f i n a l draft of the thesis. Sincere appreciation i s also expressed to my wife Judith for her patience and encouragement during my graduate career. The f i n a n c i a l assistance for the Leonard S. Klinck Fellowship (Dr. H.R. MacMillan and the H.R.. MacMillan Family Fund) i s also g r a t e f u l l y acknowledged. Appreciation i s also expressed to friends and colleagues who assisted i n various aspects of the study, e s p e c i a l l y persons who contributed to the establishment of the B.C. S o i l Survey Data f i l e . USING A COMPUTER SOIL DATA FILE IN THE DEVELOPMENT OF STATISTICAL TECHNIQUES FOR THE EVALUATION OF SOIL SUITABILITY FOR LAND USE Introduction S o i l i s a natural body that covers the land portions of the earth i n a continuous fashion. It i s a product of both destructive and synthetic forces of nature. As a consequence the properties of s o i l are extremely variable and thus are variably suited for man's use. Man i s dependent on s o i l s and i n a very r e a l sense his very standard of l i v i n g i s often determined by the kind of s o i l he has at his disposal. S o i l c l a s s i f i c a t i o n i s an attempt to break down the continuum of s o i l into three dimensional individuals that can be recognized consistently by -2-pedologists. As a consequence, a s o i l i n d i v i d u a l has a unique combination of i n t e r n a l and external c h a r a c t e r i s t i c s with defineable ranges of expression (Kellogg, 1949). S o i l survey interpretations on the other hand are attempts by pedologists to determine the s u i t a b i l i t y of these defined s o i l individuals for a s p e c i f i c use. These interpretations are generally considered to be predictions of s o i l behaviour under stated conditions (Kellogg, 1961). They are not recommendations for s p e c i f i c tracts of land ( i . e . s i t e s p e c i f i c ) but general guidelines for s o i l use. U n t i l quite recently, most interpretations have been largely q u a l i t a t i v e i n nature, that i s , giving a good, f a i r or poor rating for a s p e c i f i c purpose (Allen et a l . , 1963; Montgomery, 1966). To most users, these ratings mean very l i t t l e apart from a signal whether or not they should proceed with land use plans. There i s usually l i t t l e i n d i c a t i o n why plans should not be carried out or the consequence of carrying out a s p e c i f i c plan on unsuitable s o i l s . The r e a l i z a t i o n of the i n t r i c a t e complexity of relationships between s o i l variables and i t s influence on land use i s a r e l a t i v e l y new area of study. This i s evidenced by the increasing volumes of l i t e r a t u r e and data that are being published annually. As a consequence, interest i s increasing i n the establishment of computerized -3-s o i l data banks. Coupled with this i s the r e a l i z a t i o n that a large number of s o i l properties are i n f l u e n t i a l in deter-mining s u i t a b i l i t y for land use. Since the human mind comprehends by comparison, extrapolating comprehension into the multi-dimensional case has become an exercise beyond the c a p a b i l i t y of the mind of man. Since relationships between a large number of variables can be determined by s t a t i s t i c a l methods, inter e s t i n c l a s s i f i c a t i o n by s t a t i s t i c a l methods has increased (Bidwell and Hole, 1963; Russell and Moore, 1967; Rayner, 1966). The complexity of making s o i l survey interpretations has increased as well. Where in e a r l i e r periods ratings such as simple good, f a i r or poor were adequate, currently more information for the user i s required. This i s evidenced by the Land Capability C l a s s i f i c a t i o n (Klingebiel and Montgomery, 1961) where ratings are given on the basis of l i m i t a t i o n s f o r use. Although th i s i s a marked improvement over e a r l i e r ratings, the user i s generally not s a t i s f i e d with using a less than i d e a l s o i l in an unaltered state. He i s more concerned about inputs and costs that w i l l have to be incurred to make the s o i l more suitable for use. V/ith current increases in development costs for p r a c t i c a l l y a l l uses, there i s an increasing need for quantitative ratings as well as estimates of inputs and costs that w i l l have to be incurred. - t r -i l l t h i s study an attempt was made to use an established s o i l survey data f i l e (John et a l . , 1969) in establishing a s t a t i s t i c a l methodology by which s o i l s could be rated, inputs to upgrade a s o i l could be deter-mined and costs could be defined. Chapter I attempts to describe the basic framework and coding of the B r i t i s h Columbia S o i l Survey Data F i l e , including the major support programs used and to i d e n t i f y some of the problems encountered. An alternative to the current s e r i a l numbering scheme i s proposed i n l i g h t of the need to integrate with a national data storage scheme and other data banks being prepared by related resource people. Since s o i l survey interpretations are a direc t r e f l e c t i o n of the underlying s o i l c l a s s i f i c a t i o n scheme, Chapter II explores the usefulness of a s o i l data bank in studying currently held concepts, d e f i n i t i o n s and practices in s o i l c l a s s i f i c a t i o n . More s p e c i f i c a l l y the study included consideration of: ( i ) the concept of the modal p r o f i l e ; ( i i ) d e f i n i t i o n s of three Great Groups; ( i i i ) the derivation by s t a t i s t i c a l analysis of equations that estimate the expression of dependent variables; and (iv) common int e r - r e l a t i o n s h i p s between s o i l variables. -5-Many of the s t a t i s t i c a l procedures common to numerical taxonomy have d i r e c t application i n s t a t i s t i c a l s o i l data interpretations. Consequently Chapter III i s devoted to comparing two methods of grouping and three methods of data presentation of the s o i l p r o f i l e i n r e l a t i o n to the Canadian S o i l C l a s s i f i c a t i o n System (CSSC, 1970). Chapter IV describes the methodology that evolved through experimentation by which s o i l s were rated using Factor Analysis and Euclidean distance. Inputs were estimated by c o r r e l a t i o n and regression analysis and hypothetical costs were calculated. Two applications of s o i l data interpretation were used to i l l u s t r a t e the c h a r a c t e r i s t i c s of the model: ( i ) s u i t a b i l i t y for cash cropping and ( i i ) s u i t a b i l i t y for road bed construction. The Appendices contain a n c i l l a r y information including more detailed program write ups, program l i s t i n g s , and data which may be useful to researchers wishing to explore the r e s u l t s presented further. -6-Chapter I THE BRITISH COLUMBIA SOIL SURVEY DATA FILE Introduction There has been an increasing awareness among s o i l s c i e n t i s t s for more e f f i c i e n t methods of handling s o i l data. Not only has the volume of s o i l s information increased, but data i s being u t i l i z e d i n an increasing number of ways. Bidwell and Hole (1963) have used d i g i t i z e d s o i l data for research i n numerical taxonomy applications. Norris (1970) has pointed out some of the methods of multi-variate analysis that can and have been used i n s o i l s research. Protz e_t al_. (1968 ) used large quantities of data by electronic data handling to study s o i l series and p r o f i l e property l i m i t s . The U.S. S o i l Conservation Service (Swanson, 1970) and the Canadian S o i l Survey Committee (CSSC, 1970) are attempting to establish national s o i l data banks. This i s a consequence of the increased demand for rapid access to s o i l s information as new uses for s o i l s information are discovered. - 7 -John et a l . (19 69) reported on a computerized s o i l data f i l e which had been established for B r i t i s h Columbia S o i l Survey information. This system has undergone a number of changes a r i s i n g out of further experimentation and manipulation. The purpose of this report i s to describe the basic framework and. coding of the B r i t i s h Columbia system, including the major support programs used, and i d e n t i f y some of the problems encountered. The intent i s also to propose an alternative to the current s e r i a l numbering system i n l i g h t of the need to integrate with a national data storage scheme. Framework The present system has been designed so that i t s structure r e f l e c t s both the geographical and natural d i v i s i o n of the data. Geographically, s o i l p r o f i l e s are segmented according to zone, subzone, series and p r o f i l e s . The natural data has been divided into three parts; (a) description of the series as a whole, (b) physical data and (c); chemical data of a representative p r o f i l e . The geographical, horizon and type of information i s contained in, a nine d i g i t s e r i a l number which uniquely i d e n t i f i e s each card i n the f i l e (see Table 1). Three d i s t i n c t card types ex i s t to describe the natural data namely: (a) the unit card which contains the CSSC c l a s s i f i c a t i o n plus -8-descriptive and climatic data, (b) the physical card and (c) the chemical card. Physical and chemical information i s recorded for each horizon. Column designation for each card type i s i l l u s t r a t e d in Table 1. One of the problems of the s o i l s c i e n t i s t and computer programmer intent on d i g i t i z i n g s o i l s information i s that a l l data pertaining to s o i l s i s not quantitative. To be compatible with the computer, descriptive and semi-quantitative information have to be numerically represented. Grigal and Arneman (1969) i d e n t i f i e d four general types of data prevalent i n s o i l s information. Each of these w i l l be i d e n t i f i e d , described and i l l u s t r a t e d with examples from the B.C. s o i l f i l e . a. Dichotomous properties. These are properties or descriptions which have one of two alternative values or states such as present or absent, high or low, etc. Data of this nature requires only one card column and may be coded 0 or 1 or any two other contrasting values. Although many properties may be handled i n this manner, generally more detailed information i s desired and this data would be handled as an alternative data type. In the present data system the coding of composite samples and repeated data are handled as dichotomous data. -9-Eg. Composite sample 0 - sample i s not composite R - sample i s a composite b. Continuous properties. These are properties in which any numerical value within a range i s possible. No conversions or coding are necessary, therefore, the variable i s assigned the appropriate number of card columns which i s dependent on the largest expected value. Decimal points are generally not included since these can be inserted by format statements when the f i l e i s being used. A l l c l i m a t i c and chemical data i s treated without modification in the f i l e . Eg. pH _ , - two columns used so that pH can be recorded to l/10th of a unit. c. Multistate unranked data. These are variables in which the information i s such that each state i s not numerically related to the next. Definite breaks occur between states and no tangible or simple r e l a t i o n s h i p can be determined. In this instance the information has to be coded numerically. The most sat i s f a c t o r y method i s to arrange the ' n' states in the most l o g i c a l manner and assign a code ranging from 1 to 'n'. Data of this nature cannot be treated s t a t i s t i c a l l y . Parent -10-Table 1. Card column d e s i g n a t i o n s of v a r i a b l e f i e l d s F i e l d Card Column D e s c r i p t i o n S1-S7 1-9 S e r i a l Number F i e l d s *U1 11-15 CSSC C l a s s i f i c a t i o n U2-U4 16-20 Parent M a t e r i a l , Slope and Drainage U5 21-32 Acreage of S o i l and Complexes U6-U7 33-40 Maximum and Minimum A l t i t u d e U8-U12 41-57 C l i m a t i c Data **P1 11-16 Horizon Depth P2 17-2 3 Horizon D e s c r i p t i o n P3-P8 24-38 Texture, C o l o r , S t r u c t u r e , M o t t l e s , Roots and Boundary P9-P11 39-41 Agency, Composite and Repeat Samples ***C1 11-16 pH (1.1, Water S a t u r a t i o n ) , and pH i n C a C ^ C2-C4 17-26 Organic matter, N and C/N Rat i o C5-C6 27-38 Phosphate, Sulphur C7 39-54 Exchangeable Calcium, Magnesium, Sodium and Potassium C8-C9 55-61 Ca t i o n Exchange Cap a c i t y and Base S a t u r a t i o n C10-C13 65-76 Iron, Aluminum, Copper, and Z i n c * U n i t Card ** P h y s i c a l Card '** Chemical Card -11-material, horizon descriptions, textural class and structure are coded as multistate unranked data. Eg. Parent Material Code Lateral accretion 01 V e r t i c a l accretion 02 Deltaic deposits 0 3 * • Colluvium 3 6 d. Multistate ranked. These are properties i n which the various states occur i n a sequential range, but each state i s independent of the next. This applies to descriptive data that i s observed by various degrees of expression. Handling q u a l i t a t i v e data i n th i s manner allows for s t a t i s t i c a l treatment. Slope, drainage, color, mottles, roots and boundary expression between horizons are handled i n this way. Eg. Simple Slope Code No. Depressional to l e v e l 1 Very gently sloping 2 Extremely sloping 8 -12-Support Programs Data manipulation i s one of the most laborious tasks encountered i n working with data stored on computer f i l e s or tapes. A number of programs have been written to handle data in various ways. The following i s a b r i e f description of the .various programs that have been prepared. They w i l l be discussed in the order that they would be used i n a hypothetical run that would u t i l i z e most of the programs. The mechanics of compiling and executing the programs are beyond the scope of this paper. a. FSAVE This i s a public l i b r a r y program available at the University of B r i t i s h Columbia Computing Centre that w i l l e ither restore a f i l e from tape to an active disk f i l e or save a f i l e on tape. A large active disk i s an expensive way to store information for an i n d e f i n i t e period. Since the active disk i s a semi-permanent feature of computer hardware, tapes increase data mobility. FSAVE i s primarily used to restore the s o i l survey data f i l e from tape to disk, which generally i s the f i r s t step to any subsequent computer operation. -13-b. UPDATE This program i s used f o r f i l e maintenance and can be used to i n s e r t , delete or change any card i n the system. The program i s c o n t r o l l e d by a set of command statements followed by a deck of cards t h a t c o n s t i t u t e f i l e changes. The e d i t i n g i s done on a copy of the o r i g i n a l f i l e , so that i f operations are not pr o p e r l y executed the o r i g i n a l remains i n t a c t . I f , however, the run i s s u c c e s s f u l , a copy of the r e v i s e d f i l e can be stored on tape by FSAVE. c. SOILCD This subroutine f a c i l i t a t e s the e x t r a c t i o n of data from a s c r a t c h f i l e (again a copy of the o r i g i n a l ) . A c a l l from a main program t o SOILCD w i l l ; read the next card, generate the zone number, determine the card type, check f o r missing data and i f no data e x i s t s a f l a g i s i n s e r t e d . The subroutine a l s o s t o r e s a l l v a r i a b l e s i n t o l a b e l l e d common blo c k s . Checks are a l s o made to determine i f changes have occurred i n zone, subzone, s e r i e s , p r o f i l e and h o r i z o n . d . MNPROG Together wi t h subroutine SOILCD, t h i s program i s used to extract a data set f o r f u r t h e r a n a l y s i s f o r each s o i l s e r i e s on any or a l l of the data i n the f i l e and any or a l l v a r i a b l e s d e s i r e d , and w r i t e s t h i s set i n c l u d i n g an i d e n t i f i c a t i o n number i n another f i l e . These two programs -14-constitute an extremely powerful and f l e x i b l e package and can perform the following: 1. Extractions: i . Extract data by any area, i i . Extract data at any l e v e l i n the Canadian S o i l C l a s s i f i c a t i o n Scheme, i i i . .Extract data by any one, or a l l , or combination of horizons, i v . Extract any combination of data from the unit, physical or chemical cards. 2. Manipulations: i . Any value from any horizon, i i . Average value for a l l or part of a p r o f i l e , i i i . Find the maximum or minimum value for any variable within a p r o f i l e , i v . Do any combination of extractions and manipulations as desired. Although the current version of MMPROG extracts only complete data sets for further analysis, by s l i g h t l y a l t e r i n g the program incomplete sets can be generated. e . SLIST This program l i s t s the data f i l e by variable name and leaves a l l missing data as blank. The operation -15-i s executed i n two sets, one including the s e r i a l number plus unit and physical card variables, the second the s e r i a l number with the chemical card. Displaying the contents of the data f i l e in this manner f a c i l i t a t e s the editing of the f i l e . f . NUMLIN This program converts the o r i g i n a l l i n e number, which as a rule i s numbered consecutively from 1 to n, to that of the nine d i g i t s e r i a l number with a decimal point af t e r the sixth d i g i t . The conversion of the l i n e number takes advantage of the dire c t access features of UPDATE in that a card can be located d i r e c t l y instead of searching through sequentially u n t i l the correct card i s found. This feature can y i e l d a considerable saving in time while e d i t i n g the f i l e . Discussion The B.C. S o i l Survey data f i l e represents one method of handling s o i l data by el e c t r o n i c data processing techniques.: Consequently, i t is not without inherent weaknesses which reduce i t s usefulness i n various applications. a . Missing and unavailable data: The information collected for inclusion into the f i l e represents the e f f o r t s of the B.C. S o i l Survey unit -16-over the past 10-15 years. Since the amount of information collected varies over time and with the d e t a i l of the survey ( e a r l i e r reports may not include variables l a t e r reported or data sets may be incomplete because of objectives of the survey), analysis involving variables included only i n the most recent reports and/or detailed studies were used and are, therefore, limited to areas so surveyed. Although a s u f f i c i e n t number of observations can be found for work at a very general l e v e l of c l a s s i f i c a t i o n , the number of observations rapi d l y diminish as analysis i s attempted at the Subgroup or lower levels of c l a s s i f i c a t i o n . In t h i s respect a national scheme would be highly desirable i n order that one may study s t a t i s t i c a l l y as an example the Ah horizons of Dark Brown Chernozems. b. Coding of q u a l i t a t i v e and semi-quantitative information: As was noted previously, a l l descriptive information had to be coded numerically for input into the data f i l e . Although the coding of some of this data could be coded i n a sequential manner ( i . e . the ranked data) other data bears no numerical r e l a t i o n s h i p between stages. The following i s a discussion of some of the problem data including possible "cures". ; -17-1. Parent Material: Since parent material constitutes one of the f i v e factors of s o i l formation, i t would be a worthwhile exercise to s t a t i s t i c a l l y study the relationships between parent material and the expression of the various s o i l c h a r a c t e r i s t i c s . At present, no di r e c t comparison can be made since no numerical r e l a t i o n s h i p exists between the various kinds of parent materials. If on the other hand, parent material could be expressed by mineralogical composition, in t e r r e l a t i o n s h i p s could be examined. Unfortunately, mineralogical composition of parent material has not been quantifized to any extent. 2. Texture: The common method of expressing texture to date on routine s o i l surveys i s by giving the textural c l a s s i f i c a t i o n such as sandy clay loam, fine sand, etc. Although, for description this convention serves very well, the percentage sand, s i l t and clay would be of much greater usefulness in a. computerized f i l e . -18-3. Structure: Structure i s another property that i s rather d i f f i c u l t to handle for s t a t i s t i c a l a pplication. Since d i f f e r e n t s t r u c t u r a l configurations a f f e c t other s o i l properties in various ways, no simple solution presents i t s e l f . Although a f a i r l y useful compromise has been made in other studies by expressing structure only on the basis of the average •; size of the s t r u c t u r a l unit as described i n the CSSC c l a s s i f i c a t i o n , some very basic relationships between structure and other s o i l features are assumed to be i n s i g n i f i c a n t . Another possible alternative might be to express s o i l structure on the basis of porosity. This too presents certain d i f f i c u l t i e s . An awareness of these problems, however, w i l l , help to prevent serious misinterpretations . when s t a t i s t i c a l analysis which includes structure i s carried out. c Geographical references: Any s o i l series in the present system can only be defined as e x i s t i n g i n a p a r t i c u l a r subzone of the province. At present no f a c i l i t y exists for giving the exact location ! -19-of the p i t from which the sample was taken. I t would be highly desirable to have another system such as the National Topographical System gri d reference. This problem i s presently being pursued and a new method for geographical location w i l l be included i n the f i l e . ' d. The s e r i a l number: The s e r i a l numbering system, as i t presently exi s t s , serves to i d e n t i f y each l i n e or a card in the data f i l e uniquely. Although the system has been made to work for the B r i t i s h Columbia s i t u a t i o n i t does have certain l i m i t a t i o n s of geographical size as well as f l e x i b i l i t y . Since the s e r i a l numbering system of the B.C. S o i l Survey data f i l e does constitute some serious problems, and the Canadian S o i l Survey Committee resolved to set up a national s o i l data bank, i t i s attempted here to outline a numbering scheme that would be equally applicable at the p r o v i n c i a l and national l e v e l s . It i s apparent that d i r e c t access features are much more important at the regional or l o c a l l e v e l than nationally, since any f i l e changes or editing would be done l o c a l l y . I t i s also apparent that any attempt to i d e n t i f y each p r o f i l e through horizons to the card type uniquely at a national l e v e l would be an exercise exceeding the c a p a b i l i t y of even the most sophisticated computing system. Since at -20-present the vast m a j o r i t y of f a c i l i t i e s a v a i l a b l e to p e d o l o g i s t s i n Canada i s the IBM 360 s e r i e s (Information Processing Society of Canada, 1969), i t was intended to develop the scheme with t h i s p a r t i c u l a r f a c i l i t y i n mind. Although the software systems vary ( i . e . U n i v e r s i t y of B r i t i s h Columbia and U n i v e r s i t y of A l b e r t a operate under the Michigan'Terminal System (MTS) and most other i n s t i t u t i o n s use the IBM Operating System (OS)), there i s no reason to suspect that t h i s proposal could not be used i n the m a j o r i t y of cases. should be of a h i e r a r c h i c a l nature composed of at l e a s t two l e v e l s . a. Level One: The s e r i a l number would occupy the l e a d i n g eight columns of each card. The l e v e l one f i l e would c o n t a i n one card f o r each s o i l p r o f i l e i n the area of concern (be i t B.C. or Canada as a whole). This card would contain the f o l l o w i n g i n f o r m a t i o n : Card C o l . Information F i e l d I t i s f e l t that a s o i l f i l e numbering system 1 - 6 A unique s e r i e s no. (max=999999) 7-8 P r o f i l e no. (max = 99) 8-12 Region number -21-13-20 Regional series no. 21-35 Geographical coordinates of the p r o f i l e ( i . e . longitude and l a t i t u d e references). 36-80 Physical descriptions that would be useful at a general l e v e l ( i . e . for quick reference e.g. c l a s s i f i c a t i o n , acreage, etc. ) b. Level two: This l e v e l i n the system would be applicable at the regional l e v e l . Each region would be an area defined by N.T.S. coordinates and would be named accordingly. For example, most of Southwestern B r i t i s h Columbia could be named EFGH92 (see Fig. 1). The size of this area would largely depend on the t o t a l possible number of s o i l series that would be defined i n the foreseeable future and should be less than 999. A region incorporating the Fraser Valley i n B r i t i s h Columbia could possibly be smaller than a region i n Saskatchewan. Each region would have a unique f i l e named i n a s i m i l a r manner to 130- 129' VdS' \2T 126" 125- 124 123 121' 120° 119' 117- 116' -23-SW B.C. being c a l l e d EFGH92 and could be accessed by l e v e l 1. A l l series i d e n t i f i c a t i o n numbers would be unique within a region, but not necessarily between regions. Some convention would have to be worked out for series that cross regional boundaries. Each card for a p r o f i l e within a region would contain the following information in the f i r s t eight columns: Card Col. Information F i e l d 1-3 Series number (max = 999) 4-5 P r o f i l e number (max = 99) 6-8 Horizon and card type The horizon-card type combination i s a compromise, since to stay within eight columns (best for d i r e c t access c a p a b i l i t y i n the IBM 360 series) and to use one column for either horizon or card type ( i . e . max = 9) i s too r e s t r i c t i v e since more than nine horizons can exist i n a p r o f i l e and conceptually the same would be -24-true for card type. The coding of columns 6-8 would be as follows: Hor 1 = 000 Type 1 - 001 Hor 2 = 050 Type 2 = 002 • Hor 3 = 100 Type 3 = 003 • Hor 19 = 950 Type 49 = 049 To obtain the correct code for the horizon and type combination the, i n d i v i d u a l codes are simply added. This system, although tentative, would constitute something that i s valuable and useful both at regional and broader l e v e l s . Conclusion The B r i t i s h Columbia S o i l Survey Data F i l e provides a unique opportunity to study data i n ways that previously has not been possible because of the r e l a t i v e i n a c c e s s i b i l i t y of routine s o i l .data. Although the present system i s not without problems, the r e v i s i o n of i t s -25-n u m b e r i n g s y s t e m t o t h a t o f t h e h i e r a r c h i c a l s c h e m e a s o u t l i n e d w o u l d r e s u l t i n a d a t a b a n k t h a t c o u l d b e u s e d t o i n t e r a c t a t r e g i o n a l , p r o v i n c i a l a n d n a t i o n a l l e v e l s . I t s t o t a l p o t e n t i a l , h o w e v e r , c a n n o t b e r e a l i z e d w i t h o u t t h e d e v e l o p m e n t o f a n a t i o n a l s o i l d a t a s y s t e m o f w h i c h i t c a n b e a p a r t . - 2 6 -Chapter II A COMPUTER SOIL DATA FILE -AN AID IN SOIL SCIENCE Introduction In some respects the advance of s o i l science has been hampered by the i n a b i l i t y to adequately confirm some of the ideas, concepts, and theories that comprise the science. Although attempts are continuously being made to revise and improve standing concepts by s c i e n t i f i c i nvestigation, research and experimentation, i t has been d i f f i c u l t to determine i f these concepts apply generally. Since the p r a c t i c a l application of s o i l science has been expressed i n the application of s o i l c l a s s i f i c a t i o n through interpretive work, i t has been equally d i f f i c u l t to determine i f concepts, c r i t e r i a and d e f i n i t i o n s have been applied i n a uniform manner. As the application of s o i l science becomes increasingly important i n resource -27-development and environmental applications, the reliance on underlying p r i n c i p l e s increases. The study of s o i l p r i n c i p l e s and concepts r e l i e s to a large extent on the a b i l i t y of the pedologist to analyze, summarize, correlate, and interpret large quantities of data. This has been made feasi b l e by the development of electronic data handling devices. To be usefu l , however, the raw data has to be organized and converted into a form accessible for use by a computer. Some attempts at organizing s o i l data banks have been made (John et a l . , 1969; Swanson, 1970). The purpose of thi s study was to investigate the usefulness of a s o i l data bank i n helping to study concepts, d e f i n i t i o n s and practices currently used in pedology. More s p e c i f i c a l l y the study included: ( i ) a study of the concept of the modal p r o f i l e , ( i i ) confirmation of d e f i n i t i o n s of the Podzolic and Gleysolic Orders at the Great Group Level, ( i i i ) derivation by s t a t i s t i c a l analysis, equations for the estimation of s o i l drainage and cation exchange capacity, and (iv) a study of the common in t e r - r e l a t i o n s h i p s between s o i l variables. In these sections examples of s t a t i s t i c a l manipulations are given. It must be emphasized that many of the cor r e l a t i o n s , frequency d i s t r i b u t i o n s and regression equations must be interpreted with caution. This i s a r e s u l t of missing and incomplete data as well as the assumptions inherent i n the methodology. -28-Materials and Methods The B r i t i s h Columbia S o i l Survey Data f i l e was used as the basic data source for the investigations (John e_t al_. , 1969). For a study of thi s nature i t was desirable to l i m i t geographical and clim a t i c attributes as well as the number of s o i l Orders. Thus, data was extracted from the f i l e by major (A, B, and C) horizons for Humo Ferr i c Podzols, Humic Gleysols and Gleysols found i n the Lower Fraser Valley of B r i t i s h Columbia. Since missing data subsets were included in the study, for the purposes of i l l u s t r a t i o n in Table 1, only the approximate number of observations are given, although the exact number of observations between variable pairs was known f o r each analysis. Table 1. Number of observations by horizon for each Great Group Great Group Approximate No. of Observations A B C Humo Fe r r i c Podzols 50 200 90 Humic Gleysols 60 30 120 Gleysols 25 15 110 -29-Since not a l l the variables used were quantitative i n nature yet a l l variables were required for s t a t i s t i c a l analysis, the descriptive data was assigned a progressive numerical code to numerically define their position within the range of the variable. Table 2 i l l u s t r a t e s the variables that were coded and also the manner of coding. The chemical variables; pH (1:1 water:soil), organic matter, nitrogen, carbon nitrogen r a t i o , available phosphorus, calcium, magnesium, sodium, potassium, t o t a l exchange capacity, and base saturation were used unmodified. Methods of analysis used are described by Peech et a l . (1947). Table 2. Coding of descriptive variables Variable Range Codes Complex Slope Level to extremely sloping 1-8 Drainage Rapid to very poorly 1—7 Hue 10R to 5G 1-8 Value 1 to 9 1-9 Chroma 0 to 9 0-9 Mottle (abundance) Few to many 1-3 Mottle (size) Fine to coarse 1-3 Mottle (contrast) Faint to prominent 1-3 Structural s i z e " Single grain to very coarse 0-99 columns Texture5'1" Percent sand, s i l t and clay 0-10 0 "Structure was coded according to the average size of the s t r u c t u r a l unit described i n the CSSC C l a s s i f i c a t i o n (1970). "•'Texture was determined according to the average of the textural class (CSSC, 1970). -30-The following s t a t i s t i c a l analyses were performed on the data sets outlined. i . Frequency d i s t r i b u t i o n s for each variable. Examples of these are given i n Figures 1-8. i i . Means and standard deviations by each horizon within a Great Group (Tables 3-5). i i i . Forward Stepwise Regression Analysis was done using each variable in turn as the dependent variable but only drainage and cation exchange capacity w i l l be reported (Tables 6-7). i v . Although c o r r e l a t i o n matrices were determined by standard s t a t i s t i c a l programs available at the University of B r i t i s h Columbia Computing Centre for a l l three Great Groups only tables for a l l horizons of Humo F e r r i c Podzols and Humic Gleysols are given (Tables 8-13). Results and Discussion a. Modal Concept The Great Group i n the Canadian S o i l C l a s s i f i c a t i o n Scheme i s defined as a taxonomic group of s o i l s having certain morphological features in common that r e f l e c t a si m i l a r pedogenic environment (NSSC, 1965). Since the -31-d e f i n i t i o n of Great Group represents in e f f e c t a modal expression of the concept, one would expect to find that s o i l parameters representing the morphological and covarying properties that define this category of the c l a s s i f i c a t i o n system, would be expressed by respective modes and variations from that mode. More s p e c i f i c a l l y i n the population of s o i l s that are defined by a Great Group, one would expect a d i s t r i b u t i o n that would approach the normal (Cline, 1949). Generally speaking, the physical properties of the two Gleysolic Great Groups, with the exception of texture and structure (which are not diagnostic at this l e v e l of c l a s s i f i c a t i o n ) , did trend toward a normal d i s t r i b u t i o n . Even though the number of observations considered does not equal the entire population of s o i l s defined by this Great Group and that the s o i l s used did not represent a random sample of the population, the normality concept does seem to hold. For the Humo Fe r r i c Podzols, only color c r i t e r i a (Figures 3, 6, 7) seem to trend toward a normal d i s t r i b u t i o n . This may be a re s u l t of the d i f f i c u l t y encountered by pedologists i n accurately defining the Podzolic Order. As an example, in contrast to the Gleysolic Order, the d i s t r i b u t i o n for drainage for the Humo Fe r r i c Podzols (Figure 2) i s bimodal expressing -32-peaks at well and imperfect drainage, respectively. However, the d e f i n i t i o n includes the entire range from well to imperfectly drained s o i l s . Figure 1 i l l u s t r a t e s that complex slope also tends to be bimodal. Percent sand i n a l l three Great Groups presented an unexpected phenomena in that observations clustered into r e l a t i v e l y low sand content (approximately 20%) and r e l a t i v e l y high sand content (75%). Figure 4 i s given as an example. This may be a r e f l e c t i o n of the parent material from which the s o i l developed. On the other hand s i l t and clay d i s t r i b u t i o n s tended to be skewed or multi-modal. As might be expected, chemical properties (Figure 5) which by and large are derivatives, i n part, of parent material and are generally not included i n defining higher levels of c l a s s i f i c a t i o n tended to be skewed to the l e f t or did not show any s i g n i f i c a n t expression. An exception was pH (Figure 8) which did approach a normal d i s t r i b u t i o n in a l l three Great Groups. Unfortunately, extractable sesquioxides were not available in the s o i l data f i l e . Considering the l e v e l of c l a s s i f i c a t i o n , a high degree of normality e x i s t s . Study of a greater number of s o i l s at lower levels of c l a s s i f i c a t i o n would possibly also indicate this trend. It should be emphasized that the examples of d i s t r i b u t i o n s were not chosen as i l l u s t r a t i v e of c l a s s i f i c a t i o n c r i t e r i o n but rather of using a s o i l data bank to study normality concepts. -33-Humo-Ferric Podzo 1 Humic Gleysol — • Gleysol 70} ' SLOPE CODE Figure 1. P l o t of the frequency d i s t r i b u t i o n f o r slope' of the Humo F e r r i c Podzol, Humic G l e y s o l and Gleysol Great Groups : . Humo-Ferric Podzol -34-Humic Gleysol DRAINAGE CODE F i g u r e 2. P l o t o f t h e f r e q u e n c y d i s t r i b u t i o n f o r d r a i n a g e o f t h e A Horizons B Horizons C Horizons 2 3 4 5 6 7 HUE CODE Figure 3. Plot of the frequency d i s t r i b u t i o n for color hue of major Humo F e r r i c Podzol horizons 7 0 6 0 5 0 A 4 0 - 3 6 - A Horizons — B Horizons * C Horizons 0 - 2 0 2 0 - 4 0 4 0 - 6 0 6 0 - 8 0 8 0 - 1 0 0 PERCENT SAND Figure 4. Plot of the frequency d i s t r i b u t i o n for.percent sand of major Humo Fe r r i c Podzol horizons — Humo--Ferric Podzols ' Humic Gleysols — ' ' — Gleysols Humo-Ferric Podzoh Humic Gleysols Gleysols 60-O 2 3 4 5 6 V A L U E Figure 6. Plot of the frequency d i s t r i b u t i o n for color value of Humo Fe r r i c Podzol, Humic Gleysol and Gleysol Great Groups A horizons - 3 9 -Humic Gleysols Gleysols CHROMA Figure 7. Plot of the frequency d i s t r i b u t i o n s for color chroma of Humo Fe r r i c Podzol, Humic Gleysol and Gleysol Great Groun R h n r i z o n s -40-r-r-.r- Humo-Ferric Podzqls Humic Gleysols " Gleysols pH F i g u r e 8. P l o t ' ; o f t h e f r e q u e n c y d i s t r i b u t i o n s f o r pH o f Humo. F e r r i c P o d z o l , H u m i c G l e y s o l a n d G l e y s o l G r e a t G r o u p B h o r i z o n s -41-b. D e f i n i t i o n of the Great Group The c r i t e r i a that define the Humo Fe r r i c Podzols at the Order and Great Group levels seemed to be r e f l e c t e d quite well by the study of means and standard deviation (Table 3, 4, 5). The means showed that on the average well drained s o i l s had, hues reddest i n the B horizon, over the C values greater than 3, acid i n reaction (pH 5.7), and organic matter i n the B horizon less than 10 percent (4% O.M.). Although these s o i l s are on the average well drained, mottling is common in about one t h i r d of the s o i l s studied. It i s also int e r e s t i n g to note that under conditions of pedogenesis for Podzols i n the Fraser Valley, s i l i c a t e clay on the average does not seem to move appreciably, as percent clay decreases with increasing depth. The exchangeable cations, calcium, magnesium, sodium and potassium were present in r e l a t i v e l y large amounts i n the C horizon compared to the B which indicate leaching of these elements from the horizons above. The study r e f l e c t s the d e f i n i t i o n s of the Humic Gleysols at the Order and Great Group l e v e l s . Table 4 indicates that Gleysols are generally formed on t e r r a i n with less than two percent slopes and would suggest the depressional location of these s o i l s . The s o i l s on the average have poor drainage and extensive mottling. The color c r i t e r i a presented i n the Canadian Scheme (CSSC, 1970) are well expressed. With hues yellower than 10YR -42-Table 3, Means and standard deviations of variables for major Humo Ferric Podzol horizons A Horizons B Horizons C Horizons Variable Mean S.D. Me an S.D. Mean S.D. Slope 4.0 1.5 4.3 1.4 4. 2 1.3 Drainage 2 . 8 1.1 " 2.3 0 . 9 2.4 0.9 Hue 4.7 0.9 4.8 1.0 5.7 . 1.0 Value 4.1 1.0 4.0 0 . 8 4.9 Q.8 Chroma 1.9 0,9 3.8 1.1 2 . 3 1 -7 Mottle abundance 1.4 0.5 1.7 0.7 2 . 0 0.8 Mottle size 1.6 0 . 5 •1.5 0.5 2.0 0.6 Mottle contrast 1.6 0.7 1.7 •0.7 2.1 0 . 8 Roots 4.1 1.3 - 3 . 9 1. 3 1. 8 0.9 Structure 59. 8 67.5 80.9 73.7 48.7 114. 6 %.Sand 49. 8 23.1 48.0 25.5 73. 2 26.5 % S i l t 34.5 18.0 37.4 2.0.9 14. 8 13.2 % Clay 15. 7 8.4 14. 6 b .5 12'. 0 17..6 pH 5.1 0.6 5.7 • ;o. 4 5>9 0.4 Organic matter 7.2 9.5 4.1 5. 3' 1. 3 1..4 Nitrogen 0 . 2 0.2 0.1 0.1 0.0 0.4 C/N r a t i o 20.6 8.2 18.9 6.0 15.1 7.4 Available Phosphorus 25.5 35.8 34.9 51.2 37. 3 27.3 Calcium 2.9 2 . 6 2.1 2.0 3.2 Magnesium 1.1 1.1 0 . 7 1.6 1.4 3.3 Sodium 0.1 0.8 0.1 0.2 0.2 0 . 4 Potassium 0.2 0. 3 0.2 0.2 0 . 2 0.7 Cation Exchange Capacity 19. 3 8.7 18.4 •8.0 9 . 9 8.1 Base saturation'" 20.6 18. 1 12 . 8 1-5.5 22 . 8 22.2 -43-Table 4. Means and standard deviations of variables for major Humic Gleysol horizons A Horizons B Horizons C Horizons Variable Mean S.D. Mean S.D. Mean S.D. Slope 2.6 0.7 2.7 0.7 2.7 0.7 Drainage 6.0 0.4 5.9 0.4 6.1 0.5 Hue 5.0 0.5 6.0 0.9 6.1 1.0 Value 2.6 0.7 4.7 0.7 4.7 0.7 Chroma 1.7 0.6 1.9 0.8 1.6 0.7 Mottle abundance 1.4 0.7 2.3 0.8 1.9 0.8 Mottle size 1.6 0.8 1.6 0.5 1.9 0.6 Mottle contrast 1. 6 0.9 2.4 0.5 2.2 0.7 Roots 4.3 1. 0 2.9 1.3 1.8 0.9 Structure 133. 5 90.5 344. 0 318. 3 32.5 84.8 % Sand 22.6 16.7 15. 7 13. 8 40.3 33.0 % S i l t 55.0 15.1 51.5 11. 7 40.6 23.7 % Clay 22.5 13.2 32. 8 14.0 19.1 13.9 pH 5.2 0.5 5.7 0 . 5 5.4 0.9 Organic matter 12. 5 6.7 2.4 1.6 1.5 1.5 Nitrogen 0.5 0.2 0.1 0.1 0.1 0.1 C/N r a t i o 14. 5 4.5 12.6 5.7 11. 8 4.6 Available Phosphorus 32.1 48. 8 13.0 13. 3 19.1 16.5 Calcium 6.7 4.3 6.4 4.0 5.1 4.0 Magnesium 2.2 1.9 3.5 3.0 2.8 2.3 Sodium 0.4 0.5 0.4 0.9 0.4 0.5 Potassium 0.3 0.5 0.2 0.1 0.2 0.2 Cation Exchange Capacity 35.3 11. 3 22.8 9 . 0 16. 5 9.0 Base saturation 28.9 19.0 44. 8 25.3 51.2 25.1 -14 4-(mean 10YR), chroma should be 3 or less (mean of 1.8 in the B horizon). However, mottles on the average are d i s t i n c t rather than prominent. The A horizons for Humic Gleysols contain more than 3 percent organic matter (12.46%) and color values of less than 3.5 (mean of 2.5) which should be at least 1.5 units lower than the under-lying horizon (mean of 4.6). One in t e r e s t i n g observation was that i f the clay content of the B horizon i s representative of the Humic Gleysol population, i t seems reasonable to expect, by d e f i n i t i o n , that B horizons may be zones of s i g n i f i c a n t clay accumulation and could meet the requirements of a Bt horizon. Table 4 indicates that these horizons contain almost 50% more clay than the overlying A horizon (32.8% clay i n the B, 22.4% in the A). The color c r i t e r i a of the Gleysols are f a i r l y well defined by the study (Table 5). Assuming that hues on the average are 10YR or redder (mean of 10YR), chromas should be 2 or less (mean of 1.9 in A, 1.8 in B, 1.3 in C). Although the majority of Gleysols in the Fraser Valley are cultivated they should have less than 3% organic matter (8.9% i n A)or color values higher than 3.5 (mean of 3.6) or less than 1.5 units of value lower than underlying horizon (mean of 4.7). In consideration of the manner of treatment in this section (use of means) the Gleysol Great Group closely resembles the Humic Gleysols. Gross exceptions could be possible difference in parent material (not studied) -45-Table 5. Means and standard deviations for variables of major Gleysolic horizons A Horizons B Horizons C Horizons Variable Mean S.D. Mean S.D. Mean S.D. Slope 2.4 0.7 2.8 0.4 2.3 0.8 Drainage 6.1 0.6 5.8 0.4 6.6 0.6 Hue . 5.3 0.6 5.9 0.9 5.9 1.0 Value 3.6 0.7 4.7 0.5 4.6 0.7 Chroma 1.9 0.7 1.8 0.8 1.3 0.8 Mottle abundance 1.3 0.5 2.4 0.5 2.0 0.8 Mottle size 1.1 0.3 2.0 0.0 1.7 0.7 Mottle contrast 1.4 0.5 2.3 0.8 2.4 0.7 Roots 4.5 0.8 3.3 1.2 1.9 1.0 Structure 134.4 90.1 237 .5 152.5 38.8 125.1 % Sand 19.2 16. 8 13. 2 5.3 24.8 25.4 % S i l t 55.7 12.5 58.9 7.6 49.2 19 . 8 % Clay 25.0 11.4 27.9 12. 6 26.0 15. 8 PH 5.4 0.5 5.8 0.3 5.4 0.9 Organic matter 8.9 6.6 1.4 0.5 5.0 9.1 Nitrogen 0.4 0.2 0.1 0.0 0.2 0.2 C/N r a t i o 13. 4 2.6 9 . 8 2 . 0 12.2 5.1 Available Phosphorus 18.5 13.2 9.2 5.4 11. 0 8.7 Calcium 8.2 3.U 6.0 2.6 7.7 5.5 Magnesium 2.2 1.6 3 . 3 2.4 3.6 2.5 Sodium 0.3 0.6 0.2 0.1 0.3 0.2 Potassium 0.2 0.2 0.2 0.1 0.2 0.1 Cation Exchange Capacity 27.2 11.4 18.6 6.1 22.7 14. 5 Base saturation 42.4 20.0 52.2 18. 8 55.4 24.6 -1+6-which could explain some of the differences i n chemical properties. One rather unusual feature of these s o i l s , i s the increase i n the average organic matter content in the C horizon over the B. This feature, however, explains in part the increase i n calcium, magnesium and sodium i n the C horizon as well as the increase i n cation exchange capacity. c. Estimation of Dependent Variables S o i l drainage i n the f i e l d i s inferred from topographical p o s i t i o n , s o i l morphology and vegetation. Although vegetative features are not included i n the data f i l e , equations for s o i l drainage were derived by stepwise regression analysis for each of the Great Groups by horizon. To minimize bias a l l variables were candidates for i n c l u s i o n i n the equation. Table 6 gives the re s u l t i n g equation as well as the percentage of the va r i a t i o n 2 accounted for by the equation (R "100) and standard error of the estimate (SE) for s o i l drainage. Generally speaking the percentage of the va r i a t i o n accounted for was rather low except i n Humo Fe r r i c Podzol A horizons (0.82) and Gleysolic A horizons (0.95). However, the standard error of the estimates were not excessive even 2 in the case of Humo Fe r r i c Podzol B horizons (R =0.33; 2 SE=0.74). It was noted that a high R" did not always give the lowest standard error. As an example, the Gleysol B, Table 6. Equations for predicting s o i l drainage (D) Great Group Horizon Equation SE Humo Ferr i c Podzol A D = 5.6 - 1.8 Mottle 2- . 82 . 46 Humo Fe r r i c Podzol B D = 2.0 - .1 - .15 Slope + .41 Mottle Roots + .04 Cec 3-.33 .74 Humo Fe r r i c Podzol C D = -.73 + .1 + .72 Mottle 2* C/N + .17 Ca .62 . 60 Humic Gleysol A D = 6.6 - .39 Mottle 2* . 54 . 30 Humic Gleysol B D = 6.8 - .02 S i l t . 31 . 31 Humic Gleysol C D = 6.7 - .16 Slope - .01 PI . 19 . 41 Gleysolic A D = 10.4 1.5 - .92 Chroma -Mottle 2* - .1 Ca .95 .13 Gleysol B D = 7.3 - .65 Mottle 1* .55 . 31 Gleysol C D = 7.3 - .23 Slope - .17 Mottle + .001 Structure - .006 S i l t .05 Ca 1* + .38 .49 "Mottle 1 i s mottle abundance , Mottle 2 i s size, Mottle 3 i s contrast. Where R *100 i s the percent #of the va r i a t i o n accounted for and SE standard error of the dependent variable. -48-2 with a R of .55 had a lower SE (0.31) than the Humo 2 F e r r i c Podzol A horizon which had an R of .82 and a SE of 0.46. It was i n t e r e s t i n g to note, however, that some measure of mottling was included in a l l but two equations while slope was i n only two equations. The inclusion of chemical variables such as cation exchange capacity, C/N r a t i o and available phosphorus i n some of the equations i s d i f f i c u l t to explain. The presentation of cation exchange capacity prediction equations was mainly to compare r e s u l t s derived by McKeague et a l . (19 71) and are given i n Table 7. Although the variable set used i s somewhat d i f f e r e n t , i f clay, organic matter, and pH are accurate indicators of cation exchange capacity they should also be included i n the equations of the present study. As Table 7 i l l u s t r a t e s the equations are not comparable. Clay content i s present i n 3 equations (Humo Fer r i c Podzol C, Humic Gleysol C and Gleysol C), organic matter i s present only i n the Humic Gleysol B and C, while pH i s not included i n any of the equations. The percent va r i a t i o n accounted for i s generally very high with the exception of the Humic Gleysol C (0.56). The regression equations, however, have to be interpreted with caution since they may not be true because of weaknesses i n the data used. The equations are used to i l l u s t r a t e that perhaps routine Table 7. Equations for predicting cation exchange capacity (CEC) Great Group Humo F e r r i c Podzol Humo Fe r r i c Podzol Humo F e r r i c Podzol Humic Gleysol Humic Gleysol Humic Gleysol Gleysol Gleysol Horizon Equation R SE A CEC = 4.5 + 6.7 Mottle 1*+ 37.4 N - .77 Ca .81 3.9 B CEC = -30.1 - 4.2 Mottle 1* + .44 Sand + .58 S i l t + 24.5 N + .36 C/N + 4.34 Ca + 1.8 Mg + 37.3 Na .77 4.0 C CEC = - .05 + .25 Clay + 131.0 N + 8.46 Na .99 .5 A CEC = 0.03 + 7.3 Mottle 3*+ 4 7.4 N .71 6.2 B CEC = 4.0 + 4.3 O.M. + 1.31 Ca .97 1.65 C CEC = .24 + 2.8 Chroma + .14 Clay + 2.6 O.M. + .53 Ca + 1.1 Mg .56 6.1 A CEC = 5 8.1 - 6.0 Chroma - 21.4 Mottle 2*- .3 Sand + 32.0 N - 9.4 Na .99 1.23 B CEC = 33.1 - .28 S i l t + 65.1 N -.38 C/N + 1.4 Ca + 1.6 Mg -.26 B.S. .99 .58 Gleysol CEC = -6.6 + .21 S i l t + .41 Clay + 4 3.9 N 99 .74 •Mottle 1 i s mottle abundance, Mottle 2 i s s i z e , Mottle 3 i s constrast. 2 Where R i s amount of t o t a l v a r i a t i o n accounted for and SE standard error of the dependent variable. -50-s o i l survey data does not lend i t s e l f r e a d i l y to multiple regression analysis. d. Correlation Analysis Tables 8-13 give the cor r e l a t i o n matrices for each of the horizons of the Humo Fe r r i c Podzol and Humic Gleysol Great Groups. Although a l l c o r r e l a t i o n c o e f f i c i e n t s are presented, many are not discussed because they may be either spurious or not f u l l y understood t h e o r e t i c a l l y . This may be a way of encouraging further research on some int e r r e l a t e d variables. Relationships common to a l l matrices at the 0.05 l e v e l or higher with exceptions noted were: pH vs base saturation except i n the Humic Gleysol B •, color value vs organic matter were s i g n i f i c a n t for a l l except the Humic Gleysol B which agrees generally with observations found by McKeague et al_. (1971) but i s in contrast to the r e s u l t s of John et al_. (1969); pH vs CEC was s i g n i f i c a n t for the A and B horizons of Humo Fe r r i c Podzols; CEC vs organic matter was s i g n i f i c a n t i n a l l but the Humo Fe r r i c C horizons; and pH vs clay was s i g n i f i c a n t only i n the A horizons. Although organic matter has been stated as being a predominant factor i n structure formation (Buckman and Brady, 1964) a s i g n i f i c a n t r e l a t i o n s h i p was found only in Humo Fe r r i c C horizons. A good c o r r e l a t i o n between clay and cation exchange capacity was found i n B and C horizons but not in A horizons. Table 8. Correlation matrix for Humo F e r r i c Podzol A horizons Variable Slope Drainage Hue Mottle Mottle Mottle Value Chroma Abund. Size Contrast Roots Structure % Sand Slope 1. 00 Drainage -0. 53 1. 00 Hue -0. 40 0. 19 1. 00 Value 0. 05 -0. 28 0. 09 1. 00 Chroma 0. 14 0. 04 0. 01 -0. 16 1. ,00 Mottle Abund. 0. 70 -0. 68 0. 42 -0. 09 -0. ,32 1. ,00 Mottle Size 0: 94 -0. 91 0. 17 0. 09 -0. ,24 0. ,75 1. .00 Mottle Contrast V: k\ - o i 75 0. 42 0. 38 -0. , 20 0. .77 0, .?? 1. .00 Roots -0. 16 0. 17 -9: 31 -0. 50 -0. ,05 -0. ,67 -0. .78 -0. ,78 1. 00 Structure 0 . 27 0. 09 0. 07 0. 03 0. , 06 0. , 39 0. .12 0. ,53 -0. 06 1. .00 % Sand -0. 14 -0. 12 0. 09 9. 30 -0. ,42 -0. ,46 0. .10 -0. ,01 0. 04 -0. .16 1. ,00 % S i l t 0. 15 0. 13 -0. 15 -0. 42 0. , 38 0. ,12 -0. .40 -0. ,34 0. 09 0. .07 -0. .95 % Clay 0. 07 0. 06 0. 06 0. 08 9s , 33 0. ,66 0. .66 0. ,67 -0. 29 0. .30 -0. ,73 pH -0. 09 0. 11 0. 09 -0. 11 6! '. 35 0. ,08 0. .66 0. ,61 - o i ? i 6! !64 -0. .53 Organic matter 0. 10 -0. 04 -0. 07 -0. 50 0" ; m -0. ,42 -0. .75 -0. . 50 0. 32 6! ! 06 -0. .27 Nitrogen -0. 04 0. 13 0. 01 -0. 58 0. ,18 -0. ,48 -0. .68 -0. .73 6! 30 6! !66 -0. . 32 C/N r a t i o 0. 51 -0. 44 -0. 37 -0. 03 -0. ,20 0. ,55 0. .04 -0. .19 6! 39 o, . i i 0. .21 A v a i l . P 0. 16 -0. 20 - 5 7 05 -0. 28 0. ,06 -0. ,20 -0, .45 -0, .41 37 27 -0, .05 -0. .13 Calcium -0. 16 0. 07 0. 29 -0. 50 0; .33 0. .90 0 , .88 0. .90 -0. 18 -0, .22 -0. .28 Magnesium -0. 16 0. 00 0. 46 -0. 15 0. ! 30 6! '.73 6! ! 77 5! ! 79 -0. 49 -0, .05 -0, .24 Sodium -0. 42 0. 39 0. 44 -0. 28 0 . , 31 0. ,26 0, .78 0. .73 -0. 27 0, .01 -0, .16 Potassium - 5 7 1 1 - 6 7 22 -0. 17 -0. 20 0. , 04 0. . 54 0. .48 0. .49 0. 14 -0, .10 -0 , .02 Cation Ex. Cap. -0. 13 0. 24 -0. 10 -0. 70 0. .22 -0, ,08 -0, . 30 -0, .45 0. 30 0, .03 -0 . . 27 Base saturation -0. 05 -0. 10 0. 32 0 . 04 0. ,29 •0. .86 - 0. « 1 .95 0. ,95 -6! 48 -0. . 16 -0. . 30 * 9 • Cn I Table 8. Continued C/N A v a i l . Variable % S i l t % Clay pH 0. M. N Ratio P Ca Mg Na K % S i l t 1.00 % Clay 0. 47 1. 00 pH 0.41 0.59 1. 00 Organic matter 0. 37 -0.08 0 . 1 0 1. 00 Nitrogen 0T45 -0.08 0.17 0. 96 1.00 C/N Ratio -0.13 -0. 31 -0.44 0. 16 -0.03 1.00 Available P 0.18 -0 . 0 2 0 . 29 0. 12 0.11 0.15 1.00 Calcium 0 . 2 1 0. 31 0.52 0. 35 0.40 -0. 38 0.42 1. 00 Magnesium 0.06 0.55 0.57 -6! 02 oToi -6 I 60 0.09 0.72 1.00 Sodium 0. 04 0.37 0.42 0 . 25 0.29 -0.53 -0.23 0.41 0.62 1.00 Potassium 0.06 0 7 0 2 0 . 06 0.10 -0.07 -0.06 5 7 3 4 0.13 0.04 1.00 Cation Ex. Cap. 0.32 0.08 0.38 0 . 82 0.82 -0.06 0.27 6! 5 5* 0 . 2 1 0.34 0.07 Base saturation 6! 3.6 0. 51 0743 - 0 . 17 -0.13 -0.54 0.11 0.66 0. 80 6141 0.05 Variable Cation Ex. Cap. Base Saturation Cation Ex. Cap. 1.00 Base Saturation -0.07 1.00 .01 l e v e l .02 l e v e l .05 l e v e l Table 9. Correlation matrix for Humo F e r r i c Podzol B horizons Mottle Mottle Mottle Variable Slope Drainage Hue Value Chroma Abund. Size Contrast Roots Structure % Sand Slope 1. 00 Drainage -0. 35 1. 00 Hue -0. 24 0. 22 1. 00 Value -0. 03 0. 05 0. 5 3 1. 00 Chroma 0. 21 -0. 13 -0. 17 0. 21 1. 00 Mottle Abund. -0. 34 0. 34 0. 32 0. 15 -0. 24 1. 00 Mottle Size -0. 07 0. 12 0. 21 -0. 0 -0. 20 0. 55 1. 00 Mottle Contrast -0. 32 0. 41 0. 32 0. 02 -0. 10 0. 66 0. 50 1. 00 Roots 0. 19 -6! 23 -0. 51 -0. 46 0. 06 -0. 28 -0. 09 -0. 29 1. 00 Structure 0. 17 -0. 10 0. 20 0. 09 0. 10 -0. 09 -0. 04 -0. 34 0. 00 1. 00 % Sand - 5 7 II -0. 04 -0. 07 0. 03 0. 22 0. 12 -0. 04 0. 24 -0. 05 -0. 28 1 .00 % S i l t 16 -0. 05 -0. 07 -0. 08 -0. 13 -0. 23 0. 04 -0. 48 0. 15 0. 22 -0 .94 % Clay -0. 07 o. 20 0. 35 0. 10 -0. 30 0. 03 0. 03 0. 08 -0. 20 0. 26 -0 .63 pH 0. 0 3 -0. 06 0. 13 0. 20 0. 10 0 . 40 0. 44 -0. 41 -0. 21 0. 08 0 .09 Organic matter 0. 09 -0. 01 -0. 05 -0. 15 -0. 04 - o : 30 - o : 21 -6! 38 0. 18 0. 09 -0 .22 Nitrogen 0. 21 -0. 01 -0. 31 -6*. 40 -0. 13 -0. 20 -0. 00 -0. 29 0. 39 -0. 