Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Temporal and spatial differences in movement of cutthroat trout in Placid Lake, British Columbia Shepherd, Bruce Gordon 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1973_A6_7 S54.pdf [ 5.35MB ]
Metadata
JSON: 831-1.0101400.json
JSON-LD: 831-1.0101400-ld.json
RDF/XML (Pretty): 831-1.0101400-rdf.xml
RDF/JSON: 831-1.0101400-rdf.json
Turtle: 831-1.0101400-turtle.txt
N-Triples: 831-1.0101400-rdf-ntriples.txt
Original Record: 831-1.0101400-source.json
Full Text
831-1.0101400-fulltext.txt
Citation
831-1.0101400.ris

Full Text

I TEMPORAL AND SPATIAL DIFFERENCES IN MOVEMENT OF CUTTHROAT TROUT IN PLACID LAKE, BRITISH COLUMBIA by BRUCE GORDON SHEPHERD B r S c . U n i v e r s i t y of B r i t i s h Columbia, 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of Zoology We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l 1973 In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission fo r extensive copying of t h i s thesis for scholarly purposes may be granted by the Head of my Department or by hi s representatives. It i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of Zoology The University of B r i t i s h Columbia Vancouver 8, Canada Date Marnh 30, 1973 l i ABSTRACT The temporal and s p a t i a l v a r i a t i o n s i n the a c t i v i t y of c u t t h r o a t t r o u t i n a s m a l l c o a s t a l B r i t i s h Columbia lake (J+9°19'N, 122°3^,W) were examined i n order to determine the Impact of a c t i v i t y on the p r o d u c t i o n of f i s h , and the f a c t o r s c o n t r o l l i n g a c t i v i t y . Sonar t r a c k i n g , d i v i n g , n e t t i n g and tag g i n g , r i s e o b s e r v a t i o n , stomach content-prey d i s t r i b u t i o n comparision, and echo sounding were used i n the I n v e s t i g a t i o n . Average a c t i v i t y l e v e l s were a t l e a s t an order of mag-n i t u d e below any p u b l i s h e d v a l u e s . Energy val u e s were c o r r -espondingly low; the maximum estimate of annual energy expend-i t u r e i n a c t i v i t y ( i n c l u d i n g r o u t i n e metabolism) was 2330 kCal/kg/yr, which i s w e l l below the accepted ' r u l e ' of f i e l d metabolism being twice the r o u t i n e metabolism (3860 k C a l / k g / y r ) . F i s h b e h a v i o r a l problems and me t h o d o l o g i c a l shortcomings are considered r e s p o n s i b l e f o r t h i s r e s u l t . A c t i v i t y over 5 min i n t e r v a l s was q u i t e v a r i a b l e . D a i l y a c t i v i t y peaked d u r i n g dawn and dusk. The l e v e l of a c t i v i t y decreased In l a t e f a l l and e a r l y s p r i n g , and there was a s h i f t from the l i t t o r a l zones d u r i n g summer. The c u t t h r o a t i n the lake appear to mai n t a i n home r a n g e s - f o r up to 5 months. F a c t o r s a f f e c t i n g a c t i v i t y can be broken i n t o 3 c a t e g -o r i e s : Temperature, l i g h t , and oxygen p r i m a r i l y determine the depth zones that are a c c e s s i b l e to f i s h . S u b s t r a t e s such as Potamogeton beds and logs may a c t to concentrate f i s h w i t h -i n a c c e s s i b l e depth zones; a t t r a c t i o n i s l i k e l y due to the i l l h i g h e r food l e v e l s and/or i n c r e a s e d cover found i n these a r e a s . Bottom s l o p e , by a f f e c t i n g f o r a g i n g e f f i c i e n c y i n the p r o d u c t i v e l i t t o r a l a reas, might a l s o a f f e c t the summer o f f -shore d i s t r i b u t i o n of f i s h w i t h i n an a c c e s s i b l e depth zone. It i s suggested t h a t the i n d i r e c t e f f e c t s of a c t i v i t y ( s p e c i f i c a l l y , the o f f s h o r e movement of f i s h i n summer) can be e q u a l l y or even more important to the p r o d u c t i o n of f i s h than i s the d i r e c t use of energy f o r a c t i v i t y . i v TABLE OF CONTENTS PAGE APOLOGIA X ABSTRACT i i LIST OP TABLES v i LIST OF FIGURES v i i ACKNOWLEDGEMENTS ix INTRODUCTION. . .• 1 DESCRIPTION OF LAKE. k CHARACTERISTICS OF FISH POPULATION 9 I. ACTIVITY LEVELS AND ENERGY OF ACTIVITY IN COASTAL CUTTHROAT TROUT Ik METHODS 15 RESULTS Laboratory Observations i - A c t i v i t y i n Tanks .. ..... 18 Performance in Resplrometer... 18 F i e l d Observations; Fluctuations in Swimming Speeds........... 21 Area Covered by Fish 21 DISCUSSION...... 2k I I . ACTIVITY PATTERNS AND THEIR CONTROLLING FACTORS IN COASTAL CUTTHROAT TROUT.... 28 METHODS . 29 RESULTS ' Sonar Tracking. . . 31 Diving Surveys. 35 Netting J *3 Rise Observations 3^ Stomach Contents k j Echo Sounding kQ DISCUSSION General Movement Patterns; Short term. 51 V e r t i c a l Movements 51 V H o r i z o n t a l Movements.............................. 51 Home Range 53 Environmental F a c t o r s I n f l u e n c i n g Movement» L i g h t 5^  Temperature 56 Oxygen 57 S u b s t r a t e 57 Morphometry 58 Energy L i m i t a t i o n by Morphometry.................... 58 SUMMARY 6l BIBLIOGRAPHY 63 APPENDIX 1. Sonar tag s p e c i f i c a t i o n s 68 APPENDIX 2 i . Ranging of sonar-tagged f i s h 69 APPENDIX 3. Methods of c a l c u l a t i o n of SDA, r o u t i n e metabolism, and estimates of energy t o a c t i v i t y 78 APPENDIX k. A c t u a l values of estimates of energy t o a c t i v i t y 80 v i LIST OF TABLES PAGE Table 1. T o p o g r a p h i c a l and morphometrlcal c h a r a c t e r -i s t i c s of P l a c i d Lake. 5 Table 2. Water chemistry of P l a c i d Lake (samples taken Aug 3. 1972) 7 Table 3. P o p u l a t i o n estimates of P l a c i d Lake c u t t h r o a t . 10 Table ^. Sonar t r a c k i n g s t a t i s t i c s . 22 Table 5- A c t i v i t y l e v e l s i n salmonids--the r e s u l t s of s e v e r a l s t u d i e s (see B l a x t e r and Dickson, 1959; Laevastu and Hela, 1970; Webb, 1971 f o r more complete r e v i e w ) . 25 Table 6. Various estimates of energy expended on a c t -i v i t y , as compared to 3DA and r o u t i n e metab-o l i s m ( f o r 20 cm f i s h ) . 27 Table 7. Substratum p r e f e r e n c e s of sonic-tagged f i s h . 32 Table 8. S e c t o r p r e f e r e n c e s of sonic-tagged f i s h . 33 Table 9. Seasonal v a r i a t i o n of bottom depth p r e f e r e n c e s of sonic-tagged f i s h . Table 10. F i s h d i v e s i g h t i n g s by s u b s t r a t e . S u b s t r a t e code as i n t a b l e 11. 38 Table 11. S u b s t r a t e d i s t r i b u t i o n s a c c o r d i n g to e s t -imated f i s h s i z e . 38 Table 12. F i s h d i v e s i g h t i n g s by s e c t o r . 39 Table 13. S e c t o r d i s t r i b u t i o n s a c c o r d i n g to estimated f i s h s i z e . 39 Table l k . Seasonal depth d i s t r i b u t i o n s a c c o r d i n g to estimated f i s h s i z e . hi Table 15. Inference of f e e d i n g areas by prey a r r a y s i n f i s h guts (average no. of prey/stomach, as a p e r c e n t a g e ) . 7^ Table 16. Echo sounding t a r g e t s by depth. ^9 Table 17. Echo sounding t a r g e t s by s e c t o r . 50 Table 18. Tag s i g h t i n g s from October 1970 to J u l y 1972, by s e c t o r . 55 v i i LIST OP FIGURES PAGE Fi g u r e 1. C a t e g o r i e s of l o s s e s and uses of the energy of consumed food m a t e r i a l s (modified from Warren and Davis, 196?). D o t t e d l l i n e r e p r e -sents e f f e c t s of a c t i v i t y p a t t e r n s on energy i n t a k e . 2 F i g u r e 2. Seasonal thermal, oxygen, and l i g h t pene-t r a t i o n p r o f i l e s f o r P l a c i d Lake, January to December 1971. 6 F i g u r e 3. D i s t r i b u t i o n of substratum types and morph-ometry of P l a c i d Lake. 8 F i g u r e k. Length f r e q u e n c i e s of t r o u t g i l l n e t t e d by Andrusak from May to rDecember, 1967 (188 f i s h t o t a l ) ; caught i n fyke-net May through Novem-ber, 1971 (156 f i s h t o t a l ) . 11 F i g u r e 5- A n a l y s i s of t r o u t stomach conte n t s , May through November, 1971. C a l c u l a t e d as per-centages of t o t a l numbers of organisms found i n g uts. 13 F i g u r e 6. Method of sonar tag attachment to f i s h . 16 F i g u r e 7. Spontaneous a c t i v i t y of tagged and untagged hatchery rainbow t r o u t i n tanks. 19 F i g u r e 8. Oxygen consumptions of tagged and untagged w i l d c u t t h r o a t t r o u t under f o r c e d a c t i v i t y . 20 F i g u r e 9. Time s e r i e s p l o t s of sonar-tagged f i s h e s ' h o u r l y maximum, average, and minimum v e l o c -i t i e s . Heavy b l a c k l i n e above o r d i n a t e i n d -i c a t e s n i g h t (dawn to dusk). 23 F i g u r e 10. L o c a t i o n of sampling s t a t i o n s i n P l a c i d Lake (North a t top of map). 30 F i g u r e 11. Time s e r i e s p l o t s of v a r i o u s environmental f a c t o r s , along with p l o t s of the nos. of f i s h seen d u r i n g d i v e s and caught i n 2k hr net s e t s . 36 F i g u r e 12. T o t a l nos. of f i s h seen d u r i n g d i v e s vs. the l i g h t l e v e l at 1 m (best f i t 3rd degree p o l y n o m i a l ) . 37 v i i i F i g u r e 13. Nos. of f i s h caught i n 24 hr net set vs. the temperature a t 1 m (best f i t 3rd degree p o l y n o m i a l ) . 44 F i g u r e 14. D l e l v a r i a t i o n i n s u r f a c e r i s e a c t i v i t y , w ith accompanying depth-temperature p r o f i l e s 45 F i g u r e 15A. Comparison of d i s t a n c e s t r a v e l l e d by t r o u t i n v e r t i c a l s u r f a c e r i s e and l i t t o r a l f o r -ay (from midsummer p r e f e r r e d depth). 52 F i g u r e 15B. The e f f e c t of slope upon e n t r y - e x i t d i s t -ances t o l i t t o r a l f e e d i n g areas from mid-summer p r e f e r r e d depth. 52 F i g u r e 16. Cumulative percentage hypsographic curves by s e c t o r (approximates average bottom c r o s s - s e c t i o n of s e c t o r ) . 59 ACKNOWLEDGEMENTS This work was supported by an I n t e r n a t i o n a l B i o l o g i c a l Programme grant to Dr. I.E. E f f o r d , and by a s c h o l a r s h i p from the N a t i o n a l Research C o u n c i l of Canada to the author. I should l i k e to thank Dr. E f f o r d f o r h i s generous sup-p o r t , and Drs. B r e t t , Larking Northcote, Webb, and Wilimovsky f o r t h e i r ready a d v i c e r e g a r d i n g methodology and a n a l y s i s . Thanks a l s o go to Messrs. A. Vanderende and G. Haney of the B.C. Research C o u n c i l f o r t h e i r very competent c o n s t r u c t -i o n of the sonar tags, and to the s t a f f of the U.B.C. Research F o r e s t f o r a l l o w i n g access to P l a c i d Lake. I am indebted t o those f r i e n d s , f e l l o w graduate students, and undergraduate a s s i s t a n t s who spent long c o l d hours t r a c k -i n g f i s h , and to D. L a u r i e n t e , K. Reid, N. G i l b e r t , and G. Marten, who helped with computer a n a l y s e s . C r i t i c a l review of the manuscript by Drs. Northcote and L a r k i n , and Messrs. D. McKone and K. Hyatt was much a p p r e c i a t e d . F i n a l l y , h e a r t f e l t thanks i s due my wif e Lexy, who some-times complained, but always complied. APOLOGIA A l i v e without breaths as c o l d as death; never t h i r s t i n g , ever d r i n k i n g ; c l a d i n m a i l , never c l i n k i n g . Drowns on dry l a n d , t h i n k s an i s l a n d i s a mountain; t h i n k s a f o u n t a i n i s a p u f f of a i r . So s l e e k , so f a i r ! Gollum's R i d d l e ( T o l k i e n , J.R.R. 1965. The Lord of the Rings 1 1 : 2 8 8 . B a l l a n t i n e Books, New York.) 1 INTRODUCTION This study assesses the Impact of the d i r e c t and i n -d i r e c t i n f l u e n c e s of a c t i v i t y on the p r o d u c t i o n of a l a k e p o p u l a t i o n of c u t t h r o a t t r o u t , and estimates the r e l a t i v e c o n t r i b u t i o n s of s e v e r a l environmental f a c t o r s to movement. L i t t l e i s known about the d i e l a c t i v i t y l e v e l s and p a t t e r n s of f i s h i n na t u r e . Such data would f i l l a gap i n our understanding of f i s h b i o e n e r g e t l c s . Depending on i t s magnitude, a c t i v i t y can p l a y a major p a r t i n determining p r o d u c t i o n , as the energy u t i l i z e d i n a c t i v i t y i s l o s t to growth ( f i g l ) . Warren and Davis (1967) f e e l t h a t a c t i v i t y i s g e n e r a l l y of l i t t l e importance i n t h i s r e s p e c t , i n that "...energy u t i l i z a t i o n and l o s s through SDA [ S p e c i f i c Dy-namic A c t i o n — s e e f i g l ] i n f e e d i n g and growing f i s h i s r e l a t i v e l y l a r g e , and t h a t the e n e r g e t i c c o s t s of moderate l e v e l s of swimming a c t i v i t y are r e l a t i v e l y low...." Winberg (1956) has suggested t h a t the metabolic r a t e of f i s h i n nature i s twice the r o u t i n e metabolic r a t e 5 Mann (1967) found t h i s r u l e to f i t the few a v a i l a b l e data w e l l . S i n c e then, t h i s method has been w i d e l y accepted and a p p l i e d i n a q u a t i c b i o e n e r g e t l c s . Determination of the a c t u a l mag-ni t u d e of f i e l d a c t i v i t y would be of value i n t e s t i n g both these assumptions. Even i f the energy going d i r e c t l y to a c t i v i t y ( i . e . , a c t i v i t y l e v e l ) i s of l i t t l e importance r e l a t i v e to the F i g . 