Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Temporal and spatial differences in movement of cutthroat trout in Placid Lake, British Columbia Shepherd, Bruce Gordon 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1973_A6_7 S54.pdf [ 5.35MB ]
Metadata
JSON: 831-1.0101400.json
JSON-LD: 831-1.0101400-ld.json
RDF/XML (Pretty): 831-1.0101400-rdf.xml
RDF/JSON: 831-1.0101400-rdf.json
Turtle: 831-1.0101400-turtle.txt
N-Triples: 831-1.0101400-rdf-ntriples.txt
Original Record: 831-1.0101400-source.json
Full Text
831-1.0101400-fulltext.txt
Citation
831-1.0101400.ris

Full Text

I  TEMPORAL AND S P A T I A L DIFFERENCES  IN MOVEMENT OF  CUTTHROAT TROUT IN PLACID LAKE, B R I T I S H COLUMBIA  by  BRUCE GORDON SHEPHERD B Sc. University r  of B r i t i s h  Columbia,  1970  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in  t h e Department of Zoology  We a c c e p t t h i s required  t h e s i s as conforming  to the  standard  THE UNIVERSITY  OF BRITISH COLUMBIA  April  1973  In p r e s e n t i n g  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the requirements f o r  an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e  and study.  I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head o f my Department or by h i s r e p r e s e n t a t i v e s .  I t i s understood t h a t copying or p u b l i c a t i o n  of t h i s t h e s i s f o r f i n a n c i a l g a i n written  permission.  Department o f Z o o l o g y The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada  Date  Marnh 30,  1973  s h a l l not be allowed without my  li  ABSTRACT  The  temporal and s p a t i a l  v a r i a t i o n s i n the a c t i v i t y  of c u t t h r o a t t r o u t i n a s m a l l c o a s t a l B r i t i s h (J+9°19'N, 122°3^ W) were examined ,  Impact  of a c t i v i t y  controlling tagging,  on t h e p r o d u c t i o n  activity.  rise  comparision,  observation,  iture  kCal/kg/yr,  i n the I n v e s t i g a t i o n .  l e v e l s were a t l e a s t values.  an o r d e r  Energy values  i s w e l l below t h e a c c e p t e d twice  activity  over  In l a t e  5 min i n t e r v a l s  from t h e l i t t o r a l  fall  Factors a f f e c t i n g ories : the as  Temperature,  depth  2330 of f i e l d kCal/kg/yr).  shortcomings a r e  was q u i t e v a r i a b l e . The l e v e l  summer.  light,  shift  The c u t t h r o a t i n t h e  home r a n g e s - f o r activity  Daily  of activity  and e a r l y s p r i n g , a n d t h e r e was a  zones d u r i n g  lake appear t o maintain  (3860  expend-  result.  p e a k e d d u r i n g dawn and d u s k .  decreased  were c o r r -  'rule'  the r o u t i n e metabolism  responsible f o rthis  Activity  o f mag-  o f annual energy  F i s h b e h a v i o r a l p r o b l e m s and m e t h o d o l o g i c a l considered  distribution  ( i n c l u d i n g r o u t i n e m e t a b o l i s m ) was  which  metabolism being  and t h e f a c t o r s  stomach c o n t e n t - p r e y  low; t h e maximum e s t i m a t e  in activity  to determine the  of fish,  a n d echo s o u n d i n g were used  below any p u b l i s h e d  espondingly  lake  S o n a r t r a c k i n g , d i v i n g , n e t t i n g and  Average a c t i v i t y nitude  i n order  Columbia  up t o 5 months.  c a n be b r o k e n  into  3 categ-  a n d oxygen p r i m a r i l y d e t e r m i n e  zones t h a t a r e a c c e s s i b l e t o f i s h .  Substrates  P o t a m o g e t o n b e d s a n d l o g s may a c t t o c o n c e n t r a t e  i n a c c e s s i b l e depth zones; a t t r a c t i o n  is likely  fish  such with-  due t o t h e  ill  higher areas.  food  levels  Bottom s l o p e ,  productive  littoral  shore d i s t r i b u t i o n It  equally  than  increased  by a f f e c t i n g  areas,  cover found foraging  might a l s o a f f e c t  that  the i n d i r e c t  t h e o f f s h o r e movement  o r even more i m p o r t a n t  i s the d i r e c t  i n these  efficiency  i n the  t h e summer  o f f i s h w i t h i n an a c c e s s i b l e depth  i s suggested  (specifically, be  and/or  effects  off-  zone.  of a c t i v i t y  o f f i s h i n summer) c a n  to the production  use o f e n e r g y f o r a c t i v i t y .  of f i s h  iv  TABLE OF CONTENTS PAGE APOLOGIA  X  ABSTRACT  i i  LIST OP TABLES  vi  LIST OF FIGURES  vii  ACKNOWLEDGEMENTS  ix  INTRODUCTION. . .•  1  DESCRIPTION OF LAKE.  k  CHARACTERISTICS OF FISH POPULATION  9  I.  ACTIVITY  LEVELS AND ENERGY OF ACTIVITY IN  COASTAL CUTTHROAT TROUT  Ik 15  METHODS RESULTS Laboratory O b s e r v a t i o n s i - A c t i v i t y i n Tanks .. ..... Performance i n Resplrometer... F i e l d Observations; F l u c t u a t i o n s i n Swimming Speeds........... Area Covered by F i s h DISCUSSION...... I I . ACTIVITY  PATTERNS AND THEIR CONTROLLING  21 21 2k  FACTORS  IN COASTAL CUTTHROAT TROUT....  28  METHODS RESULTS Sonar T r a c k i n g . . . D i v i n g Surveys. Netting Rise Observations Stomach Contents Echo Sounding DISCUSSION General Movement P a t t e r n s ; Short term. V e r t i c a l Movements  18 18  . 29 ' 31 35 J*3 ^3 k j kQ 51 51  V  H o r i z o n t a l Movements.............................. 51 Home Range 53 E n v i r o n m e n t a l F a c t o r s I n f l u e n c i n g Movement» Light 5^ Temperature 56 Oxygen 57 Substrate 57 Morphometry 58 E n e r g y L i m i t a t i o n b y M o r p h o m e t r y . . . . . . . . . . . . . . . . . . . . 58 SUMMARY  6l  BIBLIOGRAPHY  63  APPENDIX 1.  Sonar  APPENDIX 2 i .  Ranging  APPENDIX 3.  Methods o f c a l c u l a t i o n o f SDA, r o u t i n e metabolism, and e s t i m a t e s o f energy t o activity  78  A c t u a l v a l u e s o f e s t i m a t e s o f energy t o activity  80  APPENDIX k.  tag specifications of sonar-tagged f i s h  68 69  vi  L I S T OF  TABLES PAGE  Table  Table  1.  2.  T o p o g r a p h i c a l and m o r p h o m e t r l c a l i s t i c s of P l a c i d Lake. Water c h e m i s t r y Aug  of P l a c i d  Lake  character5 (samples  taken  7  3. 1972)  10  Table  3.  Population estimates  Table  ^.  Sonar t r a c k i n g  Table  5-  Table  6.  A c t i v i t y l e v e l s i n salmonids--the r e s u l t s of s e v e r a l s t u d i e s (see B l a x t e r and D i c k s o n , 1959; L a e v a s t u and H e l a , 1970; Webb, 1971 f o r more complete r e v i e w ) . 25 V a r i o u s e s t i m a t e s o f e n e r g y expended on a c t i v i t y , as compared t o 3DA and r o u t i n e metabo l i s m ( f o r 20 cm f i s h ) . 27  Table  7.  Substratum  Table  8.  Sector preferences  Table  9.  S e a s o n a l v a r i a t i o n of bottom depth of s o n i c - t a g g e d f i s h .  Table  10.  of P l a c i d  Lake c u t t h r o a t .  22  statistics.  preferences  of sonic-tagged  of sonic-tagged  F i s h d i v e s i g h t i n g s by c o d e as i n t a b l e 11.  Table  11.  Table  12.  F i s h d i v e s i g h t i n g s by  Table  13.  Sector distributions fish size.  substrate.  fish.  32 33  fish. preferences Substrate  38  Substrate distributions imated f i s h s i z e .  according to  est-  38 39  sector.  according to  estimated 39  Table  l k .  Seasonal depth estimated f i s h  distributions size.  according  to  Table  15.  I n f e r e n c e o f f e e d i n g a r e a s by p r e y a r r a y s i n f i s h g u t s ( a v e r a g e no. o f p r e y / s t o m a c h , a s a percentage).  ^7  hi  Table  16.  Echo sounding  t a r g e t s by d e p t h .  ^9  Table  17.  Echo sounding  t a r g e t s by  50  Table  18.  Tag by  s i g h t i n g s from sector.  sector.  October  1970  to July  1972, 55  vii  L I S T OP  FIGURES PAGE  Figure  Figure  Figure Figure  1.  2.  3.  k.  C a t e g o r i e s o f l o s s e s and uses o f t h e e n e r g y o f consumed f o o d m a t e r i a l s ( m o d i f i e d f r o m Warren and D a v i s , 196?). D o t t e d l l i n e r e p r e s e n t s e f f e c t s o f a c t i v i t y p a t t e r n s on e n e r g y intake.  2  S e a s o n a l t h e r m a l , o x y g e n , and l i g h t p e n e t r a t i o n p r o f i l e s f o r P l a c i d Lake, January t o December 1971.  6  D i s t r i b u t i o n of substratum types ometry of P l a c i d Lake.  8  and  morph-  L e n g t h f r e q u e n c i e s o f t r o u t g i l l n e t t e d by A n d r u s a k f r o m May t o D e c e m b e r , 1967 (188 f i s h t o t a l ) ; c a u g h t i n f y k e - n e t May t h r o u g h Novemb e r , 1971 (156 fish total).  11  A n a l y s i s o f t r o u t stomach c o n t e n t s , May t h r o u g h November, 1971. C a l c u l a t e d as p e r c e n t a g e s o f t o t a l numbers o f o r g a n i s m s f o u n d in guts.  13 16  r  Figure  5-  Figure  6.  Method o f s o n a r t a g a t t a c h m e n t  Figure  7.  S p o n t a n e o u s a c t i v i t y o f t a g g e d and hatchery rainbow t r o u t i n tanks.  Figure Figure  Figure Figure  Figure  8. 9.  10. 11.  12.  to f i s h . untagged  19  Oxygen c o n s u m p t i o n s o f t a g g e d and u n t a g g e d w i l d c u t t h r o a t t r o u t under f o r c e d a c t i v i t y .  20  Time s e r i e s p l o t s o f s o n a r - t a g g e d f i s h e s ' h o u r l y maximum, a v e r a g e , and minimum v e l o c ities. Heavy b l a c k l i n e a b o v e o r d i n a t e i n d i c a t e s n i g h t (dawn t o d u s k ) .  23  L o c a t i o n of sampling s t a t i o n s i n P l a c i d ( N o r t h a t t o p o f map).  Lake 30  Time s e r i e s p l o t s o f v a r i o u s e n v i r o n m e n t a l f a c t o r s , a l o n g with p l o t s of the nos. of f i s h s e e n d u r i n g d i v e s and c a u g h t i n 2k h r net s e t s .  36  T o t a l nos. of f i s h l i g h t l e v e l at 1 m polynomial).  37  seen d u r i n g d i v e s v s . ( b e s t f i t 3rd degree  the  viii  Figure  Figure Figure  Figure  Figure  13.  14. 15A.  15B.  16.  Nos. o f f i s h c a u g h t i n 24 h r n e t s e t v s . t h e t e m p e r a t u r e a t 1 m ( b e s t f i t 3rd d e g r e e polynomial).  44  D l e l variation i n surface r i s e a c t i v i t y , w i t h accompanying depth-temperature p r o f i l e s  45  C o m p a r i s o n o f d i s t a n c e s t r a v e l l e d by t r o u t i n v e r t i c a l s u r f a c e r i s e and l i t t o r a l f o r a y ( f r o m midsummer p r e f e r r e d d e p t h ) .  52  The e f f e c t o f s l o p e upon e n t r y - e x i t d i s t ances t o l i t t o r a l f e e d i n g a r e a s from midsummer p r e f e r r e d d e p t h .  52  Cumulative percentage hypsographic curves by s e c t o r ( a p p r o x i m a t e s a v e r a g e bottom cross-section of sector).  59  ACKNOWLEDGEMENTS  T h i s work was s u p p o r t e d by a n I n t e r n a t i o n a l Programme g r a n t t o D r . I . E . E f f o r d , the N a t i o n a l  Research  I should l i k e port, for  their  t h e B.C. R e s e a r c h  Larking  Council  for their  indebted t o those f r i e n d s ,  and  undergraduate  ing  fish,  Marten,  a s s i s t a n t s who  and t o D. L a u r i e n t e ,  Wilimovsky  and a n a l y s i s .  v e r y competent  construct-  o f t h e U.B.C.  Research  Lake. f e l l o w graduate students,  spent long c o l d hours  K. R e i d , N. G i l b e r t ,  track-  and G.  who h e l p e d w i t h computer a n a l y s e s .  Critical Larkin,  sup-  go t o M e s s r s . A. V a n d e r e n d e and G. Haney o f  f o r allowing access to Placid  I am  f o r h i s generous  N o r t h c o t e , Webb, and  o f t h e s o n a r t a g s , and t o t h e s t a f f  Forest  from  C o u n c i l o f Canada t o t h e a u t h o r .  ready a d v i c e r e g a r d i n g methodology  Thanks a l s o  ion  and by a s c h o l a r s h i p  t o thank Dr. E f f o r d  and D r s . B r e t t ,  Biological  r e v i e w o f t h e m a n u s c r i p t by D r s . N o r t h c o t e and  and M e s s r s . D. McKone and K. H y a t t was much  Finally,  heartfelt  times complained,  thanks  but always  appreciated.  i s due my w i f e L e x y , who  complied.  some-  APOLOGIA  A l i v e without as  breaths  c o l d as death;  never t h i r s t i n g , clad  i n mail,  ever  never  drinking;  clinking.  Drowns on d r y l a n d , thinks is  an  island  a mountain;  thinks  a  fountain  is  a puff  of a i r .  So  sleek,  so f a i r !  Gollum's  Riddle  (Tolkien, The  Lord  11:288. New  J.R.R.  1965.  o f the Rings B a l l a n t i n e Books,  York.)  1  INTRODUCTION  This direct  study assesses  influences  population  Little  our  of a c t i v i t y  of several  of fish  of f i s h  (fig l).  factors  activity  S u c h d a t a would  bioenergetlcs.  t o movement.  l e v e l s and fill  utilized  Warren and D a v i s  generally of l i t t l e utilization  D e p e n d i n g on i t s  importance and l o s s  in activity  (1967)  feel  i n this  through  i s lost to that  SDA [ S p e c i f i c Dy-  f i g l ] i n f e e d i n g and growing  relatively  and t h a t  levels  (1956)  fish  i n nature  (1967) Since in  found then,  that  low...."  the metabolic  i s twice the routine metabolic rule  t h i s method h a s been w i d e l y a c c e p t e d  nitude  of f i e l d  activity  these  assumptions. Even i f t h e energy level)  Determination  i s of l i t t l e  importance  data  well.  and a p p l i e d  o f t h e a c t u a l mag-  would be o f v a l u e  going d i r e c t l y  rate of  r a t e 5 Mann  t o f i t t h e few a v a i l a b l e  aquatic bioenergetlcs.  