07 -0 .36 C/N r a t i o 0. 19 0. 07 -0. 23 -0. 13 0. 15 -0. 02 -0. 23 0. 12 0. 16 -0. 18 0 .40 A v a i l . P 0. 25 -0. 23 -0. 13 -0. 27 6! 61 -0. 30 -0. 04 -0. 24 6! • • 29 0 7 13 0 .02 Calcium -0. 08 0. 23 0. 34 0. 05 -0. 30 0. 18 -0. 12 0. 05 -0. 30 0. 15 -0 .26 Magnesium -0. 15 0. 23 0. 40 0. ly -0. 34 0. 27 -0. 07 0. 36 -0. 34 6! 12 -0 .23 Sodium -6! 29 0. 32 0. 42 9: 16 -0. 25 0. 45 0. 16 0. 57 -0. 33 -0. 04 -0 .16 Potassium -0. 04 -0. 05 0. 15 -6! 02 -0. 14 6! 66 0. 21 0. 06 0. 10 0. 22 • -0 • • • .28 Cation Ex. Cap. 0. 04 0. 24 - o : 16 -0. 28 -6! 2i -0. 13 -0. 30 -0. 12 0 . 18 -0. 01 -0 . 32 Base Saturation -0. 07 0. 10 0. 40 0. 21 -0. 22 0. 13 0. 08 0. 12 - 5 7 37 0. 13 -0 .18 Table 9. Continued Variable % S i l t % Clay P_H 0. . M. N C/N Ratio A v a i l . P Ca Mg Na K % S i l t 1. 00 % Clay 0. 32 1. 00 pH - 0 . 09 - 0 . 06 1 . 00 Organic matter 0. 26 0. 01 - 0 .15 1. . 00 Nitrogen 0. 41 0. 04 -0 :18 0. . 32 1. ,00 C/N Ratio - 0 . 36 - 0 . 30 - 0 721 0. .21 - 0 . ,03 1. ,00 Available P - 0 . 01 - 0 . 05 0 .22 - 0 . .02 0. ,13 - 0 . ,04 1. ,00 Calcium 0. 04 0. 59 0 . 08 0. .00 0. ,06 - 0 . ,23 0. ,14 1, ,00 Magnesium - 0 . 05 0. 70 0 .04 - 0 . .10 -Qi ,16 - 0 . ,24 - 0 . , 07 0. . 71 1 .00 Sodium - 0 . 13 0. 69 0 .12 - 0 . ,10 - 0 . ,18 - 0 . ,25 - 0 . ,10 0. , 50 0 .76 1. , 00 Potassium 0. 25 0. 20 0 .03 0. .42 0. ,10 - 0 . ,24 - 0 . ,03 0. . 19 0 .20 0. , 21 1. .00 Cation Ex. Cap. 0. 24 0. 33 - 0 .44 0. ,23 0. ,47 0. ,19 - 0 . ,12 0. ,30 0 . 30 0. ,15 0. . 06 Base Saturation - 0 . 01 0. 50 0 .28 - 0 . .08 - 0 . ,13 - 0 " '35 0. ,19 0. .83 0 .67 6! ', 59 0, .30 Variable Cation Ex. Cap. Base Saturation Cation Ex. Cap. 1.00 Base Saturation -0.07 1.00 .01 l e v e l .02 l e v e l 05 l e v e l Table 10. Correlation matrix for Humo F e r r i c Podzol C horizons Variable Slope Drainage Hue Mottle Mottle Mottle Value Chroma Abund. Size Contrast Roots Structure % Sand Slope 1. ,00 Drainage -0 . , 29 1 .00 Hue -0. ,07 0 .06 1. 00 Value = 0. ,28 0 .15 -0 . 34 1. ,00 Chroma -6; : i £ 0 .04 -57 21 - f l . ,15 1. ,00 Mottle Abund. -0 . ,33 0 . 35 0. 04 -0. ,05 o< ,11 1. , 00 Mottle Size -0. ,37 0 . 37 -0 . 0 0. ,17 0. ,41 0. ,45 1. ,00 Mottle Contrast -0. , 15 -0 .07 0. 62 0. .11 -6! ! i i b'. '.is 0. ,48 1. ,00 Roots 0. , 33 -0 .19 -0 . 14 -0. , 04 -0. ,10 -0, , 01 -o" "13 -0. ,03 1. .00 Structure 0. ,05 o . 21 0. 07 0. ,07 -0. ,03 -0. , 17 -0. ,04 0. ,08 0. .11 1. 00 % Sand -0 . . 0-7 -6 ;??• -0 . 12 0. ,08 -0. ,04 . 0. , 36 0. ,20 -0. , 31 0. . 06 -0 . 36 1. , 0 0 % S i l t 0. - 31 6 . 09 0. 08 -0. ,40 0. , 14 -6! '.S3 -0. ,29 0. ,05 -0. . 04 0. 19 -0. . 81 % Clay -0. , 12 0 . 2 7 0. 11 0 . ,15 -0. . 04 -0. ,08 -0. , 09 0. , 39 -0. , 06 0. 41 -0. ,90 pH 0. .15 -0 707 0. 20 -0. , 18 -0. , 14 -0. .11 -0. , 11 0. ,15 0. .11 -0 . 14 0. ro 3 Organic matter 0. ,18 0 .18 0. 04 -0. .44 0. .25 o. .55 0 . , 60 -0. ,00 0. . 22 0. 15 0. ,08 Nitrogen 0. ,01 . 30 -0 . 02 -.6! ! 35 0. , 42 6" ^56 6! ', 73 -0. ,02 0 . . 30 Q« ?? -0. ,10 C/N r a t i o 0. ,20 6 ! 48 0. 01 -0. , 12 -o" '.12 0" ',31 0. ,03 -0. ,63 0 . .15 -0 . 18 0. , 19 A v a i l . P 0. , 15 -0 .29 -0 . 03 0. , 01 -0. ,19 -0 , ,35 -0. '» * :V? -0" 2^3 -o- . 19 -0 . 31 0. ,40 Calcium -0. . 32 .0 .21 -0 . 20 0. , 31 0. ,07 -0. , 14 -0. ,16 0. ,09 0 . ,06 0. 29 -0 . ,82 Magnesium -0. , 46 0 .26 0. 14 0, ,48 -0. .12 0. , 02 0. , 06 0. ,27 0 . ,03 0. • • 39 • • -0. .59 Sodium -o" "35 .0 .20 0. 2 9 o" "42 -0. , 19 0 , , 07 0. ,10 0. .30 -0. .05 0. 33 -0. ,43 Potassium -0. .18 -0 .13 -0 . 10 6! !iS 0. , 15 -0. , 10 0. , 04 0. ,17 -0. , 15 -0 . 08 -0. . 01 Cation Ex. Cap. -0, , 12 0 .17 0. 12 0, .15 0. , 04 0. , 20 0. , 39 0. . 45 0. .22 0. 60 -0. ,72 Base Saturation -0. .16 0 .14 0. 01 -0. .15 0. ,23 -0. .27 -0. . 34 -0. ,11 0. .03 0. 08 -0. ,70 I cn cn I Table 10. Continued C/N A v a i l . Variable % S i l t % Clay E H O.M. N Ratio P Ca Mg_ Na K % S i l t 1. 00 % Clay 0. 46 1.00 pH 0.02 -0.06 1.00 Organic matter 0.05 -0.15 -0.18 1.00 Nitrogen 0.05 0.11 -0.29 0.85 1. 0 0 C/N Ratio 0 .03 -0.30 0.15 0. 40 . 0.40 1. 00 Available P -0.33 -0 . 36 0.05 -0"21 -5742 -0.31 1.00 Calcium 0.26 0. 94 0.12 -0.25 0.05 -0.42 -0.44 1.00 Magnesium 0.03 0.75 0^43 -0.26 -0.10 -6! § i -0.30 0.77 1.00 Sodium 0.00 0.59 0.53 -0.23 -0.19 -0.27 -0.21 0.70 0.97 1.00 Potassium -0.04 0 .04 0.05 -0.17 -0.14 -0.23 -0.25 0.66 0 S41 0.60 1.00 Cation Ex. Cap. 0. 24 0.83 -0.10 0.22 0.56 -0.05 -0.56 0.77 0. 72 0.59 0.14 Base Saturation 0. 43 0.66 0. 34 • • • • -0.19 -0.06 -0.47 -0. 24 0.81 0.67 0 .58 -0.01 Variable Cation Ex. Cap. Base Saturation Cation Ex. Cap. 1.00 Base Saturation 0.41 1.00 .01 l e v e l .02 l e v e l 7777 .05 l e v e l Table 11. Correlation matrix for Humic Gleysol A horizons Mottle Mottle Mottle Variable Slope Drainage Hue Value Chroma Abund. Size Contrast Roots Structure % Sand Slope 1 .00 Drainage -0 .18 1, .00 Hue -0 .19 -0, .00 1, .00 Value 0 . 01 -0. . 08 -0, .01 1. .00 Chroma 0 .01 -0, . 02 0. .05 0. .10 1. .00 Mottle Abund. -9 .83 • * • -0. , 36 0. .55 0, , 93 0, , 2 0 1. 00 Mottle Size a -0 . 34 -0, .73 -0, .10 0. , 81 0. .60 0. 62 1. ,00 Mottle Contrast -0 . 63 -0 , 29 -0, ,26 6! 59 0. ,72 0. 66 0, ,70 1. ,00 Roots 0 .10 0. .05 0, .30 -0. ,12 -0. ,09 -0. 70 -0 . ,91 -0. .94 1. , 00 Structure -0 .10 0. , 25 6! !09 -o. ,10 -0. ,10 -0 . 16 -6! [47 -0" :i2 0. .17 x . 00 % Sand 0 . 06 -6: ',72 0. .09 -0. .06 -0. ,03 • 0. 20 0. ,77 0. ,13 0, . 01 -0. ,18 1. ,00 % S i l t 0 .132 0. ,15 -0 , 21 -0. ,07 -0. , 02 -0 . 60 -o. ,71 -0. .26 -0 . , 00 0 . ,15 -0 . , o 5 % Clay -0 .10 0, ,11 0, .12 0. .16 0. , 05 0. 37 -o, ,29 0. ,10 --0. .01 0. .05 -0, .51 PH 0 .20 -0. .07 0, .13 -0, .03 -0. .15 0. 44 0. ,07 -0, ,23 -0. .00 -0. ,05 -0. . 01 Organic matter 0 .03 0. , 25 -0, , 03 -0. . 23 -0. ,13 -o« 8? -0. .49 -0. , 24 0. , 01 0. ,13 - - G . , 03 Nitrogen -0 . 04 , o. .16 -0, .01 -0. . 31 -0. , 27 -0. 87 -0. ,70 -0. , 52 0. . 07 0 . ,16 -0 , . 13 C/N r a t i o 0 .14 0. .19 -0, .04 -o: :os 6! ! i i -6! 66 -0 . ,10 0. ,18 -0, ,13 0. ,03 0. .23 A v a i l . P . -0 . 21 0. .00 0. .06 -0. .27 0. ,10 -0. 67 -0. , 57 -0, .91 -0, ,17 0. .05 -0. ,15 Calcium 0 .04 0. .22 0 . ,13 -0. . 06 -0. ,08 -0. 08 -0. ,67 -0. , 50 0, ,02 0 . ,12 -0 . , 27 Magnesium -0 .19 0, .22 0. .10 0. .20 -0. ,12 0. 37 -0 ,  02 0, ,20 -0 . ,16 0. . 21 • -0. , 27 Sodium -0 .13 c, .13 -0 . 24 0, .14 0, , 09 -0. 24 0, ,23 0. ,57 -0, . 02 0 , .01 -0, ,01 Potassium -0 . 20 0 , .01 0, .00 -0, .17 0, .13 -0. 07 0 , .31 0. .38 -0, .25 0 . 02 -0 , 17 Cation Ex. Cap. -0 .19 0. ,27 -0, .03 -0, . 34 -0, ,21 -0. 58 -0. ,49 0. ,08 -0 , 10 0. ,20 -0 . ,33 Base Saturation 0 .06 o: :os 0, .07 o: ;3i 0. .04 0. 70 0, .49 0. .19 -0 , . 02 0. .01 -0" :o8 I cn -<! I Table 1 1 . Continued C/N A v a i l . Variable % S i l t % Clay 1 3H 0 . . M. N Ratio P >~.a Mg Na K % S i l t 1 , . 0 0 % Clay - 0 , . 3 1 1 , . 0 0 pH - o : : 2 4 0 . , 3 1 1 , . 0 0 Organic matter 0 . . 1 3 - 0 . . 1 1 - 0 . , 4 6 1 , . 0 0 Nitrogen 0 , . 2 0 0 . . 0 1 - 0 , , 4 6 0 . ; 8 3 1 . . 0 0 C/N.ratio * - 0 , . 0 6 - 0 . . 2 3 - 0 , . 2 1 0 , . 5 9 0 , . 0 8 1 . . 0 0 i Available P - 0 . . 0 2 0 , . 1 9 - 0 . , 1 3 0 , . 1 5 0 . . 2 6 - 0 , . 0 7 1 , . 0 0 cn Calcium 0 . . 0 4 0 . . 2 7 0 , , 5 9 - 0 . , 0 1 - 0 . . 0 4 - 0 . . 1 2 0 , . 1 7 1 . . 0 0 CO I Magnesium - 0 . . 0 1 0 , . 3 3 0 . , 3 7 -o. . 2 9 - 0 . . 2 5 - 0 . . 2 1 - 0 , . 1 1 0 . . 5 0 1 . , 0 0 Sodium 0 . . 0 6 - 0 . . 0 6 - 0 , , 3 0 0 , , 0 4 0 , . 0 0 0 . , 0 5 0 , . 0 1 0 . . 1 0 0 , . 3 9 1 , . 0 0 Potassium 0 . . 0 2 0 , . 1 9 -61 ',28 0 . , 1 9 0 , - 0 . , 0 7 0 . . 9 0 0 . , 0 7 0 . , 0 1 0 . . 1 5 1 . . 0 0 Cation Ex. Cap. 0 , . 2 8 0 , . 1 1 -6" ! 2 6 0 . , 6 5 6. . 6 7 0 . . 1 9 0 . . 2 8 0 . . 1 1 0 , . 0 7 0 , . 0 8 0 , , 2 6 Base Saturation -6! :i4 0 , . 2 7 0 , , 5 5 - 0 , . 4 0 - 0 . . 3 7 - 0 , . 2 6 -6: !6i 0 . . 7 4 0 . . 7 0 0 , . 3 6 - 0 . . 0 0 Variable Cation Ex. Cap. Base Saturation Cation Ex. Cap. 1 . 0 0 Base Saturation - 0 . 4 1 1 . 0 0 . 0 1 l e v e l . 0 2 l e v e l 7 7 7 . . 0 5 l e v e l Table 12. Correlation matrix for Humic Gleysol B horizons Mottle Mottle Mottle Variable Slope Drainage Hue Value Chroma Abund. Size Contrast Roots Structure % Sand Slope 1. ,00 Drainage -0 . ,10 1. 00 Hue -0. ,25 0. 01 1. .00 Value -0. , 31 -0. 25 0. ,42 1. ,00 Chroma -0 . , 08 -0. 16 - o : : io -0 , 37 1. , 0 0 Mottle Abund. 0. ,32 -0. 06 ,30 0. ,18 0. , 0 2 1, ,00 Mottle Size -0. .44 = 0. 42 -0. ,07 0. ,26 -0. , 0 3 -0, .06 1. .00 Mottle Contrast b\ ! 07 -0. 23 0, .65 0. , 32 -0. ,19 0. .00 -0. .06 1. ,00 Roots 0, .28 -0. 16 -0. , 07 -b. ,25 -0. , 3 7 -0, .18 -0, .20 0. ,25 1. ,00 Structure -0. ,04 0. 00 -0. ,07 -0. ,05 -0. ,10 0. . 38 0. ,44 -0. ,15 -0, ,19 1. , 00 % Sand 0. .20 -0. 02 -0 . ,05 -0 . , 20 0. , 3 3 -0. .16 -6: :i7 0. ,02 0, ,03 -0 , . 28 1 .00 % S i l t -0 . .08 -0. 56 -0, ,20 0 . 16 -0. ,10 -0, .06 0, ,39 -0. ,10 0. ,05 0, .12 -9 , n % Clay -0, .13 0. 49 0, .21 0. ,06 -0. , 2 4 0, .21 -0, .15 0. .06 -0, .07 0, .18 -0 .65 pH 0 , . 07 -0 . 18 0, .35 0, ,00 0. ,16 P-, 29 -0 , .24 0. ,17 -0. .13 0, . 00 -0 .02 Organic matter 0. , 29 0. 24 0 . ,03 -0. ,17 -0. , 0 9 -0, ,11 -0. , 07 0. ,29 0. ,08 -0 , . 36 -0 .15 Nitrogen 0 . 52 . 0. 2 2 -0. ,06 -0 , 31 -0. , 0 9 0. ,03 -0, .27 0. ,18 0, .26 • -0 . 33 -0 .20 C/N r a t i o -0, , 36 0 . 09 0. .07 -0 , 02 0. , 2 2 -0, . 21 0, .40 0. ,26 -0. , 27 0 , 14 - 0 .20 A v a i l . P 0. . 3? -0. 19 -0. .19 -0. , 34 0. .10 -0 , 50 -0, .38 0. ,26 0. .41 -0. .22 0 .08 Calcium -0 , .27 0. 41 -0. .01 -0, ,12 -0. , 3 9 0, .11 0. .07 -0. ,31 -0, ,45 0, ,15 -0 . 35 Magnesium -0 . 55 o; 45 0. .21 0. ,01 -0. , 2 5 -0, .07 0. .28 -0. ,05 - b ' , ; 33 0 , . 13 • -0' .31 Sodium -0 . 35 o: 07 0, . 33 0. ,11 0. ,06 0, .01 0, .33 0. , 29 -0, ,02 0 . ,35 -0 .05 Potassium -0. . 23 0. 19 0, .07 0, ,02 -0. , 02 0, .01 0, .43 -0. ,11 -0. .10 0, . 32 -0 .15 Cation Ex. Cap. -0, .12 0. 35 0, .08 -0, .13 -0. ,22 0, .00 0, .12 0. , 0 3 -0, .20 -0. .10 -0 .49 Base Saturation -0, . 31 0. 27 0, .17 0, ,04 -0. ,33 0. ,15 0. .25 -0. ,16 -0, , 30 0. ,40 -0 .18 1 cr CO I Table 12. Continued C/N A v a i l . Variable % S i l t % Clay p_H 0, ,M. N Ratio P Ca Na K % S i l t 1 . 00 % Clay -0 .44 1 . 00 PH . -6 .63 0 . 05 1 .00 Organic matter -0 .29 0 . 34 -0 .23 1. , 00 Nitrogen -0 .09 0 .27 -0 .16 0. .90 1. 00 C/N r a t i o -0 .12 0 .25 -0 .24 0 . 40 0. 00 1. 00 Available P -0 .07 0 .02 . -0 .11 0, . 29 0. 42 0. 01 1. . 00 Calcium -0 . 32 0 .63 0 .13 0 , .06 -6! 66 0. 03 -0, .22 1 .00 Magnesium -0 . 31 0 .58 0 . 25 0, ,02 -0. 15 0. 03 -0. ,35 0 .78 1 . 00 Sodium 0 .17 -0 . 09 0 .07 -0 , 27 -0. 26 -0. 09 -0. .23 -0 .17 0 . 3 3 1 .00 Potassium 0 .11 0 .05 0 .03 -0 , 17 -0. 15 -0. 22 -0. .27 0 .11 0 .52 0 .77 1 .00 Cation Ex. Cap. -0 . 21 0 .67 -0 .18 0, .79 0. 59 0. 44 0. .08 0 .63 0 . 51 -0 .16 0 . 06 Base Saturation 0 . 01 0 .17 0 . 30 -0 , .51 -0. 38 -6! 41 -0. .42 0 .61 0 . 76 0 . 50 0 . 57 Variable Cation Ex. Cap. Base Saturation Cation Ex. Cap. 1.00 Base Saturation -0.04 1.00 • .01 l e v e l .02 l e v e l 05 l e v e l Table 13. Correlation matrix f o r Humic Gleysol C horizons Variable Slope Drainage Mottle Mottle Mottle Hue Value Chroma Abund. Size Contrast Roots Structure % Sand Slope 1. , 00 Drainage -0 , .25 1, , 00 Hue 0. ,04 0. , 00 1. ,00 Value -0. ,21 0 . , 04 0 . , 04 1. . 00 Chroma - 6 ! ! 20 -0. ,06 -0 , , 09 0, .14 1. , 0 0 Mottle Abund. 61 !63 -0. ,11 -0, , 23 0, .05 0. .16 1, .00 Mottle Size -0. ,10 -0. ,12 -0, .01 -0, ,11 -0. ,17 0. .42 1. . 00 Mottle Contrast 0. ,06 0, , 06 0, .50 0, .12 0. , 00 0, .20 0 , 20 1. . 00 Roots 0. .07 0, ,02 -0, .08 -0, .12 0. , 27 0, .10 -0, , 01 -0, . 02 1. .00 Structure 0. , 07 -0. , 09 0, , 03 -0. ,02 0. , 0 5 0. ,18 -0. ,11 -0, . 02 0 , .26 1, .00 % Sand 0. , 04 -0, , 22 -0, ,11 0, , 03 -0. , 11 -0. ,14 -0. ,28 -0 , , 16 0 . ,07 -0. .19 1. . 00 % S i l t -0. ,03 0" :26 0 . ,06 -0. .08 0. • 11 0, ,09 -0" f34 0, ,15 -0, ,03 0. .19 -0. ,93 % Clay -0. , 04 0, .09 0. .16 0. .07 0. , 06 0, .17 -0. ,07 0, .12 -0. ,12 0, .14 -0 , .79 pH 0. , 09 -0, .19 -0 , .03 0. .16 0. , 2 3 0. ,19 0. . 07 -0 . ,14 -0. , 04 0. .03 0 , .17 Organic matter 0, .03 - 6 ! ! 05 -0, .28 -0, .38 ;o7 -0, .07 -0 , , 36 -0, .39 0. ,33 0, . 06 -0, . 27 Nitrogen 0. , 32 -0. , 07 -0" :o7 -0, .43 -0. ,01 0. ,19 -0^ r i s -0. ,17 0 . ,27 0. ,23 -0" ;so C/N r a t i o 0. , 02 -0, ,19 -0. .18 -0, , 23 -0. , 07 -0. ,23 -0. ,08 -0, ,23 0" ;o5 - 6 : '10 0. ,18 A v a i l . P 0 . ,03 -0, ,37 0, ,06 -0. .16 -0. , 02 0. ,20 -0. ,01 -0, , 06 0. , 03 0 . , 02 0. ,23 Calcium 0. .22 0. .06 -0, ,07 -0, ,01 -0. , 21 -0. , 03 0. .06 -0 . .17 -0. ,22 0 . .05 -0, ,43 Magnesium - 6 ; !66 9, , ? ? 0, .14 -0, .02 -0 . .10 -0. ,13 0. ,01 0, , 07 -0 , ,20 -0 . , 01 ' -0. 44 Sodium -0. .09 0. .03 0, .23 -0, . 29 -0 , , 0 8 -0, .11 0, ,11 0, . 34 0. ,10 -0. .05 0. .11 Potassium -0. .14 0, ,06 6! !i§ -0. ,22 -0. ,14 -0, ,14 0. ,22 9, .25 • • • -0. , 06 0 , .03 -0. , 06 Cation Ex. Cap. -0. ,09 0, ,06 -0 , ,07 -0. ,18 0. , 20 0. ,08 -0. ,08 -0. , 04 -0 . , 02 0. , 02 -0. , 51 Base Saturation 0. ,19 -0, .01 0, .03 -0, .06 -0. ,30 -0. ,00 0. ,46 0. ,09 -0. , 31 -0 . . 01 -0. ,07 I CD J- 1 I Table 13. Continued C/N A v a i l . Variable % S i l t Clay 0. ,M. N Rat io P Ca Na K % S i l t 1 .00 % Clay 0 . 52 1 . 00 pH -0 . 30 0 .11 1 . 00 Organic matter Nitrogen 0 .41 -0 .03 • -0 .44 1. , 00 .0 .29 0 .23 -0 . 05 0. , 39 1. 00 C/N r a t i o '-0 .07 -6 ! 32 -0 .40 0, .49 - 0 . 00 1. 00 Available P -0 .20 -0 .20 0 . 03 0. .17 0. 30 0. 01 1, .00 Calcium 0 . 26 6 ! 54 0 . 33 -0, ,07 - 0 . 04 •-0. 09 -0, .25 1 .00 Magnesium 9 0 .61 d . 31 -0. .17 0. 07 - 0 . 20 -6_! ! 27 0 .75 1 . 00 Sodium -0 .12 -0 .05 ' -0 .03 -0, , 06 0. 19 0. 21 -0, .10 -0 .14 0 .13 1 . 00 Potassium 0 .09 -0 . 02 -0 .21 0. .15 0. 01 0. 39 ~o, .1.2 -0 .00 0 .15 . 0 .69 1. 00 Cation Ex. Cap. 0 .39 0 . 51 fl : i o 0 , 36 0. 21 - 0 . 01 -0, .07 0 .48 0 .49 -0' . 10 - 0 . 00 Base Saturation -0 . 07 0" . 26* 0 . 33 -0. ,35 - 0 . 13 --0. 14 -0. . 37 0 .65 0 . 51 0 . 3 2 0 . 33 Variable Cation Ex. Cap. Base Saturation Cation Ex. Cap. . 1.00 Base Saturation 0.10 1.00 .01 l e v e l .02 l e v e l .05 l e v e l - 6 3 -Conclusion S o i l parameters used to define s o i l s at the Order and Great Group leve l s did trend toward normal d i s t r i b u t i o n s for the Gleysolic Great Groups. With the exception of color c r i t e r i a and pH, t h i s was not as evident with the Humo Fe r r i c Podzol. Consequently, defining s o i l s according to the CSSC C l a s s i f i c a t i o n (1970) by use of means and standard deviations was possible, in some Orders but not in others. Generally speaking, the derivation of predictive equations for cation exchange capacity accounted for a higher percentage of the va r i a t i o n than did equations for s o i l drainage, although res u l t s for the former did not clos e l y resemble equations developed i n other studies. Many basic s o i l property i n t e r - r e l a t i o n s h i p s were confirmed by the study. Although the study was somewhat limited by the number of observations a methodology was developed i f interpreted with caution that could be useful with larger data banks which would probably enable study at lower levels of c l a s s i f i c a t i o n and y i e l d more generally acceptable r e s u l t s . -64-Chapter III GROUPING OF FRASER VALLEY SOILS BY NUMERICAL METHODS Introduction The ever increasing volumes of data r e s u l t i n g from detailed s o i l surveys and s o i l research, has stimulated in t e r e s t i n establishing s o i l data banks (CSSC, 1970b; John et a l . , 1969; Swanson, 1970). However, the e f f i c i e n t handling of data by modern high speed computers, has necessitated the qua n t i f i c a t i o n or coding of many s o i l properties formerly described in descriptive terms (Cripa et a l . , 1970; Kloosterman et a l . , 1971). The state of the B r i t i s h Columbia S o i l Survey Data F i l e presents a unique opportunity to c l a s s i f y s o i l s numerically on the basis of routine survey data. Some investigators (Hole and Hironaka, 1960; Bidwell and Hole, 1963; Cripa et a l . , 1970) used modal descriptions for consideration, while others (Grigal and Arneman, 1969; Arkley, 1969, 1971; Campbell et a l . , 1970) seem to have used "special study" data. Only Rayner (1966) - 6 5 -seems to have used routine s o i l survey data. In some cases (Bidwell and Hole, 1963) basic data was manipulated to generate additional variables. This practice, however, may r e s u l t in accentuating the already strong t r a d i t i o n a l c l a s s i f i c a t i o n bias. The present study attempted to use only data which resulted from routine s o i l survey f i e l d observations and laboratory analysis. The majority of the work that has been done in numerical taxonomy r e l a t i n g to s o i l s has been done in Great B r i t a i n , A u s t r a l i a , and the United States. Often the 7th Approximation (USDA, 1960) i s used as the basis for comparison (Cripa et a l . , 1970; Arkley, 1969, 1971; Grigal and Arneman, 1969). To date, however, no published reports ex i s t which attempt to numerically c l a s s i f y Canadian s o i l s using the Canadian S o i l C l a s s i f i c a t i o n Scheme as i t s terms of reference. A s a t i s f a c t o r y solution to the unique problem of anisotropy of s o i l p r o f i l e s has not been found. Two basic approaches to the problem have evolved: (a) the selection of various properties from the various horizons, representing to a large extent diagnostic properties that are generally used in conventional c l a s s i f i c a t i o n (Sarkar et a l . , 1966), and (b) the comparison of m u l t i - l e v e l data (Lance and Williams, 1967; Rayner, 1966). Russell and Moore (1969) carr i e d the multi-level concept one step further and used -66-weighting factors to obtain a p r o f i l e summation. Both approaches have serious l i m i t a t i o n s . The f i r s t approach tends to inadvertently assume that horizons are independent of each other and of the s o i l body since attempts are generally made to use only variables that by c o r r e l a t i o n or other s t a t i s t i c a l c r i t e r i a are considered to be independent. The second approach reaches a compromise sit u a t i o n when s o i l s with various numbers and kinds of horizons are studied. Both methods, recognizing . horizonation, have a strong conventional bias. Since bias can never be t o t a l l y removed, the present study attempts to reduce the influence of horizonation by using a " p r o f i l e value" based on depth averages as-suming th i s to give a more objective approach. The development of numerical c l a s s i f i c a t i o n has stressed the equal weighting of a l l properties (Sokal and Sneath, 1963). Consequently, attempts have been made to avoid inadvertent weightings which can r e s u l t by including properties which are highly correlated (Cripa et a l . , 19 70; Sarkar et a l . , 1966), or using primary and secondary expressions of the same property simultaneously. However, since s o i l i s the expression of a great number of i n t e r -related properties, i t i s d i f f i c u l t to j u s t i f y delection of properties on the basis of s i g n i f i c a n t correlations. -67-Although Factor Analysis results i n a number of orthogonal or independent influences (Arkley, 1969, 1971), high correlations ex i s t within influences or factors, therefore inadvertent weighting s t i l l e x i s t s . The weighting associated with the primary and secondary expression of properties can largely be avoided by careful study of the variable set. As a r e s u l t no deliberate attempt was made to exclude variables for the foregoing reasons, although no secondary expression of primary properties were included. Material and Methods The B.C. S o i l Survey F i l e was used as the data source for this study (John et a l . , 1969). For the basis of comparison, three d i f f e r e n t types of p r o f i l e data sets were extracted from the data f i l e i n such a way that p r o f i l e s containing missing data, and properties exhibiting dichotomous and multistate unranked c h a r a c t e r i s t i c s were eliminated. Grigal and Arneman (1969) reported the d i f f i c u l t y of using dichotomous and multistate unranked properties. Where Euclidean distance i s used as a measure of s i m i l a r i t y , missing data i s equivalent to missing dimensions i n n-dimensional space, which stresses the -6 8-d e s i r a b i l i t y of using complete data sets. On t h i s basis, the following set of attributes were used i n data extraction. Table 1. Variables and coding used for numerical methods Code Variable Variable range or units Slope depressional-extremely sloping 1-7 Drainage rapidly-very poorly drained 1-7 Hue 10YR-5G 1-8 Value 0-9 0-9 Chroma 1-9 1-9 Roots few-abundant 1-4 Structure single grain-coarse columnar 1-99 Sand 1-9 9% 1-99 S i l t 1-9 9% 1-99 Clay 1-99% 1-99 pH (1:1) as recorded Organic matter percent C/N r a t i o as recorded Available P ppm Ca, Mg, Na K me/10 0 g Cation Ex. Cap. me/100 g Base Saturation percent Since no attempt was made to reduce the data set on the basis of inter--correlations, question may arise over the inclusi o n of some of the variables. The c r i t e r i a and descriptions for the three data sets used were developed in - 6 9 -order that the s e n s i t i v i t y of the clu s t e r i n g techniques could be studied. The f i r s t two sets r e f l e c t a change in emphasis i n the texture and structure attributes of the s o i l s , while the last'one considered averaging over the p r o f i l e . a. Average Surface S l i c e The average value of the surface 12 inches of the mineral s o i l was taken as representative for 1;he p r o f i l e on %he assumption that i t s expression r e f l e c t s the influence of various properties farther down the p r o f i l e , e specially texture and structure. Although the influence of the Ae i n some Podzolic s o i l s would be negated in some instances, i t was reasoned that uniformity of application was more important. In addition, some of the diagnostic c h a r a c t e r i s t i c s of certain s o i l s would not exert t h e i r usual influence. Although the above c r i t e r i a are f a i r l y d r a s t i c , i t was f e l t that the 152 s o i l s i n the data set would be separated at least at the Order l e v e l . b. Selected Average P r o f i l e Property values were extracted as i n the Average Surface S l i c e Method,with the exception of texture and structure which were taken as averages over the control section of the p r o f i l e (40 inches). Grigal and Arneman (1969) reported that grouping by texture c r i t e r i a alone - 7 0-coincided f a i r l y well with conventional c l a s s i f i c a t i o n . The lUU s o i l s in this p a r t i c u l a r data set were extracted to study the differences i n grouping compared with data set 1. c. Average P r o f i l e This data set consisted of values which expressed the average for the control section on "the assumption that averages between predominant groups should d i f f e r enough that c l u s t e r i n g would be able to group the 50 s o i l s in the set in an appropriate manner.* The average value was calculated as follows: 1 N VA = =K * Z(hj * Vj) (1) L n j J=l where VA i s the average p r o f i l e value, hj i s horizon depth in inches and Vj i s the variable value for horizon j . METHODS OF NUMERICAL ANALYSIS a. Cluster Analysis (Method 1) The analysis (Sokal and Sneath, 1963) employed square root of the sum of squares of differences (Euclidean distance) as a measure of s i m i l a r i t y . This program clusters "Descriptive data such as slope and drainage are not averaged. -71-s o i l s that have the closest distance to each other. The two s o i l s having the closest distance are amalgamated and treated as one s o i l which in turn i s clustered with other s o i l s u n t i l a l l s o i l s have been grouped. The method i s as follows: 1. Data set i s read i n . 2. Data i s standardized using: where X' i s the standardized value, x i s the unstandard-ized value of the variable, x i s the variable mean over a l l observations and S.D. i s the standard deviation. 3. The i n i t i a l distance i s computed using: 2 N 2 Di, I_ = E ( x i , j - x i ~ j ) (3) J = l . 2 . . • where Di^ 1 S t n e distance between s o i l i ^ and s o i l i£, j i s the variable counter, x i s the variable. 4. The two s o i l s which have the closest distance to each other are amalgamated into a cluster. The amalgamation of the two s o i l s i s then computed as a weighted average. The new cl u s t e r i s regarded as a new s o i l with distances to other s o i l s being recomputed. b. H i e r a r c h i c a l Grouping A n a l y s i s (Method 2) T h i s method (Veldman, 1967) i s a p p l i e d so t h a t i n a given set of N s o i l s , each measured on K v a r i a b l e s , the program performs a grouping to determine the extent to which n a t u r a l groups (groups which are s i m i l a r i n t h e i r scores on the K v a r i a b l e s ) e x i s t among the N s o i l s . One method of grouping the s o i l s would be to f i n d an optimum grouping f o r each p a r t i c u l a r number of groups from 2 to N - l with one group of N s o i l s , and N groups of one s o i l each being the l i m i t i n g case. Such an o p t i o n grouping should maximize the average i n t e r - g r o u p d i s t a n c e while minimizing the average i n t r a group d i s t a n c e . T h i s method, however, i s very time consuming due to the computational burden i n v o l v e d i n c a l c u l a t i n g the index of c l u s t e r s e p a r a t i o n . An a l t e r n a t i v e method o f determining o p t i o n groupings i s to d e f i n e each s u b j e c t as a group, and reduce these N groups by a s e r i e s of step d e c i s i o n s u n t i l a l l N s u b j e c t s have been c l a s s i f i e d i n t o one or the o t h e r of two groups. This b a s i c a l l y i s the approach of the technique used. That i s , i t compares a s e r i e s of N s c o r e s , over a s e r i e s of K v a r i a b l e s and p r o g r e s s i v e l y a s s o c i a t e s them i n t o groups i n such a way as to minimize an o v e r a l l estimate of th v a r i a t i o n w i t h i n c l u s t e r s . The c r i t e r i a t o determine which p a i r of s o i l s i s t o be combined i s e s t a b l i s h e d on the b a s i s of score s i m i l a r i t y , xvhere the t o t a l w i t h i n group v a r i a t i o n i s the (value-reflecting) function to be minimally increased at each step of the process. The procedure i s as follows: 1. Data i s read i n . 2. Data i s standardized using: where X' i s the standardized value, x i s the unstandard-ized value of the variable, x i s the variable mean over a l l observations, and S.D. i s the standard deviation. 3. Calculation of the Error Index The data i s used to calculate the index by £j _ Sum of the squared differences between corresponding values  Numbers of subjects i n the poten t i a l group This error index which corresponds to an averaged Euclidean distance squared, replaces the raw data in the matrix. 4. Grouping The f i r s t grouping i s made by combining the two c e l l s with the minimum error. After grouping, the elements r e f l e c t i n g p o t e n t i a l error for combination with t h i s new group are modified as follows: - 7 4 -Exy = [jxy(Nx + Ny) + Ezy(Nz + Ny) + Exz (Nx + Nz) -Exx(Nx) - Ezz(Nz) - Eyy(Ny]|/(Nx + Ny + Nz) (5) where Exy represents the p o t e n t i a l e r r o r f o r combining the two groups X and Y, Nx represents the number of cases i n group X. The next grouping i s made by determining the c e l l which y i e l d s the s m a l l e s t value X = E i j - E i i - E j j which i s repeated u n t i l only two groups remain. 5. S e l e c t i o n Value A s e l e c t i o n value i s c a l c u l a t e d which helps to determine the most appropriate number of groupings. SV = C ( b " a ) (6) c l where C i s the number of groups at a p a r t i c u l a r stage i n the grouping, b i s the e r r o r a s s o c i a t e d w i t h C - l groups and a i s the e r r o r a s s ociated w i t h C groups and SV i s the s e l e c t i o n value. Since t h i s program had a s i z e r e s t r i c t i o n of 120 observations, the two l a r g e s t data sets were not grouped by t h i s approach. This program outputs a l i s t i n g of groups at each stage of the process and since no dendrogram was generated t h i s was subsequently done by hand. - 7 5 -Th e h i e r a r c h i c a l grouping analysis had a decided advantage over the cluster analysis i n that i t offered a technique by which an "optional number" of groups could be selected. T h i r t y - f i v e s o i l s were "re-extracted" from the 3 sets i n order to compare sets of uniform size and the same s o i l s . Table 2 i l l u s t r a t e s the s o i l s and t h e i r CSSC C l a s s i f i c a t i o n (CSSC, 1970a). The 3 o r i g i n a l data sets were clustered by method 1, but only the average p r o f i l e data set was clustered by method 2, however, none of these r e s u l t s are presented. Results and Discussion The r e s u l t i n g dendrograms from grouping the data sets by Cluster and H i e r a r c h i c a l grouping analysis are presented i n Figures 1-6. Generally, the two methods gave si m i l a r r e s u l t s i n that the resemblance of the various data sets to the Canadian S o i l C l a s s i f i c a t i o n System tended to correspond in a similar manner. The Cluster Analysis approach generally l e f t a larger number of s o i l s (Nos. 8, 15,27,3,14,25) that did not enter the structure u n t i l a very high l e v e l compared to the h i e r a r c h i c a l approach. a. Cluster Analysis In t h i s approach using the selected average data set (Figure 1), the process resulted in two predominant groups. The Gleysolic Group included three members of the Bates series (Nos. 18,23,30) which were c l a s s i f i e d as Degraded Melanic Brunisols by conventional methods. The - 7 6 -Table 2. S o i l s eries, name and CSSC c l a s s i f i c a t i o n for s o i l s studied Series* C l a s s i f i c a t i o n S o i l Series No. Code Code Name C l a s s i f i c a t i o n * * 1 2070 721 Cresent Orthic Gleysol 2 2092 7115 Delta Saline Orthic Humic Gleysol 3 2185 7115 Guichon Saline Orthic Humic Gleysol 4 3303 721 K i t t e r Orthic Gleysol 5 3363 721 McLellan Orthic Gleysol 6 3391 712 Nicomekl Rego Humic Gleysol 7 4004 712 Arnold Rego Humic Gleysol 8 4060 712 Calkins Rego Humic Gleysol 9 4182 611 Grevell Orthic Regosol 10 4335 522 Lickman Degraded E u t r i c Brunisol 11 4365 522 Monroe Degraded E u t r i c Brunisol 12 4452 712 Pelley Rego Humic Gleysol 13 4630 732 Vedder Low Humic Eluviated Gleysol 14 5039 711 Buckerfield Orthic Humic Gleysol 15 5060 712 Calkins Rego Humic Gleysol 16 5335 522 Lickman Degraded Eu t r i c Brunisol 17 5630 732 Vedder Low Humic Eluviated Gleysol 18 6032 5128 Bates Gleyed Degraded Melanic Brunisol 19 6 335 522 Lickman Degraded Eutric Brunisol 20 6362 721 McElvee Orthic Gleysol 21 6450 721 Page Orthic Gleysol 22 6511 712 Ross Rego Humic Gleysol 23 7032 5128 Bates Gleyed Degraded Melanic Brunisol 24 7062 712 Carvolth Rego Humic Gleysol 25 7332 731 Langley Humic Eluviated Gleysol 26 7335 522 Lickman Degraded Eu t r i c Brunisol 27 7366 4325 Murrayville Bisequa Mini Humo Fe r r i c Podzol 28 7511 712 Ross Rego Humic Gleysol 29 8455 722 Prest Rego Gleysol - 7 7 -Table 2. Continued Series* C l a s s i f i c a t i o n S o i l Series No. Code Code Name C l a s s i f i c a t i o n * * 30 9032 5128 Bates Gleyed Degraded Melanic Brunisol 31 9215 711 Hjorth Orthic Humic Gleysol 32 9362 721 McElvee Orthic Gleysol 33 9365 522 Monroe Degraded E u t r i c Brunisol 34 9450 . 721 Page Orthic Gleysol 35 9546 711 Sim Orthic Humic Gleysol * Code used f o r series i n the data f i l e * * S o i l s were c l a s s i f i e d according to the CSSC System (19 70) group also contained s i x Rego Humic Gleysols (Nos. 6,7,12, 22,24,28), of which two (Nos. 22,28) were si m i l a r , three Orthic Humic Gleysols, (Nos. 2,14,35) and three Orthic Gleysols (Nos. 1,4,21). In several cases, s o i l s were separated at the Great Group l e v e l (Nos. 1,4,21) and (Nos., 2,6,35). The Brunisol group contained six Degraded Melanics (Nos. 10,11,16,19,26,33); two Orthic Gleysols (Nos. 20,32) which were i d e n t i c a l ; and one Orthic Regosol (No. 9). Two non-identical pairs (Nos. 29,34) and (Nos. 13, 17) existed outside of the two predominant groups. The remaining six s o i l s (Nos. 3,5,8,15,25,27) were grouped at a very high l e v e l . In comparison, using the average surface data (Figure 2), without the influences of some of the properties further down the p r o f i l e , grouping proceeded i n somewhat an i r r a t i o n a l manner. As a consequence, a larger number of s o i l s were grouped at a higher l e v e l . In t h i s analysis, more of the Brunisols were grouped with Gleysols. The readjustment of the emphasis of texture and structure to r e f l e c t the influence of some,of the properties further down the p r o f i l e , gave better correspondence to the.Canadian System than consideration of the surface 12 inches alone. Generally, however, the average p r o f i l e data (Figure 3) seemed to give a grouping most s i m i l a r to the CLASSIFICATION 7 7 7 7 7 7 7 7 7 2 2 2 11 I I I I I I 12 2 2 2 2 1 OBSERVATION NO. 2 1 2 2 2 3 1 4 12 7 4 8 2 I 5 5 7 1 I I 2 2 I -79-7 7 7 12 13 8 3 4 0 3 6 5 2 5 7 7 5 5 5 5 5 6 7 7 2 2 2 Z 2 2 2 2 I 2 2 2 I 1 2 2 2 2 2 1 I 2 I 2 3 I 2 3 I I 7 7 7 7 7 7 4 7 3 3 2 3 I I 3 I 2 2 1 12 2 2 I _ . . . 3 2 0 2 9 6 3 0 6 9 4 9 1 1 2 1 2 7 3 5 5 5 8 7 3 Figure 1. Dendrogram of selected average data by c l u s t e r analysis for 35 Fraser Valley s o i l s where c l a s s i f i c a t i o n i s according to CSSC (1970) CLASSIFICATION _ 8 ° " 7 7 7 7 5 7 7 7 7 7 5 5 5 5 7 7 7 7 7 7 7 7 5 5 5 5 6 7 7 7 7 7 4 7 7 2 3 3 1 2 2 2 1 I 12 I I 1 2 2 1 I 1 3 I I 2 2 2 2 1 2'2 1 2 1 3 1 1 1 2 - 2 2 2 1 1 2 2 2 2 2 2 2 1 I 1 2 1 I I I 2 2 2 2 I I 2 2 1 I 2 2 2 OBSERVATION NO. I I 12 2 2 2 3 3 2 1 3 2 3 3 2 I I I 2 J 3 2 1 21 13 7 71 1 4 4 2 8 3 0 3 8 2 0 1 6 5 5 2 4 0 6 6 9 9 4 9 2 5 3 7 5 8 I " 2 -UJ o CO o UJ y-< s < o -J < 5 -6 -Figure 2. Dendrogram of average surface s l i c e data by c l u s t e r a n a l y s i s f o r 35 Fraser V a l l e y s o i l s where c l a s s i f i c a t i o n i s according to CSSC (1970) CLASSIFICATION -81- '' 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 5 5 7 7 5 5 5 5 5 5 6 4 7 7 7 7 7 2 2 1 2 1 I 1 2 1 3 3 1 1 1 2 2 1 I I I 2 2 2 2 2 2 2 2 I 3 I 3 I I I I I 1 1 2 2 2 2 2 2 2 2 1 2 1 1 1 2 2 2 I- 1 2 2 2 2 2 2 1 21 1 2 2 1 OBSERVATION NO. 8 8 2 2 2 1 2 2 I I 3 2 1 3 2 3 1 3 1 1 1 2 2 1 2 1 1 4 1 I 2 8 2 9 4 7 3 7 5 6 5 4 2 3 8 0 0 2 1 3 0 6 9 6 9 7 4 5 5 8 3 Figure 3. Dendrogram of average p r o f i l e data by c l u s t e r analysis for 35 Fraser Valley s o i l s where c l a s s i f i c a t i o n is- according to CSSC (1970) Canadian C l a s s i f i c a t i o n System. Again two predominant groups prevailed. The Gleysolic group contained s i x Rego Humic Gleysols (Nos. 6,7,12,22,24,28), f i v e Orthic Gleysols (Nos. 1,4,5,21,34), three Orthic Humic Gleysols (Nos. 2,31, 35), two Low Humic Eluviated Gleysols (Nos. 13,17) which entered at a high l e v e l , and one Rego Gleysol (No. 29). The three members of the Bates series entered at a much higher l e v e l . The Brunisolic group contained the entire set of Degraded Eutrics (Nos. 10,11,16,19,26,35) and the one Orthic Regosol (No. 9). Two Orthic Gleysols (Nos. 20, 32) entered the tree at a high l e v e l . The remaining s o i l s (Nos. 27,14,25,15,8,13) also joined in the structure at a high l e v e l . The average p r o f i l e data subset (Figure 3) seemed to give the best c l u s t e r i n g by this method. One might suspect that some of the non-consistent s o i l s would group better i n a larger data set. In a 144 s o i l data set (not i l l u s t r a t e d ) , the Bates series members s t i l l tended to cluster with Gleysols, while s o i l s No. 3,8,15 remained as miscellaneous s o i l s , and the one Orthic Regosol s t i l l clustered with the Brunisols. -83-b. H i e r a r c h i c a l Grouping Analysis Subjecting the selected average data set (Figure 4) to h i e r a r c h i c a l grouping resulted i n three predominant groups, with Gleysolic s o i l s dominating two of the c l u s t e r s . The f i r s t Gleysolic group included the Bates series members (Nos. 18,23,30) and one Degraded E u t r i c Brunisol. Apart from these, with the exception of one other s o i l (No. 25), the remaining group members are homogeneous at the Great Group l e v e l (Humic Gleysol). With the exception of one Brunisol (No. 11), the second Gleysol group was composed e n t i r e l y of Gleysolic s o i l s , but breaks at the Great Group l e v e l were not precise. The Brunisolic Group contained e s s e n t i a l l y the same s o i l s as the corresponding group by method 1 (Figure 1) but did not include the three Bates members. In t h i s case, however, the two Orthic Gleysols came in at an intermediate l e v e l , while the Mini Humo Fe r r i c Podzol came in at the highest l e v e l for this group. The Regosol (No. 9) on the other hand came in at a very low l e v e l . As was the case with method 1, properties of the surface 12 inches (Figure 5) f a i l e d to r e f l e c t some of the more diagnostic features further down the p r o f i l e of many of these s o i l s . Again the Brunisolic s o i l s f a i l e d to -84-c l u s t e r with the Podzol (No. 27), the Regosol (No. 9) and the two Gleysols (Nos. 8,15) joining with the four members of the Lickman seri e s . As with method 1, changing the analysis of texture and structure resulted i n d i f f e r e n t c l u s t e r s . Using the average p r o f i l e data (Figure 6) three groups resulted. The f i r s t G leysolic group contained only members of the Gleysolic Order. The group included two Orthic Humic Gleysol (Nos. 3,31), three Rego Humic Gleysols (Nos. 12,22,28), three Orthic Gleysols (Nos. 1,21,34), one Rego Gleysol (No. 29) and two Low Humic Eluviated Gleysols (Nos. 13,17). The second Gleysolic group contained the three Degraded Melanic Brunisols, three Orthic Humic Gleysols (Nos. 2,14,35), three Rego Humic Gleysols (Nos. 6,7,24) two Orthic Gleysols (Nos. 4,5) and one Humic Eluviated Gleysol (No. 25). The Brunisolic group contained a l l the Degraded E u t r i c Brunisols (Nos. 10,11,16,19,26,33), the two Orthic Gleysols (20,32), the mini Humo Fe r r i c Podzol (No. 27) and the Regosol (No. 9). Again the average p r o f i l e data gave a grouping that had the closest resemblance to the Canadian scheme. ' i— n v j J I I i v-< - « i i v 11 - o p -4 5 6 5 5 5 5 7 7 5 7 7 7 5 7 7 7 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 2 1 2 2 2 2 2 2 2 II I I I I I I I I I 13 3 3 2 2 I 1 2 / 2 1 2 2 I 2 2 12 2 2 2 I I 2 2 2 2 2 2 2 I 2 2 I 2 I I 2 2 11 2 2 11 I 12 1 OBSERVATION NO. 2 3 I I I 2 2 3 1 I 2 3 2 2 1 1 2 3 2 1 1 1 2 3 3 2 > 7 3 9 0 6 9 6 0 2 1 8 5 4 0 2 8 4 8 3 2 6 5 5 3 7 1 4 7 2 1 5 1 4 9 3 10 20 -\ 30 40 50 70 D t T 80 90 Figure 4. Dendrogram of selected average data by h i e r a r c h i c a l analysis for 35 Fraser Valley* s o i l s where c l a s s i f i c a t i o n i s according to CSSC (197 0) / ;/ ' 4 6 5 5 5 5 7 7 7 7 7 7 7 5 5-S 5 7 7 7 7 7 7 7 5 7 7 7 7 7 7 7 7 7 7 3 1 2 2 2 2 2 2 1 1 I I I 2 M I 1 3 1 1 2 3 3 2 2 2 11 I 2 I 2 2 I 2 I 2 2 2 2 1 1 2 2 I 2 2 2 2 2 2 21 I 2 I 2 2 2 I I 2 2 I I I ' I 2 I OBSERVATION NO. • 2 I I I 2 2 3 I 2 2 3 12 3 2 3 I I I 2 1 3 3 2 7 9 0 6 9 6 0 2 8 5 2 2 8 3 8 3 0 6 5 5 2 3 7 1 4 1 7 4 4 5 1 4 9 3 O K ar U J 80 Figure 5. Dendrogram 9 0 f average surface s l i c e data by h i e r a r c h i c a l grouping a n a l y s i s f o r I 35 Fraser V a l l e y s o i l s where c l a s s i f i c a t i o n i s according to CSSC 100-1 (1970) CLASSIFICATION -87-4 6 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 1 2 2 2 2 2 2 2 2 I II I I 22 2 1 2 3 3 2 1 2 2 2 2 2 2 1 I 2 2 2 2 2 1 I 2 M 2 2 OBSERVATION NO. 2 I 3 I I I 2 2 3 12 2 2 2 3 3 11 7 7 7 7 7 5 5 5 7 7 7 7 I I 3 I I I I I I 2 I I 121 12222 I 121 2 12 3 12 3 7913 0 6 9 6 0 2 8 5 2 2 8 1 1 9 I 4 3 7 3 7 5 4 40 8 3 5 5 6 2 4 TJ TZT I Figure 6 . Dendrogram of average p r o f i l e data by h i e r a r c h i c a l grouping analysis for 35 Fraser Valley s o i l s where C l a s s ! f i f s + i n n n a ar>p'nT>Hi'n<i- t n C^Rf 1 0 9 7 0) -88-Conclusions No marked differences i n clusters resulted using the corresponding data sets by the two alte r n a t i v e methods. The average p r o f i l e data seemed to give the best correspondence with the Canadian S o i l C l a s s i f i c a t i o n System. The res u l t s seemed to suggest that f a i r l y good groupings could r e s u l t from data that treated the p r o f i l e as an e n t i t y . Consideration of the surface layer alone resulted i n groupings inconsistent with a natural c l a s s i f i c a t i o n (CSSC, 1970a) but may be i d e a l for a s p e c i f i c c l a s s i f i c a t i o n that considers only the surface layer. However, i t was f e l t that the h i e r a r c h i c a l grouping scheme resulted i n better defined groups than the clu s t e r analysis approach. Another advantage of the former was c r i t e r i a by which the optimum number of groups could be determined s t a t i s t i c a l l y . Using numerical taxonomy, i t s p r i n c i p l e s and s t a t i s t i c a l techniques in s o i l data interpretation remain a r e l a t i v e l y unexplored area. Work i n t h i s area i s continuing using the data f i l e . The B.C. S o i l Survey data f i l e i n i t s present state seems to be a useful data source for numerical taxonomy considerations. However, as the f i l e continues to evolve, i t s importance and significance for numerical c l a s s i f i c a t i o n should increase, p a r t i c u l a r l y as more quantitative data becomes av a i l a b l e . Chapter IV A METHOD OF STATISTICALLY INTERPRETING SOIL DATA FOR AGRICULTURAL AND ENGINEERING LAND USE Introduction S o i l interpretations are generally considered to be predictions of s o i l behaviour under stated condition (Kellogg, 1961). They are not recommendations for s i t e s p e c i f i c tracts of land or dictations of land use, but general guidelines for s o i l use. To date most interpret-ations have been q u a l i t a t i v e i n nature (Klingebiel and Montgomery, 1961; USDA, 1967) and give a series of ratings from good to unsuitable for a s p e c i f i c purpose. Another method presents the data for a use and leaves the evaluation up to the user (SEWRPC, 1966). To many, these ratings mean very l i t t l e apart from a signal whether or not land use plans should proceed. For the user, there i s very l i t t l e i n d i c a t i o n why s p e c i f i c land use plans should not be carried out. S o i l survey interpretations have been made and used since routine surveys began. - 9 0 -After approximately 50 years of experience, no generally accepted quantitative approach e x i s t s . Since more than one s o i l c h a r a c t e r i s t i c i s generally considered i n making an int e r p r e t i v e r a t i n g , i t becomes extremely d i f f i c u l t to objectively c l a s s i f y s o i l s for s p e c i f i c uses. With current increases i n development costs for p r a c t i c a l l y a l l uses, there i s an increasing need for ratings that quantitatively and objectively consider the i n t r i n s i c properties of a s o i l . These ratings would generally be considered of more value than q u a l i t a t i v e interpretations. In addition, the s o i l user i s generally more concerned about the inputs that w i l l have to be introduced in order that the s o i l becomes suitable for thei r s p e c i f i c purpose. More important, these land users are concerned about the costs that w i l l have to be incurred before the s o i l can be used for a s p e c i f i c land use. The purpose of this study was to develop a methodology (model) by which s o i l s could be rated, inputs to improve the s o i l could be determined and some estimate of input costs could be calculated. Two applications of s o i l survey interpretation were used to i l l u s t r a t e the ch a r a c t e r i s t i c s of the model. These were s u i t a b i l i t y for cash cropping and s u i t a b i l i t y for roadbed construction. -91-The Model The t h e o r e t i c a l framework underlying the construction of the model i s r e l a t i v e l y simple and cer t a i n l y not new. S o i l properties of a p a r t i c u l a r s o i l either compliment or detract from the s u i t a b i l i t y of that s o i l for a p a r t i c u l a r use. Generally, the s o i l user has a mental image, or model, of the i d e a l s o i l for his s p e c i f i c use. Since an actual s o i l i n nature r a r e l y f i t s the model or i d e a l p r e c isely, an intended user w i l l have to introduce a series of inputs at a cost by which a s o i l i s modified to quantitatively resemble the model s o i l . Figure 1 i l l u s t r a t e s the r e l a t i o n s h i p between a model and a t y p i c a l s o i l . The quantitative s o i l i nterpretation problem was attacked by the use of e x i s t i n g routine s t a t i s t i c a l ] procedures since i t i s imperative in quantitative consider-ations, to be able to estimate and define the i n t e r -relationships between s o i l properties. Ideally, for the purpose of r a t i n g of s o i l s for land use objectives, i t i s e s s e n t i a l that considerations are based on independent factors that a f f e c t s o i l use. Factor analysis was used as the s t a t i s t i c a l basis for the f i r s t part of t h i s study. This s t a t i s t i c a l tool attempts to reduce a set of 'n' - 9 2 -variables into a subset of 'm1 factors, or underlying influences, which by d e f i n i t i o n are orthogonal or independent (Adcock, 1957). Although detailed treatments of the subject are available (Adcock, 1957; C a t t e l l , 1965; Harmon, 1960), a diagrammatic representation of the model i s given to i l l u s t r a t e the basic p r i n c i p l e s of the method. Since the basis of the method i s a correlation matrix, Figure 2 i l l u s t r a t e s the geometrical representation of the correlation c o e f f i c i e n t between two variables (Adcock, 1957). A and B represent the two variables as vectors which have defineable length and d i r e c t i o n in a two dimensional case. The cosine of the angle between the two vectors i s the c o r r e l a t i o n c o e f f i c i e n t and i s given by the following expression: r = cos <J> = ^ (1) where r i s the c o r r e l a t i o n c o e f f i c i e n t , a i s the projection of A on B, b i s the projection of B on A, and cos § i s the cosine of the angle <J>. Figure 3 i l l u s t r a t e s how a number of variables would be placed on a two dimensional plane i n terms of th e i r geometrical relationships discussed above. A simplifying assumption i s that the vectors have d i r e c t i o n a l 2-*UN!TS DEVIATION 4 FROM MODEL 6 SLOPE PH STRUCT j3. S. MODEL SOIL FOR USE X A TYPICAL SOIL 8-10-12-Figure 1. Diagrammatic r e p r e s e n t a t i o n of the r e l a t i o n s h i p between a h y p o t h e t i c a l model and a t y p i c a l s o i l *Scale i s i n a r b i t r a r y u n i t s -94-A -> B a r = Cos jef = -f D Figure 2. Geometric representation of the co r r e l a t i o n c o e f f i c i e n t 'r' where a i s the projection of vector A on B, b i s the projection of the vector B on A and Cos <j> i s the cosine of the angle cb. F 2 Figure 3. Relationship of the variable vectors (V ' - V.) to the factor axis (F , T ). - 9 6 -tendencies in two dimensions only. The l i n e representing variable 1 (V^) i s placed a r b i t r a r i l y , while the vectors of the other variables (V^ - V g) are placed on the basis of t h e i r c o r r e l a t i o n with variable 1. It can be seen that the coordinates of the two dimensional plane can be considered as factors (F^, which being independent, intersect at r i g h t angles. Each variable may be represented exactly i n terms of the factors by defining them i n terms of the coordinates, for example, = 1.5 F-^  + 0.7 F^. These are generally referred to as factor loadings. In a more r e a l i s t i c s i t u a t i o n the cor r e l a t i o n between a large number of variables can be expected to project into several dimensions which cannot be represented diagrammatically but can be solved by mathematical procedures. The individuals or s o i l s on which the variables have been measured may be represented i n *nT dimensional space as well. Regression equations are derived from the variable factor loadings to give factor loadings for the i n d i v i d u a l . s o i l s . Consequently, s o i l s may be represented as points in ' n' dimensional space. Figure 4 i l l u s t r a t e s this in two dimensions. Although mathematically, the factors or coordinates may be placed orthogonally in any of an i n f i n i t e number of positions, the factors are generally rotated in such a way as to r e f l e c t simple structure (Adcock, 1957). One c r i t e r i o n for accomplishing this i s to minimize the sum of the standard deviations about any factor. This i s analogous to a regression l i n e . Having accomplished the representation of i n d i v i d u a l s o i l s and the i d e a l model for a p a r t i c u l a r use as actual locations or points in terms of a set of factors, the Euclidean distance between each s o i l and the model can be determined. The r e l a t i v e distance between a s o i l and the model i s a measure of the degree of s i m i l a r i t y between the two individuals (Sokal, 1961). Resorting again to a two dimensional case (Figure 5) the straight l i n e distance between two points in space may be determined. The 'n' dimensional distance can be found by: N v d = ( E (MF. - SF.) 2 ) 2 (2) J=l 1 3 where d i s the Euclidean distance, N i s the number of factors or dimensions, MF. i s the j t h factor for the model 3 and SF. i s the j t h factor for the s o i l . 3 The conceptual framework for treating s o i l s evolved from the premise that s o i l i s a dynamic entity involving complex int e r - r e l a t i o n s h i p s between s o i l properties and dictates that treatment of one s o i l parameter w i l l have a modifying influence on dependent variables as well. Although the e f f e c t of a - 9 8 -Figure 4. R e l a t i o n s h i p of s o i l s to the two f a c t o r s ( F ^ F 2 ) i n 2-dimensional space -99-F2 *(MsF|, MF2) \ N \ \ Figure 5. Distance r e l a t i o n s h i p i n 2-dimensional space where d i s Euclidean distance, MF i s factor 1 (F ) loading, and MF i s factor 2 (F 2) loading for the model, while SF and SF are factor .loadings for the s o i l "(SF|, SF 2) -100-series of treatments on a s o i l can be determined by remeasuring a l l the dependent variables a f t e r each treatment, this process i s impractical for land use management considerations since time and economic considerations are generally important. However, i f treatments and " i n t e r - e f f e c t s " could be simulated by s t a t i s t i c a l procedures using e l e c t r o n i c data processing equipment, the resource planner would have a powerful planning tool at his disposal. In the second part of the study c o r r e l a t i o n and regression analysis was used. Subject to assumptions of randomness of sample, normality and homoscedasticity (Downey and Heath, 1965), the s i g n i f i c a n t c o r r e l a t i o n c o e f f i c i e n t , within the bounds of p r o b a b i l i t y , describes the i n t e r - r e l a t i o n s h i p s among variables. Also, basic to the concept of the model i s , subject to the assumption of l i n e a r i t y of relationships between two variables, that the regression equation approximately predicts the expression of one parameter or property i n terms of another. In considering 1 M' variables that adequately describe a s o i l , there are 'M' possible treatments that can be made to improve the s o i l to resemble the model. There are also, i n the f i r s t order of int e r a c t i o n , p o t e n t i a l l y a maximum of 'M 'M'M ' -D inter-treatment effects which are caused by inter-dependencies between variables. A method was developed by which i t could be determined at any stage of the treatment process, which treatment with f i r s t order e f f e c t s , would modify the s o i l the most towards r e f l e c t i n g the i d e a l s o i l . On the basis of a number of attempts, the best treatment seemed to be the one that reduced the o v e r a l l d i s s i m i l a r i t y r a t i o (ODR) the most, i . e . , n ODR = ABS ( Z (Mj - Sj)/Mj) (3) J = l where n i s the t o t a l number of variables, Mj i s the j t h variable for the model, Sj i s the jth variable for the s o i l , ABS i s the absolute value of the expression in brackets and ODR i s the o v e r a l l d i s s i m i l a r i t y r a t i o . The following steps were executed to determine the treatments required to improve the s o i l to better resemble the model. a. The i n i t i a l ODR i s calculated. • b. A l l possible treatments and s i g n i f i c a n t inter-treatment effects are calculated. 1. Treatment increment (on the independent variable) i s calculated. II = Mj - Sj (4) where II i s the i n i t i a l treatment, Mj i s the value for - 1 0 2 -model variable j and Sj i s value for s o i l variable j . 2. The inter-treatment e f f e c t (the amount the independent variable treatment changes the dependent variable) i s calculated i f the c o r r e l a t i o n between the treatment variable and the other variable i s s i g n i f i c a n t (the . 