1. C a t e g o r i e s of l o s s e s and uses of the energy of consumed food m a t e r i a l s (modified from Warren and Davis, 1967). Dotted l i n e r e p r e -sents e f f e c t s of a c t i v i t y p a t t e r n s on energy Intake. 2 "ENERGY OF FOOD MATERIALS (Heat of combustion) Q -ENERGY OF FAECES Q ENERGY OF NITROGENOUS MATERIAL LOST THROUGH EXCRETION (SDA) NONUTILIZED ENERGY FREED THROUGH DEAMINATION AND OTHER PROCESSES PROCESSES OF DIGESTION, MOVEMENT AND DEPOSITION . OF FOOD MATERIALS -ENERGY OF ASSIMILATED MATERIALS . .. f ENERGY OF METABOLIZABLE MATERIALS ( P h y s i o l o g i c f u e l value) NET ENERGY ( P h y s i o l o g i c a l l y u s e f u l energy) STANDARD . METABOLISM GROWTH 3 other c a t e g o r i e s , movement ( i . e . , a c t i v i t y p a t t e r n s ) can have c o n s i d e r a b l e Impact on p r o d u c t i o n through i t s e f f e c t s on f e e d i n g , growth, and s u r v i v a l — s e e Northcote (1967). The body of t h i s d i s s e r t a t i o n i s presented In two p a r t s . The f i r s t s e c t i o n estimates the d i r e c t energy Input i n t o a c t i v i t y . The second s e c t i o n summarises g e n e r a l a c t -i v i t y p a t t e r n s and the importance of v a r i o u s environmental f a c t o r s i n movement. 4 DESCRIPTION OF LAKE E f f o r d (1967) d e s c r i b e s the g e n e r a l a r e a about P l a c i d Lake i n some d e t a i l . Andrusak and Northcote (1970) have b r i e f l y d e s c r i b e d P l a c i d Lake i n a pr e v i o u s study o f the v e r t i c a l d i s t r i b u t i o n of c u t t h r o a t . P l a c i d Lake i s a smal l c o a s t a l bog l a k e i n the Univ-e r s i t y of B r i t i s h Columbia Research F o r e s t (about 50 1™ due east of Vancouver). Top o g r a p h i c a l and morphometrlcal char-a c t e r i s t i c s are summarised i n t a b l e 1 and f i g u r e 3. Ice cover l a s t s from mid-December to the end of A p r i l ; complete l a k e turnover occurs a t the beginning and end of t h i s p e r i o d . D e s p i t e i t s s m a l l s i z e and shallowness, summer thermal s t r a t -i f i c a t i o n i s sharp ( f i g 2), l i k e l y because of the s h e l t e r e d l o c a t i o n and the many s p r i n g s on the bottom a t 6 m and deep-e r . Seasonal v e r t i c a l p r o f i l e s ( f i g 2) show high values of oxygen a t depths above 4 m, and poor l i g h t p e n e t r a t i o n . Carbon d i o x i d e i n c r e a s e s with depth ( t a b l e 2). C o l o r , con-d u c t i v i t y , t o t a l d i s s o l v e d s o l i d s , and t o t a l a l k a l i n i t y change markedly at 6 m ( t a b l e 2); but g e n e r a l l y the lake water can be c h a r a c t e r i s e d as l i g h t l y c o l o r e d , of low miner-a l content, and a c i d i c . About two - t h i r d s of the s h o r e l i n e i s composed of Sphag-num sp. overhangs; the most abundant macrophytes are Potamo-geton natans, S c l r p u s s u b t e r m l n a l l s , Nuphar polysepalum, and Drepanocladus exannulatus ( f i g 3)« 5 Table 1. T o p o g r a p h i c a l and morphometrical c h a r a c t e r i s t i c s of P l a c i d Lake. C h a r a c t e r i s t i c  Drainage Area (ha).. 173.7 E l e v a t i o n (m)....... .... 510 S h o r e l i n e (m)............, 988 S u r f a c e Area ( h a ) . . . . . . . . . . . . 1.65 Shore Development................................. 2.17 Maximum Length (m) (= maximum e f f e c t i v e l e n g t h ) . . . . 195 Maximum Width (m) (= maximum e f f e c t i v e w i d t h ) . . 195 Maximum Depth (m) 7 Mean Depth (m).. 4 Mean/Maximum Depth 0.57 Volume Development................................ 1.71 Area and Volume by Stratum:  Depth (m) 0-1 1-2 2-3 3-4 4-5 5-6 6+ Area (m 2) 2388 1856 1559 2838 2397 2721 2730 As %* 14 11 9 17 15 17 17 V o l (m3) 15279 13162 11457 9231 6613 4013 928 As %** 25 22 19 15 11 7 1 * T o t a l Area = 16489 m * * T o t a l Volume = 60683 m^ F i g . 2. Seasonal thermal, oxygen, and l i g h t penetration p r o f i l e s for Placid Lake, January to December 1971. \ Table 2. Water chemistry of Placid Lake (samples taken Aug 3, 1972). Location* Temp C Color Conductivity T.D.S. pH Total Alkalinity Free C0 2 HCL>3 Pt units micromhos/cm ppm ppm CaCOo ppm CaCCs ppm CaCO @25 C 3 1M SFC 22.0 20 18 23 5.5 *.3 19 3 2M(m) SFC 22.0 20 17 22 5.6 4 20 4 2M(m) BOT 18.0 20 18 23 5.6 6 29 6 2M(p) SFC 22.0 20 19 24 5.8 5 16 5 2M(p) BOT 16.0 20-25 17 22 5.6 5 24 5 2M(s) SFC 22.0 20 41 41 5.9 7 18 7 2M(s) BOT 20.0 20-25 16 21 5.9 7 18 7 4M SFC 22.0 20-25 17 22 6.0 9 18 9 4M BOT 12.0 25 17 22 5.6 8 39 8 6M SFC 22.0 20-25 19 24 6.0 9 18 9 6M BOT 8.5 25-30 28 31 5.9 15 38 15 *Location code: 1M to 6M = SFC = top of water column, BOT = water depth in m; (m) = open mud, (p) bottom of water column. = Potamogeton, (s) = Scirpus; F i g . 3. D i s t r i b u t i o n of substratum types and morphometry of P l a c i d Lake. PLACID LAKE CD O l_ 25 _ l _ contour interval 1m |Nuphar • Potomogeton I^Scirpus • Drepanocladus • Mud g| Sphagnum Log= on bottom in water column... 9 CHARACTERISTICS OF FISH POPULATION The coastal cutthroat trout (Salmo c l a r k l c l a r k l ) i s the only species of f i s h In Placid Lake. Spawning apparent-l y occurs i n the outlet stream just a f t e r spring break-up. Recruitment to the lake probably takes place when the trout are beginning t h e i r second summer. The lake population i s made up of approximately 300 f i s h (table 3) 9 to 26 cm i n fork length ( f i g k)—a density of about 0.02 fish/m 2. The length-weight rel a t i o n s h i p (as calculated from Andrusak's unpublished data) i s i N - 0.0183L 2- 8 6 0 0 for weight (W) In g and fork length (L) i n cm. Both Andru-sak's unpublished data and my own length data indicate the same age-length grouping when subjected to p r o b a b i l i t y paper analysis (Cassie, 195 )^s Age Group 0 1 2 3+ Length 0-13 13-17 17-21 21-2^+ age group defined as per Ricker (I97l)» length i s fork length in cm. From the average proportions of each age group in both the g i l l n e t catches of Andrusak (unpublished data) and my trapnetting, the t o t a l numbers i n each age group are (assuming no gear s e l e c t i v i t y ) : 10 Table J. P o p u l a t i o n estimates of P l a c i d Lake c u t t h r o a t . Type of Estimate Data Pop 95% Con L i m i t s max min Schnabel* Net 324 340 309 Schnabel** Dive 287 293 280 *Schnabel tends to overestimate (Dr. Wllimovsky, p e r s . comm.). **Probably underestimate due to g r e a t e r v i s i b i l i t y of tagged f i s h . F i g . 4. Length f r e q u e n c i e s of t r o u t g i l l n e t t e d by Andrusak from May to December, 1967 (188 f i s h t o t a l ) } caught i n fyke net May through November, 1971 (156 f i s h t o t a l ) . 1 9 6 7 1971 FORK LENGTH IN C M 12 Age Group 0 1 2 3+ Numbers 33+ 100 ll6 51 (low number i n 0 age group because most spend t h e i r f i r s t year i n the stream). Pood a n a l y s i s was done on a numbers b a s i s ( f i g 5) only, as i t was f e l t t h a t t h i s method would r e f l e c t f i s h c h o i c e more a c c u r a t e l y than any v o l u m e t r i c measurement c o u l d . However, the v o l u m e t r i c data of Andrusak (MS, 1968) was com-pared to the present numeric data, to check t h a t plankton, which can be Ingested s e v e r a l a t a time by f i s h , was not being overestimated In importance. Both s e t s of data showed s i m i l a r s easonal f e e d i n g p a t t e r n s . F i g . 5. A n a l y s i s of t r o u t stomach c o n t e n t s , May through November, 1971. C a l c u l a t e d as percentages of t o t a l numbers of organisms found In g u t s . A = Dlaphanosoma leuchtenberglanum. B = Holopedlum glbberum. C = Daphnla r o s e a . D = T e r r e s t r i a l i n s e c t s . E = Chironomidae/Ceratopogonidae ( l a r v a e and pupae). F = Chaoborus f l a v l c a n s ( l a r v a e and pupae). G = Ephemeroptera/Zygoptera. H = M i s c e l l a n e o u s . J = Number of f i s h sampled. O C T N O V I. ACTIVITY LEVELS AND ENERGY OF ACTIVITY IN COASTAL CUTTHROAT TROUT 15 METHODS The movements and a c t i v i t y of t r o u t were monitored over a 48 hr p e r i o d by means of son i c tags a t t a c h e d t o the f i s h . The s o n i c tags were I d e n t i c a l to those of Henderson et a l (1966), save t h a t a l a r g e r b a t t e r y (165 ma-hr vs 60 ma-hr) was used t o i n c r e a s e t ag l i f e , and st r e a m l i n e d foam f l o a t s were at t a c h e d f r o n t and back to g i v e s l i g h t p o s i t i v e buoy-ancy. The tag was towed by a f i s h (20 cm or l a r g e r ) on a short l e a d e r which was attac h e d to a hook I n s e r t e d i n t o the musculature a t the base of the d o r s a l f i n ( f i g 6). F u r t h e r tag c h a r a c t e r i s t i c s are give n i n appendix 1. Test f i s h were caught i n a fyke net set i n the 0-2 m r e g i o n of the western bay ( f i g 3). The f i s h were a n e s t h e t i s e d with MS-222, one f i s h s e l e c t e d and tagged, and r e l e a s e d a t the cen t e r of the lak e a f t e r a sh o r t r e c o v e r y p e r i o d . T r a c k i n g commenced 12-48 hr a f t e r r e l e a s e . The tag s i g n a l was r e c e i v e d by two hydraphone-receiver u n i t s (SR-70H hydraphone, TA-60 s o n i c r e c e i v e r , Smith-Root E l e c t r o n i c s , S e a t t l e ) t h a t were a t f i x e d s t a t i o n s about the la k e ( f i g 9). The hydraphones were mod-i f i e d In a way s i m i l a r to that d e s c r i b e d by Podubbny et_ a l (1970), to a l l o w manual angle d e t e r m i n a t i o n a t two f i x e d p o i n t s and thus to t r i a n g u l a t e f i s h p o s i t i o n . L o c a t i o n accuracy on a s t a t i o n a r y tag was 0.5$. F i s h p o s i t i o n was determined and p l o t t e d a t 5 niln I n t e r v a l s over 48 h r . Two l a b o r a t o r y experiments were a l s o c a r r i e d out to determine the tag's e f f e c t s on a c t i v i t y and beha v i o r : P i g . 6. Method of sonar tag attachment to f i s h . 17 a) Two 2.4 x 0.6 x 0.6 m tanks with 0.3 x 0.3 m bottom g r i d s were set up s i d e by s i d e , and the a c t i v i t y and g e n e r a l behavior of tagged and untagged hatchery rainbow t r o u t (con-t r o l s 27-33 om range, 29 cm average? tagged, 22-27 and 25 cm) under i d e n t i c a l h a n d l i n g were compared over 5 days a t 5 C and under n a t u r a l l i g h t i n g d u r i n g November. The f i s h had been p r e v i o u s l y h e l d i n a l a r g e tank o u t s i d e f o r 2-3 wk at 5 C, For the f i r s t two days of o b s e r v a t i o n , h o r i z o n t a l a c t i v i t y was measured every 2 hr d u r i n g the day by counting the number of times the f i s h ' s d o r s a l f i n cut a c r o s s a g r i d l i n e i n 15 min. On the next two days, 15 min counts were made at midday only, and on the f i f t h day the f i s h were chased about the tanks to determine any q u a l i t a t i v e d i f f e r e n c e s i n response, performance, and stamina. b) The performance and oxygen consumption of tagged and untagged P l a c i d Lake c u t t h r o a t (18.0-22.5 cm, 51-104 g range; 20.5 cm, 76 g means) i n f i e l d c o n d i t i o n (lake temperature a t time of capture was approximately 15 C; f i s h were h e l d f o r no more than 2 weeks a t 15 G i n a l a r g e outdoor tank before t e s t -ing) were evaluated i n a B r e t t - t y p e r e s p i r o m e t e r a t 15 C, f o l l o w i n g the procedures developed by B r e t t (1964) and Webb (1971. p e r s . comm.). 