UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A lysimeter study of domestic waste water renovation by forest soil filtration Khor, Chin Choon 1973

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1973_A6_7 K46_7.pdf [ 4.04MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0101362.json
JSON-LD: 1.0101362+ld.json
RDF/XML (Pretty): 1.0101362.xml
RDF/JSON: 1.0101362+rdf.json
Turtle: 1.0101362+rdf-turtle.txt
N-Triples: 1.0101362+rdf-ntriples.txt
Original Record: 1.0101362 +original-record.json
Full Text
1.0101362.txt
Citation
1.0101362.ris

Full Text

c A LYSIMETER STUDY OF DOMESTIC WASTE WATER RENOVATION BY FOREST SOIL FILTRATION BY CHIN CHOON KHOR B. Sc., N a t i o n a l Chung Hsing U n i v e r s i t y , Taiwan, 1969 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of SOIL SCIENCE We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1973 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood t h a t c o p y i n g or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department o f The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada Date ABSTRACT Laboratory lysimeters were used to investigate the be- haviour, over time, of a humid west coast f o r e s t s o i l under intermittent primary municipal waste water i r r i g a t i o n . Mineral s o i l packed to a depth of 69 cm and to a uniform density of 3 about 0 . 9 gm per cnr was covered with a forest f l o o r 9 cm thick. Sintered glass bead tensiometers were used to gauge the water potential d i s t r i b u t i o n s i n the s o i l lysimeters. I r r i g a t i o n and drainage systems were designed to maintain constant rates of waste water application and f a c i l i t a t e measurement of drainage rates. Two groups of s o i l lysimeters each with t r i p l i c a t e sam- ples, were loaded with waste water at the rates of 0 , 2 3 cm per 3 3 day ( 37 cnr per day ) and 0.^7 cm per day ( 75 cnr per day ) fo r a period of 9 months. The s o i l lysimeters were incubated at a temperature of about 15^5 degrees Centigrade. The t o t a l amounts of nitrogen added to both groups of s o i l lysimeters were 2 2 3 . 7 gm and 4-36.9 gm or equivalent to l.k % and 2 .7 % of the t o t a l nitrogen of the o r i g i n a l s o i l , respectively. Renova- tions of wastewater i n terms of nitrogen were 75 % and 4-3 % with respect to the two groups of s o i l lysimeters. Renovations i n terms of phosphorus were more than 99 % i n both groups of s o i l lysimeters. Retention of nutrients by the s o i l was i n - creased with time under favourable aerobic cnnditions. Uptake of nutrients by vegetation i n the f i e l d would minimize leaching losses. Results from t h i s experiment indicated no s i g n i f i c a n t changes i n the physical and chemical behaviour of the s o i l s . Proper design of the waste water i r r i g a t i o n system i n terms of i i i l o a d i n g w o u l d m a x i m i z e t h e e f f i c i e n c y o f r e n o v a t i o n w i t h o u t d e t e r i o r a t i n g t h e b e h a v i o u r o f t h e s o i l s . TABLE OF CONTENTS Page ABSTRACT i i LIST OF TABLES' .... v i LIST OF ILLUSTRATIONS v i i i ACKNOWLEDGEMENT x INTRODUCTION • 1 RESEARCH METHOD AND MATERIALS 7 M a t e r i a l s and Sampling 7 Lysimeter C y l i n d e r Apparatus & P r e p a r a t i o n and Packing of S o i l Sample 10 Incubation of the S o i l 10 Wastewater A p p l i c a t i o n and Drainage Water .... 13 Sampling 13 S o i l P h y s i c a l Analyses 13 A. Hy d r a u l i c C o n d u c t i v i t y 12 B. Water R e t e n t i o n C h a r a c t e r i s t i c s 14 C. Bulk Density 16 Water and S o i l Chemical Analyses ............. 17 RESULTS AND DISCUSSION 13 Water Balance 18" N u t r i e n t Concentrations i n Water 20 N i t r o g e n Balance i 22 Carbon Balance 24 Phosphorus Removal 29 P h y s i c a l P r o p e r t i e s of the S o i l System 31 Water R e t e n t i o n P r o p e r t i e s 31 V Page Saturated H y d r a u l i c C o n d u c t i v i t i e s ......... 31 P h y s i c a l Changes Occuring During Incubation 3 5 CONCLUSIONS 40 IJ ITillR A 1 U R.1L CXI ED o » o o * » o * * e * * o * « e o o o o o e « * « o o * * a « * A* 3 APPENDIX 49 V i LIST OF TABLES Table Page 1. Concentrations and Amount of N i n Wastewater A p p l i e d to Lysimeters 1, 2, and 3 50 2A. Concentrations and Amount of N i n Drainage Water from Lysimeter 1 51 2B. Concentrations and Amount of N i n Drainage Water from Lysimeter 2 52 2C. Concentrations and Amount of N i n Drainage Water from Lysimeter 3 53 3 . Concentrations and Amount of N i n Wastewater A p p l i e d to Lysimeters 4* 5, and 6 54 4A. Concentrations and Amount of N i n Drainage Water from Lysimeter 4 55 4B. Concentrations and Amount of N i n Drainage Water from Lysimeter 5 56 4C. Concentrations and Amount of N i n Drainage Water from Lysimeter 6 57 5 . Concentrations and Amount of t o t a l S o l u b l e P i n Wastewater and Drainage Water i n Lysimeters 1, 2, and 3 » 53 6. Concentrations and Amount of t o t a l S o l u b l e P i n Wastewater and Drainage Water i n Lysimeters 4, 5, and 6 59 7 . Chemical and P h y s i c a l P r o p e r t i e s of the O r i g i n a l S o i l and the Treated S o i l i n Lysimeter 3 60 v i i Table Page 8. Chemical and P h y s i c a l P r o p e r t i e s of both the O r i g i n a l and Treated S o i l s i n Lysime- t e r 4 61 9. M a t r i c P o t e n t i a l vs Volumetric Water Content i n Lysimeter 1 62 1 0 . M a t r i c P o t e n t i a l vs Volumetric Water Content i n Lysimeter 6 63 1 1 . M a t r i c P o t e n t i a l vs Volumetric Water Content of the O r i g i n a l S o i l 64 1 2 . Saturated H y d r a u l i c C o n c d u c t i v i t y of Both the O r i g i n a l and Treated S o i l s 65 LIST OF ILLUSTRATIONS Figure Page 1. Porous P l a t e Assembly 9 2. I r r i g a t i o n System 11 3. Measurement of Energy Status i n the Lysimeter During Incubation 12 4. Steady-state Method of Measuring Saturated H y d r a u l i c C o n d u c t i v i t y 15 5. P a r t i a l Water Balances f o r Lysimeters 1, 2 3. and 4, 5, 6 19 6. Concentrations of N i n Wastewater and Drainage Water 21 7. T o t a l Nitrogen Balances f o r Lysimeters 1, 2, 3 and 4, 5, 6 . 23 ct. D i s t r i b u t i o n of T o t a l Nitrogen i n the S o i l P r o f i l e . 25 9. D i s t r i b u t i o n of T o t a l Carbon i n the S o i l . P r o f i l e 27 10. Concentrations of P i n Wastewater and Drainage Water 30 11. Water Retention Curve of the O r i g i n a l S o i l 32 12. Water Retention Curve of Lysimeter 1 ... 33 13. Water Retention Curve of Lysimeter 6 ... 34 14. Saturated Hydraulic C o n d u c t i v i t y ....... 36 15. Changes of T o t a l Water P o t e n t i a l w i t h Time and Depth f o r the Forest S o i l During Incu- b a t i o n i n Lysimeter 1 3$ i x F i g u r e Page 16. Changes of T o t a l Water P o t e n t i a l w i t h Time and Depth f o r the Forest S o i l During Incu- b a t i o n i n Lysimeter 4 39 ACKNOWLEDGMENTS The w r i t e r i s indebted to Dr. Jan de V r i e s f o r h i s support, suggestions and c r i t i c i s m s during the course of the research and pre p a r a t i o n of t h i s manuscript. The w r i t e r i s a l s o deeply indebted to Dr. T. M. B a l l a r d f o r h i s a s s i s t a n c e and advice during the progress of t h i s study. S p e c i a l thanks are a l s o extended to Dr. C. A. Rowles and Dr. T. A. Black f o r t h e i r k ind a s s i s t a n c e . The f i n a n c i a l support from the Department of the Environment, Canada i s a l s o g r a t e f u l l y acknowledged. INTRODUCTION The p r a c t i c e of r e l e a s i n g wastewater from domestic, i n - d u s t r i a l and a g r i c u l t u r a l sources to r e c e i v i n g waters has con- t r i b u t e d s i g n i f i c a n t l y to water q u a l i t y problems. These pro- blems have drawn not only the a t t e n t i o n of the p u b l i c , but al s o that of the government which considers water p o l l u t i o n as one of the top environmental q u a l i t y problems. The v a r i o u s methods that are used to cope w i t h t h i s problem i n v o l v e the r e d u c t i o n of chemical and b i o l o g i c a l m a t e r i a l s , contained i n the waste, to environmentally t o l e r a b l e l e v e l s . Chemical, b i o l o g i c a l and p h y s i c a l means of treatment, s e p a r a t e l y or i n combination, are g e n e r a l l y used to remove n u t r i e n t s , d i s s o l v e d minerals and organic matter from wastewater. Three processes of conventional treatments of wastewater wi t h d i f f e r e n t degrees of p u r i f i c a t i o n are c u r r e n t l y i n prac- t i c e . They are primary, secondary and t e r t i a r y treatments. Primary treatment i n c l u d e s such methods as screening, skimming, sedimentation and lagooning t o remove part of the coarse, f l o a t a b l e and suspended s o l i d s from the wastewater. Secondary treatment i s employed to f u r t h e r remove most of the remaining s o l i d s from the primary t r e a t e d wastewater. Several methods i n use i n v o l v e f i l t r a t i o n , a c t i v a t e d sludge and aerated s t a b i l i z a - t i o n b a s i n s . N u t r i e n t removal i n these processes i s l i m i t e d . The t e r t i a r y treatment i s , t h e r e f o r e , an advanced step of the secondary treatment and i s designed to remove n u t r i e n t s and d i s s o l v e d minerals from the t r e a t e d water. The methods u s u a l l y employed are photosynthetic s t a b i l i z a t i o n , chemical p r e c i p i t a - 2 t i o n , i o n exchange, d i s t i l l a t i o n , e l e c t r o d i a l y s i s , f r e e z i n g , reverse osmosis and u l t r a f i l t r a t i o n . Wastewater f i l t r a t i o n w i t h f i e l d s o i l s represents a com- b i n a t i o n of chemical, b i o l o g i c a l and p h y s i c a l methods f o r the treatment of wastewater. I t i s t h e r e f o r e considered as a pro- cess of t e r t i a r y treatment due to the e f f e c t i v e n e s s i n removal of n u t r i e n t s and d i s s o l v e d minerals from the wastewater. Waste water f o r l a n d i r r i g a t i o n should r e c e i v e primary or secondary treatment and should be f r e e of any t o x i c chemicals before being a p p l i e d to the la n d . Large amounts of heavy metals such as Cu, Zn, Pb, N i , Cd and Cr are hazardous t o b i o t i c systems and should be removed from the wastewater, p r i o r to a p p l i c a t i o n to l a n d , by some means of chemical, b i o l o g i c a l or p h y s i c a l treatment. Using s o i l f o r wastewater f i l t r a t i o n has been a common prac- t i c e f o r c e n t u r i e s . I t has been used by farmers t o mai n t a i n and incr e a s e s o i l f e r t i l i t y i n many places of the world. Scoble (1905) r e p o r t e d a s u c c e s s f u l land treatment sewage system i n Great B r i t a i n . Wastewater from domestic sources combined w i t h trade r e f u s e was t r e a t e d by screening and f i l t r a t i o n through about 6 f e e t of l i g h t loamy s o i l o v e r l y i n g a porous sandy s u b s o i l at an average a p p l i c a t i o n r a t e of 2 3 , 3 0 0 g a l per acre per year ( 2 . 