UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The U.B.C. recordings collection : a traffic flow study Kramar, Johannes 1971-12-31

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
UBC_1971_A4_5 K73.pdf [ 30.62MB ]
Metadata
JSON: 1.0101781.json
JSON-LD: 1.0101781+ld.json
RDF/XML (Pretty): 1.0101781.xml
RDF/JSON: 1.0101781+rdf.json
Turtle: 1.0101781+rdf-turtle.txt
N-Triples: 1.0101781+rdf-ntriples.txt
Original Record: 1.0101781 +original-record.json
Full Text
1.0101781.txt
Citation
1.0101781.ris

Full Text

THE U.B.C. RECORDINGS COLLECTION: A TRAFFIC FLOW STUDY by JOHANNES KRAMAR Ingenieur (grad.), Friedberg Polytechnic/Germany 1967 Welding Engineer, Institute for Instruction and Re search of Welding Technology, Mannheim/Germany 1967 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION IN THE FACULTY of COMMERCE AND BUSINESS ADMINISTRATION We accept this thesis as conforming to the requi red standard THE UNIVERSITY OF BRITISH COLUMBIA March 1971 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Commerce and Business Admtnfstratlon The University of British Columbia Vancouver 8, Canada March 15, 1971 The U.B.C. Recordings Collection represents a service network with different service centers which in clude the Information desk, the shelves, and the listening room. Arrivals to the system follow a random traffic pattern. The units flowing in the network are defined as jobs requiring service from the service stations. The probabilistic job routings are considered to be a station ary finite-state Markov Chain discrete In time. Field.work was done during the summer school and during the regular winter term. The essential traffic observations were obtained by questionnaires. A first analysis of the operating characteristics was made using a graphical method shown in the diagrams 1 and 2; at this, the recordings collection was considered to be a service facility with a large number of service channels. By this method, knowledge could be gained about the number of arrivals during a day, the number of simultaneous customers in the system and in the listening room, the time spent for service, the regularity and changes in arrival and service statistics, and the regularity of departures. It became evident that the distribution of the interarrival times, both., to the recordings collection (shelves and Information desk) and to the listening room as well, fit a negative exponential distribution function. The distribution of the service times associated with the record 1ngs col 1ection could be identified as ex ponentially distributed, while the service time distribut ion of the listening room follows an empirical distribut ion function (see diagrams 3 to 10). The basically observed statistics were applied in a simulation. The simulation was performed with the "General Purpose Simulation System/360, (GPSS/360)" In three variations in order to obtain empirical data under modified arrival rates and one or two desk servers, respect ively. The data of interest was gathered In tables/ the Information content of the tables was plotted in graphs (see computer output). Data of significance has been used for the description of the traffic behavior of each single service center and was displayed in the diagrams 11 to 13. The flow model predicted that congestion may appear at the information desk and in the listening room. The simulation has confirmed this prediction. Under lasting rush hour conditions, jobs re quiring service at the information desk may spendj.about 3 to h times their actual service time in queue waiting for service. This result has been obtained under the general assumption of a first-in first-service order of a 1 H. arriving desk jobs. However, In practice, the observed rush traffic lasts only about two hours between 12:00 and 2:00. Consequently, arriving jobs related to re-shelving of recordings may be buffered and serviced at times of lower traffic. Thus, the actual waiting time in queue will be lower. In the case of a second server on duty, the waiting time in queue drops down significantly. It will not exceed the service time (see diagram 11). The service at the shelves storing the record ings Is problemless. The maximum number of jobs at the i shelves does not reach the service capacity. The average service times are constant under varied conditions. In deciding what fs an adequate number of turn tables, there is a conflict between high utilization rate and satisfied customers. The conflict situation becomes evident under extreme traffic conditions, for instance, when the peak traffic exceeds the provided capacity, or conversely, when the equipment is idle because of low traffic. A satisfying approach depends upon the range and weight of the appearing traffic fluctuations. As it is shown, the intensity of arrivals varies considerably during the interval of a day. However, the range of fluctuating arrival rates still increases by considering different days of a week or different seasons, such as the summer '.' session or the winter term. An acceptable solution of an adequate number of turntables Installed may lead to a compromise between 'perfect' equipment utilization and 'completely' satisfied customers. Depending on the pursued policy/ it may favour one or the other interest. CHAPTER PAGE I GENERALITIES: THE SYSTEM UNDER STUDY 1 II ANALYSIS OF THE OPERATING CHARACTERISTICS k .1. Determination of Significant Traffic Characteristics h 1.1 Description of the technique employed k 1.2 The traffic flow during the summer term . 9 1.3 Comparison of the traffic flow observed during the summer session and the winter term 16 III THE TRAFFIC FLOW MODEL 27 1. the Statistical Properties of the Continuous Flow Model 29 2. The Job Routing Model as a Finlter-State Markov Chain 32 TABLE OF CONTENTS (cont'd) CHAPTER PAGE 2.1 The expected number of visits to state (j) before a customer will leave the service system, given, he Is in a present state i i) 3 7 2.2 The probability, a customer ever will visit state (j) ....... 39 2.3 Markov Renewal Process 1+8 3. Restrictions of the Markov Assumptions in the Model 55 IV SIMULATION OF THE MODEL 7..".. 5 8 V MEASUREMENT AND EFFECTS OF STATISTICAL PROPERTIES ON THE SERVICE NETWORK UNDER VARIOUS SIMULATION CONDITIONS T.LS 63 1. The Information Desk 63 2. The Shelves 67 3. The Listening Room 69 CHAPTER BIBLIOGRAPHY . . ..' APPENDIX W 1. Tables 2. Computer Output LIST OF TABLES TABLE PAGE I Maximum values describing the traffic characteristics of the recordings collection during the summer term 1970 ... Ik II Maximum values describing the traffic characteristics of the recordings collection during the winter term 1970 ... 16 III The average arrival rates of the system and of the listening room on an average day in the winter term 72 IV Cumulative number of customers entering or leaving, respectively/ the system at certain t imes(summer term) ....... 78 Cumulative number of customers entering or leaving, respectively, the listening room at certain times (summer term) ... TABLE PAGE VI Cumulative number of customers entering or leaving, respectively, the system at certain times (winter term) 80 VII Cumulative number of customers entering or leaving, respectively, the 1 Isten1ng room at certain times (winter term) .. 81 VIII Distribution of elapsed time between arrivals to the recordings collection 82 JX Distribution of service time in the recordings collection 83 X Distribution of elapsed time beween arrivals to the listening room ... 8k XI Distribution of service time con cerning the listening room 85 LI ST OF FIGURES FIGURE PAGE 1 The physical plant of the service facilities of the recordings collection and the corresponding channels of the job flows 3 2 Operating traffic characteristics shown in a schematic graph 6 jl The determination of the representative arrival and departure curve 8 k The continuous flow model of the complex service system with five states, numbered 1 to 5 28 5 The empirically observed flow of jobs represented by 100 customers requiring service from the system during a time interval of ca. 100 minutes 30 6 The flow model showing the state transition probabilities 33 FIGURE PAGE 7 The probability tree showing the possible paths ^0 8 A sample function of transitions into state (f) k8 9 The transition from state (I) to two alternative successive states j(l) and j(2) . .. 50 10 The simulation model 50 11 Graphical display of the interrelations "Service Center","Recordings Collection", "Service System" - 62 12 The average utilization rate vs. the probability that every customer will find a vacancy in the listening room - 73 13 Anticipated simulation map 7k FIGURE PAGE jti Map of Indifference curves 76 15 Decision field of the model 77 LIST OF DIAGRAMS DIAGRAM PAGE 1 The traffic characteristic curves of the recordings collection during the summer term 10 2 The traffic characteristic curves of the recordings collection during the winter term 15 3 Interarrival time distribution (recordings collection) 19 k Cumulative Interarrival time distribution (recordings collection) 20 5 Service time distribution of the recordings collection without con sideration of the service time In the listening room ;21 6 Cumulative service time distribut ion of the recordings collection without consideration of the service time In the listening room 22 DIAGRAM PAGE 7 Interarrival time distribution (1i sten i ng room) 23 8 Cumulative interarrival time distribution (listening room) .... 2k 9 Service time distribution (1istening room) 25 10 Cumulative service time distribut ion (listening room) ., 26 11 The average number of arrivals/10 min. to the information desk and the average transit time/job as a function ;: of the number of arrivals to the system/10 minutes 6k 12 Functional interrelationships concerning the listening rcom .... 68 ACKNOWLEDGEMENT I am grateful to a number of people for advice and help in the development of my thesis work. I would like to express my thanks to Prof. Larry George, Prof. Shelby Brumelle, and Prof. Hartmut Will for their guidance and the atmosphere of cb-operation. Also, I owe thanks to Prof. Bernhard Schwab for his perceptive comments. I am indebted to Mr. Basil Stuart-Stubbs, the manager of the U.B.C. Main Library, and to Mr. Doug Kaye, the manager of the U.B.C. Recordings Collection, for the readiness to help they offered in the preparation of the study during the field work. My appreciation extends to all persons who filled in my questionnaires, and in particular to all those who have patiently corrected my composition and grammatical errors. Johannes Kramar GENERALITIES: THE SYSTEM UNDER STUDY The recordings col 1ection of the U.B.C. Library houses more than fifteen thousand recordings of all kinds which may be played in the Wilson Listening Room with out charge or may be borrowed for an annual fee. The traffic flow study of the recordings collect-Ion inclusive of the listening room includes: a) the analysis of the service system In its operating characteristics, b) the presentation of a traffic flow model, c) the simulation of the model under changing traffic conditions, d) the application of the essential simulation extract to provide a measurement and evaluat ion method of the achievment of each single service faci1Ity. The recordings col 1 ect ion, as a service system, consists of three facilities offering different customer servIces: a) At the information desk, main services are to provide Information concerning the recordings col lection,including new applications for membershIp;and to store all returned records. b) The record shelves themselves are an Informat ion source and supply the recordings either for taking *h.ome 'brr'-"'ri,.^ c) for listening on the turntables Installed in the 1?stenIng room. The system's input Is a series of arriving jobs represented by the arriving patrons, each requiring a number of service operations at the service facilities. The system's output is comprised of completed services or satisfied customers, respectively. The flow of jobs among the service facilities Is Illustrated below: Figure 1: the physical plant of the service facilities of the recordings collection and the correspond ing channels of the job flows ANALYSIS OF THE OPERATING CHARACTERISTICS The recordings collection Is a service facility with ajlarge number of service channels. Simultaneously, a certain number of jobs may be in the system's service occupying its service capacities. For instance, the listening room offers 23 turntables installed, and at the storing shelves, service is self-operated. The only single channel service station is the information desk. 1. Determination of Significant Traffic Characteristics 1.1 Description of the technique employed the number of arriving customers during a day, the number of simultaneous customers, the time spent for service, the regularity and changes In arrival and service statistics, the regularity of departures will be evaluated in a graphical method. We want to use a graph to comprehend the traffic data which was obtained by the numerous answers on the questIonnaIrs. Furthermore, It Is our objective to generalize (."'"the observed traffic flow in a form, that we might be able to learn an ex-The operating Characteristics such as: pected behavior of the service system under study. The graph used shows on its abscissa the current hours of the daily public access to the recordings collection. The ordinate records the cumulative number of customers going Into the system and Into the listening room, respectively. The cumulative number of customers may be recorded at any convenient time interval. The smaller the Interval between the recordings, the more ac curate Is the observation that can be made from analysis of the measurements. The required information was obtained using a questionnaire. This form was presented to each arriving customer at the entrance with the request to return it at the exit. During these events, the arrival and de parture time could be noted on the form. Also, if the customer visited the listening room, he filled in the appropriate arrival and exit time. The other items of the questionnaire assisted to determine what kind of service facilities the patrons had used. From the Informat ion sheets, all required data could be obtained for further evaluation. At certain times, the cumulative number of customers who entered the recordings collection and the listening room, respectively, ts=: represented by the arrival curves. Similarly, the departure curves show the cumulat-ive customers that leave after their service completion. The arrival curve and the departure curve within a co ordinate system and the parameters derived from it are outlined in the schematic graph below: Figure 2: Operating traffic characteristics shown in appear to demand service. It varies during the successive times of a day. The arrival rate may be obtained from the slope of the arrival curve for any time interval under consideration. If a desired time interval is selected, the slope of the entrance curve between the beginning and the end of the interval gives the arrival rate during that Interval . Similarly, the rate of service Is the rate with which customers are discharged from the service. It also varies during the daily service period and can be determ-DUI?A7lO^ OF service F=ER10IX TIME a schematic graph The arrival rate is the rate at which customers ined In the same way as the arrival rate. At a certain time of interest, the simultaneous number of customers in service follows from the vertical distance between the arrival and the exit curve. The : arrival curve shows the cumulative number of customers that have entered. The number of customers that have left is given by the exit curve. Thus, the difference between the two values must be the number of customers that remain In service at the moment In question. An average time spent for service may be obtained by the horizontal distance between the entrance and exit curve. If we keep track graphically of all arrivals (tIme/cummu1 at Ive number of customers) and register the time spent for service (t ) of each customer (n), then we c may obtain an average service time associated to those n customers by 1 n t = - -— ;>_> tc c,avg. number of n customers c=i We interconnect all points of arrivals and obtain the arrival curve; the points of average service times lie on the exit curve, such as it is shown in the sketch beiow: CuRRENr -SERVICE TiMI Figure 3: The determination of the representative arrival and departure curve Thus, the smoothed curves of the arrivals and the exits represent a generalized description of the traffic be havior during the current service time. We compare *V those traffic characteristics observed on dlffernt days of aWek and realize a strong similarity in the customer's behavior. The comprehended data of a week's observation Is shown In diagram 1. We assume, this generalized graph represents the traffic flow during the summer term, and ana 1 ogously, the graph shown In diagram 2 may represent the traffic during the winter term. In proceeding to determine how much time an average customer will spend for service when he arrives at the current time tc of a day, first we examine the arrival curve. We realize, it will be the n-th customer on the average. Looking horizontally across ,to the arrival curve, it can be noted that the n-th customer will leave at time tc+ . Hence, we can expect that the n-th customer will spend a total of (tc-tc+r)) = tp minutes for service. Generally, the horizontal distance between the arrival and exit curve Is a graphical representation of how long customers spend at any single point. The longest and shortest time spent is represented by the longest and shortest horizontal lines between the two curves. The total number of customers, readily obtained from the curves, Is Indicated by the highest points on both;-, the arrival and the exit curves, and may be read on the vertical scale. The duration of the daily service period is indicated on the horizontal scale. 1.2 The traffic flow during the summer term Usually, fewer students attend summer school. But summer school students might have more leisure than students of the regular winter term. Such circumstances may significantly affect the behavior of visits of the recordings collection. DiagraiB 1 shows the approximate traffic characteristics during the summer session 1970. The in quiry took place in the first week of July. From the system arrival curve of diagram 1, we can determine three arrival rates in the time periods between 9:00 and 12 : 00, 12 : 00 and 2:00, and 2:00 and 5:00. At 9:00, 12:00, 2:00, and 5:00, there were 0, hO, 97, and ]hS cumulative counted customers in the system/ as obtained from examination of the arrival curve. Thus, U0, 57, and bS customers had entered the recordings collection during the corresponding time periods of 180, 120, and 180 minutes. The slope at any point of the system's arrival curve Is obtained by dividing the number of customers served by the respecttve1time period. Hence, in the average, there arrived 1 80 57 120 U8 180 = 1 customer/4.5 minutes = 1 customer/2.1 minutes = 1 customer/3.75 minutes during the periods examined. The length of the interval must be short when the slope changes rapidly or there will be an averaging of different arrival rates. The behavior of the exit curve is affected by periodic changes during the morning. The customers are going to leave the recordings collection between 9:30 and the break at 10:30 with an average departure rate of 1 customer/3.3 minutes. After the.10:30 break, the departure rate slows down but Increases again shortly before the 11:30 break. Obviously, the students either leave for :' •'• - classes or for early lunch starting at 11:30. However, the average departure rate decreases to 1 customer/8.7 minutes between 10:30 and 11:30. This/results in a maximum number of simultaneous customers (8) in the system at 11:30, as the average arrival rate does not diminish during the same Interval. After 11:30, the visitors to the recordings collection may leave for lunch. The exit rate increases to 1 customer/k.1 minutes. :~; X- From 12:15 till about 2:00, rush hour takes place, the exit rate goes up to 1 customer/2.2 minutes, which Is about equivalent to the arrival rate of 1 customer/2.1 minutes during the same Interval. This, indicates that there is a high traffic flow into and out of the recordings col 1ectIon. Under these circum stances, of course, the number of simultaneous customers and the time spent in the system are about constant. After this period, the exit rate decreases again to 1 customer/3.2 minutes. Within the few minutes before the 5:00 closing time, the remaining customers leave and once again create a kind of rush traffic (1 customer /l.36 mi nutes). It can be seen that the maximum number of simultaneous customers appear at 11:30 (8. ;cus tome rs), at 1:30 (13 customers), at 3:00(12 customers), and at 4:15 (13 customers), respectively. The longest times are spent between 10:35 and 11:20 (45 minutes) and 2:45 and 3:30 (45 minutes). On the average day Invithe 197- summer, 145 customers have been serviced. The graph concerning the listening room can be interpreted in a similar way. It represents the data which wa&;:^ recorded simultaneously under the same conditions. In the summary, the table outlines the maximum data of the traffic flow into the recordings collection and adjoining listening room: PARAMETER TIME INTERVAL SYSTEM LISTENING ROOM 1. Arrival Rate (cust./tIme) 12:00-2:00 1 cust./2.1 min 12:00-4:45 1 cust./7.9 min 2. Departure Rate (cust./tIme) 12:00-2:00 1 cust./2.2 min. 4:45-5:00 .1 cust./1.4 min. 12:00-4:30 1 cust./8.7 min 4:30-5:00 1 cust./3 min. 3. Number of SImultaneous Cus tomers 11:30 8 customers 11:45 6 customers 1:30 13 customers 7 customers 3:00 12 customers 8 customers 4:15 13 customers 9 customers 4. Time Spent = Service TI me 10:35-11:20 45 minutes 10:40-1.1:50 70 minutes 2:45-3:30 45 minutes 3 :00-4:30 90 minutes 5. Avg. Total # of Cust. Servjced/Day 145 customers 52 customers Table I: Maximum values describing the traffic character istics of the recordings collection during the summer term 1970 05 ."r ';i . .i .... i. • i 11 ..'•,! • l;.v:!:;: •I • -0 O • I r']''M j:i;|;;:.:j::i:|]!:i{':;! hi'.Slir;: j !U U •ih'irliii! !i.li!!LL!i!b.6,'--is-:dIo • •7.-|: :.: I :':. r::: • i:. - • UUOOJ-: ' US} Si' (';;: j jU!3}'SA;S;::j:::; :~:!:ru j'"Quads':i;<ri"^V/Jj^ijiij'i'lrnijii |:ii;|lU3,'jS;/J'S;: UlOO.i: * is:; (. mi|i Jj,:jj::.: ,U:l |::SjJ,3UJO.43,1 10;. j ::: l - -" -1 -1:" :. :t .; I:::I!'H::!:!:: ill:'::!:: :|': ,|;. .j. :. i. . j;: i(j <? A'Uia.i; uv i ,3U!; 4;; i:! I i;: i: •i: • i .^•iavi:;:i':. • ! i! i;:;.!;!i!!'M!»Wi1ui''b'ci!!:iii n ijiiiiijj •tiii^'ji lilii'iiiililjiijjjjijjj ijiiijijijlr v<Y:\v-:, \ 'irM'ir;TiTrnlir;i'liiTn"""'}nfrnr i;!i!iMii;;ii|i! f J.lJiii! |:::; !:::! ....i... • ...Ttii!ii:Tn ii.!4lli JliU !!!n!!;!|!!!i 'iiiil'iH !ll i:! i jjjjjii: iiil!':!' liliiiiiiiii! -••••'•••-:;:::iZr:i:r*"-.'-: i : •:::.. r 'Ji IlLi UiJilliiliUi! iLLi'*?^L£.?;ii::.: rrf~ •:ii::-[-iT|;n^:^-Li I7'-'; j % I •: •: ^^^xN;vH # t jW WLiLTLiL •: i:i iLL 'LLP ti '"L LilWP j nr. ;!;;; r: vr. ;|.;.'L;.pi;i:.:i:.jCi/.N.:..!0p.L liiii .i-re::.:!:,::; ;(Ti cv:.:::; m Iii iii ill i i i I'fill 11n i 11 i llSr!! 1^1 H i III l^i j I=t ;t ij !^'"cr ::: i • ii!i!i!!;:!l,,., i!:i:;;;J!iii!!;! ..;: |:.:: .iilj::;; HI : '.Ji'.\; 11 . i'.; 11' ; .l;.:.iii'Ji 1.3 Comparison of the traffic flow observed during the summer session and the winter term The approximate traffic characteristics are shown In diagram 2 during the winter term 1970. The data results from an inquiry during the last week of September 1970. The corresponding maximum values are: PARAMETER TIME INTERVAL SYSTEM LISTENING ROOM 1. Arrival Rate (cust./time) 12:00-2:00 1 _c.u.s_t..Xl-.-D3 12 :30-l:30 1 cust./I.67 min 10:30-11:45 1 cust./2.27 min 2. Departure Rate (cust./t ime) 12:15-2:30 1 cust./lmin 11:15-2:30 1 cust./2.1 min 3. Number of SImu1taneous Cus tomers 11:00 21 customers 20 customers 11:45 24 customers 21 customers 1:45 25 customers 22 customers 4. Time Spent =ServIce Time 9:45-10:45 60 minutes 10:30-11:15 45 minutes 11:50-12:^5 55 minutes 4:00-5:00 60 minutes 4:50-5:30 40 minutes 5. Avg. Total Number of Customers Servi ced/Day 380 customers 182 customers Table II: The maximum values describing the traffic characteristics of the recordings collection during the winter term 1970 A comparison of the summer and winter traffic flows revealed the following: 1. The numbers of customers per day demanding service from the recordings collection during the winter term is a multiple of those in the summer session. Consequently, the arrival rate, the departure rate, and the number of simultaneous customers are also multiples. Of course, the utilization rate of the service facilities will be higher during the regular winter term than In the summer. But also, If there Is any congestion ln the service system, then tt will become obvious in the rush hours during the winter term. 2. Despite the different traffic volumes of the summer and winter terms, a fundamental traffic flow behavtor can be generalized for both seasons. a) The breaks between the University lessons influence significantly the behavior of the customers arriving or leaving. This can be generally observed, especial 1y during the first half of the day. For instance, the arrival rate decreases shortly before the breaks but Increases distinctly during and shortly after the breaks. In contrast, the departure rate Increases some minutes before the break but decreases again after the break. This observation Is valid for the traffic flow of the system and of the listening room as well. It i nd i cates/that students use the break between two lessons or a following free hour for a visit to the recordings collection. They arrive during and shortly after one break and leave just before or during the next break. b) The time Interval of the maximum traffic flow, as it is indicated by the maximum arrival rate and departure rate, will appear roughly between 12:00 and 2:00. c) The maximum number of simultaneous customers In the recordings collection can be expected at 11:00-11:45 and at 1:30-1:45. d) On the average, customers that arrive near 10:30 will spend the most time ( 45 minutes) of any customers arriving. Those who enter the listening room at that time Intend to use the listening units provided for approximately 60 minutes on the average. tro pin OS IP. (0-<0-cu ::<u:: FLcf ffE. +P--£<U-::Q-: -uv( :0: :©a </>---C-"tE 3S ::<tt :«1 :Q3: -tit fig: ^4 -Ttl-in? sxponen r-e ra repuenc -V-+++? +++4, ++++ 2.5. irre- (TO HEESfcEE! :S.e#,V: j iijifti cons _ce: itie rme: t mrt ttS: o# t3t |-t)Ut:lrpn ne :e+if 1+tOjt j^::t:R§Effi ipnjie: record icn:g ST£ <?: ithe listen jhec 4+ icng- :hput-KOOtTV 1 J 1 ) t %J. _ nl UJ I' • ) -4 s r+ L ' CJ ^. 1 - u/ Lb a -liJ-ri ?!• -U-- 1 Kn-- ) > u 1 1 1 1 1 — to • fa 1 1 vu ifi > • '< ll F i i •ci rtt •1 h* _J •Vi-OJ *i' O •fc)1 r= —! -rti •*f UJ Gj- i Li k) 1 T i r Tr 11 i_ iii T| >• • rt \- +J-| UJ uv fD- # O 1 F-J. 1 t/j - 1- c - CSl -uJ-= O M £ • 1 1 TT TT ro -vD • - LI 1 -1 * L r | -jui-i •(/> i u 1 \ ! rl rl i •UJ 1 C/f-r 4-> -FtJ-Tl \l m-t f I 1 I 1 L IJ 4H • ; j G> 4-; i 1 i f fu I M -1 O -> -(>)-- *« 11 l i 11 4-^ • _i— • Y\ > f I I . c in 1 t 1 T -^T T < 1 T Q3-T c-o • 1 L rr ) 9 3 i a J r < 3 O A 1 f 1 Lur \ 3 / \ c 1 _ 1 I 1 1 \ o: i .i. "KV [ >» u T in • : o m ; ; rr [, flj L iJ. | J iL It 1 c tn: ". i m 4) •rr-1 1 m 1 •N CX "C OJ t "- CJ- -QJ. J_l til IU •l 1 . B! i • ±~ 4(U4 1 Ti jir (J n •rr-c a en n- : ; -1 1 [ .1. fU L.' +. J 4-J T-i T"i 4_) c 31 i. J ; : I) 0 m tr .si: • U 4L rfi : : r J I : | n I .