18 RESULTS Laboratory Observations A c t i v i t y i n Tanks i There Is no s i g n i f i c a n t d i f f e r e n c e , and indeed, no c o n s i s t e n t t r e n d between the a c t i v i t y l e v e l s of sonar-tagged and untagged h a t c h e r y t r o u t ( f i g 7). Both groups show mark-ed l y h i g h e r a c t i v i t y w i t h i n the f i r s t s i x hours; t h i s i s l i k e l y due to h a n d l i n g and/or search-escape behavior. No q u a l i t a t i v e d i f f e r e n c e s i n response, performance, or stamina were noted, e i t h e r d u r i n g the t r i a l s or when cha s i n g and c a p t u r i n g f i s h a t the end of each t r i a l . Performance In Resplrometer: Although there Is no s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r -ence between the oxygen consumptions of sonar-tagged and untagged P l a c i d Lake c u t t h r o a t under f o r c e d a c t i v i t y , there i s a t r e n d towards h i g h e r oxygen consumption by tagged t r o u t ( f i g 8 ) . The equations d e s c r i b i n g the l i n e s of best f i t a r e : Untagged: logY = 2 . 2 0 2 8 3 + 0 . 1 0 7 3 7 X Tagged*: logY = 2 . 2 0 2 8 3 + O.lWpOX *Tagged r e g r e s s i o n l i n e was f o r c e d through Y - i n t e r c e p t of untagged r e g r e s s i o n l i n e ( i . e . , standard metabolisms were assumed i d e n t i c a l ) . F i g . 7. Spontaneous a c t i v i t y of tagged and untagged hatc h e r y rainbow t r o u t i n tanks. C O N T R O L (MS222, h a n d l i n g ) @ T A G G E D ( " ) O ± 2 S E F i g . 8. Oxygen consumptions of tagged and untagged w i l d c u t t h r o a t t r o u t under f o r c e d a c t i v i t y . A = tagged r e g r e s s i o n l i n e f o r c e d through Y - i n t e r c e p t of untagged l i n e . B = data excluded from r e g r e s s i o n c a l c u l a t i o n s as i t was f e l t the value should "be h l g h e r - -the tag tended to f o u l i n swimmer at t h i s speed. N.B. 1 BL/sec i s approximately equal t o 12 m/min. (BL = Body Length) S P E E D I N m / m i n 21 where Y i s oxygen uptake i n mg 02/kg f i s h / h r , and X i s speed i n m/min. There was no n o t i c e a b l e d i f f e r e n c e s i n performances, beyond tag f o u l i n g i n the access p o r t and i n t a k e g r i d of the r e s p l r o m e t e r . F i e l d Observations  F l u c t u a t i o n s i n Swimming Speeds: V e l o c i t i e s over 5 m i n I n t e r v a l s were found very v a r i a b l e . The maximum recorded v e l o c i t y f o r a 5 i n t e r v a l was 21.4 m/min ( t a b l e 4). Average h o u r l y v e l o c i t i e s show no c l e a r p a t t e r n ( f i g 9), but i t appears t h a t the f i s h were most a c t i v e d u r i n g the dawn and morning p e r i o d s and l e a s t a c t i v e a t dusk ( t a b l e 4). Area Covered by F i s h : Although there i s l a r g e i n d i v i d u a l v a r i a t i o n i n the area covered i n 48 hr (appendix 2), a l l the f i s h spent the majorr-i t y of time i n a very r e s t r i c t e d area ( t a b l e 4). In most cases, the f i s h d i d not remain i n the area f o r the f u l l time, but i n s t e a d moved about the lake and f r e q u e n t l y r e t u r n e d to one a r e a . 22 Table 4. Sonar t r a c k i n g s t a t i s t i c s . MAXIMUM VELOCITY =21.4 m/mln = 36 cm/sec Co r r e c t e d f o r drag of t a g * = 30.2 m/mln = 50 cm/sec DIEL VARIATION IN SWIMMING SPEEDS ( a l l t r a c k s summed and averaged)« P e r i o d Average Range Mean Dawn 0.1-1.8 0.6 m/min Day-AM 0.1-2.2 0.7 Day-PM 0.1-1.6 0.6 Dusk 0.0-1.1 0.4 Night 0.1-1.5 0.5 TOTAL AREA COVERED IN 48 HRi Maximum = 11033 m.2 ( T o t a l l a k e a r e a = 165OO m 2) Average = 1638 Minimum = 66 or l e s s TIME SPENT WITHIN ONE GRID SQUARE (66 m 2 ) j Maximum = 100.0$ Average = 53*8 Minimum = 4.2 TIME SPENT WITHIN TWO GRID SQUARES (132 m 2)1 Maximum = 100.0$ Average = 66.6 Minimum = 7.0 *See f i g 8 and appendix 2 f o r method of c a l c u l a t i o n . F i g . 9. Time s e r i e s p l o t s of sonar-tagged f i s h e s ' h o u r l y maximum, average, and minimum v e l -o c i t i e s . Heavy b l a c k l i n e above o r d i n a t e I n d i c a t e s n i g h t (dawn to dusk). V 23 o m * a WVB4 • s t u s g i WUBI . e t t c c i i I? 9 * o . , . , G G K G G B f S 5 *B |B SB 9 6 ft 9 ItUN • C t C t C I I 'If 8 MtGN i t it o a * MOON • E G K 6 G 8 I 4 i i |B • ft ft • A 9 n * m tKMIN • S G C G G 8 B It » 9 O Id * • ' 6 G S B 6 8 I M40N ( i o a k i i E E t f i S t l 5 G I' j B c i Ml 5-M40N ? G |B V ft ft 9 i i 6 G S K G 8 a . 6 G £ G G 8 f A o . » . . S G S G G 8 B •MOM t o . , f ! ( t < G G 8 f f G 9 2k DISCUSSION The f i s h used i n t h i s study are the s m a l l e s t yet r e -ported t o be sonar-tagged ( t a b l e 5)> At t h i s s i z e l e v e l , i t appears t h a t d e t a i l e d i n v e s t i g -a t i o n of h a r n e s s i n g methods i s Imperative. In the f i r s t t r a c k , the f i s h was tagged with a back-pack harness s i m i l a r to t h a t of Young et a l (1972); the maximum and average v e l -o c i t i e s f o r t h a t t r a c k are f a r h i g h e r than i n any of the succeeding t r a c k s , where f l o a t i n g drag-tags were used ( t a b l e 5). These r e s u l t s suggest t h a t e i t h e r the back-papk harness i r r i t a t e s the f i s h , or t h a t the drag-tag somehow i n t e r f e r e s with locomotor b e h a v i o r . Although p r e v i o u s attempts have f a i l e d t o f i n d gross b e h a v i o r a l d i f f e r e n c e s between tagged and untagged f i s h , s u b t l e r b e h a v i o r a l changes may occur and should be looked f o r i n f u t u r e s t u d i e s . Table 5 a l s o i n d i c a t e s t h a t i n g e n e r a l the a c t i v i t y l e v e l s of P l a c i d c u t t h r o a t are very low when compared with other s t u d i e s . Aside from the problems of f i s h s i z e and t a g attachment, s e v e r a l other f a c t o r s c o u l d c o n t r i b u t e to minim-i z e t h i s v a l u e , i n c l u d i n g i 1) V e r t i c a l movements cannot be measured with the p r e s -ent equipment, and are thus i g n o r e d . 2) S t r a i g h t - l i n e movement i s assumed between t r l a n g u l -a t i o n p o i n t s . 3) Operating accuracy i s such t h a t s h o r t term back and Table 5. Activity levels in salmonids—the results of several studies (see Blaxter and Dickson, 1959; Laevastu and Hela, 1970; Webb, 1971 for more complete review). Fish (size in cm) "Speed ( cm/sec) Remarks: Author(s): Maximum Average Coastal Cutthroat 36(50) 1 8(12) 1 Track 1; backpack tag Present study (20-25) 33(47)* 1.3 Tracks 9,12; drag tag maximum it II 0.4 Tracks 2-13; drag tag average General 'rule' (20-25)2 200-250 60-75 10 x body length = max, 3 x BL = cruise Bainbridge (1960) 2 Rainbow (21-30) 52 47 Maximum sustained speed Bainbridge (1962) 2 Sockeye (14-15) 41 30 II it II Brett et a l (1958) Coho (8-9) 2 48 45 II II II II II II II Kokanee (10-20) 50 17 Short term f i e l d observations Hyatt (MS, 1973) Rainbow (9-30) 50 20 II II it II it II II Rainbow (16-22) 55 23 Daily pond observations Jenkins (MS, 1972) Sockeye (58-73) 170 53 Sonic-tagged sea migrants Madison et a l (1972) Yellowstone Cutthroat 82 3 23 Sonic-tagged lake migrants MacCleave and Horrall (?) 37 4 (1970) Yellowstone Cutthroat 49 3 29 II II II MacCleave and LaBar (31-40) 37 4 (1972) Brown (30, 34) 4,5 Sonic-tagged lake fi s h Young at al (1972) '''Speed corrected for drag of tag. 3 Open water speeds. 2 Forced activity. 4 Shore speeds. 26 f o r t h movements ( i . e . , the 'shore c r u i s e r s ' of Jenkins--MS, 1972) c o u l d c a n c e l out. 4) A m p l i f y i n g 3), the f i s h i n t h i s p o p u l a t i o n appear to keep home ranges (see f o l l o w i n g s e c t i o n on a c t i v i t y p a t ^ t e r n s ) . Low a c t i v i t y l e v e l s , whether n a t u r a l or due to method-o l o g i c a l shortcomings, l e a d t o low energy deployment i n a c t -i v i t y . V arious estimates of the f i e l d energy requirements f o r a c t i v i t y f a l l f a r short of r o u t i n e metabolism and SDA estimates ( t a b l e 6). I t does appear t h a t there Is a seasonal f l u x t o a c t i v i t y , w ith summer values h i g h e r than s p r i n g , and both h i g h e r than f a l l ( t a b l e 6). These estimates c o n s i d e r only a c t i v i t y In the l a k e , and only i n one age group. The energy going t o the stream a c t i v i t y of the young and to the spawning m i g r a t i o n of the a d u l t s has not been examined, and c o u l d be r e s p o n s i b l e f o r the major p o r t i o n of energy u t i l i s e d i n a c t i v i t y d u r i n g the l i f e span of a salmonld. 27 Table 6. Various estimates of energy expended on a c t i v i t y , as compared to 3DA and routine metabolism (for 20 cm f i s h ) 1 . Type of Estimate Value (kCal/kg) Annual SDA 2500 Annual routine metabolism 1840 Energy of A c t i v i t y (not including standard metabolism) I. Same energy, lowered a c t i v i t y i Max y r l y est (max track value) 4-91 Average d a i l y est by season i „ Spring (tracks 6-9) 0.05 (0.06)^ Summer ( *' 1, 10-13) 0.12 (0.14) F a l l ( " 2-5) 0.03 (0.03) Average energy to a c t i v i t y during non-Ice period (min y r l y est) 12.96 (16.01) >Yearly energy to a c t i v i t y (max est) 16.94 (19.99) I I . Same a c t i v i t y , increased energy: Max y r l y est l6l Average d a i l y est by season Spring 0.04 (0.05) Summer 0.05 (0.06) F a l l 0.02 (0.02) Average energy to a c t i v i t y during non-ice period 7.30 (8.86) Yearly energy to a c t i v i t y 10.79 (12.34) 1 See appendix 3 for methods of c a l c u l a t i o n . 2 Numbers i n parentheses are estimates i n which zero-value tracks have been discarded. 28 ACTIVITY PATTERNS AND THEIR CONTROLLING FACTORS IN COASTAL CUTTHROAT TROUT 29 METHODS Fish movements and a c t i v i t y were monitored in several ways i 1) Sonar tracking was the primary method used to deter-mine d i e l a c t i v i t y . Details of methodology have been pre-sented elsewhere (pp 15-16). 2) Regular (twice weekly) diving surveys of the 1-3 m areas were made at 1400 hr PST; on each dive, one complete c i r c u i t of the lake was made i n one hour. When a f i s h was spotted, i t s v e r t i c a l and horizontal p o s i t i o n , s i z e , substrate i t was over, and behavior, were recorded. 3) A fyke net was set for.2k hr once a week, and also for 3 int e r v a l s over 2k hr once a month. k) Observations on surface a c t i v i t y were made at var-ious stages of thermocline development. Counts of the number of surface r i s e s in 15 min were done at 2 hr interv a l s from p dawn to dusk, i n two areas each approximately 2500 m . 5) Integration of stomach contents data with data on prey d i s t r i b u t i o n with depth and subhabitat. 6) Monthly echo soundings (using a Furuno Model FM-22 50 kHz sounder, Furuno E l e c t r i c Co., Kobe, Japan) along the 6 major transects ( f i g 10) were made at 1300-1400 and 2200-2300 hr PST. The numbers and horizontal d i s t r i b u t i o n of targets i n the 3-6 m depth range were taken from the tracings. F i g . 10. L o c a t i o n of sampling s t a t i o n s i n P l a c i d Lake (North a t top of map). E x p l a n a t i o n of code: Numbers .5 to 6 r e f e r t o water depth i n m. m, p, and s i n d i c a t e s u b s t r a t e (mud, Potamogeton, and S c l r p u s , r e s p e c t i v e l y ) a t 2 m. S e c t o r numbers apply to s e c t o r c l o c k w i s e from buoy. SAMPLING STATIONS o Temp /.Og / light levels • Bottom samples / water chemis t ry . A Plankton hauls r— —< Sector bouys © " © Sounding transects Fyke net Sonar tracking / surface rise bases _ H 31 RESULTS Sonar Tracking} Short term and d l e l f l u c t u a t i o n s i n v e l o c i t i e s and r a n g i n g have been presented elsewhere (pp 21-22). S u b s t r a t e , S e c t o r , and Depth P r e f e r e n c e s . The sonar t r a c k i n g data were grouped by s e c t o r and s u b s t r a t e ( t a b l e s 7 and 8) and t e s t e d f o r randomness u s i n g c h i - s q u a r e one sample t e s t s ( S e l g e l , 1956). I f the c h i - s q u a r e a was found to be 0.01 or l e s s , the data were ranked In the f o l l o w i n g manner. I f t h e r e i s no a t t r a c t i o n or avoidance to an a r e a , i t would be expected t h a t no of obs. In a r e a m 2 In area t o t a l obs. ~ t o t a l m^ henc e no of obs. i n area x t o t a l m 2 _ ± t o t a l obs. x m^ i n area I f t h e r e i s a t t r a c t i o n t o the area, the value w i l l be g r e a t e r than 1.00; i f the a r e a i s avoided, the value w i l l be l e s s than 1.00. S u b s t r a t e index values were very h i g h f o r Sphagnum. Se c t o r p r e f e r e n c e s were g e n e r a l l y f o r those areas having e x t e n s i v e Sphagnum overhangs. Seasonal v a r i a t i o n i n c h o i c e of bottom depths ( t a b l e 9) g e n e r a l l y c o n s i s t s of a s h i f t to deeper waters with the pro-g r e s s i o n of the season--the number of shallow water observ-a t i o n s are probably i n f l a t e d , due to the a t t r a c t i o n of f i s h 32 Table ?