6 5 cm per day ). The drainage water from the cropped s o i l a t t a i n e d over 90 fo p u r i f i c a t i o n i n terms of chemical, p h y s i c a l and b i o l o g i c a l q u a l i t i e s . The use of s o i l f o r d i s p o s a l of wastewater from v a r i o u s i n - d u s t r i e s such as canneries, pulp m i l l s , d a i r i e s e t c . i n the United States since 1930 was reported by Schraufnage ( 1 9 6 2 ) . iS^ Schraufnage reported t h a t pea and corn wastes were a p p l i e d to 3 l a n d through a ridge-and-furrow i r r i g a t i o n system at a r a t e o f 49,000 g a l per day per acre ( 5.57 cm per day ) or 238 l b BOD per day per acre ( 266.6 kg BOD per day per ha ) i n 1934 at Hampton, U . S . A . No odor was noted. He a l s o r e p o r t e d t h a t m u n i c i p a l waste was disposed o f on a deep s i l t loam u n d e r l a i n by sand at an average r a t e o f 37,000 g a l per day per acre ( 4.21 cm per day ) w i t h a BOD o f about 8 l b per acre ( 9.0 kg per ha ) i n 1959 at Wisconsin, U. S. A. No odor and o v e r f l o w were r e - p o r t e d . S c o t t (1962) r e p o r t e d a s u c c e s s f u l use of cheese whey as a f e r t i l i z e r and s o i l c o n d i t i o n e r i n t e s t s c a r r i e d out i n Wiscon- s i n i n 1959. Cheese whey was a p p l i e d t o the sandy s o i l s at a r a t e o f 5,000 - 70,000 l b per day per acre ( 56IO - 73,540 kg per ha ) over a 30-day p e r i o d . Return y i e l d o f oat crop was r e p o r t e d t o be 32 bu per a c r e , d e s p i t e some v e g e t a t i o n l o s s e s on heavy wastewater loaded a r e a s . Spray i r r i g a t i o n o f spent s u l f i t e l i q u o r on l a n d at a maxi- mum r a t e o f 320,000 g a l per day ( 36.4 cm per day ) was a l s o r e p o r t e d by S c o t t . W e l l t e s t s i n d i c a t e d no t r a c e o f l i q u o r i n the ground water. The o p e r a t i o n c o s t o f the d i s p o s a l system was estimated t o be $1.39 per ton as compared t o $4.17 per ton o f pulp produced. The economics o f l a n d d i s p o s a l o f sludge f o r s o i l improve- ment were s t a t i s t i c a l l y e v a l u a t e d by Thomas and Bendixon (1969). They r e p o r t e d t h a t d i s p o s a l o f sludge on l a n d c o u l d reduce the the c o s t s by about 29 %, They i n d i c a t e d the c o s t of making t o p - s o i l with sludge was $1,600 per a c r e ( $4,000 per ha ), w h i l e the comparable c o s t o f improvement w i t h n a t u r a l t o p s o i l would 4 have been $ 4 , 5 0 0 per acre ( $ 1 1 , 0 0 0 per hectare ). Robeck and h i s c o l l e a g e s ( 1 9 6 4 ) , on the b a s i s of t e s t s u s i n g 50 l y s i m e t e r s , suggested th a t s o i l system i n order to be s u i t a b l e f o r wastewater treatment must have a low enough per- m e a b i l i t y and some ad s o r p t i v e c a p a c i t y to a l l o w the suspended and d i s s o l v e d organic matter to be r e t a i n e d . They pointed out t h a t a s o i l which has 0 . 5 - 1 . 0 % organic matter and e f f e c t i v e aggregate s i z e of about 0 . 3 - 0 . 1 mm and an a p p l i c a t i o n r a t e from 4 " - 10 cm per day can help reduce 90 - 9 5 fo of ABS ( A l k y l benzene s u l f o n a t e ) and COD ( Chemical oxygen demand ) and a l s o h e lp prevent groundwater contamination from wastewater i r r i g a - t i o n . A number of other authors have s t u d i e d the e f f i c i e n c y of f i l t r a t i o n systems i n terms of design and o p e r a t i o n procedures ( Thomas, Warren, and Thomas, 1 9 6 6 5 P a r i z e k , 1 9 6 ? ; Law, Thomas and Myers, 1 9 7 0 ; Laak, 1 9 7 0 J Robeck, Bendixen, Schwartz and Woodward, 1 9 6 4 ; de V r i e s , 1 9 7 2 ) . Research on the a p p l i c a t i o n of wastewater to f o r e s t e d s o i l by spray i r r i g a t i o n was c a r r i e d out at the Pennsylvania State U n i v e r s i t y and New Jersey, U.S.A. ( Kardos, 1 9 6 6 ; Pennypacker, Sopper and Kardos, 1 9 6 7 ; Sopper, 1 9 7 1 ; Mather, 1 9 5 3 ). In Penn- s y l v a n i a , hardwood and red pine f o r e s t s o i l s of s i l t loam to s i l t y c l a y loam t e x t u r e were subjected to an i n t e r m i t t e n t a p p l i c a t i o n r a t e of 0.64 cm per hour f o r a t o t a l of 2 . 5 to 5«0 cm per week. The research was c a r r i e d out from A p r i l to November i n 1 9 6 8 a f t e r s i x years of o p e r a t i o n . Renovation of MBAS ( detergent residue ) i n the hardwood p l o t under a l o a d i n g of 2 . 5 cm per week v/as as high as 7 0 - 80 % i n the upper 1 2 0 cm of s o i l , as compared to 7 1 - 86 % 5 w i t h the red pin e . Phosphorus removal ranged from 98" - 99 % at the 60 cm s o i l depth i n the hardwood p l o t and 93 - 97 % i n the red pine p l o t . N i t r a t e n i t r o g e n removal decreased from 68 - &2 % i n the f i r s t year to 27 - 70 % s i x year l a t e r . Removals of organic n i t r o g e n were 99 % to 90 % with respect to hardwood and red pine p l o t s . D i f f e r e n t degrees of s u c c e s s f u l removal of other d i s s o l v e d minerals such as C l , Na, K, Ca, Mg, Mn and B by s o i l s were a l s o noted. Groundwater recharge amounted to an average of 15.0 thousand cubic metres per hectare or equivalent to 90 % of the wastewater a p p l i e d at the 5 cm per week r a t e . Tree growth i n c r e a s e d r a p i d l y . No contamination of groundwater or adverse e f f e c t on s o i l s was r e p o r t e d . R e s u l t s of a l l r e s e a r c h showed that the use o f s o i l f o r wastewater r e n o v a t i o n was one of the s implest and most e f f e c t i v e methods of wastewater treatment. However, the s o i l p r o p e r t i e s and o p e r a t i o n procedure are the main f a c t o r s t h a t determine the s u i t a b i l i t y and e f f i c i e n c y of the f i l t r a t i o n systems. Since s o i l f i l t r a t i o n of wastewater can be considered as an example of a t e r t i a r y treatment process t h a t can be broadly and e a s i l y a p p l i e d i n the f i e l d , the concept of u s i n g f o r e s t s o i l f o r wastewater r e c l a m a t i o n was obvious ( Kardos, 1966 ). Forest s o i l s , u n l i k e crop land or grass l a n d , are o f t e n covered w i t h a l a y e r of a carbonaceous f o r e s t f l o o r of v a r y i n g t h i c k n e s s t h a t can serve as an energy source f o r the a c t i v i t y of microorganisms ( Kardos, 1966; A l l i s o n , 1966 ). The r e l a t i v e l y high C:N r a t i o of the f o r e s t f l o o r would c o n t r i b u t e to the b i o l o g i c a l i m m o b i l i - z a t i o n of added i n o r g a n i c n i t r o g e n to the organic form ( A l l i s o n 1966 ). In a d d i t i o n , the high a c i d i t y of the m i n e ral s o i l might c o n t r i b u t e to a d s o r p t i o n of ammonium ions, and to high r e t e n t i v i t y of phosphate because of the presence of i r o n and aluminium oxides and hydroxides ( Hemwall, 1957; P a r i z e k , 1967 ). Muni- c i p a l wastes o r i g i n a t e mainly from domestic sources and may co n t a i n such chemicals as detergents, N, Ca, Mg, Na, P and CI. A p p l i c a t i o n of wastewater to the land w i l l r e t a i n such n u t r i e n t s f o r v e g e t a t i o n growth. The p r i n c i p a l problem may be the p o s s i - b l e contamination of groundwater w i t h s o l u b l e n i t r a t e n i t r o g e n as i s reported by some authors ( Pennypacker, Sopper and Kardos 1967 ). A study plan was devis e d , using s o i l l y s i m e t e r s i n the green house, t o c h a r a c t e r i z e the behaviour, over time, of a West Coast f o r e s t s o i l i n response to l o a d i n g w i t h a primary domestic sewage e f f l u e n t . This study focusses on the 1) n i t r o g e n and phosphorus r e t e n t i o n by a f o r e s t s o i l , 2) changes of p h y s i c a l behaviour of s o i l , 4) o p t i m i z a t i o n of wastewater l o a d i n g , and 5) s u i t a b i l i t y and p o s s i b l e problems i n f i e l d o p e r a t i o n . 7 The general o b j e c t i v e s of t h i s research were to i n v e s t i - gate 1) the e f f e c t s r e s u l t i n g from contact between wastewater, beari n g n i t r o g e n and phosphorus, and a f o r e s t s o i l , 2) the s o i l s c a p a c i t y to r e t a i n n i t r o g e n and phosphorus, and 3) the means of bal a n c i n g the amount of a d d i t i o n t o s o i l against the amount of storage while at the same time minimizing l e a c h i n g l o s s . This was done by passing wastewater througn s o i l l y s i m e t e r s . In response to f i l t r a t i o n , p h y s i c a l , chemical and b i o l o g i c a l changes were expected t o take place i n the s o i l . Therefore, a research p r o j e c t was devised to determine water and n i t r o g e n balances f o r the l y s i m e t e r s as w e l l as to study p h y s i c a l , chemical and b i o - l o g i c a l changes. RESEARCH.METHODS AND MATERIALS M a t e r i a l s and Sampling The s o i l sampling s i t e was l o c a t e d at Loon Lake, U n i v e r s i t y of B r i t i s h Columbia Research F o r e s t , Haney, B. C , at an a l t i - tude of about 400 metres. The ve g e t a t i o n c o n s i s t e d of a com- b i n a t i o n of western red cedar ( Thuja p l i c a t a Donn ) and western hemlock ( Tsuga h e t e r o p h y l l a (Raf.) Sarg. ). The p o d z o l i c s o i l showed well-developed L, F, H, Ae and Bf horizons i n the top 60 cm. Undisturbed cores were taken from the f o r e s t f l o o r w i t h the same diameter as the i n s i d e diameter of the l y s i m e t e r s . The L, F and H l a y e r s of the f o r e s t f l o o r were about 2 . 5 , 1.5 and 5 . 