0.9 8% l e v e l was used), i . The B c o e f f i c i e n t i n the regression equation i s calculated by S] = a + BMj (5) where Sj i s the estimated value of the dependent variable, a i s a constant, B i s a constant and Mj i s the value of the model variable j . However, since the treatment only involves incremental estimates, the y-axis intercept 'a' was not required hence: B = r * g | g ; II (Bjerring, 1970) (6) where r = correlation c o e f f i c i e n t between variable i and variable j , SDSj i s the standard deviation i s the dependent variable, and SDSi i s the standard deviation of the independent variable, i i . The increment for the dependent variable i s estimated by . - 1 0 3 -I Sj = II x B (7) where I Sj i s the estimated increment of the dependent variable, and II i s the increment of the independent variable, i i i . The estimated increment i s added to the value of the dependent variable. Sj = Sj + I Sj (8) where Sj i s the new value for the dependent variable Sj i s the o r i g i n a l value of the dependent variable and I Sj i s the estimated increment. The ODR i s calculated for each treatment. The treatment that reduced the o r i g i n a l ODR the most i s selected and i t s modified set of variable values becomes the modified s o i l f or the next i t e r a t i o n . This process i s repeated u n t i l the advantage gained in decreasing the ODR i s less than 0.01. Record i s kept of a l l treatments used and i f cost estimates are a v a i l -able the t o t a l treatment cost for the s o i l can be determined. - 1 0 4 -Materials and Methods a. A g r i c u l t u r a l Land Use Data for the a g r i c u l t u r a l land use aspect of the study was extracted from the B r i t i s h Columbia s o i l survey data f i l e (John et a l . , 1969). A set of 35 s o i l s (Table 1) with 21 variables were extracted. Since the best represent-ation of an a g r i c u l t u r a l s o i l i s not known pr e c i s e l y , three d i f f e r e n t data sets were extracted. 1. Surface S l i c e Variable values were determined as an average of the surface twelve inches of the mineral s o i l , on the basic assumption that, for a g r i c u l t u r a l and plant environment considerations, the top twelve inches represents the most s i g n i f i c a n t part of the p r o f i l e f or plant growth. 2. Selected Average P r o f i l e The c r i t e r i a f o r defining variable values for this data set are almost the same as the surface s l i c e data set i n that a l l variables with the exception of texture and structure were average values of the surface twelve inches. Percent sand, s i l t and clay and structure were taken as the average of the control section (40") on the assumption that drainage and the plant root environment are modified by the expression of these variables further down the p r o f i l e . -105-Table 1. C l a s s i f i c a t i o n and series name of s o i l s employed i n the study for row cropping s u i t a b i l i t y Series* C l a s s i f i c a t i o n S o i l Series No. Code Code Name C l a s s i f i c a t i o n * * 1 2070 721 Cresent Orthic Gleysol 2 2092 7115 Delta Saline Orthic Humic Gleysol 3 2185 7115 Guichon Saline Orthic Humic Gleysol 4 3303 721 K i t t e r Orthic Gleysol 5 3363 721 McLellan Orthic Gleysol 6 3391 712 Nicomekl Rego Humic Gleysol 7 4004 712 Arnold Rego Humic Gleysol 8 4060 712 Calkins Rego Humic Gleysol 9 4182 611 Grevell Orthic Regosol 10 4335 522 Lickman Degraded E u t r i c Brunisol 11 4365 522 Monroe Degraded E u t r i c Brunisol 12 4452 712 Pelley Rego Humic Gleysol 13 4630 732 Vedder Low Humic Eluviated Gleysol 14 5039 711 Buckerfield Orthic Humic Gleysol 15 5060 712 Calkins Rego Humic Gleysol 16 5335 522 Lickman Degraded E u t r i c Brunisol 17 5630 732 Vedder Low Humic Eluviated Gleysol 18 6032 5128 Bates Gleyed Degraded Melanic Brunisol 19 6335 522 Lickman Degraded E u t r i c Brunisol 20 6362 721 McElvee Orthic Gleysol 21 6450 721 Page Orthic Gleysol 22 6511 712 Ross Rego Humic Gleysol 23 7032 5128 Bates Gleyed Degraded Melanic Brunisol 24 7062 712 Carvolth Rego Humic Gleysol 25 7332 731 Langley Humic Eluviated Gleysol 26 7335 522 Lickman Degraded E u t r i c Brunisol 27 7366 4325 Murrayvilie Bisequa Mini Humo Fer r i c Podzol - 1 0 6 -Table 1. Continued Series* C l a s s i f i c a t i o n S o i l Series No. Code Code Name C l a s s i f i c a t i o n * * 28 7511 712 Ross Rego Humic Gleysol 29 8455 722 Prest Rego Gleysol 30 9032 5128 Bates Gleyed Degraded Melanic Brunisol 31 9215 711 Hjorth Orthic Humic Gleysol 32 9362 721 McElvee Orthic Gleysol 33 9365 522 Monroe Degraded E u t r i c Brunisol 34 9450 721 Page Orthic Gleysol 35 9546 711 Sim Orthic Humic Gleysol *Code used for series i n the data f i l e * * S o i l s were c l a s s i f i e d according to the CSSC System (1970) - 1 0 7 -3. Average P r o f i l e This data set was extracted as an average over the control section, but weighted according to the depth of each horizon using the following formula. N VAj = ^ Z ( V i j * h i ) ( 9 ) where VAj i s the average value of variable j , h i i s the depth of horizon i and V i j i s the variable j value of horizon i . The assumption for this data set was that the expression of a s o i l may be considered as the average of the variable values over the depth of the p r o f i l e . * Since some of the data that was co l l e c t e d on routine s o i l survey was descriptive, some variables were quantitized by coding (Table 2). The remaining data was used in i t s o r i g i n a l form. A number of computer programs were written to perform the operations discussed above. The program set included a main routine with accompanying subroutines that handled regulatory and input and output operations; a distance subroutine that calculated the Euclidean distance in n-dimensional space between the model and each s o i l ; a '''Descriptive data such as slope and drainage were not averaged. -108-Table 2. Variables and coding used i n the study Variable Slope Drainage Hue Value Chroma Roots Structure Sand S i l t Clay pH (1:1) Organic matter C/N r a t i o Available P Ca, Mg, Na, K Cation Ex. Cap. Base Saturation Variable range depressional-extremely sloping rapidly-very poorly drained 10YR-5G 0- 9 1- 9 few-abundant single grain-coarse columnar 1-99% 1-9 9% 1-9 9% Code or units 1-7 1-7 1-8 0- 9 1- 9 1-4 1-99 1-99 1-99 1-99 as recorded percent as recorded ppm me/100 g me/10 0 g percent -109-factor analysis subroutine that was modified fromthe UBC Facto Program (Bjerring, 1967) s p e c i f i c a l l y for the study; and a treatment subroutine that performed the simulated treatment and cost calculations. The hypothetical l i s t of cost estimates used f o r row cropping are presented in Table 3. The a g r i c u l t u r a l model used i n this study i s b a s i c a l l y a product of l i t e r a t u r e research (Luttmerding and Sprout, 1966, 1967 , 1968a, 1968b; Runka and Kelley, 1964; Comar et a l . , 1962a, 1962b; Sprout and Kelley,1961, Buckman and Brady, 1964) and i s used for i l l u s t r a t i v e purposes only (Table 4). If the a g r i c u l t u r a l land user i s d i s s a t i s f i e d with the model used, the model may be modified or substituted for at w i l l . b. Engineering Land Use The t h e o r e t i c a l discussion of th i s paper applies equally to both land use considerations. For consideration in t h i s study, 26 s o i l s of the Fraser Valley of B.C. were used (Table 5). Although a number of variables were extracted from the B.C. S o i l Survey Data f i l e the majority of variables were determined i n cooperation with another study (UBC, unpublished data). Table 6 i l l u s t r a t e s the 18 variables used. Hypothetical cost estimates are given i n Table 7. For -110-Table 3. Variable treatment cost estimates for a g r i c u l t u r a l land use Variable Cost/unit * Variable Cost/unit Slope $1,000.00 C/N r a t i o $ 5.00 Drainage 200.00 A v a i l . P 1.00 Structure 1. 00 Calcium 20.00 Sand 5.00 Magnesium 20.00 S i l t 5.00 Sodium 100. 00 Clay 5.00 Potassium 20.00 pH 50.00 Cation Ex. Cap. 1.00 Organic matter 20 . 00 . Base Saturation 1.00 ACost figures were ar b i t r a r y and units are described in Table 2, page 108. - I l l -Table 4. Variable value Variable Value* Slope 2.00 Drainage 3.00 Stoniness 1. 00 Hue 5.00 Value 2.00 Chroma 2.00 Roots 4.00 Structure 10. 00 Sand 20.00 S i l t 60.00 Clay 20.00 •'Values according to c s for the a g r i c u l t u r a l model Variable Value* pH 5. 50 Organic matter 2. 00 C/N r a t i o 12. 00 Available P 50. 00 Calcium 5. 00 Magnesium 2. 00 Sodium 0. 10 Potassium 0. 40 Cation Ex. Cap. 20. 00 Base Saturation 50. 00 ode (Table 2) -112-Table 5. C l a s s i f i c a t i o n and series name of s o i l s used for roadbed construction s u i t a b i l i t y S o i l Series C l a s s i f i c a t i o n F a i r f i e l d Gleyed Degraded Melanic Brunisol Monroe Degraded Eu t r i c Brunisol Cloverdale Eluviated Gleysol Ladner Humic Eluviated Gleysol Spetifore Saline Rego Humic Gleysol Whatcom Bisequa Mini Humo F e r r i c Podzol Hatzic Rego Humic Gleysol Hazelwood Orthic Humic Gleysol Monroe Degraded E u t r i c Brunisol Cresent Orthic Gleysol Page Orthic Gleysol Marble H i l l Mini Humo Ferr i c Podzol Langley Humic Eluviated Gleysol Durieu Mini Ferro Humic Podzol Vinod Saline Rego Gleysol Richmond Typic Humisol Whatcom Bisequa Mini Humo Fe r r i c Podzol Webster Humic Eluviated Gleysol Milner Bisequa Mini Humo Fe r r i c Podzol Cresent Orthic Gleysol Ladner Humic Eluviated Gleysol Webster Humic Eluviated Gleysol Livingstone Gleyed Bisequa Sombric Humo Fe r r i c Podzol Cloverdale Eluviated Gleysol Milner Bisequa Mini Humo F e r r i c Podzol Whatcom Bisequa Mini Humo F e r r i c Podzol -113-Table 6. Variables and model values used for roadbed construction Variable Model value Slope 2, .0 Drainage 3. .0 Stoniness 0, .0 Structure' 95. ,0 Organic Matter 0. .50 pH (CaCl 2) 5, .40 F i e l d Moisture 23. .1 Bulk Density 1. .40 P a r t i c l e Density 2. ,69 1/3 Bar Moisture 19. .0 15 Bar Moisture 5. .4 Shrinkage Limit 24, . 8 P l a s t i c Limit 33. .0 Liquid Limit 42, .8 P l a s t i c i t y Index 9. .8 Percent Sand 50. . 0 Percent S i l t 43. ,0 Percent Clay 7 . ,0 -114-Table 7. Variable treatment cost estimates for engineering land use Variable Cost/unit" Drainage $ 2 0 0.00 Organic Matter 50.00 pH 100.00 F i e l d Moisture 50.00 Bulk Density 5,000.00 P a r t i c l e Density 5,000.00 1/3 Bar Moisture 20.00 15 Bar Moisture 50.00 Shrinkage Limit 50.00 P l a s t i c Limit 50.00 Liquid Limit 50.00 P l a s t i c i t y Index 50.00 Sand 100.00 Clay 100.00 "Cost figures were a r b i t r a r y . -115-For i l l u s t r a t i v e purposes, the Monroe series, which was thought to be a f a i r l y good s o i l for roadbed construction, was used as the engineering model to which the other s o i l s were relate d . I t i s important to stress some of the assumptions and li m i t a t i o n s of the proposed methodology. a. Sample size The v a l i d i t y of factor extraction i n factor analysis i s subject to the r e s t r i c t i o n that the number of factors plus the number of variables must be less than the number of observations used. As an example with 18 variables and H factors at least 2 3 s o i l s are required. In the s t a t i s t i c a l treatment of s o i l s , the smaller the number of observations, the larger the c o r r e l a t i o n c o e f f i c i e n t has to be in order to be s i g n i f i c a n t . This r e s t r i c t i o n generally results in a smaller number of possible treatment and inter-treatment e f f e c t s . b. S t a t i s t i c a l v a l i d i t y As has been mentioned previously, correlations can only be considered v a l i d i f the sample i s drawn randomly from the population. -116-The d i s t r i b u t i o n of each variable over the number of observations should approximate a normal d i s t r i b u t i o n . F i n a l l y , the condition of homoscedasticity must be approximately true. c. Treatment v a l i d i t y Since the c o r r e l a t i o n matrix ( i n t h i s case from the factor analysis run) i s the basis of the treatment subroutines, corrections to a s o i l are made only i f a s i g n i f i c a n t r e l a t i o n s h i p exists between variables. As a consequence variables that possibly should be modified are not because the c o r r e l a t i o n c r i t e r i a i s not met. In addition, although the treatment sequence i s optional the end product does not necessarily r e f l e c t the model per f e c t l y . I t was f e l t that i t might be desireable to incorporate features into the methodology by which treatment procedures might be modified. As a r e s u l t , the option exists to control the treatment sequence. This however does not necessarily r e s u l t i n a better s o i l -117-since the sequence i s not s t a t i s t i c a l l y derived the end r e s u l t became on occasion absurd since negative values for some variables occurred. Another f a c i l i t y incorporated i s the a b i l i t y to assign variables as either dependent or independent i n that these variables may be used as treatments but cannot be modified by i n t e r -treatment e f f e c t s . The user can also decide which variables he i s unwilling to use as treatments. As an example, he may choose not to modify slope i f this happens to be a recommended treatment. The l e v e l of significance may be modified or removed as desired. Inter-treatment effects In the present study, i t was assumed that only f i r s t order inter-treatment effects would be considered and that second and higher order effects were i n s i g n i f i c a n t . I f , for example, calcium i s added there i s a d i r e c t f i r s t order e f f e c t on pH since generally there i s a high correlation between the two. The incremental change of pH because of the addition of calcium 118-may influence other variables that are dependent on pH, which in turn may have an e f f e c t on other variables. The r e s u l t i n g calculations to consider these would assume astronomical proportions. e. Regression assumption It has been assumed that for s i m p l i c i t y that the r e l a t i o n s h i p between variables that are s i g n i f i c a n t l y correlated are s t r i c t l y l i n e a r . Also, i t i s assumed the incremental change of a variable can be approximated by the regression equation. f. The model It should be emphasized that the models used for row cropping and roadbed construction are given as examples only. Depending on the use i n question any model can be incorporated into the methodology given that corresponding s o i l data i s available. The Agriculture treatment analysis considered c o r r e l a t i o n c o e f f i c i e n t s s i g n i f i c a n t at the 9 8% confidence l e v e l . Slope, stoniness, roots and organic matter were a r b i t r a r i l y declared as independent variables while stoniness, hue, value, and chroma were not considered as -119-treatments. The engineering treatment analysis considered the same l e v e l of significance as the Agriculture analysis with slope, stoniness and texture a r b i t r a r i l y set as independent variables and slope, stoniness, structure and s i l t were not desired as treatment e f f e c t s . Results and Discussion The distances by the three methods of extraction for a g r i c u l t u r a l s o i l s are given i n Table 8. Costs by the three methods are given in Table 9 while Table 10 gives distances and costs for engineering considerations. F u l l descriptions of a l l of these s o i l s are given i n B.C. S o i l Survey Reports (Comar et a l . , 1962a, 1962b, Luttmerding and Sprout, 1966, 1967, 1968a, 1969b, Runka and Kelley, 1964 and Sprout and Kelley, 1961). Table 11 i l l u s t r a t e s the computer output for the Cresent series and gives the number of i t e r a t i o n s , o r i g i n a l s o i l , treatments, costs estimates and the resultant s o i l using average p r o f i l e data. The selected average p r o f i l e data set seemed to give ratings most si m i l a r to the Canada Land Inventory Capability (CLI) ra t i n g for Agriculture (CLI, 19 70). Inconsistencies which do exist are largely a r e s u l t of ratings being e n t i r e l y based on the variable set used. -120-Table 8. Euclidean distance of each s o i l from the row cropping model Average Selected Average S o i l Series Surface Average P r o f i l e Cresent 5.0 4.9 5.2 Delta 4.8 5.3 5.2 Guichon 7.5 7.7 7.5 K i t t e r 5.5 5. 8 5.1 McLellan 6.0 5.6 5.9 Nicomekl 6.2 6.4 5.8 Arnold 5.0 5.8 5.5 Calkins 6.0 5.9 6.4 Grevell 5.9 5.8 5.9 Lickman 5.3 5.4 5.4 Monroe 4.4 5 . 0 5.8 Pelly 6.7 6.1 6.1 Vedder 4.5 5.6 6.0 Buckerfield 4.7 4.9 5.6 Calkins 6 . 0 5.9 6.4 Lickman 5.3 5.4 5.4 Vedder 4.7 5.5 6.0 Bates 5.0 6.0 5.8 Lickman 6.1 5.9 6.3 McElvee 5.6 6.2 6.0 Page 5.6 5.9 6.1 Ross 5.3 6.0 6.1 Bates 5.3 6.2 6 . 0 Carvolth 5.4 5.0 5.0 Langley 6.5 6 . 6 7.0 Lickman 5.9 6.2 6.2 Murrayvilie 5.8 6 . 0 6.3 Ross 5.2 5. 3 6.1 Prest 6 .1 6.4 6 . 3 Bates 5 . 5 5.3 5.4 Hjorth 6.0 5.9 5.9 McElvee 5 . 6 6 . 3 6.0 Monroe 5.0 5.1 5.1 Page 6.0 6 . 0 5.5 Sim 6.0 6.1 6.1 -121 Table 9. Estimated costs to improve s o i l s f o r row cropping Average Selected Average S o i l Series Surface Averag ;e P r o f i l e Cresent $ 233. 91 $ 504. 81 $ 145. 49 Delta 387. 85 426. 12 321. 56 Guichon sm. 28 591. 29 546. 50 K i t t e r 1424. 04 1564. 19 1222 . 67 McLellan 434. 24 364. 64 247. 70 Nicomekl 376 . 73 465. 15 344. 9 5 Arnold 1320. 82 1579. 48 1228. 90 Calkins 398 . 61 1173. 58 881. 94 Grevell 1426. 91 1301. 07 1384. 59 Lickman 1260 . 08 1343. 44 1255. 74 Monroe 244. 56 436 . 67 225. 90 Pelley 1675. 58 1931. 88 1319. 72 Vedder 1128. 90 1551. 82 1192. 35 Buckerfield 2133. 91 1685. 12 1592. 70 Calkins 398. 61 1173. 58 881. 94 Lickman 1260 . 08 1343. 44 1255. 74 Vedder 129. 60 589 . 80 202 . 23 Bates 327. 42 1532. 76 1350 . 69 Lickman 2532. 34 2 395. 46 2305. 67 McElvee 1207. 45 1332 . 17 1212. 91 Page 1419. 46 1543. 69 1268. 88 Ross 256 . 04 1958. 27 1207 . 49 Bates 327. 42 2546. 14 2352 . 84 Carvolth 2 7 6 8. 57 2 3 70. 27 2841. 09 Langley 615. 08 2211. 50 1573 . 82 Lickman 1248. 26 1395. 43 1308. 97 Murrayvilie 1597 . 09 1234. 35 1401. 92 Ross 256. 04 1958. 27 1207 . 49 Prest 2569 . 16 1217. 19 1297. 80 Bates 2263. 89 2273 . 11 2096. 46 Kjorth 1096 . 83 1829 . 18 1153. 65 McElvee 1207. 45 1332. 17 1215. 57 Monroe 2112. 70 2226 . 15 2126 . 58 Page 1794. 25 1764. 03 1797. 80 Sim 650 . 99 1608. 21 1233 . 69 -122-Table 10. Euclidean distance and estimated costs for roadbed construction S o i l Series Distance Cost F a i r f i e l d 0.8 $ 847.97 Monroe 0.0 0.0 Cloverdale 2.5 5043.68 Ladner 1.9 2787.41 Spetifore 0 . 4 94.00 Whatcom 2.9 2758.43 Hatzic 2 . 3 3058.24 Hazelwood 2.7 2458.34 Monroe 1.1 5193.95 Cresent 2.6 1918.22 Page 2.1 2774.68 Marble H i l l 3.9 1368.71 Langley 2.5 4788.20 Durieu 3.0 520.71 Vinod 3.1 2224.62 Richmond 4.1 2073.10 Whatcom 3.1 3113.17 Webster 2.6 3562 . 04 Milner 2.5 3815.72 Cresent 2.0 1369.00 Ladner 2.6 3186.42 Webster 2.5 4328.40 Livingstone 2.6 5215.91 Cloverdale 2.6 4622.90 Milner 2.8 4733. 22 Whatcom 3.7 3497.52 Table 11. Typical computer output for the Cresent series NO TREATMENT IMPROVES SOIL. SUBZONE DELTA SERIES TREATED IS CRESENT ITERATION 2 . 000 24.000 5.000 6 . 080 0. 000 1.490 6.000 9 . 970 4. 000 1.908 8 IS THE BEST STATISTICALLY DERIVED TREATMENT 1.000 3.000 151.000 13.000 61.000 5.200 5.670 0.180 0.340 15.630 TREATMENTS ARE STRU SAND OM C/N Na K BASS -51.00000 8.54308 0.51000 1.74013 -0.08000 0.06000 -23.67000 NEW SOIL CHARACTERISTICS ... 2. 000 4.463 1. 000 5. 589 20. 299 5. 504 2. 000 12. 000 48. 062 TO TREAT STRU COSTS $ 51. 00 TO TREAT SAND COSTS $ 42. 72 TO TREAT OM COSTS $ 10. 20 TO TREAT C/N COSTS $ 8. 70 TO TREAT Na COSTS $ 8. 00 TO TREAT K COSTS $ 1. 20 TO TREAT BASS COSTS $ 23. 67 4.000 1.170 3.000 100.000 20.000 56.175 36.539 2.074 3.906 0.100 0.400 14.557 ALL TREATMENTS COST $ 145.49 PER ACRE -124-Consequently, a s o i l l i k e the Guichon series (Saline Orthic Humic Gleysol; Class 4 i s probably overrated since data for e l e c t r i c a l conductivity was not available. However, the methodology presented here i s not intended to r e f l e c t e x i s t i n g land use c l a s s i f i c a t i o n s , but rather a s p e c i a l use ranking of s o i l s that regards as s i g n i f i c a n t for i t s consideration only the data set used. Subject to the same l i m i t a t i o n described above, the cost estimates of the average p r o f i l e data set best r e f l e c t s the ratings given by the CLI. The Cresent series, considered one of the best s o i l s i n the Lower Fraser Valley (Luttmerding and Sprout, 1968b) has one of the highest ratings ( i . e . closest distance to the model). The Monroe series which i s also a good a g r i c u l t u r a l s o i l (again a good rating) i s generally not well suited for cash crops because of the undulating nature of the t e r r a i n which can r e s u l t i n uneven maturing of crops. Again, the data set does not include t e r r a i n parameters and consequently this does not enter into the considerations. The importance of variables and varible values representing the conditions important in the f i e l d for the use in question cannot be over stressed since cost considerations are a di r e c t r e f l e c t i o n of variable expression. Generally, distances of s o i l s from the engineering model were found to be much smaller than in the a g r i c u l t u r a l -125-rankings. This i s partly due to a smaller number of variables, but also attributable to the method by which each model was selected. The a g r i c u l t u r a l model was derived and therefore being hypothetical i s not closely related to any of the s o i l s used i n the study. The engineering model does have a r e a l counterpart and thus i s more closely associated with the s o i l s i n question. Using the Monroe series as the model places the F a i r f i e l d series closest to the model. This i s to be expected since both s o i l s are closely related i n the f i e l d , the F a i r f i e l d being a Gleyed Degraded Melanic Brunisol and the Monroe a Degraded Eut r i c Brunisol. An apparent inconsistency appears in the engineering r e s u l t s in that although the second Monroe series i s quite closely related to the model ( i . e . distance of 1.1), treatment costs are second to the highest in a l l the s o i l s studied. This i s due to the fact that the texture of the two series i s quite d i f f e r e n t . The model has 50% sand, 43% s i l t and 7% clay while the second Monroe member has 94% sand, 4% s i l t and 1% clay. To correct texture was expected to cost $5,000. It should be noted that estimated treatment costs do not necessarily coincide with distance since cost estimates are determined independently. -126-Conclusions The study i l l u s t r a t e s that i f data exists in a form compatable with the computer, that i t i s feasible to interpret s o i l data for land use by s t a t i s t i c a l methods. The B.C. S o i l Survey data f i l e made large volumes of data conveniently available. The d i f f i c u l t y apart from data requirements seems to l i e i n the a b i l i t y to be able to i d e n t i f y an acceptable s o i l model, to which the s o i l s may be compared since the i d e a l s o i l for a user i s dependent on the user. However, the a b i l i t y of this methodology to accept any model appears a^lso to be one of i t s strong points. The same approach could be used i n s o i l c o r r e l a t i o n work where si m i l a r s o i l s could be compared to the modal expression of the series and c r i t e r i a established to indicate at what distance a s o i l would be rejected from a group. The s t a t i s t i c a l treatment of s o i l s represents a unique opportunity to evaluate i n monetary terms the physical quality of s o i l in order that costs may be used i n benefit/ cost considerations between alternative land uses. To t h i s extent th i s t o o l might be of value to engineers working i n coop-eration with land use planners and developers. Although the cost estimates used are purely hypothetical and consequently mean very l i t t l e i n the present context, i t i s f e l t that the planning profession could use the method with more reasonable s o i l models and cost estimates, consequently obtaining more r e a l i s t i c r e s u l t s . -127-Summary and Conclusions The purpose of the study was to explore the f e a s i b i l i t y of u t i l i z i n g a computerized s o i l survey data bank i n the s t a t i s t i c a l i n terpretation of routine s o i l survey information for land use considerations. In t h i s context i t was necessary to test some of the p r i n c i p l e s held i n pedology and basic s o i l property i n t e r - r e l a t i o n s h i p s , which underly i n t e r p r e t i v e work. In addition, c l u s t e r analysis procedures were investigated, since many of the s t a t i s t i c a l analysis performed i n numerical taxonomy were basic to subsequent considerations. The data was manipulated by factor, Euclidean distance, c o r r e l a t i o n and regression analysis to determine the re l a t i o n s h i p between a hypothetical s o i l model and s o i l s as described by the s o i l survey. There was an attempt at estimating treatments and costs that would be required to "make" a s o i l resemble the model (ideal) s o i l more cl o s e l y . The model was constructed s t a t i s t i c a l l y and can be changed r e l a t i v e l y simply by computer techniques. Revision of the present s o i l data bank s e r i a l numbering scheme would r e s u l t i n a data bank that would better interact with regional, p r o v i n c i a l and national levels of consideration and with other e x i s t i n g and proposed resource data systems. -128-The s o i l parameters used to define s o i l s at the Order and Great Group levels did trend toward modal frequency d i s t r i b u t i o n s in the Gleysol Great Groups studied but was not as evident for the Humo Fe r r i c Podzol Great Group. An evaluation of the d e f i n i t i o n of s o i l s according to the CSSC (1970) c l a s s i f i c a t i o n using means and standard deviations was possible. Some-inconsistencies were observed. Generally speaking, the derivation of regression equations for dependent variables using the data available did not lead to estimates to which a high degree of confidence could be placed. Many basic s o i l property i n t e r - r e l a t i o n s h i p s were observed by s i g n i f i c a n t c o r r e a l t i o n c o e f f i c i e n t s r e s u l t i n g from s t a t i s t i c a l analysis. However, s i m i l a r studies using a larger data set would probably r e s u l t i n more d e f i n i t e trends. Cluster analysis by two methods, using the average p r o f i l e data set, gave comparable r e s u l t s . These r e s u l t s were f a i r l y consistent with the CSSC (1970) c l a s s i f i c a t i o n at the higher l e v e l s . It was concluded that c l u s t e r analysis might have more a p p l i c a b i l i t y in grouping s o i l s for special use c l a s s i f i c a t i o n rather than attempts at natural taxonomy. The r a t i n g of s o i l s according to treatments and costs seems feasible by s t a t i s t i c a l methods. However, the d i f f i c u l t y seems to l i e i n the a b i l i t y to i d e n t i f y an - 1 2 9 -acceptable s o i l model, since the i d e a l s o i l i s s t r o n g l y user dependent. I t a l s o became evident i n the course of the study that the methodology developed may be u s e f u l i n s o i l c o r r e l a t i o n work, i n tha t the s i m i l a r i t y of s o i l s could be evaluated s t a t i s t i c a l l y and a c c e p t - r e j e c t c r i t e r i a could be set up to determine i n c l u s i o n i n a s o i l group. The s o i l survey data f i l e presented a unique opportunity to i n t e r p r e t large q u a n t i t i e s of data f o r land use. The development of a n a t i o n a l scheme would present a valuable a i d f o r resource management and environmental c o n s i d e r a t i o n s . -130-Literature Cited Introduction ALLEN, P..F., L.E. GARLAND and R.F. DUGAN. 1963 . Rating northeastern s o i l s f o r t h e i r s u i t a b i l i t y for w i l d l i f e habitat. Transactions of the 2 8th North American W i l d l i f e and Natural Resources Conference. BIDWELL, O.W. and F..D. HOLE. 1963. Numerical taxonomy and s o i l c l a s s i f i c a t i o n . S o i l Science 97: 58-62• CANADA SOIL SURVEY COMMITTEE. 1970. The system of s o i l c l a s s i f i c a t i o n f o r Canada. Queen's Printer, Ottawa. 249 p. JOHN, M.K., L.M. LAVKULICH, J.R. JUNGEN and J.L. LEIGH. 1969. Interpretation of s o i l data by computer. Can. J. S o i l S c i . 49: 177-179. KELLOGG, C E . 1949. S o i l c l a s s i f i c a t i o n . S o i l S c i . 67: 77-80. KELLOGG, C E . 1961. S o i l interpretation i n the s o i l survey. U.S.D.A. S o i l Conservation Service. 27 p. KLINGEBIEL, A.A. and P.H. MONTGOMERY. 1961. Land-capability c l a s s i f i c a t i o n . U.S.D.A. A g r i c u l t u r a l Handbook 210. 21 p. MONTGOMERY, P.H. 19 56. Stoplight code for land use planning. S o i l Conservation. 32(4). RAYNER, J.H. 1966. C l a s s i f i c a t i o n of s o i l s by numerical methods. J. S o i l S c i . 17(1): 79-92. RUSSELL, J.S. and A.W. MOORE. 1967. Use of a numerical method i n determining a f f i n i t i e s between some deep sandy s o i l s . Geoderma 1: 47-69. Chapter I BIDWELL, O.W. and F.D. HOLE. 196 3. Numerical taxonomy and s o i l c l a s s i f i c a t i o n . S o i l S c i . 97: 58-62. CANADA SOIL SURVEY COMMITTEE. 19 70. Proceedings of the 8th meeting of the Canada S o i l Survey Committee. Ottawa. GRIGAL, D.F. and H.F. ARNEMAN. 1969. Numerical c l a s s i f i c a t i o n i of some forested Minnesota s o i l s . S o i l S c i . Soc. Amer. Proc. 33: 433-438. INFORMATION PROCESSING SOCIETY OF CANADA. 1969. Yearly publication. JOHN, M.K., L.M. LAVKULICH, J.R. JUNGEN and J.L. LEIGH. 1969. Interpretation of s o i l data by computer. Can. J. S o i l S c i . 49: 177-179. NORRIS, J.M. 1970. Multi-variate methods i n the study of s o i l s . S o i l s and Fert. 33: 313-318. PROTZ, R., R.W. ARNOLD and E.W. PRESANT. 196 8. The approximation of the true modal p r o f i l e with the use of the high speed computer and landscape control. Proc. 9th Int. S o i l Soc. Cong. 193-204. SWANSON, D.W. 1970. Use of automatic data processing in the s o i l survey. U.S.D.A. S o i l Survey Technical Notes p 2-5. Chapter II BUCKMAN, H.O. and N.C. BRADY. 19 64. The nature and properties of s o i l s . 5th Ed. MacMillan Co. New York. 5 6 7p. CANADA SOIL SURVEY COMMITTEE. 19 70. The system of s o i l c l a s s i f i c a t i o n f o r Canada. Queen's Printer, Ottawa. p 226. -132-CLINE, M.G. 1949. Basic p r i n c i p l e s of s o i l c l a s s i f i c a t i o n . S o i l S c i . 67: 81-91. JOHN, M.K., L.M. LAVKULICH, J.R. JUNGEN and J.L. LEIGH. 1969. Interpretation of s o i l data by computer. Can. J. S o i l S c i . 49: 177-179. McKEAGUE, J.A., J.H. DAY and J.A. SHIELDS. 1971. Evaluating relationships among s o i l properties by computer analysis. Can. J. S o i l S c i . 51: 105-111. NATIONAL SOIL SURVEY COMMITTEE. 1965. Report on the 6th meeting of the National S o i l Survey Committee of Canada. Laval University, Quebec, p. 4. PEECH, M., L.T. ALEXANDER, L.A. DEAN and J . FIELDING REED-1947. Methods of s o i l analysis f o r s o i l - f e r t i l i t y investigations. U.S.D.A. Ci r c . 757. 25 p. SWANSON, O.W. 19 70. Use of automatic data processing i n the s o i l survey. U.S.D.A. S o i l Survey Technical Notes. p 2-5. Chapter III ARKLEY, R.J. 1969. S t a t i s t i c a l methods i n s o i l c l a s s i f i c a t i o n . Proc. 9th Int. S o i l Soc. Cong. 187-192. ARKLEY, R.J. 1971. Factor analysis and numerical taxonomy of s o i l s . S o i l S c i . Soc. Amer. Proc. 35: 312-315. BIDWELL, O.W. and F.D. HOLE. 1963. Numerical taxonomy and s o i l c l a s s i f i c a t i o n . S o i l S c i . 97: 58-62. CAMPBELL, N.A., M.J. MALCAHY and W.M. McAURTHUR. 1970. Numerical c l a s s i f i c a t i o n of s o i l p r o f i l e s on the basis of f i e l d morphological properties. Aust. J. S o i l Res. 8: 43-58. CANADA SOIL SURVEY COMMITTEE. 19 70a. The system of s o i l < c l a s s i f i c a t i o n for Canada. Queen's Printer. Ottawa 249 p. -133-CANADA SOIL SURVEY COMMITTEE. 19 70b. Proceedings of the 8th meeting of the Canada S o i l Survey Committee. Ottawa. CRIPA, J.E., O.W. BIDWELL and F.J. ROHLF. 1970. Numerical taxonomy of s o i l s from 9 Orders by clus t e r and centroid-component analysis. S o i l S c i . Soc. Amer. Proc. 34: 281-287. GR1GAL, D.F. and H.F. ARNEMAN. 1969. Numerical c l a s s i f i c a t i o n of some forested Minnesota s o i l s . S o i l S c i . Soc. Amer. Proc. 33: 433-438. HOLE, F.D. and M. HIRONAKA. 1960. An experiment i n ordination of some s o i l p r o f i l e s . S o i l S c i . Soc. Amer. Proc. 24: 309-312. JOHN, M.K., L.M. LAVKULICH, J.R. JUNGEN and J.L. LEIGH. 1969. Interpretation of s o i l data by computer. Can. J. S o i l S c i . 49: 177-179. KLOOSTERMAN, B., L.M. LAVKULICH and M.K. JOHN. 1971. The B r i t i s h Columbia s o i l survey data f i l e ( in press). LANCE, G.N. and W.T. WILLIAMS. 1967. A general theory of c l a s s i f i c a t o r y so ing strategies. 1. Hi e r a r c h i c a l systems. Compt. J . 9: 3 7 3-80. RAYNER, J.H. 1966. C l a s s i f i c a t i o n of s o i l s by numerical methods. J. S o i l S c i . 17(1): 79-92. RUSSELL, J.S. and A.W. MOORE. 1969. Comparison of di f f e r e n t depth weightings i n numerical analysis of a s i o t r o p i c s o i l s . Proc. 9th Int. S o i l Soc. Cong. 705-213. SARKAR, P.K., D.W. BIDWELL and L.F. MARKUS. 1966. Selection of c h a r a c t e r i s t i c s for numerical c l a s s i f i c a t i o n of s o i l s . S o i l S c i . Soc. Amer. Proc. 30: 269-272. SOKAL, R.R. and P.H.A. SNEATH. 1963. Pri n c i p l e s of numerical taxonomy. W.H. Freeman and Co. San Francisco. SWANSON, D.J. 1970. Use of automatic data processing in the s o i l survey. U.S.D.A. S o i l Survey Technical Notes p 2-5. -134-VELDMAN, D.J. 1967. F o r t r a n programming f o r the b e h a v i o u r a l s c i e n c e s . H o l t , Rinehart and Winston. New York. U.S.D.A. 1960. S o i l C l a s s i f i c a t i o n . A comprehensive system. 7th Approximation. Soul Survey S t a f f , U.S.D.A., Washington, D.C. Chapter IV ADCOCK, C.J. 1957. F a c t o r a n a l y s i s f o r non-mathematicians. Cambridge U n i v e r s i t y P r e s s . London. BJERRING, J.H. 1967. U.B.C. FACTO. U n i v e r s i t y of B r i t i s h Columbia Computing Centre. Vancouver. BJERRING, J.H. 1970. U.B.C. TRIP. U n i v e r s i t y o f B r i t i s h Columbia Computing Centre. Vancouver. BUCKMAN, H.O. and N.C. BRADY. 19 64. The nature and p r o p e r t i e s of s o i l s . 5th Ed. MacMillan Co., New York. 567 p. CANADA LAND INVENTORY. 19 70. O b j e c t i v e s , scope and o r g a n i z a t i o n . Report No. 1. Dept. Regional Economic Expansion. Ottawa. CATTELL, R.B. 1965 . F a c t o r a n a l y s i s : An i n t r o d u c t i o n to e s s e n t i a l s . I. Purpose and u n d e r l y i n g models. B i o m e t r i c s . 21: 190-215. COMAR, V.K., P.N. SPROUT and C C . KELLEY. 1962a. S o i l survey of C h i l l i w a c k map area. P r e l i m i n a r y Report No. 4. B.C.D.A. S o i l s D i v i s i o n , Kelowna. DOWNEY, N.M. and R.W. HEATH. 1965. B a s i c s t a t i s t i c a l methods. Harper and Row, New York. 32 5 p, HARMON, H.H. 1960. Modern f a c t o r a n a l y s i s . Univ. Chicago Press. JOHN, M.K., L.M. LAVKULICH, J.R. JUNGEN and J.L. LEIGH. 1969. I n t e r p r e t a t i o n of s o i l data by computer. Can. J . S o i l S c i . 49: 177-179. -135-KELLOGG, C.E. 1961. S o i l i nterpretation in the s o i l survey. U.S.D.A. 27 p. KLINGEBIEL, A.A. and P.H. MONTGOMERY. 19 61. Land-c a p a b i l i t y c l a s s i f i c a t i o n . U.S.D.A. Agriculture Handbook 210. 21 p. LUTTMERDING, H.A. and P.N. SPROUT. 1966. S o i l survey of Langley municipality and Barnston Island. Preliminary Report No. 7. B.C.D.A. S o i l s D i v i s i o n , Kelowna. LUTTMERDING, H.A. and P.N. SPROUT. 19 67. S o i l survey of, Agassiz area. Preliminary Report.No. 8. B.C.D.A. Soi l s D i v i s i o n , Kelowna. LUTTMERDING, H.A. and P.N. SPROUT. 1968a. S o i l survey of Mission area. Preliminary Report No. 9. B.C.D.A. Soils D i v i s i o n , Kelowna. LUTTMERDING, H.A. and P.N. SPROUT. 1968b. S o i l survey of Delta and Richmond mu n i c i p a l i t i e s . Preliminary Report No. 10. B.C.D.A. Soils D i v i s i o n , Kelowna. RUNKA, G.C. and C C . KELLEY. 1964. S o i l survey of Matsqui municipality and Sumas mountain. Preliminary Report No. 6. B.C.D.A. Soils D i v i s i o n , Kelowna. SODAL, R.R. 1961. Distance as a measure of taxonomic s i m i l a r i t y . Syst. Zoo. 10: 70-79. SOUTH EASTERN WISCONSIN REGIONAL PLANNING COMMISSION. 19 66. Soils of Southeastern Wisconsin. S.E.W.R.P.C. Land use-transportation study. Planning Report No. 8. SPROUT, P.N. and C C . KELLEY. 1961. S o i l survey of Surrey municipality. Preliminary Report No. 3. B.C.D.A. Soils Division, Kelowna. U.S.D.A. 1967. S o i l s u i t a b i l i t y guide for land use planning in Maine. Maine Agric. Exp. Sta. M.Sc. Publ. 667. -136-Appendices The Appendices contain supplementary information to that presented i n the text which may be useful to readers wishing to explore the r e s u l t s of this study further. Appendix I contains the current information on the B.C. data f i l e and b r i e f write ups for programs that are used to manipulate the data f i l e . Descriptions for a l l programs discussed are also presented. Appendix II presents the description, l i s t i n g and sample card deck sequences for programs used i n data extraction, while Appendix III contains s i m i l a r information for determination of Euclidean distance, s o i l treatments and costs. Appendix IV gives sample treatment and cost outputs for the Monroe and Page series using a l t e r n a t e l y , average surface, selected average, average p r o f i l e and engineering data. Appendix V presents o r i g i n a l and treated s o i l properties for 35 Fraser Valley s o i l s using the three data sets and the o r i g i n a l and treated s o i l property data for 2 6 Fraser Valley s o i l s used f o r engineering land use. Appendix VI l i s t s the data sets for the average surface s l i c e of 152 s o i l s , selected average data of 144 s o i l s and average p r o f i l e data for 50 s o i l s . Appendix VII gives the cl u s t e r analysis output for 35 Fraser Valley s o i l s by the three data extractions while Appendix VIII gives the h i e r a r c h i c a l -137-grouping a n a l y s i s using the same data on the same s o i l s . Appendix IX presents m o d i f i c a t i o n s to the data f i l e s p e c i f i c a l l y f o r t h i s study. -138-APPENDIX I S o i l Survey Data F i l e Description and L i s t i n g s and Descriptions for Support Programs -139-THE DATA FILE 1. General Structure The S o i l Data F i l e has been designed so that i t s structure r e f l e c t s both the geographical d i v i s i o n of the data into zone, subzone, unit, p r o f i l e and horizon branches and the natural d i v i s i o n of the data into two parts; one relevant to a unit as a' whole, the other relevant to s p e c i f i c horizons within units and p r o f i l e s . In t h i s regard, the f i l e comprises three d i s t i n c t card types as follows: a. Unit card (card type 0) containing data describing the s o i l at the unit l e v e l , b. Physical card (card type 1) containing physical data describing the s o i l at the , horizon l e v e l , and, c. Chemical card (card type 2) containing chemical data describing the s o i l at the horizon l e v e l . Each card i n the f i l e i s uniquely defined by a s e r i a l number composed of zone, subzone, unit, p r o f i l e , horizon and type f i e l d s . For physical and chemical cards the s e r i a l number describes a path through the geographic tree down to the -140-horizon and type l e v e l s ; unit cards have a path indicated down to the unit l e v e l with p r o f i l e , horizon and type numbers set a r b i t r a r i l y to zero. Cards within the f i l e are ordered by a s e r i a l number thus grouping data for each zone, subzone, unit, p r o f i l e and horizon together. The data f i l e exists p h y s i c a l l y as a magnetic tape containing images of the data cards. There are 50 cards to a physical tape record, 80 characters (one card) to a l o g i c a l record. At present the f i l e i s contained on tape number L298 and i s duplicated on tape L299 of the UBC Computing Centre Tape Library. These tapes are owned by the S o i l Survey Project. 2. Card Formats Each card i s divided into f i e l d s which are ; given FORTRAN variable names descriptive of the type of information they contain. These variable names should be used i n any FORTRAN programming applications of the data f i l e . F i e l d codes and card columns ( c c ) , together with the FORTRAN format used i n reading the f i e l d s , are l i s t e d in : d e t a i l i n the following sections. In general, the -141-FORTRAN variables w i l l contain exact copies of the information punched on the data cards. However, there are several exceptions to t h i s general r u l e . Those f i e l d s that are exceptions are marked i n the following sections with double asterisks (**) and are described i n d e t a i l in the section of t h i s report dealing with SOILCD, the FORTRAN subroutine used to read cards i n the data f i l e . In addition to t h e i r descriptive FORTRAN names, each f i e l d has an alphanumeric name describing i t s p o s ition on the cards i n the data f i l e . S e r i a l number f i e l d s occur on a l l cards i n columns 1-9 and are referred to as f i e l d s S1-S5, unit card data f i e l d s are referred to as f i e l d s U2-U12 (a unit card i s a type 0 card), physical card data f i e l d s are referred to as f i e l d s P l - P l l (a physical card i s a type 1 card), chemical card data f i e l d s are referred to as f i e l d s C1-C13 (a chemical card is. a type 2 card). UNIT CARD S1-S5 0 U1-U12 c.c. 1 9 10 unit card data f i e l d s PHYSICAL CARD S1-S5 1 P l - P l l c.c. 1 9 10 physical card data f i e l d s -142-S ? ? n I C A L S1-S5 2 C1-C13 CARD c c . 1 9 10 chemical card data f i e l d s s e r i a l number f i e l d s . Fields U1-U12 occupy c c . 10- of the unit card, f i e l d s P l - P l l occupy c c 10- of the physical card, f i e l d s C1-C13 occupy c c 10- of the chemical card. For each card, however, column 10 has been l e f t blank. a. S e r i a l Number Fields S1-S7 SI. Zone Number generated FORTRAN variable ZONE by SOILCD Code Numbers 1 Vancouver Island 2 Lower Mainland 3 South Okanagan, Kettle and Similkameen 4 North Okanagan 5 North Thompson, Princeton and South Cariboo 6 Kootenay, Elk River and Columbia Valley 7 Central I n t e r i o r 8 Peace River 9-19 Other B.C. Zones 20 Canadian Soils 30 Foreign Soils SI. Subzone Number c c 1-2 SUBZON - refers to d i s t r i c t and/or municipality 12 Code Numbers 01 P i t t Meadows 0 2 Delta 03 Surrey 04 Chilliwack 0 5 Sumas 06 Matsqui 07 Langley and Barnston Island -143-Code Numbers (continued) 08 Kent 09 Mission 10- 15 Other possible Fraser Valley Reports 16 North Okanagan 17 Shuswap Lake Area 18 Ashcroft-Savona 19 Similkameen 20 Kettle Valley 21 Upper Kootenay and Elk River Valleys 22 Upper Columbia River Valley 23 Eagle River Valley 24 Peace River D i s t r i c t 25 Central Int e r i o r 30- 39 Other B.C. Subzones 40- 49 Other Canadian Provinces 40 Alberta 41 Saskatchewan < 42 Manitoba 43 Ontario 44 Quebec 45 New Brunswick 46 Nova Scotia 47 Prince Edward Island 48 Newfoundland and Laborador 49 Northwest T e r r i t o r i e s and Yukon 50- 59 A u s t r a l i a , New Zealand, Asia 60- 69 A f r i c a 70- 79 Europe 80- 89 South America 90- 99 North America--other than Canada Unit Number c.c. 3-5 UNIT 13 - designates the s o i l at the series l e v e l (Refer Appendix 1) P r o f i l e Number c.c. 6-7 PROFIL I 2 - number the p r o f i l e s of each unit Code Numbers 00 on unit card 01, 02, 03, etc. on type 1 and 2 cards, -144-54. Horizon Number c c . 8 HORIZN I 1 Code Numbers 0 on unit card >0 on type 1 and 2 cards The number used i s the f i r s t depth figure of the depth designation. Example, depth 01"-06", 1 w i l l be the Horizon Number. 1st depth number negative on a l l horizons above the unit depth control. (See page 7.) 55. Type F i e l d c c 9 TYPE I 1 Code Numbers 0 on unit card 1 on physical card 2 on chemical card b. Unit Card Data Fields U1-U12 Ul. S o i l Orders, Great Groups, Subgroups c c 11-15 SUBGRP 511 i - for codes see CSSC 1970 edi t i o n \ Example Order Great Group Subgroup Chernozem Brown Orthic Brown 1. 1.1 1.11 U2. Parent Material c c . 16-17 Parent I 2 -145-Parent Materials New Code Previous No. Description Code No.(s) FLUVIAL 01 Lateral accretion (Fraser River) 01 34 Lateral accretion (general) 34 02 V e r t i c a l accretion (Fraser River) 02 0 3 Deltaic Deposits (fresh water) 04 River and stream deposits (undifferentiated) 04,03 16 A l l u v i a l - c o l l u v i a l fan deposits 16,30 06 Deltaic deposits (marine) 06,07,10 14 Mixed floodplain and organic 14 11 Coarse textured materials over marine, glaciomarine, g l a c i a l t i l l or lacustrine 11,13,41 12 G l a c i a l Outwash 12,35 WATER DEPOSITS 05 Lacustrine 05,25 08 Glaciomarine 08,25 09 Marine 09,25 2 2 G laciolacustrine 2 2,38,25 AEOLIAN 17 Loess 17 18 Loess over outwash 18 19 Loess over g l a c i a l t i l l 19,20 2 9 Loess over or mixed with colluvium 29 32 Loess over lacustrine 32 GLACIAL TILL 21 G l a c i a l t i l l (basal) 21,39 26 Ablation t i l l over basal t i l l 26 27 Ablation t i l l 27 -146-New Code Previous No. Description Code No.(s) 37 G l a c i a l t i l l shallow to bedrock 37 COLLUVIUM 2 3 Colluvium 23 28 Colluvium over g l a c i a l t i l l 28 36 Colluvium'and/or ablation deposits shallow to bedrock 36,31 ORGANIC 33 Deep or shallow organic deposits 3 3 24 Shallow organic (less than 16") over mineral material 2 4,40 U3. Slope c c . 18-19 SLOPE 211 Code Numbers Column 18 Column 19 Simple Slope Complex Slope 1-A 1-a depressional to l e v e l 0.0-0. 2-B 2-b very gently sloping 0.5-2 3-C 3-c gently sloping 2-5 4-D 4-d moderately sloping 6-9 5-E 5-e strongly sloping 10-15 6-F 6-f steeply sloping 16-30 7-G 7-g very steeply sloping 30-60 8-H 8-h extremely sloping >60 -147-U4. Drainage of S o i l c.c. 2 0 DRAIN Code Numbers 1 Rapidly drained 2 Well drained 3 Moderately-well drained 4 Imperfectly drained 6 Poorly drained 7 Very poorly drained 5 Moderately poorly drained U5. Acreage - of s o i l series c.c. 21-26 ACRAGE - of s o i l complex c.c. 27-32 U6-U12 Unit Card 'ield c. c • Format Description Variable U6 33- 36 F4. 0 Min. a l t i t u d e ALTDMI U7 37- 40 F4. 0 Max. a l t i t u d e ALTDMX U8 41- 43 F3. 0 Mean annual temp. TEMPAN U9 44- 47 F4. 1 Annual p r e c i p i t a t i o n PRECIP U10 48- 50 F3. 1 Precip. i n growing season PREGR0 U l l 51- 54 F4. 1 Total snowfall SN0W U12 55- 57 F3. 0 Frost free period FR0ST. c. Physical Card Data Fields P l - P l l PI. Depth - f i r s t depth number c.c. 11-13 DEPTH 213 - second depth number c.c. 14-16 Code Numbers -1 indicates no lower l i m i t on the horizon depth. >0 this i s the second depth figure of the depth designation. Example, depth designation 01"-06", 06 w i l l be the Depth number. -148-P2. Horizon Description Code Numbers 17 18 19 20 1 0 L A ca or 2 R F B e or 3 H AB g 4 L-H j BA h 5 L-F BC k or 6 F-H or H--f CB m 7 I C n 8 IV II BIIC or c u e P 9 V III AC or CA t P3 Textural Class c . c. 24 25 Sand Clay Coarse sand 9 0 Medium sand 9 0 Fine sand 9 0 Very fine sand 9 0 Loamy sand 8 1 Loamy fine sand 8 1 Loamy very fine sand 8 1 Coarse sandy loam 8 1 Sandy loam 7 1 Fine sandy loam 7 1 Very fine sandy loam 7 1 Loam 4 2 S i l t loam 2 1 S i l t 1 0 Sandy clay loam 6 3 Clay loam 3 3 S i l t y clay loam 1 3 Sandy clay 5 4 S i l t y clay 0 5 Heavy clav 2 6 Clay' 2 6 Muck (<10% Hunic) 0 0 Peat (>40% F i b r i c ) 0 0 . c. 17 -23 HNAME 711 21 22 23 cc ca or cc 1 1 f e or f 2 2 g 3 h 4 c k or c c X m ca or cc z n gj or jg g p j 3 t or b s or sa 24-27 TEXTUR 411 26 27 Grade Gravel 0 1 1 Gravelly 2 2 Very gravelly 3 3 Cobbles 0 4 High cobbles 1 5 Stony 2 6 Very stony 3 n 7 bedrock LJ l 2 0 0 0 0 n u 0 0 0 1 0 1 2 -149-Sand Clay Grade Gravel Mucky peat (30-40% Mesic) 0 0 3 Peaty, muck (10-30% Mesic) 0 0 4 P4. Colour (moist) c.c . 28-30 Code Numbers Hue c.c. 28 1 10 R 2 2. 5 YR 3 5 YR 4 7. 5 YR 5 10 YR 6 2. 5 Y 7 5 Y 8 5 G Value c.c. 29 1-9 Chroma c.c. 30 0-9 COLOUR 311 P5 Structure c.c. 31-33 Code Numbers Grade 3.3. 31 Class and kind c.c. 32-33 STRUCT I I , 12 1 No structure 2 Weak 3 Moderate 4 Strong 01 Single grain 02 Massive 03 Fine blocky 04 Medium blocky 0 5 Coarse blocky 06 Fine subangular blocky 07 Medium subangular blocky 08 Coarse subangular block 09 Very coarse subangular blocky 10 Fine granular 11 Medium granular 12 Coarse granular 13 Fine platy -150-14 15 16 17 18 19 20 21 22 23 P6. Mottles c.c. 34-36 Code Numbers Abundance c.c. 34 1 2 3 Size c.c. 35 1 2 3 Contrast c.c. 36 1 2 3 P7. Roots c.c. 37 Code Numbers 5 4 3 2 1 P8. Boundary c.c. 3 8 Code Numbers 4 3 2 1 Medium platy Coarse platy Fine prismatic Medium prismatic Coarse prismatic Very coarse prismatic Fine columnar Medium columnar Coarse columnar Very coarse columnar MOTTLE 311 Few Common Many Fine Medium Coarse Faint D i s t i n c t Prominent ROOTS Abundant Many Common Occasional None BNDRY II Abrupt Clear Gradual Diffuse -151-P9. Agency c c . 39 AGENCY II Code Numbers 1 S o i l s D i v i s i o n , Kelowna 2 Federal S o i l s Department, Agassiz 3 University of B r i t i s h Columbia 4 Research Station, S o i l s Department, Vancouver **P10. Composite Sample c c . 4 0 COMPOS Code C composite sample blank not a composite sample **P11. Repeated Data c c 41 REPEAT - indicates whether the horizon data has been repeated from another p r o f i l e . Code R repeated data blank data not repeated c Chemical Card Data Fields B1-B12 FORTRAN Fi e l d c c Item Variable Format Cl 11-12 pH-water 1.1 PHI F2.1 13-14 pH-water-saturation PHSAT F2.1 15-16 pH-CaCl PHCAC F2 .1 C2 17-19 Organic matter-% ORGMAT F3.1 C3 20-23 Nitrogen-% NITR0 F4. 3 C4 24-26 C/N r a t i o ' CNRAT F3.1 C5 27-30 p l PPm P(l) F4.1 31-34 P2 ppm )(2) F4.1 -152-F i e l d c . c. Item Variable Format C6 35 -38 Sulphur SULPH F4 .1 C7 39 -42 Calcium acetate me/100 CAACET F4 . 