• Substratum preferences of sonic-tagged f i s h . Substrate* LOG SPH PN SS MUD NP DE No of Det 480 1014 167 269 1392 15^  513 As Prop'n .12 .25 .04 .07 .35 .04 .13 Area as Prop'n .17 .07 .07 .11 .30 .05 .23 Nos expected 678 279 279 +^39 1198 199 917 Preference 0.71 3.57 0.57 0.64 1.17 0.80 0.57 Chl-square = 2324.49 with 6 d.f. Pro b a b i l i t y of randomness less than 0.001. *L0G = f l o a t i n g or submerged logs SPH = Sphagnum overhang PN = Potamogeton SS = Sclrpus MUD = open mud NP = Nuphar DE = Drepanocladus Table 8. Sector preferences of sonar-tagged f i s h . Sector 1 2 3 4 5 6 7 8 9 10 11 12 No of Det 251 554 252 63 h96> 152 443 538 391 491 282 497 As Prop'n .06 .13 .06 .02 .05 .04 .11 .13 .10 .12 .07 .12 Area as Prop'n .09 .15 .05 .07 .08 .09 .08 .06 .08 .08 .12 .05 Nos expected 370 617 206 288 329 370 329 • 247 329 329 498 206 Preference 0.67 0.87 1.20 0.29 0.63 0.44 1.38 2.17 1.25 1.50 0.58 2.40 Chi-square = 1464.3 with 11 d.f. Probability of randomness less than 0.001 34 Table 9. Seasonal v a r i a t i o n of bottom depth p r e f e r e n c e s of sonic -tagged f i s h . Depth 0-lm I t 2m 2-3m 3-4m 4-5m 5-6+m Area as Prop'n 0.14 0.11 0.09 0.17 0.15 0.34 Season i S p r i n g No 180 194 65 149 62 82 As Prop'n 0.25 0.27 0.09 0.20 0.08 0.11 Preference 1.79 2.45 1.00 1.18 0.53 0.32 Summer No 565 323 382 379 373 310 As Prop'n 0.24 0.14 0.16 0.16 0.16 0.13 P r e f e r e n c e 1.71 1.27 2.56 0.94 1.07 0.38 P a l l No 40 46 233 380 90 20 As Prop' n,. 0.05 0.06 0.29 0.47 0.11 0.02 P r e f e r e n c e O.36 0.55 3.22 2.76 0.73 0.06 O v e r a l l : No 785 563 680 908 525 412 As Prop'n 0.20 0.15 0.18 0.23 0.14 0.11 P r e f e r e n c e 1.43 1.36 2.00 1.35 0.93 0.32 3:5 to the Sphagnum overhang (no morphometry c o u l d be c a r r i e d out beneath the overhang, and the depth was assumed to be 0-2 m shoreward from the edge of the overhang). The r e g i o n s 5 m and deeper were c o n s i s t e n t l y avoided. D i v i n g Surveysi Key F a c t o r A n a l y s i s . In f i g 11, a s e t of graphs compare the s e a s o n a l changes i n oxygen, temperature, and d a i l y l i g h t l e v e l s with the numbers of f i s h seen d u r i n g d i v i n g t o u r s . A stepwise c u r v i l i n e a r ( l i m i t e d to t h i r d degree polynomial) r e g r e s s i o n a n a l y s i s was performed on the d a t a — e n v i r o n m e n t a l parameters i n c l u d e d the above f a c t o r s at 1, 2, and 3 m, as w e l l as d a l l y s u n l i g h t on both the d i v e day and the day pre-c e d i n g , and the amount of c l o u d c over. The l i g h t at 1 m, e x p l a i n i n g k0% of the t o t a l v a r i a t i o n , Is the major f a c t o r d etermining numbers of f i s h seen In the 1-3 m r e g i o n ( f i g 12); the temperature at 2 m, e x p l a i n i n g lk% of the t o t a l v a r i a t i o n , f o l l o w s . S u b s t r a t e , S e c t o r , and Depth P r e f e r e n c e s . Groupings of s e c t o r and cover ( i g n o r i n g season and f i s h s i z e ) were made •• and t e s t e d by c h i - s q u a r e ; expected values were - c o r r e c t e d f o r area of d i v e path. Both groupings were found h i g h l y s i g n i f -i c a n t . Potamogeton and l o g s were p r e f e r r e d ( i n t h a t order) above other s u b s t r a t e s ( t a b l e 10), and s e c t o r s 6, 7, and 9 (areas of Potamogeton-log mix) were p r e f e r r e d above other s e c t o r s ( t a b l e 12). The e f f e c t of f i s h s i z e upon s u b s t r a t e and s e c t o r c h o i c e was t e s t e d u s i n g a c h i - s q u a r e t e s t f o r k Independent samples F i g . 11. Time s e r i e s p l o t s of v a r i o u s environmental f a c t o r s , along with p l o t s of the nos. of f i s h seen d u r i n g d i v e s and caught i n 24 hr net s e t s . a = lower l e t h a l 0 2 l e v e l a t 15 C ( S t r e l • t s o v a , 19?). b = " " " " " 10 C. c = 11 11 • " 11 " 5 G. d = upper l e t h a l temp, l e v e l (pers. obs.) e = maximum p r e f e r r e d temp. (Kuroki et a l , 1971? MacCauley and Pond, 1971). F i g . 12. T o t a l nos. of f i s h seen d u r i n g d i v e s v s . the l i g h t l e v e l a t 1 m (best f i t 3rd degree p o l y n o m i a l ) . E q u a t i o n : Y = 5.162 - 0.003972X +(0.25667 x 10" 5)X 2 - (0.24993 x 10 ' 9 )X 3 38 Table 10, P i s h d i v e s i g h t i n g s by s u b s t r a t e . S u b s t r a t e * LOG SPH PN s s MUD NP No of Obs 345 186 3 3 ^ 173 182 20 As Prop'n . 2 8 .15 .27 . 1 4 .15 . 0 2 Area as Prop'n .23 . 2 0 .16 . 2 0 .15 .06 Nos Expected 285 248 198 248 186 74 P r e f e r e n c e 1 . 2 2 0 . 7 5 1 . 6 9 0 . 7 0 1 . 0 0 0 . 3 3 Chi-square = 1 8 4 . 1 4 with 5 d . f . P r o b a b i l i t y of randomness l e s s than 0.001. Table 11. S u b s t r a t e d i s t r i b u t i o n s a c c o r d i n g t o estimated f i s h s i z e . S u b s t r a t e * LOG SPH PN SS MUD NP No of F i s h : 1 2 - cm 127 37 104 41 25 3 1 4 - 1 8 154 113 171 70 80 11 20 + 59 48 85 45 45 3 P r e f e r e n c e : 12- 1.65 0.55 1.94 0.60 0.47 0 .17 1 4 - 1 8 1.13 0.95 TTBT 0.60 0.87 0.33 20+ 0 . 9 1 0.85 TT94" 0 . 8 0 0.87 0.17 Chi-square = 37 . 9 8 9 with 10 d . f . P r o b a b i l i t y of randomness l e s s than 0.001. *L0G = f l o a t i n g or submerged l o g s ; SPH = Sphagnum over-hang; PN = Potamogeton; S3 = S c l r p u s ; MUD = open mud; NP = Nuphar. Sector - 1 2 3 4 5 6 7 '••8 V 9 10 11 12 No of Obs 113 155 26 73 90 205 96 77 152 •'61 163 26 As Prop'n .09 .13 .02 .06 .07 .17 .08 .06 .12 .05 .13 .02 Area.as Prop'n .13 .05 .06 .08 .11 .06 .06 .07 .06 .13 .07 Nos Expected r" 149 ' 161 62 74 99 136 74 74 87 74 161 87 •nP.ref erence 0.75 •;. 1.00 0.40 1.00 6.88 1.55 .1,33 1.00 1.71 0.83 1.00 0.29 Chi-square = 165.71 with 11 d.'f.; probability of randomness less than 0.001. iTab'le-.lSvk..^Sector distributions according.to estimated fish size. Sector 1 2 3 4 5 6 7 8 9 - 10 11 12 No of fi s h : 12- cm 7 32 3 10 14 64 31 30 60 9 74 3 14-18 64 80 14 40 36 .96 49 32 70 36 65 17 20+ 32 42 9 22 40 <-* 34c 9 14 23 19 23 5 Preference: 12- cm 0.17 0.69 0.20 0.50 . 0.50 1.72 1.50 1.50 2.57 0.50 1.69 0.14 14r18 , 0.92 1.00 0.40 1.17 0.75 1.45 1.33 0.83 1.71 1.00 0.85 0.43 20+ 1.08 . 1-15 0.60 1.33 1.75 1.09 0.50 0.83 1.14 1.17 0.62 0.29,. -• V'Chi-square!> 460.645. with.22 d.f. ; probability of randomness less than 0.001. 40 ( S e i g e l , 1956), and was found s i g n i f i c a n t i n both cases ( t a b l e s 11 and 13). Although Potamogetbn and l o g s were pre-f e r r e d i n a l l 3 s i z e groups, the p r e f e r e n c e f o r l o g s de-creased with i n c r e a s i n g s i z e . A l s o , open mud and Sphagnum were avoided more by the s m a l l e r f i s h . Small f i s h p r e f e r r e d s e c t o r s 9. 6, and 11 r e s p e c t i v e l y ; medium f i s h — 9 , 6, and 7; and l a r g e f i s h — 5 , 4, and 10. The next t e s t examined the e f f e c t of f i s h s i z e upon depth c h o i c e , on a s e a s o n a l b a s i s . S i z e was found to s i g n i f i c a n t l y (a = 0.01) a f f e c t f i s h depth only d u r i n g summer. I f t a b l e 14 i s examined, i t i s seen t h a t d u r i n g summer, §9% of the 12-cm i n d i v i d u a l s are found a t 1.33 m or s h a l l o w e r , versus 6?>% of the 14-18 group, and 6l% of the 20+ f i s h . T h i s can be c o n t r a s t e d with both the s p r i n g percentages of 80, 911 and 84 r e s p e c t i v e l y , and the f a l l v alues of 97, 95. and 99$—no a p p r e c i a b l e d i f f e r e n c e i n s i z e . Temperature i s of course c l o s e l y a s s o c i a t e d s e a s o n a l l y with depth, and thus the above suggest t h a t s m a l l e r f i s h can t o l e r a t e h i g h e r temperatures than can l a r g e r f i s h . The summer mean temperatures at which the three s i z e groups were found are In f a c t : 12- cm—17.0; 14-18 cm—16.5s 20+ cm—15.5 G; the maximum temperatures a t which s m a l l and l a r g e f i s h were seen were 23.5 and 21.5 C r e s p e c t i v e l y . Q u a l i t a t i v e O bservations. a) Prey D i s t r i b u t i o n . Logs, Potamogeton, and Sphagnum Table 14. Seasonal depth distributions according to estimated fish size. Depth (m) 0.33 0.67 1.00 1.33 1.67 2.00 2.33 2.67 3.00+ A. MAY + JUNE 1971-72 No as Prop'n: 12- cm 0.06 0.39 0.23 0.12 0.10 0.02 0.06 14-18 0.01 0.52 0.21 0.17 0.05 0.01 0.01 20+ 0.02 0.46 0.18 0.18 0.08 0.00 0.04 Chi-square = 27.355 with 16 d.f.; probability of randomness 0.05 to 0.02. B. JULY + AUGUST 1970,1972 12- cm 0.00 0.29 0.29 0.31 0.05 0.02 0.01 14-18 0.00 0.15 0.13 0.35 0.16 0.09 0.07 20+ 0.00 0.14 0.15 0.32 0.13 0.06 0.15 Chi-square = 35.599 with 16 d.f.; probability of randomness 0.01 to 0.001. C. OCTOBER + NOVEMBER 1970-71 12- cm 0.00 0.41 0.41 0.15 0.00 0.00 0.00 14-18 0.00 0.74 0.12 0.09 0.02 0.01 0.02 20+ 0.01 0.71 0.20 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.03 0.00 0.00 0.00 0.02 0.00 '% 0.04 0.02 0.01 0.01 0.03 0.00 0.00 Chi-square = 30.222 with 16 d.f.; probability of randomness 0.02 to 0.01. 42 areas concentrated p l a n k t e r s and l a r g e r I n v e r t e b r a t e s such as m a y f l i e s , a d u l t d r a g o n f l i e s , and backswimmers. Sur f a c e prey d i s t r i b u t i o n s were g e n e r a l l y h e a v i e r near shore and about l o g s , due to wind d r i f t . b) F i s h Feeding Behavior. 16 s u r f a c e r i s e s (some from 3 m+), 22 midwater f e e d e r s , and 7 bottom fe e d e r s (do not grub, p i c k up exposed items only) were noted d u r i n g d i v i n g , i n d i c -a t i n g f l e x i b i l i t y i n the hunting t a c t i c s of the c u t t h r o a t . c) F i s h R eaction to D i v e r . The f i s h e i t h e r ignored a s l o w l y moving d i v e r , or were a t t r a c t e d t o the d i v e r (pre-sumably to prey k i c k e d up by the d i v e r ' s backwash). d) F i s h A c t i v i t y . Bottom r e s t i n g was noted i n e a r l y s p r i n g and l a t e f a l l (water temperature 8 G or l e s s ) . Area r e s t r i c t i o n was noted i n both sonar- and s p a g h e t t i - t a g g e d i n d i v i d u a l s ? the l e n g t h of time t h a t a f i s h frequented an are a was extremely v a r i a b l e , i n one case l a s t i n g f o r over 5 months. Small f i s h were found more o f t e n In the shallows. In approximately 150 hr of o b s e r v a t i o n , only three a g g r e s s i v e i n c i d e n t s were seen, a l l i n v o l v i n g a l a r g e d i f f e r e n c e i n s i z e s of the f i s h . F i s h o f t e n used the Sphagnum overhang as cover d u r i n g f r i g h t . e) F i s h R eaction to Sonar Tags. Although there was no n o t i c e a b l e tag i n t e r f e r e n c e w i t h swimming a t f i e l d c r u i s e speeds, t h e r e was some problem a t h i g h e r speeds of tag i n t e r -f e r e n c e with t a i l beat; a l s o , tagged f i s h o f t e n showed low a c t i v i t y ( i . e . , found s t a t i o n a r y i n midwater or on bottom). There was no obvious r e a c t i o n to tagged f i s h by other f i s h — one tagged f i s h was even seen swimming with a s c h o o l of un-43 tagged f i s h . Netting: The numbers of f i s h caught over 24 hr i n the fyke net are compared with various environmental parameters i n f i g 11, Key factor analysis indicates that the temperature at 1 m i s the major factor (4l$ of the t o t a l variation) determining d a i l y numbers of f i s h in the 0-2m areas ( f i g 13)i the oxygen l e v e l at 1 m follows {8% of the v a r i a t i o n ) . 