0 cm t h i c k r e s p e c t i v e l y . M i n e r a l s o i l of loam t e x t u r e from the A and B horizons was sampled to a depth of about 45 cm. Un- c h l o r i n a t e d wastewater was c o l l e c t e d from the primary municipal wastewater treatment p l a n t , West Vancouver, B. C , and stored at 8" a t e m p e r a t u r e o f two degrees C e n t i g r a d e . Each s u p p l y l a s t e d f o r a p e r i o d o f about 20 d a y s . L y s i m e t e r C y l i n d e r A p p a r a t u s S i x t r a n s p a r e n t a c r y l i c p l a s t i c c y l i n d e r s o f d i a m e t e r 14 cm and l e n g t h 8*0 cm were employed. I n o r d e r t o gauge t h e energy s t a t u s ( m a t r i c p o t e n t i a l ) o f t h e s o i l w a t e r i n t h e l y s i m e t e r , f o u r t e n s i o m e t e r h o l e s were d r i l l e d a t 20 cm i n t e r - v a l s . S i n t e r e d g l a s s bead t e n s i o m e t e r s were about 5 cm l o n g and 5 mm i n d i a m e t e r and had a i r i n t r u s i o n v a l u e s o f about 200 cm o f w a t e r . The t e n s i o m e t e r s were c o n n e c t e d t o mercury mano-- m e t e r s . D r a i n a g e was f a c i l i t a t e d t h r o u g h t h e i n s t a l l a t i o n o f a porous p l a t e a t t h e bottom o f each l y s i m e t e r ( F i g . 1 ) . The porous p l a t e c o n s i s t e d o f a one-cm t h i c k l a y e r o f uncon s o - l i d a t e d s i l i c o n c a r b i d e ( 25 m i c r o n p a r t i c l e s i z e ) w h i c h p r o - v i d i d good h y d r a u l i c c o n t a c t between t h e s o i l and t h e d r a i n a g e s y s t e m . The porous p l a t e f a c i l i t a t e d t h e m a i n t e n a n c e o f a e - r o b i c c o n d i t i o n s i n t h e s o i l by m a i n t a i n i n g t h e s o i l w a t e r t e n s i o n a t o r above t h e s o i l a i r i n t r u s i o n v a l u e . V/ater from t h e s o i l was c o l l e c t e d t h r o u g h t h e d r a i n a g e system a t a t e n s i o n o f 60 cm o f w a t e r . The i r r i g a t i o n system was i n s t a l l e d a t t h e t o p o f t h e l y - s i m e t e r , 6 cm above t h e f o r e s t f l o o r . P o l y e t h y l e n e p r e s s u r e t u b i n g ( 1 cm i n d i a m e t e r ) w i t h s m a l l h o l e s was used so t h a t w a t e r c o u l d d r i p from t h e t u b i n g onto t h e f o r e s t f l o o r . The r a t e o f f l o w m a i n t a i n e d a t 0.35 cm p e r hour by a d j u s t i n g t h e head ( w a s t e w a t e r s u r f a c e l e v e l ) t o t h e a p p r o p r i a t e v a l u e . The i r r i g a t i o n system was f l u s h e d w i t h c l e a n w a t e r once a week 9 RUBBER GASKET NYLON SCREENING HOLES; OUTLET TUBE SUPPORTING PLATE SPACE FOR SAND AND SILICONE CARBIDE SUPPORTING PLATE R ESERVOIR F i g . 1. Porous P l a t e Assembly 10 to maintain a constant flow r a t e ( Figure 2 ). P r e p a r a t i o n and Packing of S o i l Sample S i e v i n g of the m i n e r a l s o i l w i t h a 6 mm sieve r e s u l t e d i n the removal of about 47.1 % ( weight b a s i s ) of coarse fragments from the s o i l . Thorough mixing of the s o i l produced a uniform s o i l ready f o r packing i n the l y s i m e t e r s . To pack the s o i l i n the l y s i m e t e r , a measured amount of s o i l of known volume ( one p i n t ) was poured i n t o the c y l i n d e r and compressed u n i f o r m l y w i t h a wooden packer. Then the s o i l s urface was loosened w i t h a s t e e l b r i s t l e brush i n order to ensure good c o n t i n u i t y be- tween adjacent l a y e r s . S o i l depth was measured a f t e r every t e n increments i n order t o o b t a i n a measure of packing u n i f o r m i t y . The f i n a l volume and weight of the s o i l were recorded. The bulk d e n s i t i e s of the l y s i m e t e r s o i l s v a r i e d between 0.86 and 0.90 gm per cnr*. Incubation o f the S o i l The experiment was c a r r i e d out i n the greenhouse from Sep- tember 1971 u n t i l June 1972. I n order to minimize temperature v a r i a t i o n s and t o simulate the environmental c o n d i t i o n s at the sampling s i t e , temperature of the s o i l at depths g r e a t e r than 40.0 cm was maintained at 15.5 degrees Centigrade by p l a c i n g the l y s i m e t e r i n an i n s u l a t e d a i r bath. During the summer, a fan drawing i n o u t s i d e a i r was a l s o employed to maintain a favour- able temperature i n the greenhouse. The surface of the s o i l was shaded to prevent d i r e c t contact w i t h s u n l i g h t i n order t o minimize water l o s s from the f o r e s t f l o o r by evaporation. A sketch of a l y s i m e t e r system during i n c u b a t i o n i s shown i n F i g . 3. 11 POLYETHYLENE PRESSURE TUBING IRRIGATION HOLE SUPPORTING FRAME F i g . 2. I r r i g a t i o n System 12 LITTER LAYER BOUNDARY MINERAL SOIL WATER MERCURY F i g . 3. Measurement of Water Energy Status i n the Lysimeter D u r i n g Incubation. 13 Wastewater A p p l i c a t i o n and Drainage Water Sampling The t o t a l number of s i x l y s i m e t e r s was d i v i d e d i n t o two groups of t h r e e . Wastewater was a p p l i e d at a r a t e of 37 cm^ per day ( 0.23 cm per day ) to l y s i m e t e r s 1 to 3, and at a r a t e of 75 cm.3 per day ( 0.47 cm per day ) to l y s i m e t e r s 4 t o 6. 50 to 100 cm.3 of tap water was added at the end of each week. The a p p l i c a t i o n f l o w r a t e of water was maintained at 0.35 cm per hour.. The t o t a l amounts of n i t r o g e n a p p l i e d to the two sets of l y s i m e t e r s were equivalent to 123 l b N per acre per year ( 143*4 kg N per hectare per year ) and 250 l b N per acre per year ( 230 kg N per hectare per year ) r e s p e c t i v e l y at wastewater n i t r o g e n concentrations v a r y i n g between 14 ppm and 33 ppm. The t o t a l amounts of P a p p l i e d to the same were equivalent t o 27 l b P per acre per year ( 30.2 kg P per hectare per year ) and 53 l b N per acre per year ( 59.4 kg P per hectare per year ) at concentra- t i o n s between 4.0 and 3.7 ppm. The volume of drainage water r e l e a s e d by the s o i l l y sime- t e r s was measured d a i l y . Water p o t e n t i a l s i n s i d e the s o i l l y s i - meters were a l s o recorded before each wastewater a p p l i c a t i o n . Drainage water sample of s u f f i c i e n t q u a n t i t y to a l l o w analyses f o r BOD, n i t r o g e n and phosphorus was c o l l e c t e d and stored at a temperature of two degrees Centigrade. S o i l P h y s i c a l Analyses P h y s i c a l p r o p e r t i e s of both mineral s o i l and the organic l a y e r were measured to i n d i c a t e changes due to e f f l u e n t l o a d i n g f o r the one year p e r i o d . A. Saturated Hydraulic C o n d u c t i v i t y 14 H y d r a u l i c c o n d u c t i v i t y i s a measure of the a b i l i t y of a s o i l to conduct water. I t i s the f l u x per u n i t h y d r a u l i c po- t e n t i a l g r a d i e n t and from Darcy's law can be w r i t t e n as K = ( Q/At ) / ( h/L ) = v / ( h/L ) where v i s the water flow r a t e ( cm sec~^ ), Q the volume of flow ( cm^ ) that passes across the s o i l cross s e c t i o n a l area A ( cm 2 ) i n time t ( sec ), K i s the h y d r a u l i c c o n d u c i t i v i t y ( cm s e c ~ l ), and h i s the h y d r a u l i c head ( cm ) across a l e n g t h of f l o w L ( cm ). A s t e a d y - s t a t e method was employed to measure the saturated h y d r a u l i c c o n d u c t i v i t y i n s i t u ( F i g . 4 ). K was determined by measuring the volume of f l o w through the s o i l d u r i n g a known time i n t e r v a l and h y d r a u l i c g r a d i e n t . The tensiometers were used to measure the h y d r a u l i c head drops across the s o i l l a y e r s . In order to minimize a i r entrapment, the s o i l was s a t u r a t e d g r a - d u a l l y from the bottom up by s l o w l y i n c r e a s i n g the e l e v a t i o n of the l y s i m e t e r outflow u n i t , which was connected to a water supply f o r a p e r i o d of about 15 hours. Subsequently, steady s t a t e was e s t a b l i s h e d and maintained by p r o v i d i n g constant water l e v e l s over the s o i l surface and at the o u t l e t . B. Water Retention C h a r a c t e r i s t i c s The measurement o f : s o i l water content i n c o n j u n c t i o n w i t h matric p o t e n t i a l y i e l d s i n f o r m a t i o n about s o i l water r e t e n t i o n c h a r a c t e r i s t i c s and pore s i z e d i s t r i b u t i o n . Under c e r t a i n con- d i t i o n s , f i l t e r f a i l u r e of the s o i l a f t e r prolonged periods of l o a d i n g w i t h wastewater has been found to occur due t o the change i n b i o l o g i c a l , chemical and p h y s i c a l c o n d i t i o n s i n s i d e the s o i l . 15 CONSTANT WATER LEVEL- FOREST FLOOR BOUNDARY MINERAL SOIL' TENSIOMETERS^ OUTFLOW IL, DRAJNAGE SYSTEM - T,- f 5cm I - iiniiiiimiiiimiiiiiiin n PIEZOMETERS F i g . 4. Steady-State Method of Measuring Saturated Hydraulic C o n d u c t i v i t y . 1 6 Previous research i n d i c a t e d f i l t e r f a i l u r e occurred at low tem- perature under aerobic c o n d i t i o n or i n higher water content under anaerobic c o n d i t i o n s ( de V r i e s , 1972 ) . Therefore a technique was employed that a l l o w s the simultaneous i n s i t u measurement of the r e l a t i v e s o i l water content and the c o r r e s - ponding s o i l water matric p o t e n t i a l d u r i n g drainage a f t e r the s o i l has been saturated ( Watson and W h i s l e r , 1968; de V r i e s , 1969 ). Water r e t e n t i o n curves were obtained by p l o t t i n g the r e l a t i v e water content, expressed as accumulated outflow, as a f u n c t i o n of m a t r i c p o t e n t i a l . R e l a t i v e water contents were measured w i t h a gamma r a d i a t i o n a t t e n u a t i o n method, and c o r r e s - ponding matric p o t e n t i a l s were measured w i t h tensiometer-pres- sure transducer systems ( Chow and de V r i e s , 1972 ). C. Bulk Density The bulk d e n s i t y of the s o i l was computed before and a f t e r treatment w i t h wastewater. Bulk d e n s i t y of the o r i g i n a l s o i l was determined by p l a c i n g a known weight of moist s o i l of known water content i n the l y s i m e t e r and by measuring the volume. T h i s value represented the average bulk d e n s i t y throughout the s o i l i n the l y s i m e t e r . The bulk d e n s i t y of the t r e a t e d s o i l was determined by the clod-method at 5-cm i n t e r v a l s ( Black, Evans, White, Ensminger and C l a r k , 1965 ). This measurement allowed c a l c u l a t i o n of the p o r o s i t y of the s o i l , assuming a p a r t i c l e d e n s i t y of 2 . 