UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Physiological and biochemical responses to diet and exercise Noble, Rosemary Jane 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1972_A6_7 N62.pdf [ 6.27MB ]
Metadata
JSON: 831-1.0101523.json
JSON-LD: 831-1.0101523-ld.json
RDF/XML (Pretty): 831-1.0101523-rdf.xml
RDF/JSON: 831-1.0101523-rdf.json
Turtle: 831-1.0101523-turtle.txt
N-Triples: 831-1.0101523-rdf-ntriples.txt
Original Record: 831-1.0101523-source.json
Full Text
831-1.0101523-fulltext.txt
Citation
831-1.0101523.ris

Full Text

PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES TO DIET AND EXERCISE by ROSEMARY JANE NOBLE B.H.E., U n i v e r s i t y of B r i t i s h C o l u m b i a , 1969 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the D i v i s i o n of Human N u t r i t i o n S c h o o l of Home Economics V/e a c c e p t t h i s t h e s i s as c o n f o r m i n g t o the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH-COLUMBIA O c t o b e r , 1972 In present ing th i s thes i s in pa r t i a l fu l f i lment of the requirements for an advanced degree at the Un ive rs i t y of B r i t i s h Columbia, I agree that the L ib ra ry sha l l make i t f r ee l y ava i l ab le for reference and study. I f u r the r agree that permission for extensive copying of th i s thes i s f o r s cho l a r l y purposes may be granted by the Head of my Department or by h is representa t i ves . It is understood that copying or pub l i c a t i on o f th i s thes i s fo r f i nanc i a l gain sha l l not be allowed without my wr i t ten permiss ion. Department of The Un ivers i t y of B r i t i s h Columbia Vancouver 8, Canada ABSTRACT The purpose of t h i s s t u d y was t o i n v e s t i g a t e work performance on a s e m i - d e f i n e d , low c a l o r i e d i e t d u r i n g d a i l y p e r i o d s of l i g h t and m o d e r a t e l y heavy a c t i v i t y . F o u r male g r a d u a t e s t u d e n t s v o l u n t e e r e d f o r the t e n week stu d y which was d i v i d e d i n t o f i v e e x p e r i m e n t a l p e r i o d s . D u r i n g P e r i o d 1 ( c o n t r o l ) the s u b j e c t s r e c e i v e d a b a l a n c e d , n o r m a l d i e t of u s u a l f o o d s p r o v i d i n g a p p r o x i m a t e l y 3600 c a l o r i e s p e r day and m e e t i n g the Canadian D i e t a r y S t a n d a r d s f o r a l l n u t r i e n t s . D u r i n g t h i s two week p e r i o d , a "normal" l e v e l of a c t i v i t y was m a i n t a i n e d . P e r i o d 2 c o n s i s t e d of t e n days on a s e m i - d e f i n e d l o w c a l o r i e d i e t w i t h c o n t i n u e d "normal" a c t i v i t y . The l o w c a l o r i e d i e t provided, a p p r o x i m a t e l y 1800 c a l o r i e s d a i l y , p l u s one m u l t i p l e v i t a m i n p i l l . I t met the Canadian D i e t a r y S t a n d a r d s f o r a l l n u t r i e n t s . P e r i o d 3 was a r e p e a t of P e r i o d 1, two weeks d u r i n g w h i c h the s u b j e c t s r e c e i v e d a p p r o x i m a t e l y kOOO c a l o r i e s , p e r day, of the c o n t r o l d i e t . A g a i n , "normal" a c t i v i t y was m a i n t a i n e d . P e r i o d k c o n s i s t e d of t e n days of the same low c a l o r i e s e m i - d e f i n e d d i e t as P e r i o d 2, w i t h an a d d i t i o n a l d a i l y energy e x p e n d i t u r e , p e r s u b j e c t , of a p p r o x i m a t e l y 500 c a l o r i e s . i i Period 5 was the same as Periods 1 and 3, two weeks of the control diet with "normal" a c t i v i t y . Several p h y s i o l o g i c a l variables were measured during the l a s t two days of each experimental period to ascertain the e f f e c t s of the treatment conditions on the cardiorespiratory and general f i t n e s s of the subjects. Strength measurements and maximal oxygen uptake determinations remained unchanged f o r the duration of the study, whereas, physical work capacity (FrfC 170) decreased continually, beginning in the t h i r d experimental period. Total body weight decreased during Periods 2 and 4. Period 4, which involved increased physical a c t i v i t y caused s l i g h t l y more weight loss than Period 2. Anthropometric measurements, body composition, and body density were only s l i g h t l y changed, the changes p a r a l l e l i n g the changes in body weight. Pasting blood samples were taken twice during each experimental period; midway through the period and on the l a s t day. Twenty-four hour urine samples were also c o l l e c t e d on the f i n a l day of each study period. Although some minor changes did occur, most biochemical parameters remained within normal l i m i t s . The blood glucose concentrations decreased during Periods 2 and k and plasma free f a t t y acid l e v e l s increased. Plasma cholesterol l e v e l s decreased during Periods 2 and k, as did the h e m a t o c r i t , h e m o g l o b i n , t o t a l serum p r o t e i n , serum a l b u m i n , and b l o o d u r e a n i t r o g e n c o n c e n t r a t i o n s . Plasma V i t a m i n s A and E, as w e l l as the serum V i t a m i n C l e v e l s a l s o d e c r e a s e d d u r i n g P e r i o d s 2 and 4. U r i n a r y t h i a m i n e e x c r e t i o n i n c r e a s e d , p o s s i b l y i n response t o the g r e a t e r p e r c e n t a g e of c a l o r i e s d e r i v e d from endogenous f a t s t o r e s G e n e r a l l y s p e a k i n g , the low c a l o r i e d i e t s i t u a t i o n s were w e l l t o l e r a t e d by the s u b j e c t s . P h y s i o l o g i c a l measurements i n d i c a t e d a change o n l y i n p h y s i c a l work c a p a c i t y , which d e c r e a s e d d u r i n g the s t u d y . B i o c h e m i c a l d e t e r m i n a t i o n s r e v e a l e d d e f i n i t e a l t e r a t i o n s ; however, most par a m e t e r s remained w i t h i n the normal l i m i t s . ACKNOWLEDGMENT I would l i k e t o thank my a d v i s o r , Dr. M e l v i n L e e , f o r h i s h e l p and s u p p o r t t h r o u g h o u t the s t u d y ; Dr. S t a n l e y Brown and Dr. Kenneth C o u t t s f o r t h e i r i n v a l u a b l e h e l p w i t h the p h y s i o l o g i c a l measurements; Dr. John B i r k b e c k f o r h i s m e d i c a l a d v i c e ; M i s s U s e Borgen f o r h e r p a t i e n c e and g u i d a n c e w i t h the b i o c h e m i c a l a n a l y s i s ; Don McKenzie f o r h i s u n l i m i t e d knowledge of s t a t i s t i c s and computers; and l a s t , b ut n o t l e a s t , a v e r y s p e c i a l t h a n k s t o my f o u r s u b j e c t s , D. A., J . E., D. M., and W. M., w i t h o u t whom i t a l l would n o t have been p o s s i b l e . T h i s s t u d y was s u p p o r t e d i n p a r t by G r a n t No. 8865-10 fro m the Defense R e s e a r c h B o a r d , Department of N a t i o n a l D e f e n s e , Canada, and a g r a n t from the Re s e a r c h Committee, U n i v e r s i t y of B r i t i s h C o l u m b i a . TABLE OF CONTENTS v CHAPTER PAGE I INTRODUCTION 1 Introduction to the Problem 1 Purpose of the Study • 2 II REVIEW OF LITERATURE . h Relation of Diet to Physiologic Response and Work Performance h Variation i n Body Composition with Changes in Caloric Intake. 12 Estimation of body composition 13 Validity of body composition determination 15 Composition of weight loss as a result of caloric restriction 17 Assessment of Physical Fitness 18 Maximal and submaximal tests 18 Strength tests... 21 Adaption to Caloric Restriction 22 Actual measurements of adaptation. 23 Dietary modifications and resulting biochemical alterations, 2h III METHODS AND PROCEDURES 30 Subjects 30 Experimental Periods 31 Physiological Procedures 36 Biochemical Procedures 39 S t a t i s t i c a l Analysis hi IV RESULTS AND DISCUSSION ¥ f Physiological Data Mf Changes i n body weight and body composition. .. *+5 v i CHAPTER PAGE P h y s i o l o g i c a l Data (con't) Maximal oxygen uptake 53 PWC 170 56 Strength determinations.. 59 Anthropometric measurements 60 Biochemical Data 61 V SUMMARY 79 REFERENCES ? 83 APPENDIXES 93 A. N u t r i e n t Content - Normal D i e t 9h B. N u t r i e n t Content - Low C a l o r i e D i e t . 95 C. Raw Scores.... 96 D. Sample C a l c u l a t i o n s . . 112 v i i LIST OF FIGURES FIGURE PAGE 1 D a i l y T o t a l Body Weight. I n d i v i d u a l Subject Weights **7 2 Maximal Oxygen Uptake. Means and Standard D e v i a t i o n s 51*-3 PWC 170. Means and Standard D e v i a t i o n s 57 v i i i LIST OF TABLES TABLE PAGE I Nutrient Content of Semi-defined Low Calorie Diet 35 II Summary of Procedures ...... h2 III Summary of analysis of variance -Physiological measurements .»••••••••• ¥f IV Total body weight of subjects on the last day of each test period. Means and standard deviations h6 V7 Lean.body weight of subjects on the last day of each test period. Means and standard deviations h6 VI Weight of body fat of subjects on the last day of each test period. Means and standard deviations *+8 VII Per cent body fat of subjects on the last day of each test period. Means and standard deviations.............. hS VIII Mean Urine Volumes.... • ••• 51 IX Maximal oxygen consumption determinations on subjects at the end of each test period. Means and standard deviations 53 X PWC 170 determinations on subjects at the end of each test period. Means and standard deviations.. 56 XI Hand-grip strength determinations on subjects at the end of each test period. Means and standard deviations 59 XII Strength determinations on subjects at the end of each test period. Means and standard deviations • •• 59 XIII Means and standard deviations of selected anthropometric measurements taken at the end of each test period 62 ix TABLE PAGE XIV Summary of analysis of variance -Biochemical determinations 63 XV Fasting blood glucose values of subjects determined on samples taken in the middle and at the end of each test period. Means and standard deviations 63 XVI Serum cholesterol levels of subjects determined on samples taken i n the middle and at the end of each test period. Means and standard deviations 66 XVII Hemoglobin levels of subjects determined on blood samples taken i n the middle and at the end of each test period. Means and standard deviations 68 XVIII Hematocrit levels of subjects determined on blood samples taken i n the middle and at the end of each test period. Means and standard deviations 6 8 XIX Total serum protein levels of subjects determined on samples taken i n the middle and at the end of each test period. Means and standard deviations 69 XX Serum albumin levels of subjects determined on samples taken in the middle and at the end of each test period. Means and standard deviations 6 9 XXI Blood urea nitrogen (BUN) levels of subjects determined on samples taken i n the middle and at the end of each test period. Means and standard deviations ••• 70 XXII Serum Vitamin A levels of subjects determined on samples taken i n the middle and at the end of each test period. Means and standard deviations .- 72 XXIII Serum Vitamin E levels of subjects determined on samples taken i n the middle and at the end of each test period. Means and standard deviat ions • • 72 9 X TABLE PAGE XXIV Serum V i t a m i n C l e v e l s of su b j e c t s determined on samples taken i n the middle and at the end of each t e s t p e r i o d . Means and standard d e v i a t i o n s 7*+ XXV U r i n a r y thiamine l e v e l of su b j e c t s determined on samples c o l l e c t e d a t the end of each t e s t p e r i o d . Means and standard d e v i a t i o n s . . . 7h CHAPTER I INTRODUCTION I n t r o d u c t i o n to the Problem The a b i l i t y of man t o m a i n t a i n a c c e p t a b l e l e v e l s of work performance on a d i e t i n s u f f i c i e n t i n c a l o r i e s has n o t been t h o r o u g h l y i n v e s t i g a t e d . T h i s i s p a r t i c u l a r l y t r u e when the l e v e l s of energy e x p e n d i t u r e as w e l l as the c a l o r i e i n t a k e a r e v a r i e d . N o r m a l l y , the body o b t a i n s i t s f u e l f r om the c a l o r i e s p r e s e n t i n the f o o d s consumed. When i n s u f f i c i e n t c a l o r i e s a r e a v a i l a b l e from t h i s s o u r c e , body s t o r e s and t i s s u e s a r e broken down and u t i l i z e d ; l i v e r s t o r e s of g l y c o g e n a r e d e p l e t e d f i r s t , f o l l o w e d by a breakdown of p r o t e i n and a d i p o s e t i s s u e s . A d e c r e a s e i n t h e c a l o r i c i n t a k e o v e r an extended p e r i o d of t i m e , i n d e p e n d e n t of l e v e l s of o t h e r e s s e n t i a l n u t r i e n t s , w i l l e v e n t u a l l y l e a d t o m a l n u t r i t i o n . T h i s s t a t e can be i d e n t i f i e d t h r ough changes i n t o t a l body w e i g h t and body c o m p o s i t i o n which r e f l e c t the a v a i l a b i l i t y and u t i l i z a t i o n of body energy s t o r e s . These s t o r e s a r e a l s o a f f e c t e d by t h e s t a t u s of o t h e r n u t r i e n t s i n a g i v e n i n d i v i d u a l . U t i l i z a t i o n of body energy s t o r e s , o r , the i n d i v i d u a l ' s c a p a c i t y f o r energy o u t p u t , i s an i m p o r t a n t f a c t o r i n work performance and o t h e r p h y s i o l o g i c a l t e s t s . W i t h o u t adequate f u e l a v a i l a b l e , performance w i l l d e t e r i o r a t e . Tbe c r i t e r i a most o f t e n used t o d e f i n e work performance a r e p h y s i o l o g i c a l r e s p o n s e s , work c a p a c i t y , body c o m p o s i t i o n , and n u t r i t i o n a l s t a t u s . P urpose of the Study Under a v a r i e t y of s p e c i a l c o n d i t i o n s , i n c l u d i n g m i l i t a r y p a t r o l s , m i l i t a r y and c i v i l i a n s u r v i v a l c o n d i t i o n s , r e s c u e m i s s i o n s , and s i m i l a r e m e r g e n c i e s , lo w c a l o r i e d i e t s may be r e q u i r e d o r i n d i c a t e d f o r r e l a t i v e l y s h o r t p e r i o d s of t i m e . An i m p o r t a n t t e s t of t h e e f f e c t i v e n e s s of such d i e t s i s the a b i l i t y t o s u p p o r t a r e a s o n a b l e l e v e l of a c t i v i t y o r work performance f o r s e v e r a l d ays. The purpose of t h i s s t u d y was t o i n v e s t i g a t e the a b i l i t y of a low c a l o r i e b a l a n c e d d i e t t o s u p p o r t s h o r t - t e r m work performance a t two l e v e l s of energy e x p e n d i t u r e . The c a l o r i e c o n t e n t and c o m p o s i t i o n of the d i e t and the l e v e l o f energy o u t p u t were the two i n d e p e n d e n t v a r i a b l e s i n v e s t i g a t e d . Changes i n body w e i g h t , body c o n f i g u r a t i o n , and body c o m p o s i t i o n a r e i m p o r t a n t i n d i c a t o r s of the n u t r i t i o n a l adequacy of the d i e t . Changes i n work performance were a s s e s s e d by t e s t i n g maximal oxygen u p t a k e , submaximal work c a p a c i t y and v a r i o u s s t r e n g t h measurements. S e l e c t e d measurements of n u t r i t i o n a l s t a t u s were made i n o r d e r t o d e t e c t b i o c h e m i c a l changes which may have r e s u l t e d f r o m the changes i n d i e t a r y i n t a k e . The v a r i o u s t e s t s were performed t o i n d i c a t e the body's r e s p o n s e to such a d i e t ; how well i t was tolerated, any changes that resulted and whether adaptation to the diet occurred. It was recognized that both the dietary changes and the imposed a c t i v i t y l e v e l might influence the demand f o r , and u t i l i z a t i o n of, nutrients. CHAPTER I I REVIEW OP LITERATURE R e l a t i o n of Diet to P h y s i o l o g i c Response and Work  Performance The human body has a -remarkable c a p a c i t y f o r s u r v i v i n g w i t h o u t f o o d f o r l o n g p e r i o d s of time ( D r e n i c k e t a l . , 1 9 6 4 ; C a h i l l , 1 9 7 0 ; Young and Scrimshaw, 1 9 7 1 ) , p a r t i c u l a r l y when an adequate w a t e r s u p p l y i s a v a i l a b l e (Thomson e t a l . , 1 9 6 6 ) . However, any type of n u t r i t i o n a l d e f i c i e n c y w i l l e v e n t u a l l y •produce a d e f i n i t e d e t e r i o r a t i o n i n work performance ( T a y l o r e t a l . , 19^5; H e n s c h e l e t a l . , 1 9 5 4 ; T a y l o r e t a l . , 1 9 5 ^ ) . T h e r e f o r e , a compromise between th e s e two extreme s t a t e s must be o b t a i n e d i n o r d e r t o m a i n t a i n i n d i v i d u a l s i n a s t a t e of u s e f u l p h y s i c a l f i t n e s s on a c a l o r i e r e s t r i c t e d d i e t . T o t a l s t a r v a t i o n f o r time p e r i o d s as s h o r t as two days o r l o n g e r r e s u l t s i n k e t o s i s , h y p o g l y c e m i a , p h y s i c a l weakness and m e n t a l l e t h a r g y ( A s h l e y e t a l . , 1 9 6 1 ; D r e n i c k e t a l . , 1 9 6 4 ; S c o t t , 1 9 6 4 ; C o n s o l a z i o e t a l . , 1 9 6 6 ; 1 9 6 7 ) . Accompanying t h e s e s t a t e s a r e a n e g a t i v e n i t r o g e n b a l a n c e i n d i c a t i n g e x c e s s i v e body p r o t e i n c a t a b o l i s m and l a r g e m i n e r a l and u r e a l o s s e s ( C o n s o l a z i o e t a l . , 1 9 6 7 ) . E v e n t u a l l y , t h e s e c o n d i t i o n s l e a d t o p h y s i c a l and p h y s i o l o g i c a l i n e f f i c i e n c y and, f i n a l l y , i f a l l o w e d t o c o n t i n u e l o n g enough, d e a t h . The advantages of providing an allowance of food rather than t o t a l starvation include water conservation, prevention of ketosis, avoidance of hypoglycemia, maintenance of mental alertness, preservation of physical strength and s a t i a t i o n of hunger (Brozek et a l . , 19^6; Taylor et a l . , 1957; Rogers et a l . , 1 9 6 6 ) . The extent to which these conditions are avoided i s determined by the type of food allowance provided. In a normal person, ketosis can r e s u l t from carbohydrate deficiency, such as occurs with a high f a t intake; i t i s not only the r e s u l t of a negative c a l o r i c balance. Thus, the most antiketogenic and water-conserving low c a l o r i e d i e t would contain the greatest proportion of carbohydrate (Consolazio et a l . , 1 9 6 8 ) . Experimental studies of the e f f e c t s of food deprivation over various periods of time began around the turn of the century. One of the e a r l i e s t experiments on controlled semistarvation was the Carnegie study published in 1919 (Benedict et a l . ) . Over a period of four months, the c a l o r i c intake of twelve men (Squad A) was reduced in progressive steps from 2200 c a l o r i e s to 1600 c a l o r i e s , and f i n a l l y to 1500 c a l o r i e s . Another twelve men (Squad B) received 1400 c a l o r i e s d a i l y f o r twenty days. The f i n a l weight loss f o r Squad A was 10.7 per cent, and Squad B, 6 . per cent. The energy cost of walking decreased, p a r a l l e l 6 to the d e c r e a s e of the b a s a l m e t a b o l i c r a t e (BKR), w h i l e m e c h a n i c a l e f f i c i e n c y improved. R e s p i r a t o r y e f f i c i e n c y (Squad A) d e c r e a s e d by about 8 p e r c e n t . The g r i p s t r e n g t h d e c l i n e d s l i g h t l y ( f r o m 49 to 47 kg) i n Group A, but n o t Group B. Maximum t a p p i n g r a t e was s l i g h t l y reduced i n bo t h g r o u p s , and endurance (number of c h i n - u p s ) was d r a s t i c a l l y r e d u c e d . The d i f f e r e n t e f f e c t s of the two d i e t s were thought t o be r e l a t e d t o the d i f f e r e n c e s o b s e r v e d i n t o t a l body w e i g h t l o s s of the two g r o u p s . W h i l e the C a r n e g i e e x p e r i m e n t was s t i m u l a t e d by World War I , World War I I broug h t on the M i n n e s o t a e x p e r i m e n t (Keys e t a l . , 1950). T h i s e x t e n s i v e s t u d y i n v o l v e d t h i r t y - t w o young men o v e r a p e r i o d of t w e n t y - f o u r weeks. They were g i v e n a reduced d i e t of 1570 c a l o r i e s p e r day (50 gm p r o t e i n ) f o l l o w e d by t w e l v e weeks of r e h a b i l i t a t i o n . The energy e x p e n d i t u r e of the s u b j e c t s was a l s o c o n t r o l l e d . The mean body w e i g h t l o s s a t the end of the s e m i s t a r v a t i o n p e r i o d was 23.64 p e r c e n t of the c o n t r o l v a l u e and was acco u n t e d f o r by a l o s s of both f a t and a c t i v e t i s s u e . Maximal oxygen u p t a k e was s i g n i f i c a n t l y d e c r e a s e d , as were s e v e r a l s t r e n g t h measurements (hand g r i p and back l i f t ) , i n d i c a t i n g a r e d u c t i o n i n p h y s i c a l f i t n e s s and work c a p a c i t y . A f t e r t w e l v e weeks of n u t r i t i o n a l r e h a b i l i t a t i o n the r e c o v e r y was found t o be i n c o m p l e t e . No r e c o v e r y was seen f o r r e s p i r a t o r y e f f i c i e n c y i n a n a e r o b i c work. About 25 p e r c e n t of f u n c t i o n a l l o s s was r e c o v e r e d f o r the p u l s e r a t e i n c r e m e n t , r e s p i r a t o r y e f f i c i e n c y i n a e r o b i c work, and back muscle s t r e n g t h ; about 30 t o 35 p e r c e n t f o r oxygen p u l s e and VO2 p e r minute i n a e r o b i c work, H a r v a r d F i t n e s s T e s t , hand g r i p s t r e n g t h and speed of l e g movement. The b e s t r e c o v e r y was seen f o r oxygen deb ( 4 3 . 5 p e r c e n t ) and l a c t a t e ( 6 1 . 