3 hr net hauls over a 24 hr period were done to determine i f there was any d i e l v a r i a t i o n i n l i t t o r a l (0-2 m) a c t i v i t y . Of the 17 f i s h caught, 5 were trapped during the dusk (1600-1900 hr PST) and 10 at dawn (2400-0700 hr PST). Rise Observations» There i s a d e f i n i t e peak i n surface r i s e a c t i v i t y at dusk during the cooler months. During high summer temperat-ures, t h i s evening peak i s much reduced and appears to be replaced by a morning maximum; t h i s may be due to the diurnal patterns of the major prey species at that time, or could be a response to the s l i g h t overnight cooling of the water. There i s also a noticeable decrease In o v e r a l l surface a c t i v -i t y at high summer temperatures ( f i g 14). Stomach Contents: If i t can be demonstrated that d i f f e r e n t substrates possess marked differences in types and abundances of prey, and i f the trout i s an opportunistic feeder ( i . e . , rate of predation i s la r g e l y dependent on the a v a i l a b i l i t y of the prey), then i t i s possible to i n f e r from stomach contents and F i g . 13. Nos. of f i s h caught in 24 hr net set vs. the temperature at 1 m (best f i t 3rd degree poly-nomial ). Equation: Y = 36.05 + 7.1896X - 0.3691X2 + (5.5207 x 10~3.)X3 Pig. 14. D i e l v a r i a t i o n in surface r i s e a c t i v i t y , with accompanying depth-temperature p r o f i l e s . Open c i r c l e = area about shore st a t i o n . Dark c i r c l e = area about boat st a t i o n . 45 4 6 substratum prey a r r a y s the types of substratum i n which the f i s h were f e e d i n g and t h e r e f o r e something about seasonal and d a i l y f e e d i n g movements. It becomes evident from t a b l e X5 t h a t the t r o u t move out of the l i t t o r a l area and down i n t o the water column d u r i n g summer. Examination of i n d i v i d u a l prey s p e c i e s r e v e a l s the f o l -l owing! D. leuchtenberglanum i s most abundant at 2 m d u r i n g J u l y , yet h i g h e s t consumption by f i s h occurs i n June, when numbers are one-quarter t h a t of J u l y . H. glbberum i s taken most d u r i n g August, when i t i s most abundant over 6 m; how-ever, the August abundance i s f a r lower than June's, suggest-ing H. glbberum to be a ' s e c o n d - s t r i n g ' prey (perhaps because of low p a l a t a b i l i t y ) . Although D. rosea reaches maximum abundance a t 6 m d u r i n g summer, the f i s h make l i t t l e use of them a t t h a t time (suggesting v e r t i c a l l i m i t a t i o n s to f e e d i n g ) ; r a t h e r , maximum consumption occurs i n f a l l , when D. ro s e a i s found i n concentrated patches i n the shallows. T e r r e s t -r i a l i n s e c t s , d a m s e l f l i e s , and chironomids are e x p l o i t e d most h e a v i l y In f a l l , yet h i g h e s t c o n c e n t r a t i o n s occur i n summer i n the s h a l l o w s . Chaoborus, l i k e H. glbberum, appears to be a prey t h a t i s taken only when more d e s i r e a b l e s p e c i e s are u n a v a i l a b l e ; maximum consumption occurs i n August, while max-imum abundances are i n October i n the 5 - 6 m a r e a s . If stomach contents are examined on an i n d i v i d u a l b a s i s , i t i s found t h a t , although f i s h do the m a j o r i t y of t h e i r d a i l y f e e d i n g i n the water column over 4 - 6 m d u r i n g summer, they do 47 Table 15- Inference of f e e d i n g areas by prey a r r a y s i n f i s h guts (average no of prey/stomach, as a percentage) Month May+June July+Aug Sept+Oct C h a r a c t e r i s t i c * Depth Zone of Prey ( H o r i z o n t a l D i s t . ) : ' " Shallows (0-2 m) £ 4 * * 16 35 Offshore (2-4 m) 9 26 4 6 Midlake (4-6 m) 17 5_8 19 C h a r a c t e r i s t i c Column P o s i t i o n of Prey ( V e r t i c a l D i s t . ) : S u r f a c e 6J 10 24 Midwater 24 2A 21 Bottom 13 14 4 T o t a l Nos ( = 100$) 14 17 26 *Depth zone and column p o s i t i o n are those a t which prey types are most abundant (and thus where f i s h are assumed to be f e e d i n g on them). **Table Is meant to be read i n t h i s f a s h i o n : i n May and June, f i s h guts c o n t a i n 7^ $ prey abundant i n the shallows, 9$ o f f s h o r e prey, and 17$ prey from the midlake a r e a s . Summing the same data v e r t i c a l l y , 63$ of the prey taken are found at the s u r f a c e , 24$ midwater, and 13$ on the bottom. 48 make f o r a y s i n t o the shallows to feed even when temperatures are a t l e t h a l l e v e l s . Echo Sounding! No obvious seasonal or d i e l o f f s h o r e movements i n t o the 3-6 m depth range were found ( t a b l e l6). U n f o r t u n a t e l y , at the times a t which such movements c o u l d be Important, there were heavy Chaoborus/chlronomld r i s e s d u r i n g the n i g h t , which obscured any t a r g e t s a t t r i b u t a b l e to f i s h . S e c t o r p r e f e r e n c e was t e s t e d (expected values were c o r -r e c t e d f o r t r a n s e c t l e n g t h s ) and found to be random ( t a b l e 17). 49 Table 16. Echo sounding targets by depth. Depth (m) 3.0 3.5 4.0 4.5 5-0 5-5 6.0 MAY-Day 7 5 4 2 1 0 1 -Night 19 8 4 1 2 0 1 JUNE-D 16 14 11 5 1 2 0 -N* - - - - - - -JULY-D 4 2 4 2 1 0 1 -N* - - - - - - -AUG-D 6 3 4 2 3 1 2 -N 4 0 2 0 2 2 2 SEPT-D 4 1 3 3 0 1 1 -N 11 7 7 1 0 1 2 OCT-D 1 0 1 0 0 0 1 -N 1 0 0 1 0 0 0 NOV-D -N 2 1 2 0 0 0 3 Total 75 41 42 17 10 7 14 ^Chaoborus/chlronomld r i s e obscures other targets. Table 17. Echo sounding targets by sector. Sector 1 2 3 4 5 6 7 8 9 10 11 12 TOT MAY—day 2 2 1 0 1 3 8 1 1 1 0 0 20 —nig h t 2 5 5 0 4 3 3 0 2 3 3 5 35 JUNE—day 2 2 0 6 14 3 4 7 0 8 0 3 49 — n i g h t * - - - - - - - - - - - - -JULY—day 0 5 1 0 0 0 0 1 0 3 3 1 14 —ni g h t * - - - - - - - - - - - - -AUG—day 2 2 3 1 3 0 5 0 2 1 2 0 21 —night 1 2 1 1 0 0 0 3 0 2 1 1 12 SEPT—day 1 1 0 1 0 1 2 2 1 2 1 1 13 —n i g h t 3 5 1 2 1 0 0 5 2 4 3 3 29 OCT—day 0 0 0 0 0 1 0 0 0 0 1 1 3 —nig h t 0 0 0 0 1 0 0 0 0 0 1 0 2 NOV—day 0 0 0 0 0 2 1 1 0 1 2 1 8 —n i g h t ' — — — — — — — — — — — — — Total 13 24 12 11 24 13 23 20 8 25 17 16 206 Expected 15 23 8 10 16 19 21 14 16 21 27 16 Chi-square = 19.52 with 11 d.f. Probability of randomness greater than 0.05. *Chaoborus/chironomid rise obscures targets. 51 DISCUSSION General Movement P a t t e r n s i Short term. I t i s a common o b s e r v a t i o n t h a t t r o u t a c t -i v i t y i n tanks Is ' j e r k y ' ; t h a t i s , the f i s h remain m o t i o n l e s s f o r some time, then without apparent cause begin movement. Such behavior has been c o n s i d e r e d an a r t i f a c t of confinement, but i t s common occurrence under d i v e r s e c o n d i t i o n s suggests r a t h e r t h a t t h i s i s n a t u r a l b e h a v i o r . Jenkins (MS, 1972) has observed pond behavior of t r o u t and f i n d s s i m i l a r v a r i a t -i o n i n movement. The f i e l d r e s u l t s of t h i s study concur; sonic-tagged c u t t h r o a t i n t h e i r n a t u r a l environment e x h i b i t i n c o n s t a n t speed on a short term s c a l e ( i . e . , 5 m i n i n t e r v a l s ) . V e r t i c a l movements. This study, f o r the most p a r t , i g -nores v e r t i c a l movements. Although such movements can be of great Importance i n l a r g e r lakes (see Northcote, 1967). t h i s i s not the case f o r P l a c i d Lake. The e n t i r e depth range i s only 6 m, and I have seen f i s h i n summer c a r r y out s u r f a c e r i s e s from more than 3 m c r u i s i n g depth. No d l e l v e r t i c a l s h i f t s i n d i s t r i b u t i o n were found, e i t h e r i n t h i s study or " by Andrusak (MS,- 1 9 6 8 ) . However, we both found a seasonal s h i f t i n v e r t i c a l d i s t r i b u t i o n , which' has important e f f e c t s on h o r i z o n t a l d i s t r i b u t i o n — t h e f i s h are f o r c e d from the l i t -t o r a l a r e a s . Thus, while v e r t i c a l r i s e s are s h o r t , h o r i z o n t -a l f o r a y s i n t o the shallows can be f a r more len g t h y and met-a b o l i c a l l y c o s t l y i n comparison ( f i g 1 5 A ) . H o r i z o n t a l movements. On a seasonal b a s i s , i t would F i g . 15A. Comparison of d i s t a n c e s t r a v e l l e d by t r o u t i n v e r t i c a l s u r f a c e r i s e and l i t t o r a l f o r a y (from midsummer p r e f e r r e d depth). F i g . 15B. The e f f e c t of slope upon e n t r y - e x i t d i s t a n c e s to l i t t o r a l f e e d i n g areas from midsummer pre-f e r r e d depth. d e l t a = d i f f e r e n c e i n h o r i z o n t a l d i s t a n c e from p r e f e r r e d depth to f e e d i n g areas, as pro-duced by bottom contour v a r i a t i o n s . SHARP SLOPE 53 appear from d i v i n g and sonar t r a c k i n g data that the t r o u t become l e s s a c t i v e at low temperatures. This i s r e i n f o r c e d by the r e s u l t s of S w i f t (1962). There i s a l s o a marked seas-onal change i n the h o r i z o n t a l d i s t r i b u t i o n of the t r o u t . As the summer p r o g r e s s e s , net catches and d i v e s i g h t i n g s of f i s h i n the shallows decrease, and those t h a t are caught appear capable of s t a y i n g only b r i e f l y i n the a r e a . As many r e s e a r c h e r s have p r e v i o u s l y found (see S w i f t , 1962 and 1964 f o r r e v i e w ) , the times of h i g h e s t f i s h a c t i v i t y (as determined i n t h i s study by sonar t r a c k i n g , r i s e observ-a t i o n , and n e t t i n g ) c e n t e r about dusk and dawn. Home range. Home range behavior by f i s h i n l a k e s has been r a r e l y r e p o r t e d ; however, t h i s i s more l i k e l y due to a l a c k of s u i t a b l e data than to a predominance of r o v i n g behav-i o r . On a l a r g e r s c a l e , M i l l e r (19^5, 1962) found lake t r o u t i n Great Bear Lake to be made up of d i s c r e t e bay subpopulat-i o n s . Parker and H a s l e r (1959) found evidence of homing i n l a k e c e n t r a r c h i d s , and Jenkins (MS, 1972) has data i n d i c a t i n g t h a t rainbow t r o u t i n ponds defend t e r r i t o r i e s . Although c u t t h r o a t t r o u t have been shown to be r e s t r i c t e d i n t h e i r movements i n streams ( M i l l e r , 1957). s i m i l a r behavior has not been p r e v i o u s l y r e p o r t e d f o r l a k e p o p u l a t i o n s . S e v e r a l c a s u a l o b s e r v a t i o n s i n d i c a t e d t h a t P l a c i d Lake c u t t h r o a t have home ranges. The sonar t r a c k i n g data ( t a b l e 4) r e i n f o r c e s t h i s b e l i e f , i n that over one-half of a f i s h ' s time was spent w i t h i n an area of 66 m , and t w o - t h i r d s w i t h i n o 132 m . As a f u r t h e r t e s t , tag s i g h t i n g s d u r i n g d i v e s were 54 t a b u l a t e d by s e c t o r ( t a b l e 18) and su b j e c t e d to a ch i - s q u a r e one sample t e s t (expected p r o p o r t i o n s were c o r r e c t e d f o r d i v e path a r e a / s e c t o r ) and were found to be nonrandom. The s e c t o r with the h i g h e s t number of s i g h t i n g s of tagged f i s h was the s e c t o r where the f i s h had been o r i g i n a l l y caught. I t i s d o u b t f u l that these home ranges are defended; i n approximately 300 h r of o b s e r v a t i o n , only 3 a g g r e s s i v e a c t s were seen. It i s a l s o d o u b t f u l t h a t the areas are chos-en on the b a s i s of food a v a i l a b i l i t y , but r a t h e r by cover c h a r a c t e r i s t i c s . Sonar t r a c k i n g data shows a h i g h p r e f e r e n c e f o r areas beneath Sphagnum overhangs, which a r e thought to be areas of low prey a v a i l a b i l i t y . Environmental F a c t o r s I n f l u e n c i n g Movement: L i g h t . The l i g h t I n t e n s i t y a t 1 m has been shown to be the major f a c t o r i n determining the numbers of f i s h seen dur-i n g d i v e s . T h i s r e s u l t may be an a r t i f a c t of the d i v e r ' s v i s i o n c a p a b i l i t i e s , r a t h e r than a response by the f i s h . I t was n o t i c e d t h a t , at h i g h l i g h t l e v e l s , suspended p a r t i c l e i l l u m i n a t i o n cut the v i s u a l range as e f f e c t i v e l y as very low l e v e l s of l i g h t d i d ; such phenomena c o u l d e a s i l y e x p l a i n the shape of the curve t h a t was obtained ( f i g 12). A f u r t h e r argument i n f a v o r of t h i s was th a t no d i r e c t or I n d i r e c t mea-sure of l i g h t was found to be of importance i n the n e t t i n g s e r i e s , although i t must be kept i n mind t h a t the two sampling methods i n v o l v e d i f f e r e n t time i n t e r v a l s . On the other hand, l i g h t has been shown to have s i g n i f -i c a n t e f f e c t s on f i s h , from d i r e c t i n j u r y ( B e l l and Hoar, 1950s Table 18. Tag sightings from October 1970 to July 1972, by sector. Sector 1 2 3* 4 5 6 7 8 9 10 11 12 Total Nos 0 18 34 3 10 11 20 9 5 13 4 18 Preference 0.00 1.03 1.80 0.42 1.15 0.95 1.75 1.03 0.57 1.29 0.47 0.95 Chi-square = 31.0 with 11 d.f. Probability of randomness less than 0.001. *Sector in which fish were caught. 