6 5 gm cm~3. Water and S o i l Chemical Analyses Chemical p r o p e r t i e s , of both wastewater and drainage water were determined p e r i o d i c a l l y i n terms of t o t a l K j e l d h a l N, n i - t r a t e N, ammonium N, t o t a l P and BOD, whi l e chemical p r o p e r t i e s 17 of both o r i g i n a l and t r e a t e d s o i l s were determined i n terms of t o t a l K j e l d a h l N, n i t r a t e N, and ammonium N. These analyses were c a r r i e d out to determine the e f f e c t i v e n e s s of the f i l t r a - t i o n system and the dynamics of n i t r o g e n and phosphorus r e - t e n t i o n . The BOD, which i s an i n d i c a t o r of the biodegradable or- ganic matter content of water, was measured p e r i o d i c a l l y by a manometric method ( T o o l , 19&7 ) . Organic n i t r o g e n of both i n f l u e n t and e f f l u e n t was determined by the macro-Kjeldahl me- thod w h i l e the t o t a l K j e l d a h l n i t r o g e n method was employed to determine ammonia pl u s organic n i t r o g e n ( Standard Methods, 1962 ). N i t r a t e n i t r o g e n was measured by the s p e c i f i c i o n e l e c t r o d e ^ , and t o t a l w a ter-soluble phosphorus by the molyb- denum blue method ( Black,'Evans,White, Ensminger and C l a r k , 1965 ) . Organic and ammonia n i t r o g e n of both the o r i g i n a l and t r e a t e d s o i l s were determined by the m i c r o - K j e l d a h l method ( Black, Evans, White, Ensminger and C l a r k , 1965 ). Ammonia n i t r o g e n was measured by m i c r o - d i f f u s i o n f o l l o w e d by c o l o r i - metry, and n i t r a t e n i t r o g e n by the chromotropic a c i d method ( West and Ramachandran, 1966 ). A g l a s s e l e c t r o d e was used to measure the pH of the s o i l suspension w i t h a water : s o i l r a t i o of 1 : 1. T o t a l carbon was measured by the Leco instrument. A l l analyses were done i n d u p l i c a t e . 1) Orion Research Incorporated, n i t r a t e i o n e l e c t r o d e model 92-07. 18 RESULTS AND DISCUSSION The a p p l i c a t i o n of waste water to the s o i l l y s i m e t e r s was c a r r i e d out c o n t i n u o u s l y f o r a p e r i o d of 36 weeks. The data were obtained i n terms of p h y s i c a l and chemical p r o p e r t i e s d u r i n g and a f t e r t e r m i n a t i o n of the experiment. Lysimeters 3 and 4 were used f o r chemical a n a l y s e s , w h i l e l y s i m e t e r s 1 , 2 and 5 , 6 were employed to determine the p h y s i c a l p r o p e r t i e s . A l l data were expressed on a 7-day b a s i s . This was done by d i v i d i n g the c o l l e c t e d volume of drainage water by the number of days over which t h i s volume was c o l l e c t e d , and m u l t i p l y i n g the r e s u l t by seven. A l l other chemical inp u t and output data were expressed on the same seven day b a s i s . Water Balance During the 36 weeks, the two groups of s o i l l y s i m e t e r s r e - c e i v e d average volumes of 3 . 6 and 1 6 . 3 l i t r e s of waste water r e s p e c t i v e l y p l u s an a d d i t i o n a l volume of 2 . 2 l i t r e s o f tap water. The volume of the drainage water i n d i c a t e d t h a t f o r these two groups about 3 4 . 1 % and 2 0 . 4 %, r e s p e c t i v e l y , of the t o t a l i n p u t of l i q u i d was stored or evaporated to the atmosphere. Fi g u r e 5 shows the water balance of l y s i m e t e r s 1 , 2 , 3 and 4 , 5 , 6 s t a r t i n g from September 2 3 , 1 9 7 1 , to June 2 3 , 1 9 7 2 . At the beginning, the a p p l i c a t i o n of wastewater to the s o i l l y s i m e t e r s was not the same, but s l i g h t l y h i g h e r i n l y s i m e t e r s 1 , 2 , 3 than i n l y s i m e t e r s 4 , 5 , 6 . Wastewater was r e g u l a r l y added to the s o i l l y s i m e t e r s s i x days a week, w h i l e f r e s h water was usual- l y added at the l a s t day of a week. I f a c e r t a i n amount of waste water was not a p p l i e d t o the l y s i m e t e r s w i t h i n a scheduled time 19 40CV 200 CO <u Q I t>- QZ a, o 0 0---0 INPUT OUTPUT O—O WASTEWATER PLUS TAP O O LYSIMETER £ (£) LYSIMETER 4 WATER •O--0 WASTE WATER o fe o o > 600 400i- 1 , • • LYSIMETER • (_J 2 . . A & LYSIMETER o A 3 0---Q 5 6 2 0 0 - .1 0 0 56 23 20 16 19 13 9 9 7 14 7 19 12 11 12 12 15 DAYS NOV DEC DEG JAN FEB FEB FEB MAR MAR MAR APR APR MAY MAY MAY JUN JUN 17 10 30 15 3 16 25 5. 12 26 2 21 3 14 26 7 22 F i g . 5. P a r t i a l Water Balances f o r Lysimeters 1,2,3 (top) and 4 , 5 , 6 (bottom). 20 p e r i o d , i t was added as soon as p o s s i b l e t h e r e a f t e r . This i s the reason the amount of wastewater a p p l i e d expressed on a 7- day b a s i s i n both Fi g u r e s 5 and 6 i s not uniform. The volume of drainage water i n the l6-day p e r i o d ( January 1$ ) i n both F i g u r e s 5 and 6 exceeded that of the i r r i g a t i o n water i n both s o i l s . This was a t t r i b u t e d t o the flow from the previous p e r i o d when the o u t l e t system was c l o s e d f o r a short p e r i o d of time. N u t r i e n t Concentrations i n Waters N u t r i e n t c o n c e n t r a t i o n s i n both wastewater and drainage water were measured p e r i o d i c a l l y i n terms of n i t r o g e n , phospho- rus and BOD. F i g u r e 6 shows th a t the c o n c e n t r a t i o n s of n i t r o g e n i n the drainage water from both groups of s o i l l y s i m e t e r s i n - creased w i t h time. The c o n c e n t r a t i o n of n i t r o g e n i n the drainage water from l y s i m e t e r s 4, 5 and 6 was about twice than that of the l y s i m e t e r s 1, 2 and 3« The data of F i g . 6 i n d i c a t e that the con- c e n t r a t i o n of n i t r o g e n i n the drainage water from l y s i m e t e r s 4, 5 and 6 i n c r e a s e d t o values higher than that of the wastewater a f t e r 23 weeks of l o a d i n g ( January 15 ). This suggests t h a t a l l of the n i t r o g e n a p p l i e d was being leached from the s o i l . However, s o i l analyses f o r n i t r o g e n c o n c e n t r a t i o n c a r r i e d out on both groups of l y s i m e t e r s d i d not i n d i c a t e s i g n i f i c a n t changes i n the s o i l n i t r o g e n content during the a p p l i c a t i o n p e r i o d as shown i n F i g u r e I t i s i n t e r e s t i n g t o note t h a t d e s p i t e a decrease i n the n i t r o g e n c o n c e n t r a t i o n of the i n f l u e n t wastewater during the a p p l i c a t i o n p e r i o d , the c o n c e n t r a t i o n of the drainage water con- t i n u e d t o i n c r e a s e a f t e r 23 weeks of treatment. Concentrations of t o t a l phosphorus of both wastewater and drainage water are shown i n Figure 11. The data of F i g u r e 11 i n - 21 O N CONC. OF WASTEWATER O N CONC. OF DRAINAGE WATER 1 £ N C 0NC. OF DRAINAGE WATER 4 o L _ l — I 1 — I 1 — i — i — i i | i i i . i i i 56 23 20 16 19 13 9 9 7 14 7 19 12 11 12 12 15 DAYS NOV DEC DEC JAN FEB FEB FEB MAR MAR MAR APR APR MAY MAY MAY JUN JUN 17 10 3 0 15 3 16 25 5 12 26 2 21 3 14 2 6 7 22 F i g . 6. Concentrations of N i n Wastewater and Drainage Water 22 d i c a t e that the c o n c e n t r a t i o n of phosphorus i n wastewater v a r i e d between 4 ppm and $.7 ppm wi t h an average co n c e n t r a t i o n of 6.0 ppm. A sharp drop of the c o n c e n t r a t i o n i n wastewater a f t e r 25 weeks of a p p l i c a t i o n occurred i n conjunction w i t h a drop of the n i t r o g e n content mainly due to the low n u t r i e n t concentrations of the wastewater from the treatment p l a n t . The con c e n t r a t i o n of the drainage water was very low, w i t h i n the lowest l i m i t of d e t e c t i o n , i n d i c a t i n g a high r e t e n t i o n of added phosphorus by the s o i l . Nitrogen Balance The f i n a l c a l c u l a t i o n showed th a t the t o t a l i n p u t s of n i - trogen f o r the two groups of l y s i m e t e r s were 223.7 mg and 436.9 mg, or equiv a l e n t to 1.4 °h and 2.7 % of the t o t a l amount of n i - trogen present i n the o r i g i n a l s o i l s ( the experimental e r r o r was 5 % ). Data on the n i t r o g e n balance showed t h a t l y s i m e t e r s 4, 5 and 6 a t t a i n e d an e f f l u e n t r e n o v a t i o n of 43 % i n terms of n i t r o g e n as compared to 75 % f o r l y s i m e t e r s 1, 2, and 3« F i g . 7 i n d i c a t e s the r a t e of t o t a l n i t r o g e n output from both s o i l l y - simeters increased w i t h time.. This i n c r e a s e i n n i t r o g e n output from l y s i m e t e r s 4, 5, and 6 was i n i t i a l l y three times higher than t h a t of l y s i m e t e r s 1, 2, and 3 and the d i f f e r e n c e increased to f i v e times a f t e r 25 weeks ( M a r c h 2 6 ) of wastewater a p p l i - c a t i o n . Figure 7 shows th a t the inc r e a s e of the t o t a l n i t r o g e n output of l y s i m e t e r s 4, 5, and 6 exceeded that of input a f t e r 25 weeks ( March 26 ) of a p p l i c a t i o n . This i n d i c a t e s that the high n i t r o g e n l o a d i n g exceeded the s o i l ' s c a p a b i l i t y f o r b i o l o - g i c a l i m m o b i l i z a t i o n , so the added nit r o g e n and some of the r e - t a i n e d n i t r o g e n were b i o l o g i c a l l y converted to n i t r a t e which i n 23 9 r 6 ho.. CO >H •< Q I !>- Pi W OH C5 3r- OL o INPUT OUTPUT OF NITROGEN O—OTOTAL NITROGEN© O LYSIMETER 1 6 6 LYSIMETER 4 56 23 20 16 19 13 9 9 7 14 7 19 12 11 12 12 15 NOV DEC DEC JAN FEB FEB FEB MAR MAR MAR APR APR MAY MAY MAY JUN JUN 17 10 30 15 3 16 25 5 12 26 2 21 3 14 26 7 22 F i g . 7. T o t a l Nitrogen Balances f o r Lysimeters 1,2,3 (top) and 4,5,6 (bottom). 24 t u r n was leached from the s o i l ( Tables 3 and 4 )• In a d d i t i o n , the residence time of the wastewater i n the s o i l was r e l a t i v e l y s h o r t . D a i l y recorded data of wastewater input and e f f l u e n t output show t h a t about 30 t o 9 0 % of the inpu t water was drained from the s o i l w i t h i n 24 hours. Winsor and P o l l a r d (1956) i n one of t h e i r experiments found a maximum n i t r o g e n i m m o b i l i z a t i o n of 56 % a f t e r 2 days of i n c u b a t i o n at 23.5 degrees Centigrade and 80 % moisture e q u i v a l e n t when 100 ml of s o l u t i o n c o n t a i n i n g 15 mg of i n o r g a n i c n i t r o g e n ( C:N = 5 : 1 ) was added to a market- garden s o i l ( C:N = 9.5 : 1 ) . Under f i e l d c o n d i t i o n s , n i t r o g e n i m m o b i l i z a t i o n could be enhanced by i n c r e a s i n g the contact time between wastewater and s o i l . Removal of water from the s o i l by f o r e s t v e g e t a t i o n , r e s u l t i n g i n lower antecedent s o i l water con- t e n t s , would c o n t r i b u t e to the d e s i r e d i n c r e a s e i n contact time. This could a l s o be done by reducing the a p p l i c a t i o n r a t e of wastewater t o the s o i l . The t o t a l n i t r o g e n output of l y s i m e t e r s 1, 2, and 3 was 56.5 mg, w e l l below t h a t of the t o t a l input 223.7 mg ( Tables 1 and 2 ). This suggested the residence time of wastewater i n the s o i l was more favourable f o r b i o l o g i c a l immo- b i l i z a t i o n f o r l y s i m e t e r s 1, 2, and 3 than f o r l y s i m e t e r s 4, 5, and 6. Carbon Balance T o t a l s o i l carbon was determined before and a f t e r treatment of wastewater w i t h the s o i l s . This organic matter served as the main energy source f o r the h e t e r o t r o p h i c organisms i n the con- v e r s i o n of i n o r g a n i c n i t r o g e n t o o r g a n i c form i n the s o i l . The importance of C:N r a t i o f o r the i m m o b i l i z a t i o n of ni t r o g e n was demonstrated by A l l i s o n (1966) and Winsor and P o l l a r d (1956). 