8 p e r c e n t ) i n a n a e r o b i c work, but even t h i s was f a r from c o m p l e t e . The two s t u d i e s j u s t d i s c u s s e d demonstrated a number of s i m i l a r i t i e s . Host n o t a b l e were the r e d u c t i o n i n c a l o r i e s t o a p p r o x i m a t e l y the same d a i l y i n t a k e and the f a c t t h a t both e x p e r i m e n t s were c a r r i e d out o v e r a p e r i o d of s e v e r a l months. The major d i f f e r e n c e s were i n the amount of body w e i g h t l o s t as a p e r c e n t of the o r i g i n a l c o n t r o l v a l u e and the r e s u l t i n g r e s p o n s e i n work p e r f o r m a n c e . The g r e a t e r w e i g h t l o s s was a s s o c i a t e d w i t h a much l a r g e r d e c l i n e i n p h y s i o l o g i c r e s p o n s e . S i m i l a r r e s u l t s were found i n a n o t h e r s e r i e s of e x p e r i m e n t s which s t u d i e d the e f f e c t of g r e a t e r c a l o r i c r e s t r i c t i o n s f o r a s h o r t e r p e r i o d of time ( T a y l o r , B u s k i r k , e t a l . , 1 9 5 7 ) • T h i s s e r i e s was prompted by the a u t h o r s ' e a r l i e r f i n d i n g s t h a t i n complete f a s t i n g f o r 2 1/2 and 4 1/2 d a y s , the performance d e t e r i o r a t i o n , measured as a poor t o l e r a n c e f o r e x h a u s t i n g work and impairment of speed, and c o o r d i n a t i o n , was due, i n p a r t , t o d e h y d r a t i o n , l i v e r 8 damage, and a c i d o s i s ( T a y l o r e t a l . , 1945; H e n s c h e l e t a l . , 1954; T a y l o r e t a l . , 195*0- Thus, the purpose of t h e i r l a t e r study was t o e x p l o r e the minimum c a l o r i e i n t a k e n e c e s s a r y t o p r e v e n t these changes. As i n the p r e v i o u s s e r i e s , the s u b j e c t s performed hard work ( w a l k i n g 3.5 mph, 10fo g r a d e , e q u i v a l e n t of 1200 c a l o r i e s d a i l y ) t h r o u g h o u t t h e p e r i o d of c a l o r i c r e s t r i c t i o n . D u r i n g s e r i e s a, f i v e hundred and e i g h t y c a l o r i e s p e r day as pure c a r b o h y d r a t e ( w i t h a supplement of 4.5 gm NaCl) p r e v e n t e d k e t o s i s and l i v e r damage, but f a i l e d t o m a i n t a i n adequate b l o o d s u g a r v a l u e s o v e r a t w e l v e - d a y p e r i o d . V/ith 1010 c a l o r i e s p e r day f o r 24 day s , as i n s e r i e s b, s a t i s f a c t o r y b l o o d s u g a r l e v e l s were m a i n t a i n e d ( T a y l o r e t a l . , 1957). The maximum VO2 p e r k i l o g r a m p e r minute d i d not change i n e i t h e r e x p e r i m e n t . G r i p s t r e n g t h d e c l i n e d s l i g h t l y , 4.5 p e r c e n t i n s e r i e s and 2.7 p e r c e n t i n s e r i e s b ( n o t s i g n i f i c a n t ) . F a s t e s t speed of l e g movement d e t e r i o r a t e d 11.5 p e r c e n t i n s e r i e s a., and 7 p e r c e n t i n s e r i e s b ( s t a t i s t i c a l l y s i g n i f i c a n t ) . A comparison of the changes of g r i p s t r e n g t h and maximal O2 v e r s u s a l o s s of body w e i g h t observed i n the M i n n e s o t a study and the l a t e r s e r i e s by T a y l o r e t a l . , i n d i c a t e s t h a t n e i t h e r f u n c t i o n d e c r e a s e d u n t i l t he body w e i g h t l o s s approached a p p r o x i m a t e l y t e n p e r c e n t . T h i s was so when s u f f i c i e n t c a l o r i e s , K a C l , v i t a m i n s and w a t e r were provided to prevent k e t o s i s , dehydration and hypoglycemia. I f s e m i s t a r v a t i o n progressed beyond a ten to s i x t e e n per cent weight l o s s , c a r d i o v a s c u l a r i n e f f i c i e n c y developed with i n c r e a s i n g anemia which f u r t h e r l i m i t e d oxygen t r a n s p o r t c a p a c i t y and s e r i o u s l y a f f e c t e d p h y s i c a l work performance (Simonson, 1 9 7 1 ) . R e s t r i c t e d c a l o r i c i n t a k e i n a c t u a l i n d u s t r i a l s i t u a t i o n s has been proven to c u r t a i l work output a c c o r d i n g l y . An unusual opportunity f o r a l a r g e s c a l e experiment on the e f f e c t of u n d e r n u t r i t i o n and n u t r i t i o n a l r e h a b i l i t a t i o n on i n d u s t r i a l performance was presented i n Germany during World War I I (Kraut and M u l l e r , 1 9 5 0 ; Kraut et a l . , 1 9 5 0 ) . The subjects were f o r e i g n workers ( I t a l i a n and Russian) on a low c a l o r i c i n t a k e v/ith weights averaging 6 . 5 kg and 7 . 5 kg, r e s p e c t i v e l y , below the prewar standard weight of the German p o p u l a t i o n . The c a l o r i c i n t a k e ranged from 2300 to 3100 c a l o r i e s d a i l y , depending on whether the occupation was c l a s s i f i e d as moderate, heavy, or very heavy; the intake was not adequate to cover requirements. At the same time, the average p r o d u c t i v i t y of the I t a l i a n workers was 7 7 per cent of the German prewar output i n the same p l a n t s , and the p r o d u c t i v i t y of the Russian workers was only 70 per cent. A f t e r f i v e months, with a c a l o r i c supplementation of 600 to 700 c a l o r i e s , the p r o d u c t i v i t y of the I t a l i a n workers increased to 93 per cent, w h i l e the 10 Russians increased to 8k per cent of the German prewar output. The average increase of the body weight was 2 . 5 and 3 . 0 kg, respectively. It i s doubtful whether the marked increase of the output was e n t i r e l y due to n u t r i t i o n a l r e h a b i l i t a t i o n , since the lower productivity of slave labour was more l i k e l y not due to undernutrition alone. It i s possible that the general treatment of the workers improved, together with the c a l o r i c supplementation; in other words, the motivation changed. However, some of the non-nutritional f a c t o r s , which could be responsible f o r the low p r o d u c t i v i t y , prevailed during the entire period of the experiments, and the r e s u l t s suggest that the increase of the c a l o r i c intake was an important f a c t o r . An experiment measuring "m i l i t a r y e f f i c i e n c y " reported no detrimental e f f e c t on the capacity f o r hard physical work of a diet consisting of 1897 c a l o r i e s per day f o r fourteen days, as compared to 3663 c a l o r i e s per day (Crowdy, 1 9 6 9 ) . (The amount of protein in each ration was 110 and 120 gm per day, r e s p e c t i v e l y ) . The energy d e f i c i t of the low c a l o r i c group f o r the entire fourteen days was estimated at approximately 2 2 , 0 0 0 c a l o r i e s . The weight l o s s during t h i s time was 2 . 2 kg (a c a l o r i e d e f i c i t of 2 2 , 0 0 0 c a l o r i e s i s equivalent to 2 . 8 kg). The difference may have been due to a retention of water. The subjects on 11 the h i g h c a l o r i e r a t i o n a l s o l o s t w e i g h t ( 1 . 3 kg) d u r i n g the f o u r t e e n day t e s t p e r i o d . However, t h i s may have been due to the f a c t t h a t t h e i r d a i l y c a l o r i c e x p e n d i t u r e was c a l c u l a t e d to be s l i g h t l y h i g h e r than the h i g h c a l o r i e i n t a k e . Some d e t e r i o r a t i o n of f i t n e s s was noted i n the r e h a b i l i t a t i o n phase when u n l i m i t e d food was a l l o w e d . F i t n e s s , o r o v e r a l l " m i l i t a r y e f f i c i e n c y " was measured by a s e r i e s of t h r e e t e s t s , the most u s e f u l b e i n g a t i m e d , i n d i v i d u a l a s c e n t of a 2000 f o o t mountain t r a c k . T h i s o b s e r v a t i o n suggested a v e r y slow r e s p o n s e to a reduced c a l o r i c i n t a k e and p a r a l l e l e d the f i n d i n g of Keys e t a l . ( 1 9 5 0 )» t h a t r e c o v e r y was a l s o v e r y s l o w . V a r y i n g o n l y the amount of d i e t a r y p r o t e i n i n o t h e r w i s e s i m i l a r d i e t s has no b e n e f i c i a l o r d e l e t e r i o u s e f f e c t on p h y s i c a l f i t n e s s ( D a r l i n g e t a l . , 19^4; P i t t s e t a l . , 1 9 ^ 4 ) . A h i g h p r o t e i n i n t a k e (132 gm p e r day) on a low c a l o r i e d i e t ( 3 0 0 - 5 0 0 c a l o r i e s p e r day) w i l l cause a d e c r e a s e i n m i l i t a r y e f f i c i e n c y d u r i n g a p e r i o d of s i x t y ( 6 0 ) days (Johnson and K a r k , 19^7) i n the same manner t h a t a low p r o t e i n d i e t w o u l d . The same i s t r u e f o r the c o n v e r s e s i t u a t i o n , i . e . , a h i g h c a l o r i e d i e t w i t h e i t h e r h i g h o r l o w p r o t e i n i n t a k e . Once the p r o t e i n r e q u i r e m e n t s f o r t i s s u e g r o w t h , maintenance and r e p a i r , have been s a t i s f i e d , any r e m a i n i n g p r o t e i n i s s i m p l y deaminated and u t i l i z e d f o r 12 energy p r o d u c t i o n , o r s t o r e d as f a t . P i t t s e t a l . ( 1944) e x p e r i m e n t e d w i t h v a r i o u s p r o t e i n i n t a k e s between 75-151 gm p e r day and observed no e f f e c t on work p e r f o r m a n c e . A l s o , v a r y i n g the amount of energy e x p e n d i t u r e does n o t change an i n d i v i d u a l ' s p r o t e i n needs. There i s v e r y l i t t l e e f f e c t of i n c r e a s e d e x e r c i s e on both work performance and u r i n a r y n i t r o g e n e x c r e t i o n f o r a l l d i e t s , i . e . , p r o t e i n i n t a k e s of 1 0 . 0 , 1 3 . 4 , or 1 6 . 8 p e r c e n t of t o t a l c a l o r i e s ( W i l s o n , 1 9 3 4 ) . V a r i a t i o n i n Body C o m p o s i t i o n w i t h Changes i n C a l o r i c I n t a k e One of the fu n d a m e n t a l i n d i c a t o r s of n u t r i t i o n a l s t a t e i s the c o m p o s i t i o n of the body. Q u a n t i t a t i v e morphology of the body mass, s e p a r a t e d i n t o i t s p r i m a r y components, p r o v i d e s the i n i t i a l framework f o r the d e s c r i p t i o n of n u t r i t i o n a l s t a t u s ( B r o z e k and K e y s , 1 9 5 1 ) . In d i f f e r e n t s t a t e s of c a l o r i c n u t r i t i o n , the most s t r i k i n g v a r i a t i o n s o c c u r i n the amount of body f a t . The b a s i c body s i z e and shape, o r somatotype, a r e l a r g e l y d e t e r m i n e d by the s k e l e t a l s i z e , s i n c e a p a r t i c u l a r amount of bone i s u s u a l l y accompanied by a c e r t a i n amount of muscle and o t h e r t i s s u e s ( A s t r a n d and R o d a h l , 1 9 7 0 ) . The " i d e a l " body w e i g h t may be d e f i n e d as t h a t which i n c l u d e s o n l y a m i n i m a l amount of body f a t , and i s dependent upon t h e s k e l e t a l s i z e . I t a l s o v a r i e s g r e a t l y w i t h the age and sex 13 of the i n d i v i d u a l . The " i d e a l " body w e i g h t can be m o d i f i e d t o some e x t e n t by e n l a r g i n g the muscle s t h r o u g h t r a i n i n g . T h i s a l l o w s the p o s s i b i l i t y of b e i n g o v e r w e i g h t w i t h o u t b e i n g obese ( S e l t z e r and Mayer, 1 9 6 4 ) ; however, as a r u l e , e x c e s s w e i g h t r e p r e s e n t s accumulated body f a t . E s t i m a t i o n of body c o m p o s i t i o n . G u i d e s have been e s t a b l i s h e d t o d e t e r m i n e s o - c a l l e d i d e a l body w e i g h t based on h e i g h t , sex and age (Medico - A c t u a r i a l M o r t a l i t y I n v e s t i g a t i o n , 1912; B u i l d and B l o o d P r e s s u r e S t u d y , 1 9 5 9 ; M e t r o p o l i t a n L i f e I n s u r a n c e Company, 1 9 6 3 ) . U s i n g t h e s e , an e v a l u a t i o n of f a t n e s s can be e s t i m a t e d from the i n d i v i d u a l ' s d e v i a t i o n from some " s t a n d a r d " r e f e r e n c e . Hbwever, t h e s e methods a r e meant o n l y as g u i d e s and have proven t o be r a t h e r i n a c c u r a t e ( S e l t z e r , 1 9 6 5 ) . There i s a need f o r a s i m p l e but r e l i a b l e method of a s s e s s i n g body f a t . A good, q u a n t i t a t i v e e s t i m a t e i s e s s e n t i a l f o r e v a l u a t i n g c a l o r i e n u t r i t i o n , as w e l l as f o r e s t a b l i s h i n g v a l i d e s t i m a t e s of c a l o r i e r e q u i r e m e n t s . A l t e r n a t e methods f o r c l a s s i f y i n g body c o m p o s i t i o n i n c l u d e the measurements of e x t e r n a l body d i m e n s i o n s , e i t h e r s i n g l y o r i n c o m b i n a t i o n s , s k i n f o l d t h i c k n e s s e s and s p e c i f i c g r a v i t y (body d e n s i t y ) . The f i r s t e q u a t i o n f o r c a l c u l a t i n g body f a t from measurements of s u r f a c e a r e a and s i x s k i n f o l d t h i c k n e s s e s was f o r m u l a t e d by M a t i e g k a ( 1 9 2 1 ) . 1 S e v e r a l o t h e r f o r m u l a e have s i n c e been proposed which have used d i f f e r e n t s k i n f o l d s and o t h e r a n t h r o p o m e t r i c measurements to g i v e an e s t i m a t e of body f a t c o n t e n t ( C h i n n and A l l e n , I960; Adam e t a l . , 1962; Edwards and V/hyte, 1962). I n 1942, Behnke e t a l . , (1942), suggested t h a t the human body c o n s i s t e d of a " l e a n body mass" of f i x e d d e n s i t y ( a b o u t 1.10) and a v a r i a b l e amount of f a t which c o u l d be q u a n t i t a t i v e l y a s s e s s e d by measuring the t o t a l body d e n s i t y , s i n c e f a t has a r e l a t i v e l y l ow s p e c i f i c g r a v i t y . C a l c u l a t i o n s of body f a t f r o m body d e n s i t y were made by S i r i , (1956): P a t (#) = (4.95/density) - 4.5 x 100 Thus, r a t h e r than depend on the s t a n d a r d t a b l e s o r on s k i n f o l d measurements, the con c e p t of s p e c i f i c g r a v i t y o r w e i g h t of t i s s u e p e r u n i t volume c o u l d be used as a t r u e i n d e x of p r o p e r w e i g h t (Behnke e t a l . , 1942; Welham and Behnke, 1942). T h i s t e c h n i q u e t a k e s i n t o a c c o u n t both the subcutaneous f a t and the deeper f a t d e p o s i t s , both of which a r e i m p o r t a n t s i n c e a l l a d i p o s e t i s s u e i s n o t subcutaneous. The r e l a t i o n s h i p between s k i n f o l d t h i c k n e s s and body d e n s i t y was f i r s t used f o r the assessment of body f a t by B r o z e k and Keys (1951) • The s k i n f o l d s o r i g i n a l l y s e l e c t e d f o r t he assessment were n ot i d e a l and t h i s f i r s t f o r m u l a was not w i d e l y u s e d . However, the concept has been the 15 b a s i s f o r many o t h e r e q u a t i o n s t h a t have s i n c e been produced ( B r o z e k and Keys, 1 9 5 1 ; B e s t , 1 9 5 3 , P a s c a l e e t a l . , 1 9 5 6 ; D u r n i n and Rahaman, 1 9 6 7 ) . V a l i d i t y of body c o m p o s i t i o n d e t e r m i n a t i o n . The v a l i d i t y of any method of e v a l u a t i n g body c o m p o s i t i o n can be e s t a b l i s h e d o n l y by c o r r e l a t i n g the r e s u l t s o b t a i n e d w i t h t h a t method w i t h subsequent a n a l y s i s of the a c t u a l f a t c o n t e n t of the body. T e c h n i c a l l y , such d i r e c t v a l i d a t i o n i s i m p o s s i b l e and i s , t h e r e f o r e , based on the c o r r e l a t i o n w i t h s p e c i f i c g r a v i t y . The s i t e s f o r s k i n f o l d measurements were s e l e c t e d p r i m a r i l y t o s a t i s f y c e r t a i n c o n d i t i o n s : ( l ) r e p r e s e n t a t i o n of r e g i o n s known t o show l a r g e v a r i a t i o n s i n subcutaneous f a t (abdomen, c h e s t ) ; (2) r e p r e s e n t a t i o n of the e x t r e m i t i e s (arm and t h i g h measurements); and (3) ease o f p r e c i s e l o c a t i o n ( B r o z e k and Keys, 1 9 5 1 ) . The r e l a t i o n s h i p s of s k i n f o l d t h i c k n e s s e s a t p a r t i c u l a r s i t e s v/it h body d e n s i t y show t h a t no one s i t e i s markedly s u p e r i o r t o the o t h e r s (Haisman, 1 9 7 0 ) . However, i t does appear t h a t c h e s t and a b dominal s k i n f o l d s c o r r e l a t e s l i g h t l y b e t t e r w i t h body d e n s i t y than the s u b - s c a p u l a r s i t e , and t h i s t endency has been observed by o t h e r i n v e s t i g a t o r s ( B r o z e k and Keys, 1 9 5 1 ; P a s c a l e e t a l . , 1 9 5 6 ) . T h e r e f o r e , measurements from t h e s e two s i t e s a r e f r e q u e n t l y i n c l u d e d i n f o r m u l a s d e t e r m i n i n g body f a t c o n t e n t . An i m p o r t a n t 16. f e a t u r e emerging, from the comparison of body f a t from s k i n f o l d - t o - b o d y f a t f o r m u l a e w i t h d e n s i t o m e t r i c a l l y d e t e r m i n e d f a t i s t h a t t h e r e i s no advantage i n a d d i n g i n f o r m a t i o n such as age, h e i g h t and w e i g h t t o s k i n f o l d t h i c k n e s s e s (Haisman, 1970). S i m p l e f o r m u l a e based on c o m b i n a t i o n s of f o u r s k i n f o l d t h i c k n e s s e s , e.g.: Body d e n s i t y = 1.1610 - 0.0632 l o g ( S . i + S . i i + S . v i i i + S . i x ) . Where: S . i = s u b s c a p u l a r s k i n f o l d t h i c k n e s s S . i i = t r i c e p s s k i n f o l d t h i c k n e s s , S . v i i i = s u p r a i l i a c s k i n f o l d t h i c k n e s s S . i x = b i c e p s s k i n f o l d t h i c k n e s s ( D u r n i n and Rahaman, 1967) or t h r e e s k i n f o l d t h i c k n e s s e s ; e.g.: Body d e n s i t y = 1.088468 - 0.007123 x S . i i i x 10" 1 -0.004834 x S . i v x 10"1 - 0.005513 x S . i i x 10" 1 Where: S . i i = t r i c e p s s k i n f o l d t h i c k n e s s S . i i i = c h e s t ( m i d - a u x i l i a r y l i n e ) s k i n f o l d t h i c k n e s s S . i v = c h e s t ( j u x t a - n i p p l e ) s k i n f o l d t h i c k n e s s ( P a s c a l e e t a l . , 1956) g i v e r e a s o n a b l e agreement w i t h f a t c o n t e n t c a l c u l a t e d from body d e n s i t y d e t e r m i n a t i o n s (Damon and Goldman, 1964; Haisman, 1970). A l i m i t i n g f a c t o r i s t h a t 17 p r e d i c t i v e e q u a t i o n s f o r body f a t c o n t e n t a r e more l i k e l y t o a c h i e v e maximum p r e d i c t i v e a c c u r a c y when a p p l i e d t o samples s i m i l a r i n age, sex and e t h n i c o r i g i n t o the p o p u l a t i o n s from which the e q u a t i o n s were o r i g i n a l l y d e r i v e d (Wilmore and Behnke, 1969; Haisman, 1 9 7 0 ) . C o m p o s i t i o n of w e i g h t l o s s as a r e s u l t of c a l o r i e  r e s t r i c t i o n . Changes i n body c o m p o s i t i o n have been observed d u r i n g c a l o r i e r e s t r i c t e d d i e t s , u s i n g d e n s i t o m e t r i c , c h e m i c a l , whole body ( p o t a s s i u m - 40) c o u n t i n g , o r a n t h r o p o m e t r i c t e c h n i q u e s ( K r z y w i c k i e t a l . , 1 9 7 2 ) . These c o n s i s t e d of w a t e r l o s s , some f a t l o s s , and e x c e s s i v e l o s s of body p r o t e i n . However, they were l e s s s e v e r e than the changes observed d u r i n g t o t a l s t a r v a t i o n ( K r z y w i c k i e t a l . , 1 9 6 8 ) . On s i m p l e c a l o r i c r e s t r i c t e d d i e t s f o r s h o r t p e r i o d s of time and l e a d i n g to a w e i g h t l o s s n ot g r e a t e r than 10 p e r c e n t , the magnitude of the w e i g h t l o s s i s s i m i l a r , and the changes i n body c o m p o s i t i o n a r e q u i t e u n i f o r m ( B r o z e k e t a l . , 1957; Grande e t a l . , 1 9 5 8 ) . An e s t i m a t e d 40 p e r c e n t of the body w e i g h t l o s t i n such a s i t u a t i o n i s due to f a t , n i n e p e r c e n t to p r o t e i n , w h i l e t h e r e s t was w a t e r . T h i s c o m p o s i t i o n of w e i g h t l o s s was s i m i l a r to t h a t r e p o r t e d by K r z y w i c k i e t a l . , ( 1 9 7 2 ) . Simple c a l o r i e r e s t r i c t i o n i s n o t the o n l y cause of s i g n i f i c a n t l o s s e s of body w e i g h t . A s p a r i n g of body w a t e r was e f f e c t e d by the a d d i t i o n of e s s e n t i a l m i n e r a l s t o one group of s u b j e c t s on a low c a l o r i e d i e t ( K r y z y w i c k i e t a l . , 1972), r e s u l t i n g i n a l e s s e r body w e i g h t l o s s i n t h i s group. Assessment of P h y s i c a l F i t n e s s I t i s i m p o s s i b l e t o p r e s e n t one e x p r e s s i o n t h a t t a k e s i n t o a c c o u n t a l l a s p e c t s of p h y s i c a l f i t n e s s . An i n d i v i d u a l ' s performance i s the combined r e s u l t of the c o o r d i n a t e d e x e r t i o n and i n t e g r a t i o n of a v a r i e t y of f u n c t i o n s . N a t u r a l endowment p r o b a b l y p l a y s a major r o l e i n a p e r s o n ' s performance c a p a c i t y ; marked improvement may a l s o be a c h i e v e d by t r a i n i n g , i n d i c a t i n g t h a t o t h e r f a c t o r s a r e i n v o l v e d as w e l l ( A s t r a n d and R o d a b l , 1970). G e n e r a l l y s p e a k i n g , t h e r e have been two main approaches t o the assessment of p h y s i c a l p e r f o r m a n c e : ( l ) p h y s i c a l f i t n e s s t e s t s w i t h s c o r i n g of a c t u a l performance i n s i t u a t i o n s which r e p r e s e n t b a s i c performance demands, and (2) l a b o r a t o r y s t u d i e s of f u n c t i o n a l s t r e s s d u r i n g which c a r d i o p u l m o n a r y f u n c t i o n , b l o o d pH, e t c . , were observed a t r e s t and/or d u r i n g e x e r c i s e . Maximal and submaximal t e s t s . Maximal a e r o b i c power o r maximal oxygen u p t a k e can be d e f i n e d as the h i g h e s t oxygen u p t a k e p e r u n i t time t h a t an i n d i v i d u a l can a t t a i n d u r i n g p h y s i c a l work, b r e a t h i n g a i r , a t sea l e v e l ( M i t c h e l l e t a l . , 1 9 5 8 ) . S t u d i e s i n d i c a t e t h a t f o r each l i t e r of oxygen consumed, about 5 k c a l ( 4 . 7 to 5 . 