56 Dunbar, 1959). to s u b t l e b e h a v i o r a l and p h y s i o l o g i c a l changes ( f o r example, Hoar and Robertson, 1959). I t i s common p r a c t i c e In c o n d i t i o n i n g f i s h t o use s t r o n g l i g h t i n areas t h a t the f i s h i s to a v o i d , and cover i n areas t h a t the f i s h Is to s t a y i n . Those p u b l i s h e d s t u d i e s t h a t have monit-ored s e v e r a l environmental parameters along with some meas-ure of f i s h a c t i v i t y (Groot et a l , 1971j Peterson, 1972; S a i l a et a l , 1972) g e n e r a l l y f i n d l i g h t of Importance; P e t e r -son's data (1972) on f i s h a c t i v i t y and c l o u d cover would f i t a curve s i m i l a r i n shape to that of f i g 12. L i g h t , i f i t i s Indeed a r e a l f a c t o r i n movement of P l a c i d Lake f i s h , c o u l d a c t i n s e v e r a l ways. Both long and s h o r t term i n s h o r e and o f f s h o r e movements c o u l d be mediated by d i r e c t avoidance r e a c t i o n s . C o n c e n t r a t i o n s i n areas c o u l d occur as a simple a t t r a c t i o n to subdued l i g h t l e v e l s ( i . e . , amount of c o v e r ) . I have a l s o found a marked v i s u a l advant-age by l y i n g i n shade, l o o k i n g out i n t o s t r o n g l y - l i t water; t h i s may a l s o be the case f o r the t r o u t and c o u l d c o n c e i v a b l y c o n f e r a v i s u a l advantage upon them f o r f e e d i n g . Temperature. The r e s u l t s of t h i s study, as w e l l as much l i t e r a t u r e , i n d i c a t e temperature to be of major import-ance i n r e g u l a t i n g movement. Rainbows have been shown ex-p e r i m e n t a l l y to be capable of responding to 0.1 C change i n temperature; i n the f i e l d , t r o u t damp t h e i r v e r t i c a l movements to a ' p r e f e r r e d ' zone of 18-19 C (Kuroki et a l , 1971; MacCaul-ey and Pond, 1971), which i n t u r n has a decided e f f e c t upon 57 h o r i z o n t a l r a n g i n g ( f i g 15A). Up to a p o i n t , a c t i v i t y i n -creases with temperature ( S w i f t , 1962 j P h i l l i p s , 1969). Oxygen. S h e l f o r d and A l l e e (1913) demonstrated t h a t f i s h r e a c t e d to oxygen g r a d i e n t s i n tanks. Oxygen i s gen-e r a l l y v e r t i c a l l y s t r a t i f i e d and probably f u n c t i o n s i n long term v e r t i c a l and h o r i z o n t a l r e s t r i c t i o n from the deeper areas of P l a c i d Lake. S u b s t r a t e . S u b s t r a t e may-act as a cue f o r r e g i o n a l con-c e n t r a t i o n s of f i s h w i t h i n an a c c e s s i b l e depth zone (which i s l a r g e l y dependent on the above p h y s l c o c h e m i c a l f a c t o r s ) . In t h i s study, t r o u t i n the 3-6 m areas are l a r g e l y midwater ( t a b l e 16) and are randomly d i s t r i b u t e d by s e c t o r i n those areas ( i . e . , are not cueing on any f i x e d c h a r a c t e r -i s t i c ) . Trout i n the 1-3 m areas, on the other hand, seem to c o n c e n t r a t e about l o g s and Potamogeton beds. F i s h are probably a t t r a c t e d t o l o g s and Potamogeton beds f o r two reasons: 1) Food. Gurzeda (1959) found t h a t twice the number of animals I n h a b i t i n g bottom s i l t were found l i v i n g on p l a n t s , and a l s o found marked s p e c i e s d i f f e r e n c e s ; Gerklng (1962) found vegetated areas to have f o u r times the fauna (by numbers and dry weight) found i n b a r r e n a r e a s . Andrews and H a s l e r (19^2) found t h a t the abundance of animals was r e l a t e d t o the complexity of the p l a n t s t r u c t u r e . F i n a l l y , Tuunafcnen (1970) found t r o u t i n l a k e s to s e l e c t prey c h a r a c t e r i s t i c of midwater and submerged v e g e t a t i o n over b e n t h i c prey. A l l of these 58 c o n c l u s i o n s appear a p p l i c a b l e to P l a c i d Lake. 2) Cover. For c e n t u r i e s , some f i s h e r i e s have employed a r t i f i c i a l s t r u c t u r e s t o a t t r a c t f i s h . In the s c i e n t i f i c l i t e r a t u r e , man-made s t r u c t u r e s have been shown to a t t r a c t marine n e r i t l c and p e l a g i c f i s h e s , as w e l l as freshwater s p e c i e s ( L a g l e r , 1956; Hunter and M i t c h e l l , 1968; Turner et a l , 1969; Klima and Wickham, 1971). In most cases, f i s h a re a t t r a c t e d w e l l b e f o r e prey abundances c o u l d have r i s e n , s u g g e s t i n g t h a t cover i s the most important c h a r a c t e r i s t i c (Hartman, 1963, and Bjornn, 1971t have found t h i s to be so f o r stream sal m o n i d s ) . Morphometry. I f s e c t o r p r e f e r e n c e s are examined s o l e l y on the b a s i s of s u b s t r a t e p r e f e r e n c e s , the r e s u l t s of the d i v e data remain confused; although the p r e f e r r e d s e c t o r s c a r r y a mix of l o g s and Potamogeton, they are not as h e a v i l y endowed as other s e c t o r s . I f these p r e f e r r e d s e c t o r s are examined with r e s p e c t to t h e i r morphometry, i t i s found t h a t f i s h , depending on t h e i r s i z e , s e l e c t s e c t o r s with steeper average slop e s ( f i g l 6 ) . A p o s s i b l e e x p l a n a t i o n of t h i s i s g i v e n i n the next s e c t i o n . Energy L i m i t a t i o n by Morphometry; Consider t h a t , a t h i g h temperatures and/or l i g h t , f i s h are f o r c e d from the l i t t o r a l a r e a s , which have the h i g h e s t a v a i l a b i l i t y of prey, p a r t i c u l a r l y the l a r g e r s p e c i e s . I f one accepts Kerr's t h e s i s (1971) t h a t s u s t a i n e d growth r e q u i r e s i n c r e a s i n g l y l a r g e prey organisms even i f these are Increas-i n g l y r a r e , and couples i t with the d e c r e a s i n g temperature F i g . 16. Cumulative percentage hypsographic curves by sector (approximates average bottom cross-section of sector). C i r c l e = sector 3. fewest f i s h seen/m2 Square = " 9» most small and medium flsh/m p Triangle = " 5s most large fish/m P E R C E N T OF SECTOR A R E A 60 t o l e r a n c e of l a r g e r f i s h ( r e s u l t i n g i n lon g e r times away from the s h a l l o w s ) , the end r e s u l t i s t h a t the l a r g e r the f i s h , the g r e a t e r the impact of shallows l i m i t a t i o n upon the f i s h ' s f e e d i n g and growth. Fast f o r a y s i n t o the shallows can be a s o l u t i o n f o r the l a r g e r f i s h , i f morphometry per-mits i t h a t i s , i t i s necessary f o r the f i s h to maximize time i n f e e d i n g areas and minimize time i n entry and e x i t . T h i s can be best achieved i f a l i t t o r a l f e e d i n g a r e a i s abutted by a steep s l o p e ( f i g 15B). In P l a c i d Lake, the basing shape In most areas would a l l o w f a i r l y e f f i c i e n t f o r a y s i n t o the l i t t o r a l a r e a s . In other l a k e s , b a s i n morphometry i s l e s s amenable to such s t r a t -egy. For example, nearby Marion Lake has a depth range i d e n t -i c a l to P l a c i d Lake (0-7 m), but a s u r f a c e a r e a e i g h t times t h a t of P l a c i d Lake, and a mean depth only one-half t h a t of P l a c i d Lake, Moreover, the m a j o r i t y of the 3 m+ area i s l o c -a l i s e d i n the northwestern corner of the l a k e . E f f o r d (1969) notes t h a t the growth r a t e s of the two f i s h s p e c i e s are among the lowest r e c o r d e d , and suggests t h a t c o m p e t i t i o n and/or f i s h f e e d i n g behavior i s l i m i t i n g growth. I t i s suggested t h a t morphometrical r e s t r i c t i o n of movement c o u l d be e q u a l l y r e s p o n s i b l e f o r t h i s r e s u l t . 61 SUMMARY The Impact of a c t i v i t y on the energy budget of f i s h i n t h e i r n a t u r a l environment i s examined i n t h i s study. The main o b j e c t i v e s were to determine the amount of energy u t i l -i s e d d i r e c t l y i n a c t i v i t y , to determine d a i l y and seasonal a c t i v i t y p a t t e r n s , and to determine those f a c t o r s c o n t r o l l -i n g a c t i v i t y p a t t e r n s . 1) The maximum estimate of energy expenditure i n f i e l d a c t i v i t y was about 490 kCal/kg/yr (due to m e t h o d o l o g i c a l shortcomings, s m a l l movements could not be measured, thus f i e l d metabolism should be taken as the energy of a c t i v i t y t o g ether with r o u t i n e metabolism). T h i s estimate i s w e l l below the l i t e r a t u r e values of annual SDA and r o u t i n e metab-o l i s m of 2500 and 1840 kCal/kg/yr r e s p e c t i v e l y . Other meth-o d o l o g i c a l and b e h a v i o r a l problems may have c o n t r i b u t e d to lower the estimates of energy going to a c t i v i t y ; i n p a r t i c -u l a r , f u t u r e s t u d i e s should e v a l u a t e very c a r e f u l l y the e f f e c t s of t a g attachment on f i s h b e havior. 2) Short term a c t i v i t y (5 min i n t e r v a l s ) was found to be q u i t e v a r i a b l e . D a i l y a c t i v i t y was h i g h e s t d u r i n g the dawn and dusk p e r i o d s . The l e v e l of a c t i v i t y decreased i n s p r i n g and f a l l , and there was a marked movement out of the l i t t o r a l zones i n summer. P l a c i d Lake c u t t h r o a t were observed to m a i n t a i n home ranges f o r p e r i o d s up to 5 months. 3) Temperature, l i g h t , and oxygen l e v e l s appear to be the important p h y s i c o c h e m l c a l f a c t o r s i n determining the depth 62 zones t h a t are a c c e s s i b l e to f i s h . S u b s t r a t e s may a c t as f i x e d cues f o r r e g i o n a l c o n c e n t r a t i o n s of f i s h w i t h i n an ac-c e s s i b l e depth zone; a t t r a c t i o n i s l i k e l y due to h i g h e r food a v a i l a b i l i t y and/or i n c r e a s e d cover. Bottom s l o p e , by a f f e c t -i n g f o r a g i n g e f f i c i e n c y i n the l i t t o r a l zone, might a l s o a f f -ect the summer d i s t r i b u t i o n of f i s h . The r e s u l t s suggest that i n d i r e c t e f f e c t s of a c t i v i t y , i n t h i s case morphometrical r e s t r i c t i o n of movement, can be e q u a l l y or more important to the f e e d i n g and growth of f i s h than i s the d i r e c t use of energy f o r a c t i v i t y . 63 BIBLIOGRAPHY Andrews, J.D., and A.D. Hasler. 1942. Fluctuations in the animal populations of the l i t t o r a l zone i n Lake Mendota. Wise. Acad. S c i . Arts Lett. 34:137-148. Andrusak, H.A. , MS, 1968. Interactive segregation between adult d o l l y varden (Salvellnus malma) and cutthroat trout (Salmo c l a r k l c l a r k l ) in small coastal B r i t i s h Columbia lakes. M Sc Thesis, University of B r i t i s h Col-umbia, Vancouver. Andrusak ? H.A., and T.G. Northcote. 1970. Management imp-V ;•. l i c a t i o n s of s p a t i a l d i s t r i b u t i o n and feeding ecology of cutthroat trout and d o l l y varden i n coastal B r i t i s h Columbia lakes. Fish. Manag. Publ. No. 13, B.C. Fish Wi l d l . Br., V i c t o r i a . Bainbridge, R. i960. Speed and stamina in three f i s h . J. Exp. B i o l . 37'129-153. Bainbridge, R. 1962. Training, speed, and stamina in trout. J . Exp. B i o l . 39:537-555. B e l l , G.M., and W.S. Hoar. 1950. Some effects of u l t r a v i o -l e t r a d i a t i o n on sockeye salmon eggs and alevins. Can. J. Res. 28D:35-43. Bjornn, T.C. 1971. Trout and salmon movements i n two Idaho streams as related to temperature, food, stream flow, cover, and population density. Trans. Amer. Fish . Soc. 100(3):423-438. Blaxter, J.H.S., and W. Dickson. 