•tn >-I r— ! | -u I 10 H L L x L C |! r 1 .u • | n > r •U m i fa A 1 • i 1 m i i_ C 3 11 • • 1 ra 1 11 i ] M i"> <JT "(TT1 1 I .1 ^rr LI | m T T •rr 1 i -C3%-• i 1 •—t LYV J. Il tl o uanl 1 ii r o -/Vi-J. J: _'_L n iC THE TRAFFIC FLOW MODEL Fundamentally, the service process of the re cordings collection can be formulated as a network of service stations with a stochastic Input of jobs. Each Input Is composed of the job departure process from the previous service states. In determining the traffic be havior of the jobs through the network, the customers who requ I rejserv I c I ng In the different states follow more than one path through the network with a probabilistic behavior. Nevertheless, each arriving job to the system Is described by a completely ordered job rout I ng, wh I ch specifies the service centers required to completely process the job and the unique sequence In which they must be employed. The job traffic flow of the network can be shown In a contlnuoOs flow model. The nodes re present the different service stations with the following notation: 1 [" arrivals to the system 2 Information desk 3 shelves k lis ten i ng room 5 departures Figure 4: The continuous flow model of the complex service system with five states, numbered 1 to 5 The links connecting the nodes indicate the possible job flows. For instance, some routings through the may be used In a sequence such as: flow mode 4 £ cycle cycle |\ <4=> cycle cycle >=^ 1-2-4-5 1-3-4-5 1-2-3-4-5 1-3-2-4-5 1 - /:2 - 4:£- 5 l-/:3-4:/-5 1 - /:2 - 3 - 2:1 1 - /:3 - 2 - 3:/ 4 4 5 5 etc. 1. The Statistical Properties of the Continuous Flow Model The flow model is used to study the spread of arriving jobs to different states of the complex service system. The continuous job flow goes from state 1 and ends in state 5. Empirical observations have been made using a questionnaire. For convenience, the approximate behavior generally observed is shown by 100 customers requiring service from the recordings collection ?n several states. The parameters of the probabilistic flow model are: a) The par tial flows (Fjj's, number of jobs/ti me unit) which give the flows through the relevant links, for Instance, from state (I) to state (j), b) The v o 1 u me s of service demand during a , considered time period (Vj, number of jobs serviced during a time interval) originated by the jobs arrived in each state (1). maximum flow VJ = volume of service demand In state (I), ( 1=1,2, .. .5) F.. = partial flow of jobs from state (I) J to state (j ), (j=2,3,'i,5) *•) The partial flows Fo^ and F^? could not be observed reliably with the question naire used. For this purpose, an addition al more detailed inquiry would have been necessary. Figure 5: The empirically observed flow of jobs re presented by 100 customers requiring service from the system during a time interval of ca. 100 minutes (system's arrival rate = =1 customer/minute) . As the flow model shows, out of 100 patrons arriving within a certain time period (state 1), 36 of them will demand service in the first step from the Information desk (state 2), and 6k of those customers wfll require service from the shelves (state 3). In a second step, customers being serviced either at the information desk or at the shelves, may migrate to alternative accessible service centers If they require additional s@r^i<£© from there. A job entering state 5 (departures) means that there is no longer a need for service from the service system. After the departure of all 100 customers, the number of jobs serviced in each state is stated by the volume of the service demand Vj. This demand gives an indication about the re lative frequency of the use of each particular service facility, an unbalanced usage of the service units within the service complex, or the origin of congestion. The observed job flows indicate an approximately balanced service demand for the use of the Information desk (112 demands) and the shelves (98 demands). The use of the listening room seems to be relatively light (52 demands );S/fHowever, it must be taken into account that the capacity of the listening room Is limited by the 23 listening units installed. This capacity limitation might be a reason for congestion. For example, if 100 customers will pass through the system for service in a time period of about 2 hours of the top traffic, a demand of 52 services will be created for the listening room. A listening time of ca. -53 minutes on the average will be available for each listening room customer. The playing of one single side of a LP-record takes about 25 minutes. Thus, the time available for each customer may be just sufficient. for listening to both sides of one record. if any congestion will appear within the complex service system, then It will become obvious along the path of maximum job flow which is routing 1-3-4-2-5. 2. The Job Routing Model as a Finite-State Markov Chain We may consider the job routing model by studying an embedded Markov Chain in the study of the complex service system. The basic concepts of the Markov Chain are determined by the "state" of the system and the "state transition". The state jpf,~the..system Is the particular service facility or the exit and departure state currently occupied by the customer. The system changes its state when the customer trans Its from one state to the next specified state. There are five states In the system numbered from 1 to 5. The time between transitions is a random variable determined by the service time distributions related to each single service center. Hence/ we may consider the system to be a finite-state, continuous-time process. If the system has an embedded Markov Chain, then the probability of a transition to state (j) at the next transition, given that the system now occupies state (i), is a function only of (i) and (j) and is not altered by additional knowledge concerning its past behavior. In other words, we may specify a set of conditional probabilities pjj that a system which now occupies state (i) will occupy state (j) after its next transition. A corresponding transition diagram of the system, showing the states and the transition probabilities In the graph below, is derived from the original flow model: Figure 6: The flow model showing the state transition probab11i t ies The graph, for Instance, makes plain that when a customer is in state (2) there Is a 2k% chance to go to state (3) after the service completion In the present state, or to migrate to state (4) or to state (5) with the probabilities of 3% and 73%, respectively. A complete description of the process can be stated by the transition matrix P and by the initial probability vector (1); the latter determinates the starting state of the process. The rows of the matrix sum to 1: s S p?j = they are composed of the transition probabilities of a customer in state (i) (row) going to another state (j) (column). The transition to a following state (j) may happen In n steps (n=l,2,... ). The one-step transition matrix P of the process Is given by: state after transition (n+1) 1 2 3 4 5 state after transition (n) 1 0 .36 .64 0 0 state after transition (n) 2 0 0 .24 .03 .73 state after transition (n) 3 0 .36 0 .50 .14 state after transition (n) k 0 .79 .13 0 .08 state after transition (n) 5 0 0 0 0 1 The Initial state probability vector (1) Is (1,0,0,0,0). The transition matrix represents an absorbing chain with transient states from 1 to k and an absorbing state denoted by 5. As long as the process Is In the transient set of states, tt will make state transitions till the absorbing state ts reached. Once entered the absorbing state, the process will stay there. The probability that such a state Is entered tends to 1 with an Increasing number of transItton'steps. The matrix version of an absorbing chain aggregat ing the transient and ergodlc set of the states Is P = I* 7 S t ^ \r " s pin h I 1 0 ^ where the submatrtces can be Interpreted such as: 1. Region (r-s).(s) = submatrix 0: The submatrix consists entirely of 0's. 2. Region (s).(s) = submatrix 0: The process stays In transient states; that means, each state can be reached from each other state,and each state can be left again. 3. Region (s).(r-s) = submatrix R: represents the process transitions from transient to ergodic states. 4. Region (r-s).(r-s) = submatrix I: The process has reached the ergodic set of states and remains there. The respective submatrix Is represented by an identity matrix of the appropriate dimensions. Thus, we can write our transition matrix P ?n the new canonical form: 5 1 0 0 0 . 0 1 0 0 .36 .64 0 2 .73 0 0 .24 .03 3 .14 .0 .36 0 .50 4 .08 0 .79 .13 0 where the regions 1,0,R, and Q have been marked off. Finally, we will make use of the transition probability matrix for the following questions: 2.1 What is the expected number of visits to any state (j) before a customer will leave the service system, given, he is in a present state (i) ? 2.2 What is the probability, a customer ever will visit any state (j) ? Additionally, we will consider briefly the expected number of transitions up to time t which Is represented by a 2.3 Markov Renewal Process. 2.1 The expected number of visits to state (j) before a customer will leave the service system, given, he is In ajpresent state (i) We say, the mean of the total number of times the process is In a particular transient state (j) is n../ given, the process starts in state (I). n.. = ET^number of visits to (j) | start tn state ( = iS P(lnvstate (j) on n-th stepl^art in^ = l,j + Qfj. + C Q2) j j + (Q3 ) | j + ... + To compute one element njj, we may add up the original position's contribution, represented by the l-matrix, plus each of the steps' contribution in accordance to the transition probabilities of the Q-matrlx. A new entrance to a regarded transient state contributes to our mean of frequency of visits. If the newly occupied state is absorbing, It contributes nothing, since the process will never leave again this state. We determine all possible rijj's In the N-mat r i x; N = I + Q + Q2+ Q3+ ... The expression I + Q + Q2 + Q3 + . is summable to (l-Q)"1; thus N = (I - Q) -1 1) We apply these results to our example: i-a)> i 2 3 4 1 0 0 0 •0.36 1 •0.36 •0.79 •0.64 •0.24 1 •0.13 0 -0.03 -0.50 1 1) John Kemeny and Laurie Snell, Finite Markov Chains, Van Nostrand Company, Inc., Nw. York 1963, pg. 45 ff. The Inverse matrix Is: 1 2 3 4 1 1.125 0.978 0.523 0 1.283 0.335 0.206 0 1.036 1.340 0.701 0 1.148 0.438 1.253 In a proof, the multiplication of the (l-Q) matrix with Its Inverse (N) has to result in the Identity ma t r i x I : We see from the N-matHx that, for instance, if the process starts in state (2), then It will be tn the same state (2) an average of 1.283 times, but 0.335 times in state (3) and 0.206 times in state (4), etc. Similar examples easily can be chosen from the N-matrix. 2.2 The probability, a customer ever will visit state (j) We may wish to know, for example, the probability that the customer will be in state (2) after n transitions if we know he is In state (2) at the beginning of the n-t.r.ans 111 on process. For this reason, we define a state probabI11tyIT.(n), the probability that the system will occupy state (j) after n transitions, or TTj (n), (n = l, 2, . . .k) = Prob. process in state (j) at n-th t rans i t i on Considering all possible realizations of the process, we may employ a probability tree which states all possible paths. We obtain the following graphic representation if we assume the process starts in state (2) for example: 1. trans. 2 . trans • 14 2 4 5 -2 3 -5 •73 process in state (j) after 2 transitions probabI1. p. _. . -*- 0.1101 <S - - J - 0.004 ~- 0.12 ^4 is — 0 . 766 ' / / Figure 7: The probability tree showing the possible paths To find the probability of a certain outcome In n steps (n=l,2,...k), we add the weights of all possible paths leading to this result. The n-th power of the one-step transition matrix states the conditional probabilities that, given.,, the process started in state (f), (rows of the .matrix), it will after n steps be in state (j), (columns of the matrix). This follows from 2 I.(n) = 1 i = i 1 T t(n+l) = JE7 TT ,(n) p, . , n=0,l,2,.,. J i»i 1 'J If we define a row vector of state probab11111es T(n) with elements " j(n), then TT (n + 1) = *T(n)P' , n = 0,1,2, ... Since by recursion "(l) = Tr(0)P " (2 ) = ^ (1) P = 0) P2 ^ (3 ) = T (2 ) P = T( o) p3 In general, (n) = w"(0)Pn , n = 0,1,2, . Thus, we find the probability that the system occupies each of Its states after n transit?ons,T(n), by multiplying the Initial state probability vector M(l) by the h-th power of the transition matrix P. Let us Illustrate these results by applying them to our example. For instance. If the process starts In state (1), it will be in state (k) after 2 transitions with a probability of 0.3308 in accordance to the P2-matrix. The calculation is: . 0 .36 .64 .0 .0 0 0 .24 .03 .73 0 .36 0 .50 .14 0 .79 .13 0 .08 0 0 0 0 1 0 .36 .64 . 0 0 0 .2304 .089 .3308.3524 0 0 .24 .03 .73 0 .1101 .004 .12 .766 0 .36 0 .50 .14 0 .395 .1514 .0108.4428 0 .79 .13 0 .08 0 .0467 .19 .089 .6749 0 0 0 0 1 o o 0 P2= 0 1 ;a In, the 3-s tep, or general, the n-step probab11i t ? es can be Interpreted similarly. With an Increasing number of transitions, the process tends to be in the final state (5) without any regard from which original state the process started. This trend can be easily observed by the Pn-matr!ces such as: P3 a 0 .2924 .0983 .0501 .5591 0 .0962 .0420 .0053 . 8565 0 .0630 .0962 .0875 .7532 0 .1383 .0228 .0962 . 7427 0 0 0 0 1 0 .0748 .0766 .0579 . 7902 0 .0193 .0238 .0239 .9330 0 .1040 .0265 .0499 .8197 0 .0842 .0457 .0155 .8546 0 0 0 0 1 0 .0143 .0065 .0065 .9723 0 .0049 .0022 .0020 .9909 0 .0090 .0055 .0046 .9811 0 .0077 .0039 .0045 .9839 0 ' 0 0 0 1 We want to know the probabilities; a customer ever will visit any considered state (j) if he starts from a state (t). fnjshall be the probability that, starting from state (1), the first return to state (i) occurs at the n-th transition. We say fjj " PJJ A2) (2) .(1) f . . = P.. " f . . P. . JJ JJ JJ JJ r(n) _ (n) Al) „(n-l) .(2) „(n-2) f(n-l) . r . . -p.. - t.. p.. - t. . p.. - ...- t.. p.. JJ JJ JJ JJ JJ JJ JJ JJ In general *(n) _ ^ f(k) n(n-k) f(0)_ , fjj " fJJ PJJ ' fJJ " 1 r(n) _ „(n) An-k) (n) JJ ~ jJ " £i- JJ JJ If the system starts In state (I), and we are Interested In the first passage through state (i), then -(n) (n) y An-k) (n) 9. 'j 'j K=2 J J Applied to our case, the fjj^ " probabilities are identical to the Pjj's. We obtain the f(n) - probabilities by 2) W. Fell .e_r-,-- I ntroduct Ion to Prob. Theory, Wiley & Sons, '"' I n c.", New York 1957, P; 352 f. (2) 0 . 2304 .0890 . 3308 . 3524 0 .1.101 .0040 . 1200 .0360 0 .3950 .1514 . 0108 . 3028 0 . 0468 .1896 .0887 . 5949 0 0 0 0 0 That means, if the process starts for example in state (1) , the first return in 2 steps to state (1) wiH never occur, however, it will go the first time to the states (2) , (3), (4), and (5) with the probabilities of 23%, 9%, 33%, and 35%. We observe, the process tends to be in the^. final state (5) after n>2 transitions; the probabilities diminish that the process will be in the states (2), (3) or (4), as It is shown In the f\V and f.V matrices f\V - P.V - fiV P.V - f.V P<7> 'J 1J U JJ 1J JJ :(3). _ 0 . 2528 .0015 .0500 .5591 0 . 0962 .0060 .0050 . 0905 0 .0234 .0962 .0430 .3104 0 .0514 . 0031 . 0960 . 0678 0 0 0 0 0 = P (4) U f(l)n(3) " T, . P. . > J JJ - <\v (2) ,(3) P. . ~ f. . JJ • J (1) P. . JJ 0 .0.149 .0015 .0286 0720 0 .0072 .0002 .0105 0870 = 0 .0269 . 0035 .0010 1800 0 .0031 .0045 . 0070 1119 0 0 0 0 0 FI naily, the probab i ii 11es that a customer win visit a state (j), (=2,3, ...5) gi ven, he from any state (i), (1=1,2, ...5) Is expressed by the sum of f», = ^Li f(?^ . From our results, we may obtain (n) 'J mi 'J w hieh Is 4- (n); fn ^fn 'J n=l 'J 0 . 8581 . 7320 .4094 .9735 0 .2135 . 2503 . 1655 .9435 0 . 8035 .2511 .5548 .9332 0 . 8913 .3272 . 1923 .8546 0 0 0 0 1 Because of the negligible contribution of the probability that a customer will visit a state the first time after n>4 transitions, we may obtain ft- = J?: F!-} °N THE BASLS °F F,. =S F{^) • ij is in an approximation: f,. = f\? ^ = Ij "--l Ij 0 .86 .74 .41 1 0 .22 .26 .17 1 0 .81 .26 .66 1 0 .90 .33 .20 1 0 0 0 0 1 In our case, every customer will arrive in state (1) as there is no alternative arrival state in the system regarded. Thus, we may consider just the f^. , (j = 2,3,4,5) from the first row of the matrix above as here are presented the probabilities of ever going to any state (j), given, the customers start in state (1). 2.3 Markov Renewal Process We may be Interested In the expected number of transitions occurring In each particular state, and In the system as well, up to time T. Our question Is described by a Markov renewal process which registers the numbersof transitions Into each state In acertaln time interval (0,T), when the transition times of the events are Independently distributed positive random variables with known probability pattern. A typical sample function of transitions Into state (1) ts sketched below: / n,(T). 6 5 4 3 2 1 +-0 t.— t. t1 + t2-^ kt1 + t2*t3-< Kt1 + t2 + t3 + tt| — -t1 + t2 + t3+tI+ + t5 V Figure 8: A sample function of transitions Into state ( I) In our case, the times between the successive transitions are random variables denoted by t. . , where the index (I) referres to the regarded service state; the second index (k) indicates the k-th successive ?ntertransition time which elapsed between the (k-l)-th and k-th transition. If nj(T) represents the number of transitions into state (i), (1=1,2,...5) during the time interval 0 to T, then ^n j (T),TM)| is a general renewal process (renewals = transitions into the same state) considering the particular state (1). We want; to determi ne the expected number of transitions into each state (i) up to time T. Therefore, we define first the distribution of the amount of time until the next transition occurs in relation to each service state. The following sketch shows a state (i) and two alternative successive states j(l) and j(2), or In general j(x),(x=l,2). Given, the process occupies state (1) at the present time, from there it will migrate either to state j(l) or to state j(2) with the probabilities of p..... or P..,0^: I] (2) after service completion tn state (i), the next transit ion will occur i n one of the succes sive states j(x$, (x=l,2) with a probab i11ty of p IJ(x) Figure;,;,9: The transition from state (i) to two alternative successive states j(l) and j(2) We define the following: A transition •> is the job flow from the presently occupied state (I), (1=1,2,...5) to the successive state (j), (j=2,3,4,5); the transition occurs tnto state (j). tj(x) •> ts the probability that the next transition will be into state j(x), given that the process has just , entered state (I): 'ijC x) = p(] "> J(x) 1 ]] Ij (x) > is the probability that after making a transition into state (I), the process next makes a transition into state j(x) In an amount of . time <_ T. p (T) > 0 , I,j(x) = 1,2, . . .5 , U<x) T > 0 5~! P = l f-?(x) i, j ( x) = 1,2, ... 5 F (T) > is the conditional probability that i j ( x) the j,ob will transit within an amount of time (T), given that the process has just entered state (I) and will next enter one of the successive states j(x). -F-' ,(T) = prtime< T | ! --> J(x)l -ij(x) L — J T j (x; Flj(x) = plj(x) F,., shows the "dIstrIbu11 on of the Intertransition lj(x) times (= the amount of elapsed time until the next transition occurs.In stata.j(x), given that the process has just entered state (1) ). The fntertransit!on times related to any state (j) are determined by the arrival process and the service process in the previous state (I), the routing probabilities from state (?) to state (j), and by possibly occurring congestion conditions in state (j). In order to determine the density function of the Intertransition times In any state (i), we define Hj(.) by : H.(T) =2JF.., ,(T) . p,., . =JS p.., (T) 1 j«0 ,J(X) !J(X) fr0 • Jcx) T >_ 0 i = any state ;(1,2,...5) j(x) = any successive state of (1), (j(x)=2,3,4,5,,) If we regard one particular state (1), to each possible time Interval (t) which elapses between two arrivals, we may associate the probability density of its occurrence. We denote the probability by h.(t): d h.(t) = H.(t) , for t>0 1 1 dt f hj(t) = 1 t=0 We obtain the density functions H.(t)'s of the Inter-transltlon times for each service state by simulation (see computer output). Those simulated results consider the service conditions of the preceding states and thus provide the density function of the actual inter-transltion times. We assume the simulated density functions in the following. If we consider all successive transitions of the state (!) during the time Interval (0,T) in a chain, the first transition will have been ©ccured after time interval t^j.j will have been passed, the second transition after time t-^jj + t2(p, and the y-th transit-Ion after time ^t^ ( f). Let Nj(T) be the expected number of renewals (transitions) Into any particular state (i) up to time T. |f the first transition occurs at time t, then the expected number of transitions In the remaining time up to T is n (T-t), and summing over all possible values for t, we obtain r ©a N.(T) =/ [l • nf(T - t)]dh.(t) + ofn|(t) The term [l + Nj(T-t)J Is the expected number of transit ions in the time T if the first transition occurs at time t (0<_t<T)/ the probability of this event being dhjj j. The second sum is the probability that the first transition will exceed T time units. If we denote the expected number of transitions 5 In the s,.y stem by N(T) ( = ^j of expected number <»1 of transitions In each state (i) up to time T), we define {N(T),T>U} = <£ nj(T). It may be of interest to know the state of the process at each time point; this is described by a semi-Markov process. We say: S(o) > is the initial state of the process. After the n-th transition/ the process is in the state S(n). The process with the the transition states S(n), (n=l/2,...5) Is a Markov Chain with transition probab1111 i es P j j. Z(T) > ts the state of the process at time T. If we know the Initial state S(o) of the process and the expected number of visits occurring in each state (I) up to ttme T which Is described by the Markov renewal process/ then we can also determine the semi-Markov process £z(T), T >_ o|/ or , £s(o)/N (t)/N (t)/...N (t)/ t>0^ =JZ(T)/T2uj ^ where S(o) is the initial state, and the N.(t)'s , (i=l,2,...5) indicate which state (i) is occupied at the N-th transition. 3. Restrictions of the Markov Assumptions tn the Model In our example, each single service center is Interconnected to a service network. In studying net works, the departure processes from the service centers play an Important role. In turn, they are components of arrival processes to other service facilities. For instance, one of the difficulties encountered Is statist ical dependence tn the departure processes from the service stations. A second complication Is the presence of time dependent queue lengths at the service stations. The waiting times encountered by a job at the different service stations on its routings are, In general, not Independent. The steady-state departure process from a poIsson-exponentI a 1 service stage has been studied by Burke.3^ Burke proved that the departure process from a Polsson-exponential service state is itself Poisson. The steady-state mean departure 'hate is the same as the mean arrival rate so that the departure and arrival 3) P.J. Burke, The Output of a Queueing System,' Operations Research,4, 699-704, Dec. 1956 processes are Identical. Burke's results apply to n-channel service states with the queue discipline arbitrary except that all customers remain in the system until they have been serviced. From this follows, the fundamental assumptions of ordinary queuing theory are violated in queuing networks, except when the network definitely shows PoIsson-exponentIa 1 properties. Certainly, whether the dependence phenomena will have an effect on the system flow statistics depends upon the network characteristics and parameters. Intuitively, one would expect that the "pafa^eters;. of the network, such as the number of service stat!ons> the degrees of utilization, as well as the flow structure may be determinants of importance for the degree of dependence of the network characteristics. .-Doubtless, our assumptions in respect of the validity of the Markovtan properties in continuous time for the service network have to be regarded critic ally. Certainly, they are violated under a pure theoretical point of view because of at least two reasons: a) The service time distribution concerning the listening room does not fit an exponential function. Rather, It seems that the distribut ion of the listening times Is influenced essentially by the duration of listening for one, two, or more sides of a LP-record. b) The queue formation which may occur at the information desk contradicts the assumption of Independency of the input process. However, If we are conscious\of those restrictions in our Markov assumptions, under approving circumstances we may accept such an approach as a kind of "practical solution". For instance, as it is shown in the results of the later simulation, the distribution of the service time considering the total service system may still be accepted as exponentially distributed (table 15, computer output). This fact might be considered as a kind of proof that the Markov properties are dominant in terms of the flow characteristics within the service network. SIMULATION OF THE MODEL The flow model/ developed,In Its basic properties by observations, was simulated on a computer In three variations in order to obtain more applicable results for evaluation. The flow modifications were performed by the "General Purpose Simulation System/360/ (GPSS/360)". They comprised modified system's arrival streams and one or two servers at the information desk, such as In particular: a) an interarrival time of 3 minutes and one server equivalent to a low/moderate traffic flow In the morning between 8:30 and 10:00 and tn the afternoon after h o'clock (winter term), b) an interarrival time of 2 minutes and 1 server describing a forced traffic flow approximately between 10:00 and 12:00 and 2:00 and 4:00 o'clock/ respectively/ and c) an Interarrival time of 1 minute and two servers representing an extreme rush traffic situation which may appear, during the noon hours between 12:00 and 2:00. The arrivals of customers were generated in state (1) of the flow model. The job routing to the different service stations were determined in a probabilistic sequence as it has been shown in the flow model. A flow chart of the simulation model is out lined on the following page. RAW DOM GENERATIOW OF" ARRIvAl-5 a) 3 min./l server b) 2 min./l server c) 1 m?n./2 servers S.TG •STORAGE. •SHELVES1; AUUM6 O CAPACITY OP 100 UWnlfS STORAGE 'ciSTENftJ© ROOM" LiH, CAPACITY OF 23 LtM|T5 Z3 UMMS Figure 10: The simulation model The simulated spread of the job flows and the associated data was saved in tables and presented in a statistical order. The tabulation gathered the number of occurences in defined frequency classes. General statistics, for Instance, the mean, the standard deviation, the percentage of occurences in each frequency class have been calculated. The information content of those tables included the frequency distributions of the interarrival times, the number of arrivals during an interval of 10 minutes, the transit times, the number of jobs waiting for service, and the number of jobs occupying simultaneously a certain facility. Tables were maintained for each single facility such as the Information desk, the shelves, the listening room, but also, the 'recordings collection', and the 'system'. The 'recordings collection' is understood as the combin ation of the Information desk plus the shelves; the 'system' comprised all three facilities. The following sketch may display some interrelationships described above: Arr i vals Fac i1i ty // -" I nformat ? on 7/7 7/ Storage "Shelves" / / / /'Storage// / "Listening / Room" / . Departures "Recordings j! Collection" 1 "Servlce 7 System" Simulated statistics available of V77m J each single service center (information desk, shelves, listening room) the recordings collection (Information desk plus shelves) the service systern (information desk plus shelves plus 1i stenIng room) In addition, the simulator maintained general information which pertained to facilities, storages, and queues. The Information contents of the tables have been displayed graphically to achieve a faster and more con venient understanding. MEASUREMENT AND EFFECTS OF STATISTICAL PROPERTIES ON THE SERVICE NETWORK UNDER VARIOUS SIMULATION CONDITIONS The objective Is to gather the analytic results of the simulation for arguments; they will be formulated In graphs as an approach of measurement and evaluation. 1. The Information Desk Jobs requiring service from the Information desk may be concerned with all kind of questions In respect to the recordings collection or the listening room. They include the treatment of new applications, the registrations of loaned record.