0 0.2 0.4 TOTAL NITROGEN CONCENTRATION, % 0.6 0.8" 1.0 1.2 1.4 1.6 1.8 h i i l I I I ) 1 I:' 1 1 : i .. 1 i • r N CONCENTRATION OF THE ORIGINAL SOIL N CONCENTRATION OF LYSIMETER 3 AT END OF APPLICATION '» 4 11 F i g . 8. D i s t r i b u t i o n of T o t a l Nitrogen i n the S o i l P r o f i l e 26 A l l i s o n observed t h a t the maximum n i t r o g e n i m m o b i l i z a t i o n and minimum carbon d i o x i d e production was reached at about 19 to 21 days of i n c u b a t i o n when wheat straw and sodium n i t r a t e had been added to a sandy loam. Immediately a f t e r the peak, n i t r o g e n m i n e r a l i z a t i o n became dominant and carbon d i o x i d e production c l o s e l y p a r a l l e l e d n i t r o g e n i m m o b i l i z a t i o n . This r e s u l t was comparable w i t h t h a t of Winsor and P o l l a r d , who found that the n i t r o g e n i m m o b i l i z a t i o n peak was at two days i n s t e a d of 20 days. In the co n c l u s i o n of h i s review, A l l i s o n (1966) po i n t e d out tha t t h i s d i f f e r e n c e i n maximum n i t r o g e n i m m o b i l i z a t i o n i s r e l a t e d to the ease of decomposition of organic m a t e r i a l s . The decomposi- t i o n of organic matter was dependent upon i t s composition. L i g - n i n , o i l s , f a t s and r e s i n s are r e s i s t a n t to decompostion, w h i l e c e l l u l o s e , s t a r c h e s , sugars, p r o t e i n s , amono a c i d s , amides, a l - cohols and aldehydes e t c . are r e a d i l y decomposable. Since sugar i s e a s i l y decomposable and thus a v a i l a b l e to microorganisms, a r a p i d maximum n i t r o g e n i m m o b i l i z a t i o n i s expected due to the high carbon and energy supply. On the other hand, wheat straw contains l i g n i n and h e m i c e l l u l o s e matter that are more r e s i s t a n t t o decomposition, so a longer time i s needed f o r the same maxi- mum n i t r o g e n i m m o b i l i z a t i o n ( A l l i s o n , 1966; Buckman and Brady, I960 ). In the present experiment, the o v e r a l l treatment process d i d not r e s u l t i n any apparent changes i n n i t r o g e n and carbon contents of both f o r e s t f l o o r and m i n e r a l s o i l ( F i g u r e s 8 and 9 ) As can be seen from Table 8 , the C:N r a t i o s at the end of the treatment p e r i o d vary between 25 to 31 and 24 to 35 i n the f o r e s t f l o o r s and 25 to 31 and 22 to 24 i n the mineral s o i l s i n lysime- t e r s 3 and 4 r e s p e c t i v e l y . The C:N r a t i o s of the o r i g i n a l s o i l 27 v a r i e d from 29 to 33 i n the f o r e s t f l o o r and was 24 i n the minerel s o i l s . T h i s apparent absence of change i n the C:N r a - t i o s i n response to treatment i s probably due to the f a c t that the C:N r a t i o s of both the o r i g i n a l s o i l s and added wastewater were not high enough to f a v o r a s i g n i f i c a n t change i n b i o l o g i - c a l i m m o b i l i z a t i o n . Winsor and P o l l a r d (1956) found t h a t i n the glasshouse and market-garden s o i l s , the r a t i o of carbon added to n i t r o g e n immobilized by microorganisms was 8.3 to 10.8 i . e . 8.3 to 10.8 p a r t s of added carbon are necessary to immobi- l i z e one p a r t of n i t r o g e n . Of course, the contact time between wastewater and s o i l i s of prime importance i n the process of i m m o b i l i z a t i o n as d i s c u s s e d before. In the present study of f o r e s t s o i l , the C:N r a t i o of the o r i g i n a l m i n e r a l s o i l was 24, and the C:N r a t i o of the t r e a t e d s o i l was s i m i l a r t o t h a t of the o r i g i n a l s o i l i n s p i t e of waste water a p p l i c a t i o n . The C:N r a t i o of added wastewater was about 2 . 5 : 1 based on average c o n c e n t r a t i o n s of a BOD of 110 ppm and t o t a l n i t r o g e n 26 ppm. I t i s a l s o important t o note that immo- b i l i z a t i o n and m i n e r a l i z a t i o n occur together i n the s o i l ( A l l i - son, I 9 6 6 ) . Since the t o t a l amounts of n i t r o g e n added to the two gruops of s o i l s were only 1.4 % and 2.7 % of the o r i g i n a l s o i l n i t r o g e n as compared to about 5 % experimental e r r o r i n the a n a l y s e s , apparent changes i n n i t r o g e n content, based on s o i l a n a l y s i s be- f o r e and a f t e r treatment, are not l i k e l y to be s i g n i f i c a n t . Since the s o i l was h i g h l y a e r o b i c , c o n d i t i o n s promoted the o x i - d a t i o n of n i t r o g e n to the n i t r a t e form which was r e a d i l y subject t o l e a c h i n g . The analyses of drainage water showed t h a t almost TOTAL CARBON CONCENTRATION, % 15 30 45 54 T I TT C CONCENTRATION OF THE ORIGINAL SOIL C CONCENTRATION OF LYSIMETER 3 AT END OF APPLICATION » 4 » L i I F i g . 9. D i r t r i b u t i o n of T o t a l Carbon i n the S o i l P r o f i l e 29 a l l of the n i t r o g e n coming from the s o i l was i n n i t r a t e form ( Table 1. ) . Phosphorus Removal S a t i s f a c t o r y r e t e n t i o n of phosphorus i n the f o r e s t s o i l ( Table 4 ) was probably a s s o c i a t e d w i t h r e l a t i v e l y h i g h amounts of r e a c t i v e i r o n and aluminium oxides and hydroxides. Data of t o t a l water s o l u b l e phosphorus i n p u t and output showed that the r e t e n t i o n of added phosphorus was more than 99 % i n both s o i l s . Sopper (1971) found t h a t the renovations of phosphorus i n a hardwood p l o t subject t o r e s p e c t i v e a p p l i c a t i o n r a t e s of 2 .5 cm and 10 cm per week were 9 9 . 9 % and 9 9 . 3 %> w h i l e i n a red pine p l o t they were 9 7 . 0 and 9 8 . 7 % w i t h respect t o weekly a p p l i c a t i o n r a t e s of 2 . 5 and 5 .0 cm. Both s o i l depths ( s i l t loam to s i l t y c l a y loam ) were reporte d as 60 cm and average phosphorus con- c e n t r a t i o n of wastewater was 8 . 5 mg/l over a p e r i o d o f s i x months. Hemwall (1957) r e p o r t e d t h a t f i x a t i o n of phosphorus mainly occurred as a r e s u l t of chemical p r e c i p i t a t i o n and physico- chemical s o r p t i o n r a t h e r than by m i c r o b i o l o g i c a l r e t e n t i o n . Cole and Jackson (1950) s t u d i e d the s o l u b i l i t y e q u i l i b r i u m constants of dihydroxy aluminium dihydrogen phosphate , A1(0H) 2 ^PO/,. ~ v a r i s c i t e c r y s t a l s p e c i e s , and dihydroxy i r o n dihydrogen phos- phate, Fe(0H)2 H 2P0^ - s t r e n g i t e c r y s t a l s p e c i e s , and found t h a t they r e l a t e d the e q u i l i b r i u m c o n c e n t r a t i o n of phosphorus i n the s o i l s o l u t i o n d i r e c t l y to the aluminium and i r o n a c t i v i t y of the s o i l . However, phosphorus i s f i x e d e i t h e r by p r e c i p i t a t i o n or s o r p t i o n by aluminium and i r o n oxides and hydroxides under a c i d c o n d i t i o n s to form A 1(H 2 0 ) 3 ( 0 H ) 2 HgPO^ or F e ( H 2 0 ) 3 ( 0 H ) 2 H 2P0^ ( Hemwall, 1957; R u s s e l l , 1 9 6 l ; T i s d a l e and Nelson, 1966 ) . 30 8 7 0 Q o •a o 9 o 1 I L I I I O CONC. OF P IN WASTEWATER O P IN DRAINAGE WATER 1 2 • 6 r j 0 g d 3 4 5 6 O b-o' 6 J L 56 23 20 16 19 13 9 9 7_ 14 7 19 12 11 12 12 15 DAYS NOV DEC DEC JAN FEB FEB FEB MAR MAR MAR APR APR MAY MAY MA Y JUN JUN 17 10 30 15 3 16 2 5 5 12 26 2 21 3 14 26 7 22 F i g . 10. Concentrations of P i n Wastewater and Drainage Water / P h y s i c a l P r o p e r t i e s of the S o i l System Water Retention P r o p e r t i e s P h y s i c a l p r o p e r t i e s of the s o i l are among the important f a c - t o r s i n determining the long term s u i t a b i l i t y of the s o i l system f o r wastewater renovation. The r e s u l t s of t h i s research show that the p h y s i c a l behaviour of the s o i l d i d not change s i g n i f i - c a n t l y w i t h time, depending on degree of l o a d i n g . F i g u r e s 11 and 12 show that the water r e t e n t i o n c h a r a c t e r i s t i c s of lysime- t e r 1 were not changed as compared to the o r i g i n a l s o i l , except i n the f o r e s t f l o o r where the a e r a t i o n p o r o s i t y was r e l a t i v e l y reduced. This r e d u c t i o n i n a e r a t i o n p o r o s i t y of the f o r e s t f l o o r was probably due to s e t t l i n g and d e p o s i t i o n of organic matter although F i g u r e s 8 and 9 d i d not show s i g n i f i c a n t changes of n i t r o g e n and carbon i n l y s i m e t e r 1 a f t e r wastewater treatment. In the case of l y s i m e t e r 6 ( Figure 13 ), the r e l a t i v e t o t a l amount of water r e l e a s e d by the mineral s o i l as the matric po- t e n t i a l was decreased from 0 to -60 cm of water was higher than that of the o r i g i n a l s o i l , i n d i c a t i n g a higher a e r a t i o n p o r o s i t y . No s p e c i f i c data were a v a i l a b l e to account f o r t h i s r e s u l t , a l - though the bulk d e n s i t i e s of both the o r i g i n a l and t r e a t e d s o i l s i n l y s i m e t e r 4 ( subject to same loa d i n g s as i n l y s i m e t e r 6 ) were not changed ( Table 8 ). In the f o r e s t f l o o r of l y s i m e t e r 6, the a e r a t i o n p o r o s i t y was r e l a t i v e l y lower than t h a t of l y - simeter 1 and the o r i g i n a l s o i l . The p o s s i b l e reason may be a higher d e p o s i t i o n of organic matter i n l y s i m e t e r 6. Saturated Hydraulic C o n d u c t i v i t i e s Saturated c o n d u c t i v i t y of the s o i l was measured to determine 32 G- 0----0 FOREST FLOOR Q—Q AT 1.2 CM SOIL DEPTH Q Q AT 10.2 CM SOIL DEPTH AT 19.2 CM SOIL DEPTH * THE TOTAL POROSITY OF THE MINERAL SOIL IS 67 % 6> 90 75 -60 - 45 -30 MATRIC POTENTIAL, CM OF WATER 15 0 F i g . 11. Water Retention Curve of the O r i g i n a l S o i l . 33 O- Q- -G €1 Q-—O P G AT 6.7 CM SOIL DEPTH AT 25.9 CM SOIL DEPTH • AT 45.9 CM SOIL DEPTH AT 65.9 CM SOIL DEPTH TOTAL POROSITY G - .32 — . 28 . 24 o .20 w fe o .16 &" o fe E-i ^) O .12 Q w :=> .08 g ,04 0 -90 -75 - 60 -45 "30 -15 MATRIC POTENTIAL, CM OF WATER 0 F i g . 12. Water Retention Curve of Lysimeter 1. 