activity  are relatively  has suggested  this  fish i s  t h e e n e r g e t i c c o s t s o f moderate  o f swimming a c t i v i t y  Winberg  activity  respect, i n that  namic A c t i o n — s e e large,  a gap i n  can p l a y a major p a r t i n d e t e r m i n i n g  p r o d u c t i o n , as t h e energy  "...energy  the d i e l  i n nature.  magnitude, a c t i v i t y  is  on t h e p r o d u c t i o n o f a l a k e  environmental  i s known a b o u t  understanding  growth  and i n -  o f c u t t h r o a t t r o u t , and e s t i m a t e s t h e r e l a t i v e  contributions  patterns  t h e Impact o f t h e d i r e c t  i n testing  to activity relative  both  (i.e.,  to the  Fig.  1.  Categories of  o f l o s s e s and  uses o f the  consumed f o o d m a t e r i a l s  W a r r e n and sents  Davis,  effects  Intake.  1967).  of a c t i v i t y  (modified Dotted  line  patterns  on  energy from repreenergy  2  "ENERGY OF FOOD MATERIALS (Heat o f c o m b u s t i o n )  ENERGY OF FAECES Q Q  ENERGY OF ASSIMILATED MATERIALS  ENERGY OF NITROGENOUS MATERIAL LOST THROUGH EXCRETION  . ..  f  ENERGY OF METABOLIZABLE MATERIALS (Physiologic f u e l value) NONUTILIZED ENERGY FREED THROUGH DEAMINATION AND OTHER PROCESSES NET ENERGY (Physiologically energy)  (SDA) PROCESSES OF DIGESTION, MOVEMENT AND DEPOSITION . OF FOOD MATERIALS -  STANDARD . METABOLISM  GROWTH  useful  3  other  c a t e g o r i e s , movement  have c o n s i d e r a b l e on  Impact  (i.e.,  activity  on p r o d u c t i o n  patterns) can  through  i t s effects  f e e d i n g , g r o w t h , and s u r v i v a l — s e e N o r t h c o t e The  parts.  body o f t h i s The f i r s t  into a c t i v i t y . ivity  patterns  factors  dissertation  i s presented  s e c t i o n estimates  The s e c o n d  I n two energy  s e c t i o n summarises g e n e r a l  and t h e i m p o r t a n c e  i n movement.  the d i r e c t  (1967).  of various  Input act-  environmental  4  DESCRIPTION OF LAKE  (1967)  Efford  describes  Lake i n some d e t a i l . briefly  described  vertical  ersity east  area  Placid  Lake i n a p r e v i o u s  study  Columbia Research F o r e s t  of Vancouver).  Topographical  (about  f r o m mid-December t o t h e end o f A p r i l ;  Despite  i t s small  ification location er.  occurs  i n table  a t the beginning  ( f i g 2),  likely  and t h e many s p r i n g s  Seasonal v e r t i c a l  ductivity,  total  depth  show h i g h  ( t a b l e 2);  content,  values of  penetration.  ( t a b l e 2). and t o t a l  Color,  con-  alkalinity  but g e n e r a l l y the lake  w a t e r c a n be c h a r a c t e r i s e d a s l i g h t l y al  strat-  because o f t h e s h e l t e r e d  ( f i g 2)  dissolved solids,  change markedly a t 6 m  period.  on t h e b o t t o m a t 6 m and d e e p -  profiles  increases with  complete  summer t h e r m a l  o x y g e n a t d e p t h s a b o v e 4 m, and p o o r l i g h t Carbon d i o x i d e  char-  Ice  and end o f t h i s  s i z e and s h a l l o w n e s s ,  i s sharp  50 1™ due  1 a n d f i g u r e 3.  cover  turnover  of the  and m o r p h o m e t r l c a l  a r e summarised  lake  have  i n the Univ-  acteristics lasts  Placid  of cutthroat.  Lake i s a s m a l l c o a s t a l b o g l a k e  of B r i t i s h  about  (1970)  A n d r u s a k and N o r t h c o t e  distribution  Placid  the general  c o l o r e d , o f low m i n e r -  and a c i d i c .  About t w o - t h i r d s  o f t h e s h o r e l i n e i s composed  o f Sphag-  num s p . o v e r h a n g s ; t h e most a b u n d a n t m a c r o p h y t e s a r e Potamogeton natans, S c l r p u s Drepanocladus  s u b t e r m l n a l l s , Nuphar p o l y s e p a l u m , and  exannulatus  ( f i g 3)«  5  1.  Table  T o p o g r a p h i c a l and m o r p h o m e t r i c a l c h a r a c t e r i s t i c s of  Placid  Lake.  Characteristic Drainage  Area  173.7  (ha)..  Elevation  (m).......  Shoreline  (m)............,  Surface  Area  510  ....  988 1.65  (ha)............  2.17  Shore Development................................. Maximum L e n g t h (= maximum  effective  Maximum W i d t h (= maximum  length)....  195  width)..  195  (m) effective  Maximum D e p t h Mean D e p t h  (m)  7  (m)  4  (m)..  Mean/Maximum D e p t h  0.57  Volume D e v e l o p m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.71  A r e a a n d Volume b y S t r a t u m : 0-1  1-2  2-3  3-4  4-5  5-6  6+  2388  1856  1559  2838  2397  2721  2730  14  11  9  17  15  17  17  V o l (m3) 15279 13162 11457 9231  6613  4013  928  11  7  1  Depth Area As  As  (m) (m ) 2  %* %**  *Total **Total  25  Area =  22  19  16489  Volume =  15  m  60683  m^  F i g . 2.  Seasonal thermal, oxygen, and l i g h t p e n e t r a t i o n p r o f i l e s f o r P l a c i d Lake, January to December  1971.  \  Table 2.  Location*  Water chemistry of Placid Lake (samples taken Aug 3, 1972).  Temp C  Color  Conductivity  Pt units  micromhos/cm @25 C  T.D.S.  pH  ppm  Total A l k a l i n i t y ppm CaCOo  Free C0  2  ppm CaCCs  HCL>  3  ppm CaCO 3  1M SFC  22.0  20  18  23  5.5  *.3  19  3  2M(m) SFC  22.0  20  17  22  5.6  4  20  4  2M(m) BOT  18.0  20  18  23  5.6  6  29  6  2M(p) SFC  22.0  20  19  24  5.8  5  16  5  2M(p) BOT  16.0  17  22  5.6  5  24  5  2M(s) SFC  22.0  41  41  5.9  7  18  7  2M(s) BOT  20.0  20-25  16  21  5.9  7  18  7  4M SFC  22.0  20-25  17  22  6.0  9  18  9  4M BOT  12.0  17  22  5.6  8  39  8  6M SFC  22.0  20-25  19  24  6.0  9  18  9  6M BOT  8.5  25-30  28  31  5.9  15  38  15  *Location code:  20-25 20  25  1M to 6M = water depth i n m; (m) = open mud, (p) = Potamogeton,  SFC = top of water column, BOT = bottom of water column.  (s) = Scirpus;  Fig.  3.  Distribution of  Placid  of substratum  Lake.  t y p e s and morphometry  PLACID  LAKE  CD  O l_  25  _l_  contour interval 1m |Nuphar • Potomogeton I^Scirpus • Drepanocladus • Mud g| Sphagnum Log= on bottom in water column...  9  CHARACTERISTICS OF FISH POPULATION  The c o a s t a l c u t t h r o a t t r o u t  (Salmo c l a r k l c l a r k l ) i s  the only s p e c i e s of f i s h In P l a c i d Lake. l y occurs i n the o u t l e t stream Recruitment  Spawning  apparent-  j u s t a f t e r s p r i n g break-up.  t o the l a k e probably takes p l a c e when the t r o u t  are b e g i n n i n g t h e i r second made up of approximately f o r k l e n g t h ( f i g k)—a  summer.  300  fish  The l a k e p o p u l a t i o n i s ( t a b l e 3)  d e n s i t y of about  The length-weight r e l a t i o n s h i p  0.02  9 to 26  cm i n  fish/m . 2  (as c a l c u l a t e d  from  Andrusak's unpublished data) i s i  N - 0.0183L 2  f o r weight  (W)  8 6 0 0  In g and f o r k l e n g t h (L) i n cm.  sak's unpublished data and my  own  Both Andru-  l e n g t h d a t a i n d i c a t e the  same age-length grouping when s u b j e c t e d t o p r o b a b i l i t y analysis  paper  ( C a s s i e , 195^)s  Age Group Length  0 0-13  1 13-17  3+  2 17-21  21-2^+  age group d e f i n e d as per R i c k e r (I97l)» l e n g t h i s f o r k l e n g t h i n cm.  From the average p r o p o r t i o n s of each age group i n  both the g i l l n e t my  catches of Andrusak (unpublished data) and  t r a p n e t t i n g , the t o t a l numbers i n each age group are  (assuming no gear  selectivity):  10  Table  J.  Population estimates of P l a c i d  Lake  Type o f E s t i m a t e  Data  Pop  Schnabel*  Net  324  340  309  Schnabel**  Dive  287  293  280  *Schnabel pers.  tends  95% Con max  cutthroat.  to overestimate  (Dr.  Limits min  Wllimovsky,  comm.). **Probably  of tagged  fish.  underestimate  due  to greater  visibility  Fig.  4.  Length  frequencies  A n d r u s a k f r o m May total)} 1971  (156  caught fish  of trout  gillnetted  t o December,  i n f y k e n e t May total).  1967  (188  through  by fish November,  1967 1971  FORK  LENGTH  IN  CM  12  Age  0  Group  1 2  33+  Numbers  100  (low number i n 0 age year  i n the  i t was  being  any  volumetric  to the present  which can  be  seasonal  fish  v o l u m e t r i c measurement data  of Andrusak  numeric d a t a ,  Ingested  overestimated  similar  first  ( f i g 5)  done on a numbers b a s i s  t h a t t h i s method w o u l d r e f l e c t  more a c c u r a t e l y t h a n  pared  51  stream).  felt  However, t h e  ll6  g r o u p b e c a u s e most s p e n d t h e i r  Pood a n a l y s i s was as  3+  feeding patterns.  by  fish,  choice  could.  1968)  to check t h a t  s e v e r a l a t a time  In i m p o r t a n c e .  (MS,  only,  was  com-  plankton, was  Both s e t s of d a t a  not showed  Fig.  5.  Analysis  of t r o u t  November, total  1971.  stomach  c o n t e n t s , May  Calculated  numbers o f o r g a n i s m s  through  as p e r c e n t a g e s o f found In g u t s .  A = Dlaphanosoma l e u c h t e n b e r g l a n u m . B = Holopedlum C = Daphnla  glbberum.  rosea.  D = Terrestrial E  insects.  = Chironomidae/Ceratopogonidae  F = Chaoborus  flavlcans  ( l a r v a e and  G =  Ephemeroptera/Zygoptera.  H =  Miscellaneous.  J = Number o f f i s h  ( l a r v a e and  sampled.  pupae).  pupae).  OCT  NOV  I . ACTIVITY LEVELS ACTIVITY  AND ENERGY OF  IN COASTAL CUTTHROAT TROUT  15  METHODS  The a  movements a n d a c t i v i t y  48 h r p e r i o d  The  sonic  tags  o f t r o u t were m o n i t o r e d  b y means o f s o n i c  tags  used t o i n c r e a s e  were a t t a c h e d ancy.  tagl i f e ,  (165 ma-hr v s 60 ma-hr)  and s t r e a m l i n e d  f r o n t and back t o g i v e  floats  p o s i t i v e buoy-  cm o r l a r g e r ) on a into the  m u s c u l a t u r e a t t h e b a s e o f t h e d o r s a l f i n ( f i g 6).  Further  c h a r a c t e r i s t i c s are given  caught bay  w h i c h was a t t a c h e d  foam  t o a hook I n s e r t e d  tag  leader  slight  (20  The t a g was towed by a f i s h  short  to the f i s h .  were I d e n t i c a l t o t h o s e o f H e n d e r s o n e t a l  (1966), s a v e t h a t a l a r g e r b a t t e r y was  attached  over  i n a fyke  ( f i g 3).  n e t s e t i n t h e 0-2  The f i s h  fish  s e l e c t e d and tagged, and r e l e a s e d  lake  a f t e r a short  48 h r a f t e r r e l e a s e . hydraphone-receiver receiver,  with  a  Tracking  of the  commenced  12-  b y two  (SR-70H h y d r a p h o n e , TA-60  the lake  ( f i g 9).  sonic  The h y d r a p h o n e s were mod-  I n a way s i m i l a r t o t h a t d e s c r i b e d  thus t o t r i a n g u l a t e f i s h  s t a t i o n a r y t a g was 0.5$.  plotted  MS-222, one  a t the center  b y Podubbny et_ a l  (1970), t o a l l o w manual a n g l e d e t e r m i n a t i o n and  were  o f the western  The t a g s i g n a l was r e c e i v e d units  fish  S m i t h - R o o t E l e c t r o n i c s , S e a t t l e ) t h a t were a t f i x e d  s t a t i o n s about ified  period.  Test  m region  were a n e s t h e t i s e d  recovery  1.  i n appendix  a t 5 niln  position.  a t two f i x e d  Location  accuracy  determine t h e tag's  on  F i s h p o s i t i o n was d e t e r m i n e d a n d  I n t e r v a l s o v e r 48 h r .  Two l a b o r a t o r y  points  e x p e r i m e n t s were a l s o c a r r i e d o u t t o e f f e c t s on a c t i v i t y  and b e h a v i o r :  Pig.  6.  Method  of sonar tag attachment  to  fish.  17  a ) Two  2.4  x 0.6  x 0.6  m t a n k s w i t h 0.3  x 0.3  m  bottom  g r i d s were s e t up s i d e by s i d e , and t h e a c t i v i t y  and g e n e r a l  behavior  trout  o f t a g g e d and u n t a g g e d  h a t c h e r y rainbow  (con-  trols  27-33 om r a n g e , 29 cm a v e r a g e ? t a g g e d , 22-27 a n d 25 cm)  under  i d e n t i c a l h a n d l i n g were compared o v e r 5 days  and  under n a t u r a l  lighting  been p r e v i o u s l y h e l d at  5 C,  activity  i n a large  For the f i r s t  two d a y s  t a n k o u t s i d e f o r 2-3  of times  i n 15 m i n .  the f i s h ' s  On t h e n e x t  the tanks to determine  response, performance, b) The p e r f o r m a n c e  dorsal  and  f i ncut across a  two d a y s ,  15 m i n c o u n t s day t h e f i s h  any q u a l i t a t i v e  grid  were  were  chased  differences i n  stamina.  and o x y g e n c o n s u m p t i o n  Lake c u t t h r o a t  o f tagged and  (18.0-22.5 cm, 51-104 g r a n g e ;  untagged  Placid  20.5  cm,  76 g means) i n f i e l d  time  o f c a p t u r e was a p p r o x i m a t e l y  more t h a n  wk  of observation, h o r i z o n t a l  made a t m i d d a y o n l y , and on t h e f i f t h about  The f i s h had  was m e a s u r e d e v e r y 2 h r d u r i n g t h e day by c o u n t i n g  t h e number line  d u r i n g November.  at 5 C  condition  (lake temperature a t  15 C; f i s h  2 weeks a t 15 G i n a l a r g e  outdoor  were h e l d  f o r no  tank b e f o r e  test-  i n g ) were e v a l u a t e d i n a B r e t t - t y p e r e s p i r o m e t e r a t 15 C, following  the procedures developed  (1971. p e r s . comm.).  