5 ) i s expended; hence, the h i g h e r the oxygen u p t a k e , the h i g h e r the energy o u t p u t ( A s t r a n d and R o d a h l , 1 9 7 0 ) . F o r decades a d i s c u s s i o n has been g o i n g on c o n c e r n i n g the " l i m i t i n g f a c t o r s " i n maximal oxygen uptake ( A s t r a n d , 1956) i n o r d e r t o i d e n t i f y w h i c h one(s) i s most i m p o r t a n t . The f a c t o r s i n q u e s t i o n c o v e r e v e r y a s p e c t of oxygen u p t a k e by the body from the oxygen c o n t e n t of the i n s p i r e d a i r , i t s t r a n s p o r t i n t o the b l o o d s t r e a m , f a c t o r s a f f e c t i n g d i s t r i b u t i o n t h r o u g h o u t the body and i n t o the c e l l s , u t i l i z a t i o n by the c e l l and the m o t i v a t i o n of t h e i n d i v i d u a l p e r f o r m i n g the t e s t . P erformance c a p a c i t y i's r e l a t e d t o maximal oxygen u p t a k e i n e x e r c i s e s i n which l a r g e muscle groups a r e v i g o r o u s l y i n v o l v e d f o r one minute o r l o n g e r . T h e r e f o r e , t o t e s t maximal oxygen u p t a k e , the work must i n v o l v e l a r g e muscle g r o u p s . The h e a r t r a t e r e s p o n s e t o s t a n d a r d i z e d work i s a s i m p l e way of t e s t i n g c i r c u l a t o r y f u n c t i o n a l c a p a c i t y . The H a r v a r d s t e p t e s t , one of the e a r l i e s t of i t s type was o r i g i n a l l y d e v e l o p e d d u r i n g the Second World War as a s c r e e n i n g t e s t t o s e l e c t i n d i v i d u a l s a c c o r d i n g t o t h e i r p h y s i c a l f i t n e s s . In more r e c e n t y e a r s , w i t h improved t e s t i n g p r o c e d u r e s , p h y s i c a l work c a p a c i t y (PWC) has been c a l c u l a t e d from work l o a d a t a g i v e n h e a r t r a t e of 180, 20 1 7 0 , o r 150 b e a t s p e r minute ( S j o s t r a n d , 1 9 4 7 ; Wahlund, 1 9 4 8 ) . The c a l c u l a t e d PWC 1 7 0 , e t c . , i s r e l a t e d t o the maximal s t r o k e volume of the h e a r t , b u t i t i s not a measure of maximal power o r r a t e of work o u t p u t . The maximal h e a r t r a t e would have t o be c o n s i d e r e d i n o r d e r t o d e t e r m i n e maximal o r c a r d i a c o u t p u t . The submaximal work t e s t has proven u s e f u l i n a t l e a s t two s i t u a t i o n s : ( l ) i n the c l i n i c a l e x a m i n a t i o n of an i n d i v i d u a l i n o r d e r t o observe t h e c a r d i o v a s c u l a r system under f u n c t i o n a l s t r e s s , and ( 2 ) i n e v a l u a t i n g e f f e c t s of t r a i n i n g programs, d i e t s , e t c . , on an i n d i v i d u a l ' s c i r c u l a t o r y c a p a c i t y ( A s t r a n d and R o d a h l , 1 9 7 0 ) . Even when t e s t s a r e c a r r i e d out d u r i n g s t r i c t l y s t a n d a r d i z e d c o n d i t i o n s , the m e t h o d o l o g i c a l e r r o r i n the p r e d i c t i o n of the maximal a e r o b i c power from submaximal work c a p a c i t y i s c o n s i d e r a b l e . C e r t a i n s i t u a t i o n s may cause a marked i n c r e a s e i n the p u l s e r a t e a t a submaximal work l o a d w i t h o u t s i g n i f i c a n t l y c h a n g i n g the maximal oxygen u p t a k e . T h i s s i t u a t i o n o c c u r s d u r i n g work i n a h o t environment ( W i l l i a m s e t a l . , 1 9 6 2 ) . In o t h e r c a s e s , the p u l s e r a t e a t a s t a n d a r d work l o a d may be unchanged w h i l e t h e maximal Og upt a k e and the performance c a p a c i t y a r e r e d u c e d , as would o c c u r d u r i n g extended p e r i o d s of s e m i s t a r v a t i o n (Keys e t a l . , 1950) o r t o t a l s t a r v a t i o n ( H e n s c h e l e t a l . , 1 9 5 4 ; T a y l o r e t a l . , 1 9 5 ^ ) . However, 21 used t o g e t h e r they do e v a l u a t e the f u n c t i o n a l c a p a c i t y of the oxygen t r a n s p o r t i n g system. E q u a t i o n s have been dev e l o p e d t o p r e d i c t the maximal oxygen uptake from a n t h r o p o m e t r i c data (Shephard e t a l . , 1970). When a p p l i e d to p r e - a d o l e s c e n t s c h o o l c h i l d r e n t h e e q u a t i o n s p r e d i c t e d maximal oxygen u p t a k e w i t h a g r e a t e r a c c u r a c y than the more t r a d i t i o n a l ' p r o c e d u r e s . S i m p l e t e s t s of pulmonary f u n c t i o n were a l s o found t o be r e l a t e d t o a number of a n t h r o p o m e t r i c measurements w i t h i n a c e r t a i n p o p u l a t i o n ( F e r r i s and S t o u d t , 1971). Age and s t a n d i n g h e i g h t c o r r e l a t e d most c l o s e l y w i t h t e s t s of pulmonary f u n c t i o n i n a w h i t e p o p u l a t i o n . I t i s n o t y e t known how g e n e r a l l y a p p l i c a b l e t h e s e r e s u l t s a r e , as e t h n i c , age and sex comparisons have n o t been made. S t r e n g t h t e s t s . D e t e r m i n a t i o n of muscle s t r e n g t h i n v o l v e s the measurement of maximal i s o m e t r i c o r dynamic c o n t r a c t i o n s . The e x e r t e d f o r c e i s measured and r e c o r d e d on a s t r a i n gauge. In a s t r e n g t h t e s t , i t i s n o t the s t r e n g t h of any one muscle t h a t i s i m p o r t a n t . R a t h e r , i t i s a f u n c t i o n a l muscle a c t i v i t y i n whi c h s e v e r a l a n a t o m i c a l l y d i f f e r e n t muscles c o l l a b o r a t e . M u s c l e s t r e n g t h depends on many f a c t o r s a l t h o u g h i n i s o l a t e d m u s c l e s the maximal s t r e n g t h i s p r o p o r t i o n a l t o the c r o s s - s e c t i o n a l a r e a of the muscle. In t e s t s of muscle s t r e n g t h , the 22 day-to-day v a r i a t i o n i s u s u a l l y of the o r d e r of - 10 t o 20 p e r c e n t . Changes i n muscle s t r e n g t h do n o t o c c u r r a p i d l y i n re s p o n s e to an a l t e r e d d i e t . A r e d u c t i o n i n c a l o r i c i n t a k e o v e r a p e r i o d of s e v e r a l months w i t h a w e i g h t l o s s g r e a t e r than t e n p e r c e n t has been found t o cause a d e c r e a s e i n h a n d g r i p s t r e n g t h measurements (Keys e t a l . , 1 9 5 0 ) . However, t h e r e was no change d u r i n g a s h o r t e r p e r i o d of s e m i s t a r v a t i o n and when the w e i g h t l o s s remained l e s s than t e n p e r c e n t ( T a y l o r e t a l . , 1 9 5 7 ) . Thus, i t i s n o t a s e n s i t i v e t e s t of changes i n p h y s i c a l f i t n e s s . A d a p t a t i o n t o C a l o r i e R e s t r i c t i o n The human body has t h e a b i l i t y t o adapt t o c e r t a i n d e g r e e s of c h r o n i c c a l o r i e r e s t r i c t i o n . A d a p t a t i o n o c c u r s t h r o u g h a r e s t r i c t i o n of v o l u n t a r y a c t i v i t y , a d e c r e a s e d energy e x p e n d i t u r e r e s u l t i n g from d e c r e a s e d b a s a l m e t a b o l i s m and a d e c r e a s e i n the energy r e q u i r e d t o p e r f o r m work. The r e d u c t i o n of b a s a l m e t a b o l i s m can be a t t r i b u t e d t o two f a c t o r s , namely, s h r i n k a g e of the m e t a b o l i z i n g body mass and d e c r e a s e of the c e l l u l a r m e t a b o l i c r a t e (Keys e t a l . , 1 9 5 0 ; T a y l o r and Keys, 1 9 5 0 ; Grande e t a l . , 1 9 5 8 ) . E v i d e n c e i n d i c a t e s t h a t i n subacute c a l o r i e d e f i c i e n c y ( a p p r o x i m a t e l y t h r e e weeks d u r a t i o n ) , the d e c r e a s e i n b a s a l m e t a b o l i s m r e s u l t s , f o r the most p a r t , from the d e c r e a s e i n the c e l l u l a r m e t a b o l i c r a t e (Grande e t a l . , 1 9 5 8 ) . C o n v e r s e l y , i n c h r o n i c s e m i s t a r v a t i o n , the predominant f a c t o r i s the s m a l l e r amount of m e t a b o l i z i n g body mass (Keys e t a l . , 1 9 5 0 ; T a y l o r and Keys, 1 9 5 0 ) , a c c o u n t i n g f o r about 65 p e r c e n t of the d e c r e a s e i n BMR. In t h i s s i t u a t i o n , o n l y about 35 p e r c e n t of the d e c r e a s e s h o u l d be a s c r i b e d t o a d e c r e a s e d i n t e n s i t y of m e t a b o l i s m ( M i t c h e l l , 1 9 6 4 ) . The a b i l i t y t o p r e f e r e n t i a l l y m e t a b o l i z e body f a t , t o spare c e r t a i n t i s s u e s and t o d e c r e a s e the work of the h e a r t f u r t h e r a i d s i n w i t h s t a n d i n g a l a c k of c a l o r i e s . A c t u a l measurements of a d a p t a t i o n . A d a p t a t i o n t o f a s t i n g has been r e p o r t e d by T a y l o r e t a l . , ( 1 9 4 5 ) . D u r i n g a s e r i e s of f i v e s u c c e s s i v e 2 . 5-day f a s t s s e p a r a t e d by f i v e o r six - w e e k i n t e r v a l s , t h e r e was l e s s d e t e r i o r a t i o n observed i n t h e f i f t h f a s t , as compared t o the f i r s t . L a c k of d e t e r i o r a t i o n was measured as a b i l i t y t o m a i n t a i n b l o o d s u g a r d u r i n g work and as a low u r i n a r y n i t r o g e n e x c r e t i o n , as w e l l as motor speed and c o o r d i n a t i o n . A n o t h e r example of a d a p t a t i o n t o c a l o r i e d e p r i v a t i o n was a v a i l a b l e i n the M i n n e s o t a e x p e r i m e n t (Keys e t a l . , 1 9 5 0 ) . I t was observed t h a t w i t h a 55 p e r c e n t r e d u c t i o n i n c a l o r i e i n t a k e , the s u b j e c t s were a b l e to m a i n t a i n c a l o r i c e q u i l i b r i u m when body w e i g h t was reduced t o 75 p e r 2H cent of the o r i g i n a l weight. The estimated expenditure of energy i n muscle a c t i v i t y d i m i n i s h e d by 71 per ce n t . The energy cost of a given task v/as reduced a t the end of s e m i s t a r v a t i o n i n d i r e c t p r o p o r t i o n to the l o s s of body weight. In terms of the t o t a l r e d u c t i o n i n the c o s t of p h y s i c a l a c t i v i t y , 60 per cent was due to a decrease i n the c o s t of performing these t a s k s . D i e t a r y m o d i f i c a t i o n s and r e s u l t i n g b i o c h e m i c a l  a l t e r a t i o n s . Although a d a p t a t i o n to d i e t a r y m o d i f i c a t i o n does occur, i t i s r e c o g n i z e d t h a t a v a r i e t y of b i o c h e m i c a l a l t e r a t i o n s take p l a c e w i t h i n the body as a r e s u l t o f , and depending upon, the p a r t i c u l a r m o d i f i c a t i o n a p p l i e d . D u r i n g a p e r i o d of f i v e to ten days of s e m i s t a r v a t i o n , f a s t i n g blood g l u c o s e l e v e l s e x h i b i t a l a r g e i n i t i a l decrease d u r i n g the f i r s t t h ree to s i x days f o l l o w e d by a l e v e l l i n g o f f (Vaughan et a l . , 1958), or a decrease f o l l o w e d by a s l i g h t but s i g n i f i c a n t i n c r e a s e (Drury e t ' a l . , 1958, C a r l s o n and F r o b e r g , 1967). T h i s i s op p o s i t e to the e f f e c t on serum f r e e f a t t y a c i d l e v e l s , which i n c r e a s e d u r i n g the f i r s t few days and then decrease to a c o n c e n t r a t i o n only s l i g h t l y above the i n i t i a l v a lue ( C a r l s o n and Fr o b e r g , 1967). The mechanism r e s p o n s i b l e i s a response to s t r e s s i n which the t r i g l y c e r i d e s s t o r e d i n adipose t i s s u e are hyd r o l y z e d and the l i b e r a t e d f a t t y a c i d s are t r a n s p o r t e d i n an albu m i n - f r e e f a t t y a c i d complex to the t i s s u e s 25 ( F r e d r i c k s o n and Gordon, 1 9 5 8 ; O l s o n and V e r t e r , i 9 6 0 ) . The plasma f r e e f a t t y a c i d s a r e known t o be a major f u e l s o u r c e f o r o x i d a t i v e m e t a b o l i s m d u r i n g e x e r c i s e and ti m e s of i n s u f f i c i e n t c a l o r i c i n t a k e ( D o l e , 1 9 5 6 ; Gordon and C h e r k e s , 1 9 5 6 ; L a u r e l ! , 1 9 5 6 ; 3asu e t a l . , i 9 6 0 ; R o d a h l , 1 9 6 4 ; K u e l , 1 9 7 0 ; P r u e t t , 1 9 7 0 ; Horstman e t a l . , 1971; M i s b i n e t a l . , 1 9 7 1 ) . Other serum l i p i d f r a c t i o n s , such as c h o l e s t e r o l and t r i g l y c e r i d e s , demonstrate marked d e c r e a s e s t h r o u g h o u t a t e n day s e m i s t a r v a t i o n p e r i o d ( C a r l s o n and F r o b e r g , 1 9 6 7 ) , a l t h o u g h the d e c r e a s e c o u l d be a t t r i b u t e d i n p a r t t o the e f f e c t of i n c r e a s e d p h y s i c a l a c t i v i t y . S t u d i e s on f l u i d b a l a n c e and w e i g h t l o s s i n d i c a t e t h a t a s u b s t a n t i a l p o r t i o n of the w e i g h t l o s t d u r i n g a p e r i o d of c a l o r i c r e s t r i c t i o n i s due t o d e h y d r a t i o n (Bro'zek e t a l . , 1 9 5 7 ; D r u r y e t a l . , 1 9 5 8 ; Grande e t a l . , 1 9 5 8 ; Vaughan e t a l . , 1 9 5 8 ; K r z y w i c k i e t a l . , 1 9 7 2 ) . A l a r g e i n i t i a l d a i l y f l u i d l o s s s t a b i l i z e s w i t h i n two o r t h r e e days t o a d a i l y l o s s of l e s s magnitude (Davenport e t a l . , 1 9 7 1 ) , i n d i c a t i n g a m e t a b o l i c a d j u s t m e n t t o s e m i s t a r v a t i o n . The immediate and r a p i d d e c r e a s e i n body w e i g h t i s b e l i e v e d t o be due t o the l a r g e i n i t i a l f l u i d l o s s . F u r t h e r e v i d e n c e f o r t h i s t h e o r y appears when the s e m i s t a r v a t i o n was t e r m i n a t e d , a t v/hich time t h e r e i s a sharp i n i t i a l g a i n i n w e i g h t t h a t t a p e r s o f f w i t h i n two or t h r e e days. T h i s i s i n d i r e c t e v i d e n c e of changes i n the w a t e r b a l a n c e and c o n f i r m s the o b s e r v a t i o n t h a t a h i g h r e t e n t i o n of w a t e r accompanies a sharp i n c r e a s e i n w e i g h t g a i n d u r i n g e a r l y r e c o v e r y ( C o n s o l a z i o and F o r b e s , 1 9 4 6 ) . D u r i n g c a l o r i e r e s t r i c t i o n , energy e x p e n d i t u r e exceeds c a l o r i e i n t a k e , r e s u l t i n g i n some t i s s u e p r o t e i n b e i n g broken down to f u l f i l l the c a l o r i e needs of the body. The e a r l y m i s c o n c e p t i o n t h a t an adequate s u p p l y of amino a c i d s by i t s e l f can p r e v e n t the d e s t r u c t i o n of body p r o t e i n s became prominent d u r i n g the s e a r c h f o r s a t i s f a c t o r y s u r v i v a l r a t i o n s i n combat emergency.(Gamble, 1947). I t i s now known t h a t the energy r e q u i r e m e n t s of the i n d i v i d u a l must be s a t i s f i e d f i r s t . In the absence of an adequate c a l o r i e s u p p l y as c a r b o h y d r a t e o r f a t ( a t l e a s t 50 to 60 p e r c e n t of the r e q u i r e m e n t ) , d i e t a r y amino a c i d s cannot be u t i l i z e d e f f i c i e n t l y f o r p r o t e i n s y n t h e s i s o r o t h e r s p e c i f i c p u r p o s e s ( A l b a n e s e and O r t o , 1 9 6 8 ) . D u r i n g t o t a l s t a r v a t i o n f o r an extended p e r i o d of t i m e , n i t r o g e n e x c r e t i o n d e c r e a s e s d a i l y f r om a h i g h of a p p r o x i m a t e l y 6 t o 8 gm n i t r o g e n p e r day t o a low of about 2 to 3 gm n i t r o g e n p e r day ( A l b a n e s e and O r t o , 1 9 6 8 ) . The The M i n n e s o t a and o t h e r e x p e r i m e n t s (Keys e t a l . , 1 9 5 0 ; D r u r y e t a l . , 1 9 5 3 ; Vaughan e t a l . , 1 9 5 8 ; Davenport e t a l . , 1971) have a l l i n d i c a t e d a s i m i l a r r e s p o n s e to semi-s t a r v a t i o n , i . e . , a p r o g r e s s i v e r e d u c t i o n i n the magnitude 2? of the n i t r o g e n b a l a n c e . T h i s g r a d u a l r e d u c t i o n of n i t r o g e n e x c r e t i o n t a k e s p l a c e as the e a s i l y a v a i l a b l e . P r o t e i n f r a c t i o n s of the body a r e p r o g r e s s i v e l y e xhausted and as a d a p t a t i o n t o the low food i n t a k e commences. An i n c r e a s e i n n i t r o g e n e x c r e t i o n has been obse r v e d d u r i n g d e h y d r a t i o n , as o c c u r s w i t h s e m i s t a r v a t i o n (Grande e t a l . , 1 9 5 7 ) , and may a c c o u n t f o r a p o r t i o n of t h e n e g a t i v e n i t r o g e n b a l a n c e . The i n c r e a s e d u r i n a r y n i t r o g e n and, i n t u r n , i n c r e a s e d o b l i g a t o r y u r i n e l o s s e s , a c c e n t u a t e the d e h y d r a t i o n . S i t u a t i o n s t h a t a l t e r u r i n a r y n i t r o g e n a l s o change b l o o d u r e a n i t r o g e n (BUN) l e v e l s and o t h e r b l o o d p r o t e i n c o n s t i t u e n t s . The t h r e e f a c t o r s known t o i n f l u e n c e t h e s e l e v e l s a r e : 1) q u a n t i t y of d i e t a r y p r o t e i n , 2) time i n t e r v a l between f e e d i n g and o b t a i n i n g b l o o d sample, and 3) p r o t e i n q u a l i t y (Sggum, 1 9 7 0 ) . V/ith a l l o t h e r f a c t o r s h e l d c o n s t a n t , d i e t a r y p r o t e i n i n t a k e e x e r t s a l a r g e i n f l u e n c e on t o t a l plasma p r o t e i n s , e s p e c i a l l y a l b u m i n . The t u r n o v e r i s h i g h when p r o t e i n i n t a k e i s h i g h and low when p r o t e i n i n t a k e i s low ( S t e i n b e c k e t a l . , 195^; J e f f a y and W i n z l e r , 1 9 5 8 ; Y u i l e e t a l . , 1 9 5 9 ) . S e m i s t a r v a t i o n f o r s e v e r a l days o r oorei may l e a d t o h e m o d i l u t i o n , as demonstrated by the s l i g h t but p a r a l l e l l o w e r i n g of b l o o d hemoglobin and h e m a t o c r i t as w e l l as some plasma e l e c t r o l y t e s , namely, sodium and c h l o r i d e , when 28 s u b j e c t s were f e d a low c a l o r i e d i e t f o r a p e r i o d of f i v e days (Hannon e t a l . , 1959). The e x a c t cause of t h i s phenomenon i s unknown. A complete r e v i e w of a l l the b i o c h e m i c a l a s p e c t s of c a l o r i e r e s t r i c t i o n i s i m p o s s i b l e here because of r e s t r i c t e d s p a c e . However, a b r i e f d i s c u s s i o n on the r e s p o n s e s of c e r t a i n v i t a m i n s t h a t were measured t h r o u g h o u t the study f o l l o w s . The recommended a l l o w a n c e s f o r the v i t a m i n s a r e dependent on age, s e x , body s i z e and, f o r some v i t a m i n s , a c t i v i t y l e v e l . I t i s a p p a r e n t l y assumed t h a t the p l a n e of a c t i v i t y has no i n f l u e n c e on V i t a m i n s A, D o r G, s i n c e t h e same i n t a k e i s suggested r e g a r d l e s s of c a l o r i c i n t a k e ( C a n a d i a n D i e t a r y S t a n d a r d , 1964). D u r i n g a p e r i o d of s e m i s t a r v a t i o n , serum and u r i n e l e v e l s of the v i t a m i n s do n o t n e c e s s a r i l y r e f l e c t the amounts consumed. As c a l o r i c r e s t r i c t i o n p r o g r e s s e s , v i t a m i n s a r e r e l e a s e d from the t i s s u e s t h a t a r e broken down and presumably, a r e a v a i l a b l e f o r m e e t i n g the needs of the body. U t i l i z a t i o n of these v i t a m i n s may be v e r y e f f i c i e n t s i n c e d i g e s t i v e and a b s o r p t i v e p r o c e s s e s a r e n o t i n v o l v e d . The v i t a m i n s t u d i e s i n t he M i n n e s o t a e x p e r i m e n t (Keys e t a l . , 1950) d i d not c o n t r i b u t e much toward c l e a r i n g up t h i s p o i n t . Decreased u r i n a r y v i t a m i n s and serum V i t a m i n C l e v e l s g e n e r a l l y i n d i c a t e d i e t s l o w e r o r d e f i c i e n t i n t h a t v i t a m i n (Davenport e t a l . , 1971). F o r example, t h e r e i s a p o s i t i v e c o r r e l a t i o n between i n t a k e and u r i n a r y e x c r e t i o n of t h i a m i n e ( I i i c k e l s o n e t a l . , 19^7; Plough and B r i d g e f o r t b , I960). However, t h i a m i n e has a r o l e i n c a r b o h y d r a t e m e t a b o l i s m and i t s r e q u i r e m e n t i s b e s t d e s c r i b e d i n terms of c a l o r i e i n t a k e . S i n c e f a t and p r o t e i n have a s p a r i n g e f f e c t on t h i a m i n e , a d i e t r e s t r i c t e d i n c a l o r i e s and c a u s i n g a breakdown of p r o t e i n and a d i p o s e t i s s u e f o r energy purposes would r e q u i r e a l o w e r t h i a m i n e i n t a k e . I n such a c a s e , w i t h c o n s t a n t t h i a m i n e i n t a k e , u r i n a r y t h i a m i n e e x c r e t i o n would i n c r e a s e . V i t a m i n C does n ot have a r e l a t i o n s h i p w i t h c a l o r i e i n t a k e o r e x p e n d i t u r e ; as a r e s u l t , serum l e v e l s do r e f l e c t d i e t a r y i n t a k e . S h o r t term d i e t a r y changes do n o t u s u a l l y r e s u l t i n marked f l u c t u a t i o n of serum l e v e l s of the f a t s o l u b l e v i t a m i n s , and t h e s e do n o t n e c e s s a r i l y r e f l e c t s t o r e d l e v e l s ( I C M D , i960). S i n c e t h e s e v i t a m i n s a r e o f t e n t r a n s p o r t e d as p a r t of a p r o t e i n complex, l o w e r e d serum l e v e l s may o c c u r i f the l e v e l s of the c a r r i e r p r o t e i n s a r e d e c r e a s e d . A v e r y good example of t h i s o c c u r s v/ith t he s e v e r e h y p o p r o t e i n e m i a observed i n K v / a s h i o r k o i ( A r r o y a v e e t a l . , 1961). The symptoms of the d e f i c i e n c y a r e v e r y o f t e n c o m p l i c a t e d by a superimposed V i t a m i n A d e f i c i e n c y . P r o t e i n t h e r a p y t o r e l i e v e t he k w a s h i o r k o r a l s o causes an i n c r e a s e i n serum V i t a m i n A l e v e l s . S i n c e V i t a m i n A t h e r a p y i s n o t g i v e n and V i t a m i n A i s n o t s y n t h e s i z e d de-novo by the body, the l e v e l s use a t the expense of l i v e r s t o r e s when new plasma c a r r i e r p r o t e i n s a r e s y n t h e s i z e d . The r e q u i r e m e n t f o r V i t a m i n A appears t o be p r o p o r t i o n a l t o the body w e i g h t . D i e t a r y V i t a m i n A i s p r e s e n t as a c o m b i n a t i o n of the preformed v i t a m i n and the p r o v i t a m i n , c a r o t e n e . The e f f i c i e n c y of c o n v e r s i o n , w h i c h a f f e c t s r e q u i r e m e n t , depends on s e v e r a l f a c t o r s such as f a t i n t a k e and the t y p e , amount and form of food i n g e s t e d . The p r o v i t a m i n i s absorbed l e s s e f f i c i e n t l y than V i t a m i n A and r e q u i r e s b i l e f o r the p r o c e s s . D i e t a r y m a n i p u l a t i o n s t h a t a l t e r any of t h e s e f a c t o r s w i l l i n f l u e n c e the r e q u i r e m e n t f o r V i t a m i n A. V i t a m i n E r e q u i r e m e n t s a r e i n f l u e n c e d by the amount and q u a l i t y of the p o l y u n s a t u r a t e d f a t s i n the d i e t and by the d i e t a r y c h o l e s t e r o l l e v e l . I t s major s i t e of d e p o s i t i o n i s i n the 'adipose t i s s u e . D i e t a r y changes a f f e c t i n g e i t h e r the d i e t a r y o r body f a t w i l l a l s o a f f e c t the r e q u i r e m e n t f o r V i t a m i n E. CHAPTER I I I . METHODS AND PROCEDURES S u b j e c t s V o l u n t e e r s f o r the ten-week s t u d y , which began May 1 7 , 1 9 7 1 , were f o u r male g r a d u a t e s t u d e n t s (aged 23 -27 y e a r s ) e n r o l l e d a t the U n i v e r s i t y of B r i t i s h C o l u m b i a . P r i o r t o the f i r s t t r e a t m e n t c o n d i t i o n , the s u b j e c t s were g i v e n a m e d i c a l e x a m i n a t i o n . I t c o n s i s t e d of an e x a m i n a t i o n of c e r t a i n organ f u n c t i o n s , i n c l u d i n g t h y r o i d , h e a r t ( b l o o d p r e s s u r e and e l e c t r o c a r d i o g r a m ) and l u n g s , as w e l l as an e x a m i n a t i o n of the ey e s , e a r s and t h r o a t , and the knee r e f l e x . T h i s was done t o i n s u r e t h a t t h e r e were no p h y s i c a l o r m e t a b o l i c problems t h a t would make the study dangerous t o the s u b j e c t o r t h a t would i n t e r f e r e w i t h any a s p e c t of the s t u d y . A l l of the v o l u n t e e r s were h e a l t h y and p h y s i c a l l y f i t : none was c o n s i d e r e d e i t h e r o v e r w e i g h t o r u n d e r w e i g h t . Average d a i l y energy e x p e n d i t u r e was e s t i m a t e d from a study of d a i l y p h y s i c a l a c t i v i t y r e c o r d s k e p t o v e r a p e r i o d of f o u r days. A d i a r y f o r r e c o r d i n g p h y s i c a l a c t i v i t y was c a r r i e d by each s u b j e c t t h r o u g h o u t the day under o b s e r v a t i o n . The type of a c t i v i t y b e i n g performed was r e c o r d e d e v e r y f i f t e e n m i n u t e s d u r i n g the day. 31 Completed a c t i v i t y r e c o r d s were e v a l u a t e d , u s i n g the 0 f i g u r e s i n A s t r a n d and R odahl ( 1 9 7 0 ) . The days chosen f o r e v a l u a t i o n i n c l u d e d two days d u r i n g the week and two weekend days. A f i n a l e s t i m a t e of d a i l y energy e x p e n d i t u r e was o b t a i n e d from the mean of the f o u r days. R e s u l t s i n d i c a t e d the s u b j e c t s had h i g h e r than . " n ormal" a c t i v i t y l e v e l s . C a l o r i c r e q u i r e m e n t s depend upon the amount of energy expended. The l i g h t e s t work c a t e g o r y , v/hich i s . t y p i c a l f o r most C a n a d i a n s , i s the maintenance c a t e g o r y . There a r e f o u r c a t e g o r i e s w i t h energy r e q u i r e m e n t s above the maintenance l e v e l w hich a r e a f f e c t e d by v a r i a t i o n s between i n d i v i d u a l s , as w e l l as by the degree of a c t i v i t y . A c c o r d i n g t o t h i s c l a s s i f i c a t i o n o f energy e x p e n d i t u r e , as o u t l i n e d i n the D i e t a r y S t a n d a r d f o r Canada (1964), a l l f o u r s u b j e c t s were l o c a t e d w i t h i n c a t e g o r i e s B - C. Three of the s u b j e c t s were i n v o l v e d i n c o m p e t i t i v e a t h l e t i c s d u r i n g the summer and s p e n t a p p r o x i m a t e l y two hours p e r day i n t r a i n i n g . The o t h e r s u b j e c t supplemented h i s " normal" a c t i v i t y w i t h swimming and j o g g i n g i n o r d e r to e q u a l i z e the l e v e l s of a c t i v i t y f o r a l l s u b j e c t s . E x p e r i m e n t a l P e r i o d s The s u b j e c t s were housed t o g e t h e r on campus f o r the d u r a t i o n of the ten-week s t u d y . S i n c e a l l f o u r s u b j e c t s 32 were graduate students, they also remained on campus during the day for most of the study. 