2 43 -46 Magnesium acetate me/100 MGACET F4 .2 4 6 -50 Sodium acetate me/100 NAACET F4 .2 51 -54 Potassium acetate me/100 KACET F4 .2 C8 55 -58 Exchange capacity me/100 EXCAP F4 .1 C9 59 -61 % Base saturation-acetate BASSAT (1) F3 .1 62 -64 % Base saturation-NaCl BASSAT (2) F3 .1 CIO 65 -67 Iron-oxalate FE0XAL F3 .1 C l l 68 -70 Aluminium-oxalate AL0XAL F3 .1 C12 71 -73 Copper-perchoric CUPERC F3 .1 C13 74 -76 Zinc-perchloric ZNPERC F3 .1 3 -153-S o i l Series Codes for the Fraser Valley Code S o i l Series Code S o i l Series Code S o i l Series 001 Abbotsford 180 Gibson 366 Murrayville 002 Aldergrove 1 Goudy 7 Magellan 003 Annis 2 Grevell 8 Morgan 004 Arnold 3 Grigg 9 Mission 005 Annacis 184 Garnet 370 Matsqui 030 Banford 185 Guichon 390 Nicholson 031 Bateman 186 Glen Valley 1 Nicomekl 2 Bates 210 Ha l l e r t 2 Niven 3 Beharrel 1 Harrison 450 Page 4 Benson 2 Hazelwood 1 Peardonville 5 Berry 3 Henderson 2 Pelley 6 Blackburn 4 Heron 3 Poignant 7 Boosey 5 Hjorth 4 Popkum 8 Bose 6 Hatzic 5 Prest 9 Buckerfield 17 Hoover 510 Raitt 040 Bear Mountain 240 Isar 1 Ross 041 Blundell 270 Jackman 2 Ryder 060 Calkins 1 Judson 3 Richmond 1 Campbell 300 Katzie 4 Roach 2 Carvolth 1 Kennedy 540 Sande 3 Chadsey 2 Kent 1 Sandel 4 Cheam 3 K i t t e r 2 Sardis 5 Chehalis 4 Kenworthy 3 Scat 6 Cloverdale 5 Keystone 4 Seabird 7 Columbia 6 Kanaka 5 Seaview 8 Cornock 330 Ladner 6 Sim 9 Cox 1 Laidlaw 7 Slesse 070 Cresent 2 Langley 8 Spetifore 71 Cultus 3 Laxton 9 Sumas 72 Custer 4 Lehman 550 Summer 73 Cannel 5 Lickman 1 Surrey 74 Crickmer 6 Liumchen 2 Sunshine 75 Cardinal 7 Livingstone 3 Sweltzer 090 Defehr 8 Lulu 4 Slollicum 91 Deas 9 Lumbum 5 Stave 92 Delta 340 Lynden 6 ' Steelhead 94 Durieu 360 Marble H i l l 7 Sayres 95 Deroche 1 Mathews 570 Tamihi 120 Elk 2 McElvee 1 Triggs 1 Embree 3 McLellan 2 Tsawwassen 150 F a i r f i e l d 4 Milner 3 Tunbridge 151 Florence 5 Monroe 630 Vedder ]_ Vinod -154-S o i l Series Codes for the Fraser Valley (continued) Code S o i l Series 660 Westlang 1 Whatcom 2 Weaver 3 Woodside 4 Westham 5 Webster -155-S o i l Series Codes fqr the Upper Kootenay and Elk River Valleys Code S o i l Series 001 Abruzzi 060 Cadorna 061 Cedrus 062 Cokato 063 Crahan 064 Crowsnest 120 Elko 150 Flagstone 151 Flatbow 210 Hornickle 211 Hosmer 212 Hyak 300 Kayook 301 Kinbasket 302 Kokum 330 Lakit 360 Madias 361 Mayook 362 Michel 390 Narboe 450 Plumbob 540 Saha 541 Salishan 542 Sparwood 660 Wardrop 661 Wycliffe 662 Wigwam -156-S o i l Series Codes for the North Okanagan Valley Code S o i l Series 1 Armstrong 30 Beaverjack 31 Bessette 32 Bluespring 33 Broadview 60 Che r r y v i l l e 61 Coldstream 90 Duteau 120 Enderby 150 F — 180 Gardom 181 Glenemma 182 Grandview 183 Grindrod 184 Gri z z l y H i l l 185 Glenmore 210 Hilton 211 Hulcar 212 Hupel 240 I — 270 J ~ 300 Kalamalka 330 Latewhos 331 Lumby 360 Mabel 361 Mara 362 Moffat 363 Monashee Code S o i l Series 3 9 0 Nahun 3 9 1 N i s c o n l i t h 4 2 0 0'Keefe 4 2 1 Oyama 4 5 0 Plaster 4 8 0 Q — 5 1 0 Reiswig 5 1 1 Reiter 5 4 0 Saltwell 5 4 1 Sauff 5 4 2 Schunter 5 4 3 Shuswap 5 4 4 Sicamous 5 4 5 Sitkum 5 4 6 Spallumcheen 5 4 7 Stepney 5 4 8 Swanson 5 7 0 T--6 0 0 u — 6 3 0 Vance 6 6 0 W— 6 9 0 X— 7 2 0 Y— 7 5 0 Z---157-S o i l Series Codes for the Shuswap Lake Area - Eagle River Code S o i l Series Code S o i l Series 1 Adams 2 Apalmer 3 Armstrong 30 Banshee 31 Bessette 32 Bluespring 3 3 Bolean 3 4 Broadview 3 5 Broderick 6 0 Canoe 61 C a r l i n 62 C e l i s t e 6 3 C h e r r y v i l l e 6 4 Chum 6 5 Corning 9 0 Duteau 12 0 Enderby 121 Equesis 150 Falkland 151 Fowler 180 Gardom 181 Glenemma 182 Grandview 183 Grier 18 4 Grindrod 185 G r i z z l y H i l l 186 Gulch 210 Harper 211 Heubner 212 H i l l c r e s t 213 Hobbs 214 Hobson 215 Hupel 240 Ida 270 J - -300 Kosta 330 Larch H i l l 331 Legerwood 33 2 Leonard 3 3 3 Lumby 360 Mabel 361 Malakwa 362 Metcalfe 3 63 Moulton 364 Moutell 3 65 Mowitch 3 90 Napum 391 Neskain 392 Nosconlith 39 3 Nahun 420 O'Keefe 421 Onyx 450 Pari 451 P i l l a r 452 Plaster 480 Q--510 Reiswig 511 Rumball 540 Saltwell 541 Sauff 542 Schlinder 54 3 Shuswap 544 Sitkum 545 Skimikin 546 Solsqua 547 Spa 548 Stepney 54 9 Syphon 57 0 Taft 571 Tappen 600 U ~ 630 Y--660 Wallenstein 661 Wap 6 62 White 663 Willshore 690 X— 720 Yard -158-S o i l Series Codes for the Ashcroft—Savona Area—Thompson River Valley Code S o i l Series Code S o i l Series 1 Anglesey 390 Nepa 30 Barnes 420 0 — 31 Basque 32 Bonaparte 450 P— 60 Cache Creek 480 Q — 61 Carquille 62 Cheetsum 510 R--63 Chrome 64 Clemes 540 Savona 541 Semlin 90 D-- 542 Squilax 120 Epsom 570 Taweel 571 Thompson 150 F — 572 Tremont 573 Tsotin 180 G— 600 U — 210 H--630 Venables 240 I--660 Walhachin 270 Joeross 690 X--300 K— 720 Y— 330 Lopez 740 Z--360 McAbee 361 Minaberriet -159-S o i l Series Codes for the Similkameen River Valley Code S o i l Series Code S o i l Series 1 A — 390 Nissen 30 Bluey 420 O l a l l a 60 Cawston 450 Penticton 61 Chopaka 480 Q — 90 Dalby 510 Rutland 120 E--540 Similkameen 150 F — 541 Soukup 542 Stemwinder 180 6— 543 Susap 210 H— 570 T--240 I l t c o o l a 600 U--270 J — 630 V — 300 Keremeos 660 w— 330 L — 690 X— 360 M-- 720 Y--750 Z--- 1 6 0 -S o i l Series Code for the Kettle River Valley Code S o i l Series Code S o i l Series 1 A— 390 N— 30 Beaverdell 420 0 — 31 Boldue 32 Bubar 450 Phoenix 33 B u r r e l l 480 Q — 60 Carmi 61 Conkle 510 Republic 62 Coteay Saunier 540 90 D — 541 Sidley 542 Spion 120 E — 543 Stevens 150 Ferraux 570 Taurus 151 Fiva 571 Thone 572 Tuzo 180 Gregoire 600 u — 210 Hoolan 211 Hulme 630 V — 240 Ingram 660 Wilgress 661 Wilkinson 270 J — 690 X — 300 Kermel 720 Y — 330 L ~ 750 Zamora 360 Marble 361 Mires 362 Mogul 363 Myncaster - 1 6 1 -B. AUXILIARY PROGRAMS 1. Data f i l e maintenance routine UPDATE a. Introduction Data f i l e maintenance routines are required i n order to perform the following operations: i . Delete records i n the f i l e , i i . Insert records into the f i l e , i i i . Change records i n the f i l e . The a b i l i t y to perform these operations has been written into an UPDATE program. The desired operations are i n i t i a t e d by ordered series of control cards which are discussed in d e t a i l below. In the control card descriptions square, brackets, FJ ^ ], indicate that the enclosed f i e l d need not be s p e c i f i e d . If the f i e l d i s not spe c i f i e d then the underlined parameter i s the default choice. Curly brackets, {}, indicate that the user must make a choice of the enclosed parameters i f he i s going to use the f i e l d . e.g, LIST NOLIST This f i e l d indicates whether a l i s t i n g of the new master i s desired, f i e l d i s omitted i t i s assumed that a is not wanted. I f the l i s t i n g -162-Control Card Descriptions A l l control cards have an asterisk (*) in column 1 followed by a name describing the control card function. Descriptive f i e l d s specifying s t a r t i n g record number, etc., are punched i n columns 16 to 72 i n c l u s i v e . Descriptive f i e l d s may be i n any order and punched in any columns from 16 to 72. Logical I/O Units Used 4: Data F i l e - must be s p e c i f i e d SCARDS: UPDATE Control deck - defaults to *S0URCE* 6: UPDATE messages - defaults to *SINK* SPRINT: New Master l i s t i n g ( i f s p e c i f i e d on *END card) - default to *SINK* e.g. $RUN -L0AD#+MAX 4=-S0ILDATA SPRINT =-NEWDATA Control deck *INSERT Purpose: to inse r t new records into the f i l e . Notes: i . The cards following t h i s control card should contain records to be inserted. -163 i i . I f a record to be inserted i s already i n the old f i l e , the Old record i s deleted and the new inserted. Output: A l i s t i n g of the old record ( i f any) and the new record inserted. *DELETE ["START = i n i t i a l record n o . J , [[FINISH = f i n a l record no.] Purpose: to delete portions of the f i l e . Notes: i . Deletion starts at or a f t e r the i n i t i a l record number and continues u n t i l at or before the f i n a l record number, i i . START f i e l d omitted - deletion starts at the present f i l e p o s i t i o n. i i i . FINISH f i e l d omitted - only a single record i s deleted, i . e . that record with the i n i t i a l record no. i v . Both START and FINISH f i e l d omitted -the single record at the present f i l e p o s i t i o n i s deleted. Error: i . I f the FINISH f i e l d i s omitted and a record with the i n i t i a l record no. i s not found, no deletion i s attempted, -164-Output: L i s t i n g s of a l l records deleted. *CHANGE Purpose: To change an already e x i s t i n g record. Notes: i . The cards following t h i s control card should contain records to be changed. Only non-blank f i e l d s are changed. I f i t i s desired to change a non-blank f i e l d to a blank f i e l d , then ^INSERT must be used, i i . I f i t i s desired to change a s e r i a l number then ^DELETE followed by *INSERT must be used. Error: i . Record to be changed not found - no changing attempted. The record, i s not inserted. Output: L i s t i n g s of both the old and the new records. ••END LIST NOLIST Purpose: To mark the end of the deck of control cards. -165-Note: i . The option i s no printed l i s t of the new master i f the f i e l d i s omitted. The LIST option gives a printed l i s t of the new master. Data F i l e Card Reading Routine - SOILCD SOILCD has been written i n order to f a c i l i t a t e the extraction of data from the S o i l Survey Data F i l e . A c a l l to SOILCD w i l l read the next card on the data tape and store the variables into l a b e l l e d common blocks depending upon which card type, 0, 1, or 2, has been read. In addition, several .TRUE./. FALSE, switches are set to indicate whether various portions of the s e r i a l number have changed on the card just read as compared to the card previously read. For example, i f the p r o f i l e number changes the FORTRAN l o g i c a l variable PRCHNG i s set to .TRUE, i f there has been no change i n the p r o f i l e number PRCHNG i s set to .FALSE. In general the information from the cards i s stored d i r e c t l y within a FORTRAN variable whose name i s suggestive of the type of data i t contains. There are several exceptions to thi s which w i l l be discussed l a t e r . If data i s missing for a p a r t i c u l a r f i e l d then the FORTRAN variable for that f i e l d takes on a -166-value of -1. This does not apply to DEPTH(1). a. How to Use SOILCD In order t o use the card reading subroutine the following FORTRAN statements are required: COMMON /SERIAL/ ZONE,SUBZON,UNIT,PR0FIL,HORIZN, X TYPE,ZNCHNG,SZCHNG,UNCHNG,PRCHNG,HOCHNG COMMON /UNITCD/ SUBGRP( 5),PARENT,SLOPE(2),DRAIN, X ACRAGE(2),ALTDMI,ALTDMX,TEMPAN,PRECIP,PREGRO, X SNOW,FROST COMMON /PPIYSCD/ DEPTH( 2 ), HNAME ( 6 ) ,TEXTUR( 4) , X COLOUR(3),STRUCT(2),MOTTLE(3),ROOTS,BNDRY, X AGENCY,IPLATE,STU,ITEXRA,ITEX(3) COMMON /CHEMCD/ PHI,PHSAT,PHCAC,ORGMAT,NITRO, X CNRAT,P(2),SULPH,CAACET,MGACET,NAACET,KACET, X EXCAP,BASSAT(2),FEOXAL,ALOXAL,CUPERC,ZNPERC INTEGER ZONE,SUBZON,UNIT,PROFIL,HORIZN,TYPE, X SUBGRP,PARENT,SLOPE,DRAIN,ACRAGE,AGENCY,C, X BNDRY,DEPTH,HNAME,TEXTUR,COLOUR,STU,QDATA, X STRUCT,MOTTLE,R,T1,T2,T3,T4,T5,ROOTS,CF, X RF,UDATA1,PDATA,IDATA REAL ALTOMI,ALTDMX,TEMPAN,PRECIP,PREGRO,SNOW, X FROST,PHI,PHSAT,PHCAC,ORGMAT,NITRO,CNRAT,P, X SULPH,CAACET,MGACET,NAACET,KACET,EXCAP, X BASSAT,FEOXAL,ALOXAL,CUPERC,ZNPERC,UDATA2, INTEGER Z, RECNO, IBLANK LOGICAL ZNCHNG,SZCHNG,UNCHNG,PRECHNG,HOCHNG, REPEAT,COMPOS,FIRST DIMENSION UDATAl(ll), UDATA2(7),PDATAC 2 9),CDATAC 20),IDATA(20),QDATAC 6) EQUIVALENCE (UDATAK1),SUBGRP(1)),(UDATA2(1), X ALTDMI),(PDATAC1),DEPTH(1)),(CDATAC1),PH1), X (QDATAC1),PDATAC24)) DATA R/'R'/,C/1C1/,IBLANK/' '/ -167-The various COMMON statements are used to set up the FORTRAN variables i n which SOILCD stores the data. The correspondence between variables and card f i e l d s has been detailed i n the Card Format section of this writeup (section A2, a-d). For further detailed information see the following section, FORTRAN Variables used by SOILCD. Data from f i e l d s S1-S7 i s stored i n the SERIAL common block, from f i e l d s 01-05 in the UNITCD common block, from f i e l d s A l - A l l i n the PHYSCD common block, and from f i e l d s B1-B12 i n the CHEMCD common block. The f i r s t time that SOILCD i s ca l l e d the l o g i c a l variable FIRST must be .TRUE. . SOILCD then i n i t i a l i z e s several variables and sets FIRST = .FALSE. Henceforth FIRST must remain .FALSE, unless i t i s desired to star t reading from the beginning of the tape again. Rewinding the tape unit a f t e r processing i s complete i s not handled by SOILCD. FORTRAN Variables Used by SOILCD Most variables contain information extracted d i r e c t l y from the cards. These have been l i s t e d e a r l i e r and no further discussion of them i s necessary. There are several variables l i s t e d i n the COMMON -168-blocks that contain variants on the information on the cards. The corresponding f i e l d s have been marked with double asterisks (**) i n the section e n t i t l e d Card Formats. In addition there are certain other variables that give information about whether parts of the s e r i a l number have been changed or n.ot. i . Double Asterisked Fields S6. Horizon Number The variable HORIZN simply counts the horizons within each p r o f i l e i n the order they are encountered. The actual horizon code number i s put into DEPTH(1). Thus i f HORIZN = 1 i t indicates that the card just read i s a data card corresponding to the f i r s t horizon encountered i n a p r o f i l e . This f i r s t horizon may or may not be an. overburden horizon as indicated by the variable OVBDN. HORIZN = 0 for unit cards. Note: It should be pointed out that although mineral horizons are ordered within the f i l e in the natural order from the unit depth control downwards, the overburden horizons are ordered from the unit depth 169-control upwards. Thus, the f i r s t overburden horizon encountered w i l l be the deepest, while the f i r s t mineral horizon encountered w i l l be the highest. S7. Type F i e l d The variable TYPE contains integer nujnbers from 1 to 3 as follows: 1. i f a unit card has been read, 2. i f a physical card has been read, 3. i f a chemical card has been read. It i s expected that TYPE used i n a computed GO TO statement w i l l direct processing immediately aft e r a c a l l to SOILCD. As an example CALL SOILCDCFIRST) GO TO(10,11,12),TYPE Control i s transferred to statement number 10 in the event that a unit card has been read, to statement 11 i s a physical card has been read and to statement 12 i f a chemical card has;been read. V10. Composite Sample The l o g i c a l variable COMPOS i s .TRUE. i f a C i s present in this f i e l d , .FALSE. otherwise. - 1 7 0 -V l l . Repeated Data The l o g i c a l variable REPEAT i s .TRUE, i f an R i s present i n th i s f i e l d , .FALSE, otherwise. Note: Although this f i e l d appears only on the physical card i t applies also to the corresponding chemical card of the horizon. Thus for repeated data the physical card for each horizon must be present even i f a l l other physical data for the horizon i s missing. Other Variables Logical Variable Value .TRUE, indicates change of ZNCHNG Zone number SZCHNG Subzone number UNCHNG Unit number PRCHNG P r o f i l e number HOCHNG Horizon number It i s expected that these variables w i l l be of use when data i s dealt with according to s p e c i f i c geographic d i v i s i o n s ; e.g. zones, subzones, etc. -171-3. F i l e Removal Program GETDAT This subroutine transfers the s o i l survey f i l e data from the master tape (tape L29 8) to an MTS li n e f i l e using the nine d i g i t s e r i a l number as a li n e number. The psuedo-device name on the MOUNT card should be *TAPE* and l o g i c a l unit 4 should be s p e c i f i e d on the $RUN card for the f i l e . 4. File-Tape Program PUTDAT This subroutine transfers data from an MTS li n e f i l e which uses the nin e - d i g i t l i n e numbers to a tape. The pseudo-device name used on the "MOUNT card should be "TAPE* and l o g i c a l unit 4 should be specified on the $RUN card for the f i l e . (Note that i f subroutine GETDAT i s used before execution of this subroutine the o r i g i n a l master tape must be , dismounted before t h i s subroutine can be executed.) This can be done with the following card. $RUN '''DISMOUNT PAR = *TAPE* PUTDAT c a l l s the subroutine MAX and therefore has to be concatated to the main object deck. 5. Subroutine MAX This subroutine i s used s o l e l y to increase the maximum f i l e size number to accommodate the nine-d i g i t code for the s e r i a l number, A l i s t i n g of this program has not been included. - 1 7 2 -6. L i s t i n g Program SLIST This program l i s t s the data f i l e by variable name and leaves a l l missing data as blank. The operation i s executed i n two sets, one including the s e r i a l number plus unit and physical card variables, the second the s e r i a l number and the chemical card. Program expects the f i l e on unit 4 and output on unit 6. 7. Program NUMLIN This program convents the o r i g i n a l l i n e number, which as a rule i s numbered consecutively from 1 to n, to that of the s e r i a l number with a decimal point a f t e r the sixth d i g i t . The conversion of the l i n e number takes advantage of the di r e c t access features of UPDATE in that a card can be located d i r e c t l y instead of searching through sequentially u n t i l the correct card i s found. The o r i g i n a l f i l e i s expected on unit 4 and the new f i l e i s written on unit 5. L i s t i n g of SOILCR 1 SUBROUTINE SOILCR(F IRST,RECNO,*') ] C * C * LAST MODIFIED JULY 30,1969 c * _ .„ C * THIS SUBROUTINE READS A SOIL DATA CARD EITHER SEQUENTIALLY C * (RECN0 = 0) OR THE CARD WHOSE SFRIAL NUMBER IS S P E C I F I E D BY C » REGNO. THE TYPE, I . E . UNIT CARD, PHYSICAL CARD, OR CHEMICAL 3 C IS DETERMINED AND THE CARD IS REREAD ACCORDINGLY. DATA FROM 9 c THE SEPTAL NUMBER NO. GOES IN 'SERIAL' C f" V K ON, AND THE REST i.o_ „_ J . GE THE CARD GOES IN HJNITCD* COMMON» «PHYSCD« COMMON» OR u c t* 'CHE MCD * COMMON DEPENDING ON THE TYPE OF CARD. T H E V A R I O U S 12 c FLAGS ARE .TRUE. IF THE CORRESPONDING PART OF THE SERIAL N O . 13 c * IS DIFFERENT FROM THE PREVIOUS CARD READ, E6» ZNFLAG I S . T R U E . 14 c * IF THE ZONE NO. HAS CHANGED, .FALSE. OTHERWISE. TYPE C O N T A I N S 15 C * 1 FOR A UNIT CARD, 2 FOR A PHYSICAL CARD, O R 3 F O R A C H E M I C A L .... -1.6 . _ _ c _ CARD. A VARIABLE WITH A V A L U E O F -1 ( E X C E P T D E P T H ( I) ) I N D I C A T E S 17 c * MISSING DATA. IF AN END-OF-FILE C O N D I T I O N O C C U R S ( L A S T C A R D IN 1 8 c SEOUFNTIAL READ O R UNDEFINED R E C O R D IN AN I N D E X E D R E A D ) C O N T R O L 19 c V IS RETURNED TO THE STATEMENT NUMBER IN THE MAIN P R O G R A M W H I C H 20 c ..u *¥*• IS S P E C I F I E D BY THE THIRD PARAMETER. 21 c J, T PARAMETER FIRST (LOGICAL- VARIABLE) SHOULD BE S E T T O .TRUE. _2Z .c _ * BEFORE ENTERING THIS SUBROUTINE FOR THE FIRST TIME, T H E R E A F T E R 23 c 'f SHOULD BE LE^T ALONE. NOTE FIRST I S SET TO .FALSE. B Y S O I L C D 2 4 G ,U SOILCD CALLS THE SUBROUTINE MAX. THE OBJECT CODE FOR MAX , 25 c J , CAN BE FOUND IN THE F I L E SOIL:MAx. BE SURE TO C O N C A T E N A T E IT 26 c -f- TO THE MAIN OBJECT DECK. ! 2 1 i 9 S3 c r JL, EG. $RUN -LOAD#+MAX 4=-S0ILDATA j 29 COMMON /SER I AL/ ZCMF, SUEZON . U N I T , PROF IL , HOR I Z N , T Y P E , Z N C H N G , S Z C H N G , ! 3 0 X UNCHNG,PRCHNG» HOC HN G i 31 CCFMGN AJNITCD/ S U -BGRP < 5 ) ,P AR ENT, SL OPE < 2 ) , DR A I N , A C R A G E ( 2) , A t T D M I , 32 X ALTDMX,TEMPAN,PRECIP,PREGRO,SNOW,FROST I 33 COMMON /PHY SCO/ DEPTH ( 2) , HN A M E ( 7) , TEXTljRt 4) , C O L O U R ( 3) , S T R U C K 2 > , ! 3.6 X. MOTTLE (3 > t.ROOTS ,.3 NDRY ,. AGENCY , IPLAT E ,STU , I T E X R A , I T E X { 3 ) ' 3 5 COMMON /CHE MCD / P.HI , P H S A ? , P H C A C » ORG M A T , N l T R O t C N R A T , P < 2 ) tSULPH, 3 6 X CAAC ET,MGAC ET,N AACET,K AC ET,EXC AP, 3A SSA T { 2 ) , F EO XA L , A L O X A L , ^7 X CUPERC,ZNPERC 1 38 • INTEGER ZONE » SUBZON,UNI T, PROF I L ,HORI Z N , T Y P E , S U B G R P t P A R E N T ,SLOPE, | 39 X DRAIN, AC RAGE, AGENCY, C» BNDRY, DEPTH, HNAME* TEXT UR , COLOUR , S T U , Q D A T A , 40 .. X STRUCT,MOTTLE,R,T l ,T2, T3,T4,T5,ROOTS,CF,RF,UDAT A 1,PDAT A, I DATA 41 REAL ALTDMI , ALTDMX, TEMP AN,PRECIP, PP. EGRO , SNOW ,FROST, PHI , PHSAT , 4 2 X PHCAC,ORGEAT,NITRO,CNR AT,P,SULPH,CAACET,MGACET,NAACET,KACET, j 43 . X t XCAP ,BASSAT,FFOXAL ,ALOXAL,CUPERC, ZNPERCUDATA2 4 4 INT EGFR Z, REGNO, I BLANK 4 5 LOG ICAI... ZNCHNG, SZ CHNG , U NCHN G, PRCHNG, HOCHNG, REPEAT, COMPOS, FIR ST 4 6 DI*FN SIGN UOATA1 ( 1 1 ) ,UDATA? (7) ,PO AT A (?4),CO AT A{20)» I DAT A{20 ) , 47 X QU AT A ( 6 ) 48 EQUIVALENCE (UDATA1(1),SUBGRP(1) ), (U D A T A 2 ( 1 ) , A L T D M I ) , 4" X ( POATA < 1 ) , D E P T H m 1 , ( COATA( 1 > ,PH1 ) , < I PL ATE, QDATAU ) ) 5 0 DATA P / « R»/ ,C/ 'C '/, I BLANK/* '/ 5 1 C * CHECK FOR FIRST TIME SGILCD CALLED .52 IF ( .NOT.FIRST) GO TO 9 53 FIRST=. FALSE. 54 REPE AT=.FALSE. 55 COMPOS=.FALSE. M 56 ZGNE=-1 57 SURZ0N = -1 5 3 UNIT=-1 59 P R 0 F U - - 1 60 HORIZN=-1 6 1 TYPE=0 62 CALL MAX (4) 6 3 c READ A CARD 64 9 CALL SETSTA ( 4 , 2 ) 6 5 IF {RECNO.EQ.O) GO TO 4 66 FIND (4»RFCN0) 6 7 4 READ (4,5,END- 100) T1,T2,T3,T4,T5 63 *5 TOHMATl 12 ,1 3 , 12 ,2 11 ) 69 C * FIND ZONE NUMBER 70 IF (T1.L.E.15) GO TO 12 71 IF ( T l . LE. 1 7) GO TO 14 72 IF (T 1 . EQ . 1 R ) GO TO 1 5 7 3 IF ( T l . L E . 2 0 l GO TO 13 7 4 I F ( T 1 . L E . 2 2 ) G O T O 1 6 7 5 I F ( T 1 . F Q . 2 3 ) G O T O 1 4 7 6 WRI T E { 6 t 8 i T l , T 2 , T 3 , T 4 , T 5 7 7 F O R M A T ( / , « S E R I A L N O . • , I 2 1 1 3 » I 2 , 2 11 , 1 H A S U N R E C O G N I Z A B L E SUBZON 7 3 X E • ) 7 9 C A L L S F T S T A ( 4 , 0 ) 8 0 I F { R E C N O . E Q . 0 ) G O T O 9 SI R E T U R N 1 I?, 7=2 _ _. S 3 " GO TO 1 0 " . 8 4 1 3 Z=3 8 5 G O T O 1 0 8 6 1 4 Z = 4 8 7 G O T O 1 0 8 8 1 5 Z = 5 3 9 G O T O 1 0 9 0 1 6 7 = 6 9 1 C * S E T F L A G S O N T H O S E S E R I A L N O . V A R I A B L E S T H A T H A V E C H A N G E D 9 2 c a. JT-C H F C K Z O N E 9 3 1 0 I F ( Z O N E . N E . Z» G O T O 20 , ,9A. 7. N C HNG = . .F A L SE ._ 9 5 •A. C H E C K S U B Z O N E 9 6 I F ( S U 3 Z C N . NE * T l 1 G O T O 2 1 9 7 S Z C H N G - . F A L S E . 9 8 c J-"Y* C H E C K U N I T 9 9 I F ( !JN I T . NE . T 2 ) G O T O 2 2 1 0 0 U N - C H M C = . r A l . . S F . .... ! i o i c *U •** C H E C K P R O F I L E i 1 0 2 I F ( P R O F I L . N E . T 3 ) G O T O 2 3 j 1 0 3 PRC. H N G = . F A L S E . I 1 0 4 c * C H E C K H O R I Z O N 1 0 5 I F ( HOP "1 .ZN.NE . T 4 ) G O T O 2 4 ! 1 0 6 . .HOCHNG=. .F,AL ,S , .E . . . . . _ _ ; 1 0 7 c C H E C K T Y P E 1 0 8 I F ( T Y P E . N F . T 5 + 1 ) G O TO 2 5 1 0 9 r * E R R O R S E R I A L N O . U N C H A N G E D 110 WRITE (6,7) T1,T2,T3,T4,T5 111 7 FORMAT {/,.» REPEATED SERIAL NO. ' , 1 2 , 1 3 , 1 2 , 2 1 1 ) -L1.2 1 13 CALL SETSTA ( 4 , 0 ) IF (RECNO.EQ.O) GO TO 9 114 RETURN 1 115 C * ENTER HERE IF ZONE CHANGE 1 1 16 2 0 7'J\f =Z 117 ZNCHNG=.TRU E. 113 C . V SU3Z0NE CHANGE.. 119 2 1 . SUBZ0N=T1 120 SZCHNG= .TRUE. 1 2 1 c t- UNI T CHANGE 122 22 UNIT=T2 123 UNCHNG=.TRU E . 124 C «#• PRflF I LF CHANGF 125 23 PR0FIL = T3 126 PRC HNG= .TRUE. 127 C * HORI ZON CHANGE 128 24 HORIZN=T4 129 HCCHNG- .TRU E. 130 ... P..E.P E A_T=...F_A.L3.E-. 131 COMPGS=.FAL SE. 132 c TYPE CHANGE 133 2 5 TYPE= T5+1 134 C *C REREAD RECORD ACCORDING TO CORRECT FORMAT 135 GO TO < 3 n, 4 0,50 ), TYPE _. 13.6 . _.___.c _BE.R..EA!N TT CA.R.D. 137 30 READ ( 4 , 3 1 ) U DAT A1, UDATA2, ( IDATAI I ) ,1 = 1 ,7) 138 31 FORMAT (1C X , 5 I 1 ,12 , 3 1 1 , 2 I 6 , 2 F 4 . 0 , F 3 . 0 , F 4 . 1 , F 3 . 1 , F 4 . 1 » F 3 . 0 , T 1 , 139 X 32X,2A4,A3,A4,A3,A4,A3) 1 40 DO 35 J - l r l l 141 35 IF (UDATAK J) .EO.O) UDATAK J ) = - l 142 . D O 36 J = l , 7 143 36 "IF ( I CAT A( J ) . EO. IBL ANK ) U C A T A 2 t J ) = - l 144 RETURN 1 45 C REREAD PHYSICAL CARD ! 1 4 6 4 0 R E A D ( 4 , 4 1 ) P n A T A , C F , R F , Q D A T A , ( I D A T A ( I ) , 1= 1, 10 ) 1 4 7 41. F O R M A T * 1 0 X , 2 I 3 , 71 1 , 8 1 1 , 1 2 , 6 1 1 , 2 A W I 3 , 14 ,1 5 , 3 I 3 , T l , 2 3 X , 3 A 1 , 3 X , A 1 , I 1 4 8 X 1 2X , A2 , A 4 , I X , A 4 , 3 A3 ) ' •* ; 1 4 9 . .DO 4 5 I =1 , 3 j ' 1 5 0 4 5 J P ( ID A T A { I ) . F_ Q • I BL. A N K1 • T E X T U R ( I ) = - 1 ! 1 5 1 I F ( I D A T A (4 ) . E O . I B L A N K . ) C O L O U R ( 3 ) = - l ! 1 5 2 I F f I D A T A ( 5 ) . E O . I B L A N K ) I P L A T E = - 1 1 5 3 IF ( I DAT A ( 6 ) . EQ . I RL AN K ) S TU= - 1 1 5 4 I F ( I L A T A (7 ) . F Q . . I 8L. AN K U X EX R A r - .1. . -1 5 5 DO 6 0 1 = 6 , 1 0 1 5 6 6 0 I F ( ID A T A { I ) . E O ' . I B L AMK ) I T E X l I ) = _ 1 i 1 5 7 D O 4 7 1 = 1 4 , 1 5 ! 1 5 8 4 7 I F { P O A T A f I ) . E O . O ) P D A T A ( I ) = - 1 ! . 1 5 9 I F { P D A T A ( 1 7 ) . E Q . O . A N D . P D A T A { 1 8 ) . N E .0 ) P D A T A ( 171 = 1 1 6 0 D O 4 8 1 = 1 7 , 2 4 1 6 1 4 8 I F ( P D A T A (T ) . E Q . O ) P D A T A M ) = - 1 • 1 6 ? D O 4 8 8 1 = 3 , 6 1 6 3 I F { O O A T A ( I ) . E Q . O ) O D A T A ( I ) = - 1 j 1 6 4 4 8 3 C O N T I N U E I 1 6 5 I F ( C F . E O . C ) C O M P O S = . T R U E - . L 1 6 6 . I F ( < F . K J . ~ ) R E P E A T = . T R U E 1 6 7 R E T U R N 1 6 8 C * .R E R F A C C H F M I C A L C A R D 1 6 9 5 0 R E A D ( 4 , 5 1 ) C D A T A , I D . A T A " • 1 7 0 5 1 F O R M A T ( 1 0 X , 3 F 2 . 1 , F 3 . 1 , F 4 . 3 , F 3 . 1 , 3 F 4 . 1 , 4 F 4. ? , F 4. 1 , 6 F 3 . 1 , T 1 , 1 7 1 X 1 0 X , 3 A 2 , A 3 , A 4 , A3 , 8 A4 , 6 A 3 ) 1 7 2 0 0 5 5 1 = 1 , 2 0 1 7 3 " 5 5 I F ( I D A T A ( I ) . EQ . I B L A N K ) C D A T A { I ) = - 1 . 0 1 7 4 R E T U R N . -1 7 5 1 0 0 R E T U R N 1 1 7 6 E N D E N D O F F I L E L i s t i n g of UPDATE 1 C * T H I S P R O G R A M I N S E R T S , C H A N G E S , AND D E L E T E S RECORDS I N THE S O I L 2 C * S U R V E Y D A T A F I L E . T H E F O L L O W I N G L O G I C A L UNITS ARE U S E D : . . . 3 r. * 4= F I L E N A M E M U S T RE S P E C I F I E D 4 c * 6 = 0 E V I C E F O R U P D A T E M E S S A G E S , D E F A U L T S TO *SINK* 5 c. * S C A R D S = O E V I C E F O R U P D A T E C O N T R O L D E C K , D E F A U L T S TO *SO.URCE* 6 c. * . S P R I N T = D E V I C E FOR L I S T I N G OF NEW M A S T E R , D E F A U L T S TO *SINK* 7 c * E G . $ R U N - L 0 A D# + M AX 4 = - S 0 ILO.AT A S PR INT= - N EW DATA 8 c * ' ' N O T E T H A T T H I S P R O G R A M U S E S T H E S U B R O U T I N E MAX AND THE OBJECT . 9„._ .._. c .. *• CO D E F D R T H I S S U B R O U T I N E T^UST B E C O N C A T E N A T E D TO THE MAIN O B J E C T 1 0 c * D E C K . 11 I N T E G E R I U N I T , O U N I T , E U N I T , A S T , C N T R L < 4 ) , R E C 0 R D ( 2 0 ) , F I R S T , P A T H , 1 2 X O L D R E C L ? 0 ) , K A R O ( 8 0 ) , S T A R T , F I N I S H , B L A N K , S E R I A L < 3>,NEWREC< 8 0 ) 1 3 I N T E G E R * 2 L E N 1 4 D A T A 0 U N I T / 6 / , F U N I T / 4 / , A S T / Z 5 C / , C N T R L / , * C H A ' , 1 5 X » *D E L * *I N S ' *END' / , P A T H / 1 / , BLANK/ Z 4 0 / , M A X 1 / 9 9 9 9 9 9 9 9 9 / 1 6 D A T A B L N K W D / » ' / 1 7 C A L L MAX { F U N IT ) I B C R E A D A C A R D F R O M T H E I N P U T D E C K 1 9 5 0 C A L L S E T ( 2 0 , R E C O R D , B L N K W D ) 2 0 C A L L S C A R D S ( R E C O R D , L E N , 1 , L N R , £ 1 0 0 ) 2 1 . . JC_ G E T F I R ST C H A R A C T E R 2 2 C A L L U N P K ( 1, R E C O R D * 1 ) , 0 , F I R S T ) 2 3 c I F NOT A C O N T R O L C A R D ( * I N C O L 1 ) T A K E PATHS AS FOLLOWS 2 4 c ERROR ( P . A T H = 1 ) , C H A N G E ( PATH=2) , I N S E R T I O N (PATH = 3.) 2 5 I F < F I R S T . N F . A S T ) GO T-0 ( 1 , 2 , 3 ) , P A T H 2 6 c C O N T R O L C A R D ' 2 7., 0 3 4 J = l , 4 2 3 I F ( R E C O R D { 1 ) . E O . C N T R L ( J ) ) GO TO ( 5 , 5 , 5 , 6 ) , J 2<"> 4 C O N T I N U E 3 0 C E R R O R - I L L E G A L C O N T R O L WORD 3 1 W R I T E ( O U N I T . I O ) R E C O R D ( l ) , R F C 0 R D J 2 ) 3 2 1 0 F O R M A T ( / , « U P D A T E E R R O R - I L L E G A L C O N T R O L WORD , S A 4 . A 3 , . . 3 3 . . X ' . L O O K I N G FOR N E X T C O N T R O L C A R D . ' ) 3 4 P A T H = 1 3 5 . GO TO 5 0 3 ^ c PR 1 NT C O N T R O L C A R D 37 5 WRITE (0UNIT,11) RECORD ! 38 1 1 FORMAT (/,2X,20A4) 3.9 CO.. T0. (7 ,8 ,9 ) , J _ _ .__ ; __• 40 C ERROR - MISSING CONTROL CARD 41 1 W R i T t (OUNIT, 12) RECORD ! 42 12 FORMAT {/, • UPDATE ERROR - CONTROL CARD REQUIRED BEFORE THE F O L L 43 XGWING RECORD' ,/,2X,20A4) 44 GO TO 50 4 5 C ^CHANGE CONTROL CARD 46 7 P A Ti-l = 2 47 GO TO 5 0 4 8 2 IMnEX=ICV8<REC0RD,9) 49 FIND ( F U N I T » I N D E X ) 50 READ { FUN IT, 13, END=70) OLDREC 5.1 52 ...13. FORMAT (20A4) CALL UNPK.( 80,RECORD* 1) ,0,KARD) .53 CALL UNPK(80,OLDREC(1),0»NEWP.EC) 54 DO 72 I=10,80 5 5 IF (KARLM I ) .ME .BLANK ) NE WR E C U ) = KARD ( I ) 56 72 CONTINUE 57 CALL . PK( 80,NEWREC( 1 ). , R EC.OR D U ), ,0 )_ 5 8 75 WRITE (DUN IT, 14) RECORD 59 14 FORMAT*/,7 X,'NEW RECORD' ,10X»20A4) 60 W R I T r ( 0 UN 1 T , 1 5 ) 0 LD RFC 61 15 FORMAT (7X, 'OLD RECORD' . 1 0X, 20A4) 6 2 77 W R I T E ( F U N I T ' I NOEX ,13) RECORD 63 GO T O 50 • 6^ ~C~ RECORD TO BE CHANGED NOT IN THE OLD MASTER 6 5 7 0 WRI TE U'lUNI T,16) RECORD 66 16 FORMAT </,« UPDATE ERROR - THE FOLLOWING RECORD I S NOT IN THE OLD 67 XD MAST ER• IT HAS NOT BEEN CHANGED.',/, 2X,20A4) 68 GO TO 5 0 6 9 C *DEL ET E CONTROL. CARD 7 0 8 CALL UNPK(72, RECORD!3 ) ,0,K.ARD) 71 STAR T = Q 72 F IN ISH=MAX I 7 3 K= 1 7 4 DO 8 0 1 = 1 , 7 2 7 5 I F J K AR D ( I J . . . E Q_.. B.L A N K Jl GO... T O _ g q 7 6 K A R D ( K ) = K A R D ( I ) 7 7 K = K + 1 7 8 8 0 C O N T I N U E 7 9 K = K - 1 • ' 8 0 I F ( K . G T . O ) G O T O 8 8 8 1 C D E L E T I O R . . . 8 2 8 5 R E A D ! F U M I T , 1 3 , E N D = 8 1 ) O L D R E C 8 3 ID= I C V B ( O L D R E C , 9 ) 8 4 1 F ( I D . G T . F I N I S H ) G O T O 8 6 8 5 W R I T E ( F U N I T ' I D , 17 ) 8 6 1 7 F O R M A T ( 1 5 ) 8 7 W R I T E ( O U N I T , 1 8 ) . O L D R E C 8 8 1 8 F O R M A T ! / , 7 X , ' D E L E T E D * , 1 3 X , 2 0 A 4 ) 8 9 I F ( F I N I S H . N E . M A X I ) GO T O 8 5 9 0 C D E L E T I O N C O M P L E T E - G E T N E X T C O N T R O L C A R D 9 1 8 6 P A T H = 1 9 2 GG T O 5 0 9 3 _ C O B T A I N S T A R T I N G P O S I T I O N 1 94. 8 8 C A L L G E T ( 1 S T A R T = 1 , 6 , K , KA RD , N S ) 9 5 I F ( N S . L T . O ) G O T O 8 9 6 C A L L P K ( 9 , K A R p { N S + 6 ) , S E R I A L , 0 ) Q 9 7 S T A R T = I C V B ( S E R I A L , 9 ) 9 8 F I N D ( F U N I T ' S T A R T ) 9 9 ' _ . C OB T A J N F J J N I S H P O S I . T J C N loo'"' " 8 9 C A L L G E T ( « F IN I S H = 7 , - K , K A R D , N F ) 1 0 1 I F ( N F . l . T , 0 ) GO T O 8 5 1 0 2 . _ C A L L P K ( 9 , K A R D ( N F + 7 ) , S E R I A L , 0 ) 1 0 3 F I N I S H = I C V B ( S E R I A L , 9 ) 1 0 4 G O T O 8 5 1 0 5 C E N D - O F - F I L E O C C U R R E D 1 0 6 8 1 I F ( F I N I S H . E Q . M A X I V O R . S T A R T . E Q . O ) G O T O 8 6 1 0 7 S T A R T - 0 1 0 8 GO T O 8 5 1 0 9 C •INSERT CONTROL CARD 1 1 0 9 P A T H = 3 .'. 1.11_. G O T O 5 0 112 . 3 I NDEX = IC.VB ( RECORD,9) . 11.3 E J N D ( F U N I T ' I N D E X ) 1 1 4 R E A D ( F U N I T , 1 3 , E N D = 9 5 ) GL DR FC 1 1 5 G O T O 7 5 1 1 6 9 5 W R I T E ( D U N I T , 1 4 ) R E C O R D 11 .7 . W R I T E ' J F U N . I T ' I N D E X , 1 3 ) . RECORD .. ... ... ._ .. 1 1 8 G O TO 5 0 1 1 9 C * E N D C O N T R O L C A R D 1 2 0 6 C A L L U N PK ( 7 6 » R. E C O R 0 ( 2. ) , 0 , K AR D ) 1 2 1 K = l - 1 2 2 DO 6 0 1 = 1 , 7 6 113 I E ( K. A R D ( T) . E Q . B L A N K ) G O T O 6 0 1 2 4 K AR D ( K ) = K. A R D ( I ) -1 2 5 K = K + 1 * 1 2 6 6 0 C O N T I N U E 1 2 7 K = K - 1 1 2 3 IF { K . E O . O ) GO TO 1 0 0 _ _ _ 1 ? ?. C A L L G E T ( * N O L I ST' » 6 » K » K ARO»N ) 1 3 0 I F ( N . G T . O ) GO TO 1 0 0 1 3 1 C A L L G E T { ' L I S T ' , 4 , K , K A R D , N ) 1 3 ? I F { N . L T . 0 ) GO T O 1 0 0 1 3 3 R E W I N D F U N I T 1 3 4 9 9 C A L L R E A D (R E C O R D , L F N , 1 , L N R,FU N I T , £ 1 0 0 ) 1 3 5 C A L L S P R I N T ! R E C O R D , L E N , 6 5 , L N R , £ 1 0 0 ) 1 3 6 GO T O 9 9 1 3 7 1 0 0 S T O P 1 3 8 E N D -1 3 9 S U B R O U T I N E G E T ( P H R A S E , N C H A R , FWD,R E C O R D , N ) 1 4 0 I N T E G E R U N P A C K (8 ) , PH R AS E ( 2 ) , NCHAR , FW D, RECORD ( 76 ), N . . 1 ^ 1 C A L L U N P K ( N C H A R » P H R A SE ( 1 ) » 0,UNPACK) 1 4 2 C A L L F I N D ( N C H A R , R E C O R 0 , U N PACK,N,FWD ) 1 4 3 RE T U R N 1 4 4 E N D L i s t i n g of GETDAT 1 C A L L GETDAT 2 ST Q p J} E_ND ; _ 4 SU3ROU1 INE GE TDA.T 5 C * T H I S S U B R O U T I N E T R A N S F E R S THE S O I L S U R V E Y D A T A F R O M T H E M A S T E R .6 r * TAPE TO A N M I S L. I_ ME FILE..US TNG THE . N I N E - 0 1 G I T . S E R .1 A L .. N U M B ER ;  7 C * AS A L I N E NUMBER. THE P S E U D O - D E V I C E N A M E U S E D O N T H E * M O U N T « C * CARD SHOULD BE * T A P E * AND L O G I C A L U N I T 4 S H O U L D B E S P E C I F I E D _} C » ON THE SR UN CARD FOR THE F I L E . ._ • _ . 1 0 DATA I R F C T , L R E C L / 5 0 , 8 0 / 1.1 D I M E N S I O N DA TA ( 2 0 ) 1 2 C A L L O G T U C B ( » * T A P E * t * , I U C B ) . \ I 1 3 C A L L Q O P E N ( I U C 8 , 2 , I R E C T , L R E C L ) . a 1 4 1 C A L L QG FT J D A T A , I U C B , £ 1 0 0 ) ? 1 5 I D = I C V P I C A T A , 9 ) ; ; ; 16 WRITE ( 4 ' I 0 , 2 0 ) ( D A T A ( I ) ,1 =1 , 2 0 ) 1 7 2 0 . FORMAT ( 2 0 A 4 ) .1.3 GO.. TO...L •. •„ . 1 1 9 1 0 0 C A L L Q C L O S E ( I U C B ) 2 0 C A L L OCNTRL ( »R EW', IUCB ) . . v 2 1 R FT URN  2 2 END L i s t i n g of PUTDAT 1 S U B R O U T I N E » U T D A T C •A. -»* T H I S S U B R O U T I N E T R A N S F E R S DATA F R O M A N M T S L I N E F I L E W H I C H U S E S r N I N E - D I G I T L I N E N U M B E R S TO A T A P E . T H E P S E U D O - D E V I C E N A M E U S E D .4. ... c T . . . O N T H E . . * M O U N J . . C A R D . . 5 . H P U L D . . . B E * T A P . E * . A N D . . L O G I C A L U N I T . _ 4 . . S H O U L D 5 c B E S P E C I F I E D ON. T H E %RUN C A R D F O R T H E F I L E . ( N O T E T H A T I F . 6 r S U B R O U T I N E G E T D A T I S U S E D B E F O R E E X E C U T I O N O F T H I S S U B R O U T I N E 7 C . * T H E O R I G I N A L M A S T E R T A P E M U S T B E - D I S M O U N T E D B E F O R E T H I S S U B R O U T I N E ' c T C A N BE E X E C U T E D . T H I S C A N B E D O N E W I T H T H E F O L L O W I N G C A R D : 9 0 J.RUN * D I S M O U N T P A P = * T A P E * 1 0 .... c. T H E N T H E T A P E W H I C H I S TO BE T H E NEW M A S T E R C A N B E M O U N T E D . ) 1 1 c * P U T O A T C A L L S T H E S U B R O U T I N E MAX. T H E O B J E C T C O D E F O R M A X 1 2 c * C A N BE F O U N D I N T H E F I L E S O I L : M A X . B E S U R E T O C O N C A T E N A T E I T 1 3 . c f TO T H E M A I N O B J E C T D E C K . 1 4 c JV E G . $ R U N - L O A D # + M A X 4 = - S 0 I L D A T A 1 5 c * ON T H E - $ R U N C A R D . 1 6 D A T A I R E C T , L R E C L / 5 0 , 8 0 / 1 7 D I M E N S I O N D A T A ( 2 0 ) 1 8 C A L L O G T U C B { • * T A P E * , ' , I U C B ) 1 9 C A L L D C NT R L C R E W ' , I U C B ) 1 • 2 0 C A L L G O P E N ( 1 U C B » 1 , I R E C T , L R E C L ) 2 1 R E W I N D 4 2 2 C A L L MAX ( 4 ) 2 3 1 R E A D ( 4 T 2 0 » E N D = 1 0 0 ) D A T A 2 4 2 0 F O R M A T ( 2 0 A 4 ) I 2 5 C A L L C P U ! ( D A T A , I U C B ) • i 2.h GO TO 1 \ 21 1 0 0 C A L L O C L O S E J I U C B ) 2 8 C A L L QC N'T R L (' W TM ' ? I U C B ) 2 9 C A L L Q C N T R L f ' R E W , I U C B ) 3 0 R E T U R N . . . . 3 1 E N D L i s t i n g of SLIST :„. 1 CALL _L i S T 1 _ _ 1 2 CALL L I S I 2 3 S T O P 4 END • 5 SUBROUTINE L i S T l 6 c PROGRAM TU L IST OATA F I L E WITH HEADINGS .... 7... _ .. DIMENSION l C A R D i B O ) . . . . . . . ; 8 IT = 5 o 9 ICOUNT=0 1.0 WK I TE ( 6 , 6 5 ) i 1 1 wiRl T c< 6 » 6 6 ) 1 2 1 0 C A L L S E T S T A ( < t , 2 ) 1 3 R £ A Q L 4 « L 6 1 J . E J N U ^ ^ . ; 1 4 I F { I C A R D t 9 ) . E Q . 0 ) G O T O 3 0 1 5 I F I I C A K D { 9 ) . E Q . 2 ) G O T O 5 0 1 1 6 R b A U ( 4 , 7 Q ) ( 1 CARD ( I ) , 1 = 1 , » 1 )  1 7 7 0 F O R M A T I 8 0 A 1 ) 1 8 W R I T E C 6 , 6 9 ) ( I C A R D i I ) , 1 = 1 , 4 1 ) 1 9 . . . l C O U : M T = I C a u N T + l . _ : . i 2 0 I F < I C O U N T . E Q . I T I G U T O 4 9 \ 2 1 GQ I J 5 0 i 2 2 3 0 R t r A L H 4 , 7 0 ) { 1 C A R D ( i ) , I = 1 « 4 0 1 2 3 riftlTc<6.68) ( I C A R O ( I ) , 1 = 1 . 4 0 ) 2 4 1 C 0 U N T = I C O U N T + 1 L 2 5 „ „ . _ _ I P. ( ICQU NT . E Q . IJ.) GOTO. . 4 9 . 2 6 6 5 FORMAT 1 1 H 1 ) I 2 7 6 6 FORMAT{* SERIAL NO DEPTH HORIZON T E X T J R C O L i 2 8 XOR STRUCT MOTT R T 8Y AGENCY C F R » . / / ) ! 2 9 6 7 F O R M A T 4 8 0 . i l ) | 3 0 6 8 F O R M A T ( I X , 1 U N I T C D - S E R I A L N O • 1 X , 9 A i , 1 X . • S U 8 G R P » 1 X , 6 A l , 1 X . ! _ 3 1 X ' P A R E N T * 1 X » 2 A l , I X , . * SLOPE 1 I X , A 1 , I X , A l » 1 X , ' DR A I N M X , A l » I X , .'A CR E l ' l X , ! 3 2 X 6 A l , l X , ' A C R t 2 ' l X . 6 A l . l X . , 0 N E , l X , 4 A l , l X , « T W 0 « 1 X , 4 A 1 ) 3 3 6 9 F D R M A T ( 3 X , 9 A l , 6 X . 4 A l , , - ' , 3 A l , 4 X . 7 A L , 7 X , 4 A l , 7 X , 3 A l . 7 X . A i , l X , ! 3 4 X.2 A l , 7 X , 3 A l . o X , A i . 6 X , A i , 8 X , A l , 8 X , A 1 . 8 X . A l ) . 3 5 5 0 1 CALL S E T S T A I 4 . 0 ) 36 GO TO 50 _ _ 3 J L 4 9 ___W.R.IJ£.(AfJ>.5J . \ ; 3 8 W R l T E t 6 , 6 6 ) 39 ICOUttT=0 40 GU TO 10  61 50 GO TO 10 42 100 REWIND 4 43. ... . RETURN _ ... . . . 44 cNO 45 SUBROUT iNE L I S T 2 46 DI M E N S I UN I CARPI 9 )« CARD (17) 47 IT=56 48 ICOUNr=0 _4„9. ; WRITE ( 6 , 65) , , \ 50 W R I T E ( 6 , & 6 ) 5 1 6 6 F O R M A T i ' S E R I A L NO PHI P H 2 P H 3 OM N I T C:N P I P2 5 ? X SUL.P A C E 1 A C E 2 A C E 3 A C E 4 C E C 8 A S M 3 1 M ? ' . / / l 53 10 CALL S E T S T A ( 4 , 2 ) 54 R E A D ( * , 7 0 , E N D = 1 0 0 ) ( 1 C A R D U ) , 1 = 1 . 9 ) 55 70 FORMAT I 911) 56 I F ( I C A R Q I 9 ) . f c O . i ) GO T O 5 0 1 57 I F i i C A R D O ) . E Q . O ) GO T O 1 58 67 FORMATt 9 A l , 1 X » 3 A 2 . A 3 , A 4 . A 3 « 8 A4.A 3,9X « 2 A3) 59 REAU(4»67) ICARQ•CARD 60 W R I T E I 6 . 6 9 ) • I C A R D t C A R O 61 . ; I C PJJN J = I C QUNLt1 ._ ___ „ 62 I F ( I COUNT.E Q .IT)GO T O 4 9 63 6 9 F O R M A T < 3 X « 9 A L t 3 ( 3 X t A 2 ) • 3 X , A 3 , 3 X , A 4 , 2 X , A 3 , 2 { 2 X , A 4 ) , 6 { 3 X , A 4 ) . 3 X , 6 4 X A 3 , 3 X , A 3 , 4 X , A 3 ) " 65 GO TO 5 0 66 1 W R I T E ( b . 6 8 ) 1 C A R D 6 7 __IC0UNT = IC0UNT+1 __ _ _____ 6 8 IF ( I C O U N T . E O . i f ) G O T O 4 9 69 6 5 FORMAT!iHl) 7 0 68 FURMAT(•SERIAL N 0 « L X , 9 I 1 ) 7 1 5 0 1 ~ C A L L S t T S i A ( 4 . U l 7 2 GO T U 5 0 7 3 4 9 W R I T E ! 6. 6 5 ) 7 4 W R l T E ( b , o b ) 7 5 I C U U N 1 " = 0 7 6 G U T U 1 0  7 7 5 0 GO T U 1 0 7 8 1 0 0 R E W I N D 4 7 9 R E T U R N 8 0 END E N D O F F I L E leaf 187 missing in page numbering -188-APPENDIX I I Description, Listings and Sample Card Deck Sequences for Programs Used i n Data Extraction -189-Description, Sample Job Deck Setups for Data Extractions The program MNPROG has been written to a s s i s t i n data extraction procedures from the B.C. S o i l Survey Data F i l e . MNPROG, with SOILCR and MAX may create data sets f o r each s o i l series on any or a l l variables and writes t h i s data set with an accompanying i d e n t i f i c a t i o n code (subzone code and s o i l series code) into another f i l e in (IX,12,13,11F6.2/IX,10F6.2/IX,10F6.?) format. The program has been developed to execute the following operations conditional on the completeness of the data set. I f a data set from any series i s not complete i t i s deleted. Extractions a. Extract data by any area b. Extract data at any l e v e l i n the Canadian S o i l C l a s s i f i c a t i o n System. c. Extract data by any or a l l combinations of horizons d. Extract any or a l l data from any Unit Chemical or Physical card. (See Data F i l e Manual Appendix I) -190-Manipulations a. Any value from any horizon b. Average value for a l l or any part of a p r o f i l e weighted by horizon depth. c. Find the maximum or minimum value for any variable in a p r o f i l e . The various parameters w i l l be described in terms of the control cards which control the various tasks of a p a r t i c u l a r run. Note: A l l numbers are r i g h t j u s t i f i e d i n the column space a l l o t t e d . Format for control cards 1 and 2 i s (IX,3912/IX,3012) Control Card 1 Card Column Name Function 2-3 IUN Number of Unit card variables desired 4-5 IPH Number of Physical card variables desired 6-7 ICH Number of Chemical card variables desired 9 1ST I f '0' depth range i s same for a l l variables on physical and chemical card. If '1' d i f f e r e n t depth desired. 11 JST I f '0' no maximum p r o f i l e values i f '1' maximum values 13 KST I f '1' minimum p r o f i l e values '0' otherwise 14-15 IKD I f 1ST i s '0' contains upper l i m i t of the p r o f i l e 16-17 IKE I f 1ST i s '0'. contains lower l i m i t -191-18-1 Card Column 18-19 20-21 23 25 25-27 28-29 30-31 32-33 Name Function NOD Number of depths i n physical card NOE Number of depths i n chemical card IH I f '1' horizons desired IG I f '1' data extraction by C l a s s i f i c a t i o n IHNAM Lower l i m i t of horizon code ISUBGR Lowest l e v e l of C l a s s i f i c a t i o n (a no. 1-5) 1 i s order l e v e l , 2 i s Great Group, etc. JHNAM Upper l i m i t of HNAME code JSUBGP Upper l i m i t of C l a s s i f i c a t i o n Code Control Card 2 Card Column Name 2-(IUNx2) MUN (IUNx2 + D- MPH (IUNx2+l+IPHx2) (Above+D-(ICHx2) MCH Function Variable positions for unit card variables Positions of variables on physical card Positions of variables on chemical card Format for control card number 3 i s (lx,79Il) Control Card 3 Card Column Name 1-(IUN+IPH+ICH) IUCP Function A number from 1-4 for each variable in sequence in d i c a t i n g the option desired (See: options) -192-Card Column Name Function (Above+l)-(+7) IHNM Code for horizon desired (Above+l)-(+5) ISUB Code for c l a s s i f i c a t i o n desired Note: I f 1ST i s '1' the following cards are also required, Control Card 4 Format for control card 4 and 5 i s (4012) Card Column Name Function l-N0Dx2 ID Upper and Lower depths in inches for each variable on the physical card desired (e.g. 0012) Control Card 5 Card Column Name Function l-N0Ex2 IDD Upper and lower depths i n inches for each variable on the chemical card (e.g. 0040) Options 1. Gives variable value for each horizon in a p r o f i l e . A '1' i s always used for variables desired on the unit card since variable values given are for the entire p r o f i l e . 2. Gives one average value for a l l or one part of the p r o f i l e . For this option depth values have to be given. 3. The maximum horizon value for a variable i s given. -193 4. The minimum horizon value for a variable i s given. Note: Description of SOTLCR and MAX i s given i n Appendix I. Card Deck Sequence Example Card Card Column 1 Request for service card $SIGN0N LIOS PASSWORD $RUN MNPROG + SOILCR+MAX 3 = *S0URCE* 4 = DATA 6 = 0UTPUT 41210 1 1210 1 1 3 6 7 8 9101112131415161718192021 1 4 5 6 71011121314 711 1111222222222222222222222 0 012 0 012 0 01212 4012401240153015300012001212401240 1240 $ENDFILE $SIGN0FF Comments 1. Card 4 i s the execution card. F i l e s MNPROG, SOILCR and MAX contain compiled versions of the programs c a l l e d by the same name. A l l control cards are expected on l o g i c a l unit 3; data on l o g i c a l unit 4, and output i s put on unit 6. 2. Cards 5-9 are control cards 1-5. 3. Output from this sequence i s a number of variables from a l l three cards in the data f i l e for the Orthic Gleysols. 4. The variable numbers are i d e n t i f i e d as follows: 1 2 3 4 5 6 7 8 9 10 11 - I n -variable Number Unit Card Chemical Card Physical Card 1 Order pH(l:l) Top horizon 2 Great Group pH(sat) Bottom of horizon 3 Subgroup pH(Ca) Horizon name code 4 Subgroup Organic matter Horizon name code Modifiers matter Horizon name code 5 Subgroup Nitrogen Horizon name code Modifier 6 Parent Material C/N r a t i o Horizon name code 7 Simple Slope A v a i l P (PI) Horizon name code 8 Complex Slope A v a i l P (P2) Horizon name code 9 Drainage Sulphur Horizon name code 10 Acreage Calcium Texture code 11 Acreage-complex Magnesium Texture code 12 Min. Altitude Sodium Texture code 13 Max. Altitude Potassium Texture code 14 Mean Annual T. Cation Ex. Cap. Hue 15 P r e c i p i t a t i o n Base Sat. 1 Value 16 Pre. Growing Season Base Sat. 2 Chroma 17 Inches Snow Iron Structure Grade 18 Frost Free Days Aluminium Structure Class and Kind 19 Copper Mottle Abundance 20 Zinc Mottle Size 21 Mottle Contrast -195-Variable Number Unit Card Chemical Card Physical Card 22 Roots 23 Boundary 24 Agency 2 5* Platiness 26 Structure 27 Ratio (sand/clay) 28-30 % Sand, S i l t , Clay '''Variables 2 5-30 on the physical card have been generated only for this study and are discussed in Appendix IX. L i s t i n g of MNPROG 1 C P R O G R A M T S C E S 1 G N E C T O E X T R A C T A N Y P A R T O F A N Y H O R I Z O N F O R A N Y S C I I 2 C O P T I O N S i 3 c 1 V A L U E S OF A L L H O R I Z O N S W I T H C O M P L E T E D A T A F O R T H F C H A R D E F I N E D 4 C ? P A R T C F C F C O M P L E T E D E P T H OF A N Y P R O F I L E i 5 c A F T E R A N Y . . $ R U N - L C A D 8 + S O I L C R + M A X 3 = * S O U R C E * 4=-S0IlDATA ! 6 c T E E F I R S T C O N T R O L C A R T C O N T A I N S S T A R T I N G I N C C 1 ( I 2 , F O R M A T ) . . , . . .THE. VA.RT A L8 .E .S 7 c D F S T P E Q BY I N D I C A T I N G T H E V A R I A B L E N U M B E R ON T H E U N I T C A R D IN R E L A T I ON T O 9 c S U P C R D f 1 ) C c T H E S E C O N D C C N T F C L C IP t C O N T A I N S T H E C H E M I C A L C A R P V A R I A B L E S S T A R T I N G A T ! 1 0 c. T H E T H I R D C O N T R O L C A R O C O N T A I N S T H E C A P T A R L E S E ROM T H E P H Y S C C A R D 1 = D E P T H ( 1 ) ! 1 1 c T H E F O U R T H C O N T R O L C A R D C O N T A I N S ! 1 ? c T U N - NO O F U N I T C A R D V A R I A B L E S i 13 c I C H - N O OF C H E M C A R D V A R I A B L E S ! 1 4 c I P H - N C O F P F Y S C C A R D V A R I A B L E S 1 5 c 1 S T - G I F D E P T H R A N G E I S C O N S T A N T F O R A L L V A R I A B L E S D E P T H I S D E S I R E D F O R 1 6 c T F 1 S T =1 V A R I A B L E S Vi I T H D I F F E R E N T D E P T H S A R E D E S I R E D 1 7 c I K D I F I S T = C C O N T A I N S S U R F A C E D E P T H 1 8 c . I K E T F I S . T f O C O N T A I N S T H E . L O W E R . D E P T H _ _ 1 9 c "NOC-'NO OF D E P T H S I N P H Y S C C A R D ' ~ " " " 2 0 c N C E - N C O F D E P T H S I N C H E N C A R D 2 1 c NUN- C O D E P R O M ] - 9 I N D I C A T I N G O P E R A T I O N F O R U N I T C A R D V A R I A B L E S N= I U N 2 2 c N C H - C O D E F R 0 M 1 - 9 I N D I C . A T I O G O P E R A T I O N F O R C H E M C A R D V A R I A B L E S N = I C H 2 3 c N ' P H - C C D E F R O M 1 -q I N 0 TC AT TON P P E R AT I O N F O P P F Y S C C A R D N = I P H 2 4 _. C._ J S T - I F 0 NG V A X V A L U E S R E Q U I R E D I F 1 M A X S P E G U T R E D 25 r K S ' T - T P 0 NO M I N T . M U M S R E Q U I R E D I F 1 M I N I M U N S D E S I R E D 2 6 r - I U C P C C N T I . A N S T E E V A R I O U S C F T I O N S F O R T H E U N I T , P H Y S C I A L A N D C H E M I C A L 2 7 c V A R I A L B F S D E S I R E D 2 8 c I E C E F T F S A R E V A R I A B L E T E I S T = l P R O G R A M F X P E G T S C O N T R O L C A P O 5 W I T H ' 2 9 c C O N T R O L C A R D N U M B E R 1 3 0 r V A R I A B L E C O L U M N S 31 ~: c T U N 2 - 3 ... . ->2 r. I P H 4 - 5 3 3 C I C F 6 - 7 3 4 r I ST 8-9 3 5 c J S T 1C— 11 36 c KST 1 2 - 1 3 3 7 c IKO 1 4 - 1 5 38 c IK E 1 6 - 1 7 ! 3 9 c NT 0 2 0 - 2 1 4 0 r I H 2 2 - 2 3 41 C I G 2 4 - 2 5 4? c IF N.AM ? 6 - ? 7 4 3 c I S L B G P ? 8 - 2 9 ' " " ~ 4 4 c J h NA V 3 0 - 3 1 4 5 c J S l ' B O 0 3 ? - 3 3 4 6 c F O N T F ^ L CARD NUMBER 0 4 7 c EACH ENTRY FOR MUM,MPH,MCH, IS I N T 2 FORMAT...NOTE ADD CONTROL 4 9 c CARD NUMBER 3 I F TOTAL NUMBER OF V A R I A B L E S F X C E E D 4 0 " 4 9 " c" ~ CONTROL CAP O N Uf^BER 3 ( 4 I F TOTAL NUMBER E X C E E D S 4 0 ) ~ ~ " 50 c A L L E N T R I E S FOR I U C P , I HNV, I S U B ARE I N H FORMAT 51 c S U R F A C E AND LOWER HE PTHS FOR E A C H V A R I A B L E M E N T I O N E D FOR D E P T H I N P H Y S C A R D 52 c I E CODE = 2 C FORMAT I S 2 1 2 CARD 6 I S ADDED A S N E C E S S A R Y 53 c CARD 7 DEPTHS FOR CHEM CARD 5 4 COMMON / S E R I A L / Z C N E , S U E Z C N , U N I T , P R O F I L , H C R I Z N , T Y P E , Z N C H N G , S Z C H N G , '5 5 X C U N C F N G , PRCHNG, HOCHMG " " ~ " 5 6 C C M M C N / U N I T C C / S U B C R P ( 5 ) , P R ENT , S L OP E ( ? )., DR A I N , ACR AGE ( 2 > ,ALTMT, 57 X A L T D M X , T E M P A N , P R E C T P , P R E G P C , S N O W , F P C S T 58 CCVMCN/ PHYS CD/ DEPTH! 2 ) , FNAME( 7 ), TEXTIJR ( 4} , CO I OR f 3 ) , S TR UC T ( 2 ) , ^9 X M O T T L E ( 3 ) , P O G T S , B N r P Y , A G F N C Y , I PL A T E , S T U , ITEXP.A, IT E X ( 3 ) COMMON /CHE MOD / PH 1, PH SA T , PHC AC , ORG MA T , N I T RO , CNR AT , P ( 2 ) , S U L PH , .• i 61 X C A A C E T , MGACET ,NAACFT ,K AC FT, F.XC PAS SAT ( ? ) , FEOXAL-, A L O X A L , : 6 ? X C U P E R C ,ZNPFRC 6 3 I N T F G E R ZONE ,SUBZCN , U N I T , P R O F I L , H O R I Z N , T Y P E , S U B G P P , P A R E N T , S L O P E , 64 X D R A I N , A C R « G E , A G E N C Y , C , R M C R Y , D E P T H , H N A M E , T E X T U R , C O L O U R , STU, QDA T A ! A 1 J X, S T R U C T , M O T T L F , R , T 1 , T 2 , T 3 , T 4 , T5 , R OOT S * C F , P F ,U C A T A l , P C A T A, I DAT A ! 6 6 REAL ALTDM I , A L T C V X , T E M P A N , P R EC I P , P R E G R C , S N O W , F P O S T , P H I , P H S A T , , . „ _ _ . 6 7 X PHC AC , ORG VAT , N TT RO, CNR AT, P, S U L P H , CAACET, MGAC ET , N A AC F T , K. ACE T, ! - 6 8 X F XC AP ,BAS S A T , F E O X A L ,.ALCXAL ,C l i P E R C ,'Z N P F R C , U 0 AT A 2 6 9 I N T E G E R Z, RFC.NG, IBLAMK 1 7 0 L O G I C A L Z N C > N G , S Z C H N G , U N C H N G , P R C H N G , H O C H N G , R E P E A T , C O M P O S , F I R S T 7 1 D I M E N S I O N M U N I 1 8 ) , M C . H ( 20) , M P H(30) , T U C P ( 6 8 ) , 7 2 X ! U N I T C ( 1 P ) , C H E M C ( 2 0 ) , I P H Y S C ( 2 0 ) , T S E R f 5 ) , I S ( 5 ) , TR A N S f 6 8 ) , 7 3 X I T R A N S ( 4 8 ) , X T R A N S ( 2 9 ) , I S A V E ( 3 ) ; 7 4 DI M E N S I O N I D F I. ( 3 0 ) , I D F L I ( 3 0 ) , I D ( ? , 4 0 ) , T T P A ( 4 3 ) , T R T ( 4 8 ) , I R ( 3 a ) ! 7 5 D I M F N S I C N I R C ( 2 0 ) , I F T ( 2 0 ) , I D C ( 2 , 2 0 ) , T C P . ( 2 0 ) , X T P ( 2 0 ) , C R ( 2 0 ) 7 6 D I M E N S I O N I D X ( 2 0 ) , I D Y ( ? 0 ) , I H N M ( f ) , I S O B ( 5 ) , U C A R D ( 6 7 ) ! 7 7 D I M E N S I O N ID 1 ( 2 , 4 0 ) , I O D I C 2 , 2 0 ) 7 8 E C U I V A I F N C F ( P H I , O F f C (I. ) ) 7 9 E Q U I V A L E N C E ( S L B G R P ( 1 ) , I U N T T C U . ) ) 8 0 E C U TV AL EN C E ( D F P T H ( 1 ) , I P H Y S C ( l ) ) 81 DT MEN'S I C N D3 ( 2 0 ) , TA ( 2 0 1 , C 3 ( 2 0 ) , C 4 ( 2 0 ) 8 ? I U N = C 8 3 I C H = 0 8 4 I P H = 0 8 5 NOD=0 3 6 N G E = 0 8 7 I S T = C 8 8 iK.n=c 8 9 I K F = 0 9 0 1 X 1 = 0 i " 9 1 9 2 I C T T = 0 i 9 3 N T E M P ^ O | 9 4 MT F M P = 0 9 5 J S T - 0 c 6 K S T = 0 9 7 K AK = C 9 8 K A K A = 0 9 9 F I R S T = . T P U E . 1 0 0 P R C H N G = . F A L S E . 1 0 1 U N C E N G = . F A L S E . 1 0 2 R E A D ( 3 , 2 0 0 ) I U N , J P F , I C H , 1 S T , J S T , K S T , I K C , TK F , N O D . N O E , I H , T G , . . _ j 1 0 3 " ' X I H M A M , I S U 3 G P , J H N A V , J S U B G P 1 0 4 W R I T F ( 6 , 2 0 0 ) I U N , I P H , I C H , I S T , J S T , K S T , T K D , T K E , N O D , N O E , I H , I G , 1 0 5 X I H N A M , I S U B G P , J H N A V , J S U B G P - 1 9 8 -X X 1—• •* f-J It II w X X o X •* x X OL C_ r— r-l » II •— H ~ -X x a. a s: 2: z II II z z ^ •2 '21 2 ' ' .0 :tn rv X 'a X O w rr,. x C • O N • — X ; >— vC O C r-1 + «• II O - X r-< -r\j t— a 11 <j; 1— _ 2.- + t-H W C X r r , CL'. I X — <T II C u f— o 5 I 2T c o ( N i o r~ cc 0 c e o u o r-i r-l r-l r - l r-H r-H cc. CL. (/; ( / ) H H H--, H 2: if. X X t — H-- • H r—< II II r—1 r-H H — D a. — . H— w c ( N : 2 C: CJ <r cr. !—• . X . O X « v a. — *. H— h-^ + <r — 2: 2. X , X Cr. t— > - C —< I! U . a . S M f i < ' l f \ vC h r _ l r - l r * H r—1 r -H II1 o o t; r - j • • • H H O O O ! i l 11 " O * r -H H H H-, (V i i r—1 H H H~ 11 fi O : 0 - < n r n X C C l O O cc tr ol r-< CNJ m r-i i — r\j| CNJ CV! cv o 0 ' U J IT, O X , cr X c or 0-Ii u. I I . ( V m CJ l i «•» _ w tr, c U . U . X . e > > > _ J *-< < • < - H - « -(/1 (/> 1/5 < . U H-< H H »— _j H-o O o o (Ni IT: ^ i r , \ C a ; G r v (NJ (Ni CM r v r>. O ITi c; tr a : x> X ' D a. c cc, X »- C . O I • U J ' 0 r-> X X >: Z" <s X H H X • H H UJ » 2' JL • < £ *— ^£ rn X >~ ~> w II I X • - I E: r -H < ! 2L (N : X r n (/: O, X W O * " — o a c x I T i n rv; rc < i r , vO r - co r r , (<-, c< r<- ro m ro r< x <s, - J <t X « II CO X tJ rx a X! . X c 2T X >— • r- ^ r^: O x (NJ CO - 1 9 9 -* • LU LU (/> <S _ J 1 < <3 X LL * • X' II II X tri O > IT. sr. Z r-C X X r D t - 0 I— a ^£ c O a X) r<": O C- —- r — cs r H r- 1 0 0 • • 00 z G' 0 X. X c 0 • • • rH X r— i H H 0 —-X X X II or H H O a x — — - II G'. r~ —- H H LL X H—1 < X •—< H H X X C H H H . > C fM rv (VI C 0 f\i rv cv ff. IT, cc <J <r <t-rH rH r-H r-• r-* Q C c I -a x x X • £. — X r - t~ X r -o • o II X! X <L x> X r - l O • IT, • O r -(- LT, OC 0 O e J c • ir C X. + r— "— K \z w r-< X Z C II r-l < II I Of t- H - X r-jX r— H H r— H H C o in o x r— I/) G O X < a a o: CJ — X u. «— C LO " 0 r- CO Cl-IT-. LT IT ip r ~ i r H r - l r H r-H H H ^ O r-l r v i rn -^ ir su- \C >C" r - l rH r - l r - l X UJ . c — cc 0- • O C' »- II 1— OC O a. u <i c< r - C J X r-H x c IT. O 1 H H rH • *— • C' c O in x. G" O (-LC c X rH X X IT CO • »• 5: c • a c ir»~ v+ **" r - O cv r- **** r— rH X* lA r-X — i L/"i c if — O • HH HH m > • c c O + r-H X X' • — XJ Z. X D. O r -H X • 0 ( V H-4 - • 1 C v . — - H-4 •s: r-H II a. r—t • • H H X W - •—• H X *— H - * • 0 G • r— X X r - l r—' • UJ X X 0 </: r - i + 3: O X * • x> H~J X >• •—- HH X, • < O * r - l -J H H a- • r - Ct x + X II Q c- r-H c <S) <; <L HH - c a H—« 1- 1! z- H- h - X •-^  f - i t—1 — - i <r X X Jl — Xi X 0 3. OrT. X Ci u X H H w X r- * — C' H—. CP H-i H-H X < p- r r c- c: r-i r\ i f« >j- if. «c- r-r- r~ i"~ r~ r~ r~ T T B 7 I F ( IV . G E . T C h ) GO T O 5 0 1 7 9 ! V = T V + 1 1 B 0 I F d R C d V l . E Q . l l G O T O 7 T B I "" N T = I U N + I P H 1 8 2 iVTEMP= T U C P ( M T + T V ) 1 B 3 1 8 4 T F ( C F F M C < M C H ( I V H . E Q . - l . O ) GO T O 8 ? 1 8 5 1 3 6 M T EM P = I UC P ( M T + 1 V ) 1 B 7 GO T O ' ( 2 1 , 2 2 , 2 3 , ? 4 , 2 5 , 2 6 , 2 7 , 2 8 , 2 9 ) ,M. T E M P 1 8 8 2 1 X T R A N S ( I V ) = C H E I V C ( V C H ( I V ) ) 1 8 9 I F ( T V . I T . ! O H ) G O T O 7 1 9 0 IX 1=1 1 9 1 G O T O 5 6 1 9 2 _ 8 1 U C A R O ( IT )_=__-! .0 _ _ l 1 9 3 " G O T O 5 0 S 1 9 4 8 0 ! Y T = I U C P l I U N + I U ) ° 1 9 5 G O T O ( 1 8 1 , 1 8 2 , 6 , 6 , 1 8 1 ) , I Y T 1 9 6 1 8 1 U C A R C M I U N + I U)=-1 .0 1 9 7 G O T O 6 1 9 8 1 8 2 _ I F ( _ D E P T H ( 1 ) . L T . I H( 1 , I U ) . O R . T D F L K I U ) . E _ Q . l ) G O T C 6 1.99 " UC A R O U U N + I U ) = - l ' . o " 2 0 0 T P T T = I P T T + 1 2 0 1 GO T O 6  2 0 2 8 2 I Y R = I U C P ( H J N + I P H + I V ) 2 0 3 G O T O ( 1 9 1 , 1 9 2 , 7 , 7 , 1 9 1 ) , 1 Y R 2 0 4 _ 1 9 1 U C A R C ( T U N * I P H + I V ) = - l , 0 _ _ 2 C 5 ' ' " ' G C T O 7 '" '. ' ~ " 2 0 6 1 9 2 I F ( 0 E P T H ( 1 ) . L T . T O D ( 1 , T V ) . 0 R . I R C ( I V) . E C . D G G T O 7 2 0 7 U C A R O ( I1.IN + T P H + T V ) = - ! . 0  2 C 8 G O T O 7 2 0 9 5 6 DO 1 2 2 1 = 1 , IW 2 1 0 _ 12? T R A N S ( I ) = I T R A N S ( T ) __ _ _ _ _ !..„.... ? 1 1 IWU = T W + I C H 2 1 2 CO 1 3 3 1 = 1 , T C H 2 1 3 1 3 3 T p A N S ( I + T W ) = X T R ft N S ( T 1 214 215 216 00 3C32 I 1=1,NT IF{UCARD( I I ) .EQ .-1 .0 ) GO TO 134 I F l T R A N S ( T T ) . L T • C ) GG TO 134 217 3032 CONTINUE i 2 1R 13414 11=11+1 219 W R I T E ( 6 , 6 6 ) I SAVE, (TRANS ( I ) ,1=1 »IWV) 220 1 34 O H 1341 II=1,NT 221 UCAPn ( T U=0 .0 222 1 3 41 CGNTINUE i ?23 K AK = 0 224 K A K A -0 225 226 227 22 8 231 NXL= 1 232 IF(.MOT.UNGHNG)NX L=IUN+1 2 33 no 91 1=1,ICH 234 9 1 X T R A N S ( I ) = - ! . 0 235 DO 92 [=NXL,TW 236 9 2 I T R A N S m = - l 237 TPTT=0 23B IG TT = C 239 DO 411 1 = 1 , IPH 240 I D r L fT 1=0 241 D3<I)=0.0 24 2 D4( I ) = 0.C i 243 411 TDFL I ( I )= 0 i 244 DO 71 1 I =1 ,ICH | 245 TED( I ) = 0 246 G3 (T)=0 .0 •i 24 7 G 4 U ) = C . 0 ! 24* 7 11 T PC ( I ) = 0 249 i\iTEMP=0 2 5 0 MTCMP = 0 2 5 1 PRC HNG= . F A L S E . 2 5 2 .UNCHMG = . F A L S E . . .... 2 5 3 XC ARD = C . 2 5 4 I F ( IAK .EQ. i } GO TO 7 E 1 ? 55 GO TO 2 02 2 5 6 C TO P E T E R M J . N E D E P T H S OF PHVSC CARD 2 5 7 1 2 I F ( I S T . M F . O ) GO TO 1 2 2 ? 2 5 9 I F { I D F . E O . l ) GC TC 1 2 2 2 2 5 9 DO 4 7 T=1,TPH 2 6 0 ! 0 ( 1 , I ) = I K 0 2 6 1 4 7 i n { ? , n = T K P 2 6 ? I DF- 1. 2 63 2 6 4 ._ 1 22 ?....„ I F U O F . E Q . l ) G C TO 4 0 2 6 5 ~ R E A D ( 3 , 6 8 ) ( ( I D K I, J ) , 1 = 1, 2) , J = 1 , N 0 D ) 2 6 6 WP TTE (6 ,69 ) ( ( 1 0 1 ( I , J ) , 1= 1, 2 ), J = 1 , N 0 0> 2 6 7 J l = l ? 6 3 IWY= I U N + 1 2 6 9 DO 6 7 2 J2=TWY,IW ? 7 0 I F ( I H C P C J 2 ) . E Q . 2 ) GC TO 6 7 3 2 7 1 GO TO 6 7 2 2 72 6 7 3 I H Y = J 2 - I U N 2 7 3 I D ( 1, !HX) = !D1.( 1, J l ) j ' 2 74 I D ( 2 , IHX ) = T D 1 ( 2 , J l ) i 2 7 5 J 1 = J 1 + 1 2 7 6 I F ( J l . G T . M O D ) GO TO 6 7 4 1 2 7 7 6 7 ? CC NTT NUE i 2 7 8 6 8 FORMAT ( 4 0 1 ? ) 2 7 9 6 7 4 T HF= 1 ?. 8 0 4 0 I F ( I D F t. ( TU) . F Q . l ) GO TO 43 ! 2 8 1 T R T ( I U ) = 0 ? 3 ? 1 T R A ( T U ) = 0 | 2 8 3 TF ( DE PTH (1 ) . L E . ID ( 1 , IU 1 ) GO TO 41. i 2 8 4 GO TO 8 0 c x _ — , • > — • UJ ^ ! t? I t-a u.: c X X • rr, 3 i - i »- r- CO <-< — •> CS vr X • X I— «~ _ J X C : tV C r~ U >-< «~- II C: ii u- a _i — J w C J rv St m n'i ro <I r- (C C C i f CD CC CC X CT C C M C M r\j C M cv cv -203-( M rv X X (-ft c. U. LL X 0 ~~ II U X CM I r -tv' LU C j . II LOi c X + *•* (-• r -r\i c «w r— a |i t— H II (-• X a. sf ( \ i ro i r . r*-v f> t r o> 0" t r cv CM cv cv rv rv cx I * I X l _ J I-l II p r—t! ^ w;x u. cc D . I H IT, co cr. o fM co u- o o o o c rv rv ro; rn ro> ro a X r-H «3 Cr. or.', r-<r LT, vo » co cr C O O C C3 C ro rr, ro ro ro rr II (—^  it Iv) X rv • — i X >— <— 5 i»~ 00 — t/; i Z X z <J. to <1 ft' > a r- X r~ r— CL l — i i — • 1—1 *— i — 1! »~ r— *—-X ^ t r — r—1 —.' X' (/:• X I-H II X C L 2". z: <; MP c «— •—• a r- X H— a'' sc h -i — i X-LA O r — >• « — >• e r-Oc. PH r—* 1 PH *— r— X1 i—« • • — i 1—. • Cf • • —: r- X; r-UJ c < : - J • e z • 0/.: • ir^ • • ( j - ' i»~ I V l — — U.J r—'. IV) r-. I V x * II : — ; »—i *—- 1—"• 1—' — r—1 i*— 1/ —• II X- •+• X) r—i X 00 — r™, r-t r—'• 2.' 