by B r e t t  (1964) and Webb  18  RESULTS  Laboratory Observations Activity  i n Tanksi  T h e r e I s no s i g n i f i c a n t consistent and  trend  between t h e a c t i v i t y  untagged h a t c h e r y t r o u t  edly higher a c t i v i t y likely  within  s i x hours; t h i s i s  search-escape behavior. i n response, performance,  during  Placid  a trend  (fig  8).  Lake c u t t h r o a t  oxygen c o n s u m p t i o n  Untagged:  logY = 2.20283 +  Tagged*:  logY = 2.20283  assumed  regression regression  identical).  the l i n e s  activity,  there  by t a g g e d of best  trout  f i t are:  0.10737X  + O.lWpOX  l i n e was line  differ-  o f s o n a r - t a g g e d and  under f o r c e d  The e q u a t i o n s d e s c r i b i n g  untagged  trial.  I s no s t a t i s t i c a l l y s i g n i f i c a n t  towards h i g h e r  *Tagged of  t h e t r i a l s o r when  f i s h a t t h e end o f e a c h  ence b e t w e e n t h e o x y g e n c o n s u m p t i o n s  is  show mark-  In Resplrometer:  Although there  untagged  of sonar-tagged  the f i r s t  s t a m i n a were n o t e d , e i t h e r  Performance  levels  Both groups  differences  c h a s i n g and c a p t u r i n g  a n d i n d e e d , no  ( f i g 7).  due t o h a n d l i n g a n d / o r  No q u a l i t a t i v e or  difference,  forced  through  Y-intercept  ( i . e . , standard metabolisms  were  Fig.  7.  Spontaneous hatchery  activity  rainbow  o f t a g g e d and  trout  i n tanks.  untagged  C O N T R O L T A G G E D  ±2  SE  (MS222, (  handling) "  )  @ O  Fig.  8.  Oxygen c o n s u m p t i o n s wild  cutthroat  trout  A = tagged r e g r e s s i o n of untagged  o f t a g g e d and u n t a g g e d under  line  forced  forced  through  Y-intercept  line.  B = d a t a excluded from r e g r e s s i o n as  activity.  i t was f e l t  the t a g tended  calculations  t h e v a l u e s h o u l d "be h l g h e r - to foul  i n swimmer a t t h i s  speed.  N.B.  1 BL/sec  i s a p p r o x i m a t e l y e q u a l t o 12 m/min.  (BL = Body  Length)  SPEED  IN  m/min  21  where Y i s o x y g e n u p t a k e  i n mg  02/kg f i s h / h r ,  and X i s s p e e d  i n m/min. T h e r e was no n o t i c e a b l e d i f f e r e n c e s i n p e r f o r m a n c e s , beyond t a g f o u l i n g  i n the access  p o r t and i n t a k e g r i d  of the  resplrometer.  Field Fluctuations  i n Swimming  Velocities The  5  over  maximum r e c o r d e d  m/min  m  Observations  Speeds:  i n I n t e r v a l s were f o u n d for a 5  velocity  i n t e r v a l was  show no c l e a r p a t t e r n  but  i t appears t h a t the f i s h  were most a c t i v e  and  morning p e r i o d s and l e a s t  a c t i v e a t dusk  C o v e r e d by Although  covered ity  cases,  21.4  there  i s large individual  (appendix  2),  d u r i n g t h e dawn (table  variation  a l l the f i s h  i n a very r e s t r i c t e d  the f i s h  ( f i g 9),  4).  Fish:  i n 48 h r  of time  variable.  4).  (table  Average h o u r l y v e l o c i t i e s  Area  very  area  ( t a b l e 4).  d i d not remain i n the area  but  i n s t e a d moved  one  area.  spent  i n the area t h e majorrIn most  f o r the f u l l  time,  a b o u t t h e l a k e and f r e q u e n t l y r e t u r n e d t o  22  Table  4.  Sonar t r a c k i n g  MAXIMUM VELOCITY =21.4 Corrected f o r drag o f tag* = 30.2  statistics.  m/mln = 36 cm/sec m/mln = 50 cm/sec  D I E L VARIATION IN SWIMMING SPEEDS ( a l l t r a c k s summed a n d a v e r a g e d ) « A v e r a g e Range Mean Period Dawn 0.1-1.8 0.6 m/min Day-AM 0.1-2.2 0.7 Day-PM 0.1-1.6 0.6 Dusk 0.0-1.1 0.4 Night 0.1-1.5 0.5 TOTAL AREA COVERED IN 48 HRi Maximum = 11033 m.2 (Total Average = 1638 Minimum = 66 o r l e s s  lake area  TIME SPENT WITHIN ONE GRID SQUARE Maximum = 100.0$ A v e r a g e = 53*8 Minimum = 4.2 TIME SPENT WITHIN TWO GRID SQUARES Maximum = 100.0$ Average = 66.6 Minimum = 7.0  =  165OO  m ) 2  (66 m ) j 2  (132  m )1 2  *See f i g 8 a n d a p p e n d i x 2 f o r method o f c a l c u l a t i o n .  Fig.  9.  Time s e r i e s p l o t s o f s o n a r - t a g g e d  fishes'  h o u r l y maximum, a v e r a g e , and minimum ocities.  Heavy b l a c k  Indicates night  line  (dawn t o  above  dusk).  vel-  ordinate  V  23 WVB4 s t u s g i o m * a•  WUBI . e t t c c i i  * o . , . , G G K G G B f  S 5 *B |B  I?  SB  9  9  6 ft  9 MtGN  ItUN • C t Ct C I I  it o a *  MOON •  E G K 6 G 8 I  'If  ii |B  4  i t  • ft ft •  8  A  9  tKMIN  n * m•  S G C G G 8 B  O  Id *  • '  It  M40N  M40N ( i o a k i i E E t f i S t l  6 G SB 6 8 I  5  c  ?  ii  G G  I' j B  i  5-  Ml » 9  |B  V ft ft 9  6 G S K G 8 a  . 6G £G G 8f  A o . » . . S G S G G 8 B  t o . ,  f G  9  f  !  •MOM ( t <  G G 8f  2k  DISCUSSION  The ported  fish  i n this  t o be s o n a r - t a g g e d  At t h i s ation  used  size  level,  the f i s h  ocities  irritates  locomotor  failed  to find  untagged  Table  of P l a c i d  attachment, ize  this 1)  ent  that either  Although  indicates  i n any o f t h e were used  t h e back-papk somehow  (table harness  interferes  p r e v i o u s attempts between  have tagged  that i n general the a c t i v i t y  c u t t h r o a t a r e v e r y l o w when compared Aside  from  t h e problems of f i s h  size  with and t a g  c o u l d c o n t r i b u t e t o minim-  includingi  V e r t i c a l movements c a n n o t  e q u i p m e n t , and a r e t h u s 2)  vel-  studies.  several other factors  value,  similar  s u b t l e r b e h a v i o r a l c h a n g e s may o c c u r a n d  f o r i n future  5 also  studies.  drag-tags  gross behavioral d i f f e r e n c e s  fish,  In the f i r s t  t h e maximum a n d a v e r a g e  or that the drag-tag  behavior.  s h o u l d be l o o k e d  levels  (1972);  suggest  the f i s h ,  investig-  with a back-pack harness  t r a c k s , where f l o a t i n g  These r e s u l t s  other  that detailed  f o r that t r a c k a r e f a r higher than  succeeding  and  5)>  i t appears  was t a g g e d  t o t h a t o f Young e t a l  with  (table  o f h a r n e s s i n g methods i s I m p e r a t i v e .  track,  5).  study a r e the s m a l l e s t y e t r e -  Straight-line  be m e a s u r e d w i t h  the pres-  ignored.  movement i s assumed b e t w e e n  trlangul-  ation points. 3)  Operating  accuracy  i s such  t h a t s h o r t term  back and  Table 5.  A c t i v i t y levels i n salmonids—the results of several studies (see Blaxter and Dickson, 1959; Laevastu and Hela, 1970; Webb, 1971 for more complete review).  Fish (size i n cm)  "Speed ( cm/sec)  Coastal Cutthroat (20-25)  General 'rule'  (20-25)  2  Maximum  Average  36(50)  8(12)  1  0.4  Tracks 2-13; drag tag average  200-250  60-75  41  30  48  45  Kokanee (10-20)  50  17  Rainbow (9-30)  50  Rainbow (16-22) Sockeye (58-73)  Brown (30, 34)  10 x body length = max, 3 x BL = cruise  Bainbridge (1960)  Maximum sustained speed II it II  Bainbridge (1962)  II  II  II  Brett et a l (1958) II  II  II  II  20  Short term f i e l d observations II II it II  Hyatt (MS, 1973) it II II  55  23  Daily pond observations  Jenkins (MS, 1972)  170  53  Sonic-tagged sea migrants  Madison et a l (1972)  3 23 37 3 29 37  Sonic-tagged lake migrants  MacCleave and H o r r a l l  4,5  Sonic-tagged lake f i s h  82  (1970)  4  (?) (31-40)  Present study  Tracks 9,12; drag tag maximum  47  Yellowstone Cutthroat  Track 1; backpack tag  1.3  52  Yellowstone Cutthroat  Author(s):  33(47)* it II  2 Rainbow (21-30) 2 Sockeye (14-15) Coho (8-9) 2  1  Remarks:  49  II  II  II  (1972)  4  '''Speed corrected for drag of tag. 2 Forced a c t i v i t y .  MacCleave and LaBar  3 Open water speeds. 4 Shore speeds.  Young at a l (1972)  26  f o r t h movements ( i . e . , 1972)  could 4)  to  t h e 'shore c r u i s e r s '  of Jenkins--MS,  cancel out. 3),  Amplifying  keep home r a n g e s  the f i s h  i n this population  appear  ( s e e f o l l o w i n g s e c t i o n on a c t i v i t y p a t ^  terns). Low a c t i v i t y ological ivity. for  shortcomings, Various  activity  estimates It  levels,  (table  summer v a l u e s  fall  (table  energy  i n act-  requirements  o f r o u t i n e m e t a b o l i s m and SDA  6). there  higher  Is a seasonal  flux  to activity,  than s p r i n g , and both h i g h e r  than  6).  These e s t i m a t e s  consider  i n one age g r o u p .  activity  of the f i e l d  f a r short  does a p p e a r t h a t  with  only  l e a d t o low energy deployment  estimates  fall  w h e t h e r n a t u r a l o r due t o method-  only a c t i v i t y  The e n e r g y g o i n g  I n t h e l a k e , and  t o the stream  o f t h e young a n d t o t h e s p a w n i n g m i g r a t i o n  of the  a d u l t s h a s n o t b e e n e x a m i n e d , a n d c o u l d be r e s p o n s i b l e f o r the major p o r t i o n o f energy u t i l i s e d life  span o f a s a l m o n l d .  in activity  during the  27  Table 6.  V a r i o u s estimates o f energy expended  on a c t i v i t y ,  as compared to 3DA and r o u t i n e metabolism cm  ( f o r 20  fish) . 1  Type o f E s t i m a t e  Value (kCal/kg)  Annual SDA  2500  Annual r o u t i n e metabolism  1840  Energy o f A c t i v i t y  (not i n c l u d i n g standard metabolism)  I. Same energy, lowered a c t i v i t y i Max y r l y e s t (max t r a c k v a l u e ) Average d a i l y e s t by season i S p r i n g ( t r a c k s 6-9)  Summer ( *' Fall ( "  1, 10-13) 2-5)  Average energy t o a c t i v i t y d u r i n g non-Ice p e r i o d (min y r l y e s t ) >Yearly energy t o a c t i v i t y (max e s t ) I I . Same a c t i v i t y , i n c r e a s e d energy: Max y r l y e s t Average d a i l y e s t by season  Spring Summer Fall  Average energy t o a c t i v i t y non-ice p e r i o d Y e a r l y energy t o a c t i v i t y  during  4-91  0.12 (0.14) 0.03 (0.03)  12.96 (16.01) 16.94 (19.99) l6l  0.04 (0.05) 0.05 (0.06) 0.02 (0.02)  7.30 (8.86) 10.79 (12.34)  1 See appendix 3 f o r methods of c a l c u l a t i o n .  2 Numbers i n parentheses a r e estimates i n which z e r o value t r a c k s have been  discarded.  „  0.05 (0.06)^  28  A C T I V I T Y PATTERNS AND THEIR FACTORS  CONTROLLING  IN COASTAL CUTTHROAT  TROUT  29  METHODS  F i s h movements and a c t i v i t y were monitored  i n several  ways i 1) Sonar t r a c k i n g was the primary method used t o d e t e r mine d i e l a c t i v i t y . sented elsewhere 2) Regular  D e t a i l s of methodology have been p r e -  (pp 15-16). (twice weekly) d i v i n g surveys of the 1-3 m  areas were made a t 1400 h r PST; on each d i v e , one complete c i r c u i t of the l a k e was made i n one hour.  When a f i s h was  s p o t t e d , i t s v e r t i c a l and h o r i z o n t a l p o s i t i o n , s i z e , s u b s t r a t e i t was over, and behavior, were r e c o r d e d . 3) A fyke n e t was s e t f o r . 2 k h r once a week, and a l s o for 3  i n t e r v a l s over 2k h r once a month.  k) Observations on s u r f a c e a c t i v i t y were made a t various stages of thermocline development.  Counts of the number  of s u r f a c e r i s e s i n 15 min were done a t 2 h r i n t e r v a l s  from  p  dawn t o dusk, i n two areas each approximately  2500 m .  5) I n t e g r a t i o n of stomach contents data with data on prey d i s t r i b u t i o n with depth and s u b h a b i t a t . 6) Monthly echo soundings kHz  sounder,  (using a Furuno Model FM-22 50  Furuno E l e c t r i c Co., Kobe, Japan) along the 6  major t r a n s e c t s ( f i g 10) were made a t 1300-1400 and 22002300 h r PST.  The numbers and h o r i z o n t a l d i s t r i b u t i o n of  t a r g e t s i n the 3-6 m depth range were taken from the t r a c i n g s .  Fig.  10.  Location (North  Explanation Numbers m, and  of sampling  stations i n Placid  Lake  a t t o p o f map).  of code: .5  to 6 refer  t o w a t e r d e p t h i n m.  p, and s i n d i c a t e s u b s t r a t e  (mud,  Potamogeton,  S c l r p u s , r e s p e c t i v e l y ) a t 2 m.  S e c t o r numbers a p p l y buoy.  to sector clockwise  from  SAMPLING  STATIONS  o  Temp /.Og / light levels  •  Bottom samples / water c h e m i s t r y .  A  Plankton hauls Sector bouys Sounding  r—  —<  © " ©  transects  Fyke net Sonar tracking / surface rise bases _ H  31  RESULTS  Sonar  Tracking} Short  term  and  dlel  fluctuations  r a n g i n g have been p r e s e n t e d  elsewhere  S u b s t r a t e , S e c t o r , and  d a t a were g r o u p e d by  7 and  and  0.01  manner. it  1956).  (Selgel,  or l e s s , If there  w o u l d be  s e c t o r and  and  21-22). The  sonar  substrate  (tables  t e s t e d f o r randomness u s i n g c h i - s q u a r e  sample t e s t s t o be  (pp  Depth P r e f e r e n c e s .  tracking 8)  in velocities  I f the  chi-square  t h e d a t a were r a n k e d  i s no  expected  attraction  one  a was  found  In the f o l l o w i n g  or avoidance  t o an  area,  that  no  o f o b s . In a r e a m In a r e a t o t a l obs. ~ t o t a l m^  no  of obs. i n a r e a x t o t a l m t o t a l o b s . x m^ i n a r e a  2  henc e  If  there i s a t t r a c t i o n  than 1.00.  