'Their normal d a i l y a c t i v i t i e s were continued with s l i g h t v a r i a t i o n s as required by the study. Each subject was weighed d a i l y upon r i s i n g . Meals were prepared by a q u a l i f i e d d i e t i t i o n and were divided into breakfast, lunch, and dinner, plus a substantial evening snack. The food served at these meals was weighed so that a l l subjects received i d e n t i c a l c a l o r i e and nutrient intakes. Breakfast, dinner, and the evening snack were eaten together at 8:00 a.m., 6:00 p.m., and 9:00 - 10:00 p.m., respectively.' Packed lunches were prepared each evening f o r the following day. These, therefore, could be carried to the place of work or study and were eaten when desired. There was no s t r i c t supervision of the subjects; each was honour-bound to eat only what was provided f o r him each day. The weekend schedule did not vary from that followed during the week. A s i m i l a r honour system was used to regulate d a i l y physical a c t i v i t y . The subjects carried on t h e i r normal a c t i v i t i e s with no major interruptions throughout the study. The ten day long Period 4 (low c a l o r i e , increased a c t i v i t y ) d i f f e r e d only in that i t had two d a i l y periods of additional physical a c t i v i t y superimposed upon that normally followed. These two periods contributed the 33 required additional 500 c a l o r i e s energy expenditure. Daily menus were planned to provide the sp e c i f i e d number of c a l o r i e s from a selection of simply prepared foods or from a semi-defined d i e t . Diet h i s t o r i e s were taken p r i o r to the beginning of the study, as well as a notation of any p a r t i c u l a r food l i k e s and d i s l i k e s . An attempt was made to plan the menus to conform to the subject's normal eating habits and, thus, be more acceptable. Calculations of the c a l o r i e and nutrient content of both diets were based on figures from Bowes and Church (1970). The entire study consisted of f i v e consecutive experimental periods. During Period 1 ( c o n t r o l ) , the subjects received approximately 3600 c a l o r i e s per day of a regular diet composed of normal foods, which met or surpassed the Canadian Dietary Standards f o r men at a c t i v i t y l e v e l B - C (see Appendix A). During t h i s two week control period, the a c t i v i t y l e v e l c h a r a c t e r i s t i c of these four men was maintained. Period 2 (low ca l o r i e ) consisted of ten days of a low c a l o r i e diet with the same l e v e l of a c t i v i t y as Period 1. The low c a l o r i e d i e t contained approximately 1800 c a l o r i e s of a semi-defined d i e t . I t consisted of a semi-defined formulation plus one multiple vitamin capsule per day. The recipe and a breakdown of nutrient 31* content, plus the analysis of the multiple vitamin capsule are presented in Table I. This diet met or surpassed those n u t r i t i o n a l requirements, except c a l o r i e s , recommended in the Dietary Standard f o r Canada f o r men at a c t i v i t y l e v e l B - C (see Appendix B). The entire food allowance f o r the day was given to the subjects each morning in the form of eight b i s c u i t s or a l o a f , plus 21 gm margarine (a t o t a l of 1800 c a l o r i e s ) , and was consumed, as they wished, p r i o r to twelve o'clock midnight. There were no r e s t r i c t i o n s on the amount of water consumed; tea and coffee (without cream and sugar) were also a v a i l a b l e . Period 3 ( f i r s t recovery period) was s i m i l a r to the con t r o l ; two weeks during which the subjects received approximately 4000 c a l o r i e s d a i l y of the regular d i e t . The a c t i v i t y l e v e l was unaltered. Period 4 (low c a l o r i e , increased a c t i v i t y ) w a s s i m i l a r to Period 2, with the exception of an increased d a i l y energy expenditure, per subject, of approximately 500 c a l o r i e s . In order to achieve t h i s goal each day, the subjects were required to jog six miles in approximately 50 minutes or swim continuously f o r 40 minutes ( c a l o r i c * values f o r these a c t i v i t i e s were obtained from Astrand and Rodahl, 1970). These a c t i v i t i e s were carried-out i n addition to the usual d a i l y energy expenditure and generally Table I N u t r i e n t Content of Semi-defined Low C a l o r i e D i e t Thia- Ribo-Wt. C a l o r i e s P r o t e i n Calcium Iron V i t . A mine f l a v i n N i a c i n V i t . C (g) (mg) (mg) (I.U.) (mg) (mg) (mg) (mg) F l o u r 260 927 26.8 31.3 5.5 0.9 0.5 6 . 6 Margarine 56 400 0.4 12 1840 Skim M i l k Powder 63 231 23.4 855 0.4 29 0.3 1.2 0 . 7 Sugar 24 92 S a l t 10 Baking 40 Powder i T Margarine (as spread) X 21 150 0.2 4.5 690 T 1 Vitamin Capsule 15.0 5000 3.0 2.5 20.0 50 Total/Day 1800 5 0 . 8 902.8 20.9 7559 4.2 4.2 27.3 50 36 were broken i n t o two e x e r c i s e s e s s i o n s . P e r i o d 5 (second r e c o v e r y p e r i o d ) was i d e n t i c a l t o P e r i o d 3; a r e g u l a r d i e t of 4000 c a l o r i e s d a i l y v/ith the u s u a l l e v e l of a c t i v i t y . P h y s i o l o g i c a l P r o c e d u r e s Submaximal work c a p a c i t y , o r p h y s i c a l work c a p a c i t y a t a h e a r t r a t e of 170 (PWC 1 7 0 ) , and maximal oxygen u p t a k e (maximal O2) were d e t e r m i n e d by the methods of Weiner and L o u r i e (1969) u s i n g a b i c y c l e ergometer. E x p i r e d gas f o r maximal O2 d e t e r m i n a t i o n was c o l l e c t e d , u s i n g neoprene bags. A n a l y s i s of O2 and C.O2 c o n t e n t was p e r f o r m e d on the samples, u s i n g a Pulmonary F u n c t i o n Oxygen Monitor-*- and Capnograph^-, r e s p e c t i v e l y . . R e s u l t s 2 were read from a t w o - c h a n n e l r e c o r d e r . C a l c u l a t i o n of maximal O2 was done a c c o r d i n g t o the s i m p l i f i e d e q u a t i o n : VO2 consumed = V a i r e x p i r e d ($ N i n e x p i r e d a i r x O.265 -100 i° O2 i n e x p i r e d a i r ) Both t e s t s were performed on the l a s t two days of each e x p e r i m e n t a l p e r i o d , one t e s t each day. G o d a r t , N. V., B i l t h o v e n , H o l l a n d . p R i k e n D e n s h i Co. L t d . , H o l l a n d . Oxygen Consumption C a l c u l a t i o n S h e e t , Human Performance and P h y s i c a l F i t n e s s L a b o r a t o r y , S c h o o l of P h y s i c a l E d u c a t i o n and R e c r e a t i o n , U n i v e r s i t y of B r i t i s h C o l u m b i a . 37 Pour strength measurements were carried out at the end of each period, according to the method of Weiner and Lourie (1969) . They included l e f t and right-hand grips using a hand-grip dynamometer, and backward extension of the trunk and leg extension, both using a spring-leaf dynamometer. Body density was determined by the water displacement method and from th i s was calculated per cent body f a t , lean body weight and body f a t content, i . e . , body composition. The method followed was that of Consolozio et a l . , (1963), and was done on the l a s t day of each, experimental period. Body density was calculated from the equation: Body Weight of Body in A i r Density = Weight of Body in A i r - Corrected Weight of Body in A i r x Density of Water at Water Temp. L Body f a t was determined from the equation: fo Body Fat = (4.201 - 3.812) x 1 0 0 (Density ) -y~ Certain anthropometric measurements, as outlined by Wilmore and Behnke (1969)1 were also obtained at the end 4 Determination of Body Density by Underwater Weighing Data Sheet, Human Performance and Physical Fitness Laboratory, School of Physical Education and Recreation, University of B r i t i s h Columbia. of each e x p e r i m e n t a l p e r i o d . The a n t h r o p o m e t r i c assessment i n c l u d e d s i x s k i n f o l d t h i c k n e s s e s , e i g h t d i a m e t e r s and e l e v e n c i r c u m f e r e n c e s . Measurement of the s k i n f o l d t h i c k n e s s e s was performed u s i n g a Harpenden S k i n f o l d C a l i p e r Gauge, w h i l e t h e d i a m e t e r s were measurements v/ith wooden a n t h r o p o m e t r i c c a l i p e r s . The c i r c u m f e r e n c e s were measured w i t h a c l o t h a n t h r o p o m e t r i c t a p e . The s u b j e c t s were d r e s s e d i n b a t h i n g s u i t s f o r a l l the body measurements. A t l e a s t two measurements were taken a t the end of each p e r i o d ; the f i n a l v a l u e b e i n g the mean of the two. I f a d i f f e r e n c e g r e a t e r than f i v e p e r c e n t appeared between the f i r s t two measurements, a t h i r d was performed and a mean of the two c l o s e s t measurements c o n s t i t u t e d the f i n a l v a l u e . B i o c h e m i c a l P r o c e d u r e s J In a d d i t i o n to a s s e s s i n g the e f f e c t s of d i e t and e x e r c i s e on the p h y s i o l o g i c a l r e s p o n s e s , work c a p a c i t y and body c o m p o s i t i o n , a v a r i e t y of l a b o r a t o r y t e s t s were performed on b l o o d and u r i n e samples t o d e t e r m i n e any e f f e c t s of the d i e t s and a c t i v i t y on n u t r i t i o n a l s t a t u s . P a s t i n g b l o o d samples were taken t w i c e d u r i n g each e x p e r i m e n t a l p e r i o d , once midway t h r o u g h the p e r i o d and a t the end. A f t e r an o v e r n i g h t f a s t , a p p r o x i m a t e l y 25 ml o f b l o o d were drawn from the a n t e c u b i t a l v e i n of each s u b j e c t . An a l i q u o t was mixed w i t h sodium h e p a r i n i n a v a c u t a i n e r f o r immediate hemoglobin and h e m a t o c r i t d e t e r m i n a t i o n s , a second a l i q u o t was mixed w i t h sodium o x a l a t e and sodium f l u o r i d e f o r f a s t i n g b l o o d g l u c o s e d e t e r m i n a t i o n , w h i l e a t h i r d a l i q u o t was added t o a 5$ TCA s o l u t i o n f o r V i t a m i n C d e t e r m i n a t i o n . The r e m a i n i n g b l o o d was a l l o w e d t o c l o t and c e n t r i f u g e d and the serum removed. The p r e p a r e d samples were f r o z e n a t - 2 0°C and s t o r e d f o r up t o f i v e months p r i o r to a n a l y s i s , d epending upon the t e s t b e i n g p e r f o r m e d . T w e n t y - f o u r - h o u r u r i n e samples were c o l l e c t e d d u r i n g the l a s t t w e n t y - f o u r hours of each e x p e r i m e n t a l p e r i o d . I m m e d i a t e l y upon c o l l e c t i o n the samples were w e l l mixed, volumes were r e c o r d e d , and each was t e s t e d w i t h a L a b s t i x ^ ^Ames Co., D i v i s i o n R e x d a l e , O n t a r i o . M i l e s L a b o r a t o r i e s , L t d . ho f o r pH and the presence of p r o t e i n , glucose, ketones, and blood. A l i q u o t s were then a c i d i f i e d with d i l u t e (IN) HGl to a pH l e s s than 3 and the samples were frozen f o r l a t e r a n a l y s i s . . Fresh h e p a r i n i z e d blood was used f o r the determination of hemoglobin c o n c e n t r a t i o n and packed blood c e l l volume or hematocrit. Hemoglobin was determined by the spectrophotometric method, u s i n g L r a b k i n ' s Reagent.^ Hematocrit was read from a micro-hematocrit tube a f t e r c e n t r i f u g a t i o n at approximately 3000 RPM f o r f i v e minutes. Vitamin C was determined according to the spectrophotometric method of S c h a f f e r t and K i n g s l e y ( 1 9 5 5 ) » u s i n g serum th a t had been stored w i t h 5$ TCA. A n a l y s i s of f a s t i n g blood glucose was c a r r i e d out usin g a Sigma Chemical Co.? e n z y m a t i c / c o l o r i m e t r i c determination k i t . The procedure was based on a m o d i f i c a t i o n of the method e s t a b l i s h e d by Raabo and T e r k i l d s e n (1970). T o t a l serum p r o t e i n was determined by a conventional b i u r e t t e c h n i c of Wolfson, et a l . , (1948). Serum albumin was analyzed c o l o r i m e t r i c a l l y u t i l i z i n g g a m o d i f i c a t i o n of the Technicon Auto-analyzer method. F i s h e r S c i e n t i f i c , F a i r Lawn, N.J., U.S.A. ?Sigma Chemical Co. St. L o u i s , Mo., U.S.A. ^Technicon C o r p o r a t i o n , A r d s l e y , N.Y. , U.S.A. 1+1 T o t a l Serum p r o t e i n and serum albumin v a l u e s were 9 d e t e r m i n e d from a s t a n d a r d c u r v e p r e p a r e d v/ith V e r s a t o l . B l o o d urea n i t r o g e n d e t e r m i n a t i o n s were performed on serum u s i n g a c o l o r i m e t r i c d i r e c t u r e a n i t r o g e n d e t e r m i n a t i o n developed by H y c e l . ^ The T e c h n i c o n A u t o - a n a l y z e r method was used t o de t e r m i n e c h o l e s t e r o l . A n a l y s i s of V i t a m i n A i n serum was based on the m i c r o -method of N e e l d and Pea r s o n ( 1963) . H e p a r i n i z e d serum was used i n the d e t e r m i n a t i o n of V i t a m i n E by t h e method of B i e r i e t a l . , ( 1964) . U r i n a r y t h i a m i n e was a n a l y z e d by a m o d i f i c a t i o n of the method o f C o n s o l a z i o e t a l . , (1951). A summary of the p r o c e d u r e i s shown i n T a b l e I I . S t a t i s t i c a l A n a l y s i s The raw s c o r e s f o r each p h y s i o l o g i c a l and b i o c h e m i c a l measurement were key-punched onto computer data c a r d s f o r a n a l y s i s by U.B.C.'s IBM 360/67 computer. A two-way a n a l y s i s of v a r i a n c e was chosen t o t e s t f o r s t a t i s t i c a l s i g n i f i c a n c e among the means of the t r e a t m e n t c o n d i t i o n s ; G e n e r a l D i a g n o s t i c s D i v i s i o n , W a r n e r - C h i l c o t t L a b o r a t o r i e s , M o r r i s P l a i n s , K.J., U.S.A. 1 0 H y c e l I n c . , Houston, Texas, U.S.A. 4 h2 T a b l e I I Summary of P r o c e d u r e s P e r i o d 1 2 3 4 5 C o n t r o l Low C a l o r i e F i r s t R e covery Low C a l o r i e , I n c r e a sed A c t i v i t y Second Recovery L e n g t h D i e t ( c a l o r i e s ) A c t i v i t y 14 Days 3600 u s u a l 10 Days 1800 u s u a l 14 Days 4000 u s u a l 10 Days 1800 i n c r e a sed 14 Days 4000 u s u a l B l o o d Sample 1 2 3 4 5 6 7 8 9 10 Day 7 14 6 10 7 14 5 10 7 14 U r i n e Sample 1 , 2 3 4 5 Day 14 10 14 10 14 O t h e r D e t e r m i n a t i o n s - Day Measured • Maximal Og 13 9 13 9 13 PWC 170 14 10 14 10 14 Body D e n s i t y 14 10 14 10 14 Anthropometry 14 10 14 10 14 S t r e n g t h 14 10 14 10 14 t h i s type of a n a l y s i s was n e c e s s a r y t o remove the e f f e c t s o f the i n d i v i d u a l d i f f e r e n c e s between the s u b j e c t s and, t h e r e f o r e , produce a v a l i d p i c t u r e of the e f f e c t s of the f i v e e x p e r i m e n t a l p e r i o d s . I f the a n a l y s i s of v a r i a n c e d i d show a s i g n i f i c a n t d i f f e r e n c e (p ^  0.05) among the means of the e x p e r i m e n t a l c o n d i t i o n s , Newman K e u l s p o s t - h o c a n a l y s i s ( W i n e r , 1962) was performed t o d e t e r m i n e e x a c t l y which t r e a t m e n t means were s t a t i s t i c a l l y d i f f e r e n t . CHAPTER IV RESULTS AND DISCUSSION. P h y s i o l o g i c a l Data A summary of the r e s u l t s of a n a l y s i s of v a r i a n c e f o r the p h y s i o l o g i c a l measurements i s p r e s e n t e d i n T a b l e I I I . T a b l e I I I Summary o f . a n a l y s i s of v a r i a n c e - P h y s i o l o g i c a l measurements Measurement P P r o b a b i l i t v T o t a l Body Weight £ 0.05 Lean Body Weight 0.01 Body P a t Weight N.S. Per Cent Body P a t N.S. Maximal O2 N.S. PWC. 170' * 0.05 Hand G r i p - R i g h t N.S. Hand G r i p - L e f t N.S. Back S t r e n g t h * 0.05 Leg S t r e n g t h N.S. N.S. = n o t s i g n i f i c a n t I f P p r o b a b i l i t y ^ 0.05, Newman K e u l s m u l t i p l e c omparison t e s t was performed a t the 5$ l e v e l . P p r o b a b i l i t y i n d i c a t e s t he l i k e l i h o o d of o b t a i n i n g a t r e a t m e n t e f f e c t f o r t h a t measurement by chance a l o n e . I f a s i g n i f i c a n t P was found a t the f i v e p e r c e n t l e v e l (p 6 0.05), Newman K e u l s ' m u l t i p l e comparison t e s t ( W i n e r , 1962) was executed t o d e t e r m i n e which means were s i g n i f i c a n t l y d i f f e r e n t from each o t h e r . The Newman K e u l s 5^ procedure has the p r o p e r t y t h a t , f o r a set of groups with equal yCL , the p r o b a b i l i t y of a s s e r t i n g a s i g n i f i c a n t d i f f e r e n c e between any of them i s a t most, equal to the chosen l e v e l , i . e . , 0.05 (y^c r e f e r s to p o p u l a t i o n mean). Changes i n body weight and body composition. The means and standard d e v i a t i o n f o r t o t a l body weight, l e a n body weight, body f a t weight and per cent body f a t are presented i n Tables IV to V I I , r e s p e c t i v e l y . The means and standard d e v i a t i o n s f o r l e a n body weight were determined from the s u b j e c t s ' weights measured on the f i n a l day of each of the f i v e p e r i o d s . T h i s day corresponded to the day on which the underwater weighing was performed; t h e r e f o r e , these body weights were a l s o used i n the c a l c u l a t i o n of body d e n s i t y . In a d d i t i o n to the t a b l e of means and standard d e v i a t i o n s of the body weights measured on the f i n a l day of each p e r i o d , the d a i l y t o t a l body weights f o r each of the f o u r s u b j e c t s are presented g r a p h i c a l l y i n F i g u r e 1. The per cent body f a t v a l u e s were d e r i v e d from the body d e n s i t y d e t e r m i n a t i o n s c a r r i e d out on the l a s t day of each experimental p e r i o d . The weight of the body f a t was d e r i v e d by m u l t i p l y i n g the t o t a l body weight by the per cent body f a t . Lean body weight i s the d i f f e r e n c e between the t o t a l body weight and the weight of body f a t . The v a l u e s f o r each s u b j e c t , from which the means and standard T a b l e IV T o t a l body w e i g h t of s u b j e c t s on the l a s t day of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T e s t P e r i o d T o t a l Body Weight (kg) 1 7 3 . 3 + 6 . 3 2 7 1 . 2 + 6 . 3 3 7 2 . 2 + 5 . 6 4 6 9 . 8 + 5 . 6 5 7 1 . 4 + 5 . 2 T a b l e V Lean body w e i g h t of s u b j e c t s on the l a s t day of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T e s t P e r i o d Lean Body Weight (kg) 1 6 5 . 4 + 3 . 8 2 6 3 . 4 + 4 . 8 3 6 2 . 4 + 4 . 1 4 6 2 . 6 + 3 . 9 5 6 3 . 7 + 3 . 