^ the acceptance and the reshelvlng of returned records. All jobs are handled in a first-in first-service order except those dealing with reshelvlng that can be saved for periods of lower employment. However, in the simulation, ajgenera 1 i zed first-ln first-service pattern was assumed without any exception for all kind of desk jobs. By this proposition, the simulation could be simplified. This approach involved that returned records were available Immediately for the new use, but also. 2^0 that the waiting times in queue turn out to be slightly larger. Consequently, the assumption made emphasizes congestion of jobs waiting for desk service. In VKHagram 11, the average number of job arrivals per 10 minutes to the information desk and likewise, the average transit time of the jobs (waiting time in queue plus service time) is shown in relation to the average number of customers entering the service system during the same interval. Arrivals to the Information desk are originated by the arrivals from outside and by the internal arrivals flowing from the shelves and from the listening room to the desk. The internal share of the total number of desk jobs is a multiple of the external job contribution and causes a non-linear behavior of the desk arrival -f, function. ': The waiting time increases considerably with a higher system's arrival rate, while the average desk service time is constant. If there is only one server In action, the waiting time may amount 3-400% of the actual service time; this is valid In the case of the highest system's arrival rate of 1 arrival/minute. Under same conditions, 2 servers on duty would reduce the waiting time to approximately 100% of the pure service time. There will be no waiting time %n queue unless the system's arrival rate is larger than 5 arrivals/10 minutes. The extent of desk congestion is represented by the area of time delay depicted in diagram 11. 2. The Shelves In the simulation, the shelves have been con sidered as a storage with the ability to service a limit ed number of job requests simultaneously at each time. Job requests may be the selection of recordings for listening, or general interest of information for the recordings available. Even under conditions of rush traffic, there neither appears congestion in terms of jobs crowding the shelves, nor can there be observed a service time delay. 3. The Listening Room Jobs arrive to the listening facility with the intention of listening to recordings previously picked up from the shelves. There Is a limited number of 23 listening units available. Customers finding no vacancy/ usually leave the service system, or they may spend some more time at the shelves waiting for the next vacancy. The listening room is to be considered as a storage with limited capacity. In the simulation/ customers who find no vacancy are described as dissatis fied customers. However, Instead of leaving, they will enter an Imagined reserve listening room equivalent to the real listening room with the same assumed service features. Thus, under varied system's arrival rates, the traffic flow to the reserve listening room re presents dissatisfied customers. In essence, there appears an Interest conflict between a high utilization of the provided facilities and the rate of "sa.t'lS;€%e*dUcurstomers under changing traffic densities. If every customer Interested in listening shall be able to find a vacancy even during peak traffic periods, relatively many listening units will be unused during low traffic. Fluctuations of the traffic de pend In particular upon the considered time inter val of a day, on the specific day of a week, and on the season, and they are unavoidable. In deciding what an adequate capacity of the equipment to be provided will be, the Interrelationship, between the facility's utilization rate and the satisfaction of the customers has to be considered under varied traffic circumstances. In diagram 13, the curve of average utilization and the probability curve that the capacity of 23 listening units will be sufficient for every arriving customer Is plotted as a function of the average number of the system's arrivals during an Interval of 10 minutes. In other words, If there arrive 5 customers on the average during an Interval of 10 minutes, the utilization will be 69%,and the probability to find a vacancy will be 95.7%. If the counted number of system's arrivals drops down to 3.3/10 minutes, the associated utilization and probability rates will be 33.7% and 100%, respectively, etc. The utilization curve and probability curve Intersect at 85.5% and 7.6 arr1va1s/10 minutes. The utilization curve and the probability curve are derived from values obtained by the simulation. The utilization curve represents the average number of occupted listening units at different system's arrival rates relative to the total number of listening units available (23 units). The probability curve of finding a vacancy is derived from observations related to customers entering the reserve listening room. If no customer will enter the reserve listening room, the provided capacity of 23 turntables will be sufficient by 100%. Overflowing customers to the reserve listening room represent the possibility to find no vacancy in the listening room. The relative share of number of entries Into the reserve listening room to the total number of entries that intend to use the listening facility represents a measurement of the probability not to find a vacancy in the listening room. The utilization rate curve and the curve of the probability of satisfied customers are displayed jn dependency of the system's arrivals canted per 10 minutes in a range from 0 to 10 arrivals. This scale represents the actually observed traffic extent of the U.B.C. Recordings Collection. MOre detailed data Is shown In the table of dally arrival rates observed In the winter term: SYSTEM LISTENING ROOM PERIOD AVGV ARRIV". RATES/10 MIN. PERIOD AVG. ARRIV. RATES/10 MIN. 8:30-10:00 4.4 8:30-10:30 4.0 10:30-12:00 7.0 10:30-11:45 4.4 12:00- 2:00 9.7 ll's 45-12: 30 2.4 2:00- 4:00 5 : 8 12:30- 1:30 6:0 4:00- 5:00 4.7 1:30- 5:00 2.9 5:00-:i;6:00 1.3 5: 00-06:$.3- 1.1 6:00- 8:00 2.9 6:45- 7:30 1.5 day 5.5- day 2.9 Table III: The average arrival 'fates of the system and of the listening room on an average day in the winter term (see also diagram 2) The s imudtjtt i on related to the listening room has been performed under the assumption of a constant number of 23 turntables installed in the listening room. From those simulation results, we have formulated two arguments: the probability that the arriving customer will find a vacancy In the listening room versus the utilization rate of the equipment provided. Both functions, as des-) crlbed above In more detail, show the characteristics such as: Figure 12: The average utilization rate vs. the probability that every customer will find a vacancy }n the listening room However, In our decision what an adequate number of turntables would be, we may want to obtain more informat ion about the relationship "probability versus utilizat ion" under the conditions of varied numbers of listening units installed. This requirement leads to more simulat ion in obtaining of reliable data. Because, we are restricted by the scope of our performed simulation, we want to outline an extended decision model with anticipated data but on the basis of our results obtained so far. For instance, we may anticipate a simulation map which comprises a number of turntables ranging from 22 to 27 units; simulated values, anticipated values still to s imu1 ate Figure 13: Anticipated simulation map In a decision process, such a model might be used in the following ways: a) The manager wants to have an average utilization of his equipment of at least 30% on the average. He observes a mean stream of 8 custom ers per 10 minutes. In accordance to the assumed decision model, there should be installed no more than 2k turntables. Then, an arriving customer would find a vacancy In the listening room with a probability of approximately 85%. b) On the average, there arrive 11 customers during an interval of 10 minutes. A satisfaction of the patrons Is required with a probability of at least 90%. The manager should decide for 27 listening units. However, under this condition, the average utilization rate will be ca. 5k% at the most. Similarly, other arising questions may be answered. It might be of interest, what combination of a certain number of turntables available related to a given traffic density causes always a. utilization rate of, for instance, 80%, or also the same probability rate of 80% of finding a vacancy. From the previously described decision model,the equa1-uti1 Ization curves and the equal-probab11ity curves can be derived and dis played in a possibly more^c'ohM"e'nif.en^tcre.onfe!;g^^a-tilb.i^'%s:-vs-hown below: 11111111H 111 1111111'l [tr ipiii \m :::Jff[ + : trrB ICJ nrrral ::±EEES»j it 1: t ttltlllffll 1111 HfltH"" s 11 H|-I-HIM-U 111444 -)4-[444444 TBI tuttn Wlili ]j| jfjjl11 [[[njjjjljj: probability of satisfied cus tomers uti1ization rate equal probability rate and uti1ization rate Figure lk: Map of Indifference curves In the new map of "indifference curves", for instance, the 80%-probab11 Ity curve and the 80%-ut ?1I zat-fon curve intersect at the equilibrium Ej, Correspond ing, the 70%-curves intersect at the equilibrium E2, etc. The line connecting all those points of equilibrium give the "equilibrium curve". That means,all combinations of both variables (number of turntables, number of arrivals/time interval) which lie along of this curve lead to the same percentage level of the equipment utilization and the probability of customer satisfaction. For instance, a[j?60% utilization rate corresponds to a 0.6 probability rate. We may determine the decision field of our model by the coordinates represented by the range of the number of turntables installed in the listening room, and on the other hand, by the range of the average number of system arrivals per 10 minutes. The equilibrium curve divides this dec I s I on. jf I el d in two parts. Decisions which may fall in the upper field emphasize the satis faction of the customer but lower the utilization of the equipment. The lower decision field favours the equipment utilization at the expense of the customer satisfaction. The equilibrium curve represents the "neutral dectsions" without any emphasis of one or the other argument. These relationships are outlined in the graph below: -#1+ tt •if s5 IE. -IIP Tfff: If Hi 111" it 'A 11 I'm if S+ Figure 15: Decision field of the model BIBLIOGRAPHY i BOOKS: Adams, Douglas: Nomdgraphv, Theory and Applicatfon,Arcon Books 1964, Hamden, Connecticut. ...Alven, Willfam: Reliability Engineering, ARINC Research Corporation, PrentIce-Ha11, Inc. 1964, Englewood Cliffs, N. J. Buffa, El wood: Readings in Production and Operations Management, Part I, John Wiley & Sons, Inc., New York 1966 Churchmann, West; Ackoff, Russel; Arnoff, Leonhard: Introduction to Operations Research, Part I, II, III, VI, John Wiley + Sons, Inc., New York 195 7 Cox, Edwin; Boot, John: Statistical Analysis for Managerial Deci s ? ons, McGraw-Hill Book Company 1970 Cruon,R.: Queuing Theory, Recent Developments and Applications, Chapman .•; Hall, Ltd., London 195 2 Feller, W.; An Introduction to Probability Theory and its  ADD!1 cat ? ons, Holden-Day, San Francisco 1970 Hald, A.: Statistical Theory with Engineering Applications, Chapman & Hall, Ltd., London 1952 Hillier, F.; Lieberman: Introduction to Operations Research, Hoi den-Day,Inc., San Francisco Hoelscher, Randolph: Graphic Aids tn Engineering Computation, Bait Publishers, West Lafayette, Indiana '64 Karlin, Samuel: A First Course in Stochastic Processes, Academic Press, New York 1968 Kaufmann, Arnold: Methods and Models of Operations Research, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1963 Kemeny, John; Snell, Laurie: Finite Markov Chains, Van Nostrand Co., Inc., New York 1963 Morse, Philip: Queues, Inventories and Maintenance, The Analysis of Operational Systems with Variable Demand and Supply, John Wiley & Sons, Inc., New York 1958 BOOKS: Parzen,E.: Stochastic Processes, Holden-Day, San Francisco 1962 Rlgby, Paul: Models in Business Analysis, Charles E. Merrill Publishing Company, Columbus, Ohio, 1969 Roberts, Edward: The Dynamics of Research and Development, Harper & Row, Publishers, 1964 di Roccaferrera, Gulseppe: Operations Research Models for  pugfnpss and Industry, South-Western Publishing Company, 1964 Ross, Sheldon: Applied Probability Models with Optimization Applications, Holden-Day, San Francisco 1970 Shook, Robert; Highland, Joseph: Probability Models with  Rusiness Applications, Richard Irwin, Inc. Homewood, Illinois, 1969 Wagner, Harvey: Principles of Operations Research, Prentice-Hall, Inc., Englewood Cliffs 1969 ARTICLES, MANUALS: Burke, P. J.: The Output of a Queuing System, Operations Research, 4, 699-704, Dec. 1956 Disney, Ralph: Analytic Studies of Stochastic Networks  Using Methods of Network Decomposition, The Journal of Industrial Engineering, Volume XVIII No, 1, 140-145, Jan. 1967 Farley, John; Ring, Winston: A Stochastic Model of Super market Traffic Flow, Operations Research, July /August 1966, page 555 ff. Gue, Ronald: Signal Flow Graphs and Analog Computation in ARTICLES^MANUALS: the Analysis of Finite-Queues, Operations Research, page 3U2 ff. IBM - Manual GH20-0304-4, General Purpose Simulation System /360, Introductory User's Manual IBM - Manual H20-0326, General Purpose Simulation System /360, User's Manual Moettle, John: Information Concepts in Network Planning, The Journal of Industrial Engineering, July '67, pg. 428 ff. APPENDIX Table IV: Cumulat 1 ve number of customers entering or 1 eavIng, respect f vely, the s y s tern at certaIn times during the summer te rm: hou rs min. 9. 10. 11- 12. 1. 2. 3. 4. 5. .00 (enter.) 0 11 27 40 66 97 114 129 145 (1eav.) 0 8 20 34 56 8k 102 119 145 .15 (enter.) 3 18 30 kl 77 100 116 136 • (1eav.) 0 12 22 36 65 90 106 123 .30 (enter.) 6 22 33. 50 83 105 121 140 (1eav.) 2 18 25 kl 70 96 109 128 .'+5 (enter.) 8 25 36 60 91 106 125 142 (1eav.) 4 20 30 49 78 97 114 134 .56 (enter. ) 145 oo Table V: Cumulative number of customers entering or leaving, respectively, the listening room at certain times (summer term): hou rs min. 9. 10. 11. 12 . 1. 2. 3. k. .00 (enter.) o 5 11 16 2k 3k k2 k7 (1eav.) 0 1 6 11 18 27 3k 39 .15 (enter.) 1 6 12 17 26 35 k3 50 (1eav.) 0 3 6 13 20 30 35 l+l .30 (enter.) 2 8 13 19 29 38 kk 51 (1eav.) 0 5 8 lk 22 31 36 k2 .kS (enter.) 3 10 15 22 31 39 k5 52 (1eav.) 0 5 9 16 25 33 38 k7 Table VI: Cumulative number of customers entering or leaving, the s y s t e m at certain times (winter term): respect ively, hou rs min. 8. 9. 10. 11. 12 . 1. 2. 3. 4. 5. 6. 7. 8. .00 (enter.) 0 9 40 81 124 177 241 281 311 339 347 369 380 (1eav.) 0 2 29 60 104 154 220 266 301 322 343 361 380 .15 (enter.) 0 13 k7 87 132 190 251 283 319 341 355 371 (1eav.) 0 6 35 68 113 166 231 272 307 327 346 365 .30 (enter.) 0 26 69 10 5 150 221 263 297 325 343 357 374 (1eav.) 0 23 50 83 137 197 249 287 314 335 349 369 ,45 (enter,) 3 34 76 117 166 232 274 306 333 346 363 378 (1eav.) 0 26 57 93 144 207 257 285 318 339 354 371 Table VII: Cumulative number of customers entering or leaving, respectively, the listening room at certain times (winter term): hou rs min. .00 (enter.) (1eav.) .15 (enter.) (1eav.) .30 (enter.) (1eav.) .^5 (enter.) (1eav.) 8. 9. 10. 11 0 5 17 kO 0 0 7 20 0 6 18 43 0 2 9 2k 0 12 39 56 0 7 15 38 3 14 37 63 0 7 17 k2 12. 1. 2. 3. 67 92 120 140 48 72 103 125 68 97 123 143 55 79 108 131 74 110 127 146 64 90 117 137 85 116 136 152 65 94 121 141 4. 5. 6. 7. 153 170 176 187 143 153 170 177 157 173 179 187 147 158 172 181 161 174 182 189 149 165 174 182 167 176 182 189 151 169 175 182 189 189 oo Table VIM: Distribution of elapsed time between arrivals to the recordings collection (see diagram 3 and 4) time interval actual frequency theoret. frequency t <jx<t? prob.(%) cumulat. prob.(%) cumu-lat. 1 prob.(l) prob.U) 0 < X < 1 35.2 35.2 42.3 42.3 1 < X < 2 28.9 64.1 24.4 66.7 2 1 X < 3 15.3 79 .4 14.1 80.8 3 1 X < h 7.2 86.6 8.1 88.9 4 1 X < 5 5.9 92 .5 4.7 93.6 5 < X < 6 1.0 93 .5 2.7 96,3 6 1 X < 7 1.3 94.8 1.6 97.9 7 < X < 8 1.3 96.1 0.9 98.8 8 1 X < 9 0.3 96.4 0.4 99.0 9 < X < 10 0.8 97.2 • • 101 X < 11 0.5 97.7 x < 0.2 • H< X < 12 0.5 98.2 » • 12< X < 13 0.5 98.7 131 X < 14 0.8 99.5 141 X < 15 0.5 100 • 100 - 0,55 cust./min. Table IX: Distribution of service time In the recordings collection (diagram 5 and 6): time interval actual frequency theoret. frequency of expon. distr. tj_ <_ x < t? prob.% cumulat. prob.(%) cumulat. prob.(%) prob.(|) 0 < X < 1 18.8 18 .8 15.4 15.4 1 < X < 2 13.2 32.0 12.7 28.1 2 < X < 3 10.0 42.0 10 .9 39 .0 3 < X < 4 P.8 51.8 9.3 48 .3 4 < X < 5 8.7 60.5 7.9 56.2 5 < X < 6 6.6 67.1 6.7 62 .9 6 X < 7 6.1 73.2 5.6 68.5 7 < X < 8 3.2 76.4 4.8 73.3 8 < X < 9 3.2 79.6 4.1 77.4 9 < X < 10 3.2 82. 8 3.4 80.8 10 < X < 11 2.9 85.7 2.9 83. 7 11 < X < 12 3.2 88.9 2.5 86.2 12 < X < 13 2.4 91.3 2.1 88.3 13 < X < 14 1.6 92 .9 1.7 90.0 14 < X < 15 1.3 94.2 1.6 91.6 15 < X < 16 .8 95.0 1.1 92.7 16 < X < 17 .3 95.3 1.0 93.7 17 < X < 18 .5 95.8 .9 94. 6 18 < X < 19 .5 96.3 .7 95.3 19 < X < 20 .5 96.8 .6 95.9 20 £ X < 21 .3 97.1 .5 96.4 21 < X < 22 .3 97.4 • • 22 < X < 23 .3 97.7 • • 23 < X < 24 .3 98.5 • • 31 • X < 32 • .2 100* • 100 mean = 2279 cust. min./378 cust. = 6.§4 min./cust.=.165 c/mln. Table X: Distribution of elapsed time between arrivals to the listening room (diagram 7 and 8) time interval actual frequency theor. frequency of expon. distr. t-, <_ x <_ t prob. % cum. prob. (%) cumulat. 1 1 prob. (%) prob. (|) 0 < X < 1 26.7 26.7 24.9 24.9 1 <. X < 2 18 .7 k5.k 18. 7 43.6 2 < X < 3 18 .5 53.9 lk .0 57.6 3 < X < k 10 .6 6k .5 10.6 68.2 ^ < X < 5 9.7 7k.2 7.9 76.1 5 1 X < 6 8.5 82,7 5.9 82.0 6 <_ X < 7 k.8 87.5 k.5 86.5 7 < X < 8 2.7 90.2 3.3 89.8 8 < X < 9 1.6 91.8 2.6 92'.4 9 < X < 10 * 1.6 93.k 1.9 94.3 10<_ X < 11 1.0 9k.k l.k 95.7 111.' <x < 12 1.6 96.0 1.1 96.8 12< X < 13 .5 96.5 .8 97.6 30< • X < 31 • .5 • 100 • 100 avg.= 0.286 cust./min. Table XI: Distribution of service time concerning the listening room (diagram 9 and 10) time interval < X < t 1 - 2 o <;. X < .-5 5 < X < io 10 < X < 15 15 < X < 20 20 < X < 25 25 < X < 30 3o < X < 35 35 < X 40 40 < X < 45 45 < X < 50 50 < X < 55 55 < X < 60 60 < X < 65 65 < X < 70 70 < X < 75 75 < X < 80 80 < X < 85 85 < X < 90 90 < X < 95 95 < X < 100 100 <. X •< 105 105 < X < 110 no < X < 115 115 < X < 120 120 < X < 125 125. < X < 130 130' X < 135 13 5 X < 140 140 < X < 14 5 145 < X < 150 150 < X < 155 155 < X < 160 160, < X < 165 165 < X < 170 170 X < 175 175 < X < 180 180 < X < 185 185 < X < 190 190 < X < 195 actual frequency prob. (!) cumulative probabi1i ty {%) 2.4 2.4 4.7 7.1 6.0 13.1 7.4 20.5 4.8 28.9 7. 7 36.6 7.0 43.6 6.2 49.8 5.8 55.6 6.7 62.3 7.6 69.9 5.5 75.4 3.2 78.6 2.8 81.4 2.2 83.6 1.9. 85.5 1.7 87.2 1.6 88.8 1.5 90.3 1.4 91. 7 1.0 92. 7 .9 9 3.6 .8 94.4 .7 9 5v.l .6 95. 7 .5 96.2 .4 96.6 .4 97.0 .4 97.4 .3 97.7 .3 98.0 .3 98.3 .3 98.6 .3 98.9 .3 99.2 .2 99.4 .2 99.6 .2 99.8 .2 100.0 RFS NO. 771D90 UNIVERSITY DF 3 : COMPUTING CENTRE MTS(AN120) 00:23:13 12-30-70 ******************** THIS JOB SUBMITTED THROUGH FR3NT DESK READER ******************** $SIGM3M WULI T=150 P=400 PRIO=V C0PIES=4 »»l AST SlftNiriM WAS: 0Q:l?i49 I 7-30-7Q : s  USER "WULI" SIGNED ON AT 00:23:20 ON 12-30-70 $*UN *3PSS P&R=SIZE=B -6X-g-GU-T-I-0N-B.E-G-I^.S . BLOCK NUMBER *LOC OPERATION A,B,C,D, E, F,G CD^MEMTS SIMULATE SIMULATION! OF UBC RECORDINGS COLLECTION BV JOHANNES KRAMAR CARD NUMBER 1 2 * FUNCTION DEFINITIONS __ ; * SYSTEM ARRIVAL TIME EXPONENTIALLY DISTRIBUTED ARRIV FUNCTION RN1,C16 NE3. EX?. 01STR.,ME AN=3MIN. 0.0,0.0/.1B?,.l/.2B3,.267/.4B6,.5/.632, .B3/ .735,1.17/.81. 1.5/.865. 1.83 3 4 _5_ 6 7 8 .903,2. 16/.93 Or 2.5/. 95,2.84/. 964,3. 16/.975,3.5/.932 ,3.8 4/.98 7 ,4.15 .99,4.5 _„ ___ , * DESK SERVICE TIME EXPONENTIALLY DISTRIBUTED DPSK FUNCTION RNl.f.24 NHS, EX?. OISTR, 9 ID 11. 12 13 14 0.0,0.0/.I,.104/.2,.222/.3,.355/.4,.509/.5,.69/.S,.915/.7,1.2/ .75,1.38/.8,1.6/.84,1.83/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99 _K_A..3„2X^i,3-.5X.S-8..0L^^^ * . ' * SHELF SERVICE TIME EXPONENTIALLY DISTRIBUTED SHELF FUNCTI3N RN1.C23 . NES. EXP. DI STR. ._ 15 16 -IX 18 19 20 0.3,3.3/.154,.8 4D/.231,.2 50/.390,.420/.483,.580/. 562,. 750/. 629,. 92/ .585,1.08/.733,1.25/.774,1.42/.838,1.59/.837,1.75/.362,1.92 ^.8a,X._0.8./_.-9-,-2...2.5.>L_ - — .916, 2. 42/.927,2.58/.937,2.75/.946,2.92/.953,3. 08/.959,3.25 .964,3.42/1.0,5.27 * 21 22 X3-24 25 _2__ * LISTENING ROOM SERVICE TIME GENERALLY DISTRIBUTED LIST FUNCTION RN1,C25 GEM. DISTRIBUTION D.-Q-,O.D/:. 024.,-.-053Z..07X,-.L8Z .436, .820/.498,.940/. 556,1.06/. 623,1.18/.699, 1.31/.754,1 .44/.786,1.55/ .814, 1.69/.836, 1.81/.855, 1.94/.872,2.06/. 888,2. 18/. 903,2.31/.917,2. 44/ .927.2. 5 5/. 962, 3. 19/. 98 9,4. 20/1.00,4. 820  27 28 -2SL 30 31 32 * STORAGE DEFINITIONS —IX) SXO.RAG.E_ 200-11 STORAGE 150 30 STORAGE 100 40 STORAGE 23__ J).E F.LN E_S.IXE^O F__SXSXEM,S-SX3&AG .E_ DEFINE SIZE OF REC. COLL. DEFINE SHE OF STOR. 30 DEFINE SIZE 3F STOR. 40  33 34 35.... 36 37 38 41 STORAGE 23 * TABLE DEFINITIONS TJLai_J.AaL.E_ _ IA,L, LXO-TA82 TABLE RT,0,1,30,10 ^TA83 TA3LE Ml,1,1,30 TAB4 QTABLE 2.3.1.30 DEFINE SIZE OF STOR. 41 J_U= RA RR IMJLL__II M£_ ARRIVAL RATE TRANSIT TIME TABLE LIMITS IM 3U5. . 39 40 4,1... 42 43 44 TA35 TA36 —T.ABX TA38 TAB9 TABIC TABLE TA3LE XA.BLE-TA3LE TABLE TABLE IA, RT, Ml, S30 Ml, Sll 1,1, 0,1, 1,1., ,0,1 1.1, »o«i 30 ' 20,10 6Q_ ,40 60 «60 INJTERARRI/AL TIME SHELVES ARRIVAL RATE TRAM SIX-II VIE STDR. 3D OCCUPANCY TRAMS. TIME SERVI STORAGE 11 Of. CUP AMC Y 45 46 _4X 48 49 _50_ TABU TAB12 TAB 13 TAB 14 TA315 T A Rl 6 TABLE TABLE TABLE TABLE TABLE TARI F IA, RT, ..MX,. S40 Ml, Ul, 0,1, 0,-5,-,0,1 0,5, - a«? 30 15,10 6X)_ _ ,26 60 •6" INTERARR. TIME FAC. 43 IARRIVALS FAC. 40 J_tJL>iS-_UJl£-_LA_^__0__ STORE 4D OCCUPANCY TRANS. TIME IN SYSTEM SY<;T. nr.r.iiPV.Mr.Y 51 52 -53^ 54 55 ___ > * GPSS PROGRAM GENERATE FMTFR  3,FN$ARRIV JLQ ARRIVALS TO SYSTEM CUM. STDR. SYSTEM TRANSFER STG2 MARK E-N-T-E-R QUEUE LINK . 36 » S TG3,STG2 -Ll-2 2,FIFO,DESK GD TO 3 0* 2 SET TRAMS. TIME = 0 -C.UM._SXORE_.RC. JDIM QUE. 2 LINK USER CHAIN 2 57 58 59 60 61 62 63 64 -6.5_ 66 67 r 6PSS/360/MTS VERSION (4/8/13) A ^ 8 DESK SEIZE 2 OCC. DESK 68 9 DEPART 2 LEAVE QUE. 2 69 ID ADVANCE 1»FNSDESK DESK SERVICE 70 > 11 RFI FASF 2 RELEASE DESK 71 ( 12 UNLINK 2,DESK,1 UNLINK USER CHAIN 2 72 • < 13 TABULATE TAB1 TAB. INTERARR. TIME 73 L 4 T A BU LAT E T AR? TAR, ARRIVALS 74 15 TABULATE TAB3 TAB. TRANS. TIME 75 16 LEAVE 11 76 17 TARUlAFF TAR9 77 18 , TABULATE TAB10 78 19 ASSIGN 2,K1 SET PI TO 1 79 2D T.E.S-T LE Cl ,K3(S!JO,FTNF T=ST TTMF an 21 TEST E P3,K1,GEH2 81 22 TEST E P4,K1»GEH3 82 2 3 TRANSFFR • EXIT 83 24 GEH2 TEST E P4,K1,GEH4 84 25 TRANSFER .75,STG3,EXIT 85 2.6 GFH3 TRANSFER . 9ft f ST£4, FXI T Aft 27 GEH4 TRANSFER .73,GEH5,EXIT 87 28 SEH5 TRANSFER .11 ,STG3,STG4 88 _29 STG3 MARK 89 30 ENTER 11 CUM. STORE RC. 90 31 ENTER 30 EMTER STOR. 30 91 3? ADVANCE ft,FN$ SHFIF SHFI F SFRV ICF T IMF q? 33 LEAVE 30 LEAVE STOR. 30 93 34 TABULATE TAB5 IMTERARRIVAL TIME 94 35 TABULATE TAB6 ARRIVAL RATE 95 36 TABULATE TAB 7 TRANSIT TIME 96 37 TABULATE TAB8 STDlE. SHELVES OCCUPANCY 97 3.8 | FAVF 1 1 1 FA*/F STRRF 1 1 9R 39 TABULATE TAB9 99 43 TABULATE TAB 10 STORE RECORD. COLLECT. 100 41 ASSIGN 3.K1 SET P2 TO 1 101 42 TEST LE C1,K3600,FINE TEST TIME 102 43 TEST E P2fK1.5EH7 103 44 TEST E P4,K1,GEH8 1 04 45 TRANSFER ,EXIT 105 46 GEH7 TEST E P4,K1,GEH9 106 47 TRANSFER .2B.STG2.FXIT 107 48 GEH8 TRANSFER .22,STG4,EXIT 108 49 3EH9 TRANSFER .14,GEH10,EXIT 109 5.0 QFHIQ TRANSFFR , ^fl, STf;?t ST^4 1 1 n 51 STG4 MARK 111 52 GATE SNF 40,OFLOW 112 53 ENTER 40 ENTER STOR. 40 113 54 ADVANCE 40,FN$LIST LIST. ROOM SERVICE TIME 114 55 LEAVE 40 LEA\/E STORAGE 40 115 5.6. T.AB.ULA-TE TAR 1 1 INTFR ARRIVAL T I MF FAT. 4 11 57 TABULATE TAB12 ARRIVAL RATE FAC. 4 117 58 TABULATE TAB13 TRANSIT TIME FAC. 4 113 59 TABULATE TAR14 STORE. 40 OCCUPANCY 119 60 TRANSFER , BE IDE 120 51 OFLOW ENTER 41 121 GPSS/360/MTS VERSION (4/8/13) A 62 63 64 ADVANCE LEAVE TABULATE TR ANSFFi* 40,FN$-LI5T LIST. ROOM SERVICE TIME 41 TAB 17 ODCUP. OF RESERV. LIST. ROOM TRF T DF 122 123 124 125 J f 66 67 58 BEIDE ASSIGN TEST E TRANSFER 4,K1 SET P4 TO 1 P3,K1,SEH11 .09* STG2iEXIT 126 127 12B \ S9 70 71 GEH11 TEST LE TEST E TRANSFFR Cl,K3600,FINE TEST TIME P2,K1,GEH13 . ™t STr,-}tFXT T 129 130 1 31 72 73 7-4 GEH13 GEH14 EXIT TRANSFER TRANSFER LEAVE ,08,GEH14,EXIT ,14,STG2,STG3 10 1FAVF SYST- STOR„ 132 133 1 34 75 76 77 TABULATE TABULATE TFRMTMATF TAB 15 TVAMS. TIME IN SYSTEM | TAB16 SYSTEM OCCUPANCY j 135 136 137 78 79 80 FINE LEAVE TABULATE T.A.RU.L AXF 10 LEAVE SYST. STOR. TAB15 UMS. TIME IM SYSTEM TAB16 S/STFM OCCUPANCY 138 139 140 31 TERMINATE * CONTROL CARD START 1 1 141 142 1 43 * REPORT EJECT 144 145 146 FAC 01JF TITLE SPACE T I Tl. F 2,STATISTICS CONCERNING THE INFORMATION DESK 3 ?. STATISTICS CONIC E RNl NS THE DESK QUEUE 147 148 149 CHA SPACE TITLE EJECT 3 2, STATISTICS CONCERNING THE DESK USER CHAIN 150 151 152 i FAB * TITLE EJECT 1,DESK INTERARRIVAL TIMES (MIN.): 153 154 1 «S«5 * GRAPH GRAPH ORIGIN TP,TAB1 50,10 156 157 158 7 X Y STATFMFNT ,2,13,1,1,8 0,4,20,2 4tl,2 159 160 1 M 100 10 STATEMENT STATEMENT ENDGRAPH 52 ,24,I NTERARRIVAL TIME (MIN.) 55,46,FIGURE 1: REL. FREQUENCY OF INTERARRIVAL TIMES 162 163 164 * TAB TITLE F.IFf.T 2,NUMBER OF ARRIVALS TO DESK/10 MIN. 165 166 167 * * GRAPH GRAPH TD,TAD? 168 169 1 70 i ORIGIN X Y f-f^-~w * Mt# -—- •• ••• • •• •' '• —,.—•„. i i i i 50,10 ,2,2,0,1,30 ntit?ir? 171 172 l 7^ 7 100 STATEMENT STATEMENT *tlt3B 52,20,ARRIVAL RATE/10 MIN. 174 175 J tifii/ JOU/MI 5 VtKilJN XtfVfli) A 10 STATEMENT 55,64.FIGURE 2: REL. FREQUENCY OF ARRIVALS TO INF. DEI 176 SK DURING 10 MIN. 177 ENDGRAPH 8 * : . , : : L7_ T A3 TITLE 3,DESK TRANSIT TIMES ( MI N. ) (=W Al T. & SERVICE TIME) 180 EJECT 181 J* _ . ___1.8.2 * GRAPH 3 GRAPH TP,TA33 184 ORTfilN 50.10 ; L8_5 X ,,14,1,1,8 6 Y 0,3,20,2 7 —7- SXAT.EMENT k.,-U-% '. 1.8.3 100 STATEMENT 52,19,TRANS IT TIME (MIN.) 189 10 STATEMENT 55,60,FIGURE 3: REL. FREQUENCY OF TRANST TIMES AT INF1 190 OR MAT ION DFSK ; . L9_J ENDGRAPH 192 * 19—T.A.B -T.I-.T-LE 4-,^.UMBE.R_0F_J.0B.S-_W.A.IJ_I.NG_.E0R_S.£RV-I.C.E_A.T_D-ESK 1.9J4 EJECT 5 * 6 * GRAPH : 197 GRAPH TP,TAB4 198 ORIGIN 50,10 9 X ,.2.,-1.3,.0.vl.,-8 2-0.0 Y 0,3,20,2 201 7 STATEMENT 4,1,? 2 IQQ STATEMENT 52.13. JOBS IN QUEUE ; ^203 10 STATEMENT 55,72,FIGURE 4: REL. FRE3UENCY OF JOBS WAITING FOR SEI 204 RVICE AT INFORMATION DESK 5 . . ENDGRAP-H _ , . 2.0.6_ . . * 207 STO TITLE 30,THE SHELVES AS STORAGE 208 SPACE 3 ; . , 209 ; TAB TITLE 5,SHELF INTERARRIVAL TIMES (MIN.) 210 EJECT 211 -* ^ . . : . . __ : . : : 2-1-2- —•— * GRAPH 3 GRAPH TP,TAB5 214 ORIGIN 5Q, IQ : : Z15 X ,2,18,1,1,6 6 Y 0,4,20,2 7 _JZ SXAXEM-E-NJ. <M_L.»-S '. : : 2.1.8 :  100 STATEMENT 52,24,INTERARRIVAL TIME (MIN.) 219 10 STATEMENT 55,46,FIGURE 5: REL. FREQUENCY OF INTERARRIVAL TIMES 220 ENDGRAPH ; 2_2J * 222 TAB TITLE 6,NUMBER OF ARRIVALS TQ SHELVES/10 MIN. 223 E.J.E-C-T : , -—22& : . — * GRAPH 22 5 GRAPH TP,T AB6 226 ORIGIN SO.! n ! : 221 X ,2,4,0,1,20 8 Y 0,1,20,2 9 7 STATEMENT 4,1,£ IOO STATEMENT 52 ,20,ARRIVAL RATE/10 MIM. 10 STATEMENT 55,62,FIGURE 6: REL. FREQUENCY OF ARRIVALS TO SHELVES1 niiRTNir, in MTM.  230 231 232 233 -T-A8-ENDGRAPH XIXLE-EJECT _7-,-SHE-L F—T.R A N S IX_TXME.S-XMLM-234 235 _23.6_ 237 238 2 39 7 1 00 GRAPH ORIGIN _X Y STATEMENT ST AT FMFNT TP,TAB7 50,10 _,_,5-,-l-,-l-,-l-5- __ 0,1,24,2 4,1,* x 52,19,TRANS IT TIME ( MIM.) 240 241 .2-42-243 244 245 10 ELVES STATEMENT 55,52,FIGURE 7: REL. FREQUENCY OF TRANSIT TIMES AT SHI -ENDGRAP-H . TAB TITLE FJFr.T 8,OCCUPANCY OF SHELVES 246 247 -2-48-249 250 251 * * GRAPH -GRAPH-ORIGIN X Y ju_fxA.aa 50,10 ,2,6,0,1,15 0,1 ,24,? 252 253 -25-4-255 256 ?5 7 STATEMENT 4,l,ig STATEMENT 52 ,9,OCCUPANCY -ST-AT-EME.M-T 55-,X9-,F-LG URE-8-: PYING SIMULTANEOUSLY THE SHELVES ENOGRAPH 7 100 _L0— -RE-I F-REQUENC Y_„0 F—NUMBER.-OF—JOB S—0 C C U.L 258 259 -260-261 262 ?63 STO RAGE TAB SHELVES TITLE -SP-ACE-TI TLE ) F.IFf.T 11,THE RECORDINGS COLLECTION (=OESK £ SHELVES) AS ST01 9,TRANSIT TIMES THROUGH REC. COLL. (MIN.) , (=DESK £ 1 264 265 -266-267 268 269 * GRAPH -GRAP-H-ORIGIN X ¥ XP_,XAB3 50,10 ,,7,1,1,15 Q,l,45,1 270 271 -2-7-2-273 274 275 7 STATEMENT 4.1,* 100 STATEMENT 5 2,19,TRANS IT TIME (MIN.) LO- .ST-A-T-EMENT 55-,X5-,FXGURE_-9-:.~-AE.L.^F^ GH THE RECORDINGS COLLECTION ENDGRAPH 276 277 -2X8-279 280 281 TAB TI TLE EJECT 10,OCCUPANCY OF RECORD. COLLECT. (=DESK & SHELVES) 282 283 GRAPH GRAPH ORIGIN TP,TAB10 5Q,1Q 284 285 286 287 -< 100 10 X Y .S-T-AT_E ME NT-STATEMENT STATEMENT ,2,4,0,1,20 0,1,15,3 Jt-.