1.00;  i f the a r e a  Substrate  index  2  _ ±  t o the a r e a , the v a l u e w i l l i s avoided,  the v a l u e w i l l  v a l u e s were v e r y h i g h  S e c t o r p r e f e r e n c e s were g e n e r a l l y f o r t h o s e e x t e n s i v e Sphagnum Seasonal generally gression  of the  less  than  f o r Sphagnum. areas  having  i n c h o i c e of bottom depths  of a s h i f t  season--the  ations are probably  be  greater  overhangs.  variation  consists  be  to deeper waters with  number o f s h a l l o w w a t e r  inflated,  due  to the a t t r a c t i o n  (table the  9)  pro-  observof  fish  32  Table ?•  Substratum  p r e f e r e n c e s of sonic-tagged  fish.  Substrate*  LOG  SPH  PN  SS  MUD  NP  DE  No of Det  480  1014  167  269  1392  15^  513  As Prop'n  .12  .25  .04  .07  .35  .04  .13  Area as Prop'n  .17  .07  .07  .11  .30  .05  .23  Nos  678  279  279  ^+39  1198  199  917  0.71  3.57  0.57  0.64  1.17  0.80  0.57  expected  Preference  Chl-square = 2324.49 with 6 d . f . P r o b a b i l i t y of randomness l e s s than 0.001.  *L0G SPH PN SS MUD NP DE  = = = = = = =  f l o a t i n g or submerged l o g s Sphagnum overhang Potamogeton Sclrpus open mud Nuphar Drepanocladus  Table 8.  Sector preferences of sonar-tagged  fish. 10  11  12  391  491  282  497  .13  .10  .12  .07  .12  .06  .08  .08  .12  .05  329 • 247  329  329  498  206  1.25  1.50  0.58  2.40  1  2  3  4  5  6  7  8  9  No of Det  251  554  252  63  h96>  152  443  538  As Prop'n  .06  .13  .06  .02  .05  .04  .11  Area as Prop'n  .09  .15  .05  .07  .08  .09  .08  Nos expected  370  617  206  288  329  370  0.67  0.87  1.20  0.29  0.63  0.44  Sector  Preference  Chi-square = 1464.3 with 11 d.f. P r o b a b i l i t y of randomness less than 0.001  1.38  2.17  34  9.  Table  Seasonal v a r i a t i o n of  sonic -tagged  of bottom depth  preferences  fish.  0-lm  I t  2m  2-3m  3-4m  4-5m  5-6+m  0.14  0.11  0.09  0.17  0.15  0.34  180  194  65  149  62  82  0.25  0.27  0.09  0.20  0.08  0.11  1.79  2.45  1.00  1.18  0.53  0.32  565  323  382  379  373  310  0.24  0.14  0.16  0.16  0.16  0.13  1.71  1.27  2.56  0.94  1.07  0.38  40  46  233  380  90  20  As P r o p ' n,.  0.05  0.06  0.29  0.47  0.11  0.02  Preference  O.36  0.55  3.22  2.76  0.73  0.06  785  563  680  908  525  412  0.20  0.15  0.18  0.23  0.14  0.11  1.43  1.36  2.00  1.35  0.93  0.32  Depth  Area as  Prop'n  Seasoni Spring No As  Prop'n  Preference Summer No As  Prop'n  Preference Pall No  Overall: No As  Prop'n  Preference  3:5  to the  Sphagnum o v e r h a n g  beneath the  o v e r h a n g , and  shoreward from the and  the  d e p t h was  edge o f t h e  carried 0-2  assumed t o be  overhang).  The  out m  5  regions  m  Surveysi  Key  Factor  seasonal  l e v e l s with  In f i g 11,  Analysis.  a set  the  numbers o f f i s h  seen d u r i n g  a n a l y s i s was  performed  parameters  included  above f a c t o r s a t  w e l l as  dally  ceding,  and  the  sunlight  the k0%  on  both the  amount o f c l o u d of  the  total  2 m,  the  dive  cover.  seen In the  explaining  lk%  daily  light A  polynomial)  data—environmental 1,  2,  and  day  and  The  light  v a r i a t i o n , Is the  d e t e r m i n i n g numbers o f f i s h temperature at  on  compare  diving tours.  degree  regression  explaining  of graphs  c h a n g e s i n o x y g e n , t e m p e r a t u r e , and  stepwise c u r v i l i n e a r ( l i m i t e d to t h i r d  the  be  d e e p e r were c o n s i s t e n t l y a v o i d e d .  Diving  the  (no morphometry c o u l d  1-3  3 m,  the at  major  m region  of the  as  day 1  prem,  factor 12);  (fig  total variation,  follows. Substrate, s e c t o r and  cover  and  by  area  tested  of dive  icant.  Depth P r e f e r e n c e s .  chi-square;  expected  The  substrates  (table  values  logs  s i z e ) were made •• were - c o r r e c t e d  were p r e f e r r e d  ( t a b l e 10),  using  and  of  (in that 6,  sectors  were p r e f e r r e d  7,  above  for  signiforder) 9  and other  12).  e f f e c t of f i s h  tested  fish  Groupings  p a t h . B o t h g r o u p i n g s were f o u n d h i g h l y  o f P o t a m o g e t o n - l o g mix)  sectors  was  and  ( i g n o r i n g s e a s o n and  P o t a m o g e t o n and  above o t h e r (areas  Sector,  s i z e upon s u b s t r a t e  a chi-square  and  sector  t e s t f o r k Independent  choice  samples  Fig.  11.  Time s e r i e s factors, fish net  plots  along with plots  of the nos. of i n 24 h r  sets.  0  b =  "  " 11  environmental  s e e n d u r i n g d i v e s and c a u g h t  a = lower l e t h a l  c =  of various  " 11  2  level  • "  d = upper l e t h a l  "  a t 15 C ( S t r e l • t s o v a , "  "  11  temp, l e v e l  e = maximum p r e f e r r e d  temp.  M a c C a u l e y and Pond,  10 5  C.  G.  (pers. obs.) (Kuroki  1971).  et a l ,  1971?  19?).  Fig.  12.  T o t a l nos. of f i s h the  light  level  seen d u r i n g d i v e s v s .  at 1 m  (best f i t 3rd degree  polynomial).  Equation:  Y = 5.162 - 0.003972X +(0.25667 x 1 0 " ) X 5  x 10' )X 9  3  2  - (0.24993  38  Table  10,  P i s h d i v e s i g h t i n g s by s u b s t r a t e .  ss  MUD  NP  33^  173  182  20  .15  .27  .14  .15  .02  .23  .20  .16  .20  .15  .06  285  248  198  248  186  74  1.22  0.75  1.69  0.70  1.00  0.33  Substrate*  LOG  SPH  PN  No  o f Obs  345  186  As P r o p ' n  .28  Area as Prop'n Nos  Expected  Preference  = 184.14 with  Chi-square Probability  Table  11.  less  than  0.001.  according to estimated  size.  Substrate* of  o f randomness  Substrate distributions fish  No  5 d.f.  LOG  SPH  PN  SS  127 154 59  37 113 48  104 171 85  41 70 45  25 80 45  3 11 3  1.65 1.13 0.91  0.55 0.95 0.85  0.60 0.60 0.80  0.47 0.87 0.87  0.17 0.33 0.17  Fish:  1 2 - cm 14-18 20 +  MUD  NP  Preference:  1214-18 20+ Chi-square  Probability  1.94 TTBT TT94"  = 37.989 w i t h o f randomness  10 d . f . less  than  0.001.  *L0G = f l o a t i n g o r submerged l o g s ; SPH = Sphagnum o v e r h a n g ; PN = P o t a m o g e t o n ; S3 = S c l r p u s ; MUD = open mud; NP = Nuphar.  Sector  -  1  2  3  4  5  6  7  '••8  9  10  11  12  V No of Obs  113  155  26  73  90  205  96  77  152  •'61  163  26  As Prop'n  .09  .13  .02  .06  .07  .17  .08  .06  .12  .05  .13  .02  .13  .05  .06  .08  .11  .06  .06  .07  .06  .13  .07  149 ' 161  62  74  99  136  74  74  87  74  161  87  0.75 •;. 1.00  0.40  1.00  6.88  1.55  .1,33  1.00  1.71  0.83  1.00  0.29  Area.as Prop'n Nos Expected •nP.ref erence  "  r  Chi-square = 165.71 with 11 d.'f. probability of randomness less than 0.001. ;  iTab'le-.lSvk..^Sector d i s t r i b u t i o n s according.to estimated Sector  1  2  3  fish size.  4  5  6  7  8  9  - 10  11  12  No of f i s h : 12- cm 14-18 20+  7  32  3  10  14  64  31  30  60  9  74  3  64  80  14  40  36  .96  49  32  70  36  65  17  9  14  23  19  23  5  32  42  9  12- cm  0.17  0.69  14 18 ,  0.92  20+  22  <-*  40  34  0.20  0.50 . 0.50  1.72  1.50  1.50  2.57  0.50  1.69  0.14  1.00  0.40  1.17  0.75  1.45  1.33  0.83  1.71  1.00  0.85  0.43  1.08 . 1-15  0.60  1.33  1.75  1.09  0.50  0.83  1.14  1.17  0.62  0.29,. -  c  Preference:  r  • V'Chi-square!> 460.645. with.22 d.f. ; p r o b a b i l i t y of randomness less than 0.001.  40  1956), and was  (Seigel, (tables ferred  11  and  13).  significant  Although  i n a l l 3 size  creased with  found  groups,  increasing  P o t a m o g e t b n and  9.  7;  and  large  The choice,  6,  and  11  size.  Also,  respectively; 4,  fish—5,  next  test  and  affect  open mud  is  examined, i t i s seen  cm  individuals  of  the  14-18  of f i s h found  m  o f t h e 20+  fish.  the s p r i n g p e r c e n t a g e s  84  the f a l l  and  appreciable difference Temperature w i t h d e p t h , and  in  upon  depth  significantly If table of the  12-  v a l u e s o f 97,  T h i s can o f 80, 95.  be  911  and  and  99$—no  thus t h e above suggest than can  that larger  smaller f i s h fish.  a t which the t h r e e s i z e groups  The  were  can summer  found  fact:  12- cm—17.0; 14-18  cm—16.5s 20+  t h e maximum t e m p e r a t u r e s s e e n were 23.5  and  Qualitative  14  i s of course c l o s e l y a s s o c i a t e d s e a s o n a l l y  mean t e m p e r a t u r e s In  and  size.  t o l e r a t e h i g h e r temperatures  are  6,  o r s h a l l o w e r , v e r s u s 6?>%  c o n t r a s t e d with both respectively,  to  o n l y d u r i n g summer.  a t 1.33 6l%  preferred  size  t h a t d u r i n g summer, §9%  and  de-  Sphagnum  medium f i s h — 9 ,  S i z e was  depth  are found  group,  and  Small f i s h  examined t h e e f f e c t  fish  l o g s were p r e -  10.  on a s e a s o n a l b a s i s .  (a = 0.01)  cases  the p r e f e r e n c e f o r l o g s  were a v o i d e d more by t h e s m a l l e r f i s h . sectors  i n both  21.5  cm—15.5 G;  a t w h i c h s m a l l and C  large fish  were  respectively.  Observations.  a) P r e y D i s t r i b u t i o n .  Logs, P o t a m o g e t o n , and  Sphagnum  Table 14.  Seasonal depth d i s t r i b u t i o n s according to estimated f i s h s i z e .  Depth (m) A.  0.33  0.67  1.00  1.33  1.67  2.00  2.33  2.67  3.00+  MAY + JUNE 1971-72  No as Prop'n: 12- cm  0.06  0.39  0.23  0.12  0.10  0.02  0.06  0.00  0.02  14-18  0.01  0.52  0.21  0.17  0.05  0.01  0.01  0.00  0.00 '%  20+  0.02  0.46  0.18  0.18  0.08  0.00  0.04  0.00  0.04  Chi-square = 27.355 with 16 d.f.; p r o b a b i l i t y of randomness 0.05 to 0.02. B. JULY + AUGUST 1970,1972 12- cm  0.00  0.29  0.29  0.31  0.05  0.02  0.01  0.01  0.02  14-18  0.00  0.15  0.13  0.35  0.16  0.09  0.07  0.04  0.01  20+  0.00  0.14  0.15  0.32  0.13  0.06  0.15  0.03  0.01  Chi-square = 35.599 with 16 d.f.; p r o b a b i l i t y of randomness 0.01 to 0.001. C. OCTOBER + NOVEMBER 1970-71 12- cm  0.00  0.41  0.41  0.15  0.00  0.00  0.00  0.00  0.03  14-18  0.00  0.74  0.12  0.09  0.02  0.01  0.02  0.00  0.00  20+  0.01  0.71  0.20  0.07  0.01  0.00  0.00  0.00  0.00  Chi-square = 30.222 with 16 d.f.; p r o b a b i l i t y of randomness 0.02 to 0.01.  42  a r e a s c o n c e n t r a t e d p l a n k t e r s and l a r g e r mayflies,  adult  distributions logs,  3 m+), pick  were g e n e r a l l y h e a v i e r n e a r  16  Behavior.  items  surface rises  o n l y ) were n o t e d  Reaction to Diver.  The f i s h  o r were a t t r a c t e d  Activity.  s p r i n g and l a t e restriction  fall  was n o t e d  individuals?  Bottom r e s t i n g  (water  extremely  variable,  months.  Small f i s h  that  during  Fish  noticeable speeds,  (pre-  i n early  8 G or l e s s ) .  Area  a fish  f r e q u e n t e d an f o r over 5  In the s h a l l o w s .  hr of observation, only three aggressive  often  used  R e a c t i o n t o Sonar  a large difference  t h e Sphagnum o v e r h a n g  activity  t h e r e was  (i.e.,  some p r o b l e m beat; a l s o ,  found  was no o b v i o u s  tagged  Tags.  Although  i n sizes  as c o v e r  t h e r e was  t a g i n t e r f e r e n c e w i t h swimming a t f i e l d  ference with t a i l  one  ignored  fright.  e) F i s h  There  indic-  backwash).  i n one c a s e l a s t i n g  i n c i d e n t s were s e e n , a l l i n v o l v i n g the f i s h .  (do n o t g r u b ,  to the d i v e r  were f o u n d more o f t e n  150  approximately  from  s o n a r - and s p a g h e t t i - t a g g e d  the l e n g t h of time  a r e a was  either  was n o t e d  temperature  i n both  (some  of the cutthroat.  s u m a b l y t o p r e y k i c k e d up by t h e d i v e r ' s d) F i s h  prey  about  during diving,  f l e x i b i l i t y i n the hunting t a c t i c s  s l o w l y moving d i v e r ,  of  shore and  22 m i d w a t e r f e e d e r s , and 7 b o t t o m f e e d e r s  c) F i s h  In  Surface  drift.  Feeding  up e x p o s e d  ating  a  d r a g o n f l i e s , and backswimmers.  due t o wind b) F i s h  I n v e r t e b r a t e s such as  fish  was  a t h i g h e r speeds tagged  stationary reaction  even seen  fish  often  fish  cruise  of t a g i n t e r showed low  i n m i d w a t e r o r on  t o tagged  no  bottom).  by o t h e r  fish—  swimming w i t h a s c h o o l o f un-  43  tagged  fish.  Netting: The numbers of f i s h caught  over 24 h r i n the fyke net  are compared with v a r i o u s environmental parameters  i n f i g 11,  Key f a c t o r a n a l y s i s i n d i c a t e s t h a t the temperature  at 1 m i s  the major f a c t o r  (4l$  d a i l y numbers of f i s h l e v e l at 1 m follows  of the t o t a l v a r i a t i o n ) determining i n the 0-2m areas  ( f i g 13)i the oxygen  {8% of the v a r i a t i o n ) .  3 h r n e t h a u l s over a 24 h r p e r i o d were done to determine i f t h e r e was any d i e l v a r i a t i o n i n l i t t o r a l  (0-2 m) a c t i v i t y .  Of the 17 f i s h caught, 5 were trapped d u r i n g the dusk (16001900 h r PST) and 10 a t dawn (2400-0700 h r PST). Rise Observations» There i s a d e f i n i t e peak i n s u r f a c e r i s e a c t i v i t y a t dusk d u r i n g t h e c o o l e r months.  