2" + <J z. X _ J + —~; <r o: <r r—* x z. 1— t a t - X w c CK 4X.. C- II i — t— ( -- J 1—. 1—4 r—' r — rv, H— K II r— a. II •— w M u — o x Cf LL. H; o X O t—i »—* X. i—» r-1 t— •~! r-I- t i ' •—1 CD r—» o i - i Cvj ro <r ir i—I i— i r-r' r—» i—I *—1 rr, ro, ro rr rr, ro X a ST. OO >-X a. x x 3L OO >-*~ X — CL o r- co a- c r - i r-l r-H r-l •—I CV CM m ro ro> m ro r-' -204- ( cv in o r-rvj cv <\j tv c\i rvj rr. ro rn rr. ro ro r -Ui Ui o a Di *• <1 r - i r - * • II II ! -5 5: *» U.J Ir-* X CM CM t_. »• •* ro i - * u . . M 11 JL CM *—» r— rvi cv C\J ! U (M o -> j C C <v O f ~ r- * — to c: C w —• • X O \~ <r* r- r - < r-l r- e I - I o c a. a cv • C Cj 1 tu o X —•« a c r - ' r-< 1 c: c LL: o UJ w j • — I* • o , o o LL' LL r - l • >—- 1—1 o ir.i IT tr 2: • r—* II II x > • —> IT' c • ti •—• " — •—I o CC \ C'tr . C C LL, 1 — w - U.: vC vO C K a ty e r - a • r vCi ! K <o LL' c. rv w—» <3 u. O ro a c O H o cv t- — r~ »». — II 5: t_> U-y— e <s. is UJ u. r— c £_; c a. c V-C: •— — o c C t_> c U-. « 1—4 o a o r~< ti- • — U- UJ rx o r — a r -cv m vO r- CO a cv r~ er cv f»t »—i I - I —' o CV| r- <J cv oo CJ*- o •—1 <v ro rvj cv ro p : m r<"i fO C": f i f ' C". •d ir>c f*- co Cf o ro ro ro ro r<~> ro fr, ro ro rr, co roi r-r-C r - i rv r o »t ir, sr •<(- <r - J - <f <r roi roi c") r o m r r ; c r - i H f — . p— r- (». r H r*'l O ~i D w c *—. r v c c r-l c v O • r - l • • O c. o u.. X U.) a L_ — - J >— « ^ « n •— 1! U : o • • • w° II CM 3". — «— z. c r - l r-c v ; ~5 CV t— > > • Ui It —• X «^ r — —^ - w N- 1 X X r - r - l — n X h~ CV X + a f~- r v *—^  II > t~ a t— e v : t_) - 5 + • c > Q . L L . a r- C II r ~ l r v r - t , ' U: C; c II r- r ~ > - 5 ~> cr — C II c II 1 G D II c . t_; . _J r-* o LL. O C; C r-* u. h U- c •—i -5 o CP t—. -3 X w-< o 1—1 rv <r r- r-r- r-o r- cc a-C : rr r r , f r : O r - f i r , u\ CO o c t o r-OJ ro -j i T i «t- r~-LT U" IT IT U' LP f f ; r r , p : CO CO f t ' 358 L L l = TPO(l , IV ) 359 72 I F ( L L L . G T . I P D ( 2 , I V ) ) GO TO 7 360 GO TO 72^ _ 361 73 H I = 1 HY U V ) ~ " " " ' ' ' 362 733 I F ( n F P T H ( 2 ) . G E . I D D ( 2 , I V ) ) GD TC 74 3 63 LLU= P E R T H { 2 ) ' ' ' 364 I DY ( TV)=DE pTH(2 5 3 65 GO TO 7 5 366 74 LLU=IO_ (2» IV) _ _ _ _ _ 367 IF (TCR( IV) . EQ.O) T C R J I V h l 368 ICTT=ICTT+1 369 IRC! IV )=1 N 370 75 C R(I V ) = L L U - L L L £ 371 1 .372 TCRMV)=TC_RJTV 5+CR ( IV) ._ ; 373 X>R(i v N y T R l i VJ + CHEMC (MCH(IV) )*CRUV) 374 IFD(IV)=1 375 IF ( IPC ( TV) .NE. 1 1 GC. TO 7  376 XTRAN S(I V)= XTR{T V)/TC Pi IV) 377 IF( ICTT ,LT .NOE )G0 TO 7 378 . _ I F d P T T . N E . NCOGC. IC 7 _ _ 380 3 91 - 2 0 6 -i -8 o L L X u II X a : . — c_> — - £ • > L U I~< X ~ O X II o — s: > *—« <_> — t o t u z X « s : c_ or r - H (- U - — 1 X X CVi O J r - > — r-l • — I f M — - w X u • — > LO 7> 1—' c v • X t—i zr r— •- 1—1 ' r ; r - < i •NT — . V~ i t v X Cr. X X ;2 ! U ; l _ r - o OJ 1—1 C i O X , 5. • • *— • w Y~ <X : LL' «_> u . ••<. t_J ; c 2. CO r-» r v '••> Or: i • L U 1 L U CO r-i • c c o . i «— X • X r 1L— LL! i > <_> o o r v L L t o ! 1 - 1 • U-l • r-' r - i r v i CC-U i t «» r~ • r-- - C J CJ ! r v O a f ! •- I • > • o r-< X ! C — 1 1 * — » * — i ~ " a <0. CJ > »— > o rv r - - X . r~- r^j r-i t—* r - i o o o o O c- • o c 00 •-, » •— zr. _~ m LT LO I f , I f . o o » : r - cc -« ». v o : ~ - C/j <a. CO UJ a- X r v >c - a r - i o O — sT — r - o 2r. CL _r C C O c c • a' r H • w 2.: 1 r - IT'. r - IT, U . ' . < LO <r r ~ t— r - r - r - 1- 1—1 — • <. u ; or II a; <5. r - - 5 E . c t X CC •—* c r - LL. a C : o e: c s: r-l c »-'• cx: c (- CJ H~ O C G O Q C c r— r v r - i L L c. Z J or r - II H- a II r~ a-, o X k - a X r - C D CT c^  U - r—' CC < ar c_ 5_ J S - U . r - •—* K-I c »- J E t o u ; o C u . < c i o LL. O ca c X CJ i * »—i t_ r-l o ! r - l c_ r - . t . u . i i X f f_ 1. r - j i cr-1 >c 1 O ' CC 00 i — I r o in r-- a.; o- o O c c cr r - r - CO r - f -i ( V i r v rv> r v ( V r v L0: CT vC cr :vo CT r v CO <r If'. r - ce c- O: —i r v f i >d-in CU cr c r-i r v CO ir-. r - i c o ! a ' O CL CO c o c o oo a.i CC: CO cr cr cr cr o-cr cr cr cr cr o c o o O c c o C O r H r—• r o fO, r o f CO f ; f i f r o r o r o r o ro . r o r o r o f i f i •<r «4- •d >d •d- -4- <J- i<t >-rv •—i «d--207-APPENDIX III Description, Listings and Sample Card Deck Sequences for the Determination of Euclidean Distance, S o i l Treatments and Costs -208-Writeups, l i s t i n g s and sample job setups for a distance-treatment run MAIN i s a program that i s u t i l i z e d when a complete run including factor analysis, distance, and treatments are desired. MAIN includes the main control program as well as a number of subroutines that perform various functions. . In the present format subroutines SCALED and GRAPH are not c a l l e d . If less than 50 c o i l s are considered, these two programs w i l l plot out distances from the model on the pr i n t e r . Since the routines are r e l a t i v e l y slow to run they have been deleted from most runs made for this study but have been included for int e r e s t . The program requires one control card v/ith f i v e parameters to perform i t s functions. Format for the card is 513. Card Column Name Function 1-3 N Number of runs desired 4-6 IA Maximum number of variables (used when NN i s 0) 9 NN I f '1' do not standardize data, i f '0' do 12 IFLAG If '1' correlation matrix and standard deviations are to be stored on l o g i c a l unit number 8 15 IFL I f treatments are desired 1 I .-209-Note? I f data i s desired i n standardized form the control card must be followed by the format statement for the raw data. The f i r s t subroutine c a l l e d i f standardization pf data does not occur i s the program FACTOR which subjects the data to factor analysis. Since the program i s r e l a t i v e l y large i t has not been l i s t e d but description of i t s control card follows. The MAIN routine then c a l l s program CHANGE which converts the rotated factor ascores for the s o i l s from machine language to F format. Distances are then calculated by program DIS which are printed by subroutine DISOUT with the appropriate subzone and series name. Depending on the option of IFL, subroutine TREAT i s c a l l e d . TREAT i s s a procedure by which s o i l s may be s t a t i s t i c a l l y treated to better approximate a hypothetical or r e a l model. The s o i l s c i e n t i s t can intervene to any degree desired. A range of intervention from completely "automatic" to • : completely "manual" i s possible. In automatic runs, the sequence and variables to be used for treatment i s optimally determined by the program. In manual runs, the sequence i s pre-defined. Various degrees of control i n between are regulated by defining, under automatic control dependent -209-Note: I f data i s d e s i r e d i n s t a n d a r d i z e d form the c o n t r o l card must be f o l l o w e d by the format statement f o r the raw data. The f i r s t subroutine c a l l e d i f s t a n d a r d i z a t i o n of data does not occur i s the program FACTOR which s u b j e c t s the data to f a c t o r a n a l y s i s . Since the program i s r e l a t i v e l y l a r g e i t has not been l i s t e d but d e s c r i p t i o n of i t s c o n t r o l card f o l l o w s . The MAIN r o u t i n e then c a l l s program CHANGE which converts the r o t a t e d f a c t o r ascores f o r the s o i l s from machine language to F format. Distances are then c a l c u l a t e d by program DIS which are p r i n t e d by subroutine DISOUT with the a p p r o p r i a t e subzone and s e r i e s name. Depending on the o p t i o n o f IFL, subroutine TREAT i s c a l l e d . TREAT i s s a procedure by which s o i l s may be s t a t i s t i c a l l y t r e a t e d to b e t t e r approximate a h y p o t h e t i c a l or r e a l model. The s o i l s c i e n t i s t can i n t e r v e n e to any degree d e s i r e d . A range of i n t e r v e n t i o n from completely "automatic" to completely "manual" i s p o s s i b l e . In automatic runs, the sequence and v a r i a b l e s to be used f o r treatment i s o p t i m a l l y determined by the program. In manual runs, the sequence i s pr e - d e f i n e d . Various degrees of c o n t r o l i n between are r e g u l a t e d by d e f i n i n g , under automatic c o n t r o l dependent - 2 1 0 -Card C o l . 1 - 4 5 - 8 • 9 - 1 1 1 1 2 ! Name PR V = ..-.P.RL„-_'„ M N F M T Function P R O B L E M N U M B E R ( M A Y B E A L P H A B E T I C ) . , P R Q B 1 . E . N _ N I ) MB Eft C 0M-.I.NU.E.D J,,„__ • N U M B E R O F V A R I A B L E S . N U M B E R ( M A X I M U M = 4 ) O F D A T A F O R M A T C A R D S , B L A N K OR Z . F R U I F T H E D A T A F I L E I S I N B I N A R Y OR I F N O RAW 1 3 1 4 D A T A I S T O B E E N T E R E D . I D S W • l» I F T H E R E A R E N ' T S U B J E C T I D N U M B E R S TO B E E N T E R E D 8 L . A N K . . . O R Z E R C_.I F _ T .HE R E . . . A R E . I M P ' ] ' I E A 3 0 A 4 C O R R E L A T I O N M A T R I X I S T O B E E N T E R E D I N A D D I T I O N T O T H E RAW D A T A , » 2 ' I F A 6 F 1 2 . 8 C O R R E L A T I O N M A T R I X I S T O B E E N T E R E D I N 1 5 1 6 - 1 7 KOM A D D I T I O N TO T H F R A W D A T A , • 3 ' I F A 3 0 A 4 C OH R E L A T I O N M A T R I X I S T O B E R E A D IN I N S T E A D O F RAW .D.A T A , ' 4 ' I F A 6 F 1 2 . 8 CjQR RE. .LA T I . O N . . M A T . R I X IS . . T O B E R E A D IN I N S T E A D O F R A W D A T A , B L A N K OR Z E R O I F NO C O R R E L A T I O N M A T R I X I S T O B E E N T E R E D . I F S Q U A R E D M U L T I P L E C O R R E L A T I O N C O E F F I C I E N T S A-E TO BE U S E D AS C OMMUNALITY E S T I M A T E S , »2* I F C OMMIJNA L I T Y E S T I M A T E S ARE TO BE S U P P L I E D BY T H E , US F.R.,_BL A.NK...OR_Z.E£Q_I.F .._TH.F. M.A I N _QL AG.ONA L „ O F ....THE. C O R R E L A T I O N M A T R I X IS TO R E M A I N UNCHANGED, LOOP NUMBER OF I T E R A T I O N S TO BE P E R F O RMED I N E S T I M A T I O N OF C O M M U N A L I T I E S . ( B L A N K OR ZERO I F C O M M O N A L I T I E S 1 8 - 2 3 C O N A R E MOT T O B E E S T I M A T E D BY I T E R A T I O N . ) C O N S T A N T U S E D T O D E C I D E HOW M A N Y F A C T O R S T O R E T A I N . 2 4 - 2 5 N E J G N U M B E R O F F A C T O R S . ( N U M B E R O F F A C T O R S E Q U A L S T H E MJMIMUM O F N E I G A N D T H E N U M B E R O F E I G E N V A L U E S G R E A T E R T H A N C O M . ) 2 6 M UL TU ' 1 * I S I F THE ij" U I S T O R E C O M P U T E D A N D P R I N T E D W H E R E R O T A T E D F A C T O R M A T R I X . U . .2 . .. M U L T V • 1 V I S ... I.E. TH E _.. VV ' _ IS T O B E . COM.Pi.) T. E 0.... AN 0 . P R I N T £ . 0 . . W H E R E R O T A T E D F A C T O R M A T R I X . V 2 8 K I NV • 1 » C O P I F R E L T H E I N V E R T E D OR P A R T I A L L Y I N V E R T E D A T ! O N M A T R I X I S T O B E P R I N T E D . 2 9 KR EG » 1 » I F F A C T O R R E G R E S S I O N E Q U A T I O N S A R E T O B E C O M P U T E 0 A N D P R I N T E D , ' 2 ' I F T H E Y A R E TO B E . C O M P U T E Q . , . . _ P R J . N T F D , . . . . A N D . . . W R T T T E N . _ I N F O R M A T . ( 3 0 A 4 ) O N L O G I CAL UN i f 8 . 3 0 K SCOR ' ]. * I F F A C T O R S C O R E S F O R R O T A T E D F A C T O R S A R E TO B E PR T M T E O , ' 2 ' I F T H E Y A R E T n B E 3 1 KOR. Y F NO PP. [NT Ef L O G I C A L . ' 1 *...! S CORES ' 1 • I F I S TD A N D W R I T T E N I N F O R M A T ( 3 0 A 4 ) O N U N I T 9 , T H E . . C O R R E L A T I O N M A T R I X . F O R T H E F A C T O R . IS T O B E C O M P U T E D A N D P R I N T E D . RAW B E U S E f D A T A I S IN A F I L E OR O N T A P E A N D A G A I N W I T H A NEW P R O B L E M P A R A M E T E R CARD AND NEW R UN I S TO B E E X E C U T I O N I S F O R M A T C A R D ( S ) » • 2 » T F A S U B S E Q U E N T M A D E O N NEW D A T A , B L A N K OR Z E R O I F T O T E R M I N A T E A F T E R T H I S R U N . -211-and independent variables as well as the variables which may be used as a treatment but may not be modified by inter-treatment e f f e c t s , while excluded variables i f not de declared independent may be modified by i n t e r n - t r e a t m e n t e f f e c t s . Descriptions of the various options w i l l be described in terms of the parameters on the main control card. Card Column Name Function 1-3 N Defines t o t a l number of s o i l s to be treated (max i s 150) 4-6 J Number of variables used 7-9 NN Number of s o i l s used i n determination of the correlation matrix 12 IND I f '1' wish to declare some variables as independent '0' otherwise 13-15 NIND Number of variables declared independent 18 IMAN I f '0* treatments proceed in a s t a t i s t i c a l l y optimal fashion. I f '1' treatments and sequence are input to the model 21 ICON Used only i f IMAN i s '1'. If '0' a l l treatments defined are used. I f '1' treatment i s used only i f i t makes the s o i l more s i m i l a r to the model. 24 ISIG I f '0" only correlations that are s i g n i f i c a n t at the l e v e l s p e c i f i e d i n IAQ are used. I f '1' a l l correlations are used. 2 7 IREST If '0' a l l variables may be used as treatments. I f '1' certain variables are not desired. -212-Card Column Name Function 28-30 INRES Defines the no. of variables not desired as treatments. 33 INDIV Used only i f IMAN i s '1*. I f '0' a l l s o i l s are treated by the same c r i t e r i a . If '1' each s o i l i s treated independently, i . e . variable and sequence have to be provided for each s o i l . 36 IAQ Defines the l e v e l of significance above which correlations are used. •0'-.05, 'l'-.02, '2'-.01 39 L If '0' costs are not desired. If greater than 1 costs are desired and cost estimates per unit variable are expected for a l l possible treatments. A number greater than one indicates the number of costs that are given. 42 LL Costs to bring variable from above model variable down and from below model variable up to the value of the model variable are d i f f e r e n t . Costs are read i n afte r f i r s t cost set and f i r s t set becomes costs for above and second set are costs below. Note: If NIND, IMAN, and/or INRES are non-zero in the master control card, additional input cards have to be used. Card name Format Contents NIND 4012 Variables numbered from 1-N that are desired as independent variables IMAN 4012 F i r s t two columns indicate number of treatment steps. Column 3-80 indicate variables to be treated. Sequence i s the order on the card. -213-Card name Format Contents INRES 4012 Variables that are not desired as treatments. L 10F8.2 Treatment costs in sequence of the variables. LL 10F8.2 Same as L Card Deck Sequence Example 1. (automatic run) Card Card Column 1 1 Request for Service Card 2 $SIGN0N LIOS 3 PASSWORD 4 $RUN -F+*SSP 0=-L 1=-A 2=-B 4=-M 5=*S0URCE* 7=-X 8=-XX 9=-RE 5 1 21 1 1 1 6 SOILS 211 1.0 111121 7 (1X,I5,2X,HF6.2/1X,10F6.2) 8 35 21 35 1 4 1 5 1 16 9 SL0PDRANR0CKC0L1C0L2C0L3R00TSTRUCANDSILTCLAYPH OM C/N PI CA MG 10 NA K CEC BASS 11 1 3 713 12 3 4 5 6 7 13 1000.00 200.00 1.00 5.00 5.00 5.00 50.00 20.00 5.00 1.00 14 20.00 20.00 100.00 20.00 1.00 1.00 15 (5(1X,10F12.5/)) 16 (1X,I2,I3,2X,11F6.2/1X,10F6.2) 17 $ENDFILE 18 $SIGN0FF Comments 1. Card 4 i s the execution card. -F i s a f i l e that contains the compiled versions of MAIN, FACTOR and TREAT. The SSP i s the s c i e n t i f i c subroutine package from the U.B.C. Computing Centre Library that provides some of the routines for FACTOR. On l o g i c a l unit 1 subzone names and series -214-names are accessed. Units 2 and 3 are working units for factor analysis, while the raw s o i l data comes in on unit 4. A l l control cards are read in on unit 5 and output (default) i s on unit 6. Data for the modified s o i l s are stored on unit 7 and standard deviations and correlations rfrom the factor analysis run are accessed on unit 8 while rotated factor scores for the s o i l s are on unit 9. Card 5 i s the master control card for MAIN. Card 6 i s the problem card for FACTOR while 7 i s the Format statement for the raw data. Card 8 i s the control card for TREAT. Card 9 contains i n 2 0A4 format the names for each of the availables. Card 10 i s the continuation card of 9. Card 11 ' i d e n t i f i e s the independent variables. Card 12 gives the variables that are not wanted as treatments. Cards 13 and 14 give the cost estimates. Card 15 gives the format by which standard deviations and correlations are written by FACTOR on unit 8. Card 16 i s the format for data coming in on unit 4. The two integer s p e c i f i c a t i o n s on the beginning of the format s t r i n g are for subzone and series name code respectively. -215-12. Card 17 indicates the end of the control cards while card 18 signs the job o f f the computer. Card Deck Sequence Example 2. (manual run) With the appropriate changes on the control card for TREAT (card 8) the only changes required i n the card deck (assuming i d e n t i c a l independent and non-treatable variables, would be the addition of variables and treatment sequence cards as described under IMAN. These would be inserted i n the deck between cards 16 and 17. L i s t i n g of MAIN 1 C . . . M A I N P R O G R A M 2 D I M E N S I O N S T O R ( 1 0 ) , F F M T ( 2 0 ) , D I S T { 1 5 0 , 1 0 ) , S C A L E ( 2 5 0 ) 3 D I M E N S I O N F E F M T ( 2 0 )  4 C O M M Q N / D I SX/ F F F M T 5 C O M M O N / M O D E L / K L , F F M T , K X , D I S T , N O B S V , S C A L E 6 N N = 0 7 C O M M O N / G R O U P / K I I , K A 0 7 , K I X I 8 C O M M O N / S T A / I A 9 C O M M O N / N / N  1 0 C O M M O N N F M T , I D S W t I F L A G 1 1 C O M M O N / S P E C / I S 12 N=0 . _ , 1 3 K L = 0 1 4 K X = 0 1 5 N O B S V = 0 . 1 6 1 7 C N = N O O F L O O P S , I A = M A X V A R I A B L E S ? N N = 1 D O N ' T S T A N D A R O I Z E , I F L A G = 1 1 8 C _ N E E D C O R R E L A T I O N X A 8 L E _ _ F 0 R . T R E A T . . . I F L = 1 T P E A T M E N T S _ O E . S I R E D 1 9 C $ R U N C J 0 = - L 1 = - A 2 = - B 4 = - M 5 = * S 0 U R C E * 7 = - X 8 = - X X 9 = - R E 2 0 R E A D ( 5 , 2 ) N , I A , N N , I F L A G , I F L 2 1 I F ( N N . E Q . l ) G O T O 1 2  2 2 R E A D ( 5 , 3 ) F F M T . 2 3 C A L L S T A N D 2 4 _ _ _ _ _ __ _ _ _ 2 5 3 F O R M A T ( 2 0 A 4 ) 2 6 2 F Q R M A T ( 5 1 3 ) 2 7 1 2 C A L L L A B E L S •• 2 8 C . . . W A R N I N G L O G I C A L U N I T S A R E N O T Y E T A L L I G N E D 2 9 D O 1 1 = 1 , N " 3 0 K X = I _ _ _ • _ ^ • 3 1 3 2 3 3 C A L L F A C T O R 3 4 N 0 B S V = I B 3 5 R E W I N D 9 3 6 W R I T E ( 6 , 4 ) N , K L , K X , N 0 B S V 3 7 4 F O R M A T ( 1 0 1 8 ) 3 3 R E W I N D 7 3 9 C A L L C H A N G E 4 0 C A L L O I S 4 1 K I I = K L . . . ' *2 4 3 E N D F I L E 8 4 4 R E W I N D 7 4 5 R E W I N D 9 _ . . . . . . . . .... 4 6 1 C O N T I N U E 4 7 R E W I N D 4 4 8 R E W I N D 8 4 9 C A L L D I S O U T 5 0 I F ( IFL .NE -DGO T O 5 51 C A L L T R E A T 5 2 5 S T O P 5 3 E N D 5 4 5 5 S U B R O U T I N E C H A N G E 5 6 C • • * . F O R M A T S T A E M E N T I S T O B E R E A D I N C O M M A N D S E C $ R U N - L 0 A D # 4 = P E T A IN 5=-S 5 7 D I M E N S I O N I STOP. ( 2 ) 5 8 C « • o 3 = * S 0 U R C E * 5 9 D I M E N S I O N S T O R ( 1 0 ) , F F M T ( 2 0 ) t O I S T ( 1 5 0 , 1 0 ) , S C A L E ( 2 5 0 ) ; 6.o__ C O M M O N / M O D E L / K L , F F M T , K X , D I S T , N O B S V , S C A L E 6 1 K L L = K L + 1 6 2 3 0 R E A D ! 9 , 1 , E ND = 1 0 0 ) ( S T O R ( I ) , 1 = 1 , K L L ) 6 3 W R I T E ( 7 , 9 9 ) ( S T O R ( I ) , 1 = 1 , K L L ) 6 4 9 9 F G R M A T ( 1 X , I 5 , 1 0 F 9 . 5 ) 6 5 1 F O R M A T { 2 0 A 4 ) 6 6 G O T O 3 0 6 7 1 0 0 R E W I N D 7 6 8 R E W I N D 9 6 9 R E T U R N 70 E N D 71 7 2 . _ 73 S U B R O U T I N E G R A P H D I M E N S I O N S P A C E (1 .101 i FF MT ( 2 0 ) , D I S T (15 0 , 1 0 ) , S C A L E ( 2 5 0 ) , A B L I 9 ) 7 4 D I M E N S I O N Y S P A C E ( 50 ) 75 D A T A Y S P A C E / 1 1 ' 2 S ' 3 S ' 4 ' , ' 5 ' t ' 6 ' , ' 7 ' , » 8 ' , « 9 « , » 1 0 ' , « 1 1 « , 76 1 ' 1 2 ' , ' 1 3 « , ' 1 4 ' , ' 1 5 ' , «16« , ' 1 7 « , ' 1 8 ' , ' 1 9 » , * 2 0 ' , • 2 1 « , ' 2 2 ' , « 2 3 ' , 77 2 ' 2 4 « , • 2 5 ' , « 2 6 » t » 2 7 » t « 2 8 1 f ' 2 9 • , • 3 0 ' , « 3 1 » , ' 3 2 ' , ' 3 3 * , ' 3 4 ' , « 3 5 ' , 78 7 9 3 ' 36 • 3 7 , '.3 3 , ' 3 ? „ » 4 0 V , «41 • , ' 42. ' t . ' 43.1, ' 44 • , 4 ' 4 8 » , ' 4 9 ' ,» 5 0 ' / ' 4 5 « , ' 4 6 ' , « 4 7 « , 30 c • • * MAX N O O F 0B S E R V A T I O N S = 110 81 C O M M O N / M O D E L / K L , F F M T , K X , D I S T , N O B S V , S C A L E 82 D A T A B L A N K / ' ' / , A 3 L / » 1 « , ' 2 • , ' 3 • , « 4 » , • 5 « , • 6 • , ' 7 ' , ' 8 ' , ' 9, / , X / ' * ' / 83 N C B S = N 0 B S V - 1 _J34 8 5 8 6 C A L L S C A L E D I D O 1 1 = 1 , K X K> J - 1 co 1 8 7 I X = 1 2 5 - I Z 8 8 D O 5 K = 1 , N 0 B S 8 9 5 S P A C E ( K ) = B L A NK 9 0 9 1 9 2 DO 2 .1= 1 . N O B S 9 3 9 4 I E ( 0 1 S T ( J , I ) . L T . S C A L E l IX ) ) G O T O 2 X Y = D I S T ( J , I ) - S C A L E ( I X ) 9 5 I F J X Y . G T . 0 . 2 0 0 0 ) GO T O 2 9 6 I F ( S P A C E ( J ) . N E . B L A N K ) G O T O 6 * 9 7 S P A C E * J ) = A 8 L ( I ) 9 8 G O T O 2 9 9 6 S P A C E ( J ) = X 1 0 0 1 0 1 2 C O N T I N U E 1 0 2 1 0 3 4 W R I T E ( 6 , 4 ) S C A L E ( I X ) , ( S P A C E ( 1 7 ) , 17 = 1 , N O B S ) F O R M A T (F 6 . 2 , I X , * . * , 4 1 A 3 ) 1 0 4 3 C O N T I N U E ! 1 0 6 W R I T E ! 6 , 7 ) 1 0 7 7 F O R M A T ( 1 3 2 ( ' . ' ) ) 1 0 8 1 0 9 1 1 0 1 1 1 1 1 2 1 1 3 _ 1 1 4 W R I T E ( 6 , 1 5 ) { Y S P A C E ! I Z ) , 1 2 = 1 , N O B S ) 1 1 5 W R I T E ( 6 , 1 6 ) 1 1 6 1 5 F O R M A T ( 8 X , 5 OA 3) 1 1 7 1 6 F O R M A T ! / / / / ) 1 1 8 1 C O N T I N U E 1 1 9 R E T U R N 1 2 0 E N D . . . J : . ' 1 2 1 1 2 2 S U B R O U T I N E S C A L E D 1 2 3 D I M E N S I O N F F M T I 2 0 ) , D I S T ( 1 0 0 , 1 0 ) , S C A L E ( 2 5 0 ) 1 2 4 C O M M O N / M O D E L / K L , F F M T , K X , D I S T , N O B S V , S C A L E 1 2 5 X = 0 . 2 1 2 6 S C A L E ! ! ) = 0 . 0 ' 1 2 7 D O 1 1 = 2 , 1 2 5 1 2 8 J = I - 1 1 2 9 1 S C A L E (I ) = S C A L E ( J ) + X 1 3 0 R E T U R N _ . 1 3 1 . E N D 1 3 2 1 3 3 S U B R O U T I N E L A B E L S 1 3 4 D I M E N S I O N I S T 0 R ( 1 3 4 ) , S E R I E S ! 1 3 4 , 4 ) , S U B Z O N ( 2 5 , 9 ) 1 3 5 C O M M O N / L A B E L / I S T O P , S F . R I E S , S U B Z O N 1 3 6 DO 1 0 0 1 = 1 , 2 5 1 3 7 1 0 0 R E A 0 ( 0 , 6 ) ( S U B Z O N I I , J ) , J = 1 , 9 ) 1 3 8 6 F O R M A T ! 9 A 4 ) 1 3 9 . D O 1 0 1 1= 1 , 1 3 4 1 4 0 6 7 F O R M A T ! 13 ,4 A4 ) 1 4 1 1 0 1 R E A 0 ( 0 , 6 7 ) I S T O R U ) , ( S E R I E S ( I , J ) , J = 1 , 4 ) 1 4 2 R E T U R N 1 4 3 E N D - . . . J . T — » 1 4 4 1 4 5 S U B R O U T I N E D I S 1 4 6 D I M E N S I O N D I S T ( 1 5 0 , 1 0 ) , F M O D E L ( 5 0 ) , F A C T S T ( 5 0 ) , E F M T ( 2 0 ) 1 4 7 X , S C A L E ( 2 5 0 ) 1 4 8 D I M E N S I O N S L I B Z O N C 2 5 , 9 ) , S E R I E S ( 1 3 4 , 4 ) , I S T O R ( 1 3 4 ) 1 4 9 D I M E N S I O N F F F M T ( 2 0 ) , N A M E ( 2 , 1 5 0 ) .... _ 1 5 0 C P R O G R A M E X P E C T S L A B E L S O N L O G I C A L U N I T 3, P A R A M E T E R S A N D 1 5 1 C F O R M A T S T A T E M E N T O N L O G I C A L U N I T 4 A N D T H E D A T A O N L O G I C A L _ . 1 . 5 2 r. U N I T 5 . E G . S R U N - L O A D # 3 = L A B E L 4 = * S 0 U R C E * 5= D A T A 1 1 5 3 C O M M O N / M O D E L / K L , E F M T , K X , D I S T , N O B S V , S C A L E 1 5 4 C O M M O N / L A B E L / I S T O R , S E R I E S , S U B Z O M ! 1 5 5 C O M M O N /ti/ H 1 5 6 C O M M O N / D I S X / F F F M T 1 5 7 C O M M O N / D / N A M E ! 1 5 8 R E A D ( 7 , 9 9 ) N A M E ( 1 , 1 ) , N A M E ( 2 , 1 ) , ( F M O D E L ( I ) , I = 1 , K L ) 1 5 9 1=1 1 6 0 5 0 R E A D ( 7 , 9 9 , E N D = 1 0 0 ) ( N A M E ( 1 1 , 1 ) , 1 1 = 1 , 2 ) , ( F A C T S T ( 1 1 ) , 1 1 = 1 , K L ) 1 6 1 _ ? 9 F O R M A T ( I X , 1 2 , 1 3 , 1 OF 9 . 5 ) 1 6 2 D I S T ( I , K X ) = 0 . 1 6 3 D 3 6 0 I 2 = 1 , K L 1 6 4 A= F M O D E L ( I 2 ) - F A C T S T ( 1 2 ) 1 6 5 6 0 D I S K I , K X ) = D I S T ( I , K X ) + A * A 1 6 6 D I S T ( I , K X ) = S Q R T { D I S T ( I , K X ) ) 1 6 7 1 = 1 + 1 1 6 8 G O T O 5 0 • 1 6 9 1 0 0 R E T U R N 1 7 0 E N D 1 7 1 S U B R O U T I N E D I S O U T 1 7 2 D I M E N S I O N D I S T ( 1 5 0 , 1 0 ) , F F M T ( 2 0 ) , S C A L E ( 2 5 0 ) 1 7 3 C O M M O N / M O D E L / K L , F F M T , K X , D 1 S T , N O B S V , S C A L E 1 7 4 D I M E N S I O N I S T 0 R ( 1 3 4 ) , S E R l E S ( 1 3 4 , 4 ) , S U B Z O N ( 2 5 , 9 ) 1 7 5 C O M M O N / L A B E L / I S T O R , S E R I E S , S U B Z O N 1 7 6 D I M E N S I O N N A M E ( 2 , 1 5 0 ) 1 7 7 C O M M O N / D / N A M E 1 7 8 C O M M O N / N / N 1 7 9 N Q B S = N 0 B S V - 1 1 8 0 1 = 1 1 8 1 5 0 1 F ( I . G T . N O B S ) GO T O 1 0 0 1 8 2 W R I T E { 6 , 6 6 ) ( S U B Z O N f N A M E U , I ) , J ) , J = 1 , 9 ) 1 8 3 6 6 F O R M A T ! ' T H E S U B Z O N E OR A R E A I S * , 9 A 4 ) 1 8 4 0 0 5 K l = l , 1 3 4 1 8 5 K 2 = K 1 1 8 6 I F ( N A M E ( 2 , I ) . E Q . I S T O R ( K l ) ) G O T O 9 0 1 8 7 5 C O N T I N U E 1 8 8 9 0 WRI T E ( 6 , 8 ) ( S E R I E S ! K 2 t J ) * J = l » 4 ) 1 8 9 8 F O R M A T ! ' T H E S E R I E S N A M E I S ' , 4 A 4 ) 1 9 0 W R I T E ( 6 , 7 ) ( D I S T ! I, I V ) t I V = 1 , N ) 1 9 1 1 = 1 + 1 1 9 2 G O T O 5 0 1 9 3 7 F O R M A T ! 1 T H E D I S T A N C E S I S / A R E 1 0 F 9 . 5 , / / / ) 1 9 4 1 9 5 1 0 0 R E T U R N 1 9 6 E N D 1 9 7 S U B R O U T I N E S T A N D 1 9 8 D I M E N S I O N D ! 1 2 0 , 1 2 0 ) , F F M T ( 2 0 ) , D I S T ! 1 0 0 , 1 0 ) , S C A L E ( 2 5 0 ) , 1 9 9 X N A M E U 2 0 ) 2 0 0 C O M M O N / M O D E L / K L , F F M T , K X , D 1 S T , N O B S V , S C A L E 2 0 1 C O M M O N / S T A / I A 2 0 2 N D = 1 2 0 2 0 3 N 0 8 S V = 1 2 0 4 1 0 R E A D ! 4 , F F M T , E N D = 1 1 ) N A M E ( N O B S V ) , ( D ( N 0 B S V , J ) , J = 1 , I A ) 2 0 5 N 0 B S V = N 0 B S V + 1 2 0 6 G O T O 1 0 2 0 7 1 1 N 0 B S V = N 0 B S V - 1 208 T = N O B S V 2 0 9 DO 1 5 J = 1 , I A 2 1 0 C A I S T H E M E A N 2 1 1 A = S U M F ! D , J , N O B S V , N D ) / T 2 1 2 C S I S T H E S T A N D A R D D E V I A T I O N 2 1 3 2 1 4 S = S Q R T ( S U M F ( D , J , ~ C S T A N D A R D I Z E D A T A ! N O B S V , N D ) / T - A * A ) I E . C O N V E R T T O Z - S C O R E ) 2 1 5 D O 1 5 1 = 1 , N O B S V 2 1 6 1 5 D I I , J ) = ( D ( I , J ) - A ) / S 2 1 7 R E W I N D 4 2 1 8 D O 2 0 I - l , N O B S V 2 1 9 2 0 W R I T E ( 4 » F F M T ) N A M E ( I ) , ( D < I , J ) , J= 1 , I A ) 2 2 0 R E W I N D 4 2 2 1 R E T U R N 2 2 2 E N D 2 2 3 F U N C T I O N S U M F ( X , K K , N N , N Q ) 0 3 - 2 5 2 2 4 C 0 3 - 2 5 2 2 5 C C O M P U T E S S U M X O R S U M X * * 2 F R C M A V E C T O R . 0 3 - 2 5 2 2 6 C X = A R R A Y C O N T A I N I N G T H E S C O R E S T O B E U S E D 0 3 - 2 5 2 2 7 C N N = N U M B E R O F V A L U E S T O B E S U M M E D . I F N E G A T I V E , S U M X * * 2 C O M P U T E D . 0 3 - 2 5 2 2 8 C K K = R O W O R C O L U M N N U M B E R I F X I S A M A T R I X . S E T = 1 I F X I S A V E C T O R . 0 3 - 2 - c 2 2 9 C I F K K I S P O S I T I V E A N D N O T 1 , I T I S A C O L U M N V E C T O R . 0 3 - 2 5 2 3 0 C I F K K I S N E G A T I V E A N D N O T 1 , I T I S A R O W V E C T O R . 0 3 - 2 5 2 3 1 C N D = N U M B E R O F R O W S ( O R E L E M E N T S ) D I M E N S I O N E D F O R X I N T H E C A L L I N G P R O G R 0 3 - 2 5 2 3 2 C 0 3 - 2 5 2 3 3 C T H E N : T H E S I G N O N K K I N D I C A T E S W H E T H E R A R O W ( - ) O R C O L U M N ( + ) 0 3 - 2 ' . 2 3 4 C V E C T O R . 0 3 - 2 5 2 3 5 C T H E S I G N O N N N I N D I C A T E S W H E T H E R S U M O F V A L U E S ( + ) O R S U M O P 0 3 - 2 5 2 3 6 C V A L U E S S Q U A R E D ( - ) I S T O B E C A C U L A T E O . 0 3 - 2 ? 2 3 7 C 0 3 - 2 5 2 3 8 D I M E N S I O N X ( N D , 1 ) 0 3 - 2 ! 2 3 9 S U M F = 0 . 0 • 0 3 - 2 ! 2 4 0 N = I A B S I N N ) 0 3 - 2 5 2 4 1 K = I A B S ( K K ) 0 3 - 2 5 2 4 2 I F ( N N ) 5 , 5 5 , 1 0 0 3 - 2 5 2 4 3 5 I F ( K K ) 1 5 , 5 5 , 2 5 0 3 - 2 5 2 4 4 1 0 I F ( K K ) 3 5 t 5 5 , 4 5 0 3 - 2 5 2 4 5 1 5 D O 2 0 1 = 1 , N 0 3 - 2 5 2 4 6 2 0 S U M F = S U M F + X ( K , I ) * * 2 . 0 3 - 2 5 2 4 7 R E T U R N 0 3 - 2 ! 2 4 8 2 5 D O 3 0 1 = 1 , N 0 3 - 2 ! 249 30 Stir-',F=SUMF+X { I,K)**2 250 RETURN .2.51 _.. 35_. 00 40 1 = 1,N 252 40 SUMF=SUMF * X (K, IJ 253 R E T U R N 254 45 DO 50 1=1,N 2 55 50 SUMF=SUMF + X ( I,K ) 256 55 R E T U R N 257 E N D 03-2i 03-2* .03-2 J 03-2t 03-2! 0 3-2'-03-2! 03-2! 0 3-2! i ro to co I L i s t i n g of TREAT J L „ S U B R O U T I N E T R E A T 2 D I M E N S I O N C O R R ( A O , 4 0 ) , SO IL ( 1 5 0 , 5 0 ) , T R E A T ( 1 5 0 , 5 0 ) , S M 0 D E L ( 5 0 ) , 3 1 X S C I L ( 5 0 , 5 0 ) , Y P A T ( 5 0 i , R A T 1 0 ( 5 0 ) , PR A T ( 5 0 ) A D I M E N S I O N I S T O R ( 1 3 4 ) , S E R I E S ! 1 3 4 , 4 ) , S U B 7 0 N ( 2 5 , 9 ) , X N A M E I ^ O ) 5 D i y E N S I O N M S E R ( 1 5 0 , 2 ) , S T O ( 5 0 ) , Y Y ( 5 0 ) , Y ( 5 C ) 6 D I " E N S I O N I NO A ( 5 0 ) , I M A P ( 5 0 ) , I T S ( 5 0 ) , Z S 0 1 1 ( 5 0 ) , I J M A P ( 50 ) , IP. E S A ( 5 0 ) ? D I M E N S I O N A ( 3 ) , I M ( 5 0 ) , A C O S T ( 5 0 ) , B C O S T ( 5 0 ) " " R ' " D I P E N S I O N F M T ( 2 0 ) , F F M T ( 2 0 ) Q D A T A A / 1 . 9 6 , 2 . 3 3 , 2 . 5 3 / 1 0 C O M M O N / L A B E L / I S T O R , S E R I E S , S U B 7 0 N 11 D R A T = 1 0 0 0 . 0 0 12 DO 1 0 0 1 = 1 , 1 5 0 1 3 DO 1 0 0 1 1 = 1 , 5 0 1 4 1 0 0 T R E A T C I „ 11 1 = 0 . 0 1 5 DO 1 0 1 1 = 1 , 5 0 1 6 IM ( I ) = 0 1 7 I J M A P ( I ) = 0 1 8 1 0 1 I M A P ( I 5 = 0 1 9 K = 0 2 0 I S N I F = 0 2 1 T M A = 0 2 2 A R A T = 0 . 0 2 3 C R A T = 0 . 0 2 4 C R E A D I N NO O F S O I L S A N D V A R I A B L E S A N D T O T A L NO O F S O I L S 25 c N I S NO C F S O I L S T O P E T R E A T E D - J IS N O O F V A R T A B L E S NN N O O F S O I L S 2 6 c C O R R E L A T I O N S A R E T A K E N F R O M 2 7 c I N O I F 1 I N D E P E N D E N T V A R I A B L E S D E C L A R E D 0 A L L A R E D E P E N D E N T 2 8 r* __ N I N D NO O F I N D E P E N D E N T V A R I A B L E S 2 9 c I M A N I F 1 S E Q U E N C E O F T R E A T M E N T S D E F I N E D 3 0 c N I M A N N O O F T R E A T M E N T S D E F I N E D -3 1 JL I C O N T R E A T M E N T C A R R I E D C U T C O N D I T I O N A L T O I N C R F A S F TN S I M I L A R I T Y I E 1 3 ? c W I T H M O D E L 3 3 c I S I G I F 1 A L L C O R R E L A T I O N S U S E D 0 C O R R E L A T I O N S S I G A T <58? L E V E L 34 C I R E S T I F 1 S O M E V A R I A B L E S D C N T K A N T T O U S E A S A T R E A T M E N T - 2 2 5 -* V a r. X X < < r - l CM r — r r r — sr > > X < CM Cj 0 z z s r CM 1—1 X •— IS c r-l -v. LL' CM ~v a: ac — m z X LL' <S O H r - l a r - or. •> V < r z LU H- h- m LL, t - LO OO U_! t -a . U J U.i LU o r . Z LU 2 f X c c < LU L L <r »—i — U - Or.'. — G < < i LU < a. t—t t—t 01 LU UJ LO <1 a r . ex L U d _ J z OC Z. 1* r z. C J <l LL Z z r - l LU •h 00 2L c 0 — z O r - l <I LO II K <L X I/) »—» C3 L O U J r> •— rv II U J OO r L U O OC z z — r~. r—' - J L U «— CC O <t <. r — •> CD c r : —. —J ? z. -> r-» < z < z 00 OO *• za LU 1—< II *— I - * rM %— U i Z r - l 0 C J • r - l z CC •k <t O II _ i 0 II •— rv r < r - t r - l LO r - l r - l LU O z <. r-! > O II LL. K - - J II i — i C C Z 1—< — X II C J *—'. O < C r. r - + <x r - z z r-^ r - l 1—1 1—1 r » ^ z r - i is; »—1 U J O 0 z —• *— O r Z a —~ > <t t~ r - l X cc IJU z 0 *— ^ CM — a: LLi 0 IS; —1 z:. V- e: <t z Z H UJ X r — U i 0 5 : U . ' 0 c w >— 11 •—1 0 t—4 —' C J r ^ z 0 < r - J <t _ J t — #— - j c co U J L U •« < r K- < CM < U J C J LO II Z CD CD c l / ) O X t — LU J> C O z z z c >—1 0 r - l z a. LU LL — X <. a: r- O • C z z < X < c z C z II X L U — O : a r-< «. Z C J —-(- GO r- z —• —- I— 1 1—1 Cs 1-4 1—1 z Cl.' — L J D UJ L U »—t z CO < r - 3 X *—. O —* v. z -«* Z • w r - l «s r — Z e 5 " - 3 • • <L t - X •* —' c r CM 1—1 c \ . r ^1- »—» LU — < r - l > X r>> <! H - <— — • O ZS LO X 0- r-l z z >— • CM »—* r - l 0 »». z C\J r- l IS; <—1 CM 1—> t— .—. <l l — l r - l »—i L U O t~ r CM r~ X LU' O 0 II < — *—• • O II LU CM m 0 <S> LLi 0 II • h- C J C ' , I* r - l rv; r r - l Z CM <t r - l c X t - CM •— a •» N T CM » a ITi h— O L «— Z OC; •* r- • "— «£. >£' CM 00 r-* vO <I w- z r-t a a (- t r LT\ »- r- C J IT . t— m k-f 1— LLi O «— t - w t - r - 4 LU IT- CM . r - J L U —- *— U. i « a z < l 0 *— LU < r CC »*r r - i a. LLI <3. O <I • Z — ^ C J C " 3 u; C : - J LU —1 t - Si; C 5:. <M Q . h~ X ' < h-i O CM <i 1- >' CM 2 . O _ J r - i O II ;IT. r-t u Z LL a < —' t — _ J < •— c c — <: ur_ < r c c w w < s: r l D - »• c c < l <. _ J «— w 2 : 1 CC C LU LU CC C, LL L U rx c a O 0 L L LU c y c r . i X X C L U LU c LU X c u LU LL zz LL fx OC „l a . 3 t LL. •—• Ct LL t — J E U - CM t—i IX t—( LL 1—1 LU CX 1—H <t CC 0 h—t 1—1 CO 1—1 _) "£• U J UJ _ J r - l •—' r H r - t a cc — J z 1— O a CM CC, r-l O r - ' r - t O O O 0 O 1— c C J C J C J CM CM CM CM CM CM 1—I C J s r L J • »£> 1 - 00 y c f—1 C\i fx", i r , P - CC a-0 r-4 CM CD IT. OC O 1—» CM m Lf'. » o c c c r O c n <D •Ti <T, c, •4- St IT, LO IT. ITi t r , LT. LC> IT' IT. vL> vC >o sO 71 I E ( IM( I l . N E . l ) G O T O 5 0 2 7 2 V * R I T F ( 6 , 5 0 9 ) X N A V E ( I ) , A C O S T (KXL) 7 3 5 0 9 F O R M A T ( I X , ' A U N I T O F ' A 4 , « I S E S T I M A T E D T O C O S T $ ' E 8 . 2 ) 7 4 5 0 2 C O N T I N U E 7 5 I E U . N E . K X L ) W R I T E ( 6 , 5 0 3 ) 7 6 5 0 3 F O R M A T ( I X , ' N O O F T R E A T M E N T C O S T S D O E S N O T E Q U A L N O O F A L L O W E D T P E 7 7 1 A T M E N T S I E . J - I N R F S • ) 7 8 5 0 1 F O R M A T ! 1 C F 8 . 2) 7 9 4 0 4 I F C L L . E C O ) GO T O 4 0 5 8 0 P E A D ( 5 , 5 0 1 ) ( B C C S T I L l ) , L 1 = 1 , D 8 1 WR. I T E < 6 , 5 1 0 ) ( 8 C 0 S T { I ) , I = 1 , L ) i 8 2 5 1 0 F O R M A T ( I X , ' B E L O W M O D E L T R E A T M E N T S F O R S A M E V A R . A S A B O V E ' / I X , 8 3 1 5 ( 1 0 F 8 . 2 / > ) 8 4 4 0 5 W R I T E ( 6 , 5 1 1 ) 8 5 5 1 1 F O R M A T ( I X , ' E N D O F G E N E R A L I N P U T C R I T E R I A » / / / ) 8 6 R E A D ! 5 , 6 0 0 ) F MT 8 7 R E A C ( 5 , 6 0 0 ) F F M T 8 8 6 0 0 F O R M A T ( 2 0 A 4 ) 8 9 P E A D ( 8 , F M T ) ( S T D ( I 1 ) , I 1 = 1 , J ) 9 0 c R E A D I N C O R R E L A T I O N T A B L E 91 D O 1 0 2 1=1 , J " 9 2 R E A C T 8 , F M T ) ( C O R R { I , 1 1 ) ,1 1 = 1 , J ) 9 3 I A Q = I A Q + 1 9 4 S I O = A ( I A O ) / { S O P T ( E L C A T ( N N ) ) ) 9 5 2 F O R M A T ! 5 ( 1 0 F 3 . 5 / ) ) 9 6 c R F A C I N M O D E L 9 7 R F A D ( 4 , F F M T ) 1 X 1 , 1 X 2 , ( S M O O E L ( I ) , 1 = 1 , J ) 9 8 3 F O R M A T ( I X , 1 2 , 1 3 , 2 X , 1 I F 6 . 2 / 1 X , 1 O F 6 . 2 / l X , 1 2 F 6 . 2 ) 9 9 C R E A D I N S O I L S I C C D O 4 I = 1 , N 1 0 1 4 R E A C ( 4 , F F M T 5 M S E R ! I , 1 ) , M S E R ( I , 2 ) , ( S O I L ( I , 1 1 ) ,I 1 = 1 , J ) 1 0 2 D O 1 0 1=1 , N 1 0 3 K = C 1 0 4 C G E N E R A T E " I N I T I A L R A T I O S 1 0 5 I F ( I S N T F . E O . l ) G C T O 4 0 3 1 0 6 G O TO 4 0 2 - 2 2 7 -Cvi . — r n r — ' UJ . — - - J a z LU c «x a s: s : c c o 2 i—i S E v. < z O OO CC •* • • »v l - H r— r - l r H r—i • — C r n c v i Z II II H , — r - w r - i ^ — . r H « — f - ~ O •~ — r - i r - i r H r H H H C"' 1 - CVI r H CV II r. n r—. » l/l * - H r - H r— r - l * — « * • ». r n »^ «-r - H ^ » _ J r i * — O — . lO, • — > - J c r l - H UJ *~* _ l r H C 5 c (V r n r— c _ l r n I—i OJ * - H — c r - l o r - t CJ ». c C O W c v CO < o o D O^ r—. o «P"r r H -O • i_j C J r-1 X c x o — r - c o 1 r H o O J r H O h- tr. 1 - r 1 o «*• 0 0 » " H 1-1 . — -. r ~ r - i r o * r c r v o r H o o a t~ — 11 O c r H — - »» - J • D r v i w r n CV CD H LL; L L • • r - H C_' a »—1 r n a c r ; •»• i—i < o t - W o o w . r— r - o i— . r - C _ l + y~ •» • • _ l r- —1 t o r - H OJ r - - J . z z. c o c Lj> U) «• o *—< X • o »—1 r - H r - i O UJ 1-^ o <x X «— u : LU c O:' e C 1 c C D *> • G r r— Wi C J r-H C D — i r . • • o 00 LU r H Ui O i r - H CVI X o w — • r - H r H — s : OO II l - H • « ^ n z r n r - i II sr K-- . r - l z — • r - l C O CO r H H o r - . r H ft «~ • — ' w •D t ^ i <f 1—1 • r o o ~5 H r n — « 3 . • -5 <M - 5 • —> r H • o r <— OJ o r > r v •• >— C * LU r - l r n u . : «— r II • f a »> r i r - J o » O o r n c a r v c r >• r n r H jii ?• z o m • . — J r - H t- U: r - l r ~ J r » f—i LU II r - l • • UJ o c * r- 11 II • r o • > c II U! r H < • II II r H II O r -> II o o a • c ; O i l_J r - H r H LU c \ OJ L L • •C H • i - H C. r— Cr Z r H r v r—i I - H o r H OvJ II II < o w a a. CO II > M n V— r n «-H ^ > <T <l in — o O r - o r - H <J < r n i «•» l - H r n r n 1—. r ^ r - i t o , II 11V z w r - i Z 3 t O r Z II G o II —J w r \ i r v W CD s; r H c c v _ J H « -< c r n »—t r—i o r - w II r - If. OO r n f - *C O n r~ * r - ( - CC' r H — * r - t <t r - l r - ( - »-H CV! r n CC r H r -*— — < r H w <. <a. w — <t o II < r r - i t , «<r. < Z LL LL s: Or D U - L L < o r L L o o t o c r H or C >- >• U. U.. L L . U t o C J c < o r c r-1 r - i CCtjZ, r—i i <x C r - i r - CL <. r n c o X o >- > o > r H r n r - H r - H r - t er- > X u or . CJ CVJ r o in O C o o o o r— •4- •C" ir. <\i r v CC' r - C O r-h- GO i i (X' r o <r tr r-~ CO cr c 1—1 <v ro <r LO. 1 o r-| oC' a- c l - H r v r r . >t IT, r - CO c r - H Oj C o o r H r H r-l r - ' r - i r H r-l r H OJ t \ J OJ OJ OJ O l OJ CM OJ O J r o P - m 0~ CO CO ro r o ro.< <• »r r - i r -< r H r H r H r H r H r - i l - H r H r H i - H r H r - i r H r H r - l r - l r H r—! i—i r H r H r H r—' r H r - H r - H ' r - H r H 22 8-cc > I h-i < • CC r H <r II II r H —. C ' r - l • r - i O CM — II 00 I- K < <r C- CC c c O CO u <M f-~. oo o <Y> r -OL t— II C rn <f in <£• r- oo •4- <t <T; < <r <r r-C3 cc c c 00; It: Z <T cc t ~ C J Z •—• C UL C J • -CO If, cf c c cr c j r - i rv r" •4" ir- m; in in r - l r - i r - i r H I-H » 0 CC' a c cc . UJ -> _J -*• • r-m —• *~ r - l r H — I! M »-_ — < • — I — CC «X CU CC II CO CD |-»»• <t CC ' u u . m »o r-in in m UJ Cf Z3 Ui Z • r H >-< <f r - t t — *— II Z . — < r C J i—i C J *— 00 00 CT O in IT. *£ r H o o o o UJ II w w H <f o 00 X r-i C O r H UX • z «. a c c I - r- C J z ««-e c u . CD CJ — O I - I rv f i -J ir> MO • C ' vC vti »£> »C MJ r - i r H f r H r H r H LO u . c c LL' I r~ 00' m i C H t -<t CC U l UJ • < o — » •—I • CC X. CO CO • r H — j w D U J ! < U J h- r -1 ZT H-•-1 cc c a l e n CJ UL 3J c r~ r-m r v 00 r- 00 tn; c r-i <• MO »CJ' f-r H H| r—I — r—1 r • r - i — J II r - i c r-i m LO-~ cr *— oo •— r-t a LU Z C-1 K >LU C I r»* C Cc r - r H O D . < 3>. UJ 1—1 -— « — •.-or; — ^J r - l c c <. r — r - LU a z 0 o n *>• or. UiLU 3L- — a 5 . > «—• t — K " i Z U! 00 « . c c LJ z r - l LULU Q • CC CJ CU rvj O r - ~3 CC UJ >- 00 ZD • C - J m r -Z — 1 • r H m . < l c c — »• r •CJ r H X r - i 1 — x » - * r- r H II H K « — r H a; —•00 r- r H u> t - *~ UJ «C r-. o~ <l K 2. O 1— Z' 2. <• 1—1 a II CC (_ c c C c < LL 0 0 0 LU 1—I U-r H r—' O v l o n ' 00 CC a . 00 r v r c , in •> 00 r- r- ^ r H r H r H r-t r H ' 1 7 9 9 ""' C O N T I N U E IPO 9 3 K P I T E ( 6 , 1 9 ) ( S E R I E S ( L A , 1 1 ) , 1 1 = 1 » 4 ) 1 8 1 .'_ 1 9 F O R M A T ( I X , 'SEP. I E S T R E A T E D I S ' , 4 A 4 ) 1 8 ? W R I T E ( 6 , 1 2 ) 1 8 3 D O S 2 T I = 1 , , J 1 8 4 I F ( T R E A T ( I , ! D . F Q . O . O G O T O 9 2 1 8 5 W R I T E ( 6 , 2 1 ) X N A M E ( 11 ) , T R E A T ( I , 1 1 ) 1 8 6 9 2 C O N T I N U E 1 8 7 2 1 F O R M A T ( I X , A 4 , I X , F 1 2 . 5 ) 1. 8 8 2 2 F O F M A T (2 C A 4 / 2 0 A 4 / 2 0 A 4 ) j 1 8 9 W R I T E ( 6 , 7 0 4 ) 1 9 0 7 0 4 F O R M A T ( / , I X , ' NEW S O I L C H A R A C T E R I S T I C S . . . ' , 7 ) 1 9 1 WRI T E ( 6 , 1 3 ) ( S O I L ( I , 1 1 ) , 1 1 = 1 , J ) 1 9 2 W R I T E ( 7 , F F M T ) M S E R ( I , 1 ) , M S E R ( I , 2 ) , ( S O I L ( I , 1 1 ) , U = 1 , J ) 1 9 3 I F t L . E Q . O 1 G 0 T O 8 8 3 ! 1 9 4 Y C 0 S T = C . 0 1 9 5 11 1 = 0 1 1 9 6 D O 5 0 4 1 1 = 1 , J 1 9 7 I F ( I M ( I 1 ) . E O . O ) GO T O 5 0 4 1 9 8 1 1 1 = 1 1 1 + 1 1 9 9 I F ( T P E A T ( I , 1 1 ) . E O . 0 . 0 ) G O T O 5 0 4 1 2 0 0 I F ( L L . E Q . 1 ) G O T O 5 0 5 I 2 0 1 X C O S T = A B S ( T R E A T ( I , 1 1 ) ) * A C O S T ( I 1 1 ) | 2 0 2 Y C C S T = Y C O S T + X C C S T 2 0 3 W R T T E ( 6 , 5 0 6 ) X N A M E ( 1 1 ) , X C O S T 2 0 4 5 0 6 F 0 R M A T ( 2 X , ' T O T R E A T « A 4 , • C O S T S $ » F 8 . 2 ) 2 C 5 G O T O 5 0 4 2 0 6 . 5 0 5 T F ( T R E A T ( 1 , 1 1 ) . L T . 0 . 0 ) G O T O 5 0 7 2 C 7 X C O S T = T R F A T ( i , n ) * A C C S T ( 1 1 1 ) ! 2 C 8 Y C O S T = Y C 0 S T + X C C S T 2 0 9 W P T T E ( 6 , 5 0 6 ) X N A M E ( I D , X C O S T 2 1 0 G O T O 5 0 4 2 1 1 5 0 7 X C O S T = A B S ( T R E A T ( I , 1 1 ) ) * B C 0 S T ( I 1 1 ) 2 1 2 Y C n S T = Y C O S T + X C O S T 2 1 3 V R I T E ( 6 , 5 0 6 ) X N A « E ( T l ) , X C O S T 2 1 4 5 0 4 C O N T I N U F ? 1 5 W R I T E ( 6 , 5 0 8 ) Y C O S T 2 1 6 5 0 8 F O R M A T * / , l X , ' A L L T R E A T M E N T S C O S T $ ' F 8 . ? , ' P E R A C R E ' / / / ) 2 1 7 8 8 3 G O TO ! 0 2 1 8 8 8 T R F A T ( I , I 4 ) = T R E A T * I , T 4 > + * X S 0 ! L * I 4 , I 4 ) - S O I L * I , I 4 ) ) 2 1 9 oo 3 c ' n =1 , j 2 2 0 8 9 SO T L ( I , TT ) = X S 0 I L ( 1 4 , 1 1 ) 2 2 1 K = K + 1 2 2 2 ' TF * K . F Q . 5 O G 0 T 0 1. 4 • ? 2 3 GO T O 4 0 2 2 4 3 1 3 F O R M A T * / ' S E Q U E N C E O F - T R E A T M E N T S D E S I R E D AR E » / I X , 2 0 * A 4 , 2 X ) / -2 2 5 1 I X , 2 0 * A 4 , 2 X ) ) 2 ? 6 3 0 1 F O R M A T * 4 0 1 2 / 4 0 1 2 ) ' ' 2 2 7 3 0 0 D O 3 0 2 11 =1 , NT M A N 2 2 8 D O 3 0 3 T 2 = 1 , J 2 2 9 3 0 3 Z S O TL ( I ? ) = S 0 IL f I, T 2 ) 2 3 0 Y l = I S M O D E L * I T S * 1 1 ) ) - Z S O T L ( I T S ( 1 1 ) ) ) 2 3 1 YR A T * 1 1 ) = 0 . 0 2 3 ? D O 3 0 4 I ? = l , J 2 3 3 Y Y * I ? ) = C . 0 2 3 4 Y * I ? ) = 0 . 0 2 3 5 T F * I S I G . E O . l ) G O T O 3 0 5 2 3 6 I F ( A B S * C O P R * I T S * 11 ) , 1 2 ) 1 . L T . S I G ) G O T O 3 0 4 2 3 7 3 0 5 I F * I M A P * I ? ) . N E . l I GO T O 3 0 6 ? 3 8 T F { I T S { TT ) . E Q „ 12 ) G O T C 3 0 6 2 39 GO TO 3 0 4 2 4 0 3 0 6 Y Y * I ? ) = C 0 R R * TT S f H ) , 12 5 * ( S T 0 * I 2 ) / S T O ( I T S ( I 1 ) ) ) 2 4 1 2 4 ? Y ( 12 ) =Y] * Y Y f 12 ) 7 S 0 I L ( 1 2 ) = Z S 0 I L * I 2 ) + Y { 1 2 ) 2 4 3 3 0 4 C O N T I N U E '. ; 2 4 4 D O 30 7 I 2 - 1 . , J , 2 4 5 R A T 1 0 * T ? ) = ( S M O D E L * I 2. ) - Z S O I L ( 1 2 ) ) / S M O D E L ( I 2 ) 2 4 6 3 0 7 Y R A T * T l ) = Y R A T { n ) • A B S * R A T T O * 1 2 ) ) j . . 247_ I F ( A P f i T . G E . Y R A T * T l ) ) G C T O 3 08 , 2 4 8 I E * T C C N . E O . l ) GO T o 3 1 0 2 4 9 3C8 T R E A T * I , I T S * 11 ) ) = T R E A T ( I, I T S ( 1 1 ) ) + * Z S O I L ( I T S * 1 1 ) ) - S 0 IL ( I, T T S ( 1-1)1) 2 5 0 1 ) 2 5 1 rn 3 0 9 1 2 = 1 , J 2 5 2 3 0 9 S 0 T L ( I , 1 2 ) = Z S 0 T L ( 1 2 ) 2 5 3 K=K. + 1 2 5 4 A R A T = Y P AT { H ) - - -2 5 5 G O T O 3 C 2 2 5 6 3 10 W P T T F ( 6 , 3 1 1 ) H , X N A M F ( I T S ( 1 1 ) ) 2 5 7 3 1 1 F O R M A T M X T R E A T M E N T • 15 C O R R E C T I N G ' A 4, • D O E S N O T R E S U L T T N I M P R 2 5 8 L O V I N G T H E S O I L W I T H R E S P E C T T O T H E M O D E L ' ) 2 5 9 _ 30"> C C NT I N U E 2 60~ W R T T E I 6 , 3 ? 2 ) K • N I V A N 2 6 1 3 1 2 p n p M A T f I 5, » T R E A T M E N T S C U T O F ' 1 5 , ' W E P E PP R . F O R M E D . T F NO O F P E 2 6 2 1 S U L T I N G T p F ATM FNT S DO N O T E Q U A L ' / • T O T A L A T T E M P T E D P C J E C T S A R E L I S 2 6 3 1 T E D A B O V E ' ) 2 6 4 GO TO 8 8 2 2 6 5 1 0 C O N T I N U E 2 6 6 G O T O 1 7 2 6 7 1 2 F O R M A T * / / , I X , » T R E A T M E N T S A R E ' / ) 2 6 8 1 3 F O R M A T ( 5 ( I X , 1 0 F 8 . 3 / ) ) 2 6 9 1 4 W R I T E ( 6 , 1 5 ) K 2 7 0 . 1 5 F O R M A T ( 1=3 ) , _ 2 7 1 W R I T E ( 6 , 1 3 ) ( S 0 T L ( I , I l ) j T l = l , J ) 2 7 2 WR I T E ( 6 , 1 2 ) ( TP. E A T ( I , 1 1 ) , 1 1 =1 , J ) 2 7 3 WR I T F ( 6 , I 6 ) C R A T 2 7 4 1 6 F O R M A T ( F I ? . 8 ) 2 7 5 1 7 FN D E I L E 7 2 7 6 R E T U R N 2 7 7 E N D -232-APPENDIX IV Sample Treatment and Cost Computer Output for the Monroe and Page Series Table 4.1. Treatment of the surface 12 inches for the Monroe series NO T R E A T M E N T I M P R O V E S S O I L . I T E R A T I O N 9 I S T H E B E S T S T A T I S T I C A L L Y D E R I V E D TREATMENT S U B Z O N E C H I L L I W A C K S.ER.I E S J A E A T . £ D . ^ 5 _ ^ R J L I E ' " ' " T R E A T M E N T S A R E DR A N - 0 . 4 3 9 6 7 S T R U ....... .. 6 0 . . 0 0 0 Q O S A N D - 6 . 0 0 0 0 0 j C L A Y 3 . 1 4 0 7 2 OM - 1 . 6 3 C O O C / N 1 . 7 2 2 6 4 N A - 0 . 0 7 0 0 0 K .. . 0 . 0 9 . 0 0 0 C E C 0 . 9 0 8 9 7 N E W S O I L C H A R A C T E R I S T I C S • * * 2 . 0 0 0 3 . 2 7 9 1 . 0 0 0 5 . 0 0 0 3 . 0 3 6 1 . 9 7 5 4 . 0 0 0 I C O .000 2 0 . 3 0 5 64.276 ! 2 0 . 0 0 0 6 . 1 7 8 2 . 0 0 0 1 2 . 0 0 0 2 7 . 1 0 5 1 2 . 1 1 1 2 . 03 0 0 . 1 0 0 0.413 20.000 7 1 . 0 0 4 ; T O T R E A T DP. A N C O S T S i 8 7 . 9.3 ! T O T R.F. A T S T R U C O S T S $ 6 0 . 0 0 ; T O T R E A T S A N D C O S T S $ 3 0 . 0 0 T O T R E A T C L A Y C O S T S $ 1 5 . 7 0 [ T O . T R E A T . CM C O S T S .$ 3 2. . .60 ! T O T R E A T C / N C O S T S $ 8 . 6 1 T O T R E A T N A C O S T S $ 7 . 0 0 T O T R E A T K C O S T S $ 1 . 8 0 TO T R E A T C E C C O S T S $ 0 . 9 1 A L L T R E A T M E N T S _ C O S T $ . _ 2 4 4 . 5 6 . P E P A C R E Table 4.2. Treatment of s e l e c t e d average data f o r the Monroe s e r i e s • NG T R E A T M E N T I M P R O V E S S O I L . I T E R A T I O N 11 I S THE B E S T S T A T I S T I C A L L Y D E R I V E D TREATMENT j S U B Z O N E C H I L L I W A C K ., . { .. SER I E.S_-TREATED ...I.S_ MOJNEJJE . _ .... '. . \ '. i2 TREATMENTS ARE STRU 3» . 0 0 0 0 0 .. SAND ... -3 7 . 1 1 0 3 0 . OM - 1. 63 0 0 0 C/N 1.72 2 6 4 CA - 7 . 3 2 4 0 0 NA - 0 . 0 7 0 0 0 K 0 . 0 9 0 0 0 _ .BASS _ 16..32277 NEW S O U C H A R A C T E R I S T I C S ... 2 . 0 0 0 2 . 9 9 1 1 . 0 0 0 5 . 0 0 0 2 . 2 9 1 2. 0 0 0 1. 0 0 0 1 0 0 . 0 0 0 20.000 52.785 2 3 . 5 7 3 6.342 2 . 0 0 0 1 2 . 0 0 0 2 5 . 7 6 9 5 . 4 1 7 0 . 8 3 2 0 . 1 0 0 0 . 4 0 0 27.750 5 0 . 0 00 TO T R E A T STRU COSTS 3 3 . 0 0 ' : • TO TR F A T SA ND COSTS 1 8 5.85 TO TR EAT OM COSTS *, 3 2 . 60 TO TREAT C/N COSTS $ 8 . 6 1 TO TR E A T CA COSTS $ 146. 4 8 TO... .TREAT. NA COSTS... $ 7 . 0 0 TO TREAT K COSTS $ 1 .80 TO TR EAT BA SS COSTS 16. 3 2 • T A L L TREATMENTS COST % 4 3 6 . 6 7 PER. ACRE Table H.3. Treatment of average p r o f i l e data f o r the Monroe s e r i e s NH TREATMENT IMPROVES S O I L . I T E R A T I O N 1 0 I S THE B E S T S T A T I S T I C A L L Y DERIVED TREATMENT SUPZONE CH T l L I W A f K -S E R I E S T R E A T E D I S MONROE TREATMENTS ARE ST PH A 5 . 0 0 0 0 0 ST I r 21. 00 000 OM 0.41000 C/N 2 . 6769.7. P I 34.69098 MG -0.38028 NA -0.03000 K - 0 . 05394 CEC 3.65623 B.A S.S -.4.2.7 96.0 I NEW SOIL. C H A R A C T E R I S T I C S ... 2. 000 4.3 85 1. 000 4 .926 .3 ,000 1.418 2. 0 00 100.000 20.999 60.000 14.309 5. 711 2 . 000 12.000 43.011 8.011 2. 000 0.100 0.400 19.126 4 9 .3.06.. . TO TREAT STRU COSTS 4 5. 00 TP T P EAT STL T COSTS $ 10 5. 00 TO T°E AT OM CPSTS $ B . 20 TO TR E A T C/N COSTS $ 1 3. 38 TP TP u- AT D ] COSTS 3 4. 70 TO.. TREAT. MG ... ...COSTS... $ . . ...7..AL. : . TQ JOcfcJ NA CnSTS 3. 00 TO T R E A T K COSTS ft 1.08 TO TREAT c F r. COSTS 3 .66 TO TO i.-AT BA SS COSTS $ 4.28 ALL TREATMENTS COST . r .225 .90 .P.Ep. ACRE. Table 4 . ' * . Treatment of engineering data f o r the Monroe s e r i e s N O T R E A T M E N T I M P R O V E S S O I L . I T E R A T I O N 7 I S T H E B E S T S T A T I S T I C A L L Y D E R I V E D TREATMENT SUeZGNE C H I L L I W A C K S F J ? T E S _ T P E A T E D I S . Pf^RC-E. _ _ _ ; T R E A T M E N T S A R E OR A N C . 1 8 0 6 5 . ? B R - 3 . 2 4 7 4 2 1 5 R R - A . 6 4 3 8 6 S A N D - 4 4 . 0 0 0 0 0 C L A Y 6 . 0 0 0 0 0 • N E W S O I L C H A R A C T E R I S T I C S . . . 236-2 . 0 C C 3 . 0 0 0 1 . 0 0 0 1 0 7 . 1 9 6 6 . 6 5 8 2 4 . 6 6 4 2 3 . 7 C C 3 3 . 1 5 2 T O T R E A T C R A N C O S T S $ 3 6 . 1 3 0 . 5 0 0 9 . 1 1 0 5 . 1 6 2 5 0 . 0 0 0 1 8 . 3 5 4 4 . 0 0 0 1 . 3 8 1 7 . 0 0 0 2 . 7 7 1 1 9 . 1 4 7 T O T R E A T . 3 6 R C O S T S $ 6 4 . 9 5 T O T R E A T 1 5 B R C O S T S $ 9 2 . 8 8 T O T R E A T S A N C _ C O S T S * 44 0 0 . 0 0 T O T R E A T C L A Y C O S T S $ 6 C C . O 0 A L L T R E A T M E N T S C O S T $ 5 1 9 3 . c 5 P E P A C R E Table M.S. Treatment of the surface 12 inches f o r the Page s e r i e s ! C R A T . E O . O | NO T R E A T M E N T I M P R O V E S S O I L . I T E R A T I O N 10 I S T H E B E S T S T A T I S T I C A L L Y D E R I V E D TREATMENT ' S U B 7 Q N E M A T S Q U I  S E R I E S T R E A T E D I S P A G E TR E A T W f : N T S A R E S L O P - 1 . 0 0 0 0 0 S T R U - 1 7 5 . 0 0 0 0 0 C L A Y - 1 . 4 9 2 5 8 OM - 3 . 2 5 0 0 0 C / N 0 . 7 5 3 1 1 P I 2 1 . 4 0 0 0 1 C A -6.20000 N A - 0 . 10000 K - 0 . 0 1 3 9 6 B A S S . _ . 1 2 . 5 5 2 6 1 NEW S O I L C H A R A C T E R I S T I C S . . . 2 . 0 0 C 4". 2 2 4 ' 1 . 0 0 0 " 5 . 0 0 0 " " 4 . 1 3 2 " 2 . 0 0 0 3 . 0 0 0 1 0 0 . 0 0 0 2 9 . 8 5 9 4 8 . 8 3 8 2 0 . 0 0 0 5 . 8 9 3 2 . 0 0 0 1 2 . 0 0 0 4 8 . 7 4 4 7 . 3 4 3 2 . 1 8 7 0 . 1 0 0 0 . 4 0 0 2 6 . 452 4 8 . 5 0 9 T O T P E A T S L O P C O S T S $ 1 0 0 0 . 0 0 T O T R E A T S T R U C O S T S *, 1 7 5 . 0 0 T O TR E A T C L A Y C O S T S . 7 . 4 6 T O T R E A T OM C O S T S 6 5 . 0 0 T O T R E A T C / N C O S T S * 3. 77 T O T R E A T . . P I C O S T S 21 . 4 0 T O T R E A T C A C O S T S $ 1 2 4 . 0 0 T O T P E A T N A C O S T S $ 1 0 . 0 0 T O T R E A T K C O S T S i 0 . 2 8 T O TR F A T RA S S C O S T S 1 2 . 5 5 A L L T R F A T M E N T S C O S T . 1 4 1 9 . 4 6 P E R A C R E Table 4.6. Treatment of se l e c t e d average data f o r the Page s e r i e s M O TK P SUBZDN SE P T E S /, j M p v, j ] M PR n r- M AT S OM I JQr AT " ' i fS V E S S O I L . PAGE I T E R A T I 0 N 17 I S T H E P F S T S T A T I S T I C A L L Y DER IV ED T R E A T M E N T TR E A T ' - ' n f ,i j c A R P SL OP - i . n o m a [) p A ?-j - r . '31 34 5 S T R i ! - : ? c oo o n o S TI T O L A v O M CJ >•> P I C A N A -1 A . 0 0 0 0 0 _ ^ -> c n n o 0 . 7 5 * 1 ] 2 1 . 4 3 00 1 - ° , 3705? — 0 . ] 0 0 0 n I ro OJ 00 K - 0 . 0119 6 P A S S 30 .0662 R N E W S O J L C H A R A C T E R I S T I C S . . . 2 .0^0 3 .0 ° 5 1 . 0 on n c o 4. 4 c g \ . 9 99 i . i" !'0 1 0 0 . 0 0 0 2 4 . ? 3 0 6 0 . 0 0 0 ; w i 00 6 .04 ? 2 . • 0 1 7 .0 00 v> . / / . / , 4 . 9 8 6 2 . 0 0 1 0 . 1 0 0 0 . 4 0 0 2 1 . 1 9 7 0 . 0 0 0 T n T " E A T S ! O P r o s T c, i r o n , oo T H TPP A T 013 A M 0 O S T v i n 7 . 6 c' T O T'::-!S T IJ r n o y c 1 7. 00 T 0 T P E A T S T I..T C 0 S T s 26 .08 T O T R f- A T C!.. A Y c r S T S 7 0 .00 ; T n T R E A T • i •< C O S T S 6 5. D O T O T R E A T C / N C O S T S 3 . 7 7 T O TR F A T P 1 C O S T S ° 1 . 4o i T O T p F A T C A C 0 S T S 1 °- ' 7 . 41 i T O T R E A T N A C ° S T S * 10 .00 TO T o H A T K r [> <: j c $ 0. 7 8 T 0 T R E A T P A S S C O S T S .*. * 0 . C 7 At L r C i C T T. ' 7 . \- or \ r : , r - - — -. . - . _ Table 4.7. Treatment of average p r o f i l e data f o r the Page s e r i e s NO T R E A T M F N T I M P P O V F S S H U . I T E R A T I O N 1 2 TS T H F B E S T S T A T I S T I C A L L Y D E R I V E D TREATMENT S O B 7 O N E M ATS0!..) I . -v..... S E R I E S T R F A T E D TS P A G E T R E A T M E N T S AR SI. 0° - l . one 00 '-. S T R U 00OOO S I L T 3 .00 00.0. . -0. 18 00(1 i C / M 1 . 9 5 2 * 1 \ PI 3 5 . 9 1 . 9 9 8 MG - 5 . 8 4 5 5 3 ! N A - 0 . 1 8 0 0 0 ! K _ - 0 . 1 2 . 9 1 . 7 . ... ! C E C 2 . 1 0 5 9 4 I I M C O co N't"..' S O T j C H A R ACT E R T S T I C S 2 . 0 0 0 6 . 3 1 8 1 . 0 0 0 5 . 0 0 0 4 . 0 0 0 0 . 9 1 7 2 . 0 0 0 1 0 0 . 0 0 0 2 2 . 8 6 6 60.000 1 5 . 0 1 4 . 5 . 5 7 1 2 . 0 0 0 . 1 2 . 0 0 0 . 3 9 . 7 4 0 6 . 4 8 4 2 . . 0 . 0 0 0 . 1 . 0 0 _ 0 . 4 0 0 1 9 . 3 . 2 1 2 3 . 6 0 0 T O T c AT S L O P C O S T S * 1 0 0 0 . 0 0 T O T P F A T S T R U C O S T S * 6 5 . 0 0 T O TR E A T S I L T C O S T S $ 1 5 . 0 0 T O T R E A T OM C O S T S $• 3 . 6 0 TO. T R E A T . C / N . . . . . C . O S . T S . 9 . 7 . 6 . T O T R F A T P I C O S T S * 3 5 . 9 2 T O TP F A T MG C O S T S % 1 1 6 . 9 1 T O T R E A T NA C O S T S $ 1 3 . 0 0 T O T P E A T K C O S T S $ 2 . 5 8 T O T R E A T C E C C O S T S * 2 . 1 1 A L L T R P A T M F M T S C O S T «> 1 2 6 » . T 1 8 P E R A C R E Table 4.8. Treatment of engineering data f o r the Page series | NO TREATMENT J MPROVES SCIL. ITER AT IONV 6 IS THE BEST STATIST ICALLY DERIVED TREATMENT 1 SUBZONE MATSQUI : -"" " •' ' " • ' - •-• - - • •-- • -| SERIES TREATED IS PACE TREATMENTS ARE DR AN -3.00000 GM -0.20000 ' PH 0.99810 . 3BR 1. 24347 PL 2.80000 CLAY -19.00000 NEW SOIL CHARACTERISTICS ... 3 S000 3.069 1.000 89.020 0.500 5.400 16.189- 1.537 2.766 19.000 9.285 24.616 33..000 38,338 8.992 7.000 67.000 7.000 TC TREAT DR AN CCSTS $ 600.00 TO TREAT-CM COSTS $ 10.00 • : TO'TREAT PH COSTS $ 99.81 . TC TREAT .3 BR CCSTS $ 24.87 TO TREAT PL COSTS S 140. 00 '  TO TREAT CLAY COSTS $ 1900.00 ALL TREATMENTS COST $ 2774. 68 PER ACRE -241-APPENDIX V Origi n a l and Treated S o i l Data for A g r i c u l t u r a l Use of 35 Fraser Valley Soils and for the Engineering Use of 26 Fraser Valley Soils Table 5.1. Averaged surface 12 inches for 35 Fraser Valley s o i l s Series Slope Drain Stone Hue Value Chroma RootsStruct Sand S i l t Clay pH O.M. C/N PI Ca Mg Na K CEC B.S. 1 2 0 7 0 2 . 0 0 5 . 0 0 O T O 5 . 0 0 4 . 0 0 1 . 0 0 5 . 0 0 2 2 5 . 0 0 9 . 0 0 5 7 . 0 0 3 4 . 0 0 2 6 . 2 0 2 . 6 3 10 . 6 3 3 9 . 7 7 8 . 5 1 4 . 2 5 0 . 0 9 0 . 4 6 1 6 . 1 0 8 3 . 2 0 3 .. . 2 0 9 2 2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 . 3 . 0 0 . 2 . 0 0 5 . 0 0 2 0 6 .0 .0 . . . 1 6 . 0 _ 0 . . _ 6 3 j ^ . 0 _ 1 9 ._00 4 4 . 6 2 1 4 . 1 5 1 4 . 0 2 5 8 . 4 2 7 . 4 7 1 . 9 7 0 . 2 4 0 . 4 5 3 4 . 9 0 2 9 . 0 2 i 5 2 1 8 5 2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 1 . 0 0 4 . 0 0 3 0 0 : 0 0 1 3 . 0 0 5 3 . 0 0 2 7 . 0 0 6 5 . 3 2 6 . 2 2 1 2 . 9 5 4 . 4 5 6 . 6 6 6 . 5 9 1 . 8 5 0 . 3 2 2 3 . 6 7 6 4 . 0 2  7 3 3 0 3 3 . 0 0 5 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2 . 0 0 3 . 0 0 3 7 5 . 0 0 1 9 . 0 0 66.00 1 5 . 0 0 8 5 . 9 0 5 . 3 3 1 1 . 9 7 1 6 . 4 7 8 . 2 8 3 . 6 1 0.22 0 . 2 2 2 3 . 3 3 5 3 . 5 7 L _ 9 .33.63. _2. 0 J ) _ „ 6 . . . C 0 Q._Q. 5_.0_0 3 . 0 0 2.00 4...0J32J.8 .0.0 8 .00 5 2 .00 3 9 .00 [ 1 0 5 . 3 3 1 1 . 1 0 1 7 . 9 2 5 . 0 3 8 . 7 2 7 . 00 0. 2 3 0. 3 1 2 3 . 2 6 7 1 . 0 1 ^ ! 11 3 3 9 1 2 . 0 0 6 . 0 0 0.0 5 .00 2.00 1.00 4.00 95.00 30.00 44.00 24.00 -P 1 2 5 . 3 6 1 7 . 1 2 1 7 . 4 8 3 2 . 2 4 3 . 9 0 1 . 5 8 0 . 2 1 0 . 0 7 3 9 . 9 4 1 7 . 0 7 ? 1 3 4 0 0 4 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 2 . 0 0 5 . 0 0 1 7 5 . 0 0 9.00 57.00 34.00 1 4 5 . 8 0 6 . 0 3 1 1 . 1 0 5 . 3 3 1 1 . 2 0 4 . 1 1 0 . 2 7 0 . 1 4 3 0 . 7 7 5 3 . 3 3 , 1 5 4 0 6 0 2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 1 . 0 0 2 . 0 0 1 0 0 . 0 0 1 2 . 0 0 6 0 . 0 0 2 7 . 0 0 . ; 1 6 4 . 