-L,-* 52 ,9,OCCUPANCY 55,85,FIGURE 10: REL. FREQUENCY OF NUMBER OF JOBS 0CC1 IJPYTNfi SIMU1 TANFmiSI V DF.SK AMD SHFIVFS 288 289 -29.0-291 292 293 -SXO-ENDGRAPH -T-I-T-LE-T AB SPACE TI TLE FJFCT _4.0-,-T.HE_LI-SXENI-NG_R0OM_AS_SXORAG.E 3 11,LISTENING ROOM INTERARRIVAL TIMES (MIN.) 294 295 -29.6_ 297 298 299 * GRAPH -GRAR.H ORIGIN X Y X.P_,XABL1 50,10 ,,7,1,1,15 0.4.15.3 300 301 .3.0.2-303 304 30 5 7 STATEMENT 100 STATEMENT a.o___ SXAXEJM.E.NX-4,1,? 52,25,INTERARRIVAL TIME (MIN.) _5.5.,.6iM-EXG UR.E-1U-REX *_AR E.QU.E NC-Y_OF_I.NXE.RAR RLVA L-TJ.MESl-TO LISTENING ROOM ENDGRAPH 306 307 .30.8-309 310 TAB TITLE 12,NUMBER OF ARRIVALS TO LIST. ROOM/10 MIN 312 EJECT 313 * 314 * GRAPH 315 GRAPH TP,TAB12 316 OR I GIN 50. 10 317 X ,2,6,0,1,15 318 Y 0,1,24,2 319 7 ST-AXE-ME-NX 4,1,? 3?n 100 STATEMENT 52,20,ARRIVAL RATE/10 MIM. 321 10 STATEMENT 55,70,FIGURE 12: REL. FREQUENCY OF ARRIVALS TO LISTEN1 322 IMG R01M OUR IMG 10 MIN. 323 ENDGRAPH 324 325 TAR TI TIF l^tITSTT RnnM SFRS/ICP TTMFS (MTis|.» 326 EJECT 327 323 * GRAPH 329 GRAPH TP,TAB13 330 ORIGIN 50,10 331 x ,,3,5,1,30 332 Y 0,1,21,2 333 7 STATEMENT 4,1,? 334 1 00 STATFMENT 5 2.19tTRANS IT TIMF (M T M.) 335 10 STATEMENT 55,58,FIGURE 13: REL. FREQUENCY OF TRANSIT TIME OF LU 336 STENINS ROOM 337 TAB ENDGRAPH TITLE F.IFCT 14,OCCUPANCY OF LIST. ROOM 338 339 340 341 * GRAPH -GRAPH— ORIGIN X _Y _XP_,X-ABl-4-50,10 ,2,4,6,1,18 0,1,16,3  342 343 3ik_4_ 345 346 347 7 STATEMENT 4,1,2 100 STATEMENT 52,9,OCCUPANCY 1.0 SXAXEMEN-T 5.5-,-87-,-U-S.UR.E-_l-4-:_REL.._J_REm UPYING SIMULTANEOUSLY THE LISTENING ROOM ENDGRAPH 348 349 _35D_ 351 352 353 STO -TAB-TITLE SPACE -XIX LE-EJECT 41,THE RESERV. LISTENING ROOM AS STORAGE 3 -1X,.0C.CUP_ANC.Y— OE„RES.ERV-E_L-ISX._RO0M_ * GRAPH 354 355 -35.6_ 357 358 359 7 1QQ GRAPH ORIGIN _X Y STATEMENT STATFMFMT TP,TAB17 50,10 -,-2-,-6-,-0,-l-,-l-5 0,1,35,1 4,1 ,% 57.9.nCCUPANCY 360 361 -362-363 364 365 10 STATEMENT 55,96,FIGURE 14A: REL. FREQUENCY OF NUMBER OF JOBS 0C1 COPYING SIMULTANEOUSLY THE LISTENING ROOM E-ND-G.RA.P-H STO TITLE SPACE 10,THE SYSTEM AS STORAGE _ : 366 367 -368-369 370 371 TAB TITLE -EJECX-15,SYSTEM TRANSIT TIMES (MIN.) ( = S ERVICES WAIT. TIME1 * GRAPH APH TP.TAFU5 372 373 -37-4-375 376 377 ORIGIN X _Y 50,10 , ,3,5,1 ,30 -0-,.5.,.2.0-,.2 4, 1,3 7 STATEMENT 100 STATEMENT 52,19,TRANSIT TIME (MIM.) 10 STATEMENT 55.49.FIG1JRE 15: REL. FREQUENCY DF SYSTEM TRANSIT TIM1 378 379 -380-381 382 383 ES _* ENDGRAPH TAB TITLE EJECT 16,OCCUPANCY OF SYSTEM (=DESK,SHELVES,LIST. ROOM) 384 385 -386-387 388 389 * GRAPH GRAPH TP,TAB16 390 391 ORIGIN X Y STATFMFMT 50,10 ,2,4,2,2,20 0,2,20,2 4.1 .X  392 393 394 39 5 100 STATEMENT 52,9,OCCUPANCY 10 STATEMENT 55,79,FIGURE 16: REL, -URVJJ^G--SI-MULXANEOU.SLY--XHE_Sy-SXEM ENDGRAPH END FREQUENCY OF NUMBER OF J03S QCC1 396 397 3-9.8„ 399 400 401 BLOCK NUMBER SYMBOL REFERENCES BY CARD NUMBER 66 BE IDE 120 125 8 DESK 67 72 -7-4— -EXIT -83 85 8i> 87- UL5 1-07 L08-109 128 131 132 78 FINE 80 102 129 -5-0- GFH1 D LDJ9 69 GEH11 127 72 GEH13 130 _7_3 G EH 1-4 13 2-24 GEH2 81 26 GEH3 2 77 P,PH4 BA. 28 GEH5 87 46 GEH7 103 _48 G.E-H-8 1-0.4 49 GEH9 106 61 OFLOW 112 4 STC? 63 UU LLQ L2_8 1_3_ 29 STG3 3 85 88 131 133 51 STG4 86 .88 108 110 J ABLE SYMBOLS AND CORRESPONDING NUMBERS 1 TAB1 10 TAB10 _1_1 XAB-1-1-12 TAB12 13 TAB13 JJt TAB14 15 T4B15 16 TABIS -1-7 -TJYB17-2 TAB2 3 TA33 __t T AB4 5 TAB5 6 TAB6 -X- TJVB-7-8 TAB8 9 TAB9 FUNCTION SYMBOLS AND CORRESPONDING NUMBERS 1 ARRI V 2 DESK -4 L-IS-T— * 1 * FUNCTION DEFINITIONS * SYSTFM ARRIVAL TTMF FXPDNFNT TAI 1 Y DISTRIBUTED J 1 FUNCTION RN1 C16 O.p 0. 0 .182 .1 . 283 .267 .486 . 5 .632 .-83 . 736 1.17 .81 1.5 .865 1.83 .903 2. 16 ' .930 2. 5 .95 2.84 .964 3.15 .975 3. 5 .98? 3. 84 .987 4.1 6 .99 4.5 __*_-0-E-S.K- ^FaUIrF TIMF FKPnMFMTI Al 1 V n I C.TR T Rl IT FH 2 FUNCTION RN1 C24 0. 0 0. 0 .1 .104 .2 .222 -3 . 355 - 4 . 509 . 5 .69 .6 .915 .7 1.2 .75 1. 38 . 8 1.6 .84 1.83 .88 2. 12 „..X-_ . - 2—3 . 9? 2. 52 . 94 2.«1 .95 2. 99 .96 3.2 .97 3.5 E .98 3.9 .99 4.6 .995 5.3 .998 6. 2 .999 7.0 .9997 8.0 * * SHELF SERVICE TIME EXPONENT I ALLY DISTRIBUTED 3.- —-.FU.NCXI.Ofcl RN1 C2 3 0.0 0. 0 .154 .840 .281 .250 ' .390 .420 .483 .580 .562 .750 .6?9 . 9? .685 1.08 .7 33 1. 25 .774 1. 42 .808 1.59 .837 1.75 .862 r 1.92 . 883 2.08 . 9 2.25 , .-9X6 2 . 4? .9?7 2.58 . 937 2.75 .946 2. 92 .953 3.08 .959 3.25 .964 3. 42 1.0 5.27 • * * LISTENING ROOM SERVICE TIME GENERALLY DISTRIBUTED FUNCTION 0-1 0...0-131 .312 366 .690 5_s 1 .05 RN1 C25 02A-.-.205 . 436 .623 .0.63-.437 .820 1.18 -.-07-1-.28? . 498 .699 -.-1-87-.563 . 940 1.31 4. 820 * STORAGE DEFINITIONS 10 : STORAGE 200 __11—-S-T-0 R A GE 1-5.0-30 STORAGE 100 40 STORAGE 23 _A1 STnRAfcF 7% * TABLE DEFINITIONS 1 2 3 4 TABLE XA.3LE— T ABL E QTA8LE TAftl F I A -RX Ml 2 JUL 1 1 20 -0 1 30 1 1 30 0 1 30 1 1 - 30 6 7 8 9 10 _LL_ TABLE TABLE TABLE TABLE TABLE TABI F 12 13 -14-15 16 _L_ T ABLE TABLE -T-AB-LE-TABLE TA8LE TABI F * * iPSS PROGRAM 1 2 _3_ 4 5 6 7 8 9 la) i: i I-_L ll 17 18-19 23 -2_L_ 22 23 24-25 26 _2L7_ 28 29 -30-31 32 __3_ 34 35 -36-37 38 _3__ 40 4L 42-43 44 __ GENERATE ENTER TRANSFER MARK ENTER -QUEUE— LI NK SEIZE DEPART ADVANCE RELEASE JJ&lL-IJiK TABULATE TABULATE TAftUI A TF LEAVE TABULATE TABULATE. ASSIGN TEST LE TFST F TEST E TRANSFER -TESTE TRANSFER TRANSFER TRAMSFFS TRANSFER MARK -ENTER ENTER ADVANCE 1 FA V F TABULATE TABULATE -TABULATE-TABULATE LEAVE TAfttll A TP TABULATE ASSIGN -TEST- L E TEST E TEST E TftANSFFP RT Ml S30 Ml Sll IA RT Ml _S4-0-Ml S10 S4I 3 10 .360 11 .2_ 2 2 7 1 2 2-1 2 _3_ 11 9 -10. 2 Cl J_3_ P4 P4 .750 .960 .733 5 6 8 11 10 3 XI-P2 P4 0 1 0 1 0 JL 3 0 -0-D 0 1 5 -1-5 2 _1_ FNl 79 FIFO 8 FN2 -8 . 1. Kl K3600 78 Kl 74 XI-29 51 _2_8_ 26 -2-7-74 74 74 .110 29 11-30 6 _3__ 51 FN3 Kl -K3600—7-8-Kl 46 Kl 48 JJt 20 60 40 60 60 _Q_ 15 60 .2-6-60 60 -2__ 10 46 TEST E P4 Kl 49 \ 47 TRANSFER . 280 4 74 48 TRANSFER .223 51 74 49 TRANSFER .140 50 74 50 TRANSFER .580 4 51 , 51 MARK J 52 GATE SNF 40 61 \ 53 ENTER 40 54 ADVAMCE 40 FN4 55 LEAVE 40 56 TABULATE 11 57 TAftlll ATF l ? 58 TABULATE 13 59 TABULATE 14 . —60 - TRANSFER 66 61 ENTER 41 62 ADVANCE 40 FN4 63 1 F AV F 41 64 TABULATE 17 65 TRANSFER 66 65 ASSIGN 4 Kl 67 TEST E P3 Kl 69 68 TRANSFER .090 4 74 69 T FS T LF Cl K3600 78 70 TEST E P2 Kl 72 71 TRANSFER .380 29 74 72 T-R.A~M.SF E~R -0-8.0 . 73 74 73 TRANSFER .143 4 29 74 LEAVE 10 75 TABUI ATF 1 5 75 TABULATE 16 77 TERMINATE 78 - LEA-VE 10 79 TABULATE 15 83 TABULATE 16 Rl TERMINATE 1 * CONTROL CARD START 1 STATISTICS CONCERNING HE INFORMATION DESK FACILITY AVERAGE UTILIZATION < ! 2 _3_ NUMBER ENTRIES 1 531 AVERAGE T I ME/TRAM .564 SEIZING TRANS. NO. PREEMPT ING TRANS. NO. STATISTICS CONCERNING THE DESK QUEUE MAXIMUM AVFRACF T OT A1 ZERO p F R r. F M r Al/FRACF ^AVERAGE T A 3 L F I HR R F NIT CONTENTS CONTENTS ENTRIES ENTRIES ZEROS 2 7 .154 1532 1245 81.2 MVER-AGE—T-I-MEV-T-R A NS = AV-ERAGE—XIME/-T-RANS—EXXLUDXMG—ZERQ—E-MXRXES-TI ME/TRANS . 362 T IME/TRANS 1.937 NUMBER CONTENTS 1 STATISTICS CONCERNING THE DESK USER CHAIN U-SE-R-XHA-I-N-2 —XQXAI ENTRIES 447 AV-ERA.G.E— TIME/TRANS 1. 243 _CU.R.REJy|J_ CONTENTS A-V.EJRAG.E_ CONTENTS .154 MAXXMUM-COMTENTS 7 DESK INTERARRIVAL TIMES (MIN.) TABLE TAB1 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 1530 2. 350 2.57'+ 3597.OOP NON-WE I G A TE D UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION IIMIT FREQUENCY OF THTAI PFRTFNTAGF RFMATMDFR OF MF AM FRHM MFAM 1 720 47.05 47.0 52.9 .425 -.524 | 2 255 16.66 63.7 35.2 .850 -.136 3 ?H9 1^.66 77.3 77.6 1.276 .252 j 4 108 7.05 84.4 15.5 1.701 .640 5 77 5.03 89.4 10.5 2.126 1.029 6 42 2.74 92. 2 7.7 2. 55? 1,417 7 1 2.67 94.9 5.0 2.977 1.805 8 27 1.76 96.5 3.3 3.402 2.194 9 19 1.74 97.9 2.0 3.878 2.582 10 3 .84 93.7 1.2 4.253 2.971 11 3 .19 98.9 I.D 4.678 3.359 ! 17 4 .76 99.7 .7 5.104 3.74R i 13  .26 99.4 5 5. 529 4.136 14 3 .19 99.6 .3 5.954 4.525 15 2 .13 99.8 1 5.380 4.913 16 0 .00 99.8 .1 5.805 5.302 17  .OD 99.8 1 7.231 5.690 18 3 .19 100.0 .3 7.656 6.079 Ri; MAINING FREQUENCIES ARE ALL ZERO -% * * * * •V* 80 * * 76 * """•"~™~™~™—1 vJ» * •—• • • 1 • — 1 1 ~™~ * 72 * 68 * * 64 * * 60 * * 56 * I * 1 5 2 * ! * 48 * * ** 44 *1 * * 40 * ** * i 36 *! * * 32 * ** * 28 * ** * 24 * ** * 20 * ** * IAA ft ft ftft ***** 12 * * ** ** * * *8 * ** ** ** *- * * * ** 4 * * ** ** * ** * * * * ** * ** ** 0 ********************************************************************>>>*************>************************************* 1 ? 3 4 <5 h 7 R INTERARRIVAL TIME (MIN.) FIGURE l: REL. FREQUENCY OF INTERARRIVAL TIMES J TABLE EM.TRTFS TAB2 IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 360 4. 250 2.2 57 1530.000 MON-WEIGHTED UPPER OBSERVED PFR f. FMT r.UMtll A TI VF ~ tIMUl ATT \/F Mil TT PI F DFV T A T TnM LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAM F * DM MEAN 0 10 2.77 2.7 97.2 -.000 -1.882 1 74 6. 66 9.4 90.5 .235 -1.439 2 49 13.61 23. 0 76.9 .470 -. 996 3 63 17.49 43.5 59.4 .705 -. 553 4 61 16. Q4 57. 4 4? -5 .94] -T11 n 5 52 14.44 71.9 28. 0 1.176 .332 6 45 12.50 84.4 15. 5 1.411 . 775 7 34 9.44 93.8 6.1 1 .647 1.217 8 7 1.94 95.8 4.1 1.882 1 .660 9 7 1.94 97.7 2.2 2 . 117 2.103 10 3 .83 93.6 1 .3 ?. 352 ?. 546 11 2 . 55 99.1 .8 2.588 2.989 12 3 .83 100.0 .0 2.823 3.432 R = MAIMING FRFQliF NT. I F 5> ARF All 7 FR D •NIW 0I/31V, 1VAI__V 62 82 Lc 92 _2 _Z ZZ IZ QZ 61 til LI 91 _I M £1 _l 11 Cl 6 ti _ 9 _ £ _ I 0 ***********************************:M **$*************4****$*^ $********* ******* jj.************* 0 ** ** ** ** ** ** 4* ** ** ** * • ' • • , , . 3f ** 4* ** ** ** ** ** * 1 ** ** ** ** ** ** ** ** * ** ** ** ** 44 #* ** * z ** ** ** ** 4* 44 ** * ** 4* ** ** ** ** * £ - ** ** ** ** 4* 4 4 ** * • ** ** ** ** ** *4 ** * ** ** ** ** 4* ** **** ** ** ** ** 44 ** * S ** ** ** 44 44 44 ** * ** ** #* ** ** 44 ** 9 ** ** .** ** ** ** * ** #* 4* 4* *# *-* # L ** ** ** ** 44 *."*• * ** ** ** ** 4* 44 * 8 ** ** ** ** #4 4* * ** ** 44 4* 44 44 * 6 ** ** ** ** 4 4 * *# *4 ** ** 44 * 01 ** ** ** 4* ** * ** 44 4* ** ** * 11 ** ** ** ** 44 * ** ** 4* ** 44 * 21 ** ** ** ** * 44 44 4~* 4~4 * CT' 4* ** 44 * ** ** ** * *?\ 4* ** * ** ** * ST 4* 4* * ** ** 44 4* * * * 91 LI 4 * 8T * Tjf—6-T-* 4 02 * * IZ * ~4 * * % DESK TRANSIT TIMES {MIN.) (=WAIT. & SERVICE TIME) TA8LE TAB3 ENTRIFS 1M TABLE MEAM ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 1531 -U&RER-LIMI T 1 2_ —OBSERV-ED-FREQUENCV 1160 707 .926 _P_ER-X.EN.L 1.265 1419.030 NON-WEIGHTED OF TOTAL 75.76 13,52 _C UM ULA.T_LV.E_ PERCENTAGE 75.7 89.2 ..CUMUL ALIVE. REMAINDER 24.2 10.7 _MULXLP_LE_ DF MEAN 1.07 3 2-157 .D.E.VLAXI.ON-FROM MEAN .057 .347 3 4 _5-6 7 _8_ 94 38 -1-7-8 4 _____ 13 48 X_L 52 25 _JL2_ 95.4 97.9 —9-9.-0-99.5 99.8 1 00-0 4.5 2.0 —.J9_ .4 .1 .0 3. 236 4.315 -5..-3-9L4-6.473 7.552 8.631 1. 638 2.428 _3...2.1.3_ 4. 008 4. 798 5.583 REMAINING FREQUENCIES ARE ALL ZERO _*_ 57 * * 54 * *_ 60 0 * 51 * 45 * * # 42 * _3-9-~*-36 * * * ft * 33 * _3-0-*-27 * * 0 *********************************************************************************** ! TRANSIT TIME (MIN.) 1 FIGURE 3: REL. FREQUENCY OF TRANST TIMES AT INFORMATION DESK i TABLE TAB4 FNTRTFs TNI TABt F MFAM ARGUMFNT STANDARD DEVIATION SUM OF ARGUMENTS ] 1531 .362 .932 555.030 NON-WEIGHTED UP-P-E-R 03 SERVED P_E.R_CE.NT_ CUMJ.L.A.T-L„E C J.MJ.L.A.T_I.V-E_ M.J.LXLP-L.E DE-V-I-AXI.O.N. LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 1245 81.31 81.3 18.6 -.003 -.388 ] L_2 9.77 90. 5 9__4 ?• 758 .633 2 78 5.09 95.6 4.3 5. 517 1. 755 3 . 34 2.22 97.9 2.3 8.275 2.827 4 13 .-84- 98.-7 1___2 : 1_._D3A 3...8J9X 5 2 .78 99.5 .4 13.792 4.971 6 6 .39 99.9 3 16.551 6.043 1 J __£ 1QQ.Q _3 19.309 7.115 REMAINING FREQUENCIES ARE ALL ZERO * * _*_ * * 60 * 00 * ** 57 * ** * ** 54 * ** * ** 51 * ** * ** 4B * ** * ** 45 * ** ** 1 42 * «* ' * ** ** 1 * ** ! 36 * ** * ** 33 * ** * ** i 30 * ** * ** 27 * ** * ** , 24 * ** * ** 21 * ** * ** 18 * ** * ** 15 '* ** * ** JL2 * ** * ** 9 * ** ** * ** ** 6 * * ** * * ** ...3...„.,* ____ *_* *_*. *_*_ * ** ** ** ** 0 ************************************************************************************************************************** JOBS IM QUEUE i FIGURE 4: REL. FREQUENCY OF JOBS WAITING FOR SERVICE AT INFORMATION DES< i i J STORAGE CAPACITY AVERAGE AVERAGE ENTRIES AVERAGE CURRENT MAXIMUM 30 100 1.876 IJ 1 I L 1 /-HI 1 UIM . 018 1195 i i n c / i A H !«• 5.656 L. U ;M 1 _ SM 1 O u Ji» 1 L 1 1 J 9 < ¥SHE.LF INTERARRIVAL i _ _ . TIMES (MIN.) ENTRIES IN TABLE . I USA-MEAN ARGUMENT 3..J1L1-STANOARD DEVIATION 3...0J7-8-SUM OF ARGUMENTS 3596.000- -N.ON-W.E.LGJJ.E.D_ UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION • 1 IMIT FREQUENCY DF TDTAl PERCENTAGE REMAINDER OF MEAN FROM MEAN 1 499 41.79 41.7 58.2 .332 -. 65 3 2 196 16.41 53.2 U.7 .66 4 -.328 110 9.21 67.4 1?. 5 . 996 -.00 3 ! * 104 8.71 76.1 23.8 1.328 . 321 i - 5 88 7.37 33.5 16.4 1 .660 .645 6 39 3.26 86.7 13.2 1 .992 .970 • ', 7 42 3.51 90.2 9.7 2.324 1.295 8 30 2.51 92.7 7.2 2.656 1.620 9 27 2.2 6 95.0 4.9 ? .988 1. 945 10 17 1.42 96. 4 3. 5 3.323 2.270 11 13 1.03 97.5 2.4 3.652 2.595 < 12 14 1.17 98.7 1.2 3.984 2.920 13 5 .41 99. 1 .8 4.316 3.244 14 4 .33 99.4 . 5 4.648 3.569 1 5 .25 99.7 , ? 4. 980 3. 894 16 1 .08 99.8 .1 5.312 4.219 17 0 .00 99.8 .1 5. 644 4.544 - 18 0 .03 99.8 .1 5.976 4. 869 19 0 .00 99.8 .1 5.30 8 5. 194 20 2 . 16 100.0 .0 6.640 5.519 -RE-M AI-N LN G-ER EQ U E.N C J-ES-A RE-A L-L-_ZE-R 0-* * * * k * 1 80 * * 76 * * 72 * * 68 * * ft4 * i * 60 * * 56 * * -52 * •< * 48 * * 44 * * . , . 40 * * *36 * * *»-32 * * *28 * * *24 ** * > Ih 20 ** * u * * ** ft ft*12 * * ** _ * *8 * * ** ** ** * ! * * * * * ** 4 * * ft* ** ft* ft* * * ** * ** * ** 0 ************************************************************ _.. i 1 • ? 3 , S 6 Ir c. ,—— i INTERARRIVAL TIME (MIN.) i FIGURE 5: REL. FREQUENCY OF INTERARRIVAL TIMES - i . DUMBER OF ARRIVALS TO SHELVES/10 MIN. TABLE TAB6 > FMTRTFS TN TARI F M FAM ARGllMFNT STANDARD DEVIATION SUM OF ARGUMENTS / 360 3.316 2.074 1194.000 NON-WEIGHTED \ UPPER OBSERVED PER CFNT CUMIM ATI VF riiMiir AT I VE Ml| T I P| E DFtf I ATT ("INI LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 8 2.22 2.2 97.7 -.000 -1. 598 1 1 f>. 3R 1 8.6 qi .3 .331 -1.116 2 78 21.66 40. 2 59. 7 .603 -.634 3 82 22.77 63.0 36.9 .904 -.152 4 48 13. 33 7S . 3 ?3.6 1.206 . 329 5 30 8. 33 84.7 15.2 1.507 .811 6 21 5.83 90.5 9.4 1.809 1.293 * 7 ?Ci 5. 55 96.1 3.8 2-110 1 . 775 8 7 1.94 98.0 1.9 2.412 2.257 9 5 1.38 99.4 .5 2.713 2.739 10 0 ,rv3 99,4 TS 0] «5 ^, ?2? 11 1 .27 99.7 .2 3.316 3.704 12 0 .00 99.7 .2 3.618 4.186 1 3 1 -27 103.0 .0 3.919 4.668 REMAINING FREQUENCIES ARE ALL ZERO _*_ * r 20 * on 00 * ** *<« 19 * ** ** I * ** ** 1 18 * ** ** * ** ** 1 17 * ** ** * ** ** l 16 * ** ** ** 1 ** ** ** 15 ** * ** * ** ** ** 14 * ** ** ** -y ** ** ** 13 * ** ** ** ** * ** ** ** ** 12 * ** #* ** ** ** ** ** ** 1 1 * ** ** ** ** * ** ** ** ** 10 ** ** ** ** * ** ** ** ** 9 * ** ** ** ** * ** ** ** ** 8 * ** #* ** ** ** * ** ** ** ** ** 7 * ** ** ** ** ** * ** ** ** ** ** 6 # ** ** ** ** ** ** ** ** ** ** 5 ** ** ** ** ** ** ** * ** ** ** ** ** * * * * * ** ** ** ** ** ** ** * ** ** ** ** ** ** ** 3 * ** ** ** ** ** ** ** * ** ** ** ** ** ** ** 2 * ** ** ** ** ** ** ** ** * ** ** ** ** ** **'**-1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 0 *******************************************************£ *****************^ * * *********** **** * ********* ** ********* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ARRIVAL RATE/10 MINI. 'SHELF TRANSIT TIMES (MIN) TABLE TAB7 FMT3 I F S IM TAR I F MFAM ARGtlMFNT STANDARD PF V I AT I (IN SUM PF ARGUMENTS ; 1195 5.656 5.457 6759.ODD NON-WEIGHTED UPPER OBSERVED PER CENT f~UMUI AT IV E CUMULATIVE MUL TIPL F DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER 3F MEAN FROM MEAN 1 157 13.13 13. 1 86. 8 .176 -.853 ? 1 7.43 30.6 69.3 . 353 669 3 182 15.23 45.8 54.1 .530 -.486 4 178 14.89 60.7 39.2 . 707 -.303 5 60 ^.02 65.7 ^4. 2 . 8R4 -.120 6 67 5.60 71.3 23.6 1.060 .063 7 50 4. 18 75.5 24.4 1.237 .246 R 50 4. 1 R 79.7 20.? 1.414 .429 9 37 3.03 32.8 17.1 1.591 . 612 10 39 3.26 86.1 13.8 1.768 . 796 U 20 1.^7 R7. 7 12.2 1 . 944 . 979 12 25 2.03 89.8 10. 1 2. 121 1.162 13 20 1. 67 91.5 3.4 2.298 1.345 1 4 1 4 1.17 92.7 7.2 2.475 1.529 15 16 1.33 94.0 5.9 2.652 1.712 16 10 .83 94.8 5.1 2.828 1.895 17 6 . 50 -9-5.-3 4.5 3.005 2.078 18 5 .41 95.8 4.1 3. 182 2.262 19 5 .41 96.2 3.7 3.359 2.445 20 3 .25 96.4 3.5 3.536 7.628 21 4 .33 96.8 3. 1 3.712 2.311 22 6 .50 97.3 2.6 3. 889 2.995 ?3 6 .50 97.8 2.1 4,066 3.178 24 5 .41 98.2 1.7 4.243 3.361 25 2 .16 98.4 1.5 4.420 3.544 76 3 .25 98.6 1.3 4. 596 3.72 8 27 3 .25 98.9 1.0 4.773 3.911 28 4 .33 99.2 ' .7 4.950 4.094 29 . 33 Q3 . 5 . 4 5,127 4. 277 30 4 .33 99.9 .0 5.3D4 4.461 31 1 .08 100.0 .0 5.480 4.644 R F MAT N I NG F RFQ1IF NT. IFs ARF At L 7ERD GR APH 24 * * % * * _2-2—*. * 21 * *. 20 * * _1_9—*. * 18 * * 17 * .-46—*- — * : —— —- - ., . . . * * 15 *  * * * * '. 14 *  * * * 4 ft ft __1_3 * * *. * .* . . . . , . . . . ft ft * * * 12 * * * * * * * * * * 11 * * * * ft ft * * * * _1.0—* * * *—_—__* ft * * * * g * ft * ft ft * * ft *_ * : :  8 * * * * * ft ft ft ft ft _7 * * *. *. *. : : , ft ft ft ft ft 6 * * * * ft ft ft * ft ft :  5* * * * * * * • * * ft ft ft * * 4 ft ft. *. * *. * *. * * ********* 3* * * * * * * * * * * * * * * * * *_ * * * * 2********************** * _.-!.-*- * *. * * .* * * .» *- * * * * * *. **************** 0 ********************************************************************************************** 1 2. 3 k S ft 1 8 3. LO 1_] 1.2 13 lit _L5 TRANSIT TIME (MIN. ) OCCUPANCY OF SHELVES TABLE TAB8 FNTRTFS TN TAR I F MFAM ARGUMFNT STANDARD DEVIATION SUM OF ARGUMENTS 1195 1.911 1.476 2284.000 NON-WEIGHTED IIPPFB flRSFRVFn PFR PFMT C. 11 M 11 AT T <J F r.! IM! II AT T V F MIIITTPIF DFWTATinN LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 195 16.31 16.3 83.6 -.000 -1.294 1 347 79.03 4«S.3 54.6 .523 -.fS17 2 298 24.93 70.2 29.7 1.046 .060 3 189 15.81 86.1 13.8 1.569 .737 4 91 7.61 93.7 6.7 2.09? 1.414 j 5 47 3.93 97.6 2.3 2.616 2.091 6 22 1.84 99.4 .5 3.139 2.769 7 S .41 99.9 0 3.fcfc? 3.446 ! 8 1 .03 100.0 .0 4. 185 4. 123 REMAINING FREQUENCIES ARE ALL ZERO i j . f i 1 • 1 24 * 00 ** 2S * ** ** ** ** 22 * ** ** * ** ** 21 * ** ** ** ** 20 * ** ** * ** ** 19 * ** ** ** ** 18 * ** ** ** ** 17 * ** ** *** ** ** 1.6- ** ** ** -* ** ** ** 15 * ** ** ** ** * ** ** ** ** 14 * ** ** ** ** ** ** ** ** 13 * ** ** ** JL. ^ *r» ** ** ** ** 12 * ** ** ** ** ** ** ** ** 11 * ** ** ** ** * ** ** ** ** 10 * ** ** ** ** * ** ** ** ** 9 * ** ** ** ** * ** ** ** ** 8 ** ** ** ** * ** ** ** ** 7 * ** ** ** ** ** 1 * ** ** ** ** ** 6 * ** ** ** ** ** # ** ** ** ** ** 5 * ** ** ** ** *fc i * ** ** ** ** ** 4 * ** ** ** ** ** * ** ** ** #* ** 3 * ** ** ** ** ** ** * ** ** ** ** ** ** i ' 2 ** ** ** ** ** ** 1 1 * ** ** ** ** ** ** * ** ** ** ** *<C ** ** * ** ** ** ** ** ** ** i 0 ************************************************************************************^^ j 0 1 7 4 5 6 7 8 9 10 11 12 13 14 OCCUPANCY j FIGURE 8: REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE SHELVES STORAGE CAPACITY AVERAGE r.riNTFNTS AVERAGE ENTRIES UTIlI7ATinN AVERAGE TTMF/TR AM-CURRENT CONT-NTS MAXIMUM CONTENTS 1 11 150 2. 271 .015 2727 2.999 1 10 r Tr*J ,NSI T TIMES THROUGH REC. COLL. ( MIN .) t {=DESK £ SHELVES) Ti Ef VBLE TAB9 ^TRIES IN TABLE 2726 MEAN ARGUMENT i.nnn STANDARD DEVIATION 4. 41 fj SUM OF ARGUMENTS 8178.000 NON-WEIGHTFD UPPER LIMIT OBSERVED FREQUENCY PER OF CENT TDTAI CUMULATIVE CUMULATIVE PERCFNTAGF RFMAINDER MULTIPLE OF MEAN DEVIATION FROM MEAN 1 2 1317 416 27-6 48.31 15.26 10-12 48.3 63.5 7^. 6 51.6 35.4 76. 3 .3 33 .666 i. nnn -. 453 -.226 -.003 4 5 6 216 77 75 7.92 2.82 7.75 81.6 34.4 87.1 18.3 15.5 12.8 1. 333 1 .666 2.003 . 226-.453 .680 7 8 Q 54 53 37 1.93 1.94 1.35 89.1 91.1 92.4 10.8 8.8 7 .5 2. 333 2.666 ^ .003 . 906 1.133 1.360 10 11 12 39 20 25 1.43 .73 . 91 93.9 94.6 95.5 6.0 5.3 4.4 3.333 3.666 4.000 1.587 1.813 2.040 13 14 1 5 20 14 1 * .73 .51 . 58 96.2 96.8 97.3 3.7 3.1 7T6 4.333 4. 666 5. non 2.267 2.494 7. 7?n 16 17 18 10 6 5 .36 .22 .13 97.7 97.9 98.1 2.2 2.0 1.8 5.333 5. 666 6.000 2.947 3. 174 3. 401 19 20 21 5. 3 . 18 .11 .14 98.3 98.4 93.6 1.5 1.5 1.3 5.333 6.666 7. 000 3.627 3.854 4. 081 22 23 74 6 6 5 . 22 .22 .13 98.8 99.0 99.7 1.1 .9 .7 7.333 7.666 8.000 4. 308 4. 534 4. 761 25 26 77 2 3 3 .07 .11 .11 99.3 99. 4 99 . 5 .6 . 5 , 4 8 .333 8.666 9. 000 4.988 5.215 5.441 28 29 3 0 4 4 4 . 14 . 14 .14 99.6 99.8 99.9 .3 .1 .0 9.333 9.666 10.000 5.668 5.895 6.122 R£ 31 rMAINING FREQUENCIES ARE 1 ALL ZERO .03 100.0 .0 10.333 6. 348 i— • • \ ! 5g * 45 * 0 44 * * 43 * * 42 * * 41 * ft 40 * * 39 * * 38 * * 37 * * 36 * * 35 * * 34 ft * 33 * * 32 * * 31 * * 30 * * ?9 * * 1 28 * * 27 * * OA *111 —"VI» * •-«..-—"...u mi. .. .. ~ -. . . 25 * * 24 * * i ?3 * * 22 * * 21 * * 20 * * 19 * * 18 * * 1 7 * * _ 16 * * 15 * * * 14 * *13 * * * 12 * * * i i ft * * 10 * * * * 9 * * * * 8 ft * * * 7 * * * * * 6 * * * * * 5 * * * *4 * * * * * 3 * ft ft ft ft 2**ft**ft* I*********** 0 A************************* 1 ? 3 4 5 h 7 ft q vn 11 1? 13 14 IS TRANSIT TIME ( MIN. ) FIGURE 9: REL. FREQUENCY OF TRANSIT TIMES THROUGH THE RECORDINGS COLLECTION J OCCUPANCY OF RECORD. COLLECT. (=DESK £. SHELVES) TABLE TAB 10 MFAN ARGUMFNT STANDAR 0 OFVI ATT QN SUM PF ARGUMENTS 2726 2.372 1.753 6468.000 NON-WEIGHTED UPPER 08 SERVED PER CENT CWMULATIVF CUMULATIVE M'JLT IPLE DFVI AT ION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 330 12.ID 12.1 87.8 -.000 -1.352 1 633 73-7? 35-3 64.6 .471 -.78? 2 679 24.90 60.2 39.7 . 842 -.212 3 466 17.09 77.3 22.6 1. 264 . 357 4 297 10. 89 RP,T? 11.7 1.685 .927 5 147 5. 39 93.6 6.3 2.10 7 1.497 6 86 3. 15 96.7 3.2 2. 528 2.068 7 65 7.33 99.1 .8 7.950 2.638 8 22 .80 99.9 .0 3.371 3.208 9 1 .03 100.0 .0 3.793 3.778 -R EM A IN I-NG-ERE-Q UE.NCI-E-S-A R E-ALL-Z E R 0-i o * * # ft o • * » • o •* ft ft « o •«• ft » -ft O ft ft ft -ft 0 ft ft -ft ft ft -if ft ft ft in OL < fi ts ft ft ft •ft * ft ft * ft ft ft ft ft ft ft ft ft ft * ft ft ft ft tt ft -ft ft •ft ft -ft ft ft. ft •ft ft ft ft ft ft ft -ft ft ft ft -ft ft PO ft -ft -ft CM ft ft ft ft ft -ft ft ft ft -ft ft ft ft ft ft ft ft -ft ft- ft * ft ft ft » ft ft -ft •ft ft ft ft -ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft**-*** ft ft # # ft ft ft ft ft -ft ft ft ft # ft- ft ft ft ft ft. ft ft * ft ft ft ft ft ft * ft ft ft ft ft ft *#*#•»* ft ft ft * ft- ft ft ft .ft ft ft ft •ft ft ft- ft ft ft ft ft ft «• ft «• •ft ft ft ft ft ft 0> 00 ft ft ft -ft ft ft # ft ft ft ft -ft ft * * ft-•ft ft •ft ft ft ft -ft •ft ft ft ft •ft ft ft ft -ft ft ft •ft •» ft -ft •ft ft •ft ft ft ft •ft ft ft -ft ft # ft ft ft ft tt ft ft ft ft ft ft ft-•ft ft ft ft ft ft-•ft ft ft ft •ft ft ft -ft ft ft •ft ft ft ft •ft ft •ft ft ft ft * ft ft -ft ft ft-ft -ft ft ft ft ft ft «• ft ft * in ft -ft •» «• ft « * ft -ft •ft ft •ft ft •ft -ft •ft -ft ft -ft ft ft ft -ft ft -ft * ft ft ft ft » ft ft # ft •» CO ft ft ft -ft ft ft ft ft ft ft ft ft * ft ft ft ft. ft ft -ft ft -ft ft ft -Si ft tt ft ft # ft ft ft * ft ft ft ft ft ft ft ft -ft •ft tt ft ft -ft ft CM ft -ft •ft -ft •ft -ft ft ft ft ft tt ft-ft ft •ft -ft ft * tt ft ft ft ft ft ft ft ft ft ft # ft ft ft ft -ft ft ft ft ft ft ft ft «. ft AS-ft •ft ft * •ft « ft ft ft ft cr cc in CJ < O. _3 CJ O Q cc -c pr 00 ill > 00 Q v: OO LU o 00 n UL) 5» oo 05 Z > o. O CJ o 00 00 O u_ o c_ Ol CO X r> 2 a >-o _r UJ =5 a UJ u. LU rvr UJ CD STORAGE CAPACITY AVERAGE AVERAGE ENTRIES AVERAGE CURRENT MAXIMUM CONTENTS UTILIZATION : TIME/TRAN CONTENTS CONTENTS 40 23 7.751 .337 660 42.290 9 23 LISTENING ROOM INTERARRIVAL TIMES (MIN. ) TABLE TABU ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 650 5. 496 5.40? 3573,000 NfiN-WFI G.HTFD UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT FRFOUENCY OF TDTA1 PFRCFNTAGF REMAINDER OF MEAM F*DM MEAN 1 140 21.53 21.5 78.4 .181 -.832 2 80 12. 30 33.8 66.1 .363 -.647 3 80 12.30 46.1 5^Tft . 545 -.46? 4 53 8. 15 54.3 45.6 .727 -. 277 5 54 8. 30 62.6 37.3 .909 -.091 6 41 6.30 68.9 31.0 1 .091 .093 7 44 6.75 75.6 24.3 1.273 .278 8 29 4.46 80.1 19.8 1.455 .463 Q 28 4. 30 84. 4 I 5. 5 1,63 7 . 648 10 15 2.30 86.7 13.2 1. 819 . 833 11 14 2. 15 88.9 11.0 2.001 1.018 1 7 9 1. 38 90.3 9.6 2.18 3 1.203 13 9 1.38 91.6 8.3 2.364 1.388 14 11 1.69 93.3 6.6 2. 546 1. 573 1 5 4 . 61 93. 9 6,0 7.728 1.759 16 8 1.23 95.2 4.7 2.910 1.944 17 4 .61 95.8 4.1 3.092 2. 129 1 8 4 .61 96.4 3.5 3.274 2.314 19 3 .46 96.9 3.0 3.456 2.499 20 2 .30 97.2 2.7 3. 638 2. 684 21 3 . 46 97.6 2 .3 3.820 7. 869 22 3 .46 98. 1 1.8 4.00 2 3.054 23 1 .15 98.3 1.6 4.184 3. 239 74 1 - 1 5 98.4 1 m 5 4.366 3. 475 25 2 .30 98.7 1.2 4.547 3.610 26 I . 15 98.9 1.0 4.729 3.795 77 1 . 1 * 99.0 .9 4.911 3. 980 28 1 .15 99.2 .7 5.093 4.165 29 2 .30 99. 5 .4 5.275 4.350 OVERFLOW 3 .45 100.0 .0 AVERAGE VALUE OF OVERFLOW 32.00 A GR APH * J % 60 * * * 56 * * * 52 * * 48 * * * 44 * * 40 * * • j 36 * * 32 * * * ' 28 * * 24 * * * 20 * * * 16 * * * * 12 * * * * * * * *8 * * * * * * ***** * 4 * * * ******* * * * * * * * * * ********* 0 ************ ************************************************************************************************************************** 1 7 * 4 5 A 7ft Q 10 11 1? I"* 14 15 INTERARRIVAL TIME (MIN.) FIGURE 11: REL. FREQUENCY OF INTERARRIVAL TIMES TO LISTENING ROOM TABLE TAB 12 FMTPTFs- rN T ARI F MFAM ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS  360 1.805 1.351 650.000 NON-WEI3HTED ; UP-P-ER 03SERVED P_ER—CENT CUMU.LAXI.V.E CUMJ.LA.T-I-V-E MJLT IPLE DEV-LAX.I.ON LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 61 16.94 16.9 83.0 -.000 -1.335 1 1_Q_6 ?9. 44 46.3 53.6 .553 -.596  2 95 26.38 72.7 27.2 1.107 .143 3 56 15.55 88.3 11.6 1.661 .88L__ 4 27 X.4,9 — 95.3- . . 4...1 2..-215 l.._623 -5 12 3.33 99.1 3 2.769 2.363 6 3 .83 100.0 .0 3.323 3.10REMAINING FRFOUFNCIFS ARF AM 7FRD 00 «* 00 ** % * ** ** 22 * * ** ft* ** ** * ** ft* 21 * * ** ** ** ** • 20 19 * * ** ** ** ** ** ** * ** ** 18 * * ** ** ** ** 1 i 17 * * ** ** ** ** , 1* * ft* ** ** I * ** ** ** l 15 ft ft ** ** ** ** ** ** ** ** ' 14 ft ** ** ** ** * ** ** ** ** 1 3 ft ft* ** *ft ft* * ** ** ** ** 12 * * ** ** ** ** ** ** ** ** 11 * ft ** ** ** ** ** ** ** ** V 10 ft ** ft* ** ft* * ** ** ** ** 9 * * ** ** ** ** ** ** ** ** 8 ft * ** ** ** ** ** ** ** ** 7 ft ** ** ft* ** ** 1— * ** ** ** ** ft* 6 * ** ** ** ft* ** * ** ** ** ** ** 5 * ** ** ** ** ** * ** ** ** ** ** 4. * ** ** ** ** ** * ** ** ** ** ** 3 * ** ** ** . ** ** ** * ** ** ** ** ** ** 2 ft ** ** ** ** *> ** ft ** ** ** ** ** ** 1 ft ** ** ** ** ** ** i *• ft ** ** ** ** ** ** ************************************************************************************************************************** Q ] 7 3 4_ 5 6. 1 3 9 LQ_ Ll 12 13. L__ ARRIVAL RATE/10 MIN. FIGURE 12: REL. FREQUENCY OF ARRIVALS TO LISTENING ROOM DURING 10 MIN. TABLE TAB 13 J—lTfUFS MF AM AR CVilM FMT STAMDAR 0 3FVIATIOM SUM OF ARGUMENTS 651 42.181 31.437 27460.000 NON-WEIGHTED ' 1 UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MJLT IPLF nF.* TATTONI LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 4 ,6V .6 99.3 -.000 -1.341 5 38 5- 83 6.4 93.5 .118 -1.182 10 34 5. 22 11.6 88.3 .237 -1.023 15 49 7.52 19.2 80.7 . 355 -.864 20 49 7. 52 26.7 73.2 . 474 -.705 25 49 7. 52 34.2 65.7 .592 -.546 30 46 7.06 41.3 58.6 .711 -.387 35 4? 6.45 47.7 57.7 . 879 228 40 32 4. 91 52.6 47.3 .948 -.069 45 47 7.21 59.9 40.0 1. 066 .089 — < ^0 52 7.93 67 .8 37.1 1.185 . 248 55 48 7. 37 75.2 24.7 1.30 3 .407 60 32 4.91 80.1 19.3 1.422 .566 fi5 25 3.84 84.0 15.9 1. 540 .725 ! 70 20 3.07 87.0 12.9 1.659 . 884 -! 5 10 1. 53 88.6 11.3 1.778 1.043 BO 10 1. 53 90. 1 9. 8 1.396 1.202 85 11 1.63 91.8 8.1 2.015 1.362 90 6 .92 92.7 7.2 2.133 1.521 95 6 .97 93. 7 6.2 2.252 1.683 100 5 .75 94.4 5.5 2. 370 1. 839 105 6 . 92 95.3 4.6 2.489 1.998 110 2 . 30 95.6 4.3 7 . 607 7.157 115 4 .61 96.3 3.6 2.726 2.316 120 4 .61 96.9 3.3 2.844 2. 475 175 1 .15 97.0 7.9 7.963 2.634 130 2 .30 97.3 2.6 3. 081 2.793 135 2 .33 97.6 2.3 3.200 2. 952 140 2 . 30 98.0 1 .9 3 .319 3.111 145 3 .46 98.4 1.5 3. 437 3.2 70 150 2 .30 98.7 1.2 3.556 3. 429 155 1 . 1 5 9R.9 1.3 3.674 3.588 160 1 . 15 99.0 .9 3. 793 3.747 165 2 .30 99.3 .6 3. 911 3.906 1 70 1 . I 5 99.5 .4 4.030 4. 065 175 1 . 15 99.6 .3 4.148 4.224 130 1 . 15 99. 8 . 1 4.267 4.383 185 1 .15 100.0 .0 4.385 4. 542 REMAINING FREQUENCIES ARE ALL ZERO % ft * ! *. * 21 * *_ 20 * * _l-9—*-* 18 * _ 17 * * _l-6-*-* 15 * *_ 14 * * -1-3—*. 12 * * 11 * * * 9 * *_ 8 * 7 4c * * * * * * * —•1" • |— * * * * * * * 6 * * * * * * ft * * ' * * * * * 4c 5 * * ft * * * * * * * * * * * * * * * * * * * * * * * * ft * * * * * ft * * * * * * * * ft 3 * * * * * * * * * * * * ft ft * * * * * * * * * * * * * ft ft 2 * * * * * * * * ft * * ft ft ft * * * * * * * * * * * * ft * 1 * * * * ft ft * * ic * ft * ft ft ft ft ft ft . x.