During h i g h summer  temperat-  ures, t h i s evening peak i s much reduced and appears t o be r e p l a c e d by a morning maximum; t h i s may be due t o the d i u r n a l p a t t e r n s of the major prey s p e c i e s a t that time, or c o u l d be a response t o the s l i g h t overnight c o o l i n g of the water. There i s a l s o a n o t i c e a b l e decrease In o v e r a l l s u r f a c e a c t i v i t y a t h i g h summer temperatures  ( f i g 14).  Stomach Contents: I f i t can be demonstrated  that d i f f e r e n t s u b s t r a t e s  possess marked d i f f e r e n c e s i n types and abundances of prey, and  i f the t r o u t i s an o p p o r t u n i s t i c f e e d e r ( i . e . , r a t e of  p r e d a t i o n i s l a r g e l y dependent on the a v a i l a b i l i t y of the p r e y ) , then i t i s p o s s i b l e t o i n f e r from stomach contents and  F i g . 13.  Nos. of f i s h caught i n 24 h r net s e t v s . the temperature a t 1 m (best f i t 3rd degree p o l y nomial ).  Equation:  Y = 36.05 + 7.1896X - 0.3691X + (5.5207 x 10~ .)X 2  3  3  Pig.  14.  Diel variation  i n surface r i s e a c t i v i t y ,  with accompanying  depth-temperature p r o f i l e s .  Open c i r c l e = a r e a about shore s t a t i o n . Dark c i r c l e = a r e a about boat  station.  45  46  substratum fish  of substratum  were f e e d i n g and t h e r e f o r e s o m e t h i n g  daily  about  i n which t h e s e a s o n a l and  f e e d i n g movements. It  of  prey a r r a y s the types  becomes e v i d e n t f r o m  the l i t t o r a l  t a b l e X5 t h a t  a r e a a n d down i n t o  t h e t r o u t move o u t  t h e water column d u r i n g  summer. Examination lowing! July,  of i n d i v i d u a l prey  D. l e u c h t e n b e r g l a n u m  most d u r i n g A u g u s t , ever, ing of  t h e August  H. g l b b e r u m  that  by f i s h  occurs  of July.  abundance i s f a r lower  low p a l a t a b i l i t y ) .  than  'second-string' prey Although  D. r o s e a  a b u n d a n c e a t 6 m d u r i n g summer, t h e f i s h them a t t h a t  time  r a t h e r , maximum is  found  rial  in  damselflies,  In f a l l ,  the shallows.  a prey  consumption  that  i s taken  imum a b u n d a n c e s a r e i n O c t o b e r  it  because  maximum use o f  to feeding);  when D. r o s e a Terrest-  are exploited  H. g l b b e r u m , a p p e a r s  occurs  that, although f i s h  most  i n summer t o be  species are  i n August,  w h i l e max-  i n the 5 - 6 m areas.  stomach c o n t e n t s a r e examined on a n i n d i v i d u a l  i s found  feeding  limitations  o n l y when more d e s i r e a b l e consumption  suggest-  (perhaps  yet highest concentrations occur  u n a v a i l a b l e ; maximum  If  June's,  i n the shallows.  Chaoborus, l i k e  i s taken  make l i t t l e  and c h i r o n o m i d s  when  o v e r 6 m; how-  reaches  occurs i n f a l l ,  i n concentrated patches  insects,  heavily  (suggesting v e r t i c a l  i n June,  H. g l b b e r u m  when i t i s most a b u n d a n t  t o be a  the f o l -  i s most a b u n d a n t a t 2 m d u r i n g  y e t h i g h e s t consumption  numbers a r e o n e - q u a r t e r  species reveals  basis,  do t h e m a j o r i t y o f t h e i r  daily  i n t h e w a t e r c o l u m n o v e r 4 - 6 m d u r i n g summer, t h e y do  47  Table  15-  I n f e r e n c e o f f e e d i n g a r e a s by p r e y a r r a y s i n f i s h guts  ( a v e r a g e no o f p r e y / s t o m a c h , a s a  Month  May+June  C h a r a c t e r i s t i c * Depth of Prey  percentage)  July+Aug  Sept+Oct  Zone  (Horizontal D i s t . ) :  ' "  Shallows  (0-2 m)  £4**  16  35  Offshore  (2-4 m)  9  26  46  Midlake  ( 4 - 6 m)  17  5_8  19  Surface  6J  10  24  Midwater  24  2A  21  Bottom  13  14  4  14  17  26  C h a r a c t e r i s t i c Column P o s i t i o n of Prey ( V e r t i c a l D i s t . ) :  T o t a l Nos  ( =  100$)  *Depth zone and column p o s i t i o n a r e t h o s e a t w h i c h p r e y t y p e s a r e most a b u n d a n t (and t h u s where f i s h a r e assumed t o be f e e d i n g on t h e m ) . * * T a b l e I s meant t o be r e a d i n t h i s f a s h i o n : i n May and J u n e , f i s h g u t s c o n t a i n 7^$ p r e y a b u n d a n t i n t h e s h a l l o w s , 9$ o f f s h o r e p r e y , and 17$ p r e y from t h e m i d l a k e a r e a s . Summing t h e same d a t a v e r t i c a l l y , 63$ o f t h e p r e y t a k e n a r e f o u n d a t t h e s u r f a c e , 24$ m i d w a t e r , and 13$ on t h e b o t t o m .  48  make f o r a y s  into  are a t l e t h a l Echo  the shallows to feed  levels.  Sounding! No o b v i o u s s e a s o n a l o r d i e l  3-6  even when t e m p e r a t u r e s  m d e p t h r a n g e were f o u n d  the times a t which were h e a v y  (table  s u c h movements  l6).  could  Chaoborus/chlronomld r i s e s  o b s c u r e d any t a r g e t s a t t r i b u t a b l e S e c t o r p r e f e r e n c e was rected  o f f s h o r e movements  f o r transect  tested  to  into the  Unfortunately, at be I m p o r t a n t ,  during  there  the n i g h t ,  which  fish.  ( e x p e c t e d v a l u e s were  l e n g t h s ) a n d f o u n d t o be random  cor-  (table  17).  49  Table 16.  Echo sounding t a r g e t s by depth.  Depth (m)  3.0  3.5  4.0  4.5  MAY-Day -Night  7  5  8  4 4  2  1  JUNE-D -N*  16  14  11  5  -  -  -  -  JULY-D -N*  4  -  2  -  4  -  2  -  1  0  1  AUG-D -N  6 4  3 0  4  2  0  2  4 11  1 7  3 7  3 1  OCT-D -N  1 1  0 0  1 0  NOV-D -N  2  1  75  41  SEPT-D -N  Total  19  -  -  -  5-0  5-5  6.0  2  1  0 0  1 1  1  2  0  -  -  2  1  2 2  0 0  1 1  1 2  0 1  0 0  0 0  1 0  2  0  0  0  3  42  17  10  7  14  2  -  3  ^Chaoborus/chlronomld r i s e obscures other t a r g e t s .  Table 17.  Echo sounding targets by sector.  Sector  1  2  3  4  5  6  7  8  9  10  11  12  TOT  MAY—day  2  2  1  0  1  3  8  1  1  1  0  0  20  2  5  5  0  4  3  3  0  2  3  3  5  35  2  2  0  6  14  3  4  7  0  8  0  3  49  -  -  -  -  -  -  -  -  -  -  -  -  -  0  5  1  0  0  0  0  1  0  3  3  1  14  -  -  -  -  -  -  -  -  -  -  -  -  -  2  2  3  1  3  0  5  0  2  1  2  0  21  1  2  1  1  0  0  0  3  0  2  1  1  12  1  1  0  1  0  1  2  2  1  2  1  1  13  3  5  1  2  1  0  0  5  2  4  3  3  29  0  0  0  0  0  1  0  0  0  0  1  1  3  0  0  0  0  1  0  0  0  0  0  1  0  2  0  0  0  0  0  2  1  1  0  1  2  1  8  '—  —  —  —  —  —  —  —  —  —  —  —  —  —night JUNE—day —night* JULY—day —night* AUG—day —night SEPT—day —night OCT—day —night NOV—day —night  Total  13  24  12  11  24  13  23  20  8  25  17  16  Expected  15  23  8  10  16  19  21  14  16  21  27  16  Chi-square = 19.52 with 11 d.f. P r o b a b i l i t y of randomness greater than 0.05. *Chaoborus/chironomid r i s e obscures targets.  206  51  DISCUSSION  G e n e r a l Movement P a t t e r n s i Short ivity for  term.  i n tanks  some t i m e ,  I t i s a common o b s e r v a t i o n t h a t  Is 'jerky';  that  then without  i s , the f i s h  apparent  cause  remain  begin  Such b e h a v i o r h a s been c o n s i d e r e d a n a r t i f a c t but  i t s common o c c u r r e n c e under d i v e r s e  rather that  this  has  observed  ion  i n movement.  sonic-tagged inconstant  i s natural behavior.  pond b e h a v i o r o f t r o u t The f i e l d  cutthroat  speed  V e r t i c a l movements. v e r t i c a l movements.  Although  great  Importance  i n larger  lakes  i s not the case f o r P l a c i d  Lake.  6 m,  rises shifts by  and I h a v e s e e n  f r o m more t h a n  (MS,- 1 9 6 8 ) .  Andrusak  shift  in vertical  fish  al  areas.  forays into  abolically  1972)  similar  study  (i.e.,  5  m  i  variat-  concur;  environment  exhibit  n  intervals).  s u c h movements c a n be o f  The e n t i r e  depth. either  However, we b o t h  distribution,  1967). t h i s  depth  i n summer c a r r y  were f o u n d ,  on h o r i z o n t a l d i s t r i b u t i o n — t h e toral  of t h i s  (MS,  (see N o r t h c o t e ,  3 m cruising  in distribution  confinement,  T h i s s t u d y , f o r t h e most p a r t , i g -  nores  only  Jenkins  scale  motionless  c o n d i t i o n s suggests  i n their natural  on a s h o r t t e r m  act-  movement.  of  and f i n d s  results  trout  range i s  out s u r f a c e  No d l e l  vertical  i n this  study or "  found a s e a s o n a l  which' h a s i m p o r t a n t fish  Thus, w h i l e v e r t i c a l  are forced  rises  from  are short,  effects the  lit-  horizont-  t h e s h a l l o w s c a n be f a r more l e n g t h y and met-  costly  i n comparison  H o r i z o n t a l movements.  ( f i g 15A).  On a s e a s o n a l b a s i s ,  i t would  Fig.  15A.  Comparison vertical  of distances  surface r i s e  midsummer p r e f e r r e d  Fig.  15B.  The e f f e c t to  littoral  ferred  of slope  travelled  by t r o u t i n  and l i t t o r a l  foray  (from  depth).  upon e n t r y - e x i t  f e e d i n g areas  distances  f r o m midsummer  pre-  depth.  delta = difference i n horizontal distance preferred  depth to feeding areas,  from as pro-  d u c e d by b o t t o m c o n t o u r v a r i a t i o n s .  SHARP SLOPE  53  appear  from  d i v i n g and  become l e s s  active  by t h e r e s u l t s o n a l change  sonar  a t low  of S w i f t  tracking data that  temperatures.  (1962).  i n the h o r i z o n t a l  There  in  t h e s h a l l o w s d e c r e a s e , and  capable of staying  i s a l s o a marked  those t h a t a r e caught  only b r i e f l y  and  1964  ation,  and  in this  been r a r e l y  Home r a n g e  data than  On a l a r g e r  i n Great ions.  Bear  b e h a v i o r by  dawn. fish  i n ponds d e f e n d  i s more l i k e l y  Jenkins  (MS,  1972)  bay  (Miller,  has  due  has to a behav-  subpopulat-  data  territories.  t r o u t h a v e been shown t o be  movements i n s t r e a m s  i n lakes  (1959) f o u n d e v i d e n c e o f homing i n  that  cutthroat  observ-  (19^5, 1962) f o u n d l a k e t r o u t  and  trout  rise  activity  to a predominance of r o v i n g  scale, Miller  Hasler  (see S w i f t ,  tracking,  d u s k and  lake centrarchids, rainbow  found  Lake t o be made up o f d i s c r e t e  P a r k e r and  fish  appear  of h i g h e s t f i s h  sonar  r e p o r t e d ; however, t h i s  l a c k of s u i t a b l e ior.  s t u d y by  n e t t i n g ) c e n t e r about  Home r a n g e .  of  As  i n the a r e a .  f o r r e v i e w ) , the times  (as d e t e r m i n e d  seas-  of the t r o u t .  dive sightings  As many r e s e a r c h e r s h a v e p r e v i o u s l y 1962  trout  This i s reinforced  distribution  t h e summer p r o g r e s s e s , n e t c a t c h e s and  the  restricted  indicating  Although in their  1957). s i m i l a r b e h a v i o r h a s n o t  been p r e v i o u s l y r e p o r t e d f o r l a k e p o p u l a t i o n s . Several casual observations indicated c u t t h r o a t h a v e home r a n g e s . 4)  reinforces  t i m e was  this  belief,  The  sonar  i n that  s p e n t w i t h i n an a r e a o f 66  that  tracking  Placid data  over one-half of a m  , and  Lake (table fish's  two-thirds within  o 132  m  .  As a f u r t h e r  test,  tag sightings  d u r i n g d i v e s were  54  tabulated one  by s e c t o r  sample t e s t  dive  ( t a b l e 18) a n d s u b j e c t e d  (expected p r o p o r t i o n s  path area/sector)  sector with  a n d were f o u n d  the highest  to a  chi-square  were c o r r e c t e d f o r t o be nonrandom.  number o f s i g h t i n g s  o f tagged  was t h e s e c t o r where t h e f i s h had been o r i g i n a l l y It  i s doubtful  that  300 h r o f o b s e r v a t i o n ,  acts  It i s also doubtful  en  on t h e b a s i s  of food  characteristics.  fish  caught.  t h e s e home r a n g e s a r e d e f e n d e d ;  in approximately were s e e n .  The  only  that  3  aggressive  the areas a r e chos-  a v a i l a b i l i t y , but r a t h e r  by c o v e r  S o n a r t r a c k i n g d a t a shows a h i g h  preference  f o r a r e a s b e n e a t h Sphagnum o v e r h a n g s , w h i c h a r e t h o u g h t t o be  areas  o f low p r e y a v a i l a b i l i t y .  Environmental Factors Light.  Influencing  Movement:  The l i g h t I n t e n s i t y a t 1 m h a s b e e n shown t o be  the major f a c t o r  i n d e t e r m i n i n g t h e numbers o f f i s h s e e n  ing  result  dives.  vision  This  capabilities,  was n o t i c e d  that,  illumination levels  may be a n a r t i f a c t o f t h e d i v e r ' s  rather  at high  t h a n a r e s p o n s e by t h e f i s h .  light levels,  cut the visual  of l i g h t did;  i n favor  s u c h phenomena c o u l d  although  methods i n v o l v e On icant  effects  ( f i g 12).  t o be o f i m p o r t a n c e  i t must be k e p t different  the other  easily  o f t h i s was t h a t no d i r e c t  s u r e o f l i g h t was f o u n d series,  suspended  particle  time  explain the A further  o r I n d i r e c t meai n the n e t t i n g  i n mind t h a t  t h e two s a m p l i n g  intervals.  