1959. Observations on the swimming speeds of f i s h . J . Cons. Perm. Int. Explor. Mer 24-472-479. Brett, J.R. 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J . Fish. Res. Bd. Can. 21 (5) .-1183-1226. Brett, J.R., M. Hollands, and D.F. Alderdice. 1958. The effect of temperature on the cr u i s i n g speed of young sockeye and coho salmon. J. Fish. Res. Bd. Can. 15(4): 587-605. Cassie, R.M. 1954. Some uses of p r o b a b i l i t y papers i n the analysis of size frequency d i s t r i b u t i o n s . Aust. J. Mar. Freshwat. Res. 5*513-522. 64 Dunbar, C.E. 1 9 5 9 . Sunburn In f l n g e r l i n g rainbow trout. Prog. Fish-Cult. 2 1 ( 2 )i?^. Ef f o r d , I.E., 1967 . Temporal and s p a t i a l differences i n phytoplankton productivity i n Marion Lake, B r i t i s h Col-umbia. J. Fish. Res. Bd. Can. 24 ( 1 1 ) ; 2 2 8 3 - 2 3 0 7 . Efford, I.E. 1969. Energy transfer i n Marlon Lake, B r i t i s h Columbia; with p a r t i c u l a r reference to f i s h feeding. Verh. Internat. Verein. Limnol. 171104-108. Gerking, S.D. 1962. Production and food u t i l i z a t i o n in a population of b l u e g i l l sunfish. Ecol. Monogr. 3 2 s 3 1 - 7 8 . Gurzeda, A. .1959. Ecolog i c a l r e l a t i o n s between invertebrate fauna and submerged vegetation. Trans1 . OTS 6 3 - 1 1 3 5 1 , Ekol. Polska (Ser. B)--Selected A r t i c l e s , Office of Tech. Serv., U.S. Dept. Comm., Washington. Hartman, G.F. I 9 6 3 . Observations on behavior of juvenile brown trout i n a stream aquarium during winter and spring. J . F i s h . Res. Bd. Can. 2 0 ( 3 ) : 7 6 9 - 7 8 7 . Henderson, H.F., A.D. Hasler, and G.G. Chipman. 1966. An ultrasonic transmitter for use i n studies of movements of f i s h e s . Trans. Amer. Fish. Soc. 9 5 ( 4 ) : 3 5 0 - 3 5 6 . Hoar, W.S., and G.B. Robertson. 1959. Temperature r e s i s t -ance of gold f i s h maintained under controlled photoper-iod. Can. J. Zool. 37i419-428. Hunter, J.R., and C.T. M i t c h e l l . 1968. F i e l d experiments on the a t t r a c t i o n of pelagic f i s h to f l o a t i n g objects. J. Cons. Perm. Int. Explor. Mer 3 1 ( 3 ) : 4 2 7 - 4 3 4 . Hyatt, K.D. MS, 1 9 7 3 . M Sc Thesis- :(in sprep. ), University of B r i t i s h Columbia, Vancouver. Jahn, L.A. 1 9 6 6 . Open-water movements of the cutthroat trout (Salmo c l a r k l ) i n Yellowstone Lake a f t e r displacement from spawning streams. J . Fish. Res. Bd. Can. 2 3 ( 1 0 ) : 1 4 7 5 - 1 4 8 5 . Jenkins, T.M. 1970. S i e r r a Nevada Aquatic Research Laborat-ory, behavior and ecology. In Progress i n Sport Fishery Research, Bur. Sport Fish. Wlldl. Res. Publ. 106. Jenkins, T.M. MS,'1972. Behavior of rainbow trout i n exper-imental ponds. Si e r r a Nevada Research Laboratory, Bishop. Kerr, S.R. 1 9 7 1 . Prediction of f i s h growth e f f i c i e n c y in nature.- J . Fis h . Res. Bd. Can. 28 (6) : 8 0 9 - 8 l 4 . 65 Klima, E.F., and D.A. Wickham. 1971. Attraction of pelagic fishes with a r t i f i c i a l structures. Trans. Amer. Fish. Soc. 100(1)i86-99. Kuroki, T., K. Kawaguchl, W. Sakamoto, and H, Watanabe. 1971. A new telemetric apparatus to detect f i s h location and i t s surrounding water temperature. B u l l . Jap. Soc. S c i . F i s h . 37(10)i964-977. Laevastu, T., and I. Hela. 1970. Fisheries Oceanography. Fishing News (Books), London. Lagler, K.F. 1956. Freshwater Fishery Biology. 2nd ed. Wm. C. Brown, Dubuque. MacCauley, R.W., and W.L. Pond. 1971. Temperature selection of rainbow trout (Salmo galrdnerl) f i n g e r l i n g s i n vert-i c a l and horizontal gradients. J . Fish . Res. Bd. Can. 28(11)11801-1804. MacCleave, J.D., and R.M. H o r r a l l . 1970. Ultrasonic track-ing of homing cutthroat trout (Salmo c l a r k l ) in Yellow-stone Lake. J.- Fish. Res. Bd. Can. 27(4) :715-730. MacCleave, J.D., and G.W. LaBar. 1972. Further ultrasonic tracking and tagging studies of homing cutthroat trout (Salmo c l a r k l ) in Yellowstone Lake. Trans. Amer. Fish. Soc. 101X177^ 4-54. Madison, D.M., R.M. H o r r a l l , A.B. Stasko, and A.D. Hasler. 3.972. Migratory movements of adult sockeye salmon (Oncorhynchus nerka) i n coastal B r i t i s h Columbia as revealed by ultrasonic tracking. J . Fi s h . Res. Bd. Can. 29(7):1025-1033. Mann, K.H. 1967. The cropping of the food supply, pp 243-260. In S.D. Gerking (ed) The B i o l o g i c a l Basis of Fresh-water Fish Production. Blackwell S c i . Publ., Oxford. M i l l e r , R.B.. 1945. Fisheries investigation of Great Bear Lake. Fis h . Res. Bd. Can., Northwestern Fis h . Invest., Ot tawa. M i l l e r , R.B. 1957. Permanence and size of home t e r r i t o r y i n stream dwelling cutthroat trout. J . Fi s h . Res. Bd. Can. I4(5)i687-691. M i l l e r , R.B. 1962. A Cool Curving World J. Longmans Canada, Toronto. Mundie, J.H. 1959. vertebrates at The d i u r n a l a c t i v i t y of the l a r g e r i n -the s u r f a c e of Lac l a Ronge, Saskatchewan. 66 Can. J . Z o o l . 37(5)'945-956. Murray, R.W. 1971. Temperature r e c e p t o r s , pp 121-133. In W.S, Hoar and D.J. R a n d a l l (ed) F i s h P h y s i o l o g y , V o l V. Academic P r e s s , New York. Northcote, T.G. 1967. The r e l a t i o n of movements and mig r a t -ions to p r o d u c t i o n i n freshwater f i s h e s , pp 315-344. In S.D. Gerking (ed) The B i o l o g i c a l B a s i s of Freshwater F i s h P r o d u c t i o n . B l a c k w e l l S c i . Publ., Oxford. Parker, R.A., and A.D. H a s l e r . 1959. Movements of some d i s p l a c e d c e n t r a r c h i d s . Copela 1:11-18. Peterson, D.A. 1972. Barometric p r e s s u r e and i t s e f f e c t on spawning a c t i v i t i e s of rainbow t r o u t . Prog. F i s h - C u l t . 34(2)1110-112. P h i l l i p s , A.M. J r . 1969. N u t r i t i o n , d i g e s t i o n , and energy u t i l i z a t i o n , pp 391-423. In W.S. Hoar and D.J. R a n d a l l (ed) F i s h P h y s i o l o g y , V o l I. Academic P r e s s , New York. Podubbny, A.G., L.K. M a l i n i n , and V.V. Gaiduk. 1970. T e l e -m e t r i c a l o b s e r v a t i o n s of the under-ice behavior of win-t e r i n g f i s h . F i s h . Res. Bd. T r a n s l . Ser. No. 1817. R i c k e r W.E. (ed) 1971. F i s h P r o d u c t i o n i n Fresh Waters. I.B.P. Handbook No. 3. 2nd ed. B l a c k w e l l S c i . P u b l . , Oxford. Sandercock, F.K. 1969. B i o e n e r g e t l c s of the rainbow t r o u t (Salmo g a i r d n e r l ) and the kokanee (Oncorhynchus nerka) p o p u l a t i o n s of Marlon Lake, B r i t i s h Columbia. Ph D T h e s i s , U n i v e r s i t y of B r i t i s h Columbia, Vancouver. S i e g e l , S. 1956. Nonparametric S t a t i s t i c s f o r the Behav-i o r a l S c i e n c e s . McGraw-Hill, New York. S h e l f o r d , V.E., and W.C. A l l e e . 1913. The r e a c t i o n s of f i s h e s to g r a d i e n t s of d i s s o l v e d atmospheric gases. J . Exp. Z o o l . 14:208-266. S t r e l ' t s o v a , S.V. 19?. A d a p t a t i o n of carp and rainbow t r o u t to d i f f e r e n t oxygen contents of the water. T r a n s l a t i o n r e p r i n t p r o v i d e d by T.G. Halsey, U n i v e r s i t y of B r i t i s h Columbia, Vancouver. S w i f t , D.R. 1962. A c t i v i t y c y c l e s i n the brown t r o u t (Salmo v  t r u t t a ) . I. F i s h f e e d i n g n a t u r a l l y . H y d r o b l o l . 20(3): 241-247. S w i f t , D.R. 1964. A c t i v i t y c y c l e s i n the brown t r o u t (Salmo  t r u t t a ) . 2. F i s h a r t i f i c i a l l y f e d . J . F i s h . Res. Bd. Can. 21(l)il33-138. 67 Turner, C.H., E.E. E b e r t , and R.R. Given. 1969. Man-made r e e f ecology. C a l i f . P i s h Game B u l l . 146. Tuunainen, P. 1 9 7 0 . R e l a t i o n s between the be n t h i c fauna and two s p e c i e s of t r o u t i n some f i n n i s h l a k e s t r e a t e d with rotenone. Z o o l . Fenn. 7 ( l ) s 6 7 - 1 2 0 . Warren, C.E., and G.E. Dav i s . 1967. Laboratory s t u d i e s on the f e e d i n g , b i o e n e r g e t l c s , and growth of f i s h , pp 175-214. In S.D. Gerking (ed) The B i o l o g i c a l B a s i s of F r e s h -water F i s h P r o d u c t i o n . B l a c k w e l l S c i . P u b l . , Oxford. Webb, P.W. 1971 . The swimming e n e r g e t i c s of t r o u t . I. Thrust and power output a t c r u i s i n g speeds. I I . Oxy-gen consumption and swimming e f f i c i e n c y . J . Exp. B i o l . 5 5J4 8 9 - 5 2 0 ; 5 2 1 - 5 4 0 . Winberg, G.G. 1956. Rate of metabolism and food requirements of f i s h e s . P i s h . Res. Bd. Can. T r a n s l . Ser. No. 194. Young, A.H., P. T y t l e r , P.G.T. H a l l i d a y , and A. MacParlane. 1972. A sm a l l sonic t ag f o r measurement of locomotor behavior i n f i s h . J. P i s h . B i o l . 4s5 7 - 6 5 . 68 Appendix 1. Sonar tag s p e c i f i c a t i o n s . Dimensions : Sonar tag alone 10 x 48 mm With f l o t a t i o n 10 x 130 Weight i Sonar t a g alone, i n a i r 10.3 g With f l o t a t i o n / l e a d e r / h o o k , i n a i r 10.5 11 " 11 11 , i n water s l i g h t l y + S e a l a n t : 3 epoxy or marine v a r n i s h d i p s . B a t t e r y : Eveready EPX 77 s i l v e r oxide 1.5Vj 165 ma-hr. Tag Operating L i f e : Up to 75 days. Range: 0.25 km + Frequency: 49 kHz @ 5 C; 47 kHz @ 20 C. Pulse R e p e t i t i o n Rate: approx. 20 pps. Duty C y c l e : approx. 5%. C i r c u i t r y : d e t a i l s a v a i l a b l e i n Henderson e_t a l , 1966. 69 Appendix 2. Areas frequented by sonic-tagged f i s h . G r i d -square s i z e approximately 66 m . Numbers w i t h i n squares r e p r e s e n t t o t a l no. of 5 min p e r i o d s spent w i t h i n the square (x5 = cumulative no. of min). C i r c l e d squares are those i n which the f i s h spent the most time. Heavy o u t l i n e s separ-ate i n d i v i d u a l s ; numbers i n parentheses r e f e r to I n d i v i d u a l . • 1 G,H. TRACK NO. 8 J . TRACK NO. 10.1 • . • K. TRACK NO. 10.2 Ju l y 1-3, 1972 J u l y 1-3, 1972 L,M. TRACK NO. 11 Ju l y 15-17, 1972 N. TRACK NO. 12.1 Ju l y 29-31, 1972 0. TRACK NO. 12.2 p. TRACK NO. 12.3 Ju l y 29-31, 1972 J u l y 29-31, 1972 i 78 Appendix 3« Methods of c a l c u l a t i o n of SDA, r o u t i n e metabol-ism, and estimates of energy to a c t i v i t y . A. C a l c u l a t i o n of SDA. - f o r 20.0 cm, 96 g f i s h ; 1 kCal/g wet weight assumed (Winberg, 1956). (1) Energy content of f i s h = 96 k C a l - f o l l o w i n g data from Sandercock (MS, 1969) f o r rainbow t r o u t . (2) Average monthly energy Intake = 0.8933 kCal/m 2 (3) Average monthly f i s h biomass = 1.53 kCal/m 2 (4) Average f e e d i n g l e v e l = (2)/(3) = 0.584 - f o l l o w i n g data from Warren and Davis (1967) f o r f i s h a t approx. 0.58 f e e d i n g l e v e l . (5) SDA l e v e l as prop'n of body content = 0.21 (monthly) (6) SDA of 96 g t r o u t = 20 kCal/mo (7) Annual SDA = 240 k C a l / y r f o r 96 g t r o u t = 2500 kCal/kg/yr B. C a l c u l a t i o n of Routine Metabolism (RM). -from Sandercock (MS, 1969) f o r 18-25 cm rainbow t r o u t (3+). Mo RM i n kCal/no of f i s h RM/fi J 4999/781 :6'.4 F 4395/754 .5'. 8 M 4758/730 6.5 A 4514/704 6.4 M 3897/469 8.3 J 3758/307 12.2 J 3973/203 19.6 A 6016/196 30.7 S 4590/189 25.2 0 3492/182 19.2 N 3123/175 17.8 D 3124/169 18.5 Annual r o u t i n e metabolism = 176.6 k C a l / y r = 1840 kCal/kg/yr ( f o r 96 g f i s h ) 79 C. Energy to A c t i v i t y . -two separate o v e r a l l estimates: f i r s t assumes tagged f i s h ex-pends the same energy as i f untagged by lowering i t s a c t i v i t y l e v e l ; second assumes same a c t i v i t y and thus increased energy. Slopes taken from f i g 8, Y-intercept adusted to zero to re-: move effect of standard metabolism? (1) a) log Y = 0.14470V b) log Y = 0.10737V Y i s 0 2 uptake in mg/kg/hr, V i s speed in m/min. -Brett's (1964) o x y c a l o r i f i c equivalent assumed (4.75 Cal/ 1 02) to convert to kCal/kg/min: (2) E = 5.38 x 10"7 x Y E i s energy of a c t i v i t y in kCal/kg/min -computer accounting program applied these equations to f i e l d v e l o c i t i e s in 0.1 m/min steps, times the no. of min spent at each v e l o c i t y increment, and summed the re s u l t s to give: (3) Total energy over track -computer then divided (3) by the t o t a l no. of min i n the track and multiplied by 1440 to give: (4) Total energy of ac t l v i t y / 2 4 hr - a l l tracks were processed and the track showing maximum value of (4) was selected and multiplied by 365 to give: (5) Max,yrly est (max track value) - a l l tracks were grouped by season and (4) averaged for each group to give: (6) Average d a l l y : e s t by season: Spring  Summer  F a l l -values i n (6) were multiplied by the appropriate no. of days and summed to give: (7) Average energy to a c t i v i t y during non-ice period. - f a l l value times the no. of days in winter, plus (7) gave: (8) Yearly energy to a c t i v i t y 8 0 Appendix 4 . A c t u a l values of estimates of energy to a c t i v l ENERGY BUDGET FOR 20 CM ONLY TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = C** SONAR TRACK NO 1* AUG 19-21 1971 (2Q»5 CM! TOTAL ENERGY OF A C T I V I T Y = Q_t_3_2_5 1152E 01 TOTAL NO OF MINUTES (M) TRACKED = 3480 TOTAL ENERGY. OF. A C T I V I T Y ../. .24 HRS ...