8 3 1 3 . 2 3 1 0 . 4 3 1 9 0 . 3 3 6 . 0 7 1 . 7 0 0 . 4 7 2 . 0 7 4 5 . 5 3 2 0 . 8 0 I 17 4 1 3 2 . 3 . 0 0 2 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2 . 0 0 4 . 0 0 4 1 . 0 0 6 9 . 0 0 2 1 . 0 0 10.00 18 5 . 7 7 1 . 5 3 7 . 9 0 5 . 0 0 4 . 9 3 2 . 9 1 Q . 1 3 0 . 2 2 1 3 . 9 8 5 5 . 3 7  , 1 9 4 3 3 5 3 . 0 0 3 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2 . 0 0 4 . G O 7 5 . 0 0 4 0 . 0 0 4 2 . 0 0 1 3 . 0 0 ' 2 0 5 . 7 5 2 . 5 0 8 . 2 0 1 0 . 5 0 3 . 7 6 2 . 3 1 0 . 1.7 0 . 0 6 1 5 . 2 5 4 0 . 9 0 : 21_ _ . 4 3 6 5 2 . 0 0 3 . 0 0 . 0 . 0 _ 5 . 0 0_ 3 . 0 0 2 . 0 0 _ 4 . 0 0 4 0 . 0 0 2 6 . 0 0 5 _ 8 . 0 0 _ 1 6.00 J 2.2 6 . 1 7 3 . 6 3 1 0 . 6 3 1 7 . 6 7 1 1 . 3 2 2 . 2 . 0 0 . 1 7 6 . 3 1 2 1 . 3 0 6 5 . 7 0 : 2 3 4 4 5 2 3 . 0 0 7 . 0 0 0.0 5 . 0 0 3 . 0 0 1 . 0 0 4 . 0 0 2 3 . 0 0 1 1 . 0 0 3 1*00 - 5 8.00 1 2 4 5 . 7 7 3 . 8 3 1 1 . 3 0 4 0 . 3 3 1 2 . 0 4 1 . 9 9 0 . 1 9 0 . 2 8 3 1 . 4 0 5 0 . 2 3  I 2 5 4 6 3 0 1 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 5 . 0 0 1 1 2 . 0 0 . 9 . 0 0 57.00 34.00 I 2 6 5 . 8 2 3 . 3 0 1 0 . 3 2 6 . 00 8 . 5 8 2 . 3 4 0 . 11 0 . 1 7 1 9 . 9 2 5 7 . 7 5 1 2 7 5 0 3 9 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 2 . 0 0 5 . 0 0 5 0 4 . 0 0 _ 9 . 0 0 5 7 . 0 p _ 3 4 _ 0 0 i 2 8 5 . 5 8 5 . 2 7 1 0 . 19 11 . 0 3 6 . 2 6 2 . 1 8 0 . 2 3 "0 . 2 5 2 ] . 5 8 4 4 . 8 6 ~ ! 2 9 • 5 0 6 0 2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 1 . 0 0 2 . 0 0 1 0 0 . 0 0 1 2 . 0 0 6 0 . 0 0 2 7 . 0 0 : 3 0 4 . 8 3 1 3 . 2 3 1 0 . 4 3 1 9 0 . 3 3 6 . 0 7 1 . 7 0 0 . 4 7 2 . 0 7 4 5 . 5 3 2 0 . 8 0 3 1 5 3 3 5 3,00 3 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2 . 0 0 4 . 0 0 7 5 . 0 0 4 0 . 0 0 4 2 . 0 0 1 8 . 0 0 3 2 5 . 7 5 2 . 5 0 8 . 2 0 1 0 . 5 0 3 . 7 6 2 . 3 1 0 . 1 7 0 . 0 6 1 5 . 2 5 4 0 . 9 0 33 5 6 3 0 2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3.00 2 .00 5 .001.12 .00 9 .00 5 7 . 0 0 3 4 . 0 0 3 4 5 . 8 2 3 . 3 0 1 0 . 8 2 6 . 0 0 8 . 5 3 2 . 3 4 0 . 11 0 . 1 7 1 9 . 9 2 5 7 . 7 5 3 5 6 0 3 2 3 . 0 0 4 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 4 . 0 0 1 8 5 . . 0 0 1 . 9 . 0 0 6 6 . 0 0 1 5 . 0 0 ___JV6 5 . 2 8 1 1. 4 8 1 1 . 7 7 1 3 . 3 6 4 . 2 6 1 . 5 2 0 . 2 ? 0 . 1 6 3 9 . 0 ? 1 6 . 9 ?  : 3 7 6 3 . 3 5 4 . 0 0 3 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2 . 0 0 3 . 0 0 5 0 . 0 0 4 6 . 0 0 4 3 . 0 0 1 0 . 0 0 > 3 8 6 . 2 2 5 . 3 5 1 2 . 3 2 3 2 . 2 2 2 . 8 4 2 . 3 4 0 . 2 6 0 . 1 0 1 8 . 6 6 1 8 . 1 9 ,_ 3 9 _ _ 6 3 6 2 _ _ 3 . 0 0 6 . 00 _ 0 . _ 0 5_.J)0 4 . 0 0 2 . 0 0 .2 , 0 0 1 5 0 . 0 0 . . 2 ^ . 0 0 _ J 4 j 0 _ 0 _ 16 . 0 0 4 0 5 . 6 0 3 . 0 5 1 1 . 7 5 1 2 . 1 0 3 . 8 5 0 . 5 5 0 . 2 0 0 . 1 0 1 4 . 1 0 3 3 . 5 5 4 1 6 4 5 0 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 4 . 0 0 . 2 . 0 0 3 . 0 0 2 7 5 . 0 0 9 . 0 0 5 7 . 0 0 3 4 . 0 0 ' 4 2 5 . 7 5 5 . 2 5 1 1 . 9 5 2 8 . 6 0 1 1 . 2 0 3 . 5 0 0 . 2 0 0 . 2 0 3 4 . 1 5 4 6 . 4 5  4 3 6 .511 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 1 . 0 0 4 . 0 0 1 5 0 . 0 0 1 9 . 0 0 6 6 . 0 0 1 5 . 0 0 4 4 4 . 8 5 9 . 7 5 1 0 . 2 7 2 8 . 5 0 5 . 8 2 1 . 5 2 0 . 2 2 0 . 1 5 3 3 . 8 7 2 4 . 1 0 4 5 _ 7 0 3 2 4 ,0_0 _ 4 . 0 0 0 . 0 _ 5 . 0 0 3 . 0 0 _ 2.._0 0. 4 . 0 0 1 8 5 . 0 0 1 9 . 0 0 . 66 . 0 0 15 .00 4 6 5 . 2 8 " l l . 4 3 ~ 1 1 . 7 7 1 3 . 3 b " 4 . 2 6 1 . 5 2 6 . 2 2 0 . 1 6 3 9 . 0 2 1 6 . 9 7 4 7 7 0 6 2 4 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 5 . 0 0 7 5 . 0 0 9 . 0 0 5 7 . 0 0 3 4 . 0 0 4 8 5 . 7 0 6 . 0 9 1 1 . 9 8 1 5 . 4 6 5 . 7 8 2 . 1 7 0 . 3 2 0 . 0 9 2 7 . 9 2 3 0 . 12  4 9 7 3 3 2 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 1 . 0 0 5 . 0 0 6 3 . 0 0 1 6 . 0 0 6 3 . 0 0 1 9 . 0 0 . 5 0 5 . 5 7 2 5 . 2 7 1 4 . 7 0 4 . 9 0 7 . 9 3 3 . 51 0 . 21 0 . 2 7 6 1 . 7 7 1 3 . 82 i 51_ ' _ 7 3 3 5 3 . 0 0 3 . 0 0 ^ 0 . 0 _ 5 . 0 0 4 . 0 0 _ 2 . 0 0 3 . 0 0 5 0 . 0 0 4 6 . 0 0 4 3 . 0 0 1 0 . 0 0 ' _ -5 2 6 . 2 2 5 . 3 5 1 2 . 3 ? 3 2 . 2 2 2 . -54 2 . 3 4 ' 0 . 2 6 0 . 1 0 1 8 . 6 6 1 8 . 1 9 5 3 7 3 6 6 3 . 0 0 3 . 0 0 0 . 0 3 . 0 0 3 . 0 0 4 . 0 0 5 . 0 0 5 0 . 0 0 5 3 . 0 0 3 2 . 0 0 1 4 . 0 0 5 4 5 . 7 0 3 . 1 0 1 6 . 1 0 12 . 7 0 0 . 7 9 0 . 7 9 0 . 2 7 0 . 0 7 1 4 . 0 0 7 . 9 5  : 5 5 7 5 1.1 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 1 . 0 0 4 . 0 0 1 5 0 . 0 0 1 9 . 0 0 6 6 . 0 0 15 . 0 0 ! 5 6 4 . 8 5 9 . 7 5 1 0 . 2 7 2 8 . 5 0 5 . 8 2 1 . 5 2 0 . 2 2 0 . 1 5 3 3 . 8 7 2 4 . 1 0 ; 5 7 _ 8 4 5 5 1 . 0 0 _ 7 . 0 0 _ 0 . 0 _ 7 . 0 0 4 . 0 0 1 . 0 0 4 . 0 0 . . 0 . 0 . . . 3 . 0 0 . 5 3 . 0 0 . . 3 8 . 0 0 i ~ 5 f i " 6 . 2 3 ' 0 . 6 7 ' 9 . 8 3 " 2 . li" B. 3 0 ~ 2 . 61 0 . 11 0 . 2 4 1 3 . 9 7 8 0 . 2 7 : 5 9 9 0 - 3 2 4 . 0 0 4... 0 0 0 . 0 5 . 0 0 3 . 0 0 1 . 0 0 5 . 0 0 1 5 0 . 0 0 1 9 . 0 0 6 6 . 0 0 1 5 . 0 0 6 0 5 . 4 8 1 0 . 4 5 1 1 . S-> 2 3 . 3 3 2 . 1 6 0 . 4 1 0 « 0 7 0 . 16 3 7 . 6 9 7 . 5 0 - 2 o o a o Oi o • • • —1 i n f\i r-H r—1 o c! C o o o • • • m o N O LO * c o o o o o i n 6 o • C" • IT. • CO tr, • cr • c r • — t <\r f i r—1 rv ro f l o ' -o o o o o O o er • • r-H • m • o • o • 00 c r m i -4" IT, a -r-i f 1 i-H <—• o c o <t o o 6 r-l • r-l • f l • rv • •4- • o o o O o o o o o c r • r-l t C M • o o e rv • • o o o O c o IT' o i n o o • O • i n • CC-• • • r-H o o o c o o —J LT. o r-• i—1 • • in • i n • m • i n ro o C V r—. O f • L T , • • in. o • o • o • i n m f—4 o o o o i n o f i • • • i'-' -• '•0 « i—< rv • —1 •—i o o o o O a . LT. o cv • • • i \ f • • • f , f V ; " o CC-up. c r rv i n i n 1—* • *c- • • rv i n rn tn f m CT cr- c r m f . m ->c-_ I I I I I o a' -..-1 o o • • cc-f l r-l o O o o • • ir. <-c c 1 o o o r -• • OO cr- • • r-H m r-H c- CJ c i i n o . f l • »—r • c r • rv • i n r-H r-H r—1 «—* f i ' i n O c' o o C o • • f i • •4-. • o o o c. o c r o rv • o • r—1 r—1 • r-H • c o O C O f- c - c r • f i * -0 • rv- • r-H r-H o o ' o X O • o • IT-' • c t r , • CO * CC o • O • o L P rv a oi o in c r -• r - cr-• « o o o- r—H a i n o ] f\l • i n •' l -H f . • f l • rvi i cv ! (V O o 00 •4" • <)-. • -.t i n if,: IT. cr- c r ' i L U i -I l - H r - or/ c r : o u. Table 5 . 2 o Treated averaged surface 1 2 inches for 3 5 Fraser Valley S o i l s Series Slope Drain Stone Hue Value Chroma Roots Struct Sand S i l t Clay pH O.M. C/N PI Ca Mg Na K CEC B.S. '-- 1 - 2 7 0 ? .. 0 0 4 . 0 . 7 1 . 0 0 . 5...0.Q .4 . 0 5 1 . 0 0 5 . . C 0 1 0 0 . . G O 2 0 . 0 . 5 . . J5 .1. ]..7 ..1.9.31.9.. 2 6 . 0 7 2 . 0 0 1 2 . 0 0 3 9 . 7 7 3 . 4 7 2 . 5 7 0 . 1 0 0 . 4 6 2 0 . 1 4 5 0 . 0 0 3 . 4. ? 9 ? 7 .QQ 5 , 7 ] 1 . 0 0 5 . 0 0 4 . Q 8 ? . 0 8 5 . 0 0 1 HQ .no 2 0 . 0 0 5 5 . 9 8 1 6 . 8 4 5 5 . 1 2 2 . 0 0 1 2 . 0 0 5 3 . 92 6 . 9 6 1 . 6 0 0 . 3 0 0 . 4 0 1 0 . 8 3 5 0 . 0 0 6 ^ 7 2.L8.5_ 2 -,.a0_„.5...J J. 1.. JO. 5—0.0 3—1.5 0...S.9 4-...0_OJ..aO^ .O-0^ .2.0^ .0-0_-5_0..-8it_^ X3^ 32 £ 8 5 . 3 9 2.00 1 2 . 0 4 1 2 . 3 0 4 . 6 2 1 . 9 2 0 . 1 0 0 . 4 0 2 0 . 1 3 5 7 . 1 5 ? 9 LQ_ 3 3 0 3 2 . 00 4 . 9 3 1 . 0 0 5 . 0 0 4 . 1 1 2 . 0 2 3 . 0 0 1 0 0 . 0 0 2 0 . 0 0 5 2 . 9 9 1 4 . 5 ? 11 5 . 9 2 2 . 0 0 1 2 . 0 0 3 7 . 2 6 8 . 1 3 2 . 1 0 0 . 1 0 0 . 4 1 2 0 . 0 0 5 9 . 3 2 12 1 3 336.31 2....00 . 5—1.2 1 - . .0XL.. - .5. .00 3-.6.1 _ . ? . . . ? . . 5 4... 0.010-0-.Q.Q—2.0~..Q-0—.4-1—2-0—2-2^-7-1 14 5 . 2 8 2 . 0 0 1 2 . 0 0 1 6 . 6 5 4 . 1 5 5 . 0 3 0 . 1 0 0 . 4 3 2 0 . 0 0 4 8 . 0 3 1 5 L 6 3 3 9 1 ? .QO 6 , 2 9 1 .QQ 5 .QQ ? . 7 8 1 . 0 0 4 . 0 0 1 0 0 . 0 0 ? A , . S 4 4 4 . 7 ? 2 6 . 8 4 1 7 5 . 4 6 2 . 0 0 1 2 . 0 0 6 4 . 3 6 5 . 0 0 1 . 6 0 0 . 1 0 0 . 4 0 1 9 . 1 8 3 9 . 7 5 1 8 1 9 4.. _A 2. . .0.0. 4 . . . 5A L.D.Q 5...0.Q 2—L.6 2 - 0 . 0 5-..D.0-liJ.0.....0-0-_2.6...69_5.3-.-5O_Z0^-Q-0 20 5 . 3 5 2 . 0 0 1 2 . 0 0 2 8 . 7 3 6 . 8 4 2 . 0 7 0 . 1 0 0 . 4 0 2 5 . 7 2 4 7 . 7 6 21 ~ ~ 4 A O 7 . 0 0 5 . 7 ? 1 . 0 0 S.QO 3 . 5 8 1 . 1 7 7 . 0 0 1 0 0 . 0 0 7 1 . 7 7 ^ . ^ 7 Q . 3 A 23 5 . 7 6 2.GO 12 . C O 4 5 . 5 9 5 . 0 0 0 . 8 9 0 . 1 0 0 . 4 3 2 0 . 0 0 2 5 . 2 9 24 25 4 1 8 2 2.00 2 . 9 9 1 . 0 0 5 . 0 0 3 . 8 3 1 . 7 2 4 . 0 0 1 0 0 . 0 0 2 0 . 0 0 6 1 . 9 9 16.53 26 5 . 6 8 2 . 0 0 1 2 . 0 9 2 1 . 2 0 7 . 0 4 2 . 1 5 0 . 1 0 0 . 4 0 3 5 . 4 9 61 . 3 0 27 28 4 3 3 5 2 . 0 0 3 . 2 4 1 . 0 0 5 . 0 0 3 . 7 9 ] , p u 4 . 0 0 1 0 0 . 0 0 2 0 . 0 0 6 0 . 5 3 19.05 , -246-ro F ~ • • c! C oj ( \ i i-H CV • • r-LO ci o r\ o • G • O • c! t • ro r\J i - t rv o L O I r~ in O c X c i o o L O c o  • a • d • c • r- o o o o OJ i—i rv ' i-H ro Ci c-o C | r—1 c O • •t • • • • o o o x t o o 1—1 o l-H c ; c o c o; ro u" LO, CT- • O • O J 1 i • O j • O l i a o ro cJ I—I o <!-• • — i • L O • * L O • i n i rvi r-1 ( r—1 d c a F-H o ro o • I—I • i-H • • l-H • 1 i-H x t rv L O cci o cr o o o ro • o • o • ro • I O j O j r-H i — * r—< ci o o cj o o O o c • o • • • O-J r\i Ovl o CO cr o LOl w—t rsi o • «c • l O • ro <t <t" vt ro cr o cr o co' o oj LH O i M H cr '< «v —1 • r\j LO. o o *! C O • 0 O --i r v c j Cl rO «! ^ " 01 . i O o v0 Ol LO o a Q r i r v i *0 O rvj . i\J ro ci OC •j c : -C j • q cr r - l - H o ! cj a « <r LTi • I O ! o : o | o cr ro rv O cv o • cr <f o o • o O J ro • O o CO « roj oi H J C i N t 1 ° a • oj I ^ ci o-j i i n C i . Cj o r-H OJ C i ci o •I <t 0*1 • i 'C aoi  co r-a LO o o o oj o o o o o • O l r-cr . r v ro LO O LO. o o 0M LO I ° LO,! cr . 00 H o q ' cj o •:' o LTi • jLO. d o cr . i n i - H • I LO-I <r r v Csi O . • <wl L O . • is a j C; O • i O o-J • ! O.J ! vO o ! ^ LTi O o ro r\l oj r \ i I q Q Ol . Lf>, LOi • ] i n q o o i— i • i o j OJ r-H o - ! O • o r\j O q o • o OJ • i OJ o ; r~ cn • <j, L O in IP ; cr L P r H a • o • • r\j o ro r o r v o • c i n CO cr • • 0 0 r - H r v i o • o r o » j r v o . q o •' o rvi • i O J L A rvi ro! • ro sc q o o ! o o 00 • • LO 1 • LO L O I q o O J q -H C • r- * r\i ro cr O *+, c\i ro vt rv ro ro fo ro co LO *o M oo cr o ro ro ro| ro rn r H M tO %C ^ vt vT] j^- st <t r%. oo cr; o «-« C M <t- >f vf. LO m . LO. m in: vo cc in IA UTS ir, in LT. 5 9 5.48 2 . 0 0 1 2 . 0 0 4 3 . 26 5. 5 1 0. 31 0. 1 0 0. 4 0 2 0 . 0 0 4 9 . 9 8 6 0 -6.1 : 6A5.0_ -2.-00 4_..2.2 1__0.0 5...00 A..J.3 2..-0D 3-..C.0.1JD.O-..QJO_2^ --.3i._-4.8...8_4_2.0-»aO. 62 5 .89 2 . 0 0 1 2 . 0 0 4 8 . 7 4 7 . 3 4 2. 1 9 0. 1 0 0. 4 0 2 6 . 4 5 4 8 . 51 6 3 6 4 6 5 1 1 3. 0 0 5 . 9 3 1 . 0 0 5 . 0 0 3 . 4 9 1 .02 4 . 0 0 1 0 0 . 0 0 70 .00 6 3 . 1 5 1 7 . 8 9 6 5 5 . 1 6 2 . 0 0 1 2 . 0 0 5 1.00 6. 7 6 1. 76 0. 1 0 0. 4 0 1 7 . 83 5 0 . 0 0 6 6 .67. _ 7 _ 3 2 4...Q.Q 3...93. L.J0J3 5_JQfl 1.. _5...._..2..O.2... .A...OJL11-OJ3„:O.Q_2J_.D_ 6 2 .3J_J.9-.AZ 68 5.67 2 . 0 0 1 2 . 0 0 3 8 . 12 5 . 6 7 2. 01 0. 1 0 0. 4 3 2 0 . 0 0 4 9 . 64 6 9 7 0 7 6 2 2. 0 0 3. 0 0 1 . 0 0 5. 0 0 3. 12 2 . 6 9 5 .001 0 0 . 0 0 30 .36 5 8 . 1 7 2 0 .06 7 L 5 . 7 1 2.00 1 2 , 0 0 4 6 . 8 2 6. 0.9 1. 6 4 0. 10 0. 4 0 2 3 . 7 0 6 6 . 96 72 -7.3__ 733.2 3.00. 5. 7J 1.,_QQ 5.. 00.. .3.__, 1...JX.8 5...G.0.1.O.0..O.0_Z0-..0.0.—6.1..9.8,_.1.7...S.J_ 74 6.31 2.00 1 2 . 0 0 47.52. 6 . 0 5 2. 1 0 0. 1 0 0. 7 0 2 0 . 0 0 4 8 . 5 6 7 5 7 6 _ 7 3 3 5 2 . 0 0 3 . 8 6 1 . 0 0 5 . 0 0 4 . 0 7 ?.QQ 3 . 0 0 1 0 0 . 0 0 2 1 . 7 9 5 8 . 9 4 2 0 . 0 0 7 7 6 . 2 3 2 . 0 0 1 2 . 0 0 5 9 . 22 6 . 06 2. 0 0 0. 1 0 0. 4 0 2 3 . 22 4 9 . 7 0 7 8 ..75 7 36.6 2.. 0.0 3_. 0 0. L..0.0 3._0.0_2... 8 3 A. 2.6 3-.-0.Q.L.QQ...Q.0_-.2A..3.2— 5A..8.3.-.2.1-. -IX 8 0 5 . 6 3 2 . 0 0 1 2 . 0 0 4 6 . 1 4 5 . 9 5 1. 72 0. 1 0 0. 4 0 2.6. 6 3 5 0 . 0 0 -248-o rv O J IT • « CM r\J f - H co LO 10. rH • • cr- c sf. v t C c o C, •St  * o « rH • rv; • a • c O j o r\ rvi in in. in C 0 " c oo O CO CC • • O m o • c • o Q a <t r—i .—i Ovj .—1 OJ • o c o C c. o vT • • • • m • C o O cr Ovl c r- o c o o o LT •c- •O UT CO r- • • o-- « ,-o • O j a O C o LOi c lO. • o » • r- • in • vt o CJ o c O o • a • rH IT. rH <t o o c o a-o o • o • o • CO • o e O j rv O j rH rH rH o c O o c c o O • o o • O J • o. • fM O j sO o o rH in rv • m • rr- • in •it to. m co CT :0 O j at I O d -o • r~ Q • Oj r H I in O d s • d q H d d I t oi o a o -0 rv CT o ol . q q m, ! o m • I O i. q q rvi • cv oc c o c c 00 . CT • CT-<t o c • o CM O vt IT vf oq t n i c a ro, o . (V •0 o o rv r-• m Is-H -j-ro or, cv st o q C i q rH d c « o o ro oj C i o cv r-o o in rv rv cn o d vC O J o CC • o • ro • r H O J O C r-ro * 00 • • r- vr c c c O J r— fl ro o o O J O l C o . o o • CC-• 0" rn in c 'CT o o V t o o c-rv, a d m in cr-rH . O j LTi CT C c c rv cv vC r r ro vt O O O O • (VJ co vt in ro *st m -J3 r ~ cc oo oc co oc cc cc OJ I rH d q o ! o O J . ! O J I ro in in *q • c n i n CT o> O —I CVI co CO CT 0) CT CT CT o^ c m vt a-ir. in in -c r~ oo cr c CT CT CT <T CT C cvi ro vt o o O o Table 5.3. Selected average data for 35 Fraser Valley s o i l s Series Slope Drain Stone Hue Value Chroma , Roots Struct Sand S i l t Clay PH O.M. C/N PI Ca Mg Na K CEC B.S. I " l ' 2 0 7 0 2 . 0 0 5.00 0.0 5.00 «. 00 1 . 00 2 . 001 2 0 . 0 0 1 5 .00 6 3 .00 2 1 .00 1 7 6 . 20 2 . 6 3 1 3 .39. 77 8 . 5 1 4.2 5 0. 09 0.46 1.6.10 R 3 . 2 0 2 0 9 2 2 . 0 0 6 . 0 0 0 .0 5 . 0 0 3 . 0 0 2. C O 2 . 0 0 3 0 7 . 00 1 6 . 00 6 4 . 00 1 9 . 00 | 4 4. 62 14. 15 14. 02 5 3. 4 2 7.47 1 .97 0 .24 0 . 4 5 3 4 . 9 0 2 9 .0 2 i 5 2 1.8.5.. .. 2. OD. 6. ,0 0 .... c . o. ...... 5. 0 0... . Z .00. 1 . 0 0 2...002 14 .00 . . 5 1 . 0 0 3 3 . 0 0 . 1 5 .00 ) C \ >.J 5. 32 6.2 2 12 . 9 5 4 . 4 5 6 . 66 6.59 1.8 5 0.32 2 3 . 6 7 6 4 . 0 2 ' 7 3 303 3. 00 5. 0 0 0.0 5.00 4.00 2.00 2 .00 5 3 . 0 0 1 9 . 0 0 66 .00 15 .00 : P, 5.90 5.33 1 1. ^ 7 1 6 . 4 7 8. 2 3 3 . 6 1 0. 22 0. 22 23. 33 5 3 . 5 7 9 3 36 3 2 . 00 6 .00 0 .0 5 .00 3.00 2 .00 2.00 0.0 1 5. 00 62.00 22.00 10 5 . 33 1 1 . 1 0 17. 9 2 5. 0 3 8. 72 7. 00 0. 2 3 0 . 3 1 2 3 . 2 6 71 . 0 1 i ._u_ 3 3.9.1. . .. 2.00 6 .00 0.0 5 .00 . ...2.00.. .1.(0. 2...00.. . 0. 0. 1 4 . . 0 0 6 2 . . 00.. .23.00 12 5 . 3 6 17.12 17. 4,3 3 2.24 3 . 9 0 .1 . 5 8 0.21 0.07 3 9 . 9 4 1 7 . 0 7 13 4 0 0 4 3.00 6.00 0. 0 5. 00 2. 00 2. 00 2 . 0 0 1 3 . 0 0 1 2 . 0 0 5 4 . 0 0 33 .00 14 5 .80 6.03 1 J . 10 5 . ' 3 11 .20 4 . 1 1. 0 . 2 7 0.14 3 0 . 7 7 5 3 . 3 3 15 4 0 6 0 2. 00 6 . 00 0.0 5.00 2.00 1 .00 1.00 0.0 15 .00 6 3 . 0 0 21.00 16 4.83 1 3 . 2 3 1 0 . 4.3 1 9 0 . 33 6. 0 7 1. 70 0. 47 2. 07 4 5 . 5 3 2 0. 8 0 I X <- 1 °? • 'v_--£ . . 0 0. 0 . 3 . ..5. .r:(i ....4.00... ... 2.00... 1.. C - .26. 00 -5.5..00... 2 0 . 0 0 . .1 3.00 ! 18 5. 77 1. 58 7. 90 5. 00 4. 93 2 . 91 0 . 1 3 0.22 13.98 5 5 . 3 7 ; l q 4 33 5 3 . 0 0 3 .00 0.0 5.00 4. 0 0 2. r. o P. • 0 0 O • 0 4 7 . 00 3 6 . 0 0 1 6 .00 : 2 0 5. 75 2 . 50 S.2 0 10.50 3.7 6 2.31 0 . 1 7 0.06 15.25 4 0 . Q0 21 4 3 6 5 2 .00 3. 00 0. 0 5.00 3. 00 2.0 0 1 .00 6 2 .00 5 5 .00 3 2 .00 1 2 .00 2 2 6 . 1 7 3.63 10.63 17.67 1 1. 32 2.2 0 0.17 0 . 3 1 2 1 . 3 0 6 5. 7 0 23. _ • 4 4 5 2 . . 3..00 .... ..7..J30 0. 0 .. . . 5 .00. . . 3 .00 _ 1 .00... _.. l . .0.0... .0.0... . 1 3 . 0 0 . 6 1 .00. .2 5 .00 • -24 5.77 8.83 1 1 . 3 0 40. 33 ] 2. 0 4 1. 99 0. 1 9 0. 2 8 3 1 . 4 0 50 . .2 3 2 5 4 6 3 0 1 .00 6 .00 0 .0 5 .00 3 .00 2.C 0 3.00 0.0 1 0 . 00 3 2 . 00 5 7 . 00 i 2 6 5. 82 3.3 0 1 0. 82 6. 0 0 8. ,5,3 2 . 3 4 0 . 1 1 0 . 1 7 19 .<•>?. 57 . 7 5 2 7 5 0 3 9 . 3.00 6.00 0.0 5 .00 2.0 0 2. 00 2 . 0 0 5 3 5 . 0 0 1 1 . 00 5 7.00 3 0 .00 28 5.5 8 5.27 1 0 . 19 1 1 .03 6 .26 2.13 0 . 2 3 0.2 5 2 1 . 5 8 4 4 . 8 6 7 O 5 06 0 2 . 0 0 6.00 0. 0 5 . 0 0 2.00 1. 00 1.00 0.0 1 5 .00 6 3 .00 2 1 .00. . .... 3 0 •••'+.S3 1 3 . 2 3 1 0 . 4 3 1 9 0 . 33 6 . 0 7 1 . 7 0 0 . 4 7 2 . 0 7 4 5 . 5 3 2 0 . 8 0 31 5 3 3 5 3 . 0 0 3 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2 . 0 0 2 . 0 0 0 . 0 4 7 . 0 0 3 6 . 0 0 1 6 . 0 0 _22 5 . 7 5 2 . 5 0 8 . 2 0 1 0 . 5 0 3 . 7 6 / • 31 0 . 1 7 O . Q 6 1 5 . 2 5 4 0 . 9 0  3 3 5 63 0 2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 3 . 0 0 0 . 0 1 0 . 0 0 3 2 . 0 0 5 7 . 0 0 3 4 5 . 8 2 3 . 8 0 1 0 . 8 ? 6 . 0 0 8 . 5 8 2 . 3 4 0 . 11 0 . 1 7 1 9 . 9 2 5 7 . 7 5 3 5 . . . 0 0 3? . . .3 . .00 . . . 4 . 0 0 . . . . Q . D ? .0 .0 . . ? . 0 0 . 2 . C O . 1.. .00 3.7 5 ,.0.0_ . 9 . 0.0. .5 7 . 0.0. . 3 2 .JQ.0 3 6 5 . 2 8 1 1 . 4 8 1 1 . 7 7 1 3 . 3 6 4 . 2 6 1 . 5 2 0 . 2 2 0 . 16 3 9 . 0 2 1 6 . 9 7 3 7 6 3 3 5 4 . 0 0 3 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2 . 0 0 1 . 0 0 5 0 . 0 0 6 3 . 0 0 2 4 . 0 0 1 1 . 0 0 3 8 6 . 2 2 5 . 3 5 1 7 . 3 2 3 2 . 2 2 2 . 8 4 2 . 3 4 0 . 2 6 0 . 1 0 1 8 . 6 6 1 8 . 1 9 , 3 9 6 3 6 2 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2 . 0 0 1 . 0 0 5 . 0 0 4 6 . 0 0 3 6 . 0 0 1 7 . 0 0 : £ 4 0 5 . 6 0 3 , 0 5 1 1 . 7 5 1 2 . 10 3 . 8 5 0 . 5 5 0 . 2 0 0 . 1 0 1 4 . 1 0 33 . 5 5 : o .4.1 6.4.5.0 3... OJ3L_-6„.J10„_0_._Q_. 5 . . 0 0 4_.00_2_.J>0„ L..IL0.1.17„,.0_0 9 ..O.Q„57.,0.0. JA.JX0 . ' 4 2 5 . 7 5 5 . 2 5 1 .1 . 9 5 2 8 . 6 0 1 1 . 2 0 3 . 5 0 0 . 2 0 0 . 2 0 3 4 . 1 . 5 4 6 . 4 5 4 3 6 5 1 1 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 1 . 0 0 1 . 0 0 5 3 . 0 0 3 . 0 0 5 0 . 0 0 4 1 . 0 0 4 4 4 . 35 9 . 7 5 1 0 . 2 7 2 8 . 5 0 5 . 8 ? 1 . 5 ? 0 . 2 2 0 . 15 3 3 . 8 7 2 4 . 1 0 . _ [ 4 5 7 0 3 2 4 . 0 0 4 . 0 0 0.0 5.00 3 . 0 0 2 . 0 0 1 . 0 0 3 7 5 . 0 0 9 . ~ 0 0 ~ 5 7 . 00 32 ~.0~0-4 6 5 . 2 9 1 1 . 4 8 1 1 . 7 7 1 3 . 3 6 4 . 2 6 1 . 5 ? 0 . 2 2 0 . 1 6 3 9 . 0 2 1 6 . 9 7 4 7 7 0 6 2 4 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 3 . 0 0 1 5 0 . 0 0 3.00 55.00 3 5 .00 4 8 5 . 7 0 6 . 0 9 1 1 . 9 3 1 5 . 4 6 5 . 7 8 . 2 . 1 7 0 . 3 2 0 . 0 9 2 7 . 9 ? 3 0 . 1 2 4 9 7 2 32 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 1 . 0 0 2 . 0 0 3 1 3 . 0 0 9.00 2 8 . 0 0 62.00 5 0 5 . 5 7 2 5 . 2 7 1 4 . 7Q 4 . 9 0 7 . 9 3 3 . 51 0 . 21 0 . 2 7 6 1 . 7 7 1.8. 82 :  51 7 . 3 3 5 3 . 0 0 3 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2 . 0 0 1 . 0 0 5 0 . 0 0 6 3 . 0 0 2 4 . 0 0 1 1 . 0 0 5 2 6 . 22 5 . 3 5 1 2 . 3 2 3 2 . 22 2 . 8 4 2 . 3 4 0 . 2 6 0 . 1 0 1 3 . 6 6 1 8 . 1 9 5 3 7 3 . 6 6 3 . 0 0 . . . . .3 .. 0.0. .0 ,;0 3 ._QQ. _ 3.....00.__. 4 . .00... . 3 . 0 0 1 2 1 . 0.0_ 3 5 , 0 0 . . . 1 8.00 4 6 ._00 5 4 5 . 7 0 3 . 1 0 1 6 . 1 0 1 2 . 7 0 6 . 79 0 . 7 9 0 . 2 7 0 . 0 7 1 4 . 0 0 7 . 9 5 5 5 7 5 1 1 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 1 . 0 0 1 . 0 0 5 3 . 0 0 8 . 0 0 5 0 . 0 0 4 1 .00 5 6 4 . 8 5 9 . 7 5 1 0 . 2 7 2 8 . 5 0 5 . 8 2 1 . 5 2 0 . 2 2 0 . 1 5 3 3 . 8 7 2 4 . 1 0  5 7 8 4 5 5 1 . 0 0 7 . 0 0 0 . 0 7 . 0 0 4 . 0 0 1 . 0 0 1 . 0 0 0 . 0 1 6 . 0 0 6 1 . 0 0 21.00 5 8 6 . 2 3 0 . 6 7 9. 3 3 2 . 1 7 8 . 3 0 2 . 6 1 0 . 11 0 . 2 4 1 3 . 9 7 80 . 2 7 5 9 9 0 3 2 4 . 0 0 4 . 0 0 0 . 0 . . 5 . 0 0 3 . 0 0 1 . 0 0 . 2 . 0 0 6 4 . 0 0 1 9 . 0 0 6 6 . 0 0 15.00. -251 i • b o O o 0 0 o O o 0 0 • • ft ft • r- rv rv 0s-f\l r - l rv rv o O o O O o o o; O O • ft • • • ro *C o ru o ro in' LPi a o CD O O c o O LP, CD O 0 0 O r-L P • r- « LP, • cc • • GC • i n • • ft LP, • • r- r-l 4" rn m CV r -H r- -0 rr, m -c, rn r -H o O o O CT> c 4" C o o a ; O IP , O rri • -4 • r -H • cr- ft r—, • V • o • L P • r - i ft O ft O ft r- LP-. (Vi 0 I P . r— r—1 rO ,—! r—! r—1 ,-1 r—) r—1 r— I P O O -4 o Q O c- O Cj r -H • r—1 ft r - H • f—1 ft rv • ro • r ~ ! • _ ( ft • P v • • o o O c O c O r- O o •Gi- c o- O Pvl o • r—1 ft rv • Q • • r - H • ft CVi • PvJ • ft 1—1 # o o c 0 c O o O- 1—, O r -H o o in c 0 O CO 6 0-* o • tp, ft CO * CO « v0 • • « <r ft ft cv ft o o —1 v—1 r -H o c C- O 0 o o o LP. o Is- O rr 0 O ,—1 # r—1 • CC • 4 • -c- ft • LP, * LP. • IP • • LP, ft rv i n 0"; rp o CV O o O I P 0 c-ro • in « r-H • 'Pi • • CC: • • o ft • C 1 ft c: ft ro ir, rv IP C- in. p.l r-H PO o o C_r O a- o in :n C;' O IP 0 r-cr," • • P - * • r- • •rr • • • rv • • • r -H O — 1 ,—i -4 r~> ,— 1 r-H i - — : e O 0 IP-. O *p IP. c. rv 6 IX c v t » P-- • o • cv • LP ft • <"P ft CP * .4- > ro * rv • o rp •T r\.: rv 1 , r -H cv 00 o- O GG c; Is- ! LP cr ir, a: O •4- ; • r~• • o -C • ' n * vt ' • 1 LP. <\; LP, i n rp IP, •4 IP* IP , LP. ! f~T* 0 a- ns-U J i i _,. rv re. -0 r- cc 0 O _ _| i -0 •-G •c- v0 f cr UJ Table 5.H. Treated Selected average data for 35 Fraser Valley s o i l s Series Slope Drain Stone Hue Value ChromaRoots Struct Sand S i l t Clay pH O.M. C/N PI Ca Mg Na K CEC B.S. 1 2 -7.0 2.. 0.0-. . . 3 . .2 4 .... i . . £ ) . 0 _.5.. 0_Q 4..1.0.. ..1. 3.3. 2.._C.0.LO.O.j0O-_2.6...63_6D....O.O._2.1-«aO 2 5 . 9 4 2 . 0 0 1 2 . 0 0 . 3 ^ . 3 7 3 . 7 2 2 . 7 5 0 . 1 0 0 . 4 0 2 4 . 5 1 5 0 . 0 0 3 ' it 2 9 2 2 . 0 0 ^ . 5 8 1 . 0 0 5 . 0 0 3 . 3 ? 3 . ( 0 ? . 0 0 1 0 0 . 0 0 2 0 . 0 0 7 0 . 3 1 2 4 . 4 3 i 5 5 . 2 8 2 . 0 0 1 2 . 0 0 5 3 . 9 2 5 . 0 0 1 . 3 6 0 . 10 0 . 4 0 9 . 8 0 4 9 . 2 1 ! 6 -- - ~ -7. 2 1 8 5 2 . .OH 7 . .A .6 . 1 . aQ_. .5 . . . jO .O„. ,2 . . . .53 l.._CLQ 2 . . . . 0 0 L O D . . „ O C ^ . 2 j 0 ^ . . a a ™ 5 . 3 — 4 i L _ 3 J — 3 3 8 5 . 4 5 2 . 0 0 12 . 0 4 1 1 . 6 5 5 . 0 0 1 . 9 2 0 . 1 0 0 . 4 0 2 . 9 . 64 6 3 . 6 7 9 10 3 3 0 3 2 . 0 0 3 . 0 0 1 . 0 0 5 . 0 0 4 . 0 0 .2. 3 4 2 . 0 0 1 0 0 . 0 0 3 0 . 1 0 6 0 . 0 0 2 0 . 0 0 i 11 5 . 9 2 2 . 0 0 1 2 . 0 0 3 7 . 2 6 5 . 0 0 1 . 6 1 0 . 1 0 0 . 4 1 2 0 . 0 0 5 0 . 4 6 12 i 1.3 3.36.3 2..-QD 5...3.S 1..HQ 5J-D-Q..__3...6.L 2 . . . C D 2 . J 3 . . C L 1 D O . ^ 0 . 0 - _ Z 4 . . A i _ _ 6 2 - . J m _ 2 2 — Q U i 1^ 5 . 2 8 2 . 0 0 1 2 . 0 0 1 3 . 6 5 5 . 0 0 4 . 9 0 0 . 1 0 0 . 4 0 2 0 . 4 4 44. 9 3 | 15 ' lh 3 39 1 2 . Q Q 5 , 8 9 1 . 0 0 5 . 0 0 ? . 61 1 . 0 0 2 . 0 0 1 0 0 . 0 0 2 ? . 9 7 6 ? . 0 0 ? 3 . O O 17 5 . 7 9 ? . 0 0 1 2 . 0 0 6 3 . 3 9 5 . 0 0 1 . 9 8 0 . 10 0 . 4 0 2 0 . 3 4 48. 0 7 18 j — 1" 4... _4 2 . . . 0 0 — 4 . 23—1.. 0 . 0 — 5 . . C O ?, . ._32—1 . . -9-6 2...&a.JUOO..--C.O_2-0...3-7-._6.0-..00~2a-..0.0 i 20 6 . 1 1 2 . 0 0 1 2 . 0 0 3 2 . 3 4 5 . 1 5 1 . 3 7 0 . 1 0 0 . 4 ? ? 0 . 0 0 4 8 . 8 8 ! 21 1 22 4 6 0 ? . 0 0 4 . 1 0 1 . 0 0 5 . 0 0 3 . 1 4 1 . 7 3 1 . O 0 1 0 0 . O O 7 Q.no 6 0 . 3 6 ^ 1 . 1 7 23 5 . 9 7 2 . 0 0 1 2 . 0 0 5 0 . 0 0 5 . 14 1 . 7 3 0 . 10 0 . 4 8 2 0 . 0 6 5 0 . 0 0 24 • 2.5 41.8.2 2..0.Q___3...7S 1...0.Q 5...0.0 3...U 2..C.Q l...mi.£)fl^ O.O„2/3J»-0j0_4^U.2i._2.8.J,36 26 5 . 5 0 2 . 0 0 1 2 . 0 9 . 2 1 . 2 0 4 . 7 4 1 . 9 8 0 . 1 0 0 . 4 0 3 5 . 1 3 5 0 . 0 0 27 23 4 3 3 5 2 . 0 0 4 . 2 0 1 . 0 0 5 . 0 0 3 . 6 0 1 . 4 6 2 . 0 0 1 O Q . O 0 ? 0 . 0 0 6 2 . 5 3 ? ? . 0 7 29 5 . 6 0 2 . 0 0 11 . 8 9 '+5 . 0 5 5 . 0 0 2 . 0 7 0 . 1 0 0 . 4 0 ? 0 . 0 8 5 5 . 31 30 31 4 3 6 . 5 _ 2 . 0.0...... 2 . 9 9 . . ' . 1 . 0 . 0 . 5 . 0 0 . . . . . .? . . .2.9. 2 . 0 0 . 1 . . 0 0 . L 0 0 . 0 0 2.0....0Q.-5.Z..7.8...2.3-..5J. -253-CNJ f vt rn ro rr t r • O r - c c CT r o r o r o r n C H N r O v t UO sG v t v t <r v t v t <t v f w 0vJ 1 O (Vi rn d 0 Oi c c r H O Q r - H fl 0 1 « • • • • • • • • a r - H O ; ci rv rvi r H rr oi O; O l OJ fvl f f i j (VJ OvJ v f r> 0-J C vC f> oj r—j CC i C;. ir O c ro IT-. s 0- LO, r - l O . >o • • • • • • • • vC 0 O Cv! C t C i O < Ll'V vO tn i u ' u< vO vO ve-c 0 © c O 1 0 f l rs.. o c r~; ro 0 CT O 0 O r - l f j CT- C ; O O 0 0 0 rvi 0 v f o • 0 • LP f « O • fl • a O • 0 • a, 0 • • c • 0 s • C • 0 • a • CTi • O • O • 0 * -a: • rv c (X. r H a o. 04 OJ O rv in, r-H cc rv OJ, O (Vi 0 (VJ O rv in LO, CO; in LO m. ! <T >n 1 tn. LO d in c C i CT 0 O Q C - d 0 O in r ro O L0-. C r - c c a ; C i CC 0 0^ Q 0 c CT 0 c O a r- « CT * • O • C • C • LO, » LT\ a CC • 0 1 • • " c O • V. • 0 • 0 « O • 0 • d » O 9 d * CJ r - c r - l o-. • c cr- 0 O 0 0 O CT 0 r - l O O j O CC O" 1—1 1 O l 00 r H r—• r— r-H r - H OJ r - l Ovj t - H r-H I—i O j r H f. r H r H .—1' OvJ ,—1 c . O C : O O O f—. C O O o c O O l O C v t O a: O 0 f , O O C'i 0 CO Q 0 O vt" • vO • - f • <t • « • vT • i<- • v f • • • 0 ! • 0. • H • Oj • 0') * 1—1 • »—I • r—1 • r - l ' • r H c O O O O O ' O O i O 0 O c vi) f ro vC •O O o l vO d r-c ro c m 0 C" O r— O s f C ; oi C J c C, 0 : vX 0 0 O .—1 • • 1—'. • , — • r - H • r-H • r ~ l Oj • rv • r - , • rvi r - i o cv- O O O i O O ,' O 0 j O LO o~ <t c VJ?1; ,—i r-: LO. CT 01 C\ - H vf.:- O-j r\ - t r-H CO vO r- vC, CT vC (VI 0 : IT. vO CO vt ' cc Oj • a - a • r - • c . * LO. • OJ • • O J d • • rr • • Ov • 00, * fl • 01 » ro • f l • vf. • f-. c c -* f—i rv l - H r - H C J i OJ C w c : 0 0 C.i O o l O O j c Ovi c Nl O 0 c O 0 - f 0 0 O 0 O LT. ro Ci ro c : CT O 1 r H • « O a f~H a 0 • d • r - H • O • r H • CT • • IT • i n • in • IT. • 10. • LO • 10, • • m. • in,; • in IT. m IT: in LO, tn in U : i LO in i v f c C J c O O d C O ' c 0 ' O r - c f 0 O c c O c C ; vO O c vT C : OJ c O c ; v f c a • a 0 » 0 • 0 • 0 CT • rv • O » t - • • • If-. r - i 0 0 LO 0 v t i C C cc rvi U" i r . IT in v t m f 1 in LO. i v f r - 0 c O O vC f d CT O o- O 0 vt r-;. r-H 0 rv cr O r- O O l O r> 1 O r - H 0 C'. O « O « 0 a 0 • O • 00 • • O •' » O • • • • • ir • <r • vj- • LO, 0 0'. « LT-: • • CO; • v* OvJ cv 0 , 1—* ! Ovi O i 1 OJ Oil 0 : r H r - l r -H r - l r - H r - H •—1 r - H r - l r H r H C O 0 O c o 1 c 0 0 0 O 0 O c O O O 0 O O O C c - O C - O c c O 0 • O « O t O • O • O • O • O • • C i • C ; » • 0 , • Oil • r\ • OJ n rv • oj • OJ * (VI • (V • OvJ • (VI O ; <\J (V Ovi OJ Ovi OJ Ovj : rvj cv (V! v t in C\j rv r - 0 i in Oi! f I s -I LO. ro (VJ c : 0 cr in O 0 LO vC d rv vC ir, O j (VJ O •—1 • LP. • 01 • cc • vO f i • ro • ro • O'I • vO • 10, • r H v t vO vC> IT- IT. LO, ro. LO. vC' LP, in on vO f vf. v£- m vt s f i r in IT. vO vt; vC I s - c c O - H r v v t v t s f in m in s j - u o v c r - . cc-in in in. 10 LO 10 tr 0 — 1 r v i r n t^ in s o SO VO SO VC 2 5 4 -rv H PJ pi rv r-l o o v T 1 r-i o s?[ CJ, LP rvj m • • • • « r- o o O H o iri 1 •-r LP. rvj <• c l I-H O d r-v t Cj co o CM O o q r-l •4-• • o • o « LO • <r • • Q • • • o • d t p, v t r\l f\l r v c vr o rv on rv rv rv LP, LP l.p LP <r | IP. r_\z< o c» O q O rn Cj (X) o r-~ o r- q LP. c • * p • • • r<"> • r- • • C i • c, • C • o « Cl • c r—i q o ro • Ci o o o cj vf o CV: (X: f — p.: r ~ 1 p.- r - i P.I r-i r—1 r — : o O o o cj o o o C'JJ' c o C i rv o C ) q v T c • • VT • I S- • vf • v t • • • • • — I * rn • r—i o o o o o I O in vO r- c o t r • o v0 xC O x 0 >o I s-Q o cvj o ' a- r- C o : I S o r •< CP o P J O c r~i i~, • — i «—t • r - : • i—i 0 r—i • •—i 9 i — i 0 • P J • 1—1 • C • Pv 0 • r — • o C o O j o r—i IP. r- IS-! c-v + v T ,—1 C v x 0 V*, v t v ) ro • 0 • • C J 0 • ro • 0 • m i • rr • • ro 0 p.i • . P"', •—i c o f — ( p i I 1—1 d o c ° i o O o : G v •  o O1 no c O o c o * CJ* • O • o • o • c 0 • ip' • i.P • LP • CP 0 roj 0 LP. LP, LP, Lfi LP i n 1 LP. c o c o o ! c o o. v C c p.' C > o t \ i O; o c • Q- 0 • O • rv • o • • . — ( m , — I • r - H • I—I • I—1 • 1—1 , v t v D o o j o LP. ; n . <r IP, i n i n C T i I - J rr, cr (71 o-o v t O Cv O LP, o c c c • O • o • o 0 o 0 o • • • IP- 0 0 i n • ro( 0 v t rv PJ. P J PJ. rv i rv <—1 •—! ,—t — 1 r—i i r - l C ' ; o o c d o o o o c c o o c o q o o o o • C • o « C • c 0 • rV • rv 0 rvi • PJ • rv • rvi rv rv cv cvi rv i rv LP, O rv r—( rv I i cr-c P i LP CM |v- tv ro m, ro •o Is- r—1 • m • 0 r>; • CO 0 • r — • LP, LP LP CP, ro ro i n LP. p- r- r-- N - Is- I S-rv ro < t tri < 3 r - r - Is- p - Is-.1 m LPi r- c o c r o cv i r - K o o o o c c - 2 5 5 -CO v t LTi' vC fw CO cc co oc co oo cc n O j i-OJ cn —j o o O a cv a-O J P * c i ( V rv cv O J ci c 0 cc vC C c c •q i — r - c C i • • t • * • l - H r H v t • -4 c o v d i -r 1 -£> vCi 1 vC v l j i -o O l 1 o e I cj O. v t v t c i o I'M 0 " Q C C c O c o - t r H v t v t LO. • - .0 « ro • OJ • O 1 LO • cr • • r - l • vO • r - j • o • q • cc • • v t 0v| vO o ; i - H oi CO ( V O rvi <«• (V co O j cr IP , v t LP. in LP. m. L P v t C l c c Cl c cr. ro d o c: ' X - q rv c cr q o i c c C v t • O • o • o • • X i L P • O • o • o • c • O • o • c • C • • l-H q c •4" , o -jji o oc o LP, c o 6 o O J i—i r v i r H rv r— r H 1— O j O i (—i ( V i q c o o Q c o O r- c Q O o CO o; o c C i a v t v t • v t • s j " • v t • v t « v t « v t • v t • i - H • rv V i — i • r — • O J • 0 . • • o o C: o o o o o 0 ' - v C ci i t UT. c . q C- o v t r-> cj <-. CJ o I—1 • 1—1 • • r H • r H « r H * r H • r - H • r -H • r - . • r H • r-H • rvj • • o • o j o i r—V o O o C r - i o' v f m o 0' CO CO f—I vt L O CC •Ci CC v0 a:, c. LP. O". ,—i CO • r—i • • ro • C\J 1 r H • 0 - • o • ro • pr-. • O l • c - • on . • • l-H O r H ' o I H r H r H o ' o d O d o o o O O c. O Ci c o m d c o o CO c- • C • O • c • r H i o « o • r-H • IV- ' • LO. • L O • m, • i n . • LP, • LO, 1 u LO. L P LO LP. uo r - v C- Ci o d o o c C\ Ll", o o o (V! o o o ro c rv C~| c-o • * v C • cr • o • r H • v T 0 -• r—1 • i — t • r-H • i — • • r H • i-H ; vC o- CO o o- r H cr LO, O j v t rvi LP, (VJ Ov c O J c CO r- • f o LO, o cr- o O l o O 1 o c o cc CC- o • o • c- • o • o a . • a'; • o • vo; • o" • vi- • • rv • CO • LO. • C V j O i rv (Vi O J O J r H O J i - H r H . — i r H r H -* r H r H Ci C : es o c c C : O o o o o C> O o o Q O c O O O o o • • O • o « c • o • O • (vj • O.I • rvj Cv! • CM . o. a • O J rv Ovi rs! Ovi cv O J Ov LO O J O vO r- 0 - c LP. c LO, vO Cv! r- iri cr ( V v t LO m CJ v O r - i • 1 o' • o"~ • r H • -c • vCl' • | o • v t • LO, v t L P i n O J in ro in ro' in v t LO, LP, vO CC CT- C v cr cr CT cr cr• o —* O J ro v t x cr Cr cr cp cr C c LO vO H o c o-. o cr cr cr; CT- cr o •—1 rvi co v t in c o o o o Table 5.5. Averaged p r o f i l e data for 3 5 Fraser Valley s o i l s Series Slope Drain Stone Hue Value Chroma Roots Struct Sand S i l t Clay PH O.M. C/N PI Ca Mg Na K CEC B.S. 1 2 0 70 2 . 0 0 5. CO 0.0 6.00 4.00 J. • i_ \-' 3 . 0 0 1 5 1 . 0 0 1 3 . 0 0 6 1 .00 24 .00 6.0 3 1 .4 9 ;;. 9/ 1 ° . 0 3 5. 20 5. 67 0. 18 0. 34 1 5. 63 73.6 7 ~1. 2 0 0 ? .2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2.00 3 . 0 0 1 3 6 . 0 0 16.00 6 3 . 0 0 19.00 4 4.3 9 5. 39 1 2 . 1 0 3 1.57 3. 82 2. 17 0. 54 0.32 2 K . 23 2 6 . 8 6 5 2 1 8 5 2 .0 0 6 .00 0 .0 6.00 4.00 1.00 2. 002 40..00 4 0 . 0 0 40. 00 19. 00 6.2 4 2 . 31 14. 00 3.45 3. 74 .5 . 10 2.61 .. 0 . 4 7 ] 5 . 39 8 2 . 60. 7 3 30 3 3.00 5.00 0.0 5.00 4. 00 1. 00 2.001 5 0 . 0 0 .1.9.00 6 6 . 0 0 15 .00 3 4.71 4 . 3 4 12.53 1 5 .4.3 3 . 59 2 .40 0.4 4 0. 15 2 0 . 67 30. 99 Q 3 363 2. 00 6. C 0 0. 0 5.00 3.00 2 .00 2 . 0 0 6 5 . 0 0 1 3 . 0 0 5 9 . 0 0 27 .00 10 4.80 4. 4 9 15.44 7.2 3 4. 90 5. 43 0. 3 5 0. 30 19. 90 54. 08 1 1 3 391 2 . 00 6 .00 0 .0 5 .00 3 .00 1.00 2.00 2 8 . 0 0 1 9 . 0 0 5 6 . 0 0 2 3 . 0 0 12 4. 83,_ 3.26 16.93 29.2 2 2. 23 .1... 9.6 _ 0. 16 0.07 2 5.43_ 20.1.5 13 4 0 0 4 ' 3 .0 0 * 6'.00 0.6" 5.00 3. 00 1. 00 3. OO" 6 1 . 0 0 11. 0 0 5 5 . 0 0 33 .00 14 5.8 7 5.48 12. 99 6. 5 5 14. 89 5.17 0.2 5 0.15 3 8 . 3 2 5 3.91 15 406 0 ? .00 6 . on 0. 0 5.00 4. 00 1 . 00 1 . 0 0 3 0 . 0 0 1 4 . 0 0 62 .00 23 .00 1 6 5.2 7 5. 0 4 1 2 . 02 87 .85 2 .8 6 1 . 26 0.27 0 . 8 0 26.2 5 2 2 . 0 3 17 4182 3 . 0 0 2.00 0.0 5.0 0 4. 00 2.00 2 . 0 0 3 1 . 0 0 5 9 . 0 0 2 7 .0 0 12 .00 j. 8 6.04 0.7 6 7.3-? 4 . 6 ? 4.11 2 . 2 8 0. 12 0. 18 1 0. 62 56. 84 19 433 5 3. 00 3 . 0 0 0 . 0 6 .0 0 4 .00 2 .0 0 3.00 2 2.00 4 5 . 0 0 38.0 0 1 6 . 0 0 2 0 5.70 1.3 4 9.1? 11.15 3. 55 1.35 0. 18 0.05 11.61 4 4 . 2 1 2 1 4 3 6 5 2 .00 3 .00 0 . 0 5 .00 3 .00 2 .00 2.00 5 5.00 4 6 . 00 3 9.00 1 3 . 0 0 . 2 2 6. 44 1.59 9. 09 1 5 . 3 0 8. 08 2.11 0 .1 3 0 .24 1 5 . 13 -70.60 4 4 5 2 3. 0 0 7.00 0.0 6.0 0 4. 00 1.00 2. 00 7. 00 12. 00 52 .00 3 5 .00 24 . 5.9 3.. ..3.16 .7.81 2 5.05 10 .74 4.24 0.23 0.21 2 4 . 3 3 6 7 . 1 5 2 5 4 63 0 1 . 00 6. 0 0 0. 0 6 . 00 3. 0 0 2 .00 3 .00 33 .00 9 .00 39 .00 5 0.00 26 6.19 1 .77 10. 9 1 5. 50 7.8 7 3. 57 0. 14 0. 14 17. 65 68.1 6 2 7 5 03 9 3 .00 6 .00 0 .0 5 .00 3.00 2.0 0 3 . 0 0 5 2 6 . 0 0 1 1 . 0 0 5 7 . 0 0 3 1 . 0 0 28 6.05 2 . 8 3 1 0 . 1 1 8. 12 7. 37 3. 13 0. 25 0.16 19.55 5 7 . 8 7 2 9 5 06 0 2 .00 6 .00 0 .0 5 .0 0 4.0 0 1.00 1 .00 3 0.00 14. 00 62. 00 2 3. 00 30 5.27 5. 94 12. 3 2 3 7.85 2. 86 1 .26 0.2 7 0.30 2 6 . 3 5 22.03 3 1 5 3 3 8 3 . 0 0 3. 00 0 . 0 6 . 0 0 4 . 0 0 2 . 0 0 3 . 0 0 2 2 . 0 0 4 5 . 0 0 3 8 . 0 0 1 6 . 0 0 3 2 5 . 7 0 1 . 3 4 9 . 17 11 . 1 5 3.55 1 . 3 5 0 . 1 8 0 . 0 5 1.1. 61 4 4 . 2 1 3 3 5 6 3 0 2 . 0 0 6 . 00 0. 0 t. 00 3 . 0 0 2.00 3 . 0 0 3 3 . 0 0 9 . 0 0 3 9 . 0 0 5 0 . 0 0 ! 3 4 6 . 1 9 1 . 7 7 1 0 . 91 5 . 5 0 7 . 8 7 3 . 5 7 0 . 14 0 . 1 4 1 7 . 6 5 6 8 . 1 6 1 35 6 0 3 2 3 . 0 0 4 .00 0 . 3 6 . 0 0 5 . 0 0 2 . 0 0 2 . 0 0 3 1 3 . 0 0 1 2 . 0 0 6 0 . 0 0 2 7 . 0 0 3 6 ?-4 0... . 4.0 5 . 1 0 . 08 1 7 . 0 3 6 . 94 1 . 8 5 0. 2 J 0 . 12. 2 4 . 1 0 . . . 4 8 . 7 2 . . . 37 ' 6 3 3 5 4 . 0 0 3 . 0 0 " 0.0" 5 . 0 0 4 . 0 0 2 . 0 0 2 . 0 0 .50 . 0 0 5 8 . 0 0 ToT'do" 11 . 0 0 3 8 5 . 9 3 2 . 1 7 10.11 3 2 . 6 9 2 . 3 6 1 . 1 4 0 . 2 2 0 . 0 6 1 1 . 3 4 2 9 . 7 8 3 9 6 3 6 2 3 . 0 0 6.0 0 0 . 0 4 . 0 0 4 . 0 0 2 . 0 0 1 . 0 0 4 8 . 0 0 4 1 . 0 0 4 1 .00 1 7 . 0 0 ' 4 0 5 . 7 0 2 . 1 0 1 0 . 9 6 1 5 . 7 9 4 . 19 0 . 7 0 0 . 1 7 0 . 0 7 1 3 . 4 6 3 8 . 7 0 4 1 6 4 5 0 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 4 . 0 0 1 . 0 0 2 . 0 0 1 6 5 . 0 0 9.00 57.00 3 4.00 4 2 5 . 3 1 2 . 1 8 1 0 . 15. . 1 4 . 0 8 1 1 . 5 9 7 . 5 5 0 . 2 3 0 . 2 0 3 1. 1 8 6 4 . 2 4 : 4 3 6 5 11 3 . 0 0 6 . 0 0 0 . 0 6 . 0 0 4 . 0 0 1 . 0 0 2 . 0 0 8 2 . 0 0 1 1 . 0 0 5 4 . CO 3 3 .00 4 4 5 . 5 9 3 . 3 1 8 . 6 5 1 6 . 5 0 9 . 2 4 5 . 4 5 0 . 4 1 0 . 1 1 2 5 . 6 2 6 4 . 7 4 i 45 7 0 3 2 4 . 0 0 4 .00 0 .0 6 . 0 0 5 . 0 0 2 . 0 0 2 . 0 0 3 1 8 . 0 0 1 2 . 0 0 ' - 0 . 0 0 2 7 . 0 0 , 4 6 5. 4 0 4 . 0 5 1 0 . 0 3 1 7 . 0 8 6 . 9 4 1 . 8 5 0 . 2 0 0 . 1 2 2 4 . 1 0 4 8 . 7 2 4 7 7 0 6 2 4 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 1 . 0 0 3 . 0 0 1 2 7 . 0 0 8 . 0 0 5 6 . 0 0 3 4 . 0 0 4 3 6 . 1 6 2 . 6 9 1 0 . 0 7 2 5 . 1 2 5. 3 6 3 . 3 1 . . . 0 . 7 5 0 . 0 8 2 2 . 5 3 4 4 . 9 3 i "" 4<- 7 3 3 2 3 . 0 0 6 . 0 0 0.0 6 . 00 3 . 0 0 1 .00 3 . 0 0 2 4 2 . 0 0 1 1 . 0 0 3 5. OO' 4 9 . 0 0 5 0 5 . 8 6 9 . 3 4 12. 3 8 3 . 31 9 . 3 9 8. 3 3 0 . 8 6 0 . 2 6 4 8 . 0 1 4 1 . 7 5 ; 51 7 3 3 5 3 . 0 0 3 . 0 0 0 . 0 5 . 0 0 5 . 0 0 2 . 0 0 2 . 0 0 5 0 . 0 0 5 8 . 0 0 3 0 . 0 0 11.00 • 5 2 5. 9 3 2 . 1 7 1 0 . 11 3 2 . 6 9 2 . 3 6 1 . 1 4 0 • 2 2 0 . 0 6 1 1 . 8 4 2 9 . 7 8 5 3 7 3 6 6 3 . 0 0 3 . 0 0 0 . 0 5 . 0 0 4 . 0 0 3 . 0 0 3 . 0 0 1 0 0 . 0 0 4 0 . 0 0 2 2 .00 3 6 . 0 0 5 4 5 . 7 8 1 . 5 2 1 3 . 3 3 . 7 . 3 0 3 . 7 6 . . 5.5 4 0.55 .. 0 . 1 6 2 0 . 9 5 3 1 . 2 3 1 55 7 5 1 1 3 . 0 0 6 . 0 0 0 . 0 6 . 0 0 4 . 0 0 1 . 0 0 2 . 0 0 8 2 . 0 0 1 1 . 0 0 5 4 . 0 0 3 3 .00 ! 5 6 5 . 5 9 3 . 3 1 8 . 6 5 1 6 . 5 0 9 . 2 4 5. 4 5 0 . 4 1 0 . 1 1 2 5. 6 2 6 4 . 7 4 : 5 7 8 4 5 5 1 . 0 0 7 . 0 0 0 . 0 7 . 0 0 4 . 0 0 1.00 2 . 0 0 0 . 0 1 4 . 0 0 5 9 . 0 0 2 6 . 0 0 i 5 8 | 6 . 0 6 0 . 7 0 1 0 . 0 4 2 . 3 7 7 . 9 6 2 . 7 4 0 . 11 0 . 2 3 1 4 . 2 0 7 8 . 2 1 : '59 9 0 3 2 4 . 0 0 4 .no 0 . 0 5 . 0 0 4 . 0 0 1 . 0 0 . - 3 . 0 0 9 0 . 0 0 1 9 . 0 0 6 6 . 0 0 1 5 . 0 0 ! 6 0 5. 6 7 3.5 5 8. 1 3 2 0 . 4 1 —7 r\ (. . / -) 0 . 4 9 0 . 1 0 0 . 1 3 2 2 . 6 0 1 Q . 0 5 -2 o o o o o o o o • • • • • C O CM r-H r-H Ovj O o o o o O c O c • • • • • r-H I A O xC v f Lf> ••0 *° o G o o Cxi O 6 o rv vl" • o • • i n • CO • o • r - H • r v • • • r - H v t o o C O U l G r— < o o C l r l v t ro o o C c C id o -c o C O o xfi c r-• • •4- • vT • v t t • o c • or- » o • o • • cn m 4- •4- i.r\ v t cr: (V! r-H r-H r—I r - H r -H r—i r-H ro o O o o O c o (f'i o X: v f • r-H • o • r H • r — i • rv o^ , : • • * • o G G o O o c o o c 00 o x i n • * - H • • o « a • rv o f> CM • • r-H • ,—; • c o G G o c o o O i o i—t o o o v t O Q G • o • • r-H ft vt • i n * • v t • v t • vt • rv o • -H r-H o-.i o o o o c o r-H ~- G a - o 6 00 • O • r -H • • .—1 • G-• IT-. • • • « i n vT vT. o Cv O :> C O o 0 s c • o • Is-- • r- • • xO o • o • O • o • G • LP T l i i—i o o o o G o G' CO c — Y • a.- • 0" • • i d • r-H •vC • vC • r v • • HC • CC r c , r—1 ,—i o c o G o o o o o Is- G o O • « • • • li", CO • rr * v t • C O • • , — i c v i—< CO rv r , LT. r-H CV l.C'i v.- o 1—1 • • • i n • vt • rv C O vO v t ir. m o rr- C7" O- cr r-H (Ni m i n •i) P - CO o- o v(j - 0 r-LU Table 5.6. Treated averaged p r o f i l e data f o r 35 Fraser Valley s o i l s Series Slope Drain Stone Hue Value Chroma Roots Struct Sand S i l t Clay pH O.M. C/N PI Ca Mg ' Na K CEC B.S. 2 7 0 2 ' -x 5. 50 2. 00 12.00 36. 54 2.07 3.91 0 .10 0 . 40 1 4 . 56 48.0 6 1 I ... _...„ .2 .92.... 2... 00 6.32 1 ...0.0-_.J5_..C0 4 ...00.. 1..8 4 3 ...0 D 1.0.0 .6.0 1 9. .8.9.. 6,0. .0-0-2-0.. 5 A 5. 09 2. 00 12. 00 4 7. 3 3 4. 76 2 .00 0 .10 0.40 15. 87 43.8 7 O 7 2185 2.00 7.13 1 .0 0 5. 41 4.00 0.45 2.00100 . 00 2 0 . - > ? 60. 00 ?0. 00 8 5. 68 2. CO 12. 00 16. 00 0.55 3.31 0.10 0 .40 14.90 50.00 9 , _1.0 3.3113 2—0D 5-DJO. 1—0-Q 4_.-8.5-. 4_J___ 1-0.0 2-a01J10.-a0-~-2G.-l-7--^  ^ cn to I 1 1 5. 16 2. 00 12. 00 31.36 4.93 2 .86 0 . 1 0 0 .40 17. 18 50.00 1 2 -13 : 3363 2.00 5 .30 1 .00 5.00 3.00 1 .97 7.00100 . 0 0 7 6 . 20 60 . 0 0 2 0 . 0 0 14 5. 23 2. 00 12. 00 37.00 4.47 4.74 0.10 0.40 10.22 50. 15 15 - 1 . 6 - 3.39.1 ,,..2-..0.0...,-.„6....2.1 1—0.0 5—0.0 3....Q.Q 0...89. 2-»^X<^L^^LXJ2^3J, 60..-Q0-25^^08-1 7 5.62 2. 00 12. 00 65.4-j 4.56 2 .00 0.10 0.40 3 .80 50.43 18 ! 20 6. 07 2. CO 12. 00 40. 02 1 0. 70 2 . 00 0 . 1 0 0.40 8.48 46.29 21 22 4.-6.0 2 .0.0 3 ..4_7_-.1—0.0 5-0-0. 4-0.0. - 1..5.9. . 0.0.100-00—34.-06--60.-0.0~ 1.6.-3-5-2 3 5. 33 2. 00 1.2. 00 5 0. 00 5.00 2 .19 0.10 0.39 10.87 49.17 2 4 2 5 4 18? 2,00 3.77 1.00 5.00 4.00 1 . 07 2 . 0 0 1 0 0 . 0 0 7 0 . 0 0 53. 44 1 4 . ? ? 2 6 5. 4 7 2. 00 12. 00 36.70 5.05 2 .69 0.10 0 .40 15.76 48.59 2 7 . 2 8 4.3.3.5 2 ..0.0 4 . . . 1 . 6 I - .OJO 6...0.0 4..0.0_.1—3.-9, 3..D0.1 0.0—00-.1.7—..48-60.-0.0—1-9—33-2 9 5. 01 2. 00 12. 00 3 0.39 5.0? 2 .00 0.10 0 .40 15.75 47.01 30 3 1 4365 2.00 4.^9 1.00 4 . Q"} 3.0D 1.4? 7.O01Q0-O0 71. nn AO.OO U . ^ l .32 5.71 2.00 12. 00 40.01 8. 01 2. 00 0. 1 0 0.40 ] 9 .1 3 48 . M 33 34 4452 2 .00 7.4? 1 .00 5 .96 4 .00 0 .78 ? .001 0 0 .00 21 .9.5 60.00 23.40 35 5. 3? ?.00 12 . r o 3?. r,5 5. 09 1 . 97 0. 10 O . M : 13.27 50.00 3 6 37 4630 2 .00 5 . 79 l.QQ 6 .00 3 .00 ?.P7 3 .00100 .00 1.9 .83. 37. 1 . ^ 41.57 ~38 6.06 2.00 12.( 0 50. 00 4. 65 2 . 00 0. 10 0.39 12 .73 42 .76 40... _ 5-39. 2.. 00.._ .6.47. ... .1 ..OIL 5-..m_. J-.. HQ... 1...90 ,3 ..0Q_lQXL^ O.n ZQ.'. .0 0 ._5_9... 7..G.22. 07 . ^ 41 5. 89 2.GO 12. 00 40. 00 5. 85 1. 97 0.1 0 0.40 13 .32 43.21 S 42 • ' » 43 5 60 2 .00 3.47 1 .00 5 .00 4.00 1 .59 1 .00100 .OO 34.06 60.00 16.35  44 5.33 2.00 12. 00 50. 00 5. 00 2. 19 0. 10 0.39 10 ."7 49 .17 45 46 5335 2 . 0.0 .4. 16. ...1 .00... .6 .00... .4.00 .. 1. .39 3 .00100 .00 .17.4 8 .6.0.-00.. 1.9..3.3 47 5.01 2.00 12. 00 30.39 5. 02 2. 00 0. 10 0.40 1 5 . 7 5 47.01 48 49 5630 2 . 00 5.79 l.QQ 6.00 3 .00 ?.07 3 .00100 .0^ 1 9 . 8 3 37. 1 5 4 1 . 57  50 6.06 2.00 12.00 48.86 4.55 2.00 0.10 0.40 12.73 37.30 51 52 6.-32...... 2 . 00-.. 3. .84. . 1 ..QO ... 6. ..00._. ..5...Q.0„_...2.. .C5.„. 2 .00.1.0..a.0.a-.2I}.....00--55..6.9L-2.6...7_3...__: 53 5. 50 2.00 1 1. 88 47. 56 6. 94 1. 96 0. 10 0.40 1 7.80 48 .82 54 55 6335 2 .00 4.71 1 .00 5 .00 4.00 1 .13 ?. 00100 . QQ 2Q.QQ 58.^2 17.79  56 5.46 2. 00 1.1. 90 42. 59 5. 1 8 2. 38 0. 10 0.4 0 15 .34 45'.08 57 5 8 .....6 362..,. 2. 00..-..6 .8.9 1 .00 „4.0.2_ 4.( 0. 1 .51 1 .00 100...0.0. _2D..-00...._5j_. ...5 3_.2.Q....78 59 5.46 2. 10 12. 00 32. 35 5. 37 i. 97 0.10 0.40 1.5 .90 50.00 60 61 6450 2.QQ 6.32 1.00 5 .00 4 .00 0 .9? 2 .00 100 .00 22.87 6Q.00 15.01 -261-d ol 1 ! rv) o i d • -H i 1 1 d o r-fv - °1 o r-; o o H r— « • 1 • • . • • < - • o d o r-i cr Ci in LPl c CV, -1 CVI r H i r —i rvj cv r-H rv Q CT J o rvi or c i 1 Q cc a": c j c C O cr c i rr O vf. • • * • • • • • 9 • o tr d c to o {—v. v d 0-v 'J IJ" vC u St' •C u" • CO •*d 0- d cr rpi C' r— o — : c C cv, Crj rvi r - l vf O (T. r—i o C" .—H CTl L P r-« • 'X • r r • r—1 • LP, • rc t • c - « r-H < • Ci • • CTJ . cr • c i . c; • c i » Ci t • cr (VI CT r\. CO -1 < t P v o r-j u-. cv p— Ovi (V LC-, (V r r r— v f X , 1 v t IP, i ^ r - l i <t- V ' v f o C. o o c:\ C O c rv C'.i r - i C- CJ q o o 0- CA vt- P , C"i r—i C p. , o Ci •-r « jf: * Ci.' • o • a ; * c • * , , • I.O • • Ci » c • c i • o • o ; • C : • C J • c • c • o ro o d r - l c r- Ci ' P . C"' ..t r j c a - c^ .—* . — . — i r—i -i r-l r - i r — ' r-'l r - i r ~ ; —.,' —i r — ' , j r — r -H —( C Cl' ov Ci Ci O C' c c . o O Ci C - C J O o c; C3 C - O 1—,' C\ C o 0"- c c v t e v+' t vt f S t • v t 9 v t m • « v f • m cv • rv. O ro • ro • Oi • r-f. • o.J • r*v • ro • rv r_. o C, ! c.• o , ° i o o C.i rn LP', cvi cr O ' i cr- C ' c O ou o C O <t o ro. c —1 O o o o o a r -—i • r—f • r—1 • r - l • r - i • r - l i — i • * r—< • i—< • • O rv • r - i • c • r—1 • rr -S • d • • r-H • , j C- O o j o o : C o o o <—. o V. J c l o c- C : o O o c . o Ci' o <i- O CO o LP. O CC'. C' o C J rv- o CJ f ;• e o * • f i • 0- • C O • v t • o • cr « O • • • I P • 0 0 • ro, » LP. . •t • vt; • v t • • v t —H ! ^ O J , rv P i r-H • OJ Ci o d c C d r-H 1 ro c o c. o v t O C J r v a; c cr o rr. o CC LP rc v t , o CTJ • £1 • C' • o • r- • r — i r» • o • (VJ • LP, « • • vO 9 LT! . v C • I P . • o • vC- • i n • IT . v C ! ^ v t : LP'. o !jO LP, LP, o C.i c i o c . i C o o o C) CV c r - H c i o> o r- r- i O c c c.: o: o o o r-H c m ro » Ci • st • co • C * e 0" ' • c • ro * • .—! • r — ( t r - l . r—i • r-H • • f—t » .—1 9 • *. . v£j cr i ro. CO O 0 ' v 0 C D —1 c ro, ro. i o'i LT', ro, ro, L P j r\\ v+ Cl f—1 r—1 r\i •-0 LTI CX c - r ; o: T> r- O r—1 o r-' C C O v . : C j ' r-H o , P C - « • • o • Q . cr • C ' • • c • • • • ••0 • 0" ' • ro • v t « • • vC' • v f • LP. fNJ cv r-H . ^ O J . r-H Oi Ov rv (VI —4 r—1 r-l i r-t r - l ; i-H r-H r—' , — i 1 r H O O d o c ' c . o CJ. c c 6 o O o o o c S t o o c c ; c: o o o O c c • • C;. . o • O- . C : • o • c • o • c • • O J * Cv! • O J • rv • O J • rv; • . • Oi • Oj • CV rv o.i O J rv Cr- : o; Oj OJ O j ! ( V i r~- C ' o : L P . LP, : vO v l | v I cc LP, r—1 cv <Vj LP, cvi r~ (Vi LO L P , vt LP, r—t CVi LO v t rvi vO in • • r" • v 0 • ro. • ro: • v T • • L P • ro • «—v Li''. in LO LO , LP- 0^ LP O i LO c" LO LT- vt LP. LO rv r-~ r-' r~ 0~ i i r- cc CT' : i cr r \ i ro v f I A vO r- CC' cr O r - l CVI ro S t IT, I vO | v - cc a o r-H rv ro v t LPl vO r- CC' cr o r—1 o o vO vO v C M0 r~ r- r- r- r- r- r- r- CO CO oc cc cc CC co oc CO cc cr cr j 9 2 5.69 2.00 12.00 38.48 4.99 2. 00 0. 10 0. 40 13. 83 41.63 I 9 3 ! 9 4 9362 2.00 6.89 1.00 5.00 4.00 1.51 1.00100.00 20.02 56.58 21.09 95 5 .46 2.00 11.94 33.45 5. 34 2. 00 0. 10 0.40 15. 81 49. 67 9 6 I 97 9365 2. 0 0 ? . R 1 1 . 0 0 5 . 0 0 4 . 0 0 2 . 8 1 3 . 0 0 1 0 0 . 0 0 1 8 .40 f S Q.nO 1 9 . 6 0 98 5.69 2.00 12.00 10.07 5. 15 2. 00 0. 10 0.40 20. 98 34.33 9 9 1.0-0— 9.45.0. —2...0.0 3^ -86—1^ -01} i^O.0 4.HQ L*.5_7 2-.XlO.lJ0£!-^0.Q---Z0-.2.2-_5.6^J-l-^l-9-..-1.9--.. 101 5.77 2.00 12.00 35.07 5. 33 2. 00 0. 10 0.40 13. 59 17. 17 102 103 9546 2.00 6.00 1.00 6.00 4.00 1 .00 2.001 00.00 33 .33 6Q.QQ 24,89 ! 104 6.26 2.00 12.00 34.40 5.00 2.07 0. 10 0. 40 12- 10 36.58 Table 5.7. Engineering data for 26 Fraser Valley s o i l s ^Series Slope Drain Ston Struct O.M. .. pH . F.M. B.D. P.D. UPS MDD OMC 1/3 B 15 B SL SI PL LL PI sand s i l t Clay I 1 04150 3.00 4.00 0.00 95.00 0.80 5.30 29.50 1.41 2.66 2.71102.60 | 2 ; 11.30 7.00 2.90 29.50 30.2 27.90 33.40 5.50 93.00 6.00 1.00 I 3 04365 2.00 3.00 0.00 95.00 0.50 5.40 23.10 1.40 2.63 2.69110.80  4 15.0 19.0 5.4 24.0 24.8 33.0 42.8 9.3 50.0 43.0 7 .0 5 C3066 3.00 6.00 0.00 37.50 0.50 7.00 18.0 1.41 2.62 2.78105.0 6 21.3 42.3 22.8 19.J_ 2.1,_9 27_._3_ .59, 8 32.5 3.10 4-5, 0..._§2 .0„ _ 7 02330 2.00 5.00 0.00 75.00 1.30 3.30 47.0 1.18 2.57 2.70 98.8 8 22.0 47.6 10.8 22.4 24.2 31.3 40.6 9.3 14.0 65.0 19.0 9 02548 2.00 7.00 0.00 95.00 1.70 3.70 30.6 1.41 2.69 2.74105.6 ro 10 13.5 11.2 3.7 26.9 27.6 30.9 42.2 11.3 77.0 16.0 7.0 S 11 03661 4.00 3.00 0.00 15.00 0.10 6.20 22.9 1.81 2.63 2.76116.5 > ' . C U L l : ' 15.2 27.6 13.1 15.0 16.8 20.2 37.8 17.6 22.0 5 2 - C L ^ 6,0 ; _ 13 C8216 2.00 6.00 0.00 95.00 1.30 5.80 51.1 1.19 2.61 2.76 90.6 14 28.0 46.6 14.4 29.0 : 31.1 28.4 48.7 ,20.7 1.00 68.0 31.0 15 06212 3.00 6.00 0.00 00.00 1.10 5.20 37.4 1.38 2.66 2.79  16 35.5 9.7 27.3 29.0 27.5 35.7 8.3 21.0 61.0 18.0 17 04365 2.00 3.00 0.00 95.00 0.50 5.40 8.7 1.40 2.71 2.75 JJ5L . 5,6 _ 1,7._23.2 24.3- 23.7 27.1 3_.4 9_4_.0 4,0 __ 1, 0.._ 19 C2070 2.00 5.00 0.00 95.00 1.50 3.90 43.5 1.20 2.67 2.76 20 40.6 7.4 30.8 32.0 24.1 32.6 8.5 19.0 68.0 13.0 21 06450 3.00 6.00 0.00 95.00 0.70 5.30 35.6 1.21 2.63 2.78  22 41.1 12.8 30.6 32.6 30.2 43.8 13.6 7.0 67.0 26.0 23 C4360 5.00 3.00 0.00 0.00 0.40 5.40 13.3 1.95 2.65 2.73 24 1 _6._4 5.1 ' 20.8 21.9- 15.8 16.5 JLJ .6 6_,0 3.2,0 ;_2„..Q 25 C7332 3.00 6.00 0.00 15.00 0.40 6.30 25.7 1.45 2.60 2.76 26 38.2 19.2 17.6 19.8 22.0 49.7 27.7 3.0 55.0 42.0 27 C9094 4.00 3.00 0.00 95.00 0.20 5.20 19;5 1.75 2.67 2.78  28 21.5 8.5 21.2 22.7 18.3 22.7 4.4 41.0 47.0 12.0 29 03631 1.00 7.00 0.00 95.00 2.70 3.60 55.9 1.10 2.65 2.78 3C . 48.5 11.5 37.0 38.8 29.9 39.3 9.4 1.0 79.0 20.0 I 3 1 0 2 5 1 3 2 . 0 0 7 . 0 0 0 . 0 0 9 5 . 0 0 1 1 . 6 0 3 . 8 0 6 8 . 4 0 . 9 5 2 . 6 6 2 . 7 7 3 2 4 6 . 6 1 2 . 5 3 4 . 7 3 6 . 2 2 6 . 6 4 2 . 5 1 5 . 9 1 . 0 0 7 7 . 0 0 2 2 . 0 3 3 0 3 6 6 1 4 . 0 0 3 . 0 0 0 . 0 0 1 5 . 0 0 0 . 3 0 6 . 2 0 2 2 . 8 1 . 8 3 2 . 6 6 2 . 8 0 3 4 3 2 . 2 1 6 . 1 1 9 . 6 2 1 . 7 2 1 . 7 4 1 . 3 1 9 . 6 1 2 . 0 5 6 . 0 3 2 . 0 3 5 C 7 6 6 5 3 . 0 0 6 . 0 0 0 . 0 0 3 7 . 5 0 0 . 7 0 6 . 5 0 3 3 . 2 1 . 4 2 2 . 6 3 2 . 8 2 . _.. . 3 6 . _ . . . . A i . 1. . . 2 . I . J . 2 3 . 0 . . 2.5...6_ 2 4 . 9 _5.5...2._.„30.,.3,„ , 5 . 0 ...5.3.. 0 ^ . 4 2 . 0 3 7 0 3 3 6 4 2 . 0 0 3 . 0 0 0 . 0 0 1 5 . 0 0 0 . 2 0 6 . 3 0 2 8 . 1 1 . 6 1 2 . 6 1 2 . 7 9 3 8 4 1 . 3 2 1 . 5 2 0 . 0 2 2 . 5 2 4 . 0 5 0 . 3 2 6 . 3 4 . 0 5 7 . 0 3 9 . 0 3 9 0 2 0 7 0 2 . 0 0 5 . 0 0 0 . 0 0 9 5 . 0 0 1 . 5 0 4 . 8 0 4 1 . 2 1 . 2 1 2 . 6 5 2 ^ . 7 3 4 0 3 4 . 5 8 . 3 2 9 . 7 3 0 . 8 2 7 . 3 3 4 . 7 7 . 4 1 7 . 0 6 8 . 0 1 5 . 0 4 1 G 2 3 3 0 2 . 0 0 5 . 0 0 0 . 0 0 9 5 . 0 0 1 . 3 0 3 . 5 0 5 3 . 7 1 . 1 0 2 . 6 5 2 . 7 7 _.._42__. 4 .5. .6 . 1 L . 2 _ . 3 . 5 , A _ „ 3 7 . J Q 3.3_..J6 .42. . 0 ••'te4j^^Si~JI5L*&-^2X..& 4 3 0 7 6 6 5 3 . 0 0 6 . 0 0 0 . 0 0 3 7 . 5 0 0 . 7 0 6 . 6 0 3 0 . 9 1 . 5 7 2 . 6 3 2 . 8 1 4 4 4 2 . 5 2 0 . 9 1 9 . 6 2 2 . 1 2 8 . 5 5 6 . 6 2 8 . 1 1 . 0 5 2 . 0 4 7 . 0 4 5 0 7 3 3 7 3 . 0 0 5 . 0 0 0 . 0 0 9 5 . 0 0 2 . 0 0 6 . 5 0 4 4 . 2 1 . 2 8 2 . 6 2 2 . 8 0 4 6 4 5 . 6 2 4 . 7 1 8 . 0 2 5 . 1 6 2 . 6 3 7 . 5 1 . 0 4 5 . 0 5 4 . 0 4 7 0 3 0 6 6 3 . 0 0 6 . 0 0 0 . 0 0 3 7 . 5 0 0 . 5 0 6 . 9 0 2 7 . 9 1 . 5 4 2 . 6 4 2 . 8 0 _ 4 8 „ _..3_8,6 XHUSl^- \ L 9 J L 0 2 3 . 1 4 7 . ? , , 2 4 ^ 6 • 5 . .0„0_.5 .X,Q._„3.8..i). 4<3 C 3 3 6 4 2 . 0 0 3 . 0 0 0 . 0 0 1 5 . 0 0 0 . 2 0 7 . 6 0 3 5 . 5 1 . 3 8 2 . 6 5 2 . 8 2 5 0 4 5 . 5 2 3 . 9 2 1 . 0 2 3 . 1 5 7 . 8 3 4 . 7 1 . 0 4 5 . 0 5 4 . 0 5 1 C 3 6 6 1 4 . 0 0 3 . 0 0 0 . 0 0 1 5 . 0 0 2 . 0 0 . 6 . 0 0 . 1 9 . 2 1 . 8 8 2 . 6 4 2 . 7 9 5 2 2 9 . 9 1 4 . 7 1 8 . 0 1 7 . 9 3 7 . 3 1 9 . 4 1 8 . 0 5 1 . 0 3 1 . 0 D CF F I L E *Where Series i s s o i l series code, Drain i s drainage, Ston i s stoniness, O.M. i s organic matter, F.M. i s f i e l d moisture, B.D. i s bulk density, UPS i s undisturbed pore space, MOD i s maximum dry density, OMC i s optimum moisture content, 1/3 B i s 1/3 bar moisture, 15 B i s 15 bar moisture, SL i s shrinkage l i m i t , SI i s shrinkage index, PL i s p l a s t i c l i m i t , LL i s l i q u i d l i m i t and PI i s p l a s t i c i t y index. Table 5.8. Treated engineering data for 26 Fraser Valley S o i l s *Series Slope Drain Ston Struct O.M. pH F.M. B .D. P.D. 1/3B 15B SL PL LL PI SAND SILT CLAY 1 415 0 3.00 3.00 1 .00 ^5.00 0 .50 5.64 2 2.51 1 .53 2.7 2 6. 55 5.79 2 27. 6 1 27. C<C 3 7. 89 9. 80 9 3. 00 6. CO 7,00 4^6 5 2.00 3.00 l.OG c5 . c c 0.50 5. 40 23. 10 1 .40 2.6 9 19,00 5.4 0 4 24. 30 3 8. OC 42.8 0 9.30 50.00 43.00 7 .00 q 3 66 3.CO 5.c2 l.OG 64.59 0.50 5.24 ?4 . 9 2 1 .19 ?.71 19.00 6 .54 6 2 4 . 8 4 3 3.00 38.14 9. 1.7 3.00 45.00 7. CO 7 2 330 2.CO 3.00 1 .0 0 76.3 5 0.50 3.20 37.42 1 .34 2.68 35.22 5.40 8 21.46 3 3.CC 33.28 1.39 LiaCC.i5._00 _ 7. 00 a 2 54 8 " 2 .00 7 .00 1 .00 90.54 0.50 3.89 25.53 T 748"' 13. 51 ~ 5.4C IC 2 6. 02 3C. <=C 44. 40 1 3. 7 3 77. GO 16. CO 7 .00 11 366 1 4.00 2.97 l.OG 75.83 0.50 5. 60 41 . 99 1 .29 2.74 19.00 7.3 5 12 2 5. 73 33.00 30.34 ^.54 2 2.00 5 2.00 7.00 13 8216 2.CO 3.00 1.0C 92.60 0.50 4.77 30.56 1 .55 2.72 21 .71 5 .40 14 24.01 2 8.40 36.39 7 . 4 4 l .no 6 8.00 7 . CO.. 15 6 212 3.00 2.96 1 .00 27 .14 0 .50 5 .34 23,50' 1 . 50 "277 8"" "19. "do" ""8.7 2 ~ 16 2 4 . 3 c 3 3.CC 35.22 8.02 21. 00 6 1. 00 7. 00 1 7 4 355 2 .00 3 .0 0 1.00107.20 0.50 5. 16 18.35 1 .38 2.77 1 9.15 6. 66 1 8 2 4 . 6 6 23.7C 33,15 9. 1.1 50.00 4.00 7.00 19 2 70 2.00 2.8 7 1.00 69.66 0. 50 4 . 29 2 5.70 1 .57 2.75 32.51 5 .40 ! 20 2 4.P.2.. .2.0 .9.2...2.2.85 . 6 . 4 1.. .19.00.. 68.00... 7 00 • 21 6 4 5 0 3,0 0" ~ 3. C7 l.CC 89.0 2 0.5 0 5.40 16.19 1 754 "2.77 19.00 9 .29 ; 22 24.62 3 3.00 38.34 8.99 7.CC 67.CO 7. CO i 23 4 36 0 5.00 2.^9 1 .00 82 .74 0 .50 5.64 37.5 5 1 .23 2.74 19. CC 7.10 24 34.6 3 3 3.00 19.22 2. 65 66. CO 32. CG 7. CO 25 7332 . 3.00 3.00 1.00 65.56 0.50 4.91 24.29 1 .33 2.71 8. 50 6. 89 26 21.23 2 3. CC 33. 14 9. 80 7. CC 55.0C 7.00 27 9 94 4.00 ^.02 l.CC 95.CO 0.50 4.96 20.97 1 .73 2. 77 19. 00 6.54 2 8 23.-10 13.30 3C.0.3 1 .49 41 .00 47.00 7.00 29 36 31 1.C0 3. 00 l.CC 96. c? 0.50 2.90 23.73 1 .65 2 .76 23 .25 5 .40 30 27.85 29.90 31.05 0.47 1.00 79.00 7.00 31 2513 2.CO 7.00 1.00 97.38 0.50 2.99 21.49 1.59 2.74 37.01 5.40 32 21. 56 26.60 32.90 5.51 l.CC 77. CO 7.00  33 3661 4.00 3.00 1.00 61.33 0.50 5.40 37,01 1.42 2.76 18.27 7.25 34 28.84 3 3 . 0 0 29.01 6.87 12.00 56.00 7.00 35 7665 3.00 5.86 l.CC 37. 50 C 50 4. 85 30.48 1.43 2.76 19.00 6.27 36 25.34 24.90 34.24 7.92 5.00 53.00 7.00 37 3364 2.00 2.75 1.00 45.93 0.50 5.40 34.88 1.31 2.74 19.00 8.98 38. 27 .22 3 3 ,0.0 . 3 2. a 2 8 ...8 3 4 . CO 57.00 7,00 __; : ; 39 2 70 2.00 3.00 1.00 70.02 0.50 5.39 23.41 1.54 2.72 24.51 5.4C 40 21.74 24.61 30.67 8.08 17. 00 68. 00 7.00 41 2330 2.00 1 .74 1.00 95.00 0.50 4. 28 22.58 1.36 2.75 19. 00 8.01 42 27.06 33.60 39.74 7.78 4.00 75.00 7.00 43 7665 3.00 5.93 l.OC 45.54 0. 50 5.40 31.15 1.48 2.75 19.00 6.60 44 22.56 33.00 36.70 7.70 1.00 52.00 7.00 ; _ 45 7337 3.00 3.00 1.00 95.00 0.50 4.34 26.42 1.58 2.72 11.48 5.80 46 11.77 25.10 36.95 9.80 l.OC 45.CC 7.00 47 3 66 3.00 3.00 1 .00 95.03 0.50 5.49 27.91 1.41 2.76 13. 75 9.64 48 20, 24 3 3 . CC 34. 82 9. 80 5. CO 57. 00 7.00 49 3364 2.00 3 .00 1.00 12.61 0.50 5.48 36.77 1.36 2.75 20. 55 5.40 5J1__ 21. 40 23. 1 0 32.56 7.48 1 .00 45.00 7.00 . 51 3661 4.CC 2.95 1.00 86. 76 0. 50 5. 27 33.20 1.38 2.76 19.00 7 .51 52 25.78 33.00 28.01 9.37 18.00 51,00 7.00 53 $END . *Where Series i s s o i l series code, Drain i s s o i l drainage, Ston i s stoniness, O.M. i s organic matter content, F.M. i s f i e l d moisture, B.D. i s bulk density, P.D. i s p a r t i c l e density, 1/2 B i s 1/3 bar moisture, 15 B i s 15 bar moisture, SL i s shrinkage l i m i t , PL i s p l a s t i c l i m i t , LL i s l i q u i d l i m i t and PI i s p l a s t i c i t y index. -267-APPENDIX VI Original Data Sources by Three Methods of Extraction for Fraser Valley S o i l s Table 6.1. Averaged surface 12 inches for 152 Fraser Valley s o i l s Series Slope Drain Stone Hue Value Chroma RootsStruct Sand S i l t Clay pH O.M. ' C/N PI Mg Na K CEC B.S. j 6 2 41 1 2.00 7. 00 0.0 6. 00 5.0 0 2.00 2. 00250.00 19.00 66.00 15 .00 ! 7 4.20 4.4? 17.47 14.53 1.70 1.02 0.11 0.13 22.50 13.17 8 2 70 1 2. 00 5. 00 0.0 5.00 4.00 1.00 5 .00225 .00 9 .00 57.00 34.00 9 6. 20 2.63 10.63 39.77 8. 51 4. 25 0. 09 0. 46 16. 10 83. 20 .10 ....... .2 91 1 .3.00 6 .00 _ 0.0 . .5 .00. 3.00.. 1.00... 4.00.2 25 . 0.0 .19,00 ...66.00 1 5 . 00 11 4.70 1 5.43 13. 07 5. 17 7. 75 2. 01 0. 17 0.38 3.1 .50 35.27 12 2 92 1 2 .00 6 .00 0.0 5.00 3.00 2.00 5.00206. 00 16. 00 63.00 19.00 13 4. 62 14. 15 14.02 5 8.42. 7.4? 1 .97 0.24 0.45 34.90 29.02  14 2121 1 3.00 6.00 0. 0 5. 00 3. 00 2.00 5.00150.00 19.00 66.00 15 .00 15 5.47 19.93 15.23 30.87 16.22 2.35 0.67 0.28 39.73 49.23 _16 2 185_J 2, jO 0_ 6 ... 00__0 • 0. 5.00 3 .0 0__ l__ 0 0 __.4, 0_030 0.00 13, O0J5 8 . 00_2 7 , 00 _ 17 5.32 6.22 12.95 4.45 6. 66 6. 59 1.85 0. 32" 2 3. 67 64, 02 18 2303 1 3.00 5.00 0 .0 5.00 4.00 2.00 4,00225,00 19.00 66.00 15.00 19 5. 93 4. 47 10. 37 10. 27 10. 65 2. 37 0. 17 0.25 20 .30 66 .00  20 2330 1 2.00 5.00 0.0 5.00 4.00 1.00 5.00175.00 13.00 59.00 26.00 21 5.83 10.38 12.55 28,77 3.14 7.57 0.25 1.27 27.78 51.13 .22 . . ?36l_l_ 3.00 _ 5. 00 .. 0. 0 5.00__2.00_ 1.00 _ 4. 00_83_. 00 44 .00_ 3 8_._0 0_.16„.00. . 23 5.03 9.79 10.71 35.57 2.53 1.30 6.17 0.41 24.20 23.24 24 2541 1 3.00 6.00 0.0 5.00 4.00 2.00 5.00112.00 19.00 66.00 15.00 25 4. 57 10.57 12. 77 14. 15 5. 67 2. 50 0.23 0. 15 3 1. 00 27.00  26 2 548 1 2.00 7 .00 0 .0 5 .00 3 .00 2.00 4.00 29.00 19.00 66. 00 15.00 27 3. 92 13. 13 17. 20 6. 65 1. 57 2. 67 0.87 0.32 30 .07 19.37 28__ _' 2664 1 3 .00 _ 6 .00 0.0 5.00 4.00. 1.00 _ 4. 00 75. 00_19. 00__ 66. 00 1 5 . 00 29 5.50 3.83 12 .33 26.62 11.3T 1 . 4 7 6.27 ""0.33:17.67 76.88" ! 30 3 66 1 3.00 6.00 0.0 5.00 3.00 1.00 3.00468.00 18.00 23.00 53.00 l 31 5.71 4.23 10.14 4.24 12.02 6.40 0.42 0.28 36.58 57.00 32 3 72 1 1. 00 4. 00 0.0 5.00 .3. 00 1 .00 3.00 29.00 66 .00 23 .00 11 .00 133 5.38 7 .03 14.46 13.23 3.91 0.99. 0. 15 0. 12 27. 23 3. 88 134 3121 1 3 .00 6 .00 0.0 5 .00 3.00 2 .00 5 .00' 56 .00 19.00 66.00 15.00 :35 4.70 13.40 13. 53 16. 00 6. 19 2. 59 0. 54 0.42 27.30 35 .77 !36 3214 1 2.00 6.00 0.0 5.00 3.00 2.00 3.00100.00 74.00 17.00 8.00 137 5.40 4.15 10.85 19.00 2.23 0.67 0.15 0.15 12.02 24.25 38 "" 3 2 1 5 1 2 . 0 0 6 . 0 0 0.0 5 . 0 0 3 . 00 1 . 0 0 3 . 0015 0 . 0 0 1 9 . 0 0 66 . 0 0 15 . 00 39 5.40 5 . 5 0 1 2 . 3 0 1 6 . 7 0 7 . 7 0 2 . 5 9 0 . 2 5 0 . 3 1 2 2 . 0 0 5 0 . 7 0 4 0 3 3 0 3 3 . J ) q 5.J)0__ 0.,0 5. .00 4 . 0 0 2 . 0 0 3 . 0 0 3 7 5 . . 0 0 19 . 0 0 6 6 . 0 0 15 . 0 0 41 5 . 9 0 5 . 3 3 11 . 97 1 6 . 4 7 8 . 28 3 . 61 0 . 22 6. 22 2 3 . 33 5 3 . 57 42 3340 1 2 . 0 0 1 . 0 0 0 . 0 4 . 0 0 3 . 0 0 2 . 0 0 3 . 0 0 2 3 . 0 0 8 4 . 0 0 1 1 . 0 0 5 . 0 0 , 43 6 . 2 3 1 .36 2 5 . 31 4 4 . 59 0 . 27 0 . 22 0 . 04 0 . 08 9 . 5 4 6 . 3 3  44 3363 1 2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 4 . 0 0 2 1 8 . 0 0 3 . 0 0 5 2 . 0 0 3 9 . 0 0 45 5 . 33 1 1.1 0 1 7 . 92 5 . 0 3 8 . 72 7 . 0 0 0 . 2 3 0 . 3 1 2 3 . 2 6 7 1 . 0 1 46 3 3 6 4 1 2 . 0 0 3 . 0 0 0 . 0 4 . 00 3 . 00 3 . 00 3 .001 0 3 . 0 0 3 4 . 0 0 3 7 . 0 0 28 .00 47 5 . 5 0 1 . 9 3 1 6 . 2 7 3 2 . 0 0 4 . 38 0 . 3 2 0 . 2 7 0 . 18 1 5 . 30 3 3 . 53 48 3391 1 2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 1 .00 4 . 0 0 9 5 . 0 0 3 0 . 0 0 4 4 . 0 0 2 4 . 0 0 49 5 . 3 6 1 7 . 12 1 7 . 4 8 3 2 . 2 4 3 . 90 1. 58 0 . 21 0 . 0 7 3 9 . 94 1 7 . 07  50 3541 1 2 . 0 0 6 . 0 0 0 .0 5 . 0 0 4 . 0 0 1 . 0 0 5 . 0 0 7 5 . 00 1 9 . 00 6 6 . 0 0 1 5 . 0 0 5 1 4 . 7 5 6 . 20 12 . 15 1 5 . 70 4 . 9 2 0 . 90 0 . 3 8 0 . 1 5 2 4 . 0 0 2 4 . 2 0 ._5 2___ 3J543..J, _2. .0J) 6 . 0 0 0 . 0 _ 6 ,jp0___4. Q0 _ l . _ 0 0 _ 2 . 0 0 1 5 0 . 00 3 3 . 00 5 0 . 0 0 1 7 . 0 0 53 5 . 07 5 . 5 0 6 . 5 0 9 . 