h a n d , l i g h t h a s b e e n shown t o h a v e  on f i s h ,  It  r a n g e a s e f f e c t i v e l y a s v e r y low  shape o f t h e c u r v e t h a t was o b t a i n e d argument  dur-  from d i r e c t  injury  signif-  ( B e l l and Hoar,  1950s  Table 18.  Tag sightings from October 1970 to July 1972, by sector.  Sector  1  2  Total Nos  0  18  34  1.03  1.80  Preference  0.00  3*  4  5  6  7  8  9  10  11  12  3  10  11  20  9  5  13  4  18  1.15  0.95  1.75  0.42  Chi-square = 31.0 with 11 d.f. P r o b a b i l i t y of randomness less than 0.001. *Sector i n which f i s h were caught.  1.03  0.57  1.29  0.47  0.95  56  Dunbar,  1959). t o s u b t l e b e h a v i o r a l and p h y s i o l o g i c a l  changes  ( f o r example, Hoar and  1959).  Robertson,  common p r a c t i c e I n c o n d i t i o n i n g f i s h  t o use  areas  cover  that  the  fish  Is to  ored  s e v e r a l environmental parameters along of  Saila  fish  curve  short by  generally find  as  could  inshore  and  simple  by  lying  t h i s may confer  a l s o be  the  of  a v i s u a l advantage The  1972; Peter-  t o be  temperature;  i n the  Pond,  12.  f a c t o r i n movement  out  be  upon  them f o r  r e s u l t s of t h i s  i n areas levels  field,  zone o f  (i.e., advantwater;  conceivably  well  of major  as import-  Rainbows h a v e b e e n shown  C  (Kuroki  could  feeding.  to  t r o u t damp t h e i r  18-19  could  s t u d y , as  capable of responding  and  mediated  into strongly-lit t r o u t and  of  Both l o n g  subdued l i g h t  i n d i c a t e t e m p e r a t u r e t o be  perimentally  'preferred'  fig  Concentrations  case f o r the  a n c e i n r e g u l a t i n g movement.  and  the  monit-  Importance;  o f f s h o r e movements c o u l d  i n shade, l o o k i n g  much l i t e r a t u r e ,  ey  of  in  some meas-  I h a v e a l s o f o u n d a marked v i s u a l  Temperature.  to a  with  i n s e v e r a l ways.  a t t r a c t i o n to  amount o f c o v e r ) . age  act  avoidance r e a c t i o n s . a  t h a t have  Peterson,  light  i f i t i s Indeed a r e a l  Lake f i s h ,  direct  light  i n areas that  studies  e t a l , 1971j  s i m i l a r i n shape t o t h a t  term  occur  (Groot  strong  (1972) on f i s h a c t i v i t y and c l o u d c o v e r w o u l d f i t  Light, Placid  Those p u b l i s h e d  activity  e t a l , 1972)  son's data a  in.  and  fish  ure  stay  i s to avoid,  It i s  0.1  ex-  C change i n  vertical  movements  e t a l , 1971;  MacCaul-  1971), w h i c h i n t u r n h a s a d e c i d e d  effect  upon  57  horizontal ranging  ( f i g 15A).  creases with temperature Oxygen. fish  Shelford  term  vertically  vertical  of P l a c i d  and  centrations largely  1962 j P h i l l i p s ,  those areas  16)  and  (i.e.,  found  i n the  the deeper  for regional  3-6  are not 1-3  c u e i n g on any  (which i s  largely by  sector  fixed character-  m a r e a s , on t h e o t h e r h a n d ,  l o g s and  Potamogeton  con-  factors).  m areas are  seem  beds.  t o l o g s and  Potamogeton beds  (1959) f o u n d t h a t t w i c e t h e number o f  Gurzeda  I n h a b i t i n g bottom  silt  were f o u n d  living  f o u n d marked s p e c i e s d i f f e r e n c e s ;  v e g e t a t e d areas t o have f o u r times found  i n barren areas.  complexity trout  of the plant  structure.  i n lakes to s e l e c t  on  Gerklng  the fauna Andrews and  (19^2) f o u n d t h a t t h e a b u n d a n c e o f a n i m a l s was  and  areas  reasons:  dry weight)  found  zone  are randomly d i s t r i b u t e d  are probably a t t r a c t e d  1) F o o d .  also  from  on t h e above p h y s l c o c h e m i c a l  Trout i n the  Fish  animals  Oxygen i s g e n -  w i t h i n an a c c e s s i b l e d e p t h  to c o n c e n t r a t e about  two  that  probably functions i n long  horizontal restriction  study, t r o u t  (table  istic).  and  1969).  (1913) d e m o n s t r a t e d  S u b s t r a t e may-act a s a cue  dependent  midwater  and  Allee  stratified  of f i s h  In t h i s  and  and  activity in-  Lake.  Substrate.  for  (Swift,  to a point,  r e a c t e d t o oxygen g r a d i e n t s i n t a n k s .  erally  in  Up  Finally,  (1962) (by numbers Hasler  related  Tuunafcnen  prey c h a r a c t e r i s t i c  submerged v e g e t a t i o n o v e r b e n t h i c p r e y .  plants,  A l l of  to  the  (1970)  of midwater these  58  conclusions 2)  appear a p p l i c a b l e to P l a c i d  Cover.  artificial  are  1956;  that  stream  and  i s t h e most  Bjornn,  1971t  as  other  Turner  In most c a s e s ,  p r e y abundances c o u l d  of  If sector  have found t h i s  t o be  substrate  preferences,  logs  and  the  the  If these p r e f e r r e d  not  examined  as  heavily  endowed  sectors  (fig l6).  A possible  are  Consider that, forced  from the  availability one  accepts  increasingly ingly  with  explanation  examined  steeper  of t h i s  a  fish, average  i s given  in  section.  E n e r g y L i m i t a t i o n by  are  select sectors  dive  carry  their  size,  solely  sectors  d e p e n d i n g on  next  so  r e s u l t s of the  preferred  Potamogeton, they a r e  sectors.  are  t o t h e i r morphometry, i t i s f o u n d t h a t  the  fish  have r i s e n ,  with respect  slopes  et  important c h a r a c t e r i s t i c  preferences  data remain confused; although of  freshwater  salmonids).  basis  mix  employed  scientific  M i t c h e l l , 1968;  1971).  Wickham,  cover  Morphometry. the  In t h e  f i s h e s , as w e l l as  H u n t e r and  a t t r a c t e d well before  (Hartman, 1963,  on  to a t t r a c t f i s h .  pelagic  K l i m a and  suggesting  for  and  (Lagler,  1969;  some f i s h e r i e s have  man-made s t r u c t u r e s h a v e b e e n shown t o a t t r a c t  marine n e r i t l c  al,  centuries,  structures  literature,  species  For  Lake.  Morphometry; at high littoral  temperatures and/or l i g h t , areas,  of prey, p a r t i c u l a r l y Kerr's  thesis  large prey  r a r e , and  couples  which have the the  organisms  growth  even i f t h e s e a r e  i t with the  highest  larger species.  (1971) t h a t s u s t a i n e d  decreasing  fish  If requires  Increas-  temperature  F i g . 16.  Cumulative percentage hypsographic curves by sector  (approximates average bottom  cross-section  of s e c t o r ) .  Circle  = s e c t o r 3.  Square  =  "  9» most s m a l l and medium flsh/m  Triangle =  "  5s most l a r g e fish/m  fewest f i s h  seen/m p  2  PERCENT  OF  SECTOR  AREA  60  tolerance  of larger f i s h  from t h e s h a l l o w s ) , fish,  the greater  (resulting  t h e end r e s u l t  t h e impact  of shallows  fish's  can  be a s o l u t i o n f o r t h e l a r g e r f i s h ,  in  by  be b e s t a steep  Fast  i s , i t i s necessary  feeding areas  can  and g r o w t h .  In P l a c i d  limitation  forays  upon  i n t o the  shallows  i f morphometry  f o r the f i s h  per-  t o maximize  and m i n i m i z e t i m e i n e n t r y and e x i t .  achieved slope  t i m e s away  i s that the l a r g e r the  the  mits i that  feeding  i n longer  i f a l i t t o r a l feeding area  time This  i s abutted  ( f i g 15B).  L a k e , t h e b a s i n g shape I n most a r e a s  efficient  forays  would  allow  fairly  other  l a k e s , b a s i n morphometry i s l e s s a m e n a b l e t o s u c h  strat-  egy.  F o r example, n e a r b y M a r i o n Lake h a s a d e p t h r a n g e  ident-  (0-7  i n t o the l i t t o r a l areas.  ical  to Placid  Lake  m), b u t a s u r f a c e a r e a  that  of Placid  L a k e , a n d a mean d e p t h  Placid  Lake,  Moreover, the m a j o r i t y  alised  i n the northwestern corner  only  the fish  lowest  recorded,  feeding  behavior  m  of the lake.  and s u g g e s t s t h a t i s limiting  that morphometrical r e s t r i c t i o n responsible  for this  result.  one-half  of the 3 +  n o t e s t h a t t h e g r o w t h r a t e s o f t h e two f i s h  eight  times  that of  area  i s loc-  Efford  (1969)  s p e c i e s a r e among  competition  growth.  In  and/or  I t i s suggested  o f movement c o u l d be e q u a l l y  61  SUMMARY  The  Impact  of a c t i v i t y  t h e i r n a t u r a l environment  on  the  i s examined  main o b j e c t i v e s were t o d e t e r m i n e ised  directly  activity ing  activity 1)  in activity,  p a t t e r n s , and  The  activity  together with  to determine  should  be  taken  values  1840  and  ular,  f u t u r e s t u d i e s should  t a g attachment  and  dusk p e r i o d s .  and  fall,  zones  in  The util-  seasonal  factors  controll-  to  in  The  of  and  thus  activity is well  r o u t i n e metab-  respectively.  Other  meth-  have c o n t r i b u t e d t o  to a c t i v i t y ;  in partic-  evaluate very c a r e f u l l y  (5  level  Placid  SDA  field  methodological  This estimate  going  min  Daily activity  Temperature,  important  expenditure  the  effects  behavior.  activity  m a i n t a i n home r a n g e s  the  fish  t h e r e was  i n summer.  3)  and  the energy  of annual  of energy  on  term  variable.  and  as  b e h a v i o r a l p r o b l e m s may  estimates  Short  (due  kCal/kg/yr  the  quite  daily  those  of energy  kCal/kg/yr  lower  2)  study.  t h e amount o f e n e r g y  r o u t i n e metabolism).  o d o l o g i c a l and  of  of f i s h  s m a l l movements c o u l d not be m e a s u r e d ,  literature  2500  of  490  about  metabolism  olism  in this  to determine  maximum e s t i m a t e  was  below the  budget  patterns.  shortcomings, field  energy  was  i n t e r v a l s ) was  found  decreased  a marked movement out  in spring  of the  Lake c u t t h r o a t were o b s e r v e d  light,  and  physicochemlcal  be  h i g h e s t d u r i n g t h e dawn  of a c t i v i t y  f o r p e r i o d s up  to  littoral to  t o 5 months.  oxygen l e v e l s  factors  appear to  i n determining  the  be depth  62  zones  that are accessible  fixed  cues f o r r e g i o n a l  cessible  and/or  ing  foraging  efficiency  ect  t h e summer  this  equally than  increased  is likely  cover.  due t o h i g h e r  Bottom  i n the l i t t o r a l  distribution  The r e s u l t s  S u b s t r a t e s may a c t a s  c o n c e n t r a t i o n s o f f i s h w i t h i n an a c -  depth zone; a t t r a c t i o n  availability  in  to f i s h .  slope,  by  food affect-  zone, might a l s o  aff-  of f i s h .  suggest that  indirect  effects  of a c t i v i t y ,  c a s e m o r p h o m e t r i c a l r e s t r i c t i o n o f movement, c a n be o r more i m p o r t a n t t o t h e f e e d i n g and g r o w t h  i s the d i r e c t  use o f e n e r g y f o r a c t i v i t y .  of f i s h  63  BIBLIOGRAPHY  Andrews, J.D., and A.D. H a s l e r . 1942. F l u c t u a t i o n s i n the animal p o p u l a t i o n s of the l i t t o r a l zone i n Lake Mendota. Wise. Acad. S c i . Arts L e t t . 34:137-148. Andrusak, H.A. , MS, 1968. I n t e r a c t i v e s e g r e g a t i o n between a d u l t d o l l y varden ( S a l v e l l n u s malma) and c u t t h r o a t t r o u t (Salmo c l a r k l c l a r k l ) i n s m a l l c o a s t a l B r i t i s h Columbia l a k e s . M Sc T h e s i s , U n i v e r s i t y of B r i t i s h C o l umbia, Vancouver. Andrusak H.A., and T.G. Northcote. 1970. Management impV ;•. l i c a t i o n s of s p a t i a l d i s t r i b u t i o n and f e e d i n g ecology of c u t t h r o a t t r o u t and d o l l y varden i n c o a s t a l B r i t i s h Columbia l a k e s . F i s h . Manag. P u b l . No. 13, B.C. F i s h W i l d l . Br., V i c t o r i a . ?  B a i n b r i d g e , R. i960. Speed and stamina i n three f i s h . Exp. B i o l . 37'129-153. B a i n b r i d g e , R. 1962. T r a i n i n g , J . Exp. B i o l . 39:537-555.  J.  speed, and stamina i n t r o u t .  B e l l , G.M., and W.S. Hoar. 1950. Some e f f e c t s of u l t r a v i o l e t r a d i a t i o n on sockeye salmon eggs and a l e v i n s . Can. J . Res. 28D:35-43. Bjornn, T.C. 1971. Trout and salmon movements i n two Idaho streams as r e l a t e d t o temperature, food, stream flow, cover, and p o p u l a t i o n d e n s i t y . Trans. Amer. F i s h . Soc.  100(3):423-438.  B l a x t e r , J.H.S., and W. Dickson. 1959. Observations on the swimming speeds of f i s h . J . Cons. Perm. I n t . E x p l o r .  Mer 24-472-479.  B r e t t , J.R. 1964. The r e s p i r a t o r y metabolism and swimming performance of young sockeye salmon. J . F i s h . Res. Bd. Can. 21 (5) .-1183-1226. B r e t t , J.R., M. H o l l a n d s , and D.F. A l d e r d i c e . 1958. The e f f e c t of temperature on the c r u i s i n g speed of young sockeye and coho salmon. J . F i s h . Res. Bd. Can. 15(4):  587-605.  C a s s i e , R.M. 1954. Some uses of p r o b a b i l i t y papers i n the a n a l y s i s of s i z e frequency d i s t r i b u t i o n s . Aust. J . Mar. Freshwat. Res. 5*513-522.  64  Dunbar, C.E. 1959. Sunburn In f l n g e r l i n g rainbow t r o u t . Prog. F i s h - C u l t . 