9 Table VI Weight of body f a t of s u b j e c t s on the l a s t day of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T e s t P e r i o d Weight of Body P a t (kg) 1 8.6 + 3.1 2 7.8 + 2.9 3 9.3 + 3.1 4 7.4 + 2.8 5 7.4 + 1.7 T a b l e V I I P e r c e n t body f a t of s u b j e c t s on the l a s t day of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T e s t P e r i o d P e r Cent Body P a t (#) 1 11.4 + 3.6 2 10.9 + 3.7 3 12.7 + 3.9 4 10.4 + 3.5 5 10.4 + 2.0 **9 deviations f o r these and a l l other parameters were derived, are presented in Appendix C, Raw Data. The four subjects had a high d a i l y energy expenditure and, although each consumed 3600 c a l o r i e s per day during the f i r s t control period (as recommended by the Canadian Dietary Standard), there followed a gradual loss of weight, i n d i c a t i n g that the d a i l y allowance was not s u f f i c i e n t to maintain c a l o r i c balance. Therefore, one would expect the low c a l o r i e d i e t , which contained f i f t y per cent of the recommended c a l o r i e allowance, to be inadequate to meet c a l o r i c requirements and that t h i s d i s e q u i l i b r i u m would be fu r t h e r exacerbated by the e f f e c t of the increased physical a c t i v i t y . The d a i l y c a l o r i c intake during Periods 3 and 5 was increased to 4000 c a l o r i e s in order to prevent further loss of weight during the two recovery periods. Total body weight was observed to decrease (p £ 0.01) by a mean of 2.6 kg (2.8 per cent) during Period 2 (low c a l o r i e ) , and by 3.4 kg (3.2 per cent) during Period 4 (low c a l o r i e , increased exercise). A comparison of the means by a Newman Keuls post-hoc analysis indicated that the decreases were s t a t i s t i c a l l y s i g n i f i c a n t (p ^  0.05) f o r both periods. The weight losses observed in the present study were not as large as those previously reported by other authors (Brozek et a l . , 1957; Grande et a l . , 1958; C o n s o l a z i o e t a l . , 1968; K r z y w i c k i e t a l . , 1972). However, t h e c a l o r i e r e s t r i c t i o n i n t h i s s t u d y was nuch l e s s s e v e r e and, i n two c a s e s , was c o n t i n u e d f o r a s h o r t e r p e r i o d of t i m e . I t was e s t i m a t e d t h a t the t o t a l c a l o r i c d e f i c i t f o r P e r i o d 2 was a p p r o x i m a t e l y 20,000 c a l o r i e s . T h i s would be e q u i v a l e n t to a c a l c u l a t e d body w e i g h t l o s s of 2.6 kg;, the a c t u a l w e i g h t l o s s was 2.1 k g . The i n c r e a s e d p h y s i c a l a c t i v i t y of P e r i o d 4 c r e a t e d a h i g h e r . t o t a l c a l o r i c d e f i c i t d u r i n g t h i s p e r i o d , e s t i m a t e d to be a p p r o x i m a t e l y 30,000 c a l o r i e s . The w e i g h t l o s s e q u i v a l e n t t o t h i s d e f i c i t i s about 4.0 k g , w h i l e the a c t u a l l o s s d u r i n g P e r i o d 4 was 3.4 kg. A l l o w i n g f o r e x p e r i m e n t a l e r r o r , the r e s u l t s o b t a i n e d were i n r e a s o n a b l e agreement w i t h the p r e d i c t e d v a l u e s . The g r e a t e r l o s s of body w e i g h t o b s e r v e d v/ith the i n c r e a s e d energy e x p e n d i t u r e was t o be e x p e c t e d s i n c e the c a l o r i c i n t a k e s of both p e r i o d s were i d e n t i c a l . D u r i n g both the f i r s t and second r e c o v e r y p e r i o d s (3 and 5) t h e r e was a t r e n d towards an i n c r e a s e i n t o t a l body w e i g h t ; however the i n c r e a s e was not s t a t i s t i c a l l y s i g n i f i c a n t d u r i n g e i t h e r p e r i o d (p ± 0.05). T h i s may have been due t o i n s u f f i c i e n t c a l o r i c c o nsumption, s i n c e the 4000 c a l o r i e s p e r day was chosen to m a i n t a i n body w e i g h t r a t h e r than to i n c r e a s e i t . I d e a l l y , to r e p l a c e the w e i g h t l o s t d u r i n g the two p e r i o d s , an e x t r a 20,000 o r 30,000 c a l o r i e s would have been r e q u i r e d d u r i n g P e r i o d s 3 and 5> r e s p e c t i v e l y , t o make up f o r the p r e v i o u s d e f i c i e n c i e s . There i s a l s o the p o s s i b i l i t y t h a t the r e c o v e r y p e r i o d s were s i m p l y not l o n g enough f o r complete r e c o v e r y t o o c c u r . l e a n body w e i g h t , which i s a measure of t o t a l body w e i g h t minus body f a t , p r e s e n t e d a s i g n i f i c a n t d e c r e a s e (p £ 0.05) o n l y d u r i n g P e r i o d 2 ( l o w c a l o r i e ) . There i s no e x p l a n a t i o n f o r t h i s e f f e c t . I t may s i m p l y be a r e f l e c t i o n of some o t h e r f a c t o r s n o t taken i n t o a c c o u n t i n the p r e s e n t s t u d y . I t s h o u l d be noted t h a t l e a n body w e i g h t i n c l u d e s a l l the body w a t e r , and any a l t e r a t i o n s i n f l u i d b a l a n c e would a l s o a f f e c t the l e a n body w e i g h t v a l u e s . A r e c o r d o f d a i l y u r i n e l o s s e s was n o t k e p t ; however, the u r i n e l o s s e s d u r i n g the f i n a l 24 hour s of each c o n t r o l o r r e c o v e r y p e r i o d ( l , 3 and 5) were g r e a t e r i n volume ( a l t h o u g h n o t s i g n i f i c a n t l y so) than t h o s e l o s s e s o b s e r v e d a t the end of e i t h e r P e r i o d 2 o r 4 ( s e e T a b l e V I I I ) . T a b l e V I I I Mean U r i n e Volumes P e r i o d U r i n e Volume (mean ml/24 hour s ) 1 1309 + 320 2 923 + 205 3 1285 + 242 4 1040 + 253 5 1270 + 314 This i n d i c a t e d that d e f i n i t e changes i n f l u i d balance may have occurred which could not be determined with the data a v a i l a b l e . S t a t i s t i c a l a n a l y s i s of the body f a t weight and the per cent body f a t revealed no s i g n i f i c a n t changes i n e i t h e r parameter (p > 0 . 0 5 ) . However, v i s u a l examination of the means d i d i n d i c a t e a trend toward a decrease during both P e r i o d s 2 and 4. An estimate of the r e l a t i v e composition of the weight l o s s i n terms of adipose t i s s u e and lean t i s s u e was made. The percentage of the t o t a l body weight l o s t during Periods 2 and 4 due to a l o s s of adipose t i s s u e was c a l c u l a t e d as the change of body f a t weight d i v i d e d by the change i n t o t a l body weight m u l t i p l i e d by 100 per cent. T h i r t y - e i g h t per cent of the t o t a l body weight l o s t during Pe r i o d 2 was estimated to be adipose t i s s u e w h i l e the balance of the l o s s presumably c o n s i s t e d l a r g e l y of water w i t h some l o s s of p r o t e i n , although t h i s was not d i r e c t l y determined i n the present study. S i m i l a r l o s s e s have been reported by other i n v e s t i g a t o r s (Brozek et a l . , 1 9 5 7 ; K r z y w i c k i et a l . , 1972) who i n d i c a t e d that approximately 40 per cent of t o t a l body weight l o s s under s e m i s t a r v a t i o n c o n d i t i o n s c o n s i s t e d of adipose t i s s u e . A very d i f f e r e n t r e s u l t was obtained during Period 4, when an estimate of 79 per cent of body weight l o s s as adipose t i s s u e was made. Again, t h i s may have been a f f e c t e d by an unstable f l u i d b a l a n c e and, p o s s i b l y , by a d a p t a t i o n of the s u b j e c t s t o th e c a l o r i e r e s t r i c t i o n . I t was r e p o r t e d e a r l i e r t h a t w i t h s u c c e s s i v e f a s t s t h e r e i s l e s s d e t e r i o r a t i o n , i . e . , t h e body appears t o adapt t o s u c c e s s i v e p e r i o d s of r e s t r i c t e d c a l o r i e s ( T a y l o r e t a l . , 1945). Maximal oxygen u p t a k e . The means and s t a n d a r d d e v i a t i o n s f o r maximal 0£ consumption a r e p r e s e n t e d i n T a b l e I X , and g r a p h i c a l l y i n F i g u r e 2. S t a t i s t i c a l a n a l y s i s of the d a t a i n d i c a t e d no s i g n i f i c a n t d i f f e r e n c e (p > 0.05) between the means d e t e r m i n e d f o r each of the f i v e p e r i o d s . T a b l e I X Maximal oxygen consumption d e t e r m i n a t i o n s on s u b j e c t s a t the end of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T e s t P e r i o d Maximal 2 ( l / m i n ) 1 3.87 + 0.38 .2 3.94 + 0.71 3 3.40 + 0.45 4 3.56 + 0.47 5 4.08 + 0.45 T h i s o b s e r v a t i o n a g r e e s w i t h the r e p o r t s of e a r l i e r i n v e s t i g a t o r s (Keys e t a l . , 1950; T a y l o r e t a l . , 1957) who found t h a t maximal O2 u p t a k e i s not a f f e c t e d by a w e i g h t MRXIMHL OXYGEN UPTAKE IL/M1N) 55 l o s s of l e s s than a p p r o x i m a t e l y t en p e r c e n t . There a r e a complex s e t of v a r i a b l e s t h a t c o n t r i b u t e t o maximal O2 consumption and, t h u s , a e r o b i c power, which must be taken i n t o c o n s i d e r a t i o n when a t t e m p t i n g t o a s s e s s c a r d i o r e s p i r a t o r y f i t n e s s . F a c t o r s such as c a r d i a c o u t p u t , h e r e d i t a r y c o n s t i t u t i o n , environment and o t h e r s each may e x e r t some e f f e c t , b u t i t i s u n l i k e l y t h a t such v a r i a b l e s would be changed w i t h i n a t e n day or two week s t r e s s p e r i o d ( M i t c h e l l e t a l . , 1958; Shephard, 1967; A s t r a n d , 1970). I f measured d i r e c t l y , m o t i v a t i o n of the s u b j e c t s i s of g r e a t i m p o r t a n c e ( A s t r a n d , 1952). P o s s i b l y , a more i m p o r t a n t f a c t o r w i t h r e g a r d t o maximal O2 consumption measurements d u r i n g the p r e s e n t s t u d y was the i n i t i a l s t a t e of t r a i n i n g of t h e s u b j e c t s . A l l f o u r s u b j e c t s e x e r c i s e d v e r y r e g u l a r l y and no t r a i n i n g e f f e c t would be ex p e c t e d d u r i n g the s t r e s s - s i t u a t i o n s i n the s t u d y . D e s p i t e a l l t h e s e i n f l u e n c i n g f a c t o r s , a e r o b i c power i s a c o n v e n i e n t o v e r a l l i n d e x of c a r d i o r e s p i r a t o r y f i t n e s s , s i n c e i t i n t e g r a t e s the v a r i o u s a d j u s t m e n t s t h a t o c c u r d u r i n g e x e r c i s e . I t a p p e a r s , t h e n , t h a t a l o w c a l o r i e d i e t of a p p r o x i m a t e l y one h a l f the recommended d a i l y r e q u i r e m e n t f o r a p e r i o d of o n l y t en d a y s , does n o t have any s i g n i f i c a n t e f f e c t on c a r d i o r e s p i r a t o r y f i t n e s s , as a s s e s s e d from maximal 0 2 c a p a c i t y . 56 PWC 1 7 0 . P r e d i c t i o n of PWC 170 was based on the a s s u m p t i o n of a l i n e a r i n c r e a s e i n the h e a r t r a t e w i t h the work l o a d , o r oxygen consumption. The means and s t a n d a r d d e v i a t i o n s of the PWC 170 d e t e r m i n a t i o n s a r e p r e s e n t e d i n T a b l e X and g r a p h i c a l l y , i n F i g u r e 3 . T a b l e X P//C 170 d e t e r m i n a t i o n s on s u b j e c t s a t the end of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T e s t P e r i o d PWC 170 1 1119 .30 + 130 . 9 8 2 1132 . 7 6 + 117.80 3 1109 . 6 8 + 1 5 6 . 3 2 k 1060 .01 + 123.84 5 971 .71 + 1 2 1 . 0 7 A n a l y s i s of v a r i a n c e of the PWC 170 v a l u e s r e v e a l e d a s i g n i f i c a n t d i f f e r e n c e a t the f i v e p e r c e n t l e v e l . A comparison of the means w i t h the Newman K e u l s p r o c e d u r e i n d i c a t e d a s i g n i f i c a n t d e c r e a s e i n the mean f o r P e r i o d 5 from t h o s e of P e r i o d s 1, 2 and 3 . A v i s u a l e x a m i n a t i o n of the d a t a i n d i c a t e d the d e c r e a s e began a f t e r P e r i o d 2 and c o n t i n u e d f o r the d u r a t i o n of the s t u d y . S i n c e t h e r e i s no change i n the d i r e c t i o n of the c u r v e w i t h the changes i n 1500 - i 1400-1300-1200-o Figure 3. PWC 170, Means and Standard Deviations. 58 t r e a t m e n t c o n d i t i o n s , t h e r e may be a c a r r y o v e r of e f f e c t s f r o m one p e r i o d t o the n e x t . I f such was the c a s e , and each p e r i o d was n o t indepe n d e n t from the o t h e r s , i t i n d i c a t e s t h a t a r e c o v e r y p e r i o d g r e a t e r than 14 days i s r e q u i r e d a f t e r a r e s t r i c t e d c a l o r i e i n t a k e f o r ten days. The l a t e n t , c o n t i n u a l r e s p o n s e i n PWC 170 i s i n agreement w i t h the s t u d i e s done by Keys e t a l . ( 1 9 5 0 ) , and Crowdy ( 1 9 6 9 ) . These a u t h o r s do not e x p l a i n the causes of t h i s r e s p o n s e ; however, as oxygen consumption v a l u e s remained unchanged f o r the d u r a t i o n of the s t u d y , a d e c r e a s e i n the a v a i l a b i l i t y and/or the u t i l i z a t i o n of s u b s t r a t e s r e q u i r e d by the w o r k i n g muscle was i n d i c a t e d . S i n c e , d u r i n g a PWC 170 d e t e r m i n a t i o n , the c i r c u l a t o r y system must s u p p l y s u b s t r a t e t o the w o r k i n g m u s c l e s f o r e i g h t e e n m i n u t e s , the d e c r e a s e c o u l d have been caused by l a c k of s u b s t r a t e a v a i l a b l e t o m a i n t a i n work performance f o r the e n t i r e p h y s i c a l work c a p a c i t y d e t e r m i n a t i o n . V a r i a t i o n s i n b l o o d volume, such as h e m o d i l u t i o n , have been r e p o r t e d t o have an e f f e c t on the a b i l i t y to p e r f o r m p h y s i c a l work and, t h e r e f o r e , on the outcome of a PWC. 170 d e t e r m i n a t i o n ( T h o r e n , 1 9 7 0 ) . Changes i n h e m a t o c r i t , hemoglobin, t o t a l serum p r o t e i n and serum a l b u m i n c o n c e n t r a t i o n s were observed d u r i n g the study i n a manner s i m i l a r t o t h a t observed by Hannon e t a l . , ( 1 9 5 9 ) . They a t t r i b u t e d the observed changes t o a p o s s i b l e h e m o d i l u t i o n 59 e f f e c t . T h i s may have been a f a c t o r i n the obser v e d changes i n the PWC 170 v a l u e s i n the p r e s e n t s t u d y . S t r e n g t h d e t e r m i n a t i o n s . The means and s t a n d a r d d e v i a t i o n s of the f o u r s t r e n g t h measurements (hand g r i p -r i g h t , hand g r i p - l e f t , back s t r e n g t h , l e g s t r e n g t h ) a r e p r e s e n t e d i n T a b l e s X I and X I I . Table XI H a n d - g r i p s t r e n g t h d e t e r m i n a t i o n s on s u b j e c t s a t the end of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . ( K g s ) . Hand G r i p S t r e n g t h T e s t P e r i o d R i g h t L e f t 1 58 + 4 52 + 7 2 56 + 5 50 + 9 3 56 + 4 48 + '8 4 58 + 6 49 + 7 T a b l e X I I S t r e n g t h d e t e r m i n a t i o n s on s u b j e c t s a t the end of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . ( l b s ) . S t r e n g t h T e s t P e r i o d Back Leg 1 486 + 82 831 + 176 2 435 + 65 822 + 102 3 445 + 67 820 + 142 4 539 + 39 808 + 150 5 488 + 73 878 103 S t a t i s t i c a l a n a l y s i s of the s t r e n g t h measurements i n d i c a t e d no s i g n i f i c a n t d i f f e r e n c e (p> 0.05) i n t h r e e of the f o u r t e s t s . A Newman K e u l s t e s t of the means of the s t a t i s t i c a l l y s i g n i f i c a n t (p^-0.05) back s t r e n g t h measurements i n d i c a t e d t h a t the mean v a l u e s f o r P e r i o d s 2 v e r s u s 4 and 3 v e r s u s 4 were s i g n i f i c a n t l y d i f f e r e n t . These r e s u l t s do not seem t o be r e l a t e d t o the s t u d y . I t would appear t h a t the dynamometer t e s t s were n o t s e n s i t i v e enough t o show s l i g h t changes i n s t r e n g t h t h a t might have o c c u r r e d d u r i n g the d i f f e r e n t p e r i o d s because the amount of i n t r a i n d i v i d u a l v a r i a t i o n i s r a t h e r l a r g e (± 10 to 20 e p e r c e n t , A s t r a n d and R o d a h l , 1970). The s i g n i f i c a n c e of t h e one measurement cannot be e x p l a i n e d . A t e n day p e r i o d of low c a l o r i e i n t a k e , w i t h o r w i t h o u t i n c r e a s e d a c t i v i t y , i s n o t c o n s i d e r e d s u f f i c i e n t t i m e t o produce any s i g n i f i c a n t e f f e c t on s t r e n g t h ( T a y l o r e t a l . , 1957). The o c c u r r e n c e of s i g n i f i c a n t d e c r e a s e s i n s t r e n g t h has g e n e r a l l y been r e s t r i c t e d t o c o n d i t i o n s of l o w - c a l o r i e i n t a k e o v e r extended p e r i o d s of t i m e , r e s u l t i n g i n a w e i g h t l o s s i n e x c e s s of t e n p e r c e n t . A n t h r o p o m e t r i c measurements. A r e v i e w of the a n t h r o p o m e t r i c measurements (see A ppendix C) i n d i c a t e d v e r y l i t t l e change, i f any, i n most of the measurements. T h i s o c c u r r e d p a r t i c u l a r l y when the measurement was of a d i a m e t e r o r c i r c u m f e r e n c e c o n s i s t i n g m a i n l y of bone. The 61 s i x s k i n f o l d measurements and t h r e e of t h e c i r c u m f e r e n c e s ( c h e s t , abdomen, b u t t o c k ) p r e s e n t e d the g r e a t e s t v a r i a t i o n , a l t h o u g h even these were r e l a t i v e l y m i n i m a l . The means and s t a n d a r d d e v i a t i o n s f o r each of thes e n i n e measurements f o r each of the stu d y p e r i o d s a r e p r e s e n t e d i n Ta b l e X I I I . None of the a n t h r o p o m e t r i c measurements d i s p l a y e d s t a t i s t i c a l s i g n i f i c a n c e (p>0.05 f o r a l l measurements). C o n s i d e r i n g the r e l a t i v e l y s h o r t d u r a t i o n of the s t r e s s p e r i o d s , as w e l l as the magnitude of t h e w e i g h t l o s s e s o (2.8 and 3.2 p e r c e n t ) , t h i s was to be e x p e c t e d . B i o c h e m i c a l Data A summary of the r e s u l t s of a n a l y s i s of v a r i a n c e of th e b i o c h e m i c a l p a r a m e t e r s i s p r e s e n t e d i n Ta b l e XIV. A n a l y s i s of the b l o o d and u r i n e samples i n d i c a t e d t h a t , a l t h o u g h some s t a t i s t i c a l l y s i g n i f i c a n t changes d i d o c c u r , most pa r a m e t e r s measured remained w i t h i n the c l i n i c a l l y a c c e p t e d normal ranges (White e t a l . , 1968). T h i s a b i l i t y t o m a i n t a i n an e q u i l i b r i u m d u r i n g a p e r i o d of s t r e s s i s a s i g n of a d a p t a t i o n t o t h a t p a r t i c u l a r s t r e s s by the body. I t i s p o s s i b l e t h a t w i t h o u t t h a t a b i l i t y , t he r e s t r i c t e d c a l o r i e i n t a k e s imposed d u r i n g the stu d y might have caused the par a m e t e r s measured to v a r y beyond t h e l i m i t s n o r m a l l y a c c e p t e d . T a b l e XV p r e s e n t s the means and s t a n d a r d d e v i a t i o n s t T a b l e X I I I Means and stand a r d d e v i a t i o n s of s e l e c t e d a n t h r o p o m e t r i c measurements taken a t the end of each t e s t p e r i o d . P e r i o d 1 2 3 4 5 SKIN FOLDS (mm) Sub S c a p u l a r 11.7 + 1.5 12.3 + 1.2 11.9 + 1.3 11.8 + 1.2 11.9 + 1 .6 T r i c e p s 8.2 + 2.1 8.2 + 1.5 8.3 + 1 .6 8.2 + 1.1 8.3 1.4 Chest 6.9 + 2.3 6.7 + 2.4 6.9 + 2.2 6 . 6 + 1.8 '6.7 + 1.7 S u p r a i l i a c 14.4 + 5.3 14.8 + 4.8 14.7 + 5.2 13.8 + 4.9 14.5 + 4.8 U m b i l i c a l 14.1 + 6.3 14.3 + 6.5 14.3 + 6.1 13.7 + 5.9 13.8 + 5.9 F r o n t Thigh 12.5 + 4.2 12.1 + 3.9 12.0 + 3.5 12.1 + 3 .6 11.9 + 3.1 CIRCUMFERENCES (cm) Chest 94.1 + 6.3 94.5 + 5.8 94.6 + 5.9 95.0 + 6.0 94.7 + 5.8 Abdomen 82.6 + 6.7 82.6 6 .6 82.8 + 4.5 80.3 + 3.8 81.7 + 4.0 B u t t o c k 9 6 . 3 + 2.9 95.7 + 3.4 96.1 + 2.7 95.1 + 3.2 95.8 + 2.3 ON ro 63 T a b l e XIV Summary of a n a l y s i s of v a r i a n c e -b i o c h e m i c a l d e t e r m i n a t i o n s . Measurement U n i t P P r o b a b i l i t y P a s t i n g B l o o d G l u c o s e mgfo 0 . 0 5 C h o l e s t e r o l mg% 0 . 0 1 Hemoglobin mg% < 0 . 0 1 H e m a t o c r i t 0 . 0 1 T o t a l Serum P r o t e i n gf° 0 . 0 1 Serum Albumin mgfr < 0 . 0 5 B l o o d Urea N i t r o g e n 0 . 0 1 V i t a m i n A mg$ N.S. V i t a m i n E mg# 0 . 0 5 V i t a m i n C mg^ 0 . 0 1 Thiamine g/ml 0 . 0 5 N.S. = not s i g n i f i c a n t . I f P P r o b a b i l i t y - ^ 0 . 