2 0 8 . 16 3 ,~49 0 . 2 7 0 . 2 1 2 3 . 5 7 6 5 . 4 3 54 3 5 5 0 1 3 . 0 0 4 . 0 0 0 . 0 5 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 1 7 . 0 0 6 6 . 0 0 2 3 . 0 0 1 1 . 0 0 1 5 5 ' 4 . 8 0 5 . 1 0 2 4 . 7 5 0 . 0 1 .01 0 . 6 9 0 . 1 4 0 . 0 7 1 6 . 3 5 1 2 . 0 0  ! 56 3552 1 3 . 0 0 2 . 0 0 0 . 0 5 . 0 0 3 . 0 0 4 . 0 0 4 . 0 0 1 5 0 . 0 0 6 6 . 0 0 2 3 . 0 0 1 1 . 0 0 | 57 5 . 7 0 3 . 6 7 1 8 . 42 1 4 . 50 1. 26 0 . 29 0 . 1 2 0 . 10 1 4 . 7 8 1 1 . 8 7 ' 5 8 3661 JL 4_.00_ 3_.00_ _ _ 0 . 0 3.00_ 3 . 0 0 _ 4 . 0 0 4.0.0 7 3 . 0 0 4 0 . 0 0 4 2 . 0(0 1 8 . 00 j 59 5. 83 4 . 5 7" 1 7 . 87 3 0 . 00 2 . 75" " o . 16 0 . 1 7 6". 15 2 0 . 4 0 1 5 ~ 4 0 ' " " " I 60 4 1 1 3 , 0 0 1 . 0 0 0 . 0 3 . 0 0 3 . 0 0 4 . 0 0 5 . 00 8 2 . 00 6 6 . 00 2 3 . 0 0 11 . 0 0 ' 61 5 . 62 4 . 0 7 1 4 . 2 7 2 9 . 9 2 0 . 2 3 0 . 0 7 0 . 0 5 0 . 0 7 2 1 . 2 2 1 .90  j 62 4 3 1 3 . 0 0 7 . 0 0 0 . 0 5 . 00 4 . 00 0 . 0 1 . 0 0 0 . 0 9 . 0 0 5 7 . 0 0 34 . 0 0 | 63 6 . 3 0 2 . 2 5 8 . 58 2 5 . 8 3 1 6 . 7 5 4 . 68 0. 27 0 . 15 2 6 . 4 2 8 3 . 4 g | 6 4 4 _ 4_ 1 3 . _ 0 0 _ . 6 . 0 0 _ -0 .0 _ 5 ,00__ 2 . 0 0 2 . 0 0 5 . 0 0 1 7 5 . 0 0 . 9 . 0 0 5 7 . 0 0 _ 3 4 . 0 0 : 65 5 . 80 6 . 0 3 1 1 . 10 5 . 33 1 1. 20 4 . 11 0 . 2 7 0 . 14 3 0 . 7 7 5 3 . 3 3 66 4 60 1 2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 1 .00 2 . 0 0 1 0 0 . 0 0 1 2 . 0 0 6 0 . 0 0 2 7 . 0 0 ; 67 4 . 83 1 3 . 23 10 . 4 3 1 9 0 . 33 6 . 07 1 . 7 0 0 . 4 7 2 . 0 7 4 5 . 5 3 2 0 . 8 0  68 4120 1 3 . 0 0 6 . C O 0..0 5 . 0 0 2 . 0 0 2 . 00 5 . 0 0 1 5 0 . 00 1 9 . 00 6 6 . 0 0 15 . 0 0 69 5 . 73 7 . 5 7 12 . 33 68 .67 1 3 . 4 1 1 .32 0 . 19 0 . 14 3 2 . 2 3 4 7 . 10 70 4150 .. I... 3 . .00 4 . 0 0 ... 0 . 0 _ 5 . 0 0 3 , 00 ... 2 . 00 4 . 00 . .3 7 . 0 0 ... 9 . 0 0 , 5 7 . 0 0 34 .00 • 71 5 . 5 0 3 . 6 3 7 . 9 1 3 . 2 5 7 . 88 3 . 82 0 . 13 6. 31 2 3 . 19 5 4 . 37 " | 7 2 4 1 8 2 1 3 . 0 0 2 . 0 0 0 . 0 5 . 0 0 4 . 0 0 2 . 0 0 4 . C O 41 . 0 0 6 9 . 0 0 2 1 . 0 0 1 0 . 0 0 I 73 5 . 7 7 1 . 5 8 7 . 90 5 . 00 4 . 93 2 . 91 0 . 13 0 . 2 2 1 3 . 9 8 55 . 3 7 74 4213 1 3.00 4.00 0.0 5.00 2.00 2.00 5.00150.00 9.00 57.00 34.00 75 6.12 8.63 11.23 4.42 15.20 2.98 0.22 0.48 37.21 50.24 76 __433 5_1 3 00 3. 00_ _0_._0_ 5 .00 _4_. 00 _ 2 .jOO 4.J)0_7_5,,_0p_ 40. Oj0 _42^00 18 ._00_ •77 ™ " 5.75 2.50 8.20 10 .50 3.76 2.31 0.17 0.06 15.25 40.90 78 4360 1 5.00 2.00 0.0 5.00 4.00 4.00 5.00150.00 19.00 66.00 15.00 79 5.70 3.60 21.50 19.00 1.Q9 0.29 0. 10 0. 64 13. 85 14. 90 . 80 4362 1 3.00 6 .00 0 .0 6 .00 4.00 2.00 4.00 0.0 19.00 66.00 15.00 81 5.95 4. 50 9.35 15. 50 8. 51 1. 73 0. 21 0. 14 20.80 53 .70 82 4365 1 2 .00 3.00 0.0 5.00 _ 3.00 2.00 4._00 40.00 26. 00 58.00_ 16.00 "8 3 ~" "" 6. 17 3.63" 10.63 17.67 1 1.32 2 .20 0.17 6.31 21.30" 65.70 84 4452 1 3.00 7.00 0.0 5.00 3.00 1 . 00 4. 00 23.-00 11.00 31 .00 58 .00 35 5.77 8.83 11.30 40 . 33 12 .04 1.99 0. 19 0. 28 31.40 50. 23  "86 4454 1 3.00 3.00 0.0 5.00 3.00 3.00 5.00130.00 66.00 23.00 11.00 '. 87 5.48 4.00 14.63 90.50 2.23 1.37 0.16 0.10 22.62 15.17 8 8 4512_ J 5 . 00 2_._0 0 0.0 5. 00_ _4_. 00 4.00 5.00375. 00 19.00 66.00 15.00 ^ 8V 5.74 1. 48 7.75108.92 1. 74 0. 86 0.07 0.56 1 0.80 27.69 " " ->•» 90 4542 1 3.00 4.00 0.0 5.00 3.00 3. 00 4.00 75.00 75.00 17.00 8.00 ? 91 5.95 1.70 10.85 11.00 3.09 1.46 0.19 0.09 10.25 66.10  92 4630 1 1.00 6.00 0.0 5.00 3.00 2.00 5.00112.00 9.00 57.00 34.00 93 5.82 3.30 10.82 6.00 8.58 2.34 0.11 0.17 19.92 57.75 94 5 3 1 3.00 7.00 0.0 5.00 4.00 0.0 1.00 0.0 9.00 57.00 34.00 95 6.30 2.25 8.58 25.83 16.75 4.68 0. 27 0. 15 25. 89 83.49 96 5 39 1 3.00 6.00 0.0 5.00 2.00 2.00 5.00504.00 9.00 57.00 34.00 97 5. 58 5. 27 10. 19 11. 03 6. 26 2. 18 0. 23 0.25 21 .58 44 .86  98 5 60 1 2.00 6.00 0.0 5.00 2.00 1.00 2.00100.00 12.00 60.00 27.00 99 4. 83 13. 23 10. 43190. 33 6. 07 1 .70 0.47 2.07 45.53 20.80 10 0 5 33 5. 1_ 3 . .0 0 _ _3_. p 0. _ 0 .„Q 5 . 00 .. 4. 0 C 2 «. 0 0 _4. 00 _7 5^ 00 40.. 0 0 _42 .00 18 .00 J 101 5.75 2.50 8 .20 10 .50 3.76 2.31 0. 17 0.06 15. 25 40. 90 102 5360 1 5.00 2.00 0.0 5.00 4. 00 4. 00 4.00150.00 19.00 66 .00 15 .00 103 5.70 36.00 21 .50 19.00 1.09 0. 29 Q. 10 0. 64 13.85 14.90  104 5512 1 5.00 2.00 0.0 5.00 4.00 4.00 5.00375.00 19.00 66.00 15.00 105 5. 74 1.48 7.75108. 92 1. 74 0. 86 0.07 0.56,1 0.80 27.69 106 5630 1._.2 .00 6 .00 0 .0 . 5 .00 3.00 2.00 5.001 12.00 9. 00 57. 00 34. 00 107 5. 82 3. 30 10. 32 6. 00 8. 58 2.34 6.11 0.17 19 .92 57.75 |108 6 32 1 3. 00 4.00 0.0 5.CO 3.00 2. 00 4.00185. 00 1 9.00 66.00 15 .00 (109 5.28 1 1 .48 11 .77 13.36 4.26 1 .52 0.22 0.16 39.02 16. 97 -271-o i I ! O O a a o o o a O ' O O I i i o . o o ' c C l o o o o o o o o o o o ; o o o 6 Is- r H ; vt Is v^  c r r o c r r o c K vC- r - H vti n i n r o r — l ! r H - H r - H | r H r H r H r - H r - H r H r v r o ; r o r - H l - H r - H o o l o c o - C o O ! O o o : o o o ; o o o : o o o ; o o O o o o O I O o ; O o o o o o o • •i • • • • • • • • • • • • * •: * r o CMj r \ l o (0 r o c r ; r o vt1 vt CO IS-, i n CJ' -0 CV!i CO vt if'-. - O c v vt vti i n vO i n t 1 i n If,; vO O o i o o o o o O O O j o - o o o l o y—V o ; c o r ~ o i O l_J vt c i n CM o o o O O I s - o v3 o c r o i o o m o rr-. o ' m . o i n 6 o O 1 vt o c v « r o • i c r • r o • - c vt • m . • c r • • 00 • r - H a - • i n • I s - 0 i ^ • r o • r - H «; i n • r - H c r • v C ! • r o • (V • r-H' • • c • • • • cr- i • cr- • i n • cr • CO • c r • r - C . 0s • c r ••0: c r LT. Is- vt CO r v r - H r H c r c r r - H o o i n c r vt CO roi v0 (Vi ro r - H i n , c r .—t vt ro vt r—1 ro vt I m r - H r o vt c r r - H r H r - H i i n : vt i n r v I-* r v o o ! o o O ' o o o o O c i o o o o o o , o o r o o i c O (M o vt o I s - o o o Is- O CM o r v o -O o . r v o o o r - o i m . o m o Is- i c v o i n * r - o • c o • vt 0 s i vt' • r H • vt * o • vO vQ • r-< • m • 0 r v 0 c c • ; r v • r --a • o i • r\i 0 o • o v • o • r v i • O • i n • o • o , • o • o • m • CM • o • O ; • i n 0 o LO: vt r v i n . vt vt • r - H m r H i n i n vt vt i n i n CO i n ; CO i n vt i n o r - K r - H r o m m i CM r - #-H r H Cxi r H r -H c v c v r v r -H CV r H i n . r - H r H ! r - H r H r—1 r - H c v c v r o r v r - H ro i r v O o i o o o O o O o o o ; o o o - o o O 1 o O c O i r o o i n o r - H c ' o o i n o O O i n o o o o o i o o O o r - o ; o c OC o 0 ; CM o 1^  r M • « r o • vt « r o : r v « (VJ « r v « c v « m • vt: • r v • vt • r ^ • r v • vt • Lf\ • 0 o o o o o o O o o o o o o i C t o o : O o O o i o o o ' O o o o o ; O o o o o o ' o O o o i c o o o o c O c v o O O r - o o o o O ; o O o o o o o o o r v 0 : r v o o • (XI • r - H • r - H • r - H • r - H • r H • r - H • v » r - H • r v * r - H 9 o o • r—i • jCV • r v • r v • r v 0 r - H i - H • m i • rM • • CM' • r - H • r H • O vt • r v • vt. • r v • C\i r v • i - H • r H • vt: ' • rvi 0 c j o o o o o O o c o o o o o o o ! O o O O i o O o ' o o o l o o O o C O c o ! C: o r o O ' o O o o O IO o p - o j i n o r o o vt c o O i n o CD o o a c o r v O LO o r v • r o • ; vt • r - H • 00 • c c • i n • c r • r v • i n e r o • rO • i n o o i n . • 1—i • t n • o 0 r - H m • < t : • • • • vt • vt • r v • vt • vt • i r - : • vt • vt • vt' • LO « r o • vt: • • r o i ° r H o o r H m r v o r v O a, r-i c r m r - H ; ° o o o ' o O O o o ! o o o i o c< o o o o ' O c c\ j o o r - o c c 6 vt o CC o r ~ o i i n o i n . o v t O ! r - o t n o o o o o t n o r v o ; ro o i n • o *[ • c • r o • i n • c r • c r • -0 e rM CO • \ 03 • c c • o « ' r v e c r • CO • r - H 0 r o LO • r o : • vt • m « IT- « i n . • i n « LT, vt a i n . 0 r o i • i n 9 i n , • i n • i n * i n m r o : • vt « o r H I c rr-. ro i n o i n r v c v I I O o r - H r -H r H r— i n 1 °^  i Is-o o i r o o o o I s - c ; r H O o r v O i n o c r o r v o ' c>. c c_.. o O o o o OC c ( V o ! c r c - O • m CO • o • r o • CO • o • vt • i n r - H • r v I s - • r - H • CQ • • r v • i n • CO s r v o • o i • o o • o . • o • o • O • o * o • o : • o « o • o • o o o • o ' . o s ro CO i n r v ; I s - r - H r v r - CM o c c t n , CC- IIs- r - H r H • CC' r - H r H vt i r - H i n r o H r -H r - H r v r v ' 1 r v r v o o ; o o o o o o o o o o o - o o c o r \ j o : o o r - a i n CO  i n o O O l o o r n o r v o , 00 o LT. o rr-. o i n  f . o Is- O . vO o rv_ • r H rr- • * o • • • i n 0 • o • r v • m Is- • • • c r • o 0 r v • o • r -H •o • • vt • vt • • vt • r v • a r H 0 r o • r v : • « r v • • 0 CV • r v • CM r - i n c c vt r - H 00 r - CM vt r - H r v r H r - H o i n i - H r-H r H r -H r v i - H t—4 r H r - H r - H .—1 i — ! r - H r - H r - H ! r - H r H o o 1 o o o o o O l o o o . o o o o o O o c r o o i r - o vt  CC c r o 04 O 011s- o •O o i n o m o Is- o i n o O o i n O 00 o t n • IO • • i n • r v • ' r - H « r - • r v • CO • m • r o • IT. • o • • r v • O e I s - . • r— r \ j • LO; • r o • rr , • • CO • r o • • • :vt • m i • r o • vt • • r o • CO » i n • i n • i n r o ro a c i n i n o i - H (VJ m : r o m i n vt c r . 0": r - H i—1' r - H r - H r—i r - l r - H r - l r—i C\J r H r H r - H r - H r - H r - H i—i r - H r - H OJ CO C I s - vt ; r - r v i n o r v 00 c Is- IT-. i n m , ; Is- o r o r - Is-; Is- r\) r o o LT. o CO o vt r v r - H r v . o o r o r H m (VJ o ' n o r v o o - o : r - i n vt r - H m r v r -r v r o • ^ i • Is- • 0 s • r v • i n o r * r - H • r o t r o • • •c • Is- • i n • i n • r - H • i — i • r - H • LO LO m i n r—/ m r H i n . r H Is- r v -4- r o vO m ro- i n . r o m , r o i n . vt i n vt i n t n vt m ' m LT i n v3 ! | Jj o ••0 N O v0 i | v C o j | vO O -I i 1 1 CNi; r o vt m oc- ; 0s- o r H r v c o vt i n v0 Is- CO c r i i o ; r H ro vt IT. r - c o c r o r H J r v 1 r o vO r -r H r H r H l - H r - H r H r - H r - H r H rM OJ r v r v ( M r v (VI r v CM r v ro. m r o r o c r m ro , r o r o vt vt - T i vt vt vt 1 4 8 6543 1 4 . 0 0 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 1 . 0 0 4 . 0 0 1 5 0 . 0 0 2 2 . 0 0 6 2 ^ " 1 4 9 5 . 4 0 9 . 6 0 1 3 . 7 3 4 1 . 5 0 5 . 3 3 2 . 1 2 0 . 4 0 0 . 2 2 3 1 . 8 2 2 7 . 4 0 j 1 5 0 _ 7 1 _1_ 3 . 0 0 _ 2 . 0 0 _ 0_.0 4 . 0 0 4 . 00 3 . 0 0 4 . 0 0 5 0 . 0 0 4 2 . 0 0 _ 4 0 . i |151 5 . 7 0 2 . 0 2 1 9 . 4 5 2 3 . 7 5 0 . 9 2 0.92 0.C5 0 . 1 3 1 2 . 1 7 8 . 9 5 1 , 1 5 2 7 3 2 1 4 . 00 4 . 0 0 0 . 0 5 .00 3 . 0 0 2 . 0 0 4 , 0 0 1 8 5 . 0 0 1 9 . 0 0 66 . 1 1 1 5 3 5 . 2 8 1 1 . 4 8 1 1 . 7 7 1 3 . 3 6 4 . 2 6 1 . 5 2 0 . 2 2 0 . 1 6 3 9 . 0 2 1 6 . 9 7 J !l54 7 3 5 1 3.00 4 . 0 0 0.0 4.00 3 . 0 0 2 . 0 0 5 . 0 0 1 5 0 . 0 0 1 9 . 0 0 6 6 . 0 0 1 5 . 0 U 1 5 5 6 . 1 3 5 . 7 7 1 3 . 7 3 7 . 0 7 5 . 0 7 0. 7 9 0. 1 7 0 . 15 2 8 . 3 3 2 1 . 3 3 156 7 3 8 2 4.00 4.00 0.0 3.00 3 . 0 0 2 . 0 0 5 . 0 0 4 0 . 0 0 4 4 . 0 0 3 8 . 0 0 1 6 . 0 0 [157 5 . 6 9 6 . 0 7 1 8 . 3 7 1 3 . 2 9 2 . 0 9 0 . 43 0.01 0 . 1 5 20 .92 10.49 [158 7 6 2 1 4.00 6.00 0.0 5.00 3 . 0 0 2 . 0 0 5 . 0 0 7 5 . 0 0 9 . 0 0 5 7 . 0 0 34.00 I 159 5 . 7 0 6 . 0 9 11 . 9 8 1 5 . 4 6 5 . 7 8 2 . 17 0 . 3 2 0 . 0 9 2 7 . 9 2 3 0 . 1 2  T60 7 6 6 1 3700 6700 070 5 .00 TTTJo TTOQ 4 .00130.00 1 2 . 0 0 6 0 . 0 0 2 7 .Ou 1 6 1 5 . 6 5 6 . 3 0 1 4 . 3 7 6 . 5 5 5 . 4 6 4 . 5 2 C . 4 2 0 . 1 9 2 8 . 2 0 4 1 . 6 0 1 6 2 7 6 7 _ 1 _ 6 _ , 0 0 _,.l . 0 _ 0 _ 0 . 0 4 . 0 0 3 . 0 0 _3_._00^ 3 . 0 0 5 0 . 0 0 6 6 . 0 0 2 3 . 0 0 ll^OO Tb3 '5776 2 . 8 Y " l 8 . 6 2 4 4 . 8 7 0.~6 2 6 . 43~""" 0 . 0 5 0 . 0 3 1 2 . 6 8 8 . 7 1 1 6 4 7 7 2 1 3 . 0 0 4 . 0 0 0 . 0 4 . 0 0 4 . 0 0 1 . 0 0 4 . 00150.00 4 4 . 0 0 3 8 . 0 0 1 6 . 0 0 I 1 6 5 5 . 1 1 3 . 8 2 1 1 . 6 9 1 7 . 1 7 1 . 6 2 0 . 4 8 0 . 1 1 0 . 0 7 1 5 . 1 9 1 4 . 7 6  1 1 6 6 7 9 0 1 3 . 0 0 4 . 0 0 0 . 0 5 . 0 0 3 . 0 0 4 . 0 0 4 . 0 0 5 0 . 0 0 4 2 . 0 0 4 0 . 0 0 1 7 . 0 0 1 6 7 5 . 5 4 8 . 2 8 1 8 . 7 5 1 5 . 3 7 3 . 3 8 0 . 8 7 0 . 1 7 0 . 2 1 2 4 . 4 4 1 8 . 6 5 168 7 15j0_l_ 3 . 00 4 . 0 0 _ 0 . 0 5 . 0 0 4 . 0 0 _ J . 0 0 _ 4 . 0 0 91__0_3_ _19 _ . 0 0 _ 6 6 _ _ 0 0 __15 . 0 0 _ 169 ' " 5 . 4 1 ~ " 4 " . " b ~ 2 _ " l l . ~ 5 7 ~ " i 5 . " 2 1 2 . 7 5 " 1. 7 2 0 . 0 8 0 . 0 3 T 9 . 2 0 2 2 7 9 5 170 7182 1 3 . 0 0 2 . 0 0 0 . 0 5 . 0 0 5 . 0 0 1 . 0 0 2 . 0 0 1 2 . 0 0 9 0 . 0 0 6 . 0 0 3 . 0 0 171 7 . 15 0. 25 8 . 60 2 . 42 5 . 97 5 . 97 0 . 10 0 .2 .0 5 . 1 7 9 9 . 9 0  i l 7 2 7210 1 2 . 0 0 7 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 3 . 0 0 1 8 7 . 0 0 9 . 0 0 5 7 . 0 0 3 4 . 0 0 173 4 . 11 2 2 . 9 4 1 7 . 9 3 9 . 1 2 0 . 4 5 0 .51 0 . 2 1 0 . 0 6 5 6 . 6 3 2 . 5 4 i 174__ _ _ 7 212 1 _ _ 3 . 0 0 6 . 0 0 __0 .0 __ 5 . 0 0 3 . 00_ _ 0 . 0 _ _ 2 . 001 5 0 . 0 0 _ _ 9 . 0 0 _57_.00_ 34 . 00 j l 75 ~4 . 8 7 2 1 . 3 7 " 1 7 . 0 0 1 7 . 5 5 " 6 . 6 5 " 7 . 2 5 0 . 2 " 7 0 . 2 5 5 4 . 42 18 . 7 7 " ! 1 7 6 7215 1 3 . 0 0 6 . C O 0 . 0 5 . 0 0 2 . 0 0 2 . 0 0 4 . 0 0 1 5 0 . 0 0 9 . 0 0 5 7 . 0 0 3 4 . 0 0 : 177 5 . 6 3 7 . 0 0 1 3 . 10 1 2 . 67 4 . 50 1.94 0 . 12 0 . 3 0 2 9 . 27 2 4 . 4 3  178 7332 1 3 . 0 0 6 .00 0 .0 5 . 00 2 . 0 0 1.00 5 . 0 0 6 3 . 0 0 1 6 . 00 6 3 . 00 1 9 . 00 179 5 . 57 2 5 . 27 1 4 . 70 4 . 90 7 . 93 3 . 5 1 0 . 2 1 0 . 2 7 61 . 7 7 18 . 82 180 _ _ _ 7 3 3 _ 5_1 _ _ 3 . 0 0 ' 3 . 00_ 0 . 0 5 . 0 0 _ 4 . 0 0 2 . 0 0 3 . 00 5 0 . 00 46_. 0 0 4 3 . 0 0 1 0 . 0 0 181 6 . 2 2 5 . 3 5 1 2 . 3 2 3 2 . 2 ? 2 . 8 4 2 . 3 4 0 . 2 6 0 . 1 0 1 8 . 6 6 1 8 . 1 9 182 7 3 3 7 1 3 . 0 0 5 . 0 0 0 . 0 5 . C O 2 . 00 2 . 0 0 4 . 0 0 1 0 0 . 0 0 2 9 . 0 0 5 4 . 0 0 16 . 0 0 ! 1 83 5 . 6 0 1 1 . 0 3 1 8 . 25 1 5 . 4 7 1 .78 1. 25 0 . 27 0 . 0 6 2 5 . 38 1 0 . 55 184 7340 1 3.00 1.00 0.0 3.00 4.00 4.00 4.00 45.00 84.00 11.00 5.00 185 5.56 2.29 23. 32 39. 25 0. 59 0. 24 0. 05 0.05 9.92 9.82 186 7360 1_3.00_2.00 0.0 3.00 3.00 3.00 5.00 50.00 19. 00_ 66. 00 15.00 187" " " "5. 56 4.90 17. 38 22.96 F.34 0.32 0.08 0.12 18 .64 9.41 188 7362 1 3.00 6.00 0.0 5.00 4.00 2.00 2. 00150. 00 29. 00 54.00 16 .00 189 5. 60 3.05 11.75 12 .10 3.85 0.55 0.20 0. 10 14. 10 33.55  190 7364 1 4.00 3.00 0.0 4.00 4.00 4.00 5.00 50.00 17.00 64.00 13.00 191 5. 12 5.08 16.77 38.76 1. 07 0. 47 0. 09 0. 30 34. 70 5. 52 192 _ _ 7365..1_...4.Q0 __.2.00 0.0 5 .00 _3.00 2 .00 5 .00 50.00 19,00 .66.00 15.00 193 5.70 5. 1 6 10. 77 6.67 8. 66 2. 78 0. 15 0.71 22 .73 53 .30 194 7366 1 3.00 3.00 0.0 3.00 3.00 4.00 5 . O O 50.00 53.00 32.00 14.00 195 5. 70 3. 10 16. 10 12. 70 0.79 0.79 0.27 0.07 14.00 7.95  196 7450 1 3.00 6.00 0.0 5.00 4.00 2.00 4.00150.00 9.00 57.00 34.00 197 5.32 3.51 10.15 23.67 3.64 1.27 0. 10 0. 31 21. 66 26. 04 198 J4J5 j l j . 6. 00_ 2.._00_ 0. 0 4.00 3 .00 4_.._00_ 4_.00_ 50 .00 29.00 54.00 16 .00 199 " 5.45 5.2~5 1 6.0 0 16 6 ~ 0 0 ~ 1.70 0.~65~ 0. 05 0. 10 20.~75 11.55 200 7455 1 1.00 7.00 0.0 5.00 5.00 1.00 2.00312.00 8.00 55.00 36.00 201 5.45 4.00 11. 03 5.23 7.95 5. 10 0.20 0.38 23.25 59.35  202 7511 1 3.00 6 .00 0.0 5.00 3.00 1.00 4. 00150.00 19.00 66.00 15.00 203 4.85 9.75 10.27 28.50 5.82 1.52 0.22 0.15 33.87 24.10 204 .J546 1_ .3.00 6._00_ 0.0 5.J0O J3. 00 1.00 4.00168.00 8.00 46.00 46 .00 2 05 ~ 5.2 7 11 .22 12.38 49". 8 5 4.38 1. 15 0. 15 0."l5 41.37 15. 23 ]2 06 7550 1 3.00 4.00 0.0 4,00 3.00 1.00 3.00 37.00 72.00 19.00 9.00 1 207 4.67 5.03 16.20 6.25 1.27 0.44 0. 06 0. 03 1 5. 12 13. 04  208 7660 1 3 . 00 7 .00. 0 .0- 6 .00 3.00 1.00 4.00250. 00 10.00 32.00 58.00 209 5. 80 7. 10 14.05 12. 65 12.40 8. 80 0.20 0.10 36.30 58 .25 210 • _ 766_1 1_ 5 .00 2.00 _0_.0 4.00 3.00 2. 00 4. C O 71.00 1_9.00 66. 00 15 .00 2~Tl " ~" " 5. 12 T . 10 "TV. 20 8 . 3 7 T . 4 5 0 . 4 5 0 . 0 1 0.1 c 2 4.32 7.60 212 7661 2 5.00 2.00 0.0 3.00 3.00 4.00 5.00 50.00 19.00 66.00 15.00 213 5.90 3 .60 18.37 3. 17 1.32 0.84 0.06 0.24 18. 30 12.77 214 8 3 1 2.00 7.00 0. 0 5.00 4.00 0.0 1 .00 0.0 9 .00 57 .00 34 .00 215 6 .30 2 .25 8. 58 25.83 16. 75 4. 68 0. 27 0. 15 26. 42 83.49 216 3 40 1 6.00 2.00 4.00 3 .00 3.00 4.00 4.0.0 50.00 73.00 14.00 6.00 217 5.27 3. 89 29. 10 33. 53 0. 37 0. 08 0. 03 0. 03. 19.33 3 .67 218 8 67 1 4.00 1.00 0.0 3.00 3.00 4.00 5.00150.00 66.00 23.00 11.00 219 5. 62 4. 07 14. 27 29. 92 0.23 0. 07 0.05 0.07 21 .22 1 .90 j 2 2 0 3 9 5 1 4 . 0 0 4 . 0 0 0 . 0 5 . 0 0 4 . 0 0 1 . 0 0 4 . 0 0 1 0 8 . 0 0 1 9 . 0 0 6 6 . 0 0 1 5 . 0 0 2 2 1 5 . 9 2 5 . 5 8 1 5 . 9 5 5 0 . 0 0 1 3 . 0 4 1 . 7 1 0 . 0 8 0 . 3 1 2 4 . 1 7 6 3 . 9 0 .2 2 2 _ 3 _ 1 2 0 _ 1 _ JL,. 0 0 _ ^ - . O O , J 3 . . J 0 5_. 0 0 2 . 0 0 2 2 _ 0 j D _ _ 5 J lp 0 1 5 0 . . 0 0 1 9 . 00_ 6 6 . 0 0 _ 15 . 0 0 2 2 3 5 . 7 3 7 . 5 7 1 2 . 8 3 6 8 . 6 7 1 3 . 4 1 1 . 3 2 0 . 1 9 0 . 1 4 3 2 . 2 3 4 7 . 1 0 | 2 2 4 8 1 5 0 1 4 . 0 0 4 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 5 . 0 0 1 5 0 . 0 0 9 . 0 0 5 7 . 0 0 3 4 . 0 0 1 2 2 5 6 . 1 5 3 . 3 0 1 1 . 4 2 7 . 5 0 1 1 . 4 4 1 . 9 0 0 . 1 0 0 . 1 2 2 0 . 2 5 6 7 . 1 0  , 2 2 6 8 1 8 2 1 3 . 0 0 2 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 3 . 0 0 1 6 . 0 0 8 3 . 0 0 1 1 . 0 0 5 . 0 0 i 2 2 7 5 . 9 2 1 . 3 4 1 5 . 1 3 3 . 2 5 3 . 4 8 1 . 2 5 0 . 1 1 0 . 1 2 7 . 7 6 6 5 . 0 9 :2 2 8 8 2 1 1 _ J 4 . . 0 0 2 . 0 0 _.. . 4 . 0 Q . 3 . . 0 0 3 . 0 0 . 1 . 0 0 . . 5 . 0 0 4 5 . . 0 0 4 4 . 00__3_8 . 0 0 1 6 . 0 0 2 2 9 5 . 5 8 3 . 4 2 1 9 . 7 7 9 3 . 7 1 0 . 3 0 6 . 0 9 6 . 0 2 0 . 0 5 1 4 . 6 1 3 . 3 4 ' 2 3 0 8 2 1 5 1 3 . 0 0 . 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 2 . 0 0 5 . 0 0 1 5 0 ; 0 0 9 . 0 0 5 7 . 0 0 3 4 . 0 0 ' 2 3 1 5 . 6 3 7 . 0 0 1 3 . 1 0 1 2 . 6 7 4 . 5 0 1 . 9 4 0 . 12 0 . 3 0 2 9 . 2 7 2 4 . 4 3  1 2 3 2 8 2 1 6 1 2 . 0 0 6 . 0 0 0 . 0 6 . 0 0 4 . 0 0 1 . 0 0 5 . 0 0 2 3 5 . 0 0 8 . 0 0 5 0 . 0 0 4 1 . 0 0 i 2 3 3 5 . 3 6 6 . 0 3 1 1 . 8 7 1 1 . 1 2 7 . 1 2 2 . 4 6 0 . C 8 0 . 1 0 3 3 . 7 7 2 9 . 1 9 1.23.4 _ 8 2 4 0 _1 5 . J O 2 . OjO J ) _ s _ Q _ 5 . 0 0___ _4_. 0 0__ 2 .00 _ 5 . 0 0_ 8 7 . 0 0 8 7 . 0 0 . 8 . 0 0 4 . 0 0 _ 2 3 5 ~ 5 . 7 0 2 . 4 1 2 5 . 3 6 2 9 8 . 0 0 0 . 8 6 0 . 1 5 0 . 0 3 0 . 0 9 9 . 2 4 11.21 2 3 6 - 8 3 0 2 1 3 . 0 0 5 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 5 . 0 0 1 5 0 . 0 0 1 9 . 0 0 6 6 . 0 0 1 5 . 0 0 i 2 3 7 5 . 1 9 5 . 0 1 1 2 . 9 1 1 2 . 4 6 3 . 1 4 0 . 6 8 0 . 0 5 0 . 0 6 2 3 . 4 7 1 8 . 2 0 • 1 2 3 8 . 8 3 3 1 1 4 . 0 0 1 . 0 0 0 . 0 4 . 0 0 3 . 0 0 3 . 0 0 4 . 0 0 6 6 . 0 0 7 9 . 0 0 1 4 . 0 0 6 . 0 0 1 2 3 9 5 . 7 2 3 . 1 0 1 6 . 0 5 7 9 . 5 0 3 . 0 6 0 . 7 8 0 . 0 9 0 . 1 5 1 0 . 9 0 3 3 . 4 0 _240_ ; ; 8 3 6 0 1 3 . 0 0 2 . 0 0 0 •$ _ _JL«_0_P_ _ 4 . J 0 _ _ 4 . 0 J _ 4 . 0 0 . 1 5 0 . 0 0 1 9 . 0 0 6 6 . 0 0 1 5 . 0 0 2 4 1 5 . 7 0 3 6 . 0 0 2 1 . 5 0 1 9 . 0 0 1 . 0 9 6 . 2 9 6 . 1 0 O . 6 4 1 3 . 8 5 1 4 . 9 0 2 4 2 8 3 6 5 1 4 . 0 0 2 . 0 0 0 . 0 5 . 0 0 3 . 0 0 2 . 0 0 3 . 0 0 1 1 5 . 0 0 1 9 . 0 0 6 6 . 0 0 1 5 . 0 0 2 4 3 5 . 8 0 4 . 5 7 11 . 8 4 2 6 . 3 5 5 . 8 7 1 . 2 2 0 . 0 7 0 . 3 2 1 2 . 2 2 6 1 . 2 3  2 4 4 8 4 5 0 1 3 . 0 0 6 . 0 0 0 . 0 6 . 0 0 4 . 0 0 2 . 0 0 4 . 0 0 1 2 6 . 0 0 9 . 0 0 5 7 . 0 0 3 4 - 0 0 2 4 5 5 . 4 6 4 . 0 3 1 0 . 8 0 5 . 7 5 3 . 6 5 2 . 2 0 0 . 1 5 0 . 2 3 2 0 . 6 2 5 9 . 4 9 1 2 4 6 8 4 5 3 _ 1 . 7. 0.0 2.00 5 . . 0 0 3 , 0 0 3 . . 00_ _ 5 . 0 0 4 , 0 0 1 5 0 . 0 0 6 6 . Q 0 2 3 . 0 . 0 . 1 1 . 0 0 . ' 2 4 7 6 . 6 8 4 . 6 7 2 0 . 2 0 2 5 2 . 12 4 . 7 9 0 . 4 7 0 . 0 8 0 . 1 2 1 5 . 1 7 4 3 . 0 3 1 2 4 8 8 4 5 4 1 3 . 0 0 3 . 0 0 0 . 0 5 . 0 0 3 . 0 0 3 . 0 0 5 . 0 0 1 3 0 . 0 0 6 6 . 0 0 2 3 . 0 0 1 1 . 0 0 j 2 4 9 5 . 4 8 4 . 0 0 1 4 . 6 3 9 0 . 5 0 2 . 2 3 1 . 3 7 . 0 . 1 6 0 . 1 0 2 2 . 6 2 1 5 . 1 7  2 5 0 8 4 5 5 1 1 . 0 0 7 . 0 0 0 . 0 7 . 0 0 4 . 0 0 1 . 0 0 4 . 0 0 0 . 0 8 . 0 0 5 3 . 0 0 3 8 . 0 0 2 5 1 6 . 2 3 0 . 6 7 9 . 8 3 2 . 1 7 8 . 3 0 2 . 6 1 0 . 1 1 0 . 2 4 1 3 . 9 7 8 0 . 2 7 2 5 2 3 5 4 4 . 1 3 . 0 0 4 . 0 . 0 . 0 . 0 . . . 6 . CO. 3 . 0 . 0 . 2 . 0 0 3 . . 001 .0 ,0 , 0 0 . . . 8 6 ^ . 0 0 9 . 0 0 4 . 0 0 2 5 3 7 . 2 2 0 . 6 1 1 2 . 8 4 5 . 3 3 7 . 1 9 1 . 1 9 0 . 0 7 0 . 2 6 7. 9 7 9 7 . 1 3 2 5 4 8 . 5 5 4 1 7 . 0 0 2 . 0 0 4 . 0 0 3 . 0 0 4 . 0 0 5 . 0 0 5 . 0 0 1 5 0 . 0 0 6 6 . 0 0 2 3 . 0 0 1 1 . 0 0 2 5 5 5 . 4 7 7 . 2 2 2 6 . 32 2 2 . 8 3 1 . 7 4 0 . 3 5 0 . 0 4 0 . 1 0 2 6 . 9 8 8 . 1 5 256 8662 1 6 . 0 0 3 . 0 0 4 . 0 0 3 . 0 0 4.00 3.00 5.00150 .00 50 . 0 0 3 4 . 0 0 15.00 257 5 . 50 4 . 13 25. 17 39. 58 0. 82 0.17 0.05 0.00 15 .66 7.09 258 __ _ _ 8663 1 6 . 0 0 3..0Q 0.0 _ _3_-P° 4.00 4. 00_ _ 4 . 00150. 0 0 6 6 ^ 0 0 _ 2 3 i 0 0 _ l 1_.00_ : 259 • " 5 . 3 5 " 3 . "45 "27.35" 5 .53 0 . 4 9 0.20 0.0 2 0. 26 21. 88 2.37 260 9 30 1 2. 00 7.00 0.0 5.00 2 . 00 1.00 3.00 0.0 9.00 57.00 34 .00 : 261 3.97 51 .51 15.05 27.69 3.97 1. 11 0. 28 0. 46 75. 42 7. 11  262 9 32 1 4.00 4.00 0.0 5.00 3.00 1.00 5.00150.00 19.00 66.00 15.00 263 5.48 10.45 1 1. 89 23. 33 2. 16 0. 41 0. 07 0.16 3 7 .69 7 .50 |264 9 67 1 4.00 1 .00 0 .0 3.00 4.00 3 .00 3 .00 50.00_66_. 00 2 3,0.0.11,0.0.., 1265 5. 70 3. 67 1.7. 30 39. 33 0. 70 0.47 0.10 0.13 14.00 9.90 i 266 9 67 2 4.00 1.00 0. 0 3.00 3.00 3.00 5. 00 50.00 85.00 9 . 0 0 4 .00 1 267 5.27 7.32 22 . 55 43 .94 0.77 Q . l l Q.Q3 0. 20 31. 56 3. 57  ; 268 9 90 1 3. 00 4 . 00 0.0 5.00 3. 00 4.00 4 . 0 0 50 .00 42 .00 4 0 . 0 0 17 .00 269 5.54 8.28 18.75 15.37 3.33 C. 87 0. 17 0. 21 24 . 4 4 1 8.65 _270 _____9120_ 1__ _3. 0 0 6.00 0.0 5 .00 3.00 2 .00 2 .00243 .00 31.00 52 . 0 0 16.00  Zl\~ 5"."37~ ^ , 9 - - ; ^ 0.20 '? 1.9 7 32.42 272 9150 1 4.00 4.00 0.0 5.00 4.00 1.00 4.00150.00 9.00 57.00 34 . 0 0 2 73 5,45 . 2 . 70 10. 20 1. 00 4.32 1.43 0.11 0. 15 16.65 36.30 .  274 9211 1 5.00 2.00 0.0 3.00 3.00 1.00 5.00 45.00 44.00 38.00 16.00 275 5 . 58 3 . 42 1 9 . 77 93.71 0.30 0.09 0.02 0.05 14.41 3.34 276 9215 1 3.00 6.00 0.0 5.00 4.00 0.0 3.00 83.00 15.00 63.00 21.00 277 5 . 9 9 3.96 10.65 5.52 5.10 1.09 0.10 0.14 19 . 4 4 34.79 278 9216 1 2.00 6.00 0.0 5.00 4.00 1.00 5.00235.00 3.00 50.00 41.00 279 5.36 6.03 1 1 . 8 7 11.1? 7.12 2.*6 0. CP 0. 10 3 3 . 77 29. 1 9  ;2 30 9 217 1 6. 00 3 .00 0 .0 4 .0 0 4 . 0 0 3.00 4.00 91.0 0 66. 00 2 3.0 0 11 .00 281 5. 43 6. 73 34. 17 18.25 0.26 0. 05 0.03 0.06 23.32 2 .32 282 9302. 1 3 .00 5 .00 0 .0 5.00 .3.00. .2. 00. 5. 00150. 00 1 9. 0 0 6 6. CO 1.5.00 • . 2 8 3 5 . 1 9 5 . 0 1 i~2.91 12.46""3.14 " 0 . 6 8 0.05 0.06 23.47 18.20 284 9304 1 7.00 2.00 4.00 3.00 3.00 4.00 2.00 50.00 22.00 62.00 15.00 285 5 .67 9 .07 27. 12 8.94 2. 59 0.43 0. 03 0. 30 23. 11 5. 42  286 9305 1 5.00 2.00 0.0 3.00 3.00 3.00 3.00 91.00 42.00 40.00 16.00 i237 5.51 5. 67 22. 02 18. 75 1. 60 0. 19 0. 02 0. 12 18.36 4.32 1 2 8 8 _ _ 9360 1 4.0O 2 .00 0.0 3 .00 3.00. .3.00 5 .00100.00 19. 00 6 6 . 00. 15.00 1 2 8 9 5 . 8 8 6 . 30 16. 37 "23. 2 3 1 . 02. 0.23 0.06 0.33 22.80 6.6? j 290 9362 1 3.00 6 .CO 0.0 5.00 4. 00 2. 00 2. 00150. 00 29. 00 54.00 16 .00 |291 5.60 3.05 11.75 12.10 3.35 0.55 0.20 0.10 14.10 33.55  292 9 3 6 5 l " 4.00 2 . 0 0 "0.0 5 . 0 0 4 . 0 0 2 . 00" 4 . 0 0 1 5 0 . 0 0 1 9 . 0 0 6 6 . 0 0 15.00" 2 9 3 5 . 5 8 4 . 2 2 1 1 . 3 3 5 . 5 3 4 . 4 7 1 . 8 0 0 . 0 9 0 . 1 6 1 9 . 9 8 3 2 . 8 0 2 9 4 9 4 50 _ 1 _3. 0 0 6_.00_ 0_. 0_ 7.00_ 4 . 0 0 1 . 0 0 3.00150_.00_ 9.00 J57_.00. 3_4.0p_ _ 2 9 5 ' ~ ~ " 5 . 8 0 2 . 5 5 9 . 7 5 0. 8 5 ~ T. 68 1 . 3 3 6 .09 0.2.C 17 . 1 5 37 . 4 0 2 9 6 9 4 5 3 1 6 . 0 0 2 . 0 0 5 . 0 0 3 . 0 0 3 . 0 0 4 . 0 0 4 . 0 0 1 5 0 . 0 0 6 6 . 0 0 2 3 . 0 0 1 1 . 0 0 2 9 7 6 . 6 8 4 . 6 7 2 0 . 2 0 2 5 2 . 1 2 4 . 7 9 0 . 4 7 0 . 0 8 0 . 1 2 1 5 . 1 7 4 3 . 0 3  2 9 8 9 4 5 5 1 1 . 0 0 7 . 0 0 0 . 0 5 . 0 0 5 . 0 0 1 . 0 0 2 . 0 0 3 1 2 . 0 0 3 . 0 0 55 . 0 0 3 6 . 0 0 2 9 9 5 . 4 5 4 . 0 0 1 1 . 0 3 5 . 2 8 7.95 5 . 1 0 0 . 2 0 0 . 3 8 2 3 . 2 5 5 9 . 3 5 3 0 0 _ 9 5 1 2 1 5. 0 0 2. 0 0 0 . 0 _ 3 . 0 0 3 . 0 0 2 . 0 0 5 .0 0 _ 5 0 . 0 0 .19 , Q 0 _ 6 6 . 0 0 15 . 0 0 . . . 3 0 1 5 . 6 4 " " ~ 7.~5 8" 2 2 . 2 6 4.66 0 . 3 0 6. 0 5 0 . 0 6 6. 3 3 22. 2 7 3 . 31 3 0 2 9 5 4 4 1 3 . 0 0 4 . 0 0 0 . 0 6 . 0 0 3 . 0 0 2 . 0 0 3 . 0 0 1 0 0 , 0 0 8 6 . 0 0 9 . 0 0 4 . 0 0 3 0 3 7 . 2 2 0 . 6 1 1 2 . 8 4 5. 3 3 7 . 1 9 1. 1 9 0 . 0 7 0 . 2 6 7 . 9 7 9 7 . 1 3  3 0 4 9 5 4 6 1 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 2 . 0 0 1 . 0 0 4 . 0 0 3 1 2 . 0 0 1 7 . 0 0 6 4 . 0 0 1 8 . 0 0 3 0 5 5 . 4 7 2 2 . 1 2 1 4 . 9 7 2 5 . 3 0 6 . 6 0 1 . 6 9 0 . 1 2 0 . 3 0 5 1 . 9 3 16.87 ,! 3 0 . 6 9 5 5 5 1 5 . 0 0 2 . 0 0 0 . 0 3_._0jp_. j4. 0 0 3.00_ 4 . 0 0 5 0 . 0 0 4 0 . 0 0 4 2 . 0 0 1JL.00_ _ 5 3 0 7 " 5 . 4 5 5 7 9 2 23~".63 2 . 5 0 0 . 2 9 0 . 0 5 6 . 0 3 6 . 0 9 2 2 . 8 7 2 . 3 2 I 3 0 8 9 5 7 3 1 3 . 0 0 4 . 0 0 0.0 3 . 0 0 3 . 0 0 4 . 0 0 3 . 0 0 41.00 19.00 66 . 0 0 15.00 3 0 9 4 . 5 ? 1 9 . 7 1 1 5 . 8 8 2 1 . 4 8 8 . 6 4 2 . 3 2 0 . 0 3 0 . 9 8 5 0 . 2 4 9. 0 8  3 1 0 9 6 6 1 1 4 . 0 0 3 . 0 0 0 , 0 4 . 0 0 3 . 0 0 2.CO 5 . 0 0 5 0 . 0 0 1 9 . 0 0 66 . 0 0 1 5 . 0 0 3 1 1 4 . 9 1 5 . 9 7 1 3 . 4 8 1 3 . 1 2 0 . 5 8 0 . 1 1 0 . 0 4 0 . 1 6 2 6 . 6 8 3 . 2 9 3 OF FILE Table 6.2. Selected average data for 1HU Fraser Valley s o i l s Series Slope Drain Stone Hue Value Chroma RootsStruct Sand S i l t Clay pH O.M. C/N PI Ca Mg Na K CEC B.S. 6 2 41 1 2 .00 7.00 0.0 6 .00 5.00 2 .00 1. 00 0. 0 33. 00 51. 00 1 4 . 0 0 7 4. 20 4.43 1 7 . 4 7 14. 53 1.70 1 .02 0.11 0.13 2 2 . 5 0 1 3 . 17  8 2 70 1 2.00 5.00 0.0 5.00 4.00 1.00 2 . 0 0 1 2 0 . 0 0 1 5 . 0 0 6 3 . 0 0 2 1 . 0 0 9 6.20 2.63 10.63 3 9 . 7 7 8.51 4.25 0.09 0.46 1 6 . 1 0 8 3 . 2 0 10 . „ 2 . 91 __1_. ..3...00 ... 6. 00 ... 0. 0 5 , 0 0 . .3. 0.0 1 .00 2 .00..26 .00 ?8 .00. 5 5 .0.0 16_.00 11 4.70 1 5 . 4 3 13 .07 5. 17 7. 75 2. 01 0. 17 0. 38 31. 50 3 5 . 2 7 12 2 92 1 2 . 0 0 6.00 0.0 5.00 3.00 2.00 2 . 0 0 1 0 7 . 0 0 1 6 . 0 0 6 4 . 0 0 1 9 . 0 0 13 4.62 14. 15 14. 02 58. 4? 7. 47 1. 97 0. 24 0.45 34 .90 2 9 . 0 2  14 2 1 8 5 1 2 . 0 0 6 .00 0.0 5.00 3.00 1.00 2 . 0 0 2 1 4 . 00 5 1 . 0 0 3 3 . 00 1 5 . 0 0 15 5.32 6. 22. 12.95 4.45 6. 66 6.59 1 .85 0.32 2 3 . 6 7 6 4 . 0 2 .1.6 2 30.3...1 3.00 5. 00 0.0 5. .00 4.00 2.00 2.,.001.8X._0 0_„19_. 0_0 „.^.JI0__15 .0 0„ 17 5.93 4.47 10.37 10.27 10.65 2.37 6.17 0.25 2 0 . 30 6 6 . 00 18 2 3 3 0 1 2.00 5.00 0.0 5.00 4.00 1.00 3 . 0 0 4 1 5 . 0 0 1 2 . 0 0 5 5 . 0 0 3 1 . 0 0 19 5 . 8 3 1 0 . 3 8 1 2 . 55 2 8 . 7 7 3. 14 7. 57 0. 25 1. 27 2 7 . 78 5 1 . 13 2 0 2 3 6 1 1 3.00 5.00 0.0 5.00 2.00 1.00 1 . 0 0 1 3 9 . 0 0 4 7 . 0 0 3 5 . 0 0 1 7 . 0 0 21 5.03 9.79 10. 71 3 5 . 57 2.53 1. 30 0. 17 0.41 2 4 . 2 0 2 3 . 2 4 2 2 ... 2.54.1—1 3_..00 6 .00 0.0 5.00 4. 00___2_..P0_ 2. 00 53. 00 19. 00 6 6 . 00_15..00 23 4. 57 1 0,57 12.77 14. 15 5.67 2 .50 0.23- 0. 15 3 1 . 0 0 2 7 . 0 0 24 2 5 4 8 1 2.00 7.00 0. 0 5. 00 3.00 2 . 0 0 2 .00 0.0 1 9 . 0 0 6 6 . 0 0 15 .00 25 3.92 1 3 . 13 17.20 6.65 1. 57 2.67 0.87 0. 32 30. 07 19. 37 26 2 6 6 4 1 3.00 6.00 0.0 5.00 4.00 1.00 2.00 0.0 2 0 . 0 0 6 4 . 0 0 1 5 . 0 0 27 5.50 3.83 1 2 . 3 3 2 6 . 6 ? 11.81 1.47 0.27 0.33 1 7 . 6 7 7 6 . 8 8 28 3. 66 _j___3 .00 6_.00_.0.q 5_._00 3.00__ 1.00. 2 . 0 0 5 J 5 . 0 0 12. 00 18. 00 7 0 . 0 0 29 5. 71 4. 28 10. 14 4. 24 12. 02 6.40 6.42~ 6.28 3 6 . 5 8 57 .00 30 3 72 1 1 .00 4.00 0.0 5.00 3.00 1. 00 2. 00 26. 00 8 5 . 00 9.00 5 .00 31 5. 38 7.03 1 4 . 4 6 13 .23 3.91 0.99 0.15 0. 12 2 7 . 2 3 3.88  32 3 2 1 4 1 2.00 6.00 0.0 5.00 3.00 2.00 1.00 0.0 4 9 . 0 0 2 3 . 0 0 2 7 . 0 0 33 5.40 4.15 10.85 19.00 2.23 0.67 0.15 0.15 1 2 . 0 2 2 4 . 2 5 34_ _ __321 5 1__ 2 . _00.__6 .00 __0 . p_ 5.00_. ,3 .00_ 1 .00 2 .00 21 .00 4 5 . 0 0 4 1 . 0 0 1 2 . 0 0 3 5 5.40 5.50 12. 30 16. 70 7. 70 2. 59 0.25 0.3.' 2 2 . 0 0 5 0 . 7 0 36 3 3 0 3 1 3.00 5.00 0.0 5.00 4.00 2.00 2.00 5 3 . 0 0 1 9 . 0 0 6 6 . 0 0 1 5 . 0 0 37 5. 90 5.33 11. 97 16. 47 8.28 .3 .61 0.2? 0.22 2 3 . 3 3 5 3 . 5 7 ! 38 3340 1 2.00 1.00 0.0 4.00 3.00 2.00 1.00 0.0 90.00 6.00 3.00 39 6.23 1.36 25. 31 44.59 0.27 0.22 0.04 0.08 9. 54 6.33 40 3363 1 2.00 6.00 0. 0 5. 00 3.00 2.00 2. 00 0.0 15 .00 62 .00 22 .00 41 , v 5.33. 11 .10 17.92 5.08 8.72 7.00 0.23 0. 31 23.26 71. 01 42- 3364 1 2. 00 3. 00 0. 0 4.00 3 .00 .3.00 2 .00150 .00 17 .00 22 .00 59 .00 43- - 5.50 1.93 16.27 32.00 4. 38 0. 32 0. 27 0. 18 15. 30 33. 53  44 3391 1 2.00 6.00 0.0 5.00 2.00 1.00 2.00 0.0 14.00 62.00 23.00 45 5.36 17.12 17. 48 32.24 3. 90 1. 58 0. 21 0. 07 39.94 17 .07 [.46.. _ 354 L. 1_. 2... 00 _ 6_. 00_ . 0 . 0__ 5.00 _4. 00 1. 00 2. 00 0.0 1 9. 00 6 6 . 00 15 .00 [.47 4. 75 6.20 12. 15 15.70 4.92 0 .90 0 .38 0.15 24.00 24.20 I 48 . 3543 1 2.00 6. 00 0. 0 6. 00 4. 00 1.00 2 .00 0.0 40.00 42 .00 18 .00 149 • 5.07 5.50 6 .50 9.20 8. 16 3.49 0.2? 0. 21 23. 57 65. 43  50 .3550 1 3. 00 4. 00 0. 0 5.00 3 .00 3 .00 1 .00 0 .0 84.00 11 .00 5.00 51 : 4.80 5.10 24. 75 0.0 1.01 0. 69 0.14 0. 07 16. 35 12. 00 .5.2 '. 355 2.„L._.3JL00. JL.0A._-~0 »0_ _5_,00_ 3.00 4.0 0._2_L0 0 96. G0„74.__0Q _1 7.JD0 8 __00 ^ 53 5. 70 3. 67 18. 42 14. 50 1. 26 0.29 0.12 0. 10 14.78 11 .87 £ 54 . . . 3631 1 1.00 7.00 0.0 5.00 3.00 1.00 3. 00 0. 0 8.00 46.00 46.00 I 55 " 5. 15 18.78 15.59 14.97 1 1.66 8.38 0.69 0.41 49.91 52.58  56 : 3661 1 4.00 3.00 0. 0 3.00 3.00 4.00 2 .00 58.00 40.00 42.00 18 .00 57 5.83 4.57 17.87 30.00 2.75 0.16 0.17 0.15 20.40 15.40 _5_8_ 4 1:_1 3...00 L.00 0.0 3..Q0 _3_.00._4.00 2_.00 26.00. 87_0_0._ J.00 4.._00 _ 59 5.62 4.07 14. 2.7 29. 92 0. 23 0. 07 6. 05 6.07 21.22 1.90 60 ' 4' 3 1 3.00 7.00 0.0 5.00 4.00 0 .0 1 .00 0. 0 8. 00 55. 00 35. 00 61 ' 6. 30 2. 25 8. 53 25. 83 16.75 4.68 0.27 0. 15 26.42 83.49 62 4 4 1 3.00 6.00 0.0 5.00 2.00 2.00 2.00 13.00 12.00 54.00 33.00 63 • 5.80 6.03 11.10 5.33 11.20 4.11 0.27 0.14 30.77 53.33 ..64 „4_.6Q„1 2 ._0_0 „6 . 00 _. 0. 0 _ _5 . 00 2.00 1.00 1 .00. 0.0 _1 5 . 00__63 .00 _2 1 .00 65 - 4.83 13.23 10.43 190. 33 6. 07 1. 70 0. 47 2. 07 45. 53 20. 80 66 4120 1 3.00 6. 00 0.0 5.00 2.00 2 .00 1 .00 10 .00 55.00 .31.00 13.00 67 .. 5.73 7.57 12. 33 68.67 13. 41 1. 32 0. 19 0.14 32 .23 47.10  68 4150 1 3.00 4.00 0.0 5.00 3.00 2.00 1.00 0.0 70.00 19.00 9.00 69 ' ' . 5.50 3. 63 7. 91 3.25 7. 88 3.82 0.18 0.31 23. 19 54.87 70 . '___4182_ J_J.O_0__ 2.00 _ 0. 0 _ 5. 00 __ 4.00 _2.00 J . 00 26.00 55..00 3.0.00 13.00 71 ".. 5.77 .1 .58 7.90 '5_."oo' 4.9 3 ' 2 .9 1 0 . 1 3 0 . 22 " 13~. 98 " 5 ; 5 . " 3 7 ~ " " 72"'.. ..4213 1 3. 00 4. 00 0.0 5.00 2.00 2.00 2 .00 26.00 40.00 44.00 14.00 j 73 6.12 8.63 11.2.3 4. 42 15. 20 2. 98 0. 22 0. 48 37 . 21 50. 24 74 4335 1 3.00 3.00 0.0 5.00 4.00 2.00 2.00 0.0 47.00 36.00 16.00 75 5.75 2.50 8. 20 10. 50 3. 76 2. 31 0. 17 0.06 15.25 40.90 . 76 4360. 1 5.00.. .2,00 0.. 0 .5,00 4,00 4.00 2.00 42.00 61 ,00 29. 00 9.00 77 5.70 3.60 21.50 19.00 1.09 0.29 0.10 0.64 13.85 14.90 78 4365 1 2.00 3.00 0.0 5.00 3.00 2.00 1.00 62.00 55.00 32.00 12.00 1 79 6.17 3.63 10.63 17.67 11.32 2.20 Q.17 0.31 21.20 65.70  | 30 4452 1 3.00 7.00 0.0 5.00 3.00 1.00 1.00 0.0 13.00 61.00 25.00 181 5.77 8.83 1 1.30 40. 33 12. 04 1. 99 0. 19 0. 28 31. 40 50.23 ; 8.? _ ....4454 1..3.00 3 .00 0.0 5.00 3 .00 3.00 1 .00 5. 00 83.00_ 7.00 4_.00_ r 83 5. 48 4. 00 14. 63 90. 50 2. 23' 1.37 0. 16 0.10 22 .62 " 1 5 . 1 7 " r " ' . 84 4512 1 5 .00 2.00 0 .0 5.00 4. 00 4. 00 3. 00112. 00 2.4. 00 60. 00 15.00 • 3 5 5. 74 1 .48 7.75103.92 1.74 0.86 0 .07 0.56 10.30 27.69  I 86 . 4542 1 3.00 4.00 0.0 5.00 3.00 3.00 3.00 0.0 88.00 7.00 3.00 87 5.95 1.70 10.85 11.00 5.09 1.46 0.19 0.09 10.25 66.10 , ___S 8 4630 1 1, 00 b ^ O P P_? 0 5 .00 3.00 2_0 0__ 3 . 0 0 0.0 10.00 32.00 57. 00 89 5.82 3.30 10. 82 6.66 8.58 2.34 0". 11 o". 17 19. 92 57. 75 <-_. 90 5 3 1 3.00 7.00 0.0 5.00 4.00 0.0 1.00 0.0 8.00 55.00 35.00 1  91 6. 30 2. 25 8.58 25.33 16. 75 4.68 0.27 0.15 25.89 83 .49  92 5 39 1 3.00 6.00 0.0 5.00 2.00 2.00 2.00535.00 11.00 57.00 30.00 93 5.58 5.27 10.19 11.08 6.26 2.18 0.23 0.25 21.58 44.86 i_. 94 5_60_1 2.00 .6. 00 0.0 __5.00 2. 00 1 . 00 _ 1 . 00' __0 .0 _15_^00_63 .00_2J_,00__ ; 95 4.83 13.23 10. 43190. 33 6.07 1 ."70 " 0.47 " 2T67"45. 53~ 20. 80 96 5335 1 3. 00 3. 00 0.0 5.00 4.00 2 .00 2 .00 0 .0 47.00 36.00 16.00 97 5.75 2. 50 8. 20 10. 50 3. 76 2. 31 0.17 0. 06 15. 25 40. 90 :  98 5360 1 5. 00 2.00 0.0 5.00 4.00 4 .00 2 .00 42.00 61.00 29.00 ' 9.00 99 5.70 36.00 21. 50 19. 00 1. 09 0. 29 0. 1 0 0.64 13.85 14.90 100 5512 1 5.00 2.00 0.0 5.00 4.00 4.00 3.00112.00 24.00 60.00 15.00 . | 101 5. 74 1. 48 7. 75108.92 1. 74 0.86 0.07 0.56 10.80 27.69 •102 5630 1 2. 00 6 .00 0.0 5.00 3.CO 2. 00 3.00 0. 0 10.00 .32.00 57 .00 {103 5. 82 3.30 10.8? 6.00 8.58 2.34 0. 11 0. 17 19.92 57. 75  104 6 32 1 3. 00 4. 00 0. 0 5.00 .3.00 2.00 1 .00375 .00 9 .00 57 .00 32 .00 105 5 .28 1 1 .48 11.77 13.36 4. 26 1. 52 0. 22 0. 16 39. 02 16.97 106 . _6__33_1_ 2 .00 6 .00 0.0__5_.00 3_.00 _1 .00 1 .002 14 . 00_ 15 .00 52.00 32.00 _ 1107 5.78 5.53 12. 12 18. 39 10. 02 3. 33 6.20 6.10 27.73 49.37 :108 6 67 .1 5.00 1 .00 0.0 3.00 4.00 3.00 3.00 10. 00 86.00 8. 00 4.00 109 5. 70 3.67 17. 30 89. 33 0. 70 0.47 0.13 0.13 14.00 9 .90 -280-o o o O O O 3 1 i 1 o ; a o o O o o o I j ] i i o o o o c e o O o o O o O o o o o o ; o vO vt cr r - H ro; co 00 r H OvJ r~ <t vt r H r H LO ro,: LP OvJ OJ r H r H H ro , — i vt j r H r H CV)' o o o O O o o O o O o O o o o o o o o o o O C o o o o o o O o o o o o , o rn CC i n cr lO CO Jj vt OJ vC o vt o l t- cr t- o —-( pp, vt ro, OJ: i ro ro r H i n vf CVJ vt LO i - H o o o c i—. O O i O j o O O O o o o o o ! o o vt o LO. o Ovi o O o o o r~ O v0 o cr o O O i n o ro O IP, O LO o O o vf o OJ o o o i n • ro • vO • vt ft LP, • CT • ft CC. • r H • CT ft LP, • 0- • vt ft CO t r H • IP ft r H ft vt ft o • r - • 10. • C' • OJ • ro • O • ro • i n • vO ft i n • ft ft CO • o • vf ft a*- ft vf • CO r - c c i c o LP. OJ CM r - H CT- (7s CO cc O' a - o co LP. vO vf ro cc! i n ro cr vf vO vt ro ro 1—; r - oo a;.' ro r—1 ro vt cr r - H r H r H ro l i n LO OJ r — i rvi (VI o c O o o o O o O O i o o o ' o o CVi o vt o r~- o o o c .cv o OvJ o vO o rv O o o t - o m o m o i r - c rv o LO o CVJ o r-• cc » vt • cr • vt • r—» • vT ft o • vO * • r H • ro • • OJ • •3D • rv 9 r— ft CO ft o • oc ft o • — H • o • cc 9 o • o « Ov) 9 LO • o • r- ft o • ro • r-- • cr • oj ' • •X) « OvJ vt vt r-i cr CO LP. r~ vt LO i n CO ro co vf ro o r H vf r o LO ro H OJ vO r H r o ; ' - ' LP, Ov) r - l Ovi r\i OJ o j LO i — l r H r H r H OJ r H ro. OvJ ro OJ ro ro r H . — l o o o o o C o o o o o o O , o o O ! , o o LO CJ'r-i o o LP o o o LP o o O i o o O o O o r- o o o cc i— LTi o rvj o o :vi o rO .ft r - l • OJ ft OJ • OvJ • OJ • OvJ • r H • r H • r H • r H • r H • OJ ft ro 9 r - i ft ro . • ! ~ H ft Ovi ft i — i OJ O i O O O o o O o O o o CJ c o O o o o Cl o c o o o l o O i O ! o o o o o o o o O o r- o O o OJ c c o f- G o O ; -Q o O O o o o o o CJ o rv o CVJ o o o o o LP, ft o OJ t ro • rsj ft r - H • ,—{ 9 o • vt ft rvj • vf • OJ ft Ovi 0 OvJ • — 1 ft — H • vf • OJ ft r H • CO ft o o c o o o o o O d o o o o o o o o c O i o O o O o ! o o o i o o o O 1 o i o o r- c r- o o o i n o o'- o i n o ro O vf o O O m o o 6 o o o CV o lO o OvJ  rv o rvi • r—1 « cc CO • ip. ft er- « OvJ • LP • ro • CO ft i n « o ft LP, • r H LP ft ft r - H ft r H ft o -vt • ro • r o • vf • vt • og • vt • vf ft IO ft vf 9 vf ft vf • i n • ro • vf ft r o 0 rv ft vt • 1—1 o o — H LP OvJ o OJ O o ro LO r H o o OJ o o o c o o o o O o o o o o O o O i O i c o o : co o vf o CO o fv- o LO o LP O vf o r- o i n o o o o o m o OJ o ro O i n o CO o PJ • o • ro • LP, ft cr. • CT • vO • OvJ ft CO • 00 • CO 0 o ft Ovi ft cr • CO 0 r - H * ro ft c o ft cr vt • LPl • i n • m ft LTi • i n • vt • IP, • ro • LP • LO • i n 9 LP • to. • ro ft vt ft LP ft vf ft rr, ! ro LO o ;LO vO CM rvj O ro o r H LP, rvj r- i n a r H r H o O o o r—1 o (V c Ol o LO o t> O OJ o cr- O o o o o rv o co o o o CT o C c o o LP, • O ft 00 • ro • O vt ft LP, • r H • rvj • • r H • 00 ft vO OJ • IO ft CO ft rvi ft i n ft r~ o • o • o ft o • o • o • o t o • o • O • o • o • o • o • o • o • O ; . o • co j tn vC c OvJ f - r H rvi rvi o CC to cc r H r - H m r - l r - l vt I - H i n ro r - H r H r H rvi CVJ Ovj OJ vt (VI o °! o o o a o o o o o o o o o o O I o o r- OILO o CC o to Ci o o o a ro o rvi o CO o LP. o ro o LP o ro o r- o < i v_i r- c ro o i n • vO • r- • vC ft LO 9 0 1—* • OJ • ro 0 r - ft * ro • cr • a • C\J • vO ft r H ft r- ft vf vt • vt • vO ft vf « Ovi • vC ft r H • ro • OJ • vO • rvi • vO « • ft og ft OvJ ft vO '• Pi ft i n co vt r - H CO r~ vO rvj vt r H OJ r—1 l - H o LO vO on cr —-i r H OJ r - H i — * r H i — i r H I—< r H r H r H r H i - H r H r H r H o O ! c o n O o o o o o o o o o o o o vt o co o cr c OJ o m o f- O ve- o LO o NO o LO o r- o LO o c o LO o oo o LP o o o (Vj • IP. .:Pvl ft r - l ft • OJ ft cc • i n ft ro o i n « o * ITl • rv • o ft 9 cr ft ft vO ft O ro * ro « vt • rO • ro • ro. • • vt • i n • ro t vf . ro • ro ft ro • m LP » vt ft. ro ft ro CO LO LP O r - H OJ i n m 00 ro LP. vf i cr m CO cr OJ r - H rv r- vt r- OvJ m r- o rvi co o r~ i n i n i n r- o o O OJ ro O LO o m O vt OJ! r H <M 00 CO r H LO Ov) o cc og vO o : c r o LO vt r H ! 00 CM CVJ r~ COIvf r H • 0> • CM • LO • 00 • r - H 9 ro • ro • vO • -o • • LO. • LO • r H • r H • r H t vf| • • m LO t — I LO r H i n I — ! Ovi vt or; vO ro vO m LO m IO m to vf LO vt LO LOl vf i n i n m i n m i i r , i n o v0| 1 I i vC O vO vO vO vC vO N0 vO •Q vC v0 vO vO r~ o r—1 Ovi ro vt 10, vO r- 00 cr o I—* OvJ ro vf LO sO r- 00 cr o r H OvJ ro, vt i r . vO CO cr CV! ro. vt LP vO r-r-4 r - l r - l 1—1 r - l r - H i — i r H OvJ Oi OJ rvi OJ Ovi OJ rvj CVJ rvj ro ro ro 00 o 1, ro 00 ro> ro ro vt vf vt vt •vt vt r H r—1 I - I r - l I - H r - H r - H r—» r H r H r H r - H r H r H r H I - H r H r H r H r H r H r - H r - H r H r — i H r H r H H i - H r H r - H r H 1148 7 32 1 4.00 4.00 0.0 5.00 3.00 2.00 1.00375.00 9. 00 57. 00 32.00 149 5. 28 11. 48 11. 77 13. 36 4.26 1 .52 0.22 0. 16 39.02 16.97 150 _ 7 32 3 4.00 4__0_0__?.0„ 5_.00_ 2.00__1.00 _2_.00 40. 00_ 8. 00_47.00 _44 .0_0_ 151 5. 83 1 1 . 13 11 .73 15 .20 7.31 1.44 0. 14 0. 18 46. 17 21. 20 152 7 35 1 3.00 4.00 0.0 4.00 3.00 2.00 2.00150.00 20.00 27.00 52.00 H53 6.13 5.77 13.73 7.07 5.07 0. 79 0. 17 0. 15 28. 33 21.33  ;154 7 37 2 2 .0G 6 .00. 0.0- 5 .00 3.00 2.00 1 .00107.00 41 .00 36.00 21.00 1155 5.90 4.07 lC.lO 45. 83 9. 71 1. 41 0. 06 0.14 20.50 57.27 !l56 _7 38 2 4 .00 _4.00 0.0. 2 - 0 0 . 3. 0.0 ... 2 . 0 0_. 3, C O 21. QP__.80...p_0._.l_3...PJj 6. 00 ,15 7 ~ 5 . 6 9 " ' 6". 07" 1 8.37 18 ~ 29 "~2 . 6V" 6.43 0.01 6.15 20 .92 10.49 1158 7 62 1 4.00 6. 00 0.0 5. 00 3. 00 2. 00 3. 00150.00 8.00 55.00 35 .00 159 5.70 6.09 11 .93 15.46 5.78 2. 17 0.32 0.09 27. 92 30. 12 160 7 66 1 3.00 6.00 0. 0 5. 00 3. 00 2. 00 2 .00187.00 8 .00 46.00 45 .00 161 5.65 6.30 14.37 6.55 5.46 4.52 0.42 0.19 28.20 41.60 162 7 90 1 3.00 4.00 0.0 5.00 3.00 4.00 1.00 8.00 87.00 8.00 4.00 163 5.54 8.28 18.75 15. 37 3. 38 0. 87 0. 17 0.21 24.44 18.65 164 7150 1 3.00 4.00 0.0 5.00 4.00 3.00 1.00230.00 42.00 46.00 11.00 165 5. 41 4. 02 11. 57 15. 21 2.75 1 .72 0.08 0.03 19.20 22.95 ' 166 7 182 1 3.00 2.00 0.0 5.00 5. 00 1. 00 1. 00 0. 0 92. 00 5.00 3 .00 167 7.15 0.25 3.60 2.42 5.97 5.97 0.10 0.20 5.17 99.90 16.8 7 212 J _ 3 . 0 0_.. 6 . 0.0. ..0 ,0 .. 5 . 0 0. _3 . 0,0 . 0. 0 . ._ 1 .00 2_7 8_. 0 0. .33 . 0_0_3 8_.J3_Q_ 28_.0 0_ jl 6 9 4.87 21.87 17.00 17. 55 6. 65 2. 25 0. 27 0. 2 5 54.42 18. 77 !l70 7215 1 3. 00 6.00 0.3 5 .00 2 .00 2 .00 2 .00 16 .00 15.00 53.00 31.00 11T1 5.63 7.00 13. 10 12. 67 4. 5 0 1. 94 0. 12 0.30 29.27 24.43  172 7332 1 3.00 6.00 0.0 5.00 2.C O 1.00 2.00313.00 9.00 28.00 62.00 173 5. 57 25. 27 14. 70 4. 90 7.93 3. 51 0.21 0.27 61 .77 18.82 174 733 5_.l 3_, Q0.„.3,.P.0_ _.Q.. 0 5.00 4. 00 . .2..0.0 1,0.0 50. 00. 63. 00. 24.00 . 1.1 .00. 175 6.22 51.35 12 .32 32.22 2.84 2 .34 0.26 0. 10 18. 66 18. 19 176 7337 1 3.00 5.00 0.0 5.00 2.00 2.00 1.00 1.00 47.00 13.00 39.00 177 5.60 11.03 18. 25 15.47 1.73 1. 25 0. 27 0. 06 25. 38 10. 55  178 7340 1 3.00 1.00 0.0 3.00 4.00 4.00 1.00 64.00 90.00 6.00 3.00 179 5.56 2.29 23. 32 39. 25 0. 59 C. 2*4 0. 05 0.05 9.92 9.82 180..... .. 7 360....1 3. .0.0 ..,_.2..,00.._..0 .0_ .. 3.00 3. 00.. 3.00.. 2 . 00.. 2 5. 0 0 .. 3.9. .P.0_48_,.0p_._l 2_._00 181 5.56 4.90 17.38 22.96 1.34 6.32 0.08 0.12 18.64 9.41 132 7362 1 3.00 6.00 0.0 5.00 4.00 2.00 1.00 5.00 46.00 36.00 17.00 1183 5.60 3.05 11.75 12.10 3.85 0.55 0.20 0.10 14.10 33.55 i184 7364 1 4.00 3.00 0.0 4.00 4.00 4.00 2.00261.00 22.00 37.00 40.00 185 5. 12 5.08 16.77 38. 76 1. 07 0.47 0. 09 0. 30 34. 70 5.52 18_6 „ 7365, 1 „4_00 2_.Q0 0.0 5 .00 3.00 2.00_ 2.00 96.00 29.00 56_.00 14.00_ 187 5. 70 5.10 10 . 77 6.67 8. 66 2. 78 0. 15 6.71 22 .73 53 .80 183 7366 1 3.00 3.00 0.0 3.00 3.00 4.00 3.00121.00 35.00 18.00 46.00 189 5. 70 3. 10 16. 10 12. 70 0.79 0.79 0.27 0.07 14.00 7.95  190 7450 1 3.00 6. 00 0. 0 5. 00 4. 00 2. 00 1 .00 5 .00 32 .00 49.00 18 .00 191 5.32 3.51 10.15 23.67 3.64 1.27 0.10 0.31 21.66 26.04 192 _ 7451 1 6.00 2.00 0.0 4.00 3.00 4.00 2.00 39.00 76.00 15.00 7.00 193 5.45 5.25 16. C 0166.00 1.70 0. 65 0. 05 0. 10 20. 75 11. 55 194 745 5 1 .1 .00 7.00 0 .0 5 .00 5.00 1.00 1.00 0.0 37. 00 44. 00 18 .00 19 5 5. 45 4. 00 11. 03 5.23 7. 95 5. 10 0.20 0.38 23.25 59.35  196 7511 1 3 .00 6 .00 0.0 5.00 3.00 1. 00 1. 00 53. 00 3.00 50.00 41 .00 197 4.85 9.75 10.27 28.50 5.82 1.52 0.22 0.15 33.37 24.10 !198 7546 1 _2,0P__6_. 00 0. 0 5. 00 3. 00 1,0 0 2 . 001 87.00 10 .00 55.00 34.00 199 5.27 11.22 12.38 49.85 4.38 1.15 0.15 0.15 41.37 15.23 1200. 7550 1 3.00 4.00 0.0 4.00 3.00 1.00 1.00 80.00 79.00 10.00 9.00 1201 4.67 5.03 16. 20 6. 25 1. 27 0.44 0.06 0.03 15.12 13.04  |202 7660 1 3 .00 7 .00 0 .0 6 .00 3.00 1.00 2.00 0. 0 13.00 28. 00 58. 00 1203 5. 80 7. 10 14. 05 12. 65 12.40 8.80 0.20 0. 10 36.80 58.25 204 7661 1 5.00 _J_JJJO__O.Q 4_.00 _3.00 2. 00 2. 00278. OjO_J>4._00__52 ,00 2_3__00__ 1205 5.12 7.10 17.20 8.37 1.45 0.45 6.01 6.19 24.32 7.60 1206 7661 2 5.00 2.00 0.0 3.00 3.00 4.00 2.00 82.00 20.00 57.00 22.00 ;207 5.90 3.60 18.37 3. 17 1. 3 2 0. 34 0. 06 0.24 1 3.30 12. 77  203 8 3 1 2. 00 7.00 0.0 5.00 4.00 0 .0 1 .00 0.0 8.00 55.00 35.00 209 6. 30 2.25 8. 53 25. 83 16. 75 4. 63 0.27 0.15 26.42 83.49 210 8 40_1_ 6.00 2 .00, 4.00 3.00 3 .00 4.00 2.00 16. 00 92.00 _ 5 . 00 _ 3 ._00_. 211 " 5. 27 3. 89 29. 10 33. 53 6. 37 0.08 0.03 0.08 19.3.3 3.67 212 8 67 1 4.00 1.00 0.0 3.00 3.00 4.00 2.00 26.00 67.00 8.00 4.00 2 13 5.62 4.07 14.27 29.92 0.23 0.07 0.05 0.07 21. 2.2 1. 90 214 8 95 1 4. 00 4.00 0. 0 5.00 4.00 l.OG 1 .00117 .00 86 .00 9 .00 3 .00 215 5 .92 5.58 15.95 50.00 13.04 1. 71 0. 08 0. 31 24. 17 63.90 216 _8120 1__3 ._00__6_.00 0.0 _5_.0Q 2.00 2 .00 _ 1 . 00 1 0 .00 55 ._00 J> 1. 0 0 13 .00 217 5.73 7.57 12. 83 68. 67~ 13". 4T'"i."32' ""o. 19 " 6. 14 ' 32~. 23 ' 47".l o" " 218 8150 1 4.00 4.00 0.0 5 .00 3.00 2.00 2. 00150. 00 9. 00 57. 00 34. 00 1219 6. 15 3. 30 11. 42 7. 50 11.44 1 .90 0.10 0. 12 20.25 67.10 -283-o o o o o o ro ro r H ro o o a o O o i n i n ro in o o o o c r o vt o ro, • o • ro • vt rvj • 1—1 • i n • r> i n c r m r H vt o rv o o O <J o r H o Is-• r- • • rv O • r H • • r — <t r H c r i—1 rv o O O o rv O m o • r-1 • c • ro. rv • CV • O i • O o o O o O O I-J o rv O rv • r—1 • o » l - H rv • r H • rv • O o o o O o O ITi O c r vt • rv • o • c r ro • ro • C V • —i o r H o O o o ca o o o O • VI- • ro • i n LA * ro, • in. • ro o vt O o i n O r H o Is-• rv • Is- • O • vt • o • CO rr, rv c r r H O O o O ro o r -  o • r - H • • H rv • rv • *n • to c r ro, r - i r H l - H o o c O vt o C V o o • ro • vt * c ro • vt • ro • f - H ro r-rv 0 0 ro rv c r r H i n in. c o • r H • r H • i - H i n n j i n o j i n c o 0 0 c o o i ! o i O o O o o o a o O o o ° | O o o o o O o o o o ro; i n CO c r i n o o in v t r-H c r o v t i r - H CM cv o o : O O o o o O ; • O o o o o o, O O o o o O ! o o o! v O m i i n in c r Is- 0 s Is- r H m v t vf i i r~1 rv v t •JO ro' i - H o o i o O o o o O o o oi o o c r O i r H o o O o o O o ro o cr o ro o I s- o Is- o ro o c r • r H rv • rv • v t • 0s- • CM • v t • o • l-H • OJ • r H • o CO • CVJ- • o o • cv a r-i • c r • ro • i n • CO • • v t • OC, tt cr c r . r H Is- or cr ro o v t r H r H rv c r o o i ro c o i n r - H o ini r- Is- Is-rv r - H rH ro r H * o in v t r-H o o c r o o O o o o o o O ! o O Is- o v t o Is- o o o m o O l o rv o Is- o OJ c r»- o t - o >£> * r- • rv * • v t • • o o • rv * 0 r - H • VJ 0 • cr • ro, • o • v t • rv • CVJ • o o r H • <*• • i n • o • o rv • i n ro cr *o ro o v t ro i n rv rv o v C tn rv CO in o m cr. CV r H r H r H r H CVJ r-H rv r H .—i ro r H o o o o o o o O i o o o o o o a . 0 s o sO O i n o v t o rv o ro o rv o O o v t O i vO o c r « r H • O • o • r H • • ro, • OJ tt r - H • r H • rvi • rv • o i—i • • rv • CV • C\J • cv • rv • m • r H 0 1^—I • rv a CO • o O o o O o o o O o o o O o o o ° i o o o O o O O CO o r l o in o cr o o o Is- o tn o o o o a 1—i oi Is- o m • C • O • o • o tt r - H • o * r - H » o • « r - H • o * c r H • rv • rv • ro • v t • OJ • rv • i n • ro • • rv • CO • O o o o O o o o O o o o c o o o o i o o o o o O o -o c o CC O c c o c r o rv o o o Is- o Is- o r-H o cr 6 r-• vt r - H • vC • Is- • cv • rv • OJ • v t • m • v O • r H • i — * vt • vt- * ro • ro • v t • ro • v t • ro • ro • v t « 0" , • v t « cv a o o o r - H OJ o f—! rv r - H o o o ; o O I O i o o o o o o ! o o rv o vO o v t O vO o ; c r o Is- o m o cr- o rr. o o o Cr- o OJ • r-H • a ; « r H • o • o » 0 0 • • • rv • r o • i - H • 0 0 • in- • in • v t • i n • i n • • ro • m • r- • MO: • r o • I s- O CO r o f - H i n o o vt rv cc Is- o o O o m o: O o s C O o o o o m o i n o C\l o O o Is- o ro. O c o • r H o • v t • i n • o •ro • Is- • r H • m • r—1 • ro • m o • O : • o • O • o • o • o • in • o • o • O i • v t • r H cn (VI c r i c r vO in rv O OJ m cr r - H cr r - H Is- l - H OJ cr ro o o ' , cv c O O i o o o rv o o O ; o 6 Is- -co r - H O m o o o v t o o o o o ro c rr- O : v t  Is-* CO • CO • rr • o a m • ro • CO • rv • • • CO • f - H • rv; • i n « r-H • OJ • rv * vO • (VI • ro • Is- • v t • CO • r~. in CVJ o r - H l - H o o v t cr rv i n r - H i OJ f - H r-i OJ r - H l - H (VJ f - H r-H rv o O i o O O o o o o o O j o o ro o; r H o l - H o o o o o Is- o ro o Is- O o o Is- O l l - H  CC • o •. v t • o • r H • o • m • o • • o • • t i - H cv • m i • r o f> v t • CO • v t • ro r - • ro • i - H « ro vO • CVJ m ro v t v t v t v t o o v t ro c CJ" rv o O 0 0 c o r o i r v o ro, O Is- rv r H r H r- O Is- in 0 0 o v t ro •JD v t v t in rv v t i r v rv i n r H • v t . • o f> ro • •xy • • i n * i n * m • i n • v t • NO • cv i n cv in ro m , ro tn ro i n ro in v t in v t vO v t m v t ir, Is- i n CO C O , o o CO CO 0 0 CO c c 0 0 CO o o . i I j o o -o r— CO cr o rv ro. v t m s0 r - 0 0 c r o l-H rv ro v t m I c c c r cv OJ rv cv ro CO; co, ro roi m ro ro ro ro - ^ f v t v t v t v t v t v t v t v t v t c v rv cv rv rv rv rv rv OJ rv rv rv rv o j ; rv (VJ OJ cv rv OJ. rv rv rv o O tn o o o i o i in: o o o O Is-. CO vt • co rv O O CO • 00 r-H • rv —* rv o C vO • rv cv • o o O cv • O vt tt o o o O • (Nl v t • o o O c r • vt ro o O i °i t O ' o ; o • in cr! . r H l r -°L 0 cr .; o vt! • 01 Is-i ro O o : vC . : — ' cv, • o o C O o o o • cr co cr O o o • o o • r-i vt r-H O C ro o , O I s-: O O o! — i • vt ro. • ' O o o o o l -O o r-. v t v t o o o o . I s-• m i • ro rv o co • m, o » m o C Lf> • CO ro • rv rv O o m • v t ro Oj rr-, • rri o i « : CO lev o ; oi cr •! o o vt, • O l O i m vt vtl . i o i l - H O c o * CO O cr oo O O O . ro. O O Is-. --o vt r i o ' - 1 o j ro vt m, rv cv rv rv o j rv rv rv rv rv cv o j i n ro ro «o • vO m CO i CO O J l , ro: o r- Is-m cr o o j ro v t i n i n m try m m m cv (VI CVJ' cv o j cv 2 5 6 J257 £ 5 8 2 5 9 2 6 0 2 6 1 9 9 0 1 3 . 0 0 4 . 0 0 0 . 0 5 . 0 0 3 . 0 0 4 . 0 0 5 . 5 4 8 . 2 8 ' 1 8 . 7 5 1 5 . 3 7 3 . 3 8 0 . 8 7 0 . 1 7 . 9 1 2 _ Q . J _ _ . _ 3 . . . 0 . 0 6 _ . _ Q 0 0. . .CL 5 , 0 0 3 _ , 0 0 2 . .0 .0 . 5 . 3 7 1 5 . 1 9 2 4 . 6 8 1 6 . 3 1 5 . 5 4 0 . 8 0 0 . 1 0 9 1 5 0 - 1 4 . 0 0 4 . 0 0 0 . 0 5 . 0 0 4 . 0 0 1 . 0 0 5 . 4 5 2 . 7 0 1 0 . 2 0 1 . 0 0 4 . 3 2 1 . 4 3 0 . 1 1 1 . 0 0 8 . 0 0 8 7 . 0 0 8 . 0 0 4 . 0 0 0 . 2 1 2 4 . 4 4 1 8 . 6 5 .. 1.. C O 4 0 . 0 0... 5 5 ...OP_35 .-OP 9 . 0 0 0 . 2 0 2 1 . 9 7 3 2 . 4 2 2 . 0 0 9 1 . 0 0 4 4 . 0 0 3 8 . 0 0 1 7 . 0 0 0 . 1 5 1 6 . 6 5 3 6 . 3 0 9 2 1 1 .1 5 . 0 0 2 . 0 0 0 . 0 3 . 0 0 3 . 0 0 1 . 0 0 5 . 5 8 3 . 4 2 1 9 . 7 7 9 3 . 7 1 0 . 3 0 0 . 0 9 0 . 0 2 . . 9 _215 _1 _ 3 . 0 0 _ 6 _ . 0 0 _ 0 . 0 _ _ 5 . 0 0 4 . 0 0 . 0 . 0 5 . 9 9 3 . 9 6 1 0 . 6 5 5 . 5 2 5 . 1 0 1 . 0 9 0 . 10 9 2 1 6 1 2 . 0 0 6 . 0 0 0 . 0 5 . 0 0 4 . 0 0 1 . 0 0 5 . 3 6 6 . 0 3 1 1 . 8 7 3 1 . 1 2 7 . 1 2 2 . 4 6 0 . C 8 2 . 0 0 1 . 0 0 9 1 . 0 0 5 . 0 0 3 . 0 0 0 . 0 5 1 4 . 4 1 3 . 3 4 1 . 0 0 1 5 0 . 0 0 J „ 5 . 0 0 63_._00 2 1 . 0 0 0 . 1 4 1 9 . 4 4 3 4 . 7 9 1 . 0 0 5 3 . 0 0 8 . 0 0 4 6 . 0 0 4 6 . 0 0 0 . 1 0 3 3 . 7 7 2 9 . 1 9 2 6 8 ? 6 9 2 7 0 27 r >72. >73 9 3 0 2 1 3.00 5.00 0.0 5.00 3.00 5 . 1 9 5 . 0 1 1 2 . 9 1 1 2 . 4 6 3 . 1 4 0 . 6 8 _2.3J4__i__7,_op_ 2 . gq_ 4.j_p 3.00 3 ,_o0 5 . 6 7 . 9 . 0 7 2 7 . 1 2 8 . 9 4 2 . 5 9 0 . 4 3 9 3 6 0 1, 4 . 0 0 2 . 0 0 0 . 0 3 . 0 0 3 . 0 0 5 . 8 8 6 . 3 0 1 6 . 3 7 2 3 . 2 3 1 . 02 0 . 2 8 2 . 0 0 0 . 0 5 _ 4 . 0 0 0 . 0 3 3 . 0 0 0 . 0 6 2 . 0 0 6 4 . 0 0 7 8 . 0 0 0 . 0 6 2 3 . 4 7 1 8 . 2 0 _ 3 .0.0 6 0 _ . C i 0 3 C i . J _ 0 0 . 3 0 2 3 . 1 1 5 . 4 2 4 . 0 0 1 5 0 . 0 0 2 2 . 0 0 0 . 3 3 2 2 . 8 0 6 . 6 2 1 5 . 0 0 4 5 . 0 0 5 . 0 0 1 3 . 0 0 6 1 . 0 0 1 5 . 0 0 1 NJ 00 - p -I 2 7 4 2 7 5 2 7 6 _ 2 77" ^ 7 8 k l 9 _ | 2 8 0 : 2 8 1 2 3 2 2 8 3 2 3 4 2 3 5 9 3 6 2 1 5 . 6 0 : 9 3 6 5 1 5 . 5 8 9 4 5 0 1 5 . 8 0 3 . 0 0 6 . 0 0 0 . 0 5 . 0 0 3 . 0 5 1 1 . 7 5 1 2 . 1 0 3 . 8 5 4 . 0 0 2 . 0 0 0 . 0 5 . 0 0 4 . 2 2 1 1 . 3 3 5 . 5 3 4 . 4 7 3 . 0 0 6 . 0 0 0 . 0 7 . 0 0 2 . 5 5 9 . 7 5 0 . 3 5 4 . 6 3 4 . 0 0 2 . 0 0 1 . 0 0 5 . 0 0 4 6 . 0 0 3 6 . 0 0 1 7 . 0 0 0 . 5 5 0 . 2 0 0 . 1 0 1 4 . 1 0 3 3 . 5 5 . . . 4 , 0 0 2 . . 0 . 0 . . . _ . 2 ,0 .01 2 1 , 0 . 0 3 . 7 . 0 0 50.00_12_.0_Q_ 1 . 8 0 6 . 0 9 6 . 1 6 1 9 . 9 8 3 2 . 8 0 4 . 0 0 1 . 0 0 2 . 0 0 1 5 0 . 0 0 1 5 . 0 0 6 2 . 0 0 2 2 . 0 0 1 . 3 3 0 . 0 9 0 . 2 0 1 7 . 1 5 3 7 . 4 0 9 4 5 3 1 6 . 0 0 2 . 0 0 5 . 0 0 3 . 0 0 3 . 0 0 4 . 0 0 6 . 6 8 ' 4 . 6 7 2 0 . 2 0 2 5 2 . 12 4 . 7 9 0 . 4 7 0 . 0 8 9 4 5 5 1 1 . 0 0 7 . 0 0 0 . 0 5 . 0 0 5 . 0 0 1 . 0 0 5 . 4 5 4 . 0 0 1 1 . 0 3 5 . 28 7 . 9 5 5 . 1 0 0 . 2 0 9 5 1 2 1 5 . 0 0 2 . 0 0 0 . 0 3 . 0 0 3 . 0 0 2 . 0 0 5 . 6 4 7 . 5 8 2 2 . 2 6 4 . 0 0 0 . 3 0 0 . 0 5 0 . 0 6 5 . 0 0 6 4 . 0 0 8 5 . 0 0 0 . 1 2 1 5 . 1 7 4 3 . 0 3 1 . 0 0 0 . 0 3 7 . 0 0 0 . 3 8 2 3 . 2 5 5 9 . 3 5 3 . 0 0 1 6 6 . 0 0 - 3 . 5 . 0 0 0 . 3 3 2 2 . 2 7 3 . 3 1 9 . 0 0 5 . 0 0 4 4 . 0 0 1 8 . 0 0 5 0 . 0 0 1 3 . 0 0 , 2 8 6 | 2 8 7 2 8 8 i2 8 9 J 2 9 0 i 2 9 1 9 5 4 4 1 3 . 0 0 4 . 0 0 0 . 0 6 . 0 0 3 . 0 0 2 . 0 0 7 . 2 2 0 . 6 1 1 2 . 8 4 5 . 3 3 7 . 1 9 1 . V 9 0 . 0 7 9 5 4 6 1 3 . 0 0 6 . 0 0 0 . 0 5_. 0 0 „ . 2 . 0 0 1 . 0 0 5 . 4 7 2 2 . 1 2 1 4 , 9 7 2 5 . 8 0 6 . 6 0 1 . 6 9 6. 1 2 9 5 5 5 1 5 . 0 0 2 . 0 0 0 . 0 3 . 0 0 4 . 0 0 3 . C O 5 . 4 5 - 5 . 9 2 2 3 . 6 3 2 . 5 0 0 . 2 9 0 . 0 5 0 . 0 3 2 . 0 0 1 5 0 . 0 0 5 4 . 0 0 0 . 2 6. 7 . 9 7 9 7 . 1 3 _ 2 . _Q.0._. . 0 , 0 L U 0 0 . 0 . 3 0 5 1 . 9 3 1 6 . 8 7 2 . 0 0 1 1 2 . 0 0 6 6 . 0 0 0 . 0 9 2 2 . 8 7 2 . 3 2 3 5 . 0 0 9 . 0 0 . 5 8 . 0 C . . . 2 9 , 0 . 0 2 3 . 0 0 1 0 . 0 0 292 9573 1 3.00 4.00 0.0 3.00 3.00 4.00 1.00 46.00 32.00 53.00 13.00 2 9 3 4.52 19.71 15.88 21.43 8.64 2.32 0.03 0.98 50.24 9.08 j29,4 -.-3<&1JL-^Q.Q-JS^M_0.£ 4,00 3,00 2 • 00_3_00 33.00 18_._00 _65.00 15.00 2 9 5 ^.91 5.97 13. 48 13.12 0.58 0. 11 0. 04 0. 16 2 6. 6 8 "3.2 9 '~ OF F I L E I ro oo cn I Table 6.3. Averaged p r o f i l e data for 50 Fraser Valley Soils Series Slope Drain Stone Hue Value Chroma RootsStruct Sand S i l t Clay pH O.M. C/N PI Ca Mg Na K CEC B.S. 6 2 70 1 2.00 5.00 0.0 6.00 4.00 1.00 3.00151.00 13.00 61.00 24.00 .7 6..08 1.49 9.97 19.08 5.20 5_._67 0...18 0.34 15.63 73.67 8 2 92 1 2 .00 6.00 0.0 5.00 4. 00 2.66 3•'. 00136.00"l 6 .00 ~63 .6o"""l9 .00 9 4.39 5.59 12. 10 3 1.57 3. 82 2. 17 0. 54 0. 32 25.25 26. 36 10 . 2185 1 2.00 6.00 0.0 6.00 4.00 1.00 2.00240.00 4Q.QQ 40.00 19.QQ 11 6.24 2.31 14. 00 3. 45 3. 74 5. 10 2. 61 0.47 15.39 82.60 12 3214 1 2.00 6.00 0.0 5.00 4.00 2.00 1.00 30.00 56.00 21.00 21.00 13 5.46 1.44 9. 92 13.42 4__66 2 .69 0^20 0 . 11 JL 3_._29_5.1_,93 14 3303 ! 3.00 5.00 0.0 5.00 4.00 1.00 2.001~50. 0 0~ 19.00 66.00 15 .00 | 15 4.71 4.34 12.53 15.43 3.59 2.40 0.44 0.15 20.87 30.99 j 16 3363 1 2. 00 6. 00 0.0 5.00 3.00 2 .00 2 .00 65.00 13 .00 59 .00 27.00 I 17 4.80 4.49 15.44 7.23 4.90 5.43 0.35 0.30 19. 90 54.08 ! 18 3364 1 2.00 3.00 0.0 6.00 4.00 3.00 2.00136.00 22.00 27.00 50.00 _JL ? ; 5_.J)6 U 0_4 15. 25 17. 30 9. 71 J .8 2_ _0. 41 _ 0_. 21_ 1 9 .14 5_8_. 9 5 20 3391 1 2.00 6.00 0.6 5.00 3.00 1.00 2.00 28.00 19.00 56.00 23.00 21 4. 83 8.26 16. 98 29.22 2. 28 1 .96 0.16 0.07 25.43 20. 15 22 4 4 1 3.00 6.00 0.0 5.00 3.00 1.00 3.00 61.00 11.00 55.00 33.00 23 5.87 5.48 12.99 6.55 14.89 5.17 0.25 0.15 38.32 53.91 24 4 60 1 2.00 6.00 0.0 5.00 4.00 1.00 1.00 30J00 14.00 62.00 23.00 25 5.27 5.94 12.02 8 7.85 2.86 1.26 0.27 0.80 26.25 22.03 26 4182 1 3.00 2.00 0.0 5.00 4.00 2.00 2.00 31.00 59.00 27.00 12.00 27 6.04 0. 76 7. 89 4. 62 4. 11 2. 28 0. 12 0. 18 10.62 56.84 28 4335 1 3 .00 3 .00 0 .0 6.00 4.00 2.00 3.00 22. 00 45. 00 38. 00 16. 00 29 5.70 1. 34 9. 17 11. 15 3.55 1 .35 0.18 0.05 11.61 44.21 30 4360 1 5.00 2 .00 0.0 5.00 4.00 3.CO 3. 00 75. 00 48. 00 40.00 10 .00 . 3.1 5.63 • 1.92 14.82 38.00 P_.25„ 0.3 0 p.. 11 0., 2 8„ _.?. ..53..1.6 ,_94 _ 32 4365 1 2. 00 3.00 6.6 5.00 3. 00 2.00 2 .00 55.00 46 .00 39.00 13 .00 33 6.44 1 .59 9.09 15.30 8. 08 2. 11 0. 13 0. 24 1 5. 13 70.60 : 34 4452 1 3.00 7.00 0.0 6.00 4.00 1.00 2.00 7.00 12.00 52.00 35.00 i 35 5.93 3 . 1 6 7.81 2 5 . 0 5 10. 74 4. 24 0.23 0.21 2 4 . 3 3 6 7 . 1 5 ! 36 4512 1 5 .00 2.00 0.0 5.00 4.00 3.00 3 . 0 0 1 9 1 . 0 0 22.00 6 1 . 00 1 5 . 00 1.37 • 5 . 9 9 _ i . J L . 2 _ 7. 38 6 6 . 75 _J,_83_. 1 .02 0 .06 0.51 10.38 3 4 . 6 2 I 38 4 6 3 0 1 1.00 6.00 0.0 6 . 6 6 3.00 2.00 3. 6 6 33". 6 6 9. 00 " 3 T . " o o ~ 50 .00 | 39 6. 1 9 1.77 10.91 5.50 7.87 3 .57 0.14 0.14 1 7 . 6 5 6 8 . 1 6 ' 40 5 39 1 3. 00 6.00 0.0 5.00 3.00 2. CO 3 .00526 .00 11 .00 57 .00 31 .00 41 6 .0 5 2.83 10.11 8.12 7. 37 3.13 0. 2 5 0. 16 19. 5 5 5 7. 87 42 5 60 1 2 .00 6.00 0.0 5 .00 4.00 1 .00 1 .00 30 .00 14.00 6 2 . 0 0 2 3 . 0 0 ..43... 5.27 5.94 12. 02 8 7 . 85 .2. 86 _ 1.2 6 0. 27 0.30 2 6 . 2 5 2 2 . 0 3 1 44 533 5 1 3 .00 3.00' 0 . 6 6.00 4.09 2.00 3.00 2 2.00 4 5 . 0 0 38. 00 1 6. 00 I 4 5 5.7 0 1. 34 9. 17 11,15 3.55 1 .35 0.18 0.05 1 1 . 6 1 4 4 . 2 1 : 46 5 3 6 0 1 5.00 2.00 C O 5 .00 4.00 3.00 2 . 0 0 7 5 . 0 0 4 3 . 0 0 4 0 . 0 0 10 .00 1 ^ 5.63 1 9 . 2 5 14. 82 3 8 . 0 0 0.75 0.30 0.11 0.28 9.53 1 6 . 9 4 \ 43 1 5 5 1 2 1 5. 00 2. 00 0.0 5.00 4.00 3.00 3 . 0 0 1 9 1 . 0 0 2 2 . 0 0 61 .00 15 .00 I S3 co .....4.9... 5.99 1.12 7.88 6 6 . 7 5 __1__3_ 1. Q2 . 0. 06 0. 51 1 0. 3 8 3 4 . 6 2 ! 50 5 6 3 0 1 2 .00 6.00 0.0 6 .00 3.00 2 . 6 6 3.00 33.00 9.00 39.00 50.00 1 i 5 i 6. 19 1.77 10. 91 5.50 7. 87 3. 57 0. 14 0.14 1 7 . 6 5 6 8 . 1 6 1 52 6 32 1 3.00 4.00 0.0 6.00 5. 00 2 .00 2.00318.00 12.00 6 0 . 00 27.00 53 54 .55.. 56 57 53 5. 40 6 1 8 2 1 _ 7 . 3 2 _ 633 5 1 5.93 6362 1 4.05 1 0 . 08 17.08 3.00 2.00 0.0 0.34 9.24 2.34 4. 00 3. 00 0.0 2.17 10.11 3 2 . 6 9 3. 00 6 .00 0 .0 6. 94 5. 00 4.5_1_ 5.00 2.36 4 .00 1.85 4. 00 3_.61 4 . oo" 1. 14 4.00 0.20 1.00 0. 