— * * * * ft * * * * ft * ft ft * ft * 0 ******************************************************************************** 5 in l 5 20 25 30 35 40 45 Sfi 55 _0_ 63 7_Q 15 8_Q_ 85 9_Q 95 100 1 Q5 110 115 120 125 1 30 1 35 143 145 150 TRANSIT. TIME (MIN. ) FIGURE 13: REL . FREQUENCY OF TRANSIT TIME OF LISTENING ROOM \ OCCUPANCY OF LIST. ROOM TABLE TAB14 FNTRTFs f Nl TAR I F MEAN ARGIJMFNT STANDARD DEVIATION! SUM OF ARGUMENTS  651 7.774 3.385 5061.033 NON-WEIGHTED U.&P-ER OBS-ERV-ED P_ER_.CENT C.UiM.U.LAJ.LVE C.UM.U.LJLI.I-V.E MUJ-XLP_L£ DEV.I.A.LLON. LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER 3F MEAN FROM MEAN 0 0 .00 .0 100.0 -.000 -2.519 1 J _JL5 __1 99,8 ,123 -2.195 2 4 .61 .7 99.2 .257 -1.871 3 17 2.61 3.3 96.6 .385 -1.547 4- 47- . . 7.-21-___ L0..-5— 8-9_. A .-5.1-4. - -1—223-5 87 13.36 23.9 76.0 .643 -.898 6 9 13.67 37.6 52.3 .771 -.574 Z LOJ 1 5.51 53.1 46.fl .903 -.250 8 79 12. 13 65. 2 34.7 1.029 .073 9 63 9.67 74.9 25.0 1.157 .397 1.0 55 8.-4.4 83.4 1-6.5 1-2-8.6 : ..721. U 0 7.68 91.0 8.9 1.414 1.045 12 22 3.37 94.4 5.5 1.543 1.369 13 9 1 .33 95.8 4_-_l 1.67? 1.693 14 7 1.07 96.9 3.0 1 .800 2.017 15 2 .30 97.2 2.7 1.929 2.341 1-6 4 .61 97—8 2-4 2.-058 2.-665-17 2 .30 98.1 1.8 2.186 2.989 18 5 .76 98.9 1.0 2.315 3.313 l 9 2 .33 99.2 __2 7.443 : 3. 637 20 3 .45 99.6 .3 2.572 3.961 21 1 .15 99.8 1 2.701 4.285 -2.2 : 1 .-1-5 1-0-0-0 .-0 2.-82-9. 4.-60-9-REMAlNING FREQUENCIES ARE ALL ZERO % * 15 * ** * ** 14 * * ** ** * ** 13 * * ** ** ** ** * ** ** 12 * * ** ** ** ** ** ** ** ** ** 11 * * ** ** ** ** ** ** * ** ** ** 1.0 * * ** ** ** ** ** ** * ft* ** ** 9 * * ** ft* ** ** ** ft* ** ft* * ** ** ** ** 8 * * ** ** ft* ** ** ** ** ** ** ** * ** ** ** ** ** 7 * ft* ** ** ** ** ** * ** ** ** ** ** ft* * ** ** ** ** ** ** 6 * ** ** ** ** ** ** * ** ** ** ** ** ** * ** ** ** ** ** ** 5 * ** ** ** ** ** ** * ** ** ** ** ** ft* * ** ** ** ** ** ** 4 * ** ** *# ** ** ** * ** ** ** ** ** ** * ** ** ** ** ** ** 3 * ** ** ** ** ** ** ** * ** ** ** ** * * ** ** I * ** ** ** ** ** ** ** 2 * ** ** ** ** ** ** ** * ft* ** ** ** ** ** ** 1 * *ft ** ** ** ** ** ** 1 * ** ** ** ** ** ** ** ** ** * ** ** ft* ** ** ** ** ** ** * ** ** ** ** ** ** ft* ** ** g ***************************************************************************************************************** 6 7 fl 9 10 It L2 L3 Lit L5_ L6 LZ LS L2 21 11 23 •_ OCCUPANCY FIGURE 14: REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE LISTENING ROOM '. * *_ : : * 33 * __32—* : : 31 * 30 * ?Q * : :  28 * 27 * __2-6—*  = 25 * 24 * ?3 • —— 22, * 21 * _2-0-* : : '• : — 19 * 18 * 17*  — 16 * 15 * ._l-4-* • '• • • —— — 13 * 12 * 1 1 * : : : 10 * 9 * —_8____ . . . 7 * 6 * : 4 * 3 * _2—* —-— • ________ 1 * 0 ******************** U i / -1.4 •> *> / n v in ii id ii it OCCUPAMCY FIGURE 14A: REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE LISTENING ROOM STORAGE CAPACITY AVERAGE AVERAGE ENTRIES AVERAGE CURRENT MAXIMUM CONTENTS I IT 11 I 7 AT I ON TIM E/ TR AN CONTENTS CONTENTS ) 10 200 10.022 .050 1613 22.375 10 26 ' SYS TEM TRANSIT TIMES (MIN.) (-SERVICE £ WAIT. TIME I TA 3LE TAB15 ENTRIES IN TABLE J_- 1603-MEAN ARGUMENT 3. 085-STANDARD DEVIATION — . LIU2X0-SUM OF ARGUMENTS 4-9A6..-G0-Q- -NON=.WLELGJXE.D-UPPER • T MIT OBSERVED FREQUENCY PER -OIL-CENT TOTAL CUMULATIVE PERCENTAGE CUMULATIVE REMAINDER MULTIPLE OF MEAN DEVIATION FROM MEAN 0 5 -10-15 20 _2_5_ 695 771 —5.4 23 9 7_ 43.35 48.09 ._3.36-1.43 .56 __43_ 43.3 91.4 .94.-8. 95.2 96.8 97.2 56.6 8.5 -.5.X 3.7 3.1 2.7 -.000 1 .620 4. 861 6.482 8.102 -. 302 . 187 ___*.6.7_7_ 1.166 1.656 2.146 30 35 40 45 50 _5_5_ 6 3 3 5 6 JL .37 .13 .18-.31 .37 .43 97.6 97.3 -£8-0-98.3 98.6 99.1 2.3 2.1 -L.X 1.6 1.3 . 8 9.723 11.343 -1-2..J964-14.584 16.205 17.825 2.635 3. 125 3.-615-4.104 4. 594 5.084 50 65 .7-0-75 80 _a__ 2 2 _1_ 2 2 _D_ . 12 .12 . 06. . 12 . 12 .00 99.2 99.3 -9-9—4-99.5 99.6 99.6 .7 .6 -.5-.4 .3 _3_ 19.446 21.066 -22.6B7-24.307 25.928 ?7.548 5.573 6. 063 -6.-553-7.042 7.532 8. n?? 90 95 -100-105 110 11 5 0 1 -0-1 0 _1_ .00 .06 -.-0-3-.06 .00 .06 99.6 99.7 99.7 99.8 99.8 99.8 .3 .2 -.2-.1 .1 29.169 30.789 32.410 34.033 35.651 37.271 8.511 9.001 9. 491 9.980 10.473 1 0.960 120 125 13 0 135 140 •1 45 1 0 JL 0 0 _D_ .06 .00 -03-.03 .00 .00 99.9 99.9 J9S..S-99.9 99.9 99.9 .3 .0 ...0. .3 .3 ___0_ 38.892 43.512 -42.-133-11.449 11.939 .1.2.-42-9-43.753 45.374 46.994 12. 918 13.408 13.393 150 1 REMAINING FREQUENCIES. ARE ALL ZERO ,06 100.0 48.615 14.387 *_ * * 100 * * 95 * * 90 * * 85 * * -* 75 * * 70 * * " 65 * * 60 * * 55 * * 50 ' * * * 45 * * * * 40 * * * * 35 * * * * 30 * * * * 25 * * * * 2n * * * * 15 * * * * 10 * * * * 5 * * * * * o **************************************************************************^ 5 1 0 1 5 70 75 30 35 40 45 50 55 60 65 70 75 ft 0 R5 91 95 100 1 05 110 115 17_ 1 25 130 135 140 145 150 TRANSIT TIME (MIN.) FIGURE 15: REL. FREQUENCY QF SYSTEM TRANSIT TIMES TABLE TA816 FMTRtFS TN TARl F MF AM ARGUMFMT STANQAR 3 OE VI ATI ON SUM OF ARGUMENTS  1603 10.212 3.429 16371.000 NON-WEIGHTED UPPE-R- - OBSERVED BER CENT C U.MU LAXLVJE— XUJMUL AT LVE MJLT IPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 0 .03 .0 100.0 -.000 -2.977 ? 4 .24 .? 99.7 .195 -2.394 4 30 1.87 2.1 97.3 .391 -1.311 6 158 9.85 11.9 88.0 . 587 -1.228 8 ...... 347 21.64 33.6 ...... 66.3 . 7-83 -.645 10 391 24. 39 58.0 41 .9 .979 -.062 12 319 19.90 77. 9 22.0 1.175 .521 1 4 1 89 1 1 .79 39.7 10.2 1.370 1.104 16 94 5.86 95.5 4.4 1 .566 1.687 18 36 2.24 97.8 2.1 1.762 2.270 2 0 16 - .99 98 .8 1.1 L.-9.5.8 - . 2. R53 22 11 . 68 99.5 .4 2. 154 3.436 24 6 . 37 99.8 .1 2.353 4.019 ?6 ? .12 100.0 .0 2.545 4.603 REMAINING FREQUENCIES ARE ALL ZERO —- ——— ^ GRAPH _ : ^ % ft ' ft ft * * * 40 3fi ft ft * 00 ** ** .36 ft * ** ** ** 34 3? * * * ** ** ** r ——•—•—-— 30 ft * ** ** ** ft* ** ** 28 26 ft * ft ** ** ** ** ** ** i 24 * * ft ** ** ** ** ** ** 22 70 ft * ft ** ** ** ** ** ** 18 * * * ** ** ** ** ** ** 16 14 * * ** ** ** ** ** ** 12 * * ** ** ** ** ** ** ft* 10 8 * ft * ** ** ** ** ft* ** ** ** ** ** ...... L 6 * ft ft ** ** ** ** ** ** ** ** ** ** 4 2 ft * * ** ** ** ** ft* ft* ** ** ** ** ** ** _ _—, _— 0 ft *ft *ft *ft ft* ** ****************************************************************************************^ 7 h 1 n 14 1ft 77 7ft 30 34 3R 4? 46 50 54 53 6? 66 70 74 7R OCCUPANCY FIGURE 16 : REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE SYSTEM END CPU TIME USED: -ASSEMBL-Y-: 3.-1-45—S E-C ON D S-* EXECUTION: 35.850 SECONDS --EX-EC U-T-IO N-T-E^M LN A-T-E D-,SSIGNOFF 4 V RFS NO. 771390 UNIVERSITY OF B.C COMPUTING CENTRE MTS<AN123) 00:23:19 12-30-70 USER: WULI DEPARTMENT: COMM #*** 2H AT 00:28:20 **** OFF AT 03:29:19 _*JL*_*_.ELARSED_T-LME 5-8-.--Jh.5_ **** -PU TIME USED 42.207 **** STORAGE USED 2578.686 CARDS R FAD 4J_7_ -S.EC-SEC. PAGE- •SEC, **** LINES PRINTED 9100 **** PAGES PRINTED 280 _*_*_*_*__-CARDS_P-UNCHED 0—— **** DRUM READS 39 **** RATE FACTOR 0. 6 »»»» APPROX. COST OF THIS RUN f.-10.86 **** FILE STORAGE 3 PG-HR. .00 **LAST SI3N3N WAS: 00:12:49 12-30-70 MMMMM MMMMMM -MMMMMMM-MMMMMMMM MMMMMMMMM MMMMMMMMMM MMMMM MMMMMM MMMMMMM MMMMMMMM MMMMMMMMM MMMMMMMMMM TTTTTTTTTTTTTTTTTTTTTTTTT TTTTTTTTTTTTTTTTTTTTTTTTT _T_T-T_T_T_TXT_T_TJ_TXT^^^^ TTTTT TTTTT TTTTT  SS -SS.SS SSSSS SSSSS SSSSS SSSSSSSSS SSSSSSSSSSS SSSSSSSSSSSSS -S SSSSSSS SSSSS MMMMM MMMMM MMMMf MMMMM MMMMM MMMMM -MM MM M- M MMMM MMMM M— MMMMM MMMMMMMMMMM MMMMM , MMMMMMMMM MMMMM MMMMMMM MMMMM MMMMM -MMMMM MMMMM MMMMM MMMMM TTTTT TTTTT _T_TXT-T-TTTTT TTTTT TTTTT SSSSS SSSS SS SSSSSSSSS SSSSSSSSSSS SSSSSSSSSSSSS SSSSSSS SSSSS MMMMM MMMMM -MMMMM MMMMM MMMMM MMMMM MMMMM MMM MMMMM MMMMM -MM-1 MM MMMMM MMMMM MMMMM TTTTT TTTTT _T-T-T_T-T_ TTTTT TTTTT TTTTT SSSSS SSSSS SSSS-SSSSSSS S SSSSS S-SSSSSSSSSSSSSSSSS SSSSSSSSSSSSS RFS NO. 771083 UNIVERSITY OF B C COMPUTING CENTRE MTS.AN120) 00:12:48 12-30-70 ******************** THIS JOB SUBMITTED THROUGH FRONT DESK READER ******************** $SIGNON UULI T=150 P=400 PRIO^V C0PlES=4 **LAST SIGNON WAS: 10:54:13 12-29-70 , USER "WULI" SIGNED CN AT 00:12:49 ON 12-30-70 " ^ $RUN *GPSS PAR=SIZE=B EXECUTION BEGINS BLOCK NUMBER <LGC OPERATION A, B, C, D, E, F, G COMMENTS SIMULATE SIMULATION OF UBC RECORDINGS COLLECTION BY JOHANNES' KRAMAR CARD NUMBER 1' 2 T 4 * FUNCTION DEFINITIONS 5 * SYSTEM ARRIVAL TIME EXPONENT I ALL Y DISTRIBUTED ARRIV FUNCTION RN1.CU N EG. EXP. DISTR. 0.0,0.0/.4 23,.25/.66 7,. 75/. 8 08 , 1. 25/-. 889, 1 . 75/. 936 ,2 .25 /.963 , 2 .75/ 6 7 8 .979 ,3 "V-.25/ .988, 3 .75/.990, 4.2i>/1.0, 7.25 9 10 11 * DESK DESK 0.0, 0. SERVICE TIME EXPONENTIALLY DISTRIBUTED FUNCTION RN1,C24 N EG, EXP. DISTR. 0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/ 12 13 14 .75,1 . . 96, 3. 38/ .8, 1 .6/.84, 1 .83/.88, 2.12/ .9, 2 .3/.9 2, 2.52/.94,2.81/.95,2.99 2/.97,3.5/.98,3. 9/.99,4.6/.995 ,5 . 3/.998,6.2/.999,7.0/.9997, 8 .0 15 • 16 17 * SHELF SERVICE TIME EXPONENT I ALLY DISTRIBUTED SHELF FUNCTION RN1,C23 NEG• EXP. DISTR. 0.0,0.0/. 154,.840/.281, .250/.390,.420/.483,.580/. 562. . 750/. 629,.92/ 18 19 20 .685 ,1 .883,2 .916,2 .08T. 7 33, .08/ .9,2. .42/ .927, 1.2 5./. 7 74,1 .42/ .808 ,1 .59/ .8 37,1 • /5/ .862, 1.92 25/ 2.58/.93 7,2.7 5/.946,2.9 2/.953,3.08/.959,3.25 21 22 23 .964,3.42/1.0,5.27 •j. * LISTENING ROOM SERVICE TIME GENERALLY DISTRIBUTED 24 25 26 LIST 0.0,0 . .4 36,. FUNCTIUN KN1,C25 GEN, DISTRIBUTION 0/.024, .063/.071, .187/. 131,.312/.205,.437/.289,. 563/. 366, . 690/ 820/.498,.940/.556 ,1 .06/.623 ,1 .18/.699,1.31/.754, 1.44/.786, 1 .56/ 27 28 29 .814, 1 .927,2 J, <v .69/.836, .55/.962 » 1.81/.855,1.94/.872,2.06/.888,2.18/.903,2.31/.917,2.44/ 3 .19/.9 89 ,4.20/ 1.00,4.820 30 31 32 * STORAGE DEFINITIONS 10 STORAGE 200 DEFINE SIZE OF SYSTEM,S STORAGE 11 STORAGE 150 DEFINE SIZE OF REC. COLL. 33 . 34 35 30 40 • 41 STORAGE STORAGE STORAGE 100 DEFINE SIZE OF STOR. 30 23 DEFINE SIZE OF STOR. 40 23 .DEFINE SIZE OF STOR. 41 36 37 38 * TABL h DEFINITIONS TAB1 TABLE IA.1.1,20 I NTERARRIvAL TIME TAB2 TABLE RT,0,1,30,10 . ARRIVAL RATE 39 40 41 TAB3 TAB4 TAB5 TABLE QTABLE TABLE Ml,1,1,30 TRANSIT TIME TABLE 2,0,1 ,30 UNITS IN QUE. IA, 1,1,30 INTERARRIVAL TIME SHELVES 42 43 44 1 Ab6 TAB 7 TABS 1AbLb• TABLE TABLE kf,0,i,_0,10 ARK IVAL k A1 fc Ml,l,l,60 TRANSIT TIME S30, 0, 1,40 STOR. 30 OCCUPANCY . 45 46 47 TAB9 TAB 10 TABU TABLE TABLE TABLE . Ml,1,1,60 TRANS. TIME SERVI 511,0,1,60 STORAGE 11 OCCUPANCY IA,1,1,30 . INTERARR. TIME FAC. 40 48 49 50 1 AB12 TAB13 TA814 TABLE T ABLE TABLE RT,0,1,15,10 -ARRIVALS FAC 40 Ml,0,5,60 TRANS. TIME FAC. 40 S40,0,1,26 STORE 40 OCCUPANCY 51 52 53 TAB 15 T AB 16 TAB17 TABLE TABLE TABLE Ml ,0,5,60 TRANS. TIME IN SYSTEM S10,0,2,60 SYST. OCCUPANCY 541,0,1,26 STOR. 41 OCCUPANCY 54 55 56 J * GPSS PROGRAM 58 * 9 1 GENERATE 2,FN$ARRIV ARRIVALS TO SYSTEM 60 2 ENTER 10 CUM. STOR. SYSTEM 1 3 TRANSFER . 3 6 . STG3 , S TG 2 GO TO 3 OR 2 ; ; 62 4 STG2 MARK : SET TRANS. TIME = 0 : 53" 5 ENTER 11 CUM. STORE RC. 4 _6 QUEUE 2 JOIN QUE. 2 65 7 LINK 2» FIFO* DESK LINK USER CHAIN 2 6 GPSS/360/MTS VERSION (4/8/13) A •> 8 DESK SEIZE 2 • OCC. DESK 67 9 DEPART 2 LEAVE QUE. 2 68 10 ADVANCE 1 ,FN$DESK DESK SERVICE 69 1.1 RELEASE 2 RELEASE DESK 70 / 12 UNLINK 2, DESK,1 UNLINK USER CHAIN 2 71 \ 13 TABULATE TAB 1 TAB. INTERARR. TIME 72 14 TABULATE TAB2 TAB. ARRIVALS 73 15 TABULATE TAB3 TAB. TRANS. TIME 74 16 LEAVE 11 75 17 TABULATE TAB9 76 18 TABULATE IAB1.0 / / 19 ASSIGN 2t.Kl SET PI TO 1 78 20 TEST LE C1,K3600,FINE TEST TIME 79 21 TEST E P3,K1,GEH2 80 22 TEST E P4,K1,GEH3 81 23 TRANS FER , EX IT 82 24. GEH2 TEST E P4 , Kl,GEH4 83 25 TRANSFER .7 51 STG.3* E XI T 84 26 GEH3 TRANSFER .96,STG4,EXIT 85 27 GEH4 TRANSFER .73,GEH5,EXIT 86 28 GEH5 TRANSFER .11,STG3,STG4 87 29 STG3 MARK 88 30 ENTER 11 CUM. STORE RC. 89 31 ENTER 30 ENTER STOR. 30 90 32 ADVANCE 6» FN$ SHELF SHELF SERVICE TIME 91 11 LEAVE 30 LEAVE STOR. 30 92 34 TABULATE TABS INTERARRIVAL TIME 93 35 TABULATE TAB6 ARRIVAL RATE 94 36 . TABULAl E IAB7 THAN SI i fi MI- V5 37 TABULATE TAB8 STORE. SHELVES OCCUPANCY 96 38 LEAVE 11 LEAVE STORE 11 97 39 TABULATE TAB9 98 40 TABULATE TAB10 STORE RECORD. COLLECT. 99 41 ASSIGN 3.K1 SET P2 TO 1 100 42 TtST Lt Cl > K 3600, FINE' TEST TIME 101 43 TEST E P2,K1,GEH7 102 44 TEST E P 4 , K1,GEH 8 103 45 • TRANSFER , EXIT 104 46 GEH7 TEST E P4,K1» GEH9 105 47 TRANSFER •2 8,STG2,EXIT 106 48 . GEH8 TRANSFER .22,SIG4,EX IT 107 49 GEH9 TRANSFER .14,GEHl0,EXlT 108 50 GEH10 TRANSFER .58, STG2, STG4 109 51 STG4 MARK 110 52 GATE SNF •40, OFLOW 111 53 ENTER 40 ENTER STOR. 40 112 54 ADVANCE 40 ,FN$L1SI L lb 1 . KUUM StKVlCt 1 1Mb 113 55 LEAVE 40 LEAVE STORAGE 40 114 56 TABULATE TABU INTER ARRIVAL TIME FAC 4 115 57 TABULATE TAB12 ARRIVAL RATE FAC .4 116 58 TABULATE TAB 1 3 TRANSIT TIME FAC. 4 117 59 TABULATE TAB14 STORE. 40 OCCUPANCY 118 60 TRANSFER ,«tiut 119 61 OFLOW ENTER 41 120 62 ADVANCE 40,FN$LIST LIST. ROOM SERVICE TIME 121 63 LEAVE 41 122 64 TABULATE TA817 OCCUP. OF RESERV. LIST. ROOM 123 65 TRANSFER , BE IDE ______ . 124 "66 BEI DE ASSIGN 47KT bt! P4 TO 1 ; '~ TZ5 67 TEST E P3,Kl,GEHll" 126 68 ] TRANSFER .09,STG2,EX IT • 127 69 "GEH 11 TEST LE Cl , K3600,FINE TEST TIME 128 70 TEST E P2,K1,GEH13 9 71 TRANSFER .38 ,STG3 , Ex IT • . 130 72 GEH 13 TRANSFER . 0 8, GEH 14, EX IT : : : '. 131 73 GEH14 TRANSFER .14,STG2,STG3 132 74_ EXIT LEAVE 10 LEAVE SYST. S TOR . 133 15'" ~ TABULATE TAB 15 TRANS. TIME IN SYSTEM 4 76 TABULATE TAB16 SYSTEM OCCUPANCY 5 77 TERMINATE  ' 136 "78 FINE LkAVb : TO ! : LEAVE SYST. SI OR. : — T3T 79 TABULATE TAB15 TRANS. TIME IN SYSTEM 138 80 TABULATE TAB16 SYSTEM OCCUPANCY 13_9 81"'' ~ TERMINATE 1 140 * CONTROL CARD ' ' * 141 START 1 • ' • 142_ _ . . . - ; ' T43" REPORT 4 _ _ ____ _ EJECT '. L_FAC TITLE 2, STATISTICS CONCERNING THE INFORMATION DESK 146 SPACE 3 147 QUE TITLE 2-, STATISTICS CONCERNING THE DESK QUEUE " 148 SPACE 3 ' ' 149" CHA TITLE 2, STATISTICS CONCERNING THE DESK USER CHAIN 150 EJECT i i • . 15_L ""TAB TITLE l.DESK INT ER ARR I VAL • TIME'S '( MIN. J . ~ 152 EJECT 153 * " 1J54 * GRAPH 5 GRAPH TP,TAB 1 156 , jORJ GIN 50, 10 : . ' _ 157 X,2,1.3,1,1,8 " 158 Y 0,4,20,2  159 7 STATEMENT 4,1,36 160 TOO STATEMENT 52,24,INTERARRIVAL TIME (MIN.) ; 16T 10 STATEMENT 55,46,FIGURE 1: REL. FREQUENCY OF INTERARRIVAL TIMES 162 ^ ENDGRAPH ; 163 ' * 164 TAB TITLE 2,NUMBER OF ARRIVALS TO DESK/10 MIN. 165 EJECT  166_ * GRAPH 8 GRAPH TP ,T AB2 : , 169 ' ~ ORIGIN 50,10 170 X ,2t2tO,l,30 1 Y 0,1,21,2  •_ 172_ •7 STATEMENT 4,1,X 3 100 STATEMENT 52,20» ARR I VAL RATE/10 MIN. 174 10 STATEMENT 55,64,FIGURE 2: REL. FREQUENCY OF ARRIVALS TO INF. DEI SK DURING 10 MIN. ENDGRAPH 175 176 177 178 77AB I 1 I Lt EJECT 3,DESK IRANSi J I 1 Mb 5 (MIN*) (=WAli. _ bbRVlLb I 1Mb) TTT 180 181 GRAPH GRAPH ORIGIN TP,TAB3 50,10 182 183 184 Y STA TE ME N T , , 14, 1, 1,8 0,3,20,2 4,1 ,56 T83~ 186 187 10"0 STATEMENT 10 STATEMENT ORMATION DESK tNUGkAPh 52,19»TRANSIT TIME (MIN.) 55 ,60,FIGURE 3: REL. FREQUENCY OF TR AN ST TIMES AT INF1 188 1 89 190 T9T-192 193 TAB TITLE 4,NUMBER OF JOBS WAITING FOR SERVICE AT DESK EJECT * GRAPH 194 195 196 GRAPH ORIGIN X TP,.' AB4 50,10 ,2, 13, 0, 1, 8 198 199 Y 0,3,20,2 7 STATEMENT 4,1 ,-g 100 STATEMENT 52,13,JOBS IN QUEUE 2 00 201 202 IT) SIAifcMtNl !>b,/2,KlCURb 4. RhL . FKtQUtNLY Uh JUbb WA.1I1NG J-UR.Sbl RVICE AT INFORMATION DESK ENDGRAPH 204 205 STO TITLE SPACE TITLE EJECT 30,THE SHELVES AS STORAGE 3 5,SHELF INTERARRIVAL TIMES (MIN.) 2 06 207 208 w 210 211 * GRAPH GRAPH ORIGIN TP,TAB5 50, 10 212 213 214 Y STATEMENT ,2»18,1,1,6 0, 4,20,2 4, 1, « "ZT5" 216 217 7 100 STATEMENT 10 STATEMENT ENDGRAPH 52 ,24,INTERARRIVAL TIME (MIN.) 55,46,FIGURE 5: REL. FREQUENCY OF INTERARRIVAL TIMES 218 219 220 "Z2T 222 2 23 TAB TITLE EJECT 6,NUMBER OF ARRIVALS TO SHELVES/10 MIN. * GRAPH GRAPH ORIGIN Y TP, TAB6 50,10  ,2 ,4,0,1 ,20 0,1,20,2 224 225 226 "22T 228 GPSS/360/MTS VERSION (4/8/13) A s .7 STATEMENT 100 STATEMENT 10 STATEMENT DURING 10 MIN. 4, 1, % 52,20,ARRIVAL RATE/10 MIN. 55,62,FIGURE 6: REL. FREQUENCY OF ARRIVALS TO SHELVES 1 229 230 231 232 / TAB ENDGRAPH TITLE 7,SHELF TRANSIT TIMES (MIN) 233 234 235 EJECT * * GRAPH 236 237 238 GRAPH ORIGIN X IP,! AB7 50,10 ,,5,1,1,15 239 240 241 7 100 Y STATEMENT ' STATEMENT 0,1,24,2 4, l,% 52. 19? TRANSIT TIME (MIN.) 242 243 2 44 10 ELVES STA TE ME N T ENDGRAPH 55 ,52 ,FIGURE 7: REL. FREQUENCY OF IRANSII TIMES AT SHI 245 246 247 TAB TITLE EJECT 8, OCCUPANCY OF SHELVES 248 249 250 * GRAPH GRAPH TP,TAB8 251 252 253 ORIGIN X . . Y 50,10 ,2,6,0,1,15 0,1,24,2 2 54 255 2 56 7 100 10 STATEMENT STATEMENT STATEMENT 4,1,S 52,9,OCCUPANCY 55,79,FIGURE 8: REL. FREQUENCY OF NUMBER OF JOBS OCCUl 257 258 259 P Y ING . SIMULTANEOUSLY THE SHELVES ENDGRAPH 260 261 262 STU RAGE TITLE SPACE 11,THE RECORDINGS COLLECTION (=DESK 6 SHELVES) AS S101 3 263 264 265 TAB TITLE SHELVES) . EJECT . 9,TRANSIT TIMES THROUGH REC. COLL. (MIN.) , <=DESK _ 1 266 267 268 * * GRAPH GRAPH TP , TAB9 269 270 271 ORIGIN X Y 50,10 ,,7,1,1,15 0,1,45,1 272 2 73 274 100 10 STAIEM EN T STATEMENT STATEMENT 4,1,3 52,19»TRANS IT TIME (MIN.) 55 ,75 ,FIGURE 9: REL. FREQUENCY OF TRANSIT TIMES THROUl 2 75 276 277 GH THE *** RECORDINGS ENDGRAPH COLLECTION 278 279 280 TAB TITLE EJECT 10,OCCUPANCY OF RECORD. COLLECT. {= DESK _ SHELVES) 281 2 82 * GRAPH GRAPH ORIGIN TP TTAB10 50 ,1 0 283 284 285 286 ,2,4,0,1,20 0,1,15,3 4,1 ,38 "2BT-288 289 X Y STATEMENT 100 STATEMENT 52t9,OCCUPANCY 10 STATEMENT 55,85,FIGURE 10: REL. FREQUENCY OF NUMBER OF JOBS 0CC1 UPYING SIMULTANEOUSLY DESK AND SHELVES 290 291 292 ENDGRAPH TITLE SPACE TITLE EJECT 2 94 295 STO 40,THE LISTENING ROOM AS STORAGE  3 ' 11,LISTENING ROOM INTERARRIVAL TIMES (MIN.) TAB 296 297 298 "2W 3 00 301 * GRAPH GRAPH TP,TAB 11 ORIGIN X Y 50, 10 ,,7,1,1,15 0,4,15,3 302 303 304 "7 S t Al EMtN! 4, 1, % ! : 100 STATEMENT 52»25tINTERARRIVAL•TIME (MIN.) 10 STATEMENT 55,64,FIGURE 11: REL. FREQUENCY OF INTERARRIVAL TIMES1 TO LISTENING ROOM ENDGRAPH ~3TJ5~ 306 301_ 308 309 310 T7AB~ 1 IT Lb EJECT 12,NUMBER (JF ARRIVALS 10 LISI. kOOM/10 MIN 3TT 312 313 * GRAPH GRAPH ORIGIN TP,TAB12 50,10. 314 315 316 "X" Y . STATEMENT ,2 ,6,0,1 ,1b. 0,1,24,2 4,1,* "ITT 318 319 100 STATEMENT 52,2 0,ARRIVAL RATE/10 MIN. 10 STATEMENT 55,70,FIGURE 12: REL. FREQUENCY OF ARRIVALS TO LISTEN1 I NG ROOM DURING 10 MIN. 320 321 322 tNDGkAPH TITLE T2T 32 4 325 TAB 13,LIST. ROOM SERVICE TIMES (MIN.) EJECT * GRAPH 326 327 32 8 IP, IAB1_ 50, 10 ,,3,5,1,30 330 331 GRAPH ORIGIN X 7 100 STATEMENT STATEMENT ~TTJ S I Al fcrtfcN I STENING ROOM 0, 1,21,2 4, 1, % 52,19T TRANSIT TIME (MIN.) 55,58,FIGURE 13: RbL. 1-RbllUbNtY lib IRANSl'l |IMb Ub L11 332 333 3 34 "T35" 336 GPSS/360/MTS VERSION (4/8/13) A ^ TAB ENDGRAPH TITLE EJECT 14,OCCUPANCY OF LIST. ROOM 337 338 339 340 J f * GRAPH GRAPH TP,TAB14 341 342 343 ORIGIN X Y 50,10 ,2,4,6,1,18 0,1,16,3 344 345 346 7 100 10 STATEMENT STATEMENT STATEMENT 4,1,3 52?9fOCCUPANCY 55 ,87 , FIGURE 14: REL. FREQUENCY OF NUMBER OF JOBS 0CC1 347 348 349 UPYING SIMULTANEOUSLY THE LISTENING ROOM ENDGRAPH 350 351 352 STU TAB TITLE SPACE TI TLE 41,THE RESERV. LISTENING ROOM AS STURAGE 3 17,OCCUPANCY OF RESERVE LIST. ROOM 353 354 355 * * GRAPh EJECT 356 357 358 GRAPH ORIGIN X IP, 1 AB17 50,10 ,2,6,0,1,15 35y 360 361 7 100 Y STATEMENT STATEMENT 0, 1,35, 1 4,1,5? 52»9,OCCUPANCY 362 363 364 10 CUPYING STATEMENT 55,96,FIGURE 14A: REL. FREQUENCY OF NUMBER OF JUBS 0C1 SIMULTANEOUSLY THE LISTENING ROOM ENDGRAPH 365 366 367 • STO TITLE SPACE 10,THE SYSTEM AS STORAGE 3 • 368 369 370 TAB ) T IT LE EJECT 15,SYSTEM TRANSIT TIMES (MIN.) (^SERVICE E WAIT. TIME1 371 372 373 * GRAPH GRAPH TP,TAB15 374 375 376 ORIGIN X Y 50, 10. • ,,3,5,1,30 0,5,20,2 377 378 379 7 100 10 STATEMENT STATEMENT STATEMENT 4,1,* 52,19,TRANSIT TIME (MIN.) 55,49,FIGURE 15: REL. FREQUENCY OF SYSTEM TRANSIT TIM1 380 381 382 fcS ENDGRAPH 3 83 3 84 385 TAB T TITLE EJECT 16,OCCUPANCY OF SYSTEM ( = DESK,SHELVES,LI ST. ROOM) 3 86 387 388 * GRAPh GRAPH TP,TAB16 389 390 ORIGIN 50,10 391 X ,2 ,4 ,2,2 ,20 3 92 Y 0,2 ,20,2 3 7 STATEMENT 4,1,:? 4 "TTTO S I Al tML-NT 52,9tOCCUPANCY : : ~ TW* " : \ 10 STATEMENT 55,79,FIGURE 16: REL. FREQUENCY OF NUMBER OF JOBS 0CC1 396 UPYING SIMULTANEOUSLY THE SYSTEM 397. ENDGRAPH 398 399 END . 400 BLOCK NUMBER SYMBOL REFERENCES BY CARD NUMBER "66 BE IDE ' : FT9 Tl4 8 DESK 66 71 74 EXIT 82 . 84 . 85 86 104 106 JL07 ~~" 108 "127 130 131 78 FINE 79 101 128 50 GEH 10 1_ ' • 69 GEH11 . 126 72 GEH13 '129 L3____Jf__! __' __  ___ 24' GEH2~ " ' "80 "~'". -~' 26 ' GEH3 81 . 27 GEH4 ~ 83 IB bFFT5 WE — ' : : : 46 GEH7 102 , 48 _ GEH 8 _ 103 ___ _ _____ .__ ' V 49 " GE'H9~~105 ~~ "~ " "•" ~ - ~ •" " 61 OFLOW 111 4 STG2 62 106 109 127 132  29 5TTJ3 : 62" : 54 87 ETC" r__ 51 STG4 85 87 107 109 TABLE SYMBOLS AND CORRESPONDING NUMBERS ~T TTfTJT : • ' : — < 10 TAB 10 11 TABU _ _ , , 12 TAB 12 • " ~ 13 TAB 1 3 14 - TAB14 ' T5 TAB 15 : : 16 TAB 16 17 TAB17. .. • 2 TAB 2 ' 3 TAB3 4 TAB4 • ~5 rms ' : !  6 TAB6 J TAB7 . " ___________; •  8' TAB 8 "  . ~ 9 TAB9 FUNCTION SYMBOLS AND CORRESPONDING NUMBERS 1 ARRIV 2 DESK 4 LIST 3 SHELF * FUNCTTCN DEFINITIONS *. SYSTEM ARRIVAL TIME EXPONENTIALLY DISTRIBUTED / 1 FUNCTIUN KNI CU \ 0 .0 0.0 .423 . 25 . 667 .75 .808 4.25 .889 1.75 .936 2.25 . "3 63 2. 75 .979 3 .25 .98 8 3.7 5 .990 4.2 5 1.0 7.25 * DESK SERVICE TIME EXPONENTIALLY DISTRIBUTED 2 FUNCTION RN1 C24 0.0 0 .0 .1 . 104 .2 .222 .3 . 355 . 4 .509 .5 .69 .6 .915 . 7 1.2 .75 1. 38 . 8 1.6 .84 1 .83 .88 2.12 . 9 2.3 . 92 _. 52 .94 2 .81 .95 2 .99 .96 3.2 . 97 3. 5 .98 3 .9 • 99 4.6 .99 5 5.3 .9S8 .A. 6.2 .999 7.0 .9997 ' 8.0 * SHELF SERVICE TIME EXPCNENTIALLY DISTRIBUTED 3 FUNCTION KNI C23 o.o 0 .0 .154 .840 .281 .250 . 390 . 420 .483 .580 .562 .750 .629 .92 .685 1.08 . 733 1.25 . 774 1 .42 .808 1 .59 .837 1.75 . 862 1.92 . 883 2.08 .9 2.25 .916 2.42 .92 1 2.58 . 93 / 2.75 . 946 2 .92 .953 3.08 .959 3.25 .964 3.42 1.0 5. 27 *f * LISTENING ROOM SERVICE TIME GENERALLY DISTR I BUT ED 4 FUNCTION RN1 C25 0.0 0 .0 .0^4 .U63 .0/1 . 18 / . 131 . 312 .205 .437 .289 .563 .36 6 .690 .436 .820 . 498 . 940 . 556 1.06 .623 1 .18 .699 1.31 .754 1.44 . 786 1. 56 .814 1 .69 .836 1 .81 .855 1.94 . . 872 2. 06 . 888 2 .1 8 .903 2.31 .91 / 2 .44 .927 2.55 . 962 3. 19 . 989 4.20 .1 .00 4 .820 * * STORAGE DEFINITIONS 10 STORAGE 200 11 SlORAGt 150 30 STORAGE 100 40 STORAGE 23 41 STORAGE 23 * TABLE DEFINITIONS 1 TABLE • IA 1 1 20 2 TABLE R T 0 1 30 iu 3 TABLE Ml 1 1 30 4 QTABLE .2 0 1 30 " ~5 " " TABLE IA 1 1 30 6 TABLE RT 0 1 20 10 7 TABLE Ml 1 1 60 J 8 TABLE S3 0 0 1 40 9 TABLE Ml 1 1 60 10 TABLE Sll 0 1 60 11 TABLE IA . 1 1 30 12 TABLE RT 0 1 15 13 TABLE Ml 0 . 5 60 / 14 TABLE S40 0 1 26 15 TABLE Ml 0 5 60 16 TABLE S10 0 2 60 17 •A-TABLE S41 0 1 26 •v * GPSS PROGRAM „ f 1 GENERATE 2 FNl 2 ENTER 10 3 TRANSFER .360 29 4 4 MARK 5 ENTER 11 6 QUEUE 2 7 LINK 2 FIFO 8 8 SEIZE 2 9 DEPART 2 10 ADVANCE 1 FN2 11 RELEASE 2 1_ UNLINK 2 8 1 13 TABULATE 1 14 T ABUL ATE 2 ~ 15 TABULATE 3 16 LEAVE 11 17 TABULATE 9 18 T ABUL A fE 10 19 ASSIGN 2 Kl 20 TEST LE Cl K3600 78 -21 TEST E P3 Kl 24 22 TEST E P4 Kl 26 23 TRANSFER 74 24 TEST t P4 Kl 27 25 TRANSFER .7 50 29 74 26 TRANSFER .960 51 74 27 TRANSFER .730 28 . 74 28 TRANSFER . 1 10 29 51 29 MARK 30 ENTER 11 31 ENTER 30 32 ADVANCE 6 FN3 33 LEAVE 30 34 TABULATE 5 35 TABULATE 6 36 TABULATE 7 37 TABULATE 8 3 8 LEAVE 11 TABULATE 9 40 TABULATE 10 41 ASSIGN 3 Kl 42 TEST LE Cl K3600 78 43 TEST E P2 Kl 46 44 TEST E P4 . Kl 48 45 TRANSFER 74 46 TEST E P4 K 1 49 47 TRANSFER .280 4 74 J 48 TRANSFER .220 51 74 49 TRANSFER .140 50 74 50 TRANSFER . 580 4 51 51 MARK 52 GATE SNF 40 61 53 ENTER 40 / 54 ADVANCE 40 FN 4 55 LEAVE 40 56 TABULATE 11 57 TABULATE 12 58 TABULATE 13 59 TABULATE 14 60 TRANSFER 66 61 ENTER 41 6 2 ADVANCE 40 FN4 63 LEAVE 41 64 TABULATE 17 65 TRANSFER 66 66 ASSIGN 4 Kl 67 TEST E P3 Kl 69 68 TRANSFER .090 4 74 6 9 TEST LE Cl K3600 78 7 0 TEST E P2 Kl 72 71 TRANSFER .380 29 74 72 TRANSFL-R .080 73 74 73 TRANSFER .140 4 29 74 LEAVE 10 75 TABULATE 15 7 6 TABULATE 16 77 TERMINATE 7 8 LEAVE 10 79 TABULATE 15 80 TABULATE 16 __ 81 - TERMINATE 1 * CONTROL CARD START 1 STATISTICS CONCERNING THE INFORMATION DESK FACILITY AVERAGE NUMBER AVERAGE SEIZING PREEMPTING UTILIZATION ENTRIES TIME/TRAN TRANS. NO. TRANS. NO. 2 . 509 3055 .600 , STATISTICS CONCERNING THE DESK QUEUE QUEUE MA XI MUM AVERAGE TOTAL ZERO PERCENT AVERAGE $A VERAGE TABLE CURRENT CONTENTS CONTENTS ENTRItS ENTRIES ZEROS •T IME/TRANS TIME/TRANS NUMBER CONTENTS 2 16 1.034 3055 1637 53.5 1.219 2.627 4 .J_____E_ TIME/TRANS = AVERAGE TIME/TRANS EXCLUDING ZERO ENTRIES  STATISTICS CONCERNING THE DESK USER CHAIN USER C HA I N TOTAL AVERAGE C URRENT AV E RAGE MAXIMUM  ENTRIES TIME/TRANS CONTENTS CONTENTS CONTENTS 2 1826 2.040 1.034 16 TABLE TAB 1 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 3054 1 .178 1.527 3.598.000 NON-WEIGHTED UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT ' FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 1 2136 69.94 69.9 30.0 .848 -.116 2 439 14.37 84. 3 15. 6 1.697 .538 3 234 7.66 91.9 8.0 2.546 1.192 4 135 4.42 96.3 3.6 3.395 1.84/ 5 52 1.70 98.1 1.8 4. 244 2.502 6 23 .75 98.8 1.1 5.092 3.157 7 16 • 52 1 99. 3 .6 5 .941 3.811 8 7 .22 99.6 . 3 6. 790 4.466 9 .22 99.8 .1 7.63 9 5.121 10 2 . 06 99. y . 0 8.488 5 . 1 (b 11 1 .03 99.9 .0 9.336 6.430 12 . 03 99.9 .0 10.185 7.085 13 1 .03 100. 0 .0 11.034 7.740 REMAINING FREQUENCIES ARE ALL ZERO A GRAPH * * J * * * * * 80 * 76 * * 72 * * 68 * * 64 * ** ** ** * 60 * * ** ** ** 56 * * 52 * ** ** ** 48 * * ** ** ** 44 * * 40 * ** *.* ** 36 * * ** ** ** 32 * * 2 8 * ** * * ** 24 * ** ** ** 20 * 16 * ** ** ** . * 12* * ** ** ** * * 8 * * 4 * ** ** ** ** ** ** ** * o ************* ** 1 ** ** 2 3 ** 4 .****************************************** *** 5 6 7 8 INTERARRIVAL TIME <MIN.) FIGURE 1: REL . FREQUENCY OF INTERARRIVAL TIMES J TABLE TAB2 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS ) 360 8 .480 3.953 3053.000 NUN-WEIGHTED UPPER OBSERVED PER CENT CUMULAT IVE CUMULATIVE MULTIPLE DEVIATION LIMIT 0 1 FREQUENCY 2 2 OF TOTAL .55 .55 PERCENTAGE . 5 1.1 REMAINDER 99.4 98.8 OF MEAN -.000 .117 FROM MEAN -2.145 -1.892 2 3 4 5 21 15 1.38 5.83 4.16 2.4 8.3 12 .4 97 .5 91.6 87.5 .235 . 353 .471 -1.639 -1.386 -1.133 5 6 7 31 44 47 8. 61 12.22 13.05 21.1 33.3 46 .3 78.8 66.6 53.6 .589 . 707 .82 5 -.880 -.627 -.374 8 9 10 44 29 2 4 12.22 8 .05 6. 66 58. 6 66.6 73.3 41.3 33.3 26 .6 .943 1.061 1.179 -.121 . 131 .384 11 12 13 22 19 15 6.11 5.27 4. 16 79. 4 84.7 88. 8 2 0.5 15.2 11.1 1.297 1.415 1 .532 .637 . 890 1.143 14 15 16 12 7 5 3.33 1.94 1.38 92.2 94.1 95.5 1. 1 5.8 4.4 1.650 1.768 1 .886 1 .3 96 1 .649 1.902 17 18 19 4 9 1 1.11 2.49 .27 96.6 99.1 99.4 3.3 .8 . 5 2.004 2.122 2 .240 2.155 2.408 2.661 20 21 22 0 0 0 .00 . 00 .00 99.4 99.4 99. 4 .5 .5 . 5 2.358 2.476 2. 594 2.914 3. 166 3.419 23 24 25 ; o l 0 .00 . . 27 .00 99 .4 99.7 99.7 .5 .2 . .2 2.712 2.830 2.947 3. 672 3.925 4.178 26 REMAINING FREQUENCIES 1 .27 ARE ALL ZERO 100.0 .0 3.065 4.431 * * * 19 * 2 1 "20" 18 * 17 * 16 * 15 T4" 13 * ** * 12 * * ** ** ** ** ** ** 11 * * ** ** ** ** ** 10 ** ** ** * ** ** ** 9 * * ** ** ** ** ** ** 8 * ** ** ** * * ** ** ** ** ** ** 7 * ** ** ** ** ** * ** ** ** ** ** 6 * * ** ** ** ** ** ** ** ** ** ** ** ** ** ** 5 * ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** 4 * ** ** ** ** ** ** ** ** ** ** ** . * ** ** ** ** ** ** ** ** ** ** ** 3 * ** ** ** ** ** ** ** ** ** ** ** ** ** *.* ** ** ** ** ** ** *# ** ** 2 * ** ** ** ** ** **: V* ** ** ** ** ** ** * ** ** ** * * ** ** ** ** ** ** ** ** 1 * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** t ************************** ******************* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ARRIVAL RATE/10 MIN. FIGURE 2: REL. FREQUENCY OF ARRIVALS TO INF. DESK DURING 10 MIN. DESK TRANSIT TIMES {MIN. ) ( = WAIT. £ SERVICE TIME) TABLE TAB3 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION 3055 1 .820 2.03 b SUM OF ARGUMENTS 3561.000 NUN-WEIGH!bU UPPER OBSERVED ' PER CENT CUMULATIVE CUMULAT I VE MULTIPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAIN DER OF MEAN FROM MEAN 1 1715 56.13 56.1 43.8 .549 -.403 2 473 15.48 71.6 28.3 1.098 .088 3 327 10 .70 8 2. .3 17.6 1. 648 .5 79 4 218 7.13 89.4 10.5 2. 197 1.071 5 135 4.41 93. 8 6. 1 2.746 1.562 6 82 2 .68 ' 96.5 3.4 3. 296 2.053 7 49 1.60 9 8.1 1.8 3.845 2.545 8 19 .62 9 8.7 1.2 4.394 3.036 9 13 .42 9 9.2 . 7 4.944- 3. 52/ 10 14 .45 • 99.6 .3 5 . 49 3 4.019 11 6 .19 99. 8 . 1 6. 042 4.510 12 2 .06 99 .9 .0 6.592 5. 001 13 2 .06 100. 0 .0 7.141 5.493 REMAINING FREQUENCIES ARE ALL ZERO % „ *** 60 „ 57 1* 54 'I-•a. f -J.- •**-5 1 „ -J. v» iv 48 WO *Y* •V j. -v 4 5 v», •V vk--A, -#* 1-* «*> 42 * 3__ 36 „ „ »v _ •A. •V -A-33 * -"f * 30 •J, f-27 "V j_ ~>-24 if •A. -21 18 V -V 15 »», •J* * 12 "T" -4, -<* •A. T 9 •A--V >*C J-•*»-„ A- *sr •A. 6 o. —x *** A. T* * A. f -A. -A-1x A. 1*-' * 3 A* * A-v -A, 1- -A- * * * 4 * 0 .J, -J* J. -J, „i„ „ "V -V T 'p. *t# J» J, v<, •r r ^ *r i4 K"!