0 5 t e s t was performed a t the Newman K e u l s 5$ l e v e l . M u l t i p l e Comparison Ta b l e XV P a s t i n g b l o o d g l u c o s e v a l u e s of s u b j e c t s d e t e r m i n e d on samples t a k e n i n the m i d d l e and a t the end of each t e s t p e r i o d . . Means and s t a n d a r d d e v i a t i o n s . T e s t P e r i o d B l o o d Sample P a s t i n g B l o o d G l u c o s e Tmg^ ) 1 1 70 + 4 2 71 + 5 2 3 66 + 4 4 63 + 5 3 5 68 + 4 6 75 + 2 4 7 62 + 9 8 69 + 5 5 9 74 + 8 10 73 + 12 f o r the f a s t i n g b l o o d g l u c o s e d e t e r m i n a t i o n s . S t a t i s t i c a l a n a l y s i s of the v a l u e s r e v e a l e d a s i g n i f i c a n t d i f f e r e n c e (p — 0.05) o v e r - a l l . However, a Newman K e u l s t e s t of the means i n d i c a t e d t h a t no two means were s i g n i f i c a n t l y d i f f e r e n t t o cause a s i g n i f i c a n t p o s t - h o c v a l u e . T h i s s i t u a t i o n i s p o s s i b l e when the F r a t i o c a l c u l a t e d by the a n a l y s i s of v a r i a n c e p r o c e d u r e i s o n l y s l i g h t l y g r e a t e r t h a n the c r i t i c a l v a l u e , such as o c c u r r e d w i t h f a s t i n g b l o o d g l u c o s e ( c r i t i c a l v a l u e = 2.26; c a l c u l a t e d F r a t i o = 2.49; t h e r e f o r e , i t i s j u s t b a r e l y s i g n i f i c a n t a t the f i v e p e r c e n t l e v e l ) . V i s u a l e x a m i n a t i o n of the f a s t i n g b l o o d g l u c o s e v a l u e s , however, d i d i n d i c a t e the appearance of a d i s t i n c t t r e n d . The t r e n d was toward a d e c r e a s e d u r i n g both P e r i o d s 2 and 4, f o l l o w e d by an i n c r e a s e d u r i n g the two r e c o v e r y p e r i o d s (3 and 5). T h i s q u i t e d e f i n i t e t r e n d was n o t s u r p r i s i n g because the n u t r i t i o n a l r e q u i r e m e n t s f o r c a r b o h y d r a t e s were n o t b e i n g s a t i s f i e d . S i n c e g l u c o s e was n o t a v a i l a b l e i n s u f f i c i e n t amounts t o s a t i s f y the c e l l u l a r r e q u i r e m e n t s , t h e l e v e l of PFA i n the p l a s m a 1 was e l e v a t e d s i g n i f i c a n t l y (p ^ .05). I t i s well-known t h a t g l u c o s e s e r v e s d i r e c t l y , a l o n g w i t h plasma PFA, as the major s u b s t r a t e f o r m e t a b o l i s m R e s u l t s of FFA and t r i g l y c e r i d e d e t e r m i n a t i o n s from t h i s s tudy a r e a v a i l a b l e from the S c h o o l of P h y s i c a l E d u c a t i o n and R e c r e a t i o n , U.B.C. (Andres e t a l . , 1956; C a r l s o n and Fernow, 1959; F r i e d b e r g e t a l . , i960). When n u t r i t i o n a l energy r e q u i r e m e n t s a r e b e i n g met, the plasma FFA. c o n c e n t r a t i o n d rops t o a low l e v e l , p r o b a b l y due to the s e c r e t i o n of i n s u l i n , w hich i s a known i n h i b i t o r of FFA r e l e a s e ( D o l e , 1956). C o n v e r s e l y , when s u f f i c i e n t g l u c o s e i s u n a v a i l a b l e , the l e v e l of FFA i n plasma r i s e s t o s e r v e the body's energy r e q u i r e m e n t s . Thus, even when the c a l o r i c i n t a k e of c a r b o h y d r a t e i s i n a d e q u a t e t o m a i n t a i n normal b l o o d l e v e l s , endogenous s t o r e s , m a i n l y of a d i p o s e t i s s u e , can be m o b i l i z e d . The means and s t a n d a r d d e v i a t i o n s of serum c h o l e s t e r o l a r e p r e s e n t e d i n T a b l e X V I . S t a t i s t i c a l a n a l y s i s i n d i c a t e d s i g n i f i c a n t d i f f e r e n c e s ; a comparison of the means r e v e a l e d t h a t the c h o l e s t e r o l l e v e l of both samples t a k e n d u r i n g P e r i o d 2 showed a s i g n i f i c a n t d e c r e a s e from the c o n t r o l l e v e l . The l e v e l r o s e d u r i n g P e r i o d 3» d e c r e a s e d a g a i n d u r i n g P e r i o d 4, and showed a f i n a l i n c r e a s e i n the second r e c o v e r y , P e r i o d 5. These l a t t e r changes d u r i n g P e r i o d s 3» 4 and 5» d i d not prove t o be s i g n i f i c a n t when t e s t e d w i t h t h e Newman K e u l s p r o c e d u r e , but the t r e n d was q u i t e o b v i o u s . S i m i l a r r e s u l t s ( i . e . , d e c r e a s e d plasma c h o l e s t e r o l l e v e l s d u r i n g low c a l o r i e o r low c a l o r i e p l u s i n c r e a s e d e x e r c i s e s i t u a t i o n s ) were observed by C a r l s o n and F r o b e r g (1967) who noted t h a t t h e d e c r e a s e was p r i m a r i l y due t o a l o w e r i n g of the c h o l e s t e r o l c o n t e n t i n t h e low 66 Table XVI Serum c h o l e s t e r o l l e v e l s of s u b j e c t s determined on samples t a k e n i n the m i d d l e and a t the end of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T est P e r i o d B l o o d Sample Serum ' Ch o l e s t e r o l ( 1 1 168 + 21 2 183 21 2 3 150 + 13 4 150 + 14 3 5 168 + 14 6 178 + 2 4 7 162 + 9 8 158 + 7 5 9 169 + 15 10 178 + 16 d e n s i t y l i p o p r o t e i n f r a c t i o n of the plasma. A l o n g w i t h o t h e r i n v e s t i g a t o r s , they observed t h a t when w e i g h t l o s s o c c u r r e d i n c o n n e c t i o n w i t h p h y s i c a l t r a i n i n g , the c h o l e s t e r o l l e v e l i n plasma d e c r e a s e d ( G o l d i n g , 1 9 6 1 ; R o c h e l l e , 1 9 6 1 ) . E x e r c i s e p e r se ( C a r l s o n and M o s s f e l d t , 1 9 6 4 ; F i t z g e r a l d e t a l . , 1965) or f a s t i n g , a l o n e (Ende, 1 9 6 2 ; Bloom e t a l . , 1 9 6 2 ) , d i d n o t appear t o d e c r e a s e the plasma c h o l e s t e r o l . c o n c e n t r a t i o n . The b i o c h e m i c a l mechanisms b e h i n d t h i s a d j u s t m e n t a r e n o t w e l l - k n o w n . Plasma c h o l e s t e r o l l e v e l s are a l s o a f f e c t e d by the t y p e and q u a n t i t y of d i e t a r y f a t consumed (Food and N u t r i t i o n B o a r d , 1 9 5 8 ) . In the p r e s e n t s t u d y , the low c a l o r i e d i e t s e l e c t e d was l o w e r i n f a t c o n t e n t than normal (32 p e r c e n t compared t o a normal i n t a k e of kO p e r c e n t ) . The type of f a t used was l a r g e l y of v e g e t a b l e o r i g i n w i t h a h i g h p e r c e n t a g e of p o l y u n s a t u r a t e d f a t t y a c i d s , w h i c h i n c r e a s e d the r a t i o of PUPA:SPA. Both of thes e f a c t o r s have a l o w e r i n g e f f e c t on plasma c h o l e s t e r o l c o n c e n t r a t i o n s and c o u l d e x p l a i n the r e s u l t s o b t a i n e d . The means and s t a n d a r d d e v i a t i o n s of he m o g l o b i n , h e m a t o c r i t , t o t a l serum p r o t e i n and serum a l b u m i n a r e p r e s e n t e d i n T a b l e s X V I I t o XX, r e s p e c t i v e l y . A l t h o u g h s t a t i s t i c a l a n a l y s i s i n d i c a t e d s i g n i f i c a n t d i f f e r e n c e s between the means f o r a l l f o u r p a r a m e t e r s , a t e s t of the means r e v e a l e d no p a t t e r n t h a t c o u l d be a t t r i b u t e d t o the v a r i o u s t r e a t m e n t c o n d i t i o n s i n the s t u d y . There i s no e x p l a n a t i o n f o r the s e r e s u l t s , which may have been caused by u n d e r l y i n g f a c t o r s n o t ta k e n i n t o c o n s i d e r a t i o n i n the p r e s e n t s t u d y . Each of the p r o t e i n v a r i a b l e s measured i s i n f l u e n c e d by d i e t a r y p r o t e i n i n t a k e (Eggum, 1970). S i n c e the amount of p r o t e i n i n the d i e t d e c r e a s e d from a normal i n t a k e a v e r a g i n g 155 gci p e r day t o the m i n i m a l r e q u i r e m e n t of 50 gm p e r day d u r i n g the low c a l o r i e d i e t , t h e s e very-d i f f e r e n t l e v e l s c o u l d a c c o u n t f o r the changes i n the b l o o d l e v e l s of these v a r i a b l e s . I t i s known t h a t a sudden l o s s of body w e i g h t i s accompanied by an immediate l o s s of p r o t e i n and w a t e r ( D r u r y e t a l . , 1958; Vaughan e t a l . , 1959). A. change i n the f l u i d b a l a n c e c o u l d a l s o q u i t e 6 8 Table XVII Hemoglobin l e v e l s of subjects determined on blood samples taken in the middle and at the end of each test period. Means and standard deviations. Test Period Blood Sample Hemoglobin (mg/O 1 1 16 .94 + 0.49 2 16 .61 + 0.40 2 3 15 .61 + 0.23 4 15 .72 + 0.44 3 5 15 .71 + 0.59 6 15 .87 + 0.36 4 7 15 .43 + 0.55 8 15 .80 + 0 . 15 5 9 17 .22 + 0.39 10 17 .17 + 0.46 Table XVIII Hematocrit l e v e l s of subjects determined on blood samples taken in the middle and at the end of each test period. Means and standard deviations. Test Period Blood Sample Hematocrit 1 1 47 + 1.0 2 47 + 1.3 2 3 45 + 1.1 4 45 + 2.1 3 5 44 + 2.2 6 46 + 0.6 4 7 43 + 1.0 8 43 0.8 5 9 44 + 1.4 10 45 + 1.4 69 Table XIX T o t a l serum p r o t e i n l e v e l s of s u b j e c t s d e t e r m i n e d on samples t a k e n i n the , m i d d l e and a t the end of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T e s t P e r i o d B l o o d Sample T o t a l Serum P r o t e i n Jj&l 1 1 6.90 + 0 .28 2 7.35 + 0 .39 2 3 6.71 + 0 .22 4 7.23 + 0 .48 3 5 6.85 + 0 .45 6 6.19 + 0 .77 4 7 6.74 + 0 .23 8 6.62 + 0 .50 5 9 6.92 + 0 .35 10 7.38 + 0 .31 T a b l e XX Serum a l b u m i n l e v e l s of s u b j e c t s d e t e r m i n e d on samples t a k e n i n the m i d d l e and a t t h e end of each t e s t p e r i o d s t a n d a r d d e v i a t i o n s . Means and T e s t P e r i o d B l o o d Sample Serum Albumin (g$) 1 1 3.89 + 0.25 2 3.79 + 0.19 2 3 3.61 + 0.15 4 3.71 + 0.14 3 5 3.61 + 0.26 6 3.29 + 0.32 4 7 3.53 + 0.22 8 3.36 + 0.25 5 9 3.60 + 0.10 10 3.61 + 0.09 70 c o n c e i v a b l y have d i s t u r b e d the normal e q u i l i b r i u m of the v a r i o u s p r o t e i n c o n s t i t u e n t s found w i t h i n the serum 1. B l o o d urea n i t r o g e n (BUN) c o n c e n t r a t i o n i s a n o t h e r c o n s t i t u e n t of the serum t h a t v a r i e s w i d e l y w i t h the q u a n t i t y of d i e t a r y p r o t e i n , p a r t i c u l a r l y when o t h e r f a c t o r s , such as q u a l i t y of the p r o t e i n , a r e h e l d c o n s t a n t (Eggum, 1 9 7 0 ) . The means and s t a n d a r d d e v i a t i o n s of the BUN c o n c e n t r a t i o n s a r e shown i n Ta b l e X X I . Table XXI B l o o d u r e a n i t r o g e n (BUN) l e v e l s of s u b j e c t s d e t e r m i n e d on samples taken i n the m i d d l e and a t the end of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T e s t P e r i o d B l o o d Sample B l o o d Urea N i t r o g e n (mg#) 1 2 3 k 5 1 2 3 5 6 7 8 9 1 0 1 1 . 2 5 1 1 . 7 5 1 1 . 8 8 1 0 . 7 5 1 2 . 8 8 1 3 . 5 0 1 2 . 1 3 1 1 . 6 3 1 2 . 5 0 1 5 . 7 5 + + + + + + + + + + 0 . 9 6 0 . 9 6 1 . 6 3 2 . 5 3 1 . 7 7 1 . 7 3 1 . 9 5 2 . 9 4 1.23 3 . 0 7 S t a t i s t i c a l a n a l y s i s of the da t a i n d i c a t e d a s i g n i f i c a n t d i f f e r e n c e (p 4 0 . 0 1 ) ; however, a comparison of the means a g a i n r e v e a l e d no BUN changes t h a t c o u l d be a s c r i b e d t o the d e s i g n of the s t u d y . Only a t r e n d was a p p a r e n t upon v i s u a l e x a m i n a t i o n , i . e . , d e c r e a s e d BUN l e v e l s d u r i n g P e r i o d s 2 and 4, f o l l o w e d by an i n c r e a s e d u r i n g both P e r i o d s 3 and 5 ( i t was the i n c r e a s e d u r i n g P e r i o d 5 t h a t was found t o be s t a t i s t i c a l l y s i g n i f i c a n t ) . T h i s t r e n d suggested something more than s i m p l e i n d i v i d u a l s u b j e c t v a r i a t i o n i as a cause and c o u l d v e r y w e l l have been a r e s u l t of the t h r e e - f o l d change i n d i e t a r y p r o t e i n i n t a k e . The immediate consequence of a change i n the q u a n t i t y of d i e t a r y p r o t e i n i s a p a r a l l e l change i n t h e p r o t e i n t u r n o v e r ( A r r o y a v e , 1962). BUN l e v e l s a r e r e l a t e d t o changes i n the p r o t e i n t u r n o v e r r a t e , as a r e t h e o t h e r p r o t e i n c o n s t i t u e n t s of the serum. However, the BUN l e v e l s v a r y t o the g r e a t e s t d e g ree. The i n c r e a s e d e x e r c i s e of P e r i o d 4 d i d n o t appear t o have had any e f f e c t on the BUN o r o t h e r p r o t e i n c o n s t i t u e n t l e v e l s . I t has been known s i n c e the N i n e t e e n t h C e n t u r y t h a t heavy e x e r c i s e does n o t i n c r e a s e p r o t e i n c ombustion (Von P e t t e n k o f e r and V o i t , 1866; Zuntz and Hagemann, 1898; Rubner, 1902). W h i l e the u r i n a r y n i t r o g e n e x c r e t i o n has been found t o i n c r e a s e a f t e r m u s c u l a r work, the i n c r e a s e i s s l i g h t and shows no c l o s e p a r a l l e l i s m t o the amount of work performed ( W i l s o n , 1932). The means and s t a n d a r d d e v i a t i o n s of the serum l e v e l s o f the two f a t s o l u b l e v i t a m i n s , A and E, are p r e s e n t e d i n T a b l e s X X I I and X X I I I , r e s p e c t i v e l y . S t a t i s t i c a l a n a l y s i s 72 Table X X I I Serum V i t a m i n A l e v e l s of s u b j e c t s d e t e r m i n e d on samples t a k e n i n the m i d d l e and a t the end of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T est P e r i o d B l o o d Sample V i t a m i n A (mg$£) 1 1 0. 075 + 0. 009 2 0. 078 + 0. 008 2 3 0. 077 0. 006 4 0. 076 + 0. 006 3 5 0. 081 + 0. 006 6 0. 087 + 0. 012 4 7 0. 082 + 0. 005 8 0. 078 + 0. 006 5 9 0. 084 + 0. 005 10 0. 086 + 0. 001 T a b l e X X I I I Serum V i t a m i n E l e v e l s o f s u b j e c t s d e t e r m i n e d on samples taken i n t h e m i d d l e and a t the end of each t e s t p e r i o d . Means and s t a n d a r d d e v i a t i o n s . T e s t P e r i o d B l o o d Sample V i t a m i n E (rngfo) 1 1 1.14 + 0.13 2 1.07 + 0.10 2 3 0.93 + 0.11 4. 1.00 + 1.14 3 5 1.14 + 0.22 6 1.28 + 0.27 4 7 1.02 + 0.17 8 1.08 + 0.24 5 9 1.23 + 0.17 10 1.35 + 0.31 of both s e t s of d a t a i n d i c a t e d a s i g n i f i c a n t d i f f e r e n c e (p ± 0.05) o n l y i n the V i t a m i n E v a l u e s . However, v i s u a l e x a m i n a t i o n r e v e a l e d t h a t the o v e r - a l l t r e n d f o l l o w e d by b o t h v a r i a b l e s was a d e c r e a s e d u r i n g the low c a l o r i e p e r i o d s (2 and 4) f o l l o w e d by an i n c r e a s e d u r i n g both r e c o v e r y p e r i o d s (3 and 5)« The l e v e l s of V i t a m i n A consumed on e i t h e r d i e t d u r i n g the s t u d y d i d n o t v a r y s i g n i f i c a n t l y (p > 0.05); V i t a m i n E i n t a k e l e v e l s were unknown f o r e i t h e r d i e t . The changes i n the serum l e v e l s s u p p o r t the f a c t t h a t , s i n c e l i p i d s u b s t a n c e s cannot e x i s t a l o n e i n the b l o o d , t h e i r c o n c e n t r a t i o n s v a r y w i t h t h a t of t h e i r c a r r i e r p r o t e i n s . A n a l y s i s of the v a r i o u s p r o t e i n c o n s t i t u e n t s , as r e p o r t e d e a r l i e r , r e v e a l e d changes i n the serum l e v e l s t h a t may have had some e f f e c t . S i n c e f a t s o l u b l e v i t a m i n s r e q u i r e d i e t a r y f a t as a v e h i c l e f o r a b s o r p t i o n , the reduced f a t i n t a k e d u r i n g the low c a l o r i e p e r i o d s may have been a f a c t o r . A l s o , the V i t a m i n E l e v e l i s known t o c l o s e l y p a r a l l e l t h a t of serum c h o l e s t e r o l , w h i c h was found to be d e c r e a s e d d u r i n g b oth P e r i o d s 2 and k. The means and s t a n d a r d d e v i a t i o n s of the two w a t e r s o l u b l e v i t a m i n s measured (serum V i t a m i n C and u r i n a r y t h i a m i n e ) a r e p r e s e n t e d i n T a b l e s XXIV and XXV, r e s p e c t i v e l y . S t a t i s t i c a l a n a l y s i s of both s e t s of d a t a i n d i c a t e d a s i g n i f i c a n t d i f f e r e n c e i n each ( V i t a m i n C , 7h Table XXIV Serum Vitamin C l e v e l s of subjects determined on samples taken in the middle and at the end of each test period. Means and standard deviations. Test Period Blood Sample Vitamin C (m . 1 1 1.025 + 0.067 2 0.935 + 0.106 2 3 0.710 0.068 4 1.027 + 0.128 3 5 1.130 + 0.149 6 1.057 + 0.116 4 7 . 0.975 + 0.102 8 0.930 + 0.049 5 9 1.032 + 0.084 10 1.048 + 0.090 Table XXV Urinary thiamine l e v e l of subjects determined on samples collected at end of each test period. Means and the standard deviations. Test Period Urine Sample Urinary Thiamine (ug/ml) 1 1 0.38 + 0.24 2 2 0.52 + 0.09 3 3 0.28 + 0.08 4 4 0.65 + 0.20 5 5 0.36 + 0.30 75 p ^ 0 . 0 1 , t h i a m i n e , p £ 0 . 0 5 ) . A-Newman K e u l s t e s t of the means of the V i t a m i n C v a l u e s found a s t a t i s t i c a l l y s i g n i f i c a n t d e c r e a s e d u r i n g P e r i o d 2 ( l o w c a l o r i e ) . A second d e c r e a s e was observed d u r i n g the second low c a l o r i e c o n d i t i o n ( P e r i o d 4 ) , as w e l l , a l t h o u g h t h i s was n o t s t a t i s t i c a l l y s i g n i f i c a n t . As serum V i t a m i n C c o n c e n t r a t i o n s v a r y w i t h d i e t a r y i n t a k e (White e t a l . , 1968) , the l o w e r i n t a k e d u r i n g the two low c a l o r i e p e r i o d s (2 and 4) would a c c o u n t f o r the d e c r e a s e s o b s e r v e d i n the serum l e v e l s (50 mg p e r day on t h e low c a l o r i e d i e t compared t o a normal i n t a k e of a p p r o x i m a t e l y 250 mg p e r d a y ) . When a Newman K e u l s t e s t was performed on t h e means o f the u r i n a r y t h i a m i n e d a t a , a s i g n i f i c a n t i n c r e a s e i n the t h i a m i n e l e v e l appeared d u r i n g P e r i o d 4 . A s i m i l a r , b ut n o t s i g n i f i c a n t i n c r e a s e c o u l d a l s o be observed d u r i n g P e r i o d 2 . There i s e v i d e n c e t h a t the r e q u i r e m e n t f o r t h i a m i n e i s d i r e c t l y r e l a t e d t o the r a t i o of c a r b o h y d r a t e t o f a t as a s o u r c e of c a l o r i e s ( R e i n h o l d e t a l . , 1 9 4 4 ; H o l t e t a l . , 1 9 4 9 ) . E a r l y s t u d i e s have i n d i c a t e d t h a t l e s s t h i a m i n e i s r e q u i r e d as the p e r c e n t a g e of c a l o r i e s s u p p l i e d by f a t i s i n c r e a s e d (Mason and W i l l i a m s , 1 9 4 2 ; Oldham e t a l . , 1 9 4 6 ) , and i n d i c a t e s both exogenous and indogenous s o u r c e s . Any t h i a m i n e s u p p l i e d i n e x c e s s of need i s s i m p l y e x c r e t e d by t h e k i d n e y s . D u r i n g the two s t r e s s s i t u a t i o n s , the d a i l y t h i a m i n e i n t a k e was dec r e a s e d from a p p r o x i m a t e l y 6.8 mg p e r day to 4.3 mg p e r day, whereas the u r i n a r y t h i a m i n e e x c r e t i o n was obs e r v e d t o i n c r e a s e . S i n c e c a l o r i e i n t a k e was de c r e a s e d s i m u l t a n e o u s l y , endogenous f a t was u t i l i z e d t o m a i n t a i n c a l o r i c b a l a n c e . D i f f e r e n c e s i n the r a t i o s of c a r b o h y d r a t e t o f a t as a s u p p l y of c a l o r i e s c o u l d have c o n t r i b u t e d t o th e v a r i a t i o n s i n u r i n a r y t h i a m i n e e x c r e t i o n . An immediate q u a l i t a t i v e t e s t of a l l the u r i n e samples c o l l e c t e d d u r i n g the stu d y y i e l d e d n e g a t i v e r e s u l t s f o r a l l of p r o t e i n , g l u c o s e , k e t o n e s and b l o o d , p l u s pH r e a d i n g s between 6-7 (normal = pH 6.25). Some g e n e r a l comments can be made c o n c e r n i n g the d e s i g n o f the p r e s e n t s t u d y . V/ith r e g a r d t o the s u b j e c t s i n v o l v e d , a l a r g e r number of i n d i v i d u a l s i n the sample might have g i v e n a b e t t e r s t a t i s t i c a l d i s t r i b u t i o n of r e s u l t s . The s u b j e c t s were n o t chosen randomly but because they were r e p r e s e n t a t i v e of the type of young m i l i t a r y male who m i g h t be i n a s i m i l a r s i t u a t i o n r a t h e r than because they were c h a r a c t e r i s t i c of the normal Canadian male. The f i v e d i f f e r e n t t r e a t m e n t s i t u a t i o n s t h a t c o n s t i t u t e d the s t u d y appeared n o t to be ind e p e n d e n t of one a n o t h e r , i . e . , t h e r e was a c a r r y o v e r e f f e c t . T h i s e f f e c t was q u i t e o b v i o u s i n one measurement (PV/C 1 7 0 ) , w h i l e the number of o t h e r p a r a m e t e r s s i m i l a r l y a f f e c t e d remains 77 unknown. The l e n g t h of time r e q u i r e d f o r complete r e c o v e r y a f t e r a r e s t r i c t e d c a l o r i e i n t a k e i s s e e m i n g l y g r e a t e r than was a l l o w e d f o r i n t h i s s t u d y . A l t h o u g h s i m i l a r o b s e r v a t i o n s have been noted (Keys e t a l . , 1950; Crowdy, 1969), a d e t a i l e d s t u d y of the r e c o v e r y p r o c e s s i s n o t y e t a v a i l a b l e . On the o t h e r hand, the d u r a t i o n of the c a l o r i e r e s t r i c t i o n was n o t s u f f i c i e n t i n l e n g t h t o produce any s e r i o u s d i s t u r b a n c e s i n b i o c h e m i c a l measurements. S e v e r a l of the b i o c h e m i c a l p a r a m e t e r s remained r e l a t i v e l y n o r m a l t h r o u g h o u t the s t u d y , i n d i c a t i n g o n l y t h a t the body can r e a d i l y adapt t o th e s e v a r i a t i o n s i n the i n t a k e l e v e l s o f both c a l o r i e s and o t h e r n u t r i e n t s f o r s h o r t p e r i o d s of t i m e . In t h i s s t u d y , the i n c r e a s e d energy e x p e n d i t u r e d u r i n g P e r i o d 4 d i d n o t cause f u r t h e r a l t e r a t i o n s beyond t h o s e a l r e a d y observed on the low c a l o r i e d i e t . The d i f f e r e n c e i n the c a l o r i e d e f i c i t between P e r i o d s 2 and 4 in d u c e d by the e x t r a p h y s i c a l a c t i v i t y was n o t l a r g e enough i n the time a l l o w e d f o r a l t e r a t i o n s o t h e r than a s l i g h t l y i n c r e a s e d w e i g h t l o s s t o o c c u r . The l a c k of e f f e c t of the d e c r e a s e d c a l o r i e i n t a k e on a n t h r o p o m e t r i c a l measurements a g a i n i n d i c a t e s the body can w i t h s t a n d decrease's of t h i s magnitude f o r s h o r t ' p e r i o d s of t i m e . The o r i g i n a l d e s i g n o f the study was to t e s t the low c a l o r i e d i e t f o r a l o n g e r p e r i o d of t i m e , i . e . , f o u r t e e n d a y s . However, as symptoms 78 o f t i r e d n e s s and d i z z i n e s s became r e l a t i v e l y marked on the e i g h t h and n i n t h days of P e r i o d 2 , the l e n g t h of both P e r i o d s 2 and 4 were r e d u c e d . T h i s i n d i c a t e s t h e r e i s a l i m i t t o the l e n g t h of time the p a r t i c u l a r d i e t b e i n g examined would s u p p o r t work performance and a f e e l i n g of w e l l - b e i n g . The v a r i e d d e s i g n s of t h i s and o t h e r s i m i l a r e x p e r i m e n t s makes a d e t a i l e d comparison of the r e s u l t s d i f f i c u l t s i n c e d i f f e r e n t c o n d i t i o n s e x i s t i n each c a s e . D rawing t o g e t h e r the i n f o r m a t i o n a v a i l a b l e , the r e s u l t s o f t h e p r e s e n t s t u d y a r e i n agreement w i t h the t h e o r y t h a t s e v e r e d e t e r i o r a t i o n i n p h y s i c a l f i t n e s s and the a b i l i t y t o p e r f o r m work does n o t o c c u r u n t i l the w e i g h t l o s s approaches t e n p e r c e n t . I t appe a r s t h a t a d v e r s e changes i n b l o o d c h e m i s t r y a l s o r e q u i r e e i t h e r a l o n g e r p e r i o d of r e s t r i c t i o n o r a g r e a t e r degree of r e s t r i c t i o n . I n o t h e r words, the c a l o r i c r e s t r i c t i o n and energy e x p e n d i t u r e imposed d u r i n g the s t u d y g e n e r a l l y were w e l l t o l e r a t e d by the s u b j e c t s . CHAPTER V SUMMARY The purpose of the st u d y was to i n v e s t i g a t e work performance on a s e m i - d e f i n e d , low c a l o r i e d i e t d u r i n g d a i l y p e r i o d s of l i g h t and m o d e r a t e l y heavy a c t i v i t y . P o u r male g r a d u a t e s t u d e n t s v o l u n t e e r e d f o r the ten week s t u d y which was d i v i d e d i n t o f i v e e x p e r i m e n t a l p e r i o d s . P e r i o d 1 ( c o n t r o l ) i n v o l v e d a f o u r t e e n day p e r i o d d u r i n g w h i c h the s u b j e c t s r e c e i v e d a r e g u l a r d i e t of normal f o o d s e q u i v a l e n t to 3600 c a l o r i e s d a i l y . D u r i n g P e r i o d 1 the s u b j e c t s ' u s u a l a c t i v i t y was m a i n t a i n e d . P e r i o d 2 i n v o l v e d a ten day p e r i o d of a low c a l o r i e d i e t w i t h c o n t i n u e d "normal" a c t i v i t y . The low c a l o r i e d i e t was e q u i v a l e n t to 1800 c a l o r i e s p e r day of n a t u r a l f o o d s w h i c h , w i t h one m u l t i p l e v i t a m i n c a p s u l e , met o r exceeded the Canadian D i e t a r y Standard f o r a l l n u t r i e n t s e x c e p t c a l o r i e s . P e r i o d 3 ( r e c o v e r y ) was s i m i l a r t o P e r i o d 1; a f o u r t e e n day p e r i o d d u r i n g which the s u b j e c t s r e c e i v e d 4000 c a l o r i e s p e r day of the r e g u l a r d i e t . A g a i n , "normal" a c t i v i t y was m a i n t a i n e d . P e r i o d 4 was i d