34 O—-O AT 8.5 CM OF SOIL DEPTH -90 -75 -60 -45 -30 -15 0 MATRIC POTENTIAL, CM OF WATER F i g . 13. Water Retention Curve of Lysimeter 6 35 the e f f e c t of wastewater treatment on the s o i l ' s a b i l i t y to transmit water. Figure 14 i n d i c a t e s that the h y d r a u l i c con- d u c t i v i t i e s of both s o i l s ( l y s i m e t e r s 1 and 6 ) were lower than that of the o r i g i n a l s o i l . T h i s r e s u l t i s d i f f i c u l t to e x p l a i n i n view of the f a c t that the a e r a t i o n p o r o s i t y of the mineral s o i l i n l y s i m e t e r 6 was higher than that of the o r i g i n a l s o i l ( F i g u r e s 11 and 13 ). This might be due to i n t r o d u c t i o n of by-products from microorganisms that might i n t e r f e r e w i t h water movement. McCalla (1950) found t h a t when sucrose was added to s o i l , the p e r c o l a t i o n r a t e dropped r a p i d l y , but when the s o i l was kept i n a r e f r i g e r a t o r , the p e r c o l a t i o n r a t e d i d not change. This i n d i c a t e d that the p e r c o l a t i o n r a t e had a c l o s e r e l a t i o n s h i p w i t h the a c t i v i t y of microorganism. L y s i - meters 2 and 5 r e c e i v e d the same c o n d i t i o n s of treatment w i t h wastewater as l y s i m e t e r s 1 and 6, but were subjected to a r e s t i n g and d r y i n g of about a month. R e s u l t s of measurement show that the sa t u r a t e d c o n d u c t i v i t i e s of both s o i l were higher than t h a t of the o r i g i n a l s o i l . The b i o l o g i c a l a c t i v i t y may have been r e s p o n s i b l e f o r the i n c r e a s e of the c o n d u c t i v i t i e s . Since i t i s l i k e l y that the suspended s o l i d s i n the waste- water, i n c l u d i n g organic matter, were f i l t e r e d out by the f o r e s t f l o o r , the a c t i v i t y of microorganisms i n the f o r e s t f l o o r pro- bably was very h i g h . This can be seen from the water r e t e n t i o n and h y d r a u l i c c o n d u c t i v i t y c h a r a c t e r i s t i c s where the a e r a t i o n p o r o s i t y of the t r e a t e d f o r e s t f l o o r i s much lower than that of the o r i g i n a l sample. P h y s i c a l Changes Occuring During Incubation P h y s i c a l changes i n the s o i l p r o f i l e during i n c u b a t i o n were 0 0 10 20 30 a: M Q ̂ 40 o 50 p-gi-aJ? I u B I SATURATED HYDRAULIC CONDUCTIVITY, CM PER DAY 300 600 900 10 4 105 K OF THE ORIGINAL SOIL K OF LYSIMETER 1 » 2 tt tt 5 6 60 70 L F i g . 14. Saturated Hydraulic C o n d u c t i v i t y of The S o i l s 37 evaluated d u r i n g wastewater a p p l i c a t i o n . F i g u r e s 15 and 16 show that both the matric and t o t a l p o t e n t i a l s decrease w i t h depth. T h i s i m p l i e s a downward movement of water i n the s o i l p r o f i l e . The top 20 cm of l y s i m e t e r 1 ( d^/dZ = 3.4 ) had a steeper po- t e n t i a l g r a d i e n t than that below 20 cm i n d i c a t i n g a lower con- d u c t i v i t y across the 0 to 20 cm depth i n t e r v a l , assuming a cons- tant f l u x w i t h depth ( Darcy's Law ). A t r a n s m i s s i o n zone e x i s t e d i n the depth i n t e r v a l s from 24 cm to 44 cm. The water content and matric p o t e n t i a l were approximately constant across the zone and the o n l y d r i v i n g f o r c e was the g r a v i t a t i o n a l poten- t i a l g r a d i e n t . The t o t a l p o t e n t i a l g r a d i e n t was u n i t y , and the h y d r a u l i c c o n d u c t i v i t y was equal to the f l u x . C a l c u l a t i o n s based on Darcy's Law i n F i g u r e s 15 and 16 show that the unsaturated c o n d u c t i v i t i e s w i t h i n t h i s zone i n l y s i m e t e r s 1 and 4 are 0.16 cm per day and 0.27 cm per day at m a t r i c p o t e n t i a l s -50 and -40 cm o f water r e s p e c t i v e l y . WATER POTENTIAL, CM OF WATER - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 10 20 3 0 40 50 60 F i g . 15. Changes of T o t a l Water P o t e n t i a l w i t h Time and Depth f o r the Forest S o i l During Incubation i n Lysimeter 1. WATER POTENTIAL, CM OF WATER -50 -40 -30 -20 -10 0 10 20 30 40 50 60 F i g . 16. Changes of T o t a l Water P o t e n t i a l w i t h Time and Depth f o r the Forest F l o o r During Incubation i n Lysimeter 4» 40 CONCLUSION I t i s of s c i e n t i f i c and p r a c t i c a l importance to charac- t e r i s e the nature of the f o r e s t s o i l w i t h respect to chemical, p h y s i c a l and p o s s i b l e b i o l o g i c a l changes. R e s u l t s of t h i s r e - search suggest t h a t a lar g e s c a l e f i e l d o p e r a t i o n i s f e a s i b l e . Most of the n u t r i e n t s l o s t by l e a c h i n g i n t h i s experiment can be taken up by t r e e s i n the f i e l d . I t has been reported t h a t a con i f e r o u s f o r e s t has a maximum annual uptake of 50 - 60 kg N per hectare ( 45 - 54 l b N per acre ) and 6 - 12 kg P per hec- t a r e ( 5 - 11 l b P per acre ) ( Cole, Gessel and Dice, 196? ). The t o t a l N and P a p p l i e d to both groups of s o i l l y s i m e t e r s i n our study were 143 - 280 kg N per hectare ( 128 - 250 l b N per acre ) and 30 - 59 kg P per hectare ( 27 - 53 l b P per acre ). This i n d i c a t e d the t o t a l a v a i l a b l e n u t r i e n t s a p p l i e d exceeded the maximum demand of f o r e s t t r e e s . For f i e l d o p e r a t i o n , a sma l l e r wastewater a p p l i c a t i o n r a t e i s suggested than that used i n the present experiment i n order to inc r e a s e s o i l wastewater contact time, reduce l e a c h i n g l o s s and maximize n i t r o g e n uptake by f o r e s t t r e e s . Therefore, care should be e x e r c i s e d i n lo a d i n g , both i n terms of q u a n t i t y and d u r a t i o n . A p r o j e c t that can be looked upon as a follow-up of t h i s study w i l l be c a r r i e d out i n the U n i v e r s i t y of B r i t i s h Columbia Research Forest i n Haney, B. C. B r i e f c o n c l u s i o n s are t h e r e f o r e drawn from the r e s u l t s r e - ported herein'with regard to d i s p o s a l of wastewater on the f o r e s t s o i l : 1. About 73 % of the t o t a l wastewater a p p l i e d was leached from 41 the s o i l , suggesting that a l a r g e q u a n t i t y of water could be recharged as ground water or taken up by v e g e t a t i o n under f i e l d c o n d i t i o n s . S a t i s f a c t o r y renovation of wastewater w i t h respect to phos- phorus and n i t r o g e n was achieved .at an a p p l i c a t i o n r a t e of 0.23 cm per day during the period September, 1971, to June, 1972. Nitrogen c o n c e n t r a t i o n of drainage water increased .with time i n ' b o t h groups of l y s i m e t e r s . The output of t o t a l n i t r o g e n from l y s i m e t e r s . 4, 5» 6 ( w i t h •• a p p l i c a t i o n r a t e of 0".46 cm per day ) exceeded th a t o f input a f t e r 25 weeks of l o a d i n g i n d i c a t i n g low degree of b i o l o g i c a l i m m o b i l i z a t i o n * N i t r o g e n balance data showed th a t r e n o v a t i o n of the waste water w i t h respect to n i t r o g e n i n l y s i m e t e r s 1, 2, and 3 ( w i t h a p p l i c a t i o n r a t e of 0.23 cm per day ) a t t a i n e d a value as high as 75 %, but renovation i n l y s i m e t e r s 4, 5, and 6 was only 43 %• The renovation would be higher under v e g e t a t i o n growth. The C:N r a t i o s were quite constant i n both groups of s o i l s , probably due to the balanced i m m o b i l i z a t i o n and m i n e r a l i z a - t i o n of n i t r o g e n . The low C:N r a t i o of organic matter added, as compared to the o r i g i n a l s o i l , and ease of organic decom- p o s i t i o n i n the f o r e s t f l o o r were important f a c t o r f o r t h i s constancy. Renovation of the wastewater w i t h respect to phosphorus by the f o r e s t s o i l was as high as 99.4 % and 99-0 % i n lysime- t e r s 3 and 4 due to the high contents of r e a c t i v e aluminium and i r o n oxides and t h e i r hydroxides i n the a c i d mineral s o i l . 8. Renovation of the wastewater w i t h respect to BOD ( bioche- m i c a l oxygen demand ) was 100 % i n both groups of s o i l s . 9 . The p h y s i c a l p r o p e r t i e s of the s o i l s were not g r e a t l y a l - t e r e d by a prolonged p e r i o d of wastewater a p p l i c a t i o n s , except i n the f o r e s t f l o o r where a e r a t i o n p o r o s i t y was r e - duced. 10. I t i s suggested t h a t f u r t h e r research might be c a r r i e d out on b i o l o g i c a l e f f e c t s of a l t e r n a t e w e t t i n g and d r y i n g , where wastewater i s a p p l i e d t o the f o r e s t s o i l . In a d d i t i o n , r e - t e n t i o n o f other n u t r i e n t s from wastewater i n f o r e s t s o i l should be evaluated. 11. F u r t h e r research on contamination of s o i l w i t h heavy metals from wastewater d i s p o s a l should a l s o be c a r r i e d out. 43 LITERATURE CITED Alexander, N., 196$. I n t r o d u c t i o n to S o i l M i c r o b i o l o g y . John Wiley and Sons, Inc., U. S. A. A l l i s o n , F. E., 1966. The Fate of Nitrogen A p p l i e d to S o i l s . Advan. Agron., 18 : 219 - 259. Bartholomen, W. V., and F r a n c i s , E. C , 1965. S o i l N i t r o g e n . Amer. Soc. of Agron., Inc. P u b l . , Madison, U. S. A. Brady, N. C , and Buckman, H. 0 . , 19&9. The Nature and Proper- t i e s of S o i l s . The Macmillan Company, N. Y., U. S. A. Bla c k , C. A.; Evans, D. D.; White, J . L.; Ensminger, L. E., and C l a r k , F. E., 1965. Methods of S o i l A n a l y s i s . Amer. Soc. of Agron., U. S. A. Bhaumik, H. D., and C l a r k , F. E., 1948. S o i l M o i s t ure Tension and M i c r o b i a l A c t i v i t y . S o i l S c i . Soc. Amer. P r o c , 12 t 234 - 238. Chapman, H. D., and P r a t t , P. E., 1961. Methods of A n a l y s i s f o r S o i l s , P l a n t s and Waters. Univ. of C a l i f o r n i a , U. S. A. Cole, C. V., and Jackson, M. L., 1950. S o l u b i l i t y E q u i l i b r i u m Constant o f Dihydroxy Aluminum Dihydrogen Phosphate Rela- t i n g to a Mechanism of Phosphate F i x a t i o n i n S o i l s . S o i l S c i . Soc. Amer. P r o c , 15 : 84 - 89. Chow, T. L., and J . de V r i e s , 1972. Dynamic Measurement of Hydrologic P r o p e r t i e s of a Layered S o i l d u r i n g Drainage and Evaporation, f o l l o w e d by Wetting. Proc. of the 2nd Sympo- sium on Foundamentals of Transport Phenomena i n Porous Me- d i a . Aug. 7 - 11, 1972 : 443 - 460.' 