2 1 ( 2 ) i ? ^ . E f f o r d , I.E., 1 9 6 7 . Temporal and s p a t i a l d i f f e r e n c e s i n phytoplankton p r o d u c t i v i t y i n Marion Lake, B r i t i s h C o l umbia. J . F i s h . Res. Bd. Can. 2 4 ( 1 1 ) ; 2 2 8 3 - 2 3 0 7 . E f f o r d , I.E. 1969. Energy t r a n s f e r i n Marlon Lake, B r i t i s h Columbia; with p a r t i c u l a r r e f e r e n c e to f i s h f e e d i n g . Verh. I n t e r n a t . V e r e i n . Limnol. 171104-108. Gerking, S.D. 1962. P r o d u c t i o n and food u t i l i z a t i o n i n a p o p u l a t i o n of b l u e g i l l s u n f i s h . E c o l . Monogr. 3 2 s 3 1 - 7 8 . Gurzeda, A. .1959. E c o l o g i c a l r e l a t i o n s between i n v e r t e b r a t e fauna and submerged v e g e t a t i o n . T r a n s 1 . OTS 6 3 - 1 1 3 5 1 , E k o l . P o l s k a (Ser. B ) - - S e l e c t e d A r t i c l e s , O f f i c e of Tech. Serv., U.S. Dept. Comm., Washington. Hartman, G.F. I963. Observations on b e h a v i o r of j u v e n i l e brown t r o u t i n a stream aquarium d u r i n g winter and s p r i n g . J . F i s h . Res. Bd. Can. 2 0 ( 3 ) : 7 6 9 - 7 8 7 . Henderson, H.F., A.D. H a s l e r , and G.G. Chipman. 1 9 6 6 . An u l t r a s o n i c t r a n s m i t t e r f o r use i n s t u d i e s of movements of f i s h e s . Trans. Amer. F i s h . Soc. 9 5 ( 4 ) : 3 5 0 - 3 5 6 . Hoar, W.S., and G.B. Robertson. 1959. Temperature r e s i s t ance of g o l d f i s h maintained under c o n t r o l l e d photoperiod. Can. J . Z o o l . 37i419-428. Hunter, J.R., and C.T. M i t c h e l l . 1968. F i e l d experiments on the a t t r a c t i o n of p e l a g i c f i s h t o f l o a t i n g o b j e c t s . J . Cons. Perm. I n t . E x p l o r . Mer 3 1 ( 3 ) : 4 2 7 - 4 3 4 . Hyatt, K.D. MS, 1 9 7 3 . B r i t i s h Columbia,  M Sc Thesis- : ( i n p r e p . ), U n i v e r s i t y of Vancouver. s  Jahn, L.A. 1966. Open-water movements of the c u t t h r o a t t r o u t (Salmo c l a r k l ) i n Yellowstone Lake a f t e r displacement from spawning streams. J . F i s h . Res. Bd. Can. 2 3 ( 1 0 ) : 1475-1485. J e n k i n s , T.M. 1970. S i e r r a Nevada Aquatic Research Laboratory, behavior and ecology. In Progress i n Sport F i s h e r y Research, Bur. Sport F i s h . W l l d l . Res. P u b l . 1 0 6 . J e n k i n s , T.M. MS,'1972. Behavior of rainbow t r o u t i n experi m e n t a l ponds. S i e r r a Nevada Research Laboratory, Bishop. K e r r , S.R. 1971. P r e d i c t i o n of f i s h growth e f f i c i e n c y i n nature.- J . F i s h . Res. Bd. Can. 28 (6) : 8 0 9 - 8 l 4 .  65  Klima, E.F., and D.A. Wickham. 1971. A t t r a c t i o n of p e l a g i c f i s h e s with a r t i f i c i a l s t r u c t u r e s . Trans. Amer. F i s h .  Soc. 100(1)i86-99.  K u r o k i , T., K. Kawaguchl, W. Sakamoto, and H, Watanabe. 1971. A new t e l e m e t r i c apparatus t o d e t e c t f i s h l o c a t i o n and i t s surrounding water temperature. B u l l . Jap. Soc. S c i . F i s h . 37(10)i964-977. Laevastu, T., and I . H e l a . 1970. F i s h e r i e s Oceanography. F i s h i n g News (Books), London. L a g l e r , K.F. 1956. Freshwater F i s h e r y Wm. C. Brown, Dubuque.  Biology.  2nd ed.  MacCauley, R.W., and W.L. Pond. 1971. Temperature s e l e c t i o n of rainbow t r o u t (Salmo g a l r d n e r l ) f i n g e r l i n g s i n v e r t i c a l and h o r i z o n t a l g r a d i e n t s . J . F i s h . Res. Bd. Can.  28(11)11801-1804.  MacCleave, J.D., and R.M. H o r r a l l . 1970. U l t r a s o n i c t r a c k i n g of homing c u t t h r o a t t r o u t (Salmo c l a r k l ) i n Yellowstone Lake. J.- F i s h . Res. Bd. Can. 27(4) :715-730. MacCleave, J.D., and G.W. LaBar. 1972. F u r t h e r u l t r a s o n i c t r a c k i n g and tagging s t u d i e s of homing c u t t h r o a t t r o u t (Salmo c l a r k l ) i n Yellowstone Lake. Trans. Amer. F i s h .  Soc. 101X177^4-54.  Madison, D.M., R.M. H o r r a l l , A.B. Stasko, and A.D. H a s l e r . 3.972. M i g r a t o r y movements of a d u l t sockeye salmon (Oncorhynchus nerka) i n c o a s t a l B r i t i s h Columbia as r e v e a l e d by u l t r a s o n i c t r a c k i n g . J . F i s h . Res. Bd. Can.  29(7):1025-1033.  Mann, K.H. 1967. The c r o p p i n g of the food supply, pp 243260. In S.D. Gerking (ed) The B i o l o g i c a l Basis of F r e s h water F i s h P r o d u c t i o n . B l a c k w e l l S c i . P u b l . , Oxford. M i l l e r , R.B.. 1945. F i s h e r i e s i n v e s t i g a t i o n of Great Bear Lake. F i s h . Res. Bd. Can., Northwestern F i s h . Invest., Ot tawa. M i l l e r , R.B. 1957. stream d w e l l i n g  Permanence and s i z e of home t e r r i t o r y i n cutthroat trout. J . F i s h . Res. Bd. Can.  M i l l e r , R.B. 1962. Toronto.  A Cool Curving World J.  I4(5)i687-691.  Longmans Canada,  Mundie, J.H. 1959. The d i u r n a l a c t i v i t y o f t h e l a r g e r i n v e r t e b r a t e s a t t h e s u r f a c e o f L a c l a Ronge, S a s k a t c h e w a n .  66  Can.  J . Z o o l . 37(5)'945-956.  M u r r a y , R.W. 1971. T e m p e r a t u r e r e c e p t o r s , pp 121-133. In W.S, Hoar and D . J . R a n d a l l (ed) F i s h P h y s i o l o g y , V o l V. Academic P r e s s , New Y o r k . N o r t h c o t e , T.G. 1967. The r e l a t i o n o f movements and m i g r a t i o n s t o p r o d u c t i o n i n f r e s h w a t e r f i s h e s , pp 315-344. In S.D. G e r k i n g (ed) The B i o l o g i c a l B a s i s o f F r e s h w a t e r Fish Production. Blackwell S c i . Publ., Oxford. P a r k e r , R.A., and A.D. H a s l e r . 1959. d i s p l a c e d c e n t r a r c h i d s . Copela  Movements o f some  1:11-18.  P e t e r s o n , D.A. 1972. B a r o m e t r i c p r e s s u r e and i t s e f f e c t on spawning a c t i v i t i e s of rainbow t r o u t . Prog. F i s h - C u l t .  34(2)1110-112.  P h i l l i p s , A.M. J r . 1969. N u t r i t i o n , d i g e s t i o n , and e n e r g y u t i l i z a t i o n , pp 391-423. In W.S. H o a r and D . J . R a n d a l l (ed) F i s h P h y s i o l o g y , V o l I. Academic P r e s s , New Y o r k . Podubbny, A.G., L.K. M a l i n i n , and m e t r i c a l o b s e r v a t i o n s of the tering fish. F i s h . Res. Bd. R i c k e r W.E. (ed) 1971. I.B.P. Handbook No. Oxford.  V.V. G a i d u k . 1970. Teleu n d e r - i c e b e h a v i o r of winT r a n s l . S e r . No. 1817.  F i s h P r o d u c t i o n i n F r e s h Waters. 3. 2nd e d . Blackwell S c i . Publ.,  S a n d e r c o c k , F.K. 1969. B i o e n e r g e t l c s of the rainbow t r o u t (Salmo g a i r d n e r l ) and t h e kokanee ( O n c o r h y n c h u s n e r k a ) p o p u l a t i o n s of M a r l o n Lake, B r i t i s h Columbia. Ph D T h e s i s , U n i v e r s i t y of B r i t i s h Columbia, Vancouver. S i e g e l , S. 1956. Nonparametric S t a t i s t i c s f o r the i o r a l Sciences. M c G r a w - H i l l , New Y o r k .  Behav-  S h e l f o r d , V.E., and W.C. Allee. 1913. The r e a c t i o n s o f f i s h e s to g r a d i e n t s of d i s s o l v e d atmospheric gases.  Exp.  Zool.  14:208-266.  J.  S t r e l ' t s o v a , S.V. 19?. A d a p t a t i o n o f c a r p and r a i n b o w t r o u t to d i f f e r e n t oxygen c o n t e n t s of the w a t e r . T r a n s l a t i o n r e p r i n t p r o v i d e d by T.G. H a l s e y , U n i v e r s i t y o f B r i t i s h Columbia, Vancouver. S w i f t , D.R. 1962. A c t i v i t y c y c l e s i n t h e brown t r o u t ( S a l m o trutta). I. F i s h feeding n a t u r a l l y . H y d r o b l o l . 20(3):  241-247.  S w i f t , D.R. 1964. trutta). 2.  A c t i v i t y c y c l e s i n t h e brown t r o u t (Salmo Fish a r t i f i c i a l l y fed. J . F i s h . Res. Bd.  Can. 21(l)il33-138.  v  67  T u r n e r , C.H., E . E . E b e r t , and R.R. G i v e n . reef ecology. C a l i f . P i s h Game B u l l .  1969. 146.  Man-made  T u u n a i n e n , P. 1 9 7 0 . R e l a t i o n s between t h e b e n t h i c f a u n a a n d two s p e c i e s o f t r o u t i n some f i n n i s h l a k e s t r e a t e d w i t h rotenone. Z o o l . Fenn. 7 ( l ) s 6 7 - 1 2 0 . Warren, C.E., a n d G.E. D a v i s . 1967. L a b o r a t o r y s t u d i e s on t h e f e e d i n g , b i o e n e r g e t l c s , a n d g r o w t h o f f i s h , pp 1 7 5 214. I n S.D. G e r k i n g ( e d ) The B i o l o g i c a l B a s i s o f F r e s h water F i s h P r o d u c t i o n . B l a c k w e l l S c i . Publ., Oxford. Webb, P.W. 1971. The swimming e n e r g e t i c s o f t r o u t . I . T h r u s t a n d power o u t p u t a t c r u i s i n g s p e e d s . I I . Oxygen c o n s u m p t i o n a n d swimming e f f i c i e n c y . J . Exp. B i o l .  55J489-520;521-540.  W i n b e r g , G.G. 1956. Rate o f m e t a b o l i s m and f o o d r e q u i r e m e n t s of f i s h e s . P i s h . R e s . Bd. Can. T r a n s l . S e r . No. 1 9 4 . Young, A.H., P. T y t l e r , P.G.T. H a l l i d a y , a n d A. M a c P a r l a n e . 1972. A s m a l l s o n i c t a g f o r measurement o f l o c o m o t o r behavior i n f i s h . J. Pish. B i o l . 4s57-65.  68  Appendix  1.  Sonar t a g  specifications.  Dimensions : Sonar t a g a l o n e  10 x  48  With  10 x  130  flotation  mm  Weight i Sonar t a g a l o n e ,  in a i r  10.3  With f l o t a t i o n / l e a d e r / h o o k , "  11  11  11  Sealant:  3 epoxy o r m a r i n e  Battery:  Eveready  Tag  Operating  Range:  0.25  Frequency: Pulse  Life: km  49  Circuitry:  Up  77  , i n water  varnish silver  t o 75  10.5 slightly  dips.  oxide  1.5Vj  165  ma-hr.  days.  + kHz  Repetition  Duty C y c l e :  EPX  in a i r  g  @ 5 C; 47  Rate:  approx. details  kHz  @ 20  a p p r o x . 20  C.  pps.  5%. a v a i l a b l e i n Henderson  e_t a l ,  1966.  +  69  Appendix  2.  Areas  f r e q u e n t e d by s o n i c - t a g g e d f i s h .  square squares  size approximately represent t o t a l  spent w i t h i n min). fish ate to  spent  squares  t h e most  individuals; Individual.  .  Numbers  within  n o . o f 5 min p e r i o d s  the square  Circled  66 m  Grid-  (x5 = c u m u l a t i v e n o . o f are those  time.  numbers  i n which the  Heavy o u t l i n e s i n parentheses  separ-  refer  •  1  G,H. TRACK NO. 8  J . TRACK NO. 10.1 J u l y 1-3, 1972  • . •  K. TRACK NO. 10.2 J u l y 1-3, 1972  L,M. TRACK NO. 11  N. TRACK NO. 12.1  J u l y 15-17, 1972  J u l y 29-31, 1972  0. TRACK NO. 12.2  p . TRACK NO. 12.3  J u l y 29-31, 1972  July  i  29-31, 1972  78  Appendix  3«  Methods o f c a l c u l a t i o n ism,  A. -for  and  Calculation 20.0  cm,  of  96  o f SDA,  routine  e s t i m a t e s of energy t o  metabol-  activity.  SDA.  g fish;  1 k C a l / g wet  w e i g h t assumed  (Winberg,  1956). (1) E n e r g y c o n t e n t o f f i s h -following  = 96  d a t a from S a n d e r c o c k  kCal (MS,  1969)  f o r rainbow  (2) A v e r a g e m o n t h l y e n e r g y I n t a k e = 0.8933 k C a l / m (3)  Average  monthly  fish  biomass  (4) A v e r a g e f e e d i n g l e v e l -following 0.58  = 1.53  2  2  (2)/(3) = 0.584  =  d a t a f r o m Warren and D a v i s  feeding  kCal/m  trout.  (1967) f o r f i s h a t a p p r o x .  level.  (5) SDA  level  as p r o p ' n  (6) SDA  o f 96  g trout  (7) A n n u a l SDA  = 240  o f body c o n t e n t = 0.21  = 20  (monthly)  kCal/mo  kCal/yr  f o r 96  g  trout  of Routine Metabolism  (RM).  = 2500 k C a l / k g / y r  B.  Calculation  -from Sandercock Mo J F M A M J J A S  0  N D  RM  (MS,  1969)  i n kCal/no of  4999/781 4395/754 4758/730 4514/704 3897/469 3758/307 3973/203 6016/196 4590/189 3492/182  3123/175 3124/169  f o r 18-25  fish  cm  rainbow  trout  (3+).  RM/fi  :6'.4 .5'. 8 6.5 6.4 8.3 12.2 19.6 30.7 25.2 19.2 17.8 18.5  A n n u a l r o u t i n e m e t a b o l i s m = 176.6  k C a l / y r = 1840 (for  kCal/kg/yr 96 g f i s h )  79  C. Energy to A c t i v i t y . -two separate o v e r a l l e s t i m a t e s : f i r s t assumes tagged f i s h expends the same energy as i f untagged by l o w e r i n g i t s a c t i v i t y l e v e l ; second assumes same a c t i v i t y and thus i n c r e a s e d energy. Slopes taken from f i g 8, Y - i n t e r c e p t adusted t o zero t o re-: move e f f e c t of standard metabolism? (1)  a) l o g Y = 0.14470V  b) l o g Y = 0.10737V Y is 0  2  uptake i n mg/kg/hr, V i s speed i n m/min.  - B r e t t ' s (1964) o x y c a l o r i f i c e q u i v a l e n t assumed (4.75 C a l / 1 0 2 ) to convert t o kCal/kg/min: (2) E = 5.38 x 10" x Y 7  E i s energy of a c t i v i t y  i n kCal/kg/min  -computer a c c o u n t i n g program a p p l i e d these equations t o f i e l d v e l o c i t i e s i n 0.1 m/min s t e p s , times the no. of min spent a t each v e l o c i t y increment, and summed the r e s u l t s to g i v e : (3) T o t a l energy over t r a c k -computer then d i v i d e d (3) by the t o t a l no. of min i n the t r a c k and m u l t i p l i e d by 1440 t o g i v e : (4)  T o t a l energy of a c t l v i t y / 2 4 h r  - a l l t r a c k s were processed and the t r a c k showing maximum value of (4) was s e l e c t e d and m u l t i p l i e d by 365 to g i v e : (5) Max,yrly e s t (max t r a c k v a l u e ) - a l l t r a c k s were grouped by season group t o g i v e :  and (4)  averaged f o r each  (6) Average d a l l y : e s t by season: Spring Summer Fall -values i n (6) were m u l t i p l i e d by the a p p r o p r i a t e no. of days and summed t o g i v e : (7) Average energy t o a c t i v i t y d u r i n g non-ice period. - f a l l v a l u e times the no. of days i n w i n t e r , p l u s (8) Y e a r l y energy to a c t i v i t y  (7)  gave:  80  Appendix 4 .  