e n t i c a l to P e r i o d 2, w i t h the a d d i t i o n a l r e q u i r e m e n t of i n c r e a s e d d a i l y energy e x p e n d i t u r e , p e r s u b j e c t , of 500 c a l o r i e s . P e r i o d 5 ( r e c o v e r y ) was i d e n t i c a l t o P e r i o d s 1 and 3 and c o n s i s t e d of f o u r t e e n days of a r e g u l a r d i e t p r o v i d i n g 4000 c a l o r i e s and w i t h "normal" a c t i v i t y . C e r t a i n p h y s i o l o g i c a l v a r i a b l e s were measured d u r i n g t h e l a s t two days of each e x p e r i m e n t a l p e r i o d t o a s c e r t a i n t h e e f f e c t of the t r e a t m e n t c o n d i t i o n s on the c a r d i o r e s p i r a t o r y and g e n e r a l f i t n e s s of t h e s u b j e c t s . S t r e n g t h measurements and maximal oxygen u p t a k e d e t e r m i n a t i o n s remained unchanged f o r the d u r a t i o n of the s t u d y ; p h y s i c a l work ca p a c i t y ( P W C 170) d e c r e a s e d c o n t i n u a l l y a f t e r P e r i o d 2. V a r i a t i o n s i n b l o o d volume and/or u n a v a i l a b i l i t y of s u b s t r a t e s d u r i n g the PWC 170 t e s t i n g s e s s i o n s were c i t e d as p o s s i b l e e x p l a n a t i o n s f o r t h i s r e s p o n s e . T o t a l body w e i g h t was o b s e r v e d t o d e c r e a s e d u r i n g b o t h P e r i o d s 2 and 4, P e r i o d 4 c a u s i n g a s l i g h t l y more s e v e r e r e s p o n s e than P e r i o d 2. T h i s was a p p a r e n t l y due t o the e f f e c t of the i n c r e a s e i n d a i l y p h y s i c a l a c t i v i t y . A n a l y s i s of v a r i o u s body c o m p o s i t i o n , a n t h r o p o m e t r i c and body d e n s i t y measurements r e v e a l e d o n l y s l i g h t changes i n t h e s e v a r i a b l e s , p a r a l l e l t o the change i n t o t a l body w e i g h t . B l o o d samples were t a k e n , f o l l o w i n g an o v e r n i g h t f a s t , t w i c e d u r i n g each e x p e r i m e n t a l p e r i o d : once midway th r o u g h the p e r i o d and a g a i n a t the end. Twenty f o u r hour u r i n e samples were c o l l e c t e d d u r i n g 8 1 t h e l a s t twenty f o u r hours of each t r e a t m e n t c o n d i t i o n . A n a l y s i s of the.samples i n d i c a t e d t h a t , a l t h o u g h s l i g h t changes d i d o c c u r , most parameters measured remained v/ith i n normal l i m i t s . B l o o d g l u c o s e d e c r e a s e d d u r i n g both P e r i o d s 2 and 4, i n d i c a t i n g a l a c k of s u f f i c i e n t g l u c o s e t o s a t i s f y the c e l l u l a r r e q u i r e m e n t s . C o n s e q u e n t l y , a d i p o s e t i s s u e t r i g l y c e r i d e s were m o b i l i z e d as e v i d e n c e d by the i n c r e a s e i n plasma PPA d u r i n g t h e s e p e r i o d s . Plasma c h o l e s t e r o l l e v e l s d e c r e a s e d s i g n i f i c a n t l y d u r i n g both P e r i o d s 2 and 4. E v i d e n c e has shown t h a t when w e i g h t l o s s o c c u r s i n c o n n e c t i o n w i t h p h y s i c a l a c t i v i t y , s i m i l a r t o t h i s s t u d y , the c h o l e s t e r o l l e v e l i n plasma f a l l s . In a d d i t i o n , the amount and t y p e of f a t consumed i s a f a c t o r a f f e c t i n g c h o l e s t e r o l l e v e l s , and t h u s , the i n c r e a s e i n the PUPA:SPA r a t i o d u r i n g the s t r e s s c o n d i t i o n s d e f i n i t e l y p l a y s a r o l e i n the d e c r e a s e i n the plasma c h o l e s t e r o l c o n c e n t r a t i o n . H e m a t o c r i t , hemoglobin, t o t a l serum p r o t e i n , serum a l b u m i n and b l o o d urea n i t r o g e n c o n c e n t r a t i o n s were a l t e r e d d u r i n g the s t u d y but the mechanism remains unknown. The changes c o u l d have been e f f e c t e d by s e v e r a l f a c t o r s such as q u a n t i t y of p r o t e i n i n t a k e o r h e m o d i l u t i o n . D e c r e a s e s i n the f a t s o l u b l e v i t a m i n s were a t t r i b u t e d to a l o w e r f a t i n t a k e , l o w e r e d serum c h o l e s t e r o l l e v e l s and a p r o b a b l e d e c r e a s e i n the c a r r i e r p r o t e i n s . Serum V i t a m i n C l e v e l s a r e r e l a t e d t o i n t a k e ; t h u s , t h e l o w e r i n t a k e s d u r i n g the e x p e r i m e n t a l p e r i o d s were r e f l e c t e d i n the serum l e v e l s . U r i n a r y t h i a m i n e l e v e l s a r e r e l a t e d t o the p e r c e n t of c a l o r i e s d e r i v e d from f a t and, hence, i n c r e a s e d d u r i n g the s t r e s s p e r i o d s when a d i p o s e t i s s u e was m o b i l i z e d t o p r o v i d e energy. REFERENCES 83 Adam, J.M., J.R. A l l a n , H.E. Lewis, S.N. Dar, and S. Rosenbaum. Lean and f a t body mass and t h e i r r e l a t i o n s h i p to p h y s i c a l e f f i c i e n c y . Army Personnel Research Committee Report 62/9, 1962. Albanese, A.A., and L.A. Orto. The p r o t e i n s and amino a c i d s . In "Modern N u t r i t i o n i n H e a l t h and Disease." Wohl, M.G., and R.S. Goodhart, Lea and F e b i g e r , P h i l a d e l p h i a , 1968. Andres, R., G. Cader, and K.L. Z i e r l e r . The q u a n t i t a t i v e l y minor r o l e of carbohydrate i n o x i d a t i v e metabolism by s k e l e t a l muscle i n i n t a c t man i n the b a s a l s t a t e -measurements of oxygen and glucose uptake and carbon d i o x i d e and l a c t a t e p r o d u c t i o n i n the forearm. J . C l i n . I n v e s t . , 35:671, 1956. Arroyave, G., D. Wilson, J . Mendez, M. Behar, and N.S. Scrimshaw. Serum and l i v e r V i t a m i n A and l i p i d s i n c h i l d r e n w i t h severe p r o t e i n m a l n u t r i t i o n . Am. J . C l i n . Nutr., 9:180, 196I. Arroyave, G. The e s t i m a t i o n of r e l a t i v e n u t r i e n t i n t a k e and n u t r i t i o n a l s t a t u s by biochemical methods: p r o t e i n s . Am. J . C l i n . Nutr., 11:447, 1962. Ashley, B.C., and H.M. Whyte. Me t a b o l i c s t u d i e s i n s t a r v a t i o n . Aust. Ann. Med., 10:92, 1961. Astrand, P - 0 . "Experimental Studies of P h y s i c a l Working Capacity i n R e l a t i o n t o Sex and Age." Copenhagen, Munksgaard, 1952. Astrand, P - 0 . Human p h y s i c a l f i t n e s s . P h y s i o l . Rev., 36:307, 1956. Astrand, P - 0 . , and K . Rodahl. "Textbook of Work Phys i o l o g y . " McGraw-Hill Book Company, Toronto, 1970. Basu, A. The e f f e c t of e x e r c i s e on the l e v e l of non-e s t e r i f i e d f a t t y a c i d s i n the blood. Quart. J . Exp. P h y s i o l . , 45:312, I960. B i e r i , J.G., B. Belavady, and E.L. Andrews. Serum V i t a m i n E l e v e l s i n a normal a d u l t p o p u l a t i o n i n the Washington, D.C., area. P.S.E.B.M., 117:131, 1964. Behnke, A.R., B.G. Feen, and W.C. Welham. S p e c i f i c g r a v i t y of he a l t h y men; body weight * volume as index of o b e s i t y . J.A.M.A., 118.-M-95, 19*4-2. Benedict, F.G. "A Study of Prolonged F a s t i n g . " Carnegie I n s t . Washington, Pu b l . No. 203, 1915. Best, W.R. An improved c a l i p e r f o r measurement of s k i n f o l d t h i c k n e s s . U.S. Army Med. Res. Nutr. Lab. Rept. No. 113, 1953. Bloom, W.L., G. Azar, and J.E. C l a r k . E l e c t r o l y t e and l i p i d metabolism of l e a n f a s t i n g men and women. Metabolism, 15:1*01, 1966. Bowes, A.D., and C F . Church. "Food Values of P o r t i o n s Commonly Used." J.B. L i p p i n c o t t Company, P h i l a d e l p h i a and Montreal, 1970. Brozek, J . , H. Guetzow, 0. M l c k e l s o n , and A. Keys. Motor performance of normal young men maintained on r e s t r i c t e d i n t a k e s of v i t a m i n B complex. J . Appl. P h y s i o l . , 30:359, 19H6. Brozek, J . , and A. Keys. The e v a l u a t i o n of l e a n e s s -f a t n e s s i n man: norms and i n t e r r e l a t i o n s h i p s . Br. J . Nutr., 5:19*+, 1951. Brozek, J . , F. Grande, H.L. T a y l o r , J.T. Anderson, E.R. Bu s k i r k , and A. Keys. Changes i n body weight and body dimensions i n men performing work on a low c a l o r i e carbohydrate d i e t . J . Appl. P h y s i o l . , 10:^-12, 1957. B u i l d and Blood Pressure Study, 1959* Chicago, S o c i e t y of A c t u a r i e s , v o l . 1, 1959. C a h i l l , G., P. F e l i g , and 0. Owen. Metabolic a d a p t a t i o n t o prolonged s t a r v a t i o n i n man. Nord. Med., 83:89, 1970. C a r l s o n , L.A., and B. Pernow. Studies of blood l i p i d s during e x e r c i s e . 1. A r t e r i a l and venous plasma concentrations of u n e s t e r i f i e d f a t t y a c i d s . J . Lab. C l i n . Med., 53:833, 1959. C a r l s o n , L.A., and F. Mos s f e l d t . Acute e f f e c t s of prolonged heavy e x e r c i s e on the c o n c e n t r a t i o n of plasma l i p i d s and l i p o p r o t e i n s i n man. Acta P h y s i o l . Scand., 63:51, 196h. 85 C a r l s o n , L.A., and S.O. Froberg. Blood l i p i d and glucose l e v e l s during a ten-day p e r i o d of l o w - c a l o r i e i n t a k e and e x e r c i s e i n man. Metabolism, l6 :62 lf, 1967. Chirm, K.S., and T.H. A l l e n . Body f a t i n men from two s k i n f o l d s , weight, height and age. U.S. Army Med. Res. Nutr. Lab. Rep., 2^8:1, i 960 . Consolazio, C.F., R.E. Johnson, and E. Marek. "Metabolic Methods." C V . Mosby Company, St. L o u i s , 1951. C o n s o l a z i o , C,T.r L.R.O. Matoush, R.A. Nelson, J.B. T o r r e s , and G.J. Isaac. Environmental temperature and energy expenditures. J . Appl. P h y s i o l . , 18:65, 1963* C o n s o l a z i o , C.F., L.O. Matoush, H.L. Johnson, R.A. Nelson, and H.J. K r z y w l c k i . M e t a b o l i c aspects of acute s t a r v a t i o n i n normal humans (10 days). Am. J . C l i n . Nutr., 20:672, 1967. C o n s o l a z i o , C F . , L.O. Matoush, H.L. Johnson, H.S. K r z y w i c k i , G.J. I s s a c , and N.F. W i t t . Metabolic aspects of c a l o r i e r e s t r i c t i o n : hypohydration e f f e c t s on body weight and blood parameters. Am. J . C l i n . Nutr., 21:793, 1968. Crowdy, J.P. Low c a l o r i e d i e t s and m i l i t a r y e f f i c i e n c y . CD.S.O. Paper No. FSG/P(69)1, 1969. Damon,A., and R.F. Goldman. P r e d i c t i n g f a t from body Liii - icjneasurements: d e n s i t o m e t r i c v a l i d a t i o n of t e n anthropometric equations. Human Biology,3 6 : 3 2 , 1961*. D a r l i n g , R.C, R.E. Johnson, G.C P i t t s , F. C o n s o l a z i o , and P.F. Robinson. E f f e c t s of v a r i a t i o n i n d i e t a r y p r o t e i n on p h y s i c a l w e l l being of men doing manual work. J . Nutr., 28:273, 1 9 ^ . Davenport, R.E., J.K. Spaide, and R.E. Hodges. An e v a l u a t i o n of v a r i o u s s u r v i v a l r a t i o n s . Am. J . C l i n . Nutr., 2^:513, 1971. D i e t a r y Standard f o r Canada, Recommended by the Canadian C o u n c i l on N u t r i t i o n . Canadian B u l l i t e n on N u t r i t i o n , v o l . 6, no. 1, 196^. Dole, V.P. A r e l a t i o n between n o n - e s t e r i f i e d f a t t y a c i d s i n human plasma and the matabolism of glucose. J . C l i n . I n v e s t . , 35:150, 1956. 86 Drenick, E.J., M.E. Swendseid, W.H. Bland, and S.G. T u t t l e . Prolonged s t a r v a t i o n as treatment f o r severe o b e s i t y . J.A.M.A., 187 :100, 1964. Drury, H.F., D.A. Vaughan, and J.P. Hannon. Some metabolic e f f e c t s of a h i g h - f a t , h i g h - p r o t e i n d i e t during s e m i s t a r v a t i o n under wi n t e r f e i l d c o n d i t i o n s . J . Nutr.., 67:85, 1958. Durnin, J.V.G.A., and M.M. Rahaman. The assessment of the amount of f a t i n the human body from measurements of s k i n f o l d t h i c k n e s s . Br. J . Nutr., 21:681, 1967. Edwards, K.D., and H.M. Whyte. The simple measurement of o b e s i t y . C l i n . S c i . , 22:347, 1962. Eggum, B.O. Blood urea measurement as a technique f o r a s s e s s i n g p r o t e i n q u a l i t y . Br. J . Nutr., 24:983, 1970. Ende, N. S t a r v a t i o n s t u d i e s . With s p e c i a l reference t o c h o l e s t e r o l . J . C l i n . Nutr., 11:270, 1962. F e r r i s , B.G., and H.W. Stoudt. C o r r e l a t i o n of anthropometry and simple t e s t s of pulmonary f u n c t i o n . Arch. E n v i r o n . Health, 22:672, 1971. F i t z g e r a l d , 0 . , A. Heffernan, and R. McFarlane. Serum l i p i d s and p h y s i c a l a c t i v i t y i n normal s u b j e c t s . C l i n . S c i . , 28:83, 1965. Food and N u t r i t i o n Board, Nat. Acad. Sci . - N a t . Res. C o u n c i l , Pub. 575, "The Role of D i e t a r y Fat i n Human Health," Washington, 1958. F r e d r i c k s o n , D.S., and R.S. Gordon. Transport of f a t t y a c i d s . P h y s i o l . Rev., 38 :585 , 1958. F r i e d b u r g , S.J., W.R. Harlan, E.H. E s t e s , and D.L. Trout. The e f f e c t of e x e r c i s e on the c o n c e n t r a t i o n and t u r n -over of plasma n o n - e s t e r i f i e d f a t t y a c i d s . J . C l i n . Invest., 39:215 , I960. Gamble. P h y s i o l o g i c a l i n f o r m a t i o n from s t u d i e s on the l i f t r a f t r a t i o n . Harvey Lec t u r e s , 42 :247,1947. Golding, L. The e f f e c t of p h y s i c a l t r a i n i n g upon t o t a l serum c h o l e s t e r o l l e v e l s . Res. Quart., 32:499, 1961. Gordon, R.S., and A. Cherkes. U n e s t e r i f i e d f a t t y a c i d s i n human blood plasma. J . C l i n . Invest., 35 :206, 1956. 87 Grande, F., H.L. T a y l o r , J.T. Anderson, E. B u s k i r k , and A. Keys. Water exchange i n men on a r e s t r i c t e d w a t e r i n t a k e and a l o w c a l o r i e c a r b o h y d r a t e d i e t accompanied by p h y s i c a l work. J . A p p l . P h y s i o l . , 12:202, 1958. Haisman, M.F. The assessment o f body f a t c o n t e n t i n young men f r o m measurements o f body d e n s i t y and s k i n f o l d t h i c k n e s s . Human B i o l o g y , 42:679, 1970. Harmon, J . P . , A.F. L a r s o n , H.F. D r u r y , D.A. Vaughan, and L.N. Vaughan. A r c t i c s u r v i v a l r a t i o n s . V I I . A l t e r a t i o n s i n serum e l e c t r o l y t e s d u r i n g w i n t e r f i e l d t e s t s o f s u r v i v a l r a t i o n s . U.S.A.F. ALTR 58-25, 1959. H e n s c h e l , A., F. de l a Vega, and H.L. T a y l o r . S i m u l t a n e o u s d i r e c t and i n d i r e c t b l o o d p r e s s u r e measurements i n man a t r e s t and work. J . A p p l . P h y s i o l . , 6:506, 1954. H o l t , L.E., R.L. Nemir, S.E. Snyderman, A.A. A l b a n e s e , K.C. K e t r o n , L.P. Guy, and R. C a r r e t e r o . The t h i a m i n e r e q u i r e m e n t o f t h e normal i n f a n t . J . N u t r . , 37*53* 1949. Horstman, D., J . Mendez, E.R. B u s k i r k , R. B o i l e a u , and W.C. N i c h o l a s . L i p i d m e t a b o l i s m d u r i n g heavy and moderate e x e r c i s e . M e d i c i n e and S c i e n c e i n S p o r t s , 3:18, 1971. I n t e r d e p a r t m e n t a l Committee on N u t r i t i o n f o r N a t i o n a l D e f e n s e . "Manual f o r N u t r i t i o n S u r v e y s . " W a shington, D.C.: Govt. P r i n t i n g O f f i c e , 1963. J e f f a y , H., and R . J . W i n z l e r . The m e t a b o l i s m o f serum p r o t e i n s . I I . The e f f e c t o f d i e t a r y p r o t e i n on t h e t u r n o v e r o f r a t serum p r o t e i n . J . B i o l . Chem., 231:111, 1958. J o h n s o n , R.E., and R.M. K a r k . Environment and f o o d i n t a k e i n man. S c i e n c e , 105:378, 1947. K e u l , J . F r e e f a t t y a c i d s , g l y c e r o l and t r i g l y c e r i d e s i n a r t e r i a l and f e m o r a l venous b l o o d b e f o r e and a f t e r a t r a i n i n g p e r i o d o f 4 weeks. P f l u g e r s A r c h . , 316:194, 1970. Keys, A., J . B r o z e k , A. Henschel,- 0. M i c k e l s o n , H.L. T a y l o r , E. Simonson, A. S k i n n e r , and S. W e l l s . "Human S t a r v a t i o n . " M i n n e a p l o i s , U n i v . o f Minn. P r e s s , 1950. 88 Kraut, H., R. Bauer, W. Droese, H. S p i t z e r , and L. Wildmann. Die abhangigkeit der l e i s t u n g von der ernhrung i n der e i s e n i n d u s t r i e . A r b e i t s p h y s i o l o g i e , Ikilk?, 1950. Kraut, H., and E.A. M u l l e r . Muskelkrafte und e i n w e i s s r a t i o n . Biochem. Z., 320:302, 1950. K r z y w i c k i , , H.J., C F . Co n s o l a z i o , L.O. Matoush, and H.L. Johnson. Meta b o l i c aspects of acute s t a r v a t i o n . Am. J . C l i n . Nutr., 21:87, 1968. K r z y w i c k i , H.J., C F . Co n s o l a z i o , H.L. Johnson, and N.F. W i t t . Metabolic aspects of c a l o r i e r e s t r i c t i o n (*+20 k c a l ) : body composition changes. Am. J . C l i n . Nutr., 25:67, 1972. L a u r e l l , S* Plasma f r e e f a t t y a c i d s i n d i a b e t i c a c i d o s i s and s t a r v a t i o n . Scand. J . C l i n . Lab. Invest., 8:81, 1956. Mason, H.L., and R.J. W i l l i a m s . The u r i n a r y e x c r e t i o n of thiamine as an index of the n u t r i t i o n a l l e v e l : Assessment of the value of a t e s t dose. J . C l i n . Invest., 21:2*f7, 19^2. M e d i c o - A c t a r i a l M o r t a l i t y I n v e s t i g a t i o n . Trans. Ass. L i f e Insur. Med* D i r . Amer., v o l * 1, 1912. M i c k e l s o n , 0 . , E.V. M i l l e r , A. Keys, and H.H. M i t c h e l l . Determination of f a t and i t s r e l a t i o n to c a l c u l a t e d c a l o r i c value of d i e t s . J . Amer. D i e t e t . Ass., 23:952, 19M-7. M i s b i n , R.I., P.J. Edgar, and H. Lockwood. Influence of adrenergic receptor s t i m u l a t i o n on glucose metabolism during s t a r v a t i o n i n man: E f f e c t s on c i r c u l a t i n g l e v e l s of i n s u l i n , growth hormone and f r e e f a t t y a c i d s . Metabolism, 2 0 : 5 ^ , 1971. M i t c h e l l , J.H.. B.J. Sproule, and C.B. Chapman. The p h y s i o l o g i c a l meaning of the maximal oxygen i n t a k e t e s t . J . C l i n . Invest., 37:538, 1958. M i t c h e l l , H.S. P r o t e i n l i m i t a t i o n and human growth. J . Amer. D i e t e t . Ass., *+if:l65, 196^-. N a t i o n a l Research C o u n c i l . Recommended d i e t a r y allowances. Nat. Res. C o u n c i l Reprint C i r c u l a r S e r i e s No. 122, Washington, D.C r e v i s e d 19*+5. 89 Neeld, J.B., and W.N. Pearson. Macro- and micromethods f o r the determination of serum V i t a m i n A u s i n g t r i f l u o r o a c e t i c a c i d . J . Nutr., 79:l+5l+, 1963. Oldham, H.G., M.V, Davis, and L . J . Roberts. Thiamine e x c r e t i o n s and blood l e v e l s of young women on d i e t s c o n t a i n i n g v a r y i n g l e v e l s of B v i t a m i n s , w i t h some observations on n i a c i n and pantothenic a c i d . J . Nutr., 32:163, 19*t6. Olson, R.S., and J.W. V e s t e r . N u t r i t i o n - e n d o c r i n e i n t e r r e l a t i o n s h i p s i n the c o n t r o l of f a t t r a n s p o r t i n man. P h y s i o l . Rev., *t0:677, I960. P a s c a l e , L.R., M.I. Grossman. H.S. Sloane, and T. F r a n k e l . C o r r e l a t i o n s between t h i c k n e s s of s k i n f o l d s and body d e n s i t y i n 88 s o l d i e r s . Human B i o l o g y , 28:165, 1956. von P e t t e n k o f f e r , M», and C. V o i t . TJntersuchungen uber den s t o f f v e r brauch des normalen menschen. Z. B i o l . , 2:1+59, 1866. P i t t s , G.C., R.E. Johnson, and F.C. Con s o l a z i o . Work i n the heat as e f f e c t e d by in t a k e of water, s a l t and glucose. Am. J . P h y s i o l . , ll+2:253, 19lH-. Plough, I.C.. and E.B-. B r i d g e f o r t h . R e l a t i o n s of chemical and d i e t a r y f i n d i n g s i n n u t r i t i o n surveys. P u b l i c i:;v„.i H e a l t h Rep., 75:699, I960. P r u e t t , E.D.R. Free f a t t y a c i d m o b i l i z a t i o n during and a f t e r graded e x e r c i s e . Acta P h y s i o l . Scand., 78:39A, 1970. Raabo, E., and T.C. T e r k i l d s e n . On the enzymatic determin-a t i o n of blood glucose. Scand. J . C l i n . Lab. Inve s t . , 12:*+02, I960. Reinhold, J.G., J.T.L. N i c h o l s o n , and K.O. Elsom. The u t i l i z a t i o n of thiamine i n the human s u b j e c t : the e f f e c t of h i g h i n t a k e of carbohydrate or of f a t . J . Nutr., 28:51, 19^. R o c h e l l e , R.H. Blood plasma changes during a p h y s i c a l t r a i n i n g program. Res. Quart., 32:538, 1961. Rodahl, K. Plasma f r e e f a t t y a c i d s i n e x e r c i s e . J . Appl. P h y s i o l . , 19:lf89,196M-. Rogers, T.A., J.A. S e t l i f f , A.C. Buck, J.C. Klopping, and M. Matter. A m e l i o r a t i v e value of carbohydrate and e l e c t r o l y t e s i n A r c t i c s u r v i v a l . J . Appl. P h y s i o l . , 21:643, 1966. Rubner, M. "Gesetze des Energieverbrauchs." 1902. S c h a f f e r t , R.R., and G.R. K i n g s l e y . A r a p i d , simple method f o r the det e r m i n a t i o n of reduced, dehydro-, and t o t a l a s c o r b i c a c i d i n b i o l o g i c a l m a t e r i a l . J . B i o l . Chem., 212:59, 1955. S c o t t , S.T., F.M. Mccollum, and V.P. Holloway. S t a r v a t i o n , k e t o s i s and u r i c a c i d e x c r e t i o n . C l i n . S c i . , 27:209, 1964. S e l t z e r , C C . L i m i t a t i o n of height-weight standards. New Eng. J . Med., 272:1132, 1965. S e l t z e r , C.C., and J . Mayer. Body b u i l d and o b e s i t y - who are the obese? J.A.M.A., 189:677, 1964. Shephard, R.J., P h y s i o l o g i c a l determinants of c a r d i o -r e s p i r a t o r y f i t n e s s . J . Sports Med. and P h y s i c a l F i t n e s s , 7:111, 1967. Shephard, R.J., G. Jones, and K. I s h i i . F a c t o r s a f f e c t i n g body d e n s i t y and t h i c k n e s s of subcutaneous f a t . Data on 518 Canadian c i t y d w e l l e r s . Am. J . C l i n . Nutr., 22:1175, ;969. Shephard, R.J., C H . Weese, and J.E. Merriman. P r e d i c t i o n of maximal oxygen uptake from anthropometric data. I n t . Z. angew. P h y s i o l . , 29:119, 1971. Simonson, E. "Physiology of Work Capacity and F a t i g u e . " Charles C. Thomas, P u b l i s h e r , S p r i n g f i e l d , I l l i n o i s , 1971. . S i r i , W.E. In "Advances i n B i o l o g i c a l and Medical P h y s i c s . " J.H. Lawrence and C A . Tobias, eds., Academic Press Inc., London and New York, 1956. S'jostrand, T. Changes i n r e s p i r a t o r y organs of workmen at ore smelting works. Acta Med. Scand., Supp. 196: 687, 1947. Steinbeck, A.W. The plasma volume i n g l o m e r u l o n e p h r i t i s . C l i n i c a l Science, 12:327, 195. 