44 Cole, D. W.; Ge s s e l , S. P., and Dice, S. F., 1967. D i s - t r i b u t i o n and C y c l i n g of N, P, K and Ca i n a Second- Growth Douglas-Fir Eco-System. In Symposium on Primary P r o d u c t i v i t y . a n d M i n e r a l C y c l i n g i n N a t u r a l Ecosystems. U n i v e r s i t y Maine Press, Orono, Maine, 197 - 232. de V r i e s , J . , 1969. In S i t u Determination of P h y s i c a l P r o p e r t i e s of the Surface Layer of F i e l d S o i l s . S o i l - S c i . Soc. Amer. P r o c , 33 : 349 - 353. . 1972. S o i l F i l t r a t i o n of Wastewater E f f l u e n t and the Mechanism of Pore Clogging. Jour. Water P o l l . C o n t r o l Fed., 44 : 565 - 573. Dinauer, R. C , 1967. I r r i g a t i o n of A g r i c u l t u r a l Lands. Amer. Soc. of Agron., Madison, Wisconsin, U. S. A. Gardner, W. R., 1972. Physico-Chemical and M i c r o b i a l Reaction E f f e c t s on Transport i n Porous Media. Pro- ceedings of the Second Symposium on Fundamentals of Transport Phenomena i n Porous Media, V o l . 1, Univ. of Guelph, O n t a r i o , Canada. Hemwall, J . B., 1967. The F i x a t i o n of Phosphorus by S o i l s . Advan. Agron., 9 : 95 - 121. Heywood, R. T.; Trevor, S., and Webber, L. R., 1969. Cannery Waste D i s p o s a l on Land. Canad. Jour. S o i l S c i . , 49 : 211 - 213. Herbert, C. P., and Schroepfer, G. J . , 1968. T r a v e l of Nit r o g e n i n S o i l s . Jour. Water P o l l . C o n t r o l Fed., 40 : 30 - 43. 45 Jackson, M. L., i 9 6 0 . S o i l Chemical A n a l y s i s . P r e n t i c e - H a l l , Inc., Englewood C l i f f s , New Jersey, U. S. A. Johnson, V/. K., and Schroepfer, G. J . , I 9 6 4 . Nitrogen Removal by N i t r i f i c a t i o n and D e n i t r i f i c a t i o n . Jour. Water P o l l . C o n t r o l Fed., 36 : 1015 - I O 3 6 . Kardos, L. T., 1966. Waste Water Renovation by the Land - A L i v i n g F i l t e r . Amer. Assoc. Advan. S c i . , Washington D. C , U. S. A. Laak, R., 1 9 7 0 . I n f l u e n c e of Domestic Wastewater Pre- treatment on S o i l Clogging. Jour. Water P o l l . C o n t r o l Fed., 42 : 14^9 - 1500. Law, J . P.; Thomas, R. E., and Myers, L. H., 1970. Cannery Wastewater Treatment by High-Rate Spray on Grassland. Jour. Water P o l l . C o n t r o l Fed., 42 : 1621 - I 6 3 I . Mather, J . R., 1953. The D i s p o s a l of I n d u s t r i a l E f f l u e n t by Woods I r r i g a t i o n . Trans. Amer. Geophys. Union. 34 : 227. M c C a l l a , T. M., 1951. Studies on the E f f e c t of Microorga- nisms on the Rate of P e r c o l a t i o n of Water Through S o i l s . S o i l S c i . Soc. Amer. P r o c , 15 : 182 - 186. McNeal, B. L., 1968. P r e d i c t i o n o f the E f f e c t of Mixed S a l t S o l u t i o n s on Hy d r a u l i c C o n d u c t i v i t y . S o i l S c i . Soc. Amer. P r o c , 31 : 190 - 193. McLaren, A. D., and Peterson, G. H., 1967. S o i l B i o - chemistry. Marcel Dekker, Inc., N. Y., U. S. A. 46 M i l l e r , R. D., and Johnson, D. D., 1964. The E f f e c t of S o i l Moisture Tension on E v o l u t i o n , N i t r i f i c a t i o n and N i t r o g e n M i n e r a l i z a t i o n . S o i l S c i . Soc. Amer. Proc. 28 : 644 - 647. P a r i z e k , R. R. ; Kardos, L. T. ; Sopper, V/. E. ; Myers, E. A.; Davis, D. E.; F a r r e l l , M. A., and N e s b i t t , J . B., 1967. Waste Water Renovation and Conservation. The Penn. State U n i v e r s i t y S t u d i e s No. 23. Penn. State Univ. Park, Penn., U. S. A. Pennypacker, S. P.; Sopper, W. E., and Kardos, L. T., 1967. Renovation of Wastewater Through I r r i g a t i o n of Forest Land. Jour. Water P o l l . C o n t r o l Fed., 39 : 285 - 296. Reichman, G. A., 1966. E f f e c t s of S o i l M oisture on Ammonification and N i t r i f i c a t i o n o f two Northern P l a i n S o i l s . S o i l S c i . Soc. Amer. P r o c , 30 : 363 - 366. Robeck, G. G.; Bendixen, T. W.; Schwartz, W. A., and Wood- ward, R. L., I964. F a c t o r s I n f l u e n c i n g the Design and Operation o f S o i l System f o r Waste Treatment. Jour. Water P o l l . C o n t r o l Fed., 36 ; 971 - 983. R u s s e l l , E. W., 196l. S o i l C o n d i t i o n s and Pla n t Growth. John V/iley & Sons In c . , N. Y., U. S. A. Sabey, B. R., 1969. I n f l u e n c e of S o i l M oisture Tension on N i t r a t e Accumulation i n S o i l s . S o i l S c i . Soc. Amer. P r o c , 33 : 263 - 266. Schraufnagel, F. H., 1962. Ridge-and-Furrow I r r i g a t i o n f o r I n d u s t r i a l Waste D i s p o s a l . Jour. Water P o l l . C o n t r o l Fed., 34 : 1117 - 1132. 47 Scoble, Herbert T., 1905. Land Treatment of Sewage. S t . Bri d e ' s Press L t d . , London, U. K. Soper, W. E., 1971. D i s p o s a l of M u n i c i p a l Wastewater Through Forest I r r i g a t i o n . Environ. P o l l u t i o n , 1 : 263 - 284. Standard Methods f o r the Examination of Water, Sewage and I n d u s t r i a l Waste, I962. 12 nd. ed., Amer. Pub l . Health Assn., U. S. A. Thomas, R. E.; Warren, A. S., and Thomas, W. B., 1966. S o i l Chemical Changes and I n f i l t r a t i o n Rate Reduction under Sewage Spraying. S o i l S c i . Soc. Amer. P r o c , 30 1 641 - 646. Thomas, R. E., and Bendixen, T. W., 1969. Degradation o f Wastewater Organics i n S o i l . Jour. Water P o l l . C o n t r o l Fed., 41 : 808 - 813. T i s d a l e , S. L., and Nelson, W. L., 1966. S o i l F e r t i l i t y and F e r t i l i z e r . The Macmillan Company, N. Y., U. S. A. T o o l , H. R., 1967. Manometric Measurements of the B i o l o - g i c a l Oxygen Demand. Water and Sewage Works, 114 : 211. Watson, K. K., and W h i s l e r , F. D., 1968. System Dependence of the Water Content-Pressure Head R e l a t i o n s h i p . S o i l S c i . Soc. Amer. P r o c , 32 : 121 - 123. West, P. W., and Ramachandran, T. P., 1966. Spectrophoto- m e t r y Determination o f N i t r a t e Using Chromotropic A c i d . A n a l y t i c a Chimica Acta, 35 : 317 - 324. W i l l i a m s , P. J . , 1967. Replacement o f Water by A i r i n S o i l Pores. Engineer. 223 : 293 - 298. 48 Winsor, G. W., and P o l l a r d , A. G., 1956. Carbon-Nitrogen R e l a t i o n s h i p s i n S o i l . Jour. S c i . Food A g r i c , 7, February, U. S. A. 41 APPENDIX 50 Table 1. Concentrations A p p l i e d to Lys Perio d s Days crn^ Cm^ per 7-day Sep 23-Nov 17 56 1633 204.1 Nov 13-Dec 10 23 630 191.7 Dec 11-Dec 30 20 597 210.0 Dec 31-Jan 15 16 516 225.8 Jan 16-Feb 3 19 599 220.7 Feb 4-Feb 16 13 450 242.3 Feb 17-Feb 25 9 300 233.3 Feb 26-Mar 5 9 298 231.8 Mar 6-Mar 12 7 260 262.0 Mar 13-Mar 26 14 522 261.0 Mar 27-Apr 2 7 224 224.0 Apr 3-Apr 21 19 557 205.2 Apr 22-May 3 12 372 217.0 May 4-May 14 11 371 236.1 May. 15-May 26 12 408 233.0 May 27-Jun 7 12 372 217.0 Jun 8-Jun 22 15 450 210.0 T o t a l 274 856I and Amount of N i n Wastewater meters 1, 2, and 3« NO3-N N N N Water Water mg/ cm3/ ppm ppm mg 7-day cm> 7-day 1.5 29.3 47.87 5.98 77 9.6 1.6 26.9 16.95 5.16 200 60.9 1.0 32.8 19.7 6.90 200 70.0 1.0 33-4 17.26 7.55 100 43.8 0.5 30.2 18.11 6.67 300 110.5 0.3 26.4 11.89 6.40 0 0 0.3 29.7 8.91 6.93 200 155.6 1.1 30.8 9.18 7.14 100 77.8 0.6 26.2 6.86 6.86 100 100.0 0.6 14.6 7.61 3.81 200 100.0 0.6 14.3 3.20 3.20 50 50.0 0.6 17.3 9.62 3.54 100 36.8 1.0 18.2 6.76 3.94 100 58.3 1.2 20.5 7.61 4.34 100 63.6 0.7 21.0 8.58 5.00 50 29.2 0.5 28.8 10.73 6.26 200 116.7 0.4 28.6 12.88 6.01 100 46.7 223.72 2177 51 Table 2A. Concentrations and Amount of N i n Drainage Water from Lysimeter 1. Periods Days Sep 23-•Nov 18 56 Nov 19-•Dec 11 23 Dec 12-•Dec 31 20 Jan 1-•Jan 16 16 Jan 17-•Feb 4 19 Feb 5-•Feb 17 13 Feb 18-•Feb 26 9 Feb 27-•Mar 6 9 Mar 7-•Mar 13 7 Mar 14-•Mar 27 14 Mar 28-•Apr 3 7 Apr 4-•Apr 22 19 Apr 23-•May 4 12 May 5-•May 15 11 May 16-•May 27 12 May 28-•Jun 8 12 Jun 9-•Jun 23 15 cm3 om-* NO3-N per 7-day ppm 1100.0 137.5 2.0 544.0 165.8 2.7 341.5 119.8 4.0 729.6 319.0 5.4 571.3 211.5 6.8 343.2 184.8 8.0 421.6 328.0 10.8 324.0 252.0 12.0 261.1 261.1 12.8 451.3 225.7 13.5 207.6 207.6 12.0 351.7 129.6 12.8 311.0 181.4 13.7 262.1 166.2 17.8 253-3 147.8 19.2 N N N mg/ ppm mg 7-day .2.0 2.20 0.28 2.8 1.50 0.46 4.1 1.39 0.49 5.5 4.02 1.76 7.0 3.99 1.48 8.8 3.05 I.64 11.2 4.73 3.67 12.9 4.18 3.25 13.3 3.48 3.48 14.4 6.51 3.26 12.6 2.61 2.61 13.2 4.64 1.72 14.2 4.41 2.57 I8.4 4.80 3.05 19.3 5.01 2.92 Total 247 6473.3 1 56.52 52 Table 2B. Concentrations and Amount of N i n Drainage Water from Lysimeter 2. Periods Days Sep 23-•Nov 18 56 Nov 19-•Dec 11 23 Dec 12-•Dec 31 20 Jan 1-•Jan 16 16 Jan 17- •Feb 4 19 Feb 5-•Feb 17 13 Feb 18- •Feb 26 9 Feb 27-•Mar 6 9 Mar 7-•Mar 13 7 Mar 14- •Mar 27 14 Mar 28-•Apr 3 7 Apr 4-•Apr 22 19 Apr 23-•May 4 12 May 5-•May 15 11 May 16-•May 27 12 May 28-•Jun 8 12 Jun 9-•Jun 23 15 T o t a l 274 cm-* cm3 NO3-N per 7-day ppm 1134.0 142.0 3.2 575.5 175.0 3.5 374.5 130.8 4.3 717.5 313.2 4.7 543.2 202.4 4.7 307.4 165.8 4.8 464.6 36O.8 7.0 313.7 244.0 7.6 251.3 251.3 7.0 431.5 215.8 8.4 191.6 191.6 7.8 370.3 136.2 7.3 315.1 I83.8 8.5 250.5 159.0 14.2 231.7 135.0 14.9 241.5 140.8 13.0 403.2 188.0 13.0 7132.4 N N N mg/ ppm mg 7-day 3.4 3.86 'O.36 3.7 2.14 0.65 4.4 1.64 0.57 5.3 3.80 1.66 5.2 2.84 1.04 5.7 1.76 0.95 7.3 3.40 2.64 8.2 2.57 2.00 8.2 2.06 2.06 8.8 3.82 1.91 8.0 1.53 1.53 7.8 2.86 1.06 8.8 2.76 1.62 14.6 3.73 2.37 15.2 3.53 2.06 13.5 3.26 1.91 13.0 5.21 2.43 50 .77 53 .Table 2C. C o n c e n t r a t i o n s and Amount o f N i n Drainage Water from L y s i m e t e r 3« P e r i o d s Days crn-̂ Sep 23-Nov 18 56 1165 .0 Nov 19-Dec 11 23 551.0 Dec 12-Dec 31 20 3 4 2 . 0 Jan 1-Jan 16 16 6 8 8 . 7 Jan 17-Feb 4 19 550.6 Feb 5-Feb 17 13 3 4 4 . 8 Feb 18-Feb 26 9 4 1 5 . 6 Feb 27-Mar 6 9 329 .5 Mar 7-Mar 13 7 259.3 Mar 14-Mar 27 14 475 .9 Mar 28-Apr 3 7 221.7 Apr 14-Apr 22 19 369 .5 Apr 23-May 4 12 259.7 May 5-May 15 11 247 .0 May 16-May 27 12 236.3 May 28-Jun 8 12 226.0 Jun 9-Jun 23 15 397 .9 T o t a l 274 7080.5 cm^ N0-.-N N N N per j mg/ 7-day ppm ppm mg 7-day 145.6 2 . 5 2 .50 2.91 O.36 167.7 2 . 2 2.23 1.23 0 . 3 7 119 .7 3 . 6 3 . 6 0 1.23 0 . 4 3 301.3 4 . 9 4 . 9 4 3 . 4 0 1 .48 202.8 4 . 0 4 . 7 0 2.59 0 .95 1 8 5 . 7 5 .5 5 .94 2.05 1 .10 3 2 3 . 2 8 . 0 8 . 4 0 3 .49 2 . 7 1 256.3 8 . 0 8.62 2.84 2 . 2 1 259.3 8 . 0 8 . 5 2 2 . 2 1 2 . 2 1 238.0 9 . 0 9 . 7 9 4 . 6 6 2 .33 221.7 8 . 1 8 .93 1 .98 1 .98 136 .1 8 . 5 9 . 1 7 3 .39 1.25 1 5 1 . 5 1 1 . 0 11 .63 3 . 0 2 1 .76 1 5 7 . 2 1 7 . 1 1 7 . 8 5 4 . 4 1 2 . 8 1 137 .8 1 7 . 9 1 8 . 7 0 4 . 4 2 2 .58 131.8 1 6 . 5 17 .30 3 .91 2.28 185 .7 1 7 . 