* „ „ J, -A- A- ~Jr A* _j* *fjj ^. ^ "r-"/* "V -y 1- ->v 'r- -i» •>» T -f „ J*f „ ^, O, A. A- A. „ J, .4, -A. TV T T f T 1* 1* 1* V1> T */* W- V, J, -jl. A<f'-J> T-TF* T -r- -V" -v -v *r -»v ******************************** 1 2 3 4 5 6 7 8 TRANSIT TIME (MIN. ) FIGURE 3: REL. FREQUENCY OF TRANST TIMES AT INFORMATION DESK NUMBER OF JOBS WAITING FOR SERVICE AT DESK TABLE ENTR IES TAB A IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS NON-WblGH!ED 3055 1.219 I. 824 i /26.000 UPPER LIMIT 0 1 OBSERVED PER CENT CUMULATIVE CUMULAT IVE MULTIPLE DEVIATION FREQUENCY 1637 49 8 OF TOTAL 53 .58 16.30 PERCENTAGE 53.5 69. 8 REMAINDER 46.4 3 0.1 OF MEAN - .000 .819 19.2 11.4 6.3 FROM MEAN -.668 -.120 2 3 4 5 6 7 333 238 155 10.90 7.79 5. 07 80.7 88.5 93. 6 1. 639 2.459 3 .279 82 45 32 2 .68 1.47 1.04 96.3 97 .8 98. 8 3.6 2.1 1.1 4. 099 4.919 5.739 rr ,4 .0 6.559 7 .379 8. 199 .427 . 975 1 .524 2.072 2.620 3 .168 3. 716 4.265 4.813 9 10 11 12 13 11 9 12 .36 .29 .39 99.2 99. 5 99. 9 2 0 1 .06 . 00 .03 99.9 99. 9 100.0 ,0 .0 ,0 9.019 9 .838 10.65 8 5. 361 5.909 6.457 REMAINING FREQUENCIES ARE ALL ZERO * * J % * * * • 60 57 * 54 * * * ** 51 48 * ** ** ** 45 * * ** ** ** 42 39 * * * ** ** ' ** 36 * * * ** ** ** 33 30 * * ** ** ** 27 * * * ** ** ** 24 21 * * ** ** ** 1 8 * * ** ** ** 15 12 * * ** ** ** ** ** ** 9 * * ** ** ** ** ** ** **6 3 * * * ** , ** ** ** ** ** ** **'** ** ** •V* •%-** 0 * ** ** ********************************** 0 1 2 3 **** ** *************** 4 ** *********************************** 5 6 7 JOBS IN QUEUE FIGURE 4: REL. FREQUENCY OF JOBS WAITING FOR SERVICE AT INFORMATION DESK STORAGE CAPACITY AVERAGE CONTENTS AVERAGE UTILIZATION "TO" TTJTJ" 3.8 IV .0 38 ENTRIES 2J66 AVER AGE TI ME/TRAN b. 813 CURRENT CONTENTS : T~ MAXI MUM CONTENTS T5-SHELF INTERARRIVAL TIMES (MIN.) TABLE TAB5 ENTRIES IN TABLE 2364 MEAN ARGUMENT 1.521 STANDARD DEVIATION 1.722 SUM OF ARGUMENTS 3597.000 NON-WEIGHTED UPPER L IMIT OBSERVED FREQUENCY PER OF CENT TOTAL CUMUL AT IV E PERCENTAGE CUMULATIVE REMAINDER MULTIPLE OF MEAN DEVIATION FROM MEAN .657 1.314 1.971 -.302 .277 .858 1 2 3 1 5 24 401 190 64 .46 16 .96 8. 03 64.4 81.4 89.4 35.5 18.5 10.5 4 5 6 105 60 35 4.44 2.53 1.48 93. 9 96.4 97.9 6. 0 3.5 2 .0 2.62 8 3.286 3.943 98.7 99.1 9 9. 5 T7_ .8 .4 4.600 5.257 5.914 1 .438 2. 019 2.599 3.180 3.760 4.341 7 8 9 10 11 12 20 9 9 5 1 1 .84 .38 .38 .21 .04 .04 99.7 99.7 99. 8 .2 .2 . 1 6. 572 7.229 7.886 TOT" . 04 .08 99.8 99.9 100. 0 TT .0 .0 8.543 9 .20 1 9.858 4.921 5.502 6 .082 6.663 7.243 7.8 24 13 14 15 REMAINING FREQUENCIES ARE ALL ZERO % * * * • • -• - " — . \ * 80 * * 76 * * 72 * * 68 * * 64 * ** * 60 * ** ** ** 56 * * 52 * ** ** ** * 48 * ** ** ** 44 * * 40 * ** ** ** * 3 6 * * ** ** ** 32 * * 28 * ** ** ** * 24 * * ** ** ** 20 * * 16 * ** ** ** ** * 12 * * *•* ** ** ** ** ** 8 * * 4 * ** ** ** ** ** ** ** ** ** * o ************** ** 1 ** 2 ** ** ** *********************************************************************** 3 4 5 6 INTERARRIVAL TIME (MIN.) FIGURE 5: REL. FREQUENCY OF INTERARRIVAL TIMES TABLE TAB6 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS / 36 0 6.566 3.207 2364.000 NON-WEIGHTED \ UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT 0 1 FREQUENCY OF TOTAL 3 .83 5 1.38 PERCENTAGE .8 2.2 REMAINDER 99.1 97.7 OF MEAN -.000 .15 2 FROM MEAN -2.047 -1.735 2 3 4 22 6.11 30 8.33 37 10.27 8.3 16.6 26.9 91.6 83.3 73.0 .304 .456 .609 -1.423 -1.112 -.800 5 6 7 57 15.83 41 11.38 38 10.55 42.7 54. 1 64. 7 57.2 4 5 .8 35.2 . 761 ' .913 1 .065 -.488 -.176 .135 8 9 10 3 8 10.55 24 6.66 20 5.5 5 75.2 81.9 87.4 24. f 18.0 12.5 1.2.18 1.370 1.522 .446 .758 1.070 11 12 13 21 .5.83 8 2.22 6 1.66 93.3 95. 5 97.2 6.6 4.4 2.7 1. 6 7 5 1.827 1. 979 1.382 1.694 2.006 14 15 16 2 .55 5 1.38 0 .00 97.7 99. 1 99. 1 2.2 • 8 .8 2.131 2.284 2.436 2.317 2.629 2.941 17 18 REMAINING FREQUENCIES 2 . 55 1 .27 ARE ALL ZERO 99.7 100. 0 .2 . 0 2.588 2.741 3.253 3.565 •-* *_ 20 * *~ 19 * 18 * 17 * *~ 16 * 15 * * *14 *-—* :—; -^nr 13 * * *"12 **11 * * ** * : : ww **-10 * ** ** ** ** ** * ** ** ** ** ** 9 * ** ** ** ** ** ** ** ** ** ** 8 * ** ** ** ** ** ** ** ** ** ** ** ** 7 * - ** ** ** ** ** ** * ** ** ** ** ** ** 6 ** ** ** ** ** ** ** ** * * * * * ** ** ** ** ** ** 5 * ** ** ** ** ** ** ** ** ** ** * ** **. ** ** ** ** ** ** ** ** 4 * ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** 3 * ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** 2 * ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** 1 * ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** 0 ************************** ************************************************************************************************ 0 1 2 3 4 5 6 7 8 g .10 1 1 12 13 14 15 16 17 18 19 ARRIVAL RATE/10 MIN. FIGURE 6: REL. FREQUENCY OF ARRIVALS TO SHELVES DURING 10 MIN. TABLE TAB 7 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS J 2365 b .815 b. bb4 13 /53.000 NUN-Wfe1GHI ED UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT 1 2 FREQUENCY 324 404 OF TOTAL 13. 69 17.08 PERCENTAGE 13.6 30.7 REMAINDER 86.3 69.2 ' OF MEAN .171 .343 . FROM MEAN - .866 -.686 3 4 5 343 30 6 142 14 .50 12.93 6.00 45.2 58.2 64. 2 54. 7 41.7 3 5.7 . 51b .687 . 859 -.506 -.326 -.146 6 7 8 116 104 102 4.90 ' 4. 39 4.3 1 69.1 73.5 77.8 30.8 26.4 2 2.1 1.031 1.203 1.375 . 033 .213 .393 9 10 11 fl 13 87 3.00 3. 08 3 .67 80.8 •83. 9 8 7.6 19.1 16.0 12.3 1.547 1 .719 1. 891 . 5 73 .7 53 • 933 12 13 14 47 47 30 1.98 1.98 1 .26 89.5 91.5 92.8 10 .4 8.4 7.1 2.063 2.23 5 2.407 1.113 1.293 1.473 lb 16 17 18 17 17 . 76 .71 .71 93.6 94.3 95.0 6 .3 5.6 4.9 2.579 2.751 2.923 1.6 53 1.833 2.013 18 19 20 13 12 9 . 54 .50 .38 95.6 96.1 96.4 4.3 3.8 3.5 3.095 . 3.267 3.439 2.193 2.373 2.553 21 22 23 13 14 4 . 54 .59 .16 97.0 97.6 97 .8 2 .9 2.3 2.1 3.611 3. 783 3.955 2.733 2.913 3.093 24 25 26 9 4 6 .38 .16 .25 98.1 9 8.3 98.6 1.8 -1.6 1.3 4.127 . 4.299 4.471 3 .273 3.453 3.633 27 28 29 5 8 7 .21 .33 .29 98. 8 9 9.1 99.4 1.1 .8 .5 4.642 4.814 4.986 3.813 3.993 4.173 30 31 REMAINING FREQUENCIES '8 5 ARE ALL ZERO .33 .21 99.7 100.0 .2 .0 5. 158 5.330 4.353 4. 533 * 21 * * 19 * * 18 * 16 * * _____ . _ . : _ . _ 15 * * 14 * ^ * ; ' ; * * * 13 * * * * ; * * * * 12 * * * * * * * * * * ____ . _ _ _ _ : : . ***** 10 * * _J_ » » • ' ' '. * * * *~ 1 * ~ 1 ; ' .9 * * * * * ***** ___ _ x -5 * ] • ; ***** 7 * _*_ * * _* ; .  *~ *"*.*•* • _ • 6 * * . * * * * *• . * * * * * ______ ___ — x * * ' : : : * ***** . 4 * * * * * * * .*  _____ __ _ _ _ _, X * * 3 * * * * * * * * * * * * * * * * * * * * * * * *. 2 * * * * * * * ? - * * * ************ 1 * * * * * * * * * * * * * * *_ ._ . _ _ _. _ X * * * * * * * * * 0 ********************************************************************************************** 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ' TRANSIT TIME (MIN. I TABLE TAB 8 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 2365 3.973 2.351 9397.000 NON-WEIGHI ED UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER, Of MEAN FROM MEAN 0 78 3.29 3.2 9 6.7 -.000 -1.6 89 1 238 10.06 13.3 86.6 .251 -1.264 2 38 2 16.15 29.5 70.4 .503 -.839 3 415 17.54 4 7.0 52.9 .755 -.413 4 391 16.53 63. 5 36.4 1 .006 .011 5 30 3 12.81 76.4 23. 5. 1.258 .436 6 23 7 10.02 86,4 13.5 1.510 .861 7 132 5.58 ' 92.0 7.9 .1.761 1.287 8' 84 3.5 5 95.5 4.4 2.013 1.712 9 52 2. 19 97. 7 2.2 2.265 2.137 10 20 .84 9.8.6 1.3 2. 516 2.562 . 11 19 .80 99 .4 • 5 2.768 • • 2.988 12 8 .33 99. 7 -2 3.020 3.413 13 4 .16: 9.9.9 ^ .0 3.271 3.83 8 3.4 2 .08 100.0 .0 3.523 4.263 REMAINING FREQUENCIES ARE ALL ZERO 21 * * 20~* * 18 * * 17 * * • ** ** 16 * ** ** ** * ** ** ** 15 * * ** ** ** ** - *.* ** 14 * * ** ** ** ** ** ** 13 * ** ** ** * ** ** ** 12 * * ** ** ** ** ** ** ** ** . 11 * ** ** ** ** ** ** ** ** 10 * ** ** ** ** ** * ** ** ** ** ** ** 9 * ** ** ** ** ** -1-* ** ** ** ** ** ^ «Y» 8 ** ** ** ** ** * ** ** *•* ** ** ** 7 * ** ** ** ** ** ** * ** ** ** ** ** ** 6 * ** ** ** ** ** ** * ** . ** ** ** ** ** 5 * ** ** ** ** ** *•* ** * ** ** ** ** ** ** .** 4 * ** ** ** ** ** ** ** * ** ** ** ' ** ** ** ** 3 * ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** 2 *. ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** 1 * ** *•* ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ****** 0 ****************** ******************************************************************************************************** 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 OCCUPANCY "FIGURE 8: REL. • FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE SHELVES THE RECORDINGS COLLECTION ( = DESK _ SHELVES) AS STO RAGE STORAGE CAPACITY AVERAGE AVERAGE ENTRIES AV ER AGE CURRENT MAXIMUM CONTENTS UTILIZATION TIMEVTRAN CONTENTS CONTENTS 11 15 0 5. 364 .035 5421 3.563 1 23 TRANSIT TIMES THROUGH REC. COLL. (MIN . ) , (-DESK _ SHELVES) TABLE TAB9 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 5420 3. 563 4.441 19314.000 NON-WEIGHTED UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE . DEVI ATI ON L IMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 1 2039 3 7.61 37. 6 62. 3 .280 -.577 2 877 16.18 5 3.8 46.1 . 561 -.352 •3 670 12.36 66.1 : 3 3.8 .841 -.126 4 52 4 9.66 75. 8 24. 1 . 1.122 .098 5 277 5.11 80.9 19.0 1.403 .323 6 198 3.65 84.5 15.4 1.683 .548 7 153 2-82 8 7.4 12. 5 1. 964 . i n 8 121 2.23 89 .6 • 10.3 2.245 .998 9 84 1. 54 91.1 . 8.8 2.525 1.224 10 87 1 .60 92.8 7. 1 2. 806 1.449 11 93 . 1.71 94.5 5.4 3.086 1.674 12 49 .90 95. 4 4. 5 3.367 1.899 13 49 .90 96.3 3.6 3.648 2. 124 14 30 .55 96.8 3.1 3.928 2.349 15 18 .33 97. 2 2.7 4.209 2.574 16 17 .31 97.5 2.4 4.490 2. 8 00 17 17 .31 97. 8 2.1 4.770 3.025 18 13 .23 98.0 1.9 5.051 3.250 19 12 .22 98.3 1.6 5.331 3.475 20 9 . 16 98.4 1.5 5.612 3.700 21 13 . .23 98.7 1.2 5. 893 3 . 92 5 22 14 .25 98 .9 1.0 6. 173 4.151 23 4 .07 99.0 .9 6.454 4.376 24 9 , • .16 99.2 . 7 6.735 4.601 25 4 .07 99.2 . / /.U15 4.£26 26 6 .11 99.3 . 6 7.296 5 .051 27 5 .09 99.4 .5 7.576 5.2 76 28 8 .14 99.6 .3 7.857 5.501 29 7 .12 99.7 . 2 8. 138 5.727 30 8 .14 99.9 .0 8.418 5.952 Ji 5 . 09 100. 0 .0. 8.699 6.1 REMAINING FREQUENCIES ARE ALL ZERO 45 * 44 _* '4 3" *~ 42 * 41 * _____ ; • : : ; : -39 * 3 8 _*  , 37" * * ' 36 * * 35 *34 * * 33 * * 32 * ; . . • __ • - :  31 *" * ' ' •  " — • ~ " '•'."'"* 3 G * * > • 29 * * ___ . _ ; ; r : ; : 27 * * _2_ *_ * ; : . • 2 5"* . * 24 * * 23 *21 * * 20 *  . . . : 19~*" ~ * ' •" ~~ •" '. " ~ "~ • " ' '"7 18 * * 17 * * [ .  16 * * * 15 * * * 14*  * ; : ; ; "13 * * * 12 * * * * • 11**'** 10 * *~ —* * : '• : g * * *  * 8 * * * * * , ' •_._ _____ _ __ _____ _ . . . __ : . _ 6 * * * . * * 5 * * * * * * 4 * * * *~ * 5 3* * * * * * * .2 * * * * * * * * * • ----- - ^ * * * * * * * * * 0 ************************************************************************************************************************** 1 2 3 4 5 6 7 8 9 10 11 12 13 , 14 1 5 TRANS IT TIME (MIN.) """FIGURE 9: REL. FREQUENCY OF TRANS'! T. TI MES THROUGH THE RECORDINGS COLLECTION : ~ OCCUPANCY OF RECORD. COLLECT. {=DESK _ SHELVES) TABLE TAB 10 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS / 5420 5.897 3.585 31964.000 NON-WEIGHTED \ UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT 0 1 FREQUENCY OF TOTAL 88 1.62 298 5.49 PERCENTAGE 1 .6 7. 1 REMAINDER 98.3 92.8 OF MEAN -.000 .169 FROM MEAN -1.644 -1.365 2 3 4 505 9 .31 631 11.64 713 13. 15 16.4 28.0 41. 2 83. 5 71.9 58.7 .339 .508 .678 -1.086 - . 807--.529 5 6 7 597 11.01 587 10.83 48 7 8.9 8 52.2 63.0 72.0 47 .7 36.9 27.9 . 847 1.017 1. 186 -.2 50 .028 .307 8 9 10 iii 6.88 301 5.5 5 214 3.94 7 8.9 84. 5 88.4 21.0 15.4 .11.5 1.356 1 .52 6 1. 695 .586 .865 1.144 11 12 13 183 3.37 136 2.50 101 1.86 91.8 94.3 96.1 8.1 5. 6 3.8 1.865 2.03 4 2.204 1.422 1.701 1.980 14 15 16 7 5 1.38 49 .90 37 .68 97.5 98. 4 99.1 2 .4 1.5 .8 2.373 2.543 2.713 2.259 2.538 2.817 17 18 19 19 .35 11 .20 4 .07 99. 5 99.7 99 .7 .4 . 2 .2 2.882 3. 052 3.221 3.096 3.375 3.653 20 21 22 5 .09 2 .03 4 .07 99. 8 99.9 100.0 .1 .0 .0 3.391 3.560 3.730 3 .932 4.211 4.490 REMAINING FREQUENCIES ARE ALL ZERO < So 15 * * 14 * * * 13 * * ** * ** 12 * ** ** * ** 11 ** ** ** •a. ** ** ** * ** ** . ** 10 •v ** ** ** ** a. ** ** ** ** * ** ** ** ** 9 * ** ** ** ** ** * ** ** ** ** ** * ** ** ** ** ** 8 * ** ' ** ** ** ** ** * ** ** ** ** ** ** * ** ** ** ** v f 7 * ** ** • ** ** ** _» -J' •V f * ** ** ** ** ** ** * ** ** ** ** "** ** 6 * ** ** ** ** ** ** ** * ** ** ** ** ** ** ** * ** ** ** ** :** ** ** 5 * ** ** ** ** ** ** ** ** ** * ** ** ** *•* ** ** ** ** ** * ** ** ** ** ** ** ** ** ** 4 * ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** * ** •** ** ** ** ** ** ** ** 3 * ** - .** ** ** ** ** ** ** ** ** ** * ** ** ** ** *.* ** ** ** ** ** ** * ** . ** ** ** ** ** ** ** ** ** ** 2 * **; ** ** ** ** ** ** ** .** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** 1 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 0 ******************************** ***************************** *********************************** o i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 OCCUPANCY FIGURE 10: REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY DESK AND SHELVES STORAGE CAPACITY AVERAGE CONTENTS TT 15. 891 AVERAGE UT IL 1 ZATION ENTRIES T2TT AVERAGE TI ME/TRAN 44.953 CURRENT CONTENTS rr~ MAXIMUM CONTENTS Z3-4(3 L IST EN IN G ROOM INTERARRIVAL TIMES (MIN.) TABLE TABU ENTRIES IN TABLE 1253 MEAN ARGUMENT 2.845 STANDARD DEVIATION 2. 976 SUM OF ARGUMENTS 3565.000 NON-WEIGHTED UPPER OBSERVED PER CENT CUMULATIVE CUMUL AT IV E MULTIPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE RE MAINDER OF MEAN • FROM MEAN .1 512 40.86 40.8 59.1 .351 -.61V 2 218 17.39 58.2 41.7 .702 - . 2 83 3 163 13.00 71.2 28. 7 1. 054 .052 4 97 7.74 79.0 20.9 1.405 .3 87 5 85 6. 78 85.7 14.2 1.757 .723 6 53 4.22 90.0 9.9 2.108 1.059 7 4U 3.19 9 3.2 6. 7 2.460 1.395 8 21 1.67 94. 8 5.1 2.811 1.7 31 9 20 1 .59 96.4 3. 5 3. 163 2. 067 10 15 1.19 97.6 2.3 3.514 2.403 11 8 .63 98.3 1.6 3.866 2.7 39 12 6 .47 98.8 1.1 4.217 3.075 13 5 . 39 ^9.2 .7 4.569 3.411 14 3 . 23 99. 4 .5 4.920 3 . 747 15 0 .00 99.4 .5 5.272 4.083 16 2 . 15 99. 6 .3 5.623 4.419 17 .0 .00 99.6 .3 5.975 4.755 18 1 .07 99 .6 .3 6.326 5.091 19 1 .07 99. 7 .2 6.6/7 5.427 20 1 .07 99.8 . 1 7. 029 5.763 21 0 . 00 99 .8 . 1 7.380 6.099 22 0 .00 99. 8 . 1 7.732 6 .435 23 0 .00 99.8 .1 8.083 6.771 24 1 . 07 99.9 .0 8.435 7.107 u .00 99. 9 . 0 8. 786 7 .443 26 0 .00 99.9 .0 9. 138 7.7 79 27 0 .00 . 99.9 .0 9.489 8.115 28 0 .00 99.9 • 0 9.841 ' 8.450 29 0 .00 99.9 .0 10.192 8. 786 OVERFLOW 1 . 07 100. 0 .0 AVERAGE VALUE Ub UVfckFLLiW 34.OU * ~% ft 60 * * "*" 56 * * 5 2 * _* 48 * * * 44 * * *~ 40 * * _ _ , . 36 * * ft • ; ; * * 32 * * ** * : 28 * * *___ . . _ . . __ 24 * * •• ft * _ _ . . : . 20 * * * *~~ ~ " 1 " ' ' 16 * * * * #— * * : 12 * * * * * * * ft __. ^ 5 * * " ; ' ^ ~ ~ ~ 8 * * * * * * ft ft ft * * * *" * : * 4 ft ft ft ft ft ft ft ft • -' ft ft * * ft ft * ft * * ft ft ft 0 ********** ******************** ******************************************************************************************** 1 2 3 4 5_ 6_ _7 8 9 10 11 12 13 14 15__ : : INTERARRIVAL TIME (MIN.) FIGURE ll: REL. FREQUENCY OF INTERARRIVAL TIMES TO LISTENING ROOM TABLE TAB 12 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 360" 1. 914 1252.000 NON-WEIGHTED 3 .477 UPPER LIMIT 0 1 OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION FREQUENCY 20 33 OF TOTAL 5 .55 9. 16 PERCENTAGE 5.5 14. 7 REMAINDER 94.4 85 .2 OF MEAN - .000 .287 FROM MEAN -1.816 -1.294 18 .33 19.44 18. 61 33.0 52.4 71.1 66.9 47.5 28.8 2 3 4 5 6 7 66 70 67 . 575 .862 1 .150 -.772 -.249 .272 49 33 12 13.61 9. 1 6 3.33 84.7 93.8 97.2 15.2 6.1 2.7 T5" .0 1. 437 1.725 2.012 .795 1.317 1 .840 2.362 2.885 8 8 9 2 REMAINING FREQUENCIES ARE ALL ZERO 2.22 • 55 99.4 100.0 2.300 2.587 : . : : . : : : _ , * -22 * * 21 * •* 20 * 19 * ** * ** 1 8 * ** ** ** ** ** ** 17 * * ** ** ** ** ** ** 16 * ** ** ** * ** ** ** 15 * ** ** ** ** ** ** -14 * ** ** ** ** ** ** 13 ** ** *•* ** * ** ** ** ** 12 * ** ** ** ** * ** ** ** ** 11 * ** ** ** **-* ** ** ** ** 10 * ** ** ** ** * ** ** ** ** 9 * ** ** ** ** ** , ** * ** ** ** ** ** ** 8 * ** ** ** ** ** ** * ** ** . ** ** ** ** 7 ** ** ** ** ** ** * ** ** ** ** ** ** 6 * ** ** ** ** ** ** ** ** ** ** ** ** 5 * ** ** ** ** ** ** ** * ** ** ** ** ** ** ** 4 * ** ** ** ** *•* ** ** * ** ** ** ** ** ** ** 3 ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** 2 * *-¥ ** ** ** ** ** * -~ ** * ** ** ** ** ** ** ** ** ** 1 * ** - ** ** ** ** ** ** ** ** * ** ** ** ** ** ** * * * * * * 0 ****************** ******************************************************** ************************************************ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ARRIVAL RATE/10 MIN. FIGURE 12: REL. FREQUENCY OF ARRIVALS TO LISTENING ROOM DURING 10 MIN. TABLE TAB13 ENTRIES IN TABLE MEAN ARGUMENT .' STANDARD DEVIATION SUM OF ARGUMENTS J 1254 45 ._06 3 5.625 56689.UUU NUN-Wfc It>HI EU UPPER . OBSERVED PER CENT CUMULAT IVE CUMULATIVE MULTIPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 7 .55 . 5 99.4 -.000 -1.268 5 57 4. 54 5.1 94.8 .110 -1.128 10 71 5.66 10. 7 89.2 .221 -.988 15 84 6.69 17.4 82.. 5 . 331 -.847 20 95 7.5 7 25 .0 74 .9 .442 -.707 25 104 8.29 ' 33.3 66.6 .553 -.567 30 105 8.37 41.7 58. 2 . 663 -.426 35 80 6.37 48.0 5 1.9 .774 - .286 40 66 5.26 53. 3 46. 6 .884 - . 146 45 94 7 .49 60.8 39.1 .995 -.005 50 90 7.17 68.0 31.9 1.106 . 134 55 67 5.34 ' 73. 3 26.6 1 .216 .274 60 48 3 .82 77.1 22.8 1.327 .415 65 43 3.42 80.6 19.3 1.437 .555 to 28 2.23 82.8 1 /. 1 1. 548 .69t> 75 24 1.91 84.7 15.2 1.659 .836 80 19 1.51 86.2 13.7 1.769 .976 85 26 2.07 88.3 11. 6 1. 880 1.117 90 15 1.19 89.5 10.4 1.990 1.2 57 95 17 1.35 90.9 9.0 2 .101 1.397 i 00 12 .95 91.8 8. 1 2. 212 1.53 8 10 5 7 . 55 92.4 7.5 2.322 1.678 1 10 7 .55 92.9 7.0 2.433 1 .818 115 11 .87 93.8 6.1. 2.543 1. 959 120 13 1. 03 94.8 5.1 2.654 2.099 ' 125 13 1.03 95. 9 4.0 2.765 2.239 130 6 .47 . 96.4 .3.5 2.875 2.380 135 1 ..07 • 96.4 .3.5 . 2.986 2.520 140 3 .23 96.7 3.2 3. 096 2.660 145 5 .39 9 7 .1 2.8 3.207 2.801 150 4 .31 97.4 2. 5 3.318 2.941 155 4 .31 97.7 2.2 3. 42 8 3.081 160 6 .47 98.2 1 . / 3.53V 3.2 22 165 2 .15 98. 4 1.5 3.649 3.362 170 6 • .47 98.8 1.1 3.760 3. 502 175 4 .31 99.2 .7 3.871 3.643 180 0 .00 99. 2 . 7 3.981 3.783 185 4 .31 99.5 - .4 4.092 3.924 190 6 . 4 / 100. 0 • U 4.202 4.064 REMAINING FREQUENCIES ARE ALL ZERO % * * 21 * * 20 * 19 * ' 18 * 17 * * ~* 15 * * 14 * : * 1_3_ * "* 12 * * 11 * 1JL_Z .  * 9 * * * * * 7 * * * * * -A. T * * * ft * 6 * * * * ft * ft ft * . * * * ft ft ft ft 5 * * * * * ft ft ft * * * * * * ft ft * * * * 4 * * * • * * ft ft ft ft ft * * * * * ft ft ft ft ft ft 3 * * * * * * * ft * * ft ft ft * * * * * * ft * ft ft ft ft ft ft 2 * * * * * ft ft ft ft ft ft ft . ft ft * * * * * * ft ft ft * ft ft ft ft * * 1 . * * * * * 'ft ft * ft * * ft ft ft & ft ft * ft * * * * * * * * ft * ft * ft ft ft * ft ft ft * * & * ft g **********************************ft******************************^ ' 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 TRANSIT TIME (MIN.) FIGURE 13: REL. FREQUENCY OF TRANSIT TIME OF LISTENING ROOM TABLE TAB 14 ENTR IES 'IN TABL E MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS J 1254 15.705 3.382 19695.000 NUN-WfcIGH1 ED UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT 0 1 FREQUENCY 0 0 OF TOTAL .00 .00 PERCENTAGE .0 . 0 REMAINDER 100.0 100.0 OF MEAN -.000 .063 FROM MEAN -4.642 -4.347 2 3 4 0 0 1 .00 .00 .07 • 0 .0 .0 100.0 100.0 99. 9 .127 .191 .254 -4.051 -3.755 -3.460 5 6 7 1 4 8 .07 .31 .63 . 1 .4 1. 1 99.8 99.5 . 98.8 .318 .382 .445 -3. 164 -2.869 -2.573 8 9 10 13 23 35 1.03 1.83 2.79 2.1 3.9 6.7 97.8 96 .0 9 3.2 . 509 .573 . 636 -2.277 -1.982 -1.686 11 12 13 50 77 113 3.98 6.14 9 .01 10.7 16.9 25.9 89.2 '83.0 74.0 .700-.764 . 827 -1.391 -1.095 -.799 14 15 16 121 145 13 8 9. 64 . 11.56 11 .00 35.5 47. 1 58.1 64.4 52. 8 41.8 .891 .955 1.018 -.504 -.208 . 086 17 18 19 128 129 86 10.20 10.28 6.85 68.3 78.6 85.4 31 .6 21.3 14.5 1.082 1. 146 1.209 .382 .678 .973 20 21 22 76 59 47 6.06 4.70 3. 74 91.5 9 6.2 100.0 8.4 3.7 .0 1.2T3 1.337 1.400 1 .26V 1.565 1.860 REMAINING FREQUENCIES ARE ALL ZERO j 15 * 14 * ft ft" 13 * ft ft 12 * ft ir ll* ft* ft* * * * * * . ~ ~ " ** r"** ~ ; _—~_ - _ . ; ..-__. 10* ******** „ -A. _ -A. 0, -A. A. * ; . — : . . ; — . —_ -—- j—j- —-g * • ** ** ** ****** * ftft ftft . ftft ftft ft* ftft '. .... _ -—- " ~ ' ' ** ** **" ** ** ** ' ~ . ' : 8 * ft* ** ft* ft* ** ** ft ****** ft* ** ft* 5 : WW —ww WW W¥ WW WW : : ~—: ~ 7 * ********** ** • * ************ " ~ " " [ :"'"""** ** ' "*'* ft* ft* **" " : ~ 6 * ' * ** ** ** ** ** ** ** ** * ''-**** ** ** ft* ft* ** ** ** — * . : : ; — ; **~ ** ww ww ww ; ** ww ww ~ww ; : : 5 * * ** ******** ** ** ** * ******** ftft ft* ft* ** ** ___ . : __ _ ~- . __ ^ __ —-_- __ — - — • — _____ 4 ft ft******* ** ftft ** ** ** ** ft * ** ** ** ** ftft ftft ftft . ftft . ** * : ~. ** : ft*- WW "** ** ** ** ** ** ** ~ " 3 * **• ** ** ** ** ** ** ** ** ** ** ** * * ** ** ** ** ** ** ** ** ** ** ** _. __ ; ——— -— — : ^rz-— x~z ft*-" ** ft* "*Fft ft": ft* "*** 2 * * ** ftft ft* ** ft* ** ft* ** ft* ftft ft* ft* •* ftft ft* ' ft* • ft* 'ft* ftft ft* ft* ** ** ** . ** ftft *• ; — ww ww s-*——ww ww ww ww ww—:—ww ww -rr- ww—:—ww 1 ft-• ft* ft*. ft* ft* ft* ** ft* ft* ft* ft* ftft ft* ft* ** ** * ft* ** ft* ftft ft* ft ft ft* . ** .** ftft ftft .ft* ft* ft* ft* ' '# ~ ** »* ** *W~- ft* ft* ** ' ** ": ft* 7"™** ft* , ** ** ' " o ******************************************************************************************************** 6 7 8 9 10 11 . 12 13 14 15_ 16 17 18 19 20 21 22 23 _ _____ . _ . . OCCUPANCY ~~ FIGURE 14: REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE LISTENING ROOM STORAGE CAPACITY "4T AV ERAGE CONTENTS ~ .690 AVERAGE UTILIZATION 77J3T3 ENTRIES "5T" AVERAGE TIME/TRAN 46 .0 /4 CURRENT CONTENTS MAXIMUM CONTENTS 23 OCCUPANCY OF RESERVE LIST. ROOM TABLE TAB 1 7 ENTRIES IN TABLE 54 UPPER LIMIT TT 1 2 MEAN ARGUMENT 2 .388 STANDARD DEVIATION 2. 191 SUM OF ARGUMENTS 129.000 NON-WEIGHTED OBSERVED FREQUENCY PER CENT OF TOTAL CUMULATIVE PERCENTAGE CUMULATIVE REMAINDER MULTIPLE OF MEAN DEVIATION FROM MEAN T4-11 6 74.0 53. 7 42. 5 -.000 .418 .837 -1.090 -.633 -. 177 25. 92 20.37 11 .11 25.9 46. 2 57.4 3 4 5 "6~ 7 5 7 6 9.25 12.96 11.11 66. 6 79.6 90 .7 33 .3 20.3 9.2 1 .255 1. 674 2.093 .278 .73 5 1. 191 1 1 5.55 1.85 1.85 96.2 98.1 100.0 ~3T7~ 1.8 .0 2.511 2. 930 3.348 1 .64/ 2.104 2.560 REMAINING FREQUENCIES ARE ALL ZERO j I GRAPH % * 35 * 34 * 33 * 3 2 * 31 * 30 * 29 * 28 * 27 * 26 * 2 5 * 24 * 23 * 22 * 21 * 20 * ** ** ** ~**" ** ** ** 19 * 18 * 17 * ** ** ** ** ** ** -*F~ ** ** 16 * 15 * 14 * 13 * 12 * 11 * ** ** ** ** ** ** ** ** *•* ** ** ** ** ~WW ** ** ** ** 10 * 9 * 8 * 7 * 6 * 5 * -2T*" 3 * 2 *_ 0 ** ** ** "**" ** ** ** ** ** ** ** ** ** ** ** ** "WW ** ** ** ** ** -**-** ** ** ** ** ** ** ** ""*"*-** ** ~WW ** ** ** ** ** ** ** ** ** •** ** ** ** ** ** ** ** ** ** **, ** i********** ********************************************** 7' 8 9. 10 11 12 13 14 •OCCUPANCY FIGURE 14A: REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE LISTENING ROOM STORAGE CAPACITY AVERAGE CONTENTS AVERAGE UTIL IZATION ENTRIES AV ERAGE TIME/TRAN CURRENT CONTENTS MAXIMUM CONTENTS J 10 200 21 .946 .109 3212 24. 604 20 45 S SYSTEM TRANSIT TIMES (MIN. ) (=SERVICE _ WAIT. TIME ) TABLE TAB15 ENTRIES IN TABLE 3 192 MEAN ARGUMENT 4.273 STANDARD DEVIATION 13.2 07 SUM OF ARGUMENTS 13642.000 NON-WEIGHTED UPPER LIMIT OBSERVED FREQUENCY PER OF CENT TOTAL CUMULATIVE CUMULATIVE PERCENTAGE REMAINDER MULTIPLE OF MEAN DEVIATION FROM MEAN 0 5 10 89 7 1882 224 28 . 10 58.95 7.01 28. 1 87.0 94.0 71.8 12.9 5.9 -.000 1.169 2.339 -.323 .054 .433 15 20 25 51 20 15 1.59 .62 .46 95.6 96 .3 96. 7 4.3 3.6 3.2 3.509 4.679 5.849 .812 1.190 1.569 30 35 40 19 10 8 .59 . 31 .25 97.3 97 .6 97.9 2.6 2.3 2.0 7. 019 8.189 9.359 1.947 2.326 2.705 45 50 55 11 4 11 .34 .12 .34 98 .2 98.4 98.7 1.7 1 ,5 1.2 10. 529 11.699 12.869 3.0 83 3.462 3.840 60 65 70 8 3 2 .25 .09 .06 98.9 99.0 99.1 • 1.0 .9 .8 14.038 15.208 16.378 4.219 4.598 4.976 75 80 85 2 3 4 .06 .09 .12 99 .2 99.3 99.4 .7 .6 . 5 17.548 18.718 19.888 5.3 55 5.733 6.112 90 95 100 ' 0 2 1 . 00 .06 .03 99 .4 99.4 99.5 .5 .5 .4 21.058 22 .228 23.398 6.490 6.869 7.248 105 no 115 2 0 1 . 06 .00 .03 99.5 99.5 99.6 .4 .4 .3 24.568 25.738 26.908 7.626 8 .005 8. 3 83. 120 125 130 2 1 o-.06 .03 .00 99.6 99.7 99.7 .3 .2 .2 28 .077 29.247 30.417 8.762 9.141 9. 519 135 140 145 0 1 0 . 00 .03 . 00 99. 7 99.7 99.7 .2 . 2 .2 31.587 32.757 33.927 9.898 10.276 10.655 150 1 55 160 1 i l. .03 .03 .03 99. f 99 .8 99.8 .2 • J. • JL 35.097 36. 267 37.437 11.033 11.412 11.791 165 170 175 0 0 0 .00 .00 .00 99. 8 99.8 99.8 • i. • i-• i. 38.607 39.777 40.947 12.169 12.548 12.926 180 185 190 0 2 3 .00 .06 . 09 99. 8 99.9 100.0 • J. .0 .0 42.116 43.286 44.456 13.305 13. 684 14.062 REMAINING FREQUENCIES ARE ALL _ERO J ft * 100 * 9 5 * 90 * * 85 * 80 * __ 75 * 70 * ft 65 * 60 * 5 5 * ^~ ft * 50 * * 45 ft •* ft. * AO *. *~ 35 * * 30 * * * ft ~25~^ *~ ft ft 20 * * .„ x 15 ft ft ft ft 10 * -ft ft 5 * * * * ft * 0 *******ftft*****ft****ft*ftft*ftftftftft*ft*ftftft**ftft 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 10 5 110 115 120 125 130 135 140 145 150 TRANSIT Tl ME < MIN. ) - ~ TABLE TAB16 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS Tm 22.597 5.921 000 NUN-WL IGHibU UPPER OBSERVED PER CENT CUMULAT IV E CUMULATIVE MULTIPLE . DEVIATION L IM IT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 0 .00 .0 100.0 -. 000 -3.815 2 0 .00 .0 100.0 .088 -3.478 4 3 .09 . 0 99.9 .177 -3.140 6 6 .18 .2 99.7 . 265 -2.802 8 6 .18 .4 99.5 .354 -2.465 10 16 .50 ' .9 99. 0 .442 -2.127 12 62 1 .94 2.9 97.0 . 531 -1.789 14 106 3.32 6.2 93 .7 .619 -1.451 16 230 7.20 13. 4 86. 5 . 708 -1.114 18 345 10.80 24.2 75.7 .796 -.776 20 461 14.44 38.6 61.3 • 885 -.438 22 458 14.34 53.0 46.9 .973 -.100 24 441 13.81 66 .8 3 3.1 1.062 .236 26 358 11.21 78. 0 21.9 1.150 .574 28 l\i 6 .67 84.7 15.2 1. 239 .912 30 153 4.79 89.5 10.4 1.327 1.249 32 112 ' 3.50 93. 0 6.9 1 .416 1 .587 34 89 2 .78 95.8 4.1 1.504 1. 925 36 61 1.91 97. 7 2 .2 1.593 2.263 38 51 1.59 99. 3 .6 1.681 2.600 40 15 . .46 99 .8 .1 1.770. 2.938 42 4 .12 99. 9 .0 1.858 3.276 44 2 .06 100. 0 .0 1.947 3.614 "REMAINING FREQUENCIES ARE ALL ZERO % * A-T * 40 * Ar-36 * 34 * •A--r 32 * 30 * 28 1- A- Ar *¥* f A-T Ar A-*¥» *v . 1 26 -JU Ar A-* •A. A--v* •** ** 24 A. •V Ar A. •V -V -A- _U * Ar A- A. 22 -»* , A- „ •v -v ftft * -A- Air -¥* <V -A. A, 20 Ar Ar Ar *V "i-A» A-A. Ar Ar •V- -»* -J, Ar 1 8 -A- ftft ftft * A- Ar '1* K* A. A-• f> -V ** 16 * ft* A. A-T" 'V A> A--r* -r-ft ft* A> Ar ir •*•*• Ar Ar 14 ft -_ Ar •V -v Ar -A, ft A. A- A> Ar 12 Ar Ar Ar- A> Ar -<- f ft ** *»' A- A-•V -V ft* 10 A. *v A A- Ar A, A- A, T" -¥• •if-Ar T ft* >»* A, A- Ar ft* 8 Ar •V Ar A- A- Ar •V -«~ Ar- Ar ft* ft Ar A-'1* *•<* Ar Ar *«* *V A, -A. *v- ** 6 ft A- Ar •V* v Ar Ar •V -Ar- Ar Ar A-1* A. Ar **•> Ar A* A. A. A. „ ** A- A--V -V-4 J"r •r -Jr A-V -A- -A- Ar-J_- ** Ar Aj -(- A- A. •fc ^ A. A> ft* . . ** Ar A- Ar Ar If. .f. -ff. if. . 2 * ftft A- A- * & Ar Ar T* ** A -Ar A. Ar ft ft ** A, Ar •V -V Ar ™ * * ** ft ft 0 A> A A- A- Ar T -V* V *V -V A- V- „ _ - „ „ A- A- _J. A- .A- -j". A- A- A. •V -V -*»* 'V -V "1* -Y- -*V -,v Jf. *f 1' 3}i 5yt ^ A> A> A/ A~ A* Ar 1* <1" "V- -»*> "V •*!- *** ^* *^ "** •J- A- A- A- AJ. -v-v* -w -sr-r- ********* **************ft*************************ftftftftftftftftftftftftftft*ftftftftftftftftftftft*ftft 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 OCCUPANCY FI GURE 16: REL. FREQUENCY QF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE SYSTEM END CPU TIME USED: ASSEMBLY: 3. 173 SECONDS EXECUTION: 64.841 SECONDS EXECUTION TERMINATED $SIGNOFF 7 RFS NO. 771083 UNIVERSITY OF B C COMPUTING CENTRE MTSUN120) 00: 12:48 12-30-70 < USER: WULI DEPARTMENT: COMM **** ON Al 00: 12:49 ~ : OFF AT 00:14:23 **** ELAPSED TIME 94.136 SEC• **** CPU TIME USED 71.257 SEC. **** STORAGE USED 4437.03 PAGE-SEC. **** CARDS READ 406 **** LINES PRINTED 94T_ : **** PAGES PRINTED 280 CARDS PUNCHED 0 ; */.*** DRUM READS .5 **** RATE FACTOR 0.6 **** APPROX. COST OF THIS RUN C$12.22 **** FILE STORAGE 0 PG-HR. .00 **TATT~TTGT^ 10:54:13 12-29-70 MMMMM MMMMM TTTTTTTTTTTTTTTTTTTTTTTTT SSSSSSSSS MMMMMM MMMMMM TTTTTTTTTTTTTTTTTTTTTTTTT SSSSSSSSSSSSS MMMMMMM MMMMMMM TTTTTTTTTTTTTTTTTTTTTTTTT SSSSSSSSSSSSSSSSS NMFMMMMM MMMMMMMM TTTTT ssssss sssssss MMMMMMMMM MMMMMMMMM TTTTT sssss ssssKVPMMMMMMM MMMMMMMMMM TTTTT sssss MMMMN MMMMM MMMMM MMMMM HIM ssssss MMMMM ' MMMMM MMMMM MMMMM TTTTT SSSSSSSSSSSSS MMMMM MMMMM MMMMM MMMMM TTTTT SSSSSSSSSSSSS MMMMM MMMMM MMMMMM' MMMMM TTTTT SSSSSSSSSSSSS MMMMM MMMMMMMMM MMMMM TTTTT SSSSSSS MMMMM MMMMMMM • MMMMM TTTTT sssss MMMMM HMMMM • MMMMM ! T T 1 1 sssss MMMMM MMM . •MMMMM TTTTT SSSSS SSSSS MMMMM. MMMMM TTTTT SSSSSSS sssssss MMMMM • MMMMM TTTTT SSSSSSSSSSSSSSSSS MMMMM MMMMM TTTTT SSSSSSSSSSSSS MMMMM MMMMM TTTTT SSSSSSSSS R FS NO. 771184 UNIVERSITY OF B C COMPUTING CENTRE MTS(AN120) 00:41:42 12-31-70 (X) \ •J, ,i, j, _<v -JL, A J, -A J. O, JL, «^ -J» v«r T 1) t C f T -i- 'r -T> T. -r -y -v -v T -i" T v "c •*.