„,. > 0.13453Q4E 01 H n TOTAL ENERGY OF A C T I V I T Y OVER TRACK * TRACK NO AND DATE = SONAR TRACK NO 2* SEPT 25-27 1971 g TOTAL ENERGY OF A C T I V I T Y = 0•6314969E-01 _ «..; TO T A L... N 0 0 F.... MINUTES (M) TRACKED...?..- 2.8 8 5 __ 0 0 9 TOTAL ENERGY OF A C T I V I T Y / 24 HRS h1 JLt3JL£ZQ_L2E=ill_ g TOTAL ENERGY OF A C T I V I T Y OVER TRACK W. TRACK NO AND. DATE = SONAR TRACK NO . 3* OCTOBER ..8.-11. .1971 2 W W J3_ TOTAL ENERGY OF A C T I V I T Y = 0.1006033E 00 TOTAL NO OF MINUTES (M) TRACKED = 5130 $ TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0*2823954E-Q1 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 4 * OCT 22-25 1971 TOTAL ENERGY OF A C T I V I T Y = 0 a 12 6 6821E-01 TOTAL NO OF MINUTES (M) TRACKED = 2135 TOTAL ENERGY OF A C T I V I T Y / .24... HRS. _ 0.8544372E-02 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK. NO AND ..DATE .= SONAR. TRACK . NO. 5*. NOV .27-29 1971 TOTAL ENERGY OF A C T I V I T Y = 0.1131776E 00 TOTAL NO OF MINUTES (M) TRACKED = 4385 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.3716666E-01 • " j o t AL~ ENERGY OF ACT I V i'n'oVER" TRACK ~ TRACK NO AND DATE = SONAR TRACK NO 6*- MAY 6-8 1972 TOT AL—ENERGY OF A C L I V I T Y = QjLg2A5_18QE-ai TOTAL NO OF MINUTES (M) TRACKED = 3875 TOTAL. ENERGY OF A C T I V I T Y / 24 HRS CM ' 0 i3'420763E-01 CD . TOTAL- ENERGY 0F A C T I V I T Y OVER TRACK  TRACK NO AND DATE = SONAR TRACK NO 7* MAY 27 1972 TOTAL ENERGY OF A C T I V I T Y = Q.00000O0E 00 . . TOTAL NO OF MINUTES (M) TRACKED = 0 .. TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.Q0QQQ00E 00 . TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 8*. JUNE 3-5 TOTAL ENERGY OF A C T I V I T Y = 0«1824971E 00 TOTAL NO OF MINUTES (M) TRACKED = 4585 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0 t 5 7 3 1 6 4 3 E - 0 1 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK. NO AND. DATE =... SONAR. TRACK NO.9* JUNE 17-19 1972 TOTAL ENERGY OF A C T I V I T Y = 0.3208218E 00 TOTAL NO OF MINUTES (M) TRACKED = 4650 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.9 9 3 5 1 2 8 E - 0 1 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 10.1 JULY 1-3 1972 TOTAL FNFRGY OF A C T I V I T Y = Q»?874541£ QQ TOTAL NO OF MINUTES <M) TRACKED = 3460 TOTAL ENERGY OF A C T I V I T Y / 24. HRS __ . _ -0.1196340E 00 oo —T-OJ-AL ENERGY OF ACT-I-V-IXY—Q-VE-R—XRACIC — : -TRACK NO AND DATE = SONAR TRACK NO 1 0 . 2 * JUNE 30-JULY 2 1972 TOTAL ENERGY OF A C T I V I T Y = 0.2258047E 00 TOTAL NO OF MINUTES (M) TRACKED. = . 5670 TOTAL ENERGY OF A C T I V I T Y / 24 HRS Q t 5 7 3 4 7 2 3 E ^ Q l _ : : : : TOTAL ENERGY OF A C T I V I T Y OVER TRACK . TRACK NO AND DATE = SONAR TRACK NO . 11 • 1* .. JULY.. 15-17 TOTAL ENERGY OF A C T I V I T Y = 0.0000000E 00 TOTAL NO OF MINUTES (M) TRACKED = 715 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.0000000E 00 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO. AND DATE .= .SONAR ...TRACK. NO 1 1 . 2 * JULY 15-17 TOTAL ENERGY OF A C T I V I T Y = 0• 3498938E-Q-1 TOTAL NO OF MINUTES (M) TRACKED = 3070 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.1641196E-01 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 2 * 1 * JULY 29-31 1972 TOTAL ENERGY OF A C T I V I T Y = 0.5202777E-01  TOTAL NO OF MINUTES (M) TRACKED = 4675 ..TOTAL ENERGY OF A C T I V I T Y / 24 HRS _ • _ -3- 0.1602566E-01 oo TOTAL ENERGY OF A C T I V I T Y OVER TRACK . TRACK NO AND DATE = SONAR TRACK NO 12.2 TOTAL ENERGY OF A C T I V I T Y = 0.2681710E 00 . TOTAL, NO OF ..MINUTES. ( M ) TRACKED . =. .. 3145 _....„ TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.1227873E 00 . TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND, DATE = SONAR TRACK NO 12.3 TOTAL ENERGY OF A C T I V I T Y = 0•7653787E-01 TOTAL NO OF MINUTES (M) TRACKED = 5185 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0 . 2 1 2 5 6 4 I E - 0 1 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO. AND... DATE = SONAR,.TRACK ..NO... 13 • 1 AUG 12-14 ..1972 TOTAL ENERGY OF A C T I V I T Y = 0.3579148E-Q1 TOTAL NO OF MINUTES (M) TRACKED = 4440 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0«1160804E-01 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 13.2 TQTAL_EJ1E^GY_^£_AC-T-1VITY - QLMJLZJJJ?.33E-Q 1 TOTAL NO OF MINUTES <M) TRACKED = 3645 TOTAL..ENERGY OF A C T I V I T Y / .24 HRS 2) 0.8755490E-02 TOTAL FNFHGY^.E^£JUJ^I^Y_QA/-E£_Ti(A£K TRACK NO AND DATE = SONAR TRACK NO 13.3 TOTAL ENERGY OF A C T I V I T Y = 0.9134152E-02 . ..TOTAL NO. OF ..MINUTES ( M ). TRACKED. = 689G TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.1909024E-02 TOTAL ENERGY OF A C T I V I T Y OVER TRACK „... TRACK. NO AND.DATE =. SONAR TRACK NO 13.4 . TOTAL ENERGY OF A C T I V I T Y = 0.1275064E-01 TOTAL NO OF MINUTES (M) TRACKED = 3245 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.5658223E-02 TOTAL ENERGY OF A C T I V I T Y OVER TRACK ... TRACK,NO. AND DATE =. SONAR. TRACK NO . 13 • 5 .. TOTAL ENERGY OF A C T I V I T Y = O.OQOOOOOE 00 TOTAL NO OF MINUTES t M) TRACKED = 845 TOTAL ENERGY OF A C T I V I T Y / 24 HRS. Q.Q00Q000E 00 TOTAL ENERGY OF A C T I V I T Y OVER TRACK* TRACK NO AND DATE = SONAR TRACK NO 13.6 TOTAL ENERGY OF A C T I V I T Y = CL.Q000Q00E QO TOTAL NO OF MINUTES (M) TRACKED = 1300 ..TOTAL ENERGY. OF A C T I V I T Y / .24. HRS ^ '. __ MO 0.0000000E 00 MAX YEARLY EST. (MAX TRACK VALUE) 4 9 1 . _ cc AVERAGE SEASONAL VALUES SPRING = .. .0.. 47718 8 3 E-0 1. SUMMER = 0.1233354E 00 FALL = 0.2636767E-01 AVERAGE ENERGY TO A C T I V I T Y DURING NON-ICE PERIOD (MIN. YRLY EST.) = 0.1295710E 02 .YEARLY ENERGY TO A C T I V I T Y (MAX ... EST.) . =.. .0 . 169 386 2E 02. . ENERGY BUDGET FOR 20 CM ONLY TOTAL ENERGY OF A C T I V I T Y OVER TRACK. TRACK NO AND DATE = C** SONAR TRACK NO 1* AUG 19-21 1971 (20§5 CM) TOTAL ENERGY OF A C T I V I T Y = 0.1068083E 01 • TOTAL NQ—OF—M4-NUT ES ^ t - W \ a - E 4 M 3-48-0 • U TOTAL ENERGY OF A C T I V I T Y / 24 HRS g • G.4419656E 00 - - -- - . • • W TOTAL ENERGY OF A C T I V I T Y OVER TRACK §} _Jr4^A-C4^ f^a-A^D-^A^ NO 2-^-SE-RT—25-27 1971 w ' TOTAL ENERGY OF A C T I V I T Y «= 0. 54 38 53 3E-01 W TOTAL NO OF MINUTES (M) TRACKED = 2885 _ _ • £• g TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.2714553E-01 ^ . — : • — ^ TOTAL ENERGY OF A C T I V I T Y OVER TRACK >. TRACK NO AND DATE = SONAR TRACK NO 3* OCTOBER 8-11 1971 £ - TOTAL-ENERGY OF- A C T I V I T Y = 0 . 9 3 30 542E-0 1 — — -^ TOTAL NU OF MINUTES (M) TRACKED = 5130 jsj TOTAL—&N-&R6-Y—OF A C T W T Y / 24 HRS : • — < 0.2619099E-01 - TOTAL ENERGY OF A C T I V I T Y OVER TRACK -• TRACK NO AND DATE = SONAR TRACK NO 4* OCT 22-25 1971 TOTAL ENERGY OF A C T I V I T Y = 0.1228674E-01 _ _T-aTA-l^-G-G-F—^14^ 2-1^5 • : . TOTAL ENERGY OF A C T I V I T Y / 24 HRS - 0 « 8 2 8 7-0 7 5 E - 0 2 - - - .-. - , : - - -- _ TOTAL ENERGY OF AC T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO.5* NOV 27-29 1971 TOTAL ENERGY OF A C T I V I T Y = -0.9370632E-Q1- --TOTAL NO OF MINUTES (M) TRACKED = 4365 T :OTAb-£N&*G¥-Gf^-A€+^W • • 0.3077242E-01. TOTAL ENERGY -OF- A C T I V I T Y OVER TRACK - ~ TRACK NO AND DATE = SONAR TRACK NO 6* MAY 6-8 1972 TOTAL ENERGY OF A C T I V I T Y - 0.7182145E-G1 —TOTAL NQ-G^^TN-U-T-E-S-4K-)^^-ACK^^-= 3^7-5 TOTAL ENERGY OF AC T I V I T Y / 24 HRS 0.2668977E-Q1 ---co °° TOTAL ENERGY OF AC T I V I T Y OVER TRACK T-R-AC-K NO AND DATE - SWA-R-^ffiA-CK NO 7*—MAY 27 19 7 2 TOTAL ENERGY OF A C T I V I T Y = O.OQOOOOOE 00 TOTAL NO OF MINUTES (M) TRACKED = 0 TOTAL ENERGY OF ACT I V I T Y / 24 HRS O.OQOOOOOE 00 TOTAL ENERGY OF AC T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 8* JUNE 3-5 TOTAL ENERGY OF A C T I V I T Y = G.15G0055E 00 TOTAL NO OF MINUTES (M) TRACKED = 4585 TOTAI E-NERGY OF AC T I V I T Y / 24 HRS . . 0.4711186E-01 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 9* JUNE 17-19 1972 - TOTAL ENERGY OF A C T I V I T Y = 0 • 229 3 546E •• 0 0 - — - - •-— TOTAL NO OF MINUTES (M) TRACKED = 4650 jpOIAl-&N€RGY OF ACT-I-V4-T-Y—/ 24 HRS 0.7102596E-Q1 TOTAL ENERGY OF A C T I V I T Y OVER- TRACK- — - — ---TRACK NO AND DATE = SONAR TRACK NO 10.1 JULY 1-3 1972 TOTAL ENERGY OF A C T I V I T Y = 0.1801899E 00 T-OT-A-I N-G-G-F—J4-lMUT-££—(444—T-RACK-EO-s 3-44-Q TOTAL ENERGY OF A C T I V I T Y / 24 HRS • 0.7499234E-Q1 - - • -TOTAL ENERGY OF A C T I V I T Y OVER TRACK — : TRACK- NO A-N-S—DAT-E—=—&QUAR—T-RA-CK^.Q—1-0^-2-*—J4JN TOTAL ENERGY OF A C T I V I T Y = 0.2116520E OQ • TOTAL NO OF MINUTES (M) TRACKED = 5670 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.5375289E-01 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 1 . 1 * JULY 15-17 •-- TOTAL- ENERGY OF A C T I V I T Y = -0 • OOOOQOOE 00 _ TOTAL NO OF MINUTES (M) TRACKED = 715 laJDLY 2 19 72-TQ-TA4-—£-N-£-R-GY OF A C W I T Y / 24 HRS 0.0000000E 00 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 1 . 2 * JULY 15-17 TOTAL-ENERGY OF A C T I V I T Y = 0.2173467E-01 - --TOTAL NO OF MINUTES (M) TRACKED = 3070 • TOTAL—E-N-E-R-G-Y OF AC4^A^W-/-24-Hft6 :  0.1019476E-Q1 TOTAL ENERGY OF A C T I V I T Y OVER TRACK - - -TRACK NO AND DATE = SONAR TRACK NO 1 2 . 1 * JULY 29-31 1972 TOTAL ENERGY OF A C T I V I T Y = 0.4407317E-G1 — T O T A L NQ-Q-F—M-HMUTE-S—1-M ) TRA6K£B—« 4^ 6-7-5 — • TOTAL ENERGY OF A C T I V I T Y / 24 HRS •: 0 . 1 3 5 7 5 4 8 E - 0 1 — - ~ - - - - - -o TOTAL ENERGY OF A C T I V I T Y OVER TRACK • T-RA-CK NO A-KB—B-A-T-E—B—S-ON-AR—T-R-A-CK;—NO—Hi-r-2 TOTAL ENERGY OF A C T I V I T Y = 0.8949941E-01 TOTAL NO OF MINUTES (M) TRACKED = 3145 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.4097905E-01 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 12.3 - TOTAL ENERGY OF ACT I V I TY-= • -0• 5 105638E-Q1 -TOTAL NO OF MINUTES (M) TRACKED = 5185 -WT-A-i E-N-E-R&-Y— OF ACTI-VITY / 2 4 H-R-a • 0. 1417959E-01 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 3 . 1 * AUG 12-14 1972 • TOTAL ENERGY CF A C T I V I T Y = 0 . 3 506 20 5 E-01-—- - _ -TOTAL NO OF MINUTES (M) TRACKED = 4440 T^ TA-L-E-N-E-RG-Y OF A C T I V I T Y / 24 H-R-S • • 0.1137147E-01 - - TOTAL ENERGY OF ACT IVI-T-Y - 0 V ER- -TRACK - ----TRACK NO AND DATE' = SONAR TRACK NO 13.2 TOTAL ENERGY OF A C T I V I T Y = 0•1920511E-01 T-OT-AL . tiO—QF-^IJUUT-E-S (M) TRACKED =. 364-5 TOTAL ENERGY OF A C T I V I T Y / 24 HRS : 0.7587205E-02 - r - - — - — - - -TOTAL ENERGY OF A C T I V I T Y OVER TRACK . T ^ C K — k M ^ • TOTAL ENERGY OF A C T I V I T Y = 0.8608108E-02 TOTAL NO OF MINUTES (M) TRACKED = 6890 TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0.1799081E-02 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 13.4 TOTAL ENERGY OF ACTIVITY- = • 0. 1204174E-0 1 TOTAL NO OF MINUTES (M) TRACKED = 3245 TOTAL ENEftG-Y—Q-F— A C T I V I T Y / 24 HR& 0.5343642E-02 TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO I 3 a 5 - TOTAL ENERGY OF A C T I V I T Y = • O.OOOOOOOE 00 TOTAL NO OF MINUTES (M) TRACKED = 845 W - A L - E - N - ^ Y - - & F - ^ £ W K - Y - y - 2 V HRS — : — O.OOOOOOOE 00 T O T A L - E N E R G Y OF- A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 3 . 6 TOTAL ENERGY OF A C T I V I T Y = O.OOOOOOOE 00 T^A4=-NO-&F-NHHN U-T-E-S—f M4—TR-A-C-K-£D-= 1-34-0-TOTAL ENERGY OF A C T I V I T Y / 24 HRS 0 . 00000OOE -00 ~ — — g» MAX YEARLY E S T . (MAX TRACK V A L U E ) 1 6 1 . AVERAGE SEASONAL VALUES S P R I N G = 0 . 3 6 2 0 6 9 0 E - 0 1 SUMMER = - 0 . 4 8 2 6 7 1 7 E - Q 1 -— - -F A L L = 0 . 2 3 0 9 9 0 0 E - 0 1 AV-£RAGE—4£^£R-G-Y—T-^ 0-.-T3-034-94E--G-1 Y E A R L Y ENERGY TO A C T I V I T Y (MAX. E S T . ) = 0 . 1 0 7 9 1 1 4 E 02 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0101400/manifest

Comment

Related Items