5 17 .89 7 .12 3 .32 54.86 54 Table 3» C o n c e n t r a t i o n s and Amount o f N i n Wastewater A p p l i e d t o L y s i m e t e r s 4, 5, and 6. P e r i o d s Days cm3 cm^ per 7-day Sep 23-Nov 17 56 2842 355.3 Nov 18-Dec 10 23 1275 388.0 Dec 11-Dec 30 20 1200 420.0 Dec 31-Jan 15 16 1050 459.4 Jan 16-Feb 3 19 1200 442.1 Feb 4-Feb 16 13 900 484.6 Feb 17-Feb 25 9 600 466.7 Feb 26-Mar 5 9 600 466.7 Mar 6-Mar 12 7 525 525.0 Mar 13-Mar 26 14 1050 525.0 Mar 27-Apr 2 7 450 450.0 Apr 3-Apr 21 19 1125 414.5 Apr 22-May 3 12 750 437.5 May 4-May 14 11 750 477.3 May 15-May 26 12 825 481.2 May 27-Jun 7 12 750 437.5 Jun 8-Jun 22 15 900 420.0 NO^-N N N N Water Water :> mg/ cm3/ ppm ppm mg 7-day cm-3 7-day 1.5 29.3 83.27 10.44 95 11.9 1.6 26.9 34.29 10.44 200 60.9 1.0 32.8 39.60 13.86 200 70.0 1.0 33.4 34.65 15.16 100 43.8 0.5 30.2 36.27 13.36 300 110.5 0.3 26.4 23.76 12.79 0 0 0.3 29.7 17.82 13.86 200 155.6 1.1 30.3 18.48 14.37 100 77.8 0.6 26.2 13.74 13.74 100 100.0 0.6 14.6 15.31 7.66 200 100.0 0.6 14.3 6.44 6.44 50 50.0 0.6 17.3 19.29 7.11 100 36.8 1.0 18.2 13.63 7.95 100 58.3 1.2 20.5 15.40 9.80 100 63.6 0.7 21.0 17.36 10.13 50 29.2 0.5 28.8 21.60 12.60 200 116.7 0.4 28.6 25.97 12.12 100 46.7 T o t a l 274 16792 436.88 2195 55 Table 4A. Concentrations and Amount of N i n Drainage Water from Lysimeter 4. Periods Days cm^ cm3 NO.-N N N N per j mg/ 7-day ppm ppm mg 7-day Sep 24-Nov 18 56 2272.0 284.0 5.6 5.6 12.72 1.59 Nov 19-Dec 11 23 1251.9 381.0 5.7 5.9 7.40 2.25 Dec 12-Dec 31 20 370.0 304.5 7.3 8.0 6.95 2.43 Jan 1-Jan 16 16 1270.1 555.7 3.3 8.6 10.96 4.79 Jan 17-Feb 4 19 1027.2 373.4 7.5 8.1 8.36 3.08 Feb 5-Feb 17 13 794.9 428.0 9.3 9.9 7.35 4.23 Feb 18-Feb 26 9 714.5 555.7 14.0 14.4 10.28 8.00 Feb 27-Mar 6 9 639.9 497.7 17.9 18.1 11.58 9.01 Mar 7-Mar 13 7 540.0 540.0 20.0 20.4 11.02 11.02 Mar 14-Mar 27 14 963.9 484.5 23.0 23.4 22.72 11.36 Mar 28-Apr 3 7 431.7 431.7 23.7 24.0 10.33 10.33 Apr 4-Apr 22 19 894.7 329.6 26.0 26.5 23.69 8.73 Apr 23-May 4 12 684.4 399.2 27.5 27.3 19.04 11.11 May 5-May 15 11 643.0 409.2 29.2 29.7 19.12 12.17 May 16-May 27 12 632.3 368.8 31.9 32.2 20.33 11.86 May 28-Jun 8 12 567.2 330.9 31.7 32.0 18.17 10.60 Jun 9-Jun 23 15 919.6 429.1 31.2 31.3 28.77 13.43 Total 274 15122.3 249.34 56 Table 4B. Concentrations and Amount of N i n Drainage Water from Lysimeter 5. Periods Days cm-̂  • 3 cnr N0o-N N N N per mg/ 7-day ppm ppm mg 7-day Sep 23-Nov 18 56 2269.0 287.0 7.7 7.7 17.68 2.21 Nov 19-Dec 11 23 1309.5 397.0 7.8 7.8 10.26 3.13 Dec 12-Dec 31 20 871.5 305.8 9.3 9.3 8.12 2.85 Jan 1-Jan 16 16 1374.5 593.0 3.5 9.0 12.42 5.42 Jan 17-Feb 4 19 1065.3 393.5 9.1 9.4 9.97 3.67 Feb 5-Feb 17 13 780.6 420.2 10.6 11.2 8.62 4.64 Feb 18-Feb 26 9 773.6 603.O 14.6 14.9 11.54 8.95 Feb 27-Mar 6 9 673.5 525.0 18.3 18.9 12.74 9.90 Mar 7-Mar 13 7 483.7 483.7 19.7 20.2 9.72 9.72 Mar 14-Mar 27 14 974.8 487.4 22.2 22.6 22.14 11.07 Mar 28-Apr 3 7 421.3 421.3 21.1 21.5 9.08 9.08 Apr 4-Apr 22 19 880.5 324.5 21.7 22.2 19.53 7.18 Apr 23-May 4 12 719.6 420.0 22.9 23.2 16.72 9.75 May 5-May 15 11 635.1 404.0 26.9 27.2 17.30 11.00 May 16-May 27 12 594.7 347.0 29.7 30.0 17.85 10.40 May 28-Jun 8 12 571.2 334.0 30.3 30.7 17.47 10.20 Jun 9-Jun 23 15 846.9 395.0 29.4 29.3 25.30 11.82 T o t a l 274 15245.3 246.48 57 Table 4 C Concentrations and Amount of N i n Drainage Water from Lysimeter 6. Periods Days Sep 23-•Nov 18 56 Nov 19-•Dec 11 23 Dec 12-•Dec 31 20 Jan 1-•Jan 16 16 Jan 17-•Feb 4 19 Feb 5-•Feb 17 13 Feb 18-•Feb 26 9 Feb 27-•Mar 6 9 Mar 7-•Mar 13 7 Mar 14-•Mar 27 14 Mar 28-•Apr 3 7 Apr 4-•Apr 22 19 Apr 23-•May 4 12 May 5-•May 15 11 May 16-•May 27 12 May 28-•Jun 8 12 Jun 9-•Jun 23 15 cm-* Cm3 NO^-N per 7-day ppm 2270.0 287.0 9.0 1248.5 379.0 8.7 865.0 303.0 9.9 1283.9 561.5 10.4 1106.1 407.0 8.7 861.9 464.5 11.2 702.5 547.0 15.0 669.5 522.0 19.0 512.6 512.6 20.3 963.2 481.6 22.9 416.5 416.5 21.8 866.1 313.0 21.2 719.8 420.0 23.4 655.6 417.0 26.9 583.6 341.0 30.2 N N N mg/ ppm mg 7-day 9.0 20.42 2.55 8.7 10.94 3.31 9.9 8.54 2.98 10.9 13.99 6.12 9.2 10.86 4.00 11.8 10.17 5.47 15.2 10.72 8.32 19.2 12.94 10.70 21.0 10.75 10.75 23.2 22.36 11.18 22.1 9.19 9.19 21.5 I8.63 6.83 23.7 17.13 9.96 27.4 17.96 11.40 30.4 17.86 10.42 Total 247 13723.8 212.46 53 T a b l e 5. C o n c e n t r a t i o n s and Amount of T o t a l S o l u b l e P i n Wastewater and Drainage Water i n L y s i m e t e r s 1, 2, and 3. Time Wastewater Drainage Water days P ppm P mg P mg/ 7-day P ppm P mg 7- P mg/ •day 1 2 3 1 2 3 1 2 3 56 6.0 9.80 1.22 0 0 0 0 0 0 0 0 0 23 5.6 3.53 1.07 0 0 0 0 0 0 0 0 0 20 4.5 2.69 0.94 0 0 0 0 0 0 0 0 0 16 5.0 2.58 1.13 0 0 0 0 0 0 0 0 0 19 7.2 4.31 1.60 0 0.3 0 0 0.16 0 0 0.06 0 13 6.4 2.84 1.53 0 0 0 0 0 0 0 0 0 9 7.6 2.28 1.77 0 0 0 0 0 0 0 0 0 9 8.7 2.59 2.02 0 0 0 0 0 0 0 0 0 7 8.2 2.15 2.15 0.3 0.7 0.3 0.08 0.18 0.08 0.08 0.18 0.08 14 4.7 2.45 1.23 0 0 0.4 0 0 0.19 0 0 0.10 7 4.0 0.90 0.90 0 0 0 0 0 0 0 0 0 19 4.0 2.22 0.82 0 0 0 0 0 0 0 0 0 12 4.7 1.75 1.02 0 0 0 0 0 0 0 0 0 11 4.7 1.74 1.11 0 0 0 0 0 0 0 0 0 12 4.5 1.83 1.07 0.4 0.4 0 0.10 0.09 0 0.06 0.05 0 12 4.0 1.49 0.87 - 0 0 - 0 0 - 0 0 15 4.0 1.80 0.84 _ 0 0 _ 0 0 — 0 0 274 46.95 0.18 0.43 0.27 ( T o t a l ) 59 T a b l e 6 . C o n c e n t r a t i o n s and Amount of T o t a l S o l u b l e P i n Wastewater and Drainage Water i n L y s i m e t e r s 4, 5, and 6 . Time V/astewater Drainage Water days P ppm P mg P mg/ 7-day P ppm P mg 7- P mg/ -day 4 5 6 4 5 6 4 5 6 56 6.0 17.20 2.15 0 0 0 0 0 0 0 0 0 23 5.6 7.10 2.17 0 0 0 0 0 0 0 0 0 20 4.5 5.40 1.89 0 0.6 0 0 0.52 0 0 0.18 0 16 5.0 5.25 2.30 0 0 0 0 0 0 0 0 0 19 7.2 8.64 2.45 0.3 0 0 0.31 0 0 0.11 0 0 13 6.4 5.76 3.10 0 0 0 0 0 0 0 0 0 9 7.6 4.56 3.55 0 0 0 0 0 0 0 0 0 9 8.7 5.22 4.06 0 0 0.8 0 0 0.54 0 0 0.42 7 8.2 4.31 4.31 0.8 0.4 0.4 0.43 0.19 0.21 0.43 0.19 0.21 14 4.7 4.94 2.47 0 0 0.8 0 0 0.77 0 0 0.39 7 4.0 1.80 1.80 0 0 0 0 0 0 0 0 0 19 4.0 4.50 1.66 0 0 0 0 0 0 0 0 0 12 4.7 3.53 2.06 0 0 0 0 0 0 0 0 0 11 4.7 3.53 2.25 0 0 0 0 0 0 0 0 0 12 4.5 3.71 2.17 0.4 0 0.4 0.25 0 0.23 0.15 0 0.14 12 4.0 3.00 1.75 0 0 - 0 0 - 0 0 - 15 4.0 3 . 6 0 1.68 0 0 0 0 0 0 _ 274 92.05 0.99 1.51 1.52 ( T o t a l ) 60 Table 7. Chemical and Physical Properties of the Original Soil and the Treated Soil in Lysimeter 3* S o i l Total T o t a l Water Bulk Depth Kjeldhal NH.-N C C:N pH Content Density N * N ppm % % gm/gm gm/cm̂  cm u/o 0 -3.5 1.53 296.2 1.53 43.72 28.56 - 3.31 - 3.5- 5 1.89 602.2 1.90 47.50 25.00 - 3.32 - 5 - 8 1.66 676.3 1.66 53.50 32.23 - 4.13 - 3 - 9 1.40 431.7 1.41 43.70 30.99 - 4.07 - 9 -14 0.14 24.9 0.14 3.90 27.86 4.04 0.34 0.81 14 -19 0.14 3.3 0.14 3.61 25.79 4.03 0.44 0.84 19 -24 0.14 3.4 0.14 3.52 25.14 4.06 0.44 0.86 24 -29 0.13 2.7 0.13 3.42 26.31 4.25 0.44 0.88 29 -34 0.10 1.2 0.11 3.40 30.90 4.44 0.44 0.90 34 -39 0.12 1.4 0.12 3.52 29.33 4.57 0.45 0.88 39 -44 0.12 1.6 0.12 3.27 27.25 4.60 0.45 0.88 44 -49 0.12 1.4 0.12 3.41 28.42 4.72 O.46 0.87 49 -54 0.13 1.2 0.13 3.46 26.62 4.63 O.46 0.89 54 -59 0.13 1.2 0.13 3.22 24.77 4.64 O.46 0.88 59 -64 0.12 1.2 0.13 3.23 24.35 4.65 0.45 0.83 64 -69 0.13 8.7 0.13 3.51 27.00 4.65 O.46 0.82 69 -71 0.13 16.6 0.13 3.51 27.00 4.65 - - Original Soil L ( 0 -2.2)1.38 - 1.33 45.89 33.33 - - - F (2.2-4.2)1.51 - 1.51 44.35 29.45 - - - H (4.2-9. 0)1.56 - 1.56 44.44 23.56 - - - S o i l Layer 0.15 0.15 3.46 23.72 4.65 0.45 0.88 61 Table 8 . Chemical and Physical Properties of the O r i g i n a l S o i l and the Treated S o i l i n Lysimeter 4 . S o i l Total Total Water Bulk Depth Kjeldhal NH.-N C C:N pH Content Density N N cm % ppm % % gm/gm gm/cm 0 - 3 1 . 3 8 128.6 1 .38 43 .10 3 4 . 8 6 - 2.92 - 3 - 7 1 .76 481.3 1 .77 4 8 . 2 0 27.23 - 2.93 - 7 - 9 . 5 1 .37 408 .7 1 .38 32 .89 23 .83 - 3.73 - 9 - 5 - 1 4 . 5 0 .15 1 7 . 7 0 .15 3 . 4 7 23.13 4 . 5 1 0 . 4 7 0 .85 1 4 . 5 - 1 9 . 5 0 . 1 4 1 6 . 2 0 .16 3 . 4 2 21.97 4 .03 0 . 4 9 0 . 8 4 1 9 . 5 - 2 4 . 5 0 . 1 4 13 .3 0 .14 3 . 3 3 23.78 4 . 0 9 0 . 4 9 0 .86 2 4 . 5 - 2 9 . 5 0 . 1 4 13 .0 0.13 3 . 1 9 23 .78 4.13 0 . 4 9 0 .85 2 9 . 5 - 3 4 . 5 0 . 1 4 13 .1 0 .14 3 . 3 3 23 .78 4 . 1 6 0 . 4 9 0 .85 3 4 . 5 - 3 9 . 5 0.13 2 0 . 1 0.13 3 . 1 4 23 .58 4 .07 0 . 5 0 O.85 3 9 . 5 - 4 4 . 5 0 . 1 2 3 7 . 9 0.13 3 . 0 4 23 .38 4 .17 0 . 5 0 0 .85 4 4 . 5 - 4 9 . 5 0 .13 39 .8 0 .14 3 .23 22.33 4 . 4 0 0 . 5 0 0 . 9 1 4 9 . 5 - 5 4 . 5 0 .15 4 5 . 1 0 .15 3 . 1 9 21 .27 4 . 5 8 0 . 4 9 0 . 8 8 5 4 . 5 - 5 9 . 5 0 .14 4 5 . 3 0 .14 3 . 1 4 22.52 4 .59 0 . 5 0 0 .86 5 9 . 5 - 6 4 . 5 0 .13 45 .9 0.13 3 . 0 9 23 .77 4 . 5 8 0 . 5 2 0 .84 6 4 . 5 - 6 9 . 5 0 .14 43 .8 ; 0 .14 3 . 1 2 22.82 4.64 0 . 5 2 0 . 8 1 6 9 . 5 - 7 2 . 0 0 .14 4 1 . 0 0 .14 3 . 2 8 21 .87 - 0 . 5 2 0 .74 O r i g i n a l S o i l S o i l Layer 0.15 - 0.15 3 . 4 6 23 .72 4 .65 0 . 4 5 0 .86 3 62 Table 9. M a t r i c P o t e n t i a l v s . Volumetric Water Content i n Lysimeter 1. Parameters S o i l D e p t h \ cm M a t r i c P o t e n t i a l cm of water Volumetric Water Content cm^ per cm3 6.7 14.5 30.5 34.2 59.9 0.140 0.266 0.302 0.328 25.9 35.9 56.4 57.9 69.1 0.029 0.143 0.175 0.145 45.9 43.8 45.4 52.2 66.8 0 . 0 3 9 0.058 0 . 0 6 8 0.132 65.9 25.6 52.3 79.3 92.7 0.050 0.116 0.142 0.198 63 Table 10. Matric Potential vs. Volumetric Water Content i n Lysimeter 6. V Parameters S o i l \ Depth \ cm \ Matric Potential cm of water Volumetric Water Content cm-̂  per cm-̂ 8.5 5.3 3.0 11.3 13.7 15.4 19.5 33.6 0.021 0.031 0.062 0.136 0.142 0.153 0.233 27.5 20.4 - 33.0 • 37.2 45.5 48.7 51.3 55.4 0.035 0.112 0.136 0.204 0.238 0.306 0.302 47.5 36.0 43.0 46.5 50.3 51.8 54.2 58.8 0.045 0.070 0.101 0.118 0.128 0.231 0.225 67.5 30.9 33.1 33.4 45.0 57.6 77.1 83.O 0.093 0.134 0.155 0.153 0.299 0.291 0.341 64 Table 11. Matric P o t e n t i a l vs. Volumetric Water Content of 1) the O r i g i n a l S o i l . \ Parameters S o i l \ Depth \ cm \ Matric Potential cm of water Volumetric Water Content crn^ per cm^ 1.2' 26.9 35.9 46.9 51.3 65.4 77.3 86.0 0.002 0.056 0.099 0.125 0.144 0.176 0.160 10.2 19.8 35.1 46.3 69.2 81.5 84.4 91.6 0.002 0.048 0.080 0.142 0.157 0.151 0.168 19.2 11.5 17.7 51.7 64.8 78.9 83.7 113.3 0.014 0.017 0.161 0.189 0.216 0.209 0.221 2) F. F. 10.0 0.383 20.0 0.645 30.0 0.710 45.0 0.745 60.0 0.755 1) . Bulk density = 0.82 gm per cm , water content = 0.44 gm per gm. 2) . Forest f l o o r : Matric p o t e n t i a l vs gravimetric water content. 65 Table 12. Saturated Hydraulic C o n d u c t i v i t y of Both the O r i g i n a l and Treated S o i l s . \ L y s i m e t e r s Soil - N v Depth X Cm Treated 1 Treated 2 Treated 5 Treated 6 O r i g i n a l S o i l 0 - 9 - 63750.9 11962.9 - - 9-29 102.2 302.9 902.4 129.6 184.3 29-49 78.1 266.4 544.5 92.8 157.7 49 - 69 123.0 274.3 958.6 105.6 285.3 Notes : 1) Both l y s i m e t e r s 1 and 6 were measured i n May, 1972. 2) Both l y s i m e t e r s 2 and 5 were measured i n June, 1972, a f t e r subject t o peri o d of d r y i n g . 3) The o r i g i n a l s o i l was l y s i m e t e r 2 which was measured i n August, 1971. 4) The u n i t of c o n d u c t i v i t y i s cm per day.

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 8 27
United States 7 0
Japan 3 0
City Views Downloads
Beijing 8 0
Ashburn 3 0
San Jose 3 0
Tokyo 3 0
Mountain View 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0101362/manifest

Comment

Related Items