* • •*! 1 il 1 O SSIGNON WULI T = 150 P=400 **LAST SIGNON WAS: 00:28: JOB. SUBMITTED THROUGH PRIO=V CCPIES=4 20 12-30-70 FRONT DESK READER ******************** / USER "WULI" SIGNED ON AT $RUN * STATUS PAR =F UL L EXECUTION BEGINS 00:41:44 CN 12-31-70 \ STATUS OF WULI AT LAST SIGNOFF USED MAXIMUM REMAINING CUMULATIVE CHARGE CURRENT DISK SPACE CURRENT CELL SPACE (•$) {PAGES ) (PAGES) 106.87 0 0 150.00 43.13 50 50 100 10CUMULATIVE MEMORY—CPU CUMULATIVE MEMORY--WA IT CUMULATI VE CPU TIME (PG-HR) (PG-HR) (HR) 5.91 3.60 0.11 CUMULATIVE LINES PRINTED CUMULATIVE PAGES PRINTED CUMULATIVE CARDS READ 49611 1643 8811 BATCH SESSIONS EXPIRATION DATE AND TIME: 05-31-71 28 24: 00 .00 • EXECUTION TERMINATED $RUN *GPSS PAR=SIZE=8 EXECUTION BEGINS BLOCK CARD NUMBER *LDC OPERATION A,B,C,0,E, F, G COMMENTS SIMULATE ' * SIMULATION OF UBC. RECORDINGS COLLECTION BY JOHANNES K RAM AR NUMBER 1 2 7 * • * FUNCTION DEFINITIONS •A, 3 4 5 s * SYSTEM ARRIVAL TIME EXPONENTIALLY DISTRIBUTED ARRIV FUNCTION RN1,C24 NEG- EXP. DISTR ., MEAN- 1MIN.' 0. 0, 0. 0/. 1,. 104/. 2 ,. 22 2/. 3 ,. 35 5/. 4,. 509/ .5 , . 69 / . 6 , .9 15 / .7 , 1 . 2/ 6 7 8 .75,1 .38/.8,1 .6/.84,1 .83/.88,2.12/ .9» 2 . 3/.92,2. 52/.94,2.81/.95,2.99 .96,3.2/.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999.7.0/.9997,8.0 -a- " 9 10 11 * DESK SERVICE TIME EXPONENT I ALLY DISTRIBUTED DESK FUNCTION' RN1,C24 NEG, EXP. DISTR. 0.0,0.0/.1 ,. 104/.2, . 222/.3,. 35 5 / .4, . 509/ . 5 , . 69/. 6 t. 915/. 7, 1.2/ 12 13 14 . 7 5, 1. 38/. 8, 1. 6/. 84,1 .83/.88 ,2 .12 / .9,2 .3/ .92,2.b2/.94,2.81/.9b,2.99 .9 6, 3- 2/.9 7, 3.5/.98, 3. 9/.99,4.6/.995 , 5. 3/. 998,6. 2/.999»7.0/.9997 ,8.0 "v • . ' • 15 16 17 * SHELF SERVICE TIME EXPONENTIALLY DISTRIBUTED SHELF FUNCTION RN1,C23 NEG. EXP. DISTR. 0. 0,0. 0/. 154, .840/ .2 81 ,.250/ .390, .4 20/. 48 3, . 5 80/. 5 62 , . .7 50/. 629 , .92/ 18 19 2 0 .685, 1 .08/. r33, 1. 25/. 7 74,1.4 2/. 808,1 .59/. 837 ,1 .75/.862,1 .9 2 .883,2 .08/.9, 2.25/ .916,2.42/.927,2 .58/.937 f2 .75/ .946,2 .92/.953,3 .08/.959, 3.25 21 22 23 .964,3.42/1.0,5.27 '* LISTENING ROOM SERVICE TIME GENERALLY DISTRIBUTED 24 25 26 LIST FUNCTIUN KNI,C25 GEN. DISTRIBUTION 0.0,0.0/.024, .06 3/.071,.187/ . 131,.312/.205,.437/.289,. 563/. 366,.690/ .436,. 820/.498,.940/.5 56 ,1.067.623 ,1 .18/.699, 1.31/.754,1.44/.786, 1 .56/ 27 28 29 .814,1.69/.836,1.81/.855,1.94/.872,2.06/.888,2.18/.903,2.31/.917,2.44/ .927,2 .5 5 7.962, 3..19/.989 ,4.20/ 1.00,4.820 30 31 32 * STORAGE DEFINITIONS 10- STORAGE 200 DEFINE SIZE OF SYSTEM, S STORAGE 11 STORAGE 150 . DEFINE -SIZE OF REC. COLL. 33 34 35 30 . STORAGE 100 DEFINE SIZE OF STOR. 30 40 STORAGE 23 DEFINE SIZE OF STOR. 40 41 STORAGE 23 - DEFINE SIZE OF STOR. 41 36 37 38 * TABLE DEFINITIONS TAB1 TABLE IA,1,1,20 INTERARRIVAL TIME ' TAB2 TABLE RT,0,1,30,10 ARRIVAL RATE 39 40 41 TAB3 TABLE M1,I,1,30 TRANSIT TIME TABLE TAB4 QTABLE 2,0,1,30 UNITS IN QUE. TAB5 TABLE IA,1,1,30 INTERARRIVAL TIME SHELVES 42 43 44 IAB6 lAbLt „kl ,0 , 1 , 2U , 10 ARRIVAL R A 1 b TAB7 TABLE Ml, 1,1,60 TRANSIT TIME TAB8 TABLE S30, 0, 1,40 STOR. 30 OCCUPANCY 4b 46 47 . ' TA89 TABLE Ml,1,1,60 TRANS. TIME SERVI TAB 10 TABLE Sll,0,l,60 STORAGE 11 OCCUPANCY TABU TABLE IA,1,1,30 . INTERARR. TIME FAC. 40 48 49 50 IABI2 1 AB Lb RT,0,1,lb,10 lARRlVALS FAC 40 TAB 13 TABLE Ml,0,5,60 TRANS. TIME FAC. 40 TAB 14 TABLE S40,0,l,26 STORE 40 OCCUPANCY 51 52 53 TAB 15 TABLE Ml,0,2,80 TRANS. TIME IN SYSTEM TAB16 TABLE S10,0»2,60 SYST. OCCUPANCY TAB 17 TABLE S41,0,l,26 - STOR. 41 OCCUPANCY 54 55 56 J * GPSS PROGRAM 58 * 9 1 . .GENERATE' I, FN $ARR IV ARRIVALS TO SYSTEM 60 •2 ' ENTER 10 CUM. STOR. SYSTEM 1 3 . TRANSFER .,36,STG3 , STG2 GO TO 3 OR 2 • ' . 62 4 ~ STG2 MARK : SET TRANS. TIME = 0 . ~ '. ' 5T 5. ENTER 11 CUM.' STORE RC. ' 4 ,6 -• . QUEUE 2 JOIN QUE. 2 ' 65 7 ~ . GATE NU 1,SER2 66 8. SER1 SEIZE 1 • . " . OCC. DESK -SERV. 1 7 GPSS/360/MTS VERSION (4/8/13) A > 9 DEPART 2 • • LEAVE QUE. 2 68 10 ADVANCE 1, FN$DESK DESK SERVICE 69 11 RELEASE 1 RELEASE DESK SERV. 1 70 12 TRANSFER ,TWO 71 / 13 S ER 2 L INK 2,FIF0,RES2 LINK USER CHAIN 2 11 \ 14 RES 2 SEIZE 2 OCC. DESK SERV. 2 73 15 DEPART 2 LEAVE QUE. 2 74 16 ADVANCE 1, FN$DESK DESK SERVICE 75 17 RELEASE 2 RELEASE DESK 76 18 TWO UNLINK •2,SER12, 1- UNLINK USER CHAIN 2 77 19 TKANSFtR ,0Nt 78 20 SER 12 GATE NU 1,RES2 79 21 TRANSFER ,SER1 80 22 ONE TABULATE TAB1 81 23 TABULATE TAB2 TAB. ARRIVALS 82 24 TABUL ATE TAB 3 TAB. TRANS. TIME . 83 25 LEAVE 11 84 26 TABULATE TA89 85 27 ' TABULATE TAB10 86 28 ASSIGN. 2,K1 SET PI TO ,1 87 29 TEST LE Cl ,K3600,FINE TEST TIME 88 3 0 TEST E P3,K1,GEH2 89 31 • TfcST t P4,Ki,GEH3 90 • 32 TRANSFER »E XI T 91 33 GEH2 TEST E P4, K1,GEH4 92 34 TRANSFER .75,STG3*EXIT 93 35 • GEH3 TRANSFER ... 96, STG4,EXI T 94 36 GEH4 TRANS FER .73, GEH5,EXIT 95 37 GEHb TRANSFER .11, S)G3,SIG4 96 38 STG3 MARK 97 39 ENTER 11 CUM. STORE RC. 98 40 ENTER 30 ENTER STOR. 30 99 41. ADVANCE 6 ,FN$S HELF SHELF SERVICE TIME 100 - 42 LEAVE 30 LEAVE STOR. 30 101 43 TABULATE TAB5 INTERARRIVAL TIME 102 44 TABULATE TAB6 ARRIVAL RATE 103 45 TABULATE TAB 7 TRANSIT TIME 104 46 TABULATE TAB8 STORE. SHELVES OCCUPANCY 10 5 47 LEAVE 11 . LEAVE STORE 11 106 48 TABULATE TAB9 107 49 TABULAIE IAB10 STUKE KbCORU. COLLECT. 10a 50 ASSIGN 3., Kl SET P2 TO 1 109 51 TEST LE Cl,K3600,FINE TEST TIME 110 52 TEST.E P2,K1,GE.H7 111 53 TEST E P4,K1,GEH8 112 54 TRANS FER ,EXIT 113 bb btH / 1 ES 1 fc P4 , Kl,GEH9 114 56 TRANSFER .28, STG2,EXI T 115 57 GEHB TRANSFER .2 2, ST G4, EXIT 116 58 GEH9 TRANSFER .14,GEH10*EX IT 1 17 59 GEH10 TRANSFER . 5 8,STG2,STG4 118 60 STG4 MARK 119 61 GATE SNh 40,0FL0W 120 62 ENTER 40 ENTER STOR. 40 121 - -- -  - • J GPSS/360/MTS VERSION (4/8/131 A ^| . 63 64 65 66 ADVANCE LEAVE TABULATE T ABULATE 40,FN$LIST 40 TABU TAB12 LIST. ROOM SERVICE TIME LEAVE STORAGE 40 INTER ARRIVAL TIME FAC 4 ARRIVAL RATE FAC. 4 122 123 124 125 ) 67 68 69 TABULATE TABULATE TRANSFER TAB13 TA B 14 ,BE IDE TRANSIT TIME FAC. 4 STORE. 40 OCCUPANCY 126 127 128 70 7l 72 OFLOW ENTER ADVANCE LEAVE 41 40,FN$L1ST 41 LIST. ROOM SERVICE TIME 129 130 131 73 74 75 BEI DE TABULA IE TRANSFER ASSIGN TA B1 7 t BE IDE 4,K1 OCCUP. OF RtShRV. LIST. ROOM ' SET P4 TO 1 132 133 134 76 77 78 GEH11 TEST E TRANSFER TEST LE P3,K1,GEH11 .09,STG2.EXIT Cl ,K3600,FINE TEST TIME 135 136 137 79 80 81 GEH13 TEST E TRANSFER TRANSFER P2 ,K1,GEH13 .38 ,STG3,EX IT .08,GEH14,EX IT 138 139 . 140 82 ' 83 84 GEH14 EXIT . TRANSFER LEAVE TABULATE .14,STG2,STG3• 10 TAB 1 5 LEAVE SYST. STOR. TRANS. TIME IN SYSTEM 141 142 143 85 86 87 FINE T ABULATE TERMINATE LEAVE TAB16 10 SYSTEM OCCUPANCY LEAVE SYST. STOR. 144 145 146 88 89 90 TABULATE TABULATE TERMINATE TAB15 TAB16 1 TRAMS. TIME.IN SYSTEM SYSTEM OCCUPANCY 147 148 149 * CONTROL CARD START 1 150 151 152 ' FAC REPORT EJECT TITLE 1,STATISTICS CONCERNING THE INFORMATI ON DESK,SERV.1 153 154 155 F AC SPACE TITLE SPACE 3 2,STATISTICS CONCERNING THE INFORMATION DESK,SERV.2 3 . 156 157 158 ' QUE C HA TITLE . SPACE TI TLE 2, STATISTICS CGNC ERNI NG THE DESK QUEUE 3 • . 2, STATISTICS CONCERNING THE DESK USER CHAIN 159 160 161 TAB EJECT TITLE EJECT It DESK INTERARRIVAL TIMES (MIN.) 162 163 164 * GRAPH GRAPH TP,TAB 1 165 166 167 ORIGIN X Y 50,10 »2 f 1 3 ,1 , 1 , 8 0,4,20,2 168 169 170 • 7 1.00 10 STATEMENT STATEMENT STATEMENT 4, 1, % 52»24>INTERARR IVAL 55 , 46, F IGUR.E 1 : REL TIME (MIN.) . FREQUENCY OF INTERARRIVAL TIMES 171 172 173 ENDGRAPH 174 175 • J TAB TI TLE EJECT 2,NUMBER OF ARRIVALS TO DESK/10 MIN. 176 177 -Jr 178 * GRAPH 179 GRAPH !P,TAB2 180 ORIGIN 50,10 181 X ,2,2,0,1,30 182 Y 0,1,21,2 183 7 STATEMENT 4,1.,? 184 100 STATEMENT 52.20»ARRIVAL RATE/10 MIN. 1 85 10 STATEMENT 55 ,64,FIGURE 2: REL. FREQUENCY OF ARRIVALS TO INF. DEI 186 SK OUR ING 10 MIN. 187 ENDGRAPH 188 189 TAB T ITLE EJECT 3,DESK TRANSIT TIMES (MIN.) (=WAIT. £.SERVICE TIME.) 190 191 * 192 * GRAPH 193 GRAPH TP ,TAB3 194 . ORIGIN. 50,10 195 X ,,14,1,1,8 196 Y 0,3,20,2 197 ! S 1 A ItM bN r 4, I, * 198 100 STATEMENT 52t 19fTRANSIT TIME (MIN.) 199 1.0 STATEMENT 55 ,60,FIGURE 3: REL. FREQUENCY OF TRANST TIMES AT INF1 200 ORMATION DESK 201 ENDGRAPH 2 02 •V 203 T AB TITLE EJECT 4,NUMBER OF JOBS WAITING FOR SERVICE AT DESK 204 205 rf. 206 * GRAPH 207 GRAPH TP,TAB4 2 08 ORIGIN .50,10 209 X » 2f 13, 0, 1,8 210 Y 0,3,20,2 211 7 STATEMENT 4,1 ,% 212 100 STATEMENT 52,13»JOBS IN QUEUE 213 10 . STATEMENT 55 ,72,FIGURE 4: REL. FREQUENCY OF JOBS WAITING FOR SEI 214 RVICE AT INFORMATION DESK 215 ENDGRAPH 216 •X-'r 217 STO TITLE 30,THE SHELVES AS STORAGE 218 SPACE 3 219 TAB TI TLE EJECT 5,SHELF INTERARRIVAL TIMES (MIN.) 220 221 222 * GRAPH 223 GRAPH TP , TAB 5 224 ORIGIN 50,10 225 X ,2,18,1,1,6. 226 Y 0,4,20,2 227 • 7 SIATEMbNT 4, I,* 228 100 STATEMENT 52»24»INTERARRIVAL TIME (MIN.) 229 GPSS/360/MTS VERSION (4/8/13) A ^ 10 TAB STATEMENT ENDGRAPH TITLE 55,46,FIGURE 5: REL. FREQUENCY OF INTERARRIVAL TIMES 6,NUMBER OF ARRIVALS TO SHELVES/10 MIN. 230 231 232 233 EJECT * GRAPH GRAPH T P,T AB6 234 235 236 ORIGIN X Y 50,10 ,2,4,0, 1,20 0,1,20,2 237 238 239 7 100 10 STATEMENT STATEMENT STATEMENT' 4,1,56 52 » 2 0» ARR I VAL RATE/10 MIN-.. 55 ,62,FIGURE 6: REL. FREQUENCY OF ARRIVALS TO SHE LVE SI 240 241 2 42 DURING 10 MIN. ENDGRAPH 243 244 245 TAB TITLE EJECT 7,SHELF TRANSIT TIMES (MIN. 246 247 248 * GRAPH GRAPH ORIGIN TP,TAB7 50,10 249 2 50 251 7 X Y STA TE ME NT , ,5• 1, 1, 15 0,1,24,2 4,1 ,56 • 252 2 53 254 100 10 ELVES STATEMENT STATEMENT •52,19,TRANSIT TIME (MIN.) 55 ,52 , FIGURE .7: REL . FREQUENCY OF TRANSIT TIMES AT SHI 255 256 2 57 TAB ENDGRAPH TI TLE 8,OCCUPANCY OF SHELVES 258 259 260 EJECT * GRAPH 261 262 2 63 GRAPH ORIGIN X TH,TAB8 50,10 , 2 J 6 , 0,1,15 264 265 266 7 100 Y STATEMENT STATEMENT 0,1,24,2 4,1,56 52,9.OCCUPANCY 267 268 269 10 PYING STATEMENT 55,79,FIGURE 8: REL. FREQUENCY OF NUMBER OF JOBS 0CCU1 SIMULTANEOUSLY THE SHELVES ENDGRAPH 2 70 271 272 ~i, -r STO RAGE TITLE 11,THE RECORDINGS COLLECTION (=DESK _ SHELVES) AS ST01 273 274 275 SPACE TAB TITLE SHELVE S) 3 9,TRANSIT TIMES THROUGH REC. COLL. (MIN.) , i-DESK _ 1 276 277 278 EJECT * GRAPH 279 280 281 GRAPH ORIGIN TP ,T AB9 50,10 2 82 283 GPSS/3 60/MTS • VERSION {4/8/131 . • A ^ 7 ' 100 X Y STATEMENT STATEMENT ,,7,1,1,15 0, 1, 45, 1 - • 4 , 1 , <g •52»1.9, TRANSIT TIME (MIN.) • 284 285 2 86 287 / 10 GH tHE STATEMENT RECORDINGS ENDGRAPH 55,75, FIGURE 9: REL. FREQUENCY OF TRANS I t TIMES THR0U1 COLLECTION 288 289 290 \ TAB T I TL E EJECT 10,OCCUPANCY OF RECORD, COLLECT. (=DESK _ SHELVES) 291 . 292 . 293 * GRAPH GRAPH TP,TAB10 294 295 ' 296 ORIGIN . X Y 50,10 ,2,4,0,1,20 0,1,15,3. ; 297 298 2 99 7 •100 10 STATEMENT STATEMENT STATEMENT 4,1 ,% 52, 9, OCCUPANCY 55 ,85,.FIGURE 10: REL . FREQUENCY. OF NUMBER OF J08S.0CC1 300 301 302 UPYING SIMULTANEOUSLY DESK. AND SHELVES ENDGRAPH ' : . • -• 303 304 305 S TO TAB TITLE SPACE TITLE 40, THE LISTENING.-R-UUM-AS STORAGE • -3 '•'. ."• • ' '• ,' .11 ,LI STENING RCOM' INTERARRIVAL TIMES (MIN.) 306 30,7 308 * GR AP EJECT H 309 310 311 GRAPH ORIGIN . X TP, I ABU 50,10 ,,7,1,1,15-312 3 13 314 7 100 Y STATEMENT STATEMENT 0, 4,15,3 4,1, % 52 » 25».INTERARRIVAL ' TIME (MIN.) ' 315 316 317 10. STATEMENT 55, 64, FIGURE 11: REL .. FREQUENCY OF I N1ERARRI VAL TIMESl " . .TO LI STENING ROOM •''•••". ENDGRAPH 318 319 320 *: .TAB TITLE EJECT 12,NUMBER OF ARRIVALS TO .LIST. ROOM/10 MIN 321 322 323 •*>* . * GRAPH • ' GRAPH TP, TAB. 12, ' . -324 325 326 ORIGIN X-Y 50 ,10 . ,2,6,0,1,15 0, 1,24,2 . 32 7 328 329 i 100 10 S1ATbtobNT STATEMENT STATEMENT 4, 1,;5652 ,.2 0» ARRIVAL RATE/ 10 MIN. 55,70,FIGURE 12: REL. FREQUENCY ..OF ARRIVALS TO L ISTEN1 330 331 332 , . ING ROOM DUR ING 10 ' ENDGRAPH •A. MIN.- • 333 334 335 TAB TITLE EJECT 13, LIST. ROOM SERVICE TIMES. (MIN.}. 336 337 J GRAPH GRAPH ORIGIN TP ,TAB13 50, 10 338 339 340 341 X ,,3,5,1,30 342 Y 0,1,15,3 343 7 STATEMENT 4, 1, % 344 100 STATEMENT 52,19,TRANS IT TIME (MIN.) 345 10 STATEMENT 55 ,58,FIGURE 13: REL. FREQUENCY OF TRANS IT TIME OF L11 .346 STENING ROOM • ' 347 ENDGRAPH. • 348 -».. T 349 • TAB T ITLE • 14, OCCUPANCY OF LIST. ROOM 3 50 EJECT 351 352 - * GRAPH 3 53 GRAPH TP,TAB14 . 3 54 ORIGIN :. 50, 10 355 X ,2,4,6,1,18 356 Y 0,1,16,3 357 7 STATEMENT 4,1*3, 3 58 100 STATEMENT 52,9,OCCUPANCY 359 10 STATEMENT. 55,87,FIGURE 14: REL. FREQUENCY OF NUMBER UF JOBS UCCl 360 •.UPYJNG SIMULTANEOUSLY THE LISTENING ROOM .361 ENDGRAPH- 362 * 363 STO TITLE. SPACE • 41 , THE. RESERV. LISTENING ROOM.AS STORAGE' 3 . 364 365 . • TAB TITLE EJECT 17,OCCUPANCY OF RESERVE LIST. ROOM 366 367 . 368 * GRAPH 369 GRAPH TP,TA617 370 ORIGIN 50,10. . : 371 x • • • , 2 ,6,0, 1,1 5 372 Y . 0,1,24,2. 373 7 ' STATEMENT 4,1 ,% 3 74 100 STATEMENT 52 ,9, OCCUPANCY ' .; ' ..• 375 10 STATEMENT. 55,96,FTCURE 14A: REL.FREQUENCY OF NUMBER OF-JOBS 0C1 '• ! - - 376 ; COPYING SIMULTANEOUSLY THE LISTENING ROOM 377 ENDGRAPH 378 •if 379 STO TI TLE 10,THE SYSTEM AS STORAGE - 380 SPACE 3 381 TAB TITLE 15,SYSTEM TRANSIT TIMES'(MIN..) (-SERVICE 5, WAIT. TIME 1 382 ) 3 83 t J t CT 384 •A- 3 85 * GRAPH 386 GRAPH TP,TAB 15 . 387 ORIGIN 50,10 388 X , ,11 ,0,1 ,9 389 Y 0,2,15,3 390 7 STATEMENT 4, 1, * . 391 GP5S/360/MTS VERSION (4/8/13) A >| 100 •• 10 ES STATEMENT STATEMENT ENDGRAPH 52,19,TRANS IT TIME (MIN.) 55 ,49,FIGURE 15: REL. FREQUENCY OF SYSTEM TRANS IT TIM1 392 393 394 3 95 / n' TAB.' : T IT LE EJECT 16,OCCUPANCY OF SYSTEM (=DE SK,SHE LVE S,LI ST. ROOM) 396 397 398 1-*• GRAPH GRAPH TP ,TAB16 • . •' • :' * • . '. ' • . ' ' 399 400 401 ORIGIN X Y 50,10 ' . ,2 ,4,2,2,20 "'. • " .' 0,2,20,2. 402 403 404 7 100 10 STATEMENT STATEMENT STATEMENT 4,1,% ' 52»9,OCCUPANCY 55 ,79 ,'FIGURE 16 :.REL. FREQUENCY OF NUMBER OF JOBS 0CC1 405 406 407 UPYING SIMUL 1 ANEOUSLY- THE SYSTEM ENDGRAPH 408 409 410 END 411 BLOCK NUMBER SYMBOL REFERENCES BY CARD NUMBER 75 BEI DE 128 133 83 E XI T 91 93 94 95 113 115 116 117 136 139 140 87 FINE 88 110 137 59 GEH10 117 78 GEH11 135 81 GEH13 138 82 GEH14 140 33 GEH2.' 89 35 GEH3 90 36 GEH4 92 37 GEH5 95, • • • 55 . Gbh7 111 57 GEH8 1 12 58 GEH 9 114 70 OF LOW 120 22 ONE 78 14 RES2 72 7 9 8 SER1 80 20 SER12 77 13 SER 2 66 4 STG2 62 115 118 136 141 38 STG3 62 93 96 139 141 60 STG4 94 96 116 118 18 TWO 71 SI : ' • • •' . • TABLE SYMBOLS AND CORRESPONDING NUMBERS 1 TAB1 10 TAB 10 11 TABU 12 TAB12 13 TAB 13 14 . TAB 14 15 TAB 15 16 . TAB 16 17 TAB 17 2 TAB2 ' 3 TAB 3 4 TAB4 •5 TABS • 6 TAB6 . 7 TAB 7 8 TAB8 9 TAB 9 FUNCTION SYMBOLS AND CORRESPONDING NUMBERS 1 ARRIV 2 DESK _4 LIST 3 SHELF * FUNCTION DEFINITIONS. A. * SYSTEM ARRIVAL TIME EXPONENTIALLY DISTRIBUTED 1 FUNCTION KNI L24 0.0 0 .0 . 1 . 104 .2 .222 '• . 3 ' . 355 .4 .5 09 .5 .69 .6 .915 .7 1.2 . 75 1.38 . 8 1 .6 .84 1.83 .88 2.12 .9 2.3 . 92 2.52 .94 2.81 .95 2 .99 .96 3.2 .97 3.5 . 98 3.9 .99 4.6 .99 5 5.3 . 99 8 6.2 . 999 7. 0 .9997 8.0 * * DESK SERVICE TIME EXPONENT I ALLY. DlSTRIBUT ED 2 FUNCTION RNl C24 0.0 0 .0 . 1 -.104 -.2 .222 .3 . 355 .4 .5 09 .5 .69 ... .6 .915 .7 1.2 .75 1.38 . 8 1.6 . .84 1 .83 .88 2.12 .9 '2.3 . 92 2.5 2 .94 2.81 ' • • ' . .95 2.99 .96 3.2 . 97 3. 5 .98 3 .9 • 99 4.6 .99 b 5.3 .998 * 6.2. .999 7.0 .9997 8.0 * SHELF SERVICE TIME EXPONENTIALLY DISTRIBUTED - 3 FUNCTION RNl- C23 0.0 0.0 .154 .840 .28 1 .250 . .390 .420 .483 .580 .562 .7 50 .629 .92 .685 1.08 .73 3 1.25 . 774 1 .42 .808 1 .59 . 837 1.75 . 862 1.92 . 883 2.08 .9 2.25 .916 2 .42 .927 2.58 . 937 2.75 .94 6 2 .92 .953 3.08 .959 3.25 .964 "A" 3.42 1.0 5. 27 •V * LISTENING•ROOM SERVICE TIME GENERALLY DISTRIBUTED 4 FUNCTION. RNl C2 5 0.0. 0.0 .0 24 .063 .071 .18 7 . 131 • . .312 .205 .43 7 .289 .563 .366 .690 .4 36 .820 .49 8 . 940 . 556 1 .06 .623 1.18 .699 1-31 . 754 1.44. . 786 1 .56 .814 1.6 9 .836 1 .81 .855 1.94 .872 2.06 . 888 2.18 .903 2.31 .917 2.44 .927 2.55 . 962 3.19 .989. 4.20 1 .00 Ar 4.820 *• STORAGE DEFINITIONS 10 STORAGE 200 11 STORAGE 150 30 STORAGE 100 40 STORAGE 23 41 STORAGE 23 * TABLE DEFINITIONS 1 TABLE IA 1 1 20 2 TABLE RT : 0 1 30 10 3- TABLE Ml 1 1 30 J 4 QTABLE 2 0 1 30 \ 5 TABL E IA 1 1 30 6 TABLE RT 0 1 20 10 7 TABLE Ml 1 1 60 8 TABLE •• S30 0 1 40 • 9 TABLE Ml 1 1 60 / , 10 TABLE Sll 0 1 60 \ 11 TABLE IA 1 1 30 12 TABLE RT 0 1 15 10 13 TABLE . Ml 0 5 60 14 TABLE S40 0 1. 26 1 5 TABLE Ml 0 2 80 16 TABLE S10 0 2 60 17 TABLE S41 0 1 26 * GPSS & PROGRAM . 1 GENERATE 1 FN1 • 2 EN 1 ER 10 3 TRANSFER .360 38 4 4 MARK 5 ENTER 11 6 QUEUE 2 7 GATE NU • 1 13 8 SEIZE 1 9 DEPART 2 10 ADVANCE 1 FN2 -1 1 RELEASE 1 12 TRANSFER 18 .13' LINK 2 FIFO 14 14 SEIZE 2 15 DEPART 2 16 ADVANCE 1 . FN2 17 RELEASE 2 18 UNLINK 2 20 1 19 TRANSFER 2.2 20 GATE NU 1 1-4 -21 TRANSFER 8 22 TABULATE 1 23 TABULATE 2 24 TABULATE 3 25 LEAVE 11 26 TABULATE . g 27 TABULATE 10 28 ASSIGN 2 Kl 29 TEST LE Cl K3600 87 30 TEST E P3 Kl 33 3 1 TEST E P4 Kl 35 32 TRANSFER 83 33 TEST E P4 Kl 36 34 TRANSFER .750 3 8 83 35 TRANSFER. .960 60 83 36 TRANSFER .730 37 83 37 TRANSFER .110 38 60 3 8 MARK 39 .ENTER 11 40 ENTER 30 41 ADVANCE 6 FN 3 42 LEAVE 30 43 TABULATE 5 . J 44 TABULATE 6 45 TABULATE 7 46 TABULATE 8 47 LEAVE 11 48 TABULATE 9 49 TABULATE 10 J 50 ASSIGN 3 Kl 51 TEST LE Cl K3600 87 , ' 52 TEST E P2 Kl 55 53 TEST E P4 Kl 57 54 TRANSFER 83 • 55 TEST E P4 Kl 58 • • 56 TRANSFER .280 4 83 57 TRANSFER .220 60 83 58 TRANSFER .140 59 83 59 ; TRANSFER .580 4 60 ' 60 MARK 61 GATE SN F 40 70 62 ENTER 40 63 ADVANCE 40 FN4 64 LEAVE 40 65 TABULATE 11 66 TABULATE • 12 67 TABULATE 13 • . 68 TABULATE 14 69 TRANSFER 75 70 ENTER 41 71 ADVANCE 40 FN4 72 LEAVE 41 73 TABULATE ' 17 74 TRANSFER 75 75 ASSIGN 4 Kl 76 TEST E P3 Kl 78 77 TRANSFER .090 4 83 78 TEST LE Cl K360C 87 79 TEST E P2 Kl 81 80 • TRANSFER .380- 3 8 83 81 . TRANSFER .080 82 83 82 TRANS FER .140 4 38 83 LEAVE 10 84 TABULATE 15 85 TABULATE 16 86 TERMINATE 87 . LEAVE TO •8 8 TABULATE 15 89 TABULATE 16 90 TERMINATE 1 * CONTROL CARD s iAkr r STATISTICS CONCERNING THE INFORMATION DESK,SERV.1 FACILITY AVERAGE NUMBER AVERAGE SEIZING PREEMPTING UTILIZATION ENTRIES TIME/TRAN TRANS. NO. TRANS. NO. 1 .557 3379 .593 69 STATISTICS CONCERNING THE INFORMATION DESK,SERV.2 FACIL ITY AVERAGE NUMBER ; , AVERAGE SEIZING PREEMPTING UTILIZATION 2 .385 ENTRIES TIME/TRAN 2439 .569 TRANS . NO. TRANS- NO . STATISTICS CONCERNING THE DESK QUEUE QUEUE MAXIMUM AVERAGE CONTENTS CONTENTS TOTAL ZERO ENTRIES' . ENTRIES PERCENT ZEROS AVERAGE TIME/TRANS $AVERAGE TABLE TIME/TRANS NUMBER CURRENT CONTENTS 2 20 .777 $AVERAGE TIME/TRANS = AVERAGE 5818 4537. TIME/TRANS EX C LU DI NG Z ERO 77. 9 ENTRIES .481 2.186 4 STATISTICS CONCERNING THE DESK USER CHAIN .. USER CHAIN TOTAL ENTRIES AVERAGE CURRENT TIME/TRANS . CONTENTS AVERAGE CONTENTS MAXIMUM CONTENTS 2 TT68 : 1.176 : : : .577 IE DESK INTERARRIVAL TIMES (MIN.) TABLE TAB 1 . ENTRIES IN TABLE 5816 MEAN ARGUMENT .618 STANDARD DEVIATION .808 SUM OF ARGUMENTS 3 598.000 NON-WEIGHTED UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT' FREQUENCY OF TOTAL PERCENTAGE • REMAINDER OF MEAN FROM MEAN 1 5129 88.18 88 .1 11.8 1.616 .471 2 528 9 .07 97. 2 2.7 3.232 1.708 3 111 1 .90 99.1 .8 4.849 2. 945 4 37 .63 99.8 .1 6.465 .4. 183 . 5 8 . 13 99. 9 .0 8.082 5.420 6 2 .03 99.9 .0 9.698 6. 657 7 1 • 01 ' 100.0 .0 11.315 7 .894 REMAINING FREQUENCIES ARE ALL ZERO 80 * •• 00 A- Ar A-1" -V- •»_• 76 * **_ 72 * * .i. A-Ar - A« 4r . _ . — 60 ^ , * ^ ^ A- A* A-*v* or--v 56 * : ~~ ~ * ft ft 52 * A- -x- .. 43 ft , .ftft ** Ar A, •V -v> A. A. -V A- -A-. -I- 1* 44 * 40 * A-36 * • Ar . , _____ _ A. 2 8 ,*. A-24 ft A-20 * Ar 16 » A. I" 12 . * ' • Ar '* ^ sic sic 4 A. • „ Ar r Ar ' . • 'f • • y *f *J" -V * A. Ar _t Ar .. -*"]*•-_• ir *v O Ar X ^- JV .V A A A A A - A _ -Ar Ar A. A. Ar -Ar v'r -A- Ar A* A- A- A-A- A* Ar Ar Ar Ar A- A- AJ- Ar _» Ar Ar Ar Ar Ar A« Ar A» Ar A» Ar Ar _U -A> -Ar A Ar A* Ar Ar Jr Ar Ar A- A» Ar Ar Ar A* Ar A Ar Ar Ar Ar -Ar Ar __• Ar Ar A» __• A* -A. -Lr A -A. A* A» "X- Ar A A_ A* -A» Ar Ar Ar •__• -A" A-A -(r A* A* A» A_ A_ __• Ar <>__ Ar A Ar -J_ A- Ar Aj __" ifr Ay _r jfe j_ 2 ; ' 3 ' '•. 4- 5 6 7 8_ - ~ ~ : INTERARRIVAL TIME (MIN.) *i_• Ar Ar Ar FIGURE l: REL. FREQUENCY OF INTERARRIVAL TIMES NUMBER OF ARRIVALS TO DESK/10 MIN. TABLE TAB2 • ENTRIES I N TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS J 360 16 .lto 5.089 5816.000 NON-WEIGHTfcO \ UPPER OBSERVED PER CENT CUMULAT IVE CUMULATIVE MULTIPLE DEVI ATI ON LIMIT 0 1 FREQUENCY 0 0 OF TOTAL .00 .00 PERCENTAGE . 0 .0 REMAINDER 100.0 100.0 OF MEAN -.000 .061 FROM MEAN -3 .1 74 -2.977 2 3 4 0 0 0 .00 .00 .00 .0 .0 .0 100 .0 100.0 100.0 .123 .185 • 247 -2.781 -2.584 -2.388 5 6 7 1 4 5 . 2 7 1.11 1.38 .2 . 1.3 2.7 99.7 98. 6 97.2 . .309 .371 .433 -2.191 -1.995 - 1.798 8 9 10 12 10 11 3.33 2 .7.7 3.05 6. 1 8.8 11.9 93.8 91.1 88 .0 .495 . 557 .618 -1.602 -1.405 -1.209 11 12 13 20 23 34 . 5.55 .'" 6.3-8 9.44 17. 4 .23.8 33.3 82.5 76.1 66.6 .680' .742 .804 -1.012 . -.816 -.619 14 15 16 27 25 25 7.49 • 6.94. 6.94 40.8 47 .7 54.7 59.1 52.2 45.2 . 866 • 92 8 .990 -.423 -.227 -.0 30 17 18 19 33 20 18 9.16 5.55' . . 4.99 63.8 69.4 74.4 36.1 30 .5 2 5.5 1.052 1.114 1.176 .165 .362 .558 20 21 22 21 15 15 5.83 ' '. 4. 16 4.16 80.2 84.4 88. 6 19.7 15 .5 11.3 1. 23 / 1.299 1.361 .755 .951 1.148 23 24 25 10 13 5 2.77 3.61 1.38 91 .3 94.9 96.3 8 .6 5 .0 3.6 1.423 1 .485 1. 54 7 1. 344 1.541 1 .737 26 27 28 5 3 1 1.3 8 .83 • .27 97 .7 98. 6 98.8 2.2 1.3 1.1 1.609 1 .671 1. 733 1.9 34 2.130 2.327 OVERFLOW AVERAGE VALUE 4 OF OVERFLOW 1.11 32.75 100.0 . .0 J * * . _ 21 * 2.0 * * 19 * 18 * 16* 15 * ITT • * 13 * * . 12 * . ' * 11. * •. * 10 * g- * ' ' • ** ' ** * • . ** *8 *. : — ~ ~ : ~- : ~~" : ; • ** : ~ww * r ** • ....... ** 7 * . ' ** ** / ** '* ** ** ** 6 .* . ' • ** ** . * * * * ** ** '** ** ** *'* ** ** b * • . * ** ** ** ** ** '**• ** ** ** ** ** ** ** ** ** ** ** ** ** 4 '** ** ** . ** ** ** ** ** ** ** ** ** • * ** *'* ' ** ** ** .** ** ** ** ** ** " 3 * * * ' ** ** ** ** **' ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 2 * . ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** .** ** ** ** ** ** ** ** ** ** ** " 1 ** ** ** ** ** ** **' ** ** ** ** • ** ** ** ** ** ** •** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** *# ** ** ** o ********************************* 0 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 " ' : : : : • - . 7 ARRIVAL RATE/10 MIN. FIGURE 2: REL. FREQUENCY OF ARRIVALS TO INF. DESK DURING -10 MIN. DESK TRANSIT TIMES (MIN.), ( = WAIT . S SERV ICE TIME) TABLE. T A'B'3 .". ENTRIES IN TABLE MEAN ARGUMENT . .STANDARD DEVIATION >' . SUM OF ARGUMENTS ) 581/ 1 . U6i> . l.bfO 6196.000 NUN-WEIGH IbU • UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION , LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN • . 1 4338 74. 5 7 74. 5. 25.4. .938 -.041 ... . ; 2 708 12.17 8 6.7 13.2 1.877 .5 95 3 33 3 5.72 92.4 7.5 • 2.W16 1.232 4 19 3 3.31 .-: 9 5.7 •4.2 3.755 1.868 5 117 2.01 97.7 2.2 4.694 2.505 6 49 .84 ' 98.6 1.3 5.632 3.142 . 7 26 .44 99. 0 .9 . 6.571 3.779 • • • , 8 1 8 .30 99.3 .6 7.510 4.416 ... 9 .16 . 2 7 • 99.6 .3 8 .449 ; 10 ". '' 6 • 10 99.7 .2 9.388 5.6 89 11 U .18 99.9 ' .0 10.327 6.326 12 •' • " 2 .03 100. 0 .0 11 .265 6 .963 REMAINING. FREQUENCIES ARE ALL ZERO T »U * •A. •T •J* 1* ; y.. 60 kL-IT-af* 0 57 * -4. *f 5 4 J» -f si. -1* a. •V-5 1 •J* -r **: 48 o, * 45 J, -c 42 • •A* 'V -J* 39 *v T j, •• 36 s»» -i-s>-•V * 33 A* •V A. f 30 •r •j~ 27 s>, * 1* »u -*/* 24 •V J, y^. ' 21 sfc, •V* ~v -V-18 y, s»- sJv -V 15 -*r %** s«* •V 12 'P J> •v 9 V -t-i-*** -a, -or si, K* •sir • s». 6 sV *»• * -sl, sV "V -A. •3 -Y* •** •V sA, *v Jr S.V 0 y, s». *l- -J- -sV si. -J-•V- "V "V ••» -1""Y* si, '«* ,1, si, sr. sr* sA- s>0 s»„ s4, s», s>, s*» -v* -i- --•«•• 'i- "t- *(• -v 'r -v -»* •*(* l" sis. • -X s', sI-sS- J, «V J, A J, J, T -v -r -v -v -*v -v *f *** ^ •"_> "i" *r -V* -v* *v m* "t- ir- •*»"• •4- *JU S*» , **- T--Y» -y -r- ^- 'f -J- -f -y* -i- -J* *r f '-r- •*»» T f T ^^ V »^ ^ <r -V* *»* 'A -"r- 'c- -v V- v* ^ -r* ^ -v ' • 1 2 3:4 5 6 7 8 TRANSIT TIME (MIN.) FIGURE 3: REL. FRE QUENCY OF• TRANST TIMES AT INFORMATION DESK TABLE TAB A ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 3818 .481 1. 226 28-I.OOu NON-WEIGHTED UPPER OBSERVED PER CENT CUMULATIVE CUMULAT IV E MULTIPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 4 53 7 77 .98 77.9 22.0 -.000 -.392 1 655 11.25 89.2 10 .7 2 .077 .422 2 266 4.5 7 93.8 6.1 4. 154 1 .238 3 134 2. 30 96 .1 3.8 6.231 2. 053 4 100 1.71 97.8 2.1 8.308 2 .868 5 56 .96 98.7 1.2 10.385 3.683 6 22 .37 99 .1 .8 12.462 4.499 7 16 .27 99.4 . 5 14.53 9 5 .314 8 12 .20 99.6 . 3 16.616 6. 129 9 12 .20 99.8 .1 18.694 6.945 10 4 .06 99. 9 . 0 20.771 7.760 a 11 4 .06 100.0 .0 22.848 8. 575 REMAINING FREQUENCIES ARE ALL ZERO { A-V-*IV Ar . -_• • * 60 If Ar 00 Ar Ar . 57 V „_ "l™ -<* Ar Ar 1- -V* A. *¥* • Ar Ar ,54 Ay Ar Ar Ar Ar 1' -V -r>r '1* Ar -Ar Ar . *¥-4 8 * -*»' Ar Ar -A- ftft • . 4 5 * Ar A. A Ar A. 't- *r .42 Ar f rj - rJC wV-Ar •"*'*-*•*• 39. v Ar A. 36 Ar •y Ar '1C • A. Ar Ar A* •V 1-Ar Ar • _ .33 K* Ar _lr A. "V* rj- rJC '30 ft • -A- Ar • 27 ' Ar -v -A- Ar -*»' -V ' A, Ar " ' - . "1- *¥* 24 ft Ar : x~C : :—:—7 . *** 21 A. t" Ar Ar •v -»* 18 Ar * Ar Ar Ar ' Ar Ar '<"• -V-J.A -v -V-.15 -A-ft r, - -j< ft* . 1.2 Ar Ar Ar -1- *¥* Ar Ar-Ar -I- I4 Ar" A_ -T-.-r 9 Ar -f A- Jr Ar Ar •V •T* Ar Ar -Ar 1" 6 _—_ . -(* Ar Ar Ar Ar f Ar Ar-Ar . Ar Ar -I* - ' ' 3 Ar Ar -Ar Ar- Ar Ar Ar •V f 0 Ar f • . Ar Ar A- Ar Ar A- Ar Ar A. Ar T"!" "V- -r- -r 'j* ^ £ # ^ # # 3*: sj- .v A, £ ^ _Jc ^ £ ;{c -Jr Ar •v **#-Ar A- Ar Ar Ar rp r,- r^ ^» ^ Ar Ar r Ar ' 0 1 1 .2 3 4.5 6 ' 7 JOBS IN QUEUE FIGURE 4: REL. FREQUENCY OF JOBS, WAITING FOR SERVICE- AT INFORMATION DESK , GRAPH V J, 'f J % •JU 'f •Jr -v Jr • j, '***.•• j, . " . ' *** •A. 80 *. J, 00 ' J, ij; 76 1* v«, -r* -.V JV -V "»* 72 -e-JV J, *V >A--V •** 68 •** -J, X- -JU n> -o -j, j. 64 **r* * J* 60 J, -v *r J~ •v* •A. '«* *r vt, a. •V* "V J, ' • -T 'r» 56 •- •••• ' 52 %v *r J> •V *«--1' J, j. 4 8 V JV ->V sO T* j, •V *•*• A, JV •"•*" 1" A, Jl, 1* IT 4-4 v>, 1" J- >'r •40 'r •*•»* •*»*• 1* 36 vl, * - Jv •V vV J, T> J, Jl, •r- '1* u. vt, •1* T> 3 2 Jr f JV j, J, •***• Jv J, 28 •*Y» J> T JV -<- «y 24 y-J, 'r J. j> 0* . V j, J, •v --v ,u 20 16 •v JV -JV -v J. J, "I" JL, a. 12 * * JV . "T* Jr Jr • '<* -v -A, JV 'r* -v-j- j> • •» rf 8 * J. J , -Jr •Jr -Jr •Jr J, •JV J, 4 'i» J. . -Y* '**• ")*• Jf •*»*• i» • -V -V JV JV -T* '€* 0 J, -y -A. -a* »o ju y* A* J, -J' y, J-»*£ Ji, Jv -vV. vl, V* JV J- JV -JV J. < ,,v 1- T *V* •***. *V* *¥* 1* -"l* V 1 Jr -Jr vV J- J  ->» »V -V Jo- -V J. J.J-X Ji, J, J, vl, J, J, ^ -A, J, JV J, J, J), J, Ji, JV -A* J- JV J' jjjj* Jl, J, Jyv ,r ^v ^v ^v ^s ,r ,,v jfci rf, rf. Jp. JOv -ov rp. rf. rf. JCv ^ 'V' -T" ->" *V» • If* -^s 2 3 ******************************** 4 5 6 INTERARRIVAL TIME (MIN.) FIGURE 5: REL.- FREQUENCY OF INTERARRIVAL TIMES > STORAGE CAPACITY AVERAGE AVERAGE ENTRIES AVERAGE CURRENT MAXIMUM CONTENTS . UTILIZATION ' TlME/TRAN CONTENTS CONTENTS 30 100 / .34 3 .0/3 4534 6 24 S SHELF INTERARRIVAL T IM.ES ( MIN. ) TABLE TAB 5 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 4527 .794 • 974 3598.000 NON-WEIGHTED ' UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT FREQUENCY OF.TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 1 3815 84.2 7 , . • 84.2 15. / 1.258 .21U 2 47 3 10.44 94.7 5.2 2 .516 1 .2 37 3 154 3 .40 9 8.1 1.8 3.774 2.263 4 52 1.14 99.2 .7 5 .032 3.290 5 16 .35 . 99.6 .3 6.290 4.316 - 6 8 .17 99.8 - .1 7. 549 5.343 ( 5 .. 1 1 99.9 .0 8.80( • 6.3C0 •8 2 .04 99.9 . .0 10. 065 7.3 96 9 1 .02 99.9 .0 11.323 8.423 10 0 .00 . 99.9 .0 12.581 9 .449 11 • 1 .02 100.0 .0 13.840 10.476 • REMAINING FREQUENCIES ARE ALL ZERO TABLE TAB6 ENTRIES'IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS J 360 12.572 4.785 4526.UUU NON-WEIGHTED s UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER ' OF MEAN FROM MEAN 0 0 • .00 . 0 100.0 -.000 -2.627 1 0 .00 .0 100.0 .079 -2.418 2 0 . 00 .0 • 100 .0 .159 -2.209 3 8 2.22 2.2 97.7 .238 -2.000 4 2 .55 2.7 97.2 . 318 -1.791 5 9 2.49 5.2 94.7 .397 -1.582 6 13 3.61 8.8 91.1 . 477 -1.3 73 7 14 • 3.88 12 .7 87.2 .556 -1.164 .8 20 5.55 13.3 UJ..6 .636 -.955 9 . 37 10.2 7 28.6 71.3 .715 -.746 10 24 6.66 3 5.2 64.7 .795 -.537 11 27 7.49 42. 7 57.2 .874 -.328 12 35 9 .72 5 2.4 47. 5 .954 -.119 13 22 6.11 " 5 8.6 41 .3 1.034 .089 14 38 10.55 ' 69.1 30.8 1.113 . 298 15 31 8.61 7 7.7 22.2 1.193 .507 16 18 4.99 82. 7 17.2 1.272 .716 17 15 4. 16 86.9 13.0 1. 352 . 925 18 8 2.22 89. 1 10.8 1.431 1 .134 OVERFLOW 39 10.83 100.0 . 