Actual values  of estimates  of energy t o  activl  ENERGY  BUDGET FOR  2 0 CM  ONLY  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = C** SONAR TRACK NO 1* AUG T O T A L ENERGY OF A C T I V I T Y = Q_t_3_2_5 1152E 01 T O T A L NO OF M I N U T E S (M) T R A C K E D = 3480  _ 0 0  T O T A L ENERGY. OF. A C T I V I T Y ../. .24 HRS ...„,. > 0 . 1 3 4 5 3 Q 4 E 01 H n TOTAL ENERGY OF A C T I V I T Y OVER TRACK * TRACK NO AND DATE = SONAR TRACK NO 2* SEPT g T O T A L ENERGY OF A C T I V I T Y = 0•6314969E-01 «..; TO T A L... N 0 0 F.... M I N U T E S (M) TRACKED...?..- 2.8 8 5  25-27  1971 __  9  TOTAL ENERGY OF A C T I V I T Y JLt3JL£ZQ_L2E=ill_  g W. 2  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND. DATE = SONAR TRACK NO . 3* OCTOBER ..8.-11. .1971 T O T A L ENERGY OF A C T I V I T Y = 0 . 1 0 0 6 0 3 3 E 00 TOTAL NO OF M I N U T E S (M) T R A C K E D = 5130  h1  W W  J3_ $  T O T A L ENERGY OF A C T I V I T Y 0*2823954E-Q1  / 24  1 9 - 2 1 1 9 7 1 (2Q»5  / 24  HRS  HRS  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 4 * OCT 2 2 - 2 5 T O T A L ENERGY OF A C T I V I T Y = 0 a 1266821E-01 T O T A L NO OF M I N U T E S (M) T R A C K E D = 2135 TOTAL ENERGY OF 0.8544372E-02  ACTIVITY  / .24... HRS.  _  1971  CM!  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK. NO AND ..DATE .= SONAR. TRACK . NO. 5*. NOV .27-29 T O T A L ENERGY OF A C T I V I T Y = 0 . 1 1 3 1 7 7 6 E 00 T O T A L NO OF M I N U T E S (M) TRACKED = 4385 TOTAL ENERGY OF A C T I V I T Y 0.3716666E-01  / 24  1971  HRS  • " j o t AL~ ENERGY OF ACT I V i ' n ' o V E R " TRACK ~ TRACK NO AND DATE = SONAR TRACK NO 6*- MAY 6-8 1 9 7 2 TOT A L — E N E R G Y OF A C L I V I T Y = QjLg2A5_18QE-ai T O T A L NO OF M I N U T E S (M) TRACKED = 3875 CM '  T O T A L . ENERGY OF A C T I V I T Y 0 i3'420763E-01  / 2 4 HRS  CD  . TOTAL- ENERGY 0 F A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 7* MAY 27 1 9 7 2 T O T A L ENERGY OF A C T I V I T Y = Q.00000O0E 00 . . TOTAL NO OF M I N U T E S (M) TRACKED = 0 .. TOTAL ENERGY OF A C T I V I T Y / 24 0.Q0QQQ00E 00 .  HRS  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 8*. J U N E T O T A L ENERGY OF A C T I V I T Y = 0«1824971E 00 T O T A L NO OF M I N U T E S (M) TRACKED = 4585 TOTAL ENERGY OF A C T I V I T Y 0t5731643E-01  / 24  HRS  3-5  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK. NO AND. DATE =... SONAR. TRACK NO.9* J U N E 1 7 - 1 9 1 9 7 2 T O T A L ENERGY OF A C T I V I T Y = 0 . 3 2 0 8 2 1 8 E 00 T O T A L NO OF M I N U T E S (M) T R A C K E D = 4650 T O T A L ENERGY OF A C T I V I T Y 0.9935128E-01  / 24  HRS  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 0 . 1 JULY T O T A L FNFRGY OF A C T I V I T Y = Q » ? 8 7 4 5 4 1 £ QQ T O T A L NO OF M I N U T E S <M) T R A C K E D = 3460 TOTAL ENERGY OF A C T I V I T Y 0 . 1 1 9 6 3 4 0 E 00  / 24. HRS  __  1-3 1 9 7 2  .  _ -  oo —T-OJ-AL ENERGY OF ACT-I-V-IXY—Q-VE-R—XRACIC — TRACK NO AND DATE = SONAR TRACK NO 1 0 . 2 * J U N E 3 0 - J U L Y T O T A L ENERGY OF A C T I V I T Y = 0 . 2 2 5 8 0 4 7 E 00 TOTAL NO OF M I N U T E S (M) TRACKED. = . 5 6 7 0 T O T A L ENERGY OF A C T I V I T Y Qt5734723E^Ql_:  / 24  HRS :  :  :  T O T A L ENERGY OF A C T I V I T Y OVER TRACK . TRACK NO AND DATE = SONAR TRACK NO . 11 • 1* ... JULY.. 1 5 - 1 7 T O T A L ENERGY OF A C T I V I T Y = 0 . 0 0 0 0 0 0 0 E 00 T O T A L NO OF M I N U T E S (M) T R A C K E D = 715 T O T A L ENERGY OF A C T I V I T Y 0 . 0 0 0 0 0 0 0 E 00  / 24  HRS  : 2 1972  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO. AND DATE .= .SONAR ...TRACK. NO 1 1 . 2 * J U L Y TOTAL ENERGY OF A C T I V I T Y = 0• 3498938E-Q-1 T O T A L NO OF M I N U T E S (M) T R A C K E D = 3070 TOTAL ENERGY OF A C T I V I T Y / 24 0.1641196E-01  HRS  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 2 * 1 * J U L Y T O T A L ENERGY OF A C T I V I T Y = 0.5202777E-01 T O T A L NO OF M I N U T E S (M) T R A C K E D = 4675 -3-  ..TOTAL ENERGY OF A C T I V I T Y 0.1602566E-01  15-17  / 24 HRS  29-31 1972  _  •  _  oo  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 2 . 2 TOTAL ENERGY OF A C T I V I T Y = 0 . 2 6 8 1 7 1 0 E 00 . TOTAL, NO OF ..MINUTES. ( M ) T R A C K E D . =. .. 3 1 4 5 TOTAL ENERGY OF 0 . 1 2 2 7 8 7 3 E 00  A C T I V I T Y / 24  HRS .  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND, DATE = SONAR TRACK NO 1 2 . 3 T O T A L ENERGY OF A C T I V I T Y = 0•7653787E-01 T O T A L NO OF M I N U T E S (M) T R A C K E D = 5185 T O T A L ENERGY OF A C T I V I T Y 0.212564IE-01  / 24  HRS  .  _....„  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO. AND... DATE = SONAR,.TRACK ..NO... 13 • 1 T O T A L ENERGY OF A C T I V I T Y = 0.3579148E-Q1 T O T A L NO OF M I N U T E S (M) TRACKED = 4440 TOTAL ENERGY OF A C T I V I T Y 0«1160804E-01  / 2 4 HRS  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 3 . 2 TQTAL_EJ1E^GY_^£_AC-T-1VITY  T O T A L NO OF M I N U T E S  -  QLMJLZJJJ?.33E-Q  <M) T R A C K E D  =  1  3645  2)  TOTAL..ENERGY OF A C T I V I T Y 0.8755490E-02  .  TOTAL FNFHGY^.E^£JUJ^I^Y_QA/-E£_Ti(A£K TRACK NO AND DATE = SONAR TRACK NO 1 3 . 3 T O T A L ENERGY OF A C T I V I T Y = 0.9134152E-02 ..TOTAL NO. OF ..MINUTES ( M ). TRACKED. = 6 8 9 G TOTAL ENERGY  / .24 HRS  OF A C T I V I T Y / 2 4 HRS  0.1909024E-02  „...  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK. NO AND.DATE =. SONAR TRACK NO 1 3 . 4 . T O T A L ENERGY OF A C T I V I T Y = 0 . 1 2 7 5 0 6 4 E - 0 1 T O T A L NO OF M I N U T E S (M) TRACKED = 3245 TOTAL ENERGY OF A C T I V I T Y 0.5658223E-02  / 2 4 HRS  AUG 1 2 - 1 4 ..1972  TOTAL ENERGY OF A C T I V I T Y OVER TRACK ... TRACK,NO. AND DATE =. SONAR. TRACK NO . 13 • 5 .. TOTAL ENERGY OF A C T I V I T Y = O.OQOOOOOE 0 0 T O T A L NO OF M I N U T E S t M) TRACKED = 845 TOTAL ENERGY OF A C T I V I T Y Q . Q 0 0 Q 0 0 0 E 00  / 24 HRS.  T O T A L ENERGY OF A C T I V I T Y OVER T R A C K * TRACK NO AND DATE = SONAR TRACK NO 1 3 . 6 TOTAL ENERGY OF A C T I V I T Y = CL.Q000Q00E QO T O T A L NO OF M I N U T E S (M) TRACKED = 1300  MO cc  ..TOTAL ENERGY. OF A C T I V I T Y / .24. HRS 0 . 0 0 0 0 0 0 0 E 00 MAX Y E A R L Y E S T . (MAX T R A C K V A L U E ) 491.  ^  '. __  _  AVERAGE SEASONAL VALUES S P R I N G = .. .0.. 4 7 7 1 8 8 3 E-0 1. SUMMER = 0 . 1 2 3 3 3 5 4 E 00 FALL = 0.2636767E-01 AVERAGE  ENERGY  .YEARLY ENERGY  TO A C T I V I T Y TO A C T I V I T Y  DURING  NON-ICE PERIOD  ( M I N . YRLY E S T . ) =  (MAX ... E S T . ) . =.. .0 . 169 386 2E 02.  0.1295710E .  02  ENERGY  BUDGET FOR  20 CM  ONLY  T O T A L ENERGY OF A C T I V I T Y OVER TRACK. TRACK NO AND DATE = C** SONAR TRACK NO 1* AUG T O T A L ENERGY OF A C T I V I T Y = 0.1068083E 01 • T O T A L NQ—OF—M4-NUT ES ^ t - W \ a - E 4 M 3-48-0 U g  T O T A L ENERGY OF A C T I V I T Y • G . 4 4 1 9 6 5 6 E 00 -  §} w W  ^  HRS -- - .  • •  _  T O T A L ENERGY OF A C T I V I T Y 0.2714553E-01  •  / 24  .  HRS —  :  •  ^ >. £ ^  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 3* OCTOBER - T O T A L - E N E R G Y OF- A C T I V I T Y = 0 . 9 3 30 5 4 2 E - 0 1 — T O T A L NU OF M I N U T E S (M) T R A C K E D = 5130  jsj <  TOTAL—&N-&R6-Y—OF 0.2619099E-01  -  ••  f  _  g  ACTWTY  / 24 HRS  :  —  8-11 1971 —  TOTAL ENERGY OF A C T I V I T Y / 24 0 « 8 2 8 7-0 7 5 E - 0 2 - -  HRS .-. -  -  •  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 4* OCT 2 2 - 2 5 TOTAL ENERGY OF A C T I V I T Y = 0.1228674E-01 _ _T-aTA-l^-G-G-F—^14^ 2-1^5 • -  CM)  TOTAL ENERGY OF A C T I V I T Y OVER TRACK _Jr4^A-C4^ ^a-A^D-^A^ NO 2-^-SE-RT—25-27 1 9 7 1 ' T O T A L ENERGY OF A C T I V I T Y «= 0. 54 38 53 3 E - 0 1 T O T A L NO OF M I N U T E S (M) T R A C K E D = 2885  W  £•  / 24 -  1 9 - 2 1 1 9 7 1 (20§5  ,  :  — -• 1971 :  . -  -  --  _  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO.5* NOV 2 7 - 2 9 1 9 7 1 TOTAL ENERGY OF A C T I V I T Y = - 0 . 9 3 7 0 6 3 2 E - Q 1 - -T O T A L NO OF M I N U T E S (M) T R A C K E D = 4365  T OTAb-£N&*G¥-Gf^-A€+^W  •  :  •  0.3077242E-01. T O T A L ENERGY -OF- A C T I V I T Y OVER TRACK ~ TRACK NO AND DATE = SONAR TRACK NO 6* MAY 6-8 1 9 7 2 TOTAL ENERGY OF A C T I V I T Y 0.7182145E-G1 — T O T A L NQ-G^^TN-U-T-E-S-4K-)^^-ACK^^-= 3^7-5 TOTAL ENERGY OF A C T I V I T Y 0.2668977E-Q1 co °°  / 24 HRS ---  T O T A L ENERGY OF A C T I V I T Y OVER TRACK T-R-AC-K NO AND DATE - SWA-R-^ffiA-CK NO 7*—MAY 2 7 19 7 2 TOTAL ENERGY OF A C T I V I T Y = O.OQOOOOOE 0 0 TOTAL NO OF M I N U T E S (M) T R A C K E D = 0 TOTAL ENERGY OF A C T I V I T Y O.OQOOOOOE 00  / 24 HRS  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 8* J U N E 3-5 TOTAL ENERGY OF A C T I V I T Y = G . 1 5 G 0 0 5 5 E 0 0 TOTAL NO OF M I N U T E S (M) T R A C K E D = 4585 TOTAI E-NERGY OF A C T I V I T Y 0.4711186E-01  / 2 4 HRS  .  .  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 9* J U N E 1 7 - 1 9 1 9 7 2 T O T A L ENERGY OF A C T I V I T Y = 0 • 229 3 5 4 6 E •• 0 0 — - - •-— TOTAL NO OF M I N U T E S (M) T R A C K E D = 4650 j p O I A l - & N € R G Y OF ACT-I-V4-T-Y—/ 0.7102596E-Q1  24 HRS  TOTAL ENERGY OF A C T I V I T Y OVER- T R A C K - — — --TRACK NO AND DATE = SONAR TRACK NO 1 0 . 1 J U L Y 1-3 1 9 7 2 TOTAL ENERGY OF A C T I V I T Y = 0.1801899E 00 T-OT-A-I N-G-G-F—J4-lMUT-££—(444—T-RACK-EO-s 3-44-Q TOTAL ENERGY OF A C T I V I T Y • 0.7499234E-Q1 -  / 24  HRS -  • -  TOTAL ENERGY OF A C T I V I T Y OVER TRACK —: TRACK- NO A-N-S—DAT-E—=—&QUAR—T-RA-CK^.Q—1-0^-2-*—J4JN TOTAL ENERGY OF A C T I V I T Y = 0 . 2 1 1 6 5 2 0 E OQ • TOTAL NO OF M I N U T E S (M) T R A C K E D = 5670 TOTAL ENERGY OF 0.5375289E-01  ACTIVITY  / 24  HRS  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 1 . 1 * J U L Y •-- TOTAL- ENERGY OF A C T I V I T Y = -0 • OOOOQOOE 0 0 _ TOTAL NO OF M I N U T E S (M) T R A C K E D = 715 TQ-TA4-—£-N-£-R-GY OF A C W I T Y / 24 0 . 0 0 0 0 0 0 0 E 00  laJDLY  HRS  15-17  2 19 72-  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 1 . 2 * J U L Y 1 5 - 1 7 T O T A L - E N E R G Y OF A C T I V I T Y = 0.2173467E-01 T O T A L NO OF M I N U T E S (M) T R A C K E D = 3070 •  TOTAL—E-N-E-R-G-Y OF A C 4 ^ A ^ W - / - 2 4 - H f t 6 0.1019476E-Q1  --  :  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 2 . 1 * J U L Y 2 9 - 3 1 1 9 7 2 T O T A L ENERGY OF A C T I V I T Y = 0.4407317E-G1 — T O T A L NQ-Q-F—M-HMUTE-S—1-M ) T R A 6 K £ B — « 4^6-7-5 — • • o :  T O T A L ENERGY OF A C T I V I T Y 0.1357548E-01—  / 24 HRS -  ~-- --  -  -  TOTAL ENERGY OF A C T I V I T Y OVER TRACK • T-RA-CK NO A-KB—B-A-T-E— —S-ON-AR—T-R-A-CK;—NO—Hi-r-2 T O T A L ENERGY OF A C T I V I T Y = 0.8949941E-01 T O T A L NO OF M I N U T E S (M) TRACKED = 3145 B  T O T A L ENERGY OF A C T I V I T Y 0.4097905E-01  / 24  HRS  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 2 . 3 T O T A L ENERGY OF ACT I V I TY-= • -0• 5 1 0 5 6 3 8 E - Q 1 TOTAL NO OF M I N U T E S (M) T R A C K E D = 5185 -WT-A-i E-N-E-R&-Y— OF ACTI-VITY / 2 4 H-R-a 0. 1 4 1 7 9 5 9 E - 0 1  -  •  T O T A L ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 3 . 1 * AUG 1 2 - 1 4 1 9 7 2 • T O T A L ENERGY CF A C T I V I T Y = 0 . 3 5 0 6 20 5 E - 0 1 - — - _ T O T A L NO OF M I N U T E S (M) T R A C K E D = 4440 T^TA-L-E-N-E-RG-Y OF A C T I V I T Y 0.1137147E-01 -  / 24 H-R-S  •  •  - TOTAL ENERGY OF ACT IVI-T-Y - 0 V ER- -TRACK TRACK NO AND DATE' = SONAR TRACK NO 1 3 . 2 T O T A L ENERGY OF A C T I V I T Y = 0•1920511E-01 T-OT-AL . tiO—QF-^IJUUT-E-S (M) T R A C K E D =. 364-5  : .  TOTAL ENERGY OF A C T I V I T Y 0.7587205E-02 -  / 24  r  HRS - -  —-  T O T A L ENERGY OF A C T I V I T Y OVER TRACK T^CK—kM^ T O T A L ENERGY OF A C T I V I T Y = 0.8608108E-02 T O T A L NO OF M I N U T E S (M) T R A C K E D = 6890 TOTAL ENERGY OF 0.1799081E-02  ACTIVITY  / 24  HRS  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 3 . 4 T O T A L ENERGY OF A C T I V I T Y - = • 0. 1 2 0 4 1 7 4 E - 0 1 T O T A L NO OF M I N U T E S (M) T R A C K E D = 3245 T O T A L ENEftG-Y—Q-F—A C T I V I T Y 0.5343642E-02  / 24  HR&  -  ----  —  - •  -  -  TOTAL ENERGY OF A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO I 3 a 5 TOTAL ENERGY OF A C T I V I T Y = • O.OOOOOOOE 00 TOTAL NO OF MINUTES (M) T R A C K E D = 845 W - A L - E - N - ^ Y - - & F - ^ £ W K - Y - y - 2 V HRS O.OOOOOOOE 00  —  :  —  T O T A L - E N E R G Y OF- A C T I V I T Y OVER TRACK TRACK NO AND DATE = SONAR TRACK NO 1 3 . 6 TOTAL ENERGY OF A C T I V I T Y = O.OOOOOOOE 00 T ^ A 4 = - N O - & F - N H H N U-T-E-S—f M4—TR-A-C-K-£D-= 1-34-0-  g»  TOTAL ENERGY OF 0 . 0 0 0 0 0 O O E -00 MAX Y E A R L Y E S T . 161.  ACTIVITY  /  24  ~— (MAX  TRACK  =  —  VALUE)  AVERAGE SEASONAL VALUES SPRING = 0.3620690E-01 SUMMER = - 0 . 4 8 2 6 7 1 7 E - Q 1 FALL  HRS  -—  -  -  0.2309900E-01  AV-£RAGE—4£^£R-G-Y—T-^ YEARLY  ENERGY TO A C T I V I T Y  0-.-T3-034-94E--G-1 (MAX.  EST.)  =  0.1079114E  02  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0101400/manifest

Comment

Related Items