10 2.00 0. 22 2.00 0. 1 o« 2 0. 1 12 2 4 . 1 0 4 8 . 7 2 .00 3 . 0 0 9 1 . 0 0 13 4. 55 98. 60 .00 5 0 . 0 0 5 8 . 0 0 06 1 1. 84 2 9 . 78 .00 4 8 . 0 0 4 1 . 0 0 5.00 3oToy 4 1 . 0 0 3 .00 11 .00 1 7 . 0 0 59 60 61 62 63 64 5. 70 2. 10 1 0 . 9 6 1 5 . 7 9 4. 19 0.70 0. 17 0. 6 4 5 0 1 3 .00 6 . 0 0 . 0.0 5.00 4. 00 1.00 2 __ .5 . . J L _ 2 « 1 8.. I.Q..15 .14. 03. .11, 59 7,55 0 .2.8 ___0.. 6 5 1 1 1 3.66 6.00 0.0 6. 00 4.00 1.00 2 5.59 3.31 8.65 16.50 9.24 5.45 0.41 0. 6 5 1 2 1 5.00 2 . 0 0 0.0 4.00 4.00 3.00 3 07 1 3 . 4 6 3 8 . 7 0 . 0 0 1 6 5 . 0 0 9.00 5 7 . 0 0 3 4 . 0 0 20 3.1. 18 . 6 4 . 2 4 _ .00 3 2 . 0 0 1 1 . 0 0 5 4 . 0 0 3 3 . 0 0 11 2 5. 62 64. 74 .00 2 7 . 0 0 5 2 . 0 0 3 4 . 0 0 1 3 . 0 0 65 68 69 7 0 71 72 5.81 1.75 11.76 38. 29 0. 83 0.42 0. 12 0. 6 5 4 3 1 4.00 6 .00 0.0 5 .00 3.00 2.00 2 .. 5. 94. ...3. 5.9 10.p?_26.2_7_ 6. 52 2.44 0.37 0. 7 32 1. 4.0 0 4 .00 6.0 6.00 " 5.00 ?'."o6 2 5.40 4. 05 10.08 17.08 6.94 1.85 0.20 0. 7 62 1 4. 00 6.00 0.0 5. 00 3. 00 1. 00 3 13 1 2 . 2 4 1 0 . 7 6 .00 6 7 . 00 2 0 . 0 0 5 8 . 0 0 . 2 1 . 0 0 22. 20..50 56 ,30_ • _ . 00 313. 00 12. 00 6 0.00 2 7 .66 12 2 4 . 1 0 4 8 . 7 2 .0012 7.00 3 .00 56 .00 3 4 . 0 0 o o O o iO o o i O c o CD o • • • ft ft ft CO r - H vO rO ro vt r-H ro, r o O o O O O O O o O O o O L P CO O CM vt vO ro ro O J L P O o o O o O co o o o L P a co c ro, c v t a CT • vC. « r- 0 r- ft O J ft r- 9 • r H a r-H • rr. • o • r-H • cr vt cr co r-H r-H LP , cr v t r - H r—1 v t C O v t CM v t o j ro vO o o o o O m o LP, o r-H o v t o I P ' , o Ovi o LO • LP: • C~J • cc- ft cr- ft v© ft • ro • ft o « C D • O J • O J st'<r CO r-H C J a CO in OvJ Ovi S t r-H r H Ovi OJ O a o o o o a; O ro a HJ o •4C o •a o •—f c o • r-H # O J ft o ft r-H ft r H ft • • 1 • ro ft Ovj ft oo. • O l ft Cvi o o. O o o o o o o O o o cc o vf) O Ou c LP. o r H O r- • r-H • X • P J ft L P • v t • s Ovi • f - H ft CM • ro ft • CM a o • o G o o O o O o o o r H O r H c ro O v t C v t o LP, o CO • •c ft 0 0 • r H e LP, • v t ft • L P • ro • L P ft v t • v t ft ro ro mj • CC' >—1 I P L P O o o o c O O c r-H o 0> a vO o vO o v t o ro • LP, • O l ft ro ft ft O J ft • LP. • ft LP, • L P • vf i « L P in •rr CM ro cr rv j o vt.'o r H o cr o O o o o r-l • CO • ro ft - 0 ft 0 0 • in ft • o • o • o • o • o o LP. Ovi ro CM v C Ov] on r H o o o o <*—> c Is- stlo CO a r - j o ro. c L P o O • Ovi, • ro • .—, ft 0 0 • vO ft a Ovi • v C • r o ft r o ft • OvJ o cr Ovi o r O 0 0 r-H r—i ,—1 r-H o io O O o o cr o v t o v t O r- c Ovi o r—< o •O • CO! t O l • —H ft LP, ft ft • ro • ro, • m ft oo • ro • 0 0 OJ cr OvJ r-H ro r-H r-H r-H r-H r-H r H v O CM; v O ro, CO cr r-H CM roicM cc L P cr vO r- r H m OvJ • C C • ro • ro ft v C • r H • C O r H r - : r o LP, ro, L P ro L P LP . LO r-H r- r~ r- r - r- CO ro st LP. ^O r- cc P> o r-i O J ro - t r~ r- r- r~ r-- r~ r~- CC C O C O CO cr - 2 8 8 -o O o o I io O o o o o jo o • ft ft • • • o •o vO in, - ' r H v f r H CM r H '• OJ r H o o o o •o O c o o o 1 O O o cr vf vO Iro O vf LP r H v Q I* LP o o o O io o CT o vf c r—1 o H o u-vc Ovi O cr —H ft cr • CM • CO ft Oi • o • LP, ft CO • vt o CO ft cr • i in ft LP, a r H v f v 0 r H oo r- r H H cr -H r-H 0" ! ro r~ r H r- r H ' vO o o O : o O o o ro C o o r» o o' o LP, o r-•JJ ft LPl ft Ov! o o • •43' • O J ft O J ft LP • o • o • o « O • r*~ o • 0 r- CT v t vO cr O J 0" ; ro, LP r H r H Ov,, '—' r H Ovi o o a c C j o v t c 0 0 o ro o s T c ro' O vLi O ro r - l ft o.1 ft O J e r-H • r H ft r H ft r—i ft Cvi • Ovj • ro • ro • CM ft C O ft o o o O o o o o o O O cr o r H o r H o CM C o'o LP o to o • r H ft r H O • r H • r-i • o • ro ft r H ft m • r-H ft.O • v t ft o o o O Oj o o o o o O i o o o O o o v f o CO o cn o r H o vO o ft ro • f - • o a - f i • O ft r H ft v f • v f • vt • v f <t ft ro ft r H o OJ o o: O J o o o o o i o O 0 0 c LP o vO o r H o cr^o r-H O cr-ro ft O - • cr- • O J • r-; • O • o • m • « v f ft ft ro a ro-, c r- O CM: LP r H o i i O o- a o o r» o O J o - H ' O O j o m • o • ro ft vt • v f ^ • O « ro • o ft o » CO t o •'• o ft LP, « ot CO Ovi ro o IP-. v f rO r H CM: o o o o O O •vt O Ovi o vt o vt o col O O J O vO co ft CO ft o ft C J ft r H l ft CO ft v t ft OJ ft r— ft ro • v f • : vo ft rvi • o vt o vO 001 r- r-r H H r H OJ 1 O J C J o o o i ° C - H O in o o o OJ o in ! o co o ro O • OJ ft • r- ft in; • in • • ro • r H * vO • v f . ' ro • • a o CM C O : r - l n r H r H r - H r H r H i r H r H —-. ro v O v f o-' O J f—H O vO LP o ro in CM v 0 | LP. r H vt • vC ft LP. ft vO • rO • ' - H • o • vO m LP. vt vO vO in m ' p j vO ro, LP, oc 0 0 CO cr cr I cr I P vO r~ CO cr o r H OvJ ro s t i n O r-CO CO oc- CO co o- cr cr cr-: cr- cr cr Cr o i O O i IO o o O i o • • ft ft • L P ro LO i vO r H I r H H O j : CM o io o o i c CJ iQ o o iO ro .' r H L P o i O j vt LP, vO ;so o i o o o f O o 0 0 : O o o OC o o j O S t 0 vt ft ft L P • co'. • O r - H . r H • OJ ft ro . ' ro ft Ovi ro. vf cc ro in r H O r H o OJ ro st; ro c 'O o o l a o •O'O o ro o A C i - r-~ ft o.' • vf • vt ft s t « O LP, . oc ft o • o • . 0 " ; • ro - d ' vt ro T O in -f' cr O j r-H r H r H r-i r H r - H ' CO o • CJ o i O c: CC' O o o CO 'o S t ft —-j ft o ft . — i ft r H • O J vf ft r— ft ro • OJ ft Ovj ft O: o o O O o :o o o ,o o IP'.i o o CO c co, o in • o, • •—t ft c ft o ! • rv o i ft OvJ » ro ft r H • i r H • o : o o o. o o , o O o O o r H O o o <t o O-O o ft •—1 ft r- • •—1 *• S t - • LP. ro ft' vf • vf ft NT •' vf ft o. o r H r H Ovi o : o o o •O o r - ~ 0 cr c cr o cc- c oo ft o-, • r H ft J 3 • r H ' . o CO • L P ft LP, •,vC * C " vf ro sf; L P O O J o cr o ro c cr-:o vO • f M • ft • C M ' . vO o • ,o • o • o • i O ft CO LP, L P r -H cr-r H 1 r H o ; o c o io o O o vO c o o oo; o r - j ft C M ' • 0"' ft vO ft LP. . r - H O J •ivO • OvJ ft vO ft vf; o CC cr; ro, i—i. r-i 1—1 o io o o 1 O 6 r o ' c o o f - o r~l' O o • r-; . r H ft ft r r y - . L P vt • rO ft vt ft ro, • ro ft ro. O J r H r H ce , _ H i r H r - H r H i r - H 0 0 ; o L O r-i O J o P - ' r v J tn o o O' vO co J j • : vO * vO « tn • ' S t « O ' I P ' ro L P ro -0 vt vO-LO. LO cr 'cr | cr cr jo j LL; _ J i r-i lu CCj cr! O r H Ovi ro S t LO! VC r- L L cr o- o o o o o o : o ; . o r - r H r H r H r H r H r-i r-H ... o -289-APPENDIX VII Cluster Analysis Output for 35 Fraser Valley Soils Figure 7.1. Cluster analysis on surface 12 inches f o r 35 s o i l s C N 1 1 1 2 2 2 2 3 •3. 1 3 2 3 3 1 1 1 2 1 3 2 1 2 1 A . 1 3 7 7 1 4 _, 2 s 0 1 .j a 2 0 1 o 5 5 2 4 0 Cj 6 9 9 4 9 2 5 3 7 5 8 S L A _ r [» 7 4 .5 / *"T 4 "X 7 .9.. Q 1. i ( o r> Q 3 9 / 4 7 4 q 3 4 3 2 .7 c 4 E 0 6 6 W 4 " ! u Kp * ) o 0 0 3 3 2 3 3 0 o -> ~> 3 3 1 4 Zv 4 3 1 3 0 0 L 3 3 r , 5 6 ]_ 1 6 3 3 3 6 1 9 4 3 9 3 3 3 3 P, 5 5 5 6 . 8 6 6 6 o 0 r> 4 ct 0 3 • •> / 1 1 5 7 7 -> i' 2 ? 5 1 6 ? G 5 K 5 2 r> 5 2 3 5 6 0 0 _ A MA LG....._ DISTANCE •f V — -r- IT* -A. T v'j- Jr-T> V „v j , a. 'C T T - V T- 'r * * -A. vt. ~J* <Ar *Xr -JU v l * «Jk» _U 'I- ^p. ^ *,* ^ rf. Tf. I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I 0 .0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I T I i I I I I I I I I I I I I I I I . o . o .1 X. I_ .J... X X .X J.. .I_ .1 - _ I . . I _ .1 1. I I I J . J. T T .!•. \ .1 - -i— i . j . . i . x . i . X . X . J i : I I I I r i i I I I I I I I I I ! I 1 i l 7 I i i l i i i i i i i 0. 0 I T I I i i I I 1 I I I I I - + - I •I I i i I I i i i i i i i i i i I I I I i i i I I I I J I I I I I I i i [ J i i i i r i i i i i 0 .0 I I I I i i i I - 4 ~ I I I I T I I I T J I ] ] I I I I I I I 7 j I r I I r r 1 i i I T 1 I I I I I I I T \ I I I I I I I I I 'I I : l . 2 9 8 _ I. X X X T L. T T_ I.. -+.-_ T . . A . . I.. .1 ..I r l I I ! I I X. X X X . X I....-I I I I I I I I I I I I 1 I I I I I i I I I I I 1 I I I I I 1 . 2 9 8 I I I I I I I I I I I I J I 1 I 1 T I I -+- 1 I I I I I I 1 I I I I I I I T I I I I I I I T 1 I i I I I I I I I I I I 1 . 2 9 8 1 - + - I I I I T I I I I I I I I I I i J I I I I I I I I I I T I I I I I I I I r r I I T r ! 1 I. I I I I I I I I I I 2 . 3 3 9 I. .[... L. I_ ...I.. T -1. I _JL -- + - i i I I J . I. . r. J I I I I I I I I I I I 1 I I T I I T i i I I I I i I I I I I I I I I I 2 . 5 3 4 I I I I 1 I I -- - + - i i I I I I i I I I I I I I I I I F I I I I I i i JL J . I x 1 i I I I 1 T I I T I I 2 . .2 . . 2 . 6 1 6 I I I J - + - I 1 7 2 6 84: I I I I _.I I I I.. I I I I I I I I I I I I I I I J I_.„.J_ I I . I I I — i I • I — + — I 2 . 9 6 7 I - + — I I I I I I 3 . . .C .Q9 I __I J. JL I I I - I 3 . 0 6 4 + - ' I I I I I I I I .3,. 3. 1 7 9 ..22.8. 3 9 9 I I I - + - • I I I I I ...I JL. . 1 I — • I : I 1 I -+ -, 3 8 3 . 4 6 0 5 2 9 3 . 3 . 3 . . 3 . . 4 . 5 8 0 3 9 5 61 7 6 3 1 6 2 6 . 1 0 5 -+ I •: i — + : i -H> I -+ - I I _ J I I - - r - t - : I - + -I ...I.. 1 I I I _l_ I I I I I — + • I I I I — + — I I I L i ro co M 1 - + -I - 2 9 2 -vt l-H | O C V I S -CC C\J C\i cn r-: —• + 4- — t + — I . I Qv O' a- cc. cn —: CC' C vt cr o Figure 7.2. Cluster analysis on selected average data f o r 35 s o i l s C-N • 0 ' 2 . 1 2 . 2 2 3 1 2 1 3 3 1 2 3 1 2 3 11 3 2 1 1 2 1 2 A . 1 4 1 2 7 4 8 2 1 3 3 4 0 6 5 2 1 0 2 9 6 3 0 6 " 4 9 7 3 5 5 5 8 7 3 S I .£„.J3 2_3_J>_...4_A-...7_J__.6._.9. .i?_7_..5„_9_ 3.._9;,.2...4. 6..9..6..7._ 9 .4 5... 4 .9 .8 , .5. . 4 _ 3 J. . 5 .4. .7 2 P 0 3 4 4 0 0 5 5 2. 0 0 0 0 3 5 0 3 3 3 3 3 3 3 3 1 4 4 6 6 3 3 0 0 3 1 L 7 0 5 5 0 6 1 1 1 3 3 3 3 9 4 9 6 6 6 3 .3 6 3 3 3 5 5 3 3 6 3 .6 6 6 8 0 3 0 2 4 2 1 1 5 2 2 9 ? } 6 2 5 2 2 5 5 5 5 5 2 0 5 0 0 3 2 0 0 6 5 ..AMAL._G_. DISTANCE . • -JL. y_ 2 _ »>*> U ' .A, - J , J . A . JL, -A, .A, ««. «JU • 1. -k- Jy Jy -J» -v- r^C- - J , • I I f I f T 1 *•<*• - ""i* I I I I I - r *v i I I I ] r - i - *f - r -v- - or- T I I I I I I I I •V -»» '»v It ' 'f I I I I I or * v I I I - r T T Of -T- 1-I I I I I I 0.0- I I . I I I I I I I I I I [ I I I I I I I I I I" I I I I I I I I I I '. I I .1 I I I I I I I I I [ I I I I I I I I I I I I I I I I I I I I I . _ 0...0. . : i : - J " _L 3i_ _L .J...J_ I I I 1. L I 3 I I I I I I I I I -- + -_ I I I I I I I I I I i I I I I I I I I I I I ] I I I I I I I I I I I I I I I I I I I I o. o : i I 'I .1 l I. I I I I I I T i l l -+- I I I I I I I I I I I I I I i I I I I I I I I I I I 1 I I I I I I I 3 I I I I I -I T I I I I 0.0 I I I •I I I -+— I I I I f I I [ i I 1 3 I 3 I 1 I I I I I I I I . I I .1 I I.I I - I I I I I I I I I I I I I I I I I I I I I I I I ] ...29.8 I . 1 .1... ..X ,J.;J. I. I__ - +- I . ! I f . I I, 1. 1 J .... I I __ •I I. I. I I I I I I I "I I I I I I. ... .. , I I T I I I I I 1 I I I I I II . I I I 1.298 I I I I I I ' I. I ' I • • .1 1 I I I I I -+- I I I I I I I I I I I I T I I I I I I I I I r I I I I I I I I I I I I I I I I I I 1. 29 8 I I I I I I I I I I t I I I I I I I I 1 .1 I - +- I I I I I I V I I- I . 1 1 r i 'i I I I I "i I I I I I I I I I I I I ,.1,J93,__.J_ ...I. ;.I. JL I _I' I I i i . L..L J._.L.L_J I J_ . - + — .1 .1 I. ... I I. I I. ..I , I I I I I I I I T I ] I I I I I I I I I I I I I I I I 2.305 1. I I I I . 1 : 1 I I I -+- 1 1 1 I I I I I I I I I I I I I ' I •I I I "' T " T 1 *• I I t I I I I I I I T .1 3. I I I I I ?.52 4 - + - I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I rI"~Ii r T rT I~~I i i ~ i i ~ i i I T i i i i T i 2 . 7 0 1 - + — I I I I I I I I I I I I 1 I I I I I I I I I . I I T I I I I I I I I I I I I T I I I I I I T  2 .76 5 I I I I I I I I I I I I I + — I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1" I I_ I I I I I I I I . + - - I I I I I I _ 1 I i I I I I I I I I I I I I 1 1 t I I 1 I I I 3 . 0 C S - + I I I I I I I I I I I ' I I I I I I I I ; I I I I I I I I I I I I I I I I I I I I  i 2 .934 I I I I I I I I I I I I I I I I I I | I I I I I I I I I I I I I I I I I I I ^ \ 3 " 2 6 1 i i r =T^~J 1~ " i ~ i ~l~ ; g ! 3. 494 I I I I I I - + - - I I I I I I I I I I 1 ! I I I I I I I I I I I I I I I I I  i 3 .53 8 I I I I I I I I I I I I I I I | I I I I I I I I I I I I I I I I ; 3 . 652 _ J _ _ ' I _ _ I __I I . I... : :z: T + ~ ... . .. ..I. I J I . I I... I I I I I I I I I I T I I I I I I 3 .711 — + I I I t I I I I I I I I I _ J I I I I 1 T I I I I I I I __ _ 3. 4 89 - + I T I I I I I I I I I I I I I I T T I I I I I I I 3 .55 0 + I T I T I I T I I I I I I I . I I I I I I I I I I 3 . 4 9 7 - + J I I I 1 I I I I I I I I T I I I I I I I  1 I ' I • I I I I I I I I 3 . 7 6 9 I _ . . . 1 , - . + - I I I I I I , I I I I I I I I I 4 . 0 1 9 + I T I I I I I , T I I I I I I I -295-CC CO. s£ <; o O vt. IT' + + I in; —•: O ir cr o vt o o Figure 7.3. C l u s t e r a n a l y s i s on averaged p r o f i l e data f o r 35 s o i l s 0 3 3 2 2 2 1 2 2 1 1 3 2 1 3 2 3 1 3 1 1 1 2 2 1 2 1 A . 1 4 1 1 2 3 2 9 4 7 3 7 5 6 5 4 2 3 6 0 0 2 1 3 0 6 9 6 9 7 4 5 5 8 3 1. A B ...? 9_.9_.6. ._6.J...4_'1...7 5_.4_4:.j9.. 3 ,3. .3. 2... 7„_.6... 9 ..6 ...9 ..4__9_ 4. 5... 6 .7 ..4.. 7 . 5 7 5. .4 2... E 0 4 2 4 5 5 4 4 0 6 6 0 5 3 3 3 0 0 0 0 3 3 3 3 3 3 3 3 1 3 0 3 0 0 1 I. 7 5 1 5 1 1 5 5 6 3. 3 0 4 9 6 0 9 3 3 3 6 6 6 6 3 3 3 3 8 6 3 3 6 6 8 0 0 5 0 1 1 2 5 2 0 0 4 6 1 3 3 2 2 2 2 2 2 5 5 5 ' 5 5 5 2 6 9 2 0 0 5 A M A L G . . •__ • _ _ _ ' _ _ 1 DISTANCE " • ~ " ~ ~ "~ ' "7 S * * * * * * * * * ^ * *!» •'r -Jr- «.!» -if *tr- V>V •*T* *\V *f * * •JLr -Ap -rl* f -t> T -wo -.1, >ty -JV u . -Xr f * * * * I I I I I I I I i I I I I I I I I I I I I I I I I I I I I I I I I I I 0. 0 I I I I I I I I i I I I I I I I I I I I I I I I I I I I I I I I - +- I' I I I I I I I I i I I I I I I I I I I I I I I I I I I I I I I I I I \ 0 . p J__L_J- .1.. T.._I_ I I i I I I I I I . I _ I_1_L_J. .J_I I I - + - I I ,I__L I I I I T T T I I I I I i I I I I I I I I I I I I I I I I I I I I I I I I 0 . 0 I I I I - H— I 1 i I I I T I I I I I I I I I I I I I I I I I I I I I I I I I I I i I I ' T T r I I I I I I I I I I I I I I 1 I I I 1. 29* I I I I I 1 I i I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I i I I I I I I I I I I I I I I I I I I 1 I I I I ... ... 1. .2 9.8 J-..L.L _, ._. I .1 . L. _ L .~.±.r_ I J J i_ I I i i I I I I I I I J....L I I I I I I I I I " i " r I I I I I I I I I I I I I 1 I I I I I i I I I 1 . 519 I I I I T i i I I I I I I I I I I - + - I I I I I I I i I I I I I I I I i i I I T i l l I I I I I I I I I I I I i I I I 1 .723 I I I I - +- - i I I I I I I I I I I I 1 I I I I I I i I I I I I I I I i I I I I I I I.I I I I I I I I I I I i I I I 2 .. 1 8 7 I.I I. . L I... i .1 1 J I I... I I i i i _ I I I I - +- ..I. I. ..L I ' I I _ ' I I I I I i I . I I I I I I I I I I 1 I I I I I 1 I I I •  2 . 4 0 7 I -+ - I I i I I I I I I I I I I I I I I I I. l I I I • I ?• • I T I T i I I I I I I I I I I T I T I I I I I I I I -297-i I + i i i + i i i i + i •—' •—' | ! + '; i l ! I i r - l | , o m IT, in. m ro I S -vt co ro IS-0") 4- t—' I—.' r-4 I + I I CP r-l ro -j-j C O ; I I + I I I I I I I I + + I in r-H r\ji ro r-l Is- r—1: i—t in. vt vO: m ro CT-, ro vD +- »-i i! r—1 H CO r o . vt O O r-H O , o : vt vt. vT J , -298 + I + I 00 • 0 ; r<"i rv r— o a: -299-APPENDIX VIII Hie r a r c h i c a l Grouping Analysis Output for 35 Fraser Valley Soils Figure 8.1. Hierarchical Grouping Analysis on surface 12 inches for 35 s o i l s P A R A M E T E R S NO. O F V fiP TABLES = 2 0 P R I N T O P C U O S W H E N N O . O F G R O U P S = 2 0 K S = 1 ( = 1 , S T AM DA P 0 I Z F. OA TA )  KT = 0 ( = 3 . , T R A N S P O S E M A T R I X ) N O . F O R M A T C A R D S = 1 N AH ~ I ( = 1 , S U B J f C T NA.M!=.S_ JQ„ 8 g R F A Q , IN) P R I N T S E L E C T I O N V A L U E S W F E N N O . G R O U P S = 2 0 NO. S U B J E C T S = 3 5 3 4 G R O U P S A F T ER C O M B I N I N G G 8 CN = 1 ) A N D G 1 5 { N = 1 • E R R O R . 0 . 0 3 3 G R OU P S A F T E R C O M B I N I N G G 1 0 <N= 1 ) A N D •G 1 6 l.N = 1 E R R O R 0 . 0 3 2 G R O U P S A F T E R C O M B I N I NG G 2 0 (N = 1 ) A N D G 3 2 { h<~ 1 r * E R R O R — 0 . 0 3 1 G R O U P S A F T E R COM B I N I N G G 2 2 ( N = 1 ) A N D G 2 8 ( N = 1 • E R R O R zz. 0 . 0 3 0 G R O U P S A F T E R C O M B I N I N G G 1 8 {N= 1 ) A N D G 2 3 ( N = 1 ! • E R R O R zzz o. 8 6 7 6 2 9 G R O U P S . ^  r TER__C.OM.RJ_ N I_NG_ G 1 9 ( N = 1 ) A N D . G . . 2 6 _(_N = . 1 '„ • _ .F.R.R OR zzzz 0 . 8£.7J> 2 3 G R O U P S A F T E R C O M B I N I N G G 1 3 { N = .1 ) A N O G 1 7 '( N="" 1 • E R R O R — 0 . 8 6 7 6 2 7 G put!PS A F T E R C O M RT N I N G G 1 8 ( K = 2 ) A M D G 3 0 ( N= 1 E R R O R — 3 . 9 1 1 1 2 6 G R O U P S A F T ER C O M B I N I N G 4 ( N = 1 ) 4 NO G 2 1 ( N= 1 • E R R O R - 3 . 9 3 4 9 2 5 G R O U P S A F T F . P COM 3 IN j MG G 2 5 ( N= 1 ) AN D G 3 5 ( N = 1 E R R O R 4 . 9 9 6 6 2 4 G R O U P S A F T F R C 0 M 6 I N T NG G 7 ( N = 1 ) A N D G 2 4 { N= 1 E R R O R •zz 5 . 9 5 8 4 2 3 . GROUP_S - .AFT.ER_. C O M B I N I N G G 9 { N = U._ A N D G 1 0 . t .N=_ . 2U .£E_B_ae_= . .6. . . 5 4 5 2 2 2 G R O U P S A F T F R C O M B I N I N G G 2 ( N= l ) AM D G 2 2 (N = 2 1 • E R R O R — 7 . 1 2 6 0 2 1 G R O U P S A F T E R . C O M B I NT NG r. 1 3 ( N = 3 ) A N D G 3 3 ( N= 1 E P R O P 7 . 4 0 1 3 2 0 G R O U P S A F T E R C O M B I N I N G G 1 ( N = 1 ) A N D G 1 3 ( N = 2 ) . E R R O R = 7 . 6 0 6 8 G. 1 . ( N = . 3 ) _ _ 2 0 70 4 6 3 0 . . . . . . 5 6 3 . 0 . . . . . . . . _ G 2 ( N = 3)~ 2 0 9 2 6 5 1 1 7 5 1 1 ~ " ' G .3 ( N = 1 ) 2 1 8 5 G 4 (N= 2 ) 3 3 0 3 6 4 5 0 G 5 ( N= 1) 3 3 63 G 6 ( N = 1) 3391 G 7 ( i\|= . 2 1 . 400 4 .7062 G ,3 ( N = 2) 4060 5 06 0 G 9 ( M = 3) 4182 43 3 5 5 3.35 G 11 (N= 1 I 4 3 65 G 1? ( N = 1) 44^2 G 14 (i\! = 1 ) 5039 G 18 [ N = 4 ) 032 . 7 03 2 £03.2 aj6 5._.. G 19 ( N = 2) 63 3 5 .73 3 5 G 2 0 ( N= 2) 6 36 2 9 36 2 G 2 5 (N= 2 ) 7 2 3 2 9 546 G 27 ! N= 1) 7366 G 29 (N = 1 ) 8455 G ...31... (N= 1) ...9215 G 34 { N = 1) 9450 19 GROUPS AFTFR. COMBINING G 31. ( N = . - l ) ANO G 34 (N= 1). ERROR = 8.9933 G 1 (N= 3) 20 70 4630 563 0 G 2 ..( N = 3.L_ . 2092 6511 .7 5JL 1_ G 3 (N = 1) 2 185 G (i\> = 2 ) 3303 64.50 G 5 ( N = 1 » 3 3 6 3 i c, 6 (N = 1 ) 3 391 G 7 ( N= 2 ) 4004 7062 G 3 ( N= 2) 406 0 5060 1 G 9 (M = 3> 4182 4 33 5 533 5 G 1 1 { N= 1 ) 4365 G 12 ( N = 1) 44 5 2 G 14 ( N = 1) 5039 G 1 8 ( N = 4 ) 60.32 70 32 903 2 9365 ;. G .19. (N.-_.. 2.) .....633 5 .733 5 G 20 (N= 2 ) 6362 9362 1 G 25 ( N = 21 7.3 3 2 9546 G 2 7 (N = 1) 7 366 - 3 0 2 -vt II ex: Ci c i CC U J _C ro o rr--c IP, . r H o 1—1 ! rr- r-H •C L P , i • e> vt IS-; o in. r l O ; rv i n f—4 .—! rnj •4- 2T rr, if, vt. o cr- ,—i vt >C vj- r-cn _> i i n m, 6 c rv m ro' ro r - H vt i n r H i_j r- CT CO o', -O CT o Q O r H ro' rp ro on cr a: p.- CM f'i CP ro vt i— LL CV vr CO r-H cv r H r H L/") CL il H _2 n II II II II II II C '2* 7:1 *r.'.. — •— - — — — • — — — r H — r H Cv ro vt ir- IS-CV CO co r - H o o Cc? O O es in, ro, ro i n O m * 0 ro o co i n < t in o ro cr rv ro o CT, ro, ro o ro r-- r-O rvi rv 0 s cv cn o cc; ir, ro ro. ro o r-H vt: o o ro vt vt vt! i n vO o rv ro H| r H v t rv 11 II II: IJ II II II II j i . II II _c" 21' — — -— — — ' —' — •—^  •— — CT r j -r CO cr O in. IS-' IT r - l r H r H r - H r - H <M cv O j iVl rri o CP C5 o o CD a a' '.3 o CV1 vO ^0 vt ro i n o> 0s-c LC. vt 0 s rv rv o i n m H J ro vO, m <-i co r<- ro, <t cv IS- r~ a", rp C V J CV! r H r H (VI vt IT. • 0". a: C a:, oc U J in (Vi o o o ro li -o 2: i r c-i r-H vC' i n ro' i—1 vt CO -0', m U s . ro CD <tj Is- CT IT'. 1 | r_." tn r-H O CV rv o LP, r n r-H IX' ro vC- ro iC, m; LT, vt ro o o ro y— -o L^- IS- IS-! LP, vt CAj | a o' O J m rr. ro r-H vt o rv CV o IS-: CT OC O <T O CO i n O f-H ro ro. fOi o r H vt o' O j eg CvJ CO CO vt vt vt VT U.i L 1 IA. 1 <T vt" ro f—l (V, r—i rv CV ro .—l i/: Q- ! 13 II H II II II li II II jl II O *rC 'jr". z —* —• — -— —• •— — r-H rv rr. vt LTl Is-' CO o-Is- r - ' r-H c? 13 O O O CD e O L3 C3 G 14 (N= 1) 5 03 9 G 18 (N= 4 ) 6 03 2 7032 903 2 " 9365 G 19 {N = .2.) 6335. . 7335 „ G 20 (N= 2) 63 62 936 2 '.- ''• " G 27 (N= 1) 7366 G 29 < N= 1 ) 8455 G 3 1 ( N = 2) 9215 94 5 0 16 GROUPS A F T E R C O M B I N I N G G 7; (N= 2) A N D G 14 ( N = ' 1 f . ERROR - 10 . 69 5 7 G 1 (N= 4) 2070 436 5 463 0 563 0 •• 0 ? ( N _ 3 ) 2 09 2 _ 6 5 1 1 _ 7 51.1 G 3 ( N= 1) 21 E5 ............ G 4 (N= 2) 3 3 03 ' 6450 G 5 <N= 1) 3 3 63 G 6 (N= 3) 3391 7332- 9546 G 7 ( N= . 3 ) 4004 5039 706 2 • • • • G 8 (N = 2) 4060' 5060 ' G 9 (!S!= 3 ) 4182 433 5 - 5 33 5 G 12 ( N = 1 ) 4452 _ _G 18 (N= 4) 6032 ...7032 9Q32 . ? 3 b 5 _ G 19 ( N = 2) 6 33 5 7335 ., G 2 0 ( N = 2) 6362 9362'.' ' ' ' ' " ' G 27 ( N = 1) 7366 " ' G 29 ( N = 1 ) 8455 G 31 (N= 2) 921 5 94 5 0'. 15 GROUPS A F T E R C O M B I N I N G G - 9 ( N = 3) A N D G 19 ( N = 2) . EH POP = 12. 1 49 7 G 1 ( N = 4) 20 70 43 6 5 463 0 ' 563 0 G 2 (N = 3 ) 2092 65 11 7511 G 3 < N= 1 ) 2185 • . ?- . .-.' . G __4...{.N=__ 2) .3.30 3. :._64 5.o;;  G 5 ( N= 1) 3 363 j G 6 ( N= 3) 3 39 1 7332.'' 9546 G 7 ( N= 3) 40 04" 5 0 3 9 . 7.06 2 G 3 { 2 ) 4060 5060 G 9 ( N = 5) 41 82 43 35 5335 6335 7335 i G 12 (N = . 1) -V»5 2 ' ' G" 18 ( N= 4 ) 6032 7 03 2 903 2 9365 G 20 <N = 2) 6362 93 62 G 27 1 N= 1 ) 7366 G 2 9 ( N = 1 ) 3 4 5 5 G 31 ( N = 2) 921 5 94 5 0 14 GROUPS AFTER COMBINING G 29 { N= 1) AND G 31 l N= 2 ) . ERROR = 14.8221 G . 1 ( N= 4 ) 2 0 70 4 3 6 5 46 3 0 563 0 G c ( N = 3 ) 20 9 2 6511 7 511 G n ( N = 1) 2185 G_ (N= 2) 3 30 3 6450 G ~5~ ( N- 1 ) 3363 G 6 { N= 3) 3 3 91 7332 9 546 G 7 (N = 3) 4004 5 0 3 9 7062 G 8 ( N= 2 ) 4060 5060 G 9 ( N = 5) 4182 4335 5335 633 5 733 5 G 12 ( N= . 1 » 4 4 cp G 1 8 ( N= 4) 6 0 32 " 70 32 9 03 2 9365 20 { N = 2) 6 3 6 2 93 6 2 G 27 ( v = 1 ) 7 3 66 G 29 ( iV= 3) 84 5 5 9215 945 0 ._ 13 GROUPS AFTER COMBINING G 4 (N= ', G 1 (N = 4) 2070 4365 4630 5630 G 2 (iv= 3) 2092 651 1 7 51 1 ) AND G 7 (N : 3 ) . ERROR 15. 2852 218 5 3 3 08 4004 5 039 645 0 7 062 3 3 63 G G G G G 3 4 5 6 8 9 ( N = ( N= ( N= ( N= (,\>= ( N= I ) 5) 1 ) 3) 2) 5 ) 3391 7332 9546 40 6 0 5 06 0 4182 4335 5335 6335 7335 G 1 2 { N= 1) 4 4 5 2 G I B ( N = 4 ) 6 0 3 2 7 0 3 2 9 0 3 2 9 3 6 5 G 2 0 ( N= 2 ) 6 3 6 2 9 3 6 2 G 2 7 { N = 1 ) 7 3 6 6 G 2 9 ( N= 3 ) 3 4 5 5 9 2 1 5 9 4 5 0 1 2 GROUPS A F T E R C O M B I N I N G G 2 ( N = 3 ) A N D G 1 3 ( N - 4> . E R R O R = 1 6 . 2 6 3 6 G 1 ( N = 4 ) . 2 .070. . . 4 3 6 5 4 6 3 0 5 6 3 0 G 2 ( N = 7) 2 0 9 2 6 0 3 2 6 5 1 1 7 0 3 2 7 5 1 1 9 0 3 2 9 3 6 5 G 3 < N= 1 ) 2 1 8 5 G 4 ( N = 5 ) 3 3 0 3 4 0 0 4 5 0 3 9 6 4 5 0 7 0 6 2 G 5 ( N= 1) 3.3 6 3 G 6 ( N = 3 ) 3 3 9 1 7 3 3 2 9 5 4 6 .._G _..8_ ( *.r . 2) 4 0 6 0 5 0 6 0 G 9 (N= 5 ) 4 1 8 2 4 3 3 5 5 33.5 6 3 3 5 , : 7 3 3 5 G 1 2 ( N = 1 ) 4 4 5 2 J • • G 2 0 ( N = 2) 6 3 62 9 3 6 2 ..... . G 2 7 (N= 1 ) 7 3 6 6 G 2 9 ( N= 3 ) 8 4 5 5 9 2 1 5 9 4 5 0 . - '. V . 1 1 G R O U P S A F T E R C O M B I N I N G ' G. 4 {N= 5 ) A N D G 5 <N = 1) . E R R O R = 1 9 . 4 4 6 2 G 1 ( N = 4 ) 2 0 7 0 4 3 6 5 4 6 3 0 5 6 3 0 G 2 ( i\| = 7) 2 0 9 2 6 0 3 2 6 5 1 1 7 0 3 2 7 5 1 1 9 0 3 2 936 5 G 3 ( N= 1 ) 2 1 8 5 G. . .4 .( N= ... 6). 3303... 3 3 6 3 4 0 0 4 : 5 0 . 3 9 645.0.. ......706 2 G 6 (N= 3 ) 3 3 91 7 3 3 2 9 5 4 6 G P ( N»= 2 ) 4 0 6 0 5 0 6 0 : G 9 ( N = 5) 4 1 8 2 4 3 3 5 5 3 3 5 6 3 3 5 7 3 3 5 G 1 2 (•>,= 1 ) 4 4 52 G 2 0 ( N = 2 ) 6 3 6 2 9 3 6 2 G 2 7 ( N = . 1 ) 7 3 6 6 G 2 9 (N = 3 ) 8 4 5 5 9 2 1 5 9 4 5 0 • I CO o Cn I 10 GROUPS AFTFR COMBINING G 1 (N= 4) AND G 12 (N= 1 ) . ERROR = 19.9764 G l ( N= 5 ) 2070 4365 4452 46 30 5630 r 2 (N = 7) . 2092 .6.0 3 2 .6.511.. 703.2 7 5.1 1. 90.3.2. 93 6 5 G 3 (M= 1 ) 213 5 G 4 ( N = 6 ) 3 30 3 3 3 6.3 40 0 4 50.39 6450 7062 r- 6 ( H- 3) 3 3 91 7 ~ 3 ? 9 546 G 8 d\ = 2 1 40 6 0 50 60 G 9 ( N = b ) -132 4 3 3 5 5 3 3 5 6 33 5 7 33 5 G 20 ( N = /) 6 3 62. . 9 3 6.2. . G 27 ( ,\'= 1 ) 7 3 6 6 G { \' = 3) 8 4^5 9 215 945 0 9 '• GROUPS A FT ER COM! 3INING G 1 (,M= 5 ) AND G 4 (N= 6) . ER Rl 1R = 22.3137 -_„G_ ...1 ( N= . 11) . .2070 . .3 3.0.3... 3 3 63 4J>0A . __r_5_2_ 4jb_3_Q 5_0.33_ .5.6.30 645J1 _ 7.06.2 ! G IN= 7) 2092 6032 6511 7032 7511 9032 9365 G 3 ( N= 1 ) 218 5 G 6 ( N = 3) 339 1 7332 9 546 G « (N = 2) 40 6 0 5060 G 9 ( N= 5) 4132 43 3 5 5335 6335 7335 G 20 . ! N = . 2) 6362_. 93 6 2 G 27 ( N= 1 ) 7366 G 29 { N= 3) 84 5 5 9215 945 0 3 i "PQUPS APT ER C C M BIN TNG G 9 ( N= 5 ) AND G 20 (iY= 2) . ERRC )R. •= 2 2.5119 G 1 ( M= 1 I ) 2070 3 3 0 3 3 363 4004 43 6 5 445 2 463 0 5 03 9 5630 64 5 0 706 2 G - ( N = 7) 2092 60 3 2 6 511 703 2 7511 90 3 2 9365 G 3 ( N = 1) 2185 ! G 6 (N = 3) 3391 7 33 2 9 546 1 G 3 ( N = 2 ) 4 06 0 506 0 ! G 9 ( Nj = 7) 41 82 •4 3 35 5 3 3 5 63 3 5 6 3 62 7335 936 2 G 27 ( \l = 1 ) 7 3 66_. ; G 29 ( N = 3 ) 3455 9 215 ~9~4~5(T 7 GROUPS AFTER CGMfi IN ING G 9 CH- 7) AND G 27 (N= 1 ) . ERROR = 3.3. 3113 1 {N— 11) 2070 .33 03 3 363 4004 4365 445 2 46 30 5 03 9 56 30 6450 7062 1 G 2 (N= 7) 2 09 2 .6^32 6 51.1 703 2....7 5.11. . ..9.P3.2. _?3.6 5_ l G 3 (M= 1) 218 5 ! G 6 ( N= 3) 3 3 91 7 3 3 ? ° R 4 6 G 8 (M= 2 ) 406 0 5060 : G 9 ( N = 8 ) 4182 43 3 5 53 35 6 3.35 63 62 733 5 7 366 9 3 62 29 (N = 3) 8 4 5 5 921 5 9 4 5 0 6 G ROUPS AFTER COMBINING G 2 {N= 7) AND G 6 ( N = 3 ) . ERROR _ 3 3 . 4 7 3 8 ! G 1 ( H- 1 ! ) 207 0 330 3 3363 4C04 436 5 44 52 463 0 5 03 9 • 56 3 0 64 5 0 7 06 2 ,G 2 ( M = 10) 2 0 9 2 3391 60 3 2 65 11 70 3 2 733 2 7511 90 3 2 9365 9546 !G 3 ( N •= 1 ) 2185 i - G - f.N= ...?> 5060 !G 9 ( N - 8 ) 4182 4335 5 3 3 5 6335 6362 7335 7366 9362 29 { N= 3) 84 55 9 215 9450 5 GROUPS AFTER COMBINING G 1 IN= 11) AN D G 29 (N= 3 ) . ERROR — 3 7 . 8 3 7 7 G _ 1. . .2070 ...330 3 ...3 3'-3. '.40 04..... 4 3.6 5 4 45.2 463 0 5 0.3 9 56 3.0 645.0 . .706 2 3 45 5 9215 G 2 t N= 10) 2092 3.3 9 1 60 32 6511 70 3 2 7332 75] 1 903 2 <^365 9546 G 3 (N = 1) 2185 G 3 ( N= 2 ) 40 6 0 506 0 G 9 { N= 8) 4 1« 2 43.35 5 3 3 5 63 3 5 6 36 2 7 3 35 7 36 6 9362 I co o I 4 GROUPS AFTER COMBINING G 1 (N= 14) AND G 3 (N= 1 ) . ERROR - 4 3 . 5036 1 ( N-= 15) 2070 2 185 330 3 3363 4 004 4365 44 52 46 30 5039 5630 6450 706, 8455 i G 2 ( N= 10) 2092 3.391 6032 651 1 7032 7332. 751 1 9032 9365 9546 G 8 ( N-= 2) 4060 5060 G . 9 . 1 N=_ 8 )... 4 132 4? 35. 1 ^  1 . . . . 6 . 3 3 5... 6.3 .^2..... 7 33 5 .. 7 3=6 6 . ..• 9.36.2.. 3 GROUPS AFTEP COMBINING G 2 (N= 10) AND G 8 «N= 2 ) . ERROR = 8 0 . 2 6 3 2 G 1 ( N = 15) 2 0 7 0 218 5 3 30 3 3 3 6 3 4 0 0 4 4 3 6 5 4452 463 0 5 0 3 9 5 6 3 0 6 4 5 0 7062 8 4 5 5 : G 2 ! 1 2 ) 2 0 9 2 3391 40 6 0 5 C 6 0 . _ 6 032_. 6 511.. 7032 73_3.2.. _ 7 5_ U 9 0 3 2 ._9 3„6„5 : G 1 9 ( 8) 4 1 8 2 43 3 5 53 3 5 6 3 3 5 6362 7 3 3 5 7 3 6 6 93 62 2 G 1 G R O U P S ( N = 2 A FT F 7 ) r n M R 2 0 7 0 6't 5 0 ! N I -\! G G 1 2 0 9 R 2 1 8 5 6511 7 032 (; ~- 15) 3303 7 06 2 AND G 3 3 6 3 7 33 2 . 2 ( N 3 39 1 7 5 U _ = 1 2 ) . 4 0 0 4 8 4 5 5 . ERROR 4 0 6 0 .903? _ = 11 4 36 5 12.15 4 . 2 9 1 8 4 4 5 2 9 365 463 0 9 4.5 0.. . 5 03 9 9 5 4 6 5GoO G 9 ( N =" " 8 ) M 8 2 4 3 3 5 5 3 3 5 633 5 6 3 6 2 7335 7 3 6 6 9362 N O . GROUPS S E L F C T I O N V A L U E • . 20 19 18 17 3 . 6 4 5 2 7 0 . 3 2 5 9 4 0.74101 2. 09121 16 1 5 .14 2. 1 75C9 3 .29926 0. 4 3 73 9 13 12 1 1 0 . 8 3 6 4 0 2 .34382 0 . 2 9 9 9 1 1 0 9 . 8_ 1. 1 7 005 0 . 0 7 9 9 3 3 . 33.7 73 • 7 6 5 0. 03 51 9 0 . 7 8 1 2 0 0 . 7 4 3 70 4 2 3. 3 7993 1.27189 •2 . 0 0 0 0 0 . . Figure 8.2. Hiera r c h i c a l Grouping Analysis on selected average data f o r 35 s o i l s 1 PARAMETERS i N O . OF VARIABLES = 2 0 -: : PRINT GROUPS WHEN N O . OF GROUPS = 2 0 ' KS= 1 ( -1 t STANDARDIZE CAT A) • KT= G ( = l , T R A N S P O S E M A T R I X ) j NO. FORMAT CARDS = 1 1 NAM = 1 .1=1 , S U B J E C T N A M E S T0..8E^..F_A.D_..LN ! • PRINT SELECTION VALUES WHEN NO. GROUPS•= 2 0 N O . S U B J E C T S = 3 5 3 4 G R O U P S A F T E R C O M B I N I N G G 8. (K- 1 ) A N D G 15 ( N = 1 ) . E R R O R 0 . 0 • 3 3 G R O U P S A F T E R C O M B I N I N G G 1 0 { N= • 1 ) A N D G 1 6 ( N = 1 ) . E R R O R = 0 . 0 3 2 G R O U P S AFT ER COMB IN I N G G 2 0 <N = 1 ) A N D G 3 2 •<N= 1 ) . E R R O R = 0 . 0 3 1 G R O U P S A F T E R C OMB I N I NG G 2 2 ( N = 1 ) AN 0 G 2 8 JN= 1 ) . ERROR. 0 . 0 3 0 G R O U P S A F T E R C O M B I N I N G G 1 8 { N= 1) A N D G 2 3 ( N = 1 ) . ER R O R = 0 . 8 6 7 6 _ _ 2 9 . GROUP_S_ A F T E R C O M B I N I N G G 1 9 CN= 1 ) A N D G 26 ( N = 1 ) . E R R O R •= 0. 8 6 7 6 2 8 G R O U P S A F T E R . C O M B I NI NG G 1 3 {N = 1 ) ..AND G 1 7 <M= 1 ) . ERROR. 0 . 8 6 7 6 2 7 G R O U P S A FT ER C OMR I N I N G G 9 (N = 1) A N D G 1 0 ( N= 2 ) . E R R O R = 2 . 8 2 5 0 2 6 G R O U P S A F T E R c >•' I V 1 NG G 6 { N= 1 ) A N D G 3 5 ( N = 1 ) . E R R O R ZZ 3 . 2 2 6 7 2 5 G R P U P S A F T E R C O M B I N I N G G 1 2 ( N = 1 ) A N D G 2 1 ( N = 1 ) . E R R O R _r 3 . 3 6 9 1 2 4 G R O U P S A F T E R COM B I N I N G G 1 ( M= 1 ) A N D G 4 ( N= 1) . E R R O R zz. 4 . 5 42 2 2 3 . G^nyps, A F T EE. _ C O M B I N I N G G 7 <N-= 1 ) AND G 1 2 < N= 2 ) . —E.BB.O.R 5 . 9 3 9 0 2 2 G R O U P S " A F T E R C O M B I M I N G G 9 {n= 3 ) A N D G 3 3 ( N = 1 ) . E R R O R 5 . 9 6 2 4 2 1 G R O U P S A F T E R COMB I N I N G G 3 1 { H= 1 ) A N D G 3 4 ( N = 1) . E R R O R — 8 . 3.582 2 0 G R O U P S A F T E R COM B I N I N G G 2 4 (N= 1 ) A N D G 3 0 ( N= 1) . E R R O R zz 3.3 8 4 0 G. 1 ( N = 2 ) 2 0 7 0 3 3 0 3 G 2 ( N= 1 ) 2 0 9 2 G 3 ( N= 1 ) 2 1 8 5 G 5 ( N= 1 ) 3 3 63 i G 6 (N= 2) 3391 95 46 I G 7 (!\! = 3 ) 4004 44 5 2 6 450 G A ( N = 2) 4 0f:.' C ., .5060 ! G 9 ( N = 4 ) 4 18 2 4335 5335 9365 ^ ; ; ' G 11 ( N = 1 ) 43 6 5 i G 13 ! N = 2) 46 3 0 56 3 0 G 14 (N = ). ) 50.39 G 13 ( N = 2 ) 60 3 2 70 3 2 G 19 { N = 2) 6 3 3 5. 7 33 5 G 20 { 'V- 2 ) 6 3 6 2 .9 3 6 2 G 22 ( N = 2) •:>511 7511 G 2-4 ( N= 2) 706 2 90 3 2 G 25 (N= 1 ) 7 3 32 G 27 ( N= 1) 73 66 29 ("v = 1 ) 345 5 G 31 ( N= 2 ) 9215 9450 19 G R O U P S AFTER C O M B I N I N G G 2 { N = - 1 ) A N D G 6 { N = 2 ) . E R R O R = 9 . 1 7 4 7 G 1 ( N= 2) 20 70 3303 G __2_ ( N= 3) 2 09 2 3 391 9546 G 3 "(~N~ 1) 2185 * G 5 { N = 1) 3 363 G 7 ( ?\S = 3) 4 0 04 44 5 2 645 0 G S { N-= 2 ) 4060 5060 G 9 ( N = 4) 4182 4 3 3 5 5 3 3 5 93 65 ' ' G 1 1 ( N= 1 ) 4 3 6 5 G 13 ( N= 2) 4630 5630 G 14 ( U = 1) 5 03 9 G IS ( N= 2.) 6 03 2 7032 G 19 ( \« = 2) 63.35 73 3 5 G 20 (N= 2) 6362 9362. .' * •  t. - '., •. v. . .. _ .G. .2.2... J N=.... 2 ). 6511... .7.5.11 . • • ' • •' . . ; • .:' ' ' -G 24 (N = 2) 70 62 903 2 G 2 5 ( M = 1 ) 73 3 2. "" " '• '"• : . V - ' G 27 ( N = 1 ) 73 66 G 2 9 <N= 1 ) G 3 1 IM= 2 ) 8 4 5 5 9 2 1 5 9 4 5 0 1 8 G R O U P S A F T E R COMBINING G 1 4 (N= 1 ) A N D G 1 8 ( N = 2 ) . ERROR = 9 . 9 7 0 2 I G 1 (M= 2 ) 2 0 7 0 8 3 0 3 ; G 2 (N= 3 ) 3 3'31 9 5 4 6 ! G 3 P - 1) 11 8 5 . G 5 (N = I ) 3 3b 3 i G 7 (N= 3 ) 4 0 0 4 - 5 2 6 4 5 0 1 G 8 (N= 2 ) 4 0 6 0 5 0 6 0 • G 9 ( N= 4 ) 4 1. 8 2 4 3 ^ s 5 3 3 5 9 3 6 5 G 1 1 (N = 1) 4 3 6 5 G 1 3 (N= 2 ) 4 6 3 0 5 6 3 0 G J 4 . ! N = . . 3 ) . 5 0 3 9 . . 60 .3 2 7 0 3 2 G 19 ( N = 2) 63 3 5 7 3 3 5 • G 20 (N= 2 ) 6 3 6 2 9 3 6 2 G 22 ( N = 2) 6 5 1 1 7 5 1 1 ; G 2 4 (N= 2 ) 7 0 6 2 9 0 3 2 G 2 5 (N= 1 ) 73 3 2 L G 27....(N= 1) . . . 7.3.66 G 2 9 <N= 1 ) 3 4 5 5 G 3 1 (N= 2 ) 9 2 15 9 4 5 0 1 7 Gn nu D S A F T E R COMBINING 0 1 (N= 2 ) AND G 7 IN= 3 ) . ERROR = 1 1 . 6 4 1 1 G 1 . ( N= . . _5 ) . . . 2 0 70 . . 3 3 03 . . . . .4 0 0 4 . 4 4 5 2 6 4 5 0 G 2 (N= 3) 2 0 9 2 3 ^ 9 1 9 5 4 6 G 3 (N= 1 ) 2 1 8 5 G 5 (N = 1) 3 3 6 3 l G 8 (N'= 2) 4 0 6 0 5 0 6 0 G 9 (N= 4 ) 4 1 3 2 4 3 3 5 5 3 3 5 9 3 6 5 ' G 1 1 . ('-;' = 1) 4 3 65.. G 13 <N= 2 ) 4 6 3 C 5 6 3 0 G 1 4 <N= 3 ) 5 0 3 9 60 .3 2. 7 0 3 2 G 19 ( N = 2) 6 3 3 5 7 3 35 i G 2 0 (N= 2 ) 6 3 6 2 9 3 6 2 ! G 2 2 ( N = 2 ) 6 5 1 1 7 5 1 1 .2.4 .<.N=_ 2 ) 706.2...., ...9.03.2 2 5 ( N= 1 ) 7 3 3 2 G 2 7 ( N= 1 ) 7 3 6 6 i G 2 9 ( N= 1) 3 4 5 5 i G 3 1 <N = ?. ) .? 1 5 94 5 0 1 6 GROUPS AFTER C O M B I N I N G G 1 9 (H- 2) A N D G 2 0 ( N-- 2 ) . E R R O R = 1 1 . 7 5 8 5 G 1 ( N = 5 ) 2 0 7 0 3 3 0 3 4 0 0 4 4 4 5 2 6 4 5 0 . . . . G --> J h\=. 3 ) 3 0 ° ? 3 3 9 1 9 5 4 6 G 3 ( N= 1 ) 2 1 3 5 G 5 (N = 1) 3 3 6 3 1 G 3 (N= 2 ) 4 0 6 C 5 0 6 0 G 9 { N = 4 ) 4 1 8 2 4 3 3 5 5 3 3 5 9 3 6 5 • , - _ ; -G 11 ( N = 1 ) 4 3 6 5 G 1 3 (N= 2 ) 4 6 3 0 5 6 3 0 >; G 1 4 ( N= 3 ) 5 0 3 9 6 0 3 2 7 0 3 2 G 19 ( N = 4 ) 6 3 3 5 6 3 6 2 7 3 3 5 9 3 6 2 L G 2 2 . . . 2 ) 6 51.1. . 7 6.11 . G 2 4 ( N = 2 ) 7 0 6 2 9 0 3 2 G 2 5 ( N= 1) 7 3.32 G 2 7 ( N = 1 ) 7 3 6 6 G 2 9 { N= 1) 84 5 5 G 3 1 < N = 2) 9 2 1 5 94 5 0 1 5 GROUPS AFTER COMBINING G 9 ( N = 4 ) AND, G 11 • ( N = 1 ) . ERROR = 1 3 . 3 1 5 6 G 1 (N = 5 ) 2 0 7 0 3 3 0.3 4 0 0 4 4 4 5 2 6 4 5 0 ' G 2 ( ! \ = 3 ) 2 0 9 2 3 3 9 1 9 54 6 G 3 ( N= 1 ) 2 1 8 5 G 5 ( N = J >. . _. 3 3 63__ G R ( N= 2 ) 4 0 6 0 5 0 6 0 G 9 ( N= 5) 4 1 8 2 / , ? 3 5 4 3 6 5 5 3 3 5 9 3 6 5 '• G 1 3 ( N = 2 ) 4 6^ -0 56 3 0 I CO M I -313-LP, • ro vr CO rH PJ • • • I— 1 II II or. oc r~' CL. x L U UJ 1 • • r - ^ c\i rv II H Z • — • — -rH vt CO rv O CD • rv C J L P O O LP. —r LPi vO LP -'4J vt ro <t vt rr> - P CT. vO CT r— rH P.! rv rv LP. rv rv LT-vO LC' rri <j C P ro ro II V* ro ro |l vt ro. CT • Z V UP, CT z vt ip, cv U P CT vt L P , rv LPi o PJ vt s0 ir, Cv; P N CP rv o •4- • £ • ro ro LP rv- o vt v0 rr-. o ro o LP ro o <*" C J LP, C r- r- -•—* -4 CT VT r- P - CT vt CT ^ 1*-C: r, (VI rv Pv' i—. rr. . — i O IP, c, rv P J ^ OA ' X . ;T-. rH c LP, o INJ C O ••O r—1 Lp CP ro ro co vO r— CO , — i H O 0 ' -c P', P". PI o P I uP.s C VT p'> CP o'l x C PP L P ("'• CV •if ro P P c CO CJ -0 -c P - ! CT c- rp L P •4- LP. -0 vO r- CT. CJ, ro P": IP vt LP- •c G L P rv cv •C L P c •PJ IP, ro o rv o C T CP, rH Ol CV vJ •p. c O CV LP. o CvJ o-\ CP CP r-l vj CO 4. L P r— CJ r- CP •-0 cc ro, ro Pi rH •JJ CO vC L P C J r- CT GO JJ CO 0"-Pi: c ro uP o ro ro <r Pv, C,,: O rH PV O -< ~C O ro L P O PI ro -t o (-^ .—i ro G ,—J . r-, C"I IP, vj r-- r- r- X- 0'» P J PJ PJ Pi vt O vr LP •C vO r- p- IV- CC rv rv rv (O vt' vt ;.fv Lin • i l K - H-Li_ U. <I C P <t P I PJ r—1 r—I r—1 rvi LP, PI r-> f—i rv L P rv Pl •4 rv (V <-H . — , P I LP' ro rH rH CV: LP PJ ro CAl O0 Q . O -II JJ II II II II II lj II II II II II II H II II ll II II II i l ~ > II H II II ii; II II II z z z z Z c z 2 : Z Z . 2 z Z z z 2C z. 21 Z 2C c'jl CD vt CT (V -4- LP p~ c rH r-H (VI ro LP, CO CT C O vt 0 - rv| vt LP. r~- CT rH PJ ro LPi 0C-, ro vt rH r-l cv rv (Vi rv rv CO <t rH H rH rv rv rv cv rv C O rH rH rH rH CD CD CDj O CD CO CD CD CD O O o o. o O O CD: CD CD CD CD ca CD CD CD cn! CD CD CD c • — — - - . . .. - . . . G 19 (N= G 2 2 ( N = G 2 5 (N= G 2 7 ( N = G 2 9 (N= 4 ) 4 ) 1) 1 ) 3 ) 6 3 . 3 5 6 5 1 1 7 3 3 2 7 3 6 6 8 4 5 5 6 3 6 2 7 0 6 2 Q 2 1 5 7 3 3 5 7 5 1 1 9 4 5 0 9 3 6 2 . . 9 0 3 2 ' • '• 1 2 G R O U P S AFTER CCMPIMIMG . ._ G 1 _( N= 5) . 2 070 33 0 3 G 9 400 4... {N= 5 ) AND 4 4 52.... 645.0... G 1 9 ( N = \ 4 ) . E R R O R 1 5 . 6 9 8 4 G 2 (N = G 3 ( N= G 5 |!M = 3 ) 1 ) 1) 2 0 9 2 . 2 1 8 5 3 3 6^ 3 391 9 6 4 6 ' "' '• G 8 (N = G 9 ( N= G 1 3 t \»= 2 ) 9 ) 2 ) 40 6 0 4 1 8 2 46 3 0 50 60 4 3 3 5 .5ft 3.0... 4 36 5 5 3 3 5 6 3 3 5 5 3 6 2 7 3 3 5 9 3 6 2 9 3 6 5 G 1 4 (N = G 2 2 ( N = G 2 5 ( N = 3 ) 4) 1) 5 0 3 9 6 5 1 1 7 3 3 2 6 0 3 2 70 6 2 7 03 2 7 511." 9 0 3 2 T G 2 7 (N= G 2 9 ( N = 1 ) 3 ) 7 3 6 6 8 4 5 5 9 2 1 5 9 4 5 0 1 1 G R O U P S AFTER. C O M B I N I N G G • 1 ( N = 6) 2 07 0 3"03 G 1 3 36 3 {N= 5) - . A N D 4 0 0 4 ' 4 4 5 2 ' G • 5 : 6 4 5 0 ( N = ' ; 1 > . ' E R R O R • = : 1 7 . 1 2 6 1 G 2 ( !\ = G 3 ( N = , G „ 8 ( N= 3 ) 1) 2). 20 9 2 2 1 8 5 40 6 0 3 3 9 1 50 6 0 9 5 4 6 G 9 ( N = G 1 3 ( M= G 1 4 ( N= 9 1 2) 3 ) 4 1 8 2 46 3 0 5 0 3 9 43 3 5 563 0 6 0 3 2 4 3 6 5 7 0 3 2 5 3 3 5 ' 6 3 3 5 u. ' 3 6 2 • '• • \ •' V 7 3 3 5.: 9 3 6 2 9 3 6 5 G 2 2 (N= G 2 5 (N= .... G 2 7 ( N~ 4 ) 1 ) 1) 6 5 11 7 3 3 2 - 7 3 6 6 7 06 2 7 5 1 1 9 0 3 2 -'"' , . .'-7' G 2 9 (N= 3 ) 8 4 5.5 9 2 1 5 9 4 5 0 1 0 G R O U P S A F T E R C O M B I N I N G G 1 4 <N= 3 ) A N D G 2 2 ( M= 4 ) . E R R O R = 1 7 . 3 0 7 2 G 1 ( N= 6) 2 0 7 0 3 3 0 3 3 3 6 3 4 0 0 4 4 4 5 2 6 4 5 0 . . ..JS_ _..2. (w.= . . ?) .20 9 2.. ?• 3 9 1 _.9_5_4 6_ G 3 ( N= 1 ) 2 1 8 5 G 8 ( H= 2 ) 4 0.-5 0 5 0 6 0 G q ( \i = 9 ) 41 82 4 3 3 5 4 36 5 5 3 3 5 6 3 3 5 6 3 6 2 7 3 3 5 9.3 6 2 93 6 5 G 1 3 ( 2 > 4 6 3 0 56 3 0 G 1 4 ( N= 7) 5 0 3 9 6 0 3 2 6 5 1 I 7 0 3 2 7 0 6 2 7 5 1 1 9 0 3 2 G 2 5. (M = 1 ) 7 } 3 7 G 2 7 < N= 1 ) 7 3 6 t G 2 9 ( N - 3 ) 8 4 5 5 9 2 1 6 9 4 5 0 • 9 G ROUPS A F T ER COMBINING G 2 ( N = 3 ) A N D G 2 5 ( N= 1 ) . ERROR = 2 0 . 7 2 9 2 G . _ 1 _ J.N = 6 J _ 2 0 . 7 0 _ 3 3 0 .3 3 3 6 3 4 0 0 4 4 4 5 2 6 4 5 0 G 2 { N= 4 ) 2 0 9 2 33 9 1 7 3 3 2 9 5 4 6 G 3 ( N = 1) 21 8 5 G 8 (N= 2 ) 4 0 6 0 5 0 6 0 G 9 ( N = 9 ) 4 1 8 2 4 3 3 5 4 3 6 5 5 3 3 5 . 6 3 3 5 6 3 6 2 7 3 3 5 9 3 6 2 9 3 6 5 G 1 3 ( N = 2 . 4 6 3 0 5 6 3 0 G 1 4 I N = 7 ) .50.39. . . _6Q3_2___ 6 5 1 1 7 0 3 2 7 0 6 2 7 5 1 1 9 0 3 2 G 2 7 ( N= 1 ) 7 3 66 G 2 9 ( N = 3) 9 4 5 5 9 2 1 5 •9 4 5 0 8 G t, p l.j P S A F T iR COM 8 I Ni I NG G 1 <N= 6 ) A N D G 1 3 ( N = 2 ) . ERROR = 2 9 . 3 5 1 8 G 1 ( N = 8 ) 20 7 0 3 3 0 3 3 3 6 3 4 0 0 4 4 4 5 2 463 .0 56 .30 6 4 5 0 G 2 ( M= 4) 2 0 9 2 33 9 1 7 3 3 2 9 5 4 6 G 3 ( M= 1) 2 1 8 5 G 8 (N= 2 ) 4 0 6 0 5 0 6 0 ! G 9 ( \.= 9) 4 1 82 4 3 3 5 4 36 5 5 3 3 5 6 3 3 5 6 3 6 2 7 3 3 5 9 3 6 2 9 3 6 5 ! G 1 4 ( N = 7 ) 5 0 3 9 6 0 3 2 6 5 1 1 7 0 3 2 7 0 6 2 7 5 1 1 9 0 3 2 G 2 7 ( N = 7 3 66 7 GROUPS AFTER COMBINING G 2 ( N= 4 ) ANO G 14 <N= ' 7) . ERROR = 32.6644 G 1 {N- 3) 2070 33 0 3 3 3 63 4004 4 45 2 4630 5630 645 0 G 2 {'^ 11 ) 2 0 9 2 3 3 9 1 5 0 3 9 . .603 2. 6 5 1.1. 7032 7062 7332 7511 __? 03 2 954 6 G 3 (N = 1) 21 8 5 G 3 (N= 2) 4C6C 5060 G 9 ! Nl-= <?) 4 18 2 4 3 3 5 4 36 5 5335 6335 6362 7335 93 62 9365 G 27 (N = 1 ) 73 66 G 29 ( = 3) 3 4 5 5 9 2 1 5 9 45 0 6 GROUPS AFT ER CO'v B T NING G 1 i K = o) AND G 29 { N= 3) . ERROR = 37 .2052 G 1 (14= 1 1 ) 207'; -J - < n 3 36 3 400 4 4 45 2 4630 5630 - 6450 " 8455 9215 945 0 G 2 <N= 11) 2092 3391 G 3 (N= 1) 216 5 .G .8. (.Nr— 2 ) - . >060 „ 5060 G 9 IH= 9) 41 82 4 3 35 G 27 (M= 1) 7366 5039 6032 6511 7032 7062 7332 7511 9032 9546 4365 5335 6335 6 362 733 5 , 9362 9365 I co cn I 5 GROUPS AFTER COMBINING 9 { N- 9} AND G 27 {N= ' 1) ERROR = 42.6510 G ( N= 11) 2.07 0 . 330 3... 3 36 3 4004 4452 4630 5630 " 6450 8455 921 5 945 0 G _ _ <N = 11) 2092 3391 5 0 3 9 6 03 2 6511 .7032 7 062. •73.3 2 7511 90 32 9546 G 3 (N= 1 ) 2 1 8 5 ' - ' '. ' T G 8 (N= 2 ) 406'^ 5060 G 9 { N= 10) 41 82 4 335 4 36 5 533 5 6335 6362 7335 7366 9362 9365 4 GROUPS AFT' G 1 (N= 12) G 2 { N= 11 ) £.V IV 2 0 - 2 COMBINING G 1 <N= 11) AND G 3 (N= . 1) 2185 3303 3363 40C4 4452 4630 3391 5039 6032 6511 7032 7062 ; ERROR = 563 0 645 0 733 2 7511 49.599 2 8455 9215 9032 9546 9450 ( N = (N= 2) 10) 4 06 0 4182 5 0 6 0 4 ? 3 5 436 : 3 3 5 6335 6362 7335 7366 9362 9365 3 GROUPS AFTER COMBINING G 2 (N= 11) AND G 8 ( N= 2.) V ERROR - 74.8897 G 1 (N= 12) 20 70 2185 3 30 3 3 36 3 4004. 4452 4630;, 5630 .'6450 8455 921.5 945 0 -317-O ! •t n 0 •JO <M ! o ro i vf) O j o LO r-l \ Cr r H 0"> LT. o r- i LO ro ro ( V LT . i LO. o vO LO. U0 ro v f vC' ro rn • -rs 10'. ro r- cr j ro v f cr cr cr OJ <v | OJ o OJ o j LT. in vC' O ro I 1! v f <r ro r- c- ; vt cr-cr Ct' O oj x o QL o •fi v.0 ro o j a. vO r-l vC O rO i U l OvJ rO vf' CT' r~ \ • r - j tn ! ro v f OvJ in r-H rr, r - l o CO x ro i o o vO r- 1 H v f CT r-i V ^ O J OJ j r—t LO OvJ • Ol vO i OJ cr LT\ c to ! ro vi* ro vO vO j ro cc vCJ j C J i O ir> o ro r - i to t i -0 ^ ; vO r - i CO i O ro | ro UO j LO. O \ ( O r- vL,' i ) —- 3 r g | cr LO. j <—i r o 0-1 LO ro oo O rn r" O 0"] i II rO ro x uo ; 7:' r o r~ LO ! O IT. , — i IT- O j LO'; 1 -c o : 'Xi; O i \±J c o"i "—I ro \ ZD v f v f ; r ; Ovi r-~ vj" j — J i > r - i LO 0..; O J i 0" ro CT- i r ' r o •O"; i O r'- o O l j C3 ,—1 r v o- v f ; *—1 | t -5': i ° rvj rvj CO o_, O j cr cr r- r - l X O r - l r~-, LO r - l l LU 0-J v f 0.; vO vi' i 0 0 U i j 1- i LL. I - r * <r ro a LP. o < r H r-H Ov r - l I 1 / 1 CV 1 QL H II II II i ^3 C ! ! o r-r- " • .'.'iii'. - i oc: O o OvJ cr r-l cr 1 OJ j o o to CS> i 1 i CV O c- r- cr r H OJ vU LO. r- OJ LO vC r- vO r ~ l •X' vr; OvJ co vf r—< r- r— LO o a vo o r H r H cr-• • • * • « • r H r~t ro o Ol c o c r cc r- i o , ,0vl r H r H r H i — l r H r-v+ ro rg H O O-CO O i-O; >f C rr; CJJ' — I r\:i uo tf. c-rvi rr; rr;l vt- o r~ O (v_ I i - J v t cr- cj aJ cr o cr c c; c, fX; |v. ijTs. v f O" Figure 8.3. Hierarchical Grouping Analysis on averaged p r o v i l e f o r 35 s o i l s PARAMETERS N O . O F V A R I A B L E S = 2 0 ; P R I N T G R O U P S W H E N N O . OF G R O U P S = 2 0 I K S = l ( = l t S T A N D A R D I Z E D A T A )  KT= 0 ( = 1 , T R A N S P O S E M A T R I X ) N O . F O R M A T C A R D S = 1 . . N A M . = _ J . ( _ ; . l . , . . _ . S U B J F C . I _ N A M E S T0._.B_E_jRjr_AQ..iMl \ P R I N T S E L E C T I O N V A L U E S W H E N N O . G R O U P S = ! N O . S U B J E C T S = 3 5 3 4 G R O U P S A F T E R COM B I N I N G G 8 ( N = 1 ) A N D G 1 5 ( H= 1) • E R R O R 0 . 0 3 3 G R O U P S A F T E R C O M B I N I N G G 1 0 <N = 1 ) A N D G 1 6 < N= 1 ) • E R R O R = 0 . 0 3 2 G R O U P S A F T E R C O M B I N I N G G 2 2 ( N = 1 ) A N D G 2 8 <N= 1 ) • E R R O R 0 . 0 3 1 G R O U P S A F T ER C O M B I N I N G G 1 8 (N = 1 ) A N D G 2 3 ( N= 1) • E R R O R 0 . 8 6 7 6 3 0 G R O U P S A F T E R C O M B I N I N G G 1 3 ( N = 1 ) A N D G 17 ( N = 1 ) • E R R O R 0 . 8 6 7 6 2 9 G R O U P S A F T E R - C O M B I K I N G U 2 0 { N = 1 ) A N D 3 2 ( N = 1 ) • _I.B_B.o.R_ 1 . 1 3 7 0 2 8 G R O U P S A F T E R C O M B I N I N G G 1 2 (N= 1 ) A N D G~ 2 2 <N= 2 ) • E R R O R 2 . 0 6 6 9 2 7 G R O U P S A F T E R C O M B I N l N G G 1 ? { N = 1 ) A N D G 2 6 ( N = ' 1 ) • E R R O R = 2 . 4 6 2 6 2 6 G R O U P S A F T FR C O M B I N I N G 3 1 I N = 1 ) A N D G 3 4 ( N = 1 ) • E R R O R 3 . 6 . 3 3 9 ; 2 5 G R O U P S A F T E R C O M B I N I N G G 2 (N= 1 ) A N D G. 4 |N= . 1 ) • E R R O R = 5 . 0 7 4 0 i 2 4 G R O U P S A F T E R C O M B I N I N G G 1 2 ( N = 3 ) A N D G 2 1 { N= 1 ) • E R R O R •= 5 . 4 3 5 5 i 2 3 G R O U P S A F T ER COM B I N I N G \ i 9 ( N = _ 1 )_ A N D G 11 .t..N_= 1) E R R O R .= 5 . 6 . 9 9 C L _. ! 2 2 G R O U P S A F T E R C O M B I N I N G 1 ( N = 1 ) A N O r 2 9 (N= 1 ) • E R R O R = 7 . 4 3 3 5 i 2 i ! 1 G R O U P S A F T E R C O M B I N I N G r* 1 0 ( N = 2 ) A N D /-- 3 3 ( N = 1 ) • E R R O R 8 . 0 0 0 3 2 0 G R O U P S A F T E R C O M B I N I N G G 5 ( N = 1 ) AN B G 6 { N= 8 1 ) • E R R O R - 3 . 7 1 4 5 G 1 . I N = 2 ) 2 0 7 0 _._8 4 5 5 G 2 ( N = 2 ) 2 0 9 2 3 3 0 3 G 3 ( N = 1 ) 2 1 3 5 2 0 7 ( N= 1) 40 04 G 8 (N= 2) 406C 5060 G 9 (N= 2) ... .4 1 3 2 43 6 5 ; G 10 ( N = 3) 433 5 5335 T365 : G 12 (N = 4 ) 4 4 5 2 64 50 6 511 7511 ! G 13 { N = 2 ) 46 3 0 66 3 0 i G 14 ( N = 1 ) 5 03 9 ! G 13 <Ni= 2) 6 0 .3 2 7 0 3 2 \ G 19 ( N = 2 ) 63 3 5 7 3 3 5 i G 20 ( N = 2) 6 3 6 ? 9 3 6 2 ! G 24 (N= 1 ) 70 6 2 1 G 25 ( N= 1) 7 3 3 2 . G 27 < N= 1) "73 66 G 30 (N= 1 > 9 0 3 2 G 31 ( i\ = 2) 921 5 .94 5 0 i G 35 ( N= 1) 9546 i 19 GROUPS AFTER COMBINING G 24 (N= 1) AND G 30 (N= 1 ) . E R R O R = G 1 (N= 2.) 2070 3455 L G _ . 2 _ . ( N £ 2)___ 2092 . . 3 3 0 3 i G 3 ( \'= 1) 2185 i G 5 (N= 2) 3 36 3 3 3 91 I G 7 ( N- 11 400 4  9 . 5 7 9 4 G G G G G 8 9 10 12 13 14 ( N = ( N= { N-( N = ( N-( N= 2) 2 ) 3) 4) 2) 1) 40 6 0 4182 4 3 3 5 4452 46 3 0 5 03 9 5 0 60 4 3 6 5 5 3 3 6 6 4 50 5o30 9 3 6.5 6 511 7511 G G G G G G 18 ( N= 19 ( N = ..20.. .<_N= 24 ( M-2 5 ( M: 27 (N= 2 ) 2) .2). 2 ) 1) 1) 60 2 2 6 3 3 5 .636 2 70 62 733 2 73 6 6 7 0 3 2 7 3 ^ 5 9 36.2. 9 0 3 2 G 31 ( N = 2) 9215 9450 G 35 <N= 1) 9546 18 G R O U P S A F T E R C O M B I N I N G G 1 t N= 2) AN 0 G 31 <N= 2 ) . E R R O R = 10. 4992 1 G 1 { N = 4) 2 0 70 84 56 9215 945 0 "' ' • -G 2 (N= G 3 (N= .G 5 ( N= 2) 1) 2) 2092 21 85 3 3 6 3 3303 3391 G 7 G 8 G 9 <N= ( N = <N= 1 ) 2) 2) 4004 4060 41 P? 506 0 4 365 • • '•' '• ;- '- ..' G 10 G 12 G 13 < N= ( N = LN= _ 3 ) 4) 2L 43 3 5 4452 46 30 5335 645 0 56.30 9 36 5 6 511 • . • • • . - -7511 : . - . .-. G 14 G 18 G 19 ( N= ( N = <N= 1 ) 2} 2) 5039 6032 6335 703 2 73 35 . . . _. i, * „ ^ : . ;.".:;•-•*>>•:• 'y:- . •' . • •-. -., , _., *y; ' ; ••• • 1 < G 20 G 24 . G 25. ( N = ( N= i.N= 2) 2) _1)__ 6362 7062 7 2 32. 9362 9032 . . : - '.P • '• • ,. G 27 G 35 ( N= { N= 1) 1) 7 3 66 9 546 17 G R O U P S A F T F . G 1 <N= 4) . R C O M B I N I N G 2070 84^5 G 2 9215 (K= 2) A N D G 5 {N= • 2)'. E R R O R = 9450 • 11. 3190 G 2 G 3 G 7 ( N = ( N = <N= 4) 1) 1 ) 2 09 2 213 5 4004 3 3 03 3 36 3 339 1 ; G 8 (N= G 9 { N= G 10 ( N = 2) 2) .3)... 40 6 0 4132 .4335.. 506 0 4365 5.335 -.93.65.. • . „ . ^iS^'j'r:^: ! G 12 • G 13 i G 14 { N= ( N= ( N= 4) 2) 1 ) 445 2 4630 50.39 6450 5630 6511 7 5 i i • .. . - ' v \ : .. . . . - .... • ..: . v.-G 18 (N= 2) 6032 7032 G 19 (N = 2) 63 3 5 73 3 5 _ G 2.0. (N.= ?..). . 6 3 6 2 . 9 3 6 . 2 . : G 24 ( N - 2) 7062 903 2 G 2 5 (M= 1) 7 3 3 2 G 27 (N=' 1 ) 7366 G 35 (N = 1) 9 5 4 6 16 GROUPS AFTER COMBINING G 7 { r\= i ) AMD G 25 {™N= 1) ERROR" = TT. 3 6 5 3 G 1 (N= 4 ) 2 0 70 3 4 5 5 9 215 9 4 5 0 G 2 { N= 4) 2 0 9 2 -j r\ -3, - — ' - 7 3 ^ 3 ? 3 9 1 . G .3 ( N = 1 ) 2 185 Y G 7 (N= 2) 400 4 73 32 G 8 ( N= 2) 40 60 50 6 0 < G 9 (N= 2) 4182 4 3 6 5 1 G 10 (N= 3) 4 33 5 53 3 5 9 36 5 G 12 ( N= 4) 4452 64 5 0 65 1 1 751 1 G 13 ( N= 2) 46 30 56 30 G 14 ( N= 1 ) 503 9 _. . G 1 8 <N= .?> .6.03 2.. ..7032... : G 19 (N= 2) 63 3 5 73 35 G 20 (N= 2) 6362 9 3 6 2 G 24 ( N= 2) 7062 903 3 G 27 (N= 1) 7 36 6 G 35 ( N= 1 ) 9 5 4 6 15 GROUPS AFTER COM BIN ING G 10 (N= 3 ) AND G 19 « N= 2) . .ERROR = 1 1 . 6 3 0 6 i G i ( N= 4) 2 0 7 0 84 5 5 9 2 1 5 945-0 G 2 (N = 4) 2 09 2 33 0 3 3 36 3 3 3 8 1 G 3 <N= 1 ) 2 1 8 5 .__G_ _7 (N= 2) 40 04 _ 7'- i ? G 3 (N= 2) 40 6 0 50 6 0 G 9 {N= 2 ) 4182 43 6 5 G 10 (N= 5) 4335 5 3 3 5 6 3 3 8 733 5 9365 G 12 (N= 4) 4 4 5 2 6 4 50 6 511 7511 G 13 { N = 2 ) 46 3 0 5 6 3 0 G 14 ( N= 1) _ _59_3 9_. G 18 (N = 2) ~ 6032* ~ T 6"3~2~ G 20 <N= 2) 63 62 0 3 62 G 24 ( N= 2) 7 0 6 2 90 3 2 G 27 ( N= 1 ) 7 3 6 6 G 3 5 < N = 1) 9 546 14 GROUPS AFTER CON N, I NINO G 2. <N= 4) AND G 35 ( N = 1 ) . ERROR = 12. 1761 G 1 < N = 4) 2 0 7 0 64 5 5 9 2 3. 5 545 0 G 2 (N= 5) 20 9 2 3 3 0 3 3 36 3 .3391 95 4 6 G 3 { N = 1 ) 2.185 G 7 ( N = 2) 4 0 0 4 7332 C O G 8 {N = 2) 4 0 6 0 5 0 6 0 r o r o G 9 I N = 2) 4182 4 3 6 5 1 G 10 ( N= 5) 4 3 3 5 5 3 3 5 6 3 3 5 7 3 3 5 9365 G 12 <N= 4) 4 4 5 2 6 4 5 0 6511 751 1 G 13 { INN 2) 463 0 5 63 0 G 14 { N= 1) 5 0 3 9 G 18 (N= 2} 6032 7032 G 20 ( N= 2) 6.3 62 93 62 G 24 (N= . 2) 706 2 903 2 G 2 7 ( N= 1 ) 7 3 6 6 13 GROUPS AFTER. COM BIN ING G 9 (N= 2) AND G 10 ( N= 5 ) . ERROR = 14 . 2 6 4 9 G 1 { N= 4) 2 0 7 0 84 5r> 9 2 15 9 4 5 0 G 2 (N= 5) 2092 3 30 3 3.3 6 3 3391 9546 G 3 <N= 1 ) 21 8 6 G 7 (H= 2) 4 0 0 4 7332 • G 8 (N= 2) 4 0 6 0 „.5J^60.._ G 9 (N = 7) 41'32 433 5* 4 36 5 5 33 5 6 3 3 5 7335 9 3 6 5 G 12 I N^ = 4) 4452 64 5 0 6 5 1 1 7 5 1 1 G 13 (N= 2 ) 46 3 0 56 3 0 G 1 4 ( N= 1) 5 0 3 9 G 1 8 ( N= 2 ) 6 0 3 2 7 0 3 2 G 2 0 ( N - 2 ) 6 3 6 2 9 3 6 2 G 2 4 ( N= 2 ) 7 0 6 2 9 0 3 2 G 2 7 (N= 1 ) 7 3 6 6 1 2 G R O U P ' S A F T E R COMBINING 1 + (N" •1 ) A N D G 2 4 ( N= 2 > . E R R O R 1 7 . 3 5 7 1 . __G .__ .1_ _J .N= . 4 ) . . 2 0 7 0 . . .3 .4 .5 5 9 2 1 . 5 . 9 4 5 0 G 2 ! G 3 ! G 7 ( N = ( N= ( M = 5) 1) 2 ) ? 0 - > 2 2 1 8 5 4 0 0 4 3 3 0'J-7 3 3 2 3 3 6 3 3 3 > 1 9 5 4 6 i G 8 G 9 • G_ 1.2 ( N= ( N = . <_N= 2) 7 ) 4) . 4 0 6 0 4 1 82 4 4 5 2 5 0 6 0 4 3 3 5 6 4 5 0 4 3 6 5 6 - 3 11. . 5 3 3 5 . 7 5 1 . 1 . . 6 3 3 5 7 3 3 5 9 3 6 5 G 1 3 : G 1 4 G 1 8 ( N = {N= ( N = 2 ) 3 ) 2 ) 4 6 3 0 5 0 3 9 6 0 3 2 5 6 3 0 7 0 6 2 7 0 3 2 9 0 3 2 -G 2 0 G 2 7 ( N = IN= 2 ) 1 ) 6 3 6 2 7 3 6 6 9 3 6 2 1 1 G 1 G R O U P S A F T E R C O M B I N I N G (M= 4 ) 2 0 7 0 3 4 5 5 G 9 9 2 1 5 < N= 7) 9 4 5 0 A N D G 2 7 {N = 1 ) . E R R O R =•- 1 7 . 7 3 9 1 G 2 G 3 ..... G 7 ( N = ( N = IM = 5) 1 ) ....2 ) . . . 2 0 9 2 2 1 8 5 . . 4 0 0 4 3 3 0 3 7 3 3 2 3 3 6 3 3 3 9 1 9 5 4 6 G 8 G 9 G 1 2 t N = (N= { N= 2.) 8 ) 4 ) 4 0 6 0 4 1 8 2 4 4 5 2 5 0 6 0 4 3 3 5 6 4 5 0 4 3 6 5 6 5 11 5 3 3 5 7 5 1 1 6 3 3 5 7 3 3 5 7 3 6 6 9 3 6 5 G 1 3 ! N = G 1 4 ( N = ... G .18. J N = 2 ) 3 ) 2) 4 6 3 0 5 0 3 9 6.0.32... 5 6 3 0 7 0 6 2 _ 7 0 3 2 9 0 3 2 • i G 2 0 ( N= 2) 6 3 6 2 9 3 6 2 I co CO I 10 G R O U P S A F T E R C O M B I N I N G G 9 < N= 8) A N D G 20 ( N= 2 ) . E R R O R = 21.8668 G 1 {N= 4) 2070 8455 9215 9450 G 2 ( N= 5.).. 20.9 2_. 3.30.3... _2.36.3. 339 1 9 5 46 G 3 i bi= 1) 2135 G 7 <N = 2) 4004 7332 ! G 8 { N= 2 ) 406 0 5060 G 9 {N = 10) 4182 4 3 3 5 436 5 5 3 3 5 6 3 3 5 63 62 7 33 5 7366 9362 9365 G 12 ( N = 4) 4452 64 5 0 6 5 1 1 7511 -..G. 13. ( N=. —2). 463.Q... .56.3 0... G 14 (N = 3) 5 03 9 7 0 6 2 9032 G 18 ( N = 2) 6032 7 03 2 i 9 G R O U P S A F T E R C O M B I N I N G G 14 (N= 3) A N O G 18 ( N = 2) . E R R O R = 22.3823 ! G._ 1 (N = 4) 2070 _8455 9 2.15 945 0 ! G 2 { N= 5) 2092 33 0 3 3 36.3 3391 9546 ! G 3 (N= 1) 2185 ! G 7 C N= ' 2) 4004 7332 G 8 (N= 2) 406 0 5060 G 9 ( N= 10) 4182 43 3 5 4365 5335 6335 6.362 733 5. 7366 9362 .93 65 1.2 (_N- 41 445_2__ .6450_..._ 6 51. 1 751 1 13 tN= 2) 4630 56 3 0 G 14 ( N= 5) 503 9 6 032 7 03 2 706.2 9032 8 G R O U P S A F T ER C O M B I N I N G G 1 ( N = 4 A N O 5 12 I N = 4) G 1 <N= 8) 2070 44 5 2 6 46 0 6 511 751 1 8455 9215 G 2 (N= 5) 209 2 33 0 3 3 36.3 339 1 9546 G 3 < N= 1 ) 2135 G 7 <N= 2) 4004 73 32 G 8 (N= 2) 4 06 0 50 60 G 9 (N= 10) 4182 43 3 5 4 36 5 5335 6335 6362 7335 G 13 ? N = 2) 46 3 0 56 30. --------G 14 (N = 5) ' 50 39 60 3 2' 7 C 3 2 "9032" E R R O R 9450 24.7622 7366 9362 9365 7 G R O U P S A F T E R C O M B I N I N G G 1 ( N = 8 ) A N D G 1 3 ( N = 2 ) . E R R O R = 2 9 . 8 5 3 9 . G 1 ( IM= 1 0 ) 2 0 7 0 4 4 5 2 46 3 0 5 5 3 0 6 4 5 0 6 5 1 1 7 5 1 1 8 4 5 5 9 2 1 5 7 9 4 5 0 - - ". :4 : ) • • . G 2 < N = 5 ) 2 0 9 2 3 3 0 3 3 3 t 3 3 3 9 1 . „ 9 5 4 6 _ G 3 ( N = 1 ) 2 1 8 5 G 7 I N= 2 ) 4 0 0 4 7 3 3 2 G 8 ( N - 2 ) 4 0 6 0 5 0 6 0 j G 9 ( N = 1 0 ) 4 1 8 2 43 3 5 4- 36 5 5 3 3 5 6 3 3 5 6 3 6 2 7 3 3 5 . 7 3 6 6 9 3 6 2 9 3 6 5 • : r" : '3 1 4 •( N = 5 ) 5 0 3 9 6 0 3 2 7 03 2 7 06 2 9 0 3 2 i 6 G R O U P S A F T E R C O M B I N I N G G 2 { N= 5 ) AN n ( I 1 4 ( N = . 5 ) . E R R O R V - 4 3 . 6 8 5 3 1 G 1 ( M = 1 0 ) 2 0 7 0 4 4 5 2 46 30 ' 5 6 3 0 6 4 5 0 6 5 1 1 7 5 1 1 8 4 5 5 9 2 1 5 9 4 5 0 . G 2 <N= 1 0 ) 2 0 9 2 3 3 0 3 3 36 3 3 3 9 1 5 C 3 9 6 0 3 2 7 0 3 2 7 0 6 2 9 0 3 2 ^ 9 5 4 6 . . G 3 ( N= 1 ) 2 1 8 5 •7. 77f7/ - \ ' ' .•' i •• ,, : i G 7 ( N = 2 ) 4 0 0 4 7 3 3 2 S \v?}-! G 8 * N= 2 ) 4 0 6 0 5 0 6 0 i G 1 9 .( N= 1 0 ) 4 1 8 2 4 3 3 5 4 3 6 5 5 3 3 5 6 3 3 5 6 3 6 2 7 3 3 5 7 3 6 6 9 3 6 2 9 3 6 5 ' j » 5 G R O U P S A F T E R C O M B I N I N G G 2 G 1 ( N = 1 0 ) 2 0 7 0 4 4 5 2 4 6 3 0 G ( N = ( N = 1 2 ) 1 ) 2 ) 2 0 9 2 2 1 8 5 4 0 6 0 3 3 0 3 .3 3 6 3 5060 ( N = 1 0 ) AN 0 G 7 (N= 2 ) 5 6 3 0 6 4 . 5 0 6 5 1 1 7 5 1 1 3 3 ^ 1 4 0 0 4 5 0 3 9 6 0 3 2 E R R O R = 8_45_5rr_9 2.1_5_ 7 0 3 2 - 7 0 6 2 4 6 . 6 7 4 3 _ 9 4 5 0 .; . ••73 3 2 - 9 0 3 2 9 5 4 6 9 ( N = 1 0 ) 4 1 8 2 4 3 3 5 4 3 6 5 5 3 3 5 6 3 3 5 6 3 6 2 7 3 3 5 7 3 6 6 9 3 6 2 9 3 6 5 4 G R O U P S A F T E R C O M B I N I N G G 1 G 1 ( N = 1 1 ) 2 0 7 0 2 1 8 5 4 4 5 2 G 2 tN= 1 2 ) 2 0 9 2 3 3 0 3 3 3 6 3 { Nl= 10) AND 46 30 5 6 30 3 391 4004 ; 3 ( N = , - 1 ) 6 4 5 0 6 5 1 1 ; . 5 0 3 9 6 0 3 2 • E R R O R =• . 7 5 1 1 . 8 4 5 5 7 0 3 2 7 0 6 2 4 6 . 7 0 2 3 ' . 9 2 1 5 9 4 5 0 7 3 3 2 9 0 3 2 9 5 4 6 G G 8 q ( N= < N = 2 ) 1 0 ) 4 0 6 0 4 1 8 2 5 0 6 0 4 3 3 5 4 3 6 5 5 3 3 5 6 3 3 5 6 3 6 2 7 3 3 5 7 3 6 6 9 3 6 2 9 3 6 5 3 G R O U P S A F T E R C O M B I N I N G G 1 G 1 ( N - 2 3 ) 2 0 7 0 2 0 ^ 2 2 1 8 5 <N= 11) AN 0 330 3. 3 3 6 3 G 2 (W= 1 2 ) 3 3 9 1 4 0 0 4 E R R O R = -4 4 5 2 4 6 3 0 6 9 . 4 1 4 6 5 0 3 9 5 6 3 0 6 0 3 2 6 4 5 0 7 0 6 2 7332 7 5.11 8 4 5 5 9 03 2 9 2 1 5 945 0 9 5 4 6 ! G 8 (N= 2 ) 4 0 6 0 5 0 6 0 : G <?...( N= 1 10) _ .11.82 4 335 4 3 6 5 533 5... 6 3 35. . 6 362 .....733 5 _ . 73.66...... 9 3 6 2 .. 9365. _ j 2 G R O U P S A F T E R C O M B I N I N G C 1 ( N = 23 ) A N D G 8 <N= 2) . ER RQ R 8 1 . 3 3 7 9 G 1 (N= 25) 2 0 7 0 2092 . 2135 . . 3 30 3 3 3 6 3 33 91 4 004 4 060 4 4 5 2 4 6 3 0 50.39 5 0 6 0 5 6 3 0 6 511 70 32 7 06 2 7 3 32 7 5 U 3455 9 03 2 9 2 1 5 9 4 5 0 9 546 G 9 (N= 10) 41 32 43 3 5 4 36 5 5335 _ 6 3 35 6 3 6 2 7 3 3 5 7 3 6 6 936.2. 9 3 6 5 _ _ , .. NO. G R O U P S S E L E C T I O N V ALU E 20 1.93496 19 1.82436 18 1.40 5 55 17 0 . 0 6 9 6 2 16 0 . 3 7 3 3 7 15 0. 7 0361 14 2 . 4 0 1 6 3 . 13 2 . 8 1 7 9 4 12 0 . 2 6 4 1 0 11 2 . 5 5 9 6 0 10 0.2 3 57? 9 0.956 97 8 1.644 99 7 . _ - 3 . 3 4 3 1 4 . _ 6 0 . 4 1 0 5 2 * •5 0. 00 8 00 4 1. 9452 7 3 0 . 5 3 6 9 2 2 - 2 . 0 00C O -327-APPENDIX IX Description of F i l e Changes Made S p e c i f i c a l l y for This Study -328-Texture and structure designations found i n the B.C. S o i l Survey Data f i l e did not lend to s t a t i s t i c a l analysis. For this reason, texture was modified as presented i n Table 9.1 and structure i n 9.2 and 9.3. Platiness was treated as a separate variable because of basic s t r u c t u r a l differences with other configurations. Platiness and the sand/clay r a t i o were not used i n the study. These variables were inserted on the physical card and given the following card column designations. Card Column Name Format 42-44 Platiness F3.1 45-48 Structure F4.1 49-53 Sand/Clay F5.1 Ratio 54-56 % Sand F3.1 57-59 % S i l t F3.1 60-62 % Clay F3.1 -329-Table 9.1. Texture changes made for the study Textural Class % Sand* % S i l t * % Clay* Sand/Clay Ratio Coarse sand 90 5 5 18. 0 Medium sand 90 5 5 18.0 Fine sand 90 5 5 18.0 Very fine sand 90 5 18.0 Loamy sand 82 13 5 16.4 Loamy fine sand 82 13 5 16.4 Loamy very fine sand i 82 13 5 16.4 Coarse sandy loam 65 25 10 6.5 Sandy loam 65 25 10 6.5 Fine sandy loam 65 25 10 6.5 Very fine sandy loam 65 2 5 10 6.5 Loam 42 38 20 2.1 S i l t loam 22 62 16 1.4 S i l t 10 85 5 2.0 Sandy clay loam 60 12 28 2.1 Clay loam 37 30 33 1.1; S i l t y clay loam 15 50 35 0.4 Sandy clay 55 5 40 1.4 S i l t y clay 15 45; 40 .38 Clay 12 18 70 .14 Heavy clay 10 15 75 .13 '''Percentages given are derived from the mid-point of the classes on the texture t r i a n g l e . -330-Table 9.2. Structure changes made for the study Structure Code Description Value (mm)* 01 Single grain 0.0 02 Massive 999.0 03 Fine blocky 5.0 04 Medium blocky 15.0 05 Coarse blocky 37. 5 05 Fine subangular blocky 5.0 07 Medium subangular blocky 15.0 08 Coarse subangular blocky 37.5 09 Very coarse subangular blocky 50.0 10 Fine granular 1.0 11 Medium granular 3.5 12 Coarse granular 7.5 16 Fine prismatic 10 17 Medium prismatic 37.5 18 Coarse prismatic 75.0 19 Very coarse prismatic 100.0 20 Fine columnar 10.0 21 Medium columnar 37.5 22 Coarse columnar 75.0 23 Very coarse columnar 100.0 *Size derived as the approximate average of structure class and kind described i n the CSSC (1970) c l a s s i f i c a t i o n -331-Table 9.3- Platiness designations for the study Platiness Code Description Value (mm)* 13 Fine platy 1.0 14 Medium platy 3.5 15 Coarse platy 5.0 *Size derived as the approximate average of structure class and kind described i n the CSSC (1970) c l a s s i f i c a t i o n 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0101808/manifest

Comment

Related Items