91 T a y l o r , H.L., J . Brozek, A. Henschel, 0. Michelson. and A. Keys. E f f e c t of successive f a s t s on a b i l i t y of men to withstand f a s t i n g during hard work. Am. J . P h y s i o l . , 143:148, 1945. T a y l o r , H.L., and A. Keys. Adaptation t o c a l o r i c r e s t r i c t i o n . Science, 112:215, 1950. T a y l o r , H.L., A. Henschel, 0. Mickelson, and A. Keys. Some e f f e c t s of acute s t a r v a t i o n w i t h hard work on body weight, body f l u i d s and metabolism. J . Appl. P h y s i o l . , 6:613, 1954. T a y l o r , H.L., E.R. B u s k i r k , J . Brozek, J.T. Anderson, and F. Grande. Performance c a p a c i t y and e f f e c t s of c a l o r i c r e s t r i c t i o n w i t h hard p h y s i c a l work on young men. J . Appl. P h y s i o l . , 10:421, 1957. Thomson, T.J.-, J . Runcie, and V. M i l l e r . Treatment of ob e s i t y by t o t a l f a s t i n g f o r up to 249 days. Lancet, 2:992, 1966. Thoren, C. Fa c t o r s a f f e c t i n g c a l c u l a t i o n of p h y s i c a l working c a p a c i t y from heart r a t e a t subniaximal work l o a d s . In "Proceedings of the Second Symposium of P e d i a t r i c Group of Working Physiology." Macek, M.M., ed., U n i v e r s i t a K a r l o v a , Praha, 1970. Wahlund, H. Determination of p h y s i c a l working c a p a c i t y ; p h y s i o l o g i c a l and c l i n i c a l study w i t h s p e c i a l r eference to s t a n d a r d i z a t i o n of cardio-pulmonary f u n c t i o n a l t e s t s . Acta Med. Scand., Supp. 215, 132:1, 1948. Vaughan, D.A., H.F. Drury, L.N. Vaughan, A.M. Larson, and D.W. Young. A r c t i c s u r v i v a l r a t i o n s . V I I I . F u r t h e r experiments on p e r s i s t e n c e of a d a p t a t i o n t o c a l o r i c r e s t r i c t i o n . AAL TR 60-30, P r o j e c t 8238-I, 1961. Weiner, and L o u r i e . "Human B i o l o g y . " I.B.P. Handbook 9j 1969. Welham, W.C., and A.R. Behnke. The s p e c i f i c g r a v i t y of healthy men. J.A.M.A., 118:498, 1942. White, A., P. Handler, and S.L. Smith. " P r i n c i p l e s of Biochemistry." McGraw-Hill Book Comoany, Toronto, 1968. W i l l i a m s , C.G., G.A. B r e d e l l , C K . Wyndham, N.B. Strydom, J.F. Morrison, J . Pe t e r , P.W. Fleming, and J.S. Ward. C i r c u l a t o r y and metabolic r e a c t i o n s t o work i n heat. J . Appl. P h y s i o l . , 17:625, 1962. 92 Wilmore, J.H., and A.R. Behnke. An anthropometric estimation of body density and lean body weight i n young men. J . Appl. Physiol., 27:25, 1969. Wilson, K.E.C. The influence of muscular work on protein metabolism. J . Physiol., 75:67, 1932. Winer, B.J. " S t a t i s t i c a l P r i n c i p l e s i n Experimental Design." McGraw-Hill Book Company, New York, 1962. Wolfson, W.Q., C. Cohn, E. Calvary, and F. Ichiba. Studies i n serum proteins. V. A rapid proceedure f o r the estimation of t o t a l serum protein, true albumin, t o t a l g l o bulin, alpha g l o b u l i n , beta g l o b u l i n and gamma glo b u l i n i n 1.0 ml of serum. Am. J . C l i n . Path., 18:723, 1948. Young, V.R., and N.S. Scrimshaw. The physiology of starvation. S c i . Am., 225:14, Oct, 1971. Y u i l e , C.L., F.V. Lucas, J.P. Olson, and A.B. Shapiro. Plasma protein turnover and tissue exchange; influence of dietary protein and pro t e i n deoletion. J . Exp. Med., 109:173, 1959. Zuntz, N., and 0. Hagemann. " Untersuchungen uber den . Stoffwechsel des Pferdes b e i Ruhe und Arbeit. " B e r l i n , Parey, I898. A P P E N D I X E S APPENDIX A NUTRIENT INTAKE - NORMAL DIET Test Period Gal Pro Ca Pe Vit A Thia Ribo Nia Ascorb. (g) (mg) (mg) (I.U.) (mg) (mg) (mg) (mg) 1 3600 145 1524 19.2 9627 5.60 5.04 30.1 278 S.D. ±28 ±1077 ±3.3 ±5806 ±3.18 ±1.76 ±16.6 ±57 3 4000 150 1521 18.8 8666 7.5^ 6.55 32.5 243 S.D. ±32 ±1046 ±2.7 ±4946 ±3.40 ±1.79 ±14.8 ±45 5 4000 172 1180 21.0 6896 7.16 6.65 41.2 257 S.D. ±27 ±220 ±2.2 ±696 ±3.10 ±0.91 ±17.2 ±45 CANADIAN RECOMMENDED ALLOWANCE (MEN) Activity Level B C 365O 50 500 6.0 3700 1.1 1.8 11.0 30 4250 " 50- 500 6.0 3700 1.3 2.1 13.0 30 APPENDIX B NUTRIENT INTAKE - LOW CALORIE, SEMI-DEFINED DIET T e s t P e r i o d C a l Pro Ca Fe V i t A Thia Ribo N ia A s c o r b . (g) (mg) (mg) (I.U.) (mg) (mg) (mg) (mg) 1 & 2 1800 5 0 . 5 9 0 2 . 8 2 0 . 9 7578 4 . 2 4 . 2 2 7 . 3 50 CANADIAN RECOMMENDED ALLOWANCE (MEN) A c t i v i t y L e v e l B 3650 50 500 6 . 0 3700 1.1 1 .8 1 1 . 0 30 C 4250 50 500 6 . 0 3700 1.3 2.1 1 3 . 0 30 APPENDIX C - RAW DATA. Lean Body Weight (Kg) Subject Test Period 1 2 3 4 1 6 3 . 6 6 2 . 2 6 5 . 1 7 0 . 9 2 6 0 . 9 6 0 . 1 6 2 . 1 7 0 . 4 3 5 9 . 4 6 1 . 4 6 0 . 5 6 8 . 4 4 6 1 . 3 5 9 . 9 6 0 . 9 6 8 . 4 5 6 1 . 3 6 0 . 8 6 3 . 4 6 9 . 3 PAT WEIGHT (Kg) Subject Test Period 1 2 3 4 1 1 0 . 6 4 . 1 8 . 9 1 0 . 7 2 1 0 . 5 3 . 7 8 . 5 8 . 7 3 1 0 . 8 4 . 6 1 0 . 2 1 1 . 4 4 7 . 3 3 . 5 9 . 6 9 . 0 5 7 . 5 5 . 1 8 . 9 8 . 2 io BODY PAT Subject Test Period 1 2 3 4 1 14 .3 6 . 3 1 2 . 1 1 3 . 2 2 14 .7 5-9 1 2 . 1 1 0 . 9 3 1 5 . 4 6 . 9 14 .3 14 .3 4 1 0 . 6 5 . 5 1 3 . 6 1 1 . 7 5 1 0 . 9 7 . 7 1 2 . 4 1 0 . 6 APPENDIX C (Cont'd.) 97 T o t a l Body Weight (kg) S u b j e c t 1 T e s t P e r i o d 1 2 3 4 5 Day: 1 75.6 73.8 71.3 71.2 68.3 2 74.8 7 3 . 5 7 2 . 2 7 2 . 0 7 0 . 0 3 7 4 . 4 72.9 71.5 71.8 68.8 4 7 4 . 2 7 3 . 1 70 .4 70.8 68.8 5 7 3 . 2 7 2 . 7 7 0 . 7 7 0 . 0 68.8 6 74.6 72.8 7 0 . 1 69.0 68.2 7 7 4 . 3 72.6 70.5 69.2 69.O 8 7 3 . 0 7 2 . 5 70.5 69.O 68.3 9 7 3 . 5 71.6 70.7 69.O 68.7 1 0 7 3 . 2 7 2 . 5 70.9 68.6 68.6 1 1 7 3 . 5 70.5 68.7 1 2 73.6 70.5 68.8 1 3 7 3 . 5 70.9 68.8 1 4 7 3 . 6 70 .2 69.O T o t a l Body Weight (kg) S u b j e c t 2 T e s t P e r i o d 1 2 3 4 5 Day: 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 1 4 66.6 66.5 63.6 66.6 63.5 66.8 66.2 63.6 66 .4 65.O 66.6 65.3 63.7 65.1 65.O 66.3 65.2 63.8 65.4 6 4 . 6 65.9 64.7 63.3 65.0 65.O 65.7 64.5 63.5 64.6 65.2 66.2 64.3 63.5 64.0 65.7 66.3 64.1 63.9 63 .4 65.5 66.0 64.8 65.O 63.2 65.9 66.6 6 4 . 4 65.8 63 .4 66.3 66.3 65.4 66.0 65.7 65.6 65.6 66.3 65.8 65.9 66 .4 66.0 66.0 APPENDIX C. (Cont'd.) S u b j e c t 3 T o t a l Body Weight (kg) T e s t P e r i o d 1 2 3 4 5 Day: 1 74.7 72.3 70.8 72.5 70.4 2 74.2 71.9 71.2 72.1 72.1 3 74.0 72.0 72.5 71.7 72.0 4 74.0 72.1 71.9 71.9 71.8 5 73.1 72.3 71.7 71.8 71.8 6 72.9 72.0 71.2 71.6 71.9 7 73.1 71.8 71.0 71.5 72.0 8 73.4 71.4 71.2 71.3 72.1 9 73.2 71.3 71.6 71.4 72.0 10 72.3 70.4 71.5 70.6 71.9 11 72.5 71.6 72.0 12 72.6 71.4 72.1 13 72.5 71.9 72.6 14 72.6 71.9 72.3 T o t a l Body Weight (kg) S u b j e c t 4 T e s t P e r i o d 1 2 3 4 5 Day: 1 83.6 81.4 79.1 81.5 77.0 2 83.0 81.5 79.5 81.4 79.1 3 82.2 80.7 81.5 80.2 78.7 4 81.6 80.7 80.5 79.4 79.4 5 81.6 80.3 79.9 78.9 80.0 6 81.4 80.1 79.6 78.4 79.9 7 81.6 79.9 79.0 78.1 78.9 8 82.2 79.7 79.0 77.7 78.8 9 81.8 79.5 78.8 77.2 78.3 10 81.8 79.4 79.9 77.4 77.7 11 82.0 79.4 77.9 12 82.4 79.9 78.0 13 81.8 79.8 78.1 14 81.8 79.8 78.1 APPENDIX C (Cont'd.) Maximal O2 (L/Min) S u b j e c t P e r i o d 1 2 3 4 1 3.85 3 . 9 9 3.36 4.28 2 4.19 3.45 3 . 2 9 4.84 3 4.11 3.76 3.54 4.58 4 4.13 3.28 3.08 3.74 5 4.13 4.41 3.42 4.34 PWC 170 Subject Test Period 1 2 3 4 1 1062.55 1120.52 994.24 1299.87 2 1148 . 0 9 1076.97 1016.13 1289.85 3 1239.47 IO69.I8 9 0 5 . 6 0 1224.48 4 1169.57 1035.90 895.26 1139-30 5 1064.31 871.38 863.08 1088.06 APPENDIX C (Cont'd.) Hand Grip - Right Subject Test Period 1 2 3 4 1 60 54 63 55 2 57 53 63 52 3 59 52 61 53 4 63 55 62 50 5 54 54 61 50 Hand Grip - L e f t Subject Test Period 1 2 3 4 1 47 46 61 52 2 45 42 63 48 3 41 44 59 48 4 50 44 59 43 5 45 44 59 48 \ 101 APPENDIX C (Cont'd.) Leg Extension Strength Subject Period 1 2 3 4 1 625 760 1030 910 2 740 950 950 860 3 720 760 1030 770 4 760 670 1020 780 5 740 860 970 940 Back L i f t Strength Subject P e r i o d 1 2 3 4 1 440 425 605 475 2 420 400 530 390 3 410 440 540 390 4 525 490 570 570 5 440 550 550 410 APPENDIX C (Cont'd.) 102 ANTHROPOMETRIC MEASUREMENTS S u b j e c t 1 T e s t P e r i o d 1 2 * 3 4 5 SKIN FOLDS (mm): S u b - s c a p u l a r 10.1 10.4 9.8 9.9 9.7 T r i c e p s 7.1 7.8 7.7 7.8 7.6 Cbest 7.7 6.8 6.3 6.5 6.2 S u p r a - I l i a c 15.3 15.6 13.6 13.2 13.5 U m b i l i c a l 17.0 16.2 15.6 14.1 14.0 F r o n t Thigh 11.3 11.3 10.4 10.5 10.2 DIAMETERS (cm): Chest Width 2 7 . 4 2 6 . 2 2 5 . 7 2 5 - 3 2 5 . 1 B i - I l i a c D i a m e t e r 2 6 . 1 2 5 . 4 2 6 . 8 2 7 . 1 2 6 . 9 B i t r o c h a n t e r i c D i a m e t e r 3 2 . 8 3 2 . 9 3 2 . 8 3 2 . 7 3 2 . 9 B i a c h r o m i a l D i a m e t e r 3 8 . 8 3 8 . 2 3 9 . 0 3 8 . 8 3 9 . 2 Elbow 7 . 9 7 . 7 7 . 6 7 . 7 7 . 6 W r i s t 5 . 5 5 . 4 5 . 3 5 . 4 5 . 2 Knee 9 . 9 9 . 5 9 . 3 9 . 3 9 . 3 A n k l e 7 . 2 7 . 3 7 . 4 7 . 2 7 . 3 CIRCUMFERENCES (cm): S h o u l d e r s 100 . 6 105 . 5 1 0 6 . 5 1 0 5 . 3 105 . 2 Chest 90 . 3 90 . 5 9 0 . 0 9 0 . 2 90 .1 Abdomen 84 . 0 84 . 3 80. 8 7 8 . 5 77 . 9 B u t t o c k s 98 . 5 96 . 5 9 7 . 2 97.1 96 . 5 T h i g h 58 . 0 56 . 5 5 5 . 5 5 4 . 9 54 . 7 Knees 37 . 3 37 . 3 3 7 . 0 37.1 36 . 8 C a l f 41 .1 40 . 7 41. 5 40 . 9 41 . 2 A n k l e s 23 . 5 23 . 3 2 3 . 5 23 . 2 23 . 4 B i c e p s 32 . 2 31 . 9 31. 3 3 1 . 1 . 31 . 0 Forearm 28 . 8 28 . 6 28. 2 2 8 . 5 28 . 6 W r i s t s 17 . 3 17 . 5 1 7 . 5 1 7 . 3 17 . 5 APPEND IX C (Cont'd.) 103 ANTHROPOKST S u b j e c t 2 Te s t P e r i o d 1 SKIN POLDS (mm) : Su b - S c a p u l a r 9.8 T r i c e p s 6.2 Chest 5.1 S u p r a - I l i a c 8.3 U n b i l i c a l 6.5 P r o n t T h i g h 9.7 DIAMETERS (cm): Chest Width 27.6 B i - I l i a c D i a m e t e r 23.2 B i t r o c h a n t e r i c D i a m e t e r 31.2 B i a c h r o m i a l D i a m e t e r 40.9 Elbows 8.4 W r i s t s 5.4 Knees 9.3 A n k l e s 6.9 CIRCUMFERENCES (cm): S h o u l d e r s 101.7 C h e s t 88.7 Abdomen 77.4 B u t t o c k s 95.1 T h i g h s 52.9 Knees 38.3 C a l f 37.8 A n k l e s 21.5 B i c e p s 30.0 Forearm 27.7 W r i s t s 16.9 C MEASUREMENTS 2 3 4 5 10.3 9.8 9.9 10.0 6.0 6.3 6.2 6.1 4.8 4.8 4.7 4.8 9.8 8.9 9.0 8.8 6.4 6.4 6.3 6.2 9.3 10.5 9.9 10.0 27.5 26.2 26.5 27.0 25.7 25.4 25.8 25.5 30.9 31.5 31.0 31.3 41.0 40.2 40.5 41.0 8.4 7.7 8.1 8.3 5.4 5.4 5.5 5.4 9.1 9.2 9.3 9.2 6.9 6.3 6.8 7.0 108.4 109.1 109.0 108.5 89.1 87.8 89.3 88.9 76.6 78.8 76.1 77.2 93.9 94.7 92.3 94.1 51.6 52.7 51.1 52.5 34.2 35.2 35.3 35.1 37.3 39.1 38.3 38.0 21.3 21.4 21.3 21.4 30.3 30.0 30.1 30.1 28.0 27.8 27.6 27.9 16.5 16.6 16.8 16.5 APPENDIX G (Cont'd.) ANTHROPOMETRIC MEASUREMENTS S u b j e c t 5 T e s t P e r i o d 1 SKIN FOLDS (mm): S u b - s c a p u l a r 12.5 T r i c e p s 9.2 Chest 5.5 S u p r a - I l l i a c 13.1 U m b i l i c a l 12.9 F r o n t Thigh 12.5 2 3 4 5 13 . 0 12.8 12.9 13 . 0 9.8 9.6 9.7 9.8 5.7 • 6.2 6.1 6.2 15.1 14.9 14.5 1 5 . 0 14.1 14.1 13.9 14 . 0 12.7 12.2 12.5 12.3 DIAMETERS (cm): Chest Width 30.1 39.0 28.4 30 . 5 30.7 B i - I l i a c D i a m e t e r 26.9 27.0 27.3 27 . 5 27.2 B i t r o c h a n t e r i c D i a m e t e r 31.8 31.3 31.8 31 . 5 31.7 B i a c h r o m i a l 42.3 D i a m e t e r 41.9 42 . 5 42.2 42.0 Elbow 7.7 7.9 7.9 8.0 7.9 W r i s t 5.2 5.1 5.1 5.2 5.1 Knee 8.7 8.7 8.7 8.8 8.7 A n k l e 6.2 6.6 6.4 6 . 5 6.3 CIRCUMFERENCES (cm): S h o u l d e r s 117 .4 117 .3 120 .0 118 .0 117 .9 Chest 101 .1 100 .4 103 .5 102 .2 101 .9 Abdomen 81 .8 81 .0 85 .6 82 .3 84 .2 B u t t o c k s 93 .4 92 .5 94 .1 92 .4 93 .5 T h i g h 5k .2 55 .6 56 .2 55 .7 56 .0 Knees 35 .5 34 .9 34 .5 35 .1 35 . 2 C a l f 35 .4 36 .0 36 .1 35 .9 36 .2 A n k l e s 21 .6 21 .8 21 .5 21 .7 21 .6 B i c e p s 34 .9 35 .6 35 .7 35 .5 35 .7 Forearm 27 .4 27 .5 27 .6 27 .5 27 .6 W r i s t s 16 .0 16 .0 16 .0 15 .9 16 .0 APPENDIX C (Cont'd.) 105 ANTHROPOMETRIC MEASUREMENTS 'Subject 4 T e s t P e r i o d 1 2 3 4' 5 SKIN POLDS (mm): S u b - s c a p u l a r 14. k 13 .k 14 .2 13 .7 14. 0 T r i c e p s 11. 2 9 .7 10 .7 9 .8 10. 5 Chest 9. 2 9 .4 9 .1 9 .0 9. 5 S u p r a - I l i a c 20. 8 18 .5 21 .5 18 .6 20. 5 U m b i l i c a l 19. 8 20 .6 21 .0 20 .4 20. 9 F r o n t Thigh 16. k 15 .2 15 .0 15 • 5 15-0 DIAMETERS (cm): Chest Width 29 .5 29. 0 29 .1 29 .2 29 .1 B i - I l i a c D i a m e t e r 28 .6 28. 0 28 .7 28 .0 28 .3 3 i t r o c h a n t e r i c D i a m e t e r 31 .7 32. 0 31 .7 31 .9 31 .8 B i a c h r o m i a l D i a m e t e r 42 .9 42. 0 40 .2 41 .3 •41 .5 Elbow 8 .0 8. 2 8 .5 8 .4 8 .3 W r i s t 5 .8 5. 8 5 .6 5 .8 5 .7 Knee 10 .0 10. 0 9 .7 10 .0 9 .9 A n k l e 7 .5 7. 2 6 .9 7 .1 7 .0 CIRCUMFERENCES (cm): S h o u l d e r s 107 .1 116 .3 113 .4 113.5 114 .2 Chest 96 .2 98 .1 97 .0 98.3 98 .0 Abdomen 87 .2 88 .4 85 .7 84.3 87 .5 B u t t o c k s 98 .0 99 .7 98 .4 98.5 99 .2 T h i g h 56 .4 58 .1 57 .2 57.1 57 .2 Knees 38 .7 36 .8 36 .5 37.1 36 .9 C a l f 40 .2 39 .9 39 .2 39.8 40 .1 A n k l e s 23 .2 23 .0 22 .9 23.1 22 .8 B i c e p s 33 .6 33 .5 33 .8 33.6 33 .5 Forearm 28 .9 28 .9 28 .8 29.0 28 .9 W r i s t s 17 .7 17 • 9 17 .7 17.9 17 .8 APPENDIX G (Cont'd.) P a s t i n g B l o o d G l u c o s e (mgfo) S u b j e c t B l o o d Sample 1 2 3 4 1 66 76 70 69 2 65 77 73 68 3 60 70 68 67 4 56 65 65 66 5 66 74 6 6 65 6 77 75 73 75 7 57 65 74 53 8 72 70 72 61 9 80 76 77 63 10 80 77 78 55 Normal Range = 65 - 90 mg % Serum C h o l e s t e r o l (mg?6) S u b j e c t B l o o d Sample 1 2 3 4 1 183 184 153 142 2 194 189 152 198 3 152 161 132 156 4 148 165 132 155 5 168 171 150 184 6 178 178 176 180 7 154 175 157 163 8 150 161 166 156 • 9 186 158 155 178 10 199 180 165 . 166 Normal Range = 130 - 260 mg%. 107 APPENDIX C (Cont'd.) Hemoglobin (g$) B l o o d Sample 1 2 3 4 1 16. 88 17, ,4o 17. 29 16 .18 2 17. 02 16, .65 16. 90 15 .85 3 15- 80 15- .78 15. 83 15 .01 4 15- 92 16, .32 15. 31 15 .32 5 15. 19 16, .36 15- 94 15 .32 6 15. 27 16. .20 16. 13 15 .87 7 15. 16 15. .95 15. 74 . 14 .88 8 16. 12 15. .74 15. 87 15 .46 9 17. 69 17. .12 17. 05 17 .03 10 17. 60 17, • 36 17. 19 16 .53 Normal Range = 12.0 - 20.0 g$ H e m a t o c r i t S u b j e c t B l o o d Sample 1 2 3 1 47 48 48 46 2 47 48 46 45 3 46 45 46 43 4 45 47 45 42 5 43 47 44 42 6 45 46 46 45 7 42 44 43 42 8 44 43 43 42 9 46 - 44 43 43 10 46 46 45 43 Normal Range = 43.2 - 49.2 g% APPENDIX C (Cont'd.) Total Serum Protein (g fo) Subject Blood Sample 1 2 3 4 1 6.98 6.57 7 . 2 5 6.80 2 7 . 2 5 6.80 7.75 7.59 3 6.80 6.57 6.91 6.57 4 6.91 6.91 7 . 2 5 7.86 5 6.34 6.80 7.36 6.91 6 7.14 5.28 6.12 6.23 7 6.68 6.80 7.02 6.46 8 7.02 5.85 6.80 6.80 9 7.14 6.46 7 . 0 7 7.02 10 7.82 7.14 7 . 0 7 7.48 Normal Range = 6.02 - 7.42 g % Serum Albumin (g $) Subject Blood Sample 1 2 3 4 1 3.57 3.93 4.14 3.93 2 3 . 5 0 3.79 3.93 3.94 3 3.40 3.63 3.72 3.69 4 3.57 3.93 3 . 7 2 3.62 5 3.24 3.90 3.72 3.51 6 3.74 2.93 3.26 3.22 7 3.67 3.66 3.57 3.22 8 3.43 3.00 3.64 3.36 9 3.72 3 . 5 0 3.64 3.53 10 3.57 3.64 3.72 3 . 5 0 Normal Range = 3 . 5 0 - 4.58 g f> 1 0 9 APPENDIX C (Cont'd.) B l o o d Urea N i t r o g e n (mg$) S u b j e c t B l o o d Sample 1 2 3 4 1 11.0 10.0 12.0 12.0 2 10.5 11.5 12.5 12.5 3 10.0 11.5 12.0 14.0 4 7.0 12.5 12.0 11.5 5 11.5 12.0 12.5 15.5 6 12.0 12.0 15.0 15.0 7 10.5 10.5 13.0 14.5 8 7.5 11.5 14.0 13.5 9 11.5 11.5 13.0 14.0 10 13.5 13.0 17.0 19.5 Normal Range = 10 - 20 mg $ Serum V i t a m i n A (mg$) S u b j e c t B l o o d Sample 1 2 3 4 1 0.084 0.081 0.065 0.069 2 0.089 0.078 0.074 0.071 3 0.088 0.068 0.077 0.074 4 0.087 0.073 0.068 0.077 5 0.084 0.080 0.076 0.083 6 0.101 0.087 0.084 0.076 7 0.088 0.078 0.077 0.085 8 0.074 0.080 0.082 0.078 9 0.093 0.075 0.085 0.083 10 0.088 0.079 0.088 0.088 Normal Range = 0.060 - 0.180 mg % 110 APPENDIX G (Cont'd.) Serum Vitamin E (mg$) Subject Blood Sample 1 2 3 4 1 0.98 1.09 1.29 1.18 2 0.94 1.18 1.03 1.11 3 0.76 1.00 0.98 0.98 4 0.81 1.02 1.16 1.01 5 0.89 1.06 1.40 1.21 6 1.07 1.09 1.32 1.65 7 0.78 1.09 1.18 1.04 8 0.92 1.11 1.41 0.89 9 1.29 0.98 1.35 1.28 10 1.17 1.17 1.25 1.82 Normal Range = 0.56 - 1.95 mg# Serum Vitamin C (mg 7°) Subject Blood Sample 1 2 3 4 1 1. 06 1. 08 0 .93 1. 03 2 0. 96 0. 98 1 .02 0. 78 3 0. 69 0. 81 0 .66 0. 68 4 0. 84 1. 05 1 .11 1. 11 5 0. 91 1. 22 1 .22 1. 17 6 0. 98 1. 23 1 .00 1. 02 7 0. 96 1. 02 1 .08 0. 84 8 0. 93 0. 87 0 .99 0. 93 9 1. 11 0. 96 0 .96 1. 10 10 1. 05 0. 94 1 .16 1. 04 Normal Range = 0.2 - 0.7 mg 1° I l l APPENDIX C (Cont'd.) Urinary Thiamine (ug/ml) Subject Urine Sample 1 2 3 4 1 0.22 0.24 0.73 0.33 2 0.40 0.49 0.55 0.62 3 0.18 0.24 0.36 0.32 4 0.41 0.56 0.78 0.86 5 0.20 0.81 0.13 0.33 Note: Urinary thiamine concentration depends on dietary intake and urine volume. Normally, excretion 100 ug/24 hr. 24 Hour Urine Volumes (ml/24 hr.) Subject Period 1 2 3 4 1 770 1650 1225 1590 2 875 770 630 1415 3 950 1250 940 2000 4 755 725 860 1820 5 1050 900 855 2300 Note: Normal Range = 600 - 2500 ml/day. NAME APPENDIX D. BODY DENSITY DETERMINATIONS EY UNDERWATER WEIGHING DATE 1 1 2 _ l b s . -f 2.2046 °F - 32 = Conversions (1) Weight of Body i n Air (2) Temperature of Water (3) Temperature of Air (4) Barometer Pressure Millibars (5) Density of VTater O.QQ626 at 26 7 7 A Kgs. x 9 26 JF - 32 = 5 X 'A 12.5 = 760 mmHg. C Water Temp. Scale Weight at (A) F u l l Inspiration (6) Lowest Weight = 9.3,5 Kgs. (7) Weight of Sinkers = h.75 Kgs. (8) Weight with^Sinkers = 3 .6 Kgs. » Correction for Air i n Lungs (9) Best V.C. submerged at Room Temp. ( 22 °C) = Litres A.T.P.S. (10) V.C. Corrected for 37°C (Sat.) V.C. 310 5 A 273° + Room Temp.°C 310 295 = 5.675 L i t es Corrected B.T.P.S. (11) 30% of Corrected V.C. .30 x 5.675 (10) 1.702 Litres Residual Lung.Vol.. (l£) Air Inhaled at Weighing Corrected for 37°C. (Sat) A.I. 310' 310 273° + Room Temp.°C Litres Corrected B.T.P.S. (lS) Add (11) and (12) Litres Total Lung Vol. at 37 C (14) Multiply (13) by Density of Water at Water Temp. X? 9 9 6 2 6 Density (15) = 1 . 6 9 6 Lung Vol. i n Kgs. Weight without Sinkers 3 »6 Kgs. (8) Plus Lung Volume i n Kgs. 1.6-9 6- Kgs. (15) (16) Weight of Body i n Water (Corrected for Air i n Lungs) = 5 . 2 Q o Kgs. (8+15) Body Weight of Body i n Air Density of x Water at Density Weight of Dcdy i n Air - Correction Wt. of Body i n Water W a t e r Temp. . 9 9 6 2 6 7 7 A - 5.296 1 % B o d y Fat fkfk . 3.8I2) x 3S° = ( i ^ _ 3 . 8 1 2 ) x IPO . l l . 5 2 l f % Body Wt. = 77.h Kgs. lbs. Fat Wt. = R.Q Kgs. lbs. Fat Frae Wt.= 6 8 . ^ Kgs. lbs. A ? ? . D. CO'' 't. THE SJOSTRAND TEST OF PHYSICAL WOiflC CAPACITY 1 1 3 NAME F.'CAl-TT^ AGS WEIGHT DATE SCHOOL Test 1 Test 2 Test 3 Min. KP = 1.0 Min. KP = 2 . 0 Kin. KF - ">.0 1 time rate RPI-: 1 time rate RPK 4pi T , 1 1 time rate RP;: -781 TR 150 2 tioo rate 121 101 2 time rate 481 127 2 time rate 842 3 time rate 131 101 3 time rate 541 129 3 time rate Q02 161 4 time rate 242 102 4 time rate 6oi 1^0 4 time rate 960 161 5 time rate 0^2 10* 5 time rate 661 5 time rate 1.0°° 164 . 6 time rate 6^2 108 6 time rate 721 1^4 6 time rate 108 .167 Estimated P'./C 170 = 1140 Kg-m/min work. no no Ho ISO Vti 130 fe /ao Va l/o 100 / 110 lIcQ Slfo 7 l o <joo logo ixt>o mm. 111+ THE UNIVERSITY OF BRITISH COLUMBIA APP. D. c o n ' t . School of Ph y s i c a l Education and Recreation HUMAN PERFORMANCE AND PHYSICAL FITNESS LABORATORY Oxygen Consumption C a l c u l a t i o n of: CO2, O2 + M? i n expired a i r CO2 (ml/lOOml o r i g i n a l sample, dry) = V l ~ V 2 x 100 (2 - 4) Vl ~ "^4 O2 (nl/lOO ml o r i g i n a l sample,-dry) = V 2 " V3 x 100 (2 - 5) . Vi - v 4 N 2 (ml/lOO ml o r i g i n a l sample, dry) = ' V ^ x 100 (2 - 6) v l - v 4 Respiratory Metabolism: C a l c u l a t i o n s P r i n c i p l e : from the pulmonary v e n t i l a t i o n and the CO2, 02 and N2 content of expired a i r that i s compared with the i n s p i r e d a i r , the 02con-sumption and CO2 production are c a l c u l a t e d . From t h i s • data energy expenditure i s subsequently computed. Pulmonary V e n t i l a t i o n : i s expressed as l i t e r s of a i r expired/min, the volume of gas being reduced to the standard temperature and pressure 0°C and 760 mm Hg. dry formula: PB-PH 2O (1 _1) 760 (1+0.00367T) ( l i n e chart or nomogram a v a i l a b l e f o r t h i s computation) Respiratory Exchange Ratio or Respiratory Quotient ( RQ) R Qis defined as the volume r a t i o of C02 production and the 02 consumption i . e . CO2 production (]• _ 2) O2 consumption and i s u t i l i z e d i n the f o l l o w i n g c a l c u l a t i o n s : "True 02". "True C02", and R.Q. True O2represents the number of ml of O2 consumed f o r every 100 ml of a i r expired. The problem i s : to know the quantity of 0 that i s removed from the i n s p i r e d a i r using the only measurements made, the volume of a i r expired and i t s 02 , C02, and N2 content. Formula: V i n s p i r e d = V expired X # N2 -in expired a i r ( l - 3) 79.04 (the concentration of N2 and other i n e r t gas i n outdoor a i r i s 79.04/£) APP. D. con't. T o t a l volume of O2 i n s p i r e d (not a l l consumed) i s then VO2 i n s p i r e d = V a i r i n s p i r e d x f- p? of i n s p i r e d a i r ( l - 4) IOO' The fo O2 i n outdoor a i r i s 20.93; hence, V02 i n s p i r e d = V a i r i n s p i r e d x 20.93 ( l _ 5) 100 The volume of O2 e x p i r e d (amount not consumed) i s VO2 e x p i r e d = f 02 i n ex p i r e d a i r X V a i r e x p i r e d ( l - 6) 100 The amount of O2 consumed i s VO2 consumed = VO2 i n s p i r e d - V02 e x p i r e d ( l - 7) S u b s t i t u t i n g v a l u e s from equations (1-5) and (1-6), , ,r . . , v 20.93 ,T . , v f3 °2 i n e x p i r e d a i r VO2 consumed = V a i r i n s p i r e d X - V a i r e x p i r e d X _ 100 100 S u b s t i t u t i n g values from equation ( l - 3), VO2 consumed = V a i r e x p i r e d fo Np i n e x u i r e d a i r X = 79.04 f O2 i n e x p i r e d a i r Y 20.93 V a i r e x p i r e d Y  1 0 0 100 S i m p l i f y i n g VO2 consumed = V a i r e x p i r e d {fo N 2 i n e x p i r e d a i r X 0.265 - f> Q>2 i n e x p i r e d 100 a i r ) ( l - 8) The f a c t o r {f> IT i n e x p i r e d a i r x 0.265 - f° 02 i n e x p i r e d a i r ) i s the "true 02"> ^he number by which the V of ex p i r e d a i r ( d i v i d e d by 100) i s m u l t i p l i e d to give the O2 consumption ( f i g . 1 - 2 ) . C0 2 e x p i r e d = V a i r e x p i r e d X (f CO2 i n e x p i r e d a i r -- f N2 i n ex p i r e d a i r 79.04 X f CO2 i n i n s p i r e d a i r ) ( l - 9) (1 - 10) When outdoor a i r used, t h i s becomes: YCO2 e x p i r e d = v £ i r e x p i r e d CQ2 i n e x p i r e d a i r - 0.03) 100 The f a c t o r {f> C02in e x p i r e d a i r - 0.03) i s the " t r u e CO2 ", the number by vrhich the V of e x p i r e d a i r ( d i v . by 100) i s mult, to = the CO2 p r o d u c t i o n . The RQ i s obtained by d e v i d i n g Eg. ( l - 7 ) by Eg. ( l - 6 ) and i s f CO2 i n e x p i r e d a i r - 0.03 R Q f N 2 i n e x p i r e d a i r x 0.265 - f> 0 2 i n e x p i r e d a i r ( l - l l ) 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0101523/manifest

Comment

Related Items