0 AVERAGE VALUE OF OVERFLOW 21.87 % * * * ~ *~ 20 * *~ 19 * * 18 * 17 * 16 * 15 * * 14 * 13 * 12 * 11 * • 10 * ** -r- *r* ** * ** ** ** 9 * ** ** ** ** * ftft * * ** ** 8 * ** ft* ft* ** ** ft* ft* ** ft* ** 7 * ft* ** ft* * * ** ft* ** ** ** ** #* .6 * " ft* ** ** *ft ** **. ** ** * ft* ** ** ftft ** ** ** ** •  5. * ft* ** . ** ** ft* ** ** ** * ** ftft * * * * ** ft* ** ** ** ** 4 ** ,** ** ft ft ** ** ** ** ft* ** ** * ** ft* ft* ** **' ** ** ft* ** ** ** 3 * ft* ** ** ft* ** ** ** ft* ft* ft* ** ** ** * •** ft* ** ft* ftft ft* ft* ** ** ** ft* ** ** 2 * ft* ** ft* ft* ft* ** ft* ** ** ** ft* ** ** ** ** ** * ** ** ** ** ** ** ft* . ** ** ** ** ** ** ** ** 1 * ** * ** * * * ft ft* ft* ft* _v -_• ** ** ** ft* ** ft* ** ** ** ** ft* ft* ft* ft* ft* <Ar Ar ft* ft* ** ** ** ** 0 **************** 4***************** ****** ******** *************************** 0 1 2 3 4.5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ARRIVAL RATE/10 MIN. FIGURE 6: REL. FREQUENCY OF ARRIVALS TO SHELVES DURING 10 MIN. SHELF TRANSIT TIMES (MIN) TABLE TAB7 ENTRIES IN TABLE MEAN ARGU ME NT STANDARD DEVIATION SUM OF ARGUMENTS 4528 5 .8 33 b.6Ui 2O415.0UU NUN-WblGHIEU s UPPER 'OBSERVED PER CENT CUMULAT IV E CUMULATIVE MULTIPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 1 60 2 13.29 13.2 86.7 .171 -.862 2 765 16. 89 30.1 69.8 .342 - .684 3 67 4 14. 88 45.0 - 54.9 .514 -.505 4 571 12.61 57.6 42. 3 . 685 -.327 5 304 6.71 64.3 35 .6 .857 -.148 6 264 5.83 1 70. 2 29.7 1 .02 8 .029 7 196 4.32 74.5 2 5.4 1. 199 . 208 8 192 4. 24 78.7 21.2 1.37 1 .386 9 LZti 2.82 ' 8 1.6 18.3 1. 542 10 12 6 2.78 84.4 15.5 1.714 .743 11 12 2 2. 69 8 7.1 12.8 1 .885 .922 12 85 1.87 88.9 11.0 2. 057 1 .100 13 64 1.41 90.3 9 .6 2.228 1.279 14 62 1.36 91.7 8.2 2.399 1.457 15 b6 1.2 3 92.9 / .0 2.5/1 1.6 36 16 50 1 . 10 94. 1 5.8 2. 742 1 .814 17 43 .94 95.0 4.9 2.914 1.993 • 18 37 .81 95.8 4.1 3.085 2.171 .19 17 .37 96.2 3.7 3.256 2.350 20 13 .28 96.5 3.4 3.42 8 2.528 21 15 .33 96. 8 3.1 3 .59 9 2 . 70"/ 22 22 .48 97.3 2.6 3.771 2.886 23 12 .26 97.6 2.3 3.942 3.064 24 18 .39 98. 0 1.9 4.114 3.243 25 11 .24 98.2 . 1.7 4.285 3.421 26 16 .35 . 9-8.6 1 .3 4.456 3.600 2 7 12 • .26 - 98. 8 1.1 4.62b 3 . ( m 28 • 17 .37 99 .2 .7 4.799 3.957 29 8 .17 99.4 .5 4.971 4.135 30 18 .39 99.8 . 1 5. 142 4.314 31 8 .17 - 100.0 .0 5.313 4.492 REMAINING FREQUENCIES ARE ALL ZERO J % 22 * * 21 * * * 20 19 * * * 18 * * 17 16 . * * * ft • 15 * * ft * * 14 13 * * * * * * * * ft ft 12 * * ft * ft .. ft ft 'ft * ft . * ft ft .11 10 ft * ft ft * * • ft * * ft ft * ft ft ft - g ft ft ft * ft * .. ft * ft ft ft ft ft '*. • 8 7 ft ft ft . ft * * - .ft * * ft * ft * * 6 ft ft ft ft ft * * ft ft ft ft ft * ft ft • * ft 5 ft ft ft * ft • ft ft • • * ft ft * .ft ft ft ft ft * , ft ft *-* * •Ar f '. 3 ft * ft * ft ft ft • * * ' ft * ft A' ft * ft ft * * * . ft ft ft ft •A--{-2 1 * ft ft ft ft ft ft * * ft ft ft ft ft ft ft . . ft * * * ft ft ft ft ft ft ft *' ft * * ft ft ft ft * ft ft * • 0 ft ft ft ft * * * * ftft ft ft ft ft ft ft * ft ft ft ft ft ftft ft ft ft ft 1 2 3 ft 4 ft 5 * 6 ft 7 * 8 ft ' 9 * 10 ft. 11 ft 12 ft ft ft *** **************** 13 14 15 TRANSI T TI ME (MIN.) FIGURE 7: REL. FREQUENCY OF TRANSIT TIMES AT SHELVES J OCCUPANCY OF SHELVES TABLE TAB8 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS ) 4528 7.407 3.363 3 3543.000 NON-WEIGH IfcD UPPER ' OBSERVED PER CENT CUMULATIVE CUMULATI VE MULTIPLE DEVIATION LIMIT FREQUENCY CF TOTAL • PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 9 . 19 ' .1 99. 8 -.000 -2.202 1 70 1.54, 1.7 • 98.2 . 134 -1.905 2 158 3.48 5.2 94.7 .269 -1 .607 3 278 6.13 11.3 88.6 .404 -1.310 4 387 8 .54 19.9 80.0 . 539 -1.013 5 473 10. 44 30.3 69.6 .674 -.715 6 552 12.19 42. 5 57.4 . 809 -.418 7 536 11.83 54.3 45.6 .944 -.121 8 526 11.61 66. 0 33 .9 1.079 .1 /6 9 431 9.51 75.5 24.4 1.214 .473 10 342 7.55 33.0 16.9 1.349 .770 11 247 5.45 88.5 11.4 1 .484 1 .068 12 176 3 .88 92.4 7.5 1. 619 1.365 13 118 2 . 60 95.0 4.9 1.754 1.662 14 88 1 .94 96.9 3.0 i .889 1 .960 15 58 1 .28 9 8.2 1.7 2.024 2.257 16 33 .72 9 8.9 1 .0 2.159 2.554 17 17 .37 99.3 . 6 2.294 2.852 18 11 .24 99.6 .3 2.429 3.149 19 . 8 . 17 99. 7 .2 2.564 3.446 20 6. .13 99.9 .0 2.699 3 . 743 21 2 . 04 99.9 .0 2. 834 4.041 22 1. . 02 99.9 .0 2.969 4 .338 23 1 .02 100.0 .0 . 3. 104 4.63 5 REMAINING FREQUENCIES ARE ALL ZERO 22 * 21 * * 20~*~ 1.9 * 18 * TT~*~ * 16 * 15 * 14 * * 13 * *~ 12 * * *11 * — : ww ~ww ww : : * . . * * * *  * 10 * . * ** ** ** *~ • ~** ' ; ** ** " ** • ~~ • " g * * ** ** ** ** * .**•** ** ** ** —g-ir '• : ww 5* -** WW. WW—; WW : ; — * ** ** ****** ** . • 7 * * * _ ____ .  ** ~ ** ** ** r ** **~ ——— - -—. 6 * * ** ** ** ** ** ** ** * * . ** ** ** ** ** ** ** - 5—* ww ** ** ~ ww~ ** ww ww ! ww ww ' * ** ** ** ** ** ** ** ** ** 4 * * ** * ** ** ' ** ** ** _ __ -— ** ** ** ' ** ~** ** ' 3 * * *•* ** ** ** ** ** ** ** ** ** * * ** ** ** ** ** ** ** ** ** ** —2~w ww w% wwr "~^W : ww~ ww WW ww ww ww ww ww * ** ** ** ** ** ** ** ** ** ** ** ** 1 * * ** ** ** ** ** ** ** ** ** ** ** ** ** * * ** ** **" ** "** ** ** ** ** ** ** ** **~ 0 ************************************************************************************************************************** 0 - 1 • 2 3 4 5 6 7 8_ 9 10 11 12 13 14 . . . OCCUPANCY : FIGURE 8: REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE SHELVES STORAGE CAPACITY AVERAGE CONTENTS . AVERAGE ENTRIES UTILIZATION AVERAGE TIME/TRAN CURRENT CONTENTS MAXIMUM CONTENTS ) 11 150 9 . 0 64 .060 10352 3. lbi / 34 TRANSIT TIMES THROUGH REC. COLL. I MIN . ) , {= DESK £ SHELVES) TABLE TAB9 ENTRIES IN TABLE 10 34 5 MEAN ARGUMENT 3.152 STANDARD DEVIATION 4.550 SUM OF ARGUMENTS 32611.000 NON-WE IGHTED UPPER LIMIT OBSERVED FREQUENCY PER OF CENT TOTAL CUMULATIVE CUMULATIVE PERCENTAGE REMAINDER MULTIPLE OF MEAN DEVIATION FROM MEAN 1 2 .3 4940 . 1473 10C7 4/./5 14.23 9.73 4 /. / 61.9 71.7 52.2 38.0 28.2 .31 / .634 .951 -.4^2 -.2 53 -.033 4 5 6 764 421 313 7.38 4.06 3.0 2. 79. 1 83.1 86. 2 20.8 16.8 13.7 1 .268 1. 586 1.903 .186 .406 .625 f 8 9 222 210 144 2 .14 2.02 1 .39 8 8.3 90.3 91.7 11.6 9.6 8.2 2.220 2.537 2. 855 . 84b 1.065 1.284 10 11 12 132 133 87 1.27 1.28 .84 93.0 94. 3 95.1 6.9 5.6 4.8 3.172 3 .489 3.806 1.504 1.724 1.944 13 • 14 15' 64 62 56 .61 , .59 .54 95. / 96.3 .96.9 4 .2 3.6 3.0 4.123 4.441 4.758 2. 163 2.383 2.603 16 •17 18 • 50 43 37 . 48 .41 .35 97.4 97.8 9 8.1 2.5 2.1 1.8 5.075 5. 39 2 5.710 2.823 3 .042 3. 262 19 20 21 17 13 15 . 16 .12 .14 9 8.3 98.4 98.6 1 .6 1.5 1.3 6.02 / 6.344 6.661 3 .482 3.702 3.921 22 23 24 22 12 18 .21 .11 .17 98. 8 98.9 99.1 1.1 1.0 .8 6.97 8 7.296 7.613 4.141 4.361 4.581 25 26 27 11 16 12 . 10 • 15 . 11 99.2 99.3 99.5 .7 .6 .4 /.930 8.247 8.565 4.800 5.020 5.240 28 29 30 17 8 18 .16 .07 . 17 99.6 99 .7 99.9 .3 .2 .0 8. 882 9. 199 9.516 5.460 5.679 5.899 31 REMAINING FREQUENCIES ARE 8 ALL ZERO .0 / 100.0 .0 9. 833 6.119 • J % * 45 0 44 Ar 1» 43 Ar 'r* 42 Ar 41 40 A. -T 39 A. 1" 38 J, -V: Ar -1* • 37 36 Ir 35 Ar ***• 34 •V- •V 33 A. 1" 32 * 't* 31 •V Ar 30 # 29 J. Ar t" 28 J. •V -,_ 27' '(* Ar "V 26 Ar 'O 25 Ar 24 23 Ar •v 2 2 Ar T Ar "V" 21 ft ' 20 -r A. 19 A* ^Ar • 18 ft 17 •A. Ar 16 Ar 15 ft 14 A. Ar •*>*• Ar 13 "<* Ar 12 A- -.^ Ar *v-11 Ar Ar *v Ar -v-10 •A. Ar •v Ar 9 „ Ar '1- Ar Ar 8 * Ar Ar 7 -A- Ar -.*• A Ar "1* -V- * 6 Ar -V" A Al Ar 5 A. I- '1- Ar Ar A-*T* 4 A* •V Ar *f -V* • L J, **«•* * 3 -Ar *V "f Ar Ar Ar Ar Ar T* 2 A T -A--»v Ar Ar -|> -_* Ar '«* Ar Ar ft * 1 A -V Ar Ar Ar Ar **» Ar Ar 'J- •¥* ft * ft ft * 0 A Ar -A* A Ar Ar -Ar ^r" "V* -** *V- 1' Ar JrA ->*•-." Ar Ar Ar Ar Ar Ar Ar Ar -J* <*-A J»*_ *?r *»* -\- 'i- --i- -*.* -v* -v -*»v •**» *v* *v* «,*• -*r* 'r* *•** *»-rk r_I A- A Ar A. Ar A. *!C *|- r,- r,- rj* r( Ar A. Ar A> -A-r -A- Ar A. A, vO Ar Ar «V >l 1" -V- "C f -v •*)*• *V -V -V *l* T I* _* 1 :********************** ************************************ 1 2 3 4 5 6 7 8 9 10 U 12 13 14 15 TRANS IT TIME (MIN.) FIGURE 9: REL. FREQUENCY OF TRANS IT TIMES THROUGH THE RECORDINGS COLLECTION OCCUPANCY OF RECORD. COLLECT. ( = DESK £ SHELVES ) TABLE TABID ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS ) 10345 9. 402 4.707 9 7267.000 NON-WEIGHTED UPPER OBSERVED PER CENT CUMULATIVE CUMULATI VE MULT IPLE DEVIATION LIMIT 0 1 FREQUENCY 12 74 OF TOTAL . 11 .71 PERCENTAGE . 1 .8 REMAINDER 99.8 99.1. OF MEAN -.000 .106 FROM MEAN -1 .997 -1.785 2 3 4 219 411 550 2.11 3.97 5.31 . 2.9 ' 6. 9 12.2 97.0 93. 0 87.7 .212 .319 .425 - 1.572 -1 .360 -1. 147 5 6 7 788 876 1 021 7.61 8.46 9.86 19.8 28. 3 38.1 8 0.1 • 71.6 61.8 .531 .638 .744 -.935 -.722 -.510 a 9 10 1023 958 883 9.88 9.26 8.53 48.0' 57.3 65.8 5 1 .9 42.6 34.1 .8 50 . 957 1.063 -.29Z -.085 .126 11 12 13 706 645 471 6. 82 6 .23 4. 55 72. 7 78.9 83.4 27.2 21.0 16.5 1.169 1.276 1.382 .3 39 .551 .764 14 15 ' 16 3.5 t 304 248 3.45 2.93 2. 39 86. 9 89.8 92.2 13.0 10.1 7 .7 1 .488 1. 595 1.701 .976 1.189 1.401 17 18 19 214 135 85 2 .06 1.30 . 82 94.3 95.6 96.4 5.6 4.3 3.5 1.808 1.914 2.020 1.614 1.826 2.039 20 21 22 73 60 6 1 .70 .57 .58 97.1 97.7 98.3 2.8 .2.2 1.6 2. 127 2.233 2.339 2.251 2.463 2.676 23 24 25 3 6 •26 27 • .34 .25 .'26 98.6 98.9 99. 2 1.3 1.0 .7 2.446 2.552 2*658 2.888 3.101 3.313 26 • 27 28 20 17 12 • 19 . 16 .11 99.4 99. 5 99. 6 .5 .4 ' .3 2. 765 2.871 2.977 3. 526 3.738 3.951 29 30 31 13 8 4 .12 .07 .03 99.8 99. 8 99.9 . 1 .1 . 0 3.084 3.190 3.297 4.163 4.375 4.588 32 4 33 .4 REMAINING FREQUENCIES ARE ALL ZERO .03 .03 99 .9 100. 0 .0 .0 3.403 3 .509 4.800 5.013 * J 15 * 14 * 13 "*~ * 12 * 11 10 9 * * ** ** ** ** ** ** * ** ** ** 8 * ** ** ** ** ** ** ** ** ** ** ** ** ** ** 7 * * . ** ** ** ** ** ** ** ** * ** ** ** ** ** ** : 6 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 5 * ** ** ** ** ** . ** ** Jv J> If* -v-** .. ** ** ** ** ** ** ** ** * ** ** ** ** **" ** ** *• 4 * ** ** . ** ** ** ** ** ** ** ** ** ** ** ** ** ** -J, -Ju. ** ** ** ** ** ** ** ** ** ** 3 * * * * * ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 2 * * * * * * * ** ** ** * * ** ** ** ** ** ** ** * ** *'* ** ** ** ** ** ** ** ** ** ** ** ** * ** *•* ** ** ** ** ** ** ** ** ** ** ** ** ** 1 * ** ** ** * * ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** . ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 10 11 ************************************ 12 13 14 15 16 17 18 19 OCCUPANCY FIGURE 10: REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY DESK AND SHELVES STORAGE CAPACITY AVERAGE AVERAGE ENTRIES AVERAGE CURRENT MAXIMUM CONTENTS UTI LIZATION : TIME/TRAN CONTENTS CONTENTS J 40 23 20.925 .909 1634 46.116 21 23 LISTENING ROOM INTERARRIVAL TIMES (MIN.) TABLE TABU ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 1612 2.216 2.191 3573.000 NON-WEIGHTED UPPER OBSERVED P ER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE . REMAINDER OF MEAN FROM MEAN 1 776 48.13 ' 48. 1 51.8 .451 -.555 2 299 18.54 66.6 3 3.3 . 902 -.098 3 211 13.08 79 .7 20.2 1.353 .357 4 144 8.93 88.7 11.2 1 .804 .8 13 5 54 3 .34 92.0 7. 9 2. 255 1.270 6 36 2 .23 94.2 5.7 2.706 1.726 7 35 2.17 96. 4 3.5 3.158 2.182 8 17 1 .05 97.5 2.4 3.609 2.639 9 16 .99 98.5 1 .4 4.060 3.095 10 12 .74 99.2 . .7 4.511 3.551 11 6 .37 99.6 • . .3 4.962 4.008 ' • . 12 1 . 06 99.6 .3 5.413 4.464 13 2 .12 99.8 . 1 5. 865 4.92.0 14 2 .12 99 .9 .0 6. 316 5.377 15 1 .06 100. 0 .0 6.767 5.833 REMAINING FREQUENCIES ARE ALL ZERO wooy 9-NiiM3isn 01 sawn lVArnavnaiNi JO A0N3n03yj *iay :TI 3^0013 CNItW) 3WI1 3VAI yyVHBlNI : ; ; ST *fl £1 Zl U OT 6 8 1 9 5 V £ Z I *********************************** ****************** 0 * * * * * * * * * * ; * * * * ••* * *• * * *7 * *_ * * * * * * * * * * * * * 8 *__ * * * * * * * * * * * ZT ' , _4 * , * * * * * * * 91 ' * . » * * * * * OZ : . * : £ * * * * <7Z. ; - • - ] * * ** * ez : : * £ * * * * Z£ * * * * * . * .9£ . '. : * : * * * * * Ot> . ' ; \ * » * * * . * ; : : * : •_* * * * * 8+7 * * * Z5 * * * 95 * * * 09 TABLE TAB 12 • ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 360 4 .474 2.0 39 1611.000 NON-WEIGHTED UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIAT ION LIMIT 0 1 FREQUENCY 5 1.9 OF TOTAL 1.38 5 .27 PERCENTAGE 1.3 6. 6 REMAINDER 98.6 93.3 OF MEAN -.000 .223 FROM MEAN -2.194 -1.704 2 3 4 36 57 74 9 .99 15.83 20.5 5 16.6 32.4 53. 0 83.3 6 7.5 46. 9 .446 .670 .89 3 -1.213 -.723 -.232 5 6 7 67 37 39 18.61 10.27 10 .83 71 .6 81.9 92.7 28.3 18.0 7. 2 1. 117 1.340 1.564 .257 .747 1 .238 1. -28 2.219 2. 709 8^ 9 10 15 7 4 4.16 1.94 1.11 96 .9 98. 8 100.0 3V0 1 . 1 .0 17787 2 .011 2. 234 REMAINING FREQUENCIES ARE ALL ZERO / "1 *-.* 22 * 21 * * "ftftT ft* 20 * T 19 * ft* 18 * ** ** ft ** ** 17 * . ** ** ft ft* 'ft * 16 . * . ft* ** * ** ** V 15 ft ft* ft* ** * ft* ** ** 14 * ft* ftft ft* * . • . ** ' ' 13 * ft* * ft ** * ** ft ft *ft 12 ft ** ft* ** * ft* ft* . '** .11 . ft* : ** ** . '*. ft* *ft ' ,** • . TO * 'ft* ft* • '.ft* ** ** * * * ft* ** ft* ** ** ft* . 9 ft ftft . ** . ft * ft* ft* * *ft ftft *ft ** : ,** ft* 8 * . ft* ** *.* * * ** • ** * .** * *, ** '. ft* ** ** 7 * ftft ft* ft* ** ** * * ft .** ** ft* ** ft* ** '6 ft '. ** ** ft* ** ** ** * . ft * ** ft* ** ft* ** 5 * • ** ft* ft * ** ftft ** ft* ft * * •ft* ** ** ft* ft* ft* s • . • - " • 4 ft *ft . ** '• ** ** ft* • '** ** ** ft ** ft* ** ** ft* ** ** ** 3 * ** ft* • ** ** ** ** ftft ** ft , ** *ft ft* .** ' ** ftft • ** *.* 2. ft ft* ** ** . ** ** *ft ** ft* ft ** ft* ** ft* • ** ** ftft ** 1 * ft* ** ftft • ft* **• ** ** ** ** ** ** ft ft ft ~~' **• ft * ** ** ** **. ** ** ** ** • 3 ' 6. .8 :******************************************** 9 10 11 12 13 14 ARRIVAL RATE/10 MIN. FIGURE 12: .REL. FREQUENCY OF ARRIVALS TO LISTENING - ROOM DURING 10 MIN. LIST. ROOM SERVICE T IMES (MIN. ) TABLE TAB 13 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION. SUM OF ARGUMENTS J 1613 46 .275 36.^50 /4642.0U0 NUN-WEIGH!tU UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULT I PLE DEVIATION LIMIT 0 5 FREQUENCY 9 89 OF TOTAL .55 5.51 PERCENTAGE .5 6. 0 REMAINDER 99.4 93.9 OF MEAN -.000 .108 FROM MEAN -1.259 -1.123 10 15 20 ' 79 9 2. 13 2 4 .89 5.70 8.18 10.9 1.6.6 24. 8 89. 0 ' 83.3 75-1 . 216 .324 .432 -.987 -.851 -.714 25 30 35 122 119 114 7.56 " 7.37 7.06 32.4 39. 8 46.8 67.5 60.1 53.1 .540 .648 . 756 -.578 -.442 -.3 06 40 45 50 V3 105 125 5. lb 6. 50 7 .74 • 5 2.6' 59.1 66.8 4/.3 40.8 33. 1 • 864 .972 1. 080 - . 1 fU -.034 . .101 55 60 65 99 56 46 6.13 3.47 2 .85 7 3.0 7 6. 5 79.3 26.9 23.4 20.6 1.188 1 .296 1.404 .237 .373 .509 /O 75 80 44 18 25 2. 12 1.11 1.54 82.0 8.3.T 84.7 17 .9 16.8 15.2 1.512 1.620 1. 728 .645 .781 .917 .85 90 . 95 34 34 25 2. 10 2.10 1. 54 86. 8 88.9 90.5 13.1 11.0 9.4 1.836 1.944 2.052 1 .053 1.189 1.325 100 105 1 10 26 15 7 1.61 .92 . 43 92. 1 93.0 93.4 7. 8 6.9 6.5 2.160 2.269 2.37 7 1.461 1.597 1.734 115 120 125 6 3 • 12 .37 .18 . 74 93.-8 94.0 94.7 6. 1 5.9 5.2 2.485 2.593 2.701 1.870 2.006 2.142 130 . .135 140 10 4 5 .61 .24 .30 95.4 95.6 95. 9 4. 5 4.3 4.0 2.809 2.917 3 .02 5 2.278 2.414 2.550 145 150 . 1 55 8 7 5 .49 .43 .30 96.4 96.8 97.2 3.5 3.1 2.7 3.133 3.241 3.349 2. 6 86 2.822 2.958 160 165 170 9 '-8 , 10 .55 .49 .61 9 7 ..7 98.2 98.8 2.2 1.7 1. 1 3.457 3.56 5 3.673 3. 094 3.230 3.366 175 180 185 4 ' . 5 3 .24 .30 .18 99 .1 99.4 99.6 .8 .5 .3 3.781 3 .389 3.997 3.502 3 .638 3.774 190 6 .37 100.0 .0 4.105 3.910 REMAINING FREQUENCIES ARE ALL ZERO 15 * _ 14 * _ 13 * * . 12 * * 11 * ' *  10 * _ g * *  8 * ' .' *' * * —•* : ~ 1 ••* * * * * * * * * * 6 * * * * * * * * * . * * * . * * * * * * * 5 * * * * * * * * * * * * * * * * * * * * * * * * * 4 * * * * •*. * * * * * * '* * * * * * * * * • * * * * * * * 3 * * * •* * * * * * * * N * * * * * * * * * * * * * * •* * * * * * 2 * * * * * *" * * * * A. * * * * * * * * * * * * * * * * * * * * * * .1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * o ******************************* ************************************************************************************** 5' 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 TRANSIT TIME (MIN.) FIGURE 13: REL. FREQUENCY OF TRANSIT TIME OF LISTENING ROOM • ; ; • ; J OCCUPANCY OF LIST. ROOM • TABLE TAB 14 ENTRIES IN TABLE MEAN ARGUMENT . STANDARD DEVIATION SUM OF ARGUMENTS J 1613 20 .050 2. 238 32341.000 NON-WEIGHTED \ UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULT I PLE DEV IATION LIMIT FREQUENCY OF TOTAL PERCENTAGE- REMAINDER OF MEAN FROM MEAN • 0 '0 .00 .0 100.0 -.000 -8.957 1 0 . 00 .0 100.0 .049 -8.511 2 0 .00 . 0 100.0 .099 -8.064 3 -• o .00 .0 100.0 . 149 -7-617 4 0 .00 .0 100.0 . 199 -7.170 5 . - o .00 .0 100.0 .249 -6.724 6 0 . 00 .0 100.0 .299 -6.277 7 0 .00 . 0 100.0 .349 -5.830 8 0 .00 .0 100.0 .398 -5.3 83 . . 9 . 1 . 06 .0 . 99.9 .448 -4.936 10 1 .06 . 1 99.8 .498 -4.490 11 3 .18' • .3 99.6 . 548 -4. 043 12 5 .30 . .6 99 .3 .598 . -3.596 13 19 1 .17 1.7 98.2 .648 -3.149 14 24 1 .48 3.2. 96.7 . 698 -2. 703 15 44 2. 72 6.0 93-9 .748 -2.256 16 47 2.91 8.9 91.0 .797 -1.809 17 71 4.40 13.3 86.6 . 847 - 1.362 18 101 6. 26 19. 5 80.J4 .897 -.915 19 150 9 .29 28.8 -• 71.|l .947 -.469 20 255 15.80 44.6 55. B .997 -.022 ' 21 365 22.62 67.3 32.6 1.047 .424 22 527 32.67 100. 0 .'o 1 .097 .871 REMAINING FREQUENCIES ARE ALL _ERO 00 ** ** ** 00 ** ** 15 '* • * 14* * ** ** ** ** ** ** 13 * * . • ** ** ** ** JV-JV f ***• * J- JV -*»* **- ** ** . 12 * * JU Jv ** ** ** ** ** * ** JV Jv ** 11 * ** ** ** Jv JV Jr-** ** * ** •A. *7V ** 10 * ** ** ** ** * ** Jv JV ** 9 * * ** ** ** ** ** ** ** ** * ** ** ** ** 8 * ** ** ** ** ** ** ** ** * ** ** ** ** 7 * * . . . ** ** ** ** ** ** ** ** * ** ** JV JV 6 * ** ** 3r & * . • ** ** JV JV •V "i» ** * •A. JV *-r» *r- ** OV JV -v -V ** ** 5 * ** ** ** ** * JV -JV *v •***• ** ** ** JV Jv T» -V * JV JV ** JV Jv TT V- ** Jv Jv 'f 4 * ** ** ** JV Jv ** JV JV *V f * ** ** ** J* Jv ** * ** ** ** ** ** **. 3 * ** ** ** ** ** • * ** ** ** ** ** ** * ** ** ** : JV Jv -f If4 ** ** 2 * :** ** ** ** ** Jv Jr ** ** * ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** 1 * ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** - Jv Jv ** ** * ** ** ** t* ** ** ** ** ** 10 11 12 13 14 15 r.* ********************************** ******* 16 17 18 19 20 21 22 23 OCCUPANCY FIGURE 14: REL. FREQUENCY OF NUMBER OF JOBS • OCCUPYING SIMULTANEOUSLY THE LISTENING ROOM THE RESERV. LISTENING ROOM AS STORAGE STORAGE CAPACITY AVERAGE AVERAGE ENTRIES AVERAGE CURRENT MAXIMUM CONTENTS UTILIZATION TIME/TRAN CONTENTS CONTENTS ) 41 23 10.281 .447 846 43. /63 9 2 3 OCCUPANCY OF RESERVE LIST. ROOM TABLE TAB 1.7 ENTRIES IN TABLE 837 MEAN ARGUMENT 12.549 STANDARD DEVIATION • SUM 5.50 7 OF ARGUMENTS 10504.000 NON-WEIGHTED • UPPER ' LIMIT OBSERVED PER FREQUENCY ' OF CENT' TOTAL CUMULATIVE CUMULATIVE PERCENTAGE REMAINDER MULTIPLE OF MEAN DEVIATION FROM MEAN U 1 2 2 .4 9 .23 .47 1 .07 .2 99./ .7 99.2 1.7 98.-.QUO .079 .159 -z.2 /a -2 .096 -1.915 3 4 5 12 16 32 1.43 1.91 3.82 • 3.2 96.7 5. 1 94. 8 • 8.9 91.0 .239 .318 .398 -1.733 -1.552 -1.370 •6 . 7 8 47 57. 54 5.61 6.81 6.45 14. b 85.4 21.3 78.6 27.8 7 2.1 .4/8 . 557 .637 -1.189 -1.007 -.826 9 10 11 53 ' 47 . 56 6.33 5.61 6. 69 34.1 65.8 39.7 60.2' 46 .4 53.5 .717 . 796 .876 -.644 -.462 -.281 12 .13 \ . 14 5 2 51 39 6.21 6 .09 4.65 52. 6 47.3 5 8.7 41.2 63.4 3 6.5 .956 1.03 5 1.115 -.099 .081 .263 .15 16 17 40 41 ' 35 • 4.7 7 4.89 4. 18 68.2 31.7 73.1 26.8 77.2 22.7 1.195 1.274 1.354 .444 .626 .808 • 18 19 20 32 29 34 3.82 3.46 4. 06 81.1 -18.8 84.5 15.4 88.6 11.3 1.434 1.513 1.593 .98y 1.171 1.352 21 3 5 '22 ' 60 REMAINING FREQUENCIES. ARE ALL ZERO 4.18 7.16 92.8 7.1 100.0 .0 1.673 1.753 1.534 1.715 J % '22 * * 21 * * * ,20 19 * * 18 ft * ft 17 16 * ft ft 15 ft ft ft 14 13 ft . ft •* 12 ft * * 11 10 * ft • ft 9 * ft ft 8 7 * ft * '6 ft ft * ** ** ** * * * * * * - Ar Air -Jr -V f T* ** ** 5 4 ft ft * ** ** ** ft* ** ** ** ** ** ** ** ** ** ft* ** ** ** ft* ** ** ** ** ** ** ** 3 ft ft ft ** ft* ** ** ** ** ftft ** ** ** ** ** ** ** ** ** ** ** ** •\-* * * * ft* ** ** ft* ** ** 2 1 * ft ft ** . ** . ••. ** ft* *ft ** ** ** ** ** ft* ** ** ** ** ** ** ** ** , ** ** ** ** ** ** ** ** ** ft* * * ** ** ** - •' . 0 ft ftft ** ft* ** ** ** ** ft* ft* ****************************************************************************************** 0 1 2 3 4 5 6 7 8 9 10 ** ** ****************** 11 12 ** ** ************ * * 13 14 OCCUPANCY FIGURE 14A: REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE LISTENING ROOM J STORAGE CAPACITY AVERAGE AVERAGE ENTRIES AVERAGE CURRENT MAXIMUM CONTENTS UTILIZATION TIME/TRAN CONTENTS CONT ENTS / 10 200 40. 318 .201 6123 23.711 37 78 \ SYSTEM TRANSIT TIMES (MIN.) (=SERVICE & WAIT. TIME ) TABLE TAB15 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS 6086 3. 3 67 11.707 20493.000 NON-WEIGHTED UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT FREQUENCY OF .TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 2 58 5 42.47 42.4 57.5 -.000 -.2 87 - • 2 2112 .34.7 0 77.1 22.8 .593 -.116 .4 655 10.76 87. 9 12.0 1 .187 .054 6 229 3.76 91.7 8. 2 1. 781 .224 8 .112 1 . 84 93.5 6.4 2.375 .3 95 10 64 1.05 94. 5 5.4 2 .969 .566 12 44 .72 95.3 4. 6 3. 563 .737 14 30 .49 95.8 4.1 4.157 .908 16 25 .41 96.2 3.7 4.751 1.079 18 18 .29 96.5 3.4 5.345 1. 249 20 11 .18 96. 6 3 .3 5.939 .1.420 22 9 . 14 96. 8 3. 1 6.533 1 .591 24 7 .11 96 .9 3.0 7. 127 1.762 26 1 1 . 18 9 7. 1 2 .8 7.721 1.933 28 9 .14 9 7.2 2.7 8. 315 2.104 30 17 .27 97.5 2.4 8.909 2.274 32 .11 • 18 97.7 2.2 9.503 2.445 ,34 8 .13 9 7.8 2. 1 10.097 2.616 36 4 . 06 97.9 2.0 10.691 2.787 • ' 38 , 15 .24 9 8.1 , 1.8 11 .285 2.958 40 3 .04 98.2 1.7 U.879 3. 129 42 •• 6 .09 9 8.3 1 .6 12.473 3.299 •44 6 .09 9 8. 4 1.5' 1 3.067 3.470 46 9 .14 98.5 1.4 13.661 3.641 48 11 .18 .98.7 1.2 14.255 3.812 50 • 7 .11 98.8 1. 1 14.848 3.983 52 3 .04 98 .9 1.0 15.442 4.154 54 2 .03 98. 9 1.0 1 6 . 03 6 4.324 56 6 .09 99.0 . 9 16.630 4.4 95 58 '2 .03 99.0 .9 17.224 4.666 60 2 .03 99. 1 . 8 17.818 4.837 62 3 .04 99.1 .8 18.412 5.008 . 64. . 2 .03 • 99.2 .7 19 .006 5.179 66 3 • .04 99.2 . 7 19.600 5.350 68 0 .00 • 99.2 .7 20.194 5. 520 70 : 2 .03 99.2 .7 20.788 5.691 , 72 0 .00 99.2 . 7 21.382 5.862 74 l . 01 99.3 .6 21.976 6.033 76 2 . 03 99. 3 .6 22 .570 6.204 78 2 .03 99.3 . 6 23. 164 6.375 80 1 .01 .99.3 ' .6 23.758 6.545 8 2 • 2 .03 99.4 .5 24.352 6 .716 J 84 2 .03 99 .4 .5 24.946 6.887 8.6 5 .08 99. 5 .4 25.540 7 .058 88 0 .00 99.5 .4 26.134 7.229 90 1 .01 99 .5 .4 26.728 7.400 92 0 .00 99. 5 .4 27.322 7.570 94 1 .01 99.5 .4 27.916 7. 741 J 96 1 .01 yy. 5 .4 28.510 f-,912 98 1 .01 99. 6 • 3 2 9.103 8 .083 100 1 .01. 99.6 . .3 29.697 8.254 102 4 .06 99.6 .3 30.29 1 8.425 104 1 .01 99.7 .2 30.885 8.595 106 0 .00 .99.7 .2 31.479 8.766 108 .0 .00 99. 7 .2 32.073 8.937 110 • 1. .01 99.7 . 2 32.667 9.108 \ • 112 1 .01 " 99.7 • .2 33.261 9.279 / . 114 0 .00 ' 99.7 .2 33.855 9.450 116 0 .00 99.7 .2 34.449 9.620 118 0 .00 99.7 .2 35.043 9.791 120 0 .00 '. 99. 7 .2 35.637 9 .962 122 0 .00 99.7 .2 36.231 10. 133 124 0 . 00 99.7 .2 36.825 10.304 126 0 .00 99. 7 .2 37.419 10.475 128 0 .00 99.7 .2 38.013 10.645 130 2 . 03 99. 7 .2 38.607 10.816 132 0 ' .00 99. 7 .2 39.201 10.987 134 ' 1 .01 99.7 .2 39.795 11.158 136 2 . 03 99.8 .1 40.389 11.329 138 0 .00 99.8 . 1 40.983 11.500 140 1 .01 - 99.8 .1 41.577 11.670 142 . 1 .01 99.8 .1 42.171 11 .841 144 0 .00 99.8' .1 42.76b 12.0 12 • • 146. • 0 .00 : . 99.8 .1 43.35 8 : 12.183 .148 . • • .1 . .01 99. 8. .1 43.952 12.354 150 0 .00 99.8 .1 44.546 12.525 . 152 . 0 . 00 99.8' .1 . 45.140 12.696 • . 154 1 .01 99.8 .1 45.734 12.866 . 156 0 .00 99 .8 . 1 46.328 13.037 .  • OVERFLOW 7 .11 100.0 .0 AVERAGE VALUE OF OVERFLOW 167.00 30 28 * * * 2 6 * 0 * * * ~*~ *. * 0 * "*~ ft ft * 24 ft * ft ft ft ft ft * ft "ft-* ft IT ft 2 2 ft ft ft 20 ft ft * ft ft ft ft ft ft 18 ft ft ft ft ft ft * ft 16 ft ft * ft ft ft ft ft ft 14 ft ft ft ft ft ft * ft ft ft * 12 ft ft ft ft ft 10 "*" * ft ft ft * ft ft ft 8 * ' ft * ft ft * ft * ft ft * ft * ft * ft 6 •* * ft ft ft ft ft ft ft ft ft. ft ft ft ft ft ft "ft" * ft "ft-* ft * ft 2 * ft ft ft ft. ft ft ft :****** ****** ********************** ******************************** 6 8 10 12 14. 16 TRANS IT TIME (MIN.) FIGURE 15: REL. FREQUENCY OF SYSTEM TRANSIT TIMES OCCUPANCY OF SYSTEM ( = OESK.SHELVES,L1ST . ROOM) TABLE TAB 1 6 ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS J 6 08 6 40 .922 9.2 30 249055.000 NON-WEIGHTED \ UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 0 .00 .0 100 .0 -.000 -4.433 2 2 .0 3 . 0 99.9 . 048 -4.216 4 3 - .04 .0 99.9 .09 7 -4.000 6 1 ' .Qi .0 99 .9 .146 -3.783 8 4 .06 . 1 99.8 . 195 -3.566 10 2 , .03 .1 ' 99.8 .244 -3.350 12 1 .01 .2 99.7 .293 -3.133 14 4 .06 . 2 99. 7 . 342 -2.916 16 5 .08. . .3 99.6 .39 0 -2.700 18 11 .18 . 5 99.4 .439 -2 .483 20 40 .65 1.1 98.8 .488 -2.266 22 86 1 .41 2.6 97 .3 .537 -2.050 24 90 1.47 4. 0 95.9 .586 -1.833 26 98 1.61 5.7 94.2 .635 -1.616 28 13 3 2.18 ' 7. 8 92.1 .684 - 1.399 30 220 3.61 11.5 88.4 .733 -1.183 32 . . 270 4.4,3 15.9 84.0 . 781 -.966 34 365 5. 99 •• 21.9 78 .0 .830 -.7 49 36 48 8 .8.01 29.9 70.0 . 879 -.533 38 594 • 9.76 39.7 60.2 .928 - .316 40 64 1 10.5 3 50. 2 49. 7 .977 - .099 42 554 9.10 59.3 40. 6 1.02 6 .1 16 44 484 7. 95 67.3 32.6 1.075 .333 46 44 0 7 .22 74.5 25.4 1. 124 . 550 48 364 5. 98 80.5 19.4 1.172 .766 50 336 • 5.52 86.0 13.9 1.221 .983 52 249 4. 09 90 .1 9.8 1.270 1.200 54 18 5 3.03 • 93. 1 6.8 1.319 ' 1.416 56 146 2 .39 9 5.5 4.4 1.368 1.633 58 95 1.56 • - 97.1 2 .8 1.417 1.8 50 60 4 2 .69 : 97. 8 2.1 1.46 6 2.066 62 34 .55 98.3 1.6 1.515 2.2 83 64 25 .41 98. 7 1 .2 1.563 2.500 66 16 .26 99.0 .9 1.612 2.716 68 10 .16 99 .2 .7 1.661 2. 933 70 17 .27 99.4 .5 1 .710 3 .150 72 • 14 .23 99.7 . . 2 1.759 3.366 74 11 .18 99.9 .0 1.808 3.5 83 fh 5 .U8: 99. V .0 1 .857 3.800 78 1 -.01 10 0.0 . 0 1. 906 4.016 REMAINING FREQUENCIES ARE ALL ZERO 40 * 3 8 * 36 34 32 30 * 28 * Ar 2 6 * 24 * 2 2 * 2 0 * 18 * A. -v A-•v Ar Ar -T> *¥• ** ** Ar Ar •-»*• 16 V A. Ar Ar 1" Ar Ar Ar A> •*#*• -v* Ar Jr Ar Ar 14 T* J-*v Ar Ar ** -**• ** 12 Ar '>-Ar *V ** Ar A-v -v-Ar Ar •V 1" Ar A-"i* f-«<r Ar •V 1" -Ar Ar -!*• -i* ** Jr Ar ** ** 10 8 s-*V Ar Ar T Ar «*r *f -*>» Ar Ar -T* -V ** Ar A, T -v Ar Ar Ar Ar ->•• 1» Ar Ar *v V A, Ar -V- T -Ar Ar ft* ** ** ** Ar Ar -v* Ar -Ar 6 V -Ar T V Ar Ar T-Ar -A-•*V> -TT-** ft* Ar Ar "f -V* Ar Ar ** ft* Ar Ar Ar Ar ** ** Ar Ar Ar Ar Ar Ar Ar Ar T" -V ** ** Ar Ar *<*• -v 4 . •' , 2 Ar T Ar Ar Ar -V ** Ar A -I-•A- v«, Jr Ar 1" V *v -A- Ar Ar -Jr -v- -V* '1-J; Ar Ar jlr ** * * -»"*-»*• Ar A. "T-'f -A- A. Ar Ar V *V ^ rjjl X5 ** ** Ar Ar T T-Ar Ar ** ** ** • ' 0 Or '|-Ar Ar A- Ar Ar- Ar -Ar Ar Ar Ar '»*" -lv 1" 'f "V 'i- *V- *V "V" I"' 2 Ar Ar Ar A- -A- Ar Ar Ar A» A- -Ar ,J J _(,. "** -V- "V* "V -*»** J4W/* •*»* "V" -»*• r,» Jjsrf Vf-6 10 . 14 Ar Ar 3jc:«{e 'r ^ ^ 18 .. Ar Ar -»* rp Ar ArAr •V T-*T\ 22 Ar Ar •V A. Ar Ar Ar A-26' Ar Ay A Ar Jr Jr „«, J- Ar A- A- Ar Ar A. Ar Ar I- •***• T- -I* *t* -V* "7* T 3 0 34 ** ******** 38 Ar Ar -V-Ar Ar A. Ar 42 ** ft* ft* ** * 46 - ** Ar Ar Ar Jj* Ar *i> -i1 r r T* 5 0 . ft* A> -Ar Ar Ar Ar Ar •V* -V -V •V'.T'T"' : 54 ** ** ************************************ 58 62 66 70 74 78 ... OCCUPANCY FIGURE 165 REL. FREQUENCY OF NUMBER OF JOBS OCCUPYING SIMULTANEOUSLY THE SYSTEM RFS NO. 771184 UNIVERSITY OF B C COMPUT ING.CENTRE MTSIAN120) 00:41 :42 12-31-70 < USER: WULI DEPARTMENT: COMM **** ON AI 00: 41:44 ' **** OFF AT 00:51:04 **** ELAPSED TIME 560. 043 SEC.  **** CPU.TIME USED 130.934 SEC. **** STORAGE USED 8349.18 PAGE-SEC. CARDS READ 418  **** LINES PRINTED 9904 **** PAGES PRINTED 2 84 **** CARDS PUNCHED' 0  **** DRUM READS 9 5 **** RATE FACTOR 0.6 APPROX. COST OF THIS RUN C$15. 17' **** FILE STORAGE 0 PG-HR. .00 **LAST SIGNON WAS: 00:23:20 12-30-70 END CPU TIME USED: ASSEMBLY: 3.262 SECONDS EXECUTION: 123.857 SECONDS EXECUTION TERM IN AT ED $SIGNOFF MMMMM MMMMM TTTTTTTTTTTTTTTTTTTTTTTTT SSSSSSSSS MMMMMM MMMMMM TTTTTTTTTTTTTTTTTTTTTTTTT SSSSSSSSSSSSS MMMMMMM. MMMMMMM TTTTTTTTTTTTTTTTTTTTTTTTT SSSSSSSSSSSSSSSSS MMMMMMMM MMMMMMMM •- TTTTT SSSSSS SSSSSSS • ' • MMN'NNMMMM KMMMMMMMM TTTTT SSSSS SSSSMMMMMMMMMM MMMMMMMMMM TTTTT sssss MMMMM MMMMM 1 I.J TT SSSSSS MMMMM NtMMMM MMMMM MMMMM TTTTT SSSSSSSSSSSSS MMMMM MMMMM MMMMM MMMMM TTTTT SSSSSSSSSSSSS MMMMM • MMMMMMMMMMM MMMMM TTTTT . SSSSSSSSSSSSS MMMMM MM MM MMMMM .MMMMM TTTTT SSSSSSS MMMMM MMMMMMM MMMMM TTTTT sssss MMMMM MMMMM .MMMMM TTTTT sssss MMMMM MMM MMMMM TTTTT sssss ssssMMMMM MMMMM TTTTT SSSSSSS SSSSSSS MMMMM MMMMM TTTTT SSSSSSSSSSSSSSSSS MMMMM MMMMM TTTTT SSSSSSSSSSSSS MMMMM MMMMM. TTTTT SSSSSSSSS J 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Country Views Downloads
China 32 21
United States 13 0
United Kingdom 6 0
Russia 3 0
Japan 3 0
Canada 2 0
Taiwan 2 0
France 1 0
City Views Downloads
Beijing 24 0
Unknown 15 5
Shenzhen 7 21
Ashburn 7 0
Tokyo 3 0
Redmond 2